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ABSTRACT

This paper describes experiments on on the robustnes
of tensor product networks using distributed
representations, for recall tasks. The results of the
experiments indicate, among other things, that the
degree of robustness increases with the number o
binding units and decreases with the fraction of the
space of possible facts that have been taught to ths
network. Mean recall scores decrease linearly with the
proportion of binding units inactivated, and recall
score variance depends linearly on number of binding
units and on number of facts taught to the network.

1. Introduction

This paper describes experiments on the robustness
tensor product network of ranks between 2 and 7. In tl
experiments, varying numbers of randomly selected nod
in the network were “killed” by changing them so tha
they always produced zero output, and then tt
performance of the resulting network was assessed. T
results indicate the effect of varying the rank of the tens
product network, the effect of varying the proportion o
neurons killed, and the effect of increasing the length
the vectors used to represent concepts in the network (
the length of each axis of the tensor). Most of th
experiments were conducted with 85% of the binding uni
inactivated, and in this condition, at least for reasonakb
numbers of facts, facts could reliably be distinguishe
from non-facts.

2. Tensor Product Networks

Tensor product networks have been used as one-s
learning systems for applications like variable binding [6
cognitive modelling [2,3,4], and for memory in
connectionist implementations of production syster
architectures [1]. A tensor product network haiarde the
rank of each network used in the experiments described
the papers just cited was 2 or 3; we will introduce tens
product networks mainlv in terms of the rank 3 case.

*  This work was supported by Australian
Research Council grant A79700056

ACNN’98

Gm;-lilzl
I 2

-
SGJ?T%& 331

A rank 3 tensor product network has 3 dimensions - of
size p, g, andr, say. Its processing units inclugeayr
binding units and input/output units grouped into 3
vectors of lengthp, g andr. Typically one of the I/O
vectors representspaedicate and the other two represent
a pair ofarguments The information represented in the
tensor (i.e. in the binding unit structure) is thus relational
information, such akrger—than(mare, fodl With rank 2
networks, a common use is to represent a single relation
(saylarger—than, and the two axes of the tensor would
thus represent the two items that, as a pair, belong to that
relation, - e.g.(mare, foal) The relation may be
specialized, as in [6] to a functional relation, e.g. binding
between members of a set of variables and a set of values.
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Figure 1: Network connectivity for a 3x3x3 tensor product
network

To store the factarger—than(mare, foaljn a rank 3
tensor, one computes the outer product
larger—thardmaredfoal of vectors representing the
conceptslarger—than mare andfoal and adds it to the
values stored in the binding units: thusl ifepresents
larger—than m representsnare andf representgoal,
one would add;*m;*f to the value stored in binding
unit bijk'

Figure 1 shows binding units, input/output units, and
connections in ax@x3 tensor product network.

If precise recall of facts is needed, it can be obtained by
using tensor product networks based on orthonormal sets
of representation vectors, widxact unbindindg6]. As an
aim of many neural network models is to provide a
distributed representation of the concepts involved, it is
desirable for the representation vectors to have a high
proportion of non-zero components. This can be achieved
in a systematic way by using the rows of a Hadamard
matrix, suitably normalised, where axxn Hadamard
matrix is a square matrix all of whose entries#kesuch
that HHT:nIn. Figure 2 shows ax4 Hadamard matrix.



11 1 1 In the present paper, a different criterion for recall is
1 1-1-1 implicitly used. When nodes are killed, the amount of
1-11-1 information used to calculate the recall score of equation
1-1-11

(2) below is reduced, and recall scores thus naturally drop
Figure 2: a #4 Hadamard matrix. off. The real question, in the authors’ opinion, is whether
i , . one can distinguish between facts and non-facts.
Hadamard matrices of sizexn are known to exist for The recall experiments of Wilson & Halford with

