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Abstract

Modeling potential disease spread in wildlife p@tigns is important for predicting,
responding to and recovering from a foreign anidis¢ase incursion such as foot and
mouth disease (FMD). We conducted a series of sitiom experiments to determine
how seasonal estimates of the spatial distribugfomhite-tailed deer impact the
predicted magnitude and distribution of potentisll-outbreaks. Outbreaks were
simulated in a study area comprising 2 distincregions in south Texas, USA, using a
susceptible-latent-infectious-resistant geographiomata model (Sirca). Seasonal deer
distributions were estimated by spatial autoregvedag models and the normalized
difference vegetative index. Significant (P < 0.DpQ@ifferences in both the median
predicted number of deer infected and number alderfected were found both
between seasons and between ecoregions. Largeeaksioccurred in winter within

the higher deer-density ecoregion, whereas langdareaks occurred in summer and fall
within the lower deer-density ecoregion. Resultthef simulation study suggest that
the outcome of an FMD incursion in a populationvitllife would depend on the
density of the population infected and when duthmgyear the incursion occurs. It is
likely that such effects would be seen for FMD irstons in other regions and
countries, and for other diseases, in cases inhwdjgotential wildlife reservoir exists.
Study findings indicate that the design of a miiiga strategy needs to take into

account population and seasonal characteristics.

spatial modeling / epidemic modeling / foot and thadisease / wildlife
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1. Introduction

Foot and mouth disease (FMD) is a highly contagitiasisboundary disease of cloven-
hoof animals and one of the most dangerous foraimgmal diseases that might be
accidentally brought into the USA [8]. Its threatdomestic livestock has been well
studied. However, the potential role of wildlifeegiies, which may serve as disease
reservoirs, has been largely overlooked. The presefinon-domesticated reservoir
species has been a serious obstacle to effectiteotof FMD outbreaks in other
countries [30, 34]. In a series of outbreaks irtddmiin 1946, FMD infected deer and
European hedgehogs were found near infected ligkgtieemises [30]. In the former
Soviet Union, FMD has on numerous occasions besorted to have spread from
cattle to Saiga antelope and vice versa. The greel@re reported to have transferred
the disease to other species in places far fromrgenal outbreak [30].

Deer are among the most commonly FMD-infected wédipecies under field
conditions, and are believed to play an importatg in the epizootology of FMD [30].
The USA has maintained FMD free status since 182924 California outbreak
involved deer which were exposed via contact frofedted cattle[17]. It required 2
years to stamp out FMD from the deer population, @rer 22 000 were slaughtered in
the process[17]. Approximately 10% of those deer slaughtetadng the outbreak
displayed signs of FMD infection

FMD infection in wildlife has also been a concemrmore recent FMD outbreaks.
During the 2001 FMD outbreak in the U.K. and thehéelands, it was feared that deer
might become infected and potentially act as arvese[5, 10, 34]. Evidence of FMD

in wild deer was not observed in either of thestor@maks, although there were reports

! McVicar J.W., Sutmoller P., Ferris D.H., Campb€lH., Foot and mouth disease in
white-tailed deer: clinical signs and transmissiorihe laboratory, Proceedings of the
78" Annual Mgt. US Animal Health Association, 1974, p59—180.
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of wildlife displaying signs of infection [10]. Esihsive serosurveillance was conducted
after the outbreak, but deer were not tested [@Qg to the nature of the cattle industry
in Europe, a lack of contact between deer and tiodsin these countries may have
averted a disastrous situation from occurring [10].

Since FMD has not been present in the USA for sulgmgthy period of time, the entire
population of cloven-hoofed animals is susceptiblafection. This includes both
livestock and wildlife species. Epidemic modelsressgent an important tool to aid
decision making and epidemic response to foreigmalrdisease incursions such as
FMD. Following detection of an incursion of FMD wg in a country previously free of
disease, the application of appropriate controlsuess is a decision that needs to be
made rapidly yet with little data. In addition, figlal, economic and property rights
issues may also guide policy decisions regardlessat is deemed to be the most
effective strategy to reduce the spread of FMDormiation from model outputs that
provide guidance to the probable extent of an eathiand its time span are invaluable
for decision-makers implementing disease contrasunees in the face of external
pressures. Nonetheless, such models need to blpedevalidated and tested prior to
emergency situations. Strong links between diseas#elers, policy and decision-
makers also need to exist a priori. Models canesaot only as response and decision-
making tools but also as avenues to increase aesgseand collaboration with
stakeholders.

