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Abstract

Digital cameras have entered ordinary homes and produced^incredibly large num­
ber of photos. As a typical example of broad image domain, unconstrained consumer 
photos vary significantly. Unlike professional or domain-specific images, the objects 
in the photos are ill-posed, occluded, and cluttered with poor lighting, focus, and 
exposure. Content-based image retrieval research has yet to bridge the semantic gap 
between computable low-level information and high-level user interpretation.

In this thesis, we address the issue of semantic gap with a structured learning 
framework to allow modular extraction of visual semantics. Semantic image regions 
(e.g. face, building, sky etc) are learned statistically, detected directly from image 
without segmentation, reconciled across multiple scales, and aggregated spatially to 
form compact semantic index. To circumvent the ambiguity and subjectivity in a 
query, a new query method that allows spatial arrangement of visual semantics is 
proposed. A query is represented as a disjunctive normal form of visual query terms 
and processed using fuzzy set operators.

A drawback of supervised learning is the manual labeling of regions as training 
samples. In this thesis, a new learning framework to discover local semantic patterns 
and to generate their samples for training with minimal human intervention has been 
developed. The discovered patterns can be visualized and used in semantic indexing.

In addition, three new class-based indexing schemes are explored. The winner- 
take-all scheme supports class-based image retrieval. The class relative scheme and 
the local classification scheme compute inter-class memberships and local class pat­
terns as indexes for similarity matching respectively. A Bayesian formulation is 
proposed to unify local and global indexes in image comparison and ranking that 
resulted in superior image retrieval performance over those of single indexes.

Query-by-example experiments on 2400 consumer photos with 16 semantic queries 
show that the proposed approaches have significantly better (18% to 55%) average 
precisions than a high-dimension feature fusion approach. The thesis has paved 
two promising research directions, namely the semantics design approach and the 
semantics discovery approach. They form elegant dual frameworks that exploits 
pattern classifiers in learning and integrating local and global image semantics.
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Chapter 1

Introduction

One picture is worth a thousand words.
Fred R. Barnard

1.1 Motivations

1.1.1 Broad Consumer Images

We live in a 3D analog world. Our activities fade with time. Digital cameras allow us 

to preserve them as pictorial memories. We can then recall and share these pictorial 

memories with family and friends.

Digital cameras have entered ordinary homes and produced incredibly large num­

ber of photos. According to Photo Marketing Association (PMA) (www.pmai.org) 

marketing research, the sales of digital cameras grew 64% in 2003 to 50 million units 

worldwide. In U.S. alone, digital camera sales will rise to 15.7 million in 2004, from 

12.5 million in 2003. In fact, in 2003, U.S. sales of digital cameras surpassed those 

of traditional cameras for the first time. At the end of 2003, 31% of U.S. house­

holds owned digital cameras and the ownership of digital cameras in U.S. homes 

will reach 40% by end of 2004. InfoTrends Research Group, Inc. (www.infotrends- 

rgi.com) even predicted that by 2008, digital cameras would replace film cameras. 

The irreversible trend of digital photo-taking is getting a boost with the growth

http://www.pmai.org
http://www.infotrends-rgi.com
http://www.infotrends-rgi.com
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of camera phones and multimedia messaging service (MMS) that enable a new ex­

perience of visual communication. Indeed camera phones shipments, which already 

outnumber digital cameras worldwide, are expected to reach 298 million in 2007, 

according to a forecast released by IDC (www.idc.com) in October 2003. In another 

market forecast, by 2008, 366 million of the 680 million (i.e. 53.8%) mobile phones 

sold will have cameras inside.

With digital cameras, consumers are much more proliferate in taking photos 

as it costs next to nothing to take a digital photo (especially with the option to 

delete), and many more images can be stored in flash memory than on a film 

[Rodden and Wood, 2003]. Hence it is not difficult at all to foresee that in the 

near future, average consumers would face the genuine problem of organizing and 

accessing tens of thousands of photos, reckoning that most consumers are reluctant 

to spend too much manual effort in annotation and manipulation.

User studies on the behaviour of users of image collection is limited. The 

most comprehensive effort in understanding what a user wants to do with an im­

age collection is Enser’s work on image [Enser, 1993] [Enser, 1995] (and also video 

[Armitage and Enser, 1997]) libraries for media professionals. Other user studies 

have focused on art images [Frost et al., 2000], medical image archive [Keister, 1994], 

and newspaper photo archives [Ornager, 1996] [Markkula and Sormunen, 2000]. Typ­

ically, knowledgeable users searched and casual users browsed. But all users found 

that both searching and browsing are useful.

The most relevant findings on how consumers manage their personal digital pho­

tos come from the user studies by Rodden [Rodden and Wood, 2003] [Rodden, 1999]. 

A key objective in her more recent study with Wood [Rodden and Wood, 2003], that 

is relevant to the research undertaken in this thesis, seeks to evaluate the usefulness 

of speech annotation and content-based image retrieval in the context of personal 

photo collections based on the ShoeBox system [Mills et al., 2000]. Besides conven­

tional thumbnail-based browsing tool for organizing, labeling, and viewing photos, 

the Shoebox system also allows users to perform audio annotation which can be tran­

scribed automatically using speech recognition for subsequent text-based retrieval.

On the visual side, the Shoebox system segments images into regions based on 

color and texture and indexes the regions. A user can search for photos visually

http://www.idc.com
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similar to a selected photo or photos that contain regions similar to one or more 

highlighted regions within a photo. There are 13 participants (8 males and 5 females 

aged 24 to 38) with an average collection of 1000 photos (ranges from 300 to 3000 

pictures) in the study [Rodden and Wood, 2003].

There are many interesting findings from the user study [Rodden and Wood, 2003]. 

We only highlight those related to image indexing and retrieval here:

• With digital cameras, participants were more willing to take “risky” photos 

and “everyday” photos. Hence they tended to have taken a larger number of 

bad photos to obtain the good ones, which were what they would later look 

for to show to other people and to print;

• Organizing photos by specific events (e.g. holidays) into albums or folders 

and sorting photos within each album or folder in chronological order make 

browsing easier. But chronological ordering or classification by event does not 

help much in finding photos matching a more general requirement;

• Annotation only becomes important after the photos have been taken for quite 

some time, when many of the details have already been forgotten. Most of 

the participants would only want to annotate some of their photos. For those 

photos that are annotated, only very few annotations (either typed or spoken) 

were made;

• It is difficult for people to make comprehensive annotation (either typed or 

spoken). So even if all the photos are annotated (or spoken annotations tran­

scribed with high accuracy), it is unlikely that all of the photos relevant to a 

query will be retrieved. The problem of preparing a good text description of an 

image has also been reported in other user studies [Armitage and Enser, 1997] 

[Markkula and Sormunen, 2000];

• Spoken annotations save typing effort. But some participants dislike the idea 

as they would feel self-conscious about speaking to a computer, and would 

first have to plan what to say. For those who used spoken annotation, the 

inaccuracy of speech recognition was unacceptably high. Names of people and
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places, which are usually the most important elements of annotations, are 

often wrongly transcribed as they may not even in the vocabulary;

• Visual queries can be used to specify more general requirements, especially 

common visual properties shared by a set of photos taken at different events. 

However the participants expressed little interest. The authors of the study 

believe that queries would become important as a collection grows, and the 

photos get older and less familiar;

• Users had unrealistically high expectations on visual queries (for example, find­

ing all photos of a particular person). Even those who have tried visual queries 

with more realistic expectations (based primarily on color) were disappointed 

with the results. The authors of the study felt that reliable object recognition, 

if available, would take some of the effort out of manual annotation.

Based on the findings from the user study [Rodden and Wood, 2003] presented 

above, we strongly feel that research in content-based image retrieval will play a role 

in the tools for managing consumer images for the following reasons:

• When the accumulation of photos becomes voluminous, search will be regarded 

as a useful function to complement browsing. In particular, while organizing 

photos based on meta-data such as time stamps [Graham et ah, 2002] is useful 

for navigation, query and retrieval of photos across existing groupings is also 

important;

• Speech and text annotations are still not reliable and comprehensive even for 

the willing users. There are also users who are uneasy with spoken anno­

tation and find text annotation tedious. Although speech annotation in a 

constrained format seemed to provide a viable alternative for content-based 

indexing [Chen et al., 2001] [Chen and Tan, 2003], speaking freely and timely 

to the digital camera with microphone in an open environment (e.g. outdoor) 

is still a challenge for speech recognition;

• As current image indexing based on global features and region-based features 

fail to meet users’ high expectations, a more semantic representation based on
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objects would be necessary. The object-based information extracted from the 

images would also be useful for automatic annotation.

In fact, consumer images satisfy the following practical criteria for content-based 

analysis to produce high impact as suggested by S.F. Chang [Chang, 2002],

• Generating meta-data not available from production;

• Providing meta-data that humans are not good at generating;

• Focusing on content with large volume and low individual value;

• Adopting well-defined tasks and performance metric.

That is, consumer images are created in large volumes with low individual values. 

Though they have personal values to individual consumer and the owner is the 

best person to describe the images, it is not likely that the content owner would 

invest enough resources such as time for manual annotation of each image. With 

the time stamps from digital cameras and the location information from built-in 

positioning devices which are meta-data available from image capturing, research 

can concentrate on the automatic creation of meta-data from the image content 

(i.e. not available from image production). As for the last item in the criteria, the 

query methods should be relatively simple and unambiguous. Simple and practical 

performance measure such as average precisions at top number of retrieved images 

should be adopted.

Indeed unconstrained consumer images pose great technical challenges for content- 

based image retrieval research. Unlike professional images, which are well defined, 

carefully taken and clearly layered, or domain-specific images such as medical im­

ages, which have a clear classification and are usually attached with semantic anno­

tation, consumer images vary significantly due to the spontaneous and casual nature 

during image capturing. More often than not, the objects in the photos are ill-posed, 

occluded, and cluttered with poor lighting, focus, and exposure. We will elaborate 

the technical challenges related to broad domain images later in this chapter. For 

a feel of the visual complexity of real consumer images, readers are referred to the 

sample images in our test collection in Section 7.2.
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1.1.2 “Keywords” in Visual Data

In the past few decades, successful text retrieval models (e.g. vector space model 

[Salton, 1971], probabilistic model [Robertson and Sparck Jones, 1976]) and systems 

(e.g. text search engines available on the World Wide Web) have been developed 

based on matching of keywords (or terms) between those specified in a query and 

those extracted from text documents in the database. Despite their conceptual 

simplicity, keywords are natural and yet powerful means for indexing and retrieval 

of text documents. Similarly, keyword-based retrieval is an intuitive and effective 

method to retrieve visual data if the visual data are annotated with comprehensive 

text labels.

However, comprehensive manual annotations are costly if not impossible. Auto­

matic annotation based on content alone for visual data is difficult because visual 

data are very different in content representation from text documents. Texts are con­

ceptual and symbolic in nature. Text keywords, which are relatively well-defined and 

well-segmented entities, convey meaningful semantics to human querants. Visual 

data are perceptual and pattern-based. Interpreting visual data is underconstrained 

in general. There are multiple world interpretations consistent with the visual data. 

Visual variations such as pose, scale, skew, translation, perspective, illumination, 

occlusion, clutter etc further complicate visual perception and understanding.

For instance, look at the photographs of natural scene shown in Figure 1.1. 

Each column of the photographs constitutes a semantic class of images perceived as 

similar by human users, although images in the same class could vary significantly 

in color, texture, and spatial configuration. The classes are (from left to right), 

namely, coasts, fields, trees, snowy mountains, and streams/waterfalls respectively. 

We are interested in the answers to the following questions:

• How would a computer perform retrieval and classification based on the visual 

contents of these images?

• What would be the natural sets of features for indexing and retrieval of visual 

data?

• Can we describe and compare visual contents beyond primitive perceptual 

features such as color, texture, shapes etc specific to their contents?
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Figure 1.1: Some photographs from each natural scene class (column).
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Figure 1.2: A coast image and its scrambled version

• Are there corresponding “keywords” that are inherent and consistent in a 

visual domain?

Considering Figure 1.2. The left half (say Jo) shows a perceptually coherent 

view of a coast and the right half of the same figure is its scrambled version (say 

11). Based on distributions of color or other low level features solely, Iq and I\ will 

be considered very similar (if not identical) though they are perceptually dissimilar. 

Scrambling Iq in different ways can easily produce perceptually incoherent images

?3 ■ ■ ■ etc to fool a search engine that relies only on distribution of low level 

features and make its performance looks bad for comparison.

How would one describe visual content such as the coast image given in (left 

of) Figure 1.2? An intuitive and reasonable textual description could be: “there is 

cloudy blue sky at the top, dark blue sea at bottom left, brownish rocky highland (or 

mountain) at bottom right, and white bubbly waves along the bottom middle”. The 

latter textual description utilizes visual features (color, texture) that characterize 

types of visual objects (‘sky’,‘sea’ etc) as well as spatial configuration (‘top’/bottom 

right’ etc). Hence our quest for “keywords” for visual data must capture these two 

aspects of information in the image content.

1.1.3 Semantic Gap

Users usually query images baaed on semantics. For example, in a recent paper by 

Enser, he gave a typical request to a stock photo library [Enser, 2000],
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“Pretty girl doing something active, sporty in a summery setting, 

beach - not wearing lycra, exercise clothes - more relaxed in tee-shirt. 

Feature is about deodorant so girl should look active - not sweaty but 

happy, healthy, carefree - nothing too posed or set up - nice and natural 

looking”

that used broad and abstract semantics to describe the images one is looking for.

Using existing image processing and computer vision techniques, low-level fea­

tures such as color, texture, and shape can be easily extracted from images. How­

ever, they are inconsistent with human visual perception, let alone the incapability 

to capture broad and abstract semantics as illustrated by the above example. Hence 

low-level features cannot provide sufficient descriptive information for meaningful 

retrieval.

High-level semantic information is useful and effective in retrieval. However, 

semantic information is heavily depending on semantic image regions and beyond, 

which are difficult to obtain themselves. Between low-level features and high-level 

semantic information, there is a so called “semantic gap”. Content-based image 

retrieval research has yet to bridge this “gap between the information that one can 

extract from the visual data and the interpretation that the same data have for a 

user in a given situation” [Smeulders et al., 2000].

More precisely, based on the user studies [Rodden and Wood, 2003] [Enser, 2000], 

D.A. Forsyth [Forsyth, 2001] considered the following points important from the 

perspective of semantic gap for content-based image retrieval:

• Users request images both by object kinds (i.e. a princess) and identities (i.e. 

the princess of Wales);

• User request images both by what they depict (i.e. things visible in the picture) 

and by what they are about (i.e. concepts evoked by what is visible in the 

picture);

• Queries based on image histograms, texture, overall appearance, etc are van­

ishingly uncommon;

• text associated with images is extremely useful in practice - for example, 

newspaper archivists index largely on captions.
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USER QUER\;

Semantics
Extraction
Problem

Semantics 
Interpretation 

Problem

Figure 1.3: Semantic gap between visual data and user interpretation

While the goals of detection of objects and recognition of exact object identities 
visible in a picture are attainable, though not perfectly reliable yet, the task of 
characterizing concepts beyond what is visible in the picture seems only possible if 
there is relevant associated text. Note that in the case of consumer images used 
in the experiments of the thesis, text annotation and other meta-data such as time 
and locationis are not available. Hence looking beyond image content for semantic 
information is not viable.

In our opinion, the semantic gap is due to two inherent problems. One problem 
is that the extraction of complete semantics from image data is extremely hard as 
it demands general object recognition and scene understanding. This is called the 
semantics extraction problem. The other problem is the complexity, ambiguity and 
subjectivity in user interpretation i.e. the semantics interpretation problem. They 
are illustrated in Figure 1.3. We think that these two problems are manifestation of 
two one-to-many relations.

In the first one-to-many relation that makes the semantics extraction problem 
difficult, a real world object, say a face, can be presented in various appearances in 
an image. This could be due to the illumination condition when the image of the
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face is being recorded; the parameters associated with the image capturing device 

(focus, zooming, angle, distance etc); the pose of the person; the facial expression; 

artifacts such as spectacles and hats; variations due to moustache, aging etc. Hence 

the same real world object may not have consistent color, texture, and shape as far 

as computer vision is concerned.

Indeed, highly accurate segmentation of objects is a major bottleneck except for 

selected narrow domains when few dominant objects are recorded against a clear 

background. The challenge of object segmentation is acute for polysemic images 

in broad domains such as general consumer images. In particular, a challenge for 

computer vision in broad image domain is the usually very large number of object 

classes in polysemic images. Moreover, the interpretation of such scenes is usually 

not unique as it may have numerous conspicuous objects, for which some of them 

have unknown object classes. Though there is promising progress in specific object 

recognition such as face [Zhao et al., 2000], general object recognition is still an open 

problem.

The other one-to-many relation is related to the semantics interpretation prob­

lem. Given an image, there are usually many possible interpretations due to several 

factors. One factor is task-related. Different regions or objects of interest might be 

focused upon depending on the task or need at hand. For instance, a user looking 

for beautiful scenic images as wallpaper for his or her desktop computer would em­

phasize on the aesthetic aspect of the images (besides additional requirement of very 

high resolution). On the other hand, a journalist working on a news story related 

to a celebrity would focus on images in which the celebrity appears. Thus different 

user needs can introduce ambiguity into a query if the requirements (scenic image, 

name of celebrity) associated with the needs cannot be expressed explicitly in the 

query. In consequence, a scenic image with the presence of the celebrity may satisfy 

both the requirements but the interpretations of relevance are different to the users.

Furthermore differences in culture, education background, gender etc would also 

inject subjectivity into user interpretation of an image, not to mention that percep­

tion and judgement are not time-invariant. For example, a Chinese user may look 

for red-dominant images in designing greeting cards for auspicious events but these 

images may not have special appeal to a European user. Indeed a recent survey
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[Enser and Sandom, 2003] has suggested a framework based on the classifications of 

types of images and of types of user for evaluating future image retrieval systems.

1.1.4 Research Challenges

Based on the motivations described above, we face the following research issues and 

challenges in content-based image retrieval that we would like to investigate:

• Broad domain images have very high content variations;

• There are very large number of object classes in polysemic images;

• General object segmentation is not robust;

• General object recognition is difficult;

• Text annotation is incomprehensive and tedious;

• User interpretation is ambiguous and subjective.

Hence a systematic, modular, and adaptive framework is necessary to deal with 

content diversity. Modularity is required to handle a plurality of semantic enti­

ties independently. Training pattern classifiers from examples allows the system to 

abstract semantic entities from their instances and to adapt to new semantic require­

ment easily. Much like structured design and programming in software engineering, 

the framework should provide guiding principles to construct content-based image 

indexing and retrieval systems for a given content domain.

The image indexes generated should support semantic interpretation and query. 

In particular, one way to reduce ambiguity in a query is to allow explicit formula­

tion of query in terms of semantic entities by the users. Since object segmentation is 

usually a means to extract object identity and robust object segmentation is still an 

open problem, dependency on object segmentation should be minimized or even re­

moved. As object recognition for numerous object classes is in general unsolved, the 

framework should accommodate imperfection and uncertainty in object detection 

and recognition. In other words, the image index representation should incorporate 

soft classification decisions instead of hard decisions. In short, in contrast to the
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conventional segmentation and recognition paradigm that tend to accumulate er­

rors in the computational pathway, the framework should retain semantic certainty 

information as much as possible.

Another important research objective should also aim to minimize the manual 

effort required to label training region samples. This is an ambitious goal to further 

automate statistical learning for computer vision. One should also look beyond 

semantics in a single image and exploit recurrent (intra-class) and discriminative 

(inter-class) semantics in classes of images.

1.2 Background

Some of the desirable features such as semantic interpretation and query, soft detec­

tion, and segmentation-free indexing as discussed above have been explored in our 

previous research on Visual Keywords (VK) [Lim, 1999a] [Lim, 1999c] [Lim, 1999b] 

[Lim, 2000a] [Wu et ah, 2000a] [Lim, 2000d] [Lim, 2000b] [Lim, 2000c] [Lim, 2001b] 

[Lim, 2001a] as part of two international research collaboration projects. The re­

search presented in the thesis is a substantial extension of the VK framework.

The Real World Computing Partnership project (RWCP) (Phase 2, from Apr. 

1997 to Dec. 2001) was funded by the Ministry of Economics, Trade and Industry 

(METI) of Japan. The research theme of the project was to explore novel functions 

for flexible organization of information bases. The author of the thesis was the acting 

head of the RWCP Information-Base Functions KRDL Lab in the Kent Ridge Digital 

Laboratories of Singapore.

The other research project, Digital Image/Video Album (DIVA), was a collab­

oration among CNRS (France), School of Computing of the National University 

of Singapore, and Kent Ridge Digital Laboratories (Singapore) (now Institute for 

Infocomm Research) from Jan. 2000 to Jun. 2003. The objective of the research 

project was to develop new image and video indexing and retrieval techniques for 

home users.

The conceptual framework of VK was conceived in late 1998. Figure 1.4 reca­

pitulates the methodology of VK.

In the VI< methodology, a visual document is defined as a complete unit of
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visual tokens

visual
documents

tokenization typification

visual
document

type eval.
tokenization

visual tokens ---'visual
"keywords"

Figure 1.4: The methodology of visual keywords

visual data. Examples include a digital image, a video shot represented by some 

key frame(s) etc. A coherent unit in a visual document, such as a region of pixels 

in an image, is called a visual token. There are prototypical visual tokens present 

in a given distribution of visual documents. Using soft computing techniques, these 

visual keywords can be extracted and abstracted from a sufficiently large sample of 

visual tokens of a visual content domain.

Visual keywords could correspond to “things” like faces, pedestrians etc and 

“stuffs” like foliage, water etc in visual contents, represented by suitable visual 

characteristics. They are called “keywords” as in text documents for the following 

reasons. First of all, they represent unique types (or classes) of visual tokens occur­

ring in a visual content domain. Next, a visual content is described by the presence 

or absence of these typed visual entities at a spatial abstraction, rather than directly 

by the visual entities or primitive features. Last but not least, the higher-order se­

mantic structure implicit in the association of these typed visual entities with the 

visual documents are exploited to develop a coding scheme.

Figure 1.4 summarizes the methodology in a flow diagram. The top row depicts 

the extraction of visual keywords. A systematic and automatic component called
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tokenization extracts visual tokens from visual documents. A typification component 

creates visual keywords from the set of visual tokens. The visual keywords are visual 

representation resulting from supervised or/and unsupervised learning.

The middle row of Figure 1.4 shows the steps to produce visual content signature 

based on extracted visual keywords. During indexing (or retrieval), a visual doc­

ument (or a query sample), is subjected to tokenization to produce visual tokens. 

The location-specific visual tokens are evaluated against the visual keywords and 

their soft occurrences aggregated spatially (type evaluation + spatial aggregation) 

to form a Spatial Aggregation Map (SAM) as visual content signature for the visual 

document. With appropriate similarity measure, the SAMs of visual documents can 

be used in similarity matching for image retrieval and categorization applications.

Last but not least, the bottom row illustrates a coding process based on singular 

value decomposition to reduce the dimensionality and noise in SAMs. This is similar 

to the Latent Semantic Analysis (LSA) [Deerwester et al., 1990] technique in text 

retrieval that exploits higher-order semantic structure implicit in the association of 

terms with documents. Using singular value decomposition with truncation and 

cell transformation as given in [Landauer et al., 1998], LSA captures most of the 

essential underlying structure in the association of terms and documents, yet at 

the same time removes the noise or variability in word usage that plagues word- 

based retrieval methods. The derived coded description achieves a reduction in 

dimensionality while preserving structural similarity in term-document association 

for good discriminating power in similarity matching.

The typification component in Figure 1.4 aims to induce the types (or classes) of 

visual tokens from sufficiently large number of examples in a visual content domain. 

Both supervised and unsupervised learning methods can be employed. Thus, while 

visual keywords are visual content domain-dependent, the framework allows them 

to be customized for the domain via learning.

Unsupervised learning methods such as Self-Organizing Maps (SOM) neural net­

works [Kohonen, 1997], Fuzzy C-Means (FCM) algorithm [Bezdek, 1981], and the 

Expectation-Maximization (EM) algorithm [Mitchell, 1997] can be used to discover 

regularities in the visual tokens in visual documents. Soft clusters (visual keywords) 

that represent prototypical visual tokens are formed from a training set of visual
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tokens sampled from visual documents of a given visual content domain (Figure 

1.5).

o
cluster memberships

soft clusters (visual keywords)

feature vector (visual token)

Figure 1.5: Visual keywords as soft cluster centers

For supervised learning, view-based detectors such as neural network recognizers 

for salient objects such as human faces, pedestrians, foliage, clouds etc can be in­

duced from a training set of positive and negative examples of visual tokens collected 

from visual documents of a given content domain (e.g. [Papageorgiou et ah, 1998]). 

Suppose the domain is natural scene images and we employ neural networks as ob­

ject detectors. Then we need to design neural network object detectors for foliage, 

skies, sea waves, snowy mountains etc and train them using positive and negative 

examples of these objects represented in suitable feature vectors (e.g. color, texture). 

Detectors may be further specialized for different views (e.g. different types of fo­

liage, skies of cloudy and clear days etc) to improve the accuracies of the view-based 

neural network object detectors. In this supervised paradigm, a visual keyword is a 

neural network trained on a class of visual objects (Figure 1.6).

class memberships

neural network 
pattern classifiers 
(visual keywords)

I QOOQQ I feature vector (visual token)

Figure 1.6: Visual keywords as neural network pattern classifiers

While the unsupervised learning approach may produce visual keywords without
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clear semantics, the supervised learning approach generally requires many examples 

for training neural network classifiers. As another alternative approach, the visual 

keywords are explicitly taught to the system by a user. That is, visual keywords 

are visual prototypes manually specified by a user (i.e. handcrafted). Using an 

appropriate visual tool, the user crops domain-relevant regions from sample images 

and assigns sub-labels and labels to form vocabulary and thesaurus respectively.

Before embarking on the research documented in this thesis, preliminary ex­

plorations were pursued along the unsupervised approach [Lim, 1999a] [Lim, 1999c] 

[Lim, 1999b] [Lim, 2000d] [Lim, 2000c] and the handcrafted approach [Lim, 2000a] 

[Wu et ah, 2000a] [Lim, 2000b][Lim, 2001b] [Lim, 2001a] only. The process of cre­

ating image signature based on the VK methodology has been patented [Lim, 2003].

1.3 Scope and Contributions

There are many important and interesting problems related to content-based image 

retrieval. This thesis focuses on the semantic gap problem. We study visual seman­

tics that can be directly extracted from image content (without using associated 

text) with computer vision and pattern recognition techniques. As a typical exam­

ple of broad domains, unconstrained consumer images are used as the test collection 

to address the practical need due to the explosive growth in personal digital images.

In this thesis, we address the issue of high content diversity with a structured 

learning framework to allow modular design and extraction of visual semantics 

called Semantic Support Regions (SSRs) [Lim and Jin, 2002b] [Lim and Jin, 2002a] 

[Lim and Jin, 2004e] [Lim and Jin, 2004h] [Lim and Jin, 2004d]. They are semantic 

image regions learned statistically, detected directly from image content without seg­

mentation, reconciled across multiple resolutions, and aggregated spatially to form 

compact semantic index. They can be used to bridge the semantic gap.

To circumvent the complexity, ambiguity and subjectivity in user interpretation 

during query, a new query method called Query by Spatial Icons (QBSI) that allows 

spatial arrangement of visual semantics (e.g. face, sky, building etc) is proposed 

in the thesis [Lim, 2000a] [Lim, 2001a] [Lim and Jin, 2004e] [Lim and Jin, 2004h]. 

Unlike existing query methods that expect the retrieval system to guess a user’s
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intention expressed implicitly in the query, QBSI lets user specify a query explicitly 

using higher level of visual semantics. A QBSI query is expressed as a disjunctive 

normal form of visual query terms and processed based on fuzzy set operators. As 

spatial information is retained in the image index based on SSRs, QBSI can be 

applied naturally and efficiently.

However, a drawback of the supervised learning approach is the human effort to 

provide labeled regions as training samples. In this thesis, a new hybrid learning 

framework to discover local semantic patterns and generate their samples for training 

with minimal human intervention has been developed. Different from existing ap­

proaches in unsupervised semantics learning, we do not make use of associated text 

description nor define the object classes to be recognized. The Discovered Semantic 

Regions (DSRs) can be visualized and used as SSRs to form local semantic his­

tograms for image indexing and retrieval [Lim and Jin, 2004g] [Lim and Jin, 2004c] 

[Lim and Jin, 2004d].

On the use of global class information, the thesis has explored three new in­

dexing schemes. The winner-take-all scheme supports retrieval by events or classes 

[Lim and Jin, 2002c] [Lim et ah, 2003b] [Lim and Jin, 2003a] [Lim and Jin, 2003b] 

[Lim et ah, 2003c]. The class relative scheme computes inter-class memberships 

from SSR-based index for similarity-based retrieval [Lim and Jin, 2004d]. The local 

classification scheme embeds local class patterns as index for similarity matching.

In this thesis, we propose a Bayesian formulation to unify both local and global 

semantic indexes in similarity matching. The SSR-based indexes and the indexes 

from class relative scheme are combined [Lim and Jin, 2004a] [Lim and Jin, 2004i] 

[Lim and Jin, 2004b]. On the other hand, the indexes based on the local classifi­

cation scheme and DSRs are complementary [Lim and Jin, 2004c]. Both combined 

similarity measures have resulted in superior performance over those of individual 

index in the image retrieval experiments.

All the proposed indexing schemes in the thesis are evaluated against a typical 

feature fusion approach that combines color and texture in a lineary optimal way. 

The query-by-example experiments on 2400 genuine consumer images with 16 se­

mantic queries show that the proposed compact indexes have significantly better 

average precisions and precisions at top retrieved images over the feature-baaed ap-
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proach that requires very high dimension index to attain reasonble performance for 

the challenging dataset. The improvement in overall average precision ranges from 

18.4% to 55.3%. The SSR and winner-take-all indexes are also evaluated on QBSI 

and class-based retrieval experiments with promising results respectively.

The thesis has paved two promising directions of research, namely the seman­

tics design approach and the semantics discovery approach, for content-based image 

retrieval. Indeed, they form elegant dual frameworks that exploit pattern classi­

fiers in local and global image semantic learning and matching [Lim and Jin, 2003c] 

[Lim and Jin, 2004f]. While the semantics design approach goes from local SSR 

index to class relative index, the semantics discovery approach starts with local 

classification to bootstrap DSRs.

1.4 Thesis Organization

This thesis has 8 chapters in total. The motivations, background, scope and con­

tributions of the research described in this thesis have been presented in this first 

chapter.

In the second chapter, the key developments in content-based image indexing 

and retrieval and relevant computer vision techniques are reviewed.

The research contributions of the thesis are described in the next five chapters.

Chapter 3 describes a semantics design approach to image indexing based on 

structured learning and extraction of local semantic regions without segmentation. 

Next, in Chapter 4, a semantics discovery approach is proposed to alleviate the 

region labeling problem of supervised learning. The experimental results of semantic 

region learning and discovery are included in both chapters respectively.

While the previous chapters focus on local semantics, Chapter 5 discusses three 

different class-based indexing schemes. A Bayesian formulation is then proposed in 

Chapter 6 to unify both local and global semantic indexes for image matching and 

ranking. The dual frameworks of learning and integration for image indexing and 

matching are also discussed in Chapter 6.

Chapter 7 is devoted to image query and retrieval based on the indexing schemes 

proposed in Chapters 3 to 5. The test collection of 2400 genuine family photos is
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described and three query methods are presented. For each query method, the 

query processing, queries and associated ground truths, and experimental results 

are described. In particular, a comprehensive comparison, both quantitative and 

qualitative, against a feature fusion approach is given for the query by examples 

experiments in Section 7.5.

In the last chapter, the thesis is concluded with a list of contributions. The 

proposed frameworks in this thesis have been extended in a few directions with 

other collaborators. They are briefly summarized in this chapter. Last but not 

least, direction for future work is discussed.

In Appendix A, the list of publications related to the research presented in this 

thesis is given.



Chapter 2

Related Work

To find a fault is easy; to do better may be difficult.
Plutarch (46 AD - 120 AD)

2.1 From Classification to Retrieval

As a spin-off from the fields of pattern recognition and computer vision more than a 

decade ago [Smeulders et ah, 2000], content-based image retrieval research focuses 

on a different problem from pattern classification though they are closely related. In 

pattern classification, according to the Bayes decision theory, we should select class 

Ci with the maximum a posteriori probability P(Ci\x) for a given pattern x in order 

to minimize the average probability of classification error ([Duda and Hart, 1973], 

pp. 17). When the construction of pattern classifiers relies on statistical learning 

from observed data, the models for the pattern classifiers could be parametric or 

non-parametric.

When the patterns concerned are images, pattern classification could become 

an image classification problem (e.g. [Vail ay a et al., 2001]) or an object recognition 

problem (e.g. [Papageorgiou et al., 1998]). While the former deals with the entire 

image as a pattern, the latter attempts to extract useful local semantics, in the 

form of objects, in the image to enhance image understanding. Needless to say, the
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success of accurate object recognition would result in better scene understanding 

and hence more effective image classification.

In content-based image retrieval, the objective of a user is to find images relevant 

to his or her information need, expressed in some form of query input to an image 

retrieval system. Given an image retrieval system with a database of N images 

(assuming N is large and stable for a query session), the hidden information need 

of a user cast over the N images can be modeled as the posterior probability of 

the class of relevant images R given an expression of the information need in the 

form of query specification q and an image x in the current database, P(R\q,x). 

