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ABSTRACT

The past 1500 years provide a valuable opportunity to study the response of the climate system to external

forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the

understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore

used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and

forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are

identified and discussed. In the first of two case studies, the climate model simulations are compared with

multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemi-

sphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropo-

genic signal dominates during the industrial period. It is also found that seasonal and geographical biases may

cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend.

In the second case study, themodel simulations are compared with a coral d18O record from the central Pacific

Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state

of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic

impact on El Ni~no–Southern Oscillation. The proxy climate relationship is found to change over time,

challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These

case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations

of current techniques and demonstrate the need to develop alternative approaches.

1. Introduction

a. The climate of the past 1500 years

The past 1500 years have been characterized by signifi-

cant changes in the global climate (e.g., Jansen et al. 2007;

Jones et al. 2009; Mann et al. 2009; Diaz et al. 2011;

Graham et al. 2011). The Northern Hemisphere (NH)

experienced a relatively warm period known as the Medi-

eval Climate Anomaly [MCA; ;950–1250 CE (Common

* International Pacific Research Center/School of Ocean and

Earth Science and Technology Publication Number 983/8935.
&&Current affiliation: School of Geography and Environmental

Science, Monash University, Victoria, Australia.

Corresponding author address: Steven J. Phipps, ClimateChange

Research Centre, University of New SouthWales, UNSW Sydney,

NSW 2052, Australia.

E-mail: s.phipps@unsw.edu.au

15 SEPTEMBER 2013 PH I P P S ET AL . 6915

DOI: 10.1175/JCLI-D-12-00108.1

� 2013 American Meteorological Society



Era)], duringwhich the hemispheric-scale temperaturewas

similar to twentieth-century levels. This was followed by

a relatively cool period known as the Little Ice Age (LIA;

;1400–1700 CE). The LIA persisted until the start of the

industrial period and was followed by rapid increases in

temperature during the twentieth century (Trenberth et al.

2007). Changes in the Southern Hemisphere (SH) climate

are less well understood but, on the hemispheric scale at

least, appear to have exhibited similar warm and cool pe-

riods (Jansen et al. 2007; Mann et al. 2008).

There is strong evidence that natural forcings drove

changes in the global climate over this period. Orbitally

driven changes in insolation were small on the global

scale but could be significant on the regional scale. For

example, the long-term preindustrial cooling trend at

high northern latitudes can be attributed to orbital forc-

ing (Kaufman et al. 2009; Esper et al. 2012). Changes in

solar irradiance may have been globally significant, par-

ticularly the reductions in irradiance during solar grand

minima (Steinhilber et al. 2012). The ;1645–1715 CE

Maunder Minimum, for example, is likely to have con-

tributed toward the cool conditions during the LIA

(Shindell et al. 2001). Volcanic eruptions produce strong

cooling events that typically last several years (e.g.,

Thompson et al. 2009) but can also be important on

longer time scales. In particular, a succession of major

eruptions during the thirteenth century has been identi-

fied as the trigger for the onset of the LIA (Miller et al.

2012). Since the nineteenth century, other forcings have

become increasingly important with a detectable an-

thropogenic influence on the twentieth-century climate

(Hegerl et al. 2007b).

The past 1500 years therefore provide a valuable op-

portunity to study the response of the global climate to

external forcings. Significant changes have taken place

within the climate system over this period, and proxy

data that record these changes cover a wide geograph-

ical area and have high temporal resolution (e.g., Mann

et al. 2008). Natural and anthropogenic forcings are also

reasonably well constrained (e.g., Schmidt et al. 2012).

With knowledge of changes in the global climate and the

potential external drivers, this period is well suited to

a combined data–modeling approach to understanding

the response of the climate system to external forcings

(e.g., Fern�andez-Donado et al. 2013).

However, despite the quantity and quality of the avail-

able data, our understanding of the events of the past

1500 years and their origins remains limited. The cause of

the MCA is unclear, with climate models unable to re-

produce the reconstructed warmth of this period (e.g.,

Mann et al. 2009; Fern�andez-Donado et al. 2013). When

combinedwith proxy evidence, this suggests that theMCA

may have arisen from an internal reorganization of the

climate system (Diaz et al. 2011; Graham et al. 2011).

While detection and attribution studies have found a sig-

nificant role of volcanic eruptions in driving the pre-

industrialNorthernHemisphere climate, the availability of

proxy data has restricted these studies to the extratropics

and/or periods shorter than 1000 years (Hegerl et al. 2003,

2007a). Thus our knowledge of the role of climate forcings

over the past 1500 years remains limited, particularly for

regions that lie outside the northern extratropics.

b. Paleoclimate data–model comparison

Paleoclimate proxies and climate models constitute two

contrasting and yet complementary sources of information

on past climates. Both approaches can be applied inde-

pendently of the other to generate insights into the dy-

namics of the climate system. For example, both proxy

data (e.g., Tudhope et al. 2001;Moy et al. 2002; Cobb et al.

2003) and climate modeling (e.g., Liu et al. 2000; Otto-

Bliesner et al. 2006; Zheng et al. 2008) have been applied

to study past changes in the dynamics ofElNi~no–Southern

Oscillation (ENSO). However, more information can be

extracted about the drivers of climate variability and

change when the two approaches are combined. Proxy

data can be used to constrain and evaluate model simu-

lations, while climate models can be used to explore the

mechanisms that have driven past climatic changes. For

example, Mann et al. (2009), Graham et al. (2011), and

Goosse et al. (2012) combine proxy data with climate

modeling to study the dynamical origins of the MCA.

Paleoclimate data–model comparison can be used to

assess model performance (e.g., Braconnot et al. 2007a,b),

to constrain projections of future climate change (e.g.,

Hargreaves and Annan 2009), or to study the drivers of

climate variability and change (e.g., Hegerl et al. 2007a).

From a quantitative perspective, the primary limitation

to data–model comparison is the fact that paleoclimate

proxies and climate models generate different sets of

variables. Models directly simulate physical variables such

as temperature or precipitation, whereas proxies typically

provide chemical or biophysical variables such as d18O or

tree ring width. These variables are not directly compa-

rable. There are two basic classes of technique that have

been developed over time to address this fundamental

incompatibility (e.g., Bartlein et al. 1998): 1) the inverse

approach, which seeks to translate proxy variables into the

physical variables simulated bymodels, and 2) the forward

approach, which seeks to translate model variables into

proxy variables.

1) INVERSE APPROACH

Paleoclimate proxy variables can be converted into

physical climate variables by using instrumental data

to establish an empirical relationship. Statistical techniques
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such as linear regression are used to calibrate a proxy

variable at a particular location against local or remote

climatic variables. Examples include the calibration of

coral Sr/Ca and d18O against local sea surface temperature

(e.g., Corr�ege 2006) or the calibration of ice core accu-

mulation in Antarctica against precipitation in southwest

Western Australia (van Ommen and Morgan 2010).

Multiproxy networks comprise data frommultiple archives

and multiple sites. Such networks are used to reconstruct

climatic variables from the regional to global scale, gen-

erating spatial averages (e.g., Mann et al. 2008), gridded

spatial fields (e.g., Mann et al. 2009), or indices of large-

scale modes of variability such as El Ni~no–Southern Os-

cillation (e.g., Wilson et al. 2010).

However, inverse techniques suffer from a number of

limitations. The most critical of these is the necessary

but usually implicit assumption of stationarity. Modern

instrumental observations are used to calibrate proxy

variables against climatic variables, with these relation-

ships then assumed to have applied invariantly in the

past. There is no a priori reason to believe that this as-

sumption is valid, and this therefore represents a source

of uncertainty that is potentially large and difficult to

quantify. A second limitation is the fact that proxies can

integrate multiple environmental variables (e.g., Gagan

et al. 2000; Fischer and Treble 2008). As a result, changes

in proxy variables often cannot be translated into changes

in any single climatic variable without a loss of informa-

tion. Finally, the statistical techniques used to generate

multiproxy reconstructions can also contribute uncer-

tainty, although this is at least quantifiable (Frank et al.

2010; Gergis et al. 2012; Wahl and Smerdon 2012).

Paleoclimate data assimilation is a process whereby

proxy data are incorporated into a computer model (e.g.,

Goosse et al. 2012). This requires that proxy variables first

be converted into the physical variables simulated by the

model, and paleoclimate data assimilation can therefore

be regarded as an application of the inverse approach.

