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Abstract 

The role of intermolecular forces in the phase behaviour 

of mixtures of polar molecules is investigated using a Statistical 

Mechanical approach. The quantitative description of such phase 

behaviour is obtained through a direct application of the thermo

dynamic properties of the polar mixture which are calculated via 

the ensemble-average formalism offered by Statistical Mechanics 

(McQuarrie, 1976). The structural and thermodynamic properties of 

a fluid composed of molecules interacting via long-ranged nonspherically 

symmetric forces are far less readily obtained than those interacting 

via spherically symmetric forces (Barker and Henderson, 1976). The 

simplest model of such a long-ranged anisotropic potential is the 

dipole-dipole potential truncated at molecular-sized distances by a 

purely repulsive hard core interaction. Even for this model potential, 

the usually successful simulation methods (Monte Carlo and Molecular 

Dynamics) are not reliable. It has been found using these methods 

that different boundary conditions for a finite volume sample have 

given different thermodynamic and structural results (Valleau and 

Whittington, 1977) . 

In this thesis, the investigation of the effect of long

ranged interactions on the properties of mixtures of dipolar hard 

spheres will be based on the solution of the Ornstein-Zernike equation. 

This exact integral equation is supplemented by the closure rule of 

the Mean Spherical Approximation. The procedure of decoupling the 

resulting angular-dependent integral equation is an extension of the 

methods of Wertheim (1971). Wertheim has solved the single component 

dipolar fluid problem subject to an assumed form of the angular 
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dependence for the correlation functions of the Ornstein-Zernike 

equation. Given this Ansatz, the multi-dimensional Ornstein-Zernike 

equation can be decomposed to a set of one-dimensional Ornstein- 

Zernike-like equations. For mixtures of equal-sized molecules, these 

equations reduce to an effective single component fluid (Adelman and 

Deutch, 1973). However, the formulation of Adelman and Deutch is not 

justified for the more interesting case of nonequal diameters.

This thesis shows that the Mean Spherical Approximation 

can be solved in closed form for dipolar mixtures of nonequal 

diameters. These closed form expressions provide self-consistent 

equations for certain fundamental variables

It can be shown that the structural and bulk properties 

of a mixture of dipolar hard spheres of different diameters are 

determined through the solution of a set of self-consistent equations 

for the parameters, ? |3> = 1^5.) . The details of

these equations for the are given through an application of

the Wiener-Hopf techniques of Baxter (1970). The K^'s play a 

central role in the calculation of the thermodynamic properties of the 

dipolar mixture (Chapter 3). In order to calculate any thermo

dynamic property, the solution of these equations for the 1 s

must be obtained numerically. The usual numerical root-searching 

routines (Acton, 1970) fail dismally, and so new techniques were 

developed to solve the coupled set of equations for the 1S

(Chapter 3). These numerical solutions for the K^'s were next 

manipulated to obtain an excess Gibbs free energy of the dipolar

mixture. A study of the curvatures of the excess Gibbs free energies
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then allowed the behaviour of the mixing properties of the dipolar 

mixture to be determined in terms of molecular variables.

It is found that dipolar forces are responsible for the 

phase separation of the model mixture. The types of such phase 

behaviour which are predicted by this calculation are very similar 

to the different categories (Types II, III, III^ ) of the phase 

behaviour for van der Waals mixtures (van Konynenburg, 1968; Scott 

and van Konynenburg, 1970).
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I wish to warn the reader before entering Chapter 3 

to take to heart the sage words of Acton (1970):

"I have tried to make my explanations clear, but sad experience 

has shown that you will not really understand what I am talking 

about until you have made some of the same mistakes that I have 

made. I hesitate to close a preface with a ringing exhortation 

for you to go forth to make fruitful mistakes; somehow, it doesn’t 

seem quite the right note to strike! Yet, the truth it contains 

is real. Guided, often laborious, experience is the best teacher 

for an art. If all you desire is a conversational knowledge of 

an art, you've chosen the wrong subject, the wrong author, and 

just possibly the wrong profession. It is one of the minor 

paradoxes of our language that, even in the 1970s, you learn how 

to solve real problems only by getting your hands dirty with 

rational numbers - although rational problems can frequently be 

solved only with real numbers. Good luck.’".
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Chapter 1

Statistical Mechanics of Nonspherical Molecules 

1. Introduction

The fundamental problem of classical equilibrium 

statistical mechanics is the calculation of the partition function 

(McQuarrie, 1976). All of the usual thermodynamic properties are 

obtainable from the partition function, thus giving it a central 

role in their calculation from molecular parameters. Considerable 

progress has been made in these calculations for systems made up of 

molecules which interact through spherically symmetric pair inter- 

molecular potentials (Andersen, 1975; Barker and Henderson, 1976; 

Singer 1973). However, the treatment of molecules with nonspherical 

forces is complicated further by angular dependence.

The well-known phase space integral for the canonical 

partition function, Q(N, V, T) is (Hill, 1956)

Q(n,v,t) = CM! sff dOtdPc e «-?'>•••’■(1)
1=1

Here, N identical linear molecules of mass m interact within a

closed volume V and at a fixed temperature T, re-defined in terms
-1

of the Boltzmann constant k as J5“(KT); h is Planck’s constant 
and f is the number of degrees of freedom per molecule. The 

Hamiltonian H is a function of the set of spatial and orientational 

coordinates of each molecule i and the set of conjugate momenta

^ ‘L . For a linear molecule i, these are the centre of mass co-
—♦

ordinates ft and its associated linear momentum "Pr* , along with the 
c ri

orientational coordinates ©, } and conjugate angular momenta
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P , P, The differential element in phase space is the totalityVi
of diQ- dP^ where symbolically,

dQL = dr- d©^^

AP,. - dP7 dPs AP, ; (2)ri; ei 0c

that is

TT^Jfi - TT Jr. det d<#. d?n JPft JPfc .
1-1 1=1

For a system of rigid linear molecules the Hamiltonian is

H -±( &
3 = 1

4-
ann al alsin ©

^ U(ri,©d,(|)i, •••, Pm,0n,0n) * (3)
where I is the moment of inertia about an axis perpendicular to 

the axis of symmetry in the linear molecule and U is the total 

intermolecular potential for the configuration '**

) psl j ©n > $N* The integrations over , P^. and P^

can be performed using standard integral techniques. In particular, 

the integration over P^ introduces the factor sin ©j into the 

integrand, which provides the angular volume element

sin e>jd©jcS<f>3= dJl-j >
where

Aj » (©j.^j).

The final result, given in terms of

/V. = IZ / Carr I kT)
f\t = hi (a-TtmKT)

_LTL

and n ^ ^
Z(N,V,T) = STTAridili

pl J
(4)

QtN.V,T)= Z (N, \/,T) / (N! Ar A+N) , (5)
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where, for linear molecules without the vibrational degrees of 

freedom, f is five. The translational and rotational motions are 

described in and /\_r , and the intermolecular potential is to be

averaged over all configurations and is incorporated in the 

configurational integral, Z(N,V,T). Here, the differentials in 

Z(N,V,T) are over the volume elements cLr and c(.Jl in contrast 

to the phase space differentials which lack the Jacobian factor sin ©

The calculation of the thermodynamic properties from the 

partition function follows from the Helmholtz free energy A given 

by

A(N,V,Y) --KT im. Q(N, V,T)

= KTMCNS^AV) -KTkllN.V.T). (6)

On the right hand side of equation (6), the first term is merely 

the contributions of kinetic energies of an ideal gas to the free 

energy at the same conditions of N, V, T. Thus the configurational 

integral Z contains all of the effects of molecular interactions 

on the thermodynamic properties. However, any direct calculation of 

the configurational integral is prohibitive for dense systems^ e.g., 

liquids. Fortunately an alternative approach is provided by the 

method of distribution functions (McQuarrie, 1976). Here the 

calculation of the thermodynamic properties is reformulated as a 

two part problem. The first stage involves the calculation of the 

distribution functions themselves. These distribution functions are 

then utilized in the final stage where the thermodynamic properties 

are calculated. In this approach, not only are the bulk thermodynamic 

properties of the system calculated but also the molecular structure 

of the system is detailed in the distribution functions.
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2. Molecular Distribution Functions and Liquid Structure

Complete details of liquid structure are given in the 

N-body distribution of the molecules as dictated by the total 

potential U However, such detailed

information is unnecessary for those liquids for which it is assumed 

that the total potential is made up of pair interactions only.

There, the pair distribution function is closely associated with a 

structural quantity which is experimentally measured in the 

scattering of radiation by liquids and which plays an important 

role in the calculation of thermodynamic properties.

The probability of finding a molecule spatially at 1* 

and orientated at within the respective volume increments dLrj and

dLand another one at within dSi and is

(f, , A, , JL2) dx, cLft, dsz , where (?l° is the

pair distribution function defined by

P11^fTT dr, diti e m' Z(N,V,T)Jj=3 J J

Any molecular property which is a function of the configuration of 

pairs of molecules only, can be ensemble averaged over the pair 

distribution function. If X ( Tf, ill, is the molecular pair
property, its average value is the ensemble average, X, given by

X ^ dndil>i d-A-i X
x (8)
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Before considering such molecular functions which average 

to the appropriate thermodynamic properties, it is appropriate to 

define the structural quantity customarily obtained from experimental 

data. This is the pair correlation function <^(v,> Si\, j jlav) 
and is defined by

where ^'^(x ,.0-) is the one body distribution function at r andJL.
(OFor isotropic homogeneous systems () is independent of positions 

and angles and equals the total number density Q divided by ^d-fL . 

Thus the pair correlation function for a homogeneous, isotropic 

system is

Si ewc?„.3.„?x,jUW
where SL is the angular volume . For spherically symmetric

potentials, g is only a function of the distance of separation 

between molecules, | | . Such radial dependence has

given g the more physical name of the radial distribution function. 

Equation (9) will be used to define JLa') even

though some authors have defined the radial distribution function as 

the unweighted angle-averaged \)SL\,'Cx) SL^) (Barker and

Henderson, 1976). Also _TL ^ 0^ C r,, > 'Ta, Si^) is the

conditional probability density that given a molecule is at 'T\JSL\ 

another molecule is found at . Thus, the averaged structure

of the liquid is measured by the angle-dependent radial distribution

function.
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In addition, the mechanical thermodynamic properties of a

system are given in terms of the radial distribution function if the 
total potential of any configuration is a sum of terms arising from 
pairs of interacting molecules. The statement of pairwise additivity 
of the potential is written as

= XL U <Si,SLi,rhSLi) > (1°
I 4i<j£N

, -* -* -» N.where 'U.f'r ^ ,SLi ,rj, Jlp is the intermolecular interaction between 

two molecules located at f; ,Jl? and V"; ,J"L. However, u is a
^ C J J

complicated function of these spatial and orientational coordinates. 
Nevertheless, for a wide class of pair interactions (e.g. 
electrostatic multipole interactions), u is dependent only on the 
relative coordinates. These are the direction and magnitude of the

unit vector along the ij intermolecular axis. This dependence 

of u, and so U, on relative coordinates directly implies the 
distribution functions also have the same dependence. This will 
be discussed further in the following Chapter.

pair potential and the associated virial give the internal energy 
and virial pressure, respectively. Thus, the internal energy E 
and virial pressure p are

i is the

Expressions for the ensemble averages of the intermolecular

V ut^JUnJuV12)
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In the above equation (11) , E ^ine-tvo i-s t^ie kinetic energy of an 

ideal gas at the same N and T and possessing the same number of 

degrees of freedom. These formulae are quite general for non- 

spherical potentials. For linear molecules the normalization 

factor Si — ATT and ft^ — ( 0^, , . For nonlinear molecules

Si = S>TT^ and the complete set of Euler angles Vi)

locate the direction of the molecule, and the angular volume inte

gration augmented by j . The V operator is defined with

respect to the intermolecular axis r . For spherically 

symmetric potentials, the angular dependence disappears in the 

normalization.

It follows that the radial distribution function is of 

great interest in understanding the molecular liquid structure and 

calculating thermodynamic bulk properties. However, it is as 

difficult to calculate directly from its definition as the con

figurational integral in the original format. This can be seen from 

the fact that g is only two molecular averages different from 

Z(N,V,T). The advantages of this reformulation for calculating 

thermodynamic properties from Q ( A,?!-^rather than Q(N,V,T)

are not utilized unless g itself is known. The radial distribution 

function can be determined from the intermolecular potential as seen 

in equations (7) and (9). However, can alternatively be

obtained as the solution to a hierachy of integral equations which 

can be derived from its definition. This approach, developed by 

Kirkwood, Born and Green and others has resulted in different 

hierachies of integral equations appropriately named (Hill, 1956).

The basic difficulty encountered in these approaches is the decoupling
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of the zeroth order equation for the radial distribution function 

from the higher order integral equations, which requires 

approximations. Another method is given in the Ornstein-Zernike 

integral equation, which, by itself, is the definition of another 

correlation function called the direct correlation function. Just 

as the integral equations in the hierachy require certain closure 

approximations the Ornstein-Zernike equation also requires an 

approximate closure rule. This closure rule is an equation of a 

further functional dependence between the direct correlation 

function and the radial distribution function. The advantage of 

the Ornstein-Zernike equation is that reasonable approximations 

are easier to obtain than in the other techniques. The solutions 

of the Ornstein-Zernike equation subject to the closure rule will 

be summarized in the next Section for various intermolecular 

potentials. Also the applicability of the various closure rules 

will be discussed.

3. Modern Integral Equation Approach

3.1 The Ornstein-Zernike Equation

action with each other and their neighbouring molecules. The 

resulting correlative behaviour for a pair of molecules is given in 

the definition of the pair distribution function, where all 

possible configurations of N-2 molecules are averaged for a fixed

In a liquid, any two molecules are in constant inter

configuration of molecules 1 and 2. In this regard,

is then a measure of the total correlation between any two molecules
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As molecules approach each other too closely, they are repelled;

so that as t\x~~* ° » (JSix') -- *■ 0 . On the other end of
the scale, at large distances of separation, molecules behave 
independently and so —* \ as f1x —*■ CO . Sub
tracting this asymptotic behaviour from A-j, fi, Ar)

defines the total correlation function W (f^, jl>i, :

li = (jCfi,Jli,ri,Jli') - 1 . (13)
Physically, from the asymptotic properties of Cj(Vi,ill,Pi,JlO , 
h(Ti, Ai) approaches -1 as If* -* O and oscillates to zero
as V1Q-*> oo .

The oscillatory behaviour which arises from spatial 
correlations between molecules is shown schematically in Figure 1 
for a spherically symmetric potential. These correlations between 
molecules are considered to arise in the Ornstein-Zernike equation 
from two effects. One effect is that correlations are directly 
propagated between the two molecules. The second class of 
correlations is the result of a third molecule transmitting 
correlative effects between the two molecules being considered.
The respective direct and indirect correlations are the first and 
second terms in the Ornstein-Zernike equation,

h (.f 1,-0-i» Fz^flr) == CCfij ^ 9 ^33-^-3)
SI

* cCr^.rj, htxj.ii,, r1( aO . 0-4)
Equation (14) defines the direct correlation function

C(fi, J11, r2, Six) . Note that is the number density

at r , il .
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3.2 Closure Rules for the Ornstein-Zernike Equation

The Ornstein-Zernike equation is supplemented by a closure 

rule which is then used along with equations (13) and (14) to solve 

for the distribution function ^ (ri,Jli, 'C1, Ha) . In particular,

the closure rule takes the form of expressing Jli, in

terms of the intermolecular potential 'LL (xi, and often an

explicit dependence on h -A-i)

As a preliminary to discussing the possible closure rules, 

it is worthwhile discussing the zero-density limit, for which the 

exact behaviour of c and g is known. The direct correlation 

function is dependent only on temperature and the intermolecular 

potential as the density approaches zero. This is given in the 

zero-density solution of the Ornstein-Zernike equation. In the 

limit -*■ 0 , equation (14) gives

cCfl5Al Jlo = , (15)

= -fCri, Ai,ra, aO

since the limiting behaviour of g is
n ft it , Hi) Ci, 41 x) = 6 r

Equation (15) gives the low density behaviour of the exact direct 

correlation function in terms of the Mayer f function. In this 

limit, the direct correlation function is of the same range as 

the potential. This low density behaviour is also found in the 

Percus-Yevick and Hypernetted Chain closure rules described below. 

However, the closure rules differ from each other in the 

approximations used to incorporate the density dependence of the 

direct correlation function. In particular, the Percus-Yevick
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and Hypernetted Chain approximations are given by the following 

closure rules:

These approximations can be derived by using functional analysis 

techniques (Percus, 1964) or by examining the different cluster 

integrals in the density expansions of the distribution functions 

(Stell, 1964). Equations (16) and (17) reduce to the Mayer function 

in the low density limit, as given in equation (15). It turns out 

that the resulting self-consistent integral equation for c or g is 

rarely solvable in closed form. However, the simplicity of the 

hard sphere potential allows such a treatment, at least in the 

Percus-Yevick approximation (Thiele, 1963; Wertheim, 1963; Baxter, 

1968). All other nontrivial realistic potentials in the Percus- 

Yevick and Hypernetted Chain approximations have thus far required 

numerical solutions on high speed computers (Watts, 1973).

Andersen (1975) has recently presented an excellent review 

on the relative merits of the closure relations in the determination 

of liquid structure. As a general rule, short-ranged forces in 

fluids are best described in the Percus-Yevick theory whilst long- 

ranged attractive forces are more accurately described in the 

Hypernetted Chain theory. Earlier analyses of cluster integrals 

of the two theories support this idea. As mentioned previously 

most of the literature cited is numerical in its presentation as

and
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tables, graphs etc. Usually analytic treatments are precluded by 

the presence of the radial distribution function in equations (16) 

and (17). Even the exact and simple zero-density closure rule is 

nonlinear in the pair potential, probably prohibiting any analytic 

treatment.

However, further linearization of the low density 

behaviour of C(fi, Hi, P*,fix) does permit analytic solutions for a 

special set of pair potentials. The resulting linear closure 

relation may be used at any density and is known as the Mean 

Spherical Approximation. It is defined for fluids whose molecules 

can be described as interacting via a hard sphere repulsive core,

> adjoining a long-range tail, ITCf-i, jli, Ya,/U') •

Explicitly,

ulvri,j\i,ra,.K.x)= + v (fi,Jli,7i,jvO , <18)
where

oo if rn.i R

° if r,*>R. (19)
R being the hard sphere diameter associated with the molecular

species. A statement of the closure rule in the Mean Spherical 

Approximation is then a composite of

= 0 where ri* < R (20a)
and

fi, Jli) — r^R. (20b)where
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It should be noted that equation (20a) is exact and reflects the 

impenetrability of the hard core. All approximations of the Mean 

Spherical Approximation are in equation (20b). As —►co ,

equation (20b) gives the proper asymptotic behaviour of the direct 

correlation function.

Regardless of the inherent difficulties of justification 

of the Mean Spherical Approximation in the low temperature-high 

density regime, it is possible in a number of cases to solve the 

Ornstein-Zernike equation under its closure rule, and this accounts 

for its popularity. In summary, the Percus-Yevick and Hypernetted 

Chain closure rules to the Ornstein-Zernike equations are exact in 

the zero-density limit but approximate elsewhere and only the Percus- 

Yevick hard sphere solutions have been obtained analytically. The 

Mean Spherical Approximation is not even exact at zero density, but 

a wide variety of analytical solutions are obtainable.

4. The Mean Spherical Approximation

The original motivation of the Mean Spherical Approximation 

was in lattice statistics. Phase transitions in spin lattice 

problems are associated with singularities in the partition function. 

However, it has been shown over the years that although the partition 

function could not be evaluated for a set of Ising spins, it was 

possible to calculate the partition function of a thermodynamically 

equivalent model. Here, the dichotomic spin variables of the Ising 

model were treated as continuous variables subject to certain 

constraints. These constraints included the spherical model (Berlin
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and Kac, 1952) and the still weaker constraint of the mean spherical 

model (Lewis and Wannier, 1952). These simpler reformulations 

showed an easy path to the calculation of the partition function 

in the thermodynamic limit. The Ising model was then immediately 

equivalent to a lattice gas of structureless points, subject to 

these approximate treatments. Within the mean spherical model it 

is possible to include hard core repulsive forces at each lattice 

site (Lebowitz and Percus, 1966). As the lattice spacing approaches 

zero, the system approaches a fluid whose particles interact via a 

hard core repulsive term plus a long-range tail. The mean spherical 

constraint is equivalent to a constraint on the direct correlation 

function of the continuum fluid, equation (20b). The Mean Spherical 

Approximation is then obtained since equation (20a) is guaranteed 

from the hard core repulsive forces.

In the early 1970's, a number of publications gave

analytic solutions of the Ornstein-Zernike equation for long-range

forces in the Mean Spherical Approximation. Most were concerned
-nwith potentials of the form f , e.g. Y\-\ (the charge-charge 

potential) or F\ = 2) (the dipole-dipole potential). It is more 

appropriate to review the Mean Spherical Approximation solutions 

as functions of the potential rather than chronologically. Like 

the mean spherical model of lattice systems, the Mean Spherical 

Approximation is indeed an approximation for a physically 

meaningful model system. From equations (18) and (19), the general 

class of systems that can be studied by the Mean Spherical 

Approximation are those fluids whose particle potentials are well 

represented as hard spheres plus a superimposed attractive tail.
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It happens that for electrostatic multipolar interactions these 

solutions can be obtained analytically (Wertheim, 1971; Blum and 

Torruella 1972; Blum 1972, 1973).

For example, Wertheim (1971) presented a beautiful 

application of mathematical methods in his solution of the Mean 

Spherical Approximation for a single component dipolar fluid.

The techniques developed by Wertheim can be generalized to 

arbitrarily shaped molecules (Blum 1972, 1973; Maclnnes and 

Farquhar 1975). In particular the invariant expansion of correlation 

functions can be formulated according to the symmetry conditions 

imposed by the bulk fluid as a whole and the symmetries of the 

individual molecules (Blum and Torruella, 1972). Blum (1972, 1973) 

has written a series of papers utilizing these invariant expansions 

dealing with the transformed Ornstein-Zernike equation and its 

solution for general multipolar interactions given in the Mean 

Spherical Approximation.

5. Dipolar Mixtures in the Mean Spherical Approximation

These single component results can be extended to multi- 

component systems with the restriction that all components have the 

same diameter (Adelman and Deutch, 1973). Thus it is possible to 

reduce a simple dipolar mixture (differing only in dipole moments) 

to an effective single component dipolar fluid, as far as its 

structure and thermodynamic properties are concerned (Sutherland et 

al ,1974). This was a fortuitous result arising from the 

indistinguishability of direct correlation functions appropriate 

for mixtures of hard spheres of the same size but distinguished by, 

say, different colours. Explicit reference to this reduction will
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be given in the next Chapter.

The next step in the logical progression of these theories 

is to solve the Ornstein-Zernike equation in the Mean Spherical 

Approximation for general dipolar mixtures of arbitrary diameters 

and dipole moments. The purpose of this thesis is to obtain their 

solutions analytically and numerically, and to assess the respective 

roles played by the attractive and repulsive interactions for 

liquid-liquid phase transitions in dipolar mixtures.

6. Brief Review of Some Previous Work on the Mean Spherical
Approximation

For completeness, a review of the long-ranged forces that 

have been treated by the Mean Spherical Approximation will now be 

given. Waisman and Lebowitz (1970, 1972a, b) first applied the 

Mean Spherical Approximation to mixtures of charged hard spheres 

(primitive model for the electrolytes) for the special case of 

equal charges and equal sizes. Blum (1975) has extended their 

results for asymmetric electrolytes of different radii. A similar 

model for plasmas of charged hard spheres in an electron gas 

neutralizing background was presented by Palmer and Weeks (1973).

An exponential damping factor can be incorporated into the 

Coulomb type potential which gives rise to the Yukawa potential.

This class of interaction was solved in Mean Spherical Approximation 

by Waisman (1973a). His result was particularly interesting for here 

the direct correlation function could be thought of as fitting the
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exact behaviour outside a hard sphere as given by computer 

experiments. The model then provided sufficient information to 

calculate analytically reasonable values of the radial 

distribution function for hard spheres. The success of the approach 

of using the Mean Spherical Approximation to give c outside the 

hard core has motivated the Generalized Mean Spherical Approximation 

(H^ye et al., 1974). Here a two parameter function of Yukawa form 

is added onto the Mean Spherical Approximation for c outside R.

These parameters, K and Z, are adjusted to give consistent 

thermodynamic calculations for the pressure as given from its 

various thermodynamic paths. Explicitly, the Generalized Mean 

Spherical Approximation is

h (r^ = -1 for rji^R
and

corn) =. -PvlT,0 + for % > R •
hx

Its application to the primitive model of electrolytes is a 

significant improvement over the Mean Spherical Approximation 

(Stell and Sun, 1975). The radial distribution functions near 

p > R agree with the Monte Carlo results under this improved 

approximation for c(r) in the r > R region.

The corresponding numerical application to dipolar hard 

sphere fluids has not been done. However, similar improvement in 

the radial distribution function just outside the hard core region 

should be expected. This is a result of the Yukawa form being used 

for the "outside-R" behaviour of the radial coefficients, rather than 

these functions being zero as in the Mean Spherical Approximation.
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It should be mentioned here that all these functional 

approximations, including the interpretation as representing the 

intermolecular potential, have a common property. Each 

contribution, denoted by F(r), to the "outside-R" dependence of 

c(r) satisfies the Helmholtz equation, V F (f, O^FCr, Jl) .
The solution of this equation by Fourier analysis has allowed 

H0ye and Stell (1976) to systematically approximate the actual 

poles of c(k) in Fourier space. This involves a self-consistent 

determination of the parameters appearing in F(k), the Fourier 

transform of F(r). Indeed, the Mean Spherical Approximation can 

be systematically extended using Stell’s pole approximation 

technique. The first member in such a hierachy is the Generalized 

Mean Spherical Approximation. However, no numerical studies have 

been published for a dipolar fluid.

Up to this point, all the potentials discussed have been 

angular independent. The simplest case of a nonspherical 

interaction is given in the charge-dipole term arising from a 

multipolar expansion of the electrostatic potential. This case 

has received much attention by several groups since it would offer 

a molecular model of solvent effects on electrolytic structure. 

Adelman and Deutch (1974) and Blum (1974a, b) have independently 

solved this model for the equal radii case. Blum (1972, 1973) 

has, in fact, given the formalism for the general multipole-multipole 

interaction within the Mean Spherical Approximation. Numerical 

solutions in the Mean Spherical Approximation have been given for 

oscillatory interactions found in liquid metals (Blum and Narten,
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1972) and the short-ranged square well potential (Tago and 

Swamy, 1973). A hybrid closure rule has been used by Narten,

Blum and Fowler (1974) to calculate the structure of a Lennard- 

Jones fluid at high densities. Excellent results are obtained for 

the structure. However these must be viewed cautiously since the 

radial distribution function is also taken as a function of choice 

of diameter size.

7. Some Deficiencies of the Mean Spherical Approximation

The pleasing features of using the Mean Spherical 

Approximation for long-range interactions are its analyticity and 

minimization of computer calculations to get thermodynamic and 

structural properties. However, there are several disturbing 

features which must be acknowledged. The most important is the 

low density behaviour of correlation functions given by the Mean 

Spherical Approximation. The total correlation V\ —> -/U. / KT 
as (>-»0 and so it does not agree with the correct limit given 

in equation (15), viz, the Mayer f-function. It has also been pointed 

out by Andersen (1975) that this low density behaviour could lead 

to physically undesirable negative values for the radial 

distribution function if 1x1^>H-»>'Pi,v5TxVKT is greater than unity. 

The second virial coefficient in the Mean Spherical Approximation 

is also found to be deficient when compared to Keesom’s (1912) 

expressions. On the basis of a similar approximation Andersen 

(1975) suggested that for low temperatures the Mean Spherical 

Approximation would underestimate the effect of attractive inter

actions. In spite of these deficiencies, there is at the moment no 

other non-perturbative approach to calculate the structure and bulk 

properties of mixtures dominated by a long-range potential such as
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that of the dipole-dipole interaction.

8. Exact Statement of the Mean Spherical Approximation
for Mixtures

The following Ornstein-Zernike equation is the 

generalization of equation (15) to mixtures,

Si

* CY|jCtsfJt», . (21)
This again is the defining relation for direct correlation function 

C„{p (r^j-^-A) fi,i^-i) be tween a molecule of species o( and |3 located 

at and , respectively. The closure relations can be

written down in terms of the distance of the closest approach for 

hard spheres, i.e., = ( Ro<+ RfO / 2. . This assumption of

additive diameters is necessary for the solution of closely related 

hard sphere-like equations to be presented in the next Chapter. In 

the Mean Spherical Approximation,

if m < R, (22a)

/kT if r >R*|a.(22b)
The central problem is the solution of equations (21) and (22)

as a function of density and 

temperature. Using the distribution function

for the quantities and

jiO= + 1 , (23)

it is possible to obtain the thermodynamic properties of the 

fluid mixture from the averages over -fta, Cz, Sli) • In

particular, the internal energy and pressure are written as
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E E- Kinetic

»uo[(5(.r1,Jt1,rl,.no (^(^jh.T^Jn). <24>

p - kTIft - *
* V Vi^pft,aidin') <k*(*,&,»UU<25>

Here N = ^ } being the number of molecules of species <* ,
<*

fU = H*/V the corresponding number density. For dipolar systems 

finite volume corrections to the indirect correlation function give 

a non-vanishing contribution to the calculation of the dielectric 

constant (Wertheim, 1971). However the thermodynamic limit ensures 

that these finite volume corrections give no contribution to the 

thermodynamical properties of a dipolar system. For details see 

Appendix 1.

The solution of the Ornstein-Zernike in the Mean Spherical 

Approximation equation for this system of dipolar hard spheres will 

be given in the next Chapter and then an application will be presented 

for the use of the appropriate thermodynamic functions in liquid-

liquid immiscibility.
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Chapter 2

Correlation Functions for Polar Fluids 

Method of Solution

1. Introduction

In this Chapter the Ornstein-Zernike integral equation 

will be solved for a fluid mixture characterized by long-ranged 

non-central forces. It will be shown that the Mean Spherical 

Approximation gives closed form expressions for the pair 

distribution function and the direct correlation function. Both 

functions contain a spherically symmetric part arising from the 

short-ranged repulsive forces and a sum of angular terms from the 

anisotropic attractive forces.

The method of solution is based on operational techniques 

of Wertheim (1971) which decouple the Ornstein-Zernike equation in 

"r-spaceM. The equations to be solved are equations (21) and (22) 

of Chapter 1 subject to the constraints of equations (16) and (17) 

of the present Chapter. An attempt is made to reconcile the 

invariant expansion technique of Blum (1972, 1973) and the finite 

expansion method of Wertheim (1971). The details are to be found 

in Section 3. The actual process of solution of the final equations 

(see Sections 3.4, 5 and 6) involves combining the operational 

techniques of Wertheim (1971) and the factorization methods devised 

by Baxter (1970) to cope with direct correlation functions of finite 

range. Some interesting motivational aspects of Wertheim's 

operational methods are described in the Appendices.
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From the solutions, it is found that, as in the single 

component solution, certain parameters measuring long-ranged 
correlations between molecules of different species must be 
determined self-consistently. Such parameters not only give 

information on liquid structure but also are essential to the 

calculation of thermodynamic functions. Several limiting cases will 
be examined (Section 6): the low density result and the special
case of equal-sized molecules.

2. Pairwise Invariant Functions
2.1 Introduction

It is well known that the Ornstein-Zernike equation can 
be solved for the hard sphere potential in the Percus-Yevick 

approximation. Wertheim (1963) and Thiele (1963) independently 
derived the polynomial form for the direct correlation function 
using Laplace transforms. Their solution also gave the Laplace 
transform of the indirect correlation function in closed form.
Later, corresponding solutions were presented by Lebowitz (1964) 
for mixtures of hard spheres of different radii within the same 

approximation. From the convexity of the Gibbs free energy of 
mixing, Lebowitz and Rowlinson (1964) have shown these mixtures 
show no immiscibility for all diameter ratios considered. Although 
this is conditional on the use of the Percus-Yevick approximation, it 

is strongly reinforced by the molecular dynamics data of Alder (1964). 
These findings show that differences in repulsive forces alone are 

not the prime cause of phase transitions in these systems.
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A natural extension of hard sphere mixtures is the addition 

of a long-range weak tail to the hard core repulsion. Such 

potentials can be treated by the Mean Spherical Approximation as 

presented in the last Chapter. In particular, for the dipole- 

dipole interaction, it will be shown that a solution of the 

Ornstein-Zernike equation in the Mean Spherical Approximation can 

be obtained analytically.

2.2 Choice of Coordinate System

Consider a fluid composed of a mixture of hard spheres of 

diameter and containing a nonpolarizable point dipole m^ at the

sphere's centre. The configuration of these dipolar hard spheres is 

easily explained as a special case of that of nonlinear rigid 

molecules. Consider any Cartesian coordinate system i fixed in 

molecule i and rotating with it. The configuration of molecule i, 

with respect to a standard coordinate system S, is given by locating 

the origin and orientation of the Cartesian coordinate system i, 

relative to the Cartesian coordinate system S. The displacement 

vector r^ and the set of Euler angles for the rotation of the 

coordinate system S onto i, ±<— s, are symbolized by (Jepsen and

Friedman, 1963). Thus, the configuration of any nonlinear molecule 

is detailed in the six component vector

X . = (r. , i<— S) .
t* L

For nonlinear molecules, the rotation —S has three 

components: the (, P>. , X ) rotation angles. Only two anglesLit L

o*. , £>. are needed for molecules containing a symmetry axis. Such
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linear molecules are independent of the '?T angle when the Cartesian 

coordinate system i is fixed in the centre of the molecule and then 

rotated so that its z axis is parallel to the axis of symmetry. 

Furthermore, and are the azimuthal and polar angles, (ft^

and 0- , respectively. These angles are the orientations of av

dipole in dipolar hard spheres if the same argument is applied to 

the dipole moment vector. Here, the direction along the dipole 

moment vector TYUjCTL'^) is the unit vector , where for

dipolar symmetry, referenced to the standard Cartesian coordinate 

system S,is defined by
_ft, = S

= (6;,^
and is then given by

Sl(TLl) = (sin ql cos<f>L t sine;, sin^ } cos ej .

In summary, the configuration of a dipolar hard sphere i 

is given by

= Crt , h,)
thwhere r. gives the spatial coordinates of the centre of the i 

L

sphere and ^ (pj^) gives the orientational coordinates of

the dipole's direction. Using these coordinates, the potential is 

a sum of the short-ranged hard core part plus a dipole-dipole 

angular part, and can be written in terms of the dipole interaction 

tensor,

Cl)
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VXJ*) = co for Ir] 4

rVA^-TtAV mpCHp") for \?\ >r,„ . (2)-----WF " ?
Here U is the unit dyadic (unit tensor in 3 x 3 space), and

A

<*,,.=A-A , and ?i%= rn /| r^l . Also U*p= (R^ + R^/z .
Using fY\ . (H-j) —IfTul we have

V*g, (Xi,Xi)= oo £or lr\ <R, (3)

_^0(1^6 D(.A|, Ai,A) for \rl>Ro(&\U3
The angular part of the potential is then

A AT)(.A)Az)A) = Sa(AA • T(Q- A(iii) •

2.3 The Role of Rotational Invariants in the Expansion of 
a Pairwise Invariant Function

The intermolecular potential is unchanged if a pair of 

molecules is translated or rotated keeping the relative coordinates 

fixed. There are many other functions in isotropic fluids,e.g., 

the pair distribution function (^ (., Alt, , Jl^) 5 which are also

invariant to translations and rotations of a pair of molecules, one 

and two. Such functions are called pairwise invariant functions 

(Jepsen and Friedman, 1963). Any expansion of these pairwise 

invariant functions in terms of a complete set of angular basis 

functions is considerably simplified using the invariance properties 

Such a simplification in the original expansion of a pairwise 

invariant function f will now be given explicitly (Jepsen and 

Friedman, 1963).
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Classical mechanics gives the equivalence of the trans

lational and rotational operations carried out on rigid bodies and 

those on the standard coordinate system S, itself (Goldstein, 1964). 

Thus the invariance properties of f can be given in terms of f being 

unchanged under arbitrary translations and rotations of the standard 

Cartesian coordinate system S. Referenced to the standard Cartesian 

coordinate system S, f is a function of \ \ (from trans

lational invariance of the origin of the S frame), and, in general, 

the rotations given in locating each Cartesian coordinate system for 

molecule 1, molecule 2 and the r axis. These are symbolized as 

1*— S, 2 +— S, and r *•— S. Here j S is a set of the Euler angles 

o(,|3),X defined in that rotation of the S Cartesian coordinate 

system onto the j Cartesian coordinate system. The basis set for 

such angle-dependent functions is the set of Wigner generalized 

spherical harmonic functions D^( j <■—S) (Edmonds, 1974) for each 

rotation j —S. The indices m, n, 1 refer to the component angles 

o( and (2> making up the rotation j*—S. Now f is expanded in terms 

of these —S) which are a complete orthogonal set for a given

rotation j*—S. Then,

f - Z i (\r\) T>1' (V-S)I) llCl-S)Dl(t-S).on ^L Ul
n» A* n

This already utilizes the property of invariance of f under trans

lation of the S coordinate system. Only the relative displacement 

vector r occurs rather than r^ and r^ separately. Furthermore, 

f is independent of the T angle in r <— S, and so m = 0 appears 

in the last term. Consider an arbitrary rotation of the S Cartesian 

system into a new system T, i.e., TM—S. From the rotational

invariance of f and the use of
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D,YYW (j-s) = Z\sut DA Ct-$1

for j = 1, 2, r(<L , it follows

* =Z 4
ti ill 
m\ mi 
n» Oif\ 
9i SiS

li lx l
mlmin\nxn

* Doi CVT^ T^, (T-S)

* Dsitr-S) ^4 (T-S) •

The T*— S dependence can be simplified from a product of three D 

functions to one D(T-<—S) , and so

M 'll*'
mnih _ n _
SlSlS

UiLMl* iiHbLvouM*o ^ms„

x D. (t*-s') .-Cs-vSi+siVOrurmvuD

Here g is a product of four Wigner 3 - j coefficients

qMiLM l = ^_^3+nj+s4+n4
^SiSi.v\\inisn

/ 1, L \ jU \L
u Sx Si/ ^3 /

x L Jl K
-Sj s SA

' L i M \ 
\-n3 m n4j
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Since f is independent of the T*—S rotation, it can be shown

Si
after straightforward algebra that

f = Z

where

4

t, Ui
mimi

Sa

f (M c-v l,
-5, Sr SrSx

V*L' Cl—“ODlx (a-T)D* (r>rT)rni bi ~ “ * 'W1S2.

(4)

y- ft l\ tl l f -j A/_ J>H I i\ h l \
i*iinh.ntnan 11 [ n\ ru n J

For many years it was thought expedient to use the 

standard reference frame as that whose z axis was parallel to the

intermolecular axis r

r and using

*

Then, choosing the T coordinate system as

mn
it follows that f is a function of six coordinates only, as given in

f = z

These are | T J , (* ( \+-“ d » P> ^

and ^ C.ob* \^L>) . The difference in the o(( —fjgJ) angles

occurs as a result of the corresponding n index for both rotations 

being the same. However, the final reduction in the number of

h
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independent variables from twelve to six is a great disadvantage.

