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Abstract

The construction of the generalized continuous wavelet transform (GCWT)

on Hilbert spaces is a special case of the coherent state transform construc-

tion, where the coherent state system arises as an orbit of an admissible

vector under a strongly continuous unitary representation of a locally com-

pact group.

In this thesis we extend this construction to the setting of Hilbert C∗-

modules. In particular, we define a coherent state transform and a GCWT

on Hilbert modules. This construction gives a reconstruction formula and

a resolution of the identity formula analogous to those found in the Hilbert

space setting. Moreover, the existing theory of standard normalized tight

frames in finite or countably generated Hilbert modules can be viewed as a

discrete case of this construction.

We also show that the image space of the coherent state transform on

Hilbert module is a reproducing kernel Hilbert module. We discuss the kernel

and the intertwining property of the group coherent state transform.
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Preface

Given a system (ηx)x∈X in a Hilbert space H, indexed by a measure space X,

we can study the map Vη, which maps each ϕ ∈ H to a bounded continuous

function Vηϕ on X, defined by

Vηϕ(x) = (ϕ | ηx) .

We call (ηx)x∈X a coherent state system whenever Vηϕ is measurable for each

ϕ. A coherent state system is admissible if Vη is an isometry of H into L2(X).

The construction of the generalized wavelet transform (GCWT) is a spe-

cial case of the coherent state transform construction. In this case, the coher-

ent state system arises as an orbit of an admissible vector under a strongly

continuous unitary representation (π,Hπ) of a locally compact group G.

A Hilbert C∗-module is a natural generalization of Hilbert space as a

complete inner product space. While the inner product in Hilbert space is

complex valued, in a Hilbert C∗-module over a C∗-algebra A, the inner prod-

uct is A-valued. As is well-known, Hilbert C∗-modules behave like Hilbert

spaces in many respects. But there is a fundamental difference: not every

closed submodule has an orthogonal complement. This requires extra care

in developing an analogous theory for Hilbert C∗-modules.

It is clearly interesting to consider whether the GCWT construction can

be generalized to the Hilbert module setting. In this thesis, we will show

xvii
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how this can be done. Specifically we will show how the construction may

be generalized to separable Hilbert modules over a unital C∗-algebra A.

There are some results in the literature which generalize wavelet trans-

forms in the sense of wavelet frames to the setting of Hilbert modules, [24, 64].

In this thesis, we generalize the continuous version of the wavelet transform

to the setting of Hilbert modules and also generalize results due to Führ on

the GCWT on Hilbert spaces.

The generalization of the continuous wavelet transforms to the setting of

Hilbert modules is not immediately obvious, since we need a weaker integral

than the Bochner integral to work with the functions in the Hilbert modules

L2(X,A). We are able to achieve this by defining what we call the A-integral

on A-valued functions.

In fact, the discussion on Hilbert module L2(X,A) is interesting by itself.

We show that extra care is needed in generalizing the standard Hilbert space

�2 to the standard Hilbert module HA, by providing examples, which then

motivate us to develop the A-integral theory.

Chapter 1 is a preliminary chapter, that provides notations, conventions

and basic results on integration and Hilbert space theory.

Chapter 2 contains some basic results on C∗-algebras and Hilbert C∗-

module theory which will be used in our generalization of continuous wavelet

transform into the Hilbert module setting.

Chapter 3 gives an introduction to wavelet transform theory. The first

part of this chapter contains the historical background of the continuous

wavelet transform on the real line, and reviews some results related to wavelet

transforms, particularly those related to Hilbert C∗-modules. The second

part of this chapter includes a discussion on GCWT on Hilbert space based

on work of Führ.



xix

Finally, our results are presented in chapter 4 and 5. In chapter 4, we

use results on C∗-algebras and the theory of Bochner integrals to generalize

the results which we will need, from the Hilbert space L2(X) to the Hilbert

module L2(X,A).

In chapter 5, we use the results in chapter 4 to generalize the theory

of chapter 3 to the setting of Hilbert modules. We are able to recapture

the results of [24, 64] in the case where the Hilbert module is a finitely or

countably generated Hilbert module and X is a discrete space.
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Chapter 1

Preliminaries

In this chapter, we introduce some notation and conventions that we use in

the entire thesis.

We use this chapter to state some definitions, and notation from basic

concepts of the theory of groups and their representations. We include the

theory of Hilbert spaces and their tensor products. Finally, we also list

some results related to the measurability and integrability of vector-valued

integrals.

1.1 Notation and conventions

Let X be a locally compact space, i.e. a topological space which is locally

compact, Hausdorff (for every two distinct points x, y ∈ X there are neigh-

borhoods E of x and F of y such that E ∩F = ∅) and second countable (has

a countable basis).

If Y ⊂ X , the intersection of all closed sets containing Y is called the

closure of Y and denoted by Y . If Y = X , we say Y is dense in X . We call

X separable if it contains a countable dense subset.

1



2 CHAPTER 1. PRELIMINARIES

We say a group G is a locally compact group if it is a topological group

(a group with a topology such that the group operations are continuous)

which is also a locally compact space.

Notation. From now on, we reserve the symbol G for locally compact group,

unless stated otherwise.

In chapter 3 we will discuss the original wavelet transform, which is related

to the following locally compact group.

Example 1.1.0.1. The ax+b group. Let G = R�R+. then G is a locally

compact group under the product topology, and under the multiplication

(group law) defined by:

(b, a) (b′, a′) = (b + ab′, aa′)

where the inverse is given by

(b, a)−1 =

(
− b

a
,
1

a

)
.

Notation. Some examples in chapter 4 use the space of continuous functions.

We denote by C (X ) the space of continuous functions on X .

We can endow C (X ) by the supremum norm

‖f‖ = sup
x∈X

|f(x)| . (1.1)

Suppose that V and W are linear spaces over F. By a linear operator (or

linear transformation) from V into W , we mean a mapping T : V → W
such that

T (αϕ + βψ) = αTϕ + βTψ.

whenever ϕ, ψ ∈ V and α, β ∈ F (the notation T : V → W indicates that

T is defined on V and takes values in W ; it can be read T, from V to W).
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In this case, the kernel of T is the linear subspace {ϕ ∈ V : Tϕ = 0} of V
and denote it by ker(T ). We call the space T (V) = {Tϕ : ϕ ∈ V} the image

(or range) and denote it by range(T ). In general we call the space where a

mapping T is defined on, the domain of T and denoted by D(T ).

1.2 Measure spaces

Since we will deal with integration of scalar or vector-valued functions on a

locally compact group, we will recall here some basics on measure spaces.

We will begin with the term σ-algebra Σ of a set X, that is a nonempty

set of subsets of X (including the set X itself) which is closed under taking

complements and countable unions. If X is a topological space, and the σ-

algebra Σ is generated by the family of open sets in X it is also called Borel

σ-algebra on X, and its elements are called measurable (or Borel) sets.

If Σ contains all singletons, we say the σ-algebra separates points. A set X

together with its σ-algebra Σ is called a measurable space, and denote it

by (X, Σ) . Let us mention some examples of (Borel) σ-algebra. For a locally

compact space, it is given by smallest σ-algebra containing all the open sets.

For a countable set, it is given by the power set of the space.

We define a measure μ as a non-negative and completely additive set

function. If the σ-algebra is a Borel σ-algebra then the measure is called a

Borel measure. We define a (Borel) measure space (X, Σ, μ), as a space

X together with a measure μ on its (Borel) σ-algebra Σ. We also define a set

μ-nullset as {E ⊂ X | μ(E) = 0} . With this terminology, we say a subset

E in the σ-algebra Σ of a measure space (X, Σ, μ), is called μ-measurable (or

sometimes just measurable). If μ(X) < ∞ (which implies that μ(E) < ∞
for all E ∈ Σ since μ(X) = μ(E) + μ(Ec)), μ is called finite. If X =

⋃∞
1 Ej
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where Ej ∈ Σ and μ(Ej) < ∞ for all j, μ is called σ-finite.

If a certain relation holds for all points x ∈ X \E where E is a μ-nullset

then we say that this relation holds μ-almost everywhere (or sometimes

just almost everywhere) on X.

If X = G is a group, then we say a measure μ on G is left-invariant

if μ(xE) = μ(E) for all x ∈ G and E ⊂ G measurable. We say that μ is

right-invariant if μ(Ex) = μ(E) for all x ∈ G and E ⊂ G measurable.

A measure μ on a topological space X is called regular if for each open

set E ⊂ X, μ(E) = sup {μ(K) | K ⊂ E and K is compact } and for each

Borel (measurable) set F, μ(F ) = inf {μ(E) | F ⊂ E and E is open} . We

call a regular Borel measure which is finite on all compact sets, a Radon

measure. For a further discussion on Radon measures, we refer to Chapter

7 in [18].

Notation. We reserve X to denote a measure space (X, Σ, μ), where X is also

a locally compact space.

The main function space in Chapter 3 is the Hilbert space of square

integrable scalar-valued functions on X with respect to a given measure. We

denote it by L2(X).

1.2.1 Haar measure

In Chapter 3 we discuss Führ’s generalized wavelet transform, which is a

certain class of coherent state systems arising from certain representations

of locally compact groups endowed with Haar measure. In chapter 5 we use

the same groups to generalize the concept. Therefore, here, we include some

definitions and basic results about Haar measure.

Definition 1.2.1.1. A nonzero Radon measure μ on a topological group
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G is a left Haar measure if it is left-invariant, and it is a right Haar

measure if it is right-invariant. In what follows, we shall reserve the words

Haar measure for the left Haar measure.

The important results are the following:

Theorem 1.2.1.2. Every locally compact group G has a unique Haar mea-

sure up to scalar multiplication.

Remark 1.2.1.3. Since our G is always second countable, then its Haar mea-

sure is certainly σ-finite.

Theorem 1.2.1.4. If μ and λ are left Haar measures on G, there exists

c ∈ (0,∞) such that λ = cμ.

The proofs can be found in Folland’s book [17].

Once we have a Haar measure μ, we can define a right Haar measure re-

lated to it by μ̃(E) = μ(E−1). The relation between these two Haar measure

is given by the modular function Δ : G → R+, which is defined by:

Δ(x) =
μ(Ex)

μ(E)
for E any measurable set

Note that μx which is defined by μx(E) = μ(Ex) is also a Haar measure,

therefore the existence of a number Δ(x) is guaranteed by theorem 1.2.1.4

of the uniqueness of the Haar measure, and is independent of the choice of

μ. Moreover, a group G is said to be unimodular if Δ(x) = 1 for all x ∈ G,

i.e. the left Haar measure of G is also a right Haar measure. It is easy to see

that abelian groups and discrete groups are unimodular. In fact, the modular

function is a continuous homomorphism from G to R, see proposition 2.24 in

[17]. Moreover, by proposition 2.31 in [17] we can view the modular function

as

Δ =
dμ

dμ̃
. (1.2)
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By equation 1.2, we obtain the following formula:

∫
G

f(x)dμ(x) =

∫
G

f(x−1)Δ(x−1)dμ(x). (1.3)

Example 1.2.1.5. Let G be the ax+ b group. Then dadb/|a|2 is a left Haar

measure of G, and dadb/|a| is a right Haar measure of G so that 1/ |a| is the

modular function.

1.3 Hilbert spaces

We will assume that all vector spaces in this thesis are complex vector spaces,

unless stated otherwise. We call a vector space equipped with a complex inner

product, an inner product space. We call an inner product space H that

is complete in the norm induced from the inner product, a Hilbert space.

We denote the space of bounded operators on Hilbert space H by B(H).

Furthermore, dimH denotes the dimension of H which is the cardinality

of an arbitrary orthonormal basis of H. For separable Hilbert spaces H,

dimH ∈ N ∪ {∞} ,

Notation. We reserve H to denote a Hilbert space and IH as the identity

operator in B(H).

There are two important topologies that we use in B(H). The first is

the strong operator topology, where the sequence (Tn) converges to T

if and only if Tnϕ converges to Tϕ for any ϕ ∈ H. The other one is the

weak operator topology, where sequence (Tn) converges to T if and only

if (ϕ | Tnψ) converges to (ϕ | Tψ) for any ϕ, ψ ∈ H.
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1.3.1 Unbounded operators on Hilbert spaces

In the discussion of coherent state systems in Hilbert space in chapter 3, we

will deal with coefficient operators which are possibly unbounded. Let H and

K be Hilbert spaces, and T be a linear operator with domain of definition

D(T ) a linear submanifold (not necessarily closed), of H into K. If D(T ) is

dense in H, T is said to be densely defined. We define the graph of T as

the set G(T ) ≡ {h ⊕ k ∈ H ⊕K : h ∈ D(T )} . The operator T is said to be

closed operator if its graph is closed in H⊕K.

1.3.2 Unitary representations

In general, when people discuss the theory of unitary representations of lo-

cally compact groups, they are talking about representations of the group as

unitary operators on Hilbert spaces. This is what we recall in this section (In

chapter 2, we recall the notion of group representations in Hilbert modules).

Our main reference for this section is [17].

Definition 1.3.2.1. Let H be a Hilbert space, and define

U(H) := {U ∈ B(H) | U∗U = UU∗ = IH} .

Then U(H) is a topological group, with the strong operator topology.

Remark 1.3.2.2. The strong and weak operator topologies coincide in U(H).

Definition 1.3.2.3. A representation π of G in a Hilbert space Hπ is called

a unitary representation if it is a homomorphism from G into the group

U(Hπ) of unitary operators on Hπ that is continuous in the strong operator

topology.

Equivalently, if π is a unitary representation of G in a Hilbert space Hπ,

then the map π : G → U(Hπ) satisfies π(xy) = π(x)π(y) and π(x−1) =
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π(x)−1 = π(x)∗, and x 
→ π(x)ϕ is continuous from G to Hπ for any ϕ ∈ Hπ.

We call Hπ the representation space of π, and call the dimension of Hπ the

dimension or degree of representation π, which is possibly infinite. Since

the weak and strong operator topologies coincide on U(Hπ), the continuity

requirement is equivalent to the condition that the map x 
→ (ϕ | π(x)η) is

continuous for all x ∈ G and ϕ, η ∈ Hπ.

Example 1.3.2.4. Let G be a locally compact group. Let μ be its left

invariant measure. The left regular representation λG is defined by:

λG(x)f(y) = f(x−1y).

Now, we will list some standard terminology and properties related to

unitary representations. Let π and σ be unitary representations, a bounded

operator T : Hπ → Hσ is called an intertwining operator for π and σ if

Tπ(x) = σ(x)T for every x ∈ G. We say that π and σ are disjoint if there is

no nonzero intertwining operator in either direction. In the case there exist

T which is unitary, we say that π and σ are unitarily equivalent. The

set of all intertwining operators for π and σ which is denoted by C(π, σ),

contains unitary operators U, such that σ(x) = Uπ(x)U−1. If π = σ then we

write C(π) for C(π, π), and call it commutant or commuting algebra of

π. It can be shown that this commuting algebra is closed under the weak op-

erator topology, also closed under taking adjoint, hence it is a Von Neumann

algebra.

Remark 1.3.2.5. In the rest of this section we shall use the term representation

to refer to unitary representation unless stated otherwise.

Now, let K be a closed subspace of Hπ. We call K an invariant subspace

for π if π(x)K ⊂ K for all x ∈ G. In this case, its orthogonal complement

K⊥ is also an invariant subspace and therefore π is the direct sum of πK
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and πK⊥ . The restriction of π to K defines a representation of G on K,

denoted by π|K and is called a subrepresentation of π. Furthermore, we

can define the direct sum:
⊕

πi, as a representation π on H =
⊕

i Hπi

defined by π(x) (
∑

ϕi) =
∑

πi(x)ϕi. If π has invariant subspaces which are

nontrivial (neither 0 nor Hπ), we say π is reducible, otherwise π is said to be

irreducible. A vector ϕ ∈ Hπ is cyclic if π(G)ϕ spans a dense subspace of

Hπ. A representation having such vectors is called a cyclic representation.

If every nonzero vector is cyclic, then the representation π is irreducible. We

write σ < π if a representation σ is unitarily equivalent to a subrepresentation

of π.

1.4 Tensor products

In this section, we discuss the notion of vector spaces tensor products and

Hilbert space tensor product, which the second term is the completion of

vector space tensor product in the norm induced from the inner product.

Similar techniques are used to define the Hilbert module tensor product H⊗̂A
in example 2.2.4.25.

1.4.1 Vector space tensor products

We state the definition of vector space tensor product. For detailed informa-

tion on this, the reader may consult [38].

Definition 1.4.1.1. A vector space L and a bilinear mapping ⊗ of H, K into

L is a tensor product of H, K and we write L = H ⊗ K if the pair (L,⊗)

satisfy the condition:

If L′ is any vector space and ×′ is a bilinear mapping of H × K into L′, then

there exists a unique linear mapping T of L into L′ such that T (ϕ ⊗ ψ) =
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ϕ ×′ ψ. In this case we say that the pair (⊗, L) is universal for bilinear

mappings of H and K.

For ϕ ∈ H and ψ ∈ K, we call the element ϕ ⊗ ψ in L an elementary

tensor. The tensor product is unique, and a basis of the tensor product L

comes from the basis of H and K. Formally, we will state this in the following

lemma.

Lemma 1.4.1.2. Let H and K be the vector spaces with the basis {ϕγ} and

{ψλ} respectively. Then the set {ϕγ ⊗ ψλ} is a basis for the tensor space

H ⊗ K.

1.4.2 Hilbert space tensor products

It is a natural expectation that when the vector spaces are also Hilbert spaces,

the algebraic tensor product can be densely embedded in a Hilbert space.

And fortunately, that is the case. We will include here the definition of the

Hilbert space tensor product, and some facts related to basis of the space.

Our main references for this section are [58] and [66].

Theorem 1.4.2.1. Let H and K be Hilbert spaces. There exist an inner

product on H⊗K defined as:

(ϕ1 ⊗ ψ1 | ϕ2 ⊗ ψ2) = (ϕ1 | ϕ2) (ψ1 | ψ2) ϕ1ϕ2 ∈ H, ψ1ψ2 ∈ K

Definition 1.4.2.2. For any two Hilbert spaces H and K, We define the

Hilbert space tensor product H⊗̂K as the completion of the vector space

tensor product in the norm induced by the inner product defined above.

There are several facts to note. Suppose that H,K are Hilbert spaces.

For any ϕ ∈ H, ψ ∈ K,

‖ϕ ⊗ ψ‖ = ‖ϕ‖ ‖ψ‖ .
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Moreover, if {εγ} and {νλ} are orthonormal basis for H and K respectively,

then {εγ ⊗ νλ} is an orthonormal basis for H⊗̂K.

1.5 Vector-valued functions

Let X denote a measure space (X, Σ, μ) σ-algebra Σ and σ-finite measure μ

and let V be a Banach space. We denote by V ′ the space of continuous linear

functionals on V . Here we will provide some theory related to functions on

X having values in V . The main references for this discussion are [36, 17, 76]

1.5.1 Measurable functions

Definition 1.5.1.1. A function f is countably-valued if it assumes at

most a countable set of non zero distinct values in V , each on a measurable

set. If f has finite number of distinct non-zero values, each on a measurable

set of finite measure, it is called simple function.

Definition 1.5.1.2. A vector-valued function f is weakly measurable in

X if the scalar valued function v′(f(x)) is μ-measurable, for each v′ ∈ V ′.

We said that a vector-valued f is strongly-measurable if there exists a

sequence of countably-valued functions converging almost everywhere in X

to f.

Below are some useful results from [36, Corollary 1, Corollary 2, Theorem

3.5.4, and the following paragraph].

Lemma 1.5.1.3. A function f is strongly measurable if and only if it is the

uniform limit almost everywhere of a sequence of countably-valued functions.

Lemma 1.5.1.4. If V is separable, then strong and weak measurability are

equivalent.
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Theorem 1.5.1.5. (1) If f and g are strongly measurable and α1 and α2

are scalar, then α1f +α2g is strongly measurable. (2) If f is the limit almost

everywhere of a sequence of strongly measurable functions, then f is strongly

measurable. (3) If V is a Banach algebra and f, g are strongly measurable,

then the product fg is strongly measurable.

1.5.2 Vector-valued integral

Weak Integral

The notion of weak integral was originally known as the Pettis Integral. The

integral is defined using reflexivity of the Hilbert space and the independent

result of Gelfand and Dunford which is given in the following theorem, [36,

Theorem 3.7.1.].

Theorem 1.5.2.1. If f is weakly measurable and if v′(f) ∈ L1(X,V) for

each v′ ∈ V ′, then there exists w′′ ∈ V ′′ such that

w′′(v′) =

∫
X

v′(f(x)) dμ(x) (1.4)

for all v′ ∈ V ′.

The theorem allows us to define w′′ =
∫

X
f(x) dμ(x). In general, V ′′ �= V .

When equality holds, the integral is called the weak integral. The following is

the definition of the weak integral, c.f [36, Definiton 3.7.1] and [17, Appendix

3].

Definition 1.5.2.2. A function f on X to V is weakly integrable if and

only if v′(f(·)) is Lebesgue integrable for all v′ ∈ V ′, and there is an element

w of V such that

v′(w) =

∫
v′(f(x)) dμ(x). (1.5)



1.5. VECTOR-VALUED FUNCTIONS 13

By definition, ∫
f(x) dμ(x) = w. (1.6)

Remark 1.5.2.3. The Riesz representation theorem holds in a reflexive space

V : we can represent each functional linear in its dual V ′ as a unique element

of V . We will write an element in V ′ represented by a v ∈ V , v′ ∈ V ′. Hence,

we can rewrite equation 1.5 as:(
v |
∫

X

f(x) dμ(x)

)
=

∫
(v | f(x)) dμ(x). (1.7)

The Bochner integral

The Bochner integral is one of the generalization of Lebesgue integral for

vector-valued functions. We follow the definitions from [36].

Definition 1.5.2.4. A countably-valued function f on X to V is integrable

if and only if ‖f( . )‖ is Lebesgue integrable. By definition

B -

∫
E

f(x) dμ(x) =
∞∑

k=1

vkμ(Ek ∩ E)

where f(x) = vk on Ek ∈ Σ(k = 1, 2, 3...).

Definition 1.5.2.5. A function f on X to V is Bochner integrable if and

only if there exists a sequence of countably-valued integrable functions {fn}
converging almost everywhere to f and such that

lim
n→∞

∫
‖f(x) − fn(x)‖ dμ(x) = 0. (1.8)

By definition,

B -

∫
E

f(x) dμ(x) = lim
n→∞

B -

∫
E

fn(x) dμ(x) (1.9)

for each E ∈ Σ.
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Notation. We use L1(X,V) to denote the class of Bochner integrable V-valued

functions on X.

It is clear from the definition that the space of countably V-valued Bochner

integrable functions on X is dense in L1(X,V). Now, every simple V-valued

function is countably-valued Bochner integrable. Furthermore, each countably-

valued function can be approximated by simple functions, therefore the space

of simple functions is dense in the space of countably-valued functions. Hence

it is also dense in L1(X,V).

There is a useful characterization of Bochner integrable functions [36,

Theorem 3.7.4]

Theorem 1.5.2.6. A necessary and sufficient condition that f on X to V
be Bochner integrable is that f be strongly measurable and that∫

X

‖f(x)‖ dμ(x) < ∞.

