
Metagenomic analysis of the biodiversity and seasonal
variation in the meromictic Antarctic lake, Ace Lake

Author:
Panwar, Pratibha

Publication Date:
2021

DOI:
https://doi.org/10.26190/unsworks/22609

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/70961 in https://
unsworks.unsw.edu.au on 2024-04-30

http://dx.doi.org/https://doi.org/10.26190/unsworks/22609
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/70961
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Metagenomic analysis of the biodiversity and 

seasonal variation in the meromictic Antarctic 

lake, Ace Lake 
 

 

Pratibha Panwar 

 

A thesis in fulfilment of the requirements for  

the degree of Doctor of Philosophy 

 

 
 

School of Biotechnology and Biomolecular Sciences 

Faculty of Science 

University of New South Wales 

 

January 2021  



THESIS TITLE & ABSTRACT 

 

 

 

  



ORIGINALITY, COPYRIGHT AND AUTHENTICITY 
STATEMENTS 

 

 
 

  



INCLUSION OF PUBLICATIONS STATEMENT 

 



ii 
 

Abstract 

 

Ace lake is a stratified lake in the Vestfold Hills, Antarctica. The presence of a thick 

ice-cover for ~11 months of the year and a strong salinity gradient are responsible for its 

permanent stratification. Taxonomy analyses showed depth-based segregation of its 

microbial community, including viruses. Functional potential analyses of the lake taxa 

highlighted their roles in nutrient cycling. 

In this thesis, the seasonal changes in Ace Lake microbial community were studied 

using a time-series of metagenomes utilizing the Cavlab metagenome analysis pipeline. 

Statistical analyses of taxa abundance and environmental factors revealed the effects of 

the polar light cycle, with 24 hours of daylight in summer and no sunlight in winter, on 

the phototrophs identified in the lake, indicating the importance of light-based primary 

production in summer to prevail through the dark winter. Analysis of viral data 

generated from the metagenomes showed the presence of viruses, including a ‘huge 

phage’, throughout the lake, with a diverse population existing in the oxic zone. 

Analysis of virus-host associations of phototrophic bacteria revealed that the availability 

of light, rather than viral predation, was probably responsible for seasonal variations in 

host abundances. 

Genomic variation in Synechococcus and Chlorobium populations, analysed using 

metagenome-assembled genomes (MAGs) from Ace Lake, revealed phylotypes that 

highlighted their adaptation to the lake environment. Synechococcus phylotypes were 

linked to complex interaction with viruses, whereas some Chlorobium phylotypes were 

inferred to interact with Synechococcus. Some Chlorobium phylotypes were also 

inferred to have improved photosynthetic capacity, which might contribute to the very 

high abundance of this species in Ace Lake.  

Comparative genomic analysis of Chlorobium was performed using MAGs from Ace 

Lake, Ellis Fjord, and Taynaya Bay and the genome of a non-Antarctic Chlorobium 

phaeovibrioides. A single Chlorobium species, distinct from the non-Antarctic species, 

was prevalent in the oxycline of all three stratified systems, highlighting its endemicity 

to the Vestfold Hills. Potential Chlorobium viruses, representing generalist viruses, 

were identified in aquatic systems from the Vestfold Hills and the Rauer Islands, 
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indicating a widespread geographic distribution. Seasonal variation in the Chlorobium 

population appeared to be caused by reliance on sunlight rather than the impact of viral 

predation, and was inferred to benefit the host by restricting the ability of specialist 

viruses to establish effective lifecycles. The findings in this thesis highlight the seasonal 

influence on Ace Lake biodiversity, the adaptations and potential interactions of the two 

key species Synechococcus and Chlorobium, and the endemicity of Ace Lake 

Chlorobium to the Vestfold Hills. 
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1. General introduction 

 

1.1 Antarctica 

Antarctica is the coldest, driest continent on Earth and contains ~90% of the Earth’s ice 

(AASSP, 2011). It covers nearly 14 million km2 area, which increases to almost 20 

million km2 in winter. The Antarctic continent is divided into East and West Antarctica 

by the Transatlantic Mountains. Nearly 98% of the Antarctic continent is covered by an 

ice sheet of 2.2 km average thickness. Only ~0.4% of the continent, roughly 46,000 

km2, is ice-free (Cavicchioli, 2015; Chown et al, 2015). Antarctica is surrounded by 

Southern Ocean and most of its coastal ice is in the form of ice shelves (44%) and ice 

walls (38%) (Drewry, 1983). It is the southern-most continent of Earth containing the 

South Pole (90° S), with most of its coastal areas lying at lower latitudes reaching ~66° 

S; the northern-most tip of the Antarctic peninsula reaches ~63° S. The Antarctic light 

cycle includes a 24 h sunlight period in summer and a dark period with no sunlight in 

winter, with the duration of these light and dark periods varying from a few weeks to a 

few months depending on the latitude. Antarctica is also the windiest continent on 

Earth, with katabatic winds blowing off the continent at high velocity; the speed of wind 

gusts measured near the Antarctic coast sometimes exceed 200 kmh-1 

(https://www.antarctica.gov.au/). 

1.1.1 Antarctic lake biodiversity and ecology  

Antarctica supports diverse life, including animals, plants, fungi, and a variety of 

microbes (Chown et al, 2015). Apart from penguins, albatrosses, and seals, which 

mainly inhabit the sub-Antarctic islands in the Southern Ocean, a rich assortment of 

lichens, bryophytes, and non-lichenised fungi can be found in Antarctica along with a 

few varieties of flowering plants, found only in the Antarctic peninsula (Peat et al, 

2007; Bridge et al, 2008; Chown et al, 2015). Among the invertebrate organisms, 

tardigrades, nematodes, springtails, and mites are present in Antarctica (Stevens et al, 

2006; Velasco-Castrillόn et al, 2014). However, microbial communities show the most 

species diversity among all Antarctic life in a variety of habitats such as meltwater 

ponds (Archer et al, 2014), lake ice (Gordon et al, 2000), Antarctic soils (Cary et al, 

2010; Fierer et al, 2012; Zablocki et al, 2014), stratified lakes (Lauro et al, 2011; Yau et 

https://www.antarctica.gov.au/
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al, 2011; Yau et al, 2013; Laybourn-Parry and Bell, 2014), hypersaline lakes (Bowman 

et al, 2000a; DeMaere et al, 2013; Tschitschko et al, 2018), and other Antarctic aquatic 

systems (Laybourn-Parry and Pearce, 2007; Lόpez-Bueno et al, 2009; Wilkins et al, 

2013; Cavicchioli, 2015).   

In Antarctica, only ~0.4% of the total landmass is ice-free and harbours a variety of 

aquatic systems including lakes (both epiglacial and subglacial) and ponds (Cavicchioli, 

2015; Chown et al, 2015). The Antarctic lake structure (microbial community types) 

and function (prevalent nutrient cycles) can depend on a number of factors such as 

availability of light, biotic factors (presence/absence of viruses), abiotic factors 

(availability of nutrients and oxygen, salinity, temperature), and other biogeographical 

and limnological factors (Figure 1.1; Cavicchioli, 2015). Single-celled eukaryotic algae 

and cyanobacteria are the most prominent primary producers in the photic zone of many 

Antarctic lakes, where they use light (energy source) and water (electron donor) for 

carbon fixation and oxygen production (Campbell, 1978; Williams, 1979; Wright and 

Burton, 1981; Franzmann et al, 1987; Rankin et al, 1999; Bowman et al, 2000a; Nadeau 

and Castenholz, 2000; Bell and Laybourn-Parry, 2003; Laybourn-Parry et al, 2005; 

Madan et al, 2005; Powell et al, 2005; Singh and Elster, 2007; Lauro et al, 2011; Kong 

et al, 2012; Yau et al, 2013; Williams et al, 2014). However, green sulfur bacteria 

(GSB) have been identified as important primary producers involved in anoxygenic 

photosynthesis at the oxic-anoxic interface of some Antarctic meromictic systems, 

where they use light (energy source) and hydrogen sulfide (electron donor) for carbon 

fixation, reducing hydrogen sulfide to elemental sulfur (Burke and Burton, 1988a; 

Bryant and Frigaard, 2006; Ng et al, 2010; Lauro et al, 2011). Due to cold temperature, 

the surfaces of many Antarctic aquatic systems are covered by ice for most of the year, 

which can impact the availability of light in the water column below the ice cover 

(described below in section 1.2.1). The amount of available light can further affect the 

abundance of microbial population, especially phototrophic microbes, as well as their 

function in an aquatic system. For example, the phytoflagellate Pyramimonas 

gelidicola, identified in two Antarctic lakes — Highway Lake and Ace Lake, has high 

abundance in summer when sufficient light is available for photoautotrophic growth, 

but has low abundance in winter when it resorts to phagotrophy for survival in the dark 

(Bell and Laybourn-Parry, 2003; Laybourn-Parry et al, 2005).  
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In Antarctic environments where light is not available, e.g., during winter or in the 

aphotic zones of lakes, chemoautotrophs have been identified as primary producers, 

utilizing inorganic compounds like nitrogen, sulfur or iron as energy sources, in place of 

light energy, for carbon fixation (Grzymski et al, 2012; Williams et al, 2012; Laybourn-

Parry and Pearce, 2016). Chemoautotrophic archaea and bacteria including members of 

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Thaumarchaeota 

have been reported in various Antarctic lakes (Sattley and Madigan, 2006; Mikucki and 

Priscu, 2007; Kong et al, 2012; Wilkins et al, 2013; Yau et al, 2013; Vick-Majors et al, 

2014; Cavicchioli, 2015; Achberger et al, 2016; Laybourn-Parry and Pearce, 2016). 

Seasonal comparison of microbial diversity and function of some Antarctic 

environments (Lake Fryxell, Lake Bonney Western lobe, Antarctic peninsula coastal 

surface waters) showed a shift from photoautotrophy in summer when light is available 

to chemoautotrophy in dark winter (Grzymski et al, 2012; Williams et al, 2012; Vick-

Majors et al, 2014). The chemoautotrophic archaea and bacteria in the Antarctic 

peninsula coastal waters use energy produced through oxidation of ammonia or nitrite, 

respectively, for carbon fixation (Grzymski et al, 2012; Williams et al, 2012). On the 

other hand, Lake Fryxell and Western lobe of Lake Bonney harbour chemoautotrophic 

bacteria that fix carbon using energy generated through sulfur oxidation (Sattley and 

Madigan, 2006; Kong et al, 2012). 

Apart from photoautotrophs and chemoautotrophs, Antarctic aquatic systems contain 

heterotrophs that are involved in the conversion of complex organic compounds, 

including organic carbon generated by autotrophs, into inorganic molecules (Takacs et 

al, 2001; Mikucki and Priscu, 2007; Wilkins et al, 2013; Cavicchioli, 2015; Laybourn-

Parry and Pearce, 2016). Unlike lower latitude lakes, Antarctic lakes receive very little 

exogenous nutrient input from their surrounding catchment areas, as the lakes are 

covered by ice for most of the year (Laybourn-Parry and Pearce, 2016). Therefore, the 

complex compounds utilised by heterotrophs mostly come from photoautotrophs and/or 

chemoautotrophs in the system (Matsumoto, 1989; McKnight et al, 1991; Laybourn-

Parry and Pearce, 2016). Heterotrophic archaea and bacteria including members of 

Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, Chloroflexi, 

Gammaproteobacteria, Haloarchaea, Sphingobacteria have been observed in various 

Antarctic lakes (Mikucki and Priscu, 2007; Mosier et al, 2007; Lauro et al, 2011; 
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DeMaere et al, 2013; Wilkins et al, 2013; Yau et al, 2013; Vick-Majors et al, 2014; 

Cavicchioli, 2015; Laybourn-Parry and Pearce, 2016).  

As metazoan grazers of phytoplankton, bacteria and archaea are very few in the 

Antarctic lakes, viruses seem to play an important role in nutrient mobilization and in 

driving the evolution of hosts, thereby affecting lake ecology (Figure 1.1) (Kepner et al, 

1998; Pearce and Wilson, 2003; Madan et al, 2005; Säwström et al, 2007; Anesio and 

Bellas, 2011; Lauro et al, 2011; Yau et al, 2011; Cavicchioli, 2015; Tschitschko et al, 

2015; Laybourn-Parry and Pearce, 2016). The presence of strong wind in Antarctica has 

also been suggested to play a role in shaping microbial communities through the 

dispersal of microbes in the continent, just as it does in other ecosystems across the 

globe (Wilkins et al, 2013; Cavicchioli, 2015). 

The chemical composition of the aquatic systems such as their salinity, oxygen content, 

and nutrient composition and concentration can govern Antarctic lake microbial 

communities (Figure 1.1; Cavicchioli, 2015). For example, Deep Lake, Organic Lake 

and Ekho Lake are three highly saline (hypersaline) lakes in the Vestfold Hills and have 

been shown to contain similar high abundance populations of Gammaproteobacteria 

and members of Cytophaga-Flavobacterium-Bacteroidetes group, along with low 

abundance populations of Actinobacteria, Alphaproteobacteria and Firmicutes; a 

majority of the Gammaproteobacteria belonging to the genus Marinobacter (Bowman 

et al, 2000a). Similarly, methanogenic archaea have been identified in the dark, anoxic 

waters of various stratified lakes in the Vestfold Hills (Bowman et al, 2000b; Lauro et 

al, 2011), whereas a diverse population of haloarchaea thrives in the hypersaline lakes 

from the Vestfold Hills and the Rauer Islands in East Antarctica (DeMaere et al, 2013; 

Tschitschko et al, 2018).  

The biogeographic locations of Antarctic lakes have also been shown to affect the type 

of microbial communities observed in systems with similar physicochemical 

compositions. A dominant population of Chlorobiaceae family members (GSB) along 

with a low abundance population of Chromatiaceae family members (purple sulfur 

bacteria) are prevalent in various meromictic lakes in the Vestfold Hills (Burke and 

Burton, 1988a), but the meromictic Lake Fryxell in McMurdo Dry Valleys, East 

Antarctica supports members of Chloroflexi (green non-sulfur bacteria) and a diverse 

population of purple non-sulfur bacteria (Karr et al, 2003). Overall, the Antarctic lake 

microbial ecosystem is very diverse and can be shaped by environmental factors (e.g., 
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temperature, light availability, wind) as well as biotic (e.g., presence/absence of 

viruses), physical (e.g., presence/absence of ice cover), chemical (e.g., salinity, 

nutrients), and geographical (location) characteristics of the aquatic systems in which 

the microbes reside (Figure 1.1).  

 
Figure 1.1 Various factors affecting Antarctic lake ecology. The availability of light (a), and 

biotic (b), abiotic (c) and other factors (d) that potentially impact Antarctic lake structure and 

function are shown. The schematic was taken from Cavicchioli (2015). 

1.1.2 Physical characteristics of stratified aquatic systems in the Vestfold Hills, 

Antarctica 

The Vestfold Hills lie in East Antarctica and are mostly free of ice and snow; they are 

classified as an Antarctic oasis. They were formed as a result of isostatic rebound (i.e., 

uplifting of the landmass) after the retreat of the continental ice sheet nearly 10,000 

years ago, due to which the Vestfold Hills are riddled with thousands of supra- and sub-

glacial water bodies including fresh water, saline, and hypersaline systems (Gibson, 

1999; Cavicchioli, 2015; Siegert et al, 2016). The Vestfold Hills are well-known for 

their variety of stratified aquatic systems, with at least 34 stratified lakes and marine 

basins reported in one study (Gibson, 1999). Stratified systems are also referred to as 

meromictic systems — they have a well-mixed oxic mixolimnion, an oxic-anoxic 
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interface, and an anoxic monimolimnion. In the Vestfold Hills, the permanent 

stratification of lakes can be attributed to the presence of a protective ice cover that 

remains for most of the year and prevents wind-driven mixing of the lake waters 

(Burton and Barker, 1979; Burch, 1988; Burke and Burton, 1988a; Gibson and Burton, 

1996). In summer, the melting ice cover and the inflow of melt water can create a layer 

of freshwater on the surface of a stratified lakes, as is seen in Ace Lake in the Vestfold 

Hills (Hand and Burton, 1981). The ice cover of most stratified lakes in the Vestfold 

Hills completely melts by the end of December, whereas in some low salinity lakes, the 

ice cover does not melt even by January (Gibson and Burton, 1996). Although the 

melting of the ice cover exposes the stratified lakes to wind-driven mixing, the lake 

waters mix to a depth of only a few metres, partly due to the stability provided by 

thermal and chemical stratification of the lakes and partly because of the presence of the 

additional fresher water layer on their surface (Walker, 1974; Burton and Barker, 1979; 

Burch, 1988). As the ice cover reforms with approaching winter, salt from the newly 

forming ice is exuded into the surrounding lake waters as brine, which sinks deeper and 

drives the convective mixing of the mixolimnion waters of the lake (Gibson and Burton, 

1996; Swadling, 1998; Rankin et al, 1999). The depth to which the mixing occurs 

depends on the amount of salt excluded from the newly forming ice, which in turn is 

affected by the thickness of the ice cover formed (Gibson and Burton, 1996; Rankin et 

al, 1999). Due to the strong salinity gradient below the halocline, the sinking brine 

mingles with the monimolimnion waters mainly by diffusion, precluding any mixing 

(Canfield and Green, 1985; Rankin et al, 1999). 

 

1.2 Ace Lake — a stratified lake in the Vestfold Hills, Antarctica 

Ace lake is a marine-derived, stratified lake located in the Vestfold Hills in East 

Antarctica (68.473° S, 78.189° E) (Figure 1.2). With a maximum depth of 25 m, the 

Ace Lake water column is segregated into oxic mixolimnion and anoxic 

monimolimnion by an oxic-anoxic interface (Figure 1.3) (Burton, 1980; Gibson, 1999; 

Rankin et al, 1999). The lake surface is covered with ice for most of the year and melts 

only in summer (Burton, 1980). Apart from the oxygen gradient, Ace Lake also has a 

salinity gradient, which increases with lake depth — the lake salinity levels vary from 

1.9 % at around 1 m depth to 4.2 % at around 24 m depth (Burton and Barker, 1979; 
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Hand and Burton, 1981; Burch, 1988; Bell and Laybourn-Parry, 1999; Rankin et al, 

1999; Lauro et al, 2011; Panwar et al, 2020). The pH of Ace Lake waters steadily 

decreases with depth, being slightly alkaline in the oxic zone and nearly neutral in the 

anoxic zone (Burton and Barker, 1979; Hand and Burton, 1981; Rankin et al, 1999; 

Lauro et al, 2011). The lake pH also fluctuates with season in the oxic zone, with more 

variations observed at 2 m depth than at 10 m (Rankin et al, 1999). The seasonal heat 

transfer to and from the lake, i.e., gain of heat through solar radiation or surrounding 

rocks and loss of heat through the ice cover or into the lake sediment, has led to the 

thermal stratification of Ace Lake. However, temperature data collected from Ace Lake 

over more than three decades suggests that the thermal stratification of the lake is not as 

prominent as it was in the past (Burton and Barker, 1979; Hand and Burton, 1981; 

Burch, 1988; Bell and Laybourn-Parry, 1999; Rankin et al, 1999; Lauro et al, 2011; 

Panwar et al, 2020). Nonetheless, the presence of an ice cover and a strong salinity 

gradient allow for the permanent stratification of Ace Lake (Walker, 1974; Burton and 

Barker, 1979; Burch, 1988; Rankin et al, 1999).  
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Figure 1.2 Ace Lake in the Vestfold Hills, East Antarctica. The Antarctic continent (a) is the 

southern-most landmass on Earth and mostly lies within the Antarctic Circle (~66° S; red circle 

in a). It is divided into East Antarctica (EA) and West Antarctica (WA) by the Transatlantic 

Mountains. The Vestfold Hills (b) lie along the coastal region of East Antarctica and cover 

approximately 411 km2 area, containing ~3,000 aquatic systems including Ace Lake (orange 
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circle in b) (Cavicchioli, 2015). Ace Lake is covered by ice for most of the year (d), which 

melts in summer (c). The image of the Antarctic continent (a) was created in Google Earth Pro 

(https://www.google.com/earth/). The image showing the satellite view of majority of the 

Vestfold Hills (b) as well as the photographs of Ace Lake (c, d) were adapted from Cavicchioli 

(2015).  

In Ace Lake, the oxycline, halocline, and thermocline lie across almost the same lake 

depths, but this has not always been the case (Table 1.1). Earlier reports show that the 

oxic-anoxic interface of Ace Lake was at 10 m depth in 1974 (Burton and Barker, 

1979), at 12 m depth in 1992 (Rankin et al, 1999), and at 13 m depth 1996 (Bell and 

Laybourn-Parry, 1999). Moreover, based on the concentration of manganese and 

selenium in Ace Lake, two trace elements found in high concentration near the oxycline 

of meromictic Antarctic lakes (Masuda et al, 1988), it has been speculated that the Ace 

Lake oxic-anoxic interface could have been at a depth as low as 18 m at some point in 

the past (Rankin et al, 1999). On the other hand, the halocline and thermocline, which 

generally coincide in Ace Lake, were at depths higher up in the water column in the 

oxic zone until less than two decades ago, when the halocline/thermocline dropped to 

the level of the oxycline in Ace Lake (Table 1.1). These shifts in the physicochemical 

gradients in Ace Lake might be due to a change in lake water level, because of inflow of 

melt water, melting of ice cover, and/or evaporation of lake water, or might indicate the 

result of ice formation, which impacts the depth to which the mixolimnion extends. It 

has been speculated that if the halocline of a stratified lake were to be pushed down to a 

low enough depth, due to reduction in lake water level or during formation of an ice 

cover, the lake would completely mix removing any physicochemical gradients 

prevalent in the water column (Gibson and Burton, 1996; Rankin et al, 1999). Such a 

turn over event has been suggested to have occurred in Ace Lake in the past since its 

isolation, during which most of the sulfur (76%) was lost from the lake (Burton and 

Barker, 1979; Gibson and Burton, 1996; Rankin et al, 1999). 

https://www.google.com/earth/
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Figure 1.3 The physical, chemical, and biological structuring of Ace Lake. Ace Lake is a 

stratified lake of marine origin, with an upper oxic zone (Aerobic Mixolimnion), a 

chemocline/oxycline (Chemocline Oxycline), and a lower anoxic zone (Anoxic 

Monimolimnion). The schematic was taken from Laybourn-Parry et al (2014). 

Table 1.1 Changes in the position of the oxic-anoxic interface, halocline, and thermocline 

in Ace Lake over a period of more than three decades. The values in the table represent the 

Ace Lake depths at which the oxic-anoxic interface, halocline, and thermocline of the lake 

waters were measured. A The data taken from various studies span more than three decades and 

are shown chronologically from top to bottom. 

Data 

collection 

date 

Ace Lake depths 

ReferenceA Oxic-anoxic 

interface 
Halocline Thermocline 

Nov 1975 10 m 5–7 m 7–10 m Burton and Barker, 1979 

Dec 1977 9 m - 7–10 m Hand and Burton, 1981 

Feb 1979 9 m 3–5 m 4–5 m 
Burch, 1988 

Aug 1979 9 m 3–7 m 4–7 m 

Nov 1992 12 m 7–9 m 7–9 m 
Rankin et al, 1999 

June 1994 12 m 7–9 m 7–9 m 

Feb 1996 12 m 6–8 m 6–8 m 
Bell and Laybourn-Parry, 1999 

Oct 1996 13 m 8.5–9.5 m 8.5–9.5 m 

Feb 2001 to 

Feb 2002 

12 m (first 

summer) 

14 m (winter) 

- - Laybourn-Parry and Bell, 2014 
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14 m (second 

summer) 

Dec 2002 

to Dec 

2003 

12 m (summer 

and winter) 
- - 

Dec 2006 13 m 12–13 m 11–13 m 
Lauro et al, 2011; Panwar et al, 

2020 

Nov 2008 13 m 12–13 m 12–13 m 

Panwar et al, 2020 

Nov 2013 14 m 12–14 m 12–14 m 

Aug 2014 15 m 12.5–15 m 12–14 m 

Oct 2014 14 m 12–14 m 12–14 m 

Dec 2014 14 m 12–14.5 m 12–14 m 

1.2.1 Light penetration 

The polar light cycle is distinct from the light cycle experienced in non-polar cold 

environments, with 24 h of sunlight in summer and no sunlight in winter; the light and 

dark periods lasting a few weeks in the Vestfold Hills. In 1979, incident light as high as 

1,225 μEm-2s-1 was measured in summer, and as low as 1.3 μEm-2s-1 was measured in 

winter at the surface of Ace Lake (Burch, 1988). As the lake is covered by ice for most 

of the year, the lake depth to which the incident light can penetrate depends on the 

opaqueness, thickness, and age of the ice cover (Kirk, 1994) as well as the 

presence/absence and thickness of a snow cover (Burch, 1988). In ice-free conditions in 

summer, only 10% of the incident light reaches 9 m depth in Ace Lake and light 

penetrates up to 11.5 m depth (Hand and Burton, 1981; Burch, 1988; Rankin, 1998). 

However, with a 2 m ice cover in spring, only 1% of the incident light reaches 9 m 

depth and no light is available past 10 m depth in the lake. The presence of dense 

populations of phototrophic bacteria in the mixolimnion and oxycline of Ace Lake also 

prevents light from penetrating beyond 11.5 m depth in ice-free conditions (Rankin et 

al, 1999). Apart from ice cover, the presence of a snow cover can further impede light 

penetration — the amount of incident light penetrating through a 1.6 m ice cover with a 

30 cm snow cover is three times less than the light penetration through the same ice 

thickness but without a snow cover (Burch, 1988). Ice and snow cover not only affect 

the amount of light, but also the wavelength of light that penetrates the water column. 

Ice cover attenuates red light much more than blue or green light, whereas the presence 
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of a snow cover causes a stronger attenuation of green and blue lights but not red light 

(Burch, 1988). Generally, in the presence of a thick ice cover, green light penetrates 

deeper into the water column in Ace Lake, than blue or red light. 

1.2.2 Biodiversity 

Life in Ace Lake have been extensively studied by various research groups since the 

1970s, (i) to understand the overall biological composition of this meromictic lake 

(Burton and Barker, 1979; Hand, 1980; Hand and Burton, 1981; Burch, 1988; Burke 

and Burton, 1988a; Bell and Laybourn-Parry, 1999; Bowman et al, 2000b; Laybourn-

Parry et al, 2001; Coolen et al, 2004a; Coolen et al, 2004b; Laybourn-Parry et al, 2005; 

Madan et al, 2005; Powell et al, 2005; Coolen et al, 2006; Lauro et al, 2011) or (ii) to 

describe specific organisms identified in the system (Franzmann et al, 1991a; 

Franzmann and Rohde, 1991; Franzmann and Dobson, 1992; Franzmann et al, 1992; 

Bowman et al, 1997; Franzmann et al, 1997; Rankin, 1998; Bell and Laybourn-Parry, 

2003; Ng et al, 2010). Generally, the biodiversity of each stratum of Ace Lake, i.e., the 

oxic mixolimnion, the oxycline, and the anoxic monimolimnion, is distinct (Table 1.2).  

Table 1.2 The biodiversity of Ace Lake assessed over a period of more than three decades. 

Data were taken from various studies on Ace Lake, shown here chronologically from top to 

bottom. A The second column indicates the method used to analyse diversity. B The last column 

describes the types of life forms identified in each stratum of Ace Lake: U, upper oxic zone 

(mixolimnion); I, oxycline (oxic-anoxic interface); L, lower anoxic zone (monimolimnion); S, 

anoxic zone sediment. 

Reference study MethodA BiodiversityB 

Burton and Barker, 

1979 
Microscopy 

U: Paralabidocera antarctica and Acartia 

sp. (copepods); a branched filamentous 

Chlorophyta species; cyanobacteria; 

Fragilaria sp. and Navicula sp. (diatoms)  

I and L: high microbial cell count 

Hand and Burton, 

1981 

Microscopy; cell culture 

and characterization 

U: P. antarctica (a copepod); 

Pyramimonas sp. (a green alga); 

cyanobacteria; diatoms 

I: heterotrophs 

L: Chromatium sp. and Rhodospirillum sp. 

(phototrophic bacteria); Desulfovibrio sp. 
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(sulfate-reducing bacteria); anaerobic 

heterotrophs; methanogens 

Burch, 1988 Microscopy 

U: Pyramimonas gelidicola; Cryptomonas 

sp.; two unknown species of flagellates; 

Navicula sp. and Pinnularia sp. (diatoms); 

cyanobacteria 

Burke and Burton, 

1988a 

Microscopy; enrichment 

culture and morphology 

characterization  

I: dominated by Chlorobium vibrioforme 

and Chlorobium limicola (green-coloured 

GSB); few members of Chromatiaceae 

family and Rhodospirillaceae family 

(purple photosynthetic 

bacteria) also identified 

Mancuso et al, 1990 Lipid mass spectrometry 

U: microeukaryotes 

L: Desulfobacter sp.; Desulfovibrio sp.; 

methanogenic bacteria 

Franzmann et al, 

1991a 

Celle culture, isolation, and 

characterization; 16S rRNA 

gene-based phylogenetic 

analysis 

L: Carnobacterium funditum, 

Carnobacterium alterfutulitum 

Franzmann and 

Rohde, 1991 

Celle culture, isolation, and 

characterization 
L: an obligate anaerobic coiled bacterium 

Franzmann and 

Dobson, 1992 

Cell culture and isolation; 

16S rRNA gene-based 

phylogenetic analysis 

L: an anaerobic wall-less spirochete 

Franzmann et al, 

1992 

Enrichment culture, 

isolation, and 

characterization; 16S rRNA 

gene-based phylogenetic 

analysis 

L: Methanococcoides burtonii (a 

methylotrophic methanogen) 

Bowman et al, 1997 

Enrichment culture, 

isolation, and 

characterization; 16S rRNA 

gene-based phylogenetic 

analysis 

U (just above I): Methylosphaera hansonii 

(a methanotroph) 

Franzmann et al, 

1997 

Enrichment culture, 

isolation, and 

L: Methanogenium frigidum (a 

hydrogenotrophic methanogen) 
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characterization; 16S rRNA 

gene-based phylogenetic 

analysis 

Bell and Laybourn-

Parry, 1999 
Microscopy 

U: P. antarctica; Notholca (a rotifer); Py. 

gelidicola; Cryptomonas sp.; 

Chlamydomonas sp.; few diatoms; 

Gyrodinium sp. and 

Gymnodinium sp. (dinoflagellates); 

Mesodinium rubrum; Euplotes sp. (a 

ciliate) 

I and L (just below I): P. antarctica; 

phototrophic bacteria; sulfate-reducing 

bacteria 

Rankin, 1998 

Microscopy; cell culture 

and isolation; 16S rRNA 

gene-based phylogenetic 

analysis  

U: Synechococcus sp. (a marine 

cyanobacteria) 

Bowman et al, 

2000b 

16S rRNA gene-based 

phylogenetic analysis 

S: Desulfosarcina; Syntrophus; 

Prochlorococcus (probably dead cells 

settled from mixolimnion); a wall-less 

spirochete; other anaerobic bacteria; 

Methanosarcina; other members of 

Euryarchaeota  

Laybourn-Parry et 

al, 2001 
Microscopy U: Viruses 

Madan et al, 2005 Microscopy 

U: Py. gelidicola; Cryptomonas sp.; 

Chlamydomonas sp.; Gyrodinium 

lachrymal, Gonyaulax sp., 

Protoperidinium sp., and 

Gymnodinium sp. (dinoflagellates), M. 

rubrum; viruses 

Powell et al, 2005 

Flow cytometry; cell 

culture and 

characterization; 16S rRNA 

gene-based phylogenetic 

analysis 

U: Synechococcus sp.; M. rubrum; Py. 

gelidicola; Cryptomonas sp.; a phototropic 

nanoplankter 
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Coolen et al, 2006  

16S rRNA gene-based 

phylogenetic analysis; lipid 

chromatography 

I: Chlorobium sp. 

S: members of Methanosarcinales 

(methanogenic archaea) 

Ng et al, 2010 

Metaproteogenomic 

analysis; 16S rRNA gene-

based phylogenetic 

analysis 

I: Chlorobium sp. (referred to as C-Ace) 

Lauro et al, 2011 

Metaproteogenomic 

analysis; 16S rRNA gene-

based phylogenetic 

analysis; read taxonomic 

classification 

U: Mantoniella sp. (a green alga); 

members of Phycodnaviridae (algal 

viruses); Synechococcus sp.; members of 

SAR11 clade, Flavobacteria, 

Alphaproteobacteria, and 

Deltaproteobacteria 

I: Chlorobium sp.; members of 

Deltaproteobacteria (sulfate-reducing 

bacteria) and Gammaproteobacteria 

L: members of Gammaproteobacteria, 

Deltaproteobacteria, 

Epsilonproteobacteria, Firmicutes, and 

Euryarchaeota; members of Candidate 

divisions OD1 and OP11 (bacterial 

candidate phyla); members of 

Siphoviridae, Myoviridae, and Podoviridae 

(bacteriophage) 

1.2.2.1 Mixolimnion 

In Ace Lake, the calanoid copepod Paralabidocera antarctica is the most prominent 

zooplankter (Burton and Barker, 1979; Hand and Burton, 1981; Bell and Laybourn-

Parry, 1999; Lauro et al, 2011). Another calanoid copepod (Acartia sp.) and a 

harpacticoid copepod (Idomene scotti) were also identified in the Ace Lake oxic waters 

and benthic mats, respectively (Burton and Barker, 1979; Rankin et al, 1999). Eukarya 

capable of photosynthesis, including members of Chlorophyta (Mantoniella, 

Chlamydomonas sp., Py. gelidicola), the photosynthetic ciliate Mesodinium rubrum, 

and a Cryptomonas sp., are present in the oxic waters of Ace Lake (Burton and Barker, 

1979; Hand and Burton, 1981; Burch, 1988; Bell and Laybourn-Parry, 1999; Madan et 

al, 2005; Powell et al, 2005; Lauro et al, 2011). Of these, Py. gelidicola is a mixotroph 
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and can survive in limited light by feeding on bacteria or dissolved organic carbon 

(DOC) in the lake waters (Bell & Laybourn-Parry, 2003; Laybourn-Parry et al, 2005; 

Madan et al, 2005), whereas the cryptophyte (Cryptomonas sp.) is likely to be preyed 

upon by M. rubrum (Nishitani and Yamaguchi, 2018). A large population of algal 

viruses (Phycodnaviridae) is also present in the oxic zone of Ace Lake, which probably 

preys on the green algae in the mixolimnion (Lauro et al, 2011). A few diatoms 

(Fragilaria sp., Navicula sp., Pinnularia sp.) have been identified, but their presence in 

the oxic lake waters has been attributed to diffusion from littoral algal mats (Burton and 

Barker, 1979; Hand and Burton, 1981; Burch, 1988). Other members of the benthic mat 

community of Ace Lake include green algae (Urospora penicilliformis, Rhizoclonium 

implexium), brown algae (Ectocarpus sp.), cyanobacteria, ciliates (a large tube dwelling 

member of Folliculinidae family), a platyhelminthe, nematodes, and three rotifer 

species (Dartnall, 2000). The bacterial population in the Ace Lake oxic zone is 

dominated by a cyanobacteria (Synechococcus), which is considered to be responsible 

for the oxygenation of the mixolimnion (Burton and Barker, 1979; Hand and Burton, 

1981; Burch, 1988; Rankin, 1998; Powell et al, 2005; Lauro et al, 2011). A high 

abundance of the members of SAR11 clade (Pelagibacterales) has also been reported in 

this zone, which is consistent with the marine origin of Ace Lake (Lauro et al, 2011). 

Apart from these microbes, a methanotrophic bacteria, Ms. hansonii, is present in the 

oxic zone of Ace Lake, at a depth just above the oxycline (Bowman et al, 1997). The 

overall community structure of the Ace Lake mixolimnion is similar to that of marine 

surface environments, but with ten-fold lower species richness (Lauro et al, 2011).  

1.2.2.2 Oxycline 

The oxycline of Ace Lake is dominated by Chlorobium (green-coloured GSB), the most 

abundant organism in the lake (Burke and Burton, 1988a; Coolen et al, 2006; Ng et al, 

2010; Lauro et al, 2011). Microscopy and cell culture studies have identified 

Chlorobium vibrioforme and Chlorobium limicola as the two most abundant 

Chlorobium species in the lake (Burke and Burton, 1988a), but a more recent 

metagenomic analysis of the Ace Lake oxyline waters has shown that the clonal 

population of a Chlorobium dominates this zone (Lauro et al, 2011). A few studies have 

indicated that the Ace Lake Chlorobium is closely related to Chlorobium 

phaeovibrioides, another GSB from a marine environment (Coolen et al, 2006; Ng et al, 

2010). Other than Chlorobium, some members of the Chromatiaceae and 
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Rhodospirillaceae families have also been identified in the Ace Lake oxycline, although 

their abundance is much lower than Chlorobium (Hand and Burton, 1981; Burke and 

Burton, 1988a). A number of sulfate-reducing bacteria (SRB), such as Desulfovibrio 

sp., Desulfobacter sp., and other Deltaproteobacteria members, are present in the Ace 

Lake oxycline alongside the Chlorobium (Hand and Burton, 1981; Mancuso et al, 1990; 

Lauro et al, 2011). 

1.2.2.3 Monimolimnion 

The anoxic waters of Ace Lake support a diverse community of anaerobic bacteria, 

methanogenic archaea, and bacteriophages. The anaerobic bacteria identified in Ace 

Lake include Carnobacterium funditum, Carnobacterium alterfutulitum, members of 

Gammaproteobacteria, Deltaproteobacteria, and Epsilonproteobacteria, members of 

bacterial candidate phyla (Candidate divisions OD1 and OP11), as well as a coiled 

bacterium and a wall-less spirochete (Hand and Burton, 1981; Franzmann et al, 1991a; 

Franzmann and Rohde, 1991; Franzmann and Dobson, 1992; Lauro et al, 2011). SRB 

are also present in the anoxic zone of Ace Lake, although not in the deepest depths of 

the lake (Hand and Burton, 1981; Mancuso et al, 1990; Bell and Laybourn-Parry, 1999; 

Lauro et al, 2011). The monimolimnion supports a population of methanogenic archaea 

including Methanococcoides burtonii and Methanogenium frigidum (Hand and Burton, 

1981; Mancuso et al, 1990; Franzmann et al, 1992; Franzmann et al, 1997; Coolen et al, 

2004a; Coolen et al, 2006; Lauro et al, 2011). Studies of the Ace Lake sediment 

samples indicate that members of Methanosarcinales order (including a 

Methanosarcina sp.) are present in the anoxic zone of Ace Lake along with some 

Deltaproteobacteria such as Desulfosarcina and Syntrophus (Bowman et al, 2000b; 

Schouten et al, 2001; Coolen et al, 2004a; Coolen et al, 2006). A variety of 

bacteriophage belonging to the Siphoviridae, Myoviridae, and Podoviridae families of 

double-stranded DNA viruses have been identified in the anoxic zone of Ace Lake 

(Lauro et al, 2011).  

1.2.3 Water chemistry and nutrient cycling 

1.2.3.1 Carbon 

In lakes, autotrophs fix dissolved inorganic carbon (DIC) such as carbon dioxide, 

carbonates and bicarbonates to produce organic carbon (dissolved and particulate) using 

light energy (photoautotrophs) or energy generated through inorganic nitrogen, sulfur, 
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and iron compounds (chemoautotrophs) (Alin and Johnson, 2007). The organic carbon 

compounds are used by autotrophs and heterotrophs for respiration resulting in carbon 

dioxide production (Alin and Johnson, 2007). Near lake surface the respired carbon 

dioxide can be lost to the atmosphere through gaseous exchange, but near lake bottom 

the carbon dioxide can remain stored as DIC for long periods, making it available to 

methanogens and chemoautotrophs (Alin and Johnson, 2007). Methane produced by 

methanogens can either be lost to the atmosphere through diffusion and gaseous 

exchange or it can be utilised by methane-oxidising bacteria (Bastviken et al, 2008; 

Hofmann et al, 2010). Excessive organic carbon often sinks to the lake bottom and is 

buried in sediments over time (Alin and Johnson, 2007). 

Ace Lake is covered by ice for most of the year, leaving little chance for exogenous 

nutrient input, except during the ice-free periods in summer. The concentration of DIC 

is high throughout Ace Lake, such that the lake waters are supersaturated with inorganic 

carbon compared to the atmosphere (Burton, 1980). As significant levels of carbon 

monoxide dehydrogenase were present throughout Ace Lake, carbon monoxide 

oxidation might be an important pathway for energy production, which might explain 

the high concentration of DIC in the lake (Lauro et al, 2011). Due to this, it has been 

speculated that Ace Lake probably loses carbon to the atmosphere during ice-free 

periods (Burton, 1980; Rankin et al, 1999). In the mixolimnion, the green algae and 

cyanobacteria are the major primary producers capable of assimilating DIC (Rankin et 

al, 1999). On the other hand, the members of Flavobacteria and Gammaproteobacteria 

can degrade particulate organic carbon (POC) to DOC. The members of Actinobacteria 

and SAR11 clade in the oxic zone of Ace Lake have the capacity to use DOC (Lauro et 

al, 2011), which is consistent with the low concentration of DOC in the oxic zone 

compared to the anoxic zone of Ace Lake (Hand and Burton, 1981; Bell and Laybourn-

Parry, 1999; Rankin et al, 1999; Lauro et al, 2011). The DOC concentration in Ace 

Lake has also been shown to fluctuate seasonally (Bell and Laybourn-Parry, 1999; 

Madan et al, 2005; Laybourn-Parry et al, 2007). At the oxycline of Ace Lake, anaerobic 

carbon fixation by the Chlorobium and the SRB contributes toward the carbon cycle in 

this zone (Lauro et al, 2011). SRB, together with fermentative bacteria and 

methanogens, are also involved in the anaerobic degradation of POC (sinking 

particulate matter produced in the mixolimnion) in the anoxic zone of Ace Lake (Burton 

and Barker, 1979; Burton, 1980; Franzmann et al, 1988, Mancuso et al, 1990; 
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Franzmann et al, 1991b; Franzmann and Dobson, 1992; Rankin et al, 1999; Lauro et al, 

2011). Dissolved methane is absent in the oxic zone of Ace Lake, but its concentration 

increases around the oxycline and reaches very high concentration in the anoxic zone 

(Franzmann et al, 1991b). This accumulation of methane in the Ace Lake 

monimolimnion has been attributed to methane production by methanogenic archaea 

(members of Euryarchaeota) along with the absence of anaerobic methanotrophs in the 

anoxic zone and low potential for aerobic methane oxidation (Franzmann et al, 1991b; 

Lauro et al, 2011). Some of the methane diffuses to the lake surface and is lost to the 

atmosphere in ice-free periods, but some of it can be utilised by methanotrophic bacteria 

present in the oxic zone just above the oxycline (Bowman et al, 1997). 

1.2.3.2 Sulfur 

Microbial sulfur cycling involves redox reactions usually associated with sulfate, the 

most commonly found sulfur form in lakes (Holmer and Storkholm, 2001; Luo, 2018; 

Jørgensen et al, 2019). Some microbes can reduce sulfate to hydrogen sulfide and 

organic sulfur, and assimilate them for biosynthetic purposes (assimilatory sulfate 

reduction), while others such as anaerobic bacteria can reduce sulfate to hydrogen 

sulfide for energy production (dissimilatory sulfate reduction) (Hordijk, 1993; Holmer 

and Stockholm, 2001; Jørgensen and Kasten, 2006; Luo, 2018). Oxidation of hydrogen 

sulfide to organic sulfur, elemental sulfur, sulfite and/or sulfate can be driven by 

microbes such as sulfur oxidizing bacteria (Holmer and Stockholm, 2001; Jørgensen 

and Kasten, 2006; Luo, 2018; Jørgensen et al, 2019). Some chemoautotrophs use the 

energy generated during sulfur oxidation for carbon fixation (Sattley and Madigan, 

2006; Kong et al, 2012). Apart from sulfur reduction and oxidation, various microbes, 

including some SRB, are capable of disproportionating inorganic sulfur into hydrogen 

sulfide and sulfate (Bak and Cypionka, 1987; Jørgensen et al, 2019). In lake sediments, 

chemolithotrophs have been found to utilise ferrous sulfide (FeS) and hydrogen sulfide 

to generate pyrite (FeS2) and hydrogen (Rickard and Luther, 2007; Zopfi et al, 2008; 

Thiel et al, 2019). The hydrogen generated from this reaction can be potentially used as 

reductant for carbon dioxide conversion to methane or reduction of organic matter 

(Holmkvist et al, 2011; Thiel et al, 2019).  

The overall concentration of sulfur in Ace Lake is much lower than what is observed in 

sea water of similar chlorinity (Burton and Barker, 1979). This depletion of sulfur in 
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Ace Lake, specifically in the anoxic zone, has been speculated to be the result of sulfate 

reduction by the SRB and the subsequent loss of most of the hydrogen sulfide to the 

atmosphere sometime in the past during a holomixis event (Burton and Barker, 1979; 

Cromer et al, 2005). A syntrophic relationship between the GSB (Chlorobium) and SRB 

in the Ace lake oxycline is a major component of sulfur cycling in the lake. Chlorobium 

oxidise hydrogen sulfide into sulfate during anoxygenic photosynthesis, but cannot 

utilise the sulfate they produce due to lack of genes associated with assimilatory sulfate 

reduction (Coolen et al, 2006; Ng et al, 2010; Lauro et al, 2011). On the other hand, the 

SRB require sulfate for anaerobic respiration and in the process convert sulfate back to 

hydrogen sulfide, which can be used by Chlorobium (Coolen et al, 2006; Ng et al, 2010; 

Lauro et al, 2011). This is consistent with the concentrated levels of sulfate in the oxic 

zone through to the anoxic zone just below oxycline as well as the concentrated levels 

of hydrogen sulfide in the anoxic zone of Ace Lake (Burton and Barker, 1979; Hand 

and Burton, 1981; Franzmann et al, 1991b; Rankin et al, 1999). The SRB are also 

present in the anoxic zone, close to the oxycline where the sulfate concentration is not 

completely depleted (Hand and Burton, 1981; Mancuso et al, 1990; Bell and Laybourn-

Parry, 1999; Lauro et al, 2011). The hydrogen sulfide in the Ace Lake monimolimnion 

helps maintain the reduced environment in this zone (Rankin et al, 1999). 

1.2.3.3 Nitrogen 

Microbes play an important role in the cycling of nitrogen, the most abundant (80%) 

molecule in Earth’s atmosphere that plants and animals cannot utilise in its gaseous 

form. Generally, nitrogen cycling involves nitrogen gas and its reduced (ammonia) and 

oxidised (nitrite, nitrate, etc) forms. Some microbes such as some cyanobacteria can 

reduce atmospheric nitrogen to its bioavailable form (ammonia) through nitrogen 

fixation (Bernhard, 2010). Other microbes mineralise organic nitrogen (like amino 

acids) to inorganic ammonia for energy production via ammonification (Strock, 2008; 

Bernhard, 2010). Ammonia, in turn, can be oxidised to nitrites and nitrates via 

nitrification (Bernhard, 2010). Some microbes such as chemoautotrophic bacteria and 

archaea can utilise the energy produced from nitrification for carbon fixation (Grzymski 

et al, 2012; Williams et al, 2012). Oxidised nitrogen such as nitrates, nitrites, nitric 

oxide and nitrous oxide can be converted to nitrogen via the denitrification process 

(Bernhard, 2010). However, some chemoheterotrophs have the capacity to reduce 

nitrates and nitrites directly to ammonia (nitrate/nitrite ammonification) as part of 
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anaerobic nitrate respiration (Kraft et al, 2011; Lam and Kuypers, 2011). Nitrite and 

ammonia can also be converted to nitrogen via an anaerobic synproportionation reaction 

termed as anammox, which has been identified as the major process for transforming 

bioavailable fixed nitrogen to its inert gaseous form (Devol, 2003; Francis et al, 2007; 

Bernhard, 2010). Anammox bacteria (members of Planctomycetes phylum) perform this 

reaction in special lipid bilayer membrane chambers called anammoxosome in their 

cytoplasm (Strous et al, 1999; Boumann et al, 2009; Jetten et al, 2009). 

In Ace Lake, dissolved nitrogen gas is concentrated in the oxic zone through to a few 

metres into the anoxic zone, but is absent in the lower depths (>18 m) (Burton, 1980). A 

few microbes with the potential for nitrogen fixation have been identified in Ace Lake. 

Of these, the Chlorobium in the Ace Lake oxycline is suspected to drive nitrogen 

fixation in the lake (Lauro et al, 2011). Although nitrogenase proteins were not 

identified in the Ace Lake metaproteome from the oxycline, their absence might have 

resulted from the inhibition of nitrogenase genes by the ammonia present in the zone at 

the time (Ng et al, 2010; Lauro et al, 2011). Other than Chlorobium, the cyanobacteria 

in the algal mats of Ace Lake are capable of low levels of nitrogen fixation (Rankin et 

al, 1999; Lauro et al, 2011). However, Synechococcus, the most abundant cyanobacteria 

in Ace Lake mixolimnion waters, cannot fix nitrogen (Powell et al, 2005). In the 

monimolimnion, some of the methanogenic archaea, e.g., M. burtonii, contain 

nitrogenase genes and have the potential for fixing nitrogen (Allen et al, 2009). Other 

than nitrogen fixation, the potential for low levels of denitrification has been identified 

in Ace lake, but nitrification probably does not occur (Lauro et al, 2011). This is 

consistent with the absence of oxidised nitrogen (nitrates and nitrites) from the anoxic 

zone of Ace Lake where ammonia is concentrated, and its low concentration in the oxic 

zone of the lake compared to marine waters (Burton, 1980; Hand and Burton, 1981; 

Burch, 1988; Perriss et al, 1995; Gibson et al, 1997; Rankin et al, 1999). The 

oxygenated nitrogen concentration in the Ace Lake oxic zone increases in winter 

(Rankin et al, 1999). Chlorobium as well as members of Actinobacteria and SAR11 

clade are potentially involved in nitrogen absorption and assimilation (Ng et al, 2010; 

Lauro et al, 2011). Moreover, members of Planctomycetes have been predicted to 

perform anaerobic ammonia oxidation (anammox) in the anoxic zone of Ace Lake 

(Lauro et al, 2011), where ammonia is concentrated around 15 m depth (Burton, 1980; 

Hand and Burton, 1981). The concentration of ammonia fluctuates seasonally, being 
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higher at the end of summer and in early winter (Bell, 1998; Bell and Laybourn-Parry, 

1999; Laybourn-Parry et al, 2002; Madan et al, 2005; Laybourn-Parry et al, 2007). 

Considering the low concentration of oxidised nitrogen in Ace Lake as well as the low 

potential for denitrification and absence of nitrification in the lake, the overall lake 

community appears to depend on nitrogen fixation by the Chlorobium (Lauro et al, 

2011).  

1.2.3.4 Other macronutrients and trace metals 

Phosphorus is essential to life on Earth, being a major component of genetic material 

(DNA, RNA), energy storage components (ATP) and biological membranes 

(phospholipids). In aquatic systems, it is generally found in the form of dissolved or 

particulate and organic or inorganic phosphorus (Wetzel, 2001). Organic phosphate is 

mainly present in the oxic zone of Ace Lake (Hand and Burton, 1981; Burch, 1988). On 

the contrary, soluble reactive phosphorus (an important algal nutrient) is concentrated in 

depths below the halocline of Ace Lake, reaching maximum concentration in the lower 

depths of the anoxic zone (Hand and Burton, 1981; Burton, 1980; Burch, 1988; Rankin, 

1998; Bell and Laybourn-Parry, 1999). The concentration of silicate (an important 

nutrient for diatoms) in Ace Lake increases with depth in the oxic zone (Hand and 

Burton, 1981; Rankin et al, 1999). 

Microbes generally require small amounts of trace metals to perform various metabolic 

functions. For example, iron is an essential component of GSB photosynthetic 

mechanism, iron and molybdenum are found in nitrogenase involved in nitrogen 

fixation, magnesium is a component of photosynthetic components like 

bacteriochlorophyll, and cobalt is found in the corrin rings of cofactors like 

adenosylcobalamin. The concentration of various trace metals has been previously 

measured in Ace Lake (Masuda et al, 1988). Most trace metals, such as potassium, 

calcium, magnesium, iron, strontium, chromium, cobalt, and antimony, have an 

increasing concentration gradient from oxic to anoxic waters of Ace Lake. Others like 

copper and nickel are present only in the oxic or anoxic zone, respectively. The 

concentration of aluminium, manganese, and selenium was reported to be highest at 18 

m depth in Ace Lake, but zinc concentration was lowest at this depth (Masuda et al, 

1988). The concentration of most of these trace metals in Ace Lake is much higher than 

their concentration in sea water, which might be due to inflow of aerosols and 

weathering of rocks surrounding the lake since its isolation (Masuda et al, 1988). 
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1.3 Chlorobium species and their geographic distribution 

The genus Chlorobium belongs to the Chlorobiaceae family of GSB, which were first 

recognised as a distinct group of phototrophic bacteria by Pfennig and Trüper (1971). 

They are anaerobic photoautotrophs that fix carbon dioxide via reverse tricarboxylic 

acid cycle (rTCA) and perform anoxygenic photosynthesis using sulfide or other sulfur 

compounds as electron donors, eventually oxidising the sulfur compounds to sulfate 

(Sakurai et al, 2010; Tang and Blankenship, 2010). Chlorobium spp. also use a 

bacteriochlorophyll a-containing type I reaction centre placed in their chlorosomes (very 

sensitive light-harvesting antennae) for gathering light from low light environments 

(Eisen et al, 2002; Blankenship and Matsuura, 2003). As bacteriochlorophyll A (fmoA) 

gene is specific to GSB, it can be used for the phylogenetic analysis of the members of 

Chlorobiaceae family (Alexander et al, 2002; Alexander and Imhoff, 2006). The major 

pigments and carotenoids in the photosynthetic apparatus of GSB include 

bacteriochlorophyll c, d, or e and chlorobactene, isorenieratene, or γ-carotene, 

respectively (Schmidt, 1978; Gibson et al, 1984; Imhoff, 2014). GSB can be green- or 

brown-coloured depending on the carotenoids and pigments they contain — green-

coloured GSB have chlorobactene and bacteriochlorophyll c or d, whereas brown-

coloured GSB contain isorenieratene and bacteriochlorophyll e (Imhoff, 2014). The 

brown-coloured GSB are more sensitive to light and can outperform the green-coloured 

GSB under very low light conditions. Most GSB depend on vitamin B12 for growth and 

its deficiency can severely affect their bacteriochlorophyll content, precluding 

chlorosome formation (Sato et al, 1981; Fuhrmann et al, 1993). 

As Chlorobium are obligate anaerobes and contain a photosynthetic apparatus 

(chlorosomes) that is very sensitive to low light, they grow in reduced environments 

(Van Gemerden and Mas, 1995). Overall, Chlorobium have been isolated from anoxic 

aquatic habitats from across the globe irrespective of the environmental temperature — 

from hydrothermal vents as well as lakes in the temperate and tropical zones and polar 

lakes (Table 1.3). Instead, availability of light and reduced sulfur compounds appears to 

be important requirements for the growth of these GSB. For example, a GSB isolated 

from a deep-sea hydrothermal vent was speculated to survive in the dark ocean depths 

using the geothermal radiation and effluents from the black smoker as sources of light 
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and reduced sulfur, respectively, for anoxygenic photosynthesis (Beatty et al, 2005). 

This notion was supported by the absence of the organism from the surrounding oxic 

ocean waters. In general, the Chlorobium from stratified lakes have been identified 

and/or isolated from the oxic-anoxic interface, where the available light is low and the 

waters are rich in reduced sulfur (Table 1.3). 

Table 1.3 Global distribution of some Chlorobium species. A The background colour indicates 

the overall temperature conditions of the habitat — habitats such as hot springs and 

hydrothermal vents are shown in red; warm tropical habitats are shown in yellow (<30° N/S 

latitude); habitats in temperate zone (between 30 and 50° N/S latitudes) are shown in light blue; 

subpolar habitats (between 50 and 60° N/S latitude) are shown in blue; and polar habitats (>60° 

N/S) are shown in dark blue. B The last column indicates the methods applied for the 

identification of the Chlorobium species and the publications in which they were reported. All 

aquatic habitats, except hot springs and hydrothermal vents, described here are stratified 

systems. The Chlorobium species were identified in the oxycline of these systems. The data are 

arranged from top to bottom in the direction of north to south latitude. 

HabitatA Chlorobium species Methods and referencesB 

Lake A in Ellesmere Island, High 

Arctic Canada 
Chlorobium sp. 

Metagenomic analysis; 

read taxonomic 

classification (Comeau et 

al, 2012) 

Lake Bolshye Khruslomeny in 

Oleniy Island, White Sea 

Chlorobium phaeovibrioides; 

two strains — one green-

coloured (GrKhr17) and one 

brown-coloured (BrKhr17) 

Cell culture, isolation, and 

characterization; 16S rRNA 

gene-based phylogenetic 

analysis (Grouzdev et al, 

2019) 

Hot spring microbial mats in 

Greenland 

GSB that clustered with 

uncultured Chlorobium sp.  

PCR-DGGE analysis; 16S 

rRNA gene-based 

phylogenetic analysis 

(Roeselers et al, 2007) 

Lake Polden in Norway. Chlorobium luteolum 

Cell culture, isolation, 

characterization, and 

sequencing 

(https://genome.jgi.doe.gov

/portal/pellu/pellu.home.ht

https://genome.jgi.doe.gov/portal/pellu/pellu.home.html
https://genome.jgi.doe.gov/portal/pellu/pellu.home.html
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ml; part of a project led by 

Donald A Bryant) 

Sediment samples from 

freshwater creeks and ditches 

near Konstanz, Germany 

Chlorobium ferrooxidans 

Cell culture, isolation, and 

characterization; 16S rRNA 

gene-based phylogenetic 

analysis (Heising et al, 

1999) 

Black Sea meromictic basin 

Chlorobium 

phaeobacteroides, C. 

phaeovibrioides, Chlorobium 

sp. 

Pigment chromatography 

(Repeta et al, 1989); 

Cell culture, isolation, and 

characterization; pigment 

chromatography 

(Overmann et al, 1992) 

Lake Faro, Italy C. phaeobacteroides 

Radioisotopic analysis 

(Sorokin and Donato, 

1975); Van Gemerden and 

Mas, 1995 

Fayetteville Green Lake, New 

York 
C. phaeobacteroides 

Cell culture and isolation 

(Culver and Brunskill, 

1969) 

Lake Banyoles, Lake Vilar, Lake 

Cisό, Lake Nou, Lake 

Coromines, Lake Negre, Lake 

Estanya, and Lake Moncortes in 

Spain 

C. phaeobacteroides, 

Chlorobium limicola 

Cell culture, isolation, and 

characterization; pigment 

chromatography 

(Montesinos et al, 1983) 

Lake Banyoles, Spain C. luteolum 

Metagenomic analysis; 16S 

rRNA gene-based 

phylogenetic analysis 

(Llorens–Marès et al, 

2017) 

Cullera estuary, Spain C. phaeovibrioides 

Radioisotopic analysis; 

pigment chromatography 

(Miracle and Vicente, 

1985); Van Gemerden and 

Mas, 1995 

https://genome.jgi.doe.gov/portal/pellu/pellu.home.html
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Cross Reservoir, Kansas 

C. limicola, 

Chlorochromatium 

aggregatum 

Fluorescence 

spectrophotometry; 

pigment chromatography; 

microscopy (Chapin et al, 

2004) 

Plumes of a deep-sea 

hydrothermal vent in East Pacific 

Rise 

GSB that clustered with 

Chlorobium sp. and 

Prosthecochloris sp. 

Cell culture, isolation, and 

characterization; pigment 

chromatography; 

microscopy; 

bacteriochlorophyll A and 

16S rRNA gene-based 

phylogenetic analysis 

(Beatty et al, 2005) 

Bietri Bay, a stratified lagoon in 

western Africa 

Two Chlorobium spp. that 

clustered with Chlorobium 

vibrioforme and C. 

phaeobacteroides 

Cell culture, isolation, and 

characterization (Caumette, 

1984) 

Lake Fidler, Tasmania C. limicola 
Microscopy (Baker et al, 

1985) 

Hot spring microbial mats in 

New Zealand 
Chlorobium tepidum 

Cell culture and isolation 

(Castenholz et al, 1990); 

Cell culture, isolation, and 

characterization (Wahlund 

et al, 1991) 

Sediment sample from Borge Bay 

in Signy Island, Antarctica 
C. limicola, C. vibrioforme 

Cell culture, isolation, and 

morphology 

characterization (Herbert 

and Tanner, 1977) 

Ace Lake in the Vestfold Hills, 

Antarctica 

Chlorobium sp. that clustered 

with C. phaeovibrioides 

Microscopy; enrichment 

culture and morphology 

characterization (Burke 

and Burton, 1988a); 16S 

rRNA gene-based 

phylogenetic analysis; lipid 

chromatography (Coolen et 

al, 2006); 
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Metaproteogenomic 

analysis; 16S rRNA gene-

based phylogenetic 

analysis (Ng et al, 2010); 

Metaproteogenomic 

analysis; 16S rRNA gene-

based phylogenetic 

analysis; read taxonomic 

classification (Lauro et al, 

2011) 

Ellis Fjord, Taynaya Bay, Ace 

Lake, Burton Lake, Clear Lake, 

McCallum Lake, Abraxas Lake, 

Pendant Lake, and Fletcher Lake 

in the Vestfold Hills, Antarctica 

C. vibrioforme, C. 

limicola 

Microscopy; enrichment 

culture and morphology 

characterization (Burke 

and Burton, 1988a; Burke 

and Burton, 1988b)  

In most studies listed in Table 1.3, the 16S rRNA (ribosomal RNA) marker gene has 

been used for phylogeny assessment (Heising et al, 1999; Beatty et al, 2005; Coolen et 

al, 2006; Roeselers et al, 2007; Ng et al, 2010; Lauro et al, 2011; Llorens–Marès et al, 

2017; Grouzdev et al, 2019). Some studies have also used fmoA gene for taxonomic 

classification (Beatty et al, 2005), and chromatography to differentiate between 

pigments from phototrophic bacteria and eukarya and/or to identify the Chlorobiaceae 

members (Montesinos et al, 1983; Miracle and Vicente, 1985; Repeta et al, 1989; 

Overmann et al, 1992; Chapin et al, 2004; Beatty et al, 2005; Coolen et al, 2006). A few 

metagenomic studies have also identified Chlorobium in habitats from different global 

locations — Lake A (Arctic; Comeau et al, 2012), Lake Banyoles (Spain; Llorens–

Marès et al, 2017), Ace Lake (Antarctica; Ng et al, 2010; Lauro et al, 2011). Culture-

based studies have identified C. limicola in multiple Antarctic lakes (Burke and Burton, 

1988a; Burke and Burton, 1988b), in a Subantarctic bay (Herbert and Tanner, 1977), 

and a lake in Tasmania (Baker et al, 1985) in the Southern Hemisphere as well as in 

multiple lakes in Spain (Montesinos et al, 1983) in the Northern Hemisphere. Moreover, 

C. phaeovibrioides was identified in an estuary in Spain (Miracle and Vicente, 1985) as 

well as a Subarctic lake (Grouzdev et al, 2019), and a Chlorobium closely related to C. 

phaeovibrioides has also been identified in an Antarctic lake (Burke and Burton, 1988a; 

Coolen et al, 2006; Ng et al, 2010; Lauro et al, 2011). Considering the locations of their 
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habitats, the distribution of different species of Chlorobium does not appear to be 

restricted to specific geographic localities, except probably the thermophile Chlorobium 

tepidum. 

 

1.4 Metagenomics 

The advances in sequencing technology, such as high-throughput sequencing (HTS), 

have made it possible to efficiently sequence large quantities of DNA in a cost-effective 

manner. HTS is performed by next-generation sequencing technologies (also called 

second-generation sequencing technologies) and refers to massively parallel sequencing 

of DNA, which allows for sequencing of whole genomes within a time-frame of days. 

To put this in perspective, the sequencing of human genome (~3 billion bp long) using 

the first-generation sequencing technologies (also referred to as Sanger sequencing) 

took more than a decade and cost billions of dollars (Grada and Weinbrecht, 2013). The 

cost of sequencing a human genome using HTS methods would be less than a thousand 

dollars now (https://www.genome.gov/about-genomics/fact-sheets/). HTS can be used 

for direct sequencing of environmental DNA samples without the need for culturing, 

although it can be used for sequencing DNA from cultures as well. Some of the well-

known HTS platforms include Illumina, 454 pyrosequencing, ABI SOLiD, Ion torrent, 

and Nanopore technologies. 

Unlike genomic DNA sequences from a single isolate, metagenomes represent a 

snapshot of a microbiome. Metagenomics can be used: (i) to understand the overall 

community structure and functional potential of an environment; (ii) to compare the 

community structure and functional potential of different environments through 

comparative metagenomics; and (iii) to analyse the shift in community structure and 

functional potential over a period of time by utilising a time-series of metagenomes 

from the environment. Metagenomes have been found to be especially useful in 

studying environments that contain microbes that have not been cultured or cannot be 

easily cultured, such as the microbial communities in Antarctic lakes. Metagenomics-

led studies of Antarctic lakes in the Vestfold Hills have provided insights into the lake 

communities and led to important discoveries, such as the inter-genera gene exchange 

among the haloarchaea in the hypersaline Deep Lake (DeMaere et al, 2013) and the 

presence of virophages in Organic Lake (Yau et al, 2011). Metagenomic studies of Ace 

https://www.genome.gov/about-genomics/fact-sheets/
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Lake and Organic Lake, two meromictic Antarctic lakes, have shown the niche 

adaptation of various microbial communities and their potential contributions to nutrient 

cycling in the lakes (Lauro et al, 2011; Yau et al, 2013). 

Metagenome analysis can be challenging, and using metagenomes to understand 

microbial communities can have some limitations. Metagenomes are usually large 

datasets, making data handling and computational analysis a little difficult (Wooley and 

Ye, 2009). Efficient computational tools and approaches are required to analyse 

metagenomes, especially considering the high species diversity usually captured in them 

(Wooley and Ye, 2009). Metagenome sequence assemblers allow for generation of long 

contigs, which can be used to produce draft genome assemblies. However, a large 

portion of metagenomes, especially small contigs and unassembled reads, cannot be 

binned into genome assemblies, and their functional potential analysis can be tricky 

owing to their short lengths (Prakash and Taylor, 2012). Another limitation of using 

metagenomes is based on the reference databases available for analyses. Depending on 

the origin of the metagenome, a large number of the metagenome sequences can be 

unclassified because of unavailability of closely related reference organisms in the 

databases (Prakash and Taylor, 2012; Teeling and Glöckner, 2012). Such unclassified 

sequences can indicate data from novel organisms or proteins. This has been observed 

for environmental metagenomes such as those from oceans and soil, and it has been 

speculated that the bias in the number of database sequences from human-associated 

sources might contribute to it (Frias-Lopez et al, 2008; Prakash and Taylor, 2012). 

Another challenge of analysing metagenomes is that there is no single tool for the 

analysis of metagenomic data, therefore, results from various computational tools need 

to be generated separately and then combined and interpreted in a comprehensive 

manner.   

1.4.1 Methods for metagenomic data analysis 

As metagenome sequencing has become relatively easy and routine, various methods 

and software capable of handling large datasets have been developed for the analysis of 

metagenomes, so that meaningful data can be generated (Figure 1.4). 
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Figure 1.4 Schematic showing metagenome preparation and analysis. Metagenomes are 

prepared from environmental samples and can be used for the analysis of biodiversity and 

functional potential of the environment. The steps covered by the green background show 

metagenome sequencing and initial data preparation. The steps covered by the orange 

background show metagenomic data analyses. The sequencer image shown in the schematic 

was adapted from https://www.illumina.com/systems/sequencing-platforms/hiseq-x.html. The 

icons used in the figure were taken from The Noun Project website 

(https://thenounproject.com/). 

The taxonomic classification of metagenomic data is a two-step process: (i) alignment 

of query read, contig, or protein sequences to the sequences in the reference databases 

and (ii) mapping of the alignment output to the taxonomy provided in the reference 

databases. Various software capable of performing either one or both steps are 

available. Some of the well-known alignment software such as BLAST (Altschul et al, 

1990), LAST (Kielbasa et al, 2011), Bowtie 2 (Langmead and Salzberg, 2012), and 

DIAMOND (Buchfink et al, 2014) have been used in conjunction with mapping 

software like MEGAN6 (Huson et al, 2016), MetaPhlAn2 (Segata et al, 2012), and 

PhyloSift (Darling et al, 2014) (described below in sections 1.4.1.1 and 1.4.1.2). Other 

software such as Kaiju (Menzel et al, 2016) perform sequence alignment as well as 

taxonomy mapping. The sequence clusters generated by taxonomic binning of 

metagenome sequences are referred to as operational taxonomic units (OTUs), as they 

are produced based on sequence homology of query to closely related reference 

sequences. OTUs usually represent taxonomic levels like genus and species to which 

https://www.illumina.com/systems/sequencing-platforms/hiseq-x.html
https://thenounproject.com/
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metagenome sequences might belong. For species verification of bacterial and archaeal 

OTUs, it has been suggested that ≥99% 16S rRNA gene identity and >95% average 

nucleotide identity (ANI) to a reference species might be sufficient to establish their 

close relatedness (Chan et al, 2012; Kim et al, 2014). ANI of 95–96% is considered 

equivalent to the 70% cut-off of DNA-DNA hybridisation, previously used to 

distinguish between prokaryotic species (Brenner, 1973; Stackebrandt and Goebel, 

1994; Goris et al, 2007; Richter & Rossellό-Mόra, 2009; Chan et al, 2012; Kim et al, 

2014). 

The OTU abundance data generated using taxonomic classification software can be 

used for various types of statistical analyses. PRIMER v7 (Primer-e, NZ) is an efficient 

statistical tool for the analysis of multivariate data and is capable of handling large 

datasets. It was specifically designed for the analysis of environmental data including 

OTU abundances as well as biomass measures. PRIMER v7 has multiple subroutines 

that allow for a variety of analyses: (i) calculating similarity matrices; (ii) sample and 

variable clustering analyses; (iii) multi-dimensional scaling analyses (MDS, nMDS); 

(iv) analysis of similarity (ANOSIM) tests; (v) analysis of environmental factors; (vi) 

assessing relationship between environmental factors and abundance/biomass data; (vii) 

calculating biodiversity measures; (viii) plotting diversity curves; and more. Its 

interactive user interface makes PRIMER v7 a relatively easy to use software that does 

not require a high-level of technical expertise to start with. Other than this software, R 

language tools are often used for statistical analyses of environmental data, but that 

requires the user to know/learn R computing language. 

The OTU bins, generated from binning of metagenomic sequences based on their 

taxonomic classification, can be filtered using RefineM (Parks et al, 2017). This 

software removes contamination from a bin by sifting out the outlier sequences based 

on their taxonomic classification, GC content, coverage, and/or tetra nucleotide 

frequency (TNF). For taxonomic classification of the sequences, RefineM uses the 

Genome Taxonomy Database (GTDB) as a reference database. RefineM and GTDB are 

often used with CheckM (Parks et al, 2015) to assess and improve the completeness of a 

bin. Various software are available for the genomic analyses of refined OTUs 

depending on the type of analysis to be performed. For example, JSpeciesWS (Richter 

et al, 2016), pyani (Pritchard et al, 2016), and fastANI (Jain et al, 2018b) can be used 

for calculating the ANI of an OTU against reference genomes, the genomic variation in 
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an OTU bin can be assessed using Artemis (Rutherford et al, 2000), Integrated Genome 

Browser (Nicol et al, 2009), Integrative Genomics Viewer (IGV; Robinson et al, 2011), 

or Mauve (Darling et al, 2004), and MEGA (Kumar et al, 2018) can be used for 

phylogenetic analysis.  

1.4.1.1 Sequence alignment 

BLAST 

BLAST is the most commonly used alignment tool that allows for nucleotide-nucleotide 

sequence matching using blastn, megablast, and tblastx modules, protein-protein 

matching using blastp module, translated nucleotide-protein matching using blastx 

module, and protein-translated nucleotide matching using tblastn module. Sequence 

alignment with BLAST+ (an updated version of BLAST; Camacho et al, 2009) has 

three distinct phases: (i) reading the query sequence, applying any input filters, and 

preparing an index table using the ‘perfect hashing’ function; (ii) matching the reference 

sequences against the query sequences in search of hits; (iii) reassessing alignments in 

search of indels and mismatches and calculating alignment statistics, such as bit score 

and e-value. BLAST+ is capable of aligning very long query and reference sequences 

faster than the BLAST search tool. This is accomplished by splitting the query sequence 

into smaller overlapping sequences in the first phase of BLAST+ alignment and then 

merging the sequences and their alignments in the last phase (Camacho et al, 2009). 

Splitting the query sequence also reduces the amount of processor cache memory used 

for alignment, making it more efficient (Camacho et al, 2009). 

LAST 

LAST alignment tool can be used for the alignment of nucleotide as well as protein 

query sequences to a reference database. This tool uses the standard ‘seed-and-extend’ 

algorithm for alignment, but uses ‘adaptive seeds’ as opposed to ‘fixed-length seeds’ 

used by BLAST and other alignment tools (Kielbasa et al, 2011). Here, seeds refer to 

short stretches of query sequences (by default starts with 1 bp in LAST) that are picked 

for initial alignment to reference sequences. The ‘adaptive seeds’ approach allows 

variable length sequence matches between the query and reference sequences as long as 

the matching sequence occurs no more than a pre-defined number of times (by default 

10) in the reference sequence. This method greatly improves the speed of LAST for the 

alignment of long sequences (by 10 to 100-fold) when compared with ‘fixed-length-
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seeds’ approach, without compensating the alignment sensitivity (Kielbasa et al, 2011). 

Other versions of ‘adaptive seeds’, such as ‘adaptive spaced seeds’ (where some 

positions on the seed are allowed to have any mismatches) and ‘adaptive subset seeds’ 

(where some positions on the seed are allowed to have certain mismatches), also 

improve alignment speed of large sequences (Kielbasa et al, 2011). 

Bowtie 2 

Bowtie 2 is an alignment tool that allows for fast, sensitive, and accurate gapped 

alignment of reads to reference sequences (Langmead and Salzberg, 2012). As an initial 

step, it uses the ‘full-text minute index’ approach to index the reference sequences. The 

main alignment phase is divided into four steps: (i) selecting a seed sequence (by 

default starts with 20–25 bp) from the query sequence; (ii) aligning the seed to the 

indexed reference sequences in search of an ungapped alignment; (iii) prioritizing seed 

alignments and calculating their position on the reference sequence; and (iv) extending 

the seed alignments to full alignments using dynamic programming. When compared 

with other alignment tools like BWA, Bowtie, and SOAP2, the alignment speed of 

Bowtie 2 is better for both unpaired and paired-end reads of various lengths (100–400 

bp) (Langmead and Salzberg, 2012). The accuracy of Bowtie 2 is also better than the 

other tools in case of unpaired reads, but is on par with BWA for paired-end reads 

(Langmead and Salzberg, 2012). 

DIAMOND 

DIAMOND alignment tool was specifically developed for the fast and sensitive 

alignment of reads to reference protein sequences, and is also capable of aligning 

protein query sequences (Buchfink et al, 2014). Like BLAST and LAST alignment 

tools, DIAMOND uses the ‘seed-and-extend’ algorithm for alignment, but uses ‘spaced 

seeds’ in place of ‘adaptive seeds’ (used by LAST) or ‘fixed-length seeds’ (e.g., used by 

BLAST) (Buchfink et al, 2014). ‘Spaced seeds’ are small stretches of query sequences 

where some positions are considered to be of low importance and are allowed to have 

mismatches, which can lead to faster alignment. The number of such positions and their 

layout in a seed sequence is referred to as the weight and shape of a ‘spaced seed’. For 

improved sensitivity, DIAMOND uses specific combinations of seed weight and shape 

(sensitive: 12×15–24; most sensitive: 9×16) (Buchfink et al, 2014). Moreover, it uses a 

‘double indexing’ approach in which the spaced seeds and their locations on query as 
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well as reference sequences are simultaneously parsed and arranged in dictionary order. 

A comparative analysis of DIAMOND and BLASTX using permafrost metagenomic 

reads shows that DIAMOND is more than four-orders of magnitude faster than 

BLASTX, and the two methods have similar sensitivity (Buchfink et al, 2014). 

Overall, among these alignment software used with mapping software, LAST is often 

used for alignment of long sequences, due to its improved computing speed and ability 

to handle frame-shifts (Darling et al, 2014; Huson et al, 2018; Bağci et al, 2019). For 

large datasets of short sequences, such as metagenomic reads and proteins, DIAMOND 

is suggested due to its fast alignment speed, especially with mapping tools like MEGAN 

(Bağci et al, 2019). 

1.4.1.2 Taxonomic classification 

MEGAN6 

MEGAN software was developed for the taxonomic classification of metagenomic 

reads and can be used for classification of protein sequences. Prior to using MEGAN, 

the metagenomic reads need to be aligned against a reference database; MEGAN can 

work with the aligned reads from BLAST as well as DIAMOND outputs (Huson et al, 

2007). MEGAN software uses the ‘lowest common ancestor’ (naïve LCA) algorithm to 

assign taxonomy to the aligned reads and creates a phylogenetic tree from the output 

(Huson et al, 2007). This algorithm allows sequences specific to a species to be 

assigned to the species node in the phylogenetic tree, but the more conserved sequences, 

such as genus- or family-specific sequences, are assigned to higher taxa levels. A more 

recent version of MEGAN, namely MEGAN6, provides additional modules for 

functional potential analyses, such as COG (clusters of orthologous groups) analysis 

using eggNOG database, KEGG analysis using KEGG Orthology (KO) database (only 

available in the paid-version of MEGAN), and GO (gene ontology) analysis using 

InterPro database (Huson et al, 2016). These functional potential analyses of the query 

sequences generate: (i) COG annotations and categorisations as well as the abundances 

of functional groups; (ii) KO annotations and the abundances of metabolic pathways; 

and (iii) GO annotations and the abundances of protein families. An additional 

functionality recently added to the MEGAN graphical user interface (GUI) is the ‘gene-

centric assembly’ module, which allows the user to request the assembly of all reads 

assigned to any taxonomic or functional node in MEGAN (Huson et al, 2017). The data 
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generated by MEGAN can be visualised in the MEGAN GUI and can be used to 

generate various plots, charts, clusters, and networks. 

PhyloSift 

PhyloSift software is a phylogenetic analysis pipeline for both genome and metagenome 

analyses using protein or nucleotide query sequences (Darling et al, 2014). Unlike most 

taxonomic classification tools that use reference databases of all protein or nucleotide 

sequences, PhyloSift uses a database of marker genes for taxonomic assignments. The 

PhyloSift marker gene sets include core markers, such as small subunit (SSU) rRNA 

genes, mitochondrial genes, and plastid genes, and extended markers, which are an 

extremely large dataset of clade-specific gene sequences. These marker gene sets are 

automatically updated on a regular basis to include markers from newly assembled 

genomes. PhyloSift uses a combination of LAST and hmmalign (http://hmmer.org/) for 

alignment of query DNA sequences of length <600 bp and query protein sequences and 

uses LAST and Infernal (Nawrocki and Eddy, 2013) for aligning query DNA sequences 

>600 bp to the reference marker genes. The taxonomic classification of the aligned 

queries is performed using pplacer (Matsen et al, 2010). An analysis of the 

computational resources needed to run PhyloSift shows that it requires roughly 5 h to 

analyse 106 reads on a single processor, using around 8 GB memory (Darling et al, 

2014).  

MetaPhlAn2 

MetaPhlAn2 was originally created for the phylogenetic analysis of metagenome reads 

(Segata et al, 2012). It uses Bowtie 2 to align the reads to its database of clade-specific 

markers, which were prepared from taxa-specific genes coding for various functions. 

The relative abundances of the taxa identified in the metagenomes are calculated based 

on the number of reads assigned to the taxa and the length of the markers. A 

comparative analysis of MetaPhlAn and other phylogenetic analysis tools such as 

PhymmBL, Phymm, RITA, and NBC shows that MetaPhlAn is faster and more accurate 

in classifying reads (Segata et al, 2012). However, a drawback of using this software is 

that only well-characterised environments can be accurately analysed (Darling et al, 

2014). All reads belonging to the taxa whose marker genes are not present in the 

MetaPhlAn2 database are grouped as ‘unclassified’ (Segata et al, 2012). Although 

MetaPhlAn2 provides the flexibility to add customised clade-specific markers to its 

http://hmmer.org/
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database, the process of adding the markers is exhaustive and requires technical 

expertise.  

Kaiju 

Kaiju is capable of fast and sensitive analysis of metagenomic read taxonomy and does 

not rely on external alignment software for matching metagenomic reads to a reference 

database. Like Bowtie 2, it uses the ‘full-text minute index’ approach to index the 

reference protein database (Menzel et al, 2016). The metagenomic reads are translated 

into six reading frames and are fragmented at their stop codons. Kaiju uses two 

algorithms to align the query fragments to the indexed database using a k-mer based 

approach: (i) ‘maximum-exact-match’ (MEM) algorithm which allows only exact 

matches — query fragments are first sorted by their lengths and then aligned against the 

indexed database until the longest exact match is obtained and (ii) ‘Greedy’ algorithm 

which allows substitution and thereby sequence extension — query fragments are 

arranged based on their BLOSUM62 score and then aligned against the indexed 

database until the best scoring match is obtained (Menzel et al, 2016). K-mers refer to 

all possible sub-sequences of length ‘k’ in a sequence, e.g., the sequence TCG has two 

possible 2-mers (TC and CG) and one 3-mer (TCG). Relative abundances are calculated 

as the number of reads assigned to a taxon relative to the total number of reads in the 

metagenome. A comparative analysis of Kaiju-MEM and Kaiju-Greedy as well as other 

k-mer based methods such Kraken and CLARK shows that Kaiju-MEM is fastest at 

computing the taxonomies of all types of read sequences tested — Illumina unpaired 

and paired-end reads (100 bp and 250 bp) and 454 unpaired reads (350 bp) (Menzel et 

al, 2016). However, Kaiju-Greedy has the highest sensitivity and accuracy of taxonomic 

assignments among the tested software. Moreover, a comparative analysis of Kaiju-

MEM, Kaiju-Greedy, and Kraken using metagenomes from various environments, 

including human-associated, freshwater, seawater, soil, bioreactor samples, shows that 

Kaiju-Greedy is able to classify most reads in all metagenomes (24–73%) as compared 

to Kaiju-MEM (19–65%) and Kraken (3–46%) (Menzel et al, 2016). 

MEGAN-LR 

MEGAN-LR is the latest version of MEGAN and was specially designed for taxonomic 

classification of long reads and contigs using the ‘interval-union LCA’ algorithm 

(Huson et al, 2018). This algorithm is a variation of the naïve LCA algorithm and is 
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divided into a number of steps: (i) identifying intervals, where intervals refer to pieces 

of query sequences to which the reference proteins have alignments; (ii) identifying 

significant alignments to an interval — an alignment is considered significant if its bit 

score is within 10% (default value) of the best bit score of an alignment covering the 

same interval; (iii) union of intervals — for a query sequence, the various significant 

interval alignments of reference proteins from different taxa are put together and if two 

interval alignments overlap they are merged into one; and (iv) LCA assignment — for 

each query, the interval sets from different taxa are compared and the query is assigned 

to the taxon that covers ≥80% of the aligned query sequence, prioritizing the lowest-

level taxa (e.g., species- and strain-level taxa) (Huson et al, 2018). The developers of 

MEGAN-LR suggest the use of LAST alignment tool for sequence alignment prior to 

taxonomic mapping, as LAST can handle frame-shifts and can align long sequences 

with high speed and sensitivity (section 1.4.1.1). A comparative analysis of the 

LAST/MEGAN-LR approach and Kaiju shows that the sensitivity and accuracy of 

LAST/MEGAN-LR is much better than that of Kaiju (Huson et al, 2018). However, 

Kaiju is much faster at computing the taxonomies. 

 

1.5 Objectives 

This is the first metagenomics-led seasonal study of Ace Lake in the Vestfold Hills, 

East Antarctica, using time-series samples spanning nearly a decade (Dec 2006–Jan 

2015) and including samples from austral summer (Dec 2006, Feb 2014, Dec 2014, Jan 

2015), winter (Jul and Aug 2014), and spring (Nov 2008, Nov 2013, Oct 2014). The 

overall aim of this thesis was to analyse the time-series of metagenomes from Ace Lake, 

to assess the impact of change in season on the microbial community structure and 

functional potential of the lake. Various software and computational methods were 

tested to improve upon a preliminary in-house metagenome analysis pipeline referred to 

as Cavlab pipeline (Chapter 2). The upgraded Cavlab pipeline, along with other 

computational methods required for specific analyses, were used for a comprehensive 

study of Ace Lake metagenomes, including analysis of biodiversity, functional 

potential, viruses and their potential hosts, and two key bacteria (Chlorobium and 

Synechococcus) (Chapters 3, 4, and 5). Furthermore, with the availability of 

metagenomes from three stratified marine systems, namely Ace Lake, Ellis Fjord, and 
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Taynaya Bay, in the Vestfold Hills, the endemicity of one key microbe (Chlorobium) 

from Ace Lake was analysed (Chapter 5).  

The specific aims of this thesis were: 

• To test various software and computational approaches for taxonomy, abundance 

and functional potential analyses of Antarctic metagenomes, to assess their 

reproducibility and robustness (Chapter 2). The methods that worked well with the 

Antarctic metagenomes annotated by Joint Genome Institute’s Integrated Microbial 

Genomes (JGI’s IMG) system were used to improve upon the preliminary Cavlab 

pipeline for metagenome analysis. The methods were tested because the Antarctic 

metagenomes represented data from environments that were not as well-

characterised as other systems often used for building and testing software 

databases, especially clade-specific databases. Therefore, computational approaches 

had to be carefully selected for comprehensive analyses of Ace Lake seasonal data. 

• To assess Ace Lake viral data, including viral contigs representing complete virus 

genomes, the most abundant viral contigs, and viral contigs potentially associated 

with some of the most abundant members of Ace Lake microbial community, such 

as Micromonas (a green alga), Synechococcus (a cyanobacterium), and Chlorobium 

(a GSB) (Chapter 3). These analyses were performed to determine the distribution 

and abundance of viral populations in various strata of Ace Lake (mixolimnion, 

oxycline, monimolimnion) in different seasons (summer, winter, spring). The 

association between virus and host abundances were also explored, to assess the 

potential impact of viral predation vs seasonal light availability, both of which can 

be responsible for changes in these phototrophic host abundances.   

• To investigate genomic variation in the metagenome-assembled genomes (MAGs) 

of Synechococcus generated from metagenomes from different time periods and Ace 

Lake depths (Chapter 4). Synechococcus was identified throughout Ace Lake, in the 

oxic mixolimnion, oxic-anoxic interface and anoxic monimolimnion, and its 

abundance varied with season (described below in Chapter 3). Therefore, genomic 

variation analyses were performed to determine the presence/absence of different 

phylotypes, and potentially ecotypes, of Synechococcus in different seasons and Ace 

Lake depths. 

• To investigate genomic variation in Chlorobium MAGs generated from 

metagenomes from different time periods (Chapter 5). Chlorobium abundance 



39 
 

varied with season (described below in Chapter 3), therefore genomic analyses were 

performed to identify potential phylotypes or ecotypes of Ace Lake Chlorobium 

from different seasons. With the availability of Chlorobium MAGs from two other 

Vestfold Hills stratified systems (Ellis Fjord and Taynaya Bay) that are known to 

harbour GSB (Burke and Burton, 1988a), the analysis of Chlorobium was expanded 

to assess its endemicity to the Vestfold Hills. 

 

  



40 
 

 

  



41 
 

2. Computational approaches to analyse metagenomic data 

 

2.1 Introduction 

Analysis of large sequencing datasets, such as metagenomes, requires the use of 

software and methods capable of performing large-scale data analysis, some of which 

were discussed in Chapter 1. Although various computational tools for metagenome 

analysis are available, none of them can be used for complete analysis of a metagenome. 

Instead, different tools for metagenome analyses, such as taxonomy, abundance and 

functional potential, have to be used separately and their results have to be combined 

and interpreted for comprehensive metagenome analysis. A good way to combine the 

use of multiple software on one dataset is to create a pipeline that takes in the input data, 

calls specified software to perform various analyses, and generates results in specific 

formats. This also allows for time-efficient parallel runs of multiple software on a 

dataset. For the development of a pipeline for such comprehensive analysis of 

metagenomes, various aspects, such as the type of input data available, the purpose of 

analysis, and the type of output generated, need to be considered before selecting 

appropriate software/approaches. In this chapter, various software/approaches were 

tested to assess their capability to analyse the microbial community and functional 

potential of Antarctic metagenomes annotated by JGI’s IMG system. The computational 

approaches found to be suitable for analysis of these IMG-annotated metagenomes were 

incorporated in a pipeline.  

2.1.1 Antarctic metagenomes 

The metagenomes discussed in this chapter were sequenced from samples collected 

from various Antarctic lakes. The water samples were sequentially extracted onto large 

format filters of sizes 20, 3, 0.8, and 0.1 μm, and some 0.1 μm filtrates were further 

concentrated through tangential flow filtration. DNA was extracted from the biomass on 

the filters as described previously (Ng et al, 2010; DeMaere et al, 2013; Tschitschko et 

al, 2018). The metagenomes were either sequenced at J. Craig Venter Institute (JCVI) 

using 454 and Sanger sequencing methods or at JGI using Illumina technology. JGI-

sequenced metagenomes were initially assembled using Megahit (Li et al, 2015; Li et al, 

2016) (referred to as Megahit-assembled metagenomes hereafter). With the change in 
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JGI’s assembly method from Megahit to metaSPAdes (Nurk et al, 2013; Nurk et al, 

2017), all Megahit-assembled metagenomes and any newly sequenced metagenomes 

were re-assembled/assembled using metaSPAdes (referred to as Spades-assembled 

metagenomes hereafter). JCVI-sequenced metagenomes were assembled in-house using 

metaSPAdes. All metagenomes were annotated by JGI’s IMG system using their 

annotation pipeline (Huntemann et al, 2015). The descriptions of the metagenomes — 

their sample collection site, depth, and filter fraction; IMG genome ID; metagenome 

size; and total protein coding genes are provided Appendix A: Table A1. Ace Lake 

samples were collected from the surface (referred to as Upper 1 or U1); mixolimnion or 

upper oxic zone (referred to as Upper 2 or U2 and Upper 3 or U3); oxic-anoxic interface 

or oxycline (referred to as Interface or I); and monimolimnion or lower anoxic zone 

(referred to as Lower 1 or L1, Lower 2 or L2, and Lower 3 or L3). 

2.1.2 Computational software/approaches tested for metagenome data analysis 

Various software were tested for the development of an in-house pipeline that would 

perform taxonomic classification and explore functional potential of Antarctic 

metagenomes annotated by JGI’s IMG system (Figure 2.1). These software were tested 

to assess the reliability and robustness of their analysis of Antarctic metagenomes 

(described below in section 2.2). Additional software were utilized for further genome-

level analyses of the pipeline outputs and for statistical analyses (Figure 2.1). 
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Figure 2.1 Software tested for the development of a pipeline for Antarctic metagenome 

analysis. The in-house metagenome analysis pipeline (Cavlab pipeline) was developed for 

taxonomic classification and functional potential analysis of Antarctic metagenomes. LAST and 

DIAMOND were tested for sequence alignment of reads, proteins, or contigs. PhyloSift, 

MetaPhlAn2, and Kaiju were tested for read taxonomic classification, whereas MEGAN-LR 

was tested for contig taxonomic classification. MEGAN6 was used for protein taxonomic 

classification as well as COG function analysis. The taxonomy output of the Cavlab pipeline 

was further examined at genome-level. RefineM was used for refining the OTU bins to produce 

high-quality OTU bins, whereas JSpeciesWS, fastANI, and pyani were used for calculating the 

ANI of the refined OTU bins. Specific OTUs of interest and MAGs were compared to their 

closest related reference genomes using BLAST+/Bowtie2 and Mauve alignment algorithm, and 

were visualised using IGV and Mauve, respectively. MEGA was used for assessing the 

evolutionary relationship between specific OTUs of interest and their closest related species. 

The abundance output of the Cavlab pipeline was used for statistical analysis of the 

metagenomes using PRIMER v7. 

Described below are the software tested and/or used for analysis of Antarctic 

metagenomes (discussed in Chapter 1 section 1.4): 
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PhyloSift software was developed for the phylogenetic classification of metagenomes 

as well as genomes. It is dependent on other computing languages and software, such as 

Perl, HMMER (http://hmmer.org/), RAxML (Stamatakis, 2014), FastTree (Price et al, 

2010), and Pplacer, for the taxonomic classification of DNA or protein sequences and 

for creating phylogenetic trees from the outputs. PhyloSift uses LAST alignment tool to 

align read, protein, or contig sequences against its database of core and extended set of 

markers. It uses hmmalign module of HMMER for taxonomic classification of DNA 

sequences <600 bp and protein sequences, and uses Infernal for taxonomic 

classification of DNA sequences >600 bp. The output is then converted to a 

phylogenetic tree using Pplacer from the Guppy software kit (Ueno et al, 2003). 

DIAMOND is an alignment tool that can be used for aligning DNA or protein 

sequences to a protein database, such as the NCBI-nr protein database. For DNA to 

protein alignment, it translates the DNA prior to alignment. DIAMOND can align short 

read sequences much faster (20,000 times faster) than the BLASTX alignment tool, 

which also aligns translated DNA to protein databases (Buchfink et al, 2014). 

LAST can be used for the alignment of DNA as well as protein sequences against a 

nucleotide or protein database. LAST tool uses an ‘adaptive seed’ algorithm (described 

in Chapter 1 section 1.4.1.1) that allows for better alignment of long sequences, such as 

contigs (Kielbasa et al, 2011). 

MEGAN6 is a collection of tools that can be used to analyse metagenomes. Its 

command-line options allow for taxonomic classification and functional potential 

analyses of reads and proteins, which need to be aligned to a database prior to 

MEGAN6 classification using specific mapping files (available from https://software-

ab.informatik.uni-tuebingen.de/download/megan6/welcome.html). Its most commonly 

used command-line modules include blast2rma, which uses a tab-delimited alignment 

output file, and daa2rma, which uses the DIAMOND alignment output file. It allows for 

some functional potential analyses using the mapping files for InterPro, eggNOG, and 

KO databases, which provide GO, COG, and KO annotations of proteins, respectively. 

MEGAN6 also has an interactive GUI, which can be used for taxonomic classification 

and functional analyses of reads and proteins, and for preparing bar charts, clusters, 

PCoA (Principal Coordinates Analysis) plots, networks, etc. The MEGAN6 GUI also 

allows for comparative analysis of multiple datasets, by using the ‘Compare’ mode with 

MEGAN6 outputs. MEGAN6 has a community edition that is free to use and an 

http://hmmer.org/
https://software-ab.informatik.uni-tuebingen.de/download/megan6/welcome.html
https://software-ab.informatik.uni-tuebingen.de/download/megan6/welcome.html
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ultimate edition, which is a paid version that includes the latest KO database mapping 

files for functional potential analysis. 

MEGAN-LR is an off-shoot of MEGAN6 that was created specifically for the 

taxonomic assignment of contigs and long reads. Its command-line options for 

taxonomic classification and functional analyses are similar to MEGAN6, with an 

additional set of options for long reads and contigs. As with MEGAN6, MEGAN-LR 

can map only pre-aligned sequences, and LAST alignment tool has been recommended 

for use with MEGAN-LR (Huson et al, 2018). The latest version of the MEGAN6 

community edition GUI includes the additional MEGAN-LR options. 

MetaPhlAn2 is a software specifically designed for metagenome phylogenetic analysis. 

Apart from taxonomic classification, it calculates the relative abundances of the taxa 

identified in the metagenomes. It uses Bowtie2 for alignment of reads to its clade-

specific marker database, which is available for download as part of the software. 

Kaiju software was developed for the taxonomic classification of metagenome reads. It 

uses a k-mer based algorithm to align reads against a protein database, such as the 

NCBI-nr protein database, and calculates relative abundances by counting the number 

of reads assigned to a taxon relative to the total reads in the metagenome. Of the two 

algorithm modes of Kaiju alignment, namely MEM and Greedy (described in Chapter 1 

section 1.4.1.2), the Greedy mode was reported to be more sensitive and precise in the 

taxonomic classification of 250 nucleotide long Illumina paired-end reads (Menzel et al, 

2016). 

RefineM software was developed to assess genome completion and contamination. It 

can also be used to assess the taxonomic composition of an OTU bin, to refine an OTU 

bin, and to generate high quality bins for genomic analyses. RefineM assesses the GC 

content, TNF, and coverage of the OTU bin contigs, based on which it identifies the 

outlier sequences that do not belong in the OTU bin. Additionally, it has modules that 

identify the genes on the OTU contigs and assign taxonomy to the genes and contigs in 

the OTU bin. RefineM taxonomy output, prepared using Krona (Ondov et al, 2011), can 

be visualised in an internet browser, showing the taxonomic composition of the OTU 

bin.   

FastANI, pyani, and JSpeciesWS are tools for measuring ANI. FastANI uses the 

MashMap (Jain et al, 2018a) algorithm for pairwise alignment of a query and a 
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reference sequence. It can be used to calculate the ANI of multiple OTUs at a time, by 

providing a list of OTU and reference sequence files in the command-line options. 

Pyani is a python module used for calculating ANI and TNF of sequences for genome 

comparison. Pyani can calculate ANI using three alignment methods — ANIb uses 

BLAST+, ANIm uses MUMmer (Kurtz et al, 2004), and ANIblastall uses legacy 

BLAST for alignment. It can be used for calculating ANI of multiple sequences at a 

time, by providing a list of all sequence files (query as well as reference) in the 

command-line. It computes an all-versus-all alignment, where each OTU/genome is 

aligned to all other OTUs/genomes provided as input. Pyani also calculates the 

alignment fraction, i.e., the percentage of query sequences that align a reference 

sequence. JSpeciesWS is an online service for ANI and TNF calculation 

(http://jspecies.ribohost.com/jspeciesws/#analyse). Similar to pyani, it can align 

sequences using ANIb or ANIm method, and it can either perform an all-versus-all 

alignment or a reference genome can be specified. It also provides a measure for 

alignment fraction. 

The contig alignment and IGV approach can be used for the genomic analysis of 

specific OTUs identified in a system, allowing for direct comparison between an OTU 

and its closely matching reference genome. For contig alignment, Bowtie2 and blastn or 

megablast module of BLAST+ can be used for aligning the contigs from a metagenome, 

OTU, or MAG to a reference genome. Contig alignment can also be used to identify 

contigs of interest, e.g., viral contigs in metagenomes. IGV is a Java-based visualisation 

software that was developed for interactive analysis of large datasets. The contig 

alignment output files, namely, BAM and BAI format files, can be visualised using the 

IGV GUI, which shows a direct comparison between the reference and query sequences, 

highlighting mismatches and indels in the query sequence. Also, multiple alignment 

BAM files can be viewed simultaneously on IGV, making it easy to compare data from 

different samples. 

Mauve is another alignment and visualisation tool that can be used for genomic 

analysis. During multiple sequence alignment, it identifies conserved regions between 

the reference and query sequences, and in the visual output, it represents them in the 

form of aligned segments, referred to as locally collinear blocks in Mauve. The 

‘progressiveMauve’ algorithm of Mauve is recommended for sequence alignment 

(Darling et al, 2010). 

http://jspecies.ribohost.com/jspeciesws/#analyse


47 
 

MEGA is an alignment and visualisation tool that can be used for diverse purposes, 

including sequence alignment and constructing phylogenetic trees. The phylogenetic 

placement of an OTU can identify its closest related species group, which might provide 

insight into its probable function and interaction with its environment. Phylogenetic 

trees can be prepared using SSU rRNA genes or other clade-specific markers, such as 

bacteriochlorophyll A (BclA) protein sequence. 

PRIMER v7 is a statistical analysis tool that provides many options for multivariate 

analysis of multiple samples/metagenomes, including options for assessing 

similarity/dissimilarity between samples, sample clustering, calculating a variety of 

species diversity measures, and preparing PCoA and PCA (Principal Component 

Analysis) plots. It can also be used for abundance analysis as well as to analyse 

environmental factors or even to assess the relationship between the two. 

2.1.3 Aims 

The main aim was to improve a preliminary metagenome analysis pipeline, named 

Cavlab pipeline, for the in-depth analysis of time-series metagenomes from Ace Lake in 

the Vestfold Hills. For this purpose, various software and computational methods were 

tested on Antarctic metagenomes, and the most reliable and robust approaches were 

incorporated in to the pipeline. The Cavlab pipeline was specifically developed to 

handle metagenomes generated by JGI’s IMG system. The pipeline was organised to be 

used with IMG data — to efficiently use the input IMG folder structure, perform a list 

of analyses and generate outputs into specified folders that can be easily accessed and 

analysed using other in-house scripts. Additional software/methods were also used for 

the genomic and statistical analyses of the outputs generated by the pipeline. The 

software/approaches were tested on metagenomes from Ace Lake, Deep Lake, Club 

Lake, Organic Lake, and Rauer Island lakes. 

Apart from improving the Cavlab pipeline, a specific aim was to develop a pipeline for 

analysis of archaea COG (arCOG) for the purpose of studying the functional potential 

contribution of archaea in metagenomes from archaea-rich environments (Appendix D). 

This pipeline relied on the output of DIAMOND and MEGAN6 protein taxonomy 

component of Cavlab pipeline and was tested on a Megahit-assembled metagenome 

from Deep Lake surface (Appendix A). 
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2.2 Method development 

2.2.1 Improving the preliminary Cavlab pipeline 

The preliminary in-house metagenome analysis pipeline (referred to as Cavlab pipeline 

v1.2 hereafter; Appendix B) was written using Python v3.5.2, for the analysis of 

metagenomes sequenced and annotated by JGI’s IMG system. Cavlab pipeline v1.2 

included specific metagenome analyses: (i) read taxonomic classification using 

PhyloSift, (ii) protein taxonomy and abundance analysis using DIAMOND and 

MEGAN6, (iii) functional potential analyses using the IMG COG and KO annotation 

files (hereafter referred to as metagenome COG and KEGG files), and (iv) initial steps 

for generating MAGs using MetaBAT (Kang et al, 2015). Each component of the 

pipeline was tested to assess its suitability for the analysis of Antarctic metagenomes 

(Appendix A) and changes were made to fix any errors incurred during pipeline runs 

(Table 2.1). The pipeline code was often modified to improve the output folder structure 

and input file verification step, to update software and database versions, and sometimes 

to reduce the computational resources required to run a pipeline component (Table 2.1). 

Additional analytical components were also added to the pipeline to generate specific 

outputs of use, and the components were tested on Antarctic metagenomes to assess 

their suitability (described in detail in the sections below).  

Table 2.1 Cavlab pipeline versions — issues identified and changes made to improve the 

pipeline. ORF, open reading frame. 

Cavlab pipeline 

version 

[development date] 

Issues (I) and changes (C) in the Cavlab pipeline, which was run on 

UNSW Katana computer cluster 

v1.3a 

[23 March, 2017] 

I: The time taken to run the PhyloSift software on Katana (referred to as 

wall time) exceeded the maximum time limit (200 h) available for 

Katana runs. There were problems with the automatic updates of the 

PhyloSift database. 

C: PhyloSift v1.0.1 was downloaded to Katana scratch node and was 

used for the pipeline PhyloSift runs. 

Additionally, ‘--config flag’ was added to the PhyloSift command-line 

to force it to use the config file phylosiftrc, which contained instructions 

for the software to use specific downloaded versions of the PhyloSift 
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database. This prevented automatic update of PhyloSift database during 

Katana runs. 

v1.3b 

[30 March, 2017] 

I: The date in the output head folder name (Cav_LaunchDate) was not 

in a proper format and was confusing. 

C: The head folder naming format was modified to Cav_YYMMDD, i.e., 

30 Mar 2017 would now be Cav_170330 in place of Cav_2017330. 

v1.3b.1 

[18 April, 2017] 

I: PhyloSift software runs on Katana still exceeded the maximum wall 

time. 

C: PhyloSift runs in the pipeline were stalled. 

v1.4.1 

[20 April, 2017] 

I: The COG and KEGG analyses run on some of the large metagenomes 

exceeded Katana maximum wall time. 

C: The COGKEGG python script wall time was increased from 48 h to 

60 h, to accommodate for runs on large metagenomes. 

Additionally, the PBS job script (run on Katana) output and error files 

were merged by giving the command ‘#PBS -j oe’ in the job script, to 

keep a track of the errors that spawn during Katana runs. 

v1.4.2 

[17 May, 2017] 

I: Input file name error — due to similar file names, wrong protein files 

were being selected for analysis. 

The COG and KEGG analyses run on the large metagenomes still 

exceeded Katana maximum wall time. 

C: The protein file selection criteria was improved to ensure that protein 

files associated with assembled data were selected for analysis, and not 

the unassembled data protein files. 

The COGKEGG python script wall time was further increased to 96 h. 

v1.4.2a 

[25 May, 2017] 

I: The COG and KEGG analyses run on the large metagenomes still 

exceeded Katana maximum wall time. 

C: The COGKEGG python script wall time was increased to 120 h. 

v1.5 

[28 May, 2017] 

I: The COG and KEGG analyses run on the large metagenomes still 

exceeded Katana maximum wall time. 

C: The COGKEGG python script was split into individual COG and 

KEGG scripts. COG runs were found to be more time-consuming and 

often prevented KEGG runs from initiating, if the wall time exceeded 

maximum limit during the COG run. COG wall time was kept at 120 h, 

but KEGG wall time was reduced to 12 h. 

v2.0 

[3 July, 2017] 
I: The COG analysis run had high wall time (120 h). 
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C: COG python script was modified so that the processing time was 

reduced from >100 h to <10 mins. This was achieved by using 

dictionaries, in place of lists, for storing and handling variable values. 

The wall time for COG analysis was changed to 12 h. 

NCBI COG conversion database file was updated using data available 

on ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data. 

PhyloSift component was removed, because the time taken to run it on a 

metagenome exceeded the maximum wall time (200 h) available on 

Katana at the time. 

CRISPR script was added to the pipeline that used the IMG CRISPR 

annotation file as input. The output would include all spacer sequences 

along with the IDs of the contigs in which they were identified. 

MEGAN script was updated to include KEGG mapping file (containing 

data from Feb 2015; prepared by the developers of MEGAN6), as an 

additional functional potential analysis. 

v2.1 

[13 July, 2017] 

I: JGI IMG changed the output folder structure of newly sequenced and 

annotated metagenomes. 

C: For metagenomes with inconsistent IMG folder structure, new 

commands were added for identification of the correct folder containing 

the filtered read sequences, and associated changes were made to the 

MetaBAT preparation script. 

v2.2 

[7 August, 2017] 

C: The latest NCBI-nr protein database (July 2017) was downloaded 

(from ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/), ~80 GB data. 

MEGAN6 version was also updated to v6.8.18, along with the accession 

ID-based taxonomy and function mapping files (downloaded from 

https://software-ab.informatik.uni-

tuebingen.de/download/megan6/welcome.html) corresponding to the 

updated NCBI-nr protein database. The latest NCBI database included 

protein sequences and their corresponding accession IDs, but did not 

include protein GI numbers. Therefore, the GI numbers in the old 

MEGAN6 mapping files did not match the database. 

v2.2a 

[8 August, 2017] 

C: CRISPR script was updated to produce a FASTA file of the spacer 

sequences, with their position in a contig and corresponding contig ID 

mentioned in the header. The spacer sequences were to be used for 

aligning against viral contigs for virus-host analysis. 

ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
https://software-ab.informatik.uni-tuebingen.de/download/megan6/welcome.html
https://software-ab.informatik.uni-tuebingen.de/download/megan6/welcome.html
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v2.2b 

[10 August, 2017] 

I: MEGAN6 KEGG mapping file did not match the latest NCBI 

database and caused error. 

C: KEGG mapping file was removed from MEGAN6 analysis. It 

contained protein GI numbers, and not accession IDs, and therefore, did 

not match the updated, accession ID-based NCBI-nr protein database. 

The updated KEGG mapping file was only available to the users of 

MEGAN6 Ultimate Edition (paid version that provides the latest 

mapping files to KO database). 

MEGAN6 script was updated to include the InterPro mapping file for 

additional functional analysis based on GO data. 

v3.0 

[2 February, 2018] 

I: In MEGAN6 script runs, abundance calculation was not performed, 

because the software did not accept the contig read depths mentioned in 

corresponding protein sequence headers. 

C: MetaPhlAn2 was added to the pipeline as a method for read-based 

taxonomic classification and relative abundance estimation. 

LAST and MEGAN-LR were added to the pipeline as a method for 

contig taxonomic classification. 

Protein sequence file pre-processing step was modified to add protein 

names to the protein sequence headers in place of contig read depths, to 

support functional potential analysis in place of abundance calculation. 

CRISPR script was removed from the pipeline, as a more in-depth virus 

analysis of the metagenomes would be available on IMG-VR (Páez-

Espino et al, 2017). 

MetaBAT preparation script was also removed from the pipeline. 

Output folder structure was modified to make it more comprehensive. 

The updated NCBI-nr protein database (December 2017) was 

downloaded, ~87 GB data. 

Updated MEGAN6 mapping files were also downloaded. 

v3.1 

[15 February, 2018] 

I: MetaPhlAn2 output excluded 99% of the filtered reads. 

C: MetaPhlAn2 was removed from the pipeline, due to issues with its 

database. The database did not include most of the species previously 

identified in Antarctic metagenomes, thereby, giving biased abundance 

estimations. 

v3.1a 

[19 February, 2018] 

C: Modifications were made to the script that picked data from the 

coverage and mapping files, to make the process slightly faster and the 

code more comprehensive. 
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v3.2 

[27 February, 2018] 

C: Modifications were made to the script that read the contig sequence 

file, to ensure that the scaffold sequence file in the 

QC_and_Genome_Assembly folder would be selected and read. 

v3.3 

[1 March, 2018] 

C: COG and KEGG python scripts were altered to acquire the total 

coverage of ORFs that did not fall under any of the COG categories or 

specified KO numbers. The COG abundances were now represented as 

absolute abundances, and no longer represented as a fraction of the total 

abundance of all proteins (sum of corresponding contig read depths) in 

the metagenome. The formulae for KEGG pathway/enzyme abundance 

calculation were also changed. 

The head folder name would now include the pipeline version as well. 

v3.3a 

[10 April, 2018] 

C: The updated NCBI-nr protein database (March 2018) was 

downloaded, ~93 GB data. 

MEGAN6 mapping files corresponding to the updated NCBI-nr protein 

database were also downloaded. 

v4 

[28-29 May, 2020] 

C: Output folder structure was updated, including changing some folder 

names. 

For contig taxonomy, LAST and MEGAN-LR methods were replaced 

by a method that uses the IMG protein taxonomy annotation file 

(Phylodist file). 

Additional KO numbers and pathways/enzymes were added to KEGG 

functional analysis. Four more KEGG database files were added to the 

pipeline — one associated with sulfur metabolism and three with 

methane oxidation or nitrification. 

Latest MEGAN6 mapping files were downloaded, corresponding to the 

NCBI-nr protein database downloaded in July 2019, ~132 GB data. 

v4.1 

[13 June, 2020] 

I: JGI IMG changed the standard filenames of annotated data in the 

newly sequenced and annotated metagenomes. 

C: The latest file designations used by JGI for the metagenome 

annotation files were added to the script in the resource files verification 

component. 

The script was modified to accurately differentiate between coverage 

files that used Contig IDs and the ones that used Scaffold IDs, and to 

appropriately use both. The former was associated with metagenomes 

that were sequenced outside of JGI, but annotated by JGI IMG, and did 

not require a scaffold to contig mapping file. 
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Minor issues with the latest metagenome COG files were also fixed. 

The second column in the COG files are blank, so the script prepares a 

new COG file for these, with the second column removed. 

The latest version of the pipeline (referred to as Cavlab pipeline v4.1; Appendix C) has 

three main analytical components: (i) contig taxonomic classification using the IMG 

protein taxonomy annotation file (hereafter referred to as Phylodist file) and OTU 

abundance calculation using the contig coverage files; (ii) protein taxonomy and 

function analysis using DIAMOND and MEGAN6 with protein sequence file; and (iii) 

functional potential analyses using the metagenome COG and KEGG files. 

2.2.2 Taxonomic identification  

2.2.2.1 DIAMOND and MEGAN6 

DIAMOND and MEGAN6 were a part of Cavlab pipeline v1.2, and were used for 

protein taxonomic diversity analysis (Appendix B). In Cavlab pipeline v2.0, KEGG 

analysis was added to the MEGAN6 runs using a MEGAN6 KEGG mapping file 

corresponding to data in KO database from February 2015 available at the time. 

DIAMOND/MEGAN6 module of Cavlab pipeline v2.0 was tested on Megahit-

assembled metagenomes from Ace Lake 2008 and Deep Lake 2013–2015 (Appendix 

A), two very different Antarctic lake systems, to assess its reliability and robustness. 

Some taxonomy data were available from Ace Lake (Lauro et al, 2011) and Deep Lake 

(DeMaere et al, 2013), which were used as reference to assess the output of 

DIAMOND/MEGAN6 runs. The method would be considered robust, if its output was 

reliable and comparable to previous observations from different lake systems. 

Cavlab pipeline v2.0 – DIAMOND and MEGAN6 

export _JAVA_OPTIONS="-Xmx55g" 

diamond makedb --in nr_Nov2016.fasta -d nr_Nov2016 -p 8 

diamond blastp -d nr_Nov2016 -q ProteinSequenceFile.faa -a Output.daa -e 0.001 -p 8 

diamond view -a Output.daa > -o Output.tab -f tab 

blast2rma -r ProteinSequenceFile.faa -i Output.tab -o Output.rma -g2t gi_taxid_prot.dmp.gz -

a2eggnog acc2eggnog-June2016X.abin -g2kegg gi2kegg-Feb2015X.bin -f BlastTab -mag -fun 

EGGNOG KEGG 

Prerequisites (version): DIAMOND (v0.8.4); Java (v8u45); MEGAN6 (v6.4.5). 
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Katana resources: nodes = 1, processors = 8, memory = 64 GB, wall time = 48 h. 

export _JAVA_OPTIONS is a Java command that was used to set the maximum heap size to 

55 GB (-Xmx55g), to prevent MEGAN6 from running out of memory. 

diamond makedb prepared an index file (-d) for the NCBI-nr protein database (--in) using 

parallel runs on 8 processors (-p 8). This needs to be run only once on a database, to create 

index files. All subsequent alignment runs used these indexed files. 

diamond blastp aligned the query protein sequences (-q) against the database index files (-d) 

using parallel runs on 8 processors (-p 8). The output alignment file (-a) displayed only the 

alignments with e-value ≤0.001 (-e 0.001). 

diamond view converted the DIAMOND output file (-a) to a tabular format (-f), to generate a 

tab-delimited file (-o) that could be used with blast2rma module of MEGAN6. 

blast2rma mapped protein GI numbers to taxonomy (-g2t) and accession IDs to eggNOG 

database (-a2eggnog) to assign taxonomy and COG numbers to metagenome protein sequences 

(-r), respectively, based on the data in the input alignment file (-i). 

▪ -f BlastTab specified the alignment file format. 

▪ -fun EGGNOG KEGG specified that the eggNOG database-based COG (EGGNOG) 

and KO database-based KEGG (KEGG) functional analyses (-fun) should be 

performed. 

▪ -mag specified that taxonomic assignments should be coverage-based. The read depth 

of contigs corresponding to the proteins were mentioned in the protein sequence 

headers. 

To accommodate the change in the NCBI-nr protein database (the sequence headers 

were changed from GI numbers to accession IDs), the NCBI database and the 

MEGAN6 mapping files were updated in Cavlab pipeline v2.2. Additionally, InterPro 

database-based functional potential analysis was added to the MEGAN6 runs in Cavlab 

pipeline v2.2b, using the MEGAN6 InterPro mapping file. 

Cavlab pipeline v2.2b – DIAMOND and MEGAN6 

export _JAVA_OPTIONS="-Xmx55g" 

diamond makedb --in nr_July2017.fasta -d nr_July2017 -p 8 

diamond blastp -d nr_July2017 -q ProteinSequenceFile.faa -a Output.daa -e 0.001 -p 8 

diamond view -a Output.daa -o Output.tab -f tab 

blast2rma -r ProteinSequenceFile.faa -i Output.tab -o Output.rma -a2t prot_acc2tax-

May2017.abin -a2eggnog acc2eggnog-Oct2016X.abin -a2interpro2go acc2interpro-
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Nov2016XX.abin -bm BlastP -f BlastTab -ram readMagnitude -fun EGGNOG INTERPRO2GO 

-v 

Prerequisites (version): DIAMOND (v0.8.4); Java (v8u45); MEGAN6 (v6.8.18). 

Katana resources: nodes = 1, processors = 8, memory = 96 GB, wall time = 48 h. 

export _JAVA_OPTIONS, diamond makedb, diamond blastp, and diamond view were 

used as mentioned earlier in this section, except that an updated NCBI-nr database (downloaded 

in July 2017) was used in diamond makedb and blastp modules. 

blast2rma was also used as described earlier in this section, except for the following changes in 

the options:  

a) In place of -g2t used -a2t option, which allowed taxonomic classification using 

accession ID-based taxonomy mapping file. 

b) Added InterPro database-based GO classification using the accession ID-based InterPro 

database mapping file (-a2interpro2go). 

c) MEGAN6 version and all its mapping files were updated. In the new MEGAN6 

version, -mag option had been replaced by -ram readMagnitude, which performed the 

same function. 

d) -bm specified the blast module (blastp) used for generating the alignment file. 

e) In the -fun option, INTERPRO2GO was added to indicate that InterPro database-based 

functional analysis should also be performed. 

f) -v option printed MEGAN6 command-line options to the output log file, for future 

reference. 

Additional command-line options were added to the DIAMOND blastp module, to 

further improve the protein-protein alignment. As per the recommendations of the 

developers of MEGAN6, the blast2rma module of MEGAN6 was replaced by daa2rma 

module, which can directly use the DIAMOND alignment output file. 

Cavlab pipeline v3.0 – DIAMOND and MEGAN6 

export _JAVA_OPTIONS="-Xmx64g" 

diamond makedb --in nr_Dec2017.fasta -d nr_Dec2017 -p 8 

diamond blastp --more-sensitive -d nr_Dec2017 -q ProteinSequenceFile.faa -o Output.daa -f 

100 --algo 0 --index-mode 1 -p 8 -v 

daa2rma -i Output.daa -o Output.rma -a2t prot_acc2tax-May2017.abin -a2eggnog acc2eggnog-

Oct2016X.abin -a2interpro2go acc2interpro-Nov2016XX.abin -fun EGGNOG INTERPRO2GO 

-v 

Prerequisites (version): DIAMOND (v0.9.10); Java (v8u91); MEGAN6 (v6.10.5). 
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Katana resources: nodes = 1, processors = 8, memory = 96 GB, wall time = 64 h. 

export _JAVA_OPTIONS, diamond makedb, and diamond blastp were used as mentioned 

earlier in this section, except that the blastp module also included the following options: 

• --more-sensitive was used for better alignment of long sequences, as recommended in 

DIAMOND v0.9.10 manual (also mentioned in DIAMOND v0.9.21 online manual; 

https://usermanual.wiki/Pdf/diamondmanual.1718530976/view). 

• -f 100 set the output format to DIAMOND alignment archive (.daa), which was the 

default output format in previous versions. 

• --algo and --index-mode are advanced options that were used for improved seed search, 

for reliable and faster alignments. The double-indexed seed search algorithm (–algo 0) 

was used, with a 4×12 index mode (--index-mode 1). In double-indexed algorithm, 

both query and reference sequences are indexed and are arranged as a dictionary of 

seed-location pairs, making the computations much faster (Buchfink et al, 2014). 

daa2rma is a MEGAN6 module that works similar to blast2rma module, and was used to 

directly map the DIAMOND output file (.daa) to the NCBI-nr protein database. 

In Cavlab pipeline v4.1, the updated versions of NCBI-nr protein database, DIAMOND, 

and MEGAN6 were used. The latest versions of the software have slightly different 

command-line options. 

Cavlab pipeline v4.1 – DIAMOND and MEGAN6 

diamond makedb --in nr_Jul2019.fasta -d nr_Jul2019 -p 16 

diamond blastp --more-sensitive -d nr_Jul2019 -q ProteinSequenceFile.faa -o Output.daa -f 100 

--algo 0 --index-mode 1 -p 16 -v 

export _JAVA_OPTIONS="-Xmx96g" 

daa2rma -I Output.daa -o Output.rma -a2t prot_acc2tax-Jul2019X1.abin -a2eggnog 

acc2eggnog-Jul2019X.abin -a2interpro2go acc2interpro-Jul2019X.abin -v 

Prerequisites (version): DIAMOND (v0.9.31); Java (v8u121); MEGAN6 (v6.15.1). 

Katana resources: nodes = 1, processors = 16, memory = 120 GB, wall time = 48 h. 

export _JAVA_OPTIONS, diamond makedb, diamond blastp, and daa2rma were used as 

described earlier in this section, except that daa2rma no longer supports the -fun option, which 

used to highlight the functions to be performed; the program now automatically confirms this by 

reading the mapping files used. 

2.2.2.2 LAST and MEGAN-LR 

https://usermanual.wiki/Pdf/diamondmanual.1718530976/view
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LAST and MEGAN-LR were introduced in Cavlab pipeline v3.0, as tools for assessing 

contig-based taxonomic diversity. MEGAN-LR has been specifically designed for use 

with long reads and contigs, and the developers recommended using LAST for contig 

alignment (Huson et al, 2018). As contig sequences are much longer than protein or 

read sequences, and much less likely to be shared through horizontal gene transfer 

(HGT), it was reasoned that their taxonomic classification would be more reliable. 

Therefore, the LAST/MEGAN-LR method was tested on Megahit-assembled 

metagenomes from different Antarctic lake systems, namely Ace Lake 2006 and 2008, 

Deep Lake 2006, 2008, and 2013–2015, Club Lake 2014, Organic Lake 2006, and 

Rauer Island lakes 1, 3, 6, 11, and 13 (Appendix A). The method was also tested on 

some of the Spades-assembled metagenomes from Ace Lake oxycline (0.1 μm-filter 

from 2008 and 2013) and Deep Lake surface (0.1 μm-filter from 2006 and <0.1 μm-

filter from November 2014) available at the time (Appendix A). Spades-assembled Ace 

Lake oxycline metagenomes were selected to assess the population of GSB, a 

Chlorobium, previously observed at this depth of Ace Lake (Ng et al, 2010; Lauro et al, 

2011). Deep Lake Spades-assembled metagenomes from 0.1 μm and <0.1 μm-fraction 

were randomly selected to assess the haloarchaeal population (members of Halobacteria 

class) population previously observed in Deep Lake (DeMaere et al, 2013). The method 

would be considered robust, if its output was reliable and comparable to the previous 

observations from both Ace Lake and Deep Lake. 

Cavlab pipeline v3.0 – LAST and MEGAN-LR 

export _JAVA_OPTIONS="-Xmx64g" 

lastdb -vpcR01 -i10 -P16 nr_Dec2017 nr_Dec2017.fasta 

lastal -P16 -fMAF -D10000 -R01 -F15 -pBL80 -v nr_Dec2017 ContigSequenceFile.fna 

Output.maf 

maf2daa -i Output.maf -r ContigSequenceFile.fna -p 16 -o Output.daa -v 

daa2rma -i Output.daa -o Output.rma -lg -alg longReads -ram readCount -a2t prot_acc2tax-

Oct2017X1.abin -a2eggnog acc2eggnog-Oct2016X.abin -a2interpro2go acc2interpro-

Nov2016XX.abin -fun EGGNOG INTERPRO2GO -v 

Prerequisites (version): LAST (v914); Java (vu91); MEGAN-LR (v6.10.5). 

Katana resources: nodes = 1, processors = 16, memory = 96 GB, wall time = 24 h. 

lastdb is a LAST module that was used to create a database index, which was further used with 

the other modules of LAST, e.g., the lastal module. This needs to be run only once on a 
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database, to create index files. All subsequent alignment runs used these indexed database files. 

The command-line options were: 

▪ -v printed the command-line options to the output log file, for future reference. 

▪ -p specified that the input database sequences were proteins. 

▪ -R01 was used to identify simple repeats in the database sequences and flag them. The 

first digit ‘0’ allowed conversion of the input database sequences to uppercase, whereas 

the second digit ‘1’ allowed conversion of simple repeats to lowercase.  

▪ -c masked the lowercase letters in a sequence (simple repeats), so that during alignment 

these lowercase letters would be excluded from initial matches. 

▪ -i10 instructed the program to perform at least 10 initial matches per query position. 

▪ -P16 mentioned the number of processors used for parallel runs. 

lastal is a LAST module that was used to align the query nucleotide sequences to the NCBI-nr 

protein database. 

▪ -P16, -v, and -R01 worked the same as in lastdb module. 

▪ -pBL80 used BLOSUM80 score matrix for aligning the query nucleotide sequences to 

the reference protein sequences. 

▪ -D10000 defined the number of query letters to be used per random alignment. 

▪ -fMAF specified the output file format. 

▪  -F15 mentioned the frameshift cost, which also let the program know that the input 

query was a DNA sequence. 

maf2daa is a LAST module that converted the input MAF alignment file (-i) to a DIAMOND 

alignment file (-o), using the contig sequence file as a reference (-r). The function ran parallelly 

on 8 processors (- p 8) and the command-line options were printed to the output log file (-v). 

daa2rma was used as described earlier in section 2.2.2.1. Additional MEGAN-LR options used 

for contig taxonomic assignment were: 

▪ -lg specified that the input sequences were long sequences. 

▪ -alg longReads used the algorithm specifically designed for long reads and contigs 

(Huson et al, 2018).  

▪ -ram readCount allowed MEGAN-LR output to display the number of contigs assigned 

to a taxa node, when the output was visualised in MEGAN6 GUI. This was the default 

option in the previous versions of MEGAN6. 

To utilise the output of LAST/MEGAN-LR to calculate OTU abundances in 

metagenomes, a python script was prepared. Prior to running the script, the 

LAST/MEGAN-LR output was used to prepare an input file containing the taxa 

identified in the metagenome and the contigs IDs assigned to the taxa. For this, the 

MEGAN-LR output file was opened in the MEGAN6 GUI and all the species nodes 
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were selected [Select > Rank > Species]. The taxa names and their corresponding 

contig IDs were exported to a document file [File > Export > Text (CSV) Format. 

Choose data to export: taxonName_to_readName; Choose count to use: assigned; 

Choose separator to use: comma > OK > FileA-species.doc > Save]. The data in the 

output document file was cleaned by removing the quotes from the taxa names, and the 

document was used for calculating OTU abundances in the metagenome using the 

python script below (text in red are comments and were not implemented by the python 

script): 

#calculating OTU abundance using LAST/MEGAN-LR output 

import csv 

#### Reading data from the MEGAN-exported document file 

d = {} 

with open('FileA.doc', 'r') as datafile: 

    for row in datafile: 

        row = row.rstrip() 

        row = row.split(',') 

        d.setdefault(row[0],[]).append(row[1:]) #creates a dictionary with taxa names as keys and a 

list of Contig IDs; d = {species1:[[ContigA, ContigB, ContigC,…]], species2:[[ContigP, 

ContigQ, ContigR,…]],…} 

species = list(d.keys()) #list of taxa names; species = [species1, species2,…] 

 

#### Data prep: matching scaffold ID coverages to scaffold ID contig names (Contig IDs) 

coverage = {} 

with open(Metagenome contig coverage file, 'r') as covfile: 

    covcsv = csv.reader(covfile, delimiter = '\t') 

    next(covcsv) 

    for row in covcsv: 

        coverage[row[0]] = row[1] 

maps = {} 

with open(Contig ID to scaffold ID mapping file,'r') as mapfile: 

    mapcsv = csv.reader(mapfile, delimiter = '\t') 

    for row in mapcsv: 

        maps[row[0]] = row[1] 

covmap = {} 

for i in range(len(maps)): 

    covmap[maps[i]] = coverage[i] 
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#### Calculating taxa coverages 

taxa = [] 

total = 0 

issues = 0 

sp_contigs = 0 

for j in range(len(species)): # picking each taxon for abundance calculation 

    contigs = [] 

    for sublilst in d[species[j]]: 

        for y in sublilst: 

            contigs.append(y) # list of contigs associated with a taxon 

abund = 0 

    for k in contigs: 

        sp_contigs += 1 # count the total number of contigs associated with the taxa 

        if k in covmap.keys(): 

            abund = abund + float(covmap[k]) # if a contig has coverage, sum it up 

        else: 

            issues += 1 # if a contig does not have a coverage, it is an error  

    total = total + abund # calculate total abundance of species contigs 

    taxa.append([species[j], abund]) 

 

#### Writing abundances to output file 

with open(Output filename, 'w', newline = '') as writefile: 

    csvfile = csv.writer(writefile, delimiter = '\t') 

    for a in range(len(taxa)): 

        csvfile.writerow([taxa[a][0], taxa[a][1]]) 

    csvfile.writerow(['Coverage_total', total]) 

    csvfile.writerow(['Contigs_without_coverage', issues]) 

    csvfile.writerow(['Contigs_analysed', sp_contigs]) 

For comparative metagenome analyses, OTU abundance files from different 

metagenomes were merged together using a MetaPhlAn2 python code: 

MetaPhlAn2 file merge function 

cd metaphlan2/utils 

python3 merge_metaphlan_tables.py *-speciesAbn.txt > CombinedSpeciesAbn.txt 

Prerequisites (version): Python (v3.6.5). 
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Katana resources: nodes = 1, processors = 1, memory = 16 GB, wall time = 1 h. 

cd changed the current working directory to the ‘utils’ folder in MetaPhlAn2, where the 

‘merge_metaphlan_tables.py’ python script for merging abundance data was stored. 

python3 ran the merge_metaphlan_tables.py python script on the input OTU abundance files 

from multiple metagenomes and created a single text file containing abundances of all identified 

OTUs across all metagenomes. The asterisk (*) symbol allowed selection of multiple input text 

files with the suffix ‘-speciesAbn.txt’ in the folder. Each input OTU abundance file had only 

two columns: (i) the taxa name column and (ii) an abundance value column. The output 

combined abundance file had a taxa name column followed by multiple abundance value 

columns (equal to the number of input abundance files). The abundance of an OTU was 

reported as zero in the metagenomes in which it was not identified. 

The relative OTU abundances in a metagenome were calculated manually as below: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑂𝑇𝑈 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (%) =
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑂𝑇𝑈 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑂𝑇𝑈 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒
× 100 

where, absolute OTU abundance was calculated by summing the read depths of contigs 

assigned to an OTU in a metagenome, using the python script mentioned above; total OTU 

abundance was calculated by summing the read depths of all contigs assigned to species-level in 

the metagenome. 

The relative OTU abundances can also be calculated in PRIMER v7 software (section 

2.2.7). The maximum relative abundance of an OTU in all metagenomes or in a specific 

set of metagenomes (from a depth or a time period) was described as the peak relative 

abundance of the OTU.  

2.2.2.3 MetaPhlAn2 

MetaPhlAn2 was introduced in Cavlab pipeline v3.0, alongside LAST and MEGAN-LR 

approach, for read-based taxonomy and relative abundance estimation. It was tested on 

seven Ace Lake 2008 metagenomes, at least one from each depth: U2_0.8 μm, U3_0.8 

μm, I_0.8 μm, L1_3 μm, L1_0.8 μm, L2_0.8 μm, and L3_0.8 μm (Appendix A). 

Cavlab pipeline v3.0 – MetaPhlAn2 

cd metaphlan2 

python3 metaphlan2.py FilteredReads.fastq.gz --input_type fastq --mpa_pkl 

db_v21/mpa_v21_m200.pkl --bowtie2db db_v21/mpa_v21_m200 --nproc 8 --bowtie2out 

BowtieOutput.bt2out.bz2 > RelativeAbn-allTaxaLevels.txt 
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python3 metaphlan2.py --input_type bowtie2out --mpa_pkl db_v21/mpa_v21_m200.pkl --nproc 

8 -t reads_map BowtieOutput.bt2out.bz2 > ReadMap.txt 

cd metaphlanOutput_file_path 

grep -E "(s__)|(^ID)" RelativeAbn-allTaxaLevels.txt | grep -v "t__" | sed 's/^.*s__//g' > 

RelativeAbn-species.txt 

Prerequisites (version): Bowtie (v2.3.2); Python (v3.5.2) with Numpy, Pandas, Biopython, 

SciPy, and Matplotlib packages installed. 

Katana resources: nodes = 1, processors = 8, memory = 64 GB, wall time = 6 h 

cd metaphlan2 changed the working directory to the folder where MetaPhlAn2 was installed. 

python3 metaphlan2.py executed the MetaPhlAn2 python script run, which depends on python 

versions ≥3. The script first worked on the filtered reads FASTQ file to generate two outputs: a 

compressed Bowtie alignment file (--bowtie2out) and a taxa relative abundance text file. The 

relative abundance file contained all taxa (domain- to species-level) identified in the 

metagenome (taxa ID) and their corresponding relative abundances. In the second run of 

metahphlan2.py, the Bowtie alignment file was used to generate a text file containing filtered 

read IDs and their taxonomic assignments; only reads with matches to clade markers were 

mentioned in the text file. Other options included: 

▪ --input_type specified the format of the input file (fastq or bowtie2out). 

▪ --mpa_pkl mentioned the database used for MetaPhlAn2 taxonomic classification. 

▪ --bowtie2db mentioned the reference database used for read alignment by Bowtie. 

▪ --nproc specified the number of processors used for parallel runs. 

▪ -t reads_map generated a file containing filtered read IDs and their taxonomy. 

cd metaphlanOutput_file_path changed the working directory to the folder where the outputs of 

MetaPhlAn2 run were stored. 

grep and sed are UNIX commands used to extract relative OTU abundances from the output 

file that contained relative abundances of all taxa levels, and store them in a separate file. 

Options included: 

▪ grep -E "(s__)|(^ID)" selected all lines in the relative abundance output file that had 

species (s__) data in the taxa ID column (^ID), which was passed on to the next grep 

command. 

▪ grep -v "t__" selected all data in the lines passed on to it that contained species data, and 

excluded any strain-level (t__) information. This species data, with strain name 

removed, was passed on to the next sed command. 

▪ sed 's/^.*s__//g' edited the lines passed to it that contained species data. It removed all 

levels of taxonomy from the lines, except species name, by replacing ‘s__’ and 

everything before it with an empty string. 
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The MetaPhlAn2 database contains clade-specific marker genes identified from all three 

domains of life and viruses (Segata et al, 2012). However, the initial output of 

MetaPhlAn2 analysis of some of the Antarctic metagenomes showed that its database 

did not have marker genes for most of the species identified in Antarctic samples (Table 

2.3). Therefore, the genetic markers for some of the species observed in 

DIAMOND/MEGAN6 outputs of Ace Lake and Deep Lake were added to the database 

using a python script prepared from the information provided on the software website 

(https://github.com/biobakery/MetaPhlAn). A few of the markers are mentioned in the 

python script below and a complete list of markers added to the MetaPhlAn2 database is 

provided in Appendix E. 

#adding clade-specific markers to MetaPhlAn2 database 

import pickle 

import bz2 

db = pickle.load(bz2.BZ2File('path/metaphlan2/db_v20/mpa_v20_m200.pkl', 'r')) 

db[‘taxonomy’]['k__Archaea|p__Euryarchaeota|c__Halobacteria|o__Haloferacales|f__Halorubr

aceae|g__Halohasta|s__Halohasta_litchfieldiae_tADL|t__GCF_900109065'] = 3332020 

db[‘markers’]['gi|1279136099|ref|CP024845.1|:42441-40969'] = { 

                                   ‘score’: 0.0, 

                                   ‘len’: 1473, 

                                   ‘taxon’: 

'k__Archaea|p__Euryarchaeota|c__Halobacteria|o__Haloferacales|f__Halorubraceae|g__Haloha

sta|s__Halohasta_litchfieldiae_tADL', 

                                   ‘clade’: 's__Halohasta_litchfieldiae_tADL', 

                                   ‘ext’: {}} 

db[‘markers’]['gi|645321082|ref|NR_118135.1|:1-1473'] = { 

                                   ‘score’: 0.0, 

                                   ‘len’: 1473, 

                                   ‘taxon’: 

'k__Archaea|p__Euryarchaeota|c__Halobacteria|o__Haloferacales|f__Halorubraceae|g__Haloha

sta|s__Halohasta_litchfieldiae_tADL', 

                                   ‘clade’: 's__Halohasta_litchfieldiae_tADL', 

                                   ‘ext’: {}} 

ofile = bz2.BZ2File('path/ metaphlan2/db_v21/mpa_v21_m200.pkl', 'w') 

pickle.dump(db, ofile, pickle.HIGHEST_PROTOCOL) 

ofile.close() 

https://github.com/biobakery/MetaPhlAn
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2.2.2.4 Kaiju 

Kaiju was tested on Ace Lake oxycline metagenomes (0.1 μm-filter from 2008 and 

2013), to assess the Chlorobium population previously observed at this depth (Ng et al, 

2010; Lauro et al, 2011). The software was also tested on Deep Lake surface 

metagenomes (0.8 μm-filter from 2006 and <0.1 μm-filter from November 2014), to 

assess previously observed haloarchaea population (DeMaere et al, 2013). These 

previously reported Ace Lake and Deep Lake microbial diversity data were used as 

references to assess the reliability of Kaiju output. 

Kaiju 

makeDB.sh -e -t 16 

kaiju -t nodes.dmp -f kaiju_db_nr_euk.fmi -i FilteredReads1.fastq.gz -j FilteredReads2.fastq.gz 

-o Alignment.out -a greedy -e 5 -z 16 -v 

kaijuReport -t nodes.dmp -n names.dmp -i Alignment.out -o SpeciesAbn.report -r species -v 

Prerequisites (version): Perl (v5.20.1); Kaiju (v1.6.2). 

Katana resources: nodes = 1, processors = 16, memory = 120 GB, wall time = 48 h 

makeDB created an NCBI-nr protein database index for use with Kaiju. This needs to be run 

only once on a database, to create index files. All subsequent alignment runs used the indexed 

files. Options included: 

▪ -e specified that NCBI-nr protein database must include sequences from fungal and 

microbial Eukarya, apart from Archaea, Bacteria, and Viruses. 

▪ -t specified the number of processors used for parallel runs. 

kaiju alignment tool was used to align paired-end filtered reads (-i and -j) against the NCBI-nr 

protein database index (-f). Options included: 

▪ -a greedy, -e 5 specified that the greedy-5 alignment algorithm should be used for read 

alignment. 

▪ -t specified the path to the nodes.dmp database file, which contained the taxon IDs of 

the NCBI database protein sequences. 

▪ -z specified the number of processors used for parallel runs. 

▪ -v printed the command-line options to the output log file, for future reference. 

kaijuReport is a Kaiju module that mapped the taxon names (-n) in the names.dmp database 

file to the alignment output (-i), using the nodes.dmp database file as a reference (-t) for taxon 

IDs. Other options include: 

▪ -r species specified that the relative abundances should be calculated and reported at 

species-level. 
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▪ -v was used as described in kaiju module above. 

2.2.2.5 Protein taxonomy-based contig taxonomic classification and abundance 

estimation 

Apart from the above-described methods for taxonomic classification and abundance 

estimation, a new python script was written for utilising data in the metagenome 

Phylodist files for contig taxonomy analysis. The script had two main components: (i) 

taxonomic classification of contigs based on protein taxonomies in the Phylodist file 

and (ii) calculating OTU abundances from contig lengths and read depths in the contig 

coverage file. Certain criteria were considered for protein taxonomy-based contig 

taxonomic classification: 

(a) At least 30% of the genes identified on a contig must have a taxonomic assignment 

in the Phylodist file; if not, then the contig was unclassified. 

(b) For a contig, the taxon to which most of its genes belonged was used as the 

taxonomic assignment of that contig. 

(c) If all genes on a contig had different taxonomies in the Phylodist file, the contig was 

unclassified. 

In the python script, which is now a part of the Cavlab pipeline v4.1 (Appendix C), the 

OTU abundances were calculated by summing the coverages (length × read depth) of all 

contigs assigned to the OTU. The coverages of contigs that were not assigned to any 

taxa, based on the above three criteria, were summed and referred to as ‘unclassified 

abundance’. Additionally, the coverages of contigs that were not assigned to any taxa, 

because none of the genes identified on them had taxonomies in the Phylodist file, were 

summed and referred to as ‘unassigned abundance’. The total metagenome abundance 

was the sum of coverages of all contigs in a metagenome, and included all OTU, 

unclassified, and unassigned abundances. The relative OTU abundances were calculated 

using PRIMER v7 (section 2.2.7). 

2.2.3 Functional potential analysis 

2.2.3.1 DIAMOND and MEGAN6 

The options to include functional potential analyses, such as COG and InterPro, were 

added to MEGAN6 (section 2.2.2.1). MEGAN6 output file can be visualised in the 

MEGAN6 GUI and the functional output can be accessed through: Window > Open 
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EGGNOG Viewer/Open INTERPRO2GO Viewer for COG and GO data, 

respectively. For example, in the EGGNOG viewer, a dendrogram of COG categories 

would be available, with each node depicting the number of proteins assigned to it. 

2.2.3.2 COG and KEGG functional potential analyses 

A very specific set of methods were developed as part of the Cavlab pipeline v1.2, for 

the functional potential analysis of metagenomes annotated by JGI IMG, using the 

metagenome COG and KEGG files (Appendix B). These files contain metagenome 

protein IDs and their COG or KO number annotations, respectively. 

The COG python script read the data in the metagenome COG file and assigned the 

COG numbers to their correct COG categories, using a COG conversion database file, 

which contained a list of all COG numbers and their respective COG categories. In 

Cavlab pipeline v1.2, the relative abundance of a COG category in a metagenome was 

calculated by summing the read depths of the contigs corresponding to the proteins 

assigned to the COG category and then dividing it by the sum of read depths of contigs 

corresponding to all the proteins annotated in the metagenome (Appendix B). 

Additionally, a COG category assignment ratio was calculated by dividing the number 

of proteins assigned to a COG category in a metagenome by the total number of 

proteins in the metagenome. In Cavlab pipeline v2.0, the COG conversion database file 

was updated using the COG data available on NCBI 

(ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data).  

The COG abundance calculations were changed in Cavlab pipeline v3.3, such that the 

COG category abundances were reported as absolute abundances — sum of contig read 

depths corresponding to proteins assigned to the COG category, rather than relative 

abundances. This is because the denominator in the previous COG relative abundance 

calculations depended on the contig read depths corresponding to all proteins in the 

metagenome and did not compensate for multiple proteins from one contig being 

assigned to the same COG number/category, which inflated the value of the 

denominator and reduced the COG relative abundance. The COG category assignment 

was also no longer represented as a ratio of total proteins in the metagenome, but simply 

as the number of proteins assigned to a COG category.  

The KEGG script was written to assess specific pathways/enzymes, using a specific set 

of KO numbers (Appendix F). The script read the data in the metagenome KEGG file 

ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data
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and selected proteins associated with specific KO numbers. The abundance of a KO 

number was calculated by summing the contig read depths corresponding to the proteins 

assigned to the KO number. In Cavlab pipeline v1.2, the abundance of a 

pathway/enzyme was calculated by averaging the abundance of the KO numbers 

associated with it (Appendix B). However, this calculation was changed in Cavlab 

pipeline v4, where the abundance of a pathway/enzyme was calculated by averaging the 

abundance of the KO numbers associated with the same reaction in the pathway, such as 

enzyme subunits, and by summing the abundance of KO numbers associated with 

different reactions in the pathway (Appendix C; also see Appendix F for a list of KO 

numbers). 

