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Abstract

To improve the replication of acoustic guitars, measurements of three Martin OOO
style steel-string guitars were made at various stages of their construction. The
guitars were constructed in parallel, as similar to each other as possible, with the
exception of the soundboard material—which were made of Sitka spruce, Engelmann
spruce and Western Red cedar.
To improve the similarity of the instruments, methods were developed to measure
and control the material properties of key components before their incorporation into
the instruments, including a device to measure the thickness of a guitar soundboard
attached to the back and sides of the instrument.
Some of these measurements were compared to numerical models of the instrument
and, after the establishment of a lexicon to describe guitar sounds, some physical
factors contributing towards the timbre of guitar sounds were determined.
The results of these investigations may be developed to improve the consistency in
the manufacture of stringed musical instruments.
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Why study the acoustics of the
guitar? (An overview)

0.1 Introduction

“[A] clear overall understanding of the structural dynamics of the instrument is a

critical element in understanding how to produce a quality instrument. All good

luthiers intuitively understand this, but...much of musical instrument development

proceeds in an empirical, Edison-like way, guided by individuals with keen ears ex-

perienced in their construction” —M. French & G. Bissinger French and Bissinger

[2001]

After the voice, the guitar is probably the most popular musical instrument in

the Western world. Basic physical and engineering properties of the guitar have been

well studied over the last four decades, driven by the needs and curiosity of players

and instrument builders, as well as the interest of scientific researchers. Much of

the fundamental behaviour of the instrument is well understood but less well known

are the various effects on the overall sound due to interactions among elements of

the instrument. Most scientific investigation has been on the acoustic, as opposed

to the electric, guitar. The electric guitar is outside the scope of the present work

and hence the term guitar will hereafter refer to the acoustic guitar and will usually

1
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mean the steel-string (folk) guitar specifically.

Guitar-makers (or luthiers) have traditionally developed techniques that were

passed onto them by their predecessors. Adjustments are generally made to construc-

tion processes according to the needs of musicians; methods are improved through

newly available technologies and the innovation of their colleagues. Experimenta-

tion usually involves modification of a preexisting technique, often with the desire to

adhere to some particular guidance principle. The experiments that are deemed suc-

cessful are retained, whilst the unsuccessful endeavours are either modified further

or discarded. Developments have been influenced by the ‘environment’ determined

by the technology and æsthetic tastes of the time. For example, one of the princi-

pal aims in acoustic guitar design has been to produce a louder instrument Morrish

[1997]. This led to an increase in the surface area of the soundboard and, as a con-

sequence, the plates of the guitar had to be reinforced with braces (struts) in order

to maintain structural integrity Romanillos [1987]. The mechanical attributes of the

bracing system influence the guitar’s sound. Much of the innovation in the last few

decades has involved some alteration of the bracing system; for example the Aus-

tralian luthier, Greg Smallman, produces instruments with carbon fibre/balsawood

composite braces in a lattice shape Fletcher and Rossing [1998], and Michael Kasha,

among others, experimented with asymmetric bracing designs Kasha [1995], Eban

[1985], Margolis [1986]. Many of these experiments are successful. However, in

general, there have been few strong, specific, guiding principles obtained through

scientific research and development for a luthier to follow in making design and con-

struction innovations. Further, most luthiers have a strong personal intuition about



3

the overall effect of design and production changes, but it is usually very hard to

communicate intuition objectively.

The lack of clear measurable objective goals may be attributed to a number of

reasons, including:

• a lack of isolation of important measurable parameters leading to an optimi-

sation of these parameters (assuming these parameters exist: §1.3) and;

• the complexity of engineering the instrument and characterising the construc-

tion materials, and;

• many guitar manufacturers do not (or do not feel able to) hold this as a high

priority

Probably the factor most retarding progress in understanding the vibrational

behaviour of the guitar is because of the last reason: although many guitar manu-

facturers see research and development of the guitar as an important issue, it is often

perceived as a frivolous activity. Perhaps if more specific goals were isolated, more

manufacturers would be more willing to invest more in innovation. Although there

are many areas that would benefit from a more scientific understanding, this thesis is

a series of investigations of some specific questions raised by the guitar manufacturer,

Gerard Gilet.
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0.2 Outstanding problems of interest

Many phenomena associated with sound production of the guitar may be understood

through the application of physical principles. For example, the loudness of the

instrument depends on the fraction of the string’s vibrational energy radiated as

sound and, consequently, one might assume that this would be simple to optimise.

However, this is not as straight-forward as would seem at first; musicians tend to

desire qualities of guitar sounds such that there is usually a compromise between

the ‘loudness’ and the ‘tone quality’ (including the sustain and ‘intonation’) of the

instrument, which has been noted in industry Gerken [2001].

Gerard Gilet is interested in the mechanisms behind a range of issues related

to the construction of the guitar: How would it be best to control the material

properties of important components, such as the braces and soundboards? How to

characterise the finished instrument in a meaningful way? How do different species

of wood affect the behaviour of the soundboard? How would he better quantify the

subjective demands on the timbre of the instrument?

0.3 The approach in this thesis

This thesis addresses some of the problems described in §0.2. The approach is mostly

experimental and relates to work done specifically on the steel-stringed acoustic

guitar and some related simple systems. The main questions addressed are:

1. How important is the soundboard material and what are the important prop-

erties?
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2. How important are the brace dimensions and techniques associated with the

bracing?

3. How do vibratory properties of components influence the final instrument?

Three high quality steel-string acoustic guitars, all OOO models with solid wooden

soundboards, were constructed, in parallel, by the author. They were built as simi-

larly as possible—with the exception of the soundboard material: one was made of

Engelmann spruce (Picea engelmannii), one of Sitka spruce (Picea sitchensis) and

the last of Western Red cedar (Thuya plicata).

A primary goal was a scientific study of some of the vibratory and acoustic

properties at various stages of construction. Care had been taken to control or to

select some important material properties of components, before they were incorpo-

rated into the instruments, to minimise cross-instrumental variation. To control the

components (except the soundboard) it was necessary to match these properties.

Construction was performed at the Gilet Guitars1 guitar manufacturing workshop

under the supervision of the master luthier, Gerard Gilet. The OOO design was

chosen because it is a model made with a relatively high level of consistency at this

workshop. The Gilet workshop was also a stockist of guitar woods, making a selec-

tion of materials possible from a number of specimens.

1Gilet Guitars, Unit 8-10 Booralee St, Botany, Sydney, Australia
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0.4 Overview

Chapter 1 reviews the understanding of the operation and behaviour of the guitar,

its acoustic and vibratory behaviour. It also surveys some useful methods relating

to the timbre of the instrument and the history of the instrument.

Chapter 2 introduces the guitar and some relevant technical developments. The

essential concepts and nomenclature are discussed, because there are important dif-

ferences in the language used for similar concepts between scientists and luthiers.

Some basic mechanical models of systems related to the guitar, such as the Helmholtz

resonator, the two and three mass coupled oscillator model, normal vibratory modes

of plates and beams, and the radiativity of simple systems are included.

Chapter 3 covers technical details involved in the construction of the guitar, in-

cluding the materials and design heuristics employed by luthiers. There is a detailed

discussion on the properties of wood. These are important in ascertaining the use

of scientific studies in improving the instrument. A physical interpretation behind

some common techniques traditionally used in making the guitar is given.

Chapter 4 summarises numerical modelling work performed by David Vernet,

Davy Laille and Matthieu Maziere, in collaboration with myself, on the guitars

studied in this thesis, as well as some simpler vibratory systems. Models using the

software packages CASTEM and CATIA, are compared to experiments to examine
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the validity of the assumption of material anisotropy and to examine the relation-

ships that adhesive bonds and free plate modes have on the finished instrument.

Chapter 5 describes experimental work on the selection of materials for use in

constructing a guitar. The importance of testing material properties of components

is emphasised.

Chapter 6 describes experimental work done on the soundboards and bodies of

the guitars before completion. Differences among the three guitars are tracked dur-

ing construction. A description of an invention developed by John Smith and myself

to measure the thickness distribution of a guitar soundboard is given.

Chapter 7 presents experimental work done on the completed instruments. Re-

sults of tests done on pressure and dynamic mass responses as a function of frequency

are reported, and compared to Chladni figures made at the same time. Analyses of

the Helmholtz, coupling and free-plate frequencies are presented. The use of these

are examined with regards to characterising particular instruments.

Chapter 8 consists of two studies on the subjective impressions of guitar timbre.

The first establishes a lexicon for describing acoustic guitar sounds. This lexicon

is used as a tool in the second study, which examines the effect of some physical

variables on recorded guitar sounds, through the use of psychoacoustic techniques.

Chapter 9 concludes the study with a discussion on the usefulness and relevance
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of the work presented here to those in the guitar making industry, as well as to those

interested in the physical behaviour of the acoustic guitar. Problems encountered

in this work are highlighted and some suggestions are made as to the direction of

possible further work to be done.



Chapter 1

Previous work

“My secret is one you have witnessed many times, and one that I can’t leave to

posterity, because it must with my body go to the grave, for it consists of the tactile

senses in my finger pads, in my thumb and index finger that tell the intelligent builder

if the top is or is not well made, and how it should be treated to obtain the best tone

from the instrument”—Antonio de Torres Jurado (1817-1892) [Romanillos, 1987]

This chapter discusses previous work, firstly on stringed instruments in general,

and then to the guitar in particular. A small history of the instrument and a brief

overview of the psychoacoustics of music are included. Detailed treatment of some

of the methods described in this section are given in Chapter 2. The terminology of

components of the guitar are given in §2.1.

1.1 A brief history of the guitar

There is much written on the history of the guitar. The traditional ancestors of

the modern guitar are a four course ‘guitarra’ family (guitarra morisca and guitarra

9
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Date Event
1265 Reference to guitarra in ‘Ars Musica’ (Juan Gil of Zamora)

1283-1350 References to guitarra in poetry (Archpriest of Hita)
1306 Guitarra played at the Feast of Westminster

1400’s Vihuela developed
1600-1650 Much music for the guitar. Popularity rivalling the lute. 5th course added
1770-1800 Sixth string added, courses1 replaced by single strings
1800-1850 Guitar popular, in performing and publishing

1850 Scalloped cross bracing developed (C. F. Martin)
1850-1892 Guitar design modernised (Torres)

1900 Steel strings used on some acoustic guitars
1902 OOO model guitar developed (C. F. Martin company)
1916 First guitar performance in a concert hall (Segovia)
1928 First electric guitar advertised
1929 14th body fret on steel-string guitars
1948 Gut strings wholly replaced by nylon (partly due to Segovia)
1980 Carbon fibre used in lattice brace system (Greg Smallman)

Table 1.1: A brief history of the guitar (From [Morrish, 1997, Longworth, 1975,
Richardson, 1995b, Atherton, 1990])

latina, then popularly used for strummed accompaniment), and the Spanish vihuela,

a six course instrument with a small body, similar to the lute. Both were in use

throughout the 15th century. The guitarra had a fairly rotund body, not unlike

that of gourd-based instruments, with a relatively small soundboard and a carved

‘rose’, similar to those of the traditional lute. The vihuela was even smaller and was

fairly unrefined [Morrish, 1997]. The popularity of the lute has left an etymological

remnant: a maker of guitars, violins or lutes is known as a luthier.

A five string guitar, incorporating features of the vihuela and the guitarra, ap-

peared in the 16th century when the popularity of the vihuela had diminished. The

lute was still widely used at this time, but was surpassed in popularity by the guitar

in the late 17th century. The number of strings was not standardised to 6 until the
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late 18th century, although not all modern guitars have 6 strings. The 4, 12 and, to

a lesser degree, the 7 and 8 string guitars, also find some modern usage.

There were many prolific performers, composers and publishers of guitar music in

the classical and romantic periods, including Fernando Sor, Mauro Guilliani, Matteo

Carcassi, and Fernando Carulli. The violinist Niccolò Paganinni played, and Antonio

Stradivari made, some guitars. Guitar concerts were common and Sor played the

first solo guitar concert at the London Philharmonic Concert (1817). The fingerboard

was made longer and the body was joined at the 12th fret (halfway along the string’s

active length) to enable playing the higher range more easily in the chitarra battente,

an antecedent of the guitar [Bethancourt, 1999]. The bridge was moved to a more

central position in the soundboard and a saddle was added to improve sound clarity,

around the middle of 1600’s at the earliest.

The guitar declined in popularity until Francisco Tárrega (1852-1909) who did

much to improve the image of the instrument. He transcribed many pieces for the

guitar and introduced the technique of playing with the fingernail, thereby increasing

the timbral range; prior to this the instrument had mostly been an accompaniment

and was usually strummed.

The Spanish luthier Antonio de Torres Jurado (1817-1892) is often dubbed the

‘father of the modern guitar’ and had much to do with refining the design to obtain

an instrument that is essentially the same as the majority of classical and flamenco

guitars made today. Torres was concerned with increasing the loudness of the in-

strument and made many major design changes, notably by increasing the surface

area and by introducing bracing to the soundboard and back plate to structurally
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reinforce against the increased string tension and mass [Romanillos, 1987]. The de-

velopment of the traditional ‘fan’ bracing arrangement is commonly attributed to

him, although his predecessors Josef Pagés and Louis Panormo used similar systems

[Richardson, 1997]. Torres was also interested in improving the guitar through better

understanding of the underlying mechanics. There is a popular anecdote that he con-

structed an instrument with a conventional spruce guitar soundboard—but the back

and sides were made of papier-mâché—to demonstrate the acoustic importance of

the soundboard. He once stated that he could not teach his secret to others because

it was impossible to communicate the subjective tactile feedback system between

thumb and index finger that was deemed indispensable in the quality control process

[Romanillos, 1987]. Other influential luthiers from the early 20th century include

Santos Hernández and Manuel Ramirez.

The guitarist Andres Segovia (1893-1987), influenced by Tarrega, helped make

the guitar a respected concert instrument. He travelled widely and inspired many

people to contribute to the playing and composition of music for guitars and their

manufacture. Segovia is credited with the replacement of strings made of catgut

(dehydrated sheep intestines) with those of nylon [Huber, 1991].

To further improve the loudness and the sustain of the instrument, strings made

of steel wire (already used in the mandolin) were used to make the steel string guitar

at the beginning of the 20th century by the luthiers Orville Gibson and Christian

Frederick Martin [Gilbert, 1999]. However, the increased static tension of the strings

requires substantial alteration of the soundboard and bridge structure. The sound-

board reinforcement system known as cross bracing (§2.2) was developed in the
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1800’s and first used on parlour guitars. It only gained widespread use upon its

application to the steel string guitar, because of its superior structural strength,

and is now commonly used in steel-string guitars. The process of scalloping braces

(§3.4) was originally developed by Christian Frederick Martin (1796-1873) in the the

1840’s [Longworth, 1975]. The OOO model guitar was also developed by the C. F.

Martin company, in 1902 by Frank Henry Martin (1866-1948), as a further attempt

to compete with the comparatively loud stringed instruments such as banjos and

mandolins. The OOO designation arose from the use of the symbol ‘OM’ by the C.

F. Martin company to represent their ‘Orchestra Model’ and was shortened to ‘O’

[Longworth, 1975]. A larger size (in terms of body volume and soundboard area) was

the ‘OO’. The OOO model is larger yet again. This company was also responsible

for another innovation widely used in steel-string guitars: joining the body to the

finger board at the 14th fret [Longworth, 1975], to enable playing at higher registers

(for comparison, this fret is the 12th for classical guitars and the electric guitar is

generally made to be accessible to the 22nd or even the 24th fret).

Many popular musical movements feature the guitar as a central instrument,

including the blues, some strains of jazz, many strains of pop, modern folk, skif-

fle, rock ’n’ roll, country and western, bluegrass, hippy/psychedelic/folk/hard rock,

Latin American salsa, industrial/death/thrash/glam/heavy/nu metal and grunge.

This spans a large fraction of the major popular musical movements from the 1950’s

until the present day, representing a huge global market2.

2For example, in 2002 guitar sales produced over $US900 million in revenue and almost one

million new electric, and almost one million new acoustic, guitars were sold in the United States

alone [Cruz, 2003].
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The increase in popularity from the 1950’s until the present has seen a corre-

sponding increase in acoustic guitar production. However, despite this, the majority

of design modifications over this period have been æsthetic or improvements to the

pick-up and amplification system, with the exception of the increasing use of alter-

native construction materials. Perhaps the most striking of these attempts has been

the introduction of carbon fibre lattice bracing on the classical guitar soundboard in

1980 by the Australian luthier, Greg Smallman [Atherton, 1990]. There are guitars

that are partially or wholly made of carbon fibre (such as the Rainsong
TM

guitars)

and there is research into the application of other synthetic materials to the guitar

[Besnainou, 1995].

1.2 Early work in acoustics

The study of the acoustics of musical instruments is one of the earliest mathematical

sciences. It is widely believed that the Pythagoreans were inspired to search for

mathematical order in nature because of their work on the harmonic relationships

of the vibrations of strings; this is the first known example of experimental physics

[Sedgwick and Tyler, 1917]. Many prominent physicists have contributed to the field

of acoustics, including Galileo Galilei, Isaac Newton, Chandrasekhara Raman and

Julian Schwinger. However, two great works from the late 19th century serve to sum-

marise most of the field of acoustics and vibration up to then, and are still widely

referred to in the literature: Hermann L. F. Helmholtz’s 1885 text On the Sensations

of Tone as a Physiological Basis for the Theory of Music [Helmholtz, 1885], and the

two volume The Theory of Sound [Strutt, 1869] written by John William Strutt (3rd

Baron Rayleigh) in 1869.
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An excellent summary of music acoustics is The Physics of Musical Instruments

[Fletcher and Rossing, 1998] by N. H. Fletcher and T. D. Rossing, although there

are many other good examples [Benade, 1990, 1960, Hall, 1980, Pollard and Harris,

1979, Rossing, 1990].

1.3 Previous work on stringed musical instruments

and related systems

Much of the work done on other stringed instruments can be easily applied to the

behaviour of the acoustic guitar—in fact a large number of studies have been on

the violin, which are usually applicable to the guitar. For example, a work that has

provided inspiration for research in the field of stringed musical instruments in gen-

eral is Carleen Hutchins’ article The science of the violin [Hutchins, 1962]. Relevant

material presented here is treated in more technical detail in Chapter 2.

Aside from the study of vibrating strings mentioned at the beginning of §1.2,

the first detailed investigations into the acoustics of stringed instruments were most

probably made by instrument makers. There is anecdotal evidence that luthiers

from northern Italy in the 16th to mid 18th century (culminating most notably in

the Amati, Stradivari and Guarneri families) used a ‘tap-tone’ method to characterise

instrument wood and to ‘tune’ the free-plates of violins before assembly [Hutchins,

1993]. The earliest known quantitative measurements of the vibratory properties of
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stringed instrument bodies were made by Felix Savart and the violin maker J. B.

Vuillaume in the early 19th Century [Hutchins, 1999, Bissinger, 2001].

The majority of stringed musical instruments rely on a soundboard or stretched

membrane coupled to an air cavity. The soundboard, and usually the back and

sides, is a system of thin plates and therefore the vibratory properties of plates are

important in characterising the behaviour of these instruments (§2.9). One of the first

investigations into the vibrations of plates was made by Sophie Germaine [Germaine,

1821] and there is also a very good treatment by Rayleigh [Strutt, 1869]. Because the

plates used on stringed instruments are generally very anisotropic, and the geometry

often complex, the mathematical analysis of the vibratory properties can be fairly

involved [Szilard, 1974, Lekhitskii, 1968, 1963]. Therefore theoretical treatments of

complicated plates are largely restricted to numerical models (e.g. [Chaigne, 2002])

(§4).

Much of the research in guitar acoustics has concentrated on the resonance or

normal modes of plates, because this determines many of the important features of

the output intensity spectrum of the instrument, and some of the transient behaviour.

This combination is often referred to as the character of the instrument, although it

is unclear what this musical term exactly refers to in terms of spectral and transient

features [McIntyre and Woodhouse, 1978].

The motion of the air is important in sound production. At low frequencies the

air in the internal cavity of the guitar is similar to that of a Helmholtz resonator,

where a ‘plug’ of air vibrates in the throat of a rigid vessel enclosing a volume of air

(§2.4), first studied by Hermann Helmholtz in the 1860’s [Helmholtz, 1885].

At higher frequencies, standing waves somewhat similar to the simple air modes
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found in a long pipe (with both ends closed) are produced in the internal air cavity,

first characterised in the guitar and the violin by Erik Jansson [Jansson, 1977].

Beams and elastic properties. The soundboard of the guitar is usually re-

inforced with wooden beams, or braces (§2.2). To understand the contribution the

braces have on the vibratory behaviour, it is necessary to study the dynamics of

vibrating beams or bars [Timoshenko, 1934, Rossing, 2000]. This type of analysis

requires some knowledge of the material properties, viz. the elastic moduli, damping

and mass density. The study of vibrating beams provides an important means of

characterising these properties (§2.7) [Dunlop and Shaw, 1991, Harjono, 1998]. It

has long been recognised that the material properties of woods used to make stringed

instruments are worth investigation to the luthier [Richardson, 1994], and this is re-

flected in the volume of material published on the subject [Bucur, 1995, Schleske,

1990, Forest Products Laboratory, 1999, Bodig and Jayne, 1982]. A more difficult

quantity to measure in wood is the damping factor [Haines, 2000] (§3.2).

Electromechanical analogies. Stringed musical instruments are a complicated

engineering system. It is useful to draw on the substantial work done on analogous

systems. The modern study of mechanical vibration and acoustics exploits analo-

gies made to electronic circuit theory, enabling vibratory structures to be studied

in the same way as circuit networks [Skudrzyk, 1968]. There are also acoustic ap-

plications of some techniques developed in the field of quantum mechanics [Levine

and Schwinger, 1948, Forbes and Pike, 2004, Cummings, 1977]. The modelling of
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instruments using electrical analogues and transmission line theory is helpful in quan-

titative calculation as well as giving insights into the behaviour of the instrument.

Notably, John Schelleng gave a remarkable and influential model of the violin as

an electrical circuit [Schelleng, 1963]. The model treats all the important vibratory

components (the bowed string, bridge, soundboard and back-plate and the f -holes

and internal air cavity) as effective circuits, able to interact. Colin Gough examined

the transmission of string energy to the body of stringed instruments as an electrical

transmission line system [Gough, 1981]. Analogously to electrical transformers, the

body of a stringed musical instrument functions acts as an apparatus to match (im-

perfectly) the mechanical impedance of the string vibration to that of the air, such

that power transfer from the strings to the air is reasonably efficient. However, it is

not desirable to have an extremely high transmission efficiency; both of these works

have given insights into coupling between the strings and the body, elucidating the

problem of the ‘wolf-note,’ which is a result of too strong coupling between a par-

ticular string and body mode, which gives rise to a very loud, irritating, inharmonic

sound which is harsh but has very little sustain. String-body coupling is dependent

on the interaction between the player’s finger and the string [Pavlidou, 1997], and

the motion of the string in polarisations perpendicular and parallel to the plane of

the soundboard [Richardson, 1997]. To give a more realistic sensation of timbre,

synthesised tones from a plucked guitar string require modelling of how the string

couples with the body in both polarisations [Lewney, 2000, Chaigne, 2002]. The

strength of string-body coupling contributes to the compromise between sustain (or

‘tone’) and loudness noted by guitar makers and players [Gerken, 2001].
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Simple models of the guitar. Models presented for the guitar (or violin)

system have various levels of detail. Because the body of the guitar has a finite

stiffness and a relatively large area, there is some coupling between the body and

the motion of the air—in fact this is, at least implicitly, an important design factor.

A simple model for the low frequency coupling between the air and the sound-

board, assuming each is a simple oscillator able to interact, was first investigated

by Jürgen Meyer [Meyer, 1974] and developed by Ian Firth [Firth, 1977], Graham

Caldersmith [Caldersmith, 1978], Ove Christensen and Bo Vistisen [Christensen and

Vistisen, 1980] (§2.5). These models predict the observation of additional soundboard

modes due to coupling with the guitar body effectively behaving as a Helmholtz res-

onator. The soundboard and air motion are in opposite phase at frequencies below

the Helmholtz resonance and are in phase above it [Christensen and Vistisen, 1980].

These predictions agree well with the experiments reported in these studies.

Investigations of the low frequency behaviour of the guitar can give information on

many effective quantities (equivalent piston area, effective masses) and it is possible

to calculate the strength of coupling between the soundboard and the air in the

cavity [Christensen and Vistisen, 1980]. Knowledge of these parameters enable fairly

descriptive models to be made of the pressure response of the instrument [Wright,

1996, Bécache et al., 2005].

The back-plate may be modelled as an additional oscillator [Christensen, 1984]

(§2.6). As with the case of string-body coupling, there is an optimisation problem

concerning body-air coupling: too little coupling leads to poor overall sound produc-

tion, whereas coupling that is too high will lead to undesirably sharp peaks in the

output sound spectrum. Extensions of these models for higher frequencies have been
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developed by Ove Christensen [Christensen, 1983], Howard Wright [Wright, 1996]

and Antoine Chaigne et al. [Bécache et al., 2005].

Results from [Christensen and Vistisen, 1980] show the coupling strengths for

classical guitars to be about 0.8 for the guitars studied, compared to 0.63 for a violin

measured by Ian Firth [Firth, 1976/77]. A related parameter, the radiation efficiency

(the fraction of energy put into the bridge that is converted into sound) is also an

important quantity. Joseph Lai and Marion Burgess measured mean efficiencies of

13% and 14% for two guitars over the range 50 → 550 Hz [Lai and Burgess, 1990].

Effects of plate bracing. Investigations into the bracing effects of the guitar

have been conducted by Jürgen Meyer [Meyer, 1983a], Bernard Richardson [Richard-

son, 1982], Thomas Rossing [Rossing and Eban, 1999] and by M. J. Elejabarrieta et

al. [Elejabarrieta et al., 2000,?]. Nearly all of these studies are on the bracing of the

classical guitar. However, there is at least one study on the effect of the cross-bracing

used on a steel-string guitar [Ross and Rossing, 1979] which shows a difference in

the phase of the sound pressure radiated by a fan-braced guitar (with respect to the

motion of the bridge) compared to a cross-braced instrument. Thomas Rossing then

compared the vibratory behaviour of guitar soundboards before and after the brac-

ing was added, finding that, without bracing, the soundboard behaved much like a

simple rectangular plate, which was complicated greatly by the addition of the braces

[Rossing, 1982]. The modes of the guitar are very sensitive to changes made in the

soundboard bracing and greatly affect how the strings drive the body [Lewney, 2000].

Much of the experimental work done by luthiers is unpublished and/or hard
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to obtain. However, there are a few specialised repositories and forums for the

discussion of scientifically technical applications in luthiery, including the (now de-

funct) Journal of the Catgut Acoustical Society, the (also defunct) Guild of American

Luthierie Quarterly and the leftbrain luthier internet discussion board. Many jour-

nals on acoustics also feature papers on stringed instruments, including the Journal

of the Acoustical Society of America, Acta Acustica and the Journal of Sound and

Vibration.

Many of the scientific projects involving luthiers could be classed in two cate-

gories: luthiers who welcome the application of principles from physics to the manu-

facture of their instrument, and trained physicists or engineers applying their science

to luthiery. It would be fair to say the former group are in the majority, but the

distinction is not exact; the manufacture of high quality instruments is an exact-

ing process and therefore attracts those with a highly technical inclination. Well-

known examples of the former include Antonio de Torres Jurado, Greg Smallman

and Manuel Velázquez. The scientist/luthiers include Carleen Hutchins [Hutchins,

1998], Bernard Richardson [Richardson, 1995b], Graham Caldersmith [Caldersmith,

1985], Michael Kasha [Kasha, 1995] and Simon Marty [Marty, 1987a]. Members of

both of these groups have done much to promote the advancement of scientific appli-

cation to luthiery and most of these people have had many students or apprentices

who have made important contributions to the field. There are also many examples

of long-term collaborative projects between groups of luthiers and scientists, such as

those involving Erik Jansson [Jansson, 2002], Thomas Rossing [Ross and Rossing,

1979, Rossing and Eban, 1999] and Antoine Chaigne [Chaigne and Rosen, 1999].
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Timbre and the guitar

Although loudness is regarded as important, it is not the only characteristic of the

sound produced by the acoustic guitar. The timbre of the guitar sound is more

complicated to define (for example “The quantity determining discrimination be-

tween two complex tones having the same pitch and loudness”) [Acoustical Society

of America, 1960] and to measure. Without a working definition of timbre it is dif-

ficult to determine the perceived effects of physical modification to a guitar sound.

The importance of understanding aspects of timbre is recognised and investigations

on timbre range from telephony [Szlichcinski, 1979] to the interpretation of sonar

sounds [Salomon, 1958].

Much of the work has focussed on determining the number of dimensions of the

semantic space of timbre, derived from factor analysis of responses to acoustic stimuli.

Previous investigations into the dimensionality of timbre [Grey, 1977, 1978, Kerrick

et al., 1969, Lichte, 1941, McGee, 1964, Salomon, 1958, Terhardt, 1978, von Bismarck,

1974b,a, Wedin and Goude, 1972, Wessel, 1978] have given a dimensionality of 3-

8, although some of these studies relate to sounds not in a musical context, or to

tones that have a constant temporal character. For example, John Grey [Grey,

1977] defines a three-dimensional timbral space (transient behaviour, synchronicity

of transients and the spectral energy distribution) as a result of multidimensional

scaling of responses to sound stimuli.

A three dimensional model for timbre was also identified in [Jensen and Arnspang,

1999], which claimed a relationship among the spectral envelope, the temporal en-

velope and the level of noise of the stimulus. Other three factor models for timbre,
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resulting from the reduction of a number of descriptors, give dimensions of ‘activity’,

‘pleasantness’ and ‘high’ [Kerrick et al., 1969] (accounting for 90% of the variance

of the stimuli given) ‘balanced’, ‘power’ and ‘thin’ [Enomoto and Yoshida, 1968]

(90% of the variance), and ‘brightness,’ ‘roughness,’ and ‘fullness’ [Lichte, 1941]. A

four-factor model (‘sharpness’, ‘compactness’, ‘fullness’ and ‘colour’) for timbre, ac-

counting for 91% of the total variance of steady tones, is presented in [von Bismarck,

1974b]. An eight factor model specifying the dimensions ‘magnitude’, ‘æsthetic’,

‘clarity’, ‘security’, ‘relaxed’, ‘familiarity’ and ‘colour’ (the eighth factor was not

specified but has the attributes ‘scraping,’ ‘soft’ and ‘smooth’) accounted for 42% of

the variance of complex sonar sounds [Salomon, 1958]. The variation in the number

of dimensions of these studies suggest that care is required in the universal applica-

tion of the results.

An obvious extension of this type of study is to relate measurable features to the

timbre of a sound. For example, [Wold et al., 1996] give the principal components

‘loudness’, ‘pitch’, ‘brightness’, ‘bandwidth’ and ‘harmonicity’.) A study by John

Grey suggests that purely (long time averaged) spectral features may account for

much of the timbre for some tones (e.g. those made by the bassoon) while others

may be determined by temporal cues (such as those made by the clarinet or trumpet)

[Grey, 1978].

The guitar is potentially able to express a considerable range in timbre, both

through variations in playing technique and instrument design [Schneider, 1977,

1985]. The effect on the perceived timbre of the instrument due to alterations is
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obviously important to luthiers, and many have an intuitive idea of the results of

changes made gained from experience. For example, a list of construction factors

that have an important effect on the timbre of the guitar is given in [McLeod and

Welford, 1971]:

Shape and size of the body Acoustic properties of the woods
Thickness of body members Details of bracing
Glue bonds/joints Fingerboard geometry
Bridge/saddle/nut String properties
Size and placement of the soundhole

However, it is difficult to develop and to control parameters based on purely in-

tuitive concepts. Tests have been constructed to examine the nature of timbre in the

guitar. Erik Jansson showed that trained listeners broadly agree upon the ‘quality’

of guitars in a listening test [Jansson, 2002]. Responses to changes made to the

structure of the guitar show that the level should be high in the range 80− 1000 Hz

to give a ‘full’ sound, high in the range 1 − 3 kHz to give ‘brilliance’ and ‘clarity’

(although too high a level here gives ‘harsh’ sound), a high level above 3 kHz is good

for chords, affecting the tone just after plucking (too high a component also gives

harshness) [Meyer, 1983b]. High pass filtering of the sound of the guitar at 4 kHz

gives only sounds associated with plucking transients. Sounds low-pass filtered at

2 kHz sound ‘dull’ and ‘hollow’, and below 500 Hz gives a ‘dull’ sound, with in-

distinct attack. Finally, high-pass filtering of guitar sounds above 500 Hz gives the

perception of a ‘clear’ but ‘thin’ tone [Jansson, 2002]. Studying four guitars with a

range in quality, Ricardo Boullosa et al., found that the perceived quality of a guitar

was determined largely by the least mean tuning error3 and the greatest radiation

3Defined, in cents, as: 1200 log
2
(measured frequency

nominal frequency
)
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efficiency [Boullosa et al., 1999]. Antoine Chaigne, Anders Askenfelt and Erik Jans-

son used synthesised guitar tones to show that dominant resonances can strongly

influence perceived quality by synthesising guitar tones after asking participants to

choose the guitar sound among other recordings of real plucked stringed instruments

[Chaigne et al., 1992]. Howard Wright, in analysing responses due to changes in

modal parameters of a synthesised model of the guitar, concluded that the modal

parameters most influential on perceived tone quality are the effective area, followed

by the effective mass, the mode frequency and then the Q-value of the particular

mode [Wright, 1996].

If it is determined exactly what players and listeners want from the timbre of

a guitar, a luthier may then experiment with design modifications until the desired

sound is achieved. Unfortunately there is not even a lexicon agreed upon to describe

guitar timbre sensations, let alone established physical measures relating to aspects

of the timbre. One way to better quantify musical timbre is to develop an agreed

set of descriptors to describe the sound of the guitar, and then to test a number

of people to determine which of these are highly valued, in response to stimuli in

the form of guitar sounds. The determination of physical measures (e.g. spectral or

temporal features) relating to these timbral dimensions is then possible, enabling the

instrument maker to develop instruments that are optimised in particular timbral

dimensions by applying the appropriate physical principles to their craft.

The effect of components on timbre. The material properties of the compo-

nents of the guitar contribute to the sensation of the timbre of the instrument. By
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synthesising the sound of xylophone bars of varying material properties, and test-

ing the psychoacoustic response of participants to the synthesis, Vincent Roussarie,

Stephen McAdams and Antoine Chaigne found that slight changes in material prop-

erties have a significant effect on the perceived timbre of the struck bars [Roussarie

et al., 1998]. The way in which the individual components of the instrument interact

are also important. Carleen Hutchins found that the difference in frequency between

a particular air cavity mode (A1) and a body mode (B1) largely determined whether

a violin would be suitable for a solo, orchestral or chamber instrument [Hutchins,

1989].

The techniques developed in Chapter 5 might be used to enhance the techniques

that luthiers use to select appropriate material for components of the guitar and could

be further developed for a routine testing programme in the workshop. Although

an improved testing programme would not necessarily guarantee any particular in-

strument would be made ‘better’ per se, it would reduce the failure rate—which is

high, even for the most experienced luthiers [Gilet, 2000, Richardson, 1995b]. By

making this selection process more quantitative, the ability to replicate a particular

instrument would be improved. It would then also be possible to communicate the

results to other luthiers.

There appear to be no simple and clear means of determining universal ‘quality

predictors,’ and it is not even certain these predictors exist, even on a subjective

level. However, isolation of such predictors would be highly beneficial. For exam-

ple one of the more obvious and easily measured parameters is the loudness of the
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instrument; it was largely with this well defined objective that the Greg Smallman

guitar design was developed, having a very light soundboard and stiff back and sides

[Atherton, 1990]. An obvious selection criterion for the bracing material is to have

a high Young’s modulus in the longitudinal direction (§5.5). The density is also

important for many components. An optimal measure for the soundboard material

is not known. In the absence of definite optimisation strategies, emulation of suc-

cessful instruments is inevitable, in which case it would be useful to build a database

of appropriate measures such as the Young’s moduli or radiation ratio [Schelleng,

1963, Harjono and Dunlop, 1998] (§5.4) of the components of desired instruments.

Knowing the properties of the components, it is then possible to control, or select

components from a supply, for the desired properties.

A quantitative relationship between the behaviour of the free soundboard and

that of the soundboard attached to the back and sides would be very useful. How-

ever, considering the difficulties in finding this relationship reported by others (e.g.

[Schleske, 2000]) such a relationship is not expected to be found without great dif-

ficulty. For example, the nodal topology of the free soundboards tends to be ‘open’

while that of the soundboards attached to the sides tends to be ‘closed’ (§6.7).

An accurate simulation of the behaviour of the guitar would enable luthiers to

anticipate the result of changes to a design of the instrument without going through

the expensive process of construction. Given sufficiently accurate measurements

of the material properties of components, an accurate model may be made of the

components and, consequently, modifications to the design of the guitar.
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The use of psychoacoustics, as part of a programme to further the field of mu-

sic acoustics, would be beneficial to the guitar maker because the instruments are

designed (apart from physical and technical limitations) according to human pref-

erence. A proper treatment would require an ad hoc study on guitar sounds, which

might allow the maker to determine the psychoacoustic effects of components of the

guitar [Meyer, 1983a].



Chapter 2

How the guitar produces sound

“The profound study of nature is the most fertile source of mathematical discoveries”

— Joseph Fourier

In this chapter, sound production by the guitar is examined, with regard to the

application of physical principles to the manufacture of guitars. Some mathematical

derivations of useful quantities are given, as well as some means of interpreting

these quantities with regard to experiments on the instrument. Some examples are

illustrated with my own measurements.

2.1 The basic anatomy of the guitar

There is a rich terminology associated with the guitar, in both making and playing

the instrument. The modern guitar consists of a long thin neck and an air cavity

enclosed by the body, a box formed by five or six plates glued together. The sides (or

ribs) separate the top-plate (or soundboard) from the back-plate. The overall shape

of the body is shown in Figure 2.1.

The part of the body between the neck and the soundhole is called the upper

29
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bout. The larger area, the lower bout, on the soundboard is separated from the up-

per bought by the soundhole, which allows air to flow in and out of the air cavity.

The soundhole is usually bounded by a ring of wood (the rosette or rose §3.4). The

neck extends from the edge of the upper bout and follows the main symmetry axis

of the guitar (the centre-line or longitudinal axis.) The concave area between the

upper and lower bouts is called the waist.

The modern acoustic steel-string (sometimes called a folk guitar) guitar usually

has 6 parallel metal wires (strings) running from the bridge (a piece of dense wood

located in the centre of the lower bout of the sound board) and terminating on the

head-stock, at the end of the neck. There are variants with 4, 7, 8 or 12 strings but

we shall hereby be concentrating solely on the 6 string variety.

The tension of each string is controlled, for tuning, by a separate machine head

(or tuning head), a simple geared screw located on the head-stock. The linear mass

density of each string is chosen so that standard tuning requires a tension of about

100 → 140 Newton each (Table 2.1). Because of the finite bending stiffness, lower

pitched strings usually have additional wire wrapped around a core, to increase the

linear mass density.

The fingerboard or fret board is the playing surface of the neck. It is directly be-

low the strings and is made of durable wood and inlaid with small metal bars (frets)

running perpendicular to the strings. A piece of bone or ivory (the nut) holds the

strings in place at the point where the fingerboard joins the head-stock. The strings

are firmly stopped at the other end by the saddle, a thin sliver of bone/ivory/hard
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String Open note Frequency Diameter Static tension (nominal) Tension
Length

(Hz) (mm) (N) (Nm−1)
1 E4 329.6 0.30 103.6 159.9
2 B3 246.9 0.41 103.6 159.9
3 G3 196.0 0.61 134.3 207.2
4 D3 146.8 0.81 135.5 209.2
5 A2 110.0 1.07 132.9 205.1
6 E2 82.4 1.35 115.5 178.3

Table 2.1: Typical mechanical properties of steel guitar strings (D’Addario EJ16
Phosphor Bronze/Light 0.012′′ → 0.053′′). The fundamental frequencies and tensions
assume a 648mm (251

2

′′
) scale length and standard tuning (concert pitch A2=110 Hz).

Strings 3-6 have wire coiled around the core to increase the linear mass density.

polymer1 on the upper surface of the bridge. The saddle strongly restricts the mo-

tion of the strings at this point. The distance between the nut and the saddle (the

active vibratory region of the string) is known as the scale length (typically 648 mm

for steel stringed guitars).

The player shortens the effective length of a string by pressing a finger behind a

fret. The frets are spaced such that the pitch increases by a semi-tone2 in going from

one fret to the fret immediately towards the bridge on the same string. The frets

are numbered in ascending pitch, with the nut defined as the ‘0th fret’. The 12th

fret produces an octave, theoretically half the length of the open string. However,

due to end effects from the finite bending stiffness of the string, and the increase in

tension, the string length is slightly less than half the open length3. The body meets

the neck at the body fret. This occurs at the 12th fret on a classical guitar, but the

1TUSQ
TM

has become an industry accepted alternative to these animal products.
2ie: the frequency is multiplied by

12
√

2 = 1.059463.
3Because this effect increases with string diameter, the saddle is usually placed at a slight angle,

with the third string sometimes displaced.



33

body fret is the 14th for most modern steel-string guitars.

By convention, the string with the highest pitch is called the first. The classical

guitar has strings 1 to 3 made of nylon and 4 to 6 are metal wound around fibrous

silk or nylon. The steel-string guitar has strings 1-2, and possibly 3, of a single wire

and strings 3 (or 4) to 6 with additional wire coiled around a single wire core.

Because the longitudinal grain direction is always in the direction of the long

axis of the guitar, this will be denoted the longitudinal axis of the guitar without

confusion. For the same reason, the axis in the plane of the soundboard, but perpen-

dicular to the longitudinal, will be called the transverse axis. The axis orthogonal

to both the longitudinal and the transverse axes will be called the depth axis.

The tension in the strings tends to rotate the bridge and deform the soundboard.

To make the instrument relatively loud, the soundboard must be thin and span

a relatively large area (§3.4). Hence structural reinforcement is required. This is

usually in the form of wooden braces. The bracing system—especially that of the

soundboard—plays an important role in sound production [Ramirez, 1986, Ross and

Rossing, 1979, Rossing, 1982, Richardson, 1998, 1982, Marty, 1987b] . This is exam-

ined further in §2.2 and §3.4. The back is also braced to make it more robust but

the effects of this bracing system is not studied here.
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Figure 2.2: Isometric view of the OOO guitar used here. The axis conventions used
here are shown. [Figure courtesy of Davy Laille and Matthieu Maziere]

2.2 Specialised anatomical features

Largely because of the various demands of musicians, there is much variation in the

design parameters of different models. It is the aim of the present work to investi-

gate how the guitar performs on a technical level, rather than to give a definitive

report on various guitar designs. The guitar model studied here is a variant of the

Martin Guitar Co. OOO steel-string acoustic, a popular model, with a standard

bracing system, although there are some minor proprietary design features unique

to the Gilet workshop. A schematic of this particular model is shown in Figure 2.2.

Distinguishing features include an enlarged lower bout with an upper bout shaped

similarly to the more common ‘Dreadnought’ model.
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The soundboard bracing system

One of the most important design features of the OOO steel-string models made

here is the Martin Guitar Co. style cross bracing system, shown in Figure 2.3,

the distinguishing features being two wooden beams attached to the inside of the

soundboard in an ‘X’ shape, covering most of the lower bout. This bracing system

is made asymmetric by the two ‘tone braces’ extending from one of the ‘X’ braces.

The bracing system is described in more detail in §3.4.

Figure 2.3: The soundboard brac-
ing system used here (Gilet Gui-
tars OOO Series, 2000.) [Cour-
tesy of Davy Laille and Matthieu
Maziere]

Figure 2.4: Photograph of one of
the soundboards used here

The bridge

The bridge on a guitar is located in the middle of the soundboard. It fixes one

end-point of the strings to the body such that energy from the vibrating string is
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Figure 2.5: Schematic of bridge type used in steel string guitars (From [Williams,
1986a])

transmitted to the rest of the instrument and, ultimately, to the air. The design

and material of the bridge varies much, especially between the steel-string and the

classical guitar. Classical and steel-string guitars have similar saddles but differ in

the way the strings are terminated and in the overall shape of the bridge. A plan of

a typical bridge used in steel-string guitars is shown in Figure 2.5 [Williams, 1986a].

The bridge for a steel-string has six collinear holes to insert the strings (the strings

on steel string and electric guitars have metal balls at one end for this reason.) The

strings are held in place with conical wedges (bridge pins). The channel that holds

the saddle is at an angle of about 4o from the base, because of a small length cor-

rection necessary due to the variation in string bending stiffness.

There is usually a piece of dense wood (usually maple) known as a bridge-plate

forming part of the internal soundboard bracing (Figure 2.4) to provide strength and

rigidity to the area directly under the bridge.

It is common for the soundboard to have some positive curvature. In this case
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the underside of the bridge will need to be given the same curvature. The guitars

made here have a curvature of a chord from a sphere of approximately 7.62 m (25

feet) in radius.

The neck

The neck is an important component of the guitar and has important low frequency

interactions with some other major components of the instrument; modal analysis of

the free guitar show that the neck forms part of a longitudinal bending mode along

the axis of the instrument (e.g. [Alonso Moral and Jansson, 1982, French and Hosler,

2001, Russell and Pedersen, 1999]).

Although the vibratory modes of the guitar derived from the motion of the neck

do not appear to affect greatly the sound of the instrument directly, they do have

an effect on the tactile sensation of the instrument, having a significant effect on

the ‘feel’ of the instrument [Bissinger and Hutchins, 2001, Hutchins, 1985, Askenfelt

and Jansson, 1992], because humans are most sensitive at frequencies less than a few

hundred Hertz [Brisben et al., 1999].

As is common, the necks used here contain internal steel rods (truss-rods) to

control the amount of curvature the neck displays. However, unlike the traditional

method of glueing a dovetail joint between the two, the necks are connected to the

bodies of the instrument by a bolt-on neck system §3.4.



38

2.3 Excitation methods

The previous chapter highlighted some of the major design innovations made by

luthiers. The changes to the design of stringed instruments in general have several

physical constraints, viz. those regarding structural integrity, and those pertaining

to the actual sound of the instrument. Mechanical vibrations in the instrument

system require conversion into mechanical vibrations in the air. In normal playing

conditions the strings are excited by either plucking with the finger (Figure 2.6), or

‘picking’ with a plectrum (a small, typically teardrop-shaped, piece of plastic, metal,

shell or bone).

Either of these deforms the string, whose energy is then transferred to the guitar

body via the bridge. Three dimensional simulations of the interaction between the

finger and the string suggest that the friction and mechanical properties of the finger

and the plucking direction are the most influential on the interaction between the

string and the body and is affected to a lesser degree by the velocity of the finger-tip

[Pavlidou, 1997].

There are other means of obtaining sound from the instrument by exciting the

strings or the body, giving rise to a large range in timbre of the instrument and

the number of playing techniques. The strings may be bowed, sustained magneti-

cally (the e-Bow
TM

or Fernandez
TM

sustaining bridge) or mechanically (in the case of

‘feedback’), scratched or struck with other objects. Also the body may be struck

or rubbed, giving rise to particular sounds often exploited by musicians [Schneider,

1985].
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Some of these excitation methods are used by researchers in the study of the

instrument, although it is usually desirable to have more control over the excitation

than in most of the methods described. Excitation of the strings excites the body at

a number of frequencies, usually without explicit knowledge of the spectral energy

distribution. It can thus be difficult to isolate the normal modes of the actual

instrument (§2.9). Generally, the instrument is driven by external means, such as

with an oscillating magnetic field acting on a permanent magnet attached to the

instrument, a sound source (such as a loudspeaker) or mechanically, with some sort

of shaker or impulse device. The body or strings may be given an impulse by being

struck with an object. There have been attempts to make a device that plucks a

string reproducibly (such as [Cass, 2003, S̆ali and Kopac̆, 2000]) but this has not

been as successful as have the equivalent devices for bowed stringed instruments (a

‘bowing machine’ as in [McLennan, 2000].) A device such as this would be very

useful, because it would provide excitation more like that associated with the usual

sound of the guitar, but it would be more reproducible than the response obtained

by using human players.

