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Summary 

The equations of mean motion for a two-dimensional jet 
deflected by an ambient stream are studied. On condition 
that the initial velocities of the jet and the ambient stream 
differ not too much in direction and not too little in magnitude, 
the equations holding in certain regions of the deflected jet 
flow field are shown to be similar to those for a jet in a coflowing 
stream. A preliminary study of self-preservation is also 
attempted. Experimental measurements are made to confirm 
the similarity of the mean velocity fields of the two kinds of jet 
flows. Self-preservation of the excess dynamic pressure is 
confirmed for the deflected two-dimensional jet. The jet 
axial location is found to be independent of the jet-to-ambient 
velocity ratio if all lengths are divided by the square of that 
ratio. 

The initial report is concerned with jet deflection angles of 
25°, 17° and 9°. In Appendix 3 mention is made of some additional 
experiments at 45° deflection at which angle some of the conclusions 
of the initial report are found to be no longer valid. 
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USOHAÎGSr 
1. In t roduct ion ^ ^ 

The jet flow is a fluid flow phenomenon when t h e r e is a d i s -
continuity of s o m e p a r a m e t e r s such as veloci ty in some par t of the 
flow f ield. The f luids s e p a r a t e d by the d iscont inui ty need not have 
the s a m e the rmodynamic p r o p e r t i e s . The flow m a y be bounded or 
unbounded, l a m i n a r o r tu rbu len t . 

The flow of a tu rbulen t jet into an unbounded reg ion of fluid 
with the s a m e p r o p e r t i e s is a r e l a t i ve ly s imple type of s h e a r flow. 
It is of both bas i c and applied i n t e r e s t . F o r p r ac t i ca l app l ica t ions , 
it s e r v e s as a model fo r p rob lems such as the dilution of sewage 
f r o m a s u b m a r i n e outfal l . F r o m the t h e o r e t i c a l s tandpoint , the i m -
por tance of th is kind of flow l ies in the fact that it p o s s e s s e s c e r t a i n 
s impl i fy ing p r o p e r t i e s , which enables a m o r e deta i led s tudy of the 
obse rved p r o p e r t i e s of the flow field and the use of the r e s u l t s to in-
t e r p r e t obse rva t ions of m o r e common types of tu rbu len t s h e a r f lows . 
Consequent ly , the diffiision phenomena of th is f r e e tu rbulen t s h e a r 
flow have been examined both theo re t i ca l ly and expe r imen ta l l y by 
many inves t iga to r s over the past four decades . 

All f r e e turbulent s h e a r flows a r e s impl i f i ed by the absence of 
solid boundar i e s . Hence t h e r e is no r e s t r i c t i o n on the l a t e r a l s p r e a d 
of tu rbu lence into the su r round ing fluid, and the flow exhibi ts inhomo-
geneity in the d i rec t ion of the mean motion. T r a n s v e r s e to th i s 
d i rec t ion , the veloci ty and the length sca le ( c h a r a c t e r i z e d by the 
l a t e r a l s p r e a d of jet) a r e both s m a l l . Thus a s impl i f i ca t ion is poss ib le 
in a m a n n e r s i m i l a r to the boundary l aye r approximat ion . A con-
sequence of th i s on the equations of motion is that , provided the 
Reynolds number is high enough, the mean s ta t ic p r e s s u r e mus t have a 
s m a l l yet s ignif icant d e c r e a s e r e l a t i ve to that in the su r round ing f luid. 
Another s impl i f ica t ion is valid for fu l ly-developed flows of f r e e 
tu rbu lence . At suf f ic ien t ly high Reynolds n u m b e r s , t hese f lows a r e 
usua l ly found to exhibit g e o m e t r i c a l s i m i l a r i t y . Hence the m e a n flow 
is e f fec t ive ly independent of the v i scos i ty . These two s impl i f i ca t ions 
r educe the governing equat ions to a set analogous to those fo r a l a m i n a r 
boundary l a y e r . But the analogy is incomple te , fo r the apparen t s h e a r 
s t r e s s cannot be r e l a t ed to the mean veloci ty grad ien t in any s imple 
way £24]. * 

* N u m b e r s in b r a c k e t s r e f e r to Bibl iography. 
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Earlier works on jets have dealt fairly extensively with uni-
directional flows, i. e. a plane jet or an axi -symmetric jet d ischarg-
ing into a quiescent or uniform co-f lowing (viz. flowing in the same 
direction as the jet) medium, and the mixing of two semi-infinite uni-
form streams. An important property usually found is s e l f - p r e s e r v -
ation, i. e. , the transverse distributions of some mean quantities for 
various positions in the downstream direction retain the same 
functional forms, merely changing in scale. Mathematically this 
simply means that (in the case of two independent variables) a solution 
in terms of those mean quantities can be found by separation of 
variables after an appropriate change of the independent variables. 
Physically this implies a state of moving equilibrium uninfluenced by 
the upstream history [25].' 

Experimental measurements on a two-dimensional jet and on an 
axi-symmetric jet discharging into a stationary medium have indicated 
the existence of self-preservation of the mean flow velocity and the 
Reynolds stresses. Theoretical analysis has also shown that this can 
be consistent with the equations of motion. Hov/ever, when the ambient 
fluid is a uniform coflowing stream, the situation is more complex. 
Although experiments have also indicated the self -preservation of the -
excess velocity (i. e. , velocity relative to the ambient stream) prof i les , 
analysis has ruled out the possibility of its exactness and shown that at 
best it can only be approximately true provided the maximum velocity 
excess in a transverse section is of an order larger or smaller than the 
velocity of the ambient fluid. 

Another type of self-preservation has been observed, in which the 
excess dynamic pressure is substituted for the excess velocity. When 
the ambient fluid is at rest, these two types of sel f -preservation are 
exactly equivalent. But, this is not so when the ambient fluid is 
moving. Intensive measurements [16] made on compound jets have, 
indicated this second type. Correlation theory, using a hypothesis 
which is in effect the self-preservation of excess dynamic pressure, 
was found quite successful in problems of round jets and of two-
dimensional jets [see 26] in both moving and stationary ambient fluid. 
These lend much weight to the preference for the sel f -preservation of 
excess dynamic pressure to that of excess velocity. 

Only in recent years has the problem of jets issuing into a 
deflecting (i. e. non-coflowing) ambient stream been considered. 
Most of these works have been concerned principally with the location 
of the jet axis [U. An experimental investigation was recently made 
on the upstream region of the zone of established flow f rom a round 
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jet in a c r o s s - w i n d [27]. It c la imed to have obtained a s i m i l a r i t y 
of the d i f f e r ence in magni tude of the ve loc i t i es in the je t and in the 
ambient s t r e a m when the p ro f i l e s n o r m a l to the je t axis w e r e cons ide red . 
However , th is s i m i l a r i t y is not s a t i s f a c t o r y , s ince it is not logical ly 
sound to f o r m the d i f f e r ence in magni tude of two d i f f e r e n t l y - d i r e c t e d 
v e c t o r s . No s i m i l a r work has appeared fo r the two-d imens iona l 
p rob lem. 

In view of the meanings of s e l f - p r e s e r v a t i o n , we would expect 
it to be found in some m o r e g e n e r a l type of jet flow governed by s i m -
i l a r equat ions. One such flow is a two-d imens iona l jet emi t ted at a 
s m a l l angle to a u n i f o r m ambient s t r e a m . The p resen t inves t iga t ion 
a t t empts to provide some in fo rmat ion on the momen tum di f fus ion in 
such a flow. Following some s imple analy t ica l cons ide ra t ions , 
m e a s u r e m e n t s of dynamic p r e s s u r e w e r e c a r r i e d out fo r t h r e e d i f f e r -
ent in i t ia l jet d i r ec t ions and s e v e r a l j e t - t o - a m b i e n t veloci ty r a t i o s . 
Unfor tunate ly , no i n s t r u m e n t s w e r e avai lable in the l a b o r a t o r y to en-
able m e a s u r e m e n t s on tu rbu lence , although i ts impor t ance in jet m i x -
ing has always been well unders tood . N e v e r t h e l e s s , an impor tan t 
conclusion can be drawn, conf i rming the s e l f - p r e s e r v a t i o n of e x c e s s 
dynamic p r e s s u r e . Some r e m a r k s a r e a l so made on the locat ion of the 
jet axis . 
2. C r i t i c a l Review of L i t e r a t u r e 

2. 1 P r e l i m i n a r y 
The s tudy of j e t s da tes back to the las t cen tury when Helmhol tz 

f i r s t solved the p rob lem of the Borda mouthpiece by us ing the f r e e 
s t r e a m l i n e theory [4], Since then, many other models have been con-
s t ruc ted . T h e s e a r e all based on the inviscid theory and the hpdograph 
t r a n s f o r m a t i o n . Most such solut ions involve c a s e s where the d i a g r a m 
in the hodograph plane is a c i r c u l a r s e c t o r or a r e c t a n g u l a r polygon. 
Even in these compara t ive ly s imple c a s e s , the m a t h e m a t i c a l solut ions 
a r e highly complex. This t heo ry has been found in r e a s o n a b l e a g r e e -
ment with expe r imen t s in the c a s e s of liquid j e t s i ssu ing into a i r or 
some other low-dens i ty med ium. However , d i s c r e p a n c i e s a r i s e in 
the g e n e r a l c a se of j e t s and wakes . 

The f a i l u r e of f r e e s t r e a m l i n e theo ry applied to je t s and wakes 
in a homogeneous fluid pe r t a ins to the impor tan t r o l e s played by 
v i scos i ty , vor t ic i ty , and tu rbu lence . The ef fec t of v i scos i ty r e d u c e s 
the number of d e g r e e s of f r e e d o m of the fluid in l a m i n a r motion by 
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damping the motion of small eddies [l9] thus drawing the well-known 
distinction between laminar and turbulent flows. The laminar flow 
of all Newtonian fluids can be described by the Navier-Stokes 
equations with suitable boundary conditions. However, the non-
linearity of the equations has made it very difficult to solve this 
boundary value problem. In particular, no special analytic so l -
utions are known which describe wakes and jets [5]. Besides, al-
though it is known theoretically that solutions do exist, it has never 
been proved that the solution is unique. Hence we do not even know 
whether the problem is mathematically well-set. Nevertheless, the 
Navier-Stokes equations have been used universally, even in the 
study of turbulent flows. Leaving aside the question of uniqueness, 
much work has been done in attempting to solve these equations for 
various problems. Apart from a few exact solutions, many known 
solutions generally follow either bf two types of approximations. One 
is the linearization by means of perturbation methods, such as 
Stokes approximation and Oseen approximation. The other type is 
the boundary layer approximation. Besides, numerical methods 
have also been used to find approximate solutions, but these have 
been criticised [5] regarding the justification of the methods used 
and some usual assumptions adopted in the calculation. 

At very low Reynolds numbers (creeping flow) some solutions 
have been obtained for steady jet flows, using the two types of 
approximations. In these solutions, similarity has been found (in-
volving the kinematic viscosity). Among these, the analytic so l -
ution of Yatseev and Squire [5] deserves particular attention. 
Schlichting's model was used and an exact solution to the Navier-
Stokes equations in spherical coordinates was obtained for the 
creeping jet flow from a tube of infinitesimal diameter, under the 
self-similarity hypothesis. This is in agreement with the experi:-
mental fact, at least qualitatively, that only in the case of outflow 
from a tube does one observe radial streamlines. Although there 
is still some lack of rigour in part of the mathematical argument, 
this has the important indication that exact self-similarity only ex-
ists in an appropriate coordinate system which is inherent in the 
nature of the problem. 

At intermediate Reynolds numbers, homogeneous jets often 
exhibit periodic behaviour just like wakes. For instance, in a 
plane jet vorticity has been observed to be shed alternately on 
both of the jet boundaries. However, the theory-of periodic jets 
is still only very rudimentary [5]. At higher Reynolds numbers. 
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the pe r iod ic i ty b r e a k s down and the je t b e c o m e s tu rbu len t , and the 
flow b e c o m e s t i m e - d e p e n d e n t even though the m e a n flow m a y s t i l l r e -
m a i n s teady . 

