
Integration Schemes and Decomposition Modes in Complex
Problem Solving

Author:
Efatmaneshnik, Mahmoud; Reidsema, Carl

Event details:
System Engineering, Test and Evaluation (SETE2008)
Canberra, Australia

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/390

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38291 in https://
unsworks.unsw.edu.au on 2024-04-20

http://dx.doi.org/https://doi.org/10.26190/unsworks/390
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38291
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

1

Integration Schemes and Decomposition Modes in Complex
Problem Solving

Mahmoud Efatmaneshnik, Carl Reidsema

Design Research Laboratory

School of Mechanical and Manufacturing Engineering

The University of New South Wales

Sydney NSW 2052 Australia

mahmoud@student.unsw.edu.au , reidsema@unsw.edu.au

ABSTRACT

Integrated product development requires that decomposition and integration schemes be
congruent and in harmony with each other. This harmony can mark complex and large scale
product development project with success. In domain of problem solving one needs to resort
to a priori knowledge about problem structure, and its underlying couplings/complexity. Here,
we refer to the problem structure as the self map of the system. Usually for large scale
problems the self needs to be decomposed for tractability purposes the structure of the
problem after decomposition is the real structure to be dealt with. In this paper we measure
the complexity of systems before and after decomposition. We refer to complexity of the
system/problem before decomposition as self complexity and complexity of system after
decomposition as real complexity. It is reasoned that real complexity cannot be less than the
self complexity. It is also noted that laws of weak and strong emergence can be demonstrated
by using real complexity measure of decomposed system. This would have important
implications in problem classification and choosing the right design process that is in
congruence with complexity of the problem.

Introduction

A product or system at the development level can be modelled by the set of design variables.
The design variable sets include subsets of sizing variables, shape variables, topologies and
process knowledge and manufacturing variables such as process capabilities (Prasad, 1996).
Formal definition of design problem solving constitutes the process of assigning values to
variables in accordance with the given design requirements, constraints, and optimization
criterion (Zdrahal and Motta, 1996). For example in design of an aircraft, assigning values of
sizing to wing, body and control surfaces is regarded as a design activity. The relationship
between design variables is summarized in Parameter based Design Structure Matrix
(PDSM). PDSM is used for modeling low-level relationships between design decisions and
parameters, systems of equations, subroutine parameter exchanges which represents the
product architecture (Browning, 2001). For example PDSM of the aircraft at the conceptual
level might address how the wing configuration as a design variable affects cruise speed, fuel
consumption, sizing variables, or other design variables of the aircraft. PDSM is upstream
information in design process about the product and is achieved through design of
experiments, expert suggestions, design of experiments and simulation techniques in

2

particular statistical Monte Carlo Simulation, and combination of some/all of these
techniques (Table 1). PDSM can be represented via a graph to which we refer as the self map
of the product /system (figure 1).

Table 1. A PDSM is a weighed adjacency matrix. This PDSM has 10 Variables.

- V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 0 0.76 0.45 0.16 0.22 0.77 0.12 0.01 0 0
V2 0.76 0 0.11 0.65 0.44 0.78 0 0 0 0.18
V3 0.45 0.11 0 0.64 0.11 0.31 0.02 0 0.15 0
V4 0.16 0.65 0.64 0 0.45 0.34 0 0 0 0
V5 0.22 0.44 0.11 0.45 0 0 0 0.01 0 0.01
V6 0.77 0.78 0.31 0.34 0 0 0 0 0 0
V7 0.12 0 0.02 0 0 0 0 0.2 0.7 0.1
V8 0.01 0 0 0 0.01 0 0.2 0 0.2 0.8
V9 0 0 0.15 0 0 0 0.7 0.2 0 0.9

