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for individual buildings, underground structures and terrain in the virtual city are
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other researchers in acoustic, contact mechanics, fluid-structure interaction and many

others.
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Chapter 1

Introduction

Engineering has revolutionized the world. With the rapid development of engineering

in the last century, we are now able to build aircraft traveling faster than sound; We

can construct buildings which can withstand the most destructive earthquakes; We can

convert wind and sunlight into limitless energy; We can cure diseases to save hundreds of

thousands of lives. All these achievements cannot be done without a deep understanding

of the principles behind the phenomena and a reliable calculation using the proper

mathematical tool. These engineering principles are derived from the fundamental

laws and principles of nature, such as the conservation of mass, conservation of energy,

equilibrium of force, etc. The mathematical tool has evolved from paper and pencil to

modern computers.

The development of modern computers has greatly changed the engineering design

process. Before the advent of computers, engineering design was mainly based on hand

drafting, which is time consuming and inaccurate. The modification of the draft was

tedious as engineering design is an iterative process to create a product to meet a

stated objective. It was also difficult to visualize the objects in 3D space. Usually

a prototype was produced for realistic evaluation before the design is finalized. With

the help of modern computers, engineers are now able to design more complex models
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with less human effort. Computer aided design (CAD) has become the mainstream in

the engineering design in the past two decades. The CAD system provides a powerful

tool for fast and accurate geometric modeling. The time spend on modification of the

models in each iteration of engineering design is greatly reduced. The communication

between different groups of engineers is also much easier in the modern CAD system.

There are new techniques which further facilitate the engineering design. The virtual

reality technique provides an immersive environment for engineers to interact with the

models. The 3D printing technique enables a fast and affordable prototyping of the

designed model. Computed tomography (CT) provides an approach for non-destructive

modeling of the interior structures. These techniques are developed together with new

data formats, such as stereolethography model, virtual reality model and digital image.

It can be foreseen that dramatic changes will happen in engineering in the digital age.

1.1 Structure analysis in engineering

One of the most important topics in the engineering design is the structure analysis.

Structural analysis is the determination of the effects of loads on physical structures

and their components, such as displacement, stress, velocity, etc. In engineering design

it requires these effects to satisfy certain objectives, e.g. the maximum displacement is

less than a tolerance. Otherwise, the design needs to be modified until the objectives are

satisfied. The structure analysis has a wide range of applications in civil, mechanical,

aerospace and marine engineering. The problems in structural analysis are usually

represented by ordinary differential equations (ODE) and partial differential equations

(PDE).

Consider an infinitesimal cube surrounding a point within an isotropic elastic ma-

terial (Moaveni, 2011) (Fig. 1.1).

2



x
y

z

�yy

�xx

�zz

�xy

�xz

�zx

�yx

�zy

�yz

Figure 1.1: The stress components at a point

The general state of stress at the point is defined by

[σ] =

[
σxx σyy σzz τyz τzx τxy

]T
, (1.1)

where σxx, σyy and σzz are the normal stresses and τyz, τzx and τxy are the shear stresses.

The state of strain at the point is defined by

[ε] =

[
εxx εyy εzz γyz γzx γxy

]T
, (1.2)

where εxx, εyy and εzz are the normal strains and γyz, γzx and γxy are the shear strains.

The relationships between strain components and the displacement components are

εxx =
∂ux
∂x

, (1.3a)

εyy =
∂uy
∂y

, (1.3b)

εzz =
∂uz
∂z

, (1.3c)

γyz =
∂uy
∂z

+
∂uz
∂y

, (1.3d)

γzx =
∂uz
∂x

+
∂ux
∂z

, (1.3e)

γxy =
∂ux
∂y

+
∂uy
∂x

, (1.3f)

where ux, uy and uz are the displacement components in x, y and z directions. According

3



to generalized Hooke’s law, the relationships between the stresses and strains are

εxx =
1

E
[σxx − ν (σyy + σzz)] , (1.4a)

εyy =
1

E
[σyy − ν (σxx + σzz)] , (1.4b)

εzz =
1

E
[σzz − ν (σxx + σyy)] , (1.4c)

γyz =
1

G
τyz, (1.4d)

γzx =
1

G
τzx, (1.4e)

γxy =
1

G
τxy, (1.4f)

where E is Young’s modulus, ν is Poisson’s ratio and G is the shear modulus. The

equilibrium equations in 3D are

∂σxx
∂x

+
∂τxy
∂y

+
∂τzx
∂z

+ fx = 0, (1.5a)

∂τxy
∂x

+
∂σyy
∂y

+
∂τyz
∂z

+ fy = 0, (1.5b)

∂τzx
∂x

+
∂τyz
∂y

+
∂σzz
∂z

+ fz = 0, (1.5c)

where fx, fy and fz are the body loads. Substituting Eq. (1.3) and Eq. (1.4) into

Eq. (1.5), the governing differential equations in 3D elasticity are obtained as

E

2 (1 + ν)

(
1

1− 2ν

∂θ

∂x
+∇2ux

)
+ fx = 0, (1.6a)

E

2 (1 + ν)

(
1

1− 2ν

∂θ

∂y
+∇2uy

)
+ fy = 0, (1.6b)

E

2 (1 + ν)

(
1

1− 2ν

∂θ

∂z
+∇2uz

)
+ fz = 0, (1.6c)

where θ is the volumetric strain

θ =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

, (1.7)
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and ∇2 is the Laplace operator in 3D

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.8)

Similarly, the governing differential equations in 2D plane stress problems are (Gould

and Feng, 1994)

E

1− ν2

(
∂2ux
∂x2

+
1− ν

2

∂2ux
∂y2

+
1 + ν

2

∂2uy
∂x∂y

)
+ fx = 0, (1.9a)

E

1− ν2

(
∂2uy
∂y2

+
1− ν

2

∂2uy
∂x2

+
1 + ν

2

∂2ux
∂x∂y

)
+ fy = 0. (1.9b)

The governing differential equation in 1D problem is

E
d2ux
dx2

+ fx = 0. (1.10)

However, the integration of PDEs mentioned above is usually difficult, especially

in 2D and 3D problems. The difficulty is mainly caused by the complexity of the

geometry and the boundary conditions. Sometimes the material is anisotropic and

heterogeneous, which further increases the difficulty. Therefore, analytical solution is

usually not available in engineering practice. Numerical method can be employed to

provide an approximate solution.

1.2 Numerical method in structure analysis

Numerical method has been widely used in engineering as the analytical solutions of

PDEs are usually difficult to obtain. A large number of numerical methods have been

developed. In this section, a brief overview is provided on the procedure to construct

an approximate solution. A review of the state-of-the-art of the numerical methods will

be discussed in Section 2.
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The general form of a PDE is expressed as (Finlayson and Scriven, 1966; Finlayson,

2013)

Lu = g, (1.11)

where L is a differential operator, u is the analytical solution and g is another func-

tion. As the analytical solution is usually not available, an approximate solution ū is

introduced. ū can be constructed as a linear combination of n basis functions

ū = u1φ1 + u2φ2 + . . .+ unφn, (1.12)

where φ1, φ2, . . . , φn are the basis functions and u1, u2, . . . , un are the corresponding

coefficients. There are many different approaches to construct basis functions (Babuska

and Melenk, 1997), for example, a set of piecewise linear functions. The approximate

solution in Eq. (1.12) cannot satisfy Eq. (1.11) exactly in the whole problem domain.

