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Abstract  
One of the main pursuits in proteomics is to understand the complex network of protein-protein interactions 
(PPI) that underpin biological processes. Two major classes of PPI are domain-domain interactions (DDI) between 
globular proteins, and domain-motif interactions (DMI) between a globular domain and a short linear motif 
(SLiM) in its partner. Advances in high-throughput experimental techniques have been applied at large-scale in 
an attempt to characterise the interactomes of various organisms. However, the PPI networks identified by these 
high-throughput experiments have low resolution as compared to low-throughput technologies, such as protein 
co-crystallization. Furthermore, large-scale approaches may be poor at capturing low affinity or transient 
interactions, which includes the majority of known DMI. To date, several studies have been conducted to identify 
how well these PPI data can capture protein complexes, but the ability of high-throughput PPI-detection methods 
to capture DMI remains a largely unanswered question.  
 
Here, a new computational pipeline (SLiMEnrich) was designed to assess how well a given source of PPI data 
captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. To help system 
biologists choose appropriate methods for predicting different types of interactions, a comparison study of 
existing high-throughput PPI datasets was performed. PPI data, SLiM predictions, domain composition and 
known SLiM-domain binding partnerships were integrated to identify possible DMI and DDI within interactomes. 
SLiMEnrich identified PPI data that were enriched for DMI or DDI by randomising the PPI within the network to 
generate a background expectation. Moreover, it was found that host-pathogen PPI data can be used to study 
molecular mimicry in viruses and to discover novel SLiMs. An in-silico peptide exchange approach was developed 
and applied to provide additional validation of predicted mimicry candidates. Despite limitations of this 
technique in large-scale validation of predicted SLiMs and DMIs, peptide exchange simulations identified a few 
high-confidence SLiMs that are likely to bind known structures and therefore constitute strong candidates for 
molecular mimicry by human viruses. 
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Abstract 

One of the main pursuits in proteomics is to understand the complex network of protein-

protein interactions (PPI) that underpin biological processes. Two major classes of PPI are 

domain-domain interactions (DDI) between globular proteins, and domain-motif 

interactions (DMI) between a globular domain and a short linear motif (SLiM) in its 

partner. Advances in high-throughput experimental techniques have been applied at large-

scale in an attempt to characterise the interactomes of various organisms. However, the PPI 

networks identified by these high-throughput experiments have low resolution as 

compared to low-throughput technologies, such as protein co-crystallization. Furthermore, 

large-scale approaches may be poor at capturing low affinity or transient interactions, 

which includes the majority of known DMI. To date, several studies have been conducted to 

identify how well these PPI data can capture protein complexes, but the ability of high-

throughput PPI-detection methods to capture DMI remains a largely unanswered question.  

Here, a new computational pipeline (SLiMEnrich) was designed to assess how well a given 

source of PPI data captures DMIs and thus, by inference, how useful that data should be for 

SLiM discovery. To help system biologists choose appropriate methods for 

predicting different types of interactions, a comparison study of existing high-

throughput PPI datasets was performed. PPI data, SLiM predictions, domain composition 

and known SLiM-domain binding partnerships were integrated to identify 

possible DMI and DDI within interactomes. SLiMEnrich identified PPI data that were 

enriched for DMI or DDI by randomising the PPI within the network to generate a 

background expectation. Moreover, it was found that host-pathogen PPI data can be used to 

study molecular mimicry in viruses and to discover novel SLiMs. An in-silico peptide 

exchange approach was developed and applied to provide additional validation of predicted 

mimicry candidates. Despite limitations of this technique in large-scale validation of 

predicted SLiMs and DMIs, peptide exchange simulations identified a few high confidence 

SLiMs that are likely to bind known structures and therefore constitute strong candidates 

for molecular mimicry by human viruses.  
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1 Chapter 1: Introduction 
Short linear motifs (SLiMs) are linear recurring functional peptides/microdomains 

consisting of 2-15 contiguous residues (D'haeseleer 2006; Davey, Van Roey et al. 2012; 

Weatheritt, Davey et al. 2012; Bhowmick, Guharoy et al. 2015). SLiMs are important because 

their key residues are involved in the fundamental cellular processes including post-

translational modifications (PTMs), sub-cellular localization, protein trafficking, regulatory 

functions, controlling cell cycle, signal transduction and stabilizing scaffolding (Dinkel and 

Sticht 2007; Van Roey, Uyar et al. 2014). However, SLiMs usually have only 2-5 defined 

positions which make them difficult to identify through computational as well as 

experimental methods (Neduva and Russell 2006; Gibson 2009; Pancsa and Fuxreiter 

2012). The focus of this thesis was to explore methods to tackle these challenges and to 

apply them to study molecular mimicry in viruses through SLiMs. This chapter will first give 

an overview of SLiMs, their role in establishing protein-protein interactions, before 

introducing the concepts of molecular mimicry in human viruses. 

1.1 Short linear motifs (SLiMs) 

Proteins are primary function molecules of the cell. Many proteins carry out their functions 

through adapting a well-defined three-dimensional (3D) structure, but there are portions 

in the proteome which are not well defined yet are significant for carrying out different 

cellular functions. These unstructured regions are known as intrinsically disordered 

regions (IDRs) (van der Lee, Buljan et al. 2014). IDRs often contain SLiMs, which mediate 

interactions with other protein partners (1.2.2). These interactions are often transient and 

low affinity (1–150 μM range), which makes SLiMs particularly good at mediating functions 

that require fast response (Diella, Haslam et al. 2008). IDRs and SLiMs are enriched in 

alternative exons which make them significant in terms of functional diversity (Tompa 

2012; Weatheritt, Davey et al. 2012).  
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The leading repository for curated data on SLiMs is the Eukaryotic Linear Motif (ELM) 

database (Dinkel, Michael et al. 2012; Dinkel, Van Roey et al. 2016). ELM identifies six main 

classes of motifs: ligand binding sites (LIG), cleavage sites (CLV), subcellular targeting sites 

(TRG), sites of PTMs (MOD), docking sites (DOC) and degradation sites (DEG).  

SLiMs not only provide significant biological knowledge related to different cellular 

processes (Seo and Kim 2018), but also help in improving our understanding about the 

complexity of the interactome (Davey, Van Roey et al. 2012; Seo and Kim 2018). According 

to the recent studies, it has been seen that SLiMs residing in IDRs help in controlling 

specificity and range of the phospho-signalling which is regulated by anchoring proteins 

(Langeberg and Scott 2015; Nygren and Scott 2015). For example, protein kinase A (PKA) 

phosphorylation is regulated by the anchoring protein, namely A-kinase anchoring protein 

(AKAP) (Welch, Jones et al. 2010). AKAPs have the conformational flexibility which makes 

them ideal for adapting to the signalling requirements. This is the reason that these proteins 

have ability to perform different functions at different locations of the cell. According to one 

hypothesis, AKAPs are likely to create signalling domains that are spatially constrained, 

which makes PKA/AKAP as an ideal drug target (Nygren and Scott 2015). 

SLiMs are not only important for critical cellular processes but can also lead to serious 

health issues if anything goes wrong with them (Ward, Sodhi et al. 2004). SLiMs are now 

being considered as an ideal drug targets that can help cope with the dreadful diseases 

(Uyar, Weatheritt et al. 2014). According to a recent analysis, 22% of the mutations in 

human proteome occur in the unstructured region which suggests SLiMs as important 

players in diseases (Ward, Sodhi et al. 2004). This is why SLiMs are being investigated for 

their role in diseases, to define potential therapeutics especially against viral infections 

(Neduva and Russell 2006). 
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1.1.1 SLiM evolution 

The evolution of SLiMs can be explained by two main principles, namely divergent evolution 

and convergent evolution. Conservation of individual SLiM instances in proteins 

(homology) is known as divergent evolution while the independent evolution of SLiM 

instances in unrelated proteins is known as convergent evolution (Davey, Van Roey et al. 

2012). SLiMs generally have higher evolutionary plasticity than other structurally or 

functionally constrained residues. A single point mutation can alter the SLiM occurrence 

through either destroying its functionality or creating a functionally active SLiM from an 

inactive protein sequence. This higher level of plasticity helps in rapid rewiring of PPI 

networks through establishing different SLiM mediated interactions (Neduva and Russell 

2005). 

 SLiMs are generally conserved, but are not as conserved as domains, which can make it 

difficult to find them without targeted methods (Nguyen Ba, Yeh et al. 2012; Bhowmick, 

Guharoy et al. 2015; Edwards and Palopoli 2015). However, their convergent evolution 

means that they are not necessarily conserved and imparts evolutionary plasticity with all 

its important implications (Edwards and Palopoli 2015). SLiMs mostly occur in the IDRs 

which give them more versatility and the ability to interact with different partners. These 

features of SLiMs show that these linear motifs are prone to have independent origins, and 

these can help finding novel motifs that share interaction partners (Neduva and Russell 

2005). In general, this SLiM plasticity creates an Achilles heel which helps pathogenic 

proteins imitate host proteins and help them to interact with host cellular pathway (Davey, 

Trave et al. 2011).  
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1.1.2 SLiM discovery algorithms and tools 

SLiM prediction methods are continually evolving to ease the process of SLiM discovery. To 

date, several algorithms have been developed to predict motifs with minimal false positives. 

These methods either tend to discover new motifs (de-novo discovery) or help finding motif 

instances of already available data. There are three main categories of the motif discovery 

algorithms: deterministic optimisation, enumeration and probabilistic optimization (Table 

1.1) (D'haeseleer 2006).  

Table 1.1.  Main types of SLiM discovery algorithms.  

Algorithm Description Advantages Disadvantages Implementation 
examples 

Enumeration Covers the space for all 
possible motifs for a 
specific model such as 
dictionary-based 
methods 

No Risk to get 
stuck in local 
optimum 

-Sometimes too rigid 

-May overlook some 
of the subtle patterns 
available in actual 
binding sites 

1. Dyad-Analysis 
(van Helden, 
Rios et al. 2000) 

2. YMF (Sinha and 
Tompa 2000) 

3. MOPAC (Ganesh, 
Siegele et al. 
2003) 

4. DMotif (Sinha 
2003) 

5. MaMF (Hon and 
Jain 2006) 

Deterministic 
Optimization 

This works based on 
the Expectation 
Maximization (EM) 
and generates a 
position weight matrix 
(PWM) 

No Risk to get 
stuck in poor 
local maximum 

Covers small subset 
of the known binding 
sites 

1. LOGOS (Xing, 
Wu et al. 2004) 

2. PhyME (Sinha, 
Blanchette et al. 
2004) 

3. OrthoMEME 
(Prakash, 
Blanchette et al. 
2004) 

4. ALSE (Leung and 
Chin 2006) 

Probabilistic 
Optimization 

This works based on 
Gibbs Sampling and 
uses a weighted 
sample from sub 
sequences 

-Highly focused 
on best fitting 
combinations 

-Can detect 
subtle block-
based motifs 

Lack of accuracy for 
unrelated proteins 

1. MotifSampler  
(Thijs, Marchal 
et al. 2002) 

2. PhyloGibbs 
(Siddharthan, 
Siggia et al. 
2005) 
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(legend on next page) 
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Figure 1.1.  Schematic diagram of  SLiM discovery algorithms.   

A) The Enumeration algorithm works in different ways for motif discovery. First one is  the 
dict ionary-based method where no. of n-mers is calculated in the target sequence and then finds 
the over-represented motifs.  Alternatively,  it  describes the motif as a consensus sequence with 
allowed no. of mismatches and tree representation is used to find al l  the motifs.  B)  Deterministic 
Optimization is based on the Expectation Maximization (EM) that creates a position weight matrix 
(PWM). The process starts by taking single n-mer subsequence with some background residue 
frequencies.  Then the probabi li ties of each n-mer sequences are calculated fo llowed by weighted 
average. Based on this weighted average, a refined model is developed. This process is i terated 
to find the probabil ity  of each site and then the maximum log l ikelihood of resulting model is 
generated. C)  Probabi listic  Optimization is based on Gibbs Sampling which takes randomly 
selected set  of s ites and score them according to the init ia l model.  This process keeps iterating 
and model decides whether to add new sites or remove old site based on the weight. After that,  
the model  is updated, and binding weights are recalculated.  Then the best f i tt ing combinations 
are selected based on binding weights (D'haeseleer 2006).  

 

Development of new Bioinformatics tools for SLiM prediction has always been challenging 

because of the possibility of high false discovery rate. One of the challenges faced during the 

development of SLiM prediction tools is the robustness of the benchmarking. An adequate 

amount of benchmarking data is required to test new methods to see if they are working 

better than the existing methods (Edwards and Palopoli 2015). During the past few years, 

significant progress in the field of motif discovery has been seen and different new 

Bioinformatics tools have been developed to predict SLiMs from sequence data. There are 

three main categories of SLiM prediction tools, namely SLiM discovery from known motifs, 

de-novo SLiM discovery and user-defined motif tools. Most of the SLiM discovery tools use 

known motifs to look for new instances in protein sequences e.g. SLiMProb (Davey, Haslam 

et al. 2011), ScanSite (Obenauer, Cantley et al. 2003) and iELM (Weatheritt, Jehl et al. 2012), 

while tools such as QSLiMFinder (Palopoli, Lythgow et al. 2015) and motif-x (Chou and 

Schwartz 2011) look for completely new motifs. There are also tools which take predefined 

motifs/information to predict new motifs such as 3of5 (Seiler, Mehrle et al. 2006) and 

SLiMSearch (Davey, Haslam et al. 2011). All of these tools are facilitating discovery of new 

SLiMs to help expand current knowledge of linear motifs in the proteome (Table 1.2). 
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Table 1.2.  L ist of computational tools used for SL iM prediction.  

 Tool Description Availability Reference 

SL
iM

 d
is

co
ve

ry
 to

ol
s 

ba
se

d 
on

 k
no

w
n 

m
ot

ifs
 

PROSITE PROSITE was the first catalogue of the linear motifs. 
This database is now focusing on protein signatures and 
globular domains 

http://prosite.expasy.org/ 
 

(Bairoch 1993) 

Scansite Scansite predicts motifs that are important for cell 
signalling. It uses profile-based searches of known 
motifs against user sequences. 

http://scansite.mit.edu. (Obenauer, Cantley et al. 
2003) 

ScanProsite Scanprosite uses regex searches to find motifs against 
protein sequences either defined by users or in public 
databases.           

http://prosite.expasy.org/scanprosite/ 
 

(de Castro, Sigrist et al. 
2006) 

SLiMProb (Short Linear 
Motif Probability) 

Searches user defined motifs against local protein data. http://www.slimsuite.unsw.edu.au/ser
vers.php 

(Davey, Haslam et al. 2011) 

MnM (Minimotif Miner) Identifies SLiMs in a protein sequence that have known 
function in some other protein. 

http://mnm.engr.uconn.edu (Balla, Thapar et al. 2006) 

iSPOT (Infer Sequence 
Prediction of Target) 

Uses structural data to predict SH3, PDZ and WW 
binding sequences 

http://cbm.bio.uniroma2.it/ispot 
 

(Brannetti and Helmer-
Citterich 2003) 

ELM Database (Eukaryotic 
Linear Motif Database) 

This database contains manually curated and 
experimentally validated SLiMs of eukaryotes. It is one 
of the biggest resource to analyse functional SLiMs. 

http://elm.eu.org 
 

(Dinkel, Van Roey et al. 
2014) 

iELM (Interactions of 
Eukaryotic Linear Motif) 

Uses PPI data to predict instances of known motifs http://i.elm.eu.org 
 

(Weatheritt, Jehl et al. 
2012) 

AMS (AutoMotifServer) This predicts motifs using a trained support vector 
machine (SVM). This is used for prediction of PTMs. 

http://code.google.com/p/automotifser
ver/ 

(Plewczynski, Basu et al. 
2012) 

http://prosite.expasy.org/
http://scansite.mit.edu/
http://prosite.expasy.org/scanprosite/
http://mnm.engr.uconn.edu/
http://cbm.bio.uniroma2.it/ispot
http://elm.eu.org/
http://i.elm.eu.org/
http://code.google.com/p/automotifserver/
http://code.google.com/p/automotifserver/
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 Tool Description Availability Reference 

D
e 

no
vo

 S
Li

M
 D

is
co

ve
ry

 T
oo

ls
 

qPMS7 Uses LDMS patterns without correcting homology http://pms.engr.uconn.edu/downloads
/qPMS7.zip 

(Dinh, Rajasekaran et al. 
2012) 

Pratt Predicts motifs based on over representation regex 
without homology correction 

http://www.ebi.ac.uk/Tools/pfa/pratt/ 
 

(Jonassen, Collins et al. 
1995) 

SLIDER (LDMS CMM tool) Maps motifs on PPI interfaces to find correlated motifs. http://bioinformatics.uhasselt.be 
 

(Boyen, Van Dyck et al. 
2011) 

TEIRESIAS Uses text patterns to search for motifs http://code.google.com/p/teiresias  (Rigoutsos and Floratos 
1998) 

SLiMMaker (Short Linear 
Motif Maker) 

Align peptide sequences and generates regex consensus 
sequences 

http://www.slimsuite.unsw.edu.au/ser
vers.php 

(Palopoli, Lythgow et al. 
2015) 

NestedMICA (Nested Motif 
Independent Component 
Analysis) 

Identifies enriched motifs against reference proteins  http://www.sanger.ac.uk/Software/
analysis/nmica/ 

(Dogruel, Down et al. 2008) 

ANCHOR Uses user defined regex and maps them on disorder 
profiles 

http://anchor.enzim.hu (Dosztanyi, Meszaros et al. 
2009) 

PepSite Uses structural data for prediction of DMI http://pepsite2.russelllab.org/ (Dosztanyi, Meszaros et al. 
2009) 

MoRFpred (MoRF 
predictor) 

Finds regions within IDR based on the propensity of 
order 

http://biomine.ece.ualberta.ca/MoRFpr
ed/ 

(Disfani, Hsu et al. 2012) 

MotifCluster Uses PPI data to find correlated motifs http://bmf.colorado.edu/motifcluster (Leung, Siu et al. 2009) 

D-MIST (Domain-Motif 
Interaction from 
Structural Topology) 

Uses structural context to predict DMI from PDB N/A (Betel, Breitkreuz et al. 
2007) 

http://pms.engr.uconn.edu/downloads/qPMS7.zip
http://pms.engr.uconn.edu/downloads/qPMS7.zip
http://www.ebi.ac.uk/Tools/pfa/pratt/
http://bioinformatics.uhasselt.be/
http://code.google.com/p/teiresias
http://www.sanger.ac.uk/Software/analysis/nmica/
http://www.sanger.ac.uk/Software/analysis/nmica/
http://anchor.enzim.hu/
http://pepsite2.russelllab.org/
http://biomine.ece.ualberta.ca/MoRFpred/
http://biomine.ece.ualberta.ca/MoRFpred/
http://bmf.colorado.edu/motifcluster
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Tool Description Availability Reference 

  

SLiMScape (SLiM plugin 
for Cytoscape) 

A plugin designed for Cytoscape to analyse SLiMs http://apps.cytoscape.org/apps/sli
mscape 

(O'Brien, Haslam et al. 
2013) 

D-MOTIF (LDMS CMM 
tool) 

Uses PPI data to find correlated motifs http://meme-suite.org/ (Bailey and Gribskov 1997) 

SLiMFinder Short Linear 
Motif Finder) 

This tool helps finding over represented motifs in 
unrelated proteins. 

http://www.slimsuite.unsw.edu.au/
servers.php 

(Edwards, Davey et al. 
2007) 

QSLiMFinder (Query 
SLiMFinder) 

Query based SLiM discovery tool with better sensitivity 
and specificity. 

http://www.slimsuite.unsw.edu.au/
servers.php 

(Palopoli, Lythgow et al. 
2015) 

SLiMDisc (Short Linear 
Motif Discovery) 
 

This tool has a heuristic approach where over-represented 
motifs are ranked in unrelated proteins. This was one of 
the first de novo tool capable of SLiM predictions. 

http://bioware.ucd.ie/ 
 

(Davey, Shields et al. 2006) 

MFSPSSMPred (Masked, 
Filtered and Smoothed 
Position Specific Scoring 
Matrix based Predictor) 

Predicts motifs based on evolutionary conservation or 
sequence features. 

http://biomine-ws.ece.ualberta.ca/
MoRFpred/index.html 

(Fang, Noguchi et al. 2013) 

SLiMPrints (Short Linear 
Motif Fingerprints) 

Uses statistical models to find conservation fingerprints http://bioware.ucd.ie/ 
 

(Davey, Cowan et al. 2012) 

SLiMPred (Short Linear 
Motif Predictor) 

Prediction of SLiMs in protein sequences http://bioware.ucd.ie/ 
 

(Mooney, Pollastri et al. 
2012) 

MEME (Multiple Em for 
Motif Elicitation) 

Uses EM to find DNA/protein motifs http://meme.nbcr.net (Bailey and Elkan 1994) 

FIRE-pro (finding 
Informative Regulatory 
Elements in proteins) 

Identifies correlated motifs using mutual information https://tavazoielab.c2b2.columbia.e
du/FIRE-pro/ 
 

(Lieber, Elemento et al. 
2010) 

http://apps.cytoscape.org/apps/slimscape
http://apps.cytoscape.org/apps/slimscape
http://meme-suite.org/
http://bioware.ucd.ie/
http://biomine-ws.ece.ualberta.ca/MoRFpred/index.html
http://biomine-ws.ece.ualberta.ca/MoRFpred/index.html
http://bioware.ucd.ie/
http://bioware.ucd.ie/
http://meme.nbcr.net/
https://tavazoielab.c2b2.columbia.edu/FIRE-pro/
https://tavazoielab.c2b2.columbia.edu/FIRE-pro/
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Tool Description Availability Reference 
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 D-STAR (LDMS CMM tool) Uses PPI data to identify correlated motifs N/A (Tan, Hugo et al. 2006) 

DILIMOT (DIscovery of 
Linear MOTifs 

Prediction of motifs that are over represented in a set of 
proteins that interact with the target protein 

http://dilimot.russelllab.org/ 
 

(Neduva and Russell 2006) 

motif-x Uses over represented peptides in combination with 
background amino acid frequencies to generate fixed 
position motifs  

http://motif-x.med.harvard.edu/ 
 

(Chou and Schwartz 2011) 

MOTIPS (MOTIf analysis 
pipeline) 

Uses short peptides in combination with DMI to predict 
over represented profiles 

http://motips.gersteinlab.org/ 
 

(Lam, Kim et al. 2010) 

GLAM2 (Gapped Local 
Alignment of Motifs) 

Uses Gibbs Sampling and simulated annealing to find over 
represented patterns 

http://bioinformatics.org.au/glam2 (Frith, Saunders et al. 
2008) 

U
se

r 
de

fin
ed

 to
ol

s 

FIMO (Find Individual 
Motif Occurrences) 

MEME profiles are searched against public databases/user 
defined proteins 

http://meme.sdsc.edu (Grant, Bailey et al. 2011) 

PRESTO (Protein Regular 
Expression Search Tool) 

Uses regex searches to find SLiMs against local protein 
data. 

http://slimsuite.blogspot.com.au/ 
 

(Edwards 2013) 

3of5 (3of5 regex search 
tool) 

Uses regex searches to find sequences http://dkfz.de/mga2/3of5/3of5.htm
l 
 

(Seiler, Mehrle et al. 2006) 

MAST (Motif Alignment 
and Search Tool) 

Uses multiple profile motifs for identification http://meme-suite.org/ 
 
 

(Bailey and Gribskov 1997) 

SLiMSearch 2.0 Proteome wide searches to find predefined motifs 
 

http://bioware.ucd.ie/ 
 

(Davey, Haslam et al. 2011) 

http://dilimot.russelllab.org/
http://motif-x.med.harvard.edu/
http://motips.gersteinlab.org/
http://bioinformatics.org.au/glam2
http://meme.sdsc.edu/
http://slimsuite.blogspot.com.au/
http://dkfz.de/mga2/3of5/3of5.html
http://dkfz.de/mga2/3of5/3of5.html
http://meme-suite.org/
http://bioware.ucd.ie/
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1.2 Protein-protein interactions (PPIs) 

Protein-protein interactions (PPIs) are known to mediate diverse functions such as 

catalysis of metabolic reactions, transportation of molecules, modification of kinetic 

properties of enzymes and altering specificity of proteins (De Las Rivas and Fontanillo 

2012). During signalling events, different proteins interact with each other to maintain cell 

growth and other cellular processes through pathway regulation. During the past years, 

different studies have been conducted to discover/predict complete maps of PPIs in 

different organisms  (Rajagopala, Sikorski et al. 2014; Rolland, Tasan et al. 2014; Hein, 

Hubner et al. 2015; Zhang, Ou-Yang et al. 2015). This knowledge is being widely used to get 

insights into cellular organization of the organism as well as to cure different diseases such 

as cancer, viral and bacterial infections through targeting PPIs and disrupting signalling 

events (Seo and Kim 2018).   

PPIs are either regarded as direct or indirect interactions. Direct interactions are 

established when two proteins physically interact with each other. On the other hand, 

indirect interactions are established when two proteins interact in the presence of an 

intermediate protein which leads to the formation of complexes (Peng, Wang et al. 2017). 

Another important feature of PPIs is their nature of interactions which can either be 

transient or permanent interactions based on stability and lifetime (Bhowmick, Guharoy et 

al. 2015). Most of the time permanent interactions are long term and result into stable 

complexes. For example, complexes such as RNA polymerase and haemoglobin are 

assembled by proteins with stable interactions (Peng, Wang et al. 2017). On the other hand, 

transient interactions have shorter lifetime as they associate and dissociate quickly and 

tend to happen under certain biological contexts. Such interactions enables cells to respond 

quickly to extracellular stimuli (Lubovac, Gamalielsson et al. 2006; Seo and Kim 2018). 

Stable and permanent interactions are mostly mediated through domains (DDIs) and 

transient interactions are mostly mediated by a motif in one protein and domain in other 
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protein (DMIs) (Bhowmick, Guharoy et al. 2015) (Figure 1.2), which are discussed in more 

detail in the following sections.  

 

Figure 1.2. Types of Protein-protein Interactions.  

An il lustrat ion of Domain-motif interactions (DMIs) where motif in one protein (shown in blue)  
interacts with domain of  other protein (shown in grey),  Domain-domain interactions (DDIs) where 
a domain in one protein (shown in in blue) interacts with a domain in other protein (shown in 
grey).    

 

1.2.1 Domain-domain interactions (DDIs) 

Most known PPIs are domain-domain interactions (DDIs) mediated by globular domains in 

different proteins. These DDIs involve large interfaces between protein domains (Diella, 

Haslam et al. 2008). Most of the interaction data generated by PPI detection experiments 

has a possibility of false positives and false negatives. Studying DDIs where a domain in one 

protein interacts with a domain in other protein can deal with these limitations and can 

provide important clues to understand the intricacy of biological systems (Kim, Min et al. 

2012). DDIs can be identified based on the 3-dimensional structures of protein complexes 

available in Protein Data Bank (Rose, Prlic et al. 2017). Different databases such as iPfam 

(Finn, Miller et al. 2014) and 3DID (Mosca, Ceol et al. 2014) have extracted DDIs from the 

known 3D structures. The one problem concerned with such databases is their number of 
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interactions due to insufficient known 3D structures of proteins. This is the reason several 

computational methods have been developed to predict DDIs though there is not a single 

platform to integrate predicted DDIs by these methods. During recent years, two databases 

such as DOMINE (Raghavachari, Tasneem et al. 2008) and UniDomInt (Bjorkholm and 

Sonnhammer 2009) have been specifically developed to store DDIs from different 

resources. One advantage of these databases is their confidence score which gives reliability 

of the predicted DDIs. Despite of providing significant DDIs, these databases are outdated 

and do not contain any recently published datasets. 

1.2.2 Domain-motif interactions (DMIs) 

Another mode of interaction is through domain-motif interactions (DMIs) which are 

mediated by SLiMs (D'haeseleer 2006; Davey, Van Roey et al. 2012; Weatheritt, Davey et al. 

2012; Bhowmick, Guharoy et al. 2015). These DMIs are basically a subset of PPIs where a 

protein structure is induced in a SLiM of other protein (Dinkel and Sticht 2007; Gibson 2009; 

Pancsa and Fuxreiter 2012; Van Roey, Uyar et al. 2014). DMIs are often transient in nature 

and are known to be involved in different signalling processes including protein targeting 

and signal transduction.(Pawson, Raina et al. 2002). Specific SLiMs interact with specific 

domains to establish a DMI (e.g. proline rich motifs tend to interact with SH3 domains) 

(Kaneko, Li et al. 2008).  

SLiMs usually have 2-5 conserved positions that are essential to interact with their partner 

domains while other positions are less conserved. This flexibility in the sequence pattern 

helps in establishing different DMIs i.e. a single motif can bind to several domains from same 

family or variants of same motif can bind with the same domain. For example, PDZ domains 

are known to interact with variants of same motif (class I (x[S/T]xΨ-COOH), class II (xΨxΨ-

COOH) and class III (x[E/D]xΨ-COOH)) (Nourry, Grant et al. 2003). This characteristic of 

DMIs makes them promiscuous in nature though they also show specificity of binding. The 

specificity is often dependent on the sequence context of motif which serves as a scaffold 
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for establishing DMIs while contextual residues help in defining interaction specificity (Seet, 

Dikic et al. 2006; Miller, Jensen et al. 2008; Stein and Aloy 2008; Akiva, Friedlander et al. 

2012). The transient nature of DMIs make it challenging to capture them through high-

throughput screens and therefore new computational as well as experimental methods are 

much needed to predict and validate DMIs (Seo and Kim 2018). 

1.3 High-throughput methods to detect PPIs 

One of the main pursuits in proteomics is to understand the organization of PPIs as a 

complex network. To date, several studies have been conducted to identify PPIs, but most 

of these are detected by small scale experiments. During recent years, different high-

throughput methods have been developed to detect large number of PPIs with reliability 

such as Affinity Purification coupled Mass Spectrometry (AP-MS) and Yeast two hybrid 

(Y2H) (Blikstad and Ivarsson 2015). Recent advances in high-throughput experimental 

techniques have led to large amount of PPI data which is providing rough picture of how 

two proteins interact in biological system. However, PPI networks being identified by these 

high-throughput experiments have low resolution as compared to PPIs from low-

throughput technologies such as protein co-crystallization. Another problem being faced in 

terms of high-throughput PPI data is their relatively high error rates and protocol specific 

biasness (Seo and Kim 2018). Moreover, there aren’t enough experimental evidences to 

show how good a method is. New computational as well as experimental methods are much 

needed to study mechanism of interactions among two proteins.  The PPIs identified by 

these methods are modeled as a network where proteins are called nodes and interactions 

among them are regarded as edges. The data generated by PPI detection methods is being 

used to study biological pathways, protein complexes, protein functionality and to identify 

potential drug targets. However, to ensure that the knowledge gained by studying PPIs is 

biological meaningful, it is important to ensure the quality of the detected PPIs (Stein and 

Aloy 2008; Kim, Sabharwal et al. 2010).  
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Each technique has their own advantages and disadvantages. Small scale experiments can 

detect low numbers of PPIs, though their quality of interactions is often high. On the other 

hand, high-throughput methods can detect a large number of PPIs, but the interaction 

quality is often low.  

Despite the efficiency of these high-throughput experiments, there is always the possibility 

of false negatives and false positives which increases troubles for successful predictions (Li, 

Wu et al. 2010; Zhang, Lin et al. 2015). Studies have shown that binary PPI detection 

methods are more susceptible to get false positive interactions (Rajagopala, Sikorski et al. 

2014). Different factors including poor expression, cofactors, binding partners and lack of 

necessary posttranslational modifications are considered responsible for high false 

discovery rate (Peng, Wang et al. 2017). Another limitation of this approach is that proteins 

are often overexpressed which can lead to non-specific interactions, raising overall false 

positive rate (Blikstad and Ivarsson 2015). On the other hand, co-complex methods, 

including AP-MS and CoFrac-MS are susceptible to contamination by abundant proteins 

which are co-purified from the pull down (Zhang, Lin et al. 2015). Another major limitation 

of this approach is that it cannot detect weak or transient interactions (Peng, Wang et al. 

2017). This is the reason that experimental as well as computational methods to validate 

these interactions are needed.  One problem often faced to detect PPIs is their physiological 

settings during the experiment as certain PPIs occur at certain conditions. Moreover, 

several factors can also influence PPI detection such as transient nature, PTMs, abundance 

of proteins and IDRs. It can be said that unravelling the proteome wide interactome is quite 

challenging. The two most common ways to evaluate reliability of PPIs is to design new 

methods to validate the interactions or to develop new computational methods to assess 

reliability of interactions through filtering out possible false positives from the data by 

finding the probability of the observed PPI (Pitre, Alamgir et al. 2008; Kim, Sabharwal et al. 

2010).  
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1.3.1 Yeast two hybrid (Y2H) 

Yeast two hybrid (Y2H) is a well-known technique to detect PPIs in yeast cells. The 

interacting proteins are called bait and prey which interaction activates reporter genes that 

results into a color reaction or growth on specific media (Figure 1.3). Y2H is being used to 

identify genome-wide interactions in different organisms (Bruckner, Polge et al. 2009) 

namely humans (Rolland, Tasan et al. 2014), Caenorhabditis elegans (Simonis, Rual et al. 

2009), bacteriophage T7 (Hauser, Blasche et al. 2012), Drosophila 

melanogaster (Formstecher, Aresta et al. 2005) and Saccharomyces cerevisiae (Yu, Braun et 

al. 2008). Y2H is considered a powerful systems biology tool to study large interactomes or 

to understand diseases through understanding mechanisms of protein interactions in a 

system (Lim, Hao et al. 2006).   

There are two screening approaches: the library approach and the array approach. In 

library approach, pairwise interactions are searched between protein of interests (bait and 

prey) available in cDNA libraries. The one disadvantage of this approach is the possibility of 

false positives (rate of wrongly identified proteins). It requires colony PCR and sequencing 

techniques to identify interaction partners, which makes this approach time consuming and 

costly. On the other hand, array also known as matrix approach identifies interactions 

through direct mating a pool of baits with a pool of preys in different yeast mating types. 

The advantage of this approach is its automated nature that can be used to identify genome 

wide interactomes. The disadvantage of this approach is it misses to identify certain 

interactions known as false negatives because of its restriction to have a limited set of full 

length open reading frames (ORFs) (Bruckner, Polge et al. 2009). 
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Figure 1.3. Yeast two hybrid approach.  

A)  Yeast  two hybrid system requires a  DNA binding domain (DBD) and an activation domain of a 
yeast  transcription factor.  A bait  (protein of  interest)  is fused with the DBD and a prey (potential  
interacting protein) is fused with the AD.   

B)  The bait protein (A)  upon fusion with the DBD,  interacts with a binding site in the promoter 
region of a  reporter gene.  The prey protein (B)  upon fusion with the AD,  act ivates the gene 
expression through binding with the bait protein (A).  

 

1.3.2 Affinity purification coupled mass spectrometry (AP-MS) 

Affinity purification coupled mass spectrometry (AP-MS) has also become a powerful tool 

in systems biology to identify large-scale interactions. The technological advances in Mass 

spectrometry have revolutionized biochemical methods such as chemical cross-linking or 

affinity purification to detect proteome-wide interactions in different systems (Blikstad and 

Ivarsson 2015). In AP-MS technique, a protein is fused to a tag which is either detected by a 

specific antibody or an affinity column recognizing the tag (Figure 1.4). AP-MS approach 

can be used a single step purification where an individual tag known as Flag-tag is used to 

immunoprecipitated the protein. However, a two-step purification is often considered more 

efficient where proteins are either double tagged e.g. 6xHis- and Strep-tag or have two tags 

on either C- or N-terminal end of the protein which are separated by a cleavage site known 

as tandem affinity purification (TAP). This gives multiprotein complexes that contain the 

tagged protein. MS is then used to identify components of the complexes. Two step 

purification approach provides better sensitivity and specificity. Recent advances in MS 
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analysis and computational methods have improved accuracy of PPI identification and 

validations (Bruckner, Polge et al. 2009). 

 

Figure 1.4. Affinity purif ication coupled mass spectrometry (AP-MS).  

In AP-MS,  protein of  interest (A)  is tagged with a tag protein.  Proteins that bind to the tagged 
protein are co-purif ied. These proteins are then identif ied by mass spectrometry (MS).  

1.3.3 Co-Fractionation followed by mass spectrometry (CoFrac-MS) 

Co-fractionation followed by Mass Spectrometry (CoFrac-MS) has  been found to be more 

suitable for identifying co complex interactions, including direct and indirect interactions 

between proteins (Kim, Sabharwal et al. 2010). In CoFrac-MS approach, protein extract is 

extensively fractioned using biochemical methods (e.g. size exclusion chromatography) 

which are then detected by MS (Figure 1.5). Just like AP-MS, this method can be used at 

proteome level, but it’s often difficult to distinguish between direct or indirect interactions 

between protein pairs (Luck, Sheynkman et al. 2017).  

