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Abstract 1 

Modeling potential disease spread in wildlife populations is important for predicting, 2 

responding to and recovering from a foreign animal disease incursion such as foot and 3 

mouth disease (FMD). We conducted a series of simulation experiments to determine 4 

how seasonal estimates of the spatial distribution of white-tailed deer impact the 5 

predicted magnitude and distribution of potential FMD outbreaks. Outbreaks were 6 

simulated in a study area comprising 2 distinct ecoregions in south Texas, USA, using a 7 

susceptible-latent-infectious-resistant geographic automata model (Sirca). Seasonal deer 8 

distributions were estimated by spatial autoregressive lag models and the normalized 9 

difference vegetative index. Significant (P < 0.0001) differences in both the median 10 

predicted number of deer infected and number of herds infected were found both 11 

between seasons and between ecoregions. Larger outbreaks occurred in winter within 12 

the higher deer-density ecoregion, whereas larger outbreaks occurred in summer and fall 13 

within the lower deer-density ecoregion. Results of this simulation study suggest that 14 

the outcome of an FMD incursion in a population of wildlife would depend on the 15 

density of the population infected and when during the year the incursion occurs. It is 16 

likely that such effects would be seen for FMD incursions in other regions and 17 

countries, and for other diseases, in cases in which a potential wildlife reservoir exists. 18 

Study findings indicate that the design of a mitigation strategy needs to take into 19 

account population and seasonal characteristics. 20 

 21 

spatial modeling / epidemic modeling / foot and mouth disease / wildlife  22 
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1. Introduction 23 

Foot and mouth disease (FMD) is a highly contagious, transboundary disease of cloven-24 

hoof animals and one of the most dangerous foreign animal diseases that might be 25 

accidentally brought into the USA [8]. Its threat to domestic livestock has been well 26 

studied. However, the potential role of wildlife species, which may serve as disease 27 

reservoirs, has been largely overlooked. The presence of non-domesticated reservoir 28 

species has been a serious obstacle to effective control of FMD outbreaks in other 29 

countries [30, 34]. In a series of outbreaks in Britain in 1946, FMD infected deer and 30 

European hedgehogs were found near infected livestock premises [30]. In the former 31 

Soviet Union, FMD has on numerous occasions been reported to have spread from 32 

cattle to Saiga antelope and vice versa. The antelope were reported to have transferred 33 

the disease to other species in places far from the original outbreak [30]. 34 

Deer are among the most commonly FMD-infected wildlife species under field 35 

conditions, and are believed to play an important role in the epizootology of FMD [30]. 36 

The USA has maintained FMD free status since 1929. A 1924 California outbreak 37 

involved deer which were exposed via contact from infected cattle1 [17]. It required 2 38 

years to stamp out FMD from the deer population, and over 22 000 were slaughtered in 39 

the process1 [17]. Approximately 10% of those deer slaughtered during the outbreak 40 

displayed signs of FMD infection1.  41 

FMD infection in wildlife has also been a concern in more recent FMD outbreaks.  42 

During the 2001 FMD outbreak in the U.K. and the Netherlands, it was feared that deer 43 

might become infected and potentially act as a reservoir [5, 10, 34]. Evidence of FMD 44 

in wild deer was not observed in either of these outbreaks, although there were reports 45 

                                                
1 McVicar J.W., Sutmoller P., Ferris D.H., Campbell C.H., Foot and mouth disease in 
white-tailed deer: clinical signs and transmission in the laboratory, Proceedings of the 
78th Annual Mgt. US Animal Health Association, 1974, pp. 169–180. 
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of wildlife displaying signs of infection [10]. Extensive serosurveillance was conducted 46 

after the outbreak, but deer were not tested [10]. Due to the nature of the cattle industry 47 

in Europe, a lack of contact between deer and livestock in these countries may have 48 

averted a disastrous situation from occurring [10]. 49 

Since FMD has not been present in the USA for such a lengthy period of time, the entire 50 

population of cloven-hoofed animals is susceptible to infection. This includes both 51 

livestock and wildlife species. Epidemic models represent an important tool to aid 52 

decision making and epidemic response to foreign animal disease incursions such as 53 

FMD. Following detection of an incursion of FMD virus in a country previously free of 54 

disease, the application of appropriate control measures is a decision that needs to be 55 

made rapidly yet with little data. In addition, political, economic and property rights 56 

issues may also guide policy decisions regardless of what is deemed to be the most 57 

effective strategy to reduce the spread of FMD. Information from model outputs that 58 

provide guidance to the probable extent of an outbreak and its time span are invaluable 59 

for decision-makers implementing disease control measures in the face of external 60 

pressures. Nonetheless, such models need to be developed, validated and tested prior to 61 

emergency situations. Strong links between disease modelers, policy and decision-62 

makers also need to exist a priori. Models can serve not only as response and decision-63 

making tools but also as avenues to increase awareness and collaboration with 64 

stakeholders. 65 

In this research, a simulation model was used to investigate seasonal population impacts 66 

on the spread of FMD in wildlife. The development of this model has been previously 67 

described [7]. Briefly, it uses a state-transition (susceptible-latent-infectious-resistant, 68 