Interaction between the strings and the guitar body

The transverse modes of a vibrating guitar string are well studied and are generally

better understood than the normal modes of the body of the instrument. Because

the usual manner of excitation of the instrument is via the strings, it is important

to understand the interaction between the two vibratory systems [Gough, 1981].

Mechanical properties of the strings used on the guitars studied here (‘steel strings’,
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Figure 2.6: The action of plucking a guitar string. Shown are the relative positions
of the finger-tip and the string, as viewed along the string axis, before, during and
after the plucking action. The arrows represent the relative velocities, the dotted
circles are the initial positions of the string.

Table 2.1) are different to those of the ‘nylon string’ sets typically used on the classical

or flamenco guitar.

The coupling of string motion to a body mode of the instrument at the same

frequency may be given by Equation 2.3.1 [Gough, 1981]:

[μ
∂2

∂t2
+ μ

ω

QS

∂

∂t
− T

∂2

∂x2
]y(x, t) = f(x)eĵωt (2.3.1)

Here, x is the displacement along the axis of the string, t is the time and y(x, t) is

the amplitude of the string at right angles to the string axis and the angular frequency

of the driving force is ω. The linear mass density of the string is represented by μ,

QS is the Q-value of the particular string resonance and T is the (static) tension in

the string. f(x) is the distributed force per unit length, an arbitrary function of x.

The second term represents the losses of the string, both radiative and mechanical.

Taking the series solution y(x, t) = (
∑

n an sin knx)eĵωt, where kn = nπ
L

, for a string

of total length L. The an are the amplitude of the nth Fourier components:
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an =
2

m
· fn

ω2
n − ω2 + ĵ ω2

QS

(2.3.2)

Where fn =
∫ L

x=0
f(x) sin knx · dx.

The coupling strength between the string and the body normal modes is then

[Gough, 1981]:

α =
2QB

nπ

√
2μL

Meff.

(2.3.3)

Where QB is the Q-value and Meff. is the effective mass of the guitar body mode

(at the string-body interface) closest to the nth mode of the string of length L and

linear string mass density μ. For α < 1, the coupling is weak and the frequencies

of normal modes are not significantly perturbed but the string motion is slightly

damped by the coupling. For strong coupling, α > 1, the resonance frequency of

the closest normal mode is split symmetrically about the unperturbed frequency

by the damping of both (by Δf � 2QB). For α � 1, the coupling is extremely

strong and the mode frequencies are shifted significantly from their unperturbed val-

ues. Although the effects of this coupling have a profound effect on the timbre of

the instrument [Pavlidou, 1997, Wright, 1996], it is difficult to isolate a string-body

coupling region that is ideal for musicians: the coupling needs to be strong enough

so that energy is transferred to the body and contributes to the loudness and high

frequency component of the radiation (which relates to the musical concept ‘bright-

ness’) but too strong coupling may lead to inharmonic and poorly sustained sound

(contributing to the guitar wolf-note), as energy from the string is rapidly dissipated

[Gough, 1981, Wright, 1996].
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The string-finger interaction of both hands is important. The point where the

finger forces the string onto the fret is not a perfect node for vibratory waves in the

string with polarisations parallel to the plane of the fingerboard; the transmission

coefficient of vibratory waves from the strings to the bridge having this polarisa-

tion is much lower than that for waves orthogonal to the plane of the soundboard

[Richardson, 1982]. Transverse waves in the string with polarisations perpendicu-

lar to the plane of the soundboard have the strongest effect on the volume of air

moved by the soundboard. Control of the initial polarisation of the vibrating string

is most probably exploited by players, because it gives some degree of control over

the longevity and timbre of a particular note. The polarisation cross-section (i.e. in

the plane perpendicular to the longitudinal axis) of the string pulses describes an

ellipse, depending on which direction the string is plucked in [Gough, 1981]. This is

important to manufacturers. The master luthier, Gerard Gilet, often observes the

right hand position players use on a new instrument; if they prefer to play too close to

the bridge, the instrument requires enhancement at higher frequencies and requires

a less bright sound if the player consistently plucks the instrument as close to the

fingerboard as possible [Gilet, 2000]. Longitudinal and torsional string modes do not

affect the radiated sound or store a great amount of the string’s energy [Strutt, 1869].

Because the strings are important in determining the output sound of the in-

strument, the string properties contribute to the variation in measurable parameters

in the characterisation of a particular instrument. For example, changes associated

with the typical deterioration of the strings tend to increase the decay rate at high
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frequencies and make the string more inharmonic [Hanson, 1987]. To simplify the

measurements on the guitars studied here, we will be concerned with the physical

properties of the instrument itself. String resonances and their interactions com-

plicate these and, therefore, tests were conducted on the instruments without the

strings attached. The guitar has been shown to be a linear system [Richardson,

1982], so the deformation due to the string tension should superpose, to first order.

2.4 The Helmholtz resonator

An important motion of the guitar that produces sound at lower frequencies is one

in which the body enclosure acts as if it were a Helmholtz resonator coupled to the

lowest vibratory mode of the soundboard. Neglecting the motion of the body, this

motion may be treated as a simple harmonic oscillator with one degree of freedom,

where the ‘spring’ is comprised of the air inside the enclosure, and the ‘mass’ is that of

the air in the region of the soundhole. The frequency of an ideal Helmholtz resonator

(a container with rigid walls, enclosing a relatively large volume of air, V , and a

cylindrical throat4 with length l, of small (S � πl2) constant cross-sectional area S

and assuming the wavelength is much longer than the largest single dimension of the

container so that the pressure distribution is effectively uniform) may be expressed

(Appendix A.1):

fH =
c

2π

√
S

V l
(2.4.1)

4The term throat is used here to represent the length of an open pipe connected to the main

body of the resonator. This is usually referred to as the ‘neck’ of the vessel, but is replaced here to

reduce confusion with the neck of the actual guitar.
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l’ = l 0 l’ = l +0.61r 
0 l’ = l +0.85r

0
l’ = l +1.70r0

r

a) b) c) d)

Figure 2.7: End corrections for the fundamental pressure standing waves in pipes
with a) One end stopped and the other unbaffled, of negligible radius b) One end
stopped and the other unbaffled, of radius r ([Strutt, 1869, Levine and Schwinger,
1948]) c) One end closed and the other with infinite baffle([Strutt, 1869, Fletcher
and Rossing, 1998]) d) Pipe open and baffled at each end by an infinite plane.

where ρ is the density, and c the speed of sound, in air.

The geometry is complicated by the shape of the moving air mass, which may be

quantified by an effective length, l∗. This results from the inertia of the air oscillating

about the plane of the soundhole, which is dependent on the throat geometry (Figure

2.7). The application of the end correction to calculating the Helmholtz resonance is

validated with a simple experiment in Appendix A.1. Of course there are limitations

on the application of this simple treatment [Sacksteder, 1987].

For a lossless circular pipe of radius R, with an infinite baffle at one end the end

correction is l∗ = 0.85R [Strutt, 1869, Fletcher and Rossing, 1998]. For a circular

pipe with an infinite baffle at each end, the effective length is additive and therefore

l∗ = 1.70R. Although Figure 2.7 illustrates the velocity amplitude for a fundamental

standing wave in a pipe, the end correction applies to the Helmholtz resonator for

the same reasons, although the very long wavelength associated with the resonance

of this example (� 3 m) means there is no node in the centre.
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In the case of the guitar, the length of the circular ‘pipe’ (viz. the thickness of the

soundboard, � 2.5 mm) is small and the effective length of the ‘pipe’ at the soundhole

is approximately equal to the end effects due to the large diameter and the conditions

of both external surfaces of the soundboard around the soundhole. The effective

length of the ‘throat’ of the body of a guitar considered as a Helmholtz resonator,

with soundhole diameter d = 2R and soundboard thickness at the soundhole, h, is

given by:

l∗ = h + 0.85d (2.4.2)

Typically, h = 2.5 mm and d = 96.0 mm, so l∗ = 2.5 + 0.85 × 96.0 = 84.2 mm.

Hence Equation A.1.12 may be simplified by substituting l = l∗:

f0 =
c

2π

√
πd2

4V (h + 0.85d)
=

c

4

√
d2

πV (h + 0.85d)
(2.4.3)

and, because h � l∗,

f0 � c

2π

√
πd

3.4V
� 0.153 · c

√
d

V
(2.4.4)

Generally, for a modern guitar, the Helmholtz frequency tends to occur at about

100-150 Hz (Table 2.2) and this is recognised by luthiers as an important contribu-

tion to the radiated sound. The air resonance in this frequency region is not that of

an ideal Helmholtz resonator because the walls of the enclosure are not rigid and are

lossy. The requirement that the soundboard couple with the air cavity means that

interaction between the vibrating plates and the air is not at all negligible so that
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the frequency is altered by the coupling (§2.5). The term ‘Helmholtz resonance’ in

the remainder of this thesis refers to the coupled motion between the ideal Helmholtz

resonator and other components of the vibratory system. Also the plate is not an in-

finite plane and the spring constant of the Helmholtz resonator has some dependence

on the height of the sides [Dickens, 1978] as well as the position of the soundhole

[Meyer, 1974].

Consideration of this analogy between a Helmholtz resonator and the low fre-

quency motion of the guitar provides an explanation why some makers sometimes

introduce cardboard or brass tubes (a ‘tornavoz’ [Romanillos, 1987]) directly below

(with the same diameter as) the soundhole, to lower the dominant radiating res-

onances of the instrument. This would increase the effective throat length of the

Helmholtz resonator and thereby lower the frequency of the Helmholtz resonance

and other air-coupled modes. This technique has also been useful in determining

the extent of low frequency air/soundboard coupling in the instrument [Christensen

and Vistisen, 1980]. Because of the typical frequency range of this resonance, if

the soundhole is covered or restricted, the loudness of notes about A2 (110 Hz) is

noticeably reduced.

2.5 Soundboard-air cavity coupling: the two-mass

oscillator model

At low frequencies, the wavelength of sound in air is much longer than the char-

acteristic dimensions of the guitar and the sound radiation may be modelled as
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a simple monopole or piston source [Christensen and Vistisen, 1980, Christensen,

1984, Wright, 1996]. The simplest model to describe the mechanical nature of the

guitar involves the two important low frequency vibratory components of the guitar

system—the soundboard and the air cavity. The two-mass oscillator model here

treats the soundboard of the guitar as a simple harmonic oscillator, coupled with the

air enclosed by the body and the soundhole acting as another oscillator [Christensen

and Vistisen, 1980, Caldersmith, 1978, Firth, 1977]. The relationship between the

coupled and uncoupled frequencies of the resonators are (see Appendix A.2):

f 2
p + f 2

H = f 2
+ + f 2

− (2.5.1)

Where f+ and f− are the higher and lower coupled frequencies, fp is the effective

frequency of the soundboard (including air loading) and fH is the frequency of the

(uncoupled) effective Helmholtz resonator.

Assuming this simple model, mobility and sound pressure functions (measured

at the soundboard) are obtained, with features similar to that in Figure 2.8

[Christensen and Vistisen, 1980] . Two local maxima (‘peaks’) are separated by

a local minimum (‘trough’) at an intermediate frequency. The electromechanical

(Force-Voltage) circuit diagram is given in Figure 2.9 [Fletcher and Rossing, 1998].

This model is limited to frequencies in the region of the coupled oscillators and

assumes that the bandwidth of both elements is small enough so that no significant

overlap occurs with other elements in the system. This is a valid assumption for the

low frequency behaviour of the instrument and explains the three lowest frequency
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Figure 2.8: Mobility and pressure spectra investigating the extent of low frequency
coupling between the soundboard and the air cavity. Curves (1) refer to the un-
perturbed guitar system. Curves (2) Represent mass loading effects (39.3 g added
to soundboard). Curves (3) show the effects of increasing the effective length of
the soundhole by the introduction of a tube with the same diameter of the sound-
hole. Curves (4) show effects of restricting air-flow through the soundhole. From
[Christensen and Vistisen, 1980].

minima in the acoustic response of the instrument. Although the soundboard and in-

ternal air volume comprise a continuous coupled system, higher frequency behaviour

could be modified to account for higher frequency soundboard vibrational modes by

adding additional circuit elements to those in Figure 2.9 [Christensen, 1984].

At f−, the air in the soundhole is almost 180◦ out of phase with the bridge of the

guitar and is in phase at f+, as shown in Figure 2.10.



49

Figure 2.9: a) Schematic of the mass and stiffness interaction of a simple model guitar
interaction between the soundboard, the air cavity and the air in the soundhole area
treated as two coupled simple harmonic oscillators, and b) the electromechanical
circuit analogue for the two-mass model of the guitar. The effective stiffness of the
internal air cavity is not depicted in a) (From [Fletcher and Rossing, 1998].)
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Figure 2.10: The low frequency phase relationship of pressure measured at the sound-
hole in response to a force on the bridge of a guitar. For the low frequency mode,
of frequency f−, the motion of the air in the soundhole is almost 150o out of phase
with the motion of the bridge. The next mode, of frequency f+, is in phase with the
motion of the bridge. (Measurement from Engelmann spruce guitar, 2 years after
polishing.)
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Free plate, membrane and coupling frequencies

These equations enable another means of characterising stringed instruments. The

coupling between the soundboard and the air is of great importance. If the fre-

quencies of the lowest three turning points in the mobility spectrum are measured,

parameters derived using these equations might be applied in manufacturing instru-

ments with greater consistency.

Rearranging Equation 2.5.1, the fundamental frequency of the soundboard loaded

by the air in the cavity may be expressed as:

fp =
√

f 2
+ + f 2

− − f 2
H (2.5.2)

From Equation A.2.11 the coupling frequency is:

fpH = 4

√
f 2

H(f 2
+ + f 2

−) − f 2
+f 2

− − f 2
H (2.5.3)

By using this and Equation A.2.4 the frequency of the uncoupled soundboard is:

fp,0 =
f+f−
fH

(2.5.4)

These expressions are simple combinations of the measurable low frequency turn-

ing points of the mobility spectrum. A basic prescription for measuring or charac-

terising stringed instruments might then be:

1. Measure frequencies f+, f− and fH from the acoustic frequency response spec-

trum

2. Obtain the air-loaded plate frequency f 2
p = f 2

+ + f 2
− − f 2

H
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3. Calculate the free-plate frequency fp,0 = f+f
−

fH

4. Calculate the coupling frequency fpH = 4
√

f 2
H(f 2

+ + f 2
−) − f 2

+f 2
− − f 4

H

It is also useful to express these quantities in terms of a normalised frequency, by

division by fH . Expressing such normalised frequencies using a �, (fi :→ fi

fH
≡ �i)

the frequency relations can then be simplified to:

�
2
p = �

2
+ + �

2
− − 1 (2.5.5)

�
2
p,0 = �+�−

�
2
pH =

√
�2

p − �2
p,0 =

√
�2

+ + �2
− − �+�− − 1

�a = �
2
pH =

√
�2

+ + �2
− − �+�− − 1

Using data from several guitars with various configurations (such as altered brac-

ing) from [Meyer, 1974], Ove Christensen and Bo Vistisen showed that the low

frequency soundboard/air coupling parameter, �pH , for classical guitars measured

by them and [Meyer, 1974], ranges from 0.7 to 0.9. Because the soundpost transmits

energy from the soundboard to the back plate, we should not expect high values for

low frequency soundboard/air coupling in violin family instruments, with a slight

correlation between soundboard frequency and coupling [Christensen and Vistisen,

1980]. From a violin in [Firth, 1976/77], this was calculated to be 0.63 [Christensen

and Vistisen, 1980]. A meta-study of these results and others from measurements

made by previous authors [Hutchins, 1989, Christensen and Vistisen, 1980, Firth,
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Guitar
Study (instrument) Resonance frequency (Hz) Coupling

parameter
f− fH f+ �pH

[Christensen and Vistisen, 1980] 100 123 214 0.91
[Firth, 1977] (Levin LG-17) 90 112 179 0.86
[Erndl, 1999] 108 150 205 0.80
(Gilet OO (1998)) 108 140 180 0.72
(Gilet MJ (1998)) 80 115 160 0.83
[Le Pichon et al., 1998] 121 152 216 0.78
(ES, finished) 91.5 126.5 158.8 0.72
(Aria ‘WO-RN’) 94.2 126.5 156.1 0.69
(Gilet OO) 115.7 172.3 274.5 0.96

Table 2.2: Meta-study of low frequency coupling in guitars.

Violin
Study Instrument f− (Hz) fH (Hz) f+ (Hz) �pH

[Hutchins, 1989] V1 278 375 474 0.72
V2 272 368 485 0.76
V3 267 354 447 0.71
V4 276 389 476 0.70
V5 272 334 461 0.74

[Firth, 1976/77] 278 295 457 0.63

Table 2.3: Meta-study of low frequency coupling in violins.

1977, Erndl, 1999, Le Pichon et al., 1998] (Tables 2.2 and 2.3) show �pH to range

from 0.69 to 0.96 for the guitar and 0.63 to 0.76 for the violin.

Effective masses and stiffness of plates at resonance

Because of the complicated nature of the structures being studied, many of the para-

meters examined are effective values. The value of an effective variable may depend

on how the measurement or calculation was performed. The following calculations
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Figure 2.11: ‘Christensen’ refers to the guitar studied in [Christensen and Vistisen,
1980], ‘Firth’ refers to the Levin guitar LG-17 in [Firth, 1977]. The remainder are
the guitars studied in this thesis.
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are valid in the vicinity of a resonance mode and we might expect different val-

ues obtained from different resonances. The particular resonance is labelled with a

subscript i but we shall mostly be concerned with the lowest, i = 1.

At low frequencies, approximating the free soundboard as a simple harmonic

oscillator, and, knowing the mass of the plate and the resonance frequency of the ith

normal mode, an effective stiffness may be defined:

fi =
1

2π

√
Kp∗
mp

(2.5.6)

Differentiating this with respect to the mass mp, the effective mass, mp∗ is [Schel-

leng, 1963]:

mp∗ = −fi

2

1
∂fi

∂mp

(2.5.7)

This may be re-arranged to obtain the effective stiffness, Kp∗:

Kp∗ = 4π2f 2
i mp∗ = −2π2f 3

i

1
∂fi

∂mp

(2.5.8)

The term ∂fi

∂mp
may be measured by observing the frequency perturbation of the

ith resonance frequency by adding a range of masses at the excitation point. If the

amount of mass added is small, the effect is approximately linear. This is shown, for

example, on the violin (Figure 2.12).

However these measurements are from the coupled resonance at f+ (an example

of similar measurements on the guitar are shown in Figure 2.13). Because f+ is asso-

ciated with coupled modes, using measurements of ∂fi

∂mp
for this resonance alone leads

to an overestimation of the effective stiffness of the guitar soundboard [Christensen
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Figure 2.12: Mass perturbation of the f+ resonance of a violin. (∂f+

∂m
= const. =

−4500 Hz·kg−1, The value of the least-squares fit parameter, (R2 = 0.9977, for 4 data
points) indicates the change in frequency is linear for this mass range. Measurements
by John McLennan in [McLennan, 1993].)

and Vistisen, 1980]. Similarly, measurement of the effect of mass-loading on the f−

frequency leads to an underestimation of the stiffness (Figure 2.14).
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Figure 2.13: Mass perturbation
of the f+ resonance of a guitar.
Here, ∂f+

∂m
� −4400 Hz · kg−1

(R2 = 0.9771, for 6 data, mea-
surements made on ES guitar).
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Figure 2.14: Mass perturbation
of the f− resonance of a guitar.
Here, ∂f

−

∂m
� −3300 Hz · kg−1

(R2 = 0.9845, for 6 data, mea-
surements made on ES guitar).

Further, because the resonances f− and f+ are coupled, especially for large loads,

neither resonance is well approximated by a simple harmonic oscillator, i.e. with

resonance frequency proportional to 1√
mp

(Equation 2.5.6).

Nevertheless the free-plate frequencies fp,0, calculated from Equation 2.5.4, agree
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well with Equation 2.5.6 (Figure 2.15). The solid lines in Figure 2.15 are calculations

of the frequency dependence on mass loading for a simple harmonic oscillator with

constant stiffness which is determined from the measurements with mass loads of

50 g. This gives a post hoc justification for the approximation of a simple oscillator,

Equation 2.5.6. Results of calculations of the effective stiffness values of soundboards

of the guitars studied in this thesis, and for the completed instruments, are presented

in §7.7.

Graham Caldersmith derived from first principles an approximation to calculate

the effective stiffness of a guitar soundboard by knowing the distribution and material

properties of the bracing and the dimensions and approximate mean displacement

of the soundboard at resonance [Caldersmith, 1978]. This is in good agreement with

experiment and the analysis shows the stiffness contribution from the bracing system

(in a classical guitar) to be of the same order of magnitude as that of the soundboard

itself.

2.6 Three-mass oscillator model

The two mass oscillator model may be extended to incorporate the motion of another

important component, the back-plate, as a third harmonic oscillator [Meyer, 1974].

There are two possibilities [Fletcher and Rossing, 1998]:

(i) fp > fb, ie the fundamental resonance frequency of the soundboard is higher

than that of the back-plate. This will increase the value of f+; or
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Figure 2.15: Mass perturbation of the fp,0 compared to the f+ and f− resonances of a
guitar. Note that the calculated free-plate frequencies, fp,0, are better approximated
by a simple harmonic oscillator model than those of the coupled resonances f+ or
f− alone. Measurements made on ES guitar.
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(ii) fp < fb, the fundamental resonance frequency of the soundboard is lower

than that of the back-plate. This will decrease the value of f+.

Most guitars have a lower soundboard fundamental frequency than that of the

back-plate, fp < fb, hence the effect of back-plate coupling is generally a lowering of

the frequency of the two peaks f− and f+ in the mobility or dynamic mass spectra.

If the coupling is strong enough, there will also be a bifurcation of the f+ peak. This

is not usually the case with the guitar but may occur with the violin because the

latter has a soundpost connecting the two plates (Figure 2.16).

2.7 The importance of bracing

The primary function of the bracing used on the plates of the guitar is to maintain

the structural integrity of the instrument. However the choice of soundboard bracing

also has a large effect on the sound produced, and much of the recent innovation in

guitar design has been to do with this [French and Hosler, 2001]. The bracing of

the modern classical guitar is largely due to the famous luthier, Antonio de Torres

Jurado (1817-1892) who pioneered the symmetric bracing system still commonly used

on modern classical guitars [Romanillos, 1987]. The C. F. Martin Guitar Company

introduced an asymmetric ‘X’ bracing system in the 1850’s, which is the most widely

used bracing system in modern steel-string guitars and is the system used on the

guitars studied in this thesis [Longworth, 1975].
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‘f ’-holes and force on the bridge of a violin. Measured from Powerhouse Twin Violin
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Figure 2.17: Electromechanical diagram of the mechanical elements comprising the
three-mass oscillator model, as applied to the guitar; the back-plate is introduced in
addition to the two mass model in §2.5. From [Fletcher and Rossing, 1998].
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In an investigation on the effect of a number of soundboard bracing configura-

tions on the response of classical guitars, Jürgen Meyer found that the traditional

Torres ‘fan-bracing’, with between five and seven braces were optimal [Meyer, 1983a].

Bernard Richardson found that braces running across the grain of the soundboard

had more influence on the soundboard modes than those aligned with the grain

[Richardson, 1982, 1983] but were not as influential on the mechanics of the sound-

board as its thickness distribution [Richardson and Roberts, 1985]. M. J. Elejabar-

rieta et al. looked at the effects of bracing on a classical guitar during construction,

showing the addition of braces around the soundhole reduced a number of modes

and greatly altered the admittance response of the free soundboard [Elejabarrieta

et al., 2000, 2001] . Thomas Rossing and Gila Eban examined the low frequency

modes of a soundboard with a novel bracing system, which showed little difference

to the more conventional classical guitar bracing system [Rossing and Eban, 1999].

Cross-bracing alters the coupling between the air cavity and the soundboard

modes: the phase change at the lowest resonance (A0) between the air cavity and

the soundboard is lower for cross-braced instruments than that for fan-bracing, where

the phase difference is very close to 180◦ [Ross and Rossing, 1979, Firth, 1977]. For

example, in §2.5 I measured the relative phase change as slightly less than 150◦

for the Engelmann spruce guitar (Figure 2.10). The dipolar soundboard modes are

often not strong radiators for guitars with symmetric bracing [Christensen, 1984].

The symmetry of these dipoles may be broken by the use of asymmetric bracing

(such as cross-bracing) and may improve radiation from dipolar as well as higher

frequency modes. Technical details of the cross-bracing system studied in this thesis

are given in §3.4.
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Vibration of a cantilever beam

The bracing system of the plates of the guitar is a system of slender beams. Slender

beams are simple enough systems to measure the Young’s modulus of the beam

material using resonance methods [Schlägel, 1957, Dunlop and Shaw, 1991, Harjono,

1998]. Hence the vibratory behaviour of beams is a useful means of characterising

this important material property of the components used in guitars as well as in

determining the vibratory behaviour of the actual bracing components.

For a simple, slender beam with Young’s modulus E, moment of inertia I and

mass m [McLachlan, 1951, Sokolnikoff, 1946]:

δ2

δx2
(EI · δ2ξ

δx2
) = −m

δ2ξ

δt2
(2.7.1)

where δ denotes a small change in a variable, x is the distance along the axis

from one end of the beam and ξ is the perpendicular displacement, at time t.

The general solution for the displacement of a uniform beam is [Boas, 1983]:

ξ(x) = A cosh(kx) + B sinh(kx) + C cos(kx) + D sin(kx) (2.7.2)

The boundary conditions for a homogeneous cantilever beam of length L, with

perpendicular displacement ξ as a function of position on the beam axis, x, are:

ξ(0) = 0
dξ(0)

dx
= 0

d2ξ(L)

dx2
= 0

d3ξ(L)

dx3
= 0 (2.7.3)

Indicating there is no vertical displacement or slope at the fixed point (x = 0),

and zero bending moment and shearing force at the beam’s extremity (x = L).
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The coefficients si = {1.194, 2.988, 5.000, 7.000, ...}∞i=1 are dependent on the bound-

ary conditions in Equation 2.7.3, and are computed by solving relation 2.7.4.

cos(kiL) · cosh(kiL) = −1 (2.7.4)

Where ki ≡ 4

√
mω2

i

EY I
is the wavenumber for the ith resonance mode.

For an isotropic, homogeneous beam, with constant cross-section and length L

much longer than any other dimension, we can find the frequency of vibration of the

ith resonance mode at low amplitudes:

fi =
πcκ

8L2
· s2

i (2.7.5)

Where κ is the radius of gyration of the beam in the plane perpendicular to the

longitudinal beam axis and π = 3.14 and c is the speed of sound in the material.

The apparatus used to measure the frequency of the wooden beams is a clamp

system similar to [Harjono, 1998] (§5.2), and the measured response is that of a two

mass system (see Appendix A.3).

2.8 General behaviour in various frequency regimes

The guitar responds and radiates differently at different excitation frequencies. Al-

though the frequency range of the fundamental of the notes able to be played

on a steel-stringed acoustic guitar tuned to concert pitch and standard tuning is
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82 → 1050 Hz (Table 2.1). Although excitation outside this frequency range is

induced through higher harmonics of the strings or beating between strings, Ove

Christensen showed that most of the radiated acoustic energy in classical guitar

music occurs between 200 Hz and 800 Hz in the time-averaged output spectrum

[Christensen, 1983]. However, considering that the human ear is most sensitive in

the range of 1000 → 5000 Hz, the importance of higher modes should not be ne-

glected. For example, it is likely that the sensation of ‘brightness’ is determined

largely in the frequency range 1− 3kHz [Jansson, 2002]. The frequency ranges given

below are approximate values and are dependent on the particular instrument being

studied.

An illustration of the progression and shape of the low frequency soundboard

modes is given in Figure 2.18. At very low frequencies (≈ 0 → 90 Hz) vibratory

modes involve the bending of the entire guitar, including the neck. At low fre-

quencies (≈ 90 → 250 Hz) the bulk motion of the body is important, and this

is where most interaction with the soundboard and the Helmholtz motion of the

internal air cavity (§2.4). Moderate frequencies (≈ 200 → 600 Hz) involve large

movement of the soundboard and, consequently, this is where most of the studies of

the finished guitar using the technique of Chladni figures (§2.9) are performed. Some

resonances in this frequency range are due to coupling between fundamental plate

resonances and higher internal air cavity modes [Jansson, 1977]. Higher frequencies

(≈ 600 → 1200 Hz) correspond to fairly localised motion of the soundboard. High

frequencies (≈ 1200 → 10000 Hz) involve rather more complicated interactive mo-

tions involving the soundboard, bridge and other elements. A summary of this is
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Figure 2.18: The first six modes of a guitar soundboard. The relative phase of the
air in the soundhole is given in the T(1,1)1 and T(1,1)2 modes to distinguish the two
modes. The T(2,2) mode is often referred to as the T(4,1) mode in other works.
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Description Frequency range (Hz) Main vibratory components
Very low 0 → 70 Entire instrument, including neck

Low 70 → 150 Body/air
Moderate 150 → 600 Large soundboard/air

High 600 → 1200 Small soundboard
Very high 1200 → 10000 Bridge/soundboard

Table 2.4: Important guitar components as a function of frequency. ‘Large sound-
board’ refers to bulk motion of the soundboard with a simple nodal topology (able
to be unambiguously characterised with a pair of integers). ‘Small soundboard’ de-
notes relatively local movements of portions of the soundboard and more complicated
topology of the nodal lines.

given in Table 2.4.

2.9 Resonant modes of the guitar

The guitar may be viewed as a system of coupled oscillators, and the efficient trans-

fer of energy from the strings to sound in the air is dependent on the exploitation of

resonances. To characterise the vibratory behaviour of the guitar, it is necessary to

study the modes of individual components and how the components relate to each

other.

Assuming the important components are well coupled mechanically (such as the

soundboard/sides, bridge/soundboard bonds and the neck/body joint), and that and

the strings are coupled optimally to the body (§2.3 and §3.4), the most important

vibratory element of the guitar system is the soundboard [Caldersmith, 1978]. Some

work has gone into finding a relationship between the frequency response of the ‘free’
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soundboard (i.e. not bound to the back and sides) and that of the plate attached to

the back and sides, so far with only limited success [Schleske, 2000]. One reason for

this is that the boundary conditions imposed on the soundboard by the attachment

to the back and sides is undetermined. This ‘hinge joint’ between the soundboard

and the sides is usually reinforced with strips of wood (linings) with a triangular

cross-section (§3.4). The linings strengthen the joint by increasing the area of the

bonding surfaces. There have been attempts to determine the effect of this joint,

such as by using a reversible clamping system [Meyer, 1983a] but it is difficult to

determine how closely this resembles the completely glued joint. There are also com-

plications introduced by interactions with the enclosed air cavity [Caldersmith, 1985,

Christensen and Vistisen, 1980, Fletcher and Rossing, 1998] and other components.

Vibratory modes of rectangular and circular plates

The most important components contributing to the sound radiated from the guitar

(viz. the soundboard and back-plates and the sides) are in the form of plates.

Consider the simplest case i.e. that of a membrane (a perfectly flexible, infinitely

thin, uniform solid under a constant tension great enough to not be affected by

vibrations of small amplitude). The motion is described by [Strutt, 1869]:

ẅ − c2∇2w = 0 (2.9.1)

where w is the transverse displacement of the membrane.

This is similar to the ideal string except that the transverse amplitude is a func-

tion of two spatial dimensions. In the case of a rectangular membrane, it is convenient
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to express in terms of rectangular Cartesian co-ordinates with x and y axes parallel

to the edges of the rectangle: w :→ w(x, y, t). To maintain the tension, the edge con-

ditions of a membrane are clamped, i.e. w(0, y) = w(a, y) = w(x, 0) = w(y, b) = 0,

a and b being the length of the rectangle in the x and y directions, with one corner

as the origin, (0,0). So, analogously to the ideal string, a solution to Equation 2.9.1

is:

w = sin (
mπx

a
) sin (

nπy

b
) cos (ωt) (2.9.2)

Where m and n are integers and ω2 = c2π2(m2

a2 + n2

b2
). The nodal system (w(x, y) =

0) is therefore in the form of straight lines, parallel to the edges, with the equations

y = b
n
, 2b

n
, ...,

(n−1)b
n

and x = a
m

, 2a
m

, ...,
(m−1)a

m
respectively.

For a circular membrane of radius a, it is convenient to solve Equation 2.9.1 using

polar coordinates (with origin (0,0) at the centre of the membrane):

w = Jn(kr) cos nθ cos ωt (2.9.3)

The edge condition is Jn(ka) = 0, where Jn(x) is the nth order Bessel function.

So the nodal distribution can be represented as:

Jn(kr) cos nθ = 0 (2.9.4)

So there is a series of concentric circles, described by Jn(kr) = 0, and diameters,

distributed with the angles θ = (2m+1)π
2n

.

A plate is more complicated because it has a finite compliance; the restoring force

of a plate with no applied stresses is internal. This introduces a term dependent on
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the bending stiffness into the differential equation of motion.

Assuming a thin isotropic plate of thickness h, Poisson’s ratio ν, mass density

ρ and Young’s modulus EL = ET ≡ E, with no externally applied force, and small

amplitudes of vibration, the equation of motion becomes [Strutt, 1869]:

ẅ + c4∇4w = 0 (2.9.5)

Where c4 = Eh2

12ρ(1−ν2)
. If w ∝ cos ωt, then, by taking k2 = ω

c2
, Equation 2.9.5

becomes:

(∇4 − k4)w = 0 (2.9.6)

The solution of Equation 2.9.6 for a rectangular plate with clamped edges may

be expressed as [Skudrzyk, 1968]:

w = Am,n · sin(
mπx

a
) · sin(

nπy

b
) · cos(ωmnt) (2.9.7)

where Am,n is the amplitude and

ωmn = ωnpm
2 + ωbpn

2 =
c2π2

a2
· m2 +

c2π2

b2
· n2 (2.9.8)

and m and n are integers. For example, the (1,2) mode (i.e. m = 1, n = 2):

w = A1,2 · sin(
πx

a
) · sin(

2πy

b
) · cos((

c2π2

a2
+

4c2π2

b2
)t) (2.9.9)

Similarly to the membrane, the solution for the case of the circular plate is found

by solving Equation 2.9.6 in polar coordinates. For a free edge, the solution becomes:
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wn = P cos nθ − α(Jn(kr) + λJn(ĵkr)) cos ωt (2.9.10)

Also similarly to the membrane, the nodal system has n diameters symmetrically

distributed as cos nθ − α and concentric circles in the form of Jn(kr)+λJn(ĵkr) = 0,

where λ and k are to be determined by the boundary conditions. For example, for

free edges and n = 0:

2(1 − ν) + ĵka
J0(ĵka)

J ′
0(ĵka)

+ ka
J0(ka)

J ′
0(ka)

= 0 (2.9.11)

where J ′
n(x) = dJn(x)

dx
.

Because of its basic overall geometry, at lower frequencies the guitar soundboard

acts similarly to a simple rectangular plate if the orthotropic nature of the plate is

taken into account (Table 6.2). The similarity diverges at higher frequencies, because

the overall shape is not exactly rectangular and the bracing system locally alters the

properties of the plate.

Vibratory modes of the guitar soundboard

The most important sound producing component of the guitar is the soundboard

[Caldersmith, 1978]. At low frequencies, the soundboard of the guitar has vibra-

tory modes qualitatively similar to that of isotropic rectangular or circular plates,

although the braces influence the nodal distributions. The simple vibratory modes in

Table 2.6 are deemed important by many luthiers and occur in the frequency range

80 → 600 Hz. At higher frequencies (� 600 Hz), multipole (i.e. spherical radiation

modes greater than a dipole) vibrational modes occur, and at frequencies � 1000 Hz
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Mode description Label
Air Ai

Soundboard T (m, n)i

Body Bi

Table 2.5: Nomenclature of specific modes used on stringed instruments. Note that
the mode labels for the guitar soundboard, once attached to the back and sides
denote the number of antinodal regions, as in [Wright, 1996], in contrast to that
used to denote the number of nodes on a free or simply supported simple plate.

there is significant overlap of various spherical radiation modes, the so-called ‘reso-

nance continuum’ [Caldersmith, 1986, Christensen, 1984]. The pressure amplitude of

the radiated sound from the first soundboard mode of the guitar is almost an order

of magnitude larger than any higher normal modes [Christensen, 1984] and most of

the energy radiated from the instrument is at frequencies below 1 kHz [Christensen,

1983].

There is some confusion regarding the labels denoting resonance modes of plates

of stringed musical instruments: the (m, n) terminology used in §2.9 describes the

normal modes of simple rectangular (or circular) plates, where n is an integer de-

scribing the number of nodal lines in the x (angular) direction, and m describes the

number of nodal lines (concentric rings) in the y (radial) direction.

To differentiate among air, soundboard, back-plate and other vibratory modes,

many authors use the convention of a letter and a set of integers, as in Table 2.5

([Alonso Moral and Jansson, 1982, Jansson, 1971, Hutchins, 1989] and developed for

the guitar in [Wright, 1996]). Note that here the numbers refer to the number of

antinodal regions, in contrast to the labelling system used in Table 2.6.
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Mode Label Description used by luthiers
T(1, 1)1 Monopole
T(1, 1)2 Monopole
T(1, 2) Cross dipole
T(2, 1) Long dipole
T(1, 3) Tripole

Table 2.6: Nomenclature for normal vibratory modes on a plate (usually associated
with the back and sides of a stringed instrument).

Table 2.6 gives alternative descriptive terms for various resonances, in terms of

their radiative (multipole) nature [Caldersmith, 1985]. Luthiers commonly describe

soundboard modes in terms of the multipole.

This convention is convenient for low frequency modes, but it is impossible to

discriminate among higher frequency modes using a single pair of integers because

of the more complicated geometry and mechanical anisotropy (e.g. Figure 2.19).

Some modes occur at multiple frequencies. The T(1, 1) mode is measured at two

different frequencies due to coupling with air motion at the soundhole (§2.5) and

may be measured at a third frequency if the back plate is made to couple with other

air modes [Caldersmith, 1985]. This appears as multiple peaks in the corresponding

pressure response spectrum, but appears topologically as the same T(1, 1) standing

wave configuration.

The T(1, 1)i and T(1, 3) modes involve a large net movement of air and, conse-

quently, dominate sound production at lower frequencies. The design of the guitar is

such that as the excitation frequency is increased above the T(1, 1)i modes there is a

constructive contribution to sound production from the T(1, 3) mode [Caldersmith,

1985].
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Figure 2.19: Example of a high frequency

(8452 Hz) Chladni mode of a guitar sound-

board. It would be impossible to charac-

terise this with a simple integer pair.

The vibratory modes of an isotropic

plate with simple geometry (§2.9)

are a series of normal modes (i.e.∫ ∫
(wawb)dxdy = 0). Most of the vi-

bratory modes of the soundboard at-

tached to the back and sides involve cou-

pling with other components of the in-

strument, as well as the air. The ex-

periments in this thesis do not attempt

to decouple these elements on the mea-

sured instruments and therefore normal-

ity of the observed vibratory modes can-

not be guaranteed. The resonances of

the plates will be referred to as vibra-

tory modes, but are not necessarily nor-

mal vibratory modes; in very important

cases they will refer to coupled modes.

Methods used in determining plate resonances

There are many ways to determine the normal modes of vibratory systems. The

simplest methods involve the human sensory system: the visual, hearing and tactile

systems can be fairly good at detecting the relative amplitude of resonances, although

this is hard to communicate objectively. Another simple method is that employed

originally by Ernst Chladni in 1787 [Chladni, 1787]. Most of the spatial information
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on soundboard modes of the guitar in this thesis will be derived from the analysis of

Chladni figures.

Chladni figures

If a plate is continuously excited at a frequency of a vibratory mode the spatial po-

sitioning of maxima and minima of vibration become time-independent. Because of

the two-dimensional geometry of the plate, the loci of the nodes form lines instead

of points as they would for a one dimensional string (§2.9). If a fine particulate

material is evenly distributed over the upper surface of the plate the particles will

tend to settle into the nodal positions (although in the case of very light particulates,

the opposite may be true, as observed by Savart with lycopodium powder [Strutt,

1869]). The nodes are not necessarily areas of zero vibration; rather they comprise

local vibratory minima. Some of the lower frequency Chladni modes of the guitar

soundboard are not standing waves of the plate but are the central area of the sound-

board undergoing a ‘membrane’ motion (§2.5). In this case the particulate material

is cleared from the central region, but the boundary of aggregated particulate mate-

rial is altered if the amplitude of excitation is changed.

A disadvantage of this technique is that the plates have to be supported hori-

zontally, and only relatively flat objects may be measured, but is readily applicable

to instruments with flat plates such as the guitar [Erndl, 1999], and plates with a

limited amount of simple curvature in the vertical direction, such as a free violin

plate [Bossy and Carpentier, 1998].

A related technique, holographic interferometry [Jansson, 1971, Richardson, 1988],
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extracts similar vibratory information on the spatial distribution of the vibratory

modes, from the interference of coherent monochromatic light sources, but is not re-

stricted by the same gravitational constraints or strong surface curvature and imper-

fections [Rossing, 2000]. Some information about the relative amplitude of vibration

is also gained through this method. A disadvantage of holographic interferometry

is that it requires relatively sophisticated and expensive apparatus and often takes

a long time to prepare correctly, which makes it prohibitive for most luthiers to use

routinely in the workshop.

Because of the simplicity of the Chladni figure method, it is used extensively by

many luthiers in the determination of plate properties of the instrument during and

after construction. However, there is demand from a group of luthiers to make more

quantitative measurements of their instruments (for example [Richardson, 1995b,

Hutchins, 1962, Brune, 1985b]). This is made difficult because there is not yet a

widely accepted measure to use in evaluation of an instrument. Consequently, for

any novel measure to be acceptable, it is important to relate this to the traditional

Chladni method.

2.10 Interpretation of response curves

The various vibratory modes of the guitar soundboard produce particular spectral

features as a response to excitation of the instrument, which are, in turn, dependent

on the relative characteristics of the plates and other components. Therefore, to char-

acterise the effect of these components and, hence, to improve the reproducibility of

manufacture of a particular instrument, it is most useful to look at the spectrum of
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an appropriate ratio, commonly involving pressure, acceleration, velocity or force.

The most usual of these frequency dependent ratios are dynamic mass ( force
acceleration

),

mobility (velocity
force

), (respectively the reciprocals of accelerance and the mechanical im-

pedance) and the pressure force ratio (pressure
force

), expressed as the Fourier transform of

the time-varying quantity in question, with the numerator being the output resulting

from the input in the denominator known as a transfer function.

Measurements of vibratory quantities made at the same position as the excitation

are called driving point functions, although are sometimes also referred to as transfer

functions. Some features of the transfer function, in principle, enable a particular

instrument to be characterised. This might have many practical applications, such

as in the quality control of production instruments.

The data presented in this thesis on the characterisation of materials (Chapter

5) relies on the interpretation of the dynamic mass spectra of samples. The data

used in Chapter 6 and Chapter 7 is in the form of dynamic masses and pressure force

ratios. Chladni modes are most often obtained at the points of steepest gradient in

the dynamic mass (Figure 2.20). In this thesis, the dynamic masses (and mobilities)

are driving point measurements made at the bridge, and the pressure force ratios

are transfer functions from a force applied at the bridge and the sound pressure

is measured at the soundhole (or f -hole in the case of the violin). Dynamic mass

is an effective parameter, and represents the phase difference between the applied

force and the resulting acceleration of a body. The dynamic mass spectrum has a

large range in magnitude around resonances and so it is conventional to express the

dynamic mass spectra on a decibel (dB) scale.
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Figure 2.20: The relationship between Chladni modes of a free plate and the dynamic
mass spectra. Measurements of Powerhouse Twin violins 1 and 2 [Inta et al., 2005].

Many studies have been comparisons of theoretical models with experiment [Calder-

smith, 1985, 1978, 1977, Firth, 1977, Le Pichon et al., 1998, Griffen et al., 1998,

Christensen and Vistisen, 1980, Christensen, 1984, Marshall, 1985, Schelleng, 1963].

However some attempts have been made to compare detailed spectral features, or

similarly measurable parameters, between various instruments to obtain a ‘quality

map’ [Ross and Rossing, 1979, Jansson, 1997, Richardson, 1995a, Hutchins, 1989].

The success of this approach has been limited because of the lack of an agreed

measure of the ‘quality’ of an instrument. The best results with this goal have incor-

porated a component of psychoacoustic evaluation of the instrument [Wright, 1996,

Rosen, 1995, Wright and Richardson, 1995, Meyer, 1983b, Boullosa et al., 1999] al-

though tests of this nature have yet to be constructed in such a way that convincingly

relates to conditions outside of the well-controlled environment of these tests.
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Figure 2.21: Principal radiation directions for a violin. From [Meyer, 1972].

2.11 Acoustic radiativity of the guitar

At lower frequencies (< 350 Hz) the guitar essentially radiates sound spherically,

with increasingly complex spatial configurations at higher frequencies [Le Pichon

et al., 1998], similarly with other stringed instruments, such as the violin in Figure

2.21 [Meyer, 1972].

For the guitar, the majority of the radiated energy is in the monopole form [Chris-

tensen, 1984], where the entire body is able to flex, producing a large net volume
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change [Caldersmith, 1985].

If the instrument is assumed to be a simple point source radiator, a result of

driven by a sinusoidal force with amplitude F, at an angular frequency of ω, the air

pressure at a distance r from a single (uncoupled) mode with resonant frequency

ω0, damping γ, and effective mass m and effective area A may be expressed as

[Christensen and Vistisen, 1980]:

p = F
A

m

ρ

4πr

ω2

(ω2
0 − ω2) + ĵγω

(2.11.1)

where ρ is the density of the air. Thus the pressure amplitude is greater for a

low effective mass and high effective radiating area.

However, for a constant excitation force the intensity of acoustic radiation from

the guitar, in general, not only a function of distance from the instrument but also

has an angular dependence, especially at higher frequencies. This distribution of

acoustic intensity in space can be represented by radiative contributions from each

resonance mode, which can be modelled using spherical harmonics [Derogis et al.,

1995].

Pm
n (x) = (1 − x2)

m
2

dmPn(x)

dxm
, Pn(x) =

1

2nn!

dn(x2 − 1)n

dxn
(2.11.2)

For the nth degree spherical harmonic:

Yn(φ, θ) = an0Pn(cos φ) +
n∑

m=1

(anm cos mθ + bnm sin mθ)Pm
n (cos φ) (2.11.3)
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The solution of Laplace’s equation (∇2T = 0) in a sphere (r = a = constant a ≥
0 ε R) which is dependent only on the angle as r → a and is finite at r = 0 is of the

form:

T (r, φ, θ) =
∞∑

n=0

(
r

a
)nYn(φ, θ) (2.11.4)

Taking θ = 0:

T (r, φ, 0) =
∞∑

n=0

(
r

a
)nYn(φ, 0)

=
∞∑

n=0

(
r

a
)n[an0Pn(cos φ) +

n∑
m=1

(anm + bnm)Pm
n (cos φ)]

=
∞∑

n=0

(
r

a
)n[ano

1

2nn!

dn(cos2 φ − 1)n

dxn
+

n∑
m=1

(anm + bnm) sinm φ] (2.11.5)

Or by taking φ = 0 :

T (r, 0, θ) =
∞∑

n=0

(
r

a
)nYn(0, θ)

=
∞∑

n=0

(
r

a
)n[an0

1

2nn!

dnconst.

dxn
+

n∑
m=1

[anm cos mθ + bnm sin mθPm
n0]]

= 0 (2.11.6)

The angular, radial and frequency dependence of the acoustic radiation from the

instrument is then:

Hn(r, θ, φ, ω) = h(2)
n (jkr)Pn(cos θ) (2.11.7)
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where the h
(2)
n (jkr) are the spherical Hankel functions, and Pn(cos θ) represent

the nth order Legendre’s polynomial in cos(θ).

The former can be expressed as:

h(2)
n (jkr) = J0(jkr) − iY0(jkr) (2.11.8)

Where J0(x) = 1 − x2

22 + x4

24(2!)2
− x6

26(3!)2
+ ...

and the latter, Y0(jkr), are the Taylors’ series solutions to the differential equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0 (2.11.9)

with x = cos θ [Boas, 1983].

With the requirement that Pn(1) = 1, the first few Legendre polynomials are:

P0(x) = 1, P1(x) = x and P2(x) = 1
2
(3x2 − 1).

