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Abstract 

The Indian and Australian summer monsoon systems have considerable 

socioeconomic and environmental importance. Here we investigate monsoon 

seasonality, biennial variability and the interaction with Tropical sea surface 

temperatures (SST) in the Indo-Pacific sector. We consider a variety of 

observational and reanalysis products and also assess climate models from the 

Coupled Model Intercomparison Project Phase 3 and 5 (CMIP3 and CMIP5). In 

particular, the transitions between successive Indian and Australian monsoons, 

that form essential parts of the Tropospheric Biennial Oscillation (TBO) have 

been evaluated. We use Monte Carlo statistical techniques to examine the 

predictive skill that is inherent in these monsoon transitions and investigate the 

possible teleconnections between SST anomalies in the Indo-Pacific region, 

particularly associated with the El Niño-Southern Oscillation (ENSO). 

 

Most climate models reproduce enhanced rainfall in the correct seasons for 

both the Indian and Australian monsoons. However, there are a number of 

biases in wet season duration and rainfall strength. While little improvement is 

seen in the overall strength of the monsoon rainfall from CMIP3 to CMIP5, there 

is a clear improvement in the seasonality particularly in simulating low rainfall 

rates outside of the monsoon season. 

 

Enhanced predictability associated with the Indian-Australian monsoon 

in-phase transition is present in all observational/reanalysis datasets and most 

CMIP climate models, i.e. we have some skills in predicting whether an 

Australian monsoon will be stronger/weaker than normal, given information on 

the strength of preceding Indian monsoon. The SST anomalies in the Niño 3.4 

region in December-February (DJFM) after the Indian monsoon season appear 



 

to be important for this transition. For the Indian-Indian monsoon 

out-of-transition, enhanced predictability only occurs in long-term observations 

but with little consistency across models. DJFM SST anomalies in the Niño 3.4 

region over successive years appear to strongly affect this transition. The 

enhanced predictability for the other transitions shows little consistency 

between observational/reanalysis datasets, climate models and time periods. 

Multi-decadal variability in the TBO transitions is clearly seen in both 

observational/reanalysis products and climate models.  



 

Chapter 1. Introduction  

1.1 Global monsoon  

Monsoon is one of the most complex coupled atmosphere-land-ocean climate 

phenomena. They are characterized by seasonal reversals of prevailing surface 

winds and subsequent changes in precipitation. Many efforts have been made 

to distinguish the monsoon from other forms of climate variability. Wang [1994] 

delineated the tropical monsoon regime using outgoing long-wave radiation and 

monthly frequency of highly reflective cloud. Wang and Ding [2008] also derived 

a monsoon precipitation index that is the ratio of the annual range over the 

annual mean precipitation to identify the monsoon regions. Wang and Ding 

[2006] defined the monsoon domain by two criteria: 1) where the annual range 

of rainfall exceeds 180 mm, and 2) the local summer precipitation is more than 

35% of annual rainfall. Based on their definition, eight regional monsoon 

systems have been recognized and documented (shown in Figure 1.1): the 

Indian monsoon [e.g. Schott et al., 2009], the Western North Pacific monsoon 

[e.g. Li and Wang, 2005], the East Asian monsoon [e.g. Wang et al., 2008b], 

the Australian monsoon [e.g. Smith et al., 2008], the Northern African monsoon 

[e.g. Okumura and Xie, 2004], the Southern African monsoon [e.g. Hastenrath 

et al., 1995], the North American monsoon [e.g. Adams and Comrie, 1997] and 

the South American monsoon [e.g. Zhou and Lau, 1998].  

 

Monsoon-related variability significantly influences many countries at low-mid 

latitudes. In addition the associate release of energy drives changes to the local 

atmospheric circulation that can propagate away from the tropical region and 

influence climate in middle and high latitudes through teleconnection patterns. 

Thus, there is far-reaching importance for comprehensively understanding 



 

monsoon dynamics and improving monsoon systems predictability. 

 

Figure 1.1 Global monsoon precipitation domains. The regional monsoons are the North and 

South American monsoon (NAM and SAM), the North and South African monsoon (NAF and 

SAF), the Indian monsoon (IND), the East Asian monsoon (EAS), the Western North Pacific 

monsoon (WNP) and the Australian monsoon (AUS). The monsoon domains are defined 

according to Wang and Ding [2006] (hatched in red). The annual range here is calculated as the 

absolute difference in rainfall between local summer and winter (June-July-August, JJA, for 

boreal summer/austral winter and December-January-February, DJF, for boreal winter/austral 

summer). Data used: Climate Prediction Center Merged Analysis of Precipitation (CMAP; 

1979-2010) [Xie and Arkin, 1997].  

1.2 Indian-Australian summer monsoon system 

This study examines the complex interactions between two of the above 

monsoon systems, that is, the Indian and Australian monsoon systems. The 

Indian monsoon is typical continental monsoons, which is primarily driven by 

land-ocean temperature contrast [e.g. Clark et al., 2000; Kawamura, 2002]. 

Figure 1.2 represents the rain-belt migration and surface wind reversal 



 

associated with the monsoon season. In boreal summer (Figure 1.2a), the 

Asian land mass heats up faster than the surrounding ocean and a surface low 

pressure gradually develops over the land, resulting in a land-ocean pressure 

gradient. The pressure gradient leads to considerable moisture flow from the 

ocean, subsequently resulting in large-scale rainfall over the land. The latent 

heat release due to the strong convection provides an important feedback to 

enhance the monsoon circulation. This process is associated with the Indian 

summer monsoon. The thermal and pressure gradients between continent and 

ocean caused by the differential heat capacity of land and ocean are 

fundamental initial mechanisms of driving this monsoon cycle while the induced 

convections amplify the monsoon. The situation reverses in boreal winter 

(Figure 1.2b). The development of land-sea pressure gradient as the air over 

land is cooler and denser than that over ocean leads to wind blowing from the 

landmass, which drives the winter monsoon (the Australian summer monsoon). 

However, the Australian summer monsoon is not simply the reversal of the 

Indian summer monsoon. The land-sea thermal contrast favours but does not 

appear to be the fundamental driver to the Australian summer monsoon, and 

the role of land-sea contrast can be replaced by the longitudinal sea surface 

temperature (SST) gradient [Chao and Chen, 2001]. In addition, the monsoon 

cycle is also modified by moisture exchange between the ocean, atmosphere, 

and land [e.g. Clark et al., 2000]. As summer monsoons show far-reaching 

importance to people living in those regions, this study attempts to examine the 

potential predictability of this complex system associated with the interaction 

between the Indian and Australian summer monsoons. 



 

Figure 1.2 shows the precipitation and surface wind climatology composite in (a) boreal 

summer (JJAS) and (b) austral summer (DJFM). The Climate Prediction Center Merged 

Analysis of Precipitation data (CMAP; 1979-2010) [Xie and Arkin, 1997] were used to show the 

rain belt migration. Only the rainfall greater than 5.5 mm/day is shown. The surface wind is 

synthesized from 1000 hPa v-wind and u-wind with unit of m/s from the NCEP/NCAR 

Reanalysis Project (1948-2011) [Kalnay et al., 1996].  

 

1.3 Monsoon impacts 

The Indian-Australian summer monsoon is very important for countries in the 

affected areas, especially on the agrarian-based countries that depend on 

abundant solar radiation and adequate rainfall brought by monsoons. A normal 

monsoon usually produces abundant rainfall that is necessary for successful 

crop growth. A failure in the monsoon can have a devastating impact on 

agriculture, fishery and societies. Webster and Tomas [1998], for example, 

showed a positive correlation between the Indian rice production and local 

rainfall. McCreary et al. [1996] showed a corresponding relationship between 

the prosperity of fisheries along the western Indian Ocean and Indian summer 

monsoon. This prosperity results from an intense phytoplankton bloom off 

Somalia due to nitrate input along coastal regions as a result of deep coastal 

upwelling associated with Indian summer monsoonal winds. Conversely, 

excessive anomalous monsoon rainfall may bring catastrophic floods to 



 

monsoon regions. The austral summer of 2011 (December 2010 – February 

2011) is an extraordinary example of strongly anomalous monsoon conditions 

triggered by strong La Niña conditions. During this season, Queensland 

experienced severe flooding. The Indian-Pakistan region also experienced its 

worst recorded flooding caused by the anomalous Indian summer monsoon 

during the La Niña episode in 2010 [Mujumdar et al., 2012]. Thus, the correct 

forecast of monsoon rainfall is very important, and numerous attempts have 

been made to understand the variability of the Indian-Australian monsoon and 

the interactions among the components of this system.  

1.4 Monsoon variability 

The Indian-Australian monsoon regions not only show strong seasonality in 

wind and rainfall, but also exhibit large variability on intraseasonal, interannual, 

and interdecadal timescales. In terms of intraseasonal varability, Hendon and 

Liebmann [1990] examined the 850hPa zonal wind and rainfall in Darwin and 

revealed an intraseasonal oscillation pattern in summer monsoonal wind and 

rainfall. During boreal summer, Indian monsoon rainfall also exhibits a 40-day 

spectral peak that is associated with the Madden-Julian Oscillation (MJO) 

which is associated with “break” and “active” phases of the monsoon [Hartmann 

and Michelsen, 1989].  

 

Numerous studies have examined the external drivers that contribute to the 

interannual and interdecadal variability of this monsoon system. These include 

the El Niño -Southern Oscillation (ENSO) [e.g. Webster and Yang, 1992; Meehl 

and Arblaster, 1998; Wang et al., 2008a; Boschat et al., 2010], the Indian 

Ocean Dipole (IOD) [e.g. Ashok et al., 2001; Schott et al., 2009], the 

Interdecadal Pacific Oscillation (IPO) [e.g. Arblaster et al., 2002; Meehl and 

Arblaster, 2012] and Eurasian snow cover [Vernekar et al., 1995]. Suhas et al. 



 

[2012] argued that in addition to the aforementioned external drivers, the 

monsoon characteristics are also modulated by internal processes, such as the 

interaction between convection and the large-scale circulation, and the 

intraseasonal oscillation of the monsoon system.  

1.5 Tropospheric Biennial Oscillation (TBO) 

A biennial signal in the Indian-Australian summer monsoon system and the 

wider tropical Indo-Pacific region has been described in numerous studies in 

both observations and models [e.g. Meehl, 1987; 1994a; 1997; Chang and Li, 

2000; Meehl and Arblaster, 2002; Loschnigg et al., 2003; Fasullo, 2004; Li et al., 

2006]. This characteristic pattern has been named the Tropospheric Biennial 

Oscillation (TBO). Meehl and Arblaster [2002] defined the TBO as a tendency 

for a relatively strong monsoon to be followed by a relatively weak one, and vice 

versa one year later. Numerous studies have attempted to determine the 

mechanisms that might give rise to the TBO. Meehl [1993; 1994b; 1994a; 1997] 

depicted a complex TBO mechanism that consists of the coupled 

ocean-atmosphere and land-atmosphere biennial sub-mechanisms. Meehl’s 

hypothesis is constructed on three premises: 1) at any given location in the 

Indian-Pacific region, there is only once when strong convection associated 

with summer monsoon reaches its maximum every year; 2) the corresponding 

air-sea coupling becomes strong at that time, and 3) the ocean and land have 

the capability to maintain the temperature condition for one year, and this 

persistent temperature condition could then feedback onto the monsoon system. 

Chang and Li [2000] were able to reproduce a TBO-like phenomenon using a 

simplified five-box tropical atmosphere-ocean-land model. Figure 1.3 illustrates 

the complex TBO mechanism synthesizing the mechanisms described in Meehl 

[Meehl, 1997; 2008] and Chang and Li [Chang and Li, 2000; 2009]. In Figure 

1.3, during a strong Indian monsoon season, the monsoon heating and 



 

convection over the Indian subcontinent induces anomalous westerlies in the 

Indian Ocean and also intensifies a large scale Walker Circulation that leads to 

easterly anomalies in the central Pacific. The westerly anomalies in the Indian 

Ocean help cool down the local SST, while the easterly anomalies in the central 

Pacific facilitate the deepening of the thermocline in the western Pacific thus 

increasing the surface temperature. The warm SST in the western Pacific 

persists to boreal autumn. The evaporation over the warm pool in the western 

Pacific is increased bringing enhanced convection and moisture convection 

convergence into the North Australia leading to a strong Australian summer 

monsoon. The warming in the western Pacific induces a stronger local Walker 

cell over the Indian Ocean and helps the cold SST anomalies (that developed 

after the strong Indian monsoon) to persist until the following boreal summer. 

This then leads to a weaker Indian summer monsoon. A new cycle starting from 

a weak Indian monsoon begins.    

 

While the TBO is primarily associated with changes in the large-scale 

atmosphere-land-ocean circulation, there is some evidence that it is also 

modulated by the stratospheric Quasi-Biennial Oscillation (QBO). Mohankumar 

and Pillai [2008] found that the QBO in the lower stratosphere can modulate the 

monsoon winds and rainfall thereby affecting the TBO cycle. 

 

The box model of Chang and Li [2000] shows highly biennial behaviour. 

However, in reality the biennial nature of the TBO and the associated 

transitions are quite irregular and varies on multi-decadal timescales (e.g. 

Fasullo [2004], Yu and Janiga [2007]). To address the causes of such an 

irregularity, Li et al. [2001] modified the simple 5-box model of Chang and Li 

[2000] by considering remote and local ocean-atmosphere-land interaction 

processes. Their results implied that the irregularity is likely to result from 



 

nonlinear interactions with other time scale variability, such as MJO, ENSO or 

even synoptic disturbances.  

Figure 1.3 Diagram of the atmosphere-ocean-land mechanism of TBO. The red arrows 

represent the Indian monsoon cycle while the purple ones show the Australian monsoon cycle.  

Many previous studies attempted to investigate a variety of external factors that 

influence the TBO and different TBO transition phases in the Indian-Australian 

summer monsoon system based on both observational analysis and model 

simulation. As described in previous studies (e.g. Yu and Janiga [2007], Wu 

[2008; 2009]), the monsoon transitions can be classified as “in-phase” and 

“out-of-phase”. In-phase transitions imply the transition from a strong/weak 

monsoon to a strong/weak monsoon. Out-of-phase transitions imply the 

transition from a strong/weak monsoon to a weak/strong monsoon. Fasullo 

[2004] found that the Indian-Indian monsoon out-of-phase transitions are 

related to ENSO conditions in observations. Yu et al. [2003] explored the 

independent roles of the Indian Ocean and the Pacific Ocean on TBO 

transitions by suppressing either the Indian Ocean or Pacific Ocean variability 

in a series of coupled atmosphere-ocean general circulation model (CGCM) 

experiments. They found that SST anomalies associated with ENSO-like 

patterns in the Pacific Ocean play an important role in the in-phase transitions 



 

from a strong/weak Indian monsoon to a following strong/weak Australian 

monsoon. On the other hand, the basin-wide pattern of SST anomalies in the 

Indian Ocean is critical to the out-of-phase transition from a strong/weak 

Australian monsoon to a weak/strong Indian monsoon in the subsequent year. 

Wu and Kirtman [2004] mentioned that the roles of the Pacific SST anomalies in 

the TBO transitions are via either the Walker Circulation modulation or Rossby 

wave-type responses in surface winds over the Indian and Pacific Oceans. The 

SST anomalies in the Indian Ocean are primarily resulted from the response to 

the monsoon-ENSO system but contribute complementarily to TBO transitions. 

However, when the Pacific ENSO is suppressed in models, biennial transition 

between Indian monsoons, in-phase transition from Indian to Australian 

monsoon and out-of-phase transition from Australian to Indian monsoon can be 

accomplished through local air-sea interactions in the Indian Ocean [Wu and 

Kirtman, 2007; Wu, 2008; 2009]. In other words, there is some evidence that 

the TBO phenomena might be able to occur independently of ENSO variability 

at least in certain models.  

 

The main scientific questions to be examined in this thesis are as follows: 

1. Does the TBO mechanism improve seasonal forecasts of the Australian 

or Indian monsoon, either 6 months in advance or 12 months in advance? 

2. How is the question above affected by the choice of dataset and the 

shortness of the observational record given the large natural variability in 

the tropical climate system? 

3. Are the global climate models able to simulate the TBO? The question 

relates the evaluation of model skill for seasonal forecasts and our ability 

to identify robust mechanisms as models offer long time-series and better 

statistical significance. 

4.  Is the TBO more than just a response to ENSO variability? 



 

Chapter 2. Methodology and datasets  

For our examination of monsoon rainfall, we investigate the climatology and 

rainfall anomalies over four regions: the land-only Indian and the land-only 

Australian monsoon region (see the hatched areas in Figure 2.1), the extended 

Indian monsoon region (5°N-40°N, 60°E-100°E) and the extended Australian 

monsoon regions (20°S-5°N, 100°E-150°E, see the boxes in Figure 2.1). The 

land-only regions are considered for two reasons. Firstly, long-term land rainfall 

records are available for both Indian subcontinent and Australian landmass. For 

example, all-Indian monsoon rainfall index dates from 1871 [Parthasarathy et 

al., 1994] and rainfall record from the Australian Water Availability Project 

traces back to 1900 [Jones et al., 2009]. Secondly, land rainfall is a bigger 

concern than marine rainfall as human activities affected by rainfall are over 

land. As the oceans play important roles in monsoon processes, we also 

examine the extended monsoon regions. This is done as these larger regions 

may show more clear relationships with external drivers. In addition, previous 

studies (e.g. Meehl and Arblaster [2002], Yu et al. [2003], Wu [2008]) used 

these extended regions to identify the teleconnection of SST anomaly patterns 

in the Pacific to TBO transitions. To investigate the influence of the SST on 

summer monsoon rainfall, the SST anomalies in the Niño-3.4 region (5°N-5°S, 

170°W-120°W) are examined. ENSO years in this study are defined using the 

classification of Meyers et al. [2007], updated by Ummenhofer et al. [2009]. 

These years were defined by comparing the filtered and adjusted SST indices 

to their ±1 standard deviation (SD) (See Appendix Table A.1).  

2.1 Observations and reanalysis 

In this study, we analyse two regional and four global observation-based and 

reanalysis precipitation products (see Table 2.1). The two regional 



 

observation-based datasets are the homogeneous all-Indian monthly rainfall 

datasets (AIR) and the gridded high-quality daily rainfall data from Australian 

Water Availability Project (AWAP). The AIR time-series incorporates 

measurement from 306 rain-gauge stations over 30 meteorological 

subdivisions in India during the 1871-2009 period [Parthasarathy et al., 1994]. 

The AWAP dataset is based on the Bureau of Meteorology daily recalibrated 

rain-gauge measurement, supplemented in data sparse areas by 

disaggregated monthly data [Jones et al., 2009]. The AWAP rainfall is available 

from 1900 to 2009, on a 0.1°×0.1° latitude/longitude grid. In order to test the 

sensitivity of our results to the choice of dataset, we also employ four global 

observation and reanalysis gridded precipitation datasets: 1) the Climate 

Prediction Center Merged Analysis of Precipitation dataset (CMAP) with a  

Figure 2.1 The hatched areas in the map show the land-only Indian and Australian monsoon 

regions that are used to calculate the IMRI and AMRI, and the boxes show the extended 

monsoon regions that are used to calculate the EX-IMRI and EX-AMRI. The colour bar 

indicates the mean JJAS rainfall for Indian monsoon and the mean DJFM rainfall for Australian 

monsoon in extended regions (from TRMM-3B43 data, averaged over 1998-2010 [Adler et al., 

2000]). 