2) FORWARD APPROACH

Forward models use physical and biological principles

to directly simulate the evolution of proxy variables

within a climate modeling framework (e.g., Tolwinski-

Ward et al. 2011; Baker et al. 2012). This approach has

two crucial advantages over inverse techniques. First, by

allowing the relationships between proxies and climatic

variables to evolve over time, forward modeling is the

only approach that is capable of avoiding the assumption

of stationarity. Second, by incorporating mechanistic

descriptions of the processes that determine the evolution

of proxy variables, forward modeling can account for the

fact that proxies integrate multiple environmental vari-

ables. Examples of forward models developed to date

include those that describe tree ring width (Evans et al.

2006; Tolwinski-Ward et al. 2011), tree ring d18O (Evans

2007; Berkelhammer and Stott 2009), coral d18O (Brown

et al. 2006; Tindall et al. 2009), and speleothem d18O

(Baker et al. 2012).

Forward models can be characterized in terms of their

completeness and the extent to which they integrate

different processes, exactly as for climatemodels (Claussen

et al. 2002). At one extreme, forward models will in-

corporate a complete description of all the physical and

biological processes that describe the evolution of a

proxy variable. Arguably no suchmodel currently exists,

but forward models such as those of Evans et al. (2006),

Evans (2007), and Baker et al. (2012) all succeed in

integrating descriptions of multiple processes. At the

other extreme, forward models can be simple, linear,

and parameterized. An example is the pseudocoral ap-

proach, which seeks to describe the evolution of coral

d18O in terms of nonisotopic climate variables (Brown

et al. 2008; Thompson et al. 2011). Linear regression is

used to derive empirical calibrations for such models,

based on either observational or climate model data.

Although this introduces the assumption of stationarity

in proxy climate relationships, pseudocorals and related

approaches will have value as a tool for data–model

comparison until such time as isotope-enabled climate

models become commonplace.

Despite the promise of forward modeling, it will ul-

timately require that complete and accurate process

models be developed for each proxy. Furthermore, such

models will only be able to simulate proxy variables

correctly if they are embedded within climate modeling

frameworks that supply them with accurate environ-

mental variables. Until such time as these criteria are

fulfilled, forward modeling may be no better than other

approaches to paleoclimate data–model comparison.

c. This study

In this paper, we use paleoclimate data–model compar-

ison to study the role of natural and anthropogenic forcings

in driving the global climate over the past 1500 years.A fast

global climate model is used to conduct multiple new

simulations of this period, with different combinations of

forcings being applied. Two complementary approaches

are employed to compare the model simulations with

a variety of paleoclimate datasets. Throughout, sources

of uncertainty are identified and discussed.

The climate model simulations and paleoclimate

datasets used are described in section 2. In section 3, the

inverse approach to paleoclimate data–model compari-

son is used to compare the model simulations with two

multiproxy temperature reconstructions. We seek to

identify the drivers of hemispheric-scale temperature,
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building upon existing studies of the Northern Hemi-

sphere and extending them to assess the drivers of past

changes in the Southern Hemisphere. In section 4, the

forward approach is then used to compare the model

simulations with a coral d18O record from the central

Pacific Ocean. We build upon previous work in devel-

oping simple forward models of coral isotopes, con-

structing a pseudocoral that is capable of describing

multiple climatic influences on the ENSO signal in coral

d18O. We then use this indicator to assess the influences

of natural and anthropogenic forcings on the mean state

of the central Pacific and on ENSO variability. Finally,

section 5 discusses the results, presents conclusions, and

suggests future priorities for paleoclimate research.

2. Data and methods

a. Climate model simulations

This study uses the Commonwealth Scientific and In-

dustrial Research Organisation Mark 3L (CSIROMk3L)

climate system model, version 1.2, which features en-

hanced spatial resolution in the ocean relative to the

original release of the model (Phipps et al. 2011, 2012).

Mk3L is a fully coupled general circulation model that

includes components describing the atmosphere, ocean,

sea ice, and land surface. Version 1.2 uses horizontal

resolutions of 5.68 longitude by 3.28 latitude for the at-

mosphere, sea ice, and land surface models and 2.88 lon-
gitude by 1.68 latitude for the ocean model. There are

18 vertical levels in the atmosphere and 21 in the ocean.

Mk3L produces a realistic simulation of the modern

climate (Phipps et al. 2011) and has utility for studying

the response of the climate system to both natural and

anthropogenic forcings (Phipps and Brown 2010; Phipps

et al. 2012). Flux adjustments with a fixed annual cycle

are used to minimize drift and to improve the realism of

the simulated climate. The spatial and temporal vari-

ability associated with ENSO is represented reasonably

well, although the simulated variability has a slightly

longer periodicity relative to observations (Santoso et al.

2011). Mk3L does not include biophysical components

such as a dynamic vegetation model or representations

of the global carbon cycle. Neither does it include any

simulation of stable isotopes such as 18O. However, the

relative simplicity of the model compared to some state-

of-the-art Earth system models combined with its rela-

tively coarse spatial resolution generates a model that is

extremely computationally efficient. This allows it to be

used here to conduct multiple ensembles of simulations

spanning the past 1500 years.

Four different natural and anthropogenic forcings are

applied to the model. Changes in Earth’s orbital

parameters are calculated using the method of Berger

(1978), while concentrations of anthropogenic green-

house gases are from MacFarling Meure et al. (2006).

Total solar irradiance is from Steinhilber et al. (2009),

and the stratospheric sulfate aerosols arising from vol-

canic eruptions are from the Ice Core Volcanic Index 2

of Gao et al. (2008). The method described by Phipps

et al. (2012) is used to convert the stratospheric sulfate

aerosol loading into an equivalent perturbation to the

total solar irradiance. Figure 1 shows the variations in

each of these climate forcings over the past 1500 years.

Four ensembles of climate model simulations are stud-

ied here. Different combinations of forcings are applied,

as summarized and expanded in Table 1. Each ensemble

consists of three independent simulations. The model was

first initialized from a preindustrial control simulation

and was then run to equilibrium under permanent 1 CE

boundary conditions. The individual members of ensem-

bles O,OG, andOGSwere initialized from different years

of this simulation and run for 2000 years. The members of

ensemble OGSV were initialized from the state of each

member of ensembleOGS at the end of year 500 CE; they

could not be initialized earlier, as the volcanic forcing da-

taset used to drive the model only covers the period from

501 CE onward.

Thus, the members of each ensemble differ only in the

initial conditions, with the model physics and the bound-

ary conditions being identical. The differences between

each ensemble are therefore due to external forcings,

while the differences within each ensemble are due to

unforced internal variability. Using ensemble averages

reduces the influence of internal variability when studying

the response of the climate system to external forcings.

b. Temperature reconstructions

Two state-of-the-art multiproxy hemispheric temper-

ature reconstructions are chosen as the basis for the first

case study. The Northern and Southern Hemisphere

reconstructions of Mann et al. (2008) were derived from

a global network of 1209 annually and decadally re-

solved proxies. The data were obtained from archives

that include ice cores, coral, speleothems, and sedi-

ments; however, tree rings dominate, providing 1032

(85%) of the records used. The majority of the proxies

(1036, of which 86% are derived from tree rings) are

located in the Northern Hemisphere, while 173 (of

which 83% are derived from tree rings) are located in

the Southern Hemisphere. The proxy network was cali-

brated against combined land and ocean Hadley Centre

ClimaticResearchUnit, version 3 (HadCRUT3v) annual-

mean temperature data (Brohan et al. 2006; Rayner et al.

2006) for the period 1850–2006 CE. A version of the

‘‘error in variables’’ method (EIV or ‘‘total least squares’’;
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Hegerl et al. 2007a) based on the regularized expectation–

maximization algorithm (RegEM; Schneider 2001) was

used to regress the proxies against the instrumental tar-

get. Hemispheric-mean surface air temperature was re-

constructed for the Northern Hemisphere for the period

300–2006 CE and for the Southern Hemisphere for the

period 400–2006 CE. A decadal filter was applied to the

final reconstructions, to reflect the temporal resolution of

the proxies from which they were derived.

c. Coral d18O

The proxy dataset used as the basis for the second case

study is the coral d18O record from Palmyra Island (68N,

1628W) in the central Pacific Ocean (Cobb et al. 2003).

