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________________________________________________________________________ 

Abstract 
This paper demonstrates the application of a new multiaxial creep damage model developed by the 

authors to predict the failure time of components made of service aged 2.25%Cr-1%Mo, 0.5%Cr-0.5%Mo-
0.25%V low alloy steels, titanium and nickel-based superalloys. The model accounts for the tertiary creep 
behaviour and assumes the creep damage is related to the internal energy absorbed by the material. The 
authors argue that the model is the most appropriate for characterizing gross creep damage from a 
macroscopic point of view because it takes into accounts both the multiaxial internal deformation and 
loading. The verification and application of the model are demonstrated by applying it to the Bridgman 
notched bars for which the experimental data are available. The predicted failure times by the model are 
compared with the experimental results and those obtained from the reference stress method. The results 
show that the proposed model is capable of predicting failure times of the components made of the above-
mentioned materials with an accuracy of 2.2% or better. Also, it is shown that the model predicts the creep 
failure times of the components more accurately than the reference stress method. 
 
Keywords: Creep Damage; Internal Energy; Creep Life Prediction 
________________________________________________________________________ 

1.   Introduction 
Because of economical and environmental factors, there is a general trend towards 

improved efficiencies in various industries particularly in power and chemical plants. In 
such industries, there are many components that operate within the creep range and the 
creep damage is one of the main sources of failure of such components. Therefore, there 
is a need for the generation of pragmatic models in predicting whether the components 
operating in the creep range will sustain the life required of them. Prediction of the creep 
life of such engineering components with sufficient accuracy would produce many 
benefits including less damage to the environment and significant economic gains for 
industry. This may also help by diverting failed industrial components away from 
landfills, which would have significant environmental benefits. Also, a more accurate life 
prediction for components employed in electricity generation might allow for the 
operation of equipments at higher temperatures and thus would reduce the emission of 
harmful gases into the atmosphere. To predict creep lives, one of the essential ingredients 
is a creep damage model. 

Although the creep damage models that are based on microscopic behaviour of 
materials have increased our understanding and knowledge, they have proved to be too 
complex for practical engineering applications. The existing creep damage models that 
are based on a macroscopic approach include: the Robinson time/strain fraction method 
[1], the reference stress approach [2], the Kachanov-Rabotnov continuum damage 
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mechanics, KR-CDM [3,4] and the Omega model [5]. The Robinson time/strain fraction 
model assumes creep failure occurs when: 
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where )( rit σΔ  and )( ri σεΔ  are sufficiently small time intervals and total strain 
increments respectively during which the rupture stress, rσ , is taken to be constant, 

)( rrit σ  and )( rri σε  are the time and total stain failures at ith time interval. The above-
mentioned variables are functions of rσ  which is the stress component that is responsible 
for creep failure. rσ  is taken to be a mix of the major principal stress ( 1σ , causing creep 
cavitation) and the equivalent stress ( eσ , causing dislocation glide or grain boundary 
sliding), usually as [6]: 
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where α  is a material parameter whose value is usually not known a priori and its 
evaluation is time-consuming and expensive producing a significant limitation for 
applying this model to practical engineering problems. To circumvent this problem, in 
practice, it is often assumed that either 0=α  or 1=α  but this can increase error in the 
final results (see Section 3). 

The reference stress approach is based on the notion that there is a unique time-
invariant stress level known as the reference stress ( refσ ) within a component that can be 
used to characterize its creep behaviour [7,8]. Combining this concept with the idea 
expressed by equation (3) gives: 
 

erefrefref σβσβσ )1(1 −+=             (4) 
 
where 1refσ  is the reference major principal stress, erefσ  is the reference equivalent 
stress (see Section 4) and β  similar to α  is a material parameter whose value is usually 
not known a priori and therefore, in practice, it is often assumed that either 0=β  or 