2.12 Conclusion

A quantitative description of how important elements contribute towards producing

the sound of the guitar has been developed, after the definition of important com-

ponents of the guitar. Some methods have been developed to characterise vibratory

modes of the instrument, such as through plate resonances and the effect of the low

frequency air cavity (Helmholtz) resonance. Simple models of important coupled

systems, such as the string/body and soundboard/air cavity were presented. Some

possible measures were derived to characterise a particular instrument so that the
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probability of reproducing a particular instrument may be improved. The next chap-

ter examines the properties of the common materials and methods used in making

guitars.



Chapter 3

The Construction of the Guitar

“The art of making a good instrument is a complex marriage between ‘sound quality’,

playability and visual æsthetics—with a little bit of whim and luck thrown in for

good measure.” —Bernard E. Richardson [Richardson, 1995b]

The physical models, as presented in the previous chapter, help illuminate many

of the instrument design and construction decisions made by luthiers. However, a

large part of this illumination is given through the clarity of hindsight. If a maker

experiments with a variation in design, they usually have some idea of the outcome,

and is not often done in a quantitative manner. The lack of objective measures of

the ‘sound quality’ of a particular instrument means that design innovations and

testing methods applied by makers are usually performed in an ad hoc fashion and,

in this environment, trial-and-error experiments have provided the most satisfactory

results. The lack of controlled scientific experiments in this area means that the

consistency of high quality instruments is not assured—even among expert makers

[Richardson, 1988]. This chapter examines necessary technical details on important

construction processes. The details of techniques described here are those carried

82
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out in the Gilet workshop.

3.1 Introduction

Modifications to the design of the guitar are not dictated solely by acoustic consid-

erations. A particular instrument may well have what is agreed upon as a ‘good’

sound but if it is not appealing in an æsthetic, economic and ergonomic sense it

will be very hard to sell such an instrument. The ergonomic and visually æsthetic

attributes of the guitar are recognised as important but are beyond the scope of the

present work. Most components serve structural, acoustic and æsthetic functions

simultaneously. However, only modifications relevant to the acoustic and vibratory

behaviour of the guitar will be addressed in this thesis.

An important trend in the last two hundred years has been for an increased sound-

board area, in response to demand for a louder instrument [Morrish, 1997, McIntyre

and Woodhouse, 1978]. This requires thicker and more rigidly braced soundboards

with stronger materials to retain structural integrity, and to efficiently couple with

the air.

The other variations that affect the timbre are not obvious. Historically, many

changes in construction techniques are a result of technological advances (such as

the adoption of aliphatic resins instead of animal hide glue) or the availability of

materials. The species of wood used on the soundboard has a great effect on the

tone. A range of timbers are used for this purpose [Richardson, 1998, Gerken, 2001,
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Morrish, 1997, Belair guitars, 2002, Worland guitars, 2004]. For instance the North

American timber, Sitka spruce (Picea sitchensis), is now accessible to most luthiers,

whereas the decline in stock of the popular Brazilian Rosewood (Dalbergia nigra)

now makes it extremely difficult to obtain legally in most countries.

3.2 Material used in construction

Wood is the most widely used building material in the world: the word ‘material’

itself derives from the Latin word for timber, materia. Wood is by far the most

widely used material in manufacturing stringed instruments. Despite the variety of

construction materials currently available (such as synthetic polymers and carbon

fibre composites [Besnainou, 1995]), luthiers have usually continued using wood.

Do damping and elastic properties of wood appear to be preferred by players and

listeners? Many luthiers have experimented with other materials but it appears

there is difficulty accepting an instrument whose sound is unlike that produced by a

natural timber. The manufacture of stringed instruments requires some knowledge

of the engineering properties of the wood species used.

The structure of wood

There are several works on how the bulk properties of wood relate to the cellu-

lar and microscopic nature of the material [Bucur, 1995, Gibson and Ashby, 1997,

Haines, 2000, Bodig and Jayne, 1982, Forest Products Laboratory, 1999]. Wood is

a complicated composite of hard-celled cellulose microfibrils (organic cells known
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as tracheids) embedded in a lignin (phenyl propane based polymer) and hemicellu-

lose resin matrix. Wood exhibits great variation in its mechanical properties [Forest

Products Laboratory, 1999, Chomcharm and Skaar, 1983, Caldersmith and Freeman,

1990] . The seasonal variation in the cell wall density of a tree is evident, when look-

ing at the end of the cut log, as a concentric ring structure known as growth rings

formed by the walls of the long slender tracheids. The orientation parallel to the

axis of the tracheids is known as the grain direction (Figure 3.1.) The tracheids are

cellulosic polymers (based on the mer C5H10O5), as is hemicellulose. However, the

tracheids exhibit a very high degree of polymerisation (5000 → 10000) compared to

the hemicellulose (150 → 200) [Flinn and Trojan, 1975]. Because the microstructure

of wood is composed of these long polymer chains embedded in a resin, the mechan-

ical properties of wood are highly anisotropic. This is illustrated in Table 3.1, which

also illustrates some of the variation found in the density and elastic moduli in some

commonly used timbers [Kaye and Laby, 1973]. However a table such as this one is

inadequate for determining high quality wood to be used for constructing elements

of a guitar; the quantities shown here are a rough illustration of typical properties

of common species. The material properties within a log vary because of the grain

distribution, and show massive variations at the cellular level in the growth ring

plane (about 1 → 10μm) [Gibson and Ashby, 1997]. To some extent the material

properties are less variable on larger scales, because of the effect of averaging over

many cells. The wood used in guitar soundboards is always cut such that the long

axis is parallel to the long axis of the tree (§3.2). In doing this, the speed of sound is

higher and the values of damping lower than for wood cut at an angle to the grain

[Schleske, 1990].
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Figure 3.1: The principal axes
useful for modelling wood as
an orthotropic material. From
[Schleske, 1990].

Taking the tree trunk as a series of concen-

tric cylindrical shells, and, cutting thin enough

rectangular prisms, the growth ring curvature is

negligible and occurs in straight parallel lines or-

thogonal to both the longitudinal and the tan-

gential axis. The wood specimens examined

in this thesis are generally such that dimen-

sions in the growth ring plane are small enough

(� 12 mm), so the properties are essentially or-

thotropic, as shown in Figure 3.1. The principal

axes are denoted by the following subscripts:

i =

⎧⎨
⎩

L (longitudinal) parallel to the grain;
R (radial) in the radial direction;
T (tangential) orthogonal to L and R.

A piece of timber that is cut from a log as a

rectangular prism, so that the long axis is parallel

to the grain fibre orientation, and so the width

of the prism is in the radial direction, is said to be quarter-sawn. Most woods used

for the top, back and side plates, and the braces of the guitar, are of quarter-sawn

timber. As Table 3.1 suggests, there is a direct relationship between the speed of

sound and the angle to the grain, along the length of a given specimen of wood

[Schleske, 1990].

In addition to being quarter-sawn, the timber used for the two halves of the

soundboard (and sometimes the back) is book-matched, where the material is two
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Wood Relative density Young’s modulus Anisotropy
Species Longitudinal Radial Transverse ratio

EL(GPa) ER(GPa) ET (GPa) EL

ER

Ash 0.7 16 1.6 0.9 17.8
Balsa 0.2 6 0.3 0.1 60.0
Beech 0.7 14 2.1 1.1 12.7
Birch 0.6 16 1.1 0.6 26.7

Mahogany 0.5 12 1.1 0.6 20.0
Oak 0.7 11 — — —

Walnut 0.6 11 1.2 0.6 18.3
Teak 0.6 13 — — —

Douglas Fir 0.5 16 1.1 0.8 20.0
Scots Pine 0.5 16 1.1 0.6 26.7

Spruce 0.4 → 0.5 10 → 16 0.4 → 0.9 0.4 → 0.6 11.1 → 40

Table 3.1: Some examples of the range of material properties exhibited by differ-
ent species of wood. Notice that many wood species, including spruce, are highly
anisotropic in their elasticity (i.e. EL

ER

� 1). From [Kaye and Laby, 1973].

plates from directly neighbouring cuts (Figure 3.2) and the grain features and density

distribution are symmetric about reflection along the L axis, much like a book.

The complexity of wood structure means that a great variation in physical prop-

erties occurs not only amongst individuals within a species, but even among neigh-

bouring pieces extracted from the same tree (§5.5 and Table 5.5, [Caldersmith and

Freeman, 1990]). This makes the processes of timber selection and quality control

important for optimising the mechanical properties of components for an instrument

and in improving the rate of replication of a particular instrument. In general the

mechanical properties vary the most between the grain (L) direction and the other

two (R,T) directions. For Sitka spruce, the Young’s modulus in the grain direc-

tion is often more than twenty times that in the other directions [Forest Products

Laboratory, 1999, Harjono and Dunlop, 1998].
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a) b)

Figure 3.2: Schematics of the process of a) quarter-sawing and b) book-matching
wood from raw log form. Most high quality sound boards are of book-matched
quarter-sawn timber. From [Williams, 1986a].
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Bulk properties and the use of wood

Aside from the variation in mechanical properties with direction, wood also varies in

mechanical properties as a function of other parameters. One of the most important

of these is the internal moisture content of the wood. Wood is hygroscopic, interacting

with the moisture in the ambient atmosphere to reach an equilibrium of the mass

proportion of internal water. The moisture content is defined as the mass fraction

of free water in the wood:

Υ =
minital − mdry

mdry

(3.2.1)

where minitial is the initial mass and mdry is the mass of the sample with all of

the free water removed. The process used in this thesis to obtain the dry mass is

the oven-dry method [Forest Products Laboratory, 1999] and the technique used is

detailed in §5.3.

Significant seasonal differences in the equilibrium moisture content (EMC) [Simp-

son, 1998] give changes in the mass density and the elastic moduli (§5.3). It is there-

fore important to control, or at least measure, the moisture content of the wood

when making other measurements of the properties of woods. All high quality wood

used in stringed musical instruments undergoes a period of seasoning, where the

wood is stored in an environment with a controlled humidity and temperature for an

extended period of time (often for many decades) to allow the wood to equilibrate.

The most well understood and important equilibrium process here is that of the in-

ternal concentration of water in free liquid form. Although there is believed to be an
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amount of chemical equilibration (including the varying degree of polymerisation)

which has a complicated relationship with the moisture content of the wood, the

seasoning process results in greater mechanical stability of the material. Differences

in mechanical properties have been observed between a well seasoned and a ‘merely’

dry piece of wood [Manno, 1988].

Some seasoning processes involve steeping the freshly cut wood in a body of wa-

ter to remove the more volatile matter in the sapwood [Hamlin, 2004] and there is

one account that the wood used for making the Cremonese violins were stored in the

same housings as livestock and the urea, from the urine of the animals, accelerated

the seasoning process [Lolov, 1984].

The equilibrium moisture content (EMC) of a live (or recently felled) tree is

generally about 30 → 200% [Forest Products Laboratory, 1999], whereas the nominal

EMC of a piece of wood in typical atmospheric conditions where the work of this

thesis was done (viz. values given in a table of material property data for Sydney,

Australia) is at 12% [Simpson, 1998].

Luthiers often fabricate the soundboard and bracing in an environment that is

conducive to the adsorption of adhesives: as dry as practical, without damaging the

microstructure. The soundboards constructed here were made in a controlled envi-

ronment with a relative humidity of 43 ± 2% within the Gilet workshop.

Although the wood specimens used in the manufacture of high quality stringed

instruments is usually of very high quality, they may have many inhomogeneous

features or defects, as a result of natural processes occurring while the tree is growing.
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The grain density may often be irregular, so that the growth rings are not parallel.

An extreme defect of this nature is when a branch or other growth is encountered,

producing a knot. There may also be disconnected regions of volatile material (pitch-

pockets). Invariably, the elastic moduli and strength of a piece of timber is strongest

when there are no defects (clear wood) [Forest Products Laboratory, 1999].

Elastic moduli and densities

The simplest non-trivial stress-strain relation for solid materials is Hooke’s law. If

σi represents the stress (applied force in the ith direction per unit area in the plane

perpendicular to i) then, for an ideal elastic material, there exists a corresponding

strain in the ith direction, ξi, according to the following relationship:

Ei =
σi

ξi

= elastic modulus for the material (3.2.2)

Where Ei is the relevant elastic modulus in the ith direction. One would ex-

pect that the most reliable method for determining this in a specimen would be to

directly measure the resulting strain from a given applied stress, but this so called

static measurement method can be difficult to apply in practice and may not accu-

rately represent the dynamical behaviour of the sample because of time dependent

effects such as mechanical hysteresis (e.g. creep) [McIntyre and Woodhouse, 1986].

Pulsed ultrasonic vibrations are used for material characterisation for more isotropic

materials [McMaster, 1959] but, because of scattering within the grain layers, a nat-

ural filtered bandpass system is set-up, making the measurements dependent on the

band frequencies, although Voichita Bucur has done much work in this area [Bucur,
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1995]. A reliable method for determining the elastic and damping properties of sam-

ples at the frequencies of interest is by vibrating the beam at audio frequencies and

analysing the subsequent behaviour under certain restraints (a dynamic measure-

ment method [Schlägel, 1957, Dunlop and Shaw, 1991, Harjono and Dunlop, 1998]).

This has the advantage of accurately measuring the damping and determining the

elastic properties. There is also a difference in dynamic EL and damping compared

to static measurements [Ouis, 2002]. The group velocity of vibratory waves in a large

solid (‘speed of sound’) in the ith direction of the material, ci, is dependent on the

appropriate elastic properties and density of the material in question. In this case

the lateral vibrations of a slender beam are measured, and it is necessary to know

the speed of longitudinal compression waves through the beam. In this case the

important elastic constant is the longitudinal Young’s modulus EL and the relevant

inertial property is the bulk mass density, ρ. So the speed of sound is then:

cL =

√
EL

ρ
(3.2.3)

A simplifying assumption is that the elasticity of wood is homogeneous (the elas-

tic properties are independent of any particular point under consideration) thereby

ignoring the obvious variability of wood on a microscopic scale (§3.2). It is inad-

visable to extrapolate the following treatment to wood with linear dimensions much

different to what is presented in this thesis. If a typical sample of spruce is much

larger than about 5 mm in the tangential direction, the assumption of orthotropy

becomes unreasonable, and if the sample is too small the detailed microscopic nature

of the wood is significant [Gibson and Ashby, 1997].
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Wood species Mass Radiation Modulus Logarithmic
density Ratio Ratio decrement

cL

ρ
EL

ET

δ × 102

(kg · m−3) (m4 · kg−1 · s−1)
Western Red cedar 305-380 14.4-16.4 11.1-25.0 2.1-4.4

Sitka spruce 405-475 11.5-14.0 16.7-33.3 2.7-4.6
Californian Redwood 390-400 10.8 2.9-3.7 2.5-3.1

Norway spruce 450-490 8.7-11.0 7.1-12.5 2.7-4.4
European maple 570-670 6.0-7.0 4.2-5.6 3.2-4.2

Table 3.2: Measurements of physical properties of representative specimens of clear
wood from species important for use in stringed musical instruments [Dunlop and
Shaw, 1991].

3.3 Damping

Damping is a measure of the loss of energy of a dynamic system to the environment,

resulting ultimately in the form of heat. There are a few accepted measures to quan-

tify damping, each with a slightly different purpose. The most useful expressions

of damping describe how the system loses energy over time. For a linear vibratory

system with viscous losses, this can be expressed most conveniently by the amount

of energy lost per vibratory cycle, which is easily translated to the frequency domain.

Radiative damping can be measured by looking at the decay time of the system.

If a linear oscillatory system is excited by a relatively large initial impulsive force ( ie:

occurring over a relatively short time) and is then left free of external influences, a

global maximum occurs within the first cycle, directly after the impulse, and will have

progressively smaller amplitudes. The decay time is the time taken for the amplitude

(the displacement at the same phase angle) to become e−1 = 0.37 of the initial value.
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The damping or loss factor, d, of a particular resonance is the reciprocal of the

quality factor, Q, of that resonance. If f1 and f2 represent the lower and higher fre-

quencies directly surrounding the resonance frequency f0 where the spectral power

has dropped to half the local maximum, then f2 − f1 ≡ Δf is the bandwidth of the

resonance. The damping can then be expressed as in Equation 3.3.1.

d =
1

Q
=

f0

Δf
(3.3.1)

In practice, this method is experimentally expedient for d � 0.001 → 0.6. If

d � 0.6, no standing waves are able to form, making amplitude measurements

impossible, while if d � 0.001, the resonance peaks become too narrow, making

measurement of the bandwidth, Δf , difficult [Schlägel, 1957].
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Figure 3.3: Theoretical damping for a ma-

terial with low damping constant (From

[Schlägel, 1957]).

Another, related, measure of damp-

ing is the logarithmic decrement, δ.

This is the ratio of any two consec-

utive displacement amplitudes. This

measure is useful if the damping is ef-

fectively viscoelastic (ie strictly pro-

portional to velocity only; the sub-

stance is both viscous and elastic when

experiencing deformation) and there-

fore would expect the displacement en-

velope to decrease exponentially over

time.
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It may also be convenient to analyse a system in terms of the phase shift between

stress and strain produced by damping. If we introduce the concept of a Dynamic

Elastic Modulus [Schlägel, 1957]:

E∗ = E ′ + ĵE ′′ = E ′(1 + ĵd) (3.3.2)

Where E∗ is a complex quantity and d, the loss factor from Equation 3.3.1, is a

function of the loss angle, δ:

d = tan δ =
E ′′

E ′
=

I(E∗)

R(E∗)
(3.3.3)

and the conventional elastic modulus may be obtained by taking E = E ′ =

R(E∗).

The loss factor of the ith resonance may be found by examining the time taken

for the peak amplitude of the system to fall to 60dB below the maximum (the

reverberation time, Trev.) and the frequency of that resonance:

di =
loge(103)

πTrev.fi

=
2.199

Trev.fi

(3.3.4)

These damping measures may be related to the Q-value of the appropriate reso-

nance by:

d =
1

Q
= tan δ (3.3.5)
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Damping in wood

Because of the complicated nature of wood, there are several different mechanisms

responsible for losses in the acoustic and mechanical vibration of wooden compo-

nents. The largest internal source of damping is in the lignins, because the structure

of the cellulosic microfibrils are fairly crystalline.

Internal damping is an important vibratory characteristic of wood that has been

largely overlooked in previous works, partly because of the difficulty of measurement.

A reliable method of determining it is through low audio-frequency vibration [McIn-

tyre and Woodhouse, 1986]. Measurements of Sitka spruce give a nominal damping

factor of d ∼ 0.02 [Haines, 2000]. However there is a great variation in damping be-

tween specimens, making it difficult to guarantee the accuracy of a general value for

a particular piece of wood. There is also some variation of damping with frequency

[McIntyre and Woodhouse, 1986].

The anelasticity of wood

Calculation of the Young’s moduli of wood samples from the lowest resonance fre-

quency assumes that damping is a constant of the material. However there is some

dependence on frequency of the elastic moduli and damping measured here, as well

as in other studies on the vibroelastic properties of wood [Ouis, 2002, Haines, 2000].

If the effect is significant, this compromises the assumption of ideal elasticity

(Hooke’s law, Equation 3.2.2). Assuming the dynamic behaviour is non-plastic (i.e.

no mechanical hysteresis occurs), this phenomenon is known as anelasticity. It is
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not clear if there is significant mechanical hysteresis at stress amplitudes normally

encountered in the stringed musical instruments.

The damping of musical instrument wood is noticeably frequency dependent. It

would hence be appropriate for the present application to use values obtained in the

frequency range of interest, 0 → 1200 Hz.

There is evidence for this frequency dependent nature of damping of materials

other than wood, for example in Figures 3.4 and 3.5, where relaxation processes

occur on the lattice level between atoms of various elements in alloy form.

Figure 3.4: The dependence of
damping (logarithmic decrement)
on frequency is different for paraf-
fin and steel (From [American In-
stitute of Physics, 1972]).

Figure 3.5: An example of the
frequency dependance of damp-
ing (in this case, the logarithmic
decrement) for a metallic alloy.
‘German silver’ is an alloy of cop-
per, zinc and nickel (nominally
Cu0.5Zn0.2Ni0.3) (From [American
Institute of Physics, 1972])

The relationship between stress and strain is more complicated than that in

Equation 3.2.2, due to the introduction of linear independence of the rates of change

of both stress and strain, giving the relaxation equation[Skudrzyk, 1968]:
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ξ + τξ ξ̇ = K(σ + τσσ̇) (3.3.6)

Here τξ and τσ are constants (the relaxation times) for the strain and internal

stress of the material respectively. These quantities represent the time the compliant

elements take to return to equilibrium after some deformation, and the time taken

for the corresponding internal stresses to equilibrate. If the vibrations are periodic,

the time derivative operator can be replaced: ∂
∂t

:→ ĵω. So, putting Equation 3.3.6

into Equation 3.2.2, the complex Young’s modulus becomes:

E =
σ

ξ
=

1 + ĵωτξ

K(1 + ĵωτσ)
=

1

K
[
(1 + ω2τξτσ) + ĵω(τξ − τσ)

1 + ω2τ 2
σ

] (3.3.7)

and the usual expression for the Young’s modulus is obtained by taking the real

part of Equation 3.3.7:

EY = R(E) =
1

K
[
1 + ω2τξτσ

1 + ω2τ 2
σ

] (3.3.8)

So, for relaxation processes, the elasticity is a constant for very low frequencies

(relaxation times are very much quicker than the forced vibrations) and for very

high frequencies (the material stiffens because it does not have a chance to relax to

equilibrium) and increases to a maximum at intermediate frequencies, determined

by the relative magnitudes of τξ and τσ. Some solids, such as rubbers, have a fairly

large range of relaxation times and some metals, such as iron and brass, also exhibit

characteristic relaxation spectra because of internal heat conduction on a microscopic

level. A nominal value for the relaxation time in wood is τ � 10−7 s [Ouis, 2002].

It is conceivable this would occur in wood because of its microscopically complex
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composition and structure, although the extent of this effect is unknown. There

has been some investigation into the microscopic phenomena responsible for this be-

haviour in wood, which shows that links between long polymer chains are broken

and reformed in a different configuration, resulting in a time-dependent stress-strain

relation similar to that of velcro [Keckes et al., 2003]. It is also possible that relax-

ation on a molecular and macromolecular level in important wooden components of

stringed musical instruments may be responsible for the ‘playing in’ effect of these

instruments, as studied in the work of Carleen Hutchins, among others [Hutchins,

1998, Turner, 1997].

Because the measurement of damping in wood is frequency dependent, it is im-

portant to qualify the frequency region a damping parameter was obtained from.

For the soundboard braces, the frequency range of interest is quite low (� 1000 Hz).

3.4 Traditional techniques of construction

The manufacture of stringed musical instruments has a long tradition and history

and many techniques have been developed for particular instruments that are readily

applicable to others. Many of the techniques used in making guitars are derived from

other, more established, instruments such as the violin. An example of this is the

selection of materials using the tap-tone method. However, over time, the manu-

facturing philosophies of guitar makers have diverged from those of makers of other

stringed instruments. For example most makers of violins only use sharp blades to

shape the plates of the instrument, whereas guitar makers generally use a range of
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blades, power tools and abrasives. Novelty is considered acceptable, both in design

and in manufacturing techniques.

One of the principles in making guitars has been of increasing simplicity, with

an emphasis on pragmatism. The guitar is a simple instrument to build compared

to most other stringed instruments. It is essentially a system of flat plates1 and is

relatively easy to prepare and to assemble.

Testing and quality control is necessary for establishing a luthier’s reputation.

The practised luthier builds up a vast database of various physical characteristics

important to the construction of a good instrument. There is usually a great reliance

on direct sensory measurement. Useful information may be gained through visual,

tactile, auditory and even olfactory cues. Often the assessment is done intuitively or

subconsciously, and the maker is said to have a ‘feel’ for the technique in question

[Morrish, 1997].

A common mechanical device constructed for a particular task, but not incorpo-

rated into the final instrument, in order to save labour, alleviate tedious activity or

improve safety, is known as a jig. For example, the sides of the instrument are held

together in a jig to retain them in a bent form while the soundboard and back are

glued on. The bridges used on the guitars studied in this thesis are held in a jig so

that the shape is well controlled, enabling a high probability of replication.

It is very difficult to reverse the result of removing too much material from

a wooden component, without compromising or altering the properties. For this

1The sides are initially flat plates that are bent to shape under high temperature and humidity.
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reason most components are made larger than the final product. This tends to

reduce the probability of reproducing a particular instrument. Consequently, for the

three guitars studied in this thesis, the dimensions of all important components were

made to be those of the smallest member of the set. For example, a common method

of altering the output of the instrument is to remove wood from the soundboard.

In the present study, the soundboards of three guitars were thinned after glueing

to the rest of the body. Each was thinned to an acceptable level, according to

the prescription outlined below, and then the thickness distribution of each was

measured. The portion of each soundboard was made as thick as the thinnest point

for each of the three soundboards.

Tap-tones

One of the most well known traditional methods of appraising wooden components

for use in stringed instruments is the ‘tap-tone’. The luthier holds the piece of wood

at the appropriate position (depending on the geometry; for a slender beam this is

usually at the nodal position of the fundamental free-free mode, viz. 22.4% of the

length of the beam) and strikes the wood percussively. The material properties of

the wood—especially any bulk defects—affect the vibratory properties of important

sound-producing components of the guitar [Ezcurra, 1996]. A considerable amount

of useable information may also be gained from the tactile response of the sample

[Romanillos, 1987]. The extent to which the tap-tone method is useful depends on

the experience of the luthier. It is difficult to articulate the results of a tap-tone

test objectively without some instrumentation. The techniques used in this study

to measure the properties of wood (§5.2 and Appendix C) do so by objective and
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accurate means which are able to be communicated effectively.

The soundboard

The soundboard is a thin, initially flat, wooden plate. It is composed of two book-

matched plates joined such that the regions with denser growth ring structure (i.e.

that which was closer to the heart of the original tree) are along the central axis

of the guitar. Apart from the æsthetic appeal, this is so that the soundboard is

structurally reinforced toward the centre of the plate. The stiffness distribution of

the soundboard is therefore inhomogeneous by design.

The soundboard is made thin so that it has a relatively small mass for a rela-

tively large area enabling the efficient transmission of vibrations to the surrounding

air. However it must be strong enough to withstand the tension load on the sound-

board produced by the strings. Furthermore, if sound is transmitted too efficiently

from the string, there is less energy in the string to sustain the notes being played on

the strings, which is partly responsible for the ‘play-off between loudness and tone’

[Gerken, 2001].

The famous luthier Antionio de Torres Jurado demonstrated the importance of

the soundboard in the production of sound from the guitar [Romanillos, 1987]. The

soundboard is usually made of spruce or cedar because of their high stiffness to mass

ratio, as well as their desirable damping and anisotropic material properties [Dunlop

and Shaw, 1991].
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Thinning the soundboard

Some higher quality guitars have their soundboard thinned after being glued to the

sides and back. Usually the edges of the lower bout are thinned, leaving the central

region in the lower bout and all of the upper bout untouched. This increases the

radiation output at middle frequencies (300 → 700 Hz) [Krüger, 1982]. The edges

are made more flexible and less massive.

The luthier marks the thickness on points at the edge of the soundboard, going

from the edges just below the soundhole and smoothly reducing to the thinnest

portion near the butt at 1.5 mm. In this area, the soundboard is marked with a

pencil in a line approximately 80 mm from the edge, following the boundary of the

edges of the soundboard, as in Figure 3.6.

The two tools used to thin the soundboard are a flat carpenter’s plane and sand-

paper glued to the large face of a flat block (175 × 75 × 25 mm) of TeflonR©(poly-

tetrafluoroethylene (PTFE)) in order to give a flat abrasive surface. Therefore, in

conjunction with the thinning prescription, the profile of the soundboard should be

rectilinear. We would not expect much localised variation of the thickness gradient

on scales below about 40 mm in the longitudinal or lateral directions.

During this process, the experienced luthier often listens for the change in acoustic

response when removing soundboard material; the act of sanding or rubbing hands

over the soundboard [Williams, 2003] provides a source of a broad band vibratory

signal over the appropriate frequency range. This is compared with a response

remembered from past experience. Hence this method does not explicitly depend on

the soundboard thickness distribution per se. However for the purpose of controlling
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Figure 3.6: Working diagram of soundboard thinning procedure, as explained by
Gerard Gilet to the author.
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the three guitars in this thesis, it was necessary to have similar thickness distributions

for all three soundboards. Measurement of the thickness variation of the soundboard

at this point is quite difficult; a solution to this problem is given in §6.5.

The back and sides

Ideally the back and sides provide a stiff enclosure so that much of the sound is

radiated from the front of the instrument. This is more of a priority for the classical

guitars than for steel-string instruments because of the necessity of the instrument

to ‘project’ sound in a concert environment (i.e. to strongly radiate sound towards

an audience). Consequently the materials for the back and sides need to have a high

mechanical impedance, such as is found in rosewood or mahogany. The back and

sides of the guitars studied in this thesis are of Sapele mahogany (Entandrophragma

cylindricum).

The sides are made from two initially flat plates and are bent into shape by a

process of heating, at a high moisture content, over a side-jig having springs to force

the sides to the contour of the final instrument. The back-plate is a system of two

plates glued together in a similar way to the soundboard. The back and the sides

are reinforced with a simple bracing system. In addition, the back-plate has a piece

of spruce about 20 mm wide and 3 mm thick (a marriage-strip) to reinforce the joint

between the two plates.
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Bracing in the OOO steel string guitar

The asymmetric cross-bracing system is the most commonly used in reinforcing the

soundboards of steel string guitars. This style of bracing was adopted after devel-

opment by the C. F. Martin Co. in the late 1890’s [Longworth, 1975]. This bracing

system would be symmetric about the longitudinal axis if it were not for the two

‘tone-braces’ extending through the central region of the soundboard (Figure 3.7).

The tone-braces extend through much of the lower bout and strongly influence the

output sound of the instrument. The large uppermost brace in the upper bout, the

transverse bar, is the largest brace of the system. This and the bridge-plate, which

covers the internal region of the soundboard directly underneath the bridge, are the

only braces not made from Stika spruce. The former is made of Amoora (Amoora

cucullata) and the latter is of Sugar maple (Acer saccharum).

Sitka spruce is the preferred brace material for the back and soundboard because

it has a high stiffness-to-mass ratio [‘the Doc’, 2005, Sheppard, 1997]. However,

Engelmann spruce is occasionally used for the ‘tone-braces’ in the lower bout of

the X-bracing system, and it is thought this has some effect on the output sound

[Sheppard, 1997].

Profiling braces

Once the brace-wood has been selected and made into rectangular beams, it is com-

mon to shape the cross-section so that it resembles an isosceles triangle atop a

rectangle, with the length of the base of the triangle being the same as the adjoining
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Transverse bar (TV)

Left X-brace (XBL) Right X-brace (XBR)

Soundhole braces (HB)

Left radial brace 1 (RB1)

Bridge plate (BP)

Right radial braces (RBx)

Tone brace 1 (TB1)

Tone brace 2 (TB2)

Left radial brace 2 (RB2)

3
0

0
 m

m

Figure 3.7: The Martin X bracing system used on the guitars studied here. Note
the asymmetry of the bracing system is due to the two ‘tone-braces,’ covering a
significant area of the lower bout.
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Figure 3.8: Working diagram showing measurement of dimensions of left and right
cross braces, including measurements of brace dimensions. Braces shown are WR-
CXBL and WRCXBR, the main cross-braces for the Western Red cedar soundboard.
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b

a

b2Profiling

a

b

Figure 3.9: The initial brace cross-section is a simple rectangle. This is modified to
an isosceles triangle atop a rectangle with a common edge. The apices are further
modified in the scalloping process such that the cross-section is no longer constant.
Figure after [Vernet, 2001].

side of the rectangle (Figure 4.3). The effect of brace profiling is simulated for a

simple brace/plate system, using a finite element model, is presented in §4.3, and

the theoretical effect of this on the normal modes of a slender beam was given in

§2.7.

Considering the requirement to retain a large gluing surface, this profiled cross-

section is more optimal for a bracing beam than a simple rectangle because the

stiffness is a function of the cube of the thickness and only linear with width. There-

fore much of the mass of the brace is reduced with little reduction in stiffness. Some

luthiers have extended this treatment to a parabolic cross-section to further optimise

the function of the braces [van Linge, 1996]. Another example of a brace optimi-

sation technique is the carbon fibre/balsa composite braces used in e.g. Smallman

guitars, which are effectively a type of I-beam.

The main X braces both have a small (roughly 20 mm long) length retaining the

rectangular section (the knuckle) to fit the braces together.
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One important modification to brace geometry is the process of profiling, a tech-

nique used by luthiers to optimise the stiffness to weight ratio of beams by altering

their cross-section from that of a rectangle to a pentagon. While having the same

total height, a sharp apex is formed, by an isosceles triangle on top of a rectangle

with a width equal to the base of the triangle. Because the geometry is different,

there is some divergence from the vibratory behaviour of a simple beam with rectan-

gular cross-section, due to the change in the radius of gyration, κ, in the direction

of the applied excitation force. Because the resonant frequencies of a simple beam

are proportional to its cross-sectional radius of gyration, κ (see Equation 2.7.5), al-

tering the cross-sectional geometry of the beam will result in a corresponding shift

in frequency. Denoting the changed state as primed variables in Equation 2.7.5 and

the original geometry with unprimed variables, the frequency ratio for the ith mode

is:

f ′
i

fi

=

πcκ′s2

i

8L2

πcκs2

i

8L2

=
κ′

κ
=

√
I ′

I

For a rectangular cross-section, height a (in the plane of vibration), ICM = Ma2

12
, and,

for an isosceles triangle of height h, the rotational moment of inertia is I ′
CM = Mh2

18
.

The change in resonance frequencies is thus:
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Thus the frequency ratio becomes:

f ′

f
=

√
2h√
3a

Finally, if the new height is identical to the original, h = a, then the frequency ratio

is simply:

f ′

f
=

√
2

3

Hence the resonant frequency of a given lateral mode of a cantilever, whose cross-

sectional shape has been made into an irregular pentagon, symmetric upon reflection

about the vertical axis, from a rectangle of identical height, is shifted lower, to about

82% of the original. Therefore the practice of profiling braces significantly reduces the

mass of the brace with little corresponding loss in stiffness in the vertical direction.

This enables more efficient impedance matching between the vibrations of the braced

soundboard and the air because the braces give similar reinforcement with less mass.

The frequencies of the normal vibratory modes are approximately 82% that of the

original brace.

Scalloping braces

The alteration of the cross-section of the braces, so that they are no longer constant

(‘scalloping’, Figure 3.10) was first widely introduced by the Martin Guitar Co. in

the early 1900’s [Longworth, 1975].

This technique is commonly used to alter instruments to produce a more ‘mellow’

tone [Ford, 2005] but the effect has not been well studied mechanically. Scalloping
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Unscalloped brace Brace with sides scalloped Fully scalloped brace

Figure 3.10: Side view of the scalloping processes of a wooden brace. A beam of
constant, rectangular, cross-section is shaped such that the edges are tapered with
a concavity (partially scalloped) and the middle of the brace is also made concave
(fully scalloped brace.)

cannot be performed on some instruments because of the resulting decrease in struc-

tural integrity.

In the present study, important braces on the soundboard (those occupying the

central position on the soundboard: the lower bout portion of the X-braces, and

the larger of the two ‘tone-braces’) went through an intermediary stage of scalloping

where not as much material was removed (§7.6) compared to the completely scalloped

instruments (§7.6.)

Because it is relatively difficult to scallop braces on a soundboard attached to the

back and sides, this process is usually performed before the soundboard is glued to

the rest of the body. It is, however, sometimes required in order to alter the sound

of a fully constructed instrument, in accordance with the wishes of the musician.

Therefore it is useful to examine the changes induced by scalloping the braces of the

finished instruments. Because it was planned ab initio to scallop the braces in the

guitars studied, a template (i.e. a simple shape designed to fit into place inside the

guitars, providing a solid boundary) was constructed from Perspex
TM

sheet (2 mm

thick) for each tone-brace at both stages of scalloping (Figure 3.11.) The outlines

of the two stages were marked in pencil on both the braces in each guitar when the

soundboard was being worked on, before attaching it to the back and sides. The
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templates were used during the scalloping procedure to judge the proximity to the

wanted brace geometry.

A small thumb-plane, some pieces of sandpaper, a small plane mirror and a

portable light-source (Figure 3.12) were used to scallop the braces in accordance

with the markings on the braces and the scalloping templates in Figure 3.11. The

template was sometimes bonded to the inside of the braces with plasticine and all

the work was performed by hand, using the soundhole for access.

Also, a finite element model was constructed to investigate the effects of brace

scalloping in §4.3.

The bridge and saddle system

The bridge/saddle system (§2.2) is the most important element in the conversion of

the vibratory energy of the string to acoustic radiation. Its central position on the

soundboard means that the bridge/saddle system contributes a significant amount

of mass and stiffness to the soundboard, influencing the vibratory modes of the in-

strument at all frequencies (§7.2).

The analogy between the bridge and an impedance transformer is very useful. To

interact efficiently with the air, it is desirable to have a soundboard with a relatively

low mechanical impedance. However, the relatively high impedance of the strings

(i.e. a relatively large amount of force is concentrated over a small area at the

saddle) means that an impedance interface is required to transform the vibration.

Because of this, the wood used for bridges is generally very dense, with relatively

high Young’s moduli, such as ebony or rosewood.
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Tone-brace template 1

Tone-brace template 2

X-brace template 2

X-brace template 1

Material:  2mm Perspex sheet

Figure 3.11: Outline of the templates used for scalloping the tone-braces in the
guitars.
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Figure 3.12: The tools used in scalloping the tone-braces.

Figure 3.13: Photograph of the
set-up for the scalloping proce-
dure after the soundboard has
been attached to the back and
sides.

Figure 3.14: A luthier scallops the
braces with a small thumb-plane,
working from inside the sound-
hole.
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The bridge is cut from a flat plate of wood (Figure 2.5), and is made with the aid

of a jig, so that bridges are able to be reproduced with a relatively high degree of

precision. The bridges of the guitars studied here are of ‘Indian’ rosewood (Dalbergia

laterfolia). Measurements of the effect of the bridge on the vibratory characteristics

of the guitars studied in this thesis are given in §7.2.

Break angle and string correction

The strings of a steel-string guitar are held in by the bridge pins (§2.2) which are

some distance (≈ 10 mm) behind the saddle. Hence the strings in this region are

bent over the saddle, making an angle to the plane of the soundboard. This angle

is known as the break angle (the term also applies to the strings terminating at the

nut). A small break angle allows relative motion between the string and the saddle

(or nut), contributing to unpleasant ‘buzzing’ sounds [Ford, 2005]. A high break

angle creates excessive mechanical stress at the saddle and may contribute to the

strings breaking at this point. The optimal break angle is said to be 20◦ → 25◦

[Fishman Transducers, 2004]. Also the saddle is aligned at an angle to the rest

of the bridge, in the plane of the soundboard, because of the string compensation

mentioned in §2.1 [Fletcher and Rossing, 1998].

Linings

The joints between the sides and the soundboard and the back plates are important

for the structural integrity and function of the guitar. To increase the strength of

these bonds, strips of wood (linings) are introduced to the internal interface between
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the plates and the sides. Because the linings are constrained to follow the curvature

of the sides, the linings are usually made more flexible in the lateral direction through

a series of regular thin cuts (kerfs).

The bindings

The bindings are pieces of timber used to reinforce the boundary formed at the

soundboard and the sides of the guitar. The guitars studied in this thesis also have

a herring-bone, which is a strip of wood joined to the binding material, extending

about 5 mm toward the centre of the soundboard. The effect of the bindings on the

vibration of the guitar soundboards studied here is examined in §6.6.

The neck joint

The neck is the structural member of the guitar that supports the fingerboard, and is

roughly as long as the body of the guitar. The joint between the body and the neck

needs to be strong enough to withstand the tension of the strings in the longitudinal

direction as well as any lateral forces on the instrument. Hence the top portion

of the body usually has a solid block of wood (the neck-block) to enable a strong

mechanical coupling. Traditionally, the neck is joined with adhesives and a dove-tail

joint. However, the guitars studied in this thesis make use of a neck-joint relying

on bolts (a bolt-on neck system), developed initially by Robert Taylor of the Taylor

Guitar Co. This system allows easier access to the neck for maintenance than does

the traditional system, and there is no vibratory disadvantage if the mechanical

coupling is made well [Ford, 2005].
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Schematics of the necks used here are given in Figure 3.15. The vibratory effects

of the addition of the neck to the body are examined in §7.1.

The surface polish

The process of polishing the guitar involves the application of protective material

onto the outer surface of the exposed plate areas. This process enhances the æsthetic

quality of the instruments, helping to protect the exterior, and provides a buffer

against humidity and thermal changes to the wooden components.

A range of polishes are used on guitars. All require some solvent, most of which

evaporates over time. Once the solvent has disappeared, the polish becomes harder

and is said to be cured.

There is debate on the effect of the polish on the sound of stringed instruments in

general, especially in the case of the violin [Schleske, 2000, Barlow and Woodhouse,

1989, Schelleng, 1968, Fryxell, 1984]. However, it is widely asserted among luthiers

that the best resulting finish is one that is applied as thinly as possible. Nevertheless,

the polish must be sufficient to seal the surface wood cells such that sweat and other

foreign matter does not penetrate the protective barrier [Williams, 1986a]. Before

the application of the actual polish, some alteration of the surface properties of the

guitar occurs. A progression of finer sandpaper is used over all surfaces to be pol-

ished, to P1000 grade (1000 abrasive particles per square centimetre) such that no

scratches larger than ∼ 0.3 mm are visible and there are no sharp discontinuities in

the surface gradient.
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Figure 3.15: A schematic and dimensions of the neck used here. Dimensions in mil-
limetres. The scales do not apply to this reproduction. Image courtesy of Mattheiu
Maziere and Davy Laille.
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The polish used on the guitars studied here is a nitrocellulose lacquer, applied

with a pneumatic spray-gun. The effects of the application of polish to the guitar

on the vibratory response of the soundboard is given in §7.3. The effects of allowing

the polish to cure for a period of 63 days are examined in §7.4.

Aesthetic elements

As well as being an engineering structure, a good quality guitar is often a work of art.

There are many elements that serve a primarily æsthetic function. Decoration of the

instrument was reduced to a minimum through the influence of de Torres Jurado

[Romanillos, 1987]. However, some elements of the guitar are purely cosmetic. The

rosette (§2.1) is an annular structure enclosing the soundhole, and is embedded in the

surface of the soundboard. It is usually made from small pieces of various timbers or

mother-of-pearl (the interior layers of the shell of the oyster Pinctada maxima). The

rosette may also protect the soundboard from crack propagation near the soundhole.

The most prominent and intricate cosmetic feature of the (steel-string) guitar is

usually the inlay. The inlay is made of attractive material, commonly mother-of-

pearl or abalone, although semi-precious gemstones have also been used. The inlay

is generally found as position markings on the fingerboard and a motif (often the

luthier’s trademark) is commonly found on the head-stock. Some instruments have

inlay figures on the rosette and the bindings.

The rosettes used on the instruments in this study are a mixture of ebony, spruce

and a rosewood arranged in a ring formation. The butt-strips are of the same material

as the bindings (rosewood and spruce). The inlays on the fingerboards are small thin
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discs of mother-of-pearl and the fret markers on the uppermost side of the neck are

of high density polyethylene. There are no inlays on the head-stocks.

The butt-strip is a small decorative plate to cover the line formed by the joining

of the sides at the butt of the guitar. The material used for the butt-strips in the

guitars studied in this thesis is the same material used for the bindings.

3.5 Recent innovations

The design of the guitar is still evolving. Improvements are made due to the innova-

tion of the instrument makers and their collaborators. Much inspiration and many

design ideas are borrowed from other instruments. For example, there have been

attempts at installing a soundpost into the instrument, similar to that in the violin,

such as that by Joël Laplane [Laplane et al., 1995]. Laplane also made instruments

with internal bridges and multiple soundholes in various positions, and physical at-

tributes of the instruments, such as the resonance modes, were measured [Chaigne

and Rosen, 1999]. There has been experimentation with the bracing system to ad-

dress particular issues, such as the common occurrence of a nodal line on or near the

third string at the T(2, 1) (see mode nomenclature in Table 2.5) soundboard mode

(at a frequency of about 200 → 300 Hz) producing a large ‘dead area’ on the lower

notes of this string. It is recognised by luthiers and researchers that an approach

using physical principles would be beneficial to the guitar industry as a whole (but

not without some resistance [Kasha, 1995, Brune, 1985b, Wyszkowski, 1985, Hamp-

ton, 1985, Eban, 1985, Brune, 1985a, Williams, 1986b, Wyszkowski, 1986, Margolis,

1986, Brune, 1986]). An oft-quoted success of innovative guitar manufacture is that
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made by Greg Smallman, in using a lattice-style soundboard bracing system made

of a carbon fibre/balsa composite [Atherton, 1990]. This enabled a great reduction

in mass of the soundboard, creating a much louder instrument.

Because of the novelty seeking nature of many guitar players, and the economic

benefits associated with innovation, it is likely that luthiers will continue to experi-

ment with design features to remain competitive with their peers.

3.6 Phases of construction examined in this thesis

Dynamic mass and pressure force ratio spectra, as well as Chladni figures were

measured at ten stages of construction on the three guitars: the braced soundboards,

the bodies directly after the soundboard was glued to the back and sides, after

applying the bindings, after thinning the soundboard, after putting the bridge on,

after polishing, after allowing to cure and then to age for almost two years, and

then partly and then fully scalloping the cross- and tone-braces. It is inconvenient

to include the full name of each construction stage with the measurements, so the

construction phases will be referred to by the abbreviations in Table 3.3.
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Construction stage Abbreviation
Free soundboard SB

Bodies only BDY
After binding BB

After thinning BTT
Without neck WON

With bridge GB
After polishing GF

Allowing polish to dry GH
Ageing two years 2yr

Braces partly scalloped SCL50
Braces fully scalloped SCL100

Table 3.3: Abbreviations for the construction stages investigated throughout the
study of the three guitars in this thesis.



Chapter 4

Applications of the Finite Element

Method to instrument

construction

“It is nice to know that the computer understands the problem. But I would like to

understand it too”—Eugene Wigner (1902-1995)

The speed and processing capability of modern computing systems, and the wide

range of software written for them, enables the mechanical modelling of vibratory

systems to be performed easily. The Finite Element Method (FEM) has been applied

in a wide range of problems in mechanical and more specialised types of engineering.

Systems previously modelled range from nuclear reactors [Campbell, 1995] to novel

aerospace transportation vehicles [Abdul-Aziz, 1996].

This chapter summarises some of the work done in collaboration with three un-

dergraduate students from the École Normale Supérieure in France working on this

project at The University of New South Wales: David Vernet in 2001 [Vernet, 2001],

124
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Davy Laille and Mathieu Maziere (both in 2002) [Laille, 2002, Maziere, 2002]. Mo-

tives and methods for using the FEM are given in §4.1. Selection of the appropriate

model and values of material properties and boundary conditions are given in §4.2.

This is followed by applying this method to the problem of scalloping braces on

the guitar soundboard (§4.3) and to the soundboard (§4.5) and the finished guitar

(§4.6) after preliminary study is made on the influence of glue bonds between impor-

tant elements (§4.4). Finally, there is discussion of the application of finite element

methods to the manufacture of guitars (§4.7).

4.1 Methods and motives for using finite element

calculations

Although most of the work in this thesis is of an empirical nature, it is useful to

compare the results of these experiments with numerical simulations based on known

geometry and material properties. This enables interpretation of the experimental

results and also provides, in principle, a tool for the luthier in the diagnosis and design

of instruments, without performing the costly procedure of constructing or modify-

ing existing instruments. It is convenient to perform these numerical simulations

using available and relatively inexpensive computers. The contents of this chapter

rely on two finite element software packages: CASTEM 2000 and Catia V5R7. The

computer used to model using the CASTEM program was a single desktop PC with

a Pentium III
TM

processor rated with a clock ‘speed’ of 800MHz and RAM of 512MB

capacity. The computer system used to run the Catia package was a member of a

cluster of undetermined processing rate, although it is estimated it normally would
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not process calculations much faster than the machine just mentioned.

The prescription for constructing an FEM of a dynamical system involves the di-

vision of a system into many localised elements, where each element has the mechan-

ical parameters in the linear differential equation for a simple harmonic oscillatory

system, assuming simple viscous damping:

mξ̈ + Rξ̇ + kξ = F (t) (4.1.1)

where ξ is the time-dependent displacement, m is the mass of the element, R the

viscous damping coefficient, k the stiffness of the element and F (t) the resultant of

the external force on the element, which is dependent on the imposed constraints

or boundary conditions, and the neighbouring elements. Solutions to the dynamical

system are obtained numerically for each element.

