The development of a process model for determining groundwater accessions

Author:

McNeilage, Simon D.

Publication Date:

1987

DOI:

https://doi.org/10.26190/unsworks/5018

License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/56452 in https:// unsworks.unsw.edu.au on 2024-05-01

The quality of this digital copy is an accurate reproduction of the original print copy

THE DEVELOPMENT OF A PROCESS MODEL FDR DETERMINING GROUNDWATER ACCESSIONS.

BY
SIMON D. McNEILAGE B.Sc., Dip. T., B.E.(Hons.)

SCHOOL OF CIVIL ENGINEERING MASTER OF ENGINEERING SCIENCE 8.909G PROJECT REPORT

THE DEVELOPMENT OF A PROCESS MODEL FOR DETERMINING
 GRDUNDWATER ACCESSIDNS.

BY
SIMON D. McNEILAGE B.Sc., Dip. T., B.E.(Hons.)

THE DEVELOPMENT OF A PROCESS MODEL FOR DETERMINING GROUNDWATER ACCESSIONS.

BY

SIMON D. McNEILAGE B.Sc. (Auck.), Dip. T. (Auck.), B.E.(Hons._Cant)

A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Engineering Science.

School of Civil Engineering,

The University of New South Wales. New South Wales, Australia.

February 1987.

```
K!NG smety MrNay vale NSW 20GS
```

1. STUDENTS DECLARATION
A) This is to certify that 1 . . Simon. David McNeilage............. being a candidate for the degree of Master of Engineering Science am fully aware of the policy of the University relating to the retention and use of higher degree projects namely that the University retains the copies of any thesis submitted for examination, "and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act (1968) the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium". I also authorize the publication by University Microfilms of a 600 word abstract in Dissertation Abstracts International (D.A.I.).
B) I hereby declare that none of the work in this project has been submitted to any other institution for the award of a higher degree.

Signature

2. SUPERVISORS CERTIFICATION

I certify that this project has been completed under my supervision and is in my opinion in a lorm suitabln for examination as part of the requirements for admission to the degree of Master of Engineering Science.

Signature

ABSTRACT

The derivation of a computer based process model designed to predict recharge to groundwater using daily data on rainfall and potential evapotransporation is described. Methods of deriving daily potential evapotranspiration from commonly read meterological data are given. An account of the hydrogeology of the Sherwood Borefield and the development of a computer based model used to successfully model the Sherwood Borefield groundwater system is presented to provide a background for evaluation of the recharge process model developed.

A sensitivity study of the daily timestep process model is presented. The daily model is shown to successfully model recharges previously established for the Sherwood Borefield.

CONTENTS

Page number
TITLE PAGE
DECLARATION AND CERTIFICATE 1
ABSTACT 2
LIST OF CONTENTS 3
LIST OF TABLES 5
LIST OF FGURES 6

1. INTRODUCTION 7
2. Climatic data 9
2.1 introduction
2.2 Estimation of potential evapotranspiration
2.2.1 The process of evapotranspiration
2.2.2 Prediction of evapotranspiration from climatic data
2.2.3 The combination method for evaluating potential evapotranspiration
2.2.3.1 Calculation of $s /(s+g)$ and $g /(s+g)$
2.2.3.2 Calculation of the net solar radiation Rn
2.2.3.3 Evaluation of groundheat flux G
2.2.3.4 Evaluation of the advected energy Ea
2.2.4 Calculated evapotranspiration-calibration
2.3 Rainfall
3. SHERWOOD BOREFIELD 25
3.1 introduction
3.2 Data
3.2.1 Aquifer geometry
3.2.2 Aquifer properties
3.2.3 Artificial recharge
3.2.4 Pumpage
3.2.5 Hydrographic record
3.3 Rainfall
Page number
4. SHERWOOD BOREFIELD GROUNDWATER MODEL 29
4.1 Computer code
4.2 Conceptual model
4.3 Grid design
4.4 Model calibration
4.5 Model verification
4.6 Groundwater model conclusions
5. MODEL DEVELOPMENT 33
5.1 Introduction
5.2 Interception store
5.3 Soil store
5.4 Groundwater store
6. MODEL RESULTS 56
6.1 Introduction
6.2 Sensitivity study
6.3 Calibration runs
7. 4 Rerun of groundwater model using recharge process model data
8. CONCLUSIONS 83
AKNOWLEDGEMENTS 85
REFERENCES 86
APPENDICES:
A : CALCULATION OF INCIDENT SOLAR RADIATION
B: CALCULATION OF HUMIDITY
C: PROGRAM LISTING - CALCULATION OF MODEL DATA
D : PROGRAM LISTING - MODEL
E: DATA LISTING - MODEL INPITT DATA

LIST OF TABLES
Page number
TABLE 2-1 Monthly rainfall statistics 23
TABLE 5-1 Representative physical properties of soil 44
TABLE 6-1 Sensitivity study run 1 - Reference case 57
TABLE 6-2 Sensitivity study run 2 - Iow INTCAP value 58
TABLE 6-3 Sensitivity study run 3 - high INTCAP value 59
TABLE 6-4 Sensitivity study run 4 - low GCONST value 60
TABLE 6-5 Sensitivity study run 5 - high GCONST value 61
TABLE 6-6 Sensitivity study run 6 - low SOILCAP value 62
TABLE 6-7 Sensitivity study run 7 - high SOILCAP value 63
TABLE 6-8 Sensitivity study run 8 - low INFMAX value 64
TABLE 6-9 Sensitivity study run 9 - low EMAX value 65
TABLE 6-10 Sensitivity study run 10 - high EMAX value 66
TABLE 6-11 Sensitivity study run 11 - low SDRY value 67
TABLE 6-12 Sensitivity study run 12 - high SDRY value 68
TABLE 6-13 Sensitivity study results compared with reference run 69
TABLE 6-14 Calibration run $1-\operatorname{GCONST}=0.70$ 74
TABLE 6-15 Calibration run 2-GCONST $=0.80$ 75
TABLE 6-16 Calibration run 3-GCONST $=0.90$ 76

LIST OF FIGURES

Page number
FIGURE 3-1 Geology and bore location 24
FIGURE 3-2 Composite cross section 26
FIGURE 4-1 Finite element grid 30
FIGURE 4-2 Regional aquifer properties 32
FIGURE 4-3 Calibration 34
FIGURE 5-1 Model structure 37
FIGURE 5-2 Interception store 39
FIGURE 5-3 Interception store flow chart 41
FIGURE 5-4 Potential infiltration function 45
FIGURE 5-5 Potential soil evapotranspiration function 47
FIGURE 5-6 Soil store subroutine 49
FIGURE 5-7 Groundwater evapotranspiration function 52
FIGURE 5-8 Groundwater store subroutine 54
FGGURE 6-1 Calibration run 2-GCONST $=0.80$ 72
FIGURE 6-2 Calibration run 2-GCONST $=0.80-$ recharge $>5 \mathrm{~mm}$ 77
FIGURE 6-3 Calibration run 2-GCONST $=0.80-$ recharge $>20 \mathrm{~mm}$ 79
FIGURE 6-4 Groundwater model results using recharge process 81
model data

1. INTRODUCTION

Manywater resource projects require an adequate knowledge of the variation of recharge to groundwater. This may be knowledge of historical rates of recharge, or a predicted set of future recharges under assumed hydrologic conditions. In recent years there has been increasing usage of computer based process models to predict the required recharge rates.

Process models of a catchment response seek to describe the influence of transport processes in partitioning precipitation between the various water stores within the system. A process model is based on an understanding of the hydrologic processes within a catchment which depend on the principles of energy exchange and mass transport. The algorithms used to describe the hydrologic processes must necessarily be a simplification of reality, and usually consist of a series of flux equations linked by continuity to represent the respective transport processes.

Since 1960 a considerable amount of literature has been published describing various modelling techniques applicable to the rainfall - runoff process. However little work has been documented of the validity of applying such models to the prediction of groundwater recharge.

This thesis describes the derivation of a model intended to predict recharge to groundwater, using daily data on rainfall and potential evapotranspiration. The derived model is evaluated by comparing the monthly predictions with the monthly recharge rates previously used for successful calibration of a finite element model of the Sherwood Borefield groundwater system near Kempsey.

The model was based on a daily timestep to match the usually available data. Pluviometer data are scarce in Australia and mostly of short duration. Data for daily rainfalls are available at many sites, and are often of long duration. Direct measurements of data related to daily potential evapotranspiration, such as Class A pan evaporation, are scarce. Methods of deriving such data from commonly read meterological data are described.

An account of the hydrogeology of the Shewood Borefield, and the development of a computer based model used to successtully model the Sherwood Borefield groundwater system is presented to provide a background for evaluation of the recharge process model.

2. Climatic data

2.1 Introduction

The model developed requires as inputs precipitation and potential evapotranspiration. Daily records of rainfall for the Kempsey Meterological Station (No.59017) were available but no direct estimate of evapotranspiration such as pan evaporation has been recorded.

The potential evapotranspiration was therefore calculated from other daily meterological readings taken at the Kempsey Station. These measurements included wet and dry bulb temperatures, windspeed, and cloud cover. For each of these meteorological variables two readings per day at 9 a.m. and 3 p.m. had been taken.

The data was aquired in the form of printed sheets and entered into a data base. Forty missing records were estimated using both adjacent values and monthly averages for guidance. The processing ability of the data base package was then used to produce a file containing records of the year, month, and day, as well as daily averages of the wet and dry bulb temperatures, windspeed, cloud cover, and total daily rainfall.

A program (Appendix C : Program Listing - Calculation of Model Data) was written based on the relationships developed below to calculate daily values of rainfall and potential evapotranspiration (both in mm). These values were stored as a computer file(Day.dat) to be used by the model developed. A listing of this file is given in Appendix E: Data Listing - Model Input Data.

2.2 Estimation of Potential Evapotranspiration

2.2.1. The Process of Evapotranspiration

Evapotranspiration is the combined evaporation from sll surfaces and the transpiration of plants. The rate of evapotranspiration from a partially wet surface is greatty affected by the nature of the ground, so potential evapotranspiration is defined as the rate when the water supply is unlimited.

The rate of potential evapotranspiration depends on the evaporative power of the air. This is determined by temperature, wind, humidity and radiation. To understand how evapotranspiration depends on these factors we must examine the processes involved.

Evaporation is a diftusive process, partly turbulent, and partly molecular. The turbulent process is the dominant mechanism, except in the thin layer near the evaporating surface. According to the theory of turbulence, the upward flow of water vapour is equal to the product of the vertical gradient of vapour pressure and the rate of mixing. The latter does not depend upon the wind speed at any particular height, but upon the rate of change of the wind speed with height. Thus, any method of estimating potential evapotranspiration that employs wind speed at one height must rely upon a relatively crude measurement of turbulence.

Advection is the exchange of energy, moisture, or momentum as a result of horizontal heterogeneity. If the area upwind of an irrigated field is hot and dry, then the sensible heat will be transfered to the irrigated field, and its evapotranspiration rate will be increased. On the other hand if the advected air is colder than the vegetation then the evapotranspiration rate will be relatively low. Advection has a major effect in arid and semi-arid climates.

Advected energy processes can be divided into the 'clothesline effect' and the 'oasis effect'. When warm air blows through a small plot with little or no guard area, a very severe horizontal heat transfer occurs, called the clothesline effect. Inside a large field the vertical energy transfer from the air above to the crop is called the oasis effect.

The most important internal condition affecting transpiration is the state of the stomata: their number, distribution, structural features, and how open they happen to be. External conditions affecting transpiration include temperature, relative humidity, air movements, atmospheric pressure, light and water supply.

Potential evapotranspiration serves as an estimate of the upper limit of the actual transpiration from a crop and evaporation from the soil surface. Generally evapotranspiration will fall short of this limit because of various factors such as stomatal resistance of a water-stressed plant, variation in water extraction rates with moisture content, plant maturity, and the density of ground cover.

2.2.2. Prediction of Evapotranspiration From Climatic Data

Evapotranspiration may be considered as a response to two climatic 'inputs'; (i) insolation, (ii) water supply from precipitation. The radiation balance is the dominating factor in energy exchanges at the surface if considered over a wide enough area but locally energy is redistributed by wind and water.

Possible methods of predicting evapotranspiration from climatic data are:

1) Empirical methods. These are based on the correlation of measured evapotranspiration data with climatic data. In spite of their limitations they may be necessary for areas where climatic data needed for better methods are lacking.
2) Micrometeorological methods. These involve profile measurements and turbulent transfer theory. They are essentially methods for intensive research and not for broad scale applications.
3) The 'serodynamic' method. This has been used widely for the calculation of evaporation from oceans and large lakes and has the form $E=\left(e_{5}-e_{2}\right) \times f(u)$, where $f(u)$ is a function of windspeed at some reference height e_{s} and e_{a} are vapour pressures at the (water) surface and in the air at the reference level.
4) The energy balance method. This apportions net radiation as the main source of energy to provide for heating of the air and latent heat of evaporation so that $E=(R-G) / L(1+B)$, where R is net radiation, G is ground heat flux, L the latent heat of vaporisation and B (the Bowen ratio) is the ratio of sensible heat flux to latent heat flux. In certain circumstances the Bowen ratio can be estimated, or it can be evaluated from the protiles of temperature and humidity.
5) The 'combination' method. This overcomes most of the difficulties inherent in the application of either the aerodynamic method or the energy balance method for broad climatological applications, by eliminating the need to assign a value for B, to measure or estimate e_{5}, and to establish an accurate formulation of $f(u)$.
6) Direct measurement of evaporation by physical measurement of water lost from evaporation pans, lysimeters, soil samples, lakes of catchments. Of these only pans are generally included in climatological observing networks.

2.2.3. The Combination Method for Evaluating Potential Evapotranspiration

The best known tormulation is by Penman (Penman, 1948) and is a combination of the aerodynamic and energy budget approaches:
$E=[s /(s+g)] \times[R n-G]+[g /(s+g)] \times E a$
where
$E \quad=\quad$ Potential evaporation from a unitorm well-watered surface (mm/day)
$s \quad=\quad$ Rate of increase of saturation vapour pressure with air temperature ($\mathrm{mb} /{ }^{\circ} \mathrm{C}$)
$g=$ Psychrometric constant $\left(0.66 \mathrm{mb} /{ }^{\circ} \mathrm{C}\right.$ at 1000 mb and $\left.20^{\circ} \mathrm{C}\right)$
$\mathrm{Rn}=$ Net solar radiation (mm/day)
$\mathrm{G}=$ Ground heat flux (usually assumed $=0 \mathrm{~mm} /$ day)
$\mathrm{Ea}=\ldots$ Advected energy (mm/day)

The equation has been widely used and shown to give reasonably accurate results under a wide range of conditions.

Methods of deriving the various terms are detailed in the sections that follow.

2.2.3.1. Calculation of $\mathrm{s} i(s+\mathrm{g})$ and $\mathrm{g} /(\mathrm{s}+\mathrm{q})$

The term $s /(s+g)$ may be obtained from the following equation (Linsley, et al 1982)

$$
s i(s+g)=\left[1+0.66 /(0.00815 \times \mathrm{Ta}+0.8912)^{7}\right]^{-1}
$$

where
$\mathrm{Ta}=$ Air temperature $\left({ }^{\circ} \mathrm{C}\right)$

The other dimensionless ratio in the Penman equation can be computed from:

$$
g /(s+g)=1-s /(s+g)
$$

$g=c_{p} p / \varepsilon \lambda$ is called the $p s y c h r o m e t r i c ~ c o n s t a n t ~ w h e r e ~ c_{p}$ is the specific heat of air at constant pressure, p is the air pressure, ε is the ratio of the molecular weight of water vapour to that of dry air ($=0.622$), and λ is the latent heat of vaporization of water.

The increase of g with atmospheric pressure is sufficient to result in appreciable variation of the two ratios with elevation, but sea-level values are customarily applied without adjustment. Since the ratios define relative weights for two terms which are usually of the same order of magnitude, the resulting error is less than might be expected. (Linsley, et al, 1982).

2.2.3.2. Calculation of the Net Solar Radiation An

The Penman equation requires the daily net radiation. The equation of radiative balance for a unit area of a surface can be written as:
Balance $=$ Gains - Losses

In terms of the net radiation:

Net Radiation $=\quad$\begin{tabular}{l}
Incident short wave

radiation

+

absorbed long wave

radiation

$\quad-\quad$

reflected and transmitted

short wave radiation

+

+

emitted long wave
\end{tabular}

Let the average net radiation per unit area of a body be Rn. The incident short wave radiation consists of direct and diffuse radiation from the sun and the atmosphere S_{t}, plus sunlight reflected from the environment S_{e}. The total incident short wave radiation is then $S_{\psi}+S_{e}$ and if the albedo of the body is r_{b}, the reflected short wave flux is $r_{b} \times\left(S_{t}+S_{e}\right)$. Fluxes of long wave radiation to be included in the radiation blance are L_{d} from the atmosphere, L_{e} from the environment and $L_{b}=\sigma T_{b}{ }^{4}$, the flux of full radiation at mean surface temperature, where σ is the Stefan-Boltzmann constant. A surface with an emissivity of ε will gain $\varepsilon \times\left(L_{d}+L_{e}\right)$ from its surroundings and emit $\varepsilon \times L_{D}$ to its surroundings.