In this research, a simulation model was useduestigate seasonal population impacts
on the spread of FMD in wildlife. The developmehtlas model has been previously
described [7]. Briefly, it uses a state-transit{gusceptible-latent-infectious-resistant,
SLIR) framework to simulate the spatial spreadisédse within an artificial life model

(geographic automata, a generalization of cellalaomata). Artificial life models can
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explicitly incorporate spatial relationships byoaling the interaction between units (for
example, individuals or herds) within a populatsord a predefined neighborhood,
based on a set of rules and disease states &t ¢k steps. The repetitive application
of transmission rules within this local neighbortioeplicates the complex spatial
behavior that occurs during disease outbreakfidrsirca model, the interaction
between susceptible herds and infected herds gae$o newly infected herds. The
probability of infection is a function of the distze between herds and the relative size
(or density, if a herd occupies a constant land)anéeach herd. Thus, spatial
arrangements and population density are incorpaiate simulated disease spread.
The Sirca model has been used to investigate ttemf@ spread of FMD in feral pig
populations in Queensland, Australia [7] and irafgig and wild deer populations in
Texas, USA [13, 36].

The need to use spatially-explicit simulation medelr FMD has been documented [12,
16] and spatial heterogeneity has been identifiedesthaps the greatest challenge to
representing FMD spread across the landscape [i8]lii&/ species are particularly
affected by variations in climate and natural reses [13, 36]. To capture spatial
heterogeneity across the landscape, wildlife distrons should therefore be seasonally-
dynamic [13, 36]. Such temporal dependency may alaynportant role in the spread
of disease within wildlife populations, and furtheito domesticated animal populations
[7].

The study area chosen to investigate how seasepardent variability in wildlife
populations might affect the potential spread oflFid located in south Texas (Fig. 1),
and the target species was white-tailed d@elo¢oileus virginianus). Texas is the

largest cattle production state in the USA andrsftbe unique opportunity to develop,

validate and model the potential impact of foresgmmal diseases, such as FMD, in the



96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

USA agricultural industry. In general, models deyeld in Texas to predict areas at-
risk of FMD from wildlife reservoirs should be apalble to other ecologically similar
areas both in the USA and abroad where potentldlifei reservoirs are present.
White-tailed deer represent an important finanaaburce to a substantial number of
ranchers in south Texas [4], and the deer populagiactively managed for hunting and
recreational purposes [4, 35]. Population managéfoemmptimum carrying capacity is
important for maintaining nutritional status angptation size [37]. Deer in the study
area are primarily browsers (consuming leaves aigstfrom shrubs and trees) during
the autumn [31]. Grasses and forbs have been ftiubd important dietary components
during the spring [11, 19, 26]. Deer will only canse grass when it is tender and green
(young), as deer cannot digest mature grass [8th production in the study area is
highly dependent on season (and particularly rd)nfarbs tend to be unpalatable to
deer during late summer and late winter [31]. Githéa shift in dietary availability,

deer distributions are expected to vary by seasmevifically based on rainfall and
forage availability.

The aim of this research was to develop seasoasibsgistributions of wildlife (using
the normalized difference vegetation index - ND\ds-a measure of forage availability)
and to evaluate how seasonal variability mightciffee potential spread of FMD virus.
Knowledge of seasonal distributions of wildlife ahé impact on the predicted spread
of transboundary diseases, such as FMD, can betaskxign more effective disease
response and mitigation strategies. The specifieatives of this study were to: (1)
incorporate seasonal variability into the prediadedribution of white-tailed deer in the
study area by using bi-weekly composite NDVI valassa measure of forage
availability in a regression model and (2) descehd compare the predicted FMD

outbreak distribution that might be observed, gitlenseasonal variation in the white-
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tailed deer population distribution.

2. Materialsand Methods

2.1.Sudy site

The study area selected consists of 9 countiesdldéa south Texas, bordering Mexico
(Fig. 1). This area contains an estimated populaifaapproximately 427 000 white-
tailed deer and consists of two ecoregions - thededs Plateau (EP) in the north and
the South Texas Brush (ST) in the south — whiclddithe study region approximately
in half (Fig. 1). Seasonal climatic variation iretstudy area is characterized by hot, dry
summers and mild, moist winters, with average ahraiafall ranging between 750 and
1200 mm. Drought is common and periodically afféebitat resources and the
wildlife population. The Edwards Plateau ecoregiontains the largest white-tailed
deer population (estimated one deer per 4 hectard®xa$d. The South Texas brush
ecoregion is actively managed to support huntimgvioite-tailed deer and the

population density of deer (estimated one deefipdrectares) is considered modetate