Previous FEM work done on the guitar

A good overview of numerical models relating to the guitar is given by Antoine

Chaigne [Chaigne, 2002]. Oliver Rogers used an FEM to calculate modal frequencies

on free violin plates after the removal of wood at various parts [Rodgers, 1990]. Ove

Christensen and Bo Vistisen [Christensen and Vistisen, 1980, Christensen, 1984]

presented a simple model of the sound output of the guitar and the coupling effect of

the air by assuming the soundboard and back-plate and the internal air cavity were

simple (point) radiators. Elejabarrieta, Ezcurra and Santamaŕıa [Elejabarrieta et al.,

2001] modelled the guitar soundboard at various stages of construction, comparing
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it with a soundboard being constructed by a luthier. The model was modified to

include the hinged boundary properties introduced by joining the soundboard to the

sides (§2.9).

A model, initiated by Bernard Richardson and Gordon Walker [Walker, 1991]

and refined by Bernard Richardson and Howard Wright [Wright and Richardson,

1995, Wright, 1996, Wright and Richardson, 1997], used the methods outlined in

[Christensen and Vistisen, 1980, Christensen, 1984] to simulate the sound output by

the complete guitar and performed psychoacoustic tests using tones synthesised from

this model. It was found that the effective mass and monopole areas of each mode

contributed more to the perception of tone quality than the frequency or Q-value of

the mode nearest in frequency to that considered.

A model of the sound radiation field of the guitar was created, and compared

with experiment, by Alexis Le Pichon, Svein Berge and Antoine Chaigne [Le Pichon

et al., 1998].

Gregoire Derveaux, Antoine Chaigne, Patrick Joly and Elaine Bécache [Derveaux

et al., 2003, Bécache et al., 2005] presented a model of the guitar with a high degree of

sophistication and completeness. This work models the motion of the plucked string

through to the field of the sound radiated by the instrument. This work involved

collaboration of a group of engineers and guitar-makers.

The models presented below are detailed simulations relating specifically to the

vibratory properties of the steel-string acoustic guitars studied in this thesis. How-

ever, to achieve sufficient accuracy, it is necessary to investigate some aspects of

similar systems to observe the calculated effects of brace scalloping and adhesive

coupling.
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The FEM software packages

CASTEM 2000 was initially developed by the Mechanical Department of Technology

(DMT) of the French Police Station and Atomic Energy, for modelling thermal activ-

ity in nuclear reactor vessels, and was further developed to model vibratory systems

numerically. In CASTEM, the mesh has to be programmed and each component has

to be explicitly entered as a set of vector co-ordinates.

Using Catia, it is easy to define relatively complicated mesh geometries because

the more limited options allow means of programming via a graphical user interface.

CASTEM gives the user more precision and control over the program structure, as

well as having a broader range of commands and analysis tools, such as the options of

orthotropy and of the output of transfer functions, but is time-consuming to program.

Calculations of a reasonable mesh size can take a long time to perform on a typical

desktop personal computer. Using Catia, on the other hand, it is very difficult

to control the mesh size and geometry, which makes it harder to compare results

to experiment. Occasionally small changes in input parameters can result in large

differences in the output [Maziere, 2002]. It is convenient to construct structures

with complicated geometry in Catia and it is capable of producing sophisticated

animations or rendered drawings of the results.
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4.2 Inputs for the model

The accuracy of the simulation of vibratory systems depends on the precision of the

boundary conditions and material properties of each component, which are derived

empirically. Also important are the assumptions made about the overall model. For

example, the assumption of isotropy would make computation faster and more effi-

cient, but is of course inappropriate for wood (§3.2).

The assumption of homogeneity is also not appropriate here. The soundboard of

an acoustic guitar is generally made of two plates glued together so that the grain

features and grain density are symmetric about the main axis of the instrument

(i.e. ‘book-matched’ §3.2, §3.4). Because the thickness of the plate is small in the

tangential (T) direction, there is negligible variation in properties in this direction.

However, we should expect the material properties to vary considerably in the radial

(R) direction (§3.2).

Measurements of the spatial variation of Young’s modulus (using the nondestruc-

tive methods described in §5.2) from 11 samples of wood material directly surround-

ing the simple square plates modelled in §4.3, distributed according to Figure 4.1,

showed there were some substantial differences in the resonant frequencies, with

discrepancies of up to 25%, in the case of the fundamental free-plate mode (0,2)

[Vernet, 2001]. Hence the assumption of homogeneity is inappropriate for models of

the guitar soundboards in §4.5 and §4.6.

Measurement of the Young’s modulus in the transverse and radial directions, the
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Figure 4.1: Illustration of the spatial position of samples taken from wooden material
surrounding the rectangular plates modelled in §4.3. From [Vernet, 2001].
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shear moduli Gij or the Poisson’s ratios νij (where i, j are the principal axes L, R and

T) is more difficult. This is partly because of the relatively small size of the samples

(� 100 mm long, � 20 mm wide and � 3 mm thick). All the plates considered here

are thin (i.e. the thickness is no more than 1% of the smallest lateral dimension) so

the value of the Young’s modulus in the direction parallel to the radial axis, ER, is

not important at lower frequencies. For long thin beams, such as the brace material,

the Young’s moduli ER and ET are not as important. Nevertheless, parameters are

required as input for the simulation. Nominal values of the remaining elastic prop-

erties that were not measured were taken from [Forest Products Laboratory, 1999].

The models in §4.6 are performed on Catia, which does not explicitly support

orthotropic input. In this case, orthotropy was simulated by introducing an array

of identical reinforcing rods into the soundboard, of negligible mass and with mag-

nitudes of Young’s moduli necessary to produce the anisotropy found in wooden

soundboards [Laille, 2002, Maziere, 2002].

Hence the wooden components modelled here are assumed to be orthotropic and

the soundboards are assumed to be inhomogeneous along the transverse axis (the

orthotropy is important because the soundboard of the guitar is designed actively to

exploit the innate anisotropy and inhomogeneity of wood [Locke, 2005]).

4.3 Brace scalloping

The process and purpose of brace scalloping is described in §3.4. It may be possible to

relate the change in timbre ascribed to scalloping to the appropriate transfer function
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characterising the plate. However, the changes to the geometry are complicated,

making it difficult to predict the result. The FEM makes it possible to model the

effects of scalloping on the vibratory behaviour of a plate with bracing. The model

results are first compared with those of two simple thin wooden plates, both in the

shape of a square, with a single diagonal brace, after which the complete guitar

soundboard is analysed. Experiments involving the scalloping of important braces

on the soundboards of finished guitars are presented in §7.6.

Simple plates

The single most important contribution to the sound of the guitar is thought to be

that of the braced soundboard [Meyer, 1983a, Richardson, 1982, Elejabarrieta et al.,

2000, 2001, Rossing and Eban, 1999] . Studying the vibratory behaviour of the free

guitar soundboard is complicated by the details of the bracing structure. It is useful

to compare the vibratory behaviour of a guitar soundboard with a FEM simulation

to understand the important dynamics, but, to be confident of the model, it is help-

ful to compare to a plate of simpler geometry and bracing configuration.

Because the wood is inhomogeneous and orthotropic, the mesh has to be divided

into regions of different properties. Laminar shell elements were used to model

soundboard and braces, both before and after scalloping the braces.

The model was compared to experiments using the Chladni figure technique

(§2.9). Figure 4.2 shows a comparison between Chladni figure experiments on two

simple wooden plates, KBS1 and KBS2, and modal analysis using an FEM [Vernet,

2001].
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Figure 4.2: Comparison between predictions made by FEM and measurement of
mode shapes and frequencies for two simple wooden plates, KBS1 and KBS2. From
[Vernet, 2001].
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Figure 4.3: The initial brace cross-section was a simple rectangle, measuring 12 ×

8mm. This was modified to an isosceles triangle atop a rectangle with a common
edge. The apices were further modified in the scalloping process such that the cross-
section was no longer constant. Figure after [Vernet, 2001].

Braces with constant cross-section

The longitudinal Young’s moduli EL and the mass densities ρ of 11 candidates for

wooden braces having rectangular cross-section (12 × 8mm) made of Stika spruce

were measured. The two most similar in EL (ca. 12 GPa) were retained. Then one

of these was cut longitudinally to give a constant pentagonal cross-section of the

same height as the original (Figure 4.3). The rectangular brace was altered in height

so that it had the same moment of inertia (in the plane perpendicular to the base

of the strut). Both braces were glued diagonally to the simple plates (KBS1 for the

pentagonal and plate KBS2 for the rectangular brace) in the same way a brace is

glued to a guitar soundboard.

The results of Chladni figures on these simple plates are given in Figure 4.4. The

amplitudes of some of the peaks in the transfer functions are of greater magnitude

for the plate with the triangular brace configuration, compared to the rectangular

bracing. The agreement in the measured modal frequencies between the two plates

was within 4%, the greatest difference being at the fifth mode (ca. 450 Hz) where

the brace is a node.
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Figure 4.4: Comparison of Chladni figures of simple rectangular wooden plates, each
with a single diagonal brace with rectangular (KBS2) and triangular cross-section
(KBS1). The solitary dark point appearing in each image is the position of the small
rare-earth magnet used to drive the plate, in combination with a solenoid. From
[Vernet, 2001].

The simulation predicts more distinct modes than are detected experimentally.

In the frequency range 0 − 1000 Hz, 12 modes were identified in the FEM; seven

distinct modes were found experimentally.

Simple rectangular wooden plates having a single scalloped brace The

scalloping process (§3.4) begins with removal of material from both ends of the brace

(‘partly scalloped’) and then from the middle (‘fully scalloped’).

Numerical simulation of the motion of each rectangular plate predicts a lowering

in modes 1, 2 and 3 with little change in mode 5, in response to scalloping the single

diagonal brace. This is confirmed by experiment (Figure 4.5). Agreement with the

measured modal frequencies is good. Experimentally, the sixth mode is lowered in

frequency (from 650 Hz to 580 Hz). This mode has a large number of nodal and
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FEM calculations Chladni figure measurements

Figure 4.5: Comparison of FEM calculations with measurements of Chladni figures
of simple rectangular plates with single braces partly scalloped. From [Vernet, 2001].

antinodal lines crossing the brace.

Comparison of the partly scalloped plate system to that with a fully scalloped

brace show a 13% increase in the frequency of the second mode, a 8% decrease in

the third mode and little differences in the fourth and fifth mode frequencies (Figure

4.6). Again, this agrees well with experiment (Figure 4.7). Modes with nodal lines

near the region of the brace are affected the most, notably mode four (ca. 280 Hz).

Some differences in the dynamic mass spectra are noticeable at higher frequencies

(30 → 20, 000 Hz, Figure 4.8). However the apparatus used for excitation (Brüel

and Kjær 4809 shaker) and detection (Brüel and Kjær 8001 impedance head) are
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FEM calculations Chladni figure measurements

Figure 4.6: Comparison of FEM calculations with measurements of Chladni figures
of simple rectangular plates with single braces fully scalloped. From [Vernet, 2001].
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Figure 4.7: Comparison of dynamic mass measurements of simple wooden plates
with a single brace after scalloping the edges of the braces and after scalloping the
middle part of the brace also. From [Vernet, 2001].
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Figure 4.8: Higher frequency response function of plate with a single diagonal brace.
The two plots are that with and without brace scalloping. From [Vernet, 2001]

linear only in the frequency range 0 → 6 kHz. There are some obvious large relative

differences in the magnitudes of the dynamic mass between the plates at about 5,

7.5 and 9 kHz. The peaks are broadened and the peaks are also slightly lowered in

frequency.

The FEM models used here simulate the motion of the plates with the condition

of a free edge. The mass load of the magnet and the sand used to create the Chladni

figures tend to decrease the frequencies of most of the normal modes compared to free-

free conditions by � 5%. There is good agreement between the FEM and experiment

with the frequency and nodal distribution of low frequency vibratory modes, both

before and after brace scalloping of the simple plates. At these frequencies, little

difference is seen in modal frequencies and geometries between the scalloped and the
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unscalloped plate systems. However both the Q-value and the amplitude of higher

frequency peaks in the dynamic mass spectra increase after scalloping.
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4.4 Glue bonds

Because all of the important components in a guitar are joined by an adhesive, it

is important to determine whether this bond affects the vibratory properties of the

guitar under the conditions considered here. The mass due to the relatively small

amount of glue required to form a good bond is small in comparison with the brace

itself, so the effect due to mass loading is probably small. However it is conceivable

the bond would damp and either stiffen or weaken the bonded area, depending on

the type of adhesive used.

The comparison of an FEM model with an experiment of the coupling between

a single wooden brace and a simple plate was performed using the simply braced

rectangular structures in §4.3 [Maziere, 2002, Laille, 2002].

For the three lowest frequency modes, the agreement between modelled and ex-

perimental mode frequencies were very similar. However, this agreement diverges at

higher frequencies and it is difficult to determine whether the differences are because

of inhomogeneity of the wood or the coarseness of the FEM mesh. To simplify the

analysis of the influence of glue on interactions between vibrating wooden members,

the interaction between two slender beams, glued together, was studied.

Modifying the simple beam equation (Equation 2.7.1) to obtain a system of two

beams coupled by a glue bond, Maziere and Laille found that the two beams are

essentially co-moving until the glue begins moving at f = fcrit.. However, even if

the Young’s modulus of the adhesive were very small, the critical frequency is quite

high (fcrit. > 20 kHz). Therefore the experimental apparatus used for examining
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Figure 4.9: Geometry of a two-beam cantilever with beam elements coupled by an
intermediary adhesive. After [Laille, 2002].

the vibratory behaviour of beams in §5.2 would not be capable of experimentally

verifying any plasticity of the glue bond.

This does not mean that there is no effect of the coupling adhesive on the dy-

namics of two coupled beams below 20 kHz, but it shows there is no tendency for

any in-plane relative motion of two adhesively-coupled beams within the frequency

range of interest. It is therefore appropriate to assume that the wooden braces glued

to the main soundboard may be modelled as if they were joined with no means of

relative displacement.

4.5 The free guitar soundboard

A model was created in CASTEM of the OOO guitar soundboards studied in §6.3,

using a mesh containing approximately 9000 elements [Vernet, 2001]. A larger mesh
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Figure 4.10: Comparison between experiment and FEM calculation of the first four
modes of a steel-string guitar soundboard. The numbers given are the frequencies
(Hz) that the particular mode occurs. From [Vernet, 2001].

size was not possible because the displacement matrix to be solved has an immutable

size limit. The results were then compared to the modes identified experimentally

in §6.3.

The FEM predicted 12 possible normal modes in the frequency range 50 →

800 Hz. Experimental techniques such as Chladni figures (§6.3) or laser holography

[Jansson, 1971, Richardson, 1982] do not indicate there are this many distinct vibra-

tory modes in this frequency range. Although the Chladni figure method indicates

up to 14 figures in this frequency range (Figure 6.7), these are not all distinct modes;

there are more likely a total of seven. Experimental Chladni figures and calculated

normal modes from the FEM model on the free soundboard of a steel-string guitar

for the first four modes compare well (Figure 4.10).
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At higher frequencies the areas bounded by nodal lines are usually smaller and

local inhomogeneities in the elastic properties of the wood, which the model is not

able to resolve, become more important. Further, the spatial distribution of the

nodes becomes more complicated so discretisation errors in the mesh become much

more important. Finally, the model used here does not account for the load on

the soundboard surface due to the surrounding air. The mass loading and mode

damping effects of the experimental excitation apparatus and the sand used in vi-

sualising the Chladni figures also affect the vibratory behaviour of the soundboard

and this method gives no direct means of determining the amplitude distribution on

the soundboard surface, unlike the FEM model in [Vernet, 2001].

Scalloping braces on the soundboard

Figure 4.11 shows the results of the FEM calculation presented here for the OOO

steel-string guitar soundboards with a standard Martin cross-brace system with scal-

loped cross-braces. Scalloping of the middle of the cross-braces and the upper tone-

brace was not performed on these soundboards until the guitar was completely fin-

ished (§7.6) hence there is no experimental data in Figure 4.11. Figure 4.12 shows a

calculation for the same soundboard, similar except that only the upper tone-brace

was scalloped. Figure 4.13 shows the results of FEM calculation of a steel-string

guitar having both the cross and the tone braces scalloped.

Again, the two lowest frequency modes are not affected by scalloping the cross-

braces because, in both cases, their central region is not a node at these frequencies.

The third mode is decreased by 33 Hz (25%) and the fourth mode decreased in fre-

quency by 7 Hz.



145

Before 

scalloping

After

scalloping 

the

cross-braces

Figure 4.11: Calculation of normal modes of a free soundboard of a steel-string
acoustic guitar with standard Martin cross-bracing, after scalloping the cross-braces
only. From [Vernet, 2001].
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Figure 4.12: Calculation of normal modes of a free soundboard of a steel-string
acoustic guitar with standard Martin cross-bracing, after scalloping the upper tone-
brace only. From [Vernet, 2001].
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Figure 4.13: Calculation of normal modes of a free soundboard of a steel-string
acoustic guitar with standard Martin cross-bracing, after scalloping the cross-braces
and the upper tone-brace. From [Vernet, 2001].
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Although the experiments on scalloped bracing on the guitar soundboard §7.6

are of the plate attached to the back and sides, and are therefore altered by the

interaction with the air and the back and sides, the results compare well with the

model (Figure 4.11). Differences are only large for the third and fourth soundboard

modes, T(2,2) and T(3,2) (Figure 7.39), where there is a slight lowering of frequency

and a broadening of the peak at these modes. There is a slight lowering of the first

soundboard mode frequencies (Table 7.6).

4.6 Guitar body

Using the model of the free soundboard (§4.5) and geometric measurements of steel-

string guitars, an FEM of a complete guitar was constructed, including the strings.

The complete guitar is required to withstand the considerable tension placed on the

soundboard and neck by the strings (> 700N with standard tuning.) The properties

of standard guitar strings were measured, and the results were used to model strings

on the complete guitar. Although the strings add a significant amount of tension

to the soundboard, they contribute little to the dynamic motion of the soundboard

[Laille, 2002, Maziere, 2002]. The model was used to construct an animation showing

the vibratory modes of the soundboard [Laille and Maziere, 2002]. An important

limitation of this model is that Catia is not able to model interactions of the guitar

plates with the air, which is being frequency dependent (§2.8), and has a significant

effect on the mode frequencies (§2.5).

The neck is an important element of the guitar at low frequencies. The two
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Figure 4.14: Low frequency modes of the complete guitar incorporating the neck of
the instrument. From [Laille and Maziere, 2002].

first modes of vibration of the entire guitar that involve interaction with the neck,

are given in Figure 4.14. Measurements of the pressure force ratio spectra after

the addition of the neck show features occurring close to these frequencies, but not

without the neck (§7.1). Similar motion is displayed in modal analysis studies of

the low frequency modes of guitars [Russell and Pedersen, 1999, French and Hosler,

2001].
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4.7 Conclusion: Applications of finite element sim-

ulations to instrument construction

The advantage to manufacturers of a reliable model of the vibratory behaviour of

the guitar is that it would be possible to trial novel design modifications without

constructing the instrument. Detailed modelling of the vibratory behaviour of the

guitar is useful for predicting the effect of particular techniques used by luthiers in

the manufacture of guitars. It is shown here that accurate determination of the

geometry, density and Young’s moduli is necessary. Such measurement is possible

using techniques described in §5.2, if nominal values for ER and νij are assumed for

the appropriate wood species.

For example, modelling of brace scalloping on a simple rectangular wooden plate

with a single wooden diagonal brace shows there is very good agreement with Chladni

figure measurements, both in modal shape and frequency for the lowest five modes.

The modes affected the most are those with a nodal lines near the position of the

brace, especially those with a number of phase changes along the length of the brace.

Measurement shows that the Q-factor of high frequency peaks in the dynamic mass

spectrum of simple plates with a scalloped brace is increased, and there is a general

lowering of peak frequencies. An instrument with a soundboard modified in this way

should thus have less variation in radiated output with excitation frequency.

These conclusions for the simple braced plate systems apply for the model of the

free guitar soundboard; the third soundboard mode is affected most by the scalloping
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of both the lower part of the cross-braces and the tone-brace.

The model of the free soundboard was then used to model the complete guitar

[Laille and Maziere, 2002]. Coupling effects from the neck contribute to very low

frequency modes (ca. 60 Hz) of the guitar (qv §7.1).

Future calculations

Some of the data in chapters 5, 6 and 7 could be further applied to numerical simu-

lation of the guitar. However, it would be more useful if the models in this chapter

were improved by addressing some of the challenges raised.

Further, while CASTEM 2000 is able to produce transfer functions of the mod-

elled system, it is more difficult to program the detailed geometry required in mod-

elling a guitar and it has a limited mesh size. Catia is more convenient to program

complicated mesh geometries, but does not directly support the modelling of or-

thotropic materials. Neither package is currently able to model the interactions of

plates with the surrounding air.

Modelling the effect of these changes on the overall sound produced by the guitar

would be more complicated and is not performed here.



Chapter 5

Experimental: Selection of

Materials

“While felling three spruce trees with a fellow violin maker at an altitude of 1700

metres, we were amazed by the differences in sound that were produced when the seg-

ments of the trunk came crashing down in the steep mountain terrain: One would

make a dull sound while the other would be bright and clear as a bell.”—Martin

Schleske (1965-)

To produce wooden musical instruments with consistent mechanical properties,

one must characterise the material properties of its components before construc-

tion. This chapter presents some techniques used to determine the important mate-

rial properties, according to the luthier, of components incorporated into the steel-

stringed acoustic guitars studied in this thesis. The Young’s modulus in the longi-

tudinal direction EL is important for braces. This is also true for the soundboard,

along with the Young’s modulus in the transverse direction, ET , and the mass den-

sity ρ. There may be some sensitivity of vibratory modes involving a large amount of

152
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torsion to variation in the shear modulus GLR, but the shear modulus GLT and the

Young’s modulus in the radial direction, ER, are not as important for determining

the vibratory properties of thin plates [Ezcurra, 1996]. For thin beams and plates,

the variation in Poisson’s ratio for wood has little effect on the resulting dynamics.

The important soundboard braces are characterised by driving point dynamic

mass measurements (§5.2). For the soundboards, the driving point dynamic mass

at the bridge point, the damping of important resonances, and the spatial distribu-

tion of the normal vibratory modes by use of Chladni patterns (§6.3) are measured.

Other components have less stringent vibratory and acoustic requirements [Meyer,

1983a].

The choice of wood species used for the various components of the guitars studied

here are described in §5.1. The method used in measuring the elastic properties of

wooden samples are given in §5.2, and some alternatives to this are presented in

Appendix C. Desirable properties of the important components of the guitar are

presented in §5.4, including measurements of the components incorporated into the

guitars studied here. Internal damping of the components are given in §5.11 and the

results are summarised in §5.12.

5.1 Timber used in the guitars studied

The great variety of species used in the manufacture of any individual guitar il-

lustrates the level of exploitation and optimisation of the mechanical and æsthetic

properties a luthier requires in order to produce a high quality instrument. A list
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of the timbers used in manufacture of the components of the guitars studied here is

given in Table 5.1. Not only is Sitka spruce sought after for brace material (§5.5), it

is also used commonly for soundboard timber in steel-string guitars, giving a gener-

ally ‘bright’ sound (i.e. radiating relatively high power at high frequency [Schubert

et al., 2004]). Engelmann spruce soundboards also give a relatively ‘bright’ sound

but they are more ‘mellow’ than Sitka spruce soundboards. Western Red cedar is

said to give even greater ‘mellowness’ [Belair guitars, 2002, Worland guitars, 2004,

Alaska specialty woods, 2005]. Cedar is used more commonly in classical guitars.

The three timbers mentioned here are commonly used for making soundboards and

it is for this reason that these three timber species have been chosen for the present

work. The other materials used in the construction of these instruments are used on

production instruments made in the Gilet Guitars workshop.

Mahogany or rosewood is commonly used for back and side materials because of

their visual beauty [Romanillos, 1987], but these timbers are also dense and provide

a stiff enclosure so that more sound energy is radiated through the top of the in-

strument. The neck and neck-block are made from Amoora (Amoora culcullata), a

dense timber with a high surface hardness. The fingerboard is of ‘African’ rosewood

1 (Dalbergia holideria) and the bridge is made of ‘Indian’ rosewood2 (Dalbergia lat-

erfolia) which are both visually attractive and also very dense, hard and resistant

to moisture induced degradation. The tail-block is made of high quality hardwood

ply (to reduce cracks forming along the grain) and is a combination of timbers. The

1This common term applies to a number of similar timber species originating in Africa.
2This common term applies to a number of similar timber species originating in India.
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linings of the instrument (§3.4) help the glueing of the top soundboard and back

plate to the sides and, depending on the style of lining, need to have a high grain

density to prevent splitting due to the enforced curvature. The rosettes (§3.4) used

here are manufactured from a combination of rosewood, ebony and maple cut into

small square cross-sections (� 4 mm2) approximately 2 mm high. These are glued

in a series of concentric rings. The butt-strip (§3.4) is made of a rectangular plate

of rosewood with a small border of maple, the same thickness and type as the maple

used in the bindings. The inlays (§3.4) have a purely decorative purpose and are

made of mother-of-pearl. The nut is made of cattle bone. The saddles are made of

a hard polymer (TUSQ
TM

) and the bridge pins are also of a durable polymer. The

frets and the machine (tuning) heads are made primarily of stainless steel.

5.2 Measurement techniques

A beam resonance measurement technique similar to that used by John Dunlop, M.

Shaw and Redes Harjono [Dunlop and Shaw, 1991, Harjono, 1998], is used to measure

the Young’s modulus of wooden beams. The specimen to be tested is placed in the

jaws of an aluminium clamp, as in Figure 5.2, so that the jaws firmly hold the beam

halfway along its length. A time-varying force is applied to the base of the clamp

by a shaker/vibrator (Brüel & Kjær 4809), with an impedance head (Brüel & Kjær

8001, force sensitivity: 379 mV/N Acceleration sensitivity: 3.12 mV/ms−2 Linear

frequency range: 0 → 6500 Hz)). This enables measurement of the time-varying

force and acceleration at this point. The dynamic mass (the ratio of these quanti-

ties) of the system is then analysed; the normal modes of the system are identified
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Component Wood Type
Botanical Name Common name

Soundboard 1 Picea sitchensis Sitka spruce
Soundboard 2 Picea engelmannii Engelmann spruce
Soundboard 3 Thuya plicata Western Red cedar

Back Entandrophragma cylindricum Sapele mahogany
Sides Entandrophragma cylindricum Sapele mahogany
Neck Amoora cucullata Amoora

Neck block Amoora cucullata Amoora
Soundboard bracing Picea sitchensis Sitka spruce

Back bracing Picea sitchensis Sitka spruce
Marriage strips Picea sitchensis Sitka spruce
Transverse bars Amoora cucullata Amoora

Fingerboard Dalbergia holideria African rosewood
Bridge Dalbergia laterfolia Indian rosewood

Bridge-plate Acer saccharum Sugar maple
Top linings Elaeocarpus grandis Blue fig

Back linings Entandrophragma cylindricum Sapele mahogany
Bindings Dalbergia laterfolia Indian rosewood

Acer saccharum Sugar maple
Tail block various various

Rosette various various
Butt-strip various various

Table 5.1: Woods used in manufacture of the three Martin OOO style guitars made
and studied in this thesis.
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by resonance features on the dynamic mass spectra.

Assuming a wooden beam held in this manner is a transversely vibrating can-

tilever, the Young’s modulus Ei (in the direction parallel to the beam axis) may be

obtained by measurement of the frequency of the ith mode of vibration, fi:

Ei = ρ(
8fiL

2

πs2

i κ
)2 (5.2.1)

where κ is the radius of gyration of the beam in the direction of the applied

excitation. For beams with a constant rectangular cross-section, of height t, κ = t√
12

.

Here, L is the half-length and ρ is the mass density of the sample. By solving

Equation 2.7.4 the coefficients for the cantilever beam system, si, are:

si = 1.194, 2.988, 5, 2.000j − 1.000 (5.2.2)

for i = 1, 2, 3, ... and j ≥ 3.

An example of a typical dynamic mass driving point function for a wooden beam

is shown in Figure 5.1. This gives the frequency of each normal mode of the beam, fi.

One of the advantages of this clamping system is that the clamp has a relatively

small contact area with the wood samples, which minimises mechanical interference.

Most importantly, the measurements are nondestructive. The results of measure-

ments made on wood material suitable for soundboard braces, from a single large

block of wood, are presented in Table 5.6. Some alternative measurement techniques

are presented in Appendix C, which could be of use to a luthier in the characterisa-

tion of materials.
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Figure 5.1: Dynamic mass driving point function for a typical wooden beam sample,
used for soundboard bracing, held in the clamping system used here.

Figure 5.2: Clamping system used for measurement of vibratory behaviour of wooden
beam samples (From [Harjono, 1998]).
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Component Mass (g)
B&K8001 impedance head 30.7
Holding shaft 17.2
Clamp 21.9
Mica washers 1.0
Total mass 70.6

Table 5.2: Masses of apparatus used in clamping system used to measure EL for
wooden beams. The mass in front of the impedance head is 40.1 grams.
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The cantilever behaviour of the system

The assumption that the vibrational behaviour of long beams held in the clamp

used here can be effectively modelled as a cantilever is based on the assumption that

the clamp sufficiently ensures no relative rectilinear or rotational motion is allowed.

Is this assumption appropriate? The frequency ratios of consecutive normal modes

of a cantilever are calculated (for example [Timoshenko, 1934, Sokolnikoff, 1946,

McLachlan, 1951, Skudrzyk, 1968, Landau and Lifshitz, 1970]).

Because Ei ∝ f2

i

s4

i

(Equation 5.2.1) and, for a viscoelastic solid, Ei+1

Ei
� 1, (i.e.

the Young’s modulus is independent of the mode of vibration) the progression of the

mode frequencies should then be:

fi+1

fi

= (
si+1

si

)2 (5.2.3)

Comparisons between the theoretical frequencies and measurements of a single

aluminium rod with a circular cross-section are shown in Table 5.3. For this experi-

ment the nodal and antinodal positions were found by touch: the tip of the author’s

index finger was lightly touched to the surface of the beam and moved slowly along

the length until the maxima/minima were detected. This method is effective at fre-

quencies below about 1 kHz, after which human tactile sensitivity is very limited for

small amplitudes [Brisben et al., 1999].

The aluminium beam used here has a mass of 25.0 ± 0.5 g, a diameter of 6.00 ±
0.02 mm, and a total length of 1.022±0.002 m. The uncertainty in the exact position

of the anitinodes is much higher than that for the nodes (±13 mm, compared to

±2 mm at 560 Hz, the frequency of the mode i = 4.) The measured vibratory
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Figure 5.3: Theoretical motion of a cantilever beam for the first four normal modes.
Numbers indicate nodal positions as a fraction of total length.

behaviour of this beam is in good agreement with what we would expect from a

cantilever.

The relation cL =
√

EL

ρ
is used without concern for any other type of wave. In

fact, this is valid only if the length of the beam, L, is much more than the largest

lateral dimension, d (viz. L
d

� 18) [S̆tubn̆a and Lĭska, 2001], after which the analysis

of the motion becomes more involved. The braces to be tested here have dimensions

8.0 × 13.5 × 460.0 mm, so L
d

= 34.1. For smaller L
d
, shear deformations are not

negligible and a proper treatment would require an application of the Timoshenko

beam equation [Timoshenko, 1934].
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Mode, i Frequency ratio Nodal positions, x
L

1 (Theoretical) 1 0 - - -
(Aluminium beam) 1 0 - - -

2 (Theoretical) 6.26 0 0.774 - -
(Aluminium beam) 6.05 0 0.788 - -

3 (Theoretical) 17.54 0 0.500 0.868 -
(Aluminium beam) 16.94 0 0.511 0.881 -

4 (Theoretical) 34.37 0 0.356 0.644 0.906
(Aluminium beam) 32.94 0 0.364 0.654 0.902

Table 5.3: Comparison of nodal positions for normal modes of a theoretical cantilever
beam and experiment on an aluminium beam with a constant cross-section, using the
system described here. The frequency ratio is the frequency of the mode divided by
the frequency of the fundamental mode (i = 1). The nodal positions are expressed
as a fraction of the total length of the beam.

5.3 Measuring and controlling the moisture con-

tent of wood

The moisture content of all important wood samples used was measured. For exam-

ple, the large block of Sitka spruce used to select brace wood for the three guitars

studied here (§5.5) had been seasoned for two years but, immediately after process-

ing to produce brace stock, the moisture content of some of the brace-wood from

the interior of the block was above the approximate 12% that should be expected

for equilibrium with the humid Sydney environment. For example, strut 4B was

initially at 14.4%. After 63 days, it had equilibrated to 11.5%.

There are various means of measuring the moisture content of wood, involving

electrical resistance, capacitance, x-ray, or ultrasonic methods, but the most accurate

is that of measuring the mass loss after completely drying a specimen, the oven-dry
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method [Forest Products Laboratory, 1999]. With this method, care must be taken

to not use such a high temperature that will result in moisture sorption hysteresis,

(e.g. by the release some of the more volatile matter) thereby decreasing the mass

of the sample in addition to the actual water loss. Although there is a small amount

of sorption hysteresis in any sample of wood dried to a very low moisture content,

because of permanent changes to the microstructure, it is a relatively small effect if

performed gradually [Forest Products Laboratory, 1999]. The process of achieving

ambient equilibrium moisture content is at a higher rate in drying from a very humid

environment than that of absorbing water when going from a very dry environment

[Fryxell, 1990]. As a rule of thumb, to reach the equilibrium moisture content of the

environment, the ratio of the water absorbtion rate to the desorption rate, for the

same mass of wood, is approximately 0.85 [Forest Products Laboratory, 1999].

A thermostatically controlled oven with an air cavity of 0.07 m3 was used to

oven-dry the wooden samples. The drying temperature was set to 101 ± 2◦C (some

tests were performed at lower temperatures) and the mass of the sample (having

the same initial mass and dimensions as the specimens to be incorporated into each

instrument) was checked periodically until no variation of mass with time was mea-

sured. Care was taken so that measurement of the mass of the sample, taken in the

ambient environment, was made over the smallest time possible (approximately 90

seconds) because absorbtion of moisture is very rapid at low moisture levels. Cotton

gloves were worn to minimise moisture and oils being adsorbed into the wood during

handling.
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Figure 5.4: Measurement of the desorption of a wooden brace sample in an oven at
constant temperature (Temperature: 80◦C).

An example of the rate of moisture loss for samples of brace wood in this oven is

given in Figure 5.4. The moisture content, Υ, of an oven-dried sample is defined as:

Υ =
minital − mdry

mdry

(5.3.1)

where minitial is the initial mass and mdry is the mass after the oven-drying process.

This (oven dry) mass is determined when the sample mass is no longer decreasing

with time in the drying oven and is a function of the required accuracy of mea-

surement and the limit of precision of the mass balance, as well as exposure to the

ambient humidity during measurement.

The results of measurements of the Western Red cedar sample WRC0 gave

minitial = 2.327 g and mdry = 2.135 g, hence the moisture content was 9.0% . The

uncertainty in the moisture content values, ΔΥ, may be derived from the masses

and the uncertainty in the mass measurements thus:
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ΔΥ =
(3mdry − mf )Δm

(mdry + Δm)mdry

(5.3.2)

where mdry is a constant, mf is the mass of the specimen when measured, and

Δm is the uncertainty in the mass measurement of both masses.

As an example, brace 4B had a dry mass of mdry = 20.2 g. At an equilibrium

moisture content of 11.4%, mf = 22.5 g and Δm = 0.05 g, and therefore ΔΥ =

0.47%. For mf = mdry (i.e. Υ = 0%) with the same brace, ΔΥ = 0.49%. These

values are typical for the braces measured here, so the uncertainty in the equilibrium

moisture content will be taken as being ΔΥ = 0.5% for the brace wood samples.

The above treatment is an example of how to accurately determine the moisture

content of a sample of wood. Because wood is so hygroscopic, it is important to know

the moisture content in order to control for quality and measurement of properties.

The oven-dry method, although an accurate method of measuring moisture content,

is rather time-consuming. There are quicker methods available that use devices

to measure the change in electrical properties (the conductivity or the dielectric

constant) due to the presence of moisture but they are often less accurate, species

dependent, and are often constrained in their effective measurement range [Simpson,

1998].

Variation of EL with moisture content

Measurements of the Young’s modulus in the longitudinal direction on soundboard

and brace samples are given in Table 5.4 as a function of the moisture content.

Näıve calculation suggests the changes in speed of sound of the material are not

merely from mass loading effects of the additional water. If this were the case, for
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Sample Density f1 EL Moisture content
kg · m−3 Hz GPa %

WRC0 300.58 1199 6.49 8.99
WRC0 297.35 1213 6.58 7.8

ES0 390.23 1280 10.44 8.99
ES0 389.71 1284 10.22 8.8

Strut 4B (20.2) 157.6 17.4 0.0
Strut 4B (20.8) 148.6 15.9 3.3
Strut 4B (21.4) 148.1 16.2 6.0
Strut 4B (21.6) 145.4 15.8 6.9

Table 5.4: The variation of Young’s modulus in the longitudinal direction, EL, with
moisture content for small samples of wood. Values of EL were obtained through
measurement of the vibration of a long cantilever beam of a sample of wood, after the
oven-dry mass of the sample was measured, allowing determination of the moisture
content.

the cantilever beam, f1 ∝ κcL

L2 , where f1 is the frequency of the first mode of the

cantilever, κ is the moment of inertia in the axis of the lateral bending. cL is the

speed of sound, in the longitudinal direction, within a beam of length L. Denoting

moisture content dependence with a subscript Υ:

f1,Υ ∝ tΥcL,Υ

L2

Υ

(5.3.3)

In general, the change in dimensions of a piece of wood are dependent on the

moisture content, and these changes differ along the principal axes. The change

in the longitudinal direction is negligible for spruce [Forest Products Laboratory,

1999], and the changes in the volume and in length in the tangential direction, in

drying from the green state to some moisture content Υ (below 30%), are given

approximately by the shrinkage rates, SV,Υ and ST,Υ, in equations 5.3.4 and 5.3.5:
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SV,Υ = 0.115
0.3 − Υ

0.3
(5.3.4)

ST,Υ = 0.075
0.3 − Υ

0.3
(5.3.5)

Taking the ratio at Υ = 0% and using the definition of moisture content, Equation

5.3.1:

tΥ

t0
=

ST,Υ

ST,0

(5.3.6)

VΥ

V0

=
SV,Υ

SV,0

mΥ

m0

= 1 + Υ

Expressing the speed of sound as cL,Υ =
√

EL,Υ

ρΥ

and using Equation 5.3.3, the

ratio of the frequency of the first mode of the beam at moisture content Υ, f1,Υ to

the frequency of the same mode at Υ = 0 %, f1,0 is:

f1,Υ

f1,0

=
tΥ

t0

√
ρ0

ρΥ

√
EL,Υ

EL,0

(5.3.7)

=
ST,Υ

ST,0

√
SV,Υ

SV,0

1

1 + Υ

√
EL,Υ

EL,0

=

√
(0.3 − Υ)3

0.33(1 + Υ)

√
EL,Υ

EL,0
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Using the data from Table 5.4 for strut 4B at Υ = 6%, the frequency ratio be-

comes f1,0.06

f1,0.00
= 0.940±0.007. But if the Young’s moduli are independent of moisture

content (
√

EL,Υ

EL,0
� 1), as is the case with viscoelastic solids [American Institute of

Physics, 1972] , then from Equation 5.3.7 f1,0.06

f1,0.00
= 0.6950±0.005. Therefore there are

changes to the magnitude of EL with moisture. Although this treatment is probably

a little simplistic, it is plausible that this behaviour could be explained by stronger

hydrogen and other intramolecular bonds as a result of the rehydration process.

These microscopic quantities have a great influence on the properties of the material

[Gibson and Ashby, 1997, Gibson, 1989].

5.4 Selection criteria

The selection of appropriate materials requires much ‘hands-on’ experience to mas-

ter. With practice, assessment of some properties of timber may be carried out

without the aid of measuring tools. However this is limited to a few properties and

takes many years to become proficient (§3.4).

For bracing (§5.5), it is desirable to possess a high elastic modulus. This, for

beams of the same height and cross-section, is proportional to the stiffness-to-mass

ratio3, a quantity luthiers value highly in determining brace material [Gilet, 2000].

The fingerboard(§5.9), neck(§5.8) and head-stock material need to have a high sur-

face hardness and moisture resistance. Depending on the type of guitar, the back

and sides(§5.10) should be made of a stiff, dense wood. It is less clear what is most

3
hEL( κ

M
)2, where h is the height of the brace, EL the longitudinal Young’s modulus, κ the

radius of gyration and M the total mass of the brace.
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desirable for wood on the bridge (§5.7) and soundboard(§5.6). It has been conjec-

tured that the quantity ρcL = EL

cL
=

√
ELρ or the radiation ratio, cL

ρ
=

√
EL

ρ3 are

desirable parameters to ‘optimise’ (in this case to emulate known values for desirable

instruments) for plate material [Schelleng, 1963]. However optimising this quantity

alone is unlikely to result in a consummate component. For example, the internal

damping of these components have a great, but largely unquantified, effect on the

vibratory and acoustic behaviour of the guitar [Haines, 2000, Schleske, 1990].

5.5 Bracing material

Despite their important structural and acoustic function (§2.1), braces are probably

the simplest components to optimise in terms of mechanical properties: a luthier

desires a brace with a high EL. However it is difficult to compare the effect of this

to existing instruments because measurement of the brace material is not commonly

carried out, nor controlled experimentation on the effects of braces with variable EL.

As a species, Sitka spruce tends to have a high EL, and thus is commonly used for

braces [Bourgeois, 1994].

Grouping brace material by similarity of elasticity

Because the purpose here is to obtain three similar guitars, it is required to obtain

three sets of brace material that have the most similar EL. I took a sample of 20

braces from the same seasoned and quarter-sawn block of Sitka spruce aligned so

that the length of the block was parallel to the grain. These were labelled in three
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Figure 5.6: Measurement scheme for the dimensions of a brace. The effective height
is the mean of the three heights.

consecutive groups (Figure 5.5).

1A 2A 3A 4A 5A 6A 7A

7B6B5B4B3B2B1B

1C 2C 3C 7C6C5C4C

Sitka spruce brace wood

Figure 5.5: Labels of a block of Sitka

spruce cut into brace material.

The dimensions and masses of these

braces, as measured over an hour4 are in

Table 5.5.

The most important braces, for both

structural and acoustic purposes, are the

main cross-braces (§3.4) [Ross and Ross-

ing, 1979]. Table 5.6 summarises the

longitudinal Young’s moduli, EL (esti-

mated from the first normal mode of a

cantilever with the length dimensions of

4Effects due to possible changes in moisture content should not be noticeable over this short

duration.
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Table 5.5) of a selection of braces taken from the same block of Sitka spruce (Picea

sitchensis).

Three pairs were selected to be as similar to each other as possible. If the entire

set of Young’s moduli is Y = {yi}N
i=1

where yi represents, in increasing order of mag-

nitude, the ith longitudinal Young’s modulus in a sample of size N . The differences

between the ith and jth Young’s moduli are defined as dij = −dji = (yi−yj). To sim-

plify the notation, define di ≡ di,i+1. In order to find the most similar Young’s moduli,

di is minimised, by examining the differences between these differences. Defining the

second-order difference as the difference between the yith, yjth and ykth Young’s

modulus in the longitudinal direction:

Dijk ≡ dij − djk = yi − 2yj + yk (5.5.1)

and, for convenience, define:

Di ≡ Di+2,i+1,i = (di+2 − di+1) − (di+1 − di) = yi+2 − 2yi+1 + yi (5.5.2)

The lowest values of |Di| in the sample are retained for the cross-braces in the

instruments. The most similar set is removed from the selection and then the calcu-

lation is repeated, without replacements. The lowest values of |Di| are then found

in the modified set and this process is continued until all required specimens are

obtained. Results from the cross-brace sample are summarised in Table 5.7.

From these results, the braces are arranged in sets of three with the most similar

values of elasticity, as in Table 5.8, or pairs with the greatest similarity in Table 5.9.
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Label Mass Length Width Height 1 Height 2 Height 3
(g) (mm)

1A 24.133 460.00 8.00 11.24 12.20 11.42
2A 24.062 460.00 8.00 11.30 12.00 9.58
3A 24.277 460.00 8.00 11.71 13.70 13.24
4A 24.443 460.00 8.00 11.40 14.00 13.68
5A 24.968 460.00 8.00 11.58 13.84 13.40
6A 24.063 460.00 8.00 11.70 13.50 13.42
1B 23.644 460.00 8.00 13.60 14.08 11.48
2B 23.025 460.00 8.00 13.20 14.00 11.80
3B 22.494 460.00 8.00 11.64 13.98 11.52
4B 23.055 460.00 8.00 11.88 14.06 13.48
5B 22.304 460.00 8.00 13.00 13.54 11.70
6B 23.004 460.00 8.00 11.58 13.70 13.40
7B 23.306 460.00 8.00 13.30 13.68 11.30
1C 22.351 460.00 8.00 13.12 14.00 13.20
2C 24.661 460.00 8.00 13.22 14.18 10.72
3C 23.480 460.00 8.00 11.54 13.82 13.42
4C 23.403 460.00 8.00 11.68 13.90 13.10
5C 22.800 460.00 8.00 13.58 13.84 11.58
6C 22.588 460.00 8.00 11.72 14.00 13.28
7C 22.973 460.00 8.00 11.52 13.92 13.30

±0.0005 ±0.02 ±0.01

Table 5.5: Mass and length measurements of braces taken from a single block of
Sitka spruce. (Sample moisture content 11.5 ± 0.5%).
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Strut Mean volume Density f1 EL

(mm3) (kg · m−3) (Hz) (GPa)
1A 42762 ± 166 564.36 ± 2.20 133.24 16.19 ± 0.53
2A 40333 ± 163 596.58 ± 2.42 130.55 16.55 ± 0.56
3A 47435 ± 172 512.04 ± 2.40 131.89 14.49 ± 0.60
4A 47435 ± 172 509.89 ± 2.40 129.20 13.96 ± 0.60
5A 47619 ± 172 524.33 ± 1.90 135.93 15.72 ± 0.50
6A 47362 ± 172 508.07 ± 1.85 122.47 12.46 ± 0.43
1B 48024 ± 172 492.34 ± 1.78 138.62 15.34 ± 0.48
2B 47840 ± 172 481.29 ± 1.74 145.35 16.56 ± 0.50
3B 45558 ± 169 493.74 ± 1.85 145.35 16.92 ± 0.51
4B 48355 ± 173 476.79 ± 1.72 148.04 16.54 ± 0.49
5B 46920 ± 171 475.36 ± 1.74 145.35 16.28 ± 0.49
6B 47435 ± 172 484.96 ± 1.77 142.66 16.09 ± 0.49
7B 46957 ± 171 496.33 ± 1.82 141.31 16.23 ± 0.50
1C 49459 ± 174 451.91 ± 1.60 142.66 14.88 ± 0.45
2C 46773 ± 171 527.29 ± 1.94 139.97 16.62 ± 0.52
3C 45301 ± 164 518.31 ± 1.88 145.35 17.64 ± 0.53
4C 47435 ± 172 493.37 ± 1.80 138.62 15.46 ± 0.49
5C 47840 ± 172 476.59 ± 1.73 139.97 15.15 ± 0.47
6C 47840 ± 172 472.16 ± 1.71 149.39 16.95 ± 0.50
7C 47509 ± 172 483.55 ± 1.76 148.04 17.74 ± 0.53

±1.8 Hz

Table 5.6: The longitudinal Young’s moduli, EL, of braces taken from a single block
of Sitka spruce. Measurements were obtained of the fundamental vibratory mode
(with frequency f1) of each brace held in a cantilever beam apparatus. The sample
moisture content was 11.5 ± 0.5%.
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EL ranking Label EL Difference, di Second order difference, Di

(GPa)
1 6A 12.46 1.5 -0.97
2 4A 13.96 0.53 -0.14
3 3A 14.49 0.39 -0.12
4 1C 14.88 0.27 -0.08
5 5C 15.15 0.19 -0.07
6 1B 15.34 0.12 0.14
7 4C 15.46 0.26 0.11
8 5A 15.72 0.37 -0.27
9 6B 16.09 0.1 -0.06
10 1A 16.19 0.04 0.01
11 7B 16.23 0.05 0.21
12 5B 16.28 0.26 -0.25
13 4B 16.54 0.01 0.00
14 2A 16.55 0.01 0.05
15 2B 16.56 0.06 0.24
16 2C 16.62 0.3 -0.27
17 3B 16.92 0.03 0.66
18 6C 16.95 0.69 -0.59
19 3C 17.64 0.1 -
20 7C 17.74 - -

Table 5.7: Differences of first and second order in Young’s moduli of a selection of
braces. Data is obtained from Table 5.6.