V10 0 0.18 0 0 0.01 0 0.1 0.8 0.9 0

Structural decomposition of a problem takes decomposition as the clustering of the different
design variable or parameters, objectives and constraints into subsystems (Browning, 1997).
Decomposition of a product is synonymous to decomposition of system/product’s PDSM.
Table 2 and figure 2 show one possible decomposition of the example system in figure 1. The
design variables could have been grouped in many different ways. Ulrich and Eppinger
(2004) define the architecture of a product as the scheme by which the decomposed elements
are arranged in chunks. The choice of product architecture has broad implications for product
performance, product change, product variety, and manufacturability (Ulrich and Eppinger,
2004). A desirable decomposition is one that leads to least amount of interactions in between
the subsystems. In literature this is referred to as optimal decomposition (Michelena
Papalambros, 1997) and robust decomposition (Browning, 1999). Appropriately clustering
interdependent design parameters can reveal a preferred integration of low-level activities
into higher-level ones (Browning, 1997).

Figure 1. The self map of problem/system.

3

Table 2. The variables of Table 1 are rearranged to form three subsystems.

Subsystem1 Subsystem2 Subsystem3

V5 V4 V2 V10 V8 V7 V9 V6 V1 V3

V5 0 0.45 0.44 0 0 0.02 0.02 0.53 0.22 0.11

V4 0.34 0 0.65 0 0 0 0 0.43 0.16 0.64

S
ub

sy
st

em
1

V2 0.3 0.12 0 0 0 0.2 0.1 0.2 0.76 0.12

V10 0.01 0 0.18 0 0.8 0.1 0.9 0 0 0

V8 0.01 0 0 0.1 0 0.2 0.4 0 0.01 0

V7 0 0 0 0.3 0.45 0 0.1 0 0.12 0.02

S
ub

sy
st

em

2

V9 0 0 0 0.5 0.2 0.7 0 0 0 0.15

V6 0 0.34 0.78 0 0 0 0 0 0.77 0.31

V1 0 0 0.53 0 0 0 0 0.1 0 0.32

S
ub

sy
st

em
3

V3 0 0 0.11 0.72 0 0.3 0.52 0.2 0.45 0

The product architecture has a large influence on the appropriate structure of the product
development organization since organizational elements are typically assigned to develop
various product components (Browning, 1997). Product integration is carried out by gaining a
priori information about PDSM and then aligning problem structure and product development
organization’s structure. To align problem and organizational development two types of
planning can be devised:

1. Bottom up planning for flexible organizational structure that is to form the design
teams subsequent to product decomposition; Tanaka et al. (2000) for example took
this approach in the context of distributed problem solving and referred to it as “multi
agent system creation”. This approach has also been used in a manufacturing system
MetaMorph (Maturana et al.,1999) that could dynamically change its form to mimic
the task structure. In this case the number of the subsystems may be maximized for
better overall performance.

2. Top-down planning for fixed organizational structures is to decompose the product
in a way that suits the organizational structure; this is used when the organizational

Subsystem3

Subsystem1

Subsystem2

Figure 2. One possible decomposition through clustering the design variables.

4

structure is fixed and solid. A greater use of coordination activities between the
design teams and/or the use of integration teams is resulted. In this case number of
the subsystems is determined according to the number of design teams.

The literature concerning methods of decomposition and integration in design community is
not very extensive. Pimmler and Eppinger (1994) explained that for a complex product, such
as an automobile, a computer, or an airplane, there are thousands of possible decompositions
which may be considered; each of these alternative decompositions defines a different set of
integration challenges (Pimmler and Eppinger, 1994) at the organizational level. Pimmler and
Eppinger (1994) presented an extensive literature review concerning system decomposition
and architecture at the system definition stage of product design; according to them the core
research began with Alexander (1964), who described a design process which decomposed (or
partitions) designs into minimally coupled groups. Simon (1981) continued by suggesting that
complex design problems could be described in terms of hierarchical structures consisting of
nearly decomposable systems organized such that the strongest interactions occur within
groups and only weaker interactions occur among groups. Henderson and Clark (1990)
related the importance of architecture by noting that established firms frequently fail when
confronted by a novel architecture. McCord and Eppinger (1993) described a methodology
using interactions between components to structure system teams in a development project.

