

A Study of the stability of rubble mound breakwaters. October 1991.

Author:

Hall, K. R.

Publication details:

Report No. UNSW Water Research Laboratory Report No. 178 Vol. 2 0858243954 (ISBN)

Publication Date:

1991

DOI:

https://doi.org/10.4225/53/5796cf0442eaa

License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/ Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/36190 in https:// unsworks.unsw.edu.au on 2024-04-26

A STUDY OF THE STABILITY OF RUBBLE MOUND BREAKWATERS

by

Kevin Richard Hall

A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philisophy

May 1987

The University of New South Wales School of Civil Engineering

Table	of	Contents	- Volum	ne 2	Page N	ο.

Appendix A -	Variation of differential pressure	Al -	- A33
	head with wave steepness as a function		
	of elevation		
. 1	The second	рI	r/1

- Appendix B Variation of differential pressure B1 541 head with wave steepness as a function of the number of layers of armour
- Appendix C Variation of differential pressure C1 C24 head with wave steepness as a function of core type
- Appendix D Variation of relative differential D1 D22 pressure for 1 layer of armour versus wave steepness as a function of the number of layers of armour
- Appendix E Phreatic surface profiles as a function E1 E82 of wave height and wave period
- Appendix F Dimensionless runup and rundown versus F1 F17 the surf similarity parameter
- Appendix G Experimental test data for all test G1 G26 series

APPENDIX A

VARIATION OF DIFFERENTIAL PRESSURE HEAD WITH WAVE STEEPNESS AS A FUNCTION OF ELEVATION.

TEST SERIES	INTERNAL	PRESSURE	EXTERNAL	PRESSURE
ST12A	Figures	A52-A56	Figures	A1-A5
ST12B	Figures	A57-A61	Figures	A6-A10
ST12C	Figures	A62-A66	Figures	A11-A15
ST13A	Figures	A67-A70	Figures	A16-A19
ST15A	Figures	A71-A75	Figures	A20-A24
SP12A	Figures	A76-A79	Figures	A25-A28
SP12B	Figure	A80	Figure .	A29
SP12C	Figure A	481	Figure .	A30
SP13A	Figures	A82-A85	Figures	A31-A34
SP15A	Figures	A86-A88	Figures	A35-A37
CU12A	Figures	A89-A93	Figures	A38-A42
CU13A	Figures	A94-A97	Figures	A43-A47
CU15A	Figures	A98-A102	Figures	A48-A51

External Pressure Data

2ST12A

FIGURE A-4 External Pressure Data 4ST12A

s.w.l.

Δ +10 cm

ELEVATION \Box -20 cm + -10 cm \diamond s.w.l. Δ +10 cm

-A15-

FIGURE A-32 External Pressure Data 2SP13A SLOPE 1:3 CORE 'A' 2 x 50 mm SPHERE

FIGURE A-34 External Pressure Data 4SP13A

FIGURE A-36 External Pressure Data

1SP15A

2CU12A

FIGURE A-47 External Pressure Data

5CU13A

4CU15A

Internal Pressure Data

2ST12A

ELEVATION □ s.w.l + -5 cm < -10 cm △ -20 cm

ELEVATION D s.w.l

1.2

1

0.8

0.6

0.4

0.2 0 0 Г

密

0.02

+

0 븝

†

۵

æ

-5 cm

٥ Δ

+

0.04

H ∕ Lo ♦

۵

± ≜

0.06

—10 cm

Δ

\$ □

0.08

Δ

-20 cm

0.1

Δ

0

+10 cm

ELEVATION D

0.02

+

0.04

s.w.l.

0.06

٥

-10 cm

H / Lo

0.08 0.1

Δ

1

-20 cm

0.12

.

ELEVATION \Box s.w.! + -5 cm \Im -10 cm Δ -20 cm

ELEVATION -10 cm Δ -20 cm s.w.1 4---5 cm

-a52-

3CU13A FIGURE A-100 Internal Pressure Data

APPENDIX B

VARIATION OF DIFFERENTIAL PRESSURE HEAD WITH WAVE STEEPNESS AS A FUNCTION OF THE NUMBER OF LAYERS OF ARMOUR

TEST SERIES

ST12A	Figures	B1-B8
ST12B	Figures	B9-B16
ST12C	Figures	B17-B24
ST13A	Figures	B25-B30
ST15A	Figures	B31-B38
SP12A	Figures	в39-в46
SP13A	Figures	B47-B52
SP15A	Figures	в53-в60
CU12A	Figures	B61-B68
CU13A	Figures	B69-B74
CU15A	Figures	B75-B82

NEW BOUTH MAL ٩F REITY REFERENCE WATER LIBRARY

H / L₀ ♦ 3

2

1

NUMBER OF LAYERS

Δ

х

Internal Pressure (#3) Elev.= -10 cm FIGURE B-11

5

×

4

Δ

2

+

NUMBER OF LAYERS

0 0.06 0.08 0.1 0.04 0.02 0 H / L₀
3 5 4 х 2 Δ NUMBER OF LAYERS 1 +

+

Ŷ

0.5

∕8 ×

â×

ĝ

+ 0 0

NUMBER OF LAYERS

0.02

1

0.04

2

H / Lo

0.06

3

0.1

0.08

5

×

∆ ¢ ₹ 茵 0 0.06 0.1 0.04 0.08 0.02 0 H / L₀
3 5 4 × NUMBER OF LAYERS 2 Δ 1 +

Δ

Δ

x

G A X S

0.5

¥

0 0.02 0.04 0.06 0.08 0.1 H / Lo NUMBER OF LAYERS II 1 + 2 & 3 Δ 4 × 5

0 .

2

+

1

Δ

4

Х

5

NUMBER OF LAYERS

NUMBER OF LAYERS \Box 1 + 2 \diamond 3 \triangle 4

APPENDIX C

VARIATION OF WAVE STEEPNESS WITH DIFFERENTIAL PRESSURE HEAD AS A FUNCTION OF CORE TYPE

ELEVATION	INTERNAL PRESSURE	EXTERNAL PRESSURE
-20 cm	Figures C36-C40	Figures C1-C5
-10 cm	Figures C31-C35	Figures C6-C10
-5 cm	Figures C26-C30	
0 cm (sw1)	Figures C21-C25	Figures Cll-Cl5
+10 cm		Figures C16-C20

...

0

0

۵

0.1

0.08

CORE C

0.06

٥

0.04

+

H / Lo CORE B

0.02

CORE A

+□ a

0.02

Å

CORE A

쏾

0.2

0+

0

+

\$

0.04

H / Lo CORE B

0.06

٥

무

0.08

CORE C

0.1

3

+

CORE A

CORE C

¢

APPENDIX D

VARIATION OF RELATIVE DIFFERENTIAL PRESSURE FOR 1 LAYER OF ARMOUR VERSUS WAVE STEEPNESS AS A FUNCTION OF THE NUMBER OF LAYERS OF ARMOUR

- -

TEST SERIES

ST12A	Figures	D1-D4
ST12B	Figures	D5-D8
ST12C	Figures	D9-D12
ST13A	Figures	D13-D16
ST15A	Figures	D17-D20
SP12A	Figures	D21-D24
SP13A	Figures	D25-D28
SP15A	Figures	D29-D32
CU12A	Figures	D33-D36
CU13A	Figures	D37-D40
CU15A	Figures	D41-D44

-D2-

٥

4 > 1

H / Lo 3 > 1

+

2 > 1

٥

4 > 1

H / Lo

+

3 > 1

2 > 1

APPENDIX E

PHREATIC SURFACE PROFILES AS A FUNCTION OF WAVE HEIGHT AND WAVE PERIOD.

TEST SERIES

ST12A	Figures	E1-E20
ST12B	Figures	E21-E40
ST12C	Figures	E41-E60
ST15A	Figures	E61-E80
SP12A	Figures	E81-E96
SP12B	Figures	E97-E100
SP12C	Figures	E101-E104
SP15A	Figures	E105-E116
SP13A	Figures	E117-E128
CU12A	Figures	E129-E148
CU15A	Figures	E149-E163

UNIERBIT OF NEW SOUTH WALES WATER REFERENCE LIBRARY 4

.

0FFSET (cm) ₩AVE HEIGHT (mm) □ 30 + 60 ♦ 90 Δ 120

-E15-

H

OFFSET (cm) WAVE HEIGHT (mm) □ 30 + 60 ♦ 90 △ 120

OFFSET (cm) ♦

60

+

WAVE HEIGHT (mm)

30

90

120

Δ

0FFSET (cm) WAVE HEIGHT (mm) □ 30 + 60 ♦ 90

T

OFFSET (cm) ♦

+

Δ

WAVE HEIGHT (mm)

FIGURE E-97 Wave Period = 0.8 s 1SP12B

-е50-

OFFSET (cm) ♦ Δ

WAVE HEIGHT (mm)

+

90

Δ

120

30 +

60 WAVE HEIGHT (mm)

WAVE HEIGHT (mm)

+

OFFSET (cm) ♦

Δ

WAVE HEIGHT (mm)

+

OFFSET (cm) ♦

Δ

-E71-

OFFSET (cm)

ہ

90

Δ

120

60

+

WAVE HEIGHT (mm)

90 60 30 + Δ 120 WAVE HEIGHT (mm)

APPENDIX F

DIMENSIONLESS RUNUP AND RUNDOWN VERSUS THE SURF SIMILARITY PARAMETER.

Figures F1-F13	* as a function of the number of layers of armour.
Figure F14	* for the natural profile test
Figures F15-F19	* as a function of armour unit type
Figures F20-F24	* as a function of core type
Figures F25-F27	* all data plotted

FIGURE F-1 50 mm STONES

SLOPE = 1:2

FIGURE F-2 50 mm STONES SLOPE = 1:2

FIGURE F-6 SLOPE = 1:2 50 mm SPHERES

FIGURE F-11 50 mm STONES

SLOPE = 1:3

60 mm CUBES + 50 mm STONE

□ 50 mm STONE + 60 mm CUBES

-F14-

♦ Core Type C

6

8

Core Type A

-1 -

-1.5 -

-2 -

0

2

+

4

Core Type B

Ru/H*cot

Rd/H*cot

50 mm SPHERES (all data) 0.8 + \$ ⊞ 0.7 ٥ Ø Ð ۵ 0.6 5 ₿ **◇** 100 \$ + ⊞ ₺ + 0 Ħ 89 0.5 + A 盘 Ħ 0.4 Δ ⊞ 0.3 □ 0.2 φ Δ 0.1 0 -0.1 +800 -0.2 ∆ ∆ ٨ Ó ٥ Δ Δ Ŷ -0.3 **†** + 000 -0.4 ¢ Periodena ⊞ Ď + а Х С Δ -0.5 Δ -0.6 -0.7 -0.8 -Т 1 6 2 4 0

APPENDIX G

 \prec

EXPERIMENTAL DATA FOR ALL TEST SERIES (data presented has been phase-averaged)

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru I	IAX Rd	MAXIMUM DIFFERENTIAL PRESSURE HEAD (📾)								
								INTERNAL GAUGE ELEVATION (CB) EXTERNAL GAUGE ELEVATION (CB)								
NAME		(s)	(ma)			(cna)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1ST13A	1	0.8	30.0	0.030	1.92	32.0	1.0	2.0	14.0	34.0	34.0	34.0	46.0	14.0	2.0	2.0
1ST13A	2	0.8	60.0	0.060	1.36	34.0	1.0	2.0	32.0	64.0	64.0	74.0	102.0	70.0	2.0	2.0
1stija	3	0.8	90.0	0.090	1.11	35.0	1.0	2.0	62.0	72.0	76.0	96.0	120.0	96.0	2.0	2.0
1st13A	4	1.0	30.0	0.019	2.40	32.0	1.0	2.0	26.0	44.0	38.0	44.0	44.0	16.0	2.0	2.0
1st13a	5	1.0	60.0	0.038	1.70	35.0	1.0	2.0	50.0	82.0	86.0	106.0	122.0	82.0	2.0	2.0
1ST13A	6	1.0	90.0	0.058	1.39	36.0	1.0	2.0	50.0	96.0	104.0	116.0	146.0	72.0	2.0	2.0
1ST13A	7	1.0	120.0	0.077	1.20	38.0	1.0	2.0	52.0	102.0	124.0	144.0	162.0	92.0	2.0	2.0
1ST13A	8	1.5	30.0	0.009	3.61	34.0	1.0	2.0	22.0	80.0	58.0	66.0	98.0	40.0	2.0	2.0
1stija	9	1.5	60.0	0.017	2.55	35.0	1.0	2.0	108.0	104.0	94.0	102.0	164.0	54.0	2.0	2.0
1st13A	10	1.5	90.0	0.026	2.08	37.0	1.0	2.0	80.0	130.0	138.0	146.0	204.0	78.0	2.0	2.0
1ST13A	11	1.5	120.0	0.034	1.80	41.0	1.0	2.0	110.0	152.0	186.0	150.0	252.0	232.0	2.0	2.0
1st13a	12	2.0	30.0	0.005	4.81	33.0	1.0	2.0	22.0	84.0	60.0	42.0	90.0	20.0	2.0	2.0
1st13a	13	2.0	60.0	0.010	3.40	35.0	1.0	2.0	42.0	116.0	94.0	82.0	140.0	52.0	2.0	2.0
1ST13A	14	2.0	90.0	0.014	2.78	38.0	1.0	2.0	90.0	142.0	150.0	122.0	198.0	86.0	2.0	2.0
1ST13A	15	2.0	120.0	0.019	2.40	40.0	1.0	2.0	122.0	146.0	188.0	168.0	210.0	132.0	2.0	2.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd	MAXIMUM DIFFERENTIAL PRESSURE HEAD (mm)								
								INTERNAL	GAUGE ELEVATION (cm)			EXTERNAL GAUGE ELEVATION (C				ı)
NAME		(s)	(👥)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2ST13A	1	0.8	30.0	0.030	1.92	31.0	1.0	2.0	12.0	22.0	26.0	28.0	42.0	62.0	2.0	2.0
2ST13A	2	0.8	60.0	0.060	1.36	32.0	1.0	2.0	18.0	40.0	52.0	60.0	92.0	106.0	2.0	2.0
2ST13A	3	0.8	90.0	0.090	1.11	34.0	1.0	2.0	30.0	46.0	62.0	74.0	106.0	234.0	2.0	2.0
2ST13A	4	1.0	30.0	0.019	2.40	31.0	1.0	2.0	14.0	34.0	32.0	42.0	48.0	64.0	2.0	2.0
2ST13A	5	1.0	60.0	0.038	1.70	32.0	1.0	2.0	22.0	54.0	66.0	72.0	100.0	96.0	2.0	2.0
2ST13A	6	1.0	90.0	0.058	1.39	33.0	1.0	2.0	24.0	62.0	80.0	92.0	124.0	114.0	2.0	2.0
2ST13A	7	1.0	120.0	0.077	1.20	34.0	1.0	2.0	32.0	70.0	102.0	134.0	160.0	140.0	2.0	2.0
29T13A	8	1.5	30.0	0.009	3.61	31.0	1.0	2.0	16.0	64.0	54.0	58.0	54.0	78.0	2.0	2.0
25T13A	9	1.5	60.0	0.017	2.55	32.0	1.0	2.0	26.0	86.0	100.0	108.0	118.0	116.0	2.0	2.0
2ST13A	10	1.5	90.0	0.026	2.08	33.0	1.0	2.0	42.0	100.0	130.0	144.0	150.0	154.0	2.0	2.0
2ST13A	11	1.5	120.0	0.034	1.80	35.0	1.0	2.0	50.0	114.0	164.0	184.0	228.0	222.0	2.0	2.0
25T13A	12	2.0	30.0	0.005	4.81	31.0	1.0	2.0	18.0	52.0	60.0	38.0	52.0	68.0	2.0	2.0
2ST13A	13	2.0	60.0	0.010	3.40	32.0	1.0	2.0	28.0	86.0	108.0	72.0	100.0	102.0	2.0	2.0
25T13A	14	2.0	90.0	0.014	2.78	34.0	1.0	2.0	60.0	120.0	160.0	118.0	190.0	172.0	2.0	2.0
25T13A	15	2.0	120.0	0.019	2.40	36.0	1.0	2.0	70.0	136.0	186.0	142.0	252.0	236.0	2.0	2.0
FILE	SEG#	T	H	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE	AD (mm.)		
--------	------	-----	-------	-------	------	----------	--------	----------	---------	-----------	----------	----------	----------	----------	----------	------
								INTERNAL	GAUGE E	ELEVATION	(cm)	EXTER	NAL GAUG	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
35T13A	1	0.8	30.0	0.030	1.92	32.0	1.0	2.0	18.0	20.0	22.0	26.0	40.0	42.0	2.0	2.0
3ST13A	2	0.8	60.0	0.060	1.36	34.0	1.0	2.0	20.0	26.0	38.0	52.0	88.0	52.0	2.0	2.0
3ST13A	3	0.8	90.0	0.090	1.11	35.0	1.0	2.0	22.0	40.0	46.0	62.0	110.0	68.0	2.0	2.0
3ST13A	4	1.0	30.0	0.019	2.40	33.0	1.0	2.0	18.0	30.0	32.0	48.0	46.0	60.0	2.0	2.0
3ST13A	5	1.0	60.0	0.038	1.70	35.0	1.0	2.0	18.0	40.0	56.0	84.0	96.0	166.0	2.0	2.0
3ST13A	6	1.0	90.0	0.058	1.39	36.0	1.0	2.0	20.0	50.0	60.0	102.0	118.0	186.0	2.0	2.0
3ST13A	7	1.0	120.0	0.077	1.20	38.0	1.0	2.0	24.0	56.0	80.0	134.0	150.0	226.0	2.0	2.0
3ST13A	8	1.5	30.0	0.009	3.61	33.0	1.0	2.0	16.0	48.0	46.0	64.0	66.0	64.0	2.0	2.0
3ST13A	9	1.5	60.0	0.017	2.55	35.0	1.0	2.0	30.0	66.0	102.0	104.0	110.0	104.0	2.0	2.0
3ST13A	10	1.5	90.0	0.026	2.08	37.0	1.0	2.0	34.0	88.0	122.0	146.0	152.0	170.0	2.0	2.0
3ST13A	11	1.5	120.0	0.034	1.80	39.0	1.0	2.0	38.0	106.0	148.0	180.0	206.0	226.0	2.0	2.0
3ST13A	12	2.0	30.0	0.005	4.81	32.0	1.0	2.0	14.0	48.0	60.0	44.0	54.0	54.0	2.0	2.0
3st13A	13	2.0	60.0	0.010	3.40	34.0	1.0	2.0	38.0	80.0	114.0	82.0	124.0	92.0	2.0	2.0
3st13A	14	2.0	90.0	0.014	2.78	38.0	1.0	2.0	50.0	124.0	168.0	130.0	202.0	176.0	2.0	2.0
3ST13A	15	2.0	120.0	0.019	2.40	41.0	1.0	2.0	60.0	150.0	180.0	154.0	248.0	196.0	2.0	2.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE	AD (mm)		
								INTERNAL	GAUGE I	ELEVATION	(cm)	EXTER	NAL GAUG	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4st13a	1	0.8	30.0	0.030	1.92	31.0	1.0	2.0	14.0	18.0	22.0	34.0	44.0	42.0	2.0	2.0
4ST13A	2	0.8	60.0	0.060	1.36	34.0	1.0	2.0	14.0	24.0	28.0	54.0	86.0	52.0	2.0	2.0
4ST13A	3	0.8	90.0	0.090	1.11	35.0	1.0	2.0	14.0	34.0	40.0	84.0	100.0	68.0	2.0	2.0
4ST13A	4	1.0	30.0	0.019	2.40	32.0	1.0	2.0	14.0	24.0	32.0	42.0	48.0	42.0	2.0	2.0
4ST13A	5	1.0	60.0	0.038	1.70	34.0	1.0	2.0	14.0	34.0	50.0	84.0	100.0	116.0	2.0	2.0
4ST13A	6	1.0	90.0	0.058	1.39	35.0	1.0	2.0	18.0	34.0	54.0	98.0	124.0	166.0	2.0	2.0
4ST13A	7	1.0	120.0	0.077	1.20	36.0	1.0	2.0	20.0	40.0	60.0	114.0	150.0	258.0	2.0	2.0
4ST13A	8	1.5	30.0	0.009	3.61	32.0	1.0	2.0	14.0	42.0	60.0	62.0	60.0	62.0	2.0	2.0
4ST13A	9	1.5	60.0	0.017	2.55	34.0	1.0	2.0	20.0	54.0	94.0	100.0	118.0	100.0	2.0	2.0
4ST13A	10	1.5	90.0	0.026	2.08	38.0	1.0	2.0	22.0	88.0	128.0	132.0	176.0	172.0	2.0	2.0
4ST13A	11	1.5	120.0	0.034	1.80	39.0	1.0	2.0	22.0	80.0	122.0	172.0	224.0	292.0	2.0	2.0
4ST13A	12	2.0	30.0	0.005	4.81	32.0	1.0	2.0	24.0	44.0	62.0	44.0	64.0	58.0	2.0	2.0
4ST13A	13	2.0	60.0	0.010	3.40	34.0	1.0	2.0	20.0	64.0	110.0	82.0	130.0	144.0	2.0	2.0
4st13a	14	2.0	90.0	0.014	2.78	36.0	1.0	2.0	24.0	94.0	150.0	116.0	216.0	164.0	2.0	2.0
4st13a	15	2.0	120.0	0.019	2.40	41.0	1.0	2.0	28.0	118.0	170.0	140.0	292.0	178.0	2.0	2.0