2.2.Data source

Bi-weekly composite NDVI images (1 km resolutiony 2006 (n = 26) were obtained
for the study area from the United States Geold@oavey (USGS) National Mapping
Division’s Earth Resources Observation and Sci¢B&0OS) Data Center. The NDVI is
one of a number of vegetative indices derived fremotely sensed imagery. It is
associated with photosynthetically active radiatemd is the index most commonly
used to estimate vegetative growth [21]. NDVI data collected by the National

Oceanic and Atmospheric Administration’s (NOAA) Asthced Very High Resolution

2 Texas Parks and Wildlife Department, Wildlife Dist Descriptions [on line]
http://www.tpwd.state.tx.us/landwater/land/habitaisss timbergjconsulted 22 January 2008].
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Radiometer (AVHRR) satellite. The index is calcathfrom measured brightness
values based on the absorption, transmittanceedl@gttance of energy by vegetation in
the red and near-infrared portions of the electigmaéic spectrum [6, 15, 24]. To
reduce cloud contamination, bi-weekly maximum NR@Mmposites are created using
the maximum observed value for each composite g¢éo NDVI images are
registered to the Lambert Equal Area Azimuthal mpegection to ensure spatial
accuracy to within 1 pixel, where each square dixélknf in area [32].

A baseline predicted distribution of white-tailegled in the study region was derived by
Dasymetric mapping [13]. Dasymetric mapping (aleown as surface based
demographic data representation) redistributepdlpelation from a set of areal units
into either a vector or raster map using ancilizaga, such as land use or remotely
sensed images [28]. The number of deer per courttyei study area was obtained [9]
and the distribution of deer was estimated usirastistical methods, as previously
described [13]. Briefly, county-level deer popuais were disaggregated, based on
suitable land use classes (forest, shrub and grasind their estimated class-specific
deer carrying capacity. The number of deer per tyowas then proportionally
distributed within land use class and the resulfingtional counts of deer at 30 meter
resolution were aggregated to a 1°knteger grid matching the NDVI images. Each
pixel of this grid was assumed to represent a gbepd) of deer. Thus, the grid
consisted of location information (the center aftepixel, represented by x and y
coordinates) and herd size. Since all square pixets of a constant area (1 ¥ndeer
herd size is also equivalent to deer herd densitliis study. The term ‘herd’ is used
subsequently to denote a group of deer, of vargingber, occupying a land area of 1

km?.
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2.3.Seasonal deer distributions

A seasonal average NDVI coverage was derived aed tasrepresent each of four
seasons (winter, spring, summer and autumn) foteathiled deer distributions. The 26
bi-weekly composite NDVI images were convertedaster data sets and projected
using the study area polygon coverage (ArcGISESRI Inc., Redlands, CA, USA).
These 26 data sets were subsequently categorizefbur seasons (December to
February: winter, March to May: spring, June to Asiy summer, and September to
November: autumn). An average NDVI value at theeplievel for each of the seasons
was calculated and pixels located within areasitéBle land use classes (forest, shrub
and grassland) were extracted (ArcGIS 9.1. ESR) Img overlaying seasonal average
NDVI coverages and the 1992 National Land CoveaBetftland use coverage.
Regression models were used to describe the séaniman the distribution of deer.
The seasonal NDVI was used as an independent \at@predict the number of deer
per herd (represented by pixels) as the dependeiatole. These data were evaluated
for a linear relationship using a correlation cuéint (Stata 10. Stata Corporation,
College Station, TX, USA). Ordinary least squa@k$) regression models were then
fit [1] to the data for each season. The residabéach of these seasonal models were
evaluated for the presence of significant (P < )0dpfatial autocorrelation, using a
global Moran's | statistic [1]. Significant spataitocorrelation violates the assumption
of independent observations and can bias standand eincreasing the likelihood of
Type | errors. In the case of significant autoclatien of OLS model residuals,
additional spatial diagnostic tests (Lagrange rplidis, LM) were used to determine

whether a spatial autoregressive lag or error msidelld be fit. In cases where the LM

% U.S. Department of the Interior, U.S. Geologicah®y. National Land Cover Dataset
1992 [on line] http://landcover.usgs.gmonsulted November 2006].
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tests for both the spatial lag and spatial errodeswere significant (P < 0.05), both
types of models were evaluated and the model Ww&Hdwest log likelihood and
highest pseudo Fstatistics was selected. The selection of a laadce for spatial
autoregressive models can often be subjectivethii®study, an assumed home range
(2 km) for deer [3] was used to generate the weighdtrix for the autoregressive lag
models. Within a spatial autoregressive modelcthedficient of the spatial lag term)(
shows the spatial dependence inherent in the gataelasuring the average influence
on each observation by their neighboring obsermatidhe selected spatial
autoregressive models for each season were evalimatgoodness of fit using a
pseudo-R statistic prior to simulating FMD spread withiretBirca model. The
residuals of the spatial autoregressive models alsmegraphically evaluated for
normality. The seasonal-specific spatial distribusi of predicted number of deer per
herd (pixel) were subsequently used as the inpiat kts within the Sirca simulation

model.

