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Abstract 

 Pathway analysis is a powerful method for discerning differentially regulated genes 

and elucidating their biological importance. It allows for the identification of perturbed or 

aberrantly expressed genes within a biological context from extensive data sets and offers a 

simplistic approach for interrogating such datasets. With the growing use of microarrays and 

RNA-Seq data for genome wide studies is growing at an alarming rate and the use of deep 

sequencing is revealing elements of the genome previously uncharacterised. Through the 

employment of pathway analysis, mechanisms in complex diseases may be explored, and 

novel causatives found primarily through differentially regulated genes. Further, with the 

implementation of next generation sequencing (NGS) a deeper resolution may be attained, 

particularly in identification of isoform diversity and SNP’s. Here we look at a broad 

overview of pathway analysis in the human brain transcriptome and its relevance in teasing 

out underlying causes of complex diseases. We will outline processes in data gathering and 

analysis of particular diseases in which these approaches have been successful. 

  

Keywords: transcriptome; pathway analysis; human brain; brain disorders; gene expression; 

RNA-Seq 
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Introduction 

 In the complex transcriptional environment of the brain, identification of differentially 

regulated genes is a significant challenge. This is especially true in cases of 

neurodegenerative diseases in which ageing itself is causative of many of the changes seen 

(Lu et al. 2004). To complicate the identification of causative genes in neurodegenerative 

diseases further; the brain has an enormous range of transcript isoforms, and many 

differentially expressed isoforms have been linked to neurodegenerative diseases (Courtney 

et al. 2010; Faustino and Cooper 2003; Mills and Janitz 2012; Tollervey et al. 2011; Twine et 

al. 2011). These isoforms may be differentially expressed across tissues or in disease, or 

alternative splicing and erroneous splicing may have an impact on disease (Mills and Janitz 

2012; Tollervey et al. 2011; Twine et al. 2011). It is imperative that a deep understanding of 

the brain transcriptome be developed so that diseases of the brain might be better treated.   

 In identifying key differences in complex disease states systems biology looks to 

identify differentially regulated genes. Whilst there are many potential methods to study the 

transcriptome, the use of microarrays is likely the most prevalent. However, microarray 

analysis is not without faults and the recent improvement in NGS and development of RNA-

Seq - which has greater reproducibility, resolution and cost effectiveness when analysing an 

entire transcriptome – looks set to overtake microarrays (Shendure 2008). 

 As the wealth of data generated by the aforementioned techniques grows, the 

interrogation of the datasets for biologically relevant information becomes more complex. 

Traditionally these approaches provide a list of genes identified as differentially expressed. 

Pathway Analysis has gained favour for its ability to reduce these lists to a series of 

‘pathways’ in biological systems. These pathways are formed of gene and protein products 

within a defined context of biology, e.g. sphingolipid metabolism – Human. Examples of 
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these pathways include those formed from Gene Ontology annotated genes drawn from 

public databases (Emmert-Streib and Glazko 2011; Khatri et al. 2012). The analysis may be 

implemented in any number of programs or databases and include online resources such as 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al. 

2009) or MetaCore (www.genego.com).  

 Use of DAVID requires little technical expertise yet can determine the presence of 

affected pathways and allow for simplified targeted identification and analysis of aberrant 

genes. To complete a DAVID analysis it is necessary to have a sufficiently extensive gene list 

ranging from hundreds to thousands of genes and each gene needs to have been selected by 

statistical analysis (e.g. t-test) and show significant fold change in expression (Huang et al. 

2009). DAVID’s output of affected gene pathways may then be used in an exploratory 

fashion to find differentially expressed genes of biological relevance to the state being 

questioned. 

  The use of pathway analysis has seen extensive use throughout microarray and RNA-

Seq analysis. These experiments have ranged from aiming to generate a generalised 

understanding of gene expression changes or differences during development or ageing and 

between tissue types (Chen et al. 2011; Lerch et al. 2012) or in disease (Sutherland et al. 

2011). Such studies have encompassed Alzheimer’s disease (AD), schizophrenia (SCZ), 

autism spectrum disease (ASD), which will be discussed here, amongst others. 

 Pathway analysis offers a powerful analytical tool for studying the transcriptome 

within the human brain. It has the ability to readily identify differentially expressed genes, 

and also to isolate them into biological groupings based on functional relation, structural 

relation or position in a cell amongst other grouping. In doing so, pathway analysis reduces 

the complexity of such tasks involving large gene lists of differentially regulated genes and 
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hance has strong applications in studies of the transcriptome using either RNA-Seq or 

microarray for data collection. 