In the ana lys i s of tu rbu len t f luid mot ion, the N a v i e r - S t o k e s 
equat ions have been a s s u m e d to be s a t i s f i e d by the ins t an taneous 
va lues of the flow p a r a m e t e r s . Each ins tan taneous value is again 
a s s u m e d s e p a r a b l e into a m e a n and f luctuat ing component . Taking 
m e a n va lues of the r e s u l t i n g equat ions y ie lds the wel l -known Reynolds 
equat ions . But the a p p e a r a n c e of the eddy s t r e s s e s r e n d e r s the 
p rob l em i n d e t e r m i n a t e s ince the govern ing equat ions do not f u r n i s h 
a suf f ic ien t n u m b e r of condi t ions . To find a comple t e solut ion of 
the p rob lem, two l ines of approach have been used , viz. the s e m i -
e m p i r i c a l approach and the s t a t i s t i c a l approach . Since tu rbu len t 
f luc tua t ions a r e r a n d o m in n a t u r e , the me thods of s t a t i s t i c a l m e c h -
an ic s a r e applied in the l a t t e r approach . The e s s e n t i a l f e a t u r e s of 
th is t h e o r y [12, 193 to s tudy the c o r r e l a t i o n funct ion, the 
s p e c t r a l funct ion, the probabi l i ty d i s t r ibu t ion and the joint p robab-
i l i ty d i s t r ibu t ion of the r a n d o m funct ions at d i f f e r en t t i m e and 
d i f f e ren t posi t ion in space . Although th is is g e n e r a l l y be l ieved to 
be the f ina l approach to the s tudy of t u rbu lence , the p r e sen t s t a t u s 
of the s t a t i s t i c a l t h e o r y is s t i l l f a r f r o m being comple te and s a t i s -
f a c t o r y [19]. In p a r t i c u l a r , our knowledge of n o n - i s o t r o p i c t u r b u l e n c e 
is m e a g r e . . B e s i d e s , in the absence of an e rgod ic t h e o r e m which 
a s s e r t s the equal i ty of t i m e ave rage and e n s e m b l e a v e r a g e , it is 
doubtful whe the r we can c o m p a r e the deduct ions of the t h e o r y with 
the e x p e r i m e n t a l data which a r e n e a r l y invar iab ly t e m p o r a l m e a n 
va lues . 

In the s e m i - e m p i r i c a l t h e o r i e s , the addi t ional r e l a t i o n s r e -
qui red fo r a fu l l de sc r ip t i on of the tu rbu len t flow a r e g e n e r a l l y pr-o-
vided by two kinds of hypo theses , viz. the s e l f - s i m i l a r i t y or s e l f -
p r e s e r v a t i o n of some flow p a r a m e t e r s , and some phys ica l a s s u m p t i o n 
such as the mix ing- l eng th theory . Based on these hypo theses , s o l -
ut ions to many s i m p l e r f r e e t u rbu l ence p r o b l e m s have been worked 
out Ll» Although on the m a c r o s c o p i c s ca l e mos t of t h e s e so l -
ut ions give p red ic t ions in s a t i s f a c t o r y a g r e e m e n t with o b s e r v a t i o n s , 
the m e a s u r e d value (or ca lcu la ted value based on m e a s u r e m e n t s ) of 
s o m e quant i t ies on whose p r o p e r t y the phys ica l a s sumpt ion is b a s e d 
do not in g e n e r a l suppor t the a s sumpt ion (and indeed s o m e t i m e s 
even prove the con t r a ry ) [241 • F o r example , the c r i t i c i s m s on the 
v a r i o u s f o r m s of mixing length t h e o r y a r e quite wel l known. On the 
o ther hand, the p r o p e r t y of s e l f - p r e s e r v a t i o n s e e m s to be exhibi ted 
by a wide c l a s s of f r e e tu rbu len t s h e a r f lows [25]. 
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In the follov/ing, we shall review some essential features of the 
previous works which are most relevant to the mean flow of a turbulent 
jet. 

2. 2 Some Properties of Turbulent Jets 

In all actual cases, a jet is emitted f rom a nozzle of finite 
dimensions. At the nozzle exit the velocity distribution in the jet is 
usually very nearly uniform except in the wall boundary layers. As 
soon as the jet enters into the ambient fluid, a discontinuity of fluid 
velocity is created. But stability consideration does not permit the 
vortex sheets to persist. In addition, viscosity will diffuse the 
vorticity. Consequently, the uniform velocity profile is gradually r e -
duced in width and eventually disappears at a certain distance f rom the 
nozzle exit plane. This part of the flow field is termed the initial 
region or the zone of establishment. It is characterized by the exist -
ence of a constant velocity core (or potential core). The velocity d is -
tribution in this region is the same as a plane mixing region (except 
perhaps in the vicinity of the tip of the potential core) [ l ] . The flow 
field downstream of the end of the initial region is sometimes called 
the zone of established flow. 

Sufficiently far downstream, the jet appears to behave as if it 
were emitted from a source of infinitely small width (i. e. a line 
source in the two-dimensional case or a point source in the axi-
symmetric case). This region (which extends in the downstream 
direction) is called the main region. Certainly the location of the be -
ginning section of this region is only tentative and depends entirely on 
the accuracy of measurements. The flow field between the initial 
and the main regions is called the transition region. 

A characteristic feature of the turbulent jet is the smallness of 
the transverse velocity component compared with the longitudinal 
velocity component in any section normal to the direction of mainstream 
flow. Thus the total velocity head is used to determine the longitudinal 
velocity component in nearly all experimental investigations on a s y m m -
etrically spread jet. Evidently this is false outside or near the jet 
'edge' except with a sufficiently fast coflowing ambient stream. In 
addition, the effect of turbulence in the total head has almost always 
been neglected. However, this would only cause a small e r ror since 
the turbulence intensity is always very small compared with the mean 
velocity. 
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Exper imenta l data have shown that in the main region the vel-
ocity distr ibution at every t r a n s v e r s e section is bel l -shaped, with 
the maximum velocity (at the jet axis) decreas ing with the distance 
f rom the nozzle and the effective width of the profile increas ing. The 
most important fact is revealed by plotting the velocity prof i les in 
dimensionless fo rm by dividing the velocity in a t r a n s v e r s e section by 
the maximum (axial) velocity in that section and dividing the distance 
f rom the axis of symmet ry by a t r a n s v e r s e length scale cha rac t e r i s t i c 
of that section which is general ly taken as the distance f r o m the axis 
to the point where the velocity has fallen to a cer ta in f rac t ion of the 
axial velocity. This has revealed that for a jet discharging into a 
st i l l medium, all such profi les a ré near ly identical [l] , i . e . such 
dimensionless prof i les a re independent of the downstream distance 
f rom the nozzle. This a f f i rms the se l f -p rese rva t ion of the mean 
velocity of a submerged jet. 

The exper imental data for a jet in a coflowing s t r e a m have been 
analysed in the same way [1]. Here the velocity re la t ive to the ex-
te rna l s t r e a m is substituted for the absolute velocity in the submerged 
case. At f i r s t sight it would seem that such a s imple t rans format ion* 
would reduce the problem to the submerged case. Yet this is not so, 
for the point where the jet s t a r t s to diffuse (the nozzle exit) is s tat ion-
ary. However, it is su rpr i s ing that universal i ty of such profi les s e e m s 
to exist [l] . But c loser examination revea ls a tendency for the 
dimensionless excess velocity profile to vary (though slightly) with the 
je t - to-ambient velocity rat io , although such a universa l profi le s eems 
to exist for each velocity rat io . The dimensionless prof i les of 
t empera tu re and admixture concentration for jet flows at various vel-
ocity ra t ios a r e fu r the r evidences of this dependence on the velocity 
ra t io [see e. g. 1]. 

Exper imenta l data also shows that the t r a n s v e r s e length scale of 
a jet as determined by the velocity profi les is approximately proport ional 
to the distance f rom a cer ta in point (the vir tual origin) on the axis and 
the axial velocity var ies approximately inversely with the square root 
of that distance, the effect of the velocity in the ambient fluid appear -
ing to prolong the axial length scale only. These are in fact nec-
e s sa ry conditions for the se l f -p rese rva t ion of the velocity. But by 
using the conservation of momentum it can be shown that these two 
simple relat ions cannot be t rue simultaneously when there is an 
ambient s t r e a m . This is also ref lec ted by the non-coincidence of the 

* This is in fact the basic idea underlying the t rans format ion descr ibed 
in [15]. 



virtual origins determined from the graphs of transverse length 
scale and the reciprocal of the axial velocity versus axial distance 
respectively. Hence it may be concluded that the sel f -preservation 
of velocity for a jet in a coflowing stream is not a particularly good 
approximation. Nevertheless, it is a convenient and useful one. 

It seems that the position of the virtual origin for the above 
self-preservation is independent of the velocity ratio [11]. However, 
this position must obviously be related to the dimension of the nozzle 
exit and the initial velocity distribution in the jet. But no single r e -
lation applies to the results of all investigations. Therefore it 
seems tempting to suggest that this position also depends on the 
range of axial distance considered. 

Measurements of the Reynolds stresses (turbulence) have been 
made for two-dimensional and axi-symmetric jets. It seems con-
clusive that beyond an axial distance of about 30 nozzle widths, s i m -
ilarity is attained [lO, 15, 28], although some earlier work [e. g. 13l 
contradicts this. 

When the jet axis is curved, symmetry of diffusion no longer 
exists. This can occur when the external stream is not uniform, 
or at an angle to the jet, or, when free spreading is prohibited on 
one side as in a ground-effect-machine. The first case seems 
yet not attacked. A particular problem of the second case, viz. a 
round jet in a cross-wind, was examined for a small range of down-
stream distance [27]. Two results may be of some significance. 
First, the jet centre-line has small curvature, and its location is 
the same for all velocity ratios if the co-ordinates are divided by the 
square of the jet-to-ambient velocity ratio and if the direction of the 
jet at the end of the potential core is the same. Secondly, se l f -
preservation has been indicated for the difference in magnitude of the 
velocity in a plane perpendicular to the jet centre-line and the ve l - -
ocity of the cross-wind. However, this second formulation of s i m -
ilarity is unsatisfactory, for the difference in magnitude is formed 
from two differently-directed vectors. In [29], a ' f ree ' curved two-
dimensional jet bent outwards due to the cavity on one side was 
studied. One of the conclusions suggested is the similarity of the 
velocity profiles, but the range of observation was necessari ly 
small (only up to an axial distance of 10 times initial jet width). 
Thus similarity has not really been defined and verif ied for 'curved' 
jet flows. In fact, even the method of determining the jet axis f r o m 
experimental measurements of the velocity seems not yet c lear 
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A c h a r a c t e r i s t i c f e a t u r e of j e t s , l a m i n a r or tu rbu len t , is that 
dur ing sp read ing it induces a s m a l l t r a n s v e r s e veloci ty in the 
sur rounding fluid: Th i s induced inflow veloci ty of c o u r s e d e c r e a s e s 
with d o w n s t r e a m d i s tance . Accord ing to [16], the r a t i o of the influx 
per unit length (of the jet boundary in a t r a n s v e r s e plane) to the ' top-
hat ' m e a n veloci ty e x c e s s ( for a round jet in a coflowing s t r e a m ) fa l l s 
f r o m the constant value of 0. 07, app rop r i a t e to a je t in a s t i l l f luid, 
to z e r o at l a r g e d i s tance d o w n s t r e a m of the o r i f i ce , c h a r a c t e r i s t i c 
of a wake. The en t r a inmen t is made up of a combinat ion of the l a t -
e r a l inflow ( je t - l ike) and the enc roachmen t of the jet boundary on the 
ambient flow, as in a wake. The en t r a inmen t coef f ic ien t , E , in any 
t r a n s v e r s e plane may be def ined as the axial r a t e of change of the ex -
c e s s d i s c h a r g e per unit length of the je t boundary divided by the m e a n 
veloci ty e x c e s s in that plane. M e a s u r e m e n t s i n l l 6 ] w e r e made over 
a f a i r l y l a rge r ange of the d imens ion l e s s d i s tance d o w n s t r e a m (up to 
80 t i m e s momen tum th ickness) cover ing down to a r a t h e r s m a l l 
axial veloci ty e x c e s s (about 16 pc. of the ambient velocity) . T h e s e 
have shown that E is not even approx imate ly constant , as r e p o r t e d 
or implied by o t h e r s . E i n c r e a s e s between the in i t ia l reg ion whe re 
the r a t i o of the axial veloci ty e x c e s s to ambient flow veloci ty is much 
g r e a t e r than one and the reg ion f a r d o w n s t r e a m whe re that r a t i o is 
much s m a l l e r than one. This is quite r ea sonab le , for f a r d o w n s t r e a m 
the flow will behave m o r e l ike a wake which is known to have a g r e a t e r 
en t ra inment coeff ic ient [25]. 