An error function, or residual, is introduced

Lū = g +R. (1.13)

The goal is to determine the coefficients u1, u2, . . . , un to minimize the residual R =

Lū − g. In the weighted residual method, the residual R is multiplied by a weighting

function w, and the integration of the product over the whole problem domain is set to

zero

∫
(Lū− g)w = 0, (1.14)

to formulated a system of equations to determine the coefficients u1, u2, . . . , un.

Different selections of basis functions and weighting functions will form different

numerical methods. Only some important methods are introduced in the following

of this section. A detailed comparison of different weighting functions can be found
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in Finlayson and Scriven (1966).

1.2.1 Collocation method

In the collocation method, the weighting functions are a set of displaced Dirac delta

functions at selected points (Malik et al., 1985; Babuska et al., 2007). These points are

usually, but not necessarily, evenly distributed in the problem domain.

w (xi) = δ (x− xi) for i = 1, 2, . . . , n, (1.15)

where n is the number of unknowns in the approximate solution ū. The value of a

Dirac delta function is infinity at a specific point and zero at all the other locations.

The integration in Eq. (1.14) becomes the value of function at some specific points

L ¯u (xi)− g = 0 for i = 1, 2, . . . , n. (1.16)

Therefore, the problem of solving of PDEs is converted to solving a set of linear algebra

equations.

In this method, as the differential operator is applied on the approximate solution,

it is required that the basis function be differentiable. The finite difference method,

which will be discussed in Section 2, is closely related to the collocation method.

1.2.2 Subdomain method

Another well-known type of the weighted residual method is the subdomain method.

The problem domain is divided into several smaller subdomains. The weighting function

is set to be a constant over each subdomain. The integration over a subdomain is
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zero (Canu and Ray, 1991)

∫ xi+1

xi

(Lū− g) = 0 for i = 1, 2, . . . , n. (1.17)

The number of subdomains n is equal to the number of unknowns in the approximate

solution ū.

1.2.3 Galerkin method

In the Galerkin method, the weighting function w is chosen as the basis function it-

self (Fletcher, 1984; Yu and Heinrich, 1987)

wi = φi for i = 1, 2, . . . , n. (1.18)

The basis functions are also called the shape functions. The integration in Eq. (1.14)

becomes

∫
φi (Lū− g) = 0 for i = 1, 2, . . . , n. (1.19)

Using the same functions for the weighting and approximating functions usually pro-

duces symmetric coefficients (Brebbia et al., 2012). The finite element method can be

classified as Galerkin method (Segerlind, 1976; Thomee, 1984).

1.3 A brief introduction to finite element method

The finite element method (FEM) is one of the most important numerical methods

used in structure analysis. The details of FEM will be presented in Section 2.1. In

FEM, a geometric model is discretized into numerous small parts with simple geometry.

This discretization process is called mesh generation and the small parts are called
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(a) Linear triangle
element

(b) Linear quadri-
lateral element

(c) Linear tetrahe-
dron element

(d) Linear hexahedron
element

(e) Quadratic
triangle ele-
ment

(f) Quadratic
quadrilateral
element

(g) Quadratic tetrahe-
dron element

(h) Quadratic hexa-
hedron element

Figure 1.2: Typical elements in FEM

Figure removed due to 

copyright restriction

(available in master copy)

(a) CAD model of a pro-
peller

Figure removed due to 

copyright restriction

(available in master copy)

(b) Volume mesh of the
propeller

Figure 1.3: CAD model of a propeller and its volume mesh

elements (Thompson et al., 1985). The typical elements in a finite element analysis

include triangle (Fig. 1.2a and Fig. 1.2e) and quadrilateral (Fig. 1.2b and Fig. 1.2f)

in 2D, tetrahedron (Fig. 1.2c and Fig. 1.2g) and hexahedron (Fig. 1.2d and Fig. 1.2h)

in 3D. A structure and its finite element mesh are shown in Fig. 1.3 (Geuzaine and

Remacle, 2009). An approximate solution is constructed by interpolating node values

in the mesh. The continuous displacement field in Eq. (1.6) is approximated by a

discrete displacement field. The governing equations are converted to solving a set of

linear algebra equations, which is suitable for modern computers to process.

The FEM offers greater flexibility in modeling of structures with complex geometries.
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The boundary conditions can be applied easily. A large amount of commercial software

based on the FEM has been developed, such as ANSYS, ABAQUS, NASTRAN and

many others.

1.4 Challenges in finite element method for inte-

grating geometry with analysis

Although the numerical methods have largely reduced the difficulty in solving PDEs,

there are still significant challenges faced in engineering practice. In engineering prac-

tice the geometries of the structures are usually complex and irregular. The analysis

often needs to be performed iteratively in a design process. The modifications of the

models are frequently required. These challenges impede the integrating of geometry

and analysis, which causes tedious human intervention to convert geometric models

to numerical models. Therefore, the design process based on the current FEM is not

compatible with the fast development of the modern computers and the emerging engi-

neering techniques. Some of the main difficulties in the numerical methods, especially

the FEM, are addressed in this section.

1.4.1 Finite element mesh generation

Mesh generation is a nontrivial task in the current FEM (Guersoy, 1996; Demargne

et al., 2014; Ghisi et al., 2014; Bols et al., 2016; Botella et al., 2016). Quadrilateral

and hexahedron elements are usually preferable to triangle and tetrahedron elements

as they produce more accurate results in analysis. However, no automatic approach is

available for all hexahedron mesh generation presently. Therefore, the geometric model

needs to be manually partitioned into several parts with simpler geometries before these

parts can be meshed. This task takes a large amount of time in the whole analysis

procedure. Extensive experience and skill are required to successfully generate a high
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quality mesh (Hughes et al., 2005). What’s more, it is inevitable for human to make

mistakes, which may jeopardize the reliability of the result of analysis. For example,

inappropriate partition can result in degenerated or invalid elements. A detailed review

on the mesh generation techniques will be presented in Section 2.2.

The difficulty in the mesh generation is exacerbated by several other factors, which

will be discussed in the following of this section.

1.4.1.1 Different data formats of geometric models

The geometric models can be represented by the volume or the boundary. In a boundary

representation, the analytical or discrete form of the boundary of the model is expressed

using an explicit or implicit function. In a volume representation, the space is parti-

tioned into a uniform grid of points. The information of whether a point is inside the

model is stored. Conventional finite element analysis is based on non-uniform rational

B-spline (NURBS) models, which is the standard format in the computer aided design

(CAD). NURBS is able to represent the geometry accurately. However, high quality

NURBS model is not always available or suitable to the purpose. New techniques in en-

gineering are emerging with new data formats, such as stereolethography (STL) models

in 3D printing, Virtual reality modeling language (VRML and X3D) in computer vision

and gaming, digital image in CT scan, just to name a few. These new data formats are

different from the conventional NURBS model, which imposes additional challenges for

FEM mesh generation.

NURBS model NURBS is a boundary representation widely used in CAD. NURBS

curve in 2D is defined by a set of weighted control points {P } and a knot vector Ξ. The

knot vector Ξ in is a set of coordinates in the parametric space, which can be written

as Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi is the i-th knot. p is the polynomial order and n
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Figure 1.4: Example of NURBS surface

is the number of basis functions. A NURBS curve C (ξ) can be written as

C (ξ) =

k∑
i=1

Ni,nwiP i

k∑
i=1

Ni,nwi

, (1.20)

where ξ is a dimensionless coordinate in the parametric space, k is the number of control

points, P i is the coordinate of the i-th control point and wi is the corresponding weight.