All previous researchers dealt with the methods of decomposition and how the alignment of
the subsystems and design groups structure helps the problem solving procedure. This paper
takes this discussion to a new level by making three contributions to previous works in the
field of decomposition and integration. First we attempt to gather and present all the problem
decomposition modes scattered in the literature. Second by attributing a complexity measure
to every specific decomposition (real complexity), we measure the integration effort that the
particular decomposition pose in front of system integrators. Thirdly it is shown that this
measure can be used to determine weather the system has strong or weak emergent
properties. The paper ends with a description of several integration schemes aligned with the
decomposition modes. It is shown that in case the system has strong emergence, integration
based on team collaboration techniques may not be achieved. Instead integration based on
holistic solutions gained from various design groups competing and working in parallel on
the same problem (Bar Yam, 2004) suit the systems with strong emergence.

Decomposition Modes

According to Papalambros (2002) decomposition of large-scale design problems allows for:

 conceptual simplification of the system
 reduction in the dimensionality of the problem
 more efficient computational procedures
 utilization of different solution techniques for individual sub-problems
 simultaneous design, modularity, multi-objective analysis
 efficient communication and coordination among the diverse groups involved in the

design process

Problem decomposition and partitioning of the self map of the system fits in area of graph
partitioning. A graph G is specified by its vertex set, V = {1,…,n}, and edge set E. The total
number of nodes in G is referred to as order of G. Number of edges in G is the size of G. G

5

(n, m) is a graph of order n and size m. The most natural matrix to associate with G is its
adjacency matrix, AG, whose entries ai,j is given by:

 (i,j) Ewi,j

a
i, j 0 otherwise

 (1)

For un-weighted graphs all wi,j=1, and in undirected graphs for all (i,j) E, ai,j = aj,i. A bi-
partitioning of graph G is a division of its vertices into two sets or sub-graphs, P1 and P2.
Similarly a k-partitioning is to divide the vertices of the graph into k non-empty sets P = {P1 ,
P2 ,…,Pk}. A graph can be partitioned in many different ways. In the domain of the problem
solving, every node or vertex of a graph represents a variable of the system and every edge of
the graph suggests that two parameters of the system are dependent on each other. The
strength of the relationship between variable is the corresponding edge weight. An undirected
graph as the self map of the system indicates that variables affect one another mutually and
equally. The sub-graphs can be regarded as subsystems or sub-problems or agents (Kusiak,
1999). The notion of agency implies that the sub-problems are solved more or less
independently from each other. Each design team has autonomy to explore parts of the
solution space that is of interest to its own assigned sub-problem (agent).

The system (or problem) is fully decomposable if there is no link in between the subsystems.
In this case the corresponding design process is fully concurrent: problems are solved
separately and solutions are added together. When dependency in between the subsystems
exists, conflict may arise. A conflict is when the solution to one sub-problem is in contrast
with the solutions to another sub-problem(s). An important conflict resolution technique is
negotiation. Negotiation leads to iteration in the design process. A coordinator may be used to
monitor the conflict resolution and negotiation process. Obviously a design process with less
number of iterations is more desirable. Thus the criteria for decomposition is that sub-systems
must be rendered as independent as possible. The graph partitioning that corresponds to this
decomposition criteria is referred to as minimum cut/partitioning.

Problem connectivity is the total number of edges in self map of product/problem divided by
the total number of possible edges -- that is number of edges of a complete graph with same
number of nodes. The total number of possible edges in a complete undirected graph with n
nodes or vertices is

2

)1(

2

nnn
K (1)

If the self map of PDSM has k connections (edges), we define the problem connectivity as:

K

k
p (2)

Surfing the literature related to problem decomposition in the field of distributed problem
solving has revealed that depending on the problem’s self connectivity decomposition of self
map of system/problem can be carried out in several modes (Sosa et al. (2000), Klein et al.
(2003), Browning (2001)). These modes are illustrated in table 3. The connectivity values in
this table are based the experience of authors with randomly generated graphs. Bearing in
mind that it is usually desirable to have subsystems of similar order, the implementation of
some of these decomposition modes (in particularly full decomposition mode and integrative
mode) may not always be feasible. For problems with denser self map (higher connectivity)
modular clustering and overlap decomposition can be used. If the problem’s map is very
dense and system is really complex then it may not be decomposed at all (Bar Yam, 2004).

