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ABSTRACT 

 
This paper presents a segment selection technique for discarding 
portions of speech that result in poor discrimination ability in 
speaker verification tasks. Theory supporting the significance of a 
frame selection procedure for test segments, prior to making 
decisions, is also developed. This approach has the ability to 
reduce the effect of the acoustic regions of speech that are not 
accurately represented due to a lack of training data. Compared 
with a baseline system using both CMS and variance 
normalization, the proposed segment selection technique brings 
24% relative reduction in error rate over the entire testing data of 
the 2002 NIST Dataset in terms of minimum DCF. For short test 
segments, i.e. less than 15 seconds, the novel frame dropping 
technique produces a significant relative error rate reduction of 
23% in terms of minimum DCF. 

 

Index Terms— Speaker Verification, Segment Selection, 
Null Hypothesis 

 
1. INTRODUCTION 

 
Speaker verification tasks using Gaussian Mixture Models 
(GMMs) rely on a score comparing the likelihood of the observed 
speech given the claimant speaker against the likelihood of the 
same segment given the general population background model [1]. 
However, the score varies significantly across the frames, 
depending on whether it can be attributed to the speech content or 
environmental artifacts such as channel and handset effects, 
resulting in poor discrimination between true and impostor models. 
This variation of Log-Likelihood Ratios (LLR) across all frames is 
illustrated in Figure 1, where the matching scores for a target 
speaker model are plotted as heavy lines and the scores against the 
five closest impostor speaker’s models are shown as dots. 
Although the target speaker models usually give the highest scores 
among all models, this is not always the case. The reason for this is 
partly because not all of the areas of acoustic features are equally 
adapted from the background model. The rate of change of the 
score distributions reveals that the relevant mixture distributions 
are updated according to the availability of training data for that 
particular speech sound. Furthermore, the channel, handset and 
environmental mismatch between training and testing conditions 
also results in variability of the scores across frames.  Several 
techniques such as feature mapping [2], speaker model synthesis 
[3] and CDF matching [4] accommodate this mismatch by 
increasing the feature robustness to environmental artifacts, 
whereas some other methods, such as discarding the unvoiced 

segments of speech [5], rely on the noise robust sections of the 
speech at the input.   
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Figure 1. Frame-based scores from speaker and impostor 

models  and its corresponding frame-based P-value for first forty 
frames of a male target test speech segment from the NIST 2002 

Dataset 
 

An early study [6] addressed the score variability, selecting 
reliable frames by setting a speaker-independent threshold. This 
issue can also be addressed in a different manner [7] by de-
emphasizing the contribution of unreliable mixture components 
and emphasizing discriminative regions. 

Following our previous investigations we introduce a 
technique which selects the most reliable and discriminative parts 
of speech without any a priori assumptions about the distributions 
of impostor and true scores. If frames with low discriminative 
ability can be detected, and a log-likelihood ratio can be extracted 
for each frame, then the frame can be discarded. Statistical 
hypothesis testing is used to detect the non-discriminative frames.  

It has been shown empirically [6] that for frames with low 
target scores, the LLR of the observed speech given the target 
speaker, and the low variance impostor scores result in poor 
discrimination and the overall performance would be improved 
greatly if they were left out in making the final decision. This result 
is supported by the theory presented in this paper. The technique 
proposed in section 2 can be implemented by making minor 
changes to the decision-making section of the existing speaker 
verification systems. Since it uses the same impostor scores 
employed in score normalization, it does not impose additional 
overhead on the system.  

Section 2 presents the algorithm for detecting the non-
discriminative frames based on Null hypothesis theory. Then we 
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describe the system setup (Section 3), and experiments supporting 
the theory are reported in Section 4. 

 
2. SPEECH SEGMENT SELECTION 

 
2.1. Problem Formulation 

 
Decision-making is the final processing stage of the speaker 
verification system, preceded by feature extraction and speaker 
modeling. The decision-making process compares the LLR 
resulting from the claimed speaker model and the general 
population model (UBM) for a given test segment with a decision 
threshold. 

A problem arises when the matching score of true and 
impostor models varies across the frames. Figure 1 shows this 
variability across the frames, for true and impostor models for one 
test segment. It can be seen that setting a fixed threshold on raw 
scores or taking an average of scores does not guarantee a reliable 
decision, since the averaging of some low scores might cause false 
rejection.  Poor representation of speakers can be mainly attributed 
to the score variability across all frames. MAP adaptation [8], 
which has been widely used to model the characteristics of a 
specific speaker, was proposed as a solution for applications with 
sparse training data, such as speaker verification [9].  However, the 
assumption that the background model is representative of the 
acoustic regions of the feature space that are not accurately 
updated, due to a lack of training data, is not always valid. 
Furthermore, the variability of the feature vector distribution from 
session to session makes some speech frames less reliable in the 
final decision, due to channel, handset, and noise artifacts. Thus, 
removing frames with poor discrimination ability after score 
matching reduces the miss detection error and consequently 
improves the overall performance of speaker verification system. 
Frame-based processing of likelihood ratios with these 
considerations in mind motivated the score segmentation method. 