When the je t is in a def lec t ing s t r e a m , the l a t e r a l inflow m a y be 
defined as that due to the veloci ty component in the ambient fluid 
pe rpend icu la r to the je t ax is . Because of the p r e s e n c e of a component 
of the o r ig ina l ambient flow in the s a m e d i rec t ion , the l a t e r a l inflow 
can be expected to be g r e a t e r than fo r the coflowing c a s e . Th is should 
par t ly account fo r the f a i r l y high inflow r a t e r e p o r t e d in ^27]. An en-
t r a inmen t coeff ic ient , however , i s di f f icul t to def ine. In [27], it is 
defined as the r a t i o of the inflow veloci ty to the d i f f e rence in magni tude 
of the veloci ty at the axis and in the ambient . Evident ly th is is v e r y 
i m p r e c i s e . Hence it s e e m s b e t t e r in th is c a s e to cons ide r the inflow 
r a t e alone. 

2. 3 Equat ions of Motion 
The t h e o r e t i c a l b a s i s of the Nav ie r -S tokes equations r e s t s on the 

asymptot ic expansion of the Bodtzmann equation and on the a s sumpt ion 
of t he rmodynamic quas i - equ i l i b r ium. Although these a r e not of un-
quest ionable val idi ty, avai lable expe r imen ta l evidence provides a 
s t rong jus t i f i ca t ion of the appl icabi l i ty of the equat ions , and they a r e 
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taken as axiomatic in the study of laminar f l ows [30]. H o w e v e r , the i r 
applicabil ity in turbulent mot ion is not indusputable. A v e r y a t t r a c t -
ive c r i t i c i s m is that s ince turbulence is r a n d o m in nature, the instant -
aneous ve loc i ty f ie ld can hardly be r e g a r d e d as d i f f e rent iab le [4, 19]. 
But a guess based on the stat ist i ca l theory of turbulence is that the •: 
ve loc i t i es have up to the fifth der ivat ives [4]. The bes t jus t i f i ca t i ons 
of the use of the Navier -Stokes equations perhaps l ie in the c o n s i s t e n c y 
of its consequences with exper iments . The m o s t detai led v e r i f i c a t i o n 
is provided by Stewart 's exper imenta l ver i f i ca t i on of H o w a r t h - K a r m a n 
equation in homogeneous i s o t rop i c turbulence [12, 25]. Thus it is' 
cons idered [25] that only when either the v e l o c i t i e s involved great ly , 
exceed the mo le cu lar ve loc i t i es or the p r e s s u r e is so low that the 
mean f r e e path is c omparab le with the d imens ions of the whole f l ow , 
will the sca le of the mo le cu lar motion approach that of the turbulent 
motion, and the Navier -Stokes equations b e c o m e inappl i cab le . . 

The Navier -Stokes equations f o r a v i s c o u s i n c o m p r e s s i b l e f luid 
of unit density can be written • 

, - - K E i i J L i 
i t + ^ Í - - ^ (1) 

in cartes ian coord inates , where (P + p), (u. 4- U.) are r e s p e c t i v e l y 
the instantaneous values of p ressure and the i component of v e l o c i t y , 
capitals and smal l letters denoting r e s p e c t i v e l y mean and f luctuating 
parts. The equation of continuity is 

Taking mean values, we obtain 

M ^ . buTui ^ _ -L V a i U l 
^ èxt ^ dxe hxi a x l (3) 

= 0 a x ¿ ^ (4) 

f o r the mean motion, where U^«^ are the we l l -known R e y n o l d s 
s t r e s s e s . " 

F o r t w o - d i m e n s i o n a r f lows paral le l to the xy plane, these 
equations reduce to 

- The a x i - s y m m e t r i c f lows in cy l indr i ca l c o o r d i n a t e s are s i m i l a r to the 
two-d imens ional f lows . 
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¿X ¿K K" 

i i i V , v i ^ ¿ i i - J . — _ (.¿a ^ 
^ ¿X ^ ^ à^ ^ ¿X ^ ài — à'i ^^ [¿x^ ^ ¿X 

i i i ¿iL 
àX ^ ¿'i 

0 

(5) 

(6) 

(7) 

For unidirectional free turbulent flows in the x-direction, there exists 
a reference plane y = y^ along which V = 0. Hence equation (7) can 
be integrated to give 

(8) V ¿Ufa') 
àx 

The longitudinal length scale of variation, L, in the x-direction is of 
an order greater than, 1, that in the y-direction. If in each section 

Us — UmQx. Um\n. 

then from (8) V can at most be of order Us Using the empirical 
fact that ^ ^ ^ ^ are of order (x) \Js ^ and U of 
order where for wakes and for 
jets, a comparison of order of magnitude for the different terms r e -
duces equation (6) to 

M l 
av 

I f . 
b-f 

At sufficiently high Reynolds number, the last term is n,egligible 
compared with the first term. Then the equation can be integrated 
to give 

P + = R , ( x ) (9) 

In ordinary free turbulence, P^ is a constant. 

Substitution of (9) in (5) gives, to the same approximation, 

^ ¿X ^ V ^̂  àX ^ ~ ^ 
I 

(10) 
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If (J^^ ^ we have , neg lec t ing the v i s cous t e r m , 

Integrat ing (10), we have 

f Z l C U - U i ^ d y = F ( a const.) ( H ) 

where U is the veloci ty outside the flow. Equa t ion (11) s i m p l y e x -
p r e s s e s the conse rva t ion of m o m e n t u m , but it i s only a p p r o x i m a t e 
due to the growth of t u rbu lence . As is wel l -known [18], equat ions(7) 
and (10) make it c l e a r that the t w o - d i m e n s i o n a l t u rbu len t j e t f low i s 
governed by the s a m e equat ions as the boundary l a y e r over a f l a t 
plate (provided we neglect u ^ -

T h e s e equa t ions r e d u c e to one 
in U of parabol ic type, thus b e l l - s h a p e d ve loc i ty p r o f i l e s a r e t o be e x -
pected [5], as is indeed typica l f o r j e t s and wakes . 

2. 4 Reynolds Number S imi l a r i t y and S e l f - p r e s e r v a t i o n 
Two fundamenta l hypotheses about the g e n e r a l n a t u r e of fu l ly 

developed turbulent mot ion a r e made in n e a r l y al l t h e o r i e s . T h e 
f i r s t is the s i m i l a r i t y of the flow s t r u c t u r e at al l high Reynolds n u m b e r s . 
This Reynolds number s i m i l a r i t y is a t ta ined when the Reynolds s t r e s s e s 
g rea t ly exceed the mean v iscous s t r e s s e s , and the m e a n mot ion and the 
motion of the energy-con ta in ing components of the t u r b u l e n c e a r e 
de te rmined by the boundary condit ions of the flow alone. T h i s s i m i l a r -
ity impl ies that g e o m e t r i c a l l y s i m i l a r f lows a r e s i m i l a r at a l l 
suff ic ient ly high Reynolds n u m b e r s , and that the m e a n k i n e m a t i c 
quant i t ies and the turbulent s t r u c t u r e a r e comple te ly d e t e r m i n e d by a 
veloci ty sca le and a length s ca l e . Such a p r o p e r t y has been e s t a b l i s h e d 
exper imen ta l ly [see e . g . 25] for mos t p r o b l e m s of f r e e t u r b u l e n c e , e x -
cept for flows such as an a x i - s y m m e t r i c wake w h e r e the Reyno lds 
nunt) e r has been shown to d e c r e a s e in the d o w n s t r e a m d i r e c t i o n and the 
flow will thus eventual ly become l a m i n a r . T h e r e f o r e , the v i s c o u s t e r m 
in the equation of motion (10) will be neglec ted fo r je t f l ows . 

The second hypothes is is the s e l f - p r e s e r v a t i o n of s o m e m e a n flow 
p a r a m e t e r s . This pos tu la tes the inva r i ance of the func t iona l f o r m of 
the t r a n s v e r s e d is t r ibut ion of these p a r a m e t e r s fo r d i f f e r e n t pos i t i ons 
in the downs t r eam d i rec t ion (x-direct ion) , m e r e l y with m o d i f i c a t i o n s 
m sca le which depends only on the x d i s t ance . E x p r e s s e d m a t h e m a t -
ical ly , th is s t a t e s that fo r the m e a n quanti ty f ( x ,y ) , we have [25] 

is at most of o r d e r 
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where ÎQÎx) is a suitable scale for f, IQÎx) is a suitable length scale 
in y-direction, and g is the universal transverse distribution function 
for f. If the turbulent motion and the mean velocity profile are to be 
self-preserving 

= (12) 

where U^ is the constant velocity of translation of the flow, 
UQ is a suitable velocity scale, usually chosen as the maximum 

velocity difference in a section of a jet or wake. 

Substitution of equation (12) into equations (7) and (10) gives a relation 
between the universal functions. Universality of these functions imposes 
conditions on the coefficients of that resulting equation, which lead to 
two possible cases of exact self-preservation: 

(a) For general Û ,̂ necessary conditions are 
UQ = constant, = constant (13) 
which represents t^e plane mixing region. 

(b) Uj = 0, necessary conditions are 

^ .iils = constant, = constant (14) 
Uo dx dx 

which refers to a two-dimensional jet in a still fluid. The momentum 
integral equation (11) further requires (14) to become 

o C ( X - X o ) , UooC ( X - X o ) ' ^ (15) 

where XQ is an integration constant representing the position of the 
virtual origin. 

Besides-these two exact self-preserving flows, two approximate 
forms of self-preservation are possible. 

(c) UQ/ Û  f, the conditions are 

oC (X - Xo) - Uo «< (X - Xo)'^ 
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which is typical of the upstream of a jet. 

(d) UQ/ Ui 4C f' the conditions are 

4 <=< (X - Xo)^ , Uo oC ( X - Xo)"^ 
representing the plane wake or the far downstream of a plane jet. 

The necessary departure from self-preservation for type (d) 
is a well-established fact for a wake [25]. By using the momentum 
integral and the energy integral, i\ can be show^n that this departure 
is represented quite clearly by the continuous shift of the virtual 
origin towards negative values with increase of downstream distance 
X. Besides, the virtual origins for the velocity and length scales 
should strictly be different. 

2. 5 Free Turbulence Theories and Their Application to Two-
dimensional Jets 

The application of the hypotheses of similarity and se l f -
preservation to the approximated equation of motion (10) gives r ise 
to a relation between the universal functions for mean velocity and 
the apparent shear stress"uv, with one indeterminate constant which, 
e. g. can be chosen to represent the rate of spread of the jet. Some 
further physical assumptions or experimental measurements must 
be introduced to determine these functions completely. 

The best known of such attempts are the mixing length 
theories originated by Prandtl. In analogy with the kinetic theory 
of gases, a mixing length 1' is introduced such that a property q of 
the fluid preserves its mean value q during the turbulent mixing 
process over the path 1' [19]. If 1' is small, we have for the 
fluctuation of q 

^ ^ cLî  (16) 
The earliest version of such "^eories is Prandtl's momentum trans-
fer theory in which q is assumed to be the momentum. By further 
assuming a constant correlation between the fluctuation of the ve l -
ocity components, it is shown that" 

^ dnj oUj 

1 = kl' where 0 < k < 1 
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P r a n d t l a s s u m e d 1 to be a cons tant fo r a je t in the absence of sol id 
bounda r i e s . To l lmien solved the p rob lems for the plane mixing 
reg ion and the two-d imens iona l je t , involving one a r b i t r a r y constant 
(as in the equat ion of motion) to be de t e rmined expe r imen ta l ly . 