In particular, if functions simplified by this reduction are used in 

the Ornstein-Zernike equation, they will give rise to convolution 

terms which are less tractable than if the functions had been left 
in the original expansion using the "r dependence as given in the 

S frame of reference. The complexity introduced into the Ornstein- 
Zernike equation by using the aforementioned reduction is made 
manifest in the work done by Steele (1963). Therefore to eschew 
these complexities, the pair distribution functions in this thesis 
will be expanded in the set of angular functions Dm^(j<— S), 
referenced to the same Cartesian coordinate system S. The 
conditions imposed by the translational and rotational symmetry of 
the fluid simplify the expansion as already shown above in equation (4).

Blum and Torruella (1972) have emphasized the rotational 
invariance of such an expansion as given in the foregoing by defining 
the basis set of "rotational invariants", d/'T)
as:

<t> li Ll It)
S» Sx

S,/ h U i )
{ ~S» Sx $rSxj

ii.
MlSi
d:.« (m)

Then the invariant expansion of the function f is finally given in

? = z
u l

rr\{ rn

p f .\ __ __ -♦ -r-A
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The molecular symmetry of the molecules making up the fluid 

imposes additional constraints on the above expansion. In the case of 

linear molecules (including dipolar hard spheres as a special case)

^f\\ — Mi = 0 and so the expansion is done effectively in 

spherical harmonics for the three directions 1*—'T , SL*—T, f ■*—T .

Several changes in notation will now be introduced: the subscripts

m, and irrH (both zero for this thesis) are superfluous and so 

omitted; the angular dependence will be given by Sl\ > > -fir

rather than by Jepsen and Friedman’s notation 1 "T > oL'*~rT Y'j.j*—-*T

These bookkeeping changes then give the invariant expansion of f 

in Blum and Torruella’s (1972) form as

$ = 21 rnidT0 ^a)

where

sit,hr)

= X (" z i-v)

and
x D *• (SLr)O -/X-'V

(5b)

-L.

V^lsl) = (4-n/m+p')1 Y^m(0,()>) .
OYT\

For example, the dipole-dipole intermolecular potential 

with a hard sphere cut-off can be reformulated as

VC?,,A„M0
= V000 (\f 0 <j>000(^i, a*, six’)

+ VuaCub 4>ui(Yb,ih,-ar) . (6a)
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where

V000(lrD = oo

0
if 171 <: R

(6b)

and
if lr\

\IV(iff) = iiLMkJTe .
l?l3

It is straightforward to show from equation (5b) that

(6c)

4>
000 = I

and
(V'1 = V(.SU)SuX) /i/60 .

Indeed, any electrostatic interaction between multipoles can be 

expressed in the form of equation (5a) above. Explicitly (Blum, 

1972),

VOhlb.Ti.Jla)
= XL -

M

±mn It-?r t* \
—--- q* n\t C) -fl-i I -Rf) ’JL+\

where rLT is related to the product of the magnitudes of the

interacting multipoles. Obviously if the order of multipoles 

present in each molecule is finite (e.g. m = n = 2 for the quadrupole), 

then the expansion is finite.

In the next Section, it will be seen that such an 

expansion for any pair distribution function has a finite number 

of terms in the Mean Spherical Approximation if "polarization 

effects" are neglected. The invariance used above also ensures 

that the basis sets in r and k spaces are identical (Blum and 

Torruella, 1972). These properties will then be used to solve the 

Ornstein-Zernike equation for dipolar fluid mixtures in the Mean 

Spherical Approximation. The invariant expansions are quite general
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techniques and independent of the Mean Spherical Approximation.

3. Invariant Expansion of the Correlation Functions

3.1 Introduction

Originally, Jepsen and Friedman (1963) had employed 

invariant expansions to calculate cluster expansions for dipolar 

forces. Later, Steele (1963) gave a general treatment of the 

statistical mechanical properties in terms of these expansions for 

the relevant correlation functions. However, the relative co

ordinates in the f[x frame of reference were utilized in such 

treatments. The fully invariant expansion over rotations in an 

arbitrary coordinate system was given by Wertheim (1971) for a 

dipolar hard sphere fluid. An analytic solution was given for the 

Ornstein-Zernike equation. This technique has since been generalized 

by Blum (1972, 1973) to arbitrarily shaped molecules interacting via 

various electrostatic multipole potentials. The appealing feature 

of Blum’s expansion is the reduction of the multi-dimensional 

integrals in the Ornstein-Zernike equation to a set of coupled 

algebraic equations in k space. Within the Mean Spherical 

Approximation, the two approaches are equivalent and the exact 

correspondence will be detailed later.

3.2 Reformulation of the Ornstein-Zernike Equation using 
Invariant Expansions for the Correlation Functions

It is instructive to consider the invariant expansion 

of the pair distribution function for a single component fluid, 

and generalize these results later for mixtures. The invariance 

of the pair distribution function Q JT>|, (to rotations
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and translations of the standard Cartesian coordinate system S) 

implies that if it can be expanded, then the expansion is 

invariant so that equation (5a) becomes

Q it f)

mn£ 0
Here the summation indexes m and n are nonnegative integers 

0 4 VY\ y H 4 CO and 1 is restricted to the range 

lm-n\ 4^4 by equation (5b). Then g ( ^} Jti, tfi, Sl-x)
is exactly detailed by the infinite set of radial coefficients 

gmnl(\*r\). However the orthogonality of the 's implies that 

the mechanical thermodynamic properties (internal energy and 

pressure) are determined by only a finite number of radial 

coefficients. The type and number of these coefficients are 

determined by the corresponding terms in the finite expansion of 

the intermolecular pair potential. For a fluid of nonpolarizable 

dipolar hard spheres the invariant expansion is given by the one 

component analogue of equation (6), namely

= U000arO Cjrtft.jUJtr) + U,|T(lrD<j>"2(AX,3M,
where u000 and u"3" are given by equations (6b) and (6c) leaving 

out the d , ^ subscripts. From equations (11) and (12) of Chapter 1, 

the internal energy and pressure of a fluid of dipolar hard spheres 

are given by

E - + C V™
+ £* 5<)F f'Hri

and
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3u°00,ooo(rt
3 r o

r a "Hr)3 r ®

From these equations, it is seen that the thermodynamical properties 

can be written as an ideal gas term arising from kinetic motion of 

the molecules only, a hard sphere contribution and a dipolar 

contribution. All are evaluated at the same density and temperature. 

These equations would describe the pressure and internal energy 

exactly if the g°°° and g ^ were determined accurately.

A careful study of the Ornstein-Zernike equation gives the
000 \\nexact equations which must then be solved to obtain g and g

Blum and Torruella (1972) have carried out such an investigation 

using a complete expansion for the indirect and direct correlation 

functions J*-l jfi, JlO and C (. Jlx) » respectively.

The Fourier transforms, h^^Ck) and c^^^Ck), of the radial 

coefficients are given in the Ornstein-Zernike equation in k-space

by (Blum, 1972)

^"KvO-c^OO
= pi bmn,^CK)cn,r'^Ck)

'lx lx i

(8)
where

Lx It L
m n nil ooo

and ) denote the 6-j symbol (Edmonds, 1974), and the coefficients

h^vhC. (k) an(j c^^^Ck) are the Hankel transforms of the radial 

coefficients hmn^(r) and cmo^(r), given by

= 4xt11 r dr rl hmt(r)
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C^CvO = 4-nl1 J <k r1 c^r)

It follows from this equation that the h000 term is 

coupled to an infinite set of the type hoyi'^' where O4^\^C0 .

This can be seen from setting m = n = 1 = 0 and observing the 3-j 

and 6-j symbols are nonzero only for 1^ = 1^ = n^ . Then explicitly

HoOI>(k) - C°°°(k)
= 0 1*2-00^ hon,r"CK) Cn,on,CK) •

Y\\~ 0 ‘

i iqCorresponding operations show that the h term is
\ t\\ \nr»\ , h i t\\coupled to an infinite set of the types h 

and h ' where 0 4 4 0° • This is shown explicitly in

h"*(V0-Cul00
-of. H hm"t'(K') c""'il(K) ao)

' Yh=0 Z\ U
where 4 i\, lx 4^4-1 , and + ia is even.

Although the above results for the coupling of the various 

h (k) either h 000 (k) or h (k) are based on the form of

the Ornstein-Zernike equation in k-space, the conclusions are the 

same in r-space. This follows from the fact that the coupling of 

the coefficients h^^Ck) to h^^Xk) is given by the integral

J d-fi-3 SL\<). In r-space,

the coupling is preserved since the Ts are invariant to

Fourier transform (Blum 1972; Wertheim, 1971). However, the details 

of the coupling scheme in r-space are far more complicated, and this 

will be discussed later.
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Returning to the Ornstein-Zernike equation in k-space, 

a closure to the hierachy of equations (9) and (10) is provided 

by neglecting certain Fourier coefficients h1^^ (k). Such a closure 

scheme is equivalent to omitting the angular function q> 

from the expansion of the distribution function. The Mean Spherical 

Approximation ensures the presence of (£>°°0 and in the

expansions for the direct and indirect correlation functions.

In order to classify the types of terms hmn^ (k) that are 

to be omitted, it is necessary to look at the convolutions of an 

arbitrary with (f>000 and . Integrating the

respective products over _fL gives

= $n0 4>°nt(A|,Ai, Ak) (lla)
and

SciAi c^'HAi^Ak) (^(Ai^Ak)
= 6

1

a
0

l
0

n
3l

Aj.Ak).
(lib)

Projecting onto <|)OCO in the first of these equations, 

the only nonzero contribution arises for m = n = 1 = 0. This 

means that the following equation can be written down

lr\000(Kj- C000(VO= 9^®00CVOc000CVO. (12)
I 111The projection of the second equation onto Cp gives 

the coupling between h (k) and h* *^ (k). The corresponding 

coupling between h ' ' '(k) and h ' ' ^(k) vanishes through the

corresponding 3-j symbol becoming zero. These operations give the
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following equation for the V>uX CK'') coefficient

W,w(vO- c''HvO
_ _ _ e. 5 j_vim(vOciii(^uuowc"l(^

3T3’ l ^
+ h',aCVO c"°(VOl • (13a)

From this equation it appears that ^'lo is an angular 

function which couples with under convolution to give a nonzero

contribution to the dependence. The convolution properties of

cj> 'l£> are then important in order to determine the equation for 

V\uo C VO . It is easily shown that

= -^L Sir, SL^J3

and the corresponding equation for the Fourier coefficients is

vnvo - c"°(vo
h"°CvO C"0(VO i. h"l(K')C"1(K')\ cub)

3.3 The Choice of Rotational Invariants for the Mean Spherical 
Approximation

It appears from the above analysis leading to equations 

(12), (13a) and (13b) that the basis set C^000 , (|) 1,0 and

can be used to project a closed set of equations from the infinite 

set of equations (8). The closure is a natural consequence of the 

three basis functions forming a closed set under convolution over 

Sii in k-space. Wertheim (1971) suggested that such a set of 

functions might then be used in an Ansatz to determine the thermo

dynamic and dielectric properties of a fluid of dipolar hard spheres, 

using the solution for as given via the coupled equation for
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h and h ll° only. In such an approach, the correlation functions

are given by the first few terms of the infinite expansion, 

equation (7), as

= 4>000tjiwjKJb-)
+ <^uo t%) CJI,, Jli.Jir')
+ (fix) "a LSl\,AxJJix') > (14a)

and

= C000(^ r^Asii.SLr')
+ c •'0 Cr,0 4>110 CJt,, JTyO
+ c"Hru) 4>*'a CJIi, Jti,JTr') • (14b)

As mentioned previously, the Mean Spherical Approximation

gives the following boundary conditions in terms of the h

'(r) as

f00 Or) = o x < R

'(r) and

(15a)
and

Cm (r') = pm1 r'3 if f > ft . asb)
From these equations it can be seen that (|>00^ and <j) ^ must be 

included in the expansion of the correlation functions. This is 

obvious from the thermodynamic equations involving h00^ and h''^* .
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However the projection of the total angular dependence of 

the exact g and c onto the subspace spanned by (j)000 , d|> '
l Hiand is an approximation. In order to make some comment on

Wertheim’s Ansatz, equations (14), in the Mean Spherical Approximation 

it is necessary to examine the physical interpretation given to the 

angular dependences not included in such a projection onto the 

subspace ( cj)000 ^ dj)110 } (£> ) . This is most conveniently

achieved by comparison of equations describing the exact hO0° (k) 

and h (k) and the Mean Spherical Approximation equations, i.e., 

comparison of equations (9) and (12), and (10) and (13a). The latter 

gives the neglect of two types of terms. This classification is 

based on the order of the m n 1 superscripts in comparison to the 

112 set of superscripts. Coefficients lower in order (yet higher 

in order than the lowest order ooo) than 112 which were neglected 
in the Mean Spherical Approximation equations (Wertheim, 1971) were
o i i and h 1 °1 in equation (12), and h ,WM and h i > t in equation

on n(13a). Coefficients higher in order than 112 included h and 

h for n )/ 2 in equation (12) and h , h h

for n > 2 in equation (13a). The low order class of terms (excluding 

h'" ) is the set of coefficients associated with the angular 

dependence of a dipole-hard core correlation. Similarly, the higher 

order coefficients represent correlations between dipole-higher 

order multipole interactions in the fluid. Such correlations are 

assumed to be negligible in Wertheim's solution of the Mean Spherical 

Approximation for a dipolar fluid. Indeed, Blum has confirmed 

(Blum, 1974) that within the linear approximation of the Mean Spherical 

Approximation a dipolar interaction cannot induce a quadrupole 

correlation (configuration). Thus these heuristic arguments suggest 

that Wertheim's choice of the three basis functions (J) °°° ,
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i no i | (CJ> and (p in the Ansatz involves the assumption that polar

ization phenomena involving dipole-hard sphere and dipole-induced 

multipole interactions are negligible.

The Monte-Carlo studies of 864 dipolar hard spheres 

(Verlet and Weis, 1974) has confirmed Wertheim’s Ansatz for the 

Monte-Carlo generated radial distribution function. Although the 

projection of the Monte-Carlo radial distribution function onto the 

subspace not spanned by ( (£>000 , 4>110 , Cf>nr ) is quite small, the

actual radial coefficients h ll° and h U z are considerably 

different from those given by the Mean Spherical Approximation.

From Figures 2 and 3 of the paper of Verlet and Weis, it can be 

seen that the results of the Mean Spherical Approximation considerably 

underestimate those of the Monte-Carlo runs. This underestimation 

of correlations given by attractive forces was predicted by 

Andersen (1975) for the Mean Spherical Approximation.

In summary, the use of the complete set of rotational 

invariants <£mr,^in expanding the direct and indirect correlation 

functions is impractical. However the Mean Spherical Approximation 

can be interpreted as truncating such a complete set of (£> ’ s
it I 2.to the highest order of Cp . Such a collection of rotational

functions implicitly assumes the negligibility of polarization 

effects (e.g., quadrupole symmetry being induced throughout the fluid 

purely from dipole forces). The rest of the truncated basis set is 

chosen so that dipole-hard core symmetries are also neglected.

Within these two assumptions, Wertheim's equations for the correlation 

coefficients h 000 and h 11 z can be derived from the exact equations
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of Blum (1972) for h°°° and h *IX . The problem of hard core 

polarization by a dipole should be looked at in the future by 

including more basis functions of the type C^10'

At present, Wertheim’s Ansatz for the truncated invariant 

expansion of h and c in the pure component fluid, equation (14), 

will be extended to the expansion of the corresponding correlation 

functions for multicomponent systems.

Thus we will solve the Ornstein-Zernike equation (equation 

(21) of Chapter 1) subject to the closure rules (equation (22) of 

Chapter 1) using these truncated expansions for the correlation 

functions. In the remainder of this thesis, the Mean Spherical 

Approximation refers to the solution so obtained. It must be 

stressed that this definition of the Mean Spherical Approximation 

was implicitly adopted by Wertheim (1971) in his classic paper on 

the subject.

3.4 The Decoupling of the Ornstein-Zernike Equation in the 
Mean Spherical Approximation

At this point in the presentation, a change in notation 

is required in order to directly apply Wertheim's approach of solving 

the Ornstein-Zernike equation in r-space rather than in k-space. In 

the notation employed by Wertheim (1971), the angular functions

4)0°°» 4>"° and (pUZ are called X CJT\jS12 } ^2~) ,
. -*■ —► A AA (/Li, JTa, and X) (31|y Sir, f,1'), respectively. The exact 

relationship is detailed in the following equations
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lift,AiaD- <t>
ooo = 1 ,

MU, 4>"° =s,(1,-)• Sa(Jia')
and

afiscF'1 =s1(iii')-/3 — U]#j>zUli)
\ l^l

The direct and indirect correlation functions c and

h are then expanded in terms of I, & and D and undetermineddp
radial coefficients. It should be noted these angular functions 

are species independent, allowing the reduction of the Ornstein- 

Zernike equation to a set of simpler equations for the unknown 

radial dependence. Before giving any explicit forms, it is again 

appropriate to point out the symmetry conditions involved.

1. For a homogeneous fluid the correlation functions are trans- 

lationally invariant. Then the 7 , ~r1 dependence is compounded

as r1z = r2 - r1 . For example

This is usually expressed by saying the h are independent of
*P

choice of origin.

2. Isotropy asserts that the functions be rotationally invariant. 

In other words h ^ (r^ » ) should transform as a scalar

quantity for arbitrary rotations of the reference frame.
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3. The Mean Spherical Approximation gives the highest order angular
A

dependence in c^^(r^ , as D(Jt,, Slz , r^ ), whilst the

hard core nature of h (r^ , Jt, , J\.l ) is represented by 

I(_TLl , SLX , r^ ), unity. Higher order symmetries as would be 

provided for by polarization of the hard core by dipole fields, are 

neglected. From the Ornstein-Zernike equation, it is evident that 

the correlation functions are of the same order with respect to 

angular dependence. Since h and c . have equivalent representation
r r

(occurring to the same degree) in the Ornstein-Zernike equation, 

the highest order angular dependence known for c . is also that for* p

Lrfp > namely D(Jt4, Slz , )

The explicit forms are then given as

Cr(1) AC

+ cjpct• <i7)
A

where r = - "r^| . The tensorial nature of D( JLt, Jlz , )

does not allow straight-forward substitution of these expansions 

into the Ornstein-Zernike equation. If this is done the generalized 

convolution j* involves unnecessary tensorial

properties in the spatial convolution operation. This is removed by 

defining operators closely associated with the angular functions, 

and then carrying out the convolution (for details, see Appendix 2). 

Following Wertheim's technique, the differential operators
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?io) , ^0p CJlb-fU,f^nd ID? <V) are

defined in

A

Q'r&'fLifo = 5,(^0 • (3 $ v - u V1) * Sitin') 

A6pCftt)jiilrVi>= sltni) • sitin') V1 as)

The motivation of using these differential operators can be found 

in the solution of the Ornstein-Zernike equation in k-space. The 

details are given extensively in Appendix 2.

In this operational formalism, equations (16) and (17)

become

k^(fn,Jvh) = Hasp(ria) + AopCniJi^OH^Offt)

+tbpUt»,3h1rtt')HJpCrl0 <19)

A *

tfltphizjAijiti) i0p(.-^-1 Aoptn.),jlz,

+ Dop(^Az,r10) C®pCr,0. (20)

Note that it immediately follows from equation (18) that

HipCto)= UfpCrft-) and C9pCO= C*pCr,a).
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The relationship between the two sets of anisotropic 

radial coefficients is given in differential or integral equations.
A.

In the simpler case of the A0p (ii-A*f ; consider the following 

equation for 4k|j (. — or 1 and its relationship to

(= C%)

A(h.i,n2(r) = t\0?(SLU ft.*, r ^ (O 

= A(Jh, sia>hv^?(r)
Since the directions are arbitrary this reduces to

(21)

d r*
■ a dY,p
* r 'Jr (22)

where operates on functions which are

dependent on r rather than ~r . It will be seen that the natural 

variables in the decoupling of the Ornstein-Zernike equation are 

V , eliminating the need for the inverse relationship.

An alternative proof of equation (22) is given in terms of the Hankel 

transforms of and "^(*0 in Appendix 2.

For the D0ptJli, Six, VO the direct route is via the 

matrix representation of the differential tensor 3 V V “ V 

From the Cartesian coordinates f ==CXi>Xz) X3) it can be shown 

from simple chain rule differentiation that

Ir = 2* 2_Bx^ r 9r

2L = xj ah + (i^-xY)r1 Fr1 r3
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These derivatives are then used to simplify the matrix

3VV-UV =

21____& _ 21
9Xi 3X-

«-2>*5 8Xi9x

at
3x,3x*

X,
ax^ 9x?3

axjSx,.

3xi9x3

s v9x^3z.3

02i _ x.ai,9x\ 9x7 9x\

3x7 *f*2 1 3xiXi 3%\X3rx ra

3x7 ,
Y'2- 1 3>XlX2

r* rA

3X*Xi 3X3Xirx ra

dv1 7" dLrj

T ($0 d.1 . ii.oCvr r Wr * (23)

Performing the contraction with and then

gives

T>0f(J?i,Jti)?')= TlJlv) • T(r>$i(Jh.')(-^1- 1 X (24)
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function

Consider the operation of X0p (-0-1, 

<£(t) . The following equality is true

on some

D0pUu,ih>) i(0 =
= <Tj6r) _ 1 d-$lr) 

dr* f dr (25)

Also this equation can be integrated to give <$ (y^
— j

, assuming ^(r*)—> 0 faster than r

in terms of

as T—>00 :

CO

$(r)= ^ [ dx 4>W bd-r'Vx .
r

(26)

to obtain

In summary

*Vrt

H •
. cj (rt

C?pCr) can be differentiated

described in deriving

from 3KO . Similarly Cf) , 0^(0 are related to

, cip tr) in the same way as ''iPXxO to l^(x) .

The operational expressions, equations (19) and (20), for 

c^ and h^ are now substituted into the Ornstein-Zernike equation. 

In fact the differential forms of D(jl, , , "r) and \f)

allow the angular convolution over Jlj to be performed. Indeed, 

this approach removes any tensorial factors which would have other

wise appeared in the remaining spatial convolution over r ^ .

Wertheim has shown, furthermore, that these operators form a closed
—¥

set under the JI3 convolution. This property is also true in the 

multicomponent case presented here. The details are given in terms 

of the angular convolution AB which is defined as

AB = j'cJAj
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The convolution rules can be written down from the simpler
integrals

Jdil.3 S3 tsi%)= 0

l dAj Ssds) siilLi)
as

u

lop Top 4lT I0?

lop op ^op i-op

0

lop Dop Dop lop

0

^op ^op

/^op Dop “ Dop ^op

DopV"

Dop D0p — ^ (Dop + a t\0p^V" . (28)

The details are given in Appendix 3.
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Thus using the above rules in the Ornstein-Zernike 

equation (see Chapter 1, equation (21)), one obtains

I op ('fa') - X. 9* Hji'i ^

A H*(ra)-C*p(0
- r ^ *Cfp + * C*)

Cj^ (ria)

- Z. % V4( V& * * Cj + H> C* ))s 3

= 0 . (29)

Here the spatial convolution over r^ is symbolized in

W * C — ^ cir3 H Cq-j') C (r• (30)
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The angular properties of X f') , (Si) ,SLxf and
^D {.Sl\iSh.) O , in particular their orthogonality, are carried 

over in the respective operators (for details see Appendix 4).

Using the orthogonality relations with respect to il| and Jla , 

equation (29) can be reduced to a set of three Ornstein-Zernike-like 

equations. These are

L W^p(jv») - C^pCi'u')' 1 Pi * Cjpl 
= 0 ' (31)

- C£?0r^ -X &-VTaV^*C^
" 3 +HA*c

= 0 (32)

"D0pCj^,?i2,'rii')[C^[,T\i) - 1L -S v2(* C-jp

+H<w*C^|i +

~ 0 . (33)

Equation (31) is completely independent of equations (32) and
A

(33), and so will be investigated first. Since Top (.-ft-), 

is the identity operator, equation (31) can be rewritten

h/pbu) -c|p0r,o + Z ^
o
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In order to solve equations (32) , (33) and (34) the 

closure rules of the Mean Spherical Approximation must be given in 

terms of the radial coefficients CtO * C ^ Of') andC SpOrt
tO , CJp t’C) , and finally

From equation (22) in Chapter 1,

C-leh').

for r < Rdp

cSpOO = o for r > ,

= 0 for r < Ro^p

(rt = o
and ’ for r > R^p.

00 ” 0 for y < R»(p

C?pOO= waimp /(kTr3)for

In the above .

r > Rc

(35)

(36)

(37)

It is well-known that equation (35) is the Percus-Yevick closure 

rule for hard sphere mixtures (Lebowitz, 1964) and so equations 

(34) and (35) are the Ornstein-Zernike equation for hard sphere 

mixtures in the Percus-Yevick approximation. Fortunately Lebowitz 

(1964) and Baxter (1970) have independently given solutions of such 

a model. The direct correlation function c^ (r) is known exactly 

in both cases and Baxter has formulated a linear integral equation 

for h ^ (r) which can be solved easily by numerical iteration 

(Perram, 1975).
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However equations (32) and (33) are coupled through 

anisotropic angular terms. Following Wertheim, the equations are 

simplified by the use of new variables, suggested by the presence 

of V in the convolution terms. The transformation is suggested 

by certain operations in k space which are detailed in Appendix 2. 

Defining

V^CO =V*H4(d) (38)

(39)

and similar expressions for c ^ (r), c (r) equations (32) and 

(33) can be reformulated as

= c^CO + Z f Uh’t* c® + (40)

+ • (41)

(r) and c ^ (r) c (r)From equation (22) it follows h ^ (r)

Using equation (26) for H (r) (and cj^ (r)) in equation (39), it 

can be shown that

^4Or) - 3 dx hSpWA (42)

c. 4W = - 3 c®p00/x • (43)
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Equations (42) and (43) are used directly to obtain the closure 

rules on the "hatted" functions appropriate for the coupled 

Ornstein-Zernike-like equations (40) and (41). The closure rules 

for the & -coefficients remain unchanged (cf. equation (36)). Here,

= o for r< R*p

c£p(r) = o for r>Ro(p. (44)

Using h ^ (r) = 0 inside the hard core and h ®^ (r) + 0 else

where, the closure condition for h^p (r) is

c00 p3 J dx tapOO/x^ r< R«<p

= -3 K, (45)

cyo = o for r >Rotp.
\ DThe vanishing of c ^ (r) outside the hard core is evident from 

substitution of the r ”5 dependence (equation (37)) for |r\ > R 

into equation (43).

Thus, provided the anisotropic coupling terms in equations 

(40) and (41) can be removed, these equations can be solved in the 

same spirit as the Ornstein-Zernike equation has been solved for 

more conventional boundary conditions. Such a decoupling step is 

given from certain linear combinations of the "hatted" coefficients
A'p AT> A&(h (r), h (r) , c (r) » and c ^ (r)) . As a consequence of 

nonequal radii, these linear combinations for mixtures do not reduce 

equations (40) and (41) to the simple Ornstein-Zernike equation
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for hard spheres as found in the single component case. Nor is 

this reduction possible in the equal radii mixture problem given 

by Adelman and Deutch. It is found the most convenient linear 

combinations are

h SpOrt = (
Vfap Of) = (hSpCrt - V\ 60) h . (w

and

Cap (D = C C ap 6") + 1 Cjip (vi) 13

c;ph) = ccSp(o - c£piri>/3 . (47)

The i superscripts arise quite naturally in further Ornstein-
4*Zernike-like equations, this time for h (r) and c (r) . 

Explicitly the new closure relations are hard sphere-like,

(.r) — ~Kap for 1t|< Kap

Cj (.r’) = 0 for \ r \ > . <48>

since the are constants dependent on the independent variables

density, mole fraction and temperature and molecular parameters 

diameters and dipole moments. Equations (48) follow immediately 

from the definitions (46) and (47) and the previous closure 

relations for the hatted functions, equations (44) and (45).
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Using equations (46) and (47) in equations (40) and (41), 

the decoupling of the original Ornstein-Zernike equation is complete, 

and is given by equation (34) and the following pair (for details, 

see Appendix 5):

hia) = Cjp(r,a') + x. (49)

Vfap ((Yi) = c«p ['(a') + X -?Y^df3 W^t'Ca') c"8(3(yA).(5C»
Equations (34), (49) and (50) will be solved in the next Section 

using Baxter’s factorized Ornstein-Zernike equation. At this 

point it is important to summarize the determination of the actual 

radial coefficients (cf. equations (16) and (17)) from the solutions 

of equations (49) and (50). Particular emphasis will be given to 

the anisotropic direct correlation functions, but corresponding 

equations are obvious for h ^ (r) and h ^ (r).

From equation (47), hatted correlation functions can 

be written in terms of known functions (as in equations (49) and 

(50)) c ~ (r) as

CCO = a. (Crfp(r) -c~p[ri)

cfylr) = x (cjfslr) + ic;p(rt) • (si)

In order to benefit from knowledge of c^p (r), it is

necessary to invert equation (33) for c^ (r) in terms of

c vc otf (r). The first step here is to rewrite equation (25) in terms
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of the Laplacian operator

cyo = vlcyo - i . (52)
Since 'fxCy') = can be integrated to give an

expression for the first derivative of any function in terms of the 

Laplacian of that function, it follows

-L ^ d* c (X) + constant .

From equation (26) this derivative behaves as r K<*p for r —► 0 and 

so the constant of integration is zero for the definite integral 

0 <. x < r. Thus equation (52) becomes

r
c?p(t>= cyt) - 3r'3 (53)

A similar equation can be written down for h ^ (r). 

Although equation (53) holds for all r, it can be used in a self- 

consistent approach to calculate the fundamental, yet undetermined,

. Restricting \"r \ > , the closure relation on c ^ (r)

gives zero contribution to the first term and also places an upper 

limit r = R-a in the remaining term. So for \ r| > R^ the right

hand side of equation (53) becomes
R-Jrt

cjp(r)= -3f3 $ dx xlc5BM •
Yet the Mean Spherical Approximation ensures in this domain,

Irl y R , that c (r) = m m / (kT r3) (from equation (37)) on' fly* o( p
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the left hand side. Cancelling the common factor, the self-

consistency condition for the is

= - J dx x1 C^fx) . (54)
o

The right hand side is identified as the density derivative of 

the chemical potential of species o( with respect to species p 

if a factor of 47T Vpp were present (Lebowitz and Rowlinson, 

1964). Multiplying both sides by 4 TT VPp and substituting for 

c^ (r) from equation (51) gives

4ruvrn^^= -"VpTpp (dr CacL(r) + c^JrS) • 05)
3KT f f

For a two-component mixture this condition is really a set of three 

nonlinear algebraic equations for and K = K^j . Since

this thesis is concerned in the thermodynamic properties of binary 

mixtures of polar molecules, higher order component systems will 

not be considered. However it must be mentioned that up to this 

point all equations are valid for a general n-component system.

Thermodynamically, the numerical solution of equation (55) 

for the Kdp 's is dependent on evaluation of the right hand side, i.e., 

solving the Ornstein-Zernike equation for the "hard sphere-like” 

boundary conditions of equation (48). This will be done in the 

following sections using Baxter's method originally developed for 

mixtures of hard spheres. Both boundary conditions will be examined.

r%rne,
3KT
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4. The Equations for Hard Sphere Mixtures

The spherically symmetric term of the direct and indirect 

correlation functions for dipolar hard sphere mixtures requires 

the solution of the Ornstein-Zernike equation for mixtures of hard 

spheres. Also from the previous Section, the behaviour of the 

anisotropic terms are intimately connected with solution of a 

corresponding problem for certain pseudo-hard sphere mixtures.

Both cases can be solved using Baxter’s factorized form of the 

Ornstein-Zernike equation.

Before the advent of Baxter’s factorization method, 

analytic solutions had only been obtained for the hard sphere 

potential for single and multicomponent fluids in the Percus-Yevick 

approximation. Wertheim (1963) and Lebowitz (1964) essentially 

factorized the Laplace transform of the Ornstein-Zernike equation 

for the single and multicomponent case respectively. Both methods 

were specific for a description of the hard sphere potential within 

the Percus-Yevick closure relation. However, Baxter (1968, 1970) 

has recently factorized the Ornstein-Zernike equation itself for 

single and multicomponent fluids independently of the type of closure 

rules. In fact Baxter’s elegant factorization can be used most 

efficiently for other liquid models provided the direct correlations 

are of finite range. The utility of Baxter's transformation cannot 

be overstressed. The end result is two coupled integral equations 

which present analytic expressions for the inverse compressibility 

and the compressibility pressure of hard spheres. For nontrivial 

fluid models the linearity of these equations in the direct and 

indirect correlation functions ensure fast convergence when using

numerical methods.
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For any mixture, in which the o( -component has a range 

parameter and number density ^ , the Ornstein-Zernike equation

S 6,0 = CrfpftW) + 1 9y Sdr3 Cr31v <56>
If

Baxter’s transformation (a Wiener-Hopf factorization (Noble, 1958) 

to use more explicit terms) gives

tow(Rw>Rifp-f)

WY) + ati I pv \ dt fa it) fa (r+t) (57)
Rot*

and

rl.oip(\TD= + airl ^ Jit fa^ Cr-t)fai\r-t\Y^
S„t Y

^oip(kif)= 0

where q * (r) is the derivative of q (r) with respect to r.

Equations (57) and (58) are derived from equation (56) 

under the assumptions that (a) the fluid is disordered so that 

^dr r h(r) exists and is bounded, (b) the direct correlation 

function vanishes outside the associated range parameters R^p, i.e., 

c (r) = 0 for r > R ^ . The associated range parameters R^p

and are simply

= CR<+Rp)/a. (59)

(R* - RP)/a. (60)
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Equations (57) and (58) are to be solved when r is restricted to 

the domains < r < R ^ and r > , respectively. These

equations are further supplemented by any closure relation desired. 

Baxter's solution to the Percus-Yevick approximation of hard sphere 

mixtures will be summarized here since further use will be made of 

the method in the next Section.

A mixture of hard spheres of additive diameters ^R*} 

and number densities is treated in the Percus-Yevick

approximation (equivalently the Mean Spherical Approximation) by the 

closure relations

hdp Lx') — “1 for f < Rc*jJ

and

CdpCrt =0 for . (62)

Here the same notation is used for the range parameters and 

associated quantities, and the additive diameters . The

equivalence is given by the Percus-Yevick approximation for hard 

spheres. Solving equations (57), (58) using the definitions (59), 

(60) under the restrictions imposed by equations (61) and (62) 

gives the solution for the Percus-Yevick approximation for hard 

sphere mixtures.

To this end, restricting 

(58) and substituting of h^ (r) = 

values of r and t) gives

S^p < r < R ojp in equation 

-1 (being consistent with the

fcplO = + b* (63)
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The coefficients a ^ and are to be determined from

and

a* - ' - att Z p* £ dt pYct)
Soa

tv “ ATT Z 9V f dt t fait)-

(64)

(65)

Integration of equation (63) and use of q ^ (R^ ) = 0 gives

+ b>ei ix- Roip-) • (66)

Subsequent evaluation of the integrals involved in equations (64)

and (65) gives a set of linear equations in a and b. with knownoC (X
constant coefficients.

If it were desired to obtain c^p (r) explicitly, this 

could now be done easily from equation (57). However the thermo

dynamic properties of a mixture of hard spheres can be determined 

from certain integrals involving c^ (r) . For example, the p -species 

density derivative of the chemical potential of species o( and the 

p> -species density derivative of the pressure are given in terms of 

the integral, ^ dlf • Explicitly, (Lebowitz and Rowlinson,

1964),

—L 3^4. _ Sty
kT 9 p*

and

_LKT i-rd a? c,p(rt.



63

The integral § dlf Of) can be interpreted as the 

Fourier transform of (r) evaluated at k = 0. With such an

approach, it is possible to evaluate this limiting form of the 

Fourier transform in terms of the transform of q (r). In obtaining 

the thermodynamic quantities through ^Or} , the 

following treatment explicitly sets out the factorization of the 

Ornstein-Zernike equation in terms of the associated Fourier 

transforms of the h , , c and q functions.<*p n dp

The factorization can be written down in terms of the 

Fourier transform of q ^ (r), q (K), defined bydp

V

p
(67)

The factorization is explicitly given in

- #TPp 5 & fiuR,fC.pCr)

Putting K 0 gives

- 4tti/9T9p S0 civ ra Coip to

= 0<*P - CoCp to)

(68)

Elementary calculus results in

lap to) = <Skp + R P (CLot (3Rrf + Rp) + (o b|j), (69)
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and using equation (69) in (68)

( Rfj )

o - so
+ 3R^R6g3.CRl;+Rp + 3R*R^;l(R.l-»K>)+qRdRliL

0-5.V-
+ R3^R|1o + qR* Rp il (R.t+Rp) *- fc R3q, Rfe S>gx

C'-5sY G-SO*
+ (70)

Here

q g«R| il 
0-S3)4 J

^ ^ in keeping with Baxter's

notation. Equation (70) may be integrated with respect to the total 

density keeping composition fixed to obtain the chemical potentials of 

each species. The results are in agreement with those of Lebowitz 

and Rowlinson (1964) and are presented here for completeness. In 

terms of de Broglie wavelength of species o( , K /(STTVY)^ K*T\X

the chemical potential is

PfL* = Jbfiipi/A) - U(1-S3) + 0-*s)
+ dMlilaJLoifllil + 3 Rl g3 .

O-Ss)1 O-S3)3
(71)

The next Section shall utilize these techniques to obtain the 

solution of a closely associated problem.
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Solution of the Ornstein-Zernike Equation for Pseudo- 
Hard Spheres

As already mentioned in Section 3, it is desired to obtain

More specifically these pseudo-hard spheres are defined by the 

closure rules given in equation (48) (the £ superscripts will be 

omitted in this Section and both cases are treated identically 

henceforth). Equations (49) and (50) are now to be solved under 

the restrictions of equation (48). The same procedure to obtain

However, it should be noted the coefficients , bo<p are no

longer independent of j2> as in equations (63)-(65). This is 

explicitly seen in the following set of coupled linear equations:

the integral for a system of pseudo-hard spheres.

is repeated to give

(^(r) = (r'-RJp) + 4r„p(r-lV) .

and (72)

where (73)

It is easier to solve equations (72) and (73) for certain

linear combinations of Ql^ and bcip . Those that will prove 

useful later in the analysis are

(7*0
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Us = 3 A( 0-oi^ • (75)

Equations (74) and (75) are then transformed into

K. + t ( f f?V, - 5,,) A«V=1

= 0
and

^ ( ~£ 9/ Rp Rv - £»p) U
<*P

(76)

3R,+ «P + 3 Z J
o = l (77)

It is simple to solve equation (76) for , substitute

into equation (77) (to evaluate the nonhomogeneous coupling term) 

and solve for . This algebra is straight-forward and the

details are given in Appendix 6. The results are

Acts = Ra(t + gf- sD/D
and

12 = 3^4^ +
^ D D1

where

5k

A
D

+ 4R<(gP-g'a)
V

Z MRa + Re) _ 3AR<n (g*^~ fa1)
D1 x»a (79)

5, l e?f

^ pr pi r\ (1 - k^/cwhkii'))
1 - ll + A •
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2.It should be noted that if ^22 » then

and

with

3> Ro/4 3RotRp ?2

0 ~ s's) c?3ay

(80)

(81)

(82)

On comparison with corresponding quantities in the 

previous Section, it is obvious that an equivalent hard sphere 

mixture with augmented densities p \ Ku and pz ^22

is obtained when K K ^ ^ 22 • However, it can be shown

from the low density limit that this geometric mean condition is 

only valid for equal diameters, = R^ = R. Then, in equations

(80) - (82) , A ^ and B ^ become species-independent and are 

determined by P\Ku "V" p% Kia and R only. In this way, the 

equal diameter mixture case reduces simply to an effective single 

component fluid. Any attempts to construct such effective densities 

in the hard sphere mixture equations for the nonequal diameter case 

fail. These give obvious inconsistencies for the densities in the 

Ornstein-Zernike equations for mixtures. In fact, these "effective 

densities", become species dependent

and are ill-defined in the set of Ornstein-Zernike equations for 

mixtures. For example, the d = £> = 1 equation would have the 

densities p*K\i and p.^ / K\\ • These are inconsistent

with the set of densities p\ Ktx/Kxo. » Qx and piK|i >

Px K22 for the c* = (3> = 2 and = 1, (3=2 equations, res-
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pectively. Therefore, an equivalent multicomponent hard sphere 

fluid at these augmented densities is not defined.