The n-th order basis function Ni,n is constructed as

Ni,n =
ξ − ξi
ξi+n − ξi

Ni,n−1 +
ξi+n − ξ
ξi+n − ξi

Ni+1,n−1, (1.21)

where the 0-th order basis functions are piecewise constant functions

Ni,0 =


1 if ξi ≤ ξ < ξi+1,

0 otherwise.

NURBS surfaces in 3D can be constructed similarly using a matrix of control points

and two dimensional basis functions. An example of NURBS surface and its control

points are shown in Fig. 1.4.
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(a) STL surface mesh

face normal: nx, ny, nz

   outer loop

       vertex: x1, y1, z1

       vertex: x2, y2, z2

       vertex: x3, y3, z3

   endloop

endfacet

(b) STL data for-
mat

Figure 1.5: STL model of a rabbit

Figure removed due to 

copyright restriction

(available in master copy)

Figure 1.6: Example of VRML model

STL model STL is a commonly used data format in 3D printing. A sample of STL

model is shown in Fig. 1.5a (http://graphics.stanford.edu/data/3Dscanrep/). An

STL model is simple to read and write as it only contains a group of individual triangles.

Only the node coordinates and normal vectors of each triangle are stored in the model,

which is indicated in Fig. 1.5b. The qualities of the triangles in an STL model can be

extremely poor from the view point of numerical analysis. The STL model may not be

manifold, i.e. there may be self-intersection and holes in the model. Therefore, an STL

model is usually not suitable for direct use in numerical modeling (Bechet et al., 2002).

VRML model VRML (Virtual Reality Modeling Language) is usually used in com-

puter science to render models in virtual reality environment. It is similar to STL model

but it contains more types of built-in objects such as polygon, cylinder and sphere.

There are also some other features like lighting and shading information. VRML and

STL models can be easily converted to each other. An example of VRML model is

shown in Fig. 1.6 (https://steemit.com/).

13

http://graphics.stanford.edu/data/ 3Dscanrep/
https://steemit.com/


Figure removed due to 

copyright restriction

(available in master copy)

Figure 1.7: Digital image obtained from X-ray scan of human brain

Digital image Digital image is another important data format, which is a volume

representation of the model. Digital image is usually obtained from computed tomogra-

phy (CT) scan using X-ray (Du Plessis et al., 2016) or neutron radiography (Dewanckele

et al., 2014). The digital image is represented by pixels in 2D and voxels in 3D. A 2D

black and white image is shown in Fig. 1.7 (https://www.radiologyinfo.org/). Each

pixel/voxel is assigned with a brightness value ranging from 0 to 255. Different mate-

rials are represented by different brightness values. Digital image is especially useful

when the model is irregular and not suitable for NURBS modeling, such as structures

with irregular cracks, inclusions and voids. Some image segregation and processing

techniques have been developed to reconstruct 3D surfaces (Avizo, 2015).

1.4.1.2 Modeling of moving boundary problems

The modeling of moving boundary problems imposes additional difficulty in finite ele-

ment mesh generation. Moving boundary problems are ubiquitous in engineering, for ex-

ample, crack propagation (Fig. 1.8a) (http://firmalaar.com/Altan-Usta-Kocaeli),

projectile penetration (Fig. 1.8b) (https://www.carolina.com/teacher-resources/

Interactive) and phase transition (Fig. 1.8c) (https://bigvinnysd.wordpress.com/

tag/science/). In these problems, the geometry of the domain is changing constantly,

which makes it difficult to generate finite element meshes if manual operation is re-

quired. Therefore, a highly automatic mesh generation algorithm is necessary for the

investigation of moving boundary problems.
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Figure removed due to 

copyright restriction

(available in master copy)

(a) Crack propagation

Figure removed due to 

copyright restriction

(available in master copy)

(b) Projectile penetra-
tion

Figure removed due to 

copyright restriction

(available in master copy)

(c) Phase transition

Figure 1.8: Examples of moving boundary problems

Figure removed due to 

copyright restriction

(available in master copy)

(a) Fiber reinforced con-
crete

Figure removed due to 

copyright restriction

(available in master copy)

(b) Soil nail reinforced
slope

Figure 1.9: Examples of fiber reinforced materials

1.4.1.3 Mesh generation for fiber reinforced materials

Fiber reinforced materials have been widely used in engineering due to their excel-

lent mechanical and thermal properties. Some commonly used fibers include steel fiber

(Fig. 1.9a) (https://www.indiamart.com/), glass fiber, carbon fiber. Anchors and soil

nails in geotechnical engineering can also be considered as fibers in terms of mechan-

ical behavior (Fig. 1.9b) (https://www.roads.maryland.gov/). In FEM the fibers

are generally modeled using 1D tension bar elements or beam elements. The matrix

material is usually modeled using solid element in 2D and 3D. The mesh of the matrix

usually needs to be aligned with the fibers in the conventional FEM. However, this re-

quirement increases the difficulty in the mesh generation because the distribution and

orientation of the fibers are generally random in engineering practice. In some cases

only triangle/tetrahedron meshes can be generated for the matrix, not to mention the

quality of these meshes is usually poor.

1.4.2 Local modification of finite element mesh

A finite element mesh needs to maintain a valid connectivity so that the requirement

of displacement continuity is satisfied. In conventional FEM it is usually difficult to
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(a) Quadrilateral
mesh of a mechanical
part

(b) Modification of
the geometry

(c) Modification of
the mesh size

Figure 1.10: Remeshing caused by local modification

modify the mesh locally without remeshing the whole structure. Even the modification

of a small region may affects the whole mesh if quadrilateral or hexahedron elements

are used. A quadrilateral mesh is generated for a mechanical part in Fig. 1.10a. The

geometry is modified by adding another hole near the lower left corner in Fig. 1.10b.

It is observed that the whole mesh is modified. Another case is shown in Fig. 1.10c,

where the mesh in Fig. 1.10a is refined near the hole. This modification also affects the

whole mesh.

In engineering design, sometimes several iterations are required to modify the ge-

ometric model based on the result of numerical analysis. Most of the times the mod-

ification is only in a small part compared with the whole model. Therefore, it is not

efficient to remesh the whole model in every iteration. It is preferable that the mesh can

be modified locally without affecting the other regions, while the element connectivity

can be maintained.

1.4.3 Treatment of non-matching meshes

In the numerical analysis of complex and large scale models, it is desirable to divide

the problem domain into several subdomains with simpler geometries. The difficulty

in mesh generation can be reduced by meshing the subdomains individually. Parallel

processing can be employed for the mesh generation of the subdomains to further ac-

celerate the whole analysis procedure. It is also preferable to model the subdomains
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individually in a variety of other applications such as contact mechanics, fluid-structure

interaction, multi-scale analysis.

The meshes of those subdomains are only connected by their interfaces. The in-

terface meshes are matching if the mesh topologies and element shape functions are

the same on both sides of the interface, otherwise they are non-matching. Examples of

non-matching meshes in 2D are shown in Fig. 1.11. Obviously, the use of non-matching

meshes offer greater flexibility in practice as they enable users to generate meshes for

different subdomains independently. These independent meshes need to be coupled (or

“glued”) together when a numerical analysis is performed.

However, the coupling of non-matching meshes is a challenging task. Some coupling

techniques rely on manual modification of the meshes (Staten et al., 2010b), which

is time consuming and not suitable for large scale problems. The nearest neighbor

interpolation (de Boer et al., 2007) is automatic but it often leads to deterioration of

accuracy. In mortar element method, a set of mortar elements are inserted between the

two non-matching meshes (Maday et al., 1988). The displacements in the two meshes

and the mortar elements need to minimize the total potential energy of the system.

