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Abstract 
This paper presents a low-cost 6 Degrees-of-Freedom (6 DoF) visual tracking technique and its system for a 
small indoor rotary-wing Unmanned Aerial Vehicle (UAV) using three onboard LEDs and a single on-ground 
camera. The ellipse formed by the cyan LEDs on the blades and the red LED in the captured image are utilised 
for pose estimation. The developed system successfully implements the proposed technique with a sampling rate 
of 9-12Hz. The most notable contributions of this paper are the novel configuration of the LEDs for visual 
tracking using only three LEDs and one camera for 6 DoF motion tracking of a UAV and the wide range of 
observable flight. The experimental results show 1-3% percentage error in the developed system at various 
ranges, directions and vehicle velocities in an indoor environment, demonstrating the effectiveness of the 
proposed technique. 

Keywords: Computer vision, unmanned aerial vehicle, orientation and position determination 

1 Introduction 
Over recent years, the use of small UAVs has gained 
significant interest in several research communities 
due to their wide robotics applications such as Urban 
Search And Rescues (USAR) and surveillance [1]. 
Robust pose estimation systems are crucial for UAVs 
to navigate indoors. The key challenges in such 
systems are the unavailability of GPS data and the 
limited sizes and payloads of the UAVs. Due to the 
high manoeuvrability of rotary-wing UAVs, they have 
distinct advantages over fixed-wing and flapping-
wing UAVs in indoor environments with limited 
spaces [2], [3]. 

In the literature, there have been a variety of indoor 
pose estimation systems developed for aerial vehicles. 
The most popular techniques are the Inertia 
Measurement Unit (IMU) and the electromagnetic 
tracking device. The IMU measures the accelerations 
and integrates them over time to obtain the orientation 
and position. It provides low-noise motion measure-
ments with high sampling rate [4], but the pose 
gradually drifts due to the accumulative errors caused 
by the integration. The electromagnetic tracking 
device measures the relative pose of the target very 
accurately. Castillo et al. [2] showed the successful 
pose estimation and control of a quad-rotor helicopter 
using an electromagnetic tracking sensor. However, 
this type of sensor is highly sensitive to electromag-
netic noise, especially when the sensor is very close to 
the electric motors in a small UAV. 

Another popular class of the approaches to the pose 
estimation of UAVs is the vision. Having cameras and 
landmarks on vehicles or on ground, the poses of the 
vehicles can be estimated. Existing vision-based pose 

estimation systems fall into three main categories. 
The first category is the outside-in, where cameras are 
on-ground to track onboard landmarks. In this 
category, Tisse et al. [4] utilised three onboard 
markers and on-ground stereo cameras to obtain the 6 
DoF motion, consisting of the yaw, roll, pitch and 3-
Dimensional position, of a rotary-wing UAV. Both 
Altuğ et al. [5] and Earl and Andrea [6] successfully 
controlled a quad-rotor helicopter with 4 and 5 
markers/LEDs as onboard landmarks and an external 
camera under the helicopter. Wang et al. [7] presented 
an outside-in visual tracking system for a coaxial 
helicopter of no dimension larger than 140mm with 
an onboard marker. This type of the system is very 
suitable for small UAVs or Micro Aerial Vehicles 
(MAVs) with limited payload because only light 
markers or LEDs are required to be mounted on-
board. 

The second category is the inside-out, where cameras 
are onboard while landmarks are on-ground. In this 
category, Romero et al. [8] demonstrated stabili-
sation and localisation of a quad-rotor helicopter 
using four on-ground markers, whilst Tournier et al. 
[9] and Xu et al. [10] advantageously exploited 
onboard cameras and special patterns on ground to 
control and estimate the positions and the poses of 
aerial vehicles. These techniques provide highly 
accurate pose data, adequate for several autonomous 
tasks, such as way-point tracking and landing. 
Davidson et al. [11] presented a vision-based 
Simultaneous Localisation and Mapping (SLAM) 
technique which can determine the 3D trajectory of a 
monocular hand-held camera in an unknown scene by 
localising new landmarks. The last category, the 
hybrid system, localises the target by a combination 
of on-ground and onboard cameras. Altuğ et al. [12] 
improved the effectiveness of their estimation system 
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by having an additional onboard camera and an on-
ground marker. 