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru I	MAX Rd			HAXIHUH	DIFFEREN	TIAL PRE	ssure he	v) (ma)		
								INTERNAL	GAUGE I	ELEVATION	(cs)	EXTER	NAL GAUGI	E ELEVAT	ION (cms)	
NAME		(s)	(12)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
											T / D	74.0	10.0	/0 0	(6	(0.0
1ST12A	1	0.8	30.0	0.030	2.88	32.0	28.0	26.0	30.0	32.0	36.0	34.0	42.0	00.0	0.0	60.0
1ST12A	2	0.8	60.0	0.060	2.04	34.0	27.0	42.0	38.0	46.0	54.0	52.0	120.0	72.0	8.0	64.0
1ST12A	3	0.8	90.0	0.090	1.67	36.0	26.0	52.0	60.0	70.0	80.0	76.0	100.0	96.0	8.0	96.0
1ST12A	4	1.0	30.0	0.019	3.61	32.0	28.0	34.0	32.0	42.0	32.0	42.0	36.0	56.0	4.0	56.0
1ST12A	5	1.0	60. 0	0.038	2.55	35.0	27.0	70.0	92.0	88.0	88.0	90.0	92.0	114.0	8.0	108.0
1ST12A	6	1.0	90.0	0.058	2.08	38.0	26.0	82.0	100.0	106.0	106.0	116.0	106.0	120.0	26.0	144.0
1ST12A	7	1.0	120.0	0.077	1.80	40 .0	25.0	92.0	178.0	130.0	156.0	140.0	156.0	148.0	28.0	146.0
1ST12A	8	1.5	30.0	0.009	5.41	34.0	26.0	60.0	28.0	90.0	50.0	48.0	72.0	78.0	4.0	80.0
1ST12A	9	1.5	60.0	0.017	3.82	37.0	25.0	114.0	124.0	148.0	112.0	92.0	170.0	146.0	10.0	146.0
1ST12A	10	1.5	90.0	0.026	3.12	40.0	23.0	138.0	158.0	188.0	172.0	130.0	240.0	174.0	40.0	180.0
1ST12A	11	1.5	120.0	0.034	2.70	43.0	22.0	150.0	184.0	234.0	220.0	180.0	312.0	1 90. 0	108.0	206.0
1ST12A	12	2.0	30.0	0.005	7.21	32.0	27.0	46.0	28.0	86.0	54.0	34.0	70.0	76.0	4.0	70.0
1ST12A	13	2.0	60.0	0.010	5.10	35.0	26.0	104.0	62.0	164.0	126.0	82.0	166.0	132.0	6.0	130.0
1ST12A	14	2.0	90.0	0.014	4.16	37.0	25.0	146.0	136.0	222.0	202.0	158.0	250.0	196.0	62.0	184.0
1ST12A	15	2.0	120.0	0.019	3.61	41.0	24.0	240.0	118.0	254.0	254.0	218.0	304.0	214.0	114.0	232.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	ssure he/	(ma)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	ION (cm)	
NAME		(s)	(m)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2ST12A	1	0.8	30.0	0.030	2,88	32.0	28.0	22.0	28.0	32.0	28.0	30.0	44.0	44. 0	4.0	48. 0
25T12A	2	0.8	60.0	0.060	2.04	34.0	27.0	30.0	40.0	40.0	48.0	56.0	76.0	64.0	4.0	66.0
2ST12A	- 3	0.8	90.0	0.090	1.67	35.0	26.0	40.0	52.0	56.0	72.0	72.0	106.0	86.0	4.0	90.0
2ST12A	4	1.0	30.0	0.019	3.61	32.0	28.5	28.0	36.0	40.0	26.0	42.0	40.0	46.0	6.0	46. 0
2ST12A	5	1.0	60.0	0.038	2.55	34.0	27.0	52.0	68.0	74.0	68.0	92.0	100.0	92.0	6.0	82.0
2ST12A	6	1.0	90.0	0.058	2.08	36.0	26.0	62.0	72.0	86.0	88.0	110.0	132.0	102.0	10.0	112.0
2ST12A	7	1.0	120.0	0.077	1.80	38.0	25.0	74.0	80.0	100.0	114.0	142.0	168.0	130.0	32.0	120.0
2ST12A	8	1.5	30.0	0.009	5.41	33.0	27.0	56.0	70.0	82.0	66.0	42.0	70.0	70.0	4.0	66.0
2ST12A	9	1.5	60.0	0.017	3.82	36.0	25.0	90.0	106.0	126.0	126.0	%.0	162.0	112.0	8.0	102.0
2ST12A	10	1.5	90.0	0.026	3.12	39.0	24.0	126.0	128.0	158.0	176.0	140.0	240.0	138.0	10.0	154.0
2ST12A	11	1.5	120.0	0.034	2.70	41.0	24.0	146.0	148.0	182.0	218.0	186.0	494. 0	170.0	104.0	172.0
2ST12A	12	2.0	30.0	0.005	7.21	32.5	28.0	58.0	64.0	74.0	58.0	38.0	58.0	60.0	6.0	60.0
2ST12A	13	2.0	60.0	0.010	5.10	34.0	27.0	102.0	124.0	142.0	134.0	86.0	182.0	104.0	8.0	110.0
2ST12A	14	2.0	90.0	0.014	4.16	37.0	25.0	154.0	168.0	196.0	208.0	166.0	252.0	152.0	20.0	156.0
2ST12A	15	2.0	120.0	0.019	3.61	42.0	24.0	186.0	188.0	222.0	252.0	224.0	312.0	202.0	94.0	210.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	ssure he <i>l</i>	AD (mm)		
								INTERNAL	GAUGE I	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	ION (Cm)	
NAME		(s)	(RR)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
		• •							40.0	<u> </u>	~~~~	7/ 0	FO 0	(0.0	0.0	(0.0
35112A	1	0.8	30.0	0.030	2.88	32.U	29.0	20.0	12.0	26.0	20.0	34.0	50.0	42.0	8.0	42.0
3ST12A	2	0.8	60.0	0.060	2.04	33.0	27.0	24.0	26.0	34.0	34.0	62.0	74.0	56.0	24.0	64.0
3ST12A	3	0.8	90.0	0.090	1.67	35.0	27.0	28.0	28.0	46.0	42.0	74.0	100.0	96.0	8.0	84.0
3ST12A	4	1.0	30.0	0.019	3.61	32.0	28.0	22.0	22.0	38.0	28.0	40.0	34.0	42.0	4.0	42.0
3ST12A	5	1.0	60.0	0.038	2.55	34.0	26.0	34.0	40.0	64.0	58.0	88.0	90.0	96.0	24.0	86.0
3ST12A	6	1.0	90. 0	0.058	2.08	35.0	25.0	42.0	48.0	70.0	70.0	110.0	118.0	108.0	8.0	104.0
3ST12A	7	1.0	120.0	0.077	1.80	36.0	24.0	54.0	62.0	80.0	92.0	142.0	144.0	118.0	10.0	136.0
3ST12A	8	1.5	30.0	0.009	5.41	33.0	27.0	44.0	44.0	74.0	74.0	50.0	76.0	70.0	4.0	68.0
3ST12A	9	1.5	60.0	0.017	3.82	35.0	25.0	66.0	70.0	116.0	124.0	96.0	156.0	110.0	10.0	110.0
3ST12A	10	1.5	90.0	0.026	3.12	38.0	23.0	92.0	100.0	140.0	164.0	140.0	240.0	150.0	20.0	150.0
3ST12A	11	1.5	120.0	0.034	2.70	42.0	22.0	122.0	118.0	156.0	198.0	176.0	284.0	180.0	60.0	182.0
3ST12A	12	2.0	30.0	0.005	7.21	32.0	28.0	48.0	46.0	66.0	60.0	34.0	60.0	56.0	6.0	56.0
3ST12A	13	2.0	60.0	0.010	5.10	35.0	25.0	78.0	84.0	130.0	134.0	86.0	142.0	114.0	8.0	110.0
3ST12A	14	2.0	90.0	0.014	4.16	38.0	24.0	120.0	130.0	182.0	198.0	150.0	240.0	152.0	20.0	152.0
35T12A	15	2.0	120.0	0.019	3.61	42.0	21.0	160.0	156.0	204.0	228.0	208.0	292.0	182.0	92.0	182.0

FILE	SEG#	T	н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HEA	VD (mma)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cma)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4ST12A	1	0.8	30.0	0.030	2.88	32.0	28.0	18.0	10.0	18.0	18.0	30.0	50.0	62.0	4.0	66.0
4ST12A	2	0.8	60.0	0.060	2.04	34.0	27.0	20.0	20.0	28.0	28.0	58.0	78.0	86.0	4.0	106.0
4ST12A	- 3	0.8	90.0	0.090	1.67	35.0	26.0	24.0	20.0	34.0	34.0	72.0	104.0	106.0	4.0	118.0
4ST12A	6	1.0	30.0	0.019	3.61	32.0	28.0	22.0	24.0	28.0	30.0	40.0	38.0	60.0	4.0	66.0
4ST12A	5	1.0	60.0	0.038	2.55	34.0	26.0	38.0	30.0	50.0	56.0	84.0	90.0	112.0	8.0	106.0
4ST12A	6	1.0	90.0	0.058	2.08	35.0	26.0	34.0	36.0	56.0	68.0	106.0	118.0	134.0	10.0	138.0
4ST12A	7	1.0	120.0	0.077	1.80	38.0	25.0	42.0	44.0	64.0	86.0	134.0	154.0	176.0	20.0	162.0
4ST124	, 8	1.5	30.0	0.009	5.41	33.0	27.0	42.0	36.0	60.0	72.0	46.0	68.0	80.0	4.0	88.0
4ST124	Q	1 5	60.0	0.017	3.82	36.0	26.0	60.0	58.0	94.0	116.0	94.0	144.0	122.0	8.0	120.0
4ST124	10	1.5	90.0	0.026	3.12	39.0	24.0	76.0	80.0	120.0	144.0	150.0	250.0	158.0	20.0	160.0
451124	11	1 5	120.0	0.034	2.70	41.0	23.0	94.0	100.0	136.0	168.0	194.0	278.0	186.0	70.0	202.0
49112h	12	2.0	30.0	0.005	7.21	33.0	28.0	48.0	38.0	58.0	62.0	34.0	56.0	68.0	6.0	76.0
491120	17	2.0	60.0	0.000	5,10	36.0	26.0	70.0	64.0	108.0	124.0	82.0	134.0	110.0	6.0	122.0
401120	14	2.0	on n	0.016	6 16	39.0	25.0	98.0	102.0	156.0	178.0	142.0	224.0	148.0	8.0	166.0
4ST12A	14	2.0	120.0	0.019	3.61	42.0	23.0	122.0	128.0	184.0	208.0	192.0	288.0	194.0	52.0	200.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru M	1AX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HEA	ND (nnan)		
								INTERNAL	GAUGE I	ELEVATION	(cma)	EXTER	NAL GAUGE	ELEVAT	ION (cm)	
NAME		(s)	(m)			(cm)	(cma)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
5ST12A	1	0.8	30.0	0.030	2.88	32.0	29.0	12.0	12.0	16.0	16.0	34.0	46.0	46.0	4.0	58.0
5ST12A	2	0.8	60.0	0.060	2.04	33.0	27.0	18.0	14.0	20.0	28.0	54.0	78.0	70.0	6.0	76.0
5ST12A	3	0.8	90.0	0.090	1.67	34.0	26.0	18.0	14.0	26.0	34.0	76.0	104.0	112.0	6.0	142.0
5ST12A	4	1.0	30.0	0.019	3.61	32.0	28.0	20.0	16.0	28.0	34.0	42.0	34.0	54.0	6.0	56.0
5ST12A	5	1.0	60.0	0.038	2.55	34.0	26.0	26.0	24.0	38.0	56.0	88.0	90. 0	96.0	8.0	98.0
5ST12A	6	1.0	90.0	0.058	2.08	35.0	25.0	28.0	30.0	42.0	60.0	110.0	116.0	122.0	6.0	140.0
5ST12A	7	1.0	120.0	0.077	1.80	37.0	24.0	32.0	30.0	52.0	70.0	142.0	150.0	190.0	30.0	158.0
5ST12A	8	1.5	30.0	0.009	5.41	33.0	27.0	38.0	34.0	48.0	62.0	48.0	74.0	72.0	4.0	74.0
5ST12A	9	1.5	60.0	0.017	3.82	35.0	25.0	48.0	46.0	80.0	106.0	96.0	154.0	114.0	8.0	120.0
5ST12A	10	1.5	90.0	0.026	3.12	39.0	24.0	62.0	62.0	100.0	132.0	134.0	220.0	148.0	14.0	158.0
5ST12A	11	1.5	120.0	0.034	2.70	40.0	23.0	74.0	78.0	124.0	150.0	184.0	292.0	180.0	62.0	192.0
5ST12A	12	2.0	30.0	0.005	7.21	32.0	28.0	46.0	36.0	48.0	60.0	32.0	62.0	56.0	6.0	54.0
5ST12A	13	2.0	60.0	0.010	5.10	34.0	26.0	64.0	58.0	92.0	118.0	76.0	134.0	110.0	6.0	108.0
5ST12A	16	2.0	90.0	0.014	4,16	36.0	24.0	82.0	80.0	132.0	166.0	132.0	228.0	146.0	18.0	156.0
5ST12A	15	2.0	120.0	0.019	3.61	42.0	22.0	96.0	104.0	162.0	192.0	176.0	288.0	182.0	70.0	184.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd MAXIMUM DIFFERENTIAL PRESSURE HEAD (mm)										
								INTERNAL	GAUGE	ELEVATION	(cma)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)		
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O	
1ST15A	1	0.8	30.0	0.030	3.85	32.0	28.0	30.0	34.0	34.0	28.0	32.0	30.0	58.0	4.0	56.0	
1ST15A	2	0.8	60.0	0.060	2.72	34.0	26.0	54.0	54.0	62.0	56.0	60.0	64.0	98.0	8.0	80.0	
1ST15A	3	0.8	90.0	0.090	2.22	35.0	25.0	64.0	66.0	80.0	78.0	80.0	98.0	128.0	8.0	116.0	
1ST15A	4	1.0	30.0	0.019	4.81	32.0	28.0	44.0	52.0	50.0	30.0	34.0	40.0	70.0	4.0	68.0	
1ST15A	5	1.0	60.0	0.038	3.40	34.0	26.0	82.0	80.0	100.0	70.0	78.0	102.0	112.0	4.0	100.0	
1ST15A	6	1.0	90.0	0.058	2.78	36.0	25.0	88.0	96.0	120.0	98.0	112.0	142.0	138.0	6.0	136.0	
1ST15A	7	1.0	120.0	0.077	2.40	38.0	24.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
1ST15A	8	1.5	30.0	0.009	7.21	33.0	27.0	80.0	88.0	98.0	68.0	46.0	84.0	104.0	6.0	96.0	
1ST15A	9	1.5	60.0	0.017	5.10	36.0	24.0	128.0	140.0	164.0	136.0	98.0	184.0	154.0	10.0	148.0	
1ST15A	10	1.5	90.0	0.026	4.16	39.0	23.0	160.0	170.0	210.0	200.0	146.0	256.0	192.0	64.0	180.0	
1ST15A	11	1.5	120.0	0.034	3.61	41.0	22.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
1ST15A	12	2.0	30.0	0.005	9.61	32.0	27.0	72.0	70.0	76.0	58.0	44.0	62.0	90.0	4.0	92.0	
1ST15A	13	2.0	60.0	0.010	6.80	36.0	25.0	140.0	150.0	164.0	142.0	120.0	162.0	162.0	8.0	154.0	
1ST15A	14	2.0	90.0	0.014	5.55	40.0	23.0	192.0	206.0	232.0	224.0	208.0	246.0	218.0	76.0	204.0	
1ST15A	15	2.0	120.0	0.019	4.81	42.0	21.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd	AX RD MAXIMUM DIFFERENTIAL PRESSURE HEAD (mm)										
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUG	E ELEVAT	ION (cm)			
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O		
2ST15A	1	0.8	30.0	0.030	3.85	32.0	28.0	18.0	34.0	30.0	22.0	34.0	36.0	50.0	4.0	52.0		
2ST15A	2	0.8	60.0	0.060	2.72	34.0	27.0	26.0	48.0	46.0	40.0	52.0	78.0	72.0	6.0	66.0		
2ST15A	3	0.8	90.0	0.090	2.22	36.0	26.0	32.0	56.0	58.0	58.0	74.0	98.0	92.0	12.0	88.0		
2ST15A	4	1.0	30.0	0.019	4.81	32.0	28.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
2ST15A	5	1.0	60.0	0.038	3.40	35.0	27.0	40.0	74.0	82.0	66.0	80. 0	102.0	98.0	4.0	94.0		
2ST15A	6	1.0	90.0	0.058	2.78	37.0	26.0	50.0	84.0	96.0	84.0	108.0	138.0	124.0	2.0	150.0		
2ST15A	7	1.0	120.0	0.077	2.40	40.0	25.0	66.0	90.0	114.0	120.0	138.0	190.0	156.0	32.0	160.0		
2ST15A	8	1.5	30.0	0.009	7.21	33.0	27.0	40.0	76.0	84.0	72.0	48.0	88.0	78.0	4.0	78.0		
2ST15A	9	1.5	60.0	0.017	5.10	36.0	25.0	76.0	134.0	142.0	136.0	84.0	178.0	122.0	12.0	114.0		
2ST15A	10	1.5	90.0	0.026	4.16	39.0	23.0	96.0	152.0	176.0	184.0	136.0	240.0	158.0	30.0	156.0		
2ST15A	11	1.5	120.0	0.034	3.61	43.0	22.0	1 30. 0	168.0	202.0	224.0	194.0	294.0	198.0	7 0. 0	188.0		
2ST15A	12	2.0	30.0	0.005	9.61	32.0	28.0	38.0	68.0	76.0	64.0	44.0	68.0	66.0	10.0	60.0		
2ST15A	13	2.0	60.0	0.010	6.80	35.0	26.0	80.0	142.0	152.0	140.0	104.0	158.0	122.0	4.0	126.0		
2ST15A	14	2.0	90.0	0.014	5.55	38.0	24.0	132.0	192.0	212.0	210.0	170.0	238.0	168.0	10.0	150.0		
2ST15A	15	2.0	120.0	0.019	4.81	44.0	23.0	180.0	220.0	244.0	260.0	220.0	296.0	202.0	108.0	190.0		