Set EL ranking Label Second order difference, Dijk

i, j, k (GPa)
1 13,14,15 4B,2A,2B 0.00
2 10,11,12 1A,7B,5B 0.01
3 5,6,7 5C,1B,4C -0.07
4 2,3,4 4A,3A,1C -0.14
5 8,9,16 5A,6B,2C 0.16
6 18,19,20 6C,3C,7C -0.59
7 1,17 6A,3B -

Table 5.8: Braces from a single block of Sitka spruce arranged in triplets according
to similarity of EL magnitudes. This is achieved by calculating the minimum of the
second order difference, |Dijk|, without replacement. Data is from Table 5.6.



175

Set EL ranking Label dij

i, j (GPa)
1 14,15 2A,2B 0.01
2 17,18 3B,6C 0.03
3 10,11 1A,7B 0.04
4 19,20 3C,7C 0.06
5 13,16 4B,2C 0.08
6 6,7 1B,4C 0.12
7 9,12 5B,6B 0.19
8 4,5 1C,5C 0.27
9 3,8 5A,3A 1.23
10 1,2 4A,6A 1.50

Table 5.9: Braces from a single block of Sitka spruce arranged in doublets according
to similarity of EL magnitudes. This is taken as the minimum of the differences |dij|
without replacement. Data is from Table 5.6.
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Spatial Distribution of Young's Modulus
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Figure 5.7: The spatial distribution of EL for neighbouring braces made from a
single block of Sitka spruce. There appears to be little correlation of EL with near
neighbours in either direction. The spruce block was of high quality seasoned timber.
Data from Table 5.6.

Spatial distribution of mechanical properties of wood

The measured EL of a brace might be expected to be similar to that of a proximate

brace. This does not appear to be the case. Figure 5.7 shows the measured variation

in EL for wood to be used as cross-brace material (seasoned Sitka spruce of high

quality). There appears to be little, if any, correlation between neighbours in the

transverse (labels ‘1’-‘7’) or the radial (labels ‘A’-‘C’) directions. Although the wood

tested here is of high quality, these results are typical of a given wood sample [Forest

Products Laboratory, 1999] and demonstrate the need to test each sample of wood

individually to achieve acceptable quality control.

5.6 Soundboard material

Three soundboard materials most commonly used on steel-string guitars were com-

pared and contrasted. Because the tests performed here are designed to control for

the material similarity of as many important components as possible, excepting the
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Sample Length Width Thickness Grain density Comment
mm mm−1

WRC0 99.0 20.0 3.91 0.700 moisture control
WRC1 100.0 20.0 3.94 0.700 -
WRC2 99.5 20.0 3.84 0.450 -
WRC3 100.0 20.0 3.78 0.429 → 1.000 cross-grain (i = T )
ES0 99.5 20.0 3.84 0.550 moisture control
ES1 100.0 20.0 3.96 0.425 -
ES2 100.0 20.0 3.78 0.650 -
ES3 90.0 20.0 3.82 0.400 → 0.923 cross-grain (i = T )
SS1 99.0 20.0 4.44 0.850 -

±0.25 mm ±0.01 mm ±0.001 mm−1

Table 5.10: Dimensions of soundboard samples (at 9.0% moisture content).

soundboards, it was not necessary to control for variation between the soundboard

materials; characterisation being sufficient.

Measurements of the dimensions, grain densities, and moisture conditions of sam-

ples of the wood from the soundboards of the guitars studied here are given in Table

5.10. The longitudinal Young’s moduli and densities are given in Table 5.11. Note

that only one sample was available from the Sitka spruce soundboard due to the

loss of much of the surrounding wood. Because the soundboard is composed of two

book-matched and quarter-sawn (§3.2) pieces of timber, identification of the distance

of each sample from the centre of the soundboard is possible by examining the grain

density. The higher the grain density, the closer the sample is to the central axis of

the guitar.

Because the soundboard is constructed in an environment with a controlled rela-

tive humidity that is lower than the ambient (43± 2%), the soundboards are unable

to be exposed to the ambient atmosphere for very long because of the tendency to
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Sample Direction Volume Mass Density f1 Ei

i mm3 g kg · m−3 Hz GPa
WRC0 L 7700 ± 100 2.327 301 ± 5 1198.6 6.5 ± 0.2
WRC1 L 7900 ± 100 2.356 299 ± 5
WRC2 L 7600 ± 100 2.417 316 ± 6
WRC3 T 7600 ± 100 2.303 305 ± 6
ES0 L 7600 ± 100 2.982 390 ± 7 1280.1 10.4 ± 0.4
ES1 L 7900 ± 100 3.003 379 ± 7
ES2 L 7600 ± 100 2.963 392 ± 7
ES3 T 6900 ± 100 2.715 395 ± 7
SS1 L 8800 ± 200 3.797 432 ± 8

±0.001 ±0.6

Table 5.11: Some measured mechanical properties of soundboard samples at 9.0%
moisture content. Ei is the Young’s modulus of the sample, in the direction i (viz.
L or T) obtained from f1, the frequency of the first cantilever mode of the sample.

Sample Direction Density f1 Ei Moisture content
i kg · m−3 Hz GPa (%)

WRC0 L 297 ± 5 1213 6.6 ± 0.2 7.8
WRC1 L 302 ± 5 1211 6.8 ± 0.2 10.0
WRC2 L 320 ± 6 - - 10.2
WRC3 T 308 ± 6 - - 10.2

ES0 L 390 ± 7 1284 10.2 ± 0.4 8.8
ES1 L 385 ± 7 1259 9.3 ± 0.3 10.7
ES2 L 398 ± 7 1289 11.1 ± 0.4 10.6
ES3 T 401 ± 7 414 0.70 ± 0.03 10.7
SS1 L 438 ± 8 1480 11.2 ± 0.4 10.6

±0.6 ±0.1

Table 5.12: Mechanical properties of soundboard samples, at various moisture con-
tents. Ei is the Young’s modulus of the sample, in the direction i (viz. L or T)
obtained from f1, the frequency of the first cantilever mode of the sample.
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Sample Axis Moisture ci ρci
ci

ρ

content
i (%) (ms−1) (kg · m−2s−1 × 106) (m4kg−1s−1 × 10−3)

WRC0 L 7.8 4714 ± 82 1.40 ± 0.03 63 ± 2
WRC1 L 10 4745 ± 80 1.43 ± 0.03 64 ± 2
WRC2 L 10.2 - - -
WRC3 T 10.2 - - -

ES0 L 8.8 5114 ± 110 1.99 ± 0.06 76 ± 2
ES1 L 10.7 4915 ± 91 1.89 ± 0.05 78 ± 2
ES2 L 10.6 5281 ± 106 2.10 ± 0.06 75 ± 2
ES3 T 10.7 1321 ± 31 0.53 ± 0.02 304 ± 9
SS1 L 10.6 5057 ± 101 2.21 ± 0.06 87 ± 2

Table 5.13: Some properties of soundboard sample materials derived from Table
5.12.

Soundboard Mass
(g)

Sitka spruce 306.7
Engelmann spruce 276.3
Western Red cedar 249.3

±0.05

Table 5.14: Masses of the guitar soundboards before glueing to the sides and back.
Measurements were made after storage in a humidity and temperature controlled
environment, resulting in an equilibrium moisture content of approximately 8%.

curl or warp due to moisture absorption. Therefore measurements made outside of

this controlled environment must be made as quickly as possible so that the sound-

boards do not reach the ambient equilibrium moisture content and suffer structural

damage as a consequence. Measurements of the total masses of the soundboards

(before glueing onto the sides and back) were made directly after removal from this

controlled environment (Table 5.14).
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Bridge Mass
sample (g)

1 57
2 57
3 57
4 56
5 57
6 57
7 57
8 57

±1

Table 5.15: Masses of a selection of bridge stock material of similar dimensions.

5.7 Bridge material

The masses of a selection of eight potential pieces of bridge wood of approximately

the same dimensions were measured (Table 5.15).

There was not a large variation in the mass of each sample. Three bridge sets

were taken, each with a mass of 57 ± 1 g.

The bridges have been made to the same dimensions as each other to within

±0.2 mm in any direction. Despite their seemingly complicated geometry (Figure

2.5) the shape is reproducible to this accuracy because there are specialised tools

(jigs) to manufacture the bridges (§3.4) and the grain fibres in the species of wood

used (Indian rosewood, Dalbergia laterfolia) are very short and packed closely to-

gether. This allows fine adjustments in thickness to be made. During construction,

the sizes of all three bridges were compared to each other and adjusted.

In order to provide a convenient and reversible coupling between the excitation

and measurement apparatus and the guitar, a single neodymium-iron-boron (NdFeB)
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Sample Mass Density f1 EL Moisture content
(g) (kg · m−3) (Hz) (GPa) (%)

1L 6.419 848 ± 2.6 557 13.4 ± 0.1 -
2L 6.883 847 ± 2.5 632 15.2 ± 0.1 -
3L 6.836 851 ± 2.6 608 14.6 ± 0.1 -
1M 0.331 994 ± 28 - - 15.3 ± 0.1
2M 0.308 952 ± 27 - - 17.6 ± 0.1
3M 0.285 998 ± 30 - - 17.8 ± 0.2

±0.0005 ±0.6 Hz

Table 5.16: Properties of sample material from the bridges used here. The uncer-
tainties for densities of the ‘M’ sample series are higher than that for the ‘L’ series
because of their less regular geometry.

permanent rare-earth magnet was inserted into the bridge of each guitar. This

modification to the bridge is discussed in Appendix E.

The three most similar magnets were selected from a sample of 16, following

measurements of their magnetic flux densities (Table 5.17).

Each magnet was a cylinder, 6.0 mm in length, with a 6.0 mm diameter, and

had a mass of 1.3 g. A hole was drilled into the centre of each bridge such that the

magnets to be inserted would fit tightly and protrude 1.0 mm from the surface. A

very small amount of cyanoacrylate adhesive (‘Hot Stuff Superglue’) was applied to

the slight cone made by the drill bit.

5.8 Neck material

The wood used for the necks is the species Amoora cucullata. Because the appropri-

ate material property to optimise here is not known, and obtaining a suitable sample

from each set of neck stock material was difficult, the three neck woods most similar

to each other in density were taken from a selection of 27. These measurements were
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Magnet Field Strength
(mT)

Maximum Minimum Maximum−Minimum

2

Maximum+Minimum

2

1 384 -470 427.0 -86
2 394 -462 428.0 -68
3 399 -464 431.5 -65
4 369 -414 391.5 -45
5 399 -475 437.0 -76
6 372 -446 409.0 -74
7 337 -419 378.0 -82
8 388 -466 427.0 -78
9 386 -466 426.0 -80
10 409 -483 446.0 -74
11 394 -465 429.5 -71
12 376 -430 403.0 -54
13 389 -453 421.0 -64
14 392 -468 430.0 -76
15 363 -432 397.5 -69
16 371 -450 410.5 -79

±0.5

Table 5.17: Selection of cylindrical rare earth (NdFeB) magnets to be incorporated
into the bridges. Each is 6.0 mm high, with a 6.0 mm diameter, and has a mass of
1.3 g.

Bridge Mass Density EL Moisture content
(g) (kg · m−3) (GPa) (%)

1 34.094 478.6 13.4 15.3
2 34.212 509.9 15.2 17.6
3 34.805 500.1 14.6 17.8

Table 5.18: Some material properties of the bridges used on the guitars stupid here.



183

Length (mm) 660 ± 2
Width (mm) 85 ± 1
Height (mm) 20 ± 0.5
Volume (m3) 1.12 ± 0.04

Table 5.19: Dimensions of neck wood timber (Amoora cucullata) in unprocessed
form.

made in the workshop. The dimensions of the rough neck wood were identical within

the uncertainty of each length (Table 5.19).

Each set was weighed on a balance (Maul digital balance. Limit of resolution:

±5 g). The measured masses and densities are in Table 5.20. The wood sets with the

same mass (670 g) were chosen, although inspection revealed that the uncertainty

in the density, due largely to the volume uncertainty, was so high that only sets 4,

6, 8 and 20 were significantly different in magnitude from this choice of sets. The

sets 12, 13 and 26 were chosen for the three guitars. Set 10 was found to have a

visible defect. The density of the wood for the necks out of for all three guitars was

600 ± 30 kg · m−3. Measurements of the moisture content and the Ei of the neck

wood were not made.

5.9 Fingerboard material

Ebony or Rosewood are preferred woods for the fingerboard because of their re-

sistance to mechanical wear. For the guitars in this thesis, the African rosewood

species (Dalbergia holideria) was used. The masses of 25 similar fingerboard stock

were measured and more detailed measurements were made of the dimensions of nine

of the samples with very similar masses (Table 5.21). From this, samples 15, 22, 12
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Neck Mass Density
sample (g) (kg · m−3)

1 685 611 ± 26
2 700 624 ± 27
3 650 579 ± 25
4 735 655 ± 28
5 640 570 ± 25
6 740 660 ± 28
7 700 624 ± 27
8 810 722 ± 30
9 690 615 ± 26

10 670 597 ± 26
11 660 588 ± 25
12 670 597 ± 26
13 670 597 ± 26
14 700 624 ± 27
15 700 624 ± 27
16 680 606 ± 26
17 640 570 ± 25
18 685 611 ± 26
19 680 606 ± 26
20 810 722 ± 30
21 690 615 ± 26
22 665 593 ± 25
23 730 651 ± 28
24 625 557 ± 24
25 670 597 ± 26
26 670 597 ± 26
27 690 615 ± 26

±5

Table 5.20: Masses and densities of neck wood before processing. Sets 12, 13 and 26
were chosen. Set 10 was found to have a visible defect and was discarded.
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and 23 were the most similar by density, but sample 22 was visibly different to the

other three and excluded. The densities of the fingerboards used on the three guitars

are summarised in Table 5.22.
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Sample Mass Density
(g) (kg · m−3)

1 245
2 305
3 315 908 ± 68
4 325
5 335
6 385
7 300
8 320
9 300

10 315 940 ± 71
11 335
12 310 899 ± 68
13 315 866 ± 61
14 315 1113 ± 85
15 310 894 ± 67
16 265
17 305
18 275
19 295
20 275
21 340
22 315 896 ± 67
23 310 899 ± 68
24 350
25 310 804 ± 56

±2.5

Table 5.21: Measured masses of fingerboard material (African rosewood, Dalbergia

holideria) of similar dimensions. Approximate densities of fingerboard material were
selected from similar masses of samples
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Guitar Sample Density
(kg · m−3)

1 12 899 ± 68
2 15 894 ± 67
3 23 899 ± 68

Table 5.22: Densities of the fingerboards (African rosewood, Dalbergia holideria)
used in the guitars studied in this thesis. The sample labels are from Table 5.21.
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5.10 Back, sides, binding and other materials

The back and sides of all three guitars are of Sapele mahogany. It is desirable to

have backs and sides possess a high incidence of medullary rays, a grain feature

whereby there are clusters of cellulosic fibres running in a tangential direction to the

main grain. These have high æsthetic value but may also contribute to an increase

in strength in directions perpendicular to the grain. The three sets used on the

guitars studied in this thesis were chosen by the master luthier, Gerard Gilet, as

those possessing the highest density of medullary ray clustering from a selection of

20. Each set comprised a total of four plates: two for the sides and two for the

back. Each set is from the same quarter-sawn, book-matched, block of mahogany.

The binding, lining rosette and head-stock veneer materials were each consecutive

specimens from identical sources. All of these materials were selected by eye and

were based on the experience of the luthiers in the Gilet workshop.

5.11 Damping measurements

The damping factors of some braces were measured (Table 5.23). These results

agree broadly with [Haines, 2000], although it is unknown what effect a variation in

damping values of components have on the resulting instrument.

5.12 Results

Four experienced luthiers at the Gilet Guitars workshop tested the braces, using their

own appraisal methods (static flexing and close visual examination). They broadly
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Brace f1 Δf Q d EL ELd

(Hz) (×10−2) (GPa)
1A 241.1 6.1 39.7 2.51 16.19 0.55
1B 251.1 10.7 23.5 4.26 15.34 0.65
1C 257.1 11.1 23.2 4.31 14.88 0.61

Table 5.23: Damping measurements, d, of some braces used here. The damping is
calculated from the quality factor of the dynamic mass of the first cantilever mode
of the beam, Q, which is obtained from the bandwidth, Δf , and frequency f1 of the
fundamental cantilever mode.

Pair EL rank Label dij Grain Density Destination
i, j (GPa) mm−1

1 17,18 3B,6C 0.03 2.5,� 2.0 XB1
2 10,11 1A,7B 0.04 0.8, 1.0 XB2
3 15,16 2B,2C 0.06 1.6, 1.4 XB3

Table 5.24: Final destination and description of wooden cross braces, selected ac-
cording to similarity of EL. The dij represent the difference in the magnitude of the
EL between the pair. Destination ‘XB’ represents a ‘cross-brace’. See §3.4.

agreed upon the ranking of the brace stiffness as measured here. Also, the cause

of the extremely low EL value (12.5 GPa) for brace 6A was discovered: a knot and

longitudinal grain discontinuity (a ‘pitch pocket’) was found to occur longitudinally

through the brace material. This was not obvious from previous inspection but was

discovered in the profiling process (§3.4), where wood was removed from the outside

surface.

A summary of the braces used for the three soundboards is in Tables 5.24, 5.25

and 5.26.

Measurements for the important quantities of many of the components are listed

in Table 5.27.
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Triple EL ranking Label Dij Grain Density Destination Visible Differences
i, j, k (GPa) (mm−1)

1 5,6,7 5C,1B,4C -0.07 1.0, 0.5, 0.9 TB1,TB2,TB3 1B is much darker
(almost grey).
5C and 4C
many
medullary rays

2 8,9,12 5A,6B,5B -0.18 1.1, 1.0, 1.0 RB1,RB2,RB3 5A darker (greyish)
and wavy grain.
6B many and 5B
quite a lot of
medullary rays

Table 5.25: Final destination and description of wooden tone and radial braces,
selected according to similarity of EL. The Dij is the second-order difference of the
magnitude of the EL within the triplet. Destination ‘TB’ refers to a ‘tone-brace’ and
‘RB’ stands for ‘radial brace’. See §3.4.

Guitar Brace Label EL Density
(GPa) (kg · m−3)

1 XBL 3B 16.9 493.7
(Western Red XBR 6C 17.0 472.2

cedar) TB 5C 15.2 476.6
RB 5A 15.7 524.3

2 XBL 1A 16.2 564.4
Engelmann spruce XBR 7B 16.2 496.2

TB 1B 15.3 492.3
RB 6B 16.1 485.0

3 XBL 2B 16.6 481.3
Sitka spruce XBR 2C 16.6 527.3

TB 4C 15.5 493.4
RB 5B 16.3 475.4

± � 0.56 ± � 2.42

Table 5.26: Summary of soundboard brace properties incorporated into the three
guitars. Exact uncertainties are in Table 5.6. The brace labels ‘XBL’ etc. follow the
conventions given in §3.4
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Guitar Component(sample) Density Grain Ei Moisture
density content

(kg · m−3) (mm−1) (GPa) (%)
1 Soundboard(WRC1) 301.9 0.700 6.8 10.0
Western Soundboard(WRC2) 320.0 0.450 - 10.2
Red Soundboard(WRC3) 307.9 0.429 − 1.000 - 10.2
cedar Brace, XBL(3B) 493.74 ± 1.85 2.5 16.92 ± 0.51 11.5 ± 0.5

Brace, XBR(6C) 472.16 ± 1.71 2.0 16.95 ± 0.50 11.5 ± 0.5
Brace, TB(5C) 476.59 ± 1.73 1.0 15.15 ± 0.47 11.5 ± 0.5
Brace, RB(5A) 524.33 ± 1.90 1.1 15.72 ± 0.50 11.5 ± 0.5
Brace -
Brace -
Brace -
Brace -
Bridge(1L) 847.6 ± 2.6 - 13.4 ± 0.01 15.33 ± 0.05
Neck(12) 597 ± 26 - - -
Fingerboard(12) 899 ± 68 - - -

2 Soundboard(ES2) 398.0 0.650 11.1 10.6
Engel- Soundboard(ES1) 385.0 0.425 9.3 10.7
mann Soundboard(ES3) 401.1 0.400 − 0.923 0.74 10.7
spruce Brace, XBL(1A) 564.36 ± 2.20 0.8 16.2 11.5 ± 0.5

Brace, XBR(7B) 496.33 ± 1.82 1.0 16.19 ± 0.53 11.5 ± 0.5
Brace, TB(1B) 492.34 ± 1.78 0.5 15.34 ± 0.48 11.5 ± 0.5
Brace, RB(6B) 484.96 ± 1.77 1.0 16.09 ± 0.49 11.5 ± 0.5
Brace -
Brace -
Brace -
Brace -
Bridge(2L) 846.8 ± 2.5 - 15.2 ± 0.01 17.56 ± 0.06
Neck(13) 597 ± 26 - - -
Fingerboard(15) 894 ± 67 - - -

3 Soundboard(SS1) 483.3 0.850 11.2 10.6
Sitka Brace, XBL(2B) 481.29 ± 1.74 1.6 16.56 ± 0.50 11.5 ± 0.5
spruce Brace, XBR(2C) 527.29 ± 1.94 1.4 16.62 ± 0.52 11.5 ± 0.5

Brace, TB(4C) 493.37 ± 1.80 0.9 15.46 ± 0.49 11.5 ± 0.5
Brace, RB(5B) 475.36 ± 1.74 1.0 16.28 ± 0.49 11.5 ± 0.5
Brace -
Brace -
Brace -
Brace -
Bridge(3L) 851.0 ± 2.6 - 14.6 ± 0.01 17.77 ± 0.07
Neck(26) 597 ± 26 - - -
Fingerboard(23) 899 ± 68 - - -

Table 5.27: Summary of measured properties of components used in the three guitars
here.
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5.13 Conclusion

Under direction of an experienced luthier the appropriate wood species to be incor-

porated into the guitars studied in this thesis have been determined. Techniques

were then developed to measure important parameters relating to the vibratory be-

haviour of some of the more important components. These parameters and optimal

values were inferred from the experience of luthiers. The three most similar sets of

bridges, necks, backs, sides, fingerboards and soundboard braces were chosen from a

selection of similar woods. In the case of the soundboards, which is the only designed

difference between the three guitars, the longitudinal Young’s moduli and densities

were measured. The moisture contents of the brace-wood, soundboards and bridges

were also determined.

It is now a matter to test the instruments as these components are added and

modified in Chapters 6 and 7.



Chapter 6

Experimental: Plates, bodies and

the guitar

“Sometimes a difference can be heard...[by] removing just 0.1 mm of wood from

a few square centimetres of a plate of some 3 mm thickness [of a violin sound-

board]” —M.E. McIntyre and J. Woodhouse, The Acoustics of Stringed Musical

Instruments[McIntyre and Woodhouse, 1978]

Although the relationship between the vibratory modes of the free plate and

those of the finished instrument is not determined (§2.9), important effects may be

observed with the co-evolution of soundboards of the three different wood species

used on the guitars studied in this chapter, as they progress from the free soundboard

state to the finished instrument. Descriptions of each construction phase examined

in this chapter are contained in chapter 3.
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6.1 Experimental measurement techniques

Measurements of vibratory properties depend strongly on the support system. For

example, resonances of the mounting and support structures may strongly interfere

with those of the system being measured [Døssing, 1988a,b]. Because, in practice,

only a finite range of frequencies may be measured, often the most effective method

of minimising the effect of support resonances is to arrange the support resonances

to be confined to frequencies outside the range of interest. If a high mass support of

low stiffness is used, most of the energy of the supporting structural resonances will

be at sufficiently low frequencies. Preliminary tests on a rectangular plywood plate

and the free guitar soundboards used a suspension system comprising long rubber

bands connected to massive retort stands. The rubber bands were attached to small

squares of manila card and glued to the plates with polyvinyl acetate (PVA) adhesive

and left to dry for approximately 14 hours. The total mass of these rubber/manila

attachments are estimated to be 4 g. This system was chosen such that the en-

ergy of structural resonances of the support system occur at frequencies below that

measured here. For the bodies and successive construction stages, a similar system

was used, although with slight modifications to allow for a nondestructive means of

attaching the supports to the guitar (Appendix E). The bodies were coupled to the

supports initially by means of ‘cup-hooks’ (§E.2) but a simpler mechanical coupling

method was adopted, using large rare-earth magnets (cylinders 10.0 mm high and

12.5 mm in diameter, a mass of 8.7 g and a surface magnetic flux density of 0.5 T

at the surface) after the bindings (§3.4) were applied to the bodies. This coupling

system is described in detail in Appendix E.3).
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All of the vibratory measurements made in this chapter are of driving point dy-

namic masses, Chladni figures and pressure force ratios driven by a shaker (Brüel

and Kjær 4809) attached to the central bridge point. On the soundboards this is the

centre of the space occupied by the bridge (200 mm from the butt, along the cen-

tral axis) and on the plywood pilot soundboard this is half the width and 200 mm

from one end (Figure 6.1). This point is used because it is the centre of the line

where the force from the excited (‘played’) string is transmitted to the soundboard,

via the bridge. It is possible to measure at each of the string termination points

on the bridge. However, this study compares three instruments at many stages of

construction, and measurement at this many excitation points is not necessary. In-

vestigations into transfer function measurements at these points on the bridge do not

show a large variation, as long as they are made in the same direction [Richardson,

1982, Lai and Burgess, 1990].

The primary vibratory detector was an impedance head (Brüel and Kjær 8001)

mounted to the shaft of the shaker. Coupling between the soundboard or guitar body

and the excitation/detection apparatus was achieved by using a magnetic clamp sys-

tem, as described in Appendix E. The end of the impedance head had a large NdFeB

rare earth magnet (a cylinder 10 mm high and 12.5 mm in diameter, mass 8.7 g and

magnetic flux density 0.5 T at the surface) attached via a locking shaft mechanism.

The bridge point had a smaller magnet made of the same NdFeB material (a cylin-

der 6 mm high, diameter 6 mm, mass 1.2 g and magnetic flux density 0.2 T at the

surface). For the rectangular plywood plate, the shaker and impedance head were

supported by a rope, pulley and laboratory jack suspension system (Appendix E).
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Material Nonstructural plywood (3 ply pine, outside grains longitudinal)
Length 510.0 ± 0.5 mm
Width 254.0 ± 0.5 mm

Thickness 3.50 ± 0.25 mm
Total mass 289.4 ± 0.05 g

Bridge position 200 mm from one end, halfway along width
Magnet type NdFeB permanent rare earth (250 mT at surface)
Magnet size Cylinder 5.5 mm height, 5.5 mm diameter

Magnet mass 1.0 ± 0.05 g

Table 6.1: Properties of an anisotropic rectangular wooden plate used to develop a
measurement system for the free guitar soundboards.

6.2 Simple plates

The vibrational properties of a simple plate are much more complicated than those

of a homogeneous beam or string. In turn, the motion of an anisotropic plate is

more complicated than that of an isotropic plate [Szilard, 1974, Lekhitskii, 1968,

1963]. In anticipation of measurements of the guitar soundboards (§6.3), which are

not only anisotropic, but also have an additional bracing structure, it is useful to

study a simpler system to investigate the essential characteristics and methodology

to be applied in measurement of free guitar soundboards. This rectangular plate

provides a rough approximation to the guitar soundboards. The overall dimensions,

density (Table 6.1) as well as the nominal values of their elastic moduli, are similar

enough to expect their low frequency behaviour to be qualitatively similar to that

of the guitar soundboards studied in §6.3.

The rectangular plate is supported by three rubber bands on retort stands, ad-

justed so that the board is level with the coupling magnet and is facing down such

that it is just above the magnetic clamp (Appendix E) connected to the shaker, as in

Figure 6.3. The excitation and measurement position remains fixed, at the central
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Dimensions in mm

Figure 6.1: Dimensions of an anisotropic wooden plate, with approximately similar
dimensions and mass to the guitar soundboards being studied.
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Shaker (B&K 4809)

Impedance head (B&K 8001)

NdFeB Rare-earth magnet

Simple rectangular plate

Ilmenite sand

Mechanical supports

Figure 6.2: Side view of the set-up used to measure the dynamic mass spectrum and
Chladni figures of a simple rectangular wooden plate. This is a developmental stage
for the actual guitar soundboards studied in this thesis.
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Amplifier Shaker

Impedance head

Frequency counter
Computer

Digital camera

Stand and suport

Plate
Sand

Magnetic clamp

Stand and suport

Rubber bands
Rubber bands

Figure 6.3: Diagram of the set-up used to measure the dynamic mass spectrum
and Chladni figures of a simple rectangular wooden plate. The specifications of the
apparatus used is supplied in the main text.

bridge point.

Dynamic mass of a rectangular wooden plate

The driving point dynamic mass spectrum at the bridge point is shown in Figure

6.4. Most of the peaks correspond to Chladni modes (§6.2), as illustrated in Figure

6.6. The peak at 349 Hz is an unidentified experimental artifact.
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Figure 6.4: Measured dynamic mass spectrum of a thin rectangular plywood plate
having dimensions roughly that of a guitar soundboard.
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Chladni figures of an anisotropic rectangular wooden plate

The shaker(B&K 4809)/impedance head(B&K8001) combination is driven by a man-

ual sweep function generator (TFG 8101, Topward Electronic Instruments Co.) and

a power amplifier (ELWS 2-5007). Accurate frequency determination is made by

connecting a frequency counter (Tektronix CDC250) to the function generator. The

force and acceleration outputs from the impedance head are displayed through a

digital oscilloscope (Tektronix TDS210). To take records of the Chladni figures, a

digital camera (Apple Quicktake 100) is mounted directly above the board. The fine

particulate used for imaging the Chladni figures is black ilmenite sand (Rainbow

Beach, Fraser Island). From a sample of 11 Chladni figures, the average mass of

sand used for each Chladni figure on each soundboard (§6.3) is 3.5 ± 0.2g, which

gives a mean areal mass density of 20 gm−2 at the initial stage, when the sand is

evenly distributed over the entire soundboard. This is approximately 1.4% of the

total mass for the lowest mass (Western Red cedar) soundboard, although we would

expect this mass load to have a minimal effect on the standing wave configuration

and frequency once the sand is aligned along the nodal surfaces [Strutt, 1869].

The nomenclature convention is that described in §2.9. Frequencies of the modes

are presented in Table 6.2 and photographs of these modes are given in Figure 6.5.

In practice, the identification of a standing wave configuration using the Chladni

figure method occurs when the particles show the greatest motion. The uncertainty
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of the frequency of each mode varies inversely with the Q-factor of the transfer func-

tion. Generally the largest frequency interval between that of a normal mode and the

nearest frequency that is definitely not a normal mode is about 5 Hz, although this

is approximate because many modes extend over a much broader frequency range.

In many cases, most of the particles appear to move violently over this broad fre-

quency range. The perceived loudness is also used as an additional tool to judge

the frequency of the resonance peak, which can contribute to the uncertainty in the

frequency of that mode. Some modes have a number of distinct phase relationships

between the vibrating components. This results in the same mode being measured at

more than one frequency. For example, the Western Red cedar soundboard exhibits

a (0, 3) mode, at 171 Hz, 154 Hz and 166 Hz). However care must be taken with

this interpretation, because it is sometimes unclear in the case where the vibratory

modes have a high bandwidth and may not occur at distinct frequencies, but over a

broad frequency range.

The results of a finite element simulation of this rectangular plate, using the AN-

SYS (Swanson Analysis Systems, Inc.) package, are compared to the measurements

of the vibratory modes in Table 6.2. Values of the material properties of Pinus ra-

diata were taken from [Forest Products Laboratory, 1999]. Because a single driving

point is used, it is difficult to resolve modes that have nodal regions that intersect

this point. All the calculated modes that are not detected with the Chladni method

have modes with this property, with the exception of the (3,0) mode. Calculated at

194 Hz, this is close to the frequency measured for the (2,2) mode (180 Hz).
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Mode Frequency (Hz)
Measured Calculated

(1,1) - 36
(0,2) 69 70
(2,0) 95 92
(1,2) - 101
(2,1) 122 117
(2,2) 180 188
(0,3) - 194
(1,3) - 221
(3,0) - 253
(3,1) - 275
(2,3) 307 308
(3,2) - 342
(0,4) 398 379
(1,4) - 405
(3,3) - 495
(2,4) - 484
(4,0) - 495
(4,1) - 514

Table 6.2: Comparison of measured and calculated frequency of vibratory modes of
a suspended rectangular plywood soundboard. Calculations were performed using
the ANSYS package with values of material properties of Pinus radiata taken from
[Forest Products Laboratory, 1999]. The paired integer mode convention (m,n) is
that of §2.9.
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069 Hz
(0,2)

122 Hz

(2,1)

095 Hz

(2,0)

153 Hz

(2,1)

251 Hz
(2,2)

180 Hz
(2,2)
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(0,2)

398 Hz
(0,4)

284 Hz
(2,2)

300 Hz
(2,3)

307 Hz
(2,3)

Figure 6.5: Modes shapes and frequencies of a thin rectangular plywood plate having
dimensions roughly that of a guitar soundboard.



205

Conclusion: Simple rectangular plates

Structurally, the system here is simple enough to be able to interpret the Chladni

modes of the plate without the complications introduced by the complex bracing

structure of the free guitar soundboards. The modes in Figure 6.5 are able to be

characterised completely by the simple (m, n) nomenclature described in §2.9. Most

importantly, study of this plate is useful in the development of an excitation and mea-

surement system for the guitar soundboards. An important result from this study

is the relationship between the driving point function of the dynamic mass and the

distribution of standing waves on the surface of the plate (i.e. Chladni figures, as in

Figure 6.6): the Chladni figures occur at frequencies where the relative phase in the

dynamic mass spectrum is a local extremum—usually where the magnitude has a

highly negative gradient. It can be difficult to excite the plate with sufficient ampli-

tude to identify all the vibratory modes. The detection of a particular mode, using

Chladni figures, relies directly on human perception. This relationship might enable

makers to identify Chladni modes from the dynamic mass spectrum, which would

enable rapid, objective, and quantitative plate characterisation of the instrument.

6.3 Free guitar soundboards

How is the behaviour of the free plates related to that of the completed instrument?

Work on this question is represented by a significant proportion of the studies on the

behaviour of stringed instruments [Schleske, 2000, Ezcurra, 1996, Richardson, 1988,

1982, Jansson, 1988, Meyer, 1983a, Rodgers, 1990, 1991, Stetson, 1977, Krüger, 1982].

In §5.6, measurements were made on samples of the timber surrounding the
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Figure 6.6: Illustration of the relationship between the dynamic mass spectrum and
the Chladni modes of a simple rectangular plate.
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soundboard. Each soundboard was weighed (Table 7.4) and the lengths of various

parts were measured. The overall dimensions of each soundboard are described in

Appendix A.4. Individual brace geometries of each were measured (such as in Figure

3.8).

The Western Red cedar soundboard has the lowest values of speed of sound in

the longitudinal direction (cL � 4700 ms−1) compared to the Engelmann spruce

(cL � 4900 ms−1) or the Sitka spruce (cL � 5100 ms−1; Table 5.13). Therefore,

because of the similar geometry and boundary conditions, most of the peaks in

the dynamic mass spectrum of the Western Red cedar soundboard are of lower

frequencies than for corresponding spectral features in the two spruce soundboards

(Figure 6.8). Frequencies of the vibratory modes may be compared for all three

soundboards as results of the Chladni figure method, Figure 6.7. The frequencies

of the modes of the Sitka spruce soundboard, which has the highest value of cL,

are generally higher than that for the same given mode of the Engelmann spruce

soundboard.

The system damping of measured dynamic mass spectra of the Western Red

cedar soundboard is generally higher (a low quality factor for most peaks and a

higher ‘background level’) than the other two, and most of the peaks are of a lower

magnitude. The transfer function gives information on both the magnitude and the

relative phase between the force and the acceleration at this point (the top and

bottom graphs in Figure 6.8 respectively). A dramatic change in the value of phase

with frequency indicates a change in vibratory mode. The frequencies of the Chladni

figures of the plates (Figure 6.7) of the free soundboards correspond well to that of

rapid phase variations in the dynamic mass measurements.
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Figure 6.7: Chladni figures for free guitar soundboards. The figures presented are
those for the Engelmann spruce soundboard and are representative of the topology
of the other two soundboards.
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Figure 6.8: Magnitude of the dynamic mass spectra of the three soundboards, with
free edges.
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Because of the considerable local increase in stiffness and mass due to the bracing,

most of the Chladni figures of guitar soundboards possess some nodal regions aligned

with the braces, especially the transverse bar and that of the longest ‘tone brace’,

which are located above the soundhole and in a central position on the soundboard

respectively.

6.4 Guitar bodies

The soundboard of each guitar, including the bracing system, is glued onto the sides

and back to form the body. The body is designed to exploit the coupling between

the plates and the enclosed air cavity [Meyer, 1974, Firth, 1977, Caldersmith, 1978,

Christensen and Vistisen, 1980]. This makes the vibratory properties more com-

plicated (§2.5). The neck, added later, also couples with the body, producing low

frequency modes (§2.5 and §7.1).

The mechanical support and coupling system for measurements of the vibratory

behaviour of the guitar bodies studied here is described in Appendix E. The sup-

port system described in Appendix E.2 is used for this and all subsequent stages of

construction until the bindings are installed (§6.6), after which the system described

in Appendix E.3 is adopted.
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Soundboard type Sitka spruce Engelmann spruce Western Red cedar
Soundhole diameter d (mm) 96 96 96

Soundboard area (m2) 0.1475 0.1475 0.1475
Mean depth (mm) 112 112.5 112.3

Volume V (l 16.52 16.60 16.57
Calculated fH (Hz) 122.1 121.8 121.9
Measured fH (Hz) 120.0 119.5 125.2

Table 6.3: Body and soundboard dimensions of the three guitars and their calculated
Helmholtz frequencies and measured values. Measurements are derived from the
response spectra in Table §7.7.

Measuring the Helmholtz resonance of the body

As shown in §2.4, some basic assumptions lead to the simple expression (Equation

A.1.12) for the frequency of an ideal Helmholtz resonator. This concept may be ap-

plied to the low frequency air motion of the guitar body, and is important in sound

production over a broad frequency range [Christensen, 1984].

The area of 0.1475 m2 for the Sitka spruce soundboard is slightly greater than

the area of two classical guitar soundboards calculated in [Christensen and Vistisen,

1980] of 0.1400 m2.

The soundhole of each guitar was made circular with a relatively high precision:

each has a diameter of 96.0 ± 0.1 mm.

The volume was measured by filling the air cavity with polystyrene spheres

(‘beans’), (Table 6.4).
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Soundboard Internal volume
type (direct) (mass difference)

(l) (l)
Sitka spruce 14.32 14.60 ± 0.07

Engelmann spruce 14.47 14.33 ± 0.06
Western Red cedar 14.32 13.99 ± 0.06

Table 6.4: The volume of the internal air cavities of the three guitars.

Dynamic mass spectra and Chladni figures of the bodies

The dynamic mass measurements of the bodies are given in Figure 6.9. These spectra

are very different to those of the free soundboards, reflected also in the Chladni

figures made at this construction stage (Figure 6.11). Because of the changes made

to the boundary conditions of the edges of the plates, the vibratory modes have

different characteristics. In addition to coupling between the internal air cavity and

the soundboard, such as the low frequency coupling between the Helmholtz resonance

and the plate fundamental gives rise to two prominent minima between 90 Hz and

200 Hz (Figure 6.10) the low frequency air-body coupling region, (§2.5, [Christensen

and Vistisen, 1980]).

Because the measurement is only made at a single point, the dynamic mass

spectrum alone does not illustrate the spatial distribution of a given vibratory mode

of the soundboard. These measurements are supplemented with Chladni figures of

the soundboard.

The transition between vibratory modes is indicated by a rapid variation in the

dynamic mass spectrum. A demonstration of this relationship between the dynamic

mass and the Chladni figures, for the Engelmann spruce guitar, is shown in Figure

6.12.
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Figure 6.9: Dynamic mass of two of the three guitar bodies (Engelmann spruce and
Sitka spruce) directly after glueing the soundboard to the back and sides.
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Figure 6.10: Dynamic mass of two of the three guitar bodies (Engelmann spruce and
Sitka spruce) directly after glueing the soundboard to the back and sides, compared
to that for the free soundboards. The free soundboard spectra have been raised in
overall magnitude to be the same as for the bodies.
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Figure 6.11: The set of Chladni figures for the guitar bodies after the soundboard
is glued to the back and sides. The figures used are that of the body with a Sitka
spruce soundboard. The T(2,1) mode at 314 Hz was not observed in Sitka spruce,
hence the Engelmann spruce figure is used here.
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Figure 6.12: Illustration of the relationship between the dynamic mass and Chladni
figures of guitar bodies directly after glueing the soundboard to the back and sides.
The Chladni figures are those of the Sitka spruce soundboard.
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6.5 The thinned soundboard

The soundboards of high quality guitars are not of uniform thickness (§3.4 and

§D.1). It has been shown that the thickness distribution of the guitar soundboard is

extremely important in determining the sound of the instrument [Richardson, 1998,

Meyer, 1983a, Elejabarrieta et al., 2000]; there is evidence that radiation in middle

frequencies (T(1,2) and T(3,1) [364 → 432 Hz for guitar BR2 in [Wright, 1996] and

400 → 550 Hz in the guitars studied here]) is strongly affected [Krüger, 1982]. It is

common to thin the soundboards of high quality guitars after joining to the back

and sides. In this case, the luthier often applies vibro-acoustic tests to determine

the amount of thinning required. Describing the conventional testing procedure is

difficult: the apprentice luthier is instructed to listen for an audible difference in the

loudness of the tap response of the body [Gilet, 2000]. Measurement of the thickness

of the soundboard at this stage is difficult because of the complicated geometry of the

bracing system and the body itself. Consequently, luthiers performing this procedure

have limited knowledge of the thickness distribution of the soundboard, which makes

replication of a particular instrument difficult.

To solve this problem, John Smith and I developed a thickness measuring de-

vice based on a calibrated magnet-Hall probe system [Inta and Smith, 2003]. A

permanent magnet in the shape of a cylinder is used as a source for which the result-

ing magnetic field strength is detected by a Hall probe. Because the magnetic flux

density decreases monotonically with distance along the axis of the cylinder, and,

because the relative magnetic permeability is very close to unity for all wood, the

magnetic flux density can be calibrated to gauge the displacement from the surface
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Figure 6.13: Thickness distribution of the Sitka spruce soundboard, as obtained from
‘Giletometer’ thickness measurements

of the magnet. The magnet can then be placed on the inner surface of the guitar

soundboard and the thickness measured to the outer surface of the soundboard, at

the point directly above, with the Hall probe (Appendix D).

It is thus possible to obtain the thickness distribution of the soundboards after

they have been thinned but are attached to the back and sides. All three soundboards

have been made so as to give the same thickness distribution, within ±0.2 mm, on

measurements spaced at 40 mm, over the whole soundboard (Figure 6.13). Braces

show clearly, of course (Figure 6.14). Because the thickness of the soundboard is

not usually measured directly, it is difficult to compare the soundboard thickness

distribution in Figure 6.13 to other guitars manufactured using this technique.

Dynamic mass spectra, measured at the bridge point on the guitars, after thin-

ning the soundboards, are given in Figure 6.15. Because of the differences in the
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Figure 6.14: Superposition of the soundboard bracing geometry on the measured
soundboard thickness distribution of the Sitka spruce soundboard.

soundboard timber, the removal of the same volume of material might be expected

to result in different vibratory responses among the soundboards. The Western Red

cedar soundboard underwent the larger changes than the two spruce soundboards,

confirming the result in [Krüger, 1982] and showing much difference in the spectrum

especially at the T(1,2) mode, but also is affected at least to 1 kHz, the highest

frequency measured here.

For this, and all subsequent construction stages, measurements of the pressure

at the soundhole of the guitars, in response to a measured force (pressure force ratio

spectra) are made at the central bridge point. This measurement for the guitars

after the soundboard has been thinned is presented in Figure 6.16. The microphone

used for these measurements is not calibrated and hence the overall air pressure

magnitude is arbitrary. However, the response is linear over this small frequency

range and so the pressure is subject only to a constant scaling factor.
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Figure 6.15: Dynamic mass of guitar bodies directly after ‘thinning’ the soundboard.
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Figure 6.16: Pressure force ratio of guitar bodies directly after ‘thinning’ the sound-
board.
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Soundboard f(T(1,2)) (Hz)
Top thinned Bindings added

ES 382 409
SS 391 400

WRC 395 419

Table 6.5: The changes in the frequency of the T(1,2) soundboard mode of the
guitar bodies with the binding process. The Western Red cedar soundboard is most
affected.

6.6 Binding the soundboard

The joint between the sides and the soundboard constrains the edge of the sound-

board so it is no longer free. The binding process, including the herring-bone (§3.4),

reinforces this joint. The nature of this alteration has not been well investigated

[Hutchins, 1962], although it should influence the vibratory behaviour of the bound

soundboard. The dynamic mass spectra of the guitar soundboards after the binding

process are presented in Figure 6.17. Like the thinning process, the T(1,2) mode is

affected strongly by the binding process. However, the effect is to increase slightly

the frequency of this mode (Table 6.5).

Perhaps the most dramatic differences are in the pressure force ratio spectra (Fig-

ure 6.18). The amplitude is generally lower for all three guitars, with the exception

of the low frequency air-body coupled modes (f− and f+) which remain the same,

although the Q-value of the associated peaks is noticeably increased. The Chladni

figures are more pronounced with the addition of the bindings and there appears to

be a new mode at approximately 800 Hz. This is presumably to do with a stiffening

of the edges of the body, making the nodal regions more defined.
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Figure 6.17: Dynamic mass spectra of guitar soundboards before and after binding.
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Figure 6.18: Pressure force ratios of the guitar bodies before and after binding.
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6.7 Discussion

A simple relationship between the behaviour of the free soundboard and that of

the soundboard attached to the body would be very useful. A relationship of this

kind has not yet been found. Preliminary investigations on a rectangular plate have

proven useful in quantifying the low frequency vibratory behaviour of a system sim-

ilar enough to the free soundboards and agree well with finite element simulation

of the system. These investigations illustrate the close relationship between the dy-

namic mass spectrum and the Chladni figures, which are more traditionally used by

luthiers as a testing or diagnostic tool. However, unlike the Chladni figure method,

the results of dynamic mass (and pressure force ratio) measurements give informa-

tion on the relative amplitudes and Q-values of vibratory modes (Figure 7.42). In

addition, measurements of this kind are able to be made in a fraction of the time it

takes to characterise the instrument using Chladni figures over the same frequency

range. These test methods are generally more sensitive to alterations made to the

instrument and allow the luthier to compare measurements of particular instruments

in their inventory as well as instruments made by another luthier.

Because of the differences in boundary and coupling conditions between the free

soundboards and those of the soundboard attached to the back and sides, it is dif-

ficult to compare the vibratory behaviour directly. This is evident in the dynamic

mass spectra (Figure 6.19). For instance, the nodal topology is ‘open’ for most of

the low frequency modes of the free plates, whereas the nodal regions mostly form

closed loops on the soundboard of the guitar bodies. However, the majority of mode
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frequencies are higher for Sitka spruce in the free soundboard as well as the body

state.

Aside from the poor control of the raw materials (in terms of quantitative mea-

sures, Chapter 5) there are other aspects of the manufacture of guitar soundboards

that make it difficult to replicate accurately the acoustic output of any given in-

strument. There are other constraints imposed on instrument manufacture that

potentially interfere with acoustic concerns, such as the æsthetic value of the instru-

ments [Richardson, 1995b]. But probably the greatest impediment to the replication

of good instruments is that the practising luthier generally has only a set of ‘rules

of thumb’ when manufacturing their instruments. For example, the fact that there

is still much active experimentation in soundboard bracing design [Ramirez, 1986,

Rossing and Eban, 1999, Marty, 1987b] (and much debate on this subject [Brune,

1985b, Wyszkowski, 1985, Williams, 1986b]) means that an optimal soundboard

bracing system is yet to be found.