However, the solving of this problem usually introduces additional degrees of freedom

or involves parameters which are difficult to choose. Alternatively, non-conventional

elements can be employed to connect the non-matching meshes (Lim et al., 2007). The

details of these techniques will be summarized in Section 2.3.

1.5 Objectives

The objective of this research is to develop a numerical framework to link geometric

modeling and structure analysis. This numerical framework will have the following

features:

1. Multiple data formats can be accepted. The proposed numerical framework will
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(a) Non-matching meshes of building
and soil

(b) Non-matching meshes of dam
and reservoir

Figure 1.11: Non-matching meshes

accept multiple data formats, including both boundary representation (such as

NURBS, STL and VRML model) and volume representation (such as digital im-

age). It is preferable that even the models containing small defects (such as

self-intersections and holes) can be accepted without manual repairing operation.

2. The mesh generation is fully automatic. It is well-known that human intervention

required in the mesh generation is time consuming and error prone. The goal of

this research is to develop a mesh generator which only requires minimum human

effort, such as defining the maximum and minimum element size of the mesh. The

rest of the task will be handled by the computer automatically. The mesh quality

obtained should be good enough for numerical analysis. The mesh generator

should be able to check the quality of the elements and perform optimization

when necessary.

3. The mesh can be modified locally. In conventional FEM, the modification of

a part of the mesh often affects other regions, causing remeshing of the whole

model. In the proposed framework, the modification will be limited to the local

region only. The vast majority of the elements in the original mesh do not need

to be changed. Therefore the time and effort can be spent effectively on the

regions where necessary. The modifications include changing the local geometry
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and modifying element size and shape.

4. Non-matching meshes can be coupled in an analysis. A complex model can be

spatially partitioned into several parts with simpler geometries. The meshes for

those parts can be generated independently without considering the compatibility

on the interface. The difficulty associated with mesh generation can be further

reduced. The non-matching meshes will be converted to matching meshes auto-

matically using polytope elements formulated in Section 3. It is preferable that the

mesh quality on the interface can be maintained and smooth mesh size transition

can be obtained.

5. Adaptive analysis procedure can be implemented. A posterior error indicator will

be developed. An efficient mesh refinement technique will be established. The

analysis performed with minimum remeshing starts from a coarse mesh. The mesh

is refined iteratively in the regions with high estimated errors. The remeshing of

the whole structure is not required. The computational resources can be used

efficiently.

6. Numerical simulation of virtual reality models can be performed. This numerical

framework will be applied to large scale virtual reality models, e.g. a city block.

Meshes of different parts of the city can be generated independently and these

meshes are reusable when local modifications are performed.

7. Fiber reinforced materials can be modeled considering random fiber distribution.

A high quality mesh of the matrix will be generated automatically. The fibers

are modeled discretely, which enables the study of stress distribution along the

fibers. In the future this approach should be able to extend to fracture analysis

considering the slippage of fibers.
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1.6 Organization of the thesis

The remainder of this thesis is organized as follows. In Section 2, background knowledge

and the state-of-the-art of each individual topics are reviewed. In Section 3, the formu-

lations of the scaled boundary finite element method in 3D are derived. In Section 4, an

automatic polyhedron mesh generation method based on octree algorithm is presented.

A coupling method for non-matching meshes using polyhedron element formulated in

the scaled boundary finite element method is developed in Section 5. Its application in

domain decomposition is studied. In Section 6, an adaptive analysis procedure is de-

veloped including error estimation and local mesh refinement. In Section 7, numerical

simulation using virtual reality models is investigated. A discrete modeling method of

fiber reinforced material is presented in Section 8. Conclusions and recommendations

for the future work are stated in Section 9.
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Chapter 2

Literature review

Structure analysis is an important task in engineering. The problems in structure

analysis are usually represented in the form of differential equations. Numerical methods

have been developed to solve these differential equations as analytical solutions are

usually not available (Section 1.2). Finite element method (FEM) is the most widely

used numerical method presently. However, there are challenges in the conventional

FEM, some of which have been stated in Section 1.4. In the FEM, the geometric model

needs to be discretized into elements with simple geometries (Fig. 1.2), which is referred

to as mesh generation. Human intervention is frequently required in the mesh generation

process, which is time consuming and error prone (Section 1.4.1). This disadvantage

limits the application of the FEM, especially in moving boundary problems where the

mesh needs to be updated frequently (Section 1.4.1.2). The emerging techniques in

engineering imposes additional challenges on the mesh generation, such as the using

of non-conventional data formats for the geometry (Section 1.4.1.1). Therefore, it is

the aim of this research to develop a numerical framework to link geometric modeling

and structure analysis automatically, which is suitable for the rapidly development of

engineering in the digital age.

In this chapter, a literature review on the topics included in this research is pre-
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sented. In Section 2.1, some numerical methods developed for structure analysis are

summarized. In Section 2.2, mesh generation algorithms commonly used in the numeri-

cal methods are presented. The techniques to handle non-matching meshes are reviewed

in Section 2.3. The numerical simulation of virtual reality models is introduced in Sec-

tion 2.4. In Section 2.5 the application of adaptive analysis is briefly discussed. The

numerical methods for the modeling of fiber reinforced material are summarized in

Section 2.6.

2.1 Numerical methods

A large number of numerical methods have been developed for structure analysis in the

last century. In this section, some of the important numerical methods are reviewed.

The advantages and disadvantages of these methods are discussed and compared.

2.1.1 Finite difference method

The finite difference method (FDM) was among the earliest developed numerical meth-

ods (Richardson Lewis and Glazebrook Richard, 1911; Courant et al., 1928). A short

history of the development of FDM was presented by Thomee (2001). In FDM a problem

domain is discretized into a structured (usually uniform spaced) grid. An approximate

solution is constructed considering the governing differential equation and boundary

conditions. The governing differential equation is converted into solving a set of linear

algebra equations, which can be easily processed by the computers.

An example of finite difference method in 1D is shown in Fig. 2.1a. Consider a linear
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Figure 2.1: Finite difference method in 1D

second order boundary value problem (Forsythe and Wasow, 1960)

a2 (x)u′′ + a1 (x)u′ + a0 (x)u = f (x) in xl < x < xr, (2.1a)

bl1u
′ + bl0u = Al for x = xl, (2.1b)

br1u
′ + br0u = Ar for x = xr, (2.1c)

where [xl, xr] is the problem domain, f (x), a0 (x), a1 (x) and a2 (x) are functions of x,

bl1, bl0, br1, br0, Al and Ar are constants.

The problem domain is divided into M segments uniformly. In this example, M = 6.