This formulation follows the formalism of probabilistic text information retrieval 

[Robertson and Sparck Jones, 1976]. Here we assume that the image retrieval sys­

tem can compute P(R\q, x) for each x in the database. The objective of the system 

is to rank and return the images in descending order of probability of relevance to 

the user.

Certainly, the image classification and object recognition problems are related to 

the image retrieval problem as their solutions would provide better image semantics 

to an image retrieval system to boost its performance. However, the image retrieval 

problem is inherently user-centric or query-centric (i.e. P(R\q,x) versus P(Ci\x))). 

There is no predefined class and the number of object classes to be recognized to 

support queries is huge [Smeulders et ah, 2000] in unconstrained or broad domains.

Content-based image retrieval research has progressed from the pioneering feature- 

based approach (e.g. [Bach et ah, 1996] [Flickner et ah, 1995] [Pentland et ah, 1995]) 

to the region-based approach (e.g. [Smith and Chang, 1996] [Carson et ah, 1997] 

[Li et ah, 2000]). However, a desired feature and hence a key research challenge is 

to extract semantics to support meaningful queries.

In this chapter, we will review several key developments in content-based image 

retrieval (text-based, feature-based, region-based, object-based, probabilistic). Fora 

comprehensive coverage and understanding of these approaches, readers are referred 

to the survey paper [Smeulders et ah, 2000] and individual papers mentioned in our 

review. We will also review image classification and query formulation methods. 

Feature fusion is an important issue when multiple cues such as color and texture 

have to be combined. We will discuss feature fusion in a broader context of fusion of
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multiple modalities for image and video indexing. The new trends in object recog­

nition and text-image association are included in this chapter too as they provide 

promising means for automatic annotation.

For a review on semantic video indexing, we refer readers to a recent survey 

[Snoek and Worring, 2002] and some of the representative developments in differ­

ent domains (e.g. Films [Sundaram and Chang, 2000] [Vendrig and Worring, 2003], 

Soccer [Xie et al., 2004] [Kang et al., 2004a], Medical [Ebadollahi et al., 2002], News 

[Hsu and Chang, 2004] [Amir et al., 2003], Documentary [Haering et al., 2000], and 

General [Naphade et al., 2002]).

2.2 Text-Based Retrieval

Text retrieval based on keywords has been the main stream in the field of information 

retrieval [Sparck Jones and Willett, 1997]. Many existing visual retrieval systems 

(e.g. [Rowe and Eads, 1994]) extract and annotate the data objects in the visual 

content manually, often with some assistance of user interfaces. It is assumed that 

once keywords are associated with the visual content, text retrieval techniques can 

be deployed easily, though articulating a comprehensive set of keywords for an im­

age is not an easy task [Armitage and Enser, 1997] [Markkula and Sormunen, 2000] 

[Rodden and Wood, 2003].

For certain image collections such as personal photos (c.f. Section 1.1.1), very 

few people are willing to spend time in annotation and when they do, only very 

few annotations are given [Rodden and Wood, 2003]. Furthermore, comprehensive 

annotation becomes more difficult after a photo has been taken for quite some time 

as the memory of many of the details has faded [Rodden and Wood, 2003]. Anno­

tation at image capturing time is most effective when the context is available but 

natural input interface such as voice recording is preferred. Unfortunately, except 

for recording in a controlled environment in a constrained format [Chen et al., 2001] 

[Chen and Tan, 2003], recovering the keywords from voice annotation still pose great 

challenge for existing speech recognition technology.

On the other hand, although text descriptions are certainly important to reflect 

the (largely conceptual) semantics of multimedia data, they may result in excessive
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amount of keywords in the attempt of annotation due to the ambiguous and varia­

tional nature of multimedia data. Inherently there is a limit to how much semantic 

information the textual attributes can provide to convey the meanings of a piece of 

multimedia data [Bolle et ah, 1998].

Moreover, as user interpretation of multimedia data is often ambiguous and 

subjective (c.f. the semantics interpretation problem discussed in Section 1.1.3), 

annotations of the same multimedia data can vary with different information needs 

(tasks), different users (gender, age, education background, experience, culture, etc), 

and at different times.

In short, manual annotation, as a means of pre-query indexing, is usually in­

complete, inconsistent, and context sensitive. The process is tedious and yet not 

always effective. While Query by Keywords (QBK) does allow information need to 

be described in high-level meaningful terms, the semantic gap between articulated 

expectation and image indexes is large unless the image indexes cover comprehen­

sive labels. This is not achievable with the current automatic content-based image 

indexing systems.

As a significant step towards bridging this semantic gap, this thesis proposes a 

structured and modular learning framework to capture semantic labels with location 

information from the image which supports query by spatial arrangement of semantic 

icons.

2.3 Feature-Based Retrieval

In the early days, primitive visual features such as color, texture, and shapes are 

used to index and retrieve images (e.g. [Flickner et al., 1995] [Pentland et al., 1995] 

[Bach et al., 1996]). These pioneering systems have mainly relied on aggregate mea­

sures (e.g. histograms) of primitive features for describing and comparing visual 

contents. However, this approach often produces results that are incongruent with 

human expectations [Lipson et al., 1997] because it does not consider spatial local­

ities and higher-level perceptive cues.

For example, images sharing similar overall color distribution can differ greatly 

in semantic content (c.f. Section 1.1.2). This paradigm roughly corresponds to
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pre-attentive similarity matching which is a low-level function in human visual per­

ception. Nevertheless, new low-level features such as banded color correlograms 

[Huang et ah, 1998], joint histograms [Pass and Zabih, 1999] etc are still being pro­

posed to improve the approach on aggregate measures of low-level features.

With technological advances in digital cameras, we can now easily recover the 

time stamps of image creation. Industrial players have been looking into the stan­

dardization of the file format (e.g. Exchangeable Image File Format, version 2.2, 

[JEITA, 2002]) that contains this information. Similarly with the advances in global 

positioning systems (GPS) technology, the location at which a photo is taken can 

also be automatically obtained from the camera (e.g. the Kodak Digital Science 420 

GPS camera). Hence time and location information can serve as additional indexing 

axes for consumer images.

In particular, time information is considered very useful for clustering photos 

into events and for ordering photos within an event to facilitate browsing of per­

sonal image collection [Rodden and Wood, 2003]. For example, under the Stanford’s 

Personal Digital Library project [Graham et al., 2002], photo creation time has been 

heavily exploited to allow efficient browsing of personal photos over simple file folder 

mechanism. Algorithms have been proposed to determine the number and selection 

of photos to be presented in the browser interface. There are also interesting ef­

forts that combine both time-based and content-based (feature-based) analysis to 

enhance the organization of photos for browsing [Cooper et al., 2003] [Platt, 2000] 

[Platt et al., 2003] and summarization [Li et al., 2003b] [Lim et al., 2003a].

In this thesis, the index generated for an image can be viewed as a set of local 

histograms, though the bins of the histograms correspond to semantic labels instead 

of low-level features (i.e. semantic bins). Hence our framework improves upon the 

feature-based approach by capturing both the locality and semantics in an image 

index.

2.4 Region-Based Retrieval

In contrast to the feature-based approach that tends to focus on global measures 

of low-level visual features, region-based methods (e.g. [Smith and Chang, 1996]
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[Carson et al., 1997] [Ma and Manjunath, 1997b] [Li et al., 2000]) pre-segment an 

image by color (or both color and texture) into cohesive regions of pixels and compute 

the similarity between two images in terms of the features (and spatial relationships 

[Smith and Chang, 1996]) of these segmented regions. But image segmentation is 

generally unreliable. A poor segmentation can result in incongruent regions for 

further similarity matching.

The VisualSEEk system [Smith and Chang, 1996] [Smith and Chang, 1999] was 

first to consider the spatial relationships among segmented regions extensively and to 

combine them with primitive features of regions for image retrieval. The matching 

algorithm merges lists of image candidates, resulting from region-based matching 

between query and database images, with respect to some thresholds and hence 

tends to be rather complex in realization. Segmentation of regions is based on color 

only and no object or type information is obtained from the segmented regions.

The descendent of VisualSEEk, WebSEEk [Smith and Chang, 1997], is an image 

and video catalog and search tool for the World Wide Web. It collects the images 

and videos using a few autonomous Web agents. Among the new features, Web­

SEEk utilizes both text and visual information synergistically and supports query 

modification with relevance feedback.

A different research project, MetaSEEk, deals with issues involved with efficiently 

querying large and distributed online image repositories [Chang et al., 1997b] as well 

as exploiting user feedback in previous searches for recommending target search 

engines and integrating the results from different search engines in future queries 

[Benitez et al., 1998].

Going beyond global primitive features, a new image representation called blobs, 

which are coherent clusters segmented in combined color and texture space based on 

the Expectation-Maximization algorithm, has been developed [Carson et al., 1997] 

[Carson et al., 2002]. In particular, a new approach to texture description and scale 

selection was introduced. By finding image regions which roughly correspond to 

objects, the authors hope that image querying can be done at the level of objects. 

In addition, a unique feature of the Blobworld system allows the user to view the 

internal representation of the submitted image and the query results. Similarity 

matching is based on the features of the segmented regions.
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For image classification, all the blobs from the categories in the training data 

are clustered into “canonical” blobs using Gaussian models with diagonal variance. 

A decision-tree classifier is trained on the distance vectors that measure the nearest 

distance of each canonical blob to the images.

The NETRA project [Ma and Manjunath, 1997b] [Ma and Manjunath, 1999] also 

uses color, texture, shape and spatial location information in segmented image re­

gions to retrieve similar regions from the database. Robust image segmentation algo­

rithm is the key research effort of the NETRA project. While the initial system has 

focused on texture features [Ma and Manjunath, 1997a] [Manjunath and Ma, 1996], 

the new version of NETRA emphasizes on color image segmentation and local color 

feature [Deng and Manjunath, 1999].

Moving away from pixelwise segmentation to blockwise segmentation based on 

wavelet-based feature extraction and simple k-means clustering algorithm to reduce 

computational cost, the SIMPLIcity system [Li et al., 2000] [Wang et al., 2001] as­

sumes that blocky boundary has little effect on retrieval when the block size is small 

(4 x 4 as adopted in their system). In addition, the authors argued that inaccurate 

image segmentation can be tolerated with the proposed integrated region matching 

(IRM) scheme that measures the overall similarity between images by integrating 

properties of all the regions in the image. Last but not least, the authors proposed 

to pre-classify images into semantic categories based on segmented regions, such as 

textured-nontextured, objectionable-benign, or graph-photograph, so as to reduce 

the search space.

More recently, the IRM scheme is extended to fuzzy feature matching to in­

corporate segmentation-related uncertainties more naturally to further reduce the 

effect of poor image segmentation [Chen and Wang, 2002]. A new graph-theoretic 

clustering algorithm has also been designed to retrieve image clusters by dynami­

cally partitioning a collection of images in the vicinity of the query to enhance user 

interaction [Chen et al., 2004].

Since robust image segmentation is still a very hard problem, almost as diffi­

cult as automatic image semantic understanding [Wang et al., 2001], there are also 

attempts to bypass the segmentation step. In particular, motivated as an analogy 

of “keywords” of an image, the theory of Keyblocks [Zhu et al., 2002] and Visual
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Keywords [Lim, 2000d] [Lim, 2001a] also build image index from image regions. 

However, the regions are extracted from multi-resolution image blocks without seg­

mentation. The generation of Keyblocks or Visual Keywords are based on either 

clustering [Zhu et al., 2002] [Lim, 1999b] [Lim, 1999c] [Lim, 2000d] or manual selec­

tion [Zhu et ah, 2002] [Lim, 2001a]. While in general the semantics obtained from 

unsupervised learning is not strong, the manual selection approach requires intensive 

human expert labor. Although automatic selection was proposed as an alternative 

for Keyblock generation [Zhu et al., 2002], the codebook-based process is primarily 

cluster-based and hence may not be discriminative enough for semantic detection.

The research in this thesis extends the segmentation-free Visual Keywords ap­

proach substantially with structured learning and discovery, multi-scale reconcilia­

tion, similarity integration etc with extensive experimentation.

2.5 Object-Based Retrieval

The Visual Apprentice (VA) system [Jaimes and Chang, 2001] [Jaimes, 2003] is a 

dynamic and flexible system for learning visual object detectors using examples 

from images or video provided from a user. Compared to the interactive FourEyes 

system [Minka and Picard, 1997] that also learns from labels assigned by a user 

using multiple feature models, the VA system allows the user to define a much more 

comprehensive multiple-level object definition hierarchy and automates the tasks of 

feature and classifier selection using k-fold cross-validation over the training set. To 

accommodate subjectivity in user perception, a user defines visual scene and object 

detectors in a hierarchical model according to his interests.

The VA system performs automatic image region segmentation while the user 

manually labels and maps segmented regions to various nodes in the object defini­

tion hierarchy. Optimal features and classifiers are then learned for each node in 

the hierarchy. Given a new test image or video, regions are segmented and propa­

gated bottom up the hierarchy to arrive at the final scene-level decision by fusing 

classification decisions at the nodes of various levels.

In the similar spirit, the Semantic Visual Template (SVT) approach associates 

each semantics with a set of exemplar queries [Chang et al., 1998a]. That is, instead
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of labeling ground truth data in the database, the SVT approach relies on a two-way 

interaction between the user and the system (returned results and relevant feedback) 

to converge on small set of queries that provide maximal recall for the user’s concept. 

With direct access and manipulation to any SVT in the library, new and complex 

SVT can be composed graphically from the combination of existing templates.

While these interactive systems [Minka and Picard, 1997] [Chang et al., 1998a] 

[Jaimes, 2003] believe that end users should design the semantics and provides the 

training samples dynamically to reflect their subjective preferences, the issues of 

competence in design and manual effort in labeling for average users is not ad­

dressed, let alone the problem of sustainable discrimination and scalability in a 

dynamic classifier learning environment. A new concept visually similar to an ex­

isting concept learned may make the existing features and classifiers inadequate. In 

fact, these systems have only been demonstrated on learning and classification of 

limited number of concepts.

Town and Sinclair [Town and Sinclair, 2000] adopted an off-line semantic design 

and labeling approach. An image is segmented into non-overlapping regions grown 

from seed points generated from the peaks in the distance transform of the edge 

image. Each region is classified into one of the 11 predefined visual categories of 

outdoor scenes by neural networks. The best classification results were achieved by 

multi-layer perceptrons neural networks with 3 hidden layers of up to 2000 neurons. 

Similarity between a query and an image is computed as either the sum over all grids 

of the Euclidean distance between classification vectors, or their cosine of correlation. 

Retrieval evaluation was carried out on over 1000 Corel Photo Library images and 

about 500 home photos, with better classification and retrieval results obtained for 

the professional Corel images.

A probabilistic generative approach to segment and label image regions was 

given in [Kumar et al., 2002]. While generative models offer modular framework 

for learning the semantic classes, it may not work well when the classes have close 

multimodal distributions and the data near the discriminative boundary will not 

be emphasized. The method was only tested on 130 real images with 5 semantic 

labels (sky, water, skin, sand/soil, and grass/tree). Based on a much bigger test 

collection of news video, the experiments reported on visual semantic concept re-
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trieval [Adams et al., 2003] shown that the Gaussian Mixtures [Bishop, 1995] clas­

sifiers have lower test set accurarcy than the SVM classifers. Similar empirical 

evidence has also been reported for the task of news story segmentation on large 

news video corpus whereby the generative approach based on maximum entropy is 

found to be less effective than the discriminative approach based on support vector 

machines [Hsu and Chang, 2004].

In a leading effort by the IBM research group to design and detect 34 visual 

concepts (both objects and sites) in the TREC 2002 benchmark corpus (www- 

nlpir.nist.gov/projects/trecvid/), support vector machines are trained on segmented 

regions in key frames using various color and texture features [Naphade et ah, 2003] 

[Naphade and Smith, 2003]. Recently the vocabulary has been extended to include 

64 visual concepts for the TREC 2003 news video corpus [Amir et ah, 2003]. Sev­

eral months of effort were devoted to the manual labeling of the training samples 

using their VideoAnnEx annotation tool [Lin et al., 2003] contributed by the TREC 

participants. We would return to their work when we discuss the issue of feature 

fusion later in this chapter (Section 2.9) and in Chapter 3.

In the domain of consumer images, people identification such as face recogni­

tion in still images will be useful in image indexing and query since people are 

one of the key subjects in these images. We reckon that general face recognition 

[Zhao et al., 2000] in still images is a hard problem when it has to deal with small 

faces (20 x 20 pixels or less), varying poses and lighting conditions, facial expressions, 

occlusions etc. In fact, our preliminary fane recognition experiment [Li et al., 2003b] 

for 9 family members in 2400 photos using a state-of-the-art public domain face 

detector [Rowley et al., 1998] and face recognizer [Nefian and Hayes III, 1999] pro­

duced results that are far from satisfaction.

In this thesis, we advocate the semantic design approach to learn and detect 

segmentation-free regions in images. To reduce the manual annotation effort, a 

semantics discovery approach is also proposed. In our approaches, objects and 

scenes are handled separately and image similarities based on their detection are 

integrated in a principled way to improve retrieval performance.
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2.6 Probabilistic Retrieval

The CANDID project [Kelly et al., 1996] is one of the early works that employed 

probability density functions (PDFs) of local features for representation and match­

ing of image contents in image retrieval. As a tradeoff between accurate repre­

sentation and manipulation efficiency, typically Gaussian mixture was adopted to 

represent each PDF and L2 distance measure or a normalized inner-product were 

used to compare two PDFs [Kelly et al., 1996]. More recently, as an enhancement 

of the Blobworld approch [Carson et al., 1997] [Carson et al., 2002], the Kullback- 

Leibler (KL) distance (or relative entropy) [Kapur and Kesava, 1992] was proposed 

as a distance measure for comparing the Gaussian mixture distributions that rep­

resent the segmented homogeneous regions [Greenspan et al., 2001]. Furthermore, 

the KL distance was also extended for matching image categories.

In [Moghaddam et al., 1998], intra-personal and extra-personal classes of vari­

ation between two facial images were modeled. Then, the similarity between the 

image intensity of two facial images was expressed as a probabilistic measure in 

terms of the intra-personal and extra-personal class likelihoods and priors using a 

Bayesian formulation.

At the retrieval level, a natural and useful insight is to formulate image retrieval 

as a classification problem i.e. class-based retrieval. In very general terms, the goal 

of image retrieval is to return images of a class C that the user has in mind based 

on a set of features x computed for each image in the database. In probabilistic 

sense, the system should return images ranked in the descending return status value 

of P(C|s), whatever C may be defined as desirable. Under this general formulation, 

several approaches have emerged.

In [Vasconcelos and Lippman, 2000], a Bayesian formulation to minimize the 

probability of retrieval error (i.e. the probability of wrong classification) had been 

proposed to drive the selection of color and texture features and to unify similarity 

measures with the maximum likelihood criteria. Similarly, in an attempt to classify 

indoor/outdoor and natural/man-made images, a Bayesian approach was used to 

combine class likelihoods resulted from multi-resolution probabilistic class labels 

[Bradshaw, 2000]. The class likelihoods were estimated based on local average color 

information and complex wavelet transform cofficients.
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In a different way, [Aksoy and Haralick, 2002] and [Wu et al., 2000b] considered 

a two-class problem with only the relevance class and the irrelevance class. A two- 

level classification framework was proposed in [Aksoy and Haralick, 2002]. Image 

feature vectors were first mapped to two-dimensional class-conditional probabilities 

based on simple parametric models. Linear classifiers were then trained on these 

probabilities and their classification outputs were combined to rank images for re­

trieval.

From a different motivation, the image retrieval problem was cast as a trans- 

ductive learning problem in [Wu et al., 2000b] to include an unlabeled data set for 

training the image classifier. In particular, a new discriminant-EM algorithm was 

proposed to generalize the mapping function learned from the labeled training data 

to a specific unlabeled data set. The algorithm was evaluated on a small database 

(134 images) of 7 classes using 12 labeled images in the form of relevance feedback.

Naphade [Naphade and Huang, 2001] [Naphade et al., 2002] proposed a proba­

bilistic framework for mapping audio-visual features to high-level semantics in terms 

of concepts and context. Semantic concepts consisting of objects, sites, and events 

are represented as probabilistic multimedia objects called multijects using audio and 

visual features. Contextual constraints are modeled as inter-relationships among the 

multiject nodes using probabilistic graphical methods in an explicit network form, 

known as multinet, to enhance the detection of multijects.

Compared with the multinet framework [Naphade et al., 2002], the semantic con­

cept and context modeling approach in this thesis is simpler as both the local seman­

tics and their implicit co-occurrence context are trained separately and their com­

plementary indexes integrated at similarity matching, hence simplifying the learning 

problem. In addition, segmented objects and sites (e.g. outdoor scene) are treated 

as equal entities as multijects [Naphade et al., 2002]. In our case, segmentation-free 

image regions and image classes are represented at different levels of semantics as 

content and context respectively.
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2.7 Image Classification

Categorization is a powerful divide-and-conquer metaphor to organize and access 

information such as text [Larkey and Croft, 1996] [Lewis and Ringuette, 1994] and 

images. Once the images are sorted into semantic classes, searching and browsing 

can be carried out in more effective and efficient way by focusing only at relevant 

classes and subclasses. Moreover the classes provide context for other tasks. For 

example, for medical images, the context could be the pathological classes for diag­

nostic purpose [Brodley et ah, 1999] or imaging modalities for visualization purpose 

[Mojsilovic and Gomes, 2002].

Image classification is considered as another approach to bridge the semantic 

gap as class labels convey higher semantic meanings. Hence it has received more 

attention lately [Bradshaw, 2000] [Lipson et ah, 1997] [Szummer and Picard, 1998] 

[Vailaya et ah, 2001].

On the approach that advocates the use of configuration, the work reported in 

[Lipson et ah, 1997] hand-crafted relational model templates that encode the com­

mon global scene configuration structure for each category, based on qualitative mea­

surements of color, luminance and spatial properties of examples from the categories. 

Classification is performed by deformable template matching which involves heavy 

computation. The manual construction of relational model templates is time con­

suming and incomprehensive. To avoid this problem, a learning scheme that auto­

matically computes scene templates from a few examples [Ratan and Grimson, 1997] 

is proposed and tested on a smaller scene classification problem with promising re­

sults.

The attempts to classify photos based on contents have been devoted to: in­

door versus outdoor [Bradshaw, 2000] [Szummer and Picard, 1998], natural versus 

man-made [Bradshaw, 2000] [Vailaya et ah, 2001], and categories of natural scenes 

[Lipson et ah, 1997] [Vailaya et ah, 2001]. In general, the classifications were made 

based on low-level features such as color, edge directions etc. The work by Vailaya 

et al. [Vailaya et ah, 2001] has one of the most comprehensive coverage of the prob­

lem by dealing with a hierarchy of 8 categories (plus 3 “others”) progressively using 

specifically designed features for different classes. The vacation photos used in their 

experiments are a mixture of Corel photos, personal photos, video key frames, and
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photos from the web.

Image classification or class-based retrieval approaches (such as those class-based 

probabilistic retrieval frameworks reviewed above) are adequate for query by prede­

fined image class. However, the set of relevant images R may not correspond to any 

predefined class C in general. In the research presented in this thesis, image classi­

fication is not the end by itself but a means to provide discriminative image indexes 

for similarity-based matching and retrieval. It is used to bootstrap the recurrent 

local semantic regions that discriminate classes of images. Image classification is 

also used to support event-based retrieval, to compute relative inter-class semantic 

image indexes, and to embed as local class patterns in image indexes.

2.8 Query Formulation

The call for user interpretation in an image indexing and retrieval system can occur 

at three stages, namely pre-query, query, and post-query interventions. We have 

discussed text annotation as a form of manual indexing related to pre-query inter­

pretation. Post-query intervention is required when the user is asked to feedback 

the relevance of the retrieved images to the system.

In fact, relevance feedback is regarded as a promising technique to bridge the 

semantic gap in image retrieval [Cox et ah, 2000] [Rui et al., 1997]. However the 

correctness of user’s feedback may not be statistically reflected due to the small 

sampling problem. Although innovative techniques have been proposed to increase 

the number of training examples with relevance feedback, the experimental results 

are not conclusive yet [Wu et al., 2000b] [Tieu and Viola, 2000].

The VISMap system [Chang and Chen, 2001] replaces the relevance feedback 

model with principles from information visualization and concept representation. 

A rich set of tools are provided for users to construct personal views of the video 

database and directly visualize and manipulate various views and comprehend effects 

of individual query criteria on the final search results.

An interesting interface model based on guided exploration has also been ex­

plored [Santini et al., 2001]. The interface expects the user to feedback positive and 

negative examples and to manipulate the image space directly by moving images
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around to reflect their perceived similarities. The semantics of an image is emergent 

as the users learn what the image database has to offer and redefine their goals based 

on what they have seen. However, this paradigm requires complex database orga­

nization to support arbitrary (or almost arbitrary) similarity measures and users’ 

understanding of the interaction metaphor. Though a novel and promising way for 

image retrieval, it has not been evaluated on a systematic basis yet.

An inevitable situation that requires user interpretation is during query specifi­

cation when the user has to express his or her information need as some query input 

to an image retrieval system. In this thesis, we focus on the semantic interpretation 

problem (c.f. Section 1.1.3) related to query specification, rather than pre-query and 

post-query user intervention. Below we review existing query formulation methods 

(QBK has been discussed above).

Query By Example (QBE) is an intuitive query formulation metaphor for im­

age retrieval (e.g. QBIC [Flickner et ah, 1995], Photobook [Pentland et ah, 1995]). 

A user selects or submits an image as a query example and requests the system 

to look for images that are visually similar to the query image. However it suf­

fers from the bootstrapping problem. That is, it requires a relevant image to be 

visible or available as a query example to start with the search. Different meth­

ods have been proposed to solve the bootstrapping problem. For examples, the 

ImageRover [Taycher et ah, 1997] and the WebSEEk [Smith and Chang, 1997] sys­

tems deploy text-based queries to obtain an initial set of images, and the PicToSeek 

[Gevers and Smeulders, 1997] approach allows the user to supply a query image. 

As an enhancement to QBE, the Query By Multiple Regions (QBMR) approach 

[Moghaddam et ah, 2001] allows a composition of query from multiple “regions-of- 

interest” from example images with or without spatial layout.

Query By Canvas (QBC) allows a user to compose a visual query using geomet­

rical shapes, colors and textures in the drawing canvas of a graphical editor (e.g. 

QBIC [Flickner et ah, 1995], Virage [Bach et ah, 1996]). The user expects the sys­

tem to understand the semantics that is represented by the drawn graphics-based 

query. However, this approach inherently tends to specify things/stuff of interest in 

an indirect way using primitive features. For example, one would draw an orange 

circle and expect the system to know that it represents the sun, though it can also
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represent an orange, an orange balloon etc. Moreover the similarity matching be­

tween query and images relies on effective pre-segmentation of regions in the images 

which is complex and difficult in general.

Query By Sketches (QBS) is another interesting visual query method whereby 

a user outlines the shape of an object as query (e.g. [Del Bimbo and Pala, 1997] 

[Daoudi and Matusiak, 2000]). A difficulty in this method is that a shape does not 

have a mathematical definition that exactly matches what the user perceives as a 

shape [Daoudi and Matusiak, 2000]. And it may not be easy for some users to artic­

ulate a shape precisely nor for any user to draw the shapes of certain real-life objects 

without ambiguity (e.g. tree, sitting person, mountain etc). Since automatic object 

shape extraction from images (especially in cluttered scenes) is an open problem, 

applications of QBS have been limited to images with dominant objects on uniform 

background [Daoudi and Matusiak, 2000].

Since automatic region segmentation and shape extraction are in general very 

difficult problems, researchers have also proposed to allow a user to guide the query 

process. For example, as described in [Cinque et al., 2000], the query image is pre­

sented to the user at several stages of segmentation and the user is allowed to select 

the best segmentation, adjust a segmentation, and assign importance values to re­

gions.

A pioneering effort related to the QBC and QBS paradigms for video retrieval 

is the VideoQ system [Chang et ah, 1997a] [Chang et ah, 1998b]. It allows video 

query by animated sketches. Automatic video object segmentation and tracking are 

performed for the videos in the database. For each segmented object, visual features 

such as color, texture, shape, and motion as well as spatio-temporal relationships are 

extracted as indexes to support queries that involve spatio-temporal arrangements 

of multiple objects, specified using trajectories of shapes of different colors and 

textures.

A relatively new query paradigm that allows explicit placement of visual seman­

tic icons (e.g. face, sky, building etc) on a canvas has been proposed independently 

[Lew, 2000] [Lim, 2000a] [Lim, 2001a]. Unlike the discussed query formulation meth­

ods that expect the retrieval system to guess a user’s intention expressed implicitly 

in the query (i.e. by example(s), by a composition of graphical primitives, by a
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sketch of shape), Query by Spatial Icons (QBSI) [Lim, 2000a] [Lim, 2001a] lets user 

specify a query explicitly using higher level of visual semantics represented by visual 

icons with spatial constraints in a Boolean expression. For example, a user can spec­

ify pool water, sunflowers, or crowd if they are part of the visual vocabulary of the 

system. In the case of implicit query expression, specifying pool water, sunflowers, 

or crowd is unnatural, if not impossible.

The QBSI approach and its comparison with related query formulation methods 

will be elaborated in Section 7.4.

2.9 Feature Fusion

The problem of combining information from multiple sources to make a better clas­

sification decision has always been an active research area in pattern recognition 

and statistical learning. In fact, a series of international workshops on Multiple 

Classifier Systems (http://www.diee.unica.it/mcs/) have been organized to bring 

together researchers of the diverse communities working in the field of multiple 

classifier systems. Recently, multiple classifier systems have also gained atten­

tion in the multimedia analysis research community to exploit multi-modal cues 

and improve system performance [Smith et al., 2001] [Lin and Hauptmann, 2002] 

[Amir et al., 2003] [Li et al., 2003a] [Hsu and Chang, 2004] [Snoek et ah, 2004].

In this thesis, we focus on the need of feature fusion in content-based indexing 

and retrieval rather than general multiple classifier systems. From the perspective 

of feature fusion, the IBM research group divides the feature fusion approaches into 

Early Feature Fusion and Late Feature Fusion [Smith et al., 2001]. In the Early 

Feature Fusion approach, various features are processed and integrated into a single 

feature vector for the pattern classifier. In the Late Feature Fusion approach, the 

outputs of pattern classifiers based on separate feature vectors are processed and 

combined to obtain a final classification decision.

The IBM team has experimented with both the Early Feature Fusion approach 

[Naphade et al., 2003, Naphade and Smith, 2003] and the Late Feature Fusion ap­

proach [Tseng et al., 2003] [Iyengar et al., 2003] using the TRECVID benchmark 

video corpus for visual concept detection tasks (more details can be found at the

http://www.diee.unica.it/mcs/
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website http://www-nlpir.nist.gov/projects/trecvid/).

In one set of experiments on Early Feature Fusion, various color, texture, and 

shape features at both global and region levels are extracted from the key-frame of 

a segmented shot and concatenated into a 232-dimension feature vector for SVM 

learning [Naphade et al., 2003] [Naphade and Smith, 2003].

In another set of experiments using a Late Feature Fusion approach called nor­

malized ensemble fusion, separate SVM models are learned for each feature. The 

confidence scores from each classifier are normalized, aggregated, and optimized in 

a three-stage process with different data sets to improve classification performance 

[Tseng et al., 2003].

In yet another exploration effort, a meta-level SVM classifier is trained on the new 

feature space of classifier scores for classifier fusion [Iyengar et al., 2003]. As a whole, 

based on the latest slides for the TRECVID 2003 experiments [Amir et al., 2003] 

and a private communication with one of the IBM authors, the Late Feature Fusion 

approach is preferred as it has delivered better experimental results and the high 

dimensionality and normalization issues associated with the Early Feature Fusion 

approach has no elegant solution.

In particular, for the data set and experiments in this thesis, we focus on the 

fusion of color and texture features. Color texture discrimination for image segmen­

tation, classification, and retrieval tasks is a challenging problem in image processing 

and computer vision [Maenpaa et al., 2002]. There are two approaches proposed for 

color texture discrimination.

In the approach of joint color texture features, spatial interactions within or/and 

between color bands are considered. For example, a multiscale Gabor representation 

that includes both unichrome features computed from each spectral band indepen­

dently and opponent features that captured the spatial correlation between spectral 

bands has been propsoed [Jain and Healey, 1998]. The opponent features are mod­

eled after the opponent processes in the human visual system and are found to 

improve the classification of 80 color texture images over the unichrome features 

empirically.

In another approach for color texture analysis is to divide the color signal into lu­

minance and chrominance components, and process them separately. Interestingly,

http://www-nlpir.nist.gov/projects/trecvid/
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there is also biological evidence showing that the image signal in human eye is com­

posed of a luminance and a chrominance component, both of which processed by sep­

arate pathways, although there are some secondary interactions between the path­

ways [Pietikainen et ah, 2002]. Psychophysical studies [Poirson and Wandell, 1996] 

also suggest that color and pattern information are processed separately.

In the experiments conducted on small texture databases (54 VisTex images and 

68 Outex images) [Maenpaa et ah, 2002], joint color texture features are not the 

best ones in the classification tasks. Although color histograms are very discrimina­

tive in the experiments, they are rather sensitive to changes in illumination. On the 

other hand, texture features provide fairly robust performance regardless of illumi­

nation. Two methods of combining color and texture features have been proposed. 