Table 2.2 KO number databases for KEGG functional potential analysis. A Cavlab pipeline 

version specifies the pipeline version in which the KO number database was first added. All 

eight databases were part of the latest Cavlab pipeline v4.1 (Appendix C). B Each KO number 

had one database file associated with it. DSR, dissimilatory sulfate reduction. 

Cavlab 

pipeline 

versionA 

Pathways 

(function) 

KO 

numberB 
Enzyme name (EC number) 

Number of 

protein 

sequences 

v1.2 

DSR (reduction); 

Sulfide oxidation 

(oxidation) 

K00394 

Adenylylsulfate reductase, 

subunit A (aprA; 

EC:1.8.99.2) 

165 

K00395 

Adenylylsulfate reductase, 

subunit B (aprB; 

EC:1.8.99.2) 

156 

K11180 

Dissimilatory sulfite 

reductase alpha subunit 

(dsrA; EC:1.8.99.5) 

868 

K11181 

Dissimilatory sulfite 

reductase beta subunit 

(dsrB; EC:1.8.99.5) 

856 

v4 

DSR (reduction); 

Sulfide oxidation 

(oxidation) 

K00958 
Sulfate adenylyltransferase 

(sat; EC:2.7.7.4) 
732 

Nitrification 

(Ammonia 

monooxygenase); 

K10944 

Methane/ammonia 

monooxygenase subunit A 

(pmoA-amoA; 

208 
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Methane oxidation 

(Methane 

monooxygenase) 

EC:1.14.18.3, 

EC:1.14.99.39) 

K10945 

Methane/ammonia 

monooxygenase subunit B 

(pmoB-amoB) 

244 

K10946 

Methane/ammonia 

monooxygenase subunit C 

(pmoC-amoC) 

398 

The KEGG component of Cavlab pipeline v1.2 depended on four KEGG database files 

associated with adenylylsulfate reductase (aprA, K00394; aprB, K00395) and 

dissimilatory sulfite reductase (dsrA, K11180; dsrB, K11181) that catalyse the sulfide 

oxidation and sulfate reduction redox reactions (Appendix B). These KEGG database 

files included protein sequences of the enzymes from various microbes, with their role 

(reduction or oxidation) in the microbes mentioned in the sequence headers. Four 

additional KEGG database files were prepared and added to the KEGG analysis script 

in Cavlab pipeline v4 (Table 2.2). One of these database files included protein 

sequences of sulfate adenylyltranserase (sat; K00958) from various microbes, with their 

role in sulfate reduction (reduction) or sulfide oxidation (oxidation) mentioned in the 

sequence headers. The other three database files were associated with K10944, K10945, 

and K10946, which represent subunits of the homologous enzymes ammonia and 

methane monooxygenase, and contained protein sequences from various microbes, 

along with their function as ammonia or methane monooxygenase mentioned in the 

sequence headers (Appendix C). The protein sequences of the KEGG database enzymes 

were downloaded from NCBI. Resources, such as the KEGG PATHWAY database 

(https://www.genome.jp/kegg/pathway.html), and various other online resources, were 

used to manually determine the role of the enzymes in the microbes they were 

sequenced from. The enzyme functions were added to the protein sequence headers 

using the python script below. The COG and KEGG analysis components of Cavlab 

pipeline v3.3 were tested on a 0.1 μm-filter Megahit-assembled metagenome from Deep 

Lake surface from Dec 2013 (Appendix A). 

# adding enzyme functions to protein headers 

recdata = {} 

with open('InputFileA.txt', 'r') as mod: #file containing list of protein accession IDs, protein 

names, taxonomy, and the determined role 

    modc = csv.reader(mod, delimiter = '\t') 

https://www.genome.jp/kegg/pathway.html
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    for row in modc: 

        recdata[row[0]] = row[3] + '---' + row[1] + ' [' + row[2] + ']' #recdata = {‘Accession 

ID’:’Protein role---protein name---protein taxonomy’} 

 

x = 0 

with open('InputFileB.fasta', 'r') as seqs: #FASTA file containing protein sequences downloaded 

from NCBI 

    with open('OutputFile.fasta', 'w') as outseqs: 

        for rec in SeqIO.parse(seqs, 'fasta'): 

            if rec.id in recdata.keys(): #check if the sequence header is among protein accesion IDs 

in File A 

                recordID = recdata[rec.id].split('---')[0] + '$' + rec.id #change sequence header to 

‘Protein role$header’ 

                recordDesc = recdata[rec.id].split('---')[1] #add protein name as sequence description 

                record = SeqRecord(seq = rec.seq, id = recordID, description = recordDesc) 

                SeqIO.write(record, outseqs,'fasta') 

                x += 1 

            else: 

                continue 

2.2.3.3 arCOG functional potential analysis 

The arCOG numbers were specifically considered for the analysis of metagenomes rich 

in archaea, such as metagenomes from Deep Lake, Club Lake, and some Rauer Island 

lakes (DeMaere et al, 2013; Tschitschko et al, 2018). A python script was developed to 

assess the arCOG number-based COG categorisation of proteins, and the script was 

tested on a 0.1 μm-filter Megahit-assembled metagenome from Deep Lake surface from 

December 2013 (Appendix A). The script was run on potential archaeal protein 

sequences that were gathered from the output of DIAMOND/MEGAN6 runs on the 

metagenome protein sequences. For this, the DIAMOND/MEGAN6 output file was 

opened in MEGAN6 GUI and the ‘Archaea’ node was selected. The protein IDs 

assigned to the ‘Archaea’ node were exported to a text file (namely 

Samplename.archaea.txt) — File > Export > Text (CSV) Format > Choose data to 

export: readName_to_taxonName; Choose count to use: summarised; Choose 

separator to use: tab > Samplename.archaea.txt. Note that the ‘summarised’ option not 

only considered the proteins assigned to the ‘Archaea’ node itself, but also all proteins 
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assigned to the nodes that fall under the ‘Archaea’ node (all archaeal phyla, class, order, 

family, genus, and species nodes). A folder named ‘arCOGs’ was created in the 

metagenome head folder (the folder containing IMG_Data subfolder) and the 

Samplename.archaea.txt file was uploaded to it. The arCOG pipeline v1.2 script was 

run from the metagenome head folder (Appendix D). 

As a first step in the arCOG script, the Archaea protein IDs in Samplename.archaea.txt 

file were read and an archaeal protein sequence FASTA file was created from the 

sequences in the IMG protein annotation file. The archaea proteins were aligned against 

arCOG protein sequence databases (available from 

ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG) using PSI-BLAST (Altschul et al, 1997). 

Based on the alignment output, the Cognitor module of COGsoft (Kristensen et al, 

2010) assigned arCOG numbers to the protein sequences. These arCOG numbers were 

assigned COG categories based on their comparison with an arCOG conversion 

database file, which contained a list of all arCOG numbers and their corresponding 

COG categories. For comparison, a COG number-based COG categorisation of the 

archaeal proteins was performed, using the COG number annotations in the 

metagenome COG file. COG category abundances were calculated by summing the 

contig read depths corresponding to the archaea proteins assigned to a COG category. 

The number of archaea proteins assigned to a COG category were also calculated. 

2.2.4 Refining and verifying OTU taxonomy  

2.2.4.1 Refining OTU bins 

The species identified using taxonomic classification methods are often the closest 

available matches in the reference database used for classification. Therefore, the 

species were referred to as OTUs, until their taxonomies were verified. RefineM was 

used to filter the OTU bins identified from the output of Cavlab pipeline v4.1 runs, 

specifically the output of contig taxonomy and abundance estimation component on 

Spades-assembled Ace Lake metagenomes. Among the OTUs identified in a 

metagenome, only the ones with abundance >1% (relative to the total metagenome 

abundance) were considered for further analysis. The contig sequences belonging to 

these abundant OTUs were gathered in their respective OTU FASTA files and were 

called OTU bins. Before running RefineM, the bin contigs were aligned against the 

ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG
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filtered reads from the metagenomes from which the bin contigs originated, using 

BBMap and Samtools. 

BBMap alignment 

export _JAVA_OPTIONS="-Xmx112g" 

bbmap.sh ref=OTUcontigs.fasta 

bbmap.sh in=Metagenome1.filtered.fastq ambig=all out=Output1.sam 

samtools view -bS Output1.sam > Output1.unsorted.bam 

samtools sort Output1.unsorted.bam -l 9 -@ 16 > Output1.bam 

samtools index Output1.bam 

Prerequisites (version): Java (v8u121); BBMap (v38.51); Samtools (v1.9). 

Katana resources: nodes = 1, processors = 16, memory = 120 GB, wall time = 48 h 

bbmap.sh aligned the filtered read sequences in the metagenome (in) against the OTU bin 

contigs (ref) and prepared a SAM alignment file as output (out). Note that multiple 

metagenomes were aligned against the OTU contig sequences using a single script, by adding 

the bbmap and samtools steps to the script for each additional metagenome. Similarly, multiple 

OTUs were aligned against multiple metagenomes using a single script, by merging contigs 

from multiple OTUs into a single FASTA file and using it as a reference (ref). The ambig=all 

option retained all top-scoring sites in an ambiguously aligned read. 

samtools view prepared an unsorted BAM file (a binary version of a SAM file) from a SAM 

alignment file. The -bS option specified that the program should create an output BAM file (-b) 

from the input SAM file (S). 

samtools sort module sorted and compressed the alignment data in the unsorted BAM file, 

using 16 parallel processors (-@ 16) and maximum level of compression (-l 9). 

samtools index generated a BAI file (.bam.bai) that contained the BAM indexes. 

The BAM files generated from the BBMap alignments were used for the RefineM runs. 

A folder structure was created within the folder where the BAM files were stored, i.e., a 

‘refineM’ folder with a ‘Contig_files’ subfolder 

(FolderWithBAMfiles/refineM/Contig_files) was created. The OTU contig sequence 

FASTA files were placed in the Contig_files subfolder for RefineM reference. 

RefineM 

export PATH=$PATH:/krona/bin 

export MALLOC_ARENA_MAX=1 
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rsync -a FolderWithBAMfiles/${TMPDIR} 

cd ${TMPDIR} 

refinem scaffold_stats -x fasta -c 16 --cov_all_reads --silent OTUcontigs.fasta 

FolderWithBAMfiles/refineM/Contig_files ./Outputs FolderWithBAMfiles/*.bam 

refinem outliers --silent ./Outputs/scaffold_stats.tsv ./Outputs/Outliers --cov_perc 1000000000 -

-no_plots 

refinem call_genes -x fasta -c 16 –silent FolderWithBAMfiles/refineM/Contig_files 

./Outputs/Genes 

refinem taxon_profile -c 16 --silent ./Outputs/Genes ./Outputs/scaffold_stats.tsv 

gtdb_r80_protein_db.2017-11-09.faa.dmnd gtdb_r80_taxonomy.2017-12-15.tsv 

./Outputs/taxon_profile 

refinem taxon_filter -c 16 --silent ./Outputs/taxon_profile 

./Outputs/taxon_profile/taxon_filter.tsv 

rsync -a ${TMPDIR}/ FolderWithBAMfiles/Outdata_copy 

Prerequisites (version): Python (v2.7.15) with RefineM (v0.0.24) package installed; Prodigal 

(v2.6.3); HMMER (v3.2.1); BLAST+ (v2.6.0); DIAMOND (v0.9.10); Krona. 

Katana resources: nodes = 1, processors = 16, memory = 120 GB, wall time = 48 h 

export PATH added the path to the folder where Krona software was installed. 

export MALLOC_ARENA_MAX=1 instructed the program to use a single memory pool for 

the RefineM runs, regardless of the number of processors used. This command is especially 

useful for programs that tend to use excessive memory. 

rsync is a Linux tool that was first used to sync the BAM files to a temporary directory 

(TMPDIR). After the BAM files were used as input for RefineM runs and the outputs were 

generated in the temporary directory, rsync was used to copy the data from the temporary folder 

to the original folder with the BAM files (FolderWithBAMfiles). The -a option ran rsync in 

‘archive’ mode, which not only synced the data, but also all associated attributes and 

permissions. 

cd changed the current working directory to the temporary directory (TMPDIR). 

refinem scaffold_stats module calculated contig statistics in the reference contig file 

(OTUcontigs.fasta), by comparing them with the BAM alignment files stored in the 

FolderWithBAMfiles folder and the individual OTU contig FASTA files in 

FolderWithBAMfiles/refineM/Contig_files. Note that when only one OTU was being refined, 

the contigs in the reference contig file (OTUcontigs.fasta) were identical to those in the 

individual OTU contig FASTA file in refineM/Contig_files folder. Other options included: 
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▪ -x fasta specified the input file format. 

▪ -c 16 specified the number of processors used for parallel runs. 

▪ --cov_all_reads used all reads for coverage estimation and not just the ones in proper 

pairs. 

▪ --silent prevented the program from printing the output in the Katana run instance, 

which can be a large amount of data. 

refinem outliers module assessed the output of ‘refinem scaffold_stats’ and identified contigs 

whose genomic characteristics, such as GC, coverage, and TNF, did not match those of other 

contigs in the OTU bin. The output was stored in the refineM/Outputs/Outliers folder. Other 

options were: 

▪ --silent worked as described above. 

▪ --cov_perc 1000000000 prevented the program from differentiating between contigs 

based on their read depths, since the read depths of contigs in an OTU can be different 

if they are from different metagenomes. 

▪ --no_plots prevented the program from generating plots for contig genomic 

characteristics. 

refinem call_genes module predicted genes on the OTU contigs and wrote the output to the 

refineM/Outputs/Genes folder. Other options were: 

▪ -x fasta specified the input file format. 

▪ -c 16 and --silent worked as described above. 

refinem taxon_profile module performed taxonomic classification of the genes identified in the 

OTU contigs and stored the output in refineM/Outputs/Genes folder. It used DIAMOND to 

align the genes against GTDB and a GTDB taxonomy mapping file for taxonomic 

classification. The output was stored in the refineM/Outputs/taxon_profile/taxon_filter.tsv file. 

The ‘-c 16’ and ‘--silent’ options worked as mentioned above. 

refinem taxon_filter module assessed the output of ‘refinem taxon_profile’ and identified OTU 

contigs whose taxonomy did not match the overall OTU taxonomy. The output was written to 

the refineM/Outputs/taxon_profile folder. The ‘-c 16’ and ‘--silent’ options worked as described 

above. 

The OTU bins were refined using the output of the ‘refinem outliers’ module, stored in 

the refineM/Outputs/Outliers/outliers.tsv, which contained a list of the contigs that 

probably did not belong to the OTU along with the list of attributes (either GC or TNF 

or both) responsible for their exclusion. A python script was prepared to read this output 

and automatically decide which contigs should be included in the bin, because the value 

of their outlying attribute was quite close to the upper or lower boundary of the OTU 

bin’s attribute (see script below). Contigs that were too different from the other bin 
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contigs were listed in a text file ‘outlierContigsList.txt’ and were excluded from the bin. 

The OTU bins were also refined based on the output of the ‘refinem taxon_profile’ 

module, which generated gene and scaffold taxonomy Krona outputs (HTML files) that 

were visualised on Google Chrome internet browser, showing the taxonomic 

composition of the OTU bin. This further allowed removal of spurious contigs that did 

not belong in the OTU bin. 

#assessing outlier bin contig characteristics to decide whether to keep or remove them 

with open('refineM/Outputs/Outliers/outliers.tsv', 'r') as inf: 

    with open('outlierContigsList.txt', 'w', newline = '') as outf: 

        infc = csv.reader(inf, delimiter = '\t') 

        outfc = csv.writer(outf, delimiter = '\t') 

        next(infc) 

        for row in infc: 

            if row[3] == 'GC': # check if the outlying attribute is GC content 

                if float(row[4]) < float(row[6]) + 0.5 or float(row[4]) > float(row[7]) + 0.5: # check 

whether the contig GC is less than the OTUs ‘lower GC boundary + 0.5’ or more than its ‘upper 

GC boundary + 0.5’ 

                    outfc.writerow([row[0]]) # if yes, then the contig is an outlier; add it to the outlier 

list 

            elif row[3] == 'TD': # check if the outlying attribute is tetranucleotide frequency 

                if float(row[8]) > float(row[10]) + 0.05: # check whether the contig TD is more than 

the OTUs ‘upper TD boundary + 0.5’ 

 

                    outfc.writerow([row[0]]) # if yes, then the contig is an outlier; add it to the outlier 

list 

            elif row[3] == 'GC,TD': # check if the outlying attributes both GC and TD 

                if float(row[4]) < float(row[6]) + 0.5 or float(row[4]) > float(row[7]) + 0.5 or 

float(row[8]) > float(row[10]) + 0.05: # check whether the contig GC is less than the OTUs 

‘lower GC boundary + 0.5’ or more than its ‘upper GC boundary + 0.5’ or the contig TD is 

more than the OTUs ‘upper TD boundary + 0.5’ 

                    outfc.writerow([row[0]]) # if yes, then the contig is an outlier; add it to the outlier 

list 

            else: 

                continue 

2.2.4.2 Verifying OTU taxonomy 
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The taxonomic classification of the OTUs identified in the metagenomes were verified 

in three steps. The first step relied on the Krona outputs of ‘refinem taxon_profile’ 

module of RefineM that were visualised in Google Chrome internet browser, which 

gave an idea of the overall taxonomic composition of the OTU bin. The taxonomies 

displayed in the Krona output were from GTDB, unlike the previous methods that used 

NCBI databases as reference for protein and contig taxonomic classifications. In the 

second step, the 16S/18S rRNA gene identities of the OTUs were assessed against the 

SSU rRNA genes of their closest related taxa, which were manually downloaded from 

NCBI and were aligned against the OTU contigs using blastn module of BLAST+ 

v2.9.0. The OTUs were considered to belong to the same species as reference, if the 

SSU rRNA gene identity was >99% (Kim et al, 2014) and to the same genus as the 

reference, if the identity was >95% (Stackebrandt and Goebel, 1994).  

The third step was to calculate the ANI of the OTUs against their closest related 

reference genomes. The complete or draft genomes of the reference taxa were manually 

downloaded from NCBI. ANI was initially calculated using the JSpeciesWS online 

service, where the query OTUs were uploaded one at a time and the reference genomes 

were added from GenomeDB, a genome database that is part of the JSpeciesWS service. 

ANI was calculated using the ANIb module that used BLAST+ for query and reference 

sequence alignment (Richter et al, 2016). However, this service had a file upload limit, 

and only OTU bins whose file size was between 0.02 to 15 MB could be uploaded. 

Therefore, other software, like fastANI and pyani, were used for ANI calculation of all 

OTUs. FastANI did not provide an estimate of the fraction of the query sequence that 

aligned to the reference (% alignment fraction). Moreover, its fragment length option (--

fragLen) limited the ANI calculation to only contigs that were larger than the specified 

fragment length. Considering these issues, pyani was used for ANI calculation of the 

OTUs. The pyani output included ANI and alignment fraction measures of all OTUs 

and reference genomes mentioned in the input file. 

ANI calculation using fastANI 

fastANI --ql queryList.txt --rl referenceList.txt -o ANI-output.out -t 16 --fragLen 500 

Prerequisites (version): MashMap (v2.0), FastANI (v1.1). 

Katana resources: nodes = 1, processors = 16, memory = 120 GB, wall time = 12 h 

fastANI was used for calculating the ANI of the OTUs against the reference genomes 

downloaded from NCBI. Other options include: 
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▪ --ql specified that the query was a list of FASTA files and their file names were 

mentioned in queryList.txt. 

▪ --rl specified that the reference was a list of FASTA files and their file names were 

mentioned in referenceList.txt.  

▪ --t 16 mentioned the number of processors used for parallel runs. 

▪ -o specified the output file name. 

▪ --fragLen specified the minimum fragment length used while aligning the query and 

reference sequences. 

ANI calculation using pyani 

average_nucleotide_identity.py -i InputOTUs -o ANIb_out -m ANIb -g -v --noclobber --

nocompress --gformat jpg --scheduler multiprocessing --workers 16 

Prerequisites (version): Python (v3.6.5) with Biopython, NumPy, Pandas, SciPy, Matplotlib, 

and Seaborn packages installed; R (v3.5.3); BLAST+ (v2.9.0). 

Katana resources: nodes = 1, processors = 16, memory = 120 GB, wall time = 12 h 

average_nucleotide_identity.py is a python script that is part of the pyani module of Python. It 

was used for calculating ANI using the options below:  

▪ -i specified the input file name that contained a list of the OTU and reference FASTA 

file names. 

▪ -o specified the output file name. 

▪ -m ANIb used BLAST+ for aligning the sequences in the FASTA files. 

▪ -g generated ANI heatmaps. 

▪ --gformat jpg specified the ANI heatmap file format. 

▪ --noclobber prevented the program from deleting any existing output files. 

▪ --nocompress prevented the program from compressing or deleting the comparison 

outputs. 

▪ --scheduler multiprocessing allowed the program to use multiple processors for parallel 

runs. 

▪ --workers 16 specified the number of processors used for parallel runs. 

▪ -v printed the command-line options to the log output file, for future reference. 

2.2.5 Contig alignment and genome visualisation 

2.2.5.1 Contig alignment 

To assess how similar or dissimilar an OTU was from its closest related reference, the 

OTU contigs were aligned against the reference genome.  

makeblastdb -in ReferenceGenome.fasta -dbtype nucl -out ReferenceGenomeDB 
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blastn -task megablast -query OTUcontigsSeqs.fasta -db ReferenceGenomeDB -out 

OTUalignment.sam -outfmt "17 SQ SR" -evalue 0.001 

samtools view -bS OTUalignment.sam > OTUalignment.unsorted.bam 

samtools sort -l 9 OTUalignment.unsorted.bam > OTUalignment.bam 

samtools index OTUalignment.bam 

Prerequisites (version): Blast+ (v2.6.0), Samtools (v1.5). 

Katana resources: nodes = 1, processors = 16, memory = 96 GB, wall time = 12 h 

makeblastdb is a module of BLAST+ that was used to prepare database index files. This needs 

to be run only once on a database, to create index files. All subsequent alignment runs used the 

indexed files. The -dbtype nucl option specified that the output database index file should be a 

nucleotide sequence file. 

blastn is the alignment module of BLAST+ that aligned query nucleotide sequences (-query) 

against a reference nucleotide database index (-db). Other options include: 

▪ -task megablast was used for finding highly similar sequences (closely related species).  

▪ -outfmt “17 SQ SR” instructed the program to prepare a SAM output file (17) that 

included the sequence data (SQ) and displayed the reference sequence as the subject 

(SR).  

▪ -evalue 0.001 set the maximum permissible e-value of an alignment to 0.001. Only 

alignments with e-value ≤0.001 were reported in the output file. 

samtools view, samtools sort, and samtools index were used as described above in section 

2.2.4.1. 

2.2.5.2 Genome visualisation 

The IGV GUI was used to visualise the contig alignment output files (BAM and BAI 

files), to assess how similar the OTU or MAG was to the genome of its closest related 

species. The reference genome FASTA file was uploaded to IGV (Genomes > Load 

Genome from File > select file > Open), along with the alignment BAM files (File > 

Load from File > select the BAM file(s) only > Open). IGV creates a reference 

genome index file (fasta.fai) in the folder where the reference file is stored. Importantly, 

the BAI files need to be stored in the same folder as the BAM files, although they are 

not directly uploaded to IGV, instead IGV automatically reads the BAI files in the 

folder (used for analyses in Chapters 4 and 5). 

Apart from the BLAST and IGV approach, Mauve was used for both alignment and 

genome visualisation. The recommended ‘Align with progressiveMauve’ algorithm was 
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used for the alignment of two or more input FASTA files; each FASTA file can have 

multiple sequences (used for analyses in Chapters 4 and 5). 

2.2.6 Assessing OTU phylogeny 

The phylogenies of OTUs were assessed using MEGA. For multiple sequence 

alignment, the DNA or protein sequences were first uploaded to the software. DNA 

sequences were aligned using ClustalW algorithm, whereas protein sequences were 

aligned using MUSCLE algorithm. The alignment files were then used for generating 

phylogenetic trees using 500 or more bootstrap replicates, to assess the evolutionary 

relationship between an OTU and its closest related taxa/clades (used for analyses in 

Chapters 4 and 5). 

2.2.7 Statistical analyses 

PRIMER v7 software was used for the statistical analyses of Megahit-assembled 

metagenomes from Deep Lake surface samples collected in Dec 2006, Nov 2008, Dec 

2013, Jun 2014, and Dec 2014; Club Lake surface samples collected in Nov 2014; and 

surface samples from Rauer Lakes 1, 3, 6, and 13 collected in Jan 2015 (Appendix A). 

This analysis was performed to assess variations in the relative abundances of OTUs 

identified in the metagenomes from hypersaline lakes in the Vestfold Hills (Deep Lake 

and Club Lake) and the Rauer Islands (Rauer Lakes 1, 3, 6, and 13). The seasonal 

variations in the relative abundances of OTUs were also assessed using some of the 

Deep Lake time-series samples. The OTU abundances were calculated using the 

LAST/MEGAN-LR output (section 2.2.2.2). For metagenomes from each lake and time 

period, the OTU abundances from all filter fractions were averaged, and the merged 

metagenome datasets were used for various PRIMER v7 analyses, including calculation 

of relative OTU abundances, alpha diversity and other diversity measures, and sample 

clustering based on relative OTU abundances. 

To calculate relative OTU abundances using PRIMER v7, an Excel sheet containing 

OTU abundance data was prepared, with merged metagenomes as sample columns and 

OTUs as variable rows. Sample factors, such as lake and season name, were added to 

the Excel sheet, below the last OTU name, leaving one row empty between the species 

abundances and sample factors. The Excel sheet was uploaded to PRIMER v7 and the 

percentage relative OTU abundances were calculated using PRIMER v7. The diversity 

measures were calculated from the relative OTU abundances. Alpha diversity, species 
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richness, and species evenness were measured using Simson’s index of diversity (1-λ′), 

total species-level OTUs in the merged metagenome, and Pielou's evenness index, 

respectively. All other measures were unchecked before producing the result. Sample 

clustering was also performed on relative OTU abundances. The relative abundances 

were square root transformed and used for preparation of a resemblance matrix of 

percentage similarities between the samples. The resemblance matrix data was utilised 

for creating a dendrogram using the UPGMA (unweighted pair group method with 

arithmetic mean) clustering method. 

 

2.3 Method test results and discussion 

To improve the preliminary metagenome analysis pipeline (Cavlab pipeline v1.2), a 

number of software and methods were tested on metagenomes from meromictic lakes 

(Ace Lake, Organic Lake) and hypersaline lakes (Deep Lake, Club Lake, Rauer Lakes), 

to assess their suitability for the analysis of Antarctic metagenomes. Some methods 

were tested on metagenomes from both types of lakes (meromictic as well as 

hypersaline), to determine if they were robust enough to produce results from very 

different lake systems. In order to verify the reliability of the software or methods, 

specifically for taxonomic classification and OTU abundance estimation, their outputs 

were compared to previously reported data from Ace Lake (Rankin et al, 1997; Rankin, 

1998; Powell et al, 2005; Ng et al, 2010; Lauro et al, 2011), Deep Lake (DeMaere et al, 

2013), and Organic Lake (Bowman et al, 2000a; Yau et al, 2013). 

Ace Lake is a stratified lake with an upper oxic zone, an oxyline/halocline, and a lower 

anoxic zone. A high abundance of a Synechococcus has been reported in Ace Lake 

upper oxic zone, just above the oxycline, using a combination of flow cytometry 

techniques and 16S rRNA gene sequence comparisons (Rankin et al, 1997; Rankin, 

1998; Powell et al, 2005). This observation was supported by additional 16S rRNA 

gene-based and metagenome read-based analyses of biodiversity in the Ace Lake upper 

oxic zone (Lauro et al, 2011). Moreover, the high abundance of a GSB, closely related 

to Prosthecochloris vibrioformis DSM 265 (now C. phaeovibrioides DSM 265), has 

been reported in Ace Lake oxycline (Ng et al, 2010). The researchers assembled the 

draft genome (nine scaffolds) of the GSB from a 0.1 μm-filter Ace Lake oxyline 

metagenome and found that 77% of all metagenome reads belonged to this microbe. 
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This was supported by a similar report of a clonal population of a Chlorobium in Ace 

Lake oxycline, based on the high score matches of 16S rRNA gene fragments (e-value ≤ 

10-5) and high identity matches of metagenome reads (>60% identity; e-value ≤ 10-5) 

(Lauro et al, 2011). Deep Lake, a hypersaline oxic lake, is abundant in haloarchaea, and 

is marked by the intergenera exchange of long (~35 kb), high identity (100%) DNA 

sequences (DeMaere et al, 2013). Among the haloarchaea, three were reported to be 

highly abundant — 44% Halohasta litchfieldiae, 18% halophilic archaeon DL31, and 

10% Halorubrum lacusprofundi in Deep Lake samples. The researchers used a 

combination of 16S rRNA gene sequence comparison for taxonomy identification and 

stringent fragment recruitment (FR) of metagenome reads (>98% match identity and 

>90% alignment fraction) for abundance calculation. Organic lake, a stratified, 

hypersaline lake, was reported to mainly support populations of heterotrophic bacteria, 

such as Psychroflexus, Marinobacter, Halomonas, and Roseovarius, based on 16S rRNA 

gene sequence comparison (Bowman et al, 2000a; Yau et al, 2013).  

Overall, the taxonomic composition of three lakes have been verified by multiple 

research groups using 16S rRNA gene sequences, which is the most commonly used 

marker gene. Additionally, some of the researchers have used either flow cytometry or 

stringent FR of reads for OTU abundance calculations. Therefore, these previously 

reported taxonomies and their abundances were used as references for the validation of 

the output of software/methods tested on Antarctic metagenomes. 

2.3.1 Metagenome taxonomic diversity and OTU abundance 

Software tested for the analysis of metagenome taxonomic diversity included PhyloSift, 

MetaPhlAn2, and Kaiju using filtered read sequences (section 2.3.1.1 below), 

DIAMOND and MEGAN6 using protein sequences (section 2.3.1.2 below), and LAST 

and MEGAN-LR using contig sequences (section 2.3.1.3 below). Apart from these, the 

protein taxonomies in the Phylodist file were used to generate contig taxonomies, which 

were used for assessing metagenome taxonomic diversity and for calculating OTU 

abundances (section 2.3.1.4 below). 

2.3.1.1 Read-based taxonomic diversity analysis 

Read-based taxonomic classification methods are often useful, because they allow for 

easy and straight forward calculation of OTU abundances. A taxon abundance can be 

calculated by simply counting the number of reads assigned to it, and its relative 
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abundance can be calculated by dividing the abundance by the total number of reads in 

the metagenome.  

PhyloSift 

PhyloSift was a part of Cavlab pipeline v1.2 and was used for read-based taxonomic 

classification and abundance estimation (Appendix B). PhyloSift database comprises of 

a core and an extended set of marker genes, and for metagenomic analysis it is 

preferable to use the extended set of marker genes to capture as much taxonomic 

information as possible. However, one of the limitations of running PhyloSift on 

metagenomic data was the size of the dataset; PhyloSift runs on metagenomes using the 

extended set of marker genes did not complete within the maximum available wall time 

(200 hours) on the UNSW Katana computer cluster. Apart from this, each PhyloSift run 

automatically downloads the latest version of the online PhyloSift database, as part of 

the program run. However, the updates in the online PhyloSift database interrupted any 

on-going PhyloSift runs and caused errors. To avoid this issue, the software, along with 

its latest databases, were downloaded to the Katana scratch node and the PhyloSift 

program was provided paths to the offline versions of the PhyloSift databases (Cavlab 

pipeline v1.3a). Despite fixing the PhyloSift database issue, the sheer size of the 

metagenome datasets prevented successful runs and the software was removed from the 

Cavlab pipeline in v2.0. 

MetaPhlAn2 

MetaPhlAn2, a software for profiling the taxonomic composition of metagenomes, was 

tested for read-based taxonomic diversity analysis and relative abundance estimation 

and was added to Cavlab pipeline in v3.0. MetaPhlAn2 database is composed of clade-

specific markers, which allows for more accurate taxonomic assignment of reads. 

However, this limits the analysis to systems with well-characterised taxonomic 

diversity, as was observed during the analysis of Antarctic metagenomes that tend to 

have uncommon and some unique taxa, most of which have never been cultured. 

MetaPhlAn2 runs on a few Ace Lake metagenomes, to assess the viability of its read-

based taxonomic diversity analysis of Antarctic metagenomes, showed that its database 

(DBv20) was not useful for the analysis of Antarctic metagenomes — less than 0.4% of 

the total filtered reads in any metagenome were assigned a taxonomy (Table 2.3).  
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Table 2.3 Read-based taxonomic diversity analysis of some Ace Lake metagenomes using 

MetaPhlAn2. A The samples in the first column refer to the metagenomes from Ace Lake 

(Appendix A). B The number of reads that were assigned a taxonomy using MetaPhlAn2 

database v20 (DBv20) are mentioned in the last column. The percentages were calculated by 

dividing the number of assigned reads by the total number of reads in a metagenome. 

Metagenome 

(collection date; depth; filter 

fraction)A 

Number of 

OTUs 

identified 

Total number of 

filtered reads 

Number of read 

assignments (% read 

assignments)B 

19/11/2008; 5 m; 0.8 μm 16 58,374,702 180,050 (0.31%) 

21/11/2008; 11.8 m; 0.8 μm 17 70,074,842 209,257 (0.30%) 

21/11/2008; 12.8 m; 0.8 μm 3 53,708,884 191,171 (0.36%) 

21/11/2008; 14.1 m; 3 μm 6 59,786,200 7,471 (0.01%) 

21/11/2008; 14.1 m; 0.8 μm 6 60,749,386 7741 (0.01%) 

21/11/2008; 18 m; 0.8 μm 5 71,060,470 38,230 (0.05%) 

23/11/2008; 23 m; 0.8 μm 8 59,324,648 7,459 (0.01%) 

To improve the MetaPhlAn2 database (DBv20) for use with Antarctic metagenomes, 

clade-specific markers associated with some of the more known, abundant taxa in Ace 

Lake and Deep Lake were added to the database (Appendix E). Testing the manually 

updated database on one of the Ace Lake metagenomes (Nov 2008_5 m_0.8 μm-filter) 

showed slight, but not significant, improvement in the taxonomic assignment of the 

filtered reads — % read assignments: 0.31% using DBv20 vs 0.32% using updated 

database. Therefore, the MetaPhlAn2 database needs to be updated with markers for 

Antarctic and other polar and cold environment species. However, this can be an 

exhaustive and time-intensive task. Before adding a marker to the database, which needs 

to be done manually (section 2.2.2.3), it must first be matched and scored against all 

other markers already in the database, which is important for proper abundance 

estimation. This was not done for the markers listed in Appendix E, since the purpose of 

adding those markers was to first assess the improvement in read taxonomic 

assignment, which is unaffected by the marker score. Considering the MetaPhlAn2 

database issues, the software was removed from the Cavlab pipeline in v3.1. 

Kaiju 

As the trials of PhyloSift and MetaPhlAn2 with Antarctic metagenomes were 

unsuccessful, a simpler, yet efficient, taxonomic classification tool, namely Kaiju, was 
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tested for the read-based taxonomic diversity analysis of the Antarctic metagenomes. 

The NCBI-nr protein database was used as reference for Kaiju runs, since it is more 

exhaustive than marker-based databases, although less specific. Kaiju runs were 

performed on a few metagenomes from Ace Lake and Deep Lake, to assess the viability 

and robustness of its taxonomic classification of Antarctic metagenome reads (Table 

2.4). For this, the greedy-5 algorithm of Kaiju was used, as it is better at taxonomic 

classification of environmental samples than the Kaiju MEM algorithm (Menzel et al, 

2016). Additionally, its overall precision and sensitivity in genus and phylum-level 

classification of paired-end Illumina reads (250 nt) is better than that of the other Kaiju 

algorithms (Menzel et al, 2016). 

Table 2.4 Read-based taxonomic diversity analysis of some Ace Lake and Deep Lake 

metagenomes using Kaiju. The relative abundances of the taxa were calculated by Kaiju — 

total reads assigned to a taxon divided by the total reads in the metagenome. A The samples in 

the first column refer to the metagenomes from Ace Lake and Deep Lake (Appendix A). B The 

reads that were not assigned to any taxa were referred to as ‘unclassified’ or ‘unassigned’ in 

Kaiju output. 

Metagenome 

(collection date; 

depth; filter 

fraction)A 

OTUs with relative abundance 

≥1% 

Relative 

abundance 

of Viruses 

Number of 

OTUs with 

relative 

abundance 

<1% 

Number of 

unclassified/una

ssigned readsB 

Ace Lake 

21/11/2008; 

11.8 m; 0.8 μm 

Candidatus Pelagibacter ubique 

(3%) 

Candidatus Aquiluna sp. 

IMCC13023 (3%) 

Pelagibacteraceae bacterium 

BACL20 MAG-120920-bin64 

(2%) 

Microbacteriaceae bacterium 

BACL28 MAG-120531-bin53 

(1%) 

16% 23,859 52% 

21/11/2008; 

12.8 m; 0.1 μm 

Chlorobium phaeovibrioides 

(50%) 

Pelodictyon luteolum (4%) 

0.2% 17,025 36% 



84 
 

Chlorobium phaeobacteroides 

(2%) 

21/11/2008; 

14.1 m; 0.1 μm 

None. 

Highest relative OTU abundance 

was 0.3% (archaeon 

BMS3Abin17) 

0.8% 25,552 79% 

23/11/2008; 23 

m; 0.1 μm 

None. 

Highest relative OTU abundance 

was 0.2% (archaeon 

BMS3Abin17) 

1% 25,568 82% 

25/11/2013; 

12.5 m; 0.1 μm 

Chlorobium phaeovibrioides 

(19%) 

Pelodictyon luteolum (2%) 

0.8% 23,090 57% 

Deep Lake 

1/12/2006; 0 m; 

0.8 μm 

halophilic archaeon DL31 (16%) 

Halorubrum lacusprofundi (7%) 

Natrinema sp. CBA1119 (1%) 

0.8% 21,140 58% 

24/11/2014; 0 

m; <0.1 μm 

Halorubrum lacusprofundi (6%) 

halophilic archaeon DL31 (4%) 
0.7% 7,554 80% 

Kaiju output showed that taxonomic diversity varied with depth in Ace Lake, and that in 

Deep Lake, haloarchaea were highly abundant; these findings were consistent with 

previous observations from Ace Lake and Deep Lake (Lauro et al, 2011; DeMaere et al, 

2013). However, the OTU abundances calculated by Kaiju in metagenomes from the 

two lake systems were very different from previously reported abundances. For 

example, in samples from Deep Lake, the relative abundance of Hht. litchfieldiae has 

been reported to be as high as 44% (DeMaere et al, 2013), but Kaiju calculated its 

relative abundance to only 0.8%. As horizontal transfer of long, high identity regions 

(~35 kb in length) has been reported among the haloarchaea in Deep Lake (DeMaere et 

al, 2013) and because Kaiju algorithm is a k-mer based method that relies on exact 

matches of short sequences, it is possible that most of the reads matched multiple 

haloarchaea genomes and were assigned to no taxa. Another issue with the Kaiju output 

was the high percentage of total reads in a metagenome that could not be assigned a 

taxonomy and were reported as unassigned or unclassified reads (36–82%). 

Additionally, Kaiju v1.6.2 used for this analysis did not calculate relative abundances of 
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viruses at lower taxa levels (family, genus, species), and rather aggregated the 

abundances of all viruses under ‘Viruses’ taxon. Therefore, based on these issues Kaiju 

was not added to the Cavlab pipeline for read-based taxonomic classification and 

abundance analysis. 

Read-based taxonomy is based on the alignment of very small sequences and has a 

higher probability of being wrongly assigned to a taxon than a protein or a contig 

sequence. Additionally, most of the reads in the analyses above could not be assigned a 

taxonomy and were reported as unassigned or unclassified reads. Therefore, protein and 

contig taxonomic classification methods were also explored alongside read-based 

methods. 

2.3.1.2 Protein-based taxonomic diversity analysis 

DIAMOND and MEGAN6 component of Cavlab pipeline v2.0 was tested for the 

taxonomic classification of protein sequences in Megahit-assembled metagenomes from 

Ace Lake 2008 and Deep Lake 2013–2015 time-series metagenomes (Appendix A). The 

outputs of the DIAMOND/MEGAN6 runs showed that the method was reliable at 

higher taxa levels, as it corroborated previously observed data (Lauro et a, 2011; 

DeMaere et al, 2013). It showed high abundance of bacteria throughout the Ace Lake, 

with a few algae in the upper, oxic zone and some archaea in the lower, anoxic zone 

(Figure 2.2), and high abundance of haloarchaea in Deep Lake, irrespective of change in 

season (Figure 2.3). The method was also robust, because it worked on metagenomes 

from very different lake systems. However, DIAMOND/MEGAN6 method was not 

able to effectively assign proteins to lower taxa levels, such as genus and species. For 

example, in the 0.1 μm-filter metagenome from Ace Lake 2008 oxycline, 85% of the 

total proteins in the metagenome were classified to Bacteria domain (Figure 2.2), but 

only 13% of the total proteins were classified to C. phaeovibrioides. This was 

inconsistent with previous reports of a very high abundance of a Chlorobium closely 

related to C. phaeovibrioides in the Ace Lake oxycline (Ng et al, 2010; Lauro et al, 

2011).  
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Figure 2.2 DIAMOND and MEGAN6 output for Megahit-assembled Ace Lake 2008 

metagenomes. The bar chart shows the number of proteins assigned to Bacteria (dark green), 

Viruses (orange), Archaea (purple), and Eukarya (green) in samples collected from six Ace 

Lake depths (U2, U3, I, L1, L2, L3) on three filters (3, 0.8, 0.1) in Nov 2008. Depths: U2, upper 

2; U3, upper 3; I, interface; L1, lower 1; L2, lower 2; L3, lower 3. Filter fractions: 3, 3–20 μm; 

0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm. 

This issue with species-level classification was also observed in the 

DIAMOND/MEGAN6 output of Deep Lake 2013–2015 time-series metagenome 

analysis, where more proteins were assigned to Halobacterium sp. DL1 than to Hrr. 

lacusprofundi, although the dominant species was Hht. litchfieldiae along with DL31. 

This was inconsistent with previous observations of haloarchaea species abundance in 

Deep Lake (44% Hht litchfieldiae, 18% DL31, 10% Hrr. lacusprofundi, and 0.3% DL1; 

DeMaere et al, 2013). Similar to what was observed in Deep Lake Kaiju output (Table 

2.4), it is possible that most Deep Lake metagenome proteins had matches to proteins 

from multiple haloarchaea genomes, due to known HGT among the Deep Lake 

haloarchaea (DeMaere et al, 2013). Hence, MEGAN6 could not confidently assign the 

proteins to species-level, thereby classifying them to higher taxa levels instead. Another 

possibility was that the deviations observed in the DIAMOND/MEGAN6 outputs, 

compared to previously reported observations, reflected actual changes in the systems 

over time. If so, then all taxonomic diversity analyses performed on these metagenomes 

should yield similar results. However, the contig-based taxonomy analysis of the Deep 

Lake metagenomes using LAST/MEGAN-LR approach did not support these 

observations from the DIAMOND/MEGAN6 output (described below in section 
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2.3.1.3). Therefore, DIAMOND/MEGAN6 output from the Cavlab pipeline was not 

used for assessing the taxonomic composition of Antarctic metagenomes, and was 

limited to COG-based functional potential analysis (described below in section 2.3.3.1). 

 
Figure 2.3 DIAMOND and MEGAN6 output for Megahit-assembled Deep Lake 2013–

2015 time-series metagenomes. The phylogenetic tree shows the higher-level taxa (domain to 

class) to which most of the metagenome proteins were assigned (red-highlighted). For each 

taxon, from left to right, the number of proteins assigned to it are shown in metagenomes from 

3–20 μm-filter collected in Dec 2013 ( ), Feb 2014 ( ), Jun 2014 ( ), Aug 2014 ( ), Nov 

2014 ( ), Dec 2014 ( ), and Jan 2015 ( ); followed by metagenomes from 0.8–3 μm-filter 

collected in Dec 2013 ( ), Feb 2014 ( ), Jun 2014 ( ), Aug 2014 ( ), Nov 2014 ( ), Dec 

2014 ( ), and Jan 2015 ( ); metagenomes from 0.1–0.8 μm-filter collected in Dec 2013 ( ), 

Feb 2014 ( ), Jun 2014 ( ), Aug 2014 ( ), Nov 2014 ( ), and Dec 2014 ( ); and 

metagenomes from <0.1 μm-filter collected in Nov 2014 ( ), Dec 2014 ( ), and Jan 2015 ( ). 

DPANN group, Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and 

Nanohaloarchaeota group; TACK group, Thaumarchaeota, Aigarchaeota, Crenarchaeota, and 

Korarchaeota. 

As a result, contig-based taxonomic diversity analysis of Antarctic metagenomes was 

considered, because contigs have a lower probability of incorrect taxonomic assignment 

than proteins, considering their longer lengths. This would also reduce the chance of 

any bias that might be caused due to HGT. 

2.3.1.3 Contig-based taxonomic diversity analysis 
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To assess the robustness of the LAST/MEGAN-LR method for contig-based taxonomic 

diversity analysis, the method was tested on various Megahit-assembled metagenomes 

from Ace Lake 2006 and 2008, Organic Lake 2006, Deep Lake 2006, 2008, and 2013–

2015, Club Lake, and Rauer Lakes 1, 3, 6, 11, and 13 (Figures 2.4 and 2.5). In 

MEGAN6 GUI, the taxa names along with the names of the contigs assigned to them 

were exported to a file and this exported data, in concert with the data in the 

metagenome contig coverage files, containing contig IDs and their read depths, was 

used for calculating relative OTU abundances (section 2.2.2.2). 

LAST/MEGAN-LR output of the Ace Lake meromictic system showed that the Upper 

zone mainly harboured phototrophic bacteria and algal viruses (53% and 35% peak 

relative abundances, respectively), whereas the Interface was dominated by a high 

relative abundance of Chlorobium (91% peak relative abundance), along with members 

of Deltaproteobacteria (59% peak relative abundance), which were also abundant in the 

Lower zone (Figure 2.4); these corroborated previous findings (Bowman et al, 2000b; 

Ng et al, 2010; Lauro et al, 2011). Members of candidate phyla, such as Cloacimonetes 

and Atribacteria (18% and 10% peak relative abundances, respectively), were also 

observed in Ace Lake Lower anoxic zone. Among the phototrophs, a Synechococcus 

was one of the predominant cyanobacteria in Ace Lake oxic zone (39% peak relative 

abundance) just above the oxycline, which has also been reported before (Rankin et al, 

1997; Rankin, 1998; Powell et al, 2005; Lauro et al, 2011). Therefore, the 

LAST/MEGAN-LR runs on Ace Lake were successful, and the method was inferred to 

be reliable for Ace Lake analysis. 

Apart from some members of Alphaproteobacteria, Actinobacteria, and Bacteroidetes, 

and some algal viruses and bacteriophages that were common to Organic Lake and Ace 

Lake, the surface metagenomes from Organic Lake had a distinct population of 

members of Flavobacteriia (Bacteroidetes) (Figure 2.4). Psychroflexus, members of 

Flavobacteriia class, were highly abundant in 3–20 and 0.8–3 μm-filter fractions from 

Organic Lake surface (average of relative abundance in 3–20 and 0.8–3 μm filter 

fractions: 25% Psychroflexus torquis and 14% Psychroflexus gondwanensis), similar to 

previous reports (Bowman et al, 2000a; Yau et al, 2013). Therefore, the 

LAST/MEGAN-LR runs on Organic Lake were successful, since the output taxonomic 

diversity conformed to reference data. 
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Figure 2.4 LAST and MEGAN-LR output for Megahit-assembled metagenomes from 

Antarctic meromictic lake systems — Ace Lake and Organic Lake. The heat map represents 

the relative abundance of OTUs identified in Megahit-assembled metagenomes from three filter 

fractions (3, 0.8, 0.1) and six depths (U2, U3, I, L1, L2, L3) of Ace Lake, samples collected in 

2006 and 2008, as well as Organic Lake surface (U1), samples collected in 2006. The gradient 

bar represents the percentage relative OTU abundances. The OTUs shown here are some of the 

most abundant OTUs observed in Ace Lake and Organic Lake, with relative abundance >5% in 

at least one metagenome. The white portions of the heat map represent relative abundances 
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<1%. Depths: U1, upper 1; U2, upper 2; U3, upper 3; I, interface; L1, lower 1; L2, lower 2; L3, 

lower 3. Filter fractions: 3, 3–20 μm; 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm. 

LAST/MEGAN-LR output of the analysis of Megahit-assembled metagenomes from 

Deep Lake hypersaline system showed dominant presence of haloarchaea in the surface 

waters (Figure 2.5). Hht. litchfieldiae (64% peak relative abundance) was the most 

abundant haloarchaea species in Deep Lake, followed by DL31 and Hrr. lacusprofundi 

(43% and 17% peak relative abundances, respectively), similar to previous observations 

in Deep Lake samples from 2006 (44% Hht litchfieldiae, 18% DL31, and 10% Hrr. 

lacusprofundi; DeMaere et al, 2013). The relative abundances of the haloarchaea were 

unaffected by the change in season according to the LAST/MEGAN-LR output (Figure 

2.5), which was similar to the observations from DIAMOND/MEGAN6 output of Deep 

Lake (Figure 2.3). Further comparison of LAST/MEGAN-LR with 

DIAMOND/MEGAN6 outputs of Deep Lake showed that the contig-based taxonomic 

diversity analysis was more reliable than protein-based analysis, which did not 

corroborate previous findings. Therefore, the LAST/MEGAN-LR runs on Deep Lake 

were successful and reliable. 

Club Lake, which is also a hypersaline system, showed a similar taxonomic diversity of 

haloarchaea as was observed in Deep Lake: Hht. litchfieldiae (51% peak relative 

abundance) being the most abundant haloarchaea species, followed by DL31 and Hrr. 

lacusprofundi (30% and 15% peak relative abundances, respectively) (Figure 2.5). Both 

hypersaline systems showed presence of a similar population of haloarchaea viruses 

(peak relative abundance: 15% in Deep Lake and 7% in Club Lake), but not halophilic 

bacteria (Figure 2.5). All halophilic bacteria identified in Club Lake had relative 

abundance <1% in all metagenomes from the lake, supporting the dominance of 

haloarchaea in the system. As Deep Lake and Club are both hypersaline systems and lie 

in close proximity (less than 2 km apart), it was interesting that their taxonomic 

composition was so similar, and it raised questions about the effect of salinity and 

distance between the lakes on their taxonomic composition. As the taxonomic 

composition of Club Lake had not been analysed prior to these LAST/MEGAN-LR 

runs, there was no way to assess the reliability of the output. However, the 

LAST/MEGAN-LR output for Club Lake metagenomes was considered to be 

successful, because the method had reliable outputs from Deep Lake, which is another 

hypersaline system in close proximity to Club Lake. 
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Figure 2.5 LAST and MEGAN-LR output for Megahit-assembled metagenomes from 

Antarctic hypersaline lake systems — Deep Lake, Club Lake, and Rauer Island lakes. The 

heat map shows the relative abundance of OTUs in Megahit-assembled metagenomes from 

three filter fractions (3, 0.8, 0.1) from the surface of Deep Lake (samples from 2006, 2008, and 

2013–2015), from four depths of Deep Lake (2008), and from the surface of Club Lake (2014) 

and Rauer Lakes 1, 3, 6, 11, and 13 (2015). The gradient bar represents the percentage relative 

OTU abundances. The OTUs shown here are some of the most abundant OTUs observed in 
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Deep Lake, Club Lake, and Rauer Island lakes, with relative abundance >2% in at least one 

metagenome. The white portions of the heat map represent relative abundances <1%. Lakes: 

CL, Club Lake; R1L, Rauer 1 Lake; R3L, Rauer 3 Lake; R6L, Rauer 6 Lake; R11L, Rauer 11 

Lake; R13, Rauer 13 Lake. Filter fractions: 3, 3–20 μm; 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm; TFF 

(tangential flow filtration), <0.1 μm. Candidatus Kaiserbacteria bacterium, Candidatus 

Kaiserbacteria bacterium RIFOXYD1_FULL_42_15; Candidatus Aquiluna sp.; Candidatus 

Aquiluna sp. UB-MaderosW2red.  

Lastly, the LAST/MEGAN-LR method was tested on metagenomes from hypersaline 

lake systems in the Rauer Islands, Antarctica (Figure 2.5). Unlike Rauer 1 Lake, which 

mainly harboured a bacterial population, the Rauer Lakes 3, 6, 11, and 13 showed high 

abundance of haloarchaea that were also present in Deep Lake and Club Lake in the 

Vestfold Hills, albeit their abundances were not as high as in Vestfold Hill lakes. 

However, unlike Deep Lake and Club lake, Rauer Lakes 3, 6, 11, and 13 supported a 

larger bacterial population, including members of Bacteroidetes, Balneolaeota, 

Actinobacteria, and candidate phyla, such as Parcubacteria and Kaiserbacteria. The 

taxonomic diversity of Rauer 1 Lake was almost completely different from that 

observed in Rauer Lakes 3, 6, 11, and 13, except for a Flavobacteriia (Psychroflexus 

gondwanensis) and a diatom (Fistulifera solaris) that were present in all Rauer Island 

lakes tested (Figure 2.5). A pigment-based high-performance liquid chromatography 

study on Rauer Island lake samples identified presence of certain eukarya and 

cyanobacteria in some of the lakes (Hodgson et al, 2001). Other than this, there were no 

previous studies on the taxonomic composition of Rauer Island lakes at the time. 

Therefore, due to the lack of taxonomic data from Rauer Lakes 1, 3, 6, 11, and 13, the 

reliability of the LAST/MEGAN-LR output from Rauer Island lake metagenomes could 

not be verified. However, the LAST/MEGAN-LR method was considered to work on 

Rauer Island lake metagenomes, as with Club Lake metagenomes, since it had worked 

reliably on metagenomes from Deep Lake, which is also a hypersaline lake system. 

MEGAN-LR was specifically developed for the taxonomic classification of contigs and 

long reads and uses the ‘interval-union LCA’ algorithm, which allows for stringent and 

reliable mapping of contigs to taxa (Chapter 1 section 1.4.1.2). In this algorithm, a 

contig is assigned to a taxon only if the proteins from the taxon cover 80% or more of 

the contig sequence, considering only the protein alignments with a significant bit score 

(Huson et al, 2018). Based on the outputs of LAST/MEGAN-LR runs on metagenomes 
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from Ace Lake, Deep Lake, Club Lake, Organic Lake, and Rauer Island lakes 1, 3, 6, 

11, and 13, the method was found to be reliable, since the output data from runs on 

some of these lake systems corroborated previously reported data, and was inferred to 

be robust, because the method worked on metagenomes from very different lake 

systems — meromictic, hypersaline, or both. Consequently, LAST/MEGAN-LR was 

added to the Cavlab pipeline v3.0 for taxonomic diversity analysis and OTU abundance 

estimation. 

2.3.1.4 Changes in metagenome assembly method and its impact on the 

development of Cavlab pipeline 

All Megahit-assembled metagenomes from the Antarctic samples were re-assembled by 

JGI using metaSPAdes assembler, as part of changes to their assembly pipeline. All 

samples sent to JGI for sequencing after the change in their assembly pipeline were 

assembled using the metaSPAdes assembler. A comparison of contig statistics of 

Megahit- and Spades-assembled metagenomes showed that Spades assemblies had more 

contigs of longer sequence length, but their overall assembly size was smaller than that 

of Megahit assemblies (Table 2.5). 

Table 2.5 Comparison of contig statistics of Megahit- vs Spades-assembled metagenomes 

from some Ace Lake and Deep Lake samples. The contig statistics mentioned in the table 

were taken from the data generated by JGI after contig assembly using Megahit (M) or SPAdes 

(S) assembler. A These metagenomes were used to assess the viability of Kaiju, LAST/MEGAN-

LR, and Phylodist file-based methods for taxonomic diversity analysis in Figure 2.6. 

LAST/MEGAN-LR was tested on contigs from these Megahit- and Spades-assembled 

metagenomes. B The percentage genome in contigs >50 kb length was calculated by dividing the 

sum of length of contigs >50 kb by the sum of length of all contigs in the metagenome (total 

contig length). C N50 and L50 statistics are indicative of assembly quality. N50 is the length of 

the shortest contig at 50% of the total length of all contigs in a metagenome, whereas L50 is the 

smallest number of contigs whose total length contributes to at least 50% of the total contig 

length of the metagenome. For example, if a metagenome has 7 contigs of lengths 10, 23, 34, 

44, 56, 61, and 78 bp, then the total length of all contigs in the metagenome would be 306 bp 

and 50% of this total length would be 153 bp. To calculate N50 and L50, the contigs first need 

to be arranged in the order of decreasing contig lengths (78 bp, 61 bp,…). In this case, N50 

would be 56 (78 + 61 = 139 + 56 = 195 > 153) and L50 would be 3 contigs (78, 61, and 56 bp), 

as the total length of the contigs ≥56 bp contributes to at least 50% of the total contig length of 
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the metagenome. C This metagenome was assembled after the changes to JGI’s assembly 

pipeline, and was not assembled using Megahit. NA, not applicable. 

Lake system Ace Lake Deep Lake 

Sample (collection date; 

depth; filter fraction)A 

21/11/2008; 

12.8 m; 0.1 μm 

25/11/2013; 

13.5 m; 0.1 

μmC 

1/12/2006; 0 m; 

0.1 μm 

24/11/2014; 0 

m; <0.1 μm 

Contigs >50 kb 

length 

M 35 NA 33 27 

S 56 71 57 64 

Contigs <1 kb 

length (%) 

M 311,340 (93%) NA 215,310 (93%) 126,639 (93%) 

S 119,695 (89%) 138,631 (81%) 68,383 (87%) 45,085 (87%) 

Total contigs 
M 335,960 NA 230,986 136,229 

S 134,843 170,162 78,454 51,989 

Assembly size 

(total contig 

length) 

M 167 Mb NA 120 Mb 86 Mb 

S 93 Mb 154 Mb 69 Mb 51 Mb 

% Genome in 

contigs >50 kbB 

M 2% NA 2% 3% 

S 8% 5% 8% 12% 

Contig N50C 
M 51,155 bp NA 31,253 bp 17,876 bp 

S 14,478 bp 19,645 bp 4,628 bp 2,296 bp 

Contig L50C 
M 612 NA 626 684 

S 1,028 1,388 1,873 2,984 

In view of the better contig length statistics of the Spades assemblies and for the 

purpose of consistency, the Spades-assembled metagenomes were considered for 

taxonomic and functional potential analyses of Ace Lake, and the software that had 

been finalised for use with the Megahit assemblies were re-tested on the Spades 

assemblies (Figure 2.6). 
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Figure 2.6 Comparison of taxonomic classification methods used for relative OTU 

abundance estimation in Antarctic metagenomes. The bar charts show relative abundances of 

(a) Halohasta litchfieldiae, (b) Halorubrum lacusprofundi, (c) halophilic archaeon DL31, and 

(d) Halobacterium sp. DL1 in three metagenomes from Deep Lake surface and (e) Chlorobium 

phaeovibrioides in two metagenomes from Ace Lake oxycline (Interface). Kaiju (red bars) used 

filtered reads for taxonomic classification and abundance estimation. LAST/MEGAN-LR 

method was used for taxonomic classification of contigs from both Megahit-assembled 

metagenomes (LAST/MEGAN-LR-Megahit, orange bars) and Spades-assembled metagenomes 

(LAST/MEGAN-LR-Spades, yellow bars), and a python script was used to calculate the relative 

OTUs abundances (section 2.2.2.2). The IMG protein taxonomy data (Phylodist, grey bars) was 

used to assign taxonomy to Spades-assembled contigs and relative OTU abundances were 
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calculated using a python script (Appendix C). Missing data bars indicate that some methods 

were not tested on some of the metagenomes. Filter fractions: 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm; 

TFF (tangential flow filtration), <0.1 μm. 

LAST/MEGAN-LR runs and relative abundance calculations on the Spades-assembled 

metagenomes from the different lake systems (hypersaline Deep Lake or meromictic 

Ace Lake) did not always yield results that were consistent with previously reported 

findings (Figure 2.6). A comparison of the relative abundances of certain key species 

from Deep Lake showed that LAST/MEGAN-LR method did not work well on the 

Deep Lake Spades-assembled metagenomes (Figure 2.6). For example, in the Dec 2006 

0.1 μm Deep Lake surface sample, the relative abundance of Hht. litchfieldiae in 

Spades-assembled metagenome was much lower than that in the Megahit-assembled 

metagenome (Spades 2% vs Megahit 50%), whereas the relative abundances of Hrr. 

lacusprofundi (Spades 41% vs Megahit 11%) and DL31 (Spades 27% vs Megahit 5%) 

were much higher, and did not match previously reported findings (44% Hht. 

litchfieldiae, 18% DL31, and 10% Hrr. lacusprofundi; DeMaere et al, 2013). Contrarily, 

the relative abundance of C. phaeovibrioides, closest related species to the key microbe 

in Ace Lake oxycline, calculated using LAST/MEGAN-LR output, was comparable in 

Megahit- (91%) and Spades-assembled (97%) metagenomes (Figure 2.6). This 

difference in relative OTU abundances in Megahit- vs Spades-assembled metagenomes 

was probably because MEGAN-LR could not reliably assign the Spades-assembled 

long contigs to species-level taxa. The algorithm used by MEGAN-LR for the 

taxonomic assignment of contigs is very stringent — a contig can be assigned to a taxon 

only if the proteins from the taxon match at least 80% of the contig length, with each 

protein alignment having a significant bit score, i.e., a bit score must be within 10% of 

the best bit score observed for that part of the contig sequence (Huson et al, 2018). 

Additionally, the contig would be assigned to the lowest common ancestor in cases 

where multiple taxa cover 80% or more of the contig. For example, if a species-, genus-, 

and order-level taxa cover >80% of the contig length, then the contig would be assigned 

to species-level. Therefore, the simplest explanation for the higher taxa-level 

assignment of most of the Spades-assembled contigs would be that the proteins from the 

species-level taxa could not cover more than 80% of the contig sequence. To fix this 

issue with taxonomic classification of Deep Lake Spades-assembled metagenomes, 

various options in the MEGAN-LR daa2rma module, such as read assignment mode (-
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ram), lowest common ancestor coverage percentage (-lcp), and minimum support (-

sup), were changed and tested, but the problem persisted. As LAST/MEGAN-LR 

method did not work on Spades-assembled Deep Lake metagenomes, i.e., the output 

haloarchaea abundances were not comparable to their previously reported abundances 

(DeMaere et al, 2013), it was removed from Cavlab pipeline in v4.  

Instead, a new approach involving the use of protein taxonomies in the Phylodist file 

was developed for contig-based taxonomic classification and OTU abundance 

estimation, and the method was added to Cavlab pipeline v4 (Appendix C). The relative 

OTU abundances in Ace Lake and Deep Lake Spades-assembled metagenomes 

calculated using the data in the Phylodist file were comparable to the relative OTU 

abundances in their corresponding Megahit-assembled metagenomes calculated using 

the LAST/MEGAN-LR output (Figure 2.6); these data were also comparable to 

previously reported OTU abundances in Ace Lake and Deep Lake (Ng et al, 2010, 

Lauro et al, 2011; DeMaere et al, 2013). Consequently, the Phylodist file-based method 

was used for taxonomic diversity analysis of Ace Lake, Ellis Fjord and Taynaya Bay 

(described in Chapters 3 and 5), and select Organic Lake metagenomes. 

2.3.2 OTU bin refinement and taxonomy verification 

Among all the methods for taxonomic classification and abundance estimation 

discussed above, the Phylodist file-based method was the most robust method for use 

with Spades-assembled metagenomes. As with all taxonomic classification methods that 

rely on query sequence alignment to reference genomes, the taxa identified using this 

method were considered to be the closest related species to the organisms in the 

metagenome, and were referred to as OTUs during analyses. 

For the analysis of the taxonomic diversity of a lake system, such as Ace Lake, OTUs 

with relative abundance >1% were considered, due to their higher abundance 

contribution to the system. After running RefineM for bin refinement, the contigs that 

did not belong to the OTU were removed from the bin. For example, most of the contigs 

in Pseudomonas alcaliphila, Pseudomonas pseudoalcaligenes, and unclassified 

Pseudomonas OTU bins from Ace Lake belonged to Pseudomonas_E genus (97%, 

90%, and 49%, respectively) (Figure 2.7). Therefore, all contigs that did not belong to 

this taxon were removed from the bins. Similarly, all contigs in the C. phaeovibrioides 

OTU bin from Ace Lake that did not belong to this taxon, were removed from the bin. 
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The taxonomies of the refined OTU bins were further verified by assessing their ANI 

and SSU rRNA gene identity to the reference genomes of their closest related species 

(Table 2.6). A few examples of the outputs of RefineM, ANI, and SSU rRNA gene 

identity analyses are shown in Figure 2.7 and Table 2.6. Apart from using ANI and SSU 

rRNA gene identity for OTU bin taxonomy verification, the OTU bins were also 

matched against MetaBAT-generated MAGs, to confirm their taxonomy.  

 
Figure 2.7 RefineM taxonomy verification output of Pseudomonas and Chlorobium OTU 

bins from Spades-assembled Ace Lake metagenomes. Krona radial, space-filling (RSF) 

display is shown for three Pseudomonas OTUs, (a) Pseudomonas alcaliphila, (b) Pseudomonas 

pseudoalcaligenes, and (c) unclassified Pseudomonas, and a Chlorobium OTU, (d) Chlorobium 

phaeovibrioides, from Ace Lake metagenomes. The bin contigs were re-assigned a taxonomy 

through the ‘taxon_profile’ module of RefineM and Krona was used for visualising the output. 

The percentages alongside the taxa names indicate the number of contigs that were assigned to 

the taxa relative to the total number of contigs in the OTU bin. For example, RefineM assigned 

98% of the contigs in the C. phaeovibrioides bin and 97% of the contigs in the Pseudomonas 

alcaliphila bin to C. phaeovibrioides and Pseudomonas_E genus, respectively, but only 49% of 
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the contigs in the unclassified Pseudomonas bin to the Pseudomonas_E genus. Only the highest 

contributing taxa in an OTU bin have been shown in each RSF display. 

Table 2.6 Verification of OTU taxonomy using RefineM, ANI, SSU rRNA identity, and 

matches to MetaBAT-generated MAGs. A The OTUs were renamed based on the outputs of 

RefineM, ANI, SSU rRNA gene identity, and matches to MetaBAT-generated MAGs. [PA], 

Pseudomonas alcaliphila; [PP], Pseudomonas pseudoalcaligenes. 

Phylodist-based 

OTU taxonomy 

Chlorobium 

phaeovibrioides 

Pseudomonas 

alcaliphila 

Pseudomonas 

pseudoalcaligenes 

unclassified 

Pseudomonas 

RefineM genome 

summary (% OTU 

contigs belonging 

to the indicated 

taxon) 

Chlorobium 

phaeovibrioides 

(98%) 

Pseudomonas_E 

alcaliphila 

(43%) 

Pseudomonas_E 

alcaliphila 

(32%) 

Unclassified 

Reference 

genome/assembly  

(Assembly 

accession ID) 

Chlorobium 

phaeovibrioides 

DSM 265 

(NC_009337.1) 

Pseudomonas 

alcaliphila JCM 

10630 

(GCF_90010175

5.1) 

Pseudomonas 

pseudoalcaligenes 

CECT 5344 

(GCF_000297075.

2) 

Pseudomonas 

alcaliphila JCM 

10630 

Pseudomonas 

pseudoalcaligenes 

CECT 5344 

ANI (alignment 

fraction) 
85% (85%) 92% (82%) 96% (78%) 

[PA]: 91% (68%) 

[PP]: 94% (58%) 

16S/18S SSU 

rRNA identity 
99% No match. No match. No match. 

Taxonomy of the 

MetaBAT bin 

match 

Chlorobium 

phaeovibrioides 

Pseudomonas_E 

alcaliphila 

Pseudomonas_E 

alcaliphila 

Pseudomonas_E 

alcaliphila 

OTU nameA Chlorobium Pseudomonas_E Pseudomonas_E Pseudomonas_E 

Based on the outputs from RefineM, ANI, and SSU rRNA gene identity analyses, and 

the matches to the MetaBAT-generated MAGs, the OTUs were renamed, merged, or 

split, if required. For example, the taxonomy of the contigs classified as C. 

phaeovibrioides according to the Phylodist file-based method was verified using 

RefineM, which also assigned 98% of these contigs to C. phaeovibrioides. Furthermore, 

the refined C. phaeovibrioides OTU bin had best matches to the C. phaeovibrioides 

MetaBAT MAG and was 99% identical to the 16S rRNA gene of C. phaeovibrioides 

DSM 265 reference genome. However, the ANI of the OTU to the reference genome 
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was only 85%, across only 85% alignment fraction. Therefore, the C. phaeovibrioides 

OTU was renamed to genus-level as Chlorobium. Similarly, the contigs belonging to 

the three Pseudomonas OTUs had best matches to a Pseudomonas_E alcaliphila, 

according to RefineM as well MetaBAT MAG matches. However, based on their ANI 

to reference genomes, including Pseudomonas alcaliphila, and due to the lack of 16S 

rRNA genes in the bins, the three OTUs could not be confidently renamed to species-

level. Therefore, the three bins were merged and renamed to genus-level as 

Pseudomonas_E (Table 2.6). These methods were used for the analysis of Ace Lake 

microbial population (discussed in Chapter 3 section 3.2.2). 

2.3.3 Functional potential analysis of a system using metagenomes 

Various methods for functional potential analysis of a metagenome, including 

DIAMOND/MEGAN6-based COG analysis (section 2.3.3.1 below), methods using 

metagenome COG and KEGG files (sections 2.3.3.2 and 2.3.3.4 below), and arCOG 

analysis (section 2.3.3.3 below), were tested on a randomly selected Megahit-assembled 

metagenome from Deep Lake surface 0.1 μm-filter fraction from Dec 2013 (Appendix 

A). 

2.3.3.1 DIAMOND/MEGAN6 COG analysis 

DIAMOND/MEGAN6 COG output showed the number of proteins assigned to all COG 

categories, which gave a general idea about the functional distribution of annotated 

proteins in the metagenome. For example, in the Megahit-assembled Deep Lake surface 

metagenome (0.1 μm-filter Dec 2013), most of the proteins associated with metabolism 

were assigned to COG category [E] ‘amino acid transport and metabolism’ and [C] 

‘energy production and conversion’, which included enzymes for amino acid and 

glycerol metabolism, respectively (Figure 2.8). This coincides with the requirements of 

the most abundant haloarchaea in Deep Lake, namely Hht. litchfieldiae, that prefers 

glycerol and other carbohydrates as a carbon source (DeMaere et al, 2013; Williams et 

al, 2017). The other prominent haloarchaea in Deep Lake, namely DL31 and Hrr. 

lacusprofundi, require amino acids (DeMaere et al, 2013; Williams et al, 2017). In 

MEGAN6 COG data, the proteins were assigned to multiple COG categories, if they 

had hits to proteins from more than one COG category. Due to this, the sum of the 

number of proteins assigned to all COG categories (33,997) and ‘No hits’ (60,365) was 

more than the total annotated proteins in the metagenome (93,645) (Figure 2.8). 
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It is worth noting that many of the proteins were not assigned to any COG categories 

and were grouped as ‘No hits’, and it is possible that these proteins are novel, especially 

considering their origin from an extremely cold lake, Deep Lake. Another limitation of 

this method was that the MEGAN6 eggNOG mapping file did not include the COG 

category [X] ‘mobilome: prophages, transposons’ and, therefore, the proteins that 

should be assigned to category [X] would be instead classified under category [L] 

‘replication, recombination and repair’ or would be poorly characterised (Galperin et al, 

2015). Despite these limitations, the DIAMOND/MEGAN6 COG data can be used for a 

quick, initial functional potential analysis of a large number of metagenomes, especially 

in the comparative analysis mode on MEGAN6 GUI (as shown in Figure 2.3), which 

allows for simultaneous comparison of data from multiple metagenomes. 

 
Figure 2.8 MEGAN6 COG data-based functional potential analysis of a Megahit-

assembled Deep Lake metagenome. The dendrogram shows the COG categorization of the 

annotated proteins in a metagenome from the Deep Lake surface (collected on a 0.1 μm-filter in 

Dec 2013), using DIAMOND/MEGAN6 module of Cavlab pipeline v3.1a. Tree node gradient 

(green gradient) indicates the number of proteins assigned to the node, which are also 

mentioned in brackets alongside the node names. Only COG categories with at least one protein 

assigned to them are shown here. 

2.3.3.2 IMG COG annotation data-based analysis 
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The metagenome COG file-based analysis tested on the Megahit-assembled Deep Lake 

surface metagenome (0.1 μm-filter Dec 2013) yielded slightly different results to the 

DIAMOND/MEGAN6 COG data, due to the major differences in the calculation of the 

output (Figure 2.9a). DIAMOND/MEGAN6 COG output indicates the number of 

proteins assigned to a COG category (Figure 2.8), whereas the metagenome COG file 

output represents the abundance of a COG category calculated by summing the read 

depths of contigs corresponding to predicted genes that were assigned to the COG 

category (Figure 2.9a). Another difference between the two methods is that the 

metagenome COG file analysis does not allow for multiple COG category assignments, 

i.e., each protein was assigned to a single COG category. Moreover, the COG category 

[X] was a part of the metagenome COG file-based analysis (Figure 2.9a). Regardless of 

these differences between the two methods, the overall distribution of the annotated 

proteins/predicted genes in the Deep Lake metagenome estimated using the two 

methods was similar (Figures 2.8 and 2.9a). For example, most annotated 

proteins/predicted genes belonged to category [L] in the outputs from both methods 

(Figures 2.8 and 2.9a). Also, among the metabolism-related COG categories, most 

annotated proteins/predicted genes belonged to categories [C] and [E] (Figures 2.8 and 

2.9a). However, the output of the COG file-based analysis was considered better than 

the DIAMOND/MEGAN6 COG data because: (i) it reported the abundance of the COG 

categories, and not just the number of proteins assigned to a COG category, and (ii) it 

included the COG category [X], which is an indicator of viral content in a metagenome. 

Nevertheless, the DIAMOND/MEGAN6 method for COG analysis was retained in the 

Cavlab pipeline v4.1, because its output can be used to look at individual proteins that 

were assigned to a COG category and its protein taxonomy is required for arCOG 

analysis (described below in section 2.3.3.3). The metagenome COG file-based analysis 

was performed on Ace Lake time-series metagenomes for an in-depth analysis of the 

system (discussed in Chapter 3 section 3.3.7). 
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Figure 2.9 COG and arCOG functional potential analyses of a Megahit-assembled Deep 

Lake metagenome. The bar charts depict COG category abundances, measured by summing 

the read depths of contigs corresponding to predicted genes/annotated proteins assigned to a 

COG category. The metagenome was from a surface sample collected from Deep Lake on a 0.1 

μm-filter in Dec 2013 (Appendix A). a) COG analysis: The graph shows the COG 

categorisation of all predicted genes in the metagenome, determined using the data in the IMG 

COG annotation file and the NCBI COG database with the COG analysis component of Cavlab 

pipeline v3.3. The bar colours represent COG categories associated with cellular processes and 

signalling (brown), information storage and processing (blue), metabolism (green), and poorly 

characterized genes (grey). The y-axis was split to show an expanded view of values below 100. 

b) arCOG and COG comparative analysis: The metagenome proteins classified as Archaea 

using the DIAMOND/MEGAN6 taxonomic classification method and the NCBI arCOG 

database were used for generating the arCOG data (brown). The predicted genes in the IMG 

COG annotation file that corresponded to the archaeal proteins and the NCBI COG database 

were used to produce the COG output (blue) (Appendix D). The COG categories on the x-axis 
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are grouped based on their association with cellular processes and signalling (D, M, N, O, T, U, 

V, W, X, Y, Z), information storage and processing (A, B, J, K, L), metabolism (C, E, F, G, H, 

I, P, Q), and poorly characterized genes (R, S). The y-axis was split to show an expanded view 

of values below 500. Cellular processes and signalling — D, cell cycle control, cell division, 

chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, post-

translational modification, protein turnover, and chaperones; T, signal transduction 

mechanisms; U, intracellular trafficking, secretion, and vesicular transport; V, defence 

mechanisms; W, extracellular structures; X, mobilome: prophages, transposons; Y, nuclear 

structure; Z, cytoskeleton. Information storage and processing — A, RNA processing and 

modification; B, chromatin structure and dynamics; J, translation, ribosomal structure and 

biogenesis; K, transcription; L, replication, recombination and repair. Metabolism — C, energy 

production and conversion; E, amino acid transport and metabolism; F, nucleotide transport and 

metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metabolism; 

I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q, secondary 

metabolites biosynthesis, transport, and catabolism. Poorly characterized — R, general function 

prediction only; S, function unknown. 

2.3.3.3 arCOG analysis 

Nearly all Antarctic metagenomes from hypersaline systems in the Vestfold Hills and 

the Rauer Islands showed high abundance of haloarchaea (Figure 2.5), which makes it 

important to use methods that specifically consider the archaeal population of these 

hypersaline systems. The COG numbers generally used for COG categorisation are 

mostly associated with bacteria; the updated NCBI COG database was prepared using 

proteins from 628 bacterial and 83 archaeal genomes 

(https://ftp.ncbi.nih.gov/pub/COG/COG2014/static/lists/homeCOGs.html), and no 

longer includes eukaryotic COGs (Galperin et al, 2015). However, with the availability 

of data on archaea-specific COGs (arCOGs) on NCBI 

(ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG), prepared using proteins from 168 

archaeal genomes, including 27 Halobacteria genomes, a more accurate functional 

distribution of archaea-rich systems can be estimated. To use arCOG for the functional 

analysis of archaea-rich metagenomes, only proteins classified as Archaea by the 

DIAMOND/MEGAN6 taxonomic classification method were considered. The arCOG 

number-based analysis was tested on the archaeal proteins from a Megahit-assembled 

Deep Lake surface metagenome (0.1 μm-filter Dec 2013). For comparison between the 

arCOG and COG number assignments of the archaeal proteins, the predicted genes in 

https://ftp.ncbi.nih.gov/pub/COG/COG2014/static/lists/homeCOGs.html
ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG
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the metagenome COG file that corresponded to the archaeal proteins were also assigned 

COG categories. It was observed that the arCOG number-based assignment of the 

archaeal proteins to some of the COG categories was better than their COG number-

based assignment (Figure 2.9b). For example, the abundance of COG category [X] was 

much higher in the output from arCOG number-based analysis, which indicated that 

more archaeal proteins were assigned to this COG category in arCOG analysis than in 

COG analysis. This difference might also be because not all predicted genes associated 

with the archaeal proteins had a COG number assignment in the metagenome COG file. 

The arCOG analysis outputs also included a file containing the archaeal protein IDs and 

their arCOG number assignments, which can be used for studying individual proteins 

assigned to a COG category. For example, the archaeal proteins assigned to category 

[X] can be identified using the arCOG analysis output and their taxonomic assignments 

can be assessed using the DIAMOND/MEGAN6 output, which was used for extracting 

the archaeal proteins (section 2.2.3.3). Therefore, the arCOG analysis was found to be 

useful for assessing the functional distribution of systems that mainly harbour archaea. 

2.3.3.4 KEGG analysis 

KEGG analysis of the Megahit-assembled Deep Lake surface metagenome (0.1 μm-

filter Dec 2013) was performed using the data in the metagenome KEGG file, and the 

pathway/enzyme abundances were calculated from specific KO numbers (Appendix F). 

In the Deep Lake surface metagenome, the abundance of genes associated with aerobic 

respiration and glycerol metabolism was high (Figure 2.10), which coincided with the 

high abundance of aerobic haloarchaea in the system that are known to utilise glycerol 

as a major carbon source (DeMaere et al, 2013; Williams et al, 2017). Defence-

associated CRISPR-Cas core, CRISPR type 1I, and CRISPR type 2IIB genes also 

showed high abundance in the Deep Lake surface metagenome (Figure 2.10), which 

probably corresponded to the most abundant haloarchaea in the lake that have been 

shown to possess genes for CRISPR type 1I system (type I-B, I-D, or both; Tschitschko 

et al, 2015). Contrarily, genes associated with processes or microbes that usually occur 

in anoxic environment, such as Wood-Ljungdahl pathway, methanogenesis, 

dissimilatory sulfate reduction and oxidation, and reaction core complex of GSB, were 

not observed in Deep Lake (Figure 2.10), which corroborates the oxic conditions of the 

lake system that mixes completely at least once a year. 
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Figure 2.10 KEGG functional potential analysis of a Megahit-assembled Deep Lake 

metagenome. The bar chart depicts abundances of specific pathways/enzymes, calculated by 

summing the read depths of contigs corresponding to predicted genes associated with specific 

KO numbers (Appendix F), using the KEGG analysis module of Cavlab pipeline v3.3 (see 

Cavlab pipeline v1.2 in Appendix B for code reference). The metagenome was from a surface 

sample collected from Deep Lake on a 0.1 μm-filter in Dec 2013. The bar colours represent 

pathways/enzymes associated with carbon cycle (grey), nitrogen cycle (blue), sulfur cycle 

(yellow), defence mechanisms (orange), light-based energy production (green), and other 

processes (purple). The y-axis was split to show an expanded view of values below 25. (A), 

assimilatory; Cas, CRISPR-associated; CBB cycle, Calvin–Benson–Bassham cycle; CO 

oxidation, carbon monoxide oxidation; CRISPR, clustered regularly interspaced short 

palindromic repeats; (D), dissimilatory; DMSO, dimethyl sulfoxide; PHA, 

polyhydroxyalkanoate; RC complex-GSB, reaction centre complex-green sulfur bacteria; RC 

complex-PB, reaction centre complex-purple bacteria; rTCA cycle, reverse tricarboxylic acid 

cycle; Sox, sulfur oxidation; SqrA, sulfide quinone reductase A; WL pathway, Wood-Ljungdahl 

pathway. 

While the COG analysis can give a broad overview of the functional distribution of a 

system or metagenome, the KEGG analysis allows for a more detailed investigation of 

individual pathways and the organisms that might contribute to it, giving a clearer 

picture of the biogeochemistry of the system. This KEGG analysis was used for an in-
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depth assessment of Ace Lake time-series metagenomes (discussed in Chapter 3 section 

3.3.7.1). 

2.3.4 Metagenome statistical analyses 

PRIMER v7 analysis of Megahit-assembled metagenomes from hypersaline lakes in the 

Vestfold Hills (Deep Lake and Club Lake) and the Rauer Islands (Rauer Lake 1, 3, 6, 

and 13) showed that the taxonomic composition of the lakes from the two Antarctic 

zones was quite different (Figure 2.11a). The Vestfold Hill hypersaline lakes showed 

very high relative abundance of Archaea (peak relative abundance: 93%) and 

comparatively low relative abundance of Viruses, Bacteria, and Eukarya (peak relative 

abundances: 10%, 3%, and 0.5%, respectively) (Figure 2.11a). On the other hand, Rauer 

Island hypersaline lakes showed very high relative abundance of either Bacteria only (as 

seen in Rauer 1 Lake: 66%) or both Bacteria and Archaea (as seen in Rauer Island lakes 

3, 6, and 13 — peak relative abundance: 66% and 52%, respectively), along with 

Eukarya and Viruses (peak relative abundances in all Rauer Island lakes: 10% and 24%, 

respectively) (Figure 2.11a). This difference in the taxonomic composition was also 

marked by the separate clustering of the Vestfold Hill metagenomes from the Rauer 

Island lake metagenomes (Figure 2.11b). 
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Figure 2.11 PRIMER v7 analysis of Megahit-assembled metagenomes from Antarctic 

hypersaline lake systems — taxonomic diversity and sample clustering. (a) The bar chart 

shows relative abundances of Archaea (blue-shaded stacked bar), Bacteria ( ), Eukarya ( ), 

and Viruses ( ) in metagenomes from the surface of Deep Lake (DL), Club Lake (CL), Rauer 

1 Lake (R1L), Rauer 3 Lake (R3L), Rauer 6 Lake (R6L), and Rauer 13 Lake (R13L). Archaea 

relative abundances are shown using a stacked bar, which includes relative abundances of 

Halohasta litchfieldiae ( ), Halorubrum lacusprofundi ( ), halophilic archaeon DL31 ( ), 

Halobacterium sp. DL1 ( ), and Other Archaea ( ). (b) The dendrogram shows clustering of 

samples from six hypersaline Antarctic lakes, two from the Vestfold Hills — Deep Lake (DL; 

) and Club Lake (CL; ), and four from the Rauer Islands — Rauer 1 Lake (R1L; ), Rauer 3 

Lake (R3L; ), Rauer 6 Lake (R6L; ), and Rauer 13 Lake (R13L; ). The samples from all 

lakes were collected in Summer (red colour font), except Jun 2014 sample from Deep Lake, 

which was from Winter (blue colour font). The y-axis indicates the percentage Bray-Curtis 

similarity between the different samples from the six hypersaline lakes.  
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The alpha diversity and species evenness of the hypersaline lakes from the Vestfold 

Hills were lower than that of the Rauer Island hypersaline lakes, because of the high 

abundance of the three dominant haloarchaea, Hht. litchfieldiae, Hrr. lacusprofundi, and 

DL31, in Deep Lake and Club Lake (Figures 2.11a and 2.12a). Contrarily, the species 

richness of Vestfold Hill hypersaline lakes was generally higher than that of Rauer 

Island hypersaline lakes, except Rauer 1 Lake (Figure 2.12b). The total OTUs identified 

in Deep Lake merged metagenome from Nov 2008 was very low, because it included 

data from only 3 and 0.8 μm-filter metagenomes, as 0.1 μm-filter metagenome from that 

time period was not available at the time of this analysis. 

 
Figure 2.12 PRIMER v7 analysis of Megahit-assembled metagenomes from Antarctic 

hypersaline lake systems — species diversity analysis. The line graphs show (a) species 

diversity ( ) and species evenness ( ) as well as (b) species richness ( ) in the time-series 

metagenomes from Deep Lake (DL) surface and in metagenomes from the surface of Club Lake 

(CL), Rauer 1 Lake (R1L), Rauer 3 Lake (R3L), Rauer 6 Lake (R6L), and Rauer 13 Lake 

(R13L). The y-axis in (a) represents Simson’s index of diversity and Pielou’s index of species 
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evenness; both diversity measures range between 0 and 1. The y-axis in (b) represents the total 

number of OTUs identified in a metagenome, which was used as a measure of species richness. 

A total of 467 distinct OTUs were identified in all hypersaline metagenomes studied, 

which showed that PRIMER v7 was capable of performing multivariate analyses on at 

least hundreds of variables from multiple samples at a time. The software was also very 

reliable, such that its output was largely unaffected by the grouping of species-level 

OTUs to higher taxa levels. For example, the clusters in Figure 2.11b were based on the 

relative abundances of a total of 467 OTUs identified in the 10 merged metagenomes — 

5 from Deep Lake, 1 from Club Lake, and 4 from Rauer Island lakes. Similar clustering 

pattern was observed when the OTU abundances were grouped as shown in Figure 

2.11a, to Hht. litchfieldiae, Hrr. lacusprofundi, DL31, DL1, Other Archaea, Bacteria, 

Eukarya, and Viruses, except that the samples from Rauer 3 Lake and Rauer 6 Lake 

switched places. 

Apart from computing multivariate statistical analyses, PRIMER v7 software can also 

be used for creating a variety of plots, such as line, bar, and scatter plots, heat maps 

(with or without cluster overlay), dendrograms, PCA plots, and dbRDA (distance-based 

redundancy analysis) plots. Therefore, the software was used for an in-depth analysis of 

Ace Lake time-series metagenomes, which also included analysis of the relationship 

between relative OTU abundances and environmental factors (discussed in Chapter 3 

section 3.2.4.2). 

2.3.5 Genomic analyses 

The key bacteria in Ace Lake, namely Chlorobium and Synechococcus, were studied to 

assess their phylogenetic relationships to known species of the genera. Methods and 

software, such as BLAST+ and IGV, Mauve, and MEGA were used on the OTUs or 

MAGs of the two bacteria to achieve this. The analyses of these two microbes are 

described in Chapters 4 and 5. 

2.3.6 Development of a metagenome analysis pipeline 

The preliminary Cavlab pipeline v1.2 (Appendix B) was upgraded over the years, as 

more methods were explored. With the goal for improved metagenomic analyses, major 

additions/changes were made to the pipeline — Cavlab pipeline v4.1 being the latest 

version (Figure 2.13; Table 2.7; Appendix C).  
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Figure 2.13 Cavlab pipeline v4.1 schematic. The image outlines the workings of the latest 

version of Cavlab pipeline v4.1, along with the methods and software employed for various 

analyses in it (Appendix C). It also creates a folder structure for storing the output, with 

Cavlab_v4.1_YYMMDD as the head folder. The analyses scripts and output log files are stored 

in Cavlab_v4.1_YYMMDD/Resources subfolder; contig taxonomic classification and 

abundance estimation output is stored in 

Cavlab_v4.1_YYMMDD/Contig_taxonomy_and_abundance subfolder; protein taxonomy and 

function analysis output is stored in Cavlab_v4.1_YYMMDD/Protein_taxonomy_and_function 

subfolder; and outputs of functional potential analyses are stored in 

Cavlab_v4.1_YYMMDD/COG_KEGG_functions subfolder. 

All versions of the Cavlab pipeline were coded to exploit the folder structure of the 

IMG annotation output data, so that once launched, the pipeline would select the correct 

files for various metagenome analyses, with minimal user input. For example, JGI IMG 

provides filtered sequencing reads in a folder named ‘QC_Filtered_Raw_Data’, 

therefore, the pipeline would detect and select the correct read sequence file in this 

folder and perform various read-based metagenome analyses on it, without the user 

having to prompt the exact file location and name. The pipeline starts with a search for 

specific input files for the analyses, such as the filtered read FASTQ file, contig and 

protein sequence FASTA files, Phylodist file, metagenome COG and KEGG files, and 
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contig coverage file. Once the presence of these resource files is verified, the script 

creates folders and subfolders for storing pipeline outputs, followed by preparation of 

python and bash scripts for individual analyses, which have been discussed in section 

2.2.  

Some of the major changes to the original pipeline include: (i) a shift from read-based 

(using PhyloSift) to contig-based (using Phylodist file) taxonomic diversity analysis, the 

latter of which was found to be reliable and was used for in-depth analysis of Ace Lake 

metagenomes (Chapter 3); (ii) the COG analysis runtime was reduced from >100 h to 

<10 mins; (iii) the COG database was updated, which included the new COG category 

[X] ‘mobilome: prophages, transposons’, and the COG abundance calculations were 

improved (section 2.2.3.2); (iv) additional KO numbers and databases associated with a 

variety of metabolic pathways/enzymes were added to the pipeline (Tables 2.2 and 2.7; 

Appendix F) and the pathway/enzyme abundance calculations were improved (section 

2.2.3.2); (v) the pipeline output folder structure was also modified, such that the output 

of each analysis was stored in separate, specific folders; (vi) the code for the search of 

input resource files, such as protein and contig sequence files, was also improved by 

incorporating a variety of file designations used by JGI IMG, including the latest file 

designations.  

Apart from these, various methods were added to the pipeline for improved 

metagenome analysis, but were then removed either because their output did not 

corroborate previous findings that were used as references or a better analysis was 

available. For example, MetaPhlA2 was added to Cavlab pipeline in v3.0 for read-based 

taxonomic diversity analysis and abundance estimation, but was removed in v3.1 

because its clade-specific database proved to be insufficient for taxonomic classification 

of Antarctic metagenome reads (Table 2.3). Similarly, a CRISPR script that was added 

to the pipeline in v2.0 was removed in v3.0, when a more in-depth virus analysis of 

Antarctic metagenomes was made available on IMG-VR (Páez-Espino et al, 2017). 

Also, the LAST/MEGAN-LR method was added to the pipeline in v3.0 for contig-based 

taxonomic diversity analysis, after it was successfully tested on various Megahit-

assembled metagenomes (section 2.3.1.3), but was removed in v4 because it did not 

work well with the new Spades-assembled metagenomes (Figure 2.6). 

Table 2.7 Cavlab pipeline v1.2 vs v4.1 — comparison of methods/software, input files (I) 

and UNSW Katana computer cluster resources (K). Katana resources: Memory, random-
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access memory (RAM) allotted for processing job on server; Wall time, maximum time allotted 

for running job on server; Nodes, server’s computer node on which the job will run; processors, 

number of central processing unit (CPU) cores of the computer node used for running jobs 

parallelly. * KEGG database files were specifically created for KO numbers that represented 

enzymes catalysing redox reactions (e.g., sulfide oxidation and sulfate reduction) or 

homologous enzymes (e.g., ammonia/methane monooxygenase) (section 2.2.3.2). The database 

files included protein sequences of the enzymes and their previously observed functional roles. 

Metagenome analysis 
Cavlab pipeline v1.2 

(Appendix B) 

Cavlab pipeline v4.1 

(Appendix C) 

Pre-process 

Includes steps for 

detection and 

verification of input 

files and creating file 

paths. 

Creates a Readme file 

with details of pipeline 

methods and software 

used. 

Python v3.5.2 

Output folder structure: 

‘Cav_LaunchDate’ as head 

folder for all outputs 

‘Cav_LaunchDate/resources’ 

for method scripts and log files 

‘Cav_LaunchDate/metabat’ for 

initial steps of MetaBAT 

Adding contig read depth to 

corresponding protein 

sequence headers for protein 

taxonomy runs with 

DIAMOND/MEGAN. 

 

K: Memory = 8 GB; Wall time 

= 12 hr; Nodes: processors = 

1:1 

I: Protein sequence file; 

Contig coverage file; Scaffold 

to contig mapping file. 

Python v3.8.2 

Output folder structure: 

‘Cavlab_v4.1_YYMMDD’ as 

the head folder 

‘Cavlab_v4.1_YYMMDD/Reso

urces’ for method scripts and 

log files 

‘Cavlab_v4.1_YYMMDD/Conti

g_taxonomy_and_abundance’ 

‘Cavlab_v4.1_YYMMDD/Prote

in_taxonomy_and_function’ 

‘Cavlab_v4.1_YYMMDD/COG

_KEGG_functions’ 

Adding annotated product 

names to protein sequence 

headers for protein taxonomy 

and function runs with 

DIAMOND/MEGAN. 

 

K: Memory = 8 GB; Wall time 

= 12 hr; Nodes: processors = 1:1 

I: Protein sequence file; IMG 

protein function annotation file. 

Taxonomic 

classification 

Uses PhyloSift v1.0.1, Perl 

v5.20.1, HMMER v3.1b2, 

RAxML v8.1.17, FastTree 

v2.1.7, Pplacer v1.1.alpha16. 

Uses Python v3.8.2 

Performs contig-based 

taxonomic diversity analysis and 

abundance estimation. 
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Performs read-based 

taxonomic diversity analysis. 

 

K: Memory = 24 GB; Wall 

time = 200 hr; Nodes: 

processors = 1:1 

I: Filtered reads file 

 

K: Memory = 96 GB; Wall time 

= 12 hr; Nodes: processors = 1:1 

I: IMG protein taxonomy 

annotation file; IMG protein 

function annotation file; Contig 

coverage file; Scaffold to contig 

mapping file. 

Protein taxonomy and 

functional potential 

analysis 

Use DIAMOND and 

MEGAN for protein 

alignment and 

classification, 

respectively 

DIAMOND v0.8.4, MEGAN 

v6.4.5, and Java v8u45 

Input protein sequence file has 

read depths of corresponding 

contigs added to the protein 

header names. 

 

K: Memory = 63 GB; Wall 

time = 48 hr; Nodes: 

processors = 1:8 

I: Protein sequence file 

DIAMOND v0.9.31, MEGAN 

v6.15.1,  

Input protein sequence file has 

annotated product names added 

to the protein header names. 

 

K: Memory = 120 GB; Wall 

time = 48 hr; Nodes: processors 

= 1:16 

I: Protein sequence file 

COG analysis 

Uses Python script on 

metagenome COG file 

Python v3.5.2 

Uses NCBI COG database, 

2003 version, which does not 

include COG category [X] 

(mobilome: prophages, 

transposons). 

 

K: Memory = 12 GB; Wall 

time = 48 hr; Nodes: 

processors = 1:1 

I: Metagenome COG file; 

Contig coverage file; Scaffold 

to contig mapping file. 

Python v3.8.2 

Uses NCBI COG database, 2014 

update version, which includes 

COG category [X] 

 

K: Memory = 64 GB; Wall time 

= 12 hr; Nodes: processors = 1:1 

I: IMG COG annotation file; 

Contig coverage file; Scaffold to 

contig mapping file. 

KEGG analysis 

Uses Python script on 

metagenome KEGG file 

(see Appendix F for a 

Python v3.5.2 

Analyses 118 KO numbers and 

44 pathways/enzymes. 

Uses 4 KEGG database file*. 

Python v3.8.2 

Analyses 427 KO numbers and 

173 pathways/enzymes. 

Uses 8 KEGG database files*. 
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list of KO numbers used 

for analysis) 

 

K: Runs performed with COG 

analysis. 

I: Metagenome KEGG file; 

Contig coverage file; and 

Scaffold to contig mapping 

file. 

 

K: Memory = 8 GB; Wall time 

= 12 hr; Nodes: processors = 1:1 

I: IMG KEGG annotation file; 

Contig coverage file; Scaffold to 

contig mapping file. 

MetaBAT data 

preparation 

Python v3.5.2 

 

K: Memory = 31 GB; Wall 

time = 12 hr; Nodes: 

processors = 1:4 

I: Contig sequence file; 

Filtered reads file 

The initial steps for MetaBAT 

were removed. 

Other than the Cavlab pipeline for metagenome analyses, a python-based pipeline was 

written for the analysis of arCOGs (Appendix D). This script was not a part of Cavlab 

pipeline, because it relied on the output of DIAMOND/MEGAN6 component of the 

Cavlab pipeline, which needed to be handled manually for the preparation of an input 

file for arCOG pipeline (section 2.2.3.3). 

 

2.4 Conclusion 

A major challenge of working with metagenomes is the size of the dataset, but a major 

advantage of having metagenomes is the amount of information made available. It is a 

powerful tool for understanding microbial life as it is in its natural habitat. The advances 

in HTS have allowed for parallel sequencing of multiple DNA samples, making 

metagenomic studies possible. As sequencing methods continue to improve, so do the 

methods for analysis of the sequencing data. With the availability of many methods for 

various kinds of metagenomic analyses, some of which are described in this chapter, it 

was tricky to choose the right set of methods for the analysis of the Antarctic 

metagenomes. While some methods or software appeared promising, considering their 

algorithm or approach, the only way to assess their worth was to test them on real 

datasets. For example, MetaPhlAn2 is a taxonomic classification method specifically 

developed for the analysis of metagenomes (Segata et al, 2012), but because it relies on 
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clade-specific markers, which were developed from the genomes of well-characterised 

microbes, it could not be effectively used for an initial analysis of Antarctic 

metagenomes (Table 2.3).  

Apart from the advances in metagenome sequencing, the methods for their assembly 

and annotation are also improving, which can impact the methods used for 

metagenomic analysis. For example, the LAST/MEGAN-LR method selected for contig 

taxonomic classification of Megahit-assembled metagenomes did not work on Spades-

assembled metagenomes, which were more recent (Figure 2.6). However, the Spades-

assembled metagenomes had better contig statistics than the Megahit-assembled 

metagenome contigs (Table 2.5). The Spades-assembled contigs were much longer and 

some even represented complete phage (discussed in Chapter 3 section 3.2.6.4). 

Considering the various ways in which a metagenome can be analysed, it can be useful 

to have a pipeline that performs an initial set of analyses, such as taxonomic diversity 

and functional potential analyses, that are detailed enough to be comprehensive. The 

Cavlab pipeline was developed keeping this in mind and was improved over-time to 

include some new methods/software that might perform better than existing pipeline 

methods. However, for an in-depth analysis of a metagenome or an environment, 

additional methods need to be applied. For example, apart from assessing the taxonomic 

composition of a system, it is important to study the key species in the system, for 

which various genomic analyses need to be performed, some of which were discussed 

in this chapter. 

Based on all the methods tested, the following methods/software were found to be 

useful for the analysis of Antarctic metagenomes: 

a) Phylodist file-based method for contig taxonomic classification and OTU abundance 

estimation (part of Cavlab pipeline v4.1; Appendix C). 

b) Metagenome COG and KEGG file-based methods (part of Cavlab pipeline v4.1; 

Appendix C) and arCOG analysis (arCOG pipeline v1.2; Appendix D) for 

functional potential analyses. 

c) RefineM, ANI, and SSU rRNA gene identity for OTU bin refinement and taxonomy 

verification. 

d) PRIMER v7 for multivariate statistical analyses. 

e) BLAST+/IGV, Mauve, and MEGA for genomic analyses of OTUs and MAGs. 
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Cavlab pipeline v4 and the methods for OTU bin refinement, taxonomy verification, 

genomic analysis, and statistical analysis discussed in this chapter were used for the in-

depth study of time-series Spades-assembled metagenomes from Ace Lake (discussed 

in Chapters 3, 4 and 5). Cavlab pipeline v4.1 can be used with all Antarctic 

metagenomes available on the Katana scratch node, which are also available online on 

IMG website (https://img.jgi.doe.gov/cgi-bin/m/main.cgi). The pipeline was modified, 

and recently tested (on 19 June, 2020), to accept the latest JGI IMG file designations, 

and should run without errors. 

 

  

https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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3. Seasonal variation in Ace Lake biodiversity and the 

functional potential of its microbial community 

 

3.1 Introduction 

Ace lake is a marine-derived, meromictic lake in the Vestfold Hills, with an Upper oxic 

zone and a Lower anoxic zone separated by an oxycline/halocline (Burton, 1980). The 

lake is covered by thick ice for ~11 months of the year, which melts in summer forming 

a layer of fresh water on the lake surface (Hand and Burton, 1981). With approaching 

winter, the ice cover reforms, which causes the salt in the water to be removed into the 

surrounding upper oxic zone waters just below the ice (Gibson and Burton, 1996; 

Rankin et al, 1999). This salt exclusion drives the water mixing in the oxic zone of Ace 

Lake, with the anoxic zone remaining stagnant, and is responsible for lake stratification. 

The physical properties as well as the biology and function of Ace Lake have been 

investigated extensively for decades (Hand, 1980; Hand and Burton, 1981; Burch, 1988; 

Burke and Burton, 1988; Gibson and Burton, 1996; Rankin et al, 1997; Rankin, 1998; 

Bell and Laybourn-Parry, 1999; Rankin et al, 1999; Laybourn-Parry et al, 2005; Madan 

et al, 2005; Powell et al, 2005; Ng et al, 2010; Lauro et al, 2011; Laybourn-Parry and 

Bell, 2014). Only two of these studies have employed metagenomic data for the analysis 

of Ace Lake (Lauro et al, 2010) and its most abundant microbe (Ng et al, 2010).  

A few studies have reported seasonal analysis of Ace Lake, mainly focusing on 

phytoplankton, bacteria, viruses or the physical structure and chemical composition of 

the lake (Hand and Burton, 1981; Burch, 1988; Gibson and Burton, 1996; Bell and 

Laybourn-Parry, 1999; Rankin et al, 1999; Laybourn-Parry et al, 2005; Madan et al, 

2005). These studies used inverted or epifluorescence microscopy cell counts to 

determine microbial biomass and abundances (Bell and Laybourn-Parry, 1999; 

Laybourn-Parry et al, 2005; Madan et al, 2005). The level of photosynthetically active 

radiation (PAR) experienced at the surface of Ace Lake in different seasons and its 

attenuation with depth indicated that the presence/absence of snow and ice can affect 

light availability in the lake water column (Hand and Burton, 1981; Burch, 1988). The 

chemical composition of Ace Lake has been shown to vary with depth and season 

(Burch, 1988; Gibson and Burton, 1996; Bell and Laybourn-Parry, 1999; Rankin et al, 
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1999). The abundances of phytoplankton identified in the Upper oxic zone of Ace Lake 

being high in summer and low in winter (Burch, 1988; Bell and Laybourn-Parry, 1999; 

Laybourn-Parry et al, 2005). Moreover, these phytoplankton showed niche adaptation to 

different depths of the Upper zone (Burch, 1988). In Ace Lake Upper zone, autotrophic 

bacteria are prevalent in summer, whereas heterotrophic bacteria are more abundant in 

winter than summer (Bell and Laybourn-Parry, 1999; Laybourn-Parry et al, 2005). 

Overall bacterial biomass in the Upper zone of Ace Lake decreases in winter through to 

spring and then recovers in summer (Madan et al, 2005). Contrarily, virus-like particle 

counts, probably indicating viral abundance, show no seasonal variation in Ace Lake 

(Madan et al, 2005). Here, a time-series of metagenomes sampled from Ace Lake over a 

period of 10 years between 2006 and 2015, including summer and winter samples, were 

analysed using an in-house pipeline developed for analysis of IMG-annotated 

metagenomes (Chapter 2). 

3.1.1 Ace Lake metagenomes 

Ace Lake sample collection, DNA extraction, and metagenome sequencing, assembling, 

and annotation are described in Chapter 2 section 2.1.1. Water samples were collected 

from the Ace Lake in 2006, 2008, 2013, 2014, and 2015, including summer and winter 

samples, from the surface and six depths of the lake. The sampling depths included 

three depths from the upper oxic zone of Ace Lake (referred to as Upper 1, Upper 2, 

Upper 3), one from the oxycline/halocline (referred to as Interface), and three from the 

lower anoxic zone (referred to as Lower 1, Lower 2, Lower 3). However, winter 

samples were not collected from the Lower zone of Ace Lake, as sampling in Antarctic 

winter was logistically challenging. Additionally, the metagenomes used for the 

analysis of Ace Lake were assembled using the metaSPAdes assembler, as opposed to 

the Megahit assembler (Chapter 2 section 2.3.1.4). All metagenomes were annotated by 

JGI’s IMG system (Appendix A: Table A1). 

3.1.2 Aims 

The main aim was to analyse the time-series metagenomes from Ace Lake, to assess 

seasonal variation in the biodiversity of the lake and examine the functional potential of 

its microbial population. The Ace Lake metagenomes were assessed using the in-house 

Cavlab pipeline v4 (Appendix C). Additionally, the most prominent OTU bins (≥1% 

relative abundance) identified in the Ace Lake metagenomes were refined and analysed 



121 
 

using various software discussed in Chapter 2. The MetaBAT-generated MAGs were 

used to verify OTU taxonomy, among other methods (Chapter 2). 

A specific aim was to analyse the viruses identified in the Ace Lake metagenomes from 

different lake depths (upper, interface, lower) and seasons (summer, winter, spring). The 

association between changes in virus and potential host (especially phototrophic host) 

abundances were also explored, to determine the effects of viral predation vs light 

availability on host abundance. For this purpose, catalogues of Antarctic viral contigs 

(referred to as Antarctic virus catalogue hereafter), nucleocytoplasmic large DNA virus 

contigs (NCLDV; referred to as Antarctic NCLDV catalogue hereafter), virophage 

contigs (referred to as Antarctic virophage catalogue hereafter), and an IMG/VR spacer 

database (referred to as spacer database hereafter) generated from the Antarctic datasets, 

including the Ace Lake metagenomes, were used. A list of viral contigs representing 

complete, circular phage genomes (referred to as complete phage catalogue hereafter) in 

metagenomes from Antarctic lakes, including Ace Lake, were also used.  

 

3.2 Methods 

3.2.1 Taxonomic classification, abundance calculation, and functional potential 

analyses using Cavlab pipeline v4 

The taxonomic diversity and functional potential of the Ace Lake metagenomes 

(Appendix A: Table A1) were analysed using the in-house Cavlab pipeline v4 

(Appendix C). In the pipeline, the data in the Phylodist file were used to prepare a 

contig taxonomy file containing contig IDs and their length, read depth, and predicted 

taxonomy (Chapter 2 section 2.2.2.5). The contig taxonomy file only included contigs 

that contained predicted proteins with corresponding taxonomic assignments in the 

Phylodist file. Furthermore, the data in the contig taxonomy file were used to calculate 

the OTU abundances by summing coverages of the contigs (contig length × contig read 

depth) assigned to the OTU in a metagenome. All metagenome contigs that could not be 

assigned a taxonomy were referred to as unassigned contigs and the sum of their 

coverages was referred to as unassigned contig abundance in a metagenome. The total 

metagenome abundance was calculated by summing the coverages of all contigs in a 

metagenome, including all contigs assigned to an OTU as well as all unassigned 

contigs. PRIMER v7 software was used to calculate the relative abundances as 
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percentages, by dividing the OTU or unassigned abundances with total metagenome 

abundance (Chapter 2 section 2.2.7). All relative abundances mentioned in the chapter 

were calculated relative to the total metagenome abundances, unless otherwise 

specified, therefore, relative abundances from a metagenome were comparable. The 

relative OTU abundances were calculated by: 

Relative OTU abundance (%) =  
∑ (ContigLength × ContigReadDepth)OTU

∑ (ContigLength × ContigReadDepth)Metag
∗ 100 

Formula (1), where the numerator denotes the absolute abundance of an OTU in a 

metagenome, calculated by summing the coverages of contigs assigned to the OTU. The 

denominator represents the total abundance in a metagenome (Metag) calculated by summing 

the coverages of all contigs in the metagenome. 

For comparative analysis of OTU abundances from the 120 metagenomes, the OTU 

abundance files were merged using a MetaPhlAn2 python script (Chapter 2 section 

2.2.2.2). Among the OTUs identified in the Ace Lake metagenomes, OTUs with relative 

abundance ≥1% in at least one metagenome (referred to as abundant OTUs hereafter) 

were considered for further studies. Additionally, peak relative abundance of an OTU 

referred to its highest relative abundance in metagenomes from a depth, season, filter 

fraction, or all metagenomes, depending on how it is described in the chapter. 

Functional potential analysis of Ace Lake was performed using the data in the 

metagenome COG and KEGG files from all Ace Lake metagenomes. The data in the 

metagenome COG files, i.e., protein IDs and their COG number annotations, were 

compared against a COG conversion database to generate COG category abundances by 

summing the read depths of contigs corresponding to predicted genes assigned to the 

COG category (Chapter 2 section 2.2.3.2). The data in the metagenome KEGG files, 

i.e., protein IDs and their KO number annotations, were used to generate abundances of 

specific KO numbers by summing the read depths of contigs corresponding to predicted 

genes assigned to the KO numbers (Chapter 2 section 2.2.3.2). These KO number 

abundances were then summed/averaged to calculate the abundances of specific 

pathways/enzymes (Chapter 2 section 2.2.3.2). The COG category and specific 

pathway/enzyme abundances were normalised prior to functional potential analysis, 

using the formula. 

COG or Pathway/enzyme abundance 

∑ (Contig read depth)Protein
× (

∑ {∑ (Contig read depth)}Protein𝑎𝑙𝑙

120
) 
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Formula (2), where, the left-side numerator denotes the abundance of a COG category or a 

pathway/enzyme. The left-side denominator represents the total protein abundance in a 

metagenome and was calculated by summing the read depths of contigs corresponding to all 

proteins in a metagenome. The right-side denotes the average of total protein abundances from 

the 120 Ace Lake metagenomes. 

The abundant OTUs that probably contributed toward specific pathways were also 

identified during KEGG analysis. For this, a list of KO numbers and their corresponding 

pathway/enzyme was prepared and parsed using a python script, to extract the protein 

IDs associated with the specific KO numbers. The protein IDs were further used to 

select the corresponding contig IDs, and the contig taxonomies were deduced from the 

contig taxonomy output of Cavlab pipeline v4 runs on the metagenomes.  

3.2.2 OTU bin refinement, taxonomy verification, and preparation of high-quality 

OTU bins 

The abundant OTUs identified in the Ace Lake metagenomes were studied by preparing 

their OTU bins, which were composed of contig sequences that were assigned to the 

OTUs. The OTU bins were refined using RefineM v0.0.24 as described in Chapter 2 

section 2.2.4.1. After bin refinement, the OTU bins with sufficient number of genes for 

functional potential analysis were selected for the preparation of high-quality bins. The 

contigs of these selected OTUs were further matched against MetaBAT-generated 

MAGs to verify their taxonomic composition. Note that the RefineM output as well as 

the MetaBAT MAGs used GTDB for taxonomic classification of bacteria and archaea. 

The taxonomies of the refined OTU bins were also verified by assessing their ANI 

using pyani and SSU rRNA gene identity to their closest related reference genomes 

from NCBI (Chapter 2 section 2.2.4.2). The high-quality OTU bins were prepared based 

on their RefineM output, matches to MetaBAT MAGs, ANI, and SSU rRNA gene 

identity. Some of the refined OTUs were merged to higher taxa levels due to similar 

taxonomic composition (Chapter 2 section 2.3.2). Some of the refined OTUs were 

merged to a higher taxa level and then split to lower taxa levels because the OTUs had 

matches to similar taxa. For example, five verrucomicrobial species-level OTUs, 

namely Coraliomargarita akajimensis, Chthoniobacter flavus, Haloferula sp. 

BvORR071, Prosthecobacter debontii, and Rubritalea squalenifaciens, were first 

merged together as Verrucomicrobia and then split to five genus-level OTUs, namely 

Verrucomicrobia SW10, Verrucomicrobia UBA4506, Verrucomicrobia BACL24, 
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Verrucomicrobia Arctic95D-9, and Haloferula. Additionally, some OTUs such as a 

Parcubacteria were simply split into lower taxa level OTUs to which they had matches; 

the Parcubacteria bin was split into six individual OTUs. A higher taxa level name, 

such as phylum, order, or family, was added before the alphanumeric genus names of 

refined OTUs for context. As a result, 45 high-quality bacterial and archaeal OTU bins 

along with a eukaryal and five algal virus bins were prepared from the Ace Lake 

metagenomes. The relative abundances of the high-quality OTUs were recalculated in 

metagenomes from specific depths in which their abundance was originally high. All 

low abundance OTUs (relative abundance <1%) as well as all low-quality OTUs were 

combined to higher taxa levels as ‘other’ bacteria, archaea, eukarya, and viruses using 

PRIMER v7. 

3.2.3 Ace Lake metadata collection from various seasons and lake depths 

The physical characteristics of Ace Lake, such as lake depth, salinity, temperature, 

dissolved oxygen concentration, and ice cover thickness, were measured during sample 

collection in summer, winter and spring (Appendix I). However, lake temperature and 

dissolved oxygen concentration measures could not be gathered for all time periods of 

sample collection. For the statistical analysis of the Ace Lake metagenomes, additional 

environmental factor measures, such as maximum and minimum air temperature, 

sunlight hours, and maximum wind velocity, were procured from the Australian 

Antarctic Data Centre (AADC) for Davis Station in Antarctica (Appendix I). Sunlight 

hours referred to the number of hours in a day the sun shines brightly, with sunlight 

being brighter than a specified threshold and without being obstructed by a cloud cover; 

it was calculated as bright sunshine hours using a Campbell-Stokes recorder. The 

daylength, i.e., the number of hours in a day the sun is above the horizon, was also used 

as an environmental factor for the analysis of Ace Lake metagenomes; the data were 

gathered for Davis Station from a web service (https://www.timeanddate.com). 

3.2.4 Statistical analyses  

3.2.4.1 Assessing alpha diversity and OTUs contributing to seasonal variation  

For the statistical analysis of OTU abundances in 120 Ace Lake metagenomes, 

PRIMER v7 software was used. In PRIMER v7, the genus to domain level 

classifications of each OTU were used as indicators for the grouping of taxa variables, 

whereas sample collection date, lake depth, filter size, and season name were added as 

https://www.timeanddate.com/
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factors for the grouping of metagenome samples. The relative OTU abundances were 

square root transformed and used to generate a resemblance matrix of sample 

similarities using the Bray-Curtis similarity measure. The transformed data were also 

used for SIMPER (similarity percentage) analysis, to identify OTUs with highest 

contribution to similarity between metagenome samples from a season and dissimilarity 

between metagenome samples from different seasons. The alpha diversity of all 

metagenomes was measured using the Simpson’s index of diversity in Primer v7 

(Chapter 2 section 2.2.7).  

3.2.4.2 Assessing relationship between OTU abundance variation and changes 

in season 

The relationship between the changes in the relative abundances of OTUs in the 

metagenome samples and the variation in certain predictor variables was explored using 

a distance-based linear model (distLM) in PRIMER v7. Environmental factors such as 

lake depth, lake salinity, air temperature, maximum wind velocity, daylength, and 

sunlight hours were considered for this purpose. Of these factors, monthly average 

values were calculated for air temperature, maximum wind velocity, daylength, and 

sunlight hours by calculating the mean of the values from a month, which were used as 

predictor variables along with lake depth and salinity. All predictor variable values were 

normalised in Primer v7 before analysis. Lake temperature could not be used as a 

predictor variable because it was not measured for all sampling periods. The distLM 

analysis was performed on the resemblance matrix of sample similarities and the 

predictor variables using a step-wise variable selection procedure with an adjusted R2 

fitness measure. The output was represented on a dbRDA plot.  

3.2.4.3 Determining associations between specific OTUs, or virus and host  

The correlation between certain OTU abundances, or read depths of viral contigs and 

host marker genes, was calculated using the Pearson Product Moment Correlation 

measure and the statistical significance of the correlation was assessed using the 

Analysis of Variance regression measure in Data Analysis Tools of Microsoft Excel. 

3.2.5 Unassigned data analyses  

The relative abundances of the unassigned contigs from the Ace Lake metagenomes 

were calculated using Formula (1) described in section 3.2.1. The genetic composition 
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of the unassigned contigs with relative abundance ≥1% (referred to as abundant 

unassigned contigs hereafter) was assessed to help identify their taxonomic affiliation. 

Furthermore, these abundant unassigned contigs were compared against the Antarctic 

virus catalogue to identify their corresponding viral cluster or singleton, if any. Of the 

abundant unassigned contigs, five contigs showed presence of cas genes and four 

contigs contained restriction-modification (R-M) system genes; both groups were 

investigated (section 3.2.6.5).  

The gene annotations of the unassigned contigs of length ≥1 kb were manually analysed 

using the data in the IMG protein name file. Of the total gene annotations on these 

unassigned contigs in each metagenome, the number of genes associated with viruses, 

transposases, transfer RNAs (tRNAs), 16S rRNA, 18S rRNA, and hypothetical proteins 

were counted to assess the overall genetic composition of the unassigned contigs. The 

16S and 18S rRNA genes were also aligned against the NCBI-nr nucleotide database 

using the blastn mode of BLAST+ v2.9.0, and their domain-level taxonomy was 

deduced by manually assessing the best alignments. The domain-level relative 

abundances associated with the unassigned contigs were estimated based on the 

coverages of the contigs containing the 16S and 18S rRNA genes, using Formula (1) 

(section 3.2.1). 

The unassigned contigs were also parsed through VirSorter v1.0.3 (Roux et al, 2015), to 

identify potential viral and prophage contigs. For this, all unassigned contigs from the 

Ace Lake 2006 metagenomes and all unassigned contigs >10 kb length from the Ace 

Lake 2008 and 2013-2015 metagenomes were assessed, along with 1-10 kb length 

unassigned contigs from Ace Lake 2008 and 2013-2015 metagenomes with relative 

abundance ≥0.1% or read depth ≥200. The unassigned contigs that were confidently 

predicted to be viruses (VirSorter categories 1 and 2) or prophages (VirSorter categories 

4 and 5) were used to calculate the relative abundance of viruses among the unassigned 

contigs from each metagenome. 

3.2.6 Viral analyses 

The Antarctic virus catalogue contained 71,689 viral contigs of length >5 kb, identified 

from 309 Antarctic metagenomes, including the 120 Ace Lake metagenomes, using a 

previously described method (Páez-Espino et al, 2016). The Antarctic NCLDV 

catalogue contained 2,296 NCLDV contigs, whereas the Antarctic virophage catalogue 
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contained 69 virophage contigs, identified using methods reported before (Páez-Espino 

et al, 2019b; Schulz et al, 2020). All three viral catalogues contained the viral cluster 

(group of similar viral contigs) or singleton designations of the viral contigs. The spacer 

database contained a list of genome- and metagenome-associated CRISPR spacers, the 

host contigs on which they were identified, and the matches of the CRISPR spacers to 

the viral contigs in the Antarctic virus catalogue; all of these data were generated using 

a previously described method (Páez-Espino et al, 2019a). The complete phage 

catalogue contained 516 viral contigs representing complete genomes of circular phage 

identified from various Antarctic lake systems. 

3.2.6.1 Analysis of potential GSB viruses 

The contig IDs of the Chlorobium OTU bin contigs were compared against the contig 

IDs in the IMG CRISPR annotation files (hereafter referred to as metagenome CRISPR 

files), which contained CRISPR spacer and repeat sequences found on the contigs, to 

identify any CRISPR spacers associated with the Ace Lake Chlorobium (Figure 3.1). 

The Chlorobium-associated CRISPR spacer sequences were then aligned against all 

contigs from the 120 Ace Lake metagenomes using the ‘megablast’ option of BLAST+ 

v2.6.0, with e-value ≤10-3 and ≥97% alignment identity. The metagenome contigs with 

matches to the Chlorobium spacers were compared against the Antarctic virus catalogue 

to identify the potential Chlorobium virus contigs and their corresponding viral clusters 

and/or singletons (Appendix H: Table H1). For verification of the hosts of the potential 

Chlorobium viruses, the spacer matches to these viral contigs in the spacer database 

were assessed and the host contig taxonomy was determined (section 3.2.1). 
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Figure 3.1 Identifying potential Chlorobium viruses. The schematic shows the methods used 

for the identification of potential Chlorobium viruses (section 3.2.6.1). Metagenome CRISPR 

file refers to the IMG CRISPR annotation file. Antarctic virus catalogue and spacer database are 

described in section 3.2.6. All sequence alignments (Aligned) were performed using BLAST+, 

whereas contig IDs were used for comparison (Compared) between queries and databases. The 

icons used in the figure were taken from The Noun Project website 

(https://thenounproject.com/). 

The contigs belonging to the potential Chlorobium virus clusters and singletons were 

also matched against all Ace Lake metagenome contigs using ‘blastn’ mode of 

BLAST+ v2.9.0, with e-value ≤10-4 and ≥90% alignment identity, to include any 

additional viral contigs that were not part of the Antarctic virus catalogue, and to assess 

the similarity between the contigs belonging to the Chlorobium virus clusters and 

singletons (Appendix H: Table H1). The average read depth of specific marker genes 

from Chlorobium, namely 16S rRNA, recombinase A and fmoA, and the read depths of 

its viral contigs were used to analyse the virus-host abundance correlation (section 

3.2.4.3). 

3.2.6.2 Analysis of potential Synechococcus viruses 

https://thenounproject.com/
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A cyanophage sequence (IMG taxon ID: 3300016486; contig: Ga0078900_115654) was 

assembled from a 0.1 μm-filter metagenome from the Ace Lake Upper 2 zone sampled 

in Dec 2006. The cyanophage sequence was matched against the Antarctic virus 

catalogue using the ‘blastn’ mode of BLAST+ v2.9.0, with e-value ≤10-3 and ≥99% 

alignment identity, to identify additional cyanophage sequences (Figure 3.2) (Appendix 

H: Table H1). The cyanophage sequences were also aligned against each other using the 

‘blastn’ mode of BLAST+ v2.9.0 (e-value ≤10-4), to assess their sequence similarity. 

The spacer database was used to identify the probable host of the cyanophage by 

examining the matches of the cyanophage sequences to the spacers on the host contigs. 

The host contig taxonomy was determined using the method described in section 3.2.1. 

The correlation between the read depth of the cyanophage contigs and the average read 

depth of the marker genes (16S rRNA and recombinase A) from Synechococcus, the 

most abundant cyanobacteria in Ace Lake, was also calculated to explore probable 

virus-host relationship (section 3.2.4.3). 

 
Figure 3.2 Analysis of a cyanophage and some algal viruses. The schematic shows the 

methods used for the analysis of a cyanophage (green background; section 3.2.6.2) and five 

abundant algal viruses, namely Phycodnaviridae 1, 2, 3, 4, and 5 (blue background; section 

3.2.6.3). Antarctic virus catalogue, Antarctic NCLDV catalogue, and spacer database are 
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described in section 3.2.6. All sequence alignments (Aligned) were performed using BLAST+, 

whereas contig IDs were used for comparison (Compared) between queries and databases. The 

icons used in the figure were taken from The Noun Project website 

(https://thenounproject.com/). 

3.2.6.3 Analysis of algal viruses 

The metagenome contigs assigned to the five Phycodnaviridae OTUs (Phycodnaviridae 

1–5) were compared against the viral contigs in the Antarctic virus catalogue as well as 

the Antarctic NCLDV catalogue, to identify all virus/NCLDV clusters and singletons 

associated with the Phycodnaviridae 1–5 OTUs (Figure 3.2). Correlation analysis was 

performed between the relative abundance of the Ace Lake green alga OTU 

Micromonas and the relative abundances of Phycodnaviridae 1–5 OTUs (section 

3.2.4.3).  

3.2.6.4 Analysis of viral contigs representing complete genomes 

The viral contigs in the complete phage catalogue were compared with the viral contigs 

in the Antarctic virus catalogue to identify the viral cluster or singleton designations of 

the complete virus genomes, if any. The viral contigs were also compared against the 

Antarctic NCLDV and virophage catalogues to assess whether any of the complete 

virus genomes represented NCLDVs or virophages, respectively. Additional data for the 

viral contigs representing complete genomes, such as contig length, read depth, GC 

content, gene count, and gene function, were collected from the Antarctic metagenome 

data available on JGI’s IMG/M website (https://img.jgi.doe.gov/cgi-bin/m/main.cgi). 

Based on the viral cluster or singleton designations, clade assignment, contig lengths, 

and GC content, the viral contigs in the complete phage catalogue identified from the 

Ace Lake metagenomes were grouped as distinct viruses (Appendix H: Table H1).  

3.2.6.5 Analysis of viruses containing defence genes 

The nine abundant unassigned contigs containing defence genes (section 3.2.5) were 

thoroughly analysed. The contigs were compared against the Antarctic virus catalogue 

and the complete phage catalogue to identify any viral clusters or singletons they might 

be associated with and to assess whether any of the contigs represented complete viral 

genomes, respectively. The contigs were also compared against the output of VirSorter 

analysis of the unassigned contigs (section 3.2.5). The abundant viral contigs and the 

contigs belonging to the viral clusters to which they belonged were further aligned 

https://thenounproject.com/
https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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against each other using the ‘progressive Mauve’ mode of Mauve v2.4.0 using default 

parameters, to identify additional cluster contigs that might represent complete or nearly 

complete phage genome (Appendix H: Table H1). The viral cluster contigs were also 

compared against the spacer database to identify potential hosts. 

The viral cluster contigs containing cas genes were aligned against the Ace Lake 

metagenome contigs using the blastn mode of BLAST+ v2.9.0, considering only 100% 

identity matches across 100% query alignment fraction, to include additional viral 

contigs that were not a part of the Antarctic virus catalogue. Additionally, CRISPR 

spacer arrays were identified in the viral contigs containing cas genes. Using the spacer 

database, the potential viral targets of these viral spacers were determined. Moreover, 

these viral spacer sequences were compared against the spacer sequences of its probable 

host, in search of any similarities between the two groups of spacers.   

3.2.6.6 Analysis of abundant Ace Lake viral clusters 

Among the viral contigs in the Antarctic virus catalogue, the contigs identified from the 

Ace Lake metagenomes were separated out and grouped into their viral cluster and 

singleton designations for analysis. The read depths of the viral contigs belonging to a 

viral cluster from a time period (including all depths and filter fractions) were summed. 

Viral clusters with summed read depths >4000 in at least one time period as well as 

singletons with read depths >4000 were considered to be abundant (referred to as 

abundant viral clusters or singletons hereafter) and were further analysed (Appendix H: 

Table H2). Additionally, abundant viral clusters were assessed to determine the Ace 

Lake depth from which most of the cluster contigs originated. The probable hosts 

(bacterial, archaeal, or eukarya) of the viral clusters or singletons were also discerned 

from the data in the Antarctic virus catalogue, which included some of the viral data 

(such as viral cluster or singleton designation and its probable host) available on 

IMG/VR (Páez-Espino et al, 2017) that had matches to the Antarctic viral contigs. In 

search of additional potential Chlorobium viruses, the spacer matches to the abundant 

viral clusters from the Ace Lake Interface and Lower zone were examined and their 

potential hosts were deduced using the data in the spacer database. The abundant viral 

clusters with predicted eukaryal hosts were also compared to the viral clusters with 

matches to the five Phycodnaviridae OTUs. 
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Read depth-based abundance correlation analysis was also performed between 

Chlorobium and the abundant viral clusters from the Ace Lake Interface and Lower 

zone as well as between Synechococcus and the abundant viral clusters from the Ace 

Lake Upper zone that had potential bacterial hosts. Relative abundance-based 

correlation analysis was performed between Micromonas and the abundant viral clusters 

from the Ace Lake Upper zone that had potential eukaryal hosts. 

 

3.3 Results and discussion 

3.3.1 Antarctic seasons: defining seasons in polar regions 

Antarctica is the southern-most continent on Earth and contains the geographic South 

Pole. It is the coldest and driest continent with very little annual precipitation; the mean 

annual precipitation around Davis Station (68.577° S, 77.968° E) in East Antarctica 

ranged between 0.1 to 0.5 mm over a 10-year period from January 2006 to December 

2015 (Davis Station data from AADC). Notably, the light cycle prevalent in the polar 

regions is very different from that experienced in the other non-polar cold regions, with 

24 hours of sunlight available for a few weeks in summer when the sun does not set and 

no sunlight available for a few weeks in winter when the sun does not rise (Figure 3.3a).  

For the in-depth time-series analysis of the Ace Lake in the Vestfold Hills, samples 

were collected over a 10-year period between 2006 and 2015, in January, February, 

July, August, October, November, and December. Therefore, it was important to 

reasonably define the seasons based on the environmental factors that indicate a change 

in season and might directly or indirectly affect the biodiversity and function of the 

lake, as opposed to defining seasons using a simple system of months (Table 3.1). The 

environmental factors studied included daylength (number of hours the sun was above 

the horizon; Figure 3.3a), sunlight hours (number of hours of bright sunlight was 

available without being obstructed by a cloud cover; Figure 3.3a), air temperature 

(Figure 3.3b), maximum wind velocity (Figure 3.3c), and lake ice cover thickness 

(Table 3.1; Appendix I). Daylength and sunlight hours indicate the availability of light, 

which can directly impact species diversity and abundance, especially in the upper oxic 

zone and oxycline of Ace Lake, where the phototrophic algae and bacteria thrive 

(Rankin et al, 1997; Rankin, 1998; Rankin et al, 1999; Powell et al, 2005; Ng et al, 
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2010; Lauro et al, 2011; Laybourn-Parry and Bell, 2014). For example, in summer, 

intense sunlight can cause photoinhibition and reduce the photosynthetic capacity of 

these microorganisms (Rankin et al, 1999; Powell et al, 2005; Cuvelier et al, 2017). As 

Ace lake is covered by ice for most of the year, the air temperature and wind likely do 

not directly affect the organisms living in the lake waters, except probably the lake 

surface microorganisms. However, they might be useful as indicators of change in 

season. Additionally, changes in air temperature can alter the thickness of the Ace Lake 

ice cover, which in turn can affect water mixing and light penetration in the lake as well 

as lake temperature, thereby impacting the lake biodiversity (Hand and Burton, 1981; 

Burch, 1988; Gibson and Burton, 1996; Rankin, 1998; Rankin et al, 1999; Laybourn-

Parry and Bell, 2014). 
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Figure 3.3 Environmental data recorded at Davis Station, East Antarctica. The line graphs 

show the mean of monthly average values of (a) daylength (yellow line) and sunlight hours 

(orange line); (b) maximum (purple line) and minimum (blue line) air temperature; and (c) 

maximum wind velocity (green line) recorded over a 10-year period from Jan 2006 to Dec 2015 

(monthly average values described in section 3.2.4.2). Daylength data for Davis Station were 

taken from an online service (https://www.timeanddate.com), whereas the sunlight hours, air 

temperature, and wind velocity data gathered at Davis Station were taken from AADC. All error 

bars indicate both positive and negative standard deviations from the mean.  

https://www.timeanddate.com/
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The daylength values measured at Davis Station were consistent over the 10-year 

period, with 24 h daylight from the end of November to mid-January and no daylight 

from the beginning of June to early July (Figure 3.3a). However, the number of bright 

sunshine hours (sunlight hours) varied throughout the year, with the variations being 

directly proportional to the availability of light (Figure 3.3a). For example, the sunlight 

hours showed no variations over the years in Jun when no daylight was available, but 

the variations steadily increased from Jun to Dec with the increase in daylength, 

fluctuating by as much as 8 h in Dec and Jan. Additionally, air temperature values 

showed seasonal variation, with lowest temperatures measured in Jul and Aug (-14 to -

21 °C) and mostly positive temperatures measured in Dec and Jan (2 to 4 °C) (Figure 

3.3b). The air temperature also fluctuated more in the colder months (varying by up to 7 

°C) than in the warmer months (varying by ~2 °C). Wind velocity could not be used for 

defining season, as it showed no discernible pattern of change (Figure 3.3c). As Ace 

Lake is covered by ice for nearly 11 months a year, ice cover thickness could probably 

be used to define only the summer months, when the ice cover would be partially or 

completely melted (Table 3.1). It has also been previously noted that the Ace Lake ice 

cover is thickest in spring or early summer (Rankin et al, 1999). Among the 

environmental data collected during Ace Lake sampling, the maximum ice cover 

thickness was observed in October (~2 m) and November (1.75 m) with no visible ice 

melting, and so these two months could be defined as spring months based on ice cover 

thickness. 

Eventually, based on light availability and air temperature, December and January were 

considered summer months, whereas July and August were considered winter months. 

However, the results of the environmental data analysis could not help with confidently 

categorising some of the sample collection months, such as October, November, and 

February (Table 3.1). Consequently, a more general season grouping was used to 

categorise all the sample collection months: December, January, and February as 

summer months; July and August as winter months; and October and November as 

spring months. 

Table 3.1 Season description based on environmental data gathered during sample 

collection and at Davis Station, Antarctica. * The percentage light hours were calculated by 

dividing the number of hours of sunlight by 24 (number of hours in a day). The monthly 

average values were calculated as described in section 3.2.4.2. † Wind velocity did not show 
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any seasonal pattern and was not used for season classification. ‡ The cut-offs for season 

classification were selected based on some of the previously applied season classifications, 

which were used as references. For example, the winter cut-off of % light hours was selected as 

30% keeping in mind that Jul and Aug were considered winter months by some of the previous 

seasonal studies on Ace Lake (Burch, 1988; Burke and Burton, 1988; Rankin et al, 1999; 

Laybourn-Parry and Bell, 2014). 

Sample 

collection 

time period 

Monthly 

average 

daylength 

in hours 

(% light 

hours)* 

Monthly 

average 

sunlight 

hours (% 

light 

hours)* 

Monthly 

average 

maximum 

air 

temperature 

(°C) 

Monthly 

average 

minimum air 

temperature 

(°C) 

Monthly 

average 

maximum 

wind 

velocity 

(km/h)† 

Ice cover 

thickness 

Dec 2006 24 (100%) 10 (42%) 2 -2 42 - 

Nov 2008 21 (88%) 9 (38%) -2 -7 67 1.75 m 

Nov 2013 21 (88%) 13 (54%) -1 -7 54 

Covered 

by thick 

ice 

Dec 2013 24 (100%) 10 (42%) 2 -3 44 

Covered 

by thick 

ice, but 

melting 

Feb 2014 17 (71%) 6 (25%) 1 -4 46 

Half 

covered by 

ice 

Jul 2014 2 (8%) 1 (4%) -17 -24 37 

Covered 

by thick 

ice 

Aug 2014 7 (29%) 3 (13%) -14 -21 62 >1 m 

Oct 2014 15 (63%) 7 (29%) -7 -13 49 ~2 m 

Dec 2014 24 (100%) 10 (42%) 3 -2 49 

~1.8 m ice, 

beginning 

to melt 
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8 Jan 2015 23 (96%) 9 (38%) 3 -1 47 

Covered in 

poor 

quality ice 

27 Jan 2015 23 (96%) 9 (38%) 3 -1 47 No Ice 

Probable season classification based on observed environmental data‡ 

% Light 

hours* 

≤30% Low light levels 

Winter. 

31-80% Medium light 

levels 

Spring/Autumn. 

>80% High light levels 

Summer. 

Air 

temperature 

< -5 °C Very cold 

Winter. 

-5 to 0 °C Cold 

Spring/Autumn. 

>0 °C Comparatively 

warmer 

Summer. 

Ice cover 

thickness 

Thick ice cover 

Winter. 

Maximum ice cover 

Spring. 

Ice cover melting or no 

ice cover 

Summer. 

3.3.2 Seasonal changes in Ace Lake environment 

Ace Lake is a stratified lake with an upper oxic (Upper) zone separated from a lower 

anoxic (Lower) zone by an oxycline (Interface), which also coincided with the halocline 

and thermocline of the lake (Figure 3.4). Ace Lake environmental data collected 

between 2006 and 2014 showed that the lake salinity increased with lake depth and 

ranged from 3.6 to 4.2 % at the lowest lake depth. The lake temperature also increased 

with depth, reaching 3 to 5 °C at the thermocline, but then decreased with lake depth to 

2–3 °C (Figure 3.4). The data also showed that the Ace Lake environment varied with 

changes in season, especially the oxycline, probably due to changes in the ice cover 

thickness. As summer recedes, the ice cover begins to form, and it thickens with 

approaching winter. Ice formation in Ace Lake causes salt exclusion into the Upper 

zone waters, just below the ice, which causes the Upper zone waters to mix via 

convection (Gibson and Burton, 1996; Rankin et al, 1999). The thickness of the ice 

cover directly governs the depth to which the water mixes. Therefore, in winter when 

the ice was thicker, the oxycline was possibly pushed deeper down the lake depth. 

However, little to no environmental changes were observed in the Lower zone of Ace 

Lake (Figure 3.4). 
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Figure 3.4 Ace Lake temperature, salinity, and dissolved oxygen profiles. The scatter plots 

show the changes in the Ace Lake environment factors, namely temperature (green line), 

salinity (orange line), and dissolved oxygen (blue line), from 2006 to 2014. The data were 

collected from three seasons (top x-axis: summer, red font; winter, blue font; spring, green 

font). The y-axis indicates increasing lake depth from top to bottom. The x-axis is shown 

separately for each factor. As different data collection devices were used for calculating 

dissolved oxygen content (YSI Sonde in 2006 and 2008; TOA WQC in 2013 and 2014), the 

data were normalized across sampling periods. Dissolved oxygen content data were not 

gathered during Dec 2013, Feb 2014, Jul 2014, and Jan 2015 sample collections, and are not 

shown here. 

3.3.3 Ace Lake biodiversity 

The taxonomy and abundance analysis of ~25 million contigs (20 Gbp) assembled from 

120 Ace Lake metagenomes yielded 17,157 OTUs, of which 117 OTUs had relative 

abundance ≥1%. The abundant OTUs, along with 3.5 billion (0.5 Tbp) metagenome 

reads, were used for generating a total of 45 high-quality bacterial and archaeal OTU 

bins as well as a eukaryal bin and five algal virus bins. 

3.3.3.1 Eukarya 

OTUs belonging to the Eukarya domain were found to be abundant in the Upper zone of 

Ace Lake. A total of 508 eukaryal OTUs were identified in the 120 Ace Lake 

metagenomes, of which only four had relative abundance ≥1% in at least one 

metagenome. Of the four abundant eukaryal OTUs, only two yielded good quality bins 

after bin refinement using RefineM. The two OTUs were closely related to two 

Micromonas, namely Micromonas pusilla and Micromonas commoda, members of the 
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Mamiellaceae family. However, based on their ANI to respective reference genomes 

and their matches to similar MetaBAT MAGs, the two OTUs were merged to genus-

level as Micromonas (Appendix G).  

The Micromonas OTU contributed to most of the Eukarya relative abundance in the 

Upper zone of Ace Lake in summer and spring (Figure 3.5). Other green algae including 

Py. gelidicola and a Mantoniella have been reported in the Ace Lake Upper zone 

(Rankin et al, 1999; Lauro et al, 2011). However, neither of these algae were detected in 

the Ace Lake metagenomes studied here. It is possible that this difference is due to the 

different approaches taken for taxonomic classification of these organisms, especially 

considering that Mantoniella, which is also a member of the Mamiellaceae family like 

Micromonas, was identified in the Ace Lake data from 2006.  

 
Figure 3.5 Relative abundances of eukaryal OTUs in the Upper zone of Ace Lake. The area 

graph shows the combined relative abundances of all eukaryal OTUs (orange area cover) as well 

as Micromonas (blue area cover) in the 0.8–3 μm-filter Ace Lake metagenomes. As the figure is 

an area graph, it indicates the amount of Eukarya relative abundance that is contributed by the 

Micromonas genus. For example, in Upper 3 Nov 2013 metagenome, nearly all of the Eukarya 

abundance is represented by Micromonas. The x-axis shows the Ace Lake depth zones (Upper 

1, 2, 3) as well as the sample collection time periods, including data from three seasons 
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(summer, red font; winter, blue font; spring, green font). The y-axis was split to show an 

expanded view of relative abundances below 1%. All Ace Lake surface (Upper 1) samples were 

from summer. 

3.3.3.2 Bacteria 

In the Ace Lake metagenomes, 84% of the OTUs (14,387 out of 17,157 OTUs) 

belonged to the Bacteria domain and were dispersed throughout the lake system. Of 

these bacterial OTUs, only 96 OTUs had relative abundance ≥1% and were used to 

generate 43 high-quality bacterial OTU bins. The OTUs included members of 

Actinobacteria (2), Alphaproteobacteria (4), Atribacteria (1), Bacteroidetes (11), 

Balneolaeota (1), Betaproteobacteria (3), Chlorobi (1), Cloacimonetes (1), 

Cyanobacteria (1), Deltaproteobacteria (5), Gammaproteobacteria (6), Planctomycetes 

(1), Tenericutes (1), and Verrucomicrobia (5).  

These OTUs were found to be abundant at particular depths of Ace Lake (Upper, 

Interface, or Lower zone depths), indicating their niche specificity (Figure 3.6), which 

has also been previously reported (Rankin et al, 1999; Lauro et al, 2011). For example, 

some of the Alphaproteobacteria (Loktanella), Bacteroidetes (Algoriphagus, 

Leadbetterella, Nonlabens, Saprospiraceae sp., Polaribacter), and Betaproteobacteria 

OTUs (Hydrogenophaga, Burkholderiaceae MOLA814) were abundant only in the 

metagenomes from the Ace Lake surface (Upper 1) (Figure 3.6). Of these, only 

Burkholderiaceae MOLA814 had good matches to a previously known species genome, 

Betaproteobacteria bacterium MOLA814 (isolated from a cold, marine environment — 

Beaufort Sea, Arctic Ocean), with 100% SSU rRNA gene identity and 98% ANI across 

94% alignment fraction (Appendix G). Leadbetterella had matches to the Cytophagales 

bacterium TFI 002 genome, but with 91% SSU rRNA gene identity and 71% ANI 

across only 19% alignment fraction, suggesting that the two organisms were quite 

different. All other OTUs abundant in Upper 1 also had matches to reference genomes, 

but with low ANI (<85%) and no SSU rRNA gene matches, probably due to incomplete 

bins lacking SSU rRNA genes (Appendix G). Therefore, these OTUs could not be 

assigned a species-level taxonomy. 
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Figure 3.6 Relative abundances of bacterial OTUs throughout the Ace Lake. The heat map 

shows the peak relative abundance of bacterial OTUs from a depth and time period, i.e., the 

highest relative abundance of an OTU among the three filter fractions from a depth and time 

period. The OTUs shown in the figure represent the abundant bacterial OTUs for which high-

quality bins were generated and their abundances recalculated in metagenomes from depths 

where their abundances were originally high (section 3.2.2). The y-axis represents increasing 

lake depth from top to bottom — Upper 1 to Lower 3, and shows data collected from summer 

(red font), winter (blue font), and spring (green font). All Ace Lake surface (Upper 1) samples 
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were from summer. Winter data were not gathered from the Lower zone of Ace Lake due to 

logistics issues during sample collection.  