a wide range of divisible by 4 (including alh of the . 5nqomized units found that the effect of randomization on
form_zm) [5]. One can then associate W'th each CONCE recall performance was similar to that of killing nodes in
that is to be represented a representation vector that i {4t when up to 30% of nodes were randomized 0.1)
member of an orthonormal basis for the representatic 5| tacts could still be recalled, but that the proportion of
space and which has no zero components. Facts involv yecq|iaple facts then dropped off much more steeply than
the concepts of interest can be stored in the binding unit \,:ih killed units.
A simple mechanism then allows retrieval \yiison & Halford also established that distributed
(“unbinding”) of the stored information. For example, \onresentations were much more robust than local
given m (mare) andf (foal), one can retrieve the |onresentations in tensor product networks.
relatlonshlp(g) between them (sucH dsrger-than)) that In [9], a phenomenon related to robustness was
are stored in the tensor. In general, more than ol i, estigated. The authors observed, with biological
relationship may hold between the arguments (€. paysibility in mind, that normalized rows of Hadamard
mother-of(mare, foa)) Thus what is retrieved will be & i atrices “did not seem likely to occur naturally as
sum of vectors representing predicates - we term this st oqresentation vectors. They noted the robustness results in
apredicate bundleAs well, given all three “pieces” one [8], which they claimed showed that absolute
can check whether the tensor holds this relational instan- 1 ornomality was not strictly necessary in representation
and in fact, given any one “piece”, one can retrieve frol yeciors for the tensor product network to perform
Fhe tensor a tenspr of Iower rank representing the rglat|_0| adequately, and they proposed that a certain type of random
instances myolvmg that “piece”. In the case of retrievin representation might work fairly wéll The experiments
predicates givemn (mare) andf (foal), the computation  jegcribed in that paper demonstrated that two kinds of such
is as follows, Wherej signifies the i-th component of the representation, dubbedlenseandsparse random
predicate bundle retrieved: representations, allowed successful analogical problem

Pj :zjk bijk* mj*fk Q) solving most of the time, provided that there were a
reasonable number of components in each dense randomr
representation vector, or a reasonable number of non-zero
components in each sparse random representation vector.

3 Robustness and Tensor Product That paper did not look at recall tasks.
Networks

In [8], Wilson & Halford considered robustness of recal

and of analogical problem solving using rank 3 tens¢ T illustrate the experiments carried out, suppose that we
product networks, using 2 methods of damaging the noc are dealing with a rank 3 network with 4 predicate concepts
in the tensor product network. The first method was to ki P1, P2, P3, P4, and 4 argument conceptal, a2,
nodes at random. The second was to alter nodes so 1 a3, a4. Networks were trained by first generating a
they produced random noise when accessed - the amour Predetermined number of “facts” at random. To generate a
noise chosen in a uniform random way from the intervi random fact, first a predicate would be chosen at random

[-p,p], wherep was thought of as a kind of volume (using a uniform pseudo-random number generator) from
setting for the noise. It was found that the random noi: P1to P4, then two random arguments would be chosen
interfered to a much greater extent with both recall ar from altoa4. If P2, a4, andal were chosen, then the
problem solving: up to 80% of nodes could be killec random fact would bé&2(a4, al). Once the facts, say
without destroying performance on analogical probler F™ =PM(al™, b2M), m = 1,.n, were chosen, the
solving, while withp = 0.1, analogical problem solving Nnetwork would be taught those facts by storing in binding
became impossible when a little more than 50% of nod unit by;, the sumy  P™ a1l™ a2™ . The numbem of
were randomized. They considered that a fact was succe facts was one of the parameters varied in the experiments.
fully recalled if its recall score (see equation (2), belon After the network had been trained in this way, binding
was greater than an arbitrarily chosen cutoff of 0.4. Tt units in the tensor product were chosen for killing. Units
paper reports that “all known facts could often be recalle to be killed were chosen in a random way: for each axis of
until more than 30% of units [had] been destroyed.” Afte the tensor a coordinate number was chosen in a uniform
this, the proportion of facts recalled dropped off: by thy .
time 70% of nodes had been killed, only about 20% ( Random representations may also not occur

naturally, but are somewhat more plausible than

facts could be recalled (by this criterion). Hadamard representations.

For a simple C program that does computations wi
rank 3 tensor product nets, see [7].

4 The Experiments
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random way - the assemblage of coordinate numbe
designated a particular binding unit. If the unit so selectt
happened to be already “dead”, then another unit w
chosen in the same way. The percentage of units to
was also a parameter varied in the experiments.

The methods used to test the effect of damaging t
network were to kill a certain percentage of the units ar
then to measure the performance of the network ¢
recalling the facts that it had been taught, and also
attempting to “recall” a collection of non-facts. The non
facts were chosen at random in the way described above
the facts (subject to checking that the non-facts did n
coincide with any fact!) It would be possible, in principle
to check every possible non-fact, but in practice in larg
fact spaces, this would be prohibitively time-consuming
so in the experiments, one non-fact was chosen for eve
fact.

The measure of recall of a known fact in an intac
network is 1.0, computed as shown below for the rank
case:

recall(P(al,a2))= Yijk bijk*Pi*alj*a 2

The other parameters varied in the experiments includ
the rankr of the tensor, and the lengtth of the
representation vectors. These two together determined
total numberd" of binding units. Mostly there was a goal
of keeping the total number of binding units, if not the
same, then at least of the same order of magnitude. In ¢
sequence of experiments, however, the rank was he
constant and the lengih of the representation vectors
was varied to see the effect of this variable.