1=β  but this can again increase error in the final results (see Section 4). 
KR-CDM is based on two coupled equations that combine the creep constitutive 

behaviour with damage. There are few such equations typified by: 
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where A , m , n , M , Φ  and x  are material constants that depend on temperature, ijS  

are the deviatoric stress components, t  is time, c
ijε  are creep strain components and D  

represents the creep damage. It is assumed that when 0=t  then 0=D , and when rtt =  
then 1=D  where rt  is time to rupture. However, by and large, 1≠D  at rupture. Another 
problem is that the pertinent material constants are not readily available. Furthermore, as 
explained before, rσ  is not known. To date, KR-CDM has not been incorporated in most 
commercial finite element computer codes and therefore its application may not be 
practical where the practicing engineer has limited time to carry out the failure analysis. 
  The Omega model is another method of assessing creep lives of the components. It was 
developed by the Materials Properties Council and assumes that: the life fraction used, 
strain, and strain rates all depend on a material creep damage parameter coined “Omega”. 
To obtain the Omega parameter requires various material data and other parameters that 
are not readily available and to date this method has not been generally adopted. Also, the 
Omega model cannot be used to assess lifetimes of thermally degrading materials 
because the creep damage mechanism violates the physics underpinning the basis of Ω  
methodology.  

In summary, the major disadvantages of the current creep life/damage models are: (a) 
they may be too complex for practical applications, (b) the pertinent material data may 
not be readily available and (c) the predicted lives may not be sufficiently accurate. The 
authors have previously proposed a model that overcomes the above-mentioned problems 
and they have verified it for pressure vessels and tubes made of 2.25%Cr1%Mo steel [9]. 
For the sake of completeness a brief description of this model follows and then its 
verification and application further investigated for predicting the failure of notched bars 
made of four different alloys. Note that notches are a convenient means of creating a 
triaxial state of stress/strain. 

Nomenclature 
 

nmA ,,,,βα  : Material parameter 

χ,,ΦM   : Continuum damage material constants 

σ           : Stress 

ijσ         : Stress tensor 

erefσ     : Equivalent reference stress 



1refσ    : Principle reference stress 

ijS    : Deviatoric stress tensor 

ijε       : Strain tensor 

e
ijε    : Elastic strain tensor 

c
ijε    : Creep strain tensor 

.
c
ijε   :  Creep strain rate 

.
e
ijε    : Elastic strain rate 

nB,   : Creep material property 

D    : Creep damage parameter 

nF ....1   : Nominal forces 

t    : Time 

rt '    : Time to rupture 

W    : Internal energy parameter 

.
Wd   : Internal energy density rate 

.
edW   : Elastic internal energy density rate 

.
cdW   : Creep internal energy density rate 

.
tW    : Thermal internal energy density rate 

 
2.   Creep Damage Model Based on Exhaustion of Internal Energy 

The model proposes that the creep damage induced in the material is proportional to the 
total energy that is input to the material. Although the proposed model has the potential to 
be extended for application in cracked components, the present investigation concentrates 
on defect-free components. Let the material be homogenous, isotropic and creep ductile. 
The present model allows for the material to undergo elastic-creep deformation and 
assumes that the dominant damage mechanism is creep and at the point of failure the 
component fails by excessive creep deformation and/or creep rupture. Consider a 
component that is subjected to several loads and that taken together, constitute a set: 

}...,,{}{ 21 nFFFF = . These loads are increased in their respective magnitudes from 



zero to their operational levels over a relatively short period of time so that it can be 
assumed that at 0=t  they instantaneously cause elastic deformation only. Having 
reached their respective operational levels, the loads and material temperature are taken 
to be constant until the point of failure. As time progresses, the material undergoes creep 
deformation. In the following the superscript ‘e ’ refers to elastic and ‘c ’ refers to creep. 
At time t  the rate of the total internal energy per unit of volume (i.e., the internal energy 

density rate), 
.