This constant can be de t e rmined by us ing e i the r the d e c r e a s e 
of axial veloci ty o r the spreacÎjîS the je t . But the values obtained in 
the two ways d i f f e r by about 10 pc. [ l] . This d i s c r e p a n c y should be 
i n t e rp re t ed as the inval idi ty of some a s sumpt ions . However , the 
m o r e obvious de fec t s of th is t heo ry a r e the z e r o r ad ius of c u r v a t u r e 
of t he ' t heo re t i c a l ' veloci ty p rof i l e at the jet axis and i ts predic t ion of 
an ideti t ical d i s t r ibu t ion prof i le fo r both veloci ty and o ther quant i t ies 
such as t e m p e r a t u r e and admix tu re concentra t ion . 

The las t defect was avoided in T a y l o r ' s vor t i c i ty t r a n s f e r 
theory in which q of equation (16) is taken to be the vor t ic i ty . F o r 
two-d imens iona l jet f lows, th is theory p red ic t s a veloci ty prof i le 
ident ical with T o l l m i e n ' s , but the turbulent heat t r a n s f e r is l a r g e r 
[l}, which is in c l o s e r ag reemen t with expe r imen t . However , a 
s i m i l a r ana lys is applied to the a x i - s y m m e t r i c ca se gives r e s u l t s 
in poore r ag reemen t with exper imen t [24]. B e s i d e s , L iepman and 
Laufer observed that the e f fec t ive mixing length i s ' v a r i a b l e a c r o s s 
the jet and that the ca lcula ted s h e a r s t r e s s is quite in e r r o r . 

To avoid the z e r o r ad ius of c u r v a t u r e in the veloci ty prof i le , 
P rand t l sugges ted the hypothes is of constant exchange coeff ic ient 
i. e. 

e(x) = = i L ( u ^ » - u ^ ù w (17) 

where k is a non-d imens iona l constant , U ^ ^ , U ^ ^ ^ a r e r e s p e c t -
ively the m a x i m u m and min imum veloc i t ies in a constant sec t ion 
x of the je t . G o r t l e r worked out the ana lys i s ft>r plane mixing 
reg ion and the plane submerged jet . The calcula ted veloci ty 
prof i le fa l l s off too slowly at the jet edge. But for a wake, it 
has been shown that if the exchange coeff ic ient is a s s u m e d to be 
that given by (17) mul t ip l ied by the i n t e rmi t t ency f a c t o r , the ca l -
culated veloci ty d i s t r ibu t ion a g r e e s r e m a r k a b l y wel l with ex-
pe r imen t . Thus though c r i t i c i s e d as untenable on phys ica l 
grounds [25j the combinat ion of constant exchange coeff ic ient 
with i n t e rmi t t ency f ac to r gives an undoubtedly impor tan t i m p r o v e -
ment on the convent ional mixing length theo ry of f r e e tu rbu lence . 
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Karman's similarity theory can be regarded as an extension of 
the momentum transfer theory in which the mixing length is determined 
from the assumption that, referred to axes moving with the local mean 
velocity, the eddying motions are similar at all points. This leads 
to the formula [19] dU / à'U / 
where k = 0. 4 is a universal constant. The theory appears to be 
much more logical than the others; nevertheless, it is difficult to 
be applied, especially at stationary points and inflexion points of the 
velocity profile [24]. 

The mixing length theories all suffer f rom two general defects. 
First, the éddy viscosity and the transverse perturbation are required 
to vanish in the plane of symmetry, but actually they attain their max-
ima there. Secondly, the mixing lengths determined f rom experiment-
al data are all large fractions (greater than 0. 1) of the width of jet or 
wake, which contradicts the basic argument of its smallness. It is be -
lieved [24] that the turbulence and eddy viscosity depend on the over -
all conditions rather than on the local conditions such as the velocity 
gradient. 

Reichardt's theory is quite different from the various versions 
of the mixing length theory. He assumed a constant static pressure 
and that 

where A (x) is analogous to the mixing length but has no intuitive ^ 
meaning. The equation of motion is then reduced to one in 

(Tr2+ U^) 
with A (x) as a coefficient. The function A (x) is then determined 
from the experimentally measured profiles of (u ^ + U^). This in-
ductive theory may also be generalized for the transfer of heat and 
mass. 

2. 6 Analysis of Turbulent Jets in a Coflowing Stream 

The main problem for the macroscopic description of a turb-
ulent jet in a coflowing stream is to determine the. mean velocity 
field. Nearly all analyses assume the similarity of some ex-
perimentally determined transverse profiles. Then the momentum 
conservation equation provides one relation between the two scales 
(which are functions of the axial distance) for the universal profi le. 
Another relation is either provided by multiplying the equation of 
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motion by (m, n being integers) and then integrating across 
the plane x = constant, as done by Tetervin and Lin (33). Or it 
is left as an empirical relation (26) or obtained from further hypoth-
esis (1). It should be noted that in the integral method it is required 
to evaluate the shear stress uv. This can be done by using the mix-
ing length theory as adopted by Squire and Trouncer, or it may be 
assumed to have the same dimensionless profile as for the free jet(ll.) 

The initial region of the jet can be considered as a plane mixing 
region. This problem was examined by Kuethe using the mixing 
length theory and the constant exchange coefficient hypothesis (1, 18). 
Abramovich (1) presented a method in which the velocity profiles are 
assumed self-similar: 

where bQ is the distance from^ the axis to the edge of the jet. 

Uj is the initial jet velocity, y = - y2 (x) are the boundaries of 
the potential core, and mixing length theory was used to predict the 
spreading of the jet, giving 

b = c o 
R - 1 
R + 1 X where R = > 0 Ui 

where C = 0. 27 for a plane jet is an empirical constant. These, to-
gether with the equation of continuity and the conservation of moment-
um, determined the various geometric characteristic lines (e.g. ,y2 
(x) ) and the transverse velocity V as a function of R. 

For the main region Abramovich assumed 

Uc-U. — ^ ^ ^ ^o 

^^^ ^ _ ^ lUc -U.I 
dix — ^^ Uc + U. 

where UQ is the axial velocity and C2 = 0. 22. Together with the 
conservation of momentum equation (11), b^ and U^ can thus be 
solved as functions of x. He further determined the transition 
region by assuming the outer boundary in this region to be approx-
imately the straight line extended from the outer boundary of the 
initial part. The end of the transition region is determined from 
the condition that the velocity and the thickness of the jet at that 
section must be the same as at the beginning of the main region. 



The effect of the n o n - u n i f o r m i t y of the in i t i a l ve loc i t y d i s t r i b u t i o n s due 
to the wal l boundary l a y e r s was a l s o i n v e s t i g a t e d . It s e e m s tha t t h i s 
is but to lead to a f a s t e r d i f fus ion along the je t a x i s . 

Although th is ana ly s i s is f a i r l y c o m p l e t e , yet t he two 
a s sumpt ions about b^ s e e m not v e r y convinc ing . B e s i d e s , the 
a s sumpt ion of s e l f - p r e s e r v a t i o n of ve loc i ty e x c e s s r e s t r i c t s i t s 
range of appl icabi l i ty = 

^ In the ana lys i s of Hil l (11), the equat ion (10) is m u l t i p l i e d by 
and in t eg ra t ed a c r o s s the e n t i r e je t . T h e u n i v e r s a l d i s t r i b u t i o n 

for the s h e a r s t r e s s uv involved was a s s u m e d the s a m e as f o r t he 
f r e e - j e t . The r e s u l t s have been plotted and c o m p a r e d with e x p e r i m e n t a l 
data . They a g r e e f a i r l y wel l f o r I < <2. 5. T h i s low^er l i m i t is un-
doubtedly r e l a t e d to the s e l f - p r e s e r v a t i o n a s s u m p t i o n whi le t he u p p e r 
l imit s e e m s a r e s u l t of the a s s u m e d i n v a r i a n c e of ïïv/ UQ^ wi th R . 

Much b e t t e r a g r e e m e n t with e x p e r i m e n t s e e m s to be ob ta ined 
in the c o r r e l a t i o n t h e o r y b a s e d on s o m e a s s u m p t i o n s s u g g e s t e d by the 
Eng inee r ing E x p e r i m e n t Stat ion of the U n i v e r s i t y of I l l i no i s (26 and 34 
a . b . c . ) . The b a s i c a s s u m p t i o n s a r e that the ax ia l m o m e n t u m f lux , 
r e l a t ive to that of the ambient s t r e a m , due to a point s o u r c e i s c o n -
s e r v e d , and that the m o m e n t u m f r o m indiv idual point s o u r c e s t r e a t e d 
as i n f i n i t e s ima l a r e a s o u r c e s m a y be s u p e r i m p o s e d to give the 
momen tum d i f fus ion f r o m a s o u r c e of f in i te a r e a . The m o m e n t u m 
di f fus ion f r o m a point s o u r c e is obtained by g e n e r a l i z i n g R e i c h a r d t ' s 
a s sumpt ion to include the c a s e when t h e r e is a u n i f o r m cof lowing 
s t r e a m . This gene ra l i z ed a s s u m p t i o n is ac tua l ly the s e l f - p r e s e r v a t i o n 
of e x c e s s dynamic p r e s s u r e . The so lu t ions to a x i - s y m m e t r i c (34a, b , c ) , 
and two-d imens iona l (26) j e t - m i x i n g problem_s have b e e n w o r k e d out. 
The r e s u l t fo r the t w o - d i m e n s i o n a l c a s e is 

(18) 
where D is the in i t ia l jet width, b is an e m p i r i c a l s p r e a d i n g c o -ef f ic ient . 

F r o m th is the ve loc i ty d i s t r i bu t ion was computed : 
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Uc-Ui 

where t = -f-r;— 
2U| 

When is very small, (19), (20) reduce to 2b 

Uc-Ut _ 
U i - U . 

(20) 

u - u , _ 

1 
^ - 1 

Uc-Ui ^ 1 (20a) 

X Weinstein et al found that when — > 30, the two sets of equations 
(19, 20) and equations (19a, 20a) give practically identical results. 
It is important to note that this is also the region where close self-
preservation is obtained. 

From equation (18) we have 

[ ^ ( f - 1 ) ] 
(21) 

When 
reduces to 

D 
2b is very small (corresponding to about ~ > 30), this 

(21a) 

This has an important meaning, for it asserts the self-preservation 
of the excess djmamic pressure when ^ is sufficiently large. 

This theory is quite successful in correlating jet-mixing prob-
lems for both moving and stationary ambient by using one empirical 
parameter b. This is also indirectly upheld by the experimental 
confirmation of the self-preservation of excess dynamic pressure, 
and not of the velocity, for a round jet over a fair ly long range of 
X values (16). Although it may seem that far downstream the two 
forms of self-preservation tend to be equivalent, yet their im-
plications are different. At sufficiently far downstream of an axi-
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symmetric jet (16), 

Now when ( U c " U i ) « U i , 

Uc - u.^ = (y^+u.) (Uc-u.) =< (Uc - a ) 
But for the wake-like self-preservation of velocity for an axi-
symmetric jet to'hold, we must have 

(23) 

Equations (22) and (23) show the inconsistency between the two kinds 
of self-preservation within the range X/ H < 80 where H is the 
momentum thickness. 

2. 7 Location of Axis for a Jet in a Uniform Deflecting Stream 

It seems that all past works on jets emitted at an angle to .an . 
ambient stream havé concerned mainly with the location of the jet 
axis. This is understandable since it is plausible that the jet will 
behave like an undeflected one along the axial direction. 

Some analyses based on the superposition of flow patterns 
were worked out (1); but as can be expected, the results ,must be 
far from having satisfactory experimental agreement since the 
non-linearity of the equations of motion indicates at once that 
superposability can occur only if certain conditions are fulfilled (2). 
Empirical equations for the jet axis were also proposed (1). However, 
a more satisfactory approximate method is that proposed by Volinsky 
(1). The fluid^jet is divided into slices and-^each slice is assumed to 
act as a "solid" wing in the external stream, thus producing á 
pressure difference at the forward and back surfaces of the jet. The 
curvature of the jet axis is then determined from the condition of 
balancing this force by the centrifugal force. Taking cartesian co -
ordmates with x and y axes parallel and perpendicular respectively 
to the direction of the external stream in the plane containing the 
mitial jet velocity vector, the resulting equation for the axis is 

where ^ , U, are respectively the density and velocity of the 
external stream. 
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h i s the je t width in z d i r e c t i o n 
Sŷ  i s the c r o s s - s e c t i o n a l a r e a of the je t n o r m a l to 

the ax i s , 
Cn is a coef f i c ien t depending on the shape of Sj^, 
fj,. a r e the dens i ty and the " m e a n " ve loc i ty of 

the je t in a c r o s s - s e c t i o n 
tan = y' 

One boundary condit ion is of c o u r s e 
x = 0 ^ , € ( = c C o 

i . e . X = 0 , , -«^'ssteWc^o (24a) 
Another condit ion is f u r n i s h e d by the conse rva t i on of y - m o m e n t u m , 
which has been taken as (1). 