2.4. Smulation model

The potential spread of FMD, by season and withoregion, was simulated using the
Sirca model [7, 13, 36]. A conceptualization ofedise transmission using the Sirca
model is shown in Figure 2. In this model, deedbdrepresented in this research as
pixels) can pass through four disease states: gliisiee latent, infectious and immune.
In this study, herd interactions evaluated wergricted to within a 2 km neighborhood
distance and to within 8 neighboring herds [13, 88hen calculating transmission
probabilities, herds with more deer than a pre-i§pelcmaximum threshold value (30
deer per herd in this study) were assigned a pifityadf 1.0. The densities of the

remaining herds were linearly scaled within themél O to 1 by dividing each herd’s

10
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size by the maximum threshold value [13, 36]. Trebpbility of FMD virus
transmission from one herd to another was calatilasethe product of the scaled deer
densities of each pair of herds (susceptible afetiad) evaluated, modified by the
distance (2 km) by which the herds are separated.

To incorporate chance into the model, an interadbetween an infected herd and a
susceptible neighboring herd (both representedxatspresulted in disease
transmission when a value from a pseudo-random eugdnerator was below their
joint probability threshold [13, 36]. Once a herdsanfected the second, third, and
fourth transitions in the model depended on theifipd length of the latent, infectious
and immune periods. Estimates used for these p&eesn@ to 5, 3 to 14, and 90 to 180
days, respectively) were derived from previousissifiLl3, 36]. The specific values for
each herd were assigned randomly within the cooredipg parameter ranges from a
uniform distribution. As in previous studies, horeagus mixing was assumed to take
place within (but not between) herds, and the kaexsl the unit of analysis [13, 36].

The same baseline modeling scenario was used!fooalel comparisons: to initiate the
simulations within each of the 4 seasons, 5 hegigésented as pixels) in each of the 2
ecoregions were randomly selected (SPSS 14.0, 8S&hicago, IL, USA) and their
status designated as infected. As in previousesyueie randomly selected 5 index herd
locations to allow us to simulate the spread ofearerage sized oubreak™ [36] which
included a range of deer-density (low, medium aigtirareas and ecoregions. This
allowed us to assess the average effect of seaganation on predicted FMD spread,
without the need to consider the impact of indialdsite selection issues. For every
simulation of the Sirca model, each herd was altbweinteract with other herds within
a 2 kilometer neighborhood, representing the hange of deer within the study area.

The model was simulated for a time period reprasgréiO days (to avoid overlap

11
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between seasons) and 100 model runs were simdtatedch dataset, yielding a total

of 800 model runs (4 x 2 x 100) and 72 000 mo@ehttons (800 x 90).

2.5Data analysis

The seasonal predicted deer distributions (repteddry pixels) were described and
compared by calculating the minimum, maximum, rasggndard deviation, skewness,
and kurtosis of the herd size frequency distrimgi(SPSS, Chicago, IL). From the
Sirca model output, the median number of deer teteand the median number of
herds (pixels; equivalently, sg. km) were usedniaracterize each set of simulations

(n = 100) at the 9Dmodel day for each season (n = 4) and ecoregien2)n These 8
distributions were evaluated for normality (SASyCkstitute, NC, USA). A non-
parametric Kruskal-Wallis one-way analysis test wsead to compare the differences in
predicted epidemic spread (measured both by nuoftager infected and number of
herds infected) between the 8 treatment groupségmm and season). Because the
Kruskal-Wallis test only measures significant diffieces between the highest and
lowest groups, a post hoc Miller's multiple comparn test (SAS) was used to evaluate

differences between groups.

3. Results

Descriptive statistics for each seasonal deeribligion are shown in Table I. Although
the baseline and seasonal-specific mean numbezesf(d3.96) predicted per herd
(pixel) in the study area was constant, compardbedaseline (non-seasonal) deer
distribution, seasonal distributions were lessaldg (as measured by each seasonal-
specific distribution’s standard deviation and m@nigut tended to be more positively

skewed and kurtotic. Significant (P < 0.001) linezlationships between the NDVI and