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	SSURE HEA	AD (mana)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	INAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mn)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3ST15A	1	0.8	30.0	0.030	3.85	32.0	28.0	14.0	34.0	24.0	18.0	32.0	42.0	44.0	6.0	40.0
3ST15A	2	0.8	60.0	0.060	2.72	34.0	27.0	20.0	34.0	60.0	32.0	66.0	78.0	66.0	4.0	58.0
3ST15A	3	0.8	90.0	0.090	2.22	36.0	26.0	22.0	48.0	48.0	50.0	82.0	126.0	92.0	4.0	122.0
3ST15A	4	1.0	30.0	0.019	4.81	32.0	28.0	20.0	36.0	46.0	34.0	40.0	44.0	48.0	4.0	52.0
3ST15A	5	1.0	60.0	0.038	3.40	34.0	27.0	28.0	60.0	66.0	62.0	84.0	116.0	86.0	6.0	76.0
3ST15A	6	1.0	90.0	0.058	2.78	35.0	26.0	36.0	72.0	84.0	80.0	112.0	158.0	112.0	10.0	102.0
3ST15A	7	1.0	120.0	0.077	2.40	38.0	25.0	54.0	86.0	92.0	106.0	144.0	202.0	138.0	24.0	150.0
3ST15A	8	1.5	30.0	0.009	7.21	33.0	27.0	36.0	68.0	82.0	78.0	50.0	94.0	74.0	6.0	70.0
3ST15A	9	1.5	60.0	0.017	5.10	35.0	25.0	58.0	110.0	128.0	138.0	96.0	190.0	126.0	12.0	132.0
3ST15A	10	1.5	90.0	0.026	4.16	39.0	24.0	84.0	140.0	162.0	182.0	164.0	264.0	170.0	16.0	156.0
3ST15A	11	1.5	120.0	0.034	3.61	43.0	23.0	112.0	160.0	176.0	206.0	204.0	328.0	202.0	86.0	204.0
3ST15A	12	2.0	30.0	0.005	9.61	32.0	28.0	38.0	66.0	70.0	70.0	44.0	72.0	54.0	6.0	54.0
3ST15A	13	2.0	60.0	0.010	6.80	36.0	26.0	66.0	122.0	140.0	140.0	102.0	158.0	120.0	6.0	108.0
3ST15A	14	2.0	90.0	0.014	5.55	40.0	24.0	100.0	178.0) 200.0	206.0	180.0	252.0	184.0	44.0	196.0
3ST15A	15	2.0	120.0	0.019	4.81	43.0	23.0	138.0	208.0	224.0	242.0	238.0	324.0	212.0	86.0	210.0

,

FILE	SEG#	T	н	H/Lo	epsi	MAX RU	MAX Rd			MAXINUM	DIFFEREN	ITIAL PRE	SSURE HE/	40 (mm)	ļ	
								INTERNAL	GAUGE	ELEVATION	(cas)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(ma)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4ST15A	i	0.8	30.0	0.030	3.85	32.0	28.0	12.0	22.0	22.0	20.0	36.0	40.0	50.0	4.0	48.0
4ST15A	2	0.8	60.0	0.060	2.72	35.0	27.0	16.0	32.0	30.0	62.0	60.0	66.0	78.0	8.0	76.0
4ST15A	3	0.8	90.0	0.090	2.22	37.0	26.0	28.0	44.0	42.0	42.0	82.0	100.0	106.0	8.0	136.0
4ST15A	4	1.0	30.0	0.019	4.81	32.0	28.0	14.0	36.0	34.0	36.0	38.0	44.0	58.0	4.0	54.0
4ST15A	5	1.0	60.0	0.038	3.40	34.0	26.0	24.0	52.0	56.0	62.0	88. 0	94.0	108.0	6.0	100.0
4ST15A	6	1.0	90.0	0.058	2.78	37.0	26.0	28.0	62.0	66.0	76.0	110.0	134.0	126.0	6.0	114.0
4ST15A	7	1.0	120.0	0.077	2.40	39.0	24.0	30.0	66.0	74.0	90.0	140.0	180.0	156.0	32.0	146.0
4ST15A	8	1.5	30.0	0.009	7.21	33.0	27.0	26.0	66.0	68.0	76.0	50.0	88.0	74.0	6.0	72.0
4ST15A	9	1.5	60.0	0.017	5.10	37.0	25.0	38.0	94.0	106.0	128.0	84.0	180.0	116.0	6.0	118.0
4ST15A	10	1.5	90.0	0.026	4.16	40.0	24.0	52.0	124.0	138.0	164.0	126.0	256.0	156.0	14.0	146.0
4ST15A	11	1.5	120.0	0.034	3.61	43.0	23.0	78.0	148.0	154.0	190.0	180.0	330.0	190.0	94.0	194.0
4ST15A	12	2.0	30.0	0.005	9.61	32.0	28.0	30.0	64.0	60.0	68.0	40.0	66.0	52.0	12.0	4 6.0
4ST15A	13	2.0	60.0	0.010	6.80	36.0	27.0	48.0	106.0	118.0	138.0	96.0	154.0	110.0	6.0	98.0
4ST15A	14	2.0	90.0	0.014	5.55	39.0	24.0	66.0	152.0	172.0	200.0	166.0	256.0	160.0	32.0	166.0
4ST15A	15	2.0	120.0	0.019	4.81	43.0	23.0	92.0	184.0	200.0	232.0	214.0	308.0	198.0	100.0	194.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE	AD (mm)		
								INTERNAL	GAUGE E	LEVATION	(caa)	EXTER	NAL GAUG	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(ca)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
5ST15A	1	0.8	30.0	0.030	3.85	32.0	28.0	16.0	16.0	14.0	16.0	36.0	40.0	42.0	4.0	38.0
5ST15A	2	0.8	60.0	0.060	2.72	34.0	27.0	12.0	20.0	20.0	26.0	58.0	74.0	70.0	6.0	66.0
5ST15A	3	0.8	90.0	0.090	2.22	35.0	26.0	26.0	44.0	24.0	34.0	80.0	114.0	92.0	12.0	110.0
5ST15A	4	1.0	30.0	0.019	4.81	32.0	28.0	12.0	34.0	26.0	34.0	40.0	42.0	48.0	4.0	48. 0
5ST15A	5	1.0	60.0	0.038	3.40	35.0	27.0	14.0	50.0	42.0	52.0	82.0	102.0	90.0	6.0	104.0
5ST15A	6	1.0	90.0	0.058	2.78	36.0	26.0	16.0	46.0	50.0	60.0	110.0	142.0	136.0	6.0	132.0
5ST15A	7	1.0	120.0	0.077	2.40	38.0	25.0	16.0	52.0	56.0	72.0	150.0	186.0	156.0	44.0	146.0
5ST15A	8	1.5	30.0	0.009	7.21	33.0	27.0	20.0	52.0	52.0	70.0	46. 0	82.0	66.0	8.0	64.0
5ST15A	9	1.5	60.0	0.017	5.10	35.0	26.0	26.0	76.0	82.0	114.0	90.0	164.0	118.0	4.0	108.0
5ST15A	10	1.5	90.0	0.026	4.16	39.0	24.0	34.0	100.0	108.0	144.0	132.0	268.0	160.0	10.0	168.0
5ST15A	11	1.5	120.0	0.034	3.61	42.0	23.0	40.0	120.0	130.0	160.0	300.0	328.0	258.0	70.0	216.0
5ST15A	12	2.0	30.0	0.005	9.61	32.0	28.0	24.0	56.0	58.0	70.0	46.0	66.0	48.0	4.0	54.0
5ST15A	13	2.0	60.0	0.010	6.80	35.0	27.0	34.0	94.0	98.0	130.0	100.0	156.0	110.0	6.0	102.0
5ST15A	14	2.0	90.0	0.014	5,55	39.0	24.0	44.0	130.0	142.0	178.0	166.0	238.0	158.0	12.0	156.0
5ST15A	15	2.0	120.0	0.019	4.81	41.0	23.0	56.0	154.0	172.0	206.0	204.0	298.0	192.0	56.0	184.0

FILE	SEG#	T	H	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	ssure hea	VD (nem.)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL - 5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1ST12B	1	0.8	30.0	0.030	2.88	32.0	28.0	24.0	44.0	48.0	54.0	66.0	68.0	72.0	8.0	84.0
1ST12B	2	0.8	60.0	0.060	2.04	34.0	27.0	16.0	46.0	44.0	48.0	58.0	70.0	80.0	8.0	76.0
1ST12B	3	0.8	90.0	0.090	1.67	35.0	26.0	24.0	50.0	52.0	54.0	84.0	74.0	78.0	8.0	76.0
1ST12B	4	1.0	30.0	0.019	3.61	32.0	28.0	24.0	44.0	52.0	34.0	56.0	48.0	66.0	6.0	68.0
1ST12B	5	1.0	60.0	0.038	2.55	35.0	27.0	52.0	74.0	84.0	80. 0	108.0	116.0	118.0	8.0	126.0
1ST128	6	1.0	90.0	0.058	2.08	37.0	26.0	66.0	90.0	100.0	110.0	134.0	154.0	130.0	18.0	122.0
1ST12B	. 7	1.0	120.0	0.077	1.80	39.0	25.0	64.0	100.0	120.0	130.0	156.0	196.0	134.0	30.0	134.0
1ST128	8	1.5	30.0	0.009	5.41	33.0	27.0	40.0	72.0	90.0	64.0	48.0	98.0	78.0	4.0	80.0
1ST128	9	1.5	60.0	0.017	3.82	36.0	25.0	94.0	120.0	146.0	128.0	102.0	206.0	128.0	8.0	130.0
1ST12B	10	1.5	90.0	0.026	3.12	39.0	24.0	116.0	144.0	180.0	198.0	154.0	284.0	174.0	36.0	158.0
1ST12B	11	1.5	120.0	0.034	2.70	43.0	23.0	128.0	184.0	208.0	252.0	356.0	348.0	216.0	98.0	188.0
1ST12B	12	2.0	30.0	0.005	7.21	32.0	28.0	38.0	54.0	72.0	58.0	46.0	76.0	72.0	4.0	68.0
1ST12B	13	2.0	60.0	0.0 10	5.10	36.0	25.0	88.0	114.0	142.0	132.0	108.0	180.0	130.0	6.0	142.0
1ST12B	14	2.0	90.0	0.014	4.16	40.0	24.0	142.0	158.0) 190.0	206.0	186.0	270.0	178.0	76.0	166.0
1ST12B	15	2,0	120.0	0.019	3.61	45.0	22.0	176.0	178.0	232.0	268.0	246.0	352.0	230.0	110.0	206.0

FILE	SEG#	т	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HEA	AD (nem)		
								INTERNAL	GAUGE	ELEVATION	l (cm)	EXTER	RNAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(ca)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2ST12B	1	0.8	30.0	0.030	2.88	32.0	28.0	4.0	16.0	22.0	20.0	26.0	38.0	52.0	4.0	54.0
2ST128	2	0.8	60.0	0.060	2.04	34.0	27.0	10.0	26.0	32.0	38.0	56.0	76.0	88.0	6.0	62.0
2ST128	3	0.8	90.0	0.090	1.67	36.0	26.0	8.0	32.0	42.0	52.0	70.0	90.0	118.0	32.0	98.0
2ST12B	6	1.0	30.0	0.019	3.61	32.0	28.0	6.0	24.0	34.0	32.0	40.0	44.0	54.0	4.0	44.0
2ST128	5	1.0	60.0	0.038	2.55	35.0	27.0	14.0	44.0	58.0	62.0	86.0	102.0	104.0	8.0	104.0
2ST128	6	1.0	90.0	0.058	2.08	36.0	25.0	16.0	54.0	72.0	78.0	116.0	138.0	126.0	42.0	124.0
2ST128	7	1.0	120.0	0.077	1.80	38.0	25.0	26.0	60.0	80.0	102.0	138.0	188.0	146.0	22.0	152.0
2ST128	, 8	1.5	30.0	0.009	5.41	33.0	27.0	14.0	50.0	66.0	72.0	52.0	92.0	82.0	4.0	74.0
251128	q	1.5	60.0	0.017	3.82	36.0	26.0	26.0	80.0	108.0	122.0	94.0	178.0	124.0	14.0	114.0
25T12B	10	1.5	90.0	0.026	3.12	38.0	24.0	58.0	104.0	128.0	168.0	140.0	254.0	212.0	18.0	186.0
2ST128	11	1.5	120.0	0.034	2.70	43.0	23.0	108.0	118.0	136.0	192.0	180.0	306.0	208.0	90.0	198.0
25T12R	12	2 0	30.0	0.005	7.21	32.0	28.0	8.0	42.0	56.0	56.0	38.0	64.0	58.0	6.0	48.0
20112B	13	2.0	60.0	0.010	5.10	36.0	25.0	18.0	88.0	110.0	128.0	94.0	152.0	110.0	12.0	106.0
291120 291128	16	2.0	90.0	0.014	4.16	40.0	23.0	68.0	138.0	156.0	192.0	166.0	254.0	168.0	48.0	166.0
2ST12B	15	2.0	120.0	0.019	3.61	43.0	22.0	102.0	154.0	170.0	218.0	204.0	298.0	188.0	80.0	186.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUN	DIFFEREN	TIAL PRE	SSURE HE	VD (ma)		
								INTERNAL	GAUGE I	ELEVATION	(cas)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(📭)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3ST12B	1	0.8	30.0	0.030	2.88	32.0	28.0	6.0	16.0	20.0	18.0	34.0	42.0	42.0	4.0	46.0
3ST12B	2	0.8	60.0	0.060	2.04	34.0	27.0	6.0	38.0	28.0	26.0	50. 0	58.0	58.0	6.0	78.0
3ST128	3	0.8	90.0	0.090	1.67	35.0	26.0	6.0	24.0	36.0	38.0	72.0	98.0	76.0	22.0	140.0
3ST128	4	1.0	30.0	0.019	3.61	32.0	28.0	8.0	22.0	24.0	28.0	34.0	36.0	42.0	6.0	46.0
3ST128	5	1.0	60.0	0.038	2.55	34.0	26.0	8.0	34.0	50.0	56.0	82.0	92.0	90.0	6.0	78.0
3ST12B	6	1.0	90.0	0.058	2.08	36.0	25.0	12.0	40.0	54.0	66.0	102.0	120.0	110.0	8.0	104.0
3ST12B	7	1.0	120.0	0.077	1.80	39.0	24.0	14.0	50.0	64.0	88.0	144.0	166.0	128.0	26.0	288.0
3ST128	8	1.5	30.0	0,009	5.41	33.0	27.0	10.0	44.0	54.0	68.0	46.0	76.0	66.0	4.0	72.0
3ST128	9	1.5	60.0	0.017	3.82	36.0	25.0	26.0	66.0	86.0	116.0	88.0	170.0	114.0	6.0	114.0
3ST12B	10	1.5	90.0	0.026	3.12	39.0	24.0	36.0	90.0	110.0	148.0	136.0	266.0	148.0	46.0	150.0
3ST128	11	1.5	120.0	0.034	2.70	42.0	22.0	64.0	108.0	124.0	176.0	182.0	314.0	198.0	126.0	200.0
3ST128	12	2.0	30.0	0.005	7.21	32.0	28.0	14.0	40.0	46.0	60.0	44.0	60.0	56.0	6.0	54.0
3ST128	13	2.0	60.0	0.010	5.10	35.0	26.0	26.0	72.0	92.0	122.0	100.0	146.0	108.0	4.0	110.0
3ST128	14	2.0	90.0	0.014	4.16	39.0	23.0	56.0	114.0	138.0	176.0	178.0	244.0	166.0	26.0	160.0
3ST12B	15	2.0	120.0	0.019	3.61	42.0	22.0	88.0	136.0	154.0	200.0	220.0	300.0	178.0	68.0	208.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUH	DIFFEREN	TIAL PRE	SSURE HEA	D (mm)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	ION (cm)	
NAME		(s)	(m)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4ST12B	1	0.8	30.0	0.030	2.88	32.0	28.0	6.0	20.0	16.0	18.0	32.0	38.0	48.0	6.0	48. 0
4ST128	2	0.8	60.0	0.060	2.04	34.0	27.0	6.0	24.0	20.0	24.0	58.0	76.0	84.0	4.0	80.0
4ST128	3	0.8	90.0	0.090	1.67	36.0	26.0	6.0	20.0	24.0	34.0	74.0	98.0	108.0	22.0	% .0
4ST12B	4	1.0	30.0	0.019	3.61	32.0	28.0	6.0	18.0	22.0	28.0	38.0	42.0	50.0	6.0	48. 0
4ST128	5	1.0	60.0	0.038	2.55	35.0	27.0	12.0	34.0	34.0	50.0	86.0	106.0	94.0	6.0	84.0
4ST128	6	1.0	90.0	0.058	2.08	37.0	25.0	10.0	32.0	38.0	60.0	110.0	136.0	124.0	16.0	108.0
4ST128	7	1.0	120.0	0.077	1.80	39.0	24.0	12.0	34.0	46.0	72.0	144.0	178.0	152.0	38.0	156.0
4ST12B	8	1.5	30.0	0.009	5.41	33.0	27.0	10.0	36.0	48.0	60.0	48.0	84.0	70.0	4.0	66.0
4ST128	9	1.5	60.0	0.017	3.82	36.0	25.0	20.0	58.0	66.0	104.0	92.0	154.0	116.0	8.0	114.0
4ST128	10	1.5	90.0	0.026	3.12	39.0	24.0	26.0	68.0	92.0	130.0	158.0	216.0	206.0	34.0	164.0
4ST12B	11	1.5	120.0	0.034	2.70	43.0	22.0	32.0	84.0	106.0	148.0	212.0	250.0	190.0	98.0	182.0
4ST128	12	2.0	30.0	0.005	7.21	32.0	28.0	8.0	34.0	44.0	56.0	44.0	64.0	54.0	4.0	52.0
4ST12B	13	2.0	60.0	0.010	5.10	35.0	25.0	18.0	60.0	74.0	112.0	104.0	152.0	110.0	6.0	106.0
4ST12B	14	2.0	90.0	0.014	4.16	38.0	24.0	32.0	88.0	112.0	160.0	182.0	242.0	154.0	50.0	146.0
4ST128	15	2.0	120.0	0.019	3.61	42.0	23.0	44.0	106.0	134.0	190.0	232.0	306.0	186.0	92.0	172.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	SSURE HE	4,D (1008)		
								INTERNAL	GAUGE	ELEVATION	(cm.)	EXTER	NAL GAUG	E ELEVAT	ION (cma)	
NAME		(s)	(mm)			(CB)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
5ST12B	1	0.8	30.0	0.030	2.88	32.0	28.0	6.0	16.0	12.0	12.0	28.0	38.0	40.0	4.0	48.0
5ST12B	2	0.8	60.0	0.060	2.04	35.0	27.0	6.0	12.0	16.0	22.0	54.0	76.0	88.0	6.0	106.0
5ST12B	3	0.8	90.0	0.090	1.67	36.0	26.0	8.0	24.0	18.0	26.0	72.0	100.0	104.0	22.0	154.0
5ST12B	4	1.0	30.0	0.019	3.61	32.0	28.0	8.0	16.0	18.0	24.0	42.0	40.0	56.0	6.0	48.0
5ST12B	5	1.0	60.0	0.038	2.55	35.0	27.0	10.0	20.0	26.0	42.0	88.0	100.0	100.0	4.0	102.0
5ST12B	. 6	1.0	90.0	0.058	0.05	37.0	26.0	10.0	24.0	32.0	48.0	110.0	132.0	126.0	16.0	152.0
5ST12B	7	1.0	120.0	0.077	1.80	39.0	25.0	20.0	26.0	36.0	56.0	140.0	180.0	174.0	30.0	214.0
5ST12B	8	1.5	30.0	0.009	5.41	33.0	28.0	12.0	32.0	38.0	52.0	50.0	78.0	72.0	6.0	66.0
5ST128	9	1.5	60.0	0.017	3.82	36.0	26.0	18.0	44.0	54.0	88.0	92.0	152.0	118.0	6.0	%.0
5ST12B	10	1.5	90.0	0.026	3.12	38.0	25.0	24.0	58.0	72.0	110.0	144.0	240.0	160.0	46.0	200.0
5ST128	11	1.5	120.0	0.034	2.70	43.0	24.0	30.0	66.0	86.0	130.0	176.0	314.0	188.0	64.0	208.0
5ST12B	12	2.0	30.0	0.005	7.21	32.0	28.0	18.0	44.0	40.0	52.0	40.0	62.0	52.0	6.0	50.0
5ST128	13	2.0	60.0	0.010	5.10	36.0	26.0	24.0	54.0	66.0	96.0	86.0	146.0	106.0	6.0	104.0
5ST128	14	2.0	90. 0	0.014	4.16	39.0	25.0	30.0	74.0	92.0	140.0	144.0	230.0	152.0	36.0	150.0
5ST12B	15	2.0	120.0	0.019	3.61	41.0	25.0	38.0	92.0	112.0	162.0	188.0	282.0	188.0	66.0	188.0