Data Collection 

 While pathway analysis is applicable to many data sets, including metabolomics, 

proteomics and gene expression (Emmert-Streib and Glazko 2011) its use in interpreting 

transcriptome data generated by microarray or RNA-Seq is of particular interest here.  

Microarray 

  Microarrays have become a popular method for elucidating gene expression patterns 

in disease states. Microarrays use islands of oligo-primer probes fixed to a solid surface such 

as glass to hybridise to cDNA samples generated from RNA (Brown and Botstein 1999). By 

setting up these probes in an array, relative expression of the library of genes being screened 

can be visualised when labelled sample is washed across the array for hybridisation. 

Appropriate use and placement of probes within genes increases the specificity of this 

process and can provide sequence information about the expression of transcripts within the 

sample being analysed. Whilst microarrays improve with increasing knowledge of genomes 

they still rely on a reference genomic sequence, and as such are incapable of de novo 

sequence identification (Kapur et al. 2008; Shendure 2008). 

   Standard cDNA arrays allow for the analysis of the absolute, often for the most 

common isoforms, expression differential to be measured. Microarrays produce extensive 

gene lists showing differential regulation of those genes between the states being investigated. 

However, the basis of hybridisation of probe to cDNA strand is by no means flawless. As a 

result microarray data needs to be corrected for hybridisation background. For specialised 

study of isoforms in transcriptomics, specialised microarrays, such as exon and tiling arrays, 
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have been developed. Exon arrays are rich in probes specific for exons of transcripts based on 

libraries of annotated, partially supported or estimated exons. Each probe set will target one 

exon and show expression levels of each exon type providing an accurate representation of 

gene expression and suggesting the likely composition of transcripts (Kapur et al. 2008). 

 Many computing technologies have been developed for analysis of microarray data. 

These include GeneBASE a tool for estimating expression levels of genes 

[www.stanford.edu/group/wonglab/GeneBASE/] and microarray analysis of differential 

splicing (MADS), an improved program for transcript isoform construction from exon tiling 

arrays (Xing et al. 2008). These, and other programs, allow for more accurate processing of 

microarray data by removing hybridisation background, more accurately quantifying gene 

expression and assembling RNA isoforms. This in turn allows for deeper analysis of the 

transcriptome via microarray. 

 Despite the usefulness of microarrays in identifying deregulated genes and even 

transcripts, significant flaws in microarray technology are becoming apparent. Non-specific 

signals and cross-hybridisation are significant and can cause loss of reproducibility among 

microarray experiments (Homer et al. 2008). The reliance on hybridisation, analogue 

signatures and dependence on availability of the reference genome sequence make it 

therefore difficult to detect rare, low abundance or structurally similar isoforms (Chen et al. 

1997; Homer et al. 2008). This makes high resolution studies of the transcriptome 

problematic. 

RNA-Seq 

 RNA-Seq is a recent technology that utilises NGS platforms to sequence short cDNA 

fragments of around 100bp (Costa et al. 2010; Huang et al. 2011; Wang et al. 2009) and thus 

gain a snapshot of the human transcriptome at a particular point in time. This provides a view 
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of not only what genes are being expressed in a particular tissue and to what degree, but will 

also reveal SNPs genotype within transcribed parts of the genome. Moreover alternatively 

spliced isoform type, abundance, diversity and regulation may be determined (Fang and Cui 

2011; Lerch et al. 2012; Trapnell et al. 2009). It is also possible to detect RNA editing and 

coding/non-coding RNA’s and potential sites of action for non-coding RNA, revealing the 

complex nature of transcriptome dynamics (Peng et al. 2012). RNA-Seq overcomes the 

shortcomings of microarray, that, for many organisms, rely on reference genomes that are 

incomplete for the entire transcriptome and thus fail to identify any new or unknown 

transcript isoforms (Ameur et al. 2011; Martin and Wang 2011; Wang et al. 2009). 