^ " ^ o ^ n o ^ ^ o = cons tant (24b) 
w h e r e suf f ix '0 ' r e f e r s to condi t ions at x = 0. 

The axis equat ion fo r a plane jet with ^ = cons tan t and 
U^ = cons tan t is found to be 

whe re h Cn a U . ^ I 
p w H 

D being the in i t ia l je t t h i c k n e s s , as b e f o r e ; the two solu t ions 
of equat ion (25) c o r r e s p o n d r e s p e c t i v e l y to ^ TT 

Though e x p e r i m e n t a l ve r i f i ca t i on of equation (25) has been 
c la imed (1), th i s method has s e v e r a l d e f e c t s . The a s sumpt ion of 
"wing" act ion i s doubtful , s ince ambient fluid is cont inuously en-
t r a i n e d and t h e r e is s t r i c t l y no f ini te boundary of the j e t . B e s i d e s , 
the mean ing of " m e a n " veloci ty is quite ambiguous . An evidence 
is tha t V in equation (24b) cannot be the s a m e as the v used to 
de r ive equat ion (24) u n l e s s =<iC(x). In fac t , even equation (24b) 
i s not exac t s ince the induced m o m e n t u m in the ambient fluid has 
been neg lec ted . A much m o r e obvious s o u r c e of e r r o r would be 
a s s u m e d cons tancy of C^ fo r the f i t t ing of e x p e r i m e n t a l data to 
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this "theoretical" curve depends on the choice of C^ which varies 
from 1 to 3(1). Indeed, Abramovich has shown that this last de-
fect would require the analysis to produce an absurd result for the air 
curtain problem. 

However, equation (25) gives some support to the experiment-
ally-established proposition that for a jet emitted into a deflecting 
stream of the same fluid the location of jet axis is independent of 
the velocity ratio if all lengths are divided by R^ = Uj^/ U^^. For 
equation (25) may be written as 

(25a) 

where But this proposition must not 
be expected to hold for a large range of R values (at least from the 
consideration of equation (25) alone) for C ,̂ actually depends on the 
ratio of local jet velocity to ambient stream velocity (see § 3), 
and hence on R. Nevertheless, it is of some practical value since 
the form of the axis equation is explicitly determined. 

2. 8 Conclusion 

Most previous works have attempted to show the validity of 
the self -preservation of excess velocity for jet f lows. However, 
this is not a good approximation for the whole flow f ield. Some 
of the cr i t ic ism based on experimental facts have already been 
given in Section 2. 2 (p. 10). We shall now give some theoret ical 
discussion. The sel f -preservation of excess velocity 

^ = (12) 

permits us to write the momentum integral equation 

ru(u-u.)d^ = F (u) 
as 

where 

¿^ _ F 

>̂ -00 

Now this sel f -preservation requires (see cases (b), ( c ) , (d) of 
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U o = C ( X - X . ) » (26) 

where c is a constant 

F ( x-Xo) 
(27) 

Thus small and large values of (x-Xq) correspond to type (c) and 

(d) respectively. This equation indicates clearly the necessary 

inexactness of the self-preservation of the excess velocity. How-

ever, it should be noted that although io cannot be proportional 

to (x-Xq), yet, by a proper choice of another virtual origin, it is 

possible to fit an approximate linear relation between 1q and x for 

a small rang« of x in the upstream region. Thus conditions for 

type (c) self-preservation can still be satisfied approximately even 

for not too large axial velocity excess. Hence, it is not surprising 

that this self-preservation was found (28) for values of U q / U j down 

to 1. 7 since the range of ^ (D is the initial jet width) is only from 

30 to 70. 

The other form of self-preservation enunciated is that of 

excess dynamic pressure. W e shall presently show that 

theoretically this is not any better approximation. Using equation 

(7), we canwÉite the equation of motion, equation (10), for a 

turbulent jet as 

+ M U V + t w ) _ 0 (28) 

à x 

The self-preservation of excess dynamic pressure is tantamount i 

to 

u ^ = (29) 

Further assuming* 

U V + = Cüc^ - ? ( A ) (29a) 

we reduce equation (28) to 

* This is analogous to, but more general than, the assumption used 

in Reichardt's inductive theory of turbulence. 
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or 
Uc 

where dashes denote differentiation. Now the functions f, g are 
assumed universal functions of ( ) . . The coefficients in equation 
(30) must therefore be constant smce that of g' is unity 

. b = k;̂  = constant or b = k^ (x - x^) ( 3 1 ) \ 

(31a) 

where k is also a constant and the indicial constant n is to b e 
determined f rom the momentum integral equation (11) . Thus 

. •. F - - (32) 

Now the last integral is not a simple function of (x - x^) under the 
assumption of equations (29), (Sla); in particular it cannot be 
proportional to (x - x^)^"'"^. Hence except when Ü^ = 0, the self-
preservation of excess dynamic pressure cannot hold theoretically. 
When Ui = 0, the last term of equation (32) vanishes identically 
and n = -1, i . e . the axial dynamic pressure is inversely 
proportional to the axial distance from the virtual origin. However, 
the integral actually represents the excess volume 
flow of fluid across a plane x = constant. It is a well-known ex-
perimental fact that this will tend to a constant as x -»oo . Hence, 
sufficiently far downstream the last term of equation (32) can be 
treated as a constant and self-preservation of excess dynamic 
pressure will be approached with n - ^ - 1. However; the rate 
of approach depends on the magnitude of U p or more correct ly on 
K = ^J'/U, . When R is not much greater than unity, the approach 
to self-preservation of excess dynamic pressure may be very slow. 
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It should be noted that the s e l f - p r e s e r v a t i o n of excess dynamic 
p r e s s u r e impl ies a s ingle l inear law for the growth of jet width 
(equation 31) while that of excess velocity r e q u i r e s a single inve r se 
squa re root law for the decay of axial veloci ty excess (equation 26). 
But actual ly ne i ther of these a r e fulf i l led by exper imen ta l data. In-
deed, f r o m the above c r i t i c a l d i scuss ions , it is evident that ne i ther 
f o r m of s e l f - p r e s e r v a t i o n can be exact ly t r u e . But the s u r p r i s i n g 
fact r evea led by expe r imen t s is that each of these s e e m s to exist 
in an appropr ia t e region . It appea r s , t h e r e f o r e , that this might be 
due to some c h a r a c t e r i s t i c na tu re of the mean velocity f ield, which 
is only l-oose.iy governed by the equation of motion. This is not 
novel, as is exempli f ied by the fa i r ly s u c c e s s f u l predict ion of the 
mean veloci ty prof i les by the mixing length theo r i e s while the in-
validity of these t heo r i e s is now quite well-known. 

In conclusion, we may, based on exper imenta l evidence, 
tentat ively suggest- that when ^ > 1 ( i . e . for those sec t ions with 
the jet axial velocity excess g r e a t e r than the ambient s t r e a m velocity) 
s e l f - p r e s e r v a t i o n of excess velocity is a good approximat ion while 
when -rj^ < a where a > 1, s a y . ^ c ^ J., oo j < 2, ( i . e . for those sec t ions 
with t h e ^ e t axial velocity excess i J s s than a ce r t a in mult iple of, say, 
twice, the ambient s t r e a m velocity) the s e l f - p r e s e r v a t i o n of excess 
dynamic p r e s s u r e can be cons idered as valid. But it must be 
mentioned that ve ry f a r downs t ream where ^ o is very sma l l , no ex-
pe r imen ta l data a r e yet avai lable . Hence ^ the above suggest ion 
of validity for the two kinds of s e l f - p r e s e r v a t i o n must not be deemed 
to include the f a r - d o w n s t r e a m region. 

Turning to the location of the axis of a def lected jet , t he r e does 
not s e e m to be any rea l ly theore t i ca l ly sound method avai lable . The 
proposi t ion of the independence of the axial position on the j e t - t o -
ambient veloci ty ra t io , R, in reduced coordinates ( i . e . when the 
co -o rd ina te s of axial points a r e divided by R^) may be at leas t of 
some p rac t i ca l use , if not of any gene ra l s ignif icance. 

3. Analysis 

The main purpose of the p resen t invest igat ion is to ve r i fy that 
a two-d imens iona l jet def lected by a sma l l angle by the ex te rna l s t r e a m 
behaves s i m i l a r l y to a s t ra igh t je t . This will be so if the governing 
conditions r e f e r r e d to some appropr ia te coordina tes a r e ident ical . 
It is the purpose of this analys is to a s c e r t a i n whether this condition 
is fu l f i l led . 
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We shall define the jet axis as the streamline passing through 
the central plane of the jet nozzle exit. The suitable coordinate 
system is an orthogonal curvilinear one (S,n) where the S- and n-
directions are respectively parallel and perpendicular to the jet 
axis (n = 0). The Navier-Stokes equations can be written as 
(see e. g. 31) . 

4. P V/ ^ ^ ^ - ^ 

+ V 
^S^ án^ ^ e+H/ ¿tu (P+í í f 

p dp 

I T + 

(e+tv)^ ds 
w •w fw M. 

(fip^ dLS bS _ (33) 

á t + Vs + V ^ ^ - - p ^ - ~ ^ + 

. I P ¿Vs I ¿ V ^ . P ^ ^ ^ Uv 
^ (P+vy.)^ P+ru (pÍTvp^ as^ (P^rv)^ 

P „ ^P w . P^ ^ P 
(pitvjF rf'S Vs + ^ _ 

(34) 

P áVs 
P+tv áS átv 0 

(35) 

where Vg, V̂ ^ are the components of the velocity vector, 'fi is the 
static pressure, P is the radius of curvature of the S-axis. 
Vg, Vn and p are then separated into mean and fluctuating parts 

Vg = U + u 

Vn= V + V 

p = P + p' 

These are substituted into equations (33) - (35) and the mean val-
ues are taken, resulting in equations analogous to equations (5) -
I n. ihe general assumptions of Section 2. 3 are made 
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(Al) V U and the length scale of variation of the velocity in the 
n-direction, 1, is of an order less than that in the S-direction, 
L. 

(A2) Reynolds number similarity is obtained. 
(A3) u^, uv, v^ are assumed of order Ug ^ and U of order 

Us ' ^ where Ug = U^^^ - U^in is the total 
variation of U in a section, and 5 = 1 for jets and 6 = 0 
for wakes. 

In addition, we shall assume 

(A4)' P is of order not less than L. 

Equation (35) approximates to 

Hence V is of order ( ~ ) Ug. 

The terms of the mean value of equation (3 4) 

have the orders of magnitude written below them. The largest 
terms are of order Ua'̂  ( ¿ L - ' f JC- and to this order, the 
equation is 

(37) 

This equation (37) shows that to a first approximation the 
effect of jet axial curvature is to induce a transverse pressure 
gradient, thus justifying to some extent Volinsky's method 
(Section 2. 7). But this is of course by no means produced by the 
"wing" action as assumed there. Integrating equation (37) across 
the jet, we have 

(38) 
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where oo has the same meaning as in boundary layers. This shows 
that the pressure difference actually depends on the jet velocity as well 
as on that of the ambient stream. Thus the non-constancy of Cn of 
equation (24) is apparent. 

p 
The order of magnitude of can be estimated by using 

equation (25). If we now take (x, ^ as the cartesian coordinates 
through (S=0, n=0), then from equation (25) 

^ — f — i F 

where k - U U.y WoCo 

Here we are considering a (plane) jet of initial thickness D with 
initial velocity Uj at an angle ^ to the ambient stream of velocity 
Ui in the x-direction. Equation (39) shows that P increases with 
X (and hence with S too) at a rate which increases with R = Uj/ U]̂ . 
Thus for the region not too near the nozzle exit, we can replace (A4)' 
by ( A 4 ) P » L 

Furthermore, for small x, equation (39) gives 

^ ' iCvv 
Now 

-P > fJD \ A ' 

Equation (40) shows that for a given R \ 0, there always exists an € 
such that » 1 whenever o( ^ . Hence assumption (A4) is 
also true in the region close to the nozzle exit if either R is 
sufficiently large or (f, ^ is sufficiently small. 

