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Robustness of Tensor Product A rank 3 tensor product network has 3 dimensions - of
size p, q, and r , say. Its processing units include pqrNetworks Using Distributed binding units, and input/output units grouped into 3

Representations vectors of length p, q and r . Typically one of the I/O
vectors represents a predicate, and the other two  represent

William H. Wilson a pair of arguments. The information represented in the
Computer Science and Engineering tensor (i.e. in the binding unit structure) is thus relational

University of New South Wales information, such as larger–than(mare, foal). With rank 2
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billw@cse.unsw.edu.au (say larger–than), and the two axes of the tensor would

thus represent the two items that, as a pair, belong to thatGraeme S. Halford
relation, - e.g. (mare, foal). The relation may bePsychology
specialized, as in [6] to a functional relation, e.g. bindingUniversity of Queensland
between members of a set of variables and a set of values.Queensland 4072 Australia
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ABSTRACT
This paper describes experiments on on the robustness
of tensor product networks using distributed
representations, for recall tasks. The results of the
experiments indicate, among other things, that the
degree of robustness increases with the number of
binding units and decreases with the fraction of the
space of possible facts that have been taught to the
network. Mean recall scores decrease linearly with the
proportion of binding units inactivated, and recall
score variance depends linearly on number of binding
units and on number of facts taught to the network.

1 . Introduction
This paper describes experiments on the robustness of
tensor product network of ranks between 2 and 7. In the
experiments, varying numbers of randomly selected nodes
in the network were “killed” by changing them so that
they always produced zero output, and then the Figure 1: Network connectivity for a 3x3x3 tensor product
performance of the resulting network was assessed. The network
results indicate the effect of varying the rank of the tensor

To store the fact larger–than(mare, foal) in a rank 3
product network, the effect of varying the proportion of

tensor, one computes the outer product
neurons killed, and the effect of increasing the length of

larger–than⊗mare⊗ foal of vectors representing the
the vectors used to represent concepts in the network (i.e.

concepts larger–than, mare, and foal and adds it to the
the length of each axis of the tensor). Most of the

values stored in the binding units: thus if l  represents
experiments were conducted with 85% of the binding units

larger–than, m represents mare, and f represents foal,
inactivated, and in this condition, at least for reasonable

one would add l i*mj*f k to the value stored in  binding
numbers of facts, facts could reliably be distinguished

unit bijk.
from non-facts.

Figure 1 shows binding units, input/output units, and
connections in a 3x3x3 tensor product network.2 . Tensor Product Networks

If precise recall of facts is needed, it can be obtained byTensor product networks have been used as one-shot
using tensor product networks based on orthonormal setslearning systems for applications like variable binding [6],
of representation vectors, with exact unbinding [6]. As ancognitive modelling [2,3,4], and for memory in
aim of many neural network models is to provide aconnectionist implementations of production system
distributed representation of the concepts involved, it is

architectures [1]. A tensor product network has a rank: the
desirable for the representation vectors to have a high

rank of each network used in the experiments described inproportion of non-zero components. This can be achieved
the papers just cited was 2 or 3; we will introduce tensorin a systematic way by using the rows of a Hadamard
product networks mainly in terms of the rank 3 case. matrix, suitably normalised, where an nxn Hadamard

matrix is a square matrix all of whose entries are ±1, such
* This work was supported by Australian

that HHT=nIn. Figure 2 shows a 4x4 Hadamard matrix.
Research Council grant A79700056
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In the present paper, a different criterion for recall is
implicitly used. When nodes are killed, the amount of
information used to calculate the recall score of equation
(2) below is reduced, and recall scores thus naturally drop
off.  The real question, in the authors’ opinion, is whetherFigure 2: a 4x4 Hadamard matrix.
one can distinguish between facts and non-facts.

Hadamard matrices of size nxn are known to exist for The recall experiments of Wilson & Halford with
a wide range of n divisible by 4 (including all n of the randomized units found that the effect of randomization on
form 2m) [5]. One can then associate with each conceptrecall performance was similar to that of killing nodes in
that is to be represented a representation vector that is athat when up to 30% of nodes were randomized (ρ = 0.1)
member of an orthonormal basis for the representationall facts could still be recalled, but that the proportion of
space and which has no zero components. Facts involvingrecallable facts then dropped off much more steeply than
the concepts of interest can be stored in the binding units.with killed units.