 RNA-Seq offers base pair resolution and strong coverage of the transcriptome. This 

allows for the determination of transcript structure even as the result of alternative splicing 

(AS) or miss-splicing. The ability to determine expression levels of individual exons is, 

perhaps, RNA-Seqs most useful feature. Using this technology it has been estimated that 

approximately 95% of multi-exon genes undergo AS to give potentially, a hundred thousand 

splicing events occurring in major human tissues (Pan et al. 2008). However, the data 

quantity produced by RNA-Seq is overwhelming since the transcriptomic analysis of one 

human individual can result in ~70 Gbp of sequence reads (Peng et al. 2012). 

 In designing RNA-Seq experiments, issues such as read coverage or sample size are 

key considerations. Most of the transcripts are expressed at relatively low levels and detection 

of their expression will require generation of at last 40 million reads per sample (Toung et al. 

2011). Further it is essential to include sufficient number of biological replicates and of 

technical replicates to ensure reproducibility and facilitate quantification of individual genes 

of interest using qPCR (Fang and Cui 2011). For example current version of Cufflinks, a 

transcript assembler, requires sequence input from at least three biological replicates to 
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provide sufficient statistical power for calculation of variability in gene expression between 

samples. 

 With the growing popularity of RNA-Seq in genome wide association studies, many 

new computing and analysis methods have been developed to deal with the influx of data. For 

sequence alignment one such program includes Tophat which when extended to Cufflinks is 

not only useful in aligning sequences but can reconstruct isoform structure and align these to 

the genome (Trapnell et al. 2012). This allows for deeper analysis of differentially expressed 

genes, with not only the absolute expression of a gene seen, but also the expression of its 

isoforms. This enhanced resolution increases RNA-Seq’s potential to elucidate mechanisms 

of poorly understood complex disease processes. 

Pathway analysis 

When using pathway analysis to explore RNA-Seq or microarray data for 

differentially expressed genes, there is a number of options available.  

 Over-representation analysis was the first type of approach developed to take 

advantage of microarray and Gene Ontology. This method selects genes from the total list of 

genes generated by RNA-Seq or microarray, often by fold change cut off (commonly two 

fold change) with a p-value of 0.05 (Emmert-Streib and Glazko 2011; Khatri et al. 2012). 

These genes are used as input in analysis packages such as DAVID or MetaCore which aligns 

these genes to database knowledge (Huang et al. 2009). Pathways will be ordered according 

to overrepresentation, i.e. the number of genes differentially expressed from the number of 

genes defined by the pathway. Each pathway may then be explored for differentially 

expressed genes within biological context; this represents a knowledge based identification 

system of differentially expressed gene candidates for further study. 
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 Flaws in the overrepresentation method include a loss of data as selection criteria, 

such as fold-change and p-value cut-off for reducing gene lists generated by RNA-Seq or 

microarray, are often arbitrary.  They may ignore genes that fall just shy of these criteria or 

are not sufficiently affected by the state under investigation, such as disease, when small 

disturbances may lead to crucial loss of pathway homeostasis further downstream 

(Subramanian et al. 2005). 

 To compensate for the weaknesses of over-representation analysis two other major 

methods were developed. Functional class scoring uses a multitude of statistics applied to 

gene level changes recorded in experiments. These results are carried through to the pathway 

level to aid in assessing the significance of an affected pathway (Ackermann and Strimmer 

2009). The disadvantages of this method lie in its treatment of pathways, as in over-

representation analysis, as individual pathways when many have overlapping genes and 

functions. Further use of ranking at pathway level can lead to genes with a high degree of 

differential expression which may be considered equal to those with a lower degree of 

differential expression (Pavlidis et al. 2004). 

 The final method, pathway topology analysis, utilises further information from 

specialised databases (e.g. KEGG) such as metabolite production or protein sub cellular 

location to assess how much one pathway may be affected by differentially expressed genes 

(Kanehisa and Goto 2000). However, pathway topology changes from cell to cell, and as 

such a poor or no characterisation and annotation for some cell lines is available which 

presents a major drawback in this method (Green and Karp 2006; Bauer-Mehren et al. 2009). 

Furthermore the method does not fully compensate for the interdependencies between similar 

pathways. 



 10 

 Whilst a myriad of software packages exist for performing pathway analysis on large 

gene sets - including DAVID, MetaCore, GenGen, EASE and many others – MetaCore, a 

professional software package and DAVID, an open source package, are the main focus here. 

