

Effect of Inverted Aerofoil Geometry on Aerodynamic Performance in Ground Effect

Author:

Vogt, Jonathan William; Barber, Tracie J; Leonardi, Eddie

Event details:

XXII International Congress on Theoretical and Applied Mechanics Adelaide, Australia

Publication Date:

2008

DOI:

https://doi.org/10.26190/unsworks/370

License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/ Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/37555 in https://unsworks.unsw.edu.au on 2024-03-29

Effect of Inverted Aerofoil Geometry on Aerodynamic Performance in Ground Effect

THE UNIVERSITY OF NEW SOUTH WALES

Jonathan W. Vogt (a), Tracie J. Barber and Eddie Leonardi

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia, 2052 (a) Email: j.vogt@student.unsw.edu.au; Fax: (+612) 9663 1222

Background and Project:

- Ground effect is the aerodynamic phenomenon experienced by bodies moving in close proximity to the ground.
- Caused by augmentation of flow field induced by presence of the ground.
- Shown to be influenced by changes in body orientation and displacement from the ground.
- Influence of small geometry changes has not yet been examined thorough understanding of mechanics of ground effect is lacking.
- CFD Study was undertaken comparing Tyrrell, NACA4412 and three hybrid aerofoils (**Figure 1**).
- Fine boundary layer mesh surrounded by unstructured and structured sections (**Figure 2**).
- Each hybrid replaces one feature of Tyrrell with equivalent feature of NACA4412, so effect can be observed.
- One additional hybrid aerofoil (**Figure 3**) was created to further clarify results.

Figure 4: Pressure coefficient distributions

Figure 5: Tyrrell New Mod distribution

Results and Discussion:

From pressure coefficient distributions in **Figure 4**:

- *LE Mod:* Has no leading edge 'suction spike' but maintains suction thereafter suggests leading edge curvature unimportant.
- *Top Surf Mod:* Eliminates pressure rise near trailing edge. Consistent loss of suction on bottom surface suggests loss of circulation.
- Bot Surf Mod: It's smoother curvature maintains 'suction spike', reduces max suction region (0.1 < x/c < 0.2) and rapid pressure increase (0.2 < x/c < 0.3). Pressure gradient same as NACA4412 (but more suction). Has higher suction (than NACA4412) due to circulation from top surface camber.

From pressure coefficient distributions in **Figure 5**:

• Tyrrell New Mod (Bot Surf Mod with lowest point moved forward to Tyrrell location): Produced greater max suction – suggesting forward placement of lowest point is advantageous.

From velocity contour plots in **Figure 6**:

- Bot Surf Mod shows reduction in flow speed under aerofoil due to smoother curvature.
- •Speed reduction under *Top Surf Mod* is worse due to lower circulation.

Figure 2: Computational mesh

Figure 3: Tyrrell New Mod aerofoil

Conclusions:

- Ground effect performance of inverted aerofoils depends on: circulation generated about aerofoil; lowest point location and; smoothness of bottom surface curvature.
- Leading edge curvature has little influence on performance.

Figure 6: Velocity contour plots of main aerofoils: a) NACA4412 b) Tyrrell; c) Bot Surf Mod; d) Top Surf Mod; e) LE Mod