6

 Table 3. Decomposition Modes of self map of problems

Connectivity
Very Low

(0-0.02)

Low

(0.02-0.1)
Intermediate

(0.1-0.2)
High

(0.2-0.3)

Very High

(0.3-1)

Possible or best
decomposition
strategy

Full
decomposition

Integrative

Clustering

Modular

Clustering

Overlap

clustering

No

Decomposition

Illustration

Each of these decomposition modes brings specific strengths, weaknesses and particularity to
the problem solving process. As an example an aircraft with blended wing body may not be
decomposed completely to separate body and wings with the related design variables being
independent or loosely dependent (figure 3). Instead for systems that have subsystems with
fuzzy boundaries overlap decomposition may be used; the aligned organizational architecture
in charge of conceptual and parametric design of aircraft’s body and wings also constitute two
different design teams with overlaps and fuzzy boundaries. This is discussed in last section of
this paper.

In the next section real complexity of decompositions is introduced. Complexity based
method clarifies why systems with very high level of connectivity may not be decomposed.

Figure 3. Two components (subsystems) are overlapped in blended wing-body types of
aircrafts

7

Real Complexity

In general, complexity is defined as the quality of being intricate and compounded (Duin and
Pekalska, 2006). This means that an entity, a problem, a task or a system is complex if it
consists of a number of elements (components) related such that it is hard to separate them or
to follow their interrelations (Duin and Pekalska, 2006). An entity is more complex if more
components and more interdependencies can be distinguished (Duin and Pekalska, 2006). So,
Complexity can be characterized by the levels and the kinds of distinction (the variability and
the number of elements) and dependency between the components (Duin and Pekalska,
2006). In recent years, there have been many attempts to use complexity measure to facilitate
decision-making. For example Suh (2005), defined complexity as a measure of uncertainty in
achieving the functional requirements of a design. Yu and Efstathiou (2002) used an entropic
complexity measure to indicate the effect of layout modification on manufacturing network.
Guenov (2002) presented a complexity measure based on Boltzman’s entropy concept to
measure the complexity of functional couplings of design parameters system and product
functional requirements. Frizelle et al (2002) introduced two types of complexity to be used
in supply chain management: flow complexity and stock complexity. Static complexity was
introduced as monitoring factor of the system’s performance in processing requirements of
parts with regards to machine capabilities (Deshmuk et al, 1998). Holtta and Otto (2003)
introduced a novel design effort complexity metric that characterized the minimum design
effort for the redesign of modules in a modular product design framework.

We used Ontix1, the complexity measure embedded in Ontospace softwareTM, that is
implicitly described in Marczyk and Dishpande (2006). Ontix is a graph theoretic complexity
measure that has the following properties:

1. Complexity of a graph with zero weight nodes and size zero is equal to zero.
2. Complexity is an increasing function of number of edges, their weights, number of

vertices, and the weight of vertices.
3. Complexity of a graph with nonzero nodes weights and size zero is non zero and

positive.
4. Complexity is an increasing function of number of independent cycles in graph.

Figure 5 demonstrate the above properties of Ontix. Each point in the plots represents a
randomly generated graph.

By applying Ontix to PDSM of system, the self complexity of the system is acquired which is
the complexity before decomposition. The perceived complexity of the system after it has
been decomposed must be different from self complexity. This is so since when a system is
simplified it is unavoidable to loose some of the information contained in the system; the
amount of information lost results in the increase of an equal amount of relevant uncertainty
(Klir, 2003). Any kind of simplification including break of the overall system to subsystems
can increase uncertainty (Klir, 2003). More uncertainty about the behavior of a system leads
to increased perceived complexity of the system. Thus decomposition increases the overall
complexity. There is an easier way to arrive at this conclusion by resorting to the “No Free
Lunch Theorem”; it can be stated that facing more overall complexity is the price for having
tractable sub-problems.