How much soundboard material to remove? With the traditional method (§3.4),

the final thickness distribution is not known. Using a magnet and a Hall probe, with

the appropriate calibration, the thickness distributions of the three soundboards

studied in this thesis were made equal to each other, after measurement and refine-

ment of the thickness of each soundboard.

The process of thinning the soundboard has the effect of ‘smoothing’ and lowering

the frequency of many of the peaks in the dynamic mass spectra (e.g. Engelmann

spruce 409 → 384,338 → 331 Figure 6.20). Addition of the bindings reverses this to

some extent: it raises the frequency of some of these modes (e.g. Engelmann spruce



227

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

Engelmann spruce

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

Sitka spruce

D
yn

am
ic

 m
as

s 
(k

g)

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

Western Red cedar   Frequency (Hz)

SB
BDY
BB
BTT

Figure 6.19: Dynamic mass spectra of each soundboard at successive stages of con-
struction until the addition of the bindings. The construction stages are coded thus
(Table 3.3): ‘SB’: free soundboards, ‘BDY’: Body (soundboard glued on to the back
and sides), ‘BTT’: Body with the soundboard thinned, ‘BB’: The bodies after the
bindings have been added.
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Figure 6.20: Dynamic mass spectra for the three guitar bodies at successive stages
of construction.

384 → 409) whilst altering others very little (e.g. Engelmann spruce 315 → 315,

333 → 333). In addition, the overall magnitudes of the dynamic masses are much

lower for this stage, which, cœteris paribus, are an indication of better radiativity at

these frequencies [Wright, 1996]. For both the soundboard thinning and the binding

stage, the Western Red cedar soundboard was affected more than the Engelmann

spruce or the Sitka spruce soundboards over the measured range. For example,

the peak relating to the lowest frequency motion of the air in the soundhole, with

frequency f−, is very much lower in the case of Western Red cedar (Table 6.6).

Comparisons of the pressure force ratios for two stages (after the bodies were

thinned and after addition of the bindings) are in Figure 6.21. The magnitude of the



229

Coupled frequency (Hz)
ES SS WRC

f− fH f+ f− fH f+ f− fH f+

BDY 97 121 162 100 121 162 97 125 164
BTT 91 121 157 97 120 160 90 121 158
BB 90 119 157 94 119 161 89 119 156

±1

Table 6.6: Low frequency air soundboard coupling frequencies for the guitar bodies
at successive construction stages.

pressure force ratio is generally much higher for that of the thinned soundboards.

A notable equality is at the lowest air cavity-soundboard coupling mode, where the

motion of the air in the soundhole is 180◦ out of phase with that of the soundboard,

and is close to equal with the in-phase part of that mode.

Measurements made during subsequent construction phases are presented in

Chapter 7, beginning with the addition of the neck.
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Figure 6.21: Pressure force ratio spectra for the three guitar bodies at consecutive
stages of construction. The solid line is the measurement after the soundboards were
thinned, while the dotted line is that of the soundboard before thinning.



Chapter 7

Experimental: Completed
instruments and parameter
evolution

“And when one sweetly sings, then straight I long,

To quaver on her lips ev’n in her song,

Or if one touch the lute with art and cunning,

Who would not love those hands for their swift running?” —P. Ovidius Naso, Amores

(English translation by Christopher Marlowe)

7.1 Effects from the addition of the neck

A description of the function of the neck and how it is attached to the guitar body

is given in §3.4. The neck (including the head-stock, but not the fingerboard) is

almost as long as the actual guitar body (476 mm and 493 mm respectively) and has

a mass (including the fingerboard) of roughly 45% of the guitar bodies (Table 7.1).

The neck is therefore a significant structural member of the instrument.

231
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Soundboard Mass of component (g)
type Neck Bolts Body

Sitka spruce 549.3 24.5 1269.7
Engelmann spruce 555.2 24.6 1225.5
Western Red cedar 561.7 24.6 1216.2

Table 7.1: Masses of components before assembling the neck and the body. Note
that neck masses are measured without the tuning heads, and the body masses are
measured after routing a small (∼ 3×10×300 mm) channel for the truss-rod (§2.2).

The extent of the influence of the neck on the vibratory behaviour of the guitar

(i.e. the guitar body with a neck attached) may be reckoned by examining the

vibratory properties of the body before and after neck assembly. Some results of this

addition are quite obvious. Before the addition of the neck, Chladni figures show

a nodal region along the perimeter of the head-block (the piece of solid wood that

serves as an anchor-point on the body for the neck), at 700 Hz for the Engelmann

spruce, 814 Hz for Sitka spruce (Figure 7.1—not detected in the Western Red cedar).

With the addition of the neck, the nodal line in this area changes from a straight

line, perpendicular to the axis of the body, to that of a concavity with a focus

towards the head-block (Figure 7.2). This is probably a node of a flexural mode of

the whole instrument, including the neck, although the motion of the neck is not

directly measured here.

The phase relationships between the force and acceleration measured at the bridge

point show there is a weak low frequency feature common to all three of the guitars

with the necks attached which does not exist when the necks are not present (Figure

7.3). For the Engelmann spruce guitar, this occurs at 65 Hz, 57 Hz for the Sitka

spruce and 62 Hz for the Western Red cedar guitar (Figure 7.7). This is in the

frequency range observed in [French and Hosler, 2001]. Features are also seen in the
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Head block

Figure 7.1: Chladni figure illustrating the detail of a nodal region taking the shape of
the perimeter of the head-block. (From Engelmann spruce, after binding, at 700 Hz).

Without neck With neck Without neck With neck

Figure 7.2: Changes in the shape of some Chladni figures with the addition of
the neck, in the vicinity of the head-block. (Figures from Engelmann spruce with
bindings compared to those with neck attached).
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relative phases between the air pressure measured at the soundhole and the force

measured at the bridge, at 59 Hz and 210 Hz for the Engelmann spruce soundboard,

57 Hz [95◦](only) (49 Hz,[88◦])for the Sitka spruce soundboard and 62 Hz and 205 Hz

for the Western Red cedar soundboard (Figure 7.6.) q.v. In Figure 7.7 there are

features at (65 Hz,[26◦]) and (51 Hz,47◦)] for the Engelmann spruce, (57 Hz,[22◦])

and (38 Hz,49◦) for the Sitka spruce and (62 Hz,[14◦]) and (50 Hz,18◦)] for the

Western Red cedar soundboard.

There are also Chladni figures at the same frequencies for the Engelmann spruce

and the Western Red cedar, with a node occurring near the bridge point, which

again could be a node of the first flexural (free-free) mode of a beam equivalent to

the entire instrument.

The low frequency features in the dynamic mass spectra are close to those calcu-

lated to be due to motion as a result of the addition of the neck (59 Hz and 188 Hz)

in the FEM calculations performed by Laille and Maziere in §4.6.

Changes with the addition of the neck in Figure 7.8 show some differences around

600 Hz and 800 Hz. Examination of the Chladni figures shows the modification of

modes at e.g. 609/675Hz → 581/616/638 Hz and 749/815Hz → 709/797/832Hz for

the Engelmann spruce soundboard. The guitars studied here have a bolt-on neck

system, and there are no vibratory losses detected, which might be expected if there

were incomplete mechanical coupling between the body and the neck.
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Figure 7.3: Dynamic mass spectra of the three guitars after the addition of the neck.
The differences in the spectra Engelmann spruce and Western Red cedar observed
about 400 Hz are the T(1,2) modes, where there is a node passing through the
soundhole. This area might act as a pivot point for the vibration of the neck.
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Figure 7.4: Magnitude and phase of the dynamic mass of the guitars before the
addition of the neck, as a comparison of the three guitars.



237

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

D
yn

am
ic

 m
as

s 
(k

g)

0 100 200 300 400 500 600 700 800 900 1000
−200

−150

−100

−50

0

50

100

150

200

R
el

at
iv

e 
ph

as
e 

(d
eg

re
e)

Frequency (Hz)

Engelmann spruce
Sitka spruce
Western Red cedar

Figure 7.5: Magnitude and phase of the dynamic mass of the guitars after the
addition of the neck, as a comparison of the three guitars.
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Figure 7.6: The low frequency effects of the neck on the phase of pressure force ratio.
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Figure 7.7: The effects of addition of the neck on the relative phase of low frequency
dynamic mass.



239

0 100 200 300 400 500 600 700 800 900 1000

−100

0

100

Engelmann spruce

0 100 200 300 400 500 600 700 800 900 1000

−100

0

100

R
el

at
iv

e 
ph

as
e 

(d
eg

re
e)

Sitka spruce

0 100 200 300 400 500 600 700 800 900 1000

−100

0

100

Western Red cedar   Frequency (Hz)

With neck
Without neck

Figure 7.8: Phase of the pressure force ratio of the guitars before and after the
addition of the neck.
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7.2 Addition of the bridge

The mass of the bridge (34 g) is a significant fraction of the total mass of the

soundboard (12% in the case of Engelmann spruce, 11% for Sitka spruce and 14%

for the Western Red cedar soundboard). Because it occupies a central position of

the soundboard, the bridge affects the vibratory behaviour of low frequency modes

of the soundboard because of the mass load and the added stiffness also has an effect

on higher frequency modes (Figure 7.9). In a study on the effect of various bridges

on the behaviour of the guitar, Jürgen Meyer found that the most desirable bridge

was that with the least mass [Meyer, 1983a].

After adding the bridge, the Western Red cedar has a lower magnitude of pres-

sure force ratio in the frequency range 500 → 650 Hz, in comparison to the other two

guitars; this includes the T(1,2) and T(2,2) modes (Figure 7.10). In both of these

modes, nodal areas of the Chladni figures coincide with the position of the bridge for

the Engelmann spruce and the Sitka spruce. For the Western Red cedar, the bridge

is largely an antinodal area for most modes. One might expect that the efficiency

in transmission of vibration from the bridge to the soundboard, at modes where the

bridge occupies a node, should be greatly reduced [Jansson, 2002].

The phase difference between the force and the acceleration at the bridge point

after addition of the bridge is shown in Figure 7.11. In all three guitars, the frequen-

cies associated with the lowest coupled motion between the soundboard and the air

in the soundhole (f−, fH and f+) are increased slightly (Table 7.2). This includes

the Helmholtz resonances, which might be expected because of the reduction of the
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Figure 7.9: The changes in dynamic mass due to the addition of the bridge. Effects
are great in the T(1, 2)2 frequency region (300 → 500 Hz)
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Figure 7.10: Changes in the pressure force ratio spectra due to the addition of the
bridge.
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Frequency ES SS WRC
f− 89 → 92 Hz 94 → 97 Hz 89 → 89 Hz
fH 116 → 127 Hz 119 → 127 Hz 116 → 127 Hz
f+ 153 → 158 Hz 159 → 164 Hz 153 → 156 Hz

Table 7.2: The change in low frequency air-body coupling due to the addition of the
bridge. The effects on the shift in the coupled frequencies are much more pronounced
than for any other construction stage considered here.

compliance of the body, especially in the lateral direction.

At higher frequency, there is little effect on the phase of the dynamic mass of the

bridge point until the T(1, 2)2 mode, at about 300 Hz. Without the bridge, all three

have a phase difference of nearly 180◦ which then decreases to about 60◦ (71◦, 51◦

and 67◦ for Engelmann spruce, Sitka spruce and Western Red cedar respectively) at

higher frequency, after five local turning points. The addition of the bridge reduces

these turning points to a single minimum (with a phase difference in dynamic mass

of 110◦, 130◦ and 143◦ for Engelmann spruce, Sitka spruce and Western Red cedar),

which is associated with the T(1,2) mode. Before the bridge is added, the modes

between 350 Hz and 450 Hz comprise several different configurations of dividing the

soundboard longitudinally into two vibrating areas. Two of these configurations are

shown in the Chladni figures in Figure 7.12. These separate configurations occur at

slightly different frequencies, which is evident in the dynamic mass spectra. With

the addition of the bridge, there is only one configuration: a nodal line occurring

along the axis of the bridge, perpendicular to the axis of the guitar. In the case of

the T(2,2) mode, the effect of the increased local stiffness from the addition of the

bridge (Figure 7.13) is evident: the nodal lines form along a direction perpendicular
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Figure 7.11: The change of relative phase between force and acceleration at the
bridge point, upon adding the bridge.

to the axis of the guitar. The pressure force ratio in this region is greater when the

guitars have no bridge. This situation is reversed at about 450 Hz, after which the

phase difference is generally greater for the guitar with no bridge.

The bridge adds a highly anisotropic component of stiffness to the soundboard: it

effectively another brace of the soundboard [Richardson, 1982]. Of all the construc-

tion phases following the manufacture of the soundboard and bracing, the addition of
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Figure 7.12: Chladni figures of the T(1,2) mode before and after the addition of the
bridge. Several distinct configurations of this mode are made degenerate with the
addition of the bridge, simplifying the motion. This is most obvious in the case of
the Sitka spruce soundboard. This is seen as a ‘smoothing’ effect in the dynamic
mass spectra (Figure 7.9).
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Figure 7.13: Chladni figures of the T(2,2) mode before and after the addition of the
bridge. Several distinct configurations of this mode are made degenerate with the
addition of the bridge, simplifying the motion.
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the bridge is the most influential on the sound output. Modes with nodal regions in

the vicinity of the bridge position, such as the T(1,2) and T(2,2) modes, have a few

possible configurations, which are reduced with the addition of the bridge. This is

observed in the dynamic mass spectra as a reduction of the distinct maxima/minima

around the frequency of these modes.

7.3 The polished instruments

The application of a protective coating to the external surfaces of the guitar (§3.4)

may conceivably add some mass, damping and stiffness to the plates of the guitar.

The significance of this on the resulting sound has been debated ([Haines, 2000,

Schleske, 2000, Barlow and Woodhouse, 1989, Fryxell, 1984] §3.4).

The guitars studied here have a polish comprised of a thin coat (∼ 150μm) of

nitrocellulose lacquer. The dynamic mass spectra of the guitars three days after

application of the finish are presented in Figure 7.14 and the pressure force ratio

spectra are in Figure 7.15.

The frequency of the modes occurring approximately between 810 and 840 Hz

are lowered slightly (Engelmann spruce 832 → 819 Hz Sitka spruce 849 → 842 Hz

and Western Red cedar 818 → 814 Hz) and the pressure force ratio is reduced in

this region also.

The T(1,2) and T(2,2) modes are lowered by 5 − 6 Hz, indicating that there is

some effect of a mass load on these modes. The greatest differences in the dynamic

mass spectra are at frequencies near 1 kHz (Figure 7.16). Is is expected that the

effects on vibratory behaviour arising from the polish should be more significant at

higher frequencies.
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Figure 7.14: Dynamic mass of guitar bodies before and after application of a nitro-
cellulose lacquer polish.
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Figure 7.15: Pressure force ratios of guitar bodies after application of a nitrocellulose
lacquer polish.
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Figure 7.16: Dynamic mass spectrum of a guitar before and after applying a ni-
trocellulose lacquer polish. Shown are the measurements for the Engelmann spruce
soundboard. There are measurable differences in the magnitudes at T(1,2), T(2,2)
and what appears to be the T(5,3) soundboard mode.



250

7.4 Effects of lacquer curing

Because the polish is applied with the aid of a volatile solvent base, there is a period

of time required to evaporate the solvent (curing). The dynamic mass spectra, after

a curing period (53 days), are shown in Figure 7.17. The transfer function of the air

pressure measured at the soundhole in response to a force at the bridge is given in

Figure 7.18.
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Figure 7.17: Dynamic mass of guitar bodies after hardening of the nitrocellulose
lacquer polish.
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Figure 7.18: Pressure force ratio of guitar bodies after hardening of the nitrocellulose
lacquer polish.
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Figure 7.19: The changes in dynamic mass after the curing of the nitrocellulose
polish on the guitars.

The effect of polish curing has little measurable effect on the dynamic mass spec-

tra (Figure 7.19) or the pressure force ratio (Figure 7.20), except for some reduction

in the magnitude of the dynamic mass around the T(1, 2)2 mode (about 504, 537

and 474 Hz for the Engelmann spruce, Sitka spruce and Western Red cedar guitars

respectively.)



253

0 100 200 300 400 500 600 700 800 900 1000
−100

−50

0

50

Engelmann spruce

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

P
re

ss
ur

e 
fo

rc
e 

ra
tio

 (
dB

, a
rb

itr
ar

y 
re

f.)

Sitka spruce

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

Western Red cedar   Frequency (Hz)

After curing
Before curing

Figure 7.20: The changes in pressure force ratio after the polish is allowed 53 days
to ‘cure’.
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7.5 Short term ageing and playing in

Some of the effects of ‘playing in’ have been studied in the violin [Hutchins, 1998,

1989]. It is very difficult to separate the effects of playing an instrument from that

of ageing or environmental exposure [Inta et al., 2005]. It is also difficult to quantify

the ‘amount’ any particular instrument has been played. The dynamic mass spectra

of the three guitars after a period of two years of playing all three instruments,

for roughly equal amounts, are given in Figure 7.21. The pressure force ratios at

this stage are displayed in Figure 7.22. The total amount of playing time was not

long, less than ten hours for each instrument. It is expected that any conceivable

component of measured change in vibratory properties due to playing effects would

be comparatively small. It is not known whether the small amount the guitars have

been played have ‘played in’ the instruments to the extent that would alter the

vibratory properties of the instrument commensurate with the anecdotal evidence of

musicians [Hutchins, 1998, Turner, 1997].

There is very little difference in the dynamic mass after ageing (and a small

amount of playing) the guitars for two years (Figure 7.23).

There is also little difference in the pressure force ratio spectra except between

800 and 1000 Hz, most obviously in the case of the Engelmann spruce guitar (Figure

7.24).



255

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

D
yn

am
ic

 m
as

s 
(k

g)

0 100 200 300 400 500 600 700 800 900 1000
−200

−150

−100

−50

0

50

100

150

200

R
el

at
iv

e 
ph

as
e 

(d
eg

re
e)

Frequency (Hz)

Engelmann spruce
Sitka spruce
Western Red cedar

Figure 7.21: Dynamic mass of guitar bodies after ageing and some playing of all
three guitars for two years.
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Figure 7.22: Pressure force ratio of the three guitars after ageing and some small
amount of playing the instruments for two years.
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Figure 7.23: Changes to the three guitars due to an ageing (and some playing) period
of two years.
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Figure 7.24: Pressure force ratio spectra due to an ageing (and some playing) period
of two years. There is very little difference except small decreases about 900 Hz.
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Effects due to an applied mass load

The effects of a mass load applied to the guitar soundboards were investigated. A

load was applied by bonding a brass mass with a thin layer of plasticine to two

different points on the soundboard: directly next to (but not touching) the driving

point, and a central region of the soundboard about 10 mm below the base of the

bridge. Both points were along the central axis of the guitar (Figure 7.29). The

application of a mass load enables the characterisation of the soundboards in terms

of a simple mass-spring system (§7.7) by measurement of the resulting vibratory

properties. Some luthiers have been known to use plasticine as a diagnostic tool to

indicate where mass should be removed to produce a desired alteration of the output

sound of the instrument [Gilet, 2000].

The addition of a 100 gram mass to the driving point reduces the pressure force

ratio in the low frequency soundboard/air cavity coupling region, at frequencies up to

approximately 300 Hz (Figure 7.25). There is little difference in the frequency range

300 → 800 Hz. Most of the soundboard modes have antinodal areas in the region of

the bridge, with the exception of the T(1,2) mode (occurring between 300 → 800 Hz)

where a nodal line passes directly through the bridge region. A mass added to a nodal

region has little effect on the motion, compared to that of an antinode [Strutt, 1869].

There is a reduction in the pressure force ratio of the guitars at about 900 Hz, where

the bridge occupies an antinodal region of a soundboard mode around this frequency.

The induced phase differences due to mass loading are shown in Figure 7.26.
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Figure 7.28 shows the same effect on the Engelmann spruce soundboard alone, with

an intermediary 50 gram mass load at the driving point.
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Figure 7.25: The effects on the pressure force ratio due to mass loading the three
guitars, two years after finishing. Shown are the spectra for the unloaded sound-
boards and those for soundboards with 100 grams added to the driving point at the
bridge.

Figure 7.27 shows the effect of adding the 100 gram mass to a point in the centre

of the Sitka spruce soundboard on the pressure force ratio. In the low frequency

soundboard/air cavity coupling region, the effect of the two positions of the 100
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Figure 7.26: The effects on the phase between soundhole air pressure and the applied
force at the bridge due to mass loading the three guitars, two years after finishing.
Shown are the phases for the unloaded soundboards and those for soundboards with
100 grams added to the driving point at the bridge.
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Figure 7.27: The effects of mass loading a guitar soundboard (Sitka spruce) on
measured pressure force ratio spectra (two years after finishing) due to 100 grams
added to the driving point and also to a central region of the soundboard, as in
Figure 7.29.



263

gram mass is identical to the same mass load applied to the driving point. However,

the pressure force ratio in the range 300 → 800 Hz, which was little altered by the

same mass added to the driving point, is now greatly reduced. The T(1,2) mode

(occurring about 300 → 800 Hz) has an antinode in the centre of the bridge and

therefore is strongly affected by an added mass. Many modes above this have nodal

lines along the axis of the guitar, especially in the lower bout below the bridge. It

is interesting to note that there is some increase in the pressure force ratio above

700 Hz and it is likely the addition of mass to a nodal region of a particular vibratory

mode could enhance this mode.

The addition of a mass load has a controllable perturbing effect on the vibratory

behaviour of the guitar soundboard. This may be used as a means of characterising

the guitar soundboard.
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Figure 7.28: Effects on the pressure force ratio on the Englemann spruce soundboard
due to mass loading at the driving point.
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Figure 7.29: Photograph of the position of the 100 gram mass in a central position
on the soundboard of the guitar. The masses are adhered using plasticine at this
point or very close to the driving point at the bridge.
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7.6 The effects of brace scalloping

Partly scalloped braces

Figure 7.30 shows the dynamic mass spectra and associated phases of the guitar

soundboards after the tone-braces have been partly scalloped. Figure 7.31 shows

the pressure force ratios and associated phases of the guitar soundboards after the

tone-braces have been partly scalloped.
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Figure 7.30: Dynamic mass spectra of the guitars before and after the tone-braces
have been partly scalloped.
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Figure 7.31: Pressure force ratio spectra of the guitars before and after the tone-
braces have been partly scalloped.
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Mass loading of partially scalloped braces

The soundboards were loaded with mass after the tone-braces had been partly scal-

loped. Figure 7.32 shows the effect on the pressure force ratio spectra, after mass

was added to the driving point at the centre of the bridge. The effects of adding

mass to different parts of the soundboard, in similar fashion to that illustrated by

Figure 7.27, and in §7.5 are shown in Figure 7.33. Effects similar to that in §7.5 are

observed for all three guitars.
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Figure 7.32: The effects of mass loading the driving point on the pressure force ratio
of the guitars.
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Figure 7.33: The effects of mass loading the soundboard on the pressure force ratio
of the guitars.
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Fully scalloped braces

The dynamic mass spectra after fully scalloping the tone-braces of the guitars and

the associated phase between force and acceleration is given in Figure 7.34. The

pressure force ratio spectra after fully scalloping the tone-braces of the guitars is

given in Figure 7.35.
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Figure 7.34: Dynamic mass spectra of the guitars with fully scalloped and partly
scalloped tone-braces.
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Figure 7.35: Pressure force ratios for guitars with fully scalloped and partly scalloped
tone-braces.
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f(T (2, 2)2) f(T (3, 2))
ES SS WRC

2yr 683 677 637
SCL50 679 680 638
SCL100 670 700 623

ES SS WRC
743 804 606
744 762 666
746 747 743

Table 7.3: The frequencies of Chladni figures, in response to brace scalloping.

Mass loading of fully scalloped braces

Pressure force ratios of Engelmann spruce soundboard after fully scalloping the tone-

braces, with mass loading the driving point are given in Figure 7.36.

Mass loading at various points on the soundboard are shown for Engelmann

spruce (Figure 7.37) and Sitka spruce (Figure 7.38.)

Summary of brace scalloping

The progression of the dynamic mass spectra during the three phases of brace scal-

loping studied here are given in Figure 7.39. The corresponding changes in pressure

force ratio are given in Figure 7.40.

The dynamic mass spectra show that all three of the soundboards are affected in

the frequency range 650−750 Hz, which includes the T(2, 2)2 and the T(3, 2) modes

(Table 7.3.)

These modes have nodal lines extending through the area reinforced by the ‘tone-

braces’ responsible for the asymmetry of this particular bracing system (Figure 7.41.)

This gives some evidence for the importance of these braces on the output sound of

the instrument.
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Figure 7.36: Pressure force ratios of the guitar soundboards after fully scalloping the
tone-braces, and loading the driving point with additional mass.
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Figure 7.37: Pressure force ratios of the Engelmann spruce soundboard after fully
scalloping the tone-braces, with mass loading at the bridge and a central position of
the soundboard (Figure 7.29).
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Figure 7.38: Pressure force ratios of the Sitka spruce soundboard after fully scallop-
ing the tone-braces, with mass loading at the bridge and a central position of the
soundboard (Figure 7.29).
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Figure 7.39: Dynamic mass spectra for all three guitars at three stages of tone-brace
scalloping: no scalloping, partially scalloped and fully scalloped.
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Figure 7.40: Pressure force ratios for all three guitars at three stages of tone-brace
scalloping: no scalloping, partially scalloped and fully scalloped.
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Figure 7.41: Schematic of the T(3, 2) soundboard mode, with the brace and bridge
positions marked. Also marked are the areas of the braces that have been scalloped.
This mode has many nodes aligning with the ‘tone-braces’, and therefore brace
scalloping of these braces is influential on the measured vibratory spectra.
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Figure 7.42: The evolution of the Q-values of the pressure force ratio of the T(1, 1)1

and T(1, 1)2 modes for the Engelmann spruce guitar. There is little measurable
change for any construction stage.

7.7 Parameter evolution

The parameters derived in §2.5 change as a function of the stages of construction.

Because measurements of vibratory spectra have been made at various construction

stages (this chapter and Chapter 6) these parameters provide a simple means of

characterising changes of the instruments during construction. For example, the

Q-values of the soundboard modes of the guitars during construction (Figure 7.42)

were able to be measured; little change overall was observed.
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Soundboard Mass f1 Kp∗

(kg) (Hz) (kN · m−1)
Engelmann spruce 0.2763 68 50.4

Sitka spruce 0.3067 73 64.5
Western Red cedar 0.2493 69 46.9

Table 7.4: Effective stiffness values for the free guitar soundboards. Frequencies are
taken as the frequency where the phase in the dynamic mass spectrum (Figure 6.8)
in the region of the free (2,0) mode (Figure 6.7) is a local minimum.

Effective free plate, Helmholtz, and membrane frequencies
and low frequency coupling

This section is a summary of the low frequency parameters (§2.5) as measured for

the three guitars at the various stages of construction examined in this chapter and

Chapter 6.

Free soundboards: effective stiffnesses

By assuming the deflection of the soundboard obeys Hooke’s law, the effective stiff-

ness of a guitar soundboard may be defined (§2.5) as Kp∗ = 4π2f 2
1 m, where f1 is the

fundamental frequency (in this case the (0,2) mode) and m is the mass of the free

plate. The effective free plate soundboard stiffnesses are given in Table 7.4. Values

for f1 are from Figure 6.8.

The effective stiffness values of the free guitar soundboards compare to Kp∗ =

74 kN ·m−1 given in [Caldersmith, 1978] for a classical guitar soundboard. This value

results from a semi-empirical calculation of the soundboard and bracing, making

simple assumptions about the structure. The effective stiffness for the soundboards

attached to the back and sides are given in Table 7.5.
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Soundboard Kp∗

(kN · m−1)
Engelmann spruce 232.5

Sitka spruce 279.7
Western Red cedar 201.3

Table 7.5: Calculation of the effective stiffness of guitar soundboards after glueing
to the sides and back. Calculations are taken from the mass of the plate and the
calculations of the free-plate frequencies (including fluid loading from the air) in the
low frequency air coupled region (§7.7).

Guitar bodies: effective stiffness

The effective stiffness values for a steel-string guitar soundboard attached to the

back and sides (Table 7.5) compare to the value of Kp∗ = 128 kN · m−1 given in

[Christensen and Vistisen, 1980], although, as the case with Table 7.4, the only

available comparison is with a classical guitar soundboard.

The frequency at which the air pressure in the soundhole is closest to 180◦ out of

phase with the force at the bridge, f−, that of the in-phase motion, f+ as well as that

of the equivalent Helmholtz resonator, f0, may be obtained from the low frequency

turning points in the dynamic mass spectra of the guitars [Firth, 1977, Christensen

and Vistisen, 1980]. These coupled frequencies are given in Table 7.6.

These data may then be used to calculate the frequency of the fundamental plate

mode, fp (Figure 7.44) as well as that uncoupled with the air, fp,0 (Figure 7.45).

The lowest frequency that the air and the soundboard couple at, fph (Figure 7.46),

are given in Table 7.7.
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Figure 7.43: The progression of frequencies for an equivalent Helmholtz resonator.

Table 7.8 lists �pH values calculated for the three guitars at various stages of

construction. It is possible this parameter may be used to characterise a particular

instrument, but it is not known how it relates to the measurable spectra or subjective

quality of the instruments.

The equivalent Helmholtz resonance is altered as a result of successive construc-

tion stages (Figure 7.43.) The greatest change occurs when the bridge is added to the

instruments, effectively reducing the body compliance, which raises the Helmholtz

frequency by approximately 10%.
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Soundboard Construction stage Frequency (Hz)
f− f0 f+

Engelmann Body 96.6 119.5 161.6
spruce Top-thinned 91.4 120.0 157.8

Binding 90.2 117.8 156.0
Guitar (no bridge) 88.8 115.8 152.5
Without neck 89.0 117.2 154.5
With bridge 91.6 126.5 157.6
Finished 91.8 126.5 158.6
Lacquer hardening 93.0 126.9 159.0
Played 2 years 94.2 126.4 158.8
Partially scalloped 91.5 126.6 158.6
Fully scalloped 91.7 126.4 156.1

Sitka Body 98.0 120.0 160.0
spruce Top-thinned 97.0 119.7 160.1

Binding 94.2 118.7 160.6
Guitar (no bridge) 94.2 118.6 159.6
Without neck 94.2 115.8 153.7
With bridge 96.8 126.3 163.0
Finished 97.0 126.5 164.2
Lacquer hardening 98.1 126.6 164.4
Played 2 years 99.5 126.4 164.1
Partially scalloped 97.0 126.6 164.2
Fully scalloped 97.0 126.7 159.0

Western Body 96.8 125.2 163.3
Red Top-thinned 90.4 121.0 157.8
cedar Binding 88.9 118.5 154.9

Guitar (no bridge) 88.8 115.8 153.5
Without neck 89.0 115.8 150.7
With bridge 89.0 126.5 156.3
Finished 91.8 126.5 157.6
Lacquer hardening 91.5 126.6 157.2
Played 2 years 91.5 126.4 157.5
Partially scalloped 88.9 127.0 156.2
Fully scalloped 86.3 126.9 153.6

Table 7.6: A summary of the low frequency coupling frequencies, as derived from
the measured dynamic mass spectra at each construction phase.
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Soundboard Construction stage Frequency (Hz)
fp fp,0 fph

Engelmann Body 145.5 130.6 87.5
spruce Top-thinned 137.3 120.2 89.2

Binding 136.3 119.5 88.0
Guitar (no bridge) 133.2 116.9 85.9
Without neck 134.4 117.3 87.7
With bridge 131.2 114.1 90.5
Finished 132.5 115.1 91.2
Lacquer hardening 133.5 116.5 90.9
Played 2 years 134.6 118.3 90.0
Partially scalloped 132.3 114.6 91.4
Fully scalloped 129.6 113.2 89.3

Sitka Body 106.0 103.9 45.8
spruce Top-thinned 143.9 129.7 86.4

Binding 143.5 127.5 88.4
Guitar (no bridge) 142.4 126.7 87.7
Without neck 138.2 125.1 82.5
With bridge 141.4 125.0 91.4
Finished 142.8 126.0 92.2
Lacquer hardening 143.6 127.4 91.6
Played 2 years 144.4 129.2 90.3
Partially scalloped 142.6 125.8 92.2
Fully scalloped 136.5 121.7 88.5

Western Body 142.7 126.3 91.2
Red Top-thinned 135.7 117.8 90.3
cedar Binding 133.6 116.2 88.4

Guitar (no bridge) 134.3 117.7 86.6
Without neck 131.2 115.8 84.5
With bridge 127.9 110.0 90.9
Finished 131.3 114.3 90.4
Lacquer hardening 130.6 113.6 90.3
Played 2 years 131.2 114.0 90.5
Partially scalloped 127.2 109.3 90.8
Fully scalloped 122.2 104.5 89.7

Table 7.7: Derived low frequency parameters, as in §2.5 and §2.5 from data in Table
7.6.
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Soundboard Construction stage FpH

Engelmann Body 0.73
spruce Top-thinned 0.74

Binding 0.75
Guitar (no bridge) 0.74
Without neck 0.75
With bridge 0.72
Finished 0.72
Lacquer hardening 0.72
Played 2 years 0.71
Partially scalloped 0.72
Fully scalloped 0.71

Sitka Body -
spruce Top-thinned 0.72

Binding 0.74
Guitar (no bridge) 0.74
Without neck 0.71
With bridge 0.72
Finished 0.73
Lacquer hardening 0.72
Played 2 years 0.71
Partially scalloped 0.73
Fully scalloped 0.70

Western Body 0.73
Red Top-thinned 0.75
cedar Binding 0.75

Guitar (no bridge) 0.75
Without neck 0.73
With bridge 0.72
Finished 0.71
Lacquer hardening 0.71
Played 2 years 0.72
Partially scalloped 0.72
Fully scalloped 0.71

Table 7.8: Low frequency coupling parameter as a function of construction phase (low
frequency coupling frequency normalised by the Helmholtz frequency, from [Chris-
tensen and Vistisen, 1980].)
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Top-plate Frequencies
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Figure 7.44: The progression of calculated frequencies of free soundboards, with an
air load, from low frequency coupling features.
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Free Top-plate Frequencies
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Figure 7.45: The evolution with construction of calculated uncoupled fundamental
free-soundboard frequencies of the guitars.
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Coupling Frequencies
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Figure 7.46: The evolution with construction of calculated low frequency
air/soundboard coupling frequencies of the guitars.
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Construction state dfp,0

dm
(Hz · g−1)

ES SS WRC
No scalloping -7.9 -8.5 -7.9
Partially scalloped -6.1 -7.1 -5.7
Fully scalloped -6.1 -6.6 -6.0

Table 7.9: The change in calculated free soundboard frequencies in response to
added mass load. An indication of the linearity of the relationship is given by the
least squares fit parameter: R2 > 98%. The added mass ranged from 0 to 200 grams.
cf. Figure 7.49.

Effective mass, stiffness and area

The changes in frequency of the calculated free soundboard in response to mass

loading at the driving point are given in Table 7.9.

The effect of brace scalloping was to lower the calculated free soundboard fre-

quencies progressively (Figure 7.49.) Because little mass was removed in comparison

to the total mass of the soundboard, this reduced the effective stiffness at low fre-

quencies (Figures 7.48 and 7.49) being more important than the (modest) reduction

in mass.

For the dimensionless low-frequency air-soundboard coupling parameter, �pH ,

the scalloping process improves the (Hooke’s) linear nature of the equivalent spring

obtained from the response of low frequency coupling under an added mass load, but

does not greatly affect the actual value (Table 7.10.) The construction stage that

affects �pH the most is the addition of the bridge.

7.8 Results/Comments

The construction stage that had the most profound effect on these measurements for

all three guitars, was the addition of the bridge. The bridge, along with reducing



291

Mass perturbation of free-plate frequencies 
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Mass perturbation of free-plate frequencies 
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Mass perturbation of free-plate frequencies 

(tone-braces fully scalloped)
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Figure 7.47: The effect on the calculated uncoupled free-plate fundamental frequency
of guitar soundboards by mass loading at successive stages of tone-brace scalloping.
The mass-loading gradient and linearity of the perturbation by mass loading pro-
gression, as calculated from least-squares linear fit are in Table 7.9.
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Effective stiffnesses of guitar soundboards
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Figure 7.48: The effective stiffness of each guitar soundboard at successive construc-
tion phases, as calculated from the mass of plate and the uncoupled fundamental
soundboard frequency.

d�pH

dm
(g−1)

Construction state ES SS WRC
No scalloping -0.026 -0.027 -0.033
Partially scalloped -0.027 -0.023 -0.020
Fully scalloped -0.019 -0.02 -0.021

Table 7.10: The change in low frequency air soundboard coupling as an expression
of the dimensionless low frequency coupling parameter �pH (§2.5, §2.5). Here, the
linear least-squares fit parameter, R2 > 96%
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Effective stiffness 
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Figure 7.49: The effect of mass loading on effective stiffness of guitar soundboards,
as calculated from the mass of each plate, plus load, and the calculated uncoupled
fundamental soundboard frequency.
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the number of distinct Chladni modes, increased the effective Helmholtz frequencies

of the guitars. No other construction stage had a significant effect on the Helmholtz

frequencies. Although the bridge adds some mass, it adds enough stiffness to alter

the character of modes that have nodal regions nearby, notably the T(1, 2)2 and

T(2, 2) modes. For this reason, the bridge should be considered as part of the brace

system, and not just a termination point for the string.

The addition of the neck introduces low frequency modes, around 60 Hz, in-

corporating the entire length of the instrument and it is expected this would have

implications for the tactile response of the instrument, but does not appear to greatly

affect the radiated sound. In addition, there are no mechanical losses associated with

an incomplete mechanical coupling between the neck and the body, suggesting that

the bolt-on neck system used is equivalent to the more traditional glue-on neck sys-

tem, in terms of vibratory response.

The effect of the polish used (nitrocellulose lacquer) has a small effect on the

measured spectra, lowering and damping the T(1, 2)2, T(2, 2) and T(5, 3) modes.

Allowing the volatile solvents in the polish to evaporate for a period of 53 days had

the effect of slightly lowering the frequency of the T(2, 2) mode. There was little

difference in the measured properties of the guitars after a period of ageing, with

only a small amount of playing, for two years.

Apart from a small lowering in fundamental frequency, the effects of brace scal-

loping were not important at frequencies up until about 650 Hz, corresponding to the
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T(3, 2) mode. The modes at these frequencies have nodal lines that are in areas that

are close to the regions of the soundboard braces that are scalloped. The tone-braces

especially appear important at these modes. Scalloping also appears to improve the

fit of frequency change induced by an applied mass load at the driving point.



Chapter 8

A lexicon and a preliminary study

of subjective responses to guitar

sounds

“If ever there’s an obscene noise to be made on an instrument, it’s going to come

out of a guitar. On a saxophone you can play sleaze. On a bass you can play balls.

But on a guitar you can be truly obscene.”—Frank Zappa (1940-1993)

8.1 Introduction

It would be desirable to determine how physical changes made to acoustic guitars

affect how the sound is perceived by human beings. It is obviously important for

a luthier to know how their manufacturing techniques influence the sensations ex-

perienced by a human listener. One approach is to perform measurements of the

responses of human subjects exposed to sounds produced by the instrument with

various physical configurations. This is a difficult task; previous studies on the re-

sults of changes to the instrument do not make it clear how traditional ‘physical’

296
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measurements of the response of an instrument relate to the resulting subjective im-

pression [Meyer, 1983b, Hutchins, 1989, Richardson, 1994, Wright and Richardson,

1997, Boullosa et al., 1999].

Psychoacoustic studies of timbre [Grey, 1977, 1978, Kerrick et al., 1969, Lichte,

1941, McGee, 1964, Salomon, 1958, Terhardt, 1978, von Bismarck, 1974b, Wedin and

Goude, 1972, Wessel, 1978, Wright, 1996, Meyer, 1983b, Gridnev and Porkenhov,

1976, Boullosa et al., 1999] typically examine the responses of a participant exposed

to external stimuli. These responses are usually in the form of a difference between

two stimuli, or with the ranking of certain parameters defined within the test.

However, the specific details of the type of stimulus and the mechanics of how

the test is applied is often important, which imposes constraints on the range of

the variables being studied. For example, the perceived timbre of notes of a guitar

string plucked with the fingernail differs markedly from that when a plectrum is used

[Schneider, 1977]. Because the purpose of Study I (§8.2) is to construct a vocabulary

to describe the timbre of guitar sounds with as large a range as possible, no stimulus

is given.

Once an agreed lexicon is established, it is then possible to determine the re-

dundancy of particular terms, by analysing the responses of participants exposed

to guitar sounds. From the results of other studies of the factor analysis of tim-

bre (§1.3), it should be possible, in principle, to characterise guitar sounds using a

limited number of dimensions. This is the purpose of Study II (§8.3).
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8.2 Study I—establishing a guitar timbre lexicon

There is an extensive informal literature reporting descriptions of the timbre of

acoustic guitar sounds. Within this literature there appears to be some consistency

in the descriptive terms (descriptors) used. The aim of this study is to formalise these

descriptors, producing an acceptable lexicon to describe the timbre of an acoustic

guitar. The terms need to be meaningful (to a large proportion of the population

requiring the use of these terms) and should be broad enough to cover the variation

in timbre expressed by the instrument. This list could then be used to obtain in-

formation from the responses of participants in a test to determine the perceptual

features of given guitar sounds, as in Study II (§8.3).

Method and procedure

This study consists of two parts: a controlled literature search to obtain a list of

descriptors, and a survey to determine how these descriptors are rated, in terms of

their usefulness in describing a guitar sound.

A selection of guitar magazines and websites were obtained from a collection of

magazines and through a search of websites that sold or reviewed acoustic guitars.

The terms used to describe the timbre of the instruments—usually adjectives—were

taken from these reviews. The frequency that the terms occurred in this sample

of the literature was recorded. In addition, some guitar repairers were consulted

regarding the terms they used to describe guitar sounds.
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The list of descriptors resulting from the literature search was presented to par-

ticipants to rate in terms of how useful they found the descriptor in describing guitar

music. The survey does not rely on stimuli. Instead, it relies on the participants’

memory of all the acoustic guitar sounds they had heard before. There is precedence

for this type of survey [Schubert, 2003]; this method does not constrain the partici-

pant to a narrow range of sounds (which may lack important components of interest)

and is also convenient to administer. On the other hand this approach is strongly

dependent on the participants’ memory of sounds as well as their experience with

using the particular words in this environment.

Because of the prevalence of the internet and World Wide Web networks, an

‘online’ format solved the logistical problems of distribution, advertising and supply.

Because the test was conducted without external stimuli, data transfer consisted

only of fairly small text files. The test was in the form of an interactive online ‘web

survey’ spanning 9 pages and taking approximately 5-12 minutes to complete. Par-

ticipants were asked to respond with their first impressions, to every term in the list,

after the instructions:

“Take a few minutes to think of the sounds produced by any acoustic guitar being

played. Which of the following terms (if any), in your opinion, would be useful for

describing the tone quality (‘timbre’) of a guitar sound?”

The web-pages were written in PHP (Personal Home Page) and the interface were
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forms generated by the users’ web-browsers via HTML (Hyper-Text Mark-up Lan-

guage.) The terms referred to are provided in Appendix F. The usefulness (‘utility’)

of each term was rated on a seven-point scale, (1-7, 7 defining the most useful). The

order that terms appeared in each examination was randomised to reduce ordering

effects and biases. Participants were asked to state their general musical experience

and how much they played or listened to acoustic guitar music. Opportunity was

given to add additional comments and to suggest further expressions.

Validity checking of the survey

Because of the lack of control of the participants in a web-based test, it is necessary

to ascertain whether the responses obtained were sufficiently consistent and valid.

Participants were advised that some sort of validity check would be used during the

test. Two types of checks were introduced for this purpose: repeated measures and

syntactic logic check.

Repeated Measures There were exactly 3 repetitions of particular terms in each

test. The difference in scores between the repeats and the original were taken

for the three repeats. The terms that were repeated were selected at random,

although the positions they occurred at were constant for each test:

1. Between term 27 and 28, a repeat of term 12 occurred

2. Between term 63 and 64, a repeat of term 47 occurred

3. Between term 102 and 103, a repeat of term 69 occurred
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Syntactic logic check Exactly 3 terms were added that could not be used to make

a sensible sentence in the context of the survey. Generally, for a term to be a

useful timbre descriptor, it is required to be an adjective. The following terms,

not adjectival, were inserted:

1. Between term 15 and 16: ‘please enter a 1 here’

2. Between term 58 and 59: ‘albert einstein’

3. Between term 89 and 90: ‘radium’

These terms also appeared at the same position for each participant.

It is not expected that a large portion of respondents would answer an identical

value for each of the repeated terms (Except for ‘please enter a 1 here’). However

large enough discrepancies would render the entire data set from that participant

unusable because of their unreliability. The sum of the square of the differences in

the repeats was examined. If this was greater than eight, then the responses from

the participant was discarded. One participant was discarded for this reason.

The URL address for the web survey was distributed on the University of New

South Wales all-physics email list, posted on the newsgroups rec.music.makers.guitar.acoustic

and rec.music.classical.guitar, and various UNSW students, including those from the

music course MUSI2142 (Musicology 2B), participated.
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Results of the literature search

The terms resulting from the literature search were almost all ‘positive’ in the eval-

uative sense. This is because it is usually guitars of relatively high quality that are

reviewed in popular magazines and websites, and/or the reviewer is trying to sell

the instrument. Because the largest possible range of acoustic guitar sounds was

required, consultation was undertaken with some guitar repairers, who had seen a

range of instruments requiring significant amelioration, in order to add terms with

more negative emotive connotations to the list. The literature search ceased when

84 terms were found (Figure 8.1).

Figure 8.1: The frequency of all terms encountered in the literature study, illustrating
the frequency distribution. Because of limitations on space, only a selection of terms
are labelled.

A total of 112 words or short phrases were obtained. It was necessary to reduce

this set to a more manageable number of terms. Judging from previous studies

[Rasch and Plomp, 1982, Enomoto and Yoshida, 1968, Kerrick et al., 1969, Grey,
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Rank Descriptor Frequency occurring in literature sample
1 full 21
2 rich 20
3 clear 17
4 bright 15
5 warm 14
6 balanced 11
7 mellow 9

8= boomy 7
8= clean 7

10= powerful 6
10= sweet 6

Table 8.1: The ten most frequently encountered descriptors in the selective literature
search.

1977] the descriptions of the timbre of a variety of sound stimuli are able to be

expressed using a small number of terms. Therefore data from listening tests should

be expected to show a clustering in correlations between these terms and responses

to stimulus in the form of guitar sounds with varying timbre.

Participant details and experience

The participants were asked for personal details, including name, age group, occupa-

tion, how often they heard live and recorded acoustic guitar music, years of experience

playing a musical instrument, and years of experience playing the acoustic guitar.

Comparing how certain demographic groups answered the survey may provide useful

data. For example, one might expect those with many years of experience in guitar

playing to be more familiar with the terms used than those who had never played at

all. The distribution of participants’ experience with playing a musical instrument,

and those playing the acoustic guitar, are shown in Figures 8.2 and 8.3.
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Figure 8.2: All participants, experience with a musical instrument.