Apart from the microorganisms identified only in Upper 1, the Upper zone of Ace Lake 

supported a variety of microbes including members of Actinobacteria (Aquiluna, 

Microbacteriaceae BACL25), Alphaproteobacteria (Nisaea, Pelagibacter, Yoonia), 

Bacteroidetes (Crocinitomix, Cyclobacterium, Fabibacter, Flavobacteriaceae MAG-

120531, Oligoflexus), Balneolaeota (Balneolaceae UBA2664), Betaproteobacteria 

(Burkholderiaceae SCGC-AAA027-K21), Cyanobacteria (Synechococcus), 

Gammaproteobacteria (Halioglobus, Methylophilaceae BACL14, Porticoccaceae 

HTCC2207, Pseudohongiellaceae 1, Pseudohongiellaceae 2, Pseudomonas_E), 

Planctomycetes (Gimesia), and Verrucomicrobia (Haloferula, Verrucomicrobia 

Arctic95D-9, Verrucomicrobia BACL24, Verrucomicrobia SW10, Verrucomicrobia 

UBA4506) (Figure 3.6). Of these, Synechococcus was found to be abundant throughout 

the Ace Lake, whereas Nisaea was abundant in Upper 3 as well the Interface of Ace 

Lake. Synechococcus was one of the two most abundant bacteria in Ace Lake and had 

good matches to the reference genome of Synechococcus sp. SynAce01 (also isolated 

from Ace Lake), with 99.9% 16S rRNA gene identity and 99% ANI across 97% 

alignment fraction (Appendix G; discussed in Chapter 4). This cyanobacterium is 

abundant in Ace Lake, especially at depths just above the oxycline (Rankin et al, 1997; 

Rankin, 1998; Rankin et al, 1999; Powell et al, 2005; Lauro et al, 2011). Additionally, a 

Yoonia OTU had good matches to the reference genome of Yoonia vestfoldensis SKA53 

(previously isolated from Ace Lake, Antarctica; Van Trappen et al, 2004), with 99.9% 

SSU rRNA gene identity and 93% ANI across 89% alignment fraction. Some of the 

other Upper zone OTUs also had good SSU rRNA gene matches (≥99%) to their 

reference genomes, suggesting that they could be different strains of the reference 

species. However, their ANI was usually low (<90%), either because the OTU bins 

were incomplete or probably because the microbes had distinct genomes compared to 

the reference species (Appendix G). Therefore, these OTUs could not be assigned a 

species-level taxonomy. 

At the Ace Lake Interface, GSB belonging to the Chlorobium genus were found to be 

abundant (Figure 3.6); it was also the most abundant microorganism in Ace Lake and 

has been reported before (Rankin et al, 1999; Ng et al, 2010; Lauro et al, 2011). The 

Ace Lake Chlorobium had 99% 16S rRNA gene identity to C. phaeovibrioides DSM 
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265 reference genome, but only 85% ANI across 85% alignment fraction, suggesting 

that it was probably a different species to the reference (Appendix G; discussed in 

Chapter 5). 

The Lower zone of Ace Lake also supported a variety of bacterial populations, mostly 

including members of Deltaproteobacteria (Desulfobacterium, Desulfocapsa, 

Desulfatiglanales NaphS2, Desulfobacterales S5133MH16, Syntrophales UBA2210), 

Tenericutes (Izimaplasma), and Bacteroidetes (Bacteroidales UBA4459), along with 

members of candidate phyla such as Atribacteria (Atribacteria 34-128) and 

Cloacimonetes (Cloacimonetes JGIOTU-2) (Figure 3.6). Of these, the candidate phyla 

microbes were mostly prevalent in the deeper Lower zone depths, especially Lower 2 

and 3, whereas the Deltaproteobacteria, Bacteroidetes, and Tenericutes OTUs were 

found to be more abundant in the Interface and Lower 1 metagenomes (Figure 3.6). All 

Lower zone OTUs had matches to reference genomes, however they could not be 

assigned a species-level taxonomy, either because the OTU bins were incomplete and 

lacked SSU rRNA genes for comparison or their SSU rRNA gene identities and ANI 

were low (Appendix G). 

3.3.3.3 Archaea 

The archaea identified in Ace Lake were prevalent in the Lower zone of the lake and 

were also found at the Interface in the winter months (Jul and Aug 2014), with most of 

their abundance contributed by members of Euryarchaeota (Figure 3.7). A total of 445 

archaeal OTUs were identified in the Ace Lake metagenomes, of which only four had 

relative abundance ≥1% and were used for generating high-quality archaeal OTU bins. 

However, after refinement with RefineM, only two high-quality archaeal OTU bins 

were generated, namely Methanomicrobiaceae 1 and Methanothrix_A, both of which 

were methanogens and belonged to the Euryarchaeota phylum. The two OTUs 

contributed to some of the Archaea relative abundance in the deeper depths of Ace Lake 

(Lower 2 and 3), but not in Lower 1. Two other methanogenic archaea have been 

previously isolated from the Ace Lake anoxic zone, namely M. burtonii (Franzmann et 

al, 1992) and Mtg. frigidum (Franzmann et al, 1997), of which the latter was detected in 

the Ace Lake data, but its relative abundance was very low (<0.06%) in all 

metagenomes. The two high-quality archaea OTUs could not be assigned a species-level 

taxonomy based on their SSU rRNA gene comparison and ANI values to reference 

genomes (Appendix G). 
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Figure 3.7 Relative abundances of archaeal OTUs in the Lower zone of Ace Lake. The 

stacked bar chart shows the mean of relative abundances of archaea in metagenomes from a 

depth and time period, i.e., the mean of relative abundances in the three filter fractions collected 

from each depth and time period. The means of relative abundances are shown for all archaeal 

OTUs belonging to Euryarchaeota (dark red bar), Nanoarchaeota (yellow bar), Diapherotrites 

(green bar), Aigarchaeota, Candidatus Korarchaeota, Candidatus Micrarchaeota, 

Crenarchaeota, Thaumarchaeota phyla as well as two abundant archaea OTUs, namely 

Methanothrix_A (purple bar) and Methanomicrobiaceae 1 (orange bar), identified in the Lower 

zone of Ace Lake. The x-axis indicates the Ace Lake depth zones (Lower 1, 2, 3) as well as the 

sample collection time periods, including three seasons (summer, red font; winter, blue font; 

spring, green font). The y-axis was split to show an expanded view of relative abundances 

below 1%. Winter data were not gathered from the Lower zone of Ace Lake due to logistics 

issues during sample collection. 

3.3.4 Seasonal variations in OTU abundances 

All OTU relative abundance data were normalised and used for statistical analyses, such 

as distLM analysis, to assess whether or not any abundance variation occurred (Figure 

3.8). The relationship between variations in the OTU relative abundances and change in 

season was explored using environmental parameters such as air temperature, 

daylength, and sunlight hours that changed with season. All variations like seasonal 

variation, inter-annual variation, depth-based variation or biomass size-based variation 
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(incurred from using samples from different filter fractions) were then identified from 

the output of the statistical analysis. The overall Ace Lake microbial community 

showed prominent seasonal variation in their abundances (Figure 3.8). This was 

supported by the seasonal segregation of the Ace Lake metagenomes (vertical 

segregation along dbRDA2 in Figure 3.8) with change in season factors, especially air 

temperature and sunlight hours. The distLM output also showed segregation of 

metagenomes based on the lake depth from which they were collected (horizontal 

segregation along dbRDA1 in Figure 3.8). The environmental factors air temperature 

(P=0.001), daylength (P=0.001), and sunlight hours (P=0.002) were significant 

explanatory factors of change in season, whereas depth values (P=0.001) and salinity 

(P=0.001) significantly contributed to change in lake depth. On the other hand, inter-

annual changes were not evident, with 2014 (Oct) spring samples being clustered with 

2008 (Nov) and 2013 (Nov) spring samples, but separate from 2014 winter (Jul, Aug) 

and 2014 summer (Dec) samples. Similarly, biomass size-based variations were not 

observed, and all populations from the three filter fractions were highly similar and 

completely overlapped in the dbRDA plot (Figure 3.8). 

 
Figure 3.8 Seasonal and depth-related variations in relative abundances of OTUs 

identified in Ace Lake. The dbRDA plot highlights the relationship between changes in 

environmental factors, such as lake depth (depth), salinity (salinity), monthly average daylength 

(daylength), monthly average sunlight hours (sunlight), and monthly average air temperature 

(temperature), and variations in OTU abundances. The x-axis of the dbRDA plot explains 77% 

of the fitted and 21% of the total variations, whereas the y-axis of the plot explains 13% of the 
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fitted and 4% of the total variations. The data points representing the three filter fractions from 

each depth and time period overlap in the plot, reducing the 120 metagenomes to 40 data points 

in the plot. The figure includes vector overlays for the environmental factors. The relationship 

between an environmental factor and variations in OTU relative abundances is indicated by the 

direction and length of the factor vector, with increased vector length indicating a stronger 

relationship. Samples from Dec (empty circle), Jan (empty square), and Feb (empty triangle) 

were grouped as summer (red area cover); Jul (black triangle) and Aug (black square) were 

grouped as winter (blue area cover); and Oct (grey circle) and Nov (grey triangle) were grouped 

as spring (green area cover) to highlight seasonal variations. Samples from Upper 1, 2, and 3 

were grouped as Upper (thick-dotted line); interface were grouped as Interface (solid line); 

Lower 1, 2, and 3 were grouped as Lower (thin-dotted line) to highlight depth-related variations. 

Apart from this, the changes in the alpha diversity also showed the effects of seasonal 

changes on the biodiversity of Ace Lake (Figure 3.9). In the Upper 3 zone of Ace Lake, 

the alpha diversity was low in summer and high in winter and spring in the 0.8–3 μm-

filter metagenomes, which coincided with the change in the abundance of 

Synechococcus in these metagenomes. The sudden decrease in the 0.8–3 μm-filter 

spring metagenome from Upper 2 was also due to the high abundance of Synechococcus 

in that metagenome. The effect of change in season was most obvious in the alpha 

diversity measured at the Ace Lake Interface (Figure 3.9). Here the diversity was high 

in winter and Oct 2014 spring when the Chlorobium population was very low (peak 

relative abundances: 6% Jul 2014; 5% Aug 2014; <1% Oct 2014), but low in summer 

and spring when the Chlorobium population dominated the Interface (peak relative 

abundances: 84% Dec 2006; 81% Nov 2008; 33% Nov 2013; 59% Dec 2014) (Figure 

3.6). Contrarily, the Lower zone of Ace Lake seemed mostly unaffected by change in 

season from summer to spring, with very little variations in alpha diversity (Figure 3.9). 

The high contribution of Synechococcus and Chlorobium toward the similarity between 

metagenomes from a season (summer, winter, spring) and dissimilarity between 

metagenomes from different seasons (summer vs winter, summer vs spring, spring vs 

winter) was also indicated by the output of SIMPER analysis (Table 3.2). 
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Figure 3.9 Seasonal variation in Ace Lake alpha diversity. The line graph shows the 

Simpson’s index of diversity measures in metagenomes from three filter fractions (3–20 μm, 

dark blue line; 0.8–3 μm, pink line; 0.1–0.8 μm, blue line), seven Ace Lake depths (x-axis: 

Upper 1 to Lower 3), and three seasons (x-axis: summer, red font; winter, blue font; spring, 

green font). The y-axis was split to show an expanded view of diversity measures between 0.9 

and 1. All Ace Lake surface (Upper 1) samples were from summer. Winter data were not 

gathered from the Lower zone of Ace Lake due to logistics issues during sample collection. 

Table 3.2 SIMPER analysis showing similarities between samples from a season and 

dissimilarities between samples from different seasons as well as the top contributing 

OTUs. The percentages in the cells with yellow background indicate similarities between 

metagenomes from the same season (summer, winter, or spring). The percentages in the cells 

with grey background indicate dissimilarities between metagenomes from different seasons 

(summer vs winter, summer vs spring, winter vs spring). The data are shown for summer (red), 

winter (blue), and spring (green) samples along both x- and y-axes, and for six Ace Lake depths 

(Upper 2 to Lower 3) along the y-axis. The two most abundant Ace Lake bacterial taxa 

(Chlorobium and Synechococcus) have been highlighted in bold. No winter data are shown for 

Ace Lake Lower zones, as winter samples were not collected due to logistics issue during 

sample collection. Upper 1 data are also not shown, as all Upper 1 samples were collected in 

summer. 
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Ace Lake 

depth 
Seasons Summer Winter Spring 

Upper 2 

Summer 

40% 

Phycodnaviridae 2 

Synechococcus 

Phycodnaviridae 3 

Phycodnaviridae 4 

Phycodnaviridae 5 

  

Winter 

53% 

Synechococcus 

Verrucomicrobia 

62% 

Phycodnaviridae 2 
 

Spring 
52% 

Synechococcus 

40% 

Synechococcus 

59% 

Phycodnaviridae 2 

Upper 3 

Summer 

42% 

Synechococcus 

Phycodnaviridae 2 

  

Winter 
51% 

Synechococcus 

61% 

Phycodnaviridae 2 

Synechococcus 

Nisaea 

Microbacteriaceae BACL25 

 

Spring 
50% 

Synechococcus 

37% 

Synechococcus 

62% 

Phycodnaviridae 2 

Interface 

Summer 
43% 

Chlorobium 
  

Winter 
56% 

Chlorobium 

70% 

Chlorobium 
 

Spring 
55% 

Chlorobium 

43% 

Chlorobium 

55% 

Chlorobium 

Lower 1 

Summer 
52% 

Chlorobium 
  

Spring 

41% 

Chlorobium 

Desulfatiglanales 

NaphS2 

 

70% 

Syntrophales 

Cloacimonetes 

Desulfatiglanales 

NaphS2 
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Bacteroidales 

UBA4459 

Atribacteria 34-128 

Lower 2 

Summer 

51% 

Chlorobium 

Syntrophales 

Cloacimonetes 

  

Spring 

41% 

Syntrophales 

Chlorobium 

 

69% 

Syntrophales 

Cloacimonetes 

Desulfatiglanales 

NaphS2 

Atribacteria 34-128 

Lower 3 

Summer 

53% 

Atribacteria 34-128 

Cloacimonetes 

Syntrophales 

  

Spring 

39% 

Cloacimonetes 

Atribacteria 34-128 

Chlorobium 

 
71% 

Atribacteria 34-128 

The seasonal variation in the daily maximum incident light recorded at Ace Lake is very 

prominent, with light levels as high as 1,225 µE m-2 S-1 measured in summer and only 

1.3 µE m-2 S-1 measured in winter (Burch, 1988). The amount of light, especially PAR, 

penetrating the Ace Lake depends on a number of factors like the quality of the surface 

ice cover (thickness and opaqueness), the amount of snow cover, and the microbial 

growth, all of which are affected by change in season (Hand and Burton, 1981; Burch, 

1988; Burke and Burton, 1988; Rankin et al, 1999). Moreover, it has been previously 

noted that an ice and/or snow cover can block out large proportions of the incident light, 

allowing only 21% of the total incident light to pass through 1.6 m of ice in the absence 

of a snow cover and only 7% in the presence of an additional 30 cm snow cover (Burch, 

1988). Therefore, in winter when the incident light is very low, the presence of a thick 

ice cover (>1m in Aug 2014; Table 3.1; Appendix I) would further limit the amount of 

PAR available to the phototrophs in the Ace Lake, thereby affecting their abundance. 

As both Synechococcus and Chlorobium were phototrophs, their low abundance in 
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winter was probably due insufficient amounts of PAR for energy production. However, 

Synechococcus abundance in the Upper zone recovered much faster than Chlorobium 

abundance at the Interface, in late winter and the following spring (peak relative 

abundances: 16% vs 5% in Aug 2014 and 51% vs <1% in Oct 2014, respectively). Also, 

Synechococcus was quite abundant at the Interface in Oct 2014 (peak relative 

abundance: 25%), in the near absence of Chlorobium, and in the Lower zone 

metagenomes (peak relative abundance: 8%). This could be attributed to its capacity for 

fermentation in the anoxic waters, allowing it to survive and grow in the dark; genes 

associated with fermentation were identified in the Ace Lake Synechococcus. This 

fermentative ability has also been reported in Synechococcus from the deep, dark waters 

of the Black Sea (Callieri et al, 2019).  

Apart from these two photoautotrophs, some of the other abundant OTUs also displayed 

seasonal variations (Figure 3.10). Algoriphagus, Flavobacteriaceae MAG-120531, 

Hydrogenophaga, Leadbetterella, Loktanella, Nonlabens, Polaribacter, and 

Saprospiraceae sp. were found only in the metagenomes from the Ace Lake surface 

(Upper 1), especially near-shore sites, and were prevalent only in summer, as all Upper 

1 samples were from summer (Figure 3.6). Other OTUs such as the eukarya 

Micromonas and the algal viruses Phycodnaviridae 1 and 3 also showed seasonal 

variation. Micromonas abundance was negligible in winter, which was consistent with 

its light-dependent survival and growth, and was quite high in spring and summer (peak 

relative abundances: 20% and 14%, respectively). Also, Phycodnaviridae 1 was more 

abundant in winter (peak relative abundance: 6%) in the 3–20 and 0.8–3 μm-filter 

metagenomes, whereas Phycodnaviridae 3 was more prevalent in summer and spring 

(peak relative abundances: 3% in both seasons) in 3–20 and 0.1–0.8 μm-filter 

metagenomes. Other abundant bacterial OTUs in the Ace Lake Upper zone that showed 

high abundance in summer and spring included Aquiluna, Burkholderiaceae 

MOLA814, Burkholderiaceae SCGC-AAA027-K21, and Gimesia. On the other hand, 

OTUs like Balneolaceae UBA2664, Crocinitomix, Cyclobacterium, Halioglobus, 

Porticoccaceae HTCC2207, Pseudomonas_E, and the five Verrucomicrobia OTUs 

were more abundant in winter and sometimes spring (Figure 3.10). Furthermore, 

Fabibacter and Methylophilaceae BACL14 were abundant only in spring samples. 
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Figure 3.10 Seasonal distribution of peak relative abundances of abundant OTUs in Ace 

Lake. The stacked bar chart shows the peak relative abundances of the OTUs in metagenomes 

from summer (red bar), winter (blue bar), and spring (green bar), i.e., the highest relative 

abundance of an OTU among all metagenomes from summer, winter, and spring. The graph was 

separated into three parts and the abundance scales were redrawn to show expanded view of 

total peak abundances ranging from 0–10, 0–60, and 0–180. 
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At the Ace Lake Interface, the abundances of the two Deltaproteobacteria OTUs 

Desulfobacterium and Desulfocapsa also varied with season and were found to be 

correlated to the Chlorobium abundance (Table 3.3). It has been previously shown that 

the Ace Lake Chlorobium is involved in sulfur cycling at the Ace Lake Interface, where 

it oxidises sulfide to sulfate, which is reduced back to sulfide by SRB (Rankin et al, 

1999; Coolen et al, 2006; Ng et al, 2010; Lauro et al, 2011). Desulfobacterium are SRB 

that can reduce sulfate, and was potentially involved with Chlorobium in sulfur cycling. 

Desulfocapsa possessed genes for sulfur and thiosulfate disproportionation, using which 

it could convert sulfur as well as thiosulfate to sulfide and sulfate, also previously 

reported (Finster et al, 2013), that could be used by Chlorobium and Desulfobacterium, 

respectively. Therefore, the significant positive correlation between the abundances of 

Chlorobium and the two Deltaproteobacteria might suggest a possible strong co-

dependence. The probable causes of the seasonal variations in the abundances of some 

of these OTUs were found to be related to their nutrient requirements (Panwar et al, 

2020). 

Table 3.3 Correlation between relative abundances of Chlorobium and members of 

Deltaproteobacteria at Ace Lake Interface. The correlation coefficient (R) and its significance 

(P-value) were calculated as described in section 3.2.4.3. The correlation between two microbes 

was not calculated (NC) if either of their abundances were low (<1%) in all Ace Lake Interface 

metagenomes from a size fraction. Correlation coefficients that were significant at 95% 

confidence level have been highlighted with a blue background. 

Organism 1 Organism 2 
3–20 μm filter 0.8–3 μm filter 0.1–0.8 μm filter 

R P-value R P-value R P-value 

Chlorobium 

Desulfobacterium 0.9 0.002 NC NC NC NC 

Desulfocapsa 0.8 0.026 0.8 0.031 NC NC 

Desulfobacterales 

S5133MH16 
0.6 0.173 NC NC NC NC 

Desulfatiglanales 

NaphS2 
0.5 0.287 0.6 0.179 NC NC 

Syntrophales 

UBA2210 
0.7 0.096 0.7 0.103 NC NC 

Desulfobacterium Desulfocapsa 0.9 0.015 NC NC NC NC 

3.3.5 Ace Lake viruses 
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Viral OTUs were prevalent in the Upper zone of Ace Lake and showed high abundance 

in metagenomes from 0.1–0.8 μm-filter, followed by 3–20 μm-filter and 0.8–3 μm-filter 

metagenomes. Of the 1,817 viral OTUs identified in the Ace Lake metagenomes, only 

13 OTUs, including one uncharacterized viral OTU referred to as ‘unclassified Virus’ in 

the metagenome Phylodist files, had relative abundances ≥1% in at least one 

metagenome. Among these abundant viral OTUs, five viruses belonging to the 

Phycodnaviridae family yielded good quality bins after bin refinement with RefineM. 

Based on the ANI matches to their reference genomes, the five algal viruses were 

classified as Phycodnaviridae 1, 2, 3, 4, and 5 (Appendix G). The five Phycodnaviridae 

OTUs contributed to most of the viral abundance in the Ace Lake Upper zone, with 

Phycodnaviridae 2 making most of the contributions (Figure 3.11).  
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Figure 3.11 Relative abundances of viral OTUs in the Upper zone of Ace Lake. The stacked 

bar charts show the relative abundances of all Viruses (dark grey bar) as well as 

Phycodnaviridae 1–5 OTUs (1, pink bar; 2, green bar; 3, yellow bar; 4, blue bar; 5, red bar), the 

five algal viral OTUs found to be abundant in the Upper zone of Ace Lake (x-axes: Upper 1, 2, 

3). The relative abundances are shown in (a) 3–20 μm-filter, (b) 0.8–3 μm-filter, and (c) 0.1–0.8 

μm-filter metagenomes from three seasons (x-axis: summer, red font; winter, blue font; spring, 

green font). All Ace Lake surface (Upper 1) samples were from summer. 

3.3.5.1 Viral contigs representing complete genomes  

Of the 516 viral contigs in the complete phage catalogue, 337 contigs were from the 

Ace Lake metagenomes. These Ace Lake viral contigs were grouped as 173 distinct 

viral genomes based on their length, GC content, viral cluster or singleton designation, 

and clade assignment. The viral genomes belonged to Caudovirales (158), Microviridae 

(1), Retrovirales (1), and Cress-DNA virus/Parvovirus (6), but the clade of seven 

genomes could not be determined. Additionally, the Ace Lake zones in which these 

circular phage were prevalent was also determined (Appendix H: Table H1). Among the 

173 distinct viruses, 87 were identified only in the Ace Lake Upper zone metagenomes 

and three were identified in Upper and Interface zone metagenomes. Notably, the viral 

genomes from Microviridae, Retrovirales, and Cress-DNA virus/Parvovirus were 

identified only in the Upper zone metagenomes from Ace Lake. These observations 

were consistent with the overall analysis of the Ace Lake metagenomes, which showed 

a higher proportion and variety of viruses in the Upper zone (Figure 3.11; also see 
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‘other’ viruses in Figure 3.13). These phage contig groups representing complete 

genomes of viruses need to be studied further to assess their potential hosts using the 

data in the spacer database (discussed in Chapter 6). 

3.3.5.2 Ace Lake ‘huge’ phage with defence genes 

Among the unassigned contigs from the Ace Lake metagenomes, 28 contigs had relative 

abundances ≥1% (Table 3.4). Five of these abundant unassigned contigs from the Ace 

Lake Lower zone were associated with cluster 24 (cl_24) in the Antarctic virus 

catalogue and were predicted most likely to be prophages by VirSorter (category 5). 

Four of these five cl_24 contigs contained cas genes and two of them represented 

complete virus genomes in the complete phage catalogue (Table 3.4). The cl_24 

contained total 56 viral contigs, including the five abundant unassigned contigs. Their 

sequence alignment against each other using Mauve showed that nine of these contigs 

from Ace Lake metagenomes, plus three from an Ace Lake MetaBAT MAG, 

represented complete or nearly complete genome of a ‘huge’ phage of around 528 kb 

length (Appendix H: Table H1). A similar ‘huge’ phage was also reported previously 

(Al-Shayeb et al, 2020). The cl_24 contigs were aligned against all metagenome contigs 

to increase the representation of the viral cluster, but this yielded small contigs of length 

≤1 kb that were not added to the cl_24 for further analysis.  

The nine cl_24 viral contigs from Ace Lake metagenomes representing complete phage 

genomes were identified from the 3–20 μm-filter and 0.1–0.8 μm-filter metagenomes 

from the Lower zone and probably represented intracellular and virion forms of the Ace 

Lake ‘huge’ phage, respectively. The complete phage genome sequences were present 

in metagenomes from Nov 2008, Nov 2013, Oct 2014, and Dec 2014, with incomplete 

sequences also found in the Ace Lake Interface metagenomes from Jul 2014 and Aug 

2014, suggesting that the phage thrives in the Lower zone. Host analysis of the 56 cl_24 

contigs showed potential association with Ammonifex degensii (a Firmicutes) and 

Methylomicrobium alcaliphilum (a Gammaproteobacteria). The phage contained cas 

genes representing a putative type I-C CRISPR-Cas system and CRISPR arrays 

containing spacer sequences, but did not have any spacer acquisition genes (cas1, cas2, 

or cas4); similar to what was observed in a recently reported ‘huge’ phage (Al-Shayeb 

et al, 2020). The spacer sequences on the phage contigs (32 distinct spacers) did not 

match any viruses in the spacer database but were identical to the spacer sequences on 

their potential hosts. Additionally, the repeat sequences in the CRISPR arrays of the 
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phage contigs (12 distinct repeats) were identical to those from their potential hosts, 

suggesting that the Ace Lake ‘huge’ phage might be using host CRISPR-Cas machinery 

to acquire spacers that target the viruses infecting its host; similar to previous reports 

from another ‘huge’ phage (Al-Shayeb et al, 2020). 

Apart from the Ace Lake ‘huge’ phage identified from the abundant unassigned contigs, 

four of the 28 contigs from the Ace Lake Upper zone and Interface also contained R-M 

system genes, of which two contigs were associated with cluster 463 (cl_463) in the 

Antarctic virus catalogue (Table 3.4). This viral cluster was also identified among the 

most abundant viral clusters in Ace Lake (section 3.3.5.3). However, host analysis of 

the cl_463 viral contigs did not yield any useful information; the host contigs with 

spacer matches to cl_463 were very small, only 186 to 514 bp long. Additionally, four 

of the abundant unassigned contigs contained phage genes and were potentially viral 

contigs. Notably, three of these contigs were the same length and their read depth was 

high (>4000, which was ~0.6-fold of the maximum read depth of Chlorobium at the Ace 

Lake Interface). However, these contigs showed no matches to the Antarctic virus 

catalogue and were not categorised as viruses or prophages by VirSorter, therefore, they 

were not investigated any further.  

Table 3.4 Ace Lake unassigned contigs with relative abundance ≥1%. The relative 

abundances of the contigs were calculated by dividing the contig coverage (contig length × read 

depth) with the total metagenome abundance (using Formula (1) described in section 3.2.1). The 

yellow-highlighted contigs were from cl_24 and most of these contained cas genes. The green-

highlighted contigs contained restriction-modification genes (R-M genes) and some of them 

were from cl_463. * VirSorter was used for identifying potential viral contigs. VirSorter 

category: 2, most likely a virus; 5, most likely a prophage. †Viral cluster or singleton 

designations were determined by comparing the contigs against the Antarctic virus catalogue. 

‡The gene annotations on the contigs were manually parsed to assess any defence gene 

assignments. The protein sequences of the defence genes were aligned against the 

UniProtKB/Swiss-Prot database using the ExPASy BLAST online service 

(https://web.expasy.org/blast/), to verify the gene assignments. The contigs highlighted in red 

font contained phage proteins and were potentially viral contigs based on their genetic 

composition. 

Contig ID 

(Metagenome) 

Contig 

length (bp) 

Read 

depth 

Relative 

abundance 

VirSorter 

category* 

Cluster or 

singleton† 

Defence 

genes, if 

any‡ 

https://web.expasy.org/blast/
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Ga0222679_1000001 

(Oct 2014_L1_0.1 μm) 
528,258 65 2% 5 cl_24 cas genes 

Ga0222682_1000001 

(Oct 2014_L2_0.1 μm) 
528,256 30 1% 5 cl_24 cas genes 

Ga0222637_1000003 

(Nov 2013_L1_0.1 μm) 
323,923 98 1% 5 cl_24 No 

Ga0208904_1000003 

(Nov 2008_L2_0.1 μm) 
447,854 173 1% 5 cl_24 cas genes 

Ga0222640_1000001 

(Nov 2013_L2_0.1 μm) 
528,282 44 1% 5 cl_24 cas genes 

Ga0222632_1000232 

(Nov 2013_U2_3 μm) 
36,204 4438 5% NM cl_463 R-M genes 

Ga0222634_1000174 

(Nov 2013_U2_0.1 μm) 
38,474 6412 6% NM cl_463 R-M genes 

Ga0222633_1001720 

(Nov 2013_U2_0.8 μm) 
10,635 5721 2% 5 NM R-M genes 

Ga0222673_1000495 

(Oct 2014_I_0.1 μm) 
17,665 2206 2% NM NM R-M genes 

Ga0222663_1001055 

(Aug 2014_U3_0.8 μm) 
6,783 4589 1% NM NM No 

Ga0222663_1001225 

(Aug 2014_U3_0.8 μm) 
6,047 4644 1% NM NM No 

Ga0222672_1001351 

(Oct 2014_I_0.8 μm) 
6,783 5052 1% NM NM No 

Ga0222672_1001480 

(Oct 2014_I_0.8 μm) 
6,298 5181 1% NM NM No 

Ga0222633_1002523 

(Nov 2013_U2_0.8 μm) 
7,513 5822 1% NM NM No 

Ga0222663_1000940 

(Aug 2014_U3_0.8 μm) 
7,513 4970 1% NM NM No 

Ga0222633_1001866 

(Nov 2013_U2_0.8 μm) 
9,906 5450 2% NM NM No 

Ga0222633_1002795 

(Nov 2013_U2_0.8 μm) 
6,825 5634 1% NM NM No 

Ga0222646_100168 

(Dec 2013_U1_0.1 μm) 
21,333 1988 1% NM NM No 



158 
 

Ga0222634_1000880 

(Nov 2013_U2_0.1 μm) 
11,674 5947 2% NM NM No 

Ga0222663_1000601 

(Aug 2014_U3_0.8 μm) 
11,441 4188 2% NM NM No 

Ga0302065_10003 

(Dec 2006_U2_3 μm) 
23,984 26 2% NM NM No 

Ga0222632_1001769 

(Nov 2013_U2_3 μm) 
7,513 4630 1% NM NM No 

Ga0222663_1001043 

(Aug 2014_U3_0.8 μm) 
6,857 4765 1% NM NM No 

Ga0222632_1001005 

(Nov 2013_U2_3 μm) 
11,881 3963 1% NM NM No 

Ga0222633_1001528 

(Nov 2013_U2_0.8 μm) 
11,966 4740 2% NM NM No 

Ga0222663_1001083 

(Aug 2014_U3_0.8 μm) 
6,625 4570 1% NM NM No 

Ga0222672_1000724 

(Oct 2014_I_0.8 μm) 
11,543 4639 2% NM NM No 

Ga0222672_1001360 

(Oct 2014_I_0.8 μm) 
6,756 5489 1% 2 NM No 

3.3.5.3 The abundant Ace Lake viral clusters 

A total of 30,897 viral contigs in the Antarctic virus catalogue were from the Ace Lake 

metagenomes, including 3,034 from Upper 1; 8,022 from Upper 2; 7,939 from Upper 3; 

2,971 from Interface; 2,201 from Lower 1; 2,093 from Lower 2; and 4,637 from Lower 

3. This suggested that viruses were prevalent throughout the Ace Lake, albeit at lower 

abundances in the anoxic zone (see ‘other’ viruses in Figure 3.13). To analyse the Ace 

Lake viruses, the 4,856 viral clusters and 4,142 singletons to which these Ace Lake viral 

contigs belonged were studied separately. A total of 17 abundant viral clusters were 

further analysed to determine their probable niche in Ace Lake and their potential hosts 

(Appendix H: Table H2). Most of these abundant viral clusters (15 out of 17) were 

mainly represented by contigs from the Ace Lake Upper zone metagenomes, which 

coincided with the observation that the Upper zone of Ace Lake harboured more variety 

and abundance of viruses (Figure 3.11; also see ‘other’ viruses in Figure 3.13). The 

Upper zone viral clusters cl_5, cl_11, cl_159, cl_295, and cl_463 had potential bacterial 
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hosts, but the clusters showed no correlation to the most abundant bacteria in the Upper 

zone of Ace Lake, namely Synechococcus (described below in section 3.3.5.5). 

Similarly, the Upper zone viral clusters cl_7, cl_9, cl_20, cl_32, cl_35, and cl_66 with 

potential eukaryal hosts showed no correlation to Micromonas, the most abundant 

eukarya in the Upper zone of Ace Lake (described in section 3.3.5.4 below). However, 

the two abundant clusters from the Ace Lake Lower zone, cl_248 and cl_400, were 

found to be associated with the Chlorobium in Ace Lake (described below in section 

3.3.5.6).  

3.3.5.4 Algal viruses 

The five algal viruses, Phycodnaviridae 1–5, also represented 261 viral clusters and 109 

singletons in the Antarctic virus catalogue, of which 107 viral clusters and 7 singletons 

were classified as NCLDVs in the Antarctic NCLDV catalogue. Notably, the viral 

clusters associated with Phycodnaviridae 3 completely differed from those associated 

with Phycodnaviridae 1, 2, 4, and 5, which shared most viral clusters. This grouping of 

the algal viral OTUs was also observed in the output of the OTU bin matches to the 

MetaBAT MAGs, where Phycodnaviridae 1, 2, 4, and 5, but not Phycodnaviridae 3, 

matched the MAG bin62, suggesting that the four algal viruses were very similar 

(Appendix G). This was also supported by the positive correlation between the relative 

abundances of Phycodnaviridae 1, 2, 4 and 5, whereas Phycodnaviridae 3 showed no 

correlation to the other four algal viruses (Table 3.5). Although the associations 

between the Phycodnaviridae viruses was observable, the five algal viruses showed no 

correlation to Micromonas, the most abundant green alga in the Ace Lake (Table 3.5).  

The six abundant viral clusters (cl_7, cl_9, cl_20, cl_32, cl_35, and cl_66; section 

3.3.5.3) from the Ace Lake Upper zone with predicted eukaryal hosts matched some of 

the clusters associated with the Phycodnaviridae OTUs. An abundance correlation 

between the Micromonas OTU and the six abundant viral clusters was performed to test 

potential virus-host association, however, no correlation was observed. 

Table 3.5 Algal virus OTUs identified in Ace Lake — their associated viral clusters and 

singletons and their correlation with potential hosts. The correlation coefficient (R) and its 

significance (P-value) were calculated as described in section 3.2.4.3. * The correlation between 

Micromonas and Phycodnaviridae 1–5 was not calculated (NC) in the metagenomes from 0.1–

0.8 μm-filter because Micromonas was not detected in this size fraction. Correlation coefficients 

that were significant at 99% confidence level have been highlighted with a blue background. 
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Comparison with the Antarctic virus catalogue and the Antarctic NCLDV catalogue 

Viral OTUs 

Number of OTU 

contigs with 

matches to virus 

catalogue (NCLDV 

catalogue) 

Number of 

viral clusters 

(NCLDV 

clusters) to 

which the 

OTU contigs 

belong 

Number of viral 

singletons 

(NCLDV 

singletons) to 

which the OTU 

contigs belong 

Viral clusters 

(NCLDV clusters) 

unique to an OTU 

Phycodnaviridae 1 377 (231) 20 (15) 5 (1) 15 (8) 

Phycodnaviridae 2 1,982 (889) 111 (64) 30 (1) 118 (54) 

Phycodnaviridae 3 510 (80) 119 (25) 56 (3) All (All) 

Phycodnaviridae 4 315 (129) 32 (13) 14 (1) 26 (5) 

Phycodnaviridae 5 68 (30) 12 (7) 4 (1) 5 (None) 

Correlation analyses 

Organism 1 Organism 2 
3–20 μm filter 0.8–3 μm filter 0.1–0.8 μm filter* 

R P-value R P-value R P-value 

Micromonas 

Phycodnaviridae 1 -0.3 0.2 -0.3 0.3 NC NC 

Phycodnaviridae 2 -0.1 0.6 -0.4 0.1 NC NC 

Phycodnaviridae 3 0.1 0.9 -0.3 0.3 NC NC 

Phycodnaviridae 4 -0.2 0.4 -0.2 0.4 NC NC 

Phycodnaviridae 5 -0.2 0.5 -0.4 0.1 NC NC 

Phycodnaviridae 1 

Phycodnaviridae 2 0.8 0.0004 0.6 0.01 0.5 0.03 

Phycodnaviridae 3 -0.1 0.8 -0.2 0.5 -0.1 0.7 

Phycodnaviridae 4 0.9 2e-7 0.7 0.002 0.7 0.001 

Phycodnaviridae 5 0.7 0.0005 0.7 0.003 0.5 0.2 

Phycodnaviridae 2 

Phycodnaviridae 3 0.4 0.1 0.2 0.6 0.5 0.04 

Phycodnaviridae 4 0.8 4e-5 0.9 3e-7 0.7 0.001 

Phycodnaviridae 5 0.9 2e-8 0.9 5e-9 0.96 3e-10 

Phycodnaviridae 3 
Phycodnaviridae 4 0.2 0.5 0.1 0.7 0.2 0.6 

Phycodnaviridae 5 0.4 0.1 -0.01 1 0.5 0.04 

Phycodnaviridae 4 Phycodnaviridae 5 0.8 3e-5 0.9 4e-8 0.7 0.002 
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3.3.5.5 Ace Lake cyanophage 

The genome size of the cyanophage (549 kb) assembled from an Ace Lake 2006 

metagenome was large enough for it to be considered a ‘huge’ phage, although no cas 

genes were identified on it. The cyanophage had good matches to 11 Ace Lake viral 

contigs, plus nine viral contigs from an Ace Lake MetaBAT MAG, in the Antarctic 

virus catalogue. The 11 Ace Lake contigs belonged to four viral clusters and 10 

singletons, which were unique to Ace Lake and did not contain contigs from other 

Antarctic metagenomes (Appendix H: Table H1). No correlation was observed between 

the cyanophage and the most abundant cyanobacteria in Ace Lake, namely 

Synechococcus. However, cyanophages are known to drive the development of marine 

cyanobacteria (Coleman et al, 2006; Avrani et al, 2011). It is possible that the 

association between the Ace Lake cyanophage and Synechococcus depended on 

additional factors and was not a linear correlation (discussed in Chapter 4). Moreover, 

the Synechococcus population was mainly present in the 3–20 and 0.8–3 μm-filter 

metagenomes, unlike the cyanophage that was identified only in the 0.1–0.8 μm-filter 

metagenomes, probably existing in its virion form. The host analysis of the cyanophage 

using the data in the spacer database did not yield any good matches to potential host 

contigs. As the Synechococcus OTU did not contain any CRISPR-Cas system genes, 

consistent with previous reports on marine cyanobacteria (Cai et al, 2013), its potential 

viruses could not be explored using the spacer database. An abundance correlation 

between the Synechococcus OTU and the five abundant viral clusters from Ace Lake 

Upper zone with potential bacterial hosts (cl_5, cl_11, cl_159, cl_295, and cl_463; 

section 3.3.5.3) was performed to assess any virus-host relationship, however, no 

significant correlation was observed. 

3.3.5.6 Potential Chlorobium viruses 

The Ace Lake Interface supports a high abundance population of GSB belonging to the 

Chlorobium genus, which are known to contain genes associated with the CRISPR-Cas 

system and R-M enzymes for defence against viruses (Ng et al, 2010; Lauro et al, 2011; 

Llorens–Marès et al, 2017; Boldyreva et al, 2020). To explore the viruses probably 

associated with the Ace Lake Chlorobium, the data in the metagenome CRISPR files 

were used to identify 80 unique CRSIPR spacer sequences in the Chlorobium OTU 

contigs from Ace Lake. The spacer sequences matched 3,508 contigs from the 120 Ace 

Lake metagenomes, which were compared against the Antarctic virus catalogue and 
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three viral contigs were identified as potential Chlorobium viruses. Two of these contigs 

were from the viral cluster 1024 (cl_1024) and one was a singleton (sg_14554). The 

association of these three viral contigs with the Chlorobium OTU was further verified 

by assessing their matches to host spacers in the spacer database, which showed that 

their potential hosts included members of Chlorobi (including the Ace Lake 

Chlorobium) and Gammaproteobacteria and possibly members of Deltaproteobacteria, 

Firmicutes, Flavobacteriia, and Verrucomicrobia, suggesting that these viruses had a 

broad range of hosts (Table 3.6). The two abundant viral clusters from the Ace Lake 

Lower zone (cl_248 and cl_400; section 3.3.5.3) were analysed to identify any 

association with Chlorobium. The cl_248 contained 35 viral contigs (Appendix H: 

Table H1) and their host analysis showed matches to members of Chlorobi (including 

Ace Lake Chlorobium) and Gammaproteobacteria, indicating a similar host range as 

cl_1024 and sg_14554. On the other hand, the cl_400 contained 26 viral contigs 

(Appendix H: Table H1) and had matches to spacers from Bacteroidales UBA4459, its 

potential host. 

The cl_1024 contained total 14 viral contigs, including the two with initial matches to 

the Chlorobium CRISPR spacers (Appendix H: Table H1), and the host analysis of 

these viral contigs also supported the above taxa as potential hosts of the cl_1024 viral 

contigs. The cl_1024 viral contigs from 2008 and 2013–2015 Ace Lake metagenomes 

were highly similar to each other with >98% identity across >80% alignment fraction, 

whereas the contigs from 2006 were also quite similar to the other contigs (>95%) but 

across a lower alignment fraction (>60%). This difference was probably observed due to 

the longer lengths of contigs from 2006 metagenomes. The cl_1024 contigs and 

sg_14554 were also aligned against the Ace Lake metagenome contigs to increase the 

representation of these potential Chlorobium viruses; 69 metagenome contigs had good 

matches to the cl_1024 (cl_1024 matches) and 29 contigs had good matches to 

sg_14554 (sg_14554 matches) (Appendix H: Table H1).  

Abundance correlation analyses between the Ace Lake Chlorobium and cl_1024 group 

(cl_1024 + cl_1024 matches), sg_14554 group (sg_14554 + sg_14554 matches), cl_248, 

and cl_400 were performed to ascertain the nature of virus-host association between the 

bacteria and the viruses. The data showed significant positive correlation between 

Chlorobium abundance and its potential viruses from cl_1024 group (R= 0.7, P=2e-11) 

and sg_14554 group (R= 0.97, P=0.02) in the Ace Lake Interface and its surrounding 
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Upper 3 and Lower 1 zones; cl_248 also showed a positive correlation, but it was not 

significant (R=0.5, P=0.7) (Figure 3.12). The cl_400 showed a significant positive 

correlation to Chlorobium abundance (R=0.9, P=5e-11), although Chlorobium was not 

amongst its potential hosts determined from spacer matches. It is possible that these 

potential Chlorobium viruses (cl_1024, sg_14554, cl_248) grow cooperatively with the 

Chlorobium and were not responsible for its very low abundance in Oct 2014, 

considering that they were not detected in the Ace Lake metagenomes from this time 

period. Additionally, these potential Chlorobium viral clusters and singleton were 

identified only in the Ace Lake metagenomes in the Antarctic virus catalogue. 

The Chlorobium spacer sequences were also thoroughly analysed to assess if there were 

a seasonal pattern of spacer acquisition. For this, the spacer sequences on the host 

contigs with matches to the two cl_1024 contigs and sg_14554 were analysed. A total of 

89 unique spacers were identified on the host Chlorobium contigs from the 120 time-

series Ace Lake metagenomes. Although no seasonal pattern was observed, many of the 

spacers were found on contigs from multiple time periods, highlighting that capacity of 

Chlorobium to defend against viral predation (discussed in Chapter 5). 

 
Figure 3.12 Ace Lake Chlorobium and its potential viruses. The line graph shows the read 

depth-based abundance association between Chlorobium (black line) and its potential viruses — 

cl_1024 group (green line), sg_14554 group (yellow line), and cl_248 (orange line) as well as 

cl_400 (grey line) in the metagenomes from three filter fractions (x-axis: 3–20 μm, 3; 0.8–3 μm, 

0.8; 0.1–0.8 μm, 0.1) and three Ace Lake depths (x-axis: Upper 3, U3; Interface, I; Lower 1, 

L1). The metagenomes were sampled from summer (red font), winter (blue font), and spring 
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(green font) shown on the x-axis. Winter data were not gathered from the Lower zone of Ace 

Lake due to logistics issues during sample collection. 

Table 3.6 Host analysis of two cluster 1024 (cl_1024) and one singleton (sg_14554) viral 

contigs. Total 83 spacers matched the three potential Chlorobium virus contigs — one singleton 

(sg_14554) and two cl_1024 contigs from Dec 2006 and Aug 2014 Ace Lake metagenomes 

(Appendix H: Table H1). Of these, 65 spacers were numbered from S1–S65, whereas the other 

18 spacers were either reverse complements of S1–S65 (‘RC’ after the spacer number) or their 

sequences were same as S1–S65 but shorter by 1 nucleotide (‘-1’ after the spacer number; e.g., 

S1 was 34 nt and S1–1 was 33 nt). Spacers that were both short and reverse complements were 

numbered as ‘RC-1’ after the spacer number. The numbers in parentheses represent the number 

of host contigs that also had cas genes flanking the CRISPR spacer arrays. The spacers 

highlighted in red had 90-99% identity matches to the respective viral contigs, whereas all other 

spacer matches were 100% identical. The yellow highlighted microbe was the most abundant 

bacteria, Chlorobium, in Ace Lake. * The host taxonomy was determined from the contig 

taxonomies generated by the Cavlab pipeline v4 runs on the metagenomes (section 3.2.1). 

Host phylum/class 
Potential host 

taxonomy* 

sg_14554 

Dec 2006 

cl_1024 

Dec 2006 

cl_1024 

Aug 2014 

Chlorobi 

Chlorobaculum 

tepidum 

S51, S52, S53, 

S54, S55, S56, 

S57, S58, S60 

(1) 

 S2-2 (1) 

Chlorobium 

phaeobacteroides 
 

S3_RC (1), 

S4_RC (1) 

S1 (1), 

S3_RC (1), 

S4_RC (1) 

Chlorobium 

phaeovibrioides 

S20 (1), S21 

(1), S22 (1) 

S3 (1), S4 (1), 

S3_RC (1), 

S4_RC (1) 

S1 (1), S2 (3), 

S3 (1), S4 (1), 

S1-1 (1), 

S1_RC (1), 

S2_RC, 

S3_RC (1), 

S4_RC (1) 

Prosthecochloris sp. 

CIB 2401 
S62 (1)   

Gammaproteobacteria Acinetobacter sp. C15 S19   
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Alcanivorax jadensis 

S21 (1), 

S49_RC, S59, 

S49-1 

S11-1 S11-1 

Edwardsiella tarda S19_RC   

Halomonas 

subterranea 
S19   

Klebsiella 

pneumoniae 

S23, S24, S24-

1, S25, S26, 

S27, S28, S29, 

S30, S31, S32, 

S33, S34, S35, 

S35_RC-1, 

S36, S37, S38, 

S39, S40, S41, 

S42, S43, S44, 

S45 

S8, S11-1, 

S11, S13, 

S14, S15 

S8, S10, S11-

1, S11 

Legionella 

massiliensis 

S48 (1), 

S48_RC (1) 
  

Legionella 

pneumophila 
S48-2 (1)   

Marinobacter 

antarcticus 
S49, S49_RC S17, S17_RC  

Marinobacter sp. 

S21 (1), 

S21_RC, S41, 

S42, S63, S64, 

S65 

S7 (1), 

S7_RC (1), 

S18 

S2 (3), 

S2_RC, S5, 

S7 (1), 

S7_RC (1) 

Nitrococcus mobilis  S6 (1) S6 (1) 

Vibrio cholerae S50   

Deltaproteobacteria 

Deltaproteobacteria   S12 

Desulfuromonadaceae S61_RC   

Desulfuromonadales S61 (1)   

Desulfuromonas S61 (1)   

Firmicutes 
Lactobacillus 

namurensis 
S46, S47 S16  

Flavobacteriia Runella zeae S31   
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Verrucomicrobia 
Verrucomicrobium sp. 

3C 
 S9 S9 

3.3.6 ‘Other’ taxa and unassigned contigs  

The low abundance (relative abundance <1%) and low-quality OTUs, together referred 

to as ‘other’ taxa — including ‘other’ archaea, bacteria, eukarya, and viruses, were 

explored further to determine their overall taxonomic composition. The ‘other’ bacterial 

OTUs contributed more toward the total bacterial abundance in the Lower zone of Ace 

Lake than in the Upper zone (Figure 3.13). Contrarily, ‘other’ viral OTUs were 

abundant in the Upper zone of Ace Lake alongside ‘other’ eukaryal OTUs, rather than 

in the Lower zone of Ace Lake alongside the ‘other’ archaeal OTUs. Among the ‘other’ 

bacterial OTUs, the overall pattern of depth distribution of the phyla and class OTUs in 

Ace Lake was similar to the distribution pattern of the high-quality OTUs from those 

taxa. The members of the phyla Proteobacteria, Bacteroidetes, Actinobacteria, and 

Firmicutes showed the highest combined abundances (sum of relative abundances of 

OTUs belonging to a phylum), with Bacteroidetes and Actinobacteria being more 

prevalent in the Ace Lake Upper zone (peak relative abundances: 14% and 8%, 

respectively) and Firmicutes being more abundant in the Lower zone (peak relative 

abundance: 6%). Of the Proteobacteria OTUs, most belonged to Deltaproteobacteria 

and were abundant in the Ace Lake Lower zone (peak relative abundance: 19%), 

followed by Alphaproteobacteria and Gammaproteobacteria that were prevalent in the 

Ace Lake Upper zone (peak relative abundances: 10% and 8%, respectively). 

The ‘other’ archaeal OTUs mainly belonged to Euryarchaeota phylum (peak relative 

abundance: 3%), especially the Methanomicrobia class of this phylum. The ‘other’ 

eukarya group mainly comprised of members of Chlorophyta, Streptophyta as well as 

some uncharacterised eukaryal OTUs termed as ‘unclassified Eukaryota’ in the 

metagenome Phylodist files (peak relative abundances: 1%, 1%, and 2%, respectively). 

The ‘other’ viruses group included double-stranded DNA viruses as well as some 

uncharacterised viral OTUs referred to as ‘unclassified Viruses’ in the metagenome 

Phylodist files (peak relative abundances: 11%, and 12%, respectively).  



167 
 

 
Figure 3.13 Depth and season distribution of unassigned contigs, low abundance OTUs, 

and OTUs with poor taxonomic assignments. The heat map depicts the relative abundances 

of low abundance OTUs (relative abundance <1% in all metagenomes) and OTUs with poor 
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taxonomic assignment grouped under ‘Other’ Eukarya, Viruses, Bacteria, and Archaea as well 

as the combined relative abundances of unassigned contigs shown as Unassigned. The relative 

abundances were calculated in metagenomes from three filter fractions (x-axis: 3–20 μm, 3; 

0.8–3 μm, 0.8; 0.1–0.8 μm, 0.1), seven lake depths (y-axis: Upper 1 to Lower 3), and three 

seasons (y-axis: summer, red font; winter, blue font; spring, green font). The categorical 

gradient bar indicates relative abundances in percentage. All Ace Lake surface (Upper 1) 

samples were from summer. Winter data were not gathered from the Lower zone of Ace Lake 

due to logistics issues during sample collection. 

The taxonomic as well as genetic composition of the unassigned contigs were 

determined by analysing the gene annotations on the contigs, including SSU rRNA 

genes. The analysis of taxonomy of the SSU rRNA genes contained in the unassigned 

contigs showed that most of them were associated with ‘uncultured’ archaea, bacteria, 

or eukarya, suggesting the presence of novel microbes in Ace Lake that have not yet 

been characterised (Table 3.7). Additionally, the analysis of the gene annotations on 

unassigned contigs in Ace Lake showed that they mostly comprised of ‘hypothetical’ 

genes, which might code for novel proteins. The gene annotations on unassigned 

contigs also included mobile elements (transposases, 1%), tRNAs (1%), and viral genes 

(1–2%), latter of which indicated that the unassigned contigs also included viral contigs. 

The presence of viruses and prophages among the unassigned data was also supported 

by the output of VirSorter analysis, which showed that the relative abundances of 

viruses were higher in the Upper zone of Ace Lake (peak relative abundance: 5%), 

whereas the relative abundances of prophages were higher in the depths around the Ace 

Lake Interface (peak relative abundances: 2%) (Table 3.7). The unassigned and ‘other’ 

OTUs data needs to be studied further, to ascertain the composition of the Ace Lake 

‘dark matter’ (discussed in Chapter 6)  

Table 3.7 Unassigned contigs in Ace Lake metagenomes — their genetic and taxonomic 

composition. * The percentages were calculated relative to the total gene annotations in the 

unassigned contigs of length ≥1 kb in a metagenome. Values from metagenomes from each 

depth were averaged. † The percentage values indicate the number of 16S and 18S rRNA genes 

identified on unassigned contigs that had matches to uncultured Archaea or Bacteria and 

uncultured Eukarya, respectively. The SSU rRNA genes included partial gene sequences, but 

the matches to those partial sequences were not considered. Uncultured Archaea, Bacteria, and 

Eukarya included 16S rRNA gene matches to uncultured archaeon, bacterium, and eukaryote, 

respectively, as well as other uncultured microbes with known superphylum, phylum, clade, 
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and/or class taxonomy. For example, Uncultured Archaea included microbes referred to as 

uncultured archaeon, uncultured euryarchaeote, and uncultured DPANN archaeon in the NCBI 

database. Uncultured Bacteria included microbes referred to as uncultured bacterium, 

uncultured Bacteroidetes, uncultured actinobacterium, uncultured marine bacterium, uncultured 

Sphingobacteria bacterium, uncultured gamma proteobacterium, uncultured 

Alphaproteobacteria bacterium, uncultured Arctic sea ice bacterium, uncultured Flavobacteriia 

bacterium, uncultured delta proteobacterium, uncultured planctomycete, uncultured 

Lentisphaerae bacterium, uncultured Chloroflexi bacterium, uncultured proteobacterium, 

uncultured Firmicutes bacterium, uncultured Spirochaetes bacterium, uncultured Parcubacteria 

group bacterium, uncultured Microgenomates group, uncultured Epsilonproteobacteria 

bacterium, and uncultured Candidatus Atribacteria bacterium in the NCBI database. Uncultured 

Eukarya included microbes referred to as uncultured eukaryote, uncultured marine eukaryote, 

uncultured stramenopile, uncultured alveolate, uncultured fungus, uncultured heterolobosean, 

uncultured labyrinthulid, uncultured marine alveolate, uncultured marine picoeukaryote, and 

uncultured ciliate in the NCBI database. ‡ The relative abundances of Viruses and Prophages 

were calculated from unassigned contigs of length ≥1 kb that VirSorter confidently predicted as 

viruses (VirSorter categories 1 and 2) and prophages (VirSorter categories 4 and 5), 

respectively, using Formula (1) described in section 3.2.1. The peak relative abundances were 

the highest relative abundances of Viruses and Prophages in all metagenomes from each depth 

(Upper 1, 2, 3, Interface, Lower 1, 2, 3). 

Genetic composition 

Depth 
Upper 

1 

Upper 

2 

Upper 

3 
Interface 

Lower 

1 

Lower 

2 

Lower 

3 

Average number of 

genes at a depth* 

Potential 

viral genes 
2% 1% 2% 1% 1% 1% 2% 

Hypothetical 

genes 
71% 65% 62% 59% 57% 59% 71% 

tRNA genes 2% 1% 2% 1% 1% 1% 1% 

Transposase 

genes 
1% 1% 1% 1% 1% 1% 1% 

Taxonomic composition 

Depth 
Upper 

1 

Upper 

2 

Upper 

3 
Interface 

Lower 

1 

Lower 

2 

Lower 

3 

Number of SSU 

rRNA genes on 

Uncultured 

Archaea 
0 0 0 9% 13% 11% 9% 
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unassigned contigs 

with matches to† 

Uncultured 

Bacteria 
34% 39% 42% 52% 57% 55% 62% 

Uncultured 

Eukarya 
33% 27% 26% 59% 0 0 0 

Peak relative 

abundances (%) of 

unassigned contigs 

with an affiliation 

to‡ 

Viruses 5% 4% 3% 5% 3% 2% 1% 

Prophages 0.2% 0.5% 2% 1% 2% 1% 0.4% 

3.3.7 Overall functional potential of Ace Lake 

Nearly 40 million protein-coding genes from the Ace Lake metagenomes were parsed 

and analysed to understand the functional potential of the lake microbial community. 

The Ace Lake Upper zone supported aerobes, most of which were capable of 

phototrophy, whereas the Interface and Lower zones sustained obligate anaerobes, 

including a highly abundant photoautotroph (Chlorobium) at the Interface. A COG 

analysis of the Ace Lake metagenomes exhibiting a broad distribution of the gene 

functions identified in the metagenomes showed that the functional potential associated 

with the oxic and anoxic zones of the Ace Lake differed (Figure 3.14). Most of the 

genes were associated with amino acid metabolism (E), translation (J), cell membrane 

biogenesis (M), and replication, recombination and repair (L), and their abundance was 

higher in the Lower zone than in the Upper zone (Figure 3.14). This could be attributed 

to the presence of more biomass in the Lower zone of Ace Lake, as shown by the 

turbidity values measured at different lake depths in different time periods (Table 3.8). 

Genes associated with energy production (C), signal transduction (T), transcription (K), 

carbohydrate metabolism (G), lipid metabolism (I), and post-translational modification 

(O) were also prevalent in the Lower zone (Figure 3.14). At the Ace Lake Interface, 

genes associated with coenzyme metabolism (H) and inorganic ion metabolism (P) were 

abundant. Notably, genes associated with defence mechanisms (V) were more abundant 

in the anoxic zone (Interface and Lower) than in the oxic zone (Upper) of Ace Lake 

(Figure 3.14). This was also observed in the KEGG analysis of CRISPR-Cas spacer 

acquisition genes that were more abundant in metagenomes from Interface and Lower 

zone than from the Upper zone of Ace Lake (Figure 3.15). However, mobilome-

associated genes, which could be from viruses or mobile elements, were identified from 
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all lake depths. The presence of viruses throughout Ace Lake was also supported by the 

data in the Antarctic virus catalogue that contained viral contigs from all lake depths 

(section 3.3.5.3). Therefore, it could be speculated that the microbes in the Ace Lake 

anoxic zone are well-equipped with defence genes such as CRISPR-Cas system genes 

(Figure 3.15) and can actively defend against viral predation. This would reduce the 

probability of host infection and could explain the overall low abundance of viruses in 

the Lower zone of Ace Lake (Figure 3.13). The reduction in or absence of viral 

predation could also explain the high abundance of bacteria in the anoxic waters of Ace 

Lake than in the Upper zone (Figure 3.13), where a large variety of viruses have been 

identified (Figure 3.13). 
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Figure 3.14 COG category classification of proteins identified in Ace Lake metagenomes. 

The heat map shows the normalized abundance of COG categories (x-axis) in metagenomes 

from seven lake depths (y-axis: Upper 1 to Lower 3) and three seasons (y-axis: summer, red 

font; winter, blue font; spring, green font). The COG category abundances in metagenomes 

from the three filter fractions from each time period and lake depth are also shown (y-axis: top, 

3–20 μm; centre, 0.8–3 μm; bottom, 0.1–0.8 μm). The categorical gradient bar indicates the 

ranges of normalized abundances of the COG categories. COG categories A, B, W, Y, and Z are 

not shown because their abundance values were very low (<10,000) in all metagenomes. COG 
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categories: Information storage and processing — A, RNA processing and modification; B, 

chromatin structure and dynamics; J, translation, ribosomal structure and biogenesis; K, 

transcription; L, replication, recombination and repair. Metabolism — C, energy production and 

conversion; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G, 

carbohydrate transport and metabolism; H, coenzyme transport and metabolism; I, lipid 

transport and metabolism; P, inorganic ion transport and metabolism; Q, secondary metabolites 

biosynthesis, transport, and catabolism. Cellular processes and signalling — D, cell cycle 

control, cell division, chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, 

cell motility; O, post-translational modification, protein turnover, and chaperones; T, signal 

transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport; V, 

defence mechanisms; W, extracellular structures; X, mobilome: prophages, transposons; Y, 

nuclear structure; Z, cytoskeleton. Poorly characterized — R, general function prediction only; 

S, function unknown. 

Table 3.8 Turbidity values measured at different depths of Ace Lake in different time 

periods. The turbidity measurements were taken using a YSI Sonde device in 2006 and 2008 

but using a TOA WQC device in 2013 and 2014. The values were measured in Nephelometric 

Turbidity Units (NTU). The negative turbidity values indicate low-level turbidity. 

Measurements were taken in summer (red), winter (blue), and spring (green) shown on the top 

x-axis. The highest value in each time period is shown in red-coloured, bold numbers. 

Depth Dec 2006 Nov 2008 Nov 2013 Aug 2014 Oct 2014 Dec 2014 

Upper 2 -0.1 -0.1 0.4 12 4 1 

Upper 3 0.1 0.5 0 2 1 7 

Interface 139 87 44 26 9 10 

Lower 1 10 8 10 - 5 53 

Lower 2 6 5 7 - 6 11 

Lower 3 26 21 27 - 24 29 

3.3.7.1 KEGG analysis 

The overall functional potential of Ace Lake was analysed from the abundances of the 

genes associated with specific pathways and enzymes, including nutrient transporters 

(Figure 3.15). As KEGG analysis reflected functional potential, the abundances of the 

genes were directly related to the abundances of the contributing microbes. For 

example, sulfide oxidation was abundant at the Ace Lake Interface, except in 

metagenomes from winter and Oct 2014 (Figure 3.15), which coincided with the 
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abundance pattern of Chlorobium (Figure 3.6), a GSB containing genes for sulfide 

oxidation. 

Among the high-quality OTUs analysed from Ace Lake, many contained genes for 

photoheterotrophy (Aquiluna, Balneolaceae UBA2664, Burkholderiaceae MOLA814, 

Crocinitomix, Cyclobacterium, Fabibacter, Flavobacteriaceae MAG-120531, 

Haloferula, Hydrogenophaga, Loktanella, Leadbetterella, Methylophilaceae BACL14, 

Microbacteriaceae BACL25, Nisaea, Nonlabens, Pelagibacter, Polaribacter, 

Porticoccaceae HTCC2207, Pseudohongiellaceae 2, Saprospiraceae sp., Yoonia, 

Verrucomicrobia BACL24, Verrucomicrobia UBA4506), with some also capable of 

photoautotrophy (Chlorobium and Synechococcus) and photomixotrophy 

(Synechococcus). Chlorobium contains the genes for anoxygenic photoautotrophy 

through rTCA and is known to use special light-harvesting antennae known as 

chlorosomes for absorbing light in low-light environments (Buchanan and Arnon, 1990; 

Eisen et al, 2002). KEGG analysis showed a high abundance of genes associated with 

rTCA cycle and a GSB type I reaction centre core complex at the Ace Lake Interface 

(Figure 3.15), which coincided with the high abundance of Chlorobium in this zone 

(Figure 3.6). Apart from this, the genes associated with Calvin cycle were found in all 

lake depths and were contributed by the most abundant cyanobacteria Synechococcus, 

which was found to be abundant throughout the Ace Lake (Figure 3.6). Genes 

associated with the Wood-Ljungdahl pathway were also observed in the Ace Lake 

anoxic zone metagenomes (Figure 3.15), suggesting that anaerobic autotrophy was 

prevalent in the system. These genes were contributed by some of the obligate 

anaerobes (Desulfatiglanales NaphS2, Desulfobacterales S5133MH16, 

Desulfobacterium, Desulfocapsa, Methanomicrobiaceae 1, Methanothrix_A) thriving in 

the Ace Lake Interface and Lower zones (Figure 3.6). Methanogenesis genes were also 

present in the Lower zones of Ace Lake (Figure 3.15) and were contributed by 

Methanomicrobiaceae 1 and Methanothrix_A, the two abundant methanogenic archaea 

identified in the lake (Figure 3.7). This was consistent with the previous findings 

suggesting that methanogenesis occurred in the anoxic zone of Ace Lake (Franzmann et 

al, 1991). Additionally, the abundance of genes associated with a ribose ABC 

transporter was high in the Upper zone (Upper 2, 3) of Ace Lake as well as at the 

Interface in Oct 2014 (Figure 3.15), when the abundance of Chlorobium was very low 

(Figure 3.6). This abundance was contributed by multiple OTUs (Aquiluna, 
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Burkholderiaceae MOLA814, Gimesia, Loktanella, Microbacteriaceae BACL25, 

Nisaea, Pelagibacter, Pseudohongiellaceae 2, Verrucomicrobia SW10, and Yoonia) 

that contained ribose ABC transporter genes and were abundant in the Upper zone of 

Ace Lake; some of them were also present at the Interface in Oct 2014 (Aquiluna, 

Gimesia, Microbacteriaceae BACL25, Nisaea) (Figure 3.6). Some of these OTUs 

(Gimesia, Pelagibacter) had the capacity to utilize ribose as a carbon source. The data 

showed that a variety of energy production and carbon fixation and utilization pathways 

(and enzymes) were employed by the diverse microbial population of Ace Lake. 

Among the pathways associated with nitrogen cycling, ammonia assimilation was most 

prominent in the KEGG analysis (Figure 3.15), and all abundant OTUs showed capacity 

to utilize ammonia as a nitrogen source. Additionally, the nitrogenase gene (catalyses 

nitrogen to ammonia reduction) was present in the Ace Lake Chlorobium and 

Desulfocapsa, which explained the high abundance of this gene in the Interface and 

Lower zones. The Ace Lake Upper zone is known to contain very low concentration of 

ammonia, which increases with lake depth and is highest at the Interface (Rankin et al, 

1999). Therefore, it is possible that Chlorobium maintains ammonia levels in the Ace 

Lake by fixing nitrogen when the ammonia levels drop after being assimilated by all 

microbes in the lake system; also suggested previously (Ng et al, 2010; Lauro et al, 

2011). The genes associated with the branched-chain amino acid (BCAA) ABC 

transporter were abundant throughout the lake, especially in the anoxic zone of Ace 

Lake (Figure 3.15), indicating its importance as a carbon and nitrogen source in the lake 

system. BCAA ABC transporter genes were detected in Bacteroidales UBA4459, 

Cloacimonetes JGIOTU-2, Desulfatiglanales NaphS2, and Nisaea, of which only 

Nisaea was mainly from the Upper zone of Ace Lake. 
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Figure 3.15 Enzymes/pathways involved in energy conservation and metabolism in Ace 

Lake. The heat map shows the normalized abundance of specific enzymes/pathways (x-axis) in 

metagenomes from seven lake depths (y-axis: Upper 1 to Lower 3) and three seasons (y-axis: 

summer, red font; winter, blue font; spring, green font). The enzyme/pathway abundances in 

metagenomes from the three filter fractions from each time period and depth are also shown (y 

axis: top, 3–20 μm; centre, 0.8–3 μm; bottom, 0.1–0.8 μm). The categorical gradient bar 

indicates the ranges of normalized abundances of the enzyme/pathway. BCAA ABC transporter, 

branched-chain amino acid ATP-binding cassette transporter; Cas, CRISPR-associated; CBB 
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cycle, Calvin–Benson–Bassham cycle; CRISPR, clustered regularly interspaced short 

palindromic repeats; DMSP, dimethylsulfoniopropionate; DNRA, dissimilatory nitrate 

reduction to ammonium; PHA, polyhydroxyalkanoate; reverse TCA cycle, reverse tricarboxylic 

acid cycle; SOX system, sulfur-oxidizing system; TMA, trimethylamine. 

In the Ace Lake Interface, the sulfur cycling between Chlorobium and the SRB has been 

shown before, where Chlorobium oxidises sulfide to sulfate and the SRB reduce the 

sulfate back to sulfide (Rankin et al, 1999; Coolen et al, 2006; Ng et al, 2010; Lauro et 

al, 2011). In accordance with this, the sulfide oxidation and dissimilatory sulfate 

reduction pathways were found to be abundant in the Interface and Lower zones of Ace 

Lake (Figure 3.15), where Chlorobium and the SRB (Desulfatiglanales NaphS2, 

Desulfobacterales S5133MH16, Desulfobacterium) prevailed (Figure 3.6). Apart from 

the SRB, Desulfocapsa, also a member of Deltaproteobacteria, was abundant in the 

anoxic zone of Ace Lake (Figure 3.6). This microbe has the capacity for sulfur and 

thiosulfate disproportionation (Finster et al, 2013); thereby, producing sulfide that could 

be used by Chlorobium and sulfate that could be used by the SRB (Figure 3.16). 

Additionally, genes associated with sulfate assimilation (assimilatory sulfate reduction) 

were abundant throughout the lake, suggesting that many OTUs had the capacity to 

utilise sulfate as a sulfur source. 

 
Figure 3.16 Sulfur cycling between Chlorobium and some Deltaproteobacteria at the Ace 

Lake oxycline. The figure shows the interaction between the sulfide oxidising GSB Chlorobium 

and the members of Deltaproteobacteria, namely Desulfocapsa and the three SRB — 

Desulfatiglanales NaphS2, Desulfobacterales S5133MH16, Desulfobacterium. Of these, 

Desulfocapsa is involved in sulfur (S0) and thiosulfate (S2O3
2-) disproportionation into sulfate 
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(SO4
2-) that can be used by the SRB and sulfide (H2S) that can be used by Chlorobium, at the 

Ace Lake Interface. 

A number of hydrogenases were also identified in the abundant OTUs, especially in the 

Lower zone, which was supported by the high abundance of hydrogenase genes in the 

anoxic zone of Ace Lake (Figure 3.15). The importance of hydrogen cycling in the Ace 

Lake Lower zone has been reported in a publication suggesting that the anoxic zone 

microbes have the capacity to utilise hydrogen as a source of energy and probably exude 

hydrogen during anaerobic respiration or fermentation. (Panwar et al, 2020).  

 

3.4 Conclusion 

The analysis of the Ace Lake data showed that its microbial community was very 

diverse, with the Upper zone mainly harbouring phototrophs including a picoeukaryote 

(Micromonas) and a highly abundant cyanobacteria (Synechococcus) (section 3.3.3). A 

high abundance of an anoxygenic, photoautotrophic GSB (Chlorobium) also existed at 

the oxycline (Interface) of Ace Lake, which was consistent with previous findings 

(Rankin et al, 1999; Ng et al, 2010; Lauro et al, 2011). On the other hand, the Lower 

zone mainly supported obligate anaerobes including many members of 

Deltaproteobacteria (Desulfatiglanales NaphS2, Desulfobacterales S5133MH16, 

Desulfobacterium, Desulfocapsa, Syntrophales UBA2210), some bacterial candidate 

phyla (Atribacteria 34-128, Cloacimonetes JGIOTU-2), and methanogenic archaea 

(Methanomicrobiaceae 1, Methanothrix_A) (section 3.3.3). This niche segregation of 

the microbes in Ace Lake probably allows them to coexist within the lake environment; 

and has been reported before (Rankin et al, 1999; Lauro et al, 2011). The analysis of the 

120 time-series metagenomes from Ace Lake showed that the changes in season could 

severely impact the abundances of these microbes, especially the phototrophs in the 

Upper and Interface zones that rely on light for primary production (section 3.3.4). 

Contrarily, the abundances of most Lower zone microbes did not vary drastically with 

seasonal changes, as they relied on chemolithoautotrophy for energy production. 

A variety of viruses were also detected throughout the Ace Lake, including the complete 

genome of an abundant ‘huge’ phage (~528 kb; cl_24) containing some cas genes and 

CRISPR spacers, which it might use to target other viruses infecting its potential host 

(section 3.3.5.2). Five algal viruses (Phycodnaviridae 1-5), a cyanophage, and some 
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potential GSB viruses (cl_1024, cl_248, sg_14554 as well as cl_400) were also 

identified from the Ace Lake metagenomes. Of these, only the GSB viruses showed any 

association with their potential hosts (Chlorobium). These GSB viruses might be 

prophages considering that they were mainly detected in the 3–20 and 0.8–3 μm-filter 

metagenomes and their abundances positively correlated with their host abundance 

(section 3.3.5.6). The algal viruses showed no correlation to the abundant alga 

Micromonas in the Upper zone of Ace Lake, suggesting that either there was no virus-

host relationship or that the relationship was more than a simple, linear correlation 

(section 3.3.5.4). Similarly, the cyanophage did not correlate with the most abundant 

marine cyanobacteria Synechococcus in Ace Lake (section 3.3.5.5), but their interaction 

might be more complex, especially considering that cyanophages have the capacity to 

direct the evolutionary growth of marine cyanobacteria (Coleman et al, 2006; Avrani et 

al, 2011). Overall, the variations in the relative abundances of these abundant microbes 

(Chlorobium, Synechococcus, Micromonas) probably did not result from viral predation 

and lysis and was rather due to seasonal changes and low light availability in winter.  

Ace Lake biodiversity has been thoroughly investigated by many research groups (Hand 

and Burton, 1981; Burch, 1988; Burke and Burton, 1988; Franzmann et al, 1992; 

Gibson and Burton, 1996; Franzmann et al, 1997; Rankin et al, 1997; Rankin, 1998; 

Bell and Laybourn-Parry, 1999; Rankin et al, 1999; Laybourn-Parry et al, 2005; Madan 

et al, 2005; Powell et al, 2005; Ng et al, 2010; Lauro et al, 2011; Laybourn-Parry and 

Bell, 2014; Panwar et al, 2020), yet there are some aspects of the lake system that need 

to be studied further. Among the ~25 million contigs assembled from the 120 Ace Lake 

metagenomes, many of the contigs (~11 million) could not be assigned a taxonomy, 

most of these being <1 kb in length (~10 million), and were studied separately as 

‘unassigned contigs’ (section 3.3.6). The analysis showed that the unassigned contigs of 

length ≥1 kb comprised of uncultured microbes that could potentially be novel 

organisms. Most of the genes annotated on these contigs coded for ‘hypothetical’ 

proteins and could potentially be novel genes (Table 3.7). Therefore, further studies are 

required to analyse this ‘dark matter’. A variety of viruses were detected throughout the 

Ace Lake, with some potentially associated with the most abundant taxa in the lake 

(section 3.3.5; Appendix H: Tables H1 and H2). Many viral contigs representing 

complete genomes were also identified (section 3.3.5.1; Appendix H: Table H1), which 

need to be analysed to assess their potential hosts. High-quality bins of the green alga 
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Micromonas and the Phycodnaviridae 1-5 algal viruses are also required to study their 

functional potential and probable interactions. 

The two most abundant microbes in Ace Lake, Synechococcus and Chlorobium, have 

been analysed and discussed in Chapters 4 and 5, respectively. Additionally, the 

Chlorobium OTUs detected in two other meromictic systems in the Vestfold Hills, 

namely Ellis Fjord and Taynaya Bay, have been compared with the Ace Lake 

Chlorobium, to assess potential endemism, and are discussed in Chapter 5. 
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4. Ace Lake Synechococcus — genomic variation and 

potential for defence against viruses 

 

4.1 Introduction 

Synechococcus are picocyanobacteria belonging to the Synechococcaceae family of 

Synechococcales order. Synechococcus was among the most abundant microorganisms 

in Ace Lake (Chapter 3 section 3.3.3). Synechococcus has been previously reported to 

be abundant in the oxic zone (Upper zone) of Ace Lake, showing highest abundance in 

the depths just above the oxycline of the lake (Rankin et al, 1997; Rankin, 1998; Rankin 

et al, 1999; Powell et al, 2005; Lauro et al, 2011). Two Synechococcus genomes have 

been assembled from a Synechococcus species isolated from Ace Lake by Powell et al 

(2005) — a complete genome of Synechococcus sp. SynAce01 (hereafter referred to as 

SynAce01) sequenced and assembled by Tang et al (2019) and a draft genome of 

Synechococcus sp. Ace-Pa sequenced and assembled by JGI as part of a project led by 

Cavicchioli R. The 16S rRNA gene-based phylogeny and functional potential, especially 

metabolic functions, of this Synechococcus have been previously analysed (Rankin, 

1998; Powell et al, 2005; Lauro et al, 2011; Tang et al, 2019).  

More than 20 Synechococcus clades, each representing an ecotype, have been identified 

in various marine habitats (Ahlgren and Rocap, 2006; Ahlgren and Rocap, 2012; Sohm 

et al, 2016). In the Black Sea, four Synechococcus phylotypes representing different 

strains of Synechococcus, two from epipelagic zone and two from mesopelagic zone, 

were reported (Cesare et al, 2020). In the Sargasso Sea, seven Synechococcus 

phylotypes were identified, of which two were Synechococcus ecotypes with varying 

capacity for light and nitrogen utilization (Ahlgren and Rocap, 2006). The marine 

Synechococcus ecotypes are shaped by temperature and availability of macronutrients 

and iron, based on the data gathered from the surface waters of the Atlantic and Pacific 

Oceans (Sohm et al, 2016). Synechococcus phylotypes from seven Synechococcus 

clades were also identified in two cyclonic eddies in South China Sea, and their 

abundances and distribution in the eddies were defined by temperature, salinity, 

chlorophyll a concentration, and availability of macronutrients and light (Jing and Liu, 

2012).  
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Synechococcus was observed in all depths of Ace Lake, although it was more abundant 

in the Upper oxic zone than at the Interface or Lower anoxic zone (Figure 3.6). Its 

abundance varied with season, being high in summer and low in early winter but 

recovering by late winter (Figure 3.6). Its ability to survive in the anoxic depths of Ace 

Lake and grow in the dark winter could be attributed to its fermentative capacity 

(Chapter 3 section 3.3.4). As the Ace Lake environment in summer/winter and 

oxic/anoxic zones is different (Chapter 3 section 3.3.2, Figure 3.4), it is likely that the 

Synechococcus identified in metagenomes from the Upper oxic vs Lower anoxic zone 

and summer vs winter represent different phylotypes or ecotypes. The term phylotype is 

rank-neutral and often used in place of OTUs in microbiology (Moreira and López-

García, 2011). Similar to phylotypes, ecotypes have no taxonomic rank, and refer to 

organisms that belong to the same species but have different genetic composition, which 

allows them to adapt to specific environments. These genetic differences, however, are 

not sufficient to categorise ecotypes as sub-species, since the differences in their genetic 

makeup is due to the specific environment they are found in (Mayr, 1999). In this 

chapter, genomic variations in Ace Lake Synechococcus that might represent distinct 

phylotypes or ecotypes of this cyanobacterium were investigated. Here, Synechococcus 

phylotypes refer to Ace Lake Synechococcus that showed subtle differences in their 

genetic composition but the genetic differences did not appear to affect their 

metabolism. Synechococcus ecotypes refer to Ace Lake Synechococcus that showed 

genetic differences related to their metabolic capacity, and might indicate niche 

adaptation. Synechococcus phylotypes and ecotypes have also been referred to as 

Synechococcus subpopulations in this chapter. 

The metagenome-based study of Ace Lake viruses revealed a cyanophage potentially 

associated with Synechococcus (Chapter 3 section 3.3.5). Since Synechococcus 

abundance is high in Ace Lake for most of the year (Figure 3.6), it is likely that it has 

some defence mechanisms that help in evading viruses or disrupting viral attacks. In 

general, the prokaryotic defence systems have been broadly classified as: (i) host 

resistance-based, (ii) host immunity-based and (iii) host cell dormancy and apoptosis-

based (Koonin et al, 2017). In host resistance-based defence against viruses, the host 

cells generate variant cell surface receptors, which can affect virus attachment leading 

to viral evasion; previously reported in marine cyanobacteria and Antarctic haloarchaea 

(Avrani et al, 2011; Tschitschko et al, 2015; Tschitschko et al, 2018). The host 
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immunity-based defence against viruses involves defence systems such as CRISPR-Cas 

system, restriction-modification (R-M) system, bacteriophage exclusion (BREX) system 

and a defence island system associated with restriction–modification (DISARM) that 

identify invading viruses and neutralize them (Barrangou et al, 2007; Goldfarb et al, 

2015; Koonin et al, 2017; Ofir et al, 2018). The host cell dormancy and apoptosis-based 

defence against viruses involves toxin-antitoxin (T-A) system, particularly the T-A 

systems involved in abortive infection (ABI) mechanism (Gerdes et al, 2005; Koonin et 

al, 2017). In hosts with T-A systems, a stable toxin component (protein) is produced 

along with an unstable antitoxin component (RNA or protein), which can either 

inactivate the toxin or downregulate its expression (Koonin et al, 2017). In the absence 

of the antitoxin component, which can happen during viral infection, the toxin can cause 

cell dormancy or cell death, which prevents the virus from spreading to the rest of the 

host cell colony (Koonin et al, 2017). Of these prokaryotic defence systems, the 

CRISPR-Cas defence system has not been identified in marine cyanobacteria such as 

Synechococcus and Prochlorococcus (Cai et al, 2013). This was also true for Ace Lake 

Synechococcus that did not appear to have any CRISPR-Cas genes (Chapter 3 section 

3.3.5.5). Therefore, the genomic composition of Ace Lake Synechococcus was further 

investigated to identify other bacterial defence systems (described below in section 

4.2.4). 

4.1.1 Aims 

The overall aim was to investigate any genomic variation in the Synechococcus present 

in metagenomes from different seasons (summer vs winter vs spring) and lake depths 

(upper oxic vs interface vs lower anoxic), to identify its potential phylotypes or ecotypes 

in Ace Lake. For this purpose, the Synechococcus MAGs were compared with each 

other and SynAce01 genome in a preliminary analysis. This was followed by FR 

(fragment recruitment) of metagenomic reads from different time periods and Ace Lake 

depths to the SynAce01 genome to further verify potential Synechococcus phylotypes 

and ecotypes. As Synechococcus associated viruses have been identified in the Ace 

Lake metagenomes (Chapter 3 section 3.3.5), a specific aim was to examine the defence 

genes annotated in the MAGs to assess the possibility of defence against viruses. 

 

4.2 Methods 
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4.2.1 Preliminary analysis of genomic variation within Ace Lake Synechococcus 

population using MAGs 

Ace Lake metagenomes were sequenced, assembled, and annotated as described in 

Chapter 2 section 2.1.1. From each Spades-assembled metagenome, high- and medium-

quality MAGs were generated by JGI’s IMG system, using MetaBAT and CheckM. The 

Synechococcus MAGs represented the draft genomes of the Ace Lake Synechococcus 

from different time periods and lake depths. According to the IMG taxonomic 

classification of the Synechococcus MAGs, the closest related species to these MAGs 

was Synechococcus sp. SynAce01 indicating that the Synechococcus MAGs and 

SynAce01 are probably the same Synechococcus species. The MAG data included 

nucleotide sequences of the contigs as well as protein and nucleotide sequences of the 

open reading frames annotated on those contigs. The Synechococcus MAGs (Appendix 

A: Table A2) were downloaded from the Ace Lake time-series metagenomes (Appendix 

A: Table A1) available on JGI’s IMG/M website (https://img.jgi.doe.gov/cgi-

bin/m/main.cgi). 

Synechococcus MAGs with ≥99% genome completeness, i.e., MAGs that contained 

most of the lineage marker genes associated with the species to which the MAGs were 

assigned (Parks et al, 2015), were used for the preliminary analysis of Synechococcus 

genomic variation. A more detailed analysis of Synechococcus genomic variation was 

performed using FR (described below in section 4.2.2). The Synechococcus MAG 

contigs were aligned to the contigs of the Synechococcus MAG generated from Dec 

2014_Upper 3_0.8 μm-filter metagenome. This MAG was selected because it had the 

highest total base pair count among the Ace Lake Synechococcus MAGs and ≥99% 

genome completeness. The Synechococcus MAG contigs were also aligned to 

SynAce01 genome, but not to Ace-Pa. Both SynAce01 and Ace-Pa were sequenced 

from the same Synechococcus isolate, but SynAce01 represented the complete genome 

of the species, whereas Ace-Pa represented a draft genome. For these alignments, the 

blastn module of BLAST+ v2.9.0 was used. The BAM and BAI alignment and index 

files were generated from the contig alignments using Samtools v1.10. The alignments 

were analysed using IGV to assess the types of variation, indels or single nucleotide 

polymorphisms (SNPs), in the MAG sequences (method described in Chapter 2 section 

2.2.5.2). The genes annotated in the variable sequence regions of the MAGs were 

analysed. The ANIs of the MAGs against SynAce01 genome and against each other 

https://img.jgi.doe.gov/cgi-bin/m/main.cgi
https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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were calculated using pyani (method described in Chapter 2 section 2.2.4.2). The 

average amino acid identity (AAI) of the MAGs was calculated using the AAI-profiler 

online service, which compared the input protein sequences with the proteins of species 

in the UniProt database (http://ekhidna2.biocenter.helsinki.fi/AAI/; Medlar et al, 2018). 

4.2.2 FR analysis of genomic variation within Ace Lake Synechococcus population 

The FR analysis of Ace Lake metagenomic reads to SynAce01 genome was used for a 

more in-depth study of the genomic variation in Ace Lake Synechococcus populations 

from different seasons and lake depths. This involved aligning metagenome filtered 

reads from different seasons and time periods to Ace Lake Synechococcus genome 

SynAce01. The number of read bases from a metagenome that mapped to each base of 

SynAce01 were referred to as SynAce01 base coverages in a metagenome. The average 

of all SynAce01 base coverages from a metagenome was referred to as SynAce01 mean 

read depth in the metagenome. The base coverages of SynAce01 in each metagenome 

were used to identify genomic regions with coverages lower (low coverage regions, 

LCRs) or higher than SynAce01 mean read depth in the metagenome. LCRs indicated 

genomic regions present only in a fraction of the Synechococcus population from a 

season or lake depth, thereby suggesting presence of different phylotypes. Depending 

on the genes present in the LCRs, the Synechococcus phylotype containing the LCR 

might have a unique metabolic capacity that helps in niche adaptation and might 

represent an ecotype. High coverage regions would indicate overrepresented genomic 

regions, usually observed in regions containing mobile elements or multicopy genes in 

certain configurations (described below in section 4.3.5.1). Similar approaches have 

been previously used to identify Antarctic haloarchaea phylotypes and ecotypes 

(DeMaere et al, 2013; Tschitschko et al, 2015; Tschitschko et al, 2016; Tschitschko et 

al, 2018). 

The Ace Lake metagenomes were selected from different depths and time periods based 

on the overall abundance of Synechococcus OTU in them (Table 4.1). The reads from 

selected 3–20 and 0.8–3 μm-filter metagenomes from a time period and depth were 

combined to form merged metagenomes (Table 4.1). Ace Lake metagenomes from Dec 

2006 were not used for this comparative analysis due to differences in sequencing 

methods and types of reads. The Dec 2006 metagenomes contained unpaired reads 

sequenced using Sanger and 454 sequencing methods, which generated ≤0.8 million 

reads (containing ≤500 million bases) per metagenome. On the other hand, all other 

http://ekhidna2.biocenter.helsinki.fi/AAI/


187 
 

metagenomes contained paired-end reads sequenced using Illumina technology, which 

produced ≥13 million reads (containing ≥3 billion bases) per metagenome (Chapter 2 

section 2.1.1; Appendix A: Table A1). This difference in total read and base counts 

could lead to read depth bias, making it difficult to assess SynAce01 low coverage 

regions in Dec 2006 metagenomes during FR analysis, where low read depth could 

indicate non-alignment of reads (suggesting low coverage genomic regions) or 

unavailability of reads that could align to the region (due to the use of low coverage 

sequencing data).  

The reads in the merged metagenomes were aligned to the SynAce01 genome using 

BBMap v38.51 (https://sourceforge.net/projects/bbmap/) with 95% minimum alignment 

identity (minid=0.95), to generate SAM alignment files and base coverage files. The 

BAM and BAI alignment and index files were created from SAM files using Samtools 

v1.10. The total number of reads from a merged metagenome that aligned to SynAce01 

genome were calculated from the alignments in the BAM files using the ‘flagstat’ 

function of Samtools v1.10. The BAM and BAI files were analysed using IGV and only 

the SNPs with variant frequency ≥0.9 (i.e., at least 90% of the aligned reads contained 

the mutation) were considered as fixed mutations during the analysis. The base 

coverage files were utilised to assess the read depth distribution of SynAce01 in Ace 

Lake merged metagenomes, using Python v3.6 scripts and plots to identify variable 

coverage regions. The data in the base coverage files were also used to generate circos 

plots in R v4.0.2 to highlight the variable coverage regions and to show the abundance 

of SynAce01 in merged metagenomes. 

Table 4.1 List of Ace Lake metagenomes used for FR analysis of SynAce01. A The 3–20 and 

0.8–3 μm-filter metagenomes from a lake depth and time period were combined to prepare the 

merged metagenomes shown in column three. B The relative abundance of Synechococcus in the 

selected metagenomes was calculated using the method described in Chapter 3 section 3.2.1. C 

The number of reads represents the total number of reads in the merged metagenomes. For 

comparative analysis, the selected metagenomes represented data from the upper oxic (Upper 

3), oxycline (Interface), and lower anoxic zones (Lower 1, 2, 3) of Ace Lake as well as from 

summer (Dec), winter (Aug), and spring (Oct, Nov) seasons. 

Lake 

depth 

Time 

period 

Merged metagenome 

nameA 

Synechococcus OTU relative 

abundance (%)B 
Number of 

readsC 
3–20 μm-filter 0.8–3 μm-filter 

https://sourceforge.net/projects/bbmap/
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Upper 3 Nov 2008 Nov2008_U3 2 8 137,274,340 

Aug 2014 Aug2014_U3 12 16 52,404,196 

Oct 2014 Oct2014_U3 11 32 44,347,552 

Dec 2014 Dec2014_U3 19 44 47,658,964 

Interface Oct 2014 Oct2014_I 11 25 49,439,564 

Lower 1 Dec 2014 Dec2014_L1 3 5 44,499,368 

Lower 2 Dec 2014 Dec2014_L2 4 6 53,825,658 

Lower 3 Nov 2013 Nov2013_L3 8 3 43,627,018 

4.2.3 Phylogeny assessment 

For the phylogenetic analysis of the Ace Lake Synechococcus, the 16S rRNA genes from 

the MAGs and various species of marine cyanobacteria were used (Table 4.2). The gene 

sequences were aligned in MEGA X v10.1.7 software using ClustalW algorithm. The 

alignments were used to generate a maximum likelihood tree in MEGA X with default 

parameters and 1,000 bootstrap values. 

Table 4.2 Marine cyanobacteria species used in the phylogenetic analysis of Ace Lake 

Synechococcus. A The accession IDs of the 16S rRNA genes or the species genomes are 

provided in the last column. * The table includes the 16S rRNA gene from SynAce01 as well as 

two distinct 16S rRNA genes identified in the Synechococcus MAGs (referred to as 16S rRNA 

AL1 and 16S rRNA AL2; described below in section 4.3.2). 

Organism 
Length 

(in bp) 
Accession IDA 

Anabaena oscillarioides 1,418 AJ630426.1 

Anabaenopsis elenkinii 1,461 KM020015.1 

Chlorogloeopsis fritschii 1,149 NR_112176.1 

Cyanobium gracile 1,476 NR_102447.1 

Leptolyngbya valderiana 1,349 KY807918.1 

Lyngbya cf. confervoides 1,331 AY599507.1 

Microcoleus antarcticus 1,395 AF218373.1 

Microcoleus glaciei 1,394 AF218374.1 

Microcystis aeruginosa 1,489 NR_074314.1 

Nodularia spumigena 1,438 NR_112106.1 

Nostoc commune 1,446 AB088375.2 

Oscillatoria princeps 1,367 AB045961.1 

Prochlorococcus marinus subsp. marinus 1,483 NC_005042.1 
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Prochloron didemni 1,009 MT254065.1 

Prochlorothrix hollandica 1,408 AJ007907.1 

Prochlorothrix scandica 1,236 HQ316169.1 

Synechococcus elongatus 1,489 NR_074309.1 

Synechococcus sp. PCC7001 1,411 AB015058.1 

Synechococcus sp. PCC7002 1,452 AJ000716.1 

Synechococcus sp. PCC7003 1,414 AB015059. 

Synechococcus sp. PCC7117 1,411 AB015060.1 

Synechococcus sp. PCC73109 1,413 AB015061.1 

Synechococcus sp. PCC7335 1,410 AB015062.1 

Synechococcus sp. WH5701 1,440 AY172832.1 

Synechocystis sp. PCC6803 1,238 AY224195.1 

Synechococcus sp. SynAce01* 1,486 NZ_CP018091.1 

Synechococcus (16S rRNA AL1)* 1,489 
IMG taxon ID: 3300022857 

Gene locus tag: Ga0222653_10001424 

Synechococcus (16S rRNA AL2)* 1,489 
IMG taxon ID: 3300023253 

Gene locus tag: Ga0222695_100009760 

4.2.4 Analysis of Synechococcus defence system genes 

The annotated genes on the contigs of Synechococcus MAGs were manually parsed to 

assess the presence/absence and number of genes associated with various defence 

systems such as R-M system, DISARM, BREX system, and T-A system (specifically 

ABI mechanism) (Table 4.3). The gene assignments were verified by aligning them 

against reference proteins from the UniProtKB/Swiss-Prot database using the ExPASy 

BLAST+ online service (https://web.expasy.org/blast/). The verified defence genes 

were further assessed to identify the defence system subtype (Table 4.3). The CRISPR-

Cas defence system was not investigated, as Ace Lake Synechococcus did not have cas 

genes (Chapter 3 section 3.3.5.5). 

Table 4.3 Prokaryotic defence systems investigated in Ace Lake microbes. A The 

arrangement of defence genes in CRISPR-Cas defence gene clusters are shown in column three. 

Notably, CRISPR-Cas system genes were not identified in Ace Lake Synechococcus (Chapter 3 

section 3.3.5.5), but Ace Lake Chlorobium contained CRISPR-Cas defence genes (described 

below in Chapter 5 section 5.4.3). B The data for defence system subtypes and the genes 

involved in them were taken from the publications cited in the last column. cas, CRISPR-

associated gene; dinG, ATP-dependent DNA helicase; LS, leader sequence; RT, reverse 

https://web.expasy.org/blast/
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transcriptase; tnsABCD, Transposon Tn7 transposition genes; TPR, tetratricopeptide repeat; 

tracrRNA, transactivating CRISPR RNA; wyl, WYL-domain encoding gene. 

Defense system 
System 

subtype 
Defense genesA ReferencesB 

CRISPR-Cas 

(class 1) 
I-A 

cas6, cas11, cas7, cas5, cas8a1, cas3′, cas3′′, 

cas2, cas4, cas1, cas4 

Makarova et 

al, 2020 

I-B 
cas6, cas8b1, cas7, cas5, cas3, cas4, cas1, 

cas2 

I-C cas3, cas5, cas8c, cas7, cas4, cas1, cas2 

I-D 
cas3′, cas3′′, cas10d, cas7, cas5, cas6, cas4, 

cas1, cas2 

I-E 
cas3, cas8e, cas11, cas7, cas5, cas6, cas1, 

cas2 

I-F1 cas1, cas2, cas3, cas8f1, cas5f1, cas7f1, cas6f 

I-F2 cas1, cas2, cas3, cas7f2, cas5f2, cas6f 

I-F3 
tnsA, tnsB, tnsC, tnsD, cas8f3/cas5f3, cas7f3, 

cas6f 

I-G 
cas3, cas8u2, cas7, cas5, cas6, cas4, cas1, 

cas2 

III-A 
cas6, cas10, cas11, cas7, cas5, cas7, csm6, 

cas1, cas2 

III-B cas7, cas10, cas5, cas7, cas11, cas6, cas7 

III-C cas7, cas7, cas10, cas7, cas11, cas5 

III-D 
cas10, cas7, cas5, cas11, cas7, cas7, csx19, 

cas7 

III-E 
TPR + caspase, cas7, cas11, cas7, cas7, RT, 

cas1, cas2 

III-F cas10, cas5, cas11, cas7 

IV-A dinG, cas6, cas8-like, cas7, cas5 

IV-B cysH-like, cas8-like, cas11, cas7, cas5 

IV-C LS, cas11, cas7, cas5 

CRISPR-Cas 

(class 2) 

II-A cas9, cas1, cas2, csn2, tracrRNA Makarova et 

al, 2020 II-B cas9, cas1, cas2, cas4, tracrRNA 

II-C1 cas9, cas1, cas2, tracrRNA 

II-C2 cas9, tracrRNA, cas4, cas2, cas1 

V-A cas12a, cas4, cas1, cas2 
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V-B1 cas12b1, cas4, cas1, cas2, tracrRNA 

V-B2 cas4, cas1, cas2, cas12b2, tracrRNA 

V-C cas1, cas12c 

V-D cas1, cas12d 

V-E cas12e, cas4, cas1, cas2, tracrRNA 

V-F1 cas1, cas2, cas4, cas12f1, tracrRNA 

V-F2 cas12f2, cas1, cas2, cas4 

V-F3 cas1, cas2, cas4, cas12f3 

V-G cas12g, tracrRNA 

V-H cas12h 

V-I cas12i 

V-K (V-U5) tnsB, tnsC, tniQ, cas12k, tracrRNA 

V-U1 c2c4 

V-F1 (V-U3) c2c10 

V-U2 c2c8 

V-U4 c2c9 

VI-A cas13a, cas1, cas2 

VI-B1 cas13b1, csx28 

VI-B2 csx27, cas13b2 

VI-C cas13c 

VI-D wyl, cas13d, cas1, cas2 

    

R-M Type I methyltransferase, restriction endonuclease Koonin et al, 

2017 Type II restriction, modification and specificity 

subunits 

Type III restriction subunit, methyltransferase 

Type IV AAA+ family GTPase, restriction 

endonuclease 

    

BREX Type 1 brxA, brxB, brxC, pglX, pglZ, brxL Goldfarb et 

al, 2015 Type 2 pglW, pglX, pglY, pglZ, brxD, brxHI 

Type 3 brxF, brxC/pglY, pglXI, brxHII, pglZ, brxA 

Type 4 brxP, brxC/pglY, pglZ, brxL 

Type 5 brxA, brxC/pglY, brxB, brxC/pglY, pglX, pglZ, 

brxHII  
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Type 6 brxE, brxA, brxB, brxC/pglY, pglX, pglZ, 

brxD, brxHI 

    

DISARM Class 1 drmD, drmMI, drmA, drmB, drmC Ofir et al, 

2018  Class 2 drmE, drmA, drmB, drmC, drmMII 

    

T-A Type I, II, III, 

IV, V, VI, 

ABI systems 

Numerous T-A system genes have been 

identified, including those involved in ABI 

mechanism 

Yamaguchi 

et al, 2011; 

Koonin et al, 

2017; 

Lopatina et 

al, 2020 

 

4.3 Results 

4.3.1 Overview of Synechococcus MAGs and SynAce01 genome 

A total of 59 Synechococcus MAGs (~157 Mbp; Appendix A: Table A2) generated 

from 120 Ace Lake time-series of metagenomes (Appendix A: Table A1) were used for 

various analyses in this chapter (Appendix A: Table A1). Notably, all Synechococcus 

MAGs were from 3–20 μm-filter and 0.8–3 μm-filter metagenomes and none were from 

0.1–0.8 μm-filter metagenomes, which was consistent with the size partitioning of the 

Synechococcus OTU (Chapter 3 section 3.3.5.5). The 16S rRNA marker gene was 

identified in 19 Synechococcus MAGs. The genomic variation, viral defence potential, 

ANI, and AAI of the MAGs were explored using a total of 81,361 genes on 2,259 

Synechococcus contigs. These genes and contigs were from 25 MAGs with ≥99% 

genome completeness as well as a Synechococcus MAG with 97% genome 

completeness and containing a distinct 16S rRNA gene (16S rRNA AL2) (described 

below in section 4.3.2). The Synechococcus MAGs used for the preliminary analysis of 

genomic variation represented high- and medium-quality draft genomes that were nearly 

complete (≥99% genome completeness) and contained little contamination (≤4% bin 

contamination). Bin contamination indicates the number of multicopy marker genes in 

each marker set that was identified in a MAG, and it can represent copies of the marker 

genes from different strains that have been included in the MAG (Parks et al, 2015). 
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The complete genome of SynAce01 is available in NCBI (RefSeq ID: 

NZ_CP018091.1). The method used for the sequencing and assembly of SynAce01 

complete genome was rigorous (Tang et al, 2019). It included the use of Illumina as 

well as PacBio technologies for generating two sets of contig assemblies, which were 

then compared to generate a closed genome. A post-genome assembly error correction 

step was included to correct any sequencing or assembly errors (Tang et al, 2019). 

Therefore, SynAce01 genome was considered to be of good quality and was used for 

the preliminary and FR analyses of genomic variation in Ace Lake Synechococcus. 

SynAce01 genome was 2,750,634 bp long, with 63.9% GC content. Overall, it 

contained 2,881 annotated genes, of which 2,732 were protein coding genes.  

4.3.2 Synechococcus 16S rRNA gene identity, ANI, AAI, and phylogeny 

The 16S rRNA gene sequences taken from 19 Synechococcus MAGs were 1,489 bp 

length each, but only 18 of the 19 genes had identical sequences; this gene sequence is 

hereafter referred to as 16S rRNA AL1. The variant 16S rRNA gene sequence (hereafter 

referred to as 16S rRNA AL2) was from a Synechococcus MAG generated from Dec 

2014_Lower 1_3 μm-filter metagenome; it was 99.9% similar to 16S rRNA AL1 

sequence with SNPs at positions 217 (A→T transversion) and 231 (G→T transversion) 

(Figure 4.1).  

 
Figure 4.1 Differences in the sequence of 16S rRNA genes from Ace Lake Synechococcus. 

The figure highlights the SNPs observed in the 16S rRNA gene sequences from SynAce01 and 

Synechococcus MAGs (16S rRNA AL1 and 16S rRNA AL2). The positions (pos) indicate base 

positions on 16S rRNA genes from Synechococcus MAGs, all of which were 1,489 bp long. The 

length of the SynAce01 16S rRNA gene was 1,486 bp. 

The taxonomic analysis of Ace Lake OTUs had showed that the closest related species 

to the Ace Lake Synechococcus OTU was SynAce01, with 99.9% 16S rRNA gene 

identity and 99% ANI over 97% alignment fraction (Chapter 3 section 3.3.3). This 

relatedness was verified for the Ace Lake Synechococcus MAGs from different lake 

depths and time periods, by comparing their 16S rRNA genes with that of SynAce01. 

The analysis showed that 16S rRNA AL1 and 16S rRNA AL2 were both 99.7% similar 
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to SynAce01 16S rRNA gene, with 3 additional nucleotides at their sequence ends and a 

SNP each — 16S rRNA AL1: position 217 T→A transversion and 16S rRNA AL2: 

position 231 G→T transversion (Figure 4.1). The 16S rRNA gene-based phylogenetic 

analysis showed distinct clustering of Synechococcus marker sequences from Ace Lake, 

separate from all other marine cyanobacteria species analysed (Figure 4.2). The overall 

ANI of the Synechococcus MAGs was ≥99.4% when compared against each other and 

≥99.2% (over 89–96% alignment fraction) when compared against the SynAce01 

genome. The AAI of the MAGs against the SynAce01 proteome was ≥99.4% over 73–

83% alignment fraction. 

 
Figure 4.2 16S rRNA gene-based phylogenetic analysis of Ace Lake Synechococcus. The 

maximum-likelihood tree shows the 16S rRNA gene-based phylogeny of various marine 

cyanobacteria (Table 4.2). The red-highlighted 16S rRNA gene sequences (16S rRNA AL1 and 

16S rRNA AL2) were from Synechococcus MAGs (described in section 4.3.2). The tree is 

drawn to scale and the scale length indicates the branch length. The numbers next to the 
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branches represent bootstrap values showing the percentage of trees in which the taxa clustered 

together. Only bootstrap values greater than 50% are shown here. 

 4.3.3 Analysis of sequence variations between Synechococcus MAGs 

The alignment of all MAGs against the MAG with the highest total base pair count and 

≥99% genome completeness showed at least 60 regions with SNPs, with the lengths of 

the variable sequence regions ranging from 300 bp to 34 kb. Most of the genes in these 

variable sequence regions were either of unknown function or coded for enzymes 

involved with mobile genetic elements (transposases). Genes predicted to be involved in 

cell wall biosynthesis (mostly glycosyltransferases) were also prevalent in the variable 

sequence regions. Some of the genes coded for membrane-associated proteins (Sec-

translocase, efflux pump membrane proteins, outer membrane protein TolC, 

undecaprenyl-diphosphatase, HPP family protein, porins, type IV pilus assembly 

proteins) and substrate transporters (multiple sugar ABC transporter, MFS transporter 

family proteins, iron transporter FeoB, putative sulfate transporters, putative 

bicarbonate transporter, and putative ion antiporters). A few genes involved in 

metabolism and cell defence were also identified in the variable sequence regions. 

4.3.4 Comparative analysis of Synechococcus MAGs and SynAce01 

As SynAce01 and the Synechococcus MAGs were from Ace Lake, they were used for 

preliminary analysis of genomic variation in the Ace Lake Synechococcus. The 

alignment of the Synechococcus MAGs against the SynAce01 genome showed that the 

MAGs did not have a similar pattern of sequence alignment, with only two MAGs 

matching across 100% alignment fraction of the reference genome and multiple regions 

with alignment gaps (Figure 4.3). The genes identified in the most prominent alignment 

gaps mostly coded for enzymes associated with mobile elements (transposases), 

proteins of unknown functions (hypothetical and uncharacterised proteins), and cellular 

defence proteins (T-A system proteins) (Table 4.4). Apart from the alignment gaps, a 

few regions of the Synechococcus MAGs had low identity matches to the SynAce01 

genome. One of these low identity regions (72–78% identity) starting at around 933 kb 

length of the SynAce01 genome was ~36 kb long and contained genes involved in cell 

membrane fluidity (two fatty acid desaturases) and substrate transport (three zinc ABC 

transporter proteins). Another region with low identity matches (73–81% identity) 

starting at around 1.3 Mb length of the SynAce01 genome contained genes potentially 
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involved in cell wall modification (two glycogen/starch/alpha-glucan phosphorylases 

and a mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase). 

Apart from the alignment gaps and low identity regions, some of the Synechococcus 

MAG contigs did not match the SynAce01 genome sequence. The genes annotated on 

these MAG contigs were mostly of unknown function (hypothetical proteins) and some 

were associated with cell wall modification (glycosyltransferases), mobile elements 

(transposases), and cellular defence systems (R-M and T-A system proteins). Genes 

involved in transport of substrates to and from the cell (ABC transporter and MFS 

transporter proteins) were also identified in these MAG contigs. 

 
Figure 4.3 Alignment of Synechococcus MAGs against SynAce01 genome. The figure shows 

the alignment of 26 Synechococcus MAGs to the SynAce01 genome (x-axis, black line). The y-

axis indicates the metagenomes (sample collection time, lake depth, and filter fraction) from 

which the MAGs were generated. The metagenomes are arranged from top to bottom in the 

order of sample collection time period from 2008 to 2015 and lake depth from Upper 1, 2, 3 to 

Interface to Lower 1, 2, 3. The genome completeness of the Synechococcus MAGs shown here 

was ≥99%, except for the MAG from ‘Dec 2014_Lower 1_3.0’ that had a genome completeness 

of 97% and contained 16S rRNA AL2 gene (section 4.3.2). The white regions in the alignment 

bands depict alignment gaps and indicate that the MAGs had no matches to those regions of the 

reference genome (section 4.3.4). The gradient bar indicates the percentage alignment identity. 
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The blue highlighted labels represent MAGs from Upper 3 zone of Ace Lake, where the 

population of Synechococcus was high in most time periods (Chapter 3 section 3.3.3). Filter 

fraction: 3, 3–20 μm; 0.8, 0.8–3 μm. 

Table 4.4 Genes annotated on SynAce01 genomic regions associated with alignment gaps 

in Synechococcus MAGs. A The approximate starting positions and lengths of the MAG 

alignment gaps on the SynAce01 genome are provided in the second column (the alignment 

gaps can be seen as white regions in Figure 4.3). The regions are arranged from top to bottom in 

the order of their occurrence along the length of SynAce01 genome. 

MAGs in which 

observed 

Alignment gap 

starting position 

and lengthA 

SynAce01 genes annotated in the alignment gap 

All MAGs except 

Oct 2014_Upper 

3_0.8 and Dec 

2014_Upper 3_0.8) 

~26 kb 

(22 kb length) 

3 copies of DEAD/DEAH box helicases 

RES family NAD+ phosphorylase  

3 Uncharacterized proteins  

2 Hypothetical proteins 

TerB family tellurite resistance protein 

Class I SAM-dependent DNA methyltransferase 

~50kb 

(11 kb length) 

AbrB family transcriptional regulator 

Thermonuclease family protein 

2 copies of GNAT family N-acetyltransferases 

YjbQ family protein 

CDGSH iron-sulfur domain-containing protein 

Flavin reductase family protein 

Alpha/beta hydrolase 

4 Hypothetical proteins 

3 Uncharacterized proteins  

Transposase  

~68 kb 

(22 kb length) 

19 Hypothetical proteins 

Terminase 

An uncharacterised protein 

3'-5' exonuclease 

2 copies of Helix-turn-helix domain-containing 

proteins 

3 copies of Transposases 

C1 family peptidase 

IS5/IS1182 family transposase 
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~93 kb 

(2.3 kb length) 

2 Hypothetical proteins 

8 out of 26 MAGs ~155 kb 

(23 kb length) 

2 copies of IS481 family transposase 

Bile acid:sodium symporter family protein (a 

transmembrane protein) 

Rhodanese-like domain-containing protein 

5 Uncharacterized proteins 

Conjugal transfer protein TrbI 

Deoxyribodipyrimidine photo-lyase 

FAD-dependent oxidoreductase 

2 copies of Type II T-A system PemK/MazF family 

toxin 

IS5 family transposase 

Putative addiction module antidote protein  

Type II T-A system RelE/ParE family toxin 

RNA-directed DNA polymerase 

4 Hypothetical proteins 

IS1595 family transposase 

All MAGs ~2.3 Mb 

(76 kb length) 

4 copies of type II T-A system VapBC toxin 

3 Hypothetical proteins 

2 copies of ISAs1 family transposase 

Uma2 family endonuclease (putative restriction 

endonuclease) 

2 copies of N-acetylmuramoyl-L-alanine amidase 

AbrB/MazE/SpoVT family DNA-binding domain-

containing protein (antitoxin component of the Phd-

Doc family type II T-A system) 

Cellulose synthase catalytic subunit 

2 Uncharacterized protein 

AI-2E family transporter 

IS1595 family transposase 

Fatty acid desaturase 

Rhomboid family intramembrane serine protease 

IS30 family transposase 

4.3.5 FR analysis of SynAce01 in Ace Lake metagenomes 
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The recruitment analysis of reads from Ace Lake merged metagenomes from different 

time periods and lake depths to the SynAce01 genome was used for a more in-depth 

analysis of Synechococcus genomic variation, including variable coverage regions and 

SNPs. The coverage pattern of SynAce01 was similar to the relative abundance pattern 

of the Synechococcus OTU in the merged metagenomes, showing high coverage in the 

upper oxic zone compared to the lower anoxic zone (Figures 4.4a, b, c). The abundance 

of Synechococcus was generally low in the Interface zone of Ace Lake (<6%; Chapter 3 

Figure 3.6), except in the metagenomes from Oct 2014 used here for FR analysis. 

4.3.5.1 Variable coverage regions 

The alignment of metagenomic reads to SynAce01 genome showed presence of regions 

with variable coverage — seven LCRs and 14 high coverage regions (Figure 4.4d). The 

high coverage regions mainly contained genes associated with mobile elements 

(transposases) and a few duplicate genes (rRNAs and photosystem-associated proteins) 

(Table 4.5). The LCRs contained genes involved in a variety of functions including 

DNA/RNA/protein modification, DNA replication and repair, cell wall biosynthesis, 

assembly, and modification, metabolism, substrate transport, as well as cell defence 

(Table 4.5). However, most of the genes in the LCRs were of unknown function or were 

associated with mobile elements. Genes associated with transfer RNAs and rRNAs were 

also present in the LCRs along with a bacteriophage-associated gene (terminase). 

Synechococcus had two 16S rRNA genes, of which one was present in the LCR starting 

at ~1.8 Mb position on SynAce01 genome, whereas the other was in a high coverage 

region starting at ~800 kb position on SynAce01 genome (Table 4.5). The high 

coverage Synechococcus 16S rRNA gene was an inverted duplicate of the low coverage 

16S rRNA gene in SynAce01, and variable read depth is often associated with this 

sequence configuration 

(http://software.broadinstitute.org/software/igv/interpreting_pair_orientations).  

4.3.5.2 SNPs 

For the analysis of SNPs in Synechococcus from different time periods and lake depths, 

only the mutations that were present in at least 90% of the metagenomic reads aligned 

to the reference base were considered. A total of 494 out of 2881 SynAce01 genes 

showed at least one SNP in at least one merged metagenome. Nearly all of these SNPs 

were observed in regions where the read depth did not vary, i.e., non-variable coverage 

http://software.broadinstitute.org/software/igv/interpreting_pair_orientations
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regions, and almost one-fifth of the genes containing SNPs (103 out of 494) were of 

unknown function (hypothetical and uncharacterised proteins). The rest of the genes 

were mainly associated with various metabolic functions, substrate transport, 

DNA/RNA/protein modification, cell wall biosynthesis and modification, and cell 

defence.  

For the analysis of sequence variations in 16S rRNA gene of Synechococcus, the marker 

gene sequence in the high coverage region (starting at ~800 kb position on SynAce01 

genome) was examined. Notably, the SNP at position 217 of 16S rRNA gene (Figure 

4.1) was present in a larger Synechococcus population (79–96% of the reads aligned to 

the reference base) than the SNP at the position 231 (6–21% of the reads aligned to the 

reference base) in all merged metagenomes, except the metagenome from Lower 1. In 

Dec 2014 Lower 1 merged metagenome, the SNP at position 217 was present in 53% of 

the reads aligned to the reference base, whereas the SNP at position 231 was present in 

47% of the aligned reads. On closer inspection, it was observed that the two SNPs rarely 

occurred on the same reads, suggesting that they probably represented data from two 

different subpopulations of Synechococcus, of which the ones carrying the mutation at 

position 217 were more prevalent. This was consistent with the observation that 18 out 

of 19 Synechococcus MAGs had the 16S rRNA gene mutation at position 217 (16S 

rRNA AL1 containing T→A transversion; Figure 4.1), whereas the remaining MAG 

had the 16S rRNA gene mutation at position 231 (16S rRNA AL2 containing T→G 

transversion; Figure 4.1). 
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Figure 4.4 Synechococcus abundance, coverage distribution, and genomic variation in Ace 

Lake metagenomes from different lake depths and time periods. (a) The bar-chart shows the 

relative abundance distribution of Synechococcus OTU (coloured pyramids) in merged 

metagenomes from different lake depths (U3, I, L1, L2, L3) and seasons (summer, Dec; winter, 

Aug; spring, Oct and Nov) (x-axis). Synechococcus OTU relative abundances in merged 

metagenomes were calculated from the absolute abundances of Synechococcus contigs in 3–20 

and 0.8–3 μm-filter metagenomes relative to the total abundance of all contigs in the two 

metagenomes (method described in Chapter 3 section 3.2.1). In the colour key, the merged 

metagenome from Aug 2014 is shown in a blue box to highlight its winter origin. (b and c) The 

bar-charts show the number of mapped reads (b, coloured cones) and mean read depth (c, 

coloured cylinders) of SynAce01 in the Ace Lake merged metagenomes from different lake 

depths and time periods. The y-axis in (b) indicates the total number of reads that aligned to the 

SynAce01 genome, whereas the y-axis in (c) denotes the mean of read depths from each 

position on SynAce01 genome. Read depth values were calculated from the data in the base 

coverage files generated using BBMap v38.51 (section 4.2.2). (d) The circos plot depicts the 

coverage distribution of SynAce01 genome in Ace Lake merged metagenomes (coloured rings). 

The outermost ring (grey) depicts the backbone of SynAce01 genome and the x-axis scale for 

all rings is drawn around its circumference. Read depth values are plotted on linear scale y-axes. 

As the main purpose of the figure was to highlight the distribution of variable coverage regions, 

the y-axes scales of circos rings vary. Read depth values greater than the y-axes limits were 

truncated to the y-axis maximum values. Variable coverage regions are marked by the dark blue 

(low coverage) and light blue (high coverage) stars inside the innermost ring of the circos plot. 

Merged metagenomes and their y-axis scale ranges, outer to inner ring: Nov 2008_U3 (A, , 0–

1000); Aug 2014_U3 (B, , 0–1000); Oct 2014_U3 (C, , 0–1000); Dec 2014_U3 (D, , 0–

1000); Oct 2014_I (E, , 1–1000); Dec 2014_L1 (F, , 0–300); Dec 2014_L2 (G, , 0–300); 

Nov 2013_L3 (H, , 0–300). Lake depths: U3, Upper 3; I, Interface; L1, Lower 1; L2, Lower 2; 

L3, Lower 3. 

Table 4.5 Genes annotated on variable coverage regions of SynAce01 genome. A The 

approximate starting positions and lengths of the variable coverage regions on the SynAce01 

genome are provided in the first column (the variable coverage regions are labelled as blue stars 

in Figure 4.4d). The LCRs are shown with a light blue background colour, whereas high 

coverage regions are shown with a light orange background colour. B The metagenomes 

mentioned in the second column refer to the merged metagenomes used for FR analysis of 

SynAce01 — Nov 2008 Upper 3, Aug 2014 Upper 3, Oct 2014 Upper 3, Dec 2014 Upper 3, Oct 

2014 I, Dec 2014 Lower 1, Dec 2014 Lower 2, Nov 2013 Lower 3 (Table 4.1). The regions are 
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arranged from top to bottom in the order of their occurrence along the length of SynAce01 

genome. 

Starting position 

and length of 

variable coverage 

regionA 

Metagenomes in which 

observedB 

SynAce01 genes annotated in the variable 

coverage region 

~20 kb 

(87 kb length) 

All 46 Hypothetical proteins 

9 Uncharacterised proteins 

3 copies of Helix-turn-helix domain-containing 

protein 

3 copies of DEAD/DEAH box helicase 

2 copies of GNAT family N-acetyltransferase 

4 Transposases 

IS5/IS1182 family transposase 

IS1182 family transposase 

Collagen-like protein 

C39 family peptidase 

C1 family peptidase 

RES family NAD+ phosphorylase 

TerB family tellurite resistance protein 

Class I SAM-dependent DNA 

methyltransferase 

Thermonuclease family protein 

YjbQ family protein 

CDGSH iron-sulfur domain-containing protein 

Flavin reductase family protein 

Alpha/beta hydrolase 

Peptide-methionine (S)-S-oxide reductase 

MsrA 

LysM peptidoglycan-binding domain-

containing protein 

Terminase 

3'-5' Exonuclease 

~118 kb 

(939 bp length) 

All IS481 family transposase 

~176 kb All IS1595 family transposase 
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(954 bp length) 

~223 kb 

(938 bp length) 

All IS481 family transposase 

~297 kb 

(2 kb length) 

All IS30 family transposase 

Transposase 

~796 kb 

(5 kb length) 

All 23S ribosomal RNA 

tRNA-Ala 

tRNA-Ile 

16S ribosomal RNA 

~846 kb 

(1 kb length) 

All Photosystem II D2 protein (photosystem q(a) 

protein) 

~902 kb 

(1 kb length) 

All IS3 family transposase 

~1.19 Mb 

(1 kb length) 

All except Nov 2013 

Lower 3 

IS5 family transposase 

~1.42 Mb 

(18 kb length) 

Only Nov 2013 L3 2 copies of GDP-mannose 4,6-dehydratase 

3 copies of Glycosyltransferases 

Glycosyltransferase family 4 protein 

2 copies of ISAs1 family transposase 

IS66 family transposase 

GNAT family N-acetyltransferase 

tRNA-Gly 

FkbM family methyltransferase 

SAM-dependent methyltransferase 

Methyltransferase domain-containing protein 

ABC transporter ATP-binding protein (O-

antigen export system ATP-binding protein 

RfbB) 

ABC transporter permease (O-antigen export 

system permease protein RfbA) 

Hypothetical protein 

~1.52 Mb 

(21 kb length) 

All except Dec 2014 

Lower 1 and Nov 2013 

Lower 3 

4 Hypothetical proteins 

3 copies of Glycosyltransferases 

Glycosyltransferase family 4 protein 

Glycosyltransferase family 2 protein 



205 
 

ABC transporter ATP-binding protein (Lipid A 

export ATP-binding/permease protein MsbA) 

O-antigen ligase family protein 

~1.65 Mb 

(1 kb length) 

All Photosystem II q(b) protein 

~1.81 Mb 

(5 kb length) 

All 16S ribosomal RNA 

tRNA-Ile 

tRNA-Ala 

23S ribosomal RNA 

~1.9 Mb 

(1.5 kb length) 

All except Nov 2013 

Lower 3 

IS5 family transposase 

~2.12 Mb 

(4 kb length) 

Aug 2014 Upper 3, Oct 

2014 Upper 3, Dec 2014 

Upper 3, and Oct 2014 

Interface 

3 Hypothetical proteins 

DNA polymerase III subunit gamma/tau 

~2.23 Mb 

(44 kb length) 

All 9 Hypothetical proteins 

11 copies of Glycosyltransferases 

Glycosyltransferase family 2 protein 

Glycosyltransferase family 4 protein 

2 copies of IS1595 family transposase 

2 copies of ISAs1 family transposase  

IS3 family transposase 

4 copies of FkbM family methyltransferase 

4 copies of type II toxin-antitoxin system VapC 

family toxin 

Asparagine synthase (glutamine-hydrolyzing) 

Class I SAM-dependent methyltransferase 

Alpha-1,2-fucosyltransferase 

Glycoside hydrolase family 99-like domain-

containing protein 

Polysaccharide pyruvyl transferase family 

protein 

Nitroreductase family protein 

ABC transporter ATP-binding protein (Lipid A 

export ATP-binding/permease protein MsbA) 

Uma2 family endonuclease 
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N-acetylmuramoyl-L-alanine amidase 

AbrB/MazE/SpoVT family DNA-binding 

domain-containing protein 

~2.25 Mb 

(1.6 kb length) 

All IS3 family transposase 

~2.3 Mb 

(1 kb length) 

All Photosystem II D2 protein (photosystem q(a) 

protein) 

~2.38 Mb 

(380 kb length) 

All except Nov 2008 

Upper 3 and Nov 2013 

Lower 3 

Hypothetical protein 

~2.53 Mb 

(1 kb length) 

All except Nov 2013 

Lower 3 

IS3 family transposase 

~2.61 Mb 

(1 kb length) 

All Upper 3 Photosystem II q(b) protein 

4.3.6 Defence genes in Ace Lake Synechococcus 

The genes annotated in Synechococcus MAGs were manually parsed to identify the 

defence genes (Table 4.6). Synechococcus MAGs contained multiple copies of the 

genes that coded for the methyltransferase, sequence specificity, and restriction 

endonuclease subunits of a type I R-M system. The genes coding for a type II R-M 

system methylase subunit as well as a type III R-M system restriction enzyme were also 

identified in the Synechococcus MAGs, but most of these had low identity matches to 

the reference proteins in the UniProtKB/Swiss-Prot database (Table 4.6). Some MAG 

gene annotations matched previously reported DISARM gene annotations (Ofir et al, 

2018). For example, gene annotations similar to drmD (SNF2 family helicase), drmC 

(phospholipase D), and drmMII (5-cytosine DNA methyltransferase) were identified 

among the Synechococcus MAG gene annotations (Table 4.6). The verification of the 

gene functions by matching their proteins to UniProtKB/Swiss-Prot database showed 

that the functional annotation of phospholipase D was correct, but it was not specifically 

associated with DISARM. The genes annotations of SNF2 family helicases and 5-

cytosine DNA methyltransferase showed that they were associated with different 

helicases and methylases and neither were specifically associated with DISARM 

mechanism (Table 4.6).  
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Genes associated with a variety of T-A systems, including multiple copies of the genes 

coding for VapBC, MazEF, and HigAB type II T-A systems, were found in the MAGs, 

along with the genes coding for the YefM antitoxin and HipA, PemK and RelE toxins 

of type II T-A systems (Table 4.6). Previous studies have reported that HEPN domain 

containing T-A system proteins could be involved in the ABI mechanism of viral 

infection disruption (Koonin et al, 2017). Therefore, genes coding for HEPN domain 

containing proteins were identified in the Synechococcus MAGs, but none of them were 

found to be a part of the ABI mechanism. The genes associated with CRISPR-Cas 

system were not present in the Synechococcus MAGs (Chapter 3 section 3.3.5.5). 

Apart from the defence genes identified on the Synechococcus MAGs, genes coding for 

two BREX proteins (BrxC and PglX) were present on the SynAce01 genome. The BrxC 

protein had 50% protein sequence similarity to BREX system P-loop protein BrxC from 

a Verrucomicrobia bacterium, whereas the PglX protein had 52% protein sequence 

similarity to BREX-1 system adenine-specific DNA-methyltransferase PglX from 

Leptospira ognonensis. As previous studies have shown that phage resistance genes are 

usually clustered together in defence islands (Makarova et al, 2011), the genes 

neighbouring the BREX genes were assessed, leading to the identification of brxA and 

brxB. The brxA gene coded for a DUF1819 family protein of unknown function, 

whereas brxB gene coded for a DUF1788 domain-containing protein of unknown 

function; these annotations were consistent with their previous gene function 

assignments (Goldfarb et al, 2015). The gene coding for BrxL (a Lon-like protease) was 

also present in SynAce01, albeit at a different location on the genome, but the core pglZ 

gene was not identified. Notably, the brxC and pglX BREX genes in SynAce01 flanked 

a toxin gene and an antitoxin gene of a putative RelBE type II T-A system as well as an 

antitoxin gene (abiEi) of a type IV T-A system possibly involved in ABI mechanism 

(Figure 4.5a). The pglX gene was truncated and appeared to be disrupted by an IS481 

family transposase gene, which flanked its truncated side. The brxL gene was also 

truncated and coded for a BrxL protein that was less than one-third of the median size of 

most BrxL proteins (median protein length being 682 aa; Goldfarb et al, 2015). The FR 

analysis showed alignment of reads from different merged metagenomes to these 

SynAce01 BREX genes with no SNPs and no variable coverages, suggesting that 

probably all Ace Lake Synechococcus contained this incomplete type I BREX system 

cassette (Figure 4.5b). 
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To determine whether the BREX gene cassette identified in SynAce01 was present in 

the Synechococcus MAGs, the alignment of the Synechococcus MAGs to the SynAce01 

genome was reanalysed. The annotated genes in the selected regions of Synechococcus 

MAGs were manually reannotated to verify their potential function (Table 4.6). 

Interestingly, some Synechococcus MAG contigs also contained a pglZ gene clustered 

with a non-truncated brxL gene, although these two genes were not near the incomplete 

BREX defence cassette. Genes coding for an ATP-dependent Lhr-like helicase, a 

serine/threonine protein kinase, and a phosphoadenosine phosphosulfate reductase were 

also identified among the Synechococcus MAGs, however, their manual annotation 

could not verify them as BREX genes (Table 4.6). Moreover, their neighbouring genes 

were involved in various metabolic functions, but not cell defence. 

 

 
Figure 4.5 BREX defence system genes in SynAce01 and their coverage in Ace Lake 

merged metagenomes. (A) The schematic shows the location of BREX genes (green) on 

SynAce01 genome (black line). The BREX defence cassette contained brxA, brxB, brxC, and 

truncated pglX genes, although the cassette was interrupted by the presence of genes associated 

with T-A system (type IV T-A gene, orange; type II T-A genes, yellow). A transposase gene 

(red) flanked the defence cassette on one side. A truncated brxL gene was located far from the 

defence gene cassette. The empty regions with green borders in pglX and brxL genes indicate 
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truncated parts of these BREX genes. (B) The scatter-plot displays the mean read depths of the 

genes identified in the SynAce01 BREX cassette (genes along x-axis; also shown in A) relative 

to the mean read depths of SynAce01 in merged metagenomes from Ace Lake. Read depth 

values were calculated from the data in the base coverage files generated using BBMap v38.51 

(section 4.2.2). The gene/SynAce01 mean read depth ratio was calculated by dividing the mean 

read depth of a gene by the overall mean read depth of SynAce01 in a merged metagenome (% 

ratio along y-axis). Most gene/SynAce01 ratio values were around 100% suggesting that the 

mean read depths of these genes were similar to the SynAce01 mean read depth in a merged 

metagenome. This, in turn, indicated that the SynAce01 BREX cassette was probably present in 

all Synechococcus in Ace Lake. The IS481/SynAce01 ratio was ≥300%, which indicated that the 

mean read depth of this transposase gene was three-times the SynAce01 mean read depth in 

merged metagenomes. Ace Lake merged metagenomes: Nov 2008_Upper 3 ( ); Aug 

2014_Upper 3 ( ); Oct 2014_Upper 3 ( ); Dec 2014_Upper 3 ( ); Oct 2014_Interface ( ); Dec 

2014_Lower 1 ( ); Dec 2014_Lower 2 ( ); Nov 2013_Lower 3 ( ). 

Table 4.6 Defence genes annotated in Synechococcus MAGs. A The gene annotations were 

provided by JGI’s IMG system. B The gene functions were verified against reference proteins in 

UniProtKB/Swiss-Prot database using the ExPASy BLAST+ online service 

(https://web.expasy.org/blast/). The proteins with poor matches to reference proteins in 

UniProtKB/Swiss-Prot database were aligned to the complete UniProtKB database for 

verification of function. The highlighted genes had functions similar to some of the DISARM as 

well as BREX system genes. 

Defence 

system 

Subsystem 

type 
Annotated geneA 

Gene function and protein 

sequence identity (%)B 

R-M system 

Type I R-M 

system 
Type I restriction enzyme 

M protein 

35% Probable type I restriction 

enzyme BthVORF4518P M protein 

Bacteroides thetaiotaomicron 

Type I restriction enzyme 

S subunit 

30% Type-1 restriction enzyme 

EcoBI specificity protein 

Escherichia coli 

Type I restriction enzyme 

M protein 

51% Putative type I restriction 

enzyme HindVIIP M protein 

Haemophilus influenzae 

Type I restriction enzyme 

S subunit 

29% Putative type-1 restriction 

enzyme MjaXP specificity 

protein Methanocaldococcus 

jannaschii 

https://web.expasy.org/blast/
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Type I restriction enzyme 

R subunit 

43% Putative type I restriction 

enzyme HindVIIP R protein 

Haemophilus influenzae 

Type I restriction enzyme 

S subunit 

23% Putative type I restriction 

enzyme specificity protein 

HI_0216 Haemophilus influenzae 

Type I restriction enzyme 

M protein 

36% Type I restriction enzyme 

EcoEI M protein Escherichia coli 

Type I restriction enzyme 

R subunit 

39% Type I restriction enzyme 

EcoEI R protein Escherichia coli 

Type I restriction enzyme 

R subunit 

28% Type I restriction enzyme 

EcoKI R protein Escherichia coli 

Type I restriction enzyme 

S subunit 

28% Type-1 restriction enzyme 

EcoBI specificity protein 

Escherichia coli 

Type I restriction enzyme 

M protein 

32% Type I restriction enzyme 

EcoEI M protein Escherichia coli 

Type I restriction enzyme 

R subunit 

37% Type-1 restriction enzyme R 

protein Staphylococcus 

epidermidis 

Putative type 

II R-M genes 

Type I restriction-

modification system 

DNA methylase subunit 

33% Type IIS restriction enzyme 

Eco57I Escherichia coli 

Type II 

restriction/modification 

system DNA methylase 

subunit YeeA 

25% Putative DNA 

methyltransferase YeeA Bacillus 

subtilis 

Type II 

restriction/modification 

system DNA methylase 

subunit YeeA 

23% Putative DNA 

methyltransferase YeeA Bacillus 

subtilis 

Putative type 

III R-M gene 

Type III restriction 

enzyme 

26% Type III restriction-

modification system EcoPI enzyme 

res Escherichia phage P1 

CRISPR-Cas 

system 

No Cas genes 

identified. 
- - 
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BREX system 

Type 1 BREX 

system 

 

ATP-dependent Lon 

protease (fragment) 

27% Lon protease 2 Myxococcus 

xanthus 

ATP-dependent Lon 

protease 

86%; ATP-dependent Lon protease 

Cyanobium sp. (in UniProtKB)  

Bisphosphoglycerate-

independent 

phosphoglycerate mutase 

(AlkP superfamily) 

62%; PglZ domain-containing 

protein Cyanobium sp. (in 

UniProtKB) 

Putative inner membrane 

protein DUF1819 

100%; Putative inner membrane 

protein DUF1819 Synechococcus 

sp. Ace-Pa (in UniProtKB) 

Uncharacterized protein 

DUF1788 

100%; Uncharacterized protein 

DUF1788 Synechococcus sp. Ace-

Pa (in UniProtKB) 

Hypothetical protein 50%; BREX system P-loop protein 

BrxC Verrucomicrobia bacterium 

(in UniProtKB) 

Type II 

restriction/modification 

system DNA methylase 

subunit YeeA 

53%; Site-specific DNA-

methyltransferase (adenine-

specific) Nitrospira lenta (in 

UniProtKB) 

ATP-dependent Lhr-like 

helicase 

26% Uncharacterized ATP-

dependent helicase MJ0294 

Methanocaldococcus jannaschii 

SNF2 family DNA or 

RNA helicase 

26% Uncharacterized ATP-

dependent helicase YqhH Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase 

40% Uncharacterized ATP-

dependent helicase YwqA Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase 

27% Uncharacterized ATP-

dependent helicase YwqA Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase/ERCC4-

related helicase 

30% Uncharacterized ATP-

dependent helicase YqhH Bacillus 

subtilis 
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SNF2 family DNA or 

RNA helicase/ERCC4-

related helicase 

46% Uncharacterized ATP-

dependent helicase YqhH Bacillus 

subtilis 

Serine/threonine-protein 

kinase 

33% Serine/threonine-protein 

kinase PknA Nostoc sp. 

Phosphoadenosine 

phosphosulfate reductase 

53% Phosphoadenosine 

phosphosulfate reductase 

Synechococcus sp. 

DISARM 

system 

No DISARM 

defence 

cassette 

identified. 

 

Some genes 

with functions 

similar to 

DISARM 

system genes 

were found. 

 

ATP-dependent RNA 

helicase RhlE 

64% ATP-dependent RNA helicase 

RhlE Escherichia coli 

Primosomal protein N' 

(replication factor Y) 

45% Primosomal protein N' 

Synechocystis sp. 

ATP-dependent DNA 

helicase RecQ 

48% ATP-dependent DNA 

helicase RecQ Escherichia coli 

Phosphatidylserine/phosp

hatidylglycerophosphate/

cardiolipin synthase-like 

enzyme 

28% Phospholipase D Rickettsia 

prowazekii 

SNF2 family DNA or 

RNA helicase 

26% Uncharacterized ATP-

dependent helicase YqhH Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase 

40% Uncharacterized ATP-

dependent helicase YwqA Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase 

27% Uncharacterized ATP-

dependent helicase YwqA Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase/ERCC4-

related helicase 

30% Uncharacterized ATP-

dependent helicase YqhH Bacillus 

subtilis 

SNF2 family DNA or 

RNA helicase/ERCC4-

related helicase 

46% Uncharacterized ATP-

dependent helicase YqhH Bacillus 

subtilis 

DNA (cytosine-5)-

methyltransferase 1 

28% Modification methylase AplI 

Arthrospira platensis 
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T-A system 

VapBC type 

II T-A system 

 

 

 

 

 

Antitoxin VapB 
50% Virulence-associated protein 

B Dichelobacter nodosus 

Antitoxin of toxin-

antitoxin stability system 

52% Antitoxin VapB22 

Mycobacterium tuberculosis 

Arc/MetJ family 

transcription regulator 

59% Antitoxin VapB32 

Mycobacterium tuberculosis 

PIN domain nuclease of 

toxin-antitoxin system 

32% Ribonuclease VapC22 

Mycobacterium tuberculosis 

PIN domain nuclease of 

toxin-antitoxin system 

30% Ribonuclease VapC22 

Mycobacterium tuberculosis 

PIN domain nuclease of 

toxin-antitoxin system 

37% Ribonuclease VapC22 

Mycobacterium tuberculosis 

MazEF type 

II T-A system 

 

Antitoxin component of 

MazEF toxin-antitoxin 

module 

34% Antitoxin MazE Escherichia 

coli 

mRNA interferase MazF 
47% Endoribonuclease MazF9 

Mycobacterium tuberculosis 

mRNA interferase MazF 
36% Endoribonuclease MazF 

Staphylococcus epidermidis 

mRNA interferase MazF 

49% Probable endoribonuclease 

MazF Mycolicibacterium 

smegmatis 

mRNA interferase MazF 

51% Probable endoribonuclease 

MazF Mycolicibacterium 

smegmatis 

HigAB type 

II T-A system 

 

Plasmid maintenance 

system antidote protein 

VapI 

53% Virulence-associated protein I 

Dichelobacter nodosus 

Plasmid maintenance 

system antidote protein 

VapI 

49% Virulence-associated protein I 

Dichelobacter nodosus 

Proteic killer suppression 

protein 

56% Toxin HigB-1 Vibrio 

cholerae 

Proteic killer suppression 

protein 

53% Toxin HigB-1 Vibrio 

cholerae 
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Antitoxin 

YefM of the 

Phd antitoxin 

superfamily of 

type II T-A 

systems 

Antitoxin of toxin-

antitoxin stability system 

35% Orphan antitoxin YefM 

Salmonella typhimurium 

Toxin 

modules of 

HipBA, 

PemIK, and 

RelBE type II 

T-A systems 

Serine/threonine-protein 

kinase HipA 

42% Serine/threonine-protein 

kinase toxin HipA Escherichia coli 

mRNA interferase MazF 
50% Endoribonuclease PemK 

Escherichia coli 

mRNA interferase MazF 
37% Endoribonuclease PemK 

Escherichia coli 

mRNA-degrading 

endonuclease RelE of 

RelBE toxin-antitoxin 

system 

30% Toxin RelE Mycobacterium 

tuberculosis 

 

4.4 Discussion 

4.4.1 Synechococcus genomic variation — phylotypes and potential ecotypes  

The Synechococcus MAGs and SynAce01 genome represented the same species of 

Synechococcus in Ace Lake, which was evident from the comparison of 16S rRNA 

genes from Synechococcus MAGs and SynAce01 as well as their ANI and AAI (section 

4.3.2). SNPs in the Synechococcus 16S rRNA marker gene indicated that at least two 

distinct, but closely related (99.9% marker gene similarity), subpopulations of 

Synechococcus existed in Ace Lake (section 4.3.5.2). The genomic variation identified 

during comparative analysis of Synechococcus MAGs with each other and SynAce01 as 

well as the FR analysis of metagenomic reads to SynAce01 also suggested the presence 

of different phylotypes and potential ecotypes of Ace Lake Synechococcus. However, 

the data did not indicate any season-based segregation of the Synechococcus 

subpopulations. 

4.4.1.1 Synechococcus subpopulations representing a potential ecotype  
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A few genes involved in a broad range of metabolic functions were present in the LCRs 

(Table 4.5). These included genes coding for a YjbQ family protein, flavin reductase 

and nitroreductase family proteins, and a photosystem II q(b) protein; additional copies 

of these genes were also present in the non-variable regions of SynAce01. A single-

copy gene coding for glutamine-hydrolyzing asparagine synthase (AsnB) was present in 

the LCRs. The SynAce01 AsnB protein sequence had 30% similarity to the asparagine 

synthetase [glutamine-hydrolyzing] gene from Bacillus subtilis. This enzyme catalyses 

the ATP-dependent biosynthesis of L-asparagine, where it converts aspartate to 

asparagine using glutamine or ammonium as a nitrogen source, preferably glutamine. 

An alternate reaction for biosynthesis of L-asparagine involves ammonium-hydrolyzing 

asparagine synthase (AsnA), which uses ammonium for conversion of aspartate to 

asparagine. The asparagine produced from either reaction can be used for the 

biosynthesis of amino-acids. Due to its stability and high nitrogen to carbon ratio, 

asparagine has also been considered to be suitable for nitrogen storage, although high 

concentration of asparagine inhibits AsnA and AsnB enzyme activities (Reitzer and 

Magasanik, 1982; Gaufichon et al, 2010). A study has shown that in environments with 

nitrogen as the limiting nutrient, the glutamine-dependent AsnB enzyme activity could 

be important for asparagine synthesis from glutamine (Reitzer and Magasanik, 1982). 

As bioavailable nitrogen is a limiting nutrient in the Ace Lake upper oxic zone (Rankin 

et al, 1999), the Synechococcus subpopulation containing the asnB gene (hereafter 

referred to as Synechococcus AsnB subpopulation) could represent a distinct ecotype 

with an improved capacity to store and utilise nitrogen.  

The Synechococcus AsnB subpopulation had low relative coverage (≤10%) compared to 

the overall mean read depth of SynAce01 in the merged metagenomes, except in the 

bottom-most depth of Ace Lake where nearly 40% of the population had an asnB gene 

(Figure 4.6). The Ace Lake Lower zone has a high concentration of ammonium, 

peaking at around 15 m depth, compared to the Upper zone (Burton, 1980; Hand and 

Burton, 1981). A putative ammonium transporter was identified in ≥85% of the 

Synechococcus population in each merged metagenome, indicating their capacity for 

ammonium uptake. As AsnB can use both ammonium and glutamine as a source of 

ammonia for biosynthesis of asparagine, the availability of reduced nitrogen could 

probably sustain a larger Synechococcus AsnB subpopulation in the Lower zone of Ace 

Lake. A similar Synechococcus AsnB subpopulation was also found among the 
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Synechococcus species isolated by Callieri et al, (2019) from the dark, anoxic waters of 

Black Sea. An assessment of the annotated genes in the draft genomes of two 

Synechococcus strains from Black Sea showed that one strain (Synechococcus sp. 

BS55D; RefSeq assembly ID: GCF_004332415.1) had an asnB gene, but the other 

(Synechococcus sp. BS56D; RefSeq assembly ID: GCF_004332405.1) did not, and both 

had two ammonium transporter genes. The Synechococcus AsnB subpopulation also 

appeared to be stable in Ace Lake, as it was observed in metagenomes from time 

periods spanning seven years from 2008 to 2014 and from all three depth zones (oxic, 

oxycline, anoxic) of Ace Lake. 