Now, the following holds, [36, Theorem 3.7.5].

Theorem 1.5.2.7. If f and g are in L1(X,V) and α1 and α2 are scalars,

then α1f(x) + α2g(x) ∈ L1(X,V) and

B -

∫
X

(α1f(x) + α2g(x)) = α1B -

∫
X

f(x) dμ(x) + α2B -

∫
X

g(x) dμ(x).

If the norm of a function f is defined by

‖f‖1 =

∫
X

‖f(x)‖ dμ(x) (1.10)

then L1(X,V) will be a Banach space, [36, Theorem 3.7.6 and Theorem 3.7.8]

Theorem 1.5.2.8. If f ∈ L1(X,V), then∥∥∥∥B -

∫
X

f(x)dμ(x)

∥∥∥∥ ≤
∫

X

‖f(x)‖ dμ(x) (1.11)
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Theorem 1.5.2.9. The set of functions L1(X,V) becomes a Banach space

if we identify functions which differ only on sets of measure zero.

Remark 1.5.2.10. If for 1 ≤ p < ∞ we define the norm ‖f‖p =
(∫ ‖f(x)‖p)1/p

,

we can define Banach spaces Lp(X,V) relative to the norm ‖·‖p . See [35, Ex-

ercise 7.5.3 and 7.5.4 ]. These spaces are also known as Lebesgue spaces and

the space of simple functions is also dense in these spaces relative to the norm

‖·‖p. In the case p = 2, we call the Banach space L2(X,V) as the space of

V-valued norm square integrable functions.

We also have a Dominated Convergence Theorem for Bochner integrals

similar to the Lebesgue integral case, [35, Theorem 7.5.9].

Theorem 1.5.2.11. Dominated Convergence Theorem for Bochner

Integrals If fn ∈ L1(X,V) and ‖fn(x)‖ ≤ g(x) for n = 1, 2, · · · , where g is

Bochner integrable over X, and if fn converges to f a.e. then f ∈ L1(X,V)

and

lim
n→∞

∫
X

‖f(x) − fn(x)‖ dμ(x) = 0.

In particular,

B -

∫
X

f(x) dμ(x) = lim
n→∞

B -

∫
X

fn(x) dμ(x).

Remark 1.5.2.12. A more general theory of vector-valued integrals is dis-

cussed in [16, Section II.5.] and [14, Chapter III].
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Chapter 2

Hilbert C∗-modules

Since the aim of the thesis is to generalize the continuous wavelet transform

from the setting of Hilbert spaces, to the setting of Hilbert C∗-modules (a

natural generalization of Hilbert space for which the inner product takes its

values in a C∗-algebra instead of the complex number), we will include here

the basics of the theory of C∗-algebras and some results related to Hilbert

C∗-modules. Our references for this chapter are [49, 12, 75, 66, 39, 43].

2.1 C∗-Algebras

We will introduce here the basic theory of C∗-algebras. We begin with a

discussion of involutive algebras.

2.1.1 Basics

Definition 2.1.1.1. Let A be a linear space over a field F. We say A is an

associative algebra over F if for each a, b, c ∈ A and α ∈ F

1. a(bc) = (ab)c;

17
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2. a(b + c) = ab + ac and (b + c)a = ba + ca;

3. α(ab) = (αa)b = a(αb).

We say that A is commutative if ab = ba for all a, b ∈ A. We say that A
is unital if there exists an element 1A ∈ A such that 1Aa = a = a1A for all

a ∈ A.

In this thesis we will always assume that our associative algebra A is over

the complex field C, unless stated otherwise and shall write algebra for the

associative algebra. Sometimes, an algebra possesses a norm, and it may also

be a Banach space.

Definition 2.1.1.2. An algebra A is said to be a normed algebra if it is

a normed linear space such that

‖ab‖ ≤ ‖a‖ ‖b‖ .

Certainly, if A is unital, then ‖1A‖ = 1. If A is a Banach space relative to

this norm, A is said to be Banach algebra.

Example 2.1.1.3. The space L1(X) of absolutely integrable functions on a

locally compact group is a Banach algebra.

Some algebras have involution mappings.

Definition 2.1.1.4. We call an algebra A a ∗-algebra or an involutive alge-

bra, whenever A has a bijective mapping a 
→ a∗ from A to A such that for

any a, b ∈ A and α ∈ C

1. (a + b)∗ = a∗ + b∗;

2. (ab)∗ = b∗a∗;
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3. (αa)∗ = ᾱa∗;

4. (a∗)∗ = a.

We call such map an involution.

For some normed ∗-algebras, there exists an additional condition, called

the C∗-condition.

Definition 2.1.1.5. Let A be a normed ∗-algebra. The C∗-condition holds

if for any a ∈ A,

‖a∗a‖ = ‖a‖2 . (2.1)

Remark 2.1.1.6. The C∗-condition ensures that the involution in a C∗-algebra

preserves norm: ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖ ‖a‖ , hence ‖a‖ ≤ ‖a∗‖ . Replacing a

by a∗ implies the reverse inequality. Therefore, ‖a‖ = ‖a∗‖ .

A Banach ∗-algebra which satisfies the C∗-condition is called a C∗-algebra,

while a normed ∗-algebra whose norm satisfies the C∗-condition is called a

pre-C∗-algebra. Since the C∗-condition ensures that the involution in both

C∗-algebras and pre-C∗-algebras preserves the norm, the involution is con-

tinuous. There are two important examples of C∗-algebras. First, if H is a

Hilbert space, then B(H) is a C∗-algebra, with the adjoint operation as its

involution. Second, if X is a locally compact Hausdorff space, the algebra

C0(X), the space of continuous functions on X vanishing at infinity, is a

C∗-algebra with the involution given by complex conjugation and the supre-

mum norm. Theorem 2.1.1.12 below shows us how important those two

C∗-algebras are. Now, we introduce some terminology related to elements

of Banach algebra A, with or without involution. First, let us introduce a

definition of spectrum.
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Definition 2.1.1.7. If a ∈ A, we say that a complex number α is a spectral

value of a relative to A when a−α1 does not have a two-sided inverse in A.

The set of spectral values of a is called the spectrum of a and is denoted

by σA(a). We define the spectral radius rA(a) by

sup {|α| |α ∈ σ(a)} .

If a ∈ A, we call a∗ the adjoint of a, and we say a is self-adjoint if

a = a∗, normal if aa∗ = a∗a, unitary if aa∗ = a∗a = 1A and an idempotent

element, if a = a2. A self-adjoint idempotent element is called a projection.

We say that two projections p, q are orthogonal when pq = 0, and we denote

the orthogonal sum of two projection by p ⊕ q. If a∗a is a projection, then

we say a is a partial isometry. It is clear that the unit element 1A is both

self adjoint and unitary. The set of all self-adjoint elements of A is a real

vector space, while the unitary elements form a multiplicative group, called

the unitary group of A. Each a ∈ A can be expressed (uniquely) in the form

ar+aimi, where ar(=
1
2
(a+a∗)) and aim(= 1

2
(a−a∗)) are self-adjoint elements

of A. We call ar and aim the real and imaginary parts of A respectively.

An element a ∈ A is invertible if and only if a∗ is, and (a−1)∗ = (a∗)−1.

Hence, it is easy to see that

σ(a∗) = {ᾱ|a ∈ σ(a)} ,

and hence, r(a∗) = r(a). In what follows is an important property of elements

of Banach algebras, [39, Theorem 3.2.3].

Theorem 2.1.1.8. If a is an element of the Banach algebra A then the

spectrum σ(a) is a non-empty closed subset of the closed disk in C with center

0 and radius ‖a‖ .
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Remark 2.1.1.9. It is possible to replace the radius ‖a‖ by the spectral radius

r(a), recalling that the radius spectral is entirely definable in terms of the

norm as limn→∞ ‖an‖1/n .

Below some properties of the spectrum of elements of a C∗-algebra A.

Proposition 2.1.1.10. [39, Proposition 4.1.1] Suppose that a ∈ A.

1. If a is normal, r(a) = ‖a‖ .

2. If a is a self-adjoint, σ(a) is a compact subset of the real line R, and

contains at least one of the two real numbers ±‖a‖ .

3. If a is unitary, ‖a‖ = 1 and σ(a) is a compact subset of the unit circle

{a ∈ C| |a| = 1} .

If A and B are involutive Banach algebras, we say a mapping π from A to

B is a ∗-homomorphism if it is a homomorphism such that π(a∗) = π(a)∗

for each a ∈ A. In addition, if π is one to one, it is called a ∗-isomorphism.

Furthermore, if both A and B are C∗-algebras, ∗-homomorphisms do not

increase the norm and ∗-isomorphisms are norm preserving c.f [39, Theorem

4.1.8].

Definition 2.1.1.11. A representation of a C∗-algebra A in a Hilbert

space H is a ∗-homomorphism of A into B(H).

Now we are ready to include the theorem shows the importance of our

examples mentioned above.

Theorem 2.1.1.12. (Gelfand-Naĭmark Theorems)

1. Let A be a commutative C∗-algebra. There is a locally compact Haus-

dorff space X such that A is isometrically ∗-isomorphic to C0(X).
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2. Let A be a C∗-algebra. Then A is isometrically ∗-isometric to a norm-

closed ∗-subalgebra of the bounded linear operators on some Hilbert

space.

Notation. For the rest of this thesis, A will be a C∗-algebra over a complex

field, unless stated otherwise.

Any subalgebra of a C∗-algebra which is closed under involutions and

which is norm closed is also a C∗-algebra. An important subalgebra of B(H)

is K(H), the algebra of compact operators on a Hilbert space H. In fact,

K(H) is not only a subalgebra but also a two sided ideal of B(H). There

exist a standard characterization of K(H) using the finite-rank operators,

see Proposition 2.1.1.13 below. Recall that the rank of an operator T on

H is the dimension of T (H), denoted by dim T (H) and thus a finite rank

operator T is one with dim T (H) finite.

Proposition 2.1.1.13. ([66], proposition 1.1) Suppose H is a Hilbert space.

Then every finite rank operator is compact; a bounded operator is compact if

and only if it is the norm-limit of a sequence of finite rank operators. Indeed,

if h ⊗ k̄ denotes the rank one operator g 
→ (g | k) h, then

K(H) = span
{
h ⊗ k̄|h, k ∈ H}

2.1.2 Functional calculus

Now, we will introduce the notion of functional calculus. Let C(σ(a)) be the

C∗-algebra of all complex-valued functions on the spectrum σ(a). If a ∈ A is

self-adjoint, then we can define the functional calculus for a by a mapping

that associates with each f in C(σ(a)) an element f(a) in A. Below is the

existence theorem, see [39, Theorem 4.1.3] for the proof.
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Theorem 2.1.2.1. If a is a self-adjoint element of A, there is a unique

continuous mapping f 
→ f(a) : C(σ(a)) → A such that for any f, g ∈
C(σ(a)) and α, β ∈ C

1. f(a) has its elementary meaning when f is a polynomial,

2. ‖f(a)‖ = ‖f‖ ,

3. (αf + βg)(a) = αf(a) + βg(a),

4. (fg)(a) = f(a)g(a),

5. f̄(a) = (f(a))∗ , and f(a) is self adjoint if and only if f takes real values

throughout σ(a).

6. f(a) is normal,

7. f(a)b = bf(a) whenever b ∈ A and ab = ba.

2.1.3 Positive elements and ordering structure

We will include here the notion of positivity, since we will use it to study

Hilbert C∗-modules. In the Hilbert space case, one property of its inner

product use the positivity of its scalars. In the Hilbert C∗- module we will use

the positive elements in the C∗-algebra. An element a ∈ A is positive if a is

self-adjoint and σ(a) ⊆ R+. We denote by A+ the set of all positive elements

of A. Below are several characterizations of a positive element a ∈ A+. See

[39, Theorem 4.2.6] for the proof.

Theorem 2.1.3.1. If A is a C∗-algebra and a ∈ A, the following conditions

are equivalent:

1. a ∈ A+.
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2. a = h2 for a unique h ∈ A+.

3. a = b∗b, for some b ∈ A.

Remark 2.1.3.2. The result in 2.1.3.1 (3). which is similar to [58, Section

2.2.] will be used in proving that the form 〈f, g〉 where f, g are C∗-algebra

valued square integrable functions, fulfills the fourth condition for right inner

product over a C∗-algebra. That is 〈f, f〉 ≥ 0 for every square integrable

function f.

When a ∈ A+, the element h in condition 2 of Theorem 2.1.3.1 is called

the positive square root of a and denoted by a1/2. In fact, we can used

a similar procedure to introduce an element aα ∈ A+, for all real values of

α. Given the function fα in C(σ(a)) defined by fα(x) = xα, we can define

aα ∈ A+ by fα(a), when α > 0 or for all real α if a is invertible. Note

that aαaβ = aα+β and a1 = a. If a is invertible, we can define a0 = 1 and

a−1 = f−1(a) of A+. We shall list here the properties of A+. See [39, Theorem

4.2.2.] and also the proof.

Theorem 2.1.3.3. For all A,

1. A+ = {a ∈ A|a = a∗ and ‖a − ‖a‖ 1‖ ≤ ‖a‖} ;

2. A+ is closed in A;

3. αa ∈ A+ if a ∈ A+ and α ∈ R+;

4. a + b ∈ A+ if a, b ∈ A+;

5. ab ∈ A+ if a, b ∈ A+ and ab = ba;

6. if a ∈ A+ and −a ∈ A+ then a = 0.

Notation. Sometimes, we write a ≥ 0 when a ∈ A+.
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It is easy to see from Theorem 2.1.3.3 (1) that 1A is in A+. Now, let Asa

be the set of all self adjoint elements of A. It is a real Banach space which

is a partially ordered vector space with a closed positive cone A+, c.f. [39,

page 249]. That is for any a, b ∈ Asa, a ≤ b if and only if b − a ∈ A+;

and A+ = {a ∈ Asa| a ≥ 0} . Let us give the definition of order unit of the

partially ordered vector space. We will prove in Section 4.1.1 the existence of

order unit of the space of self adjoint elements of a unital C∗-algebra A. The

existence of this order unit will be very useful in constructing an increasing

subsequence of positive element in A, which will be used in several proofs of

results in the integration of C∗-algebra valued function in Section 4.1.1.

Definition 2.1.3.4. An element i in a partially ordered vector space V is

said to be an order unit when given any v ∈ V we have −αi ≤ v ≤ αi for

a suitable scalar α. We may choose α to be ‖v‖ .

To prove the existence of order units we need the following proposition

from [65, Corollary 20.].

Proposition 2.1.3.5. Let A be a unital C∗-algebra with unit 1A, and a ∈ A
is self adjoint. Then 0 ≤ a ≤ λ1A if and only if σ(a) ⊆ [0, λ]. Thus 0 ≤ a ≤
λ1A implies ‖a‖ ≤ λ, and we have ‖b‖2 1A − b∗b ≥ 0 for all b ∈ A.

In what follows, we will give some more properties of the order structure

of Asa, [39, Proposition 4.2.8].

Proposition 2.1.3.6. Suppose that a and b are self adjoint elements of A.

a. If ab ≤ a ≤ b, then ‖a‖ ≤ ‖b‖ .

b. If 0 ≤ a ≤ b, then a1/2 ≤ b1/2.

c. If 0 ≤ a ≤ b and a is invertible, then b is invertible and b−1 ≤ a−1.
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The following is also from [39].

Proposition 2.1.3.7. Suppose that a is a self-adjoint element of A, a can

be expressed in the form a+ − a−, where a+, a− ∈ A+ and a+a− = a−a+ = 0.

These conditions determine a+ and a− uniquely, and ‖a‖ = max(‖a+‖ , ‖a−‖).

Corollary 2.1.3.8. Each element a of A is a linear combination of at most

four members of A+.

2.2 Hilbert modules

A Hilbert C∗-module is a natural generalization of Hilbert space, where the

field of scalars is replaced by a C∗-algebra. A discussion of this generalization

can be found in [40, 71, 63, 67]. Over the years, there have been many

applications of the theory of Hilbert C∗-modules. A brief review can be found

inthe preface of [49]. The reader interested in a more detailed bibliography is

referred to [21]. While many familiar properties of Hilbert spaces continue to

hold in this setting, other properties such as self-duality and decomposition

into orthogonal complements no longer hold. A theory of operators on Hilbert

modules generalizing the theory of bounded operator on Hilbert space is also

available. However, here, the existence of adjoint operators is not automatic.

Throughout this section, A is a C∗-algebra, with or without a unit, and

all our modules will be right A modules.

2.2.1 Pre-Hilbert modules

An action of an element a ∈ A on H is denoted by x · a, where x ∈ H.

Definition 2.2.1.1. A pre-Hilbert A-module is a (right) A-module H

(which is at the same time a complex vector space) equipped with a sesquilin-
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ear form 〈·, ·〉 : H×H → A which respects the module action and is positive

definite:

1. 〈ϕ, ψ1 + ψ2〉 = 〈ϕ, ψ1〉 + 〈ϕ, ψ2〉 , for ϕ, ψ1, ψ2 ∈ H;

2. 〈ϕ, ψ · a〉 = 〈ϕ, ψ〉 a, for ϕ, ψ ∈ H, and a ∈ A

3. 〈ϕ, αψ〉 = α 〈ϕ, ψ〉 , for ϕ, ψ ∈ H, and α ∈ C;

4. 〈ϕ, ψ〉 = 〈ψ, ϕ〉∗ , for ϕ, ψ ∈ H;

5. 〈ϕ, ϕ〉 ≥ 0, for ϕ ∈ H, and 〈ϕ, ϕ〉 = 0 if and only if ϕ = 0.

The map 〈·, ·〉 is called an A-inner product.

Sometimes, we will write pre-Hilbert module for pre-Hilbert A-module

when A is understood.

Remark 2.2.1.2. The positivity condition (5) above is in the sense of positive

elements in A. Using condition (1) and (4), we also know that 〈ϕ · a, ψ〉 =

a∗ 〈ϕ, ψ〉 and 〈αϕ, ψ〉 = ᾱ 〈ϕ, ψ〉 = 〈ϕ, ᾱψ〉 .

More general examples can be found in [49, example 1.2.2].

Example 2.2.1.3. Let H = �2(I,A) be the linear space of all sequences

(ai)i∈I , ai ∈ A satisfying the condition
∑

i∈I ‖ai‖2 < ∞. Then �2(I,A) be-

comes a right A-module if the action of A is defined by (ai) · a = (aia) for

(ai)i∈I ∈ �2(I,A), ai ∈ A. It becomes a pre-Hilbert module if the inner prod-

uct of elements (ai) , (bi) ∈ �2(I,A) is defined by 〈(ai) , (bi)〉 =
∑

i a
∗
i bi. If

I = N, we denote �2(N,A) by �A2 .

Fortunately, we have an inequality analogous to the Cauchy-Schwartz

inequality and an analogous result to the triangle inequality.
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Lemma 2.2.1.4. (Cauchy-Schwartz inequality) If H is a pre-Hilbert

module and ϕ, ψ ∈ H, then

‖〈ϕ, ψ〉‖ ≤ ‖〈ϕ, ϕ〉‖ ‖〈ψ, ψ〉‖ .

Lemma 2.2.1.5. (Triangle inequality) If H is a pre-Hilbert module and

ϕ, ψ ∈ H, then

‖〈ϕ + ψ, ϕ + ψ〉‖1/2 ≤ ‖〈ϕ, ϕ〉‖1/2 + ‖〈ψ, ψ〉‖1/2 .

Therefore, we also have a norm in a pre-Hilbert A-module H induced by

the inner product.

Definition 2.2.1.6. The norm of an element of pre-Hilbert A-module ϕ ∈ H

is defined as

‖ϕ‖A = ‖〈ϕ, ϕ〉‖1/2 .

The inner product is separately continuous in each variable:

‖〈ϕi, ψ〉 − 〈ϕ, ψ〉‖ = ‖〈ϕ − ϕi, ψ〉‖ ≤ ‖ϕ − ϕi‖A ‖ψ‖A .

Because of this, the inner product of a pre-Hilbert module extends to an

inner product of its completion.

2.2.2 Hilbert modules

Definition 2.2.2.1. A pre-Hilbert A-module H is called a Hilbert C∗-

module over A (or sometimes just Hilbert A-module, or Hilbert module

if A is understood ) if it is complete with respect to the norm ‖·‖A . A Hilbert

submodule of a Hilbert module H is a closed submodule of H. It is a full

Hilbert module if the ideal

I = span {〈ϕ, ψ〉 |ϕ, ψ ∈ H}

is dense in A.
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Notation. From now on, let H denote a Hilbert C∗-module over A. We will

refer to H as Hilbert A-module or simply as a Hilbert module when A is

understood.

2.2.3 Examples

Example 2.2.3.1. (Hilbert A-module A) A C∗-algebra A is itself a

Hilbert A-module with action a · b = ab and 〈a, b〉 = a∗b. It is a full Hilbert

module, cf. [66, Example 2.10].

Example 2.2.3.2. (Hilbert C-module) A Hilbert module over C is a

Hilbert space with the usual scalar multiplication and inner product 〈ϕ, ψ〉 =

(ψ | ϕ) , where (· | ·) is the inner product on the Hilbert space.

Example 2.2.3.3. (Hilbert modules Hn) If {Hi} is a finite set of Hilbert

A-modules, we can define the direct sum ⊕Hi. It is a Hilbert A-module with

action (ϕi) · a = (ϕi · a) and inner product is given by 〈ϕ, ψ〉 =
∑

i 〈ϕi, ψi〉 ,

where ϕ = (ϕi) , ψ = (ψi) ∈ ⊕Hi. We denote the direct sum of n copies of

Hilbert module H by Hn. If H = A, we write An. In this case, when A is

unital, the vectors ϕi = 0⊕· · ·⊕0⊕1A⊕0⊕· · ·⊕0, where 1A is at i position

and 0 elsewhere, form an orthonormal basis for An.

Remark 2.2.3.4. The set of vectors {ξi|i ∈ I} in H is orthonormal if

〈ξi, ξj〉 =

⎧⎪⎨⎪⎩1A i = j

0 i �= j.

(2.2)

If 0 is the only vector that orthogonal to all the {ξi} then we say that the

set is an orthonormal basis for H.

Example 2.2.3.5. (Hilbert module
⊕

i∈I Hi) Let {Hi} be a collection of

Hilbert A-modules indexed by an infinite set I. We may generalize the Hilbert
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space �2(I) as follows. The set

⊕
i∈I

Hi =

{
(ϕi) ∈

∞∏
1

A |
∑

ϕ∗
i ϕi converges in norm in A

}

is a Hilbert A-module with action (ϕi) · a and inner product

〈ϕ, ψ〉 =
∑

i

〈ϕi, ψi〉 .

In particular, if I is countable and H = A, we denote it by HA, and call it a

standard Hilbert module. See [43, page 6]. If A is unital then the Hilbert

module HA possesses a standard basis {ei}i∈N
, where ei = (0, · · · , 0, 1A, 0, · · · ).

Remark 2.2.3.6. By [75, page 239], the common mistakes defining the stan-

dard Hilbert module are as follows.

Hwrong1
A =

{
(ai) ∈

∞∏
1

A|
∑

N

‖ai‖2 < ∞
}

,

Hwrong2
A =

{
(ai) ∈

∞∏
1

A|
∥∥∥∥∥∑

N

a∗
i ai

∥∥∥∥∥ < ∞
}

.