The general equation of radiation balance can now be written :
$A n=\left(1-r_{b}\right) \times\left(S_{t}+S_{e}\right)+\varepsilon \times\left(L_{d}+L_{e}-L_{b}\right)$

All natural materials reflect and transmit solar radiation in the waveband from 0.4 to 3 um. At the short wavelength, high frequency end of the solar spectrum, the radiative behaviour of materials is determined mainly by the presence of pigments absorbing radiation at wavelengths associated with specific electron transitions. For radiation between 1 and 3 um, liquid water is an important constituent of many natural materials, because water has strong absorption bands in this region, and even in the visible spectrum where absorption by water is negligible, the reflection and transmission of light by porous materials is often strongly correlated with their water content. In the long wave spectrum beyond 3um, most natural surfaces behave like full radiators.

The albedo of soils depends mainly on their organic matter content on water content particle size and angle of incidence. The albedo ranges from about 10% for soils with a high organic matter content to about 30% for desert sand. Even a very small amount of organic matter can depress the albedo of the soil.

The fraction of radiation transmitted and reflected by a leaf depend on the angle of incidence. Thus the albedo of a canopy depends on its geometry, on the angle of the sun, as well as on the radiative properties of its components. In general, maximum values of albedo r (close to 0.25 are recorded over relatively smooth surfaces such as closely cut lawns. For crops growing to heights of 50 to $100 \mathrm{~cm}, r$ is usually between 0.18 and 0.25 when ground cover is complete but values as small as 0.10 have been recorded for forests. (Monteith, 1973).

To simplity analysis we can assume we have a continuous horizontal surface receiving radiation from above and not from below. The net radiation is simply
$R n=\left(1-r_{b}\right) \times S_{t}+L_{d}-\sigma T_{b}{ }^{4}$
where r_{b} is the albedo of the surface, σ the Stefan-Boltzmann constant, and T_{b} the radiative temperature of the surface ($\left.{ }^{\circ} \mathrm{K}\right)$. The other terms are defined above.

In the absence of direct measurements of the radiation fluxes several methods can be used to derive an estimate of the net solar radiation using commonly available meterological data. These methods try to account with varying degrees of complexity, for the various processes described above. The first method descibed below assumes that the variation in net solar radiation can be satisfactorily accounted for by the variation in observed average daily air temperature and daily solar radiation.

Linsley et al (1982) give a formula for net solar radiation An based on the daily solar radiation at the earth's surface (Ra) and the air temperature at the surface (Ta). If Rn and Rs are in megajoules and Ta is in degress Celsius then:

$$
\mathrm{Qn}=0.171 \mathrm{Ra}+1.26 \times 10^{-4} \mathrm{Ra}(\mathrm{Ta}+17.8)^{1.87}+2.25 \times 10^{-3} \mathrm{Ra}^{2}-1.36 \times 10^{-6} \mathrm{Ra}^{2}(\mathrm{Ta}-7.2)^{2}-1.02
$$

This equation was derived by correlation analysis of dala from the U.S.A.

A method of calculating Rs, the daily solar radiation at the top of the atmosphere, is given in Appendix A. However, by the processes detailed above, a large part of the solar radiation reaching the outer limits of the atmosphere is scattered and absorbed in the atmosphere or reflected from clouds and the earth's surface. About half the incident radiation at the outer limits of the atmosphere eventually reaches the earth's surface.

For this reason the method detailed below based on the Angstrom equation, was used to calculate the net radiation Rn at the Sherwood site.

The Angstrom equation as modified by Prescott (1940) has been used by many workers to estimate the total solar radiation falling on a horizontal area of the earth's surface. The equation is:

RhiRs $=a+b(n / N)$
where Rh is the total radiation per unit time on a horizontal unit area on the earth's surface and Ra is the solar radiation per unit time on a horizontal unit area at the top of the atmosphere. N is the astronomically possible sunshine per unit time and n is the actual bright sunshine per unit time. The constants a and b can be determined by a least squares approach from a series of simultaneous radiation and sunshine measurements. (De Lisle, J.F., 1966, and Doorenbos J. and Pruit W., 1977)

The Angstrom equation, and equations based on consideration of the variations of radiation with temperature and water content of the air, lead to various emperical equations that can be used to calculate net radiation in the absence of Rn .

One such equation (De Lisle, J.F., 1966) is:
$R n=(1-r) \times\left(C_{1}+C_{2} \times n / N\right) \times R s-\varepsilon \times \sigma \times T^{4} \times\left(C_{3}+C_{4} \times n / N\right) \times\left(C_{5}-C_{6} \times e\right)$ where
r $=$ reflection coefficient for surface
$\mathrm{n}=\quad$ sunshine duration (hr)
$\mathrm{N}=$ possible sunshine duration (hr)
$\mathrm{Ra}=$ daily mean solar insolation at the top of the atmosphere ($\mathrm{mm} /$ day)
$\varepsilon=$ surface emissivity
$\sigma=$ Stefan-Boltzmann constant $\left(1.985 \times 10^{-9} \mathrm{~mm} /\right.$ day $\left./ \mathrm{K}^{4}\right)$
$\mathrm{T}=$ air temperature $\left({ }^{\circ} \mathrm{K}\right)$
e $=\quad$ water vapour partial pressure (mb)

De Lisle (1966) used measured daily radiation and calculated regression coefficients for C_{1} and C_{2} for sites throughout New Zealand. For Auckland he found $C_{1}=0.26$ and $C_{2}=0.49$ on an annual basis. He also derived C_{1} and C_{2} on a seasonal basis for many other sites throughout New Zealand. The variation was less than $+/-0.05$ for both constants. These constants were used for the Kempsey site.

After the data required had been derived using these coefficient values an additional reference (Doorenbos J. and Pruitt W. 1977) was discovered. This document quotes values for Australia from $12-43^{\circ} \mathrm{S}$ of $\mathrm{C}_{1}=0.26$ and $\mathrm{C}_{2}=0.50$ with the source given as Hounam(1963). Unfortunately no further details are listed, and a search of the literature failed to uncover further details. As the values were so similar the data was not recalculated.

Penman (1963) derived $\mathrm{C}_{3}=0.10, \mathrm{C}_{4}=0.90, \mathrm{C}_{5}=0.56, \mathrm{C}_{6}=0.078$ and $\varepsilon=1.0$. For the conditions at the Sherwood site r can be taken as 0.25 . It was found that use of alternative values made little difference in most cases.

Values of the constants have been adapted for use with vapour pressures in millibars, evaporation in mm/day, and energy terms in equivalent evaporation units ($\mathrm{mm} / \mathrm{day}$). The equivalent for this conversion is $1 \mathrm{~mm} /$ day $=28.59 \mathrm{w} / \mathrm{m}^{2}$. If measured global radiation is available it may be used with advantage in place of $(1-r) \times\left(\mathrm{C}_{4}+\mathrm{C}_{2} n / N\right) \times \mathrm{Ra}$.

The values of the bright sunshine duration (n) were unavailable for the Kempsey data so estimates of cloud cover were used to derive the fraction of cloud cover FC. The value of (1-FC) was used instead of n / N.

The water vapour pressure e at the air temperature can be derived from:

$$
e=e_{5} \times f / 100
$$

where f is the relative humidity (as a percentage).

2.2.3.3. Evaluation of Groundheat Flux G

The analysis of heat conduction in soils is complex, partly because steady states are rare when a soil surface is exposed to annual and seasonal cycles of radiation and partly because changes in the water content or compaction of a soil may change its thermal properties profoundly (Monteith, 1973).

A reasonable approximation is to assume that the temperature of the soil-air interface oscillates sinusoidally during a daily cycle with an annual cyclic trend imposed upon this pattern. Measurements indicate that the ground heat flux is small compared to the solar heat flux.

The reversal of heat flux over a 24 hour period indicated by the sinusoidal oscillation of the soil-air interface and the small part that the ground heat flux plays in the fotal radiation balance lead to the assumption that G was zero for all timesteps.

2.2.3.4. Evaluation of the Advected Eneray Ea

The advected energy term Ea can be calculated from(Doorenbos, J. and Pruitt W. 1977):
$\mathrm{Ea}=0.27 \times\left(\mathrm{e}_{5}-\mathrm{e}_{\mathrm{a}}\right) \times(1.0+\mathrm{V} / 100)$
where
E_{a} is advected energy: ($\mathrm{mm} /$ day)
e_{ς} is the saturation vapour pressure; (mb)
e_{a} is the vapour pressure; (mb)
v is the wind movement 2 m above the surface; ($\mathrm{km} / \mathrm{day}$)

The vapour-pressure difference can be computed from (Linsley et al, 1982) $\mathrm{e}_{5}-\mathrm{e}_{\mathrm{a}}=33.86 \times\left[(0.00738 \mathrm{Ta}+0.8072)^{8}-(0.00738 \mathrm{Td}+0.8072)^{8}\right] \quad \mathrm{Td}>=-27^{\circ} \mathrm{C}$ where the vapour pressures are in millibars and the dewpoint Td and air temperature Ta are in degrees celsius.

A common error in the application of this equation is the use of the wet bulb temperature Tw instead of the dewpoint temperature Td.

An alternative method is given by
$\left(e_{5}-e_{a}\right)=e_{5} \times(1-f / 100)$
where f is the relative humidity.
A method of obtaining f and e_{5} from wet and dry bulb temperatures is given in Appendix B.

2.2.4 Calculated Evapotranspiration - Calibration

Initial calculations of daily values of potential evapotranspiration were examined. It appeared that excessively high values were obtained on days for which high average wind speeds were recorded. The recorded pan evaporation values at the nearest meterological station (Taree Station No.60030) were examined to obtain an idea of the evapotranspiration expected for each month. With these values as a guide the average daily windspeed was adjusted in the following manner.

It was believed that the average daily windspeed calculated from the 9a.m. and 3p.m. values was producing over-estimates of the daily windrun for two reasons. Firstly surface windspeed is usually at a minimum about sunrise and increases to a maximum in the early afternoon(Linsley et al. 1982). Secondly it is likely that with higher windspeeds an observer will tend to record a speed indicative of the gusts rather than the average speed.

After several calibration runs, comparing the calculated monthly potential evapotranspiration to that recorded at the Taree Station a relationship was developed that produced results that appeared highly realistic. The relationship consisted of multiplying the observed windspeed by 0.75 to account for the typical daily variation in windspeed and then taking the result to the power of 0.95 to account for the over estimation of the higher windspeeds. The use of the power term had virtually no effect on the lower windspeed values.

2.3 Rainfall

Rainfall is measured at the Kempsey Station daily. Rainfall records have been kept since 1882. The mean and median rainfall for Kempsey are 1213 and 1130 mm respectively. Monthly statistics presented in Table 2-1 show that most rain falls in summer.

TABLE 2-1: MONTHLY RAINFALL STATISTICS

	JAN	FEB	MAR	APR	MAY	JUNE	JUL	AUG	SEP	OCT	NOV	DEC
Mean (mm)	134	153	151	114	93	99	68	66	57	82	87	109
Median (mm)	104	109	128	79	62	58	30	36	36	60	74	83
Mean Raindays	11	11	12	10	8	7	6	6	6	8	9	10

FIGURE 3-1

3. SHERWOOD BOREFIELD

3.1 Introduction

The following description of the Sherwood Borefield is based closely on the Water Resources Commission Hydrogeological Report No 1986-1 (Merrick N.P., Blair A.H., 1986) with some additional input from two reports by Australian Groundwater Consultants Ply Ltd (Lower Macleay Water Supply Completion Report 1985, and Lower Macleay Water Supply Sherwood Borefield Safe Yield Review, 1978).

Sherwood Borefield is located on a high level terrace of the alluvial flats of the Macleay River, about 11 kilometers west of Kempsey, on the North Coast of New South Wales (Figure 3-1). There are six production bores in the borefield, with a further two yet to be commissioned. Water from the borefield contributes substantially to the Kempsey District Water Supply Scheme which serves the towns of Kemsey, Frederickton, Smithtown, Gladstone, Clybucca, South West Rocks and Hat Head, as well as rural properties between Sherwood and South West Rocks.

Associated with the borefield is an artificial recharge scheme which delivers water from the Macleay River to the former river channel abandoned about 35 years ago. After artificial recharge to the abandoned river channel was trialled in November 1977, the scheme became fully operational in the spring of 1979.

FIGURE 3-2 SOURCE : MERRJCK, N.P. AND BLAIR, A.H. (1986)

3.2 Data

Kempsey Shire Council personnel have collected data on a weekly basis on behalf of the Public Works Department. All elevations refer to the Sherwood Datum.

3.2.1. Aquifer Geometry

Figure 3-2 shows in cross-section the configuration of the aquifer (A.G.C., 1975). The section shows low-level and high-level terraces at elevations of about 39 m and 47 m respectively. Alluvial sediments have a maximum thickness of about 24 m . The main gravel aquifer occupying the bottom 8 m of section is generally semi-confined but is less confined to the east.

3.2.2. Aquifer Properties

The hydraulic capability of an aquifer is controlled by two intrinsic properties: hydraulic conductivity (K) and storage coefficient (S). Often, instead of K, the term transmissivity (I) is preferred; this is defined as the product of hydraulic conductivity and the saturated thickness of the aquifer. Storage coefficient is defined as the volume of water which an aquifer releases from storage per unit surface area for a unit change in head.

There have been many estimates of aquifer parameters in the Sherwood borefield based on pumping test analyses. The hydraulic conductivity is in the order of $1000 \mathrm{~m} /$ day except beneath the low-level terrace where it is about $100 \mathrm{~m} /$ day, and the storage coefficient is in the order of 0.01 .

3.2.3. Artificial Recharge

The delivery rate to the recharge channel in each month has been estimated from daily records of the number of hours of operation of the recharge pump. Due to uncertainties in the volumes pumped, and losses other than infiltration, the final infiltration rates were estimated at 60% of the initial delivery estimates. This figure was resolved in the calibration slage of the groundwater model (see Section 4). The last recorded use of the recharge pump was on the 7th March. 1983. At this time the recharge channel was excavated and extended, and subsequently gravity feed was used with no records kept of the volume of water delivered.

3.2.4. Pumpage

The total volume of water extracted from the borefield is metered (in KL units) and recorded at the end of each week. In January 1984, the borefield meter broke down and was not replaced until January 1985. There is also evidence that the meter readings after February 1983 were erroneous. The extraction from each individual bore has been determined either from reported usuage or from weekly records of pump hours at assumed rates.

3.2.5. Hydrographic Record

Water levels in seven observation bores are measured weekly. The hydrographs are characterised by sudden high-amplitude fluctuations which correlate well with rainfall and river level variations. In any one bore, water levels vary by as much as 5 m , while single peaks have a maximum amplitude of 3 m . There are very few definite correlations with borefield extraction, because most of the prominent troughs are merely recessions from high water levels.

4. SHERWOOD BOREFIELD GROUNDWATER MODEL

The following description of the Sherwood Borefield Groundwater Model is based on the Water Resources Commission Hydrogeological Report No 1986-1 (Merrick N.P.,Blair A.H., 1986).

The Public Works Department, on behalf of Kempsey Shire Council, requested that the Water Resources Commission assess the maximum potential withdrawal rate of the borefield under normal conditions, drought conditions, and conditions of higher artificial recharge. The Commission responded by developing a numerical model of the borefield.

The proximity of outcrop and river boundaries to Sherwood Borefield, as well as spatial variability in aquifer properties, led to the use of a numerical model rather than an analytical model.

4.1 Computer Code

A well-documented computer model called AQUIFEM-1 (Townley L.,Wilson J., 1980) was used to model the borefield. It uses the finite element method to solve the groundwater flow equation within each of a number of triangular elements. The solution gives the value of hydraulic head at the corner of each element in response to the boundary conditions and stresses placed on the model.

4.2 Conceptual Model

The Sherwood aquiter is conceptualised as a single semi-confined aquiter, of varying thickness, in hydraulic connection with the Macleay River. The study area is confined on the eastern side by outcrop, considered to be a no-flow boundary. The stretch of river between points C and D on Figure $3-1$ defines the Western edge of the modelled area. Subsurface outlow from the system is expected at point D .

FIGURE 4-1

4.3 Grid Design

The finite element grid for the modelled area shown in Figure 4-1, covers an area of 200 ha Nodes have been placed at each of the nine production bores and seven observation bores. The positions of the river, recharge channel and outcrop have been preserved by tracking each boundary with linear segments.

At each node the following parameters were specified:- bottom elevation, aquifer thickness, hydraulic conductivity, storage coefficient. At pumping nodes and artificial recharge nodes, fluxes were specified. Lateral fluxes were specified through two sides at the outfow boundary. Rainfall infiltration was specified for each element assuming no local spatial variability.