Wd  is the sum of the rates of: elastic internal energy per unit of volume, 
.

edW  and creep internal energy per unit of volume, 
.

cdW : 
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ce dWdWWd +=                 (8) 

 

This may be expressed in terms of stress ( ijσ ) and strain rate (
.
k
ijε ) components as: 
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where 
.
tW  is the rate of the internal (thermal) energy in the absence of stress per unit 

volume. The average total internal energy per unit of volume, i.e., at a point, can be 
calculated by integrating equation (9) with respect to time: 
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Note that the second term in equation (10), i.e., ∫∫= dtWW tt
.

 is the average input 
thermal energy per unit of volume (at a point) and it accounts for the microstructural 
damage in the absence of stress. It may be calculated analytically for simple cases or 
numerically using the finite element method for more complex cases. Note also that at the 
normal operational stress levels, the microstructural damage is also and indirectly 
accounted for by the pertinent material parameters. Therefore, one may postulate that 
under normal operation where stresses are significant, then first term (i.e., the strain 
energy) in equation (10) is dominantly responsible for the damage in the material. On the 
other hand as stresses are reduced and approach zero then tW  will be dominantly 
responsible for the damage. Previous work by the authors [10] for steady-state creep 
behaviour has shown that this postulation is correct, see also the Section 3. To obtain W  
using equation (10), one needs first to compute the stress and strain fields up to the 
rupture time as a function of time. Again, for simple problems this may be achieved 
analytically and for more complex cases a numerical method such as the finite element 
method may be employed. In determining the stress and stain fields as functions of time, 
the creep constitutive relationships up to the point of rupture must be used. These data are 
essential ingredients of any creep analysis and are obtained from uniaxial creep tests. If 



no direct material data are available, published generic data may be utilised, with 
appropriate sensitivity analyses to cover the uncertainties. As it becomes clear later in this 
section, the model requires the inclusion of the uniaxial creep tertiary. If the uniaxial 
tertiary creep data are not available, one can include the effect of the tertiary creep by 
suddenly increasing the creep strains near the uniaxial time-to-rupture (see next section). 
Note that in a creep finite element analysis, small time increments might be needed as the 
analysis approaches the tertiary region and near the component rupture time. Also, in the 
finite element method, there will be a time, at which a solution might not converge, even 
for small time increments. This situation then indicates that the creep failure point of the 
component has been reached. 

As described above the proposed model is based on exhaustion of the internal energy 
absorbed by the material, which is a continuum damage concept and characterises the 
creep response of the component by considering a plot of the total internal energy per 
unit of volume at the most critically loaded point versus time as schematically depicted in 
Fig. 1. 

 

 
Fig 1. A schematic presentation of total internal energy per unit volume versus time at most critically 

loaded point 
 
Referring to Fig. 1, at 0=t , the creep internal energy per unit volume, i.e., CW, is zero 
and the total internal energy per unit volume is equal to the elastic internal energy per 
unit of volume (EW). As time progresses, the creep damage increases and hence the 
curve A-B-C in Fig. 1. The exact shape of the curve A-B-C in Fig. 1 that accounts for 
CW is determined by the creep constitutive equations and the way that the tertiary region 
is modelled, the component geometry, boundary conditions and the loading. If the 
uniaxial steady-state creep (say, Norton law) is solely available, the model assumes that 
the uniaxial creep strains vary linearly with time until the point of failure at which the 
creep strains suddenly, and over a relatively short period of time, approach infinity. In 
this case, a sharp transition may occur at the point of failure. Again this situation is 
identified in a numerical solution by divergence of the solution. In general, the model 
proposes that as the failure point is approached, equal increments of time cause 
increasingly greater amounts of CW. At the point of failure, the curve A-B-C in Fig. 1 
becomes almost vertical where dtdW / ∞→  (or 0/ →dWdt ) and unlimited creep flow 
occurs. This means that at rtt = , the component experiences excessive creep 



deformation and failure (rupture) occurs. To obtain the creep life ( rt ), the model 
proposes to calculate and plot the total internal energy per unit of volume at the most 
critically loaded point against time. As mentioned above, this may be achieved 
analytically for relatively simple problems or numerically using the finite element 
method for more complex problems. Referring to Fig. 1, rt  is determined by constructing 
the straight-line tangent to the creep region where it is (nearly) vertical (curve BC in Fig. 
1) and finding its intersection with the abscissa representing time or by divergence of the 
numerical solution near rt . Note that Fig. 1 establishes if rt  has been reached, or if 
smaller time increments are required, when the finite element method is employed. The 
application of the proposed model to a number of notched bars will be described below. 