Note that Hwrong1
A is exactly the pre-Hilbert A-module �2, see example 2.2.1.3.

It is proved that
∑

N
a∗

i ai is norm convergent in A when (ai) ∈ Hwrong1
A and

strongly convergent in A∗∗ when (ai) ∈ Hwrong2
A . Hence, Hwrong1

A � HA �
Hwrong2

A . It is also cited from [20, 4.3], that Hwrong1
A = HA precisely when

A is finite dimensional. Meanwhile, Wegge-Olsen in [75] gives an example

where HA �= Hwrong2
A . Specifically, let A = K(H) and consider a sequence of

mutually orthogonal rank 1 projections {pi}. The series
∑

N
p∗i pi =

∑
N

pi =

IH /∈ K(H), where the convergence is in the sense strong operator topology,

and the norm of the sum is equal to 1. In Chapter 4 we will generalize L2(X)

to Hilbert module developed from A-valued functions. As explained above,

care is needed in defining those generalizations.
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Example 2.2.3.7. The Hilbert A-module H⊗̂A. If H is a Hilbert space

and A is a C∗-algebra, the algebraic tensor product H⊗A has an A-valued

inner product given on simple tensors by:

〈ϕ ⊗ a, ψ ⊗ b〉 = 〈ϕ, ψ〉 a∗b (ϕ, ψ ∈ H, a, b ∈ A),

and the action of A given on simple tensors by:

(ϕ ⊗ a) · b = ϕ ⊗ ab (ϕ ∈ H, a, b ∈ A).

Thus H ⊗ A is a pre-Hilbert A-module and we denote its completion by

H⊗̂A. Let {εi}i∈I be an orthonormal basis for H. If H is finite dimensional,

e.g dim(H) = n, then H⊗̂A can be naturally identified with the Hilbert

module An. If H is infinite-dimensional Hilbert space, H⊗̂A is often denoted

by
⊕

i Ai. In the case H is a separable, infinite-dimensional Hilbert space,

H⊗̂A is often denoted by HA. See [43, page 6].

2.2.4 Operators on Hilbert modules

Definition 2.2.4.1. If H and K are both Hilbert A-modules, a Hilbert

module map from H to K is a linear map T : H → K that respects the

module action: T (φ · a) = T (φ) · a. In this case we say that T is an A-linear

map.

Bounded and adjointable operators

Definition 2.2.4.2. Suppose that H, K are Hilbert modules. We define

L(H, K) to be the set of all linear maps T : H → K such that for each T there

exist an A-linear map T ∗ such that 〈Tϕ, ψ〉 = 〈ϕ, T ∗ψ〉 for all ϕ ∈ H, ψ ∈ K.

We call T ∗ the adjoint of T, and furthermore, we call L(H, K) the set of

adjointable maps from H to K. When K = H, we denote L(H, H) = L(H).
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Notation. We denote the identity operator in L(H) by IH.

Lemma 2.2.4.3. Every element T of L(H, K) is a bounded A-linear map

(and T ∗ is as well).

The following lemma is from [75, lemma 15.2.3].

Lemma 2.2.4.4. If T is adjointable, then its adjoint is unique and ad-

jointable with T ∗∗ = T. If both T and S are adjointable, then, so is ST

with (ST )∗ = T ∗S∗.

Remark 2.2.4.5. A bounded A-linear map need not be adjointable. See [43,

Page 8]

Notation. We denote the set of bounded A-linear map from H to K by

B(H, K) and write B(H) for B(H, H).

Lemma 2.2.4.6. ([75, Proposition 15.2.4.]) When equipped with the opera-

tor norm

‖T‖ = sup {‖Tϕ‖ | ‖ϕ‖ ≤ 1} ,

B(H) is a Banach algebra and L(H) is a C∗-algebra.

The following lemma is from [49]. It shows the self duality of unital

Hilbert Module A over A.

Lemma 2.2.4.7. Let A be a unital C∗-algebra and let φ : A → A be

a bounded A-linear map (i.e., for some constant K ≥ 0, the inequality

φ(a)∗φ(a) ≤ Ka∗a holds for all a ∈ A). Then φ(a) = φ(1)a for all a ∈ A.

Lemma 2.2.4.8. Let H · A = {x · a|x ∈ H, a ∈ A} . The closed linear span

of H · A over C is equal to H.

Notation. If J ⊂ H, we denote the linear span over C and A of this set by

span {J} .
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Definition 2.2.4.9. A Hilbert A-module H is called finitely generated

if there exists a finite set {xi} ⊂ H such that H = span {xi} . If {xi} is

a countable subset of H, and H = span {xi} then we call H a countably

generated Hilbert A-module.

The following theorem is from [75, Theorem 15.4.6.]

Theorem 2.2.4.10. Kasparov stabilization theorem If H is a countably

generated Hilbert A-module then H ⊕ HA ∼= HA.

Theorem 2.2.4.11. Let K be a finitely generated Hilbert submodule in a

Hilbert A-module H. If A is unital, then K is an orthogonal direct sumand

in H.

Projections and unitaries

Our main source for this section is [43, Chapter 3].

Definition 2.2.4.12. Given a closed submodule K of a Hilbert A-module

H, define

K⊥ = {ϕ ∈ H| 〈ϕ, ψ〉 = 0, ψ ∈ K} .

Then K⊥ is also a closed submodule of H.

Unlike the case when A = C, it is not always the case that for any Hilbert

submodule K of H, K ⊕ K⊥ equals H.

Definition 2.2.4.13. A closed submodule K in a Hilbert A-module H is

called complementable if H = K ⊕ K⊥.

Definition 2.2.4.14. A closed submodule K in a Hilbert A-module H is

called (topologically) complementable if there exists a closed submodule

J in H such that K + J = H, K ∩ J = {0}. We denote the nonorthogonal

direct sum of H by K⊕̃J.
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Lemma 2.2.4.15. Let H be a Hilbert module. Then

H⊥ = {0} {0}⊥ = H.

If K1 and K2 are orthogonal submodules with K1 ⊕ K2 = H, then they are

closed and K⊥
2 = K1, K⊥

1 = K2, and K⊥⊥
k = Kk, k = 1, 2.

Theorem 2.2.4.16. Let H, K be Hilbert A-modules and suppose that T be-

longs to L(H, K) and has closed range. Then

1. ker(T ) is a complementable submodule of H,

2. range(T ) is a complementable submodule of K,

3. the mapping T ∗ ∈ L(K, H) also has closed range.

Corollary 2.2.4.17. If P ∈ L(H) is an idempotent, then range(P ) is a

complementable submodule in H.

For a general T ∈ L(H, K) it is easy to verify that range(T )⊥ = ker(T ∗).

However, it need not be the case that ker(T ∗)⊥ = range(T ).

Definition 2.2.4.18. We call U ∈ L(H, K) unitary if it is an isomorphism

which preserves inner products: 〈U(ϕ), U(ψ)〉 = 〈ϕ, ψ〉 . Equivalently, if

U∗U = IH, UU∗ = IK.

If there exists a unitary element of L(H, K) then we say H and K are

unitarily equivalent Hilbert A-modules, and we write H ∼= K.

Example 2.2.4.19. Let H be a Hilbert space with orthonormal basis {εi}
then H⊗̂A ∼= ⊕

i Ai, where each Ai is a copy of A. The unitary that gives

this equivalence is the map U that takes εi ⊗ a to the element of
⊕

i Ai that

has a in the ith coordinate and zeros elsewhere.
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It is clear that if U ∈ L(H, K) is unitary then U is a surjective A-linear

map, that is isometric. For the converse, we include the following result.

Theorem 2.2.4.20. Let H, K be Hilbert A-modules and let U be a linear

map from H to K. Then the following conditions are equivalent:

1. U is an isometric, surjective A-linear map;

2. U is a unitary element of L(H, K).

Proposition 2.2.4.21. Let V be a linear map from H to K. The following

conditions are equivalent:

1. V is an isometric A-linear map with complemented range;

2. V ∈ L(H, K) and V ∗V = IH.

Corollary 2.2.4.22. Let V be a linear map from H to K. If V ∈ L(H, K)

and V ∗V = IH, then V V ∗ is a projection onto the range of V, whose kernel

is an orthogonal complement for range(V ).

Compact operators in Hilbert modules

Recall from Proposition 2.1.1.13, that K(H) is the closed span of the rank-

one operators ψ⊗ ϕ̄ : η → ψ ·(η | ϕ)
C

= ψ · 〈ϕ, η〉
C

. By analogy, given Hilbert

A-modules H and K, ϕ ∈ H and ψ ∈ K, we define ψ ⊗ ϕ̄ : H → K by

ψ ⊗ ϕ̄(η) = ψ · 〈ϕ, η〉 .

It is easy to check that ϕ ⊗ ψ̄ ∈ L(H, K) with (ϕ ⊗ ψ̄)∗ = ψ ⊗ ϕ̄.

Notation. We denote by K(H, K) the closed linear subspace of L(H, K) spanned

by
{
ϕ ⊗ ψ̄|ϕ ∈ H, ψ ∈ K

}
, and we write K(H) for K(H, H).



36 CHAPTER 2. HILBERT C∗-MODULES

Remark 2.2.4.23. Elements of K(H, K) need not be compact. For example, If

A is unital, then 1A ⊗ 1A = IA, the identity operator on A belongs to K(A),

but it is not a compact operator (unless A is finite-dimensional).

Example 2.2.4.24. If H = A, then K(A) ∼= A. The isomorphism is given

by identifying a ⊗ b̄ with Lab∗ , the left multiplication by ab∗. Moreover, if A
unital, K(A) = L(A).

Example 2.2.4.25. For the Hilbert module H⊗̂A, we have K(H⊗̂A) ∼=
K(H)⊗̂A, where K(H)⊗̂A denotes the C∗-algebraic tensor product of K(H)

and A (the completion of algebraic tensor product, to the spatial, or minimal,

C∗-norm). The identification given by the map developed from (ϕ ⊗ a) ⊗
(ψ ⊗ b) 
→ (ϕ ⊗ ψ̄) ⊗ (a ⊗ b̄) =

(
ϕ ⊗ ψ̄

)⊗ ab∗.

An example of this kind of Hilbert module tensor product is the Hilbert

module L(X)⊗̂A. In Theorem 4.2.1.1 we will show that the Hilbert module

L2(X,A) is isomorphic to Hilbert module L(X)⊗̂A.

Dual modules, self-duality and Riesz-Fréchet theorem

Definition 2.2.4.26. Let H be a Hilbert A-module and denote by H′ the

dual of H, i.e the set of bounded module maps from H to A, B(H,A).

The dual H′ is a linear vector space and a right A-module. For every

ϕ ∈ H, the map ψ 
→ 〈ϕ, ψ〉 belongs to H′, and the map defined by ϕ 
→ 〈ϕ, ·〉
is an injective A-module map. Call a Hilbert A-module H self-dual or

reflexive when every module map in H′ arises by taking the inner product

with some fixed element of H, equivalently H′ ∼= H.

Remark 2.2.4.27. Certainly that H itself is a vector space in its own right, and

therefore, there exists a dual space in the sense of the space of all functional

linear from H to C. However, since in this thesis we do not use the notion
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dual in this sense, we will always refer to definition 2.2.4.26 for the term dual

of a Hilbert module.

Example 2.2.4.28. The standard Hilbert module HA is not reflexive unless

A is finite dimmensional. See [75, 15.I].

Lemma 2.2.4.29. If H is a self-dual module then every bounded module

map T : H → K has an adjoint T ∗ : K → H. In particular, this implies

L(H) = B(H).

If A is unital, then A is self dual, c.f. lemma 2.2.4.7. Furthermore, An

is self dual if and only if A is self dual if and only if A is unital. See [75,

exercise 15.I].

Let H be a Hilbert A-module, fix ϕ ∈ H and let

Tϕψ = 〈ϕ, ψ〉 (2.3)

for all ψ ∈ H. It is easy to see that Tϕ belongs to L(H,A). In fact it belongs

to K(H,A). The following theorem gives a generalization of Riesz-Fréchet

theorem for Hilbert C∗-module. See [43, page 13].

Theorem 2.2.4.30. Riesz-Fréchet theorem for Hilbert C∗-modules

Every element T of K(H,A) is given by an inner product as in (2.3), or

equivalently, T = Tϕ for some ϕ in H.

Proposition 2.2.4.31. If A is unital, then every element of L(H,A) is

given by the inner product, and hence, K(H,A) = L(H,A). Furthermore, if

T ∈ L(H,A) then T = Tϕ where ϕ = T ∗(1A).

Group representation in Hilbert Modules

Notation. We denote the group of unitary elements of L(H) by U(H).
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Definition 2.2.4.32. Let G be a locally compact group. A homomorphism

U : G → U(H) is called a unitary representation of G on L(H) if it is

continuous in the strong operator topology, i.e. x 
→ U(x)ϕ is continuous for

all ϕ ∈ H.



Chapter 3

The wavelet transform on

Hilbert spaces

This chapter discuss the theory of continuous wavelet transforms and their

generalizations, in the Hilbert space setting. We think it is important to

include a discussion of the discrete wavelet transform and its existing gener-

alizations, both in the Hilbert space and the Hilbert module settings before

passing to our generalizations in Chapter 4 and 5. We also mention here

some results from the literature in wavelet theory related to the theory of

Hilbert C∗-modules. Beside trying to give a global idea of the terms wavelet

and wavelet transform, we also want to show that our generalization of the

continuous wavelet transform to Hilbert C∗-modules is original, and differ-

ent from the existing results in wavelet theory in Hilbert C∗-modules. This

chapter also discusses Führ’s generalized continuous wavelet transform in the

Hilbert space setting. We will generalize this to the Hilbert module setting

in the next chapter.

The first section of this chapter presents an introduction to wavelet trans-

forms. In the second section we discuss Führ’s generalized continuous wavelet

39
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transform, arising from continuous unitary representations of locally compact

groups.

3.1 Introduction to wavelet transforms

In this section, we present a historical review of the notions of wavelets and

wavelet transforms. In particular, in Section 3.1.1, we discuss the continuous

wavelet transform on the real line. In Section 3.1.2 we list some types of

wavelets and their generalizations. We hope that this will clarify the rela-

tionship of the results of this thesis to other results in wavelet theory.

3.1.1 Historical background

In the last twenty or twenty five years, wavelets have been considered as an

interesting topic for researchers from many different disciplines. There are

some examples of scientific discoveries or technological improvements that

implemented wavelet-like techniques and were discovered sometime before

the general theory of wavelets became well-known.

[52] mentions at least sixteen related concepts or approaches to wavelets,

which had previously been known by other names. A similar comment

is available in [10]. For example, in pure harmonic analysis there exist

Calderón’s formula, in physics we have affine coherent states; in electrical en-

gineering there are subband coding and constant Q-filters; and in image pro-

cessing we have multiscale representation. Anyone interested in those men-

tioned and other possible application of wavelets may consult [5, 8, 51, 70, 11].

In this thesis, we will start from wavelets as a special case of coherent state

systems in physics, related to the group representations in Hilbert spaces, as

described by Führ. We will generalize the concept using group representa-
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tions in Hilbert modules to obtain a generalization of the continuous wavelet

transform to the setting of Hilbert modules, in particular the GCWT on the

Hilbert module L2(X,A).

Now, we will discuss the continuous wavelet transform in L2(R), which

is known as the original continuous wavelet transform. To give us

a better sense of the theory, we shall include here a comparison between

Fourier analysis and wavelet analysis on a signal or function. In fact the

term wavelets was first introduced in this context. An introduction of this

theory can be found in [11, Chapter 2 and 3], [34] and [41].

In this section, our signals are real-valued square integrable functions f

on R, and the Fourier transform Ff of f will be given by the (normalized)

standard Fourier transform on the real line:

Ff(ω) = f̂(ω) =
1√
2π

∫
R

f(t)e−iωtdt. (3.1)

While we call the domain of f the time domain, we call the domain

of its transform the frequency domain. Recall that we can always extend

this transform as an isometry from L2(R) onto L2(R) by using the Plancherel

theorem. See [18, Theorem 8.29].

Using Fourier analysis, one can analyze a signal or function by cutting it

up into different frequency components (sines and cosines), and reconstruct-

ing the signal or function using a sum (or integral) of its components, known

as Fourier series (or inverse Fourier transform). See Section 2.1 and 2.2 of

[11] for some examples.

A major problem in using Fourier analysis is that although we may be

able to determine all the frequencies which occur in a signal, we cannot do

this while retaining information concerning time-localization. In other words,

we only have frequency resolution of the signal, not time resolution. Thus,

if one is interested in the frequency content locally in time, one solution of
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this problem is to cut the signal f of interest into several parts and use the

Fourier analysis on each part. The formulation of this transform Fwin is:

Fwinf(ω, t) =

∫
f(s)g(s − t)e−iωs dt.

This is called the windowed Fourier transform with the window g. Of course

the transform depends on how we cut the signal. Unfortunately, it leads to a

fundamental problem as well; that is, when we want to analyze a signal at a

certain moment in time, or, equivalently, when we use a Dirac pulse function

as a window, we always find that the frequency components of the signal are

spread over all frequencies. Thus, we cannot represent a signal as a point

in the time-frequency plane, where both time and frequency are limited in

the plane. In fact, the Heisenberg uncertainty principle limits the extent to

which time and frequency can be localized. More discussion about this can

be found in [48, chapter 2 and 4].

It was J. Morlet who had proposed wavelets as an alternative tool for the

analysis of seismic data, since the standard technique of windowed Fourier

transform, could not meet the needs of the application [57]. In fact, the word

wavelet itself was used for the first time by A. Grossmann and J. Morlet in

the early 80’s, [37, 57, 32].

As an alternative for the solution to the time-frequency localization, the

wavelet transform or wavelet analysis, instead of using the same shifted win-

dow as in the window Fourier transform, the wavelet transform uses a fully

scalable modulated window ψ ∈ L2(R) shifted along the signal. In other

words we assume
∫

ψ(t) dt = 0, dilate ψ to get different scales, and then

translate ψ to get a collection of functions

ψb,a(t) = |a|−1/2 ψ

(
t − b

a

)
(3.2)

in L2(R).
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We calculate the spectrum of a signal f ∈ L2(R) for each position and

scale of the window determined by b and a respectively. As a result, we

have a collection of time-scale representations of f given by a coefficient

function Vψf in L2(R × R′, da
|a|2 db), where R′ = R \ {0} by:

Vψf(b, a) = |a|−1/2

∫
f(t)ψ

(
t − b

a

)
dt. (3.3)

Note that we can rewrite the coefficient function of f as an inner product

with the translated and dilated ψ as follows:

Vψf(b, a) = (f | ψb,a) .

This is called the matrix coefficient of f .

Any function ψ satisfying the admissibility condition∫
R′

|ψ̂ (ω) |
|ω| dω = 1, (3.4)

is called an admissible function. In this case there exists a reconstruction

formula or an inversion formula given by:

f =

∫
R

∫
R′

(f | ψb,a) ψb,a
dadb

|a|2 , (3.5)

to be understood in the weak sense as in definition 1.5.2.2. See also remark

1.5.2.3.

The map f 
→ Vψf from L2(R) to L2(X, R×R′) da
|a|2 db is an isometry and

is called the continuous wavelet transform. In this case, the function ψ

is called the mother wavelet, and the system {ψb,a} the wavelets or the

wavelet system.

Not long after its first appearance, A. Grossmann recognized a family

of coherent states associated with the ax + b-group in the construction in-

troduced by J. Morlet. In particular, it is an affine coherent state system
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such in the sense first introduced by Aslaksen and Klauder in [1, 2]. In

this setting, the admissible vectors known as fiducial vectors, and the re-

construction formula is equivalent to what is called the resolution of the

identity. Since then, there have been many advanced studies of this contin-

uous wavelet transform and its application using the theory of coherent state

due to Grossmann, Morlet and other collaborators. See [32, 55, 56, 42].

In fact after it was realized that there is a connection between wavelets

and representations of groups, researchers in harmonic analysis was moti-

vated to study wavelets and their applications, and this research continues

to bear fruit.

3.1.2 Types of wavelets and their generalization

In practice, some people use discrete subsets of the dilation parameter b and

the translation parameter a of the continuous wavelet transform, to obtain

what is called the discrete wavelet transform. We call such a process a

discretization. Therefore, as well as the continuous wavelet transform, the

discrete wavelet transform is a common object to study.

There are two main types of discrete transform obtained from the dis-

cretization process: wavelet frames and the orthonormal wavelet bases. In

brief, a family {ψbm,an}m,n∈N
in a Hilbert space H is called a frame if there

exist constants 0 < A ≤ B such that

A
∑

m,n∈N

|(f | ψbm,an)|2 ≤ ‖f‖2 ≤ B
∑

m,n∈N

|(f | ψbm,an)|2 .

If {ψbm,an}m,n∈N
constitute an orthonormal basis for L2(R) then it is called

an orthonormal wavelet basis. An important family of orthonormal bases

[47] are certain compactly supported functions, some of which arise from mul-

tiresolution analysis, although in general wavelets that come from multireso-
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lution analysis need not have compact support. For more detail information

and intuitive description of orthogonal wavelets and multiresolution analysis,

the reader may consult [73, 72, 11].

Different backgrounds, interest, purposes or needs of the researchers af-

fect which part of the wavelet theory are studied or generalized. Hence, we

often find the word wavelet or wavelets used with different meanings. For ex-

ample, some people define wavelet frame structures for any system in Hilbert

space or even in Hilbert C∗-modules as a system satisfying a boundedness

condition similar to the condition for a frame derived from the discretization

process above. Therefore, in general, not all wavelet frames known arise as

discretization of continuous transform, and hence they do not arise from an

admissible vector in the sense we have discussed above, nor do they have

a resolution of the identity. In this general sense, a frame {ψbm,an}m,n∈N
in

Hilbert space is said to be a tight frame if A = B, and said to be normal-

ized if A = B = 1. In fact, in the terminology established in Section 3.2, a

normalized tight frame is an admissible coherent state system based on

discrete space X = N with counting measure. Using the results in Chapter

5 and [24], we will show an analogous result holds in the setting of Hilbert

modules, for a unital C∗-algebra A and a finitely and countably generated

Hilbert module.

We now discuss further generalizations of discrete and continuous trans-

forms and results on wavelets related to other fields.

One of the earliest studies of discrete wavelet transforms was the dyadic

orthonormal wavelet. In this case, the family
{
2−j/2ψ(2jx − k)

}
j,k∈N

is an

orthonormal basis for L2(R), which leads to a multiresolution structure on

this Hilbert space. We can relate the translation and dilation with uni-

tary operators T and D in B(L2(R)) given by (Tf) (t) = f(t − 1) and
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(Df) (t) =
√

2f(2t). Using this setting, there has been some work gener-

alizing this kind of wavelet to other Hilbert space [46, 54, 50, 62]. Further-

more, the applications of wavelets in other fields has been studied: harmonic

analysis [3], operator algebra and operator theory [44, 45, 33, 9].