Although the existing techniques provide accurate 
pose estimation of flying vehicles, there are still some 
limitations in these systems. The existing inside-out 
systems [8]–[10], except 3D vision-based SLAM 
techniques, require artificial landmarks in the 
environments, or large ground vehicles to carry large 
patterns. Also, such systems suffer from the poor 
quality of received images from the onboard camera 
due to radio interference and vibrations in the UAVs. 
In the first and third categories of existing vision-
based pose estimation systems, the ranges of 
observable flights are usually narrow [5], [6], [12], 
since the artificial landmarks are only visible from 
limited positions. 

This paper presents a pose estimation technique and 
its low-cost system for a miniature indoor rotary-wing 
UAV using only three onboard LEDs and an on-
ground camera. The circular orbit of the coloured 
LEDs on the blades forms an ellipse in the captured 
image which is easily recognised by colour thres-
holding and segmentation in indoor environments. 
Despite the shape of the ellipse varying with the 
orientation of the UAV, the width is only dependent 
on the distance between the camera and the centre of 
the orbit. Based on the width and the centre of the 
ellipse, the position of the UAV can be computed. 
The pose is estimated by the consideration of the 
shape of the ellipse and an additional onboard LED. 
The most significant contribution in this paper is the 
innovative configuration of the LEDs, which requires 
only three LEDs and one camera to track the 6 DoF 
motion of a UAV. The other strength of the proposed 
technique is that the wide range of observable flight 
since the orbit is visible in almost all directions. 

This paper is organised as follows. The following 
section presents the visual tracking technique, while 
the visual tracking system is illustrated in section 3. 
Then, the efficacy of the developed system is demon-
strated through the experimental results in section 4 
and conclusions are summarised in the last section. 

2 Pose Estimation 
This section describes the proposed visual tracking 
technique for a miniature helicopter. In this paper, a 
coaxial helicopter is considered as the target, although 
the proposed technique can be applied to the other 
types of helicopters. The proposed technique consists 
of two major executive stages, which are objects 
segmentation and pose estimation. There are two cyan 
LEDs pointing outwards at the tips of the top blades, 
and a red LED at the end of the tail of the target. 

Figure 1 shows the target coordinate system and 
positions of the LEDs on the target. The cyan LEDs 
are located at t[ cos , sin ,0]r rμ μ Τ  and 

t[ cos , sin ,0]r rμ μ− − Τ , (0, 2 ]μ π∈ , where r and 

[ ]t
†  represent the radius of the circular orbit and a 

point, † , in the target coordinate system respectively. 
The red LED is located at r r

t t t[ ,0, ]x z− − Τ , where r
tx and 

r
tz are the distances between the red LED and the 

origin in Xt- and Zt- components respectively. 

The proposed technique and its system are based on 
the following assumptions: 

Assumption 1: The LEDs on the helicopter are the 
major red and cyan light sources in the view of the 
camera. 

Assumption 2: The exposure time per frame of the 
camera is slightly longer than the half period of the 
rotation of the blades with the cyan LEDs. Therefore, 
a full cyan ellipse is captured in the image. 

Assumption 3: All of the LEDs are always in the 
view of the camera. 

2.1 Object Segmentation 
The first step of the object segmentation is colour 
recognition. Assume that Ι designates the entire 
image with a size of w h× , where w and h represent 
the number of pixels of the width and the height. 
Subsequently, the image space is defined as 

{ }[ , ] | (1, ), (1, )i j i w j h= = ∈ ∈∀ ∀Ι j Τ . 