3.   Verification and Application 
Hyde, T, et al, [11,12,13] and Kwon et al [14] performed creep tests using a number of 

notched bars. To demonstrate the application of the damage model described in Section 
2, it is applied to these notched bars and the predicted creep lives are compared with the 
experimental lives as described below. The notched bars have identical nominal 
dimensions and are made from four different materials, viz.: two service aged low alloy 
steel of 2.25%Cr1Mo and 0.5%Cr-0.5%Mo-0.25%V; a titanium alloy and a nickel-based 
superalloy. The bar made of 2.25%Cr1Mo steel had double Bridgman notches (Fig. 2) 
and all other bars had a single Bridgman notch (Fig. 3). In what follows MSC.MARC 
finite element code [15] was employed using 6-node triangular axisymmetric elements 
for each finite element analysis. In the case of single notched bars, because of symmetry, 
half of the length of the bar is modelled for the finite element analysis. In the case of the 
double notched bar, it is assumed that the notches are sufficiently apart so that its finite 
element mesh will not differ from that used for the single notched bar. This assumption is 
proved to be correct as the stress/strain fields are localised in the vicinity of each notch. A 
typical finite element mesh is shown in Fig. 4. 

 

 
 2. Bar with double Bridgman notches made of2.25%Cr1Mo steel 

 



 
 

 3. Bar with the single Bridgman notch made of either 0.5%Cr-0.5%Mo-0.25%V or titanium or nickel-
based superalloy 

 
 

 
 

Fig 4. A typical finite element mesh 

 
For each bar, the tests assume the uniaxial creep constitutive equation in form of the 

steady-state Norton law, i.e., nc Bσε =
.

 where B  is the creep coefficient and n  is the 
creep stress exponent. To include the tertiary creep behaviour, the authors modified this 
equation to: 

)1(
'.
rttnc eB −+= σε              (11) 

 
where '

rt  is the uniaxial rupture time. The first term on the right-hand side of equation 
(11) represents the steady-state behaviour and the second term the tertiary behaviour. 
 
3.1 Notched Bar Made of 2.25%Cr-1%Mo Steel 

The bar is subjected to a uniform axial traction of MPa22.80  and a uniform 
temperature of Co550 . The modulus of elasticity at the test temperature is 

MPax 610157.0 . Also, 0.9=n  and 1410408.6 −×=B  where these values when used in 
equation (11) result in time in hours and stress in MPa . The uniaxial rupture data are 
described by [14]: 
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where '

rt , is in hours and σ  is in MPa . Combining equations (11) and (12) will give: 
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The tests reported in [14] resulted in an average experimental life of 3,899 hours. The 
finite element mesh of this bar consisted of 2250 six-node axisymmetric triangular 
elements. The computed axial and equivalent von Mises stresses versus radial distance 
for various time points are plotted in Figs. 5 and 6 respectively. Using the finite element 
results and equation (10), and noting that at the applied traction the second term in 
equation (10) vanishes, the total strain energy per unit volume at the notch root (the most 
critically loaded point in the bar) is computed and plotted versus time in Fig. 7. 
 

 
 5. Axial stress versus radial distance at various time points for the Bridgman bar made of 2.25%Cr1%V 

steel 

 
 

 6. von Mises equivalent stress versus radial distance at various time points for the Bridgman bar made of 
2.25%Cr1%V steel 



 
Referring to Fig. 7, the rupture time is obtained by constructing the straight-line tangent 

to the creep region where it is (nearly) vertical. This gave the rupture time for the bar as 
906,3=rt  hours (see also Table 1). 

