
How does agility ensure quality?

Author:
Huo, Ming; Verner, JM.; Zhu, Liming; Ali Babar, Muhammad

Publication details:
The 28th Annual International Computer Software and Applications Conference
pp. 520-525
0-7695-2209-2 (ISBN)

Event details:
COMPSAC 04
Hong Kong

Publication Date:
2004

DOI:
https://doi.org/10.26190/unsworks/395

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38536 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/395
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38536
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

 1

How does agility ensure quality?

Ming Huo, June Verner, Muhammad Ali Babar, Liming Zhu
National ICT Australia Ltd. and University of New South Wales, Australia

{mhuo, jverner, malibaba, limingz}@cse.unsw.edu.au

Abstract

Software quality is one of our most important
software concerns. Agile methods may produce
software faster but we also need to know how they
meet our quality requirements. In this paper we
compare the waterfall model with agile processes to
show how agile methods achieve software quality. We
also show how agile methods attain quality under time
pressure and in an unstable requirements environment,
i.e. we analyze agile software quality assurance. We
present a detailed waterfall model showing its
software quality support processes. We then show the
quality practices that agile methods have integrated
into their processes. This allows us to answer the
question can agile methods ensure the quality even
though they develop software faster and can handle
unstable requirements?

1 Introduction

Since Kent Beck introduced Extreme Programming
[1], agile software development has become a
controversial software engineering topic. Some
practitioners and researchers vociferously argue about
the benefits of it, others are forcefully against agile
methods, while others suggest a mix of agility and
plan-driven practices [2]. However, the reality is that
agile methods have gained tremendous acceptance in
the commercial arena since late 90s because they
accommodate volatile requirements, focus on
collaboration between developers and customers, and
support early product delivery.

 Two of the most significant characteristics of the
agile approaches are: 1) they can handle unstable
requirements throughout the development lifecycle 2)
they can deliver products with shorter timeframes and
under budget constraint when compared with
traditional development methods [3-6]. Many
published reports support the above advantages of

agile methods. However, proponents of agile methods
have not yet provided a convincing answer to the
question “what is the quality of the software
produced?” Does agility provide enough rigors to
ensure quality, as do the traditional development
methods, e.g., waterfall model, and if these methods do
provide the same level of quality then how is it
achieved.

We now compare the quality assurance techniques
of agile and traditional software development
processes. Our approach consists of three steps: 1)
build a complete outline of the traditional waterfall
model including its supporting processes, 2) Identify
those practices within agile methods that purport to
ensure software quality when compared with software
quality assurance techniques found in traditional
methods, 3) determine the similarities and differences
between agile and traditional software quality
assurance techniques. By applying such an approach,
we believe we can systematically investigate how agile
methods integrate the support for software quality
within their life cycle.

The rest of the paper is organized as follows.
Section 2 presents a short description of waterfall and
agile methods to highlight the disadvantages of the
former and the reasons why the latter has become
popular. Section 3 gives a brief introduction to
software quality assurance techniques. Section 4
explains why we chose a waterfall approach in order to
perform our comparison. In this section we perform a
comparison with respect to software quality. Section 5
closes the paper by identifying future work required to
substantiate our approach.

2 Waterfall model vs. Agile Methods

Since the late 60s, different software development

methods (such as waterfall model, evolutionary
development method, spiral development model etc.)
have been developed and widely used by the software
engineering community [7] . Over the years, the

 2

developers and users of these methods have invested
significant amounts of time and energy to improve and
refine them. Owning to continuous improvement
efforts and being practiced for such a long time, most
of the above mentioned methods have become quite
mature and stable level. That is why they are usually
referred as traditional software development methods

Each of the traditional development methods
attempts to address quite different development issues
and implementation conditions. Among the traditional
development approaches, the waterfall model is the
oldest the software development process model.
(Royce 1970). Waterfall model has been widely used
in both large and small software intensive projects. It
has been reported as a successful development
approach especially for large and complex engineering
projects [7]. The waterfall model divides the software
development lifecycle into five distinct and linear
stages. Because the waterfall model is the oldest and
the most mature software development model we have
chosen it to investigate its QA process [8].

Despite the success of Waterfall model with large
and complex systems, it has a number drawbacks, like
linearity, inflexibility in the face of changing
requirements, highly ceremonious processes
irrespective of the nature and size of the project etc [7].
Such drawbacks can also be found in other traditional
development approaches. However, agile methods
were developed to address a number of the drawbacks
inherent in the Waterfall model.