The colour at j  can be denoted by three components 
in a vector [ , , ]r g bj j j

Τ . Consequently, the cyan colour 
space can be represented by 

{ }c c|1.5 0.5 2b g r τ= ∈ + − >j j jΙ j Ι , 

where cτ  and  cΙ  represent the cyan threshold value 
and the set of cyan pixels respectively. Similarly, the 
red colour space can be designated by rΙ  as follows: 

{ }r r| 2r g b τ= ∈ − − >j j jΙ j Ι , 

where rτ stands for the red threshold. 

Figure 2 depicts an example of the process of cyan 
ellipse and red LED recognition. Figure 2a illustrates 
the original image with a resolution of 640×480 

Figure 1: Target coordinate system and positions of the 
LEDs at the target. 

2nd International Conference on Sensing Technology
November 26-28, 2007  Palmerston North, New Zealand

33



 
(a) Captured image (b) Colour recognition 

(c) Object segmentation (d) Object recognition 

Figure 2: An example of the processes of the cyan 
ellipse and red LED recognition 

pixels. Meanwhile, figure 2b visualizes the cyan and 
red colour spaces, cΙ and rΙ . Usually, there is some 
noise in the image incorrectly recognized as the red or 
cyan pixels. Therefore, an object segmentation 
algorithm is employed to further filter the image. 

The second step of the objects segmentation is to 
eliminate the noise based on the initially guess of the 
ellipse’s position. According to assumption 1, the 
ellipse formed by the cyan LEDs dominates the cyan 
pixels in the captured image. Hence, the approximate 
ellipse’s centre, eĵ , can be obtained as the median 
centre of the cyan colour space: 

{ }e c
ˆ median= ∈j j Ι  .                                  (1) 

All points in cΙ and rΙ which are far away from eĵ will 
be then discarded and two new spaces, 0

eΙ and 

aΙ denoting the segmented ellipse space and the tail 
LED space respectively are created as 

{ }0
e c de| ( ˆ )τ= ∈ − <Ι j Ι jj , 

{ }ra de| ( ˆ )τ= ∈ − <Ι j Ι jj , 

where  τd is the distance threshold value which is 1.5 
times of the width of the ellipse in the prior captured 
image. If there is no prior information about the size 
of the ellipse, τd is set to be positively infinite. 

Similar to the Saripalli’s technique [13], 0
eΙ is then 

partitioned into m subregions 1
eΙ , 2

eΙ ,..., e
mΙ such that: 

• 1 2 0
e e e e... m =Ι Ι Ι Ι∪ ∪ ∪ , 

• e
pΙ is a connected region for (1,..., )p m∀ = , 

• e e , , (1,..., ), .p q p q m q p= ∅ ∀ = ≠Ι Ι∪  

All subregions e
pΙ  sized smaller than 10 pixels are 

discarded. Subsequently, the final segmented ellipse 
space eΙ is yielded as 

{ } 0
e e e e| (1,..., ),size( ) 10p pp m= ∈ ∀ = > ⊂Ι j Ι Ι Ι , 

where size(†) stands for the number of the elements in 
the set †. All pixels in eΙ and aΙ will be used for the 
pose estimation described in the next subsection. 

2.2 Pose Estimation 
Having determined the shape and size of the cyan 
ellipse in the image plane, the pose of the target 
excepting the yaw can be determined. Figure 3 shows 
a point, s s s s[ , , ]x y z Τ , in the sensor coordinate system, 
its projection, [ , ]i j= ∈j ΙΤ , to the image plane and 
two vectors, n and s, which will be exploited in 
equation (5). Let the image plane be perpendicular to 
the viewing axis at the focal length, f, from the origin 
of the sensor coordinate system. Consequently, the 
projection, i i i i[ , ]y z=x Τ , of a point at s s s s[ , , ]x y z Τ  to 
the image plane can be denoted as 

[ ]i s s s s i
,/ /fy x fz x=x Τ .                       (2) 

The relationship between a point in the image plane 
and the corresponding pixel in the captured image can 
be expressed as: 

i
i

/ 2 / 2( ) tan , tani w j hG f f
w w

ε ε⎡ − − ⎤⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
x j

Τ

, 

               (3) 
where ε stands for the horizontal view angle of the 
camera. The ellipse in the image plane can be 
expressed as in [14] by 