SLIR) framework to simulate the spatial spread of disease within an artificial life model 69 

(geographic automata, a generalization of cellular automata). Artificial life models can 70 
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explicitly incorporate spatial relationships by allowing the interaction between units (for 71 

example, individuals or herds) within a population and a predefined neighborhood, 72 

based on a set of rules and disease states at earlier time steps. The repetitive application 73 

of transmission rules within this local neighborhood replicates the complex spatial 74 

behavior that occurs during disease outbreaks. In the Sirca model, the interaction 75 

between susceptible herds and infected herds gives rise to newly infected herds. The 76 

probability of infection is a function of the distance between herds and the relative size 77 

(or density, if a herd occupies a constant land area) of each herd. Thus, spatial 78 

arrangements and population density are incorporated into simulated disease spread. 79 

The Sirca model has been used to investigate the potential spread of FMD in feral pig 80 

populations in Queensland, Australia [7] and in feral pig and wild deer populations in 81 

Texas, USA [13, 36]. 82 

The need to use spatially-explicit simulation models for FMD has been documented [12, 83 

16] and spatial heterogeneity has been identified as perhaps the greatest challenge to 84 

representing FMD spread across the landscape [8]. Wildlife species are particularly 85 

affected by variations in climate and natural resources [13, 36]. To capture spatial 86 

heterogeneity across the landscape, wildlife distributions should therefore be seasonally-87 

dynamic [13, 36]. Such temporal dependency may play an important role in the spread 88 

of disease within wildlife populations, and further, into domesticated animal populations 89 

[7].  90 

The study area chosen to investigate how seasonal-dependent variability in wildlife 91 

populations might affect the potential spread of FMD is located in south Texas (Fig. 1), 92 

and the target species was white-tailed deer (Odocoileus virginianus). Texas is the 93 

largest cattle production state in the USA and offers the unique opportunity to develop, 94 

validate and model the potential impact of foreign animal diseases, such as FMD, in the 95 
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USA agricultural industry. In general, models developed in Texas to predict areas at-96 

risk of FMD from wildlife reservoirs should be applicable to other ecologically similar 97 

areas both in the USA and abroad where potential wildlife reservoirs are present.  98 

White-tailed deer represent an important financial resource to a substantial number of 99 

ranchers in south Texas [4], and the deer population is actively managed for hunting and 100 

recreational purposes [4, 35]. Population management for optimum carrying capacity is 101 

important for maintaining nutritional status and population size [37]. Deer in the study 102 

area are primarily browsers (consuming leaves and twigs from shrubs and trees) during 103 

the autumn [31]. Grasses and forbs have been found to be important dietary components 104 

during the spring [11, 19, 26]. Deer will only consume grass when it is tender and green 105 

(young), as deer cannot digest mature grass [31]. Forb production in the study area is 106 

highly dependent on season (and particularly rainfall); forbs tend to be unpalatable to 107 

deer during late summer and late winter [31]. Given this shift in dietary availability, 108 

deer distributions are expected to vary by season, specifically based on rainfall and 109 

forage availability. 110 

The aim of this research was to develop seasonal spatial distributions of wildlife (using 111 

the normalized difference vegetation index - NDVI - as a measure of forage availability) 112 

and to evaluate how seasonal variability might affect the potential spread of FMD virus. 113 

Knowledge of seasonal distributions of wildlife and the impact on the predicted spread 114 

of transboundary diseases, such as FMD, can be used to design more effective disease 115 

response and mitigation strategies. The specific objectives of this study were to: (1) 116 

incorporate seasonal variability into the predicted distribution of white-tailed deer in the 117 

study area by using bi-weekly composite NDVI values as a measure of forage 118 

availability in a regression model and (2) describe and compare the predicted FMD 119 

outbreak distribution that might be observed, given the seasonal variation in the white-120 
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tailed deer population distribution. 121 

 122 

2. Materials and Methods 123 

2.1. Study site 124 

The study area selected consists of 9 counties located in south Texas, bordering Mexico 125 

(Fig. 1). This area contains an estimated population of approximately 427 000 white-126 

tailed deer and consists of two ecoregions − the Edwards Plateau (EP) in the north and 127 

the South Texas Brush (ST) in the south − which divide the study region approximately 128 

in half (Fig. 1). Seasonal climatic variation in the study area is characterized by hot, dry 129 

summers and mild, moist winters, with average annual rainfall ranging between 750 and 130 

1200 mm. Drought is common and periodically affects habitat resources and the 131 

wildlife population. The Edwards Plateau ecoregion contains the largest white-tailed 132 

deer population (estimated one deer per 4 hectares) in Texas2. The South Texas brush 133 

ecoregion is actively managed to support hunting for white-tailed deer and the 134 

population density of deer (estimated one deer per 14 hectares) is considered moderate2. 135 