 
Figure 4.6 The relative coverage of SynAce01 asnB gene in Ace Lake merged 

metagenomes. The bar charts show the mean read depth of asnB gene (orange bars) and its 

coverage relative to the mean read depth of SynAce01 (blue bars) in Ace Lake merged 

metagenomes, indicated along the y-axis. The asnB/SynAce01 mean read depth ratio 

represented the relative coverage of asnB gene in the merged metagenomes and indicated the 

approximate percentage of the Synechococcus subpopulation that probably had the asnB gene. 

Read depth values were calculated from the data in the base coverage files generated using 

BBMap v38.51 (section 4.2.2). The asnB/SynAce01 mean read depth ratio was calculated by 

dividing the mean read depth of asnB by the overall mean read depth of SynAce01. Lake 

depths: U3, Upper 3; I, Interface; L1, Lower 1; L2, Lower 2; L3, Lower 3. 

4.4.1.2 Synechococcus subpopulations with varying cell wall composition  

The genomic variation, including LCRs and SNPs, indicated that potential 

Synechococcus phylotypes that differ in their cell wall composition might exist in Ace 

Lake. Multiple SynAce01 genes associated with cell wall biosynthesis, assembly, and 

modification (mostly multicopy genes) had low coverage in the merged Ace Lake 

metagenomes, suggesting that only a subpopulation of Synechococcus contained 
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additional copies of these genes (Table 4.5). The genes coded for collagen-like protein, 

LysM domain-containing protein, GDP-mannose 4,6-dehydratase, O-antigen ligase, 

ABC transporters (O-antigen and Lipid A), N-acetylmuramoyl-L-alanine amidase, and 

glycosyltransferase family proteins.  

The collagen-like protein has been previously associated with bacterial outer membrane 

and is known to assume a thermostable triple helix shape (Yu et al, 2014). A single 

copy of its gene was identified in a SynAce01 LCR (Table 4.5). This protein has been 

identified in bacteria from various habitats including Antarctic sediments and glaciers 

(Kananavičiūtė et al, 2020). LysM domain-containing protein could also be associated 

with the bacterial outer membrane, as LysM domains bind peptidoglycans and are 

usually found on extracellular proteins or receptors (Mesnage et al, 2014). GDP-

mannose 4,6-dehydratase is involved in the biosynthesis of GDP-fucose, which is used 

for the synthesis of extracellular polysaccharides and glycoconjugates, and has been 

previously identified in another Synechococcus (Kramm et al, 2012). O-antigen ligase 

family protein is involved in the production of O-antigen, an outer membrane 

lipopolysaccharide in bacteria. The SynAce01 genes coding for an O-antigen export 

system were present in LCRs in Nov 2013 Lower 3 merged metagenome, whereas the 

genes coding for a lipid export system was present in LCRs in all merged metagenomes. 

N-acetylmuramoyl-L-alanine amidase can break down peptidoglycan, and is probably 

involved in cell wall degradation.  

The functional annotations of some of the glycosyltransferase genes in the LCRs 

suggested that they were involved in cell wall biosynthesis and others might play a role 

in cell wall modification. SNPs were also observed in a number of glycosyltransferase 

genes throughout the SynAce01 genome. In bacteria, glycosyltransferase gene 

mutations can affect its substrate specificity, which can in turn affect the type of sugar 

selected for glycosylation (Schmid et al, 2016). Similar variations in glycosyltransferase 

genes have been previously reported in an Antarctic haloarchaea population 

(Tschitschko et al, 2018). The genes discussed in this section can directly or indirectly 

impact cell wall composition, and subpopulations of Synechococcus that do not contain 

these genes or contain a lower copy number of these genes could have a different cell 

wall structure.  

4.4.1.3 Synechococcus subpopulations with varying capacity for cell defence 

and immunity  
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The genomic variation observed in Ace Lake Synechococcus also pointed toward 

subpopulations of Synechococcus that might differ in their capacity for cell defence and 

immunity (Table 4.5). The genes identified in the LCRs that might be involved in some 

form of defence system (mostly multicopy genes) included C39 family peptidase, 

tellurite resistance gene (TerB family), DEAD/DEAH-box helicase, Uma2 family 

endonuclease, RES family toxin, MazE family antitoxin, and VapC family toxins. Of 

these, C39 family peptidase is usually found on ABC transporters for bacteriocin, which 

is a secondary metabolite with antimicrobial properties that can inhibit the growth of 

other nearby closely related bacteria (Dirix et al, 2004; Cotter et al, 2013). Bacteriocin 

gene clusters have been identified in a number of marine cyanobacteria, including 

various Synechococcus spp. (Wang et al, 2011). TerB family proteins can confer 

immunity against tellurite, a rare compound made of tellurium dioxide and highly toxic 

to most bacteria, as it generates of reactive oxygen species (Taylor, 1999; Chasteen et 

al, 2009). A number of tellurite-resistant bacteria have been isolated from Antarctica 

previously (Arenas et al, 2014).  

The SynAce01 Uma2 family endonuclease was verified as a putative R-M system 

endonuclease through alignment to reference proteins in UniProtKB/Swiss-Prot 

database. Moreover, SNPs were identified in another copy of Uma2 family 

endonuclease gene in SynAce01. SNPs in restriction enzymes have been previously 

reported and it has been suggested that point mutations can help to improve their target 

sequence specificity (Saravanan et al, 2008). RES and VapC family toxins and MazE 

family antitoxin belong to type II T-A systems. Of the four copies of VapC toxin genes 

present in the LCRs, two genes had SNPs as well. Variations in the sequence of VapC 

toxin have been observed previously and it has been suggested that environmental 

conditions might contribute toward the evolution of T-A system modules (Lopes et al, 

2019). DEAD/DEAH-box helicases are generally involved in RNA metabolism, but 

some have been reported to contribute toward cell innate immunity as well as viral 

interactions (Perčulija and Ouyang, 2019). The genes discussed in this section were 

probably involved in a variety of defence systems that can affect the endurance and 

growth of Synechococcus. See below section 4.4.2 for further discussion on 

Synechococcus cell defence and viral associations. 

4.4.2 Synechococcus potential for defence against viruses 
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The analysis of the Synechococcus MAGs showed the presence of many genes 

associated with various defence systems that potentially provided viral immunity to the 

bacteria (Table 4.6). Ace Lake Synechococcus does not contain CRISPR-Cas system 

genes, which is consistent with previous findings in marine cyanobacteria (Cai et al, 

2013). A number of genes coding for type I R-M system and some putative type II and 

type III R-M system genes were present in Synechococcus, some of which contained 

SNPs. Similar point mutations in restriction enzymes have been reported to improve 

their capacity to detect and eliminate foreign DNA, including viruses (Saravanan et al, 

2008). Multiple copies of the genes coding for various T-A system proteins, including 

VapBC, MazEF, and HigAB type II T-A systems, YefM antitoxin, and HipA, PemK, 

and RelE toxins, were identified in Synechococcus. Of these, the MazEF type II T-A 

system is known to be involved in the ABI mechanism of viral infection disruption, 

which causes the death of the infected host cell to prevent the spread of viral infection to 

other host cells in the population (Hazan and Engelberg-Kulka, 2004; Engelberg-Kulka 

et al, 2005). Although a number of helicase and methylase genes were present in 

Synechococcus MAGs, none of them were found to be associated with DISARM 

system, suggesting that this defence system was probably not present in Ace Lake 

Synechococcus. 

The FR analysis to SynAce01 genome showed that Ace Lake Synechococcus contained 

genes for a type I BREX system (Figure 4.5). This defence system is known to prevent 

viral DNA replication after the virus has invaded the host cell (Goldfarb et al, 2015). 

The analysis of SynAce01 BREX genes showed that the BREX system was probably 

inactivate, as the defence cassette (i) was missing the core pglZ gene; (ii) had a 

truncated pglX gene disrupted by the IS481 transposase gene flanking it on one side; 

(iii) contained a RelBE type II T-A system between pglX and brxC genes; and (iv) had a 

truncated brxL gene located far from the defence cassette (Figure 4.5). A similar 

configuration of genes has been reported in the type 5 BREX system of some Antarctic 

haloarchaea from Deep Lake in the Vestfold Hills, containing a transposon-disrupted 

pglX gene and presence of VapBC type II T-A system genes (Tschitschko et al, 2015). 

In this study, the pglX gene from the genome of Hrr. lacusprofundi had a low coverage 

in the Deep Lake metagenomes, which along with the identification of a Hrr. 

lacusprofundi contig with an intact pglX gene indicated the presence of haloarchaea 

subpopulations capable of producing functional PglX proteins. This might not be the 
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case with Synechococcus in Ace Lake, as all BREX genes were identified in non-

variable coverage genomic regions of SynAce01 (Figure 4.5b), and the pglX genes in 

the Synechococcus MAGs were also truncated and were usually present on one end of 

the MAG contigs. Such reordering and/or disruption of pglX gene, including presence 

of SNPs, has been reported previously, and it has been speculated that the pglX gene is 

either the specificity module of BREX systems or it is highly toxic (Laity et al, 1993; 

Sumby and Smith, 2003; Goldfarb et al, 2015). As most phage-related defence genes 

are either toxic or apply fitness costs to the hosts, it has been suggested that the loss or 

truncation of BREX genes and/or their genomic reorganization in the host can serve to 

elevate their toxic effects in the absence of selection pressure imposed by phage (Hallet, 

2001; Cerdeño-Tárraga et al, 2005; Gomez and Buckling, 2011; Hall et al, 2011; Stern 

and Sorek, 2011; Bikard & Marraffini, 2012; Makarova et al, 2012; Goldfarb et al, 

2015).  

Notably, some of the Synechococcus MAGs, but not SynAce01 genome, contained pglZ 

core gene alongside a complete brxL gene, indicating the ability of a Synechococcus 

subpopulation to produce functional PglZ and BrxL proteins. These two genes (pglZ 

and brxL) are known to be co-transcribed in BREX systems as are brxA-brxB-brcC-

pglX (Goldfarb et al, 2015). Overall, Ace Lake Synechococcus had all defence genes 

associated with a type 1 BREX system — containing brxA, brxB, brxC (core), pglZ 

(core), and brxL as well as a truncated pglX gene (containing only a portion of the 

methylase domain). However, the lack of a complete pglX gene in the Synechococcus 

population indicated their inability to produce functional PglX protein. As PglX is 

involved in methylation of host DNA to differentiate it from phage DNA, it has been 

recognised as being essential for BREX-mediated virus resistance (Goldfarb et al, 

2015). Therefore, in the absence of functional PglX proteins, the Ace Lake 

Synechococcus BREX system would be inactive. However, it has been previously 

reported that the BREX defence cassettes are readily exchanged through HGT and the 

defence genes in them tend to co-evolve (Goldfarb et al, 2015). If intact BREX defence 

genes exist in the microbial population of Ace Lake, it might be possible for 

Synechococcus to reacquire the BREX defence system when under phage pressure. 

Other than various cell defence and immunity systems, SNPs in the genes coding for 

membrane-associated proteins, such as outer membrane proteins, pilus assembly 

proteins, and substrate transport proteins, as well as genes associated with cell wall 
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modification, such as glycosyltransferases, were observed in Ace Lake Synechococcus. 

SNPs in glycosyltransferase genes can potentially lead to changes in cell surface 

structure (Schmid et al, 2016). Therefore, mutations in these membrane- and cell wall-

associated genes could provide immunity against viruses by changing cell surface 

composition. This strategy is known to be employed by the marine cyanobacteria 

Prochlorococcus that evades viruses through mutations in its cell-surface genes, which 

prevents virus attachment by changing the cell surface structure (Avrani et al, 2011). 

Similar variations in the cell surface proteins including S-layer, archaella, and adhesin 

proteins as well as glycosyltransferases have been observed in the Antarctic haloarchaea 

from Deep Lake and were considered to be a method for viral evasion (Tschitschko et 

al, 2015; Tschitschko et al, 2018). 

Interestingly, a terminase gene (flanked by hypothetical and uncharacterised genes) was 

identified in the LCR starting at ~20 kb length of SynAce01 genome, suggesting the 

presence of this phage packaging gene in a subpopulation of Ace Lake Synechococcus 

(Table 4.5). A replication-defective prophage (phiSynAce1) has been previously 

reported at this position in the SynAce01 genome (Tang et al, 2019). Phage have been 

shown to be involved in the horizontal transfer of genetic material in a marine 

Synechococcus, including transfer of genes associated with modification of cell surface 

composition (Palenik et al, 2003). The potential role of viruses in HGT was also 

observed in Antarctic haloarchaea from Deep Lake in the Vestfold Hills, where a 

defective prophage (Hlac-Pro1) associated with the archaeal BJ1 virus was identified in 

the genome of Hrr. lacusprofundi (DeMaere et al, 2013; Tschitschko et al, 2015). 

Cyanophages can drive the evolution of marine cyanobacteria, which in turn can enable 

co-existence of host and virus due to the presence of virus susceptible as well as 

resistant host populations (Coleman et al, 2006; Avrani et al, 2011; Zborowskya and 

Lindell, 2019). As changes in cell wall structure could help evade viruses, it can be 

speculated that Synechococcus subpopulations containing additional genes for cell wall 

modification and cell defence possibly represent virus resistant populations. On the 

other hand, Synechococcus subpopulations that do not contain these additional genes 

could probably represent virus susceptible populations. Moreover, it has been 

previously reported that the viral predators of marine cyanobacteria can be host-specific 

(specialist) or have a broad range of hosts (generalist), and that host cyanobacteria 

display resistance to these two types of viruses at the extracellular- or intracellular-level, 
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respectively (Zborowskya and Lindell, 2019). Therefore, it is possible that 

Synechococcus subpopulations use cell wall modifications as a means to resist specialist 

viruses, whereas cell defence modifications are used for resistance against generalist 

viruses (Figure 4.7). In any case, the presence of a potential prophage in Ace Lake 

Synechococcus and the lack of a linear correlation between Synechococcus and the Ace 

Lake cyanophage (Chapter 3 section 3.3.5.5) might indicate a complex pattern of 

interaction between these cyanobacteria and their viral predators.  

 
Figure 4.7 Potential Synechococcus populations in Ace Lake. Panels (A, B) highlight the 

types of viruses and their infection mechanisms, and Synechococcus capacity for different types 

of viral defence mechanisms. The virus-sensitive population (A) could include bacterial cells 

prone to viral attacks by host-specific viruses (black virions) and/or general viruses with broad 

host range (light grey virions). The viruses invade host cells, use host machinery to propagate, 

and then lyse the host cell to release newly formed virions. The virus-resistant population (B) 

could include bacterial cells that are capable of evading viruses or neutralising the invading viral 

genetic material. The Synechococcus phylotypes that have additional and/or modified copies of 

genes involved in cell surface modification and cell defence might be able to fend off phage 

attacks (section 4.4.2). This has been previously reported for other bacteria and archaea (Avrani 

et al, 2011; Tschitschko et al, 2015; Tschitschko et al, 2018; Saravanan et al, 2008). The 

resistant cells could: (1) evade viruses, especially host-specific viruses, through modification of 

cell surface proteins; (2) degrade invading viral genetic material using modified R-M defence 

systems with improved target specificity; (3) prevent viral DNA replication through defence 

mechanisms such as BREX defence system; or (4) prevent further spread of viruses in the host 
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population by triggering cell death or dormancy through T-A system proteins involved in ABI 

mechanism. (C, D) The Ace Lake Synechococcus has the capacity for assimilatory nitrate 

reduction and glutamine production via the GS/GOGAT pathway (5) as part of nitrogen cycling. 

A subpopulation of Synechococcus contained the asnB gene (D) coding for an asparagine 

synthetase [glutamine hydrolyzing] enzyme that catalyses the production of asparagine from 

glutamine (6). In the pathway reactions, enzymes are shown in red font, whereas the main 

substrates and products are shown in black font. The icons for virions, DNA, and degraded cell 

were taken from The Noun Project website (https://thenounproject.com/). 2-OG, 2-oxoglutarate; 

Asn, asparagine; AsnB, asparagine synthetase [glutamine hydrolyzing]; Asp, aspartate; Gln, 

glutamine; Glu, glutamate; GOGAT, glutamine-2-oxoglutarate-amido transferase (or glutamate 

synthase); GSIII, glutamine synthetase III. 

 

4.5 Conclusion 

Synechococcus is the second most abundant microbe in Ace Lake, and the most 

abundant microbe in the upper oxic zone of the lake (Chapter 3 section 3.3.3). The 

genetic composition of the LCRs in SynAce01 suggested the presence of different 

Synechococcus phylotypes and potential ecotypes in Ace Lake, including 

subpopulations with varying cell wall composition, cell defence capacity, and/or the 

ability to utilise glutamine as a nitrogen source for asparagine production. A number of 

sequence variations were also observed in Ace Lake Synechococcus, most of which 

were in genes associated with cell wall assembly and modification, membrane proteins, 

substrate transporters, and mobile elements. Variations in a similar set of genes have 

also been reported in three haloarchaea from Deep Lake (DeMaere et, 2013).  

The Ace Lake Synechococcus contained a variety of defence genes (R-M, BREX, T-A 

systems) to prevent or disrupt viral infection, but did not contain any CRISPR-Cas 

genes (Table 4.6), consistent with previously reported data from marine cyanobacteria 

(Cai et al, 2013). These intracellular defence genes could provide immunity against 

viruses with a broad host range; as previously observed in other marine bacteria 

(Zborowskya and Lindell, 2019). SNPs observed in some of the genes associated with 

cell wall structure could lead to the modification of cell surface composition, thereby 

providing immunity against host-specific viruses that attach to receptors on the host cell 

(Avrani et al, 2011; Schmid et al, 2016; Tschitschko et al, 2015; Tschitschko et al, 

2018; Zborowskya and Lindell, 2019). Overall, the findings in this chapter suggested 

https://thenounproject.com/
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that a single species of Synechococcus is prevalent in Ace Lake, with subtle genomic 

variation leading to subpopulations with better capacity to evade viruses (virus resistant 

population) and/or to thrive in the nitrogen-limiting environment of the lake (AsnB 

population) (Figure 4.7). The subpopulations of Synechococcus from different seasons 

did not appear to differ, but the abundance of Synechococcus AsnB subpopulation 

increased with lake depth suggesting some depth-based variations in Synechococcus 

population. 

A similar analysis of the most abundant microbe in Ace Lake, namely Chlorobium, 

along with an analysis of the endemicity of Ace Lake Chlorobium to the Vestfold Hills, 

are discussed in Chapter 5. 
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5. Ace Lake Chlorobium — genomic variation, defence against 

viruses, and endemism in the Vestfold Hills 

 

5.1 Introduction 

In Ace Lake, Chlorobium closely related to C. phaeovibrioides DSM 265 (hereafter 

referred to as C-phaeov) was found to be the most abundant microorganism, with very 

high abundance at the oxycline (Interface) of the lake, especially in summer and spring 

seasons (Chapter 3 section 3.3.3; Appendix G). This is consistent with previous reports 

of high abundance of this GSB in the Ace Lake oxycline (Burke and Burton, 1988a; 

Coolen et al, 2006; Ng et al, 2010; Lauro et al, 2011). Chlorobium are GSB (family 

Chlorobiaceae) belonging to the Chlorobiales order of Chlorobia class in the Chlorobi 

phylum of bacteria. C-phaeov is a facultative anaerobe and a mesophile that was 

isolated from a saline intertidal flat in Germany (IMG taxon ID: 640427130). The 16S 

rRNA gene as well as BclA (bacteriochlorophyll A) protein-based phylogeny of the 

Chlorobiaceae family and the functional potential of Ace Lake Chlorobium have been 

analysed before (Imhoff, 2003; Coolen et al, 2006; Ng et al, 2010; Lauro et al, 2011). 

The Ace Lake Chlorobium relative abundance varied with season — very high in 

summer, low in winter, decreased further in early spring and revived to higher 

abundance in following late spring and summer (Chapter 3 section 3.3.4). Chlorobium 

is a key species in Ace Lake, based on its high abundance (Figure 3.6) and contribution 

to various nutrient cycles in the lake (Coolen et al, 2006; Ng et al, 2010; Lauro et al, 

2011). Its ability to recover from very low abundance in early spring (<1%, Figure 3.6) 

to very high abundance in summer (>50%, Figure 3.6) indicated that the Ace Lake 

Chlorobium population (or a subpopulation) might have a distinctive genomic capacity 

to efficiently use available light for fast growth in summer. In this chapter, the genomic 

variation within the Ace Lake Chlorobium population was assessed, comparing 

Chlorobium identified in metagenomes from different seasons. Here, ecotypes and 

phylotypes refer to Chlorobium with subtle genomic differences that may or may not 

affect their metabolic capacity, respectively; similar to Synechococcus phylotypes and 

ecotypes (Chapter 4 section 4.1). Chlorobium phylotypes and ecotypes have also been 

referred to as Chlorobium subpopulations in the chapter. 
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Figure 5.1 Location of Ace Lake, Ellis Fjord, and Taynaya Bay in the Vestfold Hills. The 

location of Davis Station is shown with a yellow dot, whereas Ace Lake, Ellis Fjord Basin 2, 

and Taynaya Bay Basin 1 are shown with orange dots and arrows. The distance between the 

three aquatic systems is shown in white. Ellis Fjord has six basins, marked as EF1–EF6 in the 

figure, of which two are meromictic (EF1 and EF2). The five meromictic basins of Taynaya 

Bay are also shown, marked as TB1–TB4 and Burke. The satellite map of the Vestfold Hills and 

the distance measurements were produced using the interactive atlas available on Landsat Image 

Mosaic of Antarctica website (https://lima.usgs.gov/antarctic_research_atlas/). The locations of 

Ellis Fjord and Taynaya Bay basins were taken from the data published by Gallagher and 

https://lima.usgs.gov/antarctic_research_atlas/
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Burton (1988) and Gibson (1999). The photos of the three aquatic systems were taken by Sarah 

Brazendale.  

Ace Lake is a stratified lake in the Vestfold Hills (78°15′ E, 68°33′ S), which lie along 

the east coast of Antarctica and cover approximately 411 km2 area, being mostly free of 

ice. The Vestfold Hills are well-known for their repertoire of stratified lakes and marine 

basins, including Ace Lake, Ellis Fjord, and Taynaya Bay. These three aquatic systems 

lie within a 20 km radius around the Davis Station; the Ace Lake and Taynaya Bay 

Basin 1 are <2 km apart, but are 14–15 km away from Ellis Fjord Basin 2 (Figure 5.1).  

Ellis Fjord (68°36' S, 78°07' E) is a ~10 km long, up to 117 m deep, narrow water inlet 

of marine origin in the Vestfold Hills (Figure 5.1). The fjord is covered by ice for most 

of the year and has six basins, of which the two inner basins (Basins 1 and 2) are 

meromictic (Gallagher and Burton, 1988). The entrance to Ellis Fjord is restricted by a 

shallow sill at 4 m depth and its six marine basins are separated by sills at depths 1 to 30 

m, which together allow for the stable stratification of the meromictic basins of Ellis 

Fjord (Burke and Burton, 1988a; Gallagher and Burton, 1988; Gallagher et al, 1989; 

Gibson 1999). The maximum recorded depth of its meromictic Basin 1 (also called 

Small meromictic basin) is 13 m and of meromictic Basin 2 (also called Deep 

meromictic basin) is 110 m (Gibson, 1999; Gallagher and Burton, 1988). The Basin 2 of 

Ellis Fjord is separated from Basin 1 on one side by a shallow sill (1 m deep) and from 

the outer basins of Ellis Fjord on the other side by a sill at around 30 m depth 

(Gallagher and Burton, 1988). The thermocline and halocline of Ellis Fjord Basin 2 lie 

around 50 m depth, whereas its oxic-anoxic interface varies between 30 m (Dec 1983 

data) to 45 m (Oct 1994 data) depth (Burke and Burton, 1988a; Gallagher and Burton, 

1988; Gibson, 1999).  

Taynaya Bay (68°27' S, 78°17' E) is a marine water inlet in the Vestfold Hills, with a 

maximum depth of up to 80 m (Gibson, 1999). The bay is covered by ice for nearly the 

whole year and has six basins, of which five basins (Burke Basin and Basins 1, 2, 3, and 

4) are meromictic (Gallagher and Burton, 1988; Gibson, 1999). The maximum recorded 

depths of these meromictic basins of Taynaya Bay vary — Burke Basin, 35 m; Basin 1, 

12 m; Basin 2, 80 m; Basin 3, 55 m; and Basin 4, 20 m (Gibson, 1999). The oxic-anoxic 

interface of Taynaya Bay Basin 1 was around 11 m depth in 1983 but started at around 

7 m depth in 1994 (Burke and Burton, 1988a; Gibson, 1999). Moreover, the Basin 1 
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waters did not show strong thermal or salinity gradients (Gibson, 1999; McMinn et al, 

2000).  

All three systems (Ace Lake, Ellis Fjord and Taynaya Bay) contain members of 

Chlorobiaceae family (Burke and Burton, 1988a; Ng et al, 2010; Lauro et al, 2011). In 

this chapter, the GSB identified in the three systems were compared to each other to 

determine whether they belonged to the same species. The GSB were also compared to 

their closest related non-Antarctic species and IMG metagenomic and genomic data to 

evaluate their endemism to the Vestfold Hills. Here, Chlorobium endemism has been 

used to indicate that the Chlorobium identified in Ace Lake, Ellis Fjord and Taynaya 

Bay were probably native to the Vestfold Hills and not found elsewhere.  

Potential viruses associated with Chlorobium were identified in Ace Lake (Chapter 3 

section 3.3.5). Of the prokaryotic defence systems discussed earlier (Table 4.3), Ace 

Lake Chlorobium has been shown to harbour a CRISPR-Cas system (Ng et al, 2010; 

Lauro et al, 2011). Considering its very high abundance in Ace Lake Interface, it is 

likely that this GSB harbours more defence systems that might protect it from viral 

predation. Therefore, the genomic composition of Ace Lake Chlorobium was further 

investigated to identify other bacterial defence systems (described below in section 

4.2.4). Potential GSB viruses in Ellis Fjord and Taynaya Bay were also analysed.  

5.1.1 Aims 

The main aim of this chapter was to assess any genomic variation within the Ace Lake 

Chlorobium population from different seasons (summer vs winter vs spring), to identify 

its potential phylotypes or ecotypes in the lake. For this purpose, the Chlorobium MAGs 

generated from the Ace Lake metagenomes were compared to each other in a 

preliminary analysis (see below section 5.3.1 for description of Chlorobium MAGs). 

This was followed by a more in-depth analysis of genomic variation using FR of the 

metagenomic reads from different seasons and Ace Lake Interface. 

The specific aims were: 

• To assess genomic variation in Chlorobium populations from Ace Lake, Ellis Fjord 

and Taynaya Bay. This analysis was performed to assess how similar these microbes 

were and whether they represented a Chlorobium species potentially endemic to the 

Vestfold Hills. To this end, FR analysis of the metagenomic reads from Ace Lake, 

Ellis Fjord Basin 2, and Taynaya Bay Basin 1 was performed, to evaluate the 
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similarities and differences between Chlorobium from the three systems. To assess 

Chlorobium endemicity to the Vestfold Hills, the Chlorobium MAGs marker genes 

were compared to metagenomic and genomic data from IMG. Moreover, the 

Chlorobium MAGs generated from Ace Lake, Ellis Fjord, and Taynaya Bay 

metagenomes were compared to the genome of C-phaeov, a non-Antarctic species 

and the closest related organism to Ace Lake Chlorobium OTU (Appendix G).  

• To identify potential viruses of Ellis Fjord and Taynaya Bay Chlorobium, to 

compare them to Ace Lake Chlorobium viruses and assess the similarities in the 

virus-host dynamics of the three systems. The types of defence genes in the 

Chlorobium from the three systems were also evaluated, to assess their capacity for 

defence against viruses. Moreover, the Chlorobium CRISPR spacers identified in 

Ace Lake metagenomes from different time periods were used to analyse any 

seasonal pattern of spacer acquisition. The Chlorobium CRISPR spacers identified 

in Ace Lake, Ellis Fjord, and Taynaya Bay metagenomes were also compared to the 

spacer database to examine the biogeographic distribution of potential Chlorobium 

viruses (see Chapter 3 section 3.2.6 for description of spacer database). This 

analysis was performed to evaluate the endemicity of the potential Chlorobium 

viruses to the Vestfold Hills. 

 

5.2 Methods 

5.2.1 Chlorobium OTU bin refinement and abundance calculation in Ellis Fjord 

and Taynaya Bay metagenomes 

A total of 12 Ellis Fjord metagenomes and four Taynaya Bay metagenomes were used 

for these analyses (Appendix A: Table A1). The water samples from Ellis Fjord Basin 2 

were collected from 5, 18, 45, and 60 m depths onto large format filters of sizes 20, 3, 

0.8, and 0.1 μm. The water sampling, sequencing, assembly, and annotation were 

performed as described in Chapter 2 section 2.1.1.  

The water samples from Taynaya Bay Basin 1 were collected from 5 and 11 m depths; 

the water was passed through a 20 μm size prefilter and the biomass was collected on 

Sterivex cartridges of 0.22 μm filter size. The Sterivex cartridges were preserved at -80 

ºC during transportation from Davis Station to Australia. The DNA was extracted in 

accordance with the xanthogenate-SDS (XS) DNA extraction protocol (Tillett and 
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Neilan, 2000). DNA quality and yield were evaluated using agarose gel electrophoresis 

and Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific), respectively. The 

metagenomes were sequenced at the Australian Centre for Ecogenomics using Illumina 

technology (150 bp paired-end reads). The metagenomic reads were QC filtered using 

Trimmomatic v0.38 (Bolger et al, 2014), and the filtered reads were assembled using 

metaSPAdes. The Ace Lake and Ellis Fjord metagenomes had been assembled from QC 

filtered and error-corrected reads. Therefore, for the purpose of data consistency during 

comparative analyses of the metagenomes from the three systems, the Taynaya Bay 

filtered reads were also corrected using BFC v181 (Li, 2015) and then assembled using 

metaSPAdes. A total of four Taynaya Bay metagenomes, two read-corrected and two 

direct assemblies, were generated from the two Taynaya Bay samples. All assembled 

metagenomes were annotated by JGI’s IMG system. For comparative analyses using 

Ace Lake, Ellis Fjord, and Taynaya Bay metagenomes, only the read-corrected 

assemblies were used. For CRISPR spacer analyses, both read-corrected and direct 

assemblies from Taynaya Bay were used. 

The taxonomic classification of contigs in the Ellis Fjord and Taynaya Bay 

metagenomes was performed using the methods described in Chapter 3 section 3.2.1. 

Chlorobium bin refinement and abundance calculation in these metagenomes was 

performed using the methods described in Chapter 3 section 3.2.2. 

5.2.2 Preliminary analysis of genomic variation within Ace Lake Chlorobium 

population using MAGs 

The Chlorobium MAGs (Appendix A: Table A2) were downloaded from the Ace Lake 

time-series metagenomes (Appendix A: Table A1) available on JGI’s IMG/M website 

(https://img.jgi.doe.gov/cgi-bin/m/main.cgi). Chlorobium MAGs with ≥99% genome 

completeness were used for the preliminary analysis of genomic variation in Ace Lake 

Chlorobium. A more detailed analysis of Chlorobium genomic variation within Ace 

Lake was performed using FR (described below in section 5.2.3.1). The Chlorobium 

MAG contigs were aligned to the contigs of the Ace Lake Chlorobium MAG generated 

from Dec 2014_Lower 2_0.1 μm-filter metagenome (hereafter referred to as AL_ref 

MAG). The MAG was selected because it had the highest total base pair count among 

all Chlorobium MAGs from Ace Lake and had ≥99% genome completeness. The 

methodology for this analysis as well for ANI calculation is described in Chapter 4 

section 4.2.1. 

https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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5.2.3 FR analyses 

5.2.3.1 Determining genomic variation within Ace Lake Chlorobium population 

FR was performed to analyse genomic variation in Ace Lake Chlorobium and to assess 

any differences in Chlorobium populations from different seasons. As Chlorobium was 

present in 3–20, 0.8–3, and 0.1–0.8 μm-filter metagenomes, the reads from all three 

filter fraction metagenomes from Ace Lake Interface were combined for each time 

period to prepare pooled metagenomes (Table 5.1). These merged metagenomes from 

Ace Lake Interface from each time period covered biomass sizes ranging from 0.1–20 

μm. For comparative analysis, these merged metagenomes represented data from 

summer (Dec 2014), winter (Jul 2014, Aug 2014), and spring (Nov 2008, Nov 2013, 

Oct 2014). The reads from the merged metagenomes were aligned to AL_ref MAG for 

in-depth analysis of genomic variation in Ace Lake Chlorobium. The alignment of the 

reads to AL_ref MAG was performed as described in Chapter 4 section 4.2.2. The base 

coverages of AL_ref MAG in Ace Lake merged metagenomes were generated from 

BAM files using the ‘depth’ function of Samtools v1.10 and were plotted on a circos 

plot using R v4.0.2 (Figure 5.2d). 

5.2.3.2 Determining genomic variation in Chlorobium populations from Ace 

Lake, Ellis Fjord and Taynaya Bay 

FR was performed to analyse genomic variation in Chlorobium from Ace Lake, Ellis 

Fjord, and Taynaya Bay, and to eventually assess whether the Chlorobium populations 

from the three systems were endemic to the Vestfold Hills. For this analysis, the Ellis 

Fjord and Taynaya Bay metagenomes were selected based on the overall relative 

abundance of Chlorobium OTU in them. Similar to the Ace Lake Interface merged 

metagenomes, the reads from 3–20, 0.8–3, and 0.1–0.8 μm-filter metagenomes from 

Ellis Fjord 45 m depth were pooled to form a merged metagenome (Table 5.1). The 

reads from the merged Ace Lake and Ellis Fjord metagenomes as well as the Taynaya 

Bay metagenome from 11 m depth were aligned to the Chlorobium MAG generated 

from 3 μm-filter metagenome from 45 m depth in Ellis Fjord (hereafter referred to as 

EF_ref MAG). The MAG was selected because it had the highest total base pair count 

among the Chlorobium MAGs from Ace Lake, Ellis Fjord, and Taynaya Bay 

metagenomes and had ≥99% genome completeness. Each merged metagenome from 

Ace Lake and Ellis Fjord covered biomass sizes ranging from 0.1–20 μm, whereas the 
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Taynaya Bay 11 m metagenome covered a smaller range of biomass sizes from 0.22–20 

μm. Moreover, the amount of biomass captured on the large format filters used for 

water sampling in Ace Lake and Ellis Fjord was more than the amount of biomass 

captured on Sterivex cartridges used for water sampling in Taynaya Bay. The alignment 

of the reads to EF_ref MAG was performed as described in Chapter 4 section 4.2.2. The 

base coverages of EF_ref MAG in Ace Lake and Ellis Fjord merged metagenomes and 

in Taynaya Bay 11 m metagenome were generated from BAM files using the ‘depth’ 

function of Samtools v1.10 and were plotted on a circos plot using R v4.0.2 (Figure 

5.6). 

Table 5.1 Ace Lake, Ellis Fjord, and Taynaya Bay metagenomes used for FR analyses of 

Chlorobium MAGs. A The 3–20, 0.8–3, and 0.1–0.8 μm-filter metagenomes from Ace Lake 

Interface from each time period and Ellis Fjord 45 m depth were combined to prepare the 

merged metagenomes shown in column three. B The relative abundance of Chlorobium OTU in 

the selected metagenomes was calculated using the method described in Chapter 3 section 3.2.1. 

C The number of reads represents the total number of reads in the merged metagenomes from 

Ace Lake and Ellis Fjord and in Taynaya Bay (TB_11m) metagenome. All Ace Lake merged 

metagenomes were used for FR analysis described in section 5.2.3.1, whereas all Ace Lake and 

Ellis Fjord merged metagenomes plus TB_11m were used for FR analysis described in section 

5.2.3.2. 

System 

Sample collection 

time period and 

depth 

Merged 

metagenome 

nameA 

Chlorobium OTU relative 

abundance (%)B Number of 

readsC 3–20 μm-

filter 

0.8–3 

μm-filter 

0.1–0.8 

μm-filter 

Ace 

Lake 

Nov 2008 12.8 m AL Nov2008_I 42 62 81 204,878,852 

Nov 2013 13.5 m AL Nov2013_I 12 21 33 86,383,986 

Jul 2014 13.5 m AL Jul2014_I 2 5 6 78,035,526 

Aug 2014 14.5 m AL Aug2014_I 1 5 5 82,792,076 

Oct 2014 13 m AL Oct2014_I 0 1 1 70,579,806 

Dec 2014 13.4 m AL Dec2014_I 39 57 59 140,544,592 

Ellis 

Fjord 
Oct 2014 45 m EF_45m 14 49 48 322,272,730 

Taynaya 

Bay 
Nov 2014 11 m TB_11m 6 (0.22–20 μm-filter) 91,287,184 

5.2.3.3 Subpopulation estimations 
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The percentage of Chlorobium population containing a genomic region of interest (such 

as a variable coverage region or a specific gene, gene cluster, or gene operon) was 

calculated as the relative coverage of the region of interest — from the mean read depth 

of the region of interest and the overall mean read depth of the reference genome 

(AL_ref MAG or EF_ref MAG) in each metagenome. The mean read depths of regions 

of interest and reference genomes were calculated by:  

𝑀𝑒𝑎𝑛 𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ(𝑅𝑒𝑔/𝐺𝑒𝑛) =  
∑ 𝐵𝑎𝑠𝑒 𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ(𝑅𝑒𝑔/𝐺𝑒𝑛)

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑒𝑠(𝑅𝑒𝑔/𝐺𝑒𝑛)
 

where Reg is region of interest and Gen is reference genome. The numerator indicates the sum 

of the read depths of the bases in a region of interest or reference genome, calculated in each 

metagenome. The denominator indicates the total number of bases in the region of interest or 

reference genome. The base read depths were taken from the base coverage files generated for 

each metagenome (sections 5.2.3.1 and 5.2.3.2). 

The approximate percentage of Chlorobium population (also referred to as the 

abundance of a Chlorobium subpopulation) in a metagenome that contained the region 

of interest was calculated by: 

𝑆𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑅𝑒𝑔) =  
𝑀𝑒𝑎𝑛 𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ(𝑅𝑒𝑔)

𝑀𝑒𝑎𝑛 𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ(𝐺𝑒𝑛)
 × 100 

where Reg is region of interest and Gen is reference genome. The numerator indicates the mean 

read depth of the region of interest in a metagenome and the denominator refers to the mean 

read depth of the reference genome in a metagenome. 

5.2.4 Analysis of Chlorobium endemicity to the Vestfold Hills 

5.2.4.1 Comparative analysis of Chlorobium MAGs and C-phaeov genome 

The contigs of Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium MAGs with ≥99% 

genome completeness were aligned to the C-phaeov genome using the methods 

described in Chapter 4 section 4.2.1. The methods used for ANI and AAI analyses are 

also described in Chapter 4 section 4.2.1. The overall functional potential of C-phaeov 

and Chlorobium MAGs from Ace Lake (AL_ref MAG), Ellis Fjord (EF_ref MAG), and 

Taynaya Bay (Chlorobium MAG from TB_11m metagenome) were compared using 

COG number data generated by JGI’s IMG system. The COG numbers were 

categorised under COG categories using COG reference data taken from JGI’s IMG 

system (https://img.jgi.doe.gov/; accessed on 21 December 2020). The Chlorobium 

https://img.jgi.doe.gov/
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genes with COG number assignments that belonged to more than one COG category 

were assigned to multiple COG categories. 

5.2.4.2 Comparison of Chlorobium markers with marker sequences in IMG 

databases 

To assess Chlorobium endemism to the Vestfold Hills, the 16S rRNA gene and BclA 

protein markers from Chlorobium MAGs were used. The Chlorobium 16S rRNA gene 

was aligned to the 16S rRNA genes from public-assembled metagenomes (accessed on 

14 Mar, 2021) and public isolates (accessed on 30 Mar, 2021) on JGI’s IMG system, 

using IMG RNA BLAST (blastn) with e-value 10-5. The Chlorobium protein sequence 

was aligned to isolate protein database (including proteins from isolate genomes, 

MAGs, and single-amplified genomes; accessed on 14 Mar, 2021) on JGI’s IMG 

system, using IMG RNA BLAST (blastp) with e-value 10-5. 

5.2.5 Analysis of potential Chlorobium viruses in Ellis Fjord and Taynaya Bay 

metagenomes 

For the analysis of potential viruses associated with Ellis Fjord and Taynaya Bay 

Chlorobium, the spacer and repeat data in the metagenome CRISPR files were used, 

along with the data in the Antarctic virus catalogue and spacer database (see Chapter 3 

section 3.2.6 for description of these files and databases). The Antarctic virus catalogue 

and spacer database did not include data from the Taynaya Bay metagenomes, since 

these metagenomes were not available at the time the databases were created. Therefore, 

the Taynaya Bay viral contigs were identified from matches to the Antarctic virus 

catalogue and not from the rigorous processing of Taynaya Bay metagenomes through 

the virus identification pipeline (Páez-Espino et al, 2016). To identify viral contigs in 

Taynaya Bay metagenomes, all assembled contigs were aligned to the Antarctic virus 

catalogue using blastn module of BLAST+ v2.9.0, with e-value ≤10-3 and ≥97% 

alignment identity. From the output, only the metagenome contigs with 100% identity 

across the whole length of either the query contig or the reference viral contig were 

considered as Taynaya Bay viral contigs. 

To identify Chlorobium-associated CRISPR spacers in Ellis Fjord and Taynaya Bay 

metagenomes, the contig IDs in the Chlorobium OTU refined bin were compared to the 

contig IDs in the metagenome CRISPR files. These spacer sequences were then aligned 

to all contigs in the Antarctic virus catalogue using the ‘megablast’ option of BLAST+ 
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v2.9.0, with e-value ≤10-3 and ≥90% alignment identity, to identify viral contigs 

potentially associated with Ellis Fjord and Taynaya Bay Chlorobium. Only viral contigs 

with ≥97% identity to Chlorobium-associated spacers were considered for further 

analysis. The data in the Antarctic virus catalogue were used to assign cluster or 

singleton designations to the potential Chlorobium viral contigs. The virus-host relation 

was assessed using the method described in Chapter 3 section 3.2.6.1. The spacer hits to 

the viral contigs associated with Ace Lake Chlorobium (Appendix H: Table H1) were 

reassessed to identify any host contigs belonging to Ellis Fjord Chlorobium.  

5.2.6 Analysis of Chlorobium defence system genes and CRISPR spacers 

The defence systems genes in Chlorobium MAGs were assessed using the method 

described in Chapter 4 section 4.2.4. The CRISPR spacer arrays identified in the Ace 

Lake Chlorobium MAGs were investigated to identify any seasonal pattern of spacer 

acquisition. The CRISPR spacer and repeat sequences obtained from Ace Lake, Ellis 

Fjord, and Taynaya Bay Chlorobium were compared to assess any sequence similarities. 

5.2.7 Phylogeny assessment 

The phylogenetic analysis of Chlorobium was performed using the 16S rRNA genes and 

BclA proteins from Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium as well as 

various members of Chlorobiaceae family (Table 5.2). The 16S rRNA gene sequences 

were aligned using ClustalW algorithm and BclA protein sequences were aligned using 

Neighbor Joining cluster method of MUSCLE algorithm in MEGA X v10.1.7 software. 

The alignments were used for generating maximum likelihood trees in MEGA X 

v10.1.7 with default parameters and 1,000 bootstrap values. 

Table 5.2 Chlorobiaceae family members used for phylogenetic analysis of Ace Lake, Ellis 

Fjord, and Taynaya Bay Chlorobium. * The accession IDs of the 16S rRNA genes and BclA 

proteins or the species genomes are provided. † The table includes 16S rRNA genes and BclA 

proteins from Ace Lake (AL), Ellis Fjord (EF), and Taynaya Bay (TB) Chlorobium MAGs. 

Organism 

16S rRNA gene BclA protein 

Accession ID* 
Length 

(in bp) 
Accession ID* 

Length 

(in aa) 

Chlorobaculum limnaeum NZ_CP017305.1 1505 WP_069808958.1 366 

Chlorobaculum macestae NR_116056.1 1395 - - 

Chlorobaculum parvum NC_011027.1 1507 WP_012502817.1 365 
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Chlorobaculum tepidum NR_044685.2 1450 WP_010933165.1 366 

Chlorobaculum thiosulfatiphilum NR_029321.1 1388 WP_139457377.1 366 

Chlorobium chlorochromatii NC_007514.1 1506 WP_011362353.1 366 

Chlorobium chlorovibrioides Y10649.1 1466 - - 

Chlorobium ferrooxidans Y18253.1 1804 WP_006366194.1 366 

Chlorobium gokarna AJ888464.1 1287 - - 

Chlorobium limicola NC_010803.1 1504 WP_012466619.1 366 

Chlorobium luteolum NC_007512.1 1504 WP_011358231.1 366 

Chlorobium phaeobacteroides NC_010831.1 1507 WP_012474280.1 367 

Chlorobium phaeovibrioides NC_009337.1 1506 WP_011890560.1 366 

Chloroherpeton thalassium NC_011026.1 1501 WP_012499263.1 370 

Pelodictyon phaeoclathratiforme NC_011060.1 1502 WP_012507834.1 366 

Prosthecochloris aestuarii NC_011059.1 1506 WP_012506146.1 367 

Prosthecochloris indica NR_132595.1 1393 - - 

Prosthecochloris marina - - WP_110023260.1 367 

Prosthecochloris vibrioformis M62791.1 1507 WP_068866593.1 367 

AL Chlorobium† 

IMG taxon ID: 

3300023061 

Gene ID: 

Ga0222700_1000

006154 

1505 

IMG taxon ID: 

3300023061 

Gene ID: 

Ga0222700_1000003

178 

366 

EF Chlorobium† 

IMG taxon ID: 

3300031631 

Gene ID: 

Ga0307987_1000

00446 

1505 

IMG taxon ID: 

3300031631 

Gene ID: 

Ga0307987_1000002

178 

366 

TB Chlorobium† 

IMG taxon ID: 

3300039187 

Gene ID: 

Ga0400661_0000

02_151875_1533

76 

1502 

IMG taxon ID: 

3300039187 

Gene ID: 

Ga0400661_000007_

23035_24135 

366 

 

5.3 Results 
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5.3.1 Overview of Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium MAGs and 

C-phaeov genome 

The IMG taxonomic classification of Ace Lake, Ellis Fjord, and Taynaya Bay 

Chlorobium MAGs indicated that C-phaeov was their closest related species. A total of 

50 Ace Lake Chlorobium MAGs (~82 Mb), seven Ellis Fjord Chlorobium MAGs (~11 

Mb), and four Taynaya Bay Chlorobium MAGs (~7 Mb) were used for various analyses 

(Appendix A: Table A2). Of these, 31 Ace Lake, five Ellis Fjord, and all Taynaya Bay 

MAGs had ≥99% genome completeness. The 16S rRNA marker gene was present in 43 

Ace Lake, six Ellis Fjord, and all Taynaya Bay Chlorobium MAGs, whereas the BclA 

marker gene was present in 47 Ace Lake and all Ellis Fjord and Taynaya Bay 

Chlorobium MAGs. A total of 72,884 genes on 1,231 Chlorobium MAG contigs were 

used for analyses. These genes and contigs belonged to Ace Lake, Ellis Fjord, and 

Taynaya Bay Chlorobium MAGs with ≥99% genome completeness as well as an Ace 

Lake Chlorobium MAG with 98% genome completeness and a variant BclA protein 

(described below in section 5.3.4.1). The Chlorobium MAGs used for various analyses 

represented high- and medium-quality draft genomes with ≥98% genome completeness 

and <2% bin contamination. 

C-phaeov was previously named as Prosthecochloris vibrioformis DSM 265 or C. 

vibrioforme f. thiosulfatophilum DSM 265, but was reclassified as C. phaeovibrioides 

DSM 265 based on 16S rRNA gene and BclA protein phylogenies (Imhoff, 2003). The 

complete genome of C-phaeov was sequenced and assembled by JGI IMG as part of a 

project led by Bryant DA (Bryant and Frigaard, 2006). This genome is available in 

NCBI (RefSeq ID: NC_009337.1). C-phaeov genome was 1,966,858 bp long with 53% 

GC content and contained 1,835 annotated genes, of which 1,764 were protein coding 

genes.  

5.3.2 Analysis of genomic variation in Ace Lake Chlorobium 

The genomic variation in Ace Lake Chlorobium from different seasons was assessed 

through (i) comparative analysis of Ace Lake Chlorobium MAGs (described below in 

section 5.3.2.1) and (ii) FR of Ace Lake metagenomic reads to AL_ref MAG (>99% 

genome completeness Chlorobium MAG from Ace Lake Dec 2014_Lower 2_0.1 μm-

filter metagenome with highest total base pair count; section 5.2.2), which allowed for 

analysis of variations such as LCRs and SNPs (described below in section 5.3.2.2).  
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5.3.2.1 Analysis of sequence variations between Ace Lake Chlorobium MAGs 

The alignment of all Ace Lake Chlorobium MAGs against AL_ref MAG showed five 

genomic regions with SNPs, three of which contained defence genes coding for type I 

restriction enzyme M or R subunit. The fourth (~94 kb in length) and fifth (~9 kb in 

length) regions contained genes probably involved in cell wall biosynthesis and 

modification (glycosyltransferase, GDP mannose 4,6-dehydratase, GDP-L-fucose 

synthase, undecaprenyl diphosphate synthase, phosphatidylinositol alpha-1,6-

mannosyltransferase) and substrate transport (polysaccharide transport family flippase, 

O-antigen/teichoic acid export membrane protein, outer membrane protein insertion 

porin family, ABC-type multidrug transport system fused ATPase/permease subunit). 

These two regions also contained various genes involved in metabolic functions as well 

as genes of unknown function. As these MAGs probably represented snapshots of 

subpopulations of Chlorobium in a metagenome, the SNPs observed during their 

comparative analysis might not represent fixed mutations in the Chlorobium 

populations from different metagenomes. Therefore, the output of FR of Ace Lake 

metagenomic reads to AL_ref MAG was used to assess whether these SNPs were fixed 

mutations (described below in section 5.3.2.2). 

5.3.2.2 FR analysis of Chlorobium AL_ref MAG in Ace Lake metagenomes 

The coverage pattern of AL_ref MAG in the Ace Lake merged metagenomes was 

similar to the relative abundance pattern of the Chlorobium OTU in the merged 

metagenomes, showing high coverage in summer and spring, except Oct 2014 spring, 

and low coverage in winter (Figures 5.2a, b, c). For the analysis of SNPs in Chlorobium 

from different time periods, only the mutations that were present in at least 90% of the 

metagenomic reads aligned to the reference base (i.e., 0.9 variable frequency threshold) 

were considered as fixed mutations. Notably, only one mutation was identified in an 

AAA family ATPase gene involved in various metabolic functions, with an A → G 

transition in the Ace Lake metagenomic reads matching position 5,152 on C26 contig of 

AL_ref MAG (Table 5.3). The mutant AAA family ATPase gene from the Ace Lake 

metagenomes coded for a 519 aa length protein containing a non-synonymous mutation 

at position 500 (threonine → alanine). However, a comparison of this mutated AAA 

family ATPase protein with the proteins in the RefSeq database showed that all 

reference proteins contained alanine at this position, and none contained threonine 

(which was observed in AAA family ATPase of AL_ref MAG). A closer inspection of 
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the Ace Lake merged metagenome reads that aligned to position 5,152 on C26 contig of 

AL_ref MAG (within AAA family ATPase gene) showed that more than 99% of the 

reads contained guanine at this position, unlike AL_ref MAG that contained adenine. 

Together, these results indicated that the Chlorobium from different time periods did not 

carry a mutation in their AAA family ATPase gene, and rather the AL_ref MAG had a 

low variable frequency SNP in its gene. This was also evident from the FR analysis of 

AL_ref MAG in the metagenome from which it was generated (Ace Lake Dec 

2014_Lower 2_0.1 μm-filter), which showed that all reads matching position 5,152 on 

C26 contig of AL_ref MAG contained guanine, except one read pair that contained 

adenine. These observations also highlighted the idea that these MAGs represented 

snapshots of Chlorobium subpopulations in a metagenome and needed to be carefully 

analysed for meaningful results.  

The alignment of metagenomic reads to AL_ref MAG showed presence of a few LCRs, 

with read depths less than the mean read depth of AL_ref MAG in the merged 

metagenomes (Figure 5.2d). The annotated genes on these LCRs were mainly involved 

in cell wall modification (glycosyltransferases), cell defence (DEAD/DEAH box 

helicase, R-M proteins, BrnA antitoxin), substrate transport (iron, cobalt, vitamin B12 

transporters), DNA repair, protein modification (chaperones), and various metabolic 

functions (Table 5.4). A few genes of unknown function and genes associated with 

mobile elements (transposases) were also present in the LCRs. Among the metabolic 

genes in the LCRs, a cluster of eight single copy genes involved in the anaerobic 

pathway for cobalamin biosynthesis (cbiD, cbiJ, cbiL, cbiK, cysG, and bifunctional 

cbiFG, cbiET, cbiHC) were identified. A single copy gene involved in cobinamide 

salvaging (cbiZ) was also identified in the LCRs. Another cluster of nine genes in the 

LCRs represented the N-ATPase operon (atpD, atpC, atpQ, atpR, atpB, atpE, atpF, 

atpA, atpG), which codes for ATPase subunits involved in ATP-dependent outflux of 

Na+ or H+ ions. A gene cluster containing one cobaltochelatase (cobN) gene and 

additional copies of three magnesium chelatase (bchD, bchH, bchI) genes was also 

present in the LCRs.  

Overall, the genomic sequences of Ace Lake Chlorobium from different time periods 

contained no mutations. However, subpopulations of Ace Lake Chlorobium that might 

represent phylotypes and/or ecotypes were identified in metagenomes from all time 
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periods, and the abundances of these Chlorobium subpopulations varied with season 

(Table 5.4).  
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Figure 5.2 Chlorobium abundance, coverage distribution, and genomic variation in Ace 

Lake Interface metagenomes from different seasons. (a) The bar-chart shows the relative 

abundance distribution of Chlorobium OTU (coloured pyramids) in merged metagenomes from 

Ace Lake Interface (I) and different seasons (summer, Dec; winter, Jul, Aug; spring, Oct, Nov). 

Chlorobium OTU relative abundances in merged metagenomes were calculated from the 

absolute abundances of Chlorobium contigs in 3–20, 0.8–3, and 0.1–0.8 μm-filter metagenomes 

relative to the total abundance of all contigs in the three metagenomes (formula described in 

Chapter 3 section 3.2.1). In the colour legend, the merged metagenomes from Jul and Aug 2014 

are shown in a blue box to highlight their winter origin. (b and c) The bar-charts show the total 

number of reads mapped to (b, coloured cones) and mean read depth of (c, coloured cylinders) 

AL_ref MAG in the Ace Lake Interface merged metagenomes from different time periods. The 

y-axis in (b) indicates the total number of reads that aligned to the AL_ref MAG, whereas the y-

axis in (c) denotes the mean of read depths of all nucleotide bases in AL_ref MAG. Read depth 

values were calculated from the data in the base coverage files generated using Samtools v1.10. 
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(d) The circos plot depicts the coverage distribution of AL_ref MAG in Ace Lake merged 

metagenomes (coloured rings). The outermost ring depicts the backbone of AL_ref MAG 

showing Contig 1–27 (C1–C27; Table 5.3). The MAG contigs were reordered in Mauve v2.4.0 

using C-phaeov as the reference genome, but only C1–C21 had any matches to C-phaeov; C22–

C27 were added to one end of the ordered contigs. The grey contigs represent forward strand 

MAG sequences, whereas black contigs represent complementary strand MAG sequences. The 

contig lengths varied between 3 to 277 kb length (Table 5.3), and the x-axis scales for all 

contigs and rings are drawn around the circumference of the outermost ring, with major ticks 

(red) at the beginning and every 50 kb length and minor ticks (dark grey) at every 10 kb length 

of each contig. Read depth values are plotted on linear scale y-axes. As the main purpose of the 

figure was to highlight the distribution of variable coverage regions, the y-axes scales of circos 

rings vary. Read depth values greater than the y-axis limits were truncated to the y-axis 

maximum values. Low coverage regions are marked by red stars inside the innermost ring of the 

circos plot. Merged metagenomes and their y-axis scale ranges, outer to inner ring: Nov 2008_I 

( , 0–20000); Nov 2013_I ( , 0–3000); Jul 2014_I ( , 0–800); Aug 2014_I ( , 0–800); Oct 

2014_I ( , 0–100); Dec 2014_I ( , 0–10000). 

Table 5.3 Chlorobium AL_ref MAG contigs. A The contig numbers (C1–C27) correspond to 

the contigs shown in Figure 5.2d. B The contig IDs refer to the scaffold IDs provided by JGI’s 

IMG system. C The read depths of the contigs in the Dec 2014_Lower 2_0.1 μm Ace Lake 

metagenome, from which AL_ref MAG was generated, were measured by JGI’s IMG system. 

Contig 

numberA 
Contig IDB 

Length 

(bp) 

GC 

content 

Read 

depthC 

C1 Ga0222700_1000010 109,790 0.54 45 

C2 Ga0222700_1000006 177,725 0.53 49 

C3 Ga0222700_1000002 276,836 0.53 48 

C4 Ga0222700_1000399 8,847 0.5 44 

C5 Ga0222700_1000205 12,282 0.52 48 

C6 Ga0222700_1000014 58,907 0.51 47 

C7 Ga0222700_1000158 13,766 0.52 33 

C8 Ga0222700_1003121 3,206 0.51 12 

C9 Ga0222700_1000041 29,424 0.51 42 

C10 Ga0222700_1000040 29,669 0.5 62 

C11 Ga0222700_1000052 26,363 0.5 45 

C12 Ga0222700_1000023 41,078 0.5 47 

C13 Ga0222700_1000017 44,350 0.5 47 
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C14 Ga0222700_1000004 197,466 0.52 47 

C15 Ga0222700_1000005 182,208 0.51 47 

C16 Ga0222700_1000327 9,737 0.52 46 

C17 Ga0222700_1000059 24,299 0.52 46 

C18 Ga0222700_1000552 7,608 0.49 49 

C19 Ga0222700_1000003 216,688 0.54 46 

C20 Ga0222700_1000009 111,159 0.53 46 

C21 Ga0222700_1000007 177,475 0.54 48 

C22 Ga0222700_1001909 4,138 0.49 45 

C23 Ga0222700_1000237 11,418 0.52 23 

C24 Ga0222700_1002289 3,767 0.49 10 

C25 Ga0222700_1000764 6,459 0.47 11 

C26 Ga0222700_1000260 10,955 0.52 13 

C27 Ga0222700_1000107 16,990 0.52 13 

Table 5.4 Genes annotated on LCRs of AL_ref MAG. A The AL_ref MAG contigs 

mentioned in the first column are described in Table 5.3. B The approximate starting positions 

and lengths of the LCRs on the AL_ref MAG contigs are provided in the second column (the 

low coverage regions are labelled as red stars in Figure 5.2d). C The seasons mentioned in the 

third column refer to seasons in which the Ace Lake Interface samples were collected — 

summer (S), Dec 2014; winter (W), Jul 2014 and Aug 2014; spring (Sp), Nov 2008, Nov 2013, 

and Oct 2014 (Table 5.1). The percentages shown are average of relative coverage values from 

metagenomes from a season calculated across the region specified in column two (section 

5.2.3.3). D The genes shown in the table were annotated by JGI’s IMG system. The regions are 

arranged from top to bottom in the order of their occurrence along the lengths of AL_ref MAG 

contigs. 

AL_ref MAG 

contigA 

Starting position 

and length of LCRB 

Seasons and % 

Chlorobium 

population in 

which 

observedC 

AL_ref MAG genes annotated in the 

LCRD 

C1 1 bp 

(11 kb length) 

S: 32% 

W: 26–28% 

Sp: 27–31% 

Hypothetical protein 

Restriction system protein 

PH (Pleckstrin Homology) domain-

containing protein 
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PD-(D/E)XK nuclease superfamily 

protein 

ATP-dependent exoDNAse (exonuclease 

V) beta subunit/superfamily I DNA/RNA 

helicase 

4 Hypothetical proteins 

Uncharacterized protein (DUF4415 

family) 

C7 Whole contig 

(14 kb length) 

S: 70% 

W: 61–62% 

Sp: 60–68% 

Iron complex outermembrane receptor 

protein 

Iron complex transport system substrate-

binding protein 

5-Methyltetrahydropteroyltriglutamate-

homocysteine methyltransferase 

Ribonucleoside-triphosphate reductase 

Pyruvate formate lyase activating enzyme 

Iron complex transport system permease 

protein 

Iron complex transport system ATP-

binding protein 

Iron complex transport system substrate-

binding protein 

Type I restriction enzyme R subunit 

C8 Whole contig 

(3 kb length) 

 

S: 25% 

W: 10% 

Sp: 11–22% 

Threonine dehydrogenase-like Zn-

dependent dehydrogenase 

Anthranilate phosphoribosyltransferase 

Hypothetical protein 

C9 1 bp 

(2 kb length) 

S: 27% 

W: 31–36% 

Sp: 28–34% 

Hypothetical protein 

Type I restriction enzyme M protein 

C11 1 bp 

(7 kb length) 

S: 70% 

W: 58–63% 

Sp: 62–68% 

DNA repair protein RadC 

F-type H+-transporting ATPase subunit 

gamma 

F-type H+-transporting ATPase subunit 

alpha 

F-type H+-transporting ATPase subunit b 
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F-type H+-transporting ATPase subunit c 

F-type H+-transporting ATPase subunit a 

F1-F0 ATPase (N-ATPase) AtpR subunit 

ATP synthase protein I 

F-type H+-transporting ATPase subunit 

epsilon 

F-type H+-transporting ATPase subunit 

beta 

C20 ~79.5 kb 

(~9 kb length) 

S: 65% 

W: 65–70% 

Sp: 67–77% 

Phosphatidylinositol alpha-1,6-

mannosyltransferase 

4 Glycosyltransferases involved in cell 

wall biosynthesis 

3 Hypothetical proteins 

Ubiquinone/menaquinone biosynthesis 

C-methylase UbiE 

C23 Whole contig 

(11 kb length) 

S: 59% 

W: 33–34% 

Sp: 33–44% 

Cobalt-precorrin-5B (C1)-

methyltransferase 

Cobalt-precorrin-5B (C1)-

methyltransferase 

Precorrin-4 methylase/cobalamin 

biosynthesis protein CbiG 

Precorrin-6Y C5,15-methyltransferase 

(decarboxylating) 

Precorrin-3B methylase/precorrin 

isomerase 

Precorrin-2/cobalt-factor-2 C20-

methyltransferase 

Sirohydrochlorin cobaltochelatase 

Uroporphyrin-III C-methyltransferase 

cobalt/nickel transport system ATP-

binding protein 

Cobalt/nickel transport system permease 

protein 

Cobalt/nickel transport protein 

Cobalt/nickel transport system permease 

protein 
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C24 Whole contig 

(4 kb length) 

S: 37% 

W: 34–37% 

Sp: 28–32% 

Protease secretion system outer 

membrane protein 

Protease secretion system membrane 

fusion protein 

ATP-binding cassette subfamily C 

exporter for protease/lipase 

C25 Whole contig 

(6 kb length) 

S: 14% 

W: 16% 

Sp: 15–20% 

Superfamily I DNA and/or RNA helicase 

IS5 family transposase 

Hypothetical protein 

Acyl-ACP thioesterase 

DDE family transposase 

Nitrite reductase/ring-hydroxylating 

ferredoxin subunit 

3 Hypothetical proteins 

C26 Whole contig 

(11 kb length) 

S: 26% 

W: 9–10% 

Sp: 11–23% 

Hypothetical protein 

Molecular chaperone GrpE 

Molecular chaperone DnaK (HSP70) 

SpoVK/Ycf46/Vps4 family AAA+-type 

ATPase 

Formylglycine-generating enzyme 

required for sulfatase activity 

Hypothetical protein 

Iron complex transport system substrate-

binding protein 

Iron complex transport system permease 

protein 

Iron complex transport system ATP-

binding protein 

Adenosylcobinamide amidohydrolase 

C27 Whole contig 

(17 kb length) 

S: 24% 

W: 9% 

Sp: 10–21% 

Hypothetical protein 

Predicted amidohydrolase 

Sugar phosphate isomerase/epimerase 

Uncharacterized protein 

Cobaltochelatase CobN 

Iron complex outermembrane receptor 

protein 
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Magnesium chelatase subunit D 

Magnesium chelatase subunit I 

Cobaltochelatase CobN 

Iron complex outermembrane receptor 

protein/hemoglobin/transferrin/lactoferrin 

receptor protein/vitamin B12 transporter 

5.3.3 Chlorobium relative abundance in Ace Lake, Ellis Fjord, and Taynaya Bay 

Among the Ellis Fjord and Taynaya Bay metagenomes, the relative abundance of 

Chlorobium OTU was highest in 45 m and 11 m depth metagenomes, respectively 

(Figure 5.3a). The oxic-anoxic interfaces of the two meromictic systems lie around 

these depths, respectively (Burke and Burton, 1988a; Gibson, 1999). The relative 

abundances of Chlorobium OTUs in the three filter fraction metagenomes (0.1–0.8, 0.8–

3, and 3–20 μm) from Ellis Fjord Interface (14–49%) were comparable to Chlorobium 

OTU abundances in some Ace Lake Interface metagenomes from summer (39–84%) 

and spring (12–81%), except Oct 2014 (<1%) (Figure 5.3a). The Chlorobium OTU 

abundance in Taynaya Bay Interface metagenome (0.22–20 μm-filter) was 

comparatively low (6%), as low as Chlorobium OTU abundances in 0.1–0.8 and 0.8–3 

μm-filter Ace Lake Interface metagenomes from winter (5–6%) (Figure 5.3a). Notably, 

Sterivex cartridges used for water sampling in Taynaya Bay capture smaller amounts of 

biomass than large format filters used for Ace Lake and Ellis Fjord water sampling. 

This would have affected the absolute abundance of Chlorobium OTU in Taynaya Bay 

samples (Figure 5.3d). However, the relative abundances of Chlorobium OTUs in the 

metagenomes from all three systems should be comparable, considering that they were 

normalised to the total abundance of all contigs in each metagenome. For example, the 

relative abundance of Chlorobium OTU in Taynaya Bay 11 m depth metagenome 

indicated that it contributed roughly 6% of the total metagenomic data generated from 

the biomass captured using Sterivex cartridges (Figure 5.3a). Similarly, relative 

abundance of Chlorobium OTU in 0.8–3 μm-filter metagenome from Ellis Fjord 

Interface indicated that it contributed nearly half of the metagenomic data generated 

from the biomass captured on a large format filter. 

The microbial diversity of Ellis Fjord Interface was low (Simpson’s index of diversity 

1-λʹ= 0.7) in metagenomes from 0.1–0.8 and 0.8–3 μm-filter fractions. This was similar 

to Ace Lake Interface diversity in summer and spring (except Oct 2014) metagenomes 
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(1-λʹ < 0.7), when Chlorobium abundance was high (Chapter 3 Figures 3.6 and 3.9). On 

the other hand, the microbial diversity in Taynaya Bay Interface metagenome and 3–20 

μm-filter metagenome from Ellis Fjord Interface was high (1-λʹ > 0.9), which was 

similar to Ace Lake Interface diversity in winter and Oct 2014 metagenomes, when 

Chlorobium population was comparatively low (Chapter 3 Figures 3.6 and 3.9). Apart 

from Chlorobium, the oxic-anoxic interfaces of Ellis Fjord and Taynaya Bay also 

contained members of Proteobacteria (mostly Deltaproteobacteria — 7–17%, 5%), 

Atribacteria (<1%, 11%), Marinimicrobia (0.1–9%, 1%), Firmicutes (1%, 5%), 

Bacteroidetes (5–8%, 9%), Cloacimonetes (3–6%, <1%), respectively. 

The relative coverage pattern of EF_ref MAG (>99% genome completeness 

Chlorobium MAG from Ellis Fjord 45 m depth 3–20 μm-filter metagenome with 

highest total base pair count; section 5.2.3.2) was similar to the relative abundance 

pattern of Chlorobium OTU in Ace Lake Interface, Ellis Fjord, and Taynaya Bay 

metagenomes (Figures 5.3b, c). The mean read depth of Chlorobium, which indicated 

its absolute abundance, was much higher in Ellis Fjord 45 m depth metagenome (8741) 

than in Ace Lake Interface Dec 2014 metagenome (4539), but its relative abundance 

was higher in Ace Lake (45%) than in Ellis Fjord (38%) (Figures 5.3b, d). This 

indicated that Chlorobium probably contributed to a higher share of the total microbial 

population in Ace Lake Dec 2014 than in Ellis Fjord, although its absolute abundance in 

Ellis Fjord was nearly twice as much as that in Ace Lake Dec 2014. Although the 

Taynaya Bay and Ellis Fjord metagenomes represented spring samples, the mean read 

depth of Chlorobium in Taynaya Bay was low (258) compared to that in Ace Lake 

spring (except Oct 2014) and Ellis Fjord (>1000 and 8741, respectively). This 

difference in the absolute abundance of Chlorobium was probably because the Taynaya 

Bay metagenomes were generated from smaller amounts of biomass captured using 

Sterivex cartridges, whereas Ace Lake and Ellis Fjord metagenomes were generated 

from larger amounts of biomass captured on large format filters.  
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Figure 5.3 Chlorobium abundance and coverage distribution in Ace Lake, Ellis Fjord, and 

Taynaya Bay. (a) The stacked bar chart depicts the relative abundance of Chlorobium OTU in 

Ace Lake (AL) Interface metagenomes from different seasons (summer, Dec; winter, Jul and 

Aug; spring, Oct and Nov) and filter fractions, in Ellis Fjord (EF) metagenomes from different 

depths (5m, 18 m, 45 m, and 60 m) and filter fractions, and in Taynaya Bay (TB) metagenomes 

from different depths (5 m and 11 m). The y-axis indicates the relative abundance of 

Chlorobium OTU in different filter fractions (red: 3–20 μm, 3 μm; yellow: 0.8–3 μm, 0.8 μm; 

purple: 0.1–0.8 μm, 0.1 μm; blue: 0.22–20 μm, 0.22 μm) from various lake depths and time 

periods. The data table shows the percentage relative abundance values of Chlorobium OTU in 

metagenomes from each filter fraction, depth, and time period. The data in the bars and table are 
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arranged from top to bottom in the order of increasing filter size from 0.1 to 3 μm; the 0.22 μm 

data is shown separately. (b) The bar-chart shows the relative abundance distribution of 

Chlorobium OTU (coloured pyramids) in merged metagenomes from Ace Lake (AL) Interface 

(I) from different seasons and 45 m depth in Ellis Fjord (EF) as well as in the metagenome from 

11 m depth in Taynaya Bay (TB). Chlorobium OTU relative abundances in merged 

metagenomes were calculated from the absolute abundances of Chlorobium contigs in 3–20, 

0.8–3, and 0.1–0.8 μm-filter metagenomes relative to the total abundance of all contigs in the 

three metagenomes (formula described in Chapter 3 section 3.2.1). In the colour legend, the 

merged metagenomes from Jul and Aug 2014 are shown in a blue box to highlight their winter 

origin. (c and d) The bar-charts show the total number of reads mapped to (c, coloured cones) 

and mean read depth of (c, coloured cylinders) EF_ref MAG in the Ace Lake Interface, Ellis 

Fjord 45 m depth, and Taynaya Bay 11 m depth metagenomes. The y-axis in (c) indicates the 

total number of reads that aligned to the EF_ref MAG (representing relative coverage), whereas 

the y-axis in (d) denotes the mean of read depths of all nucleotide bases in EF_ref MAG 

(representing absolute abundance). Read depth values were calculated from the data in the base 

coverage files generated using Samtools v1.10. Ace Lake and Ellis Fjord samples from 0.22 μm 

Sterivex filters were not available. Similarly, Taynaya Bay samples from the three large format 

filters (3, 0.8, and 0.1 μm) were not available. 

5.3.4 Analysis of genomic variation in Ace Lake, Ellis Fjord, and Taynaya Bay 

Chlorobium 

The genomic variation in Chlorobium from Ace Lake, Ellis Fjord, and Taynaya Bay and 

the potential endemicity of this Antarctic Chlorobium to the Vestfold Hills were 

assessed through (i) phylogenetic, AAI, and ANI analyses of the Chlorobium from the 

three systems and C-phaeov (described below in section 5.3.4.1); (ii) FR of Ace Lake, 

Ellis Fjord, and Taynaya Bay metagenomic reads to EF_ref MAG, which allowed for 

analysis of variations such as variable coverage regions and SNPs (described below in 

section 5.3.4.2); and (iii) comparative analysis of Chlorobium MAGs from Ace Lake, 

Ellis Fjord, and Taynaya Bay metagenomes and C-phaeov (described below in section 

5.3.4.3). 

5.3.4.1 Chlorobium 16S rRNA gene identity, BclA protein identity, ANI, AAI, 

and phylogeny 

Similar to the Ace Lake Chlorobium OTU, the taxonomies of the Chlorobium OTUs 

identified in Ellis Fjord and Taynaya Bay metagenomes indicated that they were closely 
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related to C-phaeov. All Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium 16S rRNA 

genes were identical in their respective aquatic systems. The 16S rRNA genes from 43 

Ace Lake and six Ellis Fjord Chlorobium MAGs were identical and were 1,505 bp long. 

The 16S rRNA genes from two Taynaya Bay Chlorobium MAGs were only 1,502 bp 

long (Figure 5.4a). However, an analysis of its 16S rRNA gene sequence and its flanking 

nucleotides showed that the Taynaya Bay Chlorobium contained the complete 1,505 bp 

16S rRNA gene. The FR analysis of the 16S rRNA gene of EF_ref MAG in Ace Lake, 

Ellis Fjord, and Taynaya Bay metagenomes also confirmed that the Chlorobium 16S 

rRNA genes from all three systems were identical. The ANI of all Chlorobium MAGs to 

each other was ≥99.9% over ≥92% alignment fraction. 

The BclA protein sequences from 46 out of 47 Ace Lake Chlorobium MAGs were 366 

aa long and were identical, but the BclA protein sequence from the Ace Lake 

Chlorobium MAG generated from Dec 2006_Interface_3 μm-filter metagenome was 

389 aa long. An assessment of the DNA sequences of the two BclA proteins from Ace 

Lake Chlorobium showed that the variant bclA gene contained a single nucleotide 

insertion (thymine), which caused a frame-shift mutation. This mutation was present on 

only one read from Dec 2006 Ace Lake merged metagenome, indicating that the variant 

bclA gene probably resulted from a sequencing error. All BclA protein sequences from 

Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium appeared to be identical (Figure 

5.4b). 
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Figure 5.4 Comparison of Chlorobium marker genes from Ace Lake, Ellis Fjord, Taynaya 

Bay, and C-phaeov. The figure shows mismatches (pink) in Chlorobium 16S rRNA gene 

sequences (a) and BclA protein sequences (b) from Ace Lake (Chlorobium AL), Ellis Fjord 

(Chlorobium EF), Taynaya Bay (Chlorobium TB), and C-phaeov genome. (a) The complete 16S 

rRNA gene sequences were 1,505–1,506 bp long, therefore only the regions with mutations are 

displayed here. Within the 16S rRNA gene sequence, the dotted regions indicate sequence 

discontinuity and the numbers below the sequences mark the positions of the mismatches. The 

dashes at the ends of the sequences and at position 207 indicate sequence gaps. (b) The 

complete BclA protein sequences were 366 aa long and are shown here. The numbers on the 

left-side (101, 201, 301) indicate the sequence position on the protein. 

The 16S rRNA gene identity, BclA protein identity, ANI, and AAI of the Ace Lake, 

Ellis Fjord, and Taynaya Bay Chlorobium MAGs were also calculated against the C-

phaeov genome. All 16S rRNA genes from the Chlorobium MAGs had 99% identity to 

C-phaeov 16S rRNA gene, with 17 nucleotide mismatches (Figure 5.4a). The BclA 

protein sequences from Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium MAGs 

were 98% similar to C-phaeov BclA protein, with six mismatches (Figure 5.4b). The 

Chlorobium MAGs had 85% ANI over 80–86% alignment fraction, and 89% AAI to C-

phaeov genome.  

Overall, the 16S rRNA gene and BclA protein sequences as well as ANI of the 

Chlorobium from Ace Lake, Ellis Fjord, and Taynaya Bay suggested that the same 

Chlorobium species was present in the three Vestfold Hills systems, and that it was 

distinct from C-phaeov. This was also evident from the 16S rRNA gene- and BclA 

protein-based phylogenetic analyses, which showed distinct clustering of Ace Lake, 

Ellis Fjord, and Taynaya Bay Chlorobium, separate from other members of 

Chlorobiaceae family analysed and closest to C-phaeov (Figure 5.5). 
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Figure 5.5 BclA protein and 16S rRNA gene based phylogenetic analyses of Chlorobium 

MAGs. The maximum-likelihood trees show the (a) 16S rRNA gene-based and (b) BclA 

protein-based phylogeny of the Chlorobiaceae family. The phylogenetic trees were prepared 

with MEGA X v10.1.7 using 1,000 bootstrap values. The Chlorobium from the Vestfold Hills 

are highlighted — Ace Lake, red font; Ellis Fjord, grey font; Taynaya Bay, yellow font. The 

trees are drawn to scale. The scale lengths in respective figures indicate the branch lengths. The 

numbers next to the branches represent bootstrap values showing the percentage of trees in 

which the taxa clustered together. Only bootstrap values greater than 50% are shown here. 

5.3.4.2 FR analysis of Chlorobium EF_ref MAG in Ace Lake, Ellis Fjord, and 

Taynaya Bay metagenomes 

The alignment of metagenomic reads from Ace Lake, Ellis Fjord, and Taynaya Bay to 

EF_ref MAG showed the presence of a number of variable coverage regions, with read 

depths higher or lower than the mean read depth of EF_ref MAG (Figure 5.6; Table 

5.6). Interestingly, most LCRs identified in AL_ref MAG (Table 5.4) were also 

represented in the EF_ref MAG LCRs from all three systems, suggesting existence of 

similar Chlorobium subpopulations in Ace Lake, Ellis Fjord, and Taynaya Bay. 
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However, the abundances of these Chlorobium subpopulations varied in the three 

systems (Table 5.6). Similar to the LCRs in AL_ref MAG, the LCRs in EF_ref MAG 

contained genes coding for cell wall modification, cell defence, substrate transport, 

DNA repair, protein modification as well as enzymes involved in anaerobic pathway for 

cobalamin biosynthesis, cobinamide salvage, Na+ or H+ ion efflux, and 

cobalt/magnesium chelatases. Additional EF_ref MAG LCRs that were not present in 

AL_ref MAG mainly contained genes of unknown function as well as a few genes 

potentially involved in cell wall modification and some general function genes. Some of 

these LCRs in EF_ref MAG had very low read depth (<1%) in all three systems (Table 

5.6).  

For SNP analysis of Chlorobium from Ace Lake, Ellis Fjord, and Taynaya Bay, only the 

mutations that were present in at least 90% of the metagenomic reads aligned to the 

reference base (i.e., 0.9 variable frequency threshold) were considered. Of the 1,807 

genes in EF_ref MAG, 68 had SNPs in metagenomes from Ace Lake only, 2 had SNPs 

in Taynaya Bay metagenome only, and 19 had SNPs in metagenomes from both Ace 

Lake and Taynaya Bay. Most of these mutations occurred in genes involved in cellular 

and metabolic functions, but a few were present in genes involved in cell wall 

modification, substrate transport, and some membrane proteins. Notably, no EF_ref 

MAG SNPs were observed in Ellis Fjord metagenome; this was similar to what was 

observed in AL_ref MAG, which showed no mutations in Ace Lake metagenomes. 

Nearly all of the mutations, except three — in a hypothetical gene, a gene for precorrin-

3B methylase/precorrin isomerase and a gene for a TonB-dependent protein (on contigs 

C2, C10 and C28, respectively; Table 5.6), were present in non-variable coverage 

regions of EF_ref MAG, which indicated that all Chlorobium from Ace Lake and 

Taynaya Bay contained most of these mutations. 

Together, the EF_ref MAG variable coverage regions and SNPs indicated that Ace 

Lake, Ellis Fjord, and Taynaya Bay had similar Chlorobium subpopulations of 

phylotypes and ecotypes, however, the genomic sequences of Chlorobium from Ellis 

Fjord and Taynaya Bay were more similar to each other than to Ace Lake Chlorobium 

(Table 5.6). 
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Figure 5.6 Coverage pattern of EF_ref MAG in Ace Lake, Ellis Fjord, and Taynaya Bay 

metagenomes. The circos plot depicts the coverage distribution of EF_ref MAG in Ace Lake, 

Ellis Fjord, and Taynaya Bay metagenomes (coloured rings). The outermost ring depicts the 

backbone of EF_ref MAG showing the Contigs 1–32 (C1–C32; Table 5.5). The MAG contigs 

were reordered in Mauve v2.4.0 using C-phaeov as the reference genome, but only C1–C25 had 

any matches to C-phaeov; C26–C32 were added to one end of the ordered contigs. The grey 

contigs represent forward strand MAG sequences, whereas black contigs represent 

complementary strand MAG sequences. The contig lengths varied between 3 to 272 kb length 

(Table 5.5), and the x-axis scales for all contigs and rings are drawn around the circumference 

of the outermost ring, with major ticks (red) at the beginning and every 50 kb length and minor 

ticks (dark grey) at every 10 kb length of each contig. Read depth values are plotted on linear 

scale y-axes. As the main purpose of the figure was to highlight the distribution of variable 

coverage regions, the y-axes scales of circos rings vary. Read depth values greater than the y-

axis limits were truncated to the y-axis maximum values. Variable coverage regions are marked 

by red stars inside the innermost ring of the circos plot. Merged metagenomes and their y-axis 

scale ranges, outer to inner ring: AL Nov 2008_I ( , 0–20000); AL Nov 2013_I ( , 0–3000); 
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AL Jul 2014_I ( , 0–800); AL Aug 2014_I ( , 0–800); AL Oct 2014_I ( , 0–100); AL Dec 

2014_I ( , 0–10000); EF 45m ( , 0–15000); TB 11m ( , 0–800). 

Table 5.5 Chlorobium EF_ref MAG contigs. A The contig numbers (C1–C32) correspond to 

the contigs shown in Figure 5.6. B The contig IDs refer to the scaffold IDs provided by JGI’s 

IMG system. C The read depths of the contigs in the 45m depth 3–20 μm-filter Ellis Fjord 

metagenome, from which EF_ref MAG was generated, were measured by JGI’s IMG system. 

Contig 

numberA 
Contig IDB 

Length 

(bp) 

GC 

content 

Read 

depthC 

C1 Ga0307987_1000015 116,997 0.54 1229 

C2 Ga0307987_1001829 11,473 0.52 20 

C3 Ga0307987_1000004 178,460 0.53 1150 

C4 Ga0307987_1001038 15,792 0.53 1101 

C5 Ga0307987_1000209 36,702 0.52 1086 

C6 Ga0307987_1000006 162,002 0.53 1071 

C7 Ga0307987_1015042 3,102 0.52 1055 

C8 Ga0307987_1000070 58,906 0.51 922 

C9 Ga0307987_1001178 14,683 0.5 463 

C10 Ga0307987_1000158 41,780 0.52 76 

C11 Ga0307987_1000445 24,876 0.51 889 

C12 Ga0307987_1000306 29,343 0.5 883 

C13 Ga0307987_1000397 26,253 0.5 844 

C14 Ga0307987_1000132 45,348 0.5 871 

C15 Ga0307987_1000116 48,411 0.5 860 

C16 Ga0307987_1000188 38,654 0.52 941 

C17 Ga0307987_1000007 159,945 0.52 977 

C18 Ga0307987_1000001 271,782 0.52 984 

C19 Ga0307987_1002717 9,042 0.52 1029 

C20 Ga0307987_1000481 24,045 0.52 1009 

C21 Ga0307987_1000002 216,430 0.54 1073 

C22 Ga0307987_1000149 42,560 0.52 1030 

C23 Ga0307987_1000137 44,410 0.54 1110 

C24 Ga0307987_1000128 45,939 0.55 1176 

C25 Ga0307987_1000010 131,454 0.54 1213 

C26 Ga0307987_1012998 3,422 0.51 16 

C27 Ga0307987_1013512 3,330 0.52 14 
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C28 Ga0307987_1012082 3,606 0.51 485 

C29 Ga0307987_1004356 6,757 0.49 80 

C30 Ga0307987_1008200 4,637 0.49 850 

C31 Ga0307987_1008940 4,380 0.51 13 

C32 Ga0307987_1001683 12,043 0.52 22 

Table 5.6 Genes annotated on variable coverage regions of EF_ref MAG. A The EF_ref 

MAG contigs mentioned in the first column are described in Table 5.5. B The approximate 

starting positions and lengths of the variable coverage regions on the EF_ref MAG contigs are 

provided in the second column (the variable coverage regions are labelled as red stars in Figure 

5.6). The LCRs are shown with a light blue background colour, whereas high coverage regions 

are shown with a light orange background colour. C The percentages shown are average of 

coverage values from metagenomes from Ace Lake (AL), Ellis Fjord (EF), and Taynaya Bay 

(TB) calculated across the regions specified in column two (section 5.2.3.3). D The genes shown 

in the table were annotated by JGI’s IMG system. The regions are arranged from top to bottom 

in the order of their occurrence along the lengths of EF_ref MAG contigs. 

EF_ref MAG 

contigA 

Starting position 

and length of 

variable coverage 

regionB 

Metagenomes 

and % 

Chlorobium 

population in 

which 

observedC 

AL_ref MAG genes annotated in the 

variable coverage regionD 

C2 Whole contig 

(11 kb length) 

AL: 25–32% 

EF: 3% 

TB: 69% 

Hypothetical protein 

Uncharacterized protein (DUF4415 

family) 

3 Hypothetical proteins 

ATP-dependent exoDNAse (exonuclease 

V) beta subunit/superfamily I DNA/RNA 

helicase 

PD-(D/E)XK nuclease superfamily 

protein 

Membrane protein YdbT with pleckstrin-

like domain 

Restriction system protein 

Hypothetical protein 

C9 Whole contig 

(15 kb length) 

AL: 60–70% 

EF: 44% 

Iron complex outermembrane receptor 

protein 
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TB: 79% Iron complex transport system substrate-

binding protein 

5-Methyltetrahydropteroyltriglutamate-

homocysteine methyltransferase 

Ribonucleoside-triphosphate reductase 

Pyruvate formate lyase activating enzyme 

Iron complex transport system permease 

protein 

Iron complex transport system ATP-

binding protein 

Iron complex transport system substrate-

binding protein 

Type I restriction enzyme R subunit 

C10 Whole contig 

1 bp 

(31 kb length) 

AL: 9–26% 

EF: 7% 

TB: 78% 

Iron complex outermembrane receptor 

protein 

Cobaltochelatase CobN 

Magnesium chelatase subunit I 

Magnesium chelatase subunit D 

Iron complex outermembrane receptor 

protein 

Cobaltochelatase CobN 

Uncharacterized protein 

Sugar phosphate isomerase/epimerase 

Predicted amidohydrolase 

Adenosylcobinamide amidohydrolase 

Iron complex transport system ATP-

binding protein 

Iron complex transport system permease 

protein 

Iron complex transport system substrate-

binding protein 

Hypothetical protein 

Formylglycine-generating enzyme 

required for sulfatase activity 

SpoVK/Ycf46/Vps4 family AAA+-type 

ATPase 
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Molecular chaperone DnaK (HSP70) 

Molecular chaperone GrpE 

2 Hypothetical proteins 

Anthranilate phosphoribosyltransferase 

Threonine dehydrogenase-like Zn-

dependent dehydrogenase 

31 kb 

(11 kb length) 

AL: 29–59% 

EF: 8% 

TB: 72% 

Hypothetical protein 

Cobalt-precorrin-5B (C1)-

methyltransferase 

Cobalt-precorrin-5B (C1)-

methyltransferase 

Precorrin-4 methylase/cobalamin 

biosynthesis protein CbiG 

Precorrin-6Y C5,15-methyltransferase 

(decarboxylating) 

Precorrin-3B methylase/precorrin 

isomerase 

Precorrin-2/cobalt-factor-2 C20-

methyltransferase 

Sirohydrochlorin cobaltochelatase 

Uroporphyrin-III C-methyltransferase 

Cobalt/nickel transport system ATP-

binding protein 

Cobalt/nickel transport system permease 

protein 

C13 1 bp 

(7 kb length) 

AL: 59–71% 

EF: 69% 

TB: 91% 

DNA repair protein RadC 

F-type H+-transporting ATPase subunit 

gamma 

F-type H+-transporting ATPase subunit 

alpha 

F-type H+-transporting ATPase subunit b 

F-type H+-transporting ATPase subunit c 

F-type H+-transporting ATPase subunit a 

F1-F0 ATPase (N-ATPase) AtpR subunit 

ATP synthase protein I 
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F-type H+-transporting ATPase subunit 

epsilon 

F-type H+-transporting ATPase subunit 

beta 

C14 3.6 kb 

(722 bp length) 

AL: 24–42% 

EF: 77% 

TB: 36% 

DNA-binding response OmpR family 

regulator 

C18 17 kb 

(11 kb length) 

AL: 15–20% 

EF: 94% 

TB: >100% 

IS5 family transposase 

Hypothetical protein 

Acyl-ACP thioesterase 

DDE family transposase 

Nitrite reductase/ring-hydroxylating 

ferredoxin subunit 

Hypothetical protein 

Uncharacterized protein YPO0396 

Uncharacterized protein DUF4194 

Uncharacterized protein DUF3375 

~239 kb 

(269 bp length) 

AL: >100% 

EF: >100% 

TB: 93% 

Hypothetical protein 

C22 ~36 kb 

(6 kb length) 

AL: 25–34% 

EF: 66% 

TB: >100% 

ATP-binding cassette subfamily C 

exporter for protease/lipase 

ATP-binding cassette subfamily C 

exporter for protease/lipase 

Protease secretion system membrane 

fusion protein 

Protease secretion system outer 

membrane protein 

Transposase InsO family protein 

C26 Whole contig 

(3 kb length) 

AL: <1% 

EF: <1% 

TB: 0% 

Hypothetical protein 

FAD/FMN-containing 

dehydrogenase/Fe-S oxidoreductase 

Dihydroxy-acid dehydratase 

C27 Whole contig 

(3 kb length) 

AL: ≤2% 

EF: <1% 

TB: <1% 

Sialate O-acetylesterase 

Polygalacturonase 
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C28 Whole contig 

(4 kb length) 

AL: 56–64% 

EF: 37% 

TB: 64% 

Hypothetical protein 

Hemoglobin/transferrin/lactoferrin 

receptor protein 

Hypothetical protein 

C29 Whole contig 

(7 kb length) 

AL: 8–12% 

EF: 8% 

TB: 1% 

3 Hypothetical proteins 

Predicted dehydrogenase/threonine 

dehydrogenase-like Zn-dependent 

dehydrogenase 

Heparinase superfamily protein 

Hypothetical protein 

UDP-N-acetyl-D-mannosaminuronic acid 

dehydrogenase 

C31 Whole contig 

(4 kb length) 

AL: <1% 

EF: <1% 

TB: <1% 

3 Hypothetical proteins 

C32 Whole contig 

(12 kb length) 

AL: ≤1% 

EF: <1% 

TB: <1% 

Alpha-L-fucosidase 

4 Hypothetical proteins 

Heparinase II/III-like protein 

Tol biopolymer transport system 

component/Tol biopolymer transport 

system component 

5.3.4.3 Comparative analysis of C-phaeov and Chlorobium MAGs from Ace 

Lake, Ellis Fjord, and Taynaya Bay 

The alignment of 32 Ace Lake, five Ellis Fjord, and two Taynaya Bay Chlorobium 

MAGs against the C-phaeov genome showed overall low identity nucleotide matches 

(<90%), with multiple alignment gaps and variable sequence regions (Figure 5.7). Many 

of the C-phaeov genes in the alignment gap regions were associated with various 

transposases and hypothetical proteins. However, some of them coded for metabolic 

proteins involved in thiosulfate oxidation (sox gene cluster containing soxA, soxB, soxX, 

soxY, soxZ), assimilatory sulfate reduction (cysC, cysD, cysN), and pilus assembly, none 

of which were present in the Chlorobium MAGs from the three systems.  

Although the sequence alignment pattern of all Chlorobium MAGs to the C-phaeov 

genome was similar, a few regions varied between their genomes (Figure 5.7). A 1.6 kb 

long, low identity (80%) region starting at ~124 kb length of C-phaeov genome was 
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observed in only three Ace Lake and one Ellis Fjord Chlorobium MAGs analysed 

(Figure 5.7). The region contained genes associated with membrane proteins and 

transporters (EmrAB-TolC complex) and a transcriptional regulator. A 5.4 kb long, high 

identity (98%) region starting at ~192 kb length of C-phaeov genome was present in 

only two Ace Lake Chlorobium MAGs and contained 16S rRNA, 23S rRNA, and 5S 

rRNA genes (Figure 5.7). However, a closer inspection of this region in different 

Chlorobium MAGs showed that the sequence was identical in all MAGs. The 

differences in alignment identity were because parts of the region were on different 

contigs in the two MAGs with high identity matches, but on a single contig in the 

MAGs with low identity matches. Another region starting at ~716 kb length of C-

phaeov genome was present in 20 Ace Lake and one Taynaya Bay Chlorobium MAGs 

analysed and was ~9 kb long with low identity (80%) matches to C-phaeov (Figure 5.7). 

This region coincided with the ~9 kb length variable sequence region of AL_ref MAG 

that contained genes associated polysaccharide transporters and cell wall biosynthesis 

and modification (section 5.3.2.1). 

The analysis of Chlorobium MAG contigs that had no alignment to the C-phaeov 

genome showed that the Vestfold Hills Chlorobium contained genes associated with the 

anaerobic pathway for cobalamin biosynthesis, cobalt transporters, putative vitamin B12 

transporters, cobalt/magnesium chelatases, and N-ATPases, which were absent from C-

phaeov. Interestingly, these genes had low coverage in Ace Lake, Ellis Fjord, and 

Taynaya Bay Chlorobium, suggesting that they were present in only a subpopulation of 

Chlorobium from the Vestfold Hills (section 5.3.2.2). Multiple genes coding for 

glycosyltransferases involved in cell wall biosynthesis were also annotated on the MAG 

contigs that did not match the C-phaeov genome. Notably, the Chlorobium MAGs 

contained genes for a subtype I-E CRISPR-Cas system (cas3, casA, casB, casE, casC, 

casD, cas1, cas2), unlike C-phaeov that contained genes for a subtype I-C CRISPR-Cas 

system (cas3ʹʹ, cas3ʹ, cas5, cas8c, cas7, cas4, cas1, cas2). 

Overall, the comparison of Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium with 

C-phaeov (a non-Antarctic species) showed that the Vestfold Hills Chlorobium was 

distinct from C-phaeov, not only in terms of its genomic sequence but also its functional 

potential and viral defence capacity.  
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Figure 5.7 Sequence comparison of Chlorobium MAGs with C-phaeov genome. The figure 

shows the alignment of 32 Ace Lake (red font), five Ellis Fjord (grey font), and two Taynaya 

Bay (dark yellow font) Chlorobium MAGs to C-phaeov genome (x-axis, black line). The y-axis 

shows the metagenomes (sample collection site and time, lake depth, and filter fraction) from 

which the MAGs were generated. In each system (Ace Lake, Ellis Fjord, Taynaya Bay), the 

metagenomes are arranged from top to bottom in the order of sample collection time period 

from 2006 to 2014 and lake depth. The Ace Lake Chlorobium MAG from ‘Dec 

2006_Interface_3.0’ contained a variant BclA protein sequence (section 5.3.4.1) and its genome 

completeness was 98%. All other MAGs shown here had ≥99% genome completeness. The 

white regions in the alignment bands indicate that the MAGs had no matches to those regions of 
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the reference genome. The gradient bar indicates the percentage alignment identity. Filter 

fractions: 3, 3–20 μm; 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm; 0.22, 0.22–20 μm. Ace Lake depths: U3, 

Upper 3; I, Interface; L1, Lower 1; L2, Lower 2; L3, Lower 3. 

5.3.5 Analysis of defence system genes, potential viruses, and CRISPR spacers 

5.3.5.1 Defence genes in Chlorobium MAGs 

The genes annotated in the Chlorobium MAGs were manually parsed to identify the 

defence genes (Table 5.7). The Chlorobium MAGs contained the methyltransferase and 

restriction enzyme genes of a type I R-M system as well as two type IV restriction 

endonuclease genes. A cluster of two type III restriction enzyme gene fragments were 

also annotated in the Chlorobium MAGs but they could not be verified as restriction 

enzymes by manual reannotation of their gene function. A subtype I-E CRISPR-Cas 

defence system was present in the Ace Lake Chlorobium MAGs, containing the core 

cas genes casA (or cse1) and casB (or cse2) (Table 5.7). The defence system subtype 

classification was based on a recently published CRISPR-Cas system classification 

(Makarova et al, 2020). The genes in the CRISPR-Cas defence cassette were arranged 

in the order — cas3, casA, casB, casE, casC, casD, cas1, cas2, followed by a CRISPR 

spacer array. No genes associated with BREX or DISARM defence systems could be 

identified in the Chlorobium MAGs, however, T-A system genes coding for a ParDE 

type II T-A system, a RelF family antitoxin, a BrnA family antitoxin, and an AbiEi 

antitoxin were present in the Chlorobium MAGs (Table 5.7). As T-A system proteins 

containing HEPN domain can be potentially associated with ABI mechanism (Koonin et 

al, 2017), all genes coding for predicted and uncharacterised HEPN domain containing 

proteins in the Chlorobium MAGs were manually reannotated. Although a HEPN 

domain-containing gene was identified in Chlorobium MAGs, its reannotation did not 

reveal potential involvement in the ABI mechanism. Together, these findings indicated 

that the Vestfold Hills Chlorobium had intracellular defence systems such as CRISPR-

Cas system, type I and type IV R-M systems, and AbiE T-A system that it could use for 

defence against viruses (Table 5.7).  

Table 5.7 Defence genes annotated in Chlorobium MAGs. A The initial annotations of the 

MAG genes were performed by JGI’s IMG system. B The gene functions were verified against 

reference proteins in the UniProtKB/Swiss-Prot database. The proteins with low alignment or 
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no hits to UniProtKB/Swiss-Prot database proteins were realigned to reference proteins in the 

UniProtKB database or RefSeq protein database. 

Defence 

system 
Subsystem type Gene annotationA 

Gene function and protein 

sequence identity (%)B 

R-M 

system 

Type IV 

restriction 

endonuclease 

Restriction system 

protein 

39%; Mrr restriction system 

protein Escherichia coli 

Restriction system 

protein 

38% Mrr restriction system 

protein Escherichia coli 

Type I R-M 

system 

 

Type I restriction 

enzyme M protein 

38% Putative type I restriction 

enzyme MpnORFDP M 

protein Mycoplasma 

pneumoniae 

Type I restriction 

enzyme R subunit 

34% Type-1 restriction 

enzyme R protein 

Staphylococcus saprophyticus 

subsp. Saprophyticus 

CRISPR-

Cas system 

Subtype I-E 

CRISPR-Cas 

system 

CRISPR-associated 

protein Cas2 

28% CRISPR-associated 

endoribonuclease Cas2 

Escherichia coli 

CRISPR-associated 

protein Cas1 

79% CRISPR-associated 

endonuclease Cas1 

Chlorobaculum tepidum 

CRISPR system 

Cascade subunit CasD 

29% CRISPR system Cascade 

subunit CasD Escherichia coli 

CRISPR system 

Cascade subunit CasC 

34% CRISPR system Cascade 

subunit CasC Escherichia coli 

CRISPR system 

Cascade subunit CasE 

24% CRISPR system Cascade 

subunit CasE Escherichia coli 

CRISPR system 

Cascade subunit CasB 

31% CRISPR-associated 

protein Cse2 Thermus 

thermophilus 

CRISPR system 

Cascade subunit CasA 

61% CRISPR-associated 

protein, Cse1 family 

Prosthecochloris aestuarii 

(UniProtKB) 
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CRISPR-associated 

endonuclease/helicase 

Cas3 

31% CRISPR-associated 

nuclease/helicase Cas3 

Streptococcus thermophilus 

BREX 

system 
Not found - - 

DISARM 

system 
Not found - - 

T-A 

system 

ParDE type II 

T-A system 

Antitoxin ParD1/3/4 
35% Antitoxin ParD 

Mycobacterium bovis 

Toxin ParE1/3/4 
28% Toxin ParE3 

Caulobacter vibrioides 

Antitoxin 

module of a 

RelFG type II 

T-A system 

PHD/YefM family 

antitoxin component 

YafN of YafNO toxin-

antitoxin module 

30% Antitoxin RelF 

Mycobacterium tuberculosis 

Antitoxin 

module of a 

BrnTA type II 

T-A system 

Uncharacterized 

protein (DUF4415 

family) 

94% BrnA antitoxin family 

protein Chlorobium limicola 

(RefSeq) 

Antitoxin 

module of an 

AbiE type IV 

T-A system 

Transcriptional 

regulator with AbiEi 

antitoxin domain of 

type IV toxin-

antitoxin system 

53% Type IV toxin-antitoxin 

system AbiEi family antitoxin 

domain-containing protein 

Chlorobium phaeobacteroides 

(RefSeq) 

5.3.5.2 Analysis of CRISPR spacers from Ace Lake, Ellis Fjord, and Taynaya Bay 

Chlorobium 

A total of 258 CRISPR spacer and 28 CRISPR repeat sequences were collected from 

Chlorobium MAGs and OTUs from 18 Ace Lake, three Ellis Fjord, and three Taynaya 

Bay metagenomes (Table 5.8; Appendix H: Table H3). The spacer sequences were 

numbered from Spc1 to Spc258, whereas the repeat sequences were numbered from 

Rpt1 to Rpt28. In three other Ace Lake Chlorobium MAGs, the presence of CRISPR 

spacers (a total of 8–14 CRISPR spacers) was determined during the analysis of the 

multiple sequence alignment of all Chlorobium MAGs, but the sequences of the spacers 

could not be determined (Table 5.8). On average, the spacer sequences were 33 bp long 
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and the repeat sequences were 28 bp long. The comparison of spacers and repeats 

identified in Chlorobium from Ace Lake, Ellis Fjord, and Taynaya Bay showed that a 

large number of them were exclusive to a system, but some were common to 

Chlorobium from two or all three systems (Figure 5.8). For example, Rpt3 was present 

in Chlorobium from all three systems, as were 14 spacer sequences — Spc99–103 and 

Spc108–116 (Figure 5.8).  

 
Figure 5.8 Comparison of spacers and repeats identified in Chlorobium from Ace Lake, 

Ellis Fjord, and Taynaya Bay. The Venn diagram depicts the number of distinct spacers (S) 

and repeats (R) that were exclusive to or common between Chlorobium from Ace Lake (red), 

Ellis Fjord (grey), and Taynaya Bay (yellow). The data in the overlapping zones indicate the 

number of distinct spacers and repeats that were present in Chlorobium from two or all three 

systems. For example, five spacers and two repeats were identified in Chlorobium from Ace 

Lake and Ellis Fjord, but not in Taynaya Bay Chlorobium. 

In Ace Lake, some spacer and repeat sequences were found only in Chlorobium from 

specific time periods irrespective of season, e.g., Rpt7–9 and Spc49–51 were present 

only in Jul 2014 winter metagenome and Rpt16–21 were present in Dec 2006 summer, 

but not in Dec 2014 summer metagenomes. On the other hand, some of the spacer and 

repeat sequences were present in Chlorobium from different time periods, such as Rpt1, 

2, 3, 5 and Spc9–22, Spc38–41 were identified in both summer and spring (Table 5.8). 

A higher number of spacers (>10) were generally found in Ace Lake Chlorobium from 

Lower 2 and 3 zone metagenomes, which probably represented dead Chlorobium cells 

settling to the bottom of the lake, as it is unlikely that Chlorobium would grow at such 

low depths with no sunlight (Table 5.8). Moreover, most of the CRISPR arrays were 
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present at the ends of Chlorobium contigs, which might be attributed to the issues 

usually encountered during sequencing and assembly of regions containing repeats, in 

this case CRISPR repeats. This could lead to the truncation of the CRISPR arrays in 

contigs containing the CRISPR cas genes, and there might be additional Chlorobium-

associated spacers in the metagenomic data from Ace Lake, Ellis Fjord, and Taynaya 

Bay that could not be included in the Chlorobium MAGs and OTUs.  

Overall, the spacer data from Ace Lake Chlorobium did not show a clear seasonal 

pattern of spacer acquisition (Table 5.8). Moreover, the comparison of spacer data from 

Ace Lake, Ellis Fjord, and Taynaya Bay Chlorobium showed some common spacers, 

which might indicate the existence of similar Chlorobium virus populations in the three 

systems (Figure 5.8). 

Table 5.8 Spacers and repeats identified in CRISPR arrays of Ace Lake, Ellis Fjord, and 

Taynaya Bay Chlorobium. A The Chlorobium CRISPR spacers and repeats were identified in 

metagenomes from Ace Lake, Ellis Fjord, and Taynaya Bay, with the background colours 

indicating the seasons — summer (red), winter (blue), and spring (green). B The 28 CRISPR 

repeats and 258 CRISPR spacers identified in the Chlorobium MAGs were numbered as Rpt1 to 

Rpt28 and Spc1 to Spc258, respectively (Appendix H: Table H3). The spacers and repeats 

identified in multiple MAGs are highlighted in bold. * The presence of CRISPR spacers in 

some Ace Lake Chlorobium MAGs was discerned from the multiple sequence alignment of all 

Chlorobium MAGs to AL_ref MAG, but the sequences of the spacers could not be determined. 

† Some Taynaya Bay MAGs (with suffix ‘-nbfc’) were generated from metagenomes assembled 

directly from filtered reads and not error-corrected reads (see section 5.2.1 for methods used for 

Taynaya Bay metagenome assembly). Ace Lake depths: U3, Upper 3; I, Interface; L1, Lower 1; 

L2, Lower 2; L3, Lower 3. 

System MetagenomeA 

Total 

spacers 

identified 

CRISPR repeatsB CRISPR spacersB 

Ace Lake 

Dec 2006_I_3 μm 2 Rpt1 Spc164–Spc165 

Dec 2006_L1_0.8 μm 2 Rpt16–Rpt18 Spc166–Spc167 

Dec 2006_L2_0.8 μm 2 Rpt19–Rpt21 Spc168–Spc169 

Nov 2008_L2_0.8 μm 22 Rpt1, Rpt2 
Spc1–Spc8, 

Spc9–Spc22 

Nov 2008_L3_3 μm 15 Rpt3, Rpt4 Spc23–Spc37 

Nov 2008_L3_0.8 μm* 4-6 - - 
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Nov 2013_I_0.1 μm 7 Rpt1 Spc9–Spc15 

Nov 2013_L1_0.1 μm 7 Rpt1, Rpt5 
Spc38–Spc41, 

Spc42–Spc44 

Nov 2013_L2_0.8 μm 2 Rpt6 Spc45, Spc46 

Nov 2013_L3_0.8 μm 2 Rpt3 Spc47, Spc48 

Jul 2014_I_0.1 μm 3 Rpt7–Rpt9 Spc49–Spc51 

Oct 2014_I_0.8 μm* 2-4 - - 

Oct 2014_L1_0.8 μm* 2-4 - - 

Dec 2014_U3_0.1 μm 5 Rpt1 
Spc38–Spc41, 

Spc52 

Dec 2014_I_0.1 μm 7 Rpt1 Spc9–Spc15 

Dec 2014_L1_3 μm 7 Rpt1, Rpt2 Spc16–Spc22 

Dec 2014_L1_0.8 μm 4 Rpt10–Rpt12 Spc53–Spc56 

Dec 2014_L2_3 μm 60 Rpt3 

Spc57–Spc82, 

Spc83, Spc84, 

Spc85-92, Spc93, 

Spc94, Spc95, 

Spc96, Spc97, 

Spc98–116 

Dec 2014_L2_0.8 μm 27 Rpt1 Spc117–Spc143 

Dec 2014_L2_0.1 μm 11 Rpt1 

Spc38–Spc41, 

Spc52, 

Spc142–Spc149 

Dec 2014_L3_0.8 μm 14 
Rpt5, Rpt13, Rpt14, 

Rpt15 
Spc150–Spc163 

Ellis Fjord 

Oct 2014_60 m_3 μm 3 Rpt22–Rpt23 Spc170–Spc172 

Oct 2014_60 m_0.8 μm 56 
Rpt1, Rpt14, Rpt27–

Rpt28 

Spc48, Spc179–

Spc232 

Oct 2014_60 m_0.1 μm 20 Rpt3 

Spc99–Spc104, 

Spc173, Spc105–

Spc116, Spc174 

Taynaya 

Bay 
Nov 2014_5 m 52 Rpt3 

Spc233–Spc253, 

Spc83, Spc85–

Spc89, Spc254–

Spc256, Spc90–

Spc92, Spc94–
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Spc95, Spc98, 

Spc257, Spc99–

Spc103, Spc108–

Spc116, Spc258 

Nov 2014_5 m-nbfc† 2 Rpt3 Spc116, Spc174 

Nov 2014_11 m-nbfc† 4 Rpt24–Rpt26 Spc175–Spc178 

5.3.5.3 Potential viruses associated with Ellis Fjord and Taynaya Bay 

Chlorobium 

The CRISPR spacer sequences present in Ellis Fjord and Taynaya Bay Chlorobium 

were used to identify their potential viruses; similar to the analysis performed to identify 

viruses potentially associated with Ace Lake Chlorobium (Chapter 3 section 3.3.5.6). A 

total of 79 and 58 CRISPR spacers were found in Chlorobium from Ellis Fjord and 

Taynaya Bay, respectively (Appendix H: Table H3). The comparison of Ellis Fjord 

Chlorobium contigs containing the spacer sequences with the spacer database led to the 

identification of eight viral contigs with 97% similarity to one of its spacer sequences 

Spc230. These viral contigs were from Ace Lake metagenomes and belonged to cl_248, 

which was shown to be a potential virus of Ace Lake Chlorobium (Chapter 3 section 

3.3.5.6). However, none of the viral contigs in the Antarctic virus catalogue that were 

identified from Ellis Fjord metagenomes had any matches to Ellis Fjord Chlorobium 

spacers. The Antarctic virus catalogue contained only viral contigs of length ≥5 kb, and 

among the assembled contigs from Ellis Fjord 45 m depth, only 374 contigs were 

identified as viral contigs and included in the catalogue. Therefore, it is likely that the 

potential Chlorobium virus contigs from Ellis Fjord were not in the Antarctic virus 

catalogue.  

As the Taynaya Bay metagenomes were not a part of the Antarctic virus catalogue or 

spacer database, a slightly different approach was applied to identify potential viruses of 

Taynaya Bay Chlorobium. Of the 58 Taynaya Bay Chlorobium spacers aligned against 

the Antarctic virus catalogue, nine spacers (Spc236, Spc238, Spc241, Spc243–Spc245, 

Spc249, Spc251, Spc252; Appendix H: Table H3) had matches to 23 viral contigs with 

≥97% identity. Among these 23 viral contigs, 18 were from Ace Lake metagenomes and 

belonged to cl_1024 (14), sg_10581 (1), sg_14551 (1), sg_14796 (1), and sg_14959 (1). 

Notably, cl_1024 was identified as a potential Chlorobium virus in Ace Lake (Chapter 3 

section 3.3.5.6). The remaining five viral contigs were from hypersaline Antarctic 
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systems such as Deep Lake and Rauer 13 Lake and belonged to cl_9176 (1), sg_1370 

(1), sg_1648 (1), sg_1649 (1), and sg_1677 (1). However, none of the 23 viral contigs 

with matches to Taynaya Bay Chlorobium spacers were associated with Taynaya Bay 

viral contigs. As the Taynaya Bay viral contigs were identified from matches to the 

Antarctic virus catalogue, the Taynaya Bay viral contig data was probably incomplete. 

Therefore, the lack of matches between the Chlorobium spacers and viral contigs from 

Taynaya Bay could not be interpreted as absence of potential Chlorobium viruses in 

Taynaya Bay metagenomes.  

The potential hosts of the viral contigs with matches to Taynaya Bay Chlorobium 

spacers were verified using the data in the spacer database. The potential hosts of the 

viral contigs belonging to clusters and singletons other than cl_1024 (as this was 

covered in Chapter 3) and with 100% identity matches to host spacers were assessed. 

The data showed that the viral contigs had a broad range of hosts, with most host 

contigs belonging to Gammaproteobacteria class and Chlorobi phylum (including 

Chlorobium OTU) and a few host contigs belonging to Actinobacteria, Firmicutes, 

Betaproteobacteria, Deltaproteobacteria, and Verrucomicrobia (Table 5.9). This was 

similar to what was observed for Ace Lake Chlorobium viruses (cl_1024, cl_248, 

sg_14554), which had a broad host range including Gammaproteobacteria. Altogether, 

the potential Chlorobium viruses from Ace Lake, Ellis Fjord, and Taynaya Bay 

belonged to similar viral clusters such as cl_1024 and cl_248, and these viruses were 

not specific to Chlorobium (Table 5.9; Chapter 3 Table 3.6). 

Table 5.9 Host analysis of viral cluster and singletons with matches to Taynaya Bay 

Chlorobium spacers. The table includes data from Taynaya Bay Chlorobium spacer matches to 

the viral contigs. A The viral contig cluster (cl_9176) and singletons (sg_10581, sg_1370, 

sg_14551, sg_14796, sg_14959, sg_1648, sg_1649, sg_1677) shown in the table had matches to 

the spacers of Taynaya Bay Chlorobium. B The phylum/class of the host contigs are shown in 

the first column. The numbers in the brackets indicate the number of host contigs containing 

spacers that had 100% identity matches to at least one of the viral contigs. The abbreviations in 

the table represent taxonomies of the potential host contigs, including the Vestfold Hills 

Chlorobium (represented by CPv here), with red-highlighted taxonomies indicating <100% 

identity spacer matches to viral contigs; all other matches had 100% identity. Host contig 

taxonomies: AJ, Alcanivorax jadensis; CPb, C. phaeobacteroides; CPv, C. phaeovibrioides; D, 

Desulfurivibrio sp.; KP, Klebsiella pneumoniae; L, Lactobacillus sp.; LM, Legionella 

massiliensis; M, Marinobacter sp.; MA, Marinobacter antarcticus; ME, Marinobacter sp. 
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ELB17; P, Polaromonas sp.; PP, Pseudomonas putida; PS, Pseudomonas stutzeri; S, 

Streptomyces sp.; T, Thauera sp.; U, Unclassified; V, Verrucomicrobium sp. 3C; VC, Vibrio 

cholerae. 

Host phylum/class 

(number of host contigs) 
B 

Viral cluster and singletonsA 

cl
_9

17
6 

sg
_1

05
81

 

sg
_1

37
0 

sg
_1

45
51

 

sg
_1

47
96

 

sg
_1

49
59

 

sg
_1

64
8 

sg
_1

64
9 

sg
_1

67
7 

Chlorobi (21) CPv 
CPb, 

CPv 
CPv 

CPb, 

CPv 

CPb, 

CPv 

CPb, 

CPv 
CPv CPv CPv 

Actinobacteria (1)     S     

Firmicutes (1) L         

Betaproteobacteria (4)   P  T T    

Deltaproteobacteria (1)   D       

Gammaproteobacteria 

(102) 

M, KP, 

VC 

M, KP, 

AJ 

MA, 

M, 

ME, 

KP, 

LM, 

AJ, 

PP, 

PS, 

VC 

MA, 

M, 

ME, 

KP, AJ 

MA, 

M, KP, 

AJ 

MA, 

M, KP, 

AJ, 

VC 

 KP M 

Verrucomicrobia (1)  V V V      

Unclassified (8)   U       

 

5.4 Discussion 

5.4.1 Genomic variation in Ace Lake Chlorobium — potential phylotypes and 

ecotypes 

The Ace Lake Chlorobium MAGs from different lake depths and seasons represented a 

single Chlorobium species, as was indicated by their IMG taxonomy and was evident 

from their identical 16S rRNA genes and BclA proteins and ≥99.9% ANI. The presence 

of a single species of Chlorobium in Ace Lake has been previously reported based on 

metagenomic data from 2006 (Lauro et al, 2011). The genomic variation, in the form of 
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LCRs, identified in the Chlorobium MAGs suggested the presence of subpopulations 

that might represent phylotypes and ecotypes of Ace Lake Chlorobium. Some of the 

LCRs, especially those containing genes for metabolic functions and substrate transport, 

showed seasonal variation, with higher coverage (relative abundance) in summer 

compared to that in winter (Table 5.4). It is possible that some of the Chlorobium 

ecotypes were more prevalent in summer than in winter.  

5.4.1.1 Variations potentially associated with cold adaptation 

The low coverage of genes probably involved in cell wall modification indicated the 

existence of Chlorobium subpopulations that might differ in their cell surface structure. 

Multiple glycosyltransferase genes were identified in a LCR of AL_ref MAG, along 

with a phosphatidylinositol alpha-1,6-mannosyltransferase (a single copy gene), which 

also belonged to the glycosyltransferase family (Table 5.4). The phosphatidylinositol 

alpha-1,6-mannosyltransferase catalyses the transfer of mannose to 

phosphatidylinositol, and in Mycobacterium tuberculosis, this enzyme is essential for 

the production of structural components of cell wall (Boldrin et al, 2014). However, 

phosphatidylinositol is absent from the members of Chlorobiaceae family (Imhoff and 

Bias-Imhoff, 1995; Imhoff, 2014). Moreover, Ace Lake Chlorobium did not appear to 

have the capacity to synthesise phosphatidylinositol. Therefore, the function of 

phosphatidylinositol alpha-1,6-mannosyltransferase in Ace Lake Chlorobium was 

unclear, although it was present in more than 75% of the Chlorobium populations from 

each time period.  

The glycosyltransferase genes present in a LCR of AL_ref MAG were auto-annotated as 

being involved in cell wall biosynthesis. Some of the Ace Lake Chlorobium genes 

involved in cell wall biosynthesis and modification, including glycosyltransferases, 

were shown to be distinct from the genes present in other members of Chlorobiaceae 

family, and it has been speculated that the presence of these genes in Ace Lake 

Chlorobium might be a means of cold adaptation (Ng et al, 2010). This is similar to the 

findings in M. burtonii, an archaeon found in the anoxic zone of Ace Lake. The genes 

involved in cell wall and membrane biosynthesis, mainly including 

glycosyltransferases, are overrepresented in M. burtonii genome and were speculated to 

be important for cold adaptation (Allen et al, 2009). At low temperatures, M. burtonii 

produces more extracellular polymeric substances, including polysaccharides, than at 

high temperatures (Reid et al, 2006). Multiple low coverage glycosyltransferase genes 
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(some containing SNPs) involved in cell wall biosynthesis were also present in Ace 

Lake Synechococcus, and were speculated to be involved in cell defence and immunity 

(Chapter 4 section 4.4.1.2). It is possible that the Ace Lake Chlorobium subpopulations 

containing these cell wall modification genes have a different cell wall structure that 

might help with adaptation to cold environment and/or cell immunity. 

Apart from the genes involved in cell wall modification, a gene coding for 

DEAD/DEAH box helicase family protein was also present in a LCR of AL_ref MAG. 

This gene was identified from the manual reannotation of a gene initially annotated as a 

hypothetical protein. DEAD/DEAH-box helicases are generally involved in RNA-

associated processes, and might contribute toward cell innate immunity and viral 

interactions as well as cell adaptation and response to stress, such as oxidative stress 

(Redder et al, 2015; Perčulija and Ouyang, 2019). Some of these RNA helicases like 

CsdA (deaD) and CrhC (rhlE) have also been speculated to be involved in cold 

adaptation in bacteria and archaea, such as Escherichia coli, Anabaena sp. strain PCC 

7120, and M. burtonii (Jones et al, 1996; Chamot et al, 1999; Lim et al, 2000; Williams 

et al, 2011). The CsdA helicase has been speculated to be involved in destabilization of 

stable secondary structures in mRNA at low temperature, allowing for its translation to 

protein (Jones et al, 1996). The DEAD/DEAH box helicase family gene in AL_ref 

MAG LCR was truncated at the end, indicating incomplete assembly, and contained 

only the putative catalytic HKD family nuclease domain fused with a DEAD/DEAH 

box helicase domain. It was present in at least 25% of the Chlorobium populations from 

each time period. However, two other RNA helicase genes (deaD, rhlE) were present in 

all Chlorobium from each time period; both these genes have been speculated to be 

involved in cold adaptation (Jones et al, 1996; Chamot et al, 1999; Lim et al, 2000; 

Williams et al, 2011). The function of the low coverage DEAD/DEAH box helicase 

family gene was unclear, but it is likely that it was involved in cold adaptation. 

5.4.1.2 Variations potentially associated with cell defence and immunity 

Among the genes identified in the LCRs of AL_ref MAG, a few coded for genes 

involved in various bacterial defence systems indicating presence of Chlorobium 

subpopulations with varying capacity for cell defence and immunity. The defence genes 

in the LCRs coded for a type IV restriction endonuclease, type I restriction enzyme R 

and M subunits, and a BrnA antitoxin (Table 5.4). No SNPs were observed in any of 

these low coverage genes. The brnA gene in the LCRs was identified from the manual 
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reannotation of a gene initially annotated as an uncharacterized DUF4415 family 

protein. The brnA gene was present in ≤32% of the Chlorobium populations from each 

time period, however, its corresponding brnT toxin gene could not be identified among 

the annotated AL_ref MAG genes. In Pseudomonas putida, the brnT toxin gene is often 

disrupted, truncated, or lost from the brnTA operon, probably to reduce its toxic effects 

on the cell (Rosendahl et al, 2020).  

The type I restriction enzymes (M and R subunits) identified in the LCRs were present 

in 45–65% of the Chlorobium populations from each time period. Two other type I 

restriction enzyme M subunits (both <100 aa long) were present in the non-LCR of 

AL_ref MAG, but their manual annotation showed that they contained only a portion of 

the N-terminal domain of a HsdM methyltransferase. This indicated that only a 

subpopulation of Chlorobium contained a type I R-M system. The type IV restriction 

endonuclease gene in the LCRs was manually annotated from a gene initially 

characterised as restriction system protein and was present in 25–35% of the 

Chlorobium populations from each time period. Another type IV restriction 

endonuclease gene was present in the non-LCRs of AL_ref MAG, indicating its 

presence in all Chlorobium from each time period. Type IV restriction enzymes target 

and restrict modified (usually methylated) DNA, and probably evolved in response to 

phage with the capacity to modify their DNA to evade host R-M systems (Loenen and 

Raleigh, 2014). Overall, the Chlorobium subpopulations containing these additional 

defence genes might have a better cell immunity and capacity for cell defence. See 

below section 5.4.3 for discussion on the defence capabilities of Chlorobium. 

5.4.1.3 Chlorobium subpopulations containing specific substrate transporters 

Various substrate transport genes were present in the LCRs of AL_ref MAG indicating 

that only subpopulations of Ace Lake Chlorobium had the capacity to transport certain 

substrates (Table 5.4). These genes coded for ABC transporters involved in the import 

of iron, cobalt, and vitamin B12 and export of proteases as well as N-ATPases involved 

in sodium ion export (Table 5.10). Four other genes coding for subunits of an iron ABC 

transporter and one gene coding for a cobalt/nickel transport system permease subunit 

CbiM were present in non-LCR of AL_ref MAG, indicating that all Chlorobium 

contained these genes. For analysis in this section, the substrate transport genes that 

colocalised on AL_ref MAG contigs were grouped together into Clusters 1–8 (Table 

5.10). Some of these gene clusters probably represented gene operons, such as Clusters 
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6, 7, and 8 represented a cobalt transporter gene operon, a protease export system gene 

operon, and a N-ATPase gene operon, respectively. 

Iron transporters 

Iron is an essential trace element and an important component of the photosynthetic 

reaction centre of GSB. In bacteria, iron uptake can involve import of inorganic 

Fe3+/Fe2+ ions or organic iron complexes like siderophores and hemes, using slightly 

different processes (Hogle et al, 2016). While inorganic iron is directly imported 

through the inner membrane by ABC transporters containing substrate-binding, 

permease, and ATP-binding subunits, the organic forms first need to be imported 

through the outer membrane by a TonB-dependent transporter (Hogle et al, 2016). 

Among the substrate transport genes in the LCRs of AL_ref MAG, the genes in Clusters 

1 and 2 (Table 5.10) were probably associated with the uptake of both inorganic and 

organic forms of iron, considering that one of the clusters contained part of a TonB-

dependent transporter gene; the two clusters were only three genes apart on the same 

contig. On average, Clusters 1 and 2 were present in 61% and 65% of the Chlorobium 

populations from all time periods, respectively, indicating that more than half the 

population had an added capacity to acquire iron from its surrounding environment 

(Table 5.10). The concentration of iron in Ace Lake increases with depth, being highest 

in the bottom-most anoxic waters (~3 μM), where its concentration is nearly four-times 

the concentration in the upper oxic zone (0.7 μM) (Masuda et al, 1988; Rankin et al, 

1999). Based on these concentration values, the iron levels at the Ace Lake oxycline 

would be around 1.2–1.3 μM, which is only one-third of the maximum iron 

concentration in the lake (Figure 5.9a). Therefore, the presence of additional iron 

transporters that allow uptake of both inorganic and organic forms of iron would 

probably be advantageous to Chlorobium. The abundance of the Chlorobium 

subpopulation containing these additional iron transporter genes was slightly higher in 

summer than in winter, which might suggest that this subpopulation was more 

competitive in summer (Table 5.10). 
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Figure 5.9 Iron and cobalt concentrations in Ace Lake. The iron and cobalt concentrations in 

the figure were taken from the data published by Rankin et al (1999) and originally measured by 

Masuda et al (1988). The Ace Lake oxycline samples were from depths ranging from 12.7–14.5 

m, which would put the iron and cobalt concentrations at the Ace Lake oxycline between 1.15–

1.25 μM and 5–7 nM, respectively. 

Vitamin B12 transporters 

Vitamin B12 (cobalamin) acts as a cofactor for various metabolic functions, and 

although most bacteria contain cobamide-dependent enzymes, not all are capable of 

synthesizing it (Shelton et al, 2019). Such bacteria need to acquire cobalamin from their 

surrounding environment. Similar to siderophore and heme, the uptake of vitamin B12 

first requires transport through the outer membrane using the outer membrane 

transporter BtuB, which is a TonB-dependent transporter (Pieńko and Trylska, 2020). 

The transport of vitamin B12 through the inner membrane requires ABC transporters 

such as BtuCDF or energy-coupling factor (ECF) CbrT (Cadieux et al, 2002; Santos et 

al, 2018). Some of the LCRs of AL_ref MAG contained genes that coded for a BtuB 

outer membrane transporter and a BtuC inner membrane permease protein along with a 

substrate- and an ATP-binding subunit potentially involved in vitamin B12 transport. 

These potential vitamin B12 transport genes belonged to Clusters 3–5, of which 

Clusters 4 and 5 were only three genes apart on the same contig (Table 5.10). On 

average, Clusters 3, 4, and 5 were present in 16%, 18%, and 12% of the Chlorobium 

populations from all time periods, respectively, indicating that a very small Chlorobium 

population had the capacity to acquire vitamin B12 from its surrounding environment 
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(Table 5.10). Interestingly, the abundance of the Chlorobium subpopulation containing 

vitamin B12 transport genes was nearly double or triple in summer than in winter, 

indicating their prevalence in summer (Table 5.10). Some Chlorobium subpopulations 

also had genes associated with cobalamin biosynthesis, whereas some had a cobinamide 

salvaging gene colocalised with the vitamin B12 transport genes. See below section 

5.4.1.4 for further discussion.  

Cobalt transporters 

Cobalt is an essential micronutrient and is a major component of the corrin rings of 

some coenzymes such as cobalamin and its derivatives. Similar to inorganic iron 

uptake, the uptake of cobalt is performed by high affinity ABC transporters in bacteria 

such as the CbiMNQO transport system, which is an ECF-type ABC transporter (Cheng 

et al, 2011). This transport system consists of an ATP-binding protein (CbiO), a 

transmembrane protein (CbiQ), a substrate-binding permease protein (CbiM), and an 

additional small transmembrane protein (CbiN), which together work to import cobalt 

and nickel ions, preferably copper (Rodionov et al, 2006; Cheng et al, 2011; Kirsch and 

Eitinger, 2014). In Ace Lake Chlorobium, the cbiMNQO operon potentially involved in 

cobalt transport was identified in LCR, but the cbiM gene was truncated (Cluster 6 in 

Table 5.10). This gene was placed at one end of the contig and was missing the 

beginning half of its sequence, which probably resulted from incomplete assembly 

rather than gene disruption. A longer sequence of the cbiM gene was located at the end 

of another contig, in a non-LCR of AL_ref MAG, indicating that all Chlorobium from 

each time period had this gene. The cbiMNQO operon was colocalised with some genes 

involved in the anaerobic pathway for cobalamin biosynthesis in Chlorobium, which 

suggested that this transport system was probably used for cobalt uptake and not nickel 

uptake (section 5.4.1.4). On average, Cluster 6 was present in 47% of the Chlorobium 

populations from all time periods, indicating that nearly half of the population had the 

capacity for cobalt uptake from surrounding lake waters (Table 5.10). The concentration 

of cobalt in Ace Lake Upper oxic zone (3 nM) is almost one order of magnitude lower 

than that in the lowest anoxic zone (29 nM) of the lake, but 150-times the cobalt levels 

in sea water (Masuda et al, 1988; Rankin et al, 1999). Based on these concentration 

values, the cobalt concentration at the Ace Lake oxycline would be around 5–7 nM, 

which is much lower than the maximum concentration of cobalt in the lake (Figure 

5.9b). Therefore, the presence of cobalt transporters would probably be advantageous to 
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Chlorobium, especially to the subpopulation also capable of cobalamin biosynthesis 

(section 5.4.1.4). Notably, the abundance of the Chlorobium subpopulation containing 

cobalt transporter genes was nearly double in summer than in winter, except for the 

truncated cbiM gene that had similar abundance in summer and winter (Table 5.10).  

Protease transporters 

Of the three Ace Lake Chlorobium proteins coded by the protease export system 

operon, two matched AprD and AprE proteins of the AprDEF protease export system in 

Pseudomonas aeruginosa (Cluster 7 in Table 5.10). The third protein was related to a 

TolC outer membrane protein and represented part of the AprF protein sequence. On 

average, Cluster 7 was present in 33% of the Chlorobium populations from all time 

periods and its abundance was similar in summer and winter (Table 5.10). In P. 

aeruginosa, the protease export system is used to secrete an alkaline protease (AprA), 

which breaks down laminins and is involved in bacterial virulence (Heck et al, 1986; 

Laarman et al, 2012). However, in Ace Lake Chlorobium, it was unclear which protease 

was associated with the export system. 

N-ATPases 

N-ATPases are sodium-transporting adenosine triphosphatases that are similar to F0F1-

ATPases (F-ATPases) present in bacterial plasma membranes. They are coded by a 

highly conserved operon (atpDCQRBEFAG), which contains genes similar to those in 

the F-ATPase operon (atpIBEFHAGDC) (Dibrova et al, 2010; Schulz et al, 2017). 

However, the two ATPases are distinct: (i) N-ATPases do not contain the atpH and atpI 

genes, which code for F-ATPase delta and I subunits, respectively; (ii) N-ATPases 

contain atpR and atpQ genes, which are not present in F-ATPases; and (iii) unlike F-

ATPases that use a proton (H+) gradient for ATP production, N-ATPases utilise ATP to 

actively transport Na+ or H+ ions out of the bacterial cell (Von Ballmoos et al, 2008; 

Dibrova et al, 2010; Schulz et al, 2017). Many of the microbes that contain N-ATPases 

are from saline environments, and the N-ATPase operon is always accompanied by the 

F-ATPase operon in these organisms (Dibrova et al, 2010). This is similar to what was 

observed in Chlorobium as well as Synechococcus from Ace Lake, both of which 

contained a F-ATPase operon apart from the N-ATPase operon in their genomes. N-

ATPases are capable of translocating both Na+ and H+ ions and the sequence 

composition of their ATPase subunit c (coded by atpE) decides which ion will be 
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translocated (Von Ballmoos et al, 2008; Dibrova et al, 2010; Schulz et al, 2017). As the 

ATPase subunit c in Ace Lake Chlorobium had the two Na+-binding glutamate residues 

in both its C-and N-terminal helices, it is likely that the Chlorobium N-ATPases are 

involved in Na+ ion export, which would be beneficial to these bacteria living in a saline 

environment. On average, the N-ATPase operon was present in 68% of the Chlorobium 

populations from all time periods, indicating that more than half of the population had 

the capacity to actively export Na+ ions (Cluster 8 in Table 5.10). Moreover, the 

abundance of the Chlorobium subpopulation containing the N-ATPase operon was 

slightly higher in summer (76%) than in winter (61–66%). 

Table 5.10 Ace Lake Chlorobium low coverage genes associated with substrate transport. 
AThe percentages indicate the average of relative coverages of the gene clusters in all 

metagenomes (section 5.2.3.3). The contig number of the AL_ref MAG contigs on which the 

genes were identified are also provided (Table 5.3). B The seasons mentioned in the second 

column refer to seasons from which the Ace Lake Interface samples were collected — summer 

(S), Dec 2014; winter (W), Jul 2014 and Aug 2014; spring (Sp), Nov 2008, Nov 2013, and Oct 

2014 (Table 5.1). The percentages shown are average of coverage values from metagenomes 

from a season calculated across the gene length (section 5.2.3.3). C The initial annotation of 

AL_ref MAG genes was performed by JGI’s IMG system. D The gene functions were verified 

against reference proteins in the UniProtKB/Swiss-Prot database. The proteins with low 

alignment or no hits to the UniProtKB/Swiss-Prot database proteins were realigned to the 

reference proteins in the UniProtKB or RefSeq protein databases. 

Cluster number 

and coverage 

(AL_ref MAG 

contig)A 

Seasons and 

% Chlorobium 

subpopulation 

in which 

observedB 

Gene annotationC 
Gene function and protein 

sequence identityD 

Cluster 1 

61% 

(C7) 

S: 48% 

W: 44–49% 

Sp: 45–47%; 

70% in Oct 

2014 

Iron complex outer membrane 

receptor 

protein/hemoglobin/transferrin

/lactoferrin receptor 

protein/vitamin B12 

transporter 

86% TonB-dependent 

receptor Chlorobium 

limicola (RefSeq) 

S: 74% 

W: 67–69%  

Iron complex transport system 

substrate-binding protein 

68% ABC transporter 

substrate-binding protein 

(metal-binding TroA-like 
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Sp: 67–72%; 

83% in Oct 

2014 

domain) Chlorobium 

limicola (RefSeq) 

Cluster 2 

65% 

(C7) 

S: 78% 

W: 63–64%  

Sp: 63–68% 

Iron complex transport system 

permease protein 

65% Iron ABC transporter 

permease Prosthecochloris 

aestuarii (RefSeq) 

S: 72% 

W: 60–62%  

Sp: 44–71% 

Iron complex transport system 

ATP-binding protein 

42% Uncharacterized ABC 

transporter ATP-binding 

protein HI_1272 

Haemophilus influenzae Rd 

KW20 

S: 77% 

W: 63–65%  

Sp: 64–71% 

Iron complex transport system 

substrate-binding protein 

23% Fe(3+)-citrate-binding 

protein YfmC 

Bacillus subtilis subsp. 

subtilis str. 168 

Cluster 3 

16% 

(C26) 

S: 27% 

W: 10% 

Sp: 11–24% 

Iron complex transport system 

substrate-binding protein 

25% Uncharacterized 

lipoprotein MJ0878 

(containing Fe/B12 

periplasmic-binding domain) 

Methanocaldococcus 

jannaschii 

S: 27% 

W: 10% 

Sp: 11–24% 

Iron complex transport system 

permease protein 

35% Vitamin B12 import 

system permease protein 

BtuC Klebsiella pneumoniae 

S: 23% 

W: 8–10% 

Sp: 10–23% 

Iron complex transport system 

ATP-binding protein 

37% Uncharacterized ABC 

transporter ATP-binding 

protein MJ0873 (ABC-type 

cobalamin/Fe-siderophore 

transporter) 

Methanocaldococcus 

jannaschii 

Cluster 4 

18% 

(C27) 

S: 25% 

W: 9–10% 

Sp: 11–29% 

Iron complex outermembrane 

receptor protein 

24% Vitamin B12 

transporter BtuB Salmonella 

typhimurium 
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Cluster 5 

12% 

(C27) 

S: 21% 

W: 7–9% 

Sp: 8–19% 

Iron complex outermembrane 

receptor 

protein/hemoglobin/transferrin

/lactoferrin receptor 

protein/vitamin B12 

transporter 

52% TonB-dependent 

receptor Prosthecochloris 

sp. GSB1 (RefSeq) 

Cluster 6 

47% 

(C23) 

S: 57% 

W: 31–32% 

Sp: 30–51% 

Cobalt/nickel transport system 

ATP-binding protein 

45% Cobalt import ATP-

binding protein CbiO 

Rhodobacter capsulatus 

S: 61% 

W: 33–36% 

Sp: 34–51% 

Cobalt/nickel transport system 

permease protein 

31% Cobalt transport protein 

CbiQ Rhodobacter 

capsulatus 

S: 71% 

W: 45–47% 

Sp: 38–59% 

Cobalt/nickel transport protein 52% Cobalt transport protein 

CbiN Nostoc sp. 

S: 53% 

W: 54–59% 

Sp: 34–53% 

Cobalt/nickel transport system 

permease protein 

Small sequence matches to 

cobalt transporter CbiM 

Cluster 7 

33% 

(C24) 

S: 37% 

W: 31–34% 

Sp: 28–38% 

Protease secretion system 

outer membrane protein 

28% Outer membrane 

protein TolC Vibrio cholerae 

S: 38% 

W: 34–38% 

Sp: 30–32% 

Protease secretion system 

membrane fusion protein 

32% Alkaline protease 

secretion protein AprE 

Pseudomonas aeruginosa 

PAO1 

S: 36% 

W: 35–42% 

Sp: 26–31% 

ATP-binding cassette 

subfamily C exporter for 

protease/lipase 

46% Alkaline protease 

secretion ATP-binding 

protein AprD Pseudomonas 

aeruginosa PAO1 

Cluster 8 

68% 

(C11) 

S: 58% 

W: 46–55% 

Sp: 52–56% 

F-type H+-transporting 

ATPase subunit gamma 

24% ATP synthase gamma 

chain (AtpG) 

Natranaerobius 

thermophilus 

S: 60% 

W: 50–52% 

Sp: 55–57% 

F-type H+-transporting 

ATPase subunit alpha 

78% ATP synthase subunit 

alpha 1 (AtpA) Pelodictyon 

luteolum DSM 273 
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S: 80% 

W: 63–67% 

Sp: 65–74% 

F-type H+-transporting 

ATPase subunit b 

50% ATP synthase subunit b 

1 (AtpF) Pelodictyon 

luteolum DSM 273 

S: 78% 

W: 66–69% 

Sp: 65–72% 

F-type H+-transporting 

ATPase subunit c 

52% ATP synthase subunit c 

1 (AtpE) Pelobacter 

carbinolicus DSM 2380 

S: 77% 

W: 54–58% 

Sp: 53–74% 

F-type H+-transporting 

ATPase subunit a 

88% ATP synthase subunit a 

1 (AtpB) Pelodictyon 

luteolum DSM 273 

S: 76% 

W: 65–76% 

Sp: 66–78% 

F1-F0 ATPase (N-ATPase) 

AtpR subunit 

49% ATP synthase subunit I 

(AtpR) Polaribacter sp. 

IC073 (RefSeq) 

S: 84% 

W: 64–77% 

Sp: 71–82% 

ATP synthase protein I 55% AtpZ/AtpI family 

protein (AtpQ) 

Chlorobaculum parvum 

(RefSeq) 

S: 87% 

W: 69–73% 

Sp: 80–87% 

F-type H+-transporting 

ATPase subunit epsilon 

84% F0F1 ATP synthase 

subunit epsilon (AtpC) 

Chlorobium sp. N1 

(UniProtKB) 

S: 84% 

W: 70–72% 

Sp: 75–81% 

F-type H+-transporting 

ATPase subunit beta 

81% ATP synthase subunit 

beta 2 (AtpD) Pelodictyon 

luteolum DSM 273 

5.4.1.4 Chlorobium subpopulations capable of cobalamin biosynthesis and 

cobinamide salvaging 

Cobalamin is an organometallic compound containing a central corrin ring with 

chelated cobalt that is synthesised by certain bacteria and archaea. It is used as cofactor 

in many metabolic reactions. In bacteria and archaea, there are two main pathways for 

the synthesis of adenosylcobalamin (a biologically active form of cobalamin) — the 

aerobic and anaerobic pathways (Figure 5.10). The main difference between the aerobic 

and anaerobic pathways for cobalamin biosynthesis, apart from the oxygen requirement, 

is the timing of cobalt insertion — in the anaerobic pathway cobalt is added to the 

corrin ring much earlier than in the aerobic pathway (Roth et al, 1993; Roessner et al, 

2002; Frank et al, 2005; Heldt et al, 2005). The two pathways also differ in their use of 
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substrates and genes involved in the production of the lower axial ligand (5,6-

dimethylbenzimidazole, DMB) of adenosylcobalamin — the anaerobic pathway uses 5-

amino-1-(5-phospho-β-D-ribosyl)imidazole as a substrate and the bzaABCDE operon, 

whereas the aerobic pathway uses riboflavin as a substrate and the bluB gene (Taga et 

al, 2007; Hazra et al, 2015). Cyanobacteria, including many members of Synechococcus 

genus, do not have the ability to produce DMB, and so instead of adenosylcobalamin 

they synthesise pseudocobalamin, which contains adenine in place of DMB as its lower 

axial ligand (Helliwell et al, 2016; Heal et al, 2017). Apart from the ability to synthesise 

adenosylcobalamin, bacteria and archaea can salvage cobinamides, precursors of 

adenosylcobalamin, and convert them to intermediates of the cobalamin biosynthesis 

pathways (Figure 5.10).  

 
Figure 5.10 Cobalamin biosynthesis and cobinamide salvaging pathways. The schematic 

shows the various pathways involved in the biosynthesis of adenosylcobalamin and cobinamide 

salvaging. Cobalamin biosynthesis begins with glutamate, whereas glycine is the starting 

substrate for bacteriochlorophyll and heme biosynthesis. The three biosynthesis pathways part 

after formation of uroporphyrinogen-III. The aerobic (yellow branch) and anaerobic (green 
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branch) pathways of cobalamin biosynthesis share common reactions before the formation of 

precorrin-2 and after the formation of cob(II)yrinate a,c-diamide. The two pathways differ in the 

timing of cobalt insertion into the corrin ring and the source of 5,6-dimethylbenzimidazole, the 

lower axial ligand of adenosylcobalamin. The cobinamide salvaging pathway (red branch) 

involves the conversion of cobinamide to intermediates of the cobalamin biosynthesis pathway 

using CobP/CobU and/or CbiZ. Of these two enzymes, CbiZ is capable of remodelling 

pseudocobalamin into intermediates of cobalamin biosynthesis pathway (Gray and Escalante-

Semerena, 2009). The dashed arrows connecting the intermediate substrates indicate multi-step 

processes. The pathway information for this schematic was taken from BioCyc online service 

(https://biocyc.org/) as well as the data published by Taga et al (2007), Gray et al (2008), Gray 

and Escalante-Semerena (2009), and Hazra et al (2015). CobA, corrinoid adenosyltransferase; 

CobP/CobU, adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase; 

CbiZ, adenosylcobinamide amidohydrolase. 