In one method, separate dissimilarity measures are used for color and texture fea­

ture vectors and summed up to produce an overall dissimilarity during classification. 

This method requires the normalization of the dissimilarities to reduce the effects 

of incompatible dissimilarity value ranges.

In another method, the classification results (class rankings) based on separate 

color and texture feature vectors are combined using the Borda count decision cri­

terion. Both methods have achieved better results than the joint color texture ap­

proach though it is not conclusive from the experimental results that which method 

is superior. The authors concluded [Pietikainen et ah, 2002] [Maenpaa et ah, 2002] 

that color and texture have complementary roles. Hence they should be processed 

independently to allow optimization of color and texture measures separately.

In this thesis, we have adopted the Early Feature Fusion approach for the learning 

and indexing of local semantic regions (with justification given in Section 3.3.3). In 

particular, we have studied and compared different Early Feature Fusion methods for 

color and texture features in SVM learning in Section 3.3.3. Among the methods 

attempted, the proposed distance and similarity fusion method that resolves the 

high dimensionality and normalization issues has achieved the best generalization 

performance.
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2.10 Automatic Annotation

While supervised pattern classifiers allow the design of image semantics, either local 

object classes (c.f. Section 2.5) or global scene classes (c.f. Section 2.7), a major 

drawback of the supervised learning paradigm is the human effort required to provide 

labeled training samples, especially at the image region level.

In the field of computer vision, researchers have been pushing the limit of learn­

ing by developing object recognition systems from unlabeled and unsegmented im­

ages [Fergus et ah, 2003] [Selinger and Nelson, 2001] [Weber et ah, 2000]. For the 

purpose of image retrieval, unsupervised models based on “generic” texture-like de­

scriptors without explicit object semantics can also be earned from images without 

manual extraction of objects or features [Schmid, 2001]. As a representative of the 

state-of-the-art, sophiscated generative and probabilistic model has been proposed 

to represent, learn, and detect object parts, locations, scales, and appearances from 

fairly cluttered scenes with promising results [Fergus et ah, 2003].

In the context of relevance feedback, unlabeled images have also been used to 

boost the learning from very limited labeled examples (e.g. [Wang et ah, 2003] 

[Wu et ah, 2000b]). In particular, the Mi Album system exploits relevance feedback 

method [Lu et ah, 2000] to automatically produce annotation for consumer photos 

[Liu et ah, 2000]. The text keywords in a query are assigned to positive feedback 

examples (i.e. retrieved images that are considered relevant by the user who issues 

the query). This would require constant user intervention (in the form of relevance 

feedback) and the keywords issued in a query might not necessarily correspond to 

what is considered relevant in the positive examples.

In the Intelligent Multimedia Knowledge Application (IMKA) project, Benitez 

and Chang proposes a framework for representing and discovering knowledge from 

multimedia content to enhance the classification, navigation and retrieval of mul­

timedia [Benitez and Chang, 2003a], The MediaNet knowledge representation uni­

fies both perceptual and semantic concepts and relationships exemplified by media 

[Benitez et ah, 2000].

Using a collection of 3624 annotated nature and news images, perceptual and 

semantic knowledge are automatically discovered by integrating both the processing 

of images and text. Perceptual knowledge is constructed by clustering the images
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based on both visual and text feature descriptors, and by discovering statistical 

and similarity relationships between the clusters [Benitez and Chang, 2002a]. Us­

ing WordNet and the image clusters, semantic knowledge is further constructed by 

disambiguating the senses of words in annotations, and by finding semantic rela­

tions between the detected senses in WordNet [Benitez and Chang, 2002b]. More 

recently, interdependence among discovered concepts are used to construct Bayesian 

networks for probabilistic inferencing in image classification task with promising re­

sults [Benitez and Chang, 2003b].

Motivated from a machine translation perspective, object recognition is posed 

as a lexicon learning problem to translate image regions to corresponding words 

[Duygulu et ah, 2002]. More generally, the joint distribution of meaningful text de­

scriptions and entire or local image contents are learned from images or categories of 

images labeled with a few words [Barnard and Forsyth, 2001] [Barnard et ah, 2003b] 

[Kutics et ah, 2003] [Li and Wang, 2003]. The lexicon learning metaphor offers a 

new way of looking at object recognition [Duygulu et ah, 2002] and a powerful means 

to annotate entire images with concepts evoked by what is visible in the image and 

specific words (e.g. fitness, holiday, Paris) [Li and Wang, 2003]. While the results 

for the annotation problem on entire images look promising [Li and Wang, 2003], 

the correspondence problem of associating words with segmented image regions re­

mains challenging [Barnard et ah, 2003b] as segmentation, feature selection, and 

shape representation are critical and non-trivial [Barnard et ah, 2003a],

While the approaches described above attempt to automate image annotation by 

using content-based analysis with or without associated text information, another 

approach exemplified by the Google Image Search tool (www.google.com/imghp) is 

to index images based on the text that describes a given image (e.g. filename, URL 

etc) and possibly other non-content-based information (e.g. citation-based). Hence 

it is not surprising that the images returned by this approach may have content 

irrelevant to the intended query. For instance, a search with the keyword ‘Paris’ 

to look for images of the French capital Paris may return portrait images of people 

with the name ‘Paris’. On 25 March 2004, the 39th image returned by Google Image 

Search using keyword ‘Paris’ shows a man Jon Paris plays ”Born to Be Wild” to a 

crowd that understands (www.jsonline.com/general/harley95/images/paris.jp).

http://www.google.com/imghp
http://www.jsonline.com/general/harley95/images/paris.jp
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In this thesis, we address the issue of minimal supervision in a different direction. 

We do not assume availability of text descriptions for image or image classes as 

in [Barnard et ah, 2003b] [Li and Wang, 2003] [Benitez and Chang, 2003a]. Neither 

do we know the object classes to be recognized as in [Fergus et al., 2003]. A novel 

semi-supervised framework is proposed to discover and associate local unsegmented 

regions with semantics and generate their samples so as to construct semantic models 

for content-based image retrieval, all with minimal human intervention.



Chapter 3

Semantics Design

Few things are harder to put up with than the 
annoyance of a good example.

Mark Twain (1835 - 1910)

3.1 Semantic Support Regions

In this chapter, we address the issue of high content diversity with a structured 

learning framework to allow modular design and extraction of domain-relevant vi­

sual semantics in building content-based image retrieval systems. To realize strong 

semantic interpretation of content, we propose the use of salient image regions, 

known as Semantic Support Regions (SSRs), that exhibit semantic meanings to 

human users to support image indexing. These are similar to the signs designed 

for domain-specific applications ([Smeulders et al., 2000], pp. 1359) and the Visual 

Keywords handcrafted for explicit query specification [Lim, 2000a] [Lim, 2001a].

In a nutshell, the proposed SSR framework incorporates modular view-based 

object detectors to generate spatial semantic signatures for similarity-based and 

fuzzy logic-based query processing without region segmentation. Hence our ap­

proach is not restricted to images that have the main area of attention, which are 

assumed by other approaches that attempted object-based indexing and retrieval 

[Martinez and Serra, 2000] [Tao and Grosky, 2000].
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SSRs are salient image patches that have semantic meanings to us and that 

can be learned statistically to span a new indexing space. A cropped face region, 

a typical grass patch, and a patch of swimming pool water etc can all be treated 

as their instances. SSRs can be linked to both specific and more general concepts 

by textual labels in a vocabulary and thesaurus to provide relevant semantics to 

an image domain. Without loss of generality, we consider two levels of concept 

hierarchy here for simplicity. Suppose a visual concept with text label C can have 

different appearances each associated with text label S'*,

For instance, the concept ‘Sky’ in a given image domain may appear as ‘Clear’, 

‘Blue’, and ‘Cloudy’ (i.e. Equation (3.1) becomes Sky: Clear, Blue, Cloudy). And 

each SSR with text label Si is represented as a set of instances of that particular 

kind of sky (‘SkyiClear’, ‘Sky:Blue’, ‘SkyiCloudy’),

where s^- are optional text labels associated with an instance, and Zij denote some 

computable representation such as feature vectors of the instances. This concept- 

oriented visual thesaurus is different from the visual relations proposed by Picard 

[Picard, 1995], which are founded on similarities between low-level visual features. 

Thus SSRs are highly flexible visual knowledge that can be customized according to 

a content domain.

Different from the unsupervised Visual Keywords [Lim, 2000d] and the manually 

selected Visual Keywords [Lim, 2001a], the SSRs are learned a priori and detected 

during image indexing from multi-scale block-based image regions, as inspired by 

multi-resolution view-based object recognition framework [Papageorgiou et al., 1998] 

[Sung and Poggio, 1998] [Rowley et al., 1998], hence without a region segmentation 

step. The key in image indexing here is not to record the primitive feature vectors 

themselves but to project them into a classification space spanned by semantic la­

bels and use the soft classification decisions as the local indexes for further spatial 

aggregation.

(3.1)

Si ■ (^ili (^i2) ^i2)) ) (^iji Zij) (3.2)
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Indeed the late K.K. Sung also constructed six face clusters and six non-face 

clusters and used the distance between the feature vector of a local image block and 

these clusters as the input to the trained face detector rather than using the feature 

vector directly [Sung and Poggio, 1998].

Figure 3.1 summarizes our proposed framework in a schematic diagram. In the 

figure, arrows with solid heads denote processing steps and arrows with empty heads 

represent matching. Given an image to be indexed, multi-scale view-based detection 

against the learned SSRs is first carried out. The detection results are reconciled 

into a fine-grained common representation for spatial aggregation. The compact 

coarse-grained image index, shown as a 3 x 3 grid of SSR histograms (in the middle 

of the top row), can then be used to support similarity-based matching for Query 

by Example (QBE) and fuzzy query processing for Query by Spatial Icons (QBSI) 

(both to be detailed in Chapter 7).

The SSR framework is applied to indexing and retrieval of consumer images 

which contain highly varied contents, diverse resolutions and inconsistent quality in 

this thesis. To bridge the semantic gap, SSRs possess the following properties:

• SSRs are designed with strong semantics in a concept hierarchy;

• SSRs are built upon modular learning from examples;

• SSRs are extracted directly from images without segmentation;

• SSRs are detected from multi-scale tessellated image blocks and reconciled to 

account for translation and scale variances;

• Spatial information is retained in the index based on SSRs, so Query by Spatial 

Icons (QBSI) (Section 7.4) can be naturally and efficiently applied;

• SSRs provide a mid-level representation: indexing and matching are performed 

in a higher level classification space, rather than low-level feature space;

• SSRs are not specific to particular feature, classifier, and tessellation.
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view-based detection

Figure 3.1: A structured learning framework for indexing and query

3.2 Features

As we mentioned above, SSRs are mid-level semantics grounded on low-level visual 

features but not specific to a particular feature. Given an image domain, a set of 

SSRs (i.e. a visual vocabulary) considered useful for query and retrieval is deter­

mined. Then based on the set of SSRs for learning and detection, appropriate visual 

features related to color, texture, and shape are designed.

Since we are dealing with unconstrained consumer images in this thesis, color and 

texture features are considered important and shape information is not used. For 

instance, while color is useful to characterize sky, water, face etc, texture will play a 

role in discriminating buildings, crowd, trees etc. Due to the fact that there is usually 

no dominant object with clear background and objects such as sky, mountain, water,
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building etc do not have consistent shapes, shape feature is not computed. Hence for 

the implementation of the methods presented in this thesis, a SSR is characterized 

using both color and texture features. A feature vector z has two parts, namely, a 

color feature vector zc and a texture feature vector zl.

3.2.1 Color

Color has been considered a powerful descriptor that often simplifies object ideni- 

fication and extraction from an image [Gonzalez and Woods, 1992]. For example, 

local color histogram has been demonstrated in locating an “object” in a color 

image [Ennesser and Medioni, 1995]. On the other hand, color is an important per­

ceptual cue as human eye can discern thousands of color shades and intensities 

[Gonzalez and Woods, 1992].

Perceptually uniform spaces such as L*a*b and approximately-uniform color 

spaces, such as HSV, have been touted as preferred color spaces for color-based 

image retrieval as measured color differences in these spaces are proportional to 

the human perception of such differences. A recent empirical evaluation on image 

classification using a small data set with color texture features based on Gabor filters 

also seemed to confirm their advantages over the non-uniform RGB color space 

[Paschos, 2001]. However, in our experiments reported in Chapter 7, we have not 

found much difference in performance among the different color models attempted 

(RGB, YIQ, HSV, L*a*b, L*u*v). Since the conversion from RGB space to YIQ 

space requires a simple matrix multiplication (see below), we have adopted the YIQ 

color space in our experiments reported in this thesis.

The YIQ model is used in commercial color TV broadcasting. The luminance 

(Y) component is decoupled from the color information (I and Q) and can be used 

directly for texture feature extraction. The computation of YIQ values from the 

raw RGB values (E [0,1]) is a simple transformation [Gonzalez and Woods, 1992],

Y 0.299 0.587 0.114 R
I = 0.596 -0.275 -0.321 G

Q 0.212 -0.523 0.311 B

(3.3)
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resulting in Y, I, and Q in the ranges [0,1], [-0.596,-0.596], and [—0.523,0.523] 

respectively.

For the color feature vector zc, as the image patch for training and detection is 

relatively small (20 x 20 to 60 x 60), the mean and standard deviation of each color 

channel is deemed sufficient (i.e. zc has six dimensions). Hence the color information 

of an image region or block is represented as

= \pLY,OY,m>0i,l*>Q,<rQ\- (3-4)

We have also tested local color histograms [Ennesser and Medioni, 1995] with 

histogram intersection as similarity measure [Swain and Ballard, 1991]. But as it 

requires more feature dimenions and yet does not outperform the simple second- 

order statistical feature of Equation (3.4) probably due to quantization errors, we 

have adopted mean and standard deviation in our experiments.

3.2.2 Texture

Image texture, defined as a function of the spatial variation in pixel intensities (gray 

values), has been studied extensively in many computer vision problems such as 

texture segmentation and classification [Tuceryan and Jain, 1998]. Many analysis 

methods ranging from statistical, geometrical, model-based, to multi-resolution fil­

tering techniques have been proposed.

In particular, pattern retrieval using a simple multi-resolution representation 

based on Gabor filters has shown promising performance [Manjunath and Ma, 1996]. 

Besides the motivation in biological modeling of the receptive fields of simple cells in 

the visual cortex of some mammals [Daugman, 1980], the Gabor representation has 

also been shown to be optimal in the sense of minimizing the joint two-dimensional 

uncertainty in space and frequency [Daugman, 1988]. For the purpose of feature 

representation, Gabor filters can be considered as orientation and scale turnable 

edge and line (bar) detectors, and the statistics of these microfeatures in a given 

image region are often used to characterize the underlying texture information.

In this thesis, the texture feature proposed in [Manjunath and Ma, 1996] is 

adopted. We shall not repeat the details on Gabor function and filter bank de-
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sign here but focus only on the texture feature extraction. Given an image /(x,y), 

its Gabor wavelet transform is defined as

Wmn{x,y) = J I(xuyi)gmn* (x - xi,y-yi)dxidyi (3.5)

where * denotes the complex conjugate. The assumption that the local texture 

regions are spatially homogeneous is valid in our case as the image patch for training 

and detection is relatively small (20 x 20 to 60 x 60).

Hence for the texture feature vector z*, the mean fimn and the standard deviation 

(Jmn of the magnitude of the transform coefficients are used to represent an image 

region. In our experiments, five scales and six orientations are used, resulting in a 

feature vector,

z* = [/zoo, ^oo, /zoi, 0oi> ■ • * j /45,045]. (3.6)

where /zmn and amn are computed as,

J J \Wmn(x,y)\dxdy, (3.7)

y J J(|I/f/mn(^, ?/) | Hmn)2dxdy. (3.8)

3.2.3 Normalization

As the feature elements of the color and texture feature vectors have different ranges, 

it is important to normalize them into the same range so that each feature element 

contributes equal weight in a distance or similarity function for a feature vector. 

There are two common normalization schemes in the pattern recognition and neural 

network research community. Both schemes require a representative set of feature 

vectors of images drawn from the domain to determine the parameters related to 

the distribution of the feature elements. Ideally all the possible image regions in 

the database should be used to compute these parameters. In this thesis, we have 

used the feature vectors of the image regions in the training set for SSR learning to 

estimate the normalization parameters since they cover key semantic regions for the 

domain and it is more practical to deal with a sample set than all possible image

regions.
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Suppose the parameter estimation set has M feature vectors (i.e. image regions) 
and a feature vector has N feature elements. Then each feature element is denoted 
as Zij (i = 1 to M, j = 1 to N), either from zf or z\. The first normalization 
method computes the smallest and largest feature values (over M feature vectors) 
in each feature dimension as mirij and maxj respectively. A feature element zy is 
normalized to [0,1] as,

4 = (3.9)
maxj — mirij

However this normalization schemes suffers from the problem of outlier i.e. if there 
is some extreme value (e.g. large number) in a feature element, the other feature 
values will be warped into a very narrow range.

Hence in this thesis, we have adopted the zero-mean normalization scheme, also 
known as the Gaussian normalization [Ortega et ah, 1997]. In this scheme, the mean 
rrij and standard deviation Sj are computed for each feature dimension based on the 
M feature vectors in the parameter estimation set. Then a feature element z^ is 
transformed into,

4 = (3.10)
Sj

Based on the properties of Gaussian distribution, the normalized feature values will 
fall in the range of [—1,1] with a probability of 0.68. If 3Sj is used as the denominator 
in Equation (3.10), appromixmately 99% of the normalized feature values will be 
in [—1,1]. As we do not require all the feature values to be strictly in the range of 
[—1,1], we have implemented Equation (3.10) in this thesis.

Note that while the /x and a in Equations (3.4) and (3.6) are sample (i.e. pixels 
in an image region) mean and standard deviation respectively, rrij and Sj are the 
estimated population mean and standard deviation for the feature elements (i.e. [i 
and <t) respectively. As we have 6 color feature elements and 60 texture feature 
elements, we have a total of 66 x 2 = 132 normalization parameters. They are 
computed only once from the SSR training set and utilized in both SSR learning 
(Section 3.3) and SSR detection during image indexing (Section 3.4). For simplicity, 
we shall drop the ‘prime’ superscript in z[- when we discuss feature elements in the 
rest of the thesis i.e. a feature vector z or feature element Zk refer to their normalized 
versions.
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3.2.4 Distance and Similarity

In this thesis, we have experimented with both distance (i.e. dissimlarity) and sim­
ilarity measures for comparing two feature vectors (color or texture). Although 
many sophiscated dissimilarity measures have been proposed and evaluated empir­
ically [Puzicha et al., 1999], we opt for measures that require simple computation 
for practical reasons.

Since a simple city block distance (Li-norm) has better learning and detection 
performance than other distance measures such as Euclidean distance (L2-norm) etc, 
we have adopted it in our experiments. The distance between two feature vectors 
(color or texture) y and z is computed as,

a(2/>*) = Y,\yj ~zj\- (3-n)
j

In fact, in the case of texture feature vectors, this city block distance on the 
normalized feature elements turns out to be equivalent to the distance measure used 
in [Manjunath and Ma, 1996] (reproduced here)

d(iJ) = S5Z(I
U(i)
r^mn

nti)
r^mn +

r(0 — (jti) mn m

^(•^mn) I), (3.12)

where i and j are image patterns, /imn and crmn are the mean and standard deviation 
with m scales and n orientations, and a(^mn) and o:(<Tmri) are the standard deviations 
of the respective features over the entire database, and are used to normalize the 
individual feature elements. The substraction of the term rrij in Equation (3.10) 
gets cancelled off and simplified into the numerators in Equation (3.12) and the a(.) 
are the Sj in Equation (3.10).

As for the similarity measure, the cosine measure (i.e. normalized dot product) 
popular in the information retrieval research community [Salton, 1971] is used, i.e. 

for vectors y and z,

fi(y,z)=iTi’ (3‘13)\y\\z\

where ■ indicates a dot product.



52 Chapter 3. Semantics Design

3.3 Learning

3.3.1 Support Vector Machines

Though the theory of statistical learning [Vapnik, 1979, Vapnik, 1995, Vapnik, 1998] 

behind Support Vector Machines (SVM) has been proposed many year ago, SVM 

only became a popular machine learning tool since the mid nineties. One reason 

being that efficient implementations of support vector learning were proposed (e.g. 

[Joachims, 1999] [Platt, 1999a]) and made available at the website for Kernel Ma­

chines resources (www.kernel-machines.org).

The other reason that SVM has received much attention is their superior gen­

eralization performance (i.e. small error rates) in many applications such as hand­

written digit recognition [LeCun et ah, 1995] [Burges and Scholkopf, 1997], object 

recognition [Blanz et al., 1996], speaker identification [Schmid, 1996], face detection 

[Osuna et al., 1997], time series prediction [Muller et al., 1997], text categorization 

[Joachims, 1998] etc when compared to other competing methods.

In this thesis, we have decided to adopt SVM as the key statistical learning 

technique. Since SVM is heavily used in our experiments, we shall present a brief 

overview on the key concepts of SVM for pattern classification here. For a detailed 

introduction on the subject, readers are referred to the excellent tutorials on SVM 

[Burges, 1998] [Scholkopf, 2000] [Cristianni and Shawe-Taylor, 2000]. For a broader 

treatment and review on kernel-based learning algorithms that include applications 

in classification, regression, and unsupervised learning, the article by Muller et al. 

[Muller et al., 2001] is a good starting point.

In pattern classification, the objective is to learn the mapping,

/: X -+y
x i—* {±1}, (3.14)

from examples

(zi,2/i),-*-,(zm,ym) e X x {±1}, (3.15)

and be able to generalize to unseen data points.

The key idea of SVM learning for pattern classification is to map the training

http://www.kernel-machines.org
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vectors x (e X) into a higher-dimensional feature space T via a mapping function 
<f>, and construct a separating hyperplane with maximum margin in J- (Figure 3.2),

X -*T

x <F(a;), (3.16)

where T is a dot product space.

Figure 3.2: The idea of SVM learning for pattern classification

The beauty of SVM is that by using a kernel function, the computation of the 
separating hyperplane can be performed implicitly, without explicitly carrying out 
the map into the feature space. That is, the computation of a scalar product between 
two feature space vectors can be readily reformulated in terms of a kernel function

k,
($(a:) • ${x')) =: k(x, x'). (3-17)

A simple example to illustrate the power of mapping to a dot product space is 
given in Figure 3.3 (duplicated from [Muller et al., 2001]),

<f> : 5ft2 -h.

(xi,x2) •-> (zi,z2,z3) := (xl,y/2xiX2,xl) (3.18)

In the original two-dimensional data space, a rather complicated nonlinear de­
cision surface is necessary to separate the classes. But in a feature space of second 
order monomials, a linear hyperplane is sufficient to separate the classes. With the 
notion of kernel function, the computation of a scalar product between two feature
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Figure 3.3: An example of SVM learning with mapping from 9ft2 to 9ft3 

space vectors can be reformulated in terms of a kernel function,

($(z)-$(x')) = (xl,V2xiX2,xl)(xi,y/2x'1x,2,X2)T

= {(xi,X2)(x[,x'2)T)2

=\ k(x,x') (3.19)

i.e. the dot product in 9ft3 can be computed in 9ft2.
Among many kernel functions studied, the following kernel functions, namely 

Polynomial, Sigmoidal, and Gaussian RBF (radial basis function), respectively are 
commonly used

k(x, x') = ((x ■ x) + 6)d,d e e 9ft (3.20)

Jc(x, x') = tanh(hz(x, x') + 6), k, 6 € 9ft (3.21)

k(x, x') = eM~l{x~xT),ceX
C

(3.22)

The task of supervised learning in SVM is to find the support vectors a 
subset of training patterns from the training data, that are closest to the separating 
hyperplane with non-zero weights a*. These support vectors are marked by extra 
circles in Figure 3.4 that illustrates a support vector classifier found by using a 
Gaussian RBF kernel function (Equation (3.22)). In the same figure, the two classes
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of training examples are denoted by circles and disks respectively and the middle 

line is the decision surface.

Figure 3.4: An example of support vector classifier to separate two classes

Once the support vectors have been found, via some optimization procedure, a 

given pattern x can be classified based on the following hyperplane decision function 

(upon m support vectors Xi and weights a*, and a threshold b),

m

f(x) = sgn(J2yi(*i-($(x)-$(xi))+ b)
2—1
m

= sgn(J2 Viai ■ Kx - xi) + b) (3.23)
2=1

3.3.2 SSR Learning

The key component in the SSR framework is statistical learning of the SSRs from ex­

amples. In this thesis, Support Vector Machines (SVM) [Vapnik, 1979] [Vapnik, 1995] 

[Vapnik, 1998] [Cristianni and Shawe-Taylor, 2000], a popular and powerful discrim­

inative learning method, is adopted for this purpose. SVM is preferred to the proba­

bilistic generative models [Bishop, 1995] as the latter does not emphasize data close 

to the discriminative boundary. This will affect the classification accuracy especially
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when the classes have close multimodal distributions [Kumar et al., 2002).

In particular, as mentioned in Section 2.5, empirical evaluations based on large 

news video collections [Adams et al., 2003] [Hsu and Chang, 2004] have reported 

better results using SVM classifers when compared to generative models on visual 

semantic concept retrieval and news story segmentation tasks respectively. An ex­

planation for the better performance of the SVM classifiers [Adams et al., 2003] is 

that the SVM classifiers need to model less information in terms of what differen­

tiates a positive example from a negative example and hence requires less data to 

estimate parameters reliably. This advantage of SVM is important when we are 

dealing with many visual semantic classes and we would like to minimize the effort 

of labeling of training and validation samples for image regions.

A local image region is represented by its feature vector z, composed from zc 

(Equation (3.4)) and z* (Equation (3.6)). A support vector classifier Si devoted to a 

SSR class Si (c.f. Equation (3.2)) is treated as a function on z, Si(z) G (—oo, +oo). 

Then the classification vector T for image region with feature vector z can be com­

puted via the softmax function [Bishop, 1995] [Bridle, 1990] as

exp5^*)
J2j exp5jV)

The softmax function is also known as the normalized exponential activation 

function in the neural networks and pattern recognition community. It represents a 

smooth version of the winner-take-all activation model in which the unit with the 

largest input has output +1 while all other units have output 0. It can also be 

regarded as a generalization of the logistic activation function [Bishop, 1995]. As 

the output values of the softmax function lie in the range (0,1) and they sum to 

unity, it provides a simple way to interpret Ti(z) as the posterior probability of SSR 

class Si given an image region with feature vector z,

expSdz)

exp5?

More sophiscated ways to estimate posterior probability from SVM outputs have 

also been proposed and experimented [Platt, 1999b] but we shall not delve into this 

subject here.
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Alternatively as each SVM classifier can be regarded as an expert on a SSR class, 

we can adopt a hybrid winner-take-all and softmax scheme. That is, if some SVM 

classifier(s) Si has positive output(s), then the outputs of the other SVM classifiers 

Sj,j 7^ i are set to zeroes. After this step, the softmax function in Equation (3.24) 

is applied. More specifically, if there is only one SVM classifier Si having positive 

output, then T{(z) = 1 (and Tj(z) = 0,j ^ i). If more than one SVM classifier Si 
has positive outputs, then Ti(z) will be positive values determined by the softmax 

function while the other Tj(z) = 0,j ^ i. Finally if all SVM classifers Si Vi have 

non-positive outputs, then the values of Ti(z) will be computed as in Equation (3.24). 

We shall compare the retrieval results based on these two different classification 

normalization schemes in Chapter 7.

3.3.3 Feature Fusion

As mentioned above (Section 3.2), color and texture features are used to characterize 

local image regions for the unconstrained consumer images in our experiments. In 

another word, a feature vector z for an image region has two parts, the color feature 

vector zc based on the mean and standard deviation in YIQ color channels (Equation 

(3.4)), and the texture feature vector zl based on the mean and standard deviation 

of output of Gabor filters with 5 scales and 6 orientations (Equation (3.6)).

In general, the choice of combining multiple features for pattern classification 

is non-trivial. Borrowing the terms coined in [Smith et ah, 2001], there are two 

paradigms in combining features, namely Early Feature Fusion and Late Feature 

Fusion. In the Early Feature Fusion paradigm, different features are combined into 

a final feature vector and used as an input to the pattern classifier. In the Late 

Feature Fusion paradigm, feature vectors associated with different modalities are fed 

into independent pattern classifiers whose classification outputs are then combined.

As discussed in Section 2.9, fusion of multiple modalities to make a better clas­

sification decision is a promising research trend for video indexing and retrieval. 

Although exhaustive efforts have been attempted with the Late Feature Fusion 

paradigm by the IBM team and the experimental results also shown a perfor­

mance improvement of classification based on fusion of classifiers [Smith et al., 2001] 

[Amir et al., 2003], we have decided not to pursue this line of investigation for the
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following drawbacks of this paradigm:

• For each visual concept to be learnt, multiple classifiers have to be trained 

on different features or feature sets. After which, model and feature selection 

are necessary to optimize the weights of the first level classifiers in fusion. If 

cascaded classifers (instead of voting schemes) are adopted to fuse the outputs 

of the trained classifiers, then additional training on these fusion classifiers 

have to be carried out after the first level classifiers have been trained;

• Additional validation set is required to test the fusion classifier or to search 

for the best model parameters and feature set. This will either require more 

labeled training samples or reduce the number of training samples for the first 

level classifiers;

• Since fusion of outputs from multiple classifiers is a sequential processing step 

even though the first level classifiers can be executed concurrently, the recog­

nition process will require longer computation time;

• Training multiple classifiers on individual features may not be viable at all 

as single feature does not provide sufficient discriminative power, hence may 

result in many poor classifiers for fusion. In particular, in the case of SSR 

learning and detection for consumer images in this thesis, training on color 

and texture features separately have resulted in asymmetric classifiers whose 

fusion has not outperformed the result of the Early Feature Fusion method 

proposed below. The experimental results on image retrieval will be presented 

in Section 7.5.

In this thesis, we have evaluated different approaches in the Early Feature 

Fusion paradigm for SSR classification empirically in the next subsection. The 

features and fused features investigated are listed in Table 3.1. The first two 

rows consider only single modality (i.e. zc and z*). The third row combines 

the color and texture feature vectors in a distance or similarity measure (to be 

explained below) [Maenpaa et al., 2002], denoted symbolically as 2. The fourth 

row considers simple concatenation of the color and texture feature vectors as zc+t 
[Naphade and Smith, 2003]. The fifth row computes texture feature vectors for each
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Table 3.1: Features and fused features for SSR learning and classification

Feature Vector Symbol # dim
Equation (3.4) zc 6
Equation (3.6) zt 60
Fused matching of zc and zl z 66
Concatenation of zc and zl Zc+i 66
zl from separate RGB channels gCXt 180
principal components of zcxt Zpca 10

of the RGB channels separately and concatenates the three vectors together as zcxt 

[Maenpaa et ah, 2002]. The last row retains the 10 most important components of 

zcxt via principal component analysis [Johnson and Wichern, 1988] which accounted 

for 98% percent of the total variance in the data set, denoted as zpca. Note that z is 

identical in physical form as zc+t but they differ in the computation of distance or 

similarity function.

The distance or similarity function depends on the kernel adopted for the SVM 

classifiers. For the features and fused features shown in Table 3.1 (except z in 

the third row), we have adopted the city block distance A (Equation (3.11)) as 

the distance function for the radial basis function (RBF) kernels and the cosine 

similarity O (Equation (3.13)) as the similarity function for the polynomial kernels.

For z (third row), in order to balance the contributions of the color and texture 

features, we have modified the distance function between two feature vectors y and 

z for the RBF kernels as,

Nt }
(3.26)

where Nc and Nt are the numbers of dimensions of the color and texture feature 

vectors (i.e. 6 and 60) respectively.

As the feature elements in both color and texture feature vectors have been nor­

malized (Section 3.2.3) to fall mainly within [—1,1], we need not perform the inter­

feature normalization procedure that requires computation of pairwise distances of 

all feature vectors to estimate the mean and standard deviation of the distance val­

ues [Ortega et al., 1997]. We simply divide the distances between two color feature



60 Chapter 3. Semantics Design

Table 3.2: SSR classes grouped into 8 superclasses

SSR Superclass SSR Classes
People Face, Figure, Crowd, Skin
Sky Clear, Cloudy, Blue

Ground Floor, Sand, Grass
Water Pool, Pond, River

Foliage Green, Floral, Branch
Mountain Far, Rocky
Building Old, City, Far
Interior Wall, Wooden, China, Fabric, Light

vectors and two texture feature vectors by their feature dimensions respectively as 

given in Equation (3.26). Note that we have assumed equal importance for both 

the color and texture features without any prior knowledge. One could also assign 

different weights to the color and texture distances if necessary.

In a similar manner, the similarity function between two feature vectors y and z 

for the polynomial kernels is modified as,

^(2/>z) = ^(r2(yc, zc) + Q,(y\ z4)) (3.27)

Again, we have assumed equal contributions from both color and texture features.

3.3.4 Learning Evaluation on Consumer Images

For the consumer image data and experiments reported in Chapter 7 of this thesis, 

26 classes of SSRs (i.e. Si, i = 1,2, •••,26 in Equation (3.24)) are designed after 

studying the test collection. They are organized into 8 superclasses, namely People , 
Sky, Ground, Water, Foliage, Mountain, Building, and Interior. Each of 

them is further divided into several classes as listed in Table 3.2. Figure 3.5 shows, 

in top-down and left-to-right order, single examples of these 26 classes of SSRs as 

listed in Table 3.2.