The step size is

4x =
(xr − xl)

M
. (2.2)

There are M + 1 grid points in the system after the discretization. The coordinate of

m-th grid point is

xm = xl +m4x in 0 ≤ m ≤M. (2.3)

Using Taylor series expansion, the first and second derivatives of the function u at
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a specific grid point x can be approximated by the central difference

u′ (x) =
u (x+4x)− u (x−4x)

24x
+O

(
4x2

)
, (2.4a)

u′′ (x) =
u (x+4x)− 2u (x) + u (x−4x)

4x2
+O

(
4x2

)
. (2.4b)

A discrete function U is constructed to approximate the exact solution (Fig. 2.1b). The

function value at xm is denoted as Um. Therefore, Eq. (2.1a) can be written as a discrete

function at point xm

a2 (xm)
Um+1 − 2Um + Um−1

4x2
+ a1 (xm)

Um+1 − Um−1
24x

+ a0 (xm)u = f (xm) . (2.5)

The boundary conditions can be applied by introducing two fictitious points x−1 and

xM+1. The values of the approximate solution at the fictitious points are expressed as

U−1 and UM+1. The boundary conditions in Eq. (2.1b) and Eq. (2.1c) are written as

bl1
U1 − U−1

24x
+ bl0U0 = Al, (2.6a)

br1
UM+1 − UM−1

24x
+ br0UM = Ar. (2.6b)

Formulating Eq. (2.5) at all internal grid points (0 ≤ m ≤ M) and considering the

boundary conditions in Eq. (2.6), a system of M + 3 linear algebraic equations are

obtained. The equations can be written in a matrix form as

KU = F , (2.7)
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where U is the array of unknown variables

U =



U−1

U0

U1

. . .

UM

UM+1


, (2.8)

and F is the array of values on the right hand side of Eq. (2.5) and Eq. (2.6)

F =



Al

f (x0)

f (x1)

. . .

f (xM)

Ar


. (2.9)

The stiffness matrix K in finite difference method is

K =



−b̃l1 bl0 b̃l1

β−0 α0 β+
0

β−1 α1 β+
1

. . . . . . . . .

β−M αM β+
M

−b̃r1 br0 b̃r1


, (2.10)
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Figure 2.2: Finite difference method in 2D

where the entries in the stiffness matrix are

αm = −2a2 (xm)

4x2
+ a0 (xm) , (2.11a)

β±m =
a2 (xm)

4x2
± a1 (xm)

24x
, (2.11b)

b̃l1 =
bl1

24x
, (2.11c)

b̃r1 =
br1

24x
. (2.11d)

All the unknown values at the grid points, including the fictitious points, (U−1, U0, ...,

UM+1) can be solved.

Similarly, the partial derivatives in 2D can be approximated using the 4 grid points

surrounding the point under consideration (Fig. 2.2). The assembly and solving proce-

dure are similar to those in 1D problem.

The FDM can be classified as a collocation method (Fries et al., 2004). It requires

that the governing differential equation be satisfied at specific grid points, which can be

achieved by introducing a set of displaced Dirac delta functions δ (x− xi) as weighting

functions . The stiffness matrix K in the FDM is banded and usually well-conditioned.

However, it is difficult for the FDM to be extended to irregular mesh, which strongly
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limited its application. The boundary conditions can be difficult to apply if the geom-

etry of the problem domain is complex. In Richardson Lewis and Glazebrook Richard

(1911) the FDM was applied to the stress analysis of a masonry dam in 2D. The geome-

try of the dam was simplified so that only horizontal, vertical and 45° inclined lines were

used to represent the geometry. FDM was applied to study fluid flow in porous media

in 3D by Narasimhan and Witherspoon (1976). Liszka and Orkisz (1980) explored the

application of FDM in arbitrary irregular grid in 2D. It was reported that mesh can

be refined locally and boundary conditions can be applied on domains with arbitrary

shapes. Some recent developments on FDM and combinations with other numerical

methods were reported in Sousa and Li (2015); Pandey (2015); E. Griffith and Luo

(2017).

2.1.2 Finite element method

The finite element method (FEM) is presently the most popular numerical method used

in engineering. There is a sizable literature on the development of the FEM (Oden, 1990;

Gupta and Meek, 1996; Thomee, 2001). Some pioneer work can be found in Argyris

(1955); Turner (1956); Clough (1960). The discretization of the problem domain in

the FEM is similar to the FDM. A piecewise continuous function is constructed to

approximate the exact displacement field. In the FEM, the problem domain can be

discretized using several different types of elements (see Fig 1.2). Both structured and

unstructured mesh can be used in the FEM (the details will be presented in Section 2.2).

Polynomial shape function is utilized in FEM to interpolate the node values. Some

examples of shape functions are plotted in Fig 2.3. The 1D linear shape functions in

Fig 2.3a are expressed as

N1 (η) = 1− η, (2.12a)

N2 (η) = η, (2.12b)
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Figure 2.3: Examples of finite element shape functions

where η is the coordinate of the isoparametric element. The shape functions can be

written in matrix form as

[N ] =

[
N1 (η) N2 (η)

]
. (2.13)

The shape functions satisfy the Kronecker delta property and they form a partition of

unity inside each element.

The displacement field in an element can be interpolated as (Zienkiewicz et al.,

1977)

{u} = [N ] {ud} , (2.14)

where [N ] is the shape function matrix and {ud} is the nodal value vector. The strain

field is

{ε} = [L] {u} = [B] {ud} , (2.15)
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where [L] is the differential operator. In 3D problems, [L] is defined as

[L] =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


. (2.16)

The strain matrix [B] is defined as

[B] = [L] [N ] . (2.17)

Considering the constitutive model, the stress is calculated as

{σ} = [D] {ε} = [D] [B] {ud} , (2.18)

where [D] is the elasticity matrix. For an isotropic material in 3D, it is expressed as

[D] =
E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


, (2.19)

in which E is Young’s modulus and ν is Poisson’s ratio. The element stiffness matrix

in FEM can be derived using virtual work principle (Zienkiewicz and Cheung, 1964).

Alternatively, it can be derived by Galerkin method using element shape function as
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the weighting function.

[K] =

∫
[B]T [D] [B] dV. (2.20)

The global stiffness matrix [KG] is then assembled using node connectivity. The global

equation is written as

[KG] {UG} = {FG} , (2.21)

where {UG} is the global nodal displacement vector and {FG} is the global nodal force

vector.

The FEM attracted extensive attention immediately after it was proposed. It was

successfully applied to a large amount of engineering topics, such as isotropic and or-

thotropic plates (Zienkiewicz and Cheung, 1964), anisotropic flow problems (Zienkiewicz

et al., 1966), elasto-plastic problems (Zienkiewicz et al., 1966), fracture mechanics (Chan

et al., 1970) contact (Hughes et al., 1976) and many others. A summary of the active

research groups during the development of FEM can be found in Gupta and Meek

(1996). The FEM offers greater flexibility in modeling of structures with complex ge-

ometry. Both essential and natural boundary conditions can be applied easily. The

stiffness matrix in the FEM is also banded. However, a disadvantage of FEM is the

difficulty in mesh generation. Human intervention is frequently required to generate

a high quality mesh, which is time consuming and error prone. In moving boundary

problems, the mesh updating becomes a major challenge. The shape function in the

FEM is polynomial, which is not adequate to represent stress singularity in fracture

problems. Nowadays FEM is a well-developed numerical method. Some variants will

be introduced in the following sections.

2.1.3 Boundary element method

The boundary element method (BEM) was also known as “boundary integral equa-

tion methods” or “boundary integral solutions” in the early literature (Brebbia and
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Figure 2.4: Boundary element method

Dominguez, 1977). The governing equation of the BEM can be derived using the

weighted residual technique. In BEM, the weighting function is chosen as the fun-

damental solution of the equation representing a concentrated potential at a point i

∇2ψ + ∆i = 0, (2.22)

where ∆i is the Dirac delta function. A well-known solution of this function in 3D is

ψ =
1

4πr
, (2.23)

where r is the distance from point i to the point under consideration. The volume inte-

gral of the governing equation can be converted to a surface integral (Cheng and Cheng,

2005). Only the boundary of the problem domain needs to be discretized (Fig 2.4).