Adenosylcobalamin production through anaerobic pathway 

A comparative genomics study of bacterial potential for cobalamin biosynthesis and 

utilisation has shown that most bacteria rely on cobalamin, but cannot synthesise it 

(Shelton et al, 2019). The Chlorobi members analysed in the study, including C-phaeov, 

did not have genes for cobalamin biosynthesis, but many Synechococcus species had the 

ability to produce cobalamin via the anaerobic pathway (Shelton et al, 2019). The genes 

for anaerobic pathway for cobalamin biosynthesis have also been identified in Ace Lake 

microbes such as the archaea M. burtonii (Allen et al, 2009). Interestingly, the Ace Lake 

Chlorobium contained genes associated with the anaerobic pathway for cobalamin 

biosynthesis, whereas the Ace Lake Synechococcus contained cobalamin biosynthesis 

genes associated with the aerobic pathway. However, in Chlorobium, the cobalamin 

biosynthesis genes exclusive to the anaerobic pathway (green branch between precorrin-

2 to cob(II)yrinate a,c-diamide in Figure 5.10) were located in a LCR of AL_ref MAG 

(Table 5.11). On average, the cobalamin biosynthesis operon was present in 38% of the 

Chlorobium populations from all time periods, indicating that less than half of the 

population had the capacity to synthesize adenosylcobalamin. Moreover, the abundance 

of the Chlorobium subpopulation carrying this operon was almost twice in summer than 

in winter, indicating their prevalence in summer (Table 5.11). 

An analysis of the annotated genes on Chlorobium MAGs showed that Ace Lake 

Chlorobium did not contain the genes required for DMB production (bzaABCDE or 

bluB) and the final step in adenosylcobalamin production (cobC). However, it did 

https://biocyc.org/
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contain the DMB activation and utilisation genes (cobT, cobS), indicating its capacity to 

use DMB for cobalamin biosynthesis. Some organisms have the ability to remodel 

exogenous DMB to produce cobalamin (Anderson et al, 2008; Helliwell et al, 2016). It 

is likely that Ace Lake Chlorobium also acquires DMB from its surrounding 

environment and uses it to produce adenosylcobalamin rather than pseudocobalamin. 

The absence of cobC gene has been reported in many cobalamin-producing bacteria, 

including all Actinobacteria and some Alphaproteobacteria, and it is considered to be 

replaced by hypothetical protein-coding genes chlZ or cbiXY, respectively (Rodionov et 

al, 2003). It is worth noting that the Ace Lake Chlorobium MAGs are draft genomes 

(99.5% genome completeness), and it is possible that bzaABCDE, bluB, and/or cobC 

genes were not identified in Ace Lake Chlorobium because they were part of the 0.5% 

of the genome that could not be assembled, rather than being absent from the genomes.  

The Ace Lake Chlorobium also contained a colocalised cluster of genes coding for 

cobalt/magnesium chelatases in the LCRs (Table 5.11). One of these genes coded for 

the cobaltochelatase subunit N, but the genes coding for subunits S and T were not 

identified in Chlorobium. The other three chelatase genes coded for putative magnesium 

chelatase subunits BchH, BchI, BchD. Cobaltochelatase subunits NST form a complex 

that catalyses the insertion of cobalt into hydrogenobyrinic acid a,c-diamide in the 

aerobic pathway for cobalamin biosynthesis (Crouzet et al, 1991; Debussche et al, 

1992). On the other hand, magnesium chelatase subunits HID are involved in the 

magnesium insertion step of bacteriochlorophyll biosynthesis. Existing homology 

between cobaltochelatase subunits N, S, and T and magnesium chelatase subunits H, I, 

and D, respectively, has been shown (Petersen et al, 1998; Willows et al, 2001). It has 

also been speculated that certain bacteria that do not contain genes for cobaltochelatase 

subunits S and T instead use magnesium chelatase subunits I and D to form the 

cobaltochelatase complex (Rodionov et al, 2003). Interestingly, these cobalt/magnesium 

chelatase genes were colocalised with potential vitamin B12 transport genes (Clusters 4 

and 5 in Table 5.10), which might indicate their relevance to cobalamin biosynthesis. A 

similar gene cluster configuration, with cobalt/magnesium chelatases placed next to 

Ton-B dependent receptor protein for vitamin B12, were identified in the genome of Cb. 

tepidum, and it was speculated that these chelatases might be involved in incorporating 

cobalt into exogenously-acquired vitamin B12 (Eisen et al, 2002). 
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The genes coding for cobalamin biosynthesis have been previously reported to be 

colocalised with the cobalt transporter operon cbiMNQO (Rodionov et al, 2003; 

Rodionov et al, 2006). In accordance with this, the Ace Lake Chlorobium genes 

involved in anaerobic pathway for cobalamin biosynthesis (Table 5.11) were identified 

next to the genes coding for a cobalt transporter (Cluster 6 in Table 5.10). As discussed 

earlier, the presence of cobalt transporters could help Chlorobium in acquiring cobalt 

from its surrounding waters in the Ace Lake oxycline (section 5.4.1.3). As cobalt is the 

major component of the central corrin ring of cobalamin and considering that cobalt 

transporter genes colocalised with cobalamin biosynthesis genes, it is likely that the 

imported cobalt is specifically used to synthesise cobalamin. 

Cobinamide and pseudocobalamin salvaging by Chlorobium and its potential 

interaction with Synechococcus 

Apart from cobalamin biosynthesis, a small population of Chlorobium (on average 15% 

from all time periods) had an added capacity to salvage cobinamide, a precursor of 

adenosylcobalamin. Generally, bacteria use CobA and CobP/CobU enzymes for 

salvaging cobinamide, whereas archaea use CobA and CbiZ (Woodson et al, 2003; 

Woodson and Escalante-Semerena, 2004; Gray et al, 2008; Gray and Escalante-

Semerena, 2009). However, some bacteria, including a few Chlorobium species, also 

use CbiZ for salvaging cobinamide and pseudocobalamin (Gray et al, 2008; Gray and 

Escalante-Semerena, 2009). The Ace Lake Chlorobium had genes for all three enzymes, 

but only cbiZ was located in a LCR of AL_ref MAG. These findings suggested that 

probably all Ace Lake Chlorobium had the ability to salvage cobinamide, but a 

subpopulation had an added capacity to convert cobinamide as well as pseudocobalamin 

to intermediates of cobalamin biosynthesis pathway. Moreover, the abundance of the 

Chlorobium subpopulation containing the cbiZ gene varied with season, summer 

abundance being twice the winter abundance (Table 5.11). 

Many bacterial cbiZ genes, including those from some Chlorobium species, are usually 

colocalised with the genes coding for vitamin B12 transporters (Gray et al, 2008). 

Similar to this report, the cbiZ gene of Ace Lake Chlorobium was identified next to the 

genes probably involved in vitamin B12 transport (Cluster 3 in Table 5.10). Studies on 

Rhodobacter sphaeroides, a purple bacterium usually found in freshwater environments, 

suggested that the bacterium probably uses the vitamin B12 transporters to import 

pseudocobalamin produced by cyanobacteria in its environment and uses CbiZ to 
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salvage it (Watanabe et al, 1999; Miyamoto et al, 2006; Watanabe et al, 2006; 

Watanabe et al, 2007; Gray et al, 2008; Gray and Escalante-Semerena, 2009). As Ace 

Lake contained a large population of Synechococcus and the Chlorobium cbiZ gene was 

colocalised with potential vitamin B12 transporters, it is possible that a similar 

interaction between these two key players occurs in the lake — where Synechococcus-

produced pseudocobalamin is salvaged by Chlorobium for cobalamin biosynthesis. 

Potential benefits of adenosylcobalamin production and cobinamide salvaging 

Overall, the genes involved in cobalt uptake (cbiMNQO), adenosylcobalamin 

production (anaerobic pathway genes), uptake of cobalamin precursors (vitamin B12 

transporter genes), cobalt/magnesium chelatases (cobN, bchHID), and cobinamide and 

pseudocobalamin salvaging (cbiZ) had low coverage in Ace Lake Chlorobium. Of these, 

the genes for cobalamin biosynthesis were colocalised with the cobalt transporter 

operon, highlighting the potential association between uptake of cobalt and its use for 

cobalamin production in Chlorobium. Moreover, the clustering of potential vitamin B12 

transporter genes and the gene for cobinamide and pseudocobalamin salvaging (cbiZ) 

indicated that Chlorobium might be capable of salvaging exogenous cobinamides and 

pseudocobalamin to form cobalamin; Synechococcus being the most probable source of 

pseudocobalamin. Similarly, the presence of a potential vitamin B12 transporter gene 

next to the cobalt/magnesium chelatase genes might indicate their role in inserting 

cobalt into vitamin B12 acquired from the surrounding environment. 

In cultivated isolates of two Chlorobium species, it has been shown that cobalamin 

deficiency can lead to reduced bacteriochlorophyll content and affect chlorosome 

formation (Fuhrmann et al, 1993). Furthermore, treating cultivated vitamin B12-

deficient microbes with added vitamin B12 increases their bacteriochlorophyll content 

(Sato et al, 1981; Fuhrmann et al, 1993). Considering its capacity to synthesise 

cobalamin and salvage cobalamin precursors and the presence of genes associated with 

cobalt transporters and potential vitamin B12 transporters, it is possible that the Ace 

Lake Chlorobium relies on cobalamin production for maintaining bacteriochlorophyll 

production and chlorosome formation, both of which would affect its photosynthetic 

capacity. The ability to improve its bacteriochlorophyll content could help the Ace Lake 

Chlorobium in recovering from the effects of being in the dark for prolonged periods in 

winter and to reach high abundance levels in summer. This is supported by the higher 

summer abundance (twice the winter abundance) of the Chlorobium subpopulations 
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containing genes for cobalamin biosynthesis, cobinamide and pseudocobalamin 

salvaging, cobalt transporter, and/or vitamin B12 transporters. It is likely that in the 

presence of sufficient light in summer, the Chlorobium capable of producing cobalamin 

are able to reach a higher abundance due to their improved photosynthetic capacity.  

Table 5.11 Ace Lake Chlorobium low coverage genes associated with cobalamin 

biosynthesis and cobinamide and pseudocobalamin salvaging. A The seasons mentioned in 

the first column refer to seasons from which the Ace Lake Interface samples were collected — 

summer (S), Dec 2014; winter (W), Jul 2014 and Aug 2014; spring (Sp), Nov 2008, Nov 2013, 

and Oct 2014 (Table 5.1). The percentages shown are average of relative coverages of genes or 

operons in metagenomes from each season (section 5.2.3.3). The contig numbers of the AL_ref 

MAG contigs on which the genes or operons were identified are also provided (Table 5.3). B 

The initial annotation of the genes was performed by JGI’s IMG system. C The gene functions 

were verified against reference proteins in the UniProtKB/Swiss-Prot database. Some of the 

genes coded for bifunctional proteins, which is indicated by their gene names, i.e., cbiFG, 

cbiET, and cbiHC. The cobalamin biosynthesis operon was identified on C23 contig of AL_ref 

MAG alongside the cobalt transporter operon, whereas the cobinamide salvaging gene was 

colocalised with potential cobalamin transporter operon on C26 contig. The cobalt chelatase 

gene and magnesium chelatase operon were also clustered with two cobalamin transporter genes 

on C27 contig, with one transporter gene between them and one flanking the magnesium 

chelatase operon.  

Gene or operon; 

Season: Chlorobium 

subpopulation 

(AL_ref MAG 

contig)A 

Gene Gene annotationB 
Gene function and protein sequence 

identityC 

Cobalamin 

biosynthesis 

(anaerobic pathway) 

genes; 

S: 58% 

W: 28–29% 

Sp: 29–44% 

(C23) 

cbiD 
Cobalt-precorrin-5B 

(C1)-methyltransferase 

51% Cobalt-precorrin-5B C(1)-

methyltransferase Prosthecochloris 

aestuarii 

cbiJ 
Cobalt-precorrin-5B 

(C1)-methyltransferase 

30% Cobalt-precorrin-6A reductase 

Methanothermobacter 

thermautotrophicus 

cbiFG 

Precorrin-4 

methylase/cobalamin 

biosynthesis protein 

CbiG 

49% Cobalt-precorrin-4 C(11)-

methyltransferase CbiF 

Methanocaldococcus jannaschii 
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31% Cobalt-precorrin-5A hydrolase 

CbiG Salmonella typhimurium 

cbiET 

Precorrin-6Y C5,15-

methyltransferase 

(decarboxylating) 

32% Cobalamin biosynthesis 

bifunctional protein CbiET Bacillus 

megaterium 

cbiHC 

Precorrin-3B 

methylase/precorrin 

isomerase 

49% Cobalt-factor III 

methyltransferase CbiHC Bacillus 

megaterium 

cbiL 
Precorrin-2/cobalt-factor-

2 C20-methyltransferase 

28% Precorrin-2 C(20)-

methyltransferase Pseudomonas 

aeruginosa 

cbiK 
Sirohydrochlorin 

cobaltochelatase 

26% Sirohydrochlorin 

cobaltochelatase CbiKP 

Desulfovibrio vulgaris 

cysG 
Uroporphyrin-III C-

methyltransferase 

44% Uroporphyrinogen-III C-

methyltransferase Bacillus 

megaterium 

Cobinamide and 

pseudocobalamin 

salvage gene; 

S: 25% 

W: 8–10% 

Sp: 10–20% 

(C26) 

cbiZ 

Adenosylcobinamide 

amidohydrolase 

33% Uncharacterized protein 

MJ1613 (containing CbiZ domain) 

Methanocaldococcus jannaschii 

DSM 2661 

Cobalt chelatase 

gene; 

S: 25% 

W: 9% 

Sp: 11–22% 

(C27) 

cobN Cobaltochelatase CobN 

34% Aerobic cobaltochelatase 

subunit CobN Sinorhizobium sp. 

Magnesium 

chelatase genes; 

S: 26% 

W: 9% 

Sp: 10–22% 

bchD 
Magnesium chelatase 

subunit D 

28% Magnesium-chelatase subunit 

D Rhodobacter capsulatus SB 1003 

bchI 
Magnesium chelatase 

subunit I 

55% Magnesium-chelatase subunit I 

homolog Synechocystis sp. PCC 

6803 
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(C27) 
bchH Cobaltochelatase CobN 

28% Magnesium-chelatase subunit 

H Rhodobacter capsulatus 

5.4.2 Chlorobium endemism in the Vestfold Hills 

The taxonomic and abundance analyses of Ace Lake, Ellis Fjord, and Taynaya Bay 

metagenomes showed that all three systems contained Chlorobium closely related to C-

phaeov (Figure 5.3). The presence of members of Chlorobiaceae family in all three 

systems has been shown before (Burke and Burton, 1988a; Ng et al, 2010; Lauro et al, 

2011). Interestingly, despite the distance between Ace Lake, Ellis Fjord, and Taynaya 

Bay, the three systems harboured the same species of Chlorobium, as indicated by their 

identical 16S rRNA genes and BclA proteins, and ≥99.9% ANI (Figures 5.4 and 5.5). 

Moreover, C-phaeov was the closest related GSB to the Vestfold Hills Chlorobium but 

the two species were distinct, which was evident from their 99% 16S rRNA gene 

identity, 98% BclA protein identity, 85% ANI, 89% AAI, and some differences in their 

metabolic function and defence capacities (Figures 5.4, 5.5, and 5.7; section 5.3.4.3). 

5.4.2.1 Chlorobium phylotypes and ecotypes in Ace Lake, Ellis Fjord, and 

Taynaya Bay 

The FR analysis of EF_ref MAG showed that some Chlorobium gene clusters and 

operons had low coverage in metagenomes from Ace Lake, Ellis Fjord, and Taynaya 

Bay, indicating the presence of similar Chlorobium phylotypes and ecotypes in all three 

systems (the Chlorobium phylotypes and ecotypes are described in section 5.4.1). These 

gene clusters and operons included genes involved in cell defence, substrate transport, 

cell wall modification, and some metabolic functions, and their coverages were different 

in all three systems (Figure 5.11a). This suggested that although Ace Lake, Ellis Fjord, 

and Taynaya Bay contained the same species of Chlorobium and probably similar 

Chlorobium subpopulations, the abundances of the Chlorobium phylotypes and 

ecotypes varied in the three systems (Figure 5.11a). A cluster analysis of the 

Chlorobium subpopulations from the three systems was performed based on the relative 

coverages of the genes identified in LCRs of EF_ref MAG. The clustering showed that 

the Chlorobium subpopulations from Ellis Fjord and Ace Lake had a more similar 

abundance pattern than those from Taynaya Bay (Figure 5.11b). Notably, the 

metagenomic data for Ace Lake and Ellis Fjord was from biomass collected on large 

format filters (biomass size range 0.1–20 μm), whereas Taynaya Bay data was from 
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biomass collected on Sterivex cartridges (biomass size range 0.22–20 μm), which might 

have contributed toward the distinct abundance pattern of Taynaya Bay Chlorobium 

subpopulations. However, the relative coverages of genes or operons used for cluster 

analysis should be comparable, as they were normalised to the mean read depths of 

EF_ref MAG in each metagenome.  

 

 
Figure 5.11 Abundance and clustering of Chlorobium subpopulations containing low 

coverage genes of EF_ref MAG. The scatter plot (a) and heat map (b) show the approximate 

abundances of Chlorobium subpopulations carrying the low coverage EF_ref MAG genes 

associated with metabolism, cell defence, cell wall modification, and substrate transport. (a) The 

widths of the bubbles in the scatter plot indicate the relative coverages of the genes or operons 

in Ace Lake, Ellis Fjord, and Taynaya Bay metagenomes. The y-axis indicates the functional 
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categories and the pathways or reactions in which these Chlorobium genes were involved. The 

x-axis indicates the metagenomes from Ace Lake Interface (red; AL), Ellis Fjord (grey; EF), 

and Taynaya Bay (yellow; TB), arranged in the order in which they clustered. (b) The clustering 

of samples (x-axis; AL, EF, TB metagenomes) and variables (y-axis; gene functions) was based 

on the relative coverages of the EF_ref MAG genes and operons in metagenomes from the three 

systems. The Bray-Curtis similarity as well as sample and variable clustering using UPGMA 

method were performed in Primer v7. The relative coverages of the genes, which also 

represented the Chlorobium subpopulation abundances, were calculated against EF_ref MAG 

mean read depth using the method described in section 5.2.3.3. The genes involved in various 

functions were associated with: Metabolism — cobalamin biosynthesis, cobinamide and 

pseudocobalamin salvaging, and cobalt/magnesium chelatases; Defence — type I R-M subunits 

M and R, type IV R-M enzyme, and BrnA antitoxin protein; Cell wall modification — 

glycosyltransferases, phosphatidylinositol alpha-1,6-mannosyltransferase, and UDP-N-acetyl-

D-mannosaminuronic acid dehydrogenase; Substrate transport — cobalt transporter, iron 

complex transporter, cobalamin transporter, Na+ ion transporter, and alkaline protease 

transporter. Co/Mg chelatases, cobalt/magnesium chelatases: I, Interface. 

The Chlorobium subpopulations containing genes for cobalamin biosynthesis, 

cobinamide and pseudocobalamin salvaging, cobalt/magnesium chelatases, cobalt 

transporter, and vitamin B12 transporters were prevalent in Ace Lake, Ellis Fjord, and 

Taynaya Bay (Figure 5.11a). It is possible that these genes (except cbiZ) play a similar 

role in Chlorobium from all three systems, i.e., improve the photosynthetic capacity of 

Chlorobium by supporting its bacteriochlorophyll production and chlorosome 

formation. The gene involved in cobinamide and pseudocobalamin salvaging (cbiZ) 

might be limited to cobinamide salvaging in Ellis Fjord and Taynaya Bay, considering 

that the relative abundance of Cyanobacteria was <1% in the metagenomes from these 

two systems. The genes potentially involved in cell wall modification and Na+ ion 

export were also present in Chlorobium from all three systems (Figure 5.11a). As 

discussed earlier, the Ace Lake Chlorobium genes for cell wall modification and sodium 

export might be associated with adaptation to cold environment and maintenance of cell 

homeostasis, respectively (sections 5.4.1.1 and 5.4.1.3). It is likely that these genes play 

a similar role in Ellis Fjord and Taynaya Bay Chlorobium, as both these systems are 

cold and have high salinity, nearly the same as that in the bottom-most waters of Ace 

Lake — 3.5% in Ellis Fjord 45 m depth, 3.8% in Taynaya Bay 11 m depth, 3.4–4.2% in 

Ace Lake 24 m depth.  
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Among the low coverage Chlorobium genes coding for cell defence proteins, the Type I 

R-M system genes were present in a similar number of Chlorobium from the three 

systems (Figure 5.11a). However, the Type IV R-M system and T-A system genes were 

present in a very small Chlorobium population in Ellis Fjord, but relatively larger 

Chlorobium populations in Ace Lake and Taynaya Bay (Figure 5.11a). Interestingly, 

only one viral cluster (cl_248) was identified as a potential Chlorobium virus in Ellis 

Fjord, compared to three and 10 Chlorobium viral clusters and singletons in Ace Lake 

and Taynaya Bay, respectively. The coverage of Chlorobium genes involved in 

substrate transport also varied in Ace Lake, Ellis Fjord, and Taynaya Bay. Generally, 

the relative coverages of the genes identified in the LCRs of EF_ref MAG that were 

associated with Chlorobium phylotypes and ecotypes were >70% in Taynaya Bay, but 

on average 42% and 33% in Ace Lake and Ellis Fjord, respectively. This indicated that 

these Chlorobium subpopulations contributed to a major portion of the Chlorobium 

population in Taynaya Bay, but not so much in Ace Lake and Ellis Fjord (Figure 5.11a). 

The FR analysis of Chlorobium EF_ref MAG in Ace Lake, Ellis Fjord, and Taynaya 

Bay metagenomes also revealed SNPs in many Chlorobium genes present on non-

variable coverage regions of EF_ref MAG and involved in metabolic and cellular 

functions, indicating that the Chlorobium in these three aquatic systems might represent 

different phylotypes. Interestingly, mutations in Chlorobium EF_ref MAG genes were 

more prevalent in Ace Lake than in Taynaya Bay, suggesting that the genomic sequence 

of Ellis Fjord and Taynaya Bay Chlorobium might be more similar to each other than to 

Ace Lake Chlorobium. Ellis Fjord and Taynaya Bay are connected to the Southern 

Ocean by narrow water channels, unlike Ace Lake, which is isolated from the ocean. 

This biogeographic partitioning could be relevant to these genomic distinctions between 

Ace Lake Chlorobium and the Chlorobium from Ellis Fjord and Taynaya Bay.   

5.4.2.2 The endemicity of the Vestfold Hills Chlorobium  

The initial IMG taxonomic assignments of the Ace Lake, Ellis Fjord, and Taynaya Bay 

Chlorobium MAGs (referred to as the Vestfold Hills Chlorobium here) showed that 

they were closely related to C-phaeov. However, the comparative genomic analyses of 

these Chlorobium MAGs with C-phaeov genome showed that the Vestfold Hills 

Chlorobium belonged to a different species than C-phaeov (Figures 5.4 and 5.5). An 

analysis of their functional potential showed some variations in their functional 

capacities (Figure 5.12). Compared to C-phaeov, the Vestfold Hills Chlorobium had 
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higher capacity for cell wall synthesis and modification (‘M’), protein modification 

(‘O’), translation (‘J’), transcription (‘K’), replication (‘L’), energy production (‘C’), 

transport and metabolism of amino acids (‘E’), coenzymes (‘H’), and inorganic ions 

(‘P’), and contained more poorly characterised genes (‘R’, ‘S’) (Figure 5.12). On the 

other hand, C-phaeov contained genes associated with extracellular structures (‘W’) and 

cytoskeleton (‘Z’), which were not identified in the Vestfold Hills Chlorobium, but this 

lack of genes might be due to the incomplete assembly of the Vestfold Hills 

Chlorobium MAGs.  

 
Figure 5.12 Comparison of functional potential of the Vestfold Hills Chlorobium and C-

phaeov. The bar chart shows the number of protein-coding genes (y-axis) from the Vestfold 

Hills Chlorobium (green bars) and C-phaeov (blue bars) that were classified to various COG 

categories (x-axis). The data for the Vestfold Hills Chlorobium was calculated from the COG 

categorisation of protein-coding genes in AL_ref MAG (from Ace Lake), EF_ref MAG (from 

Ellis Fjord), and a Taynaya Bay Chlorobium MAG generated from 11 m depth metagenome. 

Therefore, the green bars represent the average number of Chlorobium genes from the three 

Vestfold Hills systems that were classified to each COG category and the error bars indicate the 

standard deviation. The COG categories do not include categories ‘Y’, ‘A’, and ‘B’, as none of 

the protein-coding genes from C-phaeov or the Vestfold Hills Chlorobium were classified under 

these categories. COG categories: A, RNA processing and modification; B, Chromatin structure 

and dynamics; C, Energy production and conversion; D, Cell cycle control, cell division, 

chromosome partitioning; E, Amino acid transport and metabolism; F, Nucleotide transport and 

metabolism; G, Carbohydrate transport and metabolism; H, Coenzyme transport and 

metabolism; I, Lipid transport and metabolism; J, Translation, ribosomal structure and 
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biogenesis; K, Transcription; L, Replication, recombination and repair; M, Cell 

wall/membrane/envelope biogenesis; N, Cell motility; O, Posttranslational modification, protein 

turnover, chaperones; P, Inorganic ion transport and metabolism; Q, Secondary metabolites 

biosynthesis, transport and catabolism; R, General function prediction only; S, Function 

unknown; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 

vesicular transport; V, Defence mechanisms; W, Extracellular structures; X, Mobilome: 

prophages, transposons; Y, Nuclear structure; Z, Cytoskeleton. 

Unlike C-phaeov genome, the Vestfold Hills Chlorobium MAGs did not contain sox 

genes, assimilatory sulfate reduction genes, and pilus assembly genes. It has been 

speculated that C-phaeov acquired its sox gene cluster from another member of the 

Chlorobiaceae family through HGT of a mobile element, and GSB originally acquired 

this cluster from Proteobacteria (Gregersen et al, 2011). The sox gene operon and 

assimilatory sulfate reduction genes have been previously reported to be absent in Ace 

Lake Chlorobium (Ng et al, 2010). The absence of assimilatory sulfate reduction genes 

is a characteristic of most GSB (Frigaard and Bryant, 2008). Therefore, it is likely that 

the Vestfold Hills Chlorobium does not have the capacity to assimilate sulfate or to 

oxidise thiosulfate. As for viral defence capabilities, C-phaeov contained a subtype I-C 

CRISPR-Cas system, whereas the Vestfold Hills Chlorobium contained a subtype I-E 

CRISPR-Cas system. 

The comparison of C-phaeov genome and the Vestfold Hills Chlorobium MAGs also 

showed that C-phaeov did not contain some of the genes identified on the Chlorobium 

MAGs. Notably, most of these Chlorobium MAG genes had low coverage in Ace Lake, 

Ellis Fjord, and Taynaya Bay and were associated with cell defence (type I and type IV 

R-M system genes), substrate transport (cobalt, vitamin B12, iron, sodium ion, and 

protease transporters), cell wall modification (glycosyltransferases), and metabolic 

functions (cobalamin biosynthesis, cobinamide salvaging, cobalt/magnesium chelatases) 

(Figures 5.11 and 5.12). Overall, these genes and operons not only contributed toward 

some of the differences observed within the Vestfold Hills Chlorobium population, but 

also between C-phaeov and the Vestfold Hills Chlorobium. 

To further assess the endemicity of the Vestfold Hills Chlorobium, its marker sequences 

(16S rRNA gene and BclA protein) were compared to the marker sequences in the IMG 

metagenomic and genomic databases. The Vestfold Hills Chlorobium 16S rRNA gene 

was ≤99% similar to the marker genes from metagenomes and genomes from various 
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global sites. Similarly, the Vestfold Hills Chlorobium BclA protein was <98% similar to 

the marker proteins from various GSB (except C-phaeov, 98% similarity). Together, 

these findings indicated that the Vestfold Hills Chlorobium was distinct from other GSB 

and was likely endemic to this Antarctic region. 

5.4.3 The Vestfold Hills Chlorobium potential for defence against viruses 

The analysis of annotated genes in Chlorobium MAGs revealed a number of genes 

potentially associated with cell defence and immunity. These included CRISPR-Cas 

system genes, R-M system genes, and T-A system genes. The Ace Lake Chlorobium 

contained a complete subtype I-E CRISPR-Cas system (cas3ABECD12 operon) 

indicating its capacity to defend against viruses. The presence of a CRISPR-Cas system 

in Ace Lake Chlorobium has been previously reported (Ng et al, 2010; Lauro et al, 

2011). An analysis of the annotated genes in the genomes of various GSB available on 

NCBI showed that the presence of CRISPR-Cas system genes was common in GSB and 

was not limited to a few subtype systems, and that some species contained genes for 

multiple subtype systems. For example, C-phaeov, C. chlorochromatii CaD3, and C. 

luteolum DSM 273 had subtype I-C; Cb. tepidum TLS contained subtype I-C and I-E; 

C. phaeobacteroides DSM 266 had subtype III-A and I-C; C. phaeobacteroides BS1 

contained subtype III-A and I-E; Cb. parvum NCIB 8327 contained subtype III-A; C. 

limicola DSM 245 contained subtype I-B and III-B; and C. phaeovibrioides GrTcv12 

had subtype I-F. Some of these GSB defence genes have been reported in previous 

publications (Eisen et al, 2002; Mansor and Macalady, 2016; Boldyreva et al, 2020). 

Despite this variety of defence systems identified in GSB, only a few GSB viruses have 

been identified and reported to date, including the ones from Lake Banyoles in Spain, 

Trout Bog Lake in USA, and Ace Lake in Antarctica (Llorens–Marès et al, 2017; Berg 

et al, 2020; Panwar et al, 2020).  

The Vestfold Hills Chlorobium contained genes associated with type I and type IV R-M 

systems indicating its capacity to neutralise foreign DNA such as phage, including 

viruses capable of modifying their genome. Notably, the type I R-M genes were present 

only in a subpopulation of Chlorobium (section 5.4.1.2). Five genes associated with T-

A systems (parD, parE, relF, brnA, abiEi) were identified in Chlorobium, with brnA 

being located in LCR. However, only the abiEi T-A system antitoxin gene was 

potentially involved in viral disruption through the ABI mechanism. The gene coding 
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for the toxin component (abiEii) of this T-A system was not identified among the 

annotated genes of Chlorobium MAGs, but it is possible that the gene was annotated as 

hypothetical or uncharacterised protein or was not a part of the MAG assemblies. The 

AbiE type IV T-A system is involved in the ABI mechanism (Dy et al, 2014). Its toxin 

component (AbiEii) does not cause immediate cell death on viral infection, but induces 

cell dormancy, which reverts once the cell is re-exposed to the antitoxin component 

(AbiEi) (Dy et al, 2014). Considering this, it is likely that Chlorobium cells infected 

with viruses would become dormant under the effect of AbiEii toxin, preventing spread 

of the virus to surrounding uninfected populations. Once the virus is neutralised, the 

Chlorobium cell would regain its ability to produce AbiEi antitoxin and exit dormant 

state. Based on the matches to Chlorobium spacers, two viral contig clusters (cl_1024, 

cl_248) and one singleton viral contig (sg_14554) were identified as potential 

Chlorobium viruses, which had positive abundance correlation to Chlorobium (Chapter 

3 section 3.3.5.6). It is possible that the dormant Chlorobium population infected with 

viruses contributed toward the positive correlation observed between Chlorobium and 

its potential viruses. 

The potential Ace Lake, Ellis Fjord, and Taynaya Chlorobium viruses (cl_1024, cl_248, 

cl_9176, sg_1370, sg_1648, sg_1649, sg_1677, sg_10581, sg_14551, sg_14554, 

sg_14796, sg_14959) had a broad host range. Their hosts included Chlorobium and 

members of Gammaproteobacteria as well as some Actinobacteria, Betaproteobacteria, 

Deltaproteobacteria, Firmicutes, Flavobacteriia, and Verrucomicrobia, indicating that 

they were generalist viruses. Marine cyanobacteria usually resist generalist viruses at an 

intracellular-level (Zborowskya and Lindell, 2019). This may also be true of Ace Lake 

Chlorobium, which contained an arsenal of intracellular defence systems (CRISPR-Cas, 

R-M, T-A systems). Although, some the Vestfold Hills Chlorobium had additional 

genes for glycosyltransferases, substrate transporters, and outer membrane proteins, 

none of these genes had any mutations that might contribute toward changes in the cell 

surface structure. This suggested that Chlorobium immunity and defence was probably 

not extracellular and it can be speculated that the Vestfold Hills Chlorobium probably 

does not have any specialist viruses that target it. Therefore, unchecked Chlorobium 

propagation due to lack of specialist Chlorobium viruses might be a contributing factor 

toward its high abundance in Ace Lake in summer and spring (Chapter 3 section 3.3.4). 
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5.4.4 Biogeographic distribution of viruses associated with the Vestfold Hills 

Chlorobium 

A number of viral contig clusters and singletons were associated with Chlorobium from 

Ace Lake (cl_1024, cl_248, sg_14554), Ellis Fjord (cl_248), and Taynaya Bay 

(cl_1024, cl_9176, sg_1370, sg_1648, sg_1649, sg_1677, sg_10581, sg_14551, 

sg_14796, sg_14959). Analysis of the Antarctic systems from which these viral contigs 

originated showed the biogeographic distribution of potential Chlorobium viruses 

(Figure 5.13). The Ace Lake Chlorobium spacers had ≥97% identity matches to viral 

contigs from Ace Lake as well as Deep Lake, Club Lake, Organic Lake, and some 

Rauer Island lakes (Rauer 2, 3, 5, 6, 11, and 13 lakes). Similarly, the Taynaya Bay 

Chlorobium spacers had matches to Ace Lake as well as Deep Lake and Rauer 13 Lake 

viral contigs (Figure 5.13). On the other hand, only one spacer sequence from Ellis 

Fjord Chlorobium had matches to some Ace Lake viral contigs. This data indicated that 

the potential Chlorobium viruses were probably widely distributed in the Antarctic 

systems of the Vestfold Hills and the Rauer Islands (Figure 5.13). Some similarities in 

the microbial compositions of hypersaline lakes from the Rauer Islands and the Vestfold 

Hills has been observed, although the hypersaline lakes from the Vestfold Hills are 

dominated by haloarchaea, whereas the Rauer Island hypersaline lakes are dominated by 

either bacteria or archaea (Tschitschko et al, 2018). As Chlorobium have not been 

reported in any of these lakes, except Ace Lake, Ellis Fjord, and Taynaya Bay, these 

findings also highlighted the broad host range of these potential Chlorobium viruses. 

The other potential hosts of these viruses, such as the members of 

Gammaproteobacteria, are prevalent in Organic Lake and a small population was also 

identified in Deep Lake and some Rauer Island lakes (Bowman et al, 2000a; DeMaere 

et al, 2013; Yau et al, 2013; Tschitschko et al, 2018 unpublished data). 
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Figure 5.13 Biogeographic distribution of viral contigs with matches to the Vestfold Hills 

Chlorobium spacers. The schematic shows the Antarctic aquatic systems from the Vestfold 

Hills and the Rauer Islands to which the viral contigs with matches to the Vestfold Hills 

Chlorobium spacers belonged. The Chlorobium spacers were from Ace Lake (AL, red circle), 

Ellis Fjord (EF, grey circle), and Taynaya Bay (TB, yellow circle). The viral contigs were from 

Ace Lake, Ellis Fjord, Taynaya Bay, Deep Lake (DL), Club Lake (CL), Organic Lake (OL), and 

Rauer lakes from Filla Island (RL[F]) and Torckler Island (RL[T]). The arrows originate from 

the system that contained the Chlorobium spacers and point toward the system containing the 

matching viral contigs. The widths of the arrows roughly indicate the number of spacers from a 

system that matched the viral contigs from another system. For example, most of the spacers 

from Taynaya Bay had matches to Ace Lake viral contigs and a few matched the viral contigs 

from Deep Lake and Rauer Island lakes. The red arrows show connections between Ace Lake, 

Ellis Fjord, and Taynaya Bay, in which Chlorobium was identified, whereas blue arrows show 

connections to all other Antarctic aquatic systems. The systems are arranged approximately in 

the order of their location in the Vestfold Hills (AL, EF, TB, DL, CL, OL) and the Rauer Islands 

(RL[F], RL[T]) in Antarctica. 

 

5.5 Conclusion 
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The continuing presence and high abundance of Chlorobium in the Ace Lake oxycline 

emphasizes its adaptation to the lake environment. The analysis of genomic variation in 

the Ace Lake Chlorobium populations from six different time periods ranging across 

seven years from 2008 to 2014 showed that the genome of this microbe was very stable, 

with no mutations in its genomic sequence from different time periods. However, a 

closer look at its genomic composition revealed subpopulations that represented Ace 

Lake Chlorobium phylotypes and ecotypes and whose abundances varied with season. 

Some of the additional genes identified in Chlorobium subpopulations probably 

provided them with the added capacity to adapt to cold environment, to actively export 

sodium ions out of their cells, and to defend against viruses and other foreign DNA 

(section 5.4.1). Chlorobium subpopulations containing additional genes for iron import 

would also be at an advantage, as iron is an essential trace element and a part of the 

photosynthetic reaction centre of Chlorobium (section 5.4.1.3). Apart from these, the 

Chlorobium subpopulations containing additional genes for cobalt and vitamin B12 

transport, cobalamin biosynthesis, cobinamide and pseudocobalamin salvaging, and 

cobalt/magnesium chelatases probably represented Chlorobium ecotypes that had the 

capacity for de novo synthesis of cobalamin as well as cobalamin production from 

salvaged precursors (section 5.4.1.4). Moreover, the Chlorobium subpopulations 

containing the genes for cobinamide and pseudocobalamin salvaging and vitamin B12 

transporter might be capable of interacting with Ace Lake Synechococcus, during which 

the pseudocobalamin potentially produced by the cyanobacteria would be absorbed and 

salvaged by the Chlorobium for cobalamin biosynthesis. Chlorobium 

bacteriochlorophyll content and chlorosome formation rely on the availability of 

cobalamin (Sato et al, 1981; Fuhrmann et al, 1993). Therefore, it is likely that the 

cobalamin produced by the Ace Lake Chlorobium helps it to recuperate after a long, 

dark winter and rise to very high abundance in summer.  

An analysis of the distribution of Chlorobium in Ace Lake, Ellis Fjord, and Taynaya 

Bay, three meromictic systems in the Vestfold Hills, showed that the same species of 

Chlorobium was prevalent in all three stratified systems. A comparative analysis of the 

Vestfold Hills Chlorobium with its closest related species C-phaeov, showed that the 

two organisms were distinct species with different genomic compositions (section 

5.4.2.2). Furthermore, a comparison of the Vestfold Hills Chlorobium markers to GSB 

markers in the IMG metagenomic and genomic databases showed that this Chlorobium 
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was different from other GSB, highlighting its endemicity to the Vestfold Hills (section 

5.4.2.2). Interestingly, all three systems contained the same Chlorobium subpopulations, 

but their abundances varied in the three aquatic systems (Figure 5.11a, b). The relative 

coverages of the genes that contributed toward Chlorobium phylotypes and ecotypes 

were higher in Taynaya Bay (>70%) than in Ace Lake and Ellis Fjord (on average 42% 

and 33%, respectively), indicating that these phylotypes and ecotypes composed a major 

portion of the Taynaya Bay Chlorobium population, but not Ace Lake and Ellis Fjord 

Chlorobium populations (Figure 5.11a). The FR of EF_ref MAG (Ellis Fjord 

Chlorobium MAG) showed no mutations in Ellis Fjord metagenomes, few mutations 

(21 SNPs) in Taynaya Bay metagenomes, and many mutations (87 SNPs) in Ace Lake 

metagenomes (described in section 5.3.4.2). Notably, most of these mutations (except 

three) were located in non-LCRs, indicating that each of these mutations was prevalent 

in all Chlorobium subpopulations from the system in which they were identified. 

Together, these findings indicated that the Chlorobium from Ellis Fjord and Taynaya 

Bay (both of which are linked to the Southern Ocean) were more similar to each other 

than to the Chlorobium from Ace Lake (which is landbound), indicating that the 

biogeographic partitioning of the three systems might contribute toward this genomic 

distinction of Chlorobium. 

The Vestfold Hills Chlorobium had three viral clusters and nine viral singletons 

associated with it, representing potential viral predators (section 5.4.4). These potential 

Chlorobium viruses had a broad host range, and as a defence against these generalist 

viruses, the Vestfold Hills Chlorobium had a number of intracellular defence systems, 

including subtype I-E CRISPR-Cas system, type I and IV R-M systems, and AbiE type 

IV T-A system (section 5.4.3). Moreover, the viral predators of the Vestfold Hills 

Chlorobium appeared to be spread across a large region, from the Vestfold Hills to the 

Rauer Islands in East Antarctica (Figure 5.13).  

Overall, the findings in this chapter showed that a single species of Chlorobium was 

prevalent in Ace Lake, Ellis Fjord, and Taynaya Bay and that this species was endemic 

to the stratified systems in the Vestfold Hills. Moreover, similar phylotypes and 

ecotypes of these GSB were present in all three systems, but with varying abundances. 

This Vestfold Hills Chlorobium also had the capacity for defence against viruses using 

intracellular defence systems. The viruses potentially associated with the Vestfold Hills 
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Chlorobium had a broad host range and were distributed across aquatic systems in the 

Vestfold Hills as well as the Rauer Islands.   

 

  



306 
 

 

  



307 
 

6. Conclusion 

 

This thesis describes the first metagenomics-led analysis of the effects of seasonal 

variation on Ace Lake microbial population and functional dynamics, using an in-house 

metagenome analysis pipeline (Cavlab pipeline) and other genomic methods. The 

Cavlab metagenome analysis pipeline was developed for and tested on IMG-annotated 

Antarctic metagenomes, and allowed for the analysis of the taxonomic composition and 

functional potential of Ace Lake microbial community using a time-series of 

metagenomes. The genomic analyses of the two key species of Ace Lake, namely 

Synechococcus and Chlorobium, led to the identification of their phylotypes and 

ecotypes in the lake. With the availability of metagenomes and MAGs from Ace Lake, 

Ellis Fjord, and Taynaya Bay, three stratified aquatic systems in the Vestfold Hills, the 

draft genomes of Chlorobium from the three Antarctic systems were compared to each 

other and the complete genome of a non-Antarctic Chlorobium species, to assess the 

endemicity of this GSB to the Vestfold Hills. In this final chapter, a summary of the 

main findings of the thesis are discussed along with the prospects for future work.   

 

6.1 The importance of the development of the Cavlab pipeline — an Antarctic 

metagenome analysis pipeline 

Metagenomes are large datasets that represent snapshots of genetic information from an 

environmental site, and the in-depth analysis of metagenomes can be a time-exhaustive 

task. Although various software are available for different types of analyses of 

metagenomes such as taxonomic, abundance and functional potential analyses, none of 

them can be used for complete metagenomic analysis by themselves. Therefore, it can 

be useful to have a pipeline that when launched, automatically performs an initial suite 

of comprehensive analyses on select metagenomes, generating outputs that can be the 

base for more detailed analyses. For example, a pipeline that automatically performs 

taxonomic, abundance, and functional potential analyses on a metagenomic dataset, 

requiring no input from the user once launched, can be time saving and useful compared 

to running individual analyses on each metagenome, which would require data 

preparation and verification for each analysis. The Cavlab pipeline was specifically 
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developed for such analyses of Antarctic metagenomes annotated by JGI’s IMG system, 

by exploiting the IMG folder structure to perform the analyses (Chapter 2 section 2.3.6). 

The computational methods tested for the analysis of taxonomy, abundance, and 

functional potential of Antarctic metagenomes showed that not all methods worked with 

the Antarctic metagenome data (Chapter 2). Therefore, the methods used in Cavlab 

pipeline were carefully evaluated and selected based on their data reproducibility and 

robustness (Chapter 2).  

In this thesis, the Cavlab pipeline was used for the initial comprehensive analyses of 

120 Ace Lake, 12 Ellis Fjord, and four Taynaya Bay metagenomes. The taxonomy and 

abundance data generated through the pipeline were used for assessing the microbial 

diversity of the three systems and identifying the most abundant microbes (Chapters 3 

and 5). The relative abundances of microbes calculated from the abundance data 

generated by the pipeline allowed for a direct comparison between the microbial 

populations of the three systems (Chapter 5 section 5.3.3). Therefore, the use of Cavlab 

pipeline allowed for analysis and comparison of the different systems. 

The Cavlab pipeline comprised of separate code subsections associated with different 

analyses, such as contig taxonomy and abundance analysis, protein taxonomy and 

function analysis, COG function analysis, and KEGG function analysis (Chapter 2 

Figure 2.13; Appendix C). This allowed for parallel running of these analyses, making 

the Cavlab pipeline runs time-efficient. Due to this segregation of analyses (through the 

use of separate code subscripts), the Cavlab pipeline is quite flexible, making it 

relatively easy to test new analyses, methods, and/or databases as well as to upgrade the 

pipeline. To test and include a new method or analysis, the user would have to — verify 

new input files at the beginning of the pipeline, create a code subsection for the new 

method or analysis, add command to call the code, and call only the code for the 

method or analysis being tested, so that it could be tested without having to run all other 

analyses in the pipeline. To update a method or a database associated with an existing 

analysis, the user would have to — verify new input files (if any) at the beginning of the 

pipeline and modify the code subsection associated with the analysis.   

 

6.2 Microbial and viral population dynamics of Ace Lake 
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The isostatic rebound of the Vestfold Hills landmass nearly 10,000 years ago led to the 

formation of many marine water bodies, including Ace Lake, in this region of East 

Antarctica (Gibson, 1999; Cavicchioli, 2015; Siegert et al, 2016). Ace Lake is a 

permanently stratified lake with an Upper oxic zone, an oxic-anoxic Interface, and a 

Lower anoxic zone — the presence of an ice cover for most part of the year and a strong 

salinity gradient are responsible for such stable stratification of the lake (Walker, 1974; 

Burton and Barker, 1979; Burch, 1988; Rankin et al, 1999). However, it has been 

speculated that since its isolation from the ocean, Ace Lake must have completely 

mixed at least once, during which most of the sulfur (76%) was lost from the lake 

(Burton and Barker, 1979; Gibson and Burton, 1996; Rankin et al, 1999). Light 

penetration in Ace Lake depends on the thickness, age, and quality of the ice cover, 

presence/absence of a snow cover, and the amount of biomass in the Upper zone and 

Interface of the lake (Burch, 1988; Kirk, 1994; Rankin, 1998; Rankin et al, 1999). 

Generally, in summer, light penetrates to ~12 m depth in Ace Lake in ice-free 

conditions (Hand and Burton, 1981; Burch, 1988; Rankin, 1998; Rankin et al, 1999). 

6.2.1 Microbial population 

In this thesis, the Cavlab pipeline was used for taxonomic, abundance, and functional 

potential analyses of Ace Lake metagenomes (Chapter 3). The microbial community of 

Ace Lake was segregated by depth, with distinct microbes identified in the oxic, anoxic, 

and interface zones of the lake (Chapter 3 section 3.3.3). This niche segregation of Ace 

Lake microbes has been reported previously (Rankin et al, 1999; Lauro et al, 2011). The 

Upper oxic zone of Ace Lake mainly contained phototrophic eukarya (Micromonas) and 

bacteria (Synechococcus) along with a variety of algal viruses (Phycodnaviridae 1–5). 

The Interface contained a high abundance population of GSB (Chlorobium) and some 

Deltaproteobacteria (Desulfatiglanales NaphS2, Desulfobacterales S5133MH16, 

Desulfobacterium, Desulfocapsa, Syntrophales UBA2210). The Lower anoxic zone 

harboured obligate anaerobes including the Deltaproteobacteria prevalent in the 

interface zone as well as some members of bacterial candidate phyla (Atribacteria 34-

128, Cloacimonetes JGIOTU-2) and methanogenic archaea (Methanomicrobiaceae 1, 

Methanothrix_A). The impact of change in season was evident from the variations in 

the abundances of the microbes in the Upper zone and Interface of Ace Lake, especially 

the phototrophs that relied on light for primary production (Chapter 3 section 3.3.4). On 

the other hand, the abundances of microbes in the Lower zone of Ace Lake showed little 
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variation with change in season, which was consistent with their reliance on 

chemolithoautotrophy for energy production.  

The method used for contig taxonomic assignment, which was part of the Cavlab 

pipeline, depended on the protein taxonomies provided by IMG. Therefore, contigs 

containing unclassified proteins, contigs that did not contain proteins, and contigs that 

could not be assigned unambiguous taxonomies (i.e., did not fulfill the criteria for 

contig taxonomy assignment; Chapter 2 section 2.2.2.5) were termed ‘unassigned 

contigs’ and represented the ‘dark matter’ in Antarctic metagenomes. The analysis of 

‘unassigned contigs’ of length ≥1 kb showed that they were mainly associated with 

uncultured microbes and might represent novel taxa (Chapter 3 section 3.3.6). The 

genes on these contigs were generally annotated as ‘hypothetical proteins’ and might 

represent novel proteins. However, most of the ‘unassigned contigs’ were <1 kb in 

length. Generally, small contigs (usually <500 bp) with low coverage could represent 

spurious sequencing products. Therefore, the lengths and coverages of these small 

contigs need to be evaluated to assess whether they represent contamination or possibly 

rare or novel taxa or viruses. Further investigation of these contigs and genes is required 

to identify their microbial origin and function.  

The comparison of ‘unassigned contigs’ with known databases such as GTDB (using 

RefineM) or NCBI-nr database (using DIAMOND/MEGAN6 or LAST/MEGAN-LR) 

might shed some light on their taxonomy, which might help in obtaining a more 

complete picture of the microbial diversity of Ace Lake. To assess the potential 

functions of the hypothetical genes on these contigs, their protein sequences could be 

run through software such as MG-RAST (Meyer et al, 2008) or DeepEC (Ryu et al, 

2019). MG-RAST is an open source, online service for metagenome analysis that uses 

matches to manually curated protein families (SEED FIGfam; Meyer et al, 2009) and 

subsystems (Overbeek et al, 2005) for functional annotation of predicted proteins. 

DeepEC is a more recently developed high-throughput annotation approach for high-

precision assignment of enzyme commission (EC) numbers to predicted proteins, to 

assess their potential enzymatic functions. It uses three convolutional neural networks 

(CNNs), a class of deep neural networks, to predict protein functions, where the first 

CNN predicts whether the input protein is an enzyme and the second and third CNNs 

predict EC numbers up to third- and fourth-level, respectively (Meyer et al, 2009). 

DeepEC protocol also uses homology analysis to predict EC numbers of proteins that 
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were predicted to be enzymes by the first CNN, but could not be assigned EC numbers 

by the second and third CNNs (Meyer et al, 2009). 

6.2.2 Viral population 

The analysis of viral data, including viral contigs representing complete genomes of 

viruses, revealed a diverse viral population in Ace Lake, especially in the Upper oxic 

zone (Chapter 3 section 3.3.5). Apart from the five algal viruses probably associated 

with Micromonas, viruses potentially associated with Synechococcus and Chlorobium 

were identified in Ace Lake; all three hosts were phototrophs. No significant correlation 

was observed between the abundances of Synechococcus or Micromonas and their 

respective viruses, whereas a positive correlation was observed between Chlorobium 

and its viruses (Chapter 3 section 3.3.5). The findings in this thesis indicated that the 

availability of light, rather than viral predation, was probably responsible for the 

seasonal variations observed in the abundances of these phototrophic hosts. The 

complete genome of a ‘huge’ phage containing defence genes (cas genes) was also 

identified in Ace Lake, and it was speculated that these defence genes might give it a 

competitive edge by allowing it to target other viruses that could infect its potential host 

(Chapter 3 section 3.3.5.2). The overall abundance of the viral population in Ace Lake 

did not appear to vary with seasonal changes. 

Apart from the ‘huge phage’ complete genome, the complete genome of around 172 

viruses were identified in metagenomes from Ace Lake, and their potential hosts need to 

be determined to assess their impact on the Ace Lake microbiome. The potential hosts 

of these viruses could be analysed using the spacer database, which contained the 

matches of host spacers to Antarctic viral contigs (Chapter 3 section 3.2.6). In this 

thesis, a similar method was applied for the host verification analysis of potential 

Chlorobium viruses (Chapter 3 section 3.2.6.1). The viral contigs were compared with 

the spacer database to identify host contigs, whose taxonomy was assessed through the 

method used in Cavlab pipeline (Chapter 3 section 3.2.1).  

The taxonomy and abundance analysis of Ace Lake had identified a number of 

abundant OTUs. An analysis of the potential viruses of the abundant OTUs, other than 

Micromonas, Synechococcus, and Chlorobium (which have already been analysed; 

Chapter 3 section 3.2.6), might reveal additional information about the population 

dynamics of Ace Lake. A method similar to the one used for identifying potential 
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Chlorobium viruses in Ace Lake, Ellis Fjord, and Taynaya Bay (Chapter 3 section 

3.2.6.1 and Chapter 5 section 5.2.5) could be utilised to identify the viruses associated 

with Ace Lake abundant OTUs that contain CRISPR-Cas system genes. 

6.2.3 Seasonal variation in Ace Lake 

Ace Lake has been studied extensively for nearly four decades, with emphasis on its 

physicochemical characteristics as well as microbial diversity and function (Hand, 

1980; Hand and Burton, 1981; Burch, 1988; Burke and Burton, 1988; Gibson and 

Burton, 1996; Rankin et al, 1997; Rankin, 1998; Bell and Laybourn-Parry, 1999; 

Rankin et al, 1999; Laybourn-Parry et al, 2005; Madan et al, 2005; Powell et al, 2005; 

Ng et al, 2010; Lauro et al, 2011; Laybourn-Parry and Bell, 2014). Although some 

seasonal studies have been conducted on Ace Lake data (Burch, 1988; Gibson and 

Burton, 1996; Bell and Laybourn-Parry, 1999; Rankin et al, 1999), this thesis described 

the first metagenomics-led analysis of seasonal variation in the microbial community of 

Ace Lake. 

The polar light cycle is distinct from the light cycle experienced in the lower latitudes 

including high altitude cold areas, with 24 h of sunlight in summer and 24 h of darkness 

in winter for a few weeks to months, depending on the latitude. This stark contrast in 

summer/winter light availability is likely to shape the Antarctic microbial communities, 

alongside important environmental factors such as temperature. Considering this, the 

effect of change in season on the microbial diversity of Ace Lake was studied using a 

time-series of 120 metagenomes from the surface and six depths of the lake (described 

in Chapter 3 sections 3.2.4.1 and 3.2.4.2). Among the high-quality OTUs, it was 

observed that most phototrophs (including photoheterotrophs and photoautotrophs) and 

other microbes in Ace Lake responded to seasonal variation, with their abundances 

varying in summer, winter and spring (Figure 3.10). Notably, some microbes were 

abundant (≥1% relative abundance) only in specific seasons, e.g., the Polaribacter OTU 

was abundant only in summer, whereas the Pseudomonas_E OTU was abundant only in 

winter (Figure 3.10). 

The overall functional potential of Ace Lake microbial community in metagenomes 

from different seasons was also analysed (Chapter 3 section 3.2.1). This allowed for 

prediction of seasonal shifts in the functional potential of Ace Lake and the microbes 

that probably contributed to them (Chapter 3 section 3.3.7). The functional potential of 
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Ace Lake microbial community in summer vs winter has been reported in a publication 

(Panwar et al, 2020). For further investigation of microbial function in Ace Lake and 

their contribution to overall biogeochemistry of the lake, additional ‘omic’ analyses 

using metatranscriptomes and metaproteomes would be helpful. Metagenomes allow 

determination of the genetic composition of an environment, and can be used to identify 

microbial OTUs, calculate their approximate abundances and predict their probable 

function in the environment. On the other hand, metatranscriptomes and metaproteomes 

allow for better understanding of microbial community functions as they are based on 

RNA and protein data, respectively, collected from an environment. These tools can be 

used to further study the effects of change in season on the Ace Lake microbial 

community functions and their impact on lake biochemistry. 

 

6.3 Ace Lake Synechococcus subpopulations — adaptation to the lake 

environment and a complex interplay with potential viruses 

Synechococcus is the most abundant bacteria in the Upper zone of Ace Lake, in the 

depths just above the Interface (Rankin et al, 1997; Rankin, 1998; Rankin et al, 1999; 

Powell et al, 2005; Lauro et al, 2011). Its phenotypic characteristics, phylogeny, 

distribution in some stratified systems of the Vestfold Hills, and seasonal variation have 

been studied previously using microscopy and culture-based methods (Rankin et al, 

1997; Rankin, 1998; Rankin et al, 1999; Powell et al, 2005). Synechococcus was found 

to be prevalent throughout the Ace Lake (>1% relative abundance in all depths of the 

lake) and appeared to recuperate from the effects of change in season much faster (10–

20% relative abundance in August late winter) than the other phototrophs in the lake 

(Chapter 3 section 3.3.3). The analysis of Synechococcus functional potential revealed 

that it had the capacity for fermentation, which could have supported its survival and 

growth in the dark, anoxic waters of Ace Lake and in winter (Chapter 3 section 3.3.4). 

Similar fermentative ability has been reported in the Synechococcus isolated from the 

dark, anoxic waters of Black Sea (Callieri et al, 2019). 

In this thesis, the Ace Lake metagenomes and Synechococcus MAGs were used to 

assess genomic variation in this cyanobacterium to identify potential phylotypes and 

ecotypes that might be prevalent in the lake (Chapter 4). Moreover, the auto-annotated 

MAG genes were parsed to identify defence genes, which were manually annotated to 
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verify their gene function, and the defence capacity of Ace Lake Synechococcus was 

explored (Chapter 4). The Synechococcus identified in metagenomes from all Ace Lake 

depths and time periods belonged to the same species (Chapter 4 section 4.3.2). 

Synechococcus subpopulations representing a potential phylotype with modified 

capacity for cell defence and immunity and a potential ecotype with the ability to utilise 

glutamine (in addition to ammonia) for asparagine production were identified in Ace 

Lake data (Chapter 4 section 4.4.1). Together, these findings highlighted the adaptation 

of Ace Lake Synechococcus to the Upper oxic zone, where a diverse population of 

viruses existed (Chapter 3 section 3.3.5) and bioavailable nitrogen is a limiting nutrient 

(Rankin et al, 1999).  

Synechococcus contained genes for a variety of cell defence systems that might be used 

to combat viruses and other foreign DNA (Chapter 4 section 4.4.2). These included 

intracellular defence systems genes, such as the genes for type I, II, and III R-M system, 

type I BREX system, and a number of type II T-A systems including MazEF T-A 

(Chapter 4 section 4.4.2), which is known to be involved in the ABI mechanism for 

viral infection disruption (Hazan and Engelberg-Kulka, 2004; Engelberg-Kulka et al, 

2005). In terms of extracellular defence in Synechococcus, the mutations observed in its 

genes for membrane-associated proteins (Chapter 4 section 4.4.2) might provide it 

immunity to viruses that invade host cells by attaching to host cell receptors (Avrani et 

al, 2011; Schmid et al, 2016; Tschitschko et al, 2015; Tschitschko et al, 2018; 

Zborowskya and Lindell, 2019). Marine cyanobacteria have been shown to resist both 

generalist (broad host range) and specialist (host-specific) viruses, using intracellular 

and extracellular defence strategies, respectively (Zborowskya and Lindell, 2019). 

Moreover, marine cyanobacteria have been reported to have a complex interaction with 

their viral predators, where part of the host population is resistant to the viruses, which 

allows for the co-existence of both host and virus populations (Coleman et al, 2006; 

Avrani et al, 2011; Zborowskya and Lindell, 2019). Together, these findings indicated 

that a similar, intricate interplay might exist between Ace Lake Synechococcus and its 

viral predators, which might also explain the lack of a linear correlation between the 

abundances of Synechococcus and its potential virus (Chapter 3 section 3.3.5.5).  

 

6.4 Ace Lake Chlorobium subpopulations — adaptation and endemicity to the 

Vestfold Hills 
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In Ace Lake, Ellis Fjord, and Taynaya Bay, three stratified aquatic systems in the 

Vestfold Hills, the oxic-anoxic interface had high abundance of a Chlorobium (Chapter 

5 section 5.3.3). The presence of members of Chlorobiaceae family in the oxic-anoxic 

interfaces of these three systems has been reported previously (Burke and Burton, 

1988a; Coolen et al, 2006; Ng et al, 2010; Lauro et al, 2011). The phylogeny and 

functional potential of the Chlorobium in Ace Lake have been studied using 16S rRNA 

gene sequencing (Imhoff, 2003; Coolen et al, 2006) and/or metagenomic data (Ng et al, 

2010; Lauro et al, 2011). The metagenomics-led seasonal study of Ace Lake showed 

that the change in season affected the relative abundance of Chlorobium, which was 

high in summer and spring (up to 80% in both seasons), low in winter (up to 6%), but 

lowest in Oct 2014 spring (<1%) (Chapter 3 section 3.3.4). This highlighted the reliance 

of Chlorobium on the availability of light to perform its primary production and growth. 

In this thesis, the Ace Lake metagenomes and Chlorobium MAGs were used to assess 

genomic variation in these GSB to identify potential phylotypes and ecotypes in the lake 

(Chapter 5). The metagenomes and Chlorobium MAGs from Ace Lake, Ellis Fjord, and 

Taynaya Bay and the genome of C. phaeovibrioides DSM 265 (C-phaeov; Chapter 5) 

were also used to assess the genomic variation in the Chlorobium from the three 

systems and to assess their endemicity to the Vestfold Hills (Chapter 5). Similar to 

Synechococcus MAG genes, the auto-annotated Chlorobium MAG genes were parsed to 

identify defence genes, which were manually annotated to verify their gene function, 

and the defence capacity of the Vestfold Hills Chlorobium was explored (Chapter 5). 

The analysis of Ace Lake data from the Interface and different time periods (2008–

2014) showed no mutations in Chlorobium MAGs, indicating that the genomic 

sequence of the Ace Lake Chlorobium was very stable and did not vary over time 

(Chapter 5 section 5.3.2.2). However, potential Chlorobium phylotypes with a modified 

capacity for cold adaptation, sodium ion export, and/or cell defence as well as potential 

ecotypes with the capacity to import iron, cobalt, vitamin B12, biosynthesize cobalamin, 

and/or salvage cobalamin precursors were identified in Ace Lake metagenomes from all 

time periods (Chapter 5 section 5.4.1). In Chlorobium species, it has been shown that 

cobalamin is linked to the improved production of bacteriochlorophyll and formation of 

chlorosomes, both of which are associated with the photosynthetic machinery of 

Chlorobium (Sato et al, 1981; Fuhrmann et al, 1993). The analyses in this thesis also 

showed a potential interaction between Ace Lake Synechococcus and the Chlorobium 
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subpopulation containing genes for salvaging cobalamin precursors, such as 

pseudocobalamin, which is known to be produced by cyanobacteria (Watanabe et al, 

1999; Miyamoto et al, 2006; Watanabe et al, 2006; Watanabe et al, 2007). Together, 

these findings indicated the adaptation of Chlorobium to the Ace Lake environment and 

its ability to rise from very low abundance in winter to very high abundance in summer 

(Chapter 5 section 5.4.1). 

The Chlorobium from Ace Lake, Ellis Fjord, and Taynaya Bay belonged to the same 

species and were closely related to C-phaeov (Chapter 5 section 5.3.4.1). The genomic 

composition and functional potential of the Vestfold Hills Chlorobium was also distinct 

from that of C-phaeov (Chapter 5 section 5.3.4.3). Moreover, the Vestfold Hills 

Chlorobium markers were different from the GSB markers in metagenomes and 

genomes from global sites (Chapter 5 section 5.4.2.2). Together, these findings 

indicated that the Chlorobium from the three systems might be endemic to the Vestfold 

Hills. Notably, similar Chlorobium phylotypes and ecotypes were prevalent in Ace 

Lake, Ellis Fjord, and Taynaya Bay, although their abundances varied in the three 

systems (Chapter 5 section 5.3.4.2). The Chlorobium from Ellis Fjord and Taynaya Bay 

were found to be more similar to each other than to Ace Lake Chlorobium, although 

Ace Lake and Taynaya Bay were located closer to each other (~2 km apart) than to Ellis 

Fjord (13–15 km apart). This might be related to the biogeographic partitioning of the 

three systems in the Vestfold Hills — both Ellis Fjord and Taynaya Bay are connected 

to the Southern Ocean by narrow water channels, whereas Ace Lake is isolated from the 

ocean and is landbound. 

Considering that C-phaeov was the closest related species to the Vestfold Hills 

Chlorobium, a comparison of the Vestfold Hills Chlorobium with other C. 

phaeovibrioides strains isolated from various global sites could be used to further 

investigate the endemicity of this Antarctic Chlorobium. The genomes of five C. 

phaeovibrioides strains (one complete and four draft genomes), apart from the complete 

genome of C-phaeov, are available on NCBI and all five of them were isolated from 

stratified lakes in Russia (mostly from around the White Sea). Two medium-quality, 

99% genome completeness C. phaeovibrioides MAGs (representing draft genomes) 

generated from metagenomes from Etoliko Lagoon in Greece are also available in the 

public database of JGI IMG. The 16S rRNA gene- and BclA protein-based phylogenies, 

ANI, and AAI of these seven complete or draft genomes of C. phaeovibrioides and the 
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Vestfold Hills Chlorobium can be assessed using the methods applied in this thesis 

(Chapter 5 sections 5.2.4 and 5.2.7). Moreover, the alignment of the Vestfold Hills 

Chlorobium MAGs to these reference C. phaeovibrioides strains (from NCBI) and 

MAGs (from IMG) would help assess the similarities/differences in their genomic 

compositions and functional potentials; similar to the analysis performed in this thesis 

(Chapter 5 section 5.2.4). Together, these analyses can be used for further investigation 

of Chlorobium endemicity to the Vestfold Hills and obtain a more thorough 

understanding of its global presence. FR analysis of reference C. phaeovibrioides strains 

and MAGs using Antarctic metagenomes may or may not be useful, depending on the 

ANI of the reference genome to the Vestfold Hills Chlorobium. For example, the ANI 

of C-phaeov to the Vestfold Hills Chlorobium was <90%. Therefore, during FR analysis 

of C-phaeov in Ace Lake, Ellis Fjord, and Taynaya Bay metagenomes, the read 

alignment threshold had to be reduced to <90% in order to recruit sufficient number of 

reads to C-phaeov. However, this could have led to the recruitment of reads that were 

not associated with Chlorobium. Due to this reason, the FR of C-phaeov to the Antarctic 

metagenomes was not reported in this thesis. 

 

6.5 The Vestfold Hills Chlorobium viruses and their biogeographic distribution 

in East Antarctica 

Although most Chlorobium species contain CRISPR-Cas systems and other defence 

genes (Chapter 5 section 5.4.3), only a few Chlorobium viruses have been reported to 

date (Llorens–Marès et al, 2017; Berg et al, 2020). In this thesis, the viral and CRISPR 

spacer data from various Antarctic metagenomes were used to identify potential viruses 

of the Vestfold Hills Chlorobium (Chapters 3 and 5). At least three viral clusters and 

nine viral singletons representing potential Chlorobium viruses were identified. These 

Chlorobium viruses had a broad range of hosts, including not only Chlorobium but also 

some members of Gammaproteobacteria, Actinobacteria, Betaproteobacteria, 

Deltaproteobacteria, Firmicutes, Flavobacteriia, and Verrucomicrobia. The Vestfold 

Hills Chlorobium contained a number of genes associated with intracellular defence 

systems, such as a subtype I-E CRISPR-Cas system, type I and IV R-M systems, and a 

AbiE type IV T-A system involved in ABI mechanism for viral infection disruption 

(Chapter 5 section 5.4.3). However, it did not contain any known extracellular defences, 

such as the ones observed in subpopulations of Ace Lake Synechococcus, i.e., mutations 



318 
 

in membrane proteins that might allow for changes in cell surface structure and help the 

host cell to evade viruses that attach to specific cell surface receptors (Avrani et al, 

2011; Schmid et al, 2016; Tschitschko et al, 2015; Tschitschko et al, 2018; Zborowskya 

and Lindell, 2019). Together, the findings indicated that these Chlorobium viruses were 

probably generalist viruses that were neutralised by Chlorobium using intracellular 

defence systems, and that the Vestfold Hills Chlorobium did not have any specialist 

viruses.  

It has been speculated that viruses usually evolve into specialist viruses when they are 

exposed to a homogenous host population (e.g., composed of a single species) that does 

not change with time, whereas generalist viruses can evolve from viruses exposed to a 

heterogenous host population (e.g., composed of multiple species) that fluctuates with 

time (Elena et al, 2009). The adaptation of a specialist virus to a single host, which 

would allow it to effectively replicate in the specific host, can have fitness costs on its 

replication in other potential hosts, whereas a generalist virus usually incurs no fitness 

costs on replication in different hosts (Elena et al, 2009). In Ace Lake, there appeared to 

be no evidence of any Chlorobium-specific viruses, rather the potential Chlorobium 

viruses identified in the lake had a broad host range (Chapter 3 section 3.3.5.6). 

Although the Ace Lake Chlorobium population was homogenous (Chapter 5 section 

5.3.4.1), its relative abundance fluctuated with change in season — Nov 2013 summer 

(33%), Jul and Aug 2014 winter (<6%), Oct 2014 spring (<1%), and Dec 2014 (59%) 

(Chapter 3 section 3.3.4). Together, these ideas and observations might indicate that the 

Ace Lake Chlorobium lacks specialist viruses due to seasonal changes in its abundance. 

This lack of viral predation by Chlorobium-specific viruses, in turn, might be 

contributing toward the very high abundance of Chlorobium in the Interface of Ace 

Lake. Moreover, the drop in Chlorobium abundance in winter was inferred to be related 

to the low availability of light rather than viral predation. Therefore, this seasonal die-

off of Chlorobium population due to its reliance on light might be beneficial to 

Chlorobium, considering that it restricts the ability of specialist viruses to establish 

effective lifecycles in this host. 

The Vestfold Hills Chlorobium viruses were identified in aquatic systems from the 

Vestfold Hills and the Rauer Islands, indicating their wide-spread distribution in East 

Antarctica (Chapter 5 section 5.4.4). Interestingly, other than Ace Lake, Ellis Fjord, and 

Taynaya Bay, none of the other aquatic systems in which these viruses were identified, 
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namely Deep Lake, Club Lake, Organic Lake, and Rauer 2, 3, 5, 6, 11, and 13 lakes, 

contained Chlorobium (Bowman et al, 2000a; DeMaere et al, 2013; Yau et al, 2013; 

Tschitschko et al, 2018 unpublished data). However, these systems did contain some of 

the other potential hosts of the Vestfold Hills Chlorobium viruses, like the members of 

Gammaproteobacteria, Bacteroidetes, Actinobacteria, Betaproteobacteria, Firmicutes, 

Deltaproteobacteria, and Verrucomicrobia (Bowman et al, 2000a; DeMaere et al, 2013; 

Yau et al, 2013; Tschitschko et al, 2018 unpublished data). This highlighted the broad 

host range of these viruses, which could predate on bacteria other than Chlorobium. 

 

6.6 The importance of manual annotation in the era of high-throughput 

functional auto-annotation 

The precise annotation of genes is important to predict and understand their biological 

functions in the systems in which they are identified. With the advent of HTS 

techniques that allow for parallel sequencing of large datasets like metagenomes, it has 

become important to have annotation pipelines that can automatically assign functions 

to the genes identified in these sizeable datasets. For metagenomes and genomes, the 

structural annotation pipeline used by JGI’s IMG system includes the identification of 

protein coding genes, non-coding RNA genes, and CRISPR spacers and repeats, 

whereas their functional annotation pipeline includes assignment of COG numbers, KO 

terms, EC numbers, and Pfams to protein coding genes (Huntemann et al, 2015). The 

latest version (v5.0.0) of the functional annotation pipeline used by IMG system also 

includes assigning Cath-Funfam, SuperFamily, SMART, and TIGRFAMs to protein 

coding genes from metagenomes (https://img.jgi.doe.gov/docs/pipelineV5/). 

In this thesis, the manual annotation of the genes under study was performed to verify 

their functional assignment, for precise prediction of their biological roles (Chapters 3, 

4, and 5). For this purpose, the protein sequences of the genes were compared with the 

reference proteins in the UniProtKB/Swiss-Prot database, which is a manually 

annotated and curated database of protein sequences (Boutet et al, 2016). The protein 

matches were further explored to manually assess domain matches to ensure that the 

protein was capable of performing the predicted functions, and to check the matching 

reference protein for evidence at protein level (rather than inferred from sequence 

homology). For query proteins that had low identity or no matches in UniProtKB/Swiss-

https://img.jgi.doe.gov/docs/pipelineV5/


320 
 

Prot database were aligned against the UniProtKB or RefSeq databases, and the protein 

matches were manually analysed in search of domain matches. 

While the auto-annotations of the manually parsed genes were found to be mostly 

correct, the analysis did reveal some inaccurate annotations. For example, an Ace Lake 

Synechococcus gene auto-annotated as bisphosphoglycerate-independent 

phosphoglycerate mutase (AlkP superfamily) was manually annotated as a BREX gene 

coding for PglZ domain-containing protein. This reannotation was also supported by the 

presence of a brxL gene adjacent to this pglZ gene, since pglZ and brxL are usually 

found together and are known to be co-transcribed (Goldfarb et al, 2015). Similarly, a 

Synechococcus gene auto-annotated as hypothetical was manually annotated as brxC, a 

BREX system gene. This Synechococcus gene was identified in a defence gene island, 

with brxA and brxB upstream of its location and some T-A system genes and a pglX 

gene downstream of it (Chapter 4 Figure 4.5). In Ace Lake Chlorobium, a gene auto-

annotated as cobaltochelatase subunit N was manually reannotated as magnesium 

chelatase subunit H. This Chlorobium gene was located adjacent to two other 

magnesium chelatase genes coding for subunits D and I, which supported its 

reannotated function. A number of Chlorobium substrate transport genes were also 

manually reannotated based on their matches to reference proteins or specific domains 

on the reference proteins (Chapter 5 Table 5.10). Overall, the manual analysis and 

verification of gene functions were found to be essential for precise annotations of the 

genes and helped in confidently predicting their biological roles.  

 

6.7 Concluding remarks 

The use of metagenomes for the analyses described in this thesis have allowed for a 

thorough assessment of Ace Lake from various perspectives. The Cavlab pipeline used 

for the taxonomic, abundance, and functional analyses of Ace Lake, as well as Ellis 

Fjord and Taynaya Bay, can be used for similar evaluation of any metagenomes 

annotated by JGI’s IMG system. The pipeline can also be easily upgraded to improve 

existing methods or to include better methods or analyses, which would allow for 

improved metagenomic analysis. The study in this thesis has expanded our knowledge 

of the Ace Lake microbial community — the repertoire of abundant microbes in the 

lake, their niche adaptation and functional potential, the effects of change in season on 
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their abundances, the viral population in the lake, the phylotypes and ecotypes of the 

two key bacteria (Chlorobium and Synechococcus) in the lake, and the endemicity of 

Ace Lake Chlorobium to the Vestfold Hills. With the availability of a time-series of 

metagenomes and MAGs from Ace Lake, good opportunities exist to further advance 

the understanding of microbes in this lake system. For example, the ‘unassigned 

contigs’ determined from Ace Lake metagenomes need to be re-evaluated to identify 

their contributions to the lake diversity and function. The complete genomes of the 

viruses identified in Ace Lake and other Antarctic metagenomes (complete phage 

catalogue; Chapter 3 section 3.2.6) would be very useful in assessing the overall viral 

population and function in the Antarctic systems. The data in the Antarctic virus 

catalogue and spacer database (Chapter 3 section 3.2.6) can be used to assess virus-host 

interactions in Antarctic systems. With the use of C. phaeovibrioides strain genomes 

(NCBI) and MAGs (IMG) isolated/generated from various stratified lakes from across 

the globe, the endemicity of Ace Lake Chlorobium to the Vestfold Hills can be 

comprehensively explored. 
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Table A1. List of Antarctic metagenomes. The Megahit-assembled metagenomes were used 

for testing various Cavlab pipeline and arCOG pipeline methods (Chapter 2). The Spades-

assembled metagenomes were used for in-depth analysis of Ace Lake (Chapter 3), analysis of 

genomic variation in Ace Lake Synechococcus (Chapter 4), and analysis of genomic variation in 

Chlorobium from Ace Lake, Ellis Fjord, and Taynaya Bay (Chapter 5). The blue-highlighted 

metagenomes from Ace Lake and Deep Lake are Spades-assembled metagenomes that were 

used for comparison between software/methods for taxonomic classification and abundance 

estimation (Chapter 2 Figure 2.7; Table 2.5; section 2.3.1.4). The Ace Lake depths were named 

in Chapter 3 — Upper 1: 0 m; Upper 2: 5 m; Upper 3: 11.5–13 m; Interface: 12.7–14.5 m; 

Lower 1: 14–16 m; Lower 2: 18–19 m; Lower 3: 23–24 m, and this nomenclature was used in 

Chapters 4 and 5 as well. *Assembled metagenome size in the table refers to the total length of 

all contigs assembled from a metagenome. † The Taynaya Bay Spades-assembled metagenomes 

were assembled from QC filtered reads, with read corrections using BFC software as well as 

without read corrections (indicated by nbfc) (Chapter 5 section 5.2.1). Filter fractions: 3, 3–20 

μm; 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm; 0.22, 0.22–20 μm. 

 Sample collection date 

(DDMMYYYY); Depth; 

Filter fraction 

IMG Genome 

IDs 

Metagenome 

filtered reads 

(bp) 

Assembled 

metagenome 

size (bp)* 

Total protein-

coding genes 

Megahit-assembled metagenomes 

Ace Lake 

19/11/2008; 5 m; 3 μm 3300005913 10,168,447,444 609,947,171 1,400,648 

19/11/2008; 5 m; 0.8 μm 3300005912 8,608,322,293 548,632,179 1,169,129 

19/11/2008; 5 m; 0.1 μm 3300007074 9,326,252,194 300,659,399 752,354 

21/11/2008; 11.8 m; 3 μm 3300005914 9,958,328,840 523,650,583 1,207,764 

21/11/2008; 11.8 m; 0.8 μm 3300005933 10,372,524,015 613,006,575 1,355,170 

21/11/2008; 11.8 m; 0.1 μm 3300005931 8,652,779,583 332,185,299 818,007 

21/11/2008; 12.8 m; 3 μm 3300005911 7,377,945,147 290,605,516 645,253 

21/11/2008; 12.8 m; 0.8 μm 3300005909 7,969,400,898 186,558,379 427,573 

21/11/2008; 12.8 m; 0.1 μm 3300005910 15,030,492,867 167,053,133 453,549 

21/11/2008; 14.1 m; 3 μm 3300005919 8,878,877,148 779,524,746 1,963,156 

21/11/2008; 14.1 m; 0.8 μm 3300005917 9,024,438,900 713,249,915 1,804,870 

21/11/2008; 14.1 m; 0.1 μm 3300005918 7,433,358,222 769,682,061 2,122,266 

21/11/2008; 18 m; 3 μm 3300005916 9,701,518,914 761,641,541 1,746,645 

21/11/2008; 18 m; 0.8 μm 3300005932 10,550,636,481 565,206,648 1,301,029 

21/11/2008; 18 m; 0.1 μm 3300005915 8,489,799,212 702,459,535 1,734,687 

23/11/2008; 23 m; 3 μm 3300005939 8,926,498,848 835,219,590 2,212,602 
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23/11/2008; 23 m; 0.8 μm 3300005936 8,835,913,368 777,839,517 2,005,345 

23/11/2008; 23 m; 0.1 μm 3300005935 8,391,237,271 855,455,100 2,375,770 

Deep Lake 

1/12/2006; 0 m; 3 μm 3300005928 10,602,162,939 127,444,550 303,787 

1/12/2006; 0 m; 0.8 μm 3300005930 9,873,818,475 188,685,715 442,756 

1/12/2006; 0 m; 0.1 μm 3300005929 4,982,821,567 119,306,653 312,415 

1/12/2006; 0 m; <0.1 μm (1) 3300012127 4,699,521,915 110,118,418 217,941 

1/12/2006; 0 m; <0.1 μm (2) 3300012027 3,227,977,575 79,462,683 155,026 

30/11/2008; 0 m; 3 μm 3300012262 3,687,498,539 86,277,388 165,177 

30/11/2008; 0 m; 0.8 μm 3300011181 4,100,749,829 101,045,660 194,396 

30/11/2008; 5 m; 0.1 μm 2084038019 354,069,196 52,160,100 124,915 

30/11/2008; 13 m; 0.1 μm 2100351014 432,228,299 80,245,247 199,955 

30/11/2008; 24 m; 3 μm 3300005268 347,753,163 46,756,487 88,928 

30/11/2008; 24 m; 0.8 μm 3300005273 250,425,457 60,099,211 129,645 

30/11/2008; 24 m; 0.1 μm 2084038011 400,299,239 59,385,153 140,400 

30/11/2008; 36 m; 3 + 0.8 + 

0.1 μm pooled 
2140918027 1,070,926,568 190,563,105 472,623 

30/11/2008; 5 + 13 + 24 m 

pooled; <0.1 μm 
3300012265 3,882,704,783 102,592,878 199,607 

13/12/2013; 0 m; 3 μm 3300012121 4,982,361,265 100,145,597 198,025 

13/12/2013; 0 m; 0.8 μm 3300012145 5,072,921,653 161,744,775 322,931 

13/12/2013; 0 m; 0.1 μm 3300012104 3,566,648,595 67,783,456 142,474 

11/2/2014; 0 m; 3 μm 3300012107 4,555,857,832 76,963,716 150,151 

11/2/2014; 0 m; 0.8 μm 3300011169 3,623,989,873 56,174,165 109,777 

11/2/2014; 0 m; 0.1 μm 3300011170 2,958,540,831 53,500,386 121,610 

12/6/2014; 0 m; 3 μm 3300012025 3,855,296,102 73,641,348 132,179 

12/6/2014; 0 m; 0.8 μm 3300012029 3,868,167,607 100,880,304 193,226 

12/6/2014; 0 m; 0.1 μm 3300012250 2,754,110,568 60,323,580 132,580 

25/8/2014; 0 m; 3 μm 3300011177 4,243,734,110 80,910,744 148,663 

25/8/2014; 0 m; 0.8 μm 3300012106 4,342,913,643 83,319,071 146,854 

25/8/2014; 0 m; 0.1 μm 3300012026 3,342,585,644 65,743,123 139,317 

24/11/2014; 0 m; 3 μm 3300012111 4,432,369,610 82,492,691 156,358 

24/11/2014; 0 m; 0.8 μm 3300012103 4,008,007,557 74,612,275 138,596 

24/11/2014; 0 m; 0.1 μm 3300011179 3,696,124,203 64,342,469 121,108 

24/11/2014; 0 m; <0.1 μm 3300012115 3,544,797,704 84,892,439 169,049 
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18/12/2014; 0 m; 3 μm 3300011171 4,042,438,499 70,990,421 131,521 

18/12/2014; 0 m; 0.8 μm 3300012116 4,913,028,941 88,575,811 175,581 

18/12/2014; 0 m; 0.1 μm 3300012128 4,381,365,470 107,097,935 226,093 

18/12/2014; 0 m; <0.1 μm 3300012110 3,925,090,941 78,340,986 155,340 

19/1/2015; 0 m; 3 μm 3300012109 4,088,535,832 76,942,819 150,691 

19/1/2015; 0 m; 0.8 μm 3300012028 4,177,959,071 84,152,334 167,030 

19/1/2015; 0 m; <0.1 μm 3300012118 4,427,446,802 95,235,823 191,329 

Club Lake 

26/11/2014; 0 m; 3 μm 3300012108 4,870,608,443 83,416,154 150,162 

26/11/2014; 0 m; 0.8 μm 3300012261 3,341,521,330 71,167,471 128,680 

26/11/2014; 0 m; 0.1 μm 3300012263 3,759,312,452 86,361,097 176,426 

26/11/2014; 0 m; <0.1 μm 3300012114 4,118,186,192 84,310,686 168,029 

Organic Lake 

24/12/2006; 0 m; 3 μm 3300017901 191,828,606 43,859,466 87,032 

24/12/2006; 0 m; 0.8 μm 3300017457 172,712,662 11,287,428 22,692 

24/12/2006; 0 m; 0.1 μm 3300017534 169,560,274 8,636,023 19,826 

Rauer Lake 1 

11/1/2015; 0 m; 3 μm 3300012272 3,744,837,536 317,629,528 602,146 

11/1/2015; 0 m; 0.8 μm 3300011188 4,121,482,920 339,573,373 631,444 

11/1/2015; 0 m; 0.1 μm 3300012147 5,060,314,613 153,987,876 335,745 

Rauer Lake 3 

11/1/2015; 0 m; 3 μm 3300012033 4,113,662,935 282,086,351 502,534 

11/1/2015; 0 m; 0.8 μm 3300012268 2,989,166,916 171,063,290 315,976 

11/1/2015; 0 m; 0.1 μm 3300012267 3,678,764,556 157,623,777 314,905 

Rauer Lake 6 

11/1/2015; 0 m; 3 μm 3300012182 4,850,916,256 338,478,872 630,884 

11/1/2015; 0 m; 0.8 μm 3300012178 4,380,578,636 319,376,726 576,497 

11/1/2015; 0 m; 0.1 μm 3300011189 4,273,562,577 329,351,461 632,272 

Rauer Lake 11 

11/1/2015; 0 m; 3 μm 3300012270 4,491,510,058 269,022,148 521,320 

Rauer Lake 13 

11/1/2015; 0 m; 3 μm 3300011187 3,876,060,564 244,559,929 494,693 

11/1/2015; 0 m; 0.8 μm 3300011185 3,632,173,890 201,429,522 385,466 

11/1/2015; 0 m; 0.1 μm 3300012170 4,252,101,604 251,362,283 492,062 

Spades-assembled metagenomes 
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Ace Lake 

20/12/2006; 5 m; 3 μm 3300028202 65,944,407 9,717,163 18,015 

20/12/2006; 5 m; 0.8 μm 3300028221 188,760,566 27,952,213 53,952 

20/12/2006; 5 m; 0.1 μm 3300028228 514,425,517 33,518,956 64,687 

20/12/2006; 11.5 m; 3 μm 3300028205 152,109,562 22,138,314 39,285 

20/12/2006; 11.5 m; 0.8 μm 3300028289 194,556,802 16,906,227 32,171 

20/12/2006; 11.5 m; 0.1 μm 3300028222 501,692,433 29,126,306 60,086 

20/12/2006; 12.7 m; 3 μm 3300028203 83,214,739 10,703,483 20,757 

20/12/2006; 12.7 m; 0.8 μm 3300028201 208,538,507 11,925,309 23,740 

20/12/2006; 12.7 m; 0.1 μm 3300028204 240,290,391 6,971,450 13,087 

20/12/2006; 14 m; 3 μm 3300028200 118,655,678 15,468,656 31,907 

20/12/2006; 14 m; 0.8 μm 3300028302 165,208,287 27,504,336 56,468 

20/12/2006; 14 m; 0.1 μm 3300028219 169,703,894 23,317,396 54,216 

20/12/2006; 18 m; 3 μm 3300028199 114,460,928 12,486,049 26,210 

20/12/2006; 18 m; 0.8 μm 3300028227 214,177,665 34,270,862 71,009 

20/12/2006; 18 m; 0.1 μm 3300028216 145,906,502 15,860,072 40,100 

20/12/2006; 23 m; 3 μm 3300028292 105,388,116 11,819,279 24,794 

20/12/2006; 23 m; 0.8 μm 3300028226 231,162,768 33,899,871 71,413 

20/12/2006; 23 m; 0.1 μm 3300028296 292,220,289 26,024,886 62,208 

19/11/2008; 5 m; 3 μm 3300025601 10,168,447,444 374,845,559 637,417 

19/11/2008; 5 m; 0.8 μm 3300025513 8,608,322,293 358,461,005 555,436 

19/11/2008; 5 m; 0.1 μm 3300025425 9,326,252,194 190,824,688 354,920 

21/11/2008; 11.8 m; 3 μm 3300025502 9,958,328,840 309,922,874 529,432 

21/11/2008; 11.8 m; 0.8 μm 3300025603 10,372,524,015 387,727,814 649,215 

21/11/2008; 11.8 m; 0.1 μm 3300025438 8,652,779,583 208,281,887 381,283 

21/11/2008; 12.8 m; 3 μm 3300025433 7,377,945,147 191,332,554 330,516 

21/11/2008; 12.8 m; 0.8 μm 3300025380 7,969,400,898 118,925,863 224,047 

21/11/2008; 12.8 m; 0.1 μm 3300025362 15,030,492,867 90,472,821 190,960 

21/11/2008; 14.1 m; 3 μm 3300025649 8,878,877,148 403,510,882 775,430 

21/11/2008; 14.1 m; 0.8 μm 3300025628 9,024,438,900 379,168,081 728,210 

21/11/2008; 14.1 m; 0.1 μm 3300025697 7,433,358,222 401,517,242 923,143 

21/11/2008; 18 m; 3 μm 3300025642 9,701,518,914 444,311,389 775,322 

21/11/2008; 18 m; 0.8 μm 3300025586 10,550,636,481 338,938,472 589,716 

21/11/2008; 18 m; 0.1 μm 3300025669 8,489,799,212 415,535,816 832,930 

23/11/2008; 23 m; 3 μm 3300025698 8,926,498,848 428,043,704 894,948 
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23/11/2008; 23 m; 0.8 μm 3300025661 8,835,913,368 414,688,901 822,281 

23/11/2008; 23 m; 0.1 μm 3300025736 8,391,237,271 477,169,979 1,113,701 

24/11/2013; 5 m; 3 μm 3300022867 4,225,013,370 144,719,058 289,211 

24/11/2013; 5 m; 0.8 μm 3300023243 4,462,325,958 205,826,389 369,592 

24/11/2013; 5 m; 0.1 μm 3300022843 3,805,948,564 100,883,143 212,850 

25/11/2013; 12.5 m; 3 μm 3300022842 4,534,814,707 163,226,887 302,245 

25/11/2013; 12.5 m; 0.8 μm 3300022847 4,208,778,962 155,718,155 244,054 

25/11/2013; 12.5 m; 0.1 μm 3300023235 4,703,733,094 143,622,133 282,929 

26/11/2013; 13.5 m; 3 μm 3300022882 4,632,992,773 197,528,912 370,963 

26/11/2013; 13.5 m; 0.8 μm 3300023244 4,017,414,066 152,968,368 281,280 

26/11/2013; 13.5 m; 0.1 μm 3300022871 4,289,343,500 153,918,125 304,781 

26/11/2013; 15 m; 3 μm 3300023234 2,830,397,582 132,062,988 251,704 

26/11/2013; 15 m; 0.8 μm 3300022854 4,179,971,653 189,382,169 349,194 

26/11/2013; 15 m; 0.1 μm 3300023435 3,982,384,098 204,889,614 458,784 

26/11/2013; 19 m; 3 μm 3300023298 3,861,886,442 173,692,067 351,338 

26/11/2013; 19 m; 0.8 μm 3300023262 5,356,530,473 256,708,329 493,455 

26/11/2013; 19 m; 0.1 μm 3300023297 4,526,133,618 236,042,504 568,485 

27/11/2013; 24 m; 3 μm 3300022828 2,032,322,733 65,695,823 149,469 

27/11/2013; 24 m; 0.8 μm 3300022887 4,489,480,975 197,136,157 423,504 

27/11/2013; 24 m; 0.1 μm 3300031227 21,163,513,792 1,050,144,399 2,413,590 

17/12/2014; 0 m; 3 μm 3300022841 3,505,709,238 109,878,484 205,134 

17/12/2014; 0 m; 0.8 μm 3300022833 3,007,301,388 112,095,376 172,874 

17/12/2014; 0 m; 0.1 μm 3300022822 3,926,440,146 72,848,168 141,301 

15/02/2014; 0 m; 3 μm 3300022827 4,445,471,441 150,261,289 262,344 

15/02/2014; 0 m; 0.8 μm 3300023054 4,101,153,533 186,668,359 262,345 

15/02/2014; 0 m; 0.1 μm 3300022839 4,105,154,760 94,401,441 195,630 

2/07/2014; 5 m; 3 μm 3300023237 4,712,346,032 179,194,270 291,313 

2/07/2014; 5 m; 0.8 μm 3300022866 4,450,973,256 227,490,836 403,969 

2/07/2014; 5 m; 0.1 μm 3300022853 4,388,723,345 128,153,264 250,568 

3/07/2014; 12.5 m; 3 μm 3300022857 3,349,508,936 162,523,775 274,815 

3/07/2014; 12.5 m; 0.8 μm 3300022836 3,812,123,689 173,061,625 297,508 

3/07/2014; 12.5 m; 0.1 μm 3300023245 4,389,831,560 141,659,134 285,227 

3/07/2014; 13.5 m; 3 μm 3300022834 3,025,335,676 150,334,734 279,053 

3/07/2014; 13.5 m; 0.8 μm 3300023241 3,917,460,255 176,108,874 316,827 

3/07/2014; 13.5 m; 0.1 μm 3300023257 4,754,144,028 246,566,898 516,984 
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20/08/2014; 5 m; 3 μm 3300023236 3,535,315,349 145,971,573 260,745 

20/08/2014; 5 m; 0.8 μm 3300023239 3,675,443,392 161,858,999 300,236 

20/08/2014; 5 m; 0.1 μm 3300023229 3,581,244,138 112,903,843 219,283 

21/08/2014; 13 m; 3 μm 3300022885 4,805,699,185 232,800,896 422,661 

21/08/2014; 13 m; 0.8 μm 3300022845 3,046,800,658 127,278,965 240,608 

21/08/2014; 13 m; 0.1 μm 3300023296 4,126,784,684 163,100,043 305,555 

21/08/2014; 14.5 m; 3 μm 3300022864 4,208,293,249 203,541,480 379,585 

21/08/2014; 14.5 m; 0.8 μm 3300024048 4,438,778,032 185,710,747 327,952 

21/08/2014; 14.5 m; 0.1 μm 3300022890 3,761,803,592 196,439,047 427,804 

20/10/2014; 5 m; 3 μm 3300022865 3,718,130,970 159,691,784 283,171 

20/10/2014; 5 m; 0.8 μm 3300022825 3,500,964,757 137,992,510 261,144 

20/10/2014; 5 m; 0.1 μm 3300023294 4,051,255,334 135,330,843 259,473 

20/10/2014; 12 m; 3 μm 3300022848 3,461,486,260 157,234,838 316,382 

20/10/2014; 12 m; 0.8 μm 3300023238 3,185,298,810 140,908,866 262,229 

20/10/2014; 12 m; 0.1 μm 3300023240 3,685,976,302 125,847,023 262,910 

21/10/2014; 13 m; 3 μm 3300022856 3,793,702,914 185,885,369 366,842 

21/10/2014; 13 m; 0.8 μm 3300022859 3,615,901,126 148,572,713 281,988 

21/10/2014; 13 m; 0.1 μm 3300022821 3,169,765,298 119,795,036 247,086 

21/10/2014; 16 m; 3 μm 3300022855 2,823,639,110 137,224,766 262,841 

21/10/2014; 16 m; 0.8 μm 3300023249 3,472,734,434 161,447,324 294,441 

21/10/2014; 16 m; 0.1 μm 3300022858 3,214,387,734 162,887,351 368,840 

21/10/2014; 19 m; 3 μm 3300023434 3,699,374,508 165,008,949 330,503 

21/10/2014; 19 m; 0.8 μm 3300022838 3,195,707,102 158,062,637 299,108 

21/10/2014; 19 m; 0.1 μm 3300023246 3,202,188,919 153,939,570 372,354 

21/10/2014; 24 m; 3 μm 3300023251 3,707,575,608 149,036,067 306,831 

21/10/2014; 24 m; 0.8 μm 3300023295 4,015,996,994 166,137,713 367,296 

21/10/2014; 24 m; 0.1 μm 3300022874 3,523,521,042 181,923,112 450,383 

4/12/2014; 5 m; 3 μm 3300023501 3,558,906,481 126,636,802 250,738 

4/12/2014; 5 m; 0.8 μm 3300022844 3,528,199,602 163,618,968 306,086 

4/12/2014; 5 m; 0.1 μm 3300023293 3,287,944,538 81,894,154 178,097 

4/12/2014; 12 m; 3 μm 3300023231 3,372,774,996 116,441,688 240,321 

4/12/2014; 12 m; 0.8 μm 3300023227 3,766,666,990 103,396,553 207,492 

4/12/2014; 12 m; 0.1 μm 3300022851 3,582,064,538 119,299,278 248,470 

4/12/2014; 13.4 m; 3 μm 3300031697 14,149,086,706 400,324,806 718,959 

4/12/2014; 13.4 m; 0.8 μm 3300022826 2,989,229,242 78,299,135 145,800 
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4/12/2014; 13.4 m; 0.1 μm 3300023292 3,878,932,484 85,111,111 181,733 

4/12/2014; 14 m; 3 μm 3300023253 3,420,681,173 167,955,693 307,470 

4/12/2014; 14 m; 0.8 μm 3300023233 3,250,064,514 144,877,168 252,928 

4/12/2014; 14 m; 0.1 μm 3300022868 3,895,509,417 195,190,896 414,173 

3/12/2014; 19 m; 3 μm 3300022860 4,079,964,767 181,977,179 369,802 

3/12/2014; 19 m; 0.8 μm 3300022846 3,983,828,178 165,102,958 309,999 

3/12/2014; 19 m; 0.1 μm 3300023061 3,209,269,596 152,256,002 384,107 

3/12/2014; 24 m; 3 μm 3300022884 4,021,442,672 179,261,304 381,611 

3/12/2014; 24 m; 0.8 μm 3300023299 5,006,350,890 217,304,898 440,798 

3/12/2014; 24 m; 0.1 μm 3300023256 3,621,396,862 179,844,837 445,634 

8/01/2015; 0 m; 3 μm 3300022829 3,645,848,765 78,301,103 152,629 

8/01/2015; 0 m; 0.8 μm 3300022832 3,757,499,746 136,667,441 270,106 

8/01/2015; 0 m; 0.1 μm 3300023242 3,407,544,904 121,628,756 269,881 

27/01/2015; 0 m; 3 μm 3300023230 3,829,689,694 116,684,467 219,301 

27/01/2015; 0 m; 0.8 μm 3300023429 3,298,326,784 165,138,532 262,012 

27/01/2015; 0 m; 0.1 μm 3300022837 3,616,258,196 93,765,159 194,928 

Deep Lake 

1/12/2006; 0 m; 0.1 μm 3300025352 4,982,821,567 68,214,218 125,418 

24/11/2014; 0 m; <0.1 μm 3300028353 3,544,797,704 50,177,156 82,167 

Ellis Fjord 

9/10/2014; 5 m; 3 μm 3300031658 22,583,676,006 512,812,684 1,103,847 

9/10/2014; 5 m; 0.8 μm 3300031629 17,208,422,590 806,100,132 1,620,667 

9/10/2014; 5 m; 0.1 μm 3300031659 22,404,979,271 880,035,495 1,841,661 

9/10/2014; 45 m; 3 μm 3300031631 16,642,938,015 430,745,788 939,013 

9/10/2014; 45 m; 0.8 μm 3300031741 18,009,360,230 575,028,230 1,095,421 

9/10/2014; 45 m; 0.1 μm 3300031603 13,346,656,379 637,704,446 1,320,380 

8/10/2014; 60 m; 3 μm 3300031645 19,804,223,504 908,736,180 1,987,014 

8/10/2014; 60 m; 0.8 μm 3300031657 15,894,964,153 433,198,916 809,885 

8/10/2014; 60 m; 0.1 μm 3300031601 17,233,115,763 295,045,072 509,553 

2/11/2014; 18 m; 3 μm 3300031602 18,753,292,708 211,651,588 361,601 

2/11/2014; 18 m; 0.8 μm 3300031660 15,932,943,833 734,660,849 1,350,693 

2/11/2014; 18 m; 0.1 μm 3300031696 16,951,600,293 508,273,244 909,436 

Taynaya Bay† 

28/11/2014; 5 m; 0.22 μm 3300038912 11,415,818,068 256,201,821 474,896 
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28/11/2014; 5 m; 0.22 μm-

nbfc 
3300038786 

675,093,048 1,399,527 

28/11/2014; 11 m; 0.22 μm 3300039187 

12,286,944,772 

439,736,431 928,219 

28/11/2014; 11 m; 0.22 μm-

nbfc 
3300039186 1,039,896,900 2,382,412 
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Table A2. List of Synechococcus and Chlorobium MAGs from stratified systems in the 

Vestfold Hills. The table includes description of Chlorobium MAGs from Ace Lake, Ellis 

Fjord, and Taynaya Bay as well Synechococcus MAGs from Ace Lake. A The high and medium 

quality MAGs were generated by JGI’s IMG system from the Antarctic metagenomes (Table 

A1) mentioned in the first column. B The high-quality bins are highlighted with a green 

background in the column. C The values highlighted in red indicate that the bin contamination 

was >1%. The bin contamination of all Chlorobium MAGs was <3% and that of Synechococcus 

MAGs was ≤4%. The IMG MAGs were used for analysis of Synechococcus in Chapter 4 and 

Chlorobium in Chapter 5. Filter fractions: 3, 3–20 μm; 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm; 0.22, 

0.22–20 μm. 

MetagenomeA IMG Bin IDsB 

Bin 

completeness 

(%)C 

Total base 

pair count 

(bp) 

Gene 

count 

Scaffold 

count 

Ace Lake Chlorobium MAGs 

20/12/2006; 12.7 m; 3 μm 3300028203_1 98 1,799,622 1968 32 

20/12/2006; 12.7 m; 0.8 μm 3300028201_1 98 1,846,253 1956 17 

20/12/2006; 14 m; 0.8 μm 3300028302_2 95 1,719,822 2066 58 

20/12/2006; 18 m; 0.8 μm 3300028227_2 68 1,219,845 1799 195 

21/11/2008; 12.8 m; 3 μm 3300025433_15 87 1,561,142 1554 27 

21/11/2008; 12.8 m; 0.8 μm 3300025380_8 60 915,115 905 13 

21/11/2008; 12.8 m; 0.1 μm 3300025362_8 66 1,027,280 1021 10 

21/11/2008; 14.1 m; 3 μm 3300025649_20 99 1,717,607 1718 37 

21/11/2008; 14.1 m; 0.8 μm 3300025628_24 72 1,339,744 1315 21 

21/11/2008; 14.1 m; 0.1 μm 3300025697_16 54 946,925 1090 184 

21/11/2008; 18 m; 3 μm 3300025642_35 64 1,147,570 1132 20 

21/11/2008; 18 m; 0.8 μm 3300025586_24 99 1,760,585 1740 23 

21/11/2008; 18 m; 0.1 μm 3300025669_14 99 1,772,585 1750 20 

23/11/2008; 23 m; 3 μm 3300025698_17 99 1,750,727 1739 22 

23/11/2008; 23 m; 0.8 μm 3300025661_20 72 1,347,288 1345 27 

26/11/2013; 13.5 m; 3 μm 3300022882_7 99 1,780,829 1765 28 

26/11/2013; 13.5 m; 0.8 μm 3300023244_8 99 1,784,037 1767 28 

26/11/2013; 13.5 m; 0.1 μm 3300022871_5 99 1,792,085 1781 27 

26/11/2013; 15 m; 3 μm 3300023234_7 97 1,681,376 1733 109 

26/11/2013; 15 m; 0.8 μm 3300022854_6 99 1,793,372 1777 23 

26/11/2013; 15 m; 0.1 μm 3300023435_5 99 1,746,873 1742 27 

26/11/2013; 19 m; 0.8 μm 3300023262_7 99 1,741,261 1742 34 
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27/11/2013; 24 m; 0.8 μm 3300022887_7 97 1,660,438 1732 141 

27/11/2013; 24 m; 0.1 μm 3300031227_17 95 1,650,130 1765 134 

3/07/2014; 13.5 m; 3 μm 3300022834_6 99 1,745,898 1735 26 

3/07/2014; 13.5 m; 0.8 μm 3300023241_6 99 1,784,741 1776 30 

3/07/2014; 13.5 m; 0.1 μm 3300023257_7 99 1,789,942 1779 23 

21/08/2014; 14.5 m; 3 μm 3300022864_8 99 1,748,321 1738 23 

21/08/2014; 14.5 m; 0.8 μm 3300024048_8 99 1,784,669 1772 24 

21/08/2014; 14.5 m; 0.1 μm 3300022890_5 99 1,753,999 1747 19 

21/10/2014; 13 m; 0.8 μm 3300022859_8 92 1,620,807 1696 120 

21/10/2014; 13 m; 0.1 μm 3300022821_10 67 1,219,235 1436 207 

21/10/2014; 16 m; 0.8 μm 3300023249_8 99 1,737,575 1754 52 

21/10/2014; 19 m; 0.8 μm 3300022838_8 89 1,431,222 1555 180 

21/10/2014; 24 m; 0.8 μm 3300023295_7 61 1,100,512 1254 200 

4/12/2014; 12 m; 3 μm 3300023231_5 99 1,783,647 1765 23 

4/12/2014; 12 m; 0.8 μm 3300023227_6 99 1,783,085 1763 26 

4/12/2014; 12 m; 0.1 μm 3300022851_4 99 1,796,868 1770 19 

4/12/2014; 13.4 m; 3 μm 3300031697_14 99 1,807,042 1791 33 

4/12/2014; 13.4 m; 0.8 μm 3300022826_4 99 1,801,610 1778 31 

4/12/2014; 13.4 m; 0.1 μm 3300023292_2 99 1,785,555 1760 28 

4/12/2014; 14 m; 3 μm 3300023253_8 99 1,797,888 1783 22 

4/12/2014; 14 m; 0.8 μm 3300023233_7 99 1,811,803 1791 24 

4/12/2014; 14 m; 0.1 μm 3300022868_7 99 1,777,496 1761 26 

3/12/2014; 19 m; 3 μm 3300022860_8 98 1,773,797 1750 22 

3/12/2014; 19 m; 0.8 μm 3300022846_6 99 1,797,570 1772 29 

3/12/2014; 19 m; 0.1 μm 3300023061_2 99 1,812,610 1797 27 

3/12/2014; 24 m; 3 μm 3300022884_9 99 1,735,816 1755 69 

3/12/2014; 24 m; 0.8 μm 3300023299_6 99 1,795,237 1771 22 

3/12/2014; 24 m; 0.1 μm 3300023256_3 99 1,797,328 1785 22 

Ellis Fjord Chlorobium MAGs 

9/10/2014; 5 m; 0.1 μm 3300031659_20 63 890,084 1006 170 

9/10/2014; 45 m; 3 μm 3300031631_9 99 1,836,564 1807 32 

9/10/2014; 45 m; 0.8 μm 3300031741_10 99 1,820,609 1801 31 

9/10/2014; 45 m; 0.1 μm 3300031603_6 99 1,820,941 1799 33 

8/10/2014; 60 m; 3 μm 3300031645_24 89 1,450,081 1532 187 

8/10/2014; 60 m; 0.8 μm 3300031657_13 99 1,753,701 1756 34 
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8/10/2014; 60 m; 0.1 μm 3300031601_7 99 1,770,724 1775 46 

Taynaya Bay Chlorobium MAGs 

28/11/2014; 5 m; 0.22 μm 3300038912_10 99 1,808,383 1834 57 

28/11/2014; 5 m; 0.22 μm-

nbfc 

3300038786_10 
99 1,805,285 1822 53 

28/11/2014; 11 m; 0.22 μm 3300039187_7 99 1,822,415 1829 24 

28/11/2014; 11 m; 0.22 μm-

nbfc 

3300039186_9 
99 1,823,916 1829 22 

Ace Lake Synechococcus MAGs 

20/12/2006; 5 m; 0.8 μm 3300028221_1 61 1,805,389 2389 223 

20/12/2006; 11.5 m; 0.8 μm 3300028289_1 83 2,293,100 2808 188 

19/11/2008; 5 m; 3 μm 3300025601_8 96 2,478,229 2673 42 

19/11/2008; 5 m; 0.8 μm 3300025513_11 98 2,766,682 3058 80 

21/11/2008; 11.8 m; 3 μm 3300025502_14 73 1,976,130 2157 52 

21/11/2008; 11.8 m; 0.8 μm 3300025603_17 98 2,596,736 2878 76 

21/11/2008; 12.8 m; 3 μm 3300025433_11 97 2,429,787 2704 110 

21/11/2008; 12.8 m; 0.8 μm 3300025380_5 84 2,075,048 2435 270 

21/11/2008; 14.1 m; 3 μm 3300025649_16 75 2,079,529 2260 72 

21/11/2008; 14.1 m; 0.8 μm 3300025628_11 99 2,754,716 3055 93 

21/11/2008; 18 m; 3 μm 3300025642_19 93 2,483,571 2756 105 

21/11/2008; 18 m; 0.8 μm 3300025586_14 98 2,876,270 3212 142 

23/11/2008; 23 m; 3 μm 3300025698_9 99 2,619,579 2928 81 

23/11/2008; 23 m; 0.8 μm 3300025661_8 99 2,786,666 3096 98 

25/11/2013; 12.5 m; 3 μm 3300022842_9 99 2,748,300 3057 95 

25/11/2013; 12.5 m; 0.8 μm 3300022847_9 96 2,718,101 3040 122 

26/11/2013; 13.5 m; 3 μm 3300022882_6 92 2,440,655 2779 190 

26/11/2013; 13.5 m; 0.8 μm 3300023244_5 95 2,479,789 2794 142 

26/11/2013; 15 m; 3 μm 3300023234_6 98 2,654,330 2998 123 

26/11/2013; 15 m; 0.8 μm 3300022854_5 97 2,713,278 3009 106 

26/11/2013; 19 m; 3 μm 3300023298_7 98 2,639,373 2963 121 

26/11/2013; 19 m; 0.8 μm 3300023262_5 99 2,777,510 3106 103 

27/11/2013; 24 m; 3 μm 3300022828_1 96 2,496,541 2815 149 

27/11/2013; 24 m; 0.8 μm 3300022887_4 99 2,799,985 3135 91 

2/07/2014; 5 m; 3 μm 3300023237_10 99.7 2,644,322 2929 64 

2/07/2014; 5 m; 0.8 μm 3300022866_9 99.6 2,691,375 2964 59 
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3/07/2014; 12.5 m; 3 μm 3300022857_10 99.7 2,711,173 3001 60 

3/07/2014; 12.5 m; 0.8 μm 3300022836_9 99.7 2,843,718 3156 80 

3/07/2014; 13.5 m; 3 μm 3300022834_4 97 2,584,503 2887 129 

3/07/2014; 13.5 m; 0.8 μm 3300023241_5 98 2,875,681 3230 145 

20/08/2014; 5 m; 3 μm 3300023236_6 98 2,574,224 2895 136 

20/08/2014; 5 m; 0.8 μm 3300023239_8 99.7 2,768,073 3045 72 

21/08/2014; 13 m; 3 μm 3300022885_12 99 2,908,751 3230 75 

21/08/2014; 13 m; 0.8 μm 3300022845_7 97 3,008,323 3375 144 

21/08/2014; 14.5 m; 3 μm 3300022864_6 95 2,565,433 2897 144 

21/08/2014; 14.5 m; 0.8 μm 3300024048_5 97 2,944,912 3295 160 

20/10/2014; 5 m; 3 μm 3300022865_7 99.7 2,862,630 3153 74 

20/10/2014; 5 m; 0.8 μm 3300022825_3 99.7 3,001,000 3323 93 

20/10/2014; 12 m; 3 μm 3300022848_5 99.7 2,874,195 3194 79 

20/10/2014; 12 m; 0.8 μm 3300023238_7 99 3,035,627 3363 104 

21/10/2014; 13 m; 3 μm 3300022856_3 99 2,900,943 3236 98 

21/10/2014; 13 m; 0.8 μm 3300022859_7 98 2,853,405 3167 133 

21/10/2014; 16 m; 3 μm 3300022855_5 96 2,559,259 2865 132 

21/10/2014; 16 m; 0.8 μm 3300023249_7 99 2,784,281 3124 118 

21/10/2014; 19 m; 3 μm 3300023434_6 98 2,654,154 2971 112 

21/10/2014; 19 m; 0.8 μm 3300022838_5 95 2,547,267 2867 150 

21/10/2014; 24 m; 0.8 μm 3300023295_4 98 2,663,178 3017 138 

4/12/2014; 5 m; 3 μm 3300023501_3 99 2,823,490 3136 87 

4/12/2014; 5 m; 0.8 μm 3300022844_3 99.7 2,856,174 3163 68 

4/12/2014; 12 m; 3 μm 3300023231_3 99 2,916,660 3228 82 

4/12/2014; 12 m; 0.8 μm 3300023227_3 99.7 3,107,104 3456 104 

4/12/2014; 13.4 m; 3 μm 3300031697_11 94 2,571,291 2882 135 

4/12/2014; 14 m; 3 μm 3300023253_6 97 2,654,228 2956 120 

4/12/2014; 14 m; 0.8 μm 3300023233_5 98 2,773,735 3110 133 

3/12/2014; 19 m; 3 μm 3300022860_5 98 2,774,073 3102 111 

3/12/2014; 19 m; 0.8 μm 3300022846_5 99 2,848,909 3184 106 

3/12/2014; 24 m; 3 μm 3300022884_6 88 2,175,309 2549 207 

3/12/2014; 24 m; 0.8 μm 3300023299_4 99 2,849,381 3166 95 

27/01/2015; 0 m; 0.8 μm 3300023429_4 99 2,694,939 2977 60 
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Appendix B 

 
Cavlab pipeline v1.2 — the preliminary metagenome analysis pipeline 
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Code B1. Python code for Cavlab pipeline v1.2. This code represents the preliminary Cavlab 

pipeline developed for the analysis of Antarctic metagenomes.  

""" Original version of Cavlab pipeline created on Sun Sep 25 13:35:23 2016 

@author: jay3 

This is the head script for the metagenomics pipeline. It should be run from the JGI sample 

folder. It depends on consistent folder structure (IMG_Data and QC_and_Genome_Assembly). 

v1.2: 

Decided to keep databases in a single folder rather than rewrite every run. Specified # of threads 

in DIAMOND and BBMap lines. Minimum request job time is set to 12 hrs.""" 

 

from datetime import date 

import os 

import subprocess 

import sys 

import csv 

current_dir = subprocess.check_output('pwd', shell = True).decode().strip() + '/' # get current dir 

 

#### find reads file and save path  

go = [] 

file_found = 0 

if os.path.isdir('./QC_and_Genome_Assembly') == True: 

    QC_folder = os.listdir('./QC_and_Genome_Assembly') 

    if len(QC_folder) == 1: 

        for file in os.listdir('./QC_and_Genome_Assembly/' + QC_folder[0]): 

            if file[-5:] == 'fastq' and file.split('.')[1] == 'filtered': 

                raw_num = file.split('.')[0] 

                file_found = 1 

                read_file = current_dir + 'QC_and_Genome_Assembly/' + QC_folder[0] + '/' + file 

    else: 

        print('QC_and_Genome_Assembly subfolder not found, freaking folder structures...') 

else: 

    print('QC_and_Genome_Assembly folder not found, somewhere over the rainbow... la la la') 

if file_found == 0: 

    print('reads not found, go back to kindergarten') 

else: 

    print('reads found 1up') 
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    go.append(1) 

QC_dir = subprocess.check_output('ls ' + './QC_and_Genome_Assembly', shell = 

True).decode('UTF-8') #as a cr/lf at the end... 

raw_dir = current_dir + 'QC_and_Genome_Assembly/' + QC_dir 

 

#### find assembly files and save paths 

#### verify folder and ORFs file 

file_found = 0 

if os.path.isdir('./IMG_Data') == True: 

    for file in os.listdir('./IMG_Data'): 

        if file[-3:] == 'faa': 

            ass_num = file.split('.')[0] 

            file_found = 1 

            protass_file = current_dir + 'IMG_Data/' + file 

else: 

    print('IMG_Data folder nowhere to be found') 

if file_found == 0: 

    print('assembly.faa not found, sad day') 

else: 

    print('assembly.faa found, off to a good start') 

    go.append(1) 

 

#### verify COG file     

if os.path.isfile('./IMG_Data/' + ass_num + '.assembled.faa.COG') == 1: 

    print('assembled.faa.COG file found, yay I guess') 

    go.append(1) 

    COG_file = current_dir + 'IMG_Data/' + ass_num + '.assembled.faa.COG' 

else: 

    print('assembled.faa.COG file not found, who cares about COG anyway?') 

 

#### verify KEGG file    

if os.path.isfile('./IMG_Data/' + ass_num + '.assembled.faa.KO') == 1: 

    print('assembled.faa.KO file found, (((((((((()==<<<') 

    go.append(1) 

    KEGG_file = current_dir + 'IMG_Data/' + ass_num + '.assembled.faa.KO' 

else: 

    print('assembled.faa.KO file not found, :( thats probably going to leave a mark') 
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#### verify DNA assembly file     

if os.path.isfile('./IMG_Data/' + ass_num + '.assembled.fna') == 1: 

    print('assembled.fna file found this is getting good') 

    go.append(1) 

    DNAass_file = current_dir + 'IMG_Data/' + ass_num + '.assembled.fna' 

else: 

    print('assembled.fna file not found, so close yet so far away') 

     

#### verify coverage file 

if os.path.isfile('./IMG_Data/' + raw_num + '.scaffolds.cov') == 1: 

    print('scaffolds.cov file found, wait for it...') 

    go.append(1) 

    COV_file = current_dir + 'IMG_Data/' + raw_num + '.scaffolds.cov' 

else: 

    print('scaffolds.cov file not found, da da da Im sorry; the caller you are trying to reach can not 

be located. Please hang up and try your call again later.') 

     

#### verify scaffold to contig mapping file 

if os.path.isfile('./IMG_Data/' + ass_num + '.assembled.names_map') == 1: 

    print('assembled.names_map file found this is getting good') 

    go.append(1) 

    MAP_file = current_dir + 'IMG_Data/' + ass_num + '.assembled.names_map' 

else: 

    print('assembled.names_map file not found, so close yet so far away') 

 

#### verify resource files are available  

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K00394_pathway_database_v1.fast

a') == 1: 

    print('K00394_pathway_database_v1.fasta found') 

    go.append(1) 

else: 

    print('K00394_pathway_database_v1.fasta not found') 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K00395_pathway_database_v1.fast

a') == 1: 
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    print('K00395_pathway_database_v1.fasta found') 

    go.append(1) 

else: 

    print('K00395_pathway_database_v1.fasta not found') 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K11180_pathway_database_v1.fast

a') == 1: 

    print('K11180_pathway_database_v1.fasta found') 

    go.append(1) 

else: 

    print('K11180_pathway_database_v1.fasta not found') 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K11181_pathway_database_v1.fast

a') == 1: 

    print('K11181_pathway_database_v1.fasta found') 

    go.append(1) 

else: 

    print('K11181_pathway_database_v1.fasta not found') 

if os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/COG_conversion_v1.csv') == 1: 

    print('COG_conversion_v1.csv found') 

    go.append(1) 

else: 

    print('COG_conversion_v1.csv not found')       

 

#### decide if all files are found and proceed     

if sum(go) == 12: 

    print('all systems are GO for launch!') 

else: 

    print('HOLD HOLD HOLD') 

    print('launch scrubbed, new launch window TBD') 

    sys.exit() 

 

#### make head folder and sub folders 

now =date.today() 

head_folder = 'Cav_' + str(now.year)[-2:] + str(now.month) + str(now.day) 

subprocess.call('mkdir ' + head_folder, shell = True) 

subprocess.call('mkdir ' + head_folder + '/resources', shell = True) 
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subprocess.call('mkdir ' + head_folder + '/metabat', shell = True) 

#subprocess.call('cd ' + head_folder, shell = True) 

head_dir = current_dir + head_folder + '/' 

res_dir = head_dir + 'resources/' 

 

#### write readme file 

readme_text = """This is the head folder created from the Cav pipeline v1.2 on the %s day of 

the %s month of %s. It contains the results from and resources used by the pipeline. 

/resources contains sulfur databases used in the processing of KEGG markers K00394, K00395, 

K11180, and K11181, and a COG conversion file. Jobs_log.txt has a record of the individual 

jobs created as part of the pipeline. Each entry corresponds to a SCRATCH######## file which 

contains the screen log of the job. Email reports are found in rcavlab@gmail.com. Error reports 

and output reports also correspond to the various jobs. All jobs were run on Katana, the UNSW 

science computing cluster. 

/metabat contains files related to MetaBAT processing. Some were created by this run while 

others were created by other operations related to MetaBAT processing. 

/phylosift is the output from PhyloSift and contains diversity related information. 

.rma is a MEGAN file which is primarily used for taxonomy. However, this file has some COG 

information, but these assignments may differ from those used in this pipeline. This is because 

COG data used in this pipeline originates as a JGI file. The data in the MEGAN file comes from 

diamond (a faster version of BLAST). 

COG_summary.csv is the summary of COG categories. The "by coverage" column is weighted 

by read depth of the ORF and "by count" is simply the fraction of counts in each COG category. 

The "total" row represents the total number of ORFs in the faa.COG file for the "by count" 

column and the sum of read depths for each ORF in the faa.COG file. These values were used to 

normalize each of the categories. The "issues" row represents ORFs that couldn't be placed in a 

category or didn’t identify a coverage value. 

KO_summary.csv is the KEGG pathways summary. It aggregates markers into pathways and 

the columns are the same as for COG. The "total" row is the same as COG. The "issues" row 

represents ORFs that couldn't identify a coverage value. Below the pathway rows, each marker 

is saved individually. 

This is version 1.2 of the Cavlab pipeline and uses: 

phylosift v1.0.1 

  perl v5.20.1 

  hmmer v3.1b2 

  raxml v8.1.17 

  fasttree v2.1.7 

mailto:rcavlab@gmail.com
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  pplacer v1.1.alpha16 

diamond v0.8.4 

  nr database ~June 1, 2016 

MEGAN v6.4.5 

  java v8u45 

COG_sumarize_v2.py 

  python v3.5.2 

KOpathways_v8.py 

  python v3.5.2 

bbmap v35.82 

assemblies_filter_v1.py 

  python v3.5.2 

 

At the time of writing this pipeline (October 2016) there is no documentation. 

However, I intend to include a detailed description of the development and testing in my thesis. 

I will try to add text to the bottom of the file as this information becomes available. The pipeline 

was developed by James "Jay" Bevington on behalf of the Cavicchioli lab in the School of 

Biotechnology and Biomolecular Sciences at the University of New South Wales. If you are still 

reading, I assume you are in deep trouble... I (Jay) stand by my work and am happy to answer 

questions long into the future. Please contact Dr. Rick Cavicchioli at r.cavicchioli@unsw.edu.au 

(+612) 9385 3516 or Jay Bevington at jbevingt@gmail.com +61 401 096 241 or +1-985-789-

3511. Future amendments to be included below: 

""" %(str(now.day), str(now.month), str(now.year)) 

with open(head_dir + 'readme.txt' , 'w') as readme_file: 

    readme_file.write(readme_text) 

 

#### write bash scripts and python codes 

#### phylosift  

phylosift_script = """#!/bin/bash 

#PBS -N SCRATCH 

#PBS -l nodes=1:ppn=1 

#PBS -l vmem=24gb 

#PBS -l walltime=200:00:00 

#PBS -o %sPhylosift_Output_report_1 

#PBS -o %sPhylosift_Error_report_1 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 
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cd %s 

module load perl/5.20.1 

module load hmmer/3.1b2 

module load raxml/8.1.17 

module load fasttree/2.1.7 

module load pplacer/1.1.alpha16 

module load phylosift/1.0.1 

 

phylosift all %s --out %sphylosift --paired 

guppy fpd -o %sdiversity_table --theta 0.25,0.5 %sphylosift/%s.jplace 

"""%(res_dir, res_dir, head_dir, read_file, head_dir, head_dir, head_dir, read_file.split('/')[-1]) 

 

with open(res_dir + 'phylosift.pbs', 'w') as phylosift_bash: 

    phylosift_bash.write(phylosift_script) 

     

#### diamond and MEGAN     

#### python script to append coverage to ORF name 

append_cov_code = """# -*- coding: utf-8 -*- 

''' Created on Fri May 27 13:53:10 2016 

@author: Jay2 

Reverse adapted from Reads_cov_multi_v2 equivilant to Reads_cov_v3.py. Will append 

coverage information to assembly ORFs for incorporating coverage info into MEGAN.''' 

 

import csv 

import Bio.SeqIO as SeqIO 

#### read raw cov file 

cov_name = [] 

cov = [] 

with open('%s', 'r') as rawfile: 

    rawdata = csv.reader(rawfile, delimiter = '\t') 

    for row in rawdata: 

        cov_name.append(row[0]) 

        cov.append(row[1]) 

rawfile.close() 

cov_name = cov_name[1:] 

cov = cov[1:] 
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#### read map file 

maps = {} 

with open('%s', 'r') as map_file: 

    map_csv = csv.reader(map_file, delimiter = '\t') 

    for row in map_csv: 

        maps[row[0]] = row[1]     

         

#### build cov info w/ correct name 

coverage = [] 

for i in range(len(cov_name)): 

    coverage.append([maps[cov_name[i]], cov[i]]) 

name_len = len(coverage[0][0]) 

 

#### find cov info and write to file 

index=0 

with open('%s', 'r') as read_file: 

    with open('%s.assembled_cov.faa', 'w') as newfile: 

        for record in SeqIO.parse(read_file, "fasta"): # for each read 

            for j in range(index,len(coverage)): #for each coverage line 

                cov_namei = coverage[j][0] 

                if record.id[0:name_len] == coverage[j][0]: #if the line is for the read 

                    record.id = record.id + '|magnitude=' + coverage[j][1] #append wts value 

                    SeqIO.write(record,newfile, 'fasta') #write to file 

                    index = j #store index as new starting point to avoid scanning 

                    break # skip the rest of the list 

                     

#### submit jobs as part of the Cavlab pipeline                     

import subprocess 

command = 'qsub ' + '%s' + 'phylosift.pbs' 

screen = subprocess.check_output(command,shell = True) 

screen = screen.decode()[0:7] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log) 

    job_csv.writerow(['phylosift', screen]) 

 

command = 'qsub ' + '%s' + 'diamondp.pbs' 

screen = subprocess.check_output(command, shell = True) 
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screen = screen.decode()[0:7] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log) 

    job_csv.writerow(['diamondp_MEGAN', screen]) 

   

command = 'qsub ' + '%s' + 'COGKEGG.pbs' 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:7] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log) 

    job_csv.writerow(['COG_KEGG', screen]) 

     

command = 'qsub ' + '%s' + 'sample2500_map.pbs' 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:7] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log) 

    job_csv.writerow(['metabat_sample_map', screen])""" %(COV_file, MAP_file, protass_file, 

head_dir + ass_num, res_dir, res_dir, res_dir, res_dir, res_dir, res_dir, res_dir, res_dir)     

 

with open(res_dir + 'append_cov2ORFs.py', 'w') as append_cov2ORFs_script: 

    append_cov2ORFs_script.write(append_cov_code) 

protass_file = head_dir + ass_num + '.assembled_cov.faa' # Use the file with cov appended from 

now on 

 

#### write diamond/MEGAN bash 

megan_script = """#!/bin/bash 

#PBS -N SCRATCH 

#PBS -l nodes=1:ppn=8 

#PBS -l vmem=63gb 

#PBS -l walltime=48:00:00 

#PBS -o %sDiamondp_Output_Report_1 

#PBS -o %sDiamondp_Error_Report_1 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

cd %s 

module load diamond/0.8.4 
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diamond blastp -d /srv/scratch/jgi/Cavlab_pipeline_resources/v1/nr -q %s -a diamondp.daa -e 

0.001 -p 8 

diamond view -a diamondp.daa -o %s.diamondp.tab -f tab 

 

module load java/8u45 

module load megan/6.4.5 

export _JAVA_OPTIONS="-Xmx55g" 

 

blast2rma -r %s -i %s.diamondp.tab -o %s.diamondp.rma -g2t 

/srv/scratch/jgi/Cavlab_pipeline_resources/v1/gi_taxid_prot.dmp.gz -a2eggnog 

/srv/scratch/jgi/Cavlab_pipeline_resources/v1/acc2eggnog-June2016X.abin -f BlastTab -mag -

fun EGGNOG 

 

rm diamondp.daa 

""" %(res_dir, res_dir, head_dir, protass_file, ass_num, protass_file, ass_num, ass_num) 

 

with open(res_dir + 'diamondp.pbs', 'w') as diamondp_bash: 

    diamondp_bash.write(megan_script) 

 

#### write COG and KEGG files 

#### write COG script 

COG_code = """# -*- coding: utf-8 -*- 

''' Created on Fri Oct 14 17:35:49 2016 

@author: jay3 

Needs COG_Conversion.csv. Adds COG category to IMG data (.faa.COG) using the COG 

number. Also, drops other columns reducing file size by ~half. Writes a new file with counts of 

each category. This code should be placed in the directory with: the data file ___.faa.COG 

(change file name below) and COG_Conversion.csv. 

Some COG numbers have multiple category assignments. COG conversion assume that the first 

assignment listed is the best. U was probably the most disturbed by this assumption. 

v1 

This script was reworked and updated from COG_conversion, added with statements for files. 

v2: 

Added inclusion of coverage information; fully tested (161025)''' 

 

print('start COG') 
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import csv 

import Bio.SeqIO as SeqIO 

file_root = '%s' 

assembly_file = '%s' 

COG_file = '%s' 

 

#### read ORF coverages from linemag.faa 

coverage = [] 

cov_norm = 0 

with open(assembly_file, 'r') as orf_file:  

    for read_record in SeqIO.parse(orf_file, "fasta"): 

        string = read_record.id 

        string2 = string.split('|') 

        coverage.append([string2[0], float(string2[1][10:])]) 

        cov_norm = cov_norm + float(string2[1][10:])         

count_norm = len(coverage) 

name_len = len(string2[0]) 

 

#### read in conversion file 

reader = 

csv.reader(open('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/COG_conversion_v1.csv', 'r')) 

d = {} 

for row in reader: 

   k, v = row 

   d[k] = v 

    

#### read in data COG numbers and make conversion 

A = [0] 

B = [0] 

C = [0] 

D = [0] 

E = [0] 

F = [0] 

G = [0] 

H = [0] 

I = [0] 

J = [0] 
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K = [0] 

L = [0] 

M = [0] 

N = [0] 

O = [0] 

P = [0] 

Q = [0] 

R = [0] 

S = [0] 

T = [0] 

U = [0] 

V = [0] 

Y = [0] 

Z = [0] 

other = [] 

 

index = 0 

with open(COG_file, 'r') as DataRaw_file: 

    DataRaw_csv = csv.reader(DataRaw_file, delimiter = '\t') 

    for row in DataRaw_csv: 

        ContigName = row[0] 

        COGNum = row[1] 

        COGCat = d[COGNum]         

        err = [] 

        if COGCat == 'A': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     A.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'B': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     B.append(coverage[j][1]) #adds cov value to list 

                     err = 0 
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                     break 

        elif COGCat == 'C': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     C.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'D': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     D.append(coverage[j][1]) #adds cov value to list  

                     err = 0 

                     break 

        elif COGCat == 'E': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     E.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'F': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     F.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'G': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     G.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'H': 
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            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     H.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'I': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     I.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'J': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     J.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'K': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'L': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     L.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'M': 

            err = 1 

            for j in range(index,len(coverage)): 
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                 if row[0][0:name_len] == coverage[j][0]: 

                     M.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'N': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     N.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'O': 

            err=1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     O.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'P': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     P.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'Q': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     Q.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'R': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     R.append(coverage[j][1]) #adds cov value to list 
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                     err = 0 

                     break 

        elif COGCat == 'S': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     S.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'T': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     T.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'U': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     U.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'V': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     V.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif COGCat == 'Y': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     Y.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 
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        elif COGCat == 'Z': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     Z.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        else: 

            other.append(COGCat)             

        if err == 1: 

            other.append(COGCat) 

print('counting done') 

 

#### use for cov info 

Ac  =  sum(A)/cov_norm 

Bc = sum(B)/cov_norm 

Cc = sum(C)/cov_norm 

Dc = sum(D)/cov_norm 

Ec = sum(E)/cov_norm 

Fc = sum(F)/cov_norm 

Gc = sum(G)/cov_norm 

Hc = sum(H)/cov_norm 

Ic = sum(I)/cov_norm 

Jc = sum(J)/cov_norm 

Kc = sum(K)/cov_norm 

Lc = sum(L)/cov_norm 

Mc = sum(M)/cov_norm 

Nc = sum(N)/cov_norm 

Oc = sum(O)/cov_norm 

Pc = sum(P)/cov_norm 

Qc = sum(Q)/cov_norm 

Rc = sum(R)/cov_norm 

Sc = sum(S)/cov_norm 

Tc = sum(T)/cov_norm 

Uc = sum(U)/cov_norm 

Vc = sum(V)/cov_norm 

Yc = sum(Y)/cov_norm 
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Zc = sum(Z)/cov_norm 

 

#### use for counts 

An = (len(A)-1)/count_norm 

Bn = (len(B)-1)/count_norm 

Cn = (len(C)-1)/count_norm 

Dn = (len(D)-1)/count_norm 

En = (len(E)-1)/count_norm 

Fn = (len(F)-1)/count_norm 

Gn = (len(G)-1)/count_norm 

Hn = (len(H)-1)/count_norm 

In = (len(I)-1)/count_norm 

Jn = (len(J)-1)/count_norm 

Kn = (len(K)-1)/count_norm 

Ln = (len(L)-1)/count_norm 

Mn = (len(M)-1)/count_norm 

Nn = (len(N)-1)/count_norm 

On = (len(O)-1)/count_norm 

Pn = (len(P)-1)/count_norm 

Qn = (len(Q)-1)/count_norm 

Rn = (len(R)-1)/count_norm 

Sn = (len(S)-1)/count_norm 

Tn = (len(T)-1)/count_norm 

Un = (len(U)-1)/count_norm 

Vn = (len(V)-1)/count_norm 

Yn = (len(Y)-1)/count_norm 

Zn = (len(Z)-1)/count_norm 

 

#### write data to files 

 

results_c = [Ac, Bc, Cc, Dc, Ec, Fc, Gc, Hc, Ic, Jc, Kc, Lc, Mc, Nc, Oc, Pc, Qc, Rc, Sc, Tc, Uc, 

Vc, Yc, Zc] 

results_n = [An, Bn, Cn, Dn, En, Fn, Gn, Hn, In, Jn, Kn, Ln, Mn, Nn, On, Pn, Qn, Rn, Sn, Tn, 

Un, Vn, Yn, Zn] 

header = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 

'Y', 'Z', 'total', 'issues'] 
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with open('%s' + file_root + '.assembled.faa.COG_summary.csv', 'w') as out_file: 

    out_csv = csv.writer(out_file) 

    out_csv.writerow(['COG category', 'by coverage', 'by count']) 

    for i in range(len(header)-2): 

        out_csv.writerow([header[i], results_c[i], results_n[i]]) 

    out_csv.writerow([header[-2], cov_norm, count_norm]) 

    out_csv.writerow([header[-1], len(other), len(other)])     

print('COG done') 

"""%(ass_num, head_dir + ass_num + '.assembled_cov.faa', COG_file, head_dir) 

 

with open(res_dir + 'COG_summarize_v2.py', 'w') as COG_script: 

    COG_script.write(COG_code) 

 

#### write KEGG script 

KEGG_code = """# -*- coding: utf-8 -*- 

'''Created on Mon Jul 25 13:48:37 2016 

@author: jay3 

This script will find ORFs with given KO# and aggregate them to pathways. It is based on 

Reads_cov_v3.py 

v2: 

Nothing really new, just to separate the working version from others. Added 0s to initiate Ko 

vars to avoid issues with math calculations resulting from empty lists 

added print statements. 

v3: 

Updated with new KEGG numbers. Added method to use counts instead of coverage 

v4: 

Need data to normalize. For counts, number of ORFS, and for cov, sum(cov*ORFS), use 

linemag.faa to get this info. 

v5: 

Some changes made in v4 as debugging. The 5 designation is to set it apart. 

v6: 

Incorporated SulfurSub_on_real_data_v3.py. 

v7: 

Added capability to save both count and coverage versions. Added file write outs for results. 