 

Figure 1.5. Co-Fractionation followed by Mass spectrometry.  

In CoFrac-MS, extensive fractionation is done on protein extract  to separate protein complexes 
which are then detected by MS. 
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1.4 Public protein-protein interaction repositories 

Protein-protein interactions are vital for the proper functioning of the cells. According to an 

estimation, the number of PPIs is around 130,000-650,000 but still, the exact number of 

PPIs is unknown (Baspinar, Cukuroglu et al. 2014). These PPIs are being collected in 

specialized databases, allowing better analysis of the protein network. The first database 

created for maintaining PPI data was the Database of Interacting Proteins (DIP) (Xenarios, 

Rice et al. 2000). Public PPI repositories are growing rapidly. These repositories are not 

only managing PPI data, but are also helping in identifying novel SLiMs. To date, several PPI 

repositories have been developed and each one of them has their own advantages to study 

protein networks. There are three main categories of the PPI repositories i.e. primary 

databases which contain curated data directly from experiments or literature, meta-

databases which contain curated data from experiments as well as from other PPI resources 

and prediction-based databases which contain data from experiments and different 

prediction methods. I selected a representative sample of PPI databases that seek to be 

comprehensive in coverage (Table 1.3). 



20 
 

Table 1.3. Publ ic protein-protein interact ion repositories.  

 

Repository Types of data Species Latest Release Release 
Frequency 

Availability 
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DIP (De Las Rivas and Fontanillo 2010) 
(Database of Interacting Proteins) 

PPIs All Jan, 2014 No specific 
frequency 

http://dip.doe-mbi.ucla.edu/ 

BioGRID (Oughtred, Chatr-Aryamontri et al. 
2016) 
(Biological General Repository for 
Interaction Datasets) 

PPIs, Transcription 
data 

All v3.5.167 Nov, 
2018 

Monthly http://wiki.thebiogrid.org/doku.php/statistics 

HPRD (Keshava Prasad, Goel et al. 
2009) 
(Human Protein Reference Database)  

PPIs, PTMs and 
subcellular 
localization 

Human Release 9 
Apr, 2010 

No recent updates http://www.hprd.org/ 

BIND (Keshava Prasad, Goel et al. 2009) 
(Biomolecular Interaction Network 
Database) 

PPIs All Not active N/A http://bond.unleashedinformatics.com/ 

MINT (Licata, Briganti et al. 2012) 
(Molecular INTeraction database) 

PPIs, DNA/RNA 
interactions 

All Sep 2013 N/A http://mint.bio.uniroma2.it/mint/ 

IntAct (Orchard, Ammari et al. 2014) PPIs All v2.0 
Nov, 2018 

Monthly http://www.ebi.ac.uk/intact/ 

DOMINO (Ceol, Chatr-aryamontri et al. 
2007) 

DMIs Human, 
Mouse, Rat, 
Yeast 

Oct, 2009 Not active http://mint.bio.uniroma2.it/domino/ 
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PINA (Cowley, Pinese et al. 2012) 
(Protein Interaction Network Analysis) 

PPIs All May, 2014 
 

No specific 
frequency 

http://cbg.garvan.unsw.edu.au/pina/ 

APID  (Prieto and De Las Rivas 2006) PPIs All March 2018 3 months http://bioinfow.dep.usal.es/apid/ 

HINT (Das and Yu 2012) 
(High-quality INTeractomes) 

PPIs All v4.0, 
Nov,2018 

Nightly http://hint.yulab.org/ 
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iRefWeb (Turner, Razick et al. 2010) PPIs All v13, June, 2014 Yearly http://wodaklab.org/iRefWeb/ 

Cpdb  (Kamburov, Stelzl et al. 2013) 
(ConsensusDB) 

Different sorts of 
interactions 

Human, 
Yeast, 
Mouse 

v32, 
Jan, 2017 

Yearly http://consensuspathdb.org/ 
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PIPs (McDowall, Scott et al. 2009) 
(Protein-protein interaction prediction) 

PPIs Human Sep, 2008 No recent updates http://www.compbio.dundee.ac.uk/www-
pips/index.jsp 

OPHID (Brown and Jurisica 2005) 
(Online Predicted Human Interaction 
Database) 

PPIs Human v2.9, 
Sep, 2015 

Yearly http://ophid.utoronto.ca 

UniHI (Kalathur, Pinto et al. 2014) 
 (Unified Human Interactome) 

PPIs Human Mar 2017 No specific 
frequency 

http://www.unihi.org/ 

STRING (Szklarczyk, Franceschini et al. 
2015) 

PPIs  All v10.5, May 2017 Every 2 Years http://string-db.org/ 
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1.5 High throughput PPI experiments and SLiM-mediated interactions 

DMIs are being studied to identify novel SLiMs. Unfortunately, most of the available DMI 

knowledge has been derived from low-throughput studies. During recent years, different high-

throughput methods such as arrays of protein/peptide, affinity purification, yeast two hybrid 

and display of peptides on yeast/phage have been used to study DMIs in different organisms 

(Blikstad and Ivarsson 2015). These high-throughput methods have generated large set of PPI 

data which is being used to predict protein complexes as well as functional SLiMs. Despite the 

efficiency of these high-throughput experiments, there is always the possibility of false 

negatives and false positives which increases troubles for successful predictions (Li, Wu et al. 

2010; Zhang, Lin et al. 2015).These high-throughput experiments have been applied to different 

domain families, giving a significant amount of PPI data. Nowadays, studies are being conducted 

to find SLiMs in conjunction with their binding partners in human proteome (Rajagopala, 

Sikorski et al. 2014). Availability of high-throughput PPI data is facilitating development of 

novel computational tools for SLiM predictions. These computational tools are not accurate and 

might result in false positives. This problem is now being resolved through including gene 

ontology (GO), gene expression as well as high-throughput data for the execution of these 

methods (Zhang, Lin et al. 2015). Available high-throughput experiments have three main 

categories such as display methods, arrays and protein-fragment complementation assays 

(Table 1.4). 
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Table 1.4.  Comparative table of available high-throughput methods for capturing motif mediated interactions. 

Category Method Description Advantages Disadvantages 

M
ic

ro
ar

ra
y 

Peptide Array Peptide arrays chemically synthesize peptides having 
known sequences. 

Uses known peptide sequences Possibility of false negatives and false 
positives 

Helps determining non-binding peptides Biasness 

Incorporation of non-natural/modified 
amino acids. 

Limited coverage 
 

Direct mapping of interactions regulated by 
posttranslational modifications. 

High Cost 

Protein Array The main principle of this method is the immobilization 
of the protein of interest on the surface and probing to 
a labelled peptide/protein. 

Investigation of PPI at large scale and PPIs 
related to PTMs 

Labour intensive set-up 

Sample consumption at lower level than 
other methods. 

Stability of proteins 
 

Gives quantitative information 

D
is

pl
ay

 M
et

ho
ds

 

Peptide Phage 
Display 

Analyses peptide binding domains and their binding 
specificities. 

Highly diverse peptide libraries Availability of data analysis, and expression 
constructs. 

Low Cost Not suitable for interactions related to PTMs 

Yeast Surface 
Display 

This method uses Yeast cells that carry plasmid DNA 
encoding peptides. These peptides are displayed on the 
surface of the cells. 

Availability of information on non-binding 
clones 

Lower throughput than phage display 

Can help investigate PPIs to some extent 

Y2H This method splits a transcription factor binding 
domain and a DNA binding domain to a bait protein. 

Helps characterizing peptide binding motifs. The higher possibility of false positives and 
false negatives 

Useful for domain-motif interaction studies. Not suitable for studying PPIs related to 
PTMs 

As
sa

ys
 Affinity 

Determination 
Uses the principle of binding affinities among proteins. Helps finding useful interactions and 

analysing biological pathways. 
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1.6 Molecular mimicry 
Viruses are known as obligate parasites that replicate inside host cells through establishing 

interactions with the host proteins (Garamszegi, Franzosa et al. 2013). Basic viral infection 

cycle starts when a virus enters host cell, triggers host immune system and then circumvent 

the line of defence developed by the host cell. Adaptation processes have enabled hosts to 

coexist with pathogens, sometimes taking benefits from the pathogens, but most of the 

known pathogens are infectious leading to life-threatening human diseases (Benedict, 

Norris et al. 2002; Finlay and McFadden 2006). Therefore, to prevent and treat these 

diseases, it is crucial to understand host-pathogen biological systems (Jean Beltran, 

Federspiel et al. 2017). Virus-host protein-protein interactions (vhPPIs) are a regular event 

that occur throughout the viral life cycle. Viruses replicate through hijacking host cellular 

machinery i.e. transcriptional/translational machinery (Neduva and Russell 2005; Davey, 

Van Roey et al. 2012). The underlying mechanisms of virus interactions with host cells are 

still unclear and traditional molecular biology and proteomics techniques are being faced 

with challenges including time-consumption and cost (Chaurushiya, Lilley et al. 2012). One 

of the biggest challenges in terms of understanding viral diseases has been the timely 

discovery of viral and host proteins involved in infection cycle. Many viruses have become 

drug resistant which has made it even more difficult to develop successful therapeutics 

against them. The ideal way to eradicate viral infection is to block viral replication and this 

can be done by discovering host proteins and pathways being targeted by viral proteins 

(Garamszegi, Franzosa et al. 2013; Jean Beltran, Federspiel et al. 2017). 

Studying molecular mimicry has become one of the most intriguing aspects of research. The 

term ‘molecular mimicry’ was first referred as sharing of antigens between pathogens and 

hosts (Damian 1964), also known as ‘antigenic mimicry’ which allows pathogens to hijack 

host cellular machinery (Kohm, Fuller et al. 2003).  
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1.6.1 Short linear motifs and molecular mimicry 

Most of the viruses use similar strategies to mimic host motifs to control cellular pathways 

(Benedict, Norris et al. 2002; Finlay and McFadden 2006; Davey, Trave et al. 2011; 

Chaurushiya, Lilley et al. 2012). Protein interactions are often mediated by the globular 

domains that interact with other proteins. Globular domains and ordered regions of the 

proteome were once considered sole mediator of protein-protein interactions (PPIs). But 

recent progress in proteome research has revealed that disordered regions containing 

Short Linear Motifs (SLiMs) are also important mediator of PPIs. Viruses interact with the 

host cellular proteins through SLiMs which are like host cell SLiMs. SLiMs also known as 

mini-motifs and linear motifs are short stretches of amino acids (~3-10) involved in 

different cellular functions: post-translational modifications, PPIs, cell compartment 

targeting and regulation (Neduva and Russell 2005; Davey, Van Roey et al. 2012). SLiMs are 

known as robust and highly evolvable elements found in viruses which lead to rewiring of 

the vhPPIs (Chemes, de Prat-Gay et al. 2015). In most of the cases, a SLiM that is adequately 

exposed on protein surface can control protein stability, ligand binding and targeting, more 

generally, can regulate several biological pathways. Approximately, 30% of human 

proteome is disordered (Neduva and Russell 2005; Van Roey, Uyar et al. 2014). Most of the 

time, SLiMs are found in IDRs of the proteins and, sometimes in accessible loops within the 

folded domains, which are evolutionarily variable areas of protein where SLiMs can appear 

or disappear through single point mutation (Neduva and Russell 2005; Van Roey, Uyar et al. 

2014). Despite the functional significance of IDRs, these disordered regions are not well 

studied and lack extensive characterization (Diella, Haslam et al. 2008; Hornbeck, 

Kornhauser et al. 2012; Nguyen Ba, Yeh et al. 2012).  

SLiMs can arise de-novo in unrelated proteins through convergent evolution. This 

convergent evolution of SLiMs further complicates understanding of the interactome 

(Tompa and Csermely 2004). According to one estimation, there are around 1 million SLiMs 

in human proteome (Tompa, Davey et al. 2014), demonstrating the complexity of the 
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regulatory mechanisms of cells. SLiMs in pathogenic proteins are known as mimicry motifs 

as they have similar, if not identical, amino acid composition and functions as host SLiMs. 

Various examples of mimicry motifs have been reported in different pathogens, especially 

in proteins involved in attachment, penetration and cytoadherence. One of the best-known 

examples in viruses is the polyproline motif (PxxPxR), which has been reported in non-

structural 5A protein (NS5A) of hepatitis C virus as well as in Nef protein of HIV type 1. This 

polyproline motif establishes interactions with SH3 domains of the host proteins (Shelton 

and Harris 2008).  

SLiMs are often called as molecular switches as they can switch to different functionalities 

with a single point mutation. This SLiM plasticity creates an Achilles heel which helps 

pathogenic proteins imitate host proteins and help them to interact with host cellular 

pathway (Davey, Trave et al. 2011). Viruses mostly interact with host proteins through 

establishing domain-motif interactions (DMIs) (Halehalli and Nagarajaram 2015). The 

current number of known DMIs in the entire human proteome is likely to be better than 

available stats in the database (Tompa, Davey et al. 2014). This is the reason more 

sophisticated methods (experimental and computational) are required to study SLiM based 

interactions which are important to understand the mechanism of motif mimicry in viruses. 

DMIs are being considered important therapeutic targets, but only few studies have been 

published showing the capability of DMIs as potential drug targets. Targeting these DMIs is 

quite challenging because of their transient, complex and promiscuous nature. Another 

challenging feature of DMIs is their physiochemical and structural properties (Davey, Trave 

et al. 2011; Corbi-Verge and Kim 2016). Understanding molecular mimicry has become an 

interesting area to understand how viruses hijack host cellular pathways and how viruses 

invade host cells. Such studies will eventually be helpful in developing novel antiviral 

therapeutic regimens (Dyer, Murali et al. 2007; Davey, Trave et al. 2011; Via, Uyar et al. 

2015; Corbi-Verge and Kim 2016). Therefore, new motif-based strategies are much needed 
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to study virus-host interactions (Evans, Dampier et al. 2009; Segura-Cabrera, Garcia-Perez 

et al. 2013).    

1.7 Viral subtypes based on genetic material 

During recent years, different computational methods have been developed to study 

proteome wide vhPPIs (Dyer, Murali et al. 2007; Evans, Dampier et al. 2009; Segura-

Cabrera, Garcia-Perez et al. 2013). But most of these studies have been targeted to selected 

pathogens only (Emamjomeh, Goliaei et al. 2014; Barnes, Karimloo et al. 2016; Zhang, He et 

al. 2017). To date, there has been no study to analyse different viral subtypes based on their 

genetic material to see how they perturb host cellular machinery for their regulatory 

functions and infection cycle. Therefore, it is of interest to see how different subtypes of 

viruses tend to interact with host proteins through SLiMs. 

1.7.1 RNA viruses 

RNA viruses are considered major threat to human health and are responsible to infect 

millions of people around the world. RNA viruses can have single stranded RNA or double 

stranded RNA as their genetic material. These viruses replicate through exploiting RNA-

dependent RNA polymerases. For example, retroviruses infect host cells through two copies 

of single stranded RNA genomes which are reverse transcribed to produce viral DNA which 

integrates into host DNA. RNA viruses such as Hepatitis C virus, Zika virus, Ebola virus, 

Yellow fever virus, Dengue virus,  Polio virus, SARS, Influenza virus, retrovirus including 

human immunodeficiency virus and adult Human T-cell lymphotropic virus type 1) cause 

different human diseases (Poltronieri, Sun et al. 2015). 

The RNA genome plays important role in terms of producing viral proteins necessary for 

viral reproduction as well as some additional duties including role as template for genomic 

replication, mRNA transcription, and virion assembly. In some RNA viruses, the viral 

genome has critical role in carrying our multiple processes in host cell. Different viral and 

host proteins interact with viral genome to help them achieve important functions that 
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assist viruses to replicate in host cells. In general, protein as well as different RNA factors 

interact with cellular pathways to help viruses in successfully hijacking the host cell 

machinery (White, Enjuanes et al. 2011). Moreover, RNA viruses are known to have great 

structural as well as functional diversity. They can produce new RNA genome every 0.4 sec 

(if replication machinery is working optimally)(Moya, Elena et al. 2000). Currently, there is 

no effective vaccine against most of these RNA viruses therefore, it is necessary to 

understand how viruses infect host cells and how they replicate through hijacking host 

cellular machinery (Franzosa and Xia 2011). 

1.7.2 Single-stranded RNA (ssRNA) 

There are two main groups of RNA single stranded (ssRNA) viruses: Negative-Stranded RNA 

viruses (NSVs) and Positive-Stranded RNA viruses (PSVs). NSVs have single stranded RNA 

as their genetic material. They are further classified into two groups: segmented and non-

segmented. The segmented group contains families: Orthomyxoviridae, Arenaviridae and 

Bunyaviridae whereas, non-segmented group has families including Paramyxoviridae, 

Bornaviridae, Rhabdoviridae, Filoviridae and Nyamiviridae. NSVs have highly organized 

genome structures in the form of nucleocapsids or ribonucleoprotein complexes where 

genomic RNA has association with multiple monomers of nucleoproteins (Green, Cox et al. 

2014; Ortin and Martin-Benito 2015). These viruses are responsible for high mortality and 

morbidity rates and have caused many disease outbreaks such as influenza, measles and 

mumps worldwide (Ortin and Martin-Benito 2015). The life cycle of NSVs begin by 

attachment of the virus with the host cell where it releases its ssRNA into the cell. The 

released RNA is then transcribed into mRNA inside the cell and is also transcribed into a 

genomic strand which serves as a template to replicate the viral genome. The transcription 

process is carried out by the viral polymerase which is then packed inside the newly 

assembled virion. The replicated virion is then released outside the cell (Figure 1.6) (Li, 

Wei et al. 2013). 
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On the other hand, PSVs are important subgroup of RNA viruses where RNA genome is a 

plus stranded RNA. The RNA genome of PSVs act as blueprint for viral proteins and have 

cis-acting RNA elements that help regulating different viral processes including viral 

replication, transcription and translation (Liu, Wimmer et al. 2009; Sztuba-Solinska, Stollar 

et al. 2011). The life cycle of PSVs begin with the viral attachment, upon which the ssRNA is 

released into the host cell. The released ssRNA is then translated into a single polyprotein 

which is then processed into different proteins including viral polymerase and RNA-

dependent RNA polymerase. A complementary strand of RNA is also generated which 

serves as mRNA and helps in replication process. The replicated information is then 

assembled as new virion and is released outside the cell (Figure 1.6) (Li, Wei et al. 2013). 

In general, PSVs enters the host cells and replicate in the cytoplasm of the infected cells 

where host defence system develops unfavourable conditions for viral replication. To 

overcome this problem, PSVs creates intracellular environment through concentrating viral 

proteins which allows continuous replication of viral genome. Viral proteins hijack host 

factors involved in vascular trafficking and lipid biosynthesis which help protecting the viral 

replication machinery from host immune system, creating a safe environment for viral 

replication and assembly (Harak and Lohmann 2015). A known example of motif mimicry 

in ssRNA viruses is HCV which hijacks host cellular machinery through mimicking PxxP 

motifs known to bind with a variety of SH3 domains of Src kinase family (Duro, Miskei et al. 

2015). Another example is the PxxP motifs in HIV which hijack host cellular machinery 

through establishing interactions with SH3 domain of the host (Stangler, Tran et al. 2007). 
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Figure 1.6. A general overview of ssRNA viral  replication cycle.   
A)  Replication cycle of PSVs.  Upon attachment, virus releases its plus-sense ssRNA into the 

host cell  where it  is translated to produce a single polyprotein molecule. This polyprotein 
is then processed into proteins i.e. RNA-dependent RNA polymerase and viral polymerase 
protein and a complimentary copy of  RNA is  produced.  The new complementary RNA 
serves as a template for producing new plus-sense strands. The new plus-sense RNA then 
serves as new mRNA for repl icat ion. The replicated virus is then packaged and released 
from the cell.  

B)  Replication cycle of NSVs.  The RNA in NSVs is transcribed into mRNA as well as can also 
be transcribed into ful l  length plus-sense strand that serves as a template for replication.  
Viral polymerase helps in transcript ion which is packaged in newly assembled virion. The 
newly repl icated vir ion is then released outside the cell  (Li,  Wei et a l.  2013).  

 

1.7.3 Double stranded RNA (dsRNA) 

RNA double stranded viruses (dsRNA) are found in all types of organisms including animals, 

plants, fungi, terrestrial and non-terrestrial invertebrates and bacteria. The first dsRNA was 

discovered in reoviruses by Gamatos and Tamm in 1963 (Wickner 1993). Most of these 

viruses have icosahedral capsid structures and have similarity in replication strategies, 

biochemical and structural properties. This is the reason, cognate proteins with similar 

structure and functions can be identified even from distantly related viruses, providing 

clues on their common ancestry. dsRNA viruses are known to replicate inside host 
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cytoplasm. These viruses invade host cells and converts ssRNA to dsRNA. Their genomic 

dsRNA is then transcribed into mRNA which upon translation produces proteins essential 

for viral replication (Figure 1.7). Eukaryotic systems have defence mechanisms that detect 

dsRNA and inactivates it through PKR or MDA5 proteins therefore, dsRNA 

replicate/transcribe their RNA inside icosahedral capsids (Mertens 2004).Moreover, viral 

proteins found in internal virion associated enzymes and innermost capsid layers are 

conserved in most of the viruses. One the other hand, outer capsid proteins (non-structural 

proteins) are diverse in their sequence as well as structural organizations (Mertens 2004). 

A known example where dsRNA hijacks host cellular machinery is the Segment-10 protein 

of Bluetongue virus which hijacks host cellular pathways through mimicking functions of 

different host proteins (i.e. NEDD4 and TSG101) (Wirblich, Bhattacharya et al. 2006). 

 

 

Figure 1.7. A general overview of dsRNA viral replication cycle.   
Virus f irst attaches and enters host cell  where it’s dsRNA is transcribed into mRNA. The mRNA is  
then packaged which leads to replication of v irus through producing early  replicate part icle. The 
complementary RNA is then produced leading to late replicate partic le which is then released as 
a mature progeny v irus.   
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1.7.4 DNA viruses 

As compared to the RNA viruses, DNA viruses are less abundant and less diverse in 

eukaryotes. The unexpected discovery of the giant viruses (genome size bigger than 

bacteria, archaea and many parasitic unicellular eukaryotes) have diverted attention 

towards DNA viruses (Koonin, Krupovic et al. 2015). 

Just like RNA viruses, DNA viruses hijack host cellular machinery to replicate their genome 

to increase their numbers. DNA viruses are often composed of a capsid which is capable of 

binding and invading host cells. Upon invasion, the virion is disassembled, and genome is 

released into the cell where the viral genome is transcribed into mRNA. The transcribed 

viral mRNA is then processed/translated into proteins (Ng, Marine et al. 2012; Krupovic and 

Forterre 2015). These proteins are responsible for hijacking the host cellular pathways and 

helps in preparing the virus to produce progeny virus. The progeny virus is then released 

outside the host cell and is ready to invade other cells (Ng, Marine et al. 2012; Rao and Feiss 

2015). DNA viruses can be divided into two main types i.e. small DNA viruses (genome size 

< 10kb) and large DNA viruses (genome size >30kb). Examples of small DNA viruses include 

human papilloma virus (HPV) and Hepatitis B virus (HBV) while examples of large DNA 

viruses include Adenovirus, poxivirus and herpesvirus (Iyer, Aravind et al. 2001). 

1.7.5 Single stranded DNA (ssDNA) 

These are simple viruses which have single strand of DNA (ssDNA) as their genome. Most 

of these viruses have negative strand DNA but some of them can retain both positive and 

negative strands of DNA (Koonin, Krupovic et al. 2015). ssDNA viruses have evolved 

different invasion mechanisms depending on their hosts (bacteria, archaea and 

eukaryotes). For example, Inoviridae (filamentous bacteriophages) have evolved three 

diverse mechanisms of invading host cells. Some of these viruses utilize DDE transposases 

of IS30, IS3 or IS110/IS492 families while some encode integrases of serine/tyrosin 

recombinase super-families. Some Inoviridae and few members of Microviridae, hijack host 

XerCD recombinase machinery. On the other hand, eukaryotic ssDNA viruses integrate with 
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host cell through endonuclease activity of their rolling circle replication initiation proteins 

(mimicking the mechanisms used by bacteria transposons) (Krupovic and Forterre 2015; 

Rosario, Mettel et al. 2018).  

These viruses have one gene for encoding viral nucleocapsid and one gene for DNA encoding 

DNA replication enzyme. Upon invasion, these viruses need to convert their ssDNA genome 

into dsDNA for which they use DNA polymerase of the host cell. The dsDNA serves as a 

template for transcription. The transcribed RNA is then translated into viral proteins and 

the replicated DNA is converted back into ssDNA which is then packaged into a new virion. 

The new virion is then released outside the cell where it infects new cells (Figure 1.8) 

(Krupovic and Forterre 2015). 

 

Figure 1.8. A general overview of ssDNA virus replication cycle.  

ssDNA viruses start their l ife cycle through attachment and entry into the host cel l.  These v iruses 
enter inside vesic le and upon reaching nucleus, releases their ssDNA inside it.  The ssDNA is 
converted into dsDNA which is  then transcribed into early  mRNA in cytoplasm. This early  mRNA is  
translated into different regulatory proteins which help replication of the genome. The dsDNA is 
then transcribed into mRNA which translates into structural proteins. The structural proteins and 
the newly replicated ssDNA then are packaged and released outside the cel l.  
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1.7.6 Double stranded DNA (dsDNA) 

Double stranded DNA (dsDNA) viruses have a single molecule of dsDNA as their genome 

(Lodish, Berk et al. 2000). Many dsDNA viral families are known to infect mammals 

including Hepadnaviridae, Papillomaviridae, Polyomaviridae, Herpesviridae, Adenoviridae, 

Asfarviridae and Poxviridae. All of these viral families except Asfarviridae and Poxviridae 

infect humans or animals (Koonin, Krupovic et al. 2015).  

dsDNA viruses are often considered as simplest viruses to understand their life cycle. Their 

life cycle begins when a virus invades the host cell. Upon invasion, viral DNA enters nucleus 

of the host cell where it mimics the host genome. It uses host cell DNA polymerase to 

replicate its genome and host cell RNA polymerase for transcription. The transcribed mRNA 

is then transported into the cytoplasm of the host cell where it is translated into different 

viral proteins. Some of these proteins serve as capsid in which the newly replicated DNA is 

packaged. The packaged virion is then released outside of the cell where it infects other cells 

(Figure 1.9) (Kazlauskas and Venclovas 2011; Rao and Feiss 2015; Kazlauskas, Krupovic et 

al. 2016). 

 A known example of motif mimicry in dsRNA is PxLxP motif in E1 protein of Human 

adenovirus C serotype 5 interacting with MYND domain of BS69 protein in human. This 

hijacking helps viruses in regulating their viral replication during infection (Zhang, Tessier 

et al. 2018). Another example of motif mimicry in dsDNA viruses is where PDZ binding motif 

in E6 protein of human papilloma virus targets PDZ containing proteins in host cell (Accardi, 

Rubino et al. 2011; Segura-Cabrera, Garcia-Perez et al. 2013). 
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Figure 1.9. A general overview of dsDNA virus replication cycle.  

dsDNA viruses start their l i fe cycle through attachment and entry into the cell .  They enter cell  
inside a vesicle and then upon reaching nucleus, releases their dsDNA molecule inside it.  The 
dsDNA is then transcribed into mRNA in cytoplasm which translates into regulatory proteins. 
These regulatory proteins help in DNA replication and transcript ion of mRNA which then is 
translated into structural proteins. The newly replicated DNA and structural proteins are packaged 
inside a capsid and are released outside the cel l.  
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1.8 Aims and Objectives 

The main objectives were: 

• Many PPI detection methods have been developed to study protein networks. 

However, their capability of capturing DMIs have not been evaluated 

comprehensively. Thus, this study was designed to see if the data being generated 

by high-throughput methods is actually useful for capturing SLiM mediated 

interactions. 

• To develop algorithm to predict DMIs and evaluate enrichment of different PPI 

detection methods. 

• To predict motif mimicry in viruses and how they hijack host cellular machinery. 

• To apply computational structural biology techniques/tools to differentiate false 

positives and true positives. 

The developed motif-based strategy can provide new insights into cellular 

organizations by providing clues on how two proteins interact through SLiMs and how 

well different methods/databases capture DMIs. 
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2 Chapter 2: SLiMEnrich: computational assessment of protein-

protein interaction data as a source of domain-motif 

interactions 

2.1 Abstract 
Many important cellular processes involve protein-protein interactions (PPIs) mediated by 

a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. 

Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, 

which makes them challenging to identify by classical experimental approaches, such as 

affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are 

generally underrepresented in PPI networks as a result. A number of computational 

methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it 

is yet to be established how effective different PPI detection methods are for capturing these 

low affinity SLiM-mediated interactions. Here, we introduce a new computational pipeline 

(SLiMEnrich) to assess how well a given source of PPI data captures DMIs and thus, by 

inference, how useful that data should be for SLiM discovery. SLiMEnrich interrogates a PPI 

network for pairs of interacting proteins in which the first protein is known or predicted to 

interact with the second protein via a DMI. Permutation tests compare the number of 

known/predicted DMIs to the expected distribution if the two sets of proteins are randomly 

associated. This provides an estimate of DMI enrichment within the data and the false 

positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a 

high-throughput Y2H human PPI study. SLiMEnrich analysis supports Y2H data as a source 

of DMIs and highlights the high false positive rates associated with naïve DMI prediction. 

SLiMEnrich is available as an R Shiny app. The code is open source and available via a GNU 

GPL v3 license at: https://github.com/slimsuite/SLiMEnrich. A web server is available at: 

http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/. 

http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/
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Note: This chapter is published (Idrees, S., A. Perez-Bercoff and R. J. Edwards (2018). 

"SLiMEnrich: computational assessment of protein-protein interaction data as a source of 

domain-motif interactions." PeerJ 6: e5858). 
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2.2 Introduction  

Proteins interact with their partners through two main classes of functional modules: 

globular domains and Short Linear Motifs (SLiMs) (Bhattacharyya, Remenyi et al. 2006). 

SLiMs are short protein regions (typically 3-10 amino acids long) with a small number of 

key residues that mediate domain-motif interactions (DMIs) with the globular domain of a 

protein-protein interaction (PPI) partner (Davey, Van Roey et al. 2012). These DMIs 

underpin critical cellular functions, including cell cycle regulation, cell compartment 

targeting, post-translational modification, protein degradation, and signal transduction 

(Van Roey, Uyar et al. 2014). Knowledge of DMIs can provide molecular details of cellular 

processes and thus it is important to discover SLiMs and link them to their domain partners 

(Neduva and Russell 2005; Davey, Van Roey et al. 2012). Despite this, only a small fraction 

of the likely range of SLiMs, and the DMIs they mediate, have been identified (Tompa, Davey 

et al. 2014) and curated in resources such as the Eukaryotic Linear Motif (ELM) resource 

(Seo and Kim 2018), Linear Motif mediated Protein Interaction Database (LMPID) (Sarkar, 

Jana et al. 2015), interActions of moDular domAiNs (ADAN) (Kaneko, Li et al. 2008), and the 

database of three-dimensional interacting domains (3did) (Mosca, Ceol et al. 2014). SLiM-

mediated interactions are typically low affinity (Davey, Van Roey et al. 2012) and are thus 

vulnerable to being overlooked by classical PPI detection methods, such as affinity pulldown 

mass spectrometry (AP-MS) and yeast two-hybrid (Y2H), where high stringencies are 

typically employed to reduce false positive interactions. Early analyses of high throughput 

data revealed that known SLiM-mediated interactions account for less than 1% of 

interactions (Neduva and Russell 2006). This was used as evidence that many more SLiMs 

and DMI are yet to be discovered, but also raises concerns that these methods are depleted 

for DMIs. 

A range of computational tools now exist for the two main tasks in SLiM prediction: (1) 

identifying functional instances of known motifs, and (2) de novo prediction of new SLiM 

classes (Edwards and Palopoli 2015). In principle, the task of interrogating a protein 
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sequence for known motif patterns is quite simple. Motif definitions are available from ELM 

(Seo and Kim 2018) and PROSITE (Hulo, Bairoch et al. 2006), and various tools exist for 

searching proteins for these patterns or resource-specific motif definitions (Edwards and 

Palopoli 2015). Other tools, like Minimotif Miner (MnM) (Lyon, Cai et al. 2018), will search 

sequences for similarity to known SLiMs or post-translational modifications (PTMs), but do 

not make motif definitions or tools available for proteome-scale searches. The short and 

degenerate nature of most SLiMs hampers the usefulness of predictions due to the high 

possibility of false positive results. This is particularly true for SLiMs with very few known 

occurrences, which will lack the data required for detailed modelling. It is therefore 

important to improve the specificity of predictions by incorporating contextual information 

such as evolutionary conservation and/or protein structure (Mi, Merlin et al. 2012; 

Krystkowiak and Davey 2017), or knowledge of interaction partners containing relevant 

SLiM recognition domains (e.g. (Kaneko, Li et al. 2008; Pichlmair, Kandasamy et al. 2012; 

Weatheritt, Jehl et al. 2012; de Chassey, Meyniel-Schicklin et al. 2014). 

The de novo prediction of SLiMs is inherently more challenging and relies on assembling 

sets of proteins that share a SLiM. The most widespread approach is to mine PPI data to 

identify sets of proteins that interact with a common partner (e.g. (de Chassey, Navratil et 

al. 2008; Lieber, Elemento et al. 2010; Edwards, Davey et al. 2012). The success of prediction 

methods is highly dependent on the signal to noise ratio in these data, in terms of the 

proportion of proteins likely to contain the SLiM (Edwards, Davey et al. 2012; Edwards and 

Palopoli 2015). Before attempting SLiM discovery, it is therefore useful to know how well 

the input PPI data is capturing SLiM-mediated interactions. Different experimental 

parameters will influence how depleted the recovered interactions are for DMIs, and so this 

assessment is also useful for experimentalists when establishing an appropriate stringency 

threshold. 
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Here, we introduce a new computational pipeline (SLiMEnrich) that assesses how well PPI 

data are capturing DMIs and thus, by inference, how useful that data should be for SLiM 

discovery. The null hypothesis is that the PPI data have been generated by methods that fail 

to detect DMI. In this scenario, any observed DMI in the data are down to random 

associations between the relevant domain- and motif-containing proteins. SLiMEnrich 

evaluates DMI enrichment versus this null expectation through permutation tests and 

reports the probability of randomly recovering as many interacting domain-motif pairs as 

are found in the real PPI data. This enrichment evaluates datasets for the presence of DMIs, 

which is the prerequisite for further analysis such as SLiM prediction or calculating DMI 

enrichment of subnetworks versus the whole PPI network.  

 SLiMEnrich can use known SLiM-mediated interactions for high stringency analysis or 

incorporate DMI predictions by using SLiM predictions and/or known SLiM-domain 

interactions to expand the number of plausible DMIs in the data. Identified/predicted DMIs 

are returned, along with an estimated false discovery rate based on the mean number of 

random DMIs generated from the data. Whilst not their primary purpose, SLiMEnrich 

metrics can also be used to assess SLiM and/or DMI prediction strategies when applied to 

PPI data that is already known to contain DMIs. SLiMEnrich is therefore of potential use for 

both DMI prediction and assessment of PPI data. SLiMEnrich has been developed in R and 

implemented in Shiny to provide easy, user-friendly operation.  
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2.3 Materials and Methods 

2.3.1 Algorithm 

An overview of the SLiMEnrich pipeline is shown in (Figure 2.1). SLiMEnrich uses (known 

or predicted) SLiM occurrences, domain composition, and known SLiM interactions at the 

protein or domain level. These are combined to predict SLiM-mediated DMIs within 

pairwise PPI data supplied by the user. Input data is combined by matching protein, SLiM 

and Domain IDs from the input data, providing a flexible framework for analysis. PPI data is 

treated asymmetrically, with specified sets of putative motif- and domain-containing 

proteins, known as “mProteins” and “dProteins”, respectively. First, SLiMEnrich identifies 

all possible known/predicted DMI links between mProteins and dProteins in the PPI data 

(Figure 2.2). DMI mapping can be performed using a number of different strategies 

depending on the desired balance of quality versus quantity of DMI s At one extreme, 

analysis can be restricted to mProtein-dProtein pairs known to interact via a DMI (Figure 

2.2, top left). At the other extreme, mProteins with predicted SLiMs can be linked to any 

dProteins containing a domain known to interact with that SLiM (Figure 2.2, bottom 

right). This set of “potential DMIs” represents the overall pool of possible DMIs given the 

input data and mapping strategy.  