12
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herd size pixels were observed for winter, sprawgnmer and autumn (respective
correlation coefficients 0.67, 0.60, 0.55 and 0.5®siduals of each of the four seasonal
ordinary linear regression models showed signiti¢Rrn< 0.001) positive spatial
autocorrelation (Moran’s |1 0.66, 0.71, 0.72 and0Qréspectively). In all cases, a spatial
autoregressive lag model was preferred over aad@attoregressive error model, based
on log likelihood statistics. The characteristi€shese fitted seasonal-specific spatial
autoregressive lag models are summarized in Tabléé spatial lagp) terms were

> 0.9 for all seasonal models, indicating that rsreé was strongly influenced by
neighboring herd sizes. Residuals of all seasqatlad autoregressive lag models
visually appeared normally distributed. The spatiatributions predicted using the
autoregressive lag models for each season are shdwgure 3. Areas of high density
deer distribution were predicted in the north-easparts of the study area in all
seasons, and were most extensive in the autumwiatel seasons.

The predicted spread of FMD for each season ane:giom is summarized in Table Il
(number of deer) and Table IV (number of herds)i loxplots of the predicted spread
of FMD for each season and ecoregion are showiguré& 4. There were significant
differences in epidemic spread by both season emekgion (Kruskal-Wallig? =
726.139, df = 7, p-value < 0.0001). In all cassgaificantly higher median number of
infected deer and infected herds were predicteddrEdwards Plateau ecoregion

(87 792-101 385 deer and 6050-6416 herds) thdrei®buth Texas brush ecoregion
(40 211-54 385 deer and 4336-4969 herds). Milletdtiple comparison test indicated
that within the Edwards Plateau ecoregion, thedsgimedian number of infected deer
(101 385) occurred in winter, with the lowest medmumber in summer (87 792). The
highest median number of infected herds (6 416)wed in winter, with the lowest

median number (tied by Miller’s test) in springd@®0) and summer (6 058). Within the
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South Texas brush ecoregion, the highest (tied g test) median number of
infected deer and herds occurred in autumn (5388894 969, respectively) and
summer (54 385 and 4 922, respectively), with threelst median number of deer and
herds in winter (40 211 and 4 336, respectivelye distributions of predicted infection
for outbreaks initiated in winter in the Edwardatebu and the South Texas brush

ecoregions are shown in Figure 5.

4. Discussion

Substantial differences were observed in the megliedicted magnitude of FMD
spread, both by season and ecoregion: the numhkeofand herds predicted to be
infected ranged from 40 211 deer and 4 336 hertiiibouth Texas brush ecoregion in
winter to 101 385 deer and 6 416 herds in the EdsvRtateau ecoregion in winter.
These differences can be explained by changes del@d deer distribution within the
study area, since all other parameters were helistaot within this simulation study.
Results suggest that the outcome of a transboumlisegse incursion (such as FMD) in
a wildlife population (such as white-tailed deesouth Texas) might depend on both
where and during which time of year the incursicouws.

Spatial autoregressive lag models using the ND\firemlict seasonal-specific deer
distributions fit the data well (pseudd R0.8 for all seasons). Although there were not
substantial differences in the overall estimateahiner of deer in the study area based
on the distributions predicted by the spatial agoessive lag model, the predicted
spatial arrangement of the population varied sulbisidy by season (Table | and Figure
4), as measured by skewness and kurtosis statistics, the difference in predicted
FMD spread within these populations can be atteidud the spatial distribution

patterns of the population — not to differencethaoverall size of the population.
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A significantly (P < 0.05) higher number of preéidtFMD infected deer and herds
were observed in the Edwards Plateau (northersuge®outh Texas brush (southern)
ecoregion, regardless of season. Within ecoregignjficant (P < 0.05) differences in
the seasonal number of predicted FMD infected dedrherds was also observed. In
the Edwards Plateau ecoregion both the highest aunftinfected deer and herds were
predicted in winter, whereas in the South TexasHbrcoregion the highest numbers
were predicted in summer and autumn. These rdsultger support previous work [13]
which suggested that the spatial continuity of pybation might play an important role
in the predicted outbreak size. This result issuwprising, since the Sirca model is a
local neighborhood based spatial disease spreadlifi®]. The more continuity in the
spatial distribution, the greater is the opportyfutr interactions to occur between
herds, consistent with epidemic theory and the mapae of spatial heterogeneity [16,
18].

The model used in this study has been used prdyitugvestigate wildlife-domestic
species interactions (feral pigs and cattle [7,88@] wild deer and cattle [36]) and to
evaluate the impact of spatial estimation methagie®on model predicted spread of
FMD in deer [13]. In the current study, our focugsaon extending previous work to
incorporate seasonal variability in white-tailectdpopulations and subsequently to
predict how the spread of FMD might vary by seagmin previous studies, we
modeled only local spread [7, 13, 36]. Given thé ts an actively managed and hunted
population, there are likely times of the year @mmseason) where potential longer-
distance FMD spread may be present.