Added KOs from Yau13. Fully tested (161025). 

v8: 

Removed extra lines to reduce size. Added write out of all markers. 
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''' 

import csv 

import Bio.SeqIO as SeqIO 

import numpy as np 

from Bio import pairwise2 

file_root = '%s' 

assembly_file = '%s' 

KEGG_file = '%s' 

print('start KEGG') 

 

#### read ORF coverages from linemag.faa 

coverage = [] 

cov_norm = 0 

with open(assembly_file, 'r') as orf_file: 

    for read_record in SeqIO.parse(orf_file, "fasta"): 

        string = read_record.id 

        string2 = string.split('|') 

        coverage.append([string2[0], float(string2[1][10:])]) 

        cov_norm = cov_norm + float(string2[1][10:])         

count_norm = len(coverage) 

name_len = len(string2[0]) 

 

#### read KO ORFS and append cov to KO_vars  

K00362 = [0] 

K00363 = [0] 

K03385 = [0] 

K15876 = [0] 

K17877 = [0] 

K00366 = [0] 

K02305 = [0] 

K04561 = [0] 

K00376 = [0] 

K00531 = [0] 

K02586 = [0] 

K02591 = [0] 

K02588 = [0] 

K10535 = [0] 



393 
 

K10944 = [0] 

K01601 = [0] 

K01602 = [0] 

K00855 = [0] 

K15230 = [0] 

K15231 = [0] 

K15234 = [0] 

K15233 = [0] 

K15232 = [0] 

K00192 = [0] 

K00198 = [0] 

K03518 = [0] 

K03519 = [0] 

K03520 = [0] 

K14138 = [0] 

K02256 = [0] 

K02262 = [0] 

K02274 = [0] 

K02276 = [0] 

K00401 = [0] 

K00400 = [0] 

K16157 = [0] 

K16158 = [0] 

K16159 = [0] 

K16161 = [0] 

K00390 = [0] 

K00392 = [0] 

K00380 = [0] 

K00381 = [0] 

K00394 = [0] 

K00394r = [] 

K00394o = [] 

K00395 = [0] 

K00395r = [] 

K00395o = [] 

K11180 = [0] 

K11180r = [] 
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K11180o = [] 

K11181 = [0] 

K11181r = [] 

K11181o = [] 

K17224 = [0] 

K17227 = [0] 

K17226 = [0] 

K17222 = [0] 

K17223 = [0] 

K17225 = [0] 

K05973 = [0] 

K03821 = [0] 

K15342 = [0] 

K09951 = [0] 

K07012 = [0] 

K07475 = [0] 

K19088 = [0] 

K19123 = [0] 

K19127 = [0] 

K07016 = [0] 

K19138 = [0] 

K19141 = [0] 

K09952 = [0] 

K19137 = [0] 

K07464 = [0] 

K02703 = [0] 

K02706 = [0] 

K02705 = [0] 

K02704 = [0] 

K02707 = [0] 

K02708 = [0] 

K02689 = [0] 

K02690 = [0] 

K02691 = [0] 

K02692 = [0] 

K02693 = [0] 

K02694 = [0] 



395 
 

K08928 = [0] 

K08929 = [0] 

K08940 = [0] 

K08941 = [0] 

K08942 = [0] 

K08943 = [0] 

K04643 = [0] 

K04642 = [0] 

K04641 = [0] 

K04250 = [0] 

K00909 = [0] 

K01428 = [0] 

K01429 = [0] 

K01430 = [0] 

K00111 = [0] 

K00112 = [0] 

K00113 = [0] 

K00096 = [0] 

K00518 = [0] 

K04564 = [0] 

K04565 = [0] 

K16627 = [0] 

K06164 = [0] 

K05780 = [0] 

K06165 = [0] 

K06166 = [0] 

K06167 = [0] 

K06163 = [0] 

K06162 = [0] 

K08977 = [0] 

K09836 = [0] 

K15746 = [0] 

K16953 = [0] 

K17486 = [0] 

K20452 = [0] 

K07306 = [0] 

K17218 = [0] 
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K03553 = [0] 

K00394_ORFname = [] 

K00395_ORFname = [] 

K11180_ORFname = [] 

K11181_ORFname = [] 

no_cov = [] 

index = 0 

with open(KEGG_file, 'r', newline = '') as read_file: 

    KOs_csv = csv.reader(read_file, delimiter = '\t') 

    KOs_all = [] 

    for row in KOs_csv: 

        err = [] 

        KO_ID = row[2][3:] 

        if KO_ID == 'K00362': 

            err = 1 

            for j in range(index,len(coverage)): 

                if row[0][0:name_len] == coverage[j][0]: 

                    K00362.append(coverage[j][1]) #adds cov value to list 

                    err = 0 

                    break      

        elif KO_ID == 'K00363': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00363.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K03385': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K03385.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15876': 

            err = 1 

            for j in range(index,len(coverage)): 
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                 if row[0][0:name_len] == coverage[j][0]: 

                     K15876.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17877': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17877.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00366': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00366.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02305': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02305.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K04561': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04561.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00376': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00376.append(coverage[j][1]) #adds cov value to list 
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                     err = 0 

                     break 

        elif KO_ID == 'K00531': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00531.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02586': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02586.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02591': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02591.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02588': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02588.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K10535': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K10535.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 
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        elif KO_ID == 'K10944': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K10944.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K01601': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K01601.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K01602': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K01602.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00855': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00855.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15230': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15230.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15231': 

            err = 1 
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            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15231.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15234': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15234.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15233': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15233.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15232': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15232.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00192': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00192.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00198': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 
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                     K00198.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K03518': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K03518.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K03519': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K03519.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K03520': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K03520.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K14138': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K14138.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02256': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02256.append(coverage[j][1]) #adds cov value to list 

                     err = 0 
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                     break 

        elif KO_ID == 'K02262': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02262.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02274': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02274.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02276': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02276.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00401': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00401.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00400': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00400.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K16157': 
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            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K16157.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K16158': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K16158.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K16159': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K16159.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K16161': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K16161.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00390': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00390.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00392': 

            err = 1 

            for j in range(index,len(coverage)): 
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                 if row[0][0:name_len] == coverage[j][0]: 

                     K00392.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00380': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00380.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00381': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00381.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

                     

#### sulfur assimilatory and dissimilatory                      

        elif KO_ID == 'K00394': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00394_ORFname.append(row[0][0:name_len]) 

                     K00394.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00395': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00395_ORFname.append(row[0][0:name_len]) 

                     K00395.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K11180': 
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            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K11180_ORFname.append(row[0][0:name_len]) 

                     K11180.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K11181': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K11181_ORFname.append(row[0][0:name_len]) 

                     K11181.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

                      

#### others                  

        elif KO_ID == 'K17224': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17224.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17227': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17227.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17226': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17226.append(coverage[j][1]) #adds cov value to list 

                     err = 0 
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                     break 

        elif KO_ID == 'K17222': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17222.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17223': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17223.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17225': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17225.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K05973': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K05973.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K03821': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K03821.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15342': 
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            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15342.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K09951': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K09951.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K07012': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K07012.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K07475': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K07475.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K19088': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K19088.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K19123': 

            err = 1 

            for j in range(index,len(coverage)): 
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                 if row[0][0:name_len] == coverage[j][0]: 

                     K19123.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K19127': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K19127.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K07016': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K07016.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K19138': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K19138.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K19141': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K19141.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K09952': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K09952.append(coverage[j][1]) #adds cov value to list 
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                     err = 0 

                     break 

        elif KO_ID == 'K19137': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K19137.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K07464': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K07464.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02703': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02703.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02706': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02706.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02705': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02705.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 
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        elif KO_ID == 'K02704': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02704.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02707': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02707.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02708': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02708.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02689': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02689.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02690': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02690.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02691': 

            err = 1 
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            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02691.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02692': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02692.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02693': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02693.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K02694': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K02694.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08928': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K08928.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08929': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 
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                     K08929.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08940': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K08940.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08941': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K08941.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08942': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K08942.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08943': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K08943.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K04643': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04643.append(coverage[j][1]) #adds cov value to list 

                     err = 0 
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                     break 

        elif KO_ID == 'K04642': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04642.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K04641': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04641.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K04250': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04250.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00909': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00909.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K01428': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K01428.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K01429': 
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            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K01429.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K01430': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K01430.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00111': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00111.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00112': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00112.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00113': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00113.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00096': 

            err = 1 

            for j in range(index,len(coverage)): 
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                 if row[0][0:name_len] == coverage[j][0]: 

                     K00096.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K00518': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K00518.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K04564': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04564.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K04565': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K04565.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K16627': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K16627.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K06164': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K06164.append(coverage[j][1]) #adds cov value to list 
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                     err = 0 

                     break 

        elif KO_ID == 'K05780': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K05780.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K06165': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K06165.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K06166': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K06166.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K06167': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K06167.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K06163': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K06163.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 
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        elif KO_ID == 'K06162': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K06162.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K08977': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K08977.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K09836': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K09836.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K15746': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K15746.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K16953': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K16953.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17486': 

            err = 1 
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            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17486.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K20452': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K20452.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K07306': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K07306.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K17218': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K17218.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break 

        elif KO_ID == 'K03553': 

            err = 1 

            for j in range(index,len(coverage)): 

                 if row[0][0:name_len] == coverage[j][0]: 

                     K03553.append(coverage[j][1]) #adds cov value to list 

                     err = 0 

                     break         

        if err == 1: 

            no_cov.append(KO_ID) 

print('counting done') 
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#### SulfurSub for assimilatory vs dissimilatory  

limit=14 

#### split K00394  

#### get seqs for the marker 

K00394_ORFseq = [] 

with open(assembly_file, 'r') as orf_file: 

    for read_record in SeqIO.parse(orf_file, "fasta"): 

        string = read_record.id 

        string2 = string.split('|')         

        for ORF in K00394_ORFname: 

            #print(ORF) 

            #print(string2[0]) 

            if ORF == string2[0]: 

                K00394_ORFseq.append(read_record) 

marker = K00394_ORFseq ###ORFS 

#### get the database seqs 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K00394_pathway_database_v1.fasta', 

'r') as dsrAB_file: 

    db = list(SeqIO.parse(dsrAB_file, "fasta"))  

#### make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq, seq.seq, 2, -1, -.5, -.1, score_only = 1) 

        scorei.append(align) 

        seq.description = align         

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0])             

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 
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        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1     

    if keep > limit: 

        #assign 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K00394r.append(float(ORF.id.split('|')[1][10:])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K00394o.append(float(ORF.id.split('|')[1][10:])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K00394 done') 

 

#### split K00395  

#### get seqs for the marker 

K00395_ORFseq = [] 

with open(assembly_file,'r') as orf_file: 

    for read_record in SeqIO.parse(orf_file, "fasta"): 

        string = read_record.id 

        string2 = string.split('|')         

        for ORF in K00395_ORFname: 

            #print(ORF) 

            #print(string2[0]) 

            if ORF == string2[0]: 

                K00395_ORFseq.append(read_record) 

marker = K00395_ORFseq ###ORFS 

#### get the database seqs 

db = [] 
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with 

open('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K00395_pathway_database_v1.fasta','r') as 

dsrAB_file: 

    db = list(SeqIO.parse(dsrAB_file, "fasta")) 

#### make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq, seq.seq, 2, -1, -.5, -.1, score_only = 1) 

        scorei.append(align) 

        seq.description = align         

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0])             

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1     

    if keep > limit: 

        #assign 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K00395r.append(float(ORF.id.split('|')[1][10:])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K00395o.append(float(ORF.id.split('|')[1][10:])) 
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        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown'            

print('K00395 done')            

            

#### split K11180  

#### get seqs for the marker 

K11180_ORFseq = [] 

with open(assembly_file, 'r') as orf_file:  

    for read_record in SeqIO.parse(orf_file, "fasta"): 

        string = read_record.id 

        string2 = string.split('|')         

        for ORF in K11180_ORFname: 

            #print(ORF) 

            #print(string2[0]) 

            if ORF == string2[0]: 

                K11180_ORFseq.append(read_record) 

marker = K11180_ORFseq ###ORFS 

#### get the database seqs 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K11180_pathway_database_v1.fasta', 

'r') as dsrAB_file: 

    db = list(SeqIO.parse(dsrAB_file, "fasta"))     

#### make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq, seq.seq, 2, -1, -.5, -.1, score_only = 1) 

        scorei.append(align) 

        seq.description = align         

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0])             

    dis = 0 
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    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1     

    if keep > limit: 

        #assign 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K11180r.append(float(ORF.id.split('|')[1][10:])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K11180o.append(float(ORF.id.split('|')[1][10:])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown'  

print('K11180 done') 

         

#### split K11181 

#### get seqs for the marker 

K11181_ORFseq = [] 

with open(assembly_file, 'r') as orf_file: 

    for read_record in SeqIO.parse(orf_file, "fasta"): 

        string = read_record.id 

        string2 = string.split('|')         

        for ORF in K11181_ORFname: 

            #print(ORF) 

            #print(string2[0]) 

            if ORF == string2[0]: 
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                K11181_ORFseq.append(read_record) 

marker = K11181_ORFseq ###ORFS 

#### get the database seqs 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v1/K11181_pathway_database_v1.fasta', 

'r') as dsrAB_file: 

    db = list(SeqIO.parse(dsrAB_file, "fasta"))     

#### make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq, seq.seq, 2, -1, -.5, -.1, score_only = 1) 

        scorei.append(align) 

        seq.description = align         

    keep = max(scorei)   

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1     

    if keep > limit: 

        #assign 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K11181r.append(float(ORF.id.split('|')[1][10:])) 
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        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K11181o.append(float(ORF.id.split('|')[1][10:])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown'             

print('K11181 done') 

 

#### use for coverage info 

K00362c = sum(K00362) 

K00363c = sum(K00363) 

K03385c = sum(K03385) 

K15876c = sum(K15876) 

K17877c = sum(K17877) 

K00366c = sum(K00366) 

K02305c = sum(K02305) 

K04561c = sum(K04561) 

K00376c = sum(K00376) 

K00531c = sum(K00531) 

K02586c = sum(K02586) 

K02591c = sum(K02591) 

K02588c = sum(K02588) 

K10535c = sum(K10535) 

K10944c = sum(K10944) 

K01601c = sum(K01601) 

K01602c = sum(K01602) 

K00855c = sum(K00855) 

K15230c = sum(K15230) 

K15231c = sum(K15231) 

K15234c = sum(K15234) 

K15233c = sum(K15233) 

K15232c = sum(K15232) 

K00192c = sum(K00192) 

K00198c = sum(K00198) 

K03518c = sum(K03518) 

K03519c = sum(K03519) 
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K03520c = sum(K03520) 

K14138c = sum(K14138) 

K02256c = sum(K02256) 

K02262c = sum(K02262) 

K02274c = sum(K02274) 

K02276c = sum(K02276) 

K00401c = sum(K00401) 

K00400c = sum(K00400) 

K16157c = sum(K16157) 

K16158c = sum(K16158) 

K16159c = sum(K16159) 

K16161c = sum(K16161) 

K00390c = sum(K00390) 

K00392c = sum(K00392) 

K00380c = sum(K00380) 

K00381c = sum(K00381) 

K00394rc = sum(K00394r) 

K00395rc = sum(K00395r) 

K11180rc = sum(K11180r) 

K11181rc = sum(K11181r) 

K00394oc = sum(K00394o) 

K00395oc = sum(K00395o) 

K11180oc = sum(K11180o) 

K11181oc = sum(K11181o) 

K17224c = sum(K17224) 

K17227c = sum(K17227) 

K17226c = sum(K17226) 

K17222c = sum(K17222) 

K17223c = sum(K17223) 

K17225c = sum(K17225) 

K05973c = sum(K05973) 

K03821c = sum(K03821) 

K15342c = sum(K15342) 

K09951c = sum(K09951) 

K07012c = sum(K07012) 

K07475c = sum(K07475) 

K19088c = sum(K19088) 
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K19123c = sum(K19123) 

K19127c = sum(K19127) 

K07016c = sum(K07016) 

K19138c = sum(K19138) 

K19141c = sum(K19141) 

K09952c = sum(K09952) 

K19137c = sum(K19137) 

K07464c = sum(K07464) 

K02703c = sum(K02703) 

K02706c = sum(K02706) 

K02705c = sum(K02705) 

K02704c = sum(K02704) 

K02707c = sum(K02707) 

K02708c = sum(K02708) 

K02689c = sum(K02689) 

K02690c = sum(K02690) 

K02691c = sum(K02691) 

K02692c = sum(K02692) 

K02693c = sum(K02693) 

K02694c = sum(K02694) 

K08928c = sum(K08928) 

K08929c = sum(K08929) 

K08940c = sum(K08940) 

K08941c = sum(K08941) 

K08942c = sum(K08942) 

K08943c = sum(K08943) 

K04643c = sum(K04643) 

K04642c = sum(K04642) 

K04641c = sum(K04641) 

K04250c = sum(K04250) 

K00909c = sum(K00909) 

K01428c = sum(K01428) 

K01429c = sum(K01429) 

K01430c = sum(K01430) 

K00111c = sum(K00111) 

K00112c = sum(K00112) 

K00113c = sum(K00113) 
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K00096c = sum(K00096) 

K00518c = sum(K00518) 

K04564c = sum(K04564) 

K04565c = sum(K04565) 

K16627c = sum(K16627) 

K06164c = sum(K06164) 

K05780c = sum(K05780) 

K06165c = sum(K06165) 

K06166c = sum(K06166) 

K06167c = sum(K06167) 

K06163c = sum(K06163) 

K06162c = sum(K06162) 

K08977c = sum(K08977) 

K09836c = sum(K09836) 

K15746c = sum(K15746) 

K16953c = sum(K16953) 

K17486c = sum(K17486) 

K20452c = sum(K20452) 

K07306c = sum(K07306) 

K17218c = sum(K17218) 

K03553c = sum(K03553) 

 

#### calculate pathways 

#N cycle 

dissimilatory_nitrogen_reduction_c = np.average([K00362c, K00363c, K03385c, K15876c]) 

assimilatory_nitrogen_reduction_c = np.average([K17877c, K00366c]) 

denitrification_c = np.average([K02305c, K04561c, K00376c]) 

nitrogen_fixation_c = np.average([K00531c, K02586c, K02591c, K02588c]) 

nitrification_c = np.average([K10535c, K10944c]) 

#C cycle 

calvin_cycle_c = np.average([K01601c, K01602c, K00855c]) 

rTCA_c = np.average([K15230c, K15231c, K15234c, K15233c, K15232c]) 

WL_c = np.average([K00192c, K00198c, K14138c]) 

carbon_fixation_c = calvin_cycle_c + rTCA_c + WL_c 

respiration_c = np.average([K02256c, K02262c, K02274c, K02276c]) 

CO_oxidation_c = np.average([K03520c, K03519c, K03518c]) 

methanogenesis_c = np.average([K00401c, K00400c]) 
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methane_oxidation_c = np.average([K16157c, K16158c, K16159c, K16161c]) 

#S cycle 

assimilatory_sulfur_reduction_c = np.average([K00390c, K00392c, K00380c, K00381c]) 

dissimilatory_sulfur_reduction_c = np.average([K00394rc, K00395rc, K11180rc, K11181rc]) 

dissimilatory_sulfur_oxidation_c = np.average([K00394oc, K00395oc, K11180oc, K11181oc]) 

sox_c = np.average([K17224c, K17227c, K17226c, K17222c, K17223c, K17225c]) 

#PHA storage 

PHA_bioynthesis_c = np.average([K05973c, K03821c]) 

#CRISPR 

CRISPR_overall_c = np.average([K15342c, K09951c]) 

CRISPR_1I_c = np.average([K07012c, K07475c]) 

CRISPR_1IA_c = np.average([K19088c]) 

CRISPR_1IE_c = np.average([K19123c]) 

CRISPR_1IF_c = np.average([K19127c]) 

CRISPR_1III_c = np.average([K07016c]) 

CRISPR_1IIIA_c = np.average([K19138c]) 

CRISPR_1IIIB_c = np.average([K19141c]) 

CRISPR_2II_c = np.average([K09952c]) 

CRISPR_2IIA_c = np.average([K19137c]) 

CRISPR_2IIB_c = np.average([K07464c]) 

#photosynthesis 

photosystem_II_c = np.average([K02703c, K02706c, K02705c, K02704c, K02707c, K02708c]) 

photosystem_I_c = np.average([K02689c, K02690c, K02691c, K02692c, K02693c, K02694c]) 

anoxygenic_photosystem_II_c = np.average([K08928c, K08929c]) 

anoxygenic_photosystem_I_c = np.average([K08940c, K08941c, K08942c, K08943c]) 

#rhodopsins 

rhodopsins_c = np.average([K04643c, K04642c, K04641c, K04250c, K00909c]) 

#urea 

urea_c = np.average([K01428c, K01429c, K01430c]) 

#glycerol 

glycerol_c = np.average([K00111c, K00112c, K00113c, K00096c]) 

#O2 related 

superoxidedismutase_c = np.average([K00518c, K04564c, K04565c, K16627c]) 

#phosphonate catabolism 

phosphonate_catabolism_c = np.average([K06164c, K05780c, K06165c, K06166c, K06167c, 

K06163c, K06162c]) 

#pigments 
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bacterioruberin_c = K08977c 

bacteriorhodopsin_c = K04641c #also included in rhodopsins  

astaxanthin_c = np.average([K09836c, K15746c]) 

#sulfur genes from organic 

DMSO_reduction_c = np.average([K16953c, K17486c, K20452c, K07306c]) 

sqrA_c = K17218c 

#normalization 

recA_c = K03553c 

 

#### use for counts 

K00362n = (len(K00362)-1) 

K00363n = (len(K00363)-1) 

K03385n = (len(K03385)-1) 

K15876n = (len(K15876)-1) 

K17877n = (len(K17877)-1) 

K00366n = (len(K00366)-1) 

K02305n = (len(K02305)-1) 

K04561n = (len(K04561)-1) 

K00376n = (len(K00376)-1) 

K00531n = (len(K00531)-1) 

K02586n = (len(K02586)-1) 

K02591n = (len(K02591)-1) 

K02588n = (len(K02588)-1) 

K10535n = (len(K10535)-1) 

K10944n = (len(K10944)-1) 

K01601n = (len(K01601)-1) 

K01602n = (len(K01602)-1) 

K00855n = (len(K00855)-1) 

K15230n = (len(K15230)-1) 

K15231n = (len(K15231)-1) 

K15234n = (len(K15234)-1) 

K15233n = (len(K15233)-1) 

K15232n = (len(K15232)-1) 

K00192n = (len(K00192)-1) 

K00198n = (len(K00198)-1) 

K03518n = (len(K03518)-1) 

K03519n = (len(K03519)-1) 
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K03520n = (len(K03520)-1) 

K14138n = (len(K14138)-1) 

K02256n = (len(K02256)-1) 

K02262n = (len(K02262)-1) 

K02274n = (len(K02274)-1) 

K02276n = (len(K02276)-1) 

K00401n = (len(K00401)-1) 

K00400n = (len(K00400)-1) 

K16157n = (len(K16157)-1) 

K16158n = (len(K16158)-1) 

K16159n = (len(K16159)-1) 

K16161n = (len(K16161)-1) 

K00390n = (len(K00390)-1) 

K00392n = (len(K00392)-1) 

K00380n = (len(K00380)-1) 

K00381n = (len(K00381)-1) 

K00394rn = (len(K00394r)) 

K00395rn = (len(K00395r)) 

K11180rn = (len(K11180r)) 

K11181rn = (len(K11181r)) 

K00394on = (len(K00394o)) 

K00395on = (len(K00395o)) 

K11180on = (len(K11180o)) 

K11181on = (len(K11181o)) 

K17224n = (len(K17224)-1) 

K17227n = (len(K17227)-1) 

K17226n = (len(K17226)-1) 

K17222n = (len(K17222)-1) 

K17223n = (len(K17223)-1) 

K17225n = (len(K17225)-1) 

K05973n = (len(K05973)-1) 

K03821n = (len(K03821)-1) 

K15342n = (len(K15342)-1) 

K09951n = (len(K09951)-1) 

K07012n = (len(K07012)-1) 

K07475n = (len(K07475)-1) 

K19088n = (len(K19088)-1) 
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K19123n = (len(K19123)-1) 

K19127n = (len(K19127)-1) 

K07016n = (len(K07016)-1) 

K19138n = (len(K19138)-1) 

K19141n = (len(K19141)-1) 

K09952n = (len(K09952)-1) 

K19137n = (len(K19137)-1) 

K07464n = (len(K07464)-1) 

K02703n = (len(K02703)-1) 

K02706n = (len(K02706)-1) 

K02705n = (len(K02705)-1) 

K02704n = (len(K02704)-1) 

K02707n = (len(K02707)-1) 

K02708n = (len(K02708)-1) 

K02689n = (len(K02689)-1) 

K02690n = (len(K02690)-1) 

K02691n = (len(K02691)-1) 

K02692n = (len(K02692)-1) 

K02693n = (len(K02693)-1) 

K02694n = (len(K02694)-1) 

K08928n = (len(K08928)-1) 

K08929n = (len(K08929)-1) 

K08940n = (len(K08940)-1) 

K08941n = (len(K08941)-1) 

K08942n = (len(K08942)-1) 

K08943n = (len(K08943)-1) 

K04643n = (len(K04643)-1) 

K04642n = (len(K04642)-1) 

K04641n = (len(K04641)-1) 

K04250n = (len(K04250)-1) 

K00909n = (len(K00909)-1) 

K01428n = (len(K01428)-1) 

K01429n = (len(K01429)-1) 

K01430n = (len(K01430)-1) 

K00111n = (len(K00111)-1) 

K00112n = (len(K00112)-1) 

K00113n = (len(K00113)-1) 
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K00096n = (len(K00096)-1) 

K00518n = (len(K00518)-1) 

K04564n = (len(K04564)-1) 

K04565n = (len(K04565)-1) 

K16627n = (len(K16627)-1) 

K06164n = (len(K06164)-1) 

K05780n = (len(K05780)-1) 

K06165n = (len(K06165)-1) 

K06166n = (len(K06166)-1) 

K06167n = (len(K06167)-1) 

K06163n = (len(K06163)-1) 

K06162n = (len(K06162)-1) 

K08977n = (len(K08977)-1) 

K09836n = (len(K09836)-1) 

K15746n = (len(K15746)-1) 

K16953n = (len(K16953)-1) 

K17486n = (len(K17486)-1) 

K20452n = (len(K20452)-1) 

K07306n = (len(K07306)-1) 

K17218n = (len(K17218)-1) 

K03553n = (len(K03553)-1) 

 

#### calculate pathways 

#N cycle 

dissimilatory_nitrogen_reduction_n = np.average([K00362n, K00363n, K03385n, K15876n]) 

assimilatory_nitrogen_reduction_n = np.average([K17877n, K00366n]) 

denitrification_n = np.average([K02305n, K04561n, K00376n]) 

nitrogen_fixation_n = np.average([K00531n, K02586n, K02591n, K02588n]) 

nitrification_n = np.average([K10535n, K10944n]) 

#C cycle 

calvin_cycle_n = np.average([K01601n, K01602n, K00855n]) 

rTCA_n = np.average([K15230n, K15231n, K15234n, K15233n, K15232n]) 

WL_n = np.average([K00192n, K00198n, K14138n]) 

carbon_fixation_n = calvin_cycle_n+rTCA_n+WL_n 

respiration_n = np.average([K02256n, K02262n, K02274n, K02276n]) 

CO_oxidation_n = np.average([K03520n, K03519n, K03518n]) 

methanogenesis_n = np.average([K00401n, K00400n]) 



434 
 

methane_oxidation_n = np.average([K16157n, K16158n, K16159n, K16161n]) 

#S cycle 

assimilatory_sulfur_reduction_n = np.average([K00390n, K00392n, K00380n, K00381n]) 

dissimilatory_sulfur_reduction_n = np.average([K00394rn, K00395rn, K11180rn, K11181rn]) 

dissimilatory_sulfur_oxidation_n = np.average([K00394on, K00395on, K11180on, K11181on]) 

sox_n = np.average([K17224n, K17227n, K17226n, K17222n, K17223n, K17225n]) 

#PHA storage 

PHA_bioynthesis_n = np.average([K05973n, K03821n]) 

#CRISPR 

CRISPR_overall_n = np.average([K15342n, K09951n]) 

CRISPR_1I_n = np.average([K07012n, K07475n]) 

CRISPR_1IA_n = np.average([K19088n]) 

CRISPR_1IE_n = np.average([K19123n]) 

CRISPR_1IF_n = np.average([K19127n]) 

CRISPR_1III_n = np.average([K07016n]) 

CRISPR_1IIIA_n = np.average([K19138n]) 

CRISPR_1IIIB_n = np.average([K19141n]) 

CRISPR_2II_n = np.average([K09952n]) 

CRISPR_2IIA_n = np.average([K19137n]) 

CRISPR_2IIB_n = np.average([K07464n]) 

#photosynthesis 

photosystem_II_n = np.average([K02703n, K02706n, K02705n, K02704n, K02707n, 

K02708n]) 

photosystem_I_n = np.average([K02689n, K02690n, K02691n, K02692n, K02693n, K02694n]) 

anoxygenic_photosystem_II_n = np.average([K08928n, K08929n]) 

anoxygenic_photosystem_I_n = np.average([K08940n, K08941n, K08942n, K08943n]) 

#rhodopsins 

rhodopsins_n = np.average([K04643n, K04642n, K04641n, K04250n, K00909n]) 

#urea 

urea_n = np.average([K01428n, K01429n, K01430n]) 

#glycerol 

glycerol_n = np.average([K00111n, K00112n, K00113n, K00096n]) 

#O2 related 

superoxidedismutase_n = np.average([K00518n, K04564n, K04565n, K16627n]) 

#phosphonate catabolism 

phosphonate_catabolism_n = np.average([K06164n, K05780n, K06165n, K06166n, K06167n, 

K06163n, K06162n]) 
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#pigments 

bacterioruberin_n = K08977n 

bacteriorhodopsin_n = K04641n #also included in rhodopsins  

astaxanthin_n = np.average([K09836n, K15746n]) 

#sulfur genes from organic 

DMSO_reduction_n = np.average([K16953n, K17486n, K20452n, K07306n]) 

sqrA_n = K17218n 

#normalization 

recA_n = K03553n 

 

#### write data out 

header = ['dissimilatory_nitrogen_reduction', 'assimilatory_nitrogen_reduction', 'denitrification', 

'nitrogen_fixation', 'nitrification', 'calvin_cycle', 'rTCA', 'WL', 'carbon_fixation', 'respiration', 

'CO_oxidation', 'methanogenesis', 'methane_oxidation', 'assimilatory_sulfur_reduction', 

'dissimilatory_sulfur_reduction', 'dissimilatory_sulfur_oxidation', 'sox', 'PHA_bioynthesis', 

'CRISPR_overall', 'CRISPR_1I', 'CRISPR_1IA', 'CRISPR_1IE', 'CRISPR_1IF', 'CRISPR_1III', 

'CRISPR_1IIIA', 'CRISPR_1IIIB', 'CRISPR_2II', 'CRISPR_2IIA', 'CRISPR_2IIB', 

'photosystem_II', 'photosystem_I', 'anoxygenic_photosystem_II', 'anoxygenic_photosystem_I', 

'rhodopsins', 'urea', 'glycerol', 'superoxidedismutase', 'phosphonate_catabolism', 

'bacterioruberin', 'bacteriorhodopsin', 'astaxanthin', 'DMSO_reduction', 'sqrA', 'recA', 'total', 

'issues'] 

results_c = [dissimilatory_nitrogen_reduction_c, assimilatory_nitrogen_reduction_c, 

denitrification_c, nitrogen_fixation_c, nitrification_c, calvin_cycle_c, rTCA_c, WL_c, 

carbon_fixation_c, respiration_c, CO_oxidation_c, methanogenesis_c, methane_oxidation_c, 

assimilatory_sulfur_reduction_c, dissimilatory_sulfur_reduction_c, 

dissimilatory_sulfur_oxidation_c, sox_c, PHA_bioynthesis_c, CRISPR_overall_c, 

CRISPR_1I_c, CRISPR_1IA_c, CRISPR_1IE_c, CRISPR_1IF_c, CRISPR_1III_c, 

CRISPR_1IIIA_c, CRISPR_1IIIB_c, CRISPR_2II_c, CRISPR_2IIA_c, CRISPR_2IIB_c, 

photosystem_II_c, photosystem_I_c, anoxygenic_photosystem_II_c, 

anoxygenic_photosystem_I_c, rhodopsins_c, urea_c, glycerol_c, superoxidedismutase_c, 

phosphonate_catabolism_c, bacterioruberin_c, bacteriorhodopsin_c, astaxanthin_c, 

DMSO_reduction_c, sqrA_c, recA_c] 

results_n = [dissimilatory_nitrogen_reduction_n, assimilatory_nitrogen_reduction_n, 

denitrification_n, nitrogen_fixation_n, nitrification_n, calvin_cycle_n, rTCA_n, WL_n, 

carbon_fixation_n, respiration_n, CO_oxidation_n, methanogenesis_n, methane_oxidation_n, 

assimilatory_sulfur_reduction_n, dissimilatory_sulfur_reduction_n, 

dissimilatory_sulfur_oxidation_n, sox_n, PHA_bioynthesis_n, CRISPR_overall_n, 
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CRISPR_1I_n, CRISPR_1IA_n, CRISPR_1IE_n, CRISPR_1IF_n, CRISPR_1III_n, 

CRISPR_1IIIA_n, CRISPR_1IIIB_n, CRISPR_2II_n, CRISPR_2IIA_n, CRISPR_2IIB_n, 

photosystem_II_n, photosystem_I_n, anoxygenic_photosystem_II_n, 

anoxygenic_photosystem_I_n, rhodopsins_n, urea_n, glycerol_n, superoxidedismutase_n, 

phosphonate_catabolism_n, bacterioruberin_n, bacteriorhodopsin_n, astaxanthin_n, 

DMSO_reduction_n, sqrA_n, recA_n] 

all_header = ['K00362', 'K00363', 'K03385', 'K15876', 'K17877', 'K00366', 'K02305', 'K04561', 

'K00376', 'K00531', 'K02586', 'K02591', 'K02588', 'K10535', 'K10944', 'K01601', 'K01602', 

'K00855', 'K15230', 'K15231', 'K15234', 'K15233', 'K15232', 'K00192', 'K00198', 'K14138', 

'K02256', 'K02262', 'K02274', 'K02276', 'K03520', 'K03519', 'K03518', 'K00401', 'K00400', 

'K16157', 'K16158', 'K16159', 'K16161', 'K00390', 'K00392', 'K00380', 'K00381', 'K17224', 

'K17227', 'K17226', 'K17222', 'K17223', 'K17225', 'K05973', 'K03821', 'K15342', 'K09951', 

'K07012', 'K07475', 'K19088', 'K19123', 'K19127', 'K07016', 'K19138', 'K19141', 'K09952', 

'K19137', 'K07464', 'K02703', 'K02706', 'K02705', 'K02704', 'K02707', 'K02708', 'K02689', 

'K02690', 'K02691', 'K02692', 'K02693', 'K02694', 'K08928', 'K08929', 'K08940', 'K08941', 

'K08942', 'K08943', 'K04643', 'K04642', 'K04641', 'K04250', 'K00909', 'K01428', 'K01429', 

'K01430', 'K00111', 'K00112', 'K00113', 'K00096', 'K00518', 'K04564', 'K04565', 'K16627', 

'K06164', 'K05780', 'K06165', 'K06166', 'K06167', 'K06163', 'K06162', 'K08977', 'K09836', 

'K15746', 'K16953', 'K17486', 'K20452', 'K07306', 'K17218', 'K03553', 'K00394r', 'K00395r', 

'K11180r', 'K11181r', 'K00394o', 'K00395o', 'K11180o', 'K11181o'] 

all_c = [K00362c, K00363c, K03385c, K15876c, K17877c, K00366c, K02305c, K04561c, 

K00376c, K00531c, K02586c, K02591c, K02588c, K10535c, K10944c, K01601c, K01602c, 

K00855c, K15230c, K15231c, K15234c, K15233c, K15232c, K00192c, K00198c, K14138c, 

K02256c, K02262c, K02274c, K02276c, K03520c, K03519c, K03518c, K00401c, K00400c, 

K16157c, K16158c, K16159c, K16161c, K00390c, K00392c, K00380c, K00381c, K17224c, 

K17227c, K17226c, K17222c, K17223c, K17225c, K05973c, K03821c, K15342c, K09951c, 

K07012c, K07475c, K19088c, K19123c, K19127c, K07016c, K19138c, K19141c, K09952c, 

K19137c, K07464c, K02703c, K02706c, K02705c, K02704c, K02707c, K02708c, K02689c, 

K02690c, K02691c, K02692c, K02693c, K02694c, K08928c, K08929c, K08940c, K08941c, 

K08942c, K08943c, K04643c, K04642c, K04641c, K04250c, K00909c, K01428c, K01429c, 

K01430c, K00111c, K00112c, K00113c, K00096c, K00518c, K04564c, K04565c, K16627c, 

K06164c, K05780c, K06165c, K06166c, K06167c, K06163c, K06162c, K08977c, K09836c, 

K15746c, K16953c, K17486c, K20452c, K07306c, K17218c, K03553c, K00394rc, K00395rc, 

K11180rc, K11181rc, K00394oc, K00395oc, K11180oc, K11181oc] 

all_n = [K00362n, K00363n, K03385n, K15876n, K17877n, K00366n, K02305n, K04561n, 

K00376n, K00531n, K02586n, K02591n, K02588n, K10535n, K10944n, K01601n, K01602n, 

K00855n, K15230n, K15231n, K15234n, K15233n, K15232n, K00192n, K00198n, K14138n, 
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K02256n, K02262n, K02274n, K02276n, K03520n, K03519n, K03518n, K00401n, K00400n, 

K16157n, K16158n, K16159n, K16161n, K00390n, K00392n, K00380n, K00381n, K17224n, 

K17227n, K17226n, K17222n, K17223n, K17225n, K05973n, K03821n, K15342n, K09951n, 

K07012n, K07475n, K19088n, K19123n, K19127n, K07016n, K19138n, K19141n, K09952n, 

K19137n, K07464n, K02703n, K02706n, K02705n, K02704n, K02707n, K02708n, K02689n, 

K02690n, K02691n, K02692n, K02693n, K02694n, K08928n, K08929n, K08940n, K08941n, 

K08942n, K08943n, K04643n, K04642n, K04641n, K04250n, K00909n, K01428n, K01429n, 

K01430n, K00111n, K00112n, K00113n, K00096n, K00518n, K04564n, K04565n, K16627n, 

K06164n, K05780n, K06165n, K06166n, K06167n, K06163n, K06162n, K08977n, K09836n, 

K15746n, K16953n, K17486n, K20452n, K07306n, K17218n, K03553n, K00394rn, K00395rn, 

K11180rn, K11181rn, K00394on, K00395on, K11180on, K11181on] 

with open('%s' + file_root + '.assembled.faa.KO_summary.csv', 'w') as count_file: 

    count_csv = csv.writer(count_file) 

    count_csv.writerow(['pathway', 'by coverage', 'by count']) 

    for i in range(len(header)-2): 

        count_csv.writerow([header[i], results_c[i],cov_norm,results_n[i],count_norm]) 

    count_csv.writerow([header[-2], cov_norm, count_norm]) 

    count_csv.writerow([header[-1], len(no_cov), len(no_cov)]) 

    count_csv.writerow(['single markers below here']) 

    for i in range(len(all_header)): 

        count_csv.writerow([all_header[i], all_c[i], all_n[i]]) 

print('KEGG done') 

"""%(ass_num, head_dir + ass_num + '.assembled_cov.faa', KEGG_file, head_dir) 

 

with open(res_dir + 'KOpathways_v8.py', 'w') as KEGG_script: 

    KEGG_script.write(KEGG_code) 

 

## write COG and KEGG bash 

KEGG_bash = '''#!/bin/bash 

#PBS -N SCRATCH 

#PBS -l nodes=1:ppn=1 

#PBS -l vmem=12gb 

#PBS -l walltime=48:00:00 

#PBS -o %sCOGKEGG_Output_Report_1 

#PBS -o %sCOGKEGG_Error_Report_1 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 
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module load python/3.5.2 

cd %s 

 

python3 COG_summarize_v2.py 

python3 KOpathways_v8.py 

'''%(res_dir, res_dir, res_dir) 

 

with open(res_dir + 'COGKEGG.pbs', 'w') as KEGG_pbs: 

    KEGG_pbs.write(KEGG_bash) 

 

#### write metabat mapping 

#### write 2500 filter python script 

filter_script = """# -*- coding: utf-8 -*- 

'''Created on Tue Jul 12 15:54:25 2016 

@author: jay3 

Based on comb_assemlies_v3.py. Filters assemblies for contigs less than 2500 

for use with MetaBAT.''' 

 

import Bio.SeqIO as SeqIO 

seqs = [] 

file_name='%s' 

with open(file_name, 'r') as read_file: 

    for record in SeqIO.parse(read_file, "fasta"): 

        if len(record.seq) >= 2500: 

            seqs.append(record)             

with open('%s' + '.assembled_2500.fna', 'w') as comb_file: 

    SeqIO.write(seqs, comb_file, "fasta") 

"""%(DNAass_file, head_dir + 'metabat/' + ass_num) 

 

with open(res_dir + 'assemblies_filter_v1.py', 'w') as filter_py: 

    filter_py.write(filter_script) 

 

#### write mapping bash script 

metabat_script = '''#!/bin/bash 

#PBS -N SCRATCH 

#PBS -l nodes=1:ppn=4 

#PBS -l vmem=31gb 
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#PBS -l walltime=12:00:00 

#PBS -o %sSample2500_map_Output_Report_1 

#PBS -o %sSample2500_map_Error_Report_1 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

cd %s 

module load python/3.5.2 

python3 assemblies_filter_v1.py 

 

module load bbmap/35.82 

export _JAVA_OPTIONS="-Xmx28g" 

cd %s 

bbmap.sh ref=%s.assembled_2500.fna 

 

cd %s 

bbmap.sh ref=%s.assembled_2500.fna in='%s' outm=%s outu=%s idfilter=.9 threads=4 

'''%(res_dir, res_dir, res_dir, head_dir + 'metabat/', ass_num, raw_dir, head_dir + 'metabat/' + 

ass_num, read_file.split('/')[-1], head_dir + 'metabat/reads_in_' + ass_num + 

'_assembled2500.fna', head_dir + 'metabat/reads_not_in_' + ass_num + '_assembled2500.fna') 

#'../../'+read_file.split('/')[-1] 

 

with open(res_dir + 'sample2500_map.pbs', 'w') as metabat_pbs: 

    metabat_pbs.write(metabat_script) 

 

#### write preprocess bash 

preprocess_script = '''#!/bin/bash  

#PBS -N SCRATCH 

#PBS -l nodes=1:ppn=1 

#PBS -l vmem=8gb 

#PBS -l walltime=12:00:00 

#PBS -o %sPreprocess_Output_Report_1 

#PBS -o %sPreprocess_Error_Report_1 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

module load python/3.5.2 

cd %s 

python3 append_cov2ORFs.py 
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'''%(res_dir, res_dir, res_dir) 

 

with open(res_dir + 'preprocess.pbs', 'w') as preprocess_pbs: 

    preprocess_pbs.write(preprocess_script) 

 

#### submit first job 

command = '''cd %s 

qsub %s'''%(res_dir, res_dir + 'preprocess.pbs') #the change dir is so that the SCRATCH###### 

report is placed in resources 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:7] 

with open(res_dir + 'job_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log) 

    job_csv.writerow(['Preprocess', screen]) 

print('done') 
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Appendix C 

 
Cavlab pipeline v4.1 — the latest metagenome analysis pipeline 
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Code C1. Python code for Cavlab pipeline v4.1. This code was developed for the analysis of 

metagenomes annotated by JGI’s IMG system. It verifies input resource files and file paths 

(Resource file verification component), creates an output folder structure (Output folder 

structure preparation component), and performs contig taxonomic assignment and species 

abundance calculations (Contig taxonomy and abundance estimation component), COG 

functional potential analyses (COG functional potential analysis component), KEGG functional 

potential analyses (KEGG functional potential analysis component), and protein taxonomic 

assignments using MEGAN (DIAMOND and MEGAN6 protein taxonomy component). Each 

of these analyses is described in details in Chapter 2. 

""" Latest version of Cavlab pipeline. 

@author: Pratibha Panwar  

This is the main script for the metagenome analysis pipeline, which should be run 

from the JGI IMG metagenome folder. The pipeline depends on a consistent folder structure -  

IMG_Data and QC_and_Genome_Assembly/QC_Filtered_Raw_Data. 

v1.2: 

Decided to keep databases in a single folder rather than rewrite on every run. Specified # of 

threads in DIAMOND and BBMap lines. Minimum request job time has been set to 12 hrs. 

@Jay3 

v1.3a: 

Changed the version of PhyloSift that is used - direct it to use the copy of PhyloSift located in 

Katana scratch so that the database version is not updated without our knowledge - for Version 

3a Michelle Allen added the --config flag to force PhyloSift to use the config file phylosiftrc 

(which contains a flag not to update the database). @Michelle (23rd March 2017) 

v1.3b: 

Modified the output head_folder naming format. The folder will now be named as 

Cav_YYMMDD e.g. Cav_170330 for 30 March 2017. @Pratibha (30 March, 2017) 

v1.3b.1: 

Runs the pipeline without running the PhyloSift component. @Pratibha (18 April, 2017) 

v1.4.1: 

The output and error files have been merged. KEGG process wall-time has been increased from 

48 to 60 h. @Pratibha (20 April, 2017) 

v1.4.2 

Modification in the code for selecting protein sequence file, to ensure that '.assembled.faa' 

protein file would be picked and not the '.unassembled_illumina.faa' protein file.  



444 
 

In addition, the wall-time for COGKEGG has been increased to 96 h. 

@Pratibha (17 May, 2017) 

v1.4.2a 

The wall-time for COGKEGG has been increased to 120 h. 

@Pratibha (25 May, 2017) 

v1.5 

Separated the COG and KEGG processes. COG wall-time is still 120 h, but KEGG has been 

given only 12 h wall-time. 

@Pratibha (28 May, 2017) 

v2.0 

Major updates to the COG process to reduce its process time. COG process has now been 

allotted 12 h wall-time, in place of 120 h. Moreover, the COG conversion file has been 

updated. 

PhyloSift component has been removed. 

CRISPR component has been added. 

In MEGAN, the KEGG mapping file has been included. 

@Pratibha (3 July, 2017) 

v2.1 

Some metagenomes do not have the raw read file (fastq) file in the usual IMG metagenome 

folder (QC_Filtered_Raw_Data). Therefore, added new commands to search for fastq files in 

other relevant folders. 

Associated changes were made in MetaBATt section. 

Also, made changes to KEGG code. 

@Pratibha (13 July, 2017) 

v2.2 

This version resolves the issue with the use of deprecated mapping files for MEGAN6. The 

MEGAN6 component now uses the latest v6.8.18 and the associated updated mapping files. The 

NCBI-NR database has also been updated, which is why the mapping files had to be updated. 

The only drawback of this update is that the KEGG mapping file is no longer valid. Hence, this 

MEGAN6 output file will have taxonomy and eggNOG data, but no KEGG data. 

@Pratibha (7 August, 2017) 

v2.2a 

This version includes a minor addition to the CRISPR code. Apart from creating a CSV 

of CRISPRs and their corresponding reads, the script will also create a FASTA file 
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containing the CRISPR spacer sequences as records and corresponding contig name (along with 

position of CRISPR spacer) as record.id. As each spacer can be present in more than one 

contig and each contig can contain more than one spacer, mentioning the position in the 

record.id should help to distinguish between such records. @Pratibha (8 August, 2017) 

v2.2b 

This version includes a minor addition to the MEGAN6 process: Interpro mapping file has been 

included. The MEGAN6 output will now include Interpro2GO data. 

KEGG mapping has been removed from MEGAN6 component, as there are no accession to 

kegg mapping files available for MEGAN6 community edition. @Pratibha (10 August, 2017) 

v3.0 

This version includes major updates to MEGAN6 process, with addition of contig taxonomic 

mapping and read-based relative abundance estimation. 

The folder structure has also been revised to make it more comprehensive.  

The protein sequence file pre-processing has been changed, so that the record ID includes 

protein name instead of associated contig coverage. 

The CRISPR analysis and early steps of MetaBAT have been removed from this version. The 

MetaBAT pipeline will be separate from this pipeline and will be run by Michelle Allen. 

@Pratibha (2 February, 2018) 

v3.1 

The taxonomic abundance component has been removed from this version of the pipeline, as a 

new method for calculating abundances has been developed. @Pratibha (15 February, 2018) 

v3.1a 

Slight modifications were made in the way coverage and mapping files were read and used. 

@Pratibha (19 February, 2018) 

v3.2 

Includes modifications to the code for reading the contig file. An extra step has been added to 

ensure that the correct contig file (scaffold file) is selected from the QC_and_Assembly folder. 

@Pratibha (27 February, 2018) 

v3.3 

Changes have been made to KEGG and COG to acquire the total coverage of proteins that do 

not fall in any of the decided categories. 

The COG output will no longer be a fraction of the total coverage of all proteins in the 

metagenome, although this information will still be provided in the output file. 

The output head folder name will now include the pipeline version. @Pratibha (1 March, 2018) 
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v4 

Output folder names have been changed. 

LAST and MEGAN-LR for contig taxonomy were removed. 

A script for IMG protein taxonomy-based contig taxonomy analysis and abundance estimation 

was added. 

Updated the list of KEGG numbers and pathways/enzymes analysed in KEGG analysis 

component. Updated the list of KEGG database files and their paths. 

Updated the MEGAN mapping files for protein taxonomy and function section. @Pratibha (28-

29 May, 2020) 

v4.1 

Added the new JGI file nomenclatures to the script. 

Fixed an issue with the latest COG files downloaded from JGI IMG, by removing an 

unnecessary blank column, if present. @Pratibha (13 June, 2020) 

""" 

 

from datetime import date 

import os 

import subprocess 

from Bio import SeqIO 

import sys 

import csv 

current_dir = subprocess.check_output('pwd', shell = True).decode().strip() + '/' # get current dir 

 

#### Resource file verification component #### 

go = [] 

prot, phylo, cog, kegg, mapf, product, cov = 0, 0, 0, 0, 0, 0, 0 

if os.path.isdir('./IMG_Data') == True: 

    for file in os.listdir('./IMG_Data'): 

        if file[-13:] == 'assembled.faa' or (file[-12:] == 'proteins.faa' and file.split('_')[1] != 

'prodigal' and file.split('_')[1] != 'genemark'): # find protein sequence file 

            assembly_num = file.split('.')[0] 

            prot = 1 

            PROTEIN_file = current_dir + 'IMG_Data/' + file 

        if len(file) > 19: # to avoid python index error 

            if file[-19:] == 'assembled.phylodist' or file[-18:] == 'gene_phylogeny.tsv': # find 

phylodist annotation file 



447 
 

                phylo = 1 

                protTAXA_file = current_dir + 'IMG_Data/' + file 

        if file[-16:] == 'assembled.faa.KO' or file[-12:] == 'assembled.KO' or file[-6:] == 'ko.tsv': # 

find KEGG annotation file 

            kegg = 1 

            KEGG_file = current_dir + 'IMG_Data/' + file 

        if len(file) > 24: # to avoid python index error 

            if file[-19:] == 'assembled.names_map' or file[-24:] == 'contig_names_mapping.tsv': # 

find scaffold to conig mapping file 

                mapf = 1 

                MAP_file = current_dir + 'IMG_Data/' + file 

        if len(file) > 23: # to avoid python index error 

            if file[-23:] == 'assembled.product.names' or file[-23:] == 'assembled.product_names' or 

file[-17:] == 'product_names.tsv': # find protein annotation file with product name 

                product = 1 

                PRODUCT_file = current_dir + 'IMG_Data/' + file     

else: 

    print('Error: IMG_Data folder does not exist.') 

 

if os.path.isdir('./IMG_Data') == True: 

    for file in os.listdir('./IMG_Data'): 

        if file[-17:] == 'assembled.faa.COG' or file[-13:] == 'assembled.COG': # find COG 

annotation file 

            cog = 1 

            COG_file = current_dir + 'IMG_Data/' + file 

        elif file[-7:] == 'cog.gff': 

            with open(current_dir + 'IMG_Data/' + file, 'r') as inf: # to check if there is an empty 

column between protein ID and COG number and remove it 

                infc = csv.reader(inf, delimiter = ‘\t’) 

                test = next(infc) 

                if test[1] == '': 

                    with open(current_dir + 'COGfile-mod.txt', 'w', newline = '') as outf: 

                        outfc = csv.writer(outf, delimiter = ‘\t’) 

                        for row in infc: 

                            outfc.writerow([row[0], row[2]]) 

                    cog = 1 

                    COG_file = current_dir + 'COGfile-mod.txt' 
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                else: 

                    cog = 1 

                    COG_file = current_dir + 'IMG_Data/' + file 

 

if os.path.isdir('./IMG_Data') == True: 

    for file in os.listdir('./IMG_Data'): 

        if file[-13:] == 'scaffolds.cov' or file[0:17] == 'seq_coverage_file' or file[-14:] == 

'sorted.bam.cov': # find contig coverage file 

            cov = 1 

            COV_file = current_dir + 'IMG_Data/' + file 

 

if cov == 0: # if coverage file not in IMG_Data folder, check in QC_and_Genome_Assembly 

folder 

    if os.path.isdir('./QC_and_Genome_Assembly') == True: 

        with os.scandir('./QC_and_Genome_Assembly') as direcs: 

            for direc in direcs: 

                if direc.is_dir(): 

                    for file in os.listdir(direc): 

                        if file == 'covstats.txt': 

                            cov = 1 

                            COV_file = current_dir + 'QC_and_Genome_Assembly/' + direc.name + '/' + 

file 

 

if cov == 0: # if coverage file still not found, look in Assembled_data folder 

    if os.path.isdir('./Assembled_data') == True: 

        for file in os.listdir('./Assembled_data'): 

            if file[-12:] == 'coverage.txt': 

                cov = 1 

                COV_file = current_dir + 'Assembled_data/' + file 

                 

if prot == 0: 

    print('Error: Protein sequence file not found.') 

else: 

    print('Protein sequence file: ', PROTEIN_file) 

    go.append(1) 

if phylo == 0: 

    print('Error: Protein taxonomy file not found.')   
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else: 

    print('Protein taxonomy file: ', protTAXA_file) 

    go.append(1) 

if cog == 0: 

    print('Error: COG file not found.')   

else: 

    print('COG file: ', COG_file) 

    go.append(1) 

if kegg == 0: 

    print('Error: KEGG file not found.') 

else: 

    print('KEGG file: ', KEGG_file) 

    go.append(1) 

if mapf == 0: 

    print('Error: Scaffold to contig mapping file not found.') 

else: 

    print('Scaffold to contig mapping file: ', MAP_file) 

    go.append(1) 

if product == 0: 

    print('Error: Protein product name file not found.') 

else: 

    print('Protein product name file: ', PRODUCT_file) 

    go.append(1) 

     

if cov == 0: 

    print('Error: Contig coverage file not found.') 

else: 

    print('Contig coverage file: ', COV_file) 

    go.append(1) 

 

if os.path.isdir('./QC_and_Genome_Assembly') == True: 

    for file in os.listdir('./QC_and_Genome_Assembly'): 

        if file[-13:] == 'contigs.fasta': # find scaffold sequence file 

            contf = current_dir + 'QC_and_Genome_Assembly/' + file 

    maps = {} 

    with open(MAP_file, ‘r’) as mapfile: 

        mapcsv = csv.reader(mapfile, delimiter = ‘\t’) 
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        for row in mapcsv: 

            maps[row[0]] = row[1] 

    mapfile.close() 

    with open(contf, ‘r’) as contigs: # prepare contig sequence file from sacffold file 

        with open('./final.contigs-mod.fna', ‘w’) as newcontigs: 

            for record in SeqIO.parse(contigs, "fasta"): 

                record.id = maps[record.id] 

                SeqIO.write(record, newcontigs, ”fasta”) 

    newcontigs.close() 

    contigs.close() 

    go.append(1) 

    CONTIG_file = current_dir + 'final.contigs-mod.fna' 

    print('New contig file created: ', CONTIG_file) 

elif os.path.isdir('./IMG_Data') == True: 

    for file in os.listdir('./IMG_Data'): 

        if file[-13:] == 'assembled.fna' or file[-11:] == 'contigs.fna': # if no scaffold file present, 

search for contig sequence file 

            go.append(1) 

            CONTIG_file = current_dir + 'IMG_Data/' + file 

            print('Contig sequence file: ', CONTIG_file)     

else: 

    print('Error: Contig sequence file not found.') 

 

#### Verify COG and KEGG database files 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K00394_pathway_database_v1.fast

a') == 1: 

    print('K00394_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K00394_pathway_database_v1.fasta not found.') 

     

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K00395_pathway_database_v1.fast

a') == 1: 

    print('K00395_pathway_database_v1.fasta found.') 

    go.append(1) 



451 
 

else: 

    print('Error: K00395_pathway_database_v1.fasta not found.') 

 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K11180_pathway_database_v1.fast

a') == 1: 

    print('K11180_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K11180_pathway_database_v1.fasta not found.') 

 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K11181_pathway_database_v1.fast

a') == 1: 

    print('K11181_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K11181_pathway_database_v1.fasta not found.') 

 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K00958_pathway_database_v1.fast

a') == 1: 

    print('K00958_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K00958_pathway_database_v1.fasta not found.') 

 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K10944_pathway_database_v1.fast

a') == 1: 

    print('K10944_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K10944_pathway_database_v1.fasta not found.') 
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if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K10945_pathway_database_v1.fast

a') == 1: 

    print('K10945_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K10945_pathway_database_v1.fasta not found.') 

 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K10946_pathway_database_v1.fast

a') == 1: 

    print('K10946_pathway_database_v1.fasta found.') 

    go.append(1) 

else: 

    print('Error: K10946_pathway_database_v1.fasta not found.') 

 

if os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/COG_conversion_v2.csv') == 1: 

    print('COG_conversion_v2.csv found.') 

    go.append(1) 

else: 

    print('Error: COG_conversion_v2.csv not found.') 

 

#### Verify all files present    

if sum(go) == 17: 

    print('All files are present. Good to go.') 

else: 

    print('Error: Some files are missing. Launch scrubbed.') 

    sys.exit() 

 

#### Output folder structure preparation component #### 

now = date.today() 

if now.month < 10: 

    month = '0' + str(now.month) 

else: 

    month = now.month   

 

if now.day < 10: 
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    day = '0' + str(now.day) 

else: 

    day = now.day 

    

head_folder = 'Cavlab_v4.1_' + str(now.year)[-2:] + str(month) + str(day) 

subprocess.call('mkdir ' + head_folder, shell=True) 

subprocess.call('mkdir ' + head_folder + '/Resources', shell=True) 

subprocess.call('mkdir ' + head_folder + '/Contig_taxonomy_and_abundance', shell=True) 

subprocess.call('mkdir ' + head_folder + '/Protein_taxonomy_and_function', shell=True) 

subprocess.call('mkdir ' + head_folder + '/COG_KEGG_functions', shell=True) 

 

head_dir = current_dir + head_folder + '/' 

res_dir = head_dir + 'Resources/' 

contTaxa_dir = head_dir + 'Contig_taxonomy_and_abundance/' 

protTaxa_dir = head_dir + 'Protein_taxonomy_and_function/' 

cogkegg_dir = head_dir + 'COG_KEGG_functions/' 

 

#### Readme file preparation 

readme_text = """This is the head folder for the Cavlab metagenome analysis pipeline v4.1, 

created on %s.%s.%s (DDMMYYYY format). 

 

The pipeline covers 3 main analyses: 

1. Contig taxonomic classification and abundance estimation [output in 

Contig_taxonomy_and_abundance subfolder]. 

2. Protein taxonomic classification and function analysis [output in 

Protein_taxonomy_and_function subfolder]. 

3. Functional potential analysis [output in COG_KEGG_functions subfolder]. 

 

Resources subfolder contains the python and bash scripts, along with the output log/report files. 

Jobs_log.txt has a record of the individual jobs created as a part of the pipeline. 

Each entry corresponds to a job running on Katana and mentions the JobID. 

Email reports can be found in rcavlab@gmail.com. 

 

Contig_taxonomy_and_abundance subfolder contains the phylodist-based contig taxonomy 

output, along with species abundance estimation file. 

The outputs are plain text files (.txt) generated through a python script. 
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Protein_taxonomy_and_function subfolder contains the compressesed DAA alignment file 

(.daa.bz2) from Diamond and the RMA taxonomy file from MEGAN6. 

It also has a modified protein sequence file with product names added to protein headers. This 

file is used as an input for Diamond alignment. 

The RMA file also has COG (based on eggNOG database) and GO terms (based on InterPro 

database) information. 

The MEGAN COG comes from the eggNOG database and might differ from that produced in 

the COG section of the pipeline, which is based on IMG COG annotations. 

 

COG_KEGG_functions subfolder contains COG and KEGG outputs. 

COG.csv is the summary of the COG categories. 

The "by coverage" column is weighted by average fold proteins and "by count" is simply the 

fraction of counts of each COG category. 

KEGG.csv is the KEGG pathways summary and its columns are the same as those for COG. It 

aggregates markers into pathways using specific formulae used in the pipeline. 

 

This is version 4 of the Cavlab pipeline and uses: 

append_name2proteins.py 

    python/v3.8.2 

phylodist-to-contigSpeciesAbn.py 

    python/v3.8.2 

diamond/0.9.31 

    nr_Jul2019 database prepared on July 11, 2019 

megan/6.15.1 

    java/8u121 

COG_categorisation.py 

    python/v3.8.2 

KEGG_pathways.py 

    python/v3.8.2 

 

The pipeline was initiated by James Bevington on behalf of the Cavicchioli lab from BABS, 

UNSW, and he worked on the pipeline uptil v1.2. 

Michelle Allen tried resolving technical issues in PyloSift runs; the software runs were stalled in 

v1.3b.1 and removed in v3.0. 

Pratibha Panwar continued working on the pipeline and prepared the lates v4.1 as part of her 

thesis. 
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For further information or clarification contact Pratibha Panwar 

(p.panwar@student.unsw.edu.au). 

"""%(str(now.day), str(now.month), str(now.year)) 

 

with open(head_dir + 'Readme.txt', ‘w’) as readme_file: 

    readme_file.write(readme_text) 

 

#### Submit jobs as part of the Cavlab pipeline 

jobprep_py = """import subprocess 

import csv 

 

command = 'qsub ' + '%s' + 'ContigTaxa_and_Abn.pbs' 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:6] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log, delimiter = ‘\t’) 

    job_csv.writerow(['Phylodist to Contig taxonomy & abundance', screen]) 

print('Contig taxonomy and abundance estimation job submitted.') 

 

command = 'qsub ' + '%s' + 'protein_function.pbs' 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:6] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log, delimiter = ‘\t’) 

    job_csv.writerow(['Diamond and MEGAN', screen]) 

print('Protein function job submitted.') 

 

command = 'qsub ' + '%s' + 'COG.pbs' 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:6] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log, delimiter = ‘\t’) 

    job_csv.writerow(['COG', screen]) 

print('COG function job submitted.') 

 

command = 'qsub ' + '%s' + 'KEGG.pbs' 

screen = subprocess.check_output(command, shell = True) 
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screen = screen.decode()[0:6] 

with open('%sjob_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log, delimiter = ‘\t’) 

    job_csv.writerow(['KEGG', screen]) 

print('KEGG function job submitted.') 

"""%(res_dir, res_dir, res_dir, res_dir, res_dir, res_dir, res_dir, res_dir) 

 

with open(res_dir + 'jobsubmission.py', ‘w’) as jobsub_script: 

    jobsub_script.write(jobprep_py) 

 

#### Pre-processing component #### 

prtbin_py = """import csv 

import Bio.SeqIO as SeqIO 

 

#### Reading protein product name file 

names = {} 

with open('%s', ‘r’) as namef: 

    namefc = csv.reader(namef, delimiter = ‘\t’) 

    for row in namefc: 

        names[row[0]] = ('_').join(row[1].split(' '))     

         

#### add protein product names to protein sequence headers 

with open('%s', ‘r’) as prtfile: 

    with open('%s.assembled_names.faa', ‘w’) as newfile: 

        for record in SeqIO.parse(prtfile, “fasta”): 

            if record.id in names.keys(): 

                record.id = record.id + '|' + names[record.id] 

            else: 

                record.id = record.id + '|Uncharacterized_predicted_protein' 

            SeqIO.write(record, newfile, 'fasta') 

"""%(PRODUCT_file, PROTEIN_file, protTaxa_dir + assembly_num) 

 

with open(res_dir + 'append_name2proteins.py', ‘w’) as name2ORFs_script: 

    name2ORFs_script.write(prtbin_py) 

PROTEIN_file = protTaxa_dir + assembly_num + '.assembled_names.faa' 

 

#### 1. Contig taxonomy and abundance estimation component #### 
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# Write python script 

phylodist2contigTaxa_py = """import csv 

from collections import Counter 

import operator 

 

def checkEqual(lst): 

    return len(set(lst)) == 1 # if frequency of occurrence of all taxonomies is same, return True 

 

scaflen, scafavgfold, allAbn, totcont = {}, {}, 0, 0 

with open('%s', ‘r’) as covfile:  

    covfilec = csv.reader(covfile,delimiter = ‘\t’) 

    next(covfilec) # skip header line 

    for row in covfilec: 

        scaflen[row[0]] = float(row[2]) # scaflen = {scaffoldID:length of scaffold} 

        scafavgfold[row[0]] = float(row[1]) # scafavgfold = {scaffoldID: avg fold of scaffold} 

        allAbn += float(row[1])*float(row[2]) 

        totcont += 1 

print('Coverage file read.') 

 

#### Preparing Contig ID to scaffold length and scaffold average fold dictionaries 

contlen, contavgfold = {}, {} 

with open('%s', ‘r’) as mapfile: 

    mapfilec = csv.reader(mapfile,delimiter = ‘\t’) 

    for row in mapfilec: 

        contlen[row[1]] = scaflen[row[0]] # contlen = {contigID:scaffold length} 

        contavgfold[row[1]] = scafavgfold[row[0]]# contavgfold = {contigID: avg fold of 

scaffold} 

    contigIDlen = len(row[1]) # contig header lengths in a metagenome are constant, so length of 

any header can be used 

print('Contig to scaffold mapping file read.') 

 

with open('%s', ‘r’) as prtname: 

    prtnamec = csv.reader(prtname,delimiter = ‘\t’) 

    temp = {} 

    for row in prtnamec: 



458 
 

        temp.setdefault(row[0][0:contigIDlen],[]).append(int(1)) # temp = 

{contigID:[1,1,1,1,1,1...]}; the number of 1's in the list correspond to each gene identified on the 

contig 

    prtnum = {} 

    for k, v in temp.items(): 

        prtnum[k] = sum(v) # prtnum = {contigID:number of proteins} 

print('Protein names file read.') 

 

#### Creating dictionary of contigs and the taxonomies of the proteins on them 

contig, contigtaxonomy, contigidentity = [], {}, {} 

with open('%s', ‘r’) as phylof: 

    phylofc = csv.reader(phylof, delimiter = ‘\t’) 

    for row in phylofc: 

        contig.append(row[0][0:contigIDlen]) # create a list of contigs with protein taxonomies in 

phylodist file 

        taxonomy = ';'.join(row[4].split(';')[0:7]) # exclude strain information 

        contigtaxonomy.setdefault(row[0][0:contigIDlen],[]).append(taxonomy) # contigtaxonomy 

= {contigID:taxonomy} 

        #contigidentity.setdefault(row[0][0:contigIDlen],[]).append(row[3]+'---'+taxonomy)# 

contigidentity = {contigID:identity---taxonomy} 

    contprt = {} 

    for k, v in contigtaxonomy.items(): 

        contprt[k] = len(v) # contprt = {contigID:number of proteins with taxonomy} 

contig = sorted(list(set(contig))) # sorted list of contigs with at least one protein taxonomy 

print('Phylodist file read.') 

 

#### Writing contig taxonomy and metadata to output file 

with open('%s' + '_contigtaxa.txt', ‘w’, newline = '') as contfile: 

    contfilec = csv.writer(contfile, delimiter = ‘\t’) 

    contfilec.writerow(['Total metagenome abundance', allAbn]) 

    contfilec.writerow(['Total contigs in metagenome', totcont]) 

    contfilec.writerow(['ContigID', 'Average fold', 'Length', 'Taxonomy']) 

    for i in range(len(contig)): 

        if contig[i] in scafavgfold.keys(): # for coverage files with ContigIDs in place of 

ScaffoldIDs 

            avgfold = scafavgfold[contig[i]] 

            length = scaflen[contig[i]] 
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        else: 

            avgfold = contavgfold[contig[i]] 

            length = contlen[contig[i]] 

        taxacount = [] 

        taxa = sorted(Counter(contigtaxonomy[contig[i]]).items(),key = operator.itemgetter(1)) # 

taxa = [[taxonomy1,frequency of occurrence],...,[taxonomyN,frequency of occurence]], where 

taxonomy1 has lowest frequency and taxonomyN has highest frequency 

        if contprt[contig[i]] >= 0.30 * prtnum[contig[i]]: # 30 percent prt taxa check criteria 

            for j in range(len(taxa)): 

                taxacount.append(taxa[j][1]) # taxacount = [list of frequencies of occurrence] 

            if len(taxacount) > 1 and checkEqual(taxacount) == True: 

                contfilec.writerow([contig[i], avgfold, length, 'Unclassified']) 

            else: 

                contfilec.writerow([contig[i], avgfold, length, taxa[-1][0]]) 

        else: 

            contfilec.writerow([contig[i], avgfold, length, 'Unclassified']) 

contfile.close() 

print('Finished writing contig taxonomy file.') 

 

#### Calculating species abundance using contig taxonomies 

with open('%s' + '_speciesAbn.txt', ‘w’ , newline = '') as outf: 

    outfc = csv.writer(outf, delimiter = ‘\t’) 

    totabn, contcount, addcount, species, contigspecies, allAbun, totcontigs = 0, 0, 0, [], {}, 0, 0 

    with open('%s' + '_contigtaxa.txt',’r’) as metdat: 

        metdatc = csv.reader(metdat, delimiter = ‘\t’) 

        allAbun = float(next(metdatc)[1]) 

        totcontigs = float(next(metdatc)[1]) 

        next(metdatc) 

        for row in metdatc: 

            addcount += 1 # count number of contigs with protein taxonomies 

            totabn += float(row[1]) * float(row[2]) # calculate total abundance of assigned contigs, 

including 'Unclassified' contigs 

            # for unclassified contigs 

            if row[3] == 'Unclassified':  

                species.append('Unclassified contigs') 

                contigspecies.setdefault('Unclassified contigs',[]).append(float(row[1])*float(row[2])) 

# contigspecies = {species name:[list of abundances of species contigs]} 
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            # for contigs with only 'sp.' for species name; the genus name needs to be added 

separately 

            elif row[3].split(';')[6] == 'sp.': 

                species.append(row[3].split(';')[5] + ' ' + row[3].split(';')[6]) 

                contcount += 1 

                contigspecies.setdefault(row[3].split(';')[5] + ' ' + 

row[3].split(';')[6],[]).append(float(row[1])*float(row[2])) 

            # all other contigs with taxonomies 

            else: 

                species.append(row[3].split(';')[6]) 

                contcount += 1 

                contigspecies.setdefault(row[3].split(';')[6],[]).append(float(row[1])*float(row[2])) 

        species = list(set(species)) # removing duplicate species names 

 

        for j in range(len(species)): 

            speciescov = sum(contigspecies[species[j]]) # calculating species abundance 

            outfc.writerow([species[j], speciescov]) 

        outfc.writerow(['Assigned contigs abundance', totabn]) # includes 'Unclassifed' contigs 

        outfc.writerow(['Total metagenome abundance', allAbun]) 

        outfc.writerow(['Assigned contigs', round((contcount/totcontigs)*100,2)]) # percentage of 

metagenome contigs with protein taxonomies  

        outfc.writerow(['Unclassified contigs', round(((addcount-contcount)/totcontigs)*100,2)]) # 

percentage of metagenome contigs that were 'Unclassified' 

        outfc.writerow(['Unassigned contigs', round(100-((addcount/totcontigs)*100),2)]) # 

percentage of metagenome contigs that had no protein taxonomies 

print('Finished writing species abundance file.') 

"""%(COV_file, MAP_file, PRODUCT_file, protTAXA_file, contTaxa_dir + assembly_num, 

contTaxa_dir + assembly_num, contTaxa_dir + assembly_num) 

 

with open(res_dir + 'phylodist-to-contigSpeciesAbn.py', ‘w’) as contTaxa_script: 

    contTaxa_script.write(phylodist2contigTaxa_py) 

 

# Write bash script  

phylodist2contigTaxa_bash = """#!/bin/bash 

#PBS -N Cavlab-ContigTaxonomy 

#PBS -l select=1:ncpus=1:mem=96gb 

#PBS -l walltime=12:00:00 
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#PBS -j oe 

#PBS -o %sContigTaxonomy_report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load python/3.8.2 

python3 phylodist-to-contigSpeciesAbn.py 

"""%(res_dir, res_dir) 

 

with open(res_dir + 'ContigTaxa_and_Abn.pbs', ‘w’) as contbin_script: 

    contbin_script.write(phylodist2contigTaxa_bash) 

 

#### 2. DIAMOND and MEGAN6 protein taxonomy component #### 

prtbin_bash = """#!/bin/bash 

#PBS -N Cavlab-DIAMOND_MEGAN 

#PBS -l select=1:ncpus=16:mem=120gb 

#PBS -l walltime=48:00:00 

#PBS -j oe 

#PBS -o %sFunctionalBinning_report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load diamond/0.9.31 

diamond blastp --more-sensitive -d 

/srv/scratch/jgi/Cavlab_pipeline_resources/v4/DiamondDB/nr_Jul2019 -q %s -o %s.daa -f 100 -

-algo 0 --index-mode 1 -p 16 -v 

 

module load java/8u121 

module load megan/6.15.1 

export _JAVA_OPTIONS="-Xmx96g" 

daa2rma -i %s.daa -o %s_prtFunction.rma -a2t 

/srv/scratch/jgi/Cavlab_pipeline_resources/v4/prot_acc2tax-Jul2019X1.abin -a2eggnog 

/srv/scratch/jgi/Cavlab_pipeline_resources/v4/acc2eggnog-Jul2019X.abin -a2interpro2go 

/srv/scratch/jgi/Cavlab_pipeline_resources/v4/acc2interpro-Jul2019X.abin -v 
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bzip2 %s.daa 

"""%(res_dir, protTaxa_dir, PROTEIN_file, assembly_num, assembly_num, assembly_num, 

assembly_num) 

 

with open(res_dir + 'protein_function.pbs', ‘w’) as prtbin_script: 

    prtbin_script.write(prtbin_bash) 

 

#### 3. COG functional potential analysis component #### 

# Write python script 

COG_py = """import csv 

import Bio.SeqIO as SeqIO 

 

#### Initialize COG category 

A = [0] 

B = [0] 

C = [0] 

D = [0] 

E = [0] 

F = [0] 

G = [0] 

H = [0] 

I = [0] 

J = [0] 

K = [0] 

L = [0] 

M = [0] 

N = [0] 

O = [0] 

P = [0] 

Q = [0] 

R = [0] 

S = [0] 

T = [0] 

U = [0] 

V = [0] 

W = [0] 

X = [0] 
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Y = [0] 

Z = [0] 

other = [0] 

no_cov = [] 

print('COG categories initialised.') 

 

#### Build coverage to protein map 

coverage = {} 

with open('%s', ‘r’) as covf: 

    covfc = csv.reader(covf, delimiter = ‘\t’) 

    next(covfc) 

    for row in covfc: 

        coverage[row[0]] = float(row[1]) 

print('Coverage file read.') 

 

maps = {} 

with open('%s',’r’) as mapf: 

    mapfc = csv.reader(mapf, delimiter = ‘\t’) 

    for row in mapfc: 

        maps[row[0]] = row[1] 

mapk = list(maps.keys()) 

print('Contig to scaffold mapping file read.') 

 

covmap = {} 

for i in range(len(mapk)): 

    covmap[maps[mapk[i]]] = coverage[mapk[i]] 

contname_len = len(list(covmap.keys())[0]) 

print('Contig to coverage mapping complete.') 

 

prtcov = {} 

with open('%s', ‘r’) as prtf: 

    for record in SeqIO.parse(prtf, “fasta”): 

        prtname = record.id.split('|')[0] 

        if prtname[0:contname_len] in coverage.keys(): 

            prtcov[prtname] = coverage[prtname[0:contname_len]] 

        else: 

            prtcov[prtname] = covmap[prtname[0:contname_len]] 
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print('Protein to coverage mapping complete.') 

 

foldCount_total = sum(prtcov.values()) 

directCount_total = len(prtcov) 

 

#### Reading COG conversion file 

reader = 

csv.reader(open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/COG_conversion_v2.csv', ‘r’)) 

d = {} 

for row in reader: 

   k, v = row 

   d[k] = v 

print('Conversion dictionary prepared.') 

 

#### Reading COG numbers from COG file 

cogs = [] 

with open('%s', ‘r’) as cogf: 

    cogfc = csv.reader(cogf, delimiter = ‘\t’) 

    for row in cogfc: 

        err = 1 

        if row[0] in prtcov.keys(): 

            cogs.append([row[1], prtcov[row[0]]]) 

            err = 0 

        if err == 1: 

            no_cov.append(row[1]) 

print('COG file read.') 

 

for j in range(len(cogs)): 

    COGCat = d[cogs[j][0]] 

    if COGCat == 'A': 

        A.append(cogs[j][1]) 

    elif COGCat == 'B': 

        B.append(cogs[j][1]) 

    elif COGCat == 'C': 

        C.append(cogs[j][1]) 

    elif COGCat == 'D': 

        D.append(cogs[j][1]) 
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    elif COGCat == 'E': 

        E.append(cogs[j][1]) 

    elif COGCat == 'F': 

        F.append(cogs[j][1]) 

    elif COGCat == 'G': 

        G.append(cogs[j][1]) 

    elif COGCat == 'H': 

        H.append(cogs[j][1]) 

    elif COGCat == 'I': 

        I.append(cogs[j][1]) 

    elif COGCat == 'J': 

        J.append(cogs[j][1]) 

    elif COGCat == 'K': 

        K.append(cogs[j][1]) 

    elif COGCat == 'L': 

        L.append(cogs[j][1]) 

    elif COGCat == 'M': 

        M.append(cogs[j][1]) 

    elif COGCat == 'N': 

        N.append(cogs[j][1]) 

    elif COGCat == 'O': 

        O.append(cogs[j][1]) 

    elif COGCat == 'P': 

        P.append(cogs[j][1]) 

    elif COGCat == 'Q': 

        Q.append(cogs[j][1]) 

    elif COGCat == ‘r’: 

        R.append(cogs[j][1]) 

    elif COGCat == 'S': 

        S.append(cogs[j][1]) 

    elif COGCat == 'T': 

        T.append(cogs[j][1]) 

    elif COGCat == 'U': 

        U.append(cogs[j][1]) 

    elif COGCat == 'V': 

        V.append(cogs[j][1]) 

    elif COGCat == ‘w’: 
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        W.append(cogs[j][1]) 

    elif COGCat == 'X': 

        X.append(cogs[j][1]) 

    elif COGCat == 'Y': 

        Y.append(cogs[j][1]) 

    elif COGCat == 'Z': 

        Z.append(cogs[j][1]) 

    else: 

        other.append(cogs[j][1])     

print('COG numbers grouped under respective COG categories.') 

 

#### Normalizing by coverage 

Ac = sum(A) 

Bc = sum(B) 

Cc = sum(C) 

Dc = sum(D) 

Ec = sum(E) 

Fc = sum(F) 

Gc = sum(G) 

Hc = sum(H) 

Ic = sum(I) 

Jc = sum(J) 

Kc = sum(K) 

Lc = sum(L) 

Mc = sum(M) 

Nc = sum(N) 

Oc = sum(O) 

Pc = sum(P) 

Qc = sum(Q) 

Rc = sum(R) 

Sc = sum(S) 

Tc = sum(T) 

Uc = sum(U) 

Vc = sum(V) 

Wc = sum(W) 

Xc = sum(X) 

Yc = sum(Y) 
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Zc = sum(Z) 

otherc = sum(other) 

print('COG category coverages calculated.') 

 

#### Normalizing by count 

An = len(A)-1 

Bn = len(B)-1 

Cn = len(C)-1 

Dn = len(D)-1 

En = len(E)-1 

Fn = len(F)-1 

Gn = len(G)-1 

Hn = len(H)-1 

In = len(I)-1 

Jn = len(J)-1 

Kn = len(K)-1 

Ln = len(L)-1 

Mn = len(M)-1 

Nn = len(N)-1 

On = len(O)-1 

Pn = len(P)-1 

Qn = len(Q)-1 

Rn = len(R)-1 

Sn = len(S)-1 

Tn = len(T)-1 

Un = len(U)-1 

Vn = len(V)-1 

Wn = len(W)-1 

Xn = len(X)-1 

Yn = len(Y)-1 

Zn = len(Z)-1 

othern = len(other)-1 

print('COG category counts calculated.') 

 

#### Writing data to files 

results_c = [Ac, Bc, Cc, Dc, Ec, Fc, Gc, Hc, Ic, Jc, Kc, Lc, Mc, Nc, Oc, Pc, Qc, Rc, Sc, Tc, Uc, 

Vc, Wc, Xc, Yc, Zc, otherc] 
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results_n = [An, Bn, Cn, Dn, En, Fn, Gn, Hn, In, Jn, Kn, Ln, Mn, Nn, On, Pn, Qn, Rn, Sn, Tn, 

Un, Vn, Wn, Xn, Yn, Zn, othern] 

header = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', ‘r’, 'S', 'T', 'U', 'V', 

‘w’, 'X', 'Y', 'Z', 'Other categories', 'Issues', 'Total ORF coverage'] 

 

with open('%s' + '_COG.txt', ‘w’, newline = '') as outfile: 

    outcsv = csv.writer(outfile, delimiter = ‘\t’) 

    outcsv.writerow(['COG category', 'By coverage', 'By count']) 

    for i in range(len(header)-2): 

        outcsv.writerow([header[i], results_c[i], results_n[i]]) 

    outcsv.writerow([header[-2], len(no_cov), len(no_cov)]) 

    outcsv.writerow([header[-1], foldCount_total, directCount_total]) 

print('Finished writing COG output to file.') 

"""%(COV_file, MAP_file, PROTEIN_file, COG_file, cogkegg_dir + assembly_num) 

 

with open(res_dir + 'COG_categorisation.py',’w’) as COG_script: 

    COG_script.write(COG_py) 

 

# Write bash script 

COG_bash = """#!/bin/bash 

#PBS -N Cavlab-COG 

#PBS -l select=1:ncpus=1:mem=64gb 

#PBS -l walltime=12:00:00 

#PBS -j oe 

#PBS -o %sCOG_report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load python/3.8.2 

python3 COG_categorisation.py 

"""%(res_dir, res_dir) 

 

with open(res_dir + 'COG.pbs', ‘w’) as COG_pbs: 

    COG_pbs.write(COG_bash) 

 

#### 4. KEGG functional potential analysis component #### 
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KEGG_py = """import csv 

import Bio.SeqIO as SeqIO 

import numpy as np 

from Bio import pairwise2 

 

#### Initializing KEGG number variables 

K00437 = [0] 

K00436 = [0] 

K18332 = [0] 

K17997 = [0] 

K00532 = [0] 

K00533 = [0] 

K05922 = [0] 

K18016 = [0] 

K14068 = [0] 

K00440 = [0] 

K13942 = [0] 

K14126 = [0] 

K01915 = [0] 

K00264 = [0] 

K00265 = [0] 

K00266 = [0] 

K00284 = [0] 

K00864 = [0]  

K00005 = [0]  

K00169 = [0] 

K00170 = [0] 

K00456 = [0] 

K01011 = [0] 

K00860 = [0] 

K00956 = [0] 

K00957 = [0] 

K00016 = [0] 

K20932 = [0] 

K20933 = [0] 

K20934 = [0] 

K20935 = [0] 
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K00174 = [0] 

K00175 = [0] 

K00360 = [0] 

K00367 = [0] 

K00244 = [0] 

K03385 = [0] 

K17877 = [0] 

K00366 = [0] 

K02305 = [0] 

K04561 = [0] 

K00376 = [0] 

K02586 = [0] 

K02591 = [0] 

K10535 = [0] 

K10944a = [] 

K10944m = [] 

K10945a = [] 

K10945m = [] 

K10946a = [] 

K10946m = [] 

K01602 = [0] 

K00855 = [0] 

K15230 = [0] 

K15231 = [0] 

K15234 = [0] 

K15233 = [0] 

K15232 = [0] 

K00197 = [0] 

K00194 = [0] 

K03518 = [0] 

K03519 = [0] 

K03520 = [0] 

K02256 = [0] 

K02262 = [0] 

K02274 = [0] 

K02276 = [0] 

K00401 = [0] 
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K00400 = [0] 

K16157 = [0] 

K16158 = [0] 

K16159 = [0] 

K16161 = [0] 

K00390 = [0] 

K00392 = [0] 

K00380 = [0] 

K00381 = [0] 

K00394r = [] 

K00394o = [] 

K00395r = [] 

K00395o = [] 

K11180r = [] 

K11180o = [] 

K11181r = [] 

K11181o = [] 

K17224 = [0] 

K17227 = [0] 

K17226 = [0] 

K17222 = [0] 

K17223 = [0] 

K17225 = [0] 

K03821 = [0] 

K15342 = [0] 

K09951 = [0] 

K07012 = [0] 

K07475 = [0] 

K19088 = [0] 

K19087 = [0] 

K19117 = [0] 

K19123 = [0] 

K19046 = [0] 

K19127 = [0] 

K19128 = [0] 

K19129 = [0] 

K07016 = [0] 
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K19138 = [0] 

K19141 = [0] 

K09952 = [0] 

K19137 = [0] 

K07464 = [0] 

K02703 = [0] 

K02706 = [0] 

K02705 = [0] 

K02704 = [0] 

K02707 = [0] 

K02708 = [0] 

K02689 = [0] 

K02690 = [0] 

K02691 = [0] 

K02692 = [0] 

K02693 = [0] 

K02694 = [0] 

K08928 = [0] 

K08929 = [0] 

K08940 = [0] 

K08941 = [0] 

K08942 = [0] 

K08943 = [0] 

K04643 = [0] 

K04642 = [0] 

K04641 = [0] 

K04250 = [0] 

K00909 = [0] 

K01428 = [0] 

K01429 = [0] 

K01430 = [0] 

K00111 = [0] 

K00112 = [0] 

K00113 = [0] 

K00096 = [0] 

K00518 = [0] 

K04564 = [0] 
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K04565 = [0] 

K16627 = [0] 

K06164 = [0] 

K05780 = [0] 

K06165 = [0] 

K06166 = [0] 

K06163 = [0] 

K08977 = [0] 

K09836 = [0] 

K15746 = [0] 

K16953 = [0] 

K17486 = [0] 

K07306 = [0] 

K17218 = [0] 

K03553 = [0] 

K00370 = [0] 

K00368 = [0] 

K10944_ORFname = [] 

K10945_ORFname = [] 

K10946_ORFname = [] 

K00394_ORFname = [] 

K00395_ORFname = [] 

K11180_ORFname = [] 

K11181_ORFname = [] 

K11959 = [0] 

K11960 = [0] 

K11961 = [0] 

K11962 = [0] 

K11963 = [0] 

K02048 = [0] 

K02046 = [0] 

K02047 = [0] 

K02045 = [0] 

K15576 = [0] 

K15577 = [0] 

K15578 = [0] 

K15579 = [0] 
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K11950 = [0] 

K11951 = [0] 

K11952 = [0] 

K11953 = [0] 

K15551 = [0] 

K15552 = [0] 

K10831 = [0] 

K15553 = [0] 

K15554 = [0] 

K15555 = [0] 

K11069 = [0] 

K11070 = [0] 

K11071 = [0] 

K11072 = [0] 

K11073 = [0] 

K11074 = [0] 

K11075 = [0] 

K11076 = [0] 

K02040 = [0] 

K02037 = [0] 

K02038 = [0] 

K02036 = [0] 

K02044 = [0] 

K02042 = [0] 

K02041 = [0] 

K11081 = [0] 

K11082 = [0] 

K11083 = [0] 

K11084 = [0] 

K02002 = [0] 

K02001 = [0] 

K02000 = [0] 

K05845 = [0] 

K05846 = [0] 

K05847 = [0] 

K10108 = [0] 

K10109 = [0] 
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K10110 = [0] 

K15770 = [0] 

K15771 = [0] 

K15772 = [0] 

K10117 = [0] 

K10118 = [0] 

K10119 = [0] 

K10232 = [0] 

K10233 = [0] 

K10234 = [0] 

K10235 = [0] 

K10196 = [0] 

K10197 = [0] 

K10198 = [0] 

K10199 = [0] 

K17315 = [0] 

K17316 = [0] 

K17317 = [0] 

K10236 = [0] 

K10237 = [0] 

K10238 = [0] 

K17311 = [0] 

K17312 = [0] 

K17313 = [0] 

K17314 = [0] 

K10200 = [0] 

K10201 = [0] 

K10202 = [0] 

K10240 = [0] 

K10241 = [0] 

K10242 = [0] 

K17329 = [0] 

K17330 = [0] 

K17331 = [0] 

K17244 = [0] 

K17245 = [0] 

K17246 = [0] 
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K10537 = [0] 

K10538 = [0] 

K10539 = [0] 

K10188 = [0] 

K10189 = [0] 

K10190 = [0] 

K10191 = [0] 

K10543 = [0] 

K10544 = [0] 

K10545 = [0] 

K17326 = [0] 

K17327 = [0] 

K17328 = [0] 

K10546 = [0] 

K10547 = [0] 

K10548 = [0] 

K10552 = [0] 

K10553 = [0] 

K10554 = [0] 

K10559 = [0] 

K10560 = [0] 

K10561 = [0] 

K10562 = [0] 

K10439 = [0] 

K10440 = [0] 

K10441 = [0] 

K17202 = [0] 

K17203 = [0] 

K17204 = [0] 

K10120 = [0] 

K10121 = [0] 

K10122 = [0] 

K17321 = [0] 

K17322 = [0] 

K17323 = [0] 

K17324 = [0] 

K17325 = [0] 
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K02027 = [0] 

K02025 = [0] 

K02026 = [0] 

K02058 = [0] 

K02057 = [0] 

K02056 = [0] 

K10013 = [0] 

K10015 = [0] 

K10016 = [0] 

K10017 = [0] 

K10014 = [0] 

K10036 = [0] 

K10037 = [0] 

K10038 = [0] 

K09996 = [0] 

K09997 = [0] 

K09998 = [0] 

K09999 = [0] 

K10000 = [0] 

K10001 = [0] 

K10002 = [0] 

K10003 = [0] 

K10004 = [0] 

K10039 = [0] 

K10040 = [0] 

K10041 = [0] 

K10018 = [0] 

K10019 = [0] 

K10020 = [0] 

K10021 = [0] 

K09969 = [0] 

K09970 = [0] 

K09971 = [0] 

K09972 = [0] 

K10005 = [0] 

K10006 = [0] 

K10007 = [0] 



478 
 

K10008 = [0] 

K02424 = [0] 

K10009 = [0] 

K10010 = [0] 

K16956 = [0] 

K16957 = [0] 

K16958 = [0] 

K16959 = [0] 

K16960 = [0] 

K10022 = [0] 

K10023 = [0] 

K10024 = [0] 

K10025 = [0] 

K23059 = [0] 

K17077 = [0] 

K23060 = [0] 

K01999 = [0] 

K01997 = [0] 

K01998 = [0] 

K01995 = [0] 

K01996 = [0] 

K11954 = [0] 

K11955 = [0] 

K11956 = [0] 

K11957 = [0] 

K11958 = [0] 

K02073 = [0] 

K02072 = [0] 

K02071 = [0] 

K15580 = [0] 

K15581 = [0] 

K15582 = [0] 

K15583 = [0] 

K10823 = [0] 

K12368 = [0] 

K12369 = [0] 

K12370 = [0] 
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K12371 = [0] 

K12372 = [0] 

K16199 = [0] 

K16200 = [0] 

K16201 = [0] 

K16202 = [0] 

K01216 = [0] 

K01199 = [0] 

K19891 = [0] 

K19892 = [0] 

K19893 = [0] 

K01190 = [0] 

K12111 = [0] 

K12308 = [0] 

K12309 = [0] 

K01188 = [0] 

K05349 = [0] 

K05350 = [0] 

K01198 = [0] 

K15920 = [0] 

K22268 = [0] 

K01179 = [0] 

K19357 = [0] 

K20542 = [0] 

K01180 = [0] 

K20846 = [0] 

K20850 = [0] 

K01219 = [0] 

K20851 = [0] 

K01200 = [0] 

K21575 = [0] 

K01177 = [0] 

K01208 = [0] 

K05992 = [0] 

K22253 = [0] 

K01178 = [0] 

K12047 = [0] 
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K21574 = [0] 

K07024 = [0] 

K01193 = [0] 

K00064 = [0] 

K17993 = [0] 

K02567 = [0] 

K03778 = [0] 

K00955 = [0] 

K05907 = [0] 

K17229 = [0] 

K00958r = [] 

K00958o = [] 

K00958_ORFname = [] 

K01225 = [0] 

K19668 = [0] 

K08688 = [0] 

K00301 = [0] 

K00302 = [0] 

K00303 = [0] 

K00304 = [0] 

K00305 = [0] 

K03851 = [0] 

K03852 = [0] 

K01130 = [0] 

K15923 = [0] 

K00879 = [0] 

K01628 = [0] 

K00848 = [0] 

K01629 = [0] 

K01183 = [0] 

K13381 = [0] 

K14083 = [0] 

K16178 = [0] 

K16176 = [0] 

K00702 = [0] 

K16149 = [0] 

K00975 = [0] 
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K00703 = [0] 

K16146 = [0] 

K16147 = [0] 

K01176 = [0] 

K05973 = [0] 

K03430 = [0] 

K05306 = [0] 

K11472 = [0] 

K01941 = [0] 

other = [0] 

no_cov = [] 

print('KEGG number variables initialized.') 

 

#### Build coverage to protein map 

coverage = {} 

with open('%s', ‘r’) as covf: 

    covfc = csv.reader(covf, delimiter = ‘\t’) 

    next(covfc) 

    for row in covfc: 

        coverage[row[0]] = float(row[1]) 

print('Coverage file read.') 

 

maps = {} 

with open('%s',’r’) as mapf: 

    mapfc = csv.reader(mapf, delimiter = ‘\t’) 

    for row in mapfc: 

        maps[row[0]] = row[1] 

mapk = list(maps.keys()) 

print('Contig to scaffold mapping file read.') 

 

covmap = {} 

covmap = {} 

for i in range(len(mapk)): 

    covmap[maps[mapk[i]]] = coverage[mapk[i]] 

contname_len = len(list(covmap.keys())[0]) 

print('Contig to coverage mapping complete.') 
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prtcov = {} 

with open('%s', ‘r’) as prtf: 

    for record in SeqIO.parse(prtf, “fasta”): 

        prtname = record.id.split('|')[0] 

        if prtname[0:contname_len] in coverage.keys(): 

            prtcov[prtname] = coverage[prtname[0:contname_len]] 

        else: 

            prtcov[prtname] = covmap[prtname[0:contname_len]] 

print('Protein to coverage mapping complete.') 

 

foldCount_total = sum(prtcov.values()) 

directCount_total = len(prtcov) 

 

#### extracting KEGG 

kegg = [] 

with open('%s', ‘r’) as keggf: 

    keggfc = csv.reader(keggf, delimiter = ‘\t’) 

    for row in keggfc: 

        err = 1 

        if row[0] in prtcov.keys(): 

            kegg.append([row[2][3:],prtcov[row[0]],row[0]]) 

            err=0 

        if err==1: 

            no_cov.append(row[2][3:]) 

print('KEGG file read.') 

 

for j in range(len(kegg)): 

    ##sulfur-assimilatory and dissimilatory                    

    if kegg[j][0] == 'K00394': 

        K00394_ORFname.append(kegg[j][2]) 

    elif kegg[j][0] == 'K00395': 

        K00395_ORFname.append(kegg[j][2])       

    elif kegg[j][0] == 'K11180': 

        K11180_ORFname.append(kegg[j][2])      

    elif kegg[j][0] == 'K11181': 

        K11181_ORFname.append(kegg[j][2]) 

    elif kegg[j][0] == 'K00958': 
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        K00958_ORFname.append(kegg[j][2]) 

    ##ammonia/methane monooxygenase 

    elif kegg[j][0] == 'K10944': 

        K10944_ORFname.append(kegg[j][2]) 

    elif kegg[j][0] == 'K10945': 

        K10945_ORFname.append(kegg[j][2]) 

    elif kegg[j][0] == 'K10946': 

        K10946_ORFname.append(kegg[j][2]) 

    ##others 

    elif kegg[j][0] == 'K00437': 

        K00437.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00436': 

        K00436.append(kegg[j][1]) 

    elif kegg[j][0] == 'K18332': 

        K18332.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17997': 

        K17997.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00532': 

        K00532.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00533': 

        K00533.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05922': 

        K05922.append(kegg[j][1]) 

    elif kegg[j][0] == 'K18016': 

        K18016.append(kegg[j][1]) 

    elif kegg[j][0] == 'K14068': 

        K14068.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00440': 

        K00440.append(kegg[j][1]) 

    elif kegg[j][0] == 'K13942': 

        K13942.append(kegg[j][1]) 

    elif kegg[j][0] == 'K14126': 

        K14126.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01915': 

        K01915.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00264': 

        K00264.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K00265': 

        K00265.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00266': 

        K00266.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00284': 

        K00284.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00864': 

        K00864.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00005': 

        K00005.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19117': 

        K19117.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19128': 

        K19128.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00169': 

        K00169.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00170': 

        K00170.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00016': 

        K00016.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00174': 

        K00174.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00175': 

        K00175.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00244': 

        K00244.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00194': 

        K00194.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00197': 

        K00197.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00360': 

        K00360.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00367': 

        K00367.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20932': 

        K20932.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20933': 
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        K20933.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20934': 

        K20934.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20935': 

        K20935.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00456': 

        K00456.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01011': 

        K01011.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00860': 

        K00860.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00956': 

        K00956.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00957': 

        K00957.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19087': 

        K19087.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19046': 

        K19046.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19127': 

        K19127.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19129': 

        K19129.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03385': 

        K03385.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17877': 

        K17877.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00366': 

        K00366.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02305': 

        K02305.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04561': 

        K04561.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00376': 

        K00376.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02586': 

        K02586.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K02591': 

        K02591.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10535': 

        K10535.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01602': 

        K01602.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00855': 

        K00855.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15230': 

        K15230.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15231': 

        K15231.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15234': 

        K15234.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15233': 

        K15233.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15232': 

        K15232.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03518': 

        K03518.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03519': 

        K03519.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03520': 

        K03520.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02256': 

        K02256.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02262': 

        K02262.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02274': 

        K02274.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02276': 

        K02276.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00401': 

        K00401.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00400': 

        K00400.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16157': 
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        K16157.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16158': 

        K16158.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16159': 

        K16159.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16161': 

        K16161.append(kegg[j][1])         

    elif kegg[j][0] == 'K00390': 

        K00390.append(kegg[j][1])         

    elif kegg[j][0] == 'K00392': 

        K00392.append(kegg[j][1])         

    elif kegg[j][0] == 'K00380': 

        K00380.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00381': 

        K00381.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17224': 

        K17224.append(kegg[j][1])        

    elif kegg[j][0] == 'K17227': 

        K17227.append(kegg[j][1])         

    elif kegg[j][0] == 'K17226': 

        K17226.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17222': 

        K17222.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17223': 

        K17223.append(kegg[j][1])        

    elif kegg[j][0] == 'K17225': 

        K17225.append(kegg[j][1])         

    elif kegg[j][0] == 'K03821': 

        K03821.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15342': 

        K15342.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09951': 

        K09951.append(kegg[j][1]) 

    elif kegg[j][0] == 'K07012': 

        K07012.append(kegg[j][1])         

    elif kegg[j][0] == 'K07475': 

        K07475.append(kegg[j][1])         
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    elif kegg[j][0] == 'K19088': 

        K19088.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19123': 

        K19123.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19127': 

        K19127.append(kegg[j][1]) 

    elif kegg[j][0] == 'K07016': 

        K07016.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19138': 

        K19138.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19141': 

        K19141.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09952': 

        K09952.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19137': 

        K19137.append(kegg[j][1]) 

    elif kegg[j][0] == 'K07464': 

        K07464.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02703': 

        K02703.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02706': 

        K02706.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02705': 

        K02705.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02704': 

        K02704.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02707': 

        K02707.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02708': 

        K02708.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02689': 

        K02689.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02690': 

        K02690.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02691': 

        K02691.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02692': 
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        K02692.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02693': 

        K02693.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02694': 

        K02694.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08928': 

        K08928.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08929': 

        K08929.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08940': 

        K08940.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08941': 

        K08941.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08942': 

        K08942.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08943': 

        K08943.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04643': 

        K04643.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04642': 

        K04642.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04641': 

        K04641.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04250': 

        K04250.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00909': 

        K00909.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01428': 

        K01428.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01429': 

        K01429.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00111': 

        K00111.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00112': 

        K00112.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00113': 

        K00113.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K00096': 

        K00096.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00518': 

        K00518.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04564': 

        K04564.append(kegg[j][1]) 

    elif kegg[j][0] == 'K04565': 

        K04565.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16627': 

        K16627.append(kegg[j][1]) 

    elif kegg[j][0] == 'K06164': 

        K06164.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05780': 

        K05780.append(kegg[j][1]) 

    elif kegg[j][0] == 'K06165': 

        K06165.append(kegg[j][1]) 

    elif kegg[j][0] == 'K06166': 

        K06166.append(kegg[j][1]) 

    elif kegg[j][0] == 'K06163': 

        K06163.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08977': 

        K08977.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09836': 

        K09836.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15746': 

        K15746.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16953': 

        K16953.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17486': 

        K17486.append(kegg[j][1]) 

    elif kegg[j][0] == 'K07306': 

        K07306.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17218': 

        K17218.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03553': 

        K03553.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00370': 
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        K00370.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00368': 

        K00368.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11959': 

        K11959.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11960': 

        K11960.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11961': 

        K11961.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11962': 

        K11962.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11963': 

        K11963.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02048': 

        K02048.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02046': 

        K02046.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02047': 

        K02047.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02045': 

        K02045.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15576': 

        K15576.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15577': 

        K15577.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15578': 

        K15578.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15579': 

        K15579.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11950': 

        K11950.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11951': 

        K11951.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11952': 

        K11952.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11953': 

        K11953.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K15551': 

        K15551.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15552': 

        K15552.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10831': 

        K10831.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15553': 

        K15553.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15554': 

        K15554.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15555': 

        K15555.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11069': 

        K11069.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11070': 

        K11070.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11071': 

        K11071.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11072': 

        K11072.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11073': 

        K11073.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11074': 

        K11074.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11075': 

        K11075.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11076': 

        K11076.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02040': 

        K02040.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02037': 

        K02037.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02038': 

        K02038.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02036': 

        K02036.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02044': 
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        K02044.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02042': 

        K02042.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02041': 

        K02041.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11081': 

        K11081.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11082': 

        K11082.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11083': 

        K11083.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11084': 

        K11084.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02002': 

        K02002.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02001': 

        K02001.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02000': 

        K02000.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05845': 

        K05845.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05846': 

        K05846.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05847': 

        K05847.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10108': 

        K10108.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10109': 

        K10109.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10110': 

        K10110.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15770': 

        K15770.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15771': 

        K15771.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15772': 

        K15772.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K10117': 

        K10117.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10118': 

        K10118.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10119': 

        K10119.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10232': 

        K10232.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10233': 

        K10233.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10234': 

        K10234.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10235': 

        K10235.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10196': 

        K10196.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10197': 

        K10197.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10198': 

        K10198.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10199': 

        K10199.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17315': 

        K17315.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17316': 

        K17316.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17317': 

        K17317.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10236': 

        K10236.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10237': 

        K10237.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10238': 

        K10238.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17311': 

        K17311.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17312': 
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        K17312.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17313': 

        K17313.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17314': 

        K17314.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10200': 

        K10200.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10201': 

        K10201.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10202': 

        K10202.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10240': 

        K10240.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10241': 

        K10241.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10242': 

        K10242.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17329': 

        K17329.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17330': 

        K17330.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17331': 

        K17331.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17244': 

        K17244.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17245': 

        K17245.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17246': 

        K17246.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10537': 

        K10537.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10538': 

        K10538.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10539': 

        K10539.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10188': 

        K10188.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K10189': 

        K10189.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10190': 

        K10190.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10191': 

        K10191.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10543': 

        K10543.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10544': 

        K10544.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10545': 

        K10545.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17326': 

        K17326.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17327': 

        K17327.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17328': 

        K17328.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10546': 

        K10546.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10547': 

        K10547.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10548': 

        K10548.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10552': 

        K10552.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10553': 

        K10553.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10554': 

        K10554.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10559': 

        K10559.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10560': 

        K10560.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10561': 

        K10561.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10562': 
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        K10562.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10439': 

        K10439.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10440': 

        K10440.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10441': 

        K10441.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17202': 

        K17202.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17203': 

        K17203.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17204': 

        K17204.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10120': 

        K10120.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10121': 

        K10121.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10122': 

        K10122.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17321': 

        K17321.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17322': 

        K17322.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17323': 

        K17323.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17324': 

        K17324.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17325': 

        K17325.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02027': 

        K02027.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02025': 

        K02025.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02026': 

        K02026.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02058': 

        K02058.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K02057': 

        K02057.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02056': 

        K02056.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10013': 

        K10013.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10015': 

        K10015.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10016': 

        K10016.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10017': 

        K10017.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10014': 

        K10014.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10036': 

        K10036.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10037': 

        K10037.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10038': 

        K10038.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09996': 

        K09996.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09997': 

        K09997.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09998': 

        K09998.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09999': 

        K09999.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10000': 

        K10000.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10001': 

        K10001.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10002': 

        K10002.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10003': 

        K10003.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10004': 
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        K10004.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10039': 

        K10039.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10040': 

        K10040.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10041': 

        K10041.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10018': 

        K10018.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10019': 

        K10019.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10020': 

        K10020.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10021': 

        K10021.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09969': 

        K09969.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09970': 

        K09970.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09971': 

        K09971.append(kegg[j][1]) 

    elif kegg[j][0] == 'K09972': 

        K09972.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10005': 

        K10005.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10006': 

        K10006.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10007': 

        K10007.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10008': 

        K10008.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02424': 

        K02424.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10009': 

        K10009.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10010': 

        K10010.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K16956': 

        K16956.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16957': 

        K16957.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16958': 

        K16958.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16959': 

        K16959.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16960': 

        K16960.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10022': 

        K10022.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10023': 

        K10023.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10024': 

        K10024.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10025': 

        K10025.append(kegg[j][1]) 

    elif kegg[j][0] == 'K23059': 

        K23059.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17077': 

        K17077.append(kegg[j][1]) 

    elif kegg[j][0] == 'K23060': 

        K23060.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01999': 

        K01999.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01997': 

        K01997.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01998': 

        K01998.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01995': 

        K01995.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01996': 

        K01996.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11954': 

        K11954.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11955': 
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        K11955.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11956': 

        K11956.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11957': 

        K11957.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11958': 

        K11958.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02073': 

        K02073.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02072': 

        K02072.append(kegg[j][1]) 

    elif kegg[j][0] == 'K02071': 

        K02071.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15580': 

        K15580.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15581': 

        K15581.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15582': 

        K15582.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15583': 

        K15583.append(kegg[j][1]) 

    elif kegg[j][0] == 'K10823': 

        K10823.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12368': 

        K12368.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12369': 

        K12369.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12370': 

        K12370.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12371': 

        K12371.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12372': 

        K12372.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16199': 

        K16199.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16200': 

        K16200.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K16201': 

        K16201.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16202': 

        K16202.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01216': 

        K01216.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01199': 

        K01199.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19891': 

        K19891.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19892': 

        K19892.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19893': 

        K19893.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12111': 

        K12111.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12308': 

        K12308.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12309': 

        K12309.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01188': 

        K01188.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05349': 

        K05349.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05350': 

        K05350.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01198': 

        K01198.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15920': 

        K15920.append(kegg[j][1]) 

    elif kegg[j][0] == 'K22268': 

        K22268.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01179': 

        K01179.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19357': 

        K19357.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20542': 
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        K20542.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01180': 

        K01180.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20846': 

        K20846.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20850': 

        K20850.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01219': 

        K01219.append(kegg[j][1]) 

    elif kegg[j][0] == 'K20851': 

        K20851.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01200': 

        K01200.append(kegg[j][1]) 

    elif kegg[j][0] == 'K21575': 

        K21575.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01177': 

        K01177.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01208': 

        K01208.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05992': 

        K05992.append(kegg[j][1]) 

    elif kegg[j][0] == 'K22253': 

        K22253.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01178': 

        K01178.append(kegg[j][1]) 

    elif kegg[j][0] == 'K12047': 

        K12047.append(kegg[j][1]) 

    elif kegg[j][0] == 'K21574': 

        K21574.append(kegg[j][1]) 

    elif kegg[j][0] == 'K07024': 

        K07024.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01193': 

        K01193.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00064': 

        K00064.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17993': 

        K17993.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K02567': 

        K02567.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03778': 

        K03778.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00955': 

        K00955.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05907': 

        K05907.append(kegg[j][1]) 

    elif kegg[j][0] == 'K17229': 

        K17229.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01225': 

        K01225.append(kegg[j][1]) 

    elif kegg[j][0] == 'K19668': 

        K19668.append(kegg[j][1]) 

    elif kegg[j][0] == 'K08688': 

        K08688.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00301': 

        K00301.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00302': 

        K00302.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00303': 

        K00303.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00304': 

        K00304.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00305': 

        K00305.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03851': 

        K03851.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03852': 

        K03852.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01130': 

        K01130.append(kegg[j][1]) 

    elif kegg[j][0] == 'K15923': 

        K15923.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00879': 

        K00879.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01628': 
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        K01628.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00848': 

        K00848.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01629': 

        K01629.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01183': 

        K01183.append(kegg[j][1]) 

    elif kegg[j][0] == 'K13381': 

        K13381.append(kegg[j][1]) 

    elif kegg[j][0] == 'K14083': 

        K14083.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16178': 

        K16178.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16176': 

        K16176.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00702': 

        K00702.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16149': 

        K16149.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00975': 

        K00975.append(kegg[j][1]) 

    elif kegg[j][0] == 'K00703': 

        K00703.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16146': 

        K16146.append(kegg[j][1]) 

    elif kegg[j][0] == 'K16147': 

        K16147.append(kegg[j][1]) 

    elif kegg[j][0] == 'K01176': 

        K01176.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05973': 

        K05973.append(kegg[j][1]) 

    elif kegg[j][0] == 'K03430': 

        K03430.append(kegg[j][1]) 

    elif kegg[j][0] == 'K05306': 

        K05306.append(kegg[j][1]) 

    elif kegg[j][0] == 'K11472': 

        K11472.append(kegg[j][1]) 
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    elif kegg[j][0] == 'K01941': 

        K01941.append(kegg[j][1]) 

    else: 

        other.append(kegg[j][1]) 

print('KEGG numbers grouped under respective KEGG number variables.') 

 

####Splitting KEGGs - assimilatory/dissimilatory sulfate reduction and ammonia/methane 

monooxygenase   

limit = 14 

 

## Split K00394 

#get sequences for the marker 

K00394_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K00394_ORFname: 

            if ORF == record.id: 

                K00394_ORFseq.append(record) 

marker = K00394_ORFseq ###ORFS 

#get the database sequences 

db = [] 

with 

open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K00394_pathway_database_v1.fasta',’r’) as 

aprA_file: 

    db = list(SeqIO.parse(aprA_file, “fasta”)) 

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 
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    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1 

    if keep > limit: 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K00394r.append(float(prtcov[ORF.id])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K00394o.append(float(prtcov[ORF.id])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K00394 - assimilatory/diisimilatory function prediction complete.') 

 

## Split K00395 

#get sequences for the marker 

K00395_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K00395_ORFname: 

            if ORF == record.id: 

                K00395_ORFseq.append(record) 

marker=K00395_ORFseq ###ORFS 

#get the database sequences 

db = [] 
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with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K00395_pathway_database_v1.fasta', 

‘r’) as aprB_file: 

    db = list(SeqIO.parse(aprB_file, “fasta”)) 

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1 

    if keep > limit: 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K00395r.append(float(prtcov[ORF.id])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K00395o.append(float(prtcov[ORF.id])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 
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        else: 

            assignment = 'Unknown'         

print('K00395 - assimilatory/diisimilatory function prediction complete.') 

 

## Split K11180 

#get sequences for the marker 

K11180_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K11180_ORFname: 

            if ORF == record.id: 

                K11180_ORFseq.append(record) 

marker = K11180_ORFseq ###ORFS 

#get the database sequences 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K11180_pathway_database_v1.fasta', 

‘r’) as dsrA_file: 

    db = list(SeqIO.parse(dsrA_file, “fasta”))      

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 
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        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1 

    if keep > limit: 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K11180r.append(float(prtcov[ORF.id])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K11180o.append(float(prtcov[ORF.id])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K11180 - assimilatory/diisimilatory function prediction complete.') 

    

## Split K11181 

#get sequences for the marker 

K11181_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K11181_ORFname: 

            if ORF == record.id: 

                K11181_ORFseq.append(record) 

marker = K11181_ORFseq ###ORFS 

#get the database sequences 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K11181_pathway_database_v1.fasta', 

‘r’) as dsrB_file: 

    db = list(SeqIO.parse(dsrB_file, “fasta”))      

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 
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        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1   

    if keep > limit: 

        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K11181r.append(float(prtcov[ORF.id])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K11181o.append(float(prtcov[ORF.id])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K11181 - assimilatory/diisimilatory function prediction complete.') 

 

## Split K00958 

#get sequences for the marker 

K00958_ORFseq = [] 
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with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K00958_ORFname: 

            if ORF == record.id: 

                K00958_ORFseq.append(record) 

marker = K00958_ORFseq ###ORFS 

#get the database sequences 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K00958_pathway_database_v1.fasta', 

‘r’) as sat_file: 

    db = list(SeqIO.parse(sat_file, “fasta”))      

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    dis = 0 

    ox = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'Reductive': 

            dis = dis + 1 

        elif obs == 'Oxidative': 

            ox = ox + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1   

    if keep > limit: 
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        if dis > ox and dis > oth: 

            assignment = 'Reductive' 

            K00958r.append(float(prtcov[ORF.id])) 

        elif ox > dis and ox > oth: 

            assignment = 'Oxidative' 

            K00958o.append(float(prtcov[ORF.id])) 

        elif oth > dis and oth > ox: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K00958 - assimilatory/diisimilatory function prediction complete.') 

 

## Split K10944 

#get sequences for the marker 

K10944_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K10944_ORFname: 

            if ORF == record.id: 

                K10944_ORFseq.append(record) 

marker = K10944_ORFseq ###ORFS 

#get the database sequences 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K10944_pathway_database_v1.fasta', 

‘r’) as maMOA_file: 

    db = list(SeqIO.parse(maMOA_file, “fasta”))      

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 
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            cat.append(seq.id.split('$')[0]) 

    meth = 0 

    ammo = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'MMO': 

            meth = meth + 1 

        elif obs == 'AMO': 

            ammo = ammo + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1   

    if keep > limit: 

        if meth > ammo and meth > oth: 

            assignment = 'MMO' 

            K10944m.append(float(prtcov[ORF.id])) 

        elif ammo > dis and ammo > oth: 

            assignment = 'AMO' 

            K10944a.append(float(prtcov[ORF.id])) 

        elif oth > meth and oth > ammo: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K10944 - ammonia/methane monooxygenase function prediction complete.') 

 

## split K10945 

#get sequences for the marker 

K10945_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K10945_ORFname: 

            if ORF == record.id: 

                K10945_ORFseq.append(record) 

marker = K10945_ORFseq ###ORFS 

#get the database sequences 
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db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K10945_pathway_database_v1.fasta', 

‘r’) as maMOB_file: 

    db = list(SeqIO.parse(maMOB_file, “fasta”))      

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    meth = 0 

    ammo = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'MMO': 

            meth = meth + 1 

        elif obs == 'AMO': 

            ammo = ammo + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1   

    if keep > limit: 

        if meth > ammo and meth > oth: 

            assignment = 'MMO' 

            K10945m.append(float(prtcov[ORF.id])) 

        elif ammo > dis and ammo > oth: 

            assignment = 'AMO' 

            K10945a.append(float(prtcov[ORF.id])) 

        elif oth > meth and oth > ammo: 
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            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K10945 - ammonia/methane monooxygenase function prediction complete.') 

          

## Split K10946 

#get sequences for the marker 

K10946_ORFseq = [] 

with open('%s', ‘r’) as orf_file: 

    for record in SeqIO.parse(orf_file, “fasta”): 

        for ORF in K10946_ORFname: 

            if ORF == record.id: 

                K10946_ORFseq.append(record) 

marker = K10946_ORFseq ###ORFS 

#get the database sequences 

db = [] 

with open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/K10946_pathway_database_v1.fasta', 

‘r’) as maMOC_file: 

    db = list(SeqIO.parse(maMOC_file, “fasta”))      

#make a prediction 

for ORF in marker: 

    scorei = [] 

    for seq in db: 

        align = pairwise2.align.localms(ORF.seq,seq.seq,2,-1,-.5,-.1,score_only=1) 

        scorei.append(align) 

        seq.description = align 

    keep = max(scorei) 

    cat = [] 

    for seq in db: 

        if seq.description >= keep: 

            cat.append(seq.id.split('$')[0]) 

    meth = 0 

    ammo = 0 

    oth = 0 

    un = 0 

    for obs in cat: 

        if obs == 'MMO': 
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            meth = meth + 1 

        elif obs == 'AMO': 

            ammo = ammo + 1 

        elif obs == 'Other': 

            oth = oth + 1 

        else: 

            un = un + 1   

    if keep > limit: 

        if meth > ammo and meth > oth: 

            assignment = 'MMO' 

            K10946m.append(float(prtcov[ORF.id])) 

        elif ammo > dis and ammo > oth: 

            assignment = 'AMO' 

            K10946a.append(float(prtcov[ORF.id])) 

        elif oth > meth and oth > ammo: 

            assignment = 'Other' 

        else: 

            assignment = 'Unknown' 

print('K10946 - ammonia/methane monooxygenase function prediction complete.') 

 

#### Normalizing by coverage 

K00437c = sum(K00437) 

K00436c = sum(K00436) 

K18332c = sum(K18332) 

K17997c = sum(K17997) 

K00532c = sum(K00532) 

K00533c = sum(K00533) 

K05922c = sum(K05922) 

K18016c = sum(K18016) 

K14068c = sum(K14068) 

K00440c = sum(K00440) 

K13942c = sum(K13942) 

K14126c = sum(K14126) 

K01915c = sum(K01915) 

K00264c = sum(K00264) 

K00265c = sum(K00265) 

K00266c = sum(K00266) 



518 
 

K00284c = sum(K00284) 

K00864c = sum(K00864) 

K00005c = sum(K00005) 

K19128c = sum(K19128) 

K19117c = sum(K19117) 

K00169c = sum(K00169) 

K00170c = sum(K00170) 

K00016c = sum(K00016) 

K00174c = sum(K00174) 

K00175c = sum(K00175) 

K00244c = sum(K00244) 

K00194c = sum(K00194) 

K00197c = sum(K00197) 

K00360c = sum(K00360) 

K00367c = sum(K00367) 

K10944ac = sum(K10944a) 

K10945ac = sum(K10945a)  

K10946ac = sum(K10946a) 

K10944mc = sum(K10944m) 

K10945mc = sum(K10945m)  

K10946mc = sum(K10946m) 

K20932c = sum(K20932) 

K20933c = sum(K20933) 

K20934c = sum(K20934) 

K20935c = sum(K20935) 

K00456c = sum(K00456) 

K01011c = sum(K01011) 

K00860c = sum(K00860)  

K00956c = sum(K00956)  

K00957c = sum(K00957) 

K19087c = sum(K19087) 

K19046c = sum(K19046) 

K19127c = sum(K19127) 

K19129c = sum(K19129) 

K03385c = sum(K03385) 

K17877c = sum(K17877) 

K00366c = sum(K00366) 
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K02305c = sum(K02305) 

K04561c = sum(K04561) 

K00376c = sum(K00376) 

K02586c = sum(K02586) 

K02591c = sum(K02591) 

K10535c = sum(K10535) 

K01602c = sum(K01602) 

K00855c = sum(K00855) 

K15230c = sum(K15230) 

K15231c = sum(K15231) 

K15234c = sum(K15234) 

K15233c = sum(K15233) 

K15232c = sum(K15232) 

K03518c = sum(K03518) 

K03519c = sum(K03519) 

K03520c = sum(K03520) 

K02256c = sum(K02256) 

K02262c = sum(K02262) 

K02274c = sum(K02274) 

K02276c = sum(K02276) 

K00401c = sum(K00401) 

K00400c = sum(K00400) 

K16157c = sum(K16157) 

K16158c = sum(K16158) 

K16159c = sum(K16159) 

K16161c = sum(K16161) 

K00390c = sum(K00390) 

K00392c = sum(K00392) 

K00380c = sum(K00380) 

K00381c = sum(K00381) 

K00394rc = sum(K00394r) 

K00395rc = sum(K00395r) 

K11180rc = sum(K11180r) 

K11181rc = sum(K11181r) 

K00394oc = sum(K00394o) 

K00395oc = sum(K00395o) 

K11180oc = sum(K11180o) 
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K11181oc = sum(K11181o) 

K17224c = sum(K17224) 

K17227c = sum(K17227) 

K17226c = sum(K17226) 

K17222c = sum(K17222) 

K17223c = sum(K17223) 

K17225c = sum(K17225) 

K03821c = sum(K03821) 

K15342c = sum(K15342) 

K09951c = sum(K09951) 

K07012c = sum(K07012) 

K07475c = sum(K07475) 

K19088c = sum(K19088) 

K19123c = sum(K19123) 

K19127c = sum(K19127) 

K07016c = sum(K07016) 

K19138c = sum(K19138) 

K19141c = sum(K19141) 

K09952c = sum(K09952) 

K19137c = sum(K19137) 

K07464c = sum(K07464) 

K02703c = sum(K02703) 

K02706c = sum(K02706) 

K02705c = sum(K02705) 

K02704c = sum(K02704) 

K02707c = sum(K02707) 

K02708c = sum(K02708) 

K02689c = sum(K02689) 

K02690c = sum(K02690) 

K02691c = sum(K02691) 

K02692c = sum(K02692) 

K02693c = sum(K02693) 

K02694c = sum(K02694) 

K08928c = sum(K08928) 

K08929c = sum(K08929) 

K08940c = sum(K08940) 

K08941c = sum(K08941) 
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K08942c = sum(K08942) 

K08943c = sum(K08943) 

K04643c = sum(K04643) 

K04642c = sum(K04642) 

K04641c = sum(K04641) 

K04250c = sum(K04250) 

K00909c = sum(K00909) 

K01428c = sum(K01428) 

K01429c = sum(K01429) 

K01430c = sum(K01430) 

K00111c = sum(K00111) 

K00112c = sum(K00112) 

K00113c = sum(K00113) 

K00096c = sum(K00096) 

K00518c = sum(K00518) 

K04564c = sum(K04564) 

K04565c = sum(K04565) 

K16627c = sum(K16627) 

K06164c = sum(K06164) 

K05780c = sum(K05780) 

K06165c = sum(K06165) 

K06166c = sum(K06166) 

K06163c = sum(K06163) 

K08977c = sum(K08977) 

K09836c = sum(K09836) 

K15746c = sum(K15746) 

K16953c = sum(K16953) 

K17486c = sum(K17486) 

K07306c = sum(K07306) 

K17218c = sum(K17218) 

K03553c = sum(K03553) 

K00370c = sum(K00370) 

K00368c = sum(K00368) 

K11959c = sum(K11959) 

K11960c = sum(K11960) 

K11961c = sum(K11961) 

K11962c = sum(K11962) 
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K11963c = sum(K11963) 

K02048c = sum(K02048) 

K02046c = sum(K02046) 

K02047c = sum(K02047) 

K02045c = sum(K02045) 

K15576c = sum(K15576) 

K15577c = sum(K15577) 

K15578c = sum(K15578) 

K15579c = sum(K15579) 

K11950c = sum(K11950) 

K11951c = sum(K11951) 

K11952c = sum(K11952) 

K11953c = sum(K11953) 

K15551c = sum(K15551) 

K15552c = sum(K15552) 

K10831c = sum(K10831) 

K15553c = sum(K15553) 

K15554c = sum(K15554) 

K15555c = sum(K15555) 

K11069c = sum(K11069) 

K11070c = sum(K11070) 

K11071c = sum(K11071) 

K11072c = sum(K11072) 

K11073c = sum(K11073) 

K11074c = sum(K11074) 

K11075c = sum(K11075) 

K11076c = sum(K11076) 

K02040c = sum(K02040) 

K02037c = sum(K02037) 

K02038c = sum(K02038) 

K02036c = sum(K02036) 

K02044c = sum(K02044) 

K02042c = sum(K02042) 

K02041c = sum(K02041) 

K11081c = sum(K11081) 

K11082c = sum(K11082) 

K11083c = sum(K11083) 
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K11084c = sum(K11084) 

K02002c = sum(K02002) 

K02001c = sum(K02001) 

K02000c = sum(K02000) 

K05845c = sum(K05845) 

K05846c = sum(K05846) 

K05847c = sum(K05847) 

K10108c = sum(K10108) 

K10109c = sum(K10109) 

K10110c = sum(K10110) 

K15770c = sum(K15770) 

K15771c = sum(K15771) 

K15772c = sum(K15772) 

K10117c = sum(K10117) 

K10118c = sum(K10118) 

K10119c = sum(K10119) 

K10232c = sum(K10232) 

K10233c = sum(K10233) 

K10234c = sum(K10234) 

K10235c = sum(K10235) 

K10196c = sum(K10196) 

K10197c = sum(K10197) 

K10198c = sum(K10198) 

K10199c = sum(K10199) 

K17315c = sum(K17315) 

K17316c = sum(K17316) 

K17317c = sum(K17317) 

K10236c = sum(K10236) 

K10237c = sum(K10237) 

K10238c = sum(K10238) 

K17311c = sum(K17311) 

K17312c = sum(K17312) 

K17313c = sum(K17313) 

K17314c = sum(K17314) 

K10200c = sum(K10200) 

K10201c = sum(K10201) 

K10202c = sum(K10202) 
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K10240c = sum(K10240) 

K10241c = sum(K10241) 

K10242c = sum(K10242) 

K17329c = sum(K17329) 

K17330c = sum(K17330) 

K17331c = sum(K17331) 

K17244c = sum(K17244) 

K17245c = sum(K17245) 

K17246c = sum(K17246) 

K10537c = sum(K10537) 

K10538c = sum(K10538) 

K10539c = sum(K10539) 

K10188c = sum(K10188) 

K10189c = sum(K10189) 

K10190c = sum(K10190) 

K10191c = sum(K10191) 

K10543c = sum(K10543) 

K10544c = sum(K10544) 

K10545c = sum(K10545) 

K17326c = sum(K17326) 

K17327c = sum(K17327) 

K17328c = sum(K17328) 

K10546c = sum(K10546) 

K10547c = sum(K10547) 

K10548c = sum(K10548) 

K10552c = sum(K10552) 

K10553c = sum(K10553) 

K10554c = sum(K10554) 

K10559c = sum(K10559) 

K10560c = sum(K10560) 

K10561c = sum(K10561) 

K10562c = sum(K10562) 

K10439c = sum(K10439) 

K10440c = sum(K10440) 

K10441c = sum(K10441) 

K17202c = sum(K17202) 

K17203c = sum(K17203) 
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K17204c = sum(K17204) 

K10120c = sum(K10120) 

K10121c = sum(K10121) 

K10122c = sum(K10122) 

K17321c = sum(K17321) 

K17322c = sum(K17322) 

K17323c = sum(K17323) 

K17324c = sum(K17324) 

K17325c = sum(K17325) 

K02027c = sum(K02027) 

K02025c = sum(K02025) 

K02026c = sum(K02026) 

K02058c = sum(K02058) 

K02057c = sum(K02057) 

K02056c = sum(K02056) 

K10013c = sum(K10013) 

K10015c = sum(K10015) 

K10016c = sum(K10016) 

K10017c = sum(K10017) 

K10014c = sum(K10014) 

K10036c = sum(K10036) 

K10037c = sum(K10037) 

K10038c = sum(K10038) 

K09996c = sum(K09996) 

K09997c = sum(K09997) 

K09998c = sum(K09998) 

K09999c = sum(K09999) 

K10000c = sum(K10000) 

K10001c = sum(K10001) 

K10002c = sum(K10002) 

K10003c = sum(K10003) 

K10004c = sum(K10004) 

K10039c = sum(K10039) 

K10040c = sum(K10040) 

K10041c = sum(K10041) 

K10018c = sum(K10018) 

K10019c = sum(K10019) 
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K10020c = sum(K10020) 

K10021c = sum(K10021) 

K09969c = sum(K09969) 

K09970c = sum(K09970) 

K09971c = sum(K09971) 

K09972c = sum(K09972) 

K10005c = sum(K10005) 

K10006c = sum(K10006) 

K10007c = sum(K10007) 

K10008c = sum(K10008) 

K02424c = sum(K02424) 

K10009c = sum(K10009) 

K10010c = sum(K10010) 

K16956c = sum(K16956) 

K16957c = sum(K16957) 

K16958c = sum(K16958) 

K16959c = sum(K16959) 

K16960c = sum(K16960) 

K10022c = sum(K10022) 

K10023c = sum(K10023) 

K10024c = sum(K10024) 

K10025c = sum(K10025) 

K23059c = sum(K23059) 

K17077c = sum(K17077) 

K23060c = sum(K23060) 

K01999c = sum(K01999) 

K01997c = sum(K01997) 

K01998c = sum(K01998) 

K01995c = sum(K01995) 

K01996c = sum(K01996) 

K11954c = sum(K11954) 

K11955c = sum(K11955) 

K11956c = sum(K11956) 

K11957c = sum(K11957) 

K11958c = sum(K11958) 

K02073c = sum(K02073) 

K02072c = sum(K02072) 
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K02071c = sum(K02071) 

K15580c = sum(K15580) 

K15581c = sum(K15581) 

K15582c = sum(K15582) 

K15583c = sum(K15583) 

K10823c = sum(K10823) 

K12368c = sum(K12368) 

K12369c = sum(K12369) 

K12370c = sum(K12370) 

K12371c = sum(K12371) 

K12372c = sum(K12372) 

K16199c = sum(K16199) 

K16200c = sum(K16200) 

K16201c = sum(K16201) 

K16202c = sum(K16202) 

K01216c = sum(K01216) 

K01199c = sum(K01199) 

K19891c = sum(K19891) 

K19892c = sum(K19892) 

K19893c = sum(K19893) 

K01190c = sum(K01190) 

K12111c = sum(K12111) 

K12308c = sum(K12308) 

K12309c = sum(K12309) 

K01188c = sum(K01188) 

K05349c = sum(K05349) 

K05350c = sum(K05350) 

K01198c = sum(K01198) 

K15920c = sum(K15920) 

K22268c = sum(K22268) 

K01179c = sum(K01179) 

K19357c = sum(K19357) 

K20542c = sum(K20542) 

K01180c = sum(K01180) 

K20846c = sum(K20846) 

K20850c = sum(K20850) 

K01219c = sum(K01219) 
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K20851c = sum(K20851) 

K01200c = sum(K01200) 

K21575c = sum(K21575) 

K01177c = sum(K01177) 

K01208c = sum(K01208) 

K05992c = sum(K05992) 

K22253c = sum(K22253) 

K01178c = sum(K01178) 

K12047c = sum(K12047) 

K21574c = sum(K21574) 

K07024c = sum(K07024) 

K01193c = sum(K01193) 

K00064c = sum(K00064) 

K17993c = sum(K17993) 

K02567c = sum(K02567) 

K03778c = sum(K03778) 

K00955c = sum(K00955) 

K05907c = sum(K05907) 

K17229c = sum(K17229) 

K00958rc = sum(K00958r) 

K00958oc = sum(K00958o) 

K01225c = sum(K01225)  

K19668c = sum(K19668) 

K08688c = sum(K08688) 

K00301c = sum(K00301) 

K00302c = sum(K00302) 

K00303c = sum(K00303) 

K00304c = sum(K00304) 

K00305c = sum(K00305) 

K03851c = sum(K03851) 

K03852c = sum(K03852) 

K01130c = sum(K01130) 

K15923c = sum(K15923) 

K00879c = sum(K00879) 

K01628c = sum(K01628) 

K00848c = sum(K00848) 

K01629c = sum(K01629) 
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K01183c = sum(K01183) 

K13381c = sum(K13381) 

K14083c = sum(K14083) 

K16178c = sum(K16178) 

K16176c = sum(K16176) 

K00702c = sum(K00702) 

K16149c = sum(K16149) 

K00975c = sum(K00975) 

K00703c = sum(K00703) 

K16146c = sum(K16146) 

K16147c = sum(K16147) 

K01176c = sum(K01176) 

K05973c = sum(K05973) 

K03430c = sum(K03430) 

K05306c = sum(K05306) 

K11472c = sum(K11472) 

K01941c = sum(K01941) 

otherc = sum(other) 

print('KEGG number coverages calculated.') 

 

#### Calculating pathway coverages  

#C cycle 

fermentation_c = K00016c + K03778c + np.average([K00169c, K00170c]) 

respiration_c = np.average([K02256c, K02262c, K02274c, K02276c]) 

methanogenesis_c = np.average([K00400c, K00401c]) 

methane_oxidation_c = np.average([K16157c, K16158c, K16159c, K16161c, K10944mc, 

K10945mc, K10946mc]) 

MoCu_CODH_c = np.average([K03518c, K03519c, K03520c]) 

rTCA_I_c = np.average([K15230c, K15231c]) ##for GSB mostly 

rTCA_II_c = np.average([K15234c, K15233c, K15232c, K00174c, K00175c, K00244c]) ##for 

other organisms 

WL_c = np.average([K00194c, K00197c]) 

calvin_cycle_c = np.average([K01602c, K00855c]) 

carbon_fixation_c = rTCA_I_c + rTCA_II_c + WL_c + calvin_cycle_c 

#N cycle 

nitrogen_fixation_c = np.average([K02586c, K02591c]) 

ammonia_assimilation_c = np.average([K01915c, K00264c, K00265c, K00266c, K00284c]) 
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assimilatory_nitrate_reduction_c = np.average([K17877c, K00366c, K00360c, K00367c]) 

nitrification_c = np.average([K10535c, K10944ac, K10945ac, K10946ac]) 

anammox_c = np.average([K20932c, K20933c, K20934c, K20935c]) 

periplasmic_nitrate_reduction_c = K02567c 

dissimilatory_nitrate_reduction_c = K00370c 

dissimilatory_nitrite_reduction_ammonia_forming_c = K03385c 

dissimilatory_nitrite_reduction_NO_forming_c = K00368c 

nitric_oxide_reduction_c = np.average([K02305c, K04561c, K00376c]) 

denitrification_c = dissimilatory_nitrate_reduction_c + periplasmic_nitrate_reduction_c + 

dissimilatory_nitrite_reduction_NO_forming_c + nitric_oxide_reduction_c 

#S cycle 

sox_c = np.average([K17224c, K17227c, K17226c, K17222c, K17223c, K17225c]) 

cysteine_dioxygenase_c = K00456c 

thiosulfate_mercaptopyruvate_sulfurtransferase_c = K01011c 

sulfate_reduction_I_c = np.average([K00958rc, K00956c, K00957c, K00955c]) 

sulfate_reduction_II_c = K00958rc 

APS_reduction_I_c = np.average([K00860c, K00955c]) 

APS_reduction_II_c = np.average([K05907c, K00390c]) 

APS_reduction_III_c = np.average([K00394rc, K00395rc]) 

PAPS_reduction_c = K00390c 

sulfite_reduction_I_c = np.average([K00380c, K00381c, K00392c]) 

sulfite_reduction_II_c = np.average([K11180rc, K11181rc]) 

sulfide_oxidation_c = np.average([K17218c, K17229c]) 

sulfur_polysulfide_oxidation_c = np.average([K11180oc, K11181oc]) 

sulfite_oxidation_c = np.average([K00394oc, K00395oc]) 

APS_oxidation_c = K00958oc 

assimilatory_sulfate_reduction_I_c = sulfate_reduction_I_c + APS_reduction_I_c + 

PAPS_reduction_c + sulfite_reduction_I_c 

assimilatory_sulfate_reduction_II_c = sulfate_reduction_I_c + APS_reduction_II_c + 

sulfite_reduction_I_c 

dissimilatory_sulfate_reduction_c = sulfate_reduction_II_c + APS_reduction_III_c + 

sulfite_reduction_II_c 

sulfide_oxidation_sulfate_c = sulfide_oxidation_c + sulfur_polysulfide_oxidation_c + 

sulfite_oxidation_c + APS_oxidation_c 

#Photosystems 

photosystem_II_c = np.average([K02703c, K02706c, K02705c, K02704c, K02707c, K02708c]) 

photosystem_I_c = np.average([K02689c, K02690c, K02691c, K02692c, K02693c, K02694c]) 



531 
 

anoxygenic_photosystem_II_c = np.average([K08928c, K08929c]) 

anoxygenic_photosystem_I_c = np.average([K08940c, K08941c, K08942c, K08943c]) 

rhodopsins_c = K04643c + K04642c + K04641c + K04250c + K00909c 

astaxanthin_c = np.average([K09836c, K15746c]) 

bacterioruberin_c = K08977c 

#CRISPR 

CRISPR_Cas_spacer_acquisition_c = np.average([K15342c, K09951c]) 

CRISPR_1I_c = np.average([K07012c, K07475c]) 

CRISPR_1IA_c = np.average([K19088c, K19087c]) 

CRISPR_1IC_c = K19117c 

CRISPR_1IE_c = np.average([K19123c, K19046c]) 

CRISPR_1IF_c = np.average([K19127c, K19128c, K19129c]) 

CRISPR_2II_c = K09952c 

CRISPR_2IIA_c = K19137c 

CRISPR_2IIB_c = K07464c 

CRISPR_1III_c = K07016c 

CRISPR_1IIIA_c = K19138c 

CRISPR_1IIIB_c = K19141c 

#hydrogenases 

NiFe_hydrogenase_c = np.average([K00437c, K05922c]) 

NADreducing_hydrogenase_c = K00436c 

NADPreducing_hydrogenase_c = K18332c 

Fe_hydrogenase_c = K17997c 

ferredoxin_hydrogenase_mono_c = K00532c 

ferredoxin_hydrogenase_tri_c = K00533c 

membrane_bound_hydrogenase_c = K18016c 

methanophenazine_hydrogenase_c = K14068c 

coenzyme_F420hydrogenase_c = K00440c 

methenyltetrahydromethanopterin_hydrogenase_c = K13942c 

F420_nonreducing_hydrogenase_c = K14126c 

sulfhydrogenase_c = K17993c 

#ABC transporters 

Urea_transporter_c = np.average([K11959c, K11960c, K11961c, K11962c, K11963c]) 

Sulfate_transporter_c = np.average([K02048c, K02046c, K02047c, K02045c]) 

Nitrate_nitrite_transporter_c = np.average([K15576c, K15577c, K15578c, K15579c]) 

Bicarbonate_transporter_c = np.average([K11950c, K11951c, K11952c, K11953c]) 

Taurine_transporter_c = np.average([K15551c, K15552c, K10831c]) 
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Sulfonate_transporter_c = np.average([K15553c, K15554c, K15555c]) 

Spermidine_putrescine_transporter_c = np.average([K11069c, K11070c, K11071c, K11072c]) 

Putrescine_transporter_c = np.average([K11073c, K11074c, K11075c, K11076c]) 

Phosphate_transporter_c = np.average([K02040c, K02037c, K02038c, K02036c]) 

Phosphonate_transporter_c = np.average([K02044c, K02042c, K02041c]) 

Aminoethylphosphonate_transporter_c = np.average([K11081c, K11082c, K11083c, K11084c]) 

Glycine_betaine_proline_transporter_c = np.average([K02002c, K02001c, K02000c]) 

Osmoprotectant_transporter_c = np.average([K05845c, K05846c, K05847c]) 

Maltose_maltodextrin_transporter_c = np.average([K10108c, K10109c, K10110c]) 

Arabinogalactan_oligomer_maltooligosaccharide_transporter_c = np.average([K15770c, 

K15771c, K15772c]) 

Raffinose_stachyose_melibiose_transporter_c = np.average([K10117c, K10118c, K10119c]) 

alphaGlucoside_transporter_c = np.average([K10232c, K10233c, K10234c, K10235c]) 

Glucose_arabinose_transporter_c = np.average([K10196c, K10197c, K10198c, K10199c]) 

Glucose_mannose_transporter_c = np.average([K17315c, K17316c, K17317c]) 

Trehalose_maltose_transporter_c = np.average([K10236c, K10237c, K10238c]) 

Trehalose_transporter_c = np.average([K17311c, K17312c, K17313c, K17314c]) 

NAcetylglucosamine_transporter_c = np.average([K10200c, K10201c, K10202c]) 

Cellobiose_transporter_c = np.average([K10240c, K10241c, K10242c]) 

NNDiacetylchitobiose_transporter_c = np.average([K17329c, K17330c, K17331c]) 

Putative_chitobiose_transporter_c = np.average([K17244c, K17245c, K17246c]) 

LArabinose_transporter_c = np.average([K10537c, K10538c, K10539c]) 

Lactose_Larabinose_transporter_c = np.average([K10188c, K10189c, K10190c, K10191c]) 

DXylose_transporter_c = np.average([K10543c, K10544c, K10545c]) 

Xylobiose_transporter_c = np.average([K17326c, K17327c, K17328c]) 

Multiple_sugar_transporter_c = np.average([K10546c, K10547c, K10548c]) 

Fructose_transporter_c = np.average([K10552c, K10553c, K10554c]) 

Rhamnose_transporter_c = np.average([K10559c, K10560c, K10561c, K10562c]) 

Ribose_transporter_c = np.average([K10439c, K10440c, K10441c]) 

Erythritol_transporter_c = np.average([K17202c, K17203c, K17204c]) 

Putative_fructooligosaccharide_transporter_c = np.average([K10120c, K10121c, K10122c]) 

Glycerol_transporter_c = np.average([K17321c, K17322c, K17323c, K17324c, K17325c]) 

Putative_multiple_sugar_transporter_c = np.average([K02027c, K02025c, K02026c]) 

Putative_simple_sugar_transporter_c = np.average([K02058c, K02057c, K02056c]) 

Lysine_arginine_ornithine_transporter_c = np.average([K10013c, K10015c, K10016c, 

K10017c]) 

Histidine_transporter_c = np.average([K10014c, K10015c, K10016c, K10017c]) 
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Glutamine_transporter_c = np.average([K10036c, K10037c, K10038c]) 

Arginine_transporter_c = np.average([K09996c, K09997c, K09998c, K09999c, K10000c]) 

Glutamate_aspartate_transporter_c = np.average([K10001c, K10002c, K10003c, K10004c]) 

Aspartate_glutamate_glutamine_transporter_c = np.average([K10039c, K10040c, K10041c]) 

Octopine_nopaline_transporter_c = np.average([K10018c, K10019c, K10020c, K10021c]) 

General_Laminoacid_transporter_c = np.average([K09969c, K09970c, K09971c, K09972c]) 

Glutamate_transporter_c = np.average([K10005c, K10006c, K10007c, K10008c]) 

Cystine_transporter_c = np.average([K02424c, K10009c, K10010c]) 

LCystine_transporter_c = np.average([K16956c, K16957c, K16958c, K16959c, K16960c]) 

Arginine_ornithine_transporter_c = np.average([K10022c, K10023c, K10024c, K10025c]) 

Arginine_lysine_histidine_transporter_c = np.average([K23059c, K17077c, K23060c]) 

Branched_chain_aminoacid_transporter_c = np.average([K01999c, K01997c, K01998c, 

K01995c, K01996c]) 

Neutral_aminoacid_transporter_c = np.average([K11954c, K11955c, K11956c, K11957c, 

K11958c]) 

DMethionine_transporter_c = np.average([K02073c, K02072c, K02071c]) 

Oligopeptide_transporter_c = np.average([K15580c, K15581c, K15582c, K15583c, K10823c]) 

Dipeptide_transporter_c = np.average([K12368c, K12369c, K12370c, K12371c, K12372c, 

K16199c, K16200c, K16201c, K16202c]) 

#Carbohydrates 

licheninase_c = K01216c 

glucan_endobeta_glucosidase_c = np.average([K01199c, K19891c, K19892c, K19893c]) 

beta_galactosidase_c = np.average([K01190c, K12111c, K12308c, K12309c, K01188c, 

K05349c, K05350c]) 

xylan_beta_xylosidase_c = np.average([K01198c, K15920c, K22268c]) 

cellulase_endoglucanase_c = np.average([K01179c, K19357c, K20542c]) 

laminarinase_c = K01180c 

carrageenase_c = np.average([K20846c, K20850c]) 

agarase_c = np.average([K01219c, K20851c]) 

pullulanase_c = np.average([K01200c, K21575c]) 

beta_amylase_c = K01177c 

maltogenic_alpha_amylase_c = np.average([K01208c, K05992c]) 

exo_amylase_c = K22253c 

glucoamylase_glucan_alpha_glucosidase_c = np.average([K01178c, K12047c, K21574c]) 

sucrose_phosphatase_c = K07024c 

beta_fructofuranosidase_c = K01193c 

fucose_utilization_II_c = K00064c 
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cellobiosidase_c = np.average([K01225c, K19668c]) 

glycolate_utilization_c = K11472c 

creatine_utilization_c = K08688c 

sarcosine_utilization_I_c = K00301c 

sarcosine_utilization_II_c = np.average([K00302c, K00303c, K00304c, K00305c]) 

taurine_utilization_c = np.average([K03851c, K03852c]) 

sulfate_ester_hydrolysis_c = K01130c 

fucoidan_degradation_c = K15923c 

fucose_utilization_c = np.average([K00879c, K01628c]) 

rhamnose_utilization_c = np.average([K00848c, K01629c]) 

chitin_degradation_I_c = K01183c 

chitin_degradation_II_c = K13381c 

trimethylamine_glycine_betaine_methyltransferase_c = K14083c 

dimethylamine_utilization_c = K16178c 

monomethylamine_utilization_c = K16176c 

cellobiose_utilization_c = K00702c 

glycogen_synthesis_overall_c = K16149c 

glycogen_synthesis_I_c = np.average([K00975c, K00703c]) 

glycogen_synthesis_II_c = np.average([K16146c, K16147c]) 

starch_degradation_c = K01176c 

#Others 

PHA_storage_c = np.average([K03821c, K05973c]) 

urea_c = np.average([K01428c, K01429c, K01430c]) + K01941c 

glycerol_c = np.average([K00111c, K00112c, K00113c, K00864c]) 

archaeal_glycerol_c = K00096c 

superoxidedismutase_c = np.average([K00518c, K04564c, K04565c, K16627c]) 

methylphosphonate_catabolism_c = np.average([K06164c, K05780c, K06165c, K06166c, 

K06163c]) 

aminoethylphosphonate_catabolism_c = np.average([K03430c, K05306c]) 

DMSO_reduction_c = K07306c 

DMSP_catabolism_c = K16953c + K17486c 

recA_c = K03553c 

print('Pathway coverages calculated.') 