 136 

2.2. Data source 137 

Bi-weekly composite NDVI images (1 km resolution) for 2006 (n = 26) were obtained 138 

for the study area from the United States Geological Survey (USGS) National Mapping 139 

Division’s Earth Resources Observation and Science (EROS) Data Center. The NDVI is 140 

one of a number of vegetative indices derived from remotely sensed imagery. It is 141 

associated with photosynthetically active radiation, and is the index most commonly 142 

used to estimate vegetative growth [21]. NDVI data are collected by the National 143 

Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution 144 

                                                
2 Texas Parks and Wildlife Department, Wildlife District Descriptions [on line] 
http://www.tpwd.state.tx.us/landwater/land/habitats/cross_timbers/ [consulted 22 January 2008]. 
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Radiometer (AVHRR) satellite. The index is calculated from measured brightness 145 

values based on the absorption, transmittance and reflectance of energy by vegetation in 146 

the red and near-infrared portions of the electromagnetic spectrum [6, 15, 24]. To 147 

reduce cloud contamination, bi-weekly maximum NDVI composites are created using 148 

the maximum observed value for each composite period [9]. NDVI images are 149 

registered to the Lambert Equal Area Azimuthal map projection to ensure spatial 150 

accuracy to within 1 pixel, where each square pixel is 1 km2 in area [32]. 151 

A baseline predicted distribution of white-tailed deer in the study region was derived by 152 

Dasymetric mapping [13]. Dasymetric mapping (also known as surface based 153 

demographic data representation) redistributes the population from a set of areal units 154 

into either a vector or raster map using ancillary data, such as land use or remotely 155 

sensed images [28]. The number of deer per county in the study area was obtained [9] 156 

and the distribution of deer was estimated using geostatistical methods, as previously 157 

described [13]. Briefly, county-level deer populations were disaggregated, based on 158 

suitable land use classes (forest, shrub and grassland) and their estimated class-specific 159 

deer carrying capacity. The number of deer per county was then proportionally 160 

distributed within land use class and the resulting fractional counts of deer at 30 meter 161 

resolution were aggregated to a 1 km2 integer grid matching the NDVI images. Each 162 

pixel of this grid was assumed to represent a group (herd) of deer. Thus, the grid 163 

consisted of location information (the center of each pixel, represented by x and y 164 

coordinates) and herd size. Since all square pixels were of a constant area (1 km2), deer 165 

herd size is also equivalent to deer herd density in this study. The term ‘herd’ is used 166 

subsequently to denote a group of deer, of varying number, occupying a land area of 1 167 

km2. 168 

 169 
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2.3. Seasonal deer distributions 170 

A seasonal average NDVI coverage was derived and used to represent each of four 171 

seasons (winter, spring, summer and autumn) for white-tailed deer distributions. The 26 172 

bi-weekly composite NDVI images were converted to raster data sets and projected 173 

using the study area polygon coverage (ArcGIS 9.1. ESRI Inc., Redlands, CA, USA). 174 

These 26 data sets were subsequently categorized into four seasons (December to 175 

February: winter, March to May: spring, June to August: summer, and September to 176 

November: autumn). An average NDVI value at the pixel level for each of the seasons 177 

was calculated and pixels located within areas of suitable land use classes (forest, shrub 178 

and grassland) were extracted (ArcGIS 9.1. ESRI Inc.) by overlaying seasonal average 179 

NDVI coverages and the 1992 National Land Cover Dataset3 land use coverage. 180 

Regression models were used to describe the seasonal shift in the distribution of deer. 181 

The seasonal NDVI was used as an independent variable to predict the number of deer 182 

per herd (represented by pixels) as the dependent variable. These data were evaluated 183 

for a linear relationship using a correlation coefficient (Stata 10. Stata Corporation, 184 

College Station, TX, USA). Ordinary least squares (OLS) regression models were then 185 

fit [1] to the data for each season. The residuals of each of these seasonal models were 186 

evaluated for the presence of significant (P < 0.05) spatial autocorrelation, using a 187 

global Moran's I statistic [1]. Significant spatial autocorrelation violates the assumption 188 

of independent observations and can bias standard errors, increasing the likelihood of 189 

Type I errors. In the case of significant autocorrelation of OLS model residuals, 190 

additional spatial diagnostic tests (Lagrange multipliers, LM) were used to determine 191 

whether a spatial autoregressive lag or error model should be fit. In cases where the LM 192 

                                                

3 U.S. Department of the Interior, U.S. Geological Survey. National Land Cover Dataset 
1992 [on line] http://landcover.usgs.gov [consulted November 2006]. 
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tests for both the spatial lag and spatial error models were significant (P < 0.05), both 193 

types of models were evaluated and the model with the lowest log likelihood and 194 

highest pseudo R2 statistics was selected. The selection of a lag distance for spatial 195 

autoregressive models can often be subjective. For this study, an assumed home range 196 