 

resolution of 2.5°×2.5° covering 1979-2008 [Xie and Arkin, 1996]; 2) the Global 

Precipitation Climatology Centre dataset (GPCC), land-only, with a resolution of 

1°×1° from 1901 to 2010 [Rudolf et al., 2010]; 3) the Global Precipitation 

Climatology Project datasets (GPCP) with a resolution of 2.5°×2.5° from 1979 

to 2010 [Adler et al., 2003]; and 4) the precipitation reanalysis from the National 

Center for Environmental Prediction and the National Center for Atmospheric 

Research (NCEP/NCAR) for the 1948-2010 period with a resolution of 2.5°×2.5° 

[Kalnay et al., 1996]. GPCP and CMAP merge gauge and satellite observations, 

while GPCC is only based on rain gauge data. Rainfall from NCEP/NCAR is a 

model product (many observations are assimilated, but not rainfall). 

Table 2.1 Precipitation and SST datasets used in this study. 

 Data 
Acronym 

Period Coverage Resolution References 

Observations 

AIR 1871-2009 Indian Land  
[Parthasarathy 

et al., 1994] 

AWAP 1900-2009 
Australian 

Land 
0.1°×0.1° 

[Jones et al., 
2009] 

GPCC 1901-2010 
Global 
Land 

1°× 1° 
[Rudolf et al., 

2010] 

GPCP 1979-2010 Global 2.5°×2.5° 
[Adler et al., 

2003] 

Reanalysis 

CMAP 1979-2008 Global 2.5°×2.5° 
[Xie and Arkin, 

1996] 

NCEP/NCAR 1948-2011 Global 2.5°×2.5° 
[Kalnay et al., 

1996] 

HadISST1 1870-2010 
Global 
Ocean 

1°× 1° 
[Rayner et al., 

2003] 

The SST dataset used in this study is the Hadley Centre Sea Ice and Sea 

Surface Temperature dataset version 1 (HadISST1) from 1870 to 2011 with a 

resolution of 1°×1°. HadISST1 is reconstructed by a reduced-space optimal 

interpolation and then followed by a superposition of gridded SST observations 

onto the reconstruction [Rayner et al., 2003]. The NINO3.4 index is derived 

from HadISST1 and used to examine the link between the monsoon rainfall and 



 

ENSO (see section 3.1.4). The NINO3.4 index is defined as monthly SST 

anomalies averaged over the Niño-3.4 region (5°N-5°S, 170°W-120°W) from 

1870 to 2010, with respect to the climatological seasonal cycle during the same 

period.  

2.2 Model simulations 

In sections 3.2.1 and 3.2.2, we investigate the rainfall from 24 CMIP3 models 

hindcast simulations (20c3m experiment) and 30 CMIP5 hindcast simulations 

(historical experiment). The CMIP3 simulations cover approximately the period 

of 1860-2000, while the CMIP5 simulations span approximately 1850-2005. 

Some models have several ‘ensemble’ historical simulations that vary only by 

the initial state. As tiny changes in the chaotic climate system will lead to 

different pathways for the system as a whole, model ensemble members with 

different starting states can take into account the influence of internal variability 

of the climate system. To examine the response of the TBO to anthropogenic 

forcing, there are 22 out of 30 CMIP5 models having outputs available from the 

highest representative concentration pathway RCP8.5 scenario [Moss et al., 

2010; Riahi et al., 2011]. RCP8.5 is the scenario with the highest global 

anthropogenic radiative forcing used in the IPCC (Intergovernmental Panel on 

Climate Change) report, reaching approximately 8.5 W/m2 by 2100. We 

consider the RCP8.5 scenario based on three reasons: 1) There are more 

model outputs available for RCP8.5 than other RCPs; 2) RCP8.5 is the highest 

emissions pathway so the forcing from RCP8.5 is stronger than other scenarios, 

so that the change in the monsoon due to anthropogenic forcing should be 

more manifest; and 3) the observed emission until 2012 is much closer to this 

scenario. In the final part, we compare the TBO predictability in a 50-year 

period between RCP8.5 and corresponding hindcast simulations of CMIP5. The 

RCP8.5 is chosen the year over 2051-2100 and the hindcast simulations cover 



 

the period of 1956-2005.  

 

The names of CMIP3 and CMIP5 models with the number of ensemble 

members used in this study are listed in Appendix Table A.2 and A.3. The 

CMIP5 models used to analyse the RCP8.5 scenario are marked in asterisk in 

Table A.3.   

2.3 Monsoon rainfall indices 

To evaluate the biennial variability of the Indian-Australian summer monsoon 

system, the land-only Indian monsoon rainfall index (IMRI), the land-only 

Australian monsoon rainfall index (AMRI) and the rainfall indices of extended 

monsoon regions (EX-IMRI and EX-AMRI) are constructed. Rainfall indices 

associated with Indian monsoon are calculated as the area averaged rainfall 

anomalies for JJAS while these associated with Australian monsoon are 

derived from the area averaged rainfall anomalies for DJFM. As the Australian 

monsoon starts around December and ends around March of the succeeding 

year, the year of indices that are associated with Australian monsoon is defined 

as the year of December. As such the length of the indices is one year shorter 

than the length of corresponding datasets (e.g. the AWAP dataset covers the 

period of 1900-2009, while AMRI-AWAP is 1900-2008). The reference IMRI is 

calculated from AIR dataset (Table 2.1), and therefore referred to as IMRI-AIR 

in the following. Other IMRIs, using the other datasets, are defined as the 

averaged JJAS rainfall anomalies over the Indian subcontinent (Figure 2.1). 

These indices are very similar to the IMRI-AIR. The only difference is that 

Himalaya is entirely included in our domain in order to be consistent with the 

various coarse model grids. Similarly, the reference AMRI is defined as the 

averaged DJFM rainfall anomalies over northern continental Australia (Figure 

2.1) based on AWAP (Table 2.1) thus referred to as AMRI-AWAP in the 



 

following. Other AMRIs, using the other datasets, are constructed using the 

same region. To answer the question of whether the variability of monsoon 

rainfall over ocean-included regions is different from the land-only regions, 

EX-IMRIs and EX-AMRIs are also derived from three global gridded 

precipitation datasets (GPCP, CAMP and NCEP/NCAR, see Table 2.1) over 

extended Indian and Australian regions, respectively.  

 

The prefix of ‘EX-‘ is added to IMRI or AMRI to distinguish the indices of 

extended regions from land-only regions, while the suffix of each index is to 

denote from which datasets the index is made. For instance, the IMRI-AIR 

represents the land-only Indian monsoon index derived from the AIR dataset; 

and EX-AMRI-CMAP represents the extended Australian monsoon index 

derived from the CMAP dataset. In order to focus in internal variability, rather 

than the long-term trend, all indices are detrended, and the climatological 

seasonal cycle, calculated over the entire dataset period, is removed.  

 

Equivalent IMRI and AMRI indices for both CMIP3 and CMIP5 models are 

derived to examine the TBO transitions. NINO3.4 indices for the 30 CMIP5 

models are also derived to investigate the teleconnection of SST in the tropical 

central Pacific to this monsoon system in the climate models. When presenting 

multi-model ensemble means we first average over ensemble members of 

individual models before averaging across models. 

 2.4 TBO transition definitions 

A Monte Carlo technique is used to assess the significance of enhanced 

predictability of four transitions that are thought to be important for the TBO 

tendency. For a given year t, a successful TBO transition that consists of either 

positive or negative transitions are defined as follows:  



 

(1) The Indian-Australian monsoon in-phase transition 

Positive Transition: IMRI(t)>0 and AMRI(t)>0  or  

Negative Transition: IMRI(t)<0 and AMRI(t)<0 ; 

(2) The Indian-Indian monsoon out-of-phase transition 

Positive Transition: IMRI(t)>0 and IMRI(t+1)<0  or  

Negative Transition: IMRI(t)<0 and IMRI(t+1)>0;  

(3) The Australian-Indian monsoon out-of-phase transition 

Positive Transition: AMRI(t)>0 and IMRI(t+1)<0  or  

Negative Transition: AMRI(t)<0 and IMRI(t+1)>0; 

(4) The Australian-Australian monsoon out-of-phase transition 

Positive Transition: AMRI(t)>0 and AMRI(t+1)<0  or  

Negative Transition: AMRI(t)<0 and AMRI(t+1)>0.  

The same definition is also applied on the extended monsoon regional indices 

EX-IMRIs and EX-AMRIs.  

 

Figure 2.2 depicts the aforementioned definitions for land-only rainfall indices. 

We use blue and red bars to represent Indian and Australian monsoon rainfall 

indices, respectively. In Figure 2.2a & c, adjacent blue and red bars indicate the 

IMRI and AMRI in the same year. For Indian-Australian monsoon in-phase 

transitions (Figure 2.2a), we count the years when both colour bars are lower or 

higher than 0. If both blue and red bars in the same year are greater than 0, we 

count this year as a successful positive transition from the Indian to Australian 

monsoon. If both are lower than 0, that year is counted as successful negative 

Indian-Australian monsoon in-phase transition. For Australian-Indian monsoon 

out-of-phase transitions (Figure 2.2c), we compare a red-bar with a following 

blue-bar. If a red-bar is higher than 0 and the following blue-bar is lower than 0, 

we define this year as a successful positive Australian-Indian monsoon 

out-of-phase transition. If a negative red-bar is followed by a positive blue-bar, 



 

this year is counted as a successful negative out-of-phase transition. In Figure 

2.2b & d, we only need to compare the same colour bars in consecutive years. 

Positive transitions are counted when the positive bar is followed by a negative 

bar and counted vice versa for negative transitions. All successful positive and 

negative transition events are shaded in light blue and light red, respectively.  

 

To determine the observed/simulated predictability associated with a given 

transition, we first count the number of successful transitions (denoted as No) in 

the observed time-series with N years, and then calculate the proportion of 

successful transitions (No/N). A Monte Carlo resampling technique is used to 

assess the significance of this proportion and assess how much enhanced 

predictability it implies over a random distribution. To do this, the time-series is 

randomly resampled 100,000 times (with replacement), and each time, we 

count the number of successful transitions (denoted as Nr) and calculate the 

proportion of successful transitions in the resampled time-series (Nr/N). The 

predictability of the monsoon resulting from a given transition is considered 

enhanced if the value of No/N is significantly higher than the median of all Nr/N 

values. Moreover, the enhanced predictability is considered significant at 90% if 

No/N lies in the upper decile of the Nr/N values (i.e. there is only a 10% 

probability getting a given enhanced predictability by chance). This method is 

also employed to assess the predictability associated with successful positive 

and negative transitions. First we count the number of successful positive and 

negative transitions, respectively (denoted as NPT and NNT) and the number of 

strong and weak monsoon years, respectively (denoted as NS and NW). The 

proportions of successful positive and negative transitions are defined as 

NPT/NS and NNT/NW. Then the time-series is randomly resampled 100,000 times 

(with replacement), and again each time, we count the number of successful 

positive and negative transitions (denoted as NPTr and NNTr) and calculate the 



 

proportion of positive and negative successful transitions in the resampled 

time-series (NPTr/NS and NNTr/NW). The significant level is the same with 

integrated transitions.    
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Chapter 3. Results 

Here we examine the various transitions associated with the biennial tendency 

of Indian-Australian summer monsoon precipitation in land-only and extended 

regions defined in Figure 2.1. As the DJFM rainfall total accounts for 

approximately 78% of annual rainfall over northern continental Australia and the 

rainfall amount of JJAS accounts for approximately 81% of annual rainfall over 

Indian subcontinent, we consider only the DJFM for Australian monsoon 

season and JJAS for the Indian monsoon season. The results are divided into 

three major parts. In the first part, the precipitation and SST observations have 

been examined. The second part involves the assessment of CMIP3 and 

CMIP5 historical simulation with respect to TBO predictive capability and the 

correlation between the predictability and ENSO. The final part examines the 

change of predictability for four TBO transitions in the RCP8.5 future scenario.  

3.1 Observations assessment 

3.1.1 Monsoon seasonality: observation 

Figure 3.1 Seasonal cycle of rainfall over (a) Indian land-only (solid lines) and extended 

(dashed lines) regions and (b) Australian land-only (solid lines) and extended (dashed lines) 

regions. Different datasets using the common period from 1979 to 2008 are represented in 

different colours. The monsoon seasons are shown in grey shadow. 



 

Figure 3.1 shows the seasonality of rainfall over four different monsoon regions 

and using the various datasets described in section 2.1. For monsoonal rainfall 

over Indian and Australian land-only regions, all observation and reanalysis 

data show a strong seasonality of monsoon rainfall. The Indian monsoon 

rainfall reaches its maximum in July, with peak climatological rainfall ranging 

from approximately 7.0 to 9.0 mm/d depending on the datasets. The Australian 

monsoon rainfall peaks in February with the range from about 7.0 to 8.5 mm/d. 

Rainfall in both extended regions shows less contrast between monsoon 

season and the rest of the year. In Indian monsoon regions, the maximum 

Indian rainfall in extended region is approximately from 6.0 to 6.5 mm/d 

depending on the datasets, which is lower than that over land-only region. This 

is because the extended Indian monsoon region contains large areas to the 

north and the west of the domain, where JJAS rainfall is relatively weak (less 

than 2 mm/d, see Figure 2.1). For the Australian monsoon, the annual rainfall 

range for extended region ranges from approximately 3.5 to 5.0 mm/d across 

the datasets, which is much less than the mean annual rainfall range 

(approximately 8 mm/d) for land-only region. For the extended region, outside 

the monsoon season the Maritime Continent which sites within the Indo-Pacific 

warm pool still receives considerable rainfall (i.e. approximately 3.0 mm/d 

rainfall across three datasets even in driest month August). In addition, the 

maximum convection migrate along the Maritime Continent area during the 

transition from Indian summer monsoon to the Australian summer monsoon, so 

the monsoon onset is variable from North to South of this region, leading to 

considerable rainfall outside of DJFM.  

 



 

3.1.2 Monsoon indices assessment 

Figure 3.2 Taylor [2001] diagram for (a) the JJAS Indian monsoon rainfall indices (IMRIs) and 

(b) the DJFM Australian monsoon rainfall indices (AMRIs). The IMRIs are calculated based on 

the rainfall anomalies over Indian land-only monsoon region and the AMRIs are derived from 

the rainfall anomalies of Australian land-only monsoon region. The reference IMRI and AMRI 

are derived from (a) AIR and (b) AWAP, respectively. One standard deviation unit in the 

diagram represents one standard deviation of (a) AIR and (b) AWAP. All indices use the 

common period from 1979 to 2008. The green dash lines represent the centred root mean 

square error (RMSE) compared to the reference indices. 

 

Figure 3.2 shows a comparison between monsoon indices calculated using 

different observational dataset over a common period of overlap. In general, 

IMRIs show larger variation across different datasets than AMRIs. The indices 

derived from the GPCC dataset shows the closest relationship with both 

reference indices. For the Indian monsoon (Figure 3.2 a), only IMRI-GPCC and 

IMRI-GPCP have a high correlation coefficient approximately 0.95 with 

reference IMRI-AIR. Both IMRI-NCEP/NCAR and IMRI-CMAP have 

correlations less than 0.8. However, the IMRI-GPCP shows approximately 75% 

of the variance of the reference IMRI-AIR. The AMRIs have correlations with 



 

the reference above 0.95 and 0.99 except for the AMRI-NCEP/NCAR. As 

mentioned in section 2.3, the discrepancies between the different IMRIs are 

probably partly related to differences in defining the regions (i.e. the reference 

index does not include the Himalaya, while other indices do), while all AMRIs 

are based on the same region.  

3.1.3 Predictability of transitions: observation 

We define the enhanced predictability of the various TBO transitions using a 

Monte Carlo resampling technique detailed in section 2.4. This Monte Carlo 

method is employed on all the Indian and Australian monsoon indices. Figure 

3.3 to Figure 3.6 show the predictability for the four transitions and the various 

observational and reanalysis datasets in comparison to the associated 

cumulative probability distribution based on randomly resampled data. Each 

figure is arranged as three columns: Integrated (all successful positive and 

negative) transitions, successful positive transitions and successful negative 

transitions. The definitions of positive and negative transitions are given in 

section 2.4. In positive/negative Monte Carlo experiments, we calculate the 

percentage of successful positive/negative transitions compared to the total 

number of possible positive/negative transitions. The integrated transition 

columns take both positive and negative transitions into account. The enhanced 

predictability (shown as a red dashed line in each plot) is represented as the 

departure of the observed predictability from the median of the randomized 

distribution. 

 

Indian-Australian monsoon in-phase transition 

All the observational reanalysis datasets show statistically significant enhanced 

predictability at 90% level of confidence for the integrated Indian-Australian 

monsoon in-phase transition (Figure 3.3). In addition, both positive and 



 

negative components of each dataset show consistent significant results with 

the integrated transition except for NCEP/NCAR, for which the enhanced 

predictability for the individual positive-only or negative-only transitions are not 

significant. Interestingly, there is a tendency for higher predictability for the 

negative transitions across all datasets except CMAP, compared to the positive 

ones. For the reference monsoon indices AIR/AWAP, the enhanced 

predictability is approximately 16.5% with a p-value of 0.0004, which means we 

can improve our predictive capability by ~16.5% over chance of predicting if the 

next Australian monsoon will be anomalously strong or weak given information 

about whether the current Indian monsoon is anomalously strong or weak. The 

results for GPCC are similar to AIR/AWAP (~14% enhanced predictability), as 

they share the same temporal period with a 109-year length. The indices of 

GPCP and CMAP (start from 1979 and finish in 2009 and 2007, respectively) 

show considerable higher enhanced predictability, i.e. approximately 25%. The 

NCEP/NCAR dataset that runs from 1948 to 2010 shows about 14% enhanced 

predictability. It appears that differences in enhanced predictability exist in 

different periods and different datasets, which suggests that the TBO is subject 

to multi-decadal variability.  

 

To investigate the multi-decadal variability of the TBO, we also conduct the 

Monte Carlo experiments based on the common period of 1979-2007 for all 

datasets (Table 3.2). For integrated Indian-Australian monsoon in-phase 

transitions, the enhanced predictability from AIR/AWAP and GPCC is increased 

to 27.6% and consistent with that from GPCP and CMAP. The enhanced 

predictability for NCEP/NCAR increases from approximately 14% to 17% over 

the 1979-2007, but this is still much lower than other datasets. We also 

calculate the enhanced predictability from AIR/AWAP for the period of 

1900-1978 and the enhanced predictability from GPCC for the period of 



 

1901-1978. The enhanced predictability of AIR/AWAP is 11.4% for the period of 

1900-1978 with a p-value of 0.02, while that of GPCC is 9.0% with a p-value of 

0.07. This indicates that the occurrence of successful TBO transitions from 

Indian to Australian monsoon is considerable higher in the last 30 years.  

 

Figure 3.3 The Monte Carlo results for Indian-Australian monsoon in-phase transitions (first 

column), Indian-Australian positive transitions (second column) and Indian-Australian negative 

transitions (third column) based on IMRIs and AMRIs that are calculated from different 

observational and reanalysis precipitation datasets. The datasets are AIR/AWAP (1900-2008), 

GPCC (1901-2009), GPCP (1979-2009), CMAP (1979-2007) and NCEP/NCAR (1948-2010). 



 

The numbers on x-axis are percentage. The purple vertical lines mark the percentage of the 

observed successful TBO transition events in total possible TBO transition events. The blue 

curves represent the Cumulative Distribution Function (CDF) of the randomized distribution with 

horizontal red solid lines showing its median. The red dash lines represent the enhanced 

predictability. The values of enhanced predictability and p-value are shown in each plot. 