2 2 2
i i i i i i iH( ) 2 2 2 0ay by z cz fdy fez f g= + + + + + =x , 

          (4) 

where the coefficients, a, b, c, d, e and g are 
represented with r and two vectors in the sensor 
coordinate system. These are 1 2 3 s[ , , ]s s s=s Τ , the 
vector from the centre of the circle formed by the 
cyan LEDs to the camera, and 1 2 3 s[ , , ]n n n=n Τ , the 
normal unit vector of the surface, on which the circle 
lies. The relationship between the above coefficients, 
a, b, c, d, e, g, r, s and n, is as follows: 

2 2 2 2 2 2
3 1 1 3 1 3 1 3 2(1 ) (1 ,) 2a s n s n s s n n r n= − + − + −

2 2 2
1 3 1 2 1 2 1 3 2 3 1 2 3 2 3 1(1 ),b s s n n s s n n r n n s n n s s n= + + − − −
2 2 2 2 2 2

1 2 2 1 1 2 2 3 3(1 ) (1 ) 2 ,c s n s n s s n n r n= − + − + −
2 2 2

2 3 1 3 1 3 2 3 1 2 3 1 2 1 2 3(1 ),d s s n n s s n n r n n s n n s s n= + + − − −
2 2 2

2 1 3 1 3 2 1 2 2 3 2 3 1 2 1 3(1 ) ,e s n n s s n s s n n s s n n r n n= + − − − −
2 2 2 2 2 2

2 3 3 2 2 3 2 3 1(1 ) (1 ) 2g s n s n s s n n r n= − + − + − .              (5) 
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The best-fit ellipse in the image plane can be 
determined via the optimization of the following 
objective function: 

esize( ) e
1

H(G( )) min ,pp=
⎯⎯→∑ Ι

s,nj               (6) 

where e
e
p ∈j Ι stands for the pth pixel in the final 

segmented ellipse space. In the optimization process, 
only one parameter is adjusted in each step until the 
error of the objective function converges to a small 
value, so the process is not computationally 
expensive. The pose of the target except the yaw in 
the sensor coordinate system can be estimated from 
the vectors, s and n, as follows: 

t t t
s s s s 1 2 3 s[ , , ] [ , , ] ,x y z s s s= − = − − −sΤ Τ              (7) 

( ) ( )t t 1 1
s s s 2 3 1 3[ , ] t / /an , tan

s
n n n nα β − −⎡ ⎤= −⎣ ⎦

ΤΤ ,          (8) 

where t t
s s,x y  and t

sz  are the x-, y- and z-coordinates 
of the origin of the target coordinate system in the 
sensor coordinate system, while t

sα and t
sβ are the 

pitch and roll angle of the target. 

The yaw of the target is estimated based on the red 
LED through four steps. Firstly, the centre of the red 
LED, aĵ in the captured image is determined 
contingent on all pixels in aΙ as follows: 

{ }a a
ˆ median= ∈j j Ι .                        (9) 

Secondly, the projection '
aĵ of aĵ to the plane on 

which the cyan ellipse lies can be computed as 

a

r
1' 1 t

a 2 2
3 1 3

ˆ ˆ tan
n zw
n n nε

−
⎛ ⎛ ⎞⎡ ⎤ ⎜= + ⋅ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ +⎣ ⎦ ⎝ ⎠⎝

j j
s

 

( ) ( )( ))1 t t 1
s s 3 1cos tan / tan /z x n n− −⋅ + .      (10) 

Thirdly, 
a

'ĵ is transformed to 
a

*ĵ in another coordinate 
system with the x-axis parallel to the main axis of the 
best-fit ellipse and the origin at the centre of the 
ellipse in the captured image as follows: 

( )a a a a

3 1* * * '
e2 2

1 31 3

1ˆ ˆˆ ˆ, ,
n n

i j
n nn n

−⎛ ⎞⎡ ⎤= = −⎜ ⎟⎣ ⎦ + ⎝ ⎠
j j j

Τ
    (11) 

where ej is the centre of the estimated best-fit ellipse 
in the captured image. Lastly, the yaw angle of the 
target in the sensor coordinate system sγ  can be 
expressed as: 