1 Ontix is the proprietary complexity measure of Ontonix (www.ontonix .com) a leading complexity

management company.

8

We refer to complexity of the systems after it has been decomposed as real complexity of
system. A block diagram is the graphical representation of the decomposed system (figure 5).
Let S be the graphical representation of a problem with the adjacency matrix A = [ai,j] and its
complexity C(S) (self complexity). Consider partitioning P of the graph S, into k sub-graph P
= {P1,P2,…,Pk}. Each of these sub-graphs is a block of the system. Let C(Pi) be the
complexity of each sub-graph determined by the complexity measure. The purpose of
decomposition is to reduce the initial problem complexity C(S) to a number of sub-problems
with complexity C(Pi) less than self complexity C(S).Lets define the k dimensional square
matrix B as the Complexity Based Adjacency Matrix of the Block Diagram with the diagonal
entries as the complexity of the sub-graphs (or blocks), and the off-diagonal entries as the
sum of the weight of the edges that have one end in each of the two corresponding sub-
graphs. The real complexity (induced by decomposition) is the complexity of the block
diagram C(B) and is achieved by applying the graph theoretic complexity measure (Ontix) to
matrix B.

1 1,2 1,k

2,1 2 2,k

k,1 k,2 k

C L . . L

L C . . L

. . . .
B

. . . .

L L . . C

 (3)

Where

fo r i , j = { 1 , . . . ,k } : C C (P a n d L i i , j=) a
i i , ji P , j P

i j

 (4)

Figure 4. Ontix is an increasing function of graph size, order and number of independent
cycles.

9

Real complexity C(B) is a subjective measure of the system and is relative to how one might
decompose the system. Conversely the self complexity C(S) is an objective measure of the
system and is absolute in being independent from the type of decomposition P. Real
complexity represents the overall complexity of the whole system of subsystems. By
expressing the coupled-ness of the system of sub-systems, real complexity represents the
integration effort for the whole system after decomposition. The product/system integration
efficiency and risk (of not achieving design criteria) is dependent on real complexity as much
as it depends on self complexity. Obviously by minimizing the real complexity the
integration effort and risk is minimized. We would like to refer to decomposition with
minimum real complexity as immune decomposition. Heuristics are required to extract the
immune decomposition. A search algorithm based on spectral graph partitioning is presented
in Efatmaneshnik and reidsema (2008).

Strong and Weak Emergence

Reductionism is an approach to understanding the nature of complex things by reducing them
to the interactions of their parts, or to simpler or more fundamental things. Adaptation of
decomposition as a means of reducing the complexity of the main problem to several sub-
problems is a reductionistic approach and can only be used for systems with weak emergence
(since the system is essentially reducible). For systems with strong emergence decomposition
is not a useful technique and instead holistic problem solving techniques must be used.
Holism emphasizes the study of complex systems as wholes. One such design methodology is
Enlightened Engineering developed by Bar Yam (2004) that is an evolutionary process. The
most important and straight forward advantage of real complexity concept is that it can be
used to determine weather a system has weak or strong emergence. In weak Emergence the
emergent property is reducible to its individual constituents. In other words in such systems
the whole is less than sum of the parts (in complexity). Since real complexity represents the
complexity of the whole the latter can be written as:

1 2

3

4

5

6

7

8 9

C3

C1

C2

10

Figure 5. The partitioning and block diagram of graphs

10

k

i
i 1

C(B) C(P)

 (5)

In which P={P1, P2 ,…,Pk} are k partitions (parts or subsystems) of the system and C(Pi) are
complexity of parts. Under such circumstances as (5), the complexity of the whole can be
reduced to the complexity of the individual components. On the contrary a system has strong
emergence when the emergent property is irreducible to its individual constituents and as
such the whole is more than sum of the parts. In other words for systems with strong
emergence a decomposition P={P1, P2 ,…,Pk} of system that satisfy (5) can not be found.