 

#### Normalizing by counts 

K00437n = len(K00437)-1 

K00436n = len(K00436)-1 
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K18332n = len(K18332)-1 

K17997n = len(K17997)-1 

K00532n = len(K00532)-1 

K00533n = len(K00533)-1 

K05922n = len(K05922)-1 

K18016n = len(K18016)-1 

K14068n = len(K14068)-1 

K00440n = len(K00440)-1 

K13942n = len(K13942)-1 

K14126n = len(K14126)-1 

K01915n = len(K01915)-1 

K00264n = len(K00264)-1 

K00265n = len(K00265)-1 

K00266n = len(K00266)-1 

K00284n = len(K00284)-1 

K00864n = len(K00864)-1 

K00005n = len(K00005)-1 

K19128n = len(K19128)-1 

K19117n = len(K19117)-1 

K00169n = len(K00169)-1 

K00170n = len(K00170)-1 

K00016n = len(K00016)-1 

K00174n = len(K00174)-1 

K00175n = len(K00175)-1 

K00244n = len(K00244)-1 

K00194n = len(K00194)-1 

K00197n = len(K00197)-1 

K00360n = len(K00360)-1 

K00367n = len(K00367)-1 

K10944an = len(K10944a) 

K10945an = len(K10945a) 

K10946an = len(K10946a) 

K10944mn = len(K10944m) 

K10945mn = len(K10945m)  

K10946mn = len(K10946m) 

K20932n = len(K20932)-1 

K20933n = len(K20933)-1 
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K20934n = len(K20934)-1 

K20935n = len(K20935)-1 

K00456n = len(K00456)-1 

K01011n = len(K01011)-1 

K00860n = len(K00860)-1  

K00956n = len(K00956)-1  

K00957n = len(K00957)-1 

K19087n = len(K19087)-1 

K19046n = len(K19046)-1 

K19127n = len(K19127)-1 

K19129n = len(K19129)-1 

K03385n = len(K03385)-1 

K17877n = len(K17877)-1 

K00366n = len(K00366)-1 

K02305n = len(K02305)-1 

K04561n = len(K04561)-1 

K00376n = len(K00376)-1 

K02586n = len(K02586)-1 

K02591n = len(K02591)-1 

K10535n = len(K10535)-1 

K01602n = len(K01602)-1 

K00855n = len(K00855)-1 

K15230n = len(K15230)-1 

K15231n = len(K15231)-1 

K15234n = len(K15234)-1 

K15233n = len(K15233)-1 

K15232n = len(K15232)-1 

K03518n = len(K03518)-1 

K03519n = len(K03519)-1 

K03520n = len(K03520)-1 

K02256n = len(K02256)-1 

K02262n = len(K02262)-1 

K02274n = len(K02274)-1 

K02276n = len(K02276)-1 

K00401n = len(K00401)-1 

K00400n = len(K00400)-1 

K16157n = len(K16157)-1 
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K16158n = len(K16158)-1 

K16159n = len(K16159)-1 

K16161n = len(K16161)-1 

K00390n = len(K00390)-1 

K00392n = len(K00392)-1 

K00380n = len(K00380)-1 

K00381n = len(K00381)-1 

K00394rn = len(K00394r) 

K00395rn = len(K00395r) 

K11180rn = len(K11180r) 

K11181rn = len(K11181r) 

K00394on = len(K00394o) 

K00395on = len(K00395o) 

K11180on = len(K11180o) 

K11181on = len(K11181o) 

K17224n = len(K17224)-1 

K17227n = len(K17227)-1 

K17226n = len(K17226)-1 

K17222n = len(K17222)-1 

K17223n = len(K17223)-1 

K17225n = len(K17225)-1 

K03821n = len(K03821)-1 

K15342n = len(K15342)-1 

K09951n = len(K09951)-1 

K07012n = len(K07012)-1 

K07475n = len(K07475)-1 

K19088n = len(K19088)-1 

K19123n = len(K19123)-1 

K19127n = len(K19127)-1 

K07016n = len(K07016)-1 

K19138n = len(K19138)-1 

K19141n = len(K19141)-1 

K09952n = len(K09952)-1 

K19137n = len(K19137)-1 

K07464n = len(K07464)-1 

K02703n = len(K02703)-1 

K02706n = len(K02706)-1 
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K02705n = len(K02705)-1 

K02704n = len(K02704)-1 

K02707n = len(K02707)-1 

K02708n = len(K02708)-1 

K02689n = len(K02689)-1 

K02690n = len(K02690)-1 

K02691n = len(K02691)-1 

K02692n = len(K02692)-1 

K02693n = len(K02693)-1 

K02694n = len(K02694)-1 

K08928n = len(K08928)-1 

K08929n = len(K08929)-1 

K08940n = len(K08940)-1 

K08941n = len(K08941)-1 

K08942n = len(K08942)-1 

K08943n = len(K08943)-1 

K04643n = len(K04643)-1 

K04642n = len(K04642)-1 

K04641n = len(K04641)-1 

K04250n = len(K04250)-1 

K00909n = len(K00909)-1 

K01428n = len(K01428)-1 

K01429n = len(K01429)-1 

K01430n = len(K01430)-1 

K00111n = len(K00111)-1 

K00112n = len(K00112)-1 

K00113n = len(K00113)-1 

K00096n = len(K00096)-1 

K00518n = len(K00518)-1 

K04564n = len(K04564)-1 

K04565n = len(K04565)-1 

K16627n = len(K16627)-1 

K06164n = len(K06164)-1 

K05780n = len(K05780)-1 

K06165n = len(K06165)-1 

K06166n = len(K06166)-1 

K06163n = len(K06163)-1 
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K08977n = len(K08977)-1 

K09836n = len(K09836)-1 

K15746n = len(K15746)-1 

K16953n = len(K16953)-1 

K17486n = len(K17486)-1 

K07306n = len(K07306)-1 

K17218n = len(K17218)-1 

K03553n = len(K03553)-1 

K00370n = len(K00370)-1 

K00368n = len(K00368)-1 

K11959n = len(K11959)-1 

K11960n = len(K11960)-1 

K11961n = len(K11961)-1 

K11962n = len(K11962)-1 

K11963n = len(K11963)-1 

K02048n = len(K02048)-1 

K02046n = len(K02046)-1 

K02047n = len(K02047)-1 

K02045n = len(K02045)-1 

K15576n = len(K15576)-1 

K15577n = len(K15577)-1 

K15578n = len(K15578)-1 

K15579n = len(K15579)-1 

K11950n = len(K11950)-1 

K11951n = len(K11951)-1 

K11952n = len(K11952)-1 

K11953n = len(K11953)-1 

K15551n = len(K15551)-1 

K15552n = len(K15552)-1 

K10831n = len(K10831)-1 

K15553n = len(K15553)-1 

K15554n = len(K15554)-1 

K15555n = len(K15555)-1 

K11069n = len(K11069)-1 

K11070n = len(K11070)-1 

K11071n = len(K11071)-1 

K11072n = len(K11072)-1 
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K11073n = len(K11073)-1 

K11074n = len(K11074)-1 

K11075n = len(K11075)-1 

K11076n = len(K11076)-1 

K02040n = len(K02040)-1 

K02037n = len(K02037)-1 

K02038n = len(K02038)-1 

K02036n = len(K02036)-1 

K02044n = len(K02044)-1 

K02042n = len(K02042)-1 

K02041n = len(K02041)-1 

K11081n = len(K11081)-1 

K11082n = len(K11082)-1 

K11083n = len(K11083)-1 

K11084n = len(K11084)-1 

K02002n = len(K02002)-1 

K02001n = len(K02001)-1 

K02000n = len(K02000)-1 

K05845n = len(K05845)-1 

K05846n = len(K05846)-1 

K05847n = len(K05847)-1 

K10108n = len(K10108)-1 

K10109n = len(K10109)-1 

K10110n = len(K10110)-1 

K15770n = len(K15770)-1 

K15771n = len(K15771)-1 

K15772n = len(K15772)-1 

K10117n = len(K10117)-1 

K10118n = len(K10118)-1 

K10119n = len(K10119)-1 

K10232n = len(K10232)-1 

K10233n = len(K10233)-1 

K10234n = len(K10234)-1 

K10235n = len(K10235)-1 

K10196n = len(K10196)-1 

K10197n = len(K10197)-1 

K10198n = len(K10198)-1 
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K10199n = len(K10199)-1 

K17315n = len(K17315)-1 

K17316n = len(K17316)-1 

K17317n = len(K17317)-1 

K10236n = len(K10236)-1 

K10237n = len(K10237)-1 

K10238n = len(K10238)-1 

K17311n = len(K17311)-1 

K17312n = len(K17312)-1 

K17313n = len(K17313)-1 

K17314n = len(K17314)-1 

K10200n = len(K10200)-1 

K10201n = len(K10201)-1 

K10202n = len(K10202)-1 

K10240n = len(K10240)-1 

K10241n = len(K10241)-1 

K10242n = len(K10242)-1 

K17329n = len(K17329)-1 

K17330n = len(K17330)-1 

K17331n = len(K17331)-1 

K17244n = len(K17244)-1 

K17245n = len(K17245)-1 

K17246n = len(K17246)-1 

K10537n = len(K10537)-1 

K10538n = len(K10538)-1 

K10539n = len(K10539)-1 

K10188n = len(K10188)-1 

K10189n = len(K10189)-1 

K10190n = len(K10190)-1 

K10191n = len(K10191)-1 

K10543n = len(K10543)-1 

K10544n = len(K10544)-1 

K10545n = len(K10545)-1 

K17326n = len(K17326)-1 

K17327n = len(K17327)-1 

K17328n = len(K17328)-1 

K10546n = len(K10546)-1 
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K10547n = len(K10547)-1 

K10548n = len(K10548)-1 

K10552n = len(K10552)-1 

K10553n = len(K10553)-1 

K10554n = len(K10554)-1 

K10559n = len(K10559)-1 

K10560n = len(K10560)-1 

K10561n = len(K10561)-1 

K10562n = len(K10562)-1 

K10439n = len(K10439)-1 

K10440n = len(K10440)-1 

K10441n = len(K10441)-1 

K17202n = len(K17202)-1 

K17203n = len(K17203)-1 

K17204n = len(K17204)-1 

K10120n = len(K10120)-1 

K10121n = len(K10121)-1 

K10122n = len(K10122)-1 

K17321n = len(K17321)-1 

K17322n = len(K17322)-1 

K17323n = len(K17323)-1 

K17324n = len(K17324)-1 

K17325n = len(K17325)-1 

K02027n = len(K02027)-1 

K02025n = len(K02025)-1 

K02026n = len(K02026)-1 

K02058n = len(K02058)-1 

K02057n = len(K02057)-1 

K02056n = len(K02056)-1 

K10013n = len(K10013)-1 

K10015n = len(K10015)-1 

K10016n = len(K10016)-1 

K10017n = len(K10017)-1 

K10014n = len(K10014)-1 

K10036n = len(K10036)-1 

K10037n = len(K10037)-1 

K10038n = len(K10038)-1 
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K09996n = len(K09996)-1 

K09997n = len(K09997)-1 

K09998n = len(K09998)-1 

K09999n = len(K09999)-1 

K10000n = len(K10000)-1 

K10001n = len(K10001)-1 

K10002n = len(K10002)-1 

K10003n = len(K10003)-1 

K10004n = len(K10004)-1 

K10039n = len(K10039)-1 

K10040n = len(K10040)-1 

K10041n = len(K10041)-1 

K10018n = len(K10018)-1 

K10019n = len(K10019)-1 

K10020n = len(K10020)-1 

K10021n = len(K10021)-1 

K09969n = len(K09969)-1 

K09970n = len(K09970)-1 

K09971n = len(K09971)-1 

K09972n = len(K09972)-1 

K10005n = len(K10005)-1 

K10006n = len(K10006)-1 

K10007n = len(K10007)-1 

K10008n = len(K10008)-1 

K02424n = len(K02424)-1 

K10009n = len(K10009)-1 

K10010n = len(K10010)-1 

K16956n = len(K16956)-1 

K16957n = len(K16957)-1 

K16958n = len(K16958)-1 

K16959n = len(K16959)-1 

K16960n = len(K16960)-1 

K10022n = len(K10022)-1 

K10023n = len(K10023)-1 

K10024n = len(K10024)-1 

K10025n = len(K10025)-1 

K23059n = len(K23059)-1 
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K17077n = len(K17077)-1 

K23060n = len(K23060)-1 

K01999n = len(K01999)-1 

K01997n = len(K01997)-1 

K01998n = len(K01998)-1 

K01995n = len(K01995)-1 

K01996n = len(K01996)-1 

K11954n = len(K11954)-1 

K11955n = len(K11955)-1 

K11956n = len(K11956)-1 

K11957n = len(K11957)-1 

K11958n = len(K11958)-1 

K02073n = len(K02073)-1 

K02072n = len(K02072)-1 

K02071n = len(K02071)-1 

K15580n = len(K15580)-1 

K15581n = len(K15581)-1 

K15582n = len(K15582)-1 

K15583n = len(K15583)-1 

K10823n = len(K10823)-1 

K12368n = len(K12368)-1 

K12369n = len(K12369)-1 

K12370n = len(K12370)-1 

K12371n = len(K12371)-1 

K12372n = len(K12372)-1 

K16199n = len(K16199)-1 

K16200n = len(K16200)-1 

K16201n = len(K16201)-1 

K16202n = len(K16202)-1 

K01216n = len(K01216)-1 

K01199n = len(K01199)-1 

K19891n = len(K19891)-1 

K19892n = len(K19892)-1 

K19893n = len(K19893)-1 

K01190n = len(K01190)-1 

K12111n = len(K12111)-1 

K12308n = len(K12308)-1 
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K12309n = len(K12309)-1 

K01188n = len(K01188)-1 

K05349n = len(K05349)-1 

K05350n = len(K05350)-1 

K01198n = len(K01198)-1 

K15920n = len(K15920)-1 

K22268n = len(K22268)-1 

K01179n = len(K01179)-1 

K19357n = len(K19357)-1 

K20542n = len(K20542)-1 

K01180n = len(K01180)-1 

K20846n = len(K20846)-1 

K20850n = len(K20850)-1 

K01219n = len(K01219)-1 

K20851n = len(K20851)-1 

K01200n = len(K01200)-1 

K21575n = len(K21575)-1 

K01177n = len(K01177)-1 

K01208n = len(K01208)-1 

K05992n = len(K05992)-1 

K22253n = len(K22253)-1 

K01178n = len(K01178)-1 

K12047n = len(K12047)-1 

K21574n = len(K21574)-1 

K07024n = len(K07024)-1 

K01193n = len(K01193)-1 

K00064n = len(K00064)-1 

K17993n = len(K17993)-1 

K02567n = len(K02567)-1 

K03778n = len(K03778)-1 

K00955n = len(K00955)-1 

K05907n = len(K05907)-1 

K17229n = len(K17229)-1 

K00958rn = len(K00958r) 

K00958on = len(K00958o) 

K01225n = len(K01225)-1  

K19668n = len(K19668)-1 
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K08688n = len(K08688)-1 

K00301n = len(K00301)-1 

K00302n = len(K00302)-1 

K00303n = len(K00303)-1 

K00304n = len(K00304)-1 

K00305n = len(K00305)-1 

K03851n = len(K03851)-1 

K03852n = len(K03852)-1 

K01130n = len(K01130)-1 

K15923n = len(K15923)-1 

K00879n = len(K00879)-1 

K01628n = len(K01628)-1 

K00848n = len(K00848)-1 

K01629n = len(K01629)-1 

K01183n = len(K01183)-1 

K13381n = len(K13381)-1 

K14083n = len(K14083)-1 

K16178n = len(K16178)-1 

K16176n = len(K16176)-1 

K00702n = len(K00702)-1 

K16149n = len(K16149)-1 

K00975n = len(K00975)-1 

K00703n = len(K00703)-1 

K16146n = len(K16146)-1 

K16147n = len(K16147)-1 

K01176n = len(K01176)-1 

K05973n = len(K05973)-1 

K03430n = len(K03430)-1 

K05306n = len(K05306)-1 

K11472n = len(K11472)-1 

K01941n = len(K01941)-1 

othern = len(other)-1 

print('KEGG number counts calculated.') 

 

####  Calculating pathway counts 

#C cycle 

fermentation_n = K00016n + K03778n + np.average([K00169n, K00170n]) 
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respiration_n = np.average([K02256n, K02262n, K02274n, K02276n]) 

methanogenesis_n = np.average([K00400n, K00401n]) 

methane_oxidation_n = np.average([K16157n, K16158n, K16159n, K16161n, K10944mn, 

K10945mn, K10946mn]) 

MoCu_CODH_n = np.average([K03518n, K03519n, K03520n]) 

rTCA_I_n = np.average([K15230n, K15231n]) ##for GSB mostly 

rTCA_II_n = np.average([K15234n, K15233n, K15232n, K00174n, K00175n, K00244n]) ##for 

other organisms 

WL_n = np.average([K00194n, K00197n]) 

calvin_cycle_n = np.average([K01602n, K00855n]) 

carbon_fixation_n = rTCA_I_n + rTCA_II_n + WL_n + calvin_cycle_n 

#N cycle 

nitrogen_fixation_n = np.average([K02586n, K02591n]) 

ammonia_assimilation_n = np.average([K01915n, K00264n, K00265n, K00266n, K00284n]) 

assimilatory_nitrate_reduction_n = np.average([K17877n, K00366n, K00360n, K00367n]) 

nitrification_n = np.average([K10535n, K10944an, K10945an, K10946an]) 

anammox_n = np.average([K20932n, K20933n, K20934n, K20935n]) 

periplasmic_nitrate_reduction_n = K02567n 

dissimilatory_nitrate_reduction_n = K00370n 

dissimilatory_nitrite_reduction_ammonia_forming_n = K03385n 

dissimilatory_nitrite_reduction_NO_forming_n = K00368n 

nitric_oxide_reduction_n = np.average([K02305n, K04561n, K00376n]) 

denitrification_n = dissimilatory_nitrate_reduction_n + periplasmic_nitrate_reduction_n + 

dissimilatory_nitrite_reduction_NO_forming_n + nitric_oxide_reduction_n 

#S cycle 

sox_n = np.average([K17224n, K17227n, K17226n, K17222n, K17223n, K17225n]) 

cysteine_dioxygenase_n = K00456n 

thiosulfate_mercaptopyruvate_sulfurtransferase_n = K01011n 

sulfate_reduction_I_n = np.average([K00958rn, K00956n, K00957n, K00955n]) 

sulfate_reduction_II_n = K00958rn 

APS_reduction_I_n = np.average([K00860n, K00955n]) 

APS_reduction_II_n = np.average([K05907n, K00390n]) 

APS_reduction_III_n = np.average([K00394rn, K00395rn]) 

PAPS_reduction_n = K00390n 

sulfite_reduction_I_n = np.average([K00380n, K00381n, K00392n]) 

sulfite_reduction_II_n = np.average([K11180rn, K11181rn]) 

sulfide_oxidation_n = np.average([K17218n, K17229n]) 
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sulfur_polysulfide_oxidation_n = np.average([K11180on, K11181on]) 

sulfite_oxidation_n = np.average([K00394on, K00395on]) 

APS_oxidation_n = K00958on 

assimilatory_sulfate_reduction_I_n = sulfate_reduction_I_n + APS_reduction_I_n + 

PAPS_reduction_n + sulfite_reduction_I_n 

assimilatory_sulfate_reduction_II_n = sulfate_reduction_I_n + APS_reduction_II_n + 

sulfite_reduction_I_n 

dissimilatory_sulfate_reduction_n = sulfate_reduction_II_n + APS_reduction_III_n + 

sulfite_reduction_II_n 

sulfide_oxidation_sulfate_n = sulfide_oxidation_n + sulfur_polysulfide_oxidation_n + 

sulfite_oxidation_n + APS_oxidation_n 

#Photosystems 

photosystem_II_n = np.average([K02703n, K02706n, K02705n, K02704n, K02707n, 

K02708n]) 

photosystem_I_n = np.average([K02689n, K02690n, K02691n, K02692n, K02693n, K02694n]) 

anoxygenic_photosystem_II_n = np.average([K08928n, K08929n]) 

anoxygenic_photosystem_I_n = np.average([K08940n, K08941n, K08942n, K08943n]) 

rhodopsins_n = K04643n + K04642n + K04641n + K04250n + K00909n 

astaxanthin_n = np.average([K09836n, K15746n]) 

bacterioruberin_n = K08977n 

#CRISPR 

CRISPR_Cas_spacer_acquisition_n = np.average([K15342n, K09951n]) 

CRISPR_1I_n = np.average([K07012n, K07475n]) 

CRISPR_1IA_n = np.average([K19088n, K19087n]) 

CRISPR_1IC_n = K19117n 

CRISPR_1IE_n = np.average([K19123n, K19046n]) 

CRISPR_1IF_n = np.average([K19127n, K19128n, K19129n]) 

CRISPR_2II_n = K09952n 

CRISPR_2IIA_n = K19137n 

CRISPR_2IIB_n = K07464n 

CRISPR_1III_n = K07016n 

CRISPR_1IIIA_n = K19138n 

CRISPR_1IIIB_n = K19141n 

#hydrogenases 

NiFe_hydrogenase_n = np.average([K00437n, K05922n]) 

NADreducing_hydrogenase_n = K00436n 

NADPreducing_hydrogenase_n = K18332n 
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Fe_hydrogenase_n = K17997n 

ferredoxin_hydrogenase_mono_n = K00532n 

ferredoxin_hydrogenase_tri_n = K00533n 

membrane_bound_hydrogenase_n = K18016n 

methanophenazine_hydrogenase_n = K14068n 

coenzyme_F420hydrogenase_n = K00440n 

methenyltetrahydromethanopterin_hydrogenase_n = K13942n 

F420_nonreducing_hydrogenase_n = K14126n 

sulfhydrogenase_n = K17993n 

#ABC transporters 

Dissimilatory_nitrite_reduction_NO_forming_n = K00368n 

Dissimilatory_nitrate_reduction_n = K00370n 

Urea_transporter_n = np.average([K11959n, K11960n, K11961n, K11962n, K11963n]) 

Sulfate_transporter_n = np.average([K02048n, K02046n, K02047n, K02045n]) 

Nitrate_nitrite_transporter_n = np.average([K15576n, K15577n, K15578n, K15579n]) 

Bicarbonate_transporter_n = np.average([K11950n, K11951n, K11952n, K11953n]) 

Taurine_transporter_n = np.average([K15551n, K15552n, K10831n]) 

Sulfonate_transporter_n = np.average([K15553n, K15554n, K15555n]) 

Spermidine_putrescine_transporter_n = np.average([K11069n, K11070n, K11071n, K11072n]) 

Putrescine_transporter_n = np.average([K11073n, K11074n, K11075n, K11076n]) 

Phosphate_transporter_n = np.average([K02040n, K02037n, K02038n, K02036n]) 

Phosphonate_transporter_n = np.average([K02044n, K02042n, K02041n]) 

Aminoethylphosphonate_transporter_n = np.average([K11081n, K11082n, K11083n, 

K11084n]) 

Glycine_betaine_proline_transporter_n = np.average([K02002n, K02001n, K02000n]) 

Osmoprotectant_transporter_n = np.average([K05845n, K05846n, K05847n]) 

Maltose_maltodextrin_transporter_n = np.average([K10108n, K10109n, K10110n]) 

Arabinogalactan_oligomer_maltooligosaccharide_transporter_n = np.average([K15770n, 

K15771n, K15772n]) 

Raffinose_stachyose_melibiose_transporter_n = np.average([K10117n, K10118n, K10119n]) 

alphaGlucoside_transporter_n = np.average([K10232n, K10233n, K10234n, K10235n]) 

Glucose_arabinose_transporter_n = np.average([K10196n, K10197n, K10198n, K10199n]) 

Glucose_mannose_transporter_n = np.average([K17315n, K17316n, K17317n]) 

Trehalose_maltose_transporter_n = np.average([K10236n, K10237n, K10238n]) 

Trehalose_transporter_n = np.average([K17311n, K17312n, K17313n, K17314n]) 

NAcetylglucosamine_transporter_n = np.average([K10200n, K10201n, K10202n]) 

Cellobiose_transporter_n = np.average([K10240n, K10241n, K10242n]) 
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NNDiacetylchitobiose_transporter_n = np.average([K17329n, K17330n, K17331n]) 

Putative_chitobiose_transporter_n = np.average([K17244n, K17245n, K17246n]) 

LArabinose_transporter_n = np.average([K10537n, K10538n, K10539n]) 

Lactose_Larabinose_transporter_n = np.average([K10188n, K10189n, K10190n, K10191n]) 

DXylose_transporter_n = np.average([K10543n, K10544n, K10545n]) 

Xylobiose_transporter_n = np.average([K17326n, K17327n, K17328n]) 

Multiple_sugar_transporter_n = np.average([K10546n, K10547n, K10548n]) 

Fructose_transporter_n = np.average([K10552n, K10553n, K10554n]) 

Rhamnose_transporter_n = np.average([K10559n, K10560n, K10561n, K10562n]) 

Ribose_transporter_n = np.average([K10439n, K10440n, K10441n]) 

Erythritol_transporter_n = np.average([K17202n, K17203n, K17204n]) 

Putative_fructooligosaccharide_transporter_n = np.average([K10120n, K10121n, K10122n]) 

Glycerol_transporter_n = np.average([K17321n, K17322n, K17323n, K17324n, K17325n]) 

Putative_multiple_sugar_transporter_n = np.average([K02027n, K02025n, K02026n]) 

Putative_simple_sugar_transporter_n = np.average([K02058n, K02057n, K02056n]) 

Lysine_arginine_ornithine_transporter_n = np.average([K10013n, K10015n, K10016n, 

K10017n]) 

Histidine_transporter_n = np.average([K10014n, K10015n, K10016n, K10017n]) 

Glutamine_transporter_n = np.average([K10036n, K10037n, K10038n]) 

Arginine_transporter_n = np.average([K09996n, K09997n, K09998n, K09999n, K10000n]) 

Glutamate_aspartate_transporter_n = np.average([K10001n, K10002n, K10003n, K10004n]) 

Aspartate_glutamate_glutamine_transporter_n = np.average([K10039n, K10040n, K10041n]) 

Octopine_nopaline_transporter_n = np.average([K10018n, K10019n, K10020n, K10021n]) 

General_Laminoacid_transporter_n = np.average([K09969n, K09970n, K09971n, K09972n]) 

Glutamate_transporter_n = np.average([K10005n, K10006n, K10007n, K10008n]) 

Cystine_transporter_n = np.average([K02424n, K10009n, K10010n]) 

LCystine_transporter_n = np.average([K16956n, K16957n, K16958n, K16959n, K16960n]) 

Arginine_ornithine_transporter_n = np.average([K10022n, K10023n, K10024n, K10025n]) 

Arginine_lysine_histidine_transporter_n = np.average([K23059n, K17077n, K23060n]) 

Branched_chain_aminoacid_transporter_n = np.average([K01999n, K01997n, K01998n, 

K01995n, K01996n]) 

Neutral_aminoacid_transporter_n = np.average([K11954n, K11955n, K11956n, K11957n, 

K11958n]) 

DMethionine_transporter_n = np.average([K02073n, K02072n, K02071n]) 

Oligopeptide_transporter_n = np.average([K15580n, K15581n, K15582n, K15583n, K10823n]) 

Dipeptide_transporter_n = np.average([K12368n, K12369n, K12370n, K12371n, K12372n, 

K16199n, K16200n, K16201n, K16202n]) 
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#Carbohydrates 

licheninase_n = K01216n 

glucan_endobeta_glucosidase_n = np.average([K01199n, K19891n, K19892n, K19893n]) 

beta_galactosidase_n = np.average([K01190n, K12111n, K12308n, K12309n, K01188n, 

K05349n, K05350n]) 

xylan_beta_xylosidase_n = np.average([K01198n, K15920n, K22268n]) 

cellulase_endoglucanase_n = np.average([K01179n, K19357n, K20542n]) 

laminarinase_n = K01180n 

carrageenase_n = np.average([K20846n, K20850n]) 

agarase_n = np.average([K01219n, K20851n]) 

pullulanase_n = np.average([K01200n, K21575n]) 

beta_amylase_n = K01177n 

maltogenic_alpha_amylase_n = np.average([K01208n, K05992n]) 

exo_amylase_n = K22253n 

glucoamylase_glucan_alpha_glucosidase_n = np.average([K01178n, K12047n, K21574n]) 

sucrose_phosphatase_n = K07024n 

beta_fructofuranosidase_n = K01193n 

fucose_utilization_II_n = K00064n 

cellobiosidase_n = np.average([K01225n, K19668n]) 

glycolate_utilization_n = K11472n 

creatine_utilization_n = K08688n 

sarcosine_utilization_I_n = K00301n 

sarcosine_utilization_II_n = np.average([K00302n, K00303n, K00304n, K00305n]) 

taurine_utilization_n = np.average([K03851n, K03852n]) 

sulfate_ester_hydrolysis_n = K01130n 

fucoidan_degradation_n = K15923n 

fucose_utilization_n = np.average([K00879n, K01628n]) 

rhamnose_utilization_n = np.average([K00848n, K01629n]) 

chitin_degradation_I_n = K01183n 

chitin_degradation_II_n = K13381n 

trimethylamine_glycine_betaine_methyltransferase_n = K14083n 

dimethylamine_utilization_n = K16178n 

monomethylamine_utilization_n = K16176n 

cellobiose_utilization_n = K00702n 

glycogen_synthesis_overall_n = K16149n 

glycogen_synthesis_I_n = np.average([K00975n, K00703n]) 

glycogen_synthesis_II_n = np.average([K16146n, K16147n]) 
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starch_degradation_n = K01176n 

#Others 

PHA_storage_n = np.average([K03821n, K05973n]) 

urea_n = np.average([K01428n, K01429n, K01430n]) + K01941n 

glycerol_n = np.average([K00111n, K00112n, K00113n, K00864n, K00005n]) 

archaeal_glycerol_n = K00096n 

superoxidedismutase_n = np.average([K00518n, K04564n, K04565n, K16627n]) 

methylphosphonate_catabolism_n = np.average([K06164n, K05780n, K06165n, K06166n, 

K06163n]) 

aminoethylphosphonate_catabolism_n = np.average([K03430n, K05306n]) 

DMSO_reduction_n = K07306n 

DMSP_catabolism_n = K16953n + K17486n 

recA_n = K03553n 

print('Pathway counts calculated.') 

 

#### Write data to output file 

header = ['Fermentation', 'Respiration', 'Methanogenesis', 'Methane oxidation', 'Mo/Cu carbon 

monoxide dehydrogenase', 'rTCA I', 'rTCA II', 'WL',  

          'Calvin cycle', 'Carbon fixation', 'Nitrogen fixation', 'Ammonia assimilation', 'Assimilatory 

nitrate reduction', 'Nitrification', 'Anammox',  

          'Periplasmic nitrate reduction', 'Dissimilatory nitrate reduction', 'Dissimilatory nitrite 

reduction (ammonia forming)',  

          'Dissimilatory nitrite reduction (NO forming)', 'Nitric oxide reduction', 'Denitrification',  

          'SOX system', 'Cysteine dioxygenase', 'Thiosulfate/3-mercaptopyruvate sulfurtransferase', 

'Sulfate reduction I', 'Sulfate reduction II',  

          'APS reduction I', 'APS reduction II', 'APS reduction III', 'PAPS reduction', 'Sulfite 

reduction I', 'Sulfite reduction II', 'Sulfide oxidation',  

          'Sulfur/polysulfide oxidation', 'Sulfite oxidation', 'APS oxidation', 'Assimilatory sulfate 

reduction I', 'Assimilatory sulfate reduction II',  

          'Dissimilatory sulfate reduction', 'Sulfide oxidation to sulfate', 'Photosystem II', 

'Photosystem I', 'Anoxygenic photosystem II',  

          'Anoxygenic photosystem I', 'CRISPR-Cas spacer acquisition', 'CRISPR 1I', 'CRISPR 

1IA', 'CRISPR 1IC', 'CRISPR 1IE', 'CRISPR 1IF', 'CRISPR 2II', 'CRISPR 2IIA',  

          'CRISPR 2IIB', 'CRISPR 1III', 'CRISPR 1IIIA', 'CRISPR 1IIIB', '[NiFe] hydrogenase', 

'NAD-reducing hydrogenase/diaphorase', 'NADP-reducing hydrogenase',  

          'Iron-hydrogenase', 'Ferredoxin hydrogenase (monomeric)', 'Ferredoxin hydrogenase 

(trimeric)',  
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          'Membrane-bound hydrogenase', 'Methanophenazine hydrogenase', 'Coenzyme F420 

hydrogenase', '5, 10-Methenyltetrahydromethanopterin hydrogenase',  

          'F420-non-reducing hydrogenase', 'Sulfhydrogenase', 'Rhodopsins', 'Astaxanthin', 

'Bacterioruberin', 'PHA storage', 'Urea catabolism',  

          'Glycerol catabolism', 'Archaeal glycerol synthesis', 'Superoxidedismutase', 

'Methylphosphonate catabolism', 'Aminoethylphosphonate catabolism', 'DMSO reduction', 

'DMSP catabolism',  

          'RecA', 'Urea transporter', 'Sulfate transporter', 'Nitrate/nitrite transporter', 'Bicarbonate 

transporter', 'Taurine transporter',  

          'Sulfonate transporter', 'Spermidine/putrescine transporter', 'Putrescine transporter', 

'Phosphate transporter', 'Phosphonate transporter',  

          '2-Aminoethylphosphonate transporter', 'Glycine betaine/proline transporter', 

'Osmoprotectant transporter', 'Maltose/maltodextrin transporter',  

          'Arabinogalactan oligomer/maltooligosaccharide transporter', 

'Raffinose/stachyose/melibiose transporter', 'alpha-Glucoside transporter',  

          'Glucose/arabinose transporter', 'Glucose/mannose transporter', 'Trehalose/maltose 

transporter', 'Trehalose transporter',  

          'N-Acetylglucosamine transporter', 'Cellobiose transporter', "N, N'-Diacetylchitobiose 

transporter", 'Putative chitobiose transporter',  

          'L-Arabinose transporter', 'Lactose/L-arabinose transporter', 'D-Xylose transporter', 

'Xylobiose transporter', 'Multiple sugar transporter',  

          'Fructose transporter', 'Rhamnose transporter', 'Ribose transporter', 'Erythritol transporter', 

'Putative fructooligosaccharide transporter',  

          'Glycerol transporter', 'Putative multiple sugar transporter', 'Putative simple sugar 

transporter', 'Lysine/arginine/ornithine transporter',  

          'Histidine transporter', 'Glutamine transporter', 'Arginine transporter', 'Glutamate/aspartate 

transporter', 'Aspartate/glutamate/glutamine transporter',  

          'Octopine/nopaline transporter', 'General L-aminoacid transporter', 'Glutamate transporter', 

'Cystine transporter', 'L-Cystine transporter',  

          'Arginine/ornithine transporter', 'Arginine/lysine/histidine transporter', 'Branched-chain 

aminoacid transporter', 'Neutral aminoacid transporter',  

          'D-Methionine transporter', 'Oligopeptide transporter', 'Dipeptide transporter', 

'Licheninase', 'Glucan endo-1, 3-beta-glucosidase', 'Beta-galactosidase',  

          'Xylan 1, 4-beta-xylosidase', 'Cellulase/endoglucanase', 'Laminarinase', 'Carrageenase', 

'Agarase', 'Pullulanase', 'Beta-amylase', 'Maltogenic alpha-amylase',  

          'Exo-amylase', 'Glucoamylase/glucan 1, 4-alpha-glucosidase', 'Sucrose-6-phosphatase', 

'Beta-fructofuranosidase', 'Fucose utilization II', 'Cellobiosidase',  
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          'Glycolate utilization', 'Creatine utilization', 'Sarcosine utilization I', 'Sarcosine utilization 

II', 'Taurine utilization', 'Sulfate ester hydrolysis',  

          'Fucoidan degradation', 'Fucose utilization', 'Rhamnose utilization', 'Chitin degradation I', 

'Chitin degradation II', 'Trimethylamine/glycine betaine methyltransferase',  

          'Dimethylamine utilization', 'Monomethylamine utilization', 'Cellobiose utilization', 

'Glycogen synthesis (overall)', 'Glycogen synthesis I',  

          'Glycogen synthesis II', 'Starch degradation', 'Other processes', 'Issues', 'Total protein avg 

fold'] 

           

results_c = [fermentation_c, respiration_c, methanogenesis_c, methane_oxidation_c, 

MoCu_CODH_c, rTCA_I_c, rTCA_II_c, WL_c, calvin_cycle_c,  

             carbon_fixation_c, nitrogen_fixation_c, ammonia_assimilation_c, 

assimilatory_nitrate_reduction_c, nitrification_c, anammox_c,  

             periplasmic_nitrate_reduction_c, dissimilatory_nitrate_reduction_c, 

dissimilatory_nitrite_reduction_ammonia_forming_c,  

             dissimilatory_nitrite_reduction_NO_forming_c, nitric_oxide_reduction_c, 

denitrification_c, sox_c, cysteine_dioxygenase_c,  

             thiosulfate_mercaptopyruvate_sulfurtransferase_c, sulfate_reduction_I_c, 

sulfate_reduction_II_c, APS_reduction_I_c, APS_reduction_II_c,  

             APS_reduction_III_c, PAPS_reduction_c, sulfite_reduction_I_c, sulfite_reduction_II_c, 

sulfide_oxidation_c, sulfur_polysulfide_oxidation_c,  

             sulfite_oxidation_c, APS_oxidation_c, assimilatory_sulfate_reduction_I_c, 

assimilatory_sulfate_reduction_II_c, dissimilatory_sulfate_reduction_c,  

             sulfide_oxidation_sulfate_c, photosystem_II_c, photosystem_I_c, 

anoxygenic_photosystem_II_c, anoxygenic_photosystem_I_c, 

CRISPR_Cas_spacer_acquisition_c,  

             CRISPR_1I_c, CRISPR_1IA_c, CRISPR_1IC_c, CRISPR_1IE_c, CRISPR_1IF_c, 

CRISPR_2II_c, CRISPR_2IIA_c, CRISPR_2IIB_c, CRISPR_1III_c, CRISPR_1IIIA_c,  

             CRISPR_1IIIB_c, NiFe_hydrogenase_c, NADreducing_hydrogenase_c, 

NADPreducing_hydrogenase_c, Fe_hydrogenase_c, ferredoxin_hydrogenase_mono_c,  

             ferredoxin_hydrogenase_tri_c, membrane_bound_hydrogenase_c, 

methanophenazine_hydrogenase_c,  

             coenzyme_F420hydrogenase_c, methenyltetrahydromethanopterin_hydrogenase_c, 

F420_nonreducing_hydrogenase_c, sulfhydrogenase_c,  

             rhodopsins_c, astaxanthin_c, bacterioruberin_c, PHA_storage_c, urea_c, glycerol_c, 

archaeal_glycerol_c, superoxidedismutase_c,  
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             methylphosphonate_catabolism_c, aminoethylphosphonate_catabolism_c, 

DMSO_reduction_c, DMSP_catabolism_c, recA_c, Urea_transporter_c, Sulfate_transporter_c,  

             Nitrate_nitrite_transporter_c, Bicarbonate_transporter_c, Taurine_transporter_c, 

Sulfonate_transporter_c,  

             Spermidine_putrescine_transporter_c, Putrescine_transporter_c, 

Phosphate_transporter_c, Phosphonate_transporter_c,  

             Aminoethylphosphonate_transporter_c, Glycine_betaine_proline_transporter_c, 

Osmoprotectant_transporter_c,  

             Maltose_maltodextrin_transporter_c, 

Arabinogalactan_oligomer_maltooligosaccharide_transporter_c,  

             Raffinose_stachyose_melibiose_transporter_c, alphaGlucoside_transporter_c, 

Glucose_arabinose_transporter_c,  

             Glucose_mannose_transporter_c, Trehalose_maltose_transporter_c, 

Trehalose_transporter_c, NAcetylglucosamine_transporter_c,  

             Cellobiose_transporter_c, NNDiacetylchitobiose_transporter_c, 

Putative_chitobiose_transporter_c, LArabinose_transporter_c,  

             Lactose_Larabinose_transporter_c, DXylose_transporter_c, Xylobiose_transporter_c, 

Multiple_sugar_transporter_c,  

             Fructose_transporter_c, Rhamnose_transporter_c, Ribose_transporter_c, 

Erythritol_transporter_c,  

             Putative_fructooligosaccharide_transporter_c, Glycerol_transporter_c, 

Putative_multiple_sugar_transporter_c,  

             Putative_simple_sugar_transporter_c, Lysine_arginine_ornithine_transporter_c, 

Histidine_transporter_c, Glutamine_transporter_c,  

             Arginine_transporter_c, Glutamate_aspartate_transporter_c, 

Aspartate_glutamate_glutamine_transporter_c,  

             Octopine_nopaline_transporter_c, General_Laminoacid_transporter_c, 

Glutamate_transporter_c, Cystine_transporter_c,  

             LCystine_transporter_c, Arginine_ornithine_transporter_c, 

Arginine_lysine_histidine_transporter_c,  

             Branched_chain_aminoacid_transporter_c, Neutral_aminoacid_transporter_c, 

DMethionine_transporter_c, Oligopeptide_transporter_c,  

             Dipeptide_transporter_c, licheninase_c, glucan_endobeta_glucosidase_c, 

beta_galactosidase_c, xylan_beta_xylosidase_c,  

             cellulase_endoglucanase_c, laminarinase_c, carrageenase_c, agarase_c, pullulanase_c, 

beta_amylase_c, maltogenic_alpha_amylase_c,  
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             exo_amylase_c, glucoamylase_glucan_alpha_glucosidase_c, sucrose_phosphatase_c, 

beta_fructofuranosidase_c, fucose_utilization_II_c,  

             cellobiosidase_c, glycolate_utilization_c, creatine_utilization_c, 

sarcosine_utilization_I_c, sarcosine_utilization_II_c, taurine_utilization_c,  

             sulfate_ester_hydrolysis_c, fucoidan_degradation_c, fucose_utilization_c, 

rhamnose_utilization_c, chitin_degradation_I_c, chitin_degradation_II_c,  

             trimethylamine_glycine_betaine_methyltransferase_c, dimethylamine_utilization_c, 

monomethylamine_utilization_c, cellobiose_utilization_c, glycogen_synthesis_overall_c,  

             glycogen_synthesis_I_c, glycogen_synthesis_II_c, starch_degradation_c, otherc] 

 

results_n = [fermentation_n, respiration_n, methanogenesis_n, methane_oxidation_n, 

MoCu_CODH_n, rTCA_I_n, rTCA_II_n, WL_n, calvin_cycle_n,  

             carbon_fixation_n, nitrogen_fixation_n, ammonia_assimilation_n, 

assimilatory_nitrate_reduction_n, nitrification_n, anammox_n,  

             periplasmic_nitrate_reduction_n, dissimilatory_nitrate_reduction_n, 

dissimilatory_nitrite_reduction_ammonia_forming_n,  

             dissimilatory_nitrite_reduction_NO_forming_n, nitric_oxide_reduction_n, 

denitrification_n, sox_n, cysteine_dioxygenase_n,  

             thiosulfate_mercaptopyruvate_sulfurtransferase_n, sulfate_reduction_I_n, 

sulfate_reduction_II_n, APS_reduction_I_n, APS_reduction_II_n,  

             APS_reduction_III_n, PAPS_reduction_n, sulfite_reduction_I_n, 

sulfite_reduction_II_n, sulfide_oxidation_n, sulfur_polysulfide_oxidation_n,  

             sulfite_oxidation_n, APS_oxidation_n, assimilatory_sulfate_reduction_I_n, 

assimilatory_sulfate_reduction_II_n, dissimilatory_sulfate_reduction_n,  

             sulfide_oxidation_sulfate_n, photosystem_II_n, photosystem_I_n, 

anoxygenic_photosystem_II_n, anoxygenic_photosystem_I_n, 

CRISPR_Cas_spacer_acquisition_n,  

             CRISPR_1I_n, CRISPR_1IA_n, CRISPR_1IC_n, CRISPR_1IE_n, CRISPR_1IF_n, 

CRISPR_2II_n, CRISPR_2IIA_n, CRISPR_2IIB_n, CRISPR_1III_n, CRISPR_1IIIA_n,  

             CRISPR_1IIIB_n, NiFe_hydrogenase_n, NADreducing_hydrogenase_n, 

NADPreducing_hydrogenase_n, Fe_hydrogenase_n, ferredoxin_hydrogenase_mono_n,  

             ferredoxin_hydrogenase_tri_n, membrane_bound_hydrogenase_n, 

methanophenazine_hydrogenase_n,  

             coenzyme_F420hydrogenase_n, methenyltetrahydromethanopterin_hydrogenase_n, 

F420_nonreducing_hydrogenase_n, sulfhydrogenase_n,  

             rhodopsins_n, astaxanthin_n, bacterioruberin_n, PHA_storage_n, urea_n, glycerol_n, 

archaeal_glycerol_n, superoxidedismutase_n,  
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             methylphosphonate_catabolism_n, aminoethylphosphonate_catabolism_n, 

DMSO_reduction_n, DMSP_catabolism_n, recA_n, Urea_transporter_n, Sulfate_transporter_n,  

             Nitrate_nitrite_transporter_n, Bicarbonate_transporter_n, Taurine_transporter_n, 

Sulfonate_transporter_n,  

             Spermidine_putrescine_transporter_n, Putrescine_transporter_n, 

Phosphate_transporter_n, Phosphonate_transporter_n,  

             Aminoethylphosphonate_transporter_n, Glycine_betaine_proline_transporter_n, 

Osmoprotectant_transporter_n,  

             Maltose_maltodextrin_transporter_n, 

Arabinogalactan_oligomer_maltooligosaccharide_transporter_n,  

             Raffinose_stachyose_melibiose_transporter_n, alphaGlucoside_transporter_n, 

Glucose_arabinose_transporter_n,  

             Glucose_mannose_transporter_n, Trehalose_maltose_transporter_n, 

Trehalose_transporter_n, NAcetylglucosamine_transporter_n,  

             Cellobiose_transporter_n, NNDiacetylchitobiose_transporter_n, 

Putative_chitobiose_transporter_n, LArabinose_transporter_n,  

             Lactose_Larabinose_transporter_n, DXylose_transporter_n, Xylobiose_transporter_n, 

Multiple_sugar_transporter_n,  

             Fructose_transporter_n, Rhamnose_transporter_n, Ribose_transporter_n, 

Erythritol_transporter_n,  

             Putative_fructooligosaccharide_transporter_n, Glycerol_transporter_n, 

Putative_multiple_sugar_transporter_n,  

             Putative_simple_sugar_transporter_n, Lysine_arginine_ornithine_transporter_n, 

Histidine_transporter_n,  

             Glutamine_transporter_n, Arginine_transporter_n, Glutamate_aspartate_transporter_n, 

Aspartate_glutamate_glutamine_transporter_n,  

             Octopine_nopaline_transporter_n, General_Laminoacid_transporter_n, 

Glutamate_transporter_n, Cystine_transporter_n,  

             LCystine_transporter_n, Arginine_ornithine_transporter_n, 

Arginine_lysine_histidine_transporter_n,  

             Branched_chain_aminoacid_transporter_n, Neutral_aminoacid_transporter_n, 

DMethionine_transporter_n, Oligopeptide_transporter_n,  

             Dipeptide_transporter_n, licheninase_n, glucan_endobeta_glucosidase_n, 

beta_galactosidase_n, xylan_beta_xylosidase_n,  

             cellulase_endoglucanase_n, laminarinase_n, carrageenase_n, agarase_n, pullulanase_n, 

beta_amylase_n, maltogenic_alpha_amylase_n,  
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             exo_amylase_n, glucoamylase_glucan_alpha_glucosidase_n, sucrose_phosphatase_n, 

beta_fructofuranosidase_n, fucose_utilization_II_n,  

             cellobiosidase_n, glycolate_utilization_n, creatine_utilization_n, 

sarcosine_utilization_I_n, sarcosine_utilization_II_n, taurine_utilization_n,  

             sulfate_ester_hydrolysis_n, fucoidan_degradation_n, fucose_utilization_n, 

rhamnose_utilization_n, chitin_degradation_I_n, chitin_degradation_II_n,  

             trimethylamine_glycine_betaine_methyltransferase_n, dimethylamine_utilization_n, 

monomethylamine_utilization_n, cellobiose_utilization_n, glycogen_synthesis_overall_n,  

             glycogen_synthesis_I_n, glycogen_synthesis_II_n, starch_degradation_n, othern] 

 

all_header = ['K00437', 'K00436', 'K18332', 'K17997', 'K00532', 'K00533', 'K05922', 'K18016', 

'K14068', 'K00440', 'K13942', 'K14126', 'K01915', 'K00264', 'K00265', 'K00370', 'K00368',  

              'K00266', 'K00284', 'K00864', 'K00005', 'K00169', 'K00170', 'K00016', 'K00174', 

'K00175', 'K00244',  

              'K00194', 'K00197', 'K00360', 'K00367', 'K20932', 'K20933', 'K20934', 'K20935', 

'K00456', 'K01011', 'K00860', 'K00956', 'K00957', 'K19087', 'K19046',  

              'K19127', 'K19129', 'K03385', 'K17877', 'K00366', 'K02305', 'K04561', 'K00376', 

'K02586', 'K02591', 'K10535',  

              'K01602', 'K00855', 'K15230', 'K15231', 'K15234', 'K15233', 'K15232', 'K02256', 

'K02262', 'K02274', 'K02276', 'K03520',  

              'K03519', 'K03518', 'K00401', 'K00400', 'K16157', 'K16158', 'K16159', 'K16161', 

'K00390', 'K00392', 'K00380', 'K00381', 'K17224', 'K17227', 'K17226', 'K17222',  

              'K17223', 'K17225', 'K03821', 'K15342', 'K09951', 'K07012', 'K07475', 'K19088', 

'K19123', 'K19127', 'K07016', 'K19138', 'K19141', 'K09952', 'K19137',  

              'K07464', 'K02703', 'K02706', 'K02705', 'K02704', 'K02707', 'K02708', 'K02689', 

'K02690', 'K02691', 'K02692', 'K02693', 'K02694', 'K08928', 'K08929', 'K08940',  

              'K08941', 'K08942', 'K08943', 'K04643', 'K04642', 'K04641', 'K04250', 'K00909', 

'K01428', 'K01429', 'K01430', 'K00111', 'K00112', 'K00113', 'K00096', 'K00518',  

              'K04564', 'K04565', 'K16627', 'K06164', 'K05780', 'K06165', 'K06166', 'K06163', 

'K08977', 'K09836', 'K15746', 'K16953', 'K17486', 'K07306',  

              'K17218', 'K03553', 'K00394r', 'K00395r', 'K11180r', 'K11181r', 'K00394o', 'K00395o', 

'K11180o', 'K11181o', 'K10944a', 'K10945a', 'K10946a', 'K10944m', 'K10945m',  

              'K10946m', 'K19117', 'K19128', 'K11959', 'K11960', 'K11961', 'K11962', 'K11963', 

'K02048', 'K02046', 'K02047', 'K02045', 'K15576', 'K15577', 'K15578', 'K15579',  

              'K11950', 'K11951', 'K11952', 'K11953', 'K15551', 'K15552', 'K10831', 'K15553', 

'K15554', 'K15555', 'K11069', 'K11070', 'K11071', 'K11072', 'K11073', 'K11074',  
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              'K11075', 'K11076', 'K02040', 'K02037', 'K02038', 'K02036', 'K02044', 'K02042', 

'K02041', 'K11081', 'K11082', 'K11083', 'K11084', 'K02002', 'K02001', 'K02000',  

              'K05845', 'K05846', 'K05847', 'K10108', 'K10109', 'K10110', 'K15770', 'K15771', 

'K15772', 'K10117', 'K10118', 'K10119', 'K10232', 'K10233', 'K10234', 'K10235',  

              'K10196', 'K10197', 'K10198', 'K10199', 'K17315', 'K17316', 'K17317', 'K10236', 

'K10237', 'K10238', 'K17311', 'K17312', 'K17313', 'K17314', 'K10200', 'K10201',  

              'K10202', 'K10240', 'K10241', 'K10242', 'K17329', 'K17330', 'K17331', 'K17244', 

'K17245', 'K17246', 'K10537', 'K10538', 'K10539', 'K10188', 'K10189', 'K10190',  

              'K10191', 'K10543', 'K10544', 'K10545', 'K17326', 'K17327', 'K17328', 'K10546', 

'K10547', 'K10548', 'K10552', 'K10553', 'K10554', 'K10559', 'K10560', 'K10561',  

              'K10562', 'K10439', 'K10440', 'K10441', 'K17202', 'K17203', 'K17204', 'K10120', 

'K10121', 'K10122', 'K17321', 'K17322', 'K17323', 'K17324', 'K17325', 'K02027',  

              'K02025', 'K02026', 'K02058', 'K02057', 'K02056', 'K10013', 'K10015', 'K10016', 

'K10017', 'K10014', 'K10036', 'K10037', 'K10038', 'K09996', 'K09997', 'K09998',  

              'K09999', 'K10000', 'K10001', 'K10002', 'K10003', 'K10004', 'K10039', 'K10040', 

'K10041', 'K10018', 'K10019', 'K10020', 'K10021', 'K09969', 'K09970', 'K09971',  

              'K09972', 'K10005', 'K10006', 'K10007', 'K10008', 'K02424', 'K10009', 'K10010', 

'K16956', 'K16957', 'K16958', 'K16959', 'K16960', 'K10022', 'K10023', 'K10024',  

              'K10025', 'K23059', 'K17077', 'K23060', 'K01999', 'K01997', 'K01998', 'K01995', 

'K01996', 'K11954', 'K11955', 'K11956', 'K11957', 'K11958', 'K02073', 'K02072',  

              'K02071', 'K15580', 'K15581', 'K15582', 'K15583', 'K10823', 'K12368', 'K12369', 

'K12370', 'K12371', 'K12372', 'K16199', 'K16200', 'K16201', 'K16202', 'K01216',  

              'K01199', 'K19891', 'K19892', 'K19893', 'K01190', 'K12111', 'K12308', 'K12309', 

'K01188', 'K05349', 'K05350', 'K01198', 'K15920', 'K22268', 'K01179', 'K19357',  

              'K20542', 'K01180', 'K20846', 'K20850', 'K01219', 'K20851', 'K01200', 'K21575', 

'K01177', 'K01208', 'K05992', 'K22253', 'K01178', 'K12047', 'K21574', 'K07024',  

              'K01193', 'K00064', 'K17993', 'K02567', 'K03778', 'K00955', 'K17229', 'K00958r', 

'K00958o', 'K01225', 'K19668', 'K08688', 'K00301', 'K00302', 'K00303',  

              'K00304', 'K00305', 'K03851', 'K03852', 'K01130', 'K15923', 'K00879', 'K01628', 

'K00848', 'K01629', 'K01183', 'K13381', 'K14083', 'K16178', 'K16176', 'K00702',  

              'K16149', 'K00975', 'K00703', 'K16146', 'K16147', 'K01176', 'K05973', 'K03430', 

'K05306', 'K11472', 'K01941'] 

 

all_c = [K00437c, K00436c, K18332c, K17997c, K00532c, K00533c, K05922c, K18016c, 

K14068c, K00440c, K13942c, K14126c, K01915c, K00264c, K00265c, K00370c, K00368c,  

         K00266c, K00284c, K00864c, K00005c, K00169c, K00170c, K00016c, K00174c, 

K00175c, K00244c,  
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         K00194c, K00197c, K00360c, K00367c, K20932c, K20933c, K20934c, K20935c, 

K00456c, K01011c, K00860c, K00956c, K00957c, K19087c, K19046c,  

         K19127c, K19129c, K03385c, K17877c, K00366c, K02305c, K04561c, K00376c, 

K02586c, K02591c, K10535c,  

         K01602c, K00855c, K15230c, K15231c, K15234c, K15233c, K15232c, K02256c, 

K02262c, K02274c, K02276c, K03520c,  

         K03519c, K03518c, K00401c, K00400c, K16157c, K16158c, K16159c, K16161c, 

K00390c, K00392c, K00380c, K00381c, K17224c, K17227c, K17226c, K17222c,  

         K17223c, K17225c, K03821c, K15342c, K09951c, K07012c, K07475c, K19088c, 

K19123c, K19127c, K07016c, K19138c, K19141c, K09952c, K19137c,  

         K07464c, K02703c, K02706c, K02705c, K02704c, K02707c, K02708c, K02689c, 

K02690c, K02691c, K02692c, K02693c, K02694c, K08928c, K08929c, K08940c,  

         K08941c, K08942c, K08943c, K04643c, K04642c, K04641c, K04250c, K00909c, 

K01428c, K01429c, K01430c, K00111c, K00112c, K00113c, K00096c, K00518c,  

         K04564c, K04565c, K16627c, K06164c, K05780c, K06165c, K06166c, K06163c, 

K08977c, K09836c, K15746c, K16953c, K17486c, K07306c,  

         K17218c, K03553c, K00394rc, K00395rc, K11180rc, K11181rc, K00394oc, K00395oc, 

K11180oc, K11181oc, K10944ac, K10945ac, K10946ac, K10944mc, K10945mc,  

         K10946mc, K19117c, K19128c, K11959c, K11960c, K11961c, K11962c, K11963c, 

K02048c, K02046c, K02047c, K02045c, K15576c, K15577c, K15578c, K15579c,  

         K11950c, K11951c, K11952c, K11953c, K15551c, K15552c, K10831c, K15553c, 

K15554c, K15555c, K11069c, K11070c, K11071c, K11072c, K11073c, K11074c,  

         K11075c, K11076c, K02040c, K02037c, K02038c, K02036c, K02044c, K02042c, 

K02041c, K11081c, K11082c, K11083c, K11084c, K02002c, K02001c, K02000c,  

         K05845c, K05846c, K05847c, K10108c, K10109c, K10110c, K15770c, K15771c, 

K15772c, K10117c, K10118c, K10119c, K10232c, K10233c, K10234c, K10235c,  

         K10196c, K10197c, K10198c, K10199c, K17315c, K17316c, K17317c, K10236c, 

K10237c, K10238c, K17311c, K17312c, K17313c, K17314c, K10200c, K10201c,  

         K10202c, K10240c, K10241c, K10242c, K17329c, K17330c, K17331c, K17244c, 

K17245c, K17246c, K10537c, K10538c, K10539c, K10188c, K10189c, K10190c,  

         K10191c, K10543c, K10544c, K10545c, K17326c, K17327c, K17328c, K10546c, 

K10547c, K10548c, K10552c, K10553c, K10554c, K10559c, K10560c, K10561c,  

         K10562c, K10439c, K10440c, K10441c, K17202c, K17203c, K17204c, K10120c, 

K10121c, K10122c, K17321c, K17322c, K17323c, K17324c, K17325c, K02027c,  

         K02025c, K02026c, K02058c, K02057c, K02056c, K10013c, K10015c, K10016c, 

K10017c, K10014c, K10036c, K10037c, K10038c, K09996c, K09997c, K09998c,  
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         K09999c, K10000c, K10001c, K10002c, K10003c, K10004c, K10039c, K10040c, 

K10041c, K10018c, K10019c, K10020c, K10021c, K09969c, K09970c, K09971c,  

         K09972c, K10005c, K10006c, K10007c, K10008c, K02424c, K10009c, K10010c, 

K16956c, K16957c, K16958c, K16959c, K16960c, K10022c, K10023c, K10024c,  

         K10025c, K23059c, K17077c, K23060c, K01999c, K01997c, K01998c, K01995c, 

K01996c, K11954c, K11955c, K11956c, K11957c, K11958c, K02073c, K02072c,  

         K02071c, K15580c, K15581c, K15582c, K15583c, K10823c, K12368c, K12369c, 

K12370c, K12371c, K12372c, K16199c, K16200c, K16201c, K16202c, K01216c,  

         K01199c, K19891c, K19892c, K19893c, K01190c, K12111c, K12308c, K12309c, 

K01188c, K05349c, K05350c, K01198c, K15920c, K22268c, K01179c, K19357c,  

         K20542c, K01180c, K20846c, K20850c, K01219c, K20851c, K01200c, K21575c, 

K01177c, K01208c, K05992c, K22253c, K01178c, K12047c, K21574c, K07024c,  

         K01193c, K00064c, K17993c, K02567c, K03778c, K00955c, K17229c, K00958rc, 

K00958oc, K01225c, K19668c, K08688c, K00301c, K00302c, K00303c,  

         K00304c, K00305c, K03851c, K03852c, K01130c, K15923c, K00879c, K01628c, 

K00848c, K01629c, K01183c, K13381c, K14083c, K16178c, K16176c, K00702c,  

         K16149c, K00975c, K00703c, K16146c, K16147c, K01176c, K05973c, K03430c, 

K05306c, K11472c, K01941c] 

 

all_n = [K00437n, K00436n, K18332n, K17997n, K00532n, K00533n, K05922n, K18016n, 

K14068n, K00440n, K13942n, K14126n, K01915n, K00264n, K00265n, K00370n, K00368n,  

         K00266n, K00284n, K00864n, K00005n, K00169n, K00170n, K00016n, K00174n, 

K00175n, K00244n,  

         K00194n, K00197n, K00360n, K00367n, K20932n, K20933n, K20934n, K20935n, 

K00456n, K01011n, K00860n, K00956n, K00957n, K19087n, K19046n,  

         K19127n, K19129n, K03385n, K17877n, K00366n, K02305n, K04561n, K00376n, 

K02586n, K02591n, K10535n,  

         K01602n, K00855n, K15230n, K15231n, K15234n, K15233n, K15232n, K02256n, 

K02262n, K02274n, K02276n, K03520n,  

         K03519n, K03518n, K00401n, K00400n, K16157n, K16158n, K16159n, K16161n, 

K00390n, K00392n, K00380n, K00381n, K17224n, K17227n, K17226n, K17222n,  

         K17223n, K17225n, K03821n, K15342n, K09951n, K07012n, K07475n, K19088n, 

K19123n, K19127n, K07016n, K19138n, K19141n, K09952n, K19137n,  

         K07464n, K02703n, K02706n, K02705n, K02704n, K02707n, K02708n, K02689n, 

K02690n, K02691n, K02692n, K02693n, K02694n, K08928n, K08929n, K08940n,  

         K08941n, K08942n, K08943n, K04643n, K04642n, K04641n, K04250n, K00909n, 

K01428n, K01429n, K01430n, K00111n, K00112n, K00113n, K00096n, K00518n,  
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         K04564n, K04565n, K16627n, K06164n, K05780n, K06165n, K06166n, K06163n, 

K08977n, K09836n, K15746n, K16953n, K17486n, K07306n,  

         K17218n, K03553n, K00394rn, K00395rn, K11180rn, K11181rn, K00394on, K00395on, 

K11180on, K11181on, K10944an, K10945an, K10946an, K10944mn, K10945mn,  

         K10946mn, K19117n, K19128n, K11959n, K11960n, K11961n, K11962n, K11963n, 

K02048n, K02046n, K02047n, K02045n, K15576n, K15577n, K15578n, K15579n,  

         K11950n, K11951n, K11952n, K11953n, K15551n, K15552n, K10831n, K15553n, 

K15554n, K15555n, K11069n, K11070n, K11071n, K11072n, K11073n, K11074n,  

         K11075n, K11076n, K02040n, K02037n, K02038n, K02036n, K02044n, K02042n, 

K02041n, K11081n, K11082n, K11083n, K11084n, K02002n, K02001n, K02000n,  

         K05845n, K05846n, K05847n, K10108n, K10109n, K10110n, K15770n, K15771n, 

K15772n, K10117n, K10118n, K10119n, K10232n, K10233n, K10234n, K10235n,  

         K10196n, K10197n, K10198n, K10199n, K17315n, K17316n, K17317n, K10236n, 

K10237n, K10238n, K17311n, K17312n, K17313n, K17314n, K10200n, K10201n,  

         K10202n, K10240n, K10241n, K10242n, K17329n, K17330n, K17331n, K17244n, 

K17245n, K17246n, K10537n, K10538n, K10539n, K10188n, K10189n, K10190n,  

         K10191n, K10543n, K10544n, K10545n, K17326n, K17327n, K17328n, K10546n, 

K10547n, K10548n, K10552n, K10553n, K10554n, K10559n, K10560n, K10561n,  

         K10562n, K10439n, K10440n, K10441n, K17202n, K17203n, K17204n, K10120n, 

K10121n, K10122n, K17321n, K17322n, K17323n, K17324n, K17325n, K02027n,  

         K02025n, K02026n, K02058n, K02057n, K02056n, K10013n, K10015n, K10016n, 

K10017n, K10014n, K10036n, K10037n, K10038n, K09996n, K09997n, K09998n,  

         K09999n, K10000n, K10001n, K10002n, K10003n, K10004n, K10039n, K10040n, 

K10041n, K10018n, K10019n, K10020n, K10021n, K09969n, K09970n, K09971n,  

         K09972n, K10005n, K10006n, K10007n, K10008n, K02424n, K10009n, K10010n, 

K16956n, K16957n, K16958n, K16959n, K16960n, K10022n, K10023n, K10024n,  

         K10025n, K23059n, K17077n, K23060n, K01999n, K01997n, K01998n, K01995n, 

K01996n, K11954n, K11955n, K11956n, K11957n, K11958n, K02073n, K02072n,  

         K02071n, K15580n, K15581n, K15582n, K15583n, K10823n, K12368n, K12369n, 

K12370n, K12371n, K12372n, K16199n, K16200n, K16201n, K16202n, K01216n,  

         K01199n, K19891n, K19892n, K19893n, K01190n, K12111n, K12308n, K12309n, 

K01188n, K05349n, K05350n, K01198n, K15920n, K22268n, K01179n, K19357n,  

         K20542n, K01180n, K20846n, K20850n, K01219n, K20851n, K01200n, K21575n, 

K01177n, K01208n, K05992n, K22253n, K01178n, K12047n, K21574n, K07024n,  

         K01193n, K00064n, K17993n, K02567n, K03778n, K00955n, K17229n, K00958rn, 

K00958on, K01225n, K19668n, K08688n, K00301n, K00302n, K00303n,  
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         K00304n, K00305n, K03851n, K03852n, K01130n, K15923n, K00879n, K01628n, 

K00848n, K01629n, K01183n, K13381n, K14083n, K16178n, K16176n, K00702n,  

         K16149n, K00975n, K00703n, K16146n, K16147n, K01176n, K05973n, K03430n, 

K05306n, K11472n, K01941n] 

 

with open('%s' + '_KEGG.txt', ‘w’, newline = '') as outfile: 

    outfilec = csv.writer(outfile, delimiter = ‘\t’) 

    outfilec.writerow(['Pathway', 'By coverage', 'By count']) 

    for i in range(len(header)-2): 

        outfilec.writerow([header[i], results_c[i], results_n[i]]) 

    outfilec.writerow([header[-2], len(no_cov), len(no_cov)]) 

    outfilec.writerow([header[-1], foldCount_total, directCount_total]) 

    outfilec.writerow([]) 

    outfilec.writerow(['KEGG numbers', 'By coverage', 'By count']) 

    for i in range(len(all_header)): 

        outfilec.writerow([all_header[i],all_c[i],all_n[i]]) 

print('Finished writing KEGG output to file') 

"""%(COV_file, MAP_file, PROTEIN_file, KEGG_file, PROTEIN_file, PROTEIN_file, 

PROTEIN_file, PROTEIN_file, PROTEIN_file, PROTEIN_file, PROTEIN_file, 

PROTEIN_file, cogkegg_dir + assembly_num) 

 

with open(res_dir + 'KEGG_pathways.py', ‘w’) as KEGG_script: 

    KEGG_script.write(KEGG_py) 

 

# Write bash script 

KEGG_bash = """#!/bin/bash 

#PBS -N Cavlab-KEGG 

#PBS -l select=1:ncpus=1:mem=64gb 

#PBS -l walltime=12:00:00 

#PBS -j oe 

#PBS -o %sKEGG_report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load python/3.8.2 

python3 KEGG_pathways.py 
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"""%(res_dir, res_dir) 

 

with open(res_dir + 'KEGG.pbs', ‘w’) as KEGG_pbs: 

    KEGG_pbs.write(KEGG_bash) 

 

#### Write the job submission bash script 

preprocess_bash = """#!/bin/bash 

#PBS -N Cavlab-Launch 

#PBS -l select=1:ncpus=1:mem=8gb 

#PBS -l walltime=12:00:00 

#PBS -j oe 

#PBS -o %sJobSubmission_report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

  

cd %s 

module load python/3.8.2 

python3 append_name2proteins.py 

python3 jobsubmission.py 

"""%(res_dir, res_dir) 

 

with open(res_dir + 'jobsubmission.pbs', ‘w’) as preprocess_pbs: 

    preprocess_pbs.write(preprocess_bash) 

 

#### Submit first job 

command = """cd %s 

qsub jobsubmission.pbs"""%(res_dir) 

screen = subprocess.check_output(command, shell = True) 

screen = screen.decode()[0:6] 

with open(res_dir + 'job_log.txt', 'a') as job_log: 

    job_csv = csv.writer(job_log, delimiter = ‘\t’) 

    job_csv.writerow(['Cavlab pipeline launch', screen]) 

print('First job submitted.') 
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Appendix D 

 
arCOG pipeline v1.2 — a functional potential analysis pipeline for 

metagenomes from archaea-rich environments  
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Code D1. Python code for arCOG pipeline v1.2. The arCOG pipeline was developed for the 

functional potential analysis of archaea-rich environments. PSI-BLAST was used to match the 

archaeal protein sequences in a metagenome to a database of arCOG protein sequences 

available from ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG. COGsoft was used to assign 

arCOG numbers to the metagenome proteins (Chapter 2 section 2.2.3.3). 

'''Original version of arCOG pipeline created on July 9 2017. 

@author: Pratibha Panwar 

This pipeline should be run from the JGI IMG metagenome folder containing 'IMG_data' and 

'QC_and_Genome_Assembly' folders. 

Prior to pipeline run, the user needs to create a folder called 'arCOGs' in the JGI IMG 

metagenome folder and upload two files to it: 

1. FASTA file of Archaea protein sequences extracted using Cavlab pipeline MEGAN6 output. 

This FASTA file must be named as 'Samplename.archaea.fa', where Samplename will vary 

depending on the sample being assessed. Ensure that the sample name has ONLY letters, 

numerals, and/or underscore symbol, e.g., Deep_Dec2013_1.archaea.fa. 

2. FASTA file containing proteins and their corresponding contig read depths. This file can be 

found in Cavlab_YYMMDD folders and is also produced through the Cavlab_pipeline. It goes 

by the extension '.assembled_cov.faa'. 

v1.1 

Changed the e-value in COGreadblast to 0.001, from 0.1. @Pratibha (14 July, 2017) 

v1.2 

The requirements for the arCOG pipeline have been changed. Does not require the two FASTA 

files any longer. Instead, a text file containing Archaea protein IDs, prepared from the Cavlab 

pipeline MEGAN6 output (RMA file), is required. This text file must be named as 

'Samplename.archaea.txt', where Samplename should include lake name, sample collection date, 

depth, filter fraction, and sample number, e.g., Deep_Dec14_0m_0.8_290.archaea.txt. Ensure 

that the sample name has ONLY letters, numerals, and/or underscore symbol. A protein to 

contig read depth mapping file will be created as part of this pipeline. 

The abundances are now calculated as absolute abundances and are no longer represented as a 

fraction of the total abundance of assigned proteins. @Pratibha (2-3 June, 2020) 

''' 

from datetime import date 

import os 

import subprocess 

import sys 

ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG
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import csv 

import Bio.SeqIO as SeqIO 

 

current_dir = subprocess.check_output('pwd', shell = True).decode().strip() + '/' # get current 

directory path 

 

#### Search for resource files and folders 

# Verify Archaea protein IDs file 

go = [] 

archaeaPrt = 0 

if os.path.isdir('./arCOGs') == True: 

    for file in os.listdir('./arCOGs'): 

        if file[-12:] == '.archaea.txt': 

            archaeaPrt = 1 

            Samplename = file.split('.archaea')[0] 

            arcPROTEINid_file = file 

            break 

else: 

    print('Error: arCOGs folder not found.') 

 

# Verify other input files 

prot, cog, mapf, cov = 0, 0, 0, 0 

if os.path.isdir('./IMG_Data') == True: 

    for file in os.listdir('./IMG_Data'): 

        if file[-13:] == 'assembled.faa': # find protein sequence file 

            assembly_num = file.split('.')[0] 

            prot = 1 

            PROTEIN_file = current_dir + 'IMG_Data/' + file 

        if file[-17:] == 'assembled.faa.COG' or file[-13:] == 'assembled.COG': # find COG 

annotation file 

            cog = 1 

            COG_file = current_dir + 'IMG_Data/' + file 

        if file[-19:] == 'assembled.names_map': # find scaffold to conig mapping file 

            mapf = 1 

            MAP_file = current_dir + 'IMG_Data/' + file 

        if file[-13:] == 'scaffolds.cov' or file[0:17] == 'seq_coverage_file' or file[-14:] == 

'sorted.bam.cov': # find contig coverage file 
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            cov = 1 

            COV_file = current_dir + 'IMG_Data/' + file 

else: 

    print('Error: IMG_data folder not found.') 

 

if archaeaPrt == 0: 

    print('Error: Archaea protein ID file not found. Please prepare and upload the file.') 

else: 

    print('Archaea protein ID file found.') 

    go.append(1) 

if prot == 0: 

    print('Error: Protein sequence file not found.') 

else: 

    print('Protein sequence file found.') 

    go.append(1) 

if cog == 0: 

    print('Error: COG file not found.')   

else: 

    print('COG file found.') 

    go.append(1) 

if mapf == 0: 

    print('Error: Scaffold to contig mapping file not found.') 

else: 

    print('Scaffold to contig mapping file found.') 

    go.append(1) 

if cov == 0: 

    print('Error: Contig coverage file not found.') 

else: 

    print('Contig coverage file found.') 

    go.append(1) 

 

# Verify database files 

if os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/arCOG_conversion_v1.csv') == 

1: 

    print('arCOG_conversion_v1.csv file found.') 

    go.append(1) 

else: 



570 
 

    print('Error: arCOG_conversion_v1.csv file not found.') 

 

if os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/ar14_prtseq.fa')==1: 

    print('ar14_prtseq.fa file found.') 

    go.append(1) 

else: 

    print('Error: ar14_prtseq.fa file not found.') 

 

if 

os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/ar14.arCOG_domainids.csv')==1: 

    print('ar14.arCOG_domainids.csv file found.') 

    go.append(1) 

else: 

    print('Error: ar14.arCOG_domainids.csv file not found.') 

 

if os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/ar14.arCOG.csv')==1: 

    print('ar14.arCOG.csv file found.') 

    go.append(1) 

else: 

    print('Error: ar14.arCOG.csv file not found.') 

 

if os.path.isfile('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/COG_conversion_v2.csv')==1: 

    print('COG_conversion_v2.csv file found.') 

    go.append(1) 

else: 

    print('Error: COG_conversion_v2.csv file not found.') 

 

# Check if all input files were found 

if sum(go) == 10: 

    print('All required resources are present. You may proceed.') 

else: 

    print('Error: Some files are missing. Script run aborted.') 

    sys.exit() 

 

#### Make sub folders 

now = date.today() 

if now.month < 10: 
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    month = '0' + str(now.month) 

else: 

    month = now.month 

 

if now.day < 10: 

    day = '0' + str(now.day) 

else: 

    day = now.day 

 

head_folder = 'arCOG_v1.2_' + str(now.year)[-2:] + str(month) + str(day) 

arcog_dir = current_dir + 'arCOGs/' 

head_dir = current_dir + head_folder + '/' 

 

os.rename(arcog_dir, head_dir) # change head folder name from arCOGs to 

arCOG_v1.2_YYMMDD 

subprocess.call('mkdir ' + head_dir + 'scripts', shell = True) 

subprocess.call('mkdir ' + head_dir + 'reports', shell=True) 

 

script_dir = head_dir + 'scripts/' 

report_dir = head_dir + 'reports/' 

 

#### Write arCOG readme file 

readme_code = '''This is the head folder for the arCOG analysis pipeline v1.2, created on 

%s.%s.%s (DDMMYYYY format). 

@author:Pratibha Panwar 

 

This script compares the probable archaeal protein sequences against the arCOG protein 

sequences, to assign them an arCOG number. 

The arCOG number file is analysed using COGsoft, which produces a CSV file containing COG 

categories. 

The CSV file also has a comparative analysis between COG and arCOG categorization of the 

archaeal proteins (classified as Archaea as per MEGAN classification). 

It uses the following softwares: 

    blast+/2.9.0 

    python/3.8.2 

    cogsoft/04.19.2012 
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It also needs the following input files: 

    Samplename.archaea.txt 

    ar14.arCOG.csv 

    ar14.arCOG_domainids.csv 

    ar14_prtseq.fa 

    arCOG_conversion_v1.csv 

    COG_conversion_v2.csv 

 

For any issues with the pipeline, please contact Pratibha Panwar 

(p.panwar@student.unsw.edu.au). 

'''%(str(now.day), str(now.month), str(now.year)) 

 

with open(head_dir + 'Readme.txt', ‘w’) as text_file: 

    text_file.write(readme_code) 

 

#### Prepare protein to coverage mapping file in head_dir 

coverage = {} 

with open(COV_file, ‘r’) as covf: 

    covfc = csv.reader(covf, delimiter = ‘\t’) 

    next(covfc) 

    for row in covfc: 

        coverage[row[0]] = row[1] 

print('Coverage file read.') 

 

maps = {} 

with open(MAP_file, ’r’) as mapf: 

    mapfc = csv.reader(mapf, delimiter = ‘\t’) 

    for row in mapfc: 

        maps[row[0]] = row[1] 

mapk = list(maps.keys()) 

print('Contig to scaffold mapping file read.') 

 

covmap = {} 

for i in range(len(mapk)): 

    covmap[maps[mapk[i]]] = coverage[mapk[i]] 

contname_len = len(list(covmap.keys())[0]) 

print('Contig to coverage mapping complete.') 
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prtcov = {} 

with open(PROTEIN_file, ‘r’) as prtf: 

        with open(head_dir + assembly_num + '_prt2cov.txt', ‘w’, newline = '') as outf: 

        outfc = csv.writer(outf, delimiter = ‘\t’) 

        outfc.writerow(['Protein ID', 'Average fold']) 

        for record in SeqIO.parse(prtf, "fasta"): 

            outfc.writerow ([record.id, float(covmap[record.id[0:contname_len]])]) 

print('Protein to coverage mapping complete.') 

 

#### Prepare archaeal protein sequence file 

prt_dict = {} 

with open(head_dir + arcPROTEINid_file, ‘r’) as prtID: 

    prtIDc = csv.reader(prtID, delimiter = ‘\t’) 

    for row in prtIDc: 

        proteinID = row[0].split('|')[0] 

        prt_dict[proteinID] = '' 

 

prtcount = 0 

with open(PROTEIN_file, ‘r’) as prtf: 

    with open(head_dir + Samplename + '.archaea.faa', ‘w’) as prtseq: 

        for rec in SeqIO.parse(prtf, ‘fasta’): 

            if rec.id in prt_dict.keys(): 

                SeqIO.write(rec, prtseq, ‘fasta’) 

                prtcount += 1 

            else: 

                continue 

if len(prt_dict) != prtcount: 

    print('ERROR: did not find protein sequence for all archaeal protein IDs.') 

    sys.exit() 

else: 

    arcPROTEIN_file = Samplename + '.archaea.faa' 

    print('Archaeal protein sequence file prepared.') 

 

#### Prepare query file and extract proteinIDs 

fileprep_code = """import csv 

import Bio.SeqIO as SeqIO 
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#### Prepare archaea protein file without product names in headers 

with open('%s', ‘r’) as read_file: 

    with open('%s_query.fa', ‘w’) as newfile: 

        for record in SeqIO.parse(read_file, "fasta"): 

            record.id = record.id.split('|')[0] 

            record.description = record.id # for cases where record id and description are different 

            SeqIO.write(record, newfile, ‘fasta’) 

                     

#### Create protein ID list 

proteinID = [] 

with open('%s_query.fa', ‘r’) as read_file: 

    for record in SeqIO.parse(read_file, "fasta"): 

        proteinID.append(record.id) 

 

with open('%s.p2o.csv', ‘w’) as out_file: 

    out_csv = csv.writer(out_file) 

    for i in range(len(proteinID)): 

        out_csv.writerow([proteinID[i], '%s']) 

    

#### Submit job to begin COGsoft run 

import subprocess 

 

command = 'qsub ' + '%spsiblast1.pbs' 

subprocess.check_output(command, shell = True) 

""" %(head_dir + arcPROTEIN_file, head_dir + assembly_num, head_dir + assembly_num, 

head_dir + assembly_num, Samplename, script_dir)     

 

with open(script_dir + 'Fileprep.py', ‘w’) as fileprep: 

    fileprep.write(fileprep_code) 

Query_file = head_dir + assembly_num + '_query.fa' 

 

#### Write Psi-blast 1 bash script 

psiblast1_script = '''#!/bin/bash 

#PBS -N arCOG-Psiblast1 

#PBS -l select=1:ncpus=16:mem=96gb 

#PBS -l walltime=48:00:00 
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#PBS -j oe 

#PBS -o %spsiblast1_Report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load blast+/2.9.0 

makeblastdb -in %s -dbtype prot -out Querydb 

makeblastdb -in /srv/scratch/jgi/Cavlab_pipeline_resources/v4/ar14_prtseq.fa -dbtype prot -out 

arCOGdb 

 

mkdir BLASTff 

psiblast -query %s -db arCOGdb -show_gis -outfmt 7 -max_target_seqs 1000 -dbsize 

100000000 -comp_based_stats T -seg yes -out ./BLASTff/QueryarCOGs.tab -num_threads 16 

 

qsub %spsiblast2.pbs 

qsub %spsiblast3.pbs 

'''%(report_dir, head_dir, Query_file, Query_file, script_dir, script_dir) 

 

with open(script_dir + 'psiblast1.pbs', ‘w’) as pblast1: 

    pblast1.write(psiblast1_script) 

  

#### Write Psi-blast 2 bash script 

psiblast2_script = '''#!/bin/bash 

#PBS -N arCOG-Psiblast2 

#PBS -l select=1:ncpus=16:mem=96gb 

#PBS -l walltime=48:00:00 

#PBS -j oe 

#PBS -o %spsiblast2_Report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load blast+/2.9.0 

mkdir BLASTss 

psiblast -query %s -db Querydb -show_gis -outfmt 7 -max_target_seqs 10 -dbsize 100000000 -

comp_based_stats F -seg no -out ./BLASTss/QuerySelf.tab -num_threads 16 
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'''%(report_dir, head_dir, Query_file) 

 

with open(script_dir + 'psiblast2.pbs', ‘w’) as pblast2: 

    pblast2.write(psiblast2_script) 

 

#### Write Psi-blast 3 bash script 

psiblast3_script = '''#!/bin/bash 

#PBS -N arCOG-Psiblast3 

#PBS -l select=1:ncpus=16:mem=96gb 

#PBS -l walltime=48:00:00 

#PBS -j oe 

#PBS -o %spsiblast3_Report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 

module load blast+/2.9.0 

mkdir BLASTno 

psiblast -query %s -db arCOGdb -show_gis -outfmt 7 -max_target_seqs 1000 -dbsize 

100000000 -comp_based_stats F -seg no -out ./BLASTno/QueryarCOGs.tab -num_threads 16 

qsub %scogsoft.pbs 

'''%(report_dir, head_dir, Query_file, script_dir) 

 

with open(script_dir + 'psiblast3.pbs', ‘w’) as pblast3: 

    pblast3.write(psiblast3_script) 

 

#### Write Cogsoft bash script 

cogsoft_script = '''#!/bin/bash 

#PBS -N arCOG-Cogsoft 

#PBS -l select=1:ncpus=1:mem=8gb 

#PBS -l walltime=12:00:00 

#PBS -j oe 

#PBS -o %scogsoft_Report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

 

cd %s 
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module load cogsoft/04.19.2012 

cat %s.p2o.csv /srv/scratch/jgi/Cavlab_pipeline_resources/v4/ar14.arCOG_domainids.csv > 

tmp.p2o.csv 

 

mkdir BLASTcogn 

COGmakehash -i=tmp.p2o.csv -o=./BLASTcogn -s="," -n=1 

COGreadblast -d=./BLASTcogn -u=./BLASTno -f=./BLASTff -s=./BLASTss -e=0.001 -q=2 -

t=2 

COGcognitor -i=./BLASTcogn -

t=/srv/scratch/jgi/Cavlab_pipeline_resources/v4/ar14.arCOG.csv -q=%s.p2o.csv -

o=%s.arCOG.txt 

 

module load python/3.8.2 

python3 %spostcogsoft.py 

'''%(report_dir, head_dir, head_dir + assembly_num, head_dir + assembly_num, head_dir + 

Samplename, script_dir) 

 

with open(script_dir + 'cogsoft.pbs',’w’) as cogsoft: 

    cogsoft.write(cogsoft_script) 

 

#### Extracting arCOGs from cognitor output 

postcogsoft_code = '''import csv 

import Bio.SeqIO as SeqIO 

 

print('Post-COGsoft steps running.') 

#### Read protein coverages 

coverage = {} 

with open('%s' + '_prt2cov.txt', ‘r’) as covf: 

    covfc = csv.reader(covf, delimiter = ‘\t’) 

    next(covfc) 

    for row in covfc: 

        coverage[row[0]] = row[1] 

print('Protein coverages read.') 

     

#### Creating arCOG conversion dictionary 
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reader = 

csv.reader(open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/arCOG_conversion_v1.csv', 

‘r’)) 

d = {} 

for row in reader: 

   k, v = row 

   d[k] = v 

 

#### Creating COG conversion dictionary 

reader = 

csv.reader(open('/srv/scratch/jgi/Cavlab_pipeline_resources/v4/COG_conversion_v2.csv', ‘r’)) 

e = {} 

for row in reader: 

   k, v = row 

   e[k] = v 

print('arCOG and COG conversion dictionaries prepared.') 

 

#### Initialising arCOG and COG number based COG categories 

arA, A = [0], [0] 

arB, B = [0], [0] 

arC, C = [0], [0] 

arD, D = [0], [0] 

arE, E = [0], [0] 

arF, F = [0], [0] 

arG, G = [0], [0] 

arH, H = [0], [0] 

arI, I = [0], [0] 

arJ, J = [0], [0] 

arK, K = [0], [0] 

arL, L = [0], [0] 

arM, M = [0], [0] 

arN, N = [0], [0] 

arO, O = [0], [0] 

arP, P = [0], [0] 

arQ, Q = [0], [0] 

arR, R = [0], [0] 

arS, S = [0], [0] 
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arT, T = [0], [0] 

arU, U = [0], [0] 

arV, V = [0], [0] 

arW, W = [0], [0] 

arX, X = [0], [0] 

arY, Y = [0], [0] 

arZ, Z = [0], [0] 

arOther, Other = [], [] 

 

#### Reading data from cogsoft output arCOG file 

with open('%s.arCOG.txt', ‘r’) as cogsoftf: 

    cogsoftfc = csv.reader(cogsoftf, delimiter=',') 

    arcogs = [] 

    for row in cogsoftfc: 

        if row[5][0:5] == 'arCOG': 

            if row[0] in coverage.keys(): 

                arcogs.append([row[5], float(coverage[row[0]]), row[0]]) 

            else: 

                arOther.append(row[5]) 

        else: 

            continue 

print('COGsoft output file read.') 

 

#### Categorizing arCOGs 

for j in range(len(arcogs)): 

    arCOGCat = d[arcogs[j][0]] 

    if arCOGCat == 'A': 

        arA.append(arcogs[j][1]) 

    elif arCOGCat == 'B': 

        arB.append(arcogs[j][1]) 

    elif arCOGCat == 'C': 

        arC.append(arcogs[j][1]) 

    elif arCOGCat == 'D': 

        arD.append(arcogs[j][1]) 

    elif arCOGCat == 'E': 

        arE.append(arcogs[j][1]) 

    elif arCOGCat == 'F': 
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        arF.append(arcogs[j][1]) 

    elif arCOGCat == 'G': 

        arG.append(arcogs[j][1]) 

    elif arCOGCat == 'H': 

        arH.append(arcogs[j][1]) 

    elif arCOGCat == 'I': 

        arI.append(arcogs[j][1]) 

    elif arCOGCat == 'J': 

        arJ.append(arcogs[j][1]) 

    elif arCOGCat == 'K': 

        arK.append(arcogs[j][1]) 

    elif arCOGCat == 'L': 

        arL.append(arcogs[j][1]) 

    elif arCOGCat == 'M': 

        arM.append(arcogs[j][1]) 

    elif arCOGCat == 'N': 

        arN.append(arcogs[j][1]) 

    elif arCOGCat == 'O': 

        arO.append(arcogs[j][1]) 

    elif arCOGCat == 'P': 

        arP.append(arcogs[j][1]) 

    elif arCOGCat == 'Q': 

        arQ.append(arcogs[j][1]) 

    elif arCOGCat == ‘r’: 

        arR.append(arcogs[j][1]) 

    elif arCOGCat == 'S': 

        arS.append(arcogs[j][1]) 

    elif arCOGCat == 'T': 

        arT.append(arcogs[j][1]) 

    elif arCOGCat == 'U': 

        arU.append(arcogs[j][1]) 

    elif arCOGCat == 'V': 

        arV.append(arcogs[j][1]) 

    elif arCOGCat == ‘w’: 

        arW.append(arcogs[j][1]) 

    elif arCOGCat == 'X': 

        arX.append(arcogs[j][1]) 
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    elif arCOGCat == 'Y': 

        arY.append(arcogs[j][1]) 

    elif arCOGCat == 'Z': 

        arZ.append(arcogs[j][1]) 

    else: 

        arOther.append(arCOGCat) 

print('arCOG numbers categorised.') 

 

#### arCOG info by coverage 

arAc = sum(arA) 

arBc = sum(arB) 

arCc = sum(arC) 

arDc = sum(arD) 

arEc = sum(arE) 

arFc = sum(arF) 

arGc = sum(arG) 

arHc = sum(arH) 

arIc = sum(arI) 

arJc = sum(arJ) 

arKc = sum(arK) 

arLc = sum(arL) 

arMc = sum(arM) 

arNc = sum(arN) 

arOc = sum(arO) 

arPc = sum(arP) 

arQc = sum(arQ) 

arRc = sum(arR) 

arSc = sum(arS) 

arTc = sum(arT) 

arUc = sum(arU) 

arVc = sum(arV) 

arWc = sum(arW) 

arXc = sum(arX) 

arYc = sum(arY) 

arZc = sum(arZ) 

print('arCOG category coverage-based abundances calculated.') 
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#### arCOG info by count 

arAn = (len(arA)-1) 

arBn = (len(arB)-1) 

arCn = (len(arC)-1) 

arDn = (len(arD)-1) 

arEn = (len(arE)-1) 

arFn = (len(arF)-1) 

arGn = (len(arG)-1) 

arHn = (len(arH)-1) 

arIn = (len(arI)-1) 

arJn = (len(arJ)-1) 

arKn = (len(arK)-1) 

arLn = (len(arL)-1) 

arMn = (len(arM)-1) 

arNn = (len(arN)-1) 

arOn = (len(arO)-1) 

arPn = (len(arP)-1) 

arQn = (len(arQ)-1) 

arRn = (len(arR)-1) 

arSn = (len(arS)-1) 

arTn = (len(arT)-1) 

arUn = (len(arU)-1) 

arVn = (len(arV)-1) 

arWn = (len(arW)-1) 

arXn = (len(arX)-1) 

arYn = (len(arY)-1) 

arZn = (len(arZ)-1) 

print('arCOG category count-based abundances calculated.') 

 

#### Reading data from COG file 

cogsdict = {} 

with open('%s', ‘r’) as read_file: 

    COGs_csv = csv.reader(read_file, delimiter = ‘\t’) 

    for row in COGs_csv: 

        cogsdict.setdefault(row[0], []).append(row[1]) 

print('COG file read.') 
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cogs = [] 

for i in range(len(arcogs)): 

    if arcogs[i][2] in list(cogsdict.keys()): 

        for value in cogsdict[arcogs[i][2]]: 

            cogs.append([value, float(coverage[arcogs[i][2]])]) 

    else: 

        continue 

print('COG file data compared to COGsoft output.') 

 

#### Categorising cogs 

for j in range(len(cogs)): 

    COGCat = e[cogs[j][0]] 

    if COGCat == 'A': 

        A.append(cogs[j][1]) 

    elif COGCat == 'B': 

        B.append(cogs[j][1]) 

    elif COGCat == 'C':  

        C.append(cogs[j][1]) 

    elif COGCat == 'D': 

        D.append(cogs[j][1]) 

    elif COGCat == 'E': 

        E.append(cogs[j][1]) 

    elif COGCat == 'F': 

        F.append(cogs[j][1]) 

    elif COGCat == 'G': 

        G.append(cogs[j][1]) 

    elif COGCat == 'H': 

        H.append(cogs[j][1]) 

    elif COGCat == 'I': 

        I.append(cogs[j][1]) 

    elif COGCat == 'J': 

        J.append(cogs[j][1]) 

    elif COGCat == 'K': 

        K.append(cogs[j][1]) 

    elif COGCat == 'L': 

        L.append(cogs[j][1]) 

    elif COGCat == 'M': 
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        M.append(cogs[j][1]) 

    elif COGCat == 'N': 

        N.append(cogs[j][1]) 

    elif COGCat == 'O': 

        O.append(cogs[j][1]) 

    elif COGCat == 'P': 

        P.append(cogs[j][1]) 

    elif COGCat == 'Q': 

        Q.append(cogs[j][1]) 

    elif COGCat == ‘r’: 

        R.append(cogs[j][1]) 

    elif COGCat == 'S': 

        S.append(cogs[j][1]) 

    elif COGCat == 'T': 

        T.append(cogs[j][1]) 

    elif COGCat == 'U': 

        U.append(cogs[j][1]) 

    elif COGCat == 'V': 

        V.append(cogs[j][1]) 

    elif COGCat == ‘w’: 

        W.append(cogs[j][1]) 

    elif COGCat == 'X': 

        X.append(cogs[j][1]) 

    elif COGCat == 'Y': 

        Y.append(cogs[j][1]) 

    elif COGCat == 'Z': 

        Z.append(cogs[j][1]) 

    else: 

        Other.append(COGCat) 

print('COG numbers categorised.') 

 

#### COG info by coverage 

Ac = sum(A) 

Bc = sum(B) 

Cc = sum(C) 

Dc = sum(D) 

Ec = sum(E) 
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Fc = sum(F) 

Gc = sum(G) 

Hc = sum(H) 

Ic = sum(I) 

Jc = sum(J) 

Kc = sum(K) 

Lc = sum(L) 

Mc = sum(M) 

Nc = sum(N) 

Oc = sum(O) 

Pc = sum(P) 

Qc = sum(Q) 

Rc = sum(R) 

Sc = sum(S) 

Tc = sum(T) 

Uc = sum(U) 

Vc = sum(V) 

Wc = sum(W) 

Xc = sum(X) 

Yc = sum(Y) 

Zc = sum(Z) 

print('COG category coverage-based abundances calculated.') 

 

#### COG info by count 

An = (len(A)-1) 

Bn = (len(B)-1) 

Cn = (len(C)-1) 

Dn = (len(D)-1) 

En = (len(E)-1) 

Fn = (len(F)-1) 

Gn = (len(G)-1) 

Hn = (len(H)-1) 

In = (len(I)-1) 

Jn = (len(J)-1) 

Kn = (len(K)-1) 

Ln = (len(L)-1) 

Mn = (len(M)-1) 
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Nn = (len(N)-1) 

On = (len(O)-1) 

Pn = (len(P)-1) 

Qn = (len(Q)-1) 

Rn = (len(R)-1) 

Sn = (len(S)-1) 

Tn = (len(T)-1) 

Un = (len(U)-1) 

Vn = (len(V)-1) 

Wn = (len(W)-1) 

Xn = (len(X)-1) 

Yn = (len(Y)-1) 

Zn = (len(Z)-1) 

print('COG category count-based abundances calculated.') 

 

#### Writing data to csv file 

arCOGresults_c = [arAc, arBc, arCc, arDc, arEc, arFc, arGc, arHc, arIc, arJc, arKc, arLc, arMc, 

arNc, arOc, arPc, arQc, arRc, arSc, arTc, arUc, arVc, arWc, arXc, arYc, arZc] 

arCOGresults_n = [arAn, arBn, arCn, arDn, arEn, arFn, arGn, arHn, arIn, arJn, arKn, arLn, 

arMn, arNn, arOn, arPn, arQn, arRn, arSn, arTn, arUn, arVn, arWn, arXn, arYn, arZn] 

COGresults_c = [Ac, Bc, Cc, Dc, Ec, Fc, Gc, Hc, Ic, Jc, Kc, Lc, Mc, Nc, Oc, Pc, Qc, Rc, Sc, Tc, 

Uc, Vc, Wc, Xc, Yc, Zc] 

COGresults_n = [An, Bn, Cn, Dn, En, Fn, Gn, Hn, In, Jn, Kn, Ln, Mn, Nn, On, Pn, Qn, Rn, Sn, 

Tn, Un, Vn, Wn, Xn, Yn, Zn] 

header = ['(A) RNA processing and modification', '(B) Chromatin structure and dynamics', '(C) 

Energy production and conversion',  

'(D) Cell cycle control,  cell division,  chromosome partitioning', '(E) Amino acid transport and 

metabolism', '(F) Nucleotide transport and metabolism',  

'(G) Carbohydrate transport and metabolism', '(H) Coenzyme transport and metabolism', '(I) 

Lipid transport and metabolism',  

'(J) Translation,  ribosomal structure and biogenesis', '(K) Transcription', '(L) Replication,  

recombination and repair',  

'(M) Cell wall/membrane/envelope biogenesis', '(N) Cell motility', '(O) Post-translational 

modification,  protein turnover,  and chaperones',  

'(P) Inorganic ion transport and metabolism', '(Q) Secondary metabolites biosynthesis,  

transport,  and catabolism', '(R) General function prediction only',  
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'(S) Function unknown', '(T) Signal transduction mechanisms', '(U) Intracellular trafficking,  

secretion,  and vesicular transport', '(V) Defense mechanisms',  

'(W) Extracellular structures', '(X) Mobilome: prophages,  transposons', '(Y) Nuclear structure', 

'(Z) Cytoskeleton', 'Issues'] 

 

with open('%s.arCOG_summary.csv', ‘w’) as out_file: 

    out_csv=csv.writer(out_file) 

    out_csv.writerow(['Category', 'arCOG by count', 'COG by count', 'arCOG by coverage', 'COG 

by coverage']) 

    for i in range(len(header)-1): 

        out_csv.writerow([header[i], arCOGresults_n[i], COGresults_n[i], arCOGresults_c[i], 

COGresults_c[i]]) 

    out_csv.writerow([header[-1], len(arOther), len(Other), len(arOther), len(Other)]) 

print('arCOG and COG data written to output file.') 

'''%(head_dir + assembly_num, head_dir + Samplename, COG_file, head_dir + Samplename) 

 

with open(script_dir + 'postcogsoft.py', ‘w’) as post_cogsoft: 

    post_cogsoft.write(postcogsoft_code) 

 

#### Write preprocess bash 

fileprep_script = """#!/bin/bash 

#PBS -N arCOG-Launch 

#PBS -l select=1:ncpus=1:mem=8gb 

#PBS -l walltime=12:00:00 

#PBS -j oe 

#PBS -o %sfileprep_Report 

#PBS -M rcavlab@gmail.com 

#PBS -m ae 

  

cd %s 

module load python/3.8.2 

python3 Fileprep.py 

"""%(report_dir, script_dir) 

 

with open(script_dir + 'fileprep.pbs', ‘w’) as fileprep_pbs: 

    fileprep_pbs.write(fileprep_script) 
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#### Submit first job 

command = 'qsub ' + script_dir + 'fileprep.pbs' 

subprocess.check_output(command, shell = True) 
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Appendix E 

 
Clade-specific markers added to MetaPhlAn2 database  
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Table E1. List of clade-specific markers added to MetaPhlAn2 database. The table includes 

the gene markers for specific microbes that were added to the MetaPhlAn2 database. The 

specific microbes were selected based on the taxonomic output of DIAMOND/MEGAN6 runs 

(Chapter 2 section 2.2.2.1) on Ace Lake and Deep Lake Megahit-assembled metagenomes 

(Appendix A: Table A1). The methodology for the addition of these markers to the MetaPhlAn2 

database is discussed in Chapter 2 section 2.2.2.3. *k, kingdom; p, phylum; c, class; o, order; f, 

family; g, genus; s, species; t, strain. 

Clade (genome 

length) 

Taxonomy* Marker IDs (sequence length) 

Halohasta 

litchfieldiae tADL 

(3332020 bp) 

k__Archaea 

p__Euryarchaeota 

c__Halobacteria 

o__Haloferacales  

f__Halorubraceae 

g__Halohasta 

s__Halohasta_litchfieldiae_tADL 

t__GCF_900109065 

gi|1279136099|ref|CP024845.

1|:42441-40969 (1473 bp) 

gi|645321082|ref|NR_118135

.1|:1-1473 (1473 bp) 

Aureococcus 

anophagefferens 

(56660600 bp) 

k__Eukaryota 

p__Eukaryota_noname 

c__Pelagophyceae 

o__Pelagomonadales 

f__Pelagomonadaceae 

g__Aureococcus| 

s__Aureococcus_anophagefferens 

t__GCF_000186865 

gi|984294609|gb|KT390070.1

|:1-1455 (1455 bp) 

gi|984294576|gb|KT390037.1

|:1-1451 (1451 bp) 

gi|676392214|ref|XM_009041

137.1|:1-1179 (1179 bp) 

gi|676393690|ref|XM_009041

875.1|:1-447 (447 bp) 

gi|676393158|ref|XM_009041

609.1|:1-642 (642 bp) 

gi|676379860|ref|XM_009034

961.1|:1-767 (767 bp) 

Candidatus 

Methanoperedens 

nitroreducens 

(3203390 bp) 

k__Archaea 

p__Euryarchaeota 

c__Methanomicrobia 

o__Methanosarcinales 

f__Candidatus_Methanoperedenaceae 

g__Candidatus_Methanoperedens 

GeneID:2618674875 (1471 

bp) 

GeneID:2515322110 (1295 

bp) 
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s__Candidatus_Methanoperedens_nitr

oreducens 

t__GCF_000685155 

Candidatus 

Omnitrophus 

magneticus 

(3145900 bp) 

k__Bacteria 

p__Candidatus_Omnitrophica 

c__Candidatus_Omnitrophica_nonam

e 

o__Candidatus_Omnitrophica_nonam

e 

f__Candidatus_Omnitrophica_nonam

e 

g__Candidatus_Omnitrophus|s__Cand

idatus_Omnitrophus_magneticus 

t__GCA_000954095 

GeneID:2639715750 (1567 

bp) 

Chlamydomonas 

reinhardtii  

(120190000 bp) 

k__Eukaryota 

p__Chlorophyta 

c__Chlorophyceae 

o__Chlamydomonadales 

f__Chlamydomonadaceae 

g__Chlamydomonas 

s__Chlamydomonas_reinhardtii 

t__GCF_000002595 

gi|164665428|gb|EF682842.2|

:1-556 (556 bp) 

gi|449331407|gb|KC166137.1

|:1-1480 (1480 bp) 

gi|167643754|gb|EU410820.1

|:1-148 (148 bp) 

Chlorella variabilis 

(46159500 bp) 

k__Eukaryota 

p__Chlorophyta 

c__Trebouxiophyceae 

o__Chlorellales 

f__Chlorellaceae 

g__Chlorella 

s__Chlorella_variabilis 

t__GCF_000147415 

gi|577858493|gb|KF887350.1|

:1-752 (752 bp) 

gi|552847757|ref|XM_005851

879.1|:1-1161 (1161 bp) 

gi|552846485|ref|XM_005851

574.1|:1-1768 (1768 bp) 

gi|552833545|ref|XM_005848

492.1|:1-1497 (1497 bp) 

gi|552831571|ref|XM_005848

103.1|:1-213 (213 bp) 

gi|552828230|ref|XM_005847

371.1|:1-567 (567 bp) 

Coccomyxa 

subellipsoidea 

k__Eukaryota 

p__Chlorophyta 

gi|864421734|gb|HG972975.1

|:1-3209 (3209 bp) 
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(48826600 bp) c__Trebouxiophyceae 

o__Trebouxiophyceae_noname 

f__Coccomyxaceae 

g__Coccomyxa 

s__Coccomyxa_subellipsoidea 

t__GCF_000258705 

gi|545375863|ref|XM_005652

011.1|:1-949 (949 bp) 

gi|545363864|ref|XM_005646

970.1|:1-1997 (1997 bp) 

Dunaliella salina 

(343700000 bp) 

k__Eukaryota 

p__Chlorophyta 

c__Chlorophyceae 

o__Chlamydomonadales 

f__Dunaliellaceae 

g__Dunaliella 

s__Dunaliella_salina 

t__GCA_002284615 

gi|167989|gb|M84320.1|:21-

2162 (2142 bp) 

gi|559767353|gb|KF573420.1|

:1-253 (253 bp) 

gi|71482598|gb|DQ116743.1|:

1-352 (352 bp) 

gi|700653926|gb|KF825552.1|

:1-2068 (2068 bp) 

gi|63029920|gb|DQ009777.1|:

1-2088 (2088 bp) 

gi|699257993|gb|KM211532.

1|:1-654 (654 bp) 

gi|662257977|gb|JN807321.2|

:1-1575 (1575 bp) 

gi|338163258|gb|JF900404.1|:

1-2117 (2117 bp) 

Ectocarpus 

siliculosus 

(195811000 bp) 

k__Eukaryota 

p__Eukaryota_noname 

c__Phaeophyceae 

o__Ectocarpales 

f__Ectocarpaceae 

g__Ectocarpus 

s__Ectocarpus_siliculosus 

t__GCA_000310025 

gi|1145575|gb|U38758.1|:1-

1141 (1141 bp) 

gi|291191871|gb|GQ351370.1

|:1-798 (798 bp) 

gi|1145611|gb|U38832.1|:1-

507 (507 bp) 

gi|29120014|gb|AJ550048.1|:

1-660 (660 bp) 

gi|301599175|gb|FR668885.1|

:1-1832 (1832 bp) 

gi|29120031|gb|AJ550056.1|:

1-867 (867 bp) 

Gonium pectorale 

(148806000 bp) 

k__Eukaryota 

p__Chlorophyta 

gi|1043351839|gb|KX247730.

1|:1-676 (676 bp) 
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c__Chlorophyceae 

o__Chlamydomonadales 

f__Goniaceae 

g__Gonium 

s__Gonium_pectorale 

t__GCF_001584585 

gi|1043351838|gb|KX247729.

1|:1-671 (671 bp) 

gi|1043351835|gb|KX247726.

1|:1-669 (669 bp) 

Guillardia theta 

(87145300 bp) 

k__Eukaryota 

p__Cryptophyta 

c__Cryptophyceae 

o__Pyrenomonadales 

f__Geminigeraceae 

g__Guillardia 

s__Guillardia_theta 

t__GCF_000315625 

GeneID:638270151 (2040 bp) 

Halapricum 

salinum 

(3451490 bp) 

k__Archaea 

p__Euryarchaeota 

c__Halobacteria 

o__Halobacteriales 

f__Haloarculaceae 

g__Halapricum 

s__Halapricum_salinum 

t__GCF_000755225 

gi|699005439|ref|NR_126308

.1|:1-1472 (1472 bp) 

gi|699005438|ref|NR_126307

.1|:1-1472 (1472 bp) 

gi|699005424|ref|NR_126293

.1|:1-1472 (1472 bp) 

Haloarchaeobius 

iranensis 

(3768606 bp) 

k__Archaea 

p__Euryarchaeota 

c__Halobacteria 

o__Halobacteriales 

f__Halobacteriaceae 

g__Haloarchaeobius 

s__Haloarchaeobius_iranensis 

t__GCF_900103505 

GeneID:2653873010 (1472 

bp) 

GeneID:2653872430 (916 bp) 

Halobacterium 

jilantaiense 

(2952790 bp) 

k__Archaea 

p__Euryarchaeota 

c__Halobacteria 

o__Halobacteriales 

f__Halobacteriaceae 

g__Halobacterium 

GeneID:2618015680 (1473 

bp) 

gi|343203496|ref|NR_043676

.1|:1-(1396 bp) 
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s__Halobacterium_jilantaiense 

t__GCF_900110535 

Halofilum 

ochraceum 

(3644300 bp) 

k__Bacteria 

p__Proteobacteria 

c__Gammaproteobacteria 

o__Chromatiales 

f__Ectothiorhodospiraceae 

g__Halofilum 

s__Halofilum_ochraceum 

t__GCF_001614315 

gi|1093992509|ref|NZ_LVEG

02000032.1|:1-1759 (1759 

bp) 

gi|755573811|gb|KP052777.1|

:1-1463 (1463 bp) 

Halolamina sp. 

(3472520 bp) 

k__Archaea 

p__Euryarchaeota 

c__Halobacteria 

o__Haloferacales 

f__Halorubraceae 

g__Halolamina 

s__Halolamina_sp. 

t__GCF_002025255 

gi|582992856|gb|KF314045.2|

:1-1473 (1473 bp) 

gi|582992855|gb|KF314044.2|

:1-1473 (1473 bp) 

gi|402483711|gb|JX192605.1|

:1-1472 (1472 bp) 

gi|672238891|ref|NR_125479

.1|:1-1473 (1473 bp) 

gi|631252256|ref|NR_113454

.1|:1-1472 (1472 bp) 

gi|469657984|gb|JX014295.2|

:1-1473 (1473 bp) 

gi|782804855|gb|KJ573433.3|

:1-1470 (1470 bp) 

gi|1109434189|gb|LT634694.

1|:1-1422 (1422 bp) 

Halomicrobium 

zhouii 

(4250330 bp) 

k__Archaea 

p__Euryarchaeota 

c__Halobacteria 

o__Halobacteriales 

f__Haloarculaceae 

g__Halomicrobium 

s__Halomicrobium_zhouii 

t__GCF_900114435 

GeneID:2667960611 (1474 

bp) 

GeneID:2667961851 (1473 

bp) 

Halomonas 

subglaciescola 

k__Bacteria 

p__Proteobacteria 

gi|408688|gb|M93358.1|:1-

1481 (1481 bp) 
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(3110200 bp) c__Gammaproteobacteria 

o__Oceanospirillales 

f__Halomonadaceae 

g__Halomonas 

s__Halomonas_subglaciescola 

t__GCF_900142895 

gi|17976827|gb|AJ306892.1|:

1-1531 (1531 bp) 

Hyphomonas sp. L-

53-1-40 

(3310970 bp) 

k__Bacteria 

p__Proteobacteria 

c__Alphaproteobacteria 

o__Rhodobacterales 

f__Hyphomonadaceae 

g__Hyphomonas 

s__Hyphomonas_sp._L-53-1-40 

t__GCF_000682775 

GeneID:2583254374 (1460 

bp) 

gi|736811441|ref|NZ_AWFI0

1000010.1|:257-1506 (1250 

bp) 

Lentimicrobium 

saccharophilum 

(4514410 bp) 

k__Bacteria 

p__Bacteroidetes 

c__ Bacteroidia 

o__Bacteroidales 

f__Lentimicrobiaceae 

g__Lentimicrobium 

s__Lentimicrobium_saccharophilum 

t__GCF_001192835 

gi|1270116549|gb|MG264261

.1|:1-1335 (1335 bp) 

gi|1270116492|gb|MG264204

.1|:1-1181 (1181 bp) 

gi|1270116473|gb|MG264185

.1|:1-1378 (1378 bp) 

Methanosaeta sp. 

(2550000 bp) 

k__Archaea 

p__Euryarchaeota 

c__Methanomicrobia 

o__Methanosarcinales 

f__Methanosaetaceae 

g__Methanosaeta 

s__Methanosaeta_sp. 

t__GCA_001412415 

gi|941503567|gb|LKUG0100

0956.1|:1-819 (819 bp) 

gi|941506653|gb|LKUG0100

0340.1|:1-2179 (2179 bp) 

gi|941507386|gb|LKUG0100

0041.1|:1106-2395 (1290 bp) 

gi|941507386|gb|LKUG0100

0041.1|:2557-3012 (456 bp) 

gi|941507386|gb|LKUG0100

0041.1|:3028-3570 (543 bp) 

gi|941507386|gb|LKUG0100

0041.1|:3966-4766 (801 bp) 

Micromonas sp. 

(20000000 bp) 

k__Eukaryota 

p__Chlorophyta 

gi|1269271348|gb|KY095012.

1|:1-663 (663 bp) 



597 
 

c__Mamiellophyceae 

o__Mamiellales 

f__Mamiellaceae 

g__Micromonas 

s__Micromonas_sp. 

t__GCA_001430725 

gi|1269271344|gb|KY095008.

1|:1-922 (922 bp) 

gi|1269271342|gb|KY095006.

1|:1-926 (926 bp) 

gi|1027901359|gb|KU244632.

1|:1-1703 (1703 bp) 

gi|65427940|gb|AY955011.1|:

1-1727 (1727 bp) 

gi|959096220|gb|KT860759.1

|:1-803 (803 bp) 

gi|1269271382|gb|KY095046.

1|:1-166 (166 bp) 

Monoraphidium 

neglectum 

(69711800 bp) 

k__Eukaryota 

p__Chlorophyta 

c__Chlorophyceae 

o__Sphaeropleales 

f__Selenastraceae 

g__Monoraphidium 

s__Monoraphidium_neglectum 

t__GCF_000611645 

gi|926773737|ref|XM_014039

889.1|:1-426 (426 bp) 

Monosiga 

brevicollis 

(41709900 bp) 

k__Eukaryota 

p__Eukaryota_noname 

c__Eukaryota_noname 

o__Choanoflagellida 

f__Salpingoecidae 

g__Monosiga 

s__Monosiga_brevicollis 

t__GCF_000002865 

gi|4093172|gb|AF100940.1|:1

-1796 (1796 bp) 

gi|167521649|ref|XM_001745

111.1|:1-1164 (1164 bp) 

gi|167519279|ref|XM_001743

928.1|:1-2139 (2139 bp) 

Nanohaloarchaea 

archaeon SG9 

(1118570 bp) 

k__Archaea 

p__Candidatus_Nanohaloarchaeota 

c__Nanohaloarchaea 

o__Nanohaloarchaea_noname 

f__Nanohaloarchaea_noname 

g__Nanohaloarchaea_noname 

s__Nanohaloarchaea_archaeon_SG9 

t__GCA_001761425 

gi|1078647179|gb|CP012986.

1|:1-1383 (1383 bp) 
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Symbiodinium sp. 

(700000000 bp) 

k__Eukaryota 

p__Eukaryota_noname 

c__Dinophyceae 

o__Suessiales 

f__Symbiodiniaceae 

g__Symbiodinium 

s__Symbiodinium_sp. 

t__GCA_001939145 

gi|831180849|gb|LK934668.1

|:1-3674 (3674 bp) 

gi|831180848|gb|LK934667.1

|:1-2200 (2200 bp) 

gi|321373282|gb|HQ407545.1

|:1-347 (347 bp) 

gi|321373279|gb|HQ407542.1

|:1-348 (348 bp) 

gi|171676041|gb|EU567175.1

|:1-395 (395 bp) 

gi|171676035|gb|EU567169.1

|:1-395 (395 bp) 

gi|171676030|gb|EU567164.1

|:1-390 (390 bp) 

gi|171676018|gb|EU567152.1

|:1-378 (378 bp) 

Thalassiosira 

oceanica 

(92185600 bp) 

k__Eukaryota 

p__Bacillariophyta 

c__Coscinodiscophyceae 

o__Thalassiosirales 

f__Thalassiosiraceae 

g__Thalassiosira 

s__Thalassiosira_oceanica 

t__GCA_000296195 

gi|126022826|gb|EF362633.1|

:1-663 (663 bp) 

gi|126022825|gb|EF362632.1|

:1-663 (663 bp) 

gi|126022823|gb|EF362630.1|

:1-663 (663 bp) 

gi|119633043|gb|EF134955.1|

:1-665 (665 bp) 

gi|119633042|gb|EF134954.1|

:1-666 (666 bp) 

Volvox carteri 

(137684000 bp) 

k__Eukaryota 

p__Chlorophyta 

c__Chlorophyceae 

o__Chlamydomonadales 

f__Volvocaceae 

g__Volvox 

s__Volvox_carteri 

t__GCF_000143455 

gi|485820272|gb|AB771954.1

|:1-363 (363 bp) 

gi|485820271|gb|AB771953.1

|:1-363 (363 bp) 

gi|302831268|ref|XM_002947

154.1|:1-1993 (1993 bp) 

gi|302829127|ref|XM_002946

085.1|:1-1137 (1137 bp) 
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Appendix F 

 

KO numbers associated with specific pathways/enzymes used in the 

KEGG analysis component of Cavlab pipeline  
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Table F1. List of KO numbers associated with specific pathways. The table mentions all KO 

numbers explored for the calculation of various pathway/enzyme abundances, including KO 

numbers associated with enzymes that catalyse redox reactions (o/r – oxidation/reduction) or are 

homologous enzymes (a/m – ammonia/methane monooxygenase). The yellow-highlighted KO 

numbers were introduced in the preliminary Cavlab pipeline v1.2 (Appendix B). Of these, the 

KO numbers in red-highlighted text were removed and/or replaced in Cavlab pipeline v4. All 

other KO numbers were added to the Cavlab pipeline in v4. The pathway/enzyme abundances 

were calculated using the method described in Chapter 2 section 2.3.3.4 and the python code 

provided in Appendix C. 

KO 

number 

Pathway/enzyme Protein name EC number 

K00016 Fermentation L-lactate dehydrogenase EC:1.1.1.27 

K03778 Fermentation D-lactate dehydrogenase; LdhA EC:1.1.1.28 

K00169 Fermentation Pyruvate ferredoxin oxidoreductase 

alpha subunit 

EC:1.2.7.1 

K00170 Fermentation Pyruvate ferredoxin oxidoreductase 

beta subunit 

EC:1.2.7.1 

K02256 Respiration Cytochrome c oxidase subunit 1 EC:1.9.3.1 

K02262 Respiration Cytochrome c oxidase subunit 3 
 

K02274 Respiration Cytochrome c oxidase subunit I EC:1.9.3.1 

K02276 Respiration Cytochrome c oxidase subunit III EC:1.9.3.1 

K00400 Methanogenesis Methyl coenzyme M reductase system, 

component A2 

 

K00401 Methanogenesis Methyl coenzyme M reductase beta 

subunit; McrB 

EC:2.8.4.1 

K16157 Methane oxidation Methane monooxygenase component 

A alpha chain 

EC:1.14.13.25 

K16158 Methane oxidation Methane monooxygenase component 

A beta chain 

EC:1.14.13.25 

K16159 Methane oxidation Methane monooxygenase component 

A gamma chain 

EC:1.14.13.25 

K16161 Methane oxidation Methane monooxygenase component 

C 

EC:1.14.13.25 

K10944a/m Methane 

oxidation/Nitrification  

Methane/ammonia monooxygenase 

subunit A  

EC:1.14.18.3, 

EC:1.14.99.39 
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K10945a/m Methane 

oxidation/Nitrification 

Methane/ammonia monooxygenase 

subunit B 

 

K10946a/m Methane 

oxidation/Nitrification 

Methane/ammonia monooxygenase 

subunit C 

 

K03518 Mo/Cu carbon monoxide 

dehydrogenase 

Aerobic carbon-monoxide 

dehydrogenase small subunit 

EC:1.2.5.3 

K03519 Mo/Cu carbon monoxide 

dehydrogenase 

Aerobic carbon-monoxide 

dehydrogenase medium subunit 

EC:1.2.5.3 

K03520 Mo/Cu carbon monoxide 

dehydrogenase 

Aerobic carbon-monoxide 

dehydrogenase large subunit 

EC:1.2.5.3 

K15230 rTCA cycle ATP-citrate lyase alpha-subunit; AclA EC:2.3.3.8 

K15231 rTCA cycle ATP-citrate lyase beta-subunit; AclB EC:2.3.3.8 

K15232 rTCA cycle II Citryl-CoA synthetase large subunit EC:6.2.1.18 

K15233 rTCA cycle II Citryl-CoA synthetase small subunit 
 

K15234 rTCA cycle II Citryl-CoA lyase EC:4.1.3.34 

K00174 rTCA cycle II 2-Oxoglutarate/2-oxoacid ferredoxin 

oxidoreductase subunit alpha 

EC:1.2.7.3, 

EC1.2.7.11 

K00175 rTCA cycle II 2-Oxoglutarate/2-oxoacid ferredoxin 

oxidoreductase subunit beta 

EC:1.2.7.3 

1.2.7.11 

K00244 rTCA cycle II Fumarate reductase flavoprotein 

subunit 

EC:1.3.5.4 

K00192 Wood-Ljungdahl 

pathway 

Anaerobic carbon-monoxide 

dehydrogenase, CODH/ACS complex 

subunit alpha; CdhA 

EC:1.2.7.4 

K00194 Wood-Ljungdahl 

pathway 

Acetyl-CoA decarbonylase/synthase; 

AcsD 

EC:2.1.1.245 

K00197 Wood-Ljungdahl 

pathway 

Acetyl-CoA decarbonylase/synthase; 

AcsC 

EC:2.1.1.245 

K00198 Wood-Ljungdahl 

pathway 

Anaerobic carbon-monoxide 

dehydrogenase catalytic subunit; CooS, 

AcsA 

EC:1.2.7.4 

K14138 Wood-Ljungdahl 

pathway 

Acetyl-CoA synthase; AcsB EC:2.3.1.169 

K01602 Calvin cycle Ribulose-bisphosphate carboxylase 

small chain; RbcS 

EC:4.1.1.39 

K00855 Calvin cycle Phosphoribulokinase; PrkB EC:2.7.1.19 
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K01601 Calvin cycle Ribulose-bisphosphate carboxylase 

large chain; RbcL, CbbL 

EC:4.1.1.39 

K02586 Nitrogen fixation Nitrogenase molybdenum-iron protein 

alpha chain; NifD 

EC:1.18.6.1 

K02591 Nitrogen fixation Nitrogenase molybdenum-iron protein 

beta chain; NifK 

EC:1.18.6.1 

K00531 Nitrogen fixation Nitrogenase delta subunit; AnfG EC:1.18.6.1 

K02588 Nitrogen fixation Nitrogenase iron protein; NifH 
 

K01915 Ammonia assimilation Glutamine synthetase; GlnA EC 6.3.1.2 

K00264 Ammonia assimilation Glutamate synthase (NADH); Glt1 EC 1.4.1.14 

K00265 Ammonia assimilation Glutamate synthase (NADPH) large 

chain; GltB 

EC 1.4.1.13 

K00266 Ammonia assimilation Glutamate synthase (NADPH) small 

chain; GltD 

EC 1.4.1.13 

K00284 Ammonia assimilation Glutamate synthase (ferredoxin); GltS EC 1.4.7.1 

K00370 Dissimilatory nitrate 

reduction 

Nitrate reductase/nitrite 

oxidoreductase, alpha subunit; NarG, 

NarZ, NxrA 

EC:1.7.5.1, 

EC:1.7.99.- 

K00363 Dissimilatory nitrate 

reduction 

Nitrite reductase (NADH) small 

subunit; NirD 

EC:1.7.1.15 

K15876 Dissimilatory nitrate 

reduction 

Cytochrome c nitrite reductase small 

subunit; NrfH 

 

K00362 Dissimilatory nitrite 

reduction (ammonia-

forming) 

Nitrite reductase (NADH) large 

subunit; NirB 

EC:1.7.1.15 

K03385 Dissimilatory nitrite 

reduction (ammonia-

forming) 

Nitrite reductase (cytochrome c-552); 

NrfA 

EC:1.7.2.2 

K00368 Dissimilatory nitrite 

reduction (NO-forming) 

Nitrite reductase (NO-forming); NirK EC:1.7.2.1 

K17877 Assimilatory nitrate 

reduction 

Nitrite reductase (NAD(P)H); Nit-6 EC:1.7.1.4 

K00360 Assimilatory nitrate 

reduction 

Assimilatory nitrate reductase electron 

transfer subunit; NasB 

EC:1.7.99.- 

K00366 Assimilatory nitrate 

reduction 

Ferredoxin-nitrite reductase; NirA EC:1.7.7.1 
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K00367 Assimilatory nitrate 

reduction 

Ferredoxin-nitrate reductase; NarB EC:1.7.7.2 

K10535 Nitrification Hydroxylamine dehydrogenase EC:1.7.2.6 

K02305 Nitric oxide reduction Nitric oxide reductase subunit C; NorC 
 

K04561 Nitric oxide reduction Nitric oxide reductase subunit B; NorB EC:1.7.2.5 

K00376 Nitric oxide reduction Nitrous oxide reductase; NosZ EC:1.7.2.4 

K20932 Anammox Hydrazine synthase subunit EC:1.7.2.7 

K20933 Anammox Hydrazine synthase subunit EC:1.7.2.7 

K20934 Anammox Hydrazine synthase subunit EC:1.7.2.7 

K20935 Anammox Hydrazine dehydrogenase [EC:1.7.2.8] 
 

K02567 Periplasmic nitrate 

reduction 

Periplasmic nitrate reductase; NapA EC:1.7.99.- 

K17222 SOX system L-cysteine S-thiosulfotransferase; 

SoxA 

EC:2.8.5.2 

K17223 SOX system L-cysteine S-thiosulfotransferase; 

SoxX 

EC:2.8.5.2 

K17224 SOX system S-Sulfosulfanyl-L-cysteine 

sulfohydrolase; SoxB 

EC:3.1.6.20 

K17225 SOX system Sulfane dehydrogenase subunit; SoxC 
 

K17226 SOX system Sulfur-oxidizing protein; SoxY 
 

K17227 SOX system Sulfur-oxidizing protein; SoxZ 
 

K00456 Cysteine dioxygenase Cysteine dioxygenase; Cdo1 EC:1.13.11.20 

K01011 Thiosulfate/3-

mercaptopyruvate 

sulfurtransferase 

Thiosulfate/3-mercaptopyruvate 

sulfurtransferase; Tst, Mpst 

EC:2.8.1.1, 

EC:2.8.1.2 

K00955 Sulfate reduction I/APS 

reduction I 

Bifunctional enzyme CysN/CysC; 

CycNC 

EC:2.7.7.4, 

EC:2.7.1.25 

K00956 Sulfate reduction I Sulfate adenylyltransferase subunit 1; 

CysN 

EC:2.7.7.4 

K00957 Sulfate reduction I Sulfate adenylyltransferase subunit 2; 

CycD 

EC:2.7.7.4 

K00958o/r Sulfate reduction 

I/Sulfate reduction 

II/APS oxidation 

Sulfate adenylyltransferase; Sat EC:2.7.7.4 

K00860 APS reduction I Adenylylsulfate kinase; CycC EC:2.7.1.25 
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K05907 APS reduction II Adenylylsulfate reductase 

(glutathione); Apr 

EC:1.8.4.9 

K00390 APS reduction II/PAPS 

reduction 

Phosphoadenosine phosphosulfate 

reductase; CysH 

EC:1.8.4.8, 

EC:1.8.4.10 

K00394o/r APS reduction III/Sulfite 

oxidation 

Adenylylsulfate reductase, subunit A; 

AprA 

EC:1.8.99.2 

K00395o/r APS reduction III/Sulfite 

oxidation 

Adenylylsulfate reductase, subunit B; 

AprB 

EC:1.8.99.2 

K00380 Sulfite reduction I Sulfite reductase (NADPH) 

flavoprotein alpha-component; CysJ 

EC:1.8.1.2 

K00381 Sulfite reduction I Sulfite reductase (NADPH) 

hemoprotein beta-component; CysI 

EC:1.8.1.2 

K00392 Sulfite reduction I Sulfite reductase (ferredoxin); Sir EC:1.8.7.1 

K11180o/r Sulfite reduction 

II/Sulfur/polysulfide 

oxidation 

Dissimilatory sulfite reductase alpha 

subunit; DsrA 

EC:1.8.99.5 

K11181o/r Sulfite reduction 

II/Sulfur/polysulfide 

oxidation 

Dissimilatory sulfite reductase beta 

subunit; DsrB 

EC:1.8.99.5 

K17218 Sulfide oxidation Sulfide:quinone oxidoreductase; Sqr EC:1.8.5.4 

K17229 Sulfide oxidation Sulfide dehydrogenase 

[flavocytochrome c] flavoprotein 

chain; FccB 

EC:1.8.2.3 

K02689 Photosystem I Photosystem I P700 chlorophyll a 

apoprotein A1; PsaA 

 

K02690 Photosystem I Photosystem I P700 chlorophyll a 

apoprotein A2; PsaB 

 

K02691 Photosystem I Photosystem I subunit VII; PsaC 
 

K02692 Photosystem I Photosystem I subunit II; PsaD 
 

K02693 Photosystem I Photosystem I subunit IV; PsaE 
 

K02694 Photosystem I Photosystem I subunit III; PsaF 
 

K02703 Photosystem II Photosystem II P680 reaction center 

D1 protein; PsbA 

EC:1.10.3.9 

K02704 Photosystem II Photosystem II CP47 chlorophyll 

apoprotein; PsbB 
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K02705 Photosystem II Photosystem II CP43 chlorophyll 

apoprotein; PsbC 

 

K02706 Photosystem II Photosystem II P680 reaction center 

D2 protein; PsbD 

EC:1.10.3.9 

K02707 Photosystem II Photosystem II cytochrome b559 

subunit alpha; PsbE 

 

K02708 Photosystem II Photosystem II cytochrome b559 

subunit beta; PsbF 

 

K08940 Type 1 RC core complex 

(GSB) 

Photosystem P840 reaction center large 

subunit; PscA 

 

K08941 Type 1 RC core complex 

(GSB) 

Photosystem P840 reaction center iron-

sulfur protein; PscB 

 

K08942 Type 1 RC core complex 

(GSB) 

Photosystem P840 reaction center 

cytochrome c551; PscC 

 

K08943 Type 1 RC core complex 

(GSB) 

Photosystem P840 reaction center 

protein PscD 

 

K08928 RC complex (purple 

bacteria) 

Photosynthetic reaction center L 

subunit; PufL 

 

K08929 RC complex (purple 

bacteria) 

Photosynthetic reaction center M 

subunit; PufM 

 

K00909 Rhodopsins Rhodopsin kinase; GRK1_7 EC:2.7.11.14 

K04250 Rhodopsins Rhodopsin; RHO, OPN2 
 

K04641 Rhodopsins Bacteriorhodopsin; Bop 
 

K04642 Rhodopsins Halorhodopsin; Hop 
 

K04643 Rhodopsins Sensory rhodopsin; Sop 
 

K09836  Astaxanthin Beta-carotene ketolase (CrtW type) 
 

K15746 Astaxanthin Beta-carotene 3-hydroxylase EC:1.14.15.24 

K15342 CRISPR-Cas spacer 

acquisition 

CRISP-associated protein Cas1 
 

K09951 CRISPR-Cas spacer 

acquisition 

CRISPR-associated protein Cas2 
 

K07012 CRISPR 1I CRISPR-associated 

endonuclease/helicase Cas3 

EC:3.1.-.-, 

EC:3.6.4.- 

K07475 CRISPR 1I CRISPR-associated endonuclease 

Cas3-HD 

EC:3.1.-.- 
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K19088 CRISPR 1IA CRISPR-associated protein Cst1; 

Cas8a 

 

K19087 CRISPR 1IA CRISPR-associated protein Csa5 
 

K19117 CRISPR 1IC CRISPR-associated protein Csd1; 

Cas8c 

 

K19123 CRISPR 1IE CRISPR system Cascade subunit 

CasA; Cse1 

 

K19046 CRISPR 1IE CRISPR system Cascade subunit 

CasB; Cse2 

 

K19127 CRISPR 1IF CRISPR-associated protein Csy1 
 

K19128 CRISPR 1IF CRISPR-associated protein Csy2 
 

K19129 CRISPR 1IF CRISPR-associated protein Csy3 
 

K09952 CRISPR 2II CRISPR-associated endonuclease 

Csn1; Cas9 

EC:3.1.-.- 

K19137 CRISPR 2IIA CRISPR-associated protein Csn2 
 

K07464 CRISPR 2IIB CRISPR-associated exonuclease Cas4 EC:3.1.12.1 

K07016 CRISPR 1III CRISPR-associated protein Csm1; 

Cas10 

 

K19138 CRISPR 1IIIA CRISPR-associated protein Csm2 
 

K19141 CRISPR 1IIIB CRISPR-associated protein Cmr5 
 

K00437 [NiFe] hydrogenase [NiFe] Hydrogenase large subunit; 

HydB 

EC:1.12.2.1 

K05922 [NiFe] hydrogenase Quinone-reactive Ni/Fe-hydrogenase 

large subunit; HydB 

EC:1.12.5.1 

K00436 NAD-reducing 

hydrogenase/diaphorase 

NAD-reducing hydrogenase large 

subunit; HoxH 

EC:1.12.1.2 

K18332 NADP-reducing 

hydrogenase 

NADP-reducing hydrogenase subunit; 

HndD 

EC:1.12.1.3 

K17997 Iron-hydrogenase Iron-hydrogenase subunit alpha; HydA EC:1.12.1.4 

K00532 Ferredoxin hydrogenase 

(monomeric) 

Ferredoxin hydrogenase EC:1.12.7.2 

K00533 Ferredoxin hydrogenase 

(trimeric) 

Ferredoxin hydrogenase large subunit EC:1.12.7.2 

K18016 Membrane-bound 

hydrogenase 

Membrane-bound hydrogenase subunit 

alpha; MbhL 

EC:1.12.7.2 



608 
 

K14068 Methanophenazine 

hydrogenase 

Methanophenazine hydrogenase, large 

subunit; VhoA, VhtA 

EC:1.12.98.3 

K00440 Coenzyme F420 

hydrogenase 

Coenzyme F420 hydrogenase subunit 

alpha; FrhA 

EC:1.12.98.1 

K13942 5,10-

Methenyltetrahydrometh

anopterin hydrogenase 

5,10-Methenyltetrahydromethanopterin 

hydrogenase; Hmd 

EC:1.12.98.2 

K14126 F420-non-reducing 

hydrogenase 

F420-Non-reducing hydrogenase large 

subunit; MvhA, VhuA, VhcA 

EC:1.12.99.-, 

EC:1.8.98.5 

K17993 Sulfhydrogenase Sulfhydrogenase alpha subunit; HydA EC:1.12.1.3, 

EC:1.12.1.5 

K11472 Glycolate utilization Glycolate oxidase FAD binding 

subunit; GlcE 

 

K08688 Creatine utilization Creatinase EC:3.5.3.3 

K00301 Sarcosine utilization I Sarcosine oxidase EC:1.5.3.1 

K00302 Sarcosine utilization II Sarcosine oxidase, subunit alpha EC:1.5.3.1 

K00303 Sarcosine utilization II Sarcosine oxidase, subunit beta EC:1.5.3.1 

K00304 Sarcosine utilization II Sarcosine oxidase, subunit delta EC:1.5.3.1 

K00305 Sarcosine utilization II Sarcosine oxidase, subunit gamma EC:1.5.3.1 

K03851 Taurine utilization Taurine-pyruvate aminotransferase; 

Tpa 

EC:2.6.1.77 

K03852 Taurine utilization Sulfoacetaldehyde acetyltransferase EC:2.3.3.15 

K01130 Sulfate ester hydrolysis Arylsulfatase; AslA EC:3.1.6.1 

K15923 Fucoidan degradation Alpha-L-fucosidase 2; AXY8, 

FUC95A, AfcA 

EC:3.2.1.51 

K00879 Fucose utilization L-fuculokinase; FucK EC:2.7.1.51 

K01628 Fucose utilization L-fuculose-phosphate aldolase; FucA EC:4.1.2.17 

K00064 Fucose utilization II D-threo-aldose 1-dehydrogenase EC:1.1.1.122 

K00848 Rhamnose utilization Rhamnulokinase; RhaB EC:2.7.1.5 

K01629 Rhamnose utilization Rhamnulose-1-phosphate aldolase; 

RhaD 

EC:4.1.2.19 

K01183 Chitin degradation I Chitinase EC:3.2.1.14 

K13381 Chitin degradation II Bifunctional chitinase/lysozyme EC:3.2.1.14, 

EC:3.2.1.17 
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K14083 Trimethylamine/glycine 

betaine 

methyltransferase 

Trimethylamine---corrinoid protein 

Co-methyltransferase; MttB 

EC:2.1.1.250 

K16178 Dimethylamine 

utilization 

Dimethylamine---corrinoid protein Co-

methyltransferase; MtbB 

EC:2.1.1.249 

K16176 Monomethylamine 

utilization 

Methylamine---corrinoid protein Co-

methyltransferase; MtmB 

EC:2.1.1.248 

K00702 Cellobiose utilization Cellobiose phosphorylase EC:2.4.1.20 

K16149 Glycogen synthesis 

(overall) 

1,4-alpha-glucan branching enzyme EC:2.4.1.18 

K00975 Glycogen synthesis I Glucose-1-phosphate 

adenylyltransferase; GlgC 

EC:2.7.7.27 

K00703 Glycogen synthesis I Starch synthase; GlgA EC:2.4.1.21 

K16146 Glycogen synthesis II Maltokinase; Pep2 EC:2.7.1.175 

K16147 Glycogen synthesis II Starch synthase (maltosyl-

transferring); GlcE 

EC:2.4.99.16 

K01176 Starch degradation Alpha-amylase; AMY, AmyA, MalS EC:3.2.1.1 

K11959 Urea transporter Urea transport system substrate-

binding protein; UrtA 

 

K11960 Urea transporter Urea transport system permease 

protein; UrtB 

 

K11961 Urea transporter Urea transport system permease 

protein; UrtC 

 

K11962 Urea transporter urea transport system ATP-binding 

protein; UrtD 

 

K11963 Urea transporter urea transport system ATP-binding 

protein; UrtE 

 

K02045 Sulfate transporter Sulfate/thiosulfate transport system 

ATP-binding protein; CysA 

EC:7.3.2.3 

K02046 Sulfate transporter Sulfate/thiosulfate transport system 

permease protein; CysU 

 

K02047 Sulfate transporter Sulfate/thiosulfate transport system 

permease protein; CysW 

 

K02048 Sulfate transporter Sulfate/thiosulfate transport system 

substrate-binding protein; CysP 
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K15576 Nitrate/nitrite transporter Nitrate/nitrite transport system 

substrate-binding protein; NrtA, NasF, 

CynA 

 

K15577 Nitrate/nitrite transporter Nitrate/nitrite transport system 

permease protein; NrtB, NasE, CynB 

 

K15578 Nitrate/nitrite transporter Nitrate/nitrite transport system ATP-

binding protein; NrtC, NasD 

EC:3.6.3.- 

K15579 Nitrate/nitrite transporter Nitrate/nitrite transport system ATP-

binding protein; NrtD, CynD 

 

K11950 Bicarbonate transporter Bicarbonate transport system substrate-

binding protein; CmpA 

 

K11951 Bicarbonate transporter Bicarbonate transport system permease 

protein; CmpB 

 

K11952 Bicarbonate transporter Bicarbonate transport system ATP-

binding protein; CmpC 

EC:3.6.3.- 

K11953 Bicarbonate transporter Bicarbonate transport system ATP-

binding protein; CmpD 

EC:3.6.3.- 

K10831 Taurine transporter Taurine transport system ATP-binding 

protein; TauB 

EC:7.6.2.7 

K15551 Taurine transporter Taurine transport system substrate-

binding protein; TauA 

 

K15552 Taurine transporter Taurine transport system permease 

protein; TauC 

 

K15553 Sulfonate transporter Sulfonate transport system substrate-

binding protein; SsuA 

 

K15554 Sulfonate transporter Sulfonate transport system permease 

protein; SsuC 

 

K15555 Sulfonate transporter Sulfonate transport system ATP-

binding protein; SsuB 

EC:3.6.3.- 

K11069 Spermidine/putrescine 

transporter 

Spermidine/putrescine transport system 

substrate-binding protein; PotD 

 

K11070 Spermidine/putrescine 

transporter 

Spermidine/putrescine transport system 

permease protein; PotC 

 

K11071 Spermidine/putrescine 

transporter 

Spermidine/putrescine transport system 

permease protein; PotB 
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K11072 Spermidine/putrescine 

transporter 

Spermidine/putrescine transport system 

ATP-binding protein; PotA 

EC:7.6.2.11 

K11073 Putrescine transporter Putrescine transport system substrate-

binding protein; PotF 

 

K11074 Putrescine transporter Putrescine transport system permease 

protein; PotI 

 

K11075 Putrescine transporter Putrescine transport system permease 

protein; PotH 

 

K11076 Putrescine transporter Putrescine transport system ATP-

binding protein; PotG 

 

K02036 Phosphate transporter Phosphate transport system ATP-

binding protein; PstB 

EC:7.3.2.1 

K02037 Phosphate transporter Phosphate transport system permease 

protein; PstC 

 

K02038 Phosphate transporter Phosphate transport system permease 

protein; PstA 

 

K02040 Phosphate transporter Phosphate transport system substrate-

binding protein; PstS 

 

K02041 Phosphonate transporter Phosphonate transport system ATP-

binding protein 

EC:7.3.2.2 

K02042 Phosphonate transporter Phosphonate transport system 

permease protein; PhnE 

 

K02044 Phosphonate transporter Phosphonate transport system 

substrate-binding protein; PhnD 

 

K11081 2-

Aminoethylphosphonate 

transporter 

2-Aminoethylphosphonate transport 

system substrate-binding protein; PhnS 

 

K11082 2-

Aminoethylphosphonate 

transporter 

2-Aminoethylphosphonate transport 

system permease protein; PhnV 

 

K11083 2-

Aminoethylphosphonate 

transporter 

2-Aminoethylphosphonate transport 

system permease protein; PhnU 

 

K11084 2-

Aminoethylphosphonate 

transporter 

2-Aminoethylphosphonate transport 

system ATP-binding protein; PhnT 
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K02000 Glycine betaine/proline 

transporter 

Glycine betaine/proline transport 

system ATP-binding protein; ProV 

EC:7.6.2.9 

K02001 Glycine betaine/proline 

transporter 

Glycine betaine/proline transport 

system permease protein; ProW 

 

K02002 Glycine betaine/proline 

transporter 

Glycine betaine/proline transport 

system substrate-binding protein; ProX 

 

K05845 Osmoprotectant 

transporter 

Osmoprotectant transport system 

substrate-binding protein; OpuC 

 

K05846 Osmoprotectant 

transporter 

Osmoprotectant transport system 

permease protein; OpuBD 

 

K05847 Osmoprotectant 

transporter 

Osmoprotectant transport system ATP-

binding protein; OpuA 

EC:7.6.2.9 

K10108 Maltose/maltodextrin 

transporter 

Maltose/maltodextrin transport system 

substrate-binding protein; MalE 

 

K10109 Maltose/maltodextrin 

transporter 

Maltose/maltodextrin transport system 

permease protein; MalF 

 

K10110 Maltose/maltodextrin 

transporter 

Maltose/maltodextrin transport system 

permease protein; MalG 

 

K15770 Arabinogalactan 

oligomer/maltooligosacc

haride transporter 

Arabinogalactan 

oligomer/maltooligosaccharide 

transport system substrate-binding 

protein; CycB, GanO 

 

K15771 Arabinogalactan 

oligomer/maltooligosacc

haride transporter 

Arabinogalactan 

oligomer/maltooligosaccharide 

transport system permease protein; 

GanP 

 

K15772 Arabinogalactan 

oligomer/maltooligosacc

haride transporter 

Arabinogalactan 

oligomer/maltooligosaccharide 

transport system permease protein; 

GanQ 

 

K10117 Raffinose/stachyose/mel

ibiose transporter 

Raffinose/stachyose/melibiose 

transport system substrate-binding 

protein; MsmE 

 

K10118 Raffinose/stachyose/mel

ibiose transporter 

Raffinose/stachyose/melibiose 

transport system permease protein; 

MsmF 
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K10119 Raffinose/stachyose/mel

ibiose transporter 

Raffinose/stachyose/melibiose 

transport system permease protein; 

MsmG 

 

K10232 Alpha-Glucoside 

transporter 

Alpha-glucoside transport system 

substrate-binding protein; AglE, GgtB 

 

K10233 Alpha-Glucoside 

transporter 

Alpha-glucoside transport system 

permease protein; AglF, GgtC 

 

K10234 Alpha-Glucoside 

transporter 

Alpha-glucoside transport system 

permease protein; AglG, GgtD 

 

K10235 Alpha-Glucoside 

transporter 

Alpha-glucoside transport system 

ATP-binding protein; AglK 

 

K10196 Glucose/arabinose 

transporter 

Glucose/arabinose transport system 

substrate-binding protein 

 

K10197 Glucose/arabinose 

transporter 

Glucose/arabinose transport system 

permease protein 

 

K10198 Glucose/arabinose 

transporter 

Glucose/arabinose transport system 

permease protein 

 

K10199 Glucose/arabinose 

transporter 

Glucose/arabinose transport system 

ATP-binding protein 

 

K17315 Glucose/mannose 

transporter 

Glucose/mannose transport system 

substrate-binding protein; GtsA, GlcE 

 

K17316 Glucose/mannose 

transporter 

Glucose/mannose transport system 

permease protein; GtsB, GlcF 

 

K17317 Glucose/mannose 

transporter 

Glucose/mannose transport system 

permease protein; GtsC, GlcG 

 

K10236 Trehalose/maltose 

transporter 

Trehalose/maltose transport system 

substrate-binding protein; ThuE 

 

K10237 Trehalose/maltose 

transporter 

Trehalose/maltose transport system 

permease protein; ThuF, SugA 

 

K10238 Trehalose/maltose 

transporter 

Trehalose/maltose transport system 

permease protein; ThuG, SugB 

 

K17311 Trehalose transporter Trehalose transport system substrate-

binding protein; TreS 

 

K17312 Trehalose transporter Trehalose transport system permease 

protein; TreT 
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K17313 Trehalose transporter Trehalose transport system permease 

protein; TreU 

 

K17314 Trehalose transporter Trehalose transport system ATP-

binding protein; TreV 

 

K10200 N-Acetylglucosamine 

transporter 

N-acetylglucosamine transport system 

substrate-binding protein 

 

K10201 N-Acetylglucosamine 

transporter 

N-acetylglucosamine transport system 

permease protein 

 

K10202 N-Acetylglucosamine 

transporter 

N-acetylglucosamine transport system 

permease protein 

 

K10240 Cellobiose transporter Cellobiose transport system substrate-

binding protein; CebE 

 

K10241 Cellobiose transporter Cellobiose transport system permease 

protein; CebF 

 

K10242 Cellobiose transporter Cellobiose transport system permease 

protein; CebG 

 

K17329 N,N'-Diacetylchitobiose 

transporter 

N,N'-diacetylchitobiose transport 

system substrate-binding protein; 

DasA 

 

K17330 N,N'-Diacetylchitobiose 

transporter 

N,N'-diacetylchitobiose transport 

system permease protein; DasB 

 

K17331 N,N'-Diacetylchitobiose 

transporter 

N,N'-diacetylchitobiose transport 

system permease protein; DasC 

 

K17244 Putative chitobiose 

transporter 

Putative chitobiose transport system 

substrate-binding protein; ChiE 

 

K17245 Putative chitobiose 

transporter 

Putative chitobiose transport system 

permease protein; ChiF 

 