The variables which varied with time were:- river levels, pumping, artificial recharge, rainfall infiltration. The chosen time step was one month. This implies that all water levels and all flux rates were monthly averages.

The Macleay River hydrograph was digitised at one-month intervals to provide fixed head values at Sherwood Bridge. River levels at the other river nodes were estimated by assuming a 0.025\% gradient.

Artificial recharge volumes were divided equally between the nodes which defined the recharge channel.

FIGURE 4-2

4.4 Model Calibration

Calibration is the process which aims to match observed water levels with the levels computed by the model, over some representative historical period. This is achieved by adjusting those parameters in the model which are unknown or uncertain, namely:- hydraulic conductivity, storage coefficient, outflow, rainfall infiltration.

Variables considered exact were:- river level, pumpage, bore location. Initially artificial recharge rates were treated as known but it was necessary to reduce the assumed infiltration from 100% to 60%.

The historical period chosen for calibration was April 1978, when hydrographic records commenced, to February 1983, when pumpage figures become unreliable and the artificial recharge operation changed from pumping to gravity feeding.

Figure 4-2 provides a picture of the broad aquifer regions into which the modelled area has been divided. There are three distinct regions. The permeable buried channel ($K \approx 1200 \mathrm{~m} / \mathrm{d}$) passing beneath the borefield is not in direct contact with the river. The hydraulic connection is inhibited by sediments of lower permeability ($50-300 \mathrm{~m} / \mathrm{d}$), particually in the northern half of the model. The storage coefficient is about 0.01 to 0.05 , an insignificant variation over the modelled area. There must be significant outflow (up to 50 ML d) at the downstream end of the model, in order to sustain groundwater levels at about 3 m lower than the river level.

Rainfall infiltration appeared to be very high. Even with the value of 70% infiltration used observed hydrograph peaks resulting from rainfall events were found to be greater than the simulated peaks. There is no reason to suppose that Sherwood rainfall is any higher than Kempsey rainfall, where the meteorological station is based. The mismatch may be explained by the smoothing effects of monthly averaging in the model, because comparisons are made with observed weekly groundwater levels; or by runoff contributions to the system from the hills to the east occurring at the same time as rainfall events. Rainfall supplies about $4 \mathrm{ML} / \mathrm{d}$ (on average) to the Sherwood aquifer.

As there was no reliable potentiometric map for the area, calibration was achieved by matching observed hydrographs against simulated hydrographs at each of the seven observation bores. The comparison is shown in Figure 4-3.

The match is as good as could be expected of a numerical model, given the simplicity of the conceptual model and the smoothing effects of the model monthly time steps, especially when compared with the observed weekly hydrographs.

4.5 Model Verification

To assess the reliability of a numerical model it is customary to exclude some of the historical record of water levels from the calibration stage, and reserve it for verification purposes. This process is actually a prediction of behaviour following the calibration period.

The verification period was March 1983 to July 1985. The agreement with observed water levels was very good through to mid-1984, after which the computed levels are a little high in most bores. This discrepancy may have been due to the assumption that artificial recharge was occurring at a constant rate, rather then varying in sympathy with river levels, or to the likelihood that gradual siltation of the channel had decreased infiltration. There is also some uncertainty in the volumes of groundwater pumped during 1983 and 1984, when the borefield meter was inoperative.

4.6 Groundwater Model Conclusions

The numerical model of Sherwood Borefield has revealed that rainfall, river level and artifical recharge all have a significant impact on groundwater levels in the borefield. Historical extraction by pumping has had only a minor effect. Good model calibration is achieved when it is assumed that 70% of monthly rainfall infiltrates to the groundwater system.

FIGURE 5-1: DAILY MODEL

5 MODEL DEVELOPMENT

5.1 Introduction

The model developed below is based upon hydrologic processes. The principles of energy exchange and mass transport were used as the building blocks of a physically based model of the catchment. However to model the physical processes occurring in fine detail would require a complex model that would be rendered less exact by the imprecise data available for the various model parameters and variables. This lack of precise data occurs due to both the difficulties of measurement in the field, and the need to assign a single value to parameters and variables that in fact represent processes occurring over a wide area

The model developed was therefore kept relatively simple and consists of three conceptual stores. The overall structure of the model is illustrated in Figure 5-1. The meaning of the symbols used and the development of the various algorithms used to calculate the flow of water through the model are described below.

5.2 Interception Store

The interception store submodel is developed below. It consists of a single conceptual store. Precipitation P is routed through the store. The contents of the store are adjusted for evapotranspiration at the end of the time step and the potential evapotranspiration is decreased to allow for evapotranspiration that has taken place from the store.

FGURE $5-2$: INTERCEPTION STORE

The following variable names are used in this submodel:

INTCAP	$=$	Interception storage capacity
$\mathbb{I N T}$	$=$	Content of interception store
EINT	$=$	Evapotranspiration from the interception store
EPOT	$=$	Potential evapotranspiration
P	$=$	Precipitation
PEFF	$=$	Effective precipitation reaching the soil store

At the start of rainfall with dry vegetation $\operatorname{INT}=0$ and $\operatorname{PEFF}=0$. By the end of the storm if the interception store is full $\operatorname{INT}=\mathbb{I N T C A P}$ and PEFF $=\mathrm{P}-$ EINT. This allows the end points to be fixed on the graph shown in Figure 5-2. Mast daily models (Boughton, 1966 etc) use the relationship indicated by line 1 which corresponds to a process where no effective precipitation flows from the store until it is completely full. For an individual rainfall event this is not what is usually observed and line 2 is likely to more closely represent the actual process.

The process indicated by line 2 in Figure 5-2 is a reasonable approximation to the actual process for a single simple storm event. It is less likely to be a reasonably close approximation for a daily timestep model. A storm event may last for a greater or a shorter period than one day. While INT may equal INTCAP at times throughout this period the actual relationship of PEFF to P. EINT, INT and INTCAP will be the result of summing the effect of a number of events occurring within the daily timestep.

If a typical storm pattern existed for a particular site it may be possible to derive an accurate relationship. In view of the effort and data required for such a procedure it woud be simpler and more accurate to use a smaller timestep that would more accurately model each event. Thus for a daily model line 1 is a reasonable approximation. To more accurately model the actual processes a shorter timestep should be used.

FIGURE $5-3$: INTERCEPTION STORE FLOW CHART

The values of EPOT and P are read in from the data file for the model. The values in this file were obtained from meteorological readings (see 马ection 2). The values of INT, EINT and PEFF at the end of each timestep are calculated by the model. The value of INTCAP, the interception store capacity, was estimated. The site is predominantly grassland. The interception store capacity is the storage component filled by initial wetting by precipitation falling on the vegetal cover and other objects.

No definitive study exists on the interception store capacity of various vegetation types. Local variations and difficulties in measurements meant that estimates were used. A value of 2 mm was adopted after a lengthy search through the available literature.

The interception store submodel developed using the above relationships is described by the flow chart given in Figure 5-3. The terms MIN and MAX used on this, and subsequent flow charts are used to indicate that the minimum, or maximum value of the bracketed terms should be used.

5.3 Soil Store

The soil store consists of a single conceptual store. The following variable names are used in this submodel:

PEFF	$=$ Effective precipitation reaching the soil store
ESOIL	$=$ Evapotranspiration from the soil store
EPOT	$=$ Potential evapotranspiration
SOILCAP	$=$ Soil store capacity
SW	$=$ Contents of soil store
R	$=$ Runoff
INFIL	$=$ Infiltration
INFMAX	$=$ Maximum infiltration per day
INFPOT	$=$ Potentisl infiltration
SDRY	$=$ Wilting point
EMAX	$=$ Maximum evapotranspiration loss possible at field capacity
GCONST	$=$ Recession constant
RECHAR	$=$ Water percolating to the groundwater store

Representative physical properties of a number of soil types are given in Table 5-1. From the values presented INFMAX may be estimated directly. SOILCAP and SDRY may be estimated from the values of FC and WP if the rooting depth of the vegetation is known.

Table 5-1: Representative Physical Properties of Soil

\begin{tabular}{|c|c|c|c|c|}
\hline SOIL TEXTURE \& INFILTRATION

INFMAX
(mm/day) \& FIELO CAPACITY
FC
(\%) \& WILTING POINT
WP
(\%) \& APPARENT SPECIFIC GRAVITY As

\hline sandy \& $$
\begin{aligned}
& 1200 \\
& (600-6000)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 6 \\
& (6-12)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4 \\
& (2-6)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.65 \\
& (1.55-1.80)
\end{aligned}
$$
\]

\hline sandy loam \& | 600 |
| :--- |
| (300-1800) | \& \[

$$
\begin{aligned}
& 14 \\
& (10-18)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 \\
& (4-8)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.50 \\
& (1.40-1.60)
\end{aligned}
$$
\]

\hline loam \& $$
\begin{aligned}
& 300 \\
& (190-480)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 22 \\
& (18-26)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10 \\
& (8-12)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.40 \\
& (1.35-1.50)
\end{aligned}
$$
\]

\hline clay loam \& $$
\begin{aligned}
& 190 \\
& (60-360)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 27 \\
& (23-31)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13 \\
& (11-15)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.35 \\
& (1.30-1.40)
\end{aligned}
$$
\]

\hline silty clay \& $$
\begin{aligned}
& 60 \\
& (7-120)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 31 \\
& (27-35)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15 \\
& (13-17)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.30 \\
& (1.30-1.40)
\end{aligned}
$$
\]

\hline clay \& $$
\begin{aligned}
& 12 \\
& (2-24)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 35 \\
& (31-39)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 17 \\
& (15-19)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.25 \\
& (1.20-1.30)
\end{aligned}
$$
\]

\hline
\end{tabular}

Note:

1. Normal ranges shown in parenthesis.
2. Moisture content $=\mathrm{FC} / 100$ or WP $/ 100 \times$ As XD where $\mathrm{D}=$ rooting depth.
3. The above figures have been assembled from a variely of sources.

FIGURE5-4:POTENTIAL INFILTRATION FUNCTION

If the daily effective rainfall exceeds the infiltration rate throughout the day then the relationship between R. PEFF and INFIL will be given by.

$$
\mathrm{R}=\mathrm{PEFF}-\mathrm{INFIL}
$$

More usually the effective precipitation rate will vary throughout the day and may be discontinuous. In the periods between rainfall water held in the topsoil layer in excess of field capacity will continue to drain into the subsoil. When the rainfall recommences there is a lag in the restart of runoff until the drained amount is refilled in the topsoil layer. This storage of water in the topsoil layer tends to balance minor fluctuations in the rainfall pattern providing a relatively continuous infiltration rate throughout the day. (Boughton, M.E., 1966).

Thus this assumption will be resonably correct when the rainfall rate is continuous throughout the day. When the daily rainfall is small the rate is likely to vary throughout the day. In such a case the apparent value of the daily infiltration rate will be reduced.

Observation indicates that the infiltration rate is much higher when the catchment is dry before rain than when the catchment is wet. Observation also shows that infiltration rate decreases throughout a storm. Equations, such as inverse exponential functions, have been proposed to describe the rate of change. These observations can be accounted for in the model by an infiltration function which varies the infiltration rate inversely with the contents of the soil water store. Such a function is described by the graph in Figure 5-4. A quantity up to the potential infiltration is added to the soil store, and any excess becomes runoff.

Evapotranspiration up to the remaining potential EPOT is lost from the soil store in each daily period. The rate at which a plant uses water under given meteorological conditions and when soil moisture is freely available is termed the potential transpiration rate. This has been widely studied but, in hydrological studies of water lost from a natursl catchment it is necessary to be able to calculate the transpiration rate at very low soil moisture levels as the catchment dries out. (Boughton, 1966). It has been shown that the ratio of actual to potential transpiration rate is not a single value depending only on the soil moisture level but the ratio also depends on the prevailing potential rate (Denmead and Shaw, 1962, Slatyer, 1967).

Transpiration can continue at the potential rate while the coil moisture is reduced almoct to the wilting point if the prevailing potential transpiration rate is low. When the prevailing rate is high the actual transpiration rate is reduced below the potential rate when the soil moisture level is only a small amount less than field capacity. The relationship used in the model based on the above behaviour is illustrated in Figure 5-5.

The parameter EMAX indicates the maximum evapotranspiration loss possible at field capacity for that particular soil and crop. Data is available which relates the maximum possible evapotranspiration for a crop (with soil moisture at field capacity) to measured climatic parameters (e.g. pan evaporation). This would allow an estimate of EMAX to be made. It should be noted that here EPOT is the potential evapotranspiration remaining after interception store requirements have been met and not that which would be indicated by climatic measurements.

The recharge that can take place to groundwater (RECHAR) will be determined by the infiltration characteristics of the soil layers. These will be determined by the soil characteristics and the degree of saturation of the soil. Within the model the degree of saturation above the wilting point is indicated by (SW - SDRY).

FGURE $5-6$: SOIL STORE SUBROUTINE

For saturated flow Darcy's law states:

$$
\mathrm{v}=-\mathrm{K}_{5 \mathrm{sat}} \mathrm{dH} / \mathrm{dZ}
$$

where v is the velocity of flow, $\mathrm{K}_{\text {sat }}$ is the saturated hydraulic conductivity, and $\mathrm{dH} / \mathrm{dZ}$ is the hydraulic gradient.

For unsaturated flow, as will be most often the case for the model we have:

$$
v=-\mathrm{K}(\mathrm{~B}) \mathrm{dH} / \mathrm{dZ}
$$

where $K(\theta)$ is the unsaturated hydraulic conductivity.
$K(8)$ varies with the degree of saturation 8 but will always be less than or equal to $K_{\text {sat }}$ Typically a 10% reduction in θ from saturation will lead to about a 50% reduction in $K(\theta)$. For vertical infiltration $\mathrm{dH} / \mathrm{dZ}$ will be less than or equal to 1 for drainage within the soil store. This implies $v<K$ sat. For sand loam, using the median value, we have $v \leqslant 600 \mathrm{~mm} /$ day.

The modelling of water movement in unsaturated soils is still an inexact science and would be very difficult in this instance due to the need to firstly measure the various soil parameters required, and secondly to use a single lumped value of these parameters to account for the behavior of soilwater flow over a wide area. The relationship used was therefore simplified to:

$$
\text { RECHAR }=\mathrm{GCONST} \times(5 W-\text { SDRY })
$$

It should be possible, given sufficient data, to determine the value of GCONST from the analysis of groundwater bore recession records. For the present study GCONST was set during the sensitivity study described in Section 6 .

The soil store submodel developed using the sbove relationships is described by the flow chart given in Figure 5-6.

6.4 Groundwater Store

For the Sherwood borefield the model does not need the capability to model evapotranspiration from the watertable as the watertable is too deep for significant capillary evapotranspiration to occur from the groundwater. For the sake of completeness a method of accounting for watertable evapotranspiration has been included and is detailed below.

The groundwater model described consists of a single conceptual store. However for many studies the groundwater system may be modelled by a more detailed numerical computer model consisting of a number of cells. Many of the relationships developed below could be readily incorporated into such a model.

The following variable names are used in the groundwater submodel:
$5 \quad=$ Storage coefficient
H = Elevation of watertable above arbitary reference level
RECHAR $\quad=$ Water percolating to the groundwater store
DTWT .. = Depth to watertable
D1 = Depth at which maximum capillary evapotranspiration starts
D2 $=$ Depth at which capillary evapotranspiration stops
EGW $\quad=$ Evapotranspiration from the groundwater store
EPOT $=$ Potential evapotranspiration
Q \quad Outflow from the groundwater store
BFCONST = Recession constant

The volume of water contained in the groundwater store above an arbitary reference level is given by SxH .

DEPTHTOWATERTABLE : DTWT

EGURE 5-7: GROUNDWATER EYAPOTRANSPIRATION FUNCTION

Where the watertable is close to the surface, groundwater may be discharged by direct evaporation or by transpiration from the capillary fringe. Plants deriving their water from groundwater, called phreatophytes, often have root systems extending to depths of 12 m or more (Linsley et al., 1982).

A relationship describing watertable evaporation as a function of depth below the natural surface is presented in graphical form in Figure 5-7. This relationship has been used in a number of other studies.

To permit evaluation of the effects of various management measures on the flow and salinity regime of Barr Creek in Northern Victoria (Rural Water Commission of Victoria, 1985), a computer model was developed in which the three components of creek flow (groundwater inflow, irrigation runoff, and rainfall runoff) were computed separately.

A relationship describing watertable evaporation as a function of depth below the natural surface was presented in the graphical form without explanation or references. The same relationship was used irrespective of the time of the year, with a limiting value equal to the open water evaporation rate. The curve used was similar to that given in Figure 5-7, except a gentle curve was used instead of the straight line section from D 1 to D 2 . The value of D 1 used was approximately 0.5 m and D2 was approximately 2.6 m .

Prickett and Lonnquist (1968) describe a computer routine which models evapotranspiration. The relationship is similar to that given in Figure 5-7. They quote an example from the Punjab region of West Pakistan described by Greenman et al (1967) where this relationship was successfully used. For this region the evapotranspiration rate equaled the recharge rate of $0.39 \mathrm{~mm} /$ day when the depth to water was 1 m .