Whilst MetaCore and DAVID both perform overrepresentation analyses they utilise different 

databases. Where MetaCore relies on its own manually curated database, DAVID utilises the 

BioCarta and KEGG databases amongst many others (Huang et al. 2009, 

david.abcc.ncifcrf.gov/). This gives DAVID a unique flexibility, allowing the user to view gene 

lists in varying biological perspectives. However, MetaCore offers many integrate functions 

including algorithms to enable Pathway Topology analysis, pathway construction with 

integrated information on protein-protein interactions, mass spectrometry data, nuclear 

magnetic resonance data and metabolomics databases and a strong drug design and analysis 

amongst many other functions (www.genego.com). 

 Both programmes have simple setup and analyse wizards to provide guided usage and 

provide access to many reference databases such as Ensemble and UCSC Genome browser. 

MetaCore features nicer design of pathways and integrates experimental values. This 

combined with MetaCores simple storage and activation of multiple gene lists allows the user 

to directly compare experiments with visual plotting of expression differences. DAVID 

features a gene ID converter to ensure the majority of genes from a list are incorporated into 

the analysis but can only accept 3000 genes in a single job (Huang et al. 2009, 

david.abcc.ncifcrf.gov/). Each Pathway Analysis programme offers its own unique features and 

failings. As such due consideration should be given to each before a decision is made as to 

which programme to favour, with researchers often choosing multiple programmes to 

increase reproducibility and robustness of their results. 

 Choosing the appropriate method of analysis is key for getting the best data out of 

gene lists (Breitling et al. 2004). This however may be affected by data collection, and 

http://www.genego.com/


 11 

database choices for analysis depending on previous knowledge of pathways in a cell line or 

phenotype of interest (Green and Karp 2006). This is also dependent on the sort of control 

implemented, whether this is a self-contained, comparison of differential expression between 

two phenotypes, or a competitive, differential expression of genes compared to a control set 

in the same list. 

Application of pathway analysis in disease studies 

 Diseases of the brain are often complex, with gradual progressive changes. Many 

neurodegenerative diseases such as AD have greater risk with age, and once the process is 

initiated it advances with age. It is vital that an understanding of the key mechanisms of 

complex diseases in the brain be understood, particularly at early stages so that preventative 

measures might be taken to halt disease progression.  

Alzheimer’s Disease (AD) 

 AD is the most prevalent form of dementia (~60% of dementia) and is set to grow 

rapidly in the western world as population’s age (Lobo et al. 2000; Fratiglioni et al. 1999). 

AD is a complex disease and whilst it has been associated with a build-up of amyloid beta 

(Aβ) and Tau proteins the parthenogenesis of the disease is still largely unknown (Bertram et 

al. 2010). The use of transcriptomics and pathway analysis of gene expression within human 

brain tissue offers a powerful method of elucidating aberrant expression of genes that may be 

causing or compounding the disease.  

ATP-binding cassette transporter A7 (ABCA7) has also been recently identified as a 

strong candidate gene for late-onset AD (Hollingworth et al. 2011). ABCA7 is a member of 

the ABCA subfamily which is characterized by the ability to transport lipids across 

membranes (Kim et al. 2008). ABCA7 is expressed in the brain and has been shown to 
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suppress the production of the neurotoxic amyloid-beta peptide, a key pathological process in 

AD (Chan et al. 2008). Two isoforms of ABCA7, arising from alternative splicing, have been 

identified in the human brain (Ikeda et al. 2003). Type I ABCA7 splice variant has been 

detected on the cell surface and in intracellular compartments, whereas Type II appears to 

remain in the endoplasmic reticulum (Ikeda et al. 2003). Different variants of this protein 

indicate possibly different biological functions. Apart from the lipid transport function, two 

groups have identified a role for ABCA7 in phagocytosis (Iwamoto et al. 2006; Jehle et al. 

2006). They have demonstrated that macrophage ABCA7 plays a key role in phagocytosis of 

apoptotic debris. Since ABCA7 is strongly expressed in human microglia (Kim et al. 2006) 

and the fact that microglia actively phagocytose apoptotic debris in the CNS (Stolzing and 

Grune 2004), it is plausible that microglial ABCA7 could be involved in phagocytosis of 

apoptotic debris arising from neurodegenerative disease. 