FILE	SEG#	T	н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	ESSURE HEA	AD (man)		
								INTERNAL	GAUGE	ELEVATION	i (cm)	EXTER	RNAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1ST12C	1	0.8	30.0	0.030	2.88	32.0	28.0	28.0	30.0	32.0	28.0	38.0	36.0	50.0	4.0	48.0
1ST12C	2	0.8	60.0	0.060	2.04	34.0	26.0	34.0	40.0	42.0	52.0	62.0	72.0	84.0	6.0	72.0
1ST12C	3	0.8	90.0	0.090	1.67	36.0	25.0	42.0	48.0	50.0	62.0	78.0	96.0	86.0	8.0	86.0
1ST12C	4	1.0	30.0	0.019	3.61	32.0	28.0	30.0	36.0	38.0	28.0	36.0	38.0	52.0	8.0	42.0
1ST12C	5	1.0	60.0	0.038	2.55	34.0	27.0	52.0	62.0	76.0	62.0	80.0	84.0	98.0	6.0	82.0
1ST12C	6	1.0	90.0	0.058	2.08	37.0	25.0	66.0	82.0	98.0	88.0	114.0	138.0	134.0	10.0	130.0
1ST12C	7	1.0	120.0	0.077	1.80	39.0	25.0	70.0	90.0	120.0	110.0	138.0	170.0	164.0	74.0	148.0
1ST12C	8	1.5	30.0	0.009	5.41	33.0	27.0	54.0	64.0	76.0	50.0	46.0	82.0	74.0	4.0	54.0
1ST12C	9	1.5	60.0	0.017	3.82	36.0	25.0	96.0	106.0	124.0	96.0	88.0	168.0	124.0	6.0	118.0
1ST12C	10	1.5	90.0	0.026	3.12	39.0	24.0	124.0	138.0	166.0	144.0	132.0	244.0	160.0	22.0	138.0
1ST12C	11	1.5	120.0	0.034	2.70	43.0	23.0	138.0	172.0	216.0	190.0	158.0	310.0	198.0	104.0	188.0
1ST12C	12	2.0	30.0	0.005	7.21	32.0	28.0	52.0	64.0	74.0	52.0	46.0	82.0	74.0	6.0	42.0
1ST12C	13	2.0	60.0	0.010	5.10	35.0	26.0	102.0	120.0	136.0	108.0	96.0	160.0	124.0	4.0	108.0
1ST120	14	2.0	90.0	0.014	4.16	39.0	23.0	158.0	168.0	184.0	176.0	162.0	246.0	192.0	42.0	172.0
1ST12C	15	2.0	120.0	0.019	3.61	42.0	22.0	182.0	188.0	214.0	220.0	214.0	310.0	218.0	102.0	170.0

,

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE/	AD (mma)		
								INTERNAL	GAUGE	ELEVATION	(caa)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(ma)			(cs)	(cs)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
251120	1	ΠŔ	30 N	0.030	2.88	32.0	28.0	16.0	16.0	20.0	20.0	34,0	44.0	46.0	4.0	44.0
2ST12C	2	0.8	60.0	0.060	2.04	33.0	27.0	26.0	38.0	32.0	38.0	58.0	82.0	78.0	4.0	84.0
2ST12C	3	0.8	90.0	0.090	1.67	36.0	26.0	22.0	40.0	40.0	52.0	80.0	114.0	100.0	30.0	148.0
2ST12C	4	1.0	30.0	0.019	3.61	32.0	28.0	24.0	24.0	32.0	24.0	40.0	40.0	52.0	4.0	46.0
2ST12C	5	1.0	60.0	0.038	2.55	34.0	26.0	36.0	42.0	58.0	52.0	88.0	94.0	86.0	4.0	98.0
2ST12C	6	1.0	90.0	0.058	2.08	36.0	26.0	56.0	60.0	72.0	72.0	114.0	132.0	138.0	24.0	138.0
2ST12C	7	1.0	120.0	0.077	1.80	37.0	25.0	62.0	74.0	80.0	94.0	146.0	170.0	164.0	42.0	160.0
2ST12C	8	1.5	30.0	0.009	5.41	33.0	27.0	40.0	44.0	68.0	66.0	52.0	88.0	78.0	6.0	72.0
251120	9	1.5	60.0	0.017	3.82	36.0	26.0	66.0	74.0	104.0	112.0	90.0	156.0	112.0	4.0	116.0
2ST12C	10	1.5	90.0	0.026	3.12	38.0	24.0	104.0	110.0	134.0	160.0	130.0	248.0	158.0	48. 0	176.0
2ST12C	11	1.5	120.0	0.034	2.70	41.0	23.0	134.0	144.0	144.0	190.0	176.0	276.0	226.0	80.0	258.0
2ST12C	12	2.0	30.0	0.005	7.21	32.0	28.0	44.0	42.0	70.0	66.0	48.0	78.0	70.0	6.0	62.0
2\$T120	13	2.0	60.0	0.010	5.10	35.0	26.0	76.0	68.0	114.0	116.0	88.0	138.0	116.0	8.0	108.0
2ST12C	14	2.0	90.0	0.014	6.16	38.0	23.0	126.0	116.0	164.0	182.0	160.0	226.0	170.0	20.0	164.0
2ST12C	15	2.0	120.0	0.019	3.61	40.0	22.0	160.0	144.0	188.0	220.0	206.0	270.0	205.0	132.0	198.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			HAXIHUH	DIFFEREN	TIAL PRE	SSURE HE	(ma) ()		
								INTERNAL	GAUGE	ELEVATION	(cma)	EXTER	NAL GAUGE	E ELEVAT	ION (ca)	
NAME		(s)	(ma)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
351120	1	0.8	30.0	0.030	2.88	32 0	28.0	32 0	8 0	14 0	16 0	30.0	62 D	46 N	4 ۱	56.0
3ST12C	2	0.8	60.0	0.060	2.04	34.0	27.0	30.0	16.0	26.0	24.0	62.0	86.0	126.0	4.0	146.0
3ST12C	3	0.8	90.0	0.090	1.67	36.0	26.0	28.0	18.0	30.0	32.0	74.0	118.0	108.0	28.0	126.0
3ST12C	4	1.0	30.0	0.019	3.61	32.0	28.0	26.0	12.0	24.0	26.0	46.0	44.0	46.0	4.0	56.0
3ST12C	5	1.0	60.0	0.038	2.55	34.0	27.0	28.0	18.0	38.0	44.0	84.0	102.0	108.0	6.0	88.0
3ST12C	6	1.0	90.0	0.058	2.08	36.0	26.0	36.0	28.0	50.0	60.0	112.0	148.0	162.0	12.0	134.0
3ST12C	7	1.0	120.0	0.077	1.80	40.0	25.0	42.0	42.0	56.0	74.0	142.0	180.0	126.0	34.0	166.0
3ST12C	8	1.5	30.0	0.009	5.41	33.0	27.0	40.0	16.0	46.0	62.0	50.0	84.0	76.0	4.0	78.0
3ST12C	9	1.5	60.0	0.017	3.82	36.0	26.0	58.0	34.0	74.0	100.0	98.0	176.0	142.0	6.0	134.0
3ST12C	10	1.5	90.0	0.026	3.12	39.0	25.0	76.0	62.0	98.0	134.0	140.0	270.0	146.0	20.0	152.0
3ST12C	11	1.5	120.0	0.034	2.70	42.0	23.0	100.0	100.0	132.0	162.0	188.0	332.0	190.0	64.0	180.0
3ST12C	12	2.0	30.0	0.005	7.21	32.0	28.0	40.0	18.0	40.0	56.0	38.0	62.0	50.0	4.0	54.0
3ST12C	13	2.0	60.0	0.010	5.10	35.0	27.0	64.0	30.0	76.0	110.0	88.0	150.0	110.0	4.0	120.0
3ST12C	14	2.0	90.0	0.014	4.16	40.0	24.0	100.0	64.0	124.0	162.0	160.0	244.0	150.0	30.0	156.0
3ST12C	15	2.0	120.0	0.019	3.61	42.0	23.0	122.0	96.0	148.0	192.0	212.0	308.0	190.0	76.0	192.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	1AX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE	AD (mm)		
								INTERNAL	GAUGE I	ELEVATION	(cm)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL - 20	EL -20	EL -10	EL O	EL +10	EL O
4ST12C	1	0.8	30.0	0.030	2.88	32.0	28.0	24.0	8.0	12.0	12.0	36.0	0.0	54.0	4.0	44.0
4ST12C	2	0.8	60.0	0.060	2.04	34.0	26.0	14.0	10.0	14.0	20.0	58.0	0.0	88.0	6.0	60.0
4ST12C	3	0.8	90.0	0.090	1.67	36.0	25.0	30.0	14.0	20.0	28.0	78.0	0.0	100.0	44.0	88.0
4ST12C	4	1.0	30.0	0.019	3.61	32.0	28.0	24.0	6.0	22.0	28.0	44.0	0.0	58.0	6.0	46.0
4ST12C	5	1.0	60.0	0.038	2.55	35.0	27.0	24.0	12.0	30.0	46.0	82.0	0.0	100.0	6.0	96.0
4ST12C	6	1.0	90.0	0.058	2.08	36.0	26.0	30.0	20.0	36.0	54.0	114.0	0.0	130.0	42.0	104.0
4ST12C	7	1.0	120.0	0.077	1.80	38.0	25.0	30.0	32.0	44.0	70.0	144.0	0.0	156.0	56.0	128.0
4ST12C	8	1.5	30.0	0.009	5.41	33.0	27.0	34.0	14.0	38.0	60.0	50.0	0.0	78.0	4.0	46.0
4ST12C	9	1.5	60.0	0.017	3.82	36.0	26.0	50.0	24.0	58.0	98.0	98.0	0.0	124.0	6.0	104.0
45T12C	10	1.5	90.0	0.026	3.12	39.0	25.0	64.0	50.0	84.0	122.0	138.0	0.0	170.0	18.0	140.0
4ST12C	11	1.5	120.0	0.034	2.70	42.0	24.0	78.0	80.0	100.0	142.0	172.0	0.0	234.0	76.0	186.0
4ST12C	12	2.0	30.0	0.005	7.21	32.0	28.0	38.0	16.0	36.0	54.0	40.0	0.0	56.0	4.0	38.0
4ST120	13	2.0	60.0	0.010	5.10	34.0	26.0	58.0	20.0	64.0	102.0	86.0	0.0	110.0	4.0	84.0
4ST120	14	2.0	90.0	0.014	4.16	37.0	25.0	86.0	48.0	100.0	148.0	152.0	0.0	162.0	46.0	130.0
4ST120	15	2.0	120.0	0.019	3.61	41.0	23.0	104.0	90.0	128.0	174.0	204.0	0.0	194.0	96.0	150.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HEA	D (numa)		
								INTERNAL	GAUGE	ELEVATION	(cna)	EXTER	NAL GAUGE	ELEVAT	ION (cm)	
NAME		(s)	(1000)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL20	EL -10	EL O	EL +10	EL O
5ST12C	1	0.8	30.0	0.030	2.88	32.0	29.0	22.0	6.0	8.0	12.0	32.0	42.0	58.0	4.0	0.0
5ST12C	2	0.8	60.0	0.060	2.04	34.0	27.0	24.0	8.0	10.0	16.0	48.0	84.0	74.0	6.0	0.0
5ST12C	- 3	0.8	90.0	0.090	1.67	36.0	26.0	14.0	8.0	16.0	18.0	68.0	100.0	100.0	22.0	0.0
5ST12C	6	1.0	30.0	0.019	3.61	32.0	28.0	18.0	6.0	16.0	22.0	42.0	46.0	58.0	4.0	0.0
55T120	- 5	1 0	60.0	0.038	2.55	34.0	27.0	22.0	10.0	22.0	36.0	82.0	94.0	100.0	22.0	0.0
567120	6	1.0	90.0	0.058	2.08	37.0	26.0	28.0	14.0	28.0	44.0	112.0	132.0	114.0	12.0	0.0
501120	7	1.0	120.0	0.000	1 80	39.0	25.0	28.0	22.0	30.0	54.0	138.0	170.0	178.0	28.0	0.0
501120	, 0	1.0	30.0	0.0//	5 61	33.0	27.0	34.0	16.0	34.0	52.0	52.0	82.0	82.0	4.0	0.0
501120	0	1.5	40.0	0.007	3 82	36.0	26.0	44.0	18.0	46.0	80.0	94.0	162.0	136.0	4.0	0.0
50112U	7 10	1.0	00.0	0.01/	3.02	30.0 38 D	25.0	52.0	34.0	60.0	102.0	140.0	234.0	182.0	42.0	0.0
55112U	10	1.0	YU.U	0.020	0.1Z	42.0	20.0	62.0	56.0	82.0	116.0	194.0	228.0	200.0	88.0	0.0
55112C	11	1.5	120.0	0.034	2.70	42.0	24.0	46.0	18 0	32.0	46 D	40.0	64.0	66.0	4.0	0.0
5ST12C	12	2.0	30.0	0.005	7.21	32.0	20.0	40.0	10.0		40.0	40.0	142.0	114 0	4 D	0.0
5ST12C	13	2.0	60.0	0.010	5.10	34.0	26.U	50.0	16.0	56.0	92.0	54.0	142.0	114.0	4.0	0.0
5ST12C	14	2.0	90.0	0.014	4.16	37.0	24.0	68.0	34.0	80.0	132.0	150.0	224.0	166.0	44.0	0.0
5ST12C	15	2.0	120.0	0.019	3.61	42.0	23.0	84.0	56.0	98.0	152.0	200.0	280.0	200.0	86.0	0.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUN	DIFFEREN	ITIAL PRE	SSURE HE	4D (mm))	
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUG	E ELEVAT	FION (cm)	
NAME		(s)	(📭)			(cm)	(C112)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL 0	EL +10	EL O
1SP13A	1	0.8	30.0	0.030	1.92	32.0	1.0	4.0	4.0	32.0	24.0	28.0	44.0	36.0	6.0	46.0
1SP13A	2	0.8	60.0	0.060	1.36	34.0	1.0	6.0	12.0	58.0	46.0	54.0	94.0	116.0	6.0	96.0
1SP13A	3	0.8	90.0	0.090	1.11	35.0	1.0	4.0	32.0	62.0	56.0	76.0	112.0	102.0	8.0	102.0
1SP13A	4	1.0	30.0	0.019	2.40	32.0	1.0	8.0	6.0	42.0	22.0	30.0	46.0	42.0	8.0	56.0
1SP13A	5	1.0	60.0	0.038	1.70	34.0	1.0	6.0	30.0	72.0	54.0	78.0	112.0	104.0	6.0	110.0
1SP13A	6	1.0	90.0	0.058	1.39	36.0	1.0	6.0	36.0	78.0	74.0	100.0	156.0	132.0	10.0	154.0
1SP13A	7	1.0	120.0	0.077	1.20	38. 0	1.0	8.0	48.0	86.0	106.0	140.0	200.0	124.0	70.0	136.0
1SP13A	8	1.5	30.0	0.009	3.61	33.0	1.0	6.0	14.0	70.0	40. 0	68.0	60.0	64.0	6.0	84.0
1SP13A	9	1.5	60.0	0. 017	2.55	35.0	1.0	6.0	50.0	100.0	78.0	128.0	138.0	116.0	6.0	132.0
1SP13A	10	1.5	90.0	0.026	2.08	39.0	1.0	6.0	78.0	122.0	116.0	176.0	204.0	150.0	16.0	178.0
1SP13A	11	1.5	120.0	0.034	1.80	41.0	1.0	6.0	92.0	138.0	150.0	226.0	262.0	194.0	80.0	206.0
1SP13A	12	2.0	30.0	0.005	4.81	33.0	1.0	6.0	10.0	66.0	34.0	34.0	54.0	60.0	6.0	70.0
1SP13A	13	2.0	60.0	0.010	3.40	35.0	1.0	6.0	46.0	112.0	86.0	74.0	132.0	96.0	6.0	108.0
1SP13A	14	2.0	90.0	0.014	2.78	39.0	1.0	6.0	110.0	146.0	132.0	134.0	232.0	138.0	20.0	146.0
1SP13A	15	2.0	120.0	0.019	2.40	41.0	1.0	6.0	112.0	158.0	158.0	162.0	280.0	160.0	82.0	168.0
1SP13A	16	1.0	180.0	0.115	0.98	40.0	1.0	6.0	90.0	106.0	122.0	194.0	228.0	210.0	170.0	198.0
1SP13A	17	1.5	200.0	0.057	1.40	48.0	1.0	80.0	94.0	170.0	210.0	290.0	388.0	306.0	120.0	314.0
1SP13A	18	2.0	200.0	0.032	1.86	52.0	1.0	118.0	128.0	204.0	246.0	292.0	394.0	226.0	152.0	232.0

FILE	SEG	T	Н	H/Lo	epsi	MAX Ru M	AX Rd		I	NAXIMUH D	IFFERENT	IAL PRES	SURE HEAD) (m)		
								INTERNAL	GAUGE	ELEVATION	(cma)	EXTER	INAL GAUGI	E ELEVAT	ION (cm)	
NAME		(s)	(📭)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2SP13/	1	0.8	30.0	0.030	1.92	32.0	1.0	6.0	6.0	26.0	16.0	30.0	50.0	32.0	4.0	28.0
25P13/	2	0.8	60.0	0.060	1.36	33.0	1.0	6.0	6.0	48.0	44.0	50.0	88.0	86.0	4.0	92.0
2SP13/	A 3	0.8	90.0	0.090	1.11	35.0	1.0	6.0	32.0	58.0	56.0	66.0	114.0	114.0	18.0	106.0
25P13/	4	1.0	30.0	0.019	0.38	32.0	1.0	6.0	6.0	38.0	24.0	32.0	44.0	44.0	4.0	38.0
2SP13/	45	1.0	60.0	0.038	1.70	34.0	1.0	8.0	14.0	68.0	58.0	82.0	112.0	94.0	22.0	98.0
2SP134	6	1.0	90.0	0.058	1.39	35.0	1.0	6.0	36.0	86.0	78.0	106.0	146.0	156.0	8.0	160.0
2SP13/	7	1.0	120.0	0.077	1.20	37.0	1.0	6.0	70.0	82.0	98.0	140.0	170.0	136.0	54.0	148.0
25P134	8	1.5	30.0	0.009	3.61	32.0	1.0	6.0	6.0	64.0	64.0	62.0	56.0	66.0	6.0	54.0
2SP134	9	1.5	60.0	0.017	2.55	35.0	1.0	6.0	58.0	108.0	114.0	124.0	128.0	142.0	8.0	124.0
2SP134	10	1.5	90.0	0.026	2.08	38.0	1.0	6.0	86.0	128.0	154.0	172.0	184.0	164.0	12.0	154.0
2SP134	11	1.5	120.0	0.034	1.80	41.0	1.0	8.0	96.0	144.0	184.0	212.0	248.0	188.0	68.0	172.0
2SP134	12	2.0	30.0	0.005	4.81	35.0	1.0	6.0	6.0	64.0	64.0	36.0	52.0	56.0	6.0	56.0
2SP134	13	2.0	60.0	0.010	3.40	37.0	1.0	6.0	22.0	120.0	126.0	74.0	114.0	100.0	6.0	86.0
2SP13A	14	2.0	90.0	0.014	2.78	39.0	1.0	6.0	76.0	156.0	182.0	126.0	204.0	138.0	10.0	126.0
2SP13A	15	2.0	120.0	0.019	2.40	41.0	1.0	6.0	104.0	172.0	214.0	160.0	250.0	180.0	66.0	166.0
2SP13A	16	1.0	180.0	0.115	0.98	39.0	1.0	8.0	54.0	76.0	140.0	190.0	228.0	158.0	28.0	184.0
25P13A	17	1.5	200.0	0.057	1.40	50.0	1.0	156.0	138.0	160.0	240.0	298.0	322.0	308.0	226.0	308.0
2SP13A	18	2.0	200.0	0.032	1.86	49.0	1.0	184.0	174.0	218.0	294.0	284.0	364.0	370.0	190.0	270.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	ESSURE HE	AD (nna)		
								INTERNAL	GAUGE	ELEVATION	l (cm)	EXTER	RNAL GAUG	E ELEVAI	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3SP134	1	0.8	30.0	0.030	1.92	32.0	1.0	8.0	6.0	22.0	22.0	30.0	56.0	48.0	6.0	44.0
3SP134	2	0.8	60.0	0.060	1.36	33.0	1.0	4.0	4.0	28.0	32.0	52.0	96.0	76.0	6.0	70.0
3SP134	3	0.8	90.0	0.090	1.11	35.0	1.0	6.0	6.0	28.0	30.0	56.0	98.0	64.0	12.0	62.0
3SP134	4	1.0	30.0	0.019	2.40	32.0	1.0	4.0	6.0	26.0	32.0	40.0	44.0	54.0	6.0	48.0
3SP13/	5	1.0	60.0	0.038	1.70	34.0	1.0	6.0	8.0	48.0	54.0	88.0	104.0	88.0	6.0	90.0
3SP13/	6	1.0	90.0	0.058	1.39	35.0	1.0	4.0	20.0	58.0	64.0	112.0	140.0	112.0	12.0	142.0
3SP13/	A 7	1.0	120.0	0.077	1.20	36.0	1.0	6.0	26.0	70.0	74.0	150.0	180.0	140.0	10.0	152.0
3SP13/	8	1.5	30.0	0.009	3.61	32.0	1.0	8.0	8.0	68. 0	64.0	58.0	66.0	68.0	6.0	88.0
3SP13/	4 9	1.5	60.0	0.017	2.55	35.0	1.0	8.0	36.0	94.0	106.0	120.0	140.0	110.0	8.0	118.0
3SP13/	A 10	1.5	90.0	0.026	2.08	37.0	1.0	6.0	38.0	114.0	132.0	174.0	214.0	142.0	6.0	134.0
3SP13/	A 11	1.5	120.0	0.034	1.80	39.0	1.0	6.0	50.0	132.0	224.0	224.0	260.0	194.0	80.0	210.0
3SP13/	A 12	2.0	30.0	0.005	4.81	32.0	1.0	6.0	8.0	44.0	60.0	58.0	66.0	68.0	6.0	68.0
35P13/	A 13	2.0	60.0	0.010	3.40	34.0	1.0	8.0	14.0	88.0	120.0	76.0	142.0	98.0	6.0	96.0
3SP13	A 14	2.0	90. 0	0.014	2.78	37.0	1.0	8.0	36.0	120.0	140.0	120.0	200.0	118.0	8.0	120.0
3SP13	A 15	2.0	120.0	0.019	2.40	40.0	1.0	6.0	64.0	158.0	180.0	166.0	270.0	158.0	56.0	158.0
3SP13	A 16	1.0	180.0	0.115	0.98	30.0	1.0	6.0	58.0	72.0	92.0	200.0	232.0	194.0	68.0	190.0
3SP13	A 17	1.5	200.0	0.057	1.40	45.0	1.0	16.0	114.0	138.0	184.0	302.0	344.0	362.0	122.0	330.0
3SP13	A 18	2.0	200.0	0.032	1.86	48.0	1.0	10.0	148.0	194.0	242.0	328.0	360.0	214.0	128.0	226.0