Next, SLiMEnrich extracts “predicted DMIs" by identifying the subset of potential DMIs that 

are found in the PPI data, e.g. observed PPI pairs where the mProtein is (known or) 

predicted to interact with the dProtein according to the DMI strategy employed. Finally, 

SLiMEnrich estimates how well the PPI data is capturing DMIs by comparing the observed 

DMI predictions to a background distribution of expected DMIs when proteins are randomly 

assigned interaction partners. For this, the input PPI data is shuffled to generate 1000 

random PPI datasets where each protein maintains the same number of interacting 

partners but the connections are randomly assigned. This is performed by first reducing PPI 

data to asymmetrical non-redundant protein pairs and then randomly shuffling the 
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dProtein column whilst avoiding the introduction of redundant random PPI pairs. The 

random PPI datasets are then mapped onto the potential DMIs in the same fashion as the 

real data. Enrichment is calculated as an empirical P-value corresponding to the probability 

of seeing at least as many DMIs in random PPI data (Figure 2.3). A False Discovery Rate 

(FDR) for individual DMIs is also estimated as the proportion of the predicted DMIs 

explained on average by random associations, using the mean random DMI distribution 

capped at the observed value.  
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Figure 2.1. A schematic representation of the main SLiMEnrich pipeline.  

SLiMEnrich takes four input f i les: 1. PPI data provided by the user as a  set  of  pairwise putative 
motif-containing proteins ("mProteins") and their  domain-containing interaction partners 
("dProteins");  2. A f i le providing known or predicted motif occurrences within the mProtein 
sequences (by default,  known ELM instances are used); 3. A DMI f i le def ining Motif-Domain 
interactions,  relating to the DMI Strategy employed (by default,  known ELM interactions are 
used); 4.  A f i le that l inks dProteins to their domain composition (by default,  human Pfam domains 
from UniprotKB are used).  Input data is  combined to establ ish the complete set  of 
known/predicted “potentia l  DMI” dependent on the DMI strategy selected (see Figure 2 and text 
for details): ELMi-Protein – for highest str ingency,  the DMI f i le directly  l inks mProteins to known 
dProtein DMI partners (Motifs and Domains input not used); ELMc-Protein – for medium 
str ingency, the DMI fi le l inks Motif classes to known dProtein DMI partners (Domains input not 
used); ELMc-Domain – for lowest str ingency,  the DMI f i le l inks Motif  classes to known interacting 
Domains. Potential DMIs are then mapped on to the input PPI to identify the "Predicted DMIs" in 
the real data. PPI data is randomised (shuffled) 1000 t imes and re-mapped to potentia l DMIs to 
determine the background distr ibution of predicted DMIs in the case of random associat ion (see 
text for details).  Finally,  the “Random DMI” distr ibution is compared to the observed “Predicted 
DMIs” to determine DMI enrichment in the data. Results  are output in the form of a  tables,  a  
histogram of the Random DMI distribution with the observed count and empir ical P-value marked,  
and an interactive network of the known/predicted DMIs found in the PPI  data.  
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Figure 2.2. SLiMEnrich DMI predict ion strategies.  

SLiMEnrich uses known DMI from the ELM database to  identify  known DMIs or predict DMIs within 
the supplied PPI  data. (A) In this example, Motif  A is known to interact  with Domain B. Motif A 
has two known occurrences in the data (green circles)  and two predicted occurrences (red circles).  
Domain B is present in four proteins (squares).  ELM has two annotated interactions between 
proteins with Motif  A and proteins with Domain B (blue). (B) In the simplest  and purest strategy, 
only known ELM interactions (ELMi) are used to assess enrichment (r ight panel,  top left box).  For 
small PPI datasets it might be necessary to increase the number of predicted DMI. This can be 
done in two ways. Top row: known motif occurrences (green circles) can be connected to al l  
proteins known to interact  with that ELM class (ELMc) (blue squares, top centre),  or connected to 
all  proteins containing a domain that interacts with that ELM class (a ll  squares, top right).  Bottom 
row: to increase the number of DMI further,  known ELM occurrences can be replaced with SLiM 
predict ions (al l  c ircles).  

 

2.3.2 Requirements and Implementation  

Inputs. SLiMEnrich requires a delimited pairwise PPI file as input. By default, known ELM 

instances (ELMi) (Seo and Kim 2018) will be used to define the motif composition of 

mProteins. This file can be replaced by a SLiM prediction file (generated by e.g. SLiMProb 

(Edwards and Palopoli 2015)), which has predicted SLiMs for the mProteins in the PPI file. 

DMIs can be predicted by one of three strategies (Figure 2.2). By default, the DMI file links 

ELM classes (ELMc) directly to dProteins using known ELM binding partners (Seo and Kim 

2018). For more stringent analysis, these binding partners can be linked directly to specific 

ELM-containing proteins, in which case the DMI file links mProteins and dProteins, and the 

motif occurrence file is ignored (Figure 2.1). For more relaxed/flexible analysis, the DMI 

file will link motifs to binding domains, which are then linked to dProteins via a domain 



46 

composition file. By default, SLiMEnrich uses Pfam domains (Finn, Coggill et al. 2016) for 

reviewed human Uniprot proteins (The UniProt 2017) and links them to ELM-binding 

domains (Seo and Kim 2018). If alternative data sources are used, users should also provide 

a file of protein-domain links for the dProteins in the PPI file, and/or a motif-domain file 

that defines the known domain-motif interactions. Note that this can be used to interrogate 

PPI data for enrichment of any interaction type. For example, two protein-domain files could 

be linked through known domain-domain interactions. Alternatively, the ELMi-Protein DMI 

strategy enables the enrichment analysis of any set of PPIs, allowing SLiMEnrich to examine 

overlaps between PPI datasets. Default fields for user files (“mProtein”, “dProtein”, “Motif”, 

“Domain”) are shown in Figure 2.1, and can be set to custom values in the SLiMEnrich App. 

Example data. SLiMEnrich comes with example data of Adenoviridae proteins and their 

human interactors downloaded from the PHISTO database (2017-07-26) (Durmus Tekir, 

Cakir et al. 2013). ELM (downloaded 2018-07-17) (Dinkel, Van Roey et al. 2016) regular 

expression matches in the viral proteins were predicted using SLiMProb v2.5.0 (Edwards 

and Palopoli 2015) with disorder masking. A table of ELM-binding Pfam domains was 

downloaded from ELM (2018-07-17) (Dinkel, Van Roey et al. 2016). Pfam domains for 

human proteins were extracted from Uniprot (downloaded 2017-03-08) (The UniProt 

2017). 
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Figure 2.3. DMI enrichment histogram for  SLiMEnrich example data.  

Histogram of DMI enrichment in example data for Adenovir idae proteins and their human 
interactors (see text for details)  from the SLiMEnrich app, using the most permissive ELMc-Domain 
DMI strategy and SLiMProb motif predict ions. Frequency bars indicate the number of randomised 
PPI datasets returning a given number of predicted DMIs. The dotted arrow indicates the observed 
number of predicted DMIs in the real data.  

Outputs. The primary output of SLiMEnrich is the observed number of known/predicted 

DMIs compared to the distribution from the randomised PPI data (Figure 2.3). SLiMEnrich 

also provides tables of both “potential DMIs” and “predicted DMIs” (Figure 2.1, see 

Algorithm for details), summary plots of predicted DMI numbers and an interactive DMI 

network (Figure 2.4). Together, these enable the user to explore the data for proteins, 

SLiMs and/or domains that might be biasing results. This can be seen with the example 

Adenoviridae analysis, where the Pkinase domain (PF00069) mediates a large proportion 

of the predicted DMIs via multiple modification ELMs (Figure 2.4), which will inflate the 

probability of DMIs in the random PPI data. Tables can be downloaded as comma-separated 

text files. The summary plots, enrichment histogram and DMI network can be downloaded 

as PNG files. 

Implementation. SLiMEnrich is a standalone application written entirely in R. It is platform 

independent and can be launched locally from any R environment (e.g. RStudio). 

SLiMEnrich takes advantage of the reactive programming feature of Shiny to cache 

computational steps to avoid unnecessary computing during an interactive session. The 



48 

code is open source and available via a GNU GPL v3 license at: 

https://github.com/slimsuite/SLiMEnrich. SLiMEnrich is also implemented as a Shiny 

webserver at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/. Additional details can be 

found at: https://github.com/slimsuite/SLiMEnrich/wiki. 

 

Figure 2.4.  Interactive predicted DMI network for example data.  

 Predicted DMIs for example Adenoviridae proteins and their human interactors,  us ing the most re laxed 
strategy (predicted SL iMs connected v ia domains,  see text for detai ls) .  Several  layout opt ions are provided 
and nodes can be manually posit ioned.  The protein,  domain and moti f  identi f iers used in  the network are 
determined by the user  input.  Us ing default  data,  these wi l l  be UniprotKB,  Pfam and ELM ident if iers.  For  
this example,  UniprotKB ident i f iers have been mapped onto HGNC gene symbols and Pfam ident if iers onto 
Pfam domain names.  Red square,  moti f-conta in ing protein  ("mProtein");  Yellow box,  moti f;  Purple  e l l ipse,  
domain;  B lue c ircle,  domain-conta in ing protein ("dProtein") .  

2.3.3 Case study: Domain-motif resolved yeast-two-hybrid human interactome 

Pairwise human PPIs were extracted from a high-throughput human Y2H study that 

detected ~14,000 binary interactions (Rolland, Tasan et al. 2014) and converted into a non-

redundant, symmetrical PPI dataset of 26,166 mProtein-dProtein PPIs (i.e. with each PPI 

pair present as P1-P2 and P2-P1), restricted to reviewed Uniprot proteins. Protein 

https://github.com/slimsuite/SLiMEnrich
http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/
https://github.com/slimsuite/SLiMEnrich/wiki
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sequences were downloaded from Uniprot (2017-03-01). A list of ELMs and their domain 

partners was retrieved from the ELM database (2018-07-17) (Dinkel, Van Roey et al. 2016). 

ELM occurrences in the human proteins were predicted by SLiMProb v2.5.0 (Edwards and 

Palopoli 2015) with disorder masking (IUPred (Dosztanyi, Csizmok et al. 2005), cut-off 0.2 

(Edwards, Davey et al. 2007)) to restrict analysis to low stringency predicted disordered 

regions. Pfam domains were parsed from Uniprot entries using SLiMBench (Palopoli, 

Lythgow et al. 2015). Splice isoforms for all data were mapped onto their parent Uniprot 

identifier. SLiMEnrich was used to map known and predicted DMIs onto the Y2H dataset 

using five strategies of decreasing stringency: (1) known ELM PPIs only, (2) known ELM 

instances mapped onto proteins known to interact with the ELM class, (3) known ELM 

instances mapped onto Pfam domains known to interact with the ELM class, (4) SLiMProb 

predictions mapped onto proteins known to interact with the ELM class, (5) SLiMProb 

predictions mapped onto Pfam domains known to interact with the ELM class (Figure 2.2).  

2.4 Simulation of poor-quality SLiM predictions 

SLiMEnrich is not a DMI prediction tool per se and should not require completely accurate 

SLiM occurrence data to identify enrichment indicative of PPI data that captures DMIs. To 

investigate the impact of noisy SLiM prediction data, we replaced increasing proportions 

(25%, 50%, 75% and 100%) of the known ELM instances (2018-07-17) (Dinkel, Van Roey 

et al. 2016) with random occurrences and repeated analysis of the Y2H interactome case 

study. This was performed by replacing different proportions of the ELM proteins (i.e. 

proteins containing a known ELM) with a protein randomly selected from reviewed human 

Uniprot proteins (The UniProt 2017). 
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 For direct comparison, the distribution of normalised predicted DMIs, D, was calculated as 

follows: 

𝐷𝐷 =  
𝑂𝑂 − 𝑅𝑅
𝑅𝑅�

, 

where O is the observed predicted DMI count, R is the distribution of random predicted 

DMIs, and 𝑅𝑅� is the mean random predicted DMI count.  
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2.5 Results  

2.5.1 Case study: Domain-motif resolved yeast-two-hybrid human interactome 

SLiMEnrich analysis revealed the case study Y2H data to be enriched for DMIs under all DMI 

prediction strategies (Table 2.1). Restricting analysis to known DMIs identified fourteen in 

the Y2H data, which represented a more than 100-fold enrichment over the random 

expectation (mean 0.122). Including DMIs where a dProtein was known to interact with the 

ELM class (Figure 2.2, centre column), almost doubled the number of predicted DMIs but 

with nearer six times more random DMIs on average, reducing the enrichment over three-

fold. Including DMIs where a dProtein contained Pfam domain known to interact with the 

ELM class (Figure 2.2, right column) dramatically increased the numbers of both 

predicted and random DMIs, with a corresponding drop in enrichment. Using SLiMProb 

predictions in place of known ELMs (Figure 2.2, bottom row) similarly increased both 

predicted and random DMIs, decreasing enrichment. In all cases, none of the 1000 

randomised datasets matched or exceeded the observed number of predicted DMI, making 

the enrichment strongly significant (P < 0.001). 
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Table 2.1.  SLiMEnrich analysis of Y2H case study using different DMI predict ion strategies.  

* Unique counts correspond to Predicted DMI. 
† Known DMI from ELM database. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strategy Known: ELMi-

Protein 

Known: ELMc-

Protein 

Known: 

ELMc-

Domain 

SLiMProb: 

ELMc-

Protein 

SLiMProb: 

ELMc-

Domain 

Potential DMI (NR)  62  164  6,314  39,572  969,380 

Predicted DMI (NR) 14†  25 74  204 1,524 

Mean Random DMI (3 

s.f.) 

0.122  0.830 9.76  139 1,310 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Enrichment (3 s.f.)  115  30.1 7.58  1.47 1.16 

FDR (4 d.p.)  0.0087  0.0332 0.1319 0.6820 0.8602 

Unique mProteins*  13  22  52  175  768 

Unique ELM classes* N/A  16  40  35  128 

Unique Pfam domains* N/A  N/A  30  N/A  51 

Unique dProteins*  10  17  53  36  366 
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Figure 2.5. Enr ichment statist ics and histogram of expected random DMI counts in human Y2H 
case study data using known and predicted ELM instances.  

 Frequency bars indicate the number of randomised PPI datasets returning a given number of 
predicted DMIs. The dotted arrow indicates the observed number of  known or predicted DMIs in 
the Y2H data (see text for details).  DMI predict ion strategies match those in Figure 2.2 (see text 
for details):  (A) known ELM occurrences connected to interacting proteins; (B) known ELM 
occurrences mapped to proteins known to interact  with that motif class; (C) known ELM 
occurrences mapped to proteins containing a domain known to interact  with that motif  
class; (D) SLiM predictions mapped to proteins known to interact with that motif  class; (E) SLiM 
predict ions mapped to proteins containing a domain known to interact with that motif class.  

2.6 Simulation of poor-quality SLiM predictions 

To directly compare the effects of replacing real ELM-containing proteins with random 

human proteins in different proportions (25%, 50%, 75%, 100%), the distribution of 

normalised predicted DMI, D, in the Y2H data was compared for each dataset (Figure 2.6). 

D is the distribution of expected true positive predicted DMIs, normalised to units of mean 

random predicted DMIs, i.e. D = 1 is equivalent to FDR = 50%; enrichment is 1 + mean D. 

The more permissive domain-based DMI prediction strategy (Figure 2.2, top right) was 

used, as the numbers of predicted DMIs for more stringent strategies were very small 

(Table 2.1) and this strategy still showed strong (7.6x) DMI enrichment in the data (Figure 

2.5). Despite the decline in enrichment scores with increasing proportions of random motif 
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occurrences, enrichment remained significant even when 75% of the real data was replaced 

(Figure 2.6). 

 

Figure 2.6.  Enrichment analysis  of known DMIs in human Y2H case study data with increasing 
proportions of random motif instances.   

SLiMEnrich results for known ELMs in the human Y2H case study data mapped using the ELMc-
Domain strategy,  converted into the normalised number of  predicted real  DMIs (see text for 
detai ls).  Higher normalised predicted DMI counts indicate greater DMI enrichment, with zero 
marking no enrichment over random. Green (furthest r ight) is  the real  data using all  known true 
positive ELM instances.  The other curves (right to left)  represent distr ibutions for four randomised 
datasets where increasing proportions (25%,  50%, 75% and 100%) of  ELM proteins were replaced 
with random human proteins.  
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2.7 Discussion 

Using PPI data for SLiM discovery faces something of a contradiction. Due to their scale, data 

from high throughput PPI detection studies are where the novel interactions are most likely 

to be found. However, high stringency filters are often applied to high throughput methods 

to increase confidence in individual interactions, with the concomitant concern that low 

affinity DMIs will be lost as a consequence. The primary purpose of SLiMEnrich is to address 

this concern by assessing how well a given PPI dataset is capturing DMIs. Where PPI 

datasets are large, this assessment can be restricted to a high-quality set of known DMIs. 

Where the number of known DMIs in the data becomes prohibitively small, predicted DMIs 

can supplement or replace the known DMIs. 

A detailed analysis of different PPI data sources is the subject of future study and beyond 

the scope of this paper. Here, we present a case study to illustrate the use of SLiMEnrich to 

analyse the DMI enrichment in a single PPI dataset. We have applied five different DMI 

identification/prediction strategies (Figure 2.2) to a high-throughput Y2H human PPI 

study (Rolland, Tasan et al. 2014) (Table 2.1, Figure 2.5). On face value, the ability of the 

Y2H PPI data to capture known DMIs might be considered disappointing. Only 14 of the 

590-known human DMI protein pairs in ELM (2.37%) were found in the 26,166 PPI 

considered. This is consistent with earlier analyses that have highlighted the rarity of 

known SLiM-mediated interactions in high throughput PPI data (Neduva and Russell 2006). 

However, even this modest numbers reflects a massive enrichment (approx. 115-fold) over 

the expected number of known DMIs to occur in the PPI data by chance. Whilst we cannot 

rule out unexpected confounding factors, such as additional high affinity interactions 

between pairs of proteins that also share a DMI, this implies that the low absolute numbers 

are due to the small number of known DMIs rather than the inability of Y2H methods to 

detect DMIs. Considered analysis has estimated that the human proteome has in the order 

of 100,000 SLiMs involved in DMIs (ignoring post-translational modifications) (Tompa, 

Davey et al. 2014), which is orders of magnitude greater than the known DMIs in ELM (Seo 
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and Kim 2018). Overall, SLiMEnrich results indicate that these data are indeed capturing 

real SLiM-mediated interactions and are therefore suitable for de novo SLiM prediction. 

This, in turn, increases confidence in previous large scale SLiM predictions (de Chassey, 

Navratil et al. 2008; Lieber, Elemento et al. 2010; Edwards, Davey et al. 2012); these often 

rely on rediscovery of known motifs as validation, which could be biased by incorporation 

of literature-based high confidence DMIs in the PPI data. 

Employing a less stringent DMI identification strategy predictably boosted the numbers of 

predicted DMIs and continued to reveal significant enrichment in the Y2H data despite the 

possible incorporation of possible false positive SLiM and/or DMI predictions (Table 2.1, 

Figure 2.5). As expected, the enrichment decreased as the noisiness of the data increased, 

although the enrichment remained highly significant. This was supported by analysis where 

real ELM-containing proteins were replaced with random human proteins to simulate noise 

(Figure 2.6). Taken together, these results indicate a degree of robustness of the 

SLiMEnrich approach to the quality of the SLiM data. However, they also highlight a lack of 

robustness in the individual DMI predictions. For the purest known DMI analysis (linking 

known ELM instances to known ELM-interacting proteins), most randomised datasets did 

not return a single DMI. It is therefore highly likely that the 11 additional DMIs discovered 

by the ELMc-Protein strategy are real DMIs. The cost is that the low numbers might affect 

the accuracy with which the mean random DMI count, and thus enrichment, can be 

calculated. Relaxing the strategy to use SLiMProb predictions and/or allow DMI predictions 

based on interactions between ELM classes and Pfam domain classes, substantially 

increased the numbers of predicted DMIs but dramatically reduced the observed 

enrichment for both known and predicted SLiM occurrences. Using predicted SLiMs, it 

should be noted that the estimated false positive rate for individual DMI predictions is very 

high (FDR=0.86 when linking predicted SLiMs via ELM-binding Pfam domains). This 

highlights the need for caution when interpreting naïve large-scale predictions of this 

nature. As illustrated for the Adenoviridae-human PPI example data (Figure 2.4), random 
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numbers for the Y2H case study will be inflated by a large over-prediction of kinase domain-

mediated DMIs, as well as other domains with a specificity of interaction not captured at the 

level of Pfam definitions. Users may wish to screen out promiscuous domains and/or motifs 

if low stringency approaches are required to get sufficient DMI numbers. 

2.7.1 Using SLiMEnrich to assess enrichment of different PPI types 

Although the focus of SLiMEnrich is on DMIs, the approach is flexible and can be easily 

adapted to other PPI types. Direct analogues of DMIs can be studied by replacing the motifs 

with a different interaction feature, e.g. replacing motifs with domains to investigate 

enrichment of DDIs. More simply, SLiMEnrich could be used to study the overlap between 

two different PPI datasets, accounting for the connectedness of the proteins involved, by 

replacing the known ELM interactions with any source of pairwise PPIs. Although the PPI 

data for the case study was made symmetrical, the asymmetrical handling of the PPI data 

by SLiMEnrich would even allow intra-dataset comparisons, such as examining the overlap 

between PPIs when proteins are baits versus preys in a Y2H or pulldown experiment. 

2.7.2 Using SLiMEnrich to assess DMI predictions 

Once it has been established that a given PPI dataset, such as the Y2H case study presented, 

is enriched for DMIs versus the random expectation, it is also possible to use SLiMEnrich on 

these data to compare different DMI predictions and prediction strategies (Figure 2.5, 

Figure 2.6, Table 2.1). Several studies have combined PPI data with computational 

approaches to identify new DMIs for known recognition domains, such as SH2, SH3, PDZ 

and WW domains (e.g. Encinar et al. 2009; Kelil et al. 2016; Luck et al. 2011; Weatheritt et 

al. 2012). SLiMEnrich could be used to assess the source PPI data, or to compare/validate 

the resulting predictions on independent unbiased PPI data. Targeted experimental 

methods have also been developed and applied to find motif mediated interactions. Again, 

most of these methods have been applied to a limited set of domain families such as PDZ, 

SH2, SH3, and WW which has left many important domain families out of the picture 
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(Blikstad & Ivarsson 2015). SLiMEnrich could be used to verify that these methods are 

successfully targeting DMIs, or use them as experimental PPI data for validating in silico 

DMI predictions. Similarly, SLiMEnrich could use quality PPI data to assess the enrichment 

of novel SLiM-mediated interactions, predicted by tools such as PepSite (Petsalaki et al. 

2009; Trabuco et al. 2012) and PIPER-FlexPepDock (Alam et al. 2017; Kozakov et al. 2006), 

which predict protein-peptide binding from modelling of three dimensional structures. 

Network-based approaches have been applied at large-scale, combining predicted motif 

instances with PPIs and protein domain composition (e.g. Garamszegi et al. 2013; Kim et al. 

2014). Over-prediction of SLiMs can translate into over-prediction of DMIs when identifying 

PPI pairs where one protein has a predicted SLiM that is known to interact with a globular 

domain found in the other protein (Garamszegi et al. 2013; Horn et al. 2014; Weatheritt et 

al. 2012). This will be particularly true for PPI data in which DMIs are poorly represented, 

either because DMIs are not efficiently captured, or because of abundant false positive 

interactions (von Mering et al. 2002), which will increase the proportion of spurious 

protein-motif-domain-protein interaction linkages. Combining PPI data from many sources 

is attractive but runs the risk of generating false enrichments through the inclusion of data 

from low throughput focused studies. SLiMEnrich provides a useful mechanism for 

estimating both the enrichment and the false discovery rate of such predictions on different 

PPI sources; as highlighted for our case study, significant enrichment may still have a high 

false discovery rate. 
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2.8 Conclusion 

There are many data- and method-specific factors that will determine whether protein-

protein interaction (PPI) data are useful for short linear motif (SLiM) prediction. The 

presence of real domain-motif interactions (DMIs) is a baseline requirement that is 

generally assumed but rarely tested. SLiMEnrich is an open source R application that will 

identify known or predicted DMIs in PPI data and estimate how well that PPI data is 

capturing DMIs compared to randomised PPIs. This estimate is useful for identifying 

suitable PPI data for de novo SLiM prediction. SLiMEnrich statistics also estimate the 

confidence in individual DMI predictions, enabling assessment of methods that aim to 

improve the specificity of DMI predictions by filtering SLiM predictions and/or PPI data. 

Users can run SLiMEnrich online (http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/) or 

download the code for local use (https://github.com/slimsuite/SLiMEnrich). 
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3 Chapter 3: High-throughput PPI data as a source of 

capturing domain-motif interactions (DMIs) and domain-

domain interactions (DDIs) 

3.1 Abstract 
Protein-proteins interactions (PPIs) are vital in carrying out different cellular functions. There are 

many data- and method-specific factors that determine whether PPI data is useful for domain-motif 

interactions (DMI) or domain-domain interactions (DDI) prediction. The presence of real DMI/DDI 

is a baseline requirement that is generally assumed but rarely tested. To see which PPI detection 

method could be better at DMI/DDI prediction, we conducted a comparative study of currently 

available proteome wide human interactomes. Different publicly available datasets of leading high-

throughput methods (Y2H, AP-MS and CoFrac-MS) were compared to see their capability of 

capturing DMIs and DDIs. SLiMEnrich was employed to evaluate enrichment of DMIs and DDIs in 

different PPI datasets using known DMI/DDI information. It was found that high throughput methods 

were not notably worse than PPI databases and, in some cases, seem a lot better. BioPlex2.0 and HI-

II-14 were the best scorer in terms of capturing DMIs and DDIs whereas, CoFrac interaction data 

wasn’t found to be as good for capturing DMI/DDI. Comparison of Y2H and AP-MS interactions 

available in three well known PPI databases i.e. BioGrid, IntAct and HIPPIE revealed that both 

methods were good at predicting DMIs as well as DDIs. Overall, it can be concluded that all PPI 

datasets were indeed capturing DMIs and DDIs with significant enrichment (P-value < 0.001) and 

both Y2H and AP-MS can be a reliable method to predict DMIs and DDIs.  
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3.2 Background 
During the past decade, different studies have been conducted to discover PPIs in different 

organisms (De Las Rivas and Fontanillo 2012; Blikstad and Ivarsson 2015; Lum and Cristea 

2016; Luck, Sheynkman et al. 2017; Peng, Wang et al. 2017). The knowledge generated by 

these studies is being widely used to get insights into the cellular organization of the 

organisms as well as to cure different diseases including cancer, viral and bacterial 

infections through targeting PPIs and disrupting signalling events (Lubovac, Gamalielsson 

et al. 2006; Seo and Kim 2018). The availability of reference proteome maps and 

improvements in PPI detection assays are being considered important in terms of mapping 

large proportion of the human interactome (Kim, Pinto et al. 2014; Wilhelm, Schlegl et al. 

2014). 

SLiMs interact with domains of other proteins to establish domain-motif interactions 

(DMIs) which are often transient and of low affinity (1–150 μM range) (Tompa and 

Csermely 2004; Diella, Haslam et al. 2008; Dinkel, Van Roey et al. 2016). Despite the 

significance of DMIs in mediating important cellular functions, the current knowledge of 

DMIs is still lacking and it can be said that the current number of known DMIs in resources 

like ELM (Dinkel, Van Roey et al. 2016) and 3DID (Mosca, Ceol et al. 2014) is likely to be 

better than available stats (Davey, Van Roey et al. 2012; Bhowmick, Guharoy et al. 2015; 

Peng, Wang et al. 2017; Seo and Kim 2018).  

3.2.1 High-throughput methods and current challenges 

During the past few years, different experimental techniques have been developed to detect 

PPIs. Each PPI detection technique has their own advantages and disadvantages. Small scale 

experiments can detect low number of PPIs, but their quality of interactions is often high. 

On the other hand, high-throughput methods can detect large number of PPIs, but the 

interaction quality is often low (higher rate of false positives and false negatives) (Lum and 

Cristea 2016; Luck, Sheynkman et al. 2017). The three well-known high-throughput methods 
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to detect large number of PPIs are Affinity Purification coupled Mass Spectrometry (AP-MS), 

Yeast two hybrid (Y2H) and Co-fractionation coupled Mass Spectrometry (CoFrac-MS) (Yu, 

Braun et al. 2008).   

Y2H is being considered as a powerful tool to discover direct binary interactions between 

proteins (Figure 1.3). The problem with this technique is its protocol specific biasness (i.e. 

condition-specific, transient and inter-complex interactions) (Yu, Braun et al. 2008) and 

higher false discovery rate (i.e. false positives and false negatives). Thus, Y2H is not 

considered as a good technique to obtain precise binary map within complexes (Deane, 

Salwinski et al. 2002; Kuchaiev, Rasajski et al. 2009). 

AP-MS on the other hand is considered good to detect co-complex interactions which 

includes both direct and indirect interactions (Figure 1.4). The main issue with this 

technique is to distinguish between direct and indirect interactions (Teng, Zhao et al. 2015). 

Similarly, CoFrac-MS has  been found to be more suitable for identifying co complex 

interactions, including direct and indirect interactions between proteins (Figure 1.5) (Kim, 

Sabharwal et al. 2010). Just like AP-MS, this method can be used at proteome level, but it’s 

often difficult to distinguish between direct or indirect interactions between protein pairs 

(Luck, Sheynkman et al. 2017).  

The data generated by these PPI detection methods is being used to study biological 

pathways, protein complexes, protein functionality and to identify potential drug targets. 

However, to ensure that the knowledge gained by studying PPIs is biologically meaningful, 

it is important to ensure the quality of the detected PPIs (Stein and Aloy 2008; Kim, 

Sabharwal et al. 2010). These high-throughput methods are likely to capture false positive 

interactions therefore, experimental as well as computational methods to validate these 

interactions are much needed (Stein and Aloy 2008; Kim, Sabharwal et al. 2010). Another 

major problem often faced to detect PPIs is their physiological settings during the 

experiment as certain PPIs occur at certain conditions. Moreover, several factors can also 
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influence PPI detection including transient nature of interactions, PTMs, abundance of 

proteins and IDRs. Thus, unraveling proteome wide interactome is quite challenging. The 

two most common ways to evaluate reliability of PPIs is to design new experimental 

methods to validate the interactions or to develop new computational methods to find likely 

to be true positive interactions through filtering out possible false positives from the data 

by finding probability of the observed PPI (Pitre, Alamgir et al. 2008; Kim, Sabharwal et al. 

2010; Idrees, Perez-Bercoff et al. 2018).  

The data generated by current high-throughput screens is being considered important in 

terms of discovering novel SLiMs and DMIs, however, due to high stringency filtering, low 

affinity DMI are likely to be lost (Stein and Aloy 2008; Kim, Sabharwal et al. 2010). This in-

fact raises the concerns that current high-throughput methods might be depleted for DMI 

and it’s important to utilize appropriate PPI detection techniques when discovering SLiMs 

or DMIs (Neduva and Russell 2006).  

Previously, we have developed an algorithm called SLiMEnrich (Idrees, Perez-Bercoff et al. 

2018) which is available as an online application as well as a command-line program to 

assess the probability of observed DMIs in a given dataset (see Chapter 2 for details). We 

looked at a single Y2H dataset and observed significant enrichment and therefore, decided 

to implement it to other large scale human interactomes. This chapter is focused on the 

implementation of SLiMEnrich to evaluate different high-throughput methods as well as 

databases to see which one is better at capturing different sorts of interactions (i.e. DMI and 

DDI). The outcome of this study will give a better understanding of how different methods 

capture different sorts of interactions. 
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3.2.2 Aims and Objectives 

To date, there has been no specific study to validate the efficiency of high-throughput 

methods as a source of capturing different sorts of interactions (i.e. DMI and DDI) (Blikstad 

and Ivarsson 2015; Seo and Kim 2018) therefore, we have conducted a proteome wide 

comparative study to validate different high-throughput methods and databases to help 

systems biologist choose appropriate methods when discovering SLiMs, DMIs or DDIs.  

The main objectives of this study were: 

• To see if data being generated by high-throughput methods is useful for capturing 

DMIs and DDIs. 

• To evaluate public databases as a source of capturing DMIs and DDIs. 

• To see if any particular method or database is better at capturing DMIs or DDIs. 

• To evaluate performance of binary vs co-complex high-throughput methods as a 

source of capturing DMIs and DDIs.  
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3.3 Methods 

3.3.1 Data collection and processing 

SLiM data was downloaded from the Eukaryotic Linear Motif (ELM) database (Dinkel, Van 

Roey et al. 2016), which contains manually curated and experimentally validated SLiM data 

from the literature. This makes ELM a highly reliable SLiM resource. 245 ELM classes (e.g. 

distinct SLiMs) with experimentally validated motif instances (2896 specific protein 

occurrences), associated interacting domain data (308 ELM interacting domains) and 

known human DMIs (789 human DMIs) were downloaded from [http://www.elm.eu.org/] 

on 2018-07-17. Five publicly available high-throughput interaction datasets were 

downloaded: HI-II-14 (Rolland, Tasan et al. 2014), CoFrac-12 (Havugimana, Hart et al. 

2012), CoFrac-15 (Wan, Borgeson et al. 2015), BioPlex2.0 (Huttlin, Bruckner et al. 2017) 

and QUBIC-15 (Hein, Hubner et al. 2015). In addition, five well-known PPI databases were 

evaluated: two comprehensive databases, BioGrid (Oughtred, Chatr-Aryamontri et al. 2016) 

and IntAct (Hermjakob, Montecchi-Palazzi et al. 2004); two high quality human PPI 

databases,  the High quality INTeractome (HINT) database (Das and Yu 2012) and the 

Human Protein Reference Database (HPRD) (Keshava Prasad, Goel et al. 2009); and one 

meta-database that integrates data from multiple PPI databases, the Human Integrated 

Protein-Protein Interaction rEference (HIPPIE) (Alanis-Lobato, Andrade-Navarro et al. 

2017). IntAct and BioGrid were reduced to human interactions only. Datasets were first 

mapped onto Uniprot IDs, were restricted to pairs of reviewed Uniprot proteins only and 

were treated as non-redundant symmetrical interactions. A False Discovery Rate (FDR) for 

individual DMIs is also estimated as the proportion of the predicted DMIs explained on 

average by random associations, using the mean random DMI count. 

 



66 

3.3.1.1 PPI subsets by experiment type 

PPI subsets by experiment type (AP-MS, Y2H and Co-fractionation) were made for BioGrid, 

IntAct and HIPPIE. Keywords for pulling interactions from BioGrid database were “Two-

hybrid”, “Co-fractionation” and “Affinity Capture-MS”. BioGrid had two-hybrid interactions 

based on low as well as high-throughput screens. Only high-throughput two-hybrid 

interactions were selected. For the IntAct database, molecular interaction ontologies were 

used to pull subsets: MI:0676, MI:0400 and MI:0004 for pulling affinity purification 

interactions and MI:0018 for pulling two-hybrid interactions. “Affinity”, “two-hybrid” and 

“co-fractionation” were used as keywords to extract interactions from HIPPIE database. All 

PPI datasets were restricted to reviewed Uniprot proteins, were made symmetrical and 

redundancy was removed. The analysis here is focused on directed network having specific 

motif and domain proteins therefore, it is essential that both A-B and B-A are in the analysis. 

The percentage (%) of PPI explained was calculated using non-redundant symmetrical PPI 

pairs (i.e. A-B also explains B-A).  

3.3.2 Domain-Motif Interaction (DMI) enrichment  

Known DMI and SLiM information available in ELM database was used to evaluate 

enrichment differences in different high-throughput methods. SLiMEnrich (Chapter 2) 

(Idrees, Perez-Bercoff et al. 2018) was used to evaluate enrichment in different PPI datasets.  

An estimation of enrichment is done by permutation test which works by randomly 

selecting proteins to make new random interaction pairs without replacement from the 

original PPI data. Proteins maintain an identical degree due to the permutation without 

replacement. Each dataset is permutated 1000x to get better estimation of the random 

DMIs. Enrichment is calculated as an empirical P-value corresponding to the probability of 

seeing at least as many DMIs in random PPI data. DMI enrichment (E-score) was calculated 

as the ratio of the number of predicted DMI to the mean random DMI. Total proportion of 

potential DMI found in PPIs was calculated, i.e. the total proportion of those DMI that were 
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theoretically identifiable given the proteins in the PPI datasets. The distribution of the real 

DMI count over 1000x randomisations, DMIReal, was estimated as follows: 

DMIReal = DMIObs – DMIRan 

Where DMIObs is the number of observed DMIs in the real PPI dataset and DMIRan is the 

distribution of observed DMIs in the random PPI datasets.  

Normalisation of the data was done by dividing number of real DMIs by mean random DMIs. 