K17246 Putative chitobiose 

transporter 

Putative chitobiose transport system 

permease protein; ChiG 

 

K10537 L-Arabinose transporter L-arabinose transport system substrate-

binding protein; AraF 

 

K10538 L-Arabinose transporter L-arabinose transport system permease 

protein; AraH 

 

K10539 L-Arabinose transporter L-arabinose transport system ATP-

binding protein; AraG 

EC:7.5.2.12 
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K10188 Lactose/L-arabinose 

transporter 

Lactose/L-arabinose transport system 

substrate-binding protein; LacE, AraN 

 

K10189 Lactose/L-arabinose 

transporter 

Lactose/L-arabinose transport system 

permease protein; LacF, AraP 

 

K10190 Lactose/L-arabinose 

transporter 

Lactose/L-arabinose transport system 

permease protein; LacG, AraQ 

 

K10191 Lactose/L-arabinose 

transporter 

Lactose/L-arabinose transport system 

ATP-binding protein; LacK 

 

K10543 D-Xylose transporter D-xylose transport system substrate-

binding protein; XylF 

 

K10544 D-Xylose transporter D-xylose transport system permease 

protein; XylH 

 

K10545 D-Xylose transporter D-xylose transport system ATP-

binding protein; XylG 

EC:3.6.3.17 

K17326 Xylobiose transporter Xylobiose transport system substrate-

binding protein; BxlE 

 

K17327 Xylobiose transporter Xylobiose transport system permease 

protein; BxlF 

 

K17328 Xylobiose transporter Xylobiose transport system permease 

protein; BxlG 

 

K10546 Multiple sugar 

transporter 

Putative multiple sugar transport 

system substrate-binding protein; 

ChvE 

 

K10547 Multiple sugar 

transporter 

Putative multiple sugar transport 

system permease protein; GguB 

 

K10548 Multiple sugar 

transporter 

Putative multiple sugar transport 

system ATP-binding protein; GguA 

EC:3.6.3.17 

K10552 Fructose transporter Fructose transport system substrate-

binding protein; FrcB 

 

K10553 Fructose transporter Fructose transport system permease 

protein; FrcC 

 

K10554 Fructose transporter Fructose transport system ATP-binding 

protein; FrcA 

 

K10559 Rhamnose transporter Rhamnose transport system substrate-

binding protein; RhaS 
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K10560 Rhamnose transporter Rhamnose transport system permease 

protein; RhaP 

 

K10561 Rhamnose transporter Rhamnose transport system permease 

protein; RhaQ 

 

K10562 Rhamnose transporter Rhamnose transport system ATP-

binding protein; RhaT 

EC:3.6.3.17 

K10439 Ribose transporter Ribose transport system substrate-

binding protein; RbsB 

 

K10440 Ribose transporter Ribose transport system permease 

protein; RbsC 

 

K10441 Ribose transporter Ribose transport system ATP-binding 

protein 

EC:3.6.3.17 

K17202 Erythritol transporter Erythritol transport system substrate-

binding protein; EryG 

 

K17203 Erythritol transporter Erythritol transport system permease 

protein; EryF 

 

K17204 Erythritol transporter Erythritol transport system ATP-

binding protein; EryE 

 

K10120 Putative 

fructooligosaccharide 

transporter 

Fructooligosaccharide transport system 

substrate-binding protein; MsmE 

 

K10121 Putative 

fructooligosaccharide 

transporter 

Fructooligosaccharide transport system 

permease protein; MsmF 

 

K10122 Putative 

fructooligosaccharide 

transporter 

Fructooligosaccharide transport system 

permease protein; MsmG 

 

K17321 Glycerol transporter Glycerol transport system substrate-

binding protein; GlpV 

 

K17322 Glycerol transporter Glycerol transport system permease 

protein; GlpP 

 

K17323 Glycerol transporter Glycerol transport system permease 

protein; GlpQ 

 

K17324 Glycerol transporter Glycerol transport system ATP-

binding protein; GlpS 
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K17325 Glycerol transporter Glycerol transport system ATP-

binding protein; GlpT 

 

K02025 Putative multiple sugar 

transporter 

Multiple sugar transport system 

permease protein 

 

K02026 Putative multiple sugar 

transporter 

Multiple sugar transport system 

permease protein 

 

K02027 Putative multiple sugar 

transporter 

Multiple sugar transport system 

substrate-binding protein 

 

K02056 Putative simple sugar 

transporter 

Simple sugar transport system ATP-

binding protein 

EC:3.6.3.17 

K02057 Putative simple sugar 

transporter 

Simple sugar transport system 

permease protein 

 

K02058 Putative simple sugar 

transporter 

Simple sugar transport system 

substrate-binding protein 

 

K10013 Lysine/arginine/ornithin

e transporter 

Lysine/arginine/ornithine transport 

system substrate-binding protein; ArgT 

 

K10014 Histidine transporter Histidine transport system substrate-

binding protein; HisJ 

 

K10015 Lysine/arginine/ornithin

e transporter/Histidine 

transporter 

Histidine transport system permease 

protein; HisM 

 

K10016 Lysine/arginine/ornithin

e transporter/Histidine 

transporter 

Histidine transport system permease 

protein; HisQ 

 

K10017 Lysine/arginine/ornithin

e transporter/Histidine 

transporter 

Histidine transport system ATP-

binding protein; HisP 

EC:7.4.2.1 

K10036 Glutamine transporter Glutamine transport system substrate-

binding protein; GlnH 

 

K10037 Glutamine transporter Glutamine transport system permease 

protein; GlnP 

 

K10038 Glutamine transporter Glutamine transport system ATP-

binding protein; GlnQ 

EC:7.4.2.1 

K09996 Arginine transporter Arginine transport system substrate-

binding protein; ArtJ 
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K09997 Arginine transporter Arginine transport system substrate-

binding protein; ArtI 

 

K09998 Arginine transporter Arginine transport system permease 

protein; ArtM 

 

K09999 Arginine transporter Arginine transport system permease 

protein; ArtQ 

 

K10000 Arginine transporter Arginine transport system ATP-

binding protein; ArtP 

EC:7.4.2.1 

K10001 Glutamate/aspartate 

transporter 

Glutamate/aspartate transport system 

substrate-binding protein; GltI 

 

K10002 Glutamate/aspartate 

transporter 

Glutamate/aspartate transport system 

permease protein; GltK, AatM 

 

K10003 Glutamate/aspartate 

transporter 

Glutamate/aspartate transport system 

permease protein; GltJ, AatQ 

 

K10004 Glutamate/aspartate 

transporter 

Glutamate/aspartate transport system 

ATP-binding protein; GltL, AatP 

EC:7.4.2.1 

K10039 Aspartate/glutamate/glut

amine transporter 

Aspartate/glutamate/glutamine 

transport system substrate-binding 

protein; Peb1A, GlnH 

 

K10040 Aspartate/glutamate/glut

amine transporter 

Aspartate/glutamate/glutamine 

transport system permease protein; 

Peb1B, GlnP, GlnM 

 

K10041 Aspartate/glutamate/glut

amine transporter 

Aspartate/glutamate/glutamine 

transport system ATP-binding protein; 

Peb1C, GlnQ 

EC:7.4.2.1 

K10018 Octopine/nopaline 

transporter 

Octopine/nopaline transport system 

substrate-binding protein; OccT, NocT 

 

K10019 Octopine/nopaline 

transporter 

Octopine/nopaline transport system 

permease protein; OccM, NocM 

 

K10020 Octopine/nopaline 

transporter 

Octopine/nopaline transport system 

permease protein; OccQ, NocQ 

 

K10021 Octopine/nopaline 

transporter 

Octopine/nopaline transport system 

ATP-binding protein; OccP, NocP 

EC:7.4.2.1 

K09969 General L-amino acid 

transporter 

General L-amino acid transport system 

substrate-binding protein; AapJ, BztA 

 



619 
 

K09970 General L-amino acid 

transporter 

General L-amino acid transport system 

permease protein; AapQ, BztB 

 

K09971 General L-amino acid 

transporter 

General L-amino acid transport system 

permease protein; AapM, BztC 

 

K09972 General L-amino acid 

transporter 

General L-amino acid transport system 

ATP-binding protein; AapP, BztD 

EC:7.4.2.1 

K10005 Glutamate transporter Glutamate transport system substrate-

binding protein; GluB 

 

K10006 Glutamate transporter Glutamate transport system permease 

protein; GluC 

 

K10007 Glutamate transporter Glutamate transport system permease 

protein; GluD 

 

K10008 Glutamate transporter glutamate transport system ATP-

binding protein; GluA 

EC:7.4.2.1 

K02424 Cystine transporter L-cystine transport system substrate-

binding protein; FliY, TcyA 

 

K10009 Cystine transporter L-cystine transport system permease 

protein; TcyB, YecS 

 

K10010 Cystine transporter L-cystine transport system ATP-

binding protein; TcyC, YecC 

EC:7.4.2.1 

K16956 L-Cystine transporter L-cystine transport system substrate-

binding protein; TcyJ 

 

K16957 L-Cystine transporter L-cystine transport system substrate-

binding protein; TcyK 

 

K16958 L-Cystine transporter L-cystine transport system permease 

protein; TcyL 

 

K16959 L-Cystine transporter L-cystine transport system permease 

protein; TcyM 

 

K16960 L-Cystine transporter L-cystine transport system ATP-

binding protein; TcyN 

EC:7.4.2.1 

K10022 Arginine/ornithine 

transporter 

Arginine/ornithine transport system 

substrate-binding protein; AotJ 

 

K10023 Arginine/ornithine 

transporter 

Arginine/ornithine transport system 

permease protein; AotM 

 

K10024 Arginine/ornithine 

transporter 

Arginine/ornithine transport system 

permease protein; AotQ 
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K10025 Arginine/ornithine 

transporter 

Arginine/ornithine transport system 

ATP-binding protein; AotP 

EC:7.4.2.1 

K23059 Arginine/lysine/histidine 

transporter 

Arginine/lysine/histidine transporter 

system substrate-binding protein; ArtP, 

ArtI 

 

K17077 Arginine/lysine/histidine 

transporter 

Arginine/lysine/histidine transport 

system permease protein; ArtQ 

 

K23060 Arginine/lysine/histidine 

transporter 

arginine/lysine/histidine transport 

system ATP-binding protein; ArtR, 

ArtM 

EC:7.4.2.1 

K01995 Branched-chain amino 

acid transporter 

Branched-chain amino acid transport 

system ATP-binding protein; LivG 

 

K01996 Branched-chain amino 

acid transporter 

Branched-chain amino acid transport 

system ATP-binding protein; LivF 

 

K01997 Branched-chain amino 

acid transporter 

Branched-chain amino acid transport 

system permease protein; LivH 

 

K01998 Branched-chain amino 

acid transporter 

Branched-chain amino acid transport 

system permease protein; LivM 

 

K01999 Branched-chain amino 

acid transporter 

Branched-chain amino acid transport 

system substrate-binding protein; LivK 

 

K11954 Neutral amino acid 

transporter 

Neutral amino acid transport system 

substrate-binding protein; NatB 

 

K11955 Neutral amino acid 

transporter 

Neutral amino acid transport system 

permease protein; NatC 

 

K11956 Neutral amino acid 

transporter 

Neutral amino acid transport system 

permease protein; NatD 

 

K11957 Neutral amino acid 

transporter 

Neutral amino acid transport system 

ATP-binding protein; NatA 

 

K11958 Neutral amino acid 

transporter 

Neutral amino acid transport system 

ATP-binding protein; NatE 

 

K02073 D-Methionine 

transporter 

D-methionine transport system 

substrate-binding protein; MetQ 

 

K02072 D-Methionine 

transporter 

D-methionine transport system 

permease protein; MetI 

 

K02071 D-Methionine 

transporter 

D-methionine transport system ATP-

binding protein; MetN 
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K15580 Oligopeptide transporter Oligopeptide transport system 

substrate-binding protein; OppA, 

MppA 

 

K15581 Oligopeptide transporter Oligopeptide transport system 

permease protein; OppB 

 

K15582 Oligopeptide transporter Oligopeptide transport system 

permease protein; OppC 

 

K15583 Oligopeptide transporter Oligopeptide transport system ATP-

binding protein; OppD 

 

K10823 Oligopeptide transporter Oligopeptide transport system ATP-

binding protein; OppF 

 

K12368 Dipeptide transporter Dipeptide transport system substrate-

binding protein; DppA 

 

K12369 Dipeptide transporter Dipeptide transport system permease 

protein; DppB 

 

K12370 Dipeptide transporter Dipeptide transport system permease 

protein; DppC 

 

K12371 Dipeptide transporter Dipeptide transport system ATP-

binding protein; DppD 

 

K12372 Dipeptide transporter Dipeptide transport system ATP-

binding protein; DppF 

 

K16199 Dipeptide transporter Dipeptide transport system substrate-

binding protein; DppE 

 

K16200 Dipeptide transporter Dipeptide transport system permease 

protein; DppB1 

 

K16201 Dipeptide transporter Dipeptide transport system permease 

protein; DppC 

 

K16202 Dipeptide transporter Dipeptide transport system ATP-

binding protein; DppD 

 

K01216 Licheninase Licheninase EC:3.2.1.73 

K01199 Glucan endo-1,3-beta-

glucosidase 

Glucan endo-1,3-beta-D-glucosidase EC:3.2.1.39 

K19891 Glucan endo-1,3-beta-

glucosidase 

Glucan endo-1,3-beta-glucosidase 

1/2/3 

EC:3.2.1.39 

K19892 Glucan endo-1,3-beta-

glucosidase 

Glucan endo-1,3-beta-glucosidase 4 EC:3.2.1.39 
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K19893 Glucan endo-1,3-beta-

glucosidase 

Glucan endo-1,3-beta-glucosidase 5/6 EC:3.2.1.39 

K01190 Beta-galactosidase Beta-galactosidase; LacZ EC:3.2.1.23 

K12111 Beta-galactosidase Evolved beta-galactosidase subunit 

alpha; EbgA 

EC:3.2.1.23 

K12308 Beta-galactosidase Beta-galactosidase; LacA, BgaB EC:3.2.1.23 

K12309 Beta-galactosidase Beta-galactosidase; GLB1, ELNR1 EC:3.2.1.23 

K01188 Beta-galactosidase Beta-glucosidase EC:3.2.1.21 

K05349 Beta-galactosidase Beta-glucosidase; BglX EC:3.2.1.21 

K05350 Beta-galactosidase Beta-glucosidase; BglB EC:3.2.1.21 

K01198 Xylan 1,4-beta-

xylosidase 

Xylan 1,4-beta-xylosidase; XynB EC:3.2.1.37 

K15920 Xylan 1,4-beta-

xylosidase 

Xylan 1,4-beta-xylosidase; XYL4 EC:3.2.1.37 

K22268 Xylan 1,4-beta-

xylosidase 

Xylan 1,4-beta-xylosidase; XylA EC:3.2.1.37 

K01179 Cellulase/endoglucanase Endoglucanase EC:3.2.1.4 

K19357 Cellulase/endoglucanase Cellulase; CELB EC:3.2.1.4 

K20542 Cellulase/endoglucanase Endoglucanase; BcsZ EC:3.2.1.4 

K01180 Laminarinase Endo-1,3(4)-beta-glucanase EC:3.2.1.6 

K20846 Carrageenase Kappa-carrageenase; CgkA EC:3.2.1.83 

K20850 Carrageenase Iota-carrageenase; CgiA EC:3.2.1.157 

K01219 Agarase Beta-agarase EC:3.2.1.81 

K20851 Agarase Alpha-agarase; AgaA EC:3.2.1.158 

K01200 Pullulanase Pullulanase; PulA EC:3.2.1.41 

K21575 Pullulanase Neopullulanase; SusA EC:3.2.1.135 

K01177 Beta-amylase Beta-amylase EC:3.2.1.2 

K01208 Maltogenic alpha-

amylase 

Cyclomaltodextrinase/maltogenic 

alpha-amylase/neopullulanase; Cd, Ma, 

NplT 

EC:3.2.1.54, 

EC:3.2.1.133, 

EC:3.2.1.135 

K05992 Maltogenic alpha-

amylase 

Maltogenic alpha-amylase; AmyM EC:3.2.1.133 

K22253 Exo-amylase Glucan 1,4-alpha-

maltotetraohydrolase; Mta 

EC:3.2.1.60 

K01178 Glucoamylase/glucan 

1,4-alpha-glucosidase 

Glucoamylase; SGA1 EC:3.2.1.3 
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K12047 Glucoamylase/glucan 

1,4-alpha-glucosidase 

Maltase-glucoamylase; MGAM EC:3.2.1.20, 

EC:3.2.1.3 

K21574 Glucoamylase/glucan 

1,4-alpha-glucosidase 

Glucan 1,4-alpha-glucosidase; SusB EC:3.2.1.3 

K07024 Sucrose-6-phosphatase Sucrose-6-phosphatase EC:3.1.3.24 

K01193 Beta-fructofuranosidase Beta-fructofuranosidase; INV, SacA EC:3.2.1.26 

K01225 Cellobiosidase Cellulose 1,4-beta-cellobiosidase EC:3.2.1.91 

K19668 Cellobiosidase Cellulose 1,4-beta-cellobiosidase; 

CbhA 

EC:3.2.1.91 

K08977 Bacterioruberin Bisanhydrobacterioruberin hydratase EC:4.2.1.161 

K03821 PHA storage Polyhydroxyalkanoate synthase 

subunit PhaC 

EC:2.3.1.- 

K05973 PHA storage Poly(3-hydroxybutyrate) 

depolymerase; PhaZ 

EC:3.1.1.75 

K01428 Urea catabolism Urease subunit alpha; UreC EC:3.5.1.5 

K01429 Urea catabolism Urease subunit beta; UreB EC:3.5.1.5 

K01430 Urea catabolism Urease subunit gamma; UreA EC:3.5.1.5 

K01941 Urea catabolism Urea carboxylase EC:6.3.4.6 

K00111 Glycerol catabolism Glycerol-3-phosphate dehydrogenase; 

GlpA, GlpD 

EC:1.1.5.3 

K00112 Glycerol catabolism Glycerol-3-phosphate dehydrogenase 

subunit B; GlpB 

EC:1.1.5.3 

K00113 Glycerol catabolism Glycerol-3-phosphate dehydrogenase 

subunit C; GlpC 

EC:1.1.5.3 

K00864 Glycerol catabolism Glycerol kinase; GlpK, GK EC:2.7.1.30 

K00005 Glycerol catabolism Glycerol dehydrogenase; GldA EC:1.1.1.6 

K00096 Archaeal glycerol 

synthesis 

Glycerol-1-phosphate dehydrogenase 

[NAD(P)+] 

EC:1.1.1.261 

K00518 Superoxide dismutase Nickel superoxide dismutase; SodN EC:1.15.1.1 

K04564 Superoxide dismutase Superoxide dismutase, Fe-Mn family; 

SOD2 

EC:1.15.1.1 

K04565 Superoxide dismutase Superoxide dismutase, Cu-Zn family; 

SOD1 

EC:1.15.1.1 

K16627 Superoxide dismutase Superoxide dismutase, Cu-Zn family; 

SOD3 

EC:1.15.1.1 
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K06162 Methylphosphonate 

catabolism 

Alpha-D-ribose 1-methylphosphonate 

5-triphosphate diphosphatase; PhnM 

EC:3.6.1.63 

K06163 Methylphosphonate 

catabolism 

Alpha-D-ribose 1-methylphosphonate 

5-phosphate C-P lyase; PhnJ 

EC:4.7.1.1 

K06164 Methylphosphonate 

catabolism 

Alpha-D-ribose 1-methylphosphonate 

5-triphosphate synthase subunit PhnI 

EC:2.7.8.37 

K06165 Methylphosphonate 

catabolism 

Alpha-D-ribose 1-methylphosphonate 

5-triphosphate synthase subunit PhnH 

EC:2.7.8.37 

K06166 Methylphosphonate 

catabolism 

Alpha-D-ribose 1-methylphosphonate 

5-triphosphate synthase subunit PhnG 

EC:2.7.8.37 

K05780 Methylphosphonate 

catabolism 

Alpha-D-ribose 1-methylphosphonate 

5-triphosphate synthase subunit PhnL 

EC:2.7.8.37 

K06167 Methylphosphonate 

catabolism 

Phosphoribosyl 1,2-cyclic phosphate 

phosphodiesterase; PhnP 

EC:3.1.4.55 

K03430 Aminoethylphosphonate 

catabolism 

2-Aminoethylphosphonate-pyruvate 

transaminase; PhnW 

EC:2.6.1.37 

K05306 Aminoethylphosphonate 

catabolism 

Phosphonoacetaldehyde hydrolase; 

PhnX 

EC:3.11.1.1 

K07306 DMSO reduction Anaerobic dimethyl sulfoxide 

reductase subunit A 

EC:1.8.5.3 

K20452 DMSO reduction Dimethylmaleate hydratase large 

subunit; DmdA 

EC:4.2.1.85 

K16953 DMSP catabolism Dimethylpropiothetin dethiomethylase; 

DddL 

EC:4.4.1.3 

K17486 DMSP catabolism Dimethylsulfoniopropionate 

demethylase; DmdA 

EC:2.1.1.269 

K03553 RecA Recombination protein; RecA 
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Taxonomy verification of abundant OTUs in Ace Lake 
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Table G1. List of abundant OTUs identified in Ace Lake. The abundant OTUs were 

identified in Ace Lake metagenomes using the method described in Chapter 3 section 3.2.1. A 

The taxonomies of OTU bins were verified through their 16S rRNA gene identities and ANIs to 

the reference genomes as well as their matches to Ace Lake MetaBAT MAGs (Chapter 3 

section 3.2.2). B Original taxonomic classification refers to the protein taxonomies provided in 

the IMG Phylodist files, which were used for classifying contigs and OTUs. Some of these 

OTUs were merged and/or split based on the taxonomy verification output. The finalised OTU 

taxonomies are mentioned in the first column. C In each OTU bin, the contigs with matches to 

the red-highlighted MetaBAT MAGs were excluded from functional potential analysis of that 

OTU, due to insufficient number of genes being associated with these MAGs. The functional 

potentials of the algal OTU and the five viral OTUs were not analysed, therefore, the MetaBAT 

MAGs with matches to the Micromonas and Phycodnaviridae 1-5 OTUs are also highlighted in 

red. d, domain; p, phylum; c, class; o, order; f, family; g, genus; s, species. NA, not applicable; 

NM, no match. 

OTUsA Original taxonomic 

classification 

(reference genome 

accession ID) B 

% ANI (% 

alignment 

fraction) 

16S/18S 

SSU % 

identity 

MetaBAT MAG 

matchesC 

Micromonas Micromonas 

commode 

(NC_013038.1 - 

NC_013054.1) 

75 (6) NM Bin919 Unclassified 

Bin1249 Unclassified 

Bin1079 Unclassified 

Bin282 Unclassified 

Micromonas pusilla 

(GCF_000151265.2) 

75 (7) NM 

Phycodnaviridae 1 Bathycoccus sp. 

RCC1105 virus BpV 

(NC_014765.1) 

70 (18) NA Bin62 p_Proteobacteria 

Phycodnaviridae 2 Micromonas sp. 

RCC1109 virus 

MpV1 

(NC_014767.1) 

76 (54) NA Bin62 p_Proteobacteria 

Phycodnaviridae 3 Chrysochromulina 

ericina virus 

(GCF_001399245.1) 

71 (5) NA Bin1350 d_Bacteria 

Bin1042 d_Bacteria 

Bin1755 d_Bacteria 
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Bin97 d_Bacteria 

Bin1551 d_Bacteria 

Bin1998 d_Bacteria 

Bin784 d_Bacteria 

Bin2102 d_Bacteria 

Bin494 Unclassified 

Bin651 Unclassified 

Bin932 Unclassified 

Bin1852 Unclassified 

Phycodnaviridae 4 Micromonas pusilla 

virus 12T 

(GCF_000906035.1) 

75 (21) NA Bin62 p_Proteobacteria 

Phycodnaviridae 5 Micromonas pusilla 

virus SP1 sensu lato 

 NA Bin62 p_Proteobacteria 

Algoriphagus Algoriphagus 

antarcticus 

(GCF_002150685.1) 

78 (46) NM Bin1943 

g_Algoriphagus 

Leadbetterella Cytophagales 

bacterium TFI 002 

(NZ_LT907983.1) 

71 (19) 91 Bin277 g_Leadbetterella 

Nonlabens Nonlabens 

xylanidelens 

(GCF_002934445.1) 

75 (47) NM Bin1375 g_Nonlabens 

Bin690 s_Nonlabens 

dokdonensis 

Nonlabens 

dokdonensis 

(GCF_000332115.1) 

75 (43) NM 

Saprospiraceae sp. Phaeodactylibacter 

xiamenensis 

(GCF_000759025.1) 

69 (6) NM Bin420 

f_Saprospiraceae 

Polaribacter unclassified 

Polaribacter 

(NZ_LT629752.1) 

84 (63) NM Bin1415 g_Polaribacter 

Bin385 g_Polaribacter 

Bin670 g_Polaribacter 
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Polaribacter sp. 

KT25b 

(NZ_LT629752.1) 

85 (68) NM Bin246 g_Polaribacter 

Bin574 g_Polaribacter 

Bin776 g_Polaribacter 

Hydrogenophaga Hydrogenophaga 

crassostreae 

(GCF_001640105.1) 

79 (49) NM Bin22 

g_Hydrogenophaga 

Hydrogenophaga 

taeniospiralis 

(GCF_001592305.1) 

79 (49) NM 

Burkholderiaceae 

MOLA814 

Betaproteobacteria 

bacterium MOLA814 

(GCF_000496475.1) 

98 (94) 100 Bin1173 g_RS62 

Loktanella Loktanella salsilacus 

(GCF_900114485.1) 

84 (77) NM Bin864 s_Loktanella 

salsilacus 

Yoonia vestfoldensis Yoonia vestfoldensis 

(strain SKA53 – 

GCF_000152785.1) 

 

(strain DSM 16212 – 

GCF_000382265.1) 

SKA53 – 

93 (88) 

SKA53 – 

99.9 

Bin1729 s_Yoonia 

vestfoldensis 

DSM 16212 

– 86 (77) 

DSM 

16212 – 

99 

Flavobacteriaceae 

MAG-120531 

Sediminicola sp. 

YIK13 

(GCF_001430825.1) 

72 (37) NM Bin1744 g_MAG-

120531 

Bin896 g_MAG-120531 

Burkholderiaceae 

SCGC-AAA027-K21 

Beta proteobacterium 

MWH-P2sevCIIIb 

(GCF_003003055.1) 

72 (25) 98 Bin1507 g_SCGC-

AAA027-K21 

Aquiluna Candidatus Aquiluna 

sp. IMCC13023 

(GCF_000257665.1) 

87 (83) 100 

99 

99 

Bin802 s_Aquiluna sp1 

Bin842 s_Aquiluna sp1 

Bin1781 s_Aquiluna sp1 

Microbacteriaceae 

BACL25 

Mesorhizobium sp. 

F7 

(GCF_000798645.1) 

72 (29) NM Bin1187 s_BACL25 sp1 

Bin1172 s_BACL25 sp1 

Bin1399 s_BACL25 sp1 
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Microcella sp. HL-

107 

(GCF_002813345.1) 

72 (27) 96 

96 

Bin534 s_BACL25 sp1 

Yonghaparkia sp. 

Root332 

(GCF_001425665.1) 

72 (31) NM 

Pseudomonas_E Pseudomonas 

alcaliphila 

(PA – 

GCF_900101755.1) 

92 (82) NM Bin911 

s_Pseudomonas_E 

alcaliphila 

Pseudomonas 

pseudoalcaligenes 

(PP – 

GCF_000297075.2) 

96 (78) NM 

unclassified 

Pseudomonas 

PA – 91 

(68) 

PP – 94 (58) 

NM 

Halioglobus Halioglobus 

pacificus 

(GCF_001953075.1) 

72 (37) NM Bin1377 g_Halioglobus 

Marine gamma 

proteobacterium 

HTCC2148 

(GCF_000156295.1) 

73 (32) NM 

Methylophilaceae 

BACL14 

Methylophilales 

bacterium 

HTCC2181 

(GCF_000168995.1) 

82 (92) 99 Bin470 s_BACL14 sp1 

Porticoccaceae 

HTCC2207 

gamma 

proteobacterium 

HTCC2207 

(GCF_000153445.1) 

75 (45) 97 Bin525 g_HTCC2207 

Bin686 g_HTCC2207 

Bin271 g_HTCC2207 
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Pseudohongiellaceae 

1 

Pseudohongiellaceae 

2 

Pseudohongiella 

spirulinae 

(GCF_001444425.1) 

71 (18) NM Bin706 - g_OM182 

Bin2107 - s_OM182 sp1 

Pelagibacter Candidatus 

Pelagibacter ubique 

(GCF_000504225.1) 

77 (68) 99 

99 

92 

Bin1939 s_Pelagibacter 

ubique 

Bin2016 s_Pelagibacter 

ubique 

Bin1535 s_Pelagibacter 

ubique 

Bin978 s_Pelagibacter 

ubique 

Bin1105 s_Pelagibacter 

ubique 

Bin1323 s_Pelagibacter 

ubique 

Bin887 s_Pelagibacter 

ubique 

Bin2004 s_Pelagibacter 

ubique 

Bin1518 s_Pelagibacter 

ubique 

Bin363 s_Pelagibacter 

ubique 

Bin1541 g_Pelagibacter 

Bin1782 g_Pelagibacter 

Bin1123 g_Pelagibacter 

Bin1666 g_Pelagibacter 

Bin1485 g_IMCC9063 

Bin1036 g_IMCC9063 

Candidatus 

Pelagibacter sp. 

IMCC9063 

(GCF_000195085.1) 

90 (90) 99.9 

99.9 

Verrucomicrobia 

Arctic95D-9 

 

Verrucomicrobia 

BACL24 

Coraliomargarita 

akajimensis 

(NC_014008.1) 

73 (19) 95 

94 

84 

Bin1608 g_Haloferula 

Bin1509 g_Arctic95D-9 

Bin831 g_Arctic95D-9 

Bin560 g_Arctic95D-9 

Bin1278 g_BACL24 
Chthoniobacter 

flavus 

71 (6) 83 
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Verrucomicrobia 

SW10 

 

Verrucomicrobia 

UBA4506 

 

Haloferula 

(GCF_000173075.1) Bin82 g_BACL24 

Bin341 g_BACL24 

Bin1259 g_SW10 

Bin1231 g_UBA4506 

Bin1414 f_Opitutaceae 

Bin192 f_Opitutaceae 

Bin869 g_UBA6053 

Haloferula sp. 

BvORR071 

(GCF_000739615.1) 

72 (18) 85 

91 

Prosthecobacter 

debontii 

(GCF_900167535.1) 

71 (7) 85 

88 

Rubritalea 

squalenifaciens 

(GCF_900141815.1) 

72 (15) 88 

Gimesia Gimesia maris 

(GCF_000181475.1) 

76 (59) 98 

98 

98 

Bin1542 s_Gimesia 

maris 

Bin1604 s_Gimesia 

maris 

Crocinitomix Crocinitomix 

catalasitica 

(GCF_000621625.1) 

73 (34) 96 Bin223 g_Crocinitomix 

Cyclobacterium Cyclobacterium 

qasimii 

(GCF_000427295.1) 

86 (82) 99 Bin1381 

g_Cyclobacterium 

Fabibacter Roseivirga 

spongicola 

(GCF_001592965.1) 

73 (47) 94 Bin155 s_Fabibacter 

sp1 

Oligoflexus Pseudobacteriovorax 

antillogorgiicola 

RKEM611 

(GCF_900177345.1) 

70(8) NM Bin927 s_Oligoflexus 

tunisiensis 

Bin255 s_Oligoflexus 

tunisiensis 

Balneolaceae 

UBA2664 

Rhodohalobacter 

halophilus 

(GCF_001715195.1) 

72 (29) 94 

94 

Bin306 g_ UBA2664 

Synechococcus sp. 

SynAce01 

Synechococcus sp. 

SynAce01 

99 (97) 99.9 Bin1724 g_Cyanobium 
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(NZ_CP018091.1) 

Nisaea alpha 

proteobacterium 

BAL199 

(GCF_000171835.1) 

80 (57) 98 

97 

Bin1427 g_BAL199 

Bin283 g_BAL199 

Chlorobium Chlorobium 

phaeovibrioides 

DSM 265 

(NC_009337.1) 

85 (85) 99 Bin1268 s_Chlorobium 

phaeovibrioides 

Izimaplasma Candidatus 

Izimaplasma sp. HR2 

(GCF_000753575.1) 

75 (54) NM Bin1380 g_Izimaplasma 

Bacteroidales 

UBA4459 

Lentimicrobium 

saccharophilum 

(GCF_001192835.1) 

70 (11) 90 

89 

89 

89 

88 

88 

Bin1394 g_ UBA4459 

Desulfobacterium Desulfobacterium 

vacuolatum 

(GCF_900176365.1) 

82 (41) 98 

98 

Bin703 

g_Desulfobacterium 

Bin1072 

g_Desulfobacterium 

Desulfocapsa Desulfocapsa 

sulfexigens 

(NC_020304.1) 

78 (63) 97 

97 

97 

Bin20 s_Desulfocapsa 

sulfexigens 

Bin2043 s_Desulfocapsa 

sulfexigens 

Bin134 s_Desulfocapsa 

sulfexigens 

Desulfatiglanales 

NaphS2 

delta proteobacterium 

NaphS2 

(GCF_000179315.1) 

75 (34) 97 

93 

93 

93 

Bin2047 g_NaphS2 

Bin505 g_NaphS2 

Bin1224 g_NaphS2 
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Desulfobacterales 

S5133MH16 

 

Desulfosarcina sp. 

BuS5 

(GCF_000472805.1) 

74 (31) 93 Bin1209 g_S5133MH16 

Bin1110 g_S5133MH16 

Bin1728 g_S5133MH16 

Bin2047 g_NaphS2 

Bin505 g_NaphS2 

Syntrophales 

UBA2210 

Syntrophus 

aciditrophicus 

(NC_007759.1) 

70 (17) 92 

92 

Bin2060 g_UBA2210 

Bin962 s_UBA2210 sp1 

Bin899 g_UBA6078 

Syntrophus gentianae 

(GCF_900109885.1) 

71 (26) 92 

Smithella sp. F21 

(GCF_000747085.1) 

71 (35) NM 

Smithella sp. SCADC 

(GCF_000747625.1) 

70 (20) 91 

91 

91 

Atribacteria 34-128 unclassified 

Atribacteria 

(GCA_001509285.1) 

81 (14) NM Bin894 g_34-128 

Bin1182 g_34-128 

Bin866 g_34-128 

Bin2083 g_34-128 

Bin1876 p__Firmicutes 
Atribacteria 

bacterium JGI 

0000014-F07 

(GCA_001509285.1) 

81 (18) NM 

Cloacimonetes 

JGIOTU-2 

unclassified 

Cloacimonetes 

(JGI OUT-2 – 

GCF_000493905.1) 

(TCS61 – 

GCA_001577125.1) 

JGI OUT-2 

– 81 (22) 

TCS61 – 71 

(5) 

NM Bin1703 s_JGIOTU-2 

sp1 

Bin1683 s_JGIOTU-2 

sp1 

Bin1264 s_JGIOTU-2 

sp1 

Bin2003 f_TCS61 

Bin1346 g_TCS61 

Methanomicrobiaceae 

1 

Methanoplanus 

limicola 

(GCF_000243255.1) 

73 (27) 94 Bin1205 

f_Methanomicrobiaceae 
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Bin2059 

s_Methanomicrobium 

mobile 

Bin1141 

f_Methanomicrobiaceae 

Methanothrix_A Methanosaeta 

harundinacea 

(GCF_000235565.1) 

73 (22) NM Bin23 

g_Methanothrix_A 

Parcubacteria unclassified 

Parcubacteria 

NA NA Bin1642 g_UBA6065 

Bin1194 o_UBA9983 

Bin1725 g_2-02-FULL-

39-13 

Bin1572 g_UBA2196 

Bin2081 c_ABY1 

Bin1304 s_2-12-FULL-

45-10 sp1 
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Appendix H 

 

Viral data 
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Table H1. List of specific viral contigs identified in Antarctic metagenomes. A The viral 

cluster or singleton designations were assigned to the viral contigs using the data in the 

Antarctic virus catalogue. The viral contigs that were not a part of the Antarctic virus catalogue 

could not be assigned a viral cluster of singleton designation. B The viral clades that were not 

determined by JGI’s IMG system were referred to as ‘Unknown’. C The IMG taxon IDs refer to 

the metagenome IDs allotted by JGI’s IMG system. D The complete, circular virus genomes 

were analysed using the method described in Chapter 3 section 3.2.6.4. The orange-highlighted 

viral contigs represent a ‘huge’ phage that contained cas genes (Chapter 3 sections 3.2.6.5 and 

3.3.5.2) and are also included under the ‘Huge’ phage genome contigs section in this table. E 

The blue-highlighted cyanophage contig was used for the analysis of potential Synechococcus 

viruses (Chapter 3 sections 3.2.6.2 and 3.3.5.5). F Various Chlorobium-associated viruses were 

identified among the viral contigs in the Antarctic virus catalogue (Chapter 3 section 3.2.6.1 and 

Chapter 5 section 5.2.5). Additional potential Chlorobium viruses were also identified during 

the analysis of high abundance Ace Lake viral clusters (Chapter 3 sections 3.2.6.6 and 3.3.5.3). 
H ‘Huge’ phage genome sequences were identified during the analysis of complete circular 

viruses (orange-highlighted contigs) (Chapter 3 sections 3.2.6.5 and 3.3.5.2). * ‘Huge’ phage 

contigs Ga0222637_1000003 and Ga0222637_1000005 from Nov 2013_L1_0.1 μm 

metagenome together represented the complete phage genome. All other ‘huge’ phage contigs 

individually represented the complete phage genome. Ace Lake depths: U1, Upper 1; U2, Upper 

2; U3, Upper 3; I, Interface; L1, Lower 1; L2, Lower 2; L3, Lower 3. Filter fractions: 3, 3–20 

μm; 0.8, 0.8–3 μm; 0.1, 0.1–0.8 μm. NA, not applicable.
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Viral cluster or 

singletonA 
CladeB Contig ID Ace Lake zone 

Metagenome (sample 

collection date, depth, 

filter fraction) 

IMG taxon 

IDC 

Contig 

length (bp) 

GC 

content 

Read 

depth 

Complete, circular virus genomesD 

cl_39 
Caudovirales Ga0208413_1000137 Upper Nov 2008_U2_0.8 μm 3300025513 61,327 0.4 215 

Caudovirales Ga0208414_1000255 Upper Nov 2008_U3_0.8 μm 3300025603 61,327 0.4 254 

cl_61 Caudovirales Ga0222634_1000074 Upper Nov 2013_U3_0.1 μm 3300023235 60,667 0.34 59 

cl_86 

Caudovirales Ga0222644_1000071 Upper Dec 2013_U1_3 μm 3300022841 57,734 0.34 17 

Caudovirales Ga0222646_100034 Upper Dec 2013_U1_0.1 μm 3300022822 57,734 0.34 19 

Caudovirales Ga0222652_1000057 Upper Jul 2014_U2_0.1 μm 3300022853 57,728 0.34 49 

Caudovirales Ga0222711_1000019 Upper 27Jan 2015_U1_0.1 μm 3300022837 57,728 0.34 32 

Caudovirales Ga0222668_1000121 Upper Oct 2014_U2_3 μm 3300022865 57,720 0.34 32 

Caudovirales Ga0222674_1000083 Upper Oct 2014_U3_3 μm 3300022848 57,720 0.34 34 

cl_88 Caudovirales Ga0222631_1000001 Upper Nov 2013_U2_0.1 μm 3300022843 198,785 0.36 128 

cl_94 Caudovirales Ga0222649_1000036 Upper Feb 2014_U1_0.1 μm 3300022839 56,488 0.59 638 

cl_182 Caudovirales Ga0222686_1000050 Upper Dec 2014_U2_3 μm 3300023501 61,266 0.48 46 

cl_190 Caudovirales Ga0208414_1000068 Upper Nov 2008_U3_0.8 μm 3300025603 116,917 0.43 35 
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Caudovirales Ga0222630_1000008 Upper Nov 2013_U2_0.8 μm 3300023243 110,308 0.43 96 

Caudovirales Ga0222645_100024 Upper Dec 2013_U1_0.8 μm 3300022833 110,283 0.43 31 

cl_294 Caudovirales Ga0222651_1000297 Upper Jul 2014_U2_0.8 μm 3300022866 35,773 0.37 27 

cl_355 
Caudovirales Ga0222631_1000054 Upper Nov 2013_U2_0.1 μm 3300022843 34,439 0.49 272 

Caudovirales Ga0222652_1000162 Upper Jul 2014_U2_0.1 μm 3300022853 34,439 0.49 176 

cl_415 
Caudovirales Ga0222676_1000131 Upper Oct 2014_U3_0.1 μm 3300023240 32,297 0.47 336 

Caudovirales Ga0222654_1000364 Upper Jul 2014_U3_0.8 μm 3300022836 32,288 0.47 71 

cl_440 Caudovirales Ga0222648_1000052 Upper Feb 2014_U1_0.8 μm 3300023054 60,542 0.52 135 

cl_468 Caudovirales Ga0208768_1000361 Upper Nov 2008_U2_3 μm 3300025601 31,641 0.43 19 

cl_548 

 

Caudovirales Ga0222652_1000145 Upper Jul 2014_U2_0.1 μm 3300022853 36,399 0.33 91 

Caudovirales Ga0222659_1000274 Upper Aug 2014_U2_3 μm 3300023236 36,399 0.33 61 

Caudovirales Ga0222660_1000153 Upper Aug 2014_U2_0.8 μm 3300023239 36,399 0.33 40 

Caudovirales Ga0222670_1000118 Upper Oct 2014_U2_0.1 μm 3300023294 36,399 0.33 287 

Caudovirales Ga0222676_1000104 Upper Oct 2014_U3_0.1 μm 3300023240 36,399 0.33 190 

Caudovirales Ga0222689_1000137 Upper Dec 2014_U3_3 μm 3300023231 36,399 0.33 28 

Caudovirales Ga0222711_1000047 Upper 27Jan 2015_U1_0.1 μm 3300022837 36,399 0.33 156 
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cl_563 

Caudovirales Ga0222663_1000084 Upper Aug 2014_U3_0.8 μm 3300022845 71,162 0.34 21 

Caudovirales Ga0222676_1000026 Upper Oct 2014_U3_0.1 μm 3300023240 71,162 0.34 36 

Caudovirales Ga0222690_1000051 Upper Dec 2014_U3_0.8 μm 3300023227 71,162 0.34 29 

Caudovirales Ga0222691_1000031 Upper Dec 2014_U3_0.1 μm 3300022851 71,162 0.34 16 

cl_578 
Caudovirales Ga0208768_1000193 Upper Nov 2008_U2_3 μm 3300025601 46,295 0.39 57 

Caudovirales Ga0222711_1000027 Upper 27Jan 2015_U1_0.1 μm 3300022837 43,333 0.39 84 

cl_614 

 

Caudovirales Ga0222629_1000113 Upper Nov 2013_U2_3 μm 3300022867 32,140 0.38 16 

Caudovirales Ga0222631_1000063 Upper Nov 2013_U2_0.1 μm 3300022843 32,140 0.38 146 

Caudovirales Ga0222652_1000183 Upper Jul 2014_U2_0.1 μm 3300022853 32,140 0.38 94 

Caudovirales Ga0222661_1000169 Upper Aug 2014_U2_0.1 μm 3300023229 32,140 0.38 40 

Caudovirales Ga0222711_1000069 Upper 27Jan 2015_U1_0.1 μm 3300022837 32,138 0.38 17 

Caudovirales Ga0208646_1000327 Upper Nov 2008_U2_0.1 μm 3300025425 31,918 0.38 73 

Caudovirales Ga0208770_1000334 Upper Nov 2008_U3_0.1 μm 3300025438 31,918 0.38 59 

cl_619 Caudovirales Ga0222629_1000065 Upper Nov 2013_U2_3 μm 3300022867 40,762 0.34 43 

cl_685 

 

Caudovirales Ga0222630_1000110 Upper Nov 2013_U2_0.8 μm 3300023243 41,001 0.34 78 

Caudovirales Ga0222644_1000115 Upper Dec 2013_U1_3 μm 3300022841 41,001 0.34 20 
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Caudovirales Ga0222676_1000088 Upper Oct 2014_U3_0.1 μm 3300023240 41,001 0.34 66 

Caudovirales Ga0222688_1000030 Upper Dec 2014_U2_0.1 μm 3300023293 41,001 0.34 36 

Caudovirales Ga0222691_1000082 Upper Dec 2014_U3_0.1 μm 3300022851 41,001 0.34 77 

Caudovirales Ga0222711_1000034 Upper 27Jan 2015_U1_0.1 μm 3300022837 41,001 0.34 18 

Caudovirales Ga0222631_1000036 Upper Nov 2013_U2_0.1 μm 3300022843 40,999 0.34 139 

Caudovirales Ga0222652_1000113 Upper Jul 2014_U2_0.1 μm 3300022853 40,988 0.34 121 

Caudovirales Ga0222661_1000105 Upper Aug 2014_U2_0.1 μm 3300023229 40,921 0.34 69 

Caudovirales Ga0222675_1000133 Upper Oct 2014_U3_0.8 μm 3300023238 40,899 0.34 16 

cl_723 Caudovirales Ga0222669_1000080 Upper Oct 2014_U2_0.8 μm 3300022825 34,304 0.6 39 

cl_727 Caudovirales Ga0222690_1000105 Upper Dec 2014_U3_0.8 μm 3300023227 31,608 0.3 60 

cl_811 

 

Caudovirales Ga0222651_1000265 Upper Jul 2014_U2_0.8 μm 3300022866 37,577 0.38 129 

Caudovirales Ga0222652_1000135 Upper Jul 2014_U2_0.1 μm 3300022853 37,577 0.38 231 

Caudovirales Ga0222653_1000212 Upper Jul 2014_U3_3 μm 3300022857 37,577 0.38 188 

Caudovirales Ga0222659_1000254 Upper Aug 2014_U2_3 μm 3300023236 37,577 0.38 78 

Caudovirales Ga0222660_1000148 Upper Aug 2014_U2_0.8 μm 3300023239 37,577 0.38 95 

Caudovirales Ga0222661_1000134 Upper Aug 2014_U2_0.1 μm 3300023229 37,577 0.38 147 
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Caudovirales Ga0222668_1000262 Upper Oct 2014_U2_3 μm 3300022865 37,577 0.38 112 

Caudovirales Ga0222669_1000067 Upper Oct 2014_U2_0.8 μm 3300022825 37,577 0.38 34 

Caudovirales Ga0222670_1000107 Upper Oct 2014_U2_0.1 μm 3300023294 37,577 0.38 106 

Caudovirales Ga0222674_1000132 Upper Oct 2014_U3_3 μm 3300022848 37,577 0.38 86 

Caudovirales Ga0222675_1000143 Upper Oct 2014_U3_0.8 μm 3300023238 37,577 0.38 44 

Caudovirales Ga0222676_1000100 Upper Oct 2014_U3_0.1 μm 3300023240 37,577 0.38 50 

Caudovirales Ga0222686_1000106 Upper Dec 2014_U2_3 μm 3300023501 37,577 0.38 58 

Caudovirales Ga0222687_1000052 Upper Dec 2014_U2_0.8 μm 3300022844 37,577 0.38 27 

Caudovirales Ga0222688_1000043 Upper Dec 2014_U2_0.1 μm 3300023293 37,577 0.38 63 

cl_814 Caudovirales Ga0222674_1000138 Upper Oct 2014_U3_3 μm 3300022848 36,364 0.5 23 

cl_834 
Caudovirales Ga0222664_1000268 Upper Aug 2014_U3_0.1 μm 3300023296 36,977 0.57 166 

Caudovirales Ga0222676_1000102 Upper Oct 2014_U3_0.1 μm 3300023240 36,977 0.57 420 

cl_843 
Caudovirales Ga0208414_1000192 Upper Nov 2008_U3_0.8 μm 3300025603 69,370 0.43 22 

Caudovirales Ga0208646_1000071 Upper Nov 2008_U2_0.1 μm 3300025425 69,370 0.43 91 

cl_922 Caudovirales Ga0222634_1000130 Upper Nov 2013_U3_0.1 μm 3300023235 44,118 0.35 15 

cl_925 Caudovirales Ga0208646_1000125 Upper Nov 2008_U2_0.1 μm 3300025425 55,014 0.43 82 
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cl_936 

 

Caudovirales Ga0208768_1000068 Upper Nov 2008_U2_3 μm 3300025601 82,754 0.3 555 

Caudovirales Ga0208646_1000042 Upper Nov 2008_U2_0.1 μm 3300025425 82,750 0.3 137 

Caudovirales Ga0208770_1000054 Upper Nov 2008_U3_0.1 μm 3300025438 82,750 0.3 94 

Caudovirales Ga0208903_1000111 Upper Nov 2008_U3_3 μm 3300025502 82,721 0.3 944 

cl_960 Caudovirales Ga0222688_1000057 Upper Dec 2014_U2_0.1 μm 3300023293 33,844 0.45 247 

cl_961 Caudovirales Ga0222644_1000054 Upper Dec 2013_U1_3 μm 3300022841 65,450 0.35 229 

cl_1134 Caudovirales Ga0222652_1000107 Upper Jul 2014_U2_0.1 μm 3300022853 42,580 0.56 29 

cl_1234 Caudovirales Ga0222649_1000109 Upper Feb 2014_U1_0.1 μm 3300022839 32,238 0.45 192 

cl_1255 

 

Caudovirales Ga0208414_1000468 Upper Nov 2008_U3_0.8 μm 3300025603 40,133 0.45 20 

Caudovirales Ga0208646_1000215 Upper Nov 2008_U2_0.1 μm 3300025425 40,133 0.45 105 

Caudovirales Ga0208768_1000236 Upper Nov 2008_U2_3 μm 3300025601 40,133 0.45 23 

Caudovirales Ga0208770_1000240 Upper Nov 2008_U3_0.1 μm 3300025438 40,133 0.45 91 

Caudovirales Ga0208903_1000351 Upper Nov 2008_U3_3 μm 3300025502 40,133 0.45 25 

cl_1303 

 

Caudovirales Ga0222652_1000051 Upper Jul 2014_U2_0.1 μm 3300022853 59,036 0.46 57 

Caudovirales Ga0222688_1000009 Upper Dec 2014_U2_0.1 μm 3300023293 59,036 0.46 80 

Caudovirales Ga0222691_1000045 Upper Dec 2014_U3_0.1 μm 3300022851 59,036 0.46 73 
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Caudovirales Ga0222661_1000055 Upper Aug 2014_U2_0.1 μm 3300023229 58,976 0.46 35 

cl_1389 

 

Caudovirales Ga0222633_1000195 Upper Nov 2013_U3_0.8 μm 3300022847 67,914 0.56 25 

Caudovirales Ga0222632_1000099 Upper Nov 2013_U3_3 μm 3300022842 67,839 0.56 69 

Caudovirales Ga0222634_1000056 Upper Nov 2013_U3_0.1 μm 3300023235 67,839 0.56 44 

cl_1609 
Caudovirales Ga0208770_1000293 Upper Nov 2008_U3_0.1 μm 3300025438 35,550 0.41 18 

Caudovirales Ga0208646_1000275 Upper Nov 2008_U2_0.1 μm 3300025425 35,530 0.41 22 

cl_1614 Caudovirales Ga0208414_1000465 Upper Nov 2008_U3_0.8 μm 3300025603 40,262 0.56 26 

cl_1687 Caudovirales Ga0222649_1000033 Upper Feb 2014_U1_0.1 μm 3300022839 60,587 0.36 151 

cl_1925 Caudovirales Ga0222670_1000134 Upper Oct 2014_U2_0.1 μm 3300023294 34,611 0.37 43 

cl_1931 

 

Caudovirales Ga0222629_1000098 Upper Nov 2013_U2_3 μm 3300022867 35,224 0.4 30 

Caudovirales Ga0222631_1000049 Upper Nov 2013_U2_0.1 μm 3300022843 35,224 0.4 67 

Caudovirales Ga0222652_1000154 Upper Jul 2014_U2_0.1 μm 3300022853 35,224 0.4 40 

cl_2074 Caudovirales Ga0222632_1000124 Upper Nov 2013_U3_3 μm 3300022842 57,505 0.55 42 

cl_2122 Caudovirales Ga0222651_1000121 Upper Jul 2014_U2_0.8 μm 3300022866 58,728 0.36 32 

cl_2251 Caudovirales Ga0222633_1000388 Upper Nov 2013_U3_0.8 μm 3300022847 42,580 0.44 31 

cl_2260 Caudovirales Ga0222660_1000154 Upper Aug 2014_U2_0.8 μm 3300023239 36,315 0.31 27 
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cl_2466 Caudovirales Ga0208770_1000066 Upper Nov 2008_U3_0.1 μm 3300025438 75,636 0.42 16 

cl_2664 

 

Caudovirales Ga0222646_100080 Upper Dec 2013_U1_0.1 μm 3300022822 35,853 0.42 28 

Caudovirales Ga0222652_1000149 Upper Jul 2014_U2_0.1 μm 3300022853 35,853 0.42 57 

Caudovirales Ga0222661_1000141 Upper Aug 2014_U2_0.1 μm 3300023229 35,853 0.42 35 

Caudovirales Ga0222670_1000120 Upper Oct 2014_U2_0.1 μm 3300023294 35,853 0.42 45 

Caudovirales Ga0222688_1000048 Upper Dec 2014_U2_0.1 μm 3300023293 35,853 0.42 68 

Caudovirales Ga0222711_1000048 Upper 27Jan 2015_U1_0.1 μm 3300022837 35,853 0.42 30 

cl_3129 Caudovirales Ga0222650_1000104 Upper Jul 2014_U2_3 μm 3300023237 76,097 0.33 56 

cl_3153 
Caudovirales Ga0222631_1000051 Upper Nov 2013_U2_0.1 μm 3300022843 34,975 0.33 60 

Caudovirales Ga0222652_1000157 Upper Jul 2014_U2_0.1 μm 3300022853 34,975 0.33 21 

cl_3169 Caudovirales Ga0222688_1000054 Upper Dec 2014_U2_0.1 μm 3300023293 35,117 0.39 17 

cl_3187 
Caudovirales Ga0222650_1000438 Upper Jul 2014_U2_3 μm 3300023237 32,633 0.46 29 

Caudovirales Ga0222652_1000180 Upper Jul 2014_U2_0.1 μm 3300022853 32,633 0.46 18 

cl_3592 Caudovirales Ga0208414_1000754 Upper Nov 2008_U3_0.8 μm 3300025603 28,792 0.33 108 

cl_3890 Caudovirales Ga0222691_1000046 Upper Dec 2014_U3_0.1 μm 3300022851 58,779 0.38 46 

cl_3895 Caudovirales Ga0222691_1000080 Upper Dec 2014_U3_0.1 μm 3300022851 41,353 0.32 23 
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cl_3927 
Caudovirales Ga0222649_1000115 Upper Feb 2014_U1_0.1 μm 3300022839 30,893 0.33 33 

Caudovirales Ga0222644_1000166 Upper Dec 2013_U1_3 μm 3300022841 30,887 0.33 138 

cl_3933 

 

Caudovirales Ga0222650_1000363 Upper Jul 2014_U2_3 μm 3300023237 37,577 0.38 253 

Caudovirales Ga0222654_1000296 Upper Jul 2014_U3_0.8 μm 3300022836 37,577 0.38 65 

Caudovirales Ga0222655_1000141 Upper Jul 2014_U3_0.1 μm 3300023245 37,577 0.38 130 

Caudovirales Ga0222630_1000128 Upper Nov 2013_U2_0.8 μm 3300023243 37,509 0.38 22 

cl_3945 Caudovirales Ga0222689_1000107 Upper Dec 2014_U3_3 μm 3300023231 46,233 0.53 57 

cl_3980 

 

Caudovirales Ga0222670_1000135 Upper Oct 2014_U2_0.1 μm 3300023294 34,523 0.62 27 

Caudovirales Ga0222688_1000055 Upper Dec 2014_U2_0.1 μm 3300023293 34,523 0.62 61 

Caudovirales Ga0222661_1000151 Upper Aug 2014_U2_0.1 μm 3300023229 34,520 0.62 24 

cl_4928 Caudovirales Ga0222629_1000080 Upper Nov 2013_U2_3 μm 3300022867 37,577 0.38 24 

cl_4964 Caudovirales Ga0222646_100030 Upper Dec 2013_U1_0.1 μm 3300022822 61,566 0.42 50 

cl_4974 

 

Caudovirales Ga0222707_1000108 Upper 8Jan 2015_U1_0.8 μm 3300022832 35,794 0.31 16 

Caudovirales Ga0222708_1000050 Upper 8Jan 2015_U1_0.1 μm 3300023242 35,794 0.31 350 

Caudovirales Ga0222711_1000050 Upper 27Jan 2015_U1_0.1 μm 3300022837 35,794 0.31 59 

cl_4978 Caudovirales Ga0222646_100095 Upper Dec 2013_U1_0.1 μm 3300022822 31,728 0.32 33 
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cl_5051 Unknown Ga0222691_1000044 Upper Dec 2014_U3_0.1 μm 3300022851 59,477 0.56 29 

cl_6587 Caudovirales Ga0222708_1000007 Upper 8Jan 2015_U1_0.1 μm 3300023242 76,295 0.63 32 

cl_6662 Caudovirales Ga0222646_100076 Upper Dec 2013_U1_0.1 μm 3300022822 36,531 0.4 15 

cl_6676 Caudovirales Ga0222629_1000100 Upper Nov 2013_U2_3 μm 3300022867 34,975 0.33 54 

cl_6750 Caudovirales Ga0222664_1000144 Upper Aug 2014_U3_0.1 μm 3300023296 55,212 0.37 261 

cl_8545 Caudovirales Ga0208768_1000228 Upper Nov 2008_U2_3 μm 3300025601 40,839 0.39 45 

cl_9600 Caudovirales Ga0222689_1000136 Upper Dec 2014_U3_3 μm 3300023231 36,717 0.41 86 

cl_9840 Caudovirales Ga0222644_1000101 Upper Dec 2013_U1_3 μm 3300022841 44,811 0.59 134 

cl_10110 Caudovirales Ga0222707_1000112 Upper 8Jan 2015_U1_0.8 μm 3300022832 35,037 0.56 30 

cl_10239 Caudovirales Ga0222670_1000558 Upper Oct 2014_U2_0.1 μm 3300023294 15,420 0.56 75 

sg_8813 Caudovirales Ga0222646_100052 Upper Dec 2013_U1_0.1 μm 3300022822 44,962 0.51 21 

sg_8814 Caudovirales Ga0222646_100054 Upper Dec 2013_U1_0.1 μm 3300022822 44,811 0.59 151 

sg_8907 Caudovirales Ga0222645_100134 Upper Dec 2013_U1_0.8 μm 3300022833 44,811 0.59 27 

sg_9264 Unknown Ga0222691_1000034 Upper Dec 2014_U3_0.1 μm 3300022851 68,930 0.53 73 

sg_9323 Caudovirales Ga0222652_1000161 Upper Jul 2014_U2_0.1 μm 3300022853 34,523 0.62 45 

sg_9693 Caudovirales Ga0222662_1000451 Upper Aug 2014_U3_3 μm 3300022885 33,379 0.48 34 
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NA Unknown Ga0222634_1000134 Upper Nov 2013_U3_0.1 μm 3300023235 43,608 0.55 26 

NA 

Caudovirales Ga0222629_1000190 Upper Nov 2013_U2_3 μm 3300022867 23,953 0.29 43 

Caudovirales Ga0222630_1000353 Upper Nov 2013_U2_0.8 μm 3300023243 23,953 0.29 64 

Caudovirales Ga0222649_1000173 Upper Feb 2014_U1_0.1 μm 3300022839 23,953 0.29 26 

Caudovirales Ga0222650_1000687 Upper Jul 2014_U2_3 μm 3300023237 23,953 0.29 23 

Caudovirales Ga0222652_1000292 Upper Jul 2014_U2_0.1 μm 3300022853 23,953 0.29 255 

Caudovirales Ga0222655_1000302 Upper Jul 2014_U3_0.1 μm 3300023245 23,953 0.29 116 

Caudovirales Ga0222661_1000259 Upper Aug 2014_U2_0.1 μm 3300023229 23,953 0.29 65 

Caudovirales Ga0222670_1000261 Upper Oct 2014_U2_0.1 μm 3300023294 23,953 0.29 48 

Caudovirales Ga0222676_1000205 Upper Oct 2014_U3_0.1 μm 3300023240 23,953 0.29 44 

NA Retrovirales Ga0222647_1001013 Upper Feb 2014_U1_3 μm 3300022827 9,276 0.52 47 

NA 

Microviridae Ga0222662_1004683 Upper Aug 2014_U3_3 μm 3300022885 4,292 0.49 28 

Microviridae Ga0222663_1002047 Upper Aug 2014_U3_0.8 μm 3300022845 4,292 0.49 35 

Microviridae Ga0222675_1003300 Upper Oct 2014_U3_0.8 μm 3300023238 4,292 0.49 13 

Microviridae Ga0222690_1001523 Upper Dec 2014_U3_0.8 μm 3300023227 4,292 0.49 14 

NA CressDNAParvo Ga0222633_1005399 Upper Nov 2013_U3_0.8 μm 3300022847 3,562 0.5 151 
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NA CressDNAParvo Ga0222648_1005368 Upper Feb 2014_U1_0.8 μm 3300023054 3,536 0.49 32 

NA CressDNAParvo Ga0222645_105175 Upper Dec 2013_U1_0.8 μm 3300022833 3,122 0.51 14 

NA CressDNAParvo Ga0222630_1006513 Upper Nov 2013_U2_0.8 μm 3300023243 3,115 0.5 20 

NA 

CressDNAParvo Ga0222633_1006260 Upper Nov 2013_U3_0.8 μm 3300022847 3,081 0.49 39 

CressDNAParvo Ga0222644_1002881 Upper Dec 2013_U1_3 μm 3300022841 3,081 0.5 77 

CressDNAParvo Ga0222645_105245 Upper Dec 2013_U1_0.8 μm 3300022833 3,081 0.5 168 

NA 

CressDNAParvo Ga0208413_1024040 Upper Nov 2008_U2_0.8 μm 3300025513 2,137 0.39 109 

CressDNAParvo Ga0208768_1018460 Upper Nov 2008_U2_3 μm 3300025601 2,137 0.39 279 

CressDNAParvo Ga0222648_1012621 Upper Feb 2014_U1_0.8 μm 3300023054 2,137 0.39 63 

CressDNAParvo Ga0222668_1009307 Upper Oct 2014_U2_3 μm 3300022865 2,137 0.39 9 

CressDNAParvo Ga0222707_1004304 Upper 8Jan 2015_U1_0.8 μm 3300022832 2,137 0.39 331 

CressDNAParvo Ga0222710_1007623 Upper 27Jan 2015_U1_0.8 μm 3300023429 2,137 0.39 84 

CressDNAParvo Ga0222644_1005372 Upper Dec 2013_U1_3 μm 3300022841 2,074 0.39 33 

NA 

Unknown Ga0222686_1006371 Upper Dec 2014_U2_3 μm 3300023501 2,033 0.47 30 

Unknown Ga0222687_1009818 Upper Dec 2014_U2_0.8 μm 3300022844 2,033 0.48 50 

Unknown Ga0222690_1005126 Upper Dec 2014_U3_0.8 μm 3300023227 2,033 0.48 8 
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cl_711 

 

Caudovirales Ga0208414_1000366 Upper, Interface Nov 2008_U3_0.8 μm 3300025603 48,437 0.61 110 

Caudovirales Ga0208770_1000171 Upper, Interface Nov 2008_U3_0.1 μm 3300025438 48,437 0.61 71 

Caudovirales Ga0208903_1000269 Upper, Interface Nov 2008_U3_3 μm 3300025502 48,437 0.61 177 

Caudovirales Ga0222673_1000112 Upper, Interface Oct 2014_I_0.1 μm 3300022821 48,437 0.61 31 

cl_1926 

 

Caudovirales Ga0222631_1000047 Upper, Interface Nov 2013_U2_0.1 μm 3300022843 35,853 0.42 75 

Caudovirales Ga0222634_1000201 Upper, Interface Nov 2013_U3_0.1 μm 3300023235 35,853 0.42 1023 

Caudovirales Ga0222664_1000276 Upper, Interface Aug 2014_U3_0.1 μm 3300023296 35,853 0.42 144 

Caudovirales Ga0222676_1000105 Upper, Interface Oct 2014_U3_0.1 μm 3300023240 35,853 0.42 120 

Caudovirales Ga0222691_1000108 Upper, Interface Dec 2014_U3_0.1 μm 3300022851 35,853 0.42 426 

cl_5848 
Caudovirales Ga0222671_1000145 Upper, Interface Oct 2014_I_3 μm 3300022856 36,717 0.41 20 

Caudovirales Ga0222674_1000135 Upper, Interface Oct 2014_U3_3 μm 3300022848 36,717 0.41 26 

cl_169 Caudovirales Ga0222673_1000089 Interface Oct 2014_I_0.1 μm 3300022821 56,215 0.52 43 

cl_388 Caudovirales Ga0222667_1000128 Interface Aug 2014_I_0.1 μm 3300022890 43,076 0.39 19 

cl_735 Caudovirales Ga0222628_1000134 Interface Nov 2013_I_0.1 μm 3300022871 37,031 0.34 45 

cl_868 
Caudovirales Ga0222658_1000119 Interface Jul 2014_I_0.1 μm 3300023257 49,083 0.39 48 

Caudovirales Ga0222667_1000096 Interface Aug 2014_I_0.1 μm 3300022890 49,083 0.39 54 
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cl_1230 
Caudovirales Ga0222664_1000178 Interface Aug 2014_U3_0.1 μm 3300023296 47,643 0.39 31 

Caudovirales Ga0222673_1000118 Interface Oct 2014_I_0.1 μm 3300022821 47,643 0.39 67 

cl_1480 Caudovirales Ga0222665_1000014 Interface Aug 2014_I_3 μm 3300022864 116,028 0.53 23 

cl_2193 Caudovirales Ga0222666_1000279 Interface Aug 2014_I_0.8 μm 3300024048 34,155 0.46 21 

cl_2653 Caudovirales Ga0222673_1000073 Interface Oct 2014_I_0.1 μm 3300022821 62,977 0.34 65 

cl_2987 Caudovirales Ga0222667_1000147 Interface Aug 2014_I_0.1 μm 3300022890 40,847 0.42 27 

cl_3162 Caudovirales Ga0222676_1000050 Interface Oct 2014_U3_0.1 μm 3300023240 57,415 0.58 16 

cl_3886 Caudovirales Ga0222628_1000116 Interface Nov 2013_I_0.1 μm 3300022871 39,121 0.33 23 

cl_3903 Caudovirales Ga0222628_1000072 Interface Nov 2013_I_0.1 μm 3300022871 49,428 0.3 36 

cl_4460 
Caudovirales Ga0208647_1000090 Interface Nov 2008_I_0.1 μm 3300025362 39,252 0.3 131 

Caudovirales Ga0208901_1000202 Interface Nov 2008_I_0.8 μm 3300025380 39,252 0.3 74 

cl_4998 Caudovirales Ga0222694_1000023 Interface Dec 2014_I_0.1 μm 3300023292 46,925 0.36 27 

cl_6611 Caudovirales Ga0222673_1000151 Interface Oct 2014_I_0.1 μm 3300022821 41,192 0.41 21 

cl_6749 Caudovirales Ga0222673_1000068 Interface Oct 2014_I_0.1 μm 3300022821 64,142 0.59 20 

cl_8415 Caudovirales Ga0222671_1000142 Interface Oct 2014_I_3 μm 3300022856 37,783 0.31 22 

cl_8461 Caudovirales Ga0208647_1000095 Interface Nov 2008_I_0.1 μm 3300025362 38,594 0.4 31 
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cl_8535 Caudovirales Ga0208900_1000079 Interface Nov 2008_I_3 μm 3300025433 57,510 0.52 47 

sg_10466 Unknown Ga0222694_1000048 Interface Dec 2014_I_0.1 μm 3300023292 35,253 0.31 54 

sg_8715 Caudovirales Ga0222673_1000129 Interface Oct 2014_I_0.1 μm 3300022821 45,604 0.34 24 

cl_116 

 

Caudovirales Ga0222626_1000295 Interface, Lower Nov 2013_I_3 μm 3300022882 32,335 0.31 29 

Caudovirales Ga0222657_1000246 Interface, Lower Jul 2014_I_0.8 μm 3300023241 32,281 0.31 57 

Caudovirales Ga0222696_1000266 Interface, Lower Dec 2014_L1_0.8 μm 3300023233 32,200 0.31 41 

cl_540 

 

Caudovirales Ga0222637_1000124 Interface, Lower Nov 2013_L1_0.1 μm 3300023435 42,243 0.34 17 

Caudovirales Ga0222667_1000132 Interface, Lower Aug 2014_I_0.1 μm 3300022890 42,243 0.34 43 

Caudovirales Ga0222697_1000106 Interface, Lower Dec 2014_L1_0.1 μm 3300022868 42,243 0.34 32 

cl_714 

 

Caudovirales Ga0208904_1000360 Interface, Lower Nov 2008_L2_0.1 μm 3300025669 39,410 0.32 155 

Caudovirales Ga0222628_1000114 Interface, Lower Nov 2013_I_0.1 μm 3300022871 39,366 0.32 47 

Caudovirales Ga0222664_1000244 Interface, Lower Aug 2014_U3_0.1 μm 3300023296 39,366 0.32 36 

Caudovirales Ga0222667_1000156 Interface, Lower Aug 2014_I_0.1 μm 3300022890 39,366 0.32 95 

Caudovirales Ga0222697_1000123 Interface, Lower Dec 2014_L1_0.1 μm 3300022868 39,366 0.32 80 

Caudovirales Ga0222637_1000143 Interface, Lower Nov 2013_L1_0.1 μm 3300023435 39,308 0.32 33 

Caudovirales Ga0222694_1000034 Interface, Lower Dec 2014_I_0.1 μm 3300023292 39,294 0.32 21 
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cl_738 

 

Caudovirales Ga0208904_1000278 Interface, Lower Nov 2008_L2_0.1 μm 3300025669 44,769 0.38 124 

Caudovirales Ga0222637_1000115 Interface, Lower Nov 2013_L1_0.1 μm 3300023435 43,214 0.38 58 

Caudovirales Ga0222658_1000155 Interface, Lower Jul 2014_I_0.1 μm 3300023257 43,214 0.38 47 

Caudovirales Ga0222667_1000127 Interface, Lower Aug 2014_I_0.1 μm 3300022890 43,214 0.38 49 

Caudovirales Ga0222679_1000066 Interface, Lower Oct 2014_L1_0.1 μm 3300022858 43,214 0.38 40 

Caudovirales Ga0222697_1000099 Interface, Lower Dec 2014_L1_0.1 μm 3300022868 43,214 0.38 34 

cl_753 

 

Caudovirales Ga0222657_1000100 Interface, Lower Jul 2014_I_0.8 μm 3300023241 63,847 0.34 26 

Caudovirales Ga0222658_1000072 Interface, Lower Jul 2014_I_0.1 μm 3300023257 63,847 0.34 127 

Caudovirales Ga0222667_1000072 Interface, Lower Aug 2014_I_0.1 μm 3300022890 63,847 0.34 105 

Caudovirales Ga0222673_1000070 Interface, Lower Oct 2014_I_0.1 μm 3300022821 63,847 0.34 76 

Caudovirales Ga0222694_1000013 Interface, Lower Dec 2014_I_0.1 μm 3300023292 63,847 0.34 104 

Caudovirales Ga0222697_1000052 Interface, Lower Dec 2014_L1_0.1 μm 3300022868 63,847 0.34 196 

cl_782 

 

Caudovirales Ga0222658_1000118 Interface, Lower Jul 2014_I_0.1 μm 3300023257 49,360 0.33 38 

Caudovirales Ga0208647_1000101 Interface, Lower Nov 2008_I_0.1 μm 3300025362 37,783 0.31 20 

Caudovirales Ga0208904_1000394 Interface, Lower Nov 2008_L2_0.1 μm 3300025669 37,783 0.31 109 

Caudovirales Ga0222673_1000179 Interface, Lower Oct 2014_I_0.1 μm 3300022821 37,783 0.31 92 
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Caudovirales Ga0222697_1000133 Interface, Lower Dec 2014_L1_0.1 μm 3300022868 37,783 0.31 35 

cl_1928 

 

Caudovirales Ga0222628_1000130 Interface, Lower Nov 2013_I_0.1 μm 3300022871 37,186 0.4 15 

Caudovirales Ga0222637_1000162 Interface, Lower Nov 2013_L1_0.1 μm 3300023435 37,186 0.4 38 

Caudovirales Ga0222667_1000169 Interface, Lower Aug 2014_I_0.1 μm 3300022890 37,186 0.4 38 

Caudovirales Ga0222679_1000092 Interface, Lower Oct 2014_L1_0.1 μm 3300022858 37,186 0.4 18 

Caudovirales Ga0222697_1000138 Interface, Lower Dec 2014_L1_0.1 μm 3300022868 37,186 0.4 32 

cl_2172 
Caudovirales Ga0208904_1000242 Interface, Lower Nov 2008_L2_0.1 μm 3300025669 47,696 0.41 50 

Caudovirales Ga0222658_1000126 Interface, Lower Jul 2014_I_0.1 μm 3300023257 47,696 0.41 23 

NA 

Caudovirales Ga0222626_1000161 Interface, Lower Nov 2013_I_3 μm 3300022882 47,710 0.39 29 

Caudovirales Ga0222627_1000111 Interface, Lower Nov 2013_I_0.8 μm 3300023244 47,710 0.39 118 

Caudovirales Ga0222636_1000113 Interface, Lower Nov 2013_L1_0.8 μm 3300022854 47,710 0.39 17 

Caudovirales Ga0222666_1000189 Interface, Lower Aug 2014_I_0.8 μm 3300024048 47,710 0.39 65 

Caudovirales Ga0222667_1000103 Interface, Lower Aug 2014_I_0.1 μm 3300022890 47,710 0.39 46 

Caudovirales Ga0222696_1000167 Interface, Lower Dec 2014_L1_0.8 μm 3300023233 47,710 0.39 52 

cl_24 

 

Caudovirales Ga0208769_1000001 Lower Nov 2008_L1_0.1 μm 3300025697 528,260 0.56 78 

Caudovirales Ga0222679_1000001 Lower Oct 2014_L1_0.1 μm 3300022858 528,258 0.56 65 
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Caudovirales Ga0222682_1000001 Lower Oct 2014_L2_0.1 μm 3300023246 528,256 0.56 30 

cl_82 Caudovirales Ga0222635_1000049 Lower Nov 2013_L1_3 μm 3300023234 65,245 0.51 43 

cl_113 

 

Caudovirales Ga0208769_1000003 Lower Nov 2008_L1_0.1 μm 3300025697 185,273 0.4 22 

Caudovirales Ga0208771_1000009 Lower Nov 2008_L3_3 μm 3300025698 185,273 0.4 33 

Caudovirales Ga0208905_1000005 Lower Nov 2008_L3_0.8 μm 3300025661 185,273 0.4 28 

cl_205 
Caudovirales Ga0207996_1000318 Lower Nov 2008_L2_0.8 μm 3300025586 44,112 0.4 91 

Caudovirales Ga0208648_1000425 Lower Nov 2008_L2_3 μm 3300025642 44,112 0.4 21 

cl_311 
Caudovirales Ga0208902_1000117 Lower Nov 2008_L1_0.8 μm 3300025628 48,707 0.44 21 

Caudovirales Ga0208279_1000257 Lower Nov 2008_L1_3 μm 3300025649 48,534 0.44 355 

cl_740 Caudovirales Ga0208771_1000154 Lower Nov 2008_L3_3 μm 3300025698 43,313 0.36 18 

cl_866 

 

Caudovirales Ga0208904_1000201 Lower Nov 2008_L2_0.1 μm 3300025669 51,617 0.55 37 

Caudovirales Ga0222640_1000018 Lower Nov 2013_L2_0.1 μm 3300023297 51,617 0.55 47 

Caudovirales Ga0222679_1000040 Lower Oct 2014_L1_0.1 μm 3300022858 51,617 0.55 24 

cl_872 Caudovirales Ga0222696_1000206 Lower Dec 2014_L1_0.8 μm 3300023233 40,169 0.31 44 

cl_914 
Caudovirales Ga0208904_1000193 Lower Nov 2008_L2_0.1 μm 3300025669 52,303 0.39 22 

Caudovirales Ga0222679_1000038 Lower Oct 2014_L1_0.1 μm 3300022858 52,303 0.39 15 
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cl_1040 Caudovirales Ga0208769_1000193 Lower Nov 2008_L1_0.1 μm 3300025697 32,656 0.42 27 

cl_1137 Caudovirales Ga0207996_1000364 Lower Nov 2008_L2_0.8 μm 3300025586 41,358 0.35 34 

cl_1152 Caudovirales Ga0222685_1000017 Lower Oct 2014_L3_0.1 μm 3300022874 36,298 0.36 24 

cl_1153 Caudovirales Ga0208769_1000085 Lower Nov 2008_L1_0.1 μm 3300025697 44,334 0.36 17 

cl_1270 Caudovirales Ga0222637_1000055 Lower Nov 2013_L1_0.1 μm 3300023435 59,445 0.31 24 

cl_1274 Caudovirales Ga0208769_1000038 Lower Nov 2008_L1_0.1 μm 3300025697 68,986 0.51 46 

cl_1424 Caudovirales Ga0208905_1000064 Lower Nov 2008_L3_0.8 μm 3300025661 51,499 0.34 33 

cl_1429 
Caudovirales Ga0208771_1000215 Lower Nov 2008_L3_3 μm 3300025698 36,811 0.34 20 

Caudovirales Ga0208905_1000127 Lower Nov 2008_L3_0.8 μm 3300025661 36,811 0.34 24 

cl_1640 Caudovirales Ga0208904_1000412 Lower Nov 2008_L2_0.1 μm 3300025669 36,601 0.4 23 

cl_1869 
Caudovirales Ga0222637_1000130 Lower Nov 2013_L1_0.1 μm 3300023435 41,872 0.39 19 

Caudovirales Ga0208904_1000324 Lower Nov 2008_L2_0.1 μm 3300025669 41,796 0.39 36 

cl_1870 Caudovirales Ga0222637_1000047 Lower Nov 2013_L1_0.1 μm 3300023435 65,207 0.39 16 

cl_1875 Caudovirales Ga0208769_1000105 Lower Nov 2008_L1_0.1 μm 3300025697 42,085 0.41 23 

cl_1882 Caudovirales Ga0208769_1000053 Lower Nov 2008_L1_0.1 μm 3300025697 58,972 0.39 38 

cl_2151 Caudovirales Ga0208771_1001592 Lower Nov 2008_L3_3 μm 3300025698 11,801 0.36 20 
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 Caudovirales Ga0208905_1001478 Lower Nov 2008_L3_0.8 μm 3300025661 11,801 0.36 19 

Caudovirales Ga0307928_10003616 Lower Nov 2013_L3_0.1 μm 3300031227 11,801 0.36 31 

cl_2535 Caudovirales Ga0222679_1000074 Lower Oct 2014_L1_0.1 μm 3300022858 41,354 0.39 41 

cl_2539 Caudovirales Ga0222697_1000080 Lower Dec 2014_L1_0.1 μm 3300022868 48,241 0.32 32 

cl_2543 Unknown Ga0207997_1000146 Lower Nov 2008_L3_0.1 μm 3300025736 33,354 0.34 86 

cl_2955 
Caudovirales Ga0208648_1000482 Lower Nov 2008_L2_3 μm 3300025642 40,949 0.42 60 

Caudovirales Ga0207996_1000375 Lower Nov 2008_L2_0.8 μm 3300025586 40,946 0.42 66 

cl_4777 Caudovirales Ga0307928_10000216 Lower Nov 2013_L3_0.1 μm 3300031227 40,506 0.33 20 

cl_6083 Caudovirales Ga0208904_1000262 Lower Nov 2008_L2_0.1 μm 3300025669 46,043 0.56 23 

cl_6100 Caudovirales Ga0208904_1000286 Lower Nov 2008_L2_0.1 μm 3300025669 43,985 0.42 54 

cl_6184 Caudovirales Ga0307928_10000238 Lower Nov 2013_L3_0.1 μm 3300031227 39,571 0.49 40 

cl_6251 Caudovirales Ga0307928_10000150 Lower Nov 2013_L3_0.1 μm 3300031227 44,919 0.31 32 

cl_6647 Caudovirales Ga0307928_10000232 Lower Nov 2013_L3_0.1 μm 3300031227 39,766 0.36 23 

cl_8417 Caudovirales Ga0222634_1000217 Lower Nov 2013_U3_0.1 μm 3300023235 33,882 0.32 12 

cl_8655 Caudovirales Ga0208902_1000132 Lower Nov 2008_L1_0.8 μm 3300025628 46,752 0.4 23 

cl_8662 Caudovirales Ga0208648_1000620 Lower Nov 2008_L2_3 μm 3300025642 34,039 0.48 20 



659 
 

cl_9532 Caudovirales Ga0307928_10000040 Lower Nov 2013_L3_0.1 μm 3300031227 67,356 0.54 27 

cl_10290 
Caudovirales Ga0222679_1000185 Lower Oct 2014_L1_0.1 μm 3300022858 25,884 0.34 16 

Caudovirales Ga0222637_1000264 Lower Nov 2013_L1_0.1 μm 3300023435 25,839 0.34 20 

sg_10366 Unknown Ga0222703_1000045 Lower Dec 2014_L3_0.1 μm 3300023256 33,260 0.34 16 

sg_11172 Caudovirales Ga0307928_10003248 Lower Nov 2013_L3_0.1 μm 3300031227 12,412 0.35 23 

sg_11648 Caudovirales Ga0307928_10000234 Lower Nov 2013_L3_0.1 μm 3300031227 39,713 0.56 16 

sg_2 Caudovirales Ga0222636_1000107 Lower Nov 2013_L1_0.8 μm 3300022854 48,758 0.6 22 

sg_550 Caudovirales Ga0208904_1000255 Lower Nov 2008_L2_0.1 μm 3300025669 46,474 0.39 47 

sg_576 Caudovirales Ga0208904_1000272 Lower Nov 2008_L2_0.1 μm 3300025669 45,040 0.39 23 

sg_637 Caudovirales Ga0208904_1000246 Lower Nov 2008_L2_0.1 μm 3300025669 47,285 0.31 32 

sg_9367 Caudovirales Ga0222679_1000111 Lower Oct 2014_L1_0.1 μm 3300022858 34,677 0.32 25 

NA 
Caudovirales Ga0207997_1000112 Lower Nov 2008_L3_0.1 μm 3300025736 37,866 0.37 17 

Caudovirales Ga0307928_10000272 Lower Nov 2013_L3_0.1 μm 3300031227 37,866 0.37 50 

NA Caudovirales Ga0222640_1000087 Lower Nov 2013_L2_0.1 μm 3300023297 31,376 0.31 35 

NA Caudovirales Ga0207997_1000616 Lower Nov 2008_L3_0.1 μm 3300025736 18,059 0.35 29 

NA Caudovirales Ga0207997_1001313 Lower Nov 2008_L3_0.1 μm 3300025736 12,882 0.41 17 
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Caudovirales Ga0307928_10003015 Lower Nov 2013_L3_0.1 μm 3300031227 12,882 0.41 48 

NA Caudovirales Ga0307928_10003459 Lower Nov 2013_L3_0.1 μm 3300031227 12,048 0.43 15 

NA Caudovirales Ga0222697_1000929 Lower Dec 2014_L1_0.1 μm 3300022868 11,901 0.35 14 

NA Caudovirales Ga0207997_1001542 Lower Nov 2008_L3_0.1 μm 3300025736 11,831 0.44 15 

 

Cyanophage contigsE 

Cyanophage Unknown Ga0078900_115654 Upper Dec 2006_U2_0.1 μm 3300016486 548,945 0.28 9 

cl_6580 
Unknown Ga0222688_1000642 Upper Dec 2014_U1_0.1 μm 3300023293 7,681 0.27 9 

Unknown Ga0302071_100018 Upper Dec 2006_U1_0.1 μm 3300028228 51,665 0.29 9 

cl_6727 
Unknown Ga0222688_1000631 Upper Dec 2014_U1_0.1 μm 3300023293 7,780 0.27 9 

Unknown Ga0302071_100023 Upper Dec 2006_U1_0.1 μm 3300028228 43,753 0.28 10 

cl_9495 Unknown Ga0302066_100481 Upper Dec 2006_U2_0.1 μm 3300028222 6,313 0.29 4 

cl_9892 Unknown Ga0302071_100165 Upper Dec 2006_U1_0.1 μm 3300028228 17,793 0.26 9 

sg_14929 Unknown Ga0302071_100266 Upper Dec 2006_U1_0.1 μm 3300028228 13,303 0.3 11 

sg_14949 Unknown Ga0302071_100224 Upper Dec 2006_U1_0.1 μm 3300028228 14,834 0.27 10 

sg_14969 Unknown Ga0302071_100180 Upper Dec 2006_U1_0.1 μm 3300028228 16,925 0.28 9 
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sg_14971 Unknown Ga0302071_100029 Upper Dec 2006_U1_0.1 μm 3300028228 41,278 0.28 14 

sg_15003 Unknown Ga0302071_100139 Upper Dec 2006_U1_0.1 μm 3300028228 19,294 0.29 10 

 

Potential Chlorobium virus contigsF 

cl_1024 

 

Unknown Ga0222689_1000957 Upper Dec 2014_U3_3 μm 3300023231 6,117 0.48 27 

Unknown Ga0222690_1000793 Upper Dec 2014_U3_0.8 μm 3300023227 6,492 0.47 50 

Unknown Ga0302060_10025 Interface Dec 2006_I_0.8 μm 3300028201 11,188 0.48 34 

Unknown Ga0302061_10032 Interface Dec 2006_I_3 μm 3300028203 8,085 0.49 13 

Unknown Ga0302067_10039 Interface Dec 2006_I_0.1 μm 3300028204 6,665 0.45 24 

Unknown Ga0208900_1004295 Interface Nov 2008_I_3 μm 3300025433 5,426 0.48 613 

Unknown Ga0222656_1001806 Interface Jul 2014_I_3 μm 3300022834 5,624 0.48 29 

Unknown Ga0222665_1003383 Interface Aug 2014_I_3 μm 3300022864 5,317 0.47 24 

Unknown Ga0208904_1006197 Lower Nov 2008_L2_0.1 μm 3300025669 6,239 0.48 37 

Unknown Ga0208905_1004525 Lower Nov 2008_L3_0.8 μm 3300025661 6,310 0.48 46 

Unknown Ga0222638_1002074 Lower Nov 2013_L2_3 μm 3300023298 5,603 0.48 28 

Unknown Ga0222695_1002624 Lower Dec 2014_L1_3 μm 3300023253 5,952 0.48 30 
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Unknown Ga0222696_1002166 Lower Dec 2014_L1_0.8 μm 3300023233 5,599 0.48 37 

Unknown Ga0222699_1002408 Lower Dec 2014_L1_0.8 μm 3300022846 5,369 0.47 40 

cl_1024 

matches 

 

Unknown Ga0222693_103307 Interface Dec 2014_I_0.8 μm 3300022826 2,461 0.48 204 

Unknown Ga0222693_105389 Interface Dec 2014_I_0.8 μm 3300022826 1,845 0.43 247 

Unknown Ga0222693_109555 Interface Dec 2014_I_0.8 μm 3300022826 1,307 0.42 192 

Unknown Ga0222693_111585 Interface Dec 2014_I_0.8 μm 3300022826 1,152 0.5 162 

Unknown Ga0222693_113295 Interface Dec 2014_I_0.8 μm 3300022826 1,048 0.52 162 

Unknown Ga0222671_1015434 Interface Oct 2014_I_3 μm 3300022856 1,622 0.43 9 

Unknown Ga0222628_1006547 Interface Nov 2013_I_0.1 μm 3300022871 2,995 0.45 242 

Unknown Ga0222628_1009068 Interface Nov 2013_I_0.1 μm 3300022871 2,400 0.44 244 

Unknown Ga0222628_1029116 Interface Nov 2013_I_0.1 μm 3300022871 1,027 0.5 153 

Unknown Ga0222626_1005760 Interface Nov 2013_I_3 μm 3300022882 3,274 0.46 106 

Unknown Ga0222626_1017698 Interface Nov 2013_I_3 μm 3300022882 1,399 0.51 83 

Unknown Ga0222667_1013453 Interface Aug 2014_I_0.1 μm 3300022890 1,848 0.45 17 

Unknown Ga0222667_1025494 Interface Aug 2014_I_0.1 μm 3300022890 1,230 0.47 7 

Unknown Ga0222657_1006670 Interface Jun 2014_I_0.8 μm 3300023241 2,965 0.45 21 
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Unknown Ga0222627_1005353 Interface Nov 2013_I_0.8 μm 3300023244 3,111 0.46 197 

Unknown Ga0222658_1008932 Interface Jun 2014_I_0.1 μm 3300023257 3,093 0.46 18 

Unknown Ga0222658_1012832 Interface Jun 2014_I_0.1 μm 3300023257 2,415 0.43 18 

Unknown Ga0222694_1001922 Interface Dec 2014_I_0.1 μm 3300023292 3,576 0.46 218 

Unknown Ga0222694_1008117 Interface Dec 2014_I_0.1 μm 3300023292 1,568 0.51 203 

Unknown Ga0222666_1006542 Interface Aug 2014_I_0.8 μm 3300024048 3,036 0.45 16 

Unknown Ga0208647_1001847 Interface Nov 2008_I_0.1 μm 3300025362 3,923 0.46 412 

Unknown Ga0208647_1011846 Interface Nov 2008_I_0.1 μm 3300025362 1,173 0.5 367 

Unknown Ga0208901_1003063 Interface Nov 2008_I_0.8 μm 3300025380 3,061 0.45 586 

Unknown Ga0208901_1005235 Interface Nov 2008_I_0.8 μm 3300025380 2,150 0.51 420 

Unknown Ga0302067_10108 Interface Dec 2006_I_0.1 μm 3300028204 3,094 0.45 17 

Unknown Ga0307929_1013488 Interface Dec 2014_I_3 μm 3300031697 3,034 0.45 561 

Unknown Ga0307929_1022100 Interface Dec 2014_I_3 μm 3300031697 2,150 0.51 512 

Unknown Ga0222641_1001513 Lower Nov 2013_L3_3 μm 3300022828 3,169 0.46 15 

Unknown Ga0222641_1008646 Lower Nov 2013_L3_3 μm 3300022828 1,075 0.51 19 

Unknown Ga0222636_1027756 Lower Nov 2013_L1_0.8 μm 3300022854 1,148 0.47 8 
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Unknown Ga0222677_1004353 Lower Oct 2014_L1_3 μm 3300022855 3,025 0.45 16 

Unknown Ga0222677_1008770 Lower Oct 2014_L1_3 μm 3300022855 1,884 0.51 13 

Unknown Ga0222679_1019904 Lower Oct 2014_L1_0.1 μm 3300022858 1,315 0.46 8 

Unknown Ga0222679_1021467 Lower Oct 2014_L1_0.1 μm 3300022858 1,249 0.42 12 

Unknown Ga0222698_1004621 Lower Dec 2014_L2_3 μm 3300022860 3,468 0.46 27 

Unknown Ga0222698_1010393 Lower Dec 2014_L2_3 μm 3300022860 2,138 0.5 27 

Unknown Ga0222697_1005317 Lower Dec 2014_L1_0.1 μm 3300022868 3,624 0.46 22 

Unknown Ga0222685_1005680 Lower Oct 2014_L3_0.1 μm 3300022874 2,835 0.45 17 

Unknown Ga0222701_1002792 Lower Dec 2014_L3_3 μm 3300022884 4,249 0.47 37 

Unknown Ga0222701_1007002 Lower Dec 2014_L3_3 μm 3300022884 2,347 0.43 42 

Unknown Ga0222642_1004415 Lower Nov 2013_L3_0.8 μm 3300022887 3,428 0.46 19 

Unknown Ga0222700_1011970 Lower Dec 2014_L2_0.1 μm 3300023061 1,563 0.43 14 

Unknown Ga0222700_1013246 Lower Dec 2014_L2_0.1 μm 3300023061 1,479 0.48 9 

Unknown Ga0222700_1014196 Lower Dec 2014_L2_0.1 μm 3300023061 1,422 0.35 18 

Unknown Ga0222700_1022360 Lower Dec 2014_L2_0.1 μm 3300023061 1,095 0.41 10 

Unknown Ga0222635_1003665 Lower Nov 2013_L1_3 μm 3300023234 3,370 0.46 22 
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Unknown Ga0222635_1006398 Lower Nov 2013_L1_3 μm 3300023234 2,336 0.43 19 

Unknown Ga0222635_1017146 Lower Nov 2013_L1_3 μm 3300023234 1,209 0.51 22 

Unknown Ga0222682_1006090 Lower Oct 2014_L2_0.1 μm 3300023246 2,530 0.45 9 

Unknown Ga0222678_1026606 Lower Oct 2014_L1_0.8 μm 3300023249 1,023 0.4 4 

Unknown Ga0222683_1002296 Lower Oct 2014_L3_3 μm 3300023251 4,576 0.47 36 

Unknown Ga0222695_1008753 Lower Dec 2014_L1_3 μm 3300023253 2,285 0.43 28 

Unknown Ga0222703_1004199 Lower Dec 2014_L3_0.1 μm 3300023256 3,156 0.46 16 

Unknown Ga0222639_1009454 Lower Nov 2013_L2_0.8 μm 3300023262 3,054 0.45 13 

Unknown Ga0222684_1001894 Lower Oct 2014_L3_0.8 μm 3300023295 5,033 0.48 53 

Unknown Ga0222640_1009671 Lower Nov 2013_L2_0.1 μm 3300023297 2,458 0.44 10 

Unknown Ga0222702_1004458 Lower Dec 2014_L3_0.8 μm 3300023299 3,853 0.47 38 

Unknown Ga0222702_1035347 Lower Dec 2014_L3_0.8 μm 3300023299 1,123 0.5 22 

Unknown Ga0222680_1002636 Lower Oct 2014_L2_3 μm 3300023434 4,220 0.47 37 

Unknown Ga0222637_1013402 Lower Nov 2013_L1_0.1 μm 3300023435 1,902 0.43 12 

Unknown Ga0207996_1009992 Lower Nov 2008_L2_0.8 μm 3300025586 3,789 0.47 30 

Unknown Ga0208902_1009654 Lower Nov 2008_L1_0.8 μm 3300025628 3,754 0.46 18 
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Unknown Ga0208648_1008385 Lower Nov 2008_L2_3 μm 3300025642 5,049 0.48 47 

Unknown Ga0208648_1067131 Lower Nov 2008_L2_3 μm 3300025642 1,142 0.5 44 

Unknown Ga0208279_1006523 Lower Nov 2008_L1_3 μm 3300025649 4,535 0.47 44 

Unknown Ga0208769_1009442 Lower Nov 2008_L1_0.1 μm 3300025697 3,589 0.46 14 

Unknown Ga0208771_1005090 Lower Nov 2008_L3_3 μm 3300025698 5,506 0.48 86 

Unknown Ga0207997_1013304 Lower Nov 2008_L3_0.1 μm 3300025736 3,540 0.46 34 

Unknown Ga0307928_10010556 Lower Nov 2013_L3_0.1 μm 3300031227 6,634 0.47 79 

cl_248 

 

Unknown Ga0222686_1001026 Upper Dec 2014_U2_3 μm 3300023501 6,903 0.51 150 

Unknown Ga0222689_1000893 Upper Dec 2014_U3_3 μm 3300023231 6,437 0.51 926 

Unknown Ga0222689_1001025 Upper Dec 2014_U3_3 μm 3300023231 5,833 0.5 954 

Unknown Ga0222691_1002182 Upper Dec 2014_U3_0.1 μm 3300022851 5,045 0.52 38 

Unknown Ga0302060_10018 Interface Dec 2006_I_0.8 μm 3300028201 17,393 0.5 79 

Unknown Ga0302061_10026 Interface Dec 2006_I_3 μm 3300028203 10,117 0.52 28 

Unknown Ga0302067_10021 Interface Dec 2006_I_0.1 μm 3300028204 12,817 0.51 66 

Unknown Ga0222626_1002761 Interface Nov 2013_I_3 μm 3300022882 6,100 0.51 383 

Unknown Ga0222627_1001894 Interface Nov 2013_I_0.8 μm 3300023244 6,106 0.51 365 
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Unknown Ga0222628_1002177 Interface Nov 2013_I_0.1 μm 3300022871 6,106 0.51 796 

Unknown Ga0302056_100137 Lower Dec 2006_L2_0.8 μm 3300028227 7,336 0.51 6 

Unknown Ga0302055_100061 Lower Dec 2006_L3_0.8 μm 3300028226 8,566 0.51 10 

Unknown Ga0302070_100065 Lower Dec 2006_L3_0.1 μm 3300028296 7,664 0.49 6 

Unknown Ga0302070_100157 Lower Dec 2006_L3_0.1 μm 3300028296 5,159 0.51 7 

Unknown Ga0208279_1004110 Lower Nov 2008_L1_3 μm 3300025649 6,103 0.51 515 

Unknown Ga0208902_1002585 Lower Nov 2008_L1_0.8 μm 3300025628 8,161 0.51 136 

Unknown Ga0208769_1002379 Lower Nov 2008_L1_0.1 μm 3300025697 7,992 0.51 143 

Unknown Ga0207996_1003791 Lower Nov 2008_L2_0.8 μm 3300025586 7,966 0.51 189 

Unknown Ga0208904_1004243 Lower Nov 2008_L2_0.1 μm 3300025669 8,059 0.51 284 

Unknown Ga0222635_1001297 Lower Nov 2013_L1_3 μm 3300023234 7,103 0.51 131 

Unknown Ga0222636_1002821 Lower Nov 2013_L1_0.8 μm 3300022854 5,518 0.51 104 

Unknown Ga0222637_1002828 Lower Nov 2013_L1_0.1 μm 3300023435 5,215 0.51 73 

Unknown Ga0222639_1002111 Lower Nov 2013_L2_0.8 μm 3300023262 8,030 0.51 157 

Unknown Ga0222640_1001468 Lower Nov 2013_L2_0.1 μm 3300023297 6,934 0.51 138 

Unknown Ga0222641_1000777 Lower Nov 2013_L3_3 μm 3300022828 5,218 0.52 91 



668 
 

Unknown Ga0222679_1001284 Lower Oct 2014_L1_0.1 μm 3300022858 7,692 0.51 68 

Unknown Ga0222682_1001695 Lower Oct 2014_L2_0.1 μm 3300023246 5,038 0.52 108 

Unknown Ga0222695_1002611 Lower Dec 2014_L1_3 μm 3300023253 5,972 0.5 264 

Unknown Ga0222696_1001254 Lower Dec 2014_L1_0.8 μm 3300023233 8,225 0.5 132 

Unknown Ga0222698_1001226 Lower Dec 2014_L2_3 μm 3300022860 7,682 0.5 354 

Unknown Ga0222698_1002050 Lower Dec 2014_L2_3 μm 3300022860 5,591 0.51 399 

Unknown Ga0222699_1001059 Lower Dec 2014_L2_0.8 μm 3300022846 8,592 0.51 279 

Unknown Ga0222700_1001281 Lower Dec 2014_L2_0.1 μm 3300023061 5,063 0.51 82 

Unknown Ga0222701_1001644 Lower Dec 2014_L3_3 μm 3300022884 6,103 0.51 265 

Unknown Ga0222702_1001705 Lower Dec 2014_L3_0.8 μm 3300023299 6,313 0.51 233 

cl_400 

 

Unknown Ga0208414_1003043 Upper Nov 2008_U2_0.1 μm 3300025603 10,451 0.34 20 

Unknown Ga0222689_1000515 Upper Dec 2014_U2_3 μm 3300023231 10,005 0.33 31 

Unknown Ga0222691_1000883 Upper Dec 2014_U2_0.1 μm 3300022851 9,331 0.33 23 

Unknown Ga0208900_1002555 Interface Nov 2008_I_3 μm 3300025433 8,218 0.33 308 

Unknown Ga0208901_1000990 Interface Nov 2008_I_0.1 μm 3300025380 8,545 0.33 456 

Unknown Ga0208647_1000742 Interface Nov 2008_I_0.1 μm 3300025362 7,900 0.33 955 
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Unknown Ga0222656_1001064 Interface Jul 2014_I_3 μm 3300022834 7,890 0.33 82 

Unknown Ga0222658_1003935 Interface Jul 2014_I_0.1 μm 3300023257 5,310 0.34 481 

Unknown Ga0222666_1002834 Interface Aug 2014_I_0.1 μm 3300024048 5,311 0.34 279 

Unknown Ga0222673_1001116 Interface Oct 2014_I_0.1 μm 3300022821 9,687 0.33 30 

Unknown Ga0208279_1002046 Lower Nov 2008_L1_3 μm 3300025649 10,106 0.33 128 

Unknown Ga0208902_1002371 Lower Nov 2008_L1_0.1 μm 3300025628 8,544 0.33 257 

Unknown Ga0208769_1002438 Lower Nov 2008_L1_0.1 μm 3300025697 7,877 0.33 341 

Unknown Ga0207996_1003599 Lower Nov 2008_L2_0.1 μm 3300025586 8,246 0.33 540 

Unknown Ga0208904_1004387 Lower Nov 2008_L2_0.1 μm 3300025669 7,890 0.33 1034 

Unknown Ga0208771_1002615 Lower Nov 2008_L3_3 μm 3300025698 8,545 0.33 312 

Unknown Ga0208905_1003078 Lower Nov 2008_L3_0.1 μm 3300025661 7,889 0.33 337 

Unknown Ga0207997_1003371 Lower Nov 2008_L3_0.1 μm 3300025736 7,890 0.33 400 

Unknown Ga0222635_1001119 Lower Nov 2013_L1_3 μm 3300023234 7,890 0.33 112 

Unknown Ga0222638_1001230 Lower Nov 2013_L2_3 μm 3300023298 7,890 0.33 82 

Unknown Ga0222677_1001056 Lower Oct 2014_L1_3 μm 3300022855 7,889 0.33 117 

Unknown Ga0222681_1001368 Lower Oct 2014_L2_0.1 μm 3300022838 7,890 0.33 59 
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Unknown Ga0222682_1001525 Lower Oct 2014_L2_0.1 μm 3300023246 5,311 0.34 146 

Unknown Ga0222685_1000765 Lower Oct 2014_L3_0.1 μm 3300022874 7,889 0.33 167 

Unknown Ga0222700_1000514 Lower Dec 2014_L2_0.1 μm 3300023061 7,890 0.33 148 

Unknown Ga0222701_1002009 Lower Dec 2014_L3_3 μm 3300022884 5,311 0.34 132 

sg_14554 Unknown Ga0302067_10019 Interface Dec 2006_I_0.1 μm 3300028204 14,104 0.51 146 

sg_14554 

matches 

 

Unknown Ga0302064_100390 Upper Dec 2006_U2_0.8 μm 3300028221 5,671 0.5 8 

Unknown Ga0302071_101098 Upper Dec 2006_U2_0.1 μm 3300028228 4,692 0.52 9 

Unknown Ga0222693_108773 Interface Dec 2014_I_0.8 μm 3300022826 1,380 0.53 461 

Unknown Ga0222628_1020343 Interface Nov 2013_I_0.1 μm 3300022871 1,348 0.5 359 

Unknown Ga0222658_1028294 Interface Jun 2014_I_0.1 μm 3300023257 1,396 0.52 73 

Unknown Ga0302067_10094 Interface Dec 2006_I_0.1 μm 3300028204 3,305 0.52 89 

Unknown Ga0307929_1025180 Interface Dec 2014_I_3 μm 3300031697 1,969 0.51 931 

Unknown Ga0307929_1026701 Interface Dec 2014_I_3 μm 3300031697 1,893 0.51 466 

Unknown Ga0307929_1028327 Interface Dec 2014_I_3 μm 3300031697 1,825 0.52 1794 

Unknown Ga0307929_1033417 Interface Dec 2014_I_3 μm 3300031697 1,633 0.52 650 

Unknown Ga0307929_1033418 Interface Dec 2014_I_3 μm 3300031697 1,633 0.51 630 
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Unknown Ga0307929_1034033 Interface Dec 2014_I_3 μm 3300031697 1,614 0.49 1200 

Unknown Ga0307929_1039738 Interface Dec 2014_I_3 μm 3300031697 1,458 0.54 341 

Unknown Ga0307929_1041004 Interface Dec 2014_I_3 μm 3300031697 1,427 0.52 247 

Unknown Ga0307929_1043591 Interface Dec 2014_I_3 μm 3300031697 1,371 0.51 1328 

Unknown Ga0222681_1011995 Lower Oct 2014_L2_0.8 μm 3300022838 1,909 0.49 42 

Unknown Ga0222699_1019844 Lower Dec 2014_L2_0.8 μm 3300022846 1,365 0.52 203 

Unknown Ga0222698_1019532 Lower Dec 2014_L2_3 μm 3300022860 1,412 0.51 361 

Unknown Ga0222697_1012543 Lower Dec 2014_L1_0.1 μm 3300022868 1,997 0.51 126 

Unknown Ga0222697_1013453 Lower Dec 2014_L1_0.1 μm 3300022868 1,902 0.49 103 

Unknown Ga0222697_1017175 Lower Dec 2014_L1_0.1 μm 3300022868 1,609 0.47 69 

Unknown Ga0222701_1013523 Lower Dec 2014_L3_3 μm 3300022884 1,573 0.51 135 

Unknown Ga0222700_1013614 Lower Dec 2014_L2_0.1 μm 3300023061 1,457 0.52 94 

Unknown Ga0222695_1013787 Lower Dec 2014_L1_3 μm 3300023253 1,611 0.52 113 

Unknown Ga0222680_1014745 Lower Oct 2014_L2_3 μm 3300023434 1,606 0.52 122 

Unknown Ga0208905_1016630 Lower Nov 2008_L3_0.8 μm 3300025661 2,843 0.51 138 

Unknown Ga0208905_1024838 Lower Nov 2008_L3_0.8 μm 3300025661 2,211 0.5 208 
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Unknown Ga0207997_1031231 Lower Nov 2008_L3_0.1 μm 3300025736 2,078 0.51 127 

Unknown Ga0302057_100737 Lower Dec 2006_L2_3 μm 3300028199 1,897 0.51 5 

sg_10581 Unknown Ga0222684_1001894 Lower Oct 2014_L3_0.8 μm 3300023295 5,033 0.48 53 

sg_14551 Unknown Ga0302067_10044 Interface Dec 2006_I_0.1 μm 3300028204 6,155 0.48 127 

sg_14796 Unknown Ga0302068_100085 Lower Dec 2006_L1_0.1 μm 3300028219 7,610 0.49 5 

sg_14959 Unknown Ga0302071_100505 Upper Dec 2006_U1_0.1 μm 3300028228 8,621 0.5 7 

cl_9176 Unknown Ga0306906_1001873 NA Rauer 13 Lake 3300028374 6,481 0.5 35 

sg_1370 Unknown Ga0306906_1000248 NA Rauer 13 Lake 3300028374 23,985 0.46 27 

sg_1648 Unknown Ga0307254_100878 NA Deep Lake 24 m 3 μm 3300028435 8,628 0.52 72 

sg_1649 Unknown Ga0307254_100745 NA Deep Lake 24 m 3 μm 3300028435 10,206 0.53 72 

sg_1677 Unknown Ga0307253_100979 NA Deep Lake 24 m 0.8 μm 3300028451 7,606 0.53 74 

 

‘Huge’ phage genome contigsH 

cl_24 

Caudovirales Ga0208769_1000001 Lower Nov 2008_L1_0.1 μm 3300025697 528,260 0.56 78 

Unknown Ga0208904_1000003 Lower Nov 2008_L2_0.1 μm 3300025669 447,854 0.56 174 

Unknown Ga0208771_1000001 Lower Nov 2008_L3_3 μm 3300025698 528,138 0.56 22 
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Unknown Ga0222637_1000003* 
Lower Nov 2013_L1_0.1 μm 

3300023435 323,923 0.56 98 

Unknown Ga0222637_1000005* 3300023435 204,206 0.56 114 

Unknown Ga0222640_1000001 Lower Nov 2013_L2_0.1 μm 3300023297 528,282 0.56 44 

Caudovirales Ga0222679_1000001 Lower Oct 2014_L1_0.1 μm 3300022858 528,258 0.56 65 

Caudovirales Ga0222682_1000001 Lower Oct 2014_L2_0.1 μm 3300023246 528,256 0.56 30 

Unknown Ga0222700_1000001 Lower Dec 2014_L2_0.1 μm 3300023061 521,772 0.56 23 
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Table H2. List of abundant viral clusters. The most abundant viral clusters in Ace Lake were 

identified from the Antarctic virus catalogue (Chapter 3 section 3.2.6.6). A The Ace Lake zone 

to which most of the contigs of an abundant viral cluster belonged are shown in bold letters in 

the third column. Ace Lake depths: Upper, upper oxic zone; Interface, oxycline; Lower, lower 

anoxic zone. 

Viral 

clusters 

Probable 

host 

Ace Lake zone 

(number of 

contigs)A 

Total 

contigs 

Contig length 

range (median 

length) 

Mean GC 

content 

Read depth 

range 

(median 

value) 

cl_5 Bacteria 

Upper (133); 

Interface (2); 

Lower (1) 

136 5–89 kb (9 kb) 0.34 10–723 (63) 

cl_7 Eukarya Upper (111) 111 5–72 kb (11 kb) 0.4 4–647 (107) 

cl_9 Eukarya 

Upper (101); 

Interface (2); 

Lower (8) 

111 5–42 kb (12 kb) 0.4 4–962 (48) 

cl_11 Bacteria 

Upper (112); 

Interface (3); 

Lower (2) 

117 5–61 kb (13 kb) 0.56 9–1286 (70) 

cl_20 Eukarya 

Upper (66); 

Interface (3); 

Lower (14) 

83 5–62 kb (13 kb) 0.4 
3–3675 

(159) 

cl_32 Eukarya Upper (70) 70 6–52 kb (13 kb) 0.41 7–804 (90) 

cl_35 Eukarya 
Upper (56); 

Lower (3) 
59 5–49 kb (6 kb) 0.43 

5–1713 

(185) 

cl_37 Unknown Upper (68) 68 5–57 kb (19 kb) 0.43 9–556 (66) 

cl_54 Unknown 

Upper (42); 

Interface (1); 

Lower (18) 

61 5–31 kb (8 kb) 0.52 
11–1766 

(63) 

cl_66 Eukarya Upper (54) 54 7–34 kb (12 kb) 0.46 
10–705 

(137) 
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cl_89 Unknown 
Upper (55); 

Lower (1) 
56 5–51 kb (22 kb) 0.43 

8–1301 

(108) 

cl_159 Bacteria Upper (41) 41 5–31 kb (7 kb) 0.3 
11–2922 

(58) 

cl_191 Unknown Upper (39) 39 7–45 kb (15 kb) 0.42 
11–1333 

(157) 

cl_248 Unknown 

Upper (4); 

Interface (6); 

Lower (25) 

35 5–17 kb (7 kb) 0.51 6–954 (138) 

cl_295 Bacteria 

Upper (28); 

Interface (1); 

Lower (2) 

31 5–26 kb (6 kb) 0.34 
9–1660 

(147) 

cl_400 Unknown 

Upper (3); 

Interface (7); 

Lower (16) 

26 5–10 kb (8 kb) 0.33 
20–1034 

(158) 

cl_463 Bacteria 

Upper (13); 

Interface (3); 

Lower (6) 

22 5–45 kb (24 kb) 0.62 
11–6412 

(127) 
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Table H3. List of Chlorobium spacer and repeat sequences. The spacer and repeat sequences 

were obtained from (i) 18 Ace Lake metagenomes — mostly from the anoxic zone including 

Interface (4), Lower 1 (4), Lower 2 (6), and Lower 3 (3) and one from Upper 3 zone; (ii) three 

Ellis Fjord metagenomes from 60 m depth; and (iii) three Taynaya Bay metagenomes from 5 m 

(2) and 11 m (1) depths. The methods used for identification of CRISPR spacer arrays in Ace 

Lake Chlorobium and Ellis Fjord and Taynaya Bay Chlorobium are discussed in Chapter 3 

section 3.2.6.1 and Chapter 5 section 5.2.5, respectively. 

Sequence 

name 
Sequence 

Sequence 

length (bp) 

CRISPR spacers 

Spc1 TTGCTTCTATCATGATTTGATTCCTCCTATAAG 33 

Spc2 CAGGAAAGATGCGTATGCGTGGCGGAAAGGCT 32 

Spc3 TCAGTGCTGGGGTAAAGGCGACGACGGCCGGATA 34 

Spc4 TTCTATTAGATCAACTGGAAATGGAGCAGGGTG 33 

Spc5 CAATGAATTTCACCAACTCAAATCTGGCATTAA 33 

Spc6 TCATGCGCCGCCTGCTCCGCGAGCTGGCAACCA 33 

Spc7 GCGATAAAGACCGCGTAGCACAGGAAACTGAGG 33 

Spc8 TACAACCTCATAGCTTTTGTAGATTTCTTGCAA 33 

Spc9 ACCGCCCCCCGCCCGCATAAGGTCATCAGCCTG 33 

Spc10 TGACACAGGGGTTTTGATCGACAAAGTTGTGTG 33 

Spc11 TTCTGAGAAGTACTGGATCAGGGTTGACTCTTG 33 

Spc12 GGCTAGCCTTAGTGGCCACAAAGACTGGAACCA 33 

Spc13 TCACAGTTGACGATCCCTGGTCTGATGCTATGA 33 

Spc14 CTTGGGGTGTATCAGGCGTCAGGGTTGACAGATG 34 

Spc15 TAGCTTTGCTGTAATATGGTCACCTTATCATCTA 34 

Spc16 GGCAGGGATAACAGAGCTGCGCAGTCAAGTAAAA 34 

Spc17 CCCAACGCTAACGCTAGTTGATTAGCGTCAGGGA 34 

Spc18 ACGCAGTTGAGTATCAAGAAATTACATCCGCGA 33 

Spc19 CCCCGCTGGAAGTATCGATTAATGGGAAGCTTG 33 

Spc20 CATATCAGCAACAATGGATTGCACCTGTCACTG 33 

Spc21 GCGGCGCTGGTTGCCATTGAAAAGGTATCAGCAG 34 

Spc22 ACACAATAAAACCGTGGAGGATTTATGCCGTCG 33 

Spc23 CTCTGGATGACGGTCAACCCAGCTGCCGGAAGAA 34 

Spc24 TAGACTGGGCGGAGTTTGACAAGCTATGCGGGA 33 

Spc25 TCACGTTATTTGGCATAAGCCTGGCGGCGGTAT 33 
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Spc26 GCTGCCGTGCCGTCTGTTCCGCCAACGGCAAAT 33 

Spc27 CCACACCAGCTCAGATAGAAGCATGACACCCAA 33 

Spc28 TATATGCAGGCTGAGAAAGCGCGGGCGGGTCTA 33 

Spc29 CAAGGTCATGGCGGATTCGCTGGCAACTCAGAGC 34 

Spc30 CGCTTATAAATTAGAAACGATGCAGTGGGTCAA 33 

Spc31 CGAACCAGCCAAACGCCGGTAGCTTTCTGTTCC 33 

Spc32 TCGTCTTGCCGCGCCAAGGGAATCAACGCCTAT 33 

Spc33 TCCGCATCCCACAAGATCGGTGAGAACCTCGTCG 34 

Spc34 TCCATTCGAATGTCCTGCGCCACATGCCTGCCT 33 

Spc35 CACCGTCGTCGCCATAGCTTTTAGCTCTGTGAG 33 

Spc36 CACCGGCAAAGTCATAGCTTTTAGCTCCGTGAG 33 

Spc37 CAAAAGCCGCGTCGAAAGGCACATATACTTCCG 33 

Spc38 CGGAAGTATATGTGCCTTTCGACGCGGCTTTTG 33 

Spc39 CTCACGGAGCTAAAAGCTATGACTTTGCCGGTG 33 

Spc40 CTCACAGAGCTAAAAGCTATGGCGACGACGGTG 33 

Spc41 AGGCAGGCATGTGGCGCAGGACATTCGAATGGA 33 

Spc42 CGACGCGGCTGGTTTTGGCCTTTCTACGGTCAA 33 

Spc43 AATCGCGAGCGAGCGGGCTGGCTCTGGCTGCT 32 

Spc44 CCTCTGGCTGATCATCCCAAATGTTCGGAAGC 32 

Spc45 CCGGCAAAGTCATAGCTTTTAGCTCCGTGA 30 

Spc46 AAAGCCGCGTCGAAAGGCACATATACTTCC 30 

Spc47 CTGTATGCCCGGGACACTCGGAGACCTCGGTC 32 

Spc48 TACGGGCCCAGAGTCAGGCCGATGTGGAGGGT 32 

Spc49 TACCAATCTCCAAGGAACGACCGAAGCCGTG 31 

Spc50 GATGCACGCGACATTCCGCGCGCTGGCGAGA 31 

Spc51 CGTCATCGCACCACCAGCCAATCCGGTATAA 31 

Spc52 CGACGAGGTTCTCACCGATCTTGTGGGATGCGGA 34 

Spc53 GTTGCTGACCGCATTTTTACAAAGCTTGACAC 32 

Spc54 GCTGATTCACTGGCAACTCAGAGCACTGACAA 32 

Spc55 TCTACTTTCGTCTGCGTTGGTATCAGCTCCCA 32 

Spc56 TCGCCTGAGTTAAAAGCAAGGCCGTATAAAGT 32 

Spc57 TATCAGGTTTCATTTTTTTTCTCTCTCCCTTGA 33 

Spc58 TGTCATTTCATGTGTCATTTTTGTATCCTCTTG 33 

Spc59 TATTTCTTCGGTGGCATATCAGAATTTGAGCTTA 34 

Spc60 TCGCGTCCTCCTCATCCACTATCCCCGCACCGTA 34 
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Spc61 GGCAGGCTAACGATATGCAATCAGATAGTTGG 32 

Spc62 TAAGGCCGTCAGTCTGAGAGATTCGTTCATGTGA 34 

Spc63 TAGACTGGGGTGAGTTCGACAAGCTATGTATGA 33 

Spc64 TAGATGGCTGGGGTGTCATGCTGCCATCCTCGC 33 

Spc65 TGGATACAATGGACGATGGACCGCTGGAAAGGT 33 

Spc66 TAGAGAGAGGAACGATCTCCTCGACCTATCCCG 33 

Spc67 CAGCAGCAGCGTAGAAAAGCAGCTGCGCATTTTC 34 

Spc68 CTGTGCCCGGGGCTTTTTTCCGGGGGTGGGCTTA 34 

Spc69 CATGCATCAAGACGTTATCACATCGCTATTTAG 33 

Spc70 TGTAGAGAGAGGTCTTCCTGCACTTATTCCGTTTA 35 

Spc71 CCACACGAGCAACGATGGCAGCATGACACCCAA 33 

Spc72 TGCGGTACGACGCGGATGGCCTAGGGGCCGGGG 33 

Spc73 CAAGAGGAGTACGAGATCAAGGCTGAGGAGGAGG 34 

Spc74 CTAAGTCTACATCCTCCGCGTCATCAAACAGGG 33 

Spc75 TATCTGTCATATCGTCGCACAACAATATAGGCA 33 

Spc76 TCAGACTTGTATGTGCTCCCAGCAGGAATAATA 33 

Spc77 CGAAAGGGCCTTGAACGGGCATACTGGGGTAGC 33 

Spc78 GGCAATTAGGTTTTTAAGTCCGCTCATTGCAG 32 

Spc79 TGGAACAAGCACAGAGGGAGCGATAATGGCCGCA 34 

Spc80 TAAGCCCCCCGGAAATAAGCCCCCGGACCTCTCG 34 

Spc81 CTAAGATATAGCTTGCAGGTTAATTATATTTTG 33 

Spc82 CCAACAACAACCATGAGACACTACTACGCTTTA 33 

Spc83 TTGCACATGTTTTTATATCAGGCTTCTTCGGGTG 34 

Spc84 CTTCAGGGGAGCATGGAACTCGCTTTCCGGGGC 33 

Spc85 CAAAAGCCAGATCATCCTCACCCGACACCATAC 33 

Spc86 TGTATACGCGTCAATTTTTTACAATGACACTCC 33 

Spc87 CTGCTACGGAGGCGTTGCGGAGCAGGCGCAAAGC 34 

Spc88 TCTCCGACTCTGTCAAAGAAAGCCTTGCCGGAG 33 

Spc89 CCCAAGGTGGAACCCTGTCGA 21 

Spc90 CACCACGTCGCTCTCGTCGACGCTTAAAGCCAT 33 

Spc91 CCAGGCGTGGATATGGCCGGCGATAGCCTTCCG 33 

Spc92 TTATCGGACTCGCGACGGAGCTGCTCAGTCTCG 33 

Spc93 TGGGATCAATGTCGTCGTCGGCAAGACCGATGC 33 

Spc94 TGGAGATCAAGCTACTGAGCCTCCATCTCAAAA 33 

Spc95 CGGGAGATTTATGGGACAAGAAATGACGGCAGG 33 
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Spc96 CAGCCGTGCGCTCGGTATCGGAGTATGTTGCAA 33 

Spc97 TCAGAAAGAACGCAAGCACTGGCGATGCTGAAG 33 

Spc98 CGTTCTGGCGGCCGTCTTCGACTTCGCCACTGGGA 35 

Spc99 TAGAGAGCTCAGGGCGGAGTGGGCCATCGTCAA 33 

Spc100 CATCGGCATATTTGACGCTATCAACCTCGTCGT 33 

Spc101 TACGGAGCCCGACACCTCCGCGCTTGAAGCCGA 33 

Spc102 CGGCAAGACGACGATGGACGAGCTTGGGTCCAA 33 

Spc103 CTCCACATCGCTCTCGTCGACGCTTAAAGCCAT 33 

Spc104 CGACAAAGCGCTATCAGTGTGCCACCCGAACGA 33 

Spc105 CTCGACGGAGTTGATGAAGTCGGACACGACCGA 33 

Spc106 TAGGCCTCGTACACGATGGTGTGCCCGCCACGG 33 

Spc107 CGACAGCCCTCATTTTCTCGGCACTTGTCGAAT 33 

Spc108 TACTTTCCGTATCGATGTGGGGGGTGATTCCGA 33 

Spc109 CAAGTCCCTCCTCTTCCATATACTTGAACTTCT 33 

Spc110 TTATCTTGCCTGTCTCGGCCTGCTCTTTTGCA 32 

Spc111 TGCTACCGGGCCGGAATCGACAGAAAAGGCATG 33 

Spc112 CATGAGCTCGTCCCGATGCAAAAGCCTCTCCTG 33 

Spc113 TCTCCATCAGCCACCCTACCCGAATCGCCGCACG 34 

Spc114 CAAAAAGCCGGAAAATCGGGATCAAATTTCTCA 33 

Spc115 CGAGACGGGCGGGGGGCTGACTGGCGCGCTGGA 33 

Spc116 TAGTAAAGACTCGCCCGATCCATGCTGCGTCAGG 34 

Spc117 CACCCGAAGAAGCCTGATATAAAAACATGTGCAA 34 

Spc118 TAAAGCGTAGTAGTGTCTCATGGTTGTTGTTGG 33 

Spc119 CAAAATATAATTAACCTGCAAGCTATATCTTAG 33 

Spc120 CGAGAGGTCCGGGGGCTTATTTCCGGGGGGCTTA 34 

Spc121 TGCGGCCATTATCGCTCCCTCTGTGCTTGTTCCA 34 

Spc122 CTGCAATGAGCGGACTTAAAAACCTAATTGCC 32 

Spc123 GCTACCCCAGTATGCCCGTTCAAGGCCCTTTCG 33 

Spc124 TATTATTCCTGCTGGGAGCACATACAAGTCTGA 33 

Spc125 TGCCTATATTGTTGTGCGACGATATGACAGATA 33 

Spc126 CCCTGTTTGATGACGCGGAGGATGTAGACTTAG 33 

Spc127 CCTCCTCCTCAGCCTTGATCTCGTACTCCTCTTG 34 

Spc128 CCCCGGCCCCTAGGCCATCCGCGTCGTACCGCA 33 

Spc129 TTGGGTGTCATGCTGCCATCGTTGCTCGTGTGG 33 

Spc130 TAAACGGAATAAGTGCAGGAAGACCTCTCTCTACA 35 
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Spc131 CTAAATAGCGATGTGATAACGTCTTGATGCATG 33 

Spc132 TAAGCCCACCCCCGGAAAAAAGCCCCGGGCACAG 34 

Spc133 GAAAATGCGCAGCTGCTTTTCTACGCTGCTGCTG 34 

Spc134 CGGGATAGGTCGAGGAGATCGTTCCTCTCTCTA 33 

Spc135 ACCTTTCCAGCGGTCCATCGTCCATTGTATCCA 33 

Spc136 GCGAGGATGGCAGCATGACACCCCAGCCATCTA 33 

Spc137 TCATACATAGCTTGTCGAACTCACCCCAGTCTA 33 

Spc138 TCACATGAACGAATCTCTCAGACTGACGGCCTTA 34 

Spc139 CCAACTATCTGATTGCATATCGTTAGCCTGCC 32 

Spc140 TACGGTGCGGGGATAGTGGATGAGGAGGACGCGA 34 

Spc141 TAAGCTCAAATTCTGATATGCCACCGAAGAAATA 34 

Spc142 CAAGAGGATACAAAAATGACACATGAAATGACA 33 

Spc143 TCAAGGGAGAGAGAAAAAAAATGAAACCTGATA 33 

Spc144 ATAGGCGTTGATTCCCTTGGCGCGGCAAGACGA 33 

Spc145 GGAACAGAAAGCTACCGGCGTTTGGCTGGTTCG 33 

Spc146 TTGACCCACTGCATCGTTTCTAATTTATAAGCG 33 

Spc147 GCTCTGAGTTGCCAGCGAATCCGCCATGACCTTG 34 

Spc148 TAGACCCGCCCGCGCTTTCTCAGCCTGCATATA 33 

Spc149 TTGGGTGTCATGCTTCTATCTGAGCTGGTGTGG 33 

Spc150 ATCAGGTTTCATTTTTTTTCTCTCTCCCTTGA 32 

Spc151 GTCATTTCATGTGTCATTTTTGTATCCTCTTG 32 

Spc152 ATTTCTTCGGTGGCATATCAGAATTTGAGCTTA 33 

Spc153 CGCGTCCTCCTCATCCACTATCCCCGCACCGTA 33 

Spc154 GCAGGCTAACGATATGCAATCAGATAGTTGG 31 

Spc155 AAGGCCGTCAGTCTGAGAGATTCGTTCATGTGA 33 

Spc156 AGACTGGGGTGAGTTCGACAAGCTATGTATGA 32 

Spc157 AGATGGCTGGGGTGTCATGCTGCCATCCTCGC 32 

Spc158 GGATACAATGGACGATGGACCGCTGGAAAGGT 32 

Spc159 AGAGAGAGGAACGATCTCCTCGACCTATCCCG 32 

Spc160 AGCAGCAGCGTAGAAAAGCAGCTGCGCATTTTC 33 

Spc161 TGTGCCCGGGGCTTTTTTCCGGGGGTGGGCTTA 33 

Spc162 ATGCATCAAGACGTTATCACATCGCTATTTAG 32 

Spc163 GTAGAGAGAG 10 

Spc164 TTCAAGCGCAGCGCATCCGTCCCGGTCACATAT 33 

Spc165 GGAACGGCAGCGGTCAATATCGTTAAGGGAGCA 33 
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Spc166 ACGTGCTATACTGCGCCTGGGCCTGCTG 28 

Spc167 TCCGCGAAGAGGTGGCCAAAGACTACCT 28 

Spc168 
ACCAGCTTCCCTTTAATCGATACATCCAGAGGCACTAGTTT

TTGGCTA 

48 

Spc169 
GACAGCTTCCCATCAATCGATACTTCCAGTGGGGAAAATT

TTGGTTA 

47 

Spc170 TGCTACCGGGCCGGAATCGACAGAAAAGGCAT 32 

Spc171 CATGAGCTCGTCCCGATGCAAAAGCCTCTCCT 32 

Spc172 TCTCCATCAGCCACCCTACCCGAATCGCCGCAC 33 

Spc173 TGCTGCGTGGCAGGAGTATAGCCGCGGGGTAAG 33 

Spc174 CTACGGGCCCAGAGTCAGGCCGATGTGGAGGGT 33 

Spc175 TTGCTGGAAGATAAACCAGAGATAGCCGGTCA 32 

Spc176 GTCAGCGCGGGTCCGTCGTAAACTGATGAAGC 32 

Spc177 GGAATGGGGCTGTGGCAAGCTATGGTACTCT 31 

Spc178 ATAACTGCACATCACTAACCAGCTTCCCCTT 31 

Spc179 ACCCTCCACATCGGCCTGACTCTGGGCCCGTAG 33 

Spc180 CCTGACGCAGCATGGATCGGGCGAGTCTTTACTA 34 

Spc181 TCCAGCGCGCCAGTCAGCCCCCCGCCCGTCTCG 33 

Spc182 TGAGAAATTTGATCCCGATTTTCCGGCTTTTTG 33 

Spc183 CGTGCGGCGATTCGGGTAGGGTGGCTGATGGAGA 34 

Spc184 CAGGAGAGGCTTTTGCATCGGGACGAGCTCATG 33 

Spc185 CATGCCTTTTCTGTCGATTCCGGCCCGGTAGCA 33 

Spc186 TGCAAAAGAGCAGGCCGAGACAGGCAAGATAA 32 

Spc187 AGAAGTTCAAGTATATGGAAGAGGAGGGACTTG 33 

Spc188 TCGGAATCACCCCCCACATCGATACGGAAAGTA 33 

Spc189 ATTCGACAAGTGCCGAGAAAATGAGGGCTGTCG 33 

Spc190 CCGTGGCGGGCACACCATCGTGTACGAGGCCTA 33 

Spc191 TCGGTCGTGTCCGACTTCATCAACTCCGTCGAG 33 

Spc192 CTTACCCCGCGGCTATACTCCTGCCACGCAGCA 33 

Spc193 TCGTTCGGGTGGCACACTGATAGCGCTTTGTCG 33 

Spc194 ATGGCTTTAAGCGTCGACGAGAGCGATGTGGAG 33 

Spc195 TTGGACCCAAGCTCGTCCATCGTCGTCTTGCCG 33 

Spc196 TCGGCTTCAAGCGCGGAGGTGTCGGGCTCCGTA 33 

Spc197 ACGACGAGGTTGATAGCGTCAAATATGCCGATG 33 

Spc198 TTGACGATGGCCCACTCCGCCCTGAGCTCTCTA 33 
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Spc199 CATAGTGCGTCCTGATCATCGCTCCGAAGCTGT 33 

Spc200 TCCCAGTGGCGAAGTCGAAGACGGCCGCCAGAACG 35 

Spc201 CCTGCCGTCATTTCTTGTCCCATAAATCTCCCG 33 

Spc202 TTTTGAGATGGAGGCTCAGTAGCTTGATCTCCA 33 

Spc203 GCATCGGTCTTGCCGACGACGACATTGATCCCA 33 

Spc204 CGAGACTGAGCAGCTCCGTCGCGAGTCCGATAA 33 

Spc205 CGGAAGGCTATCGCCGGCCATATCCACGCCTGG 33 

Spc206 ATGGCTTTAAGCGTCGACGAGAGCGACGTGGTG 33 

Spc207 CCACTTCCGAATGGCCCTGATAATCTTCTTATTG 34 

Spc208 CGACACCAACGGGCAGGGTGCCCTACAGTCAGG 33 

Spc209 CTAAATCGGCAAGATTGCTCGTTCTCCGTGCCA 33 

Spc210 TCGACAGGGTTCCACCTTGGG 21 

Spc211 CTCCGGCAAGGCTTTCTTTGACAGAGTCGGAGA 33 

Spc212 ATCTTCTCGTCAAGCCGGTTGATCGCTGTCACA 33 

Spc213 ACGACGGTGCGCAGCACCGAGATTTGCTGCCGG 33 

Spc214 GTACTGCTTGCAAAGCGGCGTCCTGACCTTTGA 33 

Spc215 AGTCAGGCCGATGTGGAGGGTTATGAGCAGCA 32 

Spc216 CGGGACCAGAAACGTACTTGACGACCACGCCTTA 34 

Spc217 CCCTGAAAACTCCCTACCGTCGCACCGAAATCG 33 

Spc218 CCCCATGGCTCACCCCGATCTTCAACGCCGCCG 33 

Spc219 ATCACAAACCTTGTCGAAAAGCCCCGTGAATGG 33 

Spc220 CAGGAAGTTTATCGTCGTTCGTCACGAAGCCAG 33 

Spc221 GGATAGCTGCGCTACTTCTTGTCGCCCTCACGA 33 

Spc222 CTCCGCCGCAACGAGGCAGCAATCGCGGCAGTG 33 

Spc223 CGCCTGGTGTATGTGCCGCTGACGCAGGGGCAG 33 

Spc224 GCTTTGCGCCTGCTCCGCAACGCCTCCGTAGCAG 34 

Spc225 GGAGTGTCATTGTAAAAAATTGACGCGTATACA 33 

Spc226 GTATGGTGTCGGGTGAGGATGATCTGGCTTTTG 33 

Spc227 GCCCCGGAAAGCGAGTTCCATGCTCCCCTGAAG 33 

Spc228 GGTTGGCCAACTCTCGCCGGTCGGACGCGTTCGG 34 

Spc229 TGACGCGTCGGCGGGGTCGCTATGTCGCCCGTGG 34 

Spc230 TCTGCACGGTATACAATCCCCCGCCCCCGGTCA 33 

Spc231 ACGAGTTTCGGGCCATTTAGGGCGGGGGTGAG 32 

Spc232 CCCAGCGGGTGGTTGTCTTGGCGGCGTGCAGC 32 

Spc233 CTGGCGGATCTCAGAGCGTGGCGGCTCGGGTGC 33 
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Spc234 CGCTGTGTCGATAACGACCGCAATCTCATCTAG 33 

Spc235 TGCCTGTTGAATAATCGTAAACGCGTTAAATGA 33 

Spc236 TTCGATACCGCGATTGTTTTGAGTGGTGTTCAG 33 

Spc237 TAAGCCCTCGCTTAGTAGGTATTCTTTCCCGTCA 34 

Spc238 TGTAGTTACCATTAGCCTGTCTATTTTTACATA 33 

Spc239 CTATTTTCTATCTTTTTTCTTCGTGCCCCAGCC 33 

Spc240 CTTATCTTCTGGAAAAGAAAAAGATGTCGTAGA 33 

Spc241 CAAAGCCGAGTTCTACCGCCGCGCCGAGGAGAAG 34 

Spc242 TGGTATGGAGAATTGACATCCTTTGATCCAAAA 33 

Spc243 TTGATATTGAGAAGTTGAAAGGGGAGGTTGATC 33 

Spc244 CATACGACGCGCACAATACATTTTAGCGACGAG 33 

Spc245 CAATATCTTGGTCAAAGGGACCAGCAAGATCTCA 34 

Spc246 TGGGAAGCTGGTTAGTGATGAGCAGCCACGCCA 33 

Spc247 CAAGAGCCCGACGACCGTTTTTGCTCTTATTGT 33 

Spc248 TGAAGATAGTGAGGTACGCCAGTAGCACGGTTG 33 

Spc249 TTCTAGGTTGATACGATGGCAGAGAAGATCCACC 34 

Spc250 TTACGGCTTCACAAGTAACGCATCTGTCACCACA 34 

Spc251 CTACGACATTGACGATTTCACCATTGGCTATAT 33 

Spc252 CAAGCTTCCCATTAATCGATACTTCCAGCGGGA 33 

Spc253 CTAAACGAGGAGCACAGCATGAATCATGAACAG 33 

Spc254 TGGCACGGAGAACGAGCAATCTTGCCGATTTAG 33 

Spc255 CCTGACTGTAGGGCACCCTGCCCGTTGGTGTCG 33 

Spc256 CAATAAGAAGATTATCAGGGCCATTCGGAAGTGG 34 

Spc257 ACAGCTTCGGAGCGATGATCAGGACGCACTATG 33 

Spc258 CTACGGGCCCAGAGTCAGGCCGATGTGGAGGGT 33 

CRISPR repeats 

Rpt1 GAAACACCCCCACGAGCGTGGGGAAGAC 28 

Rpt2 AAAACACCCCCACGAGCGTGGGGAAGAC 28 

Rpt3 GTCTTCCCCACGCTCGTGGGGGTGTTTC 28 

Rpt4 GTCTTCCCCACGCTCGTGGGGGTGTTCA 28 

Rpt5 GTCTTCCCCACGCTCGTGGGGGTGTTTCT 29 

Rpt6 GGTCTTCCCCACGCTCGTGGGGGTGTTTCCA 31 

Rpt7 GAGCGTGGGGAAGACGA 17 

Rpt8 GAAACACCCCCACGAGCGTGGGGAAGACGC 30 

Rpt9 GAAACACCCCCACGAGCGTGGGGAAGACAC 30 
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Rpt10 GCGTGGGGAAGAC 13 

Rpt11 AGAAACACCCCCACGAGCGTGGGGAAGAC 29 

Rpt12 GGAAACACCCCCACGAGCGTGGGGAAGAC 29 

Rpt13 GTCTTCCCCACGCTCGTGGGGGTGTTTCG 29 

Rpt14 GTCTTCCCCACGCTCGTGGGGGTGTTTCC 29 

Rpt15 GTCTTCCTGCACTTAT 16 

Rpt16 CTCGTGGGGGTGTTTCCCT 19 

Rpt17 CCGGTCTTCCCCACGCTCGTGGGGGTGTTTCCCT 34 

Rpt18 CCGGTCTTCCCCACGCTCGTGGGGGTGTTTCCAT 34 

Rpt19 CGCGTGGTATGGCTGCTCATCACTA 25 

Rpt20 CGCGTGGTATGGCTGCTCATCGCTA 25 

Rpt21 CGCGTGGTTTAGCTGCTCATCGCTA 25 

Rpt22 AGTCTTCCCCACGCTCGTGGGGGTGTTTC 29 

Rpt23 GGTCTTCCCCACGCTCGTGGGGGTGTTTC 29 

Rpt24 AGGAAACACCCCCACGAGCGTGGGGAAGAC 30 

Rpt25 GGGAAACACCCCCACGAGCGTGGGGAAGAC 30 

Rpt26 AAGAAACACCCCCACGAGCGTGGGGAAGAC 30 

Rpt27 GAAACACCCCCACGAGCGTGGGGAA 25 

Rpt28 GTCTTCCCCACGCTCGAGGGGGTGTTTCC 29 
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Appendix I 

 

Physical characteristics of Ace Lake and environmental factors 

associated with the Vestfold Hills
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Table I1: The physicochemical characteristics of Ace Lake and environmental characteristics of the Vestfold Hills. * The background colours of the 

sample collection dates in the first column reflect the season — summer (red), winter (blue), and spring (green). Ace Lake physical characteristics included 

lake depth, salinity, lake temperature, DOC, and ice cover thickness. DOC was normalized across sample collection time-periods by keeping DOC at 5 m 

depth as 100% and recalculating the DOC for the rest of the depths in a time period. Environmental factors measured at Davis Station in East Antarctica 

included air temperature, sunlight hours, and maximum wind velocity (data obtained from Australian Antarctic Data Centre) and daylength (data obtained 

from a web service https://www.timeanddate.com). The monthly average values were the means of the values observed in a month (Chapter 3 section 3.2.4.2) 

and were used for the statistical analysis of the Ace Lake metagenomes using PRIMER v7. NM, not measured. 

Sample 

collection 

date* 

Depth 

(in m) 

Salinity 

(‰) 

Lake 

temperature 

(°C) 

DOC 

(%) 

On sample collection date Monthly average values 
Maximum 

wind velocity 

(km/h) 

Ice cover 

thickness 
Air 

temperature 

(°C) 

Sunlight 

(h) 

Daylength 

(h) 

Air 

temperature 

(°C/day) 

Sunlight 

(h/day) 

Daylength 

(h/day) 

20 Dec 2006 5 22 1 100 -1 9 24 

-0.1 10 24 

24 

NM 

20 Dec 2006 11.5 22 0.3 94 -1 9 24 24 

20 Dec 2006 12.7 28 3 45 -1 9 24 24 

20 Dec 2006 14 32 2 11 -1 9 24 24 

20 Dec 2006 18 35 3 2 -1 9 24 24 

20 Dec 2006 23 42 3 -2 -1 9 24 24 

19 Nov 2008 5 22 -0.4 100 -5 0.2 22 

-4 4 21 

80 
Ice thickness 

1.8 m 
21 Nov 2008 11.8 22 -0.3 95 -3 1 22 70 

21 Nov 2008 12.8 26 3 22 -3 1 22 70 

https://www.timeanddate.com/
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21 Nov 2008 14.1 31 3 7 -3 1 22 70 

21 Nov 2008 18 34 3 6 -3 1 22 70 

23 Nov 2008 23 40 3 11 -2 0 23 81 

24 Nov 2013 5 21 -0.2 100 -5 4 24 

-4 8 21 

31 

Completely 

covered by thick 

ice 

25 Nov 2013 12.5 23 1 104 -3 2 24 39 

26 Nov 2013 13.5 30 3 84 -2 18 24 55 

26 Nov 2013 15 33 4 18 -2 18 24 55 

26 Nov 2013 19 36 3 0 -2 18 24 55 

27 Nov 2013 24 42 2 0 1 3 24 72 

17 Dec 2013 0 16 NM NM -1 1 24 -0.4 10 24 22 

Completely 

covered by thick 

ice 

15 Feb 2014 0 7 3 NM 0.5 8 17 -2 7 17 43 
Half covered by 

ice 

2 Jul 2014 5 15 NM NM -22 0 0 

-20 1 2 

26 Completely 

covered by thick 

ice 

3 Jul 2014 12.5 21 NM NM -22 0 0 24 

3 Jul 2014 13.5 29 NM NM -22 0 0 24 

20 Aug 2014 5 19 2 100 -25 1 8 
-17 3 7 

26 Completely 

covered by 21 Aug 2014 13 24 4 78 -23 0 8 57 
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21 Aug 2014 14.5 27 4 80 -23 0 8 57 
more than 1 m 

ice 

20 Oct 2014 5 19 1 100 -10 8 16 

-10 7 15 

31 

Completely 

covered by ~2 

m ice 

20 Oct 2014 12 21 2 90 -10 8 16 31 

21 Oct 2014 13 24 4 90 -10 11 16 35 

21 Oct 2014 16 27 4 10 -10 11 16 35 

21 Oct 2014 19 25 3 6 -10 11 16 35 

21 Oct 2014 24 34 2 2 -10 11 16 35 

4 Dec 2014 5 21 3 100 -3 11 24 

0.3 10 24 

26 

~1.8 m ice, very 

north edge 

starting to melt 

behind island 

4 Dec 2014 12 22 2 100 -3 11 24 26 

4 Dec 2014 13.4 29 5 96 -3 11 24 26 

4 Dec 2014 14 31 5 88 -3 11 24 26 

3 Dec 2014 19 35 3 2 -1 6 24 55 

3 Dec 2014 24 40 2 0 -1 6 24 55 

8 Jan 2015 0 5 NM NM 2 0 24 0.8 9 23 74 

Mostly covered 

in poor quality 

ice 

27 Jan 2015 0 10 2 NM 3 9 20 0.8 9 23 65 No Ice 
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