Indian-Indian monsoon out-of-phase transition 

For Indian-Indian monsoon out-of-phase transitions (Figure 3.4), only the 

reference IMRI-AIR shows significant enhanced predictability of 7.3% with a 

p-value of 0.06 (for the integrated transitions). Other datasets show both 

predictability values above and below the median value, but the results are not 

significant at 90% confidence level. Over the shorter common period of 

1979-2007, the enhanced predictability becomes negative for all except for 

IMRI-NCEP/NCAR (where enhanced predictability is 0, Table 3.2) although 

none of the values are statistically significant. As the decreased predictability 

from the period of 1979-2007 might arise from multi-decadal variability of the 

TBO, we also calculate the predictability from pre-1978 period based on the two 

long IMRIs. The enhanced predictability for IMRI-AIR (1871-1978) is increased 

from 7.3% to 10.3% (p~0.026) while the one for IMRI-GPCC (1901-1978) is 

from 5.5% to 9.1% (p~0.083). This suggests that in contrast to the results from 

the Indian-Australian monsoon in-phase transition, the biennial tendency from a 

strong/weak Indian monsoon to a following weak/strong Indian monsoon has 

weakened in the past 30 years. This result might be related to the recent 

weakening of the El Niño-Indian monsoon relationship ([Kumar et al., 1999; 

Ummenhofer et al., 2011], see Appendix Article II). 

 
Australian-Indian monsoon out-of-phase transition 
For the Australian-Indian monsoon out-of-phase transition (Figure 3.5), there 

are no significant enhanced predictability appearing among different monsoon 

indices except for the GPCC integrated Australian-Indian monsoon 



 

out-of-phase transition which shows the enhanced predictability of 8.3% with 

p-value of 0.05. Similarly, there is no significant enhanced predictability for this 

transition when considering just the last 30 years (Table 3.2).  

Figure 3.4 As Figure 3.3, but for Indian-Indian monsoon out-of-phase transition. 

Australian-Australian monsoon out-of-phase transition 

For the longer datasets (i.e. AMRI-AWAP, AMRI-GPCC and 

AMRI-NCEP/NCAR) the Australian-Australian monsoon out-of-phase 

transitions (Figure 3.6), do not show significant enhanced predictability. 

However, all indices except AMRI-CMAP show significant enhanced 

predictability (>14%) in recent 30 years. The time-series from 1979 to 2007 for 



 

Figure 3.5 As Figure 3.3, but for Australian-Indian monsoon out-of-phase transition. 

all Australian monsoon indices are plotted in Figure 3.7. The correlation 

coefficients between AMRI-CMAP and other AMRIs are 0.97  (AMRI-AWAP), 

0.97 (AMRI-GPCC), 0.98 (AMRI-GPCP) and 0.81 (AMRI-NCEP/NCAR). As the 

variability of AMRI-CMAP is strongly coherent with other AMRIs, the lack of 

significant enhanced predictability for AMRI-CMAP in last 30 years might be 

attributed to small discrepancies in the rainfall anomalies in a few years. As we 

use 0 mm/d as the threshold to define whether an Indian-Indian or 

Australian-Australian monsoon transition is successful, small differences 

between datasets in years where rainfall is close to the average can lead to 



 

Figure 3.6 As Figure 3.3, but for Australian-Australian monsoon out-of-phase transition. 

datasets producing different results with respect to transition success. For 

example, the Australian monsoon rainfall anomaly in 1991 in AMRI-CMAP is 

approximately -3 mm/d, while that in 1992 is below but close to the threshold 0 

mm/d. As such, although the monsoon rainfall in 1992 is considerably greater 

than that in 1991 the transition is not counted as successful (Figure 3.7). For all 

the other datasets 1992 has slightly positive monsoon rainfall anomally and the 

transition is considered successful. This problem is evident for a number of 

different years for the Australian-Australian transition (Figure 3.7). This 

highlights a potential problem with the definitions used for the transitions. 



 

Another definition proposed by Meehl and Arblaster [2002] takes the strength of 

the preceding monsoon into account as follows:  

(1) The Indian-Indian monsoon out-of-phase transition  

Positive Transition: IMRI(t-1) < IMRI(t) > IMRI(t+1)  or  

Negative Transition: IMRI(t-1) > IMRI(t) < IMRI(t+1); 

(2) The Australian-Australian monsoon out-of-phase transition: 

Positive Transition: AMRI(t-1) < AMRI(t) > AMRI(t+1)  or  

Negative Transition: AMRI(t-1) > AMRI(t) < AMRI(t+1);   

 

Figure 3.7 AMRI derived from five different datasets over the common period from 1979 to 

2007. The blue vertical lines show the years that are not counted as successful 

Australian-Australian transition years in AMRI-CMAP but are included in successful TBO years 

for other four AMRIs. 

However, the problem with this definition is that it involves two successive 

transitions. For instance, according to this definition, 1981 is not a successful 

TBO year as the monsoon in 1980 is stronger than 1981 despite a dramatic 

drop in monsoon strength that occurs from 1981 to 1982. Another example is 

seen from 1985 to 1987. These years will be considered as having successful 

TBO transitions according to Meehl and Arblaster’s definition although the 

difference of monsoon strength between these years is only 1 mm/d. As a result, 

1981 should be considered as a successful TBO year while 1985, 1986 and  



 

Table 3.1 The years of positive transition and negative transition for four different TBO 

transitions. Years are selected from the period of 1871-2010 for Indian-Indian transition, while 

other transitions are available from 1900 to 2008. Years that are associated with El Niño events 

are marked in red and the La Niña events are marked in blue according to the classification 

from Ummenhofer et al. [2009]listed in Appendix Table A.1. 

 
Indian-Australian 

Transition 
Indian-Indian 

Transition 
Australian-Indian 

Transition 

Australian- 
Australian  
Transition 

Positive 
Transition 

1900, 1903, 1906, 
1909, 1916, 1917, 
1921, 1924, 1926, 
1933, 1936, 1940, 
1942, 1943, 1944, 
1945, 1949, 1950, 
1955, 1956, 1967, 
1971, 1973, 1975, 
1976, 1978, 1980, 
1981, 1983, 1988, 
1990, 1994, 1996, 
1997, 1998, 2003, 
2005, 2006, 2007, 
2008 

1872, 1875, 1879, 
1884, 1887, 1890, 
1894, 1898, 1900, 
1903, 1906, 1910, 
1914, 1917, 1919, 
1922, 1924, 1927, 
1931, 1934, 1936, 
1938, 1940, 1950, 
1956, 1959, 1961, 
1964, 1967, 1971, 
1973, 1978, 1981, 
1983, 1990, 1994, 
1998, 2003, 2008 

1900, 1903, 1906, 
1912, 1917, 1924, 
1928, 1929, 1936, 
1940, 1950, 1956, 
1967, 1971, 1973, 
1978, 1981, 1983, 
1990, 1994, 1998, 
1999, 2000, 2003 

1900, 1903, 1907, 
1909, 1913, 1917, 
1921, 1924, 1926, 
1929, 1933, 1936, 
1940, 1945, 1950, 
1956, 1967, 1971, 
1976, 1978, 1981, 
1983, 1988, 1990, 
1992, 1994, 2000, 
2003 

Negative 
Transition  

1901, 1904, 1905, 
1911, 1915, 1918, 
1923, 1925, 1930, 
1932, 1935, 1937, 
1941, 1951, 1952, 
1957, 1960, 1962, 
1965, 1968, 1969, 
1972, 1979, 1982, 
1984, 1985, 1986, 
1987, 1991, 1995, 
2001, 2004 

1873, 1877, 1880, 
1885, 1888, 1891, 
1896, 1899, 1902, 
1905, 1907, 1913, 
1915, 1918, 1920, 
1923, 1925, 1930, 
1932, 1935, 1937, 
1939, 1941, 1952, 
1957, 1960, 1962, 
1966, 1969, 1972, 
1974, 1979, 1982, 
1987, 1992, 1995, 
2002, 2004, 2010 

1905, 1908, 1915, 
1918, 1923, 1925, 
1930, 1932, 1935, 
1937, 1941, 1946, 
1947, 1948, 1952, 
1953, 1954, 1957, 
1958, 1960, 1962, 
1963, 1969, 1970, 
1972, 1977, 1979, 
1982, 1987, 1989, 
1993, 1995, 2004 

1901, 1905, 1908, 
1911, 1915, 1919, 
1923, 1925, 1927, 
1932, 1935, 1938, 
1941, 1948, 1954, 
1965, 1970, 1972, 
1977, 1979, 1982, 
1987, 1989, 1991, 
1993, 1995, 2001, 
2004 

1987 should not be considered. Thus, unlike the definitions from Meehl and 

Arblaster [2002], the definition used in this study is not based on any 

precondition and just focuses on the strength of the relationship in rainfall 



 

between two years. While neither definitions is ideal, and other definitions are 

possible that include alternative thresholds, our method is still useful for 

assessing individual transitions making up the TBO. 

 

In conclusion, significant enhanced predictability is seen across most datasets 

for Indian-Australian monsoon in-phase transitions, the pre-1978 period for 

Indian-Indian monsoon out-of-phase transitions and the post-1978 period for 

Australian-Australian monsoon out-of-phase transitions. The predictive 

capability for Australian-Indian monsoon out-of-phase transition is unclear. 

Additionally, multi-decadal variability appears to be important in all TBO 

transitions except in Australian-Indian monsoon transition. In the last 30 years, 

the occurrence of successful Indian-Australian and Australian-Australian 

monsoon transitions has increased while the occurrence of successful 

Indian-Indian monsoon transitions has decreased. 
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3.1.4 SST anomalies evolution 

In order to investigate the possible roles of the Indian and Pacific Ocean SST 

anomalies on the four different transitions and their positive and negative 

transition components, we analyse lagged SST anomaly composites for all 

successful TBO transitions. In general, most of the four transitions are 

accompanied by significant ENSO-like signals, and in some cases, the SST in 

the Indian Ocean seem to be important for the transitions.  

 

Figure 3.8 shows lagged SST anomaly composites for years when there is a 

successful Indian (JJA(0)) to Australian (DJF(0)) monsoon transition. There are 

40 positive and 32 negative transition events involved in this composite. For the 

case of successful positive transitions, a relatively strong Indian monsoon 

(Figure 3.8-a7) is followed by a relatively strong Australian monsoon half a year 

later (Figure 3.8-a9). Interestingly, before the strong Indian monsoon starts, 

there are no significant SST signals in either the Indian Ocean or Pacific Ocean. 

It might be changes in the Walker Circulation that are more important for the 

enhanced Indian monsoon rainfall rather than local SST in the case of this 

transition. During the Indian monsoon season, a cool pool develops from the 

central to eastern Pacific in JJA(0) (Figure 3.8-a7), which helps the strong 

Indian monsoon. The La Niña-like signal peaks in SON(0)–DJF(0) (Figure 

3.8-a8 & a9) and then begins to decay accompanied by an Indian Ocean 

basin-wide cooling during the strong Australian monsoon (Figure 3.8-a9). For 

the case of successful negative transitions, prior to weak Indian monsoon, a 

large cool anomaly develops in the Indian Ocean that migrates eastwards 

(Figure 3.8b1-b6). Decreased SST anomalies in the Indian Ocean are able to 

suppress the upward motion of air and lead to lower moisture availability to the 

Indian subcontinent. Given the atmosphere responds quickly to changes in SST, 



 

 

Figure 3.8 The composites of evolution of seasonal averaged SST anomalies for 

Indian-Australian monsoon (a1-a10) positive transition and (b1-b10) negative transition. The 



 

years of composites are referred to Table 3.1. The monsoon seasons are marked in red dashed 

boxes. In each plot, the red and black contours represent the results of two-tailed t-test at 95% 

and 99% level of confidence, respectively. 

the Indian monsoon may be influenced by the SST anomalies in JJA(0) 

(Figure3.8-b8). Surprisingly, the cool SST anomalies have weakened 

substantially and are only significant to the south of India during weak Indian 

monsoon season. By contrast, a strong El Niño-like signal appears in the 

Pacific that thus facilitating the weakening of Indian monsoon rainfall (Figure 

3.8-b7). The transition from weak Indian monsoon to weak Australian monsoon 

is accompanied by the development of El Niño-like signal. The large cool SST 

anomalies are developed in the western Pacific in SON(0) (Figure 3.8-b8), thus 

decreasing evaporation and reduction of moisture convergence into the North 

Australia, which leads to weak Australian monsoon (Figure 3.8-b9). In the 

meantime, the warm pool in the central and eastern tropical Pacific Ocean 

leads to anomalous Walker Circulation with strength of easterly trade winds 

decreasing, which facilitates the weakening of Australian monsoon. During the 

transition from Indian monsoon (JJA(0)) to Australian monsoon (DJF(0)), it 

appears that the Pacific Ocean plays an important role for both positive and 

negative transitions. Our result is consistent with Yu et al. [2003] who used a 

series of CGCM experiments by suppressing either the Indian Ocean or the 

Pacific Ocean variability in each experiment. They found that the 

Indian-Australian monsoon in-phase transition is indeed dependent on an 

interactive Pacific Ocean in the CGCM. In addition, the ENSO-type pattern in 

Pacific and basin-wide cooling in the Indian Ocean are featured in their CGCM 

experiments. However, when they conducted the CGCM experiments on 

Australian-Indian monsoon out-of-phase transition, they found that it was 

interactions with the Indian Ocean that were particularly important. Such a 

result is only observed in Australian-Indian positive transition (Figure 3.9a7-a10) 



 

in this study.   

Figure 3.9 As Figure 3.8, but for Australian-Indian monsoon out-of-phase transition. 



 

 

Significant SST anomalies are seen in the Indian Ocean before (Figure 

3.9b1-b6) but not during (Figure 3.9b7-b10) the negative transition. The 

significant SST anomalies appear in the Indian Ocean and then migrate to the 

western Pacific with the development of SST anomalies associated with El Niño 

in the central Pacific. This might suggest that in reality different mechanisms 

exist in positive and negative components of this transition, and there is an 

asymmetry in the drivers affecting the Australian-Indian transition.  

 

Figure 3.10 shows the evolution of SST anomaly composites for successful 

Indian-Indian monsoon out-of-phase transition. Both positive and negative 

transitions are characterized by the Pacific ENSO-type pattern. For the positive 

transition, the timeframe can be divided into two stages. The first stage is 

dominated by SST anomalies associated with La Niña in the Pacific Ocean 

(Figure 3.10a5-a7). This ENSO-type pattern maintains its amplitude and 

reverses the sign in JJA(+1) (Figure 3.10-a9). In the second stage, the 

significant SST anomalies in the Indian Ocean appear in SON(0) and become 

basin-wide cooling in DJF(0) (Figure 3.10 a6-a8). This cool condition in the 

Indian Ocean persists to MAM(+1) (Figure 3.10-a8), which leads to decreased 

evaporation and helps suppress the weak Indian monsoon (JJA(+1), Figure 

3.10-a9). Similar to the Indian-Australian positive transition (Figure 3.8-a6), 

there is no significant SST anomalies in either the Indian Ocean or Pacific 

Ocean before the strong Indian monsoon for the Indian-Indian positive 

transition (Figure 3.10-a4). For the negative transition, the El Niño-like signal 

starts in MAM(0) (Figure 3.10-b4), a season before weak Indian monsoon, and 

reverses its sign during the subsequent strong Indian monsoon (JJA(+1), 

Figure 3.10-b9). SST in the Indian Ocean is warmer than normal in MAM(+1) 

(Figure 3.10-b8) and JJA(+1) (Figure 3.10-b9), although not statistically 

significant. The asymmetry in the SST anomalies evolution between the  



 

Figure 3.10 As Figure 3.8, but for Indian-Indian monsoon out-of-phase transition. 
 



 

Figure 3.11 As Figure 3.8, but for Australian-Australian monsoon out-of-phase transition. 

positive and negative transitions might suggest that the mechanisms that drive 



 

the Indian-Indian positive and negative transitions are also different. While SST 

anomalies in both the Pacific and Indian Ocean are important to the positive 

transition, the SST anomalies associated with ENSO play a dominant role in the 

negative transition.  

 

The positive and negative transitions for Australian-Australian monsoon 

out-of-phase transitions exhibit a high degree of asymmetry in their SST 

anomalies evolutions (Figure 3.11). The positive transition shows an 

Indian-to-Pacific SST migrating pattern from strong Australian monsoon 

(DJF(0), Figure 3.11-a5) to subsequent weak Australian monsoon (DJF(+1)). 

For the negative transition, before the weak Australian monsoon (DJF(0), 

Figure 3.11-b5) there is a significant El Niño that persists to DJF (0), possibly 

causing a weak Australian monsoon.  

 

We also examine SST composites for the years when all the four transitions 

co-occurred successfully (Figure 3.12). Here, the successful positive transitions 

are years of strong Indian monsoons that are followed by a strong Australian 

monsoon half a year later, which are then followed by a weak Indian monsoon 

half a year later and finally a weak Australian monsoon half a year later. The 

successful negative transition occurs when a weak Indian monsoon is followed 

by a weak Australian monsoon, which itself is followed by a strong Indian 

monsoon and a strong Australian monsoon in the following year. There are 16 

years with successful positive transitions (1900, 1903, 1917, 1924, 1936, 1940, 

1950, 1956, 1967, 1971, 1978, 1981, 1983, 1990, 1994, 2003), 7 out of which 

are La Niña years, and there are 7 in 16 years are followed by El Niño years. 

Twelve years (1905, 1915, 1923, 1925, 1932, 1935, 1941, 1972, 1979, 1982, 

1987, 2004) have successful negative transitions, 6 out of which are El Niño 

years, and 7 out of 12 years are followed by La Niña years.  



 

 

In Figure 3.12, the positive transition and negative transition are characterized 

by a strong asymmetry of SST evolution in the Pacific and Indian Oceans, 

particularly during the first year (from MAM(0) to MAM(+1), Figure 3.12 a1-a5). 

The SST anomalies evolution for the negative transitions are consistent with the 

mechanisms developed by Meehl [1997] and Chang and Li [2000]. Prior to the 

weak Indian monsoon (MAM(0), Figure 3.12-b1), there are no significant SST 

anomalies occurring in the Indian Ocean, but an ENSO-like anomaly is 

developing from the eastern Pacific. During the weak Indian monsoon (Figure 

3.12-b2), the relatively weak surface winds and latent heat flux help the 

formation of warm SST anomalies in the Indian Ocean in JJA(0) and into 

SON(0), which in turn will facilitate increased moisture to the Indian monsoon in 

the following year. Meehl [1997] mentioned that the “memory” provided by the 

high ocean heat content at the end of weak monsoon season helps to maintain 

the SST anomalies for some time. In addition, atmospheric circulation 

anomalies associated with the developing El Niño facilitates keeping the water 

warm in the Indian Ocean until the following Indian monsoon season. In the 

Indian Ocean, a positive IOD develops peaking in the boreal autumn (SON(0), 

Figure 3.12-b3). After SON(0), a basin-wide warming in the Indian Ocean 

co-occurs with the decaying phase of the El Niño until boreal spring in the 

following year (MAM(+1), Figure 3.12-b5). This result is consistent with many 

previous studies (e.g. Chowdary et al. [2007], Hong et al. [2010], and Taschetto 

et al. [2011] ). The uniform basin-wide warming in the Indian Ocean enhances 

the convection via increasing evaporation when the convective maximum 

arrives at the Indian subcontinent. Consequently, there are stronger surface 

winds and a strong Indian monsoon in JJA(+1) (Figure 3.12-b6) with 

corresponding increased monsoonal rainfall and higher latent heat flux to the 

atmosphere. Simultaneously, the La Niña signal and negative IOD begin to  



 

Figure 3.12 As Figure 3.8, but for the years when all four TBO transitions co-occurs. 

develop and peak in SON(+1) (Figure 3.12-b7). Significant basin-wide cooling 

then occurs in the Indian Ocean when the La Niña signal is weakening. The 

significant positive IOD (Figure 3.12-b3), which is characterized by decreased 

SST in the eastern Indian Ocean, contributes to a weak Australian monsoon in 

DJF(0) (Figure 3.12-b4) by evaporation-wind feedback over northern Australia. 