(2 km) for deer [3] was used to generate the weights matrix for the autoregressive lag 197 

models. Within a spatial autoregressive model, the coefficient of the spatial lag term (ρ) 198 

shows the spatial dependence inherent in the data by measuring the average influence 199 

on each observation by their neighboring observations. The selected spatial 200 

autoregressive models for each season were evaluated for goodness of fit using a 201 

pseudo-R2 statistic prior to simulating FMD spread within the Sirca model. The 202 

residuals of the spatial autoregressive models were also graphically evaluated for 203 

normality. The seasonal-specific spatial distributions of predicted number of deer per 204 

herd (pixel) were subsequently used as the input data sets within the Sirca simulation 205 

model. 206 

 207 

2.4. Simulation model 208 

The potential spread of FMD, by season and within ecoregion, was simulated using the 209 

Sirca model [7, 13, 36]. A conceptualization of disease transmission using the Sirca 210 

model is shown in Figure 2. In this model, deer herds (represented in this research as 211 

pixels) can pass through four disease states: susceptible, latent, infectious and immune. 212 

In this study, herd interactions evaluated were restricted to within a 2 km neighborhood 213 

distance and to within 8 neighboring herds [13, 36]. When calculating transmission 214 

probabilities, herds with more deer than a pre-specified maximum threshold value (30 215 

deer per herd in this study) were assigned a probability of 1.0. The densities of the 216 

remaining herds were linearly scaled within the interval 0 to 1 by dividing each herd’s 217 
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size by the maximum threshold value [13, 36]. The probability of FMD virus 218 

transmission from one herd to another was calculated as the product of the scaled deer 219 

densities of each pair of herds (susceptible and infected) evaluated, modified by the 220 

distance (2 km) by which the herds are separated. 221 

To incorporate chance into the model, an interaction between an infected herd and a 222 

susceptible neighboring herd (both represented as pixels) resulted in disease 223 

transmission when a value from a pseudo-random number generator was below their 224 

joint probability threshold [13, 36]. Once a herd was infected the second, third, and 225 

fourth transitions in the model depended on the specified length of the latent, infectious 226 

and immune periods. Estimates used for these parameters (3 to 5, 3 to 14, and 90 to 180 227 

days, respectively) were derived from previous studies [13, 36]. The specific values for 228 

each herd were assigned randomly within the corresponding parameter ranges from a 229 

uniform distribution. As in previous studies, homogenous mixing was assumed to take 230 

place within (but not between) herds, and the herd was the unit of analysis [13, 36]. 231 

The same baseline modeling scenario was used for all model comparisons: to initiate the 232 

simulations within each of the 4 seasons, 5 herds (represented as pixels) in each of the 2 233 

ecoregions were randomly selected (SPSS 14.0, SPSS Inc., Chicago, IL, USA) and their 234 

status designated as infected. As in previous studies, we randomly selected 5 index herd 235 

locations to allow us to simulate the spread of an "average sized oubreak" [36] which 236 

included a range of deer-density (low, medium and high) areas and ecoregions. This 237 

allowed us to assess the average effect of seasonal variation on predicted FMD spread, 238 

without the need to consider the impact of individual site selection issues. For every 239 

simulation of the Sirca model, each herd was allowed to interact with other herds within 240 

a 2 kilometer neighborhood, representing the home range of deer within the study area. 241 

The model was simulated for a time period representing 90 days (to avoid overlap 242 
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between seasons) and 100 model runs were simulated for each dataset, yielding a total 243 

of 800 model runs (4 × 2 × 100) and 72 000 model iterations (800 × 90). 244 

 245 

2.5 Data analysis 246 

The seasonal predicted deer distributions (represented by pixels) were described and 247 

compared by calculating the minimum, maximum, range, standard deviation, skewness, 248 

and kurtosis of the herd size frequency distributions (SPSS, Chicago, IL). From the 249 

Sirca model output, the median number of deer infected and the median number of 250 

herds (pixels; equivalently, sq. km) were used to characterize each set of simulations 251 

(n = 100) at the 90th model day for each season (n = 4) and ecoregion (n = 2). These 8 252 

distributions were evaluated for normality (SAS, Cary Institute, NC, USA). A non-253 

parametric Kruskal-Wallis one-way analysis test was used to compare the differences in 254 

predicted epidemic spread (measured both by number of deer infected and number of 255 

herds infected) between the 8 treatment groups (ecoregion and season). Because the 256 

Kruskal-Wallis test only measures significant differences between the highest and 257 

lowest groups, a post hoc Miller’s multiple comparison test (SAS) was used to evaluate 258 

differences between groups. 259 

 260 

3. Results 261 

Descriptive statistics for each seasonal deer distribution are shown in Table I. Although 262 

the baseline and seasonal-specific mean number of deer (13.96) predicted per herd 263 