This study focused on the initial stages of disespsead £ 90 days) so that the effect of
between-season variability in population distribos could be assessed [13]. We also

assumed that the home range of deer (2 km)agdaguate for creating spatial weights
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for the spatial autoregressive lag models. Givahdieer show high fidelity to their
home range, this assumption is likely to be va?d]] However, the spatial scale of
influence of the surrounding population on seasdeat distribution is unknown.

Future work should incorporate a range of spat&ibivs and assess how this variation
might impact model predictions of deer distribution

The behavior of wildlife species is also seasoradliable and should be included in
future work focusing on the spread of FMD in wildlpopulations. For example, the rut
(breeding season) in white-tailed deer in the sara typically occurs in the Edwards
Plateau ecoregion between October and Decembemdne South Texas brush
ecoregion in Decembgmuring this time of the year, bucks are moreljike move
around and cover larger distances than ndtrithis could contribute substantially to
increased spread of FMD because of greater nunobareractions with other
potentially susceptible deer. Juvenile males vidibalisperse from their female groups
and an increase in the number of single malesamptpulation may need to be modeled
[27]. In addition, a stable population (no birthisdeaths) was assumed in this study
because of the relatively shost 90 days) time periods simulated. Future studiesiish
incorporate such changes in the population stracespecially given that this area is
intensively managed for hunting and recreation.

An assumption was made in this study that the sspagal relationship for predicting
deer distributions (in the autoregressive lag ne)dehs valid over the entire study area
(both ecoregions). Ecoregions comprise similaisstilpography, land use and
vegetation (habitat). Given the substantial diffiees in the modeled spatial distribution

of deer in the two ecoregions in the study areig,likely that some variation in the

* Texas Parks and Wildlife Department. The rut iritedwiled deer [on line]
http://www.tpwd.state.tx.us/huntwild/hunt/planning/ whitetailed _deefconsulted 24
January 2008].
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spatial relationship may exist. Future work shaaxdmine the application of regression
models specific to ecoregions to determine if sl variation does exist and
whether this might impact predicted disease spriédigere are substantial differences
in the spatial distributions of deer by ecoregioere is utility in developing separate
ecoregion-specific regression models. Howeverpt#efulness of ecoregion as a
predictor for estimating deer distributions migbtllmited because some of the habitat
variability is captured at a finer resolution wigmd use data. Using ecoregions as a
marker for modeling deer behavior might also betéchbecause regions are a very
broad scale measurement of the environment andri@associated attribute data.
While it might be useful to model deer behaviorhvatlarger number of finer resolution
ecoregions, it becomes exceedingly complex: asrdgt@rements increase, a greater
number of variables have to be estimated and irdtion on behavior within a
particular ecoregion has to be derived from expention. This greatly adds to
uncertainty in the resulting estimates.

The NDVI has been used in numerous studies onléissification of land use and
temporal vegetation variability (onset, peak, searse) [23, 321", as well as the
examination of the relationship between NDVI anmveditock stocking rates in the USA
[14, 29]. The NDVI was highly correlated {R 0.7) with dietary measurements of

white-tailed deer during winter and spring in naréntral Texas [33], and the NDVI

® Turcotte K., Dramber W., Venugopal G., Lulla Knaysis of region-scale vegetation
dynamics of Mexico using stratified AVHRR NDVI dafroceedings of the Annual
Society for Photogrammetry and Remote SensingirBaile, MD, USA, 1989.

® Hochheim K., Bullock P., Operational estimatesvettern Canada spring wheat yield
using NOAA/AVHRR LAC data, Proceedings of thé"Becora Symposium, Bethesda,
MD, USA, 1994.

"vanLeeuwen W., Huete A., Begue A., Duncan J., liid., Hanan N., et al.,

Evaluation of vegetation indices for retrival oflsnd vegetation parameters at Hapex-
Sahel, Proceedings of the™Pecora Symposium, Bethesda, MD, USA, 1994.
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was significantly (P < 0.05) associated with muerddistributions in the southwest
desert in spring, summer and autumn [25]. In tlesent study, a single year of NDVI
data was used and bi-weekly measurements wereepldnfm a seasonal average to
predict deer distributions. As documented in presistudies [25, 33], a traditional
seasonal (winter, spring, summer, autumn) breakdeasiassumed to be appropriate.
More detailed analysis of methods of grouping N@¥ta for predicting deer
distribution is warranted, as the traditional seas@pproach may not adequately
capture seasonal variability in the relationshipveen vegetative greenness and forage
availability. It was further assumed that one y&aXDVI data was adequate to model
seasonal variability. This assumption is valiché interest in modeling deer distribution
focuses on the most recent year; however, longer tends may also be of interest to
modelers and policy decision-makers. Future worla short time series might provide
a better understanding of the broad patterns of NiXér time in the study area.