A simple mechanism then allows retrieval Wilson & Halford also established that distributed
(“unbinding”) of the stored information. For example, representations were much more robust than local
given m  (mare) and f (foal), one can retrieve the representations in tensor product networks.
relationship(s) between them (such as l (larger-than)) that In [9], a phenomenon related to robustness was
are stored in the tensor. In general, more than oneinvestigated. The authors observed, with biological
relationship may hold between the arguments (e.g.plausibility in mind, that normalized rows of Hadamard
mother-of(mare, foal)). Thus what is retrieved will be a matrices did not seem likely to occur naturally as
sum of vectors representing predicates - we term this sumrepresentation vectors. They noted the robustness results in
a predicate bundle. As well, given all three “pieces” one [8], which they claimed showed that absolute
can check whether the tensor holds this relational instance,orthornomality was not strictly necessary in representation
and in fact, given any one “piece”, one can retrieve fromvectors for the tensor product network to perform
the tensor a tensor of lower rank representing the relationaladequately, and they proposed that a certain type of random
instances involving that “piece”. In the case of retrievingrepresentation might work fairly well1. The experiments
predicates given m (mare) and f (foal), the computation described in that paper demonstrated that two kinds of such
is as follows, where pi signifies the i-th component of the representation, dubbed dense and sparse random
predicate bundle retrieved: representations, allowed successful analogical problem

pi = ∑ jk bijk* mj* fk (1) solving most of the time, provided that there were a
reasonable number of components in each dense randomFor a simple C program that does computations with
representation vector, or a reasonable number of non-zerorank 3 tensor product nets, see [7].
components in each sparse random representation vector.
That paper did not look at recall tasks.3 Robustness and Tensor Product

Networks
4 The Experiments

In [8], Wilson & Halford considered robustness of recall
To illustrate the experiments carried out, suppose that weand of analogical problem solving using rank 3 tensor
are dealing with a rank 3 network with 4 predicate conceptsproduct networks, using 2 methods of damaging the nodes
P1, P2, P3, P4, and 4 argument concepts, a1, a2,in the tensor product network. The first method was to kill
a3, a4. Networks were trained by first generating anodes at random. The second was to alter nodes so that
predetermined number of “facts” at random. To generate athey produced random noise when accessed - the amount of
random fact, first a predicate would be chosen at randomnoise chosen in a uniform random way from the interval
(using a uniform pseudo-random number generator) from[–ρ,ρ], where ρ was thought of as a kind of volume
P1 to P4, then two random arguments would be chosensetting for the noise. It was found that the random noise
from a1 to a4. If P2, a4, and a1 were chosen, then theinterfered to a much greater extent with both recall and
random fact would be P2(a4, a1). Once the facts, sayproblem solving: up to 80% of nodes could be killed
Fm = Pm(a1m, b2m), m = 1,...,n, were chosen, thewithout destroying performance on analogical problem
network would be taught those facts by storing in bindingsolving, while with ρ = 0.1, analogical problem solving
unit bijk  the sum ∑mPm

i a1m
j a2m

k. The number n ofbecame impossible when a little more than 50% of nodes
facts was one of the parameters varied in the experiments.were randomized. They considered that a fact was success-

After the network had been trained in this way, bindingfully recalled if its recall score (see equation (2), below)
units in the tensor product were chosen for killing. Unitswas greater than an arbitrarily chosen cutoff of 0.4. The
to be killed were chosen in a random way: for each axis ofpaper reports that “all known facts could often be recalled
the  tensor  a  coordinate  number was chosen in a uniformuntil more than 30% of units [had] been destroyed.” After

this, the proportion of facts recalled dropped off: by the1 Random representations may also not occurtime 70% of nodes had been killed, only about 20% of
naturally, but are somewhat more plausible than

facts could be recalled (by this criterion). Hadamard representations.
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random way - the assemblage of coordinate numbers
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designated a particular binding unit. If the unit so selected
happened to be already “dead”, then another unit was
chosen in the same way. The percentage of units to kill
was also a parameter varied in the experiments.

The methods used to test the effect of damaging the
network were to kill a certain percentage of the units and
then to measure the performance of the network on
recalling the facts that it had been taught, and also in
attempting to “recall” a collection of non-facts. The non-
facts were chosen at random in the way described above for
the facts (subject to checking that the non-facts did not
coincide with any fact!) It would be possible, in principle,
to check every possible non-fact, but in practice in large
fact spaces, this would be prohibitively time-consuming,
so in the experiments, one non-fact was chosen for every
fact.