For the learning of these 26 SSR classes and evaluation of different Early Feature 

Fusion approaches, SVM kernels, and kernel parameters, we have cropped 554 image 

regions from 138 images in our 2400 consumer image collection and used 375 (i.e.
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Figure 3.5: Examples of semantic support regions

Table 3.3: Compare features and fused features on SSR generalization

Feat. Vec. # Err. on Dtst Avg. # Err.
zc 214 8.2
z* 278 10.7
z 149 5.7

zc+* 201 7.7
^cxt 267 10.3
Zpca 303 11.7

two-third) of them (from 105 images) as training set Dtrg for SVM learning to 

compute the support vectors of the SSRs. The remaining one-third (i.e. 179 regions) 

are used as test set Dtst for generalization performance evaluation. In other words, 

both the training and test data for SSRs utilize only a very small percentage (5.8%) 

of the 2400 collection.

First we compare the generalization performances of six features and fused fea­

tures extracted for an image region (Table 3.1) using average numbers of classifica­

tion errors (over 26 SSR classes) on test set Dtst■ For the SVM classifiers, polynomial 

kernels with degree 2 and constant 1 (C — 100) [Joachims, 1999] (i.e. similarity 

measures based on Equations (3.13) and (3.27)) are used.

Clearly, from Table 3.3, the feature fusion method based on modified cosine 

measure has the best result. These generalization results confirm that using both 

color and texture features (z, zc+t) is necessary to achieve better performance than 

using a single feature (zc, zl) though some feature may be more discriminative 

for certain SSRs. For example, color is more useful than texture to classify SSR 

Sky:Blue. However, we prefer not to handcraft feature specificity into the kernel 

functions. Concatenated feature zc+t is less effective than z as the feature vector 

is dominated by z* with 60 dimensions. A long color texture feature vector (i.e. 

texture from each color channel) zcxt does not work well probably due to the texture
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Table 3.4: Compare polynomial SVM classifiers on SSR generalization

d # Err. on Dtst Avg. # Err.
2 149 5.73
3 146 5.62
4 145 5.58
5 133 5.12
6 131 5.04
7 134 5.15
8 136 5.23
9 139 5.35
10 142 5.46
20 164 6.31

Table 3.5: Compare RBF SVM classifiers on SSR generalization

a a # Err. on Dtst Avg. # Err.
10 0.22 178 6.85

5 0.32 146 5.62
2 0.50 123 4.73
1 0.71 111 4.27

0.5 1.00 115 4.42
0.1 2.24 126 4.85

feature redundency in all three color channels. However, the feature vector based on 

its principal components zpca does not improve in performance too. In conclusion, 

feature 2 that fuses color and texture feature in a kernel function is adopted for the 

rest of the experiments in this thesis.

Next we compare the generalization performances of different SVM kernels and 

kernel parameters based on feature vector 2. We have experimented with the poly­

nomial and RBF kernels.

For the polynomial kernel based on Equation (3.27), we fixed the constant as 

1 (C = 100) [Joachims, 1999] and varied the degree d = 2,3, ■ • • 10,20. Table 3.4 

shows the average numbers of classification errors (over 26 SSR classes) on test set 

Dtst for these SVM classifiers.

For the RBF kernel based on Equation (3.26), we varied the a parameter with 

fixed C = 100 [Joachims, 1999]. The a parameter is related to the standard devia-
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Table 3.6: Training statistics for 26 SSR classes

min. max. avg.
num. pos. trg. 5 26 14.4
num. sup. vec. 9 66 33.3
num. pos. test 3 13 6.9
num. errors 0 14 5.7
error (%) 0 7.8 3.2

tion a of the RBF function as follows,

Table 3.5 shows the average numbers of classification errors (over 26 SSR classes) 

on test set Dtst for different a and associated o values.

From Table 3.4, we see that polynomial kernel of degree 6 (denoted as Polys) 

has optimal generalization performance. Similarly, the best generalization result 

was obtained by the RBF kernel with a = 1 (a = 0.71) (denoted as RBF\) as 

shown in Table 3.5. Hence these two kernels plus polynomial kernel of degree 2 

(most efficient in computation) (denoted as Poly2) are adopted for the indexing and 

retrieval experiments in the thesis.

Lastly in this subsection, we report the training statistics of the SVM classifiers. 

As it turned out that the polynomial kernel of degree 2, Poly2, has outperformed 

the other two kernels (Polys, RBF\) in our experiments (Chapter 7), we shall report 

the training statistics for the Poly2 SVM classifiers. Table 3.6 summarizes train­

ing statistics for Poly2 in terms of the minimum, maximum, and average numbers 

(columns) of positive training examples, support vectors, positive test examples, 

misclassifications, error rates (rows).

Table 3.7 lists the SVM training details for each SSR class. From left to right, the 

columns list SSR class labels, the numbers of positive training examples from a total 

of 375 (p-train), numbers of positive test examples from a total of 179 (p-test), num­

bers of support vectors computed (sv), and the numbers of misclassified examples on 

the test set (err). The negative training (test) examples for a SSR class are the union 

of positive training (test) examples of the other 25 classes. The minimum number of
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Table 3.7: Training statistics for each SSR class

Semantic Support Regions p-train p-test sv err
People:Face 26 13 36 2
People:Figure 22 11 49 10
People:Crowd 14 7 27 2
People:Skin 14 6 24 2
Sky:Clear 7 3 9 1
Sky:Cloudy 15 8 29 11
Sky:Blue 7 3 18 2
Ground:Floor 20 9 35 13
Ground:Sand 12 5 22 4
Ground:Grass 9 4 23 6
Water:Pool 14 7 16 6
Water:Pond 11 5 35 7
Water:River 14 6 32 8
Foliage:Green 20 9 42 4
Foliage:Floral 14 7 37 4
Foliage:Branch 13 6 40 9
Mountain:Far 10 5 18 6
Mountain:Rocky 9 4 41 8
Building:Old 23 12 66 14
Building:City 24 13 64 7
Building:Fax 20 9 58 7
Interior:Wall 20 10 34 7
Interior:Wooden 5 3 15 0
Interior:China 14 6 41 4
Interior:Fabric 9 4 29 3
Interior:Light 9 4 27 2

positive training and test examples are from the Interior: Wooden SSR while their 
maximum numbers are from the People:Face class. The mininum and maximum 
numbers of support vectors are associated with the Sky:Clear and Building:Old 
SSRs respectively. The SSR with the best generalization is the Interior:Wooden 
class while the worst test error belongs to the Building:Old class.
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3.4 Detection

Once a vocabulary of domain-relevant SSRs has been learned in the form of binary 

SVMs, an image can be indexed automatically against the SSRs. Figure 3.6 depicts 

a three-layer visual information processing architecture for image indexing. The 

bottom layer denotes the pixel-feature maps computed for feature extraction. In 

our experiments, conceptually there are 3 color maps (i.e. YIQ channels) and 30 

texture maps (i.e. Gabor coefficients of 5 scales and 6 orientations). From these 

maps, feature vectors zc and zl compatible with those adopted for SSR learning are 

extracted.

B
Spatial Aggregration Map

Reconciled Detection Map s

pixel-feature layer
S' M

Figure 3.6: A visual information processing architecture for image indexing

To detect SSRs with translation and scale invariance in an image to be indexed, 

the image is scanned with windows of different scales, similar to the strategy in 

view-based object detection [Papageorgiou et al., 1998]. More precisely, given an 

image I with resolution M x N, the middle layer (Figure 3.6), Reconciled Detection 

Map (RDM), has a lower resolution of P x Q,P < M,Q < N. Each pixel (p,q) 

in RDM corresponds to a two-dimensional region of size rx x ry in /. We further 

allow tessellation displacements dx, dy > 0 in A, Y directions respectively such that 

adjacent pixels in RDM along X direction (along Y direction) have receptive fields
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in I which are displaced by dx pixels along X direction (dy pixels along Y direction) 

in I. At the end of scanning an image, each pixel (p, q) that covers a region z in 

the pixel-feature layer will consolidate the SSR classification vector T;(z) (Equation 

(3.24)).

In our experiments, we progressively increase the window size rx x ry from 20 x 20 

to 60 x 60 at a displacement (dx,dy) of (10,10) pixels, on a 240 x 360 size-normalized 

image. That is, after the detection step, we have 5 maps of detection of dimensions 

23 x 35 to 19 x 31, which are reconciled into a common RDM to be explained below.

Using larger images may allow more accurate features for SVM learning and clas­

sification, but the computation requirement is higher. In fact, the strategy adopted 

in view-based object detection [Sung and Poggio, 1998] [Papageorgiou et ah, 1998] 

is to fix the window size and resize the image smaller to achieve multi-scale de­

tection. Hence the number of pixels available for object detection is constant. To 

alleviate the effect of feature extraction on small window size, we fix the image size 

(after size normalization) and increase the window size instead. As our features zc 

and zl are second order statistical features (i.e. mean and standard deviation), we 

do not see any problem with the window sizes we adopted as can be seen from the 

generalization performance shown in Table 3.6.

3.5 Multi-Scale Reconciliation

In the case of object detection [Sung and Poggio, 1998] [Papageorgiou et ah, 1998], 

the system only needs to output the bounding box of an object detected at any 

location at any image scale attempted. In our case of image indexing, we seek 

a common representation of multiple SSRs detected from various image scales at­

tempted. Hence we need to devise a new way to fuse multi-scale SSR detection 

outcomes.

To reconcile the detection maps across different resolutions onto a common basis, 

we adopt the following principle: If the most confident classification of a region at 

resolution r is less than that of a larger region (at resolution r + 1) that subsumes 

the region, then the classification output of the region should be replaced by those 

of the larger region at resolution r + 1. For instance, if the detection of a face is
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more confident than that of a building at the nose region (assuming nose is not in 

the SSR vocabulary), then the entire region covered by the face, which subsumes 

the nose region, should be labeled as face.

To illustrate the point, suppose a region at resolution r is covered by 4 larger 

regions at resolution r + 1 as shown in Figure 3.7. Let p = maxkmaXiTi(zrk+l) where 

k refers to one of the 4 larger regions in the case of the example shown in Figure 3.7. 

Then the principle of reconciliation says that if maXiTi(zr) < p, the classification 

vector Ti(zr) Vi should be replaced by the classification vector T^z^1) Vi where 

maxlTi{zrr^1) = p.

Figure 3.7: Reconciling multi-scale SSR detection maps

Using this principle, we compare detection maps of two consecutive resolutions 

at a time, in descending window sizes (i.e. from windows of 60 x 60 and 50 x 50 

to windows of 30 x 30 and 20 x 20). After 4 cycles of reconciliation, the detection 

map that is based on the smallest scan window (20 x 20) would have consolidated 

the detection decisions obtained at other resolutions as the RDM (Figure 3.6) for 

further spatial aggregation.
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3.6 Spatial Aggregation

The purpose of spatial aggregation is to summarize the reconciled detection outcome 

in a larger spatial region. Suppose a region Z comprises of n small equal regions 

with feature vectors zi, Z2, • • •, zn respectively. To account for the relative proportion 

of detected SSRs in the spatial area Z, the SSR detection vectors of the RDM is 

aggregated as

Ti(Z) = -Y,Ti(zk). (3.29)
n k

If one interpretes Ti(zk) as the posterior probability of SSR class Si given region 

Zk, P(Si\zk), and assumes that the scan windows are non-overlapping, the posterior 

probability of SSR class Si of a larger region Z, that comprises of n small equal 

regions with feature vectors zi, Z2, • • •, zn respectively, could be computed as

P(Si\Z) = 1 - no - f’OSIz*)) (3.30)
k

However, this probability has lower discrimination power as it focuses on the exis­

tential aspect of Si in Z and hence it fails to capture the quantitative occurrence or 

spatial extent of Si. For instance, a single small face in an image region will result 

in almost identical posterior probability value as a large face or many small faces in 

aother image region assuming that the faces are detected reliably. This undesirable 

phenomenon has been confirmed in our experiments. Hence it is more appropriate 

to replace P(Si\Z) by the expected value of P(Si\zk) over Zk that takes into account 

the occurrences and sizes of Si in a region Z i.e.

P(Si\Z) = Y,P(Si\zk)P(zk) = -'Z,P(Si\zk) (3.31)
k 71 k

The last step is possible since we can regard P{zk) as equal for all small regions Zk 

of equal areas. This outcome is equivalent to that of Equation (3.29).

The spatial aggregation process is illustrated in Figure 3.6 where a Spatial Ag­

gregation Map (SAM) further tessellates over RDM with AxB,A<P,B<Q 

pixels. This form of spatial aggregation does not encode spatial relation explicity. 

But the design flexibility of sx, sy allows us to specify the location and extent in the
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content to be focused and indexed. We can choose to ignore unimportant areas (e.g. 

margins) and emphasize certain areas with overlapping tessellation. We can even 

have different weights attached to the areas during similarity matching (see Chapter

7).

The SAM has similar representation scheme as local color histograms, except that 

the bins refer to proportions of SSRs instead of proportions of colors. They are invari­

ant to translation and rotation about the viewing axis and change only slowly under 

change of angle of view, change of scale, and occlusion [Swain and Ballard, 1991]. 

The effect of averaging in Equation (3.29) will not dilute T,(Z) into a flat histogram. 

As an illustration, we show the Ti(Z) > 0.1 of SSRs for 3 sample image indexes.

Figure 3.8: A sample image of park to illustrate SSR-based image index

Table 3.8: Key SSRs in the index for the image shown in Figure 3.8

Image Block Key SSR Aggregated Ti(Z)
top Foliage:Green 0.78
top Foliage:Branch 0.11

center People:Crowd 0.52
center Foliage:Green 0.20
right People:Crowd 0.36
right Building:Old 0.32
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Tables 3.8, 3.9, and 3.10 list the dominant SSRs detected, reconciled, and aggre­

gated in 3 tessellated blocks (outlined in red bounding boxes) in Figures 3.8, 3.9, 
and 3.10 respectively.

Figure 3.9. A sample image of street scene to illustrate SSR-based image index

Table 3.9: Key SSRs in the index for the image shown in Figure 3.9

Image Block Key SSR Aggregated T,(Z)
left Building:City 0.30
left Foliage:Green 0.16
left Interior:Wall 0.14
left Building:Old 0.13

center Building:City 0.75
bottom Building:Old 0.29
bottom Building:City 0.23
bottom Ground:Floor 0.17
bottom People:Figure 0.16

For Figure 3.8, the key SSRs listed in Table 3.8 capture the dominant semantic 

meanings of the tessellated blocks. In the case of Figure 3.9, some noise has been 

introduced into its index due to detection error. For example, the bright sky and 

the dark shadow areas in the left image block were probably detected wrongly as 

Interior:Wall (0.14) and Building:Did (0.13) respectively. Conversely the two
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faces in the center image block have been missed during detection. There are also 

detection errors for Figure 3.10. In particular, the SSRs Sky:Cloudy, Sky:Blue, 
and Foliage:Floral were mistaken for the wall and shorts appeared in the left 

image block. Similarly, part of the dress in the center image block was detected 

as Foliage:Floral and the sofa in the right image block has more resemblance to 

Interior:Wall and some resemblance to Sky:Cloudy and Ground:Floor.

Figure 3.10: A sample image of indoor to illustrate SSR-based image index

Table 3.10: Key SSRs in the index for the image shown in Figure 3.10

Image Block Key SSR Aggregated Ti(Z)
left People:Skin 0.22
left Sky:Cloudy 0.18
left Sky:Blue 0.17
left Foliage:Floral 0.17
left Interior:Wall 0.11

center People:Face 0.47
center Foliage:Floral 0.17
right Interior:Wall 0.42
right Sky:Cloudy 0.20
right People:Skin 0.18
right Ground:Floor 0.10

One may wonder how the SSR detection errors affect the similarity matching
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of images. Certainly, accurate SSR detection is desirable. However since we are 

dealing with heterogenous images, robust detection for all SSR classes is in general 

not possible. If conventional segmentation-then-recognition framework that records 

only the most probable object label detected in a segmented region in image index 

is adopted, the errors accumulated in both the segmentation and recognition stages 

could result in high mismatch between the indexes of two images of similar semantics 

but of different visual appearances.

The proposed SSR approach minimizes the mismatch errors with segmentation- 

free multi-scale detection and reconciliation as well as with the preservation of soft 

detection result during spatial aggregation. That is, entries in a SSR-based image 

histogram have better chances of matching similar values in corresponding entries 

of the index of image of similar visual content.

Figure 3.11: A sample image of street scene to illustrate SSR-based image index

Table 3.11: Key SSRs in the index for the image shown in Figure 3.11

Image Block Key SSR Aggregated Ti(Z)

center Building:City 0.34
center People:Crowd 0.19
center Building:Old 0.17
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The detection errors as described above also raise the following interesting ques­

tion: what is the value of T{(Z) if Z contains visual entities that are not part of the 

pre-defined SSR vocabulary? The answer is that the Ti(Z) value for an unknown 

object appearing in Z will be spread across SSR classes that are visually similar 

to the object. That is, an unknown object will be represented as a distribution 

of detection values (i.e. detection vector) of visually similar SSR classes. Hence 

two visually similar instances of an unknown object class will have similar detection 

vectors for good similarity matching.

Figure 3.12: A sample image of indoor to illustrate SSR-based image index

Table 3.12: Key SSRs in the index for the image shown in Figure 3.12

Image Block Key SSR Aggregated Ti(Z)
bottom Foliage:Floral 0.46
bottom People:Crowd 0.34

The two image blocks (i.e. red bounding boxes) in Figures 3.11 and 3.12 refer 

to vehicles (part of a bus and a trishaw) with several people and a colorful shirt 

respectively. Tables 3.11 and 3.12 list the SSR-based interpretation for these image 

blocks respectively.

For Figure 3.11, bus and trishaw are not part of the SSR vocabulary, the most
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similar man-made artifact in the SSR vocabulary detected is Building:City fol­

lowed by Building:Old. The three people on the trishaw are detected as SSR 

People: Crowd. In the case of Figure 3.12, the closest match for the colourful shirt 

during SSR detection is Foliage: Floral followed by People : Crowd.

3.7 Abstraction Hierarchy

As described in Section 3.1, the SSRs can be structured into an abstraction hierarchy. 

In particular, two types of abstraction hierarchy are useful, namely, IS-A hierarchy, 

and Part-Whole hierarchy. For ease of comprehension by users in applications, we 

feel that two levels of hierarchy are usually adequate and useful.

For the consumer image collection used in our experiments, a simple two-level 

IS-A hierarchy has been designed and implemented as shown in Table 3.2. The 

learning and detection of SSR classes are based on the 26 more specific SSR classes 

such as People:Face, Sky:Clear, and Building:City etc and the detection value 

Dk of a more general concept Ck (e.g. People, Sky, Building) within an image 

region Z can be derived from the detection values T;(Z) of those SSR classes Si that 

are subclasses of Ck as

Dk(Z) = maxTi(Z), (3.32)i

since the subclasses Si under Ck are assumed to be disjoint.

On the other hand, a complex visual object can be represented in terms of its 

parts, i.e. a Part-Whole hierarchy. For instance, a human figure can be represented 

and detected by the presence of a face and a body. Indeed interesting approaches 

to recognize objects by their components have been proposed and applied to people 

detection based on adaptive combination of classifiers (e.g. [Mohan et ah, 2001]). 

This approach is especially useful when a 3D object has no consistent shape repre­

sentation in a 2D image. The detection of multiple parts of a complex object can 

help to enhance the detection accuracy although not every part of an object is good 

candidate for detection (e.g. besides the wheels, the other parts of a car may not 

possess consistent color, texture, or shape feature for reliable detection).

Similar to the detection in IS-A hierarchy, the detection value Dk of a multi-part 

object Ck within an image region Z can be inferred from the detection values D(Z)
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Figure 3.13: Transforming from primitive feature space to semantic feature space 

of those SSR classes Si that correspond to the parts of Ck as

Ck(Z) = Y,Ti(Z), (3.33)
i

since the parts Si of Ck can co-occur and they occupy spatial areas.

Note that in order to ensure that Dk(Z) VA: within an image region Z sum up 

to unity, the Dk(Z) is normalized by dividing each of them with their sum. As 

we are dealing with heterogeneous consumer images in which many objects (e.g. 

sky, foliage, buildings) do not have well-defined Part-Whole structure, we have not 

designed any Part-Whole hierarchy for the image collection experimented in the 

thesis.

From the perspective of pattern recognition, SSRs, which are detected against 

tessellated image regions based on color and texture features, span a new semantic 

feature space in which spatial aggregation is computed. Each SSR Si denotes a 

dimension in this new feature space with feature value Ti(z) in [0,1] to represent its 

presence in a scan window z. For any scan window z in the image, X*(z) Vi can be 

viewed as a feature vector whose feature values sum to unity. Geometrically, Ti(z) is 

a point within the constrained hyperplane (i.e. Ti(z) = 1) as shown schematically 

in Figure 3.13 (r(p, q) is a feature vector and (p, q) denotes the x — y coordinate of 

region z).

Collectively, an aggregate measure such as SSR histogram Ti(Z) described above 

is computed over a spatial tessellation to represent the distribution of SSRs in the
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image region Z. This semantics-rich description is clearly beyond a simple feature- 

based content representation (e.g. color histogram). The construction of a visual 

vocabulary corresponds to feature selection and the view-based object detection 

with spatial aggregation are indeed feature extraction to arrive at a content-based 

image representation for similarity matching.

3.8 Incremental Learning

To allow design of new visual semantics and addition of new training samples to 

refine existing visual semantics, incremental and rapid learning without revisiting 

all the training samples, similar to those interactive image indexing systems de­

signed to capture user preferences [Minka and Picard, 1997] [Chang et ah, 1998a] 

[Jaimes, 2003], is desired. In this thesis, we have also explored the possibility of 

incremental learning. In particular, we have adopted a Supervised Incremental 

Clustering Architecture (SICA) [Lim, 1993] [Lim, 1996] to learn SSR classes from 

examples.

SICA is a 3-layer feedforward neural network with dynamic node creation capa­

bility (Fig.3.14). Each input node corresponds to a feature and each output node 

is a class. The only hidden layer, which grows prototypes from scratch, captures 

the regularity of input examples through learning. Each hidden node (or prototype) 

receives full connections from the input layer, with a weight vector representing the 

position of the prototype in the input space. Prototypes of the same class are joined 

to the output node denoting their class with weight values T, thus giving an ’OR’ 

(union) operation. Learning involves the modification of the weight vectors to the 

prototypes as well as the recruitment and initialization of new prototypes.

When an input vector z (i.e. such as the composite color and texture feature 

vector described above) is presented, the closest prototype mk from among the 

existing prototypes, m*, is first determined as follows

fi(z, m/c) > £l(z, rrii) Vz, (3.34)

where ft(y,z) E [L^min^max]^min,^max £ R, is some similarity function between 

vectors y and z.
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Features PrototyPes Clafsel
Figure 3.14: Supervised Incremental Clustering Architecture

If the following conditions are fulfilled

class(mk) = class(z) V Q(z,mk) > a, (3.35)

where class(z) returns the class label of z and a is a Prototype Creation Threshold 

(PCT), we adapt mk towards z

mk <- 

Nk <-

Nk.mk + z
+ 1

A^fc + 1,

(3.36)

(3.37)

where Nk is the number of examples that have been ‘won’ by (i.e. assigned to) mk.

This update rule ensures that the prototypes are indeed the mean of all examples 

that have been assigned to them. In this way, similar cases are generalized to their 

statistical average (i.e. local generalization). When Nk goes to infinity, the movement 

of the winners will diminish asymptotically. Therefore, it implements some form of 

decaying learning rate automatically.

Otherwise (i.e. if Equation (3.35) is not satisfied), we have a wrong classification.
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We memorize 2 as a new prototype

(3.38)

(3.39)

where mneiv is a dynamically created prototype.

When SICA is adopted for the learning of SSR classes, each SSR is represented 

by a number of prototypes (i.e. hidden nodes) dynamically created during learning. 

The similarity function fi(z, m») follows that of Equation (3.27). If distance function 

A is preferred instead, then all the similarity function Cl in Equations (3.34) and 

(3.35) are replaced by A as defined by Equation (3.26) and all the > comparative 

operators are changed to <.

We will compare the SICA-based learning with SVM-based learning in indexing 

and retrieval of consumer images in Chapter 7.

TTlnew
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3.9 Object Segmentation

Although the SSR framework performs image indexing and retrieval based on se­

mantics detection without region (or object) segmentation, an unconventional post­

detection approach to object segmentation has been explored in this thesis.

More often than not, image or region segmentation algorithms aim to produce 

disjoint coherent regions based on pixel-based properties such as color or/and tex­

ture that correspond to different objects. Unfortunately the resulting segmented 

regions could be either over- or under-segmented, especially in complex heteroge­

neous images such as unconstrained consumer images. In the former case, the pixels 

of an object (e.g. a face) are grouped into different regions (e.g. due to shadow 

cast on the face). In the latter case, pixels that belonged to more than one ob­

ject (e.g. face and the wooden furniture in the background) are considered a single 

region. Indeed object segmentation is an ill-posed and difficult problem as image 

segmentation without a priori knowledge of objects is underconstrained.

Though segmentation-then-recognition paradigm is dominant in computer vision 

systems, it is still unclear that segmentation always precedes recognition in human
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vision system. Although perceptual groupings in image understanding seems plau­
sible and logical, object recognition does facilitate object segmentation (e.g. recog­
nizing a face does help in separating the face region from the background). It is 
likely that segmentation and recognition are intertwined in an iterative process.

In this thesis, we do not claim to have solved the object segmentation problem. 
We have only proposed a reverse detection-segmentation algorithm to extract objects 
based on soft detection decisions.

We propose to cluster the detection vectors Ti(z) (Equation (3.24)) of the rec­
onciled 20 x 20 tessellations of an image incrementally after the multi-scale recon­
ciliation step as described in Section 3.5. That is, the clustering is carried out in 
the new feature space (right-hand-side of Fig. 3.13) in which the detection vectors 
reside. The clustering is coarse-grained as each detection vector corresponds to a 
20 x 20 image block rather than pixels.

The steps of the clustering algorithm is as follows. The detection vectors Ti(z) are 
examined from top-down, left to right manner. The first (top-left) detection vector 
starts as a new cluster center. When a current detection vector is considered close 
enough (i.e. distance measure such as A in Equation (3.26) less than some threshold 
or similarity measure such as in Equation (3.27) more than some threshold) to 
its adjacent cluster center, the detection vector is absorbed (i.e. averaging similar 
to SICA Equations (3.36) and (3.37)) into the cluster. Otherwise a new cluster is 
formed with cluster center being initialized to the current detection vector (similar 
to the SICA Equations (3.38) and (3.39)).

After one pass through the tessellation of detection vectors, we obtain a reduced 
set of larger tessellated blocks (i.e. block-based regions). To further reduce the 
number of clusters, the adjacent clusters whose largest detection values share the 
same class label (i.e. likely that they share the same semantic label) are merged 
into a larger cluster with the new cluster center being the average of the two cluser 
centers. Lastly, small clusters that occupy insignificant areas and uncertain clusters 
with low detection values can also be removed.

Figures 3.15 and 3.16 illustrate two examples of object segmentation based on 
the incremental clustering algorithm. Both images are segmented with 3 dominant 
objects. In Figure 3.15, the key objects, sky, building, and ground, have been
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Figure 3.15: The right image shows three dominent objects segmented from the left 
image: sky, building, and ground

Figure 3.16: The right image shows three dominent objects segmented from the left 
image: water, face, and ground

properly detected and segmented. Similarly, the dominant regions that correspond 

to water, face, and ground, are also given the correct semantic labels and extracted.

3.10 Discussion

First, we touch on the issue of computational efficiency. The experiments of SSR 

learning and indexing were conducted on a Pentium 4 PC (1.4 GHz, 256 MB mem­

ory). The learning of 26 SSRs on 375 training samples was very fast (less than a 

minute). The indexing of one image with the SSR approach required about 20 sec­

onds (without any code optimization). However, the small footprint of a SSR-based 

image index is highly efficient in storage space and retrieval.

Suppose a 4-byte floating point number is required for each Ti(Z). Then a SSR- 

based image index requires less than 2 kilobytes (26 x 16 x 4 if a regular 4x4 grid 

is used for spatial tessellation) of storage and simple operations on small number of 

vectors. This would have great advantage over the need to represent and process
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very high dimensions of color and texture features and yet not achieving the same 

level of retrieval performance as we shall see in Chapter 7.

In short, the image signatures based on SSRs realize semantic abstraction via 

prior learning and detection of visual classes when compared to direct indexing 

based on low-level features. As the performance comparison in Chapter 7 show, the 

computational resources devoted to prior learning of SSRs and to their detection 

during indexing are good trade-off for concise semantic representation as well as 

effective and efficient retrieval performance.

Nevertheless, there are also various possibilities to improve indexing efficiency. 

Thanks to the modular nature (binary detectors, tessellations, and multiple scales) 

of the SSR framework, it is straight forward to parallelize the learning, detection, and 

aggregation tasks. That is, we can train the binary detectors independently. During 

SSR detection, we compute the feature maps for the pixel-feature layer (Figure 3.6) 

in parallel, and feed the combined feature vector to the binary detectors which can 

perform classification concurrently.

Further parallelization can be achieved by performing SSR detection on different 

parts of an image (i.e. firing the nodes in RDM simultaneously) and along different 

scales. After the reconciliation process which is a sequential process, the spatial 

aggregation by different nodes in SAM can be carried out concurrently. In short, 

the indexing process as depicted by Figure 3.6 is inherently parallel.

In the current implementation, since we are using two-class SVMs that re­

quire both positive and negative examples, re-training of the SVMs is necessary 

when a new SSR class is added. If we replace two-class SVMs with one-class 

SVMs [Manevitz and Yousef, 2001] or generative models [Kumar et ah, 2002], we 

can train only the new SSR detector based on new positive examples. The per­

formance of one-class SVMs has been shown to be reasonable when compared to 

other two-class classifiers though they are rather sensitive to the choice of param­

eters [Manevitz and Yousef, 2001]. The potential problem with generative models 

has been discussed before.

In general, re-indexing is desirable when the number of SSRs (say s) has been 

expanded. This is applicable to other indexing methods as well when new feature 

dimensions are added (e.g. more bins for color histograms, new feature vector for
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region segmentation or recognition). However, suppose re-training of existing de­

tectors is not required in the case of one-class SVMs, when a new SSR class s + 1 

has been trained or a better detector becomes available to replace the detector of an 

existing SSR class j, an efficient re-indexing procedure can be executed as follows.

First, SSR detection is performed on all images to be indexed with the new 

detector (s-f 1 or j) only. The detection outcome (Ts+i(z) or Tj(z)) is set to either 

1 or 0 using a threshold. Next the same reconciliation step can be used to compute 

the RDM nodes to have either value 1 or 0. Lastly, for each SAM node with a 

tessellated area Z (size denoted as \Z\) in RDM, we count the number (i.e. area) of 

RDM nodes with value 1 within Z as \X\. The new index T'(Z) that includes new 

SSR detector s 4- 1 is computed as

T'a+1 (Z) = -jT t[[Z) = T\(Z) ■ (1 - ffi) (3.40)

and the new index T\Z) with replacement of better SSR detector j is revised as
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Semantics Discovery

All truths are easy to understand once they are 
discovered; the point is to discover them.

Galileo Galilei (1564 - 1642)

4.1 Overview

Using supervised pattern classifiers to learn image semantics and ensemble of pattern 

classifiers to enhance system performance have become an active trend in content- 

based analysis research [Hsu and Chang, 2004] [Li et al., 2003a] [Snoek et ah, 2004] 

[Tseng et al., 2003]. One of the most notable efforts by the IBM research group 

[Amir et al., 2003] [Tseng et al., 2003] deployed numerous SVM classifiers in multi­

stage optimization for learning and detection of visual concepts in the TRECVID 

news video corpus. While the semantics design process and the computation in­

volved to train and validate the SVM classifiers are certainly non-trivial, they are 

relatively insignificant when compared to the several months of manual annotation 

effort for the training, validation, and test samples by the TREC participants, with 

the comprehensive VideoAnnEx annotation tool [Lin et al., 2003] developed by the 

IBM team.

In short, supervised learning requires labeled data. Ensemble learning with mul­

tiple classifiers demands more data for feature and classifier selection. In particular,
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probabilistic generative models usually require more data than discriminative mod­

els to estimate parameters reliably [Adams et al., 2003]. Hence the bottleneck for a 

supervised learning approach to multimedia semantic analysis is the manual effort 

of data labeling.

On the other hand, supervised learning of multimedia semantics is primarily 

design-oriented. The designers must possess knowledge about the content domain 

(e.g. sports, news, medical etc) in order to design the ontology and relevant features 

and classifiers for the domain before data annotation can take place. While this de­

sign framework is useful for many applications, there are situations (e.g. images from 

planet Mars, unmanned robots and vehicles in unexplored areas, unexpected behav­

iors in open surveillance applications) whereby limited prior knowledge is available 

about the multimedia data source and a complete design approach is infeasible or 

ineffective.

Hence an alternative semantics discovery approach is desired, for alleviating the 

manual annotation effort and for dealing with exploratory content domains. In this 

chapter, we focus on image semantics discovery. The framework proposed can be 

extended to other modality in future. Image indexing and retrieval task will be used 

for evaluation in Chapter 7.