There are numerous areas of the USA where livestozextensively grazed and the
potential for interaction with susceptible wildlipecies, such as white-tailed deer, is
high. Deer move through and forage in fields betwiaems and enter premises with
animal feed and slurry [34]. In addition, suppleta¢feeding of white-tailed deer for
hunting purposes is a common practice in many arktie USA [14]. Deer densities in
parts of Texas are very high, and most deer intphvate land [22]. As the result of
extensive land use change, deer populations insTeaae formed metapopulations with
high deer densities, increased contact betweenpdgriations and potentially the risk
of disease transmission to domestic livestock [B2ked on a review of the literature,
the current study is probably only one of two [@]jricorporate seasonal variability in
wildlife distributions and to define the potentiaagnitude of an FMD outbreak by

season. Substantial seasonal variability in theahpiedicted spread of FMD was
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found. Future work focusing on improved methodarwdlysis of NDVI data, spatial
regression models and incorporating behavioratteaie needed to yield additional
insights into the potential spread of transboundiésgases, such as FMD, in wildlife
populations.

In this simulation study, the outcome of an FMDursion was found to depend on both
when and where the incursion occurred. These geatdtimportant to consider when
designing disease mitigation strategies. It isljitkat such effects would be seen for
FMD incursions in other regions and countries, famather diseases, in cases in which

a potential wildlife reservoir exists.
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Figure 1. A study area in south Texas selected to evaluatedeasonal variability in the distribution of wdiailed deer might affect
the potential spread of foot and mouth disease. dvavegions (the Edwards Plateau (EP) and SoutasiBrush) represented in this

study area are shown. The location of the 9 cosifitianing the study area, bordering Mexico, is shawthe insert.
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o 45 80 180 270

Kilometers

24



Figure 2. Conceptualization of modeling diseasestmgission in Sirca (A through D).
A. 8 neighbors evaluated as potential contacts fitmrsource infected cell (center, bold
outline). Each cell represents a “herd” of deehwlite raw density value shown for

each.

6 | 3| 13
9 120]) 29
1 |51

B. Scaled density of all herds (infected and susigie) is calculated using 30 deer per
km? as the threshold value. Ex: 20/30 = 0.67 (sourtexied cell; center, bold outline).

0.2 ] 0.1] 0.43
0.310.67]0.97
0.03/ 0.17)| 0.37

C. Probability of FMD virus transmission is caldeld as the product of the scaled
densities for the source infected cell and eadh@B potential contacts. Cells show
probabilities for contact between the center asi@ iheighboring cells. Ex: the
probability of transmission to the eastern celbgghin gray) is 0.67*0.97 = 0.65.

0.134 | 0.067 0.288
0.201 0.65
0.0201] 0.114) 0.248

D. Probability of FMD virus transmission is then difted by the spatial kernel to
account for distance between potential contactthifncase the kernel is the cell size (1)
divided by the distance between cells. Modifiedtaohprobabilities are shown in gray.
Ex: the probability of transmission to the northstezn cell is 0.67+0.134#2 =0.095.

0.095| 0.067| 0.204
0.201 0.65
0.014| 0.114| 0.175
An interaction between the source infected cell asdsceptible neighboring cell
results in disease transmission when a value dfeosma pseudo-random number
generator is below the modified contact probab{létyown above) of the evaluated
contact.




Figure 3. Seasonal-specific white-tailed deer distributiona study area in south
Texas selected to evaluate the effect of seasamn@lbility on potential spread of foot
and mouth disease. Distributions were predictedgudie normalized difference

vegetation index and spatial autoregressive lagetsqdab. II).
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Figure 4. Foot and mouth disease infection of white-tailedrdepper) and deer herds (lower) in an area ithsbexas, predicted by 100

simulations of a susceptible-latent-infectiousstsit geographic automata model (Sirca).
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Figure 5. Probability of foot and mouth disease infectibnvinter-distributed white-
tailed deer in an area in south Texas, predictetlO@ysimulations of the Sirca
model. Each simulation was initiated at the sarmelBx herds ¢, represented as 1
km? pixels) in either the Edwards Plateau (upper)auts Texas Brush (lower)

ecoregions as infected. Probability of infectioar(pixel) is shown.