In particular, the relation between wavelets and Hilbert modules has also

been investigated. One of the earlier ideas which includes a construction of

Hilbert C∗-module related to wavelets, was given by M. A. Rieffel in 1997

[68], and was developed by J. Packer and M. A. Rieffel in [60, 61]. A similar

construction was used by Wood in [77]. In these papers, Hilbert C∗-modules

associated to wavelets are constructed, which are then used to study the

properties of the wavelet. There are also some generalizations of wavelet

frame theory in Hilbert modules given by M. Frank and D. Larson [22, 23, 24]

and by I. Raeburn and S. Thompson [64]. A brief review of frames for Hilbert

C∗-modules was given by Frank in [19].

On the other hand, it was realized by Grossmann, Morlet and Paul in

[55, 56] that the original continuous wavelet transform on L2(R) and its

inversion formula are related to certain representations on the ax + b-group.

Furthermore, they consider the coherent state systems which arise as orbits

of continuous unitary irreducible representations π of locally compact group

G on Hilbert spaces Hπ, and define the wavelet transforms as the transforms

related to (irreducible) square integrable representations in the sense [13] or

[6]. They showed that the transforms are isometries between Hπ and L2(G).

Inspired by those facts and viewing the ax + b-group as the semidirect

product R � R+ acting on R, gives a natural idea for generalization of the

notion of wavelets using similar square integrable representations of the more

general semidirect product groups [4, 25, 74] or the more specific semidirect

products: one coming from abelian dilation groups [26] or one coming from
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a closed subgroups of GL(n, R) [15]. In these cases, we obtain continuous

wavelet transforms in higher dimensions: L2(Rn). Furthermore there has

been some work where one drops the irreducibility condition of the group

representation. For example, Führ use Plancherel theory to characterize the

admissibility condition for the regular and cyclic representations of a type

I group [29, 27, 30], and others define a continuous wavelet transform on a

special homogeneous space [59].

Since the Hilbert C∗-module is a natural generalization of Hilbert space,

with the inner product taking values in a C∗-algebra, in this thesis, we aim

to generalize the continuous wavelet transform on Hilbert spaces due to Führ

to the continuous wavelet transform on Hilbert C∗-modules. We will use the

group theoretic approach to define wavelets as a special case of coherent state

systems in Hilbert C∗-modules.

3.2 Führ’s GCWT on Hilbert spaces

We now discuss generalized wavelet transforms on Hilbert spaces based on

[28]. In the last two chapters, we shall further generalize this approach to

Hilbert C∗-modules. In this section, we define wavelets as a special case of

coherent state systems which come from strongly continuous unitary repre-

sentations of locally compact groups. Most of the results here are stated

explicitly in [28]. Therefore we will refer those restated here to the original

source. Our contributions are to give greater detail in the proofs of some of

the results, in particular those we will later generalize to the setting of Hilbert

modules. We will also use a slightly different approach to the proofs for the

synthesis operator and the resolution of the identity formula, and will restate

explicitly some of Führ’s statements or lemmas and provide the proofs, in
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particular those that will be generalized to the Hilbert module setting.

There are several reasons why we are interested in Führ’s approach. First,

this construction gives a systematic and powerful approach which can be

applied to the original continuous wavelet transform and to other related

transforms (windowed Fourier transform, two dimension continuous wavelet

transform, Gabor system). Secondly, this approach uses more general group

representations (not only the irreducible ones) to define wavelets and leads

to a complete explanation of which possible representations and admissible

vectors can be chosen in Hilbert space. The last and the most important

reason is that strongly continuous unitary representations of groups in Hilbert

spaces and isometries arise naturally in the setting of Hilbert C∗-modules.

In fact, those notions will give a possible generalization of the continuous

wavelet transform in Hilbert C∗-module. We will develop this approach in

the next chapter.

In what follows, we will reserve the notation π for the designation of a

strongly continuous unitary representation of G on a Hilbert space Hπ. We

will assume that the groups are second countable and all Hilbert spaces are

separable.

3.2.1 Coherent state systems and the GCWT

In this section we present a general notion of coherent state systems due to

Führ [28]. Included here is the definition of coherent state systems, admissible

vectors, coefficient operators and their adjoints and the resolution of the

identity. We also include the realization of the images of the coefficient

operators related to admissible vectors as reproducing kernel Hilbert spaces.

Finally we define the generalized continuous wavelet transform.
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Coherent state systems

Briefly, a coherent state system is defined as an expansion of Hilbert space

elements with respect to a system of its vectors. As stated in [28, Section

2.2], the blueprint of such an expansion is the expansion of elements of a

Hilbert space with respect to an orthonormal basis (ONB). More precisely,

if η = (ηi)i∈N
is an ONB of a Hilbert space H, for any vector ϕ ∈ H we can

write

ϕ =
∑
i∈N

(ϕ | ηi) ηi

and define a mapping Vη : H → �2(N) given by ϕ 
→ ((ϕ | ηi))i∈N . The notion

of coherent state system will be a generalization of such expansions where

the index set N will be replaced by a measure space X. Thus most of the

time we will need to replace the summation with integration over X.

In this section H will denote a separable Hilbert space and X will denote

a measure space (X,B, μ).

We start with the definitions of coherent state system, coefficient operator

and admissibility criteria in the sense of [28, Definition 2.7], and then we list

some properties of the coefficient operators.

Definition 3.2.1.1. Let η = (ηx)x∈X denote a family of vectors in H, indexed

by the elements of a measure space X.

a. For any ϕ ∈ H define a complex valued function Vηϕ on X by

Vηϕ(x) = (ϕ | ηx) .

We call this function the coefficient function.

b. If for all ϕ ∈ H, the coefficient function Vηϕ is μ-measurable, we call η a

coherent state system.
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Note that since inner product in Hilbert space is continuous, the coeffi-

cient function is continuous. However, we are interested in defining an op-

erator on Hilbert spaces, hence we will require that the coefficient functions

be square integrable.

Definition 3.2.1.2. Let η = (ηx)x∈X be a coherent state system in H, in-

dexed by the elements of a measure space X. Define

Dη =
{
ϕ ∈ H|Vηϕ ∈ L2(X)

}
. (3.6)

We denote by Vη : H → L2(X) the (possibly unbounded) operator defined

by the mapping ϕ 
→ Vηϕ from Dη to L2(X). It is a linear operator with

domain Dη and we call it coefficient operator.

In what follows, we will see that coefficient operators are closed operators,

[28, Proposition 2.8].

Proposition 3.2.1.3. Any coefficient operator is a closed operator.

Proof. Let η = (ηx)x∈X be a coherent state system and (ϕn) be a sequence in

Dη. Assume that (ϕn) converges to a vector ϕ ∈ H, and Vηϕn converge to an

element f ∈ L2(X). Then there exist a subsequence Vηϕni
which converges

to f almost every where, see [16, Corollary 3.5.]. By the Cauchy-Schwarz-

inequality we also have for any x ∈ X,

|Vηϕni
(x) − Vηϕ(x)| = |(ϕni

| ηx) − (ϕ | ηx)|
= |(ϕni

− ϕ | ηx)|
≤ ‖ϕni

− ϕ‖ ‖ηx‖

Since ϕni
→ ϕ then the last line goes to zero, so Vηϕni

→ Vηϕ a.e. By the

uniqueness of the limit, Vηϕ = f a.e. and hence Vη is also in L2(X) and

therefore ϕ ∈ Dη.
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Adjoints of coefficient operators

As coefficient operators are closed, if the domain of a coefficient operator is

the whole space, the closed graph theorem implies that it is also bounded.

In this case, we can discuss its adjoint operator [28, Proposition 2.10]. We

prefer to split Führ’s result for this case into two following corollaries.

Corollary 3.2.1.4. A coefficient operator is a bounded operator on the un-

derlying Hilbert space H if and only if Dη = H.

Proof. The statement follows from proposition 3.2.1.3 and the closed graph

theorem.

We will give a more detailed proof for the following corollary than the

one given in [28, Proposition 2.10]. In fact we will use a slightly different

approach here, that is using the definition of weakly vector valued integral

and the reflexiveness of the Hilbert space H.

Corollary 3.2.1.5. If the domain of a coefficient operator is the whole

Hilbert space H then it has an adjoint which is given pointwise by the weak

operator integral

V ∗
η (f) =

∫
X

f(x)ηx dμ(x). (3.7)

We call this adjoint operator, the synthesis operator.

Proof. By corollary 3.2.1.4, the coefficient operator Vη is bounded, hence

it has an adjoint. Now, for an element ϕ ∈ H, let φϕ be an element of H∗,

defined by φϕ(ψ) = (ϕ | ψ) . Since H is reflexive any element of H∗ always has

the form φϕ for some element ϕ ∈ H. Let f ∈ L2(X). Note that x 
→ f(x)ηx
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defines an H-valued function. Now, for any ϕ ∈ H we calculate(
ϕ | V ∗

η f
)

= (Vηϕ | f) (3.8)

=

∫
X

Vηϕ(x)f(x) dμ(x) (3.9)

=

∫
X

(ϕ | ηx) f(x) dμ(x) (3.10)

=

∫
X

(ϕ | f(x)ηx) dμ(x). (3.11)

=

∫
X

φϕ (f(x)ηx) dμ(x) (3.12)

This calculation shows that the last integral converges for each element φϕ ∈
H∗, and by definition x 
→ f(x)ηx is weakly integrable. Thus, there exists an

element of H which we denote by
∫

f(x)ηx dμ(x) such that

φϕ

(∫
X

f(x)ηx dμ(x)

)
=

∫
X

φϕ (f(x)ηx) dμ(x). (3.13)

Hence, from equality (3.12) and equation (3.13):(
ϕ | V ∗

η f
)

=

∫
X

φϕ (f(x)ηx) dμ(x)

= φϕ

(∫
X

f(x)ηx dμ(x)

)
=

(
ϕ |
∫

X

f(x)ηx dμ(x)

)
.

Admissible coherent state system

Here we define a special coherent state system, called an admissible coherent

state system.

Definition 3.2.1.6. The coherent state system η = (ηx)x∈X in ∈ H is called

admissible if the associated coefficient operator Vη is an isometry with do-

main H, i.e. Dη = H.
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The reconstruction formula

It is easy to see that the isometry property of the coefficient operator Vη for

an admissible coherent state η, gives that V ∗
η Vη is the identity operator on H

and that VηV
∗
η is a projection onto the range of Vη. Let us state these facts

formally in the following lemma.

Lemma 3.2.1.7. Let (ηx)x∈X be an admissible coherent state system. Then

the coefficient operator Vη satisfies the following conditions:

a. The operator V ∗
η Vη is the identity operator on H.

b. The operator VηV
∗
η is a projection onto the range of Vη.

Proof. For any ϕ, ψ ∈ H we have
(
V ∗

η Vηϕ | ψ
)

= (Vηϕ | Vηψ) = (ϕ | ψ) . A

straightforward implication is that
(
VηV

∗
η

)2
= VηV

∗
η VηV

∗
η = Vη

(
V ∗

η Vη

)
V ∗

η =

VηV
∗
η

In fact, Lemma 3.2.1.7 (a) leads to an inversion or reconstruction for-

mula which can be read as an expansion of a given vector in terms of the

coherent state system. This is written precisely in the following theorem,

[28, Proposition 2.11].

Theorem 3.2.1.8. Let (ηx)x∈X be an admissible coherent state system. Then

for ϕ ∈ H we have the following reconstruction formula

ϕ =

∫
X

(ϕ | ηx) ηx dμ(x) (3.14)

to be read in the weak sense.

Proof. Note that the admissibility of the coherent state system means that

the domain of the operator is the whole space H, and hence implies bound-

edness of the operator and the existence of its adjoint operator. From 3.2.1.7
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(b) we know that V ∗
η Vη = IH. Therefore, for any ϕ ∈ H, using the definition

of coefficient function and the synthesis operator formula (5.13), we obtain

the following weak integral:

ϕ =
(
V ∗

η Vη

)
(ϕ) = V ∗

η (Vη(ϕ)) =

∫
X

Vηϕ(x)ηx dμ(x) =

∫
X

(ϕ | ηx) ηx dμ(x).

(3.15)

Remark 3.2.1.9. Here, we give a different approach to the proof of 3.2.1.8

from that given in [28, Proposition 2.11]. Führ’s approach is to show that

the equality holds in the weak sense. Here, we are interested in how we

can obtain the equality by the definition and the properties of the coefficient

operator, in particular the isometry and the adjoint properties. The latter

approach will be very helpful for the generalization in the next chapter.

Note that by using the rank-one operator notation as in 2.1.1.13, we can

re-express the inversion formula in the following form:

ϕ =

∫
X

(ηx ⊗ η̄x) ϕ dμ(x). (3.16)

The resolution of the identity formula

Now we describe a formula involving a resolution of the identity, as an alter-

native way to describe the expansion property of the coherent state system,

c.f [28, Proposition 2.11]. In fact this is how we can express the identity

operator using the rank-one operators.

Before we continue the discussion of the resolution of the identity, let us

include the definition of the weak operator integral from [28, page 20].

Definition 3.2.1.10. For a family of operators (Tx)x∈X ⊂ B(H), if the

integral
∫

X
Tx(ϕ) dμ(x) converges weakly for every ϕ ∈ H, we define the
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weak operator integral
∫

X
Tx dμ(x) pointwise as(∫

X

Tx dμ(x)

)
(ϕ) =

∫
X

Tx(ϕ) dμ(x). (3.17)

Theorem 3.2.1.11. Let (ηx)x∈X be an admissible coherent state system.

Then we can rewrite the identity operator IH as a weak operator integral

which is known as a resolution of the identity formula:∫
X

ηx ⊗ η̄x dμ(x) = IH. (3.18)

Proof. Consider the family of the rank-one operators in equation (3.16),

which we know converges for any ϕ ∈ H. By definition 3.2.1.10, we can

rewrite the identity operator as the integral of the rank-one operators. It is

a weak operator integral well known as a resolution of the identity∫
X

ηx ⊗ η̄x dμ(x) = IH.

Image spaces of coefficient operators

Finally, we will discuss the image of the coefficient operator Vη for which η is

an admissible coherent state system. Before that, let us review the definition

of reproducing kernel Hilbert space. A reproducing kernel Hilbert space

is a function space that can be defined by a reproducing kernel.

Definition 3.2.1.12. Let X be a measure space, and H be a Hilbert space

of functions f : X → C with some inner product (· | ·) . The space H is called

a reproducing kernel Hilbert space if there is a function K : X × X → C

such that:

1. The function Kx defined by

Kx(y) = K(x, y)
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lies in H for all x in X.

2. For all f in H, f(x) = (Kx | f) .

Definition 3.2.1.13. The map K : X ×K → C is called the reproducing

kernel of H.

Hence, the projection onto the space is given by an integral operator

where the kernel is a reproducing kernel. For more information about the

definition and properties of reproducing kernel Hilbert space, the reader may

consult [7, 15].

As we have noticed before, the isometry property of a coefficient operator

of an admissible coherent state system gives a projection on its image, we

will see that the projection is an integral operator which is defined by a

reproducing kernel, c.f. [28, Proposition 2.12].

Proposition 3.2.1.14. Let (ηx)x∈X be an admissible coherent state system.

Then the image space of Vη is a reproducing kernel Hilbert space, that is, the

projection on its image is given by an integral operator with a reproducing

kernel.

Proof. Let f ∈ L2(X) be arbitrary. The projection of f on the image space

of Vη is given by:

VηV
∗
η f(x) =

(
V ∗

η f | ηx

)
=

∫
X

f(y) (ηy | ηx) dμ(y). (3.19)

For f ∈ Vη(H),

f(x) =
(
V ∗

η f | ηx

)
=

∫
X

f(y) (ηy | ηx) dμ(y). (3.20)

Thus the projection VηV
∗
η is an integral operator with reproducing kernel

K(x, y) = (ηy | ηx) .
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Remark 3.2.1.15. In practice, such reproducing kernel Hilbert spaces are

useful in a various contexts. For example, they describe the space of band

limited functions whose Fourier transforms has compact support [11, Section

2.1 and 2.2], and the image spaces of continuous wavelet transforms [11,

Section 2.5].

Generalized continuous wavelet transforms (GCWT)

In what follows, we will include the definition of Führ’s generalized con-

tinuous wavelet transform, c.f. [28, definition 2.13]. First, let us state the

following lemma.

Lemma 3.2.1.16. Let (π,Hπ) denote a strongly continuous unitary rep-

resentation of the locally compact group G with left Haar measure μ. For

an element η ∈ Hπ, we define a coherent state system (ηx)x∈G as the orbit

(π(x)η)x∈G. We call this system the group coherent state system, and

name the coefficient operator the group coherent state transform.

Proof. Since the weak and strong operator topologies coincide on U(Hπ),

the strong continuity of the representation is equivalent to the continuity of

all coefficient functions Vηϕ for any ϕ ∈ Hπ. Since continuous functions are

μ-measurable, by definition 3.2.1.1 (π(x)η)x∈X is a coherent state system.

In what follows, for an element η ∈ Hπ, we will write (ηx)x∈G for the

coherent state system (π(x)η)x∈G related to the representation (π,Hπ) of the

locally compact group G on Hπ.

Definition 3.2.1.17. Let (π,Hπ) denote a strongly continuous unitary rep-

resentation of the locally compact group G with left Haar measure μ. Let

η ∈ Hπ be arbitrary.
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1. The vector η is called an admissible vector if and only if the coherent

state (ηx)x∈G is admissible.

2. The coefficient operator Vη related to an admissible vector η, is called

the generalized continuous wavelet transform

3. If the coefficient operator Vη is bounded on Hπ then η is called a

bounded vector.

3.2.2 The GCWT and the left regular representation

In this section we continue the discussion of Führ’s results on the connection

between the group coherent state transform and the left regular representa-

tion of the group. In particular, we remark that all representations which

give admissible vectors are subrepresentations of the left regular representa-

tion. In order to explain the connection, we will discuss the kernel of the

group coherent state transform, the connection between the injectivity of the

transform and the cyclic property of the vector, the projection of the cyclic,

bounded, and admissible vector, the intertwining property of the transform

between the representation and the left regular representation. These results,

will be generalized in Chapter 5.

To complete the discussion in this section, we include the discussion of

relationship of bounded cyclic vectors and the left regular representation,

and also representations with admissible vectors. We will generalize these to

the setting of Hilbert modules in future work.
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The kernel and intertwining property of the group coherent state

transform

In what follows we will characterize the kernel of the group coherent state

transform. As discussed in [28, page 22], the kernel of the group coherent

state transform is the orthogonal complement of the span of {π(x)η}x∈G and

the injectivity of the transform is equivalent to the cyclicity of the related

vector. We will restate these facts here and provide proofs.

Lemma 3.2.2.1. Let (π,Hπ) be a representation of G on Hπ and η be an

element of Hπ. Let {π(G)η} be the related coherent state system and K =

span {π(G)η} . Then the kernel of the group coherent state transform Vη is

the orthogonal complement of the closure of K, ker(Vη) = K
⊥
.

Proof. We have noticed before that for any ϕ ∈ Hπ the coefficient function

Vηϕ is continuous. It is also straightforward to see that it is a bounded

function. Hence, without loss of generality, we may consider Vη as an operator

from Hπ to Cb(G), the set of bounded continuous functions on G. In this

setting, for any ϕ ∈ ker(Vη), Vηϕ = 0 means Vηϕ(x) = 0, for all x ∈ G. By

definition of the coefficient function,

0 = Vηϕ(x) = (ϕ | π(x)η) .

Therefore for any k =
∑n

i=1 π(xi)η in K,

(ϕ | k) =

(
ϕ |

n∑
i=1

π(xi)η

)

=
n∑

i=1

(ϕ | π(xi)η)

=
n∑

i=1

0

= 0.
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Since (· | ·) is continuous then for every k ∈ K, (ϕ | k) = 0, i.e. If kn −→
n

k

where kn ∈ K then

(ϕ | k) =
(
ϕ | lim

n→∞
kn

)
= lim

n→∞
(ϕ | kn) = lim

n→∞
0 = 0.

To prove the other direction, let ϕ ∈ K
⊥
. It is obvious that for every x ∈ G

Vηϕ(x) = (π(x)η | ϕ) = 0. Hence we can conclude that Vηϕ = 0 i.e. ϕ ∈
ker(Vη).

Lemma 3.2.2.2. A vector η is a cyclic vector of the representation (π,Hπ)

of a group G on a Hilbert space Hπ if and only if the coefficient operator Vη

is injective.

Proof. Let K = span {π(G)η}. If we assume that η is cyclic, then by Lemma

3.2.2.1 the kernel of the transform ker Vη = K
⊥

= Hπ
⊥ = {0} . That is, the

coefficient operator Vη is injective.

For the other direction, suppose that Vη is injective, i.e. ker(Vη) = {0}.
Suppose η is not cyclic, then K is a closed proper subset of Hπ and hence

K
⊥ �= {0}. Together with Lemma 3.2.2.1 we have the following calculation

{0} = ker(Vη) = K
⊥ �= {0} which is a contradiction.

Remark 3.2.2.3. We have seen that the proof of the previous lemma is based

on the use of orthogonal complements, a basic property of Hilbert space. We

will see that the situation is different in the setting of Hilbert C∗-modules.

It is also shown in [28, page 22] that domain of the group coherent state

transform is invariant and that the transform has an intertwining property.

We restate these in the following lemmas. We will also give the proof as in

[28] which is a direct consequence of the definition of coefficient function.
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Lemma 3.2.2.4. Let (π,Hπ) be a representation of G on Hπ, and η ∈ Hπ.

Then the domain Dη of the coefficient operator Vη is closed under the action

of G via π.

Proof. Let x, y be elements of G and ϕ an element of Dη ⊂ Hπ. By definition

Vη(π(x)ϕ)(y) = (π(x)ϕ | π(y)η)

=
(
ϕ | π(x−1y)η

)
= Vηϕ(x−1y)

= λG(x)Vηϕ(y).

Hence Vη (π(x)ϕ) is square integrable, and so π(x)ϕ belongs to Dη.

With the same proof we can prove the following corollary.

Corollary 3.2.2.5. Let (π,Hπ) be a representation of G on Hπ, and η ∈ Hπ.

Suppose that Vη is the related coefficient operator. Then Vη intertwines π with

the left regular representation.

In fact, the intertwining property shows that we must concentrate on

representations which are equivalent to subrepresentations of the left regular

representation if we wish to obtain a GCWT via its admissible vectors. This

is because every admissible vector is a bounded cyclic vector. The existence

of a bounded cyclic vector for a representation means that the representation

is equivalent to the subrepresentation of the left regular representation.

Lemma 3.2.2.6. Let (π,Hπ) be a representation of G on Hπ, and η ∈ Hπ

be admissible. Then η is a bounded cyclic vector.

Proof. By definition of an admissible coherent state system, Definition 3.2.1.1,

the domain of the related group coherent state transform is the whole space,
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hence η is a bounded vector. Now, suppose that ϕ is in the kernel of the

transform. By the isometry property of the transform, we have

0 = ‖Vηϕ‖ = ‖ϕ‖ .

That is Vη is injective. Hence by Lemma 3.2.2.2, η is a cyclic vector.

The commuting algebra and bounded, cyclic or admissible vectors

In order to focus on subrepresentations of the left regular representation, we

will need Führ’s result on the action of the commuting algebra of admissible,

cyclic or bounded vectors.

Proposition 3.2.2.7. Let (π,Hπ) be a representation of G on Hπ and η ∈
Hπ. If T is in the commuting algebra π(G)′ then

VTη = Vη ◦ T ∗.