 

One year later, the relatively warm SST in the eastern Indian Ocean associated 

with the negative IOD (Figure 3.12-b7) and La Niña circulation anomalies 

favour a strong Australian monsoon (Figure 3.12-b8). 

The SST anomalies evolution for the positive transition is quite different from 

the negative transition. Significantly cool SST anomalies start to appear south 

of Maritime Continent, north and east coast of Australia in DJF(0) when the 

strong Australian monsoon occurs, and peak in SON(+1) (Figure 3.12-a7).

Interestingly, unlike the years when only successful Indian-Australian positive 

transitions occur (Figure 3.8 a7-a9), there is no significant La Niña-like signal 

seen during the Indian-Australian positive transitions when all four TBO 

transitions are successful (Figure 3.12 a2-a4). The difference between these 

two composites can be explained as follows: La Niña included in Figure 3.8-a 

seems to be filtered out from the composite shown in Figure 3.12-a. This 

happens due to the asymmetric nature of ENSO evolution, where La Niña tends 

to last longer than El Niño events, thus modulating monsoonal rainfall for 

consecutive years. In the boreal spring (MAM(+1), Figure 3.12-a5), basin-wide 

cooling in the Indian Ocean contribute to the subsequent weak Indian monsoon 

due to the decreased heating convection caused by weakened evaporation. 

Significantly warm SST anomalies develop in the central and eastern Pacific 

Ocean with a significant decrease in the western Pacific SST. In SON(+1) 

(Figure 3.12-a7), the El Niño-type pattern peaks and a positive IOD develops. 

The El Niño signal decays with the basin-wide warming in the Indian Ocean 

during the weak Australian monsoon (Figure 3.12-a8).

. 

To further examine the asymmetry during the years with all four successful 

transitions, we derive five SST anomaly indices from different regions to 

investigate the phase relationship among SST anomalies in different parts of 



 

ocean. We calculate the region-averaged monthly SST anomalies from 

selected years. The regions we use are illustrated in Figure 3.13a with their 

details listed in Table 3.3. In Figure 3.13, we present composites for these 

anomalies for positive and negative transitions. The composites start from 

Mar(0) that is three-month prior to the Indian monsoon season and end at 

May(+2) that is three-month after the responding Australian monsoon, i.e. over 

a period of 27 months. In both positive and negative transitions, NINO3 and 

NINO3.4 indices follow each other closely.  

  

Table 3.3 Information on indices that are used in Figure 3.13. x in the table represents the 
SST anomalies averaged over region x. 

Index Mode Regions Definition References 

NINO3 

ENSO 

Niño-3 Region, NINO3 
(90°W-150°W, 5°S-5°N) NINO3 

[Trenberth, 1997] 

NINO3.4 
Niño-3.4 Region 3.4, 

NINO3.4 (120°W-170°W, 
5°S-5°N) 

NINO34 

IOD 
Indian 
Ocean 
Dipole 

Western Equatorial Indian 
Ocean, WEIO  

(50°E-70°E, 10°S-10°N,) WEIO – 

EEIO 
[Saji et al., 1999] 

Eastern Equatorial Indian 
Ocean, EEIO  

(10°S-0, 90°E-110°E) 

EMI 
El Niño 
Modoki 

EMI_A  
(165°E-140°W, 10°S-10°N) 

EMI_A – 0.5  

EMI_B – 0.5  

EMI_C 

[Ashok et al., 
2007] 

EMI_B  
(110°W-70°W, 15°S-5°N) 

EMI_C  
(125°E-145°E, 10°S-20°N) 

IOB 

Indian 
Ocean 
Basin 

Warming 
/Cooling 

Indian Ocean Basin, IOB 
(40°E-120°E, 20°S-20°N) IOB 

 



 

Figure 3.13 Lagged composite monthly SST anomalies indices derived from regions shown in 

(a), which are named NINO3, NINO3.4, IOD, EMI and IOB (see Table 3.3 for details). The years 

selected in (b) positive transitions and (c) negative transitions are consistent with Figure 3.12 

when all four transitions co-occur. Blue shadows mark the Indian monsoon seasons while the 

red ones mark the Australian monsoon seasons. 



 

For the in-phase transition (Figure 3.13b) for the period between the strong 

Indian monsoons to strong Australian monsoons, SST anomalies in the eastern 

and central Pacific are almost neutral or weakly negative, with lowest SST 

anomalies in the break (Nov(0)) between two strong monsoon seasons. The 

SST anomalies begin to increase during the strong Australian monsoons 

becoming positive at the end of the strong Australian monsoons (Mar(+1)). 

Pacific SST anomalies peak almost a year later at the onset of weak Australian 

monsoons. As such the weak Indian monsoons and Australian monsoons are 

co-occurring with relatively high SST anomalies in the Pacific. Here we employ 

the similar method with Australian monsoon rainfall index in section 2.3 to 

calculate the standardized DJFM averaged NINO3.4 index for the period of 

1870-2010, and then compare the index in each year with ±1 SD. Surprisingly, 

during the 16 years of successful positive transitions, 10 events occur when the 

DJFM averaged NINO3.4 index is within ±1 SD (ENSO neutral years) and only 

4 events occur when the DJFM averaged NINO3.4 index is lower than -1 SD 

(La Niña events). Half of these successful positive transition years are followed 

by the years with DJFM averaged NINO3.4 index greater than +1 SD (El Niño 

events). The IOB shows a small magnitude and low-frequency variation with 

approximately three months lag to NINO3 and NINO3.4. The variability for other 

indices in positive transition is less clear. 

 

The evolution during the negative transition is quite different. Unlike the positive 

transition, high SST anomalies in the Pacific Ocean (El Niño events) are 

followed by low SST anomalies (La Niña events) in both NINO3 and NINO3.4 

indices. The weak Indian and Australian monsoons are accompanied by 

strongly positive SST anomalies, and the subsequent strong Indian and 

Australian monsoons occur when SST anomalies are strongly negative. Seven 

out of 12 weak Indian to weak Australian monsoon transitions co-occur with El 



 

Niño events, 71.4% of which are followed by La Niña events. The IOD index 

peaks at the withdrawal of Indian monsoon, three month ahead of ENSO 

peaking, while the IOB index peaks approximately three months after the peak 

of ENSO. Both IOD and IOB indices are significant at the 95% level according 

to a two-tailed Student’s t test, although their magnitudes are much smaller 

than NINO3 and NINO3.4 indices. This may suggest that the basin-wide 

change of SST in the Indian Ocean is a response to the forcing of ENSO and 

IOD plays a complementary role in the transitions.   

3.2 CMIP3 and CMIP5 models 

Some of the work presented in this section has been published in Li Y., 

Jourdain N.C., Taschetto A.S., Ummenhofer C.C., Ashok K., and Sen Gupta A. 

(2012), Evaluation of monsoon seasonality and the tropospheric biennial 

oscillation transitions in the CMIP models, Geophysical Research Letters, 39, 

L20713, doi:10.1029/2012GL053322 (see Appendix Article I). 

3.2.1 Monsoon seasonality: models 

The Indian-Australian monsoon system is characterized by intensive rainfall 

over the Indian subcontinent in boreal summer (JJAS) and North Australia in 

austral summer (DJFM). A realistic simulation of the unique monsoon seasonal 

cycle of this system gives us some measure of the realism of the simulated 

monsoon before further evaluation of enhanced predictability of the TBO 

transitions. The seasonal cycles of land-only regions for 24 CMIP3 and 30 

CMIP5 models are illustrated in Figure 3.14, while the seasonal cycles of the 

extended regions are shown in Figure 3.15. Models and 

observations/reanalysis are sorted according to the average monsoon rainfall 

amount (i.e. average JJAS rainfall for the Indian monsoon and average DJFM  



 

Figure 3.14 Seasonal cycle of the Indian (a,c) and Australian (b,d) land-restricted rainfall for 

observations, reanalysis and CMIP3 (a,b) and CMIP5 (c,d) models. Models (names in black), 

observations and reanalysis (names in red) are sorted according to the average monsoon 

rainfall amount (JJAS rainfall for Indian monsoon and DJFM rainfall for Australian monsoon). 

The top row shows the multi-model mean (MMM, names in blue) of CMIP3 or CMIP5 models for 

Indian and Australian rainfall. Internal numbers show the maximum rainfall (mm/d) in the month 

of greatest rainfall (numbers in white are just to contrast with background box colour). 



 

rainfall for the Australian monsoon) with the highest value on top. 

 

In this study, the months with averaged rainfall more than 3.5 mm/d are 

considered as wet months. For all five observational/reanalysis Indian rainfall 

datasets, the four wettest months in the Indian subcontinent extend from June 

to September with maximum rainfall in July (Figure 3.14a & c). The length of 

distinct wet months for CMIP3 models ranges from two (e.g. giss-e-r) to eight 

(e.g. cnrm-cm3), with ipsl-cm4 failing to capture a monsoon season cycle 

(based on the 3.5 mm/d threshold). Fourteen out of 30 CMIP5 models correctly 

simulate JJAS as the four wettest months (e.g. CESM1-CAM5), nine models 

underestimate the length of the wet season and five models lack a distinct 

monsoon season (GISS-E-H, CSIRO-Mk3.6.0, MRI-CGCM3, GISS-E2-R and 

IPSL-CM5B-LR). In terms of maximum rainfall, 11 out of 24 (46%) CMIP3 and 

16 out of 30 (53%) CMIP5 models manage to simulate the peak rainfall in July, 

with a large number of the remaining models delayed by one month. Three 

CMIP3 models show significant bias in the timing of the monsoon. For example, 

mpi-echam5 peaks two months early and two models (csiro-mk3.5 and 

ipsl-cm4) have a peak that is delayed by two months. There is also 

considerable spread in the amplitude of seasonal cycle. While rainfall in the 

peak monsoon month across observational/reanalyzed datasets ranges from 

7.2 to 9.1 mm/d, both CMIP3 and CMIP5 models range from about 3 to 10 

mm/d. Multi-model means for CMIP3 and CMIP5 models are similar with 

approximately 6 mm/d in July, indicating that overall the simulated monsoon 

rainfall is too weak. For a number of models (particularly CMIP3), there is too 

much rainfall outside of the monsoon season. This is particularly obvious for the 

cnrm-cm3 and inmcm3-0 models. 

 

The wet season for the North Australia occurs from December to March, with 

maximum rainfall in February in the five observational/reanalysis datasets used 



 

here. Observed rainfall ranges from 6.4 mm/d to 8.8 mm/d (Figure 3.14b & d). 

There are 18 out of 24 CMIP3 models (75%) and 21 out of 30 CMIP5 (70%) 

models correctly simulating the timing of maximum rainfall in February, with 

maximum rainfall of the multi-model means in February (7.5 mm/d for CMIP3 

and 7.3 for CMIP5) lying within the observational range. Models show a wide 

range of wet-month duration. In CMIP3 models, the length of wet months 

ranges from three (e.g. mri-cgcm2.3.2a) to seven (e.g. bccr-bcm2.0). Two 

CMIP3 models essentially show no monsoon seasonality, i.e. giss-aom and 

ipsl-cm4. Sixteen out of 24 (67%) CMIP3 models have more than four wet 

months and only three (12.5%) models correctly simulate four wet months. For 

CMIP5 models, the percentage that correctly simulate wet season in DJFM 

increased to 37% (11 out of 30 CMIP5 models). Eight CMIP5 models 

overestimate the duration of the wet season with more than four wet months 

(e.g. CCSM4 has six wet months), while eleven models show short duration of 

wet months (e.g. GISS-E2-H has two wet months). With respect to the 

monsoon strength, the three CMIP3 models (ukmo-hadcm3, gfdl-cm2.0 and 

inm-cm3.0) that correctly simulate the wet season apparently underestimate the 

monsoon strength compared to observations. However, most CMIP5 models 

with correct wet seasons show stronger monsoon rainfall than observations.   

 

In general, CMIP5 models show an overall improvement in simulating low 

rainfall rates outside of monsoon season and less bias in the seasonal cycle 

compared to CMIP3 models. In terms of monsoon strength, most CMIP3 (14 

out of 24) and CMIP5 (18 out of 30) models underestimate the strength of the 

Indian land-only monsoon rainfall, with the multi-model ensemble means of 

rainfall lower than the range of observations. Both CMIP3 and CMIP5 models 

correctly simulate the strength of Australian land-only monsoon rainfall. Thus, 

little improvement is shown from CMIP3 to CMIP5 models in simulating the  



 

 
Figure 3.15 As Figure 3.14, but based on the rainfall of extended regions. 

monsoon strength. With respective to the monsoon seasonality, more CMIP3 

models show longer wet season duration and too much rainfall outside of wet 

seasons in both Indian and Australian land-only monsoons, and CMIP5 models 

show apparent improvement in these two aspects over CMIP3 models. 

However, 2 out of 24 (8%) CMIP3 models (ipsl-cm4 and giss-aom) have no 



 

clear monsoon rainfall seasonal cycle either over India or Australia, and 5 out of 

30 (17%) CMIP5 models fail to capture the monsoon seasonal cycle. Thus, with 

respect to models with extremely weak monsoon seasonality, CMIP5 has a 

larger proportion of poor models than CMIP3.  

 

Figure 3.15 shows the simulated seasonal cycles of Indian and Australian 

rainfall in extended regions. For Indian rainfall seasonality (Figure 3.15a & c), 

both CMIP3 and CMIP5 models show peak rainfall lying within the 

observational range and occurring in the correct month in terms of the 

multi-model mean. CMIP3 models show a larger range of behaviours for both 

monsoon season length and rainfall peak month. Nineteen out of 30 CMIP5 

models correctly simulate the maximum rainfall in July, while the peak rainfall in 

other models is shifted by one month. However, compared to the Indian 

subcontinent, the extended Indian region exhibits weaker monsoon strength for 

both observations and models. In the extended Australian monsoon region  

(Figure 3.15b & d), seasonality is relatively weak with considerable rainfall even 

outside of the monsoon season. This is because the extended Australian 

monsoon region contains the Maritime Continent. On the one hand, the 

Maritime Continent is interspersed among lots of ocean area, where there is 

almost constant rain during the year. On the other hand, this area bridges the 

Indian summer monsoon and Australian summer monsoon temporally and 

spatially. Monsoon onset varies from North to South of this area, so that the wet 

season integrated rainfall over the extended region prolongs compared to the 

wet season when we only average the rainfall over North Australian continent. 

The three global observational and reanalysis products show different 

wet-month duration. For example, the GPCC dataset has six distinct wet 

months from November to April; the CMAP has its four wettest months in DJFM; 

while monsoon seasonality in the NCEP/NCAR dataset is less clear. Most 



 

models exhibit prolonged wet months until April or May. In general, the 

monsoon seasonality of rainfall in extended regions is not as apparent as in 

land-only monsoon regions.  

3.2.2 Predictability of transitions: models 

The same Monte Carlo technique described in section 3.1.3 is employed to 

calculate the enhanced predictability for all TBO transitions in the CMIP3 and 

CMIP5 simulations. The results are summarised in Figure 3.16. Models for 

which no ensemble member shows a significant enhanced predictability in any 

of the transitions are not shown, thus 18 out of 24 CMIP3 models and 23 out of 

30 CMIP5 models are presented in Figure 3.16. For Indian-Australian monsoon 

in-phase transition, there are 12 out of 24 (50%) CMIP3 and 20 out of 30 (67%) 

CMIP5 models for which at least one ensemble member has significant 

enhanced predictability (i.e. at least one red circle shown in Figure 3.16a), 

consistent with observations/reanalysis. Even when considering just individual 

ensemble members with significant enhanced predictabilities, values for CMIP5 

models range between about 5%-15%. They therefore underestimate the 

observed enhanced predictability which is at or above ~15% depending on the 

datasets. For CMIP3 models, the range in enhanced predictability is much 

larger, ranging from approximately 5% to 30%. In Figure 3.16a, many models 

with multiple ensemble members show contrasting results for their different 

members. For example, the CMIP3 model giss-e-r has 9 ensemble members, 

five of which show enhanced predictability while four of which show negative 

predictability. This suggests that there is a substantial multi-decadal or 

centennial variability in the efficacy of this transition, which is consistent with the 

results drawn from observations [Meehl and Arblaster, 2011]. Nevertheless, 

when considering concatenated ensemble members, the Indian-Australian 

monsoon transition shows significant predictability for 11 of 24 CMIP3 models, 



 

Figure 3.16 Percentage enhanced predictability for the (a) Indian-Australian, (b) Indian-Indian, 

(c) Australian-Indian and (d) Australian-Australian transitions based on land-restricted regions 

for observations/reanalysis and CMIP3 and CMIP5 models for which at least one ensemble 

member for that model and for at least one of the transitions shows a significant increase in 



 

predictability. Circles represent individual ensemble members (marked in red are significant, 

p<0.1). Bars represent the multi-ensemble mean percentage enhanced predictability for each 

model with yellow indicating significant changes. The multi-ensemble mean predictability was 

calculated by concatenating time-series for all ensemble members prior to Monte Carlo 

resampling (Results of individual model ensemble members are listed in Appendix Table 

A.4&A.5). 

and for 18 of 30 CMIP5 models (yellow bars in Figure 3.16a). In summary, while 

this transition appears to be robust for observational records, only about half of 

the models exhibit significant enhanced predictability.    

 

As mentioned earlier in section 3.1.3, the significant enhanced predictability of 

the Indian-Indian monsoon out-of-phase transition is only found in the long-term 

reference observations (e.g. AIR/AWAP), but the predictability has decreased 

over the last 30 years (Table 3.2). With regard to models (Figure 3.16b), 7 out 

of 24 (29%) CMIP3 models and 6 out of 30 (20%) CMIP5 models show at least 

one ensemble member with significant enhanced predictability (at the 90% 

statistical level of confidence). However, individual models with multi-ensemble 

members often show contrasting results with regards to predictability, indicating 

multi-decadal variability in this transition. The model results suggest no robust 

enhanced predictability for this transition. Only a small proportion of 

multi-ensemble means of CMIP3 and CMIP5 models exhibit significant 

enhanced predictability (4 for CMIP3 and 3 for CMIP5). Moreover, some CMIP3 

and CMIP5 models actually exhibit significant negative predictability. This 

means that for those models a strong Indian monsoon tends to be followed by a 

strong Indian monsoon in the following year, opposite to the sequence of 

events expected as part of a TBO. 

 

For Australian-Indian monsoon out-of-phase transition (Figure 3.16c), only five 



 

CMIP3 models and two CMIP5 models have at least one ensemble member 

with significant positive enhanced predictability, although again different 

ensemble members produce conflicting results. Surprisingly, the majority of 

models show significant negative predictability, in particular when considering 

concatenated ensemble members (10 out of 24 CMIP3 models and 18 out of 30 

CMIP5 models). This means that a strong Australian monsoon will often be 

followed six months later by a strong Indian monsoon, opposite to the response 

expected for a successful Australian-Indian monsoon out-of-phase transition. 