For this analysis, ELMi-Protein strategy of SLiMEnrich (Figure 2.1) was employed to 

evaluate enrichment in different publicly available datasets. ELMi-Protein strategy works 

by mapping PPI protein pairs directly on to known DMI data in ELM.  Moreover, impact of 

each ELM type on enrichment was observed to see if there were any ELM types that were 

making DMI enrichment better or worse in different high-throughput methods. A Pearson's 

pairwise chi-square test was done to see how significant different datasets were in 

comparison to others in terms of capturing different sorts of interactions. For this purpose, 

pairwise comparisons of each possible combination of datasets were done and p-value was 

calculated. 

3.3.3 DMI prediction quality  

Different types of DMI data was used to assess quality of predictions. First, ELMc-Protein 

strategy was used where enrichment was calculated using known ELM instances available 

in ELM. Noise in the DMI prediction was increased by adding domain information in the DMI 

network. For this purpose, ELMc-Domain strategy was used where known ELM instances 

were mapped to their Pfam domain partners.  

3.3.4 Domain-Domain Interaction (DDI) enrichment 

Domain-Domain Interaction (DDI) enrichment was also evaluated where we used 

experimentally validated DDI data from 3DID on 2018-11-28 (Mosca, Ceol et al. 2014) 

(https://3did.irbbarcelona.org/download.php). 3DID is a databases of high-resolution 3D 

https://3did.irbbarcelona.org/download.php
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structures of known PPIs which makes it a highly reliable resource of known interactions 

(Mosca, Ceol et al. 2014). PDB Ids of 3D DDI complexes and their interacting chain 

information was extracted from the 3DID database. The interacting PDB chains were then 

mapped to their corresponding Uniprot proteins. PDB chains to Uniprot mapping was done 

using PDBSWS (Martin 2005). DDI protein pairs were made non-redundant and were 

restricted to reviewed Uniprot proteins only. The resulting DDI pairs (5,589 DDI) were then 

used as known DDI dataset to evaluate enrichment in different datasets.  

3.3.5 PPI prediction quality 

Enrichment was used to evaluate the impact of PPI quality. HIPPIE PPIs were grouped into 

different subsets based on their confidence scores (0-1). Eleven subsets were generated 

where each subset had PPIs from certain confidence scores: Subset 0 which had PPIs with 

0 confidence score, 0.1 which had PPIs ranging from 0.11-0.19 confidence scores, 0.2 which 

had PPIs ranging from 0.21-0.29 confidence scores, 0.3 which had PPIs ranging from 0.31-

0.39 confidence scores, 0.4 which had PPIs ranging from 0.41-0.49 confidence scores, 0.5 

which had PPIs ranging from 0.51-0.59 confidence scores, 0.6 which had PPIs ranging from 

0.61-0.69 confidence scores, 0.7 which had PPIs ranging from 0.71-0.79 confidence scores, 

0.8 which had PPIs ranging from 0.81-0.89 confidence scores, 0.9 which had PPIs ranging 

from 0.91-0.99 confidence scores and subset 1 which had PPIs having 1 as their confidence 

score.  
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3.4 Results  

3.4.1 Enrichment analysis 

In this study, we have compared five different proteome-wide human interactomes and five 

publicly available databases to evaluate their efficiency as a source of capturing Domain-

Motif Interactions (DMIs) and Domain-Domain Interactions (DDIs). First, we extracted 

human interactions from BioGrid (409,173) of which 304,409 (74%) were successfully 

mapped to Uniprot IDs. CoFrac-12 had 13,918 PPIs of which 13,849 (99.5%) were mapped 

to Uniprot IDs. CoFrac-15 had 16,655 PPIs of which 16,287 (97.7%) were mapped to 

Uniprot IDs. HI-II-14 had 13,945 PPIs of which 13,410 (96.1%) were mapped to Uniprot IDs. 

HPRD had 39,240 PPIs of which 37,203 (94.8%) were mapped to Uniprot IDs. HIPPIE had 

340,629 PPIs of which 301,235 (88.4%) were mapped to Uniprot IDs. Similarly, BioGrid had 

409,173 PPIs of which 304,409 (74.3%) were successfully mapped to Uniprot IDs  (Table 

3.1, Figure 3.1).  
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Table 3.1.   Comparison of different PPI datasets as a source of capturing DMIs and DDIs.  

Dataset PPIs1 Method potDMIs2  DMIs3 DMI 
Enrichment4 

(3 s.f) 

potDDIs5 DDIs6 DDI 
Enrichment7 
(3 s.f.) 

HI-II-14 (Rolland, Tasan et al. 2014) 
[retrieved: 2016-06-17] 

25,956 Y2H 61 14 121** 1,272 271 49.0** 

BioPlex2.0 (Huttlin, Bruckner et al. 2017) 
[retrieved: 2017-05-29] 

53,710 AP-MS 137 19 120** 2,296 324 46.8** 

QUBIC-15 (Hein, Hubner et al. 2015) 
[retrieved: 2017-05-17] 

50,573 AP-MS 186 24 16.4** 2,149 653 34.4** 

CoFrac-12 (Havugimana, Hart et al. 2012) 
[retrieved: 2018-06-05] 

27,643 CoFrac-MS 63 2  11.0* 1,544 362 13.5** 

CoFrac-15 (Wan, Borgeson et al. 2015) 
[retrieved: 2017-05-31] 

32,452 CoFrac-MS 91 6 23.9** 1,810 395 13.7** 

HPRD (Keshava Prasad, Goel et al. 2009) 
[retrieved: 2018-11-13] 

71,811 All 493 236 23.2** 4,245 1,900 57.7** 

HINT (Das and Yu 2012) 
[retrieved: 2018-11-13] 

81,788 All 389 41 21.4** 3,559 536 23.0** 

IntAct (Hermjakob, Montecchi-Palazzi et al. 2004) 
[retrieved: 2018-11-13] 

159,377 All 526 203 17.2** 4,695 1,332 28.7** 

BioGrid (Oughtred, Chatr-Aryamontri et al. 2016) 
[retrieved: 2018-11-13] 
v3.5.166 

556,695 All 562 359 23.6** 5,219 2,517 20.9** 

HIPPIE (Alanis-Lobato, Andrade-Navarro et al. 2017) 
[retrieved: 2018-11-13] 
v2.1 

598,158 All 556 407 17.7** 5,195 3,164 25.0** 

*P-value < 0.05, **P-value < 0.001  
1. Number of symmetrical and non-redundant PPIs having Uniprot reviewed protein pairs. 
2. Number of all possible DMIs, given the proteins in each dataset. 
3. Known SLiM-Protein interactions from the ELM database (proportion (%) captured from potential DMIs). 
4. Observed enrichment of known DMIs captured from PPIs. 
5. Number of all possible DDIs, given the proteins in each dataset. 
6. Known DDIs from the 3did database (proportion (%) captured from potential DDIs). 
7. Observed enrichment of known DDIs captured from PPIs.
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Figure 3.1.  Enrichment statist ics and histogram of  expected random DMI and DDI counts in HI-II-14 dataset using known data,   

A)  Absolute number of DMI count in different datasets,  B)  Absolute number of DDI count in different datasets. Frequency bars indicate the number of randomised 
PPI datasets returning a given number of known DMIs/DDIs. The dotted arrow indicates the observed number of known DMIs/DDIs. 
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3.5 DMI enrichment in different datasets 

All datasets showed significant enrichment (P-value < 0.05) suggesting that they all capture 

domain-motif interactions. The BioPlex2.0 AP-MS dataset had 53,710 symmetrical and non-

redundant PPIs, of which only 19 were among the known DMIs in ELM. At face value, this 

appears to be a disappointing performance. However, permutation testing reveals that this 

is an enrichment of approx. 120x the expected number of known DMIs that would be 

captured if the 53,710 PPIs were randomly associated (P <0.001). On the other hand, the 

second AP-MS dataset, QUBIC-15, captured 24 known DMIs in 50,573 PPIs, but enrichment 

was quite low in comparison to BioPlex2.0.  HI-II-14 which has PPIs predicted by Y2H 

method had 14 known DMIs.  Enrichment was similar to BioPlex2.0 121x showing that Y2H 

screen was capturing DMIs. CoFrac-15 captured 6 known DMIs and was more enriched than 

QUBIC-15 dataset that captured 24 known DMIs.  

To further assess the capability of PPI data for capturing DMIs, we extended our analysis to 

different comprehensive PPI databases which have data from high-throughput studies. 

Here, we have selected five well known databases i.e. IntAct, BioGrid, HPRD, HINT and 

HIPPIE to predict DMIs for human interactome. BioGrid was ranked as highest in terms of 

enrichment followed by HPRD and HINT (Figure 3.2A). HIPPIE captured more DMIs than 

other databases but had lowest enrichment. The enrichment score of all other datasets was 

lower than HI-II-14 and BioPlex2.0 (Figure 3.2A).  

A binary vs co-complex PPI analysis was also done where we extracted binary PPIs (i.e. Y2H) 

and co-complex PPIs (i.e. AP-MS and CoFrac-MS) from BioGrid, IntAct and HIPPIE databases 

to evaluate enrichment. Both binary and co-complex PPIs showed significant DMI 

enrichment when compared with random pairs of proteins. Both Y2H and AP-MS captured 

significant number of known DMIs while CoFrac-MS didn’t perform well (Table 3.3, Figure 

3.2A). 
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3.6 DDI enrichment in different datasets 

We also checked how good these datasets were in terms of capturing domain-domain 

interactions (DDIs). For this purpose, we used known DDI data from 3did database (Mosca, 

Ceol et al. 2014) and evaluated enrichment in different datasets (Figure 3.2B).  

HIPPIE captured highest number of DDIs as compared to other datasets. All datasets 

captured DDIs with significant enrichment (p-value < 0.001). Among high-throughput 

screens, HI-II-14 showed highest enrichment followed by BioPlex2.0 and QUBIC-15. Both 

CoFrac datasets also showed significant DDI enrichment. Among databases, HPRD was the 

most enriched dataset in terms of capturing DDIs followed by IntAct, HIPPIE, HINT and 

BioGrid (Figure 3.2B).  
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Figure 3.2.  Normalised number of DMIs and DDIs captured by different datasets.    

A)  Normalised number of  DMIs captured over 1000x randomisations. Y-axis  is  the normalized 
number of DMIs and each bar represents number of real DMIs captured over 1000x randomisations 
by subtract ing random DMIs from observed DMIs.  Left panel  shows DMIs captured by high-
throughput methods and r ight panel shows DMIs captured by databases, B)  Normalised number 
of DDIs captured over 1000x randomisations.  Y-axis is the normalized number of DDIs and each 
bar represents number of real DDIs captured over 1000x randomisations by subtracting random 
DDIs from observed DDIs.  Left panel shows DDIs captured by high-throughput methods and right 
panel shows DDIs captured by databases.  
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3.6.1 Proportion of DMI vs DDI being captured 

Total proportion of the DMIs captured from known DMIs showed that HIPPIE captured 

highest proportion (52%) of DMIs from known human DMIs (789 DMIs) followed by 

BioGrid which captured 46% of DMIs. All other datasets captured lower proportion of DMI 

as compared to these two (Figure 3.3A).  

Total proportion of the DDIs captured from total known DDIs showed that HIPPIE captured 

highest proportion (~56%) of DDIs from total known DDIs (5,589 DDIs) followed by 

BioGrid which captured 45% of DDIs, HPRD which captured 34% DDIs and IntAct which 

captured 23% DDIs. All other datasets captured lower proportion of DDI as compared to 

these datasets (Figure 3.3B).  
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Figure 3.3. Total proportion of DMIs and DDIs captured from known datasets.  

 A)  DMIs captured from known DMI dataset (789 DMIs) .  Y-axis  shows the percentage of DMIs being 
captured from known DMI dataset.  B) DDIs captured from known DDI dataset (5,589 DDIs) .  Y-ax is  
shows the percentage of  DDIs being captured from known DDI dataset and ** represents 
significance at  p-value < 0.001  

Looking at our analysis, <1% DMIs and < 3% DDIs can be explained by the known DMIs and 

DDIs. Moreover, there aren’t many PPIs that are discovered to be both DMIs and DDIs (< 

0.02%) (Figure 3.4). A Chi-square pairwise test was done to see significance of each dataset 

in relation to other datasets (Table 3.2).  
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Table 3.2. Comparison of known DMIs/DDIs captured by different datasets. 

Interaction type Enriched dataset vs others 
DMI HPRD > IntAct** 

HPRD > HIPPIE** 
HPRD > HINT** 
HPRD > BioGrid** 
HPRD > QUBIC-15** 
HPRD > CoFrac-15** 
HPRD > CoFrac-12** 
HPRD > BioPlex2.0** 
HPRD > HI-II-14** 
IntAct > HIPPIE** 
IntAct > HINT** 
IntAct > BioGrid** 
IntAct > BioPlex2.0** 
IntAct > CoFrac-12** 
HIPPIE > CoFrac-12** 
HINT > CoFrac-12* 
HI-II-14 > CoFrac-12* 
BioGrid > CoFrac-12 ** 
IntAct > CoFrac-15** 
HINT > CoFrac-15* 
BioGrid > CoFrac-15* 
IntAct > HI-II-14* 
BioGrid > BioPlex2.0* 

DDI Enriched dataset vs others 
HPRD > IntAct** 
HPRD > HIPPIE** 
HPRD > HINT** 
HPRD > BioGrid** 
HPRD > QUBIC-15** 
HPRD > CoFrac-15** 
HPRD > CoFrac-12** 
HPRD > BioPlex2.0** 
HPRD > HI-II-14** 
IntAct > HIPPIE** 
IntAct > HINT** 
IntAct > BioGrid** 
IntAct > BioPlex2.0** 
BioPlex2.0 > HIPPIE* 
CoFrac-12 > IntAct** 
CoFrac-12 > HIPPIE** 
CoFrac-12 > HINT** 
CoFrac-12 > QUBIC-15* 
CoFrac-12 > BioGrid** 
CoFrac-15 > HIPPIE* 
CoFrac-15 > IntAct** 
CoFrac-15 > HINT* 
CoFrac-15 > BioGrid* 
QUBIC-15 > IntAct** 
HI-II-14 > IntAct* 

*shows p-value <0.05 and ** shows p-value <0.001. 
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Figure 3.4. Percentage of PPIs that are known DMIs,  DDIs or DMIs+DDIs (non-redundant and 
reviewed proteins only).   

Y-axis shows the percentage of PPIs that can be explained as DMIs or DDIs,  numbers inside bars 
shows proportion in percentage from total numbers of PPIs.   

3.6.2 High-throughput screens capture DMIs and DDIs 

As both BioPlex2.0 and HI-II-14 datasets showed quite high enrichment (~120x) suggesting 

that Y2H and AP-MS screens were indeed capturing DMIs, we decided to further investigate 

which method among Y2H and AP-MS was better at capturing DMIs. For this purpose, we 

pulled out PPIs identified by two-hybrid, AP-MS and CoFrac-MS from three well known PPI 

databases i.e. BioGrid, IntAct and HIPPIE and used them to evaluate enrichment (Figure 

3.5A). 

We also checked which method among AP-MS, two-hybrid and CoFrac-MS was better at 

capturing DDIs. Two hybrid detected interactions available in IntAct and HIPPIE showed 

more enrichment than AP-MS while AP-MS interactions of BioGrid showed better 

enrichment than two-hybrid interactions. It can be said that both these techniques are 

effectively capturing DDIs. CoFrac-MS captured DDIs showed lower enrichment than other 

high-throughput methods (Table 3.3, Figure 3.5B). 
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Table 3.3.   Comparison of different high-throughput methods as a source for capturing DMIs and DDIs.  

Dataset Method PPIs1 potDMIs2  DMIs3  DMI Enrichment4 

(3 s.f.) 

potDDIs5 DDIs6  DDI 

Enrichment7 

(3 s.f.)  

BioGrid AP-MS 153,530 413 71 42.2** 2,705 688 30.6** 

Two-hybrid 66,882 370 38 26.1** 3,321 455 25.9** 

CoFrac-MS 36,056 170 7 23.0** 2,026 396 18.2** 

IntAct AP-MS 17,938 157 22 18.5** 1,767 184 8.85** 

Two-hybrid 17,541 259 31 33.5** 1,980 220 21.9** 

HIPPIE AP-MS 347,047 534 264 25.8** 4,838 1,535 17.8** 

Two-hybrid 98,283 500 140 46.4** 4,065 925 40.8** 

CoFrac-MS 542 18 1 13.2** 176 30 17.4** 

**P-value < 0.001  
1. Number of symmetrical and non-redundant PPIs having Uniprot reviewed protein pairs. 
2. Number of all possible DMIs, given the proteins in each dataset. 
3. Known SLiM-Protein interactions from the ELM database. 
4. Observed enrichment of known DMIs captured from PPIs  
5. Number of all possible DDIs, given the proteins in each dataset. 
6. Known DDIs from the 3did database 
7. Observed enrichment of known DDIs captured from PPIs  
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Figure 3.5. Normalised number of real DMIs and DDIs captured by three well known high-
throughput methods.  

A)  Normalised number of real  DMIs captured over 1000x randomisations. Red represents 
DMIs captured by AP-MS, yel low represents DMIs captured by two-hybrid and green 
represents DMIs captured by co-fract ionation screens,   

B)  Normalised number of  real  DDIs captured over 1000x randomisations. Red represents 
DMIs captured by AP-MS, yel low represents DMIs captured by two-hybrid and green 
represents DMIs captured by co-fract ionation screens.  
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Looking at the enrichment, AP-MS, two-hybrid and CoFrac-MS were capturing DMIs with 

significant enrichment (P-value < 0.001). Two-hybrid PPIs in HIPPIE database showed 

highest enrichment than other methods/databases. PPIs identified by AP-MS in BioGrid 

database also showed better enrichment. Overall, two-hybrid screens were more enriched 

than other methods in HIPPIE and IntAct databases. Co-fractionation interactions from 

BioGrid and HIPPIE databases showed lower enrichment than other techniques (Figure 

3.5). 

3.6.3 All PPI resources share overlap of data 

Here, we checked overlap of DMIs captured by different high-throughput studies and 

databases with each other. As expected, most of the DMIs captured by HINT database were 

overlapping with other databases. All of the DMIs captured by HINT were in the BioGrid 

database resulting into 100% overlap, 95% overlap with the IntAct database, 97% with 

HIPPIE and 68% with the HPRD database. Similarly, HIPPIE which is another high-

throughput resource showed 85% DMI overlap with BioGrid and 51% overlap with IntAct 

database. Around 55% of DMIs captured by HIPPIE were in HPRD and 10% of DMI data 

overlapped with HINT. HPRD also showed significant overlap with other databases i.e. 87% 

with BioGrid, 49% with IntAct, 13% with HINT and 95% with HIPPIE database (Figure 

3.6A). Overall, it can be seen that most of the DMIs captured by HINT, HIPPIE and HPRD are 

available in BioGrid and IntAct databases. 

Looking at the overlaps with IntAct database, HI-II-14 showed 100% overlap, QUBIC had 

70%, BioPlex2.0 had 89%, CoFrac-15 had 83% while CoFrac-12 had no overlapping DMIs. 

On the other hand, all individual high-throughput datasets showed 100% overlap with the 

BioGrid database except QUBIC which had 79% overlap. Similarly, significant overlap was 

seen with HIPPIE database where 71% of DMIs captured by HI-II-14 were in the HIPPIE 

database, 87% of DMI captured by QUBIC, 94% of DMIs captured by BioPlex2.0 while all of 

the DMIs captured by CoFrac-15 and CoFrac-12 datasets were in HIPPIE. Looking at the 

comparison with HINT database, all of the DMIs captured by HI-II-14 were in the HINT 
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database while BioPlex2.0 and QUBIC shared small fraction of the DMIs with HINT (26%, 

20% respectively). CoFrac-15 had 50% of its DMIs in HINT while CoFrac-12 had none of its 

two interactions in HINT. Finally, comparison with HPRD showed that HI-II-14 had 78% 

DMI overlap, QUBIC had 62%, BioPlex2.0 had 52% while CoFrac-15 and CoFrac-12 had 

100% overlap with HPRD (Figure 3.6A). As expected, most of the DMIs captured by 

different high-throughput methods and databases were overlapping with each other.  
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Figure 3.6. Number of DMIs, DDIs and PPIs being overlapped in different publicly available 
databases .  

A)  Number of shared DMIs among different datasets,  each row and column is a dataset,  each box 
shows the number of shared DMIs, percentage of overlap is shown in gradient where orange 
represents 100% overlap and yellow represents 0% overlaps,  B)  Number of shared DDIs among 
different datasets,  each row and column is a dataset,  each box shows the number of shared DDIs,  
percentage of overlap is shown in gradient where orange represents 100% overlap and yellow 
represents 0% overlaps,   C)  Number of shared PPIs among different datasets,  each row and column 
is a dataset,  each box shows the number of shared PPIs,  percentage of overlap is shown in gradient 
where orange represents 100% overlap and yellow represents 0% overlaps.   
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Similarly, we checked what proportion of DDIs was being shared among different datasets. 

Most of the HINT captured DDIs were also captured by BioGrid (97%), HIPPIE (96%), IntAct 

(85%) and HPRD (67%) databases. HIPPIE showed 74% DDI overlap with BioGrid, 40% 

overlap with IntAct database, 59% with HPRD and only 16% with HINT. HPRD showed 97% 

overlap with HIPPIE, 71% with BioGrid, 43% with IntAct and 19% with HINT database. Just 

like DMIs, most of the DDIS captured by different high-throughput methods were 

overlapping with publicly available databases (Figure 3.6B). We also checked proportion 

of PPIs that was overlapping in different datasets. All high-throughput screens and 

databases had significant PPI overlap with HIPPIE and BioGrid databases as compared to 

HINT and HPRD databases (Figure 3.6C). 

3.6.4 Enrichment drops with the introduction of noise in DMI predictions 

As the number of known DMIs captured by high-throughput data was quite low, noisier DMI 

predictions were used to increase the number of real DMIs identified. The idea was to see if 

general pattern of enrichment remained same. Here, we first used ELMc-Protein strategy 

(Figure 2.1) where known SLiMs were mapped onto their known protein partners via ELM 

classes. All datasets remained significantly enriched (P-value < 0.001) over random 

expectation but the overall enrichment score dropped for all datasets as compared to ELMi-

Protein strategy. Enrichment fold of BioPlex2.0 dropped from 120x to 92x and it ranked as 

the most enriched dataset in comparison to other datasets. On the other hand, enrichment 

fold of HI-II-14 which was previously 120x dropped to 32x making it second most enriched 

dataset (Figure 3.7A). All other datasets showed lower enrichment than these two datasets. 

We then used ELMc-Domain strategy where we used domain information. Enrichment for 

all datasets remained strongly significant (P-value <0.001) . Th overall enrichment trend of 

this strategy remained same as of ELMc-Protein despite a further drop in enrichment scores 

(Figure 3.7B). We also calculated the total proportion of predicted DMIs captured from 

potential DMIs where potential DMIs shows the total proportion of those DMI that were 

theoretically identifiable given the proteins in the PPI datasets. HIPPIE and BioGrid 



89 

databases predicted highest proportion of DMIs from potential DMIs followed by HPRD and 

IntAct using ELMc-Protein strategy. HINT on the other hand identified only a small 

proportion of DMIs from potential DMIs. Among high-throughput screens, HI-II-14 

identified highest proportion of DMIs followed by BioPlex2.0, QUBIC-15, CoFrac-15 and 

CoFrac-12 (Figure 3.9A). On the other hand, only a small fraction (1-4%) of DMIs was 

predicted from potential DMIs through ELMc-Domain strategy. The overall trend was same 

as ELMc-Protein strategy (Figure 3.9B).   
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Figure 3.7. Normalised number of DMIs and DDIs captured by different datasets.    

A)  Normalised number of DMIs captured over 1000x randomisations using ELMc-Protein strategy. 
Y-axis is  the normalized number of DMIs and each bar represents number of  real DMIs captured 
over 1000x randomisations by subtracting random DMIs from observed DMIs. Left panel  shows 
DMIs captured by high-throughput methods and right panel shows DMIs captured by databases,  
B)  Normalised number of DMIs captured over 1000x randomisations using ELMc-Domain strategy. 
Y-axis is  the normalized number of DMIs and each bar represents number of  real DMIs captured 
over 1000x randomisations by subtracting random DDIs from observed DMIs.  Left panel shows 
DMIs captured by high-throughput methods and right panel shows DMIs captured by databases.  

 

The overall number of DMIs increased with the increase in noise in DMI prediction quality 

but as the enrichment of these datasets was quite high, the additional DMIs are likely to be 

real (Figure 3.8, Figure 3.9). 
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Figure 3.8. Enr ichment statist ics and histogram of  expected random DMI counts in different datasets.  

 A)  Absolute number of DMI count in different datasets using ELMc-Protein strategy, B)  Absolute number of DMI count in different datasets using ELMc-Domain 
strategy. Frequency bars indicate the number of randomised PPI datasets returning a given number of known DMIs. The dotted arrow indicates the observed 
number of known DMIs. 
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Table 3.4.  Comparison of DMI enrichment using different DMI predict ion strategies.  

DMI prediction 
strategy 

Dataset Method potDMIs1 DMIs2 Enrichment3 
(3 s.f.) 

FDR4  

(4 d.p.) 
ELMc-Protein HI-II-14 Y2H 162 25 32.1** 0.0311 

BioPlex2.0 AP-MS 318 35 92.3** 0.0108 
QUBIC-15 AP-MS 474 38 14.1** 0.0709 
CoFrac-12 CoFrac-MS 140 4 12.8** 0.0782 
CoFrac-15 CoFrac-MS 223 11 24.0** 0.0417 
HPRD All 1,485 441 15.8** 0.0633 
HINT All 1,018 91 10.9** 0.0916 
IntAct 
 

All 1,463 324 12.2** 0.0633 
AP-MS 432 46 8.71** 0.1148 
Y2H 645 48 21.0** 0.0474 

BioGrid All 1,601 646 15.0** 0.0667 
AP-MS 1,015 129 21.1** 0.0473 
Y2H 964 73 17.0** 0.0586 
CoFrac-MS 409 12 22.2** 0.045 

HIPPIE All 1,610 764 11.8** 0.0847 
AP-MS 1,518 454 14.8** 0.0387 
Y2H 1,389 240 25.8** 0.0387 
CoFrac-MS 41 2 10.1** 0.0985 

ELMc-Domain HI-II-14 Y2H 6,308 74 7.71** 0.1296 
BioPlex2.0 AP-MS 18,105 120 6.87** 0.1456 
QUBIC-15 AP-MS 21,180 164 2.59** 0.3867 
CoFrac-12 CoFrac-MS 4,309 29 2.18** 0.4582 
CoFrac-15 CoFrac-MS 6,479 36 3.95** 0.2532 
HPRD All 79,663 2,092 4.14** 0.2413 
HINT All 63,556 600 3.85** 0.26 
IntAct All 89,824 1,467 2.79** 0.2413 

AP-MS 18,224 178 1.08** 0.9246 
Y2H 21,793 181 4.10** 0.2441 

BioGrid All 106,370 3,362 3.50** 0.285 
AP-MS 58,305 516 4.02** 0.2487 
Y2H 49,418 305 3.54** 0.2826 
CoFrac-MS 12,676 57 3.05** 0.2598 

HIPPIE All 105,123 4,691 3.20** 0.3117 
AP-MS 96,947 2,556 2.99** 0.1988 
Y2H 76,681 923 5.03** 0.1988 
CoFrac-MS 704 10 3.02** 0.3311 

**P-value < 0.001  
1. Number of all possible DMIs, given the proteins in each dataset. 
2. Predicted SLiM-Protein interactions using known instances. 
3. Observed enrichment of DMIs captured from PPIs  
4. False discovery rate (FDR) calculated as the proportion of the predicted DMIs explained on average by random associations, using 

the mean random DMI distribution capped at the observed value. 
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Figure 3.9. Total proportion of DMIs predicted from potential DMIs.  

Potential DMIs represents the total proport ion of those DMI that were theoretically identif iable 
given the proteins in the PPIs,  Y-axis shows the percentage of predicted DMIs being captured from 
potential DMIs. A)  proportion of predicted DMIs captured from potential DMIs using ELMc-Protein 
strategy, B)  Total  proportion of predicted DMIs captured from potential  DMIs using ELMc-Domain 
strategy.   

 

3.6.5 Impact of PPI quality on enrichment 

We then further dig down into how quality of PPIs could influence enrichment. For this 

purpose, we analysed HIPPIE dataset and evaluated enrichment for PPIs having different 

confidence scores (0-1) where 1 defines highly confident PPIs. The idea was to see how 

confidence score was impacting overall DMI enrichment. The PPI quality had impact on the 

enrichment and it was found that best score to identify DMIs was 0.9 (Figure 3.10A). Just 

like DMI, impact of PPI quality on enrichment was seen, but there was not a simple 
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correlation of PPI confidence with DDI enrichment. Again, the best confidence score for DDI 

prediction was 0.9 (Figure 3.10B).  

 

Figure 3.10. Impact of  PPI quality on enrichment.  

 X-axis represents the conf idence scores of different PPI subsets from HIPPIE database (0-1).  Y-
axis represents enrichment score of PPIs belonging to dif ferent subsets of  PPIs based on 
confidence scores. A) PPI confidence score vs DMI enrichment score,  B) PPI confidence score vs 
DDI enrichment.    

3.6.6 How enrichment changes with random DMI as percentage of total 

potential DMI 

As all databases showed lower enrichment than individual high-throughput screens, it 

raised the question of whether the apparent lack of enrichment in databases was due to the 

random expectation being so high. To answer this question, we analysed what proportion 

of random DMIs was in total potential DMIs.  

Only small proportion of random DMIs was in total potential DMIs. Approximately 2-6% 

random DMIs were being captured from total potential DMIs in BioGrid and HIPPIE 

datasets. Around 0.5-2.5% random DMIs were being captured from potential DMIs in HPRD 

and IntAct datasets. All other datasets had ~0-2% random DMIs being captured from total 

potential DMIs (Figure 3.11). 

Comparatively, databases except HINT had more random DMIs than individual high-

throughput screens. Bioplex2.0 and HI-II-14 had very low proportion of random DMIs, 

which could be the reason that their enrichment was higher than other datasets. But looking 

at other high-throughput screens, its clear that they also had fewer random DMIs but their 
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enrichment was not as high as BioPlex2.0 and HI-II-14 (Figure 3.11). On the other hand, 

databases were capturing higher proportion of random DMIs but their enrichment in some 

cases was close to CoFrac-15. It can be said that the reason of capturing higher proportion 

of random DMIs could be related to size of the dataset (Figure 3.11). 

 

Figure 3.11. Percentage of random DMIs in total potential  DMIs.  

Y-axis  shows the percentage of  random DMIs being captured from total potentia l  DMIs.  Black dot 
inside the v iol in bars is  the median of  random DMIs.  Datasets shown, from left  to  r ight,  BioGrid,  
BioPlex2.0, CoFrac-12, CoFrac-15, HI- II-14,  HINT, HIPPIE, HPRD, IntAct and QUBIC-15.  

We also checked whether quantity of data had any influence on the overall enrichment of 

DMIs. For this purpose, we compared number of DMIs for each dataset to their respective 

enrichment scores from ELMi-Protein strategy. We didn’t observe any direct impact of DMI 

numbers on enrichment (Figure 3.12). 
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Figure 3.12. Impact of  number of DMIs on enrichment.   

X-axis is the log10 scale of number of DMIs, y-axis is the log10 scale of enrichment score. Triangle 
shape is for high-throughput methods, circ les are for databases, each point represents s ingle 
dataset and size of the shape indicates number of DMIs.  

 

3.6.7 Impact of ELM types on capturing DMIs 

There are six ELM types known in the ELM database i.e. cleavage (CLV), degron (DEG), 

docking (DOC), ligand (LIG), post-translational modification sites (MOD) and targeting 

(TRG). To see if there were any ELM types that were making PPI detection techniques better 

or worse at capturing DMI, we checked enrichment for individual ELM types using ELMc-

Protein. Here, we have combined high-throughput PPI data available in BioGrid, HIPPIE and 

IntAct databases. PPI pairs were made symmetrical, non-redundant and were restricted to 

reviewed proteins. All methods captured significant amount of DEG mediated DMIs but 

didn’t capture any significant amount of CLV or TRG mediated DMIs. AP-MS PPIs captured 

more LIG mediated DMI followed by DEG, DOC and MOD. Two-hybrid captured more DEG 

mediated DMI followed by LIG, DOC, TRG and MOD. Similarly, CoFrac method captured 

more DEG mediated DMIs followed by LIG, DOC and MOD (Figure 3.13).  
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Figure 3.13. Impact of ELM types on DMI enrichment in three high-throughput methods (AP-MS, 
Y2H and CoFrac-MS).   

Top panel shows impact of  ELM types in DMIs captured by AP-MS dataset,  middle panel shows 
impact of ELM types in DMIs captured by Y2H dataset and bottom panel shows impact ELM types 
in DMIs captured by CoFrac dataset.   
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3.7 Discussion 
Different experimental methods have been developed and applied to find domain-motif 

interactions. Most of these methods have been applied to a limited set of domain families: 

PDZ, SH2, SH3, and WW which has left many important domain families out of the picture 

(Blikstad and Ivarsson 2015). Nowadays, studies are being conducted to find SLiMs in 

conjunction with their binding partners in human proteome (Li, Wu et al. 2010; Zhang, Lin 

et al. 2015). Most of the available DMI knowledge has been derived from low-throughput 

studies and there has been no specific study to see how well high-throughput methods 

capture different sorts of interactions i.e. DMI and DDI. In this study we compared PPIs 

identified by different groups and databases to see their capability of capturing DMIs and 

DDIs. One underlying issue in analysing protein interactions is their identifiers. Various 

research groups and data repositories use different protein identifiers in their analysis 

which has become a central difficulty. Thus, to be consistent with diverse datasets, it is 

crucial to map data to a common identifier (Huang, McGarvey et al. 2011). In our study, we 

have mapped datasets which didn’t already had Uniprot IDs (e.g. BioGrid, HIPPIE, HPRD, HI-

II-14, CoFrac-12 and CoFrac-15) to Uniprot Identifiers for consistency and to avoid any 

redundancy issues.  The number of interactions pre- and post-mapping and filtering looked 

considerably good, increasing our confidence in prepared datasets for the analysis.  

3.7.1 High-throughput screens and public PPI repositories capture DMIs 

and DDIs 

Comparison of data generated by high-throughput screens i.e. BioPlex2.0, HI-II-14, QUBIC-

15, CoFrac-12 and CoFrac-15 revealed that all these datasets were significantly enriched in 

terms of capturing DMIs when compared with random pairs of proteins. The number of 

DMIs captured by these datasets corresponded to a very low percentage (<1%) of known 

DMIs available in ELM. On a face value, this might be considered disappointing, but 

enrichment fold of these datasets suggest that they are indeed capturing real DMIs. Looking 

at the enrichment trend in different datasets, it was seen that high throughput methods 
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were not notably worse than PPI databases and, in some cases, seem a lot better. BioPlex2.0 

and HI-II-14 were the best scorer in terms of capturing DMIs (Table 3.1, Figure 3.2A). The 

general trend of enrichment in datasets suggests that Y2H and AP-MS can both be good 

methods to study Domain-motif interactions and high-throughput screen of PPIs indeed 

capture DMIs.  

We also checked how different datasets were capturing DDIs. All datasets showed 

significant enrichment for capturing DDIs when compared with random pairs of proteins. 

Both BioPlex2.0 and HI-II-14 showed higher enrichment as compared to CoFrac datasets 

(Figure 3.2B). Disappointingly, only a small proportion of PPIs attributed to known DDIs 

(Table 3.1). The total proportion of PPIs that could be explained by DMI or DDI data was 

quite small. Only a small percentage of PPIs was either being mediated through DMI or DDI 

(Figure 3.4). According to our analysis, the known DMI data captured by different datasets 

accounts to <1% of the PPIs which is in agreement with previous literature that current 

number of known DMIs account for less than 1% of interactions (Neduva and Russell 2006). 

According to Schuster-Bockler and Bateman, the current known DDI data in iPfam can only 

explain a subset of 4-19% of protein interactions in Homo sapiens (Schuster-Bockler and 

Bateman 2007). In our analysis, the known DDI data from 3did accounts to less than 3% of 

the PPIs, which again suggests that the high-throughput methods might be depleted in 

terms of capturing these interactions. This highlights the concern that there is a large 

proportion of DMIs/DDIs that is yet to be discovered. The number of identified DMIs and 

DDIs in PPIs and their enrichment suggest that protein composition is important when 

identifying these interactions. Furthermore, chi-square test showed which datasets had 

significant enrichment in comparison to other datasets. HPRD was found to be capturing 

higher proportion of DMIs as compared to other datasets (Figure 3.4). Comparison of HPRD 

(i.e. HPRD > other datasets) with other datasets through chi-square pairwise test showed 

that HPRD was more significantly enriched than other datasets in terms of capturing DMIs. 