Proof. Suppose that ϕ ∈ Hπ and x ∈ G are arbitrary. By definition of the

coefficient function,

(VTη ϕ) (x) = (ϕ | π(x)Tη)

= (ϕ | Tπ(x)η)

= (T ∗ϕ | π(x)η)

= (VηT
∗ϕ) (x)

= (Vη ◦ T ∗ ϕ) (x) .

From this we can see that VTη = Vη ◦ T ∗.

Corollary 3.2.2.8. Suppose that K is an invariant closed subspace of Hπ,

with projection operator PK. If η ∈ Hπ is admissible (respectively bounded or

cyclic) for (π,Hπ) then PKη has the same property for the subrepresentation

(π |K , K) .
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Proof. Since PK is a projection, PK = P ∗
K , and hence by proposition 5.2.2.11

VPK η = Vη ◦ P ∗
K = Vη ◦ PK .

Now let us calculate the domains of these operators. By definition, the

domain DPK η = D(Vη ◦ PK) = {ϕ ∈ Hπ | PK ϕ ∈ Dη} . Hence it is straight-

forward to see that as an operator on K, VPK η = Vη |K .

If η is an admissible vector, then, by definition the domain Dη of Vη

is equal to Hπ. Since K ⊂ Hπ = Dη then as an operator on K, DPKη =

Dη ∩ K = Hπ ∩ K = K. Since the restriction of an isometry is also an

isometry, VPKη is an isometry on K with domain the whole space. Hence by

definition PKη is an admissible vector. Furthermore by the same argument,

PKη is bounded if η is a bounded vector (η is bounded if Vη is bounded i.e.

Dη = Hπ). Finally, by Lemma 3.2.2.1, and by the fact that the restriction of

an injection is an injection, if η is cyclic for (π,Hπ) then PKη also cyclic for

(π |K , K) .

A similar result also holds for unitary intertwining operators.

Corollary 3.2.2.9. Let T be a unitary operator intertwining the represen-

tations π and σ. Then η is admissible (respectively bounded or cyclic) if and

only if Tη has the same property.

Proof. By definition, T is a map T : Hπ → Hσ which is unitary, and for any

x ∈ G, Tπ(x) = σ(x)T. By a similar argument as before, ψ ∈ DTη if and only

if T ∗ψ ∈ Dη. We know that η is admissible if Dη = Hπ, and by definition of

adjoint operator T ∗ (ψ) ∈ Hπ, for all ψ ∈ Hσ. Thus, T ∗ (ψ) ∈ Dη and hence

ψ ∈ DTη for all ψ ∈ Hσ. It follows that DTη = Hσ. From this we can see

that if η is a bounded vector for π then Tη is a bounded vector for σ.
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Now, if Vη is an isometry, then

‖VTηψ‖ = ‖(Vη ◦ T ∗) ψ‖
= ‖Vη(T

∗ψ)‖
= ‖T ∗ψ‖ .

Now, T ∗ is unitary, hence is an isometry and so

‖T ∗ψ‖ = ‖ψ‖ .

This implies that VTη is also an isometry. Together with the result of the

previous paragraph, we see that if η is an admissible vector then Tη is also

admissible.

Now, suppose ψ ∈ ker(VTη). We then have 0 = VTη (ψ) = (Vη ◦ T ∗) (ψ) =

Vη(T
∗ψ). If Vη is an injection, then T ∗ψ = 0. since T is unitary,

ψ = TT ∗ψ = T (0) = 0.

In other words ker(VTη) = {0} , or VTη is an injection.

For the other direction, we use the same argument for T ∗ as a unitary

intertwining operator, i.e. we prove that if Tη is admissible (respectively

bounded or cyclic) then η = T ∗Tη has the same property.

Bounded cyclic vectors and the left regular representation

Here we review the fact that representations having bounded cyclic vectors,

are equivalent to subrepresentations of the left regular representation, [28,

Proposition 2.16 (b)]
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Proposition 3.2.2.10. If a representation π of G on Hπ has a cyclic vector

η for which Vη is densely defined, then the group coherent state transform

Vη is an isometric intertwining operator between Hπ to L2(G,μ), and hence

π < λG.

For the left regular representation λG and its subrepresentations we have

the following existence theorem for bounded cyclic vectors.

Corollary 3.2.2.11. If a representation π of G on Hπ has a bounded cyclic

vector η, then π < λG.

Theorem 3.2.2.12. There exists a bounded cyclic vector for λG. Hence, an

arbitrary representation π has a bounded cyclic vector if and only if π < λG.

Remark 3.2.2.13. The existence of a bounded cyclic vector for λG has been

proved by Losert and Rindler, for the first countable group G. By recalling

that every second countable group is first countable, we have the first result

in the above theorem. See proof of [28, Theorem 2.21].

Representations with admissible vectors

We have seen in the previous section, that an admissible vector is bounded

and also cyclic. On the other hand, the existence of bounded cyclic vector

of a representation guarantees that the representation is unitarily equivalent

to a subrepresentation of the left regular representation. This fact allows us

to concentrate on the left regular representation and its subrepresentations

to answer the question: Which representations π have admissible vectors?

Subrepresentations of λG which are irreducible are called discrete se-

ries representations. The existence of admissible vectors for this kind of

representations is guaranteed. More generally an irreducible representation

π has admissible vectors if and only if π < λG. A complete characterization
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of admissible vectors for such representations is given in [28, Theorem 2.25].

This theory was originally proved by Grossman, Morlet and Paul [55], using

tools established by Duflo and Moore in [13].

Furthermore, one of the conclusions in the discussion of relations between

continuous wavelet transforms and λG in [28, Section 2.5] says that a nec-

essary condition for a representation π to have admissible vectors is that

π < λG. For nondiscrete unimodular groups, this property is not sufficient.

A detailed characterization of which subrepresentations of λG have admissible

vectors is given in [28, Theorem 4.22].

3.2.3 An example

As an example, we will study the original continuous wavelet transform and

its admissibility criteria defined using the approach introduce in this section.

Example 3.2.3.1. 1D-CWT Let G = R � R+ the ax + b-group. Recall

that the group multiplication is given by (b, a)(b′, a′) = (b + ab′, aa′) and the

left Haar measure is given by |a|−2dadb.

Let π be the quasi-regular representation of G acting on L2(R) via

(π(b, a)f)(x) = |a|−1/2f

(
x − b

a

)
and (π(b, a)f )̂(ω) = |a|1/2e−iωbf̂(aω).

Note that L2(R) here means L2(R, R), the set of square integrable real

valued functions on R.

Using the Plancherel theorem, the Parseval identity and Fubini’s theorem

we see that for any functions f, g ∈ L2(R), ‖Vf g‖2
2 = ‖g‖2cf

2 where

cf
2 =

∫ |f̂(ω)|2
|ω| dω.

In this case, the admissibility condition arises from the isometry property of

Vf i.e.

f ∈ L2(R) is admissible ⇔ cf = 1.
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In the calculation, we will assume that φa(ω) = ĝ(ω)f̂(aω). Then

‖Vf g‖2
2 =

∫
G

|(g | π(b, a)f)|2 d μG ((b, a)) .

Using Parseval’s identity we have

‖Vf g‖2
2 =

∫
G

|(ĝ | π(b, a)f̂)|2 d μG ((b, a))

=

∫
R′

∫
R

∣∣∣∣∫
R

ĝ(ω)|a|1/2e−iωbf̂(aω)

∣∣∣∣2 |a|−2dadb.

=

∫
R

∫
R′

∣∣∣∣∫
R

ĝ(ω)eiωb ¯̂
f(aω)

∣∣∣∣2 |a|−1dadb.

Note that f is real-valued, therefore,

∫
R

∫
R′

∣∣∣∣∫
R

ĝ(ω)eiωb ¯̂
f(aω)

∣∣∣∣2 |a|−1dadb =

∫
R

∫
R′

∣∣∣∣∫
R

ĝ(ω)eiωbf̂(aω)

∣∣∣∣2 |a|−1dadb

=

∫
R

∫
R′

∣∣∣∣∫
R

φa(ω)eiωb

∣∣∣∣2 |a|−1dadb

=

∫
R

∫
R′

∣∣∣∣∫
R

φ̂a(−b)

∣∣∣∣2 |a|−1dadb.

The measure db is unimodular, hence

∫
R

∫
R′

∣∣∣∣∫
R

φ̂a(−b)

∣∣∣∣2 |a|−1dadb =

∫
R

∫
R′

∣∣∣∣∫
R

φ̂a(b)

∣∣∣∣2 |a|−1dadb.

Applying the Plancherel formula to the last equation, we get:

∫
R

∫
R′

∣∣∣∣∫
R

φ̂a(b)

∣∣∣∣2 |a|−1dadb =

∫
R

∫
R′

∣∣∣∣∫
R

φa(b)

∣∣∣∣2 |a|−1dadb

=

∫
R

∫
R′

∣∣∣∣∫
R

ĝ(b)f̂(ab)

∣∣∣∣2 |a|−1dadb.
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Finally, apply Fubini’s theorem and use the fact that a−1da is Haar measure

of R′. We can thus re-write the last equation as:∫
R

∫
R′

∣∣∣∣∫
R

ĝ(b)f̂(ab)

∣∣∣∣2 |a|−1dadb =

∫
R′

∣∣∣f̂(ab)
∣∣∣2 |a|−1 da

∫
R

∣∣∣∣∫
R

ĝ(b)

∣∣∣∣2 db

= cf
2 ‖ĝ‖2

= cf
2 ‖g‖2 .



Chapter 4

The Hilbert A-Module L2(X,A)

From now on we will assume that our C∗-algebra A is unital.

Basically, this chapter introduces the Hilbert module L2(X,A) over a

C∗-algebra A, which contains the space of norm-square integrable A-valued

functions L2(X,A). This is the main Hilbert module that is used in Chapter

5. If in Chapter 3, the Hilbert space L2(X) of scalar-valued square integrable

function plays the main rule in the definition of continuous wavelet transform,

in Chapter 5, the Hilbert module L2(X,A) plays a similar rule.

Instead of dealing with scalar complex valued coefficient functions, the

generalization process of GCWT to Hilbert A-modules defined in Chapter 5

naturally leads us to work with A-valued coefficient functions, c.f. Definition

3.2.1.1.a and Definition 5.2.1.5.a. This is because the inner product of our

Hilbert modules take values in A. Therefore, we need to use vector-valued

integration theory in the generalization, specifically, integration theory for

A-valued functions.

We will use the Bochner integral as a generalization of Lebesgue integral

for vector-valued integrals, to work with our A-valued functions. As a result,

we show that the existence of involution and the notion of positive elements

69



70 CHAPTER 4. THE HILBERT A-MODULE L2(X,A)

in A lead to further properties of the Bochner integral for A-valued functions.

We discuss these results in section 4.1.1.

To generalize the Hilbert space L2(X), to a Hilbert A-module developed

from the space of A-valued functions, L2(X,A), we follow the process used to

generalize the standard Hilbert space �2 to the standard Hilbert module HA.

We start by defining a space of A-valued functions f for which the Bochner

integral B -
∫

X
f(x)∗f(x) dμ(x) converges. As a result, we show that the

C∗-condition implies the space defined is precisely the space of norm-square

integrable A-valued functions L2(X,A), see Remark 4.1.2.3. We then show

that the space of A-valued simple functions which we denote by F (X,A), is

a pre-Hilbert module such that its Hilbert module norm ‖·‖A ≤ ‖·‖2. This

shows that its completion with the norm ‖·‖A is possibly bigger than the

completion with the norm ‖·‖2, i.e. L2(X,A) ⊆ L2(X,A). We show that

the inner product in L2(X,A) has the form 〈f, g〉 = B -
∫

X
f(x)∗g(x) dμ(x)

for any f, g ∈ L2(X,A). We know that if A = C, the ‖·‖A = ‖·‖2 and thus

space L2(X,A) is complete with the norm induced by the A-inner product.

However we give an example to show that for some A, L2(X,A) is not nec-

essarily complete. Discussion concerning this matter can be found in section

4.1.2.

Finally, in section 4.2, we explore more properties of the Hilbert module

L2(X,A). We give a calculation to show that L2(X,A) is equivalent to the

Hilbert module tensor product L2(X)⊗̂A. It will follow that L2(X,A) is the

completion of the pre-Hilbert module Cc(X,A), (the continuous compactly

supported functions from X to A,) in the sense of [53, Definition 2.2].

Actually, we show that it is possible to generalize the concept to develop

the theory of Hilbert A-modules starting from the space of norm-square

integrable Hilbert A-module-valued functions. Using the definition of the
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Hilbert A-module norm as a generalization of the C∗-condition, we can show

the result that the pre-Hilbert modules defined using Bochner integral theory

are precisely the norm-square integrable Hilbert A-module-valued functions.

However, here, we restrict ourselves to the Hilbert module L2(X,A) which is

the completion of the pre-Hilbert module L2(X,A) of norm-square integrable

A-valued functions.

We further show that L2(X,A) is a full Hilbert module, and give some

results that characterize L2(X,A) which are related to the Hilbert space

L2(X) which is separable.

4.1 The L2(X,A)

Here we will discuss some results of A-valued Bochner integral functions and

use them to show that the norm-square integrable functions, L2(X,A) is a

pre-Hilbert A-module. We will denote its completion L2(X,A).

4.1.1 The Bochner integral of A-valued functions

Since in this chapter our functions will be A-valued, we will need some results

related to A-valued Bochner integrable functions, L1(X,A), in addition to

the distribution property for general vector valued integrable functions in

Theorem 1.5.2.7.

Notation. For any A-valued function f on X and a ∈ A, let us define

(f · a) (x) = f(x)a and f̃(x) = f(x)∗, x ∈ X.

Lemma 4.1.1.1. Let f be an A-valued strongly measurable function on X.

Then f̃ is strongly measurable.
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Proof. Let (fn)n∈N
be a sequence of countably-valued functions which con-

verges to f a.e. It is clear that f̃n is countably-valued. Since the involution

is continuous, for any x ∈ X, fn(x) → f(x) implies fn(x)∗ → f(x)∗. Hence

f̃n → f̃ a.e. By definition, f̃ is strongly measurable.

Lemma 4.1.1.2. Let f be an A-valued strongly measurable function on X,

and a ∈ A, then f · a is strongly measurable.

Proof. Let (fn)n∈N
be the sequence of countably-valued functions that con-

verges a.e to f. Since multiplication in A is continuous, then for any x ∈ X,

fn(x)a → f(x)a. Hence fn · a → f · a a.e.

Theorem 4.1.1.3. Let f be an element in L1(X,A) and (fn)n∈N
be a se-

quence that gives the Bochner integral of f. Let a ∈ A. The following are

satisfied:

a. The function f · a belongs to L1(X, A) and

B -

∫
X

f(x)a dμ(x) =

(
B -

∫
X

f(x) dμ(x)

)
a.

b. f̃ ∈ L1(X,A) and B -
∫

X
f̃(x) dμ(x) = limn→∞ B -

∫
X

f̃n(x) dμ(x).

Proof. a. The theorem is true for countably-valued integrable functions f ;

f · a is countably-valued and∫
X

‖(f · a)(x)‖ dμ(x) =

∫
X

‖f(x)a‖ dμ(x)

≤
∫

X

‖f(x)‖ ‖a‖ dμ(x)

=

∫
X

‖f(x)‖ dμ(x) ‖a‖

= ‖f‖1 ‖a‖ < ∞.
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This implies that f · a is integrable. Now, let us write

f =
∞∑

k=1

vkχk

where f(x) = vk on disjoint sets Ek ∈ Σ (k = 1, 2, 3...). Then, by

definition, for any E ∈ Σ:

B -

∫
E

f(x)a dμ(x) = lim
n→∞

(
n∑

k=1

vkaμ(Ek ∩ E)

)

= lim
n→∞

((
n∑

k=1

vkμ(Ek ∩ E)

)
a

)

=

(
lim

n→∞

n∑
k=1

vkμ(Ek ∩ E)

)
a

= B -

∫
E

f(x) dμ(x)a.

For the general case, let (fn)n∈N
be the sequence of countably-valued

integrable functions that defines the Bochner integral of f. Hence, it

is convergent a.e. to f and limn→∞
∫

X
‖f(x) − fn(x)‖ dμ(x) = 0. By

Lemma 4.1.1.2 and its proof, the function f · a is strongly measurable

and {fn · a} are countably-valued integrable functions such that fn·a →
f · a a.e. Therefore

∫
X

‖fn(x)a − f(x)a‖ dμ(x) =

∫
X

‖(fn(x) − f(x)) a‖ dμ(x)

≤
∫

X

‖(fn(x) − f(x))‖ ‖a‖ dμ(x)

=

∫
X

‖(fn(x) − f(x))‖ dμ(x) ‖a‖ → 0.

Using the result for the countably-valued case, and the continuity of
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multiplication in A, we obtain also

B -

∫
X

f(x)a dμ(x) = lim
n→∞

B -

∫
X

fn(x)a dμ(x)

= lim
n→∞

(
B -

∫
X

fn(x) dμ(x)a

)
=

(
lim

n→∞
B -

∫
X

fn(x) dμ(x)

)
a

=

(
B -

∫
X

f(x) dμ(x)

)
a.

b. By Lemma 4.1.1.1, f̃ is strongly measurable. Since the involution in A
preserves the norm, ‖f(x)∗‖ = ‖f(x)‖ , for each x ∈ X. We know that

‖f(·)‖ is Lebesgue integrable, and so ‖f(·)∗‖ =
∥∥∥f̃(·)

∥∥∥ is also Lebesgue

integrable. Hence by the characterization of Bochner integrable func-

tion given in Theorem 1.5.2.6, f̃ is Bochner integrable. If {fn}n∈N

defines the Bochner integral of f, fn → f a.e. and∥∥∥∥B -

∫
X

f(x)∗ dμ(x) − B -

∫
X

fn(x)∗ dμ(x)

∥∥∥∥
≤
∫

X

‖f(x)∗ − fn(x)∗‖ dμ(x)

=

∫
X

‖(f(x) − fn(x))∗‖ dμ(x)

=

∫
X

‖f(x) − fn(x)‖ dμ(x) → 0.

By definition, B -
∫

X
f(x)∗ dμ(x) = limn→∞ B -

∫
fn(x)∗ dμ(x).

Theorem 4.1.1.4. Let f and g be strongly measurable functions. If fg ∈
L1(X, A), then

(
B -
∫

X
f(x)g(x) dμ(x)

)∗
= B -

∫
X

g(x)∗f(x)∗ dμ(x)

Proof. It is easy to see that by the continuity of the involution, the theorem

holds for countably-valued functions f, g. Now, we will prove the more gen-

eral case. Since f, g are strongly measurable, then by Theorem 1.5.1.5 fg is
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strongly measurable. Let {fn} and {gn} be sequences of countably-valued

functions that converge a.e. to f and g respectively, such that {fngn} be

a sequence of countably-valued integrable functions that define the Bochner

integral of fg. Note that by Theorem 4.1.1.3 (b), g̃f̃ = f̃ g is integrable and

B -

∫
g(x)∗f(x)∗ dμ(x) = B -

∫
X

f̃ g(x) dμ(x) (4.1)

= lim
n→∞

B -

∫
X

f̃ngn(x) dμ(x) (4.2)

= lim
n→∞

B -

∫
X

gn(x)∗fn(x)∗ dμ(x). (4.3)

Since involution in A is continuous, together with the definition of Bochner

integral, equation (4.3) gives(
B -

∫
X

f(x)g(x) dμ(x)

)∗
=

(
lim

n→∞
B -

∫
X

fn(x)gn(x) dμ(x)

)∗
(4.4)

= lim
n→∞

(
B -

∫
X

fn(x)gn(x) dμ(x)

)∗
(4.5)

= lim
n→∞

(
B -

∫
X

gn(x)∗fn(x)∗ dμ(x)

)
(4.6)

= B -

∫
X

g(x)∗f(x)∗ dμ(x). (4.7)

4.1.2 The Pre-Hilbert A-module L2(X,A)

Here, we will introduce L2(X,A), the norm-square integrable A-valued func-

tions, as a pre-Hilbert A-module.

We start by considering a space L of A-valued functions f on X such

that the Bochner integral B -
∫

X
f(x)∗f(x) dμ(x) converges.

Definition 4.1.2.1. An A-valued function on X is an element of L if and

only if f is strongly measurable and the Bochner integral B -
∫

X
f(x)∗f(x) dμ(x)

converges.
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In what follows we will show that L coincides with the space of norm-

square integrable A-valued functions L2(X,A). It is worth noting that if A
is a general Banach ∗-algebra, this is possibly not always true. On the other

words, an extra work will be needed to see wether the result is applied for

the general case. Therefore, we will only concentrate on C∗-algebra A in this

thesis. The C∗-condition of A leads to the following results.

Theorem 4.1.2.2. Let f be an A-valued strongly measurable function on X.

Then, the Bochner integral B -
∫

X
f(x)∗f(x) dμ(x) converges if and only if∫

X

‖f(x)‖2 dμ(x) < ∞.

Furthermore, if the Bochner integral B -
∫

X
f(x)∗f(x) dμ(x) converges then∥∥∥∥B -

∫
X

f(x)∗f(x) dμ(x)

∥∥∥∥ ≤
∫

X

‖f(x)‖2 dμ(x) < ∞.

Proof. Let f be an A-valued strongly measurable function on X and suppose

that the Bochner integral B -
∫

X
f(x)∗f(x) dμ(x) converges. By Theorem

1.5.2.6 we know that ∫
X

‖f(x)∗f(x)‖ dμ(x) < ∞.

Since the values of f belong to A then the C∗-condition, gives

‖f(x)∗f(x)‖ = ‖f(x)‖2 for all x ∈ X.

Hence ∫
X

‖f(x)‖2 dμ(x) =

∫
X

‖f(x)∗f(x)‖ dμ(x) < ∞.

For the other direction, let f be an A-valued strongly measurable function

on X and
∫

X
‖f(x)‖2 dμ(x) < ∞. By Lemma 4.1.1.1 f̃ is strongly measur-

able. The product of strongly measurable functions is strongly measurable,
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Theorem 1.5.1.5 (3). Hence f̃f is strongly measurable. The C∗-condition

gives: ∫
X

‖f(x)∗f(x)‖ dμ(x) =

∫
X

‖f(x)‖2 dμ(x) < ∞.

Again, we use Theorem 1.5.2.6 to conclude that the Bochner integral

B -

∫
X

f(x)∗f(x) dμ(x)

converges.

Remark 4.1.2.3. Theorem 4.1.2.2 says that L is precisely the space L2(X,A).

Therefore, in what follows, we will use the notation L2(X,A) instead of L

to denote the space defined in definition 4.1.2.1. Recall that inner prod-

uct in A as a Hilbert A-module is defined as 〈a, b〉 = a∗b. This allows us

to define a space of strongly measurable H-valued functions f such that

B -
∫

X
〈f(x), f(x)〉 dμ(x) converges. We know from the definition of the

Hilbert module norm, that ‖〈f, f〉‖ = ‖f‖2 . In a similar way, we also have a

result that the space coincides with the square integrable H-valued functions.

We will consider first the case of A-valued functions.

Now we will discuss L2(X,A) as a pre-Hilbert A-module. First we show

that there is an action of A on L2(X,A), which allows us to define the

structure of a right A-module on L2(X,A).