The application of assumption (A4) shows that as far as the 
momentum diffusion is concerned, equation (37) may be simplified to 

(41) 

where P^ maybe considered as the mean static pressure in the 
surroundmg fluid in the region considered. With equations (41) 
and (36), equation (33) can be reduced to" 

11 l U . \/ 4U , _ n 
(42) 

by a comparison of order of magnitude for the different terms. 
Assummg dPe/ctS . See last paragraph of Section 4. 4 
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Now equations (36), (41) and (42) are the same as the set for 
a straight jet. But in addition, a momentum integral condition must 
still be satisfied, for it represents a boundary condition. Integrating 
equation (42), we have* 

j = Ccvot. (43) 
"Si 

where are the jet thicknesses on the two sides of the axis, 
UA = U]̂  COS d( is the component of the ambient stream velocity in 
the S-direction, (k (s) being the angle between the S- and x- axes. 
Equation (43) differs from equation (11) for a straight jet in the 
variability of cK . They will be approximately equivalent ** if cf\ is 
nearly constant in the range of S values considered, which is true 
either 

.2 
(i) when o< is small, for then cos = 1 changes little, or 

(ii) when « 1 where (81,82) is the interval of 8 considered. 

Another particular case is -

(iii) When U in a large part of a jet cross-section in the 
8-interval considered. For then equation (43) simply approx. 
imates to that for a submerged jet. 

When 0(0» the initial angle between the jet and the ambient 
stream, is sufficiently small+, both conditions (i) and (ii) will be 
satisfied. Condition (i) is also true for all sufficiently far down-
stream regions"*", , and condition (ii ) holds too for a sufficiently 
large value/ of R. In any of these cases, therefore, equations (36), 
(41), (42), (43) for a two-dimensional deflected jet flow are the same 
as for straight jet flows. Hence we should expect the momentum 
diffusion to be similar. However, as these equations are not com-
plete governing conditions, the similarity can only be regarded as 
possible and probable; full justification must still be completed by 
experiment. 8ubject to this, then assumptions (A l ) to (A3), well 
verified for undeflected free turbulent flows, are justified for use 
in the present analysis. 
* Using the assumption f L 
** The case Ui =0 needs no consideration, for the flow is simply a 

submerged jet. 
+ This means that for condition ( i ) , cos <k may be considered as 1, 

commensurate with the accuracy of other measurements. A 
similar meaning applies to the case for condition (ii). 

+ + This value increases with (82-81). An estimate can be made 
using equation (40). 
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The important property of self-preservation should also be ex-

pected to hold for a deflected jet. In this present investigation we 

will be mainly interested in the intermediate region of the flow field, 

i.e. where ^ is not very large. Hence we shall employ the approx: 

imation of seA-preservation of excess dynamic pressure. Here we 

shall define it as 

(44) 

where q = U^, suffices C and A refer respectively to the values at 

n = 0 and in the ambient fluid. 

Now 

~ Uc'-U.^ 
I + 

Uc^- U.^ J 

- I 

Uc^- Ui^CM« 

But generally we should have 

« 

u z 
•jj^) is not much greater than 1, ck must be small, and if cX for if ( 

is not smfal, i. Hence 

When c(o is not too large, ck will be sufficiently small in some 

interval of S for the expression in the square bracket to be negligible 

compared with the other term, for U not too close to U j . T o this 

approximation, then 

-/[HS)} 

This equation is subsequently confirmed by experiment. 

(44a) 

Although the analysis so far emphasises on the similarity of 

the deflected and undeflected jet flows, it must not be misconceived 

that they have no intrinsic difference. Because of the axial curvature, 
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the flow f ie ld is no longer s y m m e t r i c a l about the S - a x i s . Equat ion . 
(36) shows th i s v e r y c l e a r l y th rough the U ^ / p t e r m . Th is un -
s y m m e t r i c a l p r e s s u r e g rad ien t imp l i e s that the d i f fus ion m u s t be 
d i f f e ren t on the concave s ide (negat ive n) and on the convex s ide 
(posi t ive n). T h e r e f o r e d i f f e r en t length s c a l e s b̂ ^ and b^ m u s t be 
used f o r n < 0 and n > 0 r e s p e c t i v e l y . The d i f f e r e n c e (bi - h^ ) / 
bi mus t of c o u r s e be much l e s s than 1 if a s sumpt ion (A4) is s a t i s f i ed . 
Indeed, when S->oO, (hence «o ), ^ (bĵ  - bo) mus t tend to 
z e r o as sugges ted by equat ion (42). N e v e r m e l e s s , the u n i v e r s a l 
funct ion f of equat ion (44) should be a p p r o x i m a t e l y the s a m e fo r 
n < 0 and n > 0 as f o r the undef lec ted je t , with a p r o p e r choice 
o f b . 

Anticipating^' equat ion (44a) and taking f as a g a u s s i a n cu rve 
(equation 21a; Sect ion 5. 3) 

1 

(45) 

we can de r ive two impor t an t p r o p e r t i e s of the je t axis (S-axis ) . Con-
s i d e r an e x c e s s dynamic p r e s s u r e contour , i. e. q - q^ = cons tan t . 
Equat ion (45) g ives 

(45a) 

The tangent to th i s cu rve is incl ined to the loca l S - d i r e c t i o n at an 
angle fi given by 

' ^ ^ P - ¿^S - ( ^ c - ^ ) T ^ (46) 

F r o m equation (45) we find that when n —> 0 

r' r" 2 f ~ > / _ ^ (47) 

By equat ion (47), then we have 

tan jS '-v^ n"^ (47a) 

cos ^ ^ n (47b) 

s in JS 1 (47c) 
(P I ) Hence the e x c e s s dynamic p r e s s u r e con tours i n t e r s e c t the 
S - a x i s or thogonal ly . 

The c u r v a t u r e of the contour of equation (45a) is 
'It should be-noted tnat the following a r g u m e n t s a r e a l so valid witn tne 
a s s u m p t i o n of s e l f - p r e s e r v a t i o n of e x c e s s veloci ty. 
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= + (48) 

where c is the arc length of the contour. Dif ferent ia t ing equation 
(46), we have 

& /cin] _ CVc' i i : , ^ 
î n l ^ / - (ÇiÂp- i " ^ 

(46 a) 

(46b) 

Hence equations (46)-(48) show that when n - i 0, K—^Kj^(S) = 0.(49) 
Fur ther , differentiating equation (48) and making use of equations 
(46)-(48), we have 

If P is sufficiently large , then 

cLc 
'KV (50) 

(P2) Equations (49)-(50) together with physical intuition suggests 
that the excess dynamic p re s su re contours have max imum curva ture 
at or very near the jet axis. 

4. Test Faci l i t ies and Exper iment 

4. 1 Test Objective 

The principal objective of the exper iments was to ve r i fy the 
s imilar i ty of momentum diffusion of a deflected jet w^ith an un-
deflected one under the conditions stated in Section 3, This would 
be established if the excess dynamic p r e s s u r e was found to be se l f -
preserving and the t r ansve r se length scale b to vary with the axial 
distance in a way s imi lar to a s t ra ight jet . M e a s u r e m e n t s of the 
dynamic p ressu re were the re fore made at var ious posi t ions of the 
jet for three different angles between the ini t ial jet veloci ty and 
the ambient s t r eam and for severa l d i f ferent i e t - t o - ambien t 



Fig. T3: General View of the Experiment Arrangement, 

Fig. T4: Jet Deflector. 
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velocity ratios. The jet axis could then be located and the requisite 
analyses made. 

4. 2 Experimental Arrangement 

The experiments were carried out in a water flume, 3 ft. wide x 
31 ft. long. The depth of flow was adjustable by means of a gate at 
the exit end of the flume and was kept at 4 in. throughout the ex-
periments. The water jet was supplied through a j in. wide rectangular 
pipe of 1/4 in. wide by 3 -7 / 8 in. high internal cross-section. The 
pipe was 12 ft. long from the intake of the flume. The pipe was 
fixed in the central vertical plane of the flume. From the intake to 
the exit end of the jet pipe, the flume was covered with perspex 
plates at 3 -7 / 8 in. above the flume bed in order to prevent the form-
ation of surface waves. 

At the exit end of the jet pipe a deflector was fitted which turned 
the jet by a desired angle. The design of the deflector was based on 
two principles. Firstly, the external shape must be symmetrical so 
that the effects of boundary and the wake were the same on both sides, 
and must be such that these effects were small and the same in all 
deflectors. The deflector was therefore tapered from 1/2 in. width 
(outside dimension) to about 1/4 in. width over approximately 3 in. 
Secondly, the centre-line of the jet should Intersect the axis of 
symmetry of the external shape of the deflector at the exit plane so 
that the effects of boundary and the wake caused by the deflector in 
the-external stream were the same on both sides of the jet at the in-
itial cross-section. Three deflectors were constructed, for 25°, 
17° and 9° turns of the jet. '̂' The jets issuing from these deflectors 
were all reduced to 1/8 in. initial thickness, the height being very 
close to 4 in. The reason for reducing the thickness was twofold, 
viz. , to increase the jet velocity and more importantly to obtain a 
higher height-to-thickness ratio so as to improve the two-dimension-
ality. The maximum angle <?( Q was chosen as 25° in order to cope 
with the conditions imposed by the analysis (Section 3). Besides, it 
would have been difficult to turn the jet smoothly by a larger angle 
without increasing the (outside) width of the deflector. 

Flow rates of water supplied to the flume (to form the ambient 
stream) and to the jet pipe were separately gauged with carefully 
calibrated orifice plates. The orifice heads were frequently checked 
during all experiments so as to ensure constancy of flow rates in each 
set. 
Note : See Appendix 3 for details of experiments with deflection angle 

of 45°. 
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The maximum flow obtainable in the f lume was about 2. 5 c u s e c s , 
corresponding to an average veloci ty of 2. 5 f t / s e c . The m a x i m u m 
flow in the jet pipe was about 0. 03 cusec , c o r r e s p o n d i n g to an av-
erage initial jet velocity of about 9. 5 f t / s e c . 

4. 3 Ins t ruments for Veloci ty-head M e a s u r e m e n t 

The ins t ruments used were a veloci ty probe , a 3 / 1 6 " (O. D. ) 
Pitot tube, and a 1 /8" (O, D. ) Pi tot tube. The 3 /16" P i to t tube was 
purchased f r o m C . F . Casel la and Co. Ltd. , London, and the 1 /8" 
Pitot tube f r o m Duff and Macintosh Pty. Ltd. Sydney. As they a r e 
s tandard Prand t l tubes , it is super f luous to d e s c r i b e t h e m any 
fu r the r . The velocity probe was cons t ruc ted in the l a b o r a t o r y . It 
consisted of four l / l 6 " O. D. hypodermic tubes (. O i l " wal l th ickness) 
soldered together to f o r m a probing s t e m of rhombic c r o s s - s e c t i o n , 
which was soldered to a b r a s s cap r e s t i ng on and ro t a t ab l e about the 
axis of a b r a s s seat so ldered to a c i r c u l a r b r a s s plate with a s ca l e 
graduated in degrees . A pointer was so lde red to the cap to indicate 
the angle of rotat ion on the sca le . F o u r holes w e r e d r i l l ed at 1 /2 in. 
f rom the lower end of the probing s t em, one into each of the hypodermic 
tubes. The two side holes , or iented s y m m e t r i c a l l y about the long-
itudinal axis of the c r o s s - s e c t i o n , w e r e used to o r ien t the pi )be 
cor rec t ly for m e a s u r e m e n t of veloci ty head by the f ron t and r e a r 
holes. A b r a s s cover plate was provided at 1 / 2 in. above the holes 
to prevent a i r being sucked into the r e a r hole at h igher ve loc i t i e s 
( > 4 f t / s e c . ). But contact between the plate and the m e t a l s t e m was 
found to promote the vibrat ion of the s t e m at high ve loc i t i es which 
made the cal ibrat ion vary with the depth of wa t e r above the pla te . To 
prevent this , the b r a s s cover plate was t h e r e f o r e glued to the lower 
side of a smal l piece of s t r eaml ined soft r u b b e r which gr ipped f i r m l y 
on the probing s t em. 