 Increasingly it is being suggested that microRNA’s (miRNA’s) and transcriptional 

regulation play a key role in the development of spontaneous AD. As these miRNA’s are 

theorised to control expression of genes and direct splicing and regulation of mRNA 

transcripts they play a key role in the development of neurodegenerative diseases (Satoh 

2012). It has been seen in many studies that miRNAs is increasingly miss regulated. This 

includes the miss regulation of miR-146a which is controlled by NF-κB and is associated 

with sustained inflammation seen in AD brains (Li et al. 2011). Further groups have shown 

miRNA’s that target BACE1-regulated formation of Aβ are significantly reduced in AD 

frontal lobes (Kellett and Hooper 2009).  

 Studies into alternative splicing of genes previously correlated to AD pathology have 

shown differential expression of transcript isoforms, a potential mediator of disease. RNA-

Seq data of AD brains analysed in DAVID shows differential expression of apolipoprotein E 
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(APOE) isoforms, with APOE-001 and APOE-002 showing decreased expression in AD 

brains compared to normal brains, and APOE-005 showing significant up-regulation in AD 

brains compared to normal brains (Twine et al. 2011). Many other cases of aberrant splicing 

have been linked to AD pathology including cryptic and deletion splicing of presenilin 1 

(PSEN1) leading to loss or cryptic inclusion of exon 4. Altered splicing has been suggested to 

affect amyloid precursor protein (APP) distribution in the AD brain and mutations in other 

proteins such as progranulin (GRN) (an anti-inflammatory protein), prevent appropriate 

splicing and may lead to a loss of neuro-protection (Golde et al. 1990; Cruts et al. 2006). 

 Meta-analysis of late onset AD cases has shown a number of variants in the bridging 

integrator 1 (BIN1), complement component (3b/4b) receptor 1 (CR1) and clusterin (CLU) 

genes to be involved in AD pathogenesis (Lambert et al. 2009; Harold et al. 2009). However 

the CLU gene has not been replicated in some studies utilising GenGen: Genetic Genomics 

analysis of complex Data in meta-analysis of Alzheimer’s expression data (Hu et al. 2011). 

The same authors also identified phosphatidylinositol binding clathrin assembly protein 

(PICALM) variants, yet the presence of PICALM was seen as insignificant when corrected for 

APOE variant presence, which is recognised as the most significant genetic marker for AD. 

PICALM is involved in clathrin-mediated endocytosis of APP fragments before cleavage by 

γ-secretase to yield Aβ, and as such it has been suggested that dysfunctional PICALM may 

hinder Aβ clearance (Bertram et al. 2010). The discovery of the CR1 locus in this study 

shows a relationship to inflammation that the authors suggest compounds environmental 

factors such as diabetes and high blood pressure that appear to affect the development of 

dementia.  

 ATP-binding cassette transporter A7 (ABCA7) has also been recently identified as a 

strong candidate gene for late-onset AD (Hollingworth et al. 2011). ABCA7 is a member of 

the ABCA subfamily which is characterized by the ability to transport lipids across 
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membranes (Kim et al. 2008). ABCA7 is expressed in the brain and has been shown to 

suppress the production of the neurotoxic amyloid-beta peptide, a key pathological process in 

AD (Chan et al. 2008). Two isoforms of ABCA7, arising from alternative splicing, have been 

identified in the human brain (Ikeda et al. 2003). Type I ABCA7 splice variant has been 

detected on the cell surface and in intracellular compartments, whereas Type II appears to 

remain in the endoplasmic reticulum (Ikeda et al. 2003). Different variants of this protein 

indicate possibly different biological functions. Apart from the lipid transport function, two 

groups have identified a role for ABCA7 in phagocytosis (Iwamoto et al. 2006; Jehle et al. 

2006). They have demonstrated that macrophage ABCA7 plays a key role in phagocytosis of 

apoptotic debris. Since ABCA7 is strongly expressed in human microglia (Kim et al. 2006) 

and the fact that microglia actively phagocytose apoptotic debris in the CNS (Stolzing and 

Grune 2004), it is plausible that microglial ABCA7 could be involved in phagocytosis of 

apoptotic debris arising from neurodegenerative disease. 

 

Correlation of microarray data using Expression Analysis Systematic Explorer (EASE) has 

shown that incipient AD brains have a curiously high tumour suppressor transcription factor 

expression ratio (Blalock et al. 2004). These tumour suppressors, such as those from the 

TGF-β family and cyclin-dependent kinase 2 associated protein 1 (CDK2AP1), were shown 

to be involved in apoptosis and cell cycle amongst other functions, whilst down-regulated 

tumour suppressor genes were those related to growth and proliferation, such as v-myc 

myelocytomatosis viral oncogene homolog (MYC) and transcription factor Dp-1 (DP1). 