Proposition 4.1.2.4. Let f ∈ L2(X,A) and a ∈ A. Then f · a ∈ L2(X,A)

Proof. From Lemma 4.1.1.2 we know that f ·a is strongly measurable. Now,∫
X

‖(f · a) (x)‖2 dμ(x) =

∫
X

‖f(x)a‖2 dμ(x)

≤
∫

X

‖f(x)‖2 ‖a‖2 dμ(x)

=

(∫
X

‖f(x)‖2 dμ(x)

)
‖a‖2 < ∞.

By definition, f · a is norm square integrable.
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Before we discuss about the existence of an A-inner product in L2(X,A),

we will discuss the existence of an A-inner product in the subspace F (X,A)

of A-valued simple functions on X. Recall that F (X,A) is a dense subspace

of L2(X,A) relative to ‖·‖2 . It is also easy to show that F (X,A) is a pre-

Hilbert module with the action defined in Proposition 4.1.2.4, and an A-

inner product which is given by: for any simple functions f =
∑N

i=1 χEi
ai

and g =
∑M

j=1 χFj
bj, where {Ei} are disjoint sets and {Fj} are disjoint sets,

〈f, g〉 =

〈
N∑

i=1

χEi
ai,

M∑
j=1

χFj
bj

〉

= B -

∫
X

(
N∑

i=1

χEi
ai)

∗
M∑

j=1

χFj
bj dμ(x)

= B -

∫
X

N∑
i=1

M∑
j=1

χEi∩Fj
a∗

i bj dμ(x)

=
N∑

i=1

M∑
j=1

a∗
i bjμ(Ei ∩ Fj).

Notation. Let us denote the Hilbert module completion of F (X,A) with the

norm ‖·‖A, F (X,A)‖·‖A , by L2(X,A).

Lemma 4.1.2.5. For any simple function f ∈ F (X,A), ‖f‖2 ≥ ‖f‖A .

Proof. Let f =
∑N

i=1 χEi
ai where {Ei} are disjoint sets,

‖f‖2
2 =

∫
X

‖f(x)‖2 dμ(x) =

∫
X

∥∥∥∥∥
N∑

i=1

χEi
(x)ai

∥∥∥∥∥
2

dμ(x)

=
N∑

i=1

∫
Ei

‖χEi
(x)ai‖2 dμ(x) =

N∑
i=1

‖ai‖2 μ(Ei)

=
N∑

i=1

‖a∗
i ai‖μ(Ei) ≥

∥∥∥∥∥
N∑

i=1

a∗
i aiμ(Ei)

∥∥∥∥∥ = ‖〈f, f〉‖ .
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This implies that in F (X,A) a Cauchy sequence in the ‖·‖2 norm is

Cauchy in the ‖·‖A norm. This gives that the completion of F (X,A) with

the norm ‖·‖A is the same or larger than L2(X,A).

Corollary 4.1.2.6. F (X,A) ⊂ L2(X,A) = F (X,A)‖·‖2
⊆ F (X,A)‖·‖A =

L2(X,A).

Corollary 4.1.2.7. L2(X,A) is a pre-Hilbert module whose A-inner product

extends from the A-inner product of F (X, A).

Proof. The fact that F (X,A) is a dense submodule of the Hilbert module

L2(X,A) such that F (X,A) ⊂ L2(X,A) ⊂ L2(X,A) gives the result.

Lemma 4.1.2.8. For any function f ∈ L2(X,A), ‖f‖2 ≥ ‖f‖A .

Proof. Let (fn) be a Cauchy sequence in ‖·‖a of simple functions such that

‖f − fn‖2 → 0. By Lemma 4.1.2.5, (fn) is also Cauchy in ‖·‖A and

‖f − fn‖A = lim
m→∞

‖fm − fn‖A ≤ lim
m→∞

‖fm − fn‖2 = ‖f − fn‖A → 0.

Therefore, ‖f‖2 = limn→∞ ‖fn‖2 and ‖f‖A = limn→∞ ‖fn‖A . For any n ∈ N

by Lemma 4.1.2.5

‖fn‖A ≤ ‖fn‖2

therefore

‖f‖A = lim
n→∞

‖fn‖A ≤ lim
n→∞

‖fn‖2 = ‖f‖2 .

Theorem 4.1.2.9. If we view L2(X,A) as a space of equivalence classes of

functions which differ only on a null set, then

〈f, g〉 = B -

∫
X

〈f(x), g(x)〉 dμ(x)

where f, g ∈ L2(X,A), defines an A-valued inner product in L2(X,A).
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Proof. First of all we need to show that 〈f, g〉 converges for all f, g ∈ L2(X,A).

Note that the inner product in A is defined by 〈a, b〉 = a∗b for all a, b ∈ A.

Hence,

〈f, g〉 = B -

∫
X

〈f(x), g(x)〉 dμ(x) = B -

∫
X

f(x)∗g(x) dμ(x). (4.8)

Since f, g ∈ L2(X,A), they are both strongly measurable and are norm-

square integrable: ‖f(·)‖ and ‖g(·)‖ are both in L2(X). By [69, theorem 3.8]

the function ‖f(·)‖ ‖g(·)‖ belongs to L1(X). Hence,∫
X

‖f(x)∗g(x)‖ dμ(x) ≤
∫

X

‖f(x)∗‖ ‖g(x)‖ dμ(x) (4.9)

=

∫
X

‖f(x)‖ ‖g(x)‖ dμ(x) < ∞. (4.10)

By Lemma 4.1.1.1 and Theorem 1.5.1.5 (3), f̃g is strongly measurable. Hence

from Theorem 1.5.2.6,

〈f, g〉 = B -

∫
X

〈f(x), g(x)〉 dμ(x)

is well-defined for all f, g ∈ L2(X,A).

For each f, g ∈ L2(X,A) there exist sequences (fn), (gn) sets of simple

functions such that

‖f − fn‖2 → 0 and fn → f a.e.

and

‖g − gn‖2 → 0 and gn → g a.e.

By Corollaries 4.1.2.6 and 4.1.2.7, we know that there exists an A-inner

product in L2(X,A) which is an extension of that in F (X, A) and a restriction

of that in the Hilbert module L2(X,A).

Since ‖·‖A ≤ ‖·‖2 , then

‖f − fn‖A → 0
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and

‖g − gn‖A → 0.

This implies

〈f, g〉 = lim
n→∞

〈fn, gn〉 (4.11)

= lim
n→∞

B -

∫
X

〈fn(x), gn(x)〉 dμ(x) (4.12)

= lim
n→∞

B -

∫
X

fn(x)∗gn(x) dμ(x). (4.13)

To complete the proof, we need to show that

B -

∫
X

f(x)∗g(x) dμ(x) = lim
n→∞

B -

∫
X

fn(x)∗gn(x) dμ(x). (4.14)

We know that for each n, f̃ngn is a simple function, and we also know that

f̃ngn → f̃ g a.e. We will show that∥∥∥f̃g − f̃ngn

∥∥∥
1
→ 0.

By noticing that for any f ∈ L2(X,A), ‖f(·)‖2 ∈ L2(X, R), using the ordi-

nary Cauchy-Schwarz inequality,∥∥∥f̃ g − f̃ngn

∥∥∥
1

=

∫
X

‖f(x)∗g(x) − fn(x)∗gn(x)‖ dx

=

∫
X

‖f(x)∗g(x) − f(x)∗gn(x) + f(x)∗gn(x) − fn(x)∗gn(x)‖ dx

=

∫
X

‖f(x)∗(g(x) − gn(x)) + (f(x) − fn(x))∗gn(x)‖ dx

≤
∫

X

‖f(x)∗(g(x) − gn(x))‖ dx +

∫
X

‖(f(x) − fn(x))∗gn(x)‖ dx

≤
∫

X

‖f(x)‖ ‖(g(x) − gn(x))‖ dx +

∫
X

‖(f(x) − fn(x))‖ ‖gn(x)‖ dx

≤ ‖f‖2 ‖g − gn‖2 + ‖f − fn‖2 ‖gn‖2 → 0
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The definition of the Bochner integral gives equation 4.14. Therefore, to-

gether with equation 4.13, we can conclude that

〈f, g〉 = B -

∫
X

〈f(x), g(x)〉 dμ(x)

defines an A-inner product.

Using Proposition 4.1.2.4 and Theorem 4.1.2.9, we can summarize the

results in the following theorem.

Theorem 4.1.2.10. The linear vector space L2(X,A) is a pre-Hilbert A-

module, with the action of A defined by:

(f · a)(x) = f(x)a for any x ∈ X and a ∈ A

and inner product defined by

〈f, g〉 = B -

∫
X

f(x)∗g(x) dμ(x) = B -

∫
X

〈f(x), g(x)〉 dμ(x)

for any f, g ∈ L2(X,A).

It is easy to see that if A = C then the ‖·‖2 = ‖·‖
C

. This implies that

the completions in each norm coincide. Meanwhile, if X is also a countable

space, such that L2(X,A) = �A2 , we know that the pre-Hilbert A-module

�A2 = HA if and only if A is finite dimensional, see [75, page 239].

By [43, page 6] a series of positive elements in A may converge even

though it is not absolutely convergent. Therefore, it is possible that there

exists a C∗-algebra A and an element (ai)i∈N
of a standard Hilbert A-module

HA such that the sum of the series
∑∞

i=1 ‖a∗
i ai‖ does not converge. To give

a better sense of this kind of Hilbert module, let us include the following

example.
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Example 4.1.2.11. Let Y = [0, 1] and A = C(Y ). We will show that

�A2 � HA. Recall that the norm in A is the supremum norm, ‖·‖∞ . We

will construct a sequence of functions (fi)i∈N
in the standard Hilbert A-

module HA such that the series
∑∞

i=1 ‖f ∗
i fi‖∞ does not converge. We start

with defining a sequence (pi)i∈N
of positive elements in A, which are actu-

ally functions in A, such that for each i, the maximum value of pi is 1/i

and its support is centered at 1/i, and supp(pi) ∩ supp(pj) = ∅ if i �= j.

We define p1 to be linear on interval (3
4
, 1] and vanishes elsewhere, mean-

while for i = 2, 3, 4, · · · , pi is linear on both intervals
(

1
2
(1

i
+ 1

i+1
), 1

i

]
and(

1
i
, 1

2
(1

i
+ 1

i−1
)
]

with supremum value 1
i

and infimum value 0 :

pi(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 y ≤ 1
2
(1

i
+ 1

i+1
)

2(i + 1)y 1
2
(1

i
+ 1

i+1
) < y ≤ 1

i

2(1 − i)y 1
i

< y ≤ 1
2
(1

i
+ 1

i−1
)

0 y > 1
2
(1

i
+ 1

i−1
).

(4.15)

Furthermore, let us define

Sk =
k∑

i=1

pi, where k ∈ N.

For an illustration, see Figure 4.1.

We can see that for each i ∈ N, ‖pi‖∞ = 1
i
, and so,

∞∑
i=1

‖pi‖∞ =
∞∑
i=1

1

i
= ∞. (4.16)

Now, let us consider the sequence of partial sums:(
Sk =

k∑
i=1

pi

)
k∈N

.
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Figure 4.1: p1, p2, p3, p4 and S4
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We will show the sequence is Cauchy: Let k, l ∈ N and without loss of

generality, let k < l. Hence,

‖Sl − Sk‖∞ =

∥∥∥∥∥
l∑

i=k+1

pi

∥∥∥∥∥
∞

= sup
y∈[0,1]

∣∣∣∣∣
l∑

i=k+1

pi(y)

∣∣∣∣∣ =
1

k + 1

goes to 0 as k, l → ∞ independently. Therefore the infinite sum

∞∑
i=1

pi

converges in norm in A. If we denote the sum by p0, then, for each y ∈ Y, p0(y)

is defined by:

p0(y) =
∞∑
i=1

pi(y) = pi0(y)

If y ∈
(

1
2

(
1
i0

+ 1
i0+1

)
, 1

2

(
1
i0

+ 1
i0+1

)]
for i0 ∈ N. Moreover, since supp(pi) are

disjoint, we can calculate that

‖p0‖∞ = sup
y∈[0,1]

∣∣∣∣∣
∞∑
i=1

pi(y)

∣∣∣∣∣ = sup
i∈N

‖pi‖∞ = sup
i∈N

{
1

i

}
= 1.

Since each pi is a positive element of A, we can take its square root fi =
√

pi

which is still an element of A. It is easy to see that (fi)i∈N
is an element of

HA : ∞∑
i=1

f ∗
i fi =

∞∑
i=1

|fi|2 =
∞∑
i=1

f 2
i =

∞∑
i=1

pi = p0 ∈ A

such that ∞∑
i=1

‖f ∗
i fi‖∞ =

∞∑
i=1

‖pi‖∞ = ∞.

As we have discussed in Remark 2.2.3.6, by [75, Page 29] there is some

confusion in defining the standard Hilbert module. Extra care is needed in

discussing this module. The discussion in this chapter is a generalization of

what we have in Example 2.2.3.5 for the standard Hilbert module (L2(X,A)

is a generalization of Hwrong1
A and its completion L2(X,A), is a generalization
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of HA.) Therefore, similar extra care is also needed. The following example

shows that the space

W =

{
f : X → A|f μ-measurable and

∥∥∥∥∫
X

f(x)∗f(x) dμ(x)

∥∥∥∥ < ∞
}

,

sometimes is bigger than L2(X,A). In particular, if X = R+ and A = C(Y ),

then there exists a function f such that ‖f‖2 = ∞ and∥∥∥∥∫ f(x)∗f(x) dx

∥∥∥∥ < ∞,

but
∫

f(x)∗f(x) dx is not convergent in A.

Example 4.1.2.12. Let X = R+ and Y = [0, 5]. If A = C(Y ), a unital C∗-

algebra, then for every f ∈ L2(X,A), f(x) ∈ C(Y ) for each x ∈ X. Recall

that in C(Y ) we use the supremum norm as defined in equation (1.1). Hence,

for each A-valued function f on X, the norm ‖·‖2 can be rewritten as

‖f‖2
2 =

∫
X

‖f(x)‖2 dx =

∫
X

(
sup

y
|f(x)(y)|

)2

dx, (4.17)

which is finite if f is in L2(X,A). On the other hand, for each f ∈ L2(X,A),

we can write

‖f‖2
A =

∥∥∥∥∫
X

|f(x)|2 dx

∥∥∥∥ = sup
y

∫
X

(|f(x)|2 dx
)
(y). (4.18)

Note that the weakly and strongly integrable coincide for C-valued function

f on X×Y . Hence, if the integral
∫

X
|f(x)(y)|2 dx converges for every y ∈ Y

then we can define(∫
X

|f(x)|2 dx

)
(y) =

∫
X

|f(x)(y)|2 dx. (4.19)

In this case, we can re-write the norm ‖f‖A as

‖f‖2
A =

∥∥∥∥∫
X

|f(x)|2 dx

∥∥∥∥ = sup
y

∫
X

(|f(x)(y)|2 dx
)
. (4.20)
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Now, for each x ∈ X let us define a function g(x) ∈ A by

g(x)(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y, 0 ≤ y ≤ 1√

x

2√
x
− y 1√

x
< y ≤ 2√

x

0, otherwise.

Using this formula, g : x 
→ g(x) define an A-valued function. Unfortunately

g is not in L2(X,A) :

‖g‖2
2 =

∫
X

‖g(x)‖2 dx

=

∫
X

sup
y

|g(x)(y)|2 dx

=

∫
X

(
1√
x

)2

dx

=

∫
X

dx

x
= ∞.

Let us define a function G : X × Y → C by G(x, y) = g(x)(y). It is clear

that G is continuous in its second variable and the integral
∫

X
|G(x, y)|2 dx

converges. Furthermore, it is equal to 0 if y = 0 and otherwise,∫
X

|G(x, y)|2 dx =

∫ 1
y2

0

y2 dx +

∫ 4
y2

1
y2

(
2√
x
− y

)2

dx

=

∫ 1
y2

0

y2 dx +

∫ 4
y2

1
y2

(
4

x
− 4√

x
y + y2

)
dx

=
[
y2x
] 1

y2

0 dx +
[
4 ln x − 8yx

1
2 + y2x

] 4
y2

1
y2

= 1 + 4 ln
4

y2
− 8y

2

y
+ y2 4

y2
− 4 ln

1

y2
+ 8y

1

y
− y2 1

y2

= 1 + 4 ln
4

y2
− 4 ln

1

y2
− 8y

2

y
+ 8y

1

y
+ y2 4

y2
− y2 1

y2

= 1 + 4 ln 4 − 8 + 3

= 4 ln 4 − 4

= 8 ln 2 − 4.
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This shows that for each y ∈ Y, the integral
∫

X
|g(x)(y)|2 dx converges.

Hence we can define a function integral
∫

X
|g(x)|2 dx from Y to C pointwise

by:

(∫
X

|g(x)|2 dx

)
(y) =

∫
X

|g(x)(y)|2 dx (4.21)

=

∫
X

|G(x, y)|2 dx (4.22)

=

⎧⎪⎨⎪⎩0, y = 0

8 ln 2 − 4, otherwise.

(4.23)

Unfortunately,
∫

X
|g(x)|2 dx is not continuous at y = 0. This implies∫

X
|g(x)|2 dx is not an element of A. Now, using equality (4.23) we calculate

the norm ‖g‖A by:

‖g‖2
A = sup

y

(∫
X

|g(x)|2 dx

)
(y) (4.24)

= sup
y

∫
X

|g(x)(y)|2 dx (4.25)

= sup
y

{8 ln 2 − 4, 0} (4.26)

= 8 ln 2 − 4 < ∞. (4.27)

4.2 More properties of L2(X,A)

In what follows we will show that the Hilbert module L2(X,A) is isomorphic

to the Hilbert module L2(X)⊗̂A. That is, we show that there exists a unitary

operator from L2(X)⊗̂A to L2(X,A) that preserves the inner product and

the action of A on the Hilbert modules. We also show that L2(X,A) is a full

Hilbert A-module.
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4.2.1 The L2(X,A) and the tensor product Hilbert mod-

ule L2(X)⊗̂A
Theorem 4.2.1.1. For any measure space X, the Hilbert modules L2(X)⊗̂A
and L2(X,A) are isomorphic.

Proof. To avoid confusion, we will use capital letters to denote A-valued

functions.

It is easy to see that for any function f ∈ L2(X) and a ∈ A, the mapping

x 
→ f(x)a defines a function Fa in L2(X,A). Since the set of simple function

is dense in L2(X), there exists a sequence (fn)n∈N
of simple functions that

converges to f almost everywhere. It is clear that for each n ∈ N

Fn : x 
→ fn(x)a

is a sequence of countably-valued functions which converges to Fa almost

everywhere by the continuity of multiplication in A. By definition, Fa is

strongly measurable. Now, let us calculate:∫
X

‖Fa(x)‖2 dμ(x) =

∫
X

‖f(x)a‖2 dμ(x)

=

∫
X

|f(x)|2 ‖a‖2 dμ(x)

=

∫
X

|f(x)|2 dμ(x) ‖a‖2

= ‖f‖2
2 ‖a‖2 .

It is also routine to show that the mapping (f, a) 
→ Fa is bilinear. Hence,

there exists a well-defined linear map U from L2(X) ⊗A to L2(X,A), such

that

U(f ⊗ a) = Fa. (4.28)
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Recall that the action of A on L2(X,A) is given by

(F · a) (x) = F (x)a for all x ∈ X,

and the action on L2(X) ⊗ A is given by (f ⊗ a) · b = f ⊗ ab. We need

to show that U preserves the action of A on both of the pre-Hilbert mod-

ules. That is for any f ⊗ a ∈ L2(X) ⊗ A and b ∈ A then U (f ⊗ a · b) =

U (f ⊗ a) ·b. Now, let x ∈ X be arbitrary. The following calculation gives our

result: U ((f ⊗ a) · b) (x) = U (f ⊗ ab) (x) = f(x)ab and (U (f ⊗ a) · b) (x) =

U (f ⊗ a) (x) · b = f(x)ab. Next we will show that U preserves the inner

product. Because of the linearity of U , it is enough to show that for any

f ⊗ a and g ⊗ b ∈ L2(X) ⊗A, then

〈U(f ⊗ a), U(g ⊗ b)〉 = B -

∫
X

〈U(f ⊗ a)(x), U(g ⊗ b)(x)〉 dμ(x)

= B -

∫
X

〈f(x)a, g(x)b〉 dμ(x)

= B -

∫
X

(f(x)a)∗g(x)b dμ(x)

= B -

∫
X

(f(x)a)∗g(x) dμ(x)b

=

(
B -

∫
X

g(x)∗f(x)a dμ(x)

)∗
b

=

(∫
X

g(x)∗f(x) dμ(x) a

)∗
b

= a∗
(∫

X

g(x)∗f(x) dμ(x)

)∗
b

= a∗
∫

X

f(x)∗g(x) dμ(x)b

= a∗
∫

X

f(x)g(x) dμ(x)b

= 〈f, g〉 a∗b

= 〈f ⊗ a, g ⊗ b〉 .
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Since U preserves the inner product, it is an isometry and hence it is

injective and continuous. Now, we know that U is an A-linear operator from

L2(X)⊗A to L2(X,A). To show that it can be extended to a unitary operator

from L2(X)⊗̂A to L2(X,A), we need to show that the range of U is dense

in L2(X,A).

If F ∈ L2(X,A) is a simple function, then F is in the range of U. Recall

that we can represent F by

F (x) =
n∑

i=1

aiχEi
(x) =

n∑
i=1

χEi
ai(x) for all x ∈ X,

where Ei are disjoint sets with finite measure. Hence for each i, χEi
is in

L2(X), and we can write χEi
(x)ai = U(χEi

⊗ ai)(x). Therefore,

F (x) =
n∑
i

U(χEi
⊗ ai)(x)

= U(
n∑
i

χEi
⊗ ai)(x).

We know that F (X,A) is dense in L2(X,A). Together with the fact that

F (X, A) ⊂ range(U) ⊂ L2(X,A) ⊂ L2(X,A), we see that the range of U is

dense in L2(X,A).

4.2.2 The full Hilbert module L2(X,A)

Theorem 4.2.2.1. The Hilbert module L2(X,A) is a full Hilbert module.

Proof. We need to show that the ideal

I = span
{〈f, g〉 |f, g ∈ L2(X,A)

}
is dense in A.
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Here, we will view L2(X,A) as L2(X)⊗̂A.

We know that A is a full Hilbert module with a · b = ab and 〈a, b〉 = a∗b.

Therefore, for each a ∈ A, given ε > 0, there exists

c =
n∑

i=1

αi 〈ai, bi〉 =
n∑

i=1

αia
∗
i bi ∈ I

such that ‖a − c‖ < ε. Now, let f0 be any function in L2(X) such that

‖f0‖2 = 1. For each i = 1, 2, · · · , n f0 ⊗ ai and f0 ⊗ bi are elements of

L2(X)⊗̂A. We now can define an element a0 ∈ I by:

a0 =
n∑

i=1

αi 〈ai, bi〉 =
n∑

i=1

αi 〈f0, f0〉 〈ai, bi〉 =
n∑

i=1

αi 〈f0 ⊗ ai, f0 ⊗ bi〉 .