The measure of recall of a known fact in an intact
network is 1.0, computed as shown below for the rank 3 Figure 3: Effect of length on recall scores for facts and non-

facts.case:

recall(P(a1,a2)) = ∑ijk bijk*Pi*a1j*a2k (2)
case the average recall scores for facts was about 0.15

The other parameters varied in the experiments included(range 0.1499 to 0.1599), and for non-facts was about 0.0
the rank r  of the tensor, and the length d of the (range  –0.00027  to  0.00927).  The  effect  of  length is
representation vectors. These two together determined theconfounded with proportion of the fact space used, as while
total number dr of binding units. Mostly there was a goal in each case there were 250 facts generated, the number of
of keeping the total number of binding units, if not thepossible facts (that is, the number of atomic propositions
same, then at least of the same order of magnitude. In oneexpressible using the given predicate and argument
sequence of experiments, however, the rank was heldsymbols) varies from 163 = 4096 to 1283 = 2097152. In
constant and the length d of the representation vectors fact, as Table 1 shows, for a fixed number of facts, the
was varied to see the effect of this variable. number of binding units more or less determines the

The practice of generating facts at random is notvariance of the recall scores.  However,  as  in  practice
entirely desirable: the pattern of real facts in the cartesianthere is usually a limit on the size of memory  -  and thus
product space P x A1 x ... x Ar–1 (P = set of predicate on the number of binding units, and this number is jointly
symbols; Ai  = set of possible i th arguments) is not determined by rank and length of representation vectors, so
normally random. On the other hand, it is difficult to seefor fixed rank, length has an effect on the spread of recall
how to generate successively larger sets of real facts in ascores.
natural way, and if some of the fact sets consisted of real
facts and some were artificial, this would introduce worse

Rank Number of
problems. Some results with small, fairly natural sets of binding
facts are reported in [8], where natural sets of facts were units

Variance of
fact recall

scores, 500
essential for the analogical reasoning tasks. facts

Variance of
fact recall

scores, 4000
facts

For each set of random facts generated, 10 runs were
2 1048576 0.000062 0.000454done, randomly “killing” a predetermined proportion of the

binding units.The information computed in the course of 3 2097152 0.000030 0.000245
the experiments included the mean and variance of the 4 1048576 0.000062 0.000475
recall scores for each fact over the 10 runs, the smallest

5 1048576 0.000062 0.000493and largest recall scores over the 10 runs, and information
to allow a histogram of all recall scores over the 10 runs 6 262144 0.000245 0.001946
to be produced.

7 2097152 0.000030 0.000242

5 Experimental Results Table 1: Effect of number of binding units on variance of fact
recall. Variances for non-fact recall are not shown, but areThe term length is used below to refer to the number of almost the same as for fact recall for the same number of facts.

components in a representation vector. The number of
binding units in a tensor product network is the length The average recall score was a more or less linear
raised to the power indicated by its rank. Figure 3 shows

function of the proportion of units killed, as shown in
the effect of length on recall. It can be seen that length has

Figure 4.  The  distribution of  recall scores  for  facts wasa  significant  effect  on the spread of recall scores. In each
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distinguished. In the runs summarised in Figure 6, 85% of
binding units were killed: panel (a) shows rank 3 /
1048576 binding units and panel (b) shows rank 7 /
2097152. As demonstrated in Table 1 and the text that
refers to it, it is the number of binding units that makes
the difference.

6 Conclusions and Discussion
Tensor product networks using orthonormal distributed
representations for the activations projected into the
network along the input axes are relatively robust to
destruction of individual neurons.

A significant factor in the degree of robustness exhibited
is the density of facts in “fact space” - that is, what
proportion of all expressible propositions have been taught
to the network as facts.

Figure 4: Effect of proportion of binding units killed on
average recall score for facts.
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(a) 1048576 binding units

more or less bell-shaped, as exemplified in Figure 5 (upper
panel). Recall scores for non-facts are also roughly bell-
shaped, though with a higher peak and narrower spread.
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(b) 2097152 binding units
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Figure 5: Histogram of pooled recall scores for 10 rank 3 tensor
product networks trained on  4000 facts, and with  85% of units

killed, for facts (upper panel) and non-facts (lower panel). Figure 6: Distinguishing Between Facts And Non-Facts On
The Basis Of Recall Scores

The issue of distinguishing between facts and non-facts The variance of fact recall scores over a number of runs
is addressed in Figure 6, which graphs the largest recall(deleting different binding units at random) is inversely
score for a non-fact along with the smallest recall score forproportional to the number of binding units, and the
a fact, for two different numbers of binding units: if there number of binding units is proportional to the cube of the
are enough binding units in relation to the number of factslength of the vectors used for representing concepts (or to
taught  to  the  tensor,  then  facts  and  non-facts  can  bethe product of the lengths if different lengths  are  used  for
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different axes of the tensor) so that using longer
representation vectors will increase the ability of the
network to distinguish between facts and non-facts.
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