This record is chosen for a number of reasons. First, as

Palmyra Island lies in the tropics and only just outside the

Ni~no-3.4 region (58S–58N, 1708–1208W), the local climate

is dominated by ENSO. El Ni~no events bring warm wet

conditions and negative coral d18O anomalies, while La

Ni~na events bring cool dry conditions and positive coral

d18O anomalies (Cobb et al. 2003). Second, it provides

a record of ENSOvariability spanning the last 1100 years,

albeit a discontinuous one. Finally, analysis of the record

by Cobb et al. (2003) reveals evidence of rapid shifts in

ENSO amplitude and frequency. These regime changes

appear to be uncorrelated with either external forcings or

the mean state of the climate, suggesting that variability

arises from within the internal dynamics of the ENSO

system itself (Jin et al. 1994; Tziperman et al. 1994). The

climate model simulations presented here provide an

opportunity to test this conclusion.

3. Drivers of hemispheric-scale temperature

In this section, we study the role of natural and an-

thropogenic forcings in driving temperature at the hemi-

spheric scale. The climatemodel simulations are compared

with the two multiproxy temperature reconstructions

(section 2b). CSIRO Mk3L is particularly advantageous

for a study of this nature, as it allows us to conductmultiple

FIG. 1. The forcings on the climate system between 500 and 2000 CE: (a) the changes in the distribution of in-

solation due to changes in Earth’s orbital geometry, (b) the equivalent CO2 concentration (MacFarling Meure et al.

2006), (c) total solar irradiance (Steinhilber et al. 2009), and (d) the radiative forcing due to volcanic eruptions (Gao

et al. 2008).

TABLE 1. A summary of the forcings applied in the four ensembles

of climate model simulations presented herein.

Ensemble Forcing(s)

O Orbital

OG Orbital, greenhouse gases

OGS Orbital, greenhouse gases, solar irradiance

OGSV Orbital, greenhouse gases, solar irradiance,

volcanic aerosols
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ensembles of simulations using different combinations

of forcings. The Northern Hemisphere is studied first, al-

lowing a comparison with previous work. The analysis

is then extended to the Southern Hemisphere, before

exploring the role of orbital forcing in driving the long-

term preindustrial cooling trend seen in both re-

constructions. By comparing the model simulations

with multiproxy temperature reconstructions, the anal-

ysis in this section represents an application of the in-

verse approach to paleoclimate data–model comparison

(section 1b).

A number of previous studies have used climate

model simulations to detect natural and anthropogenic

signals in reconstructions of regional or hemispheric-

scale temperature (Free and Robock 1999; Crowley

2000; Hegerl et al. 2003, 2007a, 2011). These studies

have employed statistical techniques ranging from

correlation-based approaches to the application of op-

timal fingerprinting (Allen and Stott 2003; Stott et al.

2003). This latter technique has been widely used to

detect and attribute anthropogenic influences on the

global climate (e.g., Hegerl et al. 2007b). Over relatively

short periods such as the twentieth century, the ‘‘fin-

gerprints’’ derived from climate model simulations must

incorporate spatial information in order to adequately

distinguish between the responses to different external

forcings (Hegerl et al. 2007b). On longer time scales,

however, the evolutions of each forcing over time are

sufficiently different that the fingerprints can be purely

temporal (Hegerl et al. 2003, 2007a, 2011).

Here, we attempt to detect natural and anthropogenic

signals in Northern and Southern Hemisphere temper-

ature over the past 1500 years. To do this, we calculate

the residuals between the model simulations and the

reconstructions. If an individual forcing reduces the re-

sidual by an amount that is statistically significant at the

95% confidence level, we conclude that the forcing is

a driver of hemispheric-mean temperature.

a. Northern Hemisphere

Figure 2 shows the simulated annual-mean Northern

Hemisphere surface air temperature (SAT) for each

ensemble of climate model simulations and compares it

with the reconstruction of Mann et al. (2008). When

orbital forcing alone is applied to the model (Fig. 2a), it

exhibits weak internal variability on interdecadal time

scales and no observable long-term trend. The addition

of greenhouse gases (Fig. 2b) causes the model to re-

produce the warming trend during the industrial period

but has little impact prior to 1800 CE. When solar

forcing is introduced (Fig. 2c), the model begins to

simulate centennial-scale variability during the pre-

industrial era. The ensemble mean remains above the

1500–1850 CE average—albeit by less than 0.2 K—for

most of the period from 950 to 1300 CE, coincident with

theMCA and a period of relatively high solar irradiance

(Fig. 1c).

When volcanic forcing is introduced (Fig. 2d), the

magnitude of the simulated interdecadal variability in-

creases to a level similar to the reconstruction. Strong

cooling in response to theKuwae (1452CE) andTambora

(1815 CE) eruptions is apparent in both the reconstruc-

tion and the model simulations. However, while the

model simulates a decadal cooling of around 0.6K in re-

sponse to the eruption of 1258 CE—the largest volcanic

eruption of the past 1500 years (Gao et al. 2008)—no

cooling signal is apparent in the reconstruction. Possible

reasons for this discrepancy include deficiencies in the

volcanic reconstruction used to force the model, de-

ficiencies in the representation of volcanic aerosols within

the model (Timmreck et al. 2009), or the fact that proxy

networks that incorporate tree ring data can underes-

timate the cooling that follows large volcanic eruptions

(Robock 2005; Mann et al. 2012). Nonetheless, when all

forcings are applied, the model is consistent with the re-

construction from the early fifteenth century onward.

We now use the model simulations to assess the in-

fluence of each forcing on hemispheric-scale temperature.

Table 2a shows the root-mean-square error (RMSE) in

the mean of each model ensemble, calculated relative

to the reconstruction. Over the full period (501–2000

CE) the addition of volcanic forcing improves the

agreement between the model and the reconstruction by

a statistically significant amount: the RMSE for ensem-

ble OGSV is 0.014 6 0.013K smaller than that for en-

semble OGS. However, within the framework employed

here, we find no detectable influences of greenhouse

gases or solar irradiance on the NH climate. In the case

of greenhouse gases this is not surprising, as these

are a minor forcing for the bulk of this period. For the

preindustrial period (501–1850 CE) similar results are

obtained. Only the influence of volcanic forcing is de-

tectable, reducing the RMSE in ensemble OGSV by a

narrowly significant 0.0146 0.014K relative to ensemble

OGS. In contrast, over the industrial period (1851–2000

CE) a strong and significant influence of greenhouse

gases is now apparent, but there are no detectable in-

fluences from either solar or volcanic forcings.

Thus, a picture emerges of a detectable but weak role

of volcanic eruptions in driving the NH climate, with

greenhouse gases becoming dominant during the in-

dustrial period. Previous studies that employed optimal

fingerprinting have found robust volcanic and anthro-

pogenic signals in reconstructions of NH climate but no

consistent solar signal (Hegerl et al. 2003, 2007a). These

studies were restricted to either the extratropics and/or
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the last millennium because of the availability of proxy

data and climate model simulations. Here, we have been

able to reach similar conclusions and also show that they

apply on the hemispheric scale over the past 1500 years.

However, we identify multiple sources of uncer-

tainty. The agreement between the model and the re-

construction becomes increasingly poor prior to 1450

CE (Fig. 2d). This suggests either declining skill in the

reconstruction or in the forcing datasets used to drive

the model, or deficiencies in the model physics. All of

these explanations are plausible. The reconstruction

becomes increasingly uncertain with age, particularly

prior to 1000 CE (Mann et al. 2008). Limited accuracy in

dating also introduces uncertainty into reconstructions

of volcanic forcing (Plummer et al. 2012). The largest

divergence between the model and the reconstruction

occurs during the tenth and eleventh centuries. Other

models, irrespective of the magnitude of solar or

FIG. 2. The simulated annual-mean Northern Hemisphere surface air temperature for each

ensemble of climate model simulations, compared with the reconstruction of Mann et al.

(2008). The red, blue, and green lines show the 10-yr running means for individual simulations,

and the thick black lines show the ensemble mean. The 95% confidence interval forMann et al.

(2008) is indicated by gray shading. All values are expressed as anomalies relative to the 1500–

1850 CE mean. Vertical dashed lines indicate the volcanic eruptions of 1258 CE (unknown

location), 1452 CE (Kuwae), and 1815 CE (Tambora).
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volcanic variations applied, also fail to reproduce this

warm period (e.g., Ammann et al. 2007; Jungclaus et al.

2010; Fern�andez-Donado et al. 2013; Goosse et al.

2012). This is consistent with evidence that the MCA

arose through an internal reorganization of the climate

system (Mann et al. 2009; Diaz et al. 2011; Graham et al.