Agile methods deal with unstable and volatile
requirements by using a number of techniques of
which most notable are: 1) simple planning, 2) short
iteration, 3) earlier release, and 4) frequent customer
feedback. These characteristics enable agile methods to
deliver product releases in a much short period of time
compared to the waterfall approach.

This brief comparison of the waterfall and agile
methods brings this discussion to our research
question, how can agile methods ensure product
quality with such short time periods? Our research
hypothesis is that in agile methods, to a certain
degree, some of their practices include traditional
QA supporting process within their development
life cycle.

Before we continue future, we analyze various
quality assurance techniques, a general description of
these techniques and their associated supporting
processes.

3 Quality assurance techniques

Since we are concerned with the quality of the
software produced with both the Waterfall model and
the agile approach, we investigate quality-centric
supporting processes in software development. We
concentrate on two of the most widely used general
quality-focused processes, Software Quality Assurance
(SQA) and Verification and Validation (V&V) to
examine software product quality.

“SQA governs the procedures meant to build the
desired quality into the products” and V&V is aimed
more directly at product quality including intermediate
products [8]. These two supporting processes are
normally used to support the waterfall model in order
to provide a full complete process model.

Quality assurance techniques can be categorized
into two types, static and dynamic. Static and dynamic
techniques are both used in SQA processes. The
selection, objectives, and organization of a particular
technique depend on the requirements and nature of
the project. A Waterfall development method selects
these techniques according to very different criteria,
such as some people-intensive techniques chosen in
waterfall model [8].

Unlike dynamic techniques, Static techniques do
not involve the execution of code. Static techniques
involve examination of documentation by individuals
or groups, this examination maybe be assisted by
software tools, for example, inspection of the
requirements specification and technical reviews of the
code. Testing and simulation are dynamic techniques.
Sometimes static techniques are used to support
dynamic techniques and vice versa.

The waterfall model uses both static and dynamic
techniques. However, agile methods mostly use
dynamic techniques. We will compare and contrast the
quality assurance techniques used by these two
approaches later in this paper.

4 Agile methods quality techniques

assessing methods

In this section, we build a complete model of
waterfall with QA supporting process. Figure 1 shows
the diagram form. In the second half of this section, we
address some of the quality assurance practices of agile
methods. In this paper, we only have the space to
discuss a few of these practices. In the future, we plan
to provide a comprehensive list of these practices in
near future.

 3

Figure 1. Completed process model

4.1 Waterfall model with SQA and V&V

The fundamental development activities of in the
Waterfall model include: 1) requirements definition 2)
system and software design 3) implementation and unit
testing 3) integration and system testing 4) operation
and maintenance [7]. Each activity supported by V&V
techniques is supposed to produce of well-defined
deliverables. Since the deliverables of one activity are

the input for the subsequent activity, no subsequent
phase can begin until the predecessor phase finishes
and all of its deliverables are signed off as satisfactory.
To complete the output must be approved by these QA
activities. Figure 1 shows the development process.

We will use this complete model as a base for
comparison with the quality assurance techniques of
the agile methods. We will explain the comparison
method in section 4.3.

 4

4.2 Agile Methods: quality techniques

Agile methods include many practices that have the
potential ability for quality assurance. By identifying
these practices and comparing with quality techniques
used in waterfall model, we can analyze the quality
assurance status of agile methods. We list some agile
practices, which have been recognized, as quality
techniques below, and we believe there is a number of
other techniques have not been explicitly identified
yet.

Having an On-site customer is a general practice in
most of the agile methods. Customer helps developer
to refine and correct the requirements. The customer
should support the development team throughout the
whole development process. There is no such activity
in the traditional methods. In waterfall, customers are
normally involved in requirement definition and
possibly system and software design but not involved
as much and contributes as much as they are expected
in agile methods. Consequently the customer
involvement in agile methods is much heavily than
waterfall development.

Pair programming means two programmers
continuously work on the same code. Cockburn and
Williams found pair programming could improve
design quality and reduce defects [9]. Its effect shows
that pair programming includes code V&V techniques.
Its shoulder-to-shoulder technique serves as a
continual design and code review process, and result
reducing defect rates. This action has been wildly
recognized as continuous code inspection [9].