(pixel) in the study area was constant, compared to the baseline (non-seasonal) deer 264 

distribution, seasonal distributions were less variable (as measured by each seasonal-265 

specific distribution’s standard deviation and range) but tended to be more positively 266 

skewed and kurtotic. Significant (P < 0.001) linear relationships between the NDVI and 267 
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herd size pixels were observed for winter, spring, summer and autumn (respective 268 

correlation coefficients 0.67, 0.60, 0.55 and 0.59). Residuals of each of the four seasonal 269 

ordinary linear regression models showed significant (P < 0.001) positive spatial 270 

autocorrelation (Moran’s I 0.66, 0.71, 0.72 and 0.72, respectively). In all cases, a spatial 271 

autoregressive lag model was preferred over a spatial autoregressive error model, based 272 

on log likelihood statistics. The characteristics of these fitted seasonal-specific spatial 273 

autoregressive lag models are summarized in Table II. The spatial lag (ρ) terms were 274 

> 0.9 for all seasonal models, indicating that herd size was strongly influenced by 275 

neighboring herd sizes. Residuals of all seasonal spatial autoregressive lag models 276 

visually appeared normally distributed. The spatial distributions predicted using the 277 

autoregressive lag models for each season are shown in Figure 3. Areas of high density 278 

deer distribution were predicted in the north-eastern parts of the study area in all 279 

seasons, and were most extensive in the autumn and winter seasons. 280 

The predicted spread of FMD for each season and ecoregion is summarized in Table III 281 

(number of deer) and Table IV (number of herds), and boxplots of the predicted spread 282 

of FMD for each season and ecoregion are shown in Figure 4. There were significant 283 

differences in epidemic spread by both season and ecoregion (Kruskal-Wallis χ2 = 284 

726.139, df = 7, p-value < 0.0001). In all cases a significantly higher median number of 285 

infected deer and infected herds were predicted in the Edwards Plateau ecoregion 286 

(87 792−101 385 deer and 6050−6416 herds) than in the South Texas brush ecoregion 287 

(40 211−54 385 deer and 4336−4969 herds). Miller’s multiple comparison test indicated 288 

that within the Edwards Plateau ecoregion, the highest median number of infected deer 289 

(101 385) occurred in winter, with the lowest median number in summer (87 792). The 290 

highest median number of infected herds (6 416) occurred in winter, with the lowest 291 

median number (tied by Miller’s test) in spring (6 050) and summer (6 058). Within the 292 
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South Texas brush ecoregion, the highest (tied by Miller’s test) median number of 293 

infected deer and herds occurred in autumn (53 389 and 4 969, respectively) and 294 

summer (54 385 and 4 922, respectively), with the lowest median number of deer and 295 

herds in winter (40 211 and 4 336, respectively). The distributions of predicted infection 296 

for outbreaks initiated in winter in the Edwards Plateau and the South Texas brush 297 

ecoregions are shown in Figure 5. 298 

 299 

4. Discussion 300 

Substantial differences were observed in the median predicted magnitude of FMD 301 

spread, both by season and ecoregion: the number of deer and herds predicted to be 302 

infected ranged from 40 211 deer and 4 336 herds in the South Texas brush ecoregion in 303 

winter to 101 385 deer and 6 416 herds in the Edwards Plateau ecoregion in winter. 304 

These differences can be explained by changes in modeled deer distribution within the 305 

study area, since all other parameters were held constant within this simulation study. 306 

Results suggest that the outcome of a transboundary disease incursion (such as FMD) in 307 

a wildlife population (such as white-tailed deer in south Texas) might depend on both 308 

where and during which time of year the incursion occurs. 309 

Spatial autoregressive lag models using the NDVI to predict seasonal-specific deer 310 

distributions fit the data well (pseudo R2 >0.8 for all seasons). Although there were not 311 

substantial differences in the overall estimated number of deer in the study area based 312 

on the distributions predicted by the spatial autoregressive lag model, the predicted 313 

spatial arrangement of the population varied substantially by season (Table I and Figure 314 

4), as measured by skewness and kurtosis statistics. Thus, the difference in predicted 315 

FMD spread within these populations can be attributed to the spatial distribution 316 

patterns of the population – not to differences in the overall size of the population. 317 
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A significantly (P < 0.05) higher number of predicted FMD infected deer and herds 318 

were observed in the Edwards Plateau (northern) versus South Texas brush (southern) 319 

ecoregion, regardless of season. Within ecoregion, significant (P < 0.05) differences in 320 

the seasonal number of predicted FMD infected deer and herds was also observed. In 321 

the Edwards Plateau ecoregion both the highest number of infected deer and herds were 322 

predicted in winter, whereas in the South Texas brush ecoregion the highest numbers 323 

were predicted in summer and autumn. These results further support previous work [13] 324 

which suggested that the spatial continuity of a population might play an important role 325 

in the predicted outbreak size. This result is not surprising, since the Sirca model is a 326 

local neighborhood based spatial disease spread model [13]. The more continuity in the 327 

spatial distribution, the greater is the opportunity for interactions to occur between 328 

herds, consistent with epidemic theory and the importance of spatial heterogeneity [16, 329 