We define the problem of image semantics discovery (ISD) (Figure 4.1) as follows. 

Given a number of classes of images, the task is to discover the local semantic regions 

(e.g. faces and foliage in bounding boxes as shown in Figure 4.1) that are recurrent 

within each class and discriminative against other classes. Note that the only prior 

knowledge we have here is the prior groupings of the image samples i.e. some form of 

global knowledge about the images. The emphasis here is on local image semantics 

discovery based on global image grouping information.

The problem of ISD is a relatively new one. However we can position ISD in 

the context of automatic image annotation (AIA) and review existing works related 

to AIA. In general, the several AIA approaches discussed here can be placed on a 

two-dimensional grid (Figure 4.2). The x-axis denotes the extent of the exploitation 

of text information associated with the images (if they are available) and the y-axis 

indicates the extent of content-based analysis on the images. Note that manual effort 

is required at some point in time to produce the associated text information though
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Figure 4.1: The problem of image semantics discovery

the text might be generated for other purpose and is treated as free information 

source to aid image annotation.

On the x-axis of Figure 4.2, the coordinate (1,0) represents AIA approaches 

based on the text that describes a given image (e.g. filename, URL etc) and possibly 

other non-content-based information (e.g. citation-based). This approach is exem­

plified by the Google Image Search engine on the Web (www.google.com/imghp). 

Since it does not analyse the image content, it is not surprised that the images 

returned by this approach may have content irrelevant to the intended query. For 

instance, a search with the keyword ‘Paris’ to look for images of the French cap­

ital Paris may return portrait images of people with the name ‘Paris’. On 25 

March 2004, the 39th image returned by Google Image Search using keyword ‘Paris’ 

shows a man Jon Paris plays ’’Born to Be Wild” to a crowd that understands 

(www. j sonline. com / general/harley 95 / images / pads. j p).

In the context of relevance feedback, unlabeled images have also been used to 

boost the learning from very limited labeled examples (e.g. [Wang et ah, 2003] 

[Wu et al., 2000b]). In particular, the Mi Album system uses relevance feedback 

technique [Lu et al., 2000] to automatically generate text annotation for consumer 

photos [Liu et al., 2000]. The text keywords in a query are assigned to positive 

feedback examples (i.e. retrieved images that are considered relevant by the user 

who issues the query). This would require constant user intervention (in the form 

of relevance feedback) and the keywords issued in a query might not necessarily

http://www.google.com/imghp
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Content Analysis

Figure 4.2: Automatic image annotation approaches

correspond to what is considered relevant in the positive examples.

Moving upwards from the x-axis, the regions towards the (1,1) coordinate in Fig­

ure 4.2 covers AIA approaches that exploit both image content and text information. 

Several methods have emerged in the past few years.

In the Intelligent Multimedia Knowledge Application (IMKA) project, Benitez 

and Chang proposes a framework for representing and discovering knowledge from 

multimedia content to enhance the classification, navigation and retrieval of mul­

timedia [Benitez and Chang, 2003a]. The MediaNet knowledge representation uni­

fies both perceptual and semantic concepts and relationships exemplified by media 

[Benitez et ah, 2000]. Using a collection of 3624 annotated nature and news images, 

perceptual and semantic knowledge are automatically discovered by integrating both 

the processing of images and text. Perceptual knowledge is constructed by cluster­

ing the images based on both visual and text feature descriptors, and by discovering 

statistical and similarity relationships between the clusters. Using WordNet and 

the image clusters, semantic knowledge is further constructed by disambiguating 

the senses of words in annotations, and by finding semantic relations between the 

detected senses in WordNet. More recently, interdependence among discovered con-
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cepts are used to construct Bayesian networks for probabilistic inferencing in image 

classification task with promising results [Benitez and Chang, 2003b].

Motivated from a machine translation perspective, object recognition is posed 

as a lexicon learning problem to translate image regions to corresponding words 

[Duygulu et ah, 2002]. More generally, the joint distribution of meaningful text 

descriptions and entire or local image contents are learned from images or cate­

gories of images labeled with a few words [Barnard et al., 2003b] [Kutics et al., 2003] 

[Li and Wang, 2003]. The lexicon learning metaphor offers a new way of looking at 

object recognition [Duygulu et al., 2002] and a powerful means to annotate entire 

images with concepts evoked by what is visible in the image and specific words (e.g. 

fitness, holiday, Paris etc [Li and Wang, 2003]). While the results for the annotation 

problem on entire images look promising [Li and Wang, 2003], the correspondence 

problem of associating words with segmented image regions remains very challenging 

[Barnard et al., 2003b] as segmentation, feature selection, and shape representation 

are critical and non-trivial choices [Barnard et al., 2003a].

Without assuming the availability of associated text information (i.e. represented 

by the (0,1) coordinate in Figure 4.2), researchers in the field of computer vision have 

been pushing the limit of learning by developing object recognition systems from 

unlabeled and unsegmented images [Fergus et al., 2003] [Selinger and Nelson, 2001] 

[Weber et al., 2000]. For the purpose of image retrieval, unsupervised models based 

on “generic” texture-like descriptors without explicit object semantics can also be 

earned from images without manual extraction of objects or features [Schmid, 2001]. 

As a representative of the state-of-the-art, sophiscated generative and probabilis­

tic model has been proposed to represent, learn, and detect object parts, loca­

tions, scales, and appearances from fairly cluttered scenes with promising results 

[Fergus et al., 2003].

In this chapter, we address the issue of minimal supervision differently. We 

do not assume availability of text descriptions for image or image classes as in 

[Barnard et al., 2003b] [Li and Wang, 2003] [Benitez and Chang, 2003a]. Neither 

do we know the object classes to be recognized as in [Fergus et al., 2003]. We wish 

to answer three basic questions related to ISD: what are the local image regions 

that are unique to a class of images? How do we extract this intra-class recur-
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rent and inter-class discriminative image regions? How can these regions be used 

in image indexing and matching? The answer to these questions is a novel semi- 

supervised framework proposed to discover and associate local unsegmented regions 

with semantics and generate their samples so as to construct semantic models for 

content-based image retrieval, all with minimal manual intervention.

The proposed generic framework of image semantics discovery (ISD) consists of 

three learning steps:

• Supervised learning of class discrimination;

• Unsupervised learning of recurrent patterns;

• Supervised learning of discovered semantics regions.

In this chapter, Support Vector Machines (SVMs) [Vapnik, 1998] and Fuzzy C- 

Means clustering (FCM) [Bezdek, 1981] are adopted for the supervised and unsu­

pervised learning steps respectively.

We first describe the key ideas of the ISD framework (Figure 4.3) as follows before 

presenting the technical details. We assume that a set of representative images, 

grouped into K distinct classes, of a content domain is available. Each image is 

tessellated into possibly overlapping small image blocks with features appropriate 

for the domain extracted. That is, each image class is now represented by the 

collective local image blocks of the images from the same class.

In the first supervised learning step, the class boundaries are computed based 

on the feature vectors of the tessellated blocks. Using binary SVMs in this paper, 

this step is performed K times, each time using samples of one of the classes as 

positive examples against the samples of all the other classes as negative examples. 

Figure 4.3 depicts an example of inter-discriminative class boundaries separating 

two classes of local patterns, denoted as shapes of diamond and triangle respectively. 

The darken diamond and triangle shapes on the boundaries represent the support 

vectors derived from support vector learning [Vapnik, 1998].

While the support vectors are important parameters in the classification deci­

sion function for discrimination [Vapnik, 1998], they may not refer to local visual 

patterns unique to a class of images. Conversely, input patterns that result in high 

SVM classification outputs, denoted by diamond shapes further away from the class



4.1 Overview 89

inter-discriminative

<0 intra-recurrent

Figure 4.3: Discovering typical local patterns

decision boundary, may refer to local visual patterns that are typical in that image 

class, hence capturing intra-class recurrent patterns.

The second learning step in the ISD framework identifies these typical train­

ing patterns in each class by examing the SVM output for each training pattern. 

Unsupervised learning algorithm such as FCM is applied to these identified typical 

patterns in each of the K classes in turn to discover their multi-mode groupings, 

shown using different colors for two groups of diamond shapes in Figure 4.3. The 

clusters of local patterns are called Discovered Semantic Regions (DSRs).

The last step of the ISD framework is to generate the positive and negative 

training samples from the clusters formed in the previous unsupervised step for the 

modeling of DSRs. In this chapter, we also adopt binary SVM classifiers to learn 

the DSRs. That is, using Figure 4.3 as an illustration, the task is to discriminate 

the diamond shapes of the same color from the diamond shapes of different colors 

and the triangle shapes. The local patterns that are nearest to the respective cluster 

centers can be computed and their visual appearances in the original images can be 

extracted as a means to visualize the DSRs.

The flow of learning in the proposed ISD framework is summarized in Figure 

4.4. We now describe the steps in more details.
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Figure 4.4: Flow of image semantics discovery

4.2 Learning of Local Class Semantics

Given an application domain, some typical classes Ck with their image samples are 

identified. For consumer images used in our experiments, a taxonomy as shown in 

Figure 4.5 has been designed. This hierarchy of 11 categories is more comprehensive 

than the 8 categories addressed in [Vailaya et ah, 2001]. We trained 7 binary SVMs 

on the following categories (leaf nodes of Figure 4.5 except miscellaneous): interior 

or objects indoor (inob), people indoor (inpp), mountain and rocky area (mtrk), 

parks or gardens (park), swimming pool (pool), street scene (strt), and waterside 

(wtsd).

The training samples are tessellated image blocks, each represented as suitable 

feature vector z, from the class samples. After learning, the class models would have 

captured the local class semantics and a high SVM output (i.e. C*.(z) » 0) would 

suggest that the local region z is typical to the semantics of class Ck-

In this chapter, as our test data are heterogeneous consumer images, we extract 

color and texture features for a local image block and denote this feature vector as 

z. Hence a feature vector z has two parts, namely, a color feature vector zc and a 

texture feature vector zl. For the color feature, as the image patch for training and 

detection is relatively small, the mean and standard deviation of each color channel 

in the YIQ color model is deemed sufficient (i.e. zc has 6 dimensions).

For the texture feature, we adopted the Gabor coefficients which have been shown 

to provide excellent pattern retrieval results [Manjunath and Ma, 1996]. Similarly,
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Figure 4.5: Proposed consumer image taxonomy

the mean and standard deviation of the Gabor coefficients (5 scales and 6 orienta­

tions) in an image block are computed as zl which has 60 dimensions. To normalize 

both the color and texture features, we use the Gaussian (i.e. zero-mean) normal­

ization. This composite feature vector and the normalization step are the same as 

those described in Chapter 3 for learning and detection of SSRs.

As mentioned in Chapter 3 before, the distance or similarity measure depends 

on the kernel adopted for the SVMs. For the experimental results reported in 

this chapter and later in Chapter 7, we have adopted polynomial kernels with the 

modified dot product similarity measure defined as Equation (3.27) in Chapter 3 

and shown below for convenience of reader. That is, the similarity function between 

two feature vectors y and z for the polynomial kernels is computed as

n(y,z) = ^(n(y',zc) + a(yt,zt)) (4.1)

where fi(u, w) is defined as

tt{v,w) = --7T-r (4-2)

where • indicates a dot product.
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4.3 Learning of Typical Semantic Partitions

With the help of the learned class models Cfc, we can generate sets of local image 

regions that characterize the class semantics (which in turn captures the semantic 

of the content domain) Xk as

However, the local semantics hidden in each Xk is opague and possibly multi- 

mode. We would like to discover the multiple groupings in each class by unsupervised 

learning such as Gaussian mixture modeling and fuzzy c-means clustering. The 

result of the clustering is a collection of partitions rrikj, j = 1,2, • • •, Nk in the space 

of local semantics for each class, where rrikj are usually represented as cluster centers 

and Nk are the numbers of partitions for each class.

4.4 Learning of Discovered Semantic Regions

Once we have obtained the typical semantic partitions for each class, we can learn the 

models of Discovered Semantic Regions (DSRs) jS* z = 1,2,-*-, AT where N = T>kNk 

(i.e. we linearize the ordering of rrikj as rrii). We label a local image block (x 6 UkXk) 

as positive example for Si if it is closest to rrii and as negative example for Sj j ^ i,

where |.| is some distance measure. Now we can perform supervised learning again 

on Xf and X~ using SVMs Si(x) as DSR models.

To visualize a DSR Si, we can display the image block s* that is most typical 

among those assigned to cluster rrii that belonged to class Ck,

Xk = {z\Ck(z) > p} (p> 0) (4.3)

Xf = {x|z = argmin\x — mt\} 

X~ = {x\i ^ argmm|x — mt\}

(4.4)

(4.5)

Ck(si) = max Ck{x)
nrCZ Y +

(4.6)
xex;

As mentioned, we trained the 7 binary SVMs with polynomial kernels (degree
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Table 4.1: Training statistics for image semantics discovery

Class size #trg #sv #data #clus
inob 134 15 1905 1429 4
inpp 840 20 2249 936 5
mtrk 67 10 1090 1550 2
park 304 15 955 728 4
pool 52 10 1138 1357 2
strt 645 20 2424 735 5

wtsd 150 15 2454 732 4

2, C = 100 [Joachims, 1999]) for the leaf-node categories (except miscellaneous) 

on color and texture features (Equation (4.1)) of 60 x 60 image blocks (tessellated 

with 20 pixels in both directions) from 105 sample images. Hence each SVM Ck was 

trained on 16,800 image blocks z.

Table 4.1 lists the training statistics of the semantic classes Ck for bootstrapping 

local semantics. The columns (from left to right) list the class labels, the number 

of images of each class in the 2400 collection, the number of training images, the 

number of support vectors learned, the number of typical image blocks subject 

to clustering (Ck(z) > 2), and the number of clusters assigned. The 105 training 

images are shown in Figure 4.6. Their top-down, left-to-right order (and the number 

of images in each class) corresponds to the classes (and #trg) as listed in Table 4.1.

After training, the samples from each class is fed into classifier Ck to test their 

typicalities. Those samples with SVM output Ck(z) > 2 (Equation (4.3)) are subject 

to fuzzy c-means clustering. The number of clusters assigned to each class is roughly 

proportional to the number of training images in each class as shown in Table 4.1. 

Hence we have 26 DSRs in total.

To build the DSR models, we trained 26 binary SVMs with polynomial kernels 

(degree 2, C = 100 [Joachims, 1999]), each on 7467 positive and negative examples 

(Equation (4.4) and (4.5)) (i.e. sum of column 5 of Table 4.1).

To visualize the 26 DSRs that have been learned, we compute the most typical 

image block for each cluster (Equation (4.6)) and concatenate their appearances as 

shown in Figure 4.7 (from left to right): 4 for the inob class; 5 for the inpp class; 

2 for the mtrk class; 4 for the park class; 2 for the pool class; 5 for the strt class;
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Figure 4.6: Training set of 105 images
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4 for the wtsd class. Their semantic labels are list in the same order in Table 4.2.

Figure 4.7: Most typical image blocks of the DSRs

Table 4.2: Semantic labels for DSRs shown in Figure 4.7

Class Semantic Label
inob china-1, china-2, furniture-1, china-3
inpp body-1, body-2, body-3, face-1, face-2
mtrk rocky-1, rocky-2
park foliage-1, foliage-2, flower-1, foliage-3
pool water-1, water-2
strt man-made-1, man-made-2, man-made-3, man-made-4, man-made-5
wtsd sand-1, river-1, pond-1, mountain-1

In Table 4.2, labels china-1/2/3 refer to the different types of china utensils in 

the indoor objects/interior (inob) images. The label furniture-1 is assigned to 

the image block that shows a cupboard top. For the indoor people class (inpp), 

three different appearances of body parts and faces with two kinds of background 

are labeled as body-1/2/3 and face-1/2 respectively. Similarly, two different rocky 

textures, labeled as rocky-1/2, are available for the class of mountain/rocks (mtrk). 

For the park class, three kinds of foliage plus a flower type are identified and la­

beled as foliage-1/2/3 and flower-1 accordingly. The label water-1 refers to the 

swimming pool side and the label water-2 denotes pool water for the (swimming) 

pool class of images. In the case of the street class (strt), five different appearances 

of man-made structures such as part of buidling, roof top etc are given the labels of 

man-made-1/2/3/4/5. Lastly, the DSRs from the waterside class (wtsd) can be in­

terpreted as sand-1 (from the beach), river-1 (river water), pond-1 (pond water), 

and mountain (far view of mountain) respectively.

Note that the semantic interpretation for DSRs (Figure 4.7 and Table 4.2) as 

described above is indicative only. This is because each of the visualized image
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blocks in Figure 4.7 is only a typical instance for a DSR class. For instance, the 

label inpp:body-l shows the lower body part in black. It could also refer to body 

part such as black hair.

4.5 Image Indexing

DSRs are local semantics patterns learned from examples. They can be employed in 

image indexing similar to the detection-based indexing of SSRs (c.f. Chapter 3). To 

recapitulate, the indexing process consists of three steps, namely view-based detec­

tion (Section 3.4), multi-scale reconciliation (Section 3.5), and spatial aggregation 

(Section 3.6), as summarized in Figure 4.8. That is, in these steps of indexing, the 

SSRs are replaced by DSRs.

aggregatedetect
DSR reconcile indexesimages

Figure 4.8: A schematic digram of image indexing based on DSRs

Similar to the illustration of the SSR-based indexes in the previous chapter, 

we show the T{(Z) > 0.1 of DSRs in Tables 4.3, 4.4, and 4.5 that are detected, 

reconciled, and aggregated in 3 tessellated blocks (outlined in red bounding boxes) 

in Figures 4.9, 4.10, and 4.11 respectively.

Figure 4.9: A sample image of park to illustrate DSR-based image index
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Table 4.3: Key DSRs in the index for the image shown in Figure 4.9

Image Block Key DSR Aggregated Tz(Z)
top park:foliage-1 0.30
top park:foliage-2 0.26
top park:foliage-3 0.23

center park:foliage-3 0.33
center inpp:face-2 0.22
center inpp:body-2 0.14
right inpp:face-2 0.23
right mtrk:rocky-2 0.22
right inob:china-2 0.18

For Figure 4.9, the key DSRs listed in Table 4.3 are appropriate except that the 

brown hut in the right image block is detected as DSR mtrk:rocky-2 (0.22) since 

there is no “building” DSR that is visually similar to hut. Also some of the white 

clothing in the same image block is wrongly detected as DSR inob: china-2 (0.18).

Figure 4.10. A sample image of street scene to illustrate DSR-based image index

In the case of Figure 4.10, some noise such as mtrk:rocky-2 (0.30), as shown in 

Table 4.4, has been introduced into the index for the left image block.

In the image shown in Figure 4.11, the DSRs related to face, body, and furniture 

have been reasonably detected for the image blocks in red bounding boxes.

The effectiveness of the DSR-based image indexes will be evaluated using query 
by example experiments in Chapter 7.
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Table 4.4: Key DSRs in the index for the image shown in Figure 4.10

Image Block Key DSR Aggregated Ti(Z)
left strt:man-made-5 0.36
left mtrk:rocky-2 0.30

center strt:man-made-5 0.65
center inpp:face-1 0.11

bottom inpp:body-2 0.36
bottom strt:man-made-2 0.21

Figure 4.11: A sample image of indoor to illustrate DSR-based image index

Table 4.5: Key DSRs in the index for the image shown in Figure 4.11

Image Block Key DSR Aggregated Ti(Z)

left inpp:body-2 0.30
left inpp:body-3 0.20

center inpp:body-2 0.30
center inpp:face-1 0.21
center inpp:body-3 0.18
right inob:furniture-1 0.45
right inpp:body-2 0.29
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4.6 Discussion

For the current implementation of our ISD framework, there are still several issues 

to be addressed.

The first issue is related to the sampling of training data. In order not to miss 

out interesting local region semantics from the images, the training data z for the 

learning of SVM classifiers Ck(z) (Section 4.2) should ideally be as dense and varied 

as possible. That is, z should cover tessellated image blocks of multiple resolutions 

with maximum overlaps from a comprehensive set of images.

For instance, we can improve the sampling of image blocks for semantic class 

learning by randomly selecting say 20% of the ground truth images in each class as 

positive samples (and as negative samples for all other classes) as well as by tessel- 

lating image blocks with different sizes (e.g. 20 x 20, 30 x 30 etc) and displacements 

(e.g. 10 pixels) to generate a more complete and denser coverage of the local se­

mantic space. But these attempts have turned out to be too ambitious for practical 

training sessions in our experiments. Hence as a trade-off between sampling cover­

age and training time, we have only used the 60 x 60 image blocks (tessellated with 

20 pixels in both directions) from 105 sample images as reported above.

Another issue is regarding the usefulness of the discriminative class learning and 

typicality check in the proposed ISD framework. As an alternative, can we either 

perform clustering of image blocks from all training images (regardless of classes) or 

clustering of image blocks in each class directly and separately (i.e. without worrying 

about training of Ck(z) and selection of image blocks z such that Ck(z) > p)?

We have indeed explored these alternatives. The average precisions of retrieval 

in the query-by-example experiments (Chapter 7) turned out to be inferior when 

compared to the proposed ISD framework. Hence we believe that class discrimina­

tion and typicality checks are important to constrain the clustering on relevant data 

points that hide the local semantic regions for discovery. Without these constraints, 

the unsupervised learning process would tend to converge to local optimal states.

Cluster validity is a tricky issue. We have tried fixed number of clusters (e.g. 

3,4,5,7) and retained large clusters as DSRs. Alternatively we relied on human 

inspection to select perceptually distinctive clusters (as visualized using Equation 

(4.6)) as DSRs. However the current way of assigning number of clusters roughly
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proportional to the number of training images has produced the best performance 

in our experiments. In future, we would explore other ways to model DSRs (e.g. 

Gaussian mixture) and to determine the value of p. We would also like to verify our 

approach on other content domains such as art images, medical images etc to see if 

the DSRs make sense to the domain experts.

Although our attempt to alleviate the supervised learning requirement of la­

beled images and regions differs from the current trends of unsupervised object 

recognition and matching words with pictures, the methods do share some common 

techniques. For instance, similar to those of Schmid [Schmid, 2001] and Fergus et al. 

[Fergus et al., 2003], our approach computes local region features based on tessella­

tion instead of segmentation though [Fergus et al., 2003] used an interest detector 

and kept the number of features below 30 for practical implementation.

While Schmid focused on “Gabor-like” features [Schmid, 2001] and Fergus et al. 

worked on monochrome information only [Fergus et al., 2003], we have incorporated 

both color and texture information. As the clusters in [Schmid, 2001] were generated 

by unsupervised learning only, they may not correspond to well-perceived semantics 

when compared to our DSRs.

As we are dealing with cluttered and heterogeneous scenes, we did not model 

object parts as in the comprehensive case of [Fergus et al., 2003]. On the other 

hand, we handle scale invariance with multi-scale detection and reconciliation of 

DSRs during image indexing. Last but not least, while the generative and proba­

bilistic approaches [Fergus et al., 2003] [Li and Wang, 2003] may enjoy modularity 

and scalability in learning, they do not exploit inter-class discrimination to compute 

features unique to classes as in our case.

To put indexing solutions based on local semantics in perspective, Figure 4.12 

shows a spectrum of semantic learning and indexing approaches that we have inves­

tigated. The extreme left points towards knowledge-based approaches that require 

more human intervention. The opposite direction (i.e. right) represents discovery- 

oriented approaches that need less human involvement. In our earlier research effort, 

we have explored both extreme directions.

A completely unsupervised approach [Lim, 2000d] [Lim, 1999b] [Lim, 1999c] that 

corresponds to the label “CLUS” on the extreme left direction of Figure 4.12 has
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HVKCL US

Figure 4.12: A spectrum of proposed semantic learning and indexing approaches

been explored. In this approach, tessellated image blocks from many training images 

are subjected to unsupervised learning such as fuzzy c-means clustering directly. As 

thousands of cluster centers are necessary to represent the high variations of visual 

semantics inherent in the images and to achieve reasonable retrieval performance, 

singular value decomposition (SVD) is applied to reduce the dimensionality of the 

index (i.e. number of cluster centers). While enjoying high degree of automation, 

this unsupervised approach suffers from weak interpretation of visual semantics. 

That is, it is not clear what visual semantics are represented by the cluster centers 

and their SVD-transformed counterparts.

On the extreme right in Figure 4.12, a handcrafted approach (denoted as “HVK” 

in the figure) [Lim, 2000b] [Lim, 2001a] that requires a human subject to design the 

set of Visual Keywords for an application domain and crop highly representative im­

age blocks from the images. No statistical learning is performed and the handpicked 

image blocks are directly used for indexing. Rather than visual concept detection, 

the feature vector of an image block is matched against the feature vectors of those 

handpicked image blocks. The relative distances to the handpicked image blocks are 

used to compute fuzzy memberships as semantic histograms. This pioneering ap­

proach is not practical as it demands high precision effort from the human designer 

in the construction of the visual vocabulary.

Moving away from the extreme right, the image semantics design and learning 

approach based on SSRs, presented in Chapter 3 and denoted as “SSR” in Figure 

4.12, still requires a human designer to determine the visual vocabulary for an appli-
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cation domain. But the precision requirement in cropping training instances for the 

designed visual vocabulary is relaxed. This approach, as a natural enhancement of 

the handcrafted approach (“HVK”), is first published in 2002 [Lim and Jin, 2002b], 

though the statistical learning was based on SICA instead of SVM.

The image semantics discovery approach (labeled as “DSR” in Figure 4.12) de­

scribed in this chapter represents an attempt towards the unsupervised learning 

paradigm. However, instead of complete hands-free automation, both supervised 

and unsupervised learning steps are applied to tessellated image blocks extracted 

from class-labeled images to infer the semantic regions. Although minimum human 

intervention is required as compared to the SSR approach, there is no direct control 

over the visual vocabulary to be discovered yet, let alone the few computational 

issues discussed above.

With reference to Figure 4.12, we started off with the “CLUS” approach (extreme 

left) and swung to the extreme right with the “HVK” approach. We then moved 

towards the left with less and less human annotation effort, but also less control over 

the visual semantics. Perhaps further innovation is necessary to achieve an optimal 

balance of human labeling and semantics control. This will be part of our future 

research endeavor.



Chapter 5

Class-Based Image Semantics

The more alternatives, the more difficult the choice.
Abbe ’D’Allanival

5.1 Overview

The previous two chapters focus on local semantics extracted from image content 

based on design and discovery approaches respectively. We switch attention in this 

chapter to focus on global semantics related to a coherent set of images, i.e. forming 

an image class.

However, as explained in Chapter 2, the problem of image retrieval is different 

from object recognition and image classification. In this chapter, we explore three 

different indexing and retrieval schemes based on image class semantics.

In the next section, an Event-Based Retrieval paradigm, especially useful in the 

context of consumer images, is developed. An event taxonomy for consumer images 

and a winner-take-all approach to compute the relevance score of an image for a 

query event are proposed.

In the section that follows, an Inter-Class Indexing scheme that exploits the 

relative memberships of an image to prototypical classes as image index is pro­

posed. That is, instead of making a hard decision on which class an image belongs
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to, its memberships to the image classes are normalized as an inter-class semantic 

histogram for similarity-based matching and retrieval.

Last but not least, in the section before the discussion section, an indexing 

scheme based on embeding of Local Class Patterns is proposed. A local image 

region is represented as a membership histogram of image classes. Hence an image 

index is a collection of histograms of class memberships, each for an image region, 

suitable for similarity-based matching and retrieval.

5.2 Event-Based Retrieval

The notion of Event conveys rich semantics to consumers in their collection of photos. 

From previous user study [Rodden and Wood, 2003] and a user survey we have 

conducted recently, we confirm that consumers prefer to organize and access photos 

along semantic axes such as Event (e.g. wedding party, fun time at swimming 

pool, at the park etc), People (e.g. myself, my daughter, Mary etc), Time (e.g. 

last Summer, this year, 2000 etc), and Place (e.g. at home, Disneyland, Paris 

etc). However consumers are reluctant to annotate all their photos manually as the 

process is too tedious and time-consuming.

As a cognitively convenient semantic unit, an Event actually encompasses other 

semantic axes as part of its 4 Ws:

• who takes part in the event (e.g. my family, John and his wife);

• when is the event taking place (e.g. last week, Dec. 2003);

• where is the event taking place (e.g. my house, at the beach); and

• what activity is involved (e.g. having meal, my birthday).

In this thesis, we define consumer photos (or home photos, family photos) as 

typical digital photos taken by average consumers to record their lives as digital 

memory as opposed to those taken by professional photographers for commercial 

purposes (e.g. stock photos like the Corel collection and many others of which 

previews are available at www.fotosearch.com).

http://www.fotosearch.com
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At webshots (community.webshots.com), a typical website dedicated for con­

sumers to upload and share their home photos, we notice that users apparently 

prefer occasions or activities as a broad descriptor for photos to other characteris­

tics (like objects present in the photo or the location at which a photo was taken). In 

particular, the classification (as at the 3rd April 2003) contains many more photos 

under the category ” Family and Friends” (more than 9 millions) than the sum of 

other categories (which add up to around 5 millions). Furthermore, categories such 

as ”Scenery & Nature”, ’’Sports”, ’’Travel” etc are the outcome of activities.

Although Vailaya et al. [Vailaya et ah, 2001] have presented a hierarchy of 8 

(plus 3 “Others”) categories for vacation photos, they are skewed towards scenery 

classification. Hence an event-based taxonomy is what consumers need. Figure 1 

depicts our proposed Event Taxonomy for home photos. A typical event could be 

a gathering, a family activity, or a visit to some place during holidays for instance. 

These correspond to the purposes of meeting with someone(s), performing some 

activity, and going to some place respectively.

For the gathering event, it could be in the form of parties, which we include here 

common occasions birthday parties and wedding parties, or having meals together. 

The family activities event refers to activity that involves family members. We 

keep it simple and general by dividing it into indoor and outdoor family activities. 

Examples of indoor activities can include kids playing, dancing, chatting etc.

Outdoor activities may include sports, kids at playground, picnic etc. The third 

major type of events is known as visits to places. It could be either people-centric 

or not. By people-centric, we mean the family members are the focus of a photo. 

In the case of non-people-centric photos, the family members are not the subjects 

of the photos. They are either absent or not clearly visible in the photos. In this 

latter case, we divide it into photos of natural scenes (nature) and urban scenes 

(man-made). For the nature event, the photos can be taken at mountain area, 

along riverside or lakeside (waterside), at a beach, and in a park (also garden, field, 

forest etc). As for the man-made event, we include photos taken at a swimming 

pool, along roadside (or street) and photos of interior.

Using the visual content alone (i.e. without using information from People, Time, 

and Place), we would not be able to model all the 4 Ws of an Event. For example,
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Figure 5.1: Event taxonomy for consumer photos
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it is not feasible to further differentiate breakfast, lunch, and dinner for the meals 

event if we do not make use of the Time information. In this thesis, we approximate 

Event by Visual Event, defined as an event that is based on the visual content of 

photos (i.e. the “what” aspect).

We propose a computational learning framework to model visual semantics of 

consumer photo events from sample photos at 2 levels. Figure 5.2 shows a schematic 

diagram of this framework.

Labeled + a 
Photos L

Figure 5.2: Learning event models for retrieval

At the single image level, salient image regions that exhibit semantic meanings to 

human users are adopted as training examples to construct semantic support regions 

(SSRs) that span a new indexing space. Local image regions of a photo is projected 

into this space as linear combinations of the semantic support regions and further 

aggregated spatially to form image content signature for similarity matching. The 

SSR framework has been described in Chapter 3.

At the image set level, we assume that for each Event Ei, there is an associated 

computational model Mi that allows us to compute the relevance measure R(Mi, Z) 

of a photo Z to Ei. To minimize manual annotation effort, event models Mi are 

learned from a small set of labeled photos C and the relevance measures of unlabeled 

photos U are computed in a winner-take-all approach to the event models (Figure 

5.2).

In this thesis, an Event model Mi is also learned statistically using support vector 

machines (SVMs), denoted as AL. The input patterns X to Mi are the SSR-based 

(or DSR-based) indexes of the images, Ti(Zj), where i indexes the SSR (or DSR) 

classes and j refers to the spatial regions.
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The following similarity measure between image index X with m local regions 

Xj and image index Y with m local regions Yj is defined when SVMs with polynomial 

kernels are used,

(i(x,r) = — Y, ^ T< ^Xj T ^ ^=•
m i ^Y,kTk(Xjy^kTk{Yif

(5.1)

If RBF kernels are preferred for the SVM learning and classification, the following 

Li-norm city block distance measure A can be adopted,

A(X, U = PM) - r4(y,)| (5.2)
712 j i

The SVM learning will compute the support images for the events from a set of 

labeled photos. Given an unlabeled photo of index Z, the output of an Event model 

Mi, denoted as S(Mi, Z), can be computed via the softmax function [Bishop, 1995] 

[Bridle, 1990] as
pvn Mt(Z)

= (5'3)

where A4i(Z) denotes a SVM classifier output.

In the winner-take-all approach, we compute the winner k as

k = argmaXiS(Mi, Z). (5.4)

Then the relevance measure of Z to Event model is defined as

R(Mi, Z)
S(Mk, Z), if i = k 

0, otherwise
(5.5)

That is, the relevance measure is the outcome of “competition” among the Event 

models Mi on the unlabeled photo Z. The unlabeled photo is “assigned” to the 

winner event with relevance measure being the maximum similarity matching score. 