54

FGUPE 5-8:GROUNDWATER STORE SUBROUTINE

It should be noted that these relationships describe only evaporation from the watertable, and their use alone is only appropraiate when only shallow rooted grasses and crops are present. Where significant numbers of phreatophytes are present the model would need to be modified to include evapotranspiration by the phreatophytes. Where there is more than one type of vegetation (e.g. deep-rooted trees and shrubs with shallow-rooted grasses or crops) , the usual procedure is to estimate the evaporation from each as proportional to its cover, as estimated from aerial photography or by ground surveys. This glosses over some conceptual difficulties in terms of the depth of the soil water store which is available to each type of vegetation, but is probably adequate at this overall level of modelling (Chapman T.G., 1985).

The equation describing the groundwater evaporation can be derived as follows:

$$
\begin{aligned}
\frac{\mathrm{DTWT}-\mathrm{D} 1}{\mathrm{EGW}-\mathrm{EPOT}} & =\frac{\mathrm{D} 2-\mathrm{D} 1}{-\mathrm{EPOT}} \\
\Rightarrow \mathrm{EGW}-\mathrm{EPOT} & =\frac{(\mathrm{DTWT}-\mathrm{D} 1)}{(\mathrm{D} 2-\mathrm{D})} \times(-\mathrm{EPOT}) \\
\Rightarrow \mathrm{EGW} & =\mathrm{EPOT}-\mathrm{EPOT} \times \frac{(\mathrm{DTWT}-\mathrm{D} 1)}{(\mathrm{D} 2-\mathrm{DI})} \\
\Rightarrow \mathrm{EGW} \quad & =\mathrm{EPOT}(1-[(\mathrm{DTWT}-\mathrm{D} 1) /(\mathrm{D} 2-\mathrm{D} 1)]
\end{aligned}
$$

For many catchments discharge from the groundwater system into streams takes place. Such a discharge is accounted for by Q, the outiow from the groundwater store. The value of the recession constant BFCONST could be estimated from studies of bore recession records.

The submodel developed based on the above relationships is described in Figure 5-8.

6. MODEL RESULTS

6.1 Introduction

The developed model was used to predict monthly recharge rates to the groundwater system. The model results were calculated on a daily basis which were then summed to obtain the monthly values. The first six months of data from January 1978 to June 1978 were used to 'warm up' the model. It was found that initial store values had no effect upon the model results after the first six months and they were initially set to half of their maximum values.

The model calculated the rates of recharge to rainfall for each month. As discussed in Section 4 successful calibration of the Sherwood Borefield Groundwater Model was obtained when it was assumed that this ratio was 0.70 . The aim of the daily process model calibration was therefore to achieve on a monthly basis a mean ratio value of 0.70 .

The model had the capability of calculating the mean and standard deviation of the monthly ratio value for the calibration period of July 1978 until the end of December 1981. These values are printed in the table of results for each model run. The initial block of data in these tables covering the warm up period from January 1978 until June 1978 was not used in the calculation of the mean and standard deviation for the monthly ratio values.

6.2 Sensitivity Study

In order to gain an appreciation of the effect that each model parameter had upon the monthly recharge to rainfall ratio a sensitivity study was undertaken. A number of computer runs were undertaken for this study. The results of these model runs are given in Tables 6.1 to 6.13.

INTCAP	GCONST SOILCAP	INFMAX	EMAX	SDRY	
2.00	.50	105.00	600.00	10.00	45.00

YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	72.80	46:34	. 00	112.50	169.96	. 65
1978	2	43.88	21.76	. 00	63.40	155.74	. 69
1978	3	174.69	51.31	125.73	379.10	130.25	. 46
1978	4	22.34	19.30	. 00	78.80	113.40	. 28
1978	5	19.74	18.06	. 00	37.80	70.93	. 52
1978	6	36.34	21.25	. 00	66.60	46.76	. 55
1978	7	. 89	8.38	. 00	8.20	77.45	. 11
1978	8	3.07	7.13	. 00	10.20	105.40	. 30
1978	9	21.46	18.77	. 00	42.00	147.24	. 51
1978	10	59.49	33.17	. 00	89.40	161.08	. 67
1978	11	43.94	35.06	. 00	79.20	157.69	. 55
1978	12	118.87	46.69	12.80	187.60	172.06	. 63
1979	1	111.89	47.71	42.48	193.00	181.44	. 58
1979	2	15.47	22.15	. 00	33.70	133.96	. 46
1979	3	74.54	41.16	. 00	117.10	144.77	. 64
1979	4	51.73	24.51	. 00	80.00	97.71	. 65
1979	5	99.57	21.78	6.05	117.20	75.06	. 85
1979	6	56.45	8.98	11.86	77.10	51.73	. 73
1979	7	10.10	10.42	. 00	23.40	54.99	. 43
1979	8	4.98	4.38	. 00	1.40	99.54	3.56
1979	9	9.31	11.31	. 00	20.70	131.26	. 45
1979	10	26.55	28.52	. 00	55.10	172.67	. 48
1979	11	62.75	45.40	. 00	107.60	160.61	. 58
1979	12	20.88	20.95	. 00	41.80	215.27	. 50
1980	1	74.62	32.16	23.61	134.80	182.40	. 55
1980	2	33.33	28.90	. 00	49.60	159.22	. 67
1980	3	25.91	17.60	. 00	45.30	159.99	. 57
1980	4	6.64	15.55	. 00	22.20	123.71	. 30
1980	5	196.51	32.46	196.13	425.50	67.35	. 46
1980	6	59.06	12.27	. 00	70.00	68.33	. 84
1980	7	13.25	9.10	. 00	22.50	69.60	. 59
1980	8	. 26	4.40	. 00	4.30	99.91	. 06
1980	9	1.00	2.60	. 00	3.60	164.85	. 28
1980	10:	16.86	21.04	. 00	37.90	166.68	. 44
1980	11	11.43	12.57	. 00	24.00	216.35	. 48
1980	12	102.57	31.24	34.20	196.50	182.54	. 52
1981	1	52.80	20.55	. 00	17.80	202.14	2.97
1981	2	96.84	64.09	. 00	177.80	137.26	. 54
1981	3	10.96	14.86	. 00	35.10	186.68	. 31
1981	4	121.39	25.05	72.36	202.00	96.58	. 60
1981	5	62.60	29.43	74.07	169.10	68.74	. 37
1981	6	. 32	5.14	. 00	6.70	57.44	. 05
1981	7	12.11	9.08	. 00	21.20	69.23	. 57
1981	8	2.19	5.39	. 00	7.60	145.89	. 29
1981	9	33.33	17.04	. 00	50.60	155.19	. 66
1981	10	73.71	37.29	. 00	110.70	168.21	. 67
1981	11	95.24	28.96	.40	135.00	164.83	. 71
1981	12	69.60	48.20	. 00	118.60	174.43	. 59

INTCAP	GCONST	SOILCAP	ILFMAK	EMA:	SDFY
1.00	.50	105.00	600.00	10.00	45.00

YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINEALL	PET	RATIO
1978	1	78.83	39.76	. 00	112.50	169.96	. 70
1978	2	45.68	20.06	. 00	63.40	155.74	. 72
1978	3	179.41	43.94	127.97	379.10	130.25	. 47
1978	4	26.15	15.67	. 00	78.80	113.40	. 33
1978	5	22.55	15.25	. 00	37.80	70.93	. 60
1978	6	38.60	18.83	. 00	66.60	46.76	. 58
1978	7	2.86	5.98	. 00	8.20	77.45	. 35
1978	8	4.54	5.72	. 00	10.20	105.40	. 44
1978	9	23.24	16.:2	. 00	42.00	147.24	. 55
1978	10	63.42	29.50	. 00	89.40	161.08	. 71
1978	11	49.56	29.69	. 00	79.20	157.69	. 63
1978	12	122.28	41.67	14.40	187.60	172.06	. 65
1979	1	115.67	42.40	43.81	193.00	181.44	. 60
1979	2	18.87	18.75	. 00	33.70	133.96	. 56
1979	3	80.14	35.57	. 00	117.10	144.77	. 68
1979	4	53.97	22.28	. 00	80.00	97.71	. 67
1979	5	99.85	20.82	6.70	117.20	75.06	. 85
1979	6	56.08	8.85	12.36	77.10	51.73	. 73
1979	7	11.57	8.91	. 00	23.40	54.99	. 49
1979	8	5.06	4.32	. 00	1.40	99.54	3.61
1979	9	11.07	9.53	. 00	20.70	131.26	. 53
1979	10	31.67	23.37	. 00	55.10	172.67	. 57
1979	11	68.94	39.37	. 00	107.60	160.61	. 64
1979	12	24.75	17.10	. 00	41.80	215.27	. 59
1980	1	77.48	27.85	24.61	134.80	182.40	. 57
1980	2	37.70	24.60	. 00	49.60	159.22	. 76
1980	3	27.78	15.75	. 00	45.30	159.99	. 61
1980	4	9.85	12.34	. 00	22.20	123.71	. 44
1980	5	197.14	30.76	197.17	425.50	67.35	. 46
1980	6	59.18	12.26	. 00	70.00	68.33	. 85
1980	7	14.13	8.23	. 00	22.50	69.60	. 63
1980	8	1.10	3.54	. 00	4.30	99.91	. 26
1980	9	1.72	1.89	. 00	3.60	164.85	. 48
1980	10	21.57	16.33	. 00	37.90	166.68	. 57
1980	11	$\therefore \quad 13.01$	11.00	. 00	24.00	216.35	. 54
1980	12	. 105.00	28.31	35.20	196.50	182.54	. 53
1981	1	55.43	17.50	. 00	17.60	202.14	3.11
1981	2	104.35	56.15	. 00	177.80	137.26	. 59
1981	3 !	14.00	11.57	. 00	35.10	186.68	. 40
1981	4	122.12	23.81	73.43	202.00	96.58	60
1981	5	65.09	26.13	74.84	169.10	68.74	. 18
1981	6	1.22	4.33	. 00	6.70 21.20	57.44 69.23	. 18
1981	7	13.31	7.89	. 00	21.20 7.60	69.23 145.89	. 47
1981	8	3.54	4.01 15.90	. 00	50.60	155.19	. 68
1981	9	34.53 76.75	15.90 34.32	. 00	50.60 110.70	168.21	. 69
1981	10	76.75	34.32 25.99	.4 .00 1.40	135.00	164.83	. 72
1981	11	96.88 75.63	25.99 41.54	1.40 .00	118.60	174.43	. 64
1981	12	75.63	4.5				

RATIO: MEAN $=$. 71 STANDARD DEVIATION $=.61$

INTCAP	GCONST	SOILCAP	INFMAX	EMAX	SDRY
3.00	.50	105.00	600.00	10.00	45.00

YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	69.48	50.17	. 00	112.50	169.96	. 62
1978	2	43.82	21.81	. 00	63.40	155.74	. 69
1978	3	171.10	55.86	124.83	379.10	130.25	. 45
1978	4	18.34	23.12	. 00	78.80	113.40	. 23
1978	5	17.51	20.29	. 00	37.80	70.93	. 46
1978	6	34.97	22.62	. 00	66.60	46.76	. 53
1978	7	. 17	9.10	. 00	8.20	77.45	. 02
1978	8	1.53	8.67	. 00	10.20	105.40	. 15
1978	9	20.46	20.04	. 00	42.00	147.24	. 49
1978	10	56.79	35.87	. 00	89.40	161.08	. 64
1978	11	41.28	37.72	. 00	79.20	157.69	. 52
1978	12	117.14	49.88	11.29	187.60	172.06	. 62
1979	1	110.47	50.48	41.28	193.00	181.44	. 57
1979	2	14.00	23.56	. 00	33.70	133.96	. 42
1979	3	72.13	43.58	. 00	117.10	144.77	. 62
1979	4	50.84	25.29	. 00	80.00	97.71	. 64
1979	5	99.45	22.65	5.55	117.20	75.06	. 85
1979	6	56.81	9.12	11.36	77.10	51.73	. 74
1979	7	8.85	11.15	. 00	23.40	54.99	. 38
1979	8	4.81	4.98	. 00	1.40	99.54	3.43
1979	9	8.43	12.18	. 00	20.70	131.26	. 41
1979	10	23.19	31.96	. 00	55.10	172.67	. 42
1979	11	58.84	49.13	. 00	107.60	160.61	. 55
1979	12	18.01	23.80	. 00	41.80	215.27	. 43
1980	1	72.88	35.33	22.61	134.80	182.40	. 54
1980	2	30.47	31.73	. 00	49.60	159.22	. 61
1980	3	25.05	18.45	. 00	45.30	159.99	. 55
1980	4	5.91	16.29	. 00	22.20	123.71	. 27
1980	5	194.28	34.73	196.08	425.50	67.35	. 46
1980	6	57.84	13.5 ?	. 00	70.00	68.33	. 83
1980	7	11.42	10.94	. 00	22.50	69 :60	. 51
1980	8	. 24	4.40	. 00	4.30	99.91 164.85	. 06
1980	9	. 29	3.31	. 00	3.60 37.90	164.85 166.68	. 35
1980	10	13.44	24.46	. 00	37.90 24.00	166.68 216.35	. 42
1980	11	10.00	14.00 32.98	33.20	196.50	182.54	. 52
1980	12	101.33 50.45	32.98 23.31	33.20 .00	196.50 17.80	182.54 202.14	2.83
1981	1	50.45	23.31 69.49	. 00	17.80 177.80	137.26	2.85 .52
1981	2	91.61	69.49 16.02	. 00	177.80 35.10	186.68	. 28
1981	3	9.95 121.15	16.02 25.55	71.79	202.00	186.58	. 60
1981	4 5	121.15 60.96	25.55 31.56	73.57	169.10	68.74	. 36
1981	5	60.96 .05	31.56 5.42	13.50 .00	6.70	57.44	. 01
1981	6	.05 10.85	10.35	.00	21.20	69.23	. 51
1981	7	10.85 1.37	10.35 6.23	. 00	7.60	145.89	. 18
1981	8 9	32.61	17.76	. 00	50.60	155.19	. 64
1981	10	71.12	39.30	. 00	110.70	168.21	. 64
1981	11	94.17	30.43	. 00	135.00	164.63 174.43	.70 .57
1981	12	67.42	50.64	. 00	118.60	174.43	. 57

RATIO: MEAN $=.59$ STANDARD DEVIATION $=.61$

$\begin{array}{r} \text { INTCAP } \\ 2.00 \end{array}$		$\begin{array}{r} \text { GCONST S } \\ .25 \end{array}$	$\begin{array}{ll} \text { LCAP } & \text { INFMl } \\ 5.00 & 600.0 \end{array}$	$\begin{array}{lr} 8 & \text { EMAX } \\ 0 & 10.00 \end{array}$	SDRY 45.00		
YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFE	RAINFALL	PET	RATIO
1978	1	55.55	58.36	. 00	112.50	169.96	. 49
1978	2	41.43	31.11	. 00	63.40	155.74	. 65
1978	3	117.18	61.62	170.99	379.10	130.25	. 31
1978	4	19.26	24.71	. 00	78.80	113.40	. 24
1978	5	15.59	22.17	. 00	37.80	70.93	. 41
1978	6	31.89	25.30	. 00	66.60	46.76	. 48
1978	7	1.16	8.66	. 00	- 8.20	77.45	. 14
1978	8	2.39	7.81	. 00	10.20	105.40	. 23
1978	9	15.51	22.43	. 00	42.00	147.24	. 37
1978	10	49.73	45.15	. 00	89.40	161.08	. 56
1978	11	34.93	44.11	. 00	79.20	157.69	.44
1978	12	76.72	54.79	32.72	187.60	172.06	. 41
1979	1	89.78	67.18	57.94	193.00	181.44	.47
1979	2	17.36	29.50	. 00	33.70	133.96	. 52
1979	3	58.25	54.79	2.74	117.10	144.77	. 50
1979	4	36.28	30.41	. 00	80.00	97.71	.45
1979	5	86.16	39.55	13.85	117.20	75.06	. 74
1979	6	47.97	15.64	12.66	77.10	51.73	. 62
1979	7	6.98	11.29	. 00	23.40	54.99	. 30
1979	8	6.00	6.55	. 00	1.40	99.54	4.28
1979	9	6.90	13.06	. 00	20.70	131.26	. 33
1979	10	20.44	34.22	. 00	55.10	172.67	. 37
1979	11	52.23	57.67	. 00	107.60	160.61	. 49
1979	12	16.34	25.67	. 00	41.80	215.27	. 39
1980	1	61.66	42.93	23.78	134.80	182.40	. 46
1980	2	26.96	35.34	. 00	49.60	159.22	. 54
1980	3	20.75	22.84	.00	45.30	159.99	. 46
1980	4	5.29	16.82	. 00	22.20	123.71	. 24
1980	5	122.51	41.85	259.84	425.50	67.35	. 29
1980	6	52.13	20.41	. 00	70.00	68.33	. 74
1980	7	10.52	10.83	. 00	22.50	69.60	. 47
1980	8	1.16	5.23	. 00	4.30	99.91	. 27
1980	9	. 78	2.82	. 00	3.60	164.85	. 22
1980	10	13.04	24.73	. 00	37.90	166.68	. 34
1980	11	9.01	15.21	. 00	24.00	216.35	. 38
1980	12	75.47	40.47	34.25	196.50	182.54	. 38
1981	, 1	47.19	31.59	. 05	17.60	202.14	2.65
1981	+ 2	78.93	80.39	. 00	177.80	137.26	. 44
1981	3	7.02	16.06	. 00	35.10	186.68	. 20
1981	4	89.66	33.85	95.33	202.00	96.58	44 .31
1981	5	52.12	36.10	76.46	169.10	68.74 57.44	. 26
1981	6	1.71	6.00	. 00	6.70 21.20	57.44 69.23	. 48
1981	7	10.18	10.88	. 00	21.20 7.60	145.89	. 23
1981	8	1.72 25.78	5.89 23.90	. 00	7.60 50.60	145.89 155.19	. 50
1981	9	25.28	23.90 51.90	. 00	110.70	168.21	. 55
1981	10	61.13	51.90 39.73	12.68	135.00	164.83	. 54
1981	11	72.34 54.29	39.73 60.26	12.68 .00	118.60	174.43	. 46