The velocity probe and the Pi tot tubes w e r e each f ixed to a 
point gauge mounted on a dexion angle spanning ho r i zon ta l ly a c r o s s 
the f lume. The point gauge permi t ted a v e r t i c a l t r a v e r s e of 6 in. 
measurab le to . 01 in. Longitudinal (x) and t r a n s v e r s e (y) d i s t ances 
of the position of measu remen t were r ead f r o m s t e e l t a p e s (graduated 
to . 01 ft. ) fixed on the two walls of the f lume and the dexions 
respect ively . 

The velocity probe was ca l ibra ted in another f l u m e up to a ve l -
ocity of 6. 5 f t / s e c . A l inear re la t ionsh ip was found be tween the t r u e 
velocity head (h) and the m e a s u r e d p r e s s u r e d i f f e r e n c e (h ) between 

^ m ' 
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the front and the rear holes. That is 

= A + At 'tyv 

for h between . 025 and . 65 ft. or water, 

where A 

(51) 

0. 66 

0. 006 ft. of water 

It is not improbable that the calibration of the probe might change 
due to e .g . the dislocation of the brass cover plate. Thus it is im-
portant to ensure that a small change in the calibration curve (51) 
will not affect the measurements. Consider first the ordinates of 
the dimensionless excess dynamic pressure profile. By equation (51) 

hc'^fii hmc' K^A 
where suffixes C and A refer, as before to values at n = 0 and in 
the ambient fluid. Thus, only if a linear calibration (equation 51) 
holds, the dimensionless excess dynamic pressure profiles will be 
unaffected by any variation of A and lu. However, a variation of 

X or (J, will change the actual value of the axial excess dynamic 
pressure, for 

lYMh 
K̂vvA -i- T" 

(52) 

But -id/\ is just the hj^ - intercept of the calibration curve 
equation (51). Therefore ^ H-Sa will still be unaffected if the 
calibration curve changes in Qa such a way that it always belongs 
to the family of straight lines through a common point on the h^^-axis. 
Furthermore, if ju « h^, then ^^ " will not effectively differ 
from the true value even if — ^ is ^^ varied. In view of the above 
discussion, the probe calibration was checked only once during the ex-
periments and it was found that A decreased slightly but was 
practically unchanged. 

4. 4 Testing 

The deflector was fitted into the jet pipe exit and well sealed 
against leakage. The depth of flow in the flume was adjusted after 
water supply to the flume and the jet had been turned on at the 
desired discharge rates. The measurements of velocity head were 
made at points at 2 in. from the flume bed in planes perpendicular to 



36. 

the ambient stream (x = const.) . The measuring points in each section 
were chosen at . 01' or . 02' or . 03' apart as was necessary for obtain-
ing a detailed profile of dynamic pressure. The velocity probe was 
used for measurements in the upstream sections where the flow direction 
was appreciably different from that of the ambient stream. The probe 
was oriented by turning the brass cap until there was a null readmg on 
the U-tube differential manometer (magnification 10 to 20) connected to 
the direction tubes. As would be expected, this device will align the 
front and rear holes of the probe with the flow directions only if the 
transverse gradient of the velocity was not too large. However, it 
was fortunate to find out that within ^ misorientation, the measured 
velocity head had no observable change. Nevertheless, the flow 
direction near the axis was fairly well indicated. When this differed 
from the ambient by less than 10°, the next section was then measured 
with a Pitot tube oriented at about 5° from the ambient stream and 
pointing towards the jet. This orientation will not affect the measure-
ments of velocity head (32). 

The initial jet velocity distribution along the height of the nozzle 
was determined from the total head measured with the 1 /8" Pitot tube. 
At mid-height, i . e . in the horizontal plane of measurement, the vel-
ocity was found to be 1. 08 times the average velocity deteri ^ned from 
the orifice head readings. This was used to determine the initial jet 
velocities for all the experiments. The velociiy of the ambient stream 
was determined with the Pitot tube. 

The experiments were carried out for the following flov/ patterns:-
Experiment 

Number"!' 
Angle between 
the initial 
directions of 
jet and ambient 

Velocity 

Uj (fVsec) 

Initial Jef ¡Ambient 
Stream 
Velocity 
Û  (ft/sec) 

R = Ul 

1.1 
I. 2 
I. 3 
I. 4 

IL 1 
II. 2 
II. 3 

III. 1 
III. 2 

" 2 ^ 
25° 
25° 
25" 
17° 
17^ 
17 

10. 4 
10. 4 
10. 0 

6 . 8 
10. 3 
10. 3 
10. 3 
10. 0 
10. 0 

1. 15 
1. 55 
2. 4 
2. 6 
1. 20 
1. 54 
2. 35 
1. 11 
1. 35 

9. 1 
6. 7 
4. 2 
2.6 
8 . 6 
6. 7 
4. 4 
9. 0 
7. 4 

- The same numbers are used for the corresponding Figs . e . g . Fig. I. 2 
refers to experiment I. 2 etc. These numbers will henceforth be re -
ferred to as N. n where N = I, II, m , n = 1 to 2 or 3 or 4. 



(a) General View 

Fig. T5: Instruments for Velocity Head Measurement, 
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A number of repeatability checks were carried out during the ex-
periments. 

As shown in equation (38), the curvature of the jet axis is related 
to the variation of static pressure. This was well indicated by a 
depression in the free water surface for n < 0 and a rise for n > 0 
near the nozzle exit. For experiments 1. 3 and I. 4, the appreciably 
affected area was approximately 0 < x < . 3 ft. , the maximum de-
pression being nearly 3 /8" . It would therefore be most interesting 
and useful to measure the static pressure variation in the flow field. 
Two static pressure tubes had been constructed for this purpose with 
1/16" hypodermic tubes according to a standard configuration (Fig. 5b, 
p. 187 of Ref. 3 2). But unfortunately it was found that in other flow 
regions and other experiments the variation was so small that it could 
not be measured with manometers available in the laboratory. It may 
be mentioned that it was also because of the static pressure variation 
that the measurements of velocity head in the upstream sections had 
to be made with the velocity probe, for in the Pitot tubes the static 
pressure openings are at least 3/8 in. from the opening for total head. 

5. Experimental Results and Discussion 

The experimental measurements are presented in Appendix I. 
From these, the location of the jet axis, the axial variations of ex-
cess dynamic pressure and the transverse length scale, and the 
dimensionless excess dynamic pressure profiles were determined. 

5. 1 Location of Jet Axis 

The jet axis has been defined as the streamline passing through 
the central vertical line at the (vertical) nozzle exit plane. But it is 
practically impossible to determine the axial location from this def-
inition. Instead, the properties (PI) and (P2) of the jet axis (p. 3t-32) 
can be used for this purpose. Excess dynamic pressure contours are 
drawn and the jet axis is determined as the line orthogonal to these 
contour curves and consisting (approximately) of the points of maximum 
curvature of these curves. This has been done for experiment 1. 2, as 
shown in Fig. 1.2(d). However, this me thod is cumbersome. In the 
present experiments, o( is small (mostly less than 10° in the range of 
measurements). 

Therefore by virtue of the two properties (PI) and (P2) of the jet 
axis (p. 31-32 ), geometrical intuition (see accompanying sketch) 
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suggests that the point of m a x i m u m e x c e s s 
dynamic p r e s s u r e in each se c t i on (x = const . ) 
normal to the external s t r e a m v/ill be very 
c l o se to the jet axial point in that sect ion . 
F ig . I. 2(d), where ck is the se cond largest 
among all e x p e r i m e n t s , v e r i f i e s this quite well. 
The jet axis f o r all other e x p e r i m e n t s were 
there fore determined in this way. 

The locations of the jet axes are shown in F i g s . I. 5(a), II. 4(a), 
111.3(a). They have been replotted in F i g s . L 5 ( b ) , 11. 4(b), 111.3(b), 
where the coordinates are divided by r2= (U j / U^)^. It is seen that 
for (X /R^D) < 3, a single curve f o r the jet axes can be drawn for each 

ck^, the angle between the initial d i rec t ions of jet and ambient stream. 
Thus the proposit ion that jet axial locat ion is independent of R in the re -
duced coordinates is approximately c o r r e c t f o r 2 q ^ ^ cannot 
conclude, however , that when - > 3, thil^ ^ proposit ion is not cuiiciuae, nuwever, inai wneii ^ ̂ ^ / -j > lxixs px upu&iLn 
even approximately true. F o r the ve loc i ty rat ios R could not be 
determined accurately , and far downstream the peaks of the dynamic 
pressure prof i les were too flat f o r a p r e c i s e determinat ion of their 
positions. Bes ides , the departure f r o m t w o - d i m e n s i o n a l i t y (Appendix 2) 
may have some ef fect . 

5. 2 Axial Variations of the E x c e s s Dynamic P r e s s u r e and the 
Transverse Length Scale 

In view of the d iscuss ion in Section 5. 1, the m a x i m u m e x c e s s dyn-
amic pressure of an exper imental ly determined pro f i l e f o r a plane x = 
const, can be taken as the value at the jet axial point in that plane. But 
the transverse length sca le , b, is defined as the d istance f r o m the jet 
axis to the point where the e x c e s s dynamic p r e s s u r e has fal len to half 
of the axial value in a plane S = const . It is t h e r e f o r e n e c e s s a r y to 
ascertain the nature of approximation involved if it is d e s i r e d to 
determine b f r o m the pro f i les f o r planes x = const , v/hich is obviously 
an easier and more pract icable way. 

V 

If (A and n are s m a l l , the dynamic 
p r e s s u r e contour can be approx-
imated by a straight line''' between 
the l ines S = const , and X = const, 
through the s a m e jet axial point 

Let m ^ ^ f o r the 
I — ^ M ^ ^ I I M I , M i l Mil • !•! 

^•^except when the contour is normal to the S - a x i s . But in the present case. 
this occurs only when n= 0 (Section 3) and we then do not have to prove 
anything. 
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contour. Then (see accompanying sketch), 

y-ĵ fc _ g^oc I m + /OW/QC -fayn/CX (53) 

n 1 + yroicL^d 

_ , , jrv -ta^cC) 

. I z ^ ^ , . (54) 
'»v ' I + irtoC 

V ~ Vr^ 

Hence, if m is not too large, the approximation of taking — = 1 

is good to the first order of small quantities, and if m is also small, 

it is correct to the second order. 

For the present experiments, both ô  and n are small; in addition 

m is also small for n not too close to zero (see Fig. I. 2(d) ). Hence it 

is justified to take (y-Je) as n. Indeed, two profiles for n = const, have 

been plotted (see Fig. AI. 2 in Appendix 2) and found to be indistinguish-

able from those for x = const. This justification applies particularly 

to the determination of b from the excess dynamic pressure profiles for 

planes x = const, since at n = b^m is small. 