The practice of generating facts at random is nt
entirely desirable: the pattern of real facts in the cartesi
product space® x Aq X ...X A;_1 (P = set of predicate
symbols; A; = set of possibleth arguments) is not
normally random. On the other hand, it is difficult to se
how to generate successively larger sets of real facts il
natural way, and if some of the fact sets consisted of re
facts and some were artificial, this would introduce wors
problems. Some results with small, fairly natural sets «
facts are reported in [8], where natural sets of facts we
essential for the analogical reasoning tasks.

For each set of random facts generated, 10 runs wi
done, randomly “killing” a predetermined proportion of the
binding units.The information computed in the course ¢
the experiments included the mean and variance of t
recall scores for each fact over the 10 runs, the small
and largest recall scores over the 10 runs, and informati
to allow a histogram of all recall scores over the 10 rur
to be produced.

5 Experimental Results

The termlengthis used below to refer to the number o
components in a representation vector. The number
binding units in a tensor product network is teagth

raised to the power indicated by its rank. Figure 3 shov
the effect of length on recall. It can be seen that length
a significant effect on the spread of recall scores. In ea
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Figure 3: Effect of length on recall scores for facts and non-
facts.

case the average recall scores for facts was about 0.15
(range 0.1499 to 0.1599), and for non-facts was about 0.0
(range —0.00027 to 0.00927). The effect of length is
confounded with proportion of the fact space used, as while
in each case there were 250 facts generated, the number o
possiblefacts (that is, the number of atomic propositions
expressible using the given predicate and argument
symbols) varies from 6= 4096 to 128 = 2097152. In
fact, as Table 1 shows, for a fixed number of facts, the
number of binding units more or less determines the
variance of the recall scores. However, as in practice
there is usually a limit on the size of memory - and thus
on the number of binding units, and this number is jointly
determined by rank and length of representation vectors, so
for fixed rank, length has an effect on the spread of recall
scores.

Rank | Number of| Variance of Variance of

binding fact recall fact recall
units scores, 500 | scores, 4000
facts facts

1048576 0.000062 0.000454
2097152 0.000030 0.000245
1048576 0.000062 0.000475
1048576 0.000062 0.000493
262144 0.000245 0.001946
7 2097152 0.000030 0.000242

(200 [S2 0 BE-NN IOV I \N

Table 1: Effect of number of binding units on variance of fact
recall. Variances for non-fact recall are not shown, but are
almost the same as for fact recall for the same number of facts.

The averagerecall score was a more or less linear
function of the proportion of units killed, as shown in
Figure 4. The distribution of recall scores for facts was
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Figure 4: Effect of proportion of binding units killed on

more or less bell-shaped, as exemplified in Figure 5 (upg
panel). Recall scores for non-facts are also roughly be
shaped, though with a higher peak and narrower spread.
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Figure 5: Histogram of pooled recall scores for 10 rank 3 tenso
product networks trained on 4000 facts, and with 85% of units

average recall score for facts.
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killed, for facts (upper panel) and non-facts (lower panel).

The issue of distinguishing between facts and non-fac

distinguished. In the runs summarised in Figure 6, 85% of
binding units were killed: panel (a) shows rank 3 /

1048576 binding units and panel (b) shows rank 7 /
2097152. As demonstrated in Table 1 and the text that
refers to it, it is the number of binding units that makes
the difference.

6 Conclusions and Discussion

Tensor product networks using orthonormal distributed
representations for the activations projected into the
network along the input axes are relatively robust to
destruction of individual neurons.

A significant factor in the degree of robustness exhibited
is the density of facts in “fact space” - that is, what
proportion of all expressible propositions have been taught
to the network as facts.
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Figure 6: Distinguishing Between Facts And Non-Facts On
The Basis Of Recall Scores

The variance of fact recall scores over a number of runs

is addressed in Figure 6, V‘_’hiCh graphs the largest rec (deleting different binding units at random) is inversely
score for a non-fact along with the smallest recall score f hroportional to the number of binding units, and the

a fact, for two different numbers of binding units: if ther¢ humber of binding units is proportional to the cube of the
are enough binding units in relation to the number of fac length of the vectors used for representing concepts (or to
taught to the tensor, then facts and non-facts can

ACNN’98

the product of the lengths if different lengths are used for



different axes of the tensor) so that using longe
representation vectors will increase the ability of th
network to distinguish between facts and non-facts.
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