18]. 330 

The model used in this study has been used previously to investigate wildlife-domestic 331 

species interactions (feral pigs and cattle [7, 36] and wild deer and cattle [36]) and to 332 

evaluate the impact of spatial estimation methodologies on model predicted spread of 333 

FMD in deer [13]. In the current study, our focus was on extending previous work to 334 

incorporate seasonal variability in white-tailed deer populations and subsequently to 335 

predict how the spread of FMD might vary by season. As in previous studies, we 336 

modeled only local spread [7, 13, 36]. Given that this is an actively managed and hunted 337 

population, there are likely times of the year (hunting season) where potential longer-338 

distance FMD spread may be present.  339 

This study focused on the initial stages of disease spread (≤ 90 days) so that the effect of 340 

between-season variability in population distributions could be assessed [13]. We also 341 

assumed that the home range of deer (2 km) was adequate for creating spatial weights 342 
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for the spatial autoregressive lag models. Given that deer show high fidelity to their 343 

home range, this assumption is likely to be valid [20]. However, the spatial scale of 344 

influence of the surrounding population on seasonal deer distribution is unknown. 345 

Future work should incorporate a range of spatial weights and assess how this variation 346 

might impact model predictions of deer distribution. 347 

The behavior of wildlife species is also seasonally-variable and should be included in 348 

future work focusing on the spread of FMD in wildlife populations. For example, the rut 349 

(breeding season) in white-tailed deer in the study area typically occurs in the Edwards 350 

Plateau ecoregion between October and December, and in the South Texas brush 351 

ecoregion in December4. During this time of the year, bucks are more likely to move 352 

around and cover larger distances than normal4. This could contribute substantially to 353 

increased spread of FMD because of greater numbers of interactions with other 354 

potentially susceptible deer. Juvenile males will also disperse from their female groups 355 

and an increase in the number of single males in the population may need to be modeled 356 

[27]. In addition, a stable population (no births or deaths) was assumed in this study 357 

because of the relatively short (≤ 90 days) time periods simulated. Future studies should 358 

incorporate such changes in the population structure, especially given that this area is 359 

intensively managed for hunting and recreation. 360 

An assumption was made in this study that the same spatial relationship for predicting 361 

deer distributions (in the autoregressive lag models) was valid over the entire study area 362 

(both ecoregions). Ecoregions comprise similar soils, topography, land use and 363 

vegetation (habitat). Given the substantial differences in the modeled spatial distribution 364 

of deer in the two ecoregions in the study area, it is likely that some variation in the 365 

                                                
4 Texas Parks and Wildlife Department. The rut in white-tailed deer [on line] 
http://www.tpwd.state.tx.us/huntwild/hunt/planning/rut_whitetailed_deer/ [consulted 24 
January 2008]. 
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spatial relationship may exist. Future work should examine the application of regression 366 

models specific to ecoregions to determine if substantial variation does exist and 367 

whether this might impact predicted disease spread. If there are substantial differences 368 

in the spatial distributions of deer by ecoregion there is utility in developing separate 369 

ecoregion-specific regression models. However, the usefulness of ecoregion as a 370 

predictor for estimating deer distributions might be limited because some of the habitat 371 

variability is captured at a finer resolution with land use data. Using ecoregions as a 372 

marker for modeling deer behavior might also be limited because regions are a very 373 

broad scale measurement of the environment and have no associated attribute data. 374 

While it might be useful to model deer behavior with a larger number of finer resolution 375 

ecoregions, it becomes exceedingly complex: as data requirements increase, a greater 376 

number of variables have to be estimated and information on behavior within a 377 

particular ecoregion has to be derived from expert opinion. This greatly adds to 378 

uncertainty in the resulting estimates. 379 

The NDVI has been used in numerous studies on the classification of land use and 380 

temporal vegetation variability (onset, peak, senescence) [23, 32]5,6,7, as well as the 381 

examination of the relationship between NDVI and livestock stocking rates in the USA 382 

[14, 29]. The NDVI was highly correlated (R2 > 0.7) with dietary measurements of 383 

white-tailed deer during winter and spring in north central Texas [33], and the NDVI 384 

                                                
5 Turcotte K., Dramber W., Venugopal G., Lulla K., Analysis of region-scale vegetation 
dynamics of Mexico using stratified AVHRR NDVI data, Proceedings of the Annual 
Society for Photogrammetry and Remote Sensing, Baltimore, MD, USA, 1989. 

6 Hochheim K., Bullock P., Operational estimates of western Canada spring wheat yield 
using NOAA/AVHRR LAC data, Proceedings of the 12th Pecora Symposium, Bethesda, 
MD, USA, 1994. 