( )( )
( )( )

a

a

1 * 1 r t
t s

s 1 * 1 r t
t s

ˆsin / ( / ) tan ( / ) , for 0,

ˆπ sin / ( / ) tan ( / ) ,otherwise,

i w x x h

i w x x

ε
γ

ε

− −

− −

⎧ ≤⎪= ⎨
−⎪⎩

        (12) 

where ( ) *
1 3 1 3 â[ , ] [ , ]h s s n n j= ⋅ Τ . If h > 0, the target is 

pointed towards the camera. 

3 Visual Tracking System 
This section lists the properties of the developed 
visual tracking system. Figure 4 describes the 
developed system and the key parameters of each 
component in the system. The system consists of a 
USB webcam with a horizontal Field Of View (FOV), 
ε, of 60.8º±5%, a linear polarizing filter and a 
standard PC with 2 × 2.13GHz CPU and 2GB RAM. 
The webcam was chosen due to its low cost of 
AU$110 and large FOV. Noticeably, the total cost of 
the system, excluding the PC, is AU$150. The video 
of the ellipse recognition in the developed system is 
available at http://cmr.mech.unsw.edu.au/?q=node/27. 

For the validity of assumption 2, the exposure time of 
the camera is constrained and hence a polarizing filter 
is used to reduce the average light level in the 
captured image. Since the gain of the selected 
webcam is not adjustable, a filter with a filter factor of 
2 is located in front of the camera to halve the light 
level to prevent the captured image from over-
exposing.  

In the software, there are three techniques to enhance 
the accuracy and the sampling rate of the developed 
system. In order to maintain the sampling rate when 
the number of pixels in eΙ is more than 200, only 200 
points are randomly selected and considered for the 
estimation of the best-fit ellipse. With the current 
configuration of the PC, the average sampling rate is 
9-12Hz. If no cyan pixel is detected, the system will 
notice that the helicopter is out of FOV and wait until 
it is in the FOV. To improve the accuracy of the 
developed system, any estimated pose will be 
discarded if it is notably different from the previous. 

4 Experimental Results 
This section discusses the accuracy of the developed 
system under different ranges, target speeds and 
sensor positions. Figure 5 shows the testing platform 
and the setup of the experiment. The Yt-position of 
the target was controlled by a 0.8m-long motor-driven 
slider and monitored by an infrared (IR) range finder 
located, which gave 1cm positioning accuracy, at the 
end of the slider. The Ys-axis was parallel to the Yt-
axis, whilst the angle between Xs-axis and Xt-axis was 
the true roll, 0

sβ . The range between the origins of the 

Figure 3: Image geometry and sensor coordinate system 

Xs 

s 
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camera and the target coordinate systems was xs. The 
experiment was undertaken in an indoor environment 
with fluorescent lighting. 

There were three cases with different arrangements in 
the experiment. In case 1, the target was stationary at 

s[ ,0,0]sx Τ and 0 ο
s 30β = , where s1.5m 7.6mx≤ ≤ . In 

case 2, the target was moving at s s[2m, ,0]y Τ  , 

s0.4m 0.4my− ≤ ≤ , and 0 ο
s 30β = at varying speeds 

between 0 and 0.42ms-1 along the Yt-axis. In case 3, 
the target was moving at the average speed of 2.2ms-1 
along the Yt-axis at s s[2m, ,0]y Τ  and 0

sβ  varied 
between ο0 and ο76 , where s0.4m 0.4my− ≤ ≤ . 