The axial distances were determined by summing chord lengths 

of the S-axis divided into suitable intervals. They were usedJ;o plot ^ 

the graphs of the decay of axial excess dynamic pressure, (^ q^ ^ ) 
(5 >'< 

V. (d)' (Figs. N. n(a) )" , and the graphs of the lateral spread, 

V. ( ~ ) , (Figs. N. n(b) From the former graphs it is seen that 
D D _ -ĵ  Q 
-2-— increases with ( - ) and appears to tend to a constant 

qA D 

for large This is in qualitative agreement with the results reported 

in [16l for a round jet in a coflowing stream. However, with a consider-

ation of b, further discussion of (q^ - q^) is unnecessary, for the self-

preservation of (q-qA) relates the two quantities through the momentum 

integral equation (43V 

As suggested by the analysis (Sect. 3), two length scales were 

plotted against ( ^ ) in the graphs of lateral spread of jet, b- for the 

concave side (n < 0) and b^ for the convex side (n > 0). It is seen 

that the rates of increase of both b^ and b^ decreases with S and appears 

* See footnote on page 36 
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to tend to a constant , again s i m i l a r to a t w o - d i m e n s i o n a l je t in a co-
flowing s t r e a m [263". T h e r e is , however , a d i f f e r e n c e between-bj^ and 
b^. Except for expe r imen t s 1. 1, I. 2 and II. 1, b- is s l igh t ly g r e a t e r than 
b^ and the d i f fe rence tends to d e c r e a s e with as p r ed i c t ed by the an-
analysis (Sect. 3). The t h r ee except ions c o r r e s p o n d to (o( = 25°, R = 9.1, 
6. 7), and ( = 17^, R = 8. 6) r e spec t i ve ly . In t h e s e c a s e s , b̂ ^ ? b^ for 

S ° S - < 100, and for ~ > 100, (b^ - b.) > 0 tends to i n c r e a s e with S. Here, I J I J vj > 
the velocity ra t io R is f a i r l y high and <S is no longer s m a l l . Nevertheless, 
the a l ternat ive condition (III) on p. fo r s i m i l a r i t y with an undeflected 
jet is s^ill approximately sa t i s f i ed in the u p s t r e a m r e g i o n s . But, since 
m^ (= ^ ) for the dynamic p r e s s u r e .contour used to d e t e r m i n e the b ' s 
has the same sign as n, the p resen t method of d e t e r m i n i n g b o v e r -
es t imates bg and u n d e r e s t i m a t e s b^ as c l e a r l y indica ted by Equat ion (54). 
These account for the very s m a l l n e s s of and the p redominan t negative 
sign for (bi - bo) in ( ^ ) < 100. F o r ( ^ ) > 100, the je t veloci ty has 
decreased to the same o r d e r as U i , and cA a lso changes appreciably . 
Hence the basic r e q u i r e m e n t s for s i m i l a r i t y a r e v io la ted , but the 
reasons for the pecul iar behaviour a r e not c l e a r . 

One important , but r a t h e r obvious, point to be noted f r o m the 
graphs of ( ^ ) V. ( ^ ) is that the s lopes of t h e s e g r a p h s appe^^r to be 
of the same o rde r as those for the s t r a igh t j e t s . In tu i t ive ly we may ex-
pect the effect of jet axial c u r v a t u r e s on the s p r e a d i n g to be l a r g e 
only when that cu rva tu re is l a rge . - - In the p r e s e n t e x p e r i m e n t s , the 
jet axial cu rva tu res a r e obviously sma l l . In fac t , th i s is one of the 
conditions for s im i l a r i t y between curved and s t r a i g h t je t f lows , and 
this s imi la r i ty n e c e s s a r i l y impl ies , among o ther th ings , tha t the r a t e s 
of spreading of the two kinds of j e t s should be of the s a m e o r d e r . 

5. 3 Se l f -p rese rva t ion 

Fo r the same r e a s o n s as given in Sect . 5. 2, the d i m e n s i o n l e s s 
excess dynamic p r e s s u r e p rof i l es 

qc - QA ^ b ' 
will be determined d i rec t ly f r o m the e x p e r i m e n t a l l y obtained dynamic 
p r e s s u r e prof i les for planes x = const . The d e g r e e of approximat ion 
can be es t imated f r o m equation (53). Thus for a given o rd ina t e , the 

' l^^gt»^ used h e r e . 

"" w a i l s n r r n ' " " " ' ' l^y®^ - j e t ° v e r a curved 
wall spreads more rapidly than that of a s t r a i g h t w a l l - j e t . 
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correct value of the abscissa ( ^ ) and the value used ( ^ J, are related 

6r _ /CW0( + 2m-iWc(+^¿rvcX liuvoC \ f |-nrVt̂ t̂ ôC \ 

For small o( , we have 
( i i ^ ) 

= n - c < ( i w - i n , ) (55) 

Now in the range of n values considered, m is an increasing function of 
n. Hence, conapared with the correct profiles, the approximate ones 
are stretched laterally for n < 0 and compressed for n > 0 when < 1; 
and are compressed laterally for n <°0 and stretched for n > 0 when (~)> 1. 
However, when ĉ  is small, the error is small. 

These profiles are shown in Figs.- N. n(c). It is seen that for each 
flow pattern the profiles are practically independent of the downstream 
distance from the nozzle, verifying the self-preservation of excess dyn-
amic pressure. Furthermore, allowing for the approximate nature of the 
profiles as discussed above, these dimensionless self-preserving pro-
files are symmetrical about the S-axis, as suggested in Sect. 3. More 
scattering is present when ^ - ^A < 0.2; but this is due to the limited 
accuracy of measurements of TOe fairly low velocity near the jet 
edge. It also appears that there is a very slight but continuous change 
of the self-preserving profiles with and R (Fig. IV). But the 
measurements were not accurate enough to be conclusive on this point. 
It can, therefore, only be ignored with a note of caution that this might 
indicate an intrinsic difference between the deflected and undeflected jet 
flows. 

All the dimensionless excess dynamic pressure profiles are found 
to be very close to a gaussian probability curve, but falls off more 
rapidly near the jet edge on the concave side. It appears that this may 
be due to the low pressure in that region. Nevertheless, in the absence 
of more accurate measurements or a rigorous theory, a gaussian curve 
appears to be a sufficiently good approximate form of the "universal" 
dimensionless excess dynamic pressure profile. 

In conclusion, the results of this and the last section (Sect. 5. 2) 
complete the verification of and the discussion on the similarity 
(macroscopic) of the momentum diffusion in the deflected and un-
deflected two-dimensional jet flows which was set out in the analysis 
(Sect. 3). ^ 
*b' is the value of b determined in Sect. 5. 2, and m̂ ^ = at n = b. 

ds 
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6. Conclusions 

The following conclusions may be drawn f rom the analytical and 
experimental studies on a two-dimensional jet emitted at an angle to a 
uniform ambient stream. 

(1) The mean velocity field (momentum diffusion) of such a deflected 
jet in an interval of downstream distance (Sp S^) will be similar to that 
of an undeflected jet if either one of the following three conditions is 
satisfied (Sect. 3): 

(I) c( is sufficiently small 

(II) 1, where P is the radius of curvature of 
the jet axis. 

(Ill) U Vi and is not too large, where U is the 
velocity in the jet. 

(2) The excess dynamic pressure is sel f -preserving in the (S, n) 
coordinates. The universal transverse profile can be c losely approx-
imated by a gaussian curve (equation 45, Sect. 5. 3, Fig. IV)« 

(3) The jet spreads more rapidly on the concave side than on the con-
vex side (Sect. 3, Fig. N.n(b), Sect. 5.2). 

(4) The jet axis may be (approximately) determined as the locus of the 
point of maximum curvature of the excess dynamic pressure contours 
(Sect. 3, Sect. 5. 1). Its location is approximately independent of the 
jet-to-ambient velocity ratio R = U-:/ U^ if the lengths are divided by 
RMSect. 2.7, Sect. 5.1, Figs. 1.5(a), (b); 11. 4(a), (b); III. 3(a), (b) ). 



Appendix 1. 

Experimental Measurements. 

The experimental measurements are shown in the following 
figures. The coordinates (X, Y) are related to (x,y) in the text by 

X = X, 
Y = y + 10 

In order to non-dimensionalize the results and to reduce the 
calibration error (Sect. 4. 3), the measurements are plotted as 

( ^ ' ) v s Y 

where ( ) is of course equal to the ratio of the velocity head at 
the p o i n t o f measurement to that of the ambient stream. A 
vertical line is drawn in each of these profiles to indicate the position 
of the peak for the determination of the jet axial location and of the 
transverse length scales bĵ  and b^. 



Appendix 2. 
Departure from Two-dimensionality and Lateral Inflow* 

From the self-preservation of excess dynamic pressure (equation 
44a) and the conservation of momentum (equation 43), we have 

fq^y* 

M = f U(U'UA)cLn 

/ \ % 

where V ~ n 

M is the excess momentum of half of the jet (in the 
appropriate direction) 

b = b^ or b^ according as n < 0 or > 0. 

Now the last integral simply represents the excess flow in the S-
direction (or the accumulated lateral inflow). Hence b/ (-2— 
should increase with the downstream distance at a rate e q u a l ^ the 
lateral inflow rate. But a rough examination of Figs. N. h(a)(b) 
shows that for the majority^f the experiments that quantity increases 
with ( ^ ) only up to about ^ = 70 and then decreases. One most 
obvious explanation is the departure from two-dimensionality. 

Van der Hegge Zinjnen [10] made some preliminap^ investigations' 
on this and concluded that for a height-to-v/idth ratio ( — ) of about 20 
for the nozzle slot, the flow may be considered as approximately two-
dimensional between 4 ^ 4 2 S . In the present experiments, 
H = 4/ '— = 32. Thus we should expect two-dimensionality up to 

somewhere beyond 2 ,— ==' 64. However, the asymmetry of the 
initial velocity distributions about the mid-height (i. e. due to the 
difference between boundary layer on the flume bed and the free sur-
face) and the fairly large thickness of the deflector (compared with D, 
the initial jet thickness) would be expected to reduce this region. In 
order to obtain some idea about the seriousness of the departure 
from two-dimensionality, some preliminary measurements were 

Tn this appendix the analysis will only be approximately i ight. In 
particular, is assumed to vary little with S. 



Appendix 2 (cont 'd. ) 

made on the variation of velocity with depth, 
in Fig. A. IV. 

The results are shown 

The departure from two-dimensionality can also be seen from 
the nature of the lateral inflows into the jet computed f rom Figs. 
N. n(,a),(b), and the self-preservation of (q - q^). The total ex-
cess flow in the S-direction is 

where B̂ ^ = qc - QA 

n ^ 0 respectively. 
and - are to be used for the two sides 
Using the continuity equation (36), we have 

the lateral inflow velocity Yi at (S, - ©o ) given by 
>ioo 

A . -
UA 

cC 
/o 

_ I 

(U-UAjcin 

where 

The values V^^ for n< 0 and V̂ q̂ ^^^ n > 0 are respectively given by 
b = b̂  and b = b^. These have been calculated for all the experiments 
using a gaussian profile for i ), i. e. 

and are plotted in Fig. AV. They show a very erratic behaviour. 
The most important fact revealed by these graphs is that in the maj-
ority of the experiments, V̂ ^ changes sign at some value of ( 
(about 70) and becomes having the same sign as n for greater^ 
(p) values. This means an outflow from the jet, instead of the fam-
iliar entrainment. It certainly brings out the serious effect of de-
parture from two-dimensionality. 

Notwithstanding these non-two-dimensional behaviours, the 
self-preservation of the excess dynamic pressure is little affected 
(Figs. N. n(c) ). It might seem that this property may be of more 
far-reaching validity than in two-dimensional or axi-symmetric flows. 
Furthermore, it appears that the transverse length scales (b- and b ) 
and the existence of a single curve for the jet axes in the ( - ^ , 

y J \ J) 
^ ^ ) plane for all velocity ratios with the same initial angle d ^ 

are not appreciably affected. 



Appendix 3. 

The work described in this report was carried out by the author 
in 1965. In 1966 further work was carried out at the Water Research 
Laboratory by P. R. Carter who repeated the work of the author using a 
deflection angle of 45°. All other apparatus and techniques were the 
same for this later series of experiments. 

In general, the experimental results agreed with the author's 
observations. The excess dynamic pressure was found to be approx-
imately self preserving, the exception being low values of S on the con-
cave side. However, this could be due to the breaking down of the 
conditions for similarity in this section, since 

(i) oC is large and is rapidly changing. 
(ii) The radius of curvature is smaller than for the initial 

experiments. 
(iii) Although the jet velocity is large compared with the 

ambient stream, c< is no longer small and the jet does not 
approach the case of an undeflected jet due to the sharp 
curvature of the axis. 

There were two important variations from the author's results. 
Firstly, the jet spread more quickly on the convex side, not on the 
concave side for the larger values of ^ . However, this tendency 
has been already noted for larger values of o^^ and R. Secondly, 
the location of the jet axis was not independent of the jet to ambient 
velocity ratio R, when the length values were divided by R^. 
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