2011) and indicates that internal climate variability is an

additional source of uncertainty. However, the limita-

tions of the inverse approach in general are highlighted

by the fact that we cannot determine whether the recon-

struction, themodel simulations, or both are the source of

the discrepancies.

b. Southern Hemisphere

The analysis is now extended to the Southern Hemi-

sphere. Figure 3 shows the simulated annual-mean SH

SATand compares itwith the reconstruction ofMann et al.

(2008). The model simulates weak internal variability and

noobservable long-term trendwhenorbital forcing alone is

applied (Fig. 3a), supplemented by awarming trend during

the industrial periodwhen changes in greenhouse gases are

added (Fig. 3b). Centennial-scale variability becomes

more apparent during the preindustrial era when solar

forcing is introduced (Fig. 3c) with the ensemble mean

remaining above the 1500–1850 CE average for most of

the period from 900 to 1300 CE. The agreement between

the model and the reconstruction is best when volcanic

forcing is applied as well (Fig. 3d). Cooling in response to

the Kuwae and Tambora eruptions is apparent in both the

reconstruction and the model simulations. However, be-

cause of the greater fraction of ocean cover in the SH, the

magnitude of the temperature changes is smaller than in

the NH. A cooling signal in response to the 1258 CE

eruption is again missing from the reconstruction.

Table 2b shows the RMSE in the mean of each model

ensemble, calculated relative to the reconstruction. For

the full period (501–2000 CE), the inclusion of each

additional forcing reduces the RMSE by a statistically

significant amount. Thus, there are detectable influences

of greenhouse gases, solar irradiance, and volcanic

eruptions on SH temperature. When the RMSE is cal-

culated separately for 501–1850 CE and 1851–2000 CE,

we find that only the influences of solar and volcanic

forcings are detectable during the preindustrial period,

while only the influence of greenhouse gases is detect-

able during the industrial period. Comparing the results

for the two hemispheres, the influences of both solar

and volcanic forcing are stronger in the SH. We have

therefore been able to show that detectable solar and

volcanic signals exist in a reconstruction of SH temper-

ature spanning the past 1500 years.

We identify the same sources of uncertainty as for the

NH analysis. The agreement between the model and the

reconstruction again becomes increasingly poor prior to

the fifteenth century (Fig. 3d), and the simulations again

fail to capture the peak medieval warmth during the

tenth and eleventh centuries. Possible sources of uncer-

tainty therefore include declining skill in the recon-

struction or in the forcing datasets used to drive the

model, deficiencies in the model physics, and internal

climate variability. Once more, this highlights the limi-

tations of the inverse approach, as we cannot determine

whether the reconstructions, the model simulations, or

both are the source of the discrepancies between them.

c. The role of orbital forcing

None of the model simulations reproduces the long-

term preindustrial (501–1850CE) cooling trend exhibited

by the two hemispheric temperature reconstructions.

One possible explanation for this is the response of the

multiproxy network to orbitally induced changes in in-

solation. These changes largely cancel out on the annual

and hemispheric scale but vary strongly as a function of

both latitude and time of year (Fig. 1a). Any seasonal or

geographical biases in the response of a proxy network

might therefore cause it to exhibit an exaggerated re-

sponse to orbital forcing. The potential for such a bias is

demonstrated by recent 2000-yr reconstructions of sum-

mer temperature in the Arctic region (Kaufman et al.

2009) and Scandinavia (Esper et al. 2012), both of which

reveal strong orbitally driven cooling trends prior to the

twentieth century.

The multiproxy network that forms the basis of the

reconstructions used here is predominantly based on

tree rings (section 2b). These are typically sampled close

to the treeline, where the growing season can be as short

as two months (Mann et al. 2012). Furthermore, rela-

tively few of the proxies are located in the tropics, with

the bulk being located at mid and high latitudes (Mann

TABLE 2. The RMSE in annual-mean surface air temperature

(K) for the mean of each ensemble of climate model simulations,

calculated relative to the hemispheric-mean reconstructions of

Mann et al. (2008): (a) Northern Hemisphere and (b) Southern

Hemisphere. The 95% confidence intervals are calculated using

bootstrapping (Wilks 2011).

Ensemble 501–2000 CE 501–1850 CE 1851–2000 CE

(a) Northern Hemisphere

O 0.273 6 0.008 0.265 6 0.008 0.332 6 0.036

OG 0.273 6 0.008 0.282 6 0.008 0.168 6 0.014

OGS 0.266 6 0.009 0.274 6 0.009 0.183 6 0.016

OGSV 0.252 6 0.010 0.260 6 0.011 0.168 6 0.018

(b) Southern Hemisphere

O 0.294 6 0.009 0.284 6 0.008 0.375 6 0.036

OG 0.275 6 0.008 0.288 6 0.009 0.105 6 0.013

OGS 0.252 6 0.008 0.263 6 0.008 0.114 6 0.012

OGSV 0.212 6 0.008 0.220 6 0.008 0.123 6 0.014
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et al. 2008). Thus, while the proxy network is calibrated

against annual- and hemispheric-mean temperature, the

majority of the individual proxies that comprise the

network will respond to changes in temperature dur-

ing the growing season in the extratropics. This repre-

sents a potential source of bias in the response to

orbital forcing, which can be investigated using the

model simulations.

Figure 4 shows the orbitally forced changes in in-

solation over the period 501–2000 CE [calculated using

the method of Berger (1978)], the mean temperature

simulated by model ensemble OGSV, and the hemi-

spheric temperature reconstructions ofMann et al. (2008).

Four different temporal and spatial domains are used to

calculate the hemispheric averages of insolation and

simulated temperature. In the DEFAULT case, the an-

nual and hemispheric means are calculated, as in the

preceding analysis. In the GROW case, the averages are

calculated for the growing season only. In the NH, this

is taken as July–August following Mann et al. (2012); in

the SH, where tree rings can be sampled at lower eleva-

tions and latitudes, this is taken as October–November

following Fowler et al. (2012). Regardless, the conclu-

sions of the following analysis are insensitive to the exact

definition of the growing season. In the EXTRA case,

the averages are calculated for the extratropics only,

which are taken as the regions 308–908N and 908–308S,
respectively. Finally, in the GROW1EXTRA case, the

FIG. 3. As in Fig. 2, but for the Southern Hemisphere.
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averages are calculated for the growing season and ex-

tratropics only. Figures 4a and 4c show that orbital forc-

ing becomes much more important when considering

changes on a seasonal scale. Growing season insolation in

both hemispheres declines bymore than 5Wm22 between

501 and 2000 CE, and by more than 6Wm22 in the ex-

tratropics. The model simulates stronger preindustrial

cooling trends when these potential biases are taken into

account and is therefore more consistent with the re-

constructions (Figs. 4b,d).

FIG. 4. The changes in insolation and temperature in the Northern and Southern Hemi-

spheres for a variety of temporal and spatial domains: (a),(c) top-of-atmosphere insolation and

(b),(d) surface air temperature according to the reconstructions of Mann et al. (2008) and the

mean of model ensembleOGSV. In each case, DEFAULT (red) is the annual and hemispheric

mean, GROW (green) is the mean for the growing season only, EXTRA (dark blue) is the

mean for the extratropics only, and GROW1EXTRA (light blue) is the mean for the growing

season and extratropics only. The changes in insolation shown are those due to orbital forcing

only. The 95% confidence interval for Mann et al. (2008) is indicated by gray shading. The

values shown for the model simulations are 10-yr running means. All values are expressed as

anomalies relative to the 1500–1850 CE mean. Vertical dashed lines indicate the volcanic

eruptions of 1258 CE (unknown location), 1452 CE (Kuwae), and 1815 CE (Tambora).
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Biases of this nature might distort attempts to attri-

bute past climatic changes to specific external forcings.

To explore this possibility, Table 3 shows the same

RMSEs that were calculated in the preceding analysis.

This time, only the preindustrial period (501–1850 CE)

is considered. For the NH (Table 3a), both the GROW

and EXTRA biases reduce the RMSE for ensemble O,

reflecting increasing skill as the model simulates a

stronger preindustrial cooling trend. Both of these biases

also reduce the difference in RMSE between ensembles

OGS and OGSV sufficiently that we no longer find any

detectable influence of volcanic eruptions on NH tem-

perature. In the EXTRA and GROW1EXTRA cases,

ensemble O has the smallest RMSE of all the ensembles,

indicating that the application of orbital forcing alone

optimizes the agreement between the model and the re-

construction. The results for the SH differ considerably

(Table 3b). The stronger preindustrial cooling trend

simulated by ensembleO again leads to better agreement

with the reconstruction in all cases. However, there

continues to be a detectable influence of both solar irra-

diance and volcanic eruptions on SH temperature. En-

semble OGSV consistently has the smallest RMSE of all

the ensembles, even in the GROW1EXTRA case.