Figures 6a and 6b depict the root mean square (RMS) 
percentage errors in the position and orientation of the 
target at different ranges, xs, in case 1. The percentage 
errors of the position and the orientation are obtained 
by the following equations: 

( )sE( ) ε( ) / 100%x∗ = ∗ ×  ,           (13) 

( )E( ) ε( ) / 2 100%π∠ = ∠ × ,          (14) 

where E( † ) and ε( † ) denote the percentage error and 
the RMS error of †  respectively. Moreover, ∗ and ∠  
stand for the x-, y- or z-position and the yaw, roll, or 
pitch of the target respectively in the sensor 
coordinate system. 

According to the experimental results in case 1, 
similar to other single camera visual tracking systems, 
the percentage errors of both the target position and 
orientation rise with the range. This is because the 
size of the ellipse in the captured image reduces with 
the rise in the range. The x-positioning error is below 
3% and both of the y- and z-positioning errors are 
under 1.2% when the range is shorter than 7m. The x-
position error is larger than the others due to 
difficulties in estimating the ellipse width. Besides, 
the yaw error increases exponentially with the range 
up to 3% at 7m. Hence, long range visual tracking 
should be avoided when accurate yaw estimation is 
required. Within 7m range, the errors of the pitch and 
roll are smaller than 0.6%, indicating that the 
developed system is good at estimating them. 

Figure 7 illustrates the RMS errors in case 2 at 
different target speeds within 0.42ms-1 along Yt-axis, 
where ‘ori.’ represents the total orientation error, 
which is the root of the total sum of the squared yaw, 
pitch and roll. The accuracies of the pitch and the roll 
are not substantially affected by the target speed, but 
the yaw error increases from ±2º to ±5º with the rise 
in the target speed. In addition, the z-positioning error 
remains unchanged and the x-positioning error rises 
slightly from 0.17m to 0.26m with the increase in the 
target speed from 0 to 0.42ms-1. Meanwhile, the RMS 
error of the y-position increases dramatically from 
4mm to 50mm. Notably, the y-positioning error is 

highly dependent on the target speed in y-direction 
because of the measurement delay in the developed 
system, mainly due to the computational time 
required for image processing and image acquisition. 

Figure 8 depicts the RMS errors in case 3 at varying 
true rolls, 0

sβ , between ο0 and ο76 . The positioning  
errors in x-, y- and z-directions rise slightly by less 
than 0.01m with the increase in the true roll, pointing 
out that the positioning accuracies are not sensitive to 
the orientation of the target relative to the camera. 
Noticeably, the pitch error rises significantly from 1º 
to 7º with 0

sβ because the ellipse with large 0
sβ  looks 

like a circle, making it very difficult to determine the 
pitch. Nonetheless, the decrease in the roll error with 
the increase in 0

sβ compensates the rise in the pitch 
error. The total orientation error of the target thus 
increases slightly from 6.5º to 8.3º. In conclusion, the 
performance of the developed system is satisfactory in 
most directions of the camera from the target. 

5 Conclusion and Future Works 
A novel visual tracking technique has been proposed 
and tested. The key advantage of the proposed 
technique is the wide range of observable flight. The 
experimental results first show the 3D positioning and 
the total orientation measurement errors of the static 
target at 2m away from the camera are 0.02m and 4º 
respectively. Meanwhile, the results also show 
positioning error below 0.05m and good orientation 
error under 8º in almost any helicopter’s orientation, 
demonstrating the effectiveness of the proposed 
technique and the corresponding system. However, 
the yaw errors increase exponentially with the range, 
indicating the yaw estimation is not robust when the 
range is large. 

In the future, the yaw accuracy of the developed 
system can be improved by having an additional on-
board camera to determine the orientation using 
landmarks as in a hybrid system. The limited FOV of 
the camera can be solved by the exploitation of an 
active vision system. Moreover, this work can be 
extended to the autonomous control of a miniature 
helicopter in an indoor environment. 
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(a) Testing Platform (b) Experimental Setup 

Figure 5: Testing Platform and experimental Setup

(a) Positioning Error (b) Orientation Error 

Figure 6: Experimental results in case 1 

(a) Positioning Error (b) Orientation Error 

Figure 7: Experimental results in case 2 

(a) Positioning Error (b) Orientation Error 

Figure 8: Experimental results in case 3 
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