FILE	SEG#	T	H	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUN	DIFFEREN	ITIAL PRE	SSURE HE/	AD (mm)		
								INTERNAL	GAUGE 1	ELEVATION	(caa)	EXTER	NAL GAUGE	E ELEVAT	[ON (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4SP13A	1	0.8	30.0	0.030	1.92	31.0	1.0	6.0	6.0	10.0	16.0	20.0	30.0	52.0	6.0	52.0
4SP13A	2	0.8	60.0	0.060	1.36	33.0	1.0	6.0	6.0	16.0	34.0	52.0	92.0	88.0	6.0	94.0
4SP13A	3	0.8	90.0	0.090	1.11	34.0	1.0	10.0	4.0	18.0	34.0	64.0	116.0	112.0	20.0	108.0
45P13A	4	1.0	30.0	0.019	2.40	32.0	1.0	6.0	4.0	18.0	30.0	36.0	44.0	66.0	4.0	66.0
4SP13A	5	1.0	60.0	0.038	1.70	34.0	1.0	4.0	6.0	30.0	52.0	74.0	100.0	110.0	6.0	106.0
45P13A	6	1.0	90.0	0.058	1.39	35.0	1.0	8.0	8.0	40.0	62.0	98.0	126.0	126.0	8.0	124.0
4SP134	7	1.0	120.0	0.077	1.20	37.0	1.0	6.0	42.0	46.0	70.0	134.0	174.0	148.0	68.0	158.0
69P13A	, 8	1 5	30.0	0.009	3.61	32.0	1.0	6.0	6.0	40.0	60.0	60.0	60.0	84.0	4.0	78.0
401 201	å	1 5	60.0	0.017	2.55	35.0	1.0	4.0	10.0	56.0	92.0	120.0	132.0	128.0	8.0	128.0
404 10H	10	1.5	90.0	0.01/	2.08	37.0	1.0	6.0	42.0	82.0	114.0	176.0	190.0	166.0	16.0	156.0
407 10H	11	1.5	120.0	0.020	1 80	39.0	1.0	4.0	40.0	110.0	132.0	212.0	250.0	198.0	76.0	196.0
401104	12	2.0	30.0	0.004	4 81	32.0	1.0	8.0	6.0	42.0	56.0	34.0	60.0	70.0	6.0	70.0
401104	17	2.0	40.0	0.000	3.60	34.0	1.0	4.0	10.0	68.0	106.0	74.0	134.0	110.0	6.0	106.0
4-01-1-04	10	2.0	00.0	0.016	2 78	37.0	1.0	6.0	40.0	102.0	142.0	130.0	230.0	150.0	26.0	140.0
400134	14	2.0	100.0	0.014	2.70	30 0	1 0	6.0	50.0	128.0	164.0	180.0	266.0	176.0	56.0	166.0
407108	15	2.0	120.0	0.017	2.40	37.0	1 0	6.0	32 0	66.0	76 በ	190.0	210.0	228.0	62.0	212.0
45P13A	16	1.0	180.0	0.115	0.70	/7.0	1.0	6.0	112 0	156.0	170.0	312 0	352 0	400 0	174.0	356.0
4SP13A	17	1.5	200.0	0.05/	1.40	4/.U	1.0	0.U	100 0	100.0	208.0	2012.0	386 0	320.0	164.0	378.0
4SP13A	18	2.0	200.0	0.032	1.86	48.U	1.0	4.0	100.0	170.0	200.0	27 4. U	004.0	520.0	104.0	

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX RD MAXIMUM DIFFERENTIAL PRESSURE HEAD (📾)										
								INTERNAL	GAUGE I	ELEVATION	(caa)	EXTER	NAL GAUG	E ELEVAT	ION (cm)		
NAME		(s)	(mii)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O	
1SP12A	1	0.8	30.0	0.030	2.88	32.0	28.0	46.0	32.0	30.0	32.0	32.0	40.0	42.0	4.0	38.0	
1SP12A	2	0.8	60.0	0.060	2.04	34.0	27.0	60.0	62.0	60.0	66.0	62.0	86.0	86.0	6.0	92.0	
1SP12A	3	0.8	90.0	0.090	1.67	35.0	26.0	58.0	70.0	70.0	82.0	80.0	112.0	84.0	10.0	106.0	
1SP12A	4	1.0	30.0	0.019	3.61	32.0	28.0	38.0	44.0	48.0	34.0	44.0	34.0	56.0	4.0	48.0	
1SP12A	5	1.0	60.0	0.038	2.55	35.0	26.0	70.0	82.0	90.0	80.0	92.0	90.0	98.0	6.0	116.0	
1SP12A	6	1.0	90.0	0.058	2.08	36.0	25.0	90.0	98.0	108.0	110.0	120.0	130.0	106.0	52.0	138.0	
1SP12A	7	1.0	120.0	0.077	1.80	38.0	24.0	94.0	110.0	122.0	154.0	148.0	180.0	1 30 .0	38.0	134.0	
1SP12A	8	1.5	30.0	0.009	5.41	33.0	27.0	64.0	80,0	%.0	48.0	44.0	88.0	90.0	4.0	86.0	
1SP12A	9	1.5	60.0	0.017	0.12	36.0	24.0	112.0	118.0	152.0	106.0	76.0	180.0	126.0	8.0	132.0	
1SP12A	10	1.5	90.0	0.026	3.12	40.0	23.0	144.0	148.0	190.0	168.0	126.0	238.0	152.0	40.0	170.0	
1SP12A	11	1.5	120.0	0.034	2.70	46.0	20.0	166.0	174.0	224.0	234.0	176.0	290.0	194.0	104.0	198.0	
1SP12A	12	2.0	30.0	0.005	7.21	32.0	28.0	64.0	72.0	80.0	52.0	40.0	72.0	70.0	6.0	66.0	
1SP12A	13	2.0	60.0	0.010	5.10	36.0	25.0	126.0	142.0	164.0	124.0	90.0	170.0	120.0	4 .0	116.0	
1SP12A	14	2.0	90.0	0.014	4.16	41.0	22.0	178.0	188.0	224.0	208.0	164.0	266.0	168.0	66.0	162.0	
1SP12A	15	2.0	120.0	0.019	3.61	43.0	21.0	196.0	212.0	260.0	262.0	212.0	330.0	202.0	130.0	198.0	
1SP12A	16	1.0	180.0	0.115	1.47	43.0	24.0	110.0	134.0	156.0	182.0	188.0	226.0	180.0	68.0	182.0	
1SP12A	17	1.5	200.0	0.057	2.09	55.0	18.0	200.0	210.0	278.0	356.0	338.0	378.0	212.0	138.0	212.0	
1SP12A	18	2.0	200.0	0.032	2.79	50.0	19.0	270.0	296.0	352.0	396.0	364.0	432.0	316.0	180.0	310.0	

FILE	SEG#	Т	н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUN	DIFFEREN	TIAL PRE	SSURE HEA	V) (mm)		
								INTERNAL	GAUGE	ELEVATION	(ca)	EXTER	NAL GAUG	E ELEVAT	ION (cm)	
NAME		(s)	(m)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2SP12A	1	0.8	30.0	0.030	2.88	32.0	28.0	22.0	34.0	28.0	24.0	30.0	38.0	16.0	6.0	16.0
2SP12A	2	0.8	60.0	0.060	2.04	35.0	27.0	32.0	46.0	42.0	48.0	50.0	72.0	66.0	8.0	86.0
25P12A	3	0.8	90.0	0.090	1.67	36.0	27.0	44.0	58.0	58.0	72.0	66.0	110.0	98.0	16.0	94.0
2SP12A	4	1.0	30.0	0.019	3.61	32.0	29.0	30.0	42.0	42.0	28.0	38.0	34.0	34.0	4.0	30.0
2SP12A	5	1.0	60.0	0.038	2.55	35.0	27.0	56.0	76.0	76.0	68.0	88.0	100.0	136.0	8.0	132.0
2SP12A	6	1.0	90.0	0.058	2.08	36.0	26.0	66.0	82.0	86.0	86.0	112.0	124.0	116.0	6.0	136.0
25P12A	7	1.0	120.0	0.077	1.80	37.0	26.0	84.0	92.0	100.0	116.0	144.0	172.0	140.0	52.0	138.0
2SP12A	8	1.5	30.0	0.009	5.41	33.0	27.0	54.0	80. 0	92.0	68.0	48.0	84.0	66.0	6.0	68.0
25P12A	9	1.5	60.0	0.017	3.82	36.0	25.0	96.0	126.0	148.0	126.0	92.0	174.0	118.0	6.0	126.0
2SP12A	10	1.5	90.0	0.026	3.12	38.0	24.0	130.0	150.0	164.0	174.0	134.0	234.0	182.0	40.0	158.0
2SP12A	11	1.5	120.0	0.034	2.70	43.0	22.0	156.0	164.0	190.0	220.0	182.0	318.0	220.0	90.0	198.0
2SP12A	12	2.0	30.0	0.005	7.21	33.0	28.0	52.0	66.0	78.0	60.0	32.0	66.0	44. 0	4.0	44.0
2SP12A	13	2.0	60.0	0.010	5.10	36.0	26.0	100.0	132.0	152.0	132.0	80.0	160.0	106.0	6.0	98.0
2SP12A	14	2.0	90.0	0.014	4.16	40.0	24.0	156.0	182.0	208.0	212.0	136.0	266.0	152.0	28.0	138.0
2SP12A	15	2.0	120.0	0.019	3.61	43.0	22.0	190.0	202.0	232.0	250.0	170.0	312.0	180.0	106.0	178.0
2SP12A	16	1.0	180.0	0.115	1.47	42.0	24.0	102.0	110.0	124.0	160.0	190.0	234.0	148.0	74.0	186.0
2SP12A	17	1.5	200.0	0.057	2.09	53.0	19.0	182.0	196.0	234.0	318.0	290.0	442.0	198.0	170.0	204.0
2SP12A	18	2.0	200.0	0.032	2.79	50.0	22.0	242.0	276.0	308.0	374.0	312.0	458.0	264.0	176.0	244.0

FILE	SE6#	T	Н	H/Lo	epsi	i MAX RU MAX RD MAXIMUM DIFFERENTIAL PRESSURE HEAD (1960)											
								INTERNAL	GAUGE	ELEVATION	i (cna)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)		
NAME		(s)	(mr)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O	
3SP12A	1	0.8	30.0	0.030	2.88	32.0	28.0	18.0	26.0	26.0	16.0	28.0	38.0	44.0	4.0	42.0	
3SP12A	2	0.8	60.0	0.060	2.04	34.0	27.0	22.0	34.0	38.0	30.0	50.0	72.0	114.0	12.0	76.0	
3SP12A	3	0.8	90.0	0.090	1.67	36.0	26.0	28.0	42.0	46.0	38.0	68.0	100.0	164.0	24.0	142.0	
3SP12A	4	1.0	30.0	0.019	3.61	32.0	28.0	26.0	34.0	40.0	30.0	40.0	36.0	56.0	4.0	44.0	
3SP12A	5	1.0	60.0	0.038	2.55	35.0	26.0	40.0	56.0	68.0	60.0	88.0	88.0	132.0	4.0	116.0	
3SP12A	6	1.0	90.0	0.058	2.08	36.0	26.0	46.0	68.0	78.0	68.0	112.0	114.0	106.0	4.0	106.0	
3SP12A	7	1.0	120.0	0.077	1.80	37.0	25.0	62.0	82.0	86.0	94.0	144.0	168.0	158.0	44.0	146.0	
3SP12A	8	1.5	30.0	0.009	5.41	33.0	27.0	46.0	58.0	80.0	74.0	52.0	84.0	92.0	0.0	80.0	
3SP12A	9	1.5	60.0	0.017	3.82	36.0	25.0	70.0	98.0	122.0	124.0	98.0	168.0	134.0	6.0	136.0	
3SP12A	10	1.5	90.0	0.026	3.12	39.0	24.0	98.0	130.0	150.0	164.0	142.0	232.0	170.0	10.0	158.0	
35P12A	11	1.5	120.0	0.034	2.70	42.0	23.0	134.0	152.0	1 70. 0	194.0	184.0	286.0	216.0	100.0	214.0	
3SP12A	12	2.0	30.0	0.005	7.21	32.0	28.0	42.0	44.0	58.0	54.0	26.0	54.0	50.0	4.0	44.0	
3SP124	13	2.0	60.0	0.010	5.10	35.0	25.0	66.0	86.0	110.0	108.0	56.0	116.0	100.0	6.0	86.0	
3SP124	14	2.0	90.0	0.014	4.16	39.0	23.0	124.0	160.0	192.0	200.0	120.0	244.0	182.0	42.0	162.0	
3SP124	15	2.0	120.0	0.019	3.61	41.0	22.0	166.0	192.0	218.0	234.0	160.0	308.0	204.0	100.0	184.0	
3SP124	16	1.0	180.0	0.115	1.47	40.0	24.0	96.0	92.0	102.0	132.0	194.0	238.0	168.0	140.0	176.0	
3SP124	17	1.5	200.0	0.057	2.09	51.0	19.0	178.0	184.0	208.0	266.0	292.0	416.0	250.0	242.0	244.0	
3SP124	18	2.0	200.0	0.032	2.79	50.0	21.0	234.0	242.0	278.0	334.0	290.0	448.0	314.0	302.0	304.0	

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	ssure hea	(D) (D)			
								INTERNAL	GAUGE E	LEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	'ION (cma)		
NAME		(s)	(ma)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O	
4SP12A	1	0.8	30.0	0.030	2.88	32.0	28.0	16.0	20.0	22.0	16.0	38.0	44.0	44.0	4.0	4 6.0	
4SP12A	2	0.8	60.0	0.060	2.04	34.0	27.0	22.0	24.0	32.0	26.0	56.0	80.0	86.0	8.0	84.0	
4SP12A	3	0.8	90.0	0.090	1.67	36.0	26.0	30.0	30.0	34.0	32.0	78.0	116.0	122.0	10.0	116.0	
4SP12A	6	1.0	30.0	0.019	3.61	32.0	28.0	22.0	28.0	34.0	30.0	38.0	34.0	38.0	4.0	40.0	
ASP12A	5	1.0	60.0	0.038	2.55	34.0	27.0	30.0	44.0	52.0	56.0	88.0	94.0	150.0	2.0	116.0	
4SP12A	6	1.0	90.0	0.058	2.08	36.0	26.0	40.0	50.0	66.0	70.0	114.0	132.0	196.0	10.0	176.0	
4SP12A	7	1.0	120.0	0.077	1.80	38.0	25.0	56.0	60.0	74.0	82.0	150.0	168.0	162.0	38.0	166.0	
4SP12A	8	1.5	30.0	0.009	5.41	33.0	27.0	40.0	52.0	64.0	74.0	44.0	86.0	70.0	4.0	64.0	
4SP12A	9	1.5	60.0	0.017	3.82	36.0	25.0	60.0	78.0	106.0	116.0	92.0	174.0	130.0	6.0	110.0	
ASP12A	10	1.5	90.0	0.026	3.12	38.0	24.0	80.0	110.0	136.0	152.0	136.0	254.0	166.0	26.0	154.0	
45P12A	11	1.5	120.0	0.034	2.70	41.0	23.0	110.0	134.0	158.0	176.0	176.0	320.0	206.0	80.0	188.0	• , ,>
45P124	12	2.0	30.0	0.005	7.21	32.0	28.0	44.0	48.0	66.0	62.0	36.0	66.0	48.0	4.0	50.0	, Ť
45P12A	13	2.0	60.0	0.010	5.10	34.0	26.0	68.0	86.0	114.0	128.0	88.0	152.0	102.0	6.0	100.0	
49P12A	16	2.0	90.0	0.014	6 .16	37.0	25.0	98.0	136.0	170.0	180.0	146.0	250.0	162.0	32.0	170.0	
400 120	15	2.0	120.0		3.61	41.0	23.0	130.0	172.0	202.0	212.0	194.0	310.0	186.0	92.0	182.0	
401120	16	1.0	180.0	0.115	1.67	41.0	24.0	74.0	86.0	90.0	102.0	198.0	230.0	198.0	70.0	198.0	
401 128	17	1.0	200.0	0.110	2.09	52.0	20.0	180.0	176.0	184.0	230.0	314.0	434.0	238.0	336.0	238.0	
45P12A	17	2.0	200.0	0.032	2.79	52.0	19.0	236.0	234.0	254.0	288.0	340.0	458.0	304.0	198.0	288.0	