Overall, we find that the model can reproduce at least

some of the reconstructed long-term preindustrial cool-

ing trend in each hemisphere but only once potential

seasonal or geographical biases are taken into account.

If the model is accurate, this suggests that the cooling

trend in the reconstructions is, at least in part, an artifact

that arises because of these biases. This counters the

argument of Esper et al. (2012) by suggesting that, on the

annual and hemispheric scale, current multiproxy recon-

structions overestimate rather than underestimate the

magnitude of the preindustrial cooling trend. Further

analysis using multiple models would be required to

confirm this conclusion.

The complementary roles of orbital and volcanic

forcing undermine our previous conclusion that there

is a detectable influence of volcanic eruptions on NH

temperature. Volcanic forcing improves the agreement

between the model and the reconstruction, but it does

so by increasing the magnitude of the simulated pre-

industrial cooling trend. This brings the model into

better agreement with the potentially exaggerated trend

in the reconstruction. Once potential seasonal or geo-

graphical biases in the reconstruction are taken into

account, orbital forcing alone provides the best expla-

nation of this trend. While this indicates that the inverse

approach can restrict our ability to identify the drivers of

past climate, our conclusion that there are detectable

influences of solar irradiance and volcanic eruptions on

SH temperature remains robust.

4. The climate of the central Pacific

In the previous section, we studied the role of external

forcings in driving hemispheric-scale temperature and

found detectable roles of solar irradiance and volcanic

eruptions in driving the SH climate. A detectable role of

greenhouse gases was also found in driving the climates

of both hemispheres during the industrial period. We

now extend this work to study the role of natural and

anthropogenic forcings in driving the climate of the

central Pacific. We construct a pseudocoral indicator

and then use this to compare the model simulations

with the coral d18O record (section 2c). By examining

changes in both the mean state of the central Pacific and

ENSO, we will be able to use the model simulations to

test the conclusion of Cobb et al. (2003) that changes in

TABLE 3. The RMSE in annual-mean surface air temperature (K) for the mean of each ensemble of climate model simulations over the

period 501–1850 CE, calculated relative to the hemispheric-mean reconstructions ofMann et al. (2008): (a) NorthernHemisphere and (b)

Southern Hemisphere. Values are shown for four cases: DEFAULT (the annual and hemispheric mean), GROW (the mean for the

growing season only), EXTRA (the mean for the extratropics only), and GROW1EXTRA (the mean for the growing season and

extratropics only). The 95% confidence intervals are calculated using bootstrapping (Wilks 2011).

Ensemble DEFAULT GROW EXTRA GROW1EXTRA

(a) Northern Hemisphere

O 0.265 6 0.008 0.251 6 0.008 0.243 6 0.008 0.212 6 0.007

OG 0.282 6 0.008 0.266 6 0.008 0.261 6 0.008 0.228 6 0.007

OGS 0.274 6 0.009 0.255 6 0.008 0.262 6 0.010 0.225 6 0.008

OGSV 0.260 6 0.011 0.248 6 0.012 0.260 6 0.012 0.239 6 0.015

(b) Southern Hemisphere

O 0.284 6 0.008 0.247 6 0.007 0.258 6 0.008 0.234 6 0.007

OG 0.288 6 0.009 0.254 6 0.008 0.258 6 0.008 0.237 6 0.008

OGS 0.263 6 0.008 0.230 6 0.007 0.224 6 0.007 0.207 6 0.007

OGSV 0.220 6 0.008 0.198 6 0.008 0.175 6 0.007 0.173 6 0.007
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ENSO variability are decoupled from the mean state

and instead arise from within the internal dynamics of

the ENSO system itself. As this analysis employs a sim-

ple forward model, it represents an application of the

forward approach to paleoclimate data–model com-

parison (section 1b).

a. Pseudocoral derivation

Coral d18O is influenced by both the temperature and

d18O value of the ambient seawater (Epstein et al. 1953;

Weber and Woodhead 1972; Juillet-Leclerc and Schmidt

2001). To estimate the value of coral d18O within their

isotope-enabled climate model, Brown et al. (2006) there-

fore use the following relationship:

d18Ocoral5 d18Oocean 1 a(SST)1 b . (1)

Most climate models, including the one employed in

this study, cannot use this approach as they do not in-

clude any representation of 18O. The pseudocoral ap-

proach therefore approximates the d18O signal that

would be generated by a climate model if isotopes were

included. This has been accomplished previously by re-

lating coral d18O to local sea surface temperature and

salinity (Thompson et al. 2011) or by relating the ENSO

signal in coral d18O to local sea surface temperature and

precipitation (Brown et al. 2008). Here, we follow the

approach of Brown et al. (2008) and construct a pseu-

docoral indicator that contains the ENSO signal as re-

corded in local climatic variables at the site of a coral.

Based on previous studies (Brown et al. 2006, 2008;

Thompson et al. 2011) and physical understanding of the

factors influencing coral d18O, we consider four model

variables as being potential predictors of the simulated

ENSO signal: sea surface temperature SST, sea surface

salinity SSS, precipitation P, and evaporation E. The

first of these variables appears directly in Eq. (1) and

describes the thermal influence on coral d18O. The other

three variables can all be expected to contain in-

formation about d18Oocean, and therefore to contain in-

formation about the isotopic influence on coral d18O:

SSS is strongly correlated with d18Oocean because both

quantities are directly influenced by the surface fresh-

water balance (Cole and Fairbanks 1990; Fairbanks

et al. 1997; Rohling and Bigg 1998), while P and E both

influence d18Oocean directly.

A 1000-yr CSIRO Mk3L preindustrial control simu-

lation is used to construct a pseudocoral from these

model variables. Stepwise regression is used to screen

the set of potential predictors, with cross validation used

to protect against statistical overfitting (Wilks 2011).

Table 4 shows the outcome of this process, with each of

the model variables being progressively regressed onto

the simulated Ni~no-3.4 SST anomaly. At the first step,

each of the four potential predictors is considered with

the one that produces the best univariate regression

being selected. At subsequent steps, each of the re-

maining potential predictors are considered for incor-

poration into the regression equation with the one that

produces the best fit overall being selected.

For the purposes of cross validation, 45-month blocks

of data are reserved. The autocorrelation coefficient for

the simulated Ni~no-3.4 SST anomaly falls to zero at a lag

of 22 months, and the use of a 45-month validation block

therefore ensures that the value being predicted is sta-

tistically independent of the values used to derive the

fit. At each step, the fit is performed 11 956 (512 000 2
45 1 1) times, and the mean-square error is calculated

for the fit (calibration error) and for the predicted value

for the middle month of the validation period (vali-

dation error). If the incorporation of an additional

predictor reduces both the calibration error and the

validation error, it can be concluded that it improves the

predictive ability of the pseudocoral.

In this case, all four model variables are selected. SST

is selected first, followed by SSS,E, and thenP. Based on

the final step of the regression process, we therefore

TABLE 4. Stepwise regression of the simulated monthly SST

anomaly in the Ni~no-3.4 region (58S–58N, 1708–1208W) onto the

simulated monthly anomalies in SST, SSS, P, and E at Palmyra

Island (68N, 1628W). At each step, all the available potential pre-

dictors are examined and the one that produces the best fit when

incorporated into the regression equation is selected (indicated by

boldface text in the table). Cross validation is used to protect

against overfitting, with 45-month blocks of data reserved for in-

dependent validation (Wilks 2011). The calibration error repre-

sents the mean-square error for each of the 11 956 fits performed,

while the validation error represents the mean-square error in the

predicted value for the middle month of each 45-month validation

period. The data for this exercise are taken from a 1000-yr pre-

industrial control simulation.