The analogue of equation (69) is

+ q VP* Pp ^o<p Rp Bolp .
The desired integral C ^ (0; y\ > P‘2. )> showing explicit 

density dependence, is given in terms of the B ^ as

(83)

Q<p(o>Pi,pO — K<p [ Ry + Rp

+ |Ii9vfiR^uu;B,p}.(84)
Equation (84) is now employed in the self-consistency equation 

(55). Reintroducing the jt superscripts for the positive 

and negative densities, equation (55) becomes

4tt rrurnWglPe _ - Co^-9^-90 . (85>
3 V<T

The set of equations (c.f. (85)) is to be solved for 

the K ’s once the molecular system has been specified (i.e., 

in , o, given). For a two-component dipolar mixture these 

equations become

4ttw^ p' _ - (o;2pi,ipi') - C-n Co;-Db'pO’3KT
4TTm!Pi = - C^tOiapiApf) - C^Coj-pij-pi)
BKT

4t mimiVopx = 
3KT

t-11 (0j C\i.(0] - pi,_po) . (86)



A fourth equation for o( = 2, (3 = 1 is identical to the = 1,

(3 = 2 equation and is omitted.

6. Special Limiting Cases

From equation (79) it can be shown that for low density 

and fixed composition

+ ftp .

This limit allows the right hand side of equation (85) to be 

simplified, giving the low density behaviour of K ^ as

69

3 KT

The importance of the limiting behaviour of K ^ is 

twofold. Firstly, it provides a starting point in any iteration 

scheme to solve equation (86) numerically. Furthermore, it shows 

the deviation from the geometric law K ^ = K ^ K ^ for non

equal diameters. Thus, the Ansatz of Adelman-Deutch (1973) is 

valid only for equal diameters, and due to the structure of 

equations (84) and (85) does not have any justification for non

equal diameters. In fact, the Ansatz holds for R ^ = R ^ = R ^
A# ^ A#

because -C ~ and -C are species independent and so simplify

to the single-component result. For example, equation (84) becomes

~ V?o<KuRi pp Kpp Rp »
C4-ga)(A + ll)

(87)

X
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?e = ^ *

This allows the 1-1 and 2-2 equations to be added giving a 

single component-like result

4tU vtV^ Pi-)3> KT
= Qtlte') - Q(-fe') (88)

where the compressibility Q(£) is given in

Q(X) = 1 + SU-OU+S1)
o - s ^

= 0 tilT 
O - 5)4

The 1-2 equation in the equal radii case is merely redundant, 

as it satisfies the identity (11) x (22) = (12) . Such simpli

fication is again not possible in the more general case considered 

here. Even a reduction to the calculation of Percus-Yevick hard 

sphere mixture properties is prohibited through the inconsistent 

definitions of the associated densities.
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Chapter 3

The Calculation of Thermodynamic Properties 
of a Mixture of Dipolar Hard Spheres

1. Introduction

In this Chapter, the solution of the Mean Spherical 

Approximation for dipolar mixtures will be used to examine phase 

transitions at the molecular level. It is well-known (Prigogine 

and Defay, 1973; Rowlinson, 1971) that phase transitions in 

mixtures are described by the occurrence of instabilities (with 

respect to phase separation) in any single phase system. Further

more, such instabilities are mathematically determined by finding 

regions of (pressure, temperature, composition) space where the 

second derivative of the Gibbs free energy of the mixture with 

respect to composition is negative. Such a search procedure is 

usually done by finding the concave-downward behaviour in a 

composition plot of the Gibbs free energy of the mixture given a 

constant pressure and a constant temperature. The actual limits 

of the composition range over which the one phase system splits 

into two phases (i.e. mixing does not take place) are given in the 

common tangent construction. Using well-known thermodynamic 

arguments (Rowlinson, 1971) , it can be shown that the geometry of 

the common tangent construction yields the compositions of phases 

which are indeed at equilibrium as measured by equality of 

temperature, pressure and chemical potentials.

If the components of the mixture are miscible in all 

proportions at a given temperature and a given pressure, the 

behaviour described above disappears. Here the composition graph 

of the Gibbs free energy of the mixture is concave-upwards, i.e.,
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the second derivative of the Gibbs free energy of the mixture with 

respect to composition (with pressure and temperature held constant) 

is positive over all compositions. The change in behaviour from 

immiscibility to miscibility at constant pressure defines the critical 

solution temperature. In fact, the critical lines of p, T, x- 

phase diagrams are the collection of the pressure dependence of the 

critical solution temperatures and critical compositions of the 

various types of phase changes.

Thus, any molecular interpretation of such phase diagrams 

is based on knowledge of the Gibbs free energy as a function of 

pressure, temperature and composition. In our case these details are 

provided by the statistical thermodynamical properties calculated for 

dipolar mixtures in the Mean Spherical Approximation. In Section 2, 

the Gibbs free energy for a dipolar mixture is given as a function 

of the volume, temperature and composition according to standard 

statistical thermodynamic equations. The replacement of the volume 

by the pressure as the independent variable in the Gibbs free energy 

of the mixture is necessitated by the material stability criterion 

and is carried out in Section 3. The above steps in calculating the 

Gibbs free energy as a function of pressure, temperature and 

composition require extensive numerical calculations on a computer. 

Section 4 contains the relevant numerical details and techniques 

involved in the calculation. Finally, the analysis of the composition 

plot of the Gibbs free energy of the mixture is given in Section 5. 

Here, the common tangent construction details the compositions of 

those phases in equilibrium.
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2 . Statistical Mechanical Formulae

The Helmholtz free energy for a dipolar hard sphere mixture 

can be written as

k = k0 (N,,N*,V)r) + kA(NtjN2,V,Y> , (1)

where A0 is the Helmholtz free energy of a mixture of hard spheres 

and A A is the dipolar contribution to the Helmholtz free energy.

The variables V,T are the number of dipolar hard spheres

of species one and two, the volume and the absolute temperature, 

respectively. In this thesis, A0 will be given by the Mansoori- 

Carnahan-Starling-Leland (1971) free energy derived from their 

empirical equation of state for a mixture of hard spheres. AA 
is calculated according to the statistical thermodynamical properties 

obtained from the solution of the Mean Spherical Approximation of 

dipolar mixtures. Equation (1) implies that the pressure

p -y can be written as the sum of a hard

sphere term p0 plus a dipolar term Ap which is in excess of the

hard sphere contribution. Then

p = Pob^Nx,V,T> + . (2)

The Gibbs free energy can be similarly decomposed into a hard sphere 

reference term and a dipolar contribution. In fact this decomposition 

of Q- = A -V* p follows immediately from equations (1) and (2) as

G = &0(Ui)Ni,VfG> 4- LGOibNi.,V,T") . O)
where

Gp = A0CN\,Ni,vrn + p0(.Ni)N'»)V/Ts> V (4)

and

Lg = mKnj.v,t) + ApbMijVfr)v • (5)



74

In equations (1) and (3)—(5), it should be noted that the volume V 

is used as an independent variable rather than the pressure p. This 

is a consequence of the solution of the Mean Spherical Approximation 

and thermodynamic properties being given in terms of the canonical 

( V,T) ensemble. The pressure dependence of the thermo

dynamic properties is implicitly given through the equation of state 

for the mixture, equation (2) above. The thermodynamics of the hard 

sphere reference state and the corresponding excess quantities due 

to dipolar interactions will be detailed in the subsections below.

2.1 Properties of the Hard Sphere Reference State

The basis of the calculation for the contribution of the 

hard sphere mixture to any thermodynamic property described above 

is the equation of state for a mixture of hard spheres. Mansoori 

et al.,(1971) have proposed a semiempirical equation of state for 

hard sphere mixtures. This simple equation of state gives excellent 

results for the corresponding thermodynamic properties on comparison 

with machine simulation results. These features of simplicity and 

accuracy make the Mansoori-Carnahan-Starling-Leland equation of 

state an ideal choice as a reference state to describe properties 

of the hard sphere mixture. It should be remembered that the

Ni, Nij V and T are the same for the hard sphere and dipolar 

hard sphere mixtures. Then the dipolar contribution is definitely 

in excess of the properties of the hard sphere mixture of the same

number of different molecules and same volume.
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In the approach of Mansoori et al, the pressure is written 

as a weighted average of the Percus-Yevick compressibility pressure

and \ /3 . Such a scheme has some justification for the single 

component case of hard sphere fluids studied earlier by Carnaharn 

and Starling (1969) and the mixture results are a straightforward 

extension of the highly successful Carnahan-Starling equation of 

state to mixtures of hard spheres. Now, Baxter (1970) has solved 

the Percus-Yevick equation for mixtures of hard spheres in a form 

different from that used by Mansoori et al. In his notation, pc

ic and virial pressure pvr , the respective weights being 2./3

is written in terms of ~ it, R* as

(6)

The virial term is directly related to Baxter’s pc by the 

Rowlinson-Lebowitz (1964) result that

KT KT 18. hllTT (7)

Using equations (6) and (7) in

P°
3 KT + 3 KTL 1KT

it is easy to write down the formula of Mansoori et al.as

fc 5 So , + SIC3-S3') 
TT

_Eo
KT

. (8)
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Equation (8) is more aesthetically pleasing and easier to integrate 

than the original formula of Mansoori et al. The Helmholtz free 

energy corresponding to the pressure given in equation (8) is obtained 

from the volume integration of dL/\0 = - p0 dV at fixed temperature 

and numbers of molecules. For any arbitrary volume V0 ,

V
A0(Ni,Ni,VfO= Mh,,N,v0>T') ~ 1 p0(Ni,Ni,V,T) •

\lo
As V&—*■ 00 j A CNi, Vo, T') describes the free energy of

an ideal gas mixture which has a logarithmic divergence in Ve 

Such singular behaviour also occurs in the Helmholtz free energy 

of an ideal gas mixture under the same conditions, i.e.,

*,V,~0= ti/m- A^CN^n^VoJ)
Vo-00 V
- iWu S dV pi<L(Ni>Ni,V,T) •

Vo*00 Vo
Subtracting this ideal behaviour term from the hard sphere mixture 

expression gives an expression which is free of this singular 

behaviour,

ADCNi,Ni,V;T)= A^CNoN^V.T)
V

- ^vvioo j((<tV{.p0(M)JN7/V;T')-piiCNoN^Vj))
Replacing the volume variable by the total number density p where 

^ M ^ 9 » ^ , the Helmholtz free energy of a mixture

of hard spheres in excess of a mixture of ideal gases at the same 

V and *T is

fr0lNl;Mi,y,T) - 
NKT

bm 
Pcro

p5 dp p'1 (&_ 
?o IpKT

(9)
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Using equation (8) for po/ K T in the integrand above, it is 

straightforward to show

MNi.Ni.V.'O- (N*,Nv,V,T)
HKT

__ ( Si _ JJm(.1-13) + sg'gz 
Vlo!|- 1 goO-Sl'i

5 3
+---^--- . (10)

S3 Sot*"

The determination of the Gibbs free energy follows from 

the use of equations (8) and (10) for p0 and Ae in 

equation (4). In terms of the Gibbs free energy of a mixture of 

ideal gases, ^ ^; » tlie Gibbs free energy is

given as

(^CWt.HxXf) = C^,Ni,V/f> + ?oV - H KT

l L So -1

+ 3S>Cx + si ..
foC»-Ss) Ij5o0-i*y .

(11)

In equation (11) ,

G^CNi^N^V^T) = H H^KT | fab? + ^m.(No</V)1 (12)MlXT. g(s| L

where = V\ / ( SUT K T ) * is the thermal de Broglie wave

length for molecules of species o( with mass . A relationship

giving the corresponding quantity ?o>T^ of equation

(12) is

(13)
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where 20 is the compressibility factor, 20 — p0 V / K K T
The above equations give the excess Gibbs free energy of a mixture 

of hard spheres over the ideal gas mixture at the same pressure 

and temperature. That is

Mansoori et al have shown that equation (14) gives excess properties 

of hard sphere mixtures in excellent agreement with the molecular 

dynamics data of Alder. Here, p is the hard sphere mixture, po 

given by equation (4). Thus, the thermodynamic properties of a 

mixture of hard spheres are accurately determined from the equation 

of state of Mansoori et al. This approach will be used to calculate 

the hard sphere contribution to the thermodynamic properties of 

mixtures of dipolar hard spheres. In particular, equation (11) 

gives the hard sphere contribution to the Gibbs free energy of a 

dipolar hard sphere system considered at the same volume and 

temperature. The pressure dependence of this contribution can be 

determined in the same manner as those steps above leading to 

equation (14). Here, the pressure referred to is that of the mixture 

of dipolar hard spheres, not that of the hard sphere species as 

taken before. The following Section deals with those dipolar 

quantities which are in excess of the hard sphere contributions

G?(N,*T)“ &c [NijNi, p,T') -

= pV — NKT - NKT (m t

+ (14)

calculated above.
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Properties of the Dipolar Hard Sphere Mixture

In this Section, contributions to the pressure and Helmholtz

free energy which arise from dipolar interactions will be given. 

Such properties of a mixture of dipolar hard spheres are most 

conveniently calculated as an excess over the corresponding 

properties of a mixture of hard spheres with the same number of the 

various sized hard cores, which are considered at the same 

temperature and volume. Obviously, this choice of independent 

variables V and T is a direct consequence of the

conditions of the Mean Spherical Approximation having been stated 

in terms of those variables appropriate to the canonical ensemble. 

Such dependence should be written explicitly, e.g., K ^ ~

notation is lengthy and cumbersome, and so is supressed.

The method of calculation of the excess thermodynamic 

properties is based on the well-known charging process of statistical 

thermodynamics (Hill, 1956). For example, the excess Helmholtz 

free energy can be calculated as an integral over the internal energy 

which is associated with such a charging process. Actually, the 

associated charging parameter usually employed in such a scheme would 

give the relative amount of dipole moment as "\| where

04X41 • Here the X — O state corresponds to a system

of hard spheres, while the X — 1 state would give the dipolar 

hard sphere system, with dipole moments . However such a

charging process is equivalent to an integration over the inverse 

temperature . This will be used here numerically to find the

excess Helmholtz free energy of a mixture of dipolar hard spheres 

from the p integration of the dipolar contribution to the internal

However, such
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energy of the mixture. From equation (26) of Chapter 1, the dipolar 

contribution to the internal energy is

AE=-4JLVII pp nr\p K„p . <«)
Given &E in equation (15), the dipolar part of the Helmholtz 

free energy is then given by the integration of JBgL(.AA) = AEtjS^oLjS 

as

= p"1 J dp' AE(p')
o

p
= H 9*9(5 WdWp J K*ptp). (16)6 p ^ ^ o

Here the integral is evaluated at constant ^ . The more familiar

charging process is given by the change of variables \ ^,

dA = dLp>' / (3 . Then equation (16) becomes

AA = K^XV (i7)
Equations (16) and (17) give the equivalent formulations of the 

Helmholtz free energy in terms of a temperature integration and a 

charging process. It should be pointed out that it is possible to 

carry out the integration analytically for the pure fluid.

Rushbrooke et al. found a closed form expression for the Helmholtz 

free energy from the formal expression of Nienhuis and Deutch (the 

pure component version of equation (16)) after an integration by 

parts. However for the mixture case the integration in equation (16)

will be done numerically.



81

The dipolar contribution to the pressure is given by the 

difference in equations (15) and (16).

Ap — Ah. _ A Ar V V (18)

=-421 1. 9, 9pmolvn?(K,p- £T'. d9)
o o< (3 o

Equation (18) follows from the general property of the Mean Spherical 

Approximation that the thermodynamic functions are determined from 

the product of volume and temperature. For mixtures of dipolar 

hard spheres, this dependence is given by the V^ot in

equation (79) being determined by and

Equations (5) and (17) also give the identity between the dipolar 

contributions to the internal energy and the Gibbs free energy

AG = AE

= _43L V Z. K-p3 ^ P (20)

The following Section details the calculation of the 

pressure dependence of Gr0 ^ C^Gc , as is required in the 

composition plot of the Gibbs free energy of the mixture at constant 

temperature and pressure.
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3. G = G(p, T, x)

The stability criteria and coexistence construction for 

mixtures require the Gibbs free energy of the mixture as a function 

of pressure, temperature and composition. Unfortunately, the 

statistical mechanical calculation of the Gibbs free energy of the 

mixture depends on the independent variables volume, temperature 

and composition. This is explicitly shown in equations (3), (10), 

(11) and (20) above, where the arguments of the Gibbs free energy 

are N\, N*} V and T . The replacement of the volume by

the pressure as the independent variable in such expressions is 

therefore an important step and will be described in this Section.

Firstly, such a substitution cannot be done directly since 

the Mean Spherical Approximation is formulated in terms of the 

Ornstein-Zernike equation which in turn is dependent on the number 

densities (i.e. the volume) rather than the pressure variable.

In order to use the solution of the Mean Spherical Approximation 

to describe the dipolar contributions to the thermodynamic properties 

of dipolar hard sphere mixtures, it is then necessary to use the 

following indirect procedure. The arguments in the Gibbs free energy 

Nt) N* , V and T also determine the pressure p =. p (Ni^ Nx} V} T) 
according to equations (2), (8), and (18). Such an equation can be 

inverted (at least formally) to obtain the volume as a function of 

the pressure in V = V ( ,Nx, p, T) . With the variables

Nx, p and T given fixed values, the corresponding 

volume can now be determined from the equation of state and so the 

Gibbs free energy which is found for these values of N* , Nx , V 
and T is also the Gibbs free energy as a function of p
and T . This replacement of variables V and p in a scheme to
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calculate Gr(N\} p ,”0 implicitly from GrChhjNr, V,T) 
is further complicated by the form of the equation of state itself. 

From equations (2), (8) and (19), it is seen that the 

which determine the dipolar contribution to the pressure must be 

known as a function of the densities pi , 9^ and temperature

T . Unfortunately these properties of the K^p are not available 

in closed form. Therefore an iteration scheme was devised to solve 

the equations for the total number density (at constant composition). 

This then gives the volume from V = N/p as required by the equation 

of state to give the fixed value of the pressure. The rest of this 

Chapter is concerned with the actual details of the calculation for 

the (implicit) pressure dependence of the Gibbs free energy of a 

mixture of dipolar hard spheres. The results are given in terms of 

certain excess free energies to be defined in the following Section.

4. Numerical Methods

4.1 Preliminary Investigation

From equations (3), (11) and (20) of Section 2, it can be 

seen that the Gibbs free energy of a mixture of dipolar hard spheres 

is equal to a hard sphere term plus a dipolar term which is in 

excess of the hard sphere contribution. The hard sphere contribution 

to the Gibbs free energy is a straightforward substitution of the 

densities 9i and 9z into equations (8) and (11). In contrast 

to this simple calculation of the hard sphere contribution, the 

calculation of the dipolar term in equation (20) is not so straight

forward. The problem lies in the calculation of the 5 which

are employed in equation (20). For the binary mixture case, this 

specifically reduces to finding the solutions Ku > K and

( = K*i , by symmetry) of three coupled algebraic equations
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(cf. equation (55) of Chapter 2). Many unsuccessful methods of 

solving this set of equations were tried until the present technique 

used in this thesis was evolved. The present method of solution 

has proved very stable at all densities and for ratios of diameter 

of species two to diameter of species one up to three. The 

details will be given later in this Section, but it should be 

mentioned here that the problem of solving for the roots of a system 

of equations in more than one independent variable was more 

complicated than first thought by the author. Indeed, comfort is 

found in the words of Acton (1975): "A search for a lost dog on

a foggy country lane is much easier than a search for the same dog 

in a foggy field, and if the lost pet is a squirrel in the forest, 

his three-dimensional capability complicates the task by still 

another order of magnitude. As for finding ghosts, reputed to have 

at least four-dimensional existences, we defer to our British 

colleagues, pleading inexperience.".

It is interesting to consider first the solution of the 

corresponding equations for a pure component fluid of dipolar hard 

spheres of species one. Such an example serves a twofold purpose: 

firstly, an efficient one-dimensional search routine can be envisaged 

which would solve a single algebraic equation for K, or some more 

convenient variable (to be introduced soon). Secondly, there are 

closed-form expressions for the dipolar contributions to the internal 

energy, Helmholtz free energy, Gibbs free energy and the pressure 

for the case of a single component fluid (Adelman and Deutch, 1973). 

Thus a numerical study of the single component self-consistency 

equation for K might offer a generalization of the associated one

dimensional algorithm for use in the binary mixture problem. For
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binary mixtures, an efficient algorithm is required to search the 
three-dimensional space of ( Kn , } in order to

find a solution of the self-consistency equations. Furthermore, 
the calculation of the dipolar contributions to the above thermo
dynamic functions would be helpful if any numerical integrations 
or differentiations were to be developed for the evaluation of the 
corresponding quantities in the mixture case. The accuracy of the 
procedures employed in the latter calculation could then be 
determined from a direct comparison of the numbers obtained for 
mole fraction zero (or unity).

The algebraic equation to be solved in the case of a 
pure fluid is

Air = QUKp*) - Q(-Kp*) . (21)

where

9*

and

Q U) = (l + aif/fi- §)4 •
QCf) is recognised as the inverse compressibility of a fluid of 

hard spheres at density f . Equation (21) was originally 
determined by Wertheim (1971) but can also be derived from equations 

(55) of Chapter 2 in the limit * O , and dropping the

subscripts on the variables yd» } > Kn after the limit has
been taken. Numerical results for the gas-liquid phase equilibria 
in the pure fluid have been reported by Rushbrooke et al.(1973) and 
Sutherland et al.(1974). The results of these investigations 

essentially show that the thermodynamic properties of a dipolar
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fluid in the Mean Spherical Approximation are intermediate between 

those properties described by the Onsager model (Sutherland et al., 

1974) and by the thermodynamic perturbation theory (Rushbrooke et 

al., 1973) . The quantitative comparisons are made from an examination 

of the coexistence region for liquid-gas equilibrium predicted 

from each model. The details of the dipolar contribution to the 

various thermodynamic variables will be given shortly. However, 

such terms are dependent on K as a function of p> > YY\ and , 

and so equation (21) must be solved (numerically) for K as a function 

of the product ^irnL£> . Introducing the reduced inverse 

temperature (2>* — , the reduced density T\pR3/(o and
reformulates equation (21) as

8 = Q(2|) - QC-S) • (22)
A direct interpretation of equation (22) is: given ^ and p*

what is the root g of the above algebraic equation. Thus, a 

program was written which used Newton’s algorithm (Conte and de Boor, 

1972) to determine the root of equation (22). For the initial 

investigation, the calculation was done on a HP 9830 digital 

calculator using Basic Language. Solutions for £ were found 

efficiently and accurately within the convergence criteria that 

1 l0\ci I ^ ^ • Since the £ were found to be of the

order of lo~' , this tolerance ensured the solution was known to 

at least six places (after the decimal point) and the corresponding

function, 8£>*p* — CQC^'l') — , was often less than
-10\0 for the value of 5 new satisfying the convergence criterion, 

It should be mentioned that the initial starting point was taken 

from the low density limit of K — ^KyW(3 R3) and the density p*

= P* P* / 3 .
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or the previous % bootstrapped for a new density value along an 

isotherm. The initial convergence rate was slow for the first 

density point, as indicated by ten to twenty iterations when using

= » but improved significantly once the bootstrap

operated where two to five iterations were needed for convergence. 

The changes in density p along an isotherm were .025 or .05 units 

depending on the particular run.

In order to check these results and the efficiency, 

another program (again in Basic on the HP 9830) was written to solve 

the equation (22) using the binary chop search method (Acton, 1970). 

The same starting value for 5 sfari ” (3>*p*/3 was used for 

the first density point along an isotherm ( (3* = constant) and the 

interval of search, denoted by A?, , halved until A \ < 10

Comparable results were obtained for both methods as far as accuracy 

although the binary search took slightly more time than the Newton 

algorithm. Both programs were then augmented by subroutines to 

calculate the dipolar contributions to the pressure, Helmholtz and 

Gibbs free energies, the expressions for which were given by 

Adelman and Deutch (1973). The pressures at each density point 

along the isotherms = .2384, .2251, .21173 and .1984 were

calculated and agreed within errors associated with the 

digitization process with the digitized data taken from Figure 4 

in the published work of Sutherland et al. (1974). This computation 

was not primarily done to check the single component calculations 

but rather to find a successful procedure in the one-dimensional 

problem of root-solving for the single component case, which could 

then be generalized to an efficient search routine in the three- 

dimensional problem of root-solving for the two-component case.
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In addition to these procedures, a hybrid search program was tested, 

i.e., a biased search routine with a carefully chosen step size.

A binary chop method was used to roughly locate the root until the 

step size reached a sufficiently small value (arbitrarily

chosen as 10 ), at which point the program automatically invoked

the more efficient Newton algorithm to finish the search for the 

root more ranidly.

All the above search routines seeking the root of a function 

of a single variable were equivalent: each located the root

according to a common convergence criterion, and in roughly the same 

time interval.

Before reviewing the applicability of the generalizations 

of the various search routines to solving a set of dependent 

equations, it is appropriate at this point to introduce the reduced 

forms of the thermodynamic functions for pure dipolar fluids. The 

reduced parameters for the inverse temperature ^ , number density

9* , pressure T* , internal energy per unit volume E* , and

Helmholtz (Gibbs) free energy per unit volume (\* ( are

(3* = (Jro7' / R3

= TTpR 3/G

P* = tt RfeP/(4Smx) .
E* = TTRtE/(4^m'1V),

A* = TVRfcA, /(48mlV')>and



G* = TrKbG/(48m1V'> • (23)

In terms of these reduced variables the compressibility 

factor Z = PV/NkT and the Gibbs free energy in units of NkT can be 

written as

z = s^pvp*

G-/MKT = -B|J*GrVp* •
The closed-form expressions for the dipolar contribution to the 

pressure and the free energies (Rushbrooke et al., 1973) can be 

rewritten in the reduced units of equation (23) as:

A P* = - p*1 K
t (p* K)H (up*K? + (a-p*KT,

3* (\-2fK)1* 8(I + P*Kt

AE* = - p*1 K

AA* =-fP*k)X[ C\^P«K? t "
p* L Ci-ap*vOH 8Ci+p*K)4.

(24)

(25)

(26)

(27)

(28)
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The details of the derivation of these equations are given 

in Rushbrooke et al.(1973). However all are based on the availability 

of an analytic expression for AA / V , which is obtained via an 

integration by parts of the internal energy density ZAE / V with 

respect to . From equations (26) - (29), it is clearly

seen that these dipolar contributions to the thermodynamic functions 

are easily evaluated on a calculator once p* K is known for the 

particular p* , being studied. This combination of an

efficient search routine to solve equation (22) for p*K (given 

p* and p>* ) and the direct substitution of p* , and p* K

into closed expressions to determine the thermodynamic state was 

originally thought to lend itself to straightforward generalization 

to the binary mixture case.

However, a generalization of the one-dimensional search 

routines to find the simultaneous zeros of three algebraic coupled 

equations was not achieved. The major difficulties were associated 

with the extra freedom offered to the searching algorithm in three 

dimensions. Each such searching procedure was to solve equation 

(86) of Chapter 2 for the simultaneous zeros and

as a function of the parameters pt % ^>x y 1Y\\ ) ff\x} jj }

and .

Before giving the applications of the search routines, it 

is necessary to discuss the reduced parameters and the choice of 

independent parameters in the binary mixture case. The dipole 

moments and molecular diameters of each species are now used to 

define a reduced inverse temperature and a reduced density ,
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defined by

and

P« = -g* PoC R«i ,

(30)

(31)

where ^ ^ + 'pj, is the total number density of the binary

mixture. It is appropriate to rewrite equations (86) of Chapter 2 

explicitly in terms of these reduced parameters:

® pM Pi (Kll, Ku, Kul ,

§ (J* Pi a $rk CKii, Kix; K\xl
and

8V^*pt pi p* = 4*12 C Kw , Ku, Kul .

In the above equation, 

and molecular diameters, i.e. ,

is a function also of the densities

and is given by equations (84) and (85) of Chapter 2:

<|>p(.Kn,K»,Kh> - C„*(o;ap,,3pf> - Cos-p.,-pO• <34>

It will be shown later that is indeed only a function

of Ku , Kn , Ku and , along with the ratio of the molecular

diameters, W — Ra/P.( . In terms of equations (30) and (31), equation 

(32) can be summarized in

^ K $iP*Pp 4^ ( Ku, Ku, Ka , p*, p*, w) . (35)
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The problem is to solve equation (35) for Ku j Kxz and 

Kiz given (3f » P\ = % , iPOi/lTH , R% /R\ and the

mole fraction of species two, x, as independent variables. This choice 

of the independent variables is not unique. However it does provide 

sufficient information to solve the system of equations under 

consideration. Using <*>* , g , iY\i/n3i , and y , the

reduced parameters in equation (35) are given as

(3* = fJ? .

(3* = rn£ (3* /(m’lRi") ,

9* = t I ( 1 + xu3/d-x)) ,

and

Pa. = f “ . (36)

The specific details of the unsuccessful generalized 

search algorithms will not be given here, except to summarize some 

general findings. The most common feature was the failure to solve 

the equations (32) consistently for all values of density, 

composition and temperature considered. Here the molecular parameters 

and Rz/Ri are fixed, thus specifying the relative 

properties of the components with respect to species one and also 

the degree of complexity of the search. As a general rule, the 

various algorithms only solved the equations in the low density-high 

temperature regime at all compositions considered, for values of 

lTlz/mi and Rz/'Ri equal to unity. This deficiency in the
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selected algorithms was an immediate source of concern, since the 

primary application was the study of liquid-liquid immiscibility 

where the product of was not small. The relaxation of the 

convergence criteria from the smallness of the difference 

Q~\[ft* ftp Pg to a minimization of the sums of the 

squares of these differences did speed up the convergence in the 

low pp region but did not resolve the failure of the search 

routines to find solutions at the relevant liquid values of the

region. The failure to find solutions at moderate and high 

densities for a given temperature was then thought to be caused by 

the "bootstrapping" method of using the solution obtained at the 

previous density point along the isotherm. Unfortunately, any 

decrease in the density increment only postponed the divergence 

or sometimes even hastened it if the initial trial solution was not 

within .1% of the true solution.

Another common source of the failure of these three- 

dimensional search routines, which was also investigated, was found 

to be due to the search being trapped in regions of local minima in 

the ( V(\i^ Y^'1% , Kli') solution space. This effect produced

oscillations in the l<do. values for fixed values of Kh and 1^12, 

in both the fundamental search algorithms, which are the three- 

dimensional star search and the three-dimensional Newton-Raphson 

algorithms (Acton, 1970). In order to eliminate these local minima, 

the program was automated such that CKu^ Kxa , were re

initialized to bias the search away from such anomalies. For the 

star search and the Newton algorithm, the most successful means of 

reinitialization was increasing the step size of the search pattern



94

and mixing the solutions, respectively. Unfortunately, such 

automaticity in the search routines was time-consuming and only 

partially improved the success of the algorithms to find solutions 

in the liquid regime. It should be stated here that up to this

point in the computational side of the search routines, the HP 9830 

was the primary tool in use. Because of the enormous amount of time 

being spent during a run, it was necessary to change over to the 

departmental PDP 11/45 computer. The calculations on the 11/45 were 

of the order of 10 faster than on the HP 9830. However, the 

fundamental result (forecast in the exploratory calculations on the 

9830 calculator for the equal dipole moment and equal diameter case) 

was reaffirmed strongly and quickly on the computer. The 

generalization of any one-dimensional root searching routine to a 

three-dimensional procedure was not straightforward, and a more 

sophisticated automation of such a three-dimensional search algorithm 

was required to improve the rate of convergence after encounters with 

local minima or finding spurious roots introduced by the minimization 

of a sum of squared terms occurred in the search.

This lack of an efficient three-dimensional search 

algorithm prompted re-evaluation of the basic algorithms under 

consideration and further examination of Acton's philosophy on 

"curve-crawling strategies in several dimensions" (Acton, 1970).

The application of several of these curve-crawling strategies was 

again disappointing in the liquid (3p region, even though an effective 

single component system (equal diameter, equal dipole moment) was 

being examined. Further application of all searching routines to the 

slightly more general case of an equal diameter-nonequal dipole moment 

binary mixture was even less heartening (c.f., equations of Adelman and 

Deutch, 1973). The region of convergent solutions decreased dramatically
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indicating a lack of sophistication in the automation of the program, 

and an inefficiency of the particular algorithm for searching the 

three-dimensional solution space of Kax, Kvx') . However, the

equations of Adelman and Deutch (1973), which were used to check the 

solutions of the equations developed here, were easily solved through 

a one-dimensional search routine. The reduction of the equations to
A

a single algebraic equation in terms of one unknown, K , instead of 

the triad (Kh, Kxx, was possible for equal diameters

only. Such a reduction is not well-defined in the nonequal diameter 

case, as was shown in Chapter 2. Nevertheless, a successful search 

routine was eventually constructed and the motivation and details 

are now given explicitly.

4.2 Final Procedures 

4.2.1 Introduction

After much numerical experimentation, it was obvious that 

the three-dimensional star search was very time-consuming when it 

was successful, usually for low values of 4 ’135 with initial

trial solutions aptly chosen. (The initial trial K^p'S were 

necessarily within .1% of the solution for the three-dimensional star 

procedure to work.) A similar explanation can be given for the 

failure of the three-dimensional Newton root-searching routine. When 

the initial triad solution was too far removed from the unknown 

solution set of zeros, the Newton search would undergo oscillations 

for the solution through underestimating the position of the zeros 

and then overcompensating for that previous error. In summary, the 

solution of this particular set of nonlinear equations, in which the 

functions change so drastically for small perturbations in the 

Ktfp *S » requires a higher order algorithm as the basis of the
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search procedure than is provided by the zeroth order and first 

order derivatives of the three-dimensional star search and three- 

dimensional Newton procedures, respectively. Thus the use of a low 

order search algorithm should not be expected to be efficient and 

reliable. This leads to a reinterpretation of equations in terms 

of new dependent and independent variables (Freasier, 1976).

Conceptually, this new approach is seen most readily in the 

single component case. Equation (22) was originally interpreted as 

an equation which was to be solved for K p* as a function of 

necessitating an iterative routine. Alternatively, the same equation 

gives p# as a function of Kp* and (3* in the form of a simple 

algebraic equation:

g* = { G?(aKp*) - Q(-Kp*)} /&(J* (37)

where 0 4 Vx , and £>*>0 . Those values of Kp* giving

p* > 1 are not considered. This set of variables , p* and

Kp* then allows the thermodynamic state to be calculated from 

substitution into equations (23) - (29) . The extension of this 

reinterpretation of dependent and independent variables for the 

equations describing binary mixtures is complicated by the number 

and choice of independent variables.

4.2.2 Independent Variables

For binary mixtures, the input parameters could be formally 

chosen as ^ paKzxt^ » &= 1 — \<vl/CKu\<vl)

and |3>* = . In addition to such a set of variables,

the molecular description of the mixture provided the values of the
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ratios of dipole moments mi/fV\\ and diameters Rx. / R\ . For known

* * #
values of Kv\ , K'tx , A and £ the densities could be

determined from the equations (38):

Pi ^ pi Ri — $l\ (Kii , VC11 , a') 118 $*) .

pi = ^ pxRl = ^ (K* , Ki*i, A) ICS p*) . (38)

where is determined from , PH/nik and Ri / Rv

p-,- .

, ki ,aiThe functions

Cf).R in equation (32) as

are defined in terms of

§«? = <kp C Kll, Kxx, Kli). (39)

Thus the density j^= Pi 4- and composition X= p*/( p’ 4 p*)

can be determined from K\\ , Kir and A for a given
ft

reciprocal temperature (5 . In other words, is known for a

given density, composition and temperature if K\\ , V<n and A

are chosen so as to satisfy the three equations. It can be shown 

that inversion of the definitions of and A gives

Ku ~ K* / p? ,

\Kxx = K-n. / p*
and

Kia = V Ku Kxx (1-A)/(p: pC) ■ (40)

Before giving details of the choice of K*p and A 

at a given temperature, it is necessary to reconsider the application 

of the results. As shown earlier in Section 3, the theory of immis-
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cibility in mixtures calls for the calculation of the composition 
dependence of the Gibbs free energy at constant pressure and 
temperature. Therefore, the symmetry in the above strategy must 
be broken in order to allow the composition, x, to be used as an 

input variable rather than, say, Kai or A. . In other words, the 
are now constrained to be found as a function of the 

independent composition variable x, rather than the being
calculated for unspecified values of x, as per the original

*equation (38) for different choices of Kofp and & . Such a 
constraint manifests itself in the replacement of Koip and A 
by x and K* as independent variables in the procedure leading 
to equations (38).

4.2.3 Iteration Procedures
The following strategy is adopted. For fixed values of 

Mt./Wi t 9 £>* and X , Ku is preset at a small positive
value, Ki\ <. • AS . Equations (32) are then manipulated to provide 
two further equations which are now used to solve for Kvi and A 
at the particular value of Ku being considered. The actual 
solution of these equations consists of a doubly nested one- 
dimensional iteration routines for Kax and A until the values of 
Ku and L are found which, together with Ku , satisfy the 

manipulated equations to within some given tolerance level. Then 
the densities can be found from equation (38) , from
equation (40), and therefore the K^p's are given as a function of 

Pi i Pa , and ji (or equivalently § , X and (E* ) if the
whole strategy outlined above is repeated for different input values 

of Ku • Before detailing such a strategy, the success of this 
approach should be emphasized. Given 0< Ku c-2.5 , \ < Tinx/Mi<V5
and A < Rx/Ri < 2> , it was found that the above nested search
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routine solved for and A within two to ten iterations at each
-<olevel. Convergence was given by a tolerance of lO on the values of 

K-2/i and A . The disadvantages of the previous approaches to 

obtaining the density, composition and density dependences of the 
via a three-dimensional search procedure have now been 

eliminated. The details of this efficient search algorithm will 
now be given.