RȦTIO: MEAN $=. .56$ STANDARD DEVIATION $=.69$

RATIO: MEAN $=.64$ STANDARD DEVIATION $=.45$

TABLE 6-6 : SENSITIVITY STUDY RUN 6 - LOW SOILCAP VALUE

$\begin{array}{r} \text { INTCAP } \\ 2.00 \end{array}$		$\begin{array}{rr} \text { GCONST } & \text { SOILCAP } \\ .50 & 157.50 \end{array}$	$\begin{array}{ll} \text { LCAP } & \text { INFM } \\ 57.50 & 600 . \end{array}$	$\begin{aligned} & \text { EMAX } \\ & 10.00 \end{aligned}$	$\begin{array}{r} \text { SDRY } \\ \mathbf{4 5 . 0 0} \end{array}$		
YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	102.71	42.35	. 00	112.50	169.96	. 91
1978	2	46.03	19.98	. 00	63.40	155.74	. 73
1978	3	258.34	47.06	46.23	379.10	130.25	. 68
1978	4	24.84	17.00	. 00	78.80	113.40	. 32
1978	5	21.47	16.33	. 00	37.80	70.93	. 57
1978	6	37.99	19.61	. 00	66.60	46.76	. 57
1978	7 .	1.04	8.23	. 00	8.20	77.45	. 13
1978	8	3.34	6.86	. 00	10.20	105.40	. 33
1978	9	23.88	16.06	. 00	42.00	147.24	. 57
1978	10	65.47	27.45	. 00	89.40	161.08	. 73
1978	11	50.48	28.52	. 00	79.20	157.69	. 64
1978	12	135.87	41.32	. 00	187.60	172.06	. 72
1979	1	160.40	42.87	. 00	193.00	181.44	. 83
1979	2	18.84	19.68	. 00	33.70	133.96	. 56
1979	3	79.46	36.26	. 00	117.10	144.77	. 68
1979	4	54.56	21.28	. 00	80.00	97.71	. 68
1979	5	109.85	17.57	. 00	117.20	75.06	. 94
1979	6	69.59	7.69	. 00	77.10	51.73	. 90
1979	7	10.33	10.23	. 00	23.40	54.99	. 44
1979	8	5.35	4.03	. 00	1.40	99.54	3.82
1979	9	10.58	9.99	. 00	20.70	131.26	. 51
1979	10	30.58	24.47	. 00	55.10	172.67	. 56
1979	11	70.36	37.95	. 00	107.60	160.61	. 65
1979	12	24.47	17.37	. 00	41.80	215.27	. 59
1980	1	101.31	28.67	.00	134.80	182.40	. 75
1980	2	36.96	25.27	. 00	49.60	159.22	. 75
1980	3	27.85	15.66	. 00	45.30	159.99	. 61
1980	4	7.20	14.99	. 00	22.20	123.71	. 32
1980	5	296.81	32.55	95.66	425.50	67.35	. 70
1980	6	60.15	11.28	. 00	70.00	68.33	. 86
1980	7	13.63	8.69	. 00	22.50	69.60	. 61
1980	8	. 33	4.36	. 00	4.30	99.91	. 08
1980	9	1.17	2.43	. 00	3.60	. 164.85	. 33
1980	10	19.74	18.15	. 00	37.90	166.68	. 52
1980	11	13.40	10.61	. 00	24.00	216.35	. 56
1980	12	139.67	28.10	. 00	196.50	182.54	. 71
1981	1	55.84	17.95	. 00	17.80	202.14	3.14
1981	2	107.35	53.48	. 00	177.80	137.26	. 60
1981	3	11.67	13.88	. 00	35.10	186.68	. 33
1981	4	176.06	22.69	20.08	202.00	96.58	. 87
1981	5	115.19	29.27	21.57	169.10	68.74	. 68
1981	6	. 48	5.15	. 00	6.70	57.44	. 07
1981	7	12.54	8.65	. 00	21.20	69.23	. 59
1981	8	2.49	5.09	. 00	7.60	145.89	. 33
1981	9	36.28	13.99	. 00	50.60	155.19	. 72
1981	10	79.59	31.63	. 00	110.70	168.21	. 72
1981	11	98.15	26.46	. 00	135.00	164.83	. 73
1981	12	77.29	40.19	. 00	118.60	174.43	. 65

RATIO: MEAN $=.73$ STANDARD DEVIATION $=.65$

INTCAP	GCONST	SOILCAP	INFMAX	EMAX	SDRY
2.00	.50	105.00	300.00	10.00	45.00

YEAR.	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	72.80	46.34	. 00	112.50	169.96	. 65
1978	2	43.88	21.76	. 00	63.40	155.74	. 69
1978	3	174.69	51.31	125.73	379.10	130.25	. 46
1978	4	22.34	19.30	. 00	78.80	113.40	. 28
1978	5	19.74	18.06	. 00	37.80	70.93	. 52
1978	6	36.34	21.25	. 00	66.60	46.76	. 55
1978	7	. 89	8. 38	. 00	8.20	77.45	. 11
1978	8	3.07	7.13	. 00	10.20	105.40	. 30
1978	9	21.46	18.77	.00	42.00	147.24	. 51
1978	10	59.49	33.17	. 00	89.40	161.08	. 67
1978	11	43.94	35.06	. 00	79.20	157.69	. 55
1978	12	118.87	46.69	12.80	187.60	172.06	. 63
1979	1	111.89	47.71	42.48	193.00	181.44	. 58
1979	2	15.47	22.15	. 00	33.70	133.96	. 46
1979	3	74.54	41.16	. 00	117.10	144.77	. 64
1979	4	51.73	24.51	. 00	80.00	97.71	. 65
1979	5	99.57	21.78	6.05	117.20	75.06	. 85
1979	6	56.45	8.98	11.86	77.10	51.73	. 73
1979	7	10.10	10.42	. 00	23.40	54.99	. 43
1979	8	4.98	4.38	. 00	1.40	99.54	3.56
1979	9	9.31	11.31	. 00	20.70	131.26	. 45
1979	10°	26.55	28.52	. 00	55.10	172.67	. 48
1979	11	62.75	45.40	. 00	107.60	160.61	. 58
1979	12	20.88	20.95	. 00	41.80	215.27	. 50
1980	1	74.62	32.16	23.61	134.80	182.40	. 55
1980	2	33.33	28.90	. 00	49.60	159.22	. 67
1980	3	25.91	17.60	. 00	45.30	159.99	. 57
1980	4	6.64	15.55	. 00	22.20	123.71	. 30
1980	5	196.51	32.46	196.13	425.50	67.35	. 46
1980	6	59.06	12.27	. 00	70.00	68.33	. 84
1980	7	13.25	9.10	. 00	22.50	69.60	. 59
$1980{ }^{\circ}$	'8	. 26	4.40	. 00	4.30	99.91	. 06
1980	9	1.00	2.60	. 00	3.60	164.85	. 28
1980	10	16.86	21.04	. 00	37.90	166.68	. 44
1980	11	11.43	12.57	. 00	24.00	216.35	- 48
1980 '	: 12	102.57	31.24	34.20	196.50	182.54	. 52
1981	1	52.80	20.55	. 00	17.80	202.14	2.97
1981	2	96.84	64.09	. 00	177.80	137.26	. 54
1981	3	10.96	14.86	. 00	35.10	186.68	. 31
1981	4	121.39	25.05	72.36	202.00	96.58	. 60
1981	5	62.60	29.43	74.07	169.10	68.74	. 37
1981	6	. 32	5.14	. 00	6.70	57.44	. 05
1981	7	12.11	9.08	. 00	21.20	69.23	57
1981	8	2.19	5.39	. 00	7.60 50	145.89 155.19	. 296
1981	9	33.33	17.04	. 00	50.60	155.19	. 67
1981	10	73.71	37.29	. 00	110.70	168.21	. 67
1981	11	95.24	28.96	. 40	135.00	164.83	. 71
1981	12	69.60	48.20	. 00	118.60	174.43	. 59

RATIO: MEAN $=.64$ STANDARD DEVIATION $=\quad .62$

$\begin{array}{r} \text { INTCAP } \\ 2.00 \end{array}$		$\begin{array}{r} \text { GCONST S } \\ .50 \end{array}$	$\begin{aligned} & \text { INFMAX } \\ & 600.00 \end{aligned}$	$\begin{aligned} & \text { EMAX } \\ & 5.00 \end{aligned}$	$\begin{array}{r} \text { SDRY } \\ \mathbf{4 5 . 0 0} \end{array}$		
YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	81.26	37.52	. 00	112.50	169.96	. 72
1978	2	46.29	19.75	. 00	63.40	155.74	. 73
1978	3	180.00	45.58	126.04	379.10	130.25	. 47
1978	4	25.02	16.82	. 00	78.80	113.40	. 32
1978	5	21.63	16.17	. 00	37.80	70.93	. 57
1978	6	38.18	19.41	. 00	66.60	46.76	. 57
1978	7	1.06	8.22	. 00	8.20	77.45	. 13
1978	8	3.36	6.84	. 00	10.20	105.40	. 33
1978	9	24.13	15.79	. 00	42.00	147.24	. 57
1978	10	66.01	26.93	. 00	89.40	161.08	. 74
1978	11	51.01	28.00	. 00	79.20	157.69	. 64
1978	12	124.22	40.53	12.86	187.60	172.06	. 66
1979	1	121.08	38.50	42.75	193.00	181.44	. 63
1979	2	18.94	19.44	. 00	33.70	133.96	. 56
1979	3	79.90	35.62	. 00	117.10	144.77	. 68
1979	4	54.86	20.92	. 00	80.00	97.71	. 69
1979	5	104.46	16.90	6.12	117.20	75.06	. 89
1979	6	58.35	7.07	11.86	77.10	51.73	. 76
1979	7	10.33	10.21	. 00	23.40	54.99	. 44
1979	8	5.38	4.00	. 00	1.40	99.54	3.84
1979	9	10.68	9.89	. 00	20.70	131.26	. 52
1979	10	30.93	24.12	. 00	55.10	172.67	. 56
1979	11	71.00	37.32	. 00	107.60	160.61	. 66
1979	12	24.74	17.10	. 00	41.80	215.27	. 59
1980	1	79.01	27.33	23.61	134.80	182.40	. 59
1980	2	37.25	24.98	. 00	49.60	159.22	. 75
1980	3	28.00	15.51	. 00	45.30	159.99	. 62
1980	4	7.27	14.92	. 00	22.20	123.71	. 33
1980	5	200.79	28.09	196.13	425.50	67.35	. 47
1980	6	60.23	11.20	. 00	70.00	68.33	. 86
1980	7	13.66	8.66	. 00	22.50	69.60	. 61
1980 -	8	. 34	4.36	. 00	4.30	99.91	. 08
1980	- 9	1.18	2.42	. 00	3.60	164.85	. 33
1980	10	19.96	17.93	. 00	37.90	166.68	. 53
1980	11	13.55	10.46	. 00	24.00	216.35	. 56
1980	12	107.68	25.85	34.20	196.50	182.54	. 55
1981	1	56.23	17.63	. 00	17.80	202.14	3.16
1981	2	108.35	52.48	. 00	177.80	137.26	. 61
1981	3	11.75	13.74	. 00	35.10	186.68	. 33
1981	4	124.35	21.86	72.61	202.00	96.58	. 62
1981	5	66.93	25.09	74.07	169.10	68.74	. 40
1981	6	. 39	5.13	. 00	6.70	57.44	. 06
1981	7	12.59	8.60	. 00	21.20	69.23	. 59
1981	8	2.51	5.06	. 00	7.60	145.89	. 33
1981	9	36.51	13.76	. 00	50.60	155.19	. 72
1981	10	80.09	31.15	. 00	110.70	168.21	. 72
1981	11	98.01	26.19	. 40	135.00	164.83	. 73
1981	12	78.06	39.39	. 00	118.60	174.43	. 66

$\begin{array}{r} \text { INTCAP } \\ 2.00 \end{array}$		$\begin{array}{r} \text { GCONST S } \\ .50 \end{array}$	$\begin{array}{r} \text { SOILCAP } \\ 105.00 \end{array}$	$\begin{array}{r} \text { EMAX } \\ 15.00 \end{array}$	$\begin{array}{r} \text { SDRY } \\ 45.00 \end{array}$		
YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	66.90	52.45	. 00	112.50	169.96	. 59
1978	2	42.38	23.23	. 00	63.40	155.74	. 67
1978	3	170.20	56.12	125.48	379.10	130.25	. 45
1978	4	20.02	21.44	. 00	78.80	113.40	. 25
1978	5	18.35	19.45	. 00	37.80	70.93	. 49
1978	6	35.59	22.01	. 00	66:60	46.76	. 53
1978	7	. 74	8.52	. 00	8.20	77.45	. 09
1978	8	2.82	7.38	. 00	10.20	105.40	. 28
1978	9	19.65	20.75	. 00	42.00	147.24	. 47
1978	10	55.77	36.87	. 00	89.40	161.08	. 62
1978	11	39.42	39.58	. 00	79.20	157.69	. 50
1978	12	115.55	50.46	12.77	187.60	172.06	. 62
1979	1	108.00	52.01	42.31	193.00	181.44	. 56
1979	2	13.38	23.88	. 00	33.70	. 133.96	. 40
1979	3	70.90	44.60	. 00	117.10	144.77	. 61
1979	4	49.99	26.66	. 00	80.00	97.71	. 62
1979	5	96.14	25.26	6.00	117.20	75.06	. 82
1979	6	55.25	10.19	11.86	77.10	51.73	. 72
1979	7	9.91	10.60	. 00	23.40	54.99	. 42
1979	8	4.64	4.71	. 00	1.40	99.54	3.32
1979	9	8.45	12.20	. 00	20.70	131.26	. 41
1979	10	24.08	31.00	. 00	55.10	172.67	. 44
1979	11	58.98	49.03	. 00	107.60	160.61	. 55
1979	12	17.53	24.23	. 00	41.80	215.27	. 42
1980	1	71.26	35.96	23.60	134.80	182.40	. 53
1980	2	30.56	31.66	. 00	49.60	159.22	. 62
1980	3	24.56	18.95	. 00	45.30	159.99	. 54
1980	4	6.37	15.83	. 00	22.20	123.71	. 29
1980	5	193.86	35.18	196.13	425.50	67.35	. 46
1980	6	58.04	13.19	. 00	70.00	68.33	. 83
1980	7	12.89	9.49	. 00	22.50	69.60	. 57
1980	, 8	. 20	4.43	. 00	4.30	99.91	. 05
1980^{\prime}	- 9	. 84	2.76	. 00	3.60	164.85	. 23
1980	10	14.17	23.73	. 00	37.90	166.68	. 37
1980	11	9.60	14.40	. 00	24.00	216.35	. 40
1980	12	100.04	33.77	34.20	196.50	182.54	. 51
1981	1	50.68	22.71	. 00	17.80	202.14	2.85
1981	2	90.30	70.69	. 00	177.80	137.26	. 51
1981	3	10.75	15.01	. 00	35.10	186.68	. 31
1981	4	120.47	25.94	72.36	202.00	96.58	. 60
1981	5	61.07	30.97	74.07	169.10	68.74	. 36
1981	6	. 29	5.14	. 00	6.70	57.44	. 04
1981	7	11.77	9.42	. 00	21.20	69.23	. 56
1981	8	2.02	5.56	. 00	7.60	145.89	. 27
1981	9	30.55	19.91	. 00	50.60	155.19	. 60
1981	10	68.55	42.25	. 00	110.70	168.21	. 62
1981	11	93.58	30.62	. 40	135.00	164.83	. 69
1981	12	65.07	52.97	. 00	118.60	174.43	. 55

RATIO: MEAN $=$. 60 STANDARD DEVIATION $=$. 58

TABLE 6-13 : SENSITIVITY STUDY RESULTS COMPARED WITH REFERENCE RUN

PARAMETER NEW VALUE. \% CHANGE RATIO MEAN \% CHANGE | RATIO |
| :--- |
| STANDARD |
| DEVIATION | \% CHANGE

INTCAP	1.0	-50.0	0.71	+10.9	0.61	-1.6
	3.0	+50.0	0.59	-7.8	0.61	-1.6
GCONST	0.25	-50.0	0.56	-12.5	0.69	+11.3
	0.75	+50.0	0.64	0.0	0.45	-27.4
SOILCAP	52.5	-50.0	0.16	-75.0	0.20	-67.7
	157.5	+50.0	0.73	+14.06	0.65	+4.8
INFMAX	300.0	-50.0	0.64	0.0	0.62	0.0
	900.0	+50.0	0.64	0.0	0.62	0.0
EMAX	5.0	-50.0	0.69	+7.8	0.66	+6.5
	15.0	+50.0	0.60	-6.3	0.58	-6.5
SDRY						
	22.5	-50.0	0.69	+7.8	0.64	+3.2
	67.5	+50.0	0.53	-17.2	0.51	-17.7

Initially a reference case was established that all other cases could be compared with. An estimate of the likely range of values that the various parameters could assume was made based largely on the values presented in Table 5.1. The midpoint of the range of possible values was used as the reference case value for each of the model parameters.