The relevance measures to all other losers are simply defined as zeroes.
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5.3 Semantic Support Classes

The context of image retrieval is related to the application domain. More often 

than not, there exists prior semantic groupings of the images in the application 

domain that can be exploited for more effective and efficient retrieval and browsing. 

For example, for medical images, the context could be the pathological classes used 

for diagnostic purpose [Brodley et al., 1999] or the imaging modalities required for 

appropriate visualization [Mojsilovic and Gomes, 2002]. Stock image library such as 

the Corel image database is also organized into hierarchies of categories to facilitate 

access. For more general collection of images, the SIMPLIcity system [Li et ah, 2000] 

[Wang et ah, 2001] pre-classifies images into semantic categories based on segmented 

regions, such as textured-nontextured, objectionable-benign, or graph-photograph, 

to support effective browsing and to reduce the search space.

While modeling of image collection as semantic categories to facilitate browsing 

and filtering as well as a preprocessing step to reduce the search space in retrieval 

are popular, the information of semantic categories has not been used in a more 

direct form in similarity-based retrieval. In this thesis, besides looking at the local 

semantic regions of the query and database images as proposed in the previous 

chapters, we observe that the categorical context of an image with respect to prior 

semantic categories can also be used for indexing and matching.

In the next chapter, we shall elaborate on the role of categorical context in a 

probabilistic Bayesian formulation as a means to probe the relevance class for a 

given query and to allow contextual similarity matching. In this chapter, we focus 

on the indexing aspect.

Given an application domain, semantic classes Ck,k = 1, • • •, M are first identi­

fied. Then the class distribution is modeled using statistical learning. In this thesis, 

support vector learning is adopted for the learning of Ck. To echo the SSRs (Chapter 

3) that are local semantic regions designed to support image indexing and retrieval, 

we refer to Ck as Semantic Support Classes (SSCs) that are also used for the same 

purpose.

As our experimental evaluation is carried out on consumer images, we have 

designed a taxonomy for consumer images as used in Chapter 4 before and shown 

here again as Figure 5.3 for ease of reference. This hierarchy of 11 categories is
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more comprehensive than the 8 categories (plus 3 more “Others”) addressed in 

[Vailaya et al., 2001]. In particular, we consider sub-categories for indoor and city 

as well as more common sub-categories for nature.

Nature

Outdoor

Interior /Object

Consumer Photo

Waterside Swimming Pool

Figure 5.3: Proposed consumer image taxonomy

A support vector classifier Ck,k = 1, • • •, 7 is trained to differentiate each category 

from other categories. Using the softmax function [Bishop, 1995] [Bridle, 1990], the 

output of classification Ck given an image x is computed as,

eXpCfc(x)

Y^j expcAx) ’

and is used as an inter-class index for the image to capture the categorical context.

The use of relative memberships to classes or clusters as some form of image rep­

resentation for object detection and recognition (but not for the purpose of content- 

based retrieval) has been reported. For example, for the purpose of view-based face 

detection, K.K. Sung has constructed 6 face clusters and 6 non-face clusters and 

used the distance between the feature vector of a local image block and these clus­

ters as the input to the trained face detector rather than using the feature vector 

directly [Sung and Poggio, 1998].

As we shall see in the following chapters, SSRs and SSCs are complementary 

image indexes that can be combined in matching and ranking of images for similarity- 

based retrieval. The integrated matching can be derived from a principled Bayesian 

formulation (Chapter 6) and its resulting average precisions in the query-by-example 

experiments outperforms individual SSR-based and SSC-based indexes as well as a
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feature fusion approach based on color and texture features (Chapter 7).

Similar to event modeling and retrieval described in the previous section, the 

detection-based index using SSRs (or DSRs) is viewed as a feature vector for image 

classification. That is, Ti(Zj) Vi,j as described before is treated as an input vector 

for SVMs based on the following similarity measure between image index x with 

m local regions Xj and image index y with m local regions Yj for polynomial kernels,

Note that this similarity measure is also used as the matching function in similarity- 

based retrieval using SSR-based indexes (to be described in Chapter 7). The follow­

ing Li-norm city block distance measure A has also been considered, for the case of 

RBF kernels (or as an alternative matching function for similarity-based retrieval),

In our experiments, we trained support vector machines on 7 classes of images 

(i.e. Cfc, k — 1, 2, • • •, 7 in Equation (5.6)) for the modeling of categorical context. 

Similar to the SSR training, the support vector machines were trained using a poly­

nomial kernel with degree 2 and constant 1 (C = 100) [Joachims, 1999]. For each 

class, a human subject was asked to define the list of ground truth images from 

the 2400 collection and 20% of the lists was used for training. To ensure unbiased 

training samples, we generated 10 different sets of positive training samples from the 

ground truth list for each class based on uniform random distribution. The negative 

training (test) examples for a class are the union of positive training (test) examples 

of the other 6 classes and the miscellaneous class. The classifier training for each 

class was carried out 10 times on these different training sets and the support vector 

classifier of the best run was retained.

Table 5.1 lists the statistics related to the training of the SSC classes (left-to- 

right): SSC class labels, numbers of positive training examples (p-train), numbers 

of positive test examples (p-test), numbers of support vectors computed (sv), and 

the classification rate (rate) on the entire 2400 collection. The miscellaneous class

(5.7)

A(*,»)-EETO)-3i«)lm „• ,•j i
(5.8)
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Table 5.1: Training statistics for SSCs

Semantic Support Classes p-train p-test sv rate
Indoor: People inpp 172 688 234 85.1
Indoor : Obj ects inob 27 107 136 95.7
Nature: Park park 61 243 158 92.4
Nature: Mountain mtrk 13 54 116 98.0
Nature: Waterside wtsd 30 120 151 95.3
City:Pool pool 10 42 72 98.7
City:Street strt 129 516 259 84.4

(not shown in the table) has 188 images that include images of dark scene and bad 

quality.

Similar to the illustration of the SSR-based and DSR-based indexes in the pre­

vious chapters, we show the Rk(x) > 0.1 of SSCs in Table 5.2 that correspond to 

the 3 images shown in Figure 5.4.

Figure 5.4: 3 image examples to illustrate SSC-based image indexes

Table 5.2: Key SSCs in the indexes for the images shown in Figure 5.4

Image x Class Ck Rk(x)
left park 0.48
left strt 0.20
left wtsd 0.11
center strt 0.76
right inpp 0.48
right pool 0.14
right wtsd 0.12
right strt 0.10

As can be seen from Table 5.2, the leftmost image in Figure 5.4 is classified 

mainly into the park class (0.48). But it has also resulted in some classification
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outcome in SSRc strt (0.20) and wtsd (0.11) because images of these two classes 

also contain foliage and people. The single dominant class for the center image in 

Figure 5.4 is the strt class with a high confidence of 0.76. For the rightmost image 

in Figure 5.4, the SSC inpp (indoor people) has the highest classification output of 

0.48, although there are also some prediction for the pool (0.14) and wtsd (0.12) 

classes due to the presence of large area of skin and for the strt class (0.10) due to 

the presence of people.

The effectiveness of the SSC-based image indexes will be evaluated using query 

by example experiments in Chapter 7.

5.4 Local Class Patterns

While the SSC indexing scheme described above focuses on the use of entire image 

representation (i.e. SSR detection-based image index) x for learning, classification, 

and indexing, this section looks at image classification decisions on local image 

regions z and the use of these Local Class Patterns (LCPs) for image indexing.

Recall that in the image semantics discovery framework described in Chapter 4, 

the classifiers Ck are trained on the feature vectors of local image blocks z to derive 

intra-class recurrent and inter-class discriminative patterns as DSRs. LCPs can be 

computed using the softmax function [Bishop, 1995] [Bridle, 1990] as,

eXpcd2)
Yhj expcF2) ’

and embedded as image index, similar to the detection-based indexing of SSRs 

(Chapter 3) and DSRs (Chapter 4)), for similarity matching and retrieval.

To recapitulate, the indexing process consists of three steps, namely view-based 

detection (Section 3.4), multi-scale reconciliation (Section 3.5), and spatial aggrega­

tion (Section 3.6), as summarized in Figure 5.5. That is, in these steps of indexing, 

the SSRs and DSRs are replaced by LCPs.

In [Szummer and Picard, 1998], classification decisions on image blocks have 

been used as binary patterns for indoor/outdoor image classification. Our aim 

here is not image classification but image indexing based on local class patterns.
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reconcileimages indexesaggregatedetect
LCP

Figure 5.5: A schematic digram of image indexing based on LCPs

Table 5.3: Training statistics of classes learned for LCP-bsaed indexing

Class size #trg #sv
inob 134 15 1905
inpp 840 20 2249
mtrk 67 10 1090
park 304 15 955
pool 52 10 1138
strt 645 20 2424
wtsd 150 15 2454

Moreover, we preserve the soft classification decision vectors and allow fine-grained 

tessellated blocks with multi-scale reconciliation.

As mentioned in the previous chapter, we trained 7 SVMs with polynomial 

kernels (degree 2, C = 100 [Joachims, 1999]) for the leaf-node categories (except 

miscellaneous) in Figure 5.3 on color and texture features (Equation (4.1)) of 

60 x 60 image blocks (tessellated with 20 pixels in both directions) from 105 sample 

images. Hence each SVM Ck was trained on 16,800 image blocks z.

Table 5.3 lists the training statistics of the semantic classes Ck for LCP-based 

indexing (Equation (5.9)). The columns (from left to right) list the class labels, the 

number of images of each class in the 2400 collection, the number of training images, 

and the number of support vectors learned. The 105 training images are shown in 

Figure 4.6. Their top-down, left-to-right order (and the number of training images 

in each class) corresponds to the classes (and #trg) as listed in Table 5.3.

Similar to the illustration of the SSR-based and DSR-based indexes in the pre­

vious chapters, we show the T*(Z) >0.1 of LCPs in Tables 5.4, 5.5, and 5.6 that are 

detected, reconciled, and aggregated in 3 tessellated blocks (outlined in red bounding 

boxes) in Figures 5.6, 5.7, and 5.8 respectively.

For Figure 5.6, the key LCPs listed in Table 5.4 are reasonable. The top image 

block is classified as park with very high confidence of 0.81. For the center image
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Figure 5.6: A sample image of park to illustrate LCP-based image index

Table 5.4: Key LCPs in the index for the image shown in Figure 5.6

Image Block Key LCP Aggregated Tk(Z)
top park 0.81
center park 0.48
center inob 0.22
center inpp 0.18
right strt 0.23
right inpp 0.22
right park 0.19
right wtsd 0.10

block, park is still the top choice (0.48). Indoor people (inpp) (0.18) is also de­

tected due to the presence of crowd. There is also some false detection of indoor 

objects/interior (inob) (0.22). For the right image block, street strt and indoor 

people inpp have relatively higher classification output (0.23 and 0.22 respectively) 

due to the appearances of hut and people, although park with 0.19 is also detected. 

There is also some classification error for the waterside wtsd class (0.10).

In the case of Figure 5.7 (c.f. Table 5.5), the left block is classified mainly as 

street (strt) (0.36). It is also mistaken as mtrk class (0.32) due to the dark shadow 

area. For the center image block, the strt class has a strong confidence value 

of 0.66 due to the dominant presence of man-made structure in the image block. 

For the bottom image block, indoor people (inpp) (0.38) has a higher classification
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Figure 5.7: A sample image of street scene ito illustrate LCP-based image index

Table 5.5: Key LCPs in the index for the image shown in Figure 5.7

Image Block Key LCP Aggregated Tk(Z)
left strt 0.36
left mtrk 0.32
center strt 0.66
center inpp 0.16
center mtrk 0.10
bottom inpp 0.38
bottom strt 0.29
bottom inob 0.19

output than that of the strt class (0.29) as the appearance of human figure is more 

dominant. There is also false detection of indoor objects/interior (inob) (0.19).

In the image shown in Figure 5.8, the indoor people (inopp) class is dominant 

in all three image blocks considered (Table 5.6) with classification outputs of 0.77, 

0.73, and 0.76 respectively. For the left image block, there is some classification 

error of 0.13 for the waterside (wtsd) class due to the background wall color that 

is similar to that of river water. Indoor objects/interior (inob) is detected for both 

center and right image blocks with same value of 0.15.

The effectiveness of the LCP-based image indexes will be evaluated using query 

by example experiments in Chapter 7.
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Figure 5.8: A sample image of indoor to illustrate LCP-based image index

Table 5.6: Key LCPs in the index for the image shown in Figure 5.8

Image Block Key LCP Aggregated Tk(Z)
left inpp 0.77
left wtsd 0.13
center inpp 0.73
center inob 0.15
right inpp 0.76
right inob 0.15

5.5 Discussion

We have proposed two local region semantics learning and indexing schemes (i.e. 

SSRs and DSRs) in the previous two chapters and three class-based semantics learn­

ing and indexing schemes in this chapter, one for event-based retrieval and two for 

similarity-based retrieval. We compare the four learning and indexing schemes de­

signed for similarity-based retrieval, denoted as “SSR”, “DSR”, “SSC”, and “LCP” 

as Table 5.7.

While both the SSR and DSR schemes refer to local visual semantics such as 

faces, foliage, water, buildings etc, the SSC and LCP schemes are based on global 

class meanings such as indoor, outdoor, city, nature etc (first row of Table 5.7). 

All the schemes compared except SSC focus at local regions for indexing. The 

SSC scheme looks at the entire image to compute its index (second row). Hence
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Table 5.7: Comparison of indexing schemes based on SSR, DSR, SSC, and LCP

SSR DSR SSC LCP
semantics local local global global
index area local local global local
multi-scale yes yes no yes
trg. vectors z z Ti(Zj) z
# trg. vectors 375 7467 613 16800
# trg. images 105 105 613 105
avg. # sup. vec. 33 253 161 1745
# semantic dim. 26 26 7 7

multi-scale view-based detection and reconciliation is only applicable to SSC, DSR, 

and LCP schemes but not SSC scheme (third row). The schemes that index on 

local regions use composite feature vector z (i.e. zc and zl) for SVM learning and 

detection while semantic histograms Ti(Zj) for a set of regions Zj are necessary for 

SSC learning and classification (fourth row).

In terms of the size of training data for SVM learning, the semantics design ap­

proaches (SSR and SSC) require fewer samples that are provided by human designer 

(fifth row of Table 5.7). On the other hand, the semantics discovery approaches 

(DSR and LCP) use many more training samples but they can be generated with 

very little human effort. However, in terms of number of images used for SVM 

training (sixth row), we have deliberately kept it identical as 105 for local semantic 

schemes (SSR, DSR, and LCP) so that their retrieval performances for the query- 

by-example experiments (Chapter 7) are comparable.

The average numbers of support vectors computed from the SVM learning are 

listed in the seventh row of Table 5.7. They are more or less proportional to the 

number of training vectors (fifth row). Last but not least, as shown in the last row, 

indexing schemes based on local semantics (SSR and DSR) span an indexing space 

of 26 semantic axes while indexing based on global semantics (SSC, LCP) only has 

7 index dimensions (i.e. 7 disjoint consumer image classes).
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Integrated Similarity Matching

Two paradoxes are better than one, they may even
suggest a solution.

Edward Teller (1908 - 2003)

6.1 Overview

To bridge the semantic gap in content-based image indexing and retrieval, several 

indexing schemes based on local and global semantics have been proposed in previous 

chapters. A key emphasis in these proposed indexing schemes is the use of statistical 

learning to train pattern classifers for semantics detection. Except for event-based 

image retrieval (Section 5.2), the other schemes (SSR, DSR, SSC, LCP) represent 

an image index in the form of normalized histograms that can be used in similarity- 

based retrieval.

In this chapter, we will focus on the distance (i.e. dissimilarity) and similarity 

measures for these indexing schemes. Most importantly, we present a unified prin­

ciple based on Bayesian probability theory to combine local and global semantic 

indexes in similarity matching, as another key idea in this thesis is to bridge the 

semantic gap. Interestingly, the integrated similarity matching schemes involving 

different pairs of image indexes form dual frameworks corresponding to semantic 

design and discovery approaches respectively.
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6.2 Similarity Matching

Many distance and similarity measures have been studied empirically for similarity- 

based retrieval in the literature [Puzicha et al., 1999]. We believe that the effec­

tiveness of a similarity (or distance) measure depends on the application domain 

and the index representation. In this thesis, we have only considered several more 

commonly used similarity (or distance) measures in our similarity-based retrieval 

experiments. We shall discuss these measures below and compare their effectiveness 

in the next chapter.

6.2.1 Local Index

Suppose we wish to compare two image indexes x and y, each consists of m detection 

vectors T* for local blocks Xj and Yj respectively. Their similarity (or distance) can 

be computed in terms of the similarities (or distances) between their corresponding 

local blocks. The detection vector 7* could be either SSR-based, DSR-based, or 

LCP-based.

A popular similarity measure used by the information retrieval community is the 

cosine similarity (i.e. normalized dot product),

If Z/2-norm Euclidean distance is used, then the distance measure becomes,

e jjjjxjywj)
(6.1)

One of the simplest distance measures is the Li-norm city block distance,

m j 1
(6.2)

(6.3)

Another distance measure considered is the Kullback-Leibler (KL) distance (or 

cross-entropy) [Kapur and Kesava, 1992] for comparing two probability distribu-
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tions x and y,

D(x\\y) = In —
t Vi

(6.4)

As D(x\\y) is not symmetric in general, a symmetric cross-entropy can also be 

used [Kapur and Kesava, 1992],

J{x\\y) = D{x\\y) + D(y\\x). (6.5)

For comparing local semantic image indexes, D(x\\y) is modified as

A(X, „) = 1£ ETi(Xj) In (6.6)

6.2.2 Global Index

In the case of inter-class indexes based on SSCs, the definitions of the distance and 

similarity measures are similar to those described above but simpler. Suppose x and 

y denote the detection-based indexes for two images. Then their SSC-based indexes 

are represented as Rk(x) and Rk{y) respectively.

The cosine similarity is defined as

O t-r“ssc^, y) — /------------  /-------------

The city block distance is computed as

ASSc{oc,y) = \Rk(x) - Rk(y)l (6.8)
k

The Euclidean distance is defined as

Assc(x,y) = - Rk(y))2- (6.9)

Last but not least, the KL-distance is computed as

Assc(x, y) = Yl Rk(x)ln (6-10)
k Rk\y)
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6.3 Combining Local and Global Similarities

The task of looking for images to satisfy some information need is complex because 

it may range from targetting at a specific image, searching for a group of images 

that share some common properties, to browsing without a well-defined objective 

other than finding interesting images [Cox et ah, 2000].

Suppose every database image is represented as a data point in the indexing 

space. While target-specific search is equivalent to finding a particular data point 

in this space, browsing is like wandering in this space until some images that match 

the user’s current dynamic information need are found (or until the user decides 

to terminate browsing). Between these two extreme modes of image information 

seeking, the more common form of category-based image search aims to look for a 

group of related images, represented as a distribution of data points in the indexing 

space, that share some common properties entailed by the information need. Since 

target-specific search is too rigid and aimless browsing is ill-defined, we shall focus 

on the category-based search that finds images similar to some query image(s) in 

this thesis.

Given an image retrieval system with a database of N images (assume N is stable 

within a query session), the hidden information need of a user over the N images 

can be modeled as the posterior probability of the set of relevant images R given an 

expression of the information need in the form of query specification q and an image 

x in the current database, P(R\q,x). We assume that the image retrieval system 

can compute P(R\q,x) for each x in the database. The objective of the system is 

to return images with high probabilities of relevance to the user.

When the query is in the form of image examples, query processing becomes 

an underconstrained density estimation problem i.e. to compute the probability 

distribution of relevance based on very few query examples. Though there are 

innovative techniques proposed to increase the number of training examples with 

relevance feedback technique [Wu et ah, 2000b] [Tieu and Viola, 2000], we would 

like to investigate the role of query example further with two key observations.

First, in query by example (QBE), the probability of relevance depends on the 

similarity between query q and image x. Next, we note that the set of relevant 

images R does not exist until a query has been specified. However we can construct
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prior categories of images Ck,k = 1, • • •, M as some prototypical instances of R 

and compute the memberships of q and x to these prior categories for contextual 

similarity.

We believe that both local (intra-image) and global (inter-class) similarities play 

complementary roles in image matching and ranking. Using a Bayesian formulation, 

we have

' P(q,x)

We observe that P(q, x) tends to be small if q and x are similar (i.e. less likely to 

find similar images than dissimilar pair in a large database). On the other hand, 

P(q, x\R) tends to be large if q and x are similar with respect to R (i.e. q and x are 

more likely to co-occur in R if they belong to R). And P(R) is constant for a given 

query session.

Hence P(R\q,x) is proportional to the similarity between q and x given R (de­

noted as fi(q,x)) and the similarity between q and x in terms of their contents 

(denoted as \(q,x)) i.e.

P(R\q, x) oc /i(g, x) * X(q, x). (6-12)

where ★ is some confluence operator to combine the similarities.

For the purpose of retrieval, Equation (6.12) provides us a principled way to 

rank images x by their probabilities of relevance to the user’s information need 

as represented by the query example q. Indeed when the similarities p(q, x) and 

A(q, x) are expressed in the form of probabilistic distance (i.e. inverse of similarity) 

such as the KL distance (or cross-entropy) (Equation (6.4)), ordering images from 

the smallest distance to the largest distance is the manifestation of the minimum 

cross-entropy principle ([Kapur and Kesava, 1992], pp. 13).

To recapitulate, the principle requires us to choose the a posterior probability 

distribution x such that it satisfies all given constraints, and it has the minimum 

cross-entropy relative to the specified a priori distribution. In the case of QBE, q 

plays the role of a priori distribution. Hence Equation (6.12) echoes the Probability 

Ranking Principle in text information retrieval [Robertson and Sparck Jones, 1976]. 

We quote the principle below for ease of reference:
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The Probability Ranking Principle

If a reference retrieval system’s response to each request is a ranking 

of the documents in the collection in order of decreasing probability of 

relevance to the user who submitted the request, where the probabilities are 

estimated as accurately as possible on the basis of whatever data have been 

made available to the system for this purpose, the overall effectiveness of 

the system to its user will be the best that is obtainable on the basis of 

those data.

Figure 6.1 depicts our proposed similarity integration framework in a schematic 

block diagram, using similarity matching based on SSR and SSC indexes for X(q, x) 

and p(q,x) respectively. At the topmost row, an image to be indexed is subjected to 

multi-scale view-based detection against SSRs learned from selected image regions 

(second row, left). The soft detection decisions are reconciled and aggregated spa­

tially into compact indexes. Indexes of selected classes are used to learn the SSCs 

for the image collection (second row, right). Given a query and an image in the 

database (bottom), the matching is being done at both the content and context 

levels as well as combined and ranked under probabilistic principles.

selected regions selected classes

aggregate indexesimages detect reconcile

context
match

content
match

query

Figure 6.1: System flow of indexing and retrieval with similarity integration

Since only ranking matters for practical image retrieval and the actual relation
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between fi(q,x) and A(q,x) in Equation (6.12) is unknown, we consider two simple 

schemes in our empirical evaluation in the next chapter. A multiplicative scheme is 

defined as

P(R\q,x) — /i(q, x) x \(q, x), (6.13)

and a linear combination (cj £ [0,1]) scheme is

P(R\q, x) = uJfi(q, x) + (1 — u)X(q, x). (6-14)

Besides substituting SSR and SSC similarity matching for A(g, x) and fi(q, x) respec­

tively, we have also experimented with similarities based on DSR and LCP indexes 

respectively.

6.4 Dual Frameworks

Based on the integrated similarity matching scheme described above, both the local 

(i.e. SSR, DSR) and global (SSC, LCP) image semantics are unified in the matching 

and ranking of images for similarity-based retrieval. In particular, following different 

computational pathways, as depicted in Figure 6.2, result in dual cascading learn­

ing frameworks that combine both intra-image and inter-class semantics for image 

indexing and retrieval.

Integrated
Matching

Discovered 
Support Regions

Image Blocks

Semantic Support 
Classes

Local Support 
Classes

Semantic Support 
Regions

Figure 6.2: Dual cascading image indexing and matching frameworks
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The computational pathway on the left-hand-side of Figure 6.2 corresponds to the 

semantics design framework based on supervised learning. In this design framework, 

support vector detectors for SSRs that are determined for an application domain are 

trained. The reconciled and aggregated detection-based indexes then serve as input 

patterns for support vector learning of image classifiers to generate inter-class (SSC) 

image indexes. During retrieval, similarities based on both indexes are combined to 

rank images. Hence the path is based on construction of local semantics in order to 

generate global semantics before their respective image indexes can be integrated in 

similarity matching.

On the other hand, the semantics discovery framework based on hybrid super­

vised and unsupervised learning provides an alternative flow for indexing and re­

trieval, shown as the computational pathway on the right-hand-side of Figure 6.2. 

In this discovery framework, support vector image classifiers are first trained on 

local image blocks from a small number of class-labeled images. Then local seman­

tic patterns are discovered from clustering the image blocks with high classification 

output. Training samples are induced from cluster memberships for support vector 

learning to form local semantic pattern detectors. In the similar manner, the simi­

larities based on LCP-based indexes and DSR-based indexes are combined to rank 

images during retrieval. Thus, in contrast to the left computational pathway, the 

flow starts with global semantics to induce local semantics before their respective 

image indexes are used in combined similarity matching.
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Query and Retrieval

Why think? Why not try the experiment?
John Hunter

Performance is your reality. Forget everything else
Harold Geneen

7.1 Overview

In this chapter, to address the semantic interpretation problem mentioned in Section 

1.1.3, we present three query formulation and associated query processing methods, 

namely Qyery by Class/Event (QBCE), Query by Spatial Icons (QBSI), and Query 

by Multiple Examples (QBME), as means to reduce the ambiguity and subjectivity 

in query interpretation.

While QBCE supports queries at the high-level semantics using predefined im­

age class or event labels, QBSI allows visual query formulation based on spatial 

arrangement of visual icons, representing predefined local visual semantics. These 

two query methods are easily supported by the global and local indexing schemes 

presented in previous chapters respectively. While they allow explicit specification of 

visual semantics, the QBME method defines the information need in implicit man­

ner based on multiple image examples, as a simple extension of the conventional
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query-by-example method.

The three query methods are evaluated using different sets of queries on 2400 

real consumer images. The data set is first described in the next section. In each of 

the subsequent sections devoted to the three query methods separately, the details of 

query processing, queries and ground truth, and experimental results are described 

respectively.

7.2 Test Collection

In this thesis, we have decided to evaluate our proposed indexing schemes and query 

methods on broad domain consumer images. As explained in Chapter 1, consumer 

images exhibit very high content variations with very few annotations. They are 

very challenging for content-based image retrieval evaluation.

We are fortunate to have access to a collection of 2400 consumer images from 

a single family (Mr. Jean-Luc Lebrun) for the experiments in this thesis. These 

genuine consumer images are taken over 5 years in several countries with both indoor 

and outdoor settings. The images are those of the smallest resolution (i.e. 256 x 384) 

from Kodak PhotoCDs, in both portrait and landscape layouts. After removing 

possibly noisy marginal pixels, the images are of size 240 x 360. The indexing 

process automatically detects the layout and applies the corresponding tessellation 

template for portrait or landscape layout. On one hand, the small resolution of the 

images allows for more efficient processing. On the other hand, they pose greater 

challenge for feature extraction and visual concept detection.

To have a feel of the content diversity in our 2400 collection, we show 72 (3%) of 

them in Figure 7.1. For outdoor images, the content varies from natural landscape 

(beach, lakeside, river, pond, park, forrest, garden, mountain, rocky area etc) to city 

scenes (urban area, rural area, crowded street, market, road with vehicles, swimming 

pool, temple, mosque, castle etc) from different countries and cultures (Singapore, 

France, China, Cambodia, Malaysia, Indonesia etc). The indoor images are taken 

with different focuses (portrait of single person or a few people, groups of different 

sizes, people having meal, cultural performance, wedding ceremony, interior layout, 

display of objects like painting, toys, antique collection etc). In both outdoor and
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indoor images, the subject of focus could be people (or faces in photo frame), statues, 

animals, flowers, buildings (or their miniature in theme park) etc and their mixture 

with occlusion, taken with different posture, during day or night, from different 

viewpoints, and at different distances. Figure 7.2 illustrates some of the photos of 

bad quality (e.g. faded, over-exposed, blurred, dark etc). We did not remove these 

bad quality photos from our test collection in order to reflect the complexity of the 

original data. There are 188 (approx. 7.8%) such kind of noisy and ambiguous 

photos in our 2400 test collection.

7.3 Query by Class/Event (QBCE)

7.3.1 Query Processing

Query by Class/Event (QBCE) refers to query based on predefined image class or 

event labels. The event-based retrieval framework proposed in Section 5.2 can be 

used to support this kind of queries. Given a selected class or event label, the query 

processing algorithm of QBCE needs to decide the set of relevant images in the 

database for the selected class or event and return them to the user. In addition, 

the returned images should be ranked in descending order of relevance for efficient 

browsing of the thumbnail images.

Recall that in the winner-take-all approach for event-based image retrieval, the 

relevance measure R(Mi,Z) of any image with index Z can be computed against 

the learned Event (or class) model Mi in three simple steps. First the output of an 

Event model M*, denoted as S(Mi:Z), can be computed as

S(Mi,Z) exp-^^)
Yjj expM^z"> ’

where A'ti(Z) denotes a SVM classifier output. 

Next the winner k is decided by

(7.1)

k = argmaXiS{Mi, Z). (7.2)
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Figure 7.1: Sample consumer photos in the 2400 test collection

Figure 7.2: Some consumer images of bad quality
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Lastly the relevance measure of Z to Event model Mi is calculated as

R(Mi,Z)
S(Mk, Z), if i = k 

0, otherwise
(7.3)

7.3.2 Queries and Ground Truth

We have performed two sets of QBCE experiments. The first experiment for event- 

based retrieval includes 5 common events from the proposed event taxonomy as 

shown in Figure 5.1. They are events meal, wedd, park, wtsd, pool as listed 

in Table 7.1. For each event, the list of photos considered relevant to the event is 

constructed from the 2400 photos by 3 human subjects. The sizes of the ground 

truth lists are shown in Table 7.1. Figure 7.3 shows 3 sample photos of each event.

Table 7.1: Events and ground truth (G.T.) sizes

Label Event G.T.
meal Having meal 76
wedd Wedding 241
park At the park 304
wtsd Along waterside 114
pool At swimming pool 52

Figure 7.3: Sample photos of each (column) event in Table 7.1

The second experiment for QBCE involves 11 image categories (i.e. all nodes 

except the root node and the miscellaneous node) in the proposed consumer image 

category hierarchy shown in previous chapters and repeated in Figure 7.4 for ease of
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reference. Again for each of the 11 categories considered, the list of relevant photos 

is constructed from the 2400 photos by 3 human subjects. The sizes of the ground 

truth lists are shown in Table 7.2. Figure 7.5 shows some sample photos of these 

categories. Note that the wtsd category is different from the wtsd event in Table 

7.1 as the latter does not include images taken at the beaches.

Consumer Photo

MiscellaneousOutdoor

Interior/ObjectPeople Nature

Swimming Pool Street

Figure 7.4: A hierarchy of consumer image categories

Table 7.2: Categories and ground truth (G.T.) sizes

Label Category G.T.
indr indoor 994
outd outdoor 1218
misc miscellaneous 188
inpp people indoor 860
inob interior/object 134
city city 697
natr nature 521
pool swimming pool 52
strt street 645
wtsd waterside/beach 150
park park/garden etc 304
mtrk mountain/rocks 67
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Figure 7.5: Two sample photos for each category listed in Table 7.2

7.3.3 Experimental Results

For the event-based retrieval experiment (Table 7.1), the learning of each of the 

5 events is based on a training set of only 10 labeled photos to simulate practical 

situations (i.e. a user only needs to label 10 photos for each event). To ensure 

unbiased training samples, 10 different training sets are generated from the ground 

truth list for each event based on a uniform random distribution. The learning and 

retrieval of each event are thus performed 10 times and the results are averages over 

these 10 runs. Note that for each of these runs, the photos used for training are 

removed from the ground truth when computing the precision and recall values.

To retrieve photos of an Event, a user simply selects one of the 5 event labels. 

Based on the Event models, the relevance measures were computed as given above. 

We compare our event modeling and retrieval approach (denoted as “EBR”) with 

a baseline method, color histogram of 11 key colors (red, green, blue, black, grey, 

white, orange, yellow, brown, pink, purple) in the HSV color space, as adopted by 

the original PicHunter system [Cox et al., 2000] (denoted as“HSV-ll”).

Table 7.3 lists the average precisions (over 10 runs) of retrieval for each event 

among the top 20 and 30 retrieved photos for the two methods and the percentages 

of improvement by the EBR method over the HSV-11 method.

From Table 7.3, we see that our method performs extremely well for the park and 

wedd events and fairly well for the pool event. The meal and wtsd events remain as 

challenging problems to be addressed, likely due to the lack of consistency in their
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Table 7.3: Average precisions at top numbers of photos

Avg. Prec. HSV-11 EBR Improved
meal, top 20 0.08 0.16 100%
meal, top 30 0.08 0.17 113%
wedd, top 20 0.56 0.91 63%
wedd, top 30 0.58 0.90 55%
park, top 20 0.48 0.96 100%
park, top 30 0.43 0.96 123%
wtsd, top 20 0.20 0.36 80%
wtsd, top 30 0.17 0.31 82%
pool, top 20 0.16 0.61 281%
pool, top 30 0.13 0.51 292%

visual contents. Nevertheless, in all cases, our method significantly outperforms 

feature-based approach such as color histogram.