 
 

 7. The total strain energy per unit of volume at the notch root versus time for the Bridgman bar made of 
2.25%Cr1%V steel 

 
3.2 Notched Bar Made of 0.5%Cr0.5%Mo0.25%V Steel 

The bar is subjected to a uniform axial traction of MPa2.25  and a uniform 
temperature of Co640 . Its modulus of elasticity at the test temperature is 

MPa610150.0 × . Also, 108.6=n  and 1610599.6 −×=B  where these values result in 
time in hours and stress in MPa . The tests described in [11] give the average 
experimental life of 1,520 hours. The uniaxial creep rupture data are described by: 
 

95.124log529.21 ' +−= rtσ             (14) 
 
Combining equations (11) and (14) will give: 
 

]1[
)529.21

95..124(
10

.
−
−

−+=
σ

σε tnc eB            (15) 
 
Similar analysis to that described in Section 3.1 are carried out here and the finite element 
mesh consisted of 2550 six-node axisymmetric triangular elements. The computed axial 
von Mises equivalent stresses and the total strain energy per unit of volume at the notch 
root are depicted in Figs. 8, 9 and 10 respectively from which the life of the bar is 
determined as 1,507 hours, see also Table 1. 
 
 



 
 8. Axial stress versus radial distance at various time points for the Bridgman bar made of 

0.5%Cr0.5%Mo0.25%V steel 

 
 9. - von Mises equivalent stress versus radial distance at various time points for the Bridgman bar made of 

0.5%Cr0.5%Mo0.25%V steel 

 
 

 10. The total strain energy per unit of volume at the notch root versus time for the Bridgman bar made of 
0.5%Cr0.5%Mo0.25%V steel 

 
 
 



3.3 Notched Bar (Titanium) 
The bar is subjected to a uniform axial traction of MPa8.136  and a uniform 

temperature of Co650 . Its modulus of elasticity at the test temperature is 
MPa6100895.0 × . Also, 911.5=n  and 1610911.5 −×=B  where these values give time 

in hours and stress in MPa . The tests described in [13] give the average experimental life 
of 92 hours. The uniaxial creep rupture data with '

rt  in hours and σ  in MPa  are 
described by [12]: 
 

85.599log83.116 ' +−= rtσ              (16) 
 
Combining equations (11) and (16) will give: 
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Similar analyses to those described in Sections 3.1 and 3.2 are carried out here. The 
computed axial and von Mises equivalent stresses and the total strain energy per unit of 
volume at the notch root are depicted in Figs. 11, 12 and 13 respectively from which the 
life of the bar is determined as 90 hour, see also Table 1.  
 

 
 11. Axial stress versus radial distance at various time points for the Bridgman bar made of Titanium-based 

alloy 
 



 
 12. von Mises equivalent stress versus radial distance at various time points for the Bridgman bar made of 

Titanium-based alloy 

 
 13. The total strain energy per unit of volume at the notch root versus time for the Bridgman bar made of 

Titanium-based alloy 

 

3.4 Notched Bar (Nickel-based Superalloy) 

The bar is subjected to a uniform axial traction of 220 MPa  and a uniform temperature 
of Co650 . Its modulus of elasticity at the test temperature is MPa610178.0 × . Also, 

647.10=n  and 3410226.9 −×=B  where these values give time in hours and stress 
in MPa . The tests described in [12] give the average experimental life of 2,010 hours. 
The uniaxial creep data relating time-to-rupture ( '

rt , in hours) to stress (σ , in MPa ) are 
[13]: 
 

68.867log37.126 ' +−= rtσ                   (18) 
 
Combining equations (11) and (18) will give: 
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 14. Axial stress versus radial distance at various time points for the Bridgman bar made of Nickel-based 

superalloy 

 
 15. von Mises equivalent stress versus radial distance at various time points for the Bridgman bar made of 

Nickel-based superalloy 

 
 16. The total strain energy per unit of volume at the notch root versus time for the Bridgman bar made of Nickel-based 

superalloy 



Similar analyses to those described in Sections 3.1, 3.2 and 3.3 are carried out here. The 
computed axial stress, von Mises equivalent stress and total strain energy per unit volume 
at the notch root are depicted in Figs. 14, 15 and 16 respectively from which the life of 
the bar is predicted as 2026 hours, see also Table 1. 
 