It is straightforward to see that ‖a − a0‖ < ε.

4.2.3 The Hilbert module L2(X)⊗̂A with separable L2(X)

Suppose that {εi}i∈I is an orthonormal basis of L2(X), then

L2(X,A) ∼= L2(X)⊗̂A ∼=
⊕

i

Ai

where Ai = A for all i. Moreover, if L2(X) is separable (so that there exists

a countable orthonormal basis for L2(X)),

L2(X,A) ∼= L2(X)⊗̂A ∼= HA.

Since A is unital, {εi ⊗ 1A}i∈I is an orthonormal basis for L2(X)⊗̂A and

therefore {ε1A} is an orthonormal basis for L2(X,A).

The other fact that we have is that K(L2(X,A)) ∼= K(L2(X)⊗̂A) ∼=
K(L2(X))⊗̂A. Furthermore, since A is unital, K(L2(X,A)) = L(L2(X,A)).

Now, we will show that if L2(X) is separable, each f ∈ L2(X,A) is

strongly measurable.
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Proposition 4.2.3.1. If L2(X) is separable, each function f ∈ L2(X,A) is

strongly measurable.

Proof. Let f ∈ L2(X,A) be arbitrary. Then f =
∑

i∈N
εi · ai. It is clear that

for each i, εi ·ai is strongly measurable. Therefore, by Lemma 1.5.1.3 for each

i there exists a sequence of countably valued functions which converges to

εi · ai uniformly almost everywhere. Hence, for each n, there exist countably

valued functions gni
such that

‖εi(x)ai − gni
(x)‖ < 2−(n+i)

for almost x ∈ X unless for all x in a μ-nullset Ei. Now, for each n ∈ N

define a function

gn =
∑

i

gni
.

Since a countable union of countable sets is countable, gn is a countably-

valued function. Moreover,

‖f(x) − gn(x)‖ =

∥∥∥∥∥εi(x)ai −
∑

i

gni
(x)

∥∥∥∥∥ (4.29)

≤
∑

i

∥∥∥∥∥εi(x)ai −
∑

i

gni
(x)

∥∥∥∥∥ (4.30)

<
∑

i

2−(n+i) (4.31)

= 2−n
∑

i

2−i (4.32)

< 2−n. (4.33)

for almost all x ∈ X unless for all x in a μ-null set E =
⋃

i Ei. This gives us

a sequence (gn)n∈N
of countably valued functions such that for each m ∈ N,

‖f(x) − gn(x)‖ < 2−m
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for all x ∈ X \ E if n ≥ m, i.e. (gn) converges to f uniformly almost

everywhere. By Lemma 1.5.1.3, f is strongly measurable.

Finally, we have the following result.

Theorem 4.2.3.2. If L2(X) is separable, then L2(X,A) = L2(X,A) if and

only if A is finite dimensional.

Proof. From Theorem 4.2.1.1 and its proof, we know

�A2 ∼= L2(X,A) ∼= L2(X) ⊗A,

and

L2(X,A) ∼= L2(X)⊗̂A ∼= HA.

The result follows from the fact that �A2 = HA if and only if A is finite

dimensional.



Chapter 5

The wavelet transform on

Hilbert modules

From now, we will assume that our Hilbert modules are separable.

Here, we will generalize the ideas of coherent state systems, wavelets and

the related transforms, to the setting of Hilbert modules. The definitions

generalize Führ’s definitions from Chapter 3. This general context brings

some new problems which we must consider. For example, since the inner

product in the Hilbert module is A-valued, our coefficient functions will be

A-valued functions. Hence, our main tool here will be the A-valued integral:

we use the Bochner integral theory defined in Section 1.5.2. Moreover, by

analogy, we introduce the notions of weak, semi-weak and ultra-weak integral

for Hilbert module, Section 5.1. The motivation of these definitions is that

we want to show that the adjoint operator of the coefficient operator, at least

for those related to an admissible vector, can be read as an operator integral,

(Theorem 5.2.1.6).

Following the definitions, some results that generalize the reconstruction

formula, the resolution of the identity formula and the image space of the

95
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transform are obtained: Theorem 5.2.1.7, Theorem 5.2.1.10 and Theorem

5.2.1.14 respectively. We also give a result which characterizes the kernel

of the coefficient operator, Lemma 5.2.2.1. Though the result is similar to

its version in the setting of Hilbert space, Lemma 3.2.2.1, the following re-

sults: Lemma 5.2.2.3 and Lemma 5.2.2.4 are different. Fortunately, using

these results, we still get a useful notion of admissible, bounded, and cyclic

vectors related to adjointable projection, intertwining operator, and unitary

operator.

Finally, we give some examples of group coherent state system and gen-

eralized continuous wavelet transform on Hilbert modules.

The notion of wavelets in Hilbert space will be a special case of our

definition and, as far as possible, we use the same terminology as in the

previous chapters.

5.1 Hilbert module-valued integral

Here we will define the weak integral for Hilbert module valued functions.

But, first, we will introduce the notion of weak measurability which is related

to the weak integrals defined in the following section.

5.1.1 Weak measurability for Hilbert module-valued

functions

Definition 5.1.1.1. A H-valued function f on a measure space X to Hilbert

module H is weakly measurable relative to a dense subset D of B(H,A)

if and only if the A-valued function T (f(·)) is strongly measurable for all

T ∈ D.
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Remark 5.1.1.2. If H is reflexive, then f is weakly measurable relative to a

dense subset D of H if and only if 〈ϕ, f(·)〉 is strongly measurable for all

ϕ ∈ D.

We know that not every Hilbert module is reflexive. See [75, 15.I]. There-

fore, we introduce weaker definitions of the measurability which we call semi-

weak measurability and ultra-weak measurability for vector-valued functions

on a Hilbert module H.

Definition 5.1.1.3. An H-valued function f from a measure space X to a

Hilbert module H is semi-weakly measurable relative to a dense set D of

L(H,A) if and only if the A-valued function T (f(·)) strongly measurable for

all T ∈ D.

Definition 5.1.1.4. An H-valued function f from a measure space X to a

Hilbert module H is ultra-weakly measurable relative to a dense subset D

of K(H,A) if and only if the A-valued function T (f(·)) is stongly measurable

for all T ∈ D.

Using the Riesz-Fréchet theorem for Hilbert C∗-modules, Theorem 2.2.4.30,

we can rewrite the definition of ultra-weak integrability as follows:

Definition 5.1.1.5. An H-valued function f from a measure space X to a

Hilbert module H is ultra-weakly measurable relative to a dense subset

D of H if and only if 〈ϕ, f(·)〉 is strongly measurable for all ϕ ∈ D.

5.1.2 Weak integrals for Hilbert module-valued func-

tions

Definition 5.1.2.1. An H-valued function f from a measure space X to a

Hilbert module H which is weakly measurable relative to a dense subset D of
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B(H,A) is weakly integrable relative to D if and only if T (f(·)) is Bochner

integrable for all T ∈ D, and there is an element ψ of H such that

T (ψ) = B -

∫
T (f(x)) dμ(x) for all T ∈ D. (5.1)

We write, ∫
f(x) dμ(x) = ψ. (5.2)

Remark 5.1.2.2. If H is reflexive, then (5.1) and (5.2) are equivalent to saying

that f is weakly integrable relative to D if and only if for all ϕ ∈ D, there is

an element ψ of H such that

〈ϕ, ψ〉 = B -

∫
〈ϕ, f(x)〉 dμ(x) for all ϕ ∈ D. (5.3)

We write, ∫
f(x) dμ(x) = ψ. (5.4)

We know that not every Hilbert module is reflexive. See 2.2.4.28. There-

fore, we introduce weaker definitions of the integral which we call the semi-

weak integral and the ultra-weak integral for vector-valued functions on a

Hilbert module H.

Definition 5.1.2.3. An H-valued function f from a measure space X to a

Hilbert module H which is weakly measurable relative to a dense subset D of

L(H,A) is semi-weakly integrable relative to D ⊆ L(H,A) if and only if

the A-valued function T (f(·)) is Bochner integrable for all T ∈ D, and there

is an element ψ of H such that

T (ψ) = B -

∫
T (f(x)) dμ(x) for all T ∈ D. (5.5)

We write ∫
f(x) dμ(x) = ψ. (5.6)



5.1. HILBERT MODULE-VALUED INTEGRAL 99

Definition 5.1.2.4. An H-valued function f from a measure space X to

a Hilbert module H which is weakly measurable relative to a dense subset

D of K(H,A) is ultra-weakly integrable relative to D if and only if the

A-valued function T (f(·)) is Bochner integrable for all T ∈ D, and there is

an element ψ of H such that

T (ψ) = B -

∫
T (f(x)) dμ(x) for all T ∈ D. (5.7)

We write ∫
f(x) dμ(x) = ψ. (5.8)

Using the Riesz-Fréchet theorem for Hilbert C∗-modules, Theorem 2.2.4.30,

we can rewrite the definition of ultra-weak integrability as follows:

Definition 5.1.2.5. An H-valued function f from a measure space X to a

Hilbert module H which is weakly measurable relative to a dense subset D

of H is ultra-weakly integrable relative to a dense subset D if and only if

〈ϕ, f(·)〉 is Bochner integrable for all ϕ ∈ D, and there is an element ψ of H

such that

〈ϕ, ψ〉 = B -

∫
〈ϕ, f(x)〉 dμ(x) for all ϕ ∈ D. (5.9)

We write ∫
f(x) dμ(x) = ψ. (5.10)

It is clear that if an H-valued function f is weakly integrable it is semi-

weakly integrable and ultra-weakly integrable. These three definitions co-

incide when H is reflexive. Hence, in Hilbert space, these three definitions

coincide. Furthermore, we know that if A is unital, by Proposition 2.2.4.31,

L(H,A) = K(H,A). In this case, the semi-weak integral and the ultra-weak

integrals also coincide.

Remark 5.1.2.6. If the Hilbert module H is a Hilbert space, then, the weak

integral defined here is coincides to that defined in Definition 1.5.2.2.
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5.2 The GCWT on Hilbert modules

In Chapter 3, our coefficient operators are operators from Hilbert spaces H
to L2(X). We generalize this by replacing H by a Hilbert module H and

L2(X) by its generalization, L2(X,A).

5.2.1 Coherent state systems on Hilbert modules and

GCWT

Here, we give definitions of coherent state system, coefficient function and

coefficient operators, generalizing those in the setting of Hilbert space.

Following the structure in Chapter 3, we start with the definition of co-

herent state.

Definition 5.2.1.1. Let η = (ηx)x∈X denote a family of vectors in H, indexed

by the elements of a measure space X.

a. For any ϕ ∈ H define an A-valued function Vηϕ on X by

Vηϕ(x) = 〈ηx, ϕ〉 .

We call this function the coefficient function.

b. If Vηϕ is strongly measurable for all ϕ ∈ H, we call η a coherent state

system.

We are interested in defining an operator in Hilbert modules, hence we

will require that the coefficient functions are in the Hilbert module L2(X,A).

Definition 5.2.1.2. Let η = (ηx)x∈X be a coherent state system in H, in-

dexed by the elements of a measure space X. Define

Dη =
{
ϕ ∈ H|Vηϕ ∈ L2(X,A)

}
. (5.11)
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We denote by Vη : H → L2(X,A) the (possibly unbounded) operator de-

fined by the mapping ϕ 
→ Vηϕ from Dη to L2(X,A), call it the coefficient

operator.

Lemma 5.2.1.3. If η is a coherent state system in a Hilbert module H, its

coefficient operator is A-linear.

Proof. The following calculation shows A-linearity of the coefficient operator

Vη defined above. Let x ∈ X be arbitrary, a ∈ A and ϕ ∈ H,

Vη(ϕ · a)(x) = 〈ηx, ϕ · a〉
= 〈ηx, ϕ〉 a

= (Vηϕ) (x)a

= (Vηϕ · a) (x).

We need to define the following space in order to define a notion of ad-

missibility analogous to the one in the Hilbert space setting.

Definition 5.2.1.4. Let η = (ηx)x∈X be a coherent state system in a Hilbert

module H, indexed by the elements of a measure space X. Define

D�
η =

{
ϕ ∈ H|Vηϕ ∈ L2(X,A)

}
. (5.12)

Note that since L2(X,A) ⊂ L2(X,A) for any coherent state η, D�
η ⊆ Dη.

Admissible coherent state system

We know that not every bounded operator on Hilbert modules is adjointable.

Since we are interested in finding an adjointable coefficient operator arising

from coherent state systems, we introduce the following definition for admis-

sible coherent state systems.
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Definition 5.2.1.5. The coherent state system η = (ηx)x∈X in a Hilbert

module H is called admissible if for the associated coefficient operator Vη:

1. D�
η is dense in Dη, and Dη = H.

2. Vη is an isometry with complemented range.

Furthermore, in this case we call Vη a coherent state transform.

In the setting of Hilbert spaces, we have seen that if the coherent state

transform is bounded then it is adjointable. In this case, Corollary 3.2.1.5

defined the adjoint operator as a weak operator integral. In the setting of

Hilbert modules, we prove a similar result for the coefficient operator related

to admissible coherent state system.

Theorem 5.2.1.6. If {ηx}x∈X is an admissible coherent state system in a

Hilbert module H, the coherent state transform (coefficient operator) Vη has

an adjoint such that for each f ∈ L2(X,A) the values V ∗
η (f) are given by the

ultra-weak integrals

V ∗
η (f) =

∫
X

ηx · f(x) dμ(x) (5.13)

relative to the dense set D�
η of H. Furthermore, for any f ∈ L2(X,A) and

(fn) ⊂ L2(X,A) converging to f in ‖·‖A ,

V ∗
η (f) = lim

n→∞
V ∗

η (fn) = lim
n→∞

∫
X

ηx · fn(x) dμ(x). (5.14)

Proof. Since {ηx}x∈X is admissible, Vη is an isometry with complemented

range. Hence, by Proposition 2.2.4.21, it is adjointable, i.e. there exist an

A-linear operator V ∗
η from L2(X,A) to H such that for every g ∈ L2(X,A)

and ξ ∈ H,

〈Vηξ, g〉 =
〈
ξ, V ∗

η g
〉
.
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Now, suppose f ∈ L2(X,A), then x 
→ ηx · f(x) is an H-valued function. Let

ϕ ∈ D�
η be arbitrary, and hence Vηϕ ∈ L2(X,A). We can calculate:

〈
ϕ, V ∗

η f
〉

= 〈Vηϕ, f〉 (5.15)

= B -

∫
X

Vηϕ(x)∗f(x) dμ(x) (5.16)

= B -

∫
X

〈ηx, ϕ〉∗ f(x) dμ(x) (5.17)

= B -

∫
X

〈ϕ, ηx〉 f(x) dμ(x) (5.18)

= B -

∫
X

〈ϕ, ηx · f(x)〉 dμ(x). (5.19)

Recall that because of the admissibility of {ηx}x∈X , D�
η is dense in H.

By definition 5.1.2.5, the function x 
→ ηx · f(x) is ultra-weakly integrable

relative to the dense subset D�
η of H. Hence, for any f ∈ L2(X,A), V ∗

η (f) is

given by the ultra-weak integral,

V ∗
η (f) =

∫
ηx · f(x) dμ(x).

relative to the dense set D�
η of H. Equation (5.14) follows from the continuity

of V ∗
η .

The reconstruction formula

As in the Hilbert space setting, our notion of admissible coherent state sys-

tem also gives a reconstruction formula. By Proposition 2.2.4.21, if η is an

admissible coherent state system, then the coefficient operator Vη gives that

V ∗
η Vη is the identity operator on H and the operator VηV

∗
η is a projection

onto the range of Vη.

We next show that the first fact leads us to an inversion or a reconstruc-

tion formula which is similar to the reconstruction formula in the setting of

Hilbert space. In the Hilbert module setting, this formula can be read as an
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expansion of any vector in the dense subset D�
η of H in terms of the coherent

state system.

Theorem 5.2.1.7. Let (ηx)x∈X be an admissible coherent state system. Then,

for ϕ ∈ D�
η � H we have the following reconstruction formula

ϕ =

∫
X

ηx · 〈ηx, ϕ〉 dμ(x) (5.20)

to be read in the ultra-weak sense relative to the dense subset D�
η. Further-

more, if ϕ ∈ H and (ϕn) ⊂ D�
η converges to ϕ, then

ϕ = lim
n→∞

ϕn = lim
n→∞

∫
X

ηx · 〈ηx, ϕn〉 dμ(x). (5.21)

Proof. Let ϕ ∈ D�
η and ψ ∈ H. Since η is admissible, so that D�

η is dense in

H, there exists a sequence (ψn) in D�
η that converges to ψ and〈

ψ,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
= lim

n→∞

〈
ψn,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
. (5.22)

Now, ϕ ∈ D�
η, then Vηϕ ∈ L2(X,A). Hence, by Theorem 5.2.1.6,

V ∗
η (Vηϕ) =

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

is an ultra-weak integral relatives to the dense subset D�
η of H. Therefore

lim
n→∞

〈
ψn,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
= lim

n→∞
B -

∫
X

〈ψn, ηx · 〈ηx, ϕ〉〉 dμ(x)

(5.23)

= lim
n→∞

B -

∫
X

〈ψn, ηx〉 〈ηx, ϕ〉 dμ(x)

(5.24)

= lim
n→∞

B -

∫
X

〈ηx, ψn〉∗ 〈ηx, ϕ〉 dμ(x)

(5.25)

= lim
n→∞

B -

∫
X

(Vηψn(x))∗ Vηϕ(x) dμ(x).

(5.26)
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For each n, Vηψn is in L2(X,A). Hence,

B -

∫
X

(Vηψn(x))∗ Vηϕ(x) dμ(x) = 〈Vηψn, Vηϕ〉 . (5.27)

Since Vη is an isometry,

〈Vηψn, Vηϕ〉 = 〈ψn, ϕ〉 . (5.28)

Hence, equations (5.28) and (5.27) give:

lim
n→∞

〈
ψn,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
= lim

n→∞
B -

∫
X

Vηψn(x)∗Vηϕ(x) dμ(x)

(5.29)

= lim
n→∞

〈Vηψn, Vηϕ〉 (5.30)

= lim
n→∞

〈ψn, ϕ〉 . (5.31)

By the continuity of the inner product in Hilbert modules, equations (5.22)

and (5.31) give:〈
ψ,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
= lim

n→∞

〈
ψn,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
(5.32)

= lim
n→∞

〈ψn, ϕ〉 (5.33)

= 〈ψ, ϕ〉 . (5.34)

This proves that if ϕ ∈ D�
η, for any ψ ∈ H,〈

ψ,

∫
X

ηx · 〈ηx, ϕ〉 dμ(x)

〉
= 〈ψ, ϕ〉 .

Equivalently,

ϕ =

∫
X

ηx · 〈ηx, ϕ〉 dμ(x).
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As in the Hilbert space setting, c.f. equation (3.16), if η is an admissible

coherent state system, for each ϕ ∈ D�
η we can rewrite the inversion formula

by using rank-one operator notation in the following form:

ϕ =

∫
X

(ηx ⊗ η̄x) ϕ dμ(x). (5.35)

The resolution of the identity formula

Here we will introduce the resolution of the identity formula in the setting of

Hilbert modules H, as an alternative way to describe the expansion property

of the admissible coherent state system. First, let us state the following

definition of the ultra-weak operator integral for Hilbert modules.

Definition 5.2.1.8. For a family of operators (Tx)x∈X ⊂ L(H), if the integral∫
X

Tx(ϕ) dμ(x) converges ultra-weakly relative to a dense subset D of H, for

every ϕ in a dense subset D of H, we define the weak operator integral∫
X

Tx dμ(x) pointwise as(∫
X

Tx dμ(x)

)
(ϕ) =

∫
X

Tx(ϕ) dμ(x) (5.36)

for each ϕ ∈ D. We will use the same notation
∫

X
Tx dμ(x) to denote its

extension to the whole space.

Remark 5.2.1.9. Implicit in this definition is that for each ϕ ∈ D, the function

x 
→ Tx(ϕ) is ultra-weakly measurable to the set D.

Theorem 5.2.1.10. Let (ηx)x∈X be an admissible coherent state system.

Then we can rewrite the identity operator IH as a weak operator integral

which is called the resolution of the identity:∫
X

ηx ⊗ η̄x dμ(x) = IH. (5.37)
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Proof. Consider the family of the rank-one operators in equation (5.35),

which we know converges for all ϕ ∈ D�
η. By Definition 5.2.1.8, we can

rewrite the identity operator as the integral of the rank-one operators. It is

an ultra-weak operator integral which we call the resolution of the identity∫
X

ηx ⊗ η̄x dμ(x) = IH.

Image spaces of coefficient operators

It is a well known result that the image of the continuous wavelet transform

on Hilbert space, or more generally, the image of the coherent state transform

is a reproducing kernel Hilbert space. See Section 3.2.1. We will show in this

section that a similar result holds for the GCWT in Hilbert modules. Before

that, we will introduce a definition of reproducing kernel Hilbert module in

the sense of [31].

Definition 5.2.1.11. Let X be a topological space. A Hilbert A-module H

of functions f : X → A has a reproducing kernel K : X × X → A if

1. for each x ∈ X the function Kx, given by Kx(y) = K(x, y) is in H,

2. for each f ∈ H, f(x) = 〈Kx, f〉 .

Definition 5.2.1.12. Let X be a topological space. A Hilbert A-module H

of functions f : X → A with a reproducing kernel is called a reproducing

kernel Hilbert module.

We include a result from [31].

Lemma 5.2.1.13. If H is a reproducing kernel Hilbert module, then a se-

quence that converges in the norm of H converges pointwise.
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Now we are ready to discuss the image of the coefficient operator Vη

for which η is an admissible coherent state system as a reproducing kernel

Hilbert module.

Theorem 5.2.1.14. Let (ηx)x∈X be an admissible coherent state system.

Then, the image space of Vη is a reproducing kernel Hilbert module, that

is, the projection on its image is given by an inner product with a function

defined by a reproducing kernel.

Proof. Let f ∈ L2(X,A) be arbitrary. Since L2(X,A) is dense in L2(X,A),

there exist a sequence (fn) ⊂ L2(X,A) that converges in norm in L2(X,A).

The projection of f on the image space of Vη is given by:

VηV
∗
η f(x) =

〈
ηx, V

∗
η f
〉

(5.38)

= 〈Vηηx(y), f〉 . (5.39)

Let K(x, y) = 〈ηy, ηx〉 and Kx(y) = Vηηx(y), then Kx(y) = K(x, y). Note

that f ∈ Vη(H), has the form f = Vηh for some h ∈ H. Then,

f(x) = Vηh(x)

= Vη(V
∗
η Vη)h(x)

= VηV
∗
η (Vηh(x))

= VηV
∗
η f(x)

= 〈Vηηx, f〉
= 〈Kx, f〉 .

By definition, K(x, y) is a reproducing kernel, hence range(Vη) is a reproduc-

ing kernel Hilbert module.

Corollary 5.2.1.15. Let (ηx)x∈X be an admissible coherent state system.

Every sequence (fn) ⊂ range(Vη), that converges to a function f in norm in

range(Vη), converges pointwise to f.
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Proof. By Theorem 5.2.1.14, range(Vη) is a reproducing kernel Hilbert mod-

ule. Lemma 5.2.1.13, gives the result.