 
2.2. Theory Development and algorithm Description 

 
The frame selection technique discussed in this section compares 
the following two hypotheses: H0: The null hypothesis is that the 
frame Tx  does not contain discriminative information. H1: The 

alternative hypothesis is that the frame Tx  does contain 

discriminative information. We call frame Tx  indiscriminative iff 

its likelihood, given true or impostor models is insufficient to 
classify it as a true or impostor speaker; the likelihood of that 
frame belongs to impostor models is equal to the likelihood of its 
belonging to the target model. Therefore, the null hypothesis and 
the alternative hypothesis are defined respectively as follows: 
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where )|(),|( Im) pTTrueT xpxp λλ  are the likelihoods of 

frame Tx given the true and impostor models, Trueλ  and pImλ , 

respectively. 
A P-value is a measure of how much evidence we have 

against the null hypothesis. The smaller the P-value, the more  
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Figure 2. t-distribution and P-value for null 
hypothesis. 

evidence we have against H0. It is also a measure of how likely we 
are to get a certain sample result or a result “more extreme,” 
assuming H0 is true. In other words, the P-value measures 
consistency by calculating the probability of observing the results 
from a sample of data or a sample with results more extreme, 
assuming the null hypothesis is true, as seen in Figure 2. The 
smaller the P-value is, the greater is the inconsistency [10].  

A test with significance level α  is one for which the 
probability of rejecting H0 when it is actually true, is controlled at 
a specified level [10]. In real problems, it is virtually always the 
case that the values of the population variances are unknown. For 
large sample sizes, the sample variance is used in place of 
population variance in the test procedure. The assumption of a 
large sample size is made to allow the use of the properties of the 
central limit theorem (CLT). In fact the CLT allows us to use these 
test methods even if the population of interest is not normal [10].   

In performing a large sample t-test, for the 
population

nXX ,...,1
 with corresponding sample means x  , true 

means η  and sample variance S , the test statistic and the rejection 

region for a specific significance level of test are as follows: 
Test statistic value: 

n
S

x
t

1

η−
=                                       (3) 

which has a t distribution with n-1 degrees of freedom, and where 
2S is the pooled estimator of the common variance 2σ [10]. The 

rejection regions for level α  test (Figure 2) are: 

1,2/ −≥ ntt α  or  1,2/ −−≤ ntt α         (4) 

 or 
α<− valueP                         (5) 

Further, important to recognize is the fact that 

→ ση
n

Nx
1

,                                                              (6) 

according to CLT [10]. 
Substituting values in equation (3) for x  (the sample mean of 

impostor likelihoods over n impostor models given the frame Tx ), 

η  (the target likelihood given frame Tx ), and S  (the sample 
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variance of impostor likelihoods over n impostor models given 
frame Tx ) allows the test statistic value to be evaluated.  

According to equation (4) and Figure 2, if the test segment 
was in the rejection regions of level α, the null hypothesis is false 
with α confidence, i.e. the probability that the current frames is 
discriminative equals α. The frame selection algorithm can be 
summarized as follows: 

• Select the impostor models from development dataset 
• Calculate the frame-based LLR for the claimant and 
impostor models 
• Calculate the test statistics value, t, for each frame from 
equation 3. 
• Discard the frames whose corresponding t-values are not 
in rejection regions (equation 4) or whose P-values are more 
than significant level α (equation 5) 
• Calculate the new LLR by averaging the remaining frame 
scores 

P-values calculated using this technique for a male test 
segment have been shown with dashed lines in Figure 1. It can be 
seen that the frames with smaller true scores and smaller impostor 
score variances correspond to higher P-values or smaller negative 
logarithm of P-values. On the contrary, the smaller P-values, larger 
negative logarithm of P-values, correspond to the frames with high 
true scores. Therefore, the smaller the P-value, the more 
discriminative the frame is. 

 

3. SYSTEM SETUP 
 

3.1. Database 
 

Speaker recognition experiments were conducted on cellular 
telephone conversational speech from the switchboard corpus, the 
set defined by NIST for the 1-speaker cellular detection task in the 
2002 Speaker Recognition Evaluations (SRE). The 2002 set 
contains 330 targets (139 males and 191 females) and 3570 trials 
(1442 males and 2128 females) with a majority of CDMA codec 
utterances; these are scored against roughly 10 gender-matched 
impostors and the true speaker. The 60 development speakers (2 
minutes of speech for each of 38 males and 22 females), 174 target 
speakers (2 minutes of speech for each of 74 males and 100 
females) from NIST-2001 were used to train the background model 
of NIST-2002 system. The same target speakers were also used as 
the impostor data for the NIST-2002 evaluation system. 2038 
evaluation test segments (850 males and1188 females) of NIST-
2001 were used to find the optimum value for significant level α. 