Predictor(s)

Mean-square error (K2)

Calibration Validation

Step 1: One predictor

SST 0.129 0.129

SSS 0.224 0.225

P 0.267 0.269

E 0.304 0.306

Step 2: Two predictors

SST, SSS 0.114 0.115

SST, P 0.124 0.125

SST, E 0.119 0.120

Step 3: Three predictors

SST, SSS, P 0.114 0.115

SST, SSS, E 0.103 0.104

Step 4: Four predictors

SST, SSS, E, P 0.099 0.100
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define the following pseudocoral indicator as being ap-

plicable to the modeling framework used here:

C5 0:692
(60:015)

DSST2 0:708
(60:056)

DSSS1 0:023
(60:002)

DP1 0:248
(60:013)

DE ,

(2)

whereDSST,DSSS,DP, andDE are themonthly anomalies

in SST (K), SSS (psu), P (mmday21), and E (mmday21),

respectively. The 95% confidence intervals are shown for

each of the regression coefficients and are determined

using bootstrapping. The term C is a temperature anom-

aly with units of kelvins and describes the magnitude of

the simulated ENSO signal that might be expected to be

recorded by coral d18O at Palmyra Island.

The pseudocoral derived here differs from the bi-

variate pseudocorals used by Brown et al. (2008) and

Thompson et al. (2011). Although the incorporation of

the DP and DE terms into our pseudocoral only increases

the fraction of ENSO variance described from 65% to

70%, this nonetheless demonstrates the potential to im-

prove pseudocoral formulations by incorporating more

complete descriptions of the physical processes that de-

termine the evolution of coral d18O (Stevenson et al.

2013). In turn, this demonstrates the potential value of the

pseudocoral approach as an intermediate step toward full

forward modeling, as well as the need for more complete

understanding of the controls on seawater d18O near

proxy sites.

b. Changes in the mean state

The pseudocoral can be used to compare the model

simulations with the true coral d18O record. Figure 5

shows the record of Cobb et al. (2003) and compares it

with pseudocorals derived from the preindustrial con-

trol simulation and the three members of ensemble

OGSV. Coral d18O is normalized using the mean and

standard deviation for the period 1886–1975 CE, which

is the baseline used byCobb et al. (2003). To allow direct

comparison with the pseudocorals, the sign has been

inverted such that positive values correspond to warmer

and wetter conditions. The pseudocorals are also nor-

malized using the mean and standard deviation for the

period 1886–1975 CE (except for the preindustrial

control, which is normalized using the mean and stan-

dard deviation for the control simulation).

The coral d18O (Fig. 5a) exhibits interdecadal vari-

ability with a similar amplitude and frequency to

that exhibited by the preindustrial control simulation

(Fig. 5b), suggesting an internal origin. However, the

10-yr running mean deviates from the 1886–1975 CE

mean by more than two standard deviations on two

occasions: a negative excursion during the tenth

century and a positive excursion at the end of the

twentieth century. No deviations of this magnitude are

apparent from the control simulation, suggesting that

these events may not have arisen solely as a result of

natural climate variability.

From Figs. 5c–e, it is apparent that the choice of an

1886–1975 CE baseline causes the pseudocoral time

series to be generally negative during the preindustrial

period, with a mean value of around 20.6 standard de-

viations prior to 1850 CE. However, there are only three

occasions where the 10-yr running mean of the pseu-

docoral decreases to more than two standard deviations

below the 1886–1975 CE mean. Two of these events

coincide with the 1258 CE and Kuwae eruptions, in-

dicating a volcanic origin. However, the third ensemble

member also experiences a cooling event centered on

981 CE, which does not correspond to any external

forcing and therefore appears to be internal in origin.

The above results suggest that the excursion in coral

d18O during the mid-tenth century, which indicates

a period of relatively cool and dry conditions (Cobb

et al. 2003), is due partly to the choice of climatological

base period and partly to either a volcanic eruption or

internal variability. A volcanic explanation is possible,

as the maximum excursion in coral d18O is centered

on 940 CE and follows a modest eruption in 939 CE

(Gao et al. 2008). However, if the excursion represents

a response to external forcing, then it should also

be captured by the pseudocorals. This is not the case,

suggesting either that the mid-tenth-century climatic

anomaly was internal in origin, or alternatively that

there are deficiencies in the pseudocoral approach or in

the forcing time series used to drive the model.

In contrast to the earlier excursions, the anomaly in

coral d18O at the end of the twentieth century coincides

with increases in the pseudocoral over the same period

within the forced model simulations. The magnitude of

the increase in coral d18O is larger than themagnitude of

the increase in the pseudocorals. However, the fact

that the pseudocorals derived from the three forced sim-

ulations (Figs. 5c–e) all exceed the range of natural vari-

ability within the control simulation (Fig. 5b) suggests

that the excursion is a response to anthropogenic climate

change. Coral-based reconstructions of late-twentieth-

century SST and SSS trends from Palmyra Island and

neighboring sites support this conclusion and suggest

a general freshening of the tropical PacificOcean (Nurhati

et al. 2009, 2011).Nonetheless, the excursions remain fairly

short in duration and so attribution of these changes to

anthropogenic influences must be made with caution

(Stevenson 2012; Stevenson et al. 2012).

Having established that the pseudocorals are capable

of reproducing the broad features of the coral d18O
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FIG. 5. The normalizedmonthly anomalies (standard deviations) in (a) coral d18O at Palmyra

Island (68N, 1628W), (b) pseudocoral derived from a preindustrial control simulation, and

pseudocorals derived from members (c) 1, (d) 2, and (e) 3 of ensemble OGSV. The pre-

industrial control pseudocoral is normalized using the mean and standard deviation for the

control simulation. All other values are normalized using the mean and standard deviation for

the period 1886–1975 CE. The sign of the normalized coral d18O has been inverted such that

positive values correspond to warmer and wetter conditions, to aid comparison with the

pseudocorals. Monthly anomalies are shown in black and the 10-yr running mean is shown in

red. Vertical dashed lines indicate the volcanic eruptions of 1258 CE (unknown location), 1452

CE (Kuwae), and 1815 CE (Tambora).
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record, we use them to make a more systematic as-

sessment of the role of external forcings in driving the

climate of the central Pacific. Table 5 shows the corre-

lations between the pseudocorals derived from the

forcedmodel simulations and the individual forcing time

series used to drive the model. The analysis is restricted

to 901–2000 CE, reflecting the period spanned by the

coral d18O record. On annual time scales (Table 5a),

statistically significant roles of both greenhouse gases and

solar irradiance are identified. On decadal time scales

(Table 5b), a systematic role of volcanoes in driving the

local climate also becomes apparent.

The model simulations allow us to explore the mech-

anisms whereby external forcings drive changes in the

state of the tropical Pacific. Two mechanisms will be in-

vestigated here: the ocean dynamical thermostat (here-

after ODT) mechanism, whereby warming in the tropics

causes enhanced upwelling in the eastern Pacific and

therefore increases the magnitude of the zonal SST gra-

dient (Clement et al. 1996); and the ‘‘Weaker Walker’’

(hereafter WW) mechanism, whereby global-scale warm-

ing causes a weakening of the Walker circulation that is

manifested in a reduction in the zonal sea level pressure

(SLP) gradient across the equatorial Pacific (Held and

Soden 2006; Vecchi et al. 2006).

Figure 6 shows scatterplots of DSST (the difference in

SST between the Ni~no-4 and Ni~no-3 regions) and DSLP
[the difference in SLP between the central–east Pacific

(58S–58N, 1608–808W) and the Indian Ocean–west Pa-

cific (58S–58N, 808–1608E)] versus radiative forcing for

each of the threeexternal forcings considered in this section.

Values of the Spearman rank correlation coefficient are

provided. Greenhouse gas forcing is weak prior to 1850 CE,

and volcanic forcing is zero in many decades; many of the

values shown are therefore clustered around zero radiative

forcing. Considerable scatter is apparent in all cases, due to

both internal variability and the effects of other forcings.

The ODT mechanism predicts a positive correlation

betweenDSST and radiative forcing. In Figs. 6a–c, a weak

positive relationship is apparent for each of the three

forcings, but the null hypothesis of no correlation cannot

be rejected at the 5% significance level in any case. The

WWmechanism predicts a negative correlation between

DSLP and radiative forcing. Negative relationships are

indeed apparent in Figs. 6d and 6e, and this relationship

is statistically significant in the case of greenhouse gases.

This analysis therefore suggests that the response of the

model on decadal time scales is characterized by a WW

response to changing anthropogenic greenhouse gases.

However, only a much more detailed analysis could

confirm the operation of this dynamical mechanism.