All other databases had less proportion of PPIs as DMIs than HPRD but higher proportion 
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than high-throughput methods (Figure 3.4). IntAct was capturing significantly more DMIs 

as compared to HIPPIE, HINT, BioGrid, HI-II-14, CoFrac-12, CoFrac-15 and BioPlex2.0. High-

throughput methods on the other hand had lower proportion of DMIs in comparison to 

curated databases (Figure 3.4). Curated databases were generally found significant in 

comparison to other datasets (Table 3.2, Figure 3.4).  

HPRD showed similar trend in case of DDIs. CoFrac-12 showed significant difference with 

IntAct, HIPPIE, HINT, BioGrid and QUBIC-15. BioPlex2.0 showed significant difference with 

HIPPIE. HI-II-14 showed significant difference with IntAct. CoFrac-15 showed significant 

difference with HIPPIE, IntAct, HINT and BioGrid. QUBIC-15 showed significant difference 

with IntAct. Overall, high-throughput methods looked better in terms of having higher 

proportion of DDIs and were more significantly enriched in terms of capturing DDIs as 

compared to databases except HPRD which was found to be significantly enriched than any 

other dataset (Table 3.2, Figure 3.4). 

In future, it would be interesting to have a comparative study where different other 

methods including BioID Mass Spectrometry (Li, Meng et al. 2019) and Phage Display 

(Sidhu, Fairbrother et al. 2003) can be compared to see if they are any good at capturing 

DMIs/DDIs. 

3.7.2 Binary vs Co-complex mapping 

The two orthogonal methods of mapping PPIs are binary where two proteins are in direct 

physical contact with each other and co-complex where interactions usually require 

additional proteins to form multimeric complexes. These complexes can have both direct 

and indirect interactions of different proteins. Y2H is widely known to identify binary 

interactions whereas AP-MS and CoFrac-MS are being used to identify co-complex 

interactions (Luck, Sheynkman et al. 2017). As both HI-II-14 and BioPlex2.0 datasets 

showed higher enrichment fold (~120x), and CoFrac datasets didn’t perform well, we 

decided to further find out which method (i.e. binary and co-complex) was better in terms 
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of identifying DMIs and DDIs. We extracted binary PPIs (i.e. Y2H) and co-complex PPIs (i.e. 

AP-MS and CoFrac-MS) from three well known databases (i.e. BioGrid, IntAct and HIPPIE) 

to evaluate enrichment. In previous studies e.g. (Hecker, Rabiller et al. 2006; Hu, Song et al. 

2009), binary approaches have been used to identify DMIs for example SUMO interacting 

motifs have been identified that interact with the SUMO1 and SUMO2 proteins (Hecker, 

Rabiller et al. 2006; Hu, Song et al. 2009) though there are no specific studies where co-

complex approaches have been used to discover DMIs. In our analysis, all datasets showed 

significant DMI enrichment when compared with random pairs of proteins and there was 

no clear winner among Y2H and AP-MS. They both were capturing significant number of 

known DMIs. CoFrac-MS on the other hand didn’t perform well (Table 3.3, Figure 3.2A). 

Y2H and CoFrac data significantly captured degron motif mediated DMIs while AP-MS 

captured more conventional ligand mediated DMIs (Figure 3.13). ELM type analysis 

revealed that CLV and MOD were not generally good at capturing DMIs. The reason that 

other ELM types captured significant DMIs and CLV and MOD didn’t could be motif 

complexity or their low complexity nature and involvement in post-translational 

modifications. As supported by the ELM type analysis, CoFrac data is not so good as it is only 

getting complexes but still is enriched for DMIs, indicating that DMI are playing important 

roles in complexes, and should not be thought of only in terms of binary interactions. 

Overall, ELM type analysis revealed that MOD and CLV types were not generally good at 

capturing DMIs (Figure 3.13). The general trend of enrichment was same in DDIs where 

both Y2H and AP-MS looked better than CoFrac-MS PPIs (Table 3.3, Figure 3.2B).  

3.7.3 Overlap between the datasets 

As we know, most of the PPI data generated by different studies is also available in public 

PPI databases therefore, there is a likelihood that these databases share certain overlap of 

data. As BioGrid and IntAct are known as the most comprehensive PPI databases having 

most of the high-throughput data available in them. It was likely that DMIs captured by 

other datasets would also be in them. Therefore, we checked what percentage of DMIs 
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captured by different high-throughput studies and databases was overlapping with each 

other. As expected, most of the DMIs captured by different high-throughput methods were 

overlapping with each other (Figure 3.6A).  

3.7.4 DMI prediction quality impacts enrichment 

As it can be seen, the big PPI databases have large number of PPIs, of which only few are 

known to be mediated by DMIs. Looking at the enrichment of these databases, it was clear 

that these big databases are capped on enrichment due to the low number of known DMIs 

and there are many more DMIs that are yet to be found. To see if adding noise in DMI 

prediction can help discover more DMIs with significant enrichment, we tested different 

DMI prediction methods. During recent years, several studies have combined PPI data with 

computational approaches to identify new DMI for known recognition domains, SH2, SH3, 

PDZ and WW domains (e.g. (Encinar, Fernandez-Ballester et al. 2009; Pichlmair, Kandasamy 

et al. 2012; Weatheritt, Jehl et al. 2012; de Chassey, Meyniel-Schicklin et al. 2014), we 

combined PPI data with ELM and domain information available in ELM database as DMI 

prediction strategies. We found that with the introduction of noise in DMI network (using 

ELM and/or domain information), number of DMIs increased while the overall enrichment 

score dropped for all datasets (Table 3.4). In general, the overall enrichment trend/ranking 

of datasets almost remained same when we used ELMc-Protein (Figure 3.7A) or ELMc-

Domain (Figure 3.7A) strategies. This was in agreement with our previous analysis that 

noise in DMI network lowers enrichment score (Figure 2.4) (Idrees, Perez-Bercoff et al. 

2018). The predicted DMIs from ELMc-Protein strategy had a very low false discovery rate 

(FDR) showing their possibility of being real. On the other hand, the estimated FDR for 

individual DMI predictions was quite high (0.1-0.9) for ELMc-Domain strategy which 

highlights the need for caution when interpreting naïve large-scale predictions of this 

nature (Table 3.4). Overall, it can be seen from all sorts of DMI predictions that all these 

databases were quite enriched in terms of capturing DMIs. Motif predictions from different 

tools (for example, SLiMProb) with conservation masking can result in less noisy 
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predictions and in future, it would be interesting to investigate it in depth to see how it 

impacts quality of DMI predictions. 

3.7.5 PPI confidence does not equate to quality 

HINT and HPRD were our high confidence datasets. Both datasets were quite enriched in 

terms of DMIs as well as DDIs. Both databases showed higher DMI enrichment than IntAct 

and HIPPIE but had lower enrichment than BioGrid. On the other hand, HPRD was the most 

enriched dataset in terms of capturing DDIs while HINT didn’t perform as well. Among 

databases, HINT was better than BioGrid but had lower enrichment than other databases. 

HI-II-14, BioPlex2.0 and CoFrac-15 were more enriched than databases in terms of 

capturing DMIs. HI-II-14, BioPlex2.0 and QUBIC-15 had higher DDI enrichment than all 

databases except HPRD. The two CoFrac-MS datasets were the lowest DDI enriched 

datasets.  To see if PPI quality had anything to do with enrichment, we evaluated enrichment 

in PPIs in HIPPIE database based on their confidence score. Looking the enrichment trend, 

we didn’t observe any direct impact of confidence score on enrichment (Figure 3.10) which 

means confidence does not necessarily equate to quality of data for DMI or DDI predictions.   

3.8 Conclusion 
High-throughput experimental methods are generating large number of protein-protein 

interaction (PPI) data. New methods for assessing the quality of identified PPIs as a source 

of different types of interactions (i.e Domain-Motif Interaction (DMI) or Domain-Domain 

Interaction (DDI)) are in high demand due to the error prone nature of these methods. In 

our current analysis, we have assessed PPIs identified from different high-throughput 

screens and publicly available databases as a source of capturing DMIs and DDIs. We found 

significant enrichment in all databases, both Y2H and AP-MS looked promising in terms of 

capturing DMIs and DDIs whereas CoFrac might not be a good source of capturing these 

interactions.  
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4 Chapter 4: Bioinformatics prediction of molecular mimicry in 

viruses 

4.1 Abstract 
Viruses cause dreadful diseases in humans through establishing protein-protein 

interactions (PPIs) with the host cells. During recent years, exponential growth has been 

seen in our knowledge of viral interaction networks. Viruses hijack host cellular machinery 

through mimicking short linear motifs (SLiMs) in host proteins to maintain their life cycle 

inside host cells. Although the number of vhPPIs has grown over the years in databases (i.e. 

PHISTO and VirHostNet2.0), the prediction of molecular mimicry is still considered 

challenging because of their degenerate nature of SLiMs. For this reason, new 

computational methods are much needed to predict new mimicry instances in viruses. In 

this chapter, the SLiMEnrich computational pipeline developed in Chapter 2 is applied to 

study molecular mimicry by viruses using public vhPPI data. The result of this chapter 

shows that vhPPIs available in the PHISTO and VirHostNet2.0 databases capture domain-

motif interactions (DMIs). In chapter 3, I found that both AP-MS and Y2H were good 

methods to capture DMIs in humans. Analysis in this chapter agrees with these findings that 

vhPPIs identified through Y2H and AP-MS are capable of capturing DMIs. Y2H captured 

more DMIs (8 in case of PHISTO and 6 in case of VirHostNet2.0) as compared to the AP-MS 

(6 in case of PHISTO and 4 in case of VirHostNet2.0). The FDR of captured DMIs was quite 

low where FDR of DMIs captured by Y2H was (0.0338-0.0366) while the FDR of DMIs 

captured by AP-MS was (0.0253-0.0860). Comparison of viral subtypes revealed that dsRNA 

viruses were more enriched than ssRNA viruses in terms of DMIs within the available PPI 

data. On the other hand, ssDNA showed more enrichment than dsDNA viruses. If we 

compare RNA vs DNA viral interactions, RNA viruses were more enriched for DMIs than 

DNA viruses. The derived knowledge from this Chapter and Chapter 3 was used to predict 

novel SLiMs using a de novo SLiM discovery tool, QSLiMFinder. A total of 2,316 motifs were 
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predicted in 1,715 significant datasets. In conclusion, it can be said that vhPPI data can be 

used to discover new DMIs and SLiMs. 
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4.2 Introduction 
Viruses are obligate parasites that replicate inside host cells by establishing interactions 

with host proteins (Benedict, Norris et al. 2002; Finlay and McFadden 2006). Viruses are 

responsible for life-threatening diseases in humans. To prevent and treat these diseases, it 

is crucial to understand host-pathogen biological systems (Jean Beltran, Federspiel et al. 

2017). Virus-host protein-protein interactions (vhPPIs) are a regular event that occur 

throughout the viral life cycle. Viruses replicate inside host cells through hijacking host 

cellular machinery (i.e. proteins, lipids and metabolites), which is often achieved by 

“molecular mimicry” of host interactions (Neduva and Russell 2005; Davey, Trave et al. 

2011; Chaurushiya, Lilley et al. 2012; Davey, Van Roey et al. 2012).  

Studying molecular mimicry has become one of the most intriguing aspects of viral research. 

The term ‘molecular mimicry’ was first referred as sharing of antigens between pathogens 

and hosts (Damian 1964), also known as ‘antigenic mimicry’ (Kohm, Fuller et al. 2003). The 

classic definition of molecular mimicry can be defined as: the sharing of short stretches of 

linear amino acid sequence or conformational fit between pathogen and host (Oldstone 

1998). Molecular motif mimicry gives advantage to the viruses to replicate and colonize 

effectively in their host cells (Davey, Trave et al. 2011; Chaurushiya, Lilley et al. 2012) as 

well as to escape detection during invading the host cells (Benedict, Norris et al. 2002; 

Finlay and McFadden 2006). In this chapter, the focus is on PPI motif mimicry and how it 

helps viruses to hijack host cellular machinery.  

SLiMs in pathogenic viral proteins are known as mimicry motifs as they have similar, if not 

identical, amino acid sequences and functions as host SLiMs. SLiMs are robust and highly 

evolvable elements in viruses, which can lead to rewiring of the vhPPIs (Neduva and Russell 

2005; Davey, Van Roey et al. 2012; Chemes, de Prat-Gay et al. 2015). In most of the cases, a 

SLiM that is adequately exposed on protein surface can regulate biological pathways by 

affecting protein stability, ligand binding and targeting (Neduva and Russell 2005; Van 
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Roey, Uyar et al. 2014). Various examples of mimicry motifs have been reported in different 

pathogens, especially in proteins involved in attachment, penetration and cytoadherence. 

One of the best-known examples in viruses is the polyproline motif (PxxPxR), which has 

been reported in non-structural 5A protein (NS5A) of hepatitis C virus as well as in Nef 

protein of HIV type 1 (Shelton and Harris 2008). This polyproline motif establishes 

interactions with SH3 domains of the host proteins (Shelton and Harris 2008). Another 

widely known example of motif mimicry is by human papilloma virus E7 protein which 

mimics LxCxE motif and disrupts the functionality of tumour suppressor retinoblastoma 

protein 1 in host cells (Figure 4.1) (Chemes, de Prat-Gay et al. 2015).  

 

 

Figure 4.1.  A known example of  motif  mimicry.   

B domain of ret inoblastoma (Rb1)  tumour suppressor protein is  inact ivated by binding of  LxCxE 
motif of human papi lloma virus E7 protein. The 3D resolved structure of the Rb protein shows a 
l inear peptide containing LxCxE motif  sequence (posit ion:  22-26)  bound to a highly conserved 
groove on Rb_B domain of Rb1 protein (PDB ID: 1GUX) (Lee, Russo et a l.  1998).  
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High-throughput methods (i.e. Y2H and AP-MS) have been applied to understand 

underlying basis of vhPPIs for example HCV proteome mapping has provided information 

on the molecular basis of co-deregulation of insulin and TGF-β signalling pathways (de 

Chassey, Navratil et al. 2008; Hagai, Azia et al. 2011; de Chassey, Meyniel-Schicklin et al. 

2014). Y2H has been regarded as the most popular method to resolve viral-human 

interactomes while AP-MS approach has been used to map interactomes of only 30 viral 

species (Pichlmair, Kandasamy et al. 2012; de Chassey, Meyniel-Schicklin et al. 2014). Both 

these methods have their strengths and weaknesses. Y2H is good at identifying binary 

biophysical interactions but is not compatible with self-activating or membrane proteins. 

Y2H interactions are generally not in their native biological context; to get high confidence 

vhPPIs, several factors need to be considered (i.e. yeast strains, reporter genes, plasmid 

copy number, stringency conditions, and fusion proteins). On the other hand, AP-MS is 

considered better in identifying context-dependent vhPPIs and can be done under more 

physiological conditions (Chapter 1: 1.3). During recent years, different computational 

methods have been developed to study proteome wide vhPPIs (Dyer, Murali et al. 2007; 

Evans, Dampier et al. 2009; Segura-Cabrera, Garcia-Perez et al. 2013). But most of these 

studies have been targeted to selected pathogens only (Emamjomeh, Goliaei et al. 2014; 

Barnes, Karimloo et al. 2016; Zhang, He et al. 2017). To date, there has been no study to 

analyse different viral subtypes to see how they perturb host cellular machinery for their 

regulatory functions and infection cycle through hijacking SLiMs. Therefore, it’s of interest 

to see how different subtypes of viruses tend to interact with host proteins through SLiMs. 

Thus, this chapter is focused on utilization SLiMEnrich to study mimicry using vhPPI data, 

to see which high-throughput method is better at predicting mimicry, to see how different 

viruses hijack host cellular machinery and to discover new SLiMs. 
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4.3 Aims and objectives 

The main objective was to combine the results of Chapters 2 and 3 with available vhPPI data 

to gain insight into SLiM-mediated interactions between viruses and their hosts, with a 

specific focus on motif mimicry. More specifically, this chapter aims to:  

• Assess whether the available vhPPI data is enriched for known SLiM-mediated 

interactions and identify which large-scale PPI capturing method (two hybrid and 

affinity purification) is better for studying SLiM-mediated interactions in virus-host 

context. 

• Analyse viral subtypes to infer how much they use SLiMs to perturb host cellular 

machinery for their regulatory functions and infection cycle. 

• Use derived knowledge for de novo prediction of novel SLiMs involved in viral 

molecular mimicry. 
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4.4 Methods 

4.4.1 Data acquisition and enrichment analysis 

Two comprehensive virus-host PPI (vhPPI) databases were downloaded: Pathogen Host 

Interaction Search Tool (PHISTO) (Durmus Tekir, Cakir et al. 2013) [retrieved on: 2018-05-

24] and Virus Host Network 2.0 (VirHostNet2.0) (Guirimand, Delmotte et al. 2015) 

[retrieved on: 2018-09-11]. vhPPIs belonging to four viral groups (ssRNA, dsRNA, ssDNA 

and dsDNA) were individually downloaded from VirHostNet2.0 database as well as PHISTO 

database. Both databases were split into two well-known high throughput methods, Y2H 

and AP-MS, by pulling out interactions using “two hybrid” and “affinity” as keywords. ELM 

data from our previous analysis (Chapter 3: 3.2.1) was used to evaluate enrichment and to 

predict DMIs using vhPPI data. Enrichment differences were evaluated using SLiMEnrich 

(Chapter 2) through the ELMi-Protein strategy (Figure 2.1). ELMc-Protein and ELMc-

Domain strategies (Figure 2.1) were employed to further increase the size of the network 

and to discover new DMIs. Normalisation of the data was done by dividing number of real 

DMIs by mean random DMIs. 

4.4.2 DMI prediction using predicted SLiM instances 

To predict new DMIs, new SLiM instances of known ELMs were predicted using SLiMProb 

v2.5.1 (Edwards and Palopoli 2015) with the disordered masking feature (IUPred score >= 

0.2) (Hagai, Azia et al. 2011). The predicted SLiMs were then used to predict DMIs using 

SLiMEnrich (Chapter 2) through the ELMc-Protein (predicted SLiMs mapped to known 

human partner proteins via ELMs) and ELMc-Domain (predicted SLiMs mapped to Pfam-

domain-containing human partner proteins) strategies (Figure 2.1).  

4.4.3 DMI prediction in different viral subtypes 

VirHostNet2.0 and PHISTO datasets were divided into four viral groups based on their 

genetic material. PHISTO dataset had viral PPIs from 8 different double stranded DNA virus 
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families (dsDNA), 2 single stranded DNA virus families (ssDNA), 2 double stranded RNA 

virus families (dsRNA) and 13 single stranded RNA virus families (ssRNA). VirHostNet2.0 

data consisted of 25 ssRNA virus families, 13 dsDNA virus families, 5 ssDNA virus families 

and 2 dsRNA families. The ELMc-Domain strategy of SLiMEnrich (Figure 2.1) was 

employed to predict DMIs in each group using SLiMs predicted using SLiMProb v2.5.1. 

Modification (MOD) and cleavage (CLV) ELM types were excluded from the analysis to 

reduce noise in the network, because post translational modification motifs tend to have 

lower complexity (and therefore more random occurrences) and interact with common 

domains (and therefore more chance for random motif-domain connections) (Chapter 3: 

3.6.7). 

Gene ontology (GO) enrichment analysis of human genes targeted by viral proteins was 

done using Biological Networks Gene Ontology tool (BiNGO) (Maere, Heymans et al. 2005). 

A binomial statistical test was applied to visualise overrepresentation of the GO terms (p-

value < 0.001). Benjamini & Hochberg false discovery rate correction was applied for testing 

correction. Human proteins from the vhPPI were selected as the background to evaluate 

enrichment of DMI (mimicry) targets over general viral targets. 

4.4.4 De-novo prediction of human SLiMs mimicked by viruses 

As both Y2H and AP-MS datasets showed significant DMI enrichment therefore, I decided to 

focus on one of them (HI-II-14) to further explore them and to see if PPIs having significant 

DMI enrichment could be used for de-novo SLiM predictions. The reason of selecting HI-II-

14 dataset was two-fold: 1) It was found to be significantly enriched for real DMIs/DDIs, 2) 

It was based on Y2H experiment which has previously be shown to be effective in terms of 

capturing DMIs (Blikstad and Ivarsson 2015). 

To do this, I integrated viral (PHISTO) (Durmus Tekir, Cakir et al. 2013) and human (HI-II-

14) (Rolland, Tasan et al. 2014) datasets together by mapping protein partners of each viral 

protein in vhPPIs to their respective interactors in human interactome. 
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A total of 12,139 datasets were generated for vhPPI pairs; for each pair the dataset 

contained a single viral protein and all the human interactors of the viral protein’s human 

interaction partner. FASTA sequences for each dataset were retrieved from the Uniprot 

database  (UniProt Consortium 2018) and were fed to QSLiMFinder v2.20 (Palopoli, 

Lythgow et al. 2015), [ambiguity=T and cloudfix=F] with the viral protein in each dataset 

treated as the query sequence for de-novo discovery of SLiMs. QSLiMFinder looks for any 

sequence motifs present in this query sequence that are enriched in the rest of the dataset 

(e.g. viral protein motifs that are enriched in the human interaction partner).  

Two alternative versions of the integrated dataset were simulated as control groups:  

1. Random viral protein (“randomvProtein”): The vhPPI network was disrupted by 

shuffling viral proteins. This pairs each viral protein with the human interactors of 

a random human protein. 

2. Random human interactor (“randomInteractor”): The human-human PPI network 

was disrupted by shuffling human proteins. This effectively pairs each viral protein 

with a random set of human proteins. 

As with the real data, FASTA sequences of all proteins were retrieved from Uniprot (UniProt 

Consortium 2018) and used for the de-novo discovery of SLiMs using QSLiMFinder v2.20 

(Palopoli, Lythgow et al. 2015) with the viral proteins used as the query  (Figure 4.2). The 

P-value of each SLiM returned was estimated using default QSLiMFinder “Sig” values. 

4.4.5 Multiple testing correction for de novo SLiM prediction 

Multiple testing correction for the QSLiMFinder predictions was performed by calculating 

the estimated approximate FDR based on the expected number of false positives, using: 

FDR = pN/np, 

Where N represents the total number of datasets, np represents number of results returned 

with significance p-value. Note that, unlike a traditional statistical test, a single dataset 
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might return multiple true and/or false positive SLiM predictions. Datasets that were too 

small (too few UPC) were disregarded from the analysis. As per QSLiMFinder default 

settings (Palopoli, Lythgow et al. 2015), only datasets that had 3+ unrelated proteins (UPCs) 

were included in the analysis and analysis was focused on significant datasets (QSLiMFinder 

default, p-value <0.1). 

4.4.6 Comparison with previously published ELMs  

CompariMotif v3.13 (Edwards, Davey et al. 2008) was used to compare discovered motifs 

with the previously published motifs from ELM and to find degree of overlap and 

relationships between them. Motifs were then classified using the benchmarking criteria 

from the QSLiMFinder paper (Palopoli, Lythgow et al. 2015): a motif was regarded as a true 

positive (TP) match if it met minimum match criteria of MatchIC ≥ 1.5 and normalised IC ≥ 

0.5, and the hub protein was known to interact with the matching ELM; a motif was regarded 

as off-target (OT), if the pattern matched an ELM with more stringency (MatchIC ≥ 2.5 or 

NormIC ≥ 1.0) but the matched ELM was not known to interact with the hub protein. Any 

hits below the minimum match criteria were regarded as spurious and ignored. Motifs 

without any matches meeting the criteria were considered false positive (FP) predictions if 

returned by control datasets, or candidate novel motifs if returned by the real data.  
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Figure 4.2.  Schema of de-novo  SL iM discovery and data generation.  

A)  Basic  workf low of de-novo  SLiM discovery pipel ine.  The virus-human interactome is  integrated 
with the human interactome by mapping each human partner protein (hProtein) to its 
corresponding human interaction partners (Interactors) in HI-II-14 dataset.  The human interactors 
were then added to the corresponding v iral protein (vProtein) to make a dataset for QSLiMFinder 
v2.2 de-novo discovery of  SLiMs,  using the vProtein as the query. Two control groups were 
generated where the f irst group had shuff led viral proteins and second group had shuffled human 
interactor proteins. Discovered SL iMs were then compared with previously publ ished SLiMs from 
ELM using CompariMotif  v3.3.1 tool.   

B)  Dataset generation for de-novo  SLiM discovery.  vhPPIs and hPPIs are integrated by mapping 
human protein partners of viral proteins in vhPPIs to human proteins in hPPIs.  
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4.5 Results 

4.5.1 Does the viral-human PPI data capture SLiM based interactions? 

In this chapter, I analyse domain-motif interactions (DMIs) in which a SLiM-containing viral 

protein interacts with an ELM-binding human protein, using virus-host protein-protein 

interaction (vhPPI) data from the PHISTO (Durmus Tekir, Cakir et al. 2013) and 

VirHostNet2.0 (Guirimand, Delmotte et al. 2015) databases.   

First, it was of interest to assess whether these vhPPI data capture DMIs, and how enriched 

different datasets are in terms of capturing DMIs. For this purpose, the ELMi-Protein 

strategy of SLiMEnrich (Chapter 2, Figure 2.1) was used. VirHostNet2.0 captured 16 

known DMIs, which is 20x enrichment compared to random (Figure 4.3). PHISTO captured 

22 known DMIs with 18x enrichment (Figure 4.3). Enrichment in both datasets was 

strongly significant (P-value <0.001). This showed that vhPPI data was indeed capturing 

DMIs and thus, can be a good source of studying molecular mimicry in viruses.  

4.5.2. Which high-throughput method is better at capturing viral-host DMIs? 

In the previous analysis of human interactomes, it was found that both Y2H and AP-MS were 

potentially good methods to capture DMIs (Chapter 3). Keeping that in mind, I evaluated 

vhPPI data sources to see if they agree with my previous findings. Y2H and AP-MS 

interactions were extracted from PHISTO and VirHostNet2.0 database and were evaluated 

for enrichment using ELMi-Protein strategy (Table 4.1). As the number of DMIs was quite 

small, the noisier ELMc-Protein strategy was also employed; Chapter 3 highlighted ELMc-

Protein as the most effective strategy as it captured reasonable number of DMIs with 

significant enrichment (Chapter 3: 3.7.3). Both strategies use known SLiM instances to 

assess how well these high-throughput methods are capturing DMIs. Both methods showed 

significant enrichment (P-value < 0.001) in terms of capturing DMIs (Table 4.1, Figure 

4.3). AP-MS PPIs in PHISTO showed higher enrichment as compared to Y2H while AP-MS 

PPIs in VirHostNet2.0 showed slightly lower enrichment than Y2H (Figure 4.3). The results 
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agreed with our previous analysis that both Y2H and AP-MS are potentially good to captured 

DMIs.  

It should be noted that the FDR shown in these tables is the FDR calculated by SLiMEnrich for 

each DMI rather than the multiple testing correction of the p-value. 

Table 4.1.   DMI enrichment in high-throughput interaction data avai lable in PHISTO and 
VirHostNet2.0 databases.  

 

Strategy Dataset Method vhPPI1 potDMI DMI2 Enrichment 
(3 s.f.)  

FDR (4 
d.p.) 

ELMi-
Protein 

PHISTO All 34,832 39 22** 18.0 0.0261 

Affinity 9,973 10 6** 39.5 0.0253 

Y2H 7,701 21 8** 29.5 0.0338 

VirHostNet2.0 All 22,886 30 16** 20.0 0.0498 

Affinity 5,765 7 4** 11.6 0.0860 

Y2H 8,530 19 6** 27.3 0.0366 

ELMc-

Protein 

PHISTO All 34,832 150 36** 19.0 0.0523 

Affinity 9,973 28 8** 22.6 0.0442 

Y2H 7,701 54 14** 17.5 0.0572 

VirHostNet2.0 All 22,886 101 34** 18.2 0.0547 

Affinity 5,765 31 17** 16.4 0.0908 

Y2H 8,530 52 12** 17.4 0.0575 

** P-value < 0.001 
1. Non-redundant vhPPIs. 
2. Non-redundant observed DMI. 
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Figure 4.3. Normalised number of real DMIs (DMI R e a l  = DMI O b s  – DMI R a n).  

Real  DMIs captured by the high-throughput methods available in PHISTO and VirHostNet2.0 over 
1000x randomisations using ELMc-Protein strategy. Y-axis shows the normalised number of  real  
DMIs. Left panel,  enrichment of DMIs captured by AP-MS in both datasets. Right panel,  enrichment 
of DMIs captured by Y2H in both datasets.  Red, PHISTO.  Orange,  VirHostNet2.0.  

 

Once it was established that vhPPI data was capturing DMIs and both Y2H and AP-MS 

methods were good in terms of capturing DMIs, I shifted focus towards predicting new 

DMIs. For this purpose, all vhPPIs available in PHISTO and VirHostNet2.0 were used. 

4.5.3. DMI prediction using known viral instances  

For this analysis, I used known viral instances that were known for mimicry in ELM. The 

ELMc-Protein strategy was used to link known viral instances to their potential human 

partners known to interact with that ELM class. PHISTO captured 36 non-redundant DMIs 

with enrichment score of 19.1 and FDR of 0.0523. On the other hand, VirHostNet2.0 

captured 35 DMIs (34 non-redundant DMIs) with enrichment score of 18.2 and FDR of 

0.0547 (Figure 4.6B). 25 DMIs were captured by both datasets (Figure 4.4, Table 4.2). 
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Table 4.2.   Known/Predicted DMIs captured by PHISTO and VirHostNet2.0 datasets.  

Dataset vProtein Uniprot Motif hProtein Uniprot 
PHISTO LT-Ag B8ZX42 LIG_Rb_LxCxE_1 RB1 P06400‡ 

E7 P03129 LIG_Rb_LxCxE_1 RB1 P06400 ‡ 
LMP1 P03230 LIG_TRAF2_2 TRAF2 Q12933 ‡ 
UL48 P06492 LIG_HCF-1_HBM_1 HCFC1 P51610 
LMP2 P13285 LIG_WW_1 NEDD4 P46934 
LMP2 P13285 LIG_WW_1 ITCH Q96J02 
UL56 P28282 LIG_WW_1 NEDD4 P46934‡ 
UL56 P28282 LIG_WW_1 ITCH Q96J02 
Segment-10 P08363 LIG_WW_1 NEDD4 P46934‡ 
Segment-10 P08363 LIG_WW_1 ITCH Q96J02‡ 
VP-40 Q05128 LIG_WW_1 NEDD4 P46934 
EBNA6 P03204 LIG_CSL_BTD_1 RBPJ Q06330‡ 
EBNA2 Q3KSV2 LIG_CSL_BTD_1 RBPJ Q06330 
E1A P03254 LIG_CtBP_PxDLS_1 CTBP1 Q13363‡ 
P1234 P03317 LIG_G3BP_FGDF_1 G3BP1 Q13283‡ 
P1234 P03317 LIG_G3BP_FGDF_1 G3BP2 Q9UN86‡ 
UL48 P06492 LIG_HCF-1_HBM_1 HCFC1 P51610 
VACWR159 P68619 LIG_KLC1_WD_1 KLC1 Q07866‡ 
gag P03347 LIG_LYPXL_L_2 PDCD6IP Q8WUM4 
E1A P03255 LIG_MYND_1 ZMYND11 Q15326‡ 
EBNA2 P12978 LIG_MYND_1 ZMYND11 Q15326 
E6 P03126 LIG_PDZ_Class_1 TAX1BP3 O14907‡ 
E6 P03126 LIG_PDZ_Class_1 DLG1 Q12959‡ 
E6 P03126 LIG_PDZ_Class_1 SCRIB Q14160‡ 
E6 P03126 LIG_PDZ_Class_1 MAGI1 Q96QZ7‡ 
E6 P06463 LIG_PDZ_Class_1 TAX1BP3 O14907 
E6 P06463 LIG_PDZ_Class_1 DLG1 Q12959 
E6 P06463 LIG_PDZ_Class_1 SCRIB Q14160 
E6 P06463 LIG_PDZ_Class_1 MAGI1 Q96QZ7 
E4 P89079 LIG_PDZ_Class_1 DLG1 Q12959 
gag P03347 LIG_PTAP_UEV_1 TSG101 Q99816 
Segment-10 P08363 LIG_PTAP_UEV_1 TSG101 Q99816‡ 
gag P18095 LIG_PTAP_UEV_1 TSG101 Q99816‡ 
T-antigen P03077 LIG_PTB_Phospho_1 SHC1 P29353‡ 
E1A P03255 LIG_Rb_pABgroove_1 RB1 P06400‡ 
polyprotein P26662 LIG_SH3_2 GRB2 P62993 
UL37 P10221 LIG_TRAF6 TRAF6 Q9Y4K3 

VirHostNet2.0 LT-Ag B8ZX42 LIG_Rb_LxCxE_1 RB1 P06400 
LT-Ag P03070 LIG_Rb_LxCxE_1 RB1 P06400 
T-antigen P03077 LIG_PTB_Phospho_1 SHC1 P29353‡ 
E6 P03126 LIG_PDZ_Class_1 TAX1BP3 O14907 
E6 P03126 LIG_PDZ_Class_1 MPDZ O75970 
E6 P03126 LIG_PDZ_Class_1 TJP1 Q07157 
E6 P03126 LIG_PDZ_Class_1 DLG1 Q12959 
E6 P03126 LIG_PDZ_Class_1 SCRIB Q14160 
E6 P03126 LIG_PDZ_Class_1 DLG2 Q15700 
E6 P03126 LIG_PDZ_Class_1 MAST2 Q6P0Q8 
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E6 P03126 LIG_PDZ_Class_1 MAGI1 Q96QZ7 
E7 P03129 LIG_Rb_LxCxE_1 RB1 P06400‡ 
EBNA6 P03204 LIG_CSL_BTD_1 RBPJ Q06330 
LMP1 P03230 LIG_TRAF2_2 TRAF2 Q12933 
E1A P03254 LIG_CtBP_PxDLS_1 CTBP1 Q13363‡ 
E1A P03255 LIG_Rb_LxCxE_1 RB1 P06400‡ 
E1A P03255 LIG_Rb_pABgroove_1 RB1 P06400‡ 
E1A P03255 LIG_MYND_1 ZMYND11 Q15326‡ 
P1234 P03317 LIG_G3BP_FGDF_1 G3BP1 Q13283‡ 
P1234 P03317 LIG_G3BP_FGDF_1 G3BP2 Q9UN86‡ 
PB2 P03428 TRG_NLS_Bipartite_1 KPNA1 P52294 
E6 P06463 LIG_PDZ_Class_1 TAX1BP3 O14907 
E6 P06463 LIG_PDZ_Class_1 MPDZ O75970 
E6 P06463 LIG_PDZ_Class_1 DLG1 Q12959 
E6 P06463 LIG_PDZ_Class_1 SCRIB Q14160 
E6 P06463 LIG_PDZ_Class_1 DLG2 Q15700 
E6 P06463 LIG_PDZ_Class_1 MAST2 Q6P0Q8 
E6 P06463 LIG_PDZ_Class_1 MAGI1 Q96QZ7‡ 
Segment-10 P08363 LIG_WW_1 NEDD4 P46934‡ 
Segment-10 P08363 LIG_WW_1 ITCH Q96J02 
Segment-10 P08363 LIG_PTAP_UEV_1 TSG101 Q99816‡ 
gag P14349 LIG_PTAP_UEV_1 TSG101 Q99816 
gag P18095 LIG_PTAP_UEV_1 TSG101 Q99816 
UL56 P28282 LIG_WW_1 NEDD4 P46934‡ 
VACWR159 P68619 LIG_KLC1_WD_1 KLC1 Q07866‡ 

Known DMIs are shown in bold. 

‡ DMIs captured by both datasets. 

 

4.5.4. DMI prediction using known instances and Pfam domains 

The ELMc-Domain strategy was used to further increase the number of predicted DMI. For 

this purpose, known viral instances were linked to Pfam domain containing human proteins 

via ELMs. PHISTO dataset captured 76 non-redundant DMIs where 18 unique motifs of 27 

viral sequences interacted with 17 distinct domains of 51 host proteins (Figure 4.4, Figure 

4.5). The FDR rate of these prediction was 0.124. VirHostNet2.0 PPI data captured 114 (106 

NR) DMIs where 15 unique ELMs of 17 viral sequences interacted with 12 distinct domains 

of 60 host proteins (Figure 4.4). The FDR rate of these predictions was 0.0862 (Figure 4.5). 

PHISTO showed 8.04x enrichment and VirHostNet2.0 showed 11.6x enrichment. Significant 

enrichment was observed for both datasets (P-value <0.001) (Figure 4.6C). 
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Figure 4.4. Domain-motif interaction (DMI) network of known and predicted DMIs .  