This behaviour is not found in any of the observational datasets. This simulated 

response might be related to a longer than observed duration of ENSO in the 

CMIP simulations [Taschetto et al., submitted]. For example, a La Niña event 

that persists too long into a second year would be expected to lead to a strong 

Australian monsoon followed by a strong Indian monsoon [Jourdain et al., 2013]. 

In this way, differences in ENSO behaviour can affect the Australian-Indian 

monsoon in-phase transition. 

 

Finally, the Australian-Australian monsoon out-of-phase transition (Figure 3.16d) 

has a variety of behaviours shown in observations/reanalysis. In particular only 

the short GPCP shows significant enhanced predictability. For this transition, 

there are some model/ensemble members with statistically enhanced 

predictability. However, there is little agreement across the models. Eight out of 

24 CMIP3 models and 7 out of 30 CMIP5 models have at least one ensemble 

member with significant enhanced predictability. When considering 

concatenated ensemble members, there are 7 out of 24 CMIP3 models and 6 

out of 30 CMIP5 models exhibiting significant enhanced predictability. 

 



 

Figure 3.17 As Figure 3.16, but for the predictability of TBO transitions based on extended 

regions (Results of individual model ensemble members are listed in Appendix Table A.6&A.7). 

 

 



 

In section 3.2.1, the seasonality of rainfall in the Indian and Australian extended 

monsoon regions was evaluated: there is less difference between monsoon 

and non-monsoon seasons compared to the land-only based rainfall. For the 

purpose of comparison, the Monte Carlo results calculated from EX-IMRIs and 

EX-AMRIs are shown in Figure 3.17. For Indian-Australian monsoon in-phase 

transition, significant enhanced predictability occurs in observation/reanalysis 

(CMAP and NCEP/NCAR) when the short-term is considered.  There are 10 

out of 24 CMIP3 models and 18 out of 30 CMIP5 models showing significant 

enhanced predictability in at least one ensemble member (red circles) for this 

transition (Figure 3.17a). When considering the predictability of concatenated 

ensemble members (yellow bars), CMIP3 models show a similar behaviour 

between land-only and extended regions. However, for CMIP5 models, the 

predictability of concatenated ensemble members demonstrates a larger range 

(5%-20%) with higher variance (SD is 7.3%), compared to their land-only 

counterparts (range is 5%-15% with a SD of 4.2%). For Indian-Indian monsoon 

out-of-phase transition (Figure 3.17b), the short-term observation/reanalysis 

(CMAP and NCEP/NCAR) surprisingly show significant negative predictability. 

There is little consensus across models. Unlike for the land-only indices, the 

large proportion of models with significant negative predictability is not seen in 

the predictability of the Australian-Indian monsoon out-of-phase transition from 

the extended-region indices (Figure 3.17c). It might suggest that the link 

between the Indian and Australian monsoon with respect to the extended 

regions is not that clear [Neale and Slingo, 2003]. The contrasting results 

among observations and models with different monsoon indices suggest that 

there is no robust process driving an Australian-Indian monsoon out-of-phase 

transition and as such this transition does not provide additional predictability 

for the Indian monsoon.   

 



 

Given that overall there are fewer models showing enhanced predictability 

when using the extended regions, we will focus our analysis below on 

teleconnections of SST anomalies in the tropical Pacific to the monsoonal 

rainfall in land-restricted regions. In particular, we examine ENSO variability in 

the CMIP5 model simulations, and attempt to understand how the SST 

anomalies in the Pacific Ocean could exert an influence on TBO transition 

predictability. 

3.2.3 Influence of ENSO 

As documented in numerous previous studies and also in section 3.1.4, the 

strength of Indian/Australian monsoon rainfall can be modulated by ENSO (e.g. 

Holland [1986], Webster and Yang [1992]). In this section, we will evaluate the 

teleconnection between ENSO and Indian/Australian monsoon rainfall in 

CMIP5 models, and evaluate whether the TBO transition can be related to 

ENSO characteristics in the CMIP models.  

 

The JJAS (for Indian land region) and DJFM (for Australian land region) 

averaged rainfall are correlated with the NINO3.4 indices at different leads and 

lags for all CMIP5 models (Figure 3.18) to show the relationship between 

ENSO and Indian/Australian monsoons. In Figure 3.18a, we calculate the 

lagged correlations with the averaged JJAS Indian rainfall in year(0) leading the 

NINO3.4 index by 29 months to the averaged JJAS Indian rainfall in year(0) 

lagging the NINO3.4 index by 15 months. Thus, the peak of NINO3.4 indices in 

year(0) lags the JJAS Indian rainfall in year(0) by 3 months. The models have 

been sorted by the correlation between with the reference AIR/HadISST1 (top, 

name in red) and simulated lagged correlation time-series. In Figure 3.18a, 



 

Figure 3.18 Lag correlation between (a) JJAS Indian land-only rainfall and monthly NINO3.4 

indices, and lag correlation between (b) DJFM Australian land-only rainfall and monthly 

NINO3.4 indices for observation (top, red) and 30 CMIP5 models. The correlations between 

NINO3.4 averaged in DJFM and lagged monthly NINO3.4 values are shown at bottom of (a) 

and (b). Models are ranked according to the correlation with observation, with the values of 

correlation coefficient (r) listing on right. Months are labelled on x-axis (M, J, S and D represent 

March, June, September and December, respectively). ISM/ASM marks the Indian/Australian 

summer monsoon peak with the numbers in parentheses showing the years related to rainfall. 

The red arrows show the DJFM NINO3.4 SST of year(0) (modified from Figure 7&11 of 

Jourdain et al. [2013]). 

 

Indian monsoon rainfall is highly negatively correlated with the developing 

ENSO that peaks a few months later between November and March in 



 

observations. Most CMIP5 models show the negative correlation between JJAS 

rainfall and the NINO3.4 indices, however, with a range of timing and strength. 

For example, IPSL-CM58-LR and CNRM-CM5 have realistic timing, however, 

with weaker negative correlation than observation. In a number of models the 

maximum negative relationship occurs a few months early, i.e. NorESM1-ME, 

NorESM1-M, and IPSL-CM5A-MR with the maximum negative correlation 

starting from March in year(-1). For a number of models, the negative 

correlation relationship lasts too long, like ACCESS1.3 with correlation 

coefficients of less than -0.6 over a period of 15 months. Interestingly, the JJAS 

rainfall in model FIO-ESM not only show high negative lagged correlations with 

the NINO3.4 indices from December in year(-1) to December in year(0), but 

also a strong positive correlation with the NINO3.4 indices from July in year(-2) 

to July in year(-1). Some models exhibit strange behaviour in the correlations. 

For example, the negative correlations in INM-CM4 persist too long and also 

have biases in timing, while FGOALS-g2 shows completely the opposite 

correlation relationship to the observations. The most poorly performing models 

with lagged correlation time-series correlations less than 0.30, are INM-CM4, 

FGOALS-g2, FGOALS-s2, GISS-E2-H and MIROC-ESM.  

 

The fact that minimum correlation occurs with the monsoon leading NINO3.4 by 

some months has lead some authors to suggest that the strength of the Indian 

monsoon may actually modulate the characteristics of the subsequent ENSO. 

Kirtman and Shukla [2000] revealed that the strongest negative correlation 

between Indian monsoon and ENSO appears approximately three to six 

months immediately following the Indian monsoon season. This is further 

supported by Wu and Kirtman [2003] in a coupled GCM. They concluded the 

monsoon-induced wind anomalies propagate eastwards and modulates SST in 

the western and central equatorial Pacific. Mokhov et al. [2011] also proposed a 



 

linear monsoon-to-ENSO influence, such that the Indian monsoon can affect 

future behaviour of ENSO, and attributed this influence to the change of trade 

winds in the Pacific Ocean responding to the changes of monsoon system. 

 

The lagged correlations shown in Figure 3.18b are calculated with the averaged 

DJFM Australian rainfall that leads the NINO3.4 index by 35 months to the 

averaged DJFM Australian rainfall that lags the NINO3.4 index by 9 months. 

Therefore, the Australian monsoon rainfall in year(0) occurs simultaneously 

with the peak of NINO3.4 indices. For the lag-lead correlation evolution 

between Australian monsoon rainfall and NINO3.4 indices (Figure 3.18b), the 

reference AMAP/HadISST1 observations demonstrate the simultaneous 

negative correlation between Australian monsoon rainfall and NINO3.4 indices. 

There are 27 out of 30 CMIP5 models that correctly show a negative correlation 

with three models showing no or slightly positive simultaneous correlation 

(FGOALS-g2, GISS-E2-R and FGOALS-s2). There are also amongst the 

models that perform the worst for the Indian monsoon. The strongly negative 

simultaneous correlations found in most CMIP5 models confirm that large 

influence of ENSO on Australian monsoon rainfall, which has been reported in 

numerous previous studies (e.g. Joseph et al. [1991]; Power et al. [1999]; Yu 

and Janiga [2007]). In a number of models, the negative correlations actually 

start a few months early and last to the end of Australian monsoon, such as 

GFDL-ESM2G with a negative correlation starting in June(0). Eleven models 

show negative correlation, but the magnitude is small. The GFDL-ESM2M also 

shows a strong positive correlation between the Australian monsoon rainfall 

and the NINO3.4 indices lagging by 24 months. 

 

It is obvious that ENSO has a large influence over the two monsoon systems. 

As such we are interested in investigating how much of the TBO-like behaviour 



 

in the models can be simply a passive response to ENSO. First, we correlate 

the enhanced predictability of 30 CMIP5 models with the corresponding 

correlation between monsoon rainfall and NINO3.4 indices for each of the 

transitions  (Figure 3.19), to test if the strength of the ENSO-monsoon 

relationship can partially explain the enhanced predictability. In each plot, 

circles of one colour represent a set of CMIP5 models for one of the TBO 

transition.  

 

Figure 3.19a shows a scatter pot of enhance predictability of each TBO 

transition against the correlation between the Australian monsoon rainfall and 

the NINO3.4 lagged by one year. The results for the Indian-Indian and the 

Australian-Australian monsoon out-of-phase transitions are significant 

(p-values are less than 0.1). For the Indian-Indian monsoon out-of-phase 

transition, the predictability appears to be somewhat dependent (25% of 

variance) on a relationship between the SST anomalies in the central Pacific 

and the Australian monsoon one year later. Also for the Australian-Australian 

monsoon out-of-phase transition, the SST anomalies in the central Pacific 

one-year early help the successful transition between two Australian 

monsoons.  

 

With respect to the relationship of predictability with the simultaneous 

correlation between the NINO3.4 and the Australian monsoon rainfall (Figure 

3.19b), the correlation coefficient is -0.48 with a p-value less than 0.1. This 

indicated that approximately 23% of the variance of the enhanced predictability 

in this transition is accounted for by the relationship between Australian 

monsoon rainfall and averaged DJFM SST anomalies in the central Pacific. 

This connection for other transitions is less clear.  

 



 

A significant correlation (0.33) exists between predictability of the Indian-Indian  

Figure 3.19 The scatter plots of averaged enhanced predictability of each CMIP5 model for four 

transitions (marked in different colours) against the lag correlation between (a) DJFM rainfall 

and (c) JJAS rainfall and NINO3.4 averaged SST in previous DJFM, the correlation between (b) 

DJFM rainfall and (d) JJAS rainfall and NINO3.4 averaged SST in DJFM. In each plot, the blue 

circles represent the Indian-Australian monsoon transitions, the red ones represent the 

Australian-Indian transitions, the magenta represents the Indian-Indian monsoon transitions 

and the green shows the Australian-Australian monsoon transitions. The line in each colour 

represents the best-fit liner regression with the value of correlation coefficient in corresponding 

colour. The significant correlation coefficient values are underscored.   

monsoon out-phase transition and the relationship between DJFM NINO3.4 



 

and the following Indian monsoon rainfall anomalies (Figure 3.19c). Conversely, 

we find a significant negative correlation (-0.34) between predictability of the 

Indian-Australian monsoon in-phase transition and the relationship between 

DJFM NINO3.4 and the following Indian monsoon rainfall anomalies (Figure 

3.19c). In Figure 3.19d, the correlation for Indian-Australian monsoon in-phase 

transition is -0.48 with p-value less than 0.1, again indicating that approximately 

23% of the variance of the enhanced predictability in this transition is accounted 

for by the relationship between Indian monsoon rainfall and the following DJFM 

NINO3.4.  

 

The phase relationship between DJFM NINO3.4 SST anomalies and 

Indian/Australian monsoon rainfall described above is summarized in Figure 

3.20 (only significant results are included). Based on the correlation analysis, 

SST anomalies in the Niño 3.4 region two seasons prior to Indian monsoon 

season appear to play some role in certain TBO transitions (Figure 3.20). The 

enhanced predictability of the Indian-Australian transition depends not only on 

the strength of the concurrent ENSO-Indian monsoon relationship (i.e. 

NINO3.4(0) and JJAS(0)) but also on the strength of the relationship between 

the Indian monsoon and ENSO activity prior to the Indian monsoon (i.e. 

NINO3.4(-1) and JJAS(0)). 

 

We now investigate how in-phase (double El Niño or double La Niña) or 

out-of-phase (El Niño to La Niña or La Niña to El Niño) ENSO transitions affect 

the TBO transitions. We define in-phase ENSO transitions as when the 

averaged DJFM NINO3.4 standardized SST anomalies are greater/lower than 

+1/-1 SD for 2 successive years, while the out-of-phase ENSO transitions as 

when the averaged DJFM NINO3.4 standardized SST anomalies transition 

from greater/lower than +1/-1 SD to lower/greater than -1/+1 SD. Then, we 



 

calculate the proportions of in-phase and out-of-phase ENSO transitions over 

the entire DJFM NINO3.4 SST time-series. The ratio difference is calculated by 

subtracting the proportion of in-phase ENSO transitions from that of 

out-of-phase. Thus, a negative ratio difference implies more out-of-phase 

ENSO transitions occur compared to in-phase ENSO transitions, while positive 

ratio difference implies more in-phase ENSO transitions occur.   

Figure 3.20 Schematic of the phase relationships between SST anomalies in NINO3.4 region 

and Indian/Australian monsoon rainfall drawn from Figure 3.19. Three parallel timeframes are 

used to represent the temporal relationship between ENSO, Indian summer monsoon and 

Australian summer monsoon. Double-headed arrows in corresponding colours show the 

transition where the relationship exists. The sign of (+)/(-) represents positive/negative 

correlation, and the squared correlation coefficient are represented as percentage. 

 

Figure 3.21 shows the enhanced predictability for the different transitions 

against the ratio difference of ENSO for individual CMIP5 models. We remove 

seven bad models that have unrealistic low correlations, compared to 

observations, between ENSO and Indian and Australian monsoon rainfall (i.e. 

less than 0.40 for JJAS-NINO3.4 and DJFM-NINO3.4, respectively, see Figure 

3.18). The seven bad models are CESM1-CAM5, INM-CM4, FGOALS-g2, 

FGOALS-s2, GISS-E2-H, GISS-E2-R and MIROC-ESM. Correlations between 

predictability and ratio difference are only significant for the Indian-Australian 

monsoon in-phase and Indian-Indian monsoon out-of-phase transitions (Figure 



 

3.21a & b), with the correlation magnitudes increasing after removal of the bad 

models. For Indian-Australian monsoon in-phase transition, models, which 

have a higher proportion of consecutive El Niño or La Niña events, tend to have 

higher predictability (although the correlation is only significant after removal of 

the “bad” models).  Particularly, for Indian-Indian monsoon out-of-phase 

transition, higher predictability tends to be associated with models that have 

more out-of-phase ENSO events. For the other two TBO transitions, the 

connection to the phase of ENSO is not that clear.  

Figure 3.21 The scatter plots of the ENSO ratio difference against the percentage of 

predictability from (a) Indian-Australian Transition, (b) Indian-Indian Transition, (c) 

Australian-Indian Transition and (d) Australian-Australian Transition. The ratio difference is the 

incidence of in-phase ENSO events minus that of out-of-phase ENSO events. In this figure, the 

in-phase events are defined as the averaged DJFM NINO3.4 standardized SST anomalies is 

continuously greater/lower than 1/-1 SD for 2 successive years, while the out-of-phase events 



 

are defined as the averaged DJFM NINO3.4 standardized SST anomalies transition from 

greater/lower than +1/-1 SD to lower/greater than -1/+1 SD. The orange/red lines show the 

best-fit regression before/after removing 7 bad models (shown in magenta dashed circles) that 

are unable to correctly simulate ENSO. The correlation coefficient is shown in each plot in 

corresponding orange/red with underscoring indicating the significant ones. 

3.3 Predictability of transitions in future projections 

A number of previous studies have indicated that monsoon characteristics are 

sensitive to the background state and Global warming. Lee and Wang [2012] 

investigated the global monsoon in the Representative Concentration Pathway 

RCP4.5 scenario and show that not only the monsoon domain but also 

monsoon duration will expend in the period of 2006-2100. Hu et al. [2000] 

investigated the Asian summer monsoon in a coupled model that is forced by 

increasing greenhouse gas and found the intensity and variability of Asian 

summer monsoon increased. They attributed such a change to the increasing 

corresponding SST variability in the tropical Pacific after the year of 2030. Fan 

et al. [2012] pointed out that the competing effects between convective latent 

heating and dry static stability are the possible influence on South Asian 

summer monsoon circulation when they examined the CMIP3 simulations 

responding to anthropogenic greenhouse gas. They also considered the 

change of ENSO as an important factor to modulate the monsoon circulation.  

 

As such in the final part of our study, we also examine whether robust changes 

in enhanced predictability can be detected in future projections, based on 22 

CMIP5 models under the RCP8.5 scenario (see Appendix Table A.3). For the 

purpose of comparison, we choose 50 years from the historical period of 

1956-2005 and corresponding RCP8.5 period of 2051-2100. We use the same 

Monte Carlo technique for examining transition predictabilities for the historical 



 

and future periods for both individual and concatenated ensemble members. 

Figure 3.22 shows differences of the predictability of four TBO transitions 

between historical records and corresponding RCP8.5 scenarios. Overall we 

find little evidence for any consistent future changes in predictability for any of 

the TBO transitions.  

Figure 3.22 Differences of predictability between 50-year historical records and corresponding 

RCP8.5 scenarios (RCP8.5 minus historical) for (a) Indian-Australian in-phase transition, (b) 

Indian-Indian out-of-phase transition, (c) Australian-Indian out-of-phase transition and (d) 

Australian-Australian out-of-phase transition. Red circles represent individual ensemble 

members, and green bars show concatenated ensemble members. 

 

For the Indian-Australian monsoon in-phase transition (Figure 3.22a), 13 out of 

22 models show increased projected predictability for concatenated ensemble 



 

members. For the models with large number of ensemble members, individual 

members show little consistency with projected increased and decrease in 

predictability (i.e. CSIRO-Mk3.6.0 and CanESM2). For the Indian-Indian 

monsoon out-of-phase transition (Figure 3.22b), there are 15 models showing 

increased projected predictability (based on concatenated ensemble members). 

CSIRO-Mk3.6.0 also shows a range of change of predictability for all ensemble 

members. For both Australian-Indian and Australian-Australian monsoon 

out-of-phase transitions (Figure 3.22c&d), 50% of models with increasing 

predictability in the projection. Models with multi-model ensemble members 

again show contrasting changes for individual ensemble members. 