~

Winter @. Winter Epidemic Progression

B

1 Deer density Probability of infection
L Jo-7 [ e-18 + 001-0.10 0.31-0.40
o7 -2 < 011-020 .+ 041-050
* Index Case 0.21-030 + 051-1.00

Winter

Deer density Probability of infection
‘ [ Jo-7 EMs-28 .+ 001-0.10 0.31-0.40
> e - + 011-0.20 + 041-050
@ * Index Case 0.21-0.30 + 051-1.00

5

Tablel. Descriptive statistics for white-tailed deer disfitions (represented by 1



km? pixels) predicted in an area of south Texas, usifgmation from the
normalized difference vegetation index and an esdtih baseline (non-seasonal)
deer distribution (427 292 deer in 30 592 herdatialty represented as pixels).
Seasonal-specific mean number of deer (13.96) @extiper herd (pixel) in the

study area was constant.

Distribution SD Minimum Maximum Range  SkewnessKurtosis
Baseline 8 0 36 36 0.35 1.94
Winter 6 1 28 27 0.61 2.28
Spring 5 3 29 26 0.7¢ 2.94
Summe 4 5 27 22 0.54 2.9z
Autumn 5 0 27 27 0.39 2.67




Tablell. Characteristics of spatial autoregressive lag nsofitééd to seasonal

white-tailed deer distributions (represented spgtizy 30 592, 1 krfipixels) in an

area of south Texas, derived using the normaliziéereince vegetation index.

Model Parameters Constant NDVI Spatial lag,
Winter Coefficien -1.41 6.0¢ 0.91¢
Std. error 0.028 0.096 0.003
z-value -14.67 21.08 284.7
probability <0.00] < 0.001 < 0.00]
Pseudo R= 0.837
Spring Coefficient -1.2 5.2 0.932
Std. error 0.105 0.305 0.003
z-value -11.3¢ 17.0¢ 313.2
probability <0.001 <0.001 <0.001
Pseudo R= 0.838
Summer  Coefficient -0.88 4.17 0.938
Std. erro -1.02 0.2¢ 0.00:
z-value -8.64 14.7 331.7
probability <0.001 <0.001 <0.001
Pseudo R= 0.838
Autumr  Coefficien -1.3¢ 4.91 0.93:
Std. error 0.11 0.29 0.003
z-value -11.76 17.0 313.6
probability <0.001 <0.001 <0.001

Pseudo R= 0.838




Tablelll. Predicted size (number of deer infected) of anreathk of foot-and-mouth disease in a population lotevtailed deer in an
area of south Texas for each season by ecoregiwa(ls Plateau and South Texas brush). Resultssshmyrom 100 simulations of

a susceptible-latent-infectious-resistant geog@phtomata model (Sirc&r each seasonal deer distribution.

Deer
Ecoregion Season
Median Interquartile range  25%, 75% percentile Siesg Kurtosis

Edwards Plateau Winter 101385 2868 100305, 103239 0.19- -0.20
Edwards Plateau Spring 90913 2885 89233, 92139 8-2.2 10.5
Edwards Plateau Summer 87792 2082 86612, 88707 4-1.1 4.6
Edwards Plateau Autumn 92323 2314 91126, 93445 -.92 2.07
South Texas bru: Winter 4021 181¢ 3920¢, 4108¢ -2.€ 13.€
South Texas bru: Spring 5037: 133( 49502 5086¢ -2.€ 10.1
South Texas brush Summer 54385 1753 53462, 55233 a7 -4 29.8

South Texas brush Autumn 53389 1546 52515, 54074 .01-3 11.7




Table V. Predicted size (number of deer herds infectedhafdbreak of foot-and-mouth disease in a populatfonhite-tailed deer

in an area of south Texas for each season by e@oarfgdwards Plateau and South Texas brush). Restutiwn are from 100

simulations of a susceptible-latent-infectiousgtsit geographic automata model (Sifoa)each seasonal deer distribution.

Deer Herds

Ecoregion Season

Median Interquartile range  25%, 75% percentile Siesg Kurtosis
Edwards Plateau Winter 6416 154 6340, 6496 -1.9 9.3
Edwards Plateau Spring 6050 139 5972, 6112 -3.3 3 16.
Edwards Plateau Summer 6058 131 5983, 6115 -3.4 5 22.
Edwards Plateau Autumn 6198 142 6138, 6281 -3.1 9 12.
South Texas bru: Winter 433¢ 18€ 4247, 443¢€ -2.¢ 13.€
South Texas bru: Spring 476¢ 117 469¢, 481° -2.8 7.9
South Texas brush Summer 4922 161 4842, 5004 -4.2 3.6 2
South Texas brush Autumn 4969 132 4891, 5023 -2.2 5 7