Obviously determination of kind of emergence in systems in the way presented here would be
effected by type of base complexity measure used. In figure 6 by using Ontix as measure of
complexity two systems are decomposed in many different ways (different subsystems). The
two left matrices are PDSM (or self) of systems Sa and Sb in which each dot represents a link
between the two nodes or variables. The system Sa in figure 6.a is of order 100 and size 100
where as system Sb (figure 6.b) is of the same order and size 400; system Sb is four times
denser that Sa. Some decompositions of the system Sa do not show the whole (real

Figure 6. Determining weak and strong emergence in systems by using real complexity.

C
om

pl
ex

ity
 s

um
 o

f t
he

 s
ub

sy
st

em
s/

pa
rt

s
C

om
pl

ex
ity

 s
um

 o
f t

he
 s

ub
-s

ys
te

m
s/

pa
rt

s

Real Complexity of the Whole

Real Complexity of the Whole

Sa

Sb

(x) whole is less than sum of the parts

(+) whole is more than sum of the parts

(b)

(a)

11

complexity) being more than sum (complexity) of the parts. Thus system Sa has weak
emergence property since it can be reduced to the sum of its parts. On the contrary regardless
of how system Sb may be decomposed it cannot be reduced to the sum of its parts and
therefore system Sb has strong emergence. Figure 7 compares the whole and sum of the parts
for many decompositions of the system presented in table 1. This system was decomposed in
200 different ways all of which had relatively balanced subsystems. The system showed
strong emergence under all the viable decompositions.

Design Integration Schemes

Integration in design process can be carried out by using two major methods:

1. Supervised integration
2. Unsupervised integration

Supervised problem solving architecture involves high level integration teams and centralized
planning (figure 8). According to Eppinger (1997), one important level of integration takes
place within each development team; this is the now common practice of concurrent
engineering, in which a cross-functional team addresses the many design and production
concerns simultaneously. To assure that the entire system works together, sub-system
development teams must work together and for that additional teams are assigned the special
challenge of integrating those subsystems into the overall system (Eppinger, 1997). However
for densely coupled problems/systems using high level integration teams as coordinator
cannot be effective, since loaded coordination complexity would be a greater barrier to
effectiveness of integration process.

Figure 7. The example PDSM has strong emergence under all viable decompositions.

C
om

pl
ex

ity
 s

um
 o

f t
he

 s
ub

-s
ys

te
m

s/
pa

rt
s

Real Complexity of the Whole

(x) whole is less than sum of the parts

(+) whole is more than sum of the parts

12

Unsupervised problem solving architectures can cope with problems of more complexity
using distributed planning approach. These include systems that use 1) low level integration
team and 2) multi agent architecture and 3) information intensive architecture. Systems using
low level integrators and multi agent architectures correspond to two decomposition patterns
that are recognized by Sosa et al (2000) as coordination-based and modular (figure 9).
Coordination based decompositions partition the system into several relatively independent
subsystems and only one (or few) severely connected subsystem(s) namely the coordination
block(s) (figure 10). The identification of coordination block (figure 10.b) in a system can be
performed through integer programming (Sosa et al., 2000). The coordination block (CC) is
an integrative subsystem and the design team in charge of design of integrative subsystem is
regarded as low level integration team that implicitly coordinates the activities of other teams.
Since the design of the integrative subsystem must be much more complex than the other
subsystems, the integration of the complex systems with more than a certain amount of
coupling is not desirable by coordination based decomposition and low level integration
scheme.

High level coordination team

Low level design teams

Figure 8. Integration team acts as a high level coordinator.

Figure 9. (a) Mudular decomposition and (b) coordination based decomposition.

13

The interaction between the design teams in multi agent systems are autonomous and based
on agents social knowledge. Multi agent systems are relatively complex field of research. The
solution to the design problems in multi agent systems is formed in a self organizing fashion
that emerges as result of autonomous interaction of the agents (figure 11.a); multi agent
systems respond to modular problem decomposition (figure 11.b).