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE	AD (mm)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGI	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1SP15A	1	0.8	30.0	0.030	3.85	32.0	28.0	34.0	36.0	36.0	28.0	38.0	34.0	66.0	4.0	60.0
1SP15A	2	0.8	60.0	0.060	2.72	34.0	26.0	58.0	56.0	62.0	60.0	68.0	80.0	108.0	6.0	114.0
1SP15A	3	0.8	90.0	0.090	2.22	35.0	25.0	66.0	68.0	74.0	82.0	88.0	102.0	122.0	12.0	150.0
1SP15A	4	1.0	30.0	0.019	4.81	32.0	28.0	46.0	46.0	52.0	26.0	36.0	48.0	66.0	4.0	64.0
1SP15A	5	1.0	60.0	0.038	3.40	35.0	26.0	86.0	84.0	100.0	68.0	86.0	132.0	132.0	8.0	130.0
1SP15A	6	1.0	90.0	0.058	2.78	37.0	25.0	94.0	1 00 .0	120.0	88.0	120.0	178.0	142.0	24.0	162.0
1SP15A	7	1.0	120.0	0.077	2.40	40.0	23.0	102.0	118.0	148.0	128.0	166.0	228.0	226.0	58.0	192.0
1SP15A	8	1.5	30.0	0.009	7.21	33.0	27.0	82.0	90.0	102.0	70.0	44.0	104.0	92.0	8.0	92.0
1SP15A	9	1.5	60.0	0.017	5.10	36.0	24.0	130.0	140.0	164.0	138.0	94.0	208.0	152.0	8.0	150.0
1SP15A	10	1.5	90.0	0.026	4.16	40.0	22.0	164.0	172.0	208.0	200.0	154.0	302.0	224.0	66.0	186.0
1SP15A	11	1.5	120.0	0.034	0.04	43.0	21.0	184.0	200.0	244.0	258.0	244.0	376.0	250.0	132.0	246.0
1SP15A	12	2.0	30.0	0.005	9.61	32.0	28.0	74.0	72.0	82.0	64.0	50.0	82.0	70.0	6.0	66.0
1SP15A	13	2.0	60.0	0.010	6.80	36.0	25.0	148.0	150.0	168.0	144.0	118.0	182.0	142.0	6.0	138.0
1SP15A	14	2.0	90.0	0.014	5,55	41.0	24.0	206.0	204.0	230.0	226.0	202.0	292.0	208.0	80.0	200.0
1SP15A	15	2.0	120.0	0.019	4.81	44.0	21.0	226.0	236.0	270.0	274.0	250.0	360.0	248.0	142.0	240.0
1SP15A	16	1.0	180.0	0.115	1.96	48.0	21.0	116.0	128.0	192.0	188.0	206.0	304.0	186.0	148.0	184.0
1SP15A	17	1.5	200.0	0.057	2.79	55.0	17.0	234.0	256.0	298.0	344.0	384.0	412.0	316.0	204.0	304.0
1SP15A	18	2.0	200.0	0.032	3.72	58.0	19.0	292.0	326.0	382.0	398.0	390.0	488.0	392.0	306.0	412.0

SEG#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	SSURE HE	VD (mm)		
							INTERNAL	GAUGE I	ELEVATION	(cm)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
	(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1	0.8	30.0	0.030	3.85	32.0	28.0	26.8	24.0	26.0	24.0	34.0	32.0	38.0	4.0	36.0
2	0.8	60.0	0.060	2.72	34.0	27.0	40.0	38.0	48.0	36.0	64.0	60.0	56.0	6.0	56.0
3	0.8	90.0	0.090	2.22	37.0	26.0	50.0	50.0	54.0	54.0	86.0	90.0	94.0	34.0	94.0
4	1.0	30.0	0.019	4.81	33.0	28.0	40.0	38.0	48.0	32.0	36.0	38.0	52.0	4.0	64.0
5	1.0	60.0	0.038	3.40	35.0	27.0	68.0	70.0	82.0	70.0	80.0	98.0	102.0	4.0	120.0
6	1.0	90.0	0.058	2.78	37.0	26.0	80.0	82.0	90.0	90.0	106.0	140.0	134.0	12.0	116.0
7	1.0	120.0	0.077	2.40	40.0	25.0	90.0	90.0	104.0	112.0	148.0	178.0	158.0	48.0	146.0
. 8	1.5	30.0	0.009	7.21	33.0	27.0	66.0	72.0	100.0	84.0	48.0	88.0	82.0	10.0	90.0
9	1.5	60.0	0.017	5.10	36.0	25.0	106.0	124.0	144.0	140.0	98.0	176.0	130.0	8.0	128.0
10	1.5	90.0	0.026	4.16	40.0	24.0	142.0	154.0	178.0	194.0	164.0	256.0	172.0	52.0	178.0
11	1.5	120.0	0.034	3.61	43.0	23.0	174.0	176.0	204.0	236.0	240.0	308.0	198.0	130.0	192.0
12	2.0	30.0	0.005	9.61	32.0	28.0	68.0	62.0	78.0	70.0	52.0	70.0	48.0	4.0	64.0
13	2.0	60.0	0.010	6.80	35.0	26.0	118.0	130.0	148.0	146.0	118.0	158.0	116.0	6.0	116.0
14	2.0	90.0	0.014	5.55	38.0	25.0	182.0	192.0	212.0	220.0	202.0	244.0	188.0	38.0	182.0
15	2.0	120.0	0.019	4.81	43.0	22.0	218.0	220.0	242.0	262.0	250.0	302.0	206.0	132.0	264.0
16	1.0	180.0	0.115	1.96	46.0	22.0	112.0	108.0	140.0	170.0	216.0	280.0	208.0	130.0	204.0
17	1.5	200.0	0.057	2.79	53.0	20.0	198.0	220.0	254.0	302.0	360.0	414.0	292.0	206.0	294.0
															_
	SEG# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	SEG# T (s) 1 0.8 2 0.8 3 0.8 4 1.0 5 1.0 6 1.0 5 1.0 6 1.0 7 1.0 8 1.5 9 1.5 10 1.5 11 1.5 11 1.5 12 2.0 13 2.0 14 2.0 15 2.0 16 1.0 17 1.5	SEG# T H (s) (mm) 1 0.8 30.0 2 0.8 60.0 3 0.8 90.0 4 1.0 30.0 5 1.0 60.0 6 1.0 90.0 6 1.0 90.0 7 1.0 120.0 8 1.5 30.0 9 1.5 60.0 10 1.5 90.0 11 1.5 120.0 12 2.0 30.0 13 2.0 60.0 14 2.0 90.0 15 2.0 120.0 16 1.0 180.0 17 1.5 200.0	SEG# T H H/Lo (s) (mm) 1 0.8 30.0 0.030 2 0.8 60.0 0.060 3 0.8 90.0 0.090 4 1.0 30.0 0.019 5 1.0 60.0 0.038 6 1.0 90.0 0.058 7 1.0 120.0 0.077 8 1.5 30.0 0.009 9 1.5 60.0 0.017 10 1.5 90.0 0.026 11 1.5 120.0 0.034 12 2.0 30.0 0.005 13 2.0 60.0 0.010 14 2.0 90.0 0.014 15 2.0 120.0 0.019 16 1.0 180.0 0.115 17 1.5 200.0 0.057	SEG# T H H/Lo epsi (s) (mm)	SEG# T H H/Lo epsi MAX Rul (s) (mm) (cm) (cm) 1 0.8 30.0 0.030 3.85 32.0 2 0.8 60.0 0.060 2.72 34.0 3 0.8 90.0 0.090 2.22 37.0 4 1.0 30.0 0.019 4.81 33.0 5 1.0 60.0 0.038 3.40 35.0 6 1.0 90.0 0.058 2.78 37.0 6 1.0 90.0 0.077 2.40 40.0 8 1.5 30.0 0.009 7.21 33.0 9 1.5 60.0 0.017 5.10 36.0 10 1.5 90.0 0.026 4.16 40.0 11 1.5 120.0 0.34 3.61 43.0 12 2.0 30.0 0.005 9.61 32.0	SEG# T H H/Lo epsi MAX Ru MAX Rd (s) (mm) (cm) (cm) (cm) 1 0.8 30.0 0.030 3.85 32.0 28.0 2 0.8 60.0 0.060 2.72 34.0 27.0 3 0.8 90.0 0.090 2.22 37.0 26.0 4 1.0 30.0 0.019 4.81 33.0 28.0 5 1.0 60.0 0.038 3.40 35.0 27.0 6 1.0 90.0 0.058 2.78 37.0 26.0 6 1.0 90.0 0.058 2.78 37.0 26.0 7 1.0 120.0 0.077 2.40 40.0 25.0 8 1.5 30.0 0.009 7.21 33.0 27.0 9 1.5 60.0 0.017 5.10 36.0 25.0 10 1.5	SEG# T H H/Lo epsi MAX Ru MAX Rd INTERNAL (cm) Internal (cm) <thinternal (cm) <t< td=""><td>SEG# T H H/Lo epsi MAX Ru MAX Rd INTERNAL GAUGE R (s) (mm) (cm) (cm) (cm) EL 0 EL -5 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 6 1.0 90.0 0.058 2.78 37.0 26.0 80.0 82.0 7 1.0 120.0 0.017 5.10 36.0 25.0 90.0 90.0 8 1.5 30.0 0.005 9.61 32.0 28.0</td><td>SEG# T H H/Lo epsi MAX Ru MAX Rd INTERNAL GAUGE ELVATION (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 48.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 82.0 6 1.0 90.0 0.058 2.78 37.0 26.0 80.0 82.0 90.0 7 1.0 120.0 0.077 2.40 40.0 25.0 90.0 104.0 8 1.5 30.0 0.0026 4.16 40.0</td><td>SEG# T H H/Lo epsi MAX Ru MAX Ru MAX Rd INTERNAL GAUGE ELEVATION (cm) (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 24.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 48.0 36.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 54.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 32.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 82.0 70.0 6 1.0 90.0 0.058 2.78 37.0 26.0 80.0 72.0 100.0 8</td><td>SEG# T H H/Lo epsi MAX Ru MAX Rd MAX INUM DIFFERAL GAUGE ELVATION Con EXTER (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 EL -20 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 24.0 34.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 48.0 36.0 64.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 54.0 86.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 32.0 36.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 82.0 70.0 80.0</td><td>SEG# T H H/Lo epsi MAX Ru MAX Rd MAX INUM EAXINUM DIFFERENTIAL PRESSURE HEAD EXTERNAL GAUGE (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 EL -</td><td>SEGH T H H/Lo epsi MAX Ru MAX Rd MAXIMUM DIFFERENTIAL PRESSURE HEAD (m) (s) (m) (m) (m) (m) (m) EL 0 EL -5 EL -10 EL -20 EL -20<</td><td>SEG# T H H/Lo epsi MAX Ru MAX Rd MAXIMUM DIFFERENTIAL PRESSURE HEAD (mm) INTERNAL GAUGE ELEVATION (cm) EXTERNAL GAUGE ELEVATION (cm) EXTERNAL GAUGE ELEVATION (cm) (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 EL -20 EL -10 EL 0 EL -20 EL -20 EL -10 EL 0 EL +10 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 24.0 34.0 32.0 38.0 4.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 86.0 90.0 94.0 34.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 32.0 38.0 48.0 32.0 38.0 40.0 32.0 38.0 48.0 38.0 48.0 38.0 48.0 38.0 48.0 40.0 40.0 32.0 <</td></t<></thinternal 	SEG# T H H/Lo epsi MAX Ru MAX Rd INTERNAL GAUGE R (s) (mm) (cm) (cm) (cm) EL 0 EL -5 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 6 1.0 90.0 0.058 2.78 37.0 26.0 80.0 82.0 7 1.0 120.0 0.017 5.10 36.0 25.0 90.0 90.0 8 1.5 30.0 0.005 9.61 32.0 28.0	SEG# T H H/Lo epsi MAX Ru MAX Rd INTERNAL GAUGE ELVATION (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 48.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 82.0 6 1.0 90.0 0.058 2.78 37.0 26.0 80.0 82.0 90.0 7 1.0 120.0 0.077 2.40 40.0 25.0 90.0 104.0 8 1.5 30.0 0.0026 4.16 40.0	SEG# T H H/Lo epsi MAX Ru MAX Ru MAX Rd INTERNAL GAUGE ELEVATION (cm) (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 24.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 48.0 36.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 54.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 32.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 82.0 70.0 6 1.0 90.0 0.058 2.78 37.0 26.0 80.0 72.0 100.0 8	SEG# T H H/Lo epsi MAX Ru MAX Rd MAX INUM DIFFERAL GAUGE ELVATION Con EXTER (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 EL -20 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 24.0 34.0 2 0.8 60.0 0.060 2.72 34.0 27.0 40.0 38.0 48.0 36.0 64.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 54.0 86.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 32.0 36.0 5 1.0 60.0 0.038 3.40 35.0 27.0 68.0 70.0 82.0 70.0 80.0	SEG# T H H/Lo epsi MAX Ru MAX Rd MAX INUM EAXINUM DIFFERENTIAL PRESSURE HEAD EXTERNAL GAUGE (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 EL -	SEGH T H H/Lo epsi MAX Ru MAX Rd MAXIMUM DIFFERENTIAL PRESSURE HEAD (m) (s) (m) (m) (m) (m) (m) EL 0 EL -5 EL -10 EL -20 EL -20<	SEG# T H H/Lo epsi MAX Ru MAX Rd MAXIMUM DIFFERENTIAL PRESSURE HEAD (mm) INTERNAL GAUGE ELEVATION (cm) EXTERNAL GAUGE ELEVATION (cm) EXTERNAL GAUGE ELEVATION (cm) (s) (mm) (cm) (cm) (cm) EL 0 EL -5 EL -10 EL -20 EL -20 EL -10 EL 0 EL -20 EL -20 EL -10 EL 0 EL +10 1 0.8 30.0 0.030 3.85 32.0 28.0 26.8 24.0 26.0 24.0 34.0 32.0 38.0 4.0 3 0.8 90.0 0.090 2.22 37.0 26.0 50.0 50.0 54.0 86.0 90.0 94.0 34.0 4 1.0 30.0 0.019 4.81 33.0 28.0 40.0 38.0 48.0 32.0 38.0 48.0 32.0 38.0 40.0 32.0 38.0 48.0 38.0 48.0 38.0 48.0 38.0 48.0 40.0 40.0 32.0 <

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru 1	1AX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	SSURE HEA	(D (mm)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	ION (cm)	
NAME		(s)	(an)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3SP15A	1	0.8	30.0	0.030	3.85	32.0	28.0	22.0	20.0	24.0	22.0	32.0	32.0	40.0	4.0	44.0
3SP15A	2	0.8	60.0	0.060	2.72	35.0	27.0	32.0	34.0	40.0	38.0	58.0	70.0	86.0	6.0	80.0
3SP15A	3	0.8	90.0	0.090	2.22	37.0	26.0	30.0	26.0	38.0	32.0	72.0	70.0	80.0	24.0	88.0
3SP15A	4	1.0	30.0	0.019	4.81	33.0	28.0	32.0	36.0	42.0	40.0	46.0	52.0	60.0	6.0	56.0
3SP15A	5	1.0	60.0	0.038	3.40	36.0	27.0	48.0	60,0	70.0	74.0	92.0	116.0	108.0	10.0	104.0
3SP15A	6	1.0	90.0	0. 058	2.78	38.0	26.0	64.0	72.0	82.0	94.0	126.0	172.0	152.0	10.0	150.0
3SP15A	7	1.0	120.0	0.077	2.40	40.0	25.0	74.0	82.0	92.0	112.0	158,0	216.0	228.0	44.0	200.0
3SP15A	8	1.5	30.0	0.009	7.21	33.0	27.0	56.0	60.0	78.0	82.D	40,0	94.0	74.0	6.0	68.0
35P15A	9	1.5	60.0	0.017	5.10	36.0	25.0	86.0	104.0	128.0	146.0	74.0	196.0	136.0	8.0	132.0
3SP15A	10	1.5	90.0	0.026	4.16	38.0	23.0	116.0	138.0	160.0	186.0	104.0	256.0	178.0	60.0	172.0
3SP15A	11	1.5	120.0	0.034	3.61	43.0	22.0	154.0	158.0	182.0	222.0	144.0	326.0	228.0	142.0	214.0
3SP15A	12	2.0	30.0	0.005	9.61	32.0	28.0	60.0	60.0	70.0	68.0	40.0	74.0	52.0	4.0	54.0
3SP15A	13	2.0	60.0	0.010	6.80	36.0	25.0	104.0	114.0	140.0	146.0	90.0	168.0	120.0	10.0	1246.0
3SP15A	14	2.0	90.0	0.014	5,55	38.0	24.0	150.0	174.0	200.0	212.0	150.0	256.0	182.0	66.0	182.0
3SP15A	15	2.0	120.0	0.019	4.81	42.0	22.0	188.0	206.0	2308.0	252.0	184.0	320.0	224.0	144.0	226.0
3SP15A	16	1.0	180.0	0.115	1.96	45.0	24.0	104.0	94.0	108.0	154.0	208.0	294.0	200.0	174.0	194.0
3SP15A	17	1.5	200.0	0.057	2.79	52.0	21.0	1%.0	180.0	218.0	284.0	258.0	444.0	324.0	240.0	346.0
3SP15A	18	2.0	200.0	0.032	3,72	50.0	21.0	244.0	240.0	268.0	324.0	268.0	472.0	320.0	310.0	314.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	SSURE HE	AD (aan)		
								INTERNAL	GAUGE E	ELEVATION	(cnn)	EXTER	NAL GAUG	e elevat	ION (cm)	
NAME		(s)	(mn)			(cm)	(ca)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
100100	4	0.0	20.0	0.070	A 66	70.0	<u>-</u>	<u> </u>	ഹത	77 D	79 N	74 0	7/0	// 0	10	10.0
100100	1	0.0	30.0 (0.0	0.000	2.00	3Z.U 35.0	20.0	22.U	24.0		JZ_U	- ୦୦ _୭ ୦	-04°0	44.0	4.0	42.0
15P12B	2	0.8	6U.U	0.060	2.04	35.0	27.0	52.U	46.U	56.0	66.U	64.U	8U.U	152.0	6.0	%.U
1SP128	3	0.8	90.0	0.090	1.67	36.0	26.0	34.0	48.0	68.0	88.0	76.0	104.0	140.0	36.0	136.0
1SP12B	4	1.0	30.0	0.019	3.61	32.0	28.0	26.0	42.0	48.0	28.0	44.0	36,0	58.0	4.0	48.0
1SP128	5	1.0	60.0	0.038	2.55	34.0	27.0	52.0	66.0	82.0	72.0	94.0	102.0	140.0	14.0	116.0
1SP12B	6	1.0	90.0	0.058	2.08	36.0	26.0	66.0	74.8	100.0	102.0	120.0	140.0	160.0	10.0	140.0
1SP128	7	1.0	120.0	0.077	1.80	38.0	25.0	76.0	84.0	110.0	142.0	148.0	1840	174.0	30.0	162.0
· 1SP12B	8	1.5	30.0	0.009	5,41	33.0	27.0	42.0	70.0	82.0	60.0	40.0	86.0	88.0	6.0	74.0
1SP12B	9	1.5	60.0	0.017	3.82	36.0	24.0	92.0	110.0	126.0	128.0	82.0	182.0	146.0	6.0	124.0
1SP12B	10	1.5	90.0	0.026	3,12	40.0	24.0	122.0	134.0	152.0	198.0	138.0	248.0	194.0	50.0	170.0
1SP12B	11	1.5	120.0	0.034	2.70	43.0	22.0	144.0	156.0	176.0	250.0	192.0	298.0	234.0	152.0	220.0
1SP12B	12	2.0	30.0	0.005	7.21	33.0	27.0	32.0	64.0	74.0	62.0	46.0	84.0	74.0	4.0	46.0
1SP12B	13	2.0	60.0	0.010	5,10	36.0	26.0	74.0	124.0	136.0	128.0	100.0	164.0	132.0	10.0	166.0
1SP12B	14	2.0	90.0	0.014	4.16	40.0	23.0	136.0	168.0	178.0	208.0	180.0	2640	188.0	98.0	192.0
1SP12B	15	2.0	120.0	0.019	3.61	44.0	22.0	152.0	190.0	200.0	246.0	222.0	336.0	222.0	148.0	208.0
1SP12B	16	1.0	180.0	0.115	1.47	43.0	22.0	94.0	108.0	140.0	198.0	196.0	264.0	174.0	100.0	280.0
1SP12B	17	1.5	200.0	0.057	2.09	55.0	17.0	178.0	182.0	206.0	334.0	370.0	344.0	242.0	218.0	250.0
1SP12B	18	2.0	200.0	0,032	2.79	55.0	19.0	250.0	268.0	282.0	362.0	372.0	450.0	364.0	406.0	282.0