In BEM no volume discretization is required, therefore the mesh generation can be

largely simplified and the numbers of degree of freedom of the system can be reduced.

Moving boundary problems such as crack propagation can be modeled easily (Mi and

Aliabadi, 1994). It is suitable to model unbounded domain (Gaul and Schanz, 1999).

However, there are some disadvantages in the BEM. A fundamental solution needs

to be known before the analysis, which is not always practical in engineering. BEM

usually produces fully populated matrices, which is less efficient compared with the
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banded stiffness matrix in FDM and FEM (Ahmad and Banerjee, 1986). BEM has been

applied to nonlinear analysis of water waves (Grilli et al., 1989), sloshing (Nakayama

and Washizu, 1981) and others (Ruotsalainen and Wendland, 1988; Katsikadelis and

Nerantzaki, 1999). However, in the nonlinear stress analysis the volume of the problem

domain still needs to be discretized (Telles and Carrer, 1991; Carrer and Telles, 1992;

Telles and Carrer, 1994), which removes one of the most important advantages of the

BEM. Summaries of the development of the BEM can be found in (Liu et al., 2011;

Brebbia and Walker, 2016). Some recent advances were reported in (Zhang and Liu,

2015; Nguyen et al., 2016; Li and Popov, 2018)

2.1.4 Extended finite element method

The extended finite element method (XFEM) was developed to overcome the difficulties

associated with modeling cracks in FEM (Belytschko and Black, 1999). In XFEM,

the mesh doesn’t need to conform to the geometry around the crack tip (Fig. 2.5).

The discontinuous displacement field around the crack tip is modeled by introducing

enrichment functions (Abdelaziz and Hamouine, 2008)

{Fj (r, θ)}4j=1 =

{√
r cos

(
θ

2

)
,
√
r sin

(
θ

2

)
,
√
r sin

(
θ

2

)
sin (θ) ,

√
r cos

(
θ

2

)
sin (θ)

}
,

(2.24)

where r and θ are the polar coordinate with origin at the crack tip. The nodes around

the crack tip have more degrees of freedom. The approximation takes the form of an

extrinsic enrichment and can be written as

uh (x) =
n∑
i=1

Ni (x)

ui+ ne(i)∑
j=1

ajiFj (r, θ)

 , (2.25a)

vh (x) =
n∑
i=1

Ni (x)

vi+ ne(i)∑
j=1

bjiFj (r, θ)

 , (2.25b)
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Figure 2.5: Extended finite element method

where Ni (x)are the standard FEM shape function. The coefficients aji and bji are

associated with nodes and ne (i) is the number of coefficients for i-th node. ne (i) is

equal to 4 for the nodes around the crack tip and zero for all the other nodes.

XFEM has been applied to solve many problems involving weak discontinuity. The

modeling of dislocations in systems with multiple arbitrary material interfaces was pre-

sented in Belytschko and Gracie (2007). It was used to evaluated stress intensify factor

on bimaterial interface by Liu et al. (2004). Liu et al. (2016) presented a multi-material

topology optimization strategy considering the cohesive constitutive relationship of the

interface. XFEM was utilized to model the material interface of fiber reinforced polymer

in Kastner et al. (2011).

A comparison between weak, strong and singular enrichment in the XFEM were

presented in Bouhala et al. (2013). Crack propagation in 2D was modeled using XFEM

without frequent remeshing (Dolbow et al., 2000). Cracks in 3D problems were studied

in Loehnert et al. (2011); Agathos et al. (2016). More recently, the modeling of non-

planar crack was reported in Agathos et al. (2018). The application of XFEM in

polycrystalline microstructure was explored in Beese et al. (2018). Reviews of the

XFEM can be found in Karihaloo and Xiao (2003); Fries and Belytschko (2010)
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2.1.5 Isogeometric analysis

Isogeometric analysis (IGA) is a numerical method developed by Hughes et al. (2005). A

salient advantage of IGA is that it doesn’t require the data conversion from a NURBS

based geometric model to a discrete finite element model. A brief introduction to

NURBS has been presented in Section 1.4.1.1. The shape function in IGA is constructed

using NURBS directly. An example of quadratic basis functions for open, non-uniform

knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} is shown in Fig. 2.6 (Hughes et al., 2005).

It has been applied to many problems such as contact (De Lorenzis et al., 2014), vi-

bration (Cottrell et al., 2006), fluid-structure interaction (Bazilevs et al., 2006, 2008),

multiscale turbulence (Bazilevs et al., 2007) and many others (Auricchio et al., 2007).

A new refinement strategy, the k-refinement was introduced to the IGA. It was claimed

that the k-refinement performs better than the traditional p-refinement (Cottrell et al.,

2007).

Usually a model cannot be represented by one single NURBS patch. Instead, several

NURBS patches need to be trimmed and connected, which may cause discrepancy in

the model, such as gaps and overlapping. A review of the trimming procedure in IGA

was presented in Marussig and Hughes (2018). A new IGA using T-spline as basis

function was proposed in Bazilevs et al. (2010). Rows of control points in T-spline can

be incomplete therefore local refinement and coarsening of control points are allowed.

It was shown that watertight models can be generated easily using multiple T-spline

patches. T-spline has been adopted by 3D modeling software Rhino and Maya (Bin

et al., 2008).

IGA provides a powerful alternative to the conventional FEM. The interoperability

between CAD and CAE systems can be greatly improved using NURBS. However, if

the model is represented by other formats, such as STL or digital image mentioned in

Section 1.4.1.1, it will be difficult for IGA to handle.
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Figure 2.6: Quadratic basis functions in NURBS

Figure 2.7: Meshfree method

2.1.6 Meshfree method

Meshfree method (MM) is a group of numerical methods which do not require a con-

ventional mesh before the analysis. Only a group of scattered points are generated in

the problem domain (Fig. 2.7) and the connectivity is established during the analysis.

The first and simplest MM, smoothed particle hydrodynamics, was introduced by Lucy

(1977) to test the fission hypothesis. It was further investigated using kernel estimation

in Monaghan (1982). Some variations of smoothed particle hydrodynamics were de-

veloped such as corrected smoothed particle hydrodynamics (Bonet and Kulasegaram,

2000) and moving least-squares particle hydrodynamics (Dilts, 1999). Other MMs in-

clude diffuse element method (Muravin and Turkel, 2003), element free Galerkin (Be-

lytschko et al., 1994) and hp-clouds (Liszka et al., 1996). Reviews of the development

and classification of MM can be found in (Li and Liu, 2002; Fries et al., 2004).
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MM greatly reduces the difficulty related to mesh generation as only a group of scat-

tered points are required. Problems with complex geometry, large deformation, moving

boundaries can be studied without tedious remeshing process. Both h and p refinement

can be implemented in MM. However these methods usually do not construct an exact

partition of unity (Fries et al., 2004). A searching algorithm is required to construct

connectivity during the analysis, which can be expensive in terms of computational

cost. The boundary conditions are difficult to apply.