DMIs resolved at the PPI level.  Red el l ipses, viral proteins .  Orange rectangles,  human proteins .  
Thick solid black l ines,  DMIs captured using ELMi-Protein strategy. Thin sol id black l ines, DMIs 
captured using ELMc-Protein strategy. Black dotted l ines,  DMIs captured using ELMc-Domain 
strategy.  
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Figure 4.5.  SLiMEnrich histograms of observed and expected DMI counts in vhPPI  datasets.   

A)  Absolute number of NR DMI in PHISTO dataset.  

B)  Absolute number of NR DMI in VirHostNet2.0 dataset. Frequency bars indicate the number of  
randomised PPI  datasets returning a given number of DMIs.  The dotted arrow indicates the 
observed number of DMIs.  
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Figure 4.6.  Normalised number of real DMIs (DMI R e a l  = DMI O b s  – DMI R a n).  

Real DMIs captured by the vhPPI datasets over 1000x randomisations using ELMc-Domain strategy. 
Y-axis shows the normalised number of real DMIs. PHISTO enrichment is shown in red and 
VirHostNet2.0 enrichment is shown in orange.  Black dot inside bar shows the median of the real  
DMIs.  

A)  Normalised number of real DMIs captured using ELMi-Protein strategy, B)  Normalised number 
of real DMIs captured using ELMc-Protein strategy where known viral instances were used, C)  
Normalised number of  real DMIs captured using ELMc-Domain strategy where known viral 
instances were used along with Pfam domains.  
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On a general note, the predicted DMIs had fewer viral proteins interacting with higher 

number of (~2x for PHISTO and ~4x for VirHostNet2.0) host proteins (Figure 4.7). Most of 

the predicted DMIs in PHISTO database were in VirHostNet2.0 database (Figure 4.8A). 

Around 55% of viral proteins in DMIs captured by PHISTO were in VirHostNet2.0 database 

(Figure 4.8B). Similarly, ~50% of the human proteins in DMIs captured by PHISTO were in 

VirHostNet2.0 database (Figure 4.8C). 

 

Figure 4.7.  Number of viral  Proteins and human proteins in DMIs.  

Viral and human proteins involved in DMIs predicted using ELMc-Domain strategy where known 
SLiM instances were used. Yellow represents viral  Proteins and red represents human proteins.  
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Figure 4.8. Overlap of PHISTO and VirHostNet2.0 datasets.  

Red circles represent PHISTO and orange circle represents VirHostNet2.0 datasets.  A)  Overlap of  
DMIs captured by PHISTO and VirHostNet2.0 datasets. Numbers shows the non-redundant DMIs 
captured using known SLiMs via ELMc-Domain strategy. B)  Overlap of non-redundant viral proteins 
involved in DMIs, C)  Overlap of non-redundant human proteins involved in DMIs.  

 

4.5.5. DMI prediction using predicted viral instances of known ELMs 

To predict new candidates for molecular mimicry, SLiM instances of known ELMs were 

predicted in all viral proteins using SLiMProb v2.5.1 (Edwards and Palopoli 2015) with the 

disordered masking feature (IUPred score >= 0.2) (Hagai, Azia et al. 2011).  The predicted 

SLiMs were then used to predict DMIs using ELMc-Protein strategy. Both PHISTO and 

VirHostNet2.0 datasets still showed significant enrichment for DMIs (Figure 4.9).  PHISTO 
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predicted 294 non-redundant DMIs where 46 unique motifs of 202 viral sequences 

interacted with 54 host proteins. The FDR of these predictions was 0.4154 (Figure 4.9A). 

VirHostNet2.0 returned 196 (183 NR) DMIs where 42 unique ELMs of 113 viral sequences 

interacted with 53 host proteins. The FDR of these predictions was 0.3923 (Figure 4.9B). 

PHISTO showed 2.40x enrichment and VirHostNet2.0 showed 2.54x enrichment, both 

highly significantly enriched versus random data (P-value <0.001) (Figure 4.11A). 

 

Figure 4.9.  SLiMEnrich histograms of observed and expected DMI counts in vhPPI  datasets.  

Expected DMI counts using ELMc-Protein strategy where predicted SLiMs were used, A)  Absolute 
number of DMI count in PHISTO dataset,  B)  Absolute number of DMI count in VirHostNet2.0 
dataset.  Frequency bars indicate the number of  randomised PPI datasets returning a given number 
of predicted DMIs.  The dotted arrow indicates the observed number of DMIs.  
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4.5.6. DMI prediction using predicted viral SLiMs and Pfam domains 

Finally, predicted viral SLiMs were linked to human proteins via ELM-binding Pfam 

domains. This introduction of noise in DMI network drastically increased DMI number while 

lowering the overall enrichment. PHISTO returned 6,498 (2,728 NR) DMIs, where 120 

unique motifs of 582 viral sequences interacted with 56 distinct domains of 541 host 

proteins. The FDR of these predictions was 0.7507(Figure 4.10A). VirHostNet2.0 PPI 

returned 3,025 (1,131 NR) DMIs where 111 unique ELMs of 274 viral sequences interacted 

with 51 distinct domains of 457 host proteins (Figure 4.10B). The FDR of these predictions 

was 0.7843. PHISTO showed 1.33x enrichment and VirHostNet2.0 showed 1.27x 

enrichment (Figure 4.11B). Both PHISTO and VirHostNet2.0 were still significantly 

capturing DMIs (P-value <0.001). 

 

 

Figure 4.10. SLiMEnrich histograms of observed and expected DMI counts in vhPPI datasets.  

Expected DMIs using ELMc-Domain strategy where predicted SL iMs were used, A)  Absolute 
number of DMI count in PHISTO dataset,  B)  Absolute number of DMI count in VirHostNet2.0 
dataset.  Frequency bars indicate the number of  randomised PPI datasets returning a given number 
of predicted DMIs.  The dotted arrow indicates the observed number of DMIs.  
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Figure 4.11.  Normalised number of real  DMIs captured by the vhPPI datasets over 1000x 
randomisations.   

PHISTO enrichment is shown in red and VirHostNet2.0 enrichment is shown in orange. Black dot 
inside bar shows the median of the real  DMIs. Y-axis  shows the normalised number of real DMIs. 
A)  Normalised number of real DMIs captured using ELMc-Protein strategy where new instances of 
known ELMs were used,  B) Normalised number of real  DMIs captured using ELMc-Domain strategy 
where new instances of known ELMs were used.  
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4.5.7. Molecular mimicry in different classes of virus  

To date, there has been no study to analyse different viral subtypes based on their genetic 

material to see how they perturb host cellular machinery for their regulatory functions and 

infection cycle. Therefore, the main objective was to see how different viruses tend to 

interact with host proteins through SLiMs based on their genetic material.  

4.5.7.1. DMI Prediction in different viral subtypes 

PHISTO and VirHostNet2.0 databases were split into different groups based on viral genetic 

material: RNA single stranded (ssRNA), RNA double stranded (dsRNA), DNA single stranded 

(ssDNA) and DNA double stranded (dsDNA). SLiMProb v2.5.1 was run on viral proteins of 

each viral group to predict new SLiM instances of known ELMs using disorder masking. 

Predicted SLiM instances were then used to predict new DMIs using the ELMc-Domain 

strategy. The reason of choosing this strategy was to see how predicted viral motifs hijack 

host cellular machinery through mimicking specific domain interaction partners. The MOD 

and CLV ELM classes, which are involved in post-translational modifications, tend to be low 

complexity and/or have a high prevalence of interacting domains in the human proteome, 

which makes them generally poorly enriched for DMI (Figure 3.13). These classes were 

excluded from the analysis to reduce the false discovery rate and focus on DMIs that are 

more likely to be true positive by reducing noise in the network. 

1. DMI Prediction in RNA viruses 

Both databases had more ssRNA interactions than dsRNA interactions (Table 4.3). PHISTO 

database had 58 dsRNA vhPPIs, of which only 1 was predicted to be a DMI with 2.3x 

enrichment (Figure 4.12A, Table 4.3). VirHostNet2.0 had 165 dsRNA vhPPIs, of which only 

4 were predicted as DMIs with 9.78x enrichment (Figure 4.12A, Table 4.3). The ssRNA 

vhPPIs of both databases predicted more DMIs, but with lower enrichment in each case. Out 

of 10,389 vhPPIs in PHISTO, 448 were predicted DMIs with 1.27x enrichment and out of 
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14,892 vhPPIs in VirHostNet2.0, 208 were predicted DMIs with 3.37x enrichment (Figure 

4.12, Table 4.3). 

Table 4.3.   DMI prediction and enrichment analysis of viral subtypes.   

Dataset Viral 
subtype 

vhPPIs1 potDMI2 Predicted DMI3 E-score FDR 

PHISTO dsRNA 58 2 1* 2.30 0.434 
ssRNA 10,389 58,209 448** 1.27 0.783 

VirHostNet2.0 dsRNA 165 28 4** 9.78 0.102 
ssRNA 14,892 14,131 208** 3.37 0.296 

PHISTO dsDNA 212 335 17* 1.30 0.769 
ssDNA 62 60 8* 0.92 1.000 

VirHostNet2.0 dsDNA 29,532 166,264 561** 2.26 0.441 
ssDNA 640 295 16** 1.90 0.526 

*P-value < 0.01 
**P-value < 0.001 

1. Non-redundant vhPPIs. 
2. Non-redundant number of all possible DMIs between a motif containing protein and Pfam domain containing 

protein available in vhPPIs. 
3. Non-redundant predicted DMIs excluding PTMs. 

 
 

 

Figure 4.12.  Normalised number of real DMIs predicted using viral subtype PPIs available in 
PHISTO and VirHostNet2.0 using ELMc-Domain strategy. 

A)  Normalised number of real  DMIs predicted over 1000x randomisations using predicted 
SLiM instances of dsRNA viruses, B)  Normalised number of real DMIs predicted over 1000x 
randomisations using predicted SLiMs of dsDNA viruses.  C)  Normalised number of real 
DMIs predicted over 1000x randomisations using predicted SLiM instances of  ssRNA 
viruses,  B)  Normalised number of real DMIs predicted over 1000x randomisations using 
predicted SLiMs of ssDNA viruses.  
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Gene ontology enrichment analysis was performed to see which biological processes were 

being disrupted by viral proteins upon targeting human proteins. The human proteins 

targeted by ssRNA viral proteins were enriched in regulation and metabolic related 

processes (p-value < 0.001). The targeted proteins were also involved in binding (i.e. 

protein binding and calcium binding) functions and activities like transferase and kinase. 

The targeted proteins were mostly enriched in cytoplasm (more specifically in cytosol) and 

cytoskeleton (Figure 4.13). 

 

Figure 4.13. Gene ontology enrichment analysis of human proteins targeted by ssRNA viral 
proteins.  

Size of the circ le shows number of proteins; darker shaded circ les represent more enrichment 
while l ighter shades represents lower enrichment.  

 

On the other hand, human proteins targeted by dsRNA viral proteins were involved in 

symbiosis, reproduction, regulatory, metabolic, modification processes and catalytic 

activities. These proteins were mostly enriched in plasma membrane (Figure 4.14). 
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Figure 4.14. Gene ontology enrichment analysis of human proteins targeted by dsRNA viral  
proteins.  

Size of the circle shows number of proteins; darker shaded c irc les represent more enrichment 
while l ighter shades represents lower enrichment.  

2. DMI Prediction in DNA viruses 

PHISTO database had only 212 dsDNA interactions, of which only 17 were being mediated 

by SLiMs (Table 4.3). VirHostNet2.0 had large number of dsDNA interactions (29,532 

vhPPI) of which only a small fraction (561) were DMI. Both databases had lower number of 

ssDNA interactions in comparison to dsDNA. PHISTO had 62 vhPPIs, of which 8 were DMIs. 

VirHostNet2.0 had 640 vhPPIs, of which 16 were DMIs. dsDNA vhPPIs were more enriched 

than ssDNA vhPPIs in terms of capturing DMIs (Figure 4.12, Table 4.3). 

Gene ontology enrichment analysis showed that most of the human proteins targeted by 

dsDNA viral proteins were primarily enriched in metabolic, regulation, signal transduction 

and cell cycle processes. These proteins were mainly enriched in nucleoplasm and cytosol. 

These human proteins were mostly involved in molecular functions of protein binding, 

nucleotide binding and activities like kinase and transferase (Figure 4.15). 
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Figure 4.15 .  Gene ontology enrichment analysis of human proteins targeted by dsDNA viral 
proteins.   

Size of the circ le shows number of proteins; darker shaded circ les represent more enrichment 
while l ighter shades represents lower enrichment.  

 

On the other hand, human proteins targeted by ssDNA viral proteins were found to be 

enriched in metabolic related processes and kinase activity (Figure 4.16). 
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Figure 4.16 .  Gene ontology enrichment analysis of human proteins targeted by ssDNA viral 
proteins.  

Size of the circle shows number of proteins; darker shaded c irc les represent more enrichment 
while l ighter shades represents lower enrichment.  

4.5.8. De-novo SLiM discovery 

Previous analysis revealed that both human and viral-human interactomes were capturing 

DMIs with significant enrichment and so these data were used for de-novo SLiM discovery. 

A total of 12,139 datasets were generated for vhPPI pairs; for each pair the dataset 

contained a single viral protein and all the human interactors of the viral protein’s human 

interaction partner. The generated datasets were fed to QSLiMFinder where viral proteins 

were treated as a query to predict SLiMs. As per the SLiM discovery criteria (Palopoli, 

Lythgow et al. 2015), datasets which had too few or too many UPCs (Unrelated protein 

clusters) were disregarded from the analysis. A total of 1,857 significant datasets (p-value 

<0.1) returned 2,564 motifs in the real group. Given the large number of datasets, and 

previous observation that QSLiMFinder is not a stringent as SLiMFinder (Palopoli, Lythgow 

et al. 2015), it was decided to focus on results with the more stringent significance 

thresholds of ≤0.01. Motifs with overlapping patterns and instances are clustered into 

“clouds” in QSLiMFinder. A total of 300 datasets returned motifs (308 clouds, 177 motif 

patterns) at P ≤0.01 (Figure 4.17A).  
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Figure 4.17 .  QSLiMFinder  and CompariMotif analysis  of de-novo  SL iM mimicry predict ion.  

A) Number of datasets returning SLiMs vs significant p-value calculated by SLiMChance. X-ax is shows the 
P-value cut-off  and y-ax is  shows the number of  datasets returning SLiMs with cut-off P-
values. Real datasets are shown in green,  control  group 1 (randomised viral  proteins)  is 
shown in red and control group 2 (randomised human interactors)  is shown in blue. 

B) Number of true positives (TP clouds), hub proteins having annotations in ELM, number of off-targets (OTs) 
in real and control groups. 

 
 
To further assure that the pipeline was effective in terms of de-novo discovery of viral SLiM 

mimicry, two random control groups were simulated where first group had randomised 

viral proteins, and second group had randomised human interactor proteins. A total of 

1,683 significant randomvProtein datasets returned 2,416 individual motifs; 244 datasets 

returned enriched sequence patterns (262 clouds, 217 motif patterns) at P ≤0.01.  1,813 

significant randomInteractor datasets returned 2,364 individual motifs; 323 datasets 

returned enriched sequence patterns (366 clouds, 158 motif patterns) at P ≤0.01. Only a 

small proportion of significant datasets (~0.4%) returned motifs at P ≤0.001.  (Figure 

4.17A).  
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Next, discovered SLiMs were compared with SLiMs available in ELM to see how many of the 

predicted SLiMs were overlapping with the known SLiMs. This was done using 

CompariMotif v3.3.1 which compares two lists of regular expression motifs with each other 

to find overlap and relationships between them. A motif was regarded as a TP if the hub 

protein was known to interact with (or contains a domain that interacts with) the identified 

ELM. 12 motifs in real data, 3 in randomvProtein group and 3 in randomInteractor group 

were found to be true positives. Out of 2,564 predicted SLiMs in real data (p-value cutoff 

≤0.1), 316 were regarded as OTs as they matched pattern with motifs in ELM based on 

match criteria (i.e. MatchIC ≥ 2.5 or normalised IC ≥ 1.0), 217 in control group 1 matched 

pattern with ELM , and 210 enriched sequence patterns in control group 2 matched pattern 

with motifs in ELM  (Figure 4.17B).  
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4.6. Discussion 
Virus interacts with their hosts through establishing protein-protein interactions (vhPPIs). 

(Garamszegi, Franzosa et al. 2013). Most of the time viruses use vhPPIs to mimic host 

proteins: a viral protein having sequence or structural similarity as that of host protein 

binds with the host protein binding partner and disrupts host cellular pathways (Davey, 

Trave et al. 2011; Berlow, Dyson et al. 2018). Viral mimicry is often achieved through short 

linear motifs (SLiMs) which mimic host protein SLiMs and establishes low affinity domain-

motif interactions (DMIs) with binding proteins (Benedict, Norris et al. 2002; Van Roey, 

Uyar et al. 2014). For example, E6 protein of human papilloma virus (HPV) interacts with 

PDZ domain containing proteins (Ganti, Broniarczyk et al. 2015). The number of host 

proteins is quite large in many organisms, which makes it expensive to determine vhPPIs 

through in-vitro/in-vivo experiments. Moreover, the transient nature of SLiM mediated 

interactions further complicates their detection through experimental techniques (Becerra, 

Bucheli et al. 2017). Computational methods of predicting viral mimicry could be an 

inexpensive and ideal way to predict interactions.    

In Chapter 2, a new pipeline known as SLiMEnrich was developed, which not only assesses 

whether a PPI data is good for capturing SLiM mediated interactions but also predicts new 

interactions. In this chapter, I have applied SLiMEnrich to first assess whether vhPPI data is 

enriched for DMIs and which high-throughput (two hybrid and affinity purification) method 

is better for predicting DMIs in vhPPIs. Once assured that vhPPI data was indeed capturing 

DMIs, my next aim was to see how different viral subtypes perturb host cellular machinery 

through DMIs. Lastly, I combined the full vhPPI data with human-human PPI data for de-

novo prediction of human SLiM mimicry in viruses 
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4.6.1. vhPPIs capture Domain-Motif Interactions (DMIs) 

Chapter 3 revealed that human interactomes, including those captured by high throughput 

PPI detection methods (Y2H and AP-MS), are significantly enriched for DMIs versus the 

random expectation (Table 3.1). As such, these PPI data are a legitimate source for 

discovering new DMIs. In this chapter, the focus is virus-host PPI (vhPPI), raising the 

question whether this observation was also true for vhPPI data. Two large-scale sources of 

vhPPI data are PHISTO (Durmus Tekir, Cakir et al. 2013) and VirHostNet2.0 (Guirimand, 

Delmotte et al. 2015). Both capture DMIs with significant enrichment (Table 4.2, Figure 

4.3). Both PHISTO and VirHostNet2.0 datasets captured small number known DMIs: 22 

known DMIs were captured by PHISTO and 16 by VirHostNet2.0. On a face value, this looks 

disappointing, but most of the 1,442 DMIs annotated in ELM (Gouw, Michael et al. 2017) are 

reported in human interactome. So far only few DMIs (i.e. 85 vhDMIs) have been reported 

in viruses, which highlights that many DMIs are yet to be discovered in vhPPIs. For known 

SLiM classes in ELM, the SLiMEnrich approach applied here can potentially predict new 

candidates of mimicry where viral proteins exploits host functions (section 4.6.3). In 

general, only ¼ portion of the known vhDMI was being rediscovered using this approach 

(i.e. 26% in case of PHISTO and 19% in case of VirHostNet2.0) database. The low portion of 

known vhDMIs returned in vhPPI datasets suggests that atleast 3x as many new DMI are 

out there which are not in these vhPPI datasets. The low overall return of known viral DMIs 

also suggests that there are improvements to be made in the compilation and mapping of 

vhPPI in PHISTO and VirHostNet. As seen in the results, not many known interactions were 

captured by the vhPPIs, this could be due to same viral families being screened in high-

throughput experiments.  
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4.6.2. High-throughput methods capture virus-host DMIs 

Once assured that viral interactomes were enriched in terms of capturing DMIs, I 

investigated which high-throughput method between Y2H and AP-MS was better at 

predicting DMIs. The recent progress in PPI detection techniques have led to detection of 

large scale vhPPI data. Yeast two-hybrid (Y2H) and affinity purification coupled mass 

spectrometry (AP-MS) are two widely used technologies in terms of detecting vhPPIs (de 

Chassey, Meyniel-Schicklin et al. 2014). Y2H has been used in 15 high-throughput screens 

to identify genome wide viral interactomes. The first genome wide vhPPI screens using Y2H 

technology were done for HCV (de Chassey, Navratil et al. 2008) and Epstein Barr virus 

(Calderwood, Venkatesan et al. 2007). Moreover, Y2H has also been used to identify vhPPIs 

focused on specific proteins for example in one study ~12,000 human proteins and 10 

influenza virus proteins were used to identify vhPPIs in Influenza virus (Shapira, Gat-Viks 

et al. 2009). A variation of AP-MS is known as tandem affinity purification (TAP) which has 

been widely used to identify large numbers of vhPPIs (e.g. (Pichlmair, Kandasamy et al. 

2012; Rozenblatt-Rosen, Deo et al. 2012). This technique is being considered good because 

of its low contamination background and lower rate of false positive interactions (Rigaut, 

Shevchenko et al. 1999).   

The main objective of this analysis was to see whether these methods were good in terms 

of capturing DMIs from vhPPIs. In Chapter 3, both Y2H and AP-MS showed significant DMI 

enrichment and there was no clear winner between the two methods. They both were 

capturing significant number of known DMIs (Table 3.3, Figure 3.2A). These results were 

recapitulated for the vhPPI data. High-throughput interactions available in both PHISTO and 

VirHostNet2.0 vhPPI databases are indeed capturing DMIs (Table 4.2, Figure 4.3). Both 

AP-MS and Y2H vhPPI screens showed significant enrichment in terms of capturing DMIs. 

In general, the enrichment trend was similar to the human interactome without a clear 

“winner” (Table 3.3, Figure 3.2A). The proportion of known vhDMIs captured by vhPPIs 

was quite low (19-26% known vhDMIs) therefore, to make increase the network, medium 



143 

stringency filtering was applied where I used ELMc-Protein strategy to see the robustness 

of the results. As ELMc-Protein strategy adds more DMIs in the results, the enrichment could 

be more reliable. Both high-throughput methods still showed significant enrichment (Table 

4.1). Thus, it can be said that both Y2H and AP-MS screens are capable of capturing virus-

host DMIs, and it is appropriate to use both types of data for DMI and SLiM prediction. 

4.6.3. DMI prediction using different types of DMI data 

Once assured that viral interactomes were capturing DMIs, analysis was extended to predict 

new DMIs where viruses are likely to mimic host proteins. First, I employed medium 

stringency strategy of SLiMEnrich (i.e. ELMc-Protein) (Figure 2.2.) which led to prediction 

of 36 DMIs in PHISTO and 34 in VirHostNet2.0 dataset. The FDR associated with these 

predictions was quite low (i.e. 0.0523 in case of PHISTO and 0.0547 in case of 

VirHostNet2.0) suggesting that the predicted DMIs might be real and in general, this 

strategy can be quite useful in identifying real DMIs. All the DMIs belonged to ligand (LIG) 

and targeting (TRG) ELM type. In total, both databases returned 47 vhDMIs of which 23 

were known in ELM and 24 were predicted DMIs (Table 4.2). The FDR of ~5% for these 

predictions makes it likely that the additional 24 DMIs are also real.   

A total of 4 DMIs were mediated by LIG_Rb_LxCxE_1 (Table 4.2) which is known for 

interactions with retinoblastoma protein family in human as well as multiple viruses (Liu 

and Marmorstein 2007; Davey, Trave et al. 2011; Berlow, Dyson et al. 2018). Among these 

DMIs, 3 were known in ELM. All the viral proteins in these DMIs (i.e. E7 protein of Human 

papillomavirus type 16, LT-Ag protein of Simian virus 40 (SV40) and E1 protein of Human 

adenovirus 5) were interacting with RB1 protein in human and were known for mimicry 

(Chemes, Sanchez et al. 2011). This analysis returned one new DMI between LT-Ag protein 

of Merkel cell polyomavirus and RB1 protein of human interacting via LxCxE motif which 

was present in accessible area of LT-Ag protein. As the motif instance is not new therefore, 
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it cannot be ruled out that the predicted DMI may have already been reported in the 

literature but is not documented in ELM. 

A total of 7 DMIs were mediated by LIG_WW_1 (Table 4.2) which is a WW domain binding 

motif (Traweger, Fang et al. 2002) known in different species, including human and viruses 

(i.e. Human herpesvirus and Ebola virus) (Dinkel, Van Roey et al. 2016). Among these DMIs, 

3 were known in ELM and 4 were not annotated in  ELM (predicted DMIs). LMP2 protein of 

Epstein-Barr virus and UL56 protein of Human herpesvirus 2 were interacting ITCH protein 

in human while Segment-10 protein in Bluetongue virus 10, VP-40 protein in Zaire 

ebolavirus and UL56 protein in Human herpesvirus 2 were interacting with NEDD4 protein 

in human. This analysis predicted 2 new DMIs where LMP2 protein in Epstein-Barr virus 

was interacting with NEDD4 protein in human and Segment-10 protein in Bluetongue virus 

10 was interacting with ITCH protein in human via LIG_WW_1 motif which was present in 

the accessible area of the viral proteins. This reciprocal switch of interaction partners adds 

confidence that both interactions are genuine, as all proteins involved are known to be 

involved in mimicry interactions. 

A total of 4 DMIs were mediated by LIG_PTAP_UEV_1 (Table 4.2) which binds Tsg101 

through the N-terminal UEV domain (Schlundt, Sticht et al. 2009). Among these DMIs, 1 was 

known and 3 were predicted ones. The known DMI was between Segment-10 protein of 

Bluetongue virus 10 and TSG101 protein of human. The 3 predicted DMIs had interactions 

among gag proteins of Human spumaretrovirus, Human immunodeficiency virus type 1 and 

Human immunodeficiency virus type 2 with TSG101 protein of human via LIG_PTAP_UEV_1 

motif which was present in the accessible area of the viral proteins. 

A total of 16 DMIs were mediated by DMIs were mediated by LIG_PDZ_Class_1 (Table 4.2) 

which is a c-terminal peptide that bind with the PDZ domains. This motif interacts with 

targeted proteins through beta-augmentation to a beta sheet of PDZ domain in the targeted 

protein (Hung and Sheng 2002). Among these DMIs, 2 were known DMIs and 14 were 
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predicted ones. One known DMI had interactions between E6 protein of Human 

papillomavirus type 16 and MAGI1 protein in human. The other known DMI had interaction 

between E6 protein of Human papillomavirus type 18 and DLG1 protein of human. Out of 

13 predicted DMIs, 7 had E6 protein of Human papillomavirus type 16 interacting with 7 

distinct human proteins (i.e. TAX1BP3, MPDZ, TJP1, DLG1,SCRIB, DLG2,MAST2). One DMI 

had E4 protein of Human adenovirus D serotype 9 interacting with DLG1 protein in human 

while the remaining 6 DMIs had E6 protein of Human papillomavirus type 18 interacting 

with 6 distinct human proteins (i.e. TAX1BP3, MPDZ, SCRIB, DLG2, MAST2, MAGI1). The 

motif in interacting viral protein was in the accessible area of the protein.   

Only 1 DMI was mediated by LIG_KLC1_WD_1 which is found in cargo proteins and mediates 

kinesin-1-dependent microtubule transport when bound to the KLC TPR region (Konecna, 

Frischknecht et al. 2006). The interaction was not known in ELM and had interaction 

between VACWR159 protein of Vaccinia virus and KLC1 protein of human. The 

LIG_KLC1_WD_1 motif was in the accessible area of the protein. 

A number of known DMIs were returned for different ELMs. Two known DMIs were 

returned for LIG_CSL_BTD_1. These interactions were between the EBNA2 and EBNA6 

proteins of Epstein-Barr virus with the RBPJ proteins in human. One known interaction was 

returned for LIG_PTB_Phospho_1 where T-antigen protein of Murine polyomavirus had 

interaction with SHC1 protein in human. One known interaction was mediated by 

LIG_CtBP_PxDLS_1 where E1A protein of Human adenovirus C serotype 2 was interacting 

with CTBP1 protein in human. Two known interactions were mediated by 

LIG_G3BP_FGDF_1 where polyprotein of Sindbis virus was interacting with G3BP1 and 

G3BP2 proteins in human. Two known interactions for LIG_MYND_1 where E1A protein of 

Human adenovirus C serotype 5 and EBNA2 protein of  Epstein-Barr virus were interacting 

with ZMYND11 proteins in human. One known interaction was returned for LIG_LYPXL_L_2 

where gag protein of Human immunodeficiency virus type 1 was interacting with PDCD6IP 
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protein in human. One known interaction mediated by LIG_Rb_pABgroove_1 where E1A 

protein of Human adenovirus C serotype 5 had interactions with RB1 protein in human. One 

known interaction mediated by LIG_TRAF2_2 where LMP1 protein of Epstein-Barr virus 

had interaction with TRAF2 protein in human. Similarly, one known interaction was 

returned for LIG_TRAF6 where UL37 protein Human herpesvirus 1 had interaction with 

TRAF6 protein in human. 

Moreover, DMIs were predicted for ELMs including LIG_HCF-1_HBM_1, 

LIG_KLC1_WD_1,LIG_SH3_2 and TRG_NLS_Bipartite_1. One predicted DMI was mediated by 

LIG_HCF-1_HBM_1 where UL48 protein of Human herpesvirus 1 was interacting with 

HCFC1 protein in human, one DMI for LIG_KLC1_WD_1 where VACWR159 protein of 

Vaccinia virus had interaction with KLC1 protein, one DMI mediated by LIG_SH3_2 where 

polyprotein of Hepatitis C virus had interaction with GRB2 protein in human. Similarly, one 

DMI was predicted for TRG_NLS_Bipartite_1 where PB2 protein of Influenza A virus had 

interaction with the KPNA1 protein in human. All the interacting motifs of viral proteins in 

predicted DMIs were in the accessible area of the proteins. It should be noted that the 

predicted interaction might have been reported in literature but are not annotated in ELM. 

I further relaxed the DMI-mapping strategy (i.e. ELMc-Domain) (Figure 2.2) to predict 

more DMIs (Figure 4.5). This strategy comes at a cost of of higher FDR rate. The total 

number of predicted DMIs increased 2-3x as compared to the ELMc-Protein strategy, but 

the overall enrichment score dropped (Figure 4.6C). The FDR associated with these 

predictions was still significant (0.124 in cases of PHISTO and 0.0862 in case of 

VirHostNet2.0) suggesting that this strategy could still be useful for identifying new DMIs.  

It was seen that a few known viral proteins were interacting with multiple different human 

proteins to hijack host cellular machinery to mediate different functions (Figure 4.7). The 

reason could be the small and complex genome of the viruses which has multifunctional 

convergently evolved SLiMs. These SLiMs help them mediate number of DMIs to effectively 
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mimic and hijack the host cellular machinery. In general, it can be said that limited genomic 

resources in the viruses has put intense pressure on them to mediate number of DMIs with 

their host to maintain their life cycle. According to one study, it was seen that viral proteins 

are more involved in DMIs, have more SLiMs as compared to human proteins and mimics 

number of human proteins for their survival (Garamszegi, Franzosa et al. 2013).  Looking at 

the size of our datasets, it was seen that PHISTO was ~1.5x bigger than the VirHostNet2.0 

and ~43% of the vhPPIs available in PHISTO were also available in VirHostNet2.0 dataset. 

As both datasets had shared vhPPIs, it was likely that they also share their predicted DMIs. 

Approximately, 48% of the predicted DMIs were common in both datasets (Figure 4.8). 

The ELMc-Domain strategy maintained a modest FDR, suggesting that even noisier DMI 

predictions might still return a lot of real DMI. To further increase the number of candidate 

novel DMIs, the mapping stringency was further relaxed to use SLiM occurrences predicted 

by SLiMProbv2.5.1 (Edwards and Palopoli 2015) instead of known viral instances from 

ELM. I tried to discover DMIs through both ELMc-Protein and ELMc-domain strategies 

(Figure 2.2). The estimated number of real vhDMI for the SLiMProb-ELMc-Protein strategy 

was around 145-198 in case of PHISTO, and 89-130 in case of VirHostNet2.0, which 

indicates that this strategy is predicting real DMIs not identified by the more stringent 

approaches. However, the FDR of these DMIs was quite high (0.4154 in case of PHISTO and 

0.3923 in case of VirHostNet2.0) suggesting that ~40% of predicted DMIs are false 

positives; individual DMI predictions from this strategy should be interpreted with caution 

(Table S 4-1). 

Further relaxing the strategy to use SLiMProb predictions and allow DMI predictions based 

on interactions between ELM classes and Pfam domain classes (i.e. SLiMProb-ELMc-

Domain), substantially increased the numbers of predicted DMIs but dramatically reduced 

the observed enrichment for predicted SLiM occurrences. Using predicted SLiMs, it should 

be noted that the estimated false positive rate for individual DMI predictions was very high 
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(0.7507 in case of PHISTO and 0.7843 in case of VirHostNet2.0). This highlights the need for 

caution when interpreting naïve large-scale predictions of this nature. In general, 

implication of both strategies (i.e. ELMc-Protein and ELMc-Domain) using predicted SLiMs 

generated large number of DMIs but as the FDR was quite high than the known instances, 

the likelihood of false positive DMIs cannot be ignored. This emphasizes the need to further 

validate these new predictions to differentiate true positives from false positives (Table S 

4-1). 

4.6.4. How different viral subtypes hijack host cellular machinery through SLiMs 

To see how different viruses perturb host cellular machinery through mimicking SLiMs, DMI 

predictions were made for each viral subtype. The strategy used for this analysis was ELMc-

Domain where we used predicted SLiMs. The reason of choosing this strategy over others 

was the insufficiency of current known DMI/SLiMs knowledge. As this strategy comes with 

the risk of higher false prediction rate, we removed post translational modifications (PTMs) 

(i.e. MOD and CLV). The reason of excluding these ELM classes was our previous analysis in 

Chapter 3 where MOD and CLV classes generally looked bad at capturing DMIs (Figure 

3.13) and were prone to have more random associations. Only four ELM types were 

included in the analysis (i.e. LIG, DEG, DOC and TRG). 

RNA viruses can have single stranded RNA or double stranded RNA as their genetic material. 

These viruses have small genome size (2 to 31 kb) and mostly replicate inside the cytoplasm 

(Poltronieri, Sun et al. 2015).  

dsRNA viruses invade host cells and convert ssRNA to double-stranded genomic RNA. Their 

genomic dsRNA is then transcribed into mRNA, which upon translation produces proteins 

essential for viral replication. Eukaryotic systems have defence mechanisms that detect 

dsRNA and inactivates it through PKR or MDA5 proteins. Therefore, dsRNA viruses replicate 

their RNA inside icosahedral capsids (Mertens 2004). On the other hand, ssRNA viruses can 
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have a single strand of RNA (either positive or negative), which upon release into the cell 

helps in replicating the genome (Li, Wei et al. 2013). 

Comparison of RNA viruses (i.e. ssRNA and dsRNA) (Table 4.3) revealed that ssRNA vhPPI 

captured more DMIs than dsRNA viruses. The FDR associated with ssRNA predictions was 

quite high (~0.2-0.7) while dsRNA had lower FDR (~0.1-0.4). Looking at the enrichment 

trend, dsRNA was more enriched than ssRNA viruses in terms of capturing DMIs. 

Furthermore, GO enrichment analysis showed that human proteins targeted by ssRNA viral 

proteins were involved in metabolic and cell regulation related processes. The targeted 

human proteins were residing in cytoplasmic region of the cell where ssRNA viruses tend 

to replicate (Figure 4.13). On the other hand, human proteins targeted by dsRNA viral 

proteins were mostly involved in reproduction and metabolic processes. These proteins 

were mostly residing in plasma membrane (Figure 4.14). Different cell cycle regulation and 

transport related proteins have been reported previously (i.e. P53, ROA2, HNRPK and NPM) 

which are targeted by RNA viruses (Dyer, Murali et al. 2008; Durmus Tekir, Cakir et al. 

2012). The predicted DMI dataset didn’t had any of these proteins targeted by RNA viruses. 

One possible explanation could be that these interactions might not be SLiM mediated or 

the current SLiM knowledge is not sufficient and more SLiMs/vhPPIs need to be identified. 