Whilst many of these tumour suppressors are involved in apoptotic pathways many have 

alternative roles, such as neuron senescence and extension, or re-entry into cell cycle 

(Blalock et al. 2004). As such differential expression of tumour suppressor genes may have 

complex effects on cells within the AD brain, including cell cycle re-entry, increased 
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myelination, cessation of protein biosynthesis and not just apoptosis. This varies with cell 

type and position within the AD brain. 

 Analysis performed within DAVID on synaptically localised mRNA showed an 

increase in neuroplasticity genes such as glutamate receptor, ionotropic, AMPA 2 (GR1A2) 

and solute carrier family 1, member 2 (SLC1A2). This suggests activation of inhibitory 

pathways as these proteins would hold synapses in a low conductance state. Further an 

increase in 3’UTR control sequences that regulate translation in the synapse were observed in 

many of these up-regulated neuro-plasticity genes (Williams et al. 2009). 

 A study on micro-vessels in the AD brain showed more than 2000 genes 

aredifferentially expressed compared to normal brains with a large number of these genes 

mapping to inflammatory and immune responses, signal transduction and neural development 

in the GeneSpringGX programme (Wang et al. 2012). Whilst these processes may not play 

pivotal roles in AD progression they may compound the effects of the disease. In particular 

over expression of cytokines and their receptors such as interleukin 1 receptor, type II 

(IL1R2) may significantly affect cell activity and be related to the decrease in gene expression 

of signal transduction related genes. 

 A major problem with studying the brain is the significant difference in architecture 

and functionality across regions. As such studies need to decide whether to take whole brain 

homogenates, single cell samples or specifically grey or white matter samples. Analysis of 

dissected grey and white matter samples through DAVID allowed for the identification of 

AD processes such as down-regulation stabilisation of ryanodine-sensitive Ca2+ that may 

have been masked in previous studies by white matter expression profiles (Blalock et al. 

2011). 
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 In order to effectively treat AD early disease detection and neuroprotective treatments 

are essential. To accomplish this, diagnostic indicators need to be differentiated from 

processes that occur with aging as many of these processes overlap (Blalock et al. 2004). As 

such it is useful to have animal and single cell models to investigate incipient AD. Mice 

(5XFAD) have been used to show that early stage AD shows particular patterns of gene 

expression. This included up-regulation of solute carrier family 18 member 3 (SLC18A3) and 

cholinergic receptor, muscarine 1(CHRM1) and the down-regulation of genes such as 

caveolin 3 (CAV3) and purkinje cell protein 2 (PCP2) as revealed in combinatorial use of 

EASE, Ingenuity Pathway Analysis (IPA) and GeneSpringGX packages (Kim et al. 2012). 

Such studies may aid in finding markers for incipient AD that will allow early detection so 

neuro-protective treatments might be implemented. 

 Pathway analysis of AD brain tissue has indicated thousands of differentially 

expressed genes to be involved in the disease progression. Whilst the number of genes is 

daunting these studies have significantly improved our knowledge of AD pathology and 

increase the potential for treatments to be developed. Whilst the complex nature of the 

disease may prevent implementation of a single therapeutic drug, a system of treatments 

could be developed with sufficient knowledge of pathway disruption in AD. 

Autism Spectrum Disease (ASD) 

 ASD is a heterogeneous collection of clinical conditions that are highly heritable with 

recurrence in siblings tens of times higher than the general population (Ziats and Rennert 

2011; Voineagu et al. 2011). Attempts to unravel a genetic cause for the disease have largely 

been unsuccessful. As the disease is highly complex, representing a broad clinical 

presentation that is likely affected by a series of genetic, epigenetic and environmental factors. 



 17 

However, recent implementation of RNA-Seq and pathway analysis has begun to elucidate 

key changes in the autistic brain previously unknown. 

 A study on induced pluripotent stem cells (iPSCs) derived from a number of patients 

and control groups, showed that a series of genes were dysregulated during neuronal 

differentiation. Further it was seen that pseudogenes, lincRNAs and other regulatory RNAs 

were dysregulated during neurogenesis in ASD. These changes, revealed by DAVID, were 

seen to affect regulation of some gene candidates for ASD and included chromatin 

remodelers, cell adhesion molecules and regulatory RNA species for HOX boxes and other 

developmental gene sets (Lin et al. 2011). Changes in these genes likely contribute to the lack 

of definition observed between compartments in ASD brains. 