2.1.7 Scaled boundary finite element method

The scaled boundary finite element method (SBFEM) is a semi-analytical method which

was first proposed by Song and Wolf (1997). The method was initially developed for

modeling wave propagation in unbounded domains (Fig. 2.8a) and later explored to

analyze problems with stress singularities. Deeks and Wolf (2002b) demonstrated that

the scaled boundary finite element method outperforms the finite element method in

situations involving unbounded domains or stress concentrations (Fig. 2.8b). During

the last two decades, researchers have endeavored to apply this method to solve prob-

lems in wave propagation (Bazyar and Song, 2008), acoustics (Lehmann et al., 2006;

Liu et al., 2019), fracture (Song, 2005; Li et al., 2016), stress intensity factor evalua-

tion (Saputra et al., 2015), anisotropic soil (Lu et al., 2016), contact (Xing et al., 2018,

2019), sloshing (Ye et al., 2018), seepage (Liu et al., 2018), among many others (Lin

et al., 2011, 2012, 2013, 2018). A review of the SBFEM in linear elastic fracture can

be found in Song et al. (2017). The fundamental theory of the scaled boundary finite

element is presented in Song (2018) accompanied by a computer program written in

MATLAB.

Recently, the SBFEM is extended to develop polygon elements in 2D (Chiong et al.,

2014) and polyhedron elements in 3D (Talebi et al., 2016; Liu et al., 2017). The polytope

(polygon/polyhedron) elements constructed by the SBFEM significantly reduce the
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meshing burden of the standard finite elements. The geometry of a polytope element

needs to meet only the scaling requirement, i.e. a point from which the whole boundary

is directly visible can be identified (points denoted with O in Fig. 2.8). As only the

boundary of a polytope element needs to be discretized, polytope elements of arbitrary

number of faces, edges and vertices can be constructed. Examples of the polytope

elements formulated in the SBFEM are shown in Fig. 2.8c and Fig. 2.8d. The polygon

elements have been applied to study contact problems on the crack face (Zhang et al.,

2018), hydraulic failure at the dam-foundation interface (Zhong et al., 2018) and non-

linear analysis of slop stability (Lak and Bazyar, 2019).

The arbitrary polytope elements formulated by the SBFEM provide a higher degree

of flexibility in automatic mesh generation. The simple quadtree/octree algorithm can

be employed for mesh generation and it is highly complementary to the SBFEM. The

details of quadtree/octree based mesh generation will be presented in Section 2.2.4.

The advantages of the combination of the the SBFEM and quadtree/octree mesh are

demonstrated by Ooi et al. (2015) in 2D and Saputra et al. (2017) in 3D. The thermal

conductivity of heterogeneous materials is investigated using quadtree mesh in He et al.

(2019). A combined quadtree-polygon based approach is applied to mesoscale modeling

of concrete in Guo et al. (2019). Non-local damage problems is analyzed using quadtree

mesh in Zhang et al. (2019). An automatic polyhedral mesh generator based on octree

algorithm is developed in Liu et al. (2017). More recently, the combination of the

SBFEM and octree based mesh is applied to geotechnical structures (Chen et al., 2018),

saturated soil (Zou et al., 2018), porous media (Zou et al., 2019) and many others (Talebi

et al., 2016).

In this research, the SBFEM is used for structure analysis. The equations of the

SBFEM will be derived in Chapter 3.
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2.2 Mesh generation

Mesh generation is an important step for many numerical analysis (Park et al., 2017).

The quality of mesh has a significant impact on the accuracy of the result of analysis.

However, the generation of a high quality mesh generation is a nontrivial task, which

has been stated in Section 1.4.1. A large number of methods have been developed

for the mesh generation (Thompson et al., 1985; Ho-Le, 1988; Geuzaine and Remacle,

2009). There are different classifications of these methods. For instance, they can be

classified based on the type of elements (Fig. 1.2), e.g. triangles, quadrilaterals, poly-

gons, tetrahedra, hexahedra and polyhedra. They can also be classified as structured

and unstructured mesh generation methods. In structured mesh generation, meshes are

constructed in such a way that the points can be regarded as the intersection points

of curvilinear co-ordinate curves in 2D or surfaces in 3D (Farrashkhalvat and Miles,

2003). All the inner nodes have the same number of elements around them. Otherwise,

the mesh is regarded as unstructured. Usually a mesh is still considered structured

if it is composed of several structured meshes for individual parts of a model. Some

examples of structured and unstructured meshes are shown in Fig. 2.9. Alternatively,

they can be classified as direct and indirect methods (Botella et al., 2016). In an indi-

rect method, a mesh of different element type is generated first and then converted to

the desired element type. For example, a tetrahedron can be divided into 4 hexahedra

(Fig. 2.10). The common conversions are subdivision, merging, primal/dual approach.

In this section, the mesh generation methods will be introduced based on the algo-

rithms, including mapping and sweeping, Delaunay triangulation, advancing front and

grid based method.
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(a) Structured triangle
mesh

(b) Unstructured triangle
mesh

(c) Structured quadrilat-
eral mesh

(d) Unstructured quadri-
lateral mesh

Figure 2.9: Examples of structured and unstructured meshes

(a) A tetrahedron element (b) Subdivision of the
tetrahedron element

(c) 4 hexahedron elements af-
ter the subdivision

Figure 2.10: Example of indirect mesh generation
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2.2.1 Mapping and sweeping

Although the ideas are relatively simple, mapping and sweeping are still widely used

methods in the generation of hexahedron meshes in conventional FEM. They are con-

sidered to be reliable in terms of element quality. They usually require manual pre-

processing on the geometric models.

2.2.1.1 Mapping

Mapping is usually utilized to generate structured hexahedron mesh. A parent hexa-

hedron mesh is generated in a parametric space (Fig. 2.11a). It is then mapped into

the actual geometry of the model (Fig. 2.11b). The mapping algorithm using bivariable

blending function interpolation was introduced in Gordon and Hall (1973). Sometimes

a model needs to be decomposed into several simpler parts (Fig. 2.12b) and each part

is mapped individually (Fig. 2.12c). A decomposition method and transfinite mapping

procedure was reported in Liu and Gadh (1996). The decomposition process usually

involves laborious manual process. Researchers have been endeavoring to automate

the decomposition process. A novel “virtual decomposition” method was developed

in White et al. (1995). A feature recognition method was presented in Tautges et al.

(1997) for mapping individual parts.

The advantage of mapping is that it is simple to implement. The topology of

the structured hexahedron mesh is fixed, which is highly efficient in computational

storage. However, there are significant limitations and drawbacks of this method. The

geometry of each part has to be equivalent to a cube in topology, i.e. 6 faces and 12

edges. The manual decomposition is tedious and time-consuming. The quality of mesh

heavily depends on the shape of the geometry, i.e. the mapped elements can be severely

distorted if the geometry contains curved surface.
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(a) Parent hexahedron mesh in
parametric space

x
y

z

(b) Mapped hexahedron mesh

Figure 2.11: Mesh generation of a curvilinear cube using mapping
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(a) Parent hexahe-
dron mesh in para-
metric space

x
y

z

(b) An octant of a sphere is di-
vided into three parts

(c) Hexahedron mesh
mapped to each part

(d) Final mesh merged
from the three parts

Figure 2.12: Mesh generation of an octant of hollow sphere using decomposition and
mapping
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source 

surface

sweeping 

path
target 

surface

(a) Quadrilateral mesh gen-
erated on the source surface

(b) Hexahedron mesh
after sweeping

Figure 2.13: Mesh generation of a cylinder using sweeping

2.2.1.2 Sweeping

Sweeping is an algorithm to generate 3D meshes from 2D surface meshes. It is also

referred to as 21/2D meshing. The geometry of the model contains a source surface, a

target surface and a sweeping path. The shape of the source surface is usually simple so

that a quadrilateral or triangle mesh can be generated for the surface (see Fig. 2.13a and

Fig. 2.14a). The target surface is topologically equivalent to the source. A structured

quadrilateral mesh is generated for the side face. Then the mesh of the source is offset

along the sweeping path. If the source surface is meshed with quadrilateral element, the

volume mesh will be a hexahedron mesh. If a triangle mesh is generated for the source

surface, prism volume mesh will be obtained. Different algorithms to determine the

interior node locations were reported in Mingwu et al. (1996). A complex model can

be decomposed into several parts which can be swept. A “cooper tool” was presented

in Blacker (1996) which was able to enforce compatibility on the interface of different

parts using imprinting and shifting algorithms. Sweeping using irregular, twisted and

curved sweeping paths was presented in Staten et al. (1999). A sweeping algorithm

based on least-square projection was proposed in Roca and Sarrate (2010).