In the second experiment for the 11 image categories shown in Table 7.2, 20% of 

the 2400 photos is designated as training samples to learn a category. Similarly, to 

ensure unbiased training samples, 10 different sets of positive training samples are 

generated from the ground truth list for each category based on uniform random 

distribution. The negative training samples of a given category are positive training 

samples from other categories that do not overlap with the category.

The evaluation of retrieval precision is carried out hierarchically with respect to 

the category tree in Figure 7.4. The test data for the category of a child node in 

a run is the ground truth list of its parent node minus the training samples used 

for learning the category of the child node in the run. For example, to evaluate 

the retrieval performance of nature (natr) photos, the ground truth list of outdoor 

less the training samples used for the nature category is taken as the test data. As 

another example, the test data for indoor is all the 2400 photos minus the training 

samples for learning the indoor category. The learning and retrieval of each category 

were performed 10 times and the results are averages over these 10 runs. Table 7.4 

lists the average precisions (over 10 runs) of retrieval among the top 20, 30, and 50 

retrieved photos for the 11 categories.

From Table 7.4, we observe that, on average and up to first 50 thumbnails, a user 

is guaranteed to get almost all relevant photos of the respective categories except less
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Table 7.4: Average precisions at top numbers of photos

Avg.Prec. Top 20 Top 30 Top 50
indr 0.94 0.96 0.96
outd 1.00 1.00 1.00
inpp 0.99 0.99 0.99
inob 0.84 0.75 0.56
natr 0.96 0.96 0.95
city 0.95 0.94 0.93
park 1.00 0.99 0.98
mtrk 0.41 0.27 0.16
wtsd 0.92 0.89 0.66
pool 0.47 0.32 0.21
strt 0.99 0.99 0.99

so for the categories interior/object (inob) and waterside (wtsd), and even less so 

for the categories mountain/rocks (mtrk) and swimming pool (pool). The reasons 

for poorer performance in these 4 categories are two-fold. First these categories 

have much fewer positive training samples (i.e. 27,30,13,10) for statistical learning. 

Moreover, they also comprise images of varied contents (Figure 7.5: interior versus 

object(s), mountain versus rocks, river-side and lakeside versus beach (no water 

visible), pool water dominant versus pool with other structure). We believe that 

with more training samples, their performance would be raised.

We believe that high precision values at top number of retrieved photos is im­

portant. In practice, this implies that the user can easily locate relevant photos in 

one or two pages of photo thumbnails displayed on a computer screen. If the client 

device is a mobile device such as PDA and cellphone with limited display area (say 

4 to 6 thumbnails per screen), our approach can sustain a high precision value that 

shows many relevant photos in the first few pages before the user loses his or her 

patience.
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7.4 Query by Spatial Icons (QBSI)

7.4.1 Query Processing

Query by Spatial Icons (QBSI) is a new query formulation method that allows 

explicit specification of visual semantics in terms of “what” and “where”. A QBSI 

query is composed as a spatial arrangement of visual icons, hence the name. Query 

processing for QBSI involves both pattern-based and logic-based computation. A 

Visual Query Term (VQT) q specifies a region R where a local semantic region (such 

as SSR) Si should appear. A query formula then chains these VQTs together via 

appropriate logical operators. The truth value A(q,x) of a VQT q for any image x 

is simply defined as

where Ti(R) is an aggregated detection-based index as defined in Equation (3.29) of 

Section 3.6.

In our current implementation, we support a two-level Is-A hierarchy of SSRs 

(Figure 3.5) though it can be extended to deeper or other forms of hierarchies (e.g. 

Part-Whole hierarchy) (c.f. Section 3.7). A VQT can involve a more specific visual 

semantics (e.g. swimming pool water, denoted as Water:Pool) or a more abstract 

semantics (e.g. water, denoted as Water). On the other hand, the spatial constraint 

R defines the location and size of the specified visual semantics as drawn on a canvas.

As described in Section 3.7, the truth value Dk(R) of a VQT that specifies a 

more abstract visual semantics Ck (i.e. People, Sky, Ground, Water, Foliage, 

Mountain, Building, and Interior) can be computed in terms of the truth values 

of more specific visual semantic classes Si that belong to Ck,

A QBSI query Q can be specified as a disjunctive normal form of VQT (with or 

without negation),

A (q,x) = Ti(R) (7.4)

Dk(R) = maxTi(R). (7.5)

Q = (?n A ?i2 A • • •) V • • • V (9ci A 9C2 A ■ - •). (7.6)
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Then the query processing of query Q for any image x is to compute the truth 

value A(Q, x) using appropriate logical operators. As uncertainty values are involved 

in SSR detection and indexing, we adopt fuzzy operations [Klir and Folger, 1992] as 

follows:

\(q,x) = 1-A (q,x), (7.7)

\(qiAqj,x) = mm(X(qiix),X(qjlx))1 (7.8)

X(qi\/ qj,x) = max(A(^, x), X(qj, a:)). (7.9)

In short, the query processing algorithm of QBSI deals with the certainties Ti(R) 

and Dk(R) of word labels Si and Ck (e.g. Water :Pool, Water) extracted from image 

region R respectively. These are abstraction learned upon low-level features such as 

color and texture. The indexes do not store the feature values anymore and hence 

the matching does not involve low-level features.

Nevertheless, the vocabulary for QBSI is limited by the semantics that can be 

learned and detected in image content. For instance, abstract concepts such as ‘hap­

piness’ and ‘Africa’ would require presence of additional text annotation associated 

with the images which are not always available in certain application domains (e.g. 

consumer photos). In this thesis, we focus on semantics that can be extracted from 

the image content alone.

In our existing web-based prototype, an intuitive graphical interface is provided 

for a user to specify a QBSI query. To specify a VQT, the user first selects a SSR 

(specific or abstract) from a palette of icons associated with the SSR. Then a spatial 

image region based on the selected icon can be drawn by clicking and dragging a 

rectangular box in a canvas. If the user wishes to apply a negation operator, he or 

she can click on the “NOT” button followed by the drawn region. A yellow cross 

will be superimposed on the selected region. The user can continue to specify more 

VQT in a conjunct by repeating the above steps. The user can also start a new 

conjunct in the disjunctive normal form (Equation (7.6)) by clicking on the “OR” 

button to bring up a new window with canvas and icons. A reset button is provided 

to clear all the icons drawn for a conjunct in a given window. A typical screen shot 

is given in Figure 7.6 (note that only a subset of the visual icons are displayed in
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Figure 7.6: A screen shot for QBSI interface

this prototype). In particular, the figure illustrates a disjunct of two conjuncts, one 

with 3 visual query terms (left) and the other with 2 visual query terms (right), one 

of which is a negation on water.

As the region specified by a VQT is arbitrary, the precise computation of Ti(R) 

using Equation (3.29) on reconciled small regions Zk is not cost effective in terms of 

speed and storage. Hence as a trade-off in our implementation, we pre-indexed the 

images using a uniform 3x3 spatial tessellation with the 26 SSRs defined in Figure 

3.5 based on Equations (3.24) and (3.29). The truth value of a VQT q with region 

R and SSR Si is approximated as,

w N E ZjezTiiZj)
a(9’x) =-----------------\z\-----------------

where Z consists of any of the 3x3 blocks that has more than half of its area covered 

by region R.

Another QBSI interface that corresponds to the 3x3 indexing grid is also sup­

ported. That is, the user can click on an icon associated with a SSR and fill any

(7.10)
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block in the 3x3 grid canvas with the selected icon. In a similar way, a negation 

operator (“NOT” button) can be applied to a block (which will be crossed in yellow) 

and a new window with grid and icons can be invoked (“OR” button) to start a new 

conjunct.

The ImageScape system [Lew, 2000] also allows placement of icons (face, sky, 

water, tree/grass, and sand/stone) on a canvas to create a query. However, unlike our 

QBSI approach, the spatial extent of the placed icons is not emphasized. Moreover, 

it is not clear in [Lew, 2000] that how a query of semantic icons is processed. Last 

but not least, no proper evaluation has been reported.

As an enhancement to Query by Example (QBE) method, the Query By Mul­

tiple Regions (QBMR) approach [Moghaddam et al., 2001] allows a composition of 

query from multiple regions from example images with or without spatial layout. 

Our QBSI approach can complement the QBMR method in two aspects. It is useful 

when the user is not looking for specific visual similarity but rather more abstract vi­

sual concepts. The QBSI interface can also be used to obtain an initial set of relevant 

images for QBMR as the latter still suffers from the boostrapping problem. Further­

more, the QBSI approach does not need the computation of best matching region 

and best spatial configuration as required by QBMR [Moghaddam et al., 2001]. The 

query processing of QBSI, which is based on principled fuzzy operations, is simple 

and efficient.

Another novel feature in our approach not available in the above works is hier­

archy of visual concepts. That is, SSRs can be structured into Is-A or Part-Whole 

hierarchy for detection, indexing, and query. For example, a sky SSR class can 

further be divided into subclasses of clear, cloudy, and blue skies with associated 

specific detectors. A QBSI query can then involve a specific type of sky or a generic 

sky concept. We will demonstrate this kind of queries and the underlying query 

processing in our experiments below. Another interesting structural mechanism is 

to detect and index a SSR in terms of its parts (e.g. [Mohan et al., 2001]).

Note that the free-form QBSI interface as shown in Figure 7.6 and grid-based 

QBSI interface mentioned above are two of the query functions provided in our op­

erational prototype which is implemented in C and Java with Microsoft Access. Our 

web-based system also allows query by examples, query by text, query by mixture of
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query modes, browsing along different dimensions (time, place, people, categories), 

data management (e.g. addition, deletion, copying of photos and albums), text anno­

tation, SMIL-based [W3C, 2001] slideshow authoring and presentation with music. 

Last but not least, separate tools are also provided for uploading of images to the 

web, visual queries (QBE and QBSI) and slideshow presentation on PocketPC.

7.4.2 Queries and Ground Truth

To evaluate the effectiveness of QBSI using SSR-based image indexes for the 2400 

consumer images, we have designed 15 QBSI queries. They are illustrated in Figures 

7.7 to 7.11.

face crowd

Q01 Q02 Q03

Figure 7.7: QBSI queries Q01 to Q04

Q04

sky

ground

wall

face face face face

wall

Q05 Q06 Q07

Figure 7.8: QBSI queries Q05 to Q07

Q09 Q10

Figure 7.9: QBSI queries Q08 to Q10

While queries Q01 to Q04 focus on single VQT, queries Q05 to Q15 demonstrate 

multiple VQTs. In particular, query Q06 is composed to look for indoor images
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water face water

Q12

Figure 7.10: QBSI queries Qll and Q13

A NOTface

Q14

Figure 7.11: QBSI queries Q14 and Q15

with close-up of people. Query Q07 specifies faces in 3 different regions to enforce 

“small group of people”. Query Q10 intends to retrieve images related to wedding 

events whereby auspicious fabric can be seen. Query Q14 shows the use of the 

negation operator. Last but not least, query Q15 illustrates the usefulness of disjunct 

operator. All the queries except Q05 and Q08 involve specific SSRs. Queries Q05 and 

Q08 are based on superclass of SSRs. Queries Qll to Q13 illustrates the flexibility 

of mixing SSR (face) and the superclasses (building, water, and foliage). Our SSR 

indexing framework supports query with different levels of visual semantics and their 

mixture.

7.4.3 Experimental Results

The image indexes to support QBSI are computed based on Equations (3.24) and 

(3.29) with face detection enhancement [Rowley et al., 1998]. With our modular 

framework, the replacement of object detection decisions is simple as described in 

Section 3.10.

Table 7.5 lists the number of relevant images among the top 20 and 30 retrieved 

images as well as the size of the ground truth (G.T.) for each of the queries tested. 

As shown in the table, the average precisions for the top 20 and 30 retrieved images 

are 0.79 and 0.70 respectively, which we consider effective for practical applications. 

Interestingly, queries Q02 and Q09 demand small number of specific images (i.e.
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Table 7.5: Precisions at top retrieved images for QBSI experiment

Query Top 20 Top 30 G.T.
Q01 14 24 590
Q02 18 23 26
Q03 14 16 44
Q04 16 19 78
Q05 19 26 281
Q06 14 20 302
Q07 20 20 380
Q08 18 25 83
Q09 12 16 19
Q10 14 17 112
Qll 16 25 523
Q12 11 16 61
Q13 18 25 259
Q14 18 25 107
Q15 15 20 234
Avg 15.8 21.1

less than 30; around 1%) to be found among 2400 images. The recall among top 30 

retrieved images is high with recall values 0.88 (23/26) and 0.84 (16/19) respectively 

(i.e. almost all the relevant images are found among the top 30 retrieved images).

Next we show the top retrieved images for 3 of the 15 queries, namely queries 

Q02, Q05, and Q07, in Figures 7.12, 7.13, and 7.14 respectively. In the figures, 

the top 18 images retrieved are shown in top-down, left-to-right order of decreasing 

relevance.

Figure 7.12: Top 18 retrieved images for QBSI query Q02

For query Q02 (Figure 7.7), the intention was to look for images with flowers
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Figure 7.13: Top 18 retrieved images for QBSI query Q05

Figure 7.14: Top 18 retrieved images for QBSI query Q07



144 Chapter 7. Query and Retrieval

(c.f. Foliage: Floral in Figure 3.5) at the center. Among the top 18 images shown 

in Figure 7.12, only image 15 is irrelevant as the flower regions is considered too 

small.

With query Q05 (in Figure 7.8), we look for images with a spatial layout of sky, 

building, and ground (c.f. Figure 3.5). Only the last image in Figure 7.13 is a false 

positive where the greyish water was incorrectly detected as ground.

In the case of query Q07 (in Figure 7.8) that looks for small group of people 

appearing at the center of an image (c.f. People:Face in Figure 3.5), the top 18 

images shown in Figure 7.14 are all found in the ground truth list for the query.

Compared to existing query formulation methods, our QBSI approach allows 

explicit specification of visual semantics as illustrated by the 15 queries in Figures 

7.7 to 7.11. Consider the case of Query By Canvas (QBC) reviewed in Section 2.8. 

How would a user express visual concepts such as flowers, faces, and buildings using 

color and texture or their combination? Query by Sketches (QBS) (Section 2.8) is 

not very useful either as the shapes of flowers, faces, sky, water etc are ill-defined. 

Compared to the ImageScape system [Lew, 2000] that also allows placement of visual 

icons as query, our QBSI approach has richer expressive power as we support spatial 

constraints (Q01 to Q15), negation (Q14), disjunction (Q15), and concept hierarchy 

(Q05, Q08, Q11-13).

7.5 Query by Multiple Examples (QBME)

7.5.1 Query Processing

Query by Example (QBE) suffers from the bootstrapping problem of finding a suit­

able query image to start with. Nevertheless, QBE is still an intuitive and useful 

query method for similarity-based retrieval because it is simple to perform and is 

unique to image retrieval (QBE has less appeal for retrieval of other media such 

as text, music, and video). It is an attractive option for query formulation on a 

mobile device whereby more elaborate typing and drawing are usually inconvenient 

to perform.

Query by Multiple Examples (QBME) is a natural extension of QBE. Multiple 

examples are in general helpful in describing the information need involving higher
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level of semantics. For instance, to describe images taken near a river or beach, 

different visual examples of a riverside or beach scene are necessary. As another 

example, image examples of buildings, street, roadside etc will be useful to convey 

to an image retrieval system that images of a city or urban scene are sought after. In 

fact, groups of query images have been considered useful contextual hints for query 

formulation ([Smeulders et ah, 2000], p.1369).

Query processing for QBE and QBME mainly involves similarity matching. 

Hence all the indexing schemes proposed in this thesis that support similarity (or dis­

similarity) matching (SSR, DSR, SSC, LCP) (Section 6.2) as well as the integrated 

similarity matching framework (Section 6.3) are applicable.

In practice, what matters is the ranking of the images returned for a QBE query, 

whether they are sorted in ascending order of distance measure or descending order 

of similarity values, based on the distance and similarity functions defined in Sec­

tions 6.2 and 6.3. However, as the indexes proposed in this thesis can be viewed 

as histograms, we wish to point out some resemblance to histogram intersection 

[Swain and Ballard, 1991]. That is, we can define content-based similarity A be­

tween a query q (with m local blocks Zj) and an image x (with m local blocks Xj) 
based on L\ distance measure (city block distance) as

A(?,z) = 1 - ^-EElT,(z,) - 7i(J0)| (7.11)
3 i

This is indeed equivalent to histogram intersection with further averaging over the 

number of local histograms, m, except that the bins have semantic interpretation 

such as SSRs, DSRs, and LCPs.

There is a trade-off between content symmetry and spatial specificity. If we 

want images of similar semantics with different spatial arrangement (e.g. mirror 

images) to be treated as similar, we can have larger tessellated block in SAM (i.e. 

the extreme case will be a single block that covers the entire image, similar to the 

effect of a global histogram). However in applications where spatial locations are 

considered differentiating, local histograms will provide good sensitivity to spatial 

specificity. Furthermore, we can attach different weights to the blocks (i.e. Zj,Xj)
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to emphasize the focus of attention (e.g. center) as follows

\(q,x)=EiWj„X{Zj’Xj), (7.12)
l^k^k

where cOj are weights, and A(Zj,Xj) is the similarity between two image blocks 

defined as

KZj.Xj) = 1 - \ £ m) - r4(A»|. (7.13)
z i

Now, when a query Q has multiple examples (i.e. QBME), Q = {g1} q2, • • •, qx}, 

the similarity is computed as

\(Q,x) = max X(qi, x). (7-14)
i

Note that if distance measure is adopted instead, then the max operator is replaced 

by the min operator.

7.5.2 Queries and Ground Truth

To evaluate QBME, we have designed 16 semantic queries and their ground truth 

(G.T.) among the 2400 test collection based on the consensus of 3 human subjects. 

These queries and their sizes of ground truth are listed in Table 7.6. That is, for 

each query, every human subject has to look through the entire collection to build 

the list of relevant images. Note that queries Q01-Q02, Q04-Q12 correspond to the 

semantic categories shown in Table 7.2.

Fig. 7.15 and 7.16 show, in top-down left-to-right order, 3 relevant images for 

queries Q01-Q08 and Q09-Q16 respectively. As we can see from these sample im­

ages, the relevant images for any query considered here exhibit highly varied and 

complex visual appearance. Hence to represent each query, the 3 human subjects 

selected 3 (i.e. K = 3 in Equation (7.14)) relevant photos as query examples for 

our experiments because a single query image is far from satisfactory to capture the 

semantic of any query. Indeed single query images have resulted in poor precisions 

and recalls in our initial experiments. The precisions and recalls were computed 

without the query images themselves in the lists of retrieved images.
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Table 7.6: The 16 semantic queries used in QBME experiments

Query Description G.T.
Q01 indoor 994
Q02 outdoor 1218
Q03 people close up 277
Q04 people indoor 860
Q05 interior or object 134
Q06 city scene 697
Q07 nature scene 521
Q08 at a swimming pool 52
Q09 street or roadside 645
Q10 along waterside or beach 150
Qll in a park or garden 304
Q12 at mountain area 67
Q13 buildings 239
Q14 close up, indoor 73
Q15 small group, indoor 491
Q16 large group, indoor 45

Figure 7.15: Sample consumer photos associated with queries Q01 to Q08
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Figure 7.16: Sample consumer photos associated with queries Q09 to Q16

7.5.3 Scope of Comparison

In the QBME experiments, we compare indexing schemes and similarity integra­
tion schemes proposed in this thesis with a feature fusion approach that combines 
color and texture in a linearly optimal way (denoted as “CTO”) in both quanti­
tative and qualitative aspects. For each approach, we have conducted experiments 
with various system parameters in order to select their best performances for final 
comparison. Overall average precisions (denoted as Pavg) and average precisions at 
top 30 retrieved images (denoted as P30) over 16 queries are used as the selection 
criteria.

In the next subsection, we first compare and select the best feature fusion con­
figuration for the “CTO” approach. Next, we will look at the effects of different 
parameters on SSR-based indexing and retrieval. The optimal system parameters 
will be adopted for other indexing schemes (DSR, SSC, LCP) when applicable. In 
the subsection that follows, the best weighting coefficients used in similarity integra­
tion for the semantics design (denoted as “Dsgn”) and semantics discovery (denoted 
as “Dscv”) approaches will be determined. Lastly, we compare the indexing schemes 
(SSR, DSR, SSC, LCP) and similarity integration schemes (Dsgn and Dscv) with 
feature fusion approach (CTO) quantitatively and qualitatively in the last two sub­
sections respectively.
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7.5.4 Indexing based on Fusion of Color and Texture

For the similarity-based retrieval experiments in this thesis, we have decided to 

compare our proposed semantic indexing and integrated matching solutions with 

the fusion of color and texture features instead of other methods such as region- 

based matching for two reasons. First our initial attempt with region segmentation 

using 500 outdoor images [Wu et ah, 2000a] does not scale up on the 2400 collec­

tion. Indeed, very high dimensions are required for the CTO approach to produce 

reasonable performance as we shall see below. Next we have adopted similar color 

and texture features for the CTO approach to demonstrate the advantage gained 

from the abstraction layer (mid-level) introduced by our indexing schemes.

For the color-based signature, both global and local (4x4 grid) color histograms 

of b3 (b = 4,5, • • •, 17) number of bins in the RGB color space as well as the HSV-11 

histogram [Cox et ah, 2000] described in Section 7.3.3 are computed on an image. 

Their retrieval performances in terms Pavg (P30) over 16 queries are listed in Table 

7.7). In the case of global color histograms, the performance saturated at 4096 

(1b — 16) and 4913 (b = 17) bins with Pavg = 0.363 and P30 = 0.577. Hence the 

one that used fewer number of bins is preferred. Among the local color histograms 

attempted, the one with 2197 bins (6 = 13) gives the best average precisions with 

Pavg = 0.381 and P30 = 0.598. Histogram intersection [Swain and Ballard, 1991] is 

used to compare two color histograms.

For the texture-based signature, we have adopted the mean and standard de­

viation of Gabor coeffients and the associated distance measure (Equation (3.12)) 

[Manjunath and Ma, 1996]. The Gabor coefficients are computed with 5 scales and 

6 orientations. Convolution windows of 20 x 20, 30 x 30, • • •, 60 x 60 are attempted. 

Similarly, both global and local (4x4 grid) signatures were experimented. Table 

7.8 shows their average precisions Pavg (P30) over 16 queries. The best results are 

obtained when 20 x 20 windows are used. We obtained Pavg = 0.251 and P30 = 0.300 

for global signatures and Pavg = 0.235 and P30 = 0.379 for local signatures. These 

inferior results when compared to those of color histograms lead us to conclude 

that simple statistical texture descriptor is less effective than color histogram for 

heterogeneous consumer image contents.

The color and texture signatures are combined for image matching and retrieval
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Table 7.7: Average precisions by global and local color histograms

b Label Global Local
HSV-11 0.290 (0.425) 0.353 (0.508)

4 RGB-64 0.305 (0.490) 0.345 (0.548)
5 RGB-125 0.323 (0.467) 0.357 (0.538)
6 RGB-216 0.332 (0.498) 0.367 (0.573)
7 RGB-343 0.340 (0.527) 0.367 (0.575)
8 RGB-512 0.350 (0.527) 0.372 (0.567)
9 RGB-729 0.353 (0.540) 0.376 (0.585)

10 RGB-1000 0.356 (0.548) 0.377 (0.579)
11 RGB-1331 0.357 (0.563) 0.377 (0.588)
12 RGB-1728 0.357 (0.548) 0.379 (0.596)
13 RGB-2197 0.359 (0.556) 0.381 (0.598)
14 RGB-2744 0.359 (0.560) 0.379 (0.592)
15 RGB-3375 0.361 (0.569) 0.380 (0.590)
16 RGB-4096 0.363 (0.577) 0.380 (0.596)
17 RGB-4913 0.363 (0.577) 0.381 (0.590)

Table 7.8: Average precisions by global and local texture histograms

Window Size Label Global Local
20 x 20 Gabor-20 0.251 (0.300) 0.235 (0.379)
30 x 30 Gabor-30 0.250 (0.296) 0.234 (0.367)
40 x 40 Gabor-40 0.248 (0.294) 0.234 (0.358)
50 x 50 Gabor-50 0.239 (0.319) 0.234 (0.348)
60 x 60 Gabor-60 0.247 (0.263) 0.233 (0.342)
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as follows. The distance measures between a query and an image for the color and 

texture methods are first normalized within [0,1] and then combined linearly, similar 

to that shown in Equation (6.14) with color and texture matching replacing the 

roles of fi and A respectively. Among the relative weights uj attempted at regular 0.1 

intervals (Table 7.9), the best fusion is obtained at Pavg = 0.38 and P30 = 0.61 with 

equal color influence and texture influence for global signatures. In the case of local 

signatures, the fusion peaked when the local color histograms are given a dominant 

influence of 0.9 resulting in Pavg = 0.38 and P30 = 0.59. As shown in the last row of 

the table, almost identical performance values are obtained when a multiplicative 

fusion operator (Equation (6.13)) is used. Hence for performance comparison below, 

CTO approach will be represented by the fusion of global signatures RGB-4096 and 

Gabor-20 (0.38 (0.61)).

Table 7.9: Average precisions by fusion of global/local color/texture similarities

UJ Global (RGB-4096, Gabor-20) Local (RGB-2197, Gabor-20)
0.1 0.304 (0.496) 0.275 (0.483)
0.2 0.340 (0.558) 0.304 (0.554)
0.3 0.364 (0.577) 0.328 (0.565)
0.4 0.378 (0.594) 0.347 (0.581)
0.5 0.384 (0.606) 0.362 (0.583)
0.6 0.384 (0.600) 0.373 (0.594)
0.7 0.381 (0.592) 0.379 (0.585)
0.8 0.376 (0.581) 0.382 (0.588)
0.9 0.370 (0.583) 0.383 (0.594)

(*) 0.384 (0.606) 0.383 (0.592)

7.5.5 Indexing based on SSRs

To begin with, we compare different matching functions and spatial aggregation 

templates in Table 7.10. The matching functions compared are: Pi-norm city 

block distance (“CBD”), Z,2-norm Euclidean distance (“EUD”), Kullback-Leibler 

distance (“KLD”), symmetric Kullback-Leibler distance (“KLS”), and cosine sim­

ilarity (“COS”). For the spatial aggregation templates, “Center-Focus” denotes a 

weighted tessellation (Equation (7.12)) that focuses at the center of image as illus-
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trated in Figure 7.17. The weights u)j are shown below each block in the figure.

(0=1 (0=1 co = 3 co=l co=l

Figure 7.17: A spatial aggregation template that focuses at image center

An evenly weighted “4 x 4 Grid” template is also attempted. The SVM learning 

of the 26 SSRs (Figure 3.5, Table 3.2) is based on polynomial kernel (Po/y2) with 

modified similarity function (Equation 3.27) on composite feature vector z (zc and 

z1) (c.f. Sections 3.3.3 and 3.3.4). The softmax function (Equation (3.24)) was 

adopted for the normalization of SVM classification outputs.

Table 7.10: Average precisions by different matching functions and spatial aggrega­
tion templates

Center-Focus 4x4 Grid
CBD 0.415 (0.656) 0.440 (0.679)
EUD 0.369 (0.588) 0.381 (0.640)
KLD 0.371 (0.575) 0.358 (0.573)
KLS 0.417 (0.638) 0.406 (0.650)
COS 0.401 (0.558) 0.399 (0.579)

From Table 7.10, we conclude that city block distance (CBD) is most effective 

in terms of average precisions Pavg and P30. Furthermore, on average, spatial ag­

gregation template based on a 4 x 4 grid is preferred (especially so for the case of 

CBD). Hence for the rest of our experiments, a 4 x 4 grid with CBD is adopted as 

the spatial aggregation template and matching function respectively.

Next we compare the two different classification normalization schemes pro­

posed in Section 3.3.2, namely the softmax scheme (Equation (3.24)) and the hybrid 

wrinner-take-all and softmax scheme. As shown in Table 7.10, the performance in­

dicators Pavg and P30 for the softmax scheme are 0.44 and 0.68 respectively. In 

the case of the hybrid scheme, better values of 0.45 and 0.70 have been achieved 

for Pavg and P30 respectively. Hence the hybrid scheme is used for the rest of the 

experiments.
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Last but not least, we compare retrieval performance of SSR-based indexes using 

different classifiers as shown in Table 7.11. “SICA-167” and “SICA-226” refer to 

the alternative incremental learning algorithm described in Section 3.8 trained on 

375 and 554 region samples respectively. The numbers 167 and 226 are the number 

of prototypes created for the hidden layer after learning. “SVM-C” and “SVM-T” 

are SVM classifiers (polynomial kernel of degree 2) trained on only color (zc) and 

texture (z*) feature vectors respectively. Their classification outputs are combined 

via voting to form “SVM-M”. The last three rows refer to the SVM classifiers based 

on different kernel functions as described in Section 3.3.4.

Table 7.11: Average precisions by different classifiers

P1 avg P30

SICA-167 0.392 0.631
SICA-226 0.395 0.623
SVM-C 0.412 0.619
SVM-T 0.218 0.298
SVM-M 0.417 0.623
Poly 2 0.454 0.696
Poly6 0.441 0.648
RBFi 0.422 0.592

From Table 7.11, we observe that the discriminative power of the SICA classifiers 

are slightly worse off than the SVM classifiers. Color feature is more effective for 

retrieval than the texture feature for the heterogeneous consumer images in our test 

collection (i.e. SVM-C versus SVM-T). Post-classification fusion by SVM-M does 

not improve the performance further. Last but not least, though Polye and RBF\ 

classifiers have better generalization performance on test set for region learning (c.f. 

Section 3.3.4), the computationally simpler Poly2 has turned out to attain the best 

retrieval performance for our queries and data set.

In summary, the best SSR-based indexing scheme for similarity-based retrieval 

using the 16 queries on 2400 consumer images uses SVM classifiers with degree 2 

polynomial kernel to learn 26 SSR classes from 375 training samples. The SSRs 

are detected and normalized using a hybrid winner-take-all and softmax scheme, 

reconciled and aggregated according to a 4 x 4 grid template, and similarity matching
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is performed based on city block distance. The same parameters are adopted for the 

indexes based on DSRs, SSCs, and LCPs whenever applicable for consistency in the 

experiments and performance comparison below.

7.5.6 Similarity Integration

The retrieval performances for indexing schemes (SSR, DSR, SSC, and LCP) as well 

as similarity integation schemes (Dsgn and Dscv) will be shown and compared to 

CTO in the next subsection. In this subsection, we show how the best performances 

of Dsgn and Dscv are selected based on different parameter values in similarity 

integation.

Table 7.12 lists Pavg and P30 for the Dsgn approach that is based on the inte­

gration of SSR and SSC similarities. The results of linear combination (Equation 

(6.14)) are obtained with u computed at 0.1 intervals. The last row shows the result 

of multiplicative fusion (Equation (6.13)). Note that n refers to the SSC similarity 

and A is the SSR similarity. The best performance is obtained with Pavg = 0.59 and 

P30 = 0.78 using the linear combination with u = 0.5, suggesting equal importance 

of both intra-content and inter-class similarities.

Table 7.12: Average precisions by integration of SSR and SSC similarities

u pr avg P30

0.1 0.516 0.746
0.2 0.557 0.765
0.3 0.579 0.781
0.4 0.589 0.783
0.5 0.590 0.777
0.6 0.585 0.785
0.7 0.575 0.767
0.8 0.561 0.742
0.9 0.546 0.719

(*) 0.568 0.769

Similarly, Table 7.13 lists Pavg and P30 for the Dscv approach that is based on the 

integration of DSR and LCP similarities. The results of linear combination with u 

computed at 0.1 intervals are listed followed by that of multiplicative fusion. Note
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that LCP similarity plays the role of ^ and DSR similarity is used for A. Once 

again, equal contribution of both intra-content and inter-class similarities in linear 

combination has resulted in the best performance with Pavg = 0.52 and P30 = 0.76.

Table 7.13: Average precisions by integration of DSR and LCP similarities

UJ P1 avg P30

0.1 0.494 0.700
0.2 0.508 0.708
0.3 0.517 0.731
0.4 0.522 0.744
0.5 0.523 0.760
0.6 0.521 0.756
0.7 0.515 0.754
0.8 0.505 0.748
0.9 0.492 0.719

0 0.522 0.752

7.5.7 Quantitative Comparison

We compare the best QBME performances of the indexing schemes (SSR, DSR, 

SSC, and LCP) and the similarity integation schemes (Dsgn and Dscv) against that 

of the CTO method in this subsection.

First, we compare CTO with Dsgn (semantics design approach). The Preci­

sion/Recall curves (averaged over 16 queries) for CTO, SSR, SSC, and Dsgn in 

Figure 7.18 illustrate the improvement at various recall values of the Dsgn meth­

ods over the CTO method. Table 7.14 shows the average precisions among the 

top 20, 30, 50, and 100 retrieved images as well as the overall average precisions for 

the methods compared including individual SSR and SSC indexing. The relative 

improvements (in percentage) of Dsgn over CTO are also shown in the last column.