The reterence parameter values used were:

INTCAP: 2.0 mm GCONST: 0.5 SOILCAP: 105 mm
INFMAX: 600 mm EMAX: 10 mm SURY: $\mathbf{4 5 m m}$

The value of each parameter was first decreased by 50% and then increased by 50% while keeping the value of all other parameters constant at the reference case values. The results of the individual runs are given in Tables 6.2 to 6.12 while the results are summarised and anslysied in Table 6.13. Note that no run was undertaken for a high value of INFMAX as the low value had no effect upon the model performance which indicated that a higher value would also have no effect.

The sensitivity study indicates that the values of SOILCAP and SDRY have a marked effect on the ratio value. These two parsmeters control the size of the effective soil store. An increase in SOLLCAP or a decrease in SDRY will increase the size of the soil store and in furn increase the ratio value.

The effect of INTCAP upon the mean ratio value was less marked than SDRY or SOILCAP, but was still capable of changing the result by more than 10% over the range of variation considered. The range of possible values with a grass cover is relatively small making the choice of a value comparitively easy but with a different vegetal cover the assignment of a value could be more difficult.

GCONST affected the ratio mean markedly when a low value was used but had no effect on the mean value when a high value was used. The value of GCONST is likely to depend upon the soil type being modelled. The sandy loam being modelled in this study is a relatively free draining soil and hence it is likely that a high value of GCONST should be used, as GCONST determines the rate at which water will drain from the soil store to the groundwater. As mentioned the use of a higher value of GCONST had no effect on the mean ratio value but the sensitivity study results indicate that a high value reduces the variation of the ratio values. This is to be expected as a greater proportion of the rainfall will drain from the surface soil layer within the timestep in which it fell rather than contributing to recharge in a later timestep.

It was found that INFMAX had no effect over the range of values considered. This is not unexpected as surface infiltration rates are not likely to be the governing condition in free draining soils such as the sandy loam considered here. INFMAX could be expected to play a part in the modelling of a soil with a higher clay content, or a semi permeable layer at the surface.

It should be noted that for the assumed parameters runoff only occurs when the soil store is saturated and is not governed by the infiltration characteristics of the soil surface.

EMAX was found to play a relatively minor part in the model performance. The choice of values for EMAX is not critical to the model performance. This is useful as estimates only are available for this parameter.

Figure 6-1 : CALBRATION RUN $2-$ GCONST $=0.80$

6.3 Calibration Runs

The sim of the calibration runs was to achieve a mean ratio value of 0.70 . With the sensitivity study reference case as a starting point this could be achieved by decreasing INTCAP, increasing SOILCAP, decreasing EMAX and decreasing SDRY. As mentioned above EMAX has a relatively small effect and the value to be used is difficult to assess accurately. EMAX was therefore left at the reference case value of 10 mm .

As explained above SDRY and SOILCAP have a complementary effect so therefore only one value need be changed. SOllCAP was increased to 112 mm while leaving SDRY set to 45 mm . Recent involvement by the suthor with a model study of the Berriquin Irrigation District lead to a value of 1.5 mm for INTCAP. This was the value adopted for grasslands in the Berriquin study after intensive calibration. To date there has been no published description of the Berriquin study.

Higher values of GCONST were shown in the sensitivity study (i.e. above 0.5) to have no effect upon the mean ratio value, but to cause a decrease in variability of the ratio from month to month as the value of GCONST was increased. For the sandy loam soil type modelled it is likely that higher values of GCONST are applicable. Three calibration runs were undertaken using values of $0.70,0.80$ and 0.90 for GCONST. The standard deviation for these three runs was $0.49,0.43$ and 0.40 respectively. The results are given in Tables $6.14,6.15$ and 6.16 .

The monthly recharge, rainfall and ratio of runoff to rainfall for Calibration Run 2 (GCONST $=$ 0.80) are plotted in Figure 6.1. It can be seen that while the mean ratio value was 0.70 (see

Table 6.15) considerable variation occurred.

TABLE 6-14: CALIBRATION RUN $1-\operatorname{GCONST}=0.70$

INTCAP	GCONST	SOILCAP	INFMAX	EMAX	SDRY
1.50	.70	112.00	600.00	10.00	45.00

YEAR	MTH	RECHARGE
1978	1	87.16
1978	2	44.34
1978	3	222.40
1978	4	26.23
1978	5	23.04
1978	6	40.30

EVAPOTRANS	RUNOFF
36.68	.00
18.45	.00
42.22	87.27
14.91	.00
14.76	.00
17.28	.00

RAINFALL	PET	RATIO
112.50	169.96	.77
63.40	155.74	.70
379.10	130.25	.59
78.80	113.40	.33
37.80	70.93	.61
66.60	46.76	.61

1978	7	1.74	7.31	. 00	8.20	77.45	. 21
1978	8	4.32	5.88	. 00	10.20	105.40	. 42
1978	9	25.55	15.54	. 00	42.00	147.24	. 61
1978	10	65.75	25.71	. 00	89.40	161.08	. 74
1978	11	51.67	27.36	. 00	79.20	157.69	. 65
1978	12	143.43	37.93	. 53	187.60	172.06	.76
1979	1	134.47	36.41	24.74	193.00	181.44	. 70
1979	2	16.92	18.74	. 00	33.70	133.96	. 50
1979	3	83.55	32.15	. 00	117.10	144.77	. 71
1979	4	59.32	20.12	. 00	80.00	97.71	. 74
1979	5	106.99	14.18	. 00	117.20	75.06	. 91
1979	6	66.97	5.96	4.37	77.10	51.73	. 87
1979	7	13.02	9.33	. 00	23.40	54.99	. 56
1979	8	3.30	3.63	. 00	1.40	99.54	2.36
1979	9	11.27	9.42	. 00	20.70	131.26	. 54
1979	10	32.29	22.79	. 00	55.10	172.67	. 59
1979	11	71.59	36.20	. 00	107.60	160.61	. 67
1979	12	25.27	16.53	. 00	41.80	215.27	. 60
1980	1	89.18	25.68	17.10	134.80	182.40	. 66
1980	2	39.04	23.18	. 00	49.60	159.22	. 79
1980	3	29.30	14.20	. 00	45.30	159.99	. 65
1980	4	8.47	13.72	. 00	22.20	123.71	. 38
1980	5	264.52	26.34	134.54	425.50	67.35	. 62
1980	6	60.37	10.34	. 00	70.00	68.33	. 86
1980	7	14.60	7.89	. 00	22.50	69.60	. 65
1980	8	. 44	3.91	. 00	4.30	99.91	. 10
1980	9	1.52	2.08	. 00	3.60	164.85	. 42
1980	10	21.35	16.55	. 00	37.90	166.68	. 56
1980	11	13.59	10.41	. 00	24.00	216.35	. 57
1980	12	127.79	25.11	27.70	196.50	182.54	. 65
1981	1	54.18	14.65	. 00	17.80	202.14	3.04
1981	2	109.98	50.98	. 00	177.80	137.26	. 62
1981	3	16.47	13.09	. 00	35.10	186.68	. 47
1981	4	137.83	21.30	59.68	202.00	96.58	. 68
1981	5	77.54	23.18	65.37	169.10	68.74	. 46
1981	6	. 75	4.65	. 00	6.70	57.44	. 11
1981	7	13.67	7.53	. 00	21.20	69.23	. 64
1981	8	3.19	4.40	. 00	7.60	145.89	. 42
1981	9	37.26	13.32	. 00	50.60	155.19	. 74
1981	10	80.86	29.60	. 00	110.70	168.21	. 73
1981	11	100.96	23.56	. 00	135.00	164.83	. 75
1981	12	80.60	37.99	. 00	118.60	174.43	. 68

TABLE 6-15: CALIBRATION RUN $2-$ GCONST $=0.80$

TABLE 6-16: CALIBRATION RUN 3-GCONST $=0.90$

INTCAP	GCONST SOILCAP	INFMAX	EMAX	SDRY	
1.50	.90	112.00	600.00	10.00	45.00

YEAR	MTH	RECHARGE	EVAPOTRANS	RUNOFF	RAINFALL	PET	RATIO
1978	1	91.42	32.81	. 00	112.50	169.96	. 81
1978	2	44.28	17.10	. 00	63.40	155.74	. 70
1978	3	250.12	39.60	62.34	379.10	130.25	. 66
1978	4	27.16	13.68	. 00	78.80	113.40	. 34
1978	5	23.93	13.87	. 00	37.80	70.93	. 63
1978	6	42.18	15.42	. 00	66.60	46.76	. 63
1978	7	1.77	7.22	. 00	8.20	77.45	. 22
1978	8	4.52	5.68	. 00	10.20	105.40	. 44
1978	9	27.35	14.47	. 00	42.00	147.24	. 65
1978	10	67.17	22.92	. 00	89.40	161.08	. 75
1978	11	53.99	25.02	. 00	79.20	157.69	. 68
1978	12	147.08	35.00	. 50	187.60	172.06	. 78
1979	1	147.21	31.79	14.23	193.00	181.44	. 76
1979	2	17.19	17.85	. 00	3.3 .70	133.96	. 51
1979	3	86.58	29.12	. 00	117.10	144.77	. 74
1979	4	62.85	17.50	. 00	80.00	97.71	. 79
1979	5	106.80	11.20	. 00	117.20	75.06	. 91
1979	6	69.24	4.43	3.63	77.10	51.73	. 90
1979	7	14.38	8.87	. 00	23.40	54.99	. 61
1979	8	1.43	3.08	. 00	1.40	99.54	1.02
1979	9	11.80	8.90	. 00	20.70	131.26	. 57
1979	10	33.81	21.29	. 00	55.10	172.67	. 61
1979	11	74.62	33.00	. 00	107.60	160.61	. 69
1979	12	26.45	15.35	. 00	41.80	215.27	. 63
1980	1	93.67	23.08	17.10	134.60	182.40	. 69
1980	2	40.82	21.38	. 00	49.50	159.22	. 82
1980	3	30.67	12.83	. 00	45.30	159.99	. 68
1980	4	8.87	13.33	. 00	22.20	123.71	. 40
1980	5	306.17	23.05	96.27	425.50	67.35	. 72
1980	6	61.02	9.33	. 00	70.00	68.33	. 87
1980	7	14.95	7.55	. 00	22.50	- 69.60	. 66
1980	8	. 42	3.88	. 00	4.30	99.91	. 10
1980	9	1.59	2.01	. 00	3.50	164.85	. 44
1980	10	22.34	15.56	. 00	37.90	166.68	. 59
1980	11	14.23	9.77	. 00	24.00	216.35	. 59
1980	12	141.88	21.53	27.70	196.50	182.54	. 72
1981	1	52.45	12.09	. 00	17.80	202.14	2.95
1981	2	114.58	46.54	. 00	177.80	137.26	. 64
1981	3	20.53	13.00	. 00	35.10	186.68	. 58
1981	4	143.11	20.33	55.16	202.00	96.58	. 71
1981	5	82.72	19.93	63.45	169.10	68.74	. 49
1981	6	. 79	4.61	. 00	6.70	57.44	. 12
1981	7	14.22	6.98	. 00	21.20	69.23	. 67
1981	8	3.35	4.25	. 00	7.60	145.89	44
1981	9	39.02	11.58	. 00	50.60	155.19	-77
1981	10	83.55	26.75	. 00	110.70	168.21	-75
1981	11	103.25	21.32	. 00	135.00	164.83	-76
1981	12	84.98	34.37	. 00	118.60	174.43	. 72

FGGURE 6-2 : CALIBRATION RUN $2-$ GCONST $=0.80$
Ratio values shown for months where recharge is greater than 5 mm

To a certain extent this variation is not important. The aim is to achieve a recharge rate to the groundwater system equal to 70% of the recorded rainfall. The daily model provides the estimated recharge from the bottom of the root zone to the soil. The soil layer over the groundwater system for the Sherwood Borefield varies in thickness from 5 to 10 metres, and contains a variety of soil types(see Figure 3.2). While all the water finding its way to the bottom of the root zone is likely to eventually find its way to the groundwater system there will be a time delay as the water travels the 5 to 10 metres to the groundwater system. This is likely to have an averaging effect. This averaging effect will depend in part on the degree of saturation. For this reason considerable variations in the recharge to rainfall ratio are acceptable as long as the mean value falls in the required range.

The data listed in Table 6.15 and plotted in Figure 6.1 indicates that little recharge to groundwater occurs in some months. The monthly data was analysed to evaluate the effect of excluding the data from any month for which a low recharge was calculated.

Figure 6.2 plots the values of the recharge to rainfall ratio for months in which recharge was greater than 5 mm , whle Figure 6.3 repeats the exercise for months in which recharge was greater than 20 mm . These values can be compared with the mean monthly recharge for Calibration Run 2 of 56.47 mm .

It can be observed in Figure 6.2 that by excluding the values of the recharge to rainfall ratio calculated from months with a recharge less than 5 mm the variation of the values is reduced. The mean ratio based on these values is 0.74 with a standard deviation of 0.41 .

FGGURE 6-3 : CALIBRATION RUN $2-\operatorname{GCONST}=0.80$

It should be noted that by restricting the range of plotted ratio values to between 0 and 1 the value of 3.00 calculated for January 1981 has effectively been excluded from Figure 6.2 (and from Figure 6.3). The ratio value of 3.0 indicates that the monthly recharge is three times greater than the monthly rainfall. This occured as high rainfall was recorded in the last 2 days of December 1980, some of which contributed to recharge in January 1981. January 1981 was a month of low rainfall. The high ratio value is accounted for by the recharge in January 1981 originating in part from December 1980 rainfall.

Figure 6.3 illustrates ratio values for months when the recharge was greater than 20 mm . The mean ratio based on these values is 0.80 with a standard deviation of 0.45 . However these values are distorted by the atypical value of 3.0 amongst a small sample. If this value is excluded the mean value is 0.71 with a standard deviation of 0.10 .

It can therefore be seen that a mean value of 0.7 for the recharge to rainfall ratio has been achieved that is valid even it the mean value is weighted according to monthly recharge. Such a weighting takes account of the greater total recharge effect higher monthly recharge values have.

The model was also capable of predicting surface runoff. However no data was available that allowed the accuracy of the runoff predictions to be examined. The calculated values do not appear to be unreasonable.

sone. 65

FIGURE 6-4: GROUNDWATER MODEL RESULTS USING RECHARGE

6.4 Perun of groundwater model using recharge process model data

The recharge values obtained from the calibration runs (Tables 6-14 to 6-16) were used as the groundwater recharge input for the Sherwood Borefield groundwater model.

Comparisons of the simulated hydrographs for bores distributed throughout the borefield indicated that the results produced by the three sets of input data were virtually identical. The magnitude of the computed peaks increased very slightly as the value of GCONST used in the process model reduced from 0.90 to 0.70 .

Comparisons of the computed hydrographs with the observed hydrographs using as input data the results from Calibration Run 2 are illustrated in Figure 6-4. The match of the computed and observed hydrographs (the observed hydrographs were sampled at weekly intervals) are reasonably good.

Comparisons with the results produced by Merrick N.P. and Blair A.H. (1986) using the assumption that groundwater recharge was equal to 70% of the monthly rainfall (refer to Figure 4-3) indicate very similar computed bore hydrographs.