Just like RNA viruses, DNA viruses can be single stranded (ssDNA) or double stranded 

(dsDNA). DNA viruses typically have larger genome sizes (10 to 250 kb) as compared to 

RNA viruses and they replicate inside nucleus of the host cell (Koonin, Krupovic et al. 2015). 

dsDNA replicates by entering host cell and releasing their DNA into the nucleus. The dsDNA 

is then transcribed inside the cytoplasm to produce regulatory proteins. These regulatory 

proteins then help in replication of the dsDNA and transcription of the mRNA. The mRNA is 

then translated into structural proteins which along with the newly replicated dsDNA are 

packaged and released outside the cell (Kazlauskas and Venclovas 2011; Rao and Feiss 

2015; Kazlauskas, Krupovic et al. 2016). On the other hand, ssDNA viruses first need to 

convert their ssDNA into dsDNA inside the nucleus which is transcribed into mRNA inside 
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the cytoplasm. This mRNA is translated into different regulatory proteins which help in 

replication of the genome. The replicated DNA is then again transcribed into mRNA which 

is translated into structural proteins. The newly replicated ssDNA and the structural 

proteins are packaged inside a capsid which is then released outside the cell (Krupovic and 

Forterre 2015). 

Comparison of DNA viruses (i.e. dsDNA and ssDNA) revealed that dsDNA captured more 

DMIs with better enrichment as compared to ssDNA. The FDR associated with both viral 

subtypes was quite high (~0.4-0.7 for dsDNA and ~0.5-1 for ssDNA) showing that most of 

the predicted DMIs could be false positives. Gene ontology enrichment analysis showed that 

human proteins targeted by dsDNA viral proteins were enriched in regulatory and 

metabolic processes and showed enrichment in nucleus (more specifically nucleoplasm) of 

the cell. Some of the targeted proteins were also enriched in the cytoplasm (Figure 4.15). 

Similarly, human proteins targeted by ssDNA viral proteins were also found to be enriched 

in metabolic processes (Figure 4.16). If we compare RNA vs DNA viral interactions, RNA 

viruses were more enriched for DMIs than DNA viruses.  

Previous studies have reported that RNA viruses as compared to other viruses are more 

likely to target proteins which are related to metabolic functions (Pichlmair, Kandasamy et 

al. 2012). Moreover, in one study the comparison of DNA and RNA vhPPIs revealed that DNA 

viruses tend to attack cellular and metabolic pathway proteins while RNA viruses tend to 

attack transport and metabolic proteins (Durmus and Ulgen 2017). This analysis agrees 

with previous findings in a sense that most of the human proteins targeted by RNA/DNA 

viruses were primarily involved in metabolic related processes (i.e. protein modification, 

signal transduction). In general, both DNA viruses and RNA viruses are more likely to attack 

metabolic proteins through motif mimicry.  

Overall, looking at the FDR of predictions, it was clear that most of the predicted DMIs could 

be false positives. Moreover, FDR rate of some viral families was found to be higher in one 

database than other. The reason could be their curation of data (focusing on particular 
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viruses/samples). This ultimately emphasizes the need of developing more comprehensive 

vhPPI databases and curating vhPPI data in more effective way.  

Looking at the FDR, the likelihood of having false positives was quite high. This was the 

reason that individual results were not dig into details. Moreover, the high FDR rate of 

predictions could also have impacted the GO ontology analysis. In general, it can be said that 

there is a strong need to reduce false discovery rate so that such analysis can become more 

powerful and reliable. One way to improve such analysis is the availability of more PPI data 

for under-represented subtypes or to divide viral proteins based on their roles in life cycles. 

The best thing to do would be to have some filtration steps of predicted DMIs to reduce FDR 

of predictions. Reducing FDR rate would lead to fewer predictions but will increase higher 

proportion of real ones. But it was important to first investigate PPIs and find the answer to 

a broader question “Can viral-human PPIs be a good source of predicting mimicry”. Once 

assured that PPIs are capturing significant real DMIs/DDIs, this knowledge can be used to 

investigate whether the predicted mimicry candidates are real. For this sort of analysis, it 

will be important to first reduce FDR and then look for possible true positives. One of the 

advantages of SLiMEnrich is that it can help in finding DMIs/DDIs through using different 

sorts of SLiM predictions. For example, SLiMFinder is more tolerant to noise and can be used 

in conjunction with SLiMEnrich to find DMIs without losing too much signal. 

4.6.5. De-novo discovery of SLiMs 

In network biology, identifying functional SLiMs is considered important as they help in 

understanding various dynamical process in protein networks. Identifying SLiMs can help 

in providing clues regarding modes of binding and whether different interactions are likely 

to be stable or transient. However, computational de-novo SLiM prediction is quite 

challenging, due to their short length and low conservation relative to globular domains. 

This is the reason high false positive predictions are often anticipated when looking for new 

SLiM predictions (Prytuliak, Volkmer et al. 2017).  
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In general, de-novo SLiM discovery does not require any prior knowledge of SLiMs to be 

discovered. It basically works by looking for overrepresented sequence patterns that are 

unlikely to appear at random. One of the best-performing SLiM discovery tools is 

SLiMFinder (Edwards, Davey et al. 2007), which uses two dedicated algorithms: SLiMBuild 

and SLiMChance. SLiMBuild looks for all possible SLiMs based on regular expression in the 

input dataset with some defined constraints, and SLiMChance assesses the over-

representation of the motifs. An alternative version of SLiMFinder known as QSLiMFinder 

has been developed which uses a query protein sequence to discover SLiMs in a dataset 

(Palopoli, Lythgow et al. 2015). As QSLiMFinder uses a specific query protein to reduce the 

motif search space therefore, it increases the sensitivity of the de-novo SLiM predictions. 

QSLiMFinder also reduces the number of datasets returning FP predictions through 

reducing the number of motifs that could be susceptible to sequence biases in the data 

(Edwards, Davey et al. 2012; Palopoli, Lythgow et al. 2015). QSLiMFinder is particularly 

appropriate for prediction of molecular mimicry, where one is specifically interested in 

sequence patterns in the viral protein. 

In this analysis, viral and human interactomes have been integrated to find new motifs using 

QSLiMFinder. Two random groups were generated as a control to investigate how dataset 

quality could impact the return of motifs through QSLiMFinder. In control group 1, viral-

human interactome was disrupted through shuffling viral proteins (randomvProtein). It 

was expected that randomising the viral protein would impact the motif search as most of 

the predicted motifs would be off-targets. In control group 2, the human-human PPI 

network was disrupted by shuffling human proteins (randomInteractor). This effectively 

paired each viral protein with a random set of human proteins. As the human-human PPI 

network was disrupted therefore, a motif needed to be more prevalent (abundant/generic) 

to be returned. A significant number of datasets in each group returned motifs at 

SLiMChance P-value ≤ 0.1. This in general implies that the motif prediction was working. 

The number of datasets returning motifs varied between all three groups where the number 
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of significant datasets for real was higher than control groups at p-value <0.1. This trend 

was not observed at more stringent p-values (<0.01 and <0.001) where real group didn’t 

look better than control ones (Figure 4.17A). The reason could be that QSLiMFinder might 

be over-predicting ambiguity and there is a possibility that false positives are dominating 

the results  

The best way to see how good are the predictions and how likely it is returning real motifs 

is to recover known/true positive (TPs) from the realistic biological data (Edwards, Davey 

et al. 2012). All the motifs returned from real data (2,564 motifs) were compared with the 

known ELMs using CompariMotif (Edwards, Davey et al. 2008), and were classified as true 

positive (TPs) or off-targets (OTs). OTs may represent generic/abundant recurring motifs 

enriched by chance, or specific motifs that have been enriched in the wrong PPI dataset due 

to shared interactors (Edwards, Davey et al. 2012). However, these should not be strictly 

considered as false positives as most of them are highly likely to be real SLiMs, known for 

biological importance. The number of OTs (generic recurring motifs) being returned from 

real were 316 while the number of OTs being returned from randomvProtein and 

randomInteractor group were 217 and 210 respectively. The randomvProtein group and 

randomInteractor group returned lower OTs than the real group. Both control datasets 

captured more than 200 OTs. The reason could be that most of the viral proteins might be 

interacting with same hub protein and randomisation would have essentially linked them 

with the same hub proteins as in the real group. Another reason could be that the predicted 

motifs might be over-represented or more prevalent in the network. Looking at the OTs, it 

was seen that all the predicted OTs were high abundance/generic motifs which are available 

in multiple proteins. To further see, if the returned motifs were actually real and were 

known for interactions in ELM, TPs were recovered from all different groups. A motif was 

regarded as true positive, if and only if, the hub protein was known for interaction in ELM. 

This analysis returned 12 known interaction motifs in real group, 3 in randomvProtein 

group and 3 in randomInterctor group (Figure 4.17B). The current number of known 
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vhDMIs in databases like ELM is really low and this could be the reason that only few TPs 

were recovered from the analysis. The randomInteractor and randomvProtein group also 

returned 3 TPs showing that the true positives in the controls might not actually be true 

positives themselves. This analysis was based on integration of two datasets (i.e. PHISTO 

and HI-II-14). The human PPI data used for this analysis was not as big as available 

comprehensive PPI databases therefore, integration of more comprehensive datasets can 

certainly improve such analysis through providing more proteins to predict new SLiMs. It 

has also been shown that masking based on evolutionary conservation can increase the 

sensitivity of human SLiM prediction and (Davey, Shields et al. 2009) should be explored in 

the context of viral mimicry. 
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4.6 Conclusion 
High-throughput techniques are being applied to identify vhPPIs and the number of vhPPI 

data is growing (de Chassey, Meyniel-Schicklin et al. 2014). Despite the progress in 

identifying vhPPIs, the current DMI knowledge is far from complete. In this study, I have 

explored vhPPIs as a source of capturing DMIs and found that vhPPI data was capturing 

DMIs. Both Y2H and AP-MS screens looks promising in terms of identifying DMIs. Looking 

at the enrichment trend, dsRNA viruses were more enriched than ssRNA viruses in terms of 

capturing DMIs. On the other hand, ssDNA showed more enrichment than dsDNA viruses. If 

we compare RNA vs DNA viral interactions, RNA viruses were more enriched in terms of 

capturing DMIs than DNA viruses. The viral subtype analysis had few limitations for 

instance, only few vhPPIs were available for dsRNA (58 in case of PHISTO and 165 in case 

of VirHostNet2.0) and ssDNA (62 in case of PHISTO and 640 in case of VirHostNet2.0) 

viruses. This low number of vhPPIs could have impacted the overall enrichment of these 

viruses. Availability of more vhPPI data for these viral subtypes can certainly improve this 

analysis and can help in predicting more DMIs. I also predicted new SLiMs (2,564 motifs) 

through integration of human and viral interactomes. Keeping the FDR of DMI predictions 

in mind, it was likely that most of the predicted DMIs could be false positives. Having a high-

throughput in-silico screen for validating individual DMIs and SLiM predictions can be 

really helpful therefore, the focus of my next chapter was to develop a pipeline for the initial 

validation of these predictions through in-silico structural biology tools. It is highly 

recommended to reduce the FDR rate before going into experimental validations of these 

predictions therefore having an initial validation step could be helpful in screening true 

positives from the false positive interactions. 

Supplementary data 

Table S 4-1. DMIs predicted using different strategies of SLiMEnrich in PHISTO and VirHostNet2.0 datasets. 

(https://osf.io/yndsx/?view_only=c035631c7c6b42a38ced7053ddc77799). 

 

https://osf.io/yndsx/?view_only=c035631c7c6b42a38ced7053ddc77799
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5 Chapter 5: In-silico structural evaluation of SLiMs and DMIs 
 

5.1 Abstract 

Domain-motif interactions (DMIs) are transient interactions which occur when a Short 

Linear Motif (SLiM) binds with a globular domain through a small contact interface. To 

understand how DMIs occur to maintain different regulatory processes and to see how 

different viruses hijack host cellular machinery, it is crucial to have knowledge of the 

binding mode of these DMIs. The degenerate nature and small contact interface make it 

difficult to identify DMIs through traditional in-vitro and in-vivo experiments. As the 

predictions come with high false positive rate, there is a need for high-throughput in-silico 

validations of these predictions before going into experimental work. Here, I have evaluated 

binding energy changes of predicted SLiM instances through in-silico peptide exchange 

experiments to see how they bind with the known 3D DMI complexes. Only a few of the 

predicted mimicry candidates from previous analysis (Chapter 4) showed binding with the 

native DMI structures. The analysis done in this chapter was a pilot study and further 

validation through additional computational as well as experimental techniques is much 

needed.  
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5.2 Background 

During recent years, interactome maps of several organisms have been drafted. These 

interactome maps are being used to unveil protein interactions in a high-throughput 

manner (Rual, Venkatesan et al. 2005). However, high-throughput methods are not enough 

to find clues about underlying molecular details of protein interactions. Atomic level 

investigation is often required to see how two proteins interact with each other and to find 

which residues are in contact between two proteins. Currently, this is only possible through 

resolving three-dimensional structures to characterize interfaces involved in interactions. 

The 3D structural information available in Protein Data Bank (PDB) can be used to 

characterize protein interactions based on their contact interfaces (i.e. domain-domain 

interaction and domain-motif interaction) (Aloy and Russell 2006). Domain-Domain 

Interactions create large contact interfaces (2.000Å2) between two globular domains. On 

the other hand, SLiMs in DMIs establish small contact interface with their interacting 

domain partners, which makes it challenging to achieve a high prediction specificity. This is 

the reason that new computational methods are required to validate them before going in-

vitro (Stein and Aloy 2008).  

Despite the improvements in PPI detection experiments, the current DMI number is still 

underrepresented (Pawson and Linding 2005) and only a small fraction of known DMIs is 

available in databases like ELM (Dinkel, Van Roey et al. 2016) and 3did (Mosca, Ceol et al. 

2014). DMIs are found to be highly specific in in-vivo experiments where a SLiM binds with 

globular domain of a specific protein only (e.g. DMI between Pbs2 peptide and SH3 domain 

of Sho1)(Zarrinpar, Park et al. 2003). The atomic contacts/bonds between these 

interactions are insufficient to explain this high degree of specificity. Thus, just like 

phosphorylation events, biological context (i.e. subcellular localization, expression 

patterns) is what determines the interaction specificity in DMIs (Linding, Jensen et al. 2007). 

An example of such case is GYF domain of CD2BP2 protein which is localized in soluble 

membrane region of protein and doesn’t compete with SH3 domain of Fyn as it is in lipid 
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rafts in T-cells. In in-vivo experiments this interaction is impossible, but this can happen in 

in-vitro experiments (Freund, Kuhne et al. 2002).  

In Chapter 4, viral SLiMs and DMIs were predicted using different strategies and some of 

them could potentially be real. To see if the predictions were real, a pilot study was designed 

for the initial validation of the predictions. Therefore, the main focus of this chapter is to 

determine whether binding specificity can help in initial screening of DMIs before going in-

vitro. Here, known DMI data from 3did (Mosca, Ceol et al. 2014) and ELM (Dinkel, Van Roey 

et al. 2016) is combined with in silico peptide exchange experiments (Kiel and Serrano 

2014) to see whether predicted changes in binding energies for known/predicted motifs 

can be used to discriminate real motif occurrences from non-binding peptide sequences. If 

worked successfully, the outcome of this analysis can help differentiate real interaction 

motifs from false positives and will be useful for initial validation of predicted DMIs.  

5.3 Aims and Objectives 

This chapter aims to establish whether changes in the predicted binding affinity of SLiMs 

with globular domains can be used to discriminate real motif occurrences from non-binding 

peptide sequences. 

The specific objectives were: 

• To see if changes in predicted binding energies can be used to discriminate real 

motif occurrences from non-binding peptide sequences.  

• To quantify predicted binding energies of predicted viral instances through in silico 

peptide exchange experiment. 

• To see if predicted DMIs can be validated through quantification of binding energies. 
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5.4 Methods 

5.4.1 3D DMI data retrieval 

Known domain-motif interaction (DMI) data was downloaded from 3did (Mosca, Ceol et al. 

2014) on 2018-11-01 by retrieving DMIs that had solved PDB structures. The 3D DMI data 

from 3did was cross-referenced with ELM (Dinkel, Van Roey et al. 2016) to get motif 

information (i.e. motif sequence and positions). 3D structures of known DMIs were 

retrieved from PDB (Rose, Prlic et al. 2017) on 2018-11-08. A total of 100 structures 

belonging to 47 different ELM types, which accounts to 130 different DMIs, were selected. 

Foldx does not work with any non-standard residues (including post-translational 

modifications), therefore structures with any non-standard residues in the bound ligand 

were excluded from the analysis.  Out of 100 3D structures, only 23 were selected for further 

analysis. The selected 23 DMI complexes belonged to 12 different ELMs and included 

degron, docking, targeting and ligand motifs.  

5.4.2 SLiM prediction 

Viral proteins in previously downloaded datasets: PHISTO (Durmus Tekir, Cakir et al. 2013) 

and VirHostNet2.0 (Guirimand, Delmotte et al. 2015) (Chapter 4: 4.4.1) were used to 

predict new instances of known ELMs through SLiMProb v2.5.1 (Edwards and Palopoli 

2015) tool (Chapter 4: 4.4.2). Similarly, reviewed proteins of human proteome were 

retrieved from Uniprot (Apweiler, Bairoch et al. 2004) on 2018-07-20 and were used to 

predict SLiMs using SLiMProb v2.5.1 (Edwards and Palopoli 2015) with disordered masking 

(IUPred score >= 0.2) (Hagai, Azia et al. 2011) and no evolutionary filtering of results.  

5.4.3 Peptide dataset generation 

 Four peptide datasets (one test and three control) for each known 3D DMI were generated: 

1) Viral (test) dataset which had predicted SLiMs of viral proteome (Chapter 4: 4.4.2), 2) 

True positive (control) dataset which had known motif instances (experimentally 

validated) from ELM for the same ELM class, 3) Human (control) dataset which had 
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predicted SLiMs from the human proteome (500 random occurrences if number of SLiM 

occurrences was >500), and 4) True negative (control) dataset which had 500 randomly 

generated peptide sequences, using a uniform frequency distribution of all twenty amino 

acids (Figure 5.1).  

5.4.4 Structural optimization 

FoldX (Schymkowitz, Borg et al. 2005) was used for the structural optimization of the 

known DMI complexes. FoldX provides a fast and quantitative estimation of the importance 

of the interactions contributing to the stability of proteins and protein complexes. A short 

optimization of the structure of the native DMI complex was performed to eliminate small 

clashes and other undesirable features by the RepairPDB function within FoldX. The 

RepairPDB command helps in repairing residues which have bad torsion angles, van der 

Waals’ clashes, or total energy (option VdWDesign=2). Moreover, water and all non-protein 

ligands were removed from the structures. Gibbs free energy (ΔG) of known complexes was 

calculated using “Stability” command of FoldX to assess global folding stability of the 

complex. ΔG gives idea of the stability of a protein, which is expressed in kcal/mol (Lower 

ΔG = More Stability).  

5.4.5 FoldX model construction and binding energy calculations 

New DMI complexes were generated using optimized known structures by swapping 

already bound peptide with different peptide datasets using BuildModel command of FoldX 

and binding energy changes were calculated for each peptide. FoldX works by first mutating 

each amino acid to alanine and then annotating the side-chain energies of the neighbouring 

residues. It then mutates the alanine to selected amino acid and recalculates the side-chain 

energies of neighbouring residues.  
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Binding energy difference (ΔΔG) between known and new DMI complex was calculated by: 

ΔΔG = ΔG mutant - ΔG wildtype 

where ΔG mutant and ΔG wildtype are the binding free energies of the mutant complex (new DMI 

complex) and the wild-type complex (known DMI complex), respectively. ΔΔG was 

calculated for all peptides in each dataset (known, viral, human and true negative) by 

swapping the already bound peptide with different peptides (Figure 5.1). It was manually 

confirmed that motifs were being swapped in right positions through manually confirming 

the list of SLiMs (mutant file) required by the FoldX.   

 

Figure 5.1. Workf low of evaluating binding vs non-binding SLiMs.   

3D DMI data was retr ieved from ELM and 3did databases. 3D structures were retrieved from PDB 
and were optimized using FoldX. Two control datasets were generated: true positive dataset which 
had known SLiMs and true negative dataset which had randomly generated peptides. Two 
validation datasets were generated:  Viral  motifs  which had predicted viral  SL iMs and human 
motifs which had 500 randomly selected predicted human SL iMs. Al l  peptide datasets were 
exchanged with the already bound peptide in the complex and binding energy (ΔΔG) was 
calculated.  
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5.4.6 Statistical analysis 

A two-tailed non-parametric Wilcoxon rank test was performed to detect significant 

differences in ΔΔG distributions. For this purpose, four different comparisons were done: 

1) TP vs TN: This was done to see if there will be a signal. 

2) Human vs True Negative: This was done to see if there was any recognisable binding 

motif. 

3) TP vs Human: This was done find if true positive SLiMs were binding more strongly 

that the random human occurrences. 

4) Virus vs Human: This was done to see whether viral SLiMs were binding strongly 

than the random human ones.  
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5.5 Results 

5.5.1 Data retrieval and structural optimization 

First, all known 3D DMI structures were optimised using the repair function of FoldX. 

During this procedure, residues are identified that have bad total energies or van der Waal's 

clashes; they are self-mutated and replaced by another, more favourable rotamer or 

subrotamer. Then, the Gibbs free energy (ΔG) of the complex was calculated to see how 

stable the known complex was (Table 5.1). 
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Table 5.1. Data stat istics and binding energies (ΔG) of known DMI complexes.  

ELM Group ELM Type PDB ID Motif Sequence Motif 

Size 

Full Peptide Sequence Resolution 

(Å) 

Binding 

affinity (ΔG) 

kcal/mol 

Number of 

viral SLiMs 

Number of 

TPs 

Degron 

Motifs 

DEG_KELCH_KEAP1_1 2FLU DEETGE 6 AFFAQLQLDEETGEFL 1.5 Å -30.52 15 9 

DEG_SIAH_1 2A25 PAAVVAP 7  EKPAAVVAPITTG 2.2 Å -48.60 10 9 

Docking 

Motifs 

DOC_AGCK_PIF_1 1O6L RTTSF 5 GRPRTTSFAE 1.6 Å -44.77 2 8 

DOC_ANK_TNKS_1 3TWU RPPPIG 6 SRRVARPPPIGAEVPN 1.8 Å -36.89 111 17 

3TWW RQSPDG 6  LPHLQRQSPDGQSFRS 2 Å -35.00 

3TWX RESPDG 6 LPHLQRESPDGQSFRS 1.8 Å -56.31 

DOC_CYCLIN_1 1H24 RRL 3 PVKRRLDLE 2.5 Å -5.41 203 28 

Ligand 

Motifs 

LIG_LIR_GEN_1 3DOW WDFL 4 SLEDDWDFLPPX 2.3 Å -17.26 533 19 

LIG_PTAP_UEV_1 3OBQ PSAP 4 PTPSAPVPL 1.4 Å -30.29 48 18 

LIG_PTB_APO_2 1AQC ENPTY 5 GYENPTYKFF 2.3 Å -23.26 151 17 

1NTV DNPVY 5 NFDNPVYRKT 1.5 Å -23.84 

LIG_SH3_2 1CKA PPALPPK 6 PPPALPPKKR 1.5 Å -14.58 239 16 

LIG_ULM_U2AF65_1 2PEH SRWDE, KSRWD 5 KRKSRWDETP 2.11 Å -17.35 3 5 

LIG_WD40_WDR5_WIN_1 3UVM ARAE 4 GAARAEVYLR 1.57 Å -15.71 2 5 

3UVN ARSE 4 GSARSEGYYPI 1.792 Å -9.84 

4CY1 ARTR 4 DGTCVAARTRPVLSY 1.5 Å -1.08 

4ERZ ARAE 4 LNPHGAARAEVYLR 1.75 Å -17.90 

4ES0 ARSE 4 EHVTGCARSEGFYT 1.817 Å -3.16 

4ESG ARAE 4 EPPLNPHGSARAEVHLR 1.7 Å -7.19 

LIG_WW_1 1EG4 PPPY 4 KNMTPYRSPPPYVPP 2 Å -45.12 15 7 

Targeting 

Motifs 

TRG_LYSEND_GGAACLL_1 1JUQ DDHLL 5 EESEERDDHLLPM 2.2 Å -113.28 2 5 

1JWG DEDLL, DLLHI 5 SFHDDSDEDLLHI 2 Å -54.68 

TRG_NLS_MONOEXTC_3 1EE4 KRVK 4 PAAKRVKLD 2.1 Å -178.92 225 18 
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5.5.2 Peptide exchange experiment 

Optimized 3D complexes were used to evaluate energy differences of predicted SLiMs to 

distinguish between binding vs non-binding motifs. For this purpose, peptide datasets were 

swapped with the already bound peptide sequence. As already bound peptides were longer 

than the actual motif sequence (flanking residues accompanying the actual motif 

sequences), only the motif sequence was swapped by selecting the same length SLiMs from 

the peptide datasets. Foldx peptide exchange works by giving a file (mutant file) having a 

reference sequence (sequence to be exchanged) along with a list of peptides that are to be 

exchanged. Only the motif sequence (in some cases a few flanking residues as well) was 

given as reference peptide sequence while keeping the flanking residues unchanged. 

Binding energy differences were calculated for all viral SLiMs, randomly selected human 

SLiMs (selected 500 if number of SLiMs was quite large), all known instances in ELM and 

500 randomly generated peptide sequences. The known instances (true positives) and 

random occurrences of human SLiMs were used to find the answer of our general question 

whether binding energy differences can help in differentiating good vs bad binders and then 

to check whether this knowledge could be used to find viral SLiMs that could be mimicry 

candidates. To get the general idea of how viral SLiMs were binding with the native 

structure, I first evaluated binding energy differences of all viral SLiM instances and then 

looked for any mimicry candidates among those SLiMs. The mimicry candidate data was 

retrieved from the predicted DMI dataset using the ELMc-domain strategy (Chapter 4: 

4.4.2). The predicted viral SLiMs were found to be stabilising for 10 ELM classes  (i.e. 

DEG_SIAH_1, DOC_ANK_TNKS_1, DOC_CYCLIN_1, LIG_PTAP_UEV_1, LIG_PTB_APO_2, 

LIG_SH3_2, LIG_ULM_U2AF65_1, LIG_WW_1, TRG_LYSEND_GGAACLL_1  and 

TRG_NLS_MONOEXTC_3). Out of 23 analysed structures, 47% demonstrated stabilisation 

(ΔΔG < 0) with the predicted viral peptides (Figure 5.2D). All ELMs showed significant 

stabilisation for human occurrences in comparison to true negatives (Figure 5.2A).  A total 

of 4 structures (i.e. DEG_KELCH_KEAP1_1 (2FLU), DEG_SIAH_1 (2A25), LIG_LIR_GEN_1 
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(3DOW) and  LIG_PTB_APO_2 (1NTV)) showed significant stabilisation for true positives  in 

comparison to random occurrences (Figure 5.2B) while only 1  structure (LIG_SH3_2 

(1CKA)) showed significant stabilisation for viral SLiMs as compared to random human 

occurrences. (Figure 5.2C). In general, in most of the cases, true positives were not 

distinguishable from random human occurrences and viral SLiMs were not found to be 

distinguishable from the human occurrences.
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Figure 5.2. Wilcoxon rank test of binding energy differences of different peptide datasets.  

A)  Human vs True negative comparison. X-ax is shows mean binding energy difference between human and TNs. Green indicates significant p-value (P-value < 
0.05),  and yel low indicates non-signif icant p-values (p-value > 0.05),  B)  True posit ive vs Human comparison. X-axis shows mean binding energy difference between 
human and TNs.  Green indicates significant p-value (P-value < 0.05),  and yellow indicates non-signif icant p-values (p-value > 0.05),  C)  Viral  vs Human comparison. 
X-axis shows mean binding energy difference between human and TNs. Green indicates s ignificant p-value (P-value < 0.05),  and yellow indicates non-signif icant 
p-values (p-value > 0.05),  D)  Number of stabilis ing true posit ive and viral SLiM occurrences for each analysed PDB structure.
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5.5.2.1 Degron Motifs 

In this analysis, two degron ELMs (i.e. DEG_KELCH_KEAP1_1 and DEG_SIAH_1) have been 

evaluated to find binding vs non-binding SLiMs.   

1- DEG_KELCH_KEAP1_1 

The DEG_KELCH_KEAP1_1 motif sequence contributed strongly to predicting binding 

affinity, with human occurrences of the motif showing smaller increases in binding energy 

than the random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.3, Figure 

5.2A).  True positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 

0.05). All human and true positive SLiM occurrences were predicted to destabilise the 

structure (PDB ID: 2FLU, ΔΔG > 0), with the true positives demonstrating less 

destabilisation than random human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). Viral 

SLiM were also destabilising (ΔΔG > 0) and could not be distinguished from human 

occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 

 

Figure 5.3.  Peptide exchange experiment using known 3D DMI (PDB ID: 2FLU) complex.   

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
DEG_KELCH_KEAP1_1 DMI complex (PDB ID: 2FLU),  B)  B inding energy differences (ΔΔG)  of 
different peptide datasets bound to native DEG_KELCH_KEAP1_1 complex.  

 

 



169 

2- DEG_SIAH_1 

The DEG_SIAH_1 motif sequence contributed strongly to predicting binding affinity, with 

human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.4, Figure 5.2A). True 

positive SLiMs showed higher stabilisation than true negatives (Wilcoxon p < 0.05). Most of 

the human and true positive SLiM occurrences were predicted to stabilise the structure 

(PDB ID: 2A25, ΔΔG < 0), with the true positives demonstrating higher stabilisation than 

random human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). A total of 5 viral SLiMs were 

also stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and could not be distinguished from 

human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 

 

Figure 5.4. Peptide exchange experiment using known 3D DMI (PDB ID: 2A25) complex.   

X-axis  shows the ΔΔG  of the datasets,  y-ax is shows the frequency of the SLiMs. A)  3D structure 
of native DEG_SIAH_1 complex, B) Top ranked predicted viral  peptide bound to native complex, 
C)  Binding energy differences (ΔΔG)  of different datasets bound to native DEG_SIAH_1 complex.  

 

5.5.3 Docking Motifs 

Docking motifs are SLiMs present within the substrates which are removed from the 

phosphorylation sites which promote high affinity interactions with kinases through 

interactions with outside regions of the catalytic site of the enzymes (Lee, Hoofnagle et al. 

2004). 3D complexes of DMIs of three docking motifs (i.e. DOC_AGCK_PIF_1, 
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DOC_ANK_TNKS_1 and DOC_CYCLIN_1) were used to evaluate binding affinities of predicted 

SLiMs.  

1- DOC_AGCK_PIF_1 

The DOC_AGCK_PIF_1 motif sequence contributed strongly to predicting binding affinity, 

with human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.5, Figure 5.2A). True 

positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 0.05). All 

human and true positive SLiM occurrences were predicted to destabilise the structure (PDB 

ID: 1O6L, ΔΔG > 0). The true positives could not be distinguished from random human 

occurrences (Wilcoxon p > 0.05) (Figure 5.2B). Viral SLiMs were also destabilising (ΔΔG > 

0) and could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 

5.2C). 

 

Figure 5.5. Peptide exchange experiment using known 3D DMI (PDB ID:1O6L) complex.  

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
the known DOC_AGCK_PIF_1 complex, B)  Binding energy dif ferences (ΔΔG)  of different datasets 
bound to native DOC_AGCK_PIF_1 complex.  
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2- DOC_ANK_TNKS_1 

DOC_ANK_TNKS_1 had three known complexes (i.e. 3TWU, 3TWW and 3TWX). True 

negative vs true positive comparison for all three complexes demonstrated that true 

positives were more stabilising than the true negatives (Wilcoxon p < 0.05). The 

DOC_ANK_TNKS_1 (PDB ID: 3TWU) motif sequence contributed strongly to predicting 

binding affinity, with human occurrences of the motif showing smaller increases in binding 

energy than the random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.6, 

Figure 5.2A). Only 2 human and 2 true positive SLiM occurrences were predicted to 

stabilise the structure (PDB ID: 3TWU, ΔΔG < 0), with the true positives demonstrating less 

destabilisation than random human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). Only 

one viral SLiM was stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and could not be 

distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). None of the 

mimicry candidates showed effective binding with the native complex. 

 

Figure 5.6. Peptide exchange experiment using known 3D DMI (PDB ID: 3TWU) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native DOC_ANK_TNKS_1 (3TWU) complex, B) Top ranked predicted v iral peptide bound to 
native complex, C)  B inding energy differences (ΔΔG)  of different datasets bound to native 
DOC_ANK_TNKS_1 (3TWU) complex.  
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The DOC_ANK_TNKS_1(PDB ID: 3TWW)  motif sequence contributed strongly to predicting 

binding affinity, with human occurrences of the motif showing smaller increases in binding 

energy than the random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.7, 

Figure 5.2A). Only 93 human and 3 true positive SLiM occurrences were predicted to 

stabilise the structure (PDB ID: 3TWW, ΔΔG < 0). The true positives could not be 

distinguished from random human occurrences (Wilcoxon p > 0.05) (Figure 5.2B). A total 

of 19 viral SLiM were predicted to be stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and 

could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 

Only one mimicry candidate from predicted DMI dataset (TRPGPPGI) was found to be 

stabilising (ΔΔG < 0). 

 

Figure 5.7. Peptide exchange experiment using known 3D DMI (PDB ID: 3TWW) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native DOC_ANK_TNKS_1 (3TWW) complex, B) Top ranked predicted viral peptide bound to 
native complex, C)  B inding energy differences (ΔΔG)  of different datasets bound to native 
DOC_ANK_TNKS_1 (3TWW) complex.  

 

The DOC_ANK_TNKS_1 (PDB ID: 3TWX) motif sequence contributed strongly to predicting 

binding affinity, with human occurrences of the motif showing smaller increases in binding 

energy than the random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.8, 

Figure 5.2A). Only 70 human and 4 true positive SLiM occurrences were predicted to 

stabilise the structure (PDB ID: 3TWX, ΔΔG < 0). The true positives could not be 
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distinguished from random human occurrences (Wilcoxon p > 0.05) (Figure 5.2B). A total 

of 15 viral SLiM were predicted to be stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and 

could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 

None of the mimicry candidate from predicted DMI dataset was found to be stabilising. 

 

Figure 5.8. Peptide exchange experiment using known 3D DMI (PDB ID: 3TWX) complex.   

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
native DOC_ANK_TNKS_1 (3TWX) complex, B) Top ranked predicted viral peptide bound to native 
complex, C)  B inding energy differences (ΔΔG)  of  different datasets bound to native 
DOC_ANK_TNKS_1 (3TWX) complex.  

 

3- DOC_CYCLIN_1 

The DOC_CYCLIN_1 motif sequence contributed strongly to predicting binding affinity, with 

human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.9, Figure 5.2A). True 

positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 0.05). A total 

of 100 human and only 1 true positive SLiM occurrence were predicted to stabilise the 

structure (PDB ID: 1H24, ΔΔG < 0), with the true positives demonstrating less 

destabilisation than random human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). A total 

of 53 viral SLiM were found to be stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and could 

not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 
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Figure 5.9. Peptide exchange experiment using known 3D DMI (PDB ID: 1H24) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native DOC_CYCLIN_1 complex, B) Top ranked predicted v iral peptide bound to native complex, 
C)  Binding energy differences (ΔΔG)  of different datasets bound to native DOC_CYCLIN_1 complex. 

 

5.5.4 Ligand binding sites 
 

Ligand binding sites have crucial role in carrying out various biochemical functions of 

proteins. Ligands are usually small molecules which produce signals upon binding with 

specific sites in target proteins (Kinoshita and Nakamura 2005). 3D DMI complexes of 7 

ligand motifs were selected (i.e. LIG_LIR_GEN_1, LIG_PTAP_UEV_1, LIG_PTB_APO_2, 

LIG_SH3_2, LIG_ULM_U2AF65_1, LIG_WD40_WDR5_WIN_1 and LIG_WW_1) (Table 5.1). 

1- LIG_LIR_GEN_1 

The LIG_LIR_GEN_1 motif sequence contributed strongly to predicting binding affinity, with 

human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.10, Figure 5.2A). True 

positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 0.05). All 

human and true positive SLiM occurrences were predicted to destabilise the structure (PDB 

ID: 3DOW, ΔΔG > 0), with the true positives demonstrating more stabilisation than random 

human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). Viral SLiM were also destabilising 
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(ΔΔG > 0) and could not be distinguished from human occurrences (Wilcoxon p > 0.05) 

(Figure 5.2C). 

 

Figure 5.10. Peptide exchange experiment using known 3D DMI (PDB ID: 3DOW) complex.  

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
LIG_LIR_GEN_1 DMI complex (PDB ID: 3DOW), B)  B inding energy differences (ΔΔG)  of different 
peptide datasets bound to native LIG_LIR_GEN_1 complex.  

2- LIG_PTAP_UEV_1 

The LIG_PTAP_UEV_1 motif sequence contributed strongly to predicting binding affinity, 

with human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.11, Figure 5.2A). True 

positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 0.05). Most of 

the human and true positive SLiM occurrences were predicted to stabilise the structure 

(PDB ID: 3OBQ, ΔΔG < 0), with the true positives demonstrating less destabilisation than 

random human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). A total of 33 viral SLiMs 

were found to be stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and could not be 

distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). None of the 

mimicry candidates was found to be stabilising. 
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Figure 5.11. Peptide exchange experiment using known 3D DMI (PDB ID: 3OBQ) complex.  