In a similar manner, Figure 7.19 shows the Precision/Recall curves (averaged 

over 16 queries) for CTO, DSR, LCP, and Dscv and Table 7.15 lists the average 

precisions among the top 20,30,50, and 100 retrieved images as well as the overall 

average precisions for these methods. The relative improvements (in percentage) of 

Dscv over CTO are shown in the last column.
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Figure 7.18: Precision/Recall curves for CTO, SSR, SSC, and Dsgn

Table 7.14: Average precisions at top retrieved images (CTO, SSR, SSC, Dsgn)

Avg.Prec. CTO SSR SSC Dsgn %
At 20 0.65 0.76 0.71 0.84 29
At 30 0.61 0.70 0.68 0.78 28
At 50 0.55 0.62 0.64 0.72 31
At 100 0.49 0.54 0.58 0.65 33
overall 0.38 0-45 0.53 0.59 55

Table 7.15: Average precisions at top retrieved images (CTO, DSR, LCP, Dscv)

Avg.Prec. CTO DSR LCP Dscv %
At 20 0.65 0.71 0.70 0.80 23
At 30 0.61 0.68 0.69 0.76 25
At 50 0.55 0.63 0.63 0.70 27
At 100 0.49 0.57 0.58 0.62 27
overall 0.38 O.48 0.48 0.52 37
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Figure 7.19: Precision/Recall curves for CTO, DSR, LCP, and Dscv

From Figures 7.18 and 7.19 as well as Tables 7.14 and 7.15, we can see that 

the proposed indexing methods (SSR, SSC, DSR, LCP) and similarity integration 

schemes (Dsgn, Dscv) outperform the feature fusion approach CTO significantly. 

The integration of intra-content (SSR, DSR) and inter-class (SSC, LCP) similarities 

also achieves better retrieval performance than individual indexing methods.

To better contrast the performance differences between the Dsgn and Dscv ap­

proaches with the CTO approach, their Precision/Recall curves (averaged over 16 

queries) are plotted as shown in Figure 7.20 and their average precisions for top 

retrieved images are consolidated in Table 7.16.

Figure 7.21 compares the average precisions of each of the 16 queries for CTO, 

Dsgn, Dscv methods. The random retrieval method (i.e. G.T./2400) (denoted as 

“RND”) is also included as a baseline comparison. The curves are plotted based 

on the descending precision values of the RND method, indicating the increasing 

difficulty of the queries. The actual precision values are listed in Table 7.17.

In a nutshell, our proposed approaches Dsgn and Dscv achieved high average 

precisions of 0.59 and 0.52 respectively, which are significant improvements of 55%
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Figure 7.20: Precision/Recall curves for CTO, Dsgn, and Dscv

Table 7.16: Average precisions at top retrieved images (CTO, Dsgn, Dscv)

Avg.Prec. CTO Dsgn Dscv
At 20 0.65 0.84 0.80
At 30 0.61 0.78 0.76
At 50 0.55 0.72 0.70
At 100 0.49 0.65 0.62
overall 0.38 0.59 52
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Figure 7.21: Average precisions of each query for RND, CTO, Dsgn, and Dscv

Table 7.17: Average precisions for each of the 16 queries

Query Description RND CTO Dsgn Dscv
Q01 indoor 0.41 0.62 0.91 0.86
Q02 outdoor 0.51 0.78 0.91 0.79
Q03 people close-up 0.12 0.16 0.36 0.37
Q04 people indoor 0.36 0.59 0.90 0.83
Q05 interior or object 0.06 0.18 0.43 0.36
Q06 city scene 0.29 0.49 0.79 0.67
Q07 nature scene 0.22 0.35 0.80 0.52
Q08 at a swimming pool 0.02 0.18 0.57 0.59
Q09 street or roadside 0.27 0.50 0.81 0.65
Q10 waterside or beach 0.06 0.17 0.37 0.34
Qll in a park or garden 0.13 0.71 0.81 0.62
Q12 at mountain area 0.03 0.28 0.24 0.39
Q13 building close-up 0.10 0.35 0.40 0.37
Q14 portrait, indoor 0.03 0.15 0.31 0.31
Q15 small group, indoor 0.20 0.32 0.56 0.46
Q16 large group, indoor 0.02 0.29 0.29 0.20
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and 37% over that of the CTO method (last row of Table 7.16). The performance 

gap is consistently evident across various recall values in the Precision/Recall curves 

as shown above. Indeed both Dsgn and Dscv outperformed CTO in all except two 

queries (Q12 and Q16 (tie) for Dsgn; Qll and Q16 for Dscv) in average precisions 

as seen in Table 7.17.

On the other hand, the small footprint of the proposed image indexes also has an 

added advantage in storage space and retrieval efficiency. Suppose a Tbyte floating 

point number is required for each soft classification output used in the Dsgn and 

Dscv methods. Then a Dsgn or Dscv image index requires less than 2 kilobytes of 

storage and simple operations on small number of vectors. This would have great 

advantage over the need to represent and process very high dimension of color and 

texture features and yet not achieving the same level of retrieval performance.

In summary, the proposed image indexes (SSR, SSC, DSR, and LCP) and their 

similarity integration realize semantic abstraction via prior learning and detection 

of visual classes when compared to direct indexing based on low-level features. The 

compact representation that accommodates imperfection and uncertainty in detec­

tion also resulted in much better performance than the optimal fusion of very high 

dimension of color and texture features in our QBME experiments using 16 semantic 

queries on 2400 unconstrained consumer photos. Hence we feel that the computa­

tional resources devoted to prior learning of visual classes and their detection during 

indexing are good trade-off for concise semantic representation as well as effective 

and efficient retrieval performance.

7.5.8 Qualitative Comparison

In this subsection, using the top retrieved images for 3 of the 16 QBME queries, we 

provide a qualitative comparison between the CTO approach and our proposed ap­

proach. For the latter, as Dsgn (semantics design approach) has the most favorable 

performance, it is chosen as the candidate for comparison. In the following, the top 

18 images retrieved by each method (excluding the queries images) are shown in top- 

down, left-to-right order of decreasing relevance as computed by each method. In 

particular, we have selected queries Q08, Q10 and Q14 to illustrate the comparison 

as they refer to semantic categories of images have not been considered in previous
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study [Vailaya et al., 2001].

For Q08 (Figure 7.22), the intention was to look for images taken at pool areas. 

The query images include a swimming pool, an sea lion show at a zoo, and a water 

playground with wooden structure.

Figure 7.22: Query Q08 “at a swimming pool”

Figure 7.23: Top 18 retrieved images for query Q08 by CTO

Figure 7.24: Top 18 retrieved images for query Q08 by Dsgn

In Figure 7.23, only 8 images (1 — 3,5,10 — 11,14,18) are part of the grouth 

truth list of Q08. Apparently without semantic interpretation, CTO had assigned 

high similarity values to images that share similar color and texture profiles with 

the second and third query images, hence resulting in many top irrelevant images.
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In particular, images 4, 6,8,13,16 are indoor images. In the case of Dsgn approach, 

all the top 18 images shown in Figure 7.24 except image 12 are relevant. The good 

result can be attributed to the detection of the SSR Water:Pool (c.f. Table 3.2) 

though the blue tower in image 12 has resulted in false detection.

In the case of Q10 (Figure 7.25), relevant images should be those taken at the 

river or lake (first query image), pond (second query image), beach (last query 

image).

Figure 7.25: Query Q10 “along waterside”

Figure 7.26: Top 18 retrieved images for query Q10 by CTO

Figure 7.27: Top 18 retrieved images for query Q10 by Dsgn

From Figure 7.26, we observe that the CTO approach only retrieved 6 relevant
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images (1 — 2,4,6, 9,12). In this case, the colors green and grey with slight texture 

had resulted in the false positives (images 3, 5, 7 — 8,10 — 11,13 — 18). On the other 

hand, the Dsgn method produced all relevant images at the top 18 images as shown 

in Figure 7.27. These images are the response to the first and last query images. 

The response to second query image follows these images but they are outside the 

top 18 list.

For query Q14 (Figure 7.28), the three query images depict typical images of 

people close-up indoor: woman with dark background, man in front of wall, two 

men in front of bright background.

Figure 7.28: Query Q14 “people close-up indoor”

Figure 7.29: Top 18 retrieved images for query Q14 by CTO

The CTO approach retrieved 10 relevant images (1 — 6,8 — 10,16) for query 

Q14 (Figure 7.29) while the Dsgn approach only returned 2 irrelevant images (14 — 

15) among the top 18 images (Figure 7.30). With a modular framework that can 

incorporate object detectors such as face detector seemlessly, the performance of the 

Dsgn approach can be further improved whenever more accurate object detectors 

become available from the computer vision research community.
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Figure 7.30: Top 18 retrieved images for query Q14 by Dsgn



Chapter 8

Conclusion

The best way to predict the future is to invent it
Alan Kay

8.1 Contributions

As described in Chapter 1, the research conducted and presented in this thesis has 

been motivated from three axes:

• Broad Consumer Images (Section 1.1.1)

The proliferation of digital cameras and camera phones calls for solutions to 

address the genuine problem of organizing and accessing voluminous consumer 

images. User studies have shown that manual annotation, either typed or 

spoken, is neither desirable nor comprehensive, hence ineffective for semantic 

retrieval. Thus content-based indexing and search is necessary on its own, 

especially useful for finding images sharing some common visual attributes, 

and for complementing browsing and facilitate annotation. In addition, un­

constrained consumer images pose great challenges for content-based retrieval 

research due to their content variations and visual complexities;

• “Keywords” in Visual Data (Section 1.1.2)

While keywords are simple, relatively effective, and practical for indexing and
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retrieval of text documents, the equivalent counterpart for visual data is nei­

ther well-studied nor well-understood. This is because pixel-based visual data 

are ill-defined and in general underconstrained for visual perception and un­

derstanding. Based on common sense description of a scenery image, both 

visual type and locality information are considered important for visual data 

description. A computational scheme is sought after formalizing and automat­

ing spatial semantic indexing for effective retrieval;

• Semantic Gap (Section 1.1.3)

While low-level features such as color, texture, and shapes can be computed 

from images, extraction of high-level semantic information needed for effective 

query interpretation remains a challenge for computer vision. This semantic 

gap is the manifestation of the semantics extraction and interpretation prob­

lems. Extraction of complete semantics from image data is hard as robust 

segmentation and general object recognition for broad domain images are un­

solved problems. On the other hand, user intrepretation of queries and images 

is usually complex, subjective and ambiguous due to differences in tasks, gen­

der, culture, education background, etc.

In Chapter 2, after clarifying the difference between pattern classification and 

image retrieval in Section 2.1, the key developments in text-based retrieval, feature- 

based retrieval, region-based retrieval, object-based retrieval, and probabilistic re­

trieval are reviewed in Sections 2.2 to Section 2.6 respectively. Significant works in 

other related research areas such as image classification, query formulation, feature 

fusion, and automatic annotation are also covered in Sections 2.7 to 2.10 respectively.

As pointed out in Section 1.2, before embarking on the research described in 

this thesis, we have pursued content-based image retrieval research along the direc­

tion of unsupervised learning [Lim, 1999a] [Lim, 1999b] [Lim, 1999c] [Lim, 2000c] 

[Lim, 2000d] as well as handcrafted construction of Visual Keywords [Lim, 2000a] 

[Wu et ah, 2000a] [Lim, 2000b] [Lim, 2001b] [Lim, 2001a]. The process of creating 

image signature based on the Visual Keywords methodology has also been patented 

[Lim, 2003]. With the encouraging results obtained from these efforts, we are moti­

vated to extend and deepen the framework substantially.
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In this thesis, through the descriptions from Chapter 3 to Chapter 7, we have 

proposed a suite of technical solutions to address the research challenges for content- 

based image retrieval as listed in Section 1.1.4. The research results, including 

previous work (1999 to 2001) and current extensions, are published (and submitted) 

as 1 patent, 4 book chapters, 5 journal articles, and 27 conference papers.

In a nutshell, we have conceptualized and presented dual cascaded learning 

frameworks [Lim and Jin, 2003c] [Lim and Jin, 2004f] that integrate both local and 

global semantics, namely a semantics design approach and a semantics discovery 

approach. More specifically, our original research contributions are listed as follows:

• Semantics Design

The semantics design framework [Lim and Jin, 2004a] [Lim and Jin, 2004b] 

[Lim and Jin, 2004i] provides a structured methodology to design, learn, and 

detect image semantics for building content-based image indexing and retrieval 

systems. Within the framework, two complementary indexing schemes have 

been proposed:

— Semantic Support Regions (SSRs)

In this local indexing scheme (Chapter 3), hierarchy of visual concepts 

called Semantic Support Regions (SSRs) are designed and constructed 

using statistical learning algorithms such as support vector machines 

[Lim et al., 2003b] [Lim and Jin, 2003b] [Lim and Jin, 2004h] and super­

vised incremental clustering algorithms (SICA) [Lim, 1993] [Lim, 1996] 

[Lim and Jin, 2002a] [Lim and Jin, 2002b] from labeled image blocks. Dur­

ing indexing, the learned SSRs are detected from tessellated image blocks 

of multiple resolutions. The soft detection decisions are reconciled and 

aggregated spatially as semantic histograms for image matching and re­

trieval.

— Semantic Support Classes (SSCs)

Instead of conventional image classification, the class memberships of 

a given image with respect to pre-defined image categories known as 

Semantic Support Classes (SSCs) are computed as a form of global image 

index and used in similarity matching (Section 5.3) [Lim and Jin, 2004d].
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The SSCs can be viewed as prototypical categories for a content domain 

to anchor the context of a query and a database image for similarity-based 

retrieval (Chapter 6) [Lim and Jin, 2004i].

• Semantics Discovery

The semantics discovery framework proposed in Chapter 4 [Lim and Jin, 2004c] 

[Lim and Jin, 2004d] [Lim and Jin, 2004g] is a new attempt to minimize hu­

man annotation effort in the construction of semantic image indexing and 

retrieval systems. The framework uses class-labeled only images to bootstrap 

recurrent intra-class and discriminative inter-class semantic regions. Within 

the framework, two complementary indexing schemes have been developed:

— Discoverd Semantic Regions (DSRs)

The Discoverd Semantic Regions (DSRs) induced from the semantic dis­

covery framework are modeled using discriminative statistical learning 

algorithm (SVM) to form local visual detectors (Chapter 4). Playing 

the role of SSRs, equivalent multi-scale DSR detection, reconciliation, 

and aggregation steps on an image are used to form semantic index for 

matching and retrieval [Lim and Jin, 2004d] [Lim and Jin, 2004g].

— Local Class Patterns (LCPs)

The discriminative classifiers learned from class-labeled images in the 

semantic discovery framework are applied to local image block classifi­

cation to form Local Class Patterns (LCPs) (Section 5.4). Similar to 

SSR-based and DSR-based indexing, LCP detection vectors on an image 

are reconciled and aggregated as semantic index for similarity matching 

[Lim and Jin, 2004c].

• Learning and Integration

A common theme that runs across the proposed solutions in this thesis is 

learning and integration. All the proposed indexing schemes based on SSRs 

(Chapter 3), DSRs (Chapter 4), SSCs (Section 5.3), and LCPs (Section 5.4) as 

well as event modeling for event-based retrieval (Section 5.2) are all built upon 

statistical learning in a modular manner. In addition, information integration
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approach motivated from Bayesian probability theory is proposed to combine 

similarities resulting from both intra-image and inter-class index matching 

(Chapter 6) [Lim and Jin, 2004a] [Lim and Jin, 2004b] [Lim and Jin, 2004i]. 

The integrated similarity matching scheme has been shown to be more superior 

than individual image index in similarity-based retrieval experiments (Section 

7.5).

• Representing and Detecting Visual Semantics for Indexing

A framework to represent and detect mid-level visual semantics for image in­

dexing has been proposed in the thesis [Lim and Jin, 2002b] [Lim et ah, 2003b] 

[Lim and Jin, 2004e] [Lim and Jin, 2004h]. It has the following innovative as­

pects:

— Just-In-Time Feature Fusion

Instead of Early or Late Feature Fusion approaches, we have proposed 

and implemented the fusion of color and texture features in the SVM 

kernel functions (Section 3.3.3). The method is more effective than other 

Early Fusion methods compared in the SSR learning experiments without 

the drawbacks of the Late Fusion methods as pointed out.

— Multi-Scale Segmentation-Free Indexing

A novel image indexing framework based on learning and detection of 

visual concepts from tessellated image blocks without region segmenta­

tion has been proposed (Sections 3.4, 3.5, 3.6) [Lim and Jin, 2004h]. The 

processing steps are inherently parallel. They allow detection outcomes 

from multiple resolutions to be reconciled and aggregated according to 

flexible spatial configuration.

— Abstraction Hierarchy

The representation of visual concepts for detection and indexing can 

be extended with IS-A and Part-Whole hierarchies to include more ab­

stract visual concepts and more complex visual objects respectively (Sec­

tion 3.7) [Lim et ah, 2003c]. A two-level visual concept hierarchy (e.g. 

Sky:Clear/Cloudy/Blue) has been demonstrated in the thesis.
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— Post-Detection Segmentation

As a by-product of detection-based indexing, we have proposed an un­

conventional region segmentation algorithm (Section 3.9). Instead of the 

popular segmentation-recognition processing flow, an incremental cluster­

ing algorithm operating in the space of detection vectors from tessellated 

image blocks to form coherent coarse-grained object regions has been 

developed and tested [Lim, 2001b].

• Query Formulation and Processing

As an attempt to reduce the ambiguity and subjectivity in query interpreta­

tion, three query formulation and associated query processing methods have 

been proposed in the thesis.

— Query by Class/Event

Query by Class/Event (QBCE) supports query at high-level semantics us­

ing predefined image class or event labels (Section 7.3.1). An event-based 

retrieval framework proposed in Section 5.2 is used to support this kind 

of query [Lim and Jin, 2002c] [Lim and Jin, 2003a] [Lim and Jin, 2003b]. 

More specifically, Events, such as those shown in the event taxonomy de­

scribed in Section 5.2, are modeled based on statistical learning and a 

winner-take-all approach is used to compute the relevance score of an 

image for a query event.

— Query by Spatial Icons

Query by Spatial Icons (QBSI) allows visual query formulation based 

on spatial arrangement of visual icons, representing predefined local vi­

sual semantics (Section 7.4.1) [Lim and Jin, 2004e] [Lim and Jin, 2004h]. 

Supported by the semantic indexing schemes such as SSRs, query process­

ing for QBSI involves both pattern-based and logic-based computation. 

Query with mixed levels of visual semantics can also be supported.

— Query by Multiple Examples

Query by Multiple Examples (QBME) is a natural extension of conven­

tional QBE (Section 7.5.1). Multiple query images are useful contextual
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hints for query formulation. Query processing for QBME involves simi­

larity matching, hence it is supported by all the local and global index­

ing schemes and similarity integration schemes proposed in this thesis 

[Lim and Jin, 2004a] [Lim and Jin, 2004b] [Lim and Jin, 2004c].

• Empirical Evaluation on 2400 Heterogeneous Consumer Images 

A comprehensive empirical evaluation has been carried out using 2400 het­

erogenous consumer images to illustrate the usefulness of the proposed index­

ing schemes, similarity integration schemes, and query methods. Two sets of 

experiments, using 5 events and 11 categories, are conducted for QBCE with 

very promising results (Section 7.3.3). The QBSI query method is evaluated 

using 15 visual queries, achieving average precisions of 0.79 and 0.70 for the 

top 20 and 30 retrieved images respectively (Section 7.4.3). Sample retrieval 

results are also shown in Section 7.4.3.

The proposed indexing schemes and similarity integration schemes are eval­

uated against a feature fusion approach in the QBME experiments using 16 

semantic queries (Section 7.5.3). The proposed indexing methods (SSR, SSC, 

DSR, LCP) and similarity integration schemes (Dsgn, Dscv) outperform the 

feature fusion approach significantly (Section 7.5.7). In particular, the pro­

posed approaches Dsgn and Dscv achieved high average precisions of 0.59 and 

0.52 respectively, which are significant improvements of 55% and 37% over that 

of the feature fusion method (0.38). The integration of intra-content (SSR, 

DSR) and inter-class (SSC, LCP) similarities also achieves better retrieval 

performance than individual indexing methods, thus justifying the integra­

tion scheme motivated from Bayesian principles. Sample retrieval results are 

illustrated in Section 7.5.8.

In conclusion, as suggested by the title of the thesis, innovations in statistical 

learning, multi-scale segmentation-free indexing, and similarity integration as de­

scribed above form a common theme for bridging the semantic gap in content-based 

image retrieval (Figure 8.1). More specifically, with reference to Figure 1.3, the 

semantic extraction problem is alleviated with the semantics design (SSR -1- SSC) 
and semantics discovery (DSR+LCP) frameworks. On the other hand, event-based
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OBSI

DSR + LCP OBME

Figure 8.1: Proposed solutions for bridging the semantic gap

retrieval (EBR), QBSI, and QBME have been proposed to deal with the semantic 

interpretation problem.

8.2 Related Collaborations and Extensions

In the course of research of this thesis, the author has also started investigating 

several extensions related to the research presented in this thesis with other collab­

orators. They are described in this section as follows.

8.2.1 Fusion with Conceptual Graph Image Representation

Conceptual graphs, a knowledge representation formalism that handles concepts 

and hierarchies of concepts as well as relations and hierarchies of relations eas­

ily [Sowa, 1984] [Sowa, 2000], has been extended for image content representation 

[Mechkour, 1995] [Ounis and Pasa, 1998]. Figure 8.2 depicts an example of concep­

tual graph representation of image. Although conceptual graphs allow abstract de­

scription and indexing of image content (left of Figure 8.3) [Mulhem and Lim, 2002],
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manual effort has been the only means to construct this kind of highly descrip­

tive indexes [Mechkour, 1995] [Ounis and Pasa, 1998]. The local semantic indexing 

schemes such as SSRs proposed in this thesis fills the gap between computable low- 

level features and high-level conceptual graph representation (left of Figure 8.3).

Figure 8.2: An example of conceptual graph representation of image (img0623)
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Figure 8.3: Abstraction levels of indexing

In particular, the SSR-based indexing approach (denoted as ‘VK’ on the right of 

Figure 8.3) realizes a mid-level index representation and enables automatic construc­

tion of conceptual graph (CG) index for an image that involves simple concept hier­

archy and relations [Mulhem and Lim, 2002] [Lim et ah, 2003b] [Lim et al., 2003c] 

[Mulhem et ah, 2003] [Mulhem and Lim, 2003]. More specifically, the fusion of SSR- 

based and CG-based indexes has been developed and experimented in similarity- 

based retrieval [Mulhem and Lim, 2002] [Mulhem et al., 2003] and event-based re­

trieval [Lim et al., 2003b] [Lim et al., 2003c]. Last but not least, the integration 

with time information has also been explored [Mulhem and Lim, 2003]. These works 

were carried out as an international collaboration project with senior scientist Dr. 

Philippe Mulhem from CNRS, France.
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8.2.2 Mapping Mid-Level Representation to Video Events

The notion of mid-level representation such as SSRs and DSRs for image indexing 

has been extended for semantic video indexing. Figure 8.4 depicts such a mid­

level framework for video event detection. Recurrent spatio-temporal patterns with 

semantic meanings, known as audio-visual keywords, are characterized based on 

appropriate audio and visual features. Examples of audio-visual keywords include a 

shot or subshot with view of goal post during formation of an attack in soccer video, 

a candle-blowing moment of a birthday party in a home video, rocket launching in a 

documentary video etc. After designing and constructing the audio-visual keywords 

via supervised learning from examples, the mapping between audio-visual keywords 

and video events is learned via probabilistic models such as Hidden Markov Models 

(HMM).

Figure 8.4: A mid-level mapping approach to video event detection

Figure 8.5 shows the flow of video event detection based on detection of audio and 

visual keywords executed in parallel with post-processing. Two M.Sc. students with 

School of Computing, National University of Singapore, under the formal supervision 

of the author, have implemented part of the event detection framework for soccer 

videos. While Mr. Haiping Sun focused on the extraction of the visual keywords 

for soccer video [Sun et ah, 2003], Mr. Yulin Kang extended the visual keyword 

set [Kang et ah, 2004b] and studied event detection with both grammatical rules 

[Kang et ah, 2003] and HMM models [Kang et ah, 2004a].
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Figure 8.5: Flow of video event detection via audio-visual keywords

8.2.3 Photo Summarization for Visual Communication

Motivated by the wide spread of mobile camera phones and multimedia messaging 

service (MMS), a framework for automatic organization of personal image libraries 

based on the analysis of image creation time stamps and image contents to facili­

tate browsing and summarization of images has been proposed [Lim et al., 2003a] 

[Li et al., 2003b]. The proposed photo summarization framework has two main 

phases, namely photo sequence partitioning and key photo selection, as illustrated 

in Figure 8.6.

Both photo creation time and image content are exploited to efficiently partition 

image sequences ordered by time stamps. In each partition, key photo(s) is selected 

based on different criteria such as presence of object(s) such as clear face, monument, 

image quality such as contrast, sharpness etc. In practice, a mobile user can simply 

click on a “summarize” button on his/her phone and a summary of the photos stored 

on the phone will be sent as a MMS message to the recipient(s) who can enjoy it 

as a slideshow. The current prototype based on Nokia 7650 only implements simple 

content analysis method such as color histograms. We would adopt more advanced 

indexing methods presented in the thesis for content analysis and key photo selection.
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Figure 8.6: A photo summarization framework for visual communication

8.2.4 Snap2Tell: Mobile Scene-based Information Retrieval

A novel mobile scene-based information retrieval framework called Snap2Tell has 

been conceptualized and prototyped for tourism and education applications (Figure 

8.7). The system consists of a mobile client device with camera and an application 

server. Based on the image of a scene (e.g. monument, nature landscape etc) or an 

object (painting, statue, flower, animal etc) captured from the camera plus possi­

bly other information such as keywords and location information from positioning 

device, a user can query relevant information about the subject in the image using 

the mobile device. Image recognition and multi-modal information integration will 

be performed at the server to select, customize, and return relevant information to 

the user.

A key research challenge lies in the area of invariant object and scene recogni­

tion. The image captured of an object and a scene has to be recognized as one of the 

image-based models stored on the server, regardless of its viewpoint and scale un­

der different lighting conditions. Location information obtained from GPS or GSM 

network can be used to reduce the search space at the database server. The current
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Figure 8.7: A Snap2Tell framework for scene-based information retrieval

Snap2Tell implementation utilizes color histograms for image indexing and match­

ing. We believe that more advanced indexing schemes such as DSR will provide 

more discriminative power in scene recognition.

8.2.5 Roadmap

Figure 8.8 summarizes the past and current research efforts described above. The 

research started off with unsupervised approach (“Clustering & SVD”). As the re­

sulting clusters have weak semantic interpretation, the opposite extreme of hand­

crafted strong semantics (“Handcrafted Visual Keywords”) was attempted. With 

some success of the “Handcrafted Visual Keywords”, the supervised approach was 

extended to the “Semantic Support Regions” framework, upon which, a new query 

method “Query by Spatial Icons” was designed and implemented in a comprehensive 

prototype. Through the development of “Event-Based Retrieval” (EBR), “Semantic 

Support Classes” was conceptualized to complement SSRs in integrated similarity 

matching. Both SSRs and EBR were also used to build and complement conceptual 

graph representation for both similarity-based retrieval and relational graph-based 

retrieval with French collaborator.

Meanwhile, semantics discovery framework based on both “Local Class Patterns”
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Figure 8.8: A summary of past and current research efforts

and “Discovered Semantic Regions” with similarity integration was developed as a 

dual parallel alternative to the semantics design path. Also, two M.Sc. students 

were supervised to extend the mid-level representation to the video domain. In 

particular, the extraction of mid-level visual representation for soccer event detection 

has been explored. Last but not least, two application frameworks and prototypes 

(not shown in Figure 8.8), namely photo summarization and Snap2Tell, have also 

been developed with the help of two polytechnic students and a software engineer.

8.3 Future Directions

The thesis represents a snapshot of the research effort to bridge the semantic gap 

in content-based image retrieval. The consolidated results presented in the thesis 

are not cast in stone. In the author’s opinion, the following directions are worth 

pursuing:

• Semantics Design Framework

As discussed before (Section 3.10), if two-class SVMs are replaced by one- 

class SVMs [Manevitz and Yousef, 2001] that only require positive examples 

for learning, we only need to train a new detector or classifier (SSRs, DSRs,
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SSCs, LCPs) using new positive examples without re-training all the existing 

detectors or classifiers. Then efficient re-indexing of images with only the new 

detectors or classifiers can be carried out as suggested in Section 3.10. We 

shall adopt one-class SVMs when the parameter sensitivity problem has been 

resolved [Manevitz and Yousef, 2001].

At the same time, more sophiscated ways for the estimation of posterior prob­

ability from SVM outputs (e.g. [Platt, 1999b]) may be experimented. This 

will be useful in furnishing a more complete probabilistic treatment for the 

integrated similarity matching scheme. Besides broad consumer images, we 

would also like to apply the semantics design framework to other domains 

such as art images, medical images etc.

• Semantics Discovery Framework

A more immediate interest to enhance the semantics discovery framework is 

to overcome the cluster validity problem as discussed in Section 4.6. The 

mean shift clustering algorithm [Fukunaga and Hostetler, 1975] [Chang, 1995], 

a simple iterative procedure that shifts each data point to the average of data 

points in its neighborhood, is a good candidate to approach the problem.

An equally important research topic is the investigation of the trade-off be­

tween the coverage of sampling based on tessellated image blocks and the 

computational cost. It is even more important to explore new ways to exercise 

more control over the region semantics to be discovered, perhaps with addi­

tional constraints such as image selection for each class, image focus areas for 

sampling, etc imposed when domain knowledge is available.

Problems and applications such as scene recognition [Torralba and Oliva, 2003] 

for the Snap2Tell application, robotic navigation [Torralba and Sinha, 2001] 

would be researched and experimented in the near future. In particular, 

in contrary to the approach that relies on pre-segmentation low-level fea­

tures [Torralba and Sinha, 2001] [Torralba and Oliva, 2003] for scene catego­

rization, we would like to explore what and how local semantics can be dis­

covered and represented for scene recognition.

Multi-Modal Indexing for Consumer Images
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With the proliferation of camera phones, more consumer images will be taken 

using the camera phones than digital cameras. For effective indexing and 

accessing of personal multimedia diaries (e.g. such as those created using 

the forthcoming LifeBlog software at www.nokia.com/lifeblog), integration of 

indexes based on multiple modalities such as time stamps, location, image 

content, audio etc is mandatory. Based on our current work on automatic 

photo summarization [Li et ah, 2003b] [Lim et ah, 2003a], a more complete 

personal media management system utilizing multiple indexing cues would be 

developed.

• Semantic Video Indexing

In the current implementation of soccer event detection [Kang et ah, 2004b] 

[Kang et ah, 2004a], the detection of audio-visual keywords does not incor­

porate certainty information. Hence the mid-level representation is brittle. 

Errors committed at this level would affect the performance of event detection 

at the next level. Thus a soft mid-level output representation scheme should 

be explored. Another interesting extension is to replace the mid-level SVM 

classifiers by HMMs. The objective is to explore the possibility of achieving 

audio-visual keyword segmentation and recognition in an integrated manner, 

instead of the current shot/subshot segmentation before SVM recognition. 

Last but not least, after the HMMs have learned the temporal mapping be­

tween audio-visual keywords and video events, we would like to extract and 

interpret the rules from the HMM states and transition probabilities.

• Image-Text Association

Learning the association between images and text is a promising research trend 

[Benitez and Chang, 2003a] [Barnard et ah, 2003b] [Li and Wang, 2003]. Ex­

isting works in this area either rely on segmented regions [Barnard et ah, 2003b] 

or utilize low-level features for unsupervised learning [Benitez and Chang, 2003a] 

and generative model learning [Li and Wang, 2003]. Our segmentation-free 

semantic regions learned or discovered based on discriminative learning may 

provide an interesting and promising alternative representation for image-text 

association.

http://www.nokia.com/lifeblog
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• Image Code

Vision researchers are interested in how images are represented by the neu­

rons in primary visual cortex. In particular, Barlow [Barlow, 1989] proposed 

that the neurons represent input data with independent components, a fac­

torial code that performs reducdancy reduction. Image code theories were 

later tested empirically by Olshausen and Field [Olshausen and Field, 1996] 

[Olshausen and Field, 1997] using natural images. In essence, each image 

patch is represented as a linear combination of ‘basis’ patches, such that 

the mixing coefficients are as sparse as possible. Typically, 2D Gabor func­

tions are chosen as the basis functions and independent components analysis 

is used to model the data [Lewicki and Olshausen, 1999]. In recent years, 

the image code framework has been extended to color and stereo images 

[Hoyer and Hyvarinen, 2000], image sequences [Hyvarinen et ah, 2003], and 

higher-order structures [Karklin and Lewicki, 2003]. Figure 8.9 shows an il­

lustration of representing an image patch in terms of basis images and the 160 

basis images computed for color images in [Hoyer and Hyvarinen, 2000].

In our proposed image indexing framework, an image patch can also be viewed 

as a linear combination (i.e. histogram) of local image models (e.g. SSRs,
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DSRs) built from statistical learning. It would be interesting to develop the 
link between our detection-based semantic image representation and image 
code, though the development of corresponding neural evidence may not be 
viable. As researchers from the data compression community begin to see 
that signal compression and statistical classification share many goals and 
properties, both in theory and in practice (e.g. [Ozonat and Gray, 2004]), our 
motivation is to explore the use of higher-order image code for next generation 
image compression systems.
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