Chapter 4. Conclusion 

This study examines the Indian-Australian summer monsoon system in four 

primary aspects:  

1) Characteristics of the monsoon transitions, in particular, the predictability 

associated with these transitions; 

2) Relationship between observed SST patterns and monsoon transitions; 

3) Fidelity of CMIP3 and CMIP5 models in simulating the mean states and 

seasonality of this system; 

4) Projected changes in the predictability of monsoon transitions  

4.1 Improvement of simulated monsoon seasonality 

from CMIP3 to CMIP5 

A necessary (but insufficient) condition for successful simulation of these 

transitions is some degree of realism in the simulation of the mean state and 

seasonality of the monsoons. We compared the seasonality of rainfall in 

land-only monsoon regions with that in the extended regions. For both 



 

observations and models, the extended Indian region exhibits lower regional 

averaged monsoon precipitation in JJAS. In the extended Australian monsoon 

region, seasonality is relatively weak with considerable rainfall even outside of 

the monsoon season. The Maritime Continent that is included in the extended 

Australian monsoon region serves as the “land bridge” along which the 

maximum convection migrates from the Indian summer monsoon to the 

Australian summer monsoon. Chang et al. [2005] show that the Maritime 

Continent south of 5°S has wet season during January and April, with 

approximately 10 mm/d rainfall rate. In addition, this region contains substantial 

ocean area, where there is almost constant rain at all times of the year.  

 

With respect to the simulated seasonality of rainfall in land-only monsoon 

regions, while all models produce at least some monsoon-like behaviour, there 

are very large spreads in average monsoonal rainfall in both CMIP3 and CMIP5 

models, ranging from 40% to 140% of the observed total for Indian rainfall and 

from 30% to 130% for Australian rainfall. Multi-model means of Indian 

maximum rainfall are 6 mm/d for both CMIP3 and CMIP5 models, which 

underestimates the observational maximum rainfall (7-9 mm/d, depending on 

the datasets considered), while the multi-model means of Australian maximum 

rainfall for both CMIP3 and CMIP5 models are inside of the observational 

maximum rainfall range from 6 to 9 mm/d. Most models successfully reproduce 

the timing of the monsoons although phase shifts of up to two months are seen 

in a few models. Overall, there is no obvious improvement in the average 

strength of monsoon rainfall from CMIP3 to CMIP5. However, the CMIP5 

models do show improved seasonality for both monsoons, in particular they are 

better at simulating the low levels of rainfall outside of the monsoon seasons. 



 

4.2 Predictability for the Indian-Australian monsoon 

in-phase transitions 

Using a Monte Carlo technique, we have presented the predictabilities 

associated with the four transitions that make up the Tropospheric Biennial 

Oscillation (TBO) for both land-only and extended monsoon regions. As the 

predictabilities calculated from extended monsoon regions are less clear for 

any TBO transitions, we mainly focus on predictability and the teleconnection of 

ENSO associated with the land-restricted regions. A significant enhanced 

predictability in the Indian-Australian transition is seen in all the 

observational/reanalysis produces with different periods ranging from 

approximately 13% to 28%. In particular, higher enhanced predictability is seen 

in the period of 1979-2008. The majority (13 of 24 CMIP3 and 20 of 30 CMIP5) 

models simulate significant enhanced predictability, with the ranges of 5%-30% 

for CMIP3 and 5%-15% for CMIP5 models. The results suggest that given the 

strength of the Indian monsoon we have approximately 10%-25% increased 

chance of correctly predicting whether the following Australian monsoon will be 

weaker or stronger than normal.  

 

When investigating the relationship between predictability in the 

Indian-Australian monsoon transition and ENSO, higher predictability appears 

when the Indian monsoon is strongly negatively correlated with the subsequent 

ENSO and also when the Australian monsoon has a strong negative 

simultaneous correlation with ENSO (Figure 3.19 & 3.20). In addition, higher 

predictability tends to be obtained from models with consecutive El Niño or La 

Niña events (Figure 3.21). The consecutive ENSO events before and after the 

Indian monsoon play some roles in the Indian-Australian monsoon in-phase 

transition. In particular, the Indian monsoon rainfall and subsequent peak of 



 

ENSO are highly negative correlated. The questions arise about how the SST 

anomalies in the central Pacific interact with Indian monsoon and facilitate the 

in-phase transition from Indian monsoon to Australian monsoon. Some 

previous studies revealed the negative correlation between Indian monsoon 

and ENSO after this Indian monsoon season and suggested that the Indian 

summer monsoon anomalies can influence the subsequent ENSO event (e.g. 

Yasunari [1990], Kirtman and Shukla [2000], Mokhov et al. [2011]). Such 

monsoon-to-ENSO influence is modulated by the anomalous surface winds 

caused by Indian anomalous monsoon over the central and eastern Pacific. 

However, some other studies argued that it is the SST anomalies in the tropical 

Pacific that provide certain “memory” from boreal summer (JJA) to boreal winter 

(DJF) and build up the in-phase transition from Indian summer monsoon to 

Australian summer monsoon (e.g. Yu and Janiga [2007]). Our results (see 

Figure 3.8) show that the SST anomalies in the Tropical Pacific start to become 

evident in the Indian monsoon season and persist to the Australian summer 

monsoon. However, before the Indian monsoon, no significant SST anomalies 

are shown in the tropical Pacific. During the Indian monsoon season, significant 

SST anomalies appear in the Pacific Ocean, which plays an important role in 

the onset of Indian monsoon. The Indian monsoon then might serve as a trigger 

to the subsequent anomalous ENSO [Kirtman and Shukla, 2000]. After the 

Indian monsoon season, some mechanisms help the persistent of SST 

anomalies until the Australian summer monsoon. Identifying the mechanisms of 

“memory” is beyond the scope of this study but is clearly important to our 

understanding of the impact of the SST anomalies in the tropical Pacific on the 

Indian-Australian monsoon in-phase transition. 

4.3 Predictability for other TBO transitions 

The enhanced predictability of ~8% for the Indian-Indian monsoon out-of-phase 



 

transition is only captured in the long-term observational datasets (AIR and 

GPCC). When investigating the influence of ENSO on this out-of-phase 

transition in CMIP5 models, we found that the models that have more 

out-of-phase ENSO transitions (i.e. El Niño followed the next year by La Niña or 

La Niña followed by El Niño) tend to have higher predictability (Figure 3.21). 

Fasullo [2004] used observational datasets to investigate biennial 

characteristics of Indian monsoon rainfall and also found that during the 

Indian-Indian monsoon out-of-phase transition the strong Indian monsoon 

tends to be accompanied by La Niña and the preceding years are often 

associated with El Niño. While some models indicate significant enhanced 

predictability, many models actually show significantly reduced negative 

predictability. This suggests that in many models a strong Indian monsoon will 

tend to be followed by another strong monsoon in the subsequent year 

(opposite to the observations). Negative predictability is also evident in many 

models for the Australian-Indian transition. Indeed many of the models show 

common behaviour. 

 

By splitting up observational rainfall dataset we find that some transitions are 

significant only over certain time periods. For example, the significant enhanced 

predictability of Australian-Australian monsoon out-of-phase transitions just 

appears in last 30 years. The Indian-Indian monsoon out-of-phase transitions 

experience a decreased predictability during the period of 1979-2007. There is 

no consistency in predictability of Australian-Indian monsoon out-of-phase 

transition across all observations during period of 1979-2007. For models with 

more than one ensemble members, individual ensemble members often show 

very different predictability for one transition. In some cases the sign of the 

enhanced predictability changes from member to member. This indicates a 

strong internal multi-decadal variability in the efficacy of the TBO transitions. 



 

Given that climate models suggest that certain characteristics of the monsoon 

will change with Global warming, we also investigated the changes of 

predictability of monsoon transitions in RCP8.5 scenario. However, no 

consistent increase or decrease on the predictability of the TBO transitions is 

shown in CMIP5 RCP8.5 scenario. One reason for this could be that the CGCM 

models fail to project consistent changes in ENSO [Collins et al., 2010], and 

ENSO life cycle is poorly simulated in CMIP5 [Bellenger et al. 2013, submitted].  

 

In summary, while there is reasonable agreement between the observed and 

simulated Indian-Australian monsoon in-phase transition, the other transitions 

have a wide variety of behaviour in both the observations and the climate 

models. The results of predictability for land-only regions have been 

summarised in Table 3.4. 

4.4 Future work 

A number of questions remain unanswered that will be the focus of future work. 

 Some of our results regarding the transition may relate to the definitions 

we have used. We would like to test the sensitivity of our results to 

different definitions, for example using the size of rainfall changes from 

one year to the next to select the relative strong or weak monsoons, 

rather than simply whether rainfall is anomalously positive or negative. 

 In this study, the ENSO events are based on classification of 

Ummenhofer et al.[2009] whose definition filtered out the C-P type ENSO. 

In the future work, we will take into account all types of ENSO to explore 

the influence of ENSO behaviour on monsoon transitions. 

 As shown in our results, ENSO characteristics in models can affect 

Australian-Indian and Indian-Indian monsoon transitions. Future work will 

try to determine why and how ENSO behaviour affects these two 



 

transitions but not the other monsoon transitions. 

 With respect to simulated predictability, by stratifying the models into 

those that show enhanced, average or reduced predictability we hope to 

identify common processes that lead to the success or failure of the 

various transition
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Appendix  

Table A.1 Classification of years when positive or negative Indian Ocean Dipole was 

concurrent with El Niño or La Niña based on a technique designed to highlight independent 

ENSO and IOD years (Ummenbofer et al., 2009). Also shown are years of no event. 

 

Table A.2 CMIP3 model I.D., available number of ensemble members and names of providing 

groups 

CMIP3 Model I.D. Ensemble 
Members Originating Group, Country 

bccr-bcm2.0 1 Bjerknes Centre for Climate Research, Norway  

cccma-cgcm3.1 5 Canadian Centre for Climate Modelling and Analysis, 
Canada cccma-cgcm3.1-t63 1 

cnrm-cm3 1 
Météo-France/Centre National de Recherches 
Météorologiques, France 

csiro-mk3.0 2 CSIRO Atmospheric Research, Australia 

 Negative IOD No event Positive IOD 

El Niño 1930 
1877, 1888, 1899, 1905, 1911, 
1914, 1918, 1925, 1940, 1941, 

1965, 1972, 1986, 1987 

1896, 1902, 1957, 
1963, 1982, 1991, 

1997 

No 
event 

1915, 1958, 1968, 
1974, 1980, 1985, 

1989, 1992 

1880, 1881, 1882, 1883, 1884, 
1895, 1898, 1900, 1901, 1904, 
1907, 1908, 1912, 1920, 1921, 
1927, 1929, 1931, 1932, 1934, 
1936, 1937, 1939, 1943, 1947, 
1948, 1951, 1952, 1953, 1959, 
1960, 1962, 1966, 1967, 1969, 
1971, 1976, 1977, 1979, 1983, 
1990, 1993, 1995, 2001, 2002, 

2003, 2005, 2006 

1885, 1887, 1891, 
1894, 1913, 1919, 
1923, 1926, 1935, 
1944, 1945, 1946, 
1961, 1994, 2004 

La Niña 
1906, 1909, 1916, 
1917, 1933, 1942, 

1975 

1878, 1879, 1886, 1889, 1890, 
1892, 1893, 1897, 1903, 1910, 
1922, 1924, 1928, 1938, 1949, 
1950, 1954, 1955, 1956, 1964, 
1970, 1973, 1978, 1981, 1984, 

1988, 1996, 1998, 2000 

1999 



csiro-mk3.5 1 

gfdl-cm2.0 1 US Dept. of Commerce/NOAA/Geophysical Fluid 
Dynamics Laboratory (GFDL), USA gfdl-cm2.1 3 

giss-aom 2 

NASA/Goddard Institute for Space Studies, USA giss-e-h 5 

giss-e-r 9 

iap-fgoals-g1.0 3 LASG/Institute of Atmospheric Physics, China 

ingv-echam4 1 Instituto Nazionale di Geofisica e Vulcanologia, Italy 

inm-cm3.0 1 Instituto Nazionale di Geofisica e Vulcanologia, Russia 

ipsl-cm4 1 Institut Pierre - Simon Laplace, France 

miroc3.2-hires 1 
Center for Climate System Research (The University 
of Tokyo), National Institute for Environmental Studies, 
and Frontier Research Center for Global Change 
(JAMSTEC), Japan 

miroc3.2-medres 3 

miub-echo-g 5 
Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of KMA, and Model 
and Data group, Germany/Korea 

mpi-echam5 3 Max Planck Institute for Meteorology, Germany 

mri-cgcm2.3.2a 5 Meteorological Research Institute, Japan 

ncar-ccsm3.0 8 National Center for Atmospheric Research (NCAR), 
USA ncar-pcm1 4 

ukmo-hadcm3 2 Hadley Centre for Climate Prediction and 
Research/Met Office, UK ukmo-hadgem1 2 

 

Table A.3 CMIP5 model I.D., available number of ensemble members for historical simulations 

(before slash) and RCP8.5 scenario (if applicable, after slash), and names of providing groups 

(* the CMIP5 models also available for the RCP8.5 scenario) 

CMIP5 model I.D. Ensemble 
Members Originating Group, Country 

*ACCESS1.0 1/1 
CSIRO and Bureau of Meteorology (BOM), Australia 

*ACCESS1.3 1/1 

*BCC-CSM1.1 3/1 
Beijing Climate Center, China Meteorological 
Administration, China 

*CCSM4 6/6 University of Miami – RSMAS, USA 

*CESM1-CAM5 3/3 
Community Earth System Model Contributors, USA 

*CESM1-WACCM 1/1 

*CNRM-CM5 10/5 
Centre National de Recherches Météorologiques / 
Centre Européen de Recherche et Formation 
CERFACS Avancée en Calcul Scientifique, France 



*CSIRO-Mk3.6.0 10/10 
CSIRO/Queensland Climate Change Centre of 
Excellence, Australia 

*CanESM2 5/5 
Canadian Centre for Climate Modelling and Analysis, 
Canada 

FGOAL-g2 3 
LASG, Institute of Atmospheric Physics, Chinese 
Academy of Sciences and CESS, Tsinghua 
University, China 

*FGOAL-s2 3/3 
LASG, Institute of Atmospheric Physics, Chinese 
Academy of Sciences, China 

*FIO-ESM 3/3 The First Institute of Oceanography, SOA, China 

*GFDL-CM3 5/1 

NOAA Geophysical Fluid Dynamics Laboratory, USA GFDL-ESM2G 3 

GFDL-ESM2M 1 

GISS-E2-H 5 
NASA Goddard Institute for Space Studies, USA 

*GISS-E2-R 4/1 

*HadGEM2-AO 1/1 
National Institute of Meteorological Research/Korea 
Meteorological Administration, Korea 

HadCM3 4 Met Office Hadley Centre (additional HadGEM2-ES 
realizations contributed by INPE), UK *HadGEM2-ES 3/1 

*INM-CM4 1/1 Institute for Numerical Mathematics, Russia  

IPSL-CM5A-LR 4 

Institut Pierre - Simon Laplace, France IPSL-CM5A-MR 1 

IPSL-CM5B-LR 1 

*MIROC5 3/1 Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine 
– Earth Science and Technology, Japan 

*MIROC-ESM 3/1 

*MPI-ESM-LR 3/1 Max Planck Institute for Meteorology, Germany  

*MRI-CGCM3 3/1 Meteorological Research Institute, Japan 

*NorESM1-M 3/1 
Norwegian Climate Centre, Norway 

*NorESM1-ME 1/1 
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[1] Characteristics of the Indian and Australian summer
monsoon systems, their seasonality and interactions are exam-
ined in a variety of observational datasets and in the Coupled
Model Intercomparison Project Phase 3 and 5 (CMIP3 and
CMIP5) climate models. In particular, it is examined whether
preferred monsoon transitions between the two regions and
from one year to another, that form parts of the Tropospheric
Biennial Oscillation, can lead to improved predictive skill.
An overall improvement in simulation of seasonality for both
monsoons is seen in CMIP5 over CMIP3, with most CMIP5
models correctly simulating very low rainfall rates outside of
the monsoon season. The predictability resulting from each
transition is quantified using a Monte Carlo technique. The
transition from strong/weak Indian monsoon to strong/weak
Australian monsoon shows �15% enhanced predictability
in the observations, in estimating whether the following
monsoon will be stronger/weaker than the climatology. Most
models also successfully simulate this transition. However,
enhanced predictability for other transitions is less clear.
Citation: Li, Y., N. C. Jourdain, A. S. Taschetto, C. C. Ummenhofer,
K. Ashok, and A. Sen Gupta (2012), Evaluation of monsoon season-
ality and the tropospheric biennial oscillation transitions in the
CMIP models, Geophys. Res. Lett., 39, L20713, doi:10.1029/
2012GL053322.

1. Introduction

[2] The Indian - Australian monsoon system affects approx-
imately one-fourth of the world’s population. As such, a
thorough understanding of the monsoon variability is of vital
importance for the population living in those areas. Both
Indian and Australian monsoons undergo large year-to-year
variations. Previous studies have suggested that this vari-
ability can be partly understood in terms of a quasi-biennial
oscillation, whereby a relatively strong Indian monsoon is
followed by a strong Australian monsoon half a year later and
relatively weak Indian monsoon in the subsequent year (and
vice versa) [Meehl, 1987]. This monsoonal see-saw is often
referred to as Tropospheric Biennial Oscillation (TBO)

[Meehl, 1997]. Large-scale atmospheric circulation change
and ocean-land temperature gradient are key ingredients of
the TBO, with modulation by remote modes of variability,
such as the El Niño-Southern Oscillation (ENSO) [Meehl
and Arblaster, 2002].
[3] Previous studies have examined the possible mechan-

isms for the TBO and the individual transitions that make up
the TBO. Meehl [1987] and Meehl and Arblaster [2002], for
example examine the Indian-Australian in-phase transition
when a strong (weak) Indian monsoon is followed by a
strong (weak) Australian monsoon. They show that a direct
forcing by ENSO tends to reinforce the transition, as an
El Niño (La Niña) tends to suppress (enhance) both mon-
soons. According to Wu [2008] however, this transition can
also occur independently of any ENSO influence via inter-
actions confined to the Indian Ocean and Maritime Conti-
nent. A number of complementary mechanisms have also
been proposed for the out-of-phase transition, i.e., from a
strong (weak) Australian monsoon to a weak (strong) Indian
monsoon. When the phase of ENSO changes just after an
Australian monsoon season, it can directly drive the out-of-
phase transition [e.g.,Meehl and Arblaster, 2002]. In another
mechanism, cool Indian Ocean SST anomalies resulting from
a combined strong Indian monsoon and La Niña conditions
may persist through to the next year to produce a weak Indian
monsoon [Meehl and Arblaster, 2002]. At the same time the
persistence of La Niña drives a strong Australian monsoon.
Thus we see a strong Australian monsoon followed by a weak
Indian monsoon, although the strong Australian monsoon
is not the cause of the Indian monsoon anomaly. Finally,
Wu [2009] also proposes a mechanism that is independent
of ENSO in which the Australian monsoon generates SST
anomalies in the north Indian Ocean, which in turn influence
the subsequent Indian monsoon. TBO-like variability has
been successfully reproduced in both simple box models
[e.g., Chang and Li, 2000] and coupled climate models
[Nanjundiah et al., 2005]. Previous studies have shown
considerable decadal variability in the presence of the TBO
(e.g., K. Ashok et al., Decadal changes in the relationship
between the Indian and Australian summer monsoons,
submitted to Climate Dynamics, 2012).
[4] Using a Monte Carlo sampling of observed monsoon

rainfall, Fasullo [2004] examined the Indian-Indian monsoon
transition. He found that the success of this transition
was highly dependent on the co-occurrence of ENSO events,
suggesting that ENSO-related mechanisms are a necessary
condition for the existence of a TBO. In this study we use a
similar approach to Fasullo [2004] to examine all monsoon
transitions in several observational products and in the CMIP3
and CMIP5 historical simulations. In particular, we quantify
the enhanced predictive skill, resulting from each of the
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transitions, i.e., the probability that the following monsoon
rainfall will be stronger or weaker than the climatological
average.