A preliminary step in the numerical work is the substitution 
of the following factorized form of (K* » K^,A) into
equations (32). From equation (34) and equation (84) of Chapter 2, 

it can be shown that the (| ^ can be written as:

Kxx, k) = Ku Fl ( Kit, Kii , A') >

Fj ( Ku , Kii, A) (42)

and

Vk* kA(1-A) FiCKh,KA,A) . (43)

where ( K \\ 5 Kix , A') is divided by the appropriate
combination of Ku , Kxa and A . Equation (32) can now be 
rewritten in terms of the F^ as

8 (3? pi = Ku ^ ( Ku , Kii , A) » (44)

8 ft ?* = Kri Fi C Kit , KA ,a) (45)
and

8 vfrjs;pfp* = Vkh kA (i-a) f3(^,kA;aV (46)
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Equations (44) and (45) can be divided to give the following 

expression for K *x:

K,, = Mx X K n Fi ( Ku , Kn ,
mK'-v') Pi CK', K*i, A)

A further equation for in terms of Km , Kn. and A can be 

obtained from equations (44)-(46): the right hand sides of these

equations are substituted for Q* and ^>i

in the identity (p*p*) ((2>£ pt) = ("V P* ft) • This

(Vf)

leads to an equation for A in terms of Ku , Kz2 and A and

this is given as equation (48).

= \ _ Pi(K*i. Ki\. A') Fx(K* ' Kii, A') _ (ijg)
(F3 (K»*s \<x\ , MT

Equations (47) and (48) are used as iteration schemes to 

update the values of KA. and A from the previously known values 

of Kxx , Ax and Ku (held fixed throughout the schemes until a
tjfsolution for that particular Ku is found). The very first trial 

solution is given by the input value of Ku , and the unknowns 

and A are approximated by

= o ,
and

A = 1 — ^ ^2 . (1

K
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The resulting solutions for and A are then used as starting

values for Kt/i and A in the next value of K* considered. The

convergence criteria used were

and
| 1 - (1 /CF>F^| < lcTb >

| Ki\- Fi/Fi I <IO't
These tolerance levels allowed reasonably accurate (correct to sixth 

decimal place) values of K13L and A to be obtained from up to 

five iterations, at the most, in each hierachy of convergence for

with those of a program written to solve the Adelman-Deutch equations 

The agreement was within the allowed tolerance level. Thus, the 

primary aim of developing an efficient algorithm to solve the self- 

consistency equations for a binary mixture of nonequal dipole moments 

and nonequal diameters has been accomplished through the above 

procedure leading to the iteration schemes in equations (47) and (48) 

The Ko(p> are now known as functions of density, composition and 

temperature from equations (38) and (40), in a somewhat arbitrary 

fashion. According to equation (16), the dipolar contribution to the 

internal energy,AE , is essentially a sum over the and so is

known at the particular total density £ and composition X for given 

values of fr\z/m\ , and (3 . Here f is found from pf to be

eliminating the need to use the second equality in equation (38) to

& and . For equal diameter, these solutions were checked

(50)

^ ifobtain pz and then using * — \> \ yx to obtain the total

volume density.
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4.3 Calculation of Dipolar Contributions to the Energy and 
Helmholtz Free Energy

At this point, further refinements have to be made to the 

method of defining the in equations (38) and (40) so that

the dipolar contributions to the Helmholtz free energy, pressure and 
Gibbs free energy can be calculated. The calculations of these 
thermodynamic quantities as functions of composition, density and 

temperature are required in order to determine the miscibility or 
immiscibility of a binary mixture through the composition dependence 

of the Gibbs free energy at constant temperature and pressure. 
However, the important step in such a calculation is the evaluation 
of the dipolar internal energy for different reciprocal temperatures 

at constant density, | , and composition, X . Obviously, the initial
approach of using equation (40) to determine the K„<^ using the

p* as calculated from equation (38) would not ensure constancy of 
£ and X for a series of . The standard solution

employing the procedure leading to equations (47) and (48) already 
imposes a constraint on x which is used as an independent variable.
However, for a series of different |3*s , £ as obtained from

*equation (50) may vary enormously for a fixed value of if
equation (38) is used to solve for p* . This difficulty is 
circumvented in the following choice of independent variables.

For the application of the density, composition and 

temperature properties of the to mixing properties, it is

necessary to solve equations (44)-(46) for VQp at fixed values 

of p* , p* , fand . For a given value of K*
in the domain O C K* < -25 } equations (44)-(45) can be solved 
using equations (47) and (48) as iteration schemes to determine 
Kti and & . This procedure assumes the independent variables
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to be Ki\ > nna/vYh , P-a/fti and X . Ku , Ka% , A , X and Rx/Ri 

then allow the right-hand sides of equations (44)-(46) to be 

determined, i.e., products of |3, and (3i are known. This 

offers p* as a function of the independent variable (3f , which

is seen explicitly in equation (38) when it was convenient to have 

temperature as an independent variable. Alternatively ft* is given 

by the relationship

p* = Ku F,(K», K‘a, A)/?? ■ (5D
£which allows the total density and composition (i.e., £>| and X )

to be chosen as independent variables, thereby fixing the reciprocal 

temperature through equation (51). At any particular , the

are given by equation (40) , where the densities p* and p* 
are input parameters, constrained only by the following relation in 

equation (52).

p* = 9; X Rl/((l-X)R?) • (52)

Equations (51), (52) and the procedure of solving equations (44)-(46) 

then allow the dipolar contribution to the internal energy, A E , to be 

determined as a function of specified density and composition. This, 

in turn, permits the inverse temperature quadrature of equation (16) 

to be accomplished in order to obtain the dipolar contribution to the 

Helmholtz free energy. In reduced units and scaled variables, the 

internal and Helmholtz free energies can be written:

AE* = TTRt AE/(48mlV)

+ /(ml Rt)

+ a.Vpf Ku KA(i-4) (53)
J
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and

AA* = 'irR'f AA / (48vrtfv)

= p*~' f d£*'AE*(p*') . (54)
o

The integral over (3 in equation (54) was done using Gaussian 

quadrature for an arbitrary interval (o, £*) . Then the integral is 

approximated by a finite sum:

fdfAEV)= ft. bJL ^E*(lp*CXi + l)) , (55)

where and ur are the L"^ zero of the Legendre polynomial of

order n (Abramowitz and Stegun, 1968), and its associated weight, 

respectively. The transformation 1 4- -i- has been

applied so that the domain of ft*' , 0< (3*' ^ ft* , coincides with

the domain — \ < Aj < 1 over which the Legendre polynomials

are defined. The choice of n is to be optimized for the 

particular integrand being considered. In equation (55), 

must be evaluated at the associated zeros, , which are effectively 

predetermined reduced temperatures (3 . Thus, the arbitrarily

calculated (3* values of AE* must be interpolated accurately to 

give AE at . The error of equation (55) is a function of the

domain of integration, j3* , the number of points used, n, and the 

maximum slope of the function AE*(.Lp over — 1 4 *3 4 \ . The

error is given by (Abramowitz and Stegun, 1968) where

'R n _ (a(j*r+iw)4 max ' oL^AEM
camol ((anV.y j (56)
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We have not evaluated the remainder explicitly.

However some degree of confidence for small Rn is given by the 

smooth behaviour of AE* which is quadratic in (3* for small (3* 
and then essentially linear in (3 as (3 increases. Unfortunately, 

the error analysis is complicated by the AE# not being known at 
the required , at which points AE* was obtained via a Lagrange 
interpolation procedure. In order to minimize any error initiated 

in the interpolation routine, the orders of the Lagrange interpolation 

formula and the Gaussian quadrature formula were varied until the 

AE value and A A quadrature were minimized. For equal diameters, 

these calculated values were compared to the analytic forms given 

by the results of Adelman and Deutch (1973) which are effectively 

equations (27) and (28) evaluated at rescaled values of [3 , P

and K p* . From Table 1, it can be seen that the choice of

the number of interpolation points which reduced the error in AE* 
was confined to the domain five, six, or seven. From a study of the 

equal dipole moment and equal diameter case, it was shown that an 

eight point Gaussian quadrature on the values of AE* which were 
interpolated from a table using six point formula gave agreement to the 

sixth decimal place with the formulae of Adelman and Deutch (1973). Also 

from Table 1, it can be shown that, as |3* increases, the number of 

points made available to the table of interpolated values also 

increases the error of the interpolation procedure. Table 1 is a 

representative of numerous pages of computer print-out, not all of 

which are required here. A thorough examination of the comparison 

between these dipolar contributions to the internal and Helmholtz 

free energies, and the pressure leads to the choice of optimal 

parameters to be eight point quadrature on the points which are 

selected by a six point interpolative procedure.
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The details of selection of A.E values (and hence (3 from 

equation (51)) as entries in the table are now discussed. For large 

values of , it was originally thought that the errors in the 

interpolation routine would be minimized if more information on 

( (3* , AE*) was available in the form of a larger table for AE+. 
Interpolations about the quadrature points, not necessarily included 

in the table as entries themselves, were obtained as a function of 

the |S grid spacing. Unfortunately, the non-uniformity of the p 

grid, which arises from the uniformity of the Ki\ input values, gives 

rise to considerable errors in the interpolation of quadrature points 

using small /3 grid sizes in the A£ table. For the special case of 

'TY):l= and &2. =• Ri , errors of the order of 10~3% were found

for the tabulated values of AE* (given by forty values of V<u in 

steps of .005) when a six point Lagrange interpolation scheme on a 

set of forty points was used. In other words, A£* at this particular 

density, £=TY/lO and X = *5 , could be calculated, correct to the

sixth decimal place ±-000001 for p=*1 to 4.0 in steps of .1.

As the number of points in the table of AE values increased, the loss 

in the number of significant figures increased until for a table of 

eighty entries, the error in AE* had increased to ±*00001 , a

factor of ten above the absolute error for the table containing 

approximately forty entries, mainly due to roundoff error. Thus it 

was decided to use the table of approximately forty values of AE* 
on which the choice of a six point interpolation scheme was to be 

tested. The values of the order of the interpolation ranged from 

three to ten, given a common table of values. It was found that 

the three point interpolation scheme was totally unsatisfactory,
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giving a maximum absolute error of 20 * 10 b in AE# at {3* =■ 3’ 4- .
In order to calculate AE* correct at least to the sixth decimal
place (this criterion is compatible with the values of the reduced

_pressure being multiples of 46>1 *10 ) values for the order of
the interpolation scheme were six to ten. The higher order schemes 

were eliminated on account of the extra time involved, leaving six 
as the optimal order of the interpolation scheme. Details of this 

effect are provided in Table 1. In fact, the number of points 
in the table of AE* which optimizes the information of the curve 
( p* , AE* ) about the interpolation point can be changed from 
forty to thirty-seven without loss in precision for the inter
polated value. Thus Table 1 is also the summary of results for 
thirty-seven points. The choice of the number of points in the 
range thirty to forty seems to optimize the geometry of the curve 
A E versus j3 in order to calculate At at any unknown j3 

within the table. Since fZ and AE are calculated directly in 
terms of the solution ( Kn , Ku ,A ) according to equations (51) and

L ^(52), the (Z grid is implicitly dependent on the Ku grid. Thus the 
actual table entries of AE# as a function of (3* are ultimately 
dependent on the value of Kl* at each entry in the table. The 
criterion for the correct Kn grid which gives a table of AE values 
at approximately evenly spaced values of fZ* can be developed from 

the following investigation. Consider the table of AE (and (Z ) values 
generated by an array of Kit values of the form Kn (A) — 1 A K^

Here AK* is a positive constant and i = 1, 2, ..., n where n 
is the number of entries in the table of AE* and ft* for each 

^11 considered under the equal grid size of A Kit • If AK* 
was too small, A K*K *001 , an unmanageable table size of

Y\ "7 \Q0O was required to cover the range of {*>* being considered.



On the other extreme, for AK\\^ '1 , the table yielded non

physical values of (g* ( (3* >500 ) , and of Ku and K*?. for the
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liquid state. Solutions of physical interest for the dipolar fluid

as positive definite (Baxter, 1970; 1975) which is a 

requirement that Baxter's equations can be solved. This is an 

extension of the negative density solution of the Percus-Yevick 

equation for hard sphere fluids offered by Wertheim (1971), which 

is necessary to solve the pure dipolar fluid equations. This 

competitive effect between IS Ku and n resulted in the increment 

AKU being chosen in a more ad hoc fashion to give essentially 

uniformity in the changes of the calculated f3* values rather than 

linear increments in K*\(l) through AKu being constant. The 

initial value of Ku was fixed at (usually dL = *00\ )

and j3* values calculated for Ku = and Ku =■ 3. cLi . These

values of were then used to linearly extrapolate K*1 ( 1)

to a value which approximately gave the increment in /3* required. 

If ft** and [$** are the values at d-i and 2. , respectively,

and Ap the desired table increment, then the increment AK-n ,

equivalently (a.") , is given by

Ki'(a) = ad; + di ((j3**-j3f) • (57)

AE* = 0 and ji* — phAKiO » A£* = AE* ( A-Ku) .

are taken as those Kn , Kat and A values which give the matrix

and AE* are now calculated at KYf = 0 (where both vanish 

in the high temperature limit) and K* = A lOtl , namely /3 *= 0 ,

and jg* then provide another
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approximation for the next value of Ku , Kn (3) , as

K‘(1) = KlUx) + KfiCrt pi - pi) , (58)

(3 and A.E* are again calculated for Ku given by equation (58),
4 ^ 4denoted by (3s and respectively. The following values of Ku

are then quadratically extrapolated from these values of (3* , (3*
ifand ^>3 which are renewed in a bootstrap fashion to continue the 

routine until the maximum number of table entries plus five is 

reached. Such a procedure is equivalent to employing a three point 

Lagrange interpolation formula on the known set of points

\ ^ i. 5 "P i. ~ ^ (Oj' for i — 1,1,3 where X 'S are

the Ku 's and -f is the function AET* . Then the function -f 

evaluated at a point X is (Abramowitz and Stegun, 1968)

fto

where

J\ (X
L~\ CXj ~ X i)

(59)

(60)

Usually, X is known and equations (59) - (60) give the 

interpolated value of the function at X, -PCX'), from the known 

values of Xj and -pj for j =• 1 , 1, 3 . Here, f (x) is taken

as the required [3* , j3* (0 — L A (3 and x is to be calculated

as the solution of equation (59). Reintroducing Ku LO** and

i)==‘£ j, = ^ » KuCl+S') can be determined from

Ku CO , Kn Ci + 1>) , Ku Cl+2') and their associated

temperatures B^CO » (3*(i + 2~) from the expression:

K* Ci-vi) = (- b + Vbx- ta(c - |3*(.t+3i))/ 2a . (61)
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where

a = ^ W
3

b = ZI QtpWn(u')
J K 6
j+K

c = Z <#TT. K.tCk)
,, i K*Jwhere

= p*Cj) /JT (Ku(j) KSie)) •
The limits on the summations and products are i to i + 2.

The above approach gives a table of AE* values at an 

approximate {3* grid size of A (3* , usually taken as

&|3* = |3*/Np . (62)

where Np+5 is the number of entries in the table and (3# 

is the reciprocal temperature being considered. In the subsequent 

calculations , resulting in a thirty-seven entry table for

A.E* which is then to be used to obtain A A* via Gaussian 

quadrature. The additional five entries allow possible interpolation 

about (3 to be made inside the table without recourse to further 

unwarranted extrapolations. It will be shown in Appendix 7 that the 

value of the dipolar contribution to the internal energy at (3* , 

plays an important role in calculating the Gibbs free energy of the 

mixture. Thus, the importance given to the accurate determination 

of AE*(f3+) from interpolation on the table of AE* values.
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The actual values of |2>* required to perform the quadrature 

on AE* are rescaled to the domain [-1, 1] by the transformation 

described beneath equation (55) . The weights and abscissas Xi,

for the Gaussian quadrature were taken from the tables of Abramowitz 

and Stegun (1968) correct to the eighth decimal place for m = 4, 8,

16 and 32. Such data were stored using the subroutine Gauss (m, a, w), 

which, when the value of m was passed from another subroutine, returned 

the abscissas a(i) and weights w(i) as arrays of dimension m/2. Table 

1 gives the effect of increasing m on the value of the integral of 

A.E* over 0 to . It is seen that if the values of AE* at the

abscissas are given by a six point interpolation formula, then such 

values are correct to at least one or two digits in the sixth decimal 

place. The error in the numerical integration of AE* over these 

points is dependent on the value of m. For m = 4, the error is at

most .02% for ft* = 3-7 and less than .003% at other (3 , in general.

This error is significantly diminished for the m = 8 quadrature where 

the integration can be considered accurate to at least one or two 

digits in the sixth decimal place, i.e. the percentage error is of

the order of IO-3 % . Thus the dipolar contributions to the internal

energy, Helmholtz free energy and pressure of a mixture of dipolar 

hard spheres should be accurately determined to one or two digits in 

the sixth decimal place.

4.4 Calculation of Dipolar Contribution to the Pressure

The dipolar contribution to the pressure, AP , can then be 

determined from the difference of AE/V and A A/V (Adelman and Deutch, 

1973; Sutherland et al., 1974). Multiplying equation (18) by
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TT Rt /42>m| gives the dipolar contribution to the pressure in 

reduced units, t±P* , where

AP* = , (63)

noting that AE* and are defined as volume densities in

equation (23). In the single component case Sutherland et al. (1974) 

have shown graphically how is sufficiently negative to induce

van der Waals loops into otherwise monotonically decreasing isotherms 

of a hard sphere reference system as the reduced volume \ ^ y ) 

increases. For constant composition mixtures, these van der Waals 

loops are found in the total pressure, P=Pof-4-AP , of a 

mixture as the total reduced number density decreases. The 

occurrence of these loops is dependent on the temperature as for 

the pure component example above. However, the detailed temperature 

and composition dependencies of the pressure of a dipolar mixture 

are only an intermediate in the calculation of the phase behaviour 

for a binary system, and so only the qualitative findings will be 

summarized.

At any given P* , (3* and X , there are either one or

three values of ()* which satisfy the equation of state P* = P*(£>*,|2>* x). 

For the mixture case, the effect of composition changes on the value 

of p which is given from inversion of the equation of state at 

any fixed values of P* and (3* will now be considered. Since 

we are essentially interested in the liquid-liquid phase part of the 

general phase diagram (points in P, T, x space), the greatest p* 

value will be selected, for the case of pure component one, which 

has the smaller polarity of the two dipolar hard spheres. It was 

found that as the more polar constituent, species two, was added to 

the mixture (x increased), the isotherm was shifted to higher values
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of p . This was indicative of the physical picture of the stronger 

attractive forces of the more polar species contracting the mixture 

to allow more particles within the fixed volume of the container.

Given the solution p* at x = 0 for a given V4 , the effect of 

increasing x at constant P* was to increase p* . Thus if the 

pure component one was found to have a density p* characteristic 

of a liquid, p* ^ -01 for a pure dipolar hard sphere fluid, this 

liquid property at a given P* and (3* would be enhanced as x 

increased to unity. Fortunately, a rescaling of the vapour pressure 

curve of the pure fluid (Sutherland et al., 1974) allowed choices of 

P and (3* to be made which gave p* on the liquid region of 

a polynomial fit to the vapour pressure curve. Thus, the above 

method of solving for the density at a given pressure as composition 

changes is equivalent to the fundamental problem of checking each of 

the three (one) zeros of P* ( p>*) , calculating the associated free

energy, and finally selecting the root which minimized the free 

energy. An additional check on the correctness of the value of 

was given through the positiveness of the compressibility at that 

point. If the slope of P* at that p* were positive, the solution 

was thermodynamically unstable and rejected. The liquid and unstable 

densities were closer to each other than either was to the metastable 

gaseous root for these values of {3* and P* constrained to the 

fluid ( (3>* < (3 *) and liquid ( P* > P>c) regimes where j3*=4’444 
is the inverse reduced critical temperature. In other words, the 

composition variable has the same effect as decreasing temperature 

on a single component system, and, in so doing, achieves the same 

result of increasing the liquid character of the system for a given 

P * and (3 *
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4.5 Calculation of Excess Properties

In summary, the above search routine for the K^allows the 

dipolar contributions to the internal energy density, Helmholtz 

free energy density and the pressure to be calculated once p* , X 

and |3* are initialized. Further, the Mean Spherical Approximation 

allows the dipolar contributions to the Gibbs free energy density to 

be obtained directly from AE . The details of this equality 

are given in Appendix 7. These values are calculated in a Fortran 

subroutine, PMIX, which embodies the tabulation of AE* at 

approximately equal intervals of {&* , A (3* , subsequent interpolation

of the table to perform the Gaussian quadrature which is then used to 

calculate A A . For the particular value of y3 , a further 

interpolation gives Awhich on subtracting from AA# gives 
the dipolar pressure, AP* . The total pressure of the mixture,

PMIX, is AP* plus the pressure contribution from the hard spheres 

at the same density and composition. This latter term is calculated 

from the compressibility factor given by the Mansoori-Carnahan- 

Starling-Leland equation for mixtures of hard spheres. This and other 

reference state properties are calculated in the subroutine called 

STATE, at the same values of p* and X specifying the density and 

composition of the dipolar mixture. The basic quantity calculated 

is GMIXT which is the Gibbs free energy of the dipolar mixture in 

excess of an ideal gas mixture at the same composition,X , pressure, 

PMIX, and temperature, p* . GMIXT is given, in units of NkT, by

= 8 ft* A6*GMIXT
£ p «? NkT (64)
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where Gro* “ C Ni, Ni, PM\Y ,T ") of equation (14).

GMIXT can then be used to obtain the Gibbs free energy of 

the dipolar mixture in excess of the unmixed ideal gas free energies, 

GMIX, a quantity used by van Konynenburg (1968) in his studies of the 

phase diagrams for van der Waals mixtures. From equation (12), it 

follows that GMIX is given by

GMIX = & Ml XT -t G1DEAL , (65)
where

2.

&IDEM= H .
0^=1

The "x In x" term is the ideal term for changes in the free energy 

on mixing ideal components, in this case ideal gas components 

which arise in the definitions of the excess properties used in 

this thesis. For ideal gas mixtures and ideal mixtures in general, 

GMIXT = 0 and equation (65) reduces to the ideal entropic "x In x" 

term. This behaviour was used to further test the program for equal 

radii-equal dipole moments. It was found that the use of a six point 

interpolation scheme coupled to a thirty two point table gave GMIX 

correctly to at least the fifth decimal place. The tolerance used 

for the calculated pressure, PMIX, being in agreement with the fixed 

value of the pressure, PMIX1, was cautiously taken to be I0 • For 

values of p* such that l PM\X(p*) - PlM\)M l 4 lO ® , the value of
itGMIXT at the particular convergent value of p was calculated and, in 

turn, GMIX was obtained for the overall mole fraction, temperature 

and pressure, PMIXl, being considered.
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The more important use of GMIX, however, was that it, 

rather than GMIXT, can be used in a common tangent construction to 

obtain the details of coexisting phase compositions if phase separation 

does occur. An equally appropriate function for this criterion is 

the Gibbs free energy of mixing, GXS. This is obtained through the 

calculation of the Gibbs free energy of the pure components, one and 

two, at the same pressure and temperature of the mixture. Denoting 

this function by GPURE, it is defined and used to calculate GXS in 

equations (66) and (67), respectively:

GPURE = n X* <* &«)Pure ( PMIX', T~) . (66)

GXS = GMIXT + GlDEM_ - GPURE

— GMIX - GPURE (67)

In equation (66), Gr^pure (p >~0 is the Gibbs free energy of the 

d pure component minus the kinetic energy contribution (ideal 

gas term, given by ijYl ) at pressure p = PMIX1 and temperature

T. Groi, pure (p is calculated from the single component 

equations (Sutherland et al., 1974; Rushbrooke et al., 1973), and is 

in units of NkT. Gti5 pUYe also serves as a subsidiary check

on the accuracy of the numerical procedures to calculate GMIXT at 

zero mole fraction for all values of pressure and temperature. It 

so happens that GPURE is essentially the equation of the straight line 

joining the endpoints (>(=0, Gr^pure) and (x= Gr2,pure) of 

the plot in (x, GMIX) space. This is seen readily from rewriting 

equation (66) as

=* (Gr 2, pure Gr 1, puv'e *) X 4 Si, pureGPURE
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Thus, GXS vanishes at the endpoints x = 0, 1 of the composition plot 

(x, GXS). The advantage of using the latter composition plot rather 

than (x, GMIX) is that the curvature of the (x, GMIX) plot is heavily 

masked by GMIX's near linearity in x. However, the subtraction of 

this linear behaviour, as given in the definition of GXS, completely 

removes this difficulty and allows a significant improvement in the 

construction of a common tangent between any suitable points along 

a (x, GXS) plot. Since the stability (or instability) of any mixture 

is defined in terms of the positivity (or negativity) of (3xG-/3 xOp;T 

where G is the total Gibbs free energy of the mixture, it follows 

from the linear dependence of the ideal gas contribution of each 

species (equation (12)) and GPURE on x that the regions of (in)stability 

are identical to G, GMIX and GXS. However, the case of convenient 

application of the common tangent construction to specify regions of 

coexisting phases increases in that order. A further excess Gibbs 

free energy, CrE , the excess of GXS over the ideal gas mixture 

contribution GIDEAL, was not considered since the common tangent 

construction was not as directly applicable as it is to GXS. In this 

notation, GrE is given as

GE = GXS - GIOEAL

= GMIXT- GPURE • (68)

For completeness, QE has been defined above since it could be 

obtained from the results GMIXT and GPURE if any comparison with other 

calculations involving GB for dipolar hard sphere mixtures were 

required. These unfortunately have not been done using other 

techniques such as perturbation theories and Monte Carlo calculations. 

Appendix 8 gives the formal definitions of the excess free energies

employed here.
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4.6 Computer Programs and Details

This Section is a composite of the actual listings of the 

subroutines of the program (physically presented as Appendix 9) and 

their operation. In order to facilitate handling of input data and 

output files, the program was set up on disc to be entered sequentially 

from Batch mode in RT 11. Each execution of such a program gave 

twenty-six triads (x, GMIX, GXS) which were for a given T = TEMP and 

P = PMIX1 for fixed values of the ratios PH/vrit = XM and 

Rz/Pi = W . These sets of triads, along with the values of 

XM, W, TEMP and PMIX1, were stored on disc as unformated data files 

to be processed for common tangency of points (x, GXS) later after 

the complete batch run had ended. A typical batch job had eighty- 

one runs to execute and could be interrupted and restarted at the point 

of (un)intentional stoppage. After the batch job had finished the 

data on disc was backed-up on magnetic tape and a separate listing 

of the job statistics (time and data) taken and that file deleted 

from disc. The batch job also initiated the setting-up of the 

eighty-one data files needed to initialize values of parameters 

required in each run. Such information is symbolized in the data file:

W, XM, RHO 

M, NINTRP, NPTS 

PMIXl 

TEMP

where RHO is the initial value of IX- KwPiR^ to be used in

the calculation of GPURE, M = 8 is the order of the Gaussian 

quadrature, NINTRP = 6 is the order of interpolation formula to

obtain A A* from a table of NPTS = 32 ( + 5) entries of AE* values.
*RHO is not to be confused with Q or introduced earlier.
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These data files were automatically read under BATCH by 

the Fortran program, SAMPRO, which consisted of a main of the same 

name and thirteen other Fortran subroutine or function subroutine 

programs. The purpose of SAMPRO was to calculate GXS, GMIX for 

x = 0 to 1 modulo .04 at the given TEMP and PMIX1 values. An 

additional output file gave a listing of the values of convergent 

TT p /6 , GMIX, GXS, and the difference in the pressure which
_ gsatisfied the lo tolerance criterion for these pressures,

PMIX1 and PMIX ((>*) , being equal. These list files were initially

stored on disc, listed and then deleted. PMIX1 was taken as n/2 

multiples of the critical pressure for pure component one,

*000 461 and n = 1, . . . , 11. For each PMIX1, TEMP could be 

varied according to the areas of interest in the phase diagram. 

However the grid spacing for the temperature became apparent only 

after the experience of many runs. The grid size ranged from .001, 

.005, D10, to .020. At each temperature and pressure point, the 

generation of the (x, GMIX, GXS) arrays varied in time according 

to the size of W. For W = 1, the average time was approximately 

ten minutes on the PDP 11/45; as W varied from unity by ± .CM , 

this time could be up to a factor of three longer. Thus, a batch 

job covering three values of PMIX1, in each of which twenty-seven 

values of TEMP ranged from .16 to .50, could take at least fourteen 

hours of computer time for equal radii calculations and forty-two 

hours for nonequal radii calculations. These lengthy calculations 

were found for W = 1 ± .01 and the time factor alone thus 

prohibited any larger deviation from the equal radii case being 

undertaken, although more realistic deviations, say 5-10%, were 

certainly considered, but only partially done because of enormous 

time factor involved. Appendix 10 contains a sample of the listed
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output for W = .99, 1.0, 1.01 at constant values of XM = 1.5. Rather 

than give a detailed analysis of the qualitative trends in GXS and 

GMIX as a function of x, TEMP and PMIX1, since these trends are used 

to obtain a constant pressure projection of (P, T, x) space, the 

details of the common tangent construction will be presented in the 

following Section.

5. Common Tangent Construction

It is well recognized (Prigogine and Defay, 1973;

Rowlinson, 1971) that the existence of regions of immiscibility in 

binary mixtures can be induced from violations of the stability 

criterion for mixtures viz., for stability of a mixture at the 

specified T, p and x, ( O . For values

of T and p for which this criterion is satisfied for all compositions 

x, the components are miscible in all proportions. In such a case, 

the composition plot of the Gibbs free energy of the mixture versus 

composition, x, is convex downwards. As T and p change, 

immiscibility between components may occur and this is associated 

with the geometrical phenomenon of a local maximum appearing in the 

composition plot, at which point (/3xOTjp ^ O • Such 

qualitative information in the form of the violation of a stability 

criterion on the sign of (.3^0*7 only gives the fact

that the system is unstable at p and T for the composition range in 

which the local maximum occurs in G. The regimes of instabilities are 

interpreted to be the formation of nonhomogenity in the single phase 

system,i.e., a phase separation has taken place providing two or more 

phases in equilibrium at a lower free energy than single phase 

system would have at the same p and T.
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The compositions of the two phases in equilibrium are 

x’ and xM where ' and " distinguish the phases. x' and xM can be 

obtained from a geometrical construction on the composition plot of 

the Gibbs free energy of the mixture (in units of NkT) known as the 

common tangent construction (Rowlinson, 1971; Prigogine and Defay, 1973). 

From equality of the chemical potentials of each species in the co

existing phases, it can be shown that not only are the slopes of the 

points x' and xM equal but also there exists a common tangent of the 

same slope between x' and x" which describes the variation in the 

Gibbs free energy of the phases intermediate in composition (x’, xM). 

These are summarized in the equalities (Prigogine and Defay, 1973)

(69)

and

where g' (gM) is the Gibbs free energy of the 1 phase per

molecule, and ( 'BQ* /3x')t,p is taken as the slope of the

common tangent construction. Equation (70) is used to identify the 

compositions x’ and xM of the phases which are coexisting, by 

locating compositions along the Gibbs free energy plot which have the 

same slope 3Gr/3^ and are joined by a tangent of the same slope.

The tangent necessarily replaces the convex-upward region of the 

composition plot of the Gibbs free energy with the lower Gibbs free 

energy of the phase separated system, geometrically given in equation 

(70). While the thermodynamic equalities employed in obtaining equations 

(69) and (70) are exact, the practical application of locating the 

mole fractions xf and xM according to the common tangent construction 

is cumbersome and liable to large errors.
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A computer program COMTAN was written to minimize the 

error and improve the practicability of the method. Large errors 

(. ~ 20 °fo) are necessarily involved in the selection and drawing 

by hand of the tangent between any two points on a graph which are 

deemed to satisfy equations (69) and (70). The program essentially 

calculated the numerical derivative of GXS with respect to x from a 

five point Lagrange differentiation formula (Abramowitz and 

Stegun, 1968) and found the compositions for which the differences 

of the slopes and the slope of the chord joining those points were 

a minimum. The data output file containing the twenty-six triads 

(x, GMIX, GXS) with AX = -04 was employed as a table on which 

a seven point Lagrange interpolation formula was used to refine the 

x grid size to Ax =01 • This gave GXS (or GMIX) as a one hundred 

dimensional array, the (4lfi + A')^' entry of which was the original 

calculation for mole fraction X =• H /9.5 , 0 ^ U 4

The actual analysis of the common tangent construction was 

not fully automated and required the user to examine the composition 

plot as depicted on a GT 40 screen via Quickplot. A domain of x 

values (more precisely, the integral representation of X = f\ Ax ) 

was chosen and the program returned those points, within that range, 

at which the slopes of the adjoining chord and of the tangents at 

each point were the closest in value. The search for the coexisting 

mole fractions with the same slope as the adjoining chord was cleverly 

initialized to commence at least Ji- Ax units apart. This additional 

constraint prohibited the search from returning x’s whose slopes 

were nearly equal and yet whose adjoining chord was above other points

in the composition plot.
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The above search routine for points of common slope as 

the adjoining straight line gave the values of the coexisting 

compositions, x' and xM, to within ± . 01 mole fraction units.

However this was quite satisfactory as any points x’ and x" for 

a given TEMP and PMIX1 which were considered doubtful were re

evaluated with &X= 005 and these new values for the compositions 

used in the T-x diagram. In order to check that the results for the 

collection of T-x coordinates for a fixed pressure were adequate 

from the &X = -01 grid, the runs were redone with &X = -005 

Fortunately, the quantitative characteristics of the temperature- 

composition graph were unchanged to within physical limits of the 

graphical presentation.

Greater difficulty was encountered with the critical 

points (both liquid-liquid and liquid-gas types). The flattening 

of the coexistence region in the vicinity of the critical point of 

the mixture disadvantaged the program with the choice of many 

points whose slopes were nearly identical. A reduction in the 

temperature grid size about these critical points provided new files 

which were analyzed by COMTAN. However it was found that the critical 

point could only be approached asymptotically with the ±-0\ error 

and not accurately determined within any smaller AX grid size. This 

is particularly disappointing in view of the van der Waals mixture 

studies of Scott and van Konynenburg (1968) which gave critical line 

data to the fourth decimal place. However the van der Waals 

mixture equations are much simpler, the worst computation being the 

order of the solution of a cubic polynomial for its zeros. With 

these comments concerning the critical point data in mind, the 

results and diagrams of the temperature composition data are examined
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Chapter 4

Results and Conclusions 

1• Composition Plots of the Gibbs Free Energy

This Chapter presents the results of the calculations of 

the change in the Gibbs free energy of mixing at constant pressure, 

P*, and temperature, T*. As indicated in Chapter 3, this information 

takes the form of a table of twenty-six entries of values of GXS, 

the Cm entry being the change in free energy of mixing for the 

composition of the mixture given by mole fraction = (.1-11/ d.5 .

Each table is calculated for specified values of P* and T*, which 

assume the values P* = .001383, .001613, .001844, .002074 and 

T* = .16, .17, .18, ..., .50. The range of values for P* and T* 

chosen here are only a subset of the data files actually calculated. 

However, the choice of P* values allows considerable information to 

be obtained about the effects of molecular properties on the extent 

of phase equilibria in a binary mixture of dipolar hard spheres.

Since the composition plots of the Gibbs free energies 

are an intermediate step in the calculation of the temperature 

composition curve, only a few remarks will be given concerning 

their general characteristics. For regions in (P*, T*) space 

where the components mix in all proportions (i.e. all values of 

X, o 4 X ^ 1 ), GXS is concave upward everywhere. Depending

on (P*, T*), the temperature can be raised or lowered until a 

point (P*, T** ) is reached at which GXS assumes over a certain 

composition range a concave downward curvature. This behaviour 

geometrically "mimics’' phase separation at (P*, T*' ), and
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can be used in the thermodynamic argument of the common tangent 

construction to obtain the compositions of the coexisting phases, 

say, x’ and x". The collection of the T* dependence of pairs 

(x’, x") describing the composition of phases in equilibrium at 

the same pressure P* is the temperature-composition plot. For 

mixtures of dipolar hard spheres, local maxima were generally found 

at values of (P*, T*) in the ranges considered above, and for a 

ratio of the dipole moments fixed at 1.5. Such frequent occurrence 

of immiscibilities was expected since rough estimates from the work 

of van Konynenburg (1968) showed comparable trends for the conditions 

of (P*, T*) and the type of systems considered here. For T* ^ *(6 ,

liquid-liquid immiscibility was found consistently for all molecular 

systems mentioned above (see Figures 2-25). This immiscibility of 

the polar components was identified by the appearance of local 

maxima in GXS. The minimal value of GXS was found to be shifted 

to higher values of x as T* increased (compare Figures 2 and 5).

In other words, mixing was enhanced for a mixture containing larger 

amounts of the more polar component, rather than for mixtures of 

intermediate compositions, where x •5 . Such asymmetry in the 

GXS curve is a consequence of the deviations of the polar mixture 

from ideality, where GXS would be symmetrical about x = .5 and given 

by GIDEAL defined for equation (65) of Chapter 3.

At these low temperatures (T* ~ •(£>) the geometrical

properties of GXS imposed a negative gradient on the common tangent 

(Figures 2, 6, 10, 14, 18 and 22). As the temperature increased at 

fixed pressure, entropy contributions to the Gibbs free energy of 

the mixture became important. This was reflected primarily in the
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displacement of the asymmetrical minimum from regions of high x 

values to low compositions, X <. • 5 . This is seen in the sets

of Figures: 2-5, 6-9, 10-13, 14-17, 18-21 and 22-25. The actual

details of such a transition are complicated in terms of GXS and 

its curvature properties as a function of T*, P* and the molecular 

parameters identifying the components. Fortunately, the detailed 

information is more clearly explained in terms of the effects P* and 

the molecular parameters have on the temperature-composition curves. 

The discussion will be postponed until the following Section, which 

gives such details. However, the change in the curvature of GXS 

can be summarized in terms of the change in slope of the common 

tangent, when it is defined for coexisting phases. As T* changes, 

the slope of the common tangent undergoes a change in sign, becoming 

more positive as the temperature increases (e.g., Figures 2-5). This 

change in slope was directly associated with the movement of the 

asymmetrical minimum in GXS to lower values of x as the temperature 

increased.

Figures 2-25 are a collection of the representatives of 

the composition plot of GXS for the three values of the ratio of 

the diameters, w, with w = .99, 1.00, 1.01. Four temperatures in 

the vicinity of T* = .18, .28, .38 and .48 were chosen for each 

value of w. Only two pressures were considered, P* = .001383 and 

P* = .002074, the minimum and maximum pressures for which the 

temperature-composition curves were studied. Although only twenty- 

six points are given in the composition plots of GXS, one, two or 

five hundred such points (obtained through interpolations of the 

original table of twenty-six entries) are used in the common tangent 

construction. These plots were drawn on the HP 9830 Graphics unit
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from data points transferred on ASC II papertape from the PDP 11/45 

computer. The data were formated as truncated to the fourth decimal 

place,i.e., F 7.4 format specification was used. The timescale for 

each such plot was limited by the time taken up in the manual 

operations involved, viz., setting up of the Graphics unit each time 

and the actual reading of the papertape. Each plot for twenty-six 

data points was typically one to two minutes in preparation time 

(aside from labelling and numeration of the axes which was done by 

hand).

2. Temperature-Composition Plots in Phase Diagrams

The temperature-composition (T*, x) plots are given in 

Figures 26-28. These T*-x diagrams are given for fixed values of 

P*. By varying P*, one can obtain the locus of points (P*, T*, x) 

where the coordinates (T*, x) are obtained from the temperature- 

composition diagram appropriate for the value of P*. The totality 

of (P*, T*, x) coordinates is known as the phase diagram of the 

binary system under consideration. From the choice of (T*, x) 

for each P* value, it follows that the boundaries in (P*, T*, x) 

space separate regions of miscibility and immiscibility of components. 