Analysis

A total of 245 surveys were completed over a period of 30 days. The uncertainty

of the mean of each term, ΔU , was taken as the standard error. With a possible

range between one and seven, the mean score, from all terms and participants, was

3.74 ± 0.01 and ranged from ‘bright’ (5.67 ± 0.11) to ‘boofy’ (1.49 ± 0.07). The

entire list, for all participants, is included in Table F.1 (Appendix F). There were

no apparent effects due to the particular order the terms appeared in.
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Lexicon responses
Term Mean response Ranking
bright 5.7 1
warm 5.5 2
clear 5.5 3
crisp 5.4 4
rich 5.3 5
full 5.3 6

balanced 5.1 7
mellow 5.1 8
tinny 5.0 9

twangy 5.0 10
clean 5.0 11
bassy 5.0 12
thin 4.9 13

ringing 4.9 14
trebly 4.9 15

metallic 4.9 16.5 (16=2)
powerful 4.9 16.5 (16=2)
brilliant 4.8 18
boomy 4.7 19
deep 4.7 20
dead 4.7 21

vibrant 4.6 22

Table 8.2: The 22 terms of highest mean rating, from all 245 participants in the
guitar timbre lexicon study. This is expressed as the mean response. Each term had
a standard error of ±0.1.
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Literature Study
Term Frequency Ranking
full 21 1
rich 20 2
clear 17 3
bright 15 4
warm 14 5

balanced 11 6
mellow 9 7
boomy 7 8.5 (8=2)
clean 7 8.5 (8=2)

powerful 6 10.5 (10=2)
sweet 6 10.5 (10=2)
crisp 5 12.5 (12=2)

punchy 5 12.5 (12=2)
big 4 15 (14=3)

brilliant 4 15 (14=3)
tight 4 15 (14=3)
bassy 3 19.5 (17=6)
bluesy 3 19.5 (17=6)
natural 3 19.5 (17=6)

percussive 3 19.5 (17=6)
ringing 3 19.5 (17=6)
strong 3 19.5 (17=6)

Table 8.3: The 22 most frequent
terms from the literature search.
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Comparison of guitar timbre lexicon to literature search

Of the 20 terms most frequently occurring in the literature and the 20 highest mean

responses from the survey, 13 terms were the same (Table 8.2). To compare the

ranking of both data sets, Spearman’s rank correlation is an appropriate statistical

measure.

Comparing the rankings of the frequency of the terms in the reviewed portion

(i.e. omitting the descriptors obtained through consultation) of the literature study

(N = 84), to the rankings of the terms from the responses of participants who had

25 years or more experience with the acoustic guitar, yielded a correlation coefficient

of rs = 0.57 (p < 0.001). Hence there is some positive correlation between the utility

of a descriptor of guitar timbre and the frequency the term occurs in the literature.

Study I—conclusion

The descriptors of guitar sounds were obtained from a controlled literature search

and were judged for usefulness in a web survey. A correlation of rS = 0.57 was found

between the utility rating of each descriptor and the frequency it occurred in the

literature.

This list may be of use to the acoustic guitar community and will be used to help

participants to describe their impression of a guitar sound recording in Study II. It

is also possible this method of testing could be applied to other musical instruments.
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8.3 Study II—evaluation of guitar sounds

In recordings of guitars being played, several variables could conceivably affect the

timbre and other perceptual attributes of a guitar sound reproduced through an

audio system. This study investigates the effect of some variables on the perceived

distinctions among recordings of steel-string acoustic guitars.

Study II: method and materials

Three guitars of varying commercial value were recorded simultaneously at four dif-

ferent locations. Each instrument was played a total of eight times. Some of the

variation in the recorded sound due to the type of guitar (GQ), the microphone

positions (RM) and that due to the particular performance (RP) were quantified by

varying these parameters.

Guitar quality

The three guitars ranged from a fairly expensive hand-made model, a medium-priced

style guitar and an inexpensive model. There is no well-identified objective measure

for the quality of an acoustic steel-string guitar. The commercial value generally

attributed by musicians and dealers to similar instruments of each type is taken as

a rough indicator of the quality of the instrument.
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Figure 8.3: All participants, guitar playing experience

Parameter Value Mass (kg) Estimated price
GQ3 2.2300 Greatest
GQ2 2.0016
GQ1 2.0212 Least

Table 8.4: The three guitars used in Study II to determine the effect of variation in
the commercial value of the instrument.
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Microphone position Parameter value Microphone type
Near guitar bridge RM1 R0DE NT3
Near guitar neck RM2 R0DE NT3

Overhead RM3 R0DE NT3
Player’s head (stereo) RM4 2 Optimus tie clip microphones

Table 8.5: The four microphones systems, at separate positions around the guitar,
to make recordings for the pilot test. The three R0DE microphones are of cardiod
mono type, and the headphone system is a stereo combination of two small electret
cardiod microhones.

Microphone position

The directivity of the radiation from stringed instruments is frequency dependent

[Meyer, 1972], is influenced by the player’s presence, and is complicated by reflec-

tions. The perceived timbre of sounds recorded at different positions may be different

and it is not obvious where the most appropriate recording location is. The four mi-

crophone positions were (Figure 8.4, Table 8.5) near the bridge (RM=1), near the

neck (RM=2), directly overhead (RM=3) (about one metre above the soundhole),

and at the ears of the player (RM=4).

During the test, the participants were not explicitly aware of the recording posi-

tion of any particular track they were exposed to.

Variation in performance

To further decrease variation in the performances, the same piece was played each

time. The piece to be played is important: it is desirable to have the piece in a

musical context, but it is not desirable to have a long excerpt. For the luthier,

the most valuable piece is that which a potential buyer of a guitar might play,

assuming they were to judge an instrument based solely upon the sound it made.
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It was decided to play an ascending one octave G-major scale (from G2) followed

by an arpeggiated open G,C,D chord progression. It would be ideal to have the

sound produced by a particular instrument to be reproducible, while also sounding

as realistic as possible. Usually the player has some degree of control over the timbre

of the sound produced, in addition to the loudness and pitch. Using an automated

device to excite the instrument is possible, but present models do not sound realistic

[Cass, 2003]. Instead, a human player was chosen: Sydney guitar player and teacher

John Morris.

The recordings were made in one session lasting three hours in a studio equipped

with a professional digital recording system designed for the recording of acoustic

guitar music. The performances were all made by the same performer, who was

blindfolded and wore a headset with microphones attached near the position of the

player’s ears. Neither the performer nor the recording engineer knew the purpose of

the test. The guitars were fitted with new strings (Martin ‘Acoustic SP Phosphor

Bronze’, Light Gauge (0.30, 0.41, 0.64, 0.81, 1.07, 1.37 mm diameters))and tuned

to standard tuning (E2, A2, D3, G3, B3 and E4) using an electrical guitar tuner.

The tuning was checked periodically during the session. The player was handed each

instrument in a prearranged pseudorandom order, with an associated three digit

numerical performance code.

These recordings were recorded onto audio CD (sampling rate 44.1 kHz, with

16 bit depth audio). The factorial design of the study, gives a total of 96 separate

tracks (eight performances of the three guitars, each recorded at four microphone

positions).
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Figure 8.4: The four microphone

positions used to record the guitar

sounds used as stimuli in Study II.

Study II: procedure

The pilot study was installed on three comput-

ers in a survey format, using software developed

by Emery Schubert. Three identical models of

computer were used (Apple PowerMac 7200/120,

running Mac OS 8.6 with a 120 MHz PPC 601

central processor and a 16 bit 44.1 kHz AWACS

Sound IC1 sound processor with Philips Stereo

Headphones SBC HP100).

The participants were exposed to the stimuli

in the form of the tracks from the audio CD. Each

stimulus was associated with a survey page con-

taining drop-down lists of the perceptual quan-

tities obtained from §8.2, which the participant

rated as an integer between zero and ten. The

decision to use a unipolar (0 to 10), as opposed

to a bipolar (-5 to +5) rating scale, was made

after considering the semantic implications in some cases. It was thought many

respondents would interpret a negative scale of e.g. ‘brightness’ as being the diamet-

ric opposite to ‘brightness’ (‘anti-brightness’?), as opposed to a lack of the quality

‘brightness’. Similarly, terms incorporating ‘lacking X’ were removed, if the quality

‘X’ were present. The participants underwent a small training session, comprising

1Audio Waveform Amplifier and Converter. Conforms to IT&T ASCO Audio-Stereo Codec

Specifications.
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How much did you like the sound? (preference))
overall quality of this instrument (quality)

dry loudness bright balanced
bassy boomy trebly warm

ringing thin tinny full
bell-like clear dead crisp

rich muddy powerful brilliant
midrangey clarity deep twangy

mellow woody punchy bottomy
dull metallic shimmering harmonics percussive

Table 8.6: The variables that participants rated in response to stimuli in the pilot
test.

two stimuli deemed to span the range of guitar quality, both recorded from the head-

set microphones (i.e. taking GQ=1, 3 while holding RM=4). Thereafter, the stimuli

were provided by playing tracks from the audio CD in pseudorandom order. Because

this study required the participant to respond to many questions (34) on each sound

stimulus (Table 8.6), there is a greater probability of operator fatigue. A test of 32

examples (i.e. 1/3 of the total stimuli on the audio CD) required a participant’s

undivided attention for at least 90 minutes. The test was designed with two rest

breaks, as well as an option to end the test at any stage after the initial training

period. As a result, the participants were not forced to respond to all stimuli and

therefore the test is of an incomplete factorial design.
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Results

Overall analysis of descriptors

There were a total of 95 observations, from five respondents. The training session

was the same for all participants: tracks 78 and 92 (GQ=1,3, RM=4). The six

terms with the highest variance from track 78 were (mean (variance), N=5): ‘dry’

4.6 (18.8), ‘bassy’ 5.6 (16.3), ‘punchy’ 4.6 (13.3), ‘dull’ 4.8 (12.7), ‘midrangey’

4.9 (11.3) and ‘deep’ 6.4 (11.3). The five terms with the highest variation from

track 92 were: ‘tinny’ 3.2 (15.7), ‘dull’ 4.4 (13.8), ‘twangy’ 4.4 (11.3), ‘brilliant’

4.6 (9.8) and ‘ringing’ 3.2 (9.7).

In addition to these two tracks, the randomised audio track sequence meant that

there were five cases where two different participants were exposed to the same track.

In these cases, there does not appear to be good agreement in the rating of the tracks

with the term ‘dry’. This may be an indication that the participants were unsure

how to use this as a descriptor, because the magnitudes were very low in general

(mean ± standard error(number observations) 4.0 ± 0.5(62)) second only to ‘dull’

(3.9± 0.5(62)), compared to the overall mean for all descriptors (4.95± 0.04(3230)).

This is also a comparatively high standard error; the majority (26 of the 34 terms)

had a standard error of 0.3 or less.

Effects of varying the guitar

The mean and standard errors of the preference and quality responses, as a function

of guitar of varying commercial value, are given in Table 8.8. However, the differences

in the preference and quality ratings with different guitars were not significant. A
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Descriptor Mean± standard deviation (observations)
dull 3.88 ± 3.14(93)
dry 3.98 ± 2.90(89)
thin 3.57 ± 2.87(94)
dead 2.52 ± 2.59(93)

muddy 2.27 ± 2.44(93)
boomy 4.18 ± 2.41(95)
punchy 4.72 ± 2.39(95)
twangy 4.36 ± 2.36(95)

tinny 2.35 ± 2.28(92)
bassy 4.76 ± 2.27(94)

percussive 4.18 ± 2.25(84)
metallic 4.35 ± 2.19(93)
powerful 5.09 ± 2.16(95)

woody 4.78 ± 2.01(95)
trebly 5.33 ± 2.00(95)

brilliant 5.65 ± 1.96(95)
ringing 5.17 ± 1.95(95)

deep 5.23 ± 1.92(95)
bell-like 4.55 ± 1.91(84)

full 6.27 ± 1.86(95)
warm 5.59 ± 1.85(95)

mellow 5.84 ± 1.84(95)
overall quality 6.39 ± 1.74(93)

bright 5.82 ± 1.72(95)
rich 6.06 ± 1.72(95)

How much did you like the sound? 6.47 ± 1.71(94)
midrangey 4.71 ± 1.68(90)

clarity 6.33 ± 1.62(94)
clear 6.37 ± 1.61(95)

balanced 5.49 ± 1.56(91)
bottomy 5.54 ± 1.54(95)
loudness 5.40 ± 1.40(94)

crisp 5.34 ± 1.36(95)
shimmering harmonics 5.07 ± 1.31(88)

Table 8.7: Overall mean of responses from Study II, in order of standard deviation,
to show the range of the responses. The number of observations of each term are in
parentheses.
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Guitar Mean±Standard error (count)
Preference Quality

GQ1 6.5 ± 0.3(28) 6.6 ± 0.3(28)
GQ2 6.8 ± 0.2(42) 6.7 ± 0.2(41)
GQ3 6.0 ± 0.4(25) 5.8 ± 0.4(25)

Table 8.8: Overall mean response ratings of preference and quality, according to
nominal quality of guitar. GQ1 is the instrument of lowest market value.

one-way ANOVA test for ‘preference’ gives F2,92 = 2.01 (p=0.14) and, for ‘quality’,

F2,92 = 2.24 (p=0.11). It is therefore concluded that the listeners cannot distinguish

between instruments of various market values, at least for such a small sample.

Effects of varying microphone position

There were apparently clear differences in the perceived timbre due to where the

recording microphone was positioned (Table 8.9), although this was not significant

for preference, F3,91 = 2.16 (p=0.10), quality F3,91 = 1.55 (p=0.21), loudness F3,91 =

1.28 (p=0.29) and dry F3,91 = 0.13 (p=0.95).

The headset microphone pair were rated higher (within the standard errors) than

the other three positions in the case of ‘preference’, ‘quality’, ‘balanced’, ‘warm’,

‘full’, ‘clear’, ‘mellow’ and ‘bottomy’. The microphone at the neck was rated higher

than the others in ‘bell-like’, ‘crisp’, ‘powerful’, ‘woody’ and ‘metallic’. For the

overhead microphone, this was clearly higher in ‘thin’, ‘dead’ and ‘dull’. Finally, the

bridge microphone was seen as high in terms of the variables ‘bassy’ and ‘midrangey’.

Therefore the microphone position clearly has a great impact on the perception of

timbre from the guitar, with a largely positive reaction to the stimulus from the
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Descriptor RM=1 (Bridge) RM=2 (Neck) RM=3 (Overhead) RM=4 (Headset)
preference 6.2 ± 0.4(18) 6.6 ± 0.3(29) 5.9 ± 0.4(21) 7.1 ± 0.3(27)
loudness 5.6 ± 0.3(18) 5.6 ± 0.3(29) 4.9 ± 0.3(21) 5.7 ± 0.3(27)
bright 5.7 ± 0.4(18) 6.0 ± 0.3(29) 5.8 ± 0.4(21) 5.8 ± 0.4(27)

balanced 5.2 ± 0.3(18) 5.5 ± 0.3(29) 5.4 ± 0.3(21) 5.9 ± 0.4(27)
bassy 5.4 ± 0.4(18) 4.7 ± 0.4(29) 4.1 ± 0.4(21) 4.9 ± 0.5(27)
boomy 4.3 ± 0.5(18) 4.5 ± 0.5(29) 3.5 ± 0.5(21) 4.2 ± 0.5(27)
trebly 5.2 ± 0.4(18) 5.7 ± 0.4(29) 5.4 ± 0.4(21) 5.0 ± 0.4(27)
warm 5.7 ± 0.5(18) 5.4 ± 0.4(29) 5.1 ± 0.4(21) 6.1 ± 0.3(27)
ringing 5.6 ± 0.4(18) 5.5 ± 0.4(29) 5.0 ± 0.4(21) 4.7 ± 0.4(27)
thin 3.0 ± 0.7(18) 3.7 ± 0.6(29) 4.3 ± 0.6(21) 3.3 ± 0.5(27)
tinny 2.3 ± 0.6(18) 2.3 ± 0.4(29) 2.6 ± 0.5(21) 2.5 ± 0.5(27)
full 6.2 ± 0.4(18) 6.2 ± 0.3(29) 5.6 ± 0.4(21) 6.9 ± 0.4(27)

bell-like 4.9 ± 0.4(18) 5.2 ± 0.3(29) 4.6 ± 0.4(21) 3.7 ± 0.3(27)
clear 6.1 ± 0.4(18) 6.3 ± 0.3(29) 6.0 ± 0.3(21) 6.9 ± 0.3(27)
dead 2.7 ± 0.7(18) 1.8 ± 0.4(29) 3.7 ± 0.6(21) 2.5 ± 0.4(27)
crisp 5.3 ± 0.3(18) 5.7 ± 0.3(29) 5.0 ± 0.4(21) 5.3 ± 0.2(27)
rich 5.9 ± 0.4(18) 6.2 ± 0.3(29) 5.5 ± 0.3(21) 6.5 ± 0.4(27)

muddy 3.0 ± 0.7(18) 1.8 ± 0.4(29) 2.7 ± 0.6(21) 2.2 ± 0.4(27)
powerful 5.4 ± 0.5(18) 5.7 ± 0.4(29) 4.0 ± 0.4(21) 5.2 ± 0.4(27)
brilliant 5.9 ± 0.4(18) 5.6 ± 0.4(29) 5.3 ± 0.4(21) 5.8 ± 0.4(27)

midrangey 5.1 ± 0.3(18) 4.7 ± 0.4(29) 4.4 ± 0.3(21) 4.7 ± 0.3(27)
clarity 5.9 ± 0.5(18) 6.6 ± 0.3(29) 5.8 ± 0.4(21) 6.9 ± 0.2(27)
deep 5.4 ± 0.3(18) 5.2 ± 0.3(29) 4.9 ± 0.4(21) 5.4 ± 0.5(27)

twangy 4.8 ± 0.5(18) 4.6 ± 0.4(29) 4.1 ± 0.5(21) 4.0 ± 0.5(27)
mellow 5.5 ± 0.4(18) 5.4 ± 0.4(29) 5.9 ± 0.4(21) 6.4 ± 0.4(27)
woody 4.8 ± 0.4(18) 5.1 ± 0.4(29) 4.7 ± 0.4(21) 4.4 ± 0.5(27)
punchy 5.0 ± 0.4(18) 5.2 ± 0.5(29) 4.3 ± 0.5(21) 4.3 ± 0.5(27)
bottomy 5.7 ± 0.4(18) 5.4 ± 0.3(29) 5.0 ± 0.3(21) 6.0 ± 0.3(27)

dull 3.6 ± 0.8(18) 3.0 ± 0.5(29) 5.1 ± 0.8(21) 4.1 ± 0.6(27)
metallic 4.4 ± 0.4(18) 5.0 ± 0.4(29) 3.9 ± 0.5(21) 4.1 ± 0.4(27)

shimmering 5.1 ± 0.4(18) 5.2 ± 0.1(29) 5.0 ± 0.4(21) 4.8 ± 0.2(27)
harmonics
percussive 4.6 ± 0.4(18) 4.8 ± 0.4(29) 4.2 ± 0.5(21) 3.6 ± 0.4(27)

dry 4.2 ± 0.7(18) 4.1 ± 0.5(29) 4.2 ± 0.7(21) 3.8 ± 0.6(27)
quality 6.2 ± 0.5(18) 6.3 ± 0.3(29) 6.0 ± 0.4(21) 7.0 ± 0.3(27)

Table 8.9: Responses to stimuli in the pilot study, as a function of microphone
position. Responses expressed as (mean ± standard error (number of observations)).
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Figure 8.5: Mean responses to stimuli in the pilot study, as a function of microphone
position. The errors are taken as standard errors.

headset microphone pair and a mildly negative reaction from the overhead micro-

phone. However, these differences are not significant, as rated through ANOVA of

key descriptors.

Effects of variation in performance

Within this experimental design, this is the least controllable—and least reliable—

parameter that is varied. Each performance is at least subtly different, even when

performed on the same instrument and recorded by the same microphone. In this

study, there were a total of 24 separate performances, but, because the instrument

was varied, the performance was also a function of changing guitar quality. These

were recorded at the four different microphone positions, described in the previous

section. In listening tests, Jürgen Meyer showed that the performance slightly affects
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the perceived quality of a guitar sound [Meyer, 1983b]. It is concluded that there is

only a minor effect on the perception of timbre from the performances used in this

pilot study.

Reduction of response data

Because of the factorial design of this study, an efficient method of reducing the data

is with a factor analysis. The analysis is exploratory because we have no a priori

expectation of the effect each descriptor contributes to any potential factor.

I performed a maximum likelihood common factor analysis, conducted using Mat-

lab, to construct orthogonal axes based on the extent of correlation between the

descriptors. These axes were rotated using the varimax method so that they were

aligned with the principal components (i.e. the ‘main effects’).

The optimal number of dimensions to describe guitar sounds

The number of dimensions describing a semantic space is generally a compromise

between simplicity of interpretation (fewer dimensions) and an adequate span of the

semantic space.

Overall, for the data analysed here, a single linear factor would be inadequate to

describe the space: there are 28 descriptors (from a total of 34) that have a very large

estimated specific variance (Table 8.11). On the other hand, while a ten factor model

would account for more of the variance of the space (77.3% compared to 23.7%), it

would would be unwieldy as a descriptive tool.
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Descriptor Standard error
dull 0.4

boomy 0.3
dry 0.3
thin 0.3
bassy 0.3
dead 0.3

powerful 0.3
muddy 0.3

full 0.3
percussive 0.3

tinny 0.3
preference 0.3
brilliant 0.2
punchy 0.2
clarity 0.2

bottomy 0.2
woody 0.2
deep 0.2

metallic 0.2
quality 0.2
ringing 0.2
bell-like 0.2

rich 0.2
twangy 0.2
trebly 0.2
clear 0.2
warm 0.2
bright 0.2

shimmering harmonics 0.2
loudness 0.2
mellow 0.2

midrangey 0.1
balanced 0.1

crisp 0.1

Table 8.10: The variation (expressed as a standard error for all 24 performances) in
the response of each descriptor as a function of the performance.
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Number of Proportion of Range of specific
factors total variance variance of descriptors

(%) ψ � 0.50 ψ � 0.85 ψ � 0.25
1 23.7 28 18 0
2 39.4 21 9 4
3 56.4 11 0 6
4 63.1 5 0 8
5 66.8 3 (midrangey, balanced, bassy) 0 10
6 69.5 2 (midrangey, balanced) 0 11
7 71.7 2 ” ” ” 0 13
8 73.5 2 ” ” ” 0 14
9 74.9 2 ” ” ” 0 17

10 77.3 1 (midrangey) 0 19

Table 8.11: The optimal number of dimensions of the semantic space used to de-
scribe guitar sounds, in terms of the number of descriptors (out of the total 34) not
adequately spanned by the number of independent linear factors (showing high rel-
ative variance) and those well represented by the dimensions of the space (showing
low relative variance).

The high degree of variance observed in some variables (viz. ‘midrangey’, ‘bal-

anced’ and ‘bassy’) in the models with more than four factors is probably due to

the uncertainty in the meaning of the descriptor. This is not surprising, because

participants were forced to respond to each sound stimulus by rating all 34 descrip-

tors. These terms can therefore be interpreted as statistically very noisy, and are

ipso facto not useful in a description of guitar sounds.

A common ‘rule of thumb’ for choosing the number of dimensions resulting from

a factor analysis is the Kaiser-Guttman rule: there are a sufficient number of fac-

tors if they have eigenvalues greater than one. However, this strictly applies only

to principal component analysis [DeCoster, 1998] and often overestimates the true

number of factors [Lance et al., 2006]. Another criterion for suitability is the ‘scree
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Factors 1 2 3 4 5 6 7 8
eigenvalues 8.07 7.85 7.89 6.35 7.01 6.47 6.52 6.19

5.54 5.79 5.63 5.27 4.57 4.60 4.57
5.50 4.98 4.47 4.49 4.22 4.23

4.51 3.80 2.91 2.84 3.00
2.16 2.87 2.81 2.95

2.33 2.36 2.40
1.02 0.91

0.73

Table 8.12: The eigenvalues of each dimension for multiple factor models of the entire
data set. The model having an eigenvalue less than one is the eight factor model.
Therefore, according to the Kaiser-Guttman rule, no more than seven dimensions
are required to span the semantic space here.

test’ whereby the eigenvalues (or total variance spanned by the model) are plotted

against the number of factors in the model. An optimal number of dimensions may

be found near a sharp change in slope of the graph (an ‘elbow’). Finally, another

common factor optimisation method is examining the proportion of the total vari-

ance spanned by the factors, although this is an arbitrary cut-off. For the present

study it is most important that the results may be interpreted in a context suitable

for describing guitar sounds.

According to the Kaiser-Guttman rule, a seven factor model adequately spans

the semantic space (Table 8.12). However, this method tends to overestimate the

optimal number of dimensions [Lance et al., 2006].

A scree-plot of the data (Figure 8.6) has an elbow between the three and four

factor models suggesting that this many dimensions are optimal.

The descriptors with a high positive correlation, assuming a single linear factor,
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Figure 8.6: A scree plot of the total amount of variance spanned against the number
of linear factors in a model for the overall responses to the pilot study. The optimal
number of factors is obtained at the ‘elbow’ of the graph.
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Sign Factor
F1 F2 F3 F4

‘Preference’ ‘Power’ ‘Brightness’ ‘Percussion’
preference ( 0.74 ) mellow ( 0.76 ) bright ( 0.76 ) percussive ( 0.90 )

quality ( 0.73 ) bottomy ( 0.75 ) trebly ( 0.75 ) punchy ( 0.82 )
+ rich ( 0.72 ) full ( 0.69 ) metallic ( 0.69 ) woody ( 0.78 )

brilliant ( 0.61 ) deep ( 0.69 ) clear ( 0.59 ) bell-like ( 0.78 )
clear ( 0.60 ) loud ( 0.64 ) clarity ( 0.59 ) boomy ( 0.61 )
dull ( -0.87 ) thin ( -0.41 ) midrangey ( -0.28 ) warm ( -0.28 )
dry ( -0.81 ) tinny ( -0.30 ) deep ( -0.2457 ) dull ( -0.22 )

- dead ( -0.71 ) shimmering ( -0.26 ) muddy ( -0.23 ) preference (-0.21 )
harmonics

muddy ( -0.59 ) bell-like ( -0.17 ) warm ( -0.22 ) dead ( -0.19 )
tinny ( -0.54 ) trebly ( -0.15 ) bassy ( -0.16 ) quality ( -0.18 )

Table 8.13: The principal factors associated with a four factor model of the overall
responses. The factors are listed in order of influence on the variation in the data.
The titles of each factor are merely a label to represent the group of descriptors.
The five terms with the largest factor loadings (positive and negative) are included,
along with their factor loadings.

are: ‘preference’, ‘quality’, ‘clear’, ‘rich’ and ‘brilliant’. Those having a highly nega-

tive weighting for this factor are ‘dry’, ‘dull’, ‘dead’, ‘muddy’ and ‘tinny’. This single

factor could be roughly associated with the preference each participant has for the

sound and accounts for 23.7% of the variance overall. A two factor model retains

this original factor for preference, with a second factor associated positively with

‘punchy’, ‘woody’, ‘boomy’, ‘percussive’ and ‘ringing’, and negatively with ‘dead’,

‘warm’, ‘preference’, ‘dull’ and ‘bright’.

The best compromise according to the criteria mentioned, and considering the

advantages of parsimony, is a model assuming four linear factors, in Table 8.13.

Not surprisingly, all models have a very strong positive correlation between the

responses for ‘preference’ and ‘quality’ of a given stimulus. This factor is important
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Sign Factor
F1 F2 F3 F4

‘Power’ ‘Brightness’ ‘Percussion’ ‘Dullness’
full ( 0.76 ) bright ( 0.83 ) percussive ( 0.91 ) dull ( 0.91 )

bottomy ( 0.75 ) trebly ( 0.74 ) punchy ( 0.85 ) dry ( 0.80 )
+ mellow ( 0.74 ) clear ( 0.69 ) woody ( 0.80 ) dead ( 0.73 )

deep ( 0.68 ) metallic ( 0.69 ) bell-like ( 0.76 ) muddy ( 0.56 )
warm ( 0.66 ) clarity ( 0.67 ) boomy ( 0.64 ) tinny ( 0.55 )
thin ( -0.48 ) muddy ( -0.31 ) warm ( -0.27 ) rich ( -0.59 )
tinny ( -0.39 ) midrangey ( -0.24 ) full ( -0.16 ) brilliant ( -0.51 )

- shimmering ( -0.28 ) deep ( -0.24 ) bright ( -0.16 ) clear ( -0.47 )
harmonics

trebly ( -0.19 ) dead ( -0.21 ) dull ( -0.15 ) clarity ( -0.39 )
bell-like ( -0.18 ) warm ( -0.14 ) clarity ( -0.14 ) full ( -0.35 )

Table 8.14: The principal factors associated with a four factor model of the overall
responses, with the descriptors ‘preference’ and ‘quality’ removed from the data pool.
The factors are listed in order of influence on the variation in the data. The titles
of each factor are merely a label to represent the group of descriptors. The five
terms with the largest factor loadings (positive and negative) are included, along
with their factor loadings. Notice that, after the factor associated with ‘preference’,
the structure has residual factors occurring in a very similar order.

for the study here, but has not, in general, been addressed by the above studies.

Results of a four factor model of the same data set, with the responses to ‘preference’

and ‘quality’ removed, is similarly displayed in Table 8.14.

Notice that, after the initial factor of ‘preference’, similar factors arise and in

the same order as the four factors in Table 8.13. This suggests that these factors

are robust, despite the fact that this new model accounts for only 59% of the total

variance of the responses (compared to 63% including ‘preference’ and ‘quality’). A

three factor model (Table 8.15), accounting for 52% of the variance, retains similar

factors, although the order of the factors associated with ‘Brightness’ and ‘Power’

are reversed.
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Sign Factor
F1 F2 F3

‘Brightness’ ‘Power’ ‘Percussion’
clear ( 0.86 ) full ( 0.75 ) punchy ( 0.87 )

brilliant ( 0.84 ) bottomy ( 0.73 ) percussive ( 0.83 )
+ bright ( 0.81 ) mellow ( 0.72 ) woody ( 0.80 )

clarity ( 0.79 ) deep ( 0.69 ) bell-like ( 0.72 )
rich ( 0.70 ) warm ( 0.66 ) ringing ( 0.72 )
dull ( -0.61 ) thin ( -0.53 ) warm ( -0.31 )
dry ( -0.60 ) tinny ( -0.44 ) full ( -0.11 )

- muddy ( -0.60 ) shimmering ( -0.31 ) dead ( -0.07 )
harmonics

dead ( -0.59 ) trebly ( -0.27 ) rich ( -0.06 )
deep ( -0.27 ) twangy ( -0.20 ) dull ( -0.04 )

Table 8.15: A three factor model of the overall responses, with the descriptors ‘pref-
erence’ and ‘quality’ removed from the data pool. The factors are listed in order of
influence on the variation in the data. The titles of each factor are merely a label to
represent the group of descriptors. The five terms with the largest factor loadings
(positive and negative) are included, along with their factor loadings. Again, the
structure is similar to the model including the ‘preference’ and ‘quality’ descriptors,
although in this case factor F1 (‘Brightness’) is a more significant factor than factor
F2 (‘Power’). Factor F3 remains associated with ‘Percussion’.
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It is interesting to speculate on the role of these factors in describing the timbre

of sounds. The importance of the factor associated with ‘brightness’ has been em-

phasised by many studies (e.g. [Grey, 1977, von Bismarck, 1974b, Wessel, 1978]),

and might be related to the position of the spectral centroid [Wessel, 1978, Wold

et al., 1996, Schubert et al., 2004]. The existence of the factor of ‘percussion’ might

reflect the important effect of transients on the sound of the guitar [Jansson, 2002].

Study II—Conclusion

For the stimulus considered, it was found that there was more agreement with some

timbral descriptors than others (i.e. some were more ‘useful’ than others), based on

the degree of variation of the ratings of these terms on the stimuli. For instance,

the descriptors ‘dry’, ‘dull’, ‘thin’, ‘dead’ and ‘muddy’ had a high degree of vari-

ation, while there was comparatively little for ‘crisp’, ‘shimmering harmonics’ and

‘loudness’. This extends some of the results from Study I, but is constrained by the

particular stimulus used in this test.

Surprisingly the instrument with the highest commercial value was generally

rated with a slightly lower quality and preference than the other two instruments.

It was also shown that listeners could consistently rate different instruments accord-

ing to ‘quality’, which is not, a priori, obvious. However, the differences were not

significant, which is not surprising for the small sample size.

It was shown that the position of the recording microphone might have some

effect on the timbre of the resulting sound, although again, ANOVA did not show
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a significant difference. The stereo pair at the ears of the player were rated slightly

higher on many attributes, including ‘preference’ and ‘quality’.

In timbre ratings, the variation in responses was small between separate perfor-

mances, agreeing with [Meyer, 1983b].

The dimensionality of the semantic space associated with the timbre of the

recorded guitar sounds appears to be four, viz. ‘preference’, ‘power’, ‘brightness’

and ‘percussion’. However, the four factor model accounts for only 63.1% of the

variance of the data examined here.

8.4 Discussion

An important element of the sound of the guitar is the timbre, and would form

an indispensable element in a study to determine the perceptual differences in the

three guitars studied in this thesis. However, the phenomenon of timbre is poorly

understood. Considering the difficulty of finding an explicit relationship between

parameters associated with physical acoustics and the resulting timbre, the creation

of an agreed list of terms to describe the range of timbre of acoustic guitar sounds

is a good initial step towards a programme to quantify the musical concept of tim-

bre. The on-line survey of the usefulness of terms obtained from guitar literature

and language used by guitar makers has given a list of terms useful in describing

the timbre of guitar sounds (Appendix F). A positive link was also found between

the frequency of terms or expressions found in a selective literature review with a
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large enough sample (rS = 0.57, p < 0.01). This naturally suggests similar studies

be made on the lexicon of the timbre of other instruments. This would reduce the

labour required in a more general search for relationships between physical acoustics

and musical timbre.

This list was then used in a pilot study to determine the dimensionality of these

descriptions, finding it to be at least four dimensional (‘Power’, ‘Brightness’, ‘Percus-

sion’ and ‘Dullness’). Important to the perception of the sound of the guitar are the

microphone position and the quality of the instrument. The particular performance

was found to be important also, but not as much as the other variables considered.



Chapter 9

Conclusion and Further Work

“Unfortunately what is little recognized is that the most worthwhile scientific books

are those in which the author clearly indicates what he does not know; for an author

most hurts his readers by concealing difficulties”—Evariste Galois (1811-1832)

Many of the problems associated with the construction and design of the gui-

tar result from the generally ad hoc or trial-and-error approach to manufacturing

principles. This thesis has illustrated that a possible solution to these problems is

to isolate key measurable parameters, and to optimise these parameters. However,

it is recognised that the isolation and measurement of many of these parameters

are confounded by the complexity involved in engineering the instrument, and the

variability of the materials and components used therein.

To this end, it was found here that characterisation of important material prop-

erties relating to the vibratory behaviour of components, such as the Young’s moduli

and mass densities of the soundboard braces and the soundboard and bridge materi-

als (§5.5, §5.6 and §5.7), was necessary in order to control the resulting instruments
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(Chapter 5). The general techniques developed therein might help luthiers to isolate

optimisation criteria for the guitar as part of a routine testing programme in the

workshop.

It has also been shown that measurement of the dynamic mass and pressure force

ratio transfer functions of the soundboard complement analysis using Chladni figures

(§6.2), the more traditional diagnosis tool used by luthiers. However, measurement

of these transfer functions enable much more rapid and accurate assessment of the

properties of a guitar during and after construction than the traditional method and

has the added advantage of being able to be compared to other instruments mea-

sured in the same way.

The effect of different soundboard timbers. The construction and measure-

ment of very similar guitars would enable the luthier to better understand the effect

and importance of timber selection for the soundboard. In this thesis, such a study

was conducted on three similarly made guitars, using three commonly used wood

species but with very different properties. Not surprisingly, out of the three timbers

used for the soundboards here, Sitka spruce, Engelmann spruce and Western Red

cedar, the Sitka spruce and Engelmann spruce were the most similar throughout all

construction phases measured here (Chapters 6 and 7). Comparing the same modes,

the Western Red cedar soundboard had lower frequencies than the corresponding

modes for the other two soundboards for the free soundboards, except in the case

of the mode at ca. 546 Hz (§6.3). The differences in mode frequencies between the

soundboard materials is not as definite at low frequency, but at frequencies above

400 Hz, corresponding modal frequencies are also lower for the Western Red cedar
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than for the other two soundboards. The effect of thinning (§6.5), binding (§6.6)

adding the bridge (§7.2) have a much greater effect on the Western Red cedar sound-

board than the other two. The effect of tone- and cross-brace scalloping was much

more marked on the effective soundboard stiffness on the Western Red cedar than

the Sitka spruce and Engelmann spruce, which were again very similar (§7.7).

The relative importance of major construction phases. The vibratory

properties of ten major construction phases were measured in this thesis (§3.6). The

motion of the free soundboard (§6.3) is very different to that of the soundboard

attached to the back and sides (§6.4) because of the different boundary conditions

and coupling with the internal air cavity.

After gluing the soundboard to the back and sides, the construction stage with

the most impact on the vibratory behaviour of the guitar is the addition of the bridge

to the soundboard (§7.2). This suggests that proper characterisation or design of

the guitar soundboard ought to include the bridge as a component; several possible

configurations of some modes (because of the phase relations between the oscillating

elements) are reduced in number by the addition of the bridge (§7.2). In addition,

the measured (effective) Helmholtz resonance of each of the three guitars was affected

the most by the addition of the bridge (§7.2).

The polish used on the guitars studied in this thesis (nitrocellulose lacquer) had

little effect on the measured vibratory behaviour of the guitars (§7.3), except a

damping and slight lowering of the frequency of some modes (viz. T(1, 2)2, T(2, 2)

and T(5, 3)).

The effect of scalloping the cross- and tone-braces did not have a great effect on

the dynamic mass or pressure force ratio at low frequency, except for soundboard
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modes that had nodes near the areas of the braces that were scalloped, such as

the T(3, 2) mode, ca. 650 Hz (§7.6). However, the calculated effective stiffness of

each soundboard was greatly reduced with the brace scalloping process, especially

between the partly and fully scalloped states (§7.7).

The effect of thinning the soundboard. Many, if not most, high quality

guitars do not have a uniform thickness distribution (§3.4). Often the thinning of

the soundboard occurs after it is glued to the back and sides, which makes it surpris-

ingly difficult to measure the thickness except at points close to the soundhole. John

Smith and I constructed a device employing magnetic field strength measurement

to measure the thickness distribution of a non-uniform guitar soundboard [Inta and

Smith, 2003], which could be employed routinely in a workshop (§6.5).

The use of Finite Element Modelling for guitar makers. The free sound-

board was modelled by David Vernet, Davy Laille and Matheiu Maziere in §4.5, com-

paring well with Chladni figures made on the soundboard having the same measured

properties. A FEM model of the complete guitar was also made (§4.6). However, in

this case, comparison to experiment was only able to be made on a qualitative basis

because the FEM models were not constructed to enable model coupling with the

air, which has a great effect on the vibratory motion of the instrument (§2.5). The

effects of brace scalloping were modelled (§4.3), agreeing with experiments showing

that scalloping decreases the Q-value of resonances of the brace and slightly lowers

the resonant frequencies. The data collected on these three instruments might be

used in a more advanced simulation of the guitar.
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The problem of describing the timbre of guitar sounds. Finally, a lexicon

of terms for the timbre of guitar sounds was constructed by sampling a number of

terms from the literature and surveying a group of people to get the most useful

descriptors arising (§8.2). A positive correlation was found between the frequency

of descriptors found in the literature and the mean responses from the survey. The

timbre of these guitar sounds appeared to be able to be determined by using three

to four parameters (§8.4). An obvious extension of this work is to apply this method

to other instruments to generate a more general description of musical timbre. This

would provide a basis for investigating the effect that changes to the design of the

guitar have on the timbre of the instrument, and thus provide measurable parame-

ters to optimise, thereby improving the instrument. Considering the extent of the

characterisation of the the properties of the guitars studied in this project, it would

be advantageous to perform psychoacoustic listening tests on the instruments. The

work performed in Chapter 8 provides necessary background in order to make such

tests more meaningful.



Appendix A

Some derivations and
measurements

A.1 The Helmholtz resonator

Consider a container with rigid walls, enclosing a relatively large volume of air, V ,

and a cylindrical throat with length l, of small (S � πl2) constant cross-sectional

area S. Assuming the wavelength is much longer than the largest single dimension

of the container so that the pressure distribution is effectively uniform. Knowing

the density, ρ, and speed of sound, c, in air, the mass-acceleration for the air in the

throat may be expressed as:

lSρξ̈ (A.1.1)

where ξ is the time dependent displacement of the air in the throat of the con-

tainer and the Newtonian dot notation, ξ̇ and ξ̈, represent the time derivative and the

second time derivative of the displacement of the air from the equilibrium position.
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The air inside forms a ‘spring’, with a restoring force of:

c2ρξS2

V
(A.1.2)

where the angular frequency, ω is related to the frequency, f , by ω = 2πf

Approximating the damping as viscous, the frictional force may be expressed as:

ρωk

2π
S2ξ̇ (A.1.3)

where the wavenumber, k, is related to the wavelength, λ, by k = 2π
λ

and the

speed of sound in air may be expressed as c = fλ = ω
k
.

Adding equations A.1.1, A.1.2 and A.1.3, the time dependent force equation due

to an external force is:

lSρξ̈ +
ρωk

2π
S2ξ̇ +

c2ρξS2

V
= SPeĵωt (A.1.4)

The forcing function on the right hand side of Equation A.1.4 is composed of the

pressure amplitude, P , and a time-varying complex exponential (e = 2.718... and

ĵ2 = −1) with angular frequency, ω and time, t.

Substitution of the volume displacement, X = Sξ, makes algebraic manipulation

more convenient [Wood, 1940]. Then Ẋ = Sξ̇ and Ẍ = Sξ̈ and Equation A.1.4 may

be re-expressed:

lSρẌ +
ρωk

2π
S2Ẋ + ρS =

c2ρXS2

V
= SPeĵωt (A.1.5)

which is analogous to an oscillatory electrical circuit.
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Ẋ =
Peĵωt

ρωk

2π
+ ĵ(ρωl

S
− ρc2

V ω
)

(A.1.6)

Using this analogy an acoustic impedance, ZA, may be defined as the ratio of

the sound pressure at the source to the rate of change of volume displacement of the

surface of the source:

ZA =
Peĵωt

Ẋ
=

Peĵωt

Sξ̇
=

ρωk

2π
+ ĵ(

ρωl

S
− ρc2

V ω
) (A.1.7)

The acoustic resistance is the real component:

RA ≡ R(ZA) =
ρωk

2π
(A.1.8)

and the acoustic reactance is the imaginary component:

I(ZA) =
ρωl

S
− ρc2

V ω
(A.1.9)

Where the term ρωl

S
is the mass reactance and the term ρc2

V ω
is known as the

stiffness reactance. The frequency of resonance of the system is where the reactance

becomes zero. Defining the frequency where this occurs as ω = ωH :

ρωH l

S
=

ρc2

V ωH

(A.1.10)

So:

ωH = c

√
S

V l
(A.1.11)

Or:

ωH

2π
= fH =

c

2π

√
S

V l
(A.1.12)
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Volume 2.920 ± 0.005 × 10−3 m3

Throat length 80 ± 1 mm
Throat diameter: 32.5 ± 0.1 mm
Throat cross-section 8.30 ± 0.05 × 10−4 m2

Calculated f0 (no length correction) 102.9 ± 0.1 Hz
Calculated f0 (length correction at both ends) 92.1 ± 0.1Hz

Table A.1: Data from a simple Helmholtz resonator. Excitation is a simple pres-
sure impulse. Calculation of f0 assumes c = 343 ms−1. End corrections are made
assuming circular unflanged pipe at both ends.

Thus the Helmholtz frequency is determined by the speed of sound in air and

basic geometric properties of the resonator.

Simple experiment validating effective length due to an end

correction

Data from an experiment conducted on a simple Helmholtz resonator are given in

Table A.1. The frequencies calculated differ strongly between corrected and uncor-

rected values. The length correction was obtained from the assumption of a circular

unflanged pipe at each ends, so l∗ = 2× 0.6133R [Levine and Schwinger, 1948]. The

Fourier transform of the pressure response in the experiment is shown in Figure A.1,

where the frequency of the main peak, associated with the Helmholtz resonance, was

found to be 92.2 ± 0.7 Hz.



339

Frequency (Hz)

27.5 1408055 110 220 440 880 1760 3520 7040

-12

-24

-36

-48

-60

-72

-84

-96 S
o

u
n

d
p

re
ss

u
re

 (
d

B
, a

rb
it

ra
ry

)

Simple Helmholtz resonator

Figure A.1: Fourier transform of sound pressure response of an experiment on a
simple Helmholtz resonator. Note the peak at 92 Hz.

A.2 Soundboard-air cavity coupling parameters

This treatment is largely a summary of [Christensen and Vistisen, 1980] and [Calder-

smith, 1978]. Consider the uncoupled elements. Assuming no air loading or coupling,

a simple vibrating plate of mass mp, and effective stiffness Kp∗, has a resonance fre-

quency:

fp,0 =
1

2π

√
Kp∗

mp

(A.2.1)

Now consider the soundboard as if it had negligible stiffness and an effective area

Ap∗ enclosing the internal air cavity. The resonant frequency of this air may be

expressed:

fa =
1

2π

√
μA2

p∗

mp

(A.2.2)

Where μ ≡ ρc2

V
. The natural frequency of the soundboard loaded by the air in

the cavity volume is then given by:
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fp =
1

2π

√
Kp∗ + μA2

p∗

mp

(A.2.3)

or, alternatively:

f 2
p = f 2

p,0 + f 2
a (A.2.4)

The finite stiffness of the soundboard causes the total volume and losses of the

cavity to deviate from the uncoupled state as a function of time. Assuming the

associated fluctuations in each vibratory cycle to be adiabatic, the cavity is subject to

a pressure change of Δp = −μΔV . The resulting force exerted on the two oscillators

is then Ap∗Δp on the soundboard and SΔp on the air in the soundhole. Assuming

viscous damping associated with the motions of each oscillator (Rp and RV ) and,

defining the driving force on the soundboard as F , the coupled equations of motion

for the two oscillators are:

mpẍp = F − Kpxp − Rpẋp + Ap∗Δp (A.2.5)

mhẌh = SΔp − RhẊh

Where xp is the net displacement of the soundboard from the equilibrium position,

Xh is the net volume displacement of the air in the soundhole from equilibrium, and

mh = ρSl∗ is the mass of air in the soundhole. If the soundboard is constrained from

moving (xp = 0) the frequency of the air in the soundhole is

fh =
1

2π

√
μS2

mh

(A.2.6)
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whereby the familiar expression for the Helmholtz frequency (Equation A.1.12)

may be obtained.

For a sinusoidally time-varying force, F :→ F0e
ĵωt and taking the loss parameters

γp ≡ Rp

mp

and γa ≡ Ra

ma

, the velocity of the soundboard is:

vp = ĵω
F0

mp

[
ω2

h − ω2 + ĵωγp

D
] (A.2.7)

Similarly, the velocity function of the air in the soundhole is:

vh =
−ĵωF0

mp

Ap∗

S
[
ω2

h

D
] (A.2.8)

Where the denominator, D, is:

D = (ω2
p − ω2 + ĵωγp)(ω

2
h − ω2 + ĵωγh) − ω2

pH (A.2.9)

The coupling frequency fpH , is then given by:

f 4
pH =

1

(2π)4

α2

mpma

= f 2
Hf 2

a (A.2.10)

Resonances in the velocity functions occur when D = 0. Solving the quadratic

in Equation A.2.9 yields the solution:

f 2
±

=
1

2
(f 2

p + f 2
h) ± 1

2

√
(f 2

p − f 2
h)2 + 4f 4

pH (A.2.11)

And hence [Christensen and Vistisen, 1980]:

f 2
p + f 2

H = f 2
+ + f 2

−
(A.2.12)
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This is a special case of the more general result of coupled oscillatory systems,

where the quadrature sum of the uncoupled oscillator frequencies is the same as that

for the coupled oscillators [Christensen and Vistisen, 1980].