7 CONCLUSIONS

The developed model was calibrated by comparing the monthly predictions with the monthly recharge rates previously used for successful calibration of a finite element model. After calibration of the daily model a mean value of 0.7 for the recharge to rainfall ratio was achieved that was valid even if the monthly ratios were weighted according to calculated monthly recharge. Such a weighting takes account of the greater total recharge effect higher monthly recharge values have. This mean ratio agrees with the recharge rate to the groundwater system of 70% of the recorded rainfall previously used by other workers (Merrick M.P. and Blair, A.H., 1986) to successfully calibrate a finite element model of the Sherwood Borefield groundwater system near Kempsey.

While a mean ratio value of 0.70 was achieved considerable variation about this value occurred. To a certain extent this variation is not important. The daily model provides the estimated recharge to the bottom of the root zone of the soil. The soil layer over the groundwater system for the Sherwood Borefield varies in thicknes from 5 to 10 metres. There will be a time delay as the recharge travels through this layer which is likely to have an averaging effect. This averaging effect will depend in part of the degree of saturation. For this reason considerable variations in the recharge to rainfall ratio are acceptable as long as the mean value falls in the required range.

The model was also capable of predicting surface runoff. However no data was available that allowed the accuracy of the runoff predictions to be examined. The calculated values did not appear to be unreasonable.

The recharge values obtained from the calibration runs were used as the groundwater recharge input for the Sherwood Borefield groundwater model. It was found that the results produced by the three sets of input data were virtuslly identical. The magnitude of the computed hydrograph peaks increased very slightly as GCONST was reduced.

The match of the computed hydrographs based on the process recharge model data and the obsewed hydrographs are reasonably good given the simplicity of both the recharge and groundwater conceptual models and the smoothing effects of the groundwater model monthly timestep.

Comparisons of the results produced by assuming that the monthly recharge was equal to 70% of the monthly rainfall with those produced using the process model recharge data indicate very similar bore hydrographs. This is to be expected as the aim of the calibration studies was to achieve a mean monthly recharge equal to 70% of the monthly rainfall

It is possible that further calibration of the recharge process model may give results that produce simulated bore hydrographs that match the observed bore hydrographs more closely. For example further lowering of the value of GCONST may produce a closer match. However time was not available to undertake the required additional groundwater model runs.

ACKNOWLEDGEMENTS

I am grateful to Professor Tom Chapman for supervising this project, and for his valuable comments. Many of the ideas presented are built up concepts introduced to me by Professor Chapman in the course of lectures while studying for the Master of Engineering Science Degree at the University of New South Wales.

I would like to thank Noel Merrick of the New South Wales Water Resources Commission for his permission to make extensive use of Hydrogeological Report No 1986-1. (Merrick, N. P. and Blair A. H., 1986).

I am also deeply grateful to my wite Jacqueline McNeilage for her assistance in typing this thesis and her consistent encouragement and support as it slowly developed.

REFERENCES

Aitken A.P., and Black D.C. (1977) Simulation of the Urban Runoff Process, Australian Water Resources Council Technical Paper No. 26, Aust Gout. Pub. Ser., Canberra.

Allison G.B., and Stone W.J., and Hughes M.W. (1985) Recharge in Karst and Dune Elements of a Semi-arid Landscape as Indicated by Natural Isotopes and Chloride. Joumal of Hydrology 76:1-25, Elservier Science Publishers Amsterdam.

Australian Groundwater Consultant Pty. Ldd. (1985) Lower Macleay Water Supply Completion Report

Australian Groundwater Consultant Pty. Ltd. (1978) Lower Macleay Water Supply Sherwood Borefield Sate Yield Review (with Addendum Report).

Boughton W.C. (1966) A mathematical model for relating runoff to rainfall with daily data. Civ. Eng. Trans. I.E. Aust, Vol. CE8, No. I, April, pp. 83-97.

Boughton W.C. (1968) Evaluating the variabies in a mathematical catchment model. Civ. Eng. Trans. I.E. Aust Vol. CE10, No. 1, April, pp.31-39.

Chapman T.G. (1985) The use of water balances for water resource estimation, with special reference to small islands. Australian Development Assistance Bureau, Bulletin No. 4.

Chapman T.G., and Dunin F.X.(Ed) (1975) Prediction in Catchment Hydrology. National Symposium on Hydrology 25-27 November 1975, Australian Academy of Science.

Denmead O.T. and Shaw R.H. (1962) Availability of soil water to plants as affected by soil moisture content and meterological conditions. Agron. J. 54:385-390.

Doorenbos J. and Pruitt W. (1977) Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper No. 24, Food and Agriculture Organisation of the United Nations, Rome.

Falkland A.C. (1983) Christmas Island (Kiritimati) Water Resourses Study. Aust. Dept Housing \& Construction, Canberra

Freeze R.A. and Harlan RL. (1969) Blueprint for a Physically - Based Digitally - Simulated Hydrological Response Model. Joumal of Hydrology 9: 237-258 North-Holland Publishing Co., Amsterdam.

Greenman D.W., Swarzenski W.V., and Bennett G.D. (1967) Groundwater Hydrology of the Punjab, West Pakistan, with emphasis on problems caused by canal irrigation. U.S. Geological Survey Water Supply Paper 1608-H.

Linsley R.K., Kohler M.A. and Paulhus J.LH. (1982) Hydrology for Engineers (3rd Ed). McGraw-Hill International Book Company.

Kondratyev K.Y. (1969) Radiation in the atmosphere. Academic Press, New York.

Markar M.S., and Mein R.G. (1985) A Practical Model for Evaporation, Transpiration and Redistribution. Hydrology and Water Resources Symposium, 1985, Sydney, 14-16 May. The Institution of Engineers, Australia, National Conference Publication No. $85 / 2$.

Merrick N.P., and Blair A.H. (1986) Sherwood Borefield Numerical Model. Hydrogeological Report No. 1986-1, Water Resourcs Commission of New South Wales.

Mockus Y. (1971) Watershed Yield. Chapter 20 in SCS National Engineering Handbook Section 4 - Hydrology. Soil Conservation Service, U.S. Dept. of Agriculture.

Monteith J.L. (1973) Principes of Environmental Physics, Edward Arnold, London.

Pattison A., and McMahon T.A. (1973) Rainfal-runoff models using digital computers. Civ. Eng. Trans. I.E. Aust. Vol. CE15, Nos $1 \& 2$.

Penman H.L. (1948) Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. London. Ser. A. Vol. 193 April 1948.

Prickett T.A., and Lonnquist C.G. (1968) Aquifer simulation program listing using alternating direction implicit method. Illinois State Water Survey mimeographed report presented at International Association of Scientific Hydrology Symposium on Use of Computers in Hydrology, Tucson, Arizona.

Ross J., and Woolley D. (1980) Reassessment of Sherwood Borefield. Water Resources Commission Hydrogeological Report No. 1980-3.

Rural Water Commission of Victoria (1985) Study of Future Management of Barr Creek and Catchment. Written by Gutteridge Haskins and Davey, ACIL Austrslia Pty Ltd and D. Naunton and $C 0$.

Slatyer R.O. (1967) Plant-water relationships. Academic Press, London.

Threlkeld J.L. (1970) Thermal Environmental Engineering. Prentice Hall, New Jersey.

Townley L., and Wilson J. (1980) Description of and users manusl for a finite element aquifer flow model Aquifem-1. Ralph M. Parsons Laboratory for water resources and hydrodynamics, Massachusetts Institute of Technology, Report No. 252.

Wiesner C.J. (1970) Hydrometeorolgy. Chapman and Hall, London.

APPENDIX A : CALCULATION OF INCIDENT SOLAR RADIATION AT THE OUTER LIMIT OF THE ATMOSPHERE

The following equations were derived from first principles by the author. For a description of the basic equations used the reader is referred to Kondratyev K. Y., (1969).

When the earth is at its mean distance from the sun, the solar radiation intensity incident upon a surface normal to the sun's rays and at the outer limit of the atmosphere is known as the solar constant. The currently accepted value of the solar constant is $1387 \mathrm{~W} / \mathrm{m}^{2}$.

The intensity of solar radiation $\mathrm{I}_{\mathrm{n}, 0}$ normal to the sun's rays at the outer limit of the atmosphere varies with the earth-sun distance. The earth follows an elliptical path around the sun and the earth-sun varies from $1.47 \times 10^{11} \mathrm{~m}$ on the 3 rd January (Perihelion) to $1.52 \times 10^{11} \mathrm{~m}$ on the 4th July (Aphelion). This causes $I_{n, 0}$ to vary in a way that can be closely approximated by the following equation :
$I_{n, 0}=1387 \times(1+0.033 \times \cos [2 \mathrm{~m} \times(\mathrm{N}-3) / 365.25]\} \mathrm{W} / \mathrm{m}^{2}$
where N is the number of days from the start of the year. This equation provides data that closely matches that given in the Smithonian Physical Tables.

To calculate the solar radiation Rs incident upon a horizontal surface (with respect to the surface below) at the outer limit of the atmosphere over a complete day we have :
$d \mathrm{~d} s=\mathrm{I}_{\mathrm{h}, \mathrm{0}} \mathrm{dt}=\mathrm{I}_{\mathrm{n}, 0} \times\{[\cos (\mathrm{l}) \times \cos (\mathrm{h}) \times \cos (\mathrm{d})+\sin (\mathrm{l}) \times \sin (\mathrm{d})] / \mathrm{w}\} \mathrm{dh}$
where:
$t_{h, 0}=$ the intensity of solar radiation on a horizontal surface at the outer limit of the
a atmosphere ($\mathrm{W} / \mathrm{m}^{2}$)
1 = latitude (radians)
$\mathrm{h}=$ hour angle (radians)
d $=$ solar declination (radians)
$w=$ earth's angular velocity $\left(=7.272 \times 10^{-5} \mathrm{radians} /\right.$ second)

A-2

For one day, $\mathrm{I}_{\mathrm{r}, \mathrm{O}}$ and d may be considered as constants. For a particular site I will be a constant. Since hour angles are symmetrical with respect to solar noon, we have:
$R s=2 \times I_{n, 0} / w \times\left[\cos (I) \times \cos (d) \times \int_{0}^{H} \cos (h) d h+\sin (l) \times \sin (d) \times \int_{0}^{H} d h\right]$
where H is the hour angle of sunrise and sunset in radians.

H may be found from:
$\sin (\mathrm{a})=\cos (\mathrm{l}) \times \cos (\mathrm{h}) \times \cos (\mathrm{d})+\sin (\mathrm{l}) \times \sin (\mathrm{d})$
by setting the solar elevation a equal to zero. This gives:
$H=\cos ^{-1}[-\tan (I) \times \tan (d)]$

The solar declination d may be calculated from:

$$
\begin{aligned}
d & =23.5 \times \sin \{2 m \times(n-81) / 365.25\} \\
& =23.5 \times \sin \{0.9856 \times(N-81)\}
\end{aligned}
$$

where again the angles are in radians.

Integration gives:
$R s=2 i w \times I_{n, 0} \times \sin (l) \times \sin (d) \times[H-\tan (H)] \mathrm{J} / \mathrm{m}^{2}$

APPENDIX B: CALCULATION OF HUMIDITY

The equations developed in this appendix were derived from first principles by the author. For a background to the basic equations used the reader is referred to Threlkeld J. L., 1970 and Wiesner C. J., 1970.

B-1 Definition of relative humidity

The relative humidity f is the mass of water vapour (m) in a volume of air relative to the mass the sample would contain if it was saturated $\left(\mathrm{m}_{\mathrm{s}}\right)$. The ratio of the mass of water vapour to the mass of dry air in a given volume is called the mixing ratio w.

We have:

$$
f=100 / 1 \times \mathrm{m} / \mathrm{m}_{5}=100 \times \mathrm{W} / \mathrm{w}_{5} \quad(\%)
$$

From the equation of state it can be shown that:

$$
f=100 \times w / w_{s}=100 \times\left(e / e_{s}\right) \times\left[\left(p-e_{5}\right) /(p-e)\right]
$$

where e and e_{5} are the water vapour pressure and the saturated water vapour pressure respectively, and p is the atmospheric pressure.

Since $e \ll e_{5} \lll 1=100 \times e / e_{5}$

B-2 Calculation of humidity f from wet and dry-bulb temperature

The wet-bulb process consists of saturating a sample of air by evaporating water into it. The energy required to evaporate the water comes from the air. The process takes place at a constant pressure over a short period of time.

The heat loss associated with the evaporation of $d w \mathrm{Kg}$ of water is - $\mathrm{L} x \mathrm{dw}$ where L is the latent heat of vapourisation of water ($2454 \mathrm{KJ} / \mathrm{Kg}$ at $20^{\circ} \mathrm{C}$).

The heal extracted from s. unit mass of sir is $\mathrm{Cp} \times \mathrm{dT}$ where Cp is the specific heat of sir at a constant pressure ($999 \mathrm{~J} / \mathrm{Kg} /{ }^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C}$).

As these heat losses and gains must be equal we have :

$$
-L x d w=C p x d T
$$

Integrating from the initial state $w(T a)$, Ta to the final state $\mathrm{w}_{5}(\mathrm{Tw})$. Tw where $\mathrm{w}(T \mathrm{~T})$ is the mixing ratio at the dry-bulb temperature Ta and $w_{s}(T w)$ is the mixing ratio at the wet-bulb temperature Tw we have:

	$\mathrm{Cp}(\mathrm{Tw}-\mathrm{Ta})$	$-L\left[W_{5}(T w)-w(T a)\right]$
ie.	ws (Tw) - w(Ta)	$(\mathrm{Cp} / \mathrm{L}) \times(\mathrm{Ta}-\mathrm{Tw})$
.	w (Ta)	$\mathrm{w}_{5}(\mathrm{Tw})-(\mathrm{Cp} / \mathrm{L}) \times(\mathrm{Ta}-\mathrm{Tw})$

$$
\left(\mathrm{Cp} / \mathrm{L}=4.2 \times 10^{-4}{ }^{\circ} \mathrm{C}-1 \text { at } 20^{\circ} \mathrm{C}\right)
$$

We wish to evaluate $f=100 \times w(T a) / w_{5}(T a)=100 \times e(T a) / \mathrm{e}_{5}(T a)$. From the Clausius Clapeyron equation we have :

$$
\begin{array}{ll}
& \mathrm{e}_{5}(\mathrm{Ta})=\exp [21.43-5353 /(273.15+\mathrm{Ta})]\left(\mathrm{Ta}^{\circ} \mathrm{C}\right) \\
\text { and } & \mathrm{W}_{5}(\mathrm{Ta})=[0.622 / \mathrm{p}(\mathrm{mb})] \times \mathrm{e}_{5}(\mathrm{Ta}) \\
\text { similarly } & \mathrm{Ws}_{5}(\mathrm{TW})=[0.622 / \mathrm{p}(\mathrm{mb})] \times \exp [21.43-5353 /(273.15+\mathrm{Tw})] \\
\text { where } \mathrm{Tw} \text { is in }{ }^{\circ} \mathrm{C} .
\end{array}
$$

From above we have :

$$
\begin{aligned}
& w(T a)=w s(T w)-[C p / L] x[T a-T w] \\
& \text { and } \quad f \quad=w(T a) / W_{5}(T w)
\end{aligned}
$$

Hence if Ta and Tw are known fand e_{5} can be calculated. The error introduced by assuming a standard atmospheric pressure of 1013 mb is very small.