7 vanLeeuwen W., Huete A., Begue A., Duncan J., Franklin J., Hanan N., et al., 
Evaluation of vegetation indices for retrival of soil and vegetation parameters at Hapex-
Sahel, Proceedings of the 12th Pecora Symposium, Bethesda, MD, USA, 1994. 
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was significantly (P < 0.05) associated with mule deer distributions in the southwest 385 

desert in spring, summer and autumn [25]. In the present study, a single year of NDVI 386 

data was used and bi-weekly measurements were grouped into a seasonal average to 387 

predict deer distributions. As documented in previous studies [25, 33], a traditional 388 

seasonal (winter, spring, summer, autumn) breakdown was assumed to be appropriate. 389 

More detailed analysis of methods of grouping NDVI data for predicting deer 390 

distribution is warranted, as the traditional seasonal approach may not adequately 391 

capture seasonal variability in the relationship between vegetative greenness and forage 392 

availability. It was further assumed that one year of NDVI data was adequate to model 393 

seasonal variability. This assumption is valid if the interest in modeling deer distribution 394 

focuses on the most recent year; however, longer term trends may also be of interest to 395 

modelers and policy decision-makers. Future work on a short time series might provide 396 

a better understanding of the broad patterns of NDVI over time in the study area. 397 

There are numerous areas of the USA  where livestock are extensively grazed and the 398 

potential for interaction with susceptible wildlife species, such as white-tailed deer, is 399 

high. Deer move through and forage in fields between farms and enter premises with 400 

animal feed and slurry [34]. In addition, supplemental feeding of white-tailed deer for 401 

hunting purposes is a common practice in many areas of the USA [14]. Deer densities in 402 

parts of Texas are very high, and most deer inhabit private land [22]. As the result of 403 

extensive land use change, deer populations in Texas have formed metapopulations with 404 

high deer densities, increased contact between deer populations and potentially the risk 405 

of disease transmission to domestic livestock [22]. Based on a review of the literature, 406 

the current study is probably only one of two [7] to incorporate seasonal variability in 407 

wildlife distributions and to define the potential magnitude of an FMD outbreak by 408 

season. Substantial seasonal variability in the model predicted spread of FMD was 409 
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found. Future work focusing on improved methods of analysis of NDVI data, spatial 410 

regression models and incorporating behavioral traits are needed to yield additional 411 

insights into the potential spread of transboundary diseases, such as FMD, in wildlife 412 

populations. 413 

In this simulation study, the outcome of an FMD incursion was found to depend on both 414 

when and where the incursion occurred. These results are important to consider when 415 

designing disease mitigation strategies. It is likely that such effects would be seen for 416 

FMD incursions in other regions and countries, and for other diseases, in cases in which 417 

a potential wildlife reservoir exists. 418 
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Figure 1. A study area in south Texas selected to evaluate how seasonal variability in the distribution of white-tailed deer might affect 

the potential spread of foot and mouth disease. Two ecoregions (the Edwards Plateau (EP) and South Texas Brush) represented in this 

study area are shown. The location of the 9 counties forming the study area, bordering Mexico, is shown in the insert. 

 

 



 

 

Figure 2. Conceptualization of modeling disease transmission in Sirca (A through D). 

A. 8 neighbors evaluated as potential contacts from the source infected cell (center, bold 

outline). Each cell represents a “herd” of deer with the raw density value shown for 

each.  

 
6 3 13 
9 20 29 
1 5 11 

 
 
B. Scaled density of all herds (infected and susceptible) is calculated using 30 deer per 
km2 as the threshold value. Ex: 20/30 = 0.67 (source infected cell; center, bold outline).  
 

0.2 0.1 0.43 
0.3 0.67 0.97 
0.03 0.17 0.37 

 
C. Probability of FMD virus transmission is calculated as the product of the scaled 
densities for the source infected cell and each of the 8 potential contacts. Cells show 
probabilities for contact between the center and its 8 neighboring cells. Ex: the 
probability of transmission to the eastern cell (show in gray) is 0.67*0.97 = 0.65.  
 
 

0.134 0.067 0.288 
0.201  0.65 
0.0201 0.114 0.248 

 
 
D. Probability of FMD virus transmission is then modified by the spatial kernel to 
account for distance between potential contacts. In this case the kernel is the cell size (1) 
divided by the distance between cells. Modified contact probabilities are shown in gray. 
Ex: the probability of transmission to the north-western cell is 0.67*0.134*√2 =0.095.  
 

0.095 0.067 0.204 
0.201  0.65 
0.014 0.114 0.175 

An interaction between the source infected cell and a susceptible neighboring cell 
results in disease transmission when a value drawn from a pseudo-random number 
generator is below the modified contact probability (shown above) of the evaluated 
contact. 



 

 

Figure 3. Seasonal-specific white-tailed deer distributions in a study area in south 

Texas selected to evaluate the effect of seasonal variability on potential spread of foot 

and mouth disease. Distributions were predicted using the normalized difference 

vegetation index and spatial autoregressive lag models (Tab. II). 