4.  Results and discussion 

From the computed major principal and von Mises equivalent stresses versus radius at 
various time points, it is apparent that initially the elastic stresses are highest at the notch 
root. As might be expected, these stresses redistribute with time causing a more uniform 
stress distribution across the notched section. 

Using the finite element results and equation (4) the reference stress for each bar is 
calculated. In doing so it is assumed that either 0=β  or 1=β . As explained before the 
true value of β  is usually unknown. This is because to determine the true value of β  one 
requires knowing the life of the bar but determination of the life is the objective of the 
analysis. Having calculated the reference stress for each bar, it is combined with the 
respective uniaxial creep rupture data to obtain the life of each bar using the reference 
stress method. 

Referring to the results summarized in Table 1, it is apparent that the proposed creep 
damage model is able to predict creep lives accurately with the maximum error being 
2.2% observed for the notched bar made of titanium. Note that due to the complexity 
involved, and the scatter of the results from the high temperature testing, the 2.2% 
difference between the experimental and predicted lives is negligible. On the other hand, 
the errors involved in the reference stress method vary from -52.2% to 97.4 % indicating 
this method may be non-conservative and relatively inaccurate. This is due to: (i) scatter 
in determining the skeletal point from the plot of the stress versus radial distance in 
which the stresses at various time steps may not intersect at a single point and (ii) 
uncertainty about β . 

5.   Conclusions and Recommendations 
A multiaxial and pragmatic creep damage model developed by the authors has been 

outlined. Its application to various notched bars made of various alloys at different 
temperatures has been described. It is shown that the model is capable of predicting creep 
lives with negligible errors, i.e., for the range of bars considered the maximum error is 
2.2%. 

The model has several advantages when compared with other continuum creep damage 
models. The model is based on the exhaustion of the total internal energy in the highly 
stressed/strained zone in the material and therefore it is a true multiaxial model taking 
into account the contributions from all the stress/strain components. This is a measure of 
total deformation as well as internal loading in the component and therefore it should be 
the most appropriate way of characterising gross creep damage. In practical terms, the 
model does not require quantities such as rupture stress, the damage parameter and some 
material parameters that are cumbersome and costly to determine and/or employ in 
practice. Therefore, it should be more practical and should result in more accurate 
predictions for the creep life of components. In addition, the proposed model is relatively 
simple to employ and can be used in conjunction with any commercial finite element 
code with creep analysis capabilities  



Table 1  
Comparison of predicted and experimental creep lives of the notched bars 
 

 Notched Bars 
 

Life 
Prediction  
Methods 

2.25%Cr1%Mo 
Steel 

0.5%Cr0.5%Mo 
0.25%V 

Steel 

Titanium Nickel-based 
Superalloy 

 
Life 

(hours) 
Error 
(%) 

Life 
(hours) 

Error 
(%) 

Life 
(hours) 

Error 
(%) 

Life 
(hours) 

Error 
(%) 

 
Experimental 

 

 
3,899 

 
0 

 
1,520 

 
0 

 
92 

 
0 

 
2,010 

 
0 

 
Creep Damage 

Model 
 

 
 

3,906 

 
 

-0.2 

 
 

1,507 

 
 

0.9 

 
 

90 

 
 

2.2 

 
 

2,026 

 
 

-0.8 

 
Reference 

Stress Method 
when  

0=β  
 

 
 
 

5,936 

 
 
 

-52.2 

 
 
 

1975 

 
 
 

-29.9 

 
 
 

423 

 
 
 

359.8 

 
 
 

1403 

 
 
 

30.2 

 
Reference 

Stress Method 
when  

1=β  
 

 
 
 

523 

 
 
 

86.6 

 
 
 

233 
 

 
 
 

84.7 

 
 
 

51 

 
 
 

44.6 

 
 
 

53 

 
 
 

97.4 
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