This and other elementary properties of phase diagrams are well- 

known to physical chemists (Prigogine and Defay, 1973; Rowlinson,

1971; Castellan, 1972). Clearly the amount of computer time taken 

to generate a large number of (P*, T*, x) coordinates prohibits the 

calculation of any detailed phase diagram. However, the general 

characteristics of the phase diagram can be partially given by the 

pressure dependence of the T*-x diagrams. An examination of the 

pressure dependence of the shape of the T*-x diagrams can then be 

studied in turn as a function of the molecular differences in the
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species composing the mixture. Such an approach would provide 

specific details of the effects of the molecular interactions 

(given in terms of the associated potential parameters) on the phase 

diagram of the binary system for the pressures considered. Fortunately, 

the qualitative information of the T*-x diagrams calculated here 

for a mixture of dipolar hard spheres is so strikingly similar to 

the corresponding curves of van Konynenburg (1968) that the general 

characteristics of the phase diagrams are approximately the same as 

those of van Konynenburg (Scott, 1975). Although no quantitative 

comparison is made, the above correspondence is certainly reconciled 

through the basic similarity of the intermolecular potentials of the 

two approaches.

In this thesis, the intermolecular potential is the dipole- 

dipole interaction as described by equation (3) of Chapter 2. The 

properties of mixtures of particles, interacting through the dipole 

potential plus a short-range hard core repulsion, are summarized 

in Figures 26-28. Figures 26-28 are the T*-x plots for w = 1.01,

1.00, .99 all of which are taken at the same fixed ratio of Y\(

= 1-5 . The corresponding relative polarities are given by the

ratios ( {B>rnx/R\ ^ / C ") = <2.-25"/W^ (polarity of a

molecule being measured by ^x/k3 , after Rowlinson (1971)). As

w decreases, the ratio of the polarities increase roughly by about 

three percent. For w = 1.01, 1.00, .99, 2.25/w3 is found to be 

2.18, 2.25, and 2.32. However, such small changes in the polarities 

of the second component have a significant effect on the character

istics of the T*-x diagrams.
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Similar behaviour has been found for mixtures whose pressure 

is described by the van der Waals equation:

p = JUL _ _2_ . (i)
v - b \ya

In equation (1), R is the universal gas constant and the composition 

properties of the mixture are given in the composition dependence of 

the van der Waals constants a, b (van Konynenburg, 1968). The 

parameters a and b are defined in:

and

(2)

b — II X; Xj bij , <3

where 3^ are t^ie Parameters appropriate for the i-j

species attractive (repulsive) interaction. The mixing rules 

(consistent with the choice of molecular parameters describing the 

unlike-species interaction as required in the solution of the Mean 

Spherical Approximation for dipolar mixtures) are the so-called 

geometric mean law for the parameter and the additivity of

diameters for the bia parameter. These are given by equations (4) 

and (5):

1 a» , (4)

and

b\T_ = ( (bu* + bo/O/a.^) (5)

The effects of deviations in 3^ from the form of 

equation (4) on phase behaviour for mixtures obeying van der Waals 

equation of state have been intensively studied by van Konynenburg. 

A wide variety of different behaviour is possible for different
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mixing rules governing the behaviour of <3,x . However for values of 

di\x given by equation (4) three types of different phase diagrams 

are found (Types II, III^ and III in van Konynenburg’s notation for 

the equal diameter case). The ratio of the polarities of the species 

for van der Waals mixtures is determined by (CUabu')/ (.CLu brx') .

In deriving the analogue of » the following basic

interpretation of the parameters 3yj and bij in terms of modern 

potential characteristics is used (Scott and van Konynenburg, 1970).

The parameter 3^ is related to , where 6^ is the well

depth of the potential energy function for the i-j interaction and 

Rl} the associated collision diameter. For dipolar mixtures, it 

then follows that ~ ~ , and so the polarity

as measured by (3rn* /R* is proportional to d** for each species <* 

The average value of 2^/3ii values connected with mixture properties 

classified as Type III is 1.76, approximately. A relative increase 

(decrease) of about four percent in dxxldu - l•“76 is sufficient

to cause a change in Type III^ behaviour to Type III (Type II) 

behaviour (van Konynenburg, 1968). Assuming that the weak attractive 

tail of the potential associated with the van der Waals isotherm 

(Isihara, 1971) could be described by dipolar forces, the correspondence 

is given that ~ . Thus the corresponding values of

rr\\lYY\\=z \-l<o (van der Waals ) and 3. 2.5 (Mean Spherical

Approximation) give qualitatively similar T*-x curves for the equal 

diameter case, bn=brx and w = 1, respectively.

For the equal diameter case, this similarity of the T*-x 

curves of van Konynenburg and of this thesis (Figure 27) would indicate 

that the dipolar properties of the mixture are under-estimated 

by the approximations of the Mean Spherical Approximation.

However, changes in the ratio of the polarity of the species forming
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the mixture do have the same effect in the two models. In the 

work of van Konynenburg, the small change in polarity was accomplished 

through variation of the attractive parameters (3£^'s) keeping the 

repulsive parameters (bi.]'s) fixed at equal values. In contrast to 

this approach, we have considered the effects of equivalent changes 

in the ratio of the polarities through small changes in the diameter 

of molecules of species two. If the molecular size of component two 

is decreased, its effective polarity is increased. Such an increase 

in the polarity of the molecules of species two (with respect to 

that of molecular species one) causes further dissimilarity in the 

molecular properties of each species than was the case for species of 

the same molecular size. The consequences of this increase in 

dissimilarities of species are seen in Figure 28 . There is an 

overall growth of the regions of immiscibility of the two components 

for all temperatures and pressures. Only for high P*^/~ 21-074 x \0~ 

and moderate T*(2» •As') is there evidence of a liquid-gas critical 

temperature. The critical locus of this temperature moves to higher 

values of x as the pressure decreases. There is no evidence of the 

lower critical solution temperature for the liquid-gas transition at 

T * ’ 3.5 - • 3S • Due to the relatively large differences in the

molecular properties of the species, very high pressures 5 x-oOD4&>\ ,

are required to guarantee mixing at intermediate temperatures of the order 

0f T* ~ • 30 . As the temperature falls below T^-SLO, there is no
evidence of a liquid-liquid upper critical solution temperature. These 

features are also found in the classification of van Konynenburg under 

Type III. It should be expected that decreasing w from w = .99 to

values of w ^ * 5 could increase the regions of immiscibility at low
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temperatures even more. In that case, immiscibility of species 

could also occur at high T* and high P* values (T*> 1* > P* >50*'DODAi>\)t 
This phenomenon has been described as fluid-fluid immiscibility 

(Rowlinson, 1971; van Konynenburg, 1968; Neff and McQuarrie, 1975).

The effect of increasing pressure on the regions of 

immiscibility in Figure 28 is not sufficiently strong to allow the 

formation of a homogeneous liquid phase at all values of x. However, 

for species of equal diameters (thus differing in dipole moment only), 

these same regions of T*-x space are ones of miscibility. This is 

seen in Figure 27, where the ratio of polarities of the species is 

2.25. At the same P* values considered in Figure 28, the regions 

of immiscibility have dramatically decreased with the sectioning of 

the T*-x plots of Figure 28 into a liquid-vapour equilibrium 

"wing-shaped" part and a liquid-liquid equilibrium "dome-shaped" 

part. At pressures above P* = .002074, there is no liquid-vapour 

immiscibility but only immiscibility between liquid phases below
If

Tc ~ * 18<b . On the other hand, the lower pressure dependence 

(P* = .001383) of the T*-x diagram is almost Type III in character.

It should be noticed that at T* = .22 the coexisting phases on the 

P* = .001383 curve are very close in comparison to their values at 

the same conditions for the molecular system in Figure 28. Indeed, 

for this particular component system of equally-sized particles, 

the effect of increasing the pressure is very significant. This is 

seen in the P* = .001613 curve. Here, the existence of a homogeneous 

liquid mixture is evidenced (at that pressure) in the temperature 

range '3.0(o < T*4 -XI . At this particular pressure (and higher 

pressures also), there are three critical temperatures: two upper
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critical solution temperatures (liquid liquid: Tc - ' 3.01 ;

liquid-gas: T* = -458 ) and one lower critical solution temperature

(liquid-gas: Tc= -3.68 ). In the liquid-liquid dome, the liquid-

liquid critical temperature decreases slowly and the associated 

critical composition is fairly constant ( Xc ~ • 2>5) for increases 

in the pressure. It follows that the amount of liquid-liquid 

immiscibility is not significantly reduced by pressure increases.

However, the liquid-vapour immiscibility regions are far 

more sensitive to pressure increases as expected with the presence 

of a vapour phase. As pressure is increased from P* = .001613 to 

.002074, the lower critical solution temperature readily increases 

and the critical composition is fairly constant. In contrast, although 

the upper critical solution temperature (liquid-gas) is decreased by 

roughly the same amounts as the lower critical solution temperature, 

the critical composition is very sensitive to pressure increases, 

moving to lower x values quite dramatically. The combined effect is 

to considerably reduce the liquid-gas immiscibility region until at 

P* = .002535 there is complete miscibility at all compositions above 

the liquid-liquid critical temperature, lc ~ '18>5 . These

characteristics of the T*-x diagrams displayed in Figure 27 are 

readily found in the T*-x diagrams for van der Waals mixtures which 

are classified Type III^ in van Konynenburg’s thesis. For equal 

radii, the ratio of the square of the dipole moments directly 

measures the ratio of the polarity of the components, viz. , /wi^ = 9. 3.5 

for w = 1. In comparison with the earlier case of lf(\\= 3.'3<2.

for w = .99, this is a three percent relative decrease in the ratio of 

the polarities of the components. This increase in the similarity of
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components two and one (as measured by the polarity, 1) is 

quite significant and leads to larger regions of miscibility in the 

T*-x diagram.

The details of the effects on the T*-x diagram of a further 

3% relative decrease in the polarity of species two are given in 

Figure 26. Here the diameter of the hard core of component two is 

1.01 larger than that of component 1. From w = 1.01 and fh\/irrVi =■ 2.-A5 ,

it follows that the ratio of the polarity of species two to species one 

is 2.18. From Figure 26, the T*-x diagram for P* = .001383 has the 

separate liquid-vapour and liquid-liquid immiscibility regions. For 

the w = 1.00 case, such features appeared at higher P* values,

P* > -00(613 . The gain in similarity of the molecular properties

of the species is reflected in the onset of miscibility at much 

lower pressures than was found with mixtures containing more 

dissimilar molecular species. Liquid-liquid immiscibility is found 

at considerably lower temperatures, again a phenomenon attributable 

to the closeness of the molecular polarity of the components.

For P* = .001383, single phase liquid mixtures are found at all 

compositions over the range of temperatures *16 £ -&8 . The

effect of larger pressures on this system is to decrease the amount 

of liquid-liquid equilibrium until such immiscibility is not found 

to occur even at T* = .15 for P* = .001613. A corresponding decrease 

also takes place in the regions of liquid-vapour equilibria. Such a 

decrease in the immiscibility of phases for intermediate temperatures 

continues until the fluid phases become miscible in all proportions 

for P* ^ *002.074 . In particular, if P* = .002074 and .002535,

it was found that the components mixed freely for all values of x
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over the temperature range *15 4 T* ^ ' 60. Such features of the 

T*-x diagrams in Figure (26) are found to be very similar to the 

van der Waals mixtures properties as classified by van Konynenburg 

as Type II. This Section then completes the presentation and 

discussion of the results.

3. Conclusions

The results of a model calculation for the mixing properties 

of dipolar hard spheres have been presented above. A clear inter

pretation has been given for the influence of the molecular parameters 

m, Ri > YA*x , Rx on the overall features of phase behaviour of 

three molecularly similar systems.

The properties of the mixture of dipolar hard spheres are 

partitioned into a hard sphere contribution and a dipolar term in 

excess of the hard sphere term. In evaluation of the hard sphere 

contribution to the thermodynamic properties of the dipolar mixture, 

the thermodynamic formalism (Hill, 1954; Prigogine and Defay, 1973) 

has been calculated from the hard sphere mixture results of Baxter 

(1970). Baxter's compressibility pressure is employed to give an 

accurate representation of the hard sphere contribution to the thermo

dynamic functions using the suggestions of Mansoori et al. (1971). 

Supplementary to these hard sphere thermodynamic functions, the 

dipolar contribution to the pressure and Gibbs free energy are 

calculated through the solution of the Mean Spherical Approximation for 

mixtures of dipolar hard spheres. It should be pointed out that the 

thesis divides naturally into two parts: the solution of the Mean

Spherical Approximation for mixtures of dipolar hard spheres, and
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an application of the associated thermodynamic functions of these 

dipolar mixtures to the study of molecular properties and their 

effects on phase behaviour.

The first part of the problem involved the solution of 

the Mean Spherical Approximation for dipolar mixtures. It was shown 

in Chapter 2 how Wertheim's technique for the simpler problem of 

the solution of the Ornstein-Zernike equation for a pure fluid of 

dipolar hard spheres can be extended successfully to the general 

multicomponent case. An important step in the final solution of the 

binary mixture case is the use of Baxter's factorized form of an 

Ornstein-Zernike-like equation (Baxter, 1970). This allows the 

self-consistency equations for the K^'s to be correctly formulated, 

and so the problem of the binary mixture case to be completed once 

these self-consistent equations have been solved for the 

As seen in Chapter 2, the distribution functions , ill, Ca,Six')

are determined, albeit in a rather complicated manner, from 

knowledge of the . The investigation of these molecular

distribution functions is currently in progress by the author. Since 

such detailed information as contained in the ' S is not

required in the calculation of the thermodynamic properties of the 

system, the k^S were used to calculate the dipolar contributions to 

the pressure, internal energy, Helmholtz and Gibbs free energies of

the dipolar mixture.
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A successful application of these thermodynamic properties 

of the dipolar hard sphere mixture has been given for the 

quantitative effects of the molecular interactions on the phase 

behaviour of selected mixtures. It is evident that a combination 

of parameters describing these interactions is utilized rather than 

individual selections of parameters separately. From Chapter 2, the 

solution of the self-consistent equations for required the

combinations £>» and p \y\\ . These parameters measure the

total reduced dipole moment per unit volume of the container.

Introduction of reduced variables defined the reduced inverse 

temperature (2>+= which is also identified as a measure

of the polarity of a molecule of species one (Rowlinson, 1971).

Thus the polarity of species oC arises quite naturally in the 

treatment of a mixture of dipolar hard spheres via the Mean Spherical 

Approximation.

As the polarity of the second component increases relative 

to the fixed polarity of component one, it was found above that the 

increase in dissimilarity of the two species incurred further regions 

of immiscibility in the relevant T*-x diagram. Originally, it was 

thought by the author that dipolar forces might not be sufficiently 

strong to induce phase separation in a system. The model of dipolar 

hard spheres allowed the existence of any phase separation to be directly 

attributable to the presence of the dipole interaction. Such a 

conclusion was based on the evidence (Alder, 1964; Lebowitz and 

Rowlinson, 1964) that mixtures of hard spheres do not show any 

indication of a phase separation. The results of this thesis show 

that even though the dipole interaction is non-directional (in the
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sense that it angle-averages to zero) and weak compared to dispersion 

forces etc., it is possible to observe a multitude of phase equilibria 

between the dipolar hard spheres of each species in the mixture. 

Qualitative agreement is given with the calculations of 

van Konynenburg (1968) provided the relative changes in the 

polarities of the species are used when such a comparison of the 

T*-x diagrams is made. It is relevant to mention here that regions 

of immiscibility of dipolar hard spheres do not exist for the mixture 

defined by w = 1, rfU/yTQ = \*\ , l* 2. , l*3 and I • 4 .

This initial investigation was confined to the ranges 'I0 4T#<*50 

and P* = .000692, .000922, .001153, .001383, .001613, .001814,

.002074 and .002535.
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Chapter 5 

Future Research

There are several interesting areas of research which 

ought to be investigated further.

1. A more intensive study of the complete phase diagram

should be carried out with a view to locating three-phase lines and 

azeotropic behaviour. In making further comparisons with the 

behaviour of van der Waals mixtures, the and bw should be

fitted to the liquid-gas critical parameters as given by H0ye et al. 

(1974) .

2. Before making any quantitative predictions concerning real 

experimental trends, the inadequacies of the Mean Spherical 

Approximation should be corrected through use of the Generalized 

Mean Spherical Approximation of H0ye et al. (1974). This procedure 

would essentially involve the fitting of several adjustable parameters 

defined in the Yukawa correction term. The set of parameters is then 

adjusted to the critical points of the pure components for which 

experimental data of mixing properties are available.

3. The deviations of the mixing rule from the geometric mean 

have been used to explain high pressure behaviour of the fluid- 

fluid critical line. This was possible through the lessening of 

the unlike-species' interaction and was developed for a mixture of 

particles interacting via a Lennard-Jones potential (Neff and McQuarrie, 

1975). For a dipolar mixture, the interaction between molecules of 

unlike species could analogously be modulated as f >yv1
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Although this adjustment of the dipolar interaction is not rigorously- 

justified, the solution of the Mean Spherical Model can still be 

carried through in a straightforward way. In this way, the effect of 

deviations from the geometric mean can be introduced and its 

influence on the phase diagrams can be obtained.

4. An increase in the dissimilarity of the molecular species

of the mixture should allow high pressure-high temperature immiscibility 

regions to be found in the T*-x diagrams. Such regions of fluid- 

fluid immiscibility could be examined from the approach of Neff and 

McQuarrie (1975).
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Table 1

The effects of different interpolation (NINTRP = 3, 4, 5, 6, 7, 8, 

9, 10) and quadrature (M = 4, 8) schemes are calculated for a 

table of ( (3* (p , “ AA#(p } &E*(j) , A P OO
values. Here = j / i 0. , where j = 1, 2, 39. The

values of K*(,p are selected from DI = .005 and N = 40 (see

text in Chapter 3, Section 4.3). The choice of NINTRP = 6 and 
M = 8 for the generation of the AE* table gives excellent

agreement with those values of &A* > AE* and AP* calculated 

from the formulae of Rushbrooke et al. (1973).
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Figure 1

The radial distribution function g(r) for a spherically symmetric

potential.
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Figure 2

The composition plot of the Gibbs free energy for T* = .18,

P* = .001383, W = .99, GMIN = -.17. GXS is given in units of

GMIN.
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Figure 3

The composition plot of the Gibbs free energy for T* = .28,

P* - .001383, W = .99, GMIN = —.21. GXS is given in units of

GMIN.



158

C/)Xo



159

Figure 4

The composition plot of the Gibbs free energy for T* = .38,

P* = .001383, W = .99, GMIN = -.20. GXS is given in units of

GMIN.
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Figure 5

The composition plot of the Gibbs free energy for T* = .48,

P* = .001383, W = .99, GMIN = -.47. GXS is given in units of

GMIN.
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Figure 6

The composition plot of the Gibbs free energy for T* = .18,

P* = .002074, W = .99, GMIN = -.18. GXS is given in units of

GMIN.
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Figure 7

The composition plot of the Gibbs free energy for T* = .27,

P* = .002074, W = .99, GMIN = -.24. GXS is given in units of

GMIN.
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Figure 8

The composition plot of the Gibbs free energy for T* = .38,

P* = .002074, W = .99, GMIN = -.26. GXS is given in units of

GMIN.
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Figure 9

The composition plot of the Gibbs free energy for T* = .48,

P* = .002074, W = .99, GMIN = -.43. GXS is given in units of

GMIN.
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Figure 10

The composition plot of the Gibbs free energy for T* = .18,

P* = .001383, W = 1.0, GMIN = -.22. GXS is given in units of

GM1N.
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Figure 11

The composition plot of the Gibbs free energy for T* = .28,

P* = .001383, W = 1.0, GMIN = -.24. GXS is given in units of

GMIN.
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Figure 12

The composition plot of the Gibbs free energy for T* = .38,

P* = .001383, W = 1.0, GMIN = -.22. GXS is given in units of

GMIN.
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Figure 13

The composition plot of the Gibbs free energy for T* = .48,

P* = .001383, W = 1.0, GMIN = -.50. GXS is given in units of

GMIN.
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Figure 14

The composition plot of the Gibbs free energy for T* = .18,

P* = .002074, W = 1.0, GMIN = -.23. GXS is given in units of

GMIN.
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Figure 15

The composition plot of the Gibbs free energy for T* = .28,

P* = .002074, W = 1.0, GMIN = -.28. GXS is given in units of

GMIN.
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Figure 16

The composition plot of the Gibbs free energy for T* = .38,

P* = .002074, W = 1.0, GMIN = -.29. GXS is given in units of

GMIN.



184

X
 

ID

(D
 

Xo



185

Figure 17

The composition plot of the Gibbs free energy for T* = .46,

P* = .002074, W = 1.0, GM1N = -.42. GXS is given in units of

GMIN.
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Figure 18

The composition plot of the Gibbs free energy for T* = .18,

P* = .001383, W = 1.01, GMIN = -.27. GXS is given in units of

GMIN.
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Figure 19

The composition plot of the Gibbs free energy for T* = .28,

P* = .001383, W = 1.01, GMIN = -.28. GXS is given in units of

GMIN.
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Figure 20

The composition plot of the Gibbs free energy for T* = .38,

P* = .001383, W = 1.01, GMIN = -.26. GXS is given in units of

GMIN.
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Figure 21

The composition plot of the Gibbs free energy for T* = .48,

P* = .001383, W = 1.01, GMIN = -.54. GXS is given in units of

GMIN.
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Figure 22

The composition plot of the Gibbs free energy for T* = .18,

P* = .002074, W = 1.01, GMIN = -.28. GXS is given in units of

GMIN.
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Figure 23

The composition plot of the Gibbs free energy for T* = .28,

P* = .002074, W = 1.01, GMIN = -.32. GXS is given in units of

GMIN.
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Figure 24

The composition plot of the Gibbs free energy for T* = .38,

P* = .002074, W = 1.01, GMIN = -.33. GXS is given in units of

GMIN.
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Figure 25

The composition plot of the Gibbs free energy for T* = .48,

P* = .002074, W = 1.01, GMIN = -.49. GXS is given in units of

GMIN.
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Figure 26

The temperature-composition plot of the mixture characterized by

XM = 1.5, W = 1.01 at P* = .001383 (...... ) and P* = .002074

(xxxxxxx).
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Figure 27

The temperature-composition plot of the mixture characterized by

XM = 1.5, W = 1.00 at P* = .001383 (..... ) and P* = .002074

(xxxxxx).
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Figure 28

The temperature-composition plot of the mixture characterized by 

XM = 1.5, W = .99 at P* = .001383 (.....) and P* = .002074 (xxxxxx)
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Appendix 1

Finite Volume Corrections to the Pair Correlation Function 

and the Helmholtz Free Energy

The calculation of the thermodynamic functions in Chapter 

1 assumes that the finite volume (i.e., surface effects due to 

the long range nature of the potential and of the correlations) effects 

vanish in the thermodynamic limit. For convenience here, the thermo

dynamic limit will be taken to be the limiting behaviour of the 

property being considered in a finite volume V as V approaches infinity 

at constant density p. The requirement of constant p implies that 

N changes as pV as V —co . The thermodynamic properties of 

the dipolar fluid in a spherical container of finite volume V are 

summarized in the Helmholtz free energy of the finite volume system.

This will be calculated first and then the limiting large volume case 

considered afterwards.

The Helmholtz free energy of the dipolar fluid in excess 

of the "uncharged" hard sphere fluid is AA , where a charging process 

involving the coupling parameter gives the expression

(Nienhuis and Deutch, 1974) :

== saTT2 io ^ ^*

For a finite volume sample,

+ Ah >
where is the infinite volume result (equation (19), Chapter 2)

and AVi is the finite volume correction of Wertheim which is
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Ah ■ (Si-vOCsj.^O £. (t+O f^Tp,fllaS^C'S) «-< ft^-0 ’ *
where

% = -(le+o/n + (e+o^-^1,

G?t = rf r* ?ttcose^/Aie+'
and tj. } C^(.S§'), <^C_£) are independent of volume. The result is 

specific for a spherical container of finite diameter A. From 

Chapter 2 , equation (6) can be substituted for , evaluation of

the angular integration Jd-ffi d-Jlg. VCK^Sli^Slf) OC-Q. 1> ilj, ^lr) = 32TTV3 

gives

(JAA = - 4TT pmV V £* dr,* ** Mruitf

+ CdA Jdqdu,d^.diU AW r
'S^TTa

-3,
U

The restriction on the spatial configurations in the second term is 

fh<A » ra. < A and ria> ^ • If the limit V-> co were now taken, 

the Helmholtz free energy of the infinite system would go to infinity 

as V. However the free energy per particle N is bounded and is found 

to be

Him, ftAA - - A^fem^p C dAKtt)
V-.00 N 3 Jop -f (xe<i
M=pV 4 cgmt (3\ dA ^dHi dG^dila AVi r£

p^a 3™1N 0
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vv*where h>(?0 = iim, f <jLr r~1 V) • The firstV-*oo J R
term is the infinite volume result of Nienhius and Deutch. The 
finite volume correction to the Helmholtz free energy per particle 
vanishes in the limit V—*• co . This is seen in the following argument.

klr\ is of the order V'1 ^ A"3 from \7i Q t = 0 ( (fi”1 r|”')/A‘2*+0 = 0 (fl-5) 
for si O (A) • Then the integrations over r-j and
can be changed to r1SL and r^. since we are only interested in an 
order of magnitude calculation involving the translationally invariant 

Ah . Using

rilAh - A’3 A3 i(v"7r) ,
one is lead to seeing that the finite volume correction goes as

N ^ ( V 1/3/fO - CV pi l/Vl Cv',3/p)as V oo . From L’Hospital’s
—|rule V &VT \J~* O as V —► CO . Thus the thermodynamic limit of the 

Helmholtz free energy per particle {3AA/n is given by consideration 
of the infinite volume distribution function result in the calculation.
No surface effects are important in the mechanical thermodynamic 
properties of the system as can be shown by repeating the foregoing 
analysis. Therefore the internal energy per particle, the Helmholtz 
free energy per particle, and the pressure are correctly described 
by consideration of the distribution function of the infinite system 
only. This is in distinct contrast to the calculation of the dielectric 
constant by Wertheim where the finite volume correction to the 
distribution function is of paramount importance. The generalization 

to the multicomponent case seems immediate.
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Appendix 2

The Operational Methods of Wertheim

This Appendix gives a lengthy discussion on a possible 

motivation for the introduction of the operator formalism of Wertheim.

The motivation is given by the consistency of the Hankel inversion of 

the equations for the Fourier components hmiAC' (VO and Cmn^C^O

The Fourier transform of the indirect correlation function V\ (Hi, ill, r') 

can be written (Blum and Torruella, 1972; Adelman and Deutch, 1973) 

as V\ K> where

V\C?Ll,n.x, K') = (2.1)

Using the invariant expansion of Jl.i*"r) in terms of the

? fif) , the integration over orientations of the
* —♦
? direction, _flr , is carried out using the Rayleigh expansion of 

giK-r in terms of the generalized spherical harmonics, (-fir)

(Abramowitz and Stegun, 1968). Substitution of

e L K-r OO

- Z L
L-o Iw !<£,

(ae+'i") il jt(Kir) Vml„(SLK) Vj'Cfir')

where ^(KyO is spherical Bessel function of order 1 and K = \ K \ 

into equation (2.1) enables the orthogonality of the (Hr) *S

to be used in the integration over Jlr . This gives

h&.iu.K)- TL hMne(K)
w,n,£

where is t^e one dimensional Hankel transform of

of order 1,

(2.2)

WnnlL\0 = ffl il !\0 dr rr ji(Kr> hmne(Y\) . (2.3)
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Use of (2.2) in the Ornstein Zernike equation, followed by projecting 

out the dependence gives equation (8) of Chapter 2. In the

case of the Mean Spherical Approximation for a fluid of dipolar hard 

spheres, it can be seen from equations (13a) and (13b) of Chapter 2 

that there are products of Hankel transforms of mixed order, 1=0 and 

1=2. Thus, Hankel inversion of these equations is not straightforward, 

A consistent inversion scheme is accomplished by inverting both 

equations with respect to the zeroth order Hankel transform. The 

inversion of h°(vO ( h "a(VO) with respect to jo(K*0

then defines a new function as

kDtyO = lair*)'1 So dU K1 j.tkO (2.4)

where

h°(.V0 = - 4H fdy r1 jaCKr) h9(v) (2.5)

The Hankel-Bessel transform of P^tr) is and,

by definition, is given by

K°(vv) = C dv r1 jotKO h°(o . (2.6)

The substitution of equation (2.4) for in equation (2.6)

and use of the Hankel-Bessel inversion theorem gives the identity of 

Vq^tvO and :

k°(W) =
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Multiplying this equality by X) (JLi,-fi-a, ,

it can be seen that and h°(V<') ilvt')

give identical contributions to h (ill, JT-a> K) . However, the Fourier 

inversion of these equivalent contributions give quite different 

representations of the corresponding contributions to h (JT-j, Hi, 7"). 

The equivalence of these contributions in r-space and the use of the

Hankel-Bessel transform of order 1=0 (equation (2.6)) for the ta°(W) 

term provides a possible motivation for Wertheim’s operational 

techniques.

Fourier inversion of h°(VO DK (ili} iia, Hk) gives
in°(y") J7.a>-O-r") trivially. However Fourier inversion of
A ^ ^
h ^IvO JT-i, ila, JIk J # which is equivalent to inversion of

equation (2.13) multiplied by C-H-i, , gives Wertheim’s

operational approach. The substitution of ♦ (3 K K - ) * SA

into the integral giving the Fourier inversion of h°(vO 

is given below:

—w —*

Ip - h°(lO It.-litO

= ^0i)K KlK°(^ sitaO* [ SdiLKC3P< R - u) e'L*'r] • sujio.

The right hand side of Xp can be rearranged in terms of V< rather 

than K giving

Ip- full-0- [ dK tnD(K) (3KK- WU) e'LK V] • SxCSU)
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In order to introduce the V operator in Wertheim’s 

analysis (Wertheim, 1971), the following identities are employed 

in the integrand of the integral over JlK :

V = — k iA e" 'M"'r

v'e-^'7 = -k* •

These equalities follow directly from V & " ^ r =• - i V< S ~t r .

The integral I0 can then be written as

= - 41T Si (AO • (-3W- U Vp-FilAo) V dK Wo jpCUr).

The final integral over k is not quite the Hankel inverse transform 

for V? (r) : a factor of K1 is missing. Defining Hp(vO=- taP(K)/k 

allows the Hankel inverse transform of H°CVO to be carried out, Xt> 

can then be written in terms of HpCO and V as

Ip = -4-it ?KAiM3VV-yvl>Sx(A0 J”dK vC jolKr)

= 4TT S^AO-OS?^-y tfO-fzUlv) J dK K1 H°(K~) jo(Kr)

- T)op ^7)

where

Hc(yO = 4TT <dk K* H^OO ]0Ckv) ,

= sicao • [3 V V - u vD-skcSo,
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and
KxHp(VO=- V°L\0 (2.7)

The analogue of equation (2.7) in r space provides a 

relationship between H°(y9 and . Equation (2.7) can

be inverted with respect to the zeroth-order Hankel transform to give

= - <SK K1 jo(Kv') hD(K') •
Using V1 jotKO + K1 joCKr) =0 in the integral involving

K^H^(VO gives

. (2.8)

At this point in the presentation of Wertheim's operator 

formalism, it should be mentioned that the operator D0p and an 

associated function H^Cy) (and also C°(f) ) have been introduced

(cf. equations (15) and (16) of Wertheim's (1971) paper). As shown 

by Wertheim (1971) , the operators allow the angular convolution over 

_0_3 in the Ornstein-Zernike equation to be performed. The resulting 

Ornstein-Zernike is given in terms of ln^(vO and C°Cv") (or V\p(VO 

and C°CV0 in k space) rather than hP(Y^ and . Thus the
A

relationship between In d(y') , H^Cy) and Kp(y") must be established

in order to apply the original closure rules (given in terms of W^ix) 

and c^Iy) ) to the new functions hP(Y) and C°(y) of the 

reformulated Ornstein-Zernike equation (cf. equations (25) and (29) 

of Wertheim's (1971) article). Provided the reformulated Ornstein- 

Zernike equations for hp(f) and CpOO can be solved, the 

transformation between hD(t) and hp(t) (with an intermediate

step) then allows the radial coefficient hp(r") of the pair
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distribution function to be determined. It should be noted that 

greater emphasis has been placed on the D-component of the distribution 

function rather than the spherical and A -components. This is due

to the angular dependence of the latter components being independent
—*of the r direction. The Fourier and Hankel transforms of these 

contributions are then determined in terms of j0(.Kr)

The reformulated Ornstein-Zernike equation in r-space is 

obtained here through Hankel inversion of the set of coupled equations 

in k-space. Our convention is to use the zeroth order Hankel 

inversion of the k dependent equations - equations (13a) and (13b) 

of Chapter 2. Such a procedure can be performed and the resulting 

equations are rewritten in Wertheim’s notation:

WHO -c'Hv) =
3 (2.9)

VMy) -cHV) = £ ( * cD + WcA +

where Y[-%c = ^ d?3 WCva') CCVij").
The important variables in r-space are certainly seen to be V\ Or)

(V) } rather than and . Thus V\p lr") = V1Hp(r)

is a natural function, being the fundamental quantity in the 

reformulated Ornstein-Zernike equations above. Since the thermo

dynamics and boundary conditions are formulated in terms of h^Ct") 

and Ct>(x') , a transformation between hP0O and is required

to complete the problem. This relationship is given by considering 

the inverse Hankel transform of H°(V<")= — h°(K')/ Kx . Then

Hno = (aniy' IT ^ H°(v°
“ Tf- Cif. r. hp(r0) J* a« jotKiO jiCKO
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where equation (2.5) has been used to replace HP(K) = - V\°(K)/ .

The integration over k can be reduced to standard form (Watson, 1966) 

by defining

Ilr.fo-) - C <1K h(KO

- —n— f* dv< K"' TjlCmO TsCKO
Itoro'i 1 Jo

^ (rV»rl) if ^>0
q o+V\eYwis© ,

This then leads to

H°tr) - i ar0 Vip(0 Cr\-r0/ro

Application of V2- to this equation gives the required transformation 

between — V1 H^tv) and In^CvO as

- 3 Jr oLy0 ^p(v‘o‘)/r0 . (2.10)

From the above equations, the D-component of the correlation 

function is h0(O D(.Jli) _fLa, -ilyO or equivalently

D0pLfLi> V) H^Cv) . This equivalence is not fully appreciated

at this point, but this subtle reformulation does allow the angular 

dependent Ornstein-Zernike equation to be solved in r-space without 

Fourier transforming back and forth between r and k spaces. Before 

giving the details of such an approach, an operational form of A , 

A0p(Jl 1j-TU? V) HA(r) , is given in order to write h and c in 

terms of the operators A0p and Dop . It can be seen from 

equation (2.3) and the convention of using the zeroth order Hankel 

transform throughout that the operator A0p is easily seen to be 

SiCAO * . Alternatively this is given in a
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"correspondence principle" that follows from the definition of D0p 
in

Since k^tJUiSlx, jlyf) = A fill, itr”) = Si (.-Or)• S^(-fix')*

&opV ) *--* K Slt-H-V)* S-xtSlx)
and so

H0?Lsihsiiiv') =
The above heuristic argument for the form of the operator

can be made quite rigorous by following the Fourier transform of

(t') A (Tf-i, and subsequent inversion. Since most of the
important steps have already been set out in the introduction of the 
operator D0p , the Fourier transform of hM*') A C-Slij-H-i, Sir) to 
be inverted is WHvO A^(-0-1 ■> ilao •fl-vO where

A ^ lTLa, ilk') — "S<\ (-A.0 . Sit JTgJ)
and

W4(.VO = 4tv C dv ^ h*lO
The inversion of Ay< is then given by

e_l,V<’r V^HvO AKUtl,3-a>3W>

=• ^olk K* WMk) K
o

=s 4TT dK Ka W*(v<) JqCKr") S\(JK). Si(ik).

At this point, Hankel inversion gives W^(r") Si (ilO • as

expected. However introduction of the function H^CV0 = - -^(VO/K7- 
and use of V*jotKY0 4- ka = O gives the above inversion
as

S^ivf) -skcHx) V^H^CvO



220

where = 4TT So dK Kl j o ( WO , (2.11)

and it can be shown that

ViA(vO = v'WHv) .

Obviously the definition of hA0rl is unnecessary since In^CvO 

is a zeroth order Hankel transform anyhow but it is given for 

completeness as

wc>(.v')= WHO = V1 RMO . (2.12)

This shows that

&0?(SLhsi2rnr)H*(ri = ACiti, h*(YO (2.13)

where A0p (Ju;SL\, V) is defined by

^op (3"ti, — Si(j‘LV') • Sa(-fLa) V3*. (2.14)

With these operators A0p and Vop , the correlation 

function h can be written either as

— hs(ryL(£i,xt*,iI.r‘) + WM’O Mif,, ju.fto 

+ W’l'T)

or

+ Up(3.i)?u,‘t0 R°0r\(2,i6)

In equation (2.16) the identity operator Xop = 1 is trivially

introduced and thereby V\s(r>) - VAsCyO . Similar equations can

be written down for c (r*A, Tl, 5x0 . As mentioned previously the 

operational form of the expansion for h and c allow the Ornstein- 

Zernike equation to be solved without recourse to Fourier transforms.
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This then facilitates the application of the closure rules (of the 

Mean Spherical Approximation) which are formulated in r space anyhow.

If the expansions of the form (2.15) for h and c were 

substituted into the Ornstein-Zernike equation, the angular expansion 

of the convolution term in the equation is very inconvenient. In 

particular the angular part of any convolution of a D term with a 

A or D term is dependent on the orientation of vector in the

spatial part of the convolution. This is seen in, for example, the 

more complicated convolution of D with itself:

$ d-fts 'DClti, TX-fl4,jU,JV3a)
= \ cLAs SaUi-T) * (3 Y\sY\a - uV S3(its). u)-SiCSii)

= (2.17)

where the result ^dLfL«, S^Clly) S;j(JLi") = 4TT U / 3

has been used, and the resultant contraction carried out. This result 

of the angular part of the convolution over all orientations and

positions of molecule 3 is very complicated expression for the

spatial part of the convolution i.e., integration over r3 . Steele 

has shown how to solve a simpler problem by elementary changes of 

angle variables (Steele, 1963). However the resultant complicated

algebra can be avoided if one notices that the above contractions in
A Aequation (2.17) can be carried out if the and r3a. directions

were replaced by a common vector. This is exactly what happens if 

the Fourier components Jlj ,31*') were convoluted over

Jl* rather than , 31$ , 31- .)r<0 The convolution over
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JIj is then simplified to

^dil3 JI3, .fix') Dk( JI3,JLa,-£2vO
= ^ Si • (3 KK - U V (3^R - -?a,

= ^ Si • (3^^ 4- UJ.SX

3" 0\< (Jli5 -^■2-5 dT-k) + 3. A ^ (Jli, -fl-i)

where the definitions for Dk and &k have been used to simplify 

the result. This suggests that a closed form convolution is possible 

in r space if the "correspondence principle" indicated previously 

is employed. In other words, the angular convolution can be carried 

out in the operator format of Wertheim since the directions in 

equation (2.17) can be effectively replaced by the directional 

derivative operator v (and V2X ). These operators give the
—y _>common vector required in equation (2.17) since V(Jl s = ~VX 

allows ^7ia, to serve the same role played by K above. The 

direct substitution of the operator form of the expansion of the
—fcorrelation functions into the convolution over _0-i, is given in 

Appendix 1. Needless to say, the same convolution properties 

prescribed by the "correspondence principle" above are found.