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFERE	ITIAL PRE	ESSURE HE	AD (man)	
								INTERNAL	GAUGE E	ELEVATIO	((cm)	EXTER	RNAL GAUE	E ELEVAT	FION (cm)	
NAME		(s)	(ma)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1SP120	1	0.8	30.0	0.030	2.88	32.0	28.0	24.0	28.0	34.0	34.0	32.0	58.0	70.0	<u>6</u> .Л	٥n
1SP12C	2	0.8	60.0	0.060	2.04	34.0	26.0	42.0	44. 0	48.0	64.0	58.0	72.0	90.0	6.0	0.0
1SP120	3	0.8	90.0	0.090	1.67	36.0	25.0	50.0	58.0	58.0	86.0	76.0	108.0	94 0	4.0 6.0	0.0
1SP12C	4	1.0	30.0	0.019	3.61	32.0	28.0	34.0	34.0	46.0	34.0	40.0	56.0	66 D	6.0 6 N	0.0
1SP120	5	1.0	60.0	0.038	2.55	34.0	26.0	62.0	56.0	74.0	74.0	88.0	90.0	104 0	4.0 4.0	0.0
1SP12C	6	1.0	90.0	0.058	2.08	36.0	25.0	72.0	68.0	76.0	98.0	110 0	136.0	114.0	12.0	0.0
1SP12C	7	1.0	120.0	0.077	1.80	39.0	25.0	82.0	84.0	96.0	136.0	144 0	176 0	146.0	12.0	0.0
1SP120	8	1.5	30.0	0.009	5.41	33.0	27.0	60.0	64.0	78 N	54 0	46.0	Q0 0	88.0	40.0	0.0
1SP120	9	1.5	60.0	0.017	3.82	37.0	25.0	108.0	100.0	116.0	110.0	40.0 88 0	142 0	132.0	4.U 10.0	0.0
1SP120	10	1.5	90.0	0.026	3.12	39.0	23.0	134.0	124.0	138 0	166 በ	128 B	250 0	162.0	10-0	0.0
1\$P120	11	1.5	120.0	0.034	2.70	42.0	21.0	144.0	148.0	156.0	226.0	174 0	200.0	210.0	110.0	0.0
1SP12C	12	2.0	30.0	0.005	7.21	32.0	28.0	26.0	46 O	56.0	46.0	1/4.0	44 0	210.0	112.0	0.0
1SP12C	13	2.0	60.0	0.010	5.10	36.0	26.0	56.0	98.0	116 0	110 0	04.0	156 0	100.0	0.U	0.0
1SP12C	14	2.0	90.0	0.014	4.16	40.0	24.0	76 D	140.0	152 0	104.0	149 0	250.0	170.0	0.0	0.0
1SP12C	15	2.0	120.0	0.019	3.61	43.0	22 0	138 D	162 0	176 0	244 0	210.0	200.0	1/2.0	40.0	0.0
1SP120	16	1.0	180.0	0.115	1.67	42 D	23 0	Q4 N	102.0	104.0	100.0	100.0	300.0	202.0	132.0	0.0
1SP12C	17	1.5	200.0	0.057	2 09	55 0	10.0	74.0 179 n	174.0	100.0	100.0	190.0	242.0	198.0	116.0	0.0
1SP120	18	2.0	200 0	0.032	2.07	58.0	17.0	110.0	1/0.0	104.0	336.U	328.0	396.0	318.0	160.0	0.0
	-•		20010	0.002	2.17	50.0	17.0	400.U	290.U	228.0	3/2.0	354.0	516.0	346.0	224.0	0.0

FILE	SEG#	T	н	H/Lo	epsi	MAX Ru M	AX Rd			MAXIMUN D	IFFEREN	IAL PRES	SURE HEA	D (mma)		
MAME		(.)	$(\cdot \cdot)$			<i>,</i> ,		INTERNAL	GAUGE	ELEVATION	(caa)	EXTER	NAL GAUG	E ELEVAT	ION (cm)	
NAME		(S)	(1996)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
100134	1	0.8	30.0	0.030	1.92	31.0	1.0	6.0	6.0	8.0	26.0	2.0	40.0	40.0	4.0	40.0
100134	2	0.8	60.0	0.060	1.36	33.0	1.0	6.0	6.0	10.0	44 0	10 0	\$U.U 80.0	40.0	4.0	¢U.U
100134	3	0.8	90.0	0.090	1.11	34 0	1 0	6.0	0.0 79 N	14.0	40.0	10.0	80.0	50.0	4.0	20.0
1CU13A	6	1.0	30.0	N N19	2 40	32.0	1.0	4.0	JO.U	10.0	20.0	58.0	38.0	58.U	6.0	58.0
101134	5	1 0	40.0	0.01/	4 70	32.0	1.0	0.0	0.0	28.0	28.0	28.0	44.0	68.0	4.0	62.0
100100		1.0	00.0	0.008	1.70	34.U	1.0	8.0	22.0	92.0	74.0	80.0	108.0	120.0	8.0	110.0
10013A	6	1.0	90.0	0.058	1.39	36.0	1.0	10.0	32.0	110.0	96.0	102.0	140.0	166.0	14.0	108.0
1CU13A	7	1.0	120.0	0.077	1.20	40.0	1.0	10.0	42.0	144.0	116.0	136.0	178 0	162 0	34.0	134 0
1CU13A	8	1.5	30.0	0.009	3.61	33.0	1.0	10.0	8.0	<u>62.0</u>	48.0	64 0	58.0	102.0	۰۰.0 ۸ ۵	00.0
1CU13A	9	1.5	60.0	0.017	2.55	36.0	1.0	16.0	62 N	110 0	02.0	114 0	100.0	150.0	40.0	10/ 0
1CU13A	10	1.5	90.0	0.026	2.08	40.0	1.0	10.0	42.0	110.0	72.0	110.0	120.0	150.0	12.0	124.0
101134	11	1.5	120.0	0.02/	1.00	40.0	1.0	18.0	00.0	136.0	126.0	158.0	174.0	162.0	16.0	118.0
100100	11	1.5	120.0	0.054	1.80	42.U	1.0	24.0	90.0	204.0	162.0	190.0	206.0	180.0	66.0	166.0
10013A	12	2.0	30.0	0.005	4.81	32.0	1.0	8.0	6.0	44.0	44.0	32.0	46 .0	78.0	4 .0	78.0
1CU13A	13	2.0	60.0	0.010	3.40	36.0	1.0	12.0	28.0	84. N	98.0	66 D	110.0	130.0	4.0	112 0
1CU13A	14	2.0	90.0	0.014	2.78	<u>40.0</u>	1 0	18 0	78 0	112 0	15/ 0	100.0	110.0	130.0	4. 0	110.0
101134	15	2 በ	120.0	0 010	2 40	(0.0	1.0	10.0 00.0	/0.0	112.0	134.0	108.0	182.0	210.0	6.0	148.0
	10	2.0	120.0	0.019	2.4 U	¢2.U	1.0	Z2.0	110.0	138.0	188.0	134.0	222.0	214.0	66.0	152.0

FILE	seg#	Т	н	H/Lo	epsi	MAX Ru I	1AX Rd			MAXIMUM	DIFFEREN	TIAL PRE	ssure he	AD (mm.)		
							INTERNAL GAUGE ELEVATION (cm) EXTERNAL GAUGE ELEVATION (cm)									
NAME		(s)	(ma)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2CU13A	1	0.8	30.0	0.030	1.92	32.0	1.0	6.0	6.0	16.0	12.0	28.0	52.0	54.0	4.0	56.0
2CU13A	2	0.8	60.0	0.060	1.36	33.0	1.0	8.0	6.0	22.0	24.0	48.0	80.0	64.0	8.0	52.0
2CU13A	3	0.8	90.0	0.090	1.11	33.0	1.0	10.0	20.0	30.0	48.0	74.0	112.0	72.0	22.0	68.0
2CU13A	4	1.0	30.0	0.019	2.40	32.0	1.0	6.0	6.0	18.0	30.0	42.0	42.0	42.0	4.0	50,0
20U13A	5	1.0	60.0	0.038	1.70	34.0	1.0	12.0	6.0	30.0	40.0	92.0	104.0	84.0	6.0	60.0
20U13A	6	1.0	90. 0	0.058	1.39	36.0	1.0	14.0	14.0	40.0	50.0	116.0	132.0	100.0	6.0	80.0
20U13A	7	1.0	120.0	0.077	1.20	37.0	1.0	20.0	22.0	44.0	60.0	146.0	170.0	%. 0	18.0	100.0
2CU13A	8	1.5	30.0	0.009	3.61	32.0	1.0	12.0	10.0	28.0	62.0	56.0	62.0	68.0	4.0	50.0
20U13A	9	1.5	60. 0	0.017	2.55	35.0	1.0	18.0	16.0	44.0	96.0	100.0	126.0	%.0	6.0	92.0
20U13A	10	1.5	90. 0	0.026	2.08	37.0	1.0	26.0	30.0	62.0	114.0	148.0	188.0	134.0	42.0	130.0
2CU13A	11	1.5	120.0	0.034	1.80	43.0	1.0	34.0	38.0	64.0	126.0	188.0	224.0	164.0	52.0	164.0
2CU13A	12	2.0	30.0	0.005	4.81	32.0	1.0	12.0	10.0	20.0	66.0	34.0	58.0	50.0	4.0	50.0
2CU13A	13	2.0	60.0	0.010	3.40	35.0	1.0	20.0	12.0	36.0	116.0	72.0	150.0	134.0	6.0	98.0
2CU13A	14	2.0	90.0	0.014	2.78	39.0	1.0	32.0	36.0	60.0	150.0	118.0	230.0	136.0	4.0	136.0
2CU13A	15	2.0	120.0	0.019	2.40	42.0	1.0	44.0	46.0	78.0	170.0	160.0	268.0	160.0	54.0	156.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	ssure he	AD (mana)		
								INTERNAL	GAUGE	ELEVATION	(cma)	EXTER	NAL GAUG	E ELEVAT	ION (cma)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3CU13A	1	0.8	30.0	0.030	1.92	32.0	1.0	4.0	8.0	8.0	20.0	28.0	44.0	60.0	4.0	42.0
3CU13A	2	0.8	60.0	0.060	1.36	34.0	1.0	6.0	6.0	12.0	28.0	50.0	82.0	104.0	4.0	%.0
3CU13A	3	0.8	90.0	0.090	1.11	36.0	1.0	8.0	10.0	12.0	22.0	30.0	64.0	72.0	6.0	92.0
3CU13A	4	1.0	30.0	0.019	2.40	32.0	1.0	8.0	6.0	12.0	28.0	38.0	46.0	74.0	6.0	58.0
3CU13A	5	1.0	60.0	0.038	1.70	35.0	1.0	12.0	8.0	18.0	46.0	88.0	114.0	106.0	6.0	120.0
3CU13A	6	1.0	90.0	0.058	1.39	37.0	1.0	14.0	10.0	24.0	48.0	108.0	148.0	216.0	44.0	126.0
3CU13A	7	1.0	120.0	0.077	1.20	38.0	1.0	18.0	56.0	30.0	50.0	138.0	184.0	142.0	90.0	156.0
3CU13A	8	1.5	30.0	0.009	3.61	34.0	1.0	10.0	8.0	22.0	58.0	58.0	74.0	94.0	4.0	76.0
3CU13A	9	1.5	60.0	0.017	2.55	36.0	1.0	20.0	20.0	36.0	86.0	116.0	152.0	128.0	4.0	120.0
3CU13A	10	1.5	90.0	0.026	2.08	39.0	1.0	28.0	34.0	48.0	100.0	162.0	212.0	158.0	30.0	158.0
3CU13A	11	1.5	120.0	0.034	1.80	41.0	1.0	38.0	46.0	66.0	102.0	202.0	266.0	202.0	74.0	300.0
3CU13A	12	2.0	30.0	0.005	4.81	33.0	1.0	10.0	10.0	24.0	58.0	32.0	60.0	76.0	8.0	52.0
3CU13A	13	2.0	60.0	0.010	3.40	36.0	1.0	22.0	20.0	42.0	114.0	78.0	150.0	128.0	4.0	106.0
3cu13a	14	2.0	90.0	0.014	2.78	39.0	1.0	36.0	36.0	66.0	146.0	140.0	242.0	178.0	68.0	158.0
3CU13A	15	2.0	120.0	0.019	2.40	41.0	1.0	42.0	44.0	86.0	158.0	160.0	278.0	236.0	130.0	170.0

FILE	SEG#	T	н	H/Lo	epsi	MAX Ru I	IAX RO			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HEA	VD (nana)		
								INTERNAL	GAUGE	ELEVATION	(cma)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mar)			(can)	(cma)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4CU13A	1	0.8	30.0	0.032	1.86	32.0	1.0	6.0	6.0	8.0	10.0	26.0	50.0	64.0	4.0	60.0
4CU13A	2	0.8	60.0	0.034	1.81	34.0	1.0	6.0	6.0	8.0	14.0	56.0	102.0	120.0	4.0	114.0
4CU13A	3	0.8	90.0	0.035	1.78	35.0	1.0	6.0	6.0	10.0	14.0	74.0	124.0	134.0	4.0	92.0
4CU13A	6	1.0	30.0	0.021	2.33	32.0	1.0	4.0	6.0	10.0	20.0	38.0	36.0	76.0	4.0	76.0
4CU13A	5	1.0	60.0	0.022	2.23	35.0	1.0	8.0	6.0	20.0	34.0	88.0	100.0	132.0	6.0	144.0
4CU13A	6	1.0	90.0	0.023	2.19	36.0	1.0	8.0	8.0	18.0	38.0	114.0	124.0	156.0	10.0	142.0
4CU113A	7	1.0	120.0	0.025	2.11	39.0	1.0	8.0	18.0	22.0	44.0	152.0	158.0	178.0	22.0	134.0
401134	8	1.5	30.0	0.009	3.44	33.0	1.0	8.0	8.0	18.0	48.0	58.0	70.0	96.0	4.0	94.0
4CU13A	9	1.5	60.0	0.010	3.29	36.0	1.0	16.0	12.0	26.0	72.0	112.0	138.0	158.0	4.0	210.0
4CI113A	10	1.5	90.0	0.011	3.12	40.0	1.0	16.0	34.0	34.0	88.0	158.0	196.0	182.0	48. 0	172.0
401134	11	1.5	120.0	0.012	3.08	41.0	1.0	22.0	62.0	48.0	100.0	204.0	248.0	222.0	78.0	178.0
4CIJ13A	12	2.0	30.0	0.005	4.65	32.0	1.0	10.0	8.0	22.0	48. 0	40.0	58.0	80. 0	6.0	76.0
401134	13	2.0	60.0	0.006	6.65	35.0	1.0	16.0	12.0	36.0	84.0	80.0	136.0	140.0	6.0	126.0
401134	16	2.0	90.0	0.006	6.22	39.0	1.0	22.0	32.0	46.0	124.0	136.0	222.0	192.0	36.0	166.0
4CU13A	15	2.0	120.0	0.007	4.11	41.0	1.0	28.0	56.0	60.0	140.0	184.0	258.0	208.0	72.0	190.0

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru M	IAX Rd			MAXIMUN	DIFFEREN	TIAL PRE	ssure hea	(mm) (
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	(ON (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
5CU13A	1	0.8	30.0	0.030	1.92	32.0	1.0	6.0	6.0	6.0	6.0	28.0	44.0	58.0	4.0	52.0
5CU13A	2	0.8	60.0	0.060	1.36	33.0	1.0	8.0	6.0	8.0	6.0	68.0	94.0	82.0	4.0	94.0
5CU13A	3	0.8	90.0	0.090	1.11	35.0	1.0	6.0	6.0	6.0	6.0	68.0	110.0	100.0	12.0	100.0
5CU13A	4	1.0	30.0	0.019	2.40	32.0	1.0	6.0	6.0	10.0	12.0	44.0	34.0	70.0	6.0	70.0
501134	5	1.0	60.0	0.038	1.70	34.0	1.0	6.0	6.0	16.0	14.0	88.0	96.0	124.0	4.0	116.0
5011134	6	1 0	90.0	0.058	1.39	37.0	1.0	6.0	8.0	14.0	16.0	112.0	124.0	142.0	22.0	130.0
5011134	7	1.0	120.0	0.000	1 20	40.0	1.0	8.0	26.0	14.0	18.0	142.0	156.0	142.0	46.0	134.0
501134	, 8	1.5	30.0	0.000	3 61	32 0	1 0	8.0	8.0	20.0	32.0	52.0	84.0	90.0	8.0	90.0
SCULT A	0	1.5	40.0	0.007	2 55	35.0	1 0	14.0	12 0	260	42.0	116 0	156.0	158.0	4.0	134.0
DUULDA	7	1.5	00.0	0.01/	2.00	30.0 30.0	1.0	12.0	26.0) <u>2</u> 4.0	56.0	168 0	216 0	166.0	24.0	144.0
SUUISA	10	1.5	90.0	0.020	2.00	37.0	1.0	20.0	24.0	20.0	50.0 44 D	200.0	254.0	108.0	150.0	218.0
50013A	11	1.5	120.0	0.034	1.80	42.0	1.0	20.0	22.0	0.04.0	00.0	204.0	204.0	170.0	4 0	62 0
5CU13A	12	2.0	30.0	0.005	4.81	32.0	1.0	8.0	8.0	22.0	36.0	38.0	08.0	00.0	0.0	470.0
5CU13A	13	2.0	60.0	0.010	3.40	35.0	1.0	12.0	10.0) 30.0	60.0	86.0	164.0	112.0	6.U	132.0
5CU13A	14	2.0	90.0	0.014	2.78	39.0	1.0	18.0	18.0	38.0	82.0	150.0	234.0	150.0	20.0	172.0
5CU13A	15	2.0	120.0	0.019	2.40	41.0	1.0	22.0	22.0	46.0	106.0	202.0	266.0	180.0	74.0	192.0

FILE	SE6#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	ssure he	AD (mana)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUG	E ELEVAT	ION (cma)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1CU12A	1	0.8	30.0	0.030	2.88	33.0	28.0	26.0	32.0	38.0	34.0	36.0	48.0	84.0	6.0	70.0
1CU12A	2	0.8	60.0	0.060	2.04	35.0	27.0	50.0	44.0	54.0	60.0	62.0	82.0	130.0	6.0	90.0
1CU12A	3	0.8	90.0	0.090	1.67	37.0	26.0	44.0	50.0	72.0	78.0	78.0	118.0	142.0	18.0	104.0
1CU12A	4	1.0	30.0	0.019	3.61	33.0	28.0	34.0	42.0	46.0	30.0	48.0	38.0	86.0	4.0	60.0
1CU12A	5	1.0	60.0	0.038	2.55	36.0	27.0	64.0	70.0	92.0	84.0	100.0	122.0	112.0	4.0	116.0
1CU12A	6	1.0	90.0	0.058	2.08	37.0	26.0	76.0	84.0	96.0	96.0	118.0	142.0	140.0	18.0	124.0
1CU12A	7	1.0	120.0	0.077	1.80	40.0	25.0	76.0	78.0	114.0	122.0	148.0	174.0	168.0	50.0	152.0
1CU12A	8	1.5	30.0	0.009	5.41	33.0	27.0	64.0	82.0	98.0	64.0	44 .0	106.0	116.0	6.0	110.0
1CU12A	9	1.5	60. 0	0.017	3.82	36.0	25.0	98.0	114.0	136.0	108.0	76.0	170.0	138.0	10.0	124.0
1CU12A	10	1.5	90. 0	0.026	3.12	40.0	23.0	136.0	140.0	178.0	180.0	138.0	248.0	186.0	42.0	166.0
1CU12A	11	1.5	120.0	0.034	2.70	43.0	21.0	140.0	150.0	194.0	220.0	176.0	308.0	216.0	86.0	200.0
1CU12A	12	2.0	30.0	0.005	7.21	32.0	27.0	64.0	76.0	82.0	62.0	40.0	78.0	80.0	6.0	62.0
1CU12A	13	2.0	60.0	0.010	5.10	36.0	25.0	114.0	142.0	154.0	138.0	98.0	176.0	146.0	6.0	124.0
1CU12A	14	2.0	90.0	0.014	4.16	41.0	23.0	174.0	182.0	204.0	218.0	166.0	284.0	206.0	46.0	172.0
1CU12A	15	2.0	120.0	0.019	3.61	43.0	22.0	186.0	196.0	234.0	276.0	224.0	338.0	250.0	120.0	206.0