Information intensive architecture can also be regarded as multi agent system in which the
design teams (or coalition of agents) have overlapped and fuzzy boundaries. Information
intensive architecture corresponds to overlap decomposition of product/system in which
subsystems are overlapped and share some of the design variables with each other. The
aligned organizational architecture constitutes coalitions that explicitly share some of the
design agents (figure 12). The real complexity can be measured for overlap decompositions
(Efatmaneshnik and Reidsema 2007). The main characteristic of this process model is the
intense collaboration between coalition of agents making this mode an information and
knowledge intensive process (Klein et al., 2003). As the impact of new information on the
design process is relatively high, overlap decomposition mode and its corresponding
integration scheme are suitable for problems of high complexity and self connectivity.

Figure 10. Interactions between design teams of low level integration scheme (a) and the
corresponding PDSM of order 100 with coordination based 4-partitioning (b).

Figure 11. Multi agent design system (a), the corresponding modular PDSM decomposition (b).

Low level design teams

(a)
(b)

Coordination Block

(a) (b)

Low level integration

team

Low level design teams

14

For really complex problems with high self connectivity, Bar Yam (2004) suggested that
decomposition can not alleviate the overall complexity of the problem. He proposed
Enlightened Engineering as an integration scheme for complex systems. Enlightened
engineering is an evolutionary process of design that relies on radically innovative solutions
provided by several design groups working parallel to each other on the same problem (Bar
Yam, 2004). The evolutionary process is based on design teams competing for higher fitness
of the solutions. Examining many design alternatives and avoiding premature commitment to
routine solutions, innovative design groups have the ability to reach higher global optima and
robustness: the solutions are tested for wider adoption to other solutions from other design
teams (Bar Yam, 2003). We propose utilization of this integration scheme when no
decomposition of the system leads to real complexity (whole) being less than sum
(complexity) of the subsystems (parts).

Conclusion

Decomposition and integration of complex problems was speculated. Integrated problem
solving for complex problems requires a priori knowledge of system elements (variables)
interactions. The interactions can be obtained from past products knowledge, expert idea,
design of experiments and simulation techniques. The real complexity of the
problems/systems after decomposition was introduced from the knowledge gained from
PDSM of product. Real complexity directly points to integration difficulty of product/systems
after decomposition. Real complexity can be used in reasoning about the type of integration
scheme that most suits the product’s level of complexity (figure 13).

Figure 12. Design teams (a) as well as product partitions (b) have overlapped boundaries.

(a)
(b)

15

References

Alexander, Christopher. 1964. Notes on the Synthesis of Form. Harvard University Press,
Cambridge.

Bar-Yam, Yaneer. 2003. When Systems Engineering Fails --- toward Complex Systems
Engineering. Paper presented at the International Conference on Systems, Man &
Cybernetics, Piscataway, NJ.

Bar-Yam Yaneer. 2005. About Engineering Complex Systems: Multiscale Analysis and
Evolutionary Engineering. In Engineering Self-Organising Systems. Edited by Sven A
Brueckner. 16-31.

Browning, Tyson. 1999. Designing system development projects for organizational
integration. Systems Engineering 2: 217-225.

Browning, Tyson. 2001. Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions. IEEE Transactions on Engineering
Management 48: 292-306.

Deshmuk, A.V., Talavage, J.J., and Barash, M.M. 1998. Complexity in manufacturing
system, part 1: Analysis of static complexity, IIE Transactions 30: 645-655.

Duin, R.P.W., and Pekalska, E., Object Representation, Sample Size and Dataset Complexity,
In Data Complexity in Pattern Recognition (ed. by Basu, M. and Ho, T.K.), Springer, 2006,
25-47.

Efatmaneshnik M, and Reidsema CA. 2007. Immunity and Information Sensitivity of
Complex Product Design Process in Overlap Decomposition. In Proceedings of 7th ICCS,
Minai A, Braha D, Bar-Yam Y (eds.) Boston, MA.

Eppinger, Steven D. 1997. A Planning Method for Integration of Large Scale Enginering
Systems. Paper presented at the International Conference on Engineering Design ICED 97,
Tampere, Finland, August, 19-21.

High level
integration teams

Problem complexity increases

Figure 13. Ranking various integration schemes capability in coping with complexity.