Generalized continuous wavelet transforms

on Hilbert modules (GCWTHM)

In this section, we will introduce the definition of the continuous wavelet

transform on Hilbert modules (GCWTHM).

Before that we will list some terminology and properties related to unitary

representations. Let π and σ be unitary representations of a locally compact

group G in Hilbert modules Hπ and Hσ respectively. An adjointable operator

T : Hπ → Hσ is called an intertwining operator for π and σ if Tπ(x) =

σ(x)T for every x ∈ G. We say that π and σ are disjoint if there is no

nonzero intertwining operator in either direction. In the case there exists T

which is unitary, we say that π and σ are unitarily equivalent. The set of

all intertwining operators for π with itself is called the commutant of π.

Definition 5.2.1.16. Let (π, Hπ) denote a unitary representation of the

locally compact group G with left Haar measure μ on the Hilbert module.

For an element η ∈ Hπ, we define a coherent state system (ηx)x∈G as the

orbit (π(x)η)x∈G. We call this system the group coherent state system.

Remark 5.2.1.17. Since the weak and strong operator topologies coincide

on U(Hπ), the strong continuity of the representation is equivalent to the

continuity of all coefficient functions Vηϕ for any ϕ ∈ Hπ. Since continu-

ous functions are strongly measurable, by Definition 5.2.1.5, (π(x)η)x∈G is a

coherent state system.

In what follows, representation will always mean unitary representation,

and for an element η ∈ Hπ, we will write (ηx)x∈G for the group coherent state
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system (π(x)η)x∈G related to the representation (π, Hπ) of a locally compact

group G on the Hilbert module Hπ.

Definition 5.2.1.18. Let (π, Hπ) denotes a representation of the locally

compact group G with the left Haar measure μ. Let η ∈ Hπ be arbitrary.

1. The vector η is called an admissible vector if and only if the coherent

state (ηx)x∈G is admissible.

2. The coefficient operator Vη related to an admissible vector η, is called

the generalized continuous wavelet transform

3. If the coefficient operator Vη is bounded on Hπ then η is called a

bounded vector.

5.2.2 The GCWTHM and the left regular representa-

tion

As in the Hilbert space setting, we will explore the relation between a coef-

ficient operator comes from a locally compact group G and the left regular

representation of G. We shall discuss the kernel of the coefficient operator,

its intertwining property, and the projection of cyclic, bounded and admis-

sible vectors. For some terminologies that are used here, such as span or

orthogonal complement, please refer to Section 2.2.4.

Kernel and intertwining property of the coefficient operator

Below is a generalization of Lemma 3.2.2.1 to the setting of Hilbert modules.

Lemma 5.2.2.1. Let (π, Hπ) be a representation of a locally compact group

G on the Hilbert module Hπ and η be an element of Hπ. Let {π(G)η} be

the related coherent state system and K = span {π(G)η} . Then the kernel
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of the coefficient operator Vη is the orthogonal complement of the closure of

K, ker Vη = K
⊥
.

Proof. For any ϕ ∈ ker Vη, Vηϕ is continuous. Therefore, Vηϕ = 0 means

Vηϕ(x) = 0, for all x ∈ G. By definition of the coefficient function,

〈π(x)η, ϕ〉 = Vηϕ(x) = 0.

Therefore for any k =
∑n

i=1 π(xi)η · ai in K,

〈k, ϕ〉 =

〈
n∑

i=1

π(xi)η · ai, ϕ

〉
=

n∑
i=1

〈π(xi)η · ai, ϕ〉

=
n∑

i=1

a∗
i 〈π(xi)η, ϕ〉 =

n∑
i=1

a∗
i .0 = 0

Since 〈·, ·〉 is continuous, for every k ∈ K, 〈k, ϕ〉 = 0, i.e. If kn −→
n

k where

kn ∈ K then

〈k, ϕ〉 =
〈

lim
n→∞

kn, ϕ
〉

= lim
n→∞

〈kn, ϕ〉 = lim
n→∞

0 = 0.

To prove the other direction, let ϕ ∈ K
⊥
. Since A is assumed to be unital,

then for each x, 〈π(x)η, ϕ〉 = 1A 〈π(x)η, ϕ〉 = 〈π(x)η · 1A, ϕ〉 = 0. Hence,

by definition, Vηϕ(x) = 〈π(x)η, ϕ〉 = 0, for all x. This means, Vηϕ = 0 i.e.

ϕ ∈ ker(Vη).

Definition 5.2.2.2. An element ϕ ∈ Hπ is a cyclic vector of a representation

(π, Hπ) of a locally compact group G on a Hilbert module Hπ if span {π(G)ϕ}
is a dense submodule of Hπ.

Replacing Lemma 3.2.2.2, we have the following two results.

Lemma 5.2.2.3. If a vector η is a cyclic vector of a representation (π, Hπ) of

a group G on a Hilbert module Hπ then the coefficient operator Vη is injective.
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Proof. Let K = span {π(G)η}. Since η is cyclic, then K = Hπ. Let ϕ ∈
ker Vη, then by Lemma 5.2.2.1, ϕ ∈ K

⊥
. The closure of K is the whole

module, therefore by Lemma 2.2.4.15, K
⊥

= {0}. Hence ϕ = 0, and

ker(Vη) = {0} i.e. the coefficient operator Vη is injective.

In the Hilbert space setting, the converse is also valid. However, the

case is different in the setting of Hilbert modules. This is because not every

closed submodule is (orthogonally) complementable. However, we do have

the following result.

Lemma 5.2.2.4. Let (π, Hπ) be a representation of a group G on a Hilbert

module Hπ. If η is a vector in Hπ such that the coefficient operator Vη is an

isometry with complementable range from Hπ to L2(G,A), then η is a cyclic

vector for (π, Hπ).

Proof. Suppose that Vη is an isometry with complementable range. Then

ker(Vη) = {0}. By Proposition 2.2.4.21, Vη ∈ L(H, L2(G,A)) and has a

closed range. Furthermore, by Theorem 2.2.4.16, ker(Vη) is a complementable

submodule of H. If η is not cyclic, then K is a closed proper subset of Hπ.

Therefore K
⊥

= ker Vη is a complementable submodule of H. This implies

K
⊥ �= {0} . Let h ∈ K

⊥
and h �= 0. By Lemma 5.2.2.1, h ∈ ker(Vη). This

contradicts the fact that ker(Vη) = {0} .

Definition 5.2.2.5. Let G be a locally compact group. Suppose that ΛG

acts on L2(G,A) by

(ΛG(x)f)(y) = f(x−1y), x, y ∈ G.

Then, ΛG is a strongly continuous unitary representation of G on L2(G,A)

which is called called the left regular representation.
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Remark 5.2.2.6. It is easy to show that ΛG is an A-linear homomorphism.

Moreover, suppose that {εi} is an orthonormal basis for L2(G). Then since

A is unital, for any b ∈ A

ΛG(x)(εi · b) = λG(x)(εi)b.

Furthermore, ΛG(x) is a unitary element of L(L2(G,A)) for each x ∈ G,

follows from the fact that ΛG(x) is A-linear, isometric onto from L2(G,A)

onto L2(G,A), which is a dense subset of L2(G,A), hence it is an isometric,

surjective A-linear map on L2(G,A).

Next, we will show how the coefficient operator intertwines the represen-

tation of the group G that gives the transform, with the left regular repre-

sentation, c.f. Corollary 3.2.2.5.

Lemma 5.2.2.7. Let (π, Hπ) be a representation of a locally compact group

G on the Hilbert module Hπ, and η ∈ Hπ. Suppose that Vη is the related co-

efficient operator. Then Vη intertwines π with the left regular representation.

Proof. Let x, y ∈ G and ϕ ∈ Hπ. By definition

Vη(π(x)ϕ)(y) = 〈π(y)η, π(x)ϕ〉
=
〈
π(x−1y)η, ϕ

〉
= Vηϕ(x−1y)

= ΛG(x)Vηϕ(y)

Hence, for any x ∈ G, Vηπ(x) = ΛG(x)Vη.

We prove that in the setting of Hilbert modules, the domain of the coef-

ficient operator is closed under the action of G.

Corollary 5.2.2.8. Let (π, Hπ) be a representation of G on Hπ, and η ∈ Hπ.

Then, the domain Dη is closed under the action of G via π.
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Proof. Let ϕ ∈ Dη, since Vη intertwines π and ΛG, then, for each x ∈ G,

Vη(π(x)ϕ) = ΛG(x)(Vηϕ)

is in L2(G,A).

As in the setting of Hilbert space, for Hilbert modules, we have a result

which characterize admissible vectors.

Lemma 5.2.2.9. Let (π, Hπ) be a representation of G on Hπ, and η ∈ Hπ

is admissible. Then η is a bounded cyclic vector.

Proof. By definition of an admissible coherent state system (Definition 5.2.1.5),

the domain of the related coefficient operator is the whole space, hence η is a

bounded vector. Moreover, the fact that η is admissible implies that Vη is an

isometry with complemented range. Hence, by Lemma 5.2.2.4, η is a cyclic

vector.

Remark 5.2.2.10. Since the boundedness of an operator on Hilbert modules

does not automatically imply its adjointability, this lemma is too weak to be

used to find which representations give an admissible vector.

The Commuting algebra and bounded, cyclic or admissible vectors

The following is an analogous result to Proposition 5.2.2.11, in the setting of

Hilbert modules.

Proposition 5.2.2.11. Let (π, Hπ) be a representation of a locally compact

group G on a Hilbert module Hπ, and η ∈ Hπ. If T belongs to the commuting

algebra π(G)′ then

VTη = Vη ◦ T ∗.
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Proof. Suppose that ϕ ∈ Hπ and x ∈ G are arbitrary. By definition of the

coefficient function,

(VTη ϕ) (x) = 〈π(x)Tη, ϕ〉
= 〈Tπ(x)η, ϕ〉
= 〈π(x)η, T ∗ϕ〉
= (VηT

∗ϕ) (x)

= (Vη ◦ T ∗ ϕ) (x) .

From this we can see that VTη = Vη ◦ T ∗.

The following is a result which generalizes Corollary 3.2.2.8, to the setting

of Hilbert modules.

Corollary 5.2.2.12. Suppose that K is an invariant closed submodule of

Hπ, with adjointable projection operator PK. If η ∈ Hπ is admissible (respec-

tively bounded or cyclic) for (π, Hπ) then PKη has the same property for the

subrepresentation (π |K, K) .

Proof. Since PK is a projection, PK = P ∗
K
, and hence by Proposition 5.2.2.11

VPK η = Vη ◦ P ∗
K

= Vη ◦ PK.

Now let us calculate the domains of these operators. By definition, the

domain DPK η = D(Vη ◦PK) = {ϕ ∈ Hπ | PK ϕ ∈ Dη} . Now, if η is admissible

then Dη = Hπ. Since K ⊂ Hπ = Dη then as an operator on K, DPKη =

Dη∩K = Hπ∩K = K. Since the restriction of an isometry is also an isometry,

it follows that VPKη is an isometry on K with domain the whole space. Since

Vη and PK are adjointable, Vη ◦ PK is adjointable with (Vη ◦ PK)∗ = P ∗
K
◦ V ∗

η .

Furthermore, (Vη ◦PK)∗(Vη ◦PK)|K = PK|K = IK. Equivalently, VPKη = Vη ◦PK

is an isometry with complemented range. By viewing VPKη as a restriction
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of Vη on K, and recalling that K is a submodule of H and D�
η is dense in

Dη = Hπ, then D�
η ∩ K is dense in Dη ∩ K = K. Hence by definition PKη is

an admissible vector.

Furthermore by the same argument, PKη is bounded if η is a bounded

vector (η is bounded if Vη is bounded i.e. Dη = Hπ) and if η is cyclic for

(π, Hπ) then PKη also cyclic for (π |K, K) .

A similar result also holds for unitary intertwining operators.

Corollary 5.2.2.13. Let T be a unitary operator intertwining the represen-

tations π and σ. Then η is admissible (respectively bounded or cyclic) if and

only if Tη has the same property.

Proof. By definition, T is a map T : Hπ → Hσ which is unitary, and for any

x ∈ G, Tπ(x) = σ(x)T. By a similar argument as in the proof of Corollary

5.2.2.12, the results follow.

For the other direction, we use the same argument for T ∗, by viewing it as

a unitary intertwining operator, i.e. we prove if Tη is admissible (respectively

bounded or cyclic) then η = T ∗Tη has the same property.

5.2.3 Some examples

An example of an admissible coherent state system

In the setting of Hilbert space, the discretization problem can be embedded

into the continuous setting, and we will see that this also works in the setting

of Hilbert modules.

In [24], Frank and Larson defined the notion of a countable frame in

Hilbert modules. We will show below that for a finite or countably generated

Hilbert module, this is the discrete case of our construction.



5.2. THE GCWT ON HILBERT MODULES 117

Definition 5.2.3.1. ([24, Definition 2.1.]) Let A be a unital C∗-algebra and

I be a finite or countable index subset of N. A sequence (ϕi)i∈I of elements

in a H is said to be a frame if there are real constants α, β > 0 such that

α · 〈ϕ, ϕ〉 ≤
∞∑
i=1

〈ϕ, ϕi〉 〈ϕi, ϕ〉 ≤ β · 〈ϕ, ϕ〉 . (5.40)

for every ϕ ∈ H. The frame (ϕi)i∈I is said to be tight frame if α = β, and

said to be normalized if α = β = 1. We consider standard (normalized)

frames in the main for which the sum in the middle of inequality (5.40) always

converges in norm in A.

Remark 5.2.3.2. The above definition has a simple consequences. A sequence

(ϕi)i∈I is a standard normalized (tight) frame if and only if the equality

〈ϕ, ϕ〉 =
∞∑
i=1

〈ϕ, ϕi〉 〈ϕi, ϕ〉 (5.41)

holds for every ϕ ∈ H where the sum converges in norm in A.

Frank and Larson found that for unital C∗-algebras A the frame trans-

form operator related to a standard (normalized tight) frame in a finitely

or countably generated Hilbert module is adjointable in every situation, and

that the reconstruction formula holds. Moreover, they proved that the image

of the frame transform is an orthogonal summand of HA. See [24, Theorem

4.1].

Recalling that our C∗-algebras A is unital, we can see that a standard

normalized (tight) frame for a finite or countably generated Hilbert module

is an admissible coherent state system based on a discrete space N with

counting measure.

Remark 5.2.3.3. In [64] Raeburn and Thompson defined a standard normal-

ized (tight) frame for H in its multiplier Hilbert module M(H). They proved
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that the existence of a unit element 1A in A implies M(H) = H, and hence

in this case the definition coincides with that of Frank and Larson, [24].

Examples of generalized continuous wavelet transform

We now give some examples of the generalized continuous wavelet transform

in Hilbert modules.

Example 5.2.3.4. Let A = C; then our Hilbert modules over A are Hilbert

spaces. Therefore, generalized continuous wavelet transforms on Hilbert

space are also included in this theory.

Example 5.2.3.5. Let G be a locally compact group such that there exists

an admissible vector f ∈ L2(G) for λG. Let a ∈ A be a unitary element.

Suppose that η = f ·a. It is clear that η is in L2(G,A). We will show that Vη

is a generalized continuous wavelet transform, and η is an admissible vector

for ΛG, where ΛG is as in Definition 5.2.2.5.

First of all, recall that by the definition of the coefficient function, Vη is

an A-linear operator. Suppose that {εi} is an orthonormal basis of L2(G)

and let b ∈ A be arbitrary. Then for any x ∈ G,

Vη(εi · b)(x) = 〈ΛG(x)(f · a), εi · b〉
= 〈λG(x)f, εi〉 〈a, b〉
= (Vfεi)(x)a∗b

= (Vfεi) · a∗b(x).

Now, let g ∈ L2(G,A) be arbitrary. Then there exists b = (bi) ∈ HA such
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that
∑

i ‖bi‖2 < ∞ and g =
∑

i εi · bi. Hence,

Vηg(x) = 〈ΛG(x)η, g〉

=

〈
ΛG(x)(f · a),

∑
i

εi · bi

〉
=
∑

i

〈ΛG(x)(f · a), εi · bi〉

=
∑

i

(Vfεi) · a∗bi(x).

Now,

‖Vηg‖2 =

∫
X

‖Vηg(x)‖2 dμ(x)

=

∫
X

∥∥∥∥∥∑
i

(Vfεi) · a∗bi(x)

∥∥∥∥∥
2

dμ(x)

≤
∫

X

∑
i

‖(Vfεi)(x)‖2 ‖a∗bi‖2 dμ(x)

=

∫
X

∑
i

‖(Vfεi)(x)‖2 ‖a‖2 ‖bi‖2 dμ(x)

=
∑

i

‖a‖2 ‖bi‖2

∫
X

‖(Vfεi)(x)‖2 dμ(x)

= ‖a‖2

∫
X

‖(Vfεi)(x)‖2 dμ(x)
∑

i

‖bi‖2

= ‖a‖2 ‖(Vfεi)‖2

∑
i

‖bi‖2 .

Since
∑

i ‖bi‖2 < ∞ and Vf is a generalized continuous wavelet transform in

L2(G), and hence is an isometry, the last expression is finite.

This proves that for each g ∈ L2(G,A), Vηg ∈ L2(G,A), i.e. L2(G,A) ⊂
D�

η ⊂ Dη ⊂ L2(G,A). Since L2(G,A) is dense in L2(G,A), then D�
η is dense

in L2(G,A).

Now, we show that Vη is an isometry from L2(G,A) to L2(G,A), and

hence it is continuous.
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Let g ∈ L2(G,A) be arbitrary, and g =
∑

i εi · bi. Using the facts that Vf

is an isometry and a is a unitary element, we calculate

‖Vηg‖A = ‖〈Vηg, Vηg〉‖

=

∥∥∥∥∥
〈∑

i

(Vfεi) · a∗bi,
∑

j

(Vfεj) · a∗bj

〉∥∥∥∥∥
=

∥∥∥∥∥∑
i,j

〈(Vfεi) · a∗bi, (Vfεj) · a∗bj〉
∥∥∥∥∥

=

∥∥∥∥∥∑
i,j

〈Vfεi, Vfεj〉 〈a∗bi, a
∗bj〉
∥∥∥∥∥

=

∥∥∥∥∥∑
i,j

〈εi, εj〉 〈bi, bj〉
∥∥∥∥∥

=

∥∥∥∥∥∑
i,j

〈εi · bi, εj · bj〉
∥∥∥∥∥

=

∥∥∥∥∥
〈∑

i

εi · bi,
∑

j

εj · bj

〉∥∥∥∥∥
= ‖〈g, g〉‖
= ‖g‖A .

We have seen that Vη is an isometry, hence it is continuous, from a dense

subset L2(G,A) of L2(G,A) to a complete space L2(G,A). Therefore, Vη can

be extended to an isometry from L2(G,A) → L2(G,A).

We will now show that Vη is adjointable. Let g ∈ L2(G,A) and h ∈
L2(G,A) be arbitrary. and (gn) ⊂ L2(G,A) such that ‖g − gn‖A → 0. Since

Vη is continuous, this implies, ‖Vηg − Vηgn‖A → 0.
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We can suppose that g =
∑

i εi · bi. and h =
∑

i εi · ci.

〈Vηg, h〉 =

〈
Vη

(∑
i

εi · bi

)
,
∑

j

εj · cj

〉

=

〈∑
i

Vfεi · a∗bi,
∑

j

εj · cj

〉

=
∑
i,j

〈Vfεi · a∗bi, εj · cj〉

=
∑
i,j

〈Vfεi, εj〉 〈a∗bi, cj〉

=
∑
i,j

〈Vfεi, εj〉 〈bi, acj〉

=
∑
i,j

〈Vfεi · bi, εj · acj〉

=

〈∑
i

Vfεi · bi,
∑

j

εj · acj

〉

=

〈
g,
∑

j

εj · acj

〉
.

Let kh =
∑

j εj ·acj, then kh ∈ L2(G,A). Therefore, for each h ∈ L2(G,A)

there exists kh ∈ L2(G,A) such that

〈Vηg, h〉 = 〈g, kh〉 . (5.42)

Define a mapping W from L2(G,A) to L2(G,A) by Wh = kh. This

mapping is A-linear.

We show that W is continuous. Let (hn) ⊂ L2(G,A) such that

‖h − bhn‖A → 0.

Then, for any g ∈ L2(G,A),

‖〈g,W (h − hn)〉‖ = ‖〈Vηg, h − hn〉‖ ≤ ‖Vηg‖A ‖h − hn‖A = ‖g‖A ‖h − hn‖A → 0.
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Therefore, ‖Wh − Whn‖A = ‖W (h − hn)‖A → 0.

By this, and the fact that L2(G,A) is dense in L2(G,A), we can extend

W to L2(G,A). We denote the extension by V ∗
η .

We will show that for each h ∈ L2(G,A) we can define V ∗
η h as an ultra-

weak integral relative to the dense subset D�
η = L2(G,A) of L2(G,A).

Let g ∈ L2(G,A), then Vηg ∈ L2(G,A).

We calculate that

〈
g, V ∗

η h
〉

= 〈Vηg, h〉

= B -

∫
X

Vηg(x)∗h(x) dμ(x)

= B -

∫
X

〈ηx, g〉∗ h(x) dμ(x)

= B -

∫
X

〈g, ηx〉h(x) dμ(x)

= B -

∫
X

〈g, ηx · h(x)〉 dμ(x).

By definition, V ∗
η h =

∫
X

ηx · h(x) is an ultra-weak integral relative to D�
η.

Finally, we show that V ∗
η Vη = IL2(G,A). Let h, g ∈ L2(G,A). Let (gn), (hm)

be sequences in L2(G,A) such that ‖h − hm‖A → 0 and ‖g − gn‖A → 0 as
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m,n → ∞. Then,

〈
h,
(
V ∗

η Vη

)
(g)
〉

= lim
n→∞

lim
m→∞

〈
hm,

(
V ∗

η Vη

)
(gn)

〉
= lim

n→∞
lim

m→∞
〈
hm, V ∗

η (Vηgn)
〉

= lim
n→∞

lim
m→∞

〈
hm,

∫
X

ηx · 〈ηx, gn〉 dμ(x)

〉
= lim

n→∞
lim

m→∞
B -

∫
X

〈hm, ηx · 〈ηx, gn〉〉 dμ(x)

= lim
n→∞

lim
m→∞

B -

∫
X

〈hm, ηx · 〈ηx, gn〉〉 dμ(x)

= lim
n→∞

lim
m→∞

B -

∫
X

〈hm, ηx〉 〈ηx, gn〉 dμ(x)

= lim
n→∞

lim
m→∞

B -

∫
X

〈ηx, hm〉∗ 〈ηx, gn〉 dμ(x)

= lim
n→∞

lim
m→∞

B -

∫
X

Vηhm(x)∗Vηgn(x) dμ(x)

= lim
n→∞

lim
m→∞

〈Vηhm, Vηgn〉

= lim
n→∞

lim
m→∞

〈hm, gn〉

= 〈h, g〉 .

Since, Vη is adjointable and V ∗
η Vη = IL2(G,A) then it is an isometry with

complementable range. Together with the fact that D�
η is dense in L2(G,A),

this shows that η is admissible for ΛG and Vη is a generalized continuous

wavelet transform on L2(G,A).
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