A.3 Two mass model for a cantilever beam driven

at the base

Consider the motion of a cantilever beam held by a clamp that is applying a sinu-

soidally varying force to the base, in a direction perpendicular to the longitudinal

axis of the beam. The model of two coupled oscillators may be applied thus [Har-

jono, 1998]: take the mass of the beam to be M , the displacement of the free end

(from equilibrium) as x2, the mass of the clamp system as m and its displacement

(also from equilibrium) as x1, the effective stiffness of the entire system, k, and the

viscous damping (of the system) to be R. The equation of motion for the beam is

then:

−Mω2x2 + (k + ĵωR)(x2 − x1) = 0 (A.3.1)

and that for the clamp:

−mω2x1 + (k + ĵωR)(x1 − x2) = F (ω) (A.3.2)

and by noting that, because, ẍ1 = −ω2x1,

x2 = x1
ĵωR + k

−Mω2 + k + ĵωR
(A.3.3)

The force resulting from the clamp acceleration is then:
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F (ω) = x1[−mω2 + (k + ĵωR)(1 − k + ĵωR

−Mω2 + k + ĵωR
)] (A.3.4)

= x1[−mω2 + (k + ĵωR)(
−Mω2

−Mω2 + k + ĵωR
)] (A.3.5)

(A.3.6)

And therefore the dynamic mass of the beam is then:

F (ω)

ẍ1(ω)
=

−1

ω2
[−mω2 + (k + ĵωR)(

−Mω2

−Mω2 + k + ĵωR
)] (A.3.7)

= m +
M(k + ĵωR)

−Mω2 + k + ĵωR
(A.3.8)

A.3.1 Change in frequency of bending mode of a profiled

beam

Rectangular cross-section

To find the second moment of area (i.e.moment of inertia) about a neutral bending

axis, it is necessary to find the centre of mass about the given axis. Considering only

the y component, the centre of mass for a rectangular cross-section of width b and

height a (Figure A.2) is:

yCM =
1

M

∫ a

y=0

ydm (A.3.9)

Now

m(y) = M
y

a
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x=b

y=a

y

x

x=y=0

Figure A.2: Beam with rectangular cross-section

so:

dm

dy
=

M

a
(A.3.10)

therefore:

yCM =
1

M

∫ a

y=0

y
M

a
dy

⇒
yCM =

1

a

[y2

2

]a
0

=
a

2

similarly,

xCM =
b

2

The moment of inertia, defined as

I =

∫ R

r=0

r2dm (A.3.11)
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and using Equation A.3.10 gives:

IT =
M

a

∫ a

y=0

y2dy

=
M

a

∫ a

y=0

y2dy

=
M

a
[
y3

3
]ay=0

So:

IT =
Ma2

3

The parallel axis theorem (Equation A.3.12)

IT = ICM + Md2 (A.3.12)

gives the total moment of inertia IT , at some point a distance d from the axial point

passing through some point with a parallel axis of bending. Yet

d2 = y2
CM =

a2

4

so:

ICM = IT − Md2 = Ma2

3
− Ma2

4
= Ma2

(
4−3
12

)

Where ICM is the moment of inertia at the centre of mass, and M the total mass

of the beam.

Hence:

ICM =
Ma2

12
(A.3.13)



346

Triangular cross-section

For an isosceles triangle, height h and width b (Figure A.3)

m(y) = M
area from y = 0 to y

total area

= M
y( b

2
+ b(h−y)

2h
)

bh
2

= M
y(2 − y

h
)

h

ie: m(y) = M
y(2h−y)

h2

⇒ dm

dy
= M

2(h − y)

h2
(A.3.14)

And thus:

IT =

∫ h

y=0

y2 2m

h2
(h − y)dy =

2M

h2

∫ h

y=0

(hy2 − y3)dy

=
2M

h2
[
hy3

3
− y4

4
]hy=0 =

Mh2

6
.

From Equation A.3.9, yCM = 1
M

∫ h

y=0
ydm

And, using Equation A.3.14,

yCM =
1

M

∫ h

y=0

2M

h2
(h − y)dy

=
2

h2

[hy2

2
− y3

3

]h
y=0

=
2Mh4

h2
[
1

3
− 1

4
] =

h

3

The square of the distance from y = 0 to y = h
3

is d2 = h2

9

Hence, from Equation A.3.12:

ICM =
Mh2

6
− Md2 = Mh2(

1

6
− 1

9
) = Mh2(

3 − 2

18
)



347

y=h

y=0

x=-b/2 x=+b/2

y=y’

y

x

Figure A.3: Isosceles triangle, height h, base length b

Therefore:

ICM =
Mh2

18
(A.3.15)

Pentagonal cross-section, symmetric about xCM

Often the cross-section of the key braces on the soundboard of the guitar are modified

from a rectangular shape to that of an isoceles triangle atop a rectangle with the

same width as the base of the triangle, as in Figure A.4.

For the triangular section,

y =
h2 − 2(h2 − h1)

b
x (A.3.16)

so

m(y) = M

(
1 −

b
2

(h2−y)2

h2−h1

b
2
(h2 + h1)

)
= M

(
1 − (h2 − y)2

h2
2 − h2

1

)
(A.3.17)
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y=y’

y

x

y=0

x=-b/2 x=+b/2

y=h1

y=h2

Figure A.4: Schematic of a beam with pentagonal cross-section, symmetric upon
reflection about the centre of mass in the x-direction.

and thus

dm

dy
= M

(
2(h2 − y)

h2
2 − h2

1

)
(A.3.18)

So

yCM =
1

M

(∫ h1

y=0

y
2M

h1 + h2

· dy +

∫ h2

y=h1

y
2M(h2 − y)

h2
2 + h2

1

· dy

)
(A.3.19)

=
h2

1

h1 + h2

+
2h3

1 + h3
2 − 3h2

1h2

3(h2
1 + h2

2)

And, using Equation A.3.18,

Iy

M
=

∫ h1

y=0

y2 2

h1 + h2

· dy +

∫ h2

y=h1

y2 2(h2 − y)

h2
2 + h2

1

· dy (A.3.20)

=

(
2h3

1

3(h1 + h2)
+

h4
2 + 3h4

1 − 4h3
1h2

6(h2
1 + h2

2)

)

Using Equation A.3.12, the radius of gyration about the centre of mass is κCM :



349

κ2
CM =

Iy

M
− y2

CM (A.3.21)

=
2h3

1

3(h1 + h2)
+

3h4
1 + h4

2 − 4h3
1h2

6(h2
1 + h2

2)
−
(

h2
1

h1 + h2

+
2h3

1 + h3
2 − 3h2

1h2

3(h2
1 + h2

2)

)2

This unwieldy expression may be simplified by substitution of values for a brace

with a profiled cross-section.

For slender homogeneous beams of constant cross-section with common boundary

conditions, fi ∝ κ (Equation 2.7.5). So the change in frequency of the normal

bending modes of a beam, as a result of the profiling process from a brace (§3.4)

with an original height of h2 may be found thus:
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(A.3.22)
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A.4 Measurements of dimensions of the guitar sound-

boards

Overall widths of the guitar soundboards were measured at 35 mm intervals (Figure

A.5).
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Figure A.5: Measurements of the lateral dimensions of the Sitka spruce guitar sound-
board as a function of distance along the main axis of the guitar.



Appendix B

Vibratory data acquisition system
(ACUZ)

“Fourier’s Theorem is not only one of the most beautiful results of modern analysis,

but it may be said to furnish an indispensable instrument in the treatment of nearly

every recondite question in modern physics”—Lord W. T. Kelvin and P. G. Tait

[Thomson and Tait, 1867]

B.1 Background

The measurements reported in this thesis are made using variants of ’ACUZ’1, a

system developed within the Music Acoustics Laboratory of The University of New

South Wales for the rapid measurement of the frequency dependence of transfer

functions. [Wolfe et al., 1995]. Although the system is most commonly used for

the acoustic impedance spectroscopy of musical wind instruments, it is used here to

measure the transfer functions of a range of linear vibro-acoustic systems.

1‘ACoUstic Z’, where Z represents the impedance to be measured
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Figure B.1: The ACUZ system, as applied to wind instruments. From [Wolfe et al.,
1995].

B.2 Design and operation

The version of ACUZ used is based on an Apple Mac IIci computer with a 16 bit

analogue interface card (National Instruments NB-A2100).

The electrical stimulus is synthesised from a series of equally spaced frequency

components covering the frequency range of interest - in most of these experiments

they are spaced � 0.69 Hz apart, covering the range 10 → 1000 Hz. (There is always

a compromise between frequency resolution and signal to noise ratio: more frequency

components produces improved frequency resolution, but the signal to noise ratio of

each component is reduced).

The relative phase between the frequency components is adjusted to minimise

the resultant maximum amplitude of the synthesised waveform. This improves the

overall signal to noise ratio as the overall amplitude of all components can then be

increased [Smith, 1995]. This is achieved by introducing random phase relationships

between the Fourier components such that the maximum amplitude of the sum of

the Fourier components is minimised with respect to that of any other attempted

configuration (minimisation of the ‘crest-factor’.) This process may be repeated and

the best solution accepted by the user. The approach is similar to the Monte Carlo
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method, except that the choice of the number of configuration attempts is left to

the user. Consequently there are usually only a small number of configurations tried

before a solution is accepted. It is possible to apply a numerical algorithm for this

purpose [Guillaume et al., 1991, Shroeder, 1970] although this has not been imple-

mented at this time.

If the system is linear (this is the case for vibratory modes of the guitar sound-

board [Richardson, 1982]) the choice of signal averaging is possible, by repeating the

output signal a number of times.

This electrical stimulus is then amplified and passed to an electromagnetic shaker

(B& K 4809). The driving point dynamic masses are detected by a B& K 8001

impedance head with a stereo input line back to the computer. The pressure force

ratio measurements are driven in the same way, and the force portion is also measured

with the B& K 8001 impedance head, but the pressure response is measured using

an Optimus tie-clip microphone.

Although presently a laboratory measurement tool, ACUZ was designed to be

capable of industrial application in the workshop or factory.

Dynamic mass measurements

The dynamic mass is a measure of the frequency dependent effective mass ( force(ω)
acceleration(ω)

)

of a system in response to vibratory excitation. In general the force and acceleration
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may be measured at distinct points in space (the transfer function) but here the

force and acceleration are made at identical positions and is known as the driving

point dynamic mass.

Pressure force ratio measurements

Because the ultimate product of the acoustic guitar is the sound it produces, it would

seem logical to measure some kind of pressure response of the instrument. Direct

pressure measurements in response to some time-varying excitation at the bridge are

sometimes difficult to apply in comparative tests, because the applied force at the

bridge is variable and we would expect this to have a large effect on the output pres-

sure. This issue is resolved if we examine the transfer function of a measured pressure

response to the time-varying force applied to the bridge (pressure(ω)
force(ω)

). Because of the

complex geometry of acoustic radiation, the spatial position that pressure measure-

ments are made is also important. I have chosen the centre of the soundhole, in the

plane of the top of the soundboard, as a fixed point to measure the pressure response

of the instrument.

The transfer functions of the pressure measured at the soundhole to the force

applied to the bridge gives some indication of the magnitude of pressure arising from

a particular force applied and may be more useful in the sense that we can measure

the resulting sound pressure output due to a known applied force at the bridge. This

quantity may also be used to calculate an effective area, Aeff.(ω) = force(ω)
pressure(ω)

. This

effective area must not be interpreted directly as a geometric area of the soundboard,

but as relating to the effective area of a simple piston source of radiation. The ratio
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of this effective area to the effective mass, Aeff.

Meff.

is proportional to the total output

pressure of the guitar, assuming it is a simple, uncoupled, source of radiation as

in Equation B.2.1 from [Christensen and Vistisen, 1980] and developed in [Wright,

1996].

p(ω) = F (ω)
Aeff.

Meff.

ω2

(ω2
0 − ω2) − ĵγω

(B.2.1)

Where γ represents the losses of the simple radiator.

B.3 Impedance spectroscopy

Interpretation of impedance spectra (or transfer functions) can be difficult because of

the great volume of data usually received. As with any other branch of experimental

physics, it is important to minimise the information recieved while retaining the

important features. In the case of vibratory measurements, often the means of

mechanically support has an influence on the measured spectra, and interpretation

must be made with this in mind.



Appendix C

Alternative methods of measuring
mechanical properties of wood

“Every piece of wood will have a unique set of vibrational properties because it has

a unique set of elastic moduli and damping rates, even if cut from the same log”

—Graham Caldersmith [Caldersmith and Freeman, 1990]

There are viable alternatives to the technique used to measure the Young’s mod-

ulus of a wooden beam, in §5.2. For example, by exciting a wooden beam, simply

supported at the nodes of the mode of interest, through the attachment of a small

permanent magnet to the beam, in close proximity to a mechanically fixed solenoid,

driven by a signal generator, it is possible to measure the free-free vibrations of the

beam. Impulse excitation may also be used, and this is in fact applied widely by

luthiers as the primary selection method for musical instrument woods (as the ‘tap-

tone’ method, §3.4). The methods that I developed in the following are not only

useful as a comparison to the clamping method, but also may be of use to a luthier

in accurate material selection.

356
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A: Optoelectronic detection

Similar tests on the normal modes of vibration of a wooden beam may be achieved,

using a different excitation, support, and detection system to that used in §5.2.

Figure C.1 shows the set-up for measuring the normal modes of a beam, simply

supported by two foam-rubber triangular prisms. The beam is simply supported at

22.4% of the total length from each end, giving a good approximation to free-free

boundary conditions at the lowest normal mode. This is where the two nodes of

the fundamental of the free-free beam would occur, thereby minimising mechanical

interference effects due to the support system. A small permanent rare-earth magnet

(A NdFeB cylinder 3 mm high and 6 mm in diameter, with mass 1.3 g and a surface

field strength of � 200 mT) was attached to the underside of the centre of the brace,

using double-sided tape, and a small square (5 mm × 5 mm) of silvered mica was

affixed to the top. The apparatus used to excite the beam was an air-core solenoid

(inductance: 170 mH, resistance: 0.53 Ω) driven by an amplified signal generator,

placed about 5 mm directly below the rare-earth magnet. The optoelectronic detec-

tion system comprised a 10 mW HeNe laser (λ = 633 nm) incident on the mica sheet

and a position sensing device (UDT Sensors, Inc. SLS5-1 duo-lateral super-linear

PSD (one-dimensional series)) was placed in the path of the reflected light, aligned

so that when the beam flexed, the reflected light would move along the sensing axis

of the detector. The output voltage of the detector is analysed using an oscilloscope

(Kenwood 20 MHz CS-1021).

This detection system is essentially a crude laser vibrometer.
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He-Ne laser

Wooden beam

Supports

Position sensor

Figure C.1: Set up for measuring the normal modes of a simply supported wooden
beam. Excitation is electromechanical and detection is optoelectronic. Water vapour
(from evaporating liquid nitrogen) is used in to illustrate the path of the laser beam
for illustrative purposes and is not used in actual measurement.

Mass loading of the braces, by adding another magnet of the same mass to the

original, did little to alter the frequency or amplitude of the normal modes, although

this method is extremely sensitive to manner of beam support, and it is likely that

better results may be obtained by using more rigid supports than those used here.
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B: ‘Tap-tone’ method

The ‘tap-tone’ method is able to be carried out with a minimum of equipment, and

it is likely this has been used in wood selection by luthiers for hundreds of years

[Hutchins, 1999, Bissinger, 2001]. A wooden beam is held vertically at a nodal

position for the fundamental free-free mode (for a beam of constant cross-section

this is about 22.4% of the total length from each end) between finger and thumb

and impulse excitation is achieved through impact. This is essentially the traditional

method presented in §3.4 although objective measurement of the pressure response of

the impact is recorded through a microphone fixed on a stand, approximately 15 mm

from the centre of the beam, onto Digital Audio Tape. This is then transferred to a

computer and a fast Fourier transform is taken to obtain the frequency and damping

of the fundamental mode. The impact is achieved by striking the beam lightly in

the centre with a small hand-held brass rod. This rod was used, as opposed to a

luthier’s traditional striking tool (a bare knuckle), to improve reproducibility of the

applied force and striking point. The microphone was also positioned at the end of

the beam to compare height and width modes.

Although the human hearing system is well known for its sophisticated sens-

ing capabilities, sensitive to small relative variations in frequency and amplitude

[Helmholtz, 1885], much additional information can be provided by tactile feedback

though the fingers, especially with regards to mechanical damping. This provides

vital information on bulk defects such as grain irregularities (§3.2), which tend to

produce undesirable vibratory, acoustic and æsthetic properties.

Table C.1 shows the results of listening tests using a reference tone through the
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Strut Profiled Fundamental frequency (Hz)
Height Width

1A yes, complicated 245 171.0
2A yes (cracked grain) 304.5 182.75
3A yes - -
4A yes 301 182.25
5A no 179.5 109.0
6A yes, fully 265.3 161.5
1B no 189 110.0
2B yes 318 202.5
3B yes 173 108.0
4B yes 278 198.0
5B no 190 116.0
6B no 188 116.0
7B yes, asymm - -
1C yes 322.75 197.25
2C yes 195 308.5
3C yes 323.75 198.75
4C no 189 110.5
5C no 191 111.0
6C yes 169.5 103.0
7C yes 323.5 204.25

±0.25Hz

Table C.1: Fundamental frequencies of wooden beams using a variant of the ‘tap-
tone’ method

right channel in a set of stereo headphones and playing the recorded tap tone in the

left channel.



Appendix D

Soundboard thickness
measurement device

“What soundboard thickness does he work to? He gestured with his thumb meeting

his index finger raised to eye level, squinting slightly and rubbing them as if feeling an

imaginary soundboard. ‘I prefer to use these rather than a caliper. It does not really

interest me what the measurement is.’...clearly, he finds that he can dimension his

guitar plates better without a micrometer, because he believes only the fingers can

ask all the necessary questions of a piece of wood”—William Cumpiano, interviewing

Manuel Velázquez [Cumpiano, 1982]

D.1 Outline of soundboard thickness problem

The practice of thinning the soundboard of high quality guitars has been discussed

in §3.4. The shape of the guitar body makes it extremely difficult to introduce a

traditional mechanical gaging device such as a rule, callipers, or a spring-loaded

thickness gage. The soundhole is generally less than 100 mm in diameter, reducing
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Sound board

Braces

Bridge

SaddleStrings

Figure D.1: The soundboard as viewed from within the soundhole, looking toward the
bridge. Observe that the intervening braces are much thicker than the soundboard
itself.

access or mobility of such devices. Even if this were overcome, the device in ques-

tion would have to navigate the complicated geometry of the wooden braces on the

soundboard (Figure D.1) which can be more than four times the thickness of the

actual soundboard.
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Possible mechanisms to measure thicknesses in woods

Vibro-acoustic

Ultrasonic methods are commonly used for nondestructive thickness measurements

[McMaster, 1959]. This can include pulse return time (time-of-flight) or standing

wave methods. The disadvantages of using ultrasonic pulses to determine the elastic

properties of wood are discussed in §3.2. These disadvantages, such as grain layer

scattering, dependence on moisture content, and frequency dependence also make

accurate thickness determination difficult.

Nuclear radiation

For most matter, we are able to apply Equation D.1.1 and calibrate the reduction in

transmitted intensity I of some specific type of nuclear radiation through a thickness,

x, of material with a characteristic linear absorption coefficient μ.

I = Ioe
−μx (D.1.1)

Generally, μ is dependent on the kinetic energy as well as the type of radiation

used (viz. α, β, γ or 1
0n)

Because α-particles are strongly ionising, they interact very strongly with nor-

mal matter and as a consequence do not tend to penetrate more than a few mil-

limetres at any energy. For γ and β radiation, the linear absorption coefficient

varies directly with both moisture content and density and inversely with energy,

although the difference in the magnitude of μ for the two types of radiation mean

that wood is virtually opaque for even very thin specimens of wood (For 0.047 MeV
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γ, μγ = 0.65 → 1.1 mm−1 [density range 330 → 620 kg · m−3], compared to β en-

ergies of 0.5 MeV, giving μβ � 30 mm−1). Because neutrons interact very strongly

with hydrogen, the transmission of lower energy particles are dependent on moisture

content. Higher energy neutrons enable nondestructive analysis of trace elements in

the wood by analysing radioisotope production [Forest Products Laboratory, 1999].

Therefore, although useful for other purposes, the use of radioactive sources to

determine wood thickness is problematic at best. Aside from the issues of safety

and social stigma, this method suffers considerably from the fact that obtaining

radioactive sources is probably difficult for most luthiers.

Magnetic fields

Because most non-ferromagnetic materials, including wood, have a relative perme-

ability close to one (i.e. μR � 1) [American Institute of Physics, 1972], it is possible

to insert wood into a magnetic field without noticeably altering the flux geometry. If

a source provides a magnetic field with suitable geometry, such as one with monoton-

ically decreasing flux density with distance, it is possible to determine the distance

from the source by measuring the flux density. Wood that is entered into this field

will not affect the intensity or geometry of the measured magnetic field.

D.2 The Hall effect

The effect of an external magnetic field, with flux density B, applied to a charge of

magnitude q, moving with velocity v, is to exert a force F according to Equation
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D.2.1.

F = qv × B (D.2.1)

This applies to free charges as well as those moving in the environment of an

electrical conductor. If we arrange a steady rate of charge flow at right angles to the

external magnetic field then the force on the charges will be in a direction orthogonal

to both the direction of charge flow and the direction of the applied magnetic field.

Thus, for a flow of electrons in a conductor of a finite size, charges will tend to

accumulate on one side of the conductor. The separation of charges produces an

electric field E = F

q
in the direction of the electron accumulation. The resulting

potential difference across the conductor is known as a Hall voltage, VH in Equation

D.2.2.

VH = |v| · |B| (D.2.2)

This phenomenon is known as the Hall effect, after investigation into this in 1879

by the then 24 year old graduate student, Edwin H. Hall.

A useful application of this effect involves measurement of the Hall voltage in

response to an unknown magnetic field. By knowing the carrier density and the

dimensions of the element used as a Hall probe, calibration of the probe provides

a sensitive and accurate means of measuring a magnetic field. The prevalence of

modern electronic integrated circuit technology has enabled Hall probes to be made

compact and cheap. Consequently there have been many useful applications, from
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automobile velocimeters to liquid level sensors [Micronas Semiconductor Holding

AG, 2004].

Choice of magnetic field source

For a permanent cylindrical magnet, the flux density decreases monotonically with

distance from the source along the cylindrical axis, so we may calibrate the magnetic

field strength to determine the distance from the source in this direction. Ferromag-

netic materials are able to hold a bulk net magnetisation due to the formation of

magnetic domains on the crystal scale in response to an externally applied magnetic

field. This magnetisation is stable if the members of the crystal lattice are free to

align with the external field and this freedom is then restricted. This is usually

performed thermodynamically. The crystal is heated above a critical temperature

where the magnetic phase transition occurs (known as the Curie temperature) and

then cooled quickly (quenched) so that the magnetic field configuration is ‘frozen’.

This may also be performed mechanically, as is found when a wood chisel is able to

align with the Earth’s magnetic field upon continual impact. The long-lived stability

of this magnetic field leads to the term ‘permanent’ magnet, although the magnetic

field is hardly permanent if the magnet is raised above the Curie temperature with-

out an externally applied magnetic field.

Modern research into material properties and manufacturing techniques have led

to the availability of cheap and very strong permanent magnets. These so-called
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‘rare-earth’ magnets also rely on the properties of crystalline ferromagnetic mate-

rials, but supplement the iron lattice with the addition of elements from the lan-

thanide series. The strong net magnetic moment of individual lanthanide atoms

greatly increases the coercivity of the material and thus is able to maintain a per-

manent magnetic field strength many orders of magnitude above that achievable by

ferromagnetic materials alone.

Magnetic field distribution around a finite solid

The spatial distribution of the magnetic field strength surrounding permanent mag-

nets in the shape of finite solids, even for relatively simple geometries, is more com-

plicated to calculate than many elementary treatments might imply. A permanent

magnet in the shape of a cylinder is not a pure magnetic dipole. Especially in the

case where the diameter is of a similar size to the height of the cylinder, end effects

are not negligible.

If we take a permanent magnet with the geometry as in Figure D.2 we may get the

magnetic field strength along the axis of the magnet (ie parallel to the polarisation

of the magnetic field) as a function of the distance from the surface as in Equation

D.2.3.

B =
Br

2
[

(x + h)√
R2 + (x + h)2

− x√
R2 + x2

] (D.2.3)

(For R = 3.0 mm and h = 3.0 mm)
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N

Figure D.2: Magnetic field around a finite cylindrical permanent magnet, of height
h and radius R.

Also:

F � 0.577B2A (D.2.4)

D.3 Measurements of soundboard thinning

[Rodgers, 1990][Krüger, 1982][Stetson, 1977][Burkhardt and Fisher, 2002][Schleske,

2002] The soundboard thinning process occurs after the soundboard is attached to

the back and sides. Because glueing of the soundboard to the sides is a difficult and

risky procedure to reverse, measurements of the mass reduction effects of thinning

each soundboard, such as in Table D.1, are taken of the guitar body in toto even

though it is only from the soundboard that material is removed.
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Soundboard Sitka spruce Engelmann spruce Western Red cedar
Initial thickness (mm) 3.2 3.2 3.2
Body mass, before (kg) 1.3035 1.2312 1.2530
Body mass, after (kg) 1.2836 1.2241 1.2448

Mass loss (g) 19.9 7.1 8.2
Mass loss (%) 1.52 0.58 0.65

Initial soundboard mass (kg) 0.3067 0.2763 0.2493

Table D.1: Soundboard mass reduction due to thicknessing. Note that the mass
change measurements are made on the guitar bodies, not the soundboards.

Figure D.3: A version of the Hall Effect thickness measurement device designed to
measure thickness changes in guitar soundboards

D.4 The device

A diagram giving the conceptual layout of the device is given in Figure D.4. A

version of the thickness device using the principles exemplified above is illustrated

in Figure D.3.
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Figure D.4: Schematic of Hall effect thickness device

D.5 Methodology and usage

Initial tests

An acrylic (Polymethyl-methacrylate (PMMA)/Perspex
TM

) plate has holes drilled

in a grid formation such that the rare-earth source magnet may be inserted into

each grid-point. The plate is placed flat on the guitar soundboard and the source

magnet is inserted into a grid-point. The ‘Giletometer’ is positioned on the other

side of the soundboard, approximately opposite the source magnet. The output is

examined for a local distance minimum and recorded. This enables a matrix of

soundboard thicknesses to be made. This method was initially trialled on three

pieces of flat spruce with arbitrary thickness. A comparison is made between this
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probe and conventional vernier measurements in Table D.2. This initial trial is with

eight separate magnets of similar length dimensions and field strengths to the single

source.

Preliminary tests on the guitar

A new measurement device requires new measurement techniques. The complicated

geometry of the guitar makes it hard to determine an internal point directly opposite

any given point on the external surface of the soundboard. This problem of ‘point

location’ is able to be solved magnetically if we use another magnet (the ‘locating

magnet’) on one side of the soundboard to align the source magnet on the other

surface. If the diameter of the locating magnet is similar to the source, and the mu-

tual attraction is strong enough, the source magnet is forced into a position directly

opposite the locating magnet. If the source magnet is then held in this position while

the locating magnet is carefully replaced by the ‘Giletometer’, measurements of the

thickness at this point may be made. In practice small perturbations are required

to find the local minimum, but this method is quick, convenient, and accurate with

a small amount of training. In making a thickness matrix of a guitar soundboard it

is convenient to embed a locating magnet into an acrylic cylinder, having the same

diameter as the ‘Giletometer’ probe, and to use a plate with holes of this diameter

arranged in a grid. The grid used here is illustrated in Figure D.5.

The spacing of each grid-point is 30 mm, small enough to detect some possible

thickness variation yet large enough to cover the entire soundboard in less than one

hour. Measurements of wood dimensions made with uncontrolled humidity should

ideally be made over the shortest timescale possible. Because of the methods used
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Position Magnet Distance (mm)
Probe Callipers Probe-Callipers

0 1 0.35 0.00 0.35
2 0.20 0.00 0.20
3 0.05 0.00 0.05
4 0.05 0.00 0.05
5 0.20 0.00 0.20
6 0.20 0.00 0.20
7 0.35 0.00 0.35
8 0.35 0.00 0.35

1 1 2.1 2.06 0.04
2 2.1 2.16 -0.06
3 1.9 2.00 -0.10
4 1.8 1.90 -0.10
5 2.2 2.38 -0.18
6 2.1 2.10 0.00
7 2.0 2.20 -0.20
8 1.9 2.26 -0.36

2 1 2.2 2.00 0.20
2 2.1 2.10 0.00
3 2.2 2.20 0.00
4 2.2 2.16 0.04
5 2.1 2.04 0.06
6 2.0 2.00 0.00
7 2.2 2.10 0.10
8 2.1 2.10 0.00

3 1 1.80 1.88 -0.08
2 2.00 1.96 0.04
3 2.10 2.10 0.00
4 2.10 2.16 -0.06
5 2.10 2.06 0.04
6 2.05 2.00 0.05
7 2.10 2.06 0.04
8 1.70 1.68 0.02

Table D.2: Comparison between ‘Giletometer’ output and vernier calliper measure-
ment for pieces of flat spruce
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Figure D.5: Plan of grid template used for determination of thickness matrices of
guitar soundboards

to thin the soundboard (§3.4)we would not expect any local variation of thickness

on scales of less than about 20 mm in the longitudinal or lateral dimensions.



Appendix E

Excitation and coupling apparatus

The acquisition and excitation system is a variant of the ACUZ system described in

Appendix B.

Adopted temporarily, the cup-hook support mechanism was improved by using

powerful permanent NdFeB rare earth magnets (each with a surface magnetic field

density of 0.5 T at the surface).

E.1 Magnetic coupling apparatus

Because the primary method of excitation and detection is distributed over a small

area of the instrument to be studied (the driving point), great care must be taken

in mechanically bonding the two systems. A reversible and nondestructive bond is

required, ruling out the use of strong adhesives or physically intrusive bonds such

as nails or tacks. Also the support method described here makes it impracticable to

employ a bolt or screw coupling method because of restricted rotational freedom of

both systems. Figure E.1 illustrates the mechanical coupling apparatus used here,

based on the attractive forces between two strong permanent rare-earth (NdFeB)

374
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magnets. Using a strong epoxy adhesive, the cylindrical magnet (height: 12.5 mm,

diameter: 12.5 mm, surface field strength at one pole: 0.5 T) is fixed to the end of

a brass shaft, which is able to slide into an encasing brass tube. The tube has a

threaded end, able to screw into the impedance head at the end of the shaker. A

locking pin with a threaded end secures the two together when the shaft is completely

inside the tube. This magnetic clamp is able to bond to another magnet, arranged

with a north magnetic pole facing the clamp. This then enables the magnetic clamp

to bond to a mechanical system, having a magnet attached, in a reversible and

nondestructive manner. It is important that the bonding forces are larger than

the forces exerted by the excitation system on the driving point of the instrument,

including torque along axes perpendicular to the shaft axis, which may easily lead to

inadequate coupling if the support system is not properly implemented. Incomplete

coupling leads to mechanical damping effects and of course, in the case of complete

decoupling, no measurements are possible at all.

It is a simple matter to place a permanent rare-earth magnet on the other side of

a thin, flat plate of wood and in most cases arranged here, the coupling forces are

adequate. In the case of the finished guitar, it is possible to place a magnet on

the other side of the soundboard and use this as our driving point, but because

we have chosen the central bridge point for this purpose, and the wood thickness

here makes the magnetic coupling forces rather weak, we have instead chosen to

modify the actual bridge of the instrument, so there is a magnet embedded into

the bridge dedicated for this application. This enables ready identification of the

central bridge point and reduces the time taken in positioning magnets for coupling

at each measurement stage. Addition of a magnet in the bridge also enables magnetic
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Figure E.1: Magnetic clamp apparatus, coupling the excitation and detection system
to the element to be measured.

velocimetry measurements to be made at this point and excitation of the instrument

to be performed through a solenoid.

Figure E.3 illustrates this method of modifying an existing bridge design by

embedding a rare earth magnet into the central region. Although this was performed

here before attaching to the guitar body, it would also be convenient to do this as

a modification to an existing instrument. The added mass is relatively very small,
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Figure E.2: Magnetic clamp (isometric sketch.)
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Figure E.3: One of the guitar bridges with an embedded rare-earth magnet to cou-
ple the instrument to the excitation/detection apparatus. The visual effect is not
unæsthetic

roughly 0.6% of the total mass of the bridge1 and the small reduction in stiffness

of the top surface of the bridge would only become noticeable at relatively high

frequencies. If this point is coupled to the shaker, it is forced to be a point of

maximum amplitude and the added mass of the magnet will not affect the vibratory

response to excitation.

E.2 Cup-hook support mechanism

Mass of body: 1.3 kg, giving a weight of 12.73 N. Breaking strain of each hook:

4.9 N (500g). Spring constant, k, of long bands (8 × size 62 bands):

Long bands (8 × size 62)

Force applied (N) extension (mm) k (Nm−1)
0.2 0 —
3.2 170 18.82
4.7 295 15.93
6.2 435 14.25

So k = 16.33 Nm−1

1(V = π
4
d2h, d = h = 6.0 mm, ρ = 700 kg · m−3. Percentage of total mass:

Mmagnet−ρV

Mtotal
=

1.3−1.70×10
−7

·700

200
)
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Short bands (5 × size 62)

Force applied (N) extension (mm) k (Nm−1)
1.4 0 —
3.2 70 25.71
4.6 175 18.29
6.1 280 16.79

And k = 20.26 Nm−1 (graphs in notebook 5)

We are required to suspend a 1.3 kg object with two rubber bands having k1 =

k2 = 16 Nm−1 and two with k3 = k4 = 20 ms−1.

E.3 Magnetic support mechanism

Small rubber bands are useful for low mass objects, such as a violin or guitar sound-

boards, but the higher masses of guitar bodies and the finished instruments means

we could not use the same bands in the same manner. In this case, I have found

‘shock-cord’ (an elastic cord made from nylon and elastic rubber fibres commonly

used on modern sailing vessels) with an uncompressed diameter of 2.5 mm, to serve

this purpose well. The advantages of this support are that it is geometrically sim-

pler (viz. no knots are required) and is more convenient to attach to the pulley

suspension system. The higher spring constant per unit length means that a small

number are able to be used to support an entire instrument, but it also has a much

higher ultimate strain than the rubber bands—so much so that there is practically

no problem with mechanical failure, which is not the case with small rubber bands.

This is an important consideration because mechanical failure of the support system

may have disastrous consequences for the instrument involved. I have experienced
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mechanical failure of the rubber band supports and it has only been circumstantial

that no instrument was injured. No problems of this kind occurred with the shock-

cord.

For an unstretched length of 0.488 m, the shock-cord was measured to have a

spring constant of 13.07 ± 0.15 Nm−1. For the guitars used here, the unstretched

lengths of each cord was 1.37 metres.

E.4 Materials used in excitation stand

The NdFeB rare earth magnets used have the following properties:

Mass density 7.07 × 103 kg · m−3

Diameter of large magnets 12.0 mm
Height of large magnets 10 mm
Field strength at surface 0.494 ± 0.001 T

E.5 Design of excitation stand

The mechanical support system for the guitar and the excitation and detection ap-

paratus is a rectangular prism made of steel ‘Speed-E-Frame’
TM

material that is able

to be disassembled for storage (Figure E.4.)
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Guitar

Elastic supports

Shaker/impedance head

Magnetic clamp

Magnetic supports

Figure E.4: System used to support the guitars during all measurements of transfer
functions after the soundboards were glued to the back and sides.
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E.6 Specific operating techniques

Docking

Coupling the excitation/detection apparatus to the element being tested is an im-

portant process for accurate measurement. The length of the magnetic clamp unit,

from the end of the impedance head to the tip, is 28 mm. Because the magnet at

the central bridge point of the element to be measured is usually fixed, it is easier

to align the two systems without the internal shaft of the magnetic coupling appa-

ratus (Figure E.1), introducing it when the system is properly aligned. Once this is

performed, and the shaft is locked into place, it is necessary to check the contact at

the bridge point is good; this may be done by inspection.



Appendix F

Lists of terms in describing the
timbre of guitar sounds

F.1

Table F.1 gives the entire list of terms used in the on-line survey to determine a

lexicon of agreed terms to describe the timbre of acoustic guitar sounds, described

in §8.2, arranged in alphabetical order. Also provided are the results of the utility

rating of each term from all 245 respondents. This differed slightly from the responses

of those who had more experience in describing the timbre of guitar sounds, as in

Table F.2.
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Term Utility Term Utility Term Utility
(1-7) (1-7) (1-7)

balanced 5.1 ± 0.1 focussed 3.6 ± 0.1 ragtimey 2.7 ± 0.1
bassy 5.0 ± 0.1 folksy 3.3 ± 0.1 recessed 1.9 ± 0.1
beautiful 3.9 ± 0.1 formal 2.2 ± 0.1 rich 5.3 ± 0.1
beefy 3.3 ± 0.1 fresh 3.1 ± 0.1 ringing 4.9 ± 0.1
bell-like 4.5 ± 0.1 full 5.3 ± 0.1 robust 3.9 ± 0.1
big 4.0 ± 0.1 gently swinging 2.2 ± 0.1 round 3.7 ± 0.1
bland 3.6 ± 0.1 glassy 3.4 ± 0.1 scalloped 1.6 ± 0.1
bluesy 4.1 ± 0.1 growling 3.7 ± 0.1 scooped 1.8 ± 0.1
bold 3.8 ± 0.1 Hawaiian flair 2.2 ± 0.1 sharp 4.2 ± 0.1
boofy 1.5 ± 0.1 jazzy 3.7 ± 0.1 shimmering 4.2 ± 0.1
boomy 4.7 ± 0.1 killer sound 2.4 ± 0.1 harmonics
bottomy 3.7 ± 0.1 lacking body 3.8 ± 0.1 shiny 2.5 ± 0.1
boxy 3.1 ± 0.1 lacking character 3.6 ± 0.1 silky 3.7 ± 0.1
bright 5.7 ± 0.1 lacking clarity 4.4 ± 0.1 smooth 4.4 ± 0.1
brilliant 4.8 ± 0.1 lacking midrange 4.5 ± 0.1 spatial 2.7 ± 0.1
character 3.2 ± 0.1 lacking spatiality 2.4 ± 0.1 spikey 2.7 ± 0.1
classic Martin 3.0 ± 0.1 lacklustre 3.3 ± 0.1 squashed 2.2 ± 0.1
Dreadnaught lifeless 4.0 ± 0.1 steely 4.2 ± 0.1
in spades lightweight 3.1 ± 0.1 stiff 3.3 ± 0.1
clean 5.0 ± 0.1 liquid 2.6 ± 0.1 strong presence 4.1 ± 0.1
clear 5.5 ± 0.1 loose 2.9 ± 0.1 sweet 4.4 ± 0.1
clinical 2.5 ± 0.1 mellow 5.1 ± 0.1 thick 4.0 ± 0.1
closed 2.8 ± 0.1 metallic 4.9 ± 0.1 thin 4.9 ± 0.1
compressed 3.5 ± 0.1 midrangey 4.1 ± 0.1 tight 4.1 ± 0.1
contained 2.9 ± 0.1 modest 3.8 ± 0.1 tinny 5.0 ± 0.1
crisp 5.4 ± 0.1 monster tone 2.5 ± 0.1 toppy 2.6 ± 0.1
dead 4.7 ± 0.1 muddy 4.5 ± 0.1 transparent 3.3 ± 0.1
deep 4.7 ± 0.1 mushy 3.2 ± 0.1 trebly 4.9 ± 0.1
defined 4.3 ± 0.1 natural 4.0 ± 0.1 tremendous 2.5 ± 0.1
detailed 3.3 ± 0.1 open 4.1 ± 0.1 twangy 5.0 ± 0.1
dull 4.4 ± 0.1 out of control 2.0 ± 0.1 unbalanced 4.1 ± 0.1
earthy 3.4 ± 0.1 overbearing 2.8 ± 0.1 undisciplined 2.0 ± 0.1
edgy 3.5 ± 0.1 peaky 2.6 ± 0.1 vibrant 4.6 ± 0.1
electric 3.4 ± 0.1 penetrating 4.3 ± 0.1 vivacious 2.6 ± 0.1
fat 4.1 ± 0.1 percussive 4.5 ± 0.1 warm 5.5 ± 0.1
fine 3.1 ± 0.1 pleasant 3.8 ± 0.1 woody 4.5 ± 0.1
fizzy 1.9 ± 0.1 powerful 4.9 ± 0.1 woofy 2.6 ± 0.1
flat 4.2 ± 0.1 punchy 4.5 ± 0.1
floppy 2.0 ± 0.1 pure 4.5 ± 0.1

Table F.1: The entire list of terms, in alphabetical order, used in the prepilot study
to obtain an agreed lexicon on descriptions of the timbre of acoustic guitar sounds,
described in §8.2. Included is the means of the utility rating for each term, for all
245 valid respondents. The uncertainty is taken as the standard error.
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Term Utility (1-7) Term Utility (1-7) Term Utility (1-7)
bright 6.1 ± 0.1 tight 4.4 ± 0.2 earthy 3.0 ± 0.2
balanced 5.9 ± 0.2 sweet 4.4 ± 0.2 closed 3.0 ± 0.2
bassy 5.8 ± 0.2 defined 4.3 ± 0.2 beefy 3.0 ± 0.2
boomy 5.7 ± 0.2 penetrating 4.3 ± 0.2 monster tone 2.9 ± 0.2
trebly 5.7 ± 0.1 lifeless 4.3 ± 0.2 woofy 2.9 ± 0.2
warm 5.5 ± 0.2 big 4.2 ± 0.2 folksy 2.8 ± 0.2
ringing 5.5 ± 0.1 fat 4.2 ± 0.2 fine 2.8 ± 0.2
thin 5.4 ± 0.2 lacking 4.2 ± 0.2 overbearing 2.7 ± 0.2
lacking 5.4 ± 0.2 character lightweight 2.7 ± 0.2
midrange vibrant 4.2 ± 0.2 loose 2.7 ± 0.2
tinny 5.4 ± 0.2 pure 4.1 ± 0.2 contained 2.7 ± 0.2
full 5.3 ± 0.2 smooth 4.1 ± 0.2 liquid 2.7 ± 0.2
bell-like 5.3 ± 0.2 flat 4.0 ± 0.2 ragtimey 2.7 ± 0.2
clear 5.2 ± 0.2 robust 4.0 ± 0.2 toppy 2.6 ± 0.2
dead 5.2 ± 0.2 bluesy 3.9 ± 0.2 lacking spatiality 2.5 ± 0.2
crisp 5.2 ± 0.2 growling 3.9 ± 0.2 killer sound 2.5 ± 0.2
rich 5.1 ± 0.2 lacking body 3.9 ± 0.2 peaky 2.5 ± 0.2
muddy 5.1 ± 0.2 focussed 3.9 ± 0.2 spatial 2.4 ± 0.2
powerful 5.1 ± 0.2 compressed 3.8 ± 0.2 spikey 2.4 ± 0.2
brilliant 5.1 ± 0.2 round 3.7 ± 0.2 tremendous 2.3 ± 0.2
midrangey 5.0 ± 0.2 transparent 3.6 ± 0.2 shiny 2.3 ± 0.2
lacking clarity 4.9 ± 0.2 mushy 3.6 ± 0.2 fresh 2.2 ± 0.2
deep 4.9 ± 0.2 steely 3.6 ± 0.2 Hawaiian flair 2.2 ± 0.2
twangy 4.9 ± 0.2 silky 3.6 ± 0.2 clinical 2.1 ± 0.2
mellow 4.9 ± 0.2 boxy 3.6 ± 0.2 squashed 2.0 ± 0.2
woody 4.9 ± 0.2 natural 3.6 ± 0.2 modest 2.0 ± 0.2
punchy 4.8 ± 0.2 stiff 3.5 ± 0.2 vivacious 2.0 ± 0.2
bottomy 4.7 ± 0.2 beautiful 3.5 ± 0.2 formal 2.0 ± 0.1
dull 4.7 ± 0.2 glassy 3.5 ± 0.2 gently swinging 1.8 ± 0.2
metallic 4.6 ± 0.2 bold 3.5 ± 0.2 scooped 1.7 ± 0.1
shimmering 4.6 ± 0.2 lacklustre 3.5 ± 0.2 scalloped 1.7 ± 0.1
harmonics thick 3.4 ± 0.2 floppy 1.7 ± 0.1
percussive 4.6 ± 0.2 bland 3.4 ± 0.2 fizzy 1.6 ± 0.1
unbalanced 4.6 ± 0.2 sharp 3.4 ± 0.2 recessed 1.6 ± 0.1
clean 4.5 ± 0.2 jazzy 3.3 ± 0.2 out of control 1.5 ± 0.1
open 4.5 ± 0.2 edgy 3.1 ± 0.2 undisciplined 1.5 ± 0.1
strong presence 4.5 ± 0.2 pleasant 3.1 ± 0.2 boofy 1.4 ± 0.1
classic Martin 4.4 ± 0.2 electric 3.1 ± 0.2
Dreadnaught character 3.0 ± 0.2
in spades detailed 3.0 ± 0.2

Table F.2: The entire list of terms used in the prepilot study, as rated by the re-
spondents with more experience in describing the timbre of acoustic guitar sounds.
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ume 4 of Brüel and Kjær Technical Review. October 1957.

Martin Schleske. Speed of sound and damping of spruce in relation to the direction

of grains and rays. Journal of the Catgut Acoustical Society, 1(6):16–20, 1990.

Martin Schleske. Eigenmodes of vibration in the working process of a violin. Journal

of the Catgut Acoustical Society, 4(1):90–95, May 2000.

Martin Schleske. Empirical tools in contemporary violin making, part I: Analysis of

design, materials, varnish, and normal modes. Catgut Acoustical Society Journal,

4(5):50–64, May 2002.

John O. Schneider. The contemporary guitar: The search for new sounds since 1945.

PhD thesis, Department of Physics, University of Wales, Cardiff, August 1977.

http://www.kettering.edu/%E2%88%BCdrussell/guitars/electric.html


404

John O. Schneider. The contemporary guitar, volume 5 of The new instrumentation.

University of California Press, Berkeley and Los Angeles, 1985.

Emery Schubert. Update of the hevner adjective checklist. Perceptual and Motor

Skills, 96:1117–1122, 2003.

Emery Schubert, Joe Wolfe, and Alex Tarnopolsky. Spectral centroid and timbre

in complex, multiple instrumental textures. In S.D. Lipsomb, R. Ashley, R.O.

Gjerdingen, and P. Webster, editors, Proceedings of the 8th International Con-

ference on Music Perception and Cognition, pages 654–657, Adelaide, Australia,

August 2004. Causal Productions.

W. T. Sedgwick and H. W. Tyler. A short history of science. The Macmillan

Company, New York, 1917.

Gerald Sheppard. Acoustic fingerstyle guitar, chapter The question

of handcrafted versus mass-produced instruments. 1997. URL

http://www.acousticfingerstyle.com/HMvsMP.htm. (Accessed November

24, 2005).

M. R. Shroeder. Synthesis of low-peak-factor signals and binary sequences with low

autocorrelation. IEEE Transactions on Information Theory, 16:85–89, January

1970.

William T. Simpson. Equilibrium moisture content of wood in outdoor locations in

the United States and worldwide. Technical Report FPL-RN-0268, Forest Prod-

ucts Laboratory, US Dept. Agriculture, Madison, Wisconsin, August 1998.

Eugen Skudrzyk. Simple and Complex Vibratory Systems. Pennsylvania State Uni-

versity Press, 1968.

http://www.acousticfingerstyle.com/HMvsMP.htm


405

John R. Smith. Phasing of harmonic components to optimize measured signal-to-

noise ratios of transfer functions. Measurement Science and Technology, 6:1343–

1348, 1995.

I. S. Sokolnikoff. The Mathematical Theory of Elasticity. M cGraw-Hill Book Co.,

Inc., 1946.

Karl A. Stetson. The effect of thickness perturbations on the vibration modes of

plates. Catgut Acoustical Society Newsletter, 28:32–34, 1977.

John William (3rd Baron Rayleigh) Strutt. The Theory of Sound, volume 1 & 2.

The Macmillan Company, 2nd edition, 1869.

Rudolph Szilard. Theory and Analysis of Plates—Clasical and Numerical Methods.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.

K. P. Szlichcinski. The art of describing sounds. Applied Ergonomics, 10(3):131–138,

September 1979.

E. Terhardt. Psychoacoustic evaluation of musical sounds. Perception and Psy-

chophyics, 23:483–492, 1978.

Greg ‘the Doc’. How to build an acoustic guitar vol. 5. URL

http://www.musicianshotline.com/archive/monthly/guitar er/04 05.htm.

(Accessed November 24, 2005), May 2005.

William (Lord Kelvin) Thomson and Peter G. Tait. Treatise on natural philosophy

(2 vols). Cambridge University Press, Cambridge, England, 1867.

S. P. Timoshenko. Theory of elasticity. McGraw-Hill, Inc., New York, 1934.

Rick Turner. Instant vintage. Acoustic Guitar Magazine, pages 36–41, February

1997.

http://www.musicianshotline.com/archive/monthly/guitar


406

S. S̆ali and J. Kopac̆. Measuring the quality of guitar tone. Experimental mechanics,

40(3):242–247, September 2000.
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