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
native LIG_PTAP_UEV_1 complex, B) Top ranked predicted viral peptide bound to native complex, 
C)  Binding energy differences (ΔΔG)  of different datasets bound to native LIG_PTAP_UEV_1 
complex.  

 

3- LIG_PTB_APO_2 

LIG_PTB_APO_2 had 2 solved DMI structures (i.e. 1NTV and 1AQC). The LIG_PTAP_UEV_1 

motif sequence contributed strongly to predicting binding affinity, with human occurrences 

of the motif showing smaller increases in binding energy than the random peptide true 

negative control (Wilcoxon p < 0.05) (Figure 5.12, Figure 5.2A). All the human SLiM 

occurrences were predicted to destabilise the structure (PDB ID: 1NTV, ΔΔG > 0) for both 

structures (PDB ID: 1NTV and 1AQC) and only 1 true positive SLiM occurrence was found 

to be stabilising (ΔΔG < 0) with the PDB structure 1NTV while all the true positive SLiM 

occurrence were destabilising the 1AQC structure (ΔΔG > 0). In case of 1AQC structure, true 

positives were demonstrating less destabilisation than random human occurrences 

(Wilcoxon p < 0.05) while in case of 1NTV, true positives were demonstrating more 

stabilisation than random human occurrences (Wilcoxon p < 0.05) (Figure 5.2B). All the 

viral SLiM occurrences were found to be destabilising (ΔΔG > 0) for both structures and 

could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C).  
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Figure 5.12. Peptide exchange experiment using known 3D DMI (PDB ID: 1NTV) complex.  

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
LIG_PTB_APO_2 DMI complex (PDB ID: 1NTV), B)  Binding energy differences (ΔΔG)  of different 
peptide datasets bound to native LIG_PTB_APO_2 complex.  

 

4- LIG_SH3_2 

The LIG_SH3_2 motif sequence contributed strongly to predicting binding affinity, with 

human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.13, Figure 5.2A). True 

positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 0.05). All true 

positive SLiM occurrences were predicted to destabilise the structure (PDB ID: 1CKA, ΔΔG 

> 0) while 80 human SLiM occurrences were found to be stabilising (ΔΔG > 0). The true 

positives were found to be more destabilisation than random human occurrences 

(Wilcoxon p < 0.05) (Figure 5.2B). A total of 71 viral SLiM were stabilising (ΔΔG < 0) (Table 

5.2, Figure 5.2D) and were more stabilising than the human occurrences (Wilcoxon p < 

0.05) (Figure 5.2C). Among these binding SLiMs, 4 occurrences (i.e. PLPPPR, PPAPRR¸ 

PPLPAK, PVPPPR) were mimicry candidates. 
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Figure 5.13. Peptide exchange experiment using known 3D DMI (PDB ID: 1CKA) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native LIG_SH3_2 complex, B) Top ranked predicted viral  peptide bound to native complex, C)  
Binding energy differences (ΔΔG)  of different datasets bound to native LIG_SH3_2 complex.  

 

5- LIG_ULM_U2AF65_1 

The LIG_ULM_U2AF65_1 motif sequence contributed strongly to predicting binding affinity, 

with human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.14, Figure 5.2A). True 

positive SLiMs showed more stabilisation than true negatives (Wilcoxon p < 0.05). A total 

of 30 human and only 1 true positive SLiM occurrence were predicted to stabilise the 

structure (PDB ID: 2PEH, ΔΔG < 0). The true positives were demonstrating higher 

destabilisation than random human occurrences (Wilcoxon p > 0.05) (Figure 5.2B). Only 1 

viral SLiM (RRRRWR) was found to be stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and 

could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 

None of the mimicry candidates were found to be stabilising. 
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Figure 5.14. Peptide exchange experiment using known 3D DMI (PDB ID: 2PEH) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native LIG_ULM_U2AF65_1 complex, B) Top ranked predicted v iral peptide bound to native 
complex, C)  B inding energy differences (ΔΔG)  of  different datasets bound to native 
LIG_ULM_U2AF65_1 complex. 

 

6- LIG_WD40_WDR5_WIN_1 

LIG_WD40_WDR5_WIN_1 had 6 solved structures in PDB (i.e. PDB Id: 3UVM, 3UVN, 4CY1, 

4ERZ, 4ES0 and 4ESG). The LIG_WD40_WDR5_WIN_1 motif sequence contributed strongly 

to predicting binding affinity, with human occurrences of the motif showing smaller 

increases in binding energy than the random peptide true negative control (Wilcoxon p < 

0.05) (Figure 5.16, Figure 5.2A). True positive SLiMs showed more stabilisation than true 

negatives (Wilcoxon p < 0.05). Around 50% of the human and 1 true positive SLiM 

occurrence were stabilising (PDB ID: 3UVM, ΔΔG < 0). The true positive were demonstrating 

higher destabilisation than the random human occurrences (Wilcoxon p > 0.05) (Figure 

5.2B). Only 1 viral SLiM was found to be stabilising (PDB ID: 3UVM, ΔΔG < 0) (Table 5.2, 

Figure 5.2D) while none of viral SLiM showed stabilisation with other structures. These 

viral SLiMs could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 

5.2C). 
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Figure 5.15. Peptide exchange experiment using known 3D DMI (PDB ID: 3UVM) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native LIG_WD40_WDR5_WIN_1 complex (3UVM), B) Top ranked predicted viral peptide bound 
to native complex, C)  Binding energy differences (ΔΔG)  of  different datasets bound to native 
LIG_WD40_WDR5_WIN_1 complex.  

7- LIG_WW_1 

The LIG_WW_1 motif sequence contributed strongly to predicting binding affinity, with 

human occurrences of the motif showing smaller increases in binding energy than the 

random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.16, Figure 5.2A). True 

positive SLiMs showed less destabilisation than true negatives (Wilcoxon p < 0.05). All 

human and true positive SLiM occurrences were predicted to destabilise the structure (PDB 

ID: 1EG4, ΔΔG > 0), with the true positives demonstrating less stabilisation than random 

human occurrences (Wilcoxon p > 0.05) (Figure 5.2B). Viral SLiM were also destabilising 

(ΔΔG > 0) and could not be distinguished from human occurrences (Wilcoxon p > 0.05) 

(Figure 5.2C). 
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Figure 5.16. Peptide exchange experiment using known 3D DMI (PDB ID: 1EG4) complex.  

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of LIG_WW_1 DMI complex (PDB ID: 1EG4), B)  B inding energy dif ferences (ΔΔG)  of different 
peptide datasets bound to native LIG_WW_1 complex.  

5.5.5 Targeting sites 

Targeting site motifs are the sites within proteins that helps in recognition and binding of 

the proteins (Dinkel, Michael et al. 2012). 3D DMI complexes of two targeting ELMs (i.e. 

TRG_LYSEND_GGAACLL_1 and TRG_NLS_MONOEXTC_3) were selected to evaluate 

predicted viral instances of SLiMs. 

1- TRG_LYSEND_GGAACLL_1 

TRG_LYSEND_GGAACLL_1 had two solved structures in PDB (i.e. PDB ID: 1JUQ and 1JWG). 

The TRG_LYSEND_GGAACLL_1 motif sequence contributed strongly to predicting binding 

affinity, with human occurrences of the motif showing smaller increases in binding energy 

than the random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.17, Figure 

5.2A). True positive SLiMs showed more stabilisation than true negatives (Wilcoxon p < 

0.05).  Around 50% of the true positive and human SLiM occurrences were predicted to 

stabilise the structure (PDB ID: 1JWG, ΔΔG > 0). The true positives were demonstrating 

higher destabilisation than random human occurrences (Wilcoxon p > 0.05) (Figure 5.2B). 

Both viral SLiMs: DRDLLD and DRNLLD were found to be stabilising (ΔΔG < 0) (Table 5.2, 

Figure 5.2D) and could not be distinguished from human occurrences (Wilcoxon p > 0.05) 
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(Figure 5.2C). On the other hand, all the viral SLiMs were destabilising (PDB ID: 1JUQ, ΔΔG 

> 0) and could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 

5.2C). 

 

Figure 5.17. Peptide exchange experiment using known 3D DMI (PDB ID: 1JWG) complex. 

 X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs.  A)  3D structure 
of native TRG_LYSEND_GGAACLL_1 complex (PDB ID: 1JWG), B) Top ranked predicted v iral peptide 
bound to native complex, C)  Binding energy dif ferences (ΔΔG)  of different datasets bound to 
native TRG_LYSEND_GGAACLL_1 complex.  

 

2- TRG_NLS_MONOEXTC_3 

The TRG_NLS_MONOEXTC_3 motif sequence contributed strongly to predicting binding 

affinity, with human occurrences of the motif showing smaller increases in binding energy 

than the random peptide true negative control (Wilcoxon p < 0.05) (Figure 5.18, Figure 

5.2A). True positive SLiMs showed more stabilisation than true negatives (Wilcoxon p < 

0.05). A total of 90 human and 2 true positive SLiM occurrences were predicted to stabilise 

the structure (PDB ID: 1EE4, ΔΔG < 0), with the true positives demonstrating higher 

destabilisation than random human occurrences (Wilcoxon p > 0.05) (Figure 5.2B).  A total 

of 17 viral SLiM were predicted to be stabilising (ΔΔG < 0) (Table 5.2, Figure 5.2D) and 

could not be distinguished from human occurrences (Wilcoxon p > 0.05) (Figure 5.2C). 

 



183 

 

 

Figure 5.18. Peptide exchange experiment using known 3D DMI (PDB ID: 1EE4) complex.   

X-axis shows the ΔΔG  of the datasets,  y-axis shows the frequency of the SLiMs. A)  3D structure of 
native TRG_NLS_MONOEXTC_3 complex, B) Top ranked predicted v iral peptide bound to native 
complex, C)  B inding energy differences (ΔΔG)  of  different datasets bound to native 
TRG_NLS_MONOEXTC_3 complex.  
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Table 5.2.   Binding energy quantif icat ion of predicted viral SLiMs bound with native complexes.  

ELM PDB ID Peptide ΔΔG 
DEG_SIAH_1 
 

2FLU VPTAEVRPG -1.42749 
PPSAMVRPT -0.837641 
RPRAAVAPC -0.638656 
SPEARVPPG -0.435736 
DPSAAVGPD -0.0502077 

DOC_ANK_TNKS_1 3TWW KRNPPPGY -2.60672 
PRRPPPGR -2.4746 
PRPPPPGV -2.21947 
RRHLPPGA -2.11479 
PRGEPPGE -1.29359 
LRRGPPGE -1.26399 
TRPGPPGI* -1.11788 
ARDPPPGA -1.04761 
YRFAAPGE -0.94632 
ARPGPPGI -0.85382 
RRPLPDGT -0.84212 
FRDRPDGV -0.75661 
ARDYPDGE -0.66953 
IRFVPDGS -0.65491 
KRICPPGT -0.45142 
LRSVPPGA -0.23888 
YRFVAPGE -0.1321 
FRSAPEGH -0.05878 

3TWX RRHLPPGA -2.06377 
PRRPPPGR -1.92777 
PRGEPPGE -1.59202 
KRNPPPGY -1.35326 
PRPPPPGV -1.08908 
ARDPPPGA -0.95831 
RRPLPDGT -0.9175 
TRPGPPGI -0.62013 
FRDRPDGV -0.47364 
KRICPPGT -0.37735 
LRRGPPGE -0.29376 
IRFVPDGS -0.25401 
ARDYPDGE -0.23969 
ERQIPDGE -0.18581 
KRNPPPGY -0.0431 

DOC_CYCLIN_1 
 

1H24 RPLF -0.806 
KFLM -0.74952 
KPLV -0.63684 
RFLP -0.62226 
KPLI -0.5936 
RPLI -0.58142 
RPLM -0.5802 
RPLP -0.55168 
KPLY -0.54005 
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KLLI -0.53769 
RPLV -0.45703 
RFLL -0.42992 
KPLP -0.41306 
RYLP -0.39823 
KPLM -0.33716 
KYLP -0.30821 
KLLY -0.29493 
KYLL -0.24751 
KYLF -0.24149 
RMLY -0.23371 
RQLP -0.21754 
RLLY -0.20771 
KRLP -0.19793 
KRLY -0.1799 
KVLF -0.17337 
RMLL -0.17087 
RKLP -0.16837 
KFLL -0.16428 
KKLP -0.16402 
RHLP -0.15951 
KRLF -0.14818 
RFLV -0.14378 
RRLP -0.12972 
RLLM -0.11178 
RVLP -0.10935 
KVLI -0.09815 
RGLP -0.07398 
RILL -0.06607 
KRLL -0.06511 
KQLI -0.0651 
RRLF -0.04871 
KILV -0.0403 
KMLL -0.03455 
KPLI -0.0338 
KFLV -0.03228 
KVLL -0.02996 
KHLP -0.02929 
KKLI -0.02336 
RRLL -0.01526 
RRLI -0.00904 
KLLY -0.00281 
RRLY -0.0027 
RLLP -5.61E-05 

LIG_PTAP_UEV_1 3OBQ RPTAPP -2.8675 
IPTAPP -2.84484 
LPTAPP -2.78543 
QPTAPP -2.66342 
RPSAPP -2.55268 
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XPSAPA -2.34341 
RPTAPS -2.31539 
VPTAPP -2.21693 
EPSAPP -2.20307 
VPSAPP -2.11169 
SPTAPP -2.10624 
RPTAPF -2.00816 
APTAPP -1.8349 
RPTAPF -1.82629 
RPTAPL -1.54596 
WPSAPE -1.52059 
LPSAPE -1.39835 
YPTAPA -1.28903 
RPTAPS -1.14059 
TPTAPL -1.0665 
RPTAPT -0.86517 
KPTAPT -0.71092 
EPTAPQ -0.65948 
APSAPM -0.60975 
RPSAPA -0.60142 
APTAPL -0.60111 
EPTAPS -0.56065 
LPSAPT -0.53908 
TPSAPS -0.43513 
VPTAPA -0.29788 
TPSAPT -0.26448 
SPTAPS -0.12407 
VPSAPG -0.01472 

LIG_SH3_2 1CKA PRRPPR -2.91684 
PPLPSR -2.80718 
PKLPPR -2.58222 
PPLPPR -2.53579 
PPKPPR -2.41982 
PPRPKR -1.97147 
PERPPR -1.9081 
PKKPPR -1.86624 
PQLPPR -1.81122 
PPPPPR -1.71979 
PPLPYR -1.60075 
PPQPPR -1.58239 
PPPPAR -1.50299 
PPLPPK -1.30033 
PKPPPR -1.22129 
PPPPRR -1.20963 
PARPTR -1.19562 
PNKPHR -1.17332 
PPPPKR -1.15073 
PPRPTR -1.11246 
PHRPTR -1.08734 
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PPAPPR -1.04964 
PPPPTR -0.98882 
PKIPKR -0.97325 
PPAPKR -0.9608 
PRPPRR -0.94436 
PRLPAR -0.94277 
PPPPSR -0.91557 
PPPPQR -0.78104 
PRVPRR -0.74394 
PMRPLR -0.66238 
PPPPGR -0.6112 
PGPPPR -0.60723 
PDLPGR -0.59703 
PQKPPR -0.59513 
PPVPYR -0.59207 
PLIPYR -0.58539 
PPGPRR -0.56151 
PLPPPR* -0.55425 
PRPPSR -0.54541 
PLKPTR -0.51366 
PPAPAR -0.49732 
PVKPRR -0.49166 
PPAPRR* -0.43815 
PNPPGR -0.39125 
PPLPAK* -0.38319 
PGRPTR -0.36409 
PRKPLR -0.35501 
PLRPSR -0.33971 
PPGPPR -0.3391 
PIPPPR -0.28179 
PPSPPR -0.27983 
PRRPRR -0.25823 
PEAPPR -0.25004 
PEQPSR -0.24212 
PPPPER -0.22663 
PAQPPR -0.20711 
PPVPIR -0.19738 
PRTPSR -0.17877 
PPTPQR -0.12391 
PRVPGR -0.11668 
PPAPSR -0.09931 
PPPPPK -0.09345 
PVTPKK -0.08891 
PAVPSR -0.04916 
PVPPPR* -0.04384 
PRTPAR -0.04063 
PRQPAR -0.02158 
PQKPPR -0.02031 
PGKPSR -0.01699 
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PLEPPR -0.00806 
TRG_LYSEND_GGAACLL_1 1JWG DRDLLD -0.497046 

DRNLLD -0.446507 
TRG_NLS_MONOEXTC_3 1EE4 GKKRYK -1.53668 

RKRRKR -0.99513 
RKKLKR -0.9379 
QKRPRR -0.792 
PKKRLR -0.7424 
PKKVKR -0.73008 
PKKKRK -0.67413 
KKKRKR -0.29727 
RKKPRK -0.25185 
RKKRQR -0.20796 
TRKRIR -0.19874 
IKKRFK -0.17045 
LKKLKK -0.15317 
GKKRKR -0.1072 
RKKLKP -0.08233 
MKRFRK -0.0621 
TKKKYK -0.06186 

 

*mimicry candidates from predicted DMI dataset.
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5.6 Discussion 

The analysis in this chapter is a pilot study where known DMI knowledge was combined 

with predicted SLiMs/DMI knowledge to discover new SLiM occurrences through peptide 

exchange experiment. More specifically, to see if binding energy quantification of predicted 

SLiM occurrences with the native DMI complexes could be used to discriminate binding vs 

non-binding motifs.  

5.6.1 Binding energy quantification does not necessarily help in validating DMIs. 

Once the structural data was prepared, it was run through FoldX with peptide datasets to 

identify binding vs non-binding SLiMs. Four major types of ELMs (i.e. DOC, DEG, LIG and 

TRG) were evaluated for this pilot study to find new SLiM occurrences through swapping 

the already bound peptide with predicted peptides. Most of the viral SLiM occurrences 

destabilised the native structures. The binding energy quantification was assessed based on 

the ΔΔG values. A ΔΔG > 0 suggests that the binding peptide is destabilising the structure 

and a ΔΔG <0 shows that the peptide is stabilising the structure (Schymkowitz, Borg et al. 

2005). The predicted viral SLiMs were found to be stabilising for 10 ELM classes  based on 

their ΔΔG (i.e. DEG_SIAH_1, DOC_ANK_TNKS_1, DOC_CYCLIN_1, LIG_PTAP_UEV_1, 

LIG_PTB_APO_2, LIG_SH3_2, LIG_ULM_U2AF65_1, LIG_WW_1, TRG_LYSEND_GGAACLL_1  

and TRG_NLS_MONOEXTC_3). Out of 23 analysed structures, over 50% demonstrated 

stabilisation with the predicted viral peptides (ΔΔG < 0). A Wilcoxon rank test was carried 

out to see if the designed approach was working in principle. Four different comparisons 

were done: 1) random human occurrences vs true negative peptides which was done to see 

if FoldX could detect motif specificity, 2) true positive SLiMs vs random human occurrences 

to see if TP shows stronger binding than random human SLiMs and, 3) viral vs random 

human occurrences to see if viral SLiMs were stronger binders than the random human 

SLiMs, 4) TP vs TN to see specificity of SLiMs (Figure 5.2). For the potential validation first 

two conditions needed to be significant and for the actual validation of the predictions, all 

four conditions needed to be significant. However, if third condition wasn’t found 
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significant, it still suggests that individual viral SLiM predictions can still be good 

candidates.  

5.6.1.1 Can FoldX detect general motif specificity 

The first question was to see whether FoldX detect general motif specificity (motifs versus 

random peptides). It was expected that all the true negative peptides will destabilise the 

complex. This was indeed the case as all the true negative peptides showed very high ΔΔG 

(ΔΔG >0), indicating that none of them were able to bind with the native structure through 

maintaining its stability. This was expected as SLiM interactions are highly specific (SLiM 

binds with a specific interaction partner) (Zarrinpar, Park et al. 2003). The statistical 

significant difference of the human vs true negative peptides (Figure 5.2) demonstrated 

that true negatives were more destabilising than the random human occurrences which in 

turn shows that FoldX can detect general motif specificity.  

5.6.1.2 Do TP generally show stronger binding than random human SLiMs?  

It was expected that all true positive occurrences would be stronger binders than the 

random human SLiMs and would be more stabilising than the human SLiMs. Not all true 

positive SLiMs were found to be stabilising the native complex. For example, none of the 

true positive occurrence showed stabilisation (ΔΔG < 0 ) with the LIG_WW_1 (PDB ID: 

1EG4), DEG_KELCH_KEAP1_1 (PDB ID: 2FLU), DOC_AGCK_PIF_1 (PDB ID: 1O6L) and 

LIG_LIR_GEN_1 (PDB ID: 3DOW). An apparent lack of significant difference between TP and 

random human occurrences was observed for most of the complexes (Figure 5.2) 

suggesting that not all true positives can be good binders. The reason could be the 

mechanisms involved in binding (i.e. localisation and/or timing of expression) which 

prevent binding in vivo. For some motifs (i.e. DEG_KELCH_KEAP1_1 (2FLU), DEG_SIAH_1 

(2A25), DOC_ANK_TNKS_1 (3TWU), DOC_CYCLIN_1 (1H24), LIG_LIR_GEN_1 (3DOW), 

LIG_PTB_APO_2 (1NTV), LIG_SH3_2 (1CKA)), a significant difference (P-value < 0.05) 

between TP and random human occurrences was observed showing that the approach was 
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working in principle (Figure 5.2) and TPs were stronger binders than the random human 

occurrences. This raises the possibility of using the approach for de-novo SLiM predictions. 

For example, the predicted TPs can be compared with the proteome background to find a 

new motif class. In general, it can be said that stabilisation alone as a parameter cannot be 

used for validation of predictions and better tools needs to be utilized to investigate binding 

energies. 

5.6.1.3 Are viral SLiMs stronger binders than the random human SLiMs 

Given that the condition (TP vs Human) was true sometimes, the next question was to see 

if viral SLiMs stronger binders were than the random human SLiMs. This was not the case 

as an apparent lack of significant difference between viral and human SLiMs was observed 

for almost all complexes except for LIG_SH3_2 complex. This in turn supports that viral 

predictions for LIG_SH3_2 could be enriched for TPs. The lack of significant difference 

between viral and human also suggests that there might be false positives in the viral SLiMs. 

In general, most of the viral SLiMs showed ΔΔG >0 suggesting that they were destabilising 

the native complex. As SLiM predictions come with high false positive rates, it was likely 

that many of the predicted SLiMs would be false predictions.  

On a general note, it can be said that this approach is not universally useful in its current 

form, but still helped in identifying some individual candidates of interest. The binding 

energy changes of identified SLiMs were quite effective (ΔΔG < 0) suggesting that these 

could possibly be ideal candidates for future validations through experimental techniques. 

5.6.1.4 Binding energy changes of different ELM classes 

First, degron motifs (i.e. DEG_KELCH_KEAP1_1 and DEG_SIAH_1) were analysed. Degron 

motifs are SLiMs which are embedded in modular proteins and are used by E3 ubiquitin 

ligases to target proteins for degradation. These motifs are known to mediate several 

cellular functions including monitoring cellular hypoxia and progression through cell cycle. 

In general, these motifs are responsible for prevention of protein dysfunction through 
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eliminating proteins which are no longer required (Meszaros, Kumar et al. 2017). In case of 

DEG_KELCH_KEAP1_1, none of the known occurrences showed ΔΔG < 0 indicating that all 

these SLiMs were destabilising the native structure. The reason could be that the available 

known occurrences are not specific to that domain/structure. This was also the case with 

the random human occurrences as all of them destabilised the structure (ΔΔG > 0). 

Similarly, all the viral SLiMs also destabilized the native structure. On the other hand, 

around 50% known as well as predicted viral SLiMs were stabilising the DEG_SIAH_1 

complex (ΔΔG < 0)  (Figure 5.4).  

In case of docking motifs, firstly, binding energy changes were evaluated for 

DOC_AGCK_PIF_1 complex. None of the known SLiMs showed stabilisation while few 

random human SLiMs showed stabilisation (ΔΔG <0). All the viral SLiMs destabilised the 

native complex indicating that those might be just random occurrences (Figure 5.5). On the 

other hand, both human and viral SLiMs showed effective binding with the DOC_CYCLIN_1 

complex. Around ¼ of the predicted viral SLiMs demonstrated stabilisation (ΔΔG < 0) with 

the DOC_CYCLIN_1 (Figure 5.9, Table 5.2) complex. Similarly, effectively binding SLiMs 

were identified for DOC_ANK_TNKS_1 complex. DOC_ANK_TNKS_1 had three solved (i.e. 

3TWU, 3TWW and 3TWX) DMI complexes in PDB. It was observed that not all SLiMs were 

binding in same manner with these three complexes. Some tend to bind more effectively 

with the 3TWU (Figure 5.6, Table 5.2Error! Reference source not found.), some with 

3TWW (Figure 5.7, Table 5.2) and some with the 3TWX (Figure 5.8, Table 5.2). The 

overall binding energy changes (ΔΔG) were different for all these complexes. One possible 

explanation could be that, efficiency of a SLiM binding to the globular domain might be 

dependent on different factors (e.g. quality of the solved structure, method used to solve 

structure, stability of the complex etc.).  

Looking at the ligand motifs (i.e. LIG_LIR_GEN_1, LIG_PTAP_UEV_1, LIG_PTB_APO_2, 

LIG_SH3_2, LIG_ULM_U2AF65_1, LIG_WD40_WDR5_WIN_1 and LIG_WW_1), did not identify 
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any effectively binding viral SLiMs for the LIG_LIR_GEN_1 (Figure 5.10), LIG_WW_1 

(Figure 5.11) and LIG_PTB_APO_2 (Figure 5.12), but found many stabilising SLiMs for 

LIG_PTAP_UEV_1 (Figure 5.13, Table 5.2), LIG_SH3_2 (Figure 5.14, Table 5.2), 

LIG_WD40_WDR5_WIN_1 (Figure 5.15, Table 5.2) and LIG_ULM_U2AF65_1 (Figure 5.16, 

Table 5.2). All true positive occurrences were destabilising the native complex of 

LIG_SH3_2 while few human random occurrences demonstrated stabilisation of the 

complex. The reason of true positive destabilising the structure could be motif sub-

specificity for different SH3 domains and thus they might have weaker-than-random 

binding. LIG_SH3_2 showed significant difference (P-value < 0.05) for all the three 

conditions. This was the only motif class which showed significant difference for all three 

conditions (Figure 5.2)  indicating that the predicted viral SLiMs could be potential 

candidates for validation of the DMIs. The interaction between different LIG_SH3_2 motifs 

and SH3 domains has previously been reported where high specificity of the SH3 

interactions was shown (Zarrinpar, Park et al. 2003). This analysis also showed this 

specificity where LIG_SH3_2 motifs interacted effectively with the native SH3 complex. 

Many stabilising SLiMs were identified for the targeting motifs (i.e. 

TRG_LYSEND_GGAACLL_1 (Figure 5.17, Table 5.2) and TRG_NLS_MONOEXTC_3 (Figure 

5.18, Table 5.2). Most of the known and random human occurrences showed ΔΔG below 0 

indicating that these SLiMs were binding through maintaining the stability of the complex.  

5.6.2 Limitations/Issues of the approach 

In-silico peptide exchange experiment wasn’t as successful as expected to initially validate 

the predictions. The reason could be the several issues faced during the analysis. One 

prominent limitation of this approach was the loss of data for the analysis. A big chunk of 

structural data was lost because of the limitation of FoldX dealing with non-standard amino 

acids. Most of the native structures had peptides with some non-standard amino acids (e.g. 

phosphorylated residues). Since it was a pilot study therefore, structures which were 
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suitable for FoldX and did not had any such issues were analysed. Unfortunately, a big 

proportion of data (~76%) was lost during this step. This issue could be fixed through using 

other computational tools which are more suitable for dealing with non-standard residues.  

Another possible solution would be to try to remove phosphorylation from the bound 

peptides so that they can be used with FoldX. Another big drawback of this analysis was 

destabilisation of the native complex. Most of the predictions destabilised the native 

complex (ΔΔG > 0). Comparison with the controls clearly shows that slightly destabilising 

energies still indicate good binding.  

The pipeline designed for this analysis did not work as effective as it was expected. The 

reason of this pipeline not working does not necessarily mean that FoldX is not suitable for 

such analysis rather it might have been influenced by high false discovery rate of the 

predictions. A better and improved pipeline can help in improving such analysis for 

example, using molecular docking approach through Autodock (Morris, Huey et al. 2009).  

Other tools which also enable peptide exchange are FlexPepDock (Raveh, London et al. 

2011) where high -resolution models of peptide-protein complexes between flexible 

peptides and proteins are generated and Rosetta (Das and Baker 2008; Alford, Leaver-Fay 

et al. 2017) where peptide-protein binding can be done. The typical docking approach 

would be to remove already bound peptide and replace it with the predicted peptides by 

selecting the binding pocket in protein. This kind of approach would eventually help in 

finding the binding mode of the individual predictions through giving atomic level 

information. Such type of analysis would require high computational resources and time. 

The final step would be to do in-vivo and in-vitro experimental validations. Different generic 

experiments (i.e. mutation analysis, alanine scanning, co-immunoprecipitation, pull-down, 

two hybrid and colocalization) can be used to validate motifs (Gibson, Dinkel et al. 2015). 

Studies have been conducted in past to validate motifs through phage display experiments 

for example, in one study co-immunoprecipitation in conjunction with isothermal titration 
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calorimetry was used to validate motifs. (i.e. interactions between DxxLL motifs and GGA1 

VHS domains) (Davey, Seo et al. 2017). One possible way to validate the identified SLiMs is 

through a mutagenesis experiment where the already bound peptide can be mutated 

through replacing with the identified SLiMs. Moreover, for the ELM classes where all the 

three conditions were found to be significant, protein can be expressed with the viral SLiMs 

that were found to be stronger than the random human occurrences.  

5.6.3 Conclusion 

The work done in this chapter was a pilot study to see if in-silico peptide exchange 

experiment could help in discriminating binding vs non-binding SLiMs and to see if this 

could be used for the initial validation of the DMIs. The designed pipeline/approach was not 

found to be efficient in terms of initial validation of the predictions but helped in identifying 

some effectively binding SLiMs. As the predictions come with high false discovery rate, it 

was expected that not many mimicry candidates would bind with the known complexes. 

This was indeed the case as most of the mimicry candidates didn’t show stabilisation with 

the native complex and showed ΔΔG above 0. This emphasizes the need that better 

approach/pipeline should be adapted to reduce false discovery rate. Despite the inefficiency 

of designed pipeline, it helped in screening SLiMs which stabilised the native complex. 

These SLiMs predictions could be real and need to be validated through wet lab experiments 

where the actual binding affinity of the peptides could be evaluated. 
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6 Chapter 6: Conclusions 

The main aim of my thesis was to study molecular mimicry in viruses through short linear motifs 

(SLiMs). Viruses mimic SLiMs in host proteins and establish transient interactions known as domain-

motif interactions (DMIs). The current number of known DMIs in databases like ELM (Dinkel, Van 

Roey et al. 2016) and 3did (Mosca, Ceol et al. 2014) is underrepresented therefore, the first objective 

of my thesis was to design a pipeline that could predict DMIs from the protein-protein interactions 

(PPIs) data. 

6.1 SLiMEnrich 

The idea was to combine the known/predicted motif, domain composition with the PPI data to 

predict DMIs and to evaluate enrichment. The designed pipeline was converted into an interactive 

online application known as SLiMEnrich (Idrees, Perez-Bercoff et al. 2018). SLiMEnrich mainly helps 

in evaluating whether a PPI source is enriched in terms of capturing DMIs and helps in predicting 

new DMIs. SLiMEnrich works in three possible ways: 1) ELMi-Protein strategy where a PPI source is 

mapped to known DMI data from ELM to see how well it is capturing DMIs, 2) ELMc-Protein strategy 

where the motif containing protein is linked to its known interactor protein (domain containing 

protein) via ELM class, 3) ELMc-Domain strategy where the motif containing protein is linked to ELM, 

ELM to Pfam domain and Pfam domain to its corresponding proteins. SLiMEnrich by default works 

with the known SLiMs in the ELM databases but it can essentially work with any types of motif 

predictions for instance, SLiMProb predictions can be used to predict new DMIs.  The usage of 

SLiMEnrich is not limited to DMI prediction rather it can be used for other purposes as well. For 

example, it can be used to predict other types of interactions (i.e. domain-domain interactions (DDIs), 

Protein-motif interactions (PMIs)) provided that the files are in right format. It can be used to find 

the optimal stringency of the interactions and it can also be used by systems biologists to see if their 

proteins/PPI of interest are enriched in a given PPI data. A command-line version of SLiMEnrich is 

also available which can deal with large datasets with easy to handle commands.  
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6.2 PPI datasets as a source of DMI and DDI predictions 

After developing the SLiMEnrich, my next objective was to use it to evaluate how well different 

publicly available PPI data sources were capturing different sorts of interactions (i.e. DMIs and DDIs). 

SLiMEnrich’s main algorithm works by calculating enrichment of DMIs in PPI datasets through 

comparing it with a random set of PPIs. The reason of calculating enrichment based on random pair 

of PPIs than the whole interactome was to assure whether a dataset can be a good source of 

DMIs/DDIs. Once assured that a dataset is capturing DMIs/DDIs, this information can be used to 

design further downstream analysis for example, calculating enrichment by comparing with the 

whole network and finding how enriched is a DMI/DDI given an interactome. 

For this purpose, 10 publicly available human interactomes were compared to see how well they 

were capturing DMIs and DDIs and which high-throughput method (i.e. Y2H, AP-MS and CoFrac-MS) 

was better at capturing these interactions. It was seen that all datasets were significantly enriched in 

terms of capturing DMIs and DDIs. Both Y2H and AP-MS looked promising in terms of capturing these 

interactions while CoFrac-MS wasn’t as compared to them. The one thing that would make such type 

of analysis would be availability of a comprehensive database based on high-throughput interactions. 

In future, this analysis can be extended through including more PPI datasets and also through 

comparing different low-throughput methods to see how they capture different sorts of interactions. 

6.3 Predicting motif mimicry in viruses 

Once it was assured the designed pipeline was working and human interactome was capturing DMIs, 

my next objective was to utilize SLiMEnrich to study molecular mimicry in viruses. For this purpose, 

two viral-human PPI datasets (i.e. PHISTO and VirHostNet2.0) were evaluated to see if they were 

capturing DMIs. Both datasets captured really low number of known DMIs. This wasn’t surprising as 

the number of known virus human DMIs are low in ELM. This in general emphasizes the need to 

discover more DMIs and incorporate them in databases like ELM. It should also be noted that ELM is 

not currently documenting all the known viral SLiMs and more viral data needs to be incorporated 

in ELM. Just like human interactome analysis, both Y2H and AP-MS showed significant enrichment in 

terms of capturing DMIs. The comparison of different viral subtypes leads to prediction of new DMIs, 

but it should be noted that these predictions comes with high false discovery rate. This was the 
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reason that I didn’t investigate individual results. This sort of analysis can become more powerful 

and reliable through including more PPI data for different viral subtypes and through adding 

additional filtrations to reduce FDR rate. Finally, I discovered new SLiMs through the integration of 

human and viral-human interactomes. For this analysis, I integrated HI-II-14 and PHISTO datasets. 

In future, more comprehensive PPI datasets can be used to improve this analysis and discover more 

SLiMs.  

6.4 Structural validation of predictions 

Once the DMI prediction analysis was done, my next objective was to develop a pipeline for the initial 

validation of the predicted SLiMs/DMIs. I designed a pilot study where I used in-silico peptide 

exchange experiment through exchanging the already bound SLiM in the known DMI complex with 

the predicted SLiMs. On a general note, this approach wasn’t as efficient as expected. Several issues 

were faced during this analysis i.e. I lost large proportion of the 3D data as most of them had some 

non-standard amino-acid residues in their bound peptide sequence. It can be said that this analysis 

could be improved by using other tools i.e. Rosetta or some molecular docking and dynamics 

techniques to ensure the binding mode of the predictions. Even though, the designed pipeline didn’t 

work as expected, it helped in screening few high confidence peptides which needs validation 

through computational as well as experimental techniques.  

6.5 Future goals 

On a final note, I would like to say that the analysis done can be improved through designing better 

pipelines that could help in reducing the FDR rate. I have future aims to improve SLiMEnrich through 

adding more filtration steps i.e. to remove post-translational modifications from the analysis, to focus 

on certain types of motif types and to remove highly abundant domains/motifs from the analysis etc. 

I would also like to do some experimental validation of the high confidence SLiMs I gained from the 

peptide exchange experiments. In future, I plan on extending my PhD work for more in-depth 

analysis of the individual DMIs.  
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