 

3.2. Baseline System 
 
The feature set consisted of 15 Mel-PLP cepstrum coefficients 
[11], 15 delta coefficients plus the delta-energy estimated on the 0-
3.8 kHz bandwidth. Cepstral mean subtraction and variance 
normalization were applied to each speech file during training and 
testing. The speech detector discarded the 15-20% of the lower 
energy frames before the extraction process. 

The speaker modeling is based on a GMM-UBM approach. 
The UBM consisted of two-gender dependent models with 512 
Gaussians, trained on 112 male and 122 female speakers from the 
training portion of development and evaluation datasets of NIST 
2001, and about 6 hours of data in total. For each target speaker, a 

GMM with diagonal covariance matrices was trained using the 
speaker training data via maximum a posteriori (MAP) [8] 
adaptation of the Gaussian means with 3 iterations of the EM 
algorithm. 

Table1. Segment Selection Technique Results 

Duration(in seconds) System 
EER and min DCF x 

1000 
0-15+ 46-65+ All segments 

18.05 10.81 11.47 Baseline 
 
 

78 43.9 49.2 

19.38 11.3 11.46 Baseline + T-Norm 
 66.7 34.4 41.1 

18.44 9.2 10.76 Segment selection 
+ T-Norm 59.6 33.3 37.2 
 

4. EXPERIMENTAL RESULTS 
 

The experiments reported in this section examined the benefit of 
the proposed segment selection technique to discard frames with 
poor discrimination based on their target and impostor LLRs. 
These investigated the performance improvement after applying 
the technique on the entire NIST 2002 testing dataset in terms of 
Equal Error Rate (EER) and minimum Detection Cost Function 
(DCF) [13]. The effects of the proposed technique on two extreme 
categories of test segment duration (i.e. long and short) were also 
examined.  

T-Norm [12] was calculated using impostor models from 62 
male and 89 female speakers from the evaluation portion of the 
NIST2001 dataset, trained in a similar manner to the target models. 
The impostor models for segment selection algorithm are exactly 
the same impostor speakers used in the T-Norm.  

Table 1 presents the Equal Error Rate (EER) and minimum 
Detection Cost Function (DCF) results for segment selection-based 
system with T-Norm and the baseline with and without T-Norm for 
the two categories of test segment durations. The results show that 
while the baseline system fails in verifying short test segments, the 
frame selection algorithm improves the miss detection rate 
significantly. The segment selection technique was evaluated with 
different values of the significant level α; but only the best result 
corresponding to the optimum value of 510 −=α for all speakers, 
is reported here. Also, maximum frame dropping rate was 20% of 
frames in each test segment. 

The segment selection technique improves the minimum DCF 
and EER at least 10% and 6% over the T-norm and 24% and 6% 
over the baseline system for all test segments respectively. This 
improvement was still significant for test segments less than 15 
seconds (Table 1) bringing at least 10% improvement over the T-
norm and 23% over the baseline system in terms of minimum 
DCF. On the other hand, for test segments more than 45 seconds 
the improvement is more significant in EER operating point while 
they are benefited 18.58% and 14.89% relative error reduction 
compared to T-Norm and Baseline. 

Figures 3 and 4 plot the Detection Error Tradeoff (DET) 
curves for the baseline, baseline plus T-Norm and optimum 
segment selection technique plus T-Norm for the entire test 
segments and then on test segments less than 15 seconds 
respectively. It can be clearly seen (Figure 3) that the new segment 
selection technique with T-Norm performs better than T-Norm 
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alone in terms of EER operating point and particularly in the area 
of minimum DCF over entire test segments, whereas all three 
systems exhibit similar performance in low miss-rate areas. For test 
segments less than 15 seconds, the improvement is significant in 
minimum DCF and low miss-rate areas while the EER operating 
point for all systems is almost the same. Therefore, the experiments 
support the theory (section 2.2) that discarding the non-
discriminative frames reduces the miss detection rate. 
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Figure 3. DET plot for the baseline and segment 

selection systems with and without T-Norm, for the entire 
NIST 2002 dataset. 
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Figure 4. DET plot for the baseline and segment selection 

systems with and without T-Norm, for test segments with duration 
less than 15 seconds 

 
5. CONCLUSION 

 
This paper has reported the importance of selecting specific 
portions of a test segment to enhance the efficacy of the decision-

making stage in speaker verification systems. A segment selection 
algorithm has been proposed to discard the non-discriminative 
parts of the test utterance based on their target and impostor 
likelihood ratios. The results indicate a consistent equal error rate 
and minimum DCF reduction compared with the baseline across all 
experiments conducted. A relative reduction in error rate averaged 
all test segments, of 24% and 6% in terms of min DCF and EER 
respectively was obtained using the proposed segment selection 
technique.  
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