Low level
integration teams

Unsupervised multi
agent system

Information intensive
architecture

Enlightened
 Engineering process

S
ystem

s w
ith

strong
em

ergence

S
ys

te
m

s
w

it
h

w
ea

k
em

er
ge

nc
e

Integration Schemes

16

Frizelle, G., Wu, Y., Ayral, L., Marsein, J., Merwe, E.V.d., and Zhou, D. 2002. A Simulation
Study on Supply Chain Complexity in Manufacturing Industry, Manufacturing complexity
network Conference, Cambridge, UK.

Guenov, M.D. 2002. Complexity and Cost Effectiveness Measures for System Design,
Manufacturing complexity network Conference, Cambridge, UK.

Henderson, Rebecca M. and Kim B. Clark. 1990. Architectural Innovation: The
Reconfiguration of Existing Product Technologies and the Failure of Established Firms.
Administrative Science Quarterly 35(1): 9-30.

Holtta, K.M.M., and Otto, K.N. 2003. Incorporating Design Complexity Measures in
Architectural Assessment, Engineering and Technical Design Conference, Chicago, USA.

Klein, M.,H. Sayama, P. Faratin, Bar Yam, Y. 2003. the Dynamics of Collaborative Design:
Insights from Complex Systems and Negotiation Research. Concurrent Engineering Research
& Applications.11(3): 201-209.

Klir, George J. 2003. Facets of Generalized Uncertainty-Based Information. In Entropy
Measures, Maximum Entropy Principle and Emerging Applications. Edited by J. Karmeshu,
Springer.

Kusiak, Andrew. 1999. Engineering Design: Products, Processes, and Systems. Academic
Press.

Marczyk, J., Deshpande, B. 2006. Measuring and Tracking Complexity in Science, In Sixth
International Conference on Complex Systems (ed. by Minai, A., Braha, D., Bar-Yam, Y.),
Boston, MA.

Maturana, F., Shen, W., Norrie, D.H. 1999. MetaMorph: an adaptive agent-based architecture
for intelligent manufacturing. International Journal of Production Research 37: 2159 - 2173.

McCord, Kent R. and Steven D. Eppinger. 1993. Managing the Integration Problem in
Concurrent Engineering. Massachusetts Institute of Technology Sloan School of Management
Working Paper 3594-93-MSA.

Michelena, N.F., and P.Y. Papalambros. 1997. A Hypergraph Framework for Optimal Model-
Based Decomposition of Design Problems, Computational Optimization and Applications 8:
173-96.

Papalambros, P.Y. 2002. The Optimization Paradigm in Engineering Design: Promises and
Challenges. Computer-Aided Design. 34: 939-51.

Pimmler, Thomas and Eppinger, Steven. 1994. Integration Analysis of Product
Decomposition. ASME Design Theory and Methodology Conference Minneapolis, MN,
September.

Prasad, B. 1996. Concurrent Engineering Fundamentals, Volume II: Integrated Product
Development. Prentice Hall.

17

Simon, Herbert A. 1981. The Sciences of the Artificial, 2nd edition, MIT Press, Cambridge,
MA.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2000. Designing Modular and
Integrative Systems. Paper presented at International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Baltimore,
Maryland, September.

Suh, N.P. 2005. Complexity theory and applications. New York.

Tanaka, K., Higashiyama, M., and Ohsuga, S. 2000. Problem Decomposition and Multi-agent
System Creation for Distributed Problem Solving. Proceedings of the 12th International
Symposium on Foundations of Intelligent Systems, Springer-Verlag.

Ulrich, Karl T., and Steven D. Eppinger. 2004. Product Design and Development, Third ed.,
Mc Graw-Hill/Irwin.

Yu, S.B., Efstathiou, J.,2002. An Introduction of Network Complexity. Manufacturing
Complexity Network Conference, Cambridge, UK.

Zdrahal, Z., and Motta, E. 1996. Case-Based Problem Solving Methods for Parametric Design
Tasks. Proceedings of the Third European Workshop on Advances in Case-Based Reasoning.
473-486.