The convolutions over Jlj of the remaining products of 

angular functions are much simpler, at least in k space. Allied with 

the "correspondence principle", these results complete the solution 

of the problem of the convolution part of the Ornstein-Zernike in 

r space. In k space, the convolution properties are
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J CLSI3 XK(ili, Xi-3, 510 IkXO-3, Sli7 510 =. 4 u 1^ (51i,

\ dJl3 I04li, 413, 510 Z5k (JI3, ila, 510 ~ Jdils Ik(Jli5il3,5l0Dv<(51a,5lx,5lfc)

- 0

^dil3 Afc(ill,5X3,410 Ax(41s, ill,410

^ oL4l3> A 0Jli,-513,510 1)0513,411,510

^ Ak Ull, 513,510

Si (JLO * L|dil3 53(513") S3( Jlj)] * 

■ (3 K K ■ U") *^x(5l0

^3" T)k (ill, 41a,41y0

and from above,

JdS.3DKtJii,ji3)il^:DKCS3)^^ = 4n:[T>K(ji',:?u,-rtK)
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Appendix 3

The Convolution Properties of I, & and D

In this Appendix, the angular convolution of the operators 

in equation (28) of Chapter 2 will be detailed. The radial 

dependence of these operators will be omitted for simplicity.

Any convolution involving the identity operator vanishes. 

This is due to the first of two useful integrals,

Idil3 S(-JW) =* 0 (3.1)
and

4&U (3.2)

where 0 and U are the 3x3 zero and unit tensors, respectively.
/V A/

All other convolutions can be systematically evaluated. The basic 

technique will be given here for the most complicated case involving 

• From the definition of Dop ,

DopUi,3h - (3^13 - y v,;) ■
(3.3)

** (3 - V

The use of equation (3.3) simplifies the convolution D0p*"Dop:

=»suitO- U $dJt3 •
x ( 2> ^3a.^3a ' y ’ Si (-fix')

= si(jTo-(3y,y4-uV,,)- • (3%^-u
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Since D0p operates on functions of r only this allows the 

transformation of to V,a and to ~ V|JL and the

contractions to be done in terms of . Then

Dop (-^-1,'Dop(.j •Sa.')op«

^ siuTo- (3^^^ + y v") • sa(jta)

3 ^ + 5. £i0p Ma *T—j'T
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Appendix 4

The Orthogonality Properties of I, A and D

The orthogonality relations are again based on equations 

(3.1)and (3.2) given in Appendix 3. Equation (3.1) can be used to show 

the following orthogonalities :

i'^ dili cLD-a I0p ^ill)-H-Sl') Ao

= S' J dili d-TLa. lop (ill, D-v) Dop 

= 0 .
-♦ —> —*■ —>

The kopC-H-l, jfLa) and D0 p C-H-i , A-x) are also orthogonal as follows 

Commutation of the dot product in in

S SeLitidLjta (siuV). SxUlOVz) ^UUV^V^-y^-lkuii)

= v* (<*•■&>■ sttAo • SiIsia) s\ (Ao • (3^^-uy1).
* Ss.(Jti')

= ^ ^(3v-(jdiiaslisLi-)$*(sLS)-v - Vx$dULa)

= Va(3- ^ 7-V - UTTV1)

= 0 .

Similar operations on the products lop lop 

and D0p D0p give non-vanishing results.
> A0p Aop
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Appendix 5

Uncoupling of Equations (40) and (41) of Chapter 2

Equations (46) can be solved for and K (r)
by inspection to give

K^Or) = a ( i
and

(5.1)

(5.2)

A ^Similar equations can be written down for (.V-)

c&(r) When these equations for (r)
and

and C (O
r\ ^ ^
ho<p> Or) and (O are substituted into equations (40) and

(41) of Chapter 2, one obtains

^(A|3 d(J + 21 P'S" (■ ^ KlU * +

and (5.3)

aVCp * = ac^ + c^ + x - H~Y*c,p)
(5.4)

Linear combinations of 5.3 and 5.4 then give the following independent

equations for and Iq

“ + %- fa ft) * Cyp

hc(p — ■+ 2_ C-p*) ^
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Appendix 6

Solution of Equations (72) and (73) of Chapter 2

Equations (76) and (77) can be obtained from equations 

(65) and (73) by taking the linear combinations as defined in 

equations (74) and (75) . Multiplying equation (72) by and

adding twice equation (73) gives

Rd + abo<p> = + 2^ "g p/* Rd + aboi*) # (6.i)

Using equation (74) allows this to be rewritten as

Atfp = Rd + Ad-y (6.2)

from which equation (76) can be immediately written down, using

y cT'gjj . Performing the linear combination

of equations (72) and (73) similarly gives

(2> R^ + ftp) CX^p, + G by p

= (3R^4RP) + R>[(3a,vl^Rp
(6.3)

+ Q-oor Rj Rp + 6 b„u Rp) + (3CLoe$ R^Ri +6 VxrtRy)j.
Using equations (74) and (75) again, this equation can be rewritten in 

terms of and as

Baa = i-v + TL "g Ps^ +^ ■y-i

^•5 can incorporate the £>dp on theThe sum over *tf involving 6

left hand side of the above equation by using =■ S\a Br 'x
This then allows equation (6.3) to be rewritten as

V (

(B Rd + Rp) + 3 ^ R ^ . (6.4)
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This is equation (77) in Chapter 2. Equation (62) is to be solved 
for the which are then used to evaluate the right hand side of
equation (6*4) . This procedure allows the 3*^ to be determined from 
the . However a different approach is adopted here: equation
(73) is solved for the botp given Ao(p from equation (6.2), and 

30given from equations (74) and (75).

The explicit details for the solution of equation (6.2) will 
now be given. For binary mixtures ( ) equation (6.2) can be
written out as two independent sets of linear equations to be solved. 
In matrix form,

l ^ Rl 0 0 A„ Ri

O 0 A« 6
0 0 fplRi Aai l?i

0 0 f&X Ri

It is clear that the sets of unknowns Ap , A12 and A-21 , Aix
are independent of each other, reducing the problem to two 2x2 matrix 

inversion operations. From Cramer's rule it can be shown that

Au = Cl + £ Kk/dCiilcih -0)__________,
l + pvKufii (l- Ki-^(pi KuK?+ PiAuRi)

An —__Ei___________________________________________ .____
I + ^'fttiiR^PiKu.RKl-Ka/tokrai')')-^ (PiKuR?+ PiKuRl)

A91 ____________________________
1 4 34 PilCu^PifeiRKl- ka/CknKn)) - £(pilCi\K?+ (VWi)
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and

k12 Ri(l + 1 p,KnR'(K!t/(Kn^ - O)

I +^p,v;ufi|f\KxiK\(l- Ka/OciiKiii)

These explicit expressions for An , Ait. , A21 and Axx

are given in the general formula

where

K, (1 + - is)

\ - S31 + A

§f “ II pf R\
and

A — P»KuR? pzKaiRa. ( 1 " Krc./(Ku Kxxj) .
In order to determine , equation (73) is solved for

in terms of the above and 6^ is then determined from

equations (74) and (75) as

(6.6)

3A„,p + (A^ -ah^Rp/R* •

Equation (73) is rewritten in terms of the Ao(p as

bo<0“- "g RlS bott
P >l

Direct substitution of o<> ^ = 1, <3. 

matrix equations. These are

t; Ro( Z | (6-8)
Y-l

then gives two independent

ipl'tfl " U = 3 Ri
0

£-pl Ri All + f p2 Rt-A|x
blSL

cL

■grPp R^Am + ^ pi1 R\ Aii
(6.9)

id

JaP^R*

¥ P* f?l

fprfc-L
bai
bij L_ _]

_ 3R1
a W*X, + $P*&Aaa 

All + ¥ paXAia
(6.10)
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Application of Cramer’s Rule then gives

= %Ri( Anl?i ^KiRUpl'pf-pl'p!1) ~f p, RlAn -

1 - it + A

bia = a Ri ( Aia Ri ^ RKp't Pi - Pa pi ) ~ - "sP-TpS Ai)

1 - fs + A

b„ = l Rac Aa, & t prpr) - ? pX a* -1 p" riau)
1 - ti + A

ha - 3~fe (AaaR, pfp?)-fcpf RX - fpf&Aza)-
1 - t'i +■ A C6.ll)

Study of the equations above leads to the general form of

^|3^3 — -2- (9 
2. KoC Aq((3 A __ foRp I*? 4. A Rp 

X) Xa tDx
(6.12)

where X — (1 - + A") has been introduced. From equations

(6.6), (6.7) and (6.12) it then follows that

D1 j)

_ 3A(ft,+R») _ 3ARrf(g^-g?) (6 13) 
D1 V3-

The first two terms in equation (6.13) are obtained in the equal 

radii case where A = 0 and X> =■ 0 ~ §3*0 > and also for the

simpler case of hard spheres, studied by Baxter (Baxter, 1970).
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Appendix 7

The Dipolar Contribution to the Gibbs Free Energy 
of a Mixture: AG = AE

The dipolar contribution to the internal energy of a 

mixture is A£ where A.& per unit volume is given by

4E = 41 I VplPp "'UWpVpTpp . (7.1)
V 3 0^(3

From equations (86) of Chapter 2 and (38) of Chapter 3, it can be 

seen that V Pp> K<*(3 (under the guise of K* , Kal and A ) are
functions of j2> ~V lOloiPOp . For fixed values of molecular

parameters R,* and PA* , "V P* Pp> V<o<f3 and AE/v are functions 

of ( 13/V , N| , Kli ) where is the number of particles of

species present in the mixture. Such dependence is accentuated

in equation (7.2):

AE = (N.,Ni,(iA/) .
V V

Equation (7.2) is a relationship giving /AET/V as a function of 

the product of temperature and volume. Such a degeneracy in AE is 

conferred on other thermodynamic properties in excess of those of the 

hard core reference state, among which are AA/v and Ap . Equation 

(7*2) is not specific to the excess dipolar properties as developed 

in the Mean Spherical Approximation but the resulting degeneracy 

of the excess thermodynamic functions is found generally in solutions 

of the Mean Spherical Approximation (Wertheim, 1971; Waisman 1973a, b; 

Waisman and Lebowitz, 1970, 1972a, 1972b). This degeneracy phenomenon 

is basically attributed to the product of independent variables of 

the form density x molecular well depth x temperature*1 entering the 

self-consistency equations found in the solutions of the Mean Spherical
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Approximation. A physical explanation as to why this is so has not 

been fully appreciated as yet.

The pecularities of the dependence of AE/V on (3/V are 

detailed in the derivation of the dipolar contribution to the pressure, 

Ap . This is given from exact thermodynamic relationships, 

employing equation (7.2) for AE/v . Equations (7.3) and (7.4) 

give the dipolar contributions Ap and A A in terms of AE :

Ap = _ ( 3 AA) , (7.3)V 3 V J NijHi, |3='/(KT)
where

pfcA(Ni,N»#\jp)- dp' AE(Ni,m,V,(30 . (7.4)
Straightforward substitution of equation (7.2) for AE into equation 

(7.4) which is then substituted for AA in equation (7.3) gives

-Ap 'd
W V. ^ dp' AE p'/v) | (7.5)

3_3V -p- Jo d(p>'/V/) AE(Ni,Ni,|57v)
(7.6)

The volume derivative simply gives

- Ap - | - AEKni^A/)

AAV AEV (7.7)

where the equation (7.4) is used to obtain the second equality. 

Rewriting equation (7.7) simply gives

AP AE AftV V (7.8)
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In comparison to the excess thermodynamic properties (excess being 

over the reference state of a hard core fluid) as given by equations 

(1) - (5) of Chapter 3, where the equality

&(3r = A A + V Ap
has been given, it follows that, within the Mean Spherical Approximation,

A(j =• AE • (7.9)
Other thermodynamic pecularities of the Mean Spherical Approximation 

have been given by Rushbrooke et al. (1973).
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Appendix 8

Excess Gibbs Free Energies for a Mixture

For a mixture of any two species characterized by Mi , Ha , 

p , and T, the excess Gibbs free energy, CMi,p of the

real mixture over a mixture of ideal gases of the same number and 

type of molecules, pressure and temperature is

S^(Nt)N1,-p7T>= <XmixttNljNi)p/T'> - G^'(Ni,Nz,p/T). (8.1)

Similarly, the Gibbs free energy of the pure component o( , in excess 

of that of an ideal gas with the same number of molecules and

under the same conditions of pressure and temperature is

(8-2)

In the above equations, Gr?0f^ )0t CNoi, p,T") and

are the Gibbs free energies of the pure unmixed component o<. and the

mixture, respectively.

A further property which proves most useful in studying 

thermodynamics of mixtures is that of the change in the Gibbs free 

energy on mixing. This gives the difference between the Gibbs free 

energies of the mixture and that of the sum of the separate pure 

components before mixing. The Gibbs free energy of mixing is denoted 

here by AG- and is defined in equation (8.3):

~ 51 ^pore,c*(N°G p,T"), (8.3) 

where is the mole fraction of component in the mixture.
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A <3r can also be expressed in terms of the more useful 

excess properties defined in equations (8.1) and (8.2). For a 

mixture of ideal gases, A.G* is simply MKT ^L. X*ot
(Hill, 1964). This is used to simplify the following ideal term of 

mixing,

AG'^Xn^n^t)
= -Z- CN,1?,T)

= N KT 21 , (8.4)
oC

where N is the total number of molecules, Nj + Ni . In terms

of the excess Gibbs free energies, the change in the free energy of 

mixing is then

AG = Gm^ ~ Z X* CNo,'PT

+ NKT 21 Hn\XA ■ (8.5)
oC

The criterion of diffusional stability is usually given as 

(Rowlinson, 1971)

(> o. <8-6>
['d x1 J
V y ?,T

However, it can be shown that AGrCNijN-i., p, T”)* and not

, has the same curvature as G(TUyt(N\JN2, p,T). 
This is given in the following:

fa7- ag
(8.7)
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Fortunately, equation (8.7) permits the calculable A6r (Ml; p, T) 
to be used in the diffusional stability criterion in place of

J ^'l> P' • More importantly, AG only differs
by a linear term in x, at the most, from G • Thus the

application of the common tangent construction of Chapter 3 to

applies equally well to A Or : the additional constant

term is defined at both composition values to have the same slope.

Returning to equation (8.5), we can define a further excess 
Gibbs free energy, denoted by GE(H\,N-2.,'pjT') , as the difference 

between the free energy of mixing for the real mixture and that of the 

ideal mixture, at the same conditions of N| , Ni , p and T . The 

definition of Ge in terms of AG and AG and the

substitution of equations (8.4) and (8.5) for these quantities leads 
to an expression for GE in terms of the appropriate Gibbs free 

energies minus the corresponding ideal gas terms:

Ge(N1)Nz/p,T) = AGCNijN^-p/T) - AG'dea'

=GrWxt -21 X* . (8.8)

From equations (8.6) - (8.8), GE and AG are simply related 

by the entropic term of ideal mixing, viz.,

AG = GE + NKT ^ . (8.9)
<*

The above equations were developed by Neff and McQuarrie (1975). 

Unfortunately, only one of , AG and GE can be used in the
common tangent construction and stability criteria: the choice being

AG • The Gibbs free energy of the mixture as defined in
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equation (8.1) is in excess of the ideal mixture property and so 

contains the nonlinear entropic Mx In xM term which is undesirable 

for the common tangent construction. The change in free energies 

AG- and GE as defined here in equations (8.3) and the first 

equality in equation (8.8), respectively, are identical to the 

quantities G1^ and GE in the treatment of the thermodynamics of 

mixtures of Henderson and Leonard (1971). However no relative ideal 

gas terms are subtracted within their formalism which concentrates 

on the criterion that Ge > NUT/<2. is an indication that phase

separation may occur at the values of p, T and x being considered.

gas state can be defined such that it can be used in the stability 

criteria (c.f. equation (8.7)) and, more importantly, from the view 

of coexisting phases when phase separation has taken place (i.e., the 

stability criteria is violated) can be used in the common tangent 

construction to obtain the equilibrium compositions of the coexisting 

phases. The motivation for this new excess free energy can be taken 

from the equation (8.3) defining the Gibbs free energy of mixing, AG 

Equation (8.3) can be rewritten as

An excess Gibbs free energy for the mixture over some ideal

/^Gr — GmiVt (NijNi,p,T) — 21 Xo< (No(,/plT) 
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. r \dea\where X<y ^fpureyot has been added and subtracted to

the right hand side of equation (8.3). The terms in square brackets 

are now identified as the Gibbs free energy of the mixture in excess 

of that of the unmixed ideal gas components containing the same

numbers of molecules Net at the same p and T. This defines the
ex *quantity G Na, p)'T') which is now given by

= - Z** Gpt*e',cltNo,>P)T>
(8.11)

In terms of Ge** the excess properties

G , AG and GE are now given by

= GZt ~ mT Z > (8-12)

&& = — Z X* G-pwejw > (8.13)

and sE = g-; - z x.
— NHT Z_ X* finX* • (8-14)

c*
In the above equations the arguments N\ , Hz , p and T for the 

mixture and Ny , p and T for the pure functions have been omitted, 

van Konynenburg (1968) has introduced a similar unmixed ideal gas 

reference state but at a different pressure than that of the mixture.
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Several other authors (Rowlinson, 1971, Guggenheim, 1967) have 

formulated Gibbs free energies of mixing and their associated excess 

quantities over the ideal mixing quantity in terms of chemical 

potentials and activity coefficients. According to Rowlinson (1971), 

the chemical potential of the p<+Vl species in a mixture at conditions 

of constant p and T, and composition x= N2./(N^-+ Six') , is 

jULoi (pjT,X) where

M-oiP-T’*) “/C (p,T) + NHT (8.15)

In equation (8.15), jU.£ (p,T) is the chemical potential of pure 

species o< at the same p and T as the mixture; T* (p; \j Xoi) is the 

activity coefficient measuring the nonideality of species in the

mixture, i.e., 'tioC essentially is defined as the excess property 

over the corresponding species if the mixture were ideally

behaved, where ^ is unity. In terms of (p .,Tj X<x) , the 

quantities /\Gr and 6rE (designated 6-^ and GrE in Rowlinson’s 

notation) are given by

AG - Z. N* [ (p,T, x/) - )X2 Cp/t>]

= NKT n X<* Sai [ X* Yo,(p,T, X*)] (8.16)
and

GE = NKT YL HaV ^(PjTjXcx) . (8.17)
oi

Guggenheim (1967) has employed the absolute activities 

X* (pjT, e./.pC^jot^Cp /T, XoO to formally obtain AG and GrE

( A Gtyp and G ^ in his notation) as

A.G = NKT Avt [ A^(p/T,x«N)(8.18)
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&E = NKT H **&n. [ \,(pJTJx^/(xo(^0(pJT)')]-
04 v C8.19)

In equations (8.18) and (8.19), *)\° (p/T ) is the absolute activity
of pure species at the same p and T as those of the mixture being

considered. The absolute activities 7\* C p, T, Xo<) of Guggenheim

(1967) and the activity coefficients tfa (p;T; X*) of Rowlinson

(1971) are related by

Xl
= Aq< CP,TjX^) (8.20)

x,* A * (p,T)
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Appendix 9

Listings of Computer Programs

This Appendix presents the listings of the computer 

programs and subroutines used to calculate the excess Gibbs free 

energies GXS and GMIXT. The listings of COMTAN, which are involved 

in the common tangent construction, are also included.
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RT-ll FORTRAN IV V01B-03 MON 16-MAY-77 15:05:13 PAGE 001
0001 IMPLICIT DOUBLE PRECISION (A-H,0-Z)
0002 DIMENSION CP(101),GMIX<101). GPURE<101), GXS(101), FX(101)

“TTToraorjT den crory '
0003 COMMON/DATA 1/ SI, W» XM, RW, ON
0004 COMMON/DATA2/ F<5),D(2),X
0005 COMMON/DATA3/ ENERGY(200), BETA(200)
0006 COMMON/DATA4/ F2.P5, Y,IFLAG,DNEw
0007 COMMON/ DATA5/S0, BB, FM, I 1, DI, M, NPTS, NINTRF, DTW
TJOOS" —COMMON/DA IA6./ BI ou rFTRTRC
0009 COMMON/DATA7/E3, E2
00 UT COMMON/ DhTASTYO, Y10
0011 COMMON/DAT A9/PDIFF
OO12

C
COMMON/DAiA10/ YB(4)
RHO IS VOLUME DENSITY PI*RHO(I>*R<I>**3/6 ,1=1 TO 2

"0 FM IS MOLE FRACTION OF COMi-'UNEW! 2
0013 LOGICAL*1 A<9>
0014 T0»SECMD5(0.'}
0015 CALL ASSIGN<6, ’TT: )
0016 TYPE 500
0017 500 FORMAT( $ENTER DATA FILE ')
0018 CALL ASSIGNC1, , — 1>
0019 TYPE 77
0020 7 7 FORMAT ( -RENTER LIST FILE H
0021 CALL ASSIGN(5,,-1)
0022 TYPE 78
0023 78 FORMAT (•-CENTER OUTPUT FILE ' >
"0D24— CALL ASSIGN(2,,-11
0025 PI =3. 1415926535D0
0026 KtAD ( 1, 200 )N, XM, KHU
0027 RW=1. DO/W
0028 DW=1. DO/(W*USUKTvU) )
0029 200 FORMAT (3F8. 4)
0030 ' 130 FORHhTv 1a, DENoITy = ■ , F6. 3, RhTIO

1 OF DIPOLES* , F5. 2, RATIO OF RADI 1= ', F5. 3)
0031 DT=:'001D0
0032 READ <1, 155)M,NINTRP,NPTS
0033 1F(M. tU. O) CALl. tTXT 1

0035
■■190"

READ(1,190)PMIX1
0036 " FuRMh [ ^ r 37 63
0037 READ(1,165)TEMP
■0033“ "NUT=I “
0039 5 IF (TEMP EQ. 0. DO) CALL EXIT
0041 EE-= 1" DO/TEriP
0042 DTW=BE/NPTS
0043
0044 FM=0. DO
T5045 3T=t- mXTT**27'( 1'. DO-FM)
0046 X=l. DO-8. DO*(W/( 1. DO+W) )**3
oU4 / D V 2 ) =0. DO
0043 B0=8. DO*EE
0043 " ~ BI=BO*SO*XTT '
0050 FM=1. DO
■0051 G10=GIBBS(t> 1, PMIX1, KHu>
0052 FM=0. DO
0053 L’O —L’ 1 Dc : 30, r MI X 1 , KHU )
0054 DO 1 1 = 1,25
0055 FM=rr-T)./25: do----
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RT-1 j. FGRTR AN IV v01B-08 NON ic-nAr-77 15:05 13 PAGE 002
"0056
0057

3i=FH*'XM*XM/ TT DO—FH)
IF< I. LT. 3)GO TO 80

0057 ' 
0060 80

RRCT=2( BOLDEN (I -1 7-DEN (X-21
CALL GFIXIT(PMIX1,RHO,GNIXT,PMIX2)

WtT“
0062

TDi_ CT r=-FDTFF
IFiTuLU). LT. 1. D-08)GO TO 90

0054
0065

DEN(I) = 1. DO
GMI X ( I ) =0. DO

0766— 
0067 90

~TTfr TO' -71
DEN(I)=RHO

0063
0069 91

GTTTX CTT-GNIX i
GPURE(I) = (1. DO-FN)*GO+FM*G10

0070
0072

lr(FM. Eu. v. uO. UK. PN. EG. 1. DO > GO TO 7
GIDEAL=FM*DLGG<FM) + (1 DO-FN)*DLQG((1. DO-FN))

-0073"''
0074 7

GO 'TCr~3---------------------------
GIDEAL=0. DO

00/5
0076

o 8A8V i > =uWTa ( I ) -GFURE7 I > +GIDEhL
GNIX(I)=GNIX(I)+GI DEAL

0077
0078

CF'( I ) =FT1i X'2
FX(I)=FN

00/9
0080

~r
250

CONTINUE
FORMAT < IX, F5. 2, 3F14. 6)

005T
0082

~25T
20

FORMAT ( IX, F5. 2, 3F14. 6, El6. 71
CALL DATE(A)

0083
0084

TTM=seCNDS ( TO) /60. DO
IF ( NCT. EQ. 1) WRITE (5, 166) A

0086
0088 120

“IF (NCT. EQXT > WRITE v 5, 120 ) NP 1 5, 0 i W
FORMAT ( IX, 13# POINTS AT INTERVALS OF ' , F6. 3)

"0089
0090

125 FORMATvIX,13, POINT QUAD ,13, POINTS FOR INTERP GIVEN
IF (NCT. EQ. 1 ) WRITE (5, 130)RH0, XN, W

, 13)
0092
0093

145
155

HJKMh ! i CENTER N, NINTRP ~1
FORMAT(314)

0074 ' 
0095

T60
165

FURNh I ( •' 5ENTER l ENF ~)
FORMAT (F8. 4)

0096
0097

RRTTE(5, 125 ) M, NfNTRP, NPTS
WRITE(5, 195> TEMP,PMIX1

0098
0099

195 FORMAT ( I X, 'TEMF- ', FS. 4, ET PRESSURE- , F9. 6 >
IF (NCT. EQ. 1) WRITE(5, 110)

0102
1 I . FORMATTEXT • A , 3X7 DEN>. 1 T Y , 5X, • UM1 XTURE , 5X, UMI X ING ‘ ) 

WRITE (5, 250)0. , YO, GO, 0.
0103
0104 199 FORMAT ( IX, --TIME TAKEN WAS’.FS. 2, 'MINS')
0105
0106

DO 300 1 = 1,25
IF(TOL(I). LT. 1. D—08)GO TO 283

0103“
0109 240

WRITE!5, 240)TDLTI 5
FORMAT (IX, NO SOLUTION FOUND WITH TOL=', El4. 6)

0 f ro
01 1 1 283

UU TO 500
WRITE(5,251)FX(I),DEN(I),GMIX<I),GXS(I),TOL(I)

01 12 
0113

300 CONTINUE
WRITE(2,222)XM, W, TEMP,PMIX1

0114
0115

- FORMAT(IX, r67"371=57375775759761
DO 700 1 = 1,25

0115 
0117

“700 WRITE(2, 252) FXYTT7T3MTX ( I ), GXS( I)
WRITE ( 2, 252) 1. 0, G10, 0.

oTTST 
01 19

252 FurMATCTa, “5. 2/2F14. 6)
WRITEtS, 250)1. 0, Y10, G10, 0.

0120 READ (T, 1 t.j) i EI'iR

RT-ll FORTRAN IV V01B-0S NON 16-MAY-77 15:05:13 PAGE 003
0121 T0=SECNDS(0. )
0122 NCT=NCT+i
0T23" GET I U 5
0124 166 FOR NAT (IX, "'A 1 )
T)T2t5~~' CALL "EXIT
0126 END
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RT-11 FORTRAN IV VOiB-08 MON 16-MAY-77 15:07:01 PAGE 001

OOO 1
0002

i- UNU 1 i UN F'M i X ( KFiU )
IMPLICIT DOUBLE FRECISION (A-H,0-Z)

0004
DIMENSION- C3 3 >. S ( 3), T (2 ), B (2 )
COMMON/DAT A1/ SI.W, XM

0005
0006

COMMON/Dh i A77 FI 5 ). D \ j. >, \
COMMON/DATA3/ ENERGY(200), BETA(200)

000 /
0008

COMMON/ Uh 1 h4/ F2. V
COMMON/DATA5/ SO. BB, FM. 11, DI, M, NPTS, NINTRP, DTW

"000*?
0010 COMMON/DATA10/YB< 4 >
WTT ~ 
0013

“ IF (FM. Nfc. 1. DOTuO TlTS
T ( 1 ) =0. DO

"0014-----
0015 6

Uu i U 5
T(1) = (1. DO-FM)*RHG/(1. D0-FM+FM*W**3)

■OOL6 5 
0017

----- T < 2") ^RHtt^TOlO
BETA ( 1 ) =0. DO

oo i y
0019
f"wVW-i-----

fc.Nfc.hU Y < 1 ) — u. DO
D0=0. DO

----- Tn-i—rt- —f  -----------------------------------------------------
0021 D(1)=0I* J
TXT21-------CALL FIX---
0023 B < J) =D ( 1 ) *F ( 1 ) / ( 8. D0*T ( 1 ) )
~0G24 CONTINUE
0025 D1 =2. D0*DI+DI*(DTW-B<2))/(B(2)-B(1))

~C WRI TE ( 5, 2 15 ) B ( 1 ). B ( 2 >, D i
0026 215 FORMAT <3F 16. 8)
WrsT ■NT=0_
0028 NPTS1=NPTS+50029 88“ DO-10" i=2, nh I si
0030 IFI I. EQ. 2)GO TO 80
"0032 D t 17 =02
0033 GO TO 900034 80 Dm=Di
0035 90 CALL FIX
0036 IF(ISwTCH( 2 ) to. 1 > WR 1 i fc ( 5. 180 ) Lu 2 ). F ( 5 ), X , r ( 41
0038 180 FORMAT (IX, 4D i 4. 6)
0039 165 FORMA 1 (IX, 5D14. 6)
0040 150 FORMAT C7D14. 6)

EOFTtAT tT X, I37-2D14 6)
0042 IF ( T ( 1 ). GT. ODO) GO TO 20
0044 —3(1) -O. DO
0045 GO TO 30
3X546 20 S ( 1 ) =D ( 1 ) -a-F t i ) /' ill)
0047 30 IF(T(2). GT. ODO)GO TO 40
0049 ~~St '2) -O- DO
0050 GO TO 50
0051 40 " SC27 -D (4)>t- C277TTZ1
0052 50 C< 1 )=S(1)/F(1>
0053 C (2) =S CZ77FTZ7
0054 C(3)=DSQRT(C <1> *C < 2)* <1. DO-X))
0053— if rrswicpr c 4 >: ton > wr itet3,t30 ) d u >, d c 2), s i n rs< zttc a),u2),u )
0057 ENERGY(I)=Ti1)*D(1)+SO*SO*T(2)*D < 2 >+2. DO*SO*T(1)*T(2)*C(3)
0038" ■ "DT2=DT rr+u (27
0059 B12-3( 1 )/8. DO
0060 i r \ Li i 2. Gfc. 0. bDO) WHI TE < 5, 19U>L)1^, El’l, Bli
0062 190 FORMAT(IX, D( 1 )+D(2) = "', F8. 4, FOR X=", F5. 2, 'AND BE= ,F8. 3)
0063 eethT rr=STi ttcUTto
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RT-ll FORTRAN IV VO1 E-OS NON 16-MAY—77 15:07:01 PAGE 002

0064
c IF (NT. EQ. 1 )GO TO 300

IF (T ( 1 ). EQ. ODO) BETA { I ) =S ( 2) / < 8. DO*SO*XM)c IE ( BE 1 A ( i >. G i. L-tTA C i-i ) )G0 TO 22
c XX=ENERGY<1-1)
~U - YY:=ENEkGY ( I )c ENERGY(I)=XX
c ENERGY(I-i)=YY
c XX=BETA(1-1)
c TT=BETAT D
c BETA<I)=XX
c BE 1 A(i-1)=Y Yc DTMP1=D1
c Di=Doc DO=DTMP1

"0066 JL+L TW=I->D! tP
0067 IF< I. GT. 2)GO TO 24
006V D2=D 1 + iDI —DO) •*=■ (TTJ—BETA ( I) >/'<£ETm I ) -BETA ^ 1-1 ) )

c WRITE (5, 121)1, DO. Dl, D2
0070 121 TukHAT ( IX. 13, 3F9. 6)
0071 GO TO 10
70072T 24 13=1-3
0073 23 DO 55 J=1,3
00/4 55 YB(J)=EETA(I3+J)
0075 YB(4)=TW

C WRITE (5, 121 ) i , DO, Dl, D2
0076 CALL F'OLYFT ( DO, Dl. D2, XI )~C077 do=bt
0073 Dl =D2
0079 D2=Xl
0030 10 CONTINUE

C IF i NT. EQ. 1 ) GO TO 300C D0=0. DO
~C Dl =DTT'TP
c NT= 1
C GO TO S30081 300 IF <ISWICH(9). EQ. 1)WRITE <5, 135)(J, BETA <J), ENERGY(J),J=1,NETS1)

0083 CALL STATE(FM, RHG,PEj GE)
0084 FREE=SUM(0. DO, BE, M, NPTS, NINTRP)0033 —---- DELTAG=-3EXTFtTNTRPVTiPTS IBETA7ENERGY, BB )---------
0036 DELTAF-FREE+DELTAG

‘0087 ~ FMTX=EELTAF+FE7T‘8 DO^EFI0088 G1=3. DO*BB*DELTAG*(1. DO-FM+FM*W*W*W)/RHO
008V BIGG-G1+GE
0090 IF (I SW I CH < 15). EQ. 1 ; WR I TE (5. 135) FM» G1. GE, BIGG, PM IX0032-------RETURN--------------------------------------------
0093 END
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0001 
0002

SiJbRgUT INE GFI X IT ( PM I X i , RHQ, GMI X T, PM I X 2 )
IMPLIClT DOUBLE PRECISION < A-H,0-Z)0003“

0004
COMMO MTU ATAl/S 1TW7 TM7R W,“DW
COMMON/DATA7/E3. E2uuu5

0006
CUMMUN/ Li A i h4/Fo» t- o, 5
COMMON/DATA5/ SO, BB, FM, I 1, DI, M. NPTS, NINTRP. DTW

0007 C0MMuN/DA7A6./ BI GO, F TP IAL
0008 CQMMQN/DATA3/Y0. r100008 COMMON/'DA i A9/PDIFF
0010 ALPHA=. 05
001 1 T0L=1. D-OS0012 T1 =SECNDS < 0. )
oo 13 IF (FPL EQ. 0. DO)D=V
0015 1 = 1"0016 ~2-- U=1
0017 1 MM= 1
0013 5 B2=CHANGE ( D, PM I X 1 ) /2. DO** (MM— 1 )
0019 IF(J. GT. 6)GO TO 43
0u2T IF (DA ET(D2/D). LT. ALPHA; Gu Tu 15
0023 MM=MM+1
0024 go r o 5
0025 43 02= 1. D-02
00260027 45 ISPY=0

“DO23“ F‘2=PMI X (LU-PMIXI
0029 DO 50 K= 1,3,2—0030 dck=d+tf:-z ) *D2
0031 P1=PMIX(DCH)—PMIX1
0032 IFTDABS (PI). GT. DABS ( F 2 ) ) GO TO 500034 ISPY=1
0035 P2=P 1
0036 DNEW=DGH' 0037“ 50 _ CONTINUE—
0033 IF ( ISPY GT. 0) GO TO 55
0040 02=02/2 DO
0041 GO TO 45

~ 0042 ' 55 D=DNEW
0043 IF (ISWICH (10). EQ. 1 ) WRITE (5, 191) D2, D. P2
0045 191 FORMAT (2F14. 6, D16. 7)
0046 PDIFF=P20047 IF ( DABS ( D2 ). LT. TOL) GO TO 25
0049 GO TO 45
0050 15 D=D+D2
0051 20 P2=PMIX(D)—PMIX10052 Y'4=L-HANGt TD, PHTXT)
0053 IF( ISWICH(IO). EQ. 1 ) WRITE (5, 100) D2, D, E2, E3, P2, J, MM
0055 100 FORMAT(5F14. 6, 214)
0056 J=J+1
0057 PDIFF=P2
0058 IF ( SECNDS ( T1 ) LT. 500. ) GO TO 67
0060 I FT I. EQ. 1) GG TO 40
0062 1 = 1 + 1
0063 IF ( I EQ. 4) GO TO 35
0065 RW=1. DO/RW
0066 DW=-DW
0067 S0=1. DO/SO

" 006.8 ST=i':D078l“
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0069
0070

FM=1. DO-FM
W=i. DO/W

' "0071 --
0072

—PTTT XI =FHT XT *80*80
BB=BB/(30*80)

0073
0074

I1=10*(EE*1) 
DTW=DTW/(SO*SO)

00/5
0076

D=Y 10
T1 =SECNDS (0. )

0079 40
IF C I. to. 8 ) Uu 1 U 8
1 = 1 + 1

TjoyO"
0081

D=DMA'X 1C Yo, V10)
T1 =SECNDS (0. )

0082 GO TO 2
0083 67 IF ( DABS < F‘2 ). LT. TOL » GO TO 25
0085” IF(-J. LT. 81 )GU iu 1
0087 D=Y10
0088 ALF‘HA=ALPHA/2. DO
0089 1=1+i
0090 IF ( I. LT. 5) GO TO 2
0092 35 WRITE<5,110)EE.FM,P2
0093 TTo FORMATLIX, EETA= , F6. 3. "X = ', F6. 3, 'TGL= , D14. 6)

0094 25 PMIX2=PMIXi+P2 _____________________________________________________
0096 IF (E3. GT. 0. DO)GO TO 26
0098 WRITE<5, 27)FM, BE, D
0099 27 FORMAT! IX, 'MET ASTABLE ROOT AT X= ". F5. 2, "BETA F9. 3. xRHO=". F9. 6)

~trtT50-- 25.-- IF Cl. LT.~3) GO 'TOT '30----------------------------------------------------------
0102 FM=1. DO-FM
0103 ------- RW=T-D07RW
0104 DW=-DW
0105 80=1. Do/So
0106 81 = 1. DO/SI

-0102 ---- W=l. DO/W-------------------------------------------------------------------
0108 PMI X1=F MI X1*80*80
—0TO9---------EB=EE/T:3o*8oT~
0110 11 = 10*C BE+1)
OITT DIW=Diw/v 80*80)
0112 30 RHO1=D/C1. DO-FM+FM*W*W*W)
0113 -—---RHO=D ----- ---------------------------------------------------------------
0114 ZF'MI X=PM IX 1 *8. DO*BB/RHO 1

" 0115 - --DZFT'I I X=DLOGT ZPPTI XT0116 GMIXT=EIGG-DLGG(ZPMIX)
-0112—
0119 200

IFCI3WTCHC14).' 
FORMAT(IX, D16.