 



 

 

Figure 4. Foot and mouth disease infection of white-tailed deer (upper) and deer herds (lower) in an area in south Texas, predicted by 100 

simulations of a susceptible-latent-infectious-resistant geographic automata model (Sirca). 



 

 

Figure 5. Probability of foot and mouth disease infection of winter-distributed white-

tailed deer in an area in south Texas, predicted by 100 simulations of the Sirca 

model. Each simulation was initiated at the same 5 index herds (●, represented as 1 

km2 pixels) in either the Edwards Plateau (upper) or South Texas Brush (lower) 

ecoregions as infected. Probability of infection (per pixel) is shown. 

 
 

 
Table I. Descriptive statistics for white-tailed deer distributions (represented by 1 



 

 

km2 pixels) predicted in an area of south Texas, using information from the 

normalized difference vegetation index and an estimated baseline (non-seasonal) 

deer distribution (427 292 deer in 30 592 herds, spatially represented as pixels). 

Seasonal-specific mean number of deer (13.96) predicted per herd (pixel) in the 

study area was constant. 

Distribution SD Minimum Maximum Range Skewness Kurtosis 

Baseline 8 0 36 36 0.35 1.94 

Winter 6 1 28 27 0.61 2.28 

Spring 5 3 29 26 0.75 2.94 

Summer 4 5 27 22 0.54 2.92 

Autumn 5 0 27 27 0.39 2.67 



 

 

Table II. Characteristics of spatial autoregressive lag models fitted to seasonal 

white-tailed deer distributions (represented spatially by 30 592, 1 km2 pixels) in an 

area of south Texas, derived using the normalized difference vegetation index. 

Model Parameters Constant NDVI Spatial lag, ρ 

Winter Coefficient -1.41 6.06 0.918 

 Std. error 0.028 0.096 0.003 

 z-value -14.67 21.08 284.7 

 probability < 0.001 < 0.001 < 0.001 

 Pseudo R2 = 0.837 

   

Spring Coefficient -1.2 5.2 0.932 

 Std. error 0.105 0.305 0.003 

 z-value -11.36 17.04 313.3 

 probability < 0.001 < 0.001 < 0.001 

 Pseudo R2 = 0.838 

   

Summer Coefficient -0.88 4.17 0.938 

 Std. error -1.02 0.28 0.003 

 z-value -8.64 14.7 331.7 

 probability <0.001 <0.001 <0.001 

 Pseudo R2 = 0.838 

   

Autumn Coefficient -1.33 4.91 0.932 

 Std. error 0.11 0.29 0.003 

 z-value -11.76 17.0 313.6 

 probability < 0.001 < 0.001 < 0.001 

 Pseudo R2 = 0.838 



 

 

Table III. Predicted size (number of deer infected) of an outbreak of foot-and-mouth disease in a population of white-tailed deer in an 

area of south Texas for each season by ecoregion (Edwards Plateau and South Texas brush). Results shown are from 100 simulations of 

a susceptible-latent-infectious-resistant geographic automata model (Sirca) for each seasonal deer distribution. 

Deer 
Ecoregion Season 

Median Interquartile range 25%, 75% percentile Skewness Kurtosis 

Edwards Plateau Winter 101385 2868 100305, 103239 -0.19 -0.20 

Edwards Plateau Spring 90913 2885 89233, 92139 -2.28 10.5 

Edwards Plateau Summer 87792 2082 86612, 88707 -1.14 4.6 

Edwards Plateau Autumn 92323 2314 91126, 93445 -.92 2.07 

South Texas brush Winter 40211 1819 39205, 41086 -2.9 13.9 

South Texas brush Spring 50372 1330 49502, 50866 -2.9 10.1 

South Texas brush Summer 54385 1753 53462, 55233 -4.7 29.8 

South Texas brush Autumn 53389 1546 52515, 54074 -3.01 11.7 



 

 

Table IV. Predicted size (number of deer herds infected) of an outbreak of foot-and-mouth disease in a population of white-tailed deer 

in an area of south Texas for each season by ecoregion (Edwards Plateau and South Texas brush). Results shown are from 100 

simulations of a susceptible-latent-infectious-resistant geographic automata model (Sirca) for each seasonal deer distribution. 

Deer Herds 
Ecoregion Season 

Median Interquartile range 25%, 75% percentile Skewness Kurtosis 

Edwards Plateau Winter 6416 154 6340, 6496 -1.9 9.3 

Edwards Plateau Spring 6050 139 5972, 6112 -3.3 16.3 

Edwards Plateau Summer 6058 131 5983, 6115 -3.4 22.5 

Edwards Plateau Autumn 6198 142 6138, 6281 -3.1 12.9 

South Texas brush Winter 4336 186 4247, 4436 -2.9 13.6 

South Texas brush Spring 4766 117 4696, 4815 -2.8 7.9 

South Texas brush Summer 4922 161 4842, 5004 -4.2 23.6 

South Texas brush Autumn 4969 132 4891, 5023 -2.2 7.5 

 