2. Methodology

[5] In order to examine Indian and Australian monsoon
variability, we define the Indian Monsoon Rainfall Index
(IMRI) and the Australian Monsoon Rainfall Index (AMRI).
The reference IMRI is based on mean JJAS (June to
September) All-Indian Monsoon Rainfall (AIR) computed
by Parthasarathy et al. [1995] (1871–2008, referred to as
IMRI-AIR, see Figure 1a). Other IMRIs are similarly defined
using other observational datasets (see below) for the shaded
area shown in Figure 1a. These indices differ from the
IMRI-AIR in that the Himalaya is entirely included in our
domain in order to be consistent with various coarse model
grids. The Australian Monsoon Rainfall Index (AMRI) is
defined as the mean DJFM (December to March) rainfall
anomaly over northern Australia (Figure 1a). In this paper,
the reference AMRI is derived from the high-quality daily
rainfall data from the Australian Water Availability Project
(AWAP) (1900–2007; resolution 0.1� � 0.1� [Jones et al.,

2009]) (referred to as AMRI-AWAP). In order to test the
sensitivity of our results to the choice of dataset, we also
calculate the IMRI and AMRI from two global gridded pre-
cipitation datasets: the Climate Prediction Center Merged
Analysis of Precipitation dataset (CMAP; resolution 2.5� �
2.5�; 1979–2008) [Xie and Arkin, 1996] and the Global
Precipitation Climatology Centre dataset (GPCC; resolution
1� � 1�; 1901–2010) [Rudolf et al., 2010]. The IMRI and
AMRI are also calculated for 24 CMIP3 models simulations
(20c3m experiment) covering approximately 1860–2000, and
for 23 CMIP5 simulations (historical experiment) covering
1850–2005 (some models contain more than one member).

3. Results

3.1. Seasonality

[6] For all three observed Indian rainfall datasets, the four
wettest months extend from June to September with maxi-
mum rainfall in July (Figure 2a). The CMIP models show a
range of behaviors. Eleven out of 24 CMIP3 models
(Figure 2a) and 11 out of 23 CMIP5 models (Figure 2c)
correctly simulate peak rainfall in July, with several models
with peak rainfall delayed by onemonth. Three CMIP3models
have large timing biases: the mpi_echam5 and csiro_mk3.5/ipsl-
cm4 peak two months early and late respectively. There is also
considerable spread in the amplitude of the seasonal cycle.
While rainfall in the peak monsoon month ranges from 7.2 to
9.1 mm/d across observations, both CMIP3 and CMIP5
models range from �3 to 10 mm/d. The multi-model means
(�1 standard deviation) for CMIP3 and CMIP5 models are
similar with a maximum of �6 � 2 mm/d in August, indi-
cating that in general the monsoon rainfall in the models is
too weak. For a few models (particularly for CMIP3), there
is too much rainfall outside of the monsoon season (e.g.,
cnrm_cm3 and inmcm3_0).
[7] Over Australia maximum observed rainfall occurs in

February, ranging between 5.9 to 8.6 mm/d across the three
observational datasets (Figure 2b) with most rainfall from
December to March. Again there is a considerable range in
monsoon strength across the models (2 to 11 mm/d),
although the multi-model means (7.5 � 3/7.0 � 3 mm/d for
CMIP3/CMIP5) lie within the observational range. The
giss_aom and ipsl_cm4 CMIP3 models have essentially no
monsoon season. Most CMIP3 and CMIP5 models simulate
maximum rainfall in the correct month with a few of models
peaking one month early and others with an overly long
rainy season (e.g., bccr_bcm2_0).
[8] In general, for both CMIP3 and CMIP5 and for both

regions the range in monsoon strength across the models is
about the same. However, there is a clear overall improve-
ment in the seasonality of both monsoons from CMIP3 to
CMIP5, with most CMIP5 models better simulating the
monsoon timing and very low rainfall rates outside of the
monsoon season.

3.2. TBO Transitions Assessment

[9] A Monte Carlo technique is used to assess the signifi-
cance of enhanced predictability associated with the TBO. In
particular we assess the success rate of the four transitions
that are thought to be important for the TBO tendency start-
ing from a given year t: (1) Successful Indian-Indian out-of-
phase transition is defined as IMRI(t) > 0 and IMRI(t + 1) < 0
or IMRI(t) < 0 and IMRI(t + 1) > 0; (2) Successful Australian-

Figure 1. (a) The map showing the continental Indian and
Australian monsoon regions (shaded) used to calculated the
IMRI and AMRI, and the extended monsoon regions (boxes:
5�N–40�N, 60�E–100�E and 20�S–5�N, 100�E–150�E),
including the ocean based on Meehl and Arblaster [2002].
(b) The IMRI-AIR is the anomaly derived from average
JJAS rainfall over the Indian subcontinent, and (c) the
AMRI-AWAP is the anomaly averaged from DJFM rain-
fall over North Australia. Red/blue circles in Figures 1b
and 1c represent the successful positive/negative transition
years, respectively, relating to Indian-Indian and Australian-
Australian transitions.
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Australian out-of-phase transition is defined as AMRI(t) > 0
and AMRI(t + 1) < 0 or AMRI(t) < 0 and AMRI(t + 1) > 0;
(3) Successful Indian-Australian in-phase transition is defined
as IMRI(t) > 0 andAMRI(t) > 0 or IMRI(t) < 0 andAMRI(t) < 0;
and, (4) Successful Australian-Indian out-of-phase transition
is defined as AMRI(t) > 0 and IMRI(t + 1) < 0 or AMRI(t) < 0
and IMRI(t + 1) > 0.
[10] To determine the observed predictability associated

with a given transition, we count the number of successful
transitions in the timeseries (Figures 1b and 1c), relative to the
total number of possible successful transitions. This is then
repeated 100,000 times by randomly resampling the observed
timeseries (with replacement). The predictability of the mon-
soon resulting from a given transition is considered enhanced
if the observed or simulated percentage of successful transi-
tions is significantly higher than the median of the randomized
distribution. Moreover, the enhanced predictability is con-
sidered significant if the observed or simulated percentage of

successful transitions lies in the upper decile of the random-
ized distributions (i.e., there is only a 10% probability of
getting the enhanced predictability by chance).
[11] In the IMRI-AIR and AMRI-AWAP, only two of the

four transitions show a significantly enhanced predictability
over the random distribution: the Indian-Indian out-of-phase
transition and the Indian-Australian in-phase transition,
where the enhanced predictability from the median is 8.8%
(p � 0.1) and �15% (p � 0.001), respectively (Figure S1 in
the auxiliary material).1 This means that if the Indian mon-
soon is anomalously strong (weak) in a given year there is a
�59% probability that the subsequent Indian monsoon will
be anomalously weak (strong) and a �65% probability that
the subsequent Australian monsoon will be anomalously
strong (weak).

Figure 2. Seasonal cycle of the (a, c) Indian and (b, d) Australian land-restricted rainfall for observed and CMIP3 (Figures 2a
and 2b) and CMIP5 (Figures 2c and 2d) models over. Models (names in black) and observations (names in red) are sorted
according to the average monsoon rainfall amount (JJAS rainfall for Indian monsoon and DJFM rainfall for Australian mon-
soon). The top row shows the multi-model mean (names in blue) of CMIP3 or CMIP5 models for Indian and Australian rain-
fall. Internal numbers show the maximum rainfall (mm/d) in the month of greatest rainfall.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL053322.
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[12] To test the sensitivity of these results to the datasets,
we compute predictability based on different datasets and
time periods: CMAP (1979–2008) and GPCC (1901–2010)
over the same spatial land areas (Figure 1a). Indices from
both datasets show significant enhanced predictability (p �
0.1) of 27.6% and 13.8%, respectively, for the Indian to
Australian transition. However, for the Indian-Indian out-of-
phase transition, only GPCC shows an enhanced predict-
ability of 6.4% (p � 0.12). Given the relative shortness of
the CMAP datasets, the lack of significant results might arise
from multi-decadal variability of the TBO. To examine this,
we divided the IMRI-AIR into a CMAP-like period (1979–
2008) and pre-CMAP period (1871–1978). The pre-CMAP
period shows significantly enhanced predictability (10.3%,
p � 0.1). The predictability for over the later CMAP-like
period is not significant. This suggests that the biennial
tendency for the Indian-Indian out-of-phase transition has
deceased in the past 30-yrs, consistent with the recent
weakening of the El Niño-Indian monsoon relationship
[Ummenhofer et al., 2011; Meehl and Arblaster, 2011].
[13] Figure 3 shows the enhanced predictability for the

different observational datasets and selected CMIP3 and
CMIP5models for the four transitions. We only showmodels
for which at least one ensemble member shows a signifi-
cantly enhanced predictability in any of the transitions.
Twelve CMIP3 and 15 CMIP5 models have at least one
ensemble member with significantly enhanced predictability
for the Indian-Australian in-phase transition (Figure 3a),
consistent with the observations. For the CMIP5 models the
range of enhanced predictability is relatively small (5%–
15%, for significant results only). As such the models gen-
erally underestimate the observed enhanced predictability of
�15%. For the CMIP3 models the range is larger (5–35%).
For the models with multiple ensemble members, many show
contrasting results for different members, indicating a sub-
stantial multi-decadal variability in the efficacy of this tran-
sition. Nevertheless, when considering concatenated ensemble
members, the Indian- Australian transition has enhanced
predictability in 11 of 24 (14 of 23) CMIP3 (CMIP5) models.
[14] As noted above, the only other transition that provides

significantly enhanced predictability using the long-term ref-
erence observations is the Indian-Indian out-of-phase transi-
tion, although it is mostly associated with the earlier part of the
record (see discussion above). For this transition (Figure 3b),
seven CMIP3 and five CMIP5 models show enhanced
predictability for at least one ensemble member. In the
case of models with multiple ensemble members, only a small
number of members are significant (e.g., CNRM_CM5,
GISS_E2_H and NorESM_M). As such, only four CMIP3
and two CMIP5 models show enhanced predictability
when considering the multi-ensemble concatenation for each
model.
[15] For the Australian-Indian out-of-phase transition

(Figure 3c), one of the longer observational timeseries suggests
a multi-decadal period when there was enhanced predictability
associated with this transition. Five CMIP3 and only one
CMIP5 models have ensemble members with significantly
enhanced predictability, despite conflicting results within
each ensemble set. Surprisingly, a large number of models
actually show significant negative predictability, in particular
when considering concatenated ensemble members. Negative
predictability suggests that a strong (weak) Australian mon-
soon would tend to be followed by a strong (weak) Indian

monsoon. Such behavior is not found in the observations,
and might be related to bias in the simulated ENSO sea-
sonal cycle, e.g., where La Niña events tend to persists too
long this would lead to a strong Australian monsoon fol-
lowed by a strong Indian monsoon (N. C. Jourdain et al.,
The Indo-Australian monsoon and its relationship to ENSO
and IOD in reanalysis data and the CMIP3/CMIP5 simu-
lations, submitted to Climate Dynamics, 2012). Finally for
the Australian-Australian out-of-phase transition (Figure 3d),
for which there is no observational evidence of enhanced
predictability, eight of the CMIP3 and five of the CMIP5
models have ensemble members with significantly
enhanced predictability.
[16] While the impacts of the monsoon are primarily over

land, the teleconnections associated with global modes of
variability can involve larger domains. To assess the effect
of the monsoon in a larger context, we also derived similar
rainfall indices over extended Indian and Australian regions
(including the oceanic regions, Figure 1a, see methods) used
in previous analysis of the TBO [e.g., Meehl and Arblaster,
2002]. Applying the Monte Carlo analysis to these indices
for both CMIP3 and CMIP5 models, we find that for the
Indian-Australian transition, most models show significant
enhanced predictability independent of the index definition
(Figure S2). For the other transitions there is little consistency
with regards to predictability across the models. For the
Australian-Indian transition, fewer models show the negative
predictability seen with the land-only based indices. In addi-
tion for the Australian-Australian transition there are more
CMIP3 models that exhibit enhanced predictability using the
more inclusive index. As such, overall we do not find that
the sequence of events that combine to make up the TBO is
more obvious when examining a larger land-ocean area.

4. Conclusion

[17] This study examines the fidelity of climate models in
simulating the mean state and seasonality of the Indian and
Australian monsoons and the various transitions that play a
role in the TBO. While almost all models produce at least
some monsoon-like behavior, there are very large spreads in
maximum monthly rainfall: 33% to 110% (50% to 170%) of
the AIR/AWAP observational dataset for Indian (Australian)
rainfall. The multi-model means of Indian maximum rainfall
are underestimated for both CMIP3 and CMIP5 models
(6 � 2 mm/d as compared to 7–9 mm/d), while multi-model
means of Australian maximum rainfall are within the observed
range (6–9 mm/d). Most models successfully reproduce the
timing of the monsoons although phase shifts of up to 2
months are evident in a few models. Overall, while there is no
obvious improvement in the average summermonsoon rainfall
from CMIP3 to CMIP5, in general, the CMIP5 models do
show improved seasonality for both monsoons.
[18] In the observations and in the majority of the models

(13 of 24 CMIP3 and 15 of 23 CMIP5), we find significantly
enhanced predictability in the Indian-Australian in-phase
transition. The observations suggest that given the strength of
the Indian monsoon we have a �65% chance of correctly
estimating whether the following Australian monsoon will be
weaker or stronger than normal. The enhanced predictability
in CMIPmodels is probably related to the fact that the models
correctly reproduce an ENSO-monsoon link, such that an
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El Niño (La Niña) is associated with both a weak (strong)
Indian and Australian monsoon [Webster et al., 1998].
[19] The Indian-Indian out-of-phase transition is only

significant in the long AIR dataset, providing enhanced
predictability of �8% (Figure 3b), however it varies over
certain time periods. For CMIP3 and CMIP5 models with

multiple ensemble members, only some of the ensemble
members show successful transitions. This suggests a high-
degree of multi-decadal variability in this transition. This is
consistent with previous studies looking at the observa-
tional records [e.g., Fasullo, 2004; Meehl and Arblaster,
2011]. While some models indicate significantly enhanced

Figure 3. Percentage enhanced predictability for the (a) Indian-Australian, (b) Indian-Indian, (c) Australian-Indian and
(d) Australian-Australian transitions for observations and CMIP3 and CMIP5 models for which at least one ensemble mem-
ber for that model and for at least one of the transitions shows a significant increase in predictability. Circles represent indi-
vidual ensemble members (marked in red are significant, p < 0.1). Bars represent the multi-ensemble mean percentage
enhanced predictability for each model with yellow indicating significant changes. The multi-ensemble mean predictability
was calculated by concatenating time series for all ensemble members prior to Monte Carlo resampling.
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predictability, many models actually show significantly
reduced predictability for the Indian-Indian and Australian-
Indian out-of-phase transitions. Future work will examine
the reasons behind these inter-model differences.
[20] In summary, this study examines four different TBO

transitions, for which a number of different mechanisms
have been proposed [e.g., Meehl and Arblaster, 2002]. Our
study demonstrates that while for both observations and
models the India-Australia link seems to be robust, the other
transitions are both dataset and time period dependent, with
a range of contrasting behaviors exhibited in the climate
models. In particular there seems to be little evidence that
the Australian monsoon can directly influence the subse-
quent Indian monsoon.
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Abstract
The role of leading modes of Indo-Pacific climate variability is investigated for modulation of
the strength of the Indian summer monsoon during the period 1877–2006. In particular, the
effect of Indian Ocean conditions on the relationship between the El Niño–Southern Oscillation
(ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and
Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded
previous interannual work to show that variations in Indian Ocean conditions modulate the
ENSO–Indian monsoon relationship also on decadal timescales. El Niño events are frequently
accompanied by a significantly reduced Indian monsoon and widespread drought conditions due
to anomalous subsidence associated with a shift in the descending branch of the zonal Walker
circulation. However, for El Niño events that co-occur with positive IOD (pIOD) events, Indian
Ocean conditions act to counter El Niño’s drought-inducing subsidence by enhancing moisture
convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal
modulations of the frequency of independent and combined El Niño and pIOD events are
consistent with a strengthened El Niño–Indian monsoon relationship observed at the start of the
20th century and the apparent recent weakening of the El Niño–Indian monsoon relationship.

Keywords: climate variability, Indian monsoon, drought, decadal variability, El Nino–Southern
Oscillation, Indian Ocean dipole

1. Introduction

Indian monsoon variability is intricately linked to Pacific
Ocean conditions, in particular the El Niño–Southern
Oscillation (ENSO). In fact, failure of the Indian monsoon
and ensuing droughts and famines at the turn of the 20th
century led to the discovery of ENSO by Sir Gilbert Walker.
When looking for atmospheric precursors to predict the
strength of the Indian monsoon in the 1920s, he identified
and recognized the importance of the Southern Oscillation [1,
and references therein]. Indian monsoon rainfall is negatively
correlated with sea surface temperatures (SST) in the central
and eastern equatorial Pacific, with El Niño events generally
accompanying a weakening of the Indian summer monsoon

(i.e., June–September; JJAS). The teleconnection from the
tropical Pacific to India is due to anomalous subsidence,
associated with changes in the zonal Walker circulation,
occurring over the Indian subcontinent during El Niño
events [2, and references therein].

However, the relationship between El Niño events and
the strength of the Indian monsoon is far from perfect,
nor is it stationary in time. While generally accounting
for 30% of interannual Indian monsoon rainfall variability,
ENSO’s impact on the Indian monsoon varies on decadal
timescales [1]. Furthermore, [3] reports a weakening of the
relationship between the Indian monsoon and ENSO over
recent decades. The authors link this to a southeastward shift
of the subsiding branch of the anomalous Walker circulation

1748-9326/11/034006+08$33.00 © 2011 IOP Publishing Ltd Printed in the UK1
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during recent El Niño events, which allows for normal
monsoon development. It has been suggested that the change
in the ENSO teleconnection to the Indian monsoon is due to
enhanced warming of the Eurasian continent and an amplified
land–sea temperature gradient that favours a strengthened
Indian monsoon [3]. Alternatively, recent changes in the
characteristics of El Niño events have been used to explain
the complex ENSO–Indian monsoon relationship. In [2] the
authors found that the location of maximum warming along
the equatorial Pacific during El Niño events seems to be
key for understanding whether drought-producing subsidence
occurs over the Indian subcontinent with subsequent monsoon
failure: enhanced SST in the central tropical Pacific, rather
than the eastern Pacific, more effectively reduces Indian
monsoon rainfall. Such modulation of ENSO teleconnections
is particularly noteworthy, as the location of maximum El Niño
warming has been occurring more frequently in the central
Pacific in recent decades [4].

Apart from remote forcing from the Pacific Ocean, SST
from the adjacent Indian Ocean also exerts a considerable
influence on Indian monsoon variability [5, for example, and
references therein]. Pacific and Indian Ocean variability is
intricately linked, as manifest in the frequent co-occurrence of
ENSO events with the Indian Ocean’s tropical mode of climate
variability, the Indian Ocean dipole (IOD) [6, 7]. Several
studies [8–10] have explored how the Indian Ocean modulates
the ENSO–Indian monsoon teleconnection.