EG. i ) WRITE ( 5, 200) GMI X 1 , B1 UU, DlPMI X, D
8. 2D 14. 6, D16. 8)

01 '20 RETURN*
0121 END
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0001 -------------SUBROUTINE FTX--------------------------
0002 IMPLICIT DOUBLE PRECISION (A-H,0-Z)
0003 -------------COMMON /DATATt—Stm----------------------------------
0004 COMMON /BATA2/ F(5)# D(2)» X
0005 ------rr=o------------------------
0006 CALL WORK
0007 -------------0T2) =D ( 1 ) *S 1»FC t)/PC2?-----------------------------
0008 5 N=0
0009 30------- CALL WORK------------------------------------
0010 X=l. DO-F ( 1 )*F (2)/F (3) /F (3)
0011 ----------------N=N+T —
0012 IF < ISWICH ( 2). EQ. i )WRITE(5, 160>M. N, D<2>, X, F(4)
OOT4 rCO-----FORMAT( IX, 213/2Di4: ~6', BT4CGT----------------------------------------
0015 IF< DABS(F( 4 > ). LE. i. D-06. OR. N. GT. iO) GO TO 20
001-7—  GO -TO- 30--------------------------------------------------------------------------------
0018 20 IF( ISWICHI 1 ). EQ. 1) WRITE < 5» 180) M. N. B (2). F < 5 ). X j F (4)
0020 180-----FORMATClXT212, 2TD14. B, 01426) T-------------
0021 B(2)=D<1)*S1*F(1)/F(2)
0022 ------tt=rr+i-----------------------------------------
0023 170 FORMAT ( 1 X, 2( 13. D14. 6. D14 6) )
0024 ------------ IF(DABS(F<5r ).T_£. tr-D~C6rOR M. OT: 10>- eCr'FQ—Itr
0026 GO TO 5
0027— 10---------f F11SWICYttOiT-ECt-T TWR-rTgTSrt-ytrtM. DCrC-F (5). N,~Trp-(^T
0029 RETURN
0030 ------------END-------------------------------------------------------------------------------------------------------



RT-i i FORTRAN IV V01B-08 MON 16-MAY-77 15:03:27 PAGE 001

0001 
0002

FUNCTION SEX(NINTRP,NPTS, X, Y, XX)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

0008
0004

BlTteNSTuM "X t HTYtl 1------
IF<NINTRP. LT. 3. OR. NPTS. LT. NINTRP)STOP

0006
0007 Du3 1=1,NPTS1

'0003
0010 3

IF ( XX LT. K ( 1 ) >UU i 0 4
CONTINUE

t»l T
0012 10

—NFIN=NPTif---------------------------------------------------------------------------------------------------
NST=NPTS-NINTRP+1

0013
0014 4

—go ro 7
IF (I. NE. 1)G0 TO 9

0016
0017 5

NS 1 =1
NFIN=NINTRP

0013-
0019 9

GO TO 7
IF ( I. LT. NPTS— 1 ) GO TO 11

WI
0022

N5T=NPT5-NINTRP'-F f
NFIN=NPTS

0023
0024 11

GO ro 7
NST=I

002b
0026 S

HFTN=T
IF(NFIN—NST+1. EQ. NINTRP)GO TO 7

"0023
0030

IF (XX-X(NST). U i. X (rTFTNT^TXTGU TO 6
NST=NST—1

0031 
0033

IF (NST. EQ. 1 ) GO ro 5
GO TO 8

"0O34 - 
0035

""NF fM=NF IN+T
IF < NF IN. EQ. NPTS) GO TO 10

"0037
0033 7

GO TO S
SEX=0. DO

0039
0040 

"0041 -
0042

DO I T=NST,NFIN
TOP=1. DO
BOT-lrTKT
DO 2 J=NST ,.NFIN

0043
0045

IF ( I. EQ. J) GO TO 2
TOP=TOP*(X X—X(J))

0046"
0047 2

BU 1 =bU f -*- ( X (I) -XTJT7
CONTINUE

0043"
0049

"T "S£X=SEX+Y ( IJ •S-TOF/EOT
IF ( ISWICHC8). EQ. 1 ) WRITE <5, 165 ) ( X ( I ), Y ( I ), I=NST, NFIN)

"0051"
0052

165 FORMATC1Xi 2D 14. 6)
IF < ISWICH < 2). EQ. 1 ) WRITE (5» 165)XX.SEX

0054
0055

RETURN
END
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000 i 
00020003----
0004
-0003---
0006

“0007 27T
0003
-0009"---
0010 27
0011 0012
0013
0014

---

SUBROUT I ME STATEv X.R, PE,OE)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)—COMMON/—PA T A1 ---------------
DIMENSION D < 2),E(4).A(4)

—fltn =x--- ------ --- ---------------
DO 26 1 = 1,3
—frcT-m-LT5-A r rr---------------------

A ( 1 ) = 1. DO
--frrt—>7— I-2,-4-----------------------

A (I ) = 1. DO—X+A ( I )
E0=RT3)*<A(3)/A(4))**2 
B1=A(2)*h(.3)/A(4)
B2=K/ A 041 
D2= 1. DO-R

—D1 — 1. D0/( 1. trO=R1-------------------
0016 A1=-(1. DO-BO)*DLOG<D2> + (BO*D1+3. DO*B1)*R*D1
0017 ZO=BI*( 1. D0+(3. DO*A ( 2) + (3. DO—R)*B2*A (3) 44-2-&-D i <. 3) -s-U 1 >

0018 SE=-A1
001/7” Gt—20“ 1. DO—St
0020 PE=Z0*B2
'0021“.... RETURN
0022 END

RT-ll FORTRAN IV VOIB—08 MON 16—MAY-77 15:08:04 PAGE 001
0001 SUBROUTINE BAS IS< J,0.1,02,03)
0002 IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
0003 UJMMuN ./DAIA1/3 1, W, XM/kW, L'U
0004 COMMON /DATA2/ F < 5),D(2), X
0005 L l=.J*Li ( 1 )
0006 Z2=J*D(2)
0007 25=1. DO-x
0008 Z3=Z5*Z1*W000?------- Z-4-Z3*Z2*RW---------------------------------------------
0010 X7=Z1*Z2*X
001 1 X8=l. DO/ ( 1. Do-i 1-Z2+X / >

0012 A1 = (4. D0*(1. D0-Z2*X)+3. DO* < Z1 + Z4-X7* < 2. D0-Z2*X ) ) *X8 ) *X8
0013 A2= ( ( 3. D0+W)+3. D0*-X3* (11 2- (1. DO+W)*X7))*XS
0014 A3=(<3. D0+1. DO/W)+3. D0*X8*<Z2/W+Z1-(1. D0+1. DO/W>*X7))*X3
-0073---------A4= ( 4. D0*C1. DO-Z 1*X ?+■?.. DO«XS*' ( Z3+Z2-X7* ("2. DQ-Z1*X? ) ?*X3'~
0016 Q1 =2. DO*A 1 + Z i-a-Al*Ai + Z4*A3*A3
T>0T7 0.2-2. D0*A4+Z2*A4*A4+Z3-»A2*A2
0018 Q3=(W*A 3+W*W*A2+W*W*A1*A2*Z1+W*Z2*A3*A4)*DW
001? RETURN
0020 END
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SUBKuUI iNb F'ULYFTIXO, Xl. X2» XP> IMPLICIT DOUBLE PRECISION (A-H,0-Z)DIMENSION xrFr,r,t4T—--------------
COMMON/DAT A10/F(4)
xtr) -xo-----------------------------------------X <2>=X1

OOOT
0002-0003
0004
0005“
0006
-0007
0008

-- X C 3)-X2-----------------------------------------------------
SUM=0. DO

UO</9 ■
0010

UU 1U x — 1 > 3"
G<I)=F(I)

ooi r~ DO-TT -0=TT3
0012 IF ( J. EG. I ) GO TO 11
001 4 g t tr=G (i) /1 x < i) -x ten r
0015 1 1 CONTINUE
0076 ^Urt=>*rjrrH^x i )

0017 10 CONTINUE
00 is— - F 0=G(1)/SUM
0019 F1=G<2)/SUM
0020 F 2=12(3)/SUM
0021 C=X2*X1*F0+X2*X0*F1+X1*X0*F2
0022 ' b=. UDO* v (Xl+Xz; *P0+ ( XO+X^i)*E 1 + ( XU+ XI *F j.)
0023 FF=F(4)/SUM

“0024 CF=B*B-C+FF
0025 IF(CF. LT. 0)GO TO 20
002/ DCF =U3L!hT ( Cr )
0028 XF-B+DCF
-0029 —XM=Er- DCF
0030 GO Tu 300
DOST 20 WRTTET37T0O7
0032 100 FORMAT ( •' I MAG I NARY ROOTS )
0033 STOP
0034 300 RETURN

END

i 
H

' 
1

FORTRAN IV VO1B-08 MON 16-MAY-77 15:08:18 PAGE 001

U'J'-J i
0002

bUBROUiINE WORK
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

00 O 3 
0004

COMMON /Ci AT ACT F (5). D ( 2 ) / X
COMMON /DATAi/SI.W

0003
0006

CALL BAsIs x «£> S3. s7". SoT
CALL BAS IS (-1, Q1,02, Q3 )

0007
0008

—
F ( 1 ) =01 +2. D0*33
F ( 2) =Q2-k2. B0*S7

0010 F(4) = 1. DO—(1. D0-X)*F(3)*F(3)/(F(1)*F(2))
7cn r 
0012 
0013-

F ( 5) =D ( ) —■:• 1 *F k l j -*b ( 1 J / F C2T
RETURN

-------- END----------------------------------------------------------
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~000I
0002

FUNCTI ON SOM (AM. BB, Mi N. J)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

0003
0004

"DI MENSI ON ATI 6TTWTTS7
COMMON /DATA3/ Y(200),X(200)

0005
0006

" CALL GAUSSTM7 fi<“WT" ' '
SUM=0. DO

0007-
0003
00 io 
0011

W3=M>
IF( ISWICHL3). EQ. 1 )wRITE(5. 155) (A ( J)» W ( J )» J= 1, M2)

155 FORMATt IX. ZD 14. 6T" ' " '
DO 1 1 = 1, M2

0012
0013

XP= ( ( ED—AA ) *A ( I ) ■+• ( BE+AA ) ) / 2. DO
XM= ( (AA-EB) *A < I ) + < BB+AA ) ) /2. DO

“0014 
0015 
0017 
0013

1
156

3UM=3UM+Wi 1 ) ■» iitX 1 J, N, X, Y, XF > i-3tA v J, N, X, i, Xi’i> >

IF ( ISWICH < 7). EQ. 1 > WRITE < 5, 156) XP, XM, SUM
FORMAT (1 X, 3D 1 4. 61"
SUM=SUM/2. DO

0019
0020

REiURN.......
END

RT-ll FORTRAN IV VOIB—03 MON 16-MAY-77 15:09:16 PAGE 001

0001
0002

FOWL, l IUN L-nHI'lbt ^ RFlU, Fill A 1 )

IMPLICIT DOUBLE PRECISION < A-H,0-Z)
0003
0004

COMMON/DATA1/S1,W
COMMON/DATA5/S0, BB, FM

0005
0006

COMMON/DATA7/E3, E2 ‘
DELTA=i. D—06

“0007
0008

R l=F.Hu* < 1. D'O+DEL i A )
R2=RH0*(1. DO-DELTA)

w.Hjy

0010
E3^rFtttX'rR*l T=PTt I X (RlT) ) / ( Z. DU*DEtrTA-»RHO )-------------
E4=F'M I X (RHO)

"0011
0012

E2=FTT IXT-F 4
CHANGE=E2/< E3)

0013
0014

RE 1 URN
END
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~OoOT------------ SUBROUTINE" uAUSTTTThTwT
0002 IMPLICIT DOUBLE PRECISION (A-H,0-Z)
000-3----------------DIMENSTON "AT 1677 W C167--------------------------------
0004 IF (M NE. 4) GO TO 1
0006“-------------A C 17= 33993 TO 4------ -------------------------------
0007 A< 2 )=. 86113631
0003 ---------------- CTT 17 =—652 T45T5--------------------------
0009 W ( 2 ) =. 34735434
OOtO RETURN
001 1 1 IF(M. NE. 3) GO TO 2
0013
001 4

A'CTT=T 
A ( 2) =.

T8 343464
52553240

'0UT5 A ( 3 )=. / 9630647
0016 A ( 4 ) =. 96028935

"Gwul7 • w (i >=. “36266373-------
0013 W (2) =. 31370664
Oo 19 ---------- 14137=7 22233103
0020 W ( 4) =. 10122353
0021 RETURN
0022 2 IF (M. NE. 16) GO TO 3

0025
0026 
0027 
0023 
0029
-OtWr
0031
0032 UJ C 1 ) =. 13945061
0033 W<2)=. 18260341
0034 N(3)=. 1 oVlUGbl
0035 W ( 4 ) =. 14959598
0036 ----------------- 14 C 5 ) =.-12462397

hTTT= 09501250 
A (2) =. 28160355 
A<37 =“43301677 
A < 4 ) =. 61737624 
A«.T7 = /5-54U440 
A (6) =. 86563120 
Ac7)=.-944575rrr 
A ( 8 ) =. 93940093

0037 W<6)=. 09515351
0033 W ( 7 ) =. v/622-5352
0039 W (3) =. 02715245
CO40 RETURN
0041 3 IF (M. NE. 32) STOP
0043 -----"'ATT 7=7 04330766.
0044 A (2) =. 14447196

T5U45 A ( 3 ) =. 23923/36
0046 A ( 4 ) =. 33 1136360
0u4 / A ) =. “42T35T27
0043 A (6) =. 50639990
0049“ “AT / 7=. 537715/5
0050 A ( 8) =. 66304426
005 r A ( V ) =. 73218211
0052 A ( 10)=. 79448379
0053
0054
0055
0056

15057 ATI 5) =. 9 5561151
0053 A ( 16)=. 99726336
0059 WUi=. 09654003
0060 W < 2) =. 09563372
0061 W r3T=“09834439“

AC 1 1 )=. 84936761 
A < 12)=. 39632115 

TS CT3T=. 93490607 
A ( 14)=. 96476225
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TJOSZ ' 
0063

-W < 4 J ="091173S T~
W (5) =. 087652090064

0065
“ ‘ WC6T=. 03331192

W (7) =. 07819389
00660067 ' WT8T=: 07234579W < 9) =. 06582222
0063 " 
0069

W(IO)=. 05368409
W<11)= 050998050070 ‘

0071
W( 12) =.'04283589
W( 13)=. 034273860072 ~0073 Wri41=: 02539206W< 15)=. 01627439

15074" WH'6)=: 007018610075 RETURN“0076-------END 
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0001
0002

1- UNO 1 i UN NhW 1 UN (A, b, A )
IMPLICIT DOUBLE PRECISION <A-H,O-Z)

0003“
0004

REAL*8 NEWTON
COMMON/DAT A4/P2,P5,Y» IFLAG,DNEW

“0003
0006

-COMMON/ DA T A5/ i',), EE, PM
IFLAG=0

"0(707—
ooos

1--------- Y 1 = 1 DO* 4. DO*X
Y2 = 1. DO-2. BO*X

0T_K TV

0 0 i 0
Y3=l. "DO**
Y= ( < Y1 /Y2**2 > **2- ( Y2/Y3**2) **2 ) /B

“QOTT 
0013

TFTY. LT~T. DO)GO 1 U lu
X= 98D0*X

0014
0015

rFTAG= IFL AG-i-1
GO TO 1

-0tri6— 
0017

■frO------ D6— ( 10. W'fl'Y 1 * Y - j/ V Z'S'*J+4. ( 2. DO a)/ t ) y
DNEW=X

~OOT3
0019

PQ=Y*'CT.-D0+Y* < 1. DO+Y* ( 1. DO-Y) 7V./TT.' DO- r > **F37 B
P1=X*X*<8. DO*(Y3/Y2**2)**2+(<2. DO-X)/Y3**2)**2>/B

-0020—
0022

I FTFft. EG.1 1. D0)AMP=30*30
IF ( FM. EG. 0. DO) AMP= 1. DO

002-4
0025

-0O26—
0027

too—

P2=t fty-t* x-+ f t r- ft a mp

P4=P0-Y*X+P1
-FORMATtl X, 4F16. ST------------------------------------------------------------------------------------------------------
P3=( (1. DO+4. D0*Y*( 1. DO+Y*( 1. D0-Y*< 1. DO-. 25D0*Y) ) ) )/( 1. DO-Y)**

“0023
0029

P3=F3^CnS=Y
P5=P3/D6

0030
c IP vISwIOPrTrtP;. tfet^TrwrYi 111 prr 1WtX, Y, P5, rz

NEWT 0N=F'2/P3
0031
0032

RETURN— * "
END
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RT-ll FORTRAN IV VO1E-OS HON 16-MAY-77 15:11:35

"Cool FlJNcTI ON gTBBSTE, p, RhO)
0002 IMPLICIT DOUBLE PRECISION (A-H,0-Z)
‘0003--------------- COMMON7DATA9/ F2', P57T7 IFCAG7T1NEW-------
0004 COMMON/DATA1/S1,W,XM
0005 ----------- COMPTON/UATA5/S0 7EE; FM-------------------------------
0006 COMMON/DATAS/YO,Y10
0007 ------------REAOS-NEWTON-------------------------------------------------
0008 DELTA=5. D-02
-0009 ------------TOL= 1.0—09 ——------------ -------------------------------
0010 T1 =SECND3 (0. )

-0071----------------- IF (Fit. EGT-TT ODD TD^RHO--------------------- —--------
0013 IF (FM. EQ. 0. DO)D=D/SO

”0075............. - ~ I=7~~~--------------------------------------------------------------
0016 2 J=1

-0077---- 1----------M= t----------------------------------------------------------------------
0018 5 D2=-NEUiT0N ( D, B, P ) /2. DO** ( M-1 )

“OOT9 IF ( iflacttte:t>td=tjner---------------------------------------------
0021 IF< J. OT. 201 >G0 TO 43
0023 IP(DABS(D2>D). LT. DELTA)CO TO 15
0025 M=M+1
"0026 GO TO 5
0027 43 D2=l D-02
0028 D=. 4D0
0029 45 ISF'Y=0
0030 7T=NhW i ON ( D» b, P )
0031 P3=P2
0082-----------------1F t7 FtAO-WEr -07fr=BNEW---------------------------------------------
0034 DO 50 K= 1.3.2
0035 DCH=D+7K-2)*D2
0036 Y1=NEWTON(DCH, E, P)
0037 IPUPLAO. NE. u ) D-DNEW
0039 F'1=P2
0040 IF ( DABS (FI) GT. DABS k P3 ) ) 00 i'u 50
0042 ISPY=1
0043 P3=Pi
0044 D1=DCH
0045 50 CONTTNUE
0046 IF ( I SPY. GT. 0)00 TO 55

“0043 D2=D2./3. DO
0049 GO TO 45
0050 55 5=171
0051 IF <ISWICH <10). EQ. 1 - WRITE (5, 191 > D, Y, D2, P3
0053 m FORMAT(3614. t., Dio. 7)
0054 T 2=SECNDS(T1)
0055 ITTTZnjT-oOuTGCi I u fc.5
0057 IF(DABS(P2) LT. TOL)GO TO 25

“0059 1P ( LihLSCB*: ;. G i. i OL) GO ro 45
0061 WRITERS,120)
0062 rZU FGRT’iAT (IX, 1 -40 i_ i i,lu 1 D SuLOTI 0N f OUND ■ )
0063 T1 =SECNDS (0. )
0064 U= I D—03
0065 D2=5. D—04

“0066 TSERH=T
0067 GO TO 45
0068 T5 0=0+172
0069 IF ( M. EQ. 1 ) Y3=NEWTON ( D, B, P )
0071 IF ( I FLA 5“ NE. X* TD=DNEW

PAGE 001
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RT-ll FORTRAN IV V01B-08 NON 16-MAY-77 15:11:35 PAGE 002

“0073—20--------IFTIbUTCHT 175). EG. i )WRITER37T00)D. Y. P2, F'5, J, N
0075 100 F0RMAK4F14. 6, 214)
0076 ------------U=J+ r----------------- “------------------------------------------------------------------------------------------------------
0077 IF (DABS (P2). LT 1. D-09 ) GO TO 25
0079”------------
0031

IFCJ. LT.“8017G0 TCT I
D=. 3B0-I*. 005

0082 T=T9-I
0033 IF( I. LT. 10)GO TO 2
0085 35 WRITE<5, 1 10)B, P,“P2 ' '
0036 110 FORMAT (IX) BETA=',F6. 3, 'AND PRESSURE = ',F9. 6, ' TOL= ', D14. 6)
0037 RETURN “
0038 25 P9=Y
0039 EI=E*D
0090 D9= 1. DO/ (1. D0-P9)
0091 A9=CD9+Sr. ErOr-*-D9-s-P9~
0092 Z9=D9+ ( 3. D0+ ( 3. D0-P9) *P9*D9 ) *F'9*D9**2
0098 59=-h9'
0094 G9=Z9-1. DO—39

“0095 fc: 1 =8. LiO*BB*s0*XM
0096 ZPURE=F*B/Y

“0097 IF CB. EQ. B1 ) I FUR E=TFUR E / (SO *301
0099 IF ( B. EQ. B1 ) Y 10=Y
0101 BO=8. DO-s-UB
0102 IF ( B. EQ. BO ) YO=Y
0104 01 Bbo=-t i -H-iy-LiLUb ( ZPUKt >
0105 GHSD=-E1+G9

“0106--------------—2&F*OR£=DLOGrT ZFt.tR£-)
0107 IF( ISWICH( 14). EQ. 1 ) WRITE (5, 150) GIBBS, GHSD, ZDF'URE, Y
oioy i50 FORMAT ( IX, 3F 14. 6, 2D 16. 8)
0110 RETURN
0111 ENTT
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RT-ll 
coo i 

L0002
. 0003 
_ 0004 
^.Q0Q5 _ 

0003 
_ 0007 
-0003

—0009 
r 0010 
—0041- 
_ 00 i 2
- 0013 

001 4
1-0045 
__0016
- 0017
—0013
- 0019 
,-0020
0021

r-0022-
- 00*24
- -0025

0023
- 0027 
—0028 
t—0029
- 0080

RT-11

0001
,-0002-
1-0003
- 0004 — 
—0005 
p-jGGOA— 
L 0007

0003__
- 0009- 
5— 0010 
*-0014- 
—00.12. 
—0013-- 
—0014 
—0015 
p—0013 _
- 0018 
_ 0019 
- 0020 
r 0021

■ 0022 
— 0023 -

FORTRAN IV V01E-03 MON 24-MAY-73 17 48 19
DIMENSION CFO50),GMIX(50),GPURE(50>, GXS<50>,FX(50) 
1,TOL(50).DEN(50)
DIMENSION 01NT(101),X(25)

1 TYPE 500
500 FORMAT( 'SENTER DATA FILE ')

CALL ASSIGN!1, , -1)
251 FORMAT(IX. F5 2.3F14 3,E13 7)

DO 2 1 = 1.25
READ(1.251)FX(I). DEN(I), OMIX(I), GX3(I).TOL(I)

C2 TYFE 251,FX(I). DEN(I) . GMIX(I), GXS(I>. TOL(I)
2 CONTINUE

XM=(OMIX(25)-GMIX(1)>/24 
---- DO 3 1 = 1,25
3 GMIX CI>=GMIX(I)-XK*FLQAT(I-1)

DO 30 1 = 1,25
30 X(I)=I

DO 40 J=1,97 
XX=( J-l )* 25+1

40 GI NT (J) =SE X ( 4, 25, X, GMI X, XX)
CALL QK.PLT ( 97, GI NT )

28 TYPE 33
33 FORMAT('SINPUT NUMBER FTS APART ')

ACCEPT 34, L
— IF(L. EQ. 0)CALL EXIT

34 FORMAT(14)
CALL CGMTAN(GINT, 97, II, 12, L)
WRITE (5, 120)11, 12, L 
GO TO 23

120 FORMAT(IX,313)
CALL EXIT 
END

FORTRAN IV VO1E-OS MON 24-MAY-73 17:43:50
SUBROUTINE COMTAN(A,N, II, 12,L)

_____  DIMENSION A(1),AD(100)
M=N—2 
11=0 
12=0

____ MM=M—1 . __ .
DO 1 1=3, M

-1   ADC I) = CA( I-21-AC 1+2) )/12. +2*(A(I+l )-ACI-l) )/3.  
MM=M-i_
XMAX = 1. E03
DO 2 1=3,MM
II=I+L
DO 2 ,J=I I, M
XM=(A(J)-A(I))/(J-I)
X=AMAX1(AES<XM-AD(I)),AES(XM-AD(J)))

- - IF ( X. GT. XMAX ) GO TO 2
XMAX=X 
11 = 1 
12=J

2 CONTINUE —
RETURN 
END
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Appendix 10

(X, RHO, GMIXT, GXS, TOL) Data

The following pages are a representative sample of the 

data obtained from the batch jobs. The five columns are mole 

fraction, volume density required at that mole fraction to ensure 

the pressure is constant at the initiated value, GMIXT, GXS, and 

the difference between the initial and convergent pressure values. 

The first row of (X, RHO, GMIXT, GXS) values are the x = 0 results 

given from Adelman and Deutch's (1973) equations.



r- 29-JAN-77
— 32P0INTS AT INTERVALS OF 0. 184
-DENSITY* 0. 365RATI0 OF OIPOLES= 1. 50RATI0 OF RADI 1 = 1. 010 

8P0INT QUAD 6P0INTS FOR INTERP GIVEN 32
- - -TEMP* 0. 1700 ET PRESSURE* 0.001383

- X DENSITY GMIXTURE GMIXING
0. 00 0. 220765 -2. 965384 0. 000000

---- TIME TAKEN WAS 12. 97MINS
- 0. 00 0. 220765 -2. 965335 -0. 000001 0. 4424304E—14

0. 04 0. 230840 -3. 477738 -0. 079932 0. 1359408E-10
— 0. 08 0. 240278 -3. 944134 -0. 113907 0. 7340620E-11

0. 12 0. 249145 -4. 393216 -0. 135568 0. 4054065E—11
,------0. 16 0. 257500 -4. 846466 -0. 151396 0. 2345939E—11

0. 20 0. 265394 -5. 291652 -0. 164161 0. 1404018E-11
,___0. 24 0. 272872 -5. 735161 -0. 175249 0. 8667404E—12

0. 28 0. 279972 -6. 177736 -0. 185402 0. 5500935E-12
0. 32 0. 286728 -6. 619763 -0. 195013 0. 3579603E-12
0. 36 0. 293169 -7. 061438 -0. 204261 0. 2382535E-12

,___ 0. 40 0. 299321 -7. 502785 -0. 213136 0. 16184S9E-12
------0. 44 0. 305208 -7. 943752 -0. 221733 0. 1120073E—12
____0. 48 0. 310850 -3. 38420S -0. 229767 0. 7884372E-13
------ 0. 52 0. 316265 -8. 823952 -0. 237090 0 5637906E-13
____0. 56 0. 321470 -9. 262727 -0. 243444 0. 4087887E-13
------0. 60 0. 326478 -9. 700210 -0. 248504 0. 3002514E-13
___ 0. 64 0. 331304 -10. 136004 -0. 251878 0. 223377 IE-13
. —0. 68 0. 335960 -10. 569626 -0 253078 0 168100IE-13
___ 0. 72 0. 340455 -11. 000472 -0. 251502 0. 1279500E-13
----  0. 76 0. 344800 -11. 427774 -0. 246383 0. 979479IE-14

0. 80 0. 349005 -11. 850520 -0. 236708 0. 7597764E—14
0. 84 0. 353077 -12. 267302 -0. 221069 0. 5916317E—14
0. 88 0. 357023 -12. 676017 -0. 197362 0. 466261 IE-14
0. 92 0. 360852 -13. 073131 -0. 162054 0. 369290IE-14
0. 96 0. 364566 -13. 451314 -0. 107816 0. 295304 IE-14
1. 00 0. 368174 -13. 775919 0. 000000

- 29-JAN-77
r__ 32P0INTS AT INTERVALS OF 0. 174
— DENSITY* 0. 355RATIG OF DIPOLES* 1. 50RATIG OF RADII = 1.010
,____SPOINT QUAD /-.POINTS FOR INTERP GIVEN 32
i—.TEMP* 0. 1800 ET PRESSURE* 0. 001383
J--- DENSITY GMIXTURE GMIXING .......
L . 0. 00 0 206617 -2. 542123 0. 000000

TIME TAKEN WAS 13. 03MINS
__ 0. 00 0. 206617 -2. 542124 -0. 000001 0. 1203126E—14

0. 04 0. 217099 -3. 020470 -0. 081283 0. 3370579E-13
1_ 0. 08 0. 226901 -3. 452820 -0. 116569 0. 1223294E—10

0. 12 0. 236097 -3. 872789 -0. 139474 0. 6588528E-11
------ 0. 16 0. 244749 -4. 286835 -0. 156456 0. 3694893E—11

-0. 20 0. 252912 -4. 697712 -0. 170269 0. 2149917E—11
0. 24 0. 260635 -5. 106794 -0. 182288 0. 1293926E—11

. -0. 28 0. 267953 -5. 514817 -0. 193246 0. 8026744E—12
0. 32 0. 274920 -5. 922166 -0. 203532 0. 511720IE—12

,__ 0. 36 0. 281550 -6. 329019 -0. 213320 0. 3343533E—12
0. 40 0. 287873 —6. 735413 -0. 222651 0. 2233865E-12
0. 44 0. 293928 -7. 141293 -0. 231466 0. 1522850E—12
0. 48 0. 299722 -7. 546524 -0. 239633 0. 1057358E-12

__ 0. 52 0. 305279 -7. 950909 -0. 246954 0. 7466304E—13
* 0. 56 0. 310617 -8. 354190 -0. 253172 0. 535393IE-13

0. 60 0. 315751 -3. 756047 -0. 257965 0. 3892513E-13
0. 64 0 320696 -9. 156086 -0. 260940 0. 2867379E—13
0. 68 0. 325463 -9. 553825 -0. 261615 0. 2136-366E-13

— 0. 72 0. 330064 -9. 948662 -0. 259388 0. 1611265E-13
-- -0. 76 0. 334510 -10. 339833 -0. 253495 0. 1227805E-13
— - 0. 80 0. 338810 -10. 726326 -0. 242925 0. 9443509E-14
s—- 0. 84 0. 342973 -11. 106738 -0. 226273 0. 7326279E—14
— -0. 88 0. 347007 -11. 478968 -0. 201438 0. 5730334E-14
- 0. 92 0. 350918 -11. 839484 -0. 164891 0. 451169IE-14

-— 0. 96 0. 354712 -12. 180964 -0. 109307 0. 35S1879E—14
,—— 1. 00 0. 358397 -12. 468721 0. 000000
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-—29-JAN-77
32PGINTS AT INTERVALS OF 0. 164 

.-■DENSITY® 0. 345RATI0 OF DIPOLES® 1. 50RATI0 OF RADI 1 = 1. 010 
8P0INT QUAD 6P0INTS FOR INTERP GIVEN 32

--TEMP® 0. 1900 ET PRESSURE® 0. 001383
X DENSITY GMIXTURE GMIXING

,— 0. 00 0. 192587 —2 178480 0. 000000
TIME TAKEN WAS 13. 27MINS

----0. 00 0. 192587 -2. 178480 -0. 000000 0. 2392334E-15
---0. 04 0. 203506 -2. 626323 -0. 082219 0. 5443183E—13
*---o. 08 0. 213702 -3. 028203 -0. 118474 0. 3069908E—13

0. 12 0. 223251 -3. 417688 -0. 142334 0. 1108426E—10
___ 0. 16 0. 232221 -3. 301213 -0. 160235 0. 6000553E—11
- 0. 20 0. 240670 -4. 181509 -0 174906 0. 3383123E—11
--- 0. 24 0. 248653 -4. 559932 -0. 187704 0. 1979016E—11

0. 28 0. 256213 -4. 937205 -0. 199353 0. 1196754E-11
0. 32 0. 263390 -5. 313706 -0. 210229 0. 7456866E-12

___ jO. 36 0. 270219 -5. 689606 -0. 220505 0. 477333IE-12
___0. 40 0. 276730 -6. 064940 -0. 230213 0. 3130535E-12
i___0. 44 0. 282949 -6. 439646 -0. 239295 0. 2098899E—12
___ 0. 48 0. 288900 -6. 813591 -0. 247616 0. 1435433E—12
___0. 52 0. 294604 -7. 186578 -0. 254977 0. 9997656E-13
___0. 56 0. 300079. -7. 558347 -0. 261122 0. 7078637E—13
___0. 60 0. 305341 -7. 928578 -0. 265729 0. 5088909E—13

0. 64 0. 310406 -8. 296881 -0. 268406 0. 3709153E-13
0. 68 0. 315287 -8. 662771 -0. 263673 0. 2737382E—13
0. 72 0. 319997 -9. 025652 -0. 265929 0. 2046161E-13
0. 76 0. 324545 -9. 384759 -0. 2594 11 0. 1544218E—13
0. 80 0. 328942 -9. 739083 -0. 248110 0. 1178799E-13
0. 84 0. 333197 -10. 087222 -0. 230625 0. 9090493E—14

... 0. 83 0. 337318 -10. 427077 -0. 204855 0. 7040917E-14
L 0. 92 0. 341313 -10. 755121 -0. 167274 0. 553084IE-14
_ 0. 96 0. 345187 -11. 064030 -0. 110558 0. 4333014E-14

1. 00 0. 348949 -11. 319096 0. 000000
r. 29-JAN-77

.. 32P0INTS f\J INTERVALS OF 0. 156
DENSITY= 0. 336RATI0 OF DIPOLES® 1. 50RATI0 OF RADII>1 . 010

8P0INT QUAD 6P0INTS FOR INTERP GIVEN 32
. TEMP® 0. 2000 ET PRESSURE® 0. 001383

X DENSITY GMIXTURE GMIXING
_ 0. 00 0. 178597 -1. 865063 0. 000000

TIME TAKEN WAS 13. 45MINS
0. 00 0. 178597 -1 865063 -0. 000000 0. 2005774E-16
0. 04 0. 189988 _2 285277 -0. 032744 0. 8936526E—13
0. 08 0. 200611 -2. 659633 -0. 119630 0. 4975892E—13

.. 0. 12 0. 210543 -3. 021643 -0. 144169 0. 2812930E—13
- 0. 16 0. 219855 -3. 377711 -0. 162767 0. 1008802E—10

0. 20 0. 228613 -3. 730532 -0. 173117 0. 5491920E—11
0. 24 0. 236872 -4. 081442 -0. 191558 0. 3111802E-11
0. 28 0. 244684 -4. 431143 -0. 203793 0. 1S28747E—11

— 0. 32 0. 252089 -4. 780014 -0. 215138 0. 1110646E-11
0. 36 0. 259127 -5. 128201 -0. 225906 0. 6948258E—12
0. 40 0. 265830 -5 475738 -0. 235973 0. 4464234E—12
0. 44 0. 272226 -5. 822561 -0. 245325 0. 293S085E—12
0. 48 0. 278340 -6. 168530 -0. 253824 0. 1976198E—12

r 0. 52 0. 284196 -6. 513447 -0. 261270 0. 1355696E—12
-0. 56 0. 289812 -6. 857051 -0. 267405 0. 9467177E—13

0. 60 0. 295208 -7. 199023 -0. 271906 0. 6720893E—13
0. 64 0. 300397 -7. 538970 -0. 274333 0. 4842405E—13

- 0. 68 0. 305395 -7. 876410 -0. 274353 0. 3537806E-13
0. 72 0. 310214 -8. 210746 -0. 271219 0. 2617405E-13
0. 76 0. 314866 -8. 541215 -0. 264217 0. 195925IE-13
0. 80 0. 319361 -8. 866809 -0. 252341 0. 1483416E-13
0. 84 0. 323710 -9. 186127 -0. 234189 0. 1133436E—13

— 0. 88 0. 327920 -9. 497072 -0. 207663 0. 8756559E-14
---0. 92 0. 332000 -9. 796118 -0. 169239 0. 6809332E—14

0. 96 0. 335954 -10. 075939 -0. 111590 0. 5338286E-14
--- 1. 00 0. 339795 -10. 301319 0. 000000



30—JAN—77
32P0INTS AT INTERVALS OF 0. 164 

„ DENSITY= 0. 347RATI0 OF DIF'OLES= 1. 50RATI0 OF RADII = 1. 010 
SPOINT QUAD 6P0INTS FOR INTERP GIVEN 32 

_ _TEMP= 0. 1900 ET PRESSURE^ 0. 001844 
_ X DENSITY GMIXTURE GMIXING
__0. 00
- TINE TAKEN

0. 201605 
WAS 13.

-2.
08MINS

367717 0. 000000
__Ol 00 0. 201605 _2 367717 -0. 000000 0. 412593IE-15
-- 0. 04 0. 211551 -2. 820387 -0. 085393 0. 2121366E-13

0. 08 0. 220938 -3. 226370 -0. 124100 0. 7937112E-11
- 0. 12 0. 229810 -3. 619387 -0. 149840 0. 4724204E-11

0. 16 0. 238205 -4. 005983 -0. 169161 0. 2790404E—11
--0. 20 0. 246165 -4. 388975 -0. 184876 0. 1710746E-11

0. 24 0. 253724 -4. 769784 -0. 198409 0. 1073360E-11
---0. 28 0. 260916 -5. 149185 -0. 210534 0. 6885796E—12
, 0. 32 0. 267771 -5. 527597 -0. 221669 0. 4511627E-12
---0. 36 0. 274316 -5. 905222 -0. 232018 0. 3015133E—12
. .0. 40 0. 280575 -6. 282122 -0. 241641 0. 2052466E-12
---0. 44 0. 286569 -6. 658257 -0. 250500 0. 1421347E-12
. 0. 48 0. 292318 -7. 033512 -0. 258478 0. 1000174E—12
--0. 52 0. 297839 -7. 407702 -0. 265392 0. 7141960E-13
- 0. 56 0. 303149 -7. 780583 -0 270996 0. 5169275E—13
---0. 60 0. 308261 -8. 151844 -0. 274981 0. 3790430E—13

0. 64 0. 313189 -8. 521103 -0. 276964 0. 2813478E—13
---O. 68 0. 317945 -8. 887885 -0. 276469 0. 21091S0E—13
- 0. 72 0. 322538 -9. 251598 -0. 272906 0. 1597523E—13
— 0. 76 0. 326980 -9. 611484 -0. 265516 0. 1224384E—13
- - 0. 80 0. 331278 -9. 966540 -0. 253295 0. 9441395E—14
-- O. 84 0. 335442 -10. 315366 -0. 234846 0. 7356258E-14
— 0. 88 0 339478 -10. 655869 -O. 208072 0. 5778527E-14
---O 92 0. 343394 -10. 984524 -0. 169451 0. 4554679E—14
- - 0. 96 
-- 1.00
--- 30- JAN-77
— 32P0INTS

0.
0.

AT

347194 -11.
350888 -11.