APPENDIX C: PROGRAM LISTING - CALCULATION OF MODEL DATA

PROGRAM NAME : CALDAT.FOR
COMPILER
: MICROSOFT FORTRAN
COMPUTER
: PC-XT WITH MS-DOS OPERATING SYSTEM

C PROGRAN TO CALCILLATE DAILY AND MONTHLY
C MOMEL DATA FILES (DAY.DAT \& MTH.DAT)
C FROM MET. DATA(MET. LIAT).
DIMENSION RA (365)
INTEGER YR, LYR, MTH, LMTH, DAY, LDAY, RDAY
FEAL LAT, APET, MRAIN
C CONVERSION FACTOR FOR UEGREES TO RADIANS
[ITR=0.0174533
C CALCULATE Ra
PI=3.14159
LAT=LATTITUDE IN DEGREES
LAT $=-31.0833$
LAT=LAT*DTR
D0 $28 \mathrm{~N}=1,365$
$\mathrm{CN}=\mathrm{N}$
$\mathrm{D}=\mathrm{\square} T \mathrm{R} * 23.5 * \mathrm{~S} \mathrm{IN}(2.0 * \mathrm{PI} *(\mathrm{CN}-81.0)) / 365.25)$
IF (CN.EQ.81.) THEN
$\mathrm{D}=\mathrm{D} 1$
ENDIF
DI $=\mathrm{D}$
$\mathrm{RI}=1387.0 *(1.0+0.033 * \cos ((2.8 * \mathrm{PI} *(\mathrm{CN}-3.0)) / 365.25))$
$H=A C O S(-T A N(L A T) * T A N(D))$
C. CALCULATE Ra IN JOULES
$W=7.272 \mathrm{E}-8.5$
$R A(N)=(2 .(/ / W) * R I * \operatorname{SIN}(L A T) * \operatorname{SIN}(D) *(H-\operatorname{TAN}(H))$
CALCLLLATE Ra IN M.J
$R A(N)=R A(N) / 1 . a E+06$
CALCLILATE Ra IN mm
$\mathrm{RA}(\mathrm{N})=\mathrm{RA}(\mathrm{N}) / 2.47$
2 CONTINUE
IPEN(UNIT $=7$, FILE $=$ ' DAY . [IAT', STATUS $=$ 'NEW')
OPEN (UNIT $=$ S, FILE $=$ ' MET . UAT', STATUS $={ }^{\prime}$ OLD')
UPENUIUNIT=9, FILE='MTH.[IAT', STATUS='NEW')
$\mathrm{N}=1$
RDAY $=\varnothing$
MRAIN $=0.0$
MPET=0. 0
30 READ (9; 40) YR, MTH, RAY, TDRY, TWET, WIND, RAIN, FC
40 FORMAT (I5,213,5F10.2)
IF(YR.EQ.1982) GOTO 60
C 1980 IS A LEAF YEAR
IF ((MTH.EQ.2) AND. (DAY.EQ.29) THEN $\mathrm{N}=\mathrm{N}-1$
ENDIF
C CONVERT WIND FROM KNOTS AT TO KM/DAY
WIND $=($ WIND $* 44.448 * 0.75) * *(1.95$
C CALCULATE HIMIDITY (F) AND SATURATED IRY BULLB
C VAFOUR PRESSURE (ESDI)
C WSW=SATURATION MIXING RATIO AT WET BULB TEMPERATURE
C WSII=
C WD=MIXING RATIO AT IRY BULB TEMPERATURE
$W S W=(0.622 / 1013.0) * E X P(21.43-(5353.8 /(273.15+T W E T)))$
ESD $=\operatorname{EXP}(21.43-(5353.0 /(273.15+$ TDRY $)))$
WSD $=(0.622 / 1013.0)$ *ESD
$W D=W S W-4.87 E-04 *(T D R Y-T W E T)$
$F=W D / W S D$

```
C CALCULLATE NET RADIATION PN
            R=0.25
            Cl=0.26
            C.2=0.49
            C3=0.10
            C4=0.90
            C5=0.53
            Ct=0.078
            SEC=1.985E-89
            ETA=1.00
            CF=1.DFC
        RN=(1.-R)*(C1+C2*CF)*FA(N)-ETA*SEC*((273.15+TDRY)**4)*(C3+C4*CF)
        &*(C5-C6*SQRT (ESD*F))
C
C CALCLLLATE THE AINECTED ENERGY EA
        EDIF=ESD*(1.0-F)
        EA=EDIF*|.27**(1.0+(WIND/100.01)
C
C CALCULATE S & G FACTORS
        FI=1.0/(1.0+0.66/((0.00815*TDRY+0.8912)**7))
        F2=1.0-F1
[:
C CALCLLLATE POTENTIAL EVAPOTRANSPIRATION PET
        PET=F1*RN+F2*EA
C WRITE(*,42) YR,MTH,IAY,FN,EA,F1**RN,F2*EA,PET
C. 42 FORMAT(I5,2I3,5F10.2)
C
C WRITE IATA TO DAY.DAT
    WRITE(7,45) YR,MTH,DAY,RAIN,PET
    45 FORMAT (I5,2I4, FF10.2)
        IF((MTH.EQ.12).AND.(DAY.EQ.31)) THEN
        N=1
        ELSE
        N=N+1
        ENDIF
        IF(DAY.LT.LDAY) GOTO 60
    5 0 ~ I F ( R A I N . G T . 0 . 0 ) ~ T H E N
        RIIAY=RDAY+1
        ENDIF
        MRAIN=MRAIN+RAIN
        MPET=MPET+PET
        LDAY=\AY
        LMTH=MTH
        LYR=YR
        60T0 30
    60 WRITE(9,70) LYR,LMTH,RDAY,MRAIN,MPET
    WRITE(*,70) LYR,LMTH,RDAY,MRAIN,MPET
    70 FORMAT (I5,I4,I4, 2F10.2)
        IF(YR.EQ.1982) GOTO 80
        RDAY=0
        MRAIN=0.0
        MPET=0.0
        60T0 50
    80 CLOSE (UNIT=7)
        CLOSE(UNIT=8)
        CLOSE (UNIT=9)
        STOP
        END
```

D-1

APPENDIXD : PROGRAM LSSTING - MODEL

PROGRAM NAME	: DAY.FOR
COMPILER	:MICROSOFT FORTRAN
COMPUTER	:PC-XT WTH MS-DOS OPERATING SYSTEM

D-2

```
C DAILY TIMESTED DROCESS MODEL
    INTEGER YR,MTH,DAY,LYR,LMTH,LDAY
    REAL P,EPOT, INT, INTCAP,PEFF, EIS!T, IVIROT, ITEIL
    REAL R,SN,ESPOT, ESOIL,RECHAR,MPECHAP,MELOSS
    REAL MR,MRAIN,MPET, RATIO, SOILCAF, SDPT
    REAL GCONST, IHFMAX,EMAX,ELOSS,TRATIO,SRATIO
    REAL MRATIO,SDRATIO
C
C
C
C
    READ IN MODEL PARAMETERS,PRINT THEM AND PRINT HEADINGS FOR
    DAILY MODEL RUN
    OPEN(UNIT=7,FILE='DAY.DAT',STATUS='OLD')
    READ(7,*) INTCAP,GCONST,SOILCAP, INFMAX, EMAZ, SDRY
    WRITE(*,10)
    10 FORMAT(' INTCAP GCONST SOILCAP INFMAZ EMAX
        SDRY')
        WRITE(*,20) INTCAP,GCONST,SOILCAP, INFMAX, EMAX,SDRY
    20 FORMAT(6F8.2./)
    WRITE(*,25)
    25 FORMAT(' YEAR MTH RECHARGE EVAPOTRANS RUNOFF RAINFALL PET
        & RATIO')
C INTIALISE VALUES
    INT=INTCAD/2.0
    SW=SOILCAP / 2.0
    MRECHAR=0.0.
    MELOSS=0.0
    MR=0.0
    MRAIN=0.0
    MPET=0.0
    TRATIO=0.0
    SRATIO=0.0
    LDAY=1
    LMTH=1
    LYR=1977
C
C **************
    30 READ(7.40) YR,MTY,DAY,P,PET
    40 FORMAT(I5,2I4,2F10.2)
    EPOT=PET
    IF(YR.EQ.1982) GOTO 60
    IF(DAY.LT.LDAY) GOTO 60
C ******************
    45}\becauseINT=INT+
    IF(INT.GE.INTCAP) THEN
        PEFF=INT- INTCAP
        INT=INTCAP
    ; ELSE
        PEFF=0.0.
        ENDIF
        EIHT=MIN(INT, EPOT)
        EPOT=MAX((EPOT-EINT),0.0)
        INT=INT-EINT
C
C SOIL STORE
    INEPOT=INFMAR*(1.0-(SW/SOILCAF))
    INFIL=MIN(PEFE,INFPOT)
    R=DEFE-J.IFFIL
    SW=SW+INFIL
    IF(SW.GT.SOILCAP) THEN
    R=R+SW-SOILCAP
            SW=SOILCAP
        ENDIF
```


[-3

```
        ESPOT=MIN(EPOT,(EMAZ*((SW-SDRY)/(SOILCAP-SDRY))))
        IF(ESPOT.LT.O.O) THEN
            ESPOT=0.0
        ENDIF
        ESOIL=MIN(SW, ESPOT)
        EPOT=EPOT-ESOIL
        SW=SW-ESOIL
        RECHAR=MAX(0.0.(GCONST*(SW-SDRY)))
        SW=SW-RECHAR
C
    50 MRECHAR=MRECHARHRECHAR
        IF(DAY.LT.LDAY) GOTO 60
    50 MRECHAR=MRECHAR+RECHAR
        MELOSS=MELOSS+ELOSS
        MR=MR+R
        MRAIN=MRAIN+P
        MPET=MPET+PET
        LDAY=DAY
        LMTH=MTH
        LYR=YR
        GOTO 30
C
C
C
C
    60 IF(MRAIN.NE.O.O) THEN
            RATIO=MRECHAR/MRAIN
        ELSE
            RATIO=MRECHAR/(MRAIN+0.000001)
        ENDIF
        USE FIRST 6 MONTHS AS A NARM-UP EERIOD
        IF((LYR.EQ.1978).AND.(LMTH.LT.7)) GOTO 65
        COUNTERS FOR RATIO STATISTICS
        TRATIO=TRATIO+RATIO
        SRATIO=SRATIO+RATIO*RATIO
C
C
    65 WRITE(*,70) LYR,LMTH,MRECHAR,MELOSS,I!R,MRAIN,MPET,RATIO
    70 FORMAT(I5,I3,6F10.2)
        IF((LYR.EO.1978).AND.(LMTH.EQ.6)) THE!N
        WRITE(*,75)
        FORMAT(/)
        ENDIF
        IF(YR.EQ.1982) GOTO 80
C
C
    RESET MONTHLY COUNTERS TO ZERO
    MPECHAR=0.0
    MELOSS=0.0
    MR=0.0
    MRAIN=0.0
    MPET=0.0
    GOTO 50
    CALCULATE AND PRINT RATIO STATISTICS EOR 42 MONTHS(7/78-12/81)
80 CLOSE(UNIT=7)
MRATIO=TRATIO,42.0
    SDRATIO=(SRATIO-(TRATIO*TRATIO/42.0)),42.0
    SDRATIO=SORT(SDRATIO)
    WRITE(*,90) MRATIO,SDPATIO
90 FOMMAT(i/,' RATIO: MEAN=',F6.2,' SIANDAFD DEVIATION=',F6.2.//)
    STOP
    END
```


APPENDIX E DATA LISTING - MODEL DATA

The data used by the daily model is listed in one month blocks. The order is :
YEAR, MONTH, DAY, RAINFALL(mm), POTENTIAL EVAPOTRANSPIRATION(mm)

1980	7	1	. 00	1.11	1980	10	1	. 00	5.69
1980	7	2	. 00	3.64	1980	10	2	. 00	4.65
1980	7	3	. 00	1.55	1980	10	,	. 00	3.98
1980	7	4	. 00	4.94	1980	10	4	3.40	6.18
1980	7	5	. 10	4.66	1980	10	5	. 00	4.30
1980	7	6	. 00	2.10	1980	10	6	. 00	3.82
1980	7	7	. 00	1.35	1980	10		. 00	4.16
1980	7	8	. 00	1.42	1980	10	8	2.00	7.05
1980	7	9	. 00	2.06	1980	10	9	. 00	5.61
1980	7	10	. 00	5.25	1980	10	10	. 10	5.38
1980	7	11	. 00	2.19	1980	10	11	. 20	4.70
1980	7	12	. 00	1.71	1980	10	12	. 00	5.84
1980	7	13	. 00	1.59	1980	10	13	. 00	8.87
1980	7	14	. 00	1.47	1980	10	14	. 00	5.22
1980	7	15	. 00	1.41	1980	10	15	. 00	8.80
1980	7	16	7.20	1.78	1980	10	16	. 00	5.30
1980	7	17	. 20	1.79	1980	10	17	. 00	3.54
1980	7	18	. 20	2.46	1980	10	18	5.20	3.35
1980	7	19	. 00	1.38	1980	10	19	1.60	3.95
1980	7	20	. 00	1.79	1980	10	20	4.20	4.97
1980	7	21	. 00	3.72	1980	10	21	18.00	6.24
1980	7	22	. 00	2.77	1980	10	22	. 00	6.23
1980	7	23	. 00	2.68	1980	10	23	. 00	7.08
1980	7	24	. 00	2.57	1980	10	24	. 00	4.87
1980	7	25	. 00	2.72	1980	10	25	2.80	6.42
1980	7	26	8.40	1.62	1980	10	26	. 00	3.14
1980	7	27	3.60	1.16	1980	10	27	. 40	4.53
1980	7	28	1.80	. 87	1980	10	28	. 00	6.27
1980	7	29	1.00	1.84	1980	10	29	. 00	6.49
1980	7	30	. 00	1.52	1980	10	30	. 00	6.56
1980	7	31	. 00	2.48	1980	10	31	. 00	6.49
1980	8	1	. 00	2.57	1980	11	1	. 00	6.38
1980	8	2	. 00	2.07	1980	11	2	. 00	8.51
1980	8	3	. 00	3.95	1980	11	3	. 00	8.18
1980	8		. 00	2.38	1980	11		. 00	7.70
1980	8	5	. 00	2.96	1980	11	5	. 00	6.28
1980	8	6	. 00	2.64	1980	11	5	. 40	11.71
1980	8	7	. 00	3.35	1980	11	7	. 00	1.71
1980	8	8	. 00	3.03	1980	11	8	5.00	5.79
1980	8	9	. 00	2.39	1980	11	9	. 00	5.51
1980	8	10	. 00	2.40	1980	11	10	15.00	7.77
1980	8	11	. 00	2.48	1980	11	11	. 00	5.59
1980	8	12	. 00	1.98	1980	11	12	. 00	5.45
1980	8	13	. 00	2.81	1980	11	13	. 00	6.27
1980	8	14	. 00	4.08	1980	11	14	. 00	6.44
1980	8	15	. 00	6.59	1980	11	15	. 00	7.32
1980	8	16	. 20	3.57	1930	11	16	. 00	7.27
1980	8	17	. 00	1.89	1980	11	17	1.00	8.56
1980	8	18	. 00	3.13	1980	11	18	. 00	8.90
1980	8	19	. 00	3.25	1980	11	19	. 00	7.92
1980	8	20	. 00	2.50	1980	11	20	1.20	6.38
1980	8	21	2.00	2.73	1980	11	21	. 00	8.63
1980	8	22	. 80	3.32	1980	11	22	1.00	6.54
1980	8	23	. 10	3.11	1980	11	23	. 00	5.44
1980	8	24	. 00	3.42	1980	11	24	. 00	8.09
1980	8	25	. 00	1.78	1980	11	25	. 00	5.10
1980	8	26	1.20	2.92	1980	11	26	. 40	5.96
1980	8	27	. 00	3.89	1980	11	27	. 00	7.83
1980	8	28	. 00	3.22	1980	11	28	. 00	14.12
1980	8	29	. 00	4.63	1980	11	29	. 00	4.75
1980	r. 8	30	. 00	3.80	1980	11	30	. 00	6.93
1980	8	31	. 00	7.07					
					1980	12	1	. 00	6.23
1980	9	1	. 00	5.25 4.24	1980	12	,	. 00	6.19
1980	9	2	. 10	4.24	1980	12	3	. 10	4.87
1980:	9	3	. 00	4.42 3.65	1980	12	4	. 00	4.51
$1980{ }^{\circ}$	9	4	. 00	3.65	1980	12	5	. 80	3.68
1980	9	5	. 00	6.35	1980	12	6	96.20	2.67
1980	9	6	. 00	2.96	1980	12	7	2.40	4.97
1980	9	7	. 00	6.00	1980	12	8	2.20	4.44
1980	9	8	. 00	6.27	1980	12	9	2.20	3.50
1980	9	9	. 00	8.95	1980	12	10	5.80	6.13
1980	9	10	. 00	6.37	1980	12	11	. 00	6.36
1980	9	11	. 00	3.97	1980	12	12	. 00	7.92
1980	9	12	. 00	3.29	1980	12	13	. 00	9.07
1980	9	13	3.40	3.72	1980	12	14	. 00	7.31
1980	9	14	. 10	4.78	1980	12	15	13.40	6.59
1980	9	15	. 00	8.23 5.33	1980	12	16	. 20	5.87
1980	9	16	. 00	5.33	1980	12	17	. 00	7.38
1980	9	17	. 00	4.08	1980	12	18	. 00	6.49
1980	9	18	. 00	16.43	1980	12	19	. 00	7.73
1980	9	19	. 00	6.05	1980	12	20	. 20	7.19
1980	9	20	. 00	4.78	1980	12	21	. 00	5.88
1980	9	21	. 00	5.63	1980	12	22	. 00	6.74
1980	9	22	. 00	4.36	1980	12	23	. 00	6.90
1980	9	23	. 00	4.71	1980	12	24	. 00	7.13
1980	9	24	. 00	4.73	1980	12	25	. 00	7.00
1980	9	25	. 00	5.13 5.60	1980	12	26	. 00	6.34
1980	9	26	. 00	6. 60	1980	12	27	. 00	5.30
1980	9	27	. 00	4.34 3.42	1980	12	28	. 00	8.53
1980	9	28	. 00	3.42 5.33	1980	12	29	. 00	3.65
1980	9	29	. 00	5.33 5.48	1980	12	30	28.00	5.28
1980	9	30.	00	5.48	1980	12	31	45.00	. 69

0 	 	 がトゥート
$\omega \omega \omega$	NONNONNNNNNNNNNNNNNNNNNNNNNN，	
N がN゙N 00000000000000000000000000000000	 人O00000000000000000000000000	0000000000000000000000000000000
	1－	
		0
	○OOOOOOOOOOOOOOOOOOOOOOOOOOOO	