 It has been observed that transcriptome of the ASD brain lacks definition when 

compared to the normal brain. This has been investigated in the temporal and frontal lobes of 

ASD and normal patients, it was shown that the frontal and temporal lobes of ASD brains 

lack the ultrastructural organisation observed in normal brains (Voineagu et al. 2011). Ataxin 

2-bonding protein 1 (A2BP1), a splicing factor specific to neural and muscle cells has been 

highlighted as differentiating ASD brains. Through the use of RNA-Seq and analysis in 

DAVID it has been shown that down regulation of the A2BP1 leads to an increase in 

differential splicing and miss splicing of several genes in ASD brains when compared to 

control brains. Such targets included neuronal cell adhesion molecule (NRCAM) and 

glutamate receptor, ionotropicm N-methyl D-aspartate 1 (GRIN1), involved in synapse 

formation, amongst other genes (Voineagu et al. 2011). 

 Pathway analysis of autism affected brains has revealed that ASD perturbations may 

affect central cytokine signalling pathways. This is seen in network hubs, from IPAs Pathway 

tool, highly enriched for Tnf, NF-κB, TgfB1, Myc, Jnk and Mapk (Ziats and Rennert 2011). 
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The over-representation of many of these hubs will have significant downstream effects in 

many pathways and, the effects of these need to be explored in the disease context. The 

patterning of these network hubs and cell-type specific expression led the authors to suggest 

that glial cells as well as neurons are also affected in ASD brains. 

 Knowledge of the genetic background of ASD was previously limited, but with 

implementation of high-throughput systems biology approaches our understanding of the 

disease may rapidly progress. 

Schizophrenia (SCZ) 

 The molecular aberrations leading to SCZ and bi-polar disorder (BP) are largely 

unknown though recent attempts at pathway analysis of data generated by high throughput 

techniques such as proteomics, microarray and RNA-Seq attempt to address this. Whilst SCZ 

and BP are clinically distinct disorders they share a number of genetic risk factors (Lin et al. 

2011). A wide range of differentially expressed genes have been observed in common in 

these two diseases through statistical analysis and use of EASE, DAVID, GenMAPP and 

MAPPFinder programmes. This includes genes such as neurexin 3 (NRXN3), glutamate 

decarboxylase 1 (GAD1), claudin 11 (CLDN11) amongst many others (Konradi et al. 2004; 

Hashimoto et al. 2008; Dracheva et al. 2006; Chu et al. 2009). These genes are primarily 

related to synapse formation and myelin synthesis which play key roles in brain development 

and diseases of the brain.  

 SCZ data-mining in the Stanley Medical Research Institutes (SMRI) database and 

qPCR has identified an increase in apoptotic signals, particularly Tumour Necrosis Factor 

Superfamily Member 6 (FAS) receptor and Tumour Necrosis Factor [ligand] Superfamily 

member 13 (TNFSF13) (Catts and Weickert 2012). However it is noted that SCZ brains often 

have increased neural density with decreased size, yet a loss of dendritic field is observed. 
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This suggests that the role of these apoptotic factors in SCZ is not leading to cell death, but 

likely affect dendrite regression amongst other subtle effects on cellular components leading 

to interneuronal signalling deficits (Catts and Weickert 2012). In contrast, increases in 

TNFSF13 and FAS receptor RNAs were not observed in BP patients. 

 As expression profiles are explored between these two diseases a number of 

discriminating diagnostic markers may be identified, allowing for rapid determination of 

disease type without the need of psychoanalysis.  

Concluding Remarks 

 Pathway analysis of high-throughput techniques, such as microarray and RNA-Seq, 

offers the chance to unravel molecular causes of complex diseases as discussed above. With 

increasing knowledge of complex diseases the probability of early detection, prevention or 

treatment development for complex diseases, such as AD, increases. Whilst many challenges 

still oppose progress in the field, such as data handling and storage, analysis of complex and 

lengthy gene lists and integration of this knowledge into complex diseases, the improvement 

and application of these technologies will significantly increase our understanding of 

complex polygenic diseases and provide novel targets for further analysis. 
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