Continuous integration is also a popular practice
among agile methods. Continuous integration means
the team does not integrate the code once or twice. The
team needs to keep the system fully integrated at all
times. Integration may happen several times pre day.
Martin has pointed out that, “The key point is that
continuous integration catches enough bugs to be
worth the cost.” Continuous integration also reduces
the time that people spend on searching bugs and
allows detection of compatibility problems early. This
practice can be treated as a code V&V technique and is
an example of dynamic techniques. Waterfall model
development also requires integration, but this is much
later and its frequency is much lower than agile
methods [10].

Acceptance testing is carried out after all unit test
cases have passed. This activity is a dynamic quality
assurance technique [8]. Waterfall approach has
acceptance testing but the difference between agile
acceptance testing and traditional acceptance testing is
as followings. Acceptance testing happens much

earlier and much more frequently and not only done
once.

This only provides a sample of agile quality
assurance techniques. We are going to identify all of
this kind of agile activities in our full paper.

However, if we compare the difference between
agile quality assurance activities and waterfall SQA
from three aspects: 1) many of the agile activities
occur much earlier than they do in waterfall
development 2) the frequency of these activities is
much greater than in waterfall model 3) agile methods
have fewer static quality assurance techniques when
compared with waterfall development.

5 Future work

In this section, we discuss future work that needs to
be done in this area. This work comprises two parts: 1)
agile practices identification 2) quality techniques
comparison. We discuss these further below.

1. Agile practices identification As noted in section

4.2, there are many agile practices that have a quality
assurance potential. These practices include more than
those listed in section 4.2. Further work need to be
done to identify and classify them as static or dynamic
techniques.

After identification, clarification of what agile
practices has certain SQA support techniques and at
which stage these agile practices occurs is necessary.

2. Quality techniques comparison There are two

major differences between waterfall development and
agile methods quality assurance: 1) Agile methods
include fewer static techniques than waterfall
development. This can be explained by their
background. Many of the static techniques in waterfall
are people-intensive; these cost time and resource [8].
Agile methods are used when we have market pressure
and budget limitation so people-intensive techniques
are not acceptable. The second reason is that waterfall
normally begins with static requirement documents.
Hence static techniques are suitable. Agile methods, on
the other hand, begin with poor and violate
requirements. This makes static methods unsuitable at
this stage.

2) Quality assurance activities start earlier and more
frequent than waterfall development. The agile process
has many small releases and each release can be
considered to be similar to a tiny waterfall release.
Clearly analyzing how quality can be achieved in each

 5

agile release will help us understand how agile
processes achieve quality.

This will allow us to identify which parts of agile
development add the most quality to our software.

6 Conclusion

Even though some of agile practices are not new,

the agile methods are recent. Because of the
advantages they bring, they become very popular in
industry. Experience reports detail how these methods
solve problems such as development time limitation
and unstable requirement [5]. There is an important
need for developers to know more about the quality of
the software produced. Developers also need to know
how to revise or tailor their agile methods in order to
attain the level of quality they required. Our research is
going to shed the light on this issue.

7 Reference

[1] K. Beck, extreme programming eXplained : embrace
change. Reading, MA: Addison-Wesley, 2000.

[2] B. Boehm and R. Turner, "Using risk to balance agile and
plan-driven methods" Computer, vol. 36, pp. 57-66, 2003.
[3] J. Grenning, "Launching extreme programming at a
process-intensive company," Software, IEEE, vol. 18, pp. 27-
33, 2001.
[4] O. Murru, R. Deias, and G. Mugheddue, "Assessing XP
at a European Internet company," Software, IEEE, vol. 20,
pp. 37-43, 2003.
[5] J. Rasmussen, "Introducing XP into Greenfield Projects:
lessons learned," Software, IEEE, vol. 20, pp. 21-28, 2003.
[6] P. Schuh, "Recovery, redemption, and extreme
programming," Software, IEEE, vol. 18, pp. 34-41, 2001.
[7] I. Sommerville, Software engineering, 6th ed. Harlow,
England ; New York: Addison-Wesley, 2000.
[8] A. Abran and J. W. Moore, "Guide to the software
engineering body of knowledge : trial version (version
0.95)." Los Alamitos, CA: IEEE Computer Society, 2001.
[9] A. Cockburn and L. Williams, "The Costs and Benefits of
Pair Programming," in Extreme Programming examined, G.
Succi and M. Marchesi, Eds. Boston: Addison-Wesley, 2001,
pp. xv, 569 p.
[10] Continuous Integration,
http://www.martinfowler.com/articles/continuousIntegration.
html.