INTERVALS OF

294011
549626

0. 156

-0. 111661
0. 000000

0. 3626602E—14

- DENSITY= 0. 338RATI0 OF DIPOLES= 1. 50RATI0 OF RADI I = 1.010
- SPOINT QUAD 6P0INTS FOR INTERP GIVEN 32
- TENF- 0. 2000 ET PRESSURE= 0. 001844
--- X DENSITY GNIXTURE GNIXING
— 0. 00 0 188656 -2. 052377 0. 000000
- TINE TAKEN WAS 13. 23NINS

0. 00 0. 188656 -2. 052378 -0. 000000 0. 6044427E—16
0. 04 0. 198895 -2. 478046 -0. 086413 0. 3049443E-13
0. 08 0. 208568 -2. 856991 -0. 126103 0. 1919705E-13

— 0. 12 0. 217710 -3. 222913 -0. 152771 0. 7132775E-11
0. 16 0. 226360 -3. 582356 -0. 172958 0. 4205058E—11

— 0. 20 0. 234555 -3. 938117 -0. 139464 0. 2533933: E-11
0. 24 0. 242333 -4. 291613 -0. 203705 0. 1561773E—11
0. 28 0. 249729 -4. 643610 -0. 216447 0. 9348005E-12
0. 32 0. 256773 -4. 994523 -0. 228105 0. 6347758E—12

- 0. 36 0. 263494 -5. 344550 -0. 238377 0. 4177294E-12
0. 40 0. 269916 -5. 693751 -0. 248823 0. 2803059E—12

___0. 44 0. 276063 -6. 042085 -0. 257902 0. 191550 IE-12
---0. 48 0. 281955 -6. 389435 -0. 265996 0. 1331259E— 12
__0. 52 0. 287611 -6. 735617 -0. 272924 0. 9397707E—13
---0. 56 0 293047 -7. 080387 -0. 278438 0. 6731697E-13
_ 0. 60 0. 298278 -7. 423436 -0. 282232 0. 4386949E—13

0. 64 0. 303318 -7. 764380 -0. 283921 0. 3592585E-13
_... 0. 68 0. 3081 SO -8. 102748 -0. 233034 0. 267227 IE-13
- 0. 72 0. 312874 -8. 437949 -0. 278980 0. 2009086E—13

0. 76 0. 317412 -8. 769226 -0. 271001 0. 1526226E—13
0. 80 0. 321801 -9. 095576 -0. 258097 0. 1170955E-13
0. 84 0. 326052 -9. 415605 -0. 238371 0. 9059756E—14
0. 88 0. 330171 -9. 727219 -0. 211229 0. 7068293E-14
0. 92 0. 334166 -10 026895 -0. 171650 0. 5540869E-14
0. 96 0. 338042 -10. 307311 -0. 112811 0. 4389880E—14

- 1. 00 0. 341809 -10. 533755 0. 000000
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30-JAN-77
— 32P0INTS 
„ DENSITY^

AT INTERVALS 
0. 329RATIG OF

OF 0. 149 
DIF'OLES= 1. 50RATIG OF RADII = 1 . 010

— SPGINT QUAD SPGINTS FOR INTERP
__TEMP= 0. 2100 ET PRESSURE3 0. 001S44
_ X DENSITY GMIXTURE

0. 00 0. 175373 -1. 779053
. TIME TAKEN WAS 13. 47MINS

0. 00 0. 175873 -1. 779053

GIVEN 32

GMIXING
0. 000000

-0. 000000 0. 3131516E-13
o. 04 0. 136399 -2. 130229 -0. 087139 0. 4338907E—13

... 0. 08 0. 196362 -2. 534678 -0. 127556 0. 2772625E-13
----- 0. 12 0. 205733 _2 876083 -0. 154934 0. 1748206E—13
__ 0. 16 0. 214695 -3. 210991 -0. 175304 0. 6445652E-11
. 0. 20 0. 223137 -3. 542170 -0. 192952 0. 3818990E—11
_ 0. 24 0. 231144 -3. 371031 -0. 207731 0. 2312007E-11

- 0. 23 0. 233752 -4. 198331 -0. 221049 0. 1431S98E—11
0. 32 0. 245993 -4. 524476 -0. 233161 0. 9070268E-12
0. 36 0. 252396 -4. 849659 -0. 244312 0. 5871377E—12

- 0. 40 0. 259438 -5. 173935 -0. 254557 0. 3379364E-12
- 0 44 0. 265794 -5. 497262 -0. 263352 0. 2613063E-12

0. 43 0. 271333 -5. 819519 -0. 272077 0. 1791936E—12
*- 0. 52 0. 277628 140523 -0. 279049 0. 1249393E-12

0. 56 0. 283193 -6. 460027 -0. 234521 0. 8847063E-13
0. 60 0. 288547 -6. 777723 -0. 288185 0. 6355956E-13
0. 64 0. 293702 -7. 093227 -0. 239657 0. 4625960E-13

*- — 0. 68 0. 298673 -7. 406069 -0. 283467 0. 3409875E—13
- 0. 72 0. 303470 -7. 715657 -0. 284023 0. 2542600E—13
— 0. 76 0. 308104 -3. 021237 -0. 275571 0. 1915498E—13
•----- 0. SO 0. 312586 -8. 321807 -0. 262109 0. 1459613E—13
------0 84 0 316925 -8. 615973 -0. 242243 0. 112030IE-13

■-----0. 33 0. 321128 -8. 901643 -0. 213831 0. 3630719E-14
— 0. 92 0. 325203 -9. 175295 -0. 173501 0. 6777727E-14
------ O. 96 0. 329156 -9. 429603 -0. 113778 0. 531362IE-14

•------ 1 00 0. 332996

30-JAN-77
,----  32P0INTS AT INTERVALS
— DENSITY= 0. 321RATIO OF

-9. 629858

OF 0. 142
DI POLES3 1.

0. 000000

50RATIG GF RADI]: = i 010
— SPGINT QUAD 6PGINTS FOR INTERP GIVEN 32 

TEMF- O. 2200 ET PRESSURE= 0. 001844
X DENSITY GMIXTURE GMIXING

0. 00 0 163237 -1. 541739 0. 000000
_ TIME TAKEN WAS 13. 65MINS

0. 00 0 163237 -1. 541739 0. 000000 0. 5800482E—17
— 0. 04 0. 174032 -1. 920521 -0. 087533 0. 6025123E-13

0. 08 0. 184280 -2. 252615 -0. 128488 0. 3974S97E—13
------0. 12 0. 193936 -2. 571639 -0. 156363 0. 2536659E—13

0. 16 0. 203172 -2. 334263 -0. 177748 0. 1597957E—13
0. 20 0. 211370 -3. 193105 -0. 195396 0. 5859244E—11

—- 0. 24 0. 220117 -3. 499603 -0. 210700 0. 3485668E—11
------0. 28 0. 227947 -3. 804504 -0. 224407 0. 2119292E-11
------O. 32 0. 235394 -4 108203 -0. 236912 0. 131814SE-11
------0. 36 0. 242488 -4. 410337 -0. 243402 0. S3S396SE-12
— 0. 40 0. 249257 -4. 712605 -0. 258926 0. 544837SE—12
___ 0. 44 0. 255727 -5. 013303 -0. 263435 0. 361323SE—12
— - 0. 43 0. 261921 -s. 312873 -0. 276807 0. 2442184E—12
-__ 0. 52 0. 267353 -5. 611115 -0. 233354 0. 16S0107E-12
— 0. 56 0. 273553 -5. 907734 -0. 239330 0. 1175125E-12

0. 60 0. 279037 -6. 202571 -0. 292923 0. 8344383E—13
0. 64 0. 284311 -6. 495094 -0. 294252 0. 6009619E-13
0. 68 0. 289392 -6. 784379 -0. 292843 0. 4385354E—13
0. 72 0. 294295 -7. 071337 -0. 238107 0. 3240089E—13
0. 76 0. 299029 -7. 353713 -0. 279283 0. 2421430E-13
0. 80 0. 303605 -7. 631005 -0. 265387 0. 1829542E—13

— _0. 34 0. 308033 -7. 901821 -0.. 245009 0. 1394337E-13
- 0. 88 0. 312322 -8. 164070 -0. 216064 0. 1073376E-13
------ 0. 92 0. 316478 -3. 414230 -0. 175030 0. 8343315E-14
----- 0 96 0. 320508 -8. 644970 -0. 114576 0. 654S744E-14
yr----1- 00 0. 324423 -3. 821533 0. 000000



30- JAN-77
32P0INTS 

- DENSITY=
AT INTERVALS 

0. 312RATI0 OF
OF 0. 136
DIPOLES= 1. 50RATI0 OF RADII = 1 . 010

8P0INT QUAD 6PGINTS FOR INTERP
TEMP= 0. 2300 ET F'RESSURE= 0. 001844

— X DENSITY GMIXTURE
_ 0. 00 0 150753 -1 335545
--TINE TAKEN WAS 13. 85MINS
— 0. 00 0. 150753 -1. 335545

GIVEN 32
GMIXING

0. 000000
0. 000000 0. 1338990E-16

---0. 04 0 161773 -1. 693728 -0. 087782 0. 7987832E-13
0. 08 0. 172294 -2. 005279 -0. 128931 0. 5583072E—13

— - 0. 12 0 182285 -2. 303860 -0. 157111 0. 3491993E—13
_. . 0. 16 0. 191751 _2 595981 -0. 178831 0. 2331636E—13

0. 20 0. 200717 -2. 884392 -0. 196841 0. 1470498E—13
- 0. 24 0. 209215 -3. 170464 -0. 212512 0. 5353724E—11

0. 28 0. 217278 -3. 454928 -0. 226575 0. 3196345E—11
0. 32 0. 224942 -3. 738169 -0. 239415 0. 1950878E—11
0. 36 0. 232236 -4. 020362 -0. 251207 0. 121S026E-11

- — 0 40 0. 239191 -4. 301548 -0. 261992 0. 7776134E-12
0. 44 0. 245833 -4 581673 -0. 271716 0. 5071305E-12

-- 0. 48 0. 252186 -4. 860609 -0. 280250 0. 3374607E-12
— 0. 52 0. 258273 -5. 138164 -0. 287405 0. 2288249E-12

0. 56 0. 264112 -5. 414090 -0. 292929 0. 1578964E—12
---0. 60 0. 269721 -5. 688073 -0. 296511 0. 110737IE-12
- 0. 64 0. 275117 -5. 959728 -0. 297766 0. 7884421E-13
- 0. 68 0. 280313 -6. 228584 -0. 296221 0. 5693249E—13
---0. 72 0. 285324 -6. 494049 -0. 291284 0. 4164177E—13
--- 0. 76 0. 290160 -6. 755368 -0. 282202 0. 3082707E—13
-- 0. SO 0. 294833 -7. 011541 -0. 267974 0. 2308326E—13
---O. 84 0. 299352 -7. 261173 -0. 247205 0. 1746623E—13
,--0. 88 0. 303727 -7. 502175 -0. 217806 0. 1334713E-13

0. 92 0. 307966 -7. 731027 -0. 176256 0. 102914IE-13
--0.-96 0. 312076 -7. 940383 -0. 115212 0. 7961676E-14
--- 1. 00 0. 316066 -8. 095572 0. 000000

-L 29-JAN-77
32P0INTS AT INTERVALS OF 0. 184 

DENSITY= O. 373RATI0 OF DIPOLES= 1. 50RATI0 OF RADI I = 1.000
____8P0INT QUAD 6P0INTS FOR INTERP GIVEN 32
L TEMP= 0. 1700 ET F'RESSURE= 0. 002535

X
0. 00

„ TIME TAKEN
DENSITY
0. 237919 
WAS 9.

GMIXTURE 
-3. 335199 

62MINS
GMIXING

0. 000000
_ 0. 00 0. 237919 -3. 335201 -0. 000002 0. 6459622E-14

o. 04 0. 246857 -3. 872399 -0. 074184 0. 3014317E-11
i___ 0. 08 0. 255349 -4. 363842 -0. 102612 0. 195699IE-11
___ 0. 12 0. 263423 -4. 843260 -0. 119014 0. 1280940E-11

0. 16 0. 271105 -5. 317263 -0. 130002 0. 8478478E—12
„ 0. 20 0. 278425 -5. 788664 -0. 138387 0. 5684263E—12

0. 24 0. 285408 -6. 258889 -0. 145596 0. 3862687E-12
_ 0. 28 0. 292078 -6. 728709 -0. 152401 0. 2661126E-12

0. 32 0. 298458 -7. 198533 -0. 159209 0. 1858083E—12
0. 36 0. 304567 -7. 668551 -0. 166211 0. 1314460E—12
0. 40 0. 310426 -8. 138810 -0. 173455 0. 9416984E-13
0. 44 0. 316050 -8. 609254 -0. 180883 0. 6828213E-13
0. 48 0. 321456 -9 079748 -0. 188361 0. 5006276E-13

---0. 52 0. 326657 -9. 550091 -0. 195689 0. 3712043E-13
-- 0. 56 0. 331668 -10. 020019 -0. 202601 0. 2778935E—13

0. 60 0. 336500 -10. 489203 -0. 208770 0. 2101786E—13
0. 64 0. 341 163 -10. 957242 -0. 213793 0. 1604007E-13

-- 0. 68 0. 345669 -11. 423643 -0. 217178 0. 1235551E-13
-- 0. 72 0. 350026 -11. 887796 -0. 218316 0. 9576487E—14
,-- X>. 76 0. 354243 -12. 348925 -0. 216430 0. 7489614E-14
- 0. 80 0. 358327 -12. 806011 -0. 210500 0. 5909281E-14
,-- 0. 84 0. 362286 -13. 257638 -0. 199111 0. 4680230E-14
— 0. 88 0. 366127 -13. 701694 -0. 180152 0. 3742612E-14
---0. 92 0. 369856 -14 134640 -0. 150082 0. 3014028E—14
—— 0 96 
-- 1. 00

0 373477 
0. 376995

-14. 549127 
-14. 910589

-0. 101554
0. 000000

0. 2416416E—14



31-JAN-77
32P0INTS AT INTERVALS OF 0. 208 

DENSITY= 0. 390RATI0 OF DIPOLES= 1. 50RATI0 
8P0INT QUAD 6P0INTS FOR INTERR GIVEN 

TEMP= 0. 1500 ET PRESSURE= 0. 002535 
X

0. 00
TIME TAKEN

OF RADI Is 
32

1. 010

00
04
08
12
16
20
24
28

0. 32 
0. 36
0.

0.
0.
0.
0.
0.

0.

0.

0.

0.

40 
44 
48
52 
56 
60 
64 
68 
72 
76 

0. 80 
"0. 84~
0. 88 
0. 92
0. 96
1. 00

31-JAN-77 
32P0INTS 

DENSITY= 
8P0INT 

TEMP= 0.
X 

0.
Tlh 

0.
0.
0.
0.

0.
-0.

0.
o.
0.
0.
0.

— 0-.

0.
-o.

0.
0.
0.
o.

0
0.
0.
0.
0.
0.
1.

DENSITY GMIXTURE GMIXING
0. 264276 -4. 409347 0. 000000
WAS 12. 62MINS
0. 264276 -4. 409351 -0. 000004 0. 2672770E-13
0. 272430 -5. 011090 -0. 030373 0. 1131535E—11
0 280173 -5. 566283 -0. 1 14205 0. 7453490E-12
0. 287551 -6. 108745 -0. 135302 0. 4985994E-12
0. 294576 -6. 645097 -0. 150239 0. 3383239E-12
0. 301280 -7. 178215 -0. 162042 0. 232481 IE-12
0. 307686 -7 709570 -0. 172031 0. 1621667E—12
0. 313816 -8. 239963 -0. 181064 0. 1146660E-12
0. 319689 -8. 769854 -0. 189584 0. 8211872E-13
0. 325325 -9. 299447 -0. 197812 0. 5953132E—13
0. 330739 -9. 828820 -0. 205820 0. 4366033E-13
0. 335946 -10 357941 -0. 213575 0. 3238550E-13
0. 340960 -10. 886696 -0. 220965 0. 2426699E-13
0. 345792 -11. 414903 -0. 227807 0. 1836113E-13
0. 350455 -11. 942314 -0. 233853 0. 1400697E—13
0. 354959 -12. 468616 -0. 238789 0. 1079513E-13
0. 359313 -12. 993419 -0. 242227 0. 8382130E-14
0. 363525 -13. 516245 -0. 243688 0. 6556333E-14
0. 367605 -14 036493 -0. 242571 0. 5187636E—14
0. 371559 -14. 553399 -0. 238111 0. 410777IE-14
0 375394 -15. 065950 -0. 229297 0. 3294186E—14
0. 379116 -15. 572746 -0. 214728 0. 2612439E—14
0. 382731 -16. 071676 -0. 192293 0. 9707463E—03
0. 386245 -16. 559200 -0. 158451 0. 8905985E—0 8
0. 389662 -17. 027957 -0. 105343 0. 8180794E-08
0. 392984 -17. 443479 0. 000000

^T INTERVALS OF 0. 195
379RATI0 OF DIPOLES= 1. 50RATI0 OF RADII>1 010

QUAD 
1600

6P0INTS FOR INTERP GIVEN 
ET PRESSURE= 0. 002535

DENSITY GMIXTURE GMIXING
00 0. 250379 -3. 829366 0. 000000

IE TAKEN WAS 12. 72MINS
00 0. 250879 -3. 829369 -0. 000003 0. 1445019E—13
04 0. 259229 -4. 388173 -0. 083081 0. 1527491E-11
08 0. 267167 -4. 900145 -0. 119327 0. 10G1S86E-11
12 0. 274722 -5. 399108 -0. 142563 0. 6661685E—12
16 0. 281920 -5. 391698 -0. 159428 0. 44S5725E-12
20 0. 288789 -6. 380799 -0. 172803 0. 3060195E—12
24 0. 295352 -6. 867889 -0. 184167 0. 2118097E-12
23 0. 301631 -7. 353783 -0. 194335 0. 1485868E-12
32 0. 307646 -7. 838933 -0. 203759 0. 105612IE-12
36 0. 313417 -8. 323565 -0. 212664 0. 7600252E—13
40 0. 318958 -8. 807759 -0. 221133 0. 5534630E— 13
44 0. 324287 -9. 291490 -0. 229138 0. 4077549E-13
48 0. 329417 -9. 774650 -0. 236572 0. 3034676E-13
52 0. 334361 -10. 257064 -0. 243260 0. 2282023E-13
56 0. 339130 -10. 738489 -0. 248959 0. 1731856E—13
60 0. 343735 -11. 218618 -0. 253362 0. 132671 IE-13
64 0. 348186 -11. 697067 -0. 256085 0. 1025650E—13
68 0. 352491 -12. 173361 -0. 256653 0. 7977072E—14
72 0. 356660 -12. 646908 -0. 254473 0. 6277910E-14
76 0. 360699 -13. 116944 -0. 248784 0. 495605IE-14
80 0. 364617 -13. 582465 -0. 238579 0. 3924758E-14
84 0. 368418 -14. 042067 -0. 222455 0. 3169286E—14
88 0. 372110 -14. 493655 -0. 198317 0. 2542183E—14
92 0. 375698 -14. 933692 -0. 162628 0. 9491874E-08
96 0. 379186 -15. 354822 -0. 108032 0. 8713067E-08
00 0. 382577 -15. 722516 0. 000000



31—JAN-77
32P0INTS AT INTERVALS OF 0. 184 

DENSITY= 0. 369RATI0 OF DIPOLES= 1. 50RATI0 OF RADI 1 = 1. 010
8P0INT QUAD 6PGINTS FOR INTERP

...... TEMP= 0. 1700 ET PRESSURE= 0. 002535
X DENSITY GMIXTURE

f----------0. 00 0. 237919 -3. 335199
TIME TAKEN WAS 12. 85MINS

0. 00 0. 237919 -3. 335201

GIVEN 32

GMIXING
0 000000

-0. 000002 0. 6456153E—14
~ 0. 04 0. 246461 856436 -0. 085403 0. 2063250E—11
~ 0 08 0. 254585 -4. 330598 -0. 123730 0. 1354218E—11
------------0. 12 0. 262321 -4. 791517 -0. 148814 0. 893S873E-12

0. 16 0. 269692 -5. 245841 -0. 167303 0. 5979509E-12
----------0. 2.0 0. 276726 -5. 696457 -0. 182086 0. 4050713E-12

- ~ 0. 24 0. 283446 -6. 144852 -0. 194645 0. 2781975E—12
0. 28 0. 289875 -6. 591846 -0. 205805 0. 1936406E-12
0. 32 0. 296033 -7. 037896 -0. 216020 0. 1365504E-12

*----------0. 36 0. 301938 -7. 483234 -0. 225524 0. 9753174E—13
0 40 0. 307603 -7. 927947 -0. 234403 0. 7050258E—13
0. 44 0. 313059 -8. 372013 -0. 242634 0. 5156634E-13
0. 48 0. 318305 -8. 815331 -0. 250118 0. 3812223E-13

~ 0. 52 0. 323359 -9. 257729 -0. 256681 0. 2847717E-13
0. 56 0. 328234 -9. 698970 -0. 262088 0. 2148623E-13

“ 0. 60 0. 332940 -10. 138751 -0. 266034 0. 1635665E-13
* 0. 64 0. 337487 -10. 576693 -0. 268142 0. 1258190E-13

0. 68 0. 341886 -11. 012327 -0. 267940 0. 9724806E—14
0. 72 0. 346143 -1 1 445061 -0. 264840 0. 7618851E-14
0. 76 0. 350267 -11. 874139 -0. 258084 0. 5976936E—14
0. 80 0. 354266 -12. 298558 -0. 246668 0. 4728802E-14
0. 84 0. 358147 -12. 716920 -0. 229196 0. 3772969E—14
0. 88 0. 361914 -13. 127128 -0. 203570 0. 3030508E-14
0. 92 0. 365575 -13. 525659 -0. 166266 0. 2416416E—14

-----------0. 96 0. 369133 -13. 905177 -0. 109949 0. 9264183E-08
1. 00

31-JAN-77 
32P0INTS 

DENSITY=

0. 372593

AT INTERVALS 
0. 359RATI0 OF

-14. 231062 0. 000000

OF 0. 174
DIPOLES= 1. 50RATI0 OF RADII = 1 . 010

8F0INT QUAD 6P0INTS FOR I NT ERF' GIVEN 32 
TEMF'= 0. 1800 ET PRESSURE= 0. 002535

X DENSITY GMIXTURE GMIXING
0. 00 0. 225345 -2. 911337 0. 000000

TIME TAKEN WAS 12. 82MINS
0. 00 0. 225345. -2. 911337 -0. 000001 0. 2426824E—14
0. 04 0. 234071 -3. 399416 -0. 087396 0. 2731147E-11
0. 08 0. 242379 -3. 840212 -0. 127509 0. 1S24484E— 11
0. 12 0. 250293 -4. 267579 -0. 154193 0. 1203363E—11
0 16 0. 257838 -4. 688157 -0. 174087 0. 8012293E—12
0. 20 0. 265037 -5. 104843 -0. 190091 0. 5392266E—12
0. 24 0 271915 -5. 519128 -0. 203693 0. 3675987E—12
0. 28 0. 278494 -5. 931838 -0. 215719 0. 2538919E-12
0. 32 0. 284795 -6. 343433 -0. 226631 0. 1776296E—12

------0. 36 0. 290836 -6. 754149 -0. 236664 0. 125S702E-12
0 40 0. 296635 -7. 164077 -0. 245909 0. 9030488E-13
0. 44 0. 302209 -7. 573200 -0. 254349 0. 6554994E—13
0. 48 0. 307571 -7. 981420 -0. 261885 0. 4812855E—13
0. 52 0. 312737 -8. 388568 -0. 268351 0. 3571703E-13
0. 56 0. 317717 -8. 794413 -0. 273512 0. 2677237E—13
0. 60 0. 322524 -9. 198654 -0. 277070 0. 2024590E—13
0. 64 0 327168 -9. 600917 -0. 278650 0. 1547455E—13
0. 68 0. 331659 -10. 000734 -0. 277734 0. 1191056E-13
0. 72 0. 336005 -10. 397520 -0. 273386 0. 9271175E-14
0. 76 0. 340214 -10. 790520 -0. 266204 0. 7249355E-14
0. 80 0. 344294 -11. 178736 -0. 253736 0. 5719329E-14
0. 84 0. 348253 -11. 560771 -0. 235088 0. 4527574E-14
0. 88 0. 352095 -11. 934533 -0. 208167 0. 3607303E—14
0. 92 0. 355828 -12. 296499 -0. 169450 0. 2921220E-14
0. 96 0. 359455 -12. 639350 -0. 111618 0. 9866S87E-08

9------1.00 0. 362984 -12. 928415 0. 000000



31-JAN-77
32P0INTS AT INTERVALS OF 0. 164

---- DENSITY= 0. 350RATI0 OF DIPOLES3 1. 50RATI0 OF RADII = 1.010
AROINT QUAD 6PGINTS FOR INTERP GIVEN 32 

- TEMP= 0. 1900 ET PRESSURE3 0. 002535
X - DENSITY GMIXTURE GMIXING

0 00 0. 213114 -2. 545740 0. 000000
— TIME TAKEN WAS 12. 95MINS

0. 00 0 213114 -2. 545740 -0. 000001 0. 7187718E—15
— 0. 04 0. 222015 -3. 004327 -0. 089105 0. 3725977E-1 1

o. OS 0. 230501 -3. 415460 -0. 130756 0. 2460744E-11
0. 12 0. 238592 -3. 812996 -0. 158810 0. 1624387E-11
0. 16 0. 246309 -4. 203586 -0. 179918 0. 1077933E— 11

-------0. 20 0. 253675 -4. 590131 -0. 196980 0. 7217160E-12
■— 0. 24 0. 260712 -4. 974123 -0. 211489 0. 4887032E— 12

0. 28 0. 267442 -5. 356390 -0. 224274 0. 3349750E— 12
0. 32 0. 273887 -5. 737396 -0. 235798 0. 2325340E-12
0. 36 0 280065 -6. 117381 -0. 246301 0. 1634642E—12
0. 40 0. 285994 —6. 496437 -0. 255875 0. 1163552E—12
0. 44 0. 291691 -6. 874551 -0. 264506 0. 8382742E-13
0. 48 0. 297172 -7. 251627 -0. 272100 0. 6108260E-13

“0. 52 0. 302449 -7. 627500 -0. 278491 0. 4501298E-13
0. 56 0. 307536 -8. 001941 -0. 283450 0. 3351827E—13
0. 60 0. 312445 -8. 374653 -0. 286679 0. 2518900E-13
0. 64 0. 317185 -8. 745263 -0. 237807 0. 1913568E-13
0 68 0. 321768 -9. 113308 -0. 286369 0. 1465402E-13
0. 72 0. 326203 -9. 478204 -0. 281783 0. 1131815E-13
0. 76 0. 330497 -9. 339200 -0. 273297 0. 8307137E-14
0 80 0. 334659 -10. 195299 -0. 259914 0. 6898074E-14
0. 84 0. 338695 -10. 545110 -0. 240242 0. 5471264E-14
0. 88 0. 342613 -10. 886541 -0. 212191 0. 4349765E— 14
0. 92 0. 346418 -11. 216073 -0. 172242 0. 3465056E-14
0 96 0. 350114 -11. 526391 -0. 113077 0. 2800657E-14
1 00 0. 353710 -11. 782796 0. 000000

29-JAN-77
. 32P0INTS AT INTERVALS OF 0. 195
DENSITY3 0. 375RATI0 OF DIPOLES3 1. 50RATI0 OF RADII=1.010

_____8P0INT QUAD 6P0INTS FOR INTERP GIVEN 32
. TEMP= 0. 1600 ET PRESSURE3 0. 0013S3
r - X DENSITY GMIXTURE GMIXING
____0. 00 0. 235110 -3. 460270 0. 000000
_ TIME TAKEN WAS 13. 03MINS
... 0. 00 0. 235110 -3. 460272 -0. 000002 0. 1132395E-13
r___ 0. 04 0. 244806 -4. 010912 -0. 078150 0. 8075834E—11

0. 08 0. 253902 -4. 515704 -0. 110451 0. 4468229E—11
0. 12 0. 262462 -5. 008303 -0. 130558 0. 2570726E—11

___ 0. 16 0. 270537 -5. 495214 -0. 144978 0. 153002IE-11
0. 20 0. 278177 -5. 979214 -0. 156436 0. 9390185E—12

__ 0. 24 0. 235422 -6. 461695 -0. 166475 0. 593054SE—12
0. 28 0. 292309 -6. 943405 -0. 175693 0. 3841702E-12

... _ 0. 32 0. 298367 -7. 424736 -0. 184533 0. 2546436E—12
___.0. 36 0. 305126 -7. 905870 -0. 193176 0. 1723288E—12

0. 40 0. 311109 -8. 386847 -0. 201661 0. 1188477E-12
_ 0. 44 0. 316837 -8. 867608 -0. 209930 0. 8339390E-13

0. 48 0. 322331 -9. 348018 -0. 217849 0. 5944735E—13
_. 0. 52 0. 327608 -9. 827876 -0. 225216 0. 4298092E—13

0. 56 0. 332682 -10. 306922 -0. 231770 0. 314927 IE-13
0. 60 0. 337567 -10. 784828 -0. 237184 0. 2337160E-13
0. 64 0. 342277 -11. 261197 -0. 241062 0. 1752992E—13
0. 68 0. 346822 -11. 735540 -0. 242914 0. 1329980E-13
0. 72 0. 351212 -12. 207252 -0. 242134 0. 1017816E-13
0. 76 0. 355458 -12. 675562 -0. 237952 0. 7870983E-14
0. 80 0. 359563 -13. 139452 -0. 229350 0. 6136259E-14
0. 84 0. 363549 -13. 597514 -0. 214921 0. 4830880E—14

— 0. 88 0. 367409 -14. 047643 -0. 192558 0. 3824740E—14
r... o. 92 0. 371154 -14 486298 -0. 158722 0. 3019828E—14
- 0 96 0. 374790 -14. 906118 -0. 106051 0. 2419614E-14

------ 1. 00 0. 378320 -15. 272559 0. 000000



-29-JAN-77
32P0INTS AT INTERVALS OF 0. 174 

- DENSITY= 0. 364RATIQ OF DIPOLES= 1. 50RATIO OF RADI 1 = 1. 000 
SPOINT QUAD 6P0INTS FOR INTERP GIVEN 32 

TEMP= 0. 1800 ET PRESSURE- 0. 002535
X DENSITY GMIXTIJRE GMIXING

-- .. 0. 00 0. 225345 -2. 911336 0. 000000
TIME TAKEN WAS 9. 63MINS

___ 0. 00 0. 225345 -2. 911337 -0. 000001 0. 2492093E-14
0. 04 0. 234470 -3. 413754 -0. 076641 0. 4045949E-11

_ _ 0. 08 0. 243150 -3. 870158 -0. 107268 0. 263411 IE-11
0. 12 0. 251408 -4. 314291 -0. 125625 0. 1720951E-11

_ _ 0. 16 0. 259269 -4. 752772 -0. 138329 0. 1133734E-11
___0. 20 0. 266760 -5. 188422 -0. 143203 0. 7552161E-12
___ 0. 24 0. 273906 -5. 622675 -0. 156679 0. 5094349E-12
--- 0. 28 0. 280731 -6. 056307 -0. 164534 0. 348220IE-12
___ 0. 32 0. 287258 -6. 489734 -0. 172134 0. 2412054E-12
___0. 36 0. 293508 -6. 923150 -0. 179824 0. 169308 IE-12
____0. 40 0. 299499 -7. 356609 -0. 187506 0. 1203646E-12
;___ 0. 44 0. 305249 -7. 790059 -0. 195179 0. 8662119E-13
___ 0. 48
--- 0. 52

0. 310775 
0. 316091

-8. 223371 
-8. 656349

-0. 202715 
-0. 209916

0. 6307015E-13 
0. 4644196E—13

0. 56 0. 321211 -9. 088733 -0. 216524 0. 3455043E— 13
0. 60 0. 326146 -9. 520200 -0. 222214 0. 2596268E-13
0. 64 0. 330909 -9. 950352 -0. 226589 0. 1969686E—13
0. 68 0. 335509 -10. 378701 -0. 229162 0. 1508076E-13
0. 72 0. 339957 -10. 804642 -0. 229326 0. 1165208E-13
0. 76 0. 344260 -11. 227403 -0. 226310 0. 9047396E— 14

f-- 0. 80 0. 348428 -11. 645967 -0. 219098 0. 7095832E-14
-0. 84 0. 352467 -12. 058924 -0. 206278 0. 5610042E—14

____0. 88
L- . 0. 92

0. 356385 -12. 464165 -0. 185743 0. 44607S7E— 14
0. 360187 -12. 853155 -0. 153956 0. 3568272E-14

--- 0. 96 0. 363879 -13. 233559 -0. 103584 0. 2872648E-14
----1. 00 0. 367467 -13. 555752 0. 000000
I 29—JAN-77

32P0INTS (■ 
_ DENSITY= 0.

INTERVALS 
355RATI0 OF

OF 0. 164
DIPOLES= 1. 50RATI0 OF RADI I = 1.000

_ - SPOINT QUAD 6P0INTS FOR INTERP
L._TEMP= 0. 1900 ET PRESSURE= 0. 002535

GIVEN 32
r__ X DENSITY GMIXTURE GMIXING
- - 0. 00 0. 213114 -2. 545740 0. 000000
. TIME TAKEN WAS 9. 63MINS
---0. 00
,____ 0. 04
L 0. 08

0. 213114 
0. 222417 
0. 231279

-2. 545740 
-3. 017229 
-3. 442434

-0. 000001 
-0. 078765 
-0. 111297

0. 8013880E-15 
0. 5397304E-11 
0. 3542756E-11

0. 12 0. 239718 -3. 855258 -0. 131348 0. 231S057E-11
0. 16 0. 247757 -4. 262130 -0. 145546 0. 1522982E— 11

T~- 0. 20 0. 255419 -4. 666076 -0. 156713 0. 1009167E-11
0. 24 0. 262729 -5. 068385 -0. 166304 0. 6761340E—12
0. 28 0. 269711 -5. 469888 -0. 175083 0. 4586413E-12
0. 32 0. 276387 -5. 371005 -0. 183476 0. 3151918E— 12

r--- 0. 36 0. 282778 -6. 271935 -0. 191683 0. 2194442E-12
---0. 40 0. 288904 -6. 672735 -0. 199759 0. 1547642E-12
r - . 0. 44 0. 294782 -7. 073358 -0. 207659 0. 1105170E—12
---0. 48 0. 300428 -7. 473679 -0. 215256 0. 7987052E-13
--- 0. 52 0. 305860 -7. 873504 -0. 222358 0. 5838553E-13
— -0. 56 0. 311089 -8. 272579 -0. 228709 0. 4315466E-13
-- 0. 60 0. 316128 -8. 670583 -0. 233990 0. 3222417E-13
- 0. 64 0. 320990 -9. 067123 -0. 237806 0. 2428694E-13
... _ _ o 68 0. 325686 

0. 330224
-9. 461715 
-9. 853755

-0. 239674 
-0. 238991

0. 1849123E—13 
0. 1419345E— 130. 72

,--- 0. 76 0. 334614 -10. 242477 -0. 234989 0. 1098942E—13
— 0. 80 0. 338865 -10. 626367 -0. 226655 0. 8566010E-14
r-r—0. 84 0. 342984 -11. 005516 -0. 212581 0. 6733275E-14

0. 83 0. 346978 -11. 376322 -0. 190663 0. 5342894E-14
,---0. 92 0. 350854 -11. 735749 -0. 157367 0. 4253488E-14
---0. 96 0. 354616 -12. 076474 -0. 105368 0. 3393065E— 14
T— 1. 00 0. 358273 -12. 363829 0. 000000



29-JAN-77
32P0INTS AT INTERVALS OF 0. 156 

r~~ DENSITY= 0. 346RATI0 OF DIPOLES= 1. 50RATIO OF RADI I = 1.000 
8P0INT QUAD 6P0INTS FOR INTERP GIVEN 32 

— TEMF'= 0. 2000 ET PRESSURE= 0. 002535
X DENSITY GMIXTORE GMIXING

T.. 0.00 0.201196 -2.228936 0.000000
TIME TAKEN WAS 9. SOM I NS

?-- 0. 00 0. 201196 -2. -0. 000000 0. 1614919E—15— 0. 04 0. 210660 -2. 672728 -0. 080600 0. 1212740E—13
0. 08 0. 219696 -3. 070096 -0. 114775 0. 4743698E-11

i_ _ _ _0. 12 0. 228313 -3. 454806 -0. 136292 0. 3123712E-11
0. 16 0. 236528 -3. 833492 -0. 151787 0. 2052926E-11

L_ 0. 20 0. 244362 -4. 208988 -0. 164090 0. 135559IE-11
___0. 24 0. 251838 -4. 582735 -0. 174645 0. 9029738E-12

0. 28 0. 258978 -4. 955519 -0. 184236 0. 6081641E-12
0. 32 0. 265805 -5. 327762 -0. 193286 0. 414669IE-12

;__ 0. 36 0. 272339 -5. 699666 -0. 201998 0. 2863720E-12
0. 40 0. 278600 -6. 071291 -0. 210430 0. 2003193E-12
0. 44 0. 284607 -6. 442592 -0. 218539 0. 1418977E-12
0. 48 0. 290377 -6. 813447 -0. 226201 0. 1017580E-12
0. 52 0. 295924 -7. 183666 -0. 233228 0. 7383151E-13
0. 56 0. 301263 -7. 552996 -0. 239366 0. 5417232E-13
0. 60 0. 306408 -7. 921122 -0. 244299 0. 4017874E—13

f__ 0. 64 0. 311371 -8. 287650 -0. 247635 0. 3010260E-13
0. 68 0. 316161 -8. 652101 -0. 248893 0. 2277513E-13

.0, 72 0. 320791 -9. 013874 -0. 247474 0. 173784IE-13
0. 76 0. 325268 -9. 372205 -0. 242613 0. 1337727E-13

r~ 0. 80 0. 329603 -9. 726083 -0. 233298 0. 1037966E—13
0. 84 0. 333801 -10. 074103 -0. 218126 0. 8117584E-14
0. 88 0. 337872 -10. 414164 -0. 194994 0. 6408882E-14

i-- 0. 92 0. 341822 -10. 742735 -0. 160373 0. 5083553E—14
0. 96 0. 345654 -11. 052491 -0. 106936 0. 4040117E-14

* 1. 00 0. 349380 -11. 308747 0. 000000
1 29—JAN-77

32P0INTS AT INTERVALS OF 0 104 
L-DENSITY= 0. 267RATI0 OF DIPOLES= 1. 50RATI0 OF RADII = 1. 000

8P0INT QUAE 6P0INTS FOR INTERP GIVEN 32r TEMF- 0. 3000 ET PRESSURE= 0. 002535
X DENSITY GMIXTIJRE GMIXING

r_ 0. 00 0. 101143 -0. 605709 0. 000000
TIME TAKEN WAS 10. 40MINS

V 0. 00 0. 101143 -0. 605709 0. 000000 0. 3848918E-17
0. 04 0. 108858 -0. 877727 -0. 091622 0. 2947236E-08

r - 0. 08 0. 117181 -1. 100861 -0. 134361 0. 4950618E-08
0. 12 0. 125916 -1. 309612 -0. 162715 0. 7117463E-08
0. 16 0 134857 -1. 511123 -0. 183831 0. 89166S7E-08

r 0. 20 0. 143819 -1. 708554 -0. 200866 0. 2001432E-13
0. 24 0. 152664 -1. 903529 -0. 215445 0. 1938852E—13

~ 0. 28 0. 161297 -2. 096928 -0. 228447 0. 1654357E-13L 0. 32 0. 169661 -2. 289209 -0. 240333 0. 9404444E-08
0. 36 0. 177727 -2. 480586 -0. 251314 0. 8555232E—08
0. 40 0. 185483 -2. 671108 -0. 261440 0. 3877702E—11

- O. 44 0. 192931 -2. 860713 -0. 270649 0. 2601216E—11
— 0. 48 0 200079 -3. 049263 -0. 278803 0. 1736797E—11
r~ 0. 52 0. 206939 -3. 236553 -0. 285697 0. 1162778E-11
— 0. 56 0. 213525 -3. 422317 -0. 291065 0. 784058IE-12
t—- -0. 60 0. 219852 -3. 606228 -0. 294580 0. 5338889E—12

0. 64 0 225935 -3. 787888 -0. 295845 0. 3676403E—12
- 0. 68 0. 231788 -3. 966812 -0. 294372 0. 2562082E—12

0. 72 0. 237425 -4. 142398 -0. 289562 0. 1807338E-12
? —- 0. 76 0. 242859 -4. 313882 -0. 280650 0. 1290404E—12
— 0. 80 0. 248102 -4, 480254 -0. 266627 0. 9321358E-13

0. 84 0. 253165 -4. 640115 -0. 246091 0. 6809 738E— 13
0. 88 0. 258059 -4. 791368 -0. 216949 0. 5029999E—13
0. 92 0. 262794 -4. 930487 -0. 175671 0. 3752722E-13
0. 96 0. 267378 -5. 050100 -0. 1 14888 0. 2824992E-13

.---.1. 00 0. 271821 -5. 115607 0. 000000
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