These results are consistent with observational evi-

dence for the operation of the WW mechanism during

the industrial period, as well as with the response of

other climate system models to both past and projected

future changes in greenhouse gases (Vecchi et al. 2006;

DiNezio et al. 2011). The lack of an apparent ODT

mechanism is inconsistent with the response of the

highly simplified Zebiak–Cane model to medium to

strong solar forcing (Mann et al. 2005; Emile-Geay et al.

2007) and large volcanic eruptions (Mann et al. 2005;

Emile-Geay et al. 2008). However, in another climate

system model, the ODT mechanism is found to be op-

posed by other terms in its response to volcanic erup-

tions (McGregor and Timmermann 2011).

c. Changes in ENSO variability

The coral d18O and pseudocoral records are now used

as proxies for ENSO, with the magnitudes of their in-

terannual variations used to estimate the amplitude of

ENSO variability. Figure 7 shows the running 30-yr stan-

dard deviation, derived from both the coral d18O record

and the pseudocorals. A 2–7-yr bandpass filter is applied

to the data beforehand in order to select variability in the

ENSO band. To allow a direct comparison between the

TABLE 5. The correlation between the pseudocorals derived

from the members of ensemble OGSV and the individual forcings

used to drive the model for the period 901–2000 CE: (a) the cor-

relation between the annual-mean pseudocorals and the annual-

mean forcings, (b) the correlation between the decadal-mean

pseudocorals and the decadal-mean forcings, and (c) the correla-

tion between the running 30-yr standard deviation for the pseu-

docorals, after applying a 2–7-yr bandpass filter, and the running

30-yr mean for the forcings. In (a) and (b), the ensemble mean is

the arithmetic mean of each ensemble member; in (c), the en-

semble mean is the root-mean-square of the standard deviation for

each ensemble member. Greenhouse gas concentrations are con-

verted to a radiative forcing before calculating the correlations. For

values shown in boldface, the null hypothesis of no correlation can

be rejected at the 5% significance level [as determined using the

random-phase test of Ebisuzaki (1997)].

Ensemble

member

Greenhouse

gases

Solar

irradiance

Volcanic

eruptions

(a) Annual mean

1 10.31 10.11 0.00

2 10.28 10.17 10.04

3 10.31 10.19 10.05

Mean 10.47 10.25 10.04

(b) Decadal mean

1 10.59 10.22 10.12

2 10.50 10.29 10.33
3 10.59 10.35 10.23

Mean 10.71 10.37 10.29

(c) 30-yr standard deviation

1 10.02 20.24 0.00

2 10.14 10.27 10.10

3 10.32 20.09 10.03

Mean 10.30 20.04 10.09
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proxy data and the model, the amplitudes of d18O and

the pseudocorals are expressed relative to a measure of

the long-term average variability. For the preindustrial

control pseudocoral, the running standard deviations are

divided by the mean value for the control simulation. All

other values are divided by the mean standard deviation

for the period 1886–1975 CE.

The coral d18O record (Fig. 7a) indicates generally

reduced ENSO variability relative to present prior to

1500 CE; during the fourteenth century, the standard

deviation falls to as little as 0.40 of the 1886–1975 CE

value. However, theENSOvariability is similar to present

after 1600 CE. The ratio between the maximum and min-

imum value of the 30-yr standard deviation is 3.4, which

is greater than the equivalent ratio of 2.4 for the pre-

industrial control pseudocoral (Fig. 7b). The variations

in the amplitude of ENSO over the past 1100 years are

therefore greater than the magnitude of the simulated

preindustrial internal variability. This suggests either that

themodel underestimates themagnitude of low-frequency

modulation of ENSO or that external forcings are driving

changes in ENSO variability.

The pseudocorals derived from the forced model

simulations are shown in Fig. 7c. The ratio between the

maximum and minimum amplitudes of ENSO variabil-

ity spanned by the three pseudocorals is 3.2, which is

greater than for the control pseudocoral and in better

agreement with the coral d18O record. However, the

pseudocorals exhibit no coherent response to external

forcings. Table 5c shows the correlations between the

30-yr standard deviation derived from each pseudocoral

and the individual forcing time series used to drive the

model. One of the three ensemble members exhibits a

statistically significant relationship with greenhouse gas

forcing at the 95% confidence level, but this relationship

is not significant within the ensemble as a whole. Within

the modeling framework employed here we therefore

find no robust evidence that external forcings influence

FIG. 6. Scatterplots of decadal-mean DSST (K) and DSLP (hPa) vs decadal-mean radiative forcing (Wm22) for the mean of ensemble

OGSVover the period 901–2000CE: greenhouse gases vs (a)DSST and (d)DSLP, solar irradiance vs (b)DSST and (e)DSLP, and volcanic
eruptions vs (c) DSST and (f) DSLP. The term DSST is the difference in sea surface temperature between the Ni~no-4 (58S–58N, 1608E–
1508W) and Ni~no-3 (58S–58N, 1508–908W) regions. The term DSLP is the difference in sea level pressure between the central–east Pacific

(58S–58N, 1608–808W) and Indian Ocean–west Pacific (58S–58N, 808–1608E). Values of the Spearman rank correlation coefficient are

shown. An asterisk after the value indicates that the null hypothesis of no correlation can be rejected at the 5% significance level [as

determined using the random-phase test of Ebisuzaki (1997)].
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the amplitude of ENSO variability over this period.

Thus, while we are able to detect both natural and an-

thropogenic influences on the mean state of the central

Pacific, we are not able to detect any influence of these

same forcings on the simulated ENSO. This conclusion

is in agreementwith themultimodel analysis of Stevenson

(2012), who finds significant changes to the tropical

Pacific mean state but no predictable influence of an-

thropogenic climate change on ENSO amplitude.

Overall, these results are consistent with those of Emile-

Geay et al. (2007), who, using the highly simplified

Zebiak–Canemodel, find no evidence that a 0.05%change

in solar irradiance has any impact on ENSO variability.

Such perturbations are similar in magnitude to the changes

in solar irradiance applied in this study (Steinhilber et al.

2009). While Mann et al. (2005) and Emile-Geay et al.

(2007), using the same model, find that larger changes in

solar irradiance can influence ENSO variability via

changes in the background state of the tropical Pacific,

such changes are not supported by current reconstruc-

tions of solar irradiance over the past 1500 years (Schmidt

et al. 2012). The lack of any detectable volcanic influence

on ENSO variability is also consistent with other mod-

eling studies, which find that volcanoes alter the proba-

bilities of El Ni~no and La Ni~na events occurring in the

immediate aftermath of an eruption but otherwise have

no lasting impact (Mann et al. 2005; Emile-Geay et al.

2008; McGregor and Timmermann 2011).

d. Twentieth-century climate change

In section 4b, we noted the difference in magnitude

between the responses of the coral d18O record and the

pseudocorals during the late twentieth century. One pos-

sible explanation for this discrepancy is that anthropogenic

FIG. 7. The 30-yr running standard deviation in (a) coral d18O at Palmyra Island (68N,

1628W), (b) pseudocoral derived from a preindustrial control simulation, and (c) pseudocoral

derived from the three members of ensemble OGSV. A 2–7-yr bandpass filter is applied to the

data before calculating the standard deviation. The preindustrial control pseudocoral is ex-

pressed relative to the average value of the 30-yr running standard deviation for the control

simulation. All other values are expressed relative to the average value of the 30-yr running

standard deviation over the period 1886–1975 CE. Vertical dashed lines indicate the volcanic

eruptions of 1258 CE (unknown location), 1452 CE (Kuwae), and 1815 CE (Tambora).
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climate change might have impacted the relationship be-

tween ENSO and the local climate at Palmyra Island.

The model simulations allow us to test the stability of this

relationship over time, with particular regard to changes

in the climate induced by natural and anthropogenic

forcings. The previous process of deriving a pseudocoral

indicator is therefore repeated but this time using the

three members of ensemble OGSV instead of the

preindustrial control simulation. The regression is

performed separately for the preindustrial (501–1850

CE) and industrial (1851–2000 CE) periods of each

simulation. Table 6 shows the regression coefficients

that are obtained.

The results for the preindustrial period (Table 6a)

show slightly larger values for the SST regression coef-

ficient and smaller values for the SSS regression coeffi-

cient than those obtained from the control simulation.

These differences are significant at the 95% confidence

level in most cases, indicating a different relationship be-

tween ENSO and the local climate over the preindustrial

period once natural forcings are taken into account.