Using the atmospheric general circulation model (AGCM)
experiments forced with composite SST anomalies during
independent and co-occurring El Niño and positive IOD
(pIOD) events, [9] demonstrated that a coincident pIOD
event counteracted the monsoon reduction expected from
the El Niño-related anomalous subsidence over the Indian
subcontinent due to anomalous convergent flow enhancing
monsoonal rainfall over the region. Similarly, [10] described
negative zonal wind anomalies in the equatorial Indian
Ocean related to pIOD events to be associated with above-
average monsoon rainfall, despite simultaneous El Niño events
occurring. Focusing on conditions early in the Indian monsoon
season, [11] found that in some combined pIOD and El Niño
years drought may still occur during July (although the rest of
the monsoon season returned to more normal rainfall levels).
The authors suggested that the occurrence of such a July
drought depends upon the timing of the onset of the pIOD,
which acts to offset an El Niño-related deficiency in monsoon
rainfall during subsequent months. In contrast, analysis by [12]
using an index, which combines both ENSO and atmospheric
variability in the Indian Ocean basin, found a reinforcing effect
of Indian and Pacific Ocean variability on the strength of the
Indian summer monsoon for the period 1958–2003.

Recent changes in the Asian monsoon have been reported
[13, for example, and references therein] and climate model
projections demonstrate the sensitivity of the monsoon to a
warming climate. Observed trends in the Indian monsoon have
been linked to atmospheric circulation changes associated with
low-level divergence and the Somali Jet [13], observed changes
in land-use and agricultural intensification [14], and aerosols
inducing changes in radiative forcing and in the local Hadley

circulation [15, and references therein], amongst others. Here,
we look at how Indo-Pacific conditions have impacted the
Indian monsoon over the last 130 years. Over recent decades,
non-uniform warming of Indian Ocean temperatures has been
reported [16, for example, and references therein], with the
eastern Indian Ocean warming less than the west. Consistent
with this pIOD-like trend, increasing frequencies of pIOD
events have been found in 20th century observations [17].
Given these Indian Ocean trends, the question arises whether a
recent weakening of the ENSO–Indian monsoon relationship
is in fact driven by changes in ENSO characteristics [2]
or in the land–sea temperature contrast [3], or whether
increased co-occurrence of pIOD events with El Niño events
might be sufficient to explain the weakening relationship.
The latter hypothesis is explored here and offers a novel
explanation for long-term variations in the ENSO–Indian
monsoon teleconnection over the last 130 years due to decadal
Indo-Pacific variability.

Drought can have major societal effects over the Indian
subcontinent. However, it is subsurface water deficits,
more than rainfall itself, that exert stress on agriculture
and natural ecosystems. This highlights the importance
of focusing on (sub)surface water availability to assess
societal impacts associated with drought [18]. The Palmer
drought severity index (PDSI), used here as an indicator of
drought severity, combines information from both rainfall
and surface temperature variability and thus provides an
integrative measure of water availability within the ground,
being highly correlated with subsurface soil moisture and
streamflow conditions [19]. In a review of drought indices,
the PDSI has been described to be only of limited use as
a short-term monitoring tool for assessing moisture changes
on the timescale of several weeks, with questions remaining
about its utility in extremely seasonal climates dominated by
monsoon dynamics [20, and references therein]. However,
the PDSI is used widely and successfully for reconstructing
annually resolved drought conditions associated with the
summer monsoon across Southeast Asia [21, for example,
and references therein], including India. This suggests that it
can offer useful insights into the region’s drought conditions
associated with Indo-Pacific climate variability across the
timescales investigated here.

We expand here on past work [8, 9, in particular] to assess
Indian monsoon variability, as well as drought conditions
there, during independent and combined pIOD and El Niño
events, using a recent classification for ENSO and IOD events
over the last 130 years [22, 23]. In particular, decadal
modulation of the ENSO–Indian monsoon relationship by
Indian Ocean conditions is explored. Thus, our focus on the
multi-decadal timescale bridges previous work on interannual
variability [8, 9, 12, 10] and recent trends [2, 3]. We also
examine how the Indian monsoon variation is linked to large-
scale climate anomalies across the Indo-Pacific region.

2. Observations and reanalysis products

For observed Indian precipitation, we use monthly data from
the Indian regional/subdivisional monthly rainfall data set by
the Indian Institute of Tropical Meteorology [24]. The analyses
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Figure 1. Rainfall anomalies (mm month−1) for the different ENSO/IOD categories for the core Indian monsoon region (see map inset;
definition according to IITM; http://www.tropmet.res.in/IITM/region-maps.html) during the June–September months for the period
1877–2006: (a) rainfall anomalies shown as dots for El Niño (blue), co-occurring El Niño and pIOD (green), and pIOD (red) events. The
colored boxes are delimited by the upper and lower quartiles, with the middle bar denoting the median rainfall in the respective category.
Dashed lines indicate the 90% confidence level (as estimated by Monte Carlo testing) for the medians for the different categories (indicated in
color), with only the lower threshold shown for the El Niño and co-occurring El Niño with pIOD events and the upper threshold for pIOD
events. The number of years (N) in each category is indicated at the top. (b) Time-series of rainfall anomalies with the associated ENSO/IOD
categories indicated in color.

here focus on the Indian core monsoon region (see highlighted
region in figure 1(a)) for the period 1877–2006 during the
summer monsoon (JJAS). To explore the relationship between

Indian monsoon variability and the large-scale circulation
associated with ENSO and the IOD we use the classification
based on [22], which has been more recently updated in [23].
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To investigate large-scale conditions during ENSO/IOD
events atmospheric circulation anomalies are assessed with the
National Center for Environmental Prediction and the National
Center for Atmospheric Research reanalysis (NNR) [25].
Monthly data was used for the period 1948–2006, though all
analyses were checked for robustness by using the shorter
period 1957–2006 with improved data quality. In addition,
rainfall composites were also examined with the Climate
Prediction Center Merged Analysis of Precipitation (CMAP)
data (1979–2006) [26]. For winds, the 20th century NNR
product [27] was also used for the period 1877–2006. SST are
taken from the HadISST gridded data set for the period 1877–
2006 [28], and the drought index is based on the gridded Dai
PDSI for the period 1877–2005 [19]. Given the limitations
in the PDSI as a short-term monitoring tool [20], future
work could also incorporate more responsive drought indices.
Here, however, we are mainly interested in variations of
the Indian summer monsoon on multi-decadal timescales, for
which the PDSI is suitable and has successfully been applied
previously [21, and references therein]. All figures present
the analysis with the longest record available to maximize the
number of events in the respective categories.

3. Monsoon variability in relation to El Niño and
pIOD events

For the Indian core monsoon region (inset figure 1(a)), rainfall
anomalies during the summer monsoon (JJAS) for the period
1877–2006 are investigated. To assess the influence of the
dominant Indo-Pacific modes of climate variability, anomalous
rainfall during El Niño, pIOD, and co-occurring El Niño
with pIOD events is presented (figure 1(a)). During El Niño
events, median rainfall was significantly reduced by close to
600 mm month−1. Only two El Niño events recorded weakly
positive rainfall anomalies, while in excess of 85% of El
Niño events showed anomalous dry conditions. More than
20% of El Niño events recorded rainfall deficits in excess of
800 mm month−1. In contrast, El Niño events that co-occurred
with a pIOD generally experienced normal rainfall conditions
during the summer monsoon. Significantly enhanced rainfall
with a median of 300 mm month−1 was recorded for ‘pure’
pIOD events.

A time-series of summer monsoon rainfall between 1877
and 2006, with the different ENSO/IOD events highlighted,
confirms these results (figure 1(b)): the majority of ‘pure’ El
Niño events coincided with large deficits in Indian monsoonal
rainfall, while ‘pure’ pIOD events were generally associated
with anomalous wet conditions. Co-occurring El Niño and
pIOD years showed normal levels of rainfall. Severe monsoon
failures during El Niño events occurred between 1899 and
1925 (figure 1(b)). In contrast, the period 1926–64 only
experienced two El Niño events, one of which was associated
with a large deficit in monsoonal rainfall, while a similarly
dry year (1920) occurred independent of ENSO or IOD
events. During this same period, several consecutive pIOD
events coincided with anomalous wet conditions for the Indian
core monsoon region. These results highlight the presence

Table 1. Number of independent and combined El Niño and pIOD
events and mean JJAS Indian monsoon rainfall (in mm), ±1 standard
deviation (SD) during four separate multi-decadal periods of the
observational record. Bold type numbers indicate values that are
significant at the 90% confidence level for the number of events and
at the 75% confidence level for rainfall, based on Monte Carlo
analyses. Over the period 1877–2006, mean JJAS rainfall was
2200 mm, with an SD of 356 mm.

Number of events

EN and pIOD EN pIOD Rainfall (±1 SD)
1877–1910 2 4 4 2202 (±387)
1911–42 0 6 5 2173 (±374)
1943–74 2 2 4 2267 (±352)
1975–2006 3 2 2 2155 (±310)

of considerable decadal variability across the tropical Indo-
Pacific region [29, for example].

Given the decadal modulation in the tropical Indo-Pacific
modes of variability, it is of interest to explore whether this
contributes to modulations in the strength of the ENSO–
Indian monsoon relationship. Table 1 presents the number of
independent and co-occurring El Niño and pIOD events over
the last 130 years during four multi-decadal periods, as well as
mean JJAS Indian monsoon rainfall and its standard deviation
over the four periods. Using a Monte Carlo test, random multi-
decadal periods are compared with these four observed periods.
This was repeated 25 000 times to determine whether the
numbers of El Niño and pIOD events (mean rainfall) recorded
in each multi-decadal period were unusual. Despite obtaining
some statistically significant results, we would still caution that
the analysis relies on relatively few events.

Over the last three decades, there were three incidents
of co-occurring pIOD and El Niño events, while only
two independent El Niño and pIOD events each occurred
(table 1). This indicates a significantly enhanced occurrence of
combined events during this period and a significantly reduced
incidence in the number of independent events. The latter
contributes to the lowest standard deviation (SD; 310 mm) in
mean rainfall recorded for any of the four periods (table 1).
The period 1943–74 is characterized by a significant reduction
in El Niño, but with twice as many pIOD events. This is
manifest as a significantly increased mean JJAS rainfall. The
two earlier periods do not show significant anomalies in mean
rainfall, most likely due to a compensating increase in the
frequency of wet pIOD and dry El Niño events, as reflected
in the high SD. During the period 1911–42, six independent
El Niño events occurred and remarkably no combined event.
This is unprecedented during any part of the 130 year record.
The period without any single co-occurring El Niño and pIOD
event actually extends from 1903 to 1956 (cf figure 1(b)). This
is in marked contrast to the latter half of the historical record,
when 5 combined events have occurred post-1957. Multi-
decadal Indian Ocean variability, as manifest in the frequency
of IOD events, could potentially play an important role in
controlling the Indian monsoon through modulation of the
ENSO–Indian monsoon relationship.
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Figure 2. Composite PDSI anomalies during (a) El Niño, (b) combined El Niño and pIOD, and (c) pIOD events averaged for the
June–September months for the period 1877–2005. Only anomalies are shown that are significant at the 80% confidence level as estimated by
a two-tailed t-test. (d) Time-series of PDSI anomalies spatially averaged over the core monsoon region (black box in (a) indicated) with the
associated ENSO/IOD categories indicated in color.

4. Drought variability in relation to El Niño and
pIOD events

Composites of PDSI for El Niño, pIOD, and co-occurring
events highlight the distinct impacts of the two modes on
drought across the Indian subcontinent (figures 2(a)–(c)).
During El Niño events, much of India suffers drought
conditions (figure 2(a)). This is particularly apparent in
the centre and northwest regions that make up the core
monsoon region (cf inset figure 1(a)): PDSI values are
in excess of −3 indicating severe drought conditions. In
contrast, no consistent large-scale features in drought incidence
are observed during co-occurring El Niño and pIOD events
(figure 2(b)). Anomalous wet conditions with a PDSI in excess
of +2 are found during pIOD events for the northern half of
the Indian subcontinent (figure 2(c)).

The PDSI time-series spatially averaged over the Indian
core monsoon region (see box in figure 2(a)) for the period
1877–2006 shows that more than 85% of El Niño events were
associated with negative PDSI values (figure 2(d)). About 50%
of El Niño events were associated with very severe drought
conditions, while more than 60% of pIOD events had PDSI
values in excess of +1. Decadal variability in the PDSI time-
series related to changes in the numbers of ENSO and IOD
events matches that seen from the rainfall time-series (cf table 1
and figure 1).

5. Climate conditions during El Niño and pIOD
events

For a better understanding of the contrasting rainfall and
drought responses associated with the different mode phases,
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Figure 3. Composite anomalies during (left) El Niño, (middle) combined El Niño and pIOD, and (right) pIOD events averaged for the
June–September months for (a)–(c) SST (◦C), (d)–(f) 850 hPa velocity potential χ (m2 s−1), (g)–(i) 850 hPa winds (m s−1), and (j)–(l) rainfall
(mm month−1). Anomalies for χ and rainfall are based on the period 1948–2006, SST and winds on 1877–2006. The number of members
(N) in each category is indicated. The area enclosed by the dashed contours and the black arrows denote anomalies that are significant as
estimated by a two-tailed t-test at the following confidence levels: 90% for SST and χ , and 80% for winds and rainfall.

the anomalous large-scale circulation features across the Indo-
Pacific region are explored for El Niño, pIOD, and the co-
occurrence of these events (figure 3). For the three respective
event categories, composite anomalies are shown for SST,
velocity potential χ , winds, and rainfall. A higher number
of events in the composites exist for SST and winds, as
the analysis is over the 1877–2006 period, while the shorter
period 1948–2006 is used for the other variables due to the
constraints in data availability (cf section 2). The larger spatial
extent of significant anomalies in figures 3(a)–(c) and (g)–
(i) can largely be attributed to this fact. The winds are
presented at the 850 hPa level, which is well suited to the
study of monsoon dynamics [30]. Velocity potential, which

provides an indication of subsidence associated with the large-
scale circulation, is shown at the same level for consistency.
Anomalies in the velocity potential at 200 hPa (figure not
shown) highlight a comparable pattern, but of opposite sign,
confirming the low-level results.

Pure El Niño events are characterized by warm SST
anomalies, exceeding 1.5 ◦C, in the eastern equatorial Pacific,
surrounded by cold anomalies in the classical ‘horseshoe’
pattern in the subtropics and western tropical Pacific
(figure 3(a)). In the Indian Ocean, warm (cold) SST anomalies
are observed in the western (eastern) tropical region. The
cold SST anomalies in the eastern Indian Ocean are mainly
located off the northwest shelf of Australia, south of the
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IOD eastern pole of [6]. The velocity potential shows
anomalous rising motion over the eastern Pacific, while
anomalous subsidence occurs over the western Pacific warm
pool region, the Maritime Continent, and the Australian region
(figure 3(d)). In addition, an anticyclonic anomaly associated
with anomalous subsidence is also observed over the Indian
subcontinent extending west across the Indian Ocean towards
East Africa. The regional winds at 850 hPa are consistent
with the anomalous subsidence over India, with easterly
anomalies over the Arabian Sea (5◦–20◦N) extending from
India to the East African coastline (figure 3(g)). The easterly
wind anomalies represent a weakening of the moisture-bearing
onshore westerlies during the Indian summer monsoon, and
this is consistent with the anomalous dry conditions during El
Niño years (figure 3(j)).

For pIOD events, the cold SST anomalies around the
Maritime Continent dominate (figure 3(b)) due to enhanced
upwelling and southeasterly anomalies in the equatorial eastern
Indian Ocean (figure 3(i)). There is a suggestion of moderate
anomalous subsidence over the Australian region, flanked
by two regions of anomalous ascent over eastern Africa
and the central Pacific (figure 3(f)), however, the values are
not statistically significant. Significantly enhanced westerly
winds are, however, observed over the northern Indian
Ocean, including the Arabian Sea, Bay of Bengal, and India
(figure 3(i)), accounting for anomalous wet conditions across
western India and the core monsoon region during pIOD events
(figure 3(l)).

During co-occurring El Niño and pIOD years, the warm
equatorial SST anomalies in the eastern Pacific are enhanced
relative to pure El Niño events (cf figures 3(a) and (b)).
The cold anomalies are clearly apparent in the eastern
tropical Indian Ocean, around the Maritime Continent, and
western Pacific warm pool region (figure 3(b)), while only
a localized area of above-average SST can be seen to the
west of the Indian subcontinent. Consistent with the SST
anomaly pattern, anomalous ascending motion is observed
over the eastern Pacific. Anomalous subsidence dominates
across the western Pacific and eastern Indian Ocean, with the
centre of subsidence located over the Maritime Continent and
India at the western edge of the anomalous vertical motion
(figure 3(e)). Consequently over India, the winds at 850 hPa do
not show any significant changes during co-occurring El Niño
and pIOD events (figure 3(h)), nor are there any significant
rainfall anomalies except in a few very localized regions
(figure 3(k)).

6. Discussion and conclusions

We have assessed the impact of El Niño and pIOD events,
both individually and in combination, on the Indian summer
monsoon season (JJAS) for the period 1877–2006. The
majority of pure El Niño events are associated with significant
reductions in monsoon rainfall and widespread drought
conditions due to anomalous subsidence over the Indian
subcontinent, associated with changes in the zonal Walker
circulation and weakening of the onshore monsoon circulation
over India. This is consistent with previous work detailing

the mechanisms for Indian monsoon failure during El Niño
events [3, 9, 2, for example]. In contrast, during pure pIOD
events increased rainfall generally occurs due to an intensified
monsoon circulation, resulting in anomalously enhanced
positive PDSI values. During co-occurring pIOD and El Niño
events, the El Niño-modulation of Indian monsoon rainfall
is absent and normal rainfall levels are maintained. During
combined events there is anomalous subsidence associated
with the Indo-Pacific SST anomaly pattern centered over
the Maritime Continent, as also shown by [9] in AGCM
simulations.

Using a classification for ENSO and IOD events for the
past 130 years, we have expanded on previous observational
studies [8, for example] and shown that decadal variations in
Indian Ocean conditions modulate the ENSO–Indian monsoon
relationship. In the first half of the 20th century, six El Niño
events were accompanied by severe Indian monsoon failures;
this period is notable for a prolonged absence of co-occurring
pIOD and El Niño events and high JJAS monsoon rainfall
variability. In contrast, a trend towards more frequent pIOD
events has occurred over recent decades [17]; this is reflected
in a significantly enhanced incidence of co-occurring pIOD
and El Niño events post-1975, the lowest interannual monsoon
variability observed over the last 130 years, and a reduced
frequency of pure El Niño events. Recent trends in tropical
Indian Ocean variability are therefore able to help explain
the weakening relationship between ENSO and the Indian
monsoon, adding to previous explanations of changing land–
sea temperature gradients [3] and the characteristics of El Niño
events [2]. The role of the Pacific Ocean in forcing recent
Indian Ocean trends, as well as modulating decadal variability
within that basin, remains to be assessed.

In summary, whether an El Niño event causes a failure
of the Indian monsoon and resulting drought conditions can
largely be determined by the state of the Indian Ocean. Earlier
work has demonstrated that the modulation of the monsoon by
El Niño depends on the location of maximum warming in the
equatorial Pacific [2]. Here, we demonstrate that changes in
Indian Ocean variability play an important role in modulating
the ENSO-related monsoon rainfall response on multi-decadal
timescales.
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