FILE	SEG	T	Н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	ssure he/	(maa) (J		
								INTERNAL	GAUGE	ELEVATION	(cma)	EXTER	NAL GAUGE	ELEVAT	ION (cma)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
20U12A	1	0.8	30.0	0.030	2.88	33.0	28.0	32.0	16.0	32.0	18.0	30.0	42.0	86.0	4.0	62.0
2CU12A	2	0.8	60.0	0.060	2.04	36.0	27.0	22.0	32.0	34.0	32.0	58.0	74.0	98.0	4.0	78.0
20U12A	3	0.8	90.0	0.090	1.67	38.0	26.0	28.0	38.0	38.0	46.0	76.0	100.0	102.0	64.0	136.0
2CU12A	4	1.0	30.0	0.019	3.61	33.0	28.0	26.0	26.0	36.0	28.0	44.0	38.0	104.0	4.0	60.0
2CU12A	5	1.0	60.0	0.038	2.55	36.0	26.0	36.0	54.0	60.0	58.0	86.0	96.0	118.0	6.0	104.0
2CU12A	6	1.0	90.0	0.058	2.08	39.0	25.0	50.0	62.0	68.0	80.0	110.0	140.0	172.0	6.0	162.0
2CU12A	7	1.0	120.0	0.077	1.80	40.0	24.0	50.0	66.0	76.0	98.0	140.0	180.0	186.0	28.0	156.0
2CU12A	8	1.5	30.0	0.009	5.41	34.0	27.0	42.0	54.0	72.0	78.0	44.0	90.0	94.0	6.0	76.0
2CU12A	9	1.5	60.0	0.017	3.82	38.0	25.0	66.0	92.0	120.0	136.0	98.0	182.0	236.0	6.0	140.0
2CU12A	10	1.5	90.0	0.026	3.12	42.0	23.0	%.0	120.0	140.0	176.0	136.0	244.0	206.0	84.0	188.0
2CU12A	11	1.5	120.0	0.034	2.70	44.0	21.0	118.0	124.0	152.0	204.0	174.0	298.0	234.0	124.0	236.0
2CU12A	12	2.0	30.0	0.005	7.21	33.0	28.0	48.0	50.0	64.0	68.0	40.0	68.0	74.0	4.0	62.0
2CU12A	13	2.0	60.0	0.010	5.10	36.0	26.0	80.0	94.0	130.0	144.0	88.0	164.0	134.0	6.0	122.0
2CU12A	16	2.0	90.0	0.014	4.16	38.0	24.0	122.0	146.0	182.0	208.0	150.0	250.0	232.0	68.0	170.0
2CU12A	15	2.0	120.0	0.019	3.61	44.0	21.0	166.0	174.0	210.0	250.0	198.0	316.0	246.0	132.0	240.0

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru 1	IAX Ro			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE/	AD (mm)	l	
								INTERNAL	GAUGE E	LEVATION	(cma)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(111)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3CU12A	1	0.8	30.0	0.030	2.88	33,0	27.0	10.0	8.0	20.0	20.0	46.0	52.0	96.0	6 .0	90. N
3CU12A	2	0.8	60.0	0.060	2.04	35.0	26.0	20.0	12.0	26.0	28.0	60.0	80.0	116.0	6.0	104.0
3CU12A	3	0.8	90.0	0.090	1.67	36.0	25.0	22.0	28.0	32.0	38.0	84.0	114.0	130.0	48.0	108.0
3CU12A	4	1.0	30.0	0.019	3.61	33.0	27.0	20.0	18.0	36.0	30.0	72.0	70.0	144.0	6.0	78.0
3CU12A	5	1.0	60.0	0.038	2.55	35.0	26.0	24.0	28.0	48.0	58.0	96.0	106.0	184.0	16.0	106.0
3CU12A	6	1.0	90.0	0.058	2.08	36.0	25.0	28.0	40.0	60.0	66.0	112.0	148.0	202.0	30.0	120.0
3CU12A	7	1.0	120.0	0.077	1.80	39.0	25.0	36.0	46.0	70.0	84.0	144.0	186.0	254.0	50.0	140.0
3CU12A	8	1.5	30.0	0.009	5.41	33.0	26.0	38.0	42.0	84.0	102.0	58.0	120.0	100.0	8.0	100.0
3CU12A	9	1.5	60.0	0.017	3.82	37.0	24.0	50.0	66.0	100.0	122.0	96.0	192.0	132.0	8.0	134.0
3CU12A	10	1.5	90.0	0.026	3.12	40.0	22.0	62.0	90.0	124.0	144.0	136.0	246.0	200.0	40.0	168.0
3CU12A	11	1.5	120.0	0.034	2.70	44.0	22.0	80.0	108.0	134.0	252.0	180.0	290.0	232.0	54.0	192.0
3CU12A	12	2.0	30.0	0.005	7.21	33.0	27.0	36.0	40.0	66.0	110.0	60.0	122.0	100.0	6.0	100.0
3CU12A	13	2.0	60.0	0.010	5.10	36.0	26.0	62.0	76.0	106.0	150.0	86.0	162.0	124.0	6.0	130.0
3CU12A	14	2.0	90.0	0.014	4.16	41.0	24.0	88.0	118.0	164.0	192.0	160.0	252.0	182.0	26.0	172.0
3CU12A	15	2.0	120.0	0.019	3.61	43.0	23.0	108.0	144.0	186.0	210.0	194.0	290.0	198.0	118.0	198.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru I	IAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE/	AD (man)		
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(and)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4CU12A	1	0.8	30.0	0.030	2.88	32.0	28.0	10.0	8.0	10.0	14.0	36.0	48. 0	58.0	6.0	4 2.0
4CU12A	2	0.8	60.0	0.060	2.04	35.0	27.0	8.0	8.0	18.0	20.0	60.0	86.0	126.0	4.0	72.0
4CU12A	3	0.8	90.0	0.090	1.67	36.0	26.0	12.0	14.0	20.0	26.0	70.0	124.0	168.0	32.0	78.0
4CU12A	4	1.0	30.0	0.019	3.61	33.0	28.0	18.0	12.0	20.0	26.0	46.0	36.0	58.0	4.0	50.0
4CU12A	5	1.0	60.0	0.038	2.55	35.0	27.0	20.0	20.0	30.0	46.0	90.0	92.0	130.0	4.0	118.0
4CU12A	6	1.0	90.0	0.058	2.08	37.0	26.0	28.0	24.0	36.0	48. 0	118.0	136.0	154.0	34.0	150.0
4CU12A	7	1.0	120.0	0.077	1.80	40.0	25.0	28.0	38.0	40.0	52.0	148.0	172.0	250.0	38.0	178.0
4CU12A	8	1.5	30.0	0.009	5.41	33.0	27.0	32.0	32.0	42.0	62.0	48.0	86.0	88.0	4.0	80.0
4CU12A	9	1.5	60.0	0.017	3.82	36.0	26.0	20.0	44.0	66.0	96.0	90.0	184.0	150.0	6.0	130.0
4CU12A	10	1.5	90.0	0.026	3.12	40.0	25.0	44.0	56.0	86.0	116.0	134.0	264.0	204.0	42.0	234.0
4CU12A	11	1.5	120.0	0.034	2.70	46.0	24.0	54.0	72.0	108.0	124.0	160.0	304.0	272.0	88.0	274.0
4CU12A	12	2.0	30.0	0.005	7.21	32.0	28.0	36.0	36.0	54.0	56.0	42.0	66.0	58.0	4.0	58. 0
4CU12A	13	2.0	60.0	0.010	5.10	35.0	26.0	52.0	58.0	78.0	110.0	88.0	150.0	124.0	4.0	120.0
4CU12A	14	2.0	90.0	0.014	4.16	40.0	24.0	66.0	80.0	112.0	160.0	156.0	240.0	186.0	6.0	206.0
4CU12A	15	2.0	120.0	0.019	3.61	46.0	23.0	76.0	96.0	142.0	180.0	204.0	302.0	252.0	128.0	204.0

FILE	SEG#	T	Н	H/Lo	epsi	MAX Ru	MAX Rd			MAXIMUM	DIFFEREN	ITIAL PRE	SSURE HE	AD (sana)		
								INTERNAL	GAUGE	ELEVATION	(cna)	EXTER	NAL GAUG	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
5CU12A	1	0.8	30.0	0.030	2.88	32.0	29.0	8.0	6.0	8.0	10.0	34.0	38.0	34.0	6.0	40.0
5CU12A	2	0.8	60.0	0.060	2.04	34.0	28.0	10.0	8.0	10.0	12.0	60.0	72.0	52.0	4.0	50.0
5CU12A	3	0.8	90.0	0.090	1.67	37.0	26.0	12.0	10.0	10.0	14.0	76.0	94.0	58.0	4.0	56.0
5CU12A	4	1.0	30.0	0.019	3.61	32.0	28.0	12.0	10.0	10.0	14.0	20.0	38.0	42.0	4.0	42.0
5CU12A	5	1.0	60.0	0.038	2.55	34.0	26.0	16.0	14.0	22.0	30.0	82.0	104.0	86.0	6.0	58.0
5CU12A	6	1.0	90.0	0.058	2.08	37.0	25.0	16.0	24.0	24.0	34.0	112.0	134.0	112.0	12.0	98.0
5CU12A	7	1.0	120.0	0.077	1.80	39.0	24.0	22.0	20.0	28.0	40.0	136.0	180.0	134.0	54.0	174.0
5CU12A	8	1.5	30.0	0.009	5.41	33.0	27.0	28.0	30.0	38.0	50.0	54.0	90.0	88.0	4.0	68.0
5CU12A	9	1.5	60.0	0.017	3.82	35.0	26.0	36.0	34.0	50.0	74.0	96.0	174.0	120.0	4.0	98.0
5CU12A	10	1.5	90. 0	0.026	3.12	39.0	24.0	40.0	42.0	62.0	94.0	140.0	232.0	150.0	12.0	120.0
5CU12A	11	1.5	120.0	0.034	2.70	44.0	23.0	48.0	58.0	78.0	112.0	182.0	278.0	176.0	100.0	162.0
5CU12A	12	2.0	30.0	0.005	7.21	32.0	28.0	36.0	32.0	42.0	48.0	40.0	62.0	42.0	4.0	50.0
5CU12A	13	2.0	60.0	0.010	5.10	36.0	26.0	50.0	56.0	68.0	94.0	102.0	158.0	132.0	4.0	132.0
5CU12A	14	2.0	90.0	0.014	4.16	41.0	24.0	58.0	60.0	88.0	130.0	168.0	240.0	246.0	38.0	150.0
5CU12A	15	2.0	120.0	0.019	3.61	45.0	22.0	66.0	72.0	106.0	156.0	218.0	280.0	224.0	114.0	196.0

FILE	SEG#	T	н	H/Lo	epsi	MAX Ru I	1AX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HE	AD (mm)		
								INTERNAL	GAUGE E	LEVATION	(cm)	EXTER	NAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cma)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
1CU15A	1	0.8	30.0	0.030	3.85	32.0	28.0	26.0	36.0	34.0	22.0	34.0	30.0	78.0	4.0	50.0
1CU15A	2	0.8	60.0	0.060	2.72	33.0	26.0	50.0	48.0	50.0	44.0	54.0	88.0	82.0	4.0	82.0
1CU15A	3	0.8	90.0	0.090	2.22	35.0	26.0	64.0	60.0	62.0	74.0	84.0	108.0	172.0	26.0	158.0
1CU15A	4	1.0	30.0	0.019	4.81	32.0	28.0	38.0	38.0	48.0	32.0	38.0	44.0	144.0	4.0	72.0
1CU15A	5	1.0	60.0	0.038	3.40	34.0	26.0	70.0	76.0	94.0	66.0	82.0	122.0	168.0	6.0	122.0
1CU15A	6	1.0	90.0	0.058	2.78	36.0	25.0	80.0	86.0	138.0	96.0	122.0	184.0	148.0	24.0	138.0
1CU15A	7	1.0	120.0	0.077	2.40	41.0	24.0	88.0	92.0	170.0	120.0	152.0	210.0	166.0	56.0	170.0
101154	8	1.5	30.0	0.009	7.21	33.0	26.0	70.0	78.0	90.0	78.0	48.0	94.0	106.0	6.0	120.0
101154	q	1 5	60.0	0.017	5.10	36.0	24.0	120.0	132.0	146.0	138.0	94.0	188.0	164.0	12.0	182.0
1CU15A	10	1.5	90.0	0.026	4.16	40.0	22.0	148.0	158.0	188.0	192.0	154.0	260.0	266.0	22.0	218.0

FILE	SE6#	T	н	H/Lo	epsi	MAX Ru I	MAX Rd MAXIMUM DIFFERENTIAL PRESSURE HEAD (mm)									
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	NAL GAUGE	ELEVAT	ION (CHE)	
NAME		(s)	(📷)			(ca)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
2CU15A	1	0.8	30.0	0.030	3.85	32.0	28.0	18.0	24.0	24.0	16.0	40.0	30.0	60.0	4.0	68.0
2CU15A	2	0.8	60.0	0.060	2.72	35.0	26.0	34.0	36.0	40.0	28.0	62.0	58.0	88.0	6.0	100.0
2CU15A	3	0.8	90.0	0.090	2.22	37.0	25.0	32.0	42.0	54.0	44.0	82.0	94.0	90.0	82.0	120.0
2CU15A	4	1.0	30.0	0.019	4.81	33.0	27.0	32.0	40.0	40.0	40.0	36.0	54.0	74.0	6.0	76.0
2CU15A	5	1.0	60.0	0.038	3.40	36.0	26.0	52.0	68.0	78.0	70. 0	86.0	142.0	120.0	6.0	140.0
2CU15A	6	1.0	90.0	0.058	2.78	38.0	25.0	62.0	78.0	84.0	84.0	110.0	188.0	136.0	32.0	140.0
2CU15A	7	1.0	120.0	0.077	2.40	40.0	24.0	78.0	76.0	88.0	110.0	148.0	238.0	162.0	76.0	156.0
2CU15A	8	1.5	30.0	0.009	7.21	34.0	26.0	56.0	66.0	80. 0	82.0	50.0	100.0	92.0	4.0	%.0
2CU15A	9	1.5	60.0	0.017	5.10	37.0	24.0	86.0	110.0	136.0	144.0	104.0	192.0	144.0	10.0	152.0
2CU15A	10	1.5	90.0	0.026	4.16	41.0	22.0	116.0	136.0	168.0	182.0	150.0	258.0	178.0	20.0	1%.0
20015A	11	1.5	120.0	0.034	3.61	43.0	21.0	148.0	150.0	178.0	212.0	214.0	310.0	212.0	118.0	236.0
20015A	12	2.0	30.0	0.005	9.61	32.0	28.0	62.0	62.0	76.0	78.0	50.0	82.0	100.0	4.0	102.0
2CU15A	13	2.0	60.0	0.010	6.80	36.0	26.0	102.0	110.0	140.0	150.0	120.0	168.0	164.0	10.0	160.0
2CU15A	14	2.0	90.0	0.014	5.55	40.0	23.0	154.0	170.0	200.0	212.0	196.0	258.0	220.0	114.0	220.0
2CU15A	15	2.0	120.0	0.019	4.81	44.0	21.0	186.0	194.0	218.0	240.0	242.0	304.0	258.0	180.0	270.0

FILE	SEG	T	н	H/Lo	epsi	MAX Ru I	MAX Rd			MAXIMUM	DIFFEREN	TIAL PRE	SSURE HEA	(man) ()		
								INTERNAL	GAUGE	ELEVATION	(cna)	EXTER	NAL GAUGE	ELEVAT	ION (cms)	
NAME		(s)	(mn)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
3CU15A	1	0.8	30.0	0.030	3.85	32.0	28.0	20.0	12.0	16.0	16.0	42.0	30.0	68.0	4.0	54.U
3CU15A	2	0.8	60.0	0.060	2.72	36.0	26.0	18.0	18.0	22.0	24.0	66.0	66.0	126.0	16.0	128.0
3CU15A	3	0.8	90.0	0.090	2.22	39.0	25.0	26.0	24.0	24.0	26.0	70.0	68.0	110.0	32.0	110.0
3CU15A	4	1.0	30.0	0.019	4.81	33.0	27.0	26.0	20.0	24.0	36.0	40.0	52.0	64.0	4.0	66.0
3CU15A	5	1.0	60.0	0.038	3.40	36.0	26.0	32.0	32.0	48.0	60.0	88.0	136.0	184.0	16.0	166.0
3CU15A	6	1.0	90.0	0.058	2.78	38.0	25.0	34.0	42. 0	58.0	72.0	114.0	170.0	216.0	24.0	2 0 0.0
3CU15A	7	1.0	120.0	0.077	2.40	42.0	24.0	42.0	52.0	60.0	80.0	166.0	220.0	230.0	60. 0	338.0
3CU15A	8	1.5	30.0	0.009	7.21	34.0	27.0	44.0	40.0	54.0	74.0	44.0	102.0	96.0	4.0	86.0
3CU15A	9	1.5	60.0	0.017	5.10	37.0	25.0	62.0	72.0	104.0	128.0	90.0	204.0	146.0	10.0	140.0
3CU15A	10	1.5	90.0	0.026	4.16	41.0	24.0	80.0	96.0	130.0	156.0	144.0	278.0	176.0	24.0	206.0
3CU15A	11	1.5	120.0	0.034	3.61	45.0	22.0	104.0	114.0	146.0	168.0	200.0	364.0	220.0	124.0	290.0
3CU15A	12	2.0	30.0	0.005	9.61	33.0	28.0	50.0	48.0	58.0	60.0	56.0	84.0	76.0	6.0	70.0
3CU15A	13	2.0	60.0	0.010	6.80	36.0	26.0	80. 0	82.0	106.0	114.0	110.0	178.0	146.0	6.0	140.0
3CU15A	14	2.0	90.0	0.014	5.55	40.0	24.0	112.0	132.0	162.0	162.0	178.0	278.0	200.0	74.0	180.0
3CU15A	15	2.0	120.0	0.019	4.81	43.0	22.0	142.0	162.0	184.0	164.0	222.0	342.0	252.0	200.0	272.0

FILE	SEG	T	н	H/Lo	epsi	MAX Ru I	MAX Rd	MAXIMUM DIFFERENTIAL PRESSURE HEAD (BR)								
								INTERNAL	GAUGE	ELEVATION	(cm)	EXTER	RNAL GAUGE	E ELEVAT	ION (cm)	
NAME		(s)	(mm)			(cm)	(cm)	EL O	EL -5	EL -10	EL -20	EL -20	EL -10	EL O	EL +10	EL O
4CU15A	4	1.0	30.0	0.019	4.81	33.0	28.0	20.0	16.0	20.0	26.0	46.0	38.0	52.0	4.0	58.0
4CU15A	5	1.0	60.0	0.038	3.40	35.0	26.0	26.0	22.0	34.0	44.0	94.0	114.0	102.0	6.0	122.0
4CU15A	6	1.0	90.0	0.058	2.78	37.0	26.0	30.0	26.0	34.0	50.0	116.0	148.0	122.0	16.0	150.0
4CU15A	7	1.0	120.0	0.077	2.40	41.0	24.0	34.0	30.0	42.0	54.0	156.0	218.0	156.0	52.0	188.0
4CU15A	8	1.5	30.0	0.009	7.21	34.0	27.0	38.0	34.0	46.0	64.0	42.0	96.0	70.0	6.0	76.0
4CU15A	9	1.5	60.0	0.017	5.10	37.0	25.0	50.0	50.0	76.0	106.0	96.0	192.0	136.0	8.0	156.0
4CU15A	10	1.5	90.0	0.026	4.16	42.0	23.0	58.0	66.0	92.0	128.0	150.0	254.0	168.0	68.0	212.0
4CU15A	11	1.5	120.0	0.034	3.61	45.0	22.0	64.0	84.0	108.0	138.0	206.0	302.0	184.0	110.0	210.0
4CU15A	12	2.0	30.0	0.005	9.61	33.0	28.0	44.0	34.0	42.0	58.0	38.0	68.0	42.0	4.0	50.0
4CU15A	13	2.0	60.0	0.010	6.80	35.0	25.0	66.0	64.0	82.0	122.0	98.0	168.0	118.0	8.0	126.0
4CU15A	14	2.0	90.0	0.014	5.55	40.0	24.0	86.0	96.0	124.0	170.0	174.0	248.0	180.0	70.0	192.0
4CU15A	15	2.00	120.0	0.030	3.85	45.0	23.0	98.0	120.0	148.0	190.0	234.0	316.0	224.0	150.0	218.0