There are also statistically significant differences between

the SSS coefficients derived from ensemble members

2 and 3, suggesting low-frequency modulation to the re-

lationship operating on time scales even longer than the

1350-yr period used to perform the regression.

The results for the industrial period (Table 6b) are

different again. The values for the SST regression co-

efficient are larger than those obtained for either the

control simulation or the preindustrial period, with the

differences being significant at the 95% confidence level

for two of the three ensemble members. This indicates

that anthropogenic forcing, in addition to natural forc-

ings, influences the relationship between ENSO and

the local climate. However, although many of the dif-

ferences in the regression coefficients are statistically

significant, they have only a modest impact upon the

values of the pseudocoral indicators. For example, two

pseudocoral time series derived from ensemble member

two, one using Eq. (2) and the other using the coeffi-

cients shown in Table 6b, are found to have 99.1% shared

variance over the industrial period (not shown). Thus the

discrepancy between the coral d18O record and the

pseudocorals during the late twentieth century is not due

to changing relationships within the climate system or at

least not as simulated by the model.

Instead, the discrepancy could be due to deficiencies

in the model physics, or it could indicate that the

changes in the local climate arose at least in part through

natural variability (e.g., McPhaden et al. 2011). A fur-

ther possibility is that changes in the remote climate,

such as a change in the oceanic circulation or a change in

the source area or trajectory of the moisture that forms

local precipitation, have influenced coral d18O at Palmyra

Island (Nurhati et al. 2009, 2011). To fully explore these

possibilities within a modeling framework would require

not only a climate model that incorporates a representa-

tion of the global distribution of d18O but also a process

model that describes the incorporation of the climatic

signal into coral d18O at the study site.

5. Discussion and conclusions

The CSIRO Mk3L climate system model, driven by

reconstructed changes in natural and anthropogenic

forcings, has been used to simulate changes in the global

climate over the past 1500 years. By comparing the sim-

ulations with multiple proxy records, we are able to study

the role of external forcings in driving the global climate

over this period. We apply both the inverse and forward

approaches to paleoclimate data–model comparison, and

we are able to identify sources of uncertainty.

The model simulations are first compared with the

Mann et al. (2008) multiproxy reconstructions of NH and

SH temperature. A weak but detectable volcanic signal is

identified in NH temperature over the past 1500 years,

TABLE 6. Regression coefficients for the fit of the simulated monthly SST anomaly in the Ni~no-3.4 region (58S–58N, 1708–1208W) onto

the simulated monthly anomalies in SST, SSS, P, and E at Palmyra Island (68N, 1628W). The values are derived from each member of

ensemble OGSV for the periods (a) 501–1850 CE and (b) 1851–2000 CE. 95% confidence intervals are calculated using bootstrapping

(Wilks 2011).

Ensemble member

Regression coefficient

SST (KK21) SSS (Kpsu21) P (Kmm21 day) E (Kmm21 day)

(a) 501–1850 CE

1 10.725 6 0.013 20.516 6 0.051 10.024 6 0.002 10.239 6 0.013

2 10.742 6 0.012 20.607 6 0.053 10.024 6 0.002 10.237 6 0.012

3 10.744 6 0.012 20.441 6 0.048 10.028 6 0.002 10.256 6 0.012

(b) 1851–2000 CE

1 10.795 6 0.033 20.517 6 0.142 10.030 6 0.006 10.216 6 0.033

2 10.815 6 0.035 20.435 6 0.125 10.025 6 0.006 10.234 6 0.034

3 10.781 6 0.038 20.768 6 0.136 10.021 6 0.006 10.228 6 0.034
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although this conclusion is found to be sensitive to pos-

sible orbitally induced biases in the reconstruction. In

contrast, strong and robust solar and volcanic signals are

identified in SH temperature. During the post-1850 CE

industrial period, increasing concentrations of anthro-

pogenic greenhouse gases dominate over natural forcings

in both hemispheres.

The model simulations are then compared with a coral

d18O record from the central Pacific Ocean. We employ

a simple forward model, constructing a pseudocoral in-

dicator from simulated anomalies in sea surface temper-

ature, sea surface salinity, precipitation, and evaporation.

The pseudocorals demonstrate statistically significant

roles of solar irradiance, volcanic eruptions, and green-

house gases in driving changes in the mean state of the

central Pacific over the past 1100 years. The dynamical

response of the model on decadal time scales appears to

be characterized by a Weaker Walker response to chang-

ing anthropogenic greenhouse gases. However, there is

no evidence of any systematic influence of natural or an-

thropogenic forcings on the amplitude of the simulated

ENSOvariability. The results obtained using ourmodeling

framework are therefore consistent with the conclusion of

Cobb et al. (2003) that changes in ENSO variability are

uncorrelated with either external forcings or changes in

the mean state. This supports the notion that ENSO is

a system where variability arises from internal dynamics,

independent of external forcing.

By employing the inverse and forward approaches

side-by-side within the same study, we have been able

to identify sources of uncertainty that limit our ability to

draw definitive conclusions about the drivers of past

climate. Many of these are common to the two ap-

proaches: where there are discrepancies between the

model simulations and the proxy data, possible sources

of uncertainty include deficiencies in the model physics,

errors in the forcing datasets used to drive the model,

and internal climate variability. In the case of the inverse

approach, additional uncertainty is contributed by the

inevitable uncertainties introduced by techniques for

multiproxy reconstruction. One example of this is the

possibility of seasonal and geographical biases in the

response of proxy networks, which we conclude may

cause temperature reconstructions to systematically over-

estimate the magnitude of the long-term preindustrial

cooling trend. Both the inverse and pseudocoral ap-

proaches also rely upon the assumption of stationarity in

proxy climate relationships. However, the model simula-

tions demonstrate natural and anthropogenic influences

on the relationship between ENSO and the climate of

Palmyra Island, which suggests that the relationships be-

tween paleoclimate proxies and climatic variables may be

nonstationary over time.

Alternative approaches to paleoclimate data–model

comparison are required in order to reduce uncertainty

and hence improve our understanding of the drivers of

past climates. Forward modeling would avoid the un-

certainties inherent in techniques for paleoclimate re-

construction. However, it would not eliminate any of the

other sources of uncertainty encountered here, and it

would introduce an additional source of uncertainty

associated with the representation of processes within

the forward models themselves. Data assimilation also

has potential. By constraining model simulations to

follow reconstructions, it would reduce the uncertainties

associated with model physics, external forcings, and

internal climate variability. However, as an extension

of the inverse approach, it is subject to the same limi-

tation of the assumption of stationarity. A combination

of forward modeling and data assimilation, which would

allow proxy data to be directly assimilated into a cli-

mate modeling framework, might therefore be opti-

mal. However, we emphasize that the development of a

comprehensive forward modeling capability that en-

compasses all commonly used proxies may not exist for

many years.

In the interim, this analysis indicates that climate

modeling can play a potentially critical role in paleo-

climate reconstruction, with the models being used to

test the underlying assumption of stationarity (Ackerley

et al. 2013). While a forward modeling capability would

be required to test the stability of proxy climate re-

lationships, even conventional climate models could be

used to test the stability of teleconnections over time. In

this sense, climate modeling has a role to play not just

within the context of paleoclimate data–model compari-

son but even within the wider context of the interpretation

of the proxies themselves. Confidence in the interpretation

of a proxy in terms of larger-scale climatic variables would

be enhanced when climate models are able to reproduce

observed teleconnections within the climate system and

when the models further demonstrate that these relation-

ships are stable over time.

In conclusion, we suggest three future research pri-

orities in order to progressively reduce uncertainty in

paleoclimate data–model comparison:

d the development of better reconstructions of past

climatic forcings;
d the use of climate modeling to underpin current

techniques for paleoclimate reconstruction, with the

models being used to test the stability of relationships

within the climate system; and
d the ongoing development of alternative approaches to

paleoclimate data–model comparison, particularly

forward modeling and data assimilation.
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Finally, we note that this study has been based on a

single climate model, a single set of hemispheric tem-

perature reconstructions, and a single coral d18O record.

The conclusions regarding drivers of past climate should

therefore be regarded as preliminary. Possible sources

of bias in the results presented here include deficiencies

in the physics of the model and its coupled behavior,

deficiencies in the forcing datasets applied to the model,

the omission of anthropogenic forcings other than green-

house gases, and deficiencies in the reconstructions and

d18O record. The analysis performed here should be re-

peated using alternative models, forcing datasets, and re-

cords of past climate in order to assess the sensitivity of the

conclusions to the specific tools used.
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