The quality of the mesh generated by sweeping is usually good as long as the cur-

vature of the sweeping path is reasonably small. The method is also robust if an initial

surface mesh can be generated. However, the application of this method is also limited

by the requirement on the geometry, i.e. a sweeping path needs to be identified and
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source 

surface

target 

surface

sweeping 

path

(a) Quadrilateral mesh generated on the
source surface

(b) Hexahedron mesh after
sweeping

Figure 2.14: Mesh generation of a tube using sweeping

the source and target surfaces have to be similar. Manual operation is necessary to

decompose the complex geometry into simpler ones which are suitable for sweeping.

It is the manual decomposition that takes most of the time. Recently, a user-guided

semi-automatic decomposition tool was reported in Lu et al. (2017). A fuzzy clustering

algorithm was developed in Wu et al. (2018) for automatic decomposition. The capabil-

ity of the algorithm was demonstrated using several complex models. Mesh generated

using sweeping has been used in the optimization of aircraft engine in Shen et al. (2018).

2.2.2 Delaunay triangulation

Delaunay triangulation is widely used to generate unstructured triangle/tetrahedron

meshes. The idea was first invented by Delaunay et al. (1934). The Delaunay crite-

rion, also called the “empty sphere” property, states that any node must not be con-

tained within the circumcircle/circumsphere of any triangle/tetrahedron within the

mesh (Owen, 1998).

In 2D a convex quadrilateral can be divided into 2 triangles using 2 different schemes

(Fig 2.15). In Fig 2.15a, the circumcircle of triangle ABC contains point D and triangle

ACD contains point B, too, therefore the Delaunay criterion is not satisfied. The

diagonal is flipped in Fig 2.15b. Now the circumcircles of triangles ABD and BCD do

not contain any other points, therefore this is a valid Delaunay triangulation.

In 3D the cases are more complicated. There are 5 possible configurations of 5
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A

B

C

D

(a) Triangulation not satisfy-
ing Delaunay criterion

A

B

C

D

(b) Triangulation satisfying
Delaunay criterion

Figure 2.15: The 2D Delaunay triangulation of 4 non-collinear points

non-planar points, which were enumerated in Joe (1991). Here only the simplest case

is considered in Fig 2.16a. Any 4 of the 5 points are non-planar, and all 5 points are

located on the convex hull (the definition of convex hull can be found in Seidel (1986)).

All faces are also located on the convex hull. There are two possible schemes to tetrahe-

dronlize the polyhedron. In the first scheme, it is subdivided by plane ABC so that two

tetrahedra ABCE and ABCE are generated (Fig 2.16b). In the second scheme, A new

interior edge DE is constructed (Fig 2.16c), and the polyhedron is divided into 3 new

tetrahedrons ABDE, BCDE and ACDE (Fig 2.16d). The circumspheres of ABCE

and ABCE are shown in Fig 2.16e. It can be observed that the two spheres are both

empty (not containing any other points). Therefore this is a valid tetrahedronlization

satisfying Delaunay criterion. On the other hand, all the 3 circumspheres in Fig 2.16f

contain all the 5 points, therefore this scheme doesn’t satisfy the Delaunay criterion.

The transformation between the 2 schemes is called 3-2 flipping in 3D (Shewchuk, 2002),

similar to the edge flipping in Fig 2.15. A tetrahedronlization can always be achieved

by doing this transformation iteratively.

The Delaunay criterion itself is not a mesh generation method but merely a scheme

to connect a set of existing points. It has to be combined with other point generation

or insertion algorithms to generate meshes. Several automatic point creation schemes
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(a) A polyhedron with 5
points (any 4 of them are
non-planar)
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B

C
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tetrahedrons
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D
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(d) Subdivision into 3 tetrahe-
drons

(e) Tetrahedronl-
ization satisfying
Delaunay crite-
rion

(f) Tetrahedronliza-
tion not satisfying
Delaunay criterion

Figure 2.16: The 3D Delaunay tetrahedralization of 5 non-planar points
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were compared in Weatherill and Hassan (1994). A constrained Delaunay triangula-

tion scheme was proposed in Baker (1989) to generate tetrahedron mesh for objects of

essentially arbitrary complexity. The treatment of boundary layers in Delaunay trian-

gulation was discussed in George et al. (1991). The dual of a Delaunay triangulation is

called a Voronoi diagram (Watson, 1981). It is a useful tool in the generation of poly-

gon/polyhedron mesh (Yan et al., 2013). An example of 2D Delaunay triangulation and

its dual Voronoi diagram is shown in Fig 2.17a. The dash lines represent the Delaunay

triangulation of a randomly generated point set. The centers of the circumcircles of the

triangles are defined as vertices in the Voronoi diagram. If two triangles share an edge,

the two corresponding vertices in the Voronoi diagram will be connected. Each polygon

in the Voronoi diagram corresponds to a node in the Delaunay triangulation. A 3D

example of Delaunay tetrahedrons and a Voronoi polyhedron is shown in Fig 2.17b.

Delaunay triangulation is well-known for its robustness. However, a set of input

points have to be defined using other algorithms. The quality of the obtained tetrahe-

dron mesh depends on the distribution of the input points. Another difficulty associated

with Delaunay triangulation is the boundary recovery. The “empty sphere” property

may be violated locally in order to make the mesh conforming to the geometry. It can

also be used to generate hexahedron mesh by subdividing each tetrahedron, but the

obtained element quality is usually poor. Recently, a new tetrahedral mesh generator,

“TetGen”, was reported in Si (2015). The algorithm presented in Su et al. (2016) was

designed for parallel processing of large scale point cloud. Delaunay triangulation using

curved Bezier element was presented in Feng et al. (2018). An efficient serial imple-

mentation of the incremental Delaunay insertion algorithm was reported in Marot et al.

(2019).
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(a) Delaunay and Voronoi diagram in 2D
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gram in 3D

Figure 2.17: Delaunay and Voronoi diagram
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(a) Traingle mesh generation by ad-
vancing front

(b) Quadrilateral mesh generation
by advancing front

Figure 2.18: Mesh generation by advancing front

2.2.3 Advancing front

Advancing front is another widely used method in mesh generation. Sometimes it is

called paving for quadrilateral mesh generation in 2D and plastering for hexahedron ele-

ment in 3D (Owen, 1998). Some early development of the advancing front can be found

in Lo (1985); Peraire et al. (1990); Lohner (1996). The generation of initial bound-

ary layer and interior of the tetrahedron mesh were discussed in Lo (1991a,b). This

method was applied to quadrilateral elements in Zhu et al. (1991). Paving algorithm

was introduced by Blacker and Stephenson (1991). The extension to hexahedron mesh

generation in 3D was reported in Blacker and Meyers (1993).

The advancing front algorithm starts from a surface mesh on the boundary (line

segments in 2D and triangule/quadrilateral mesh in 3D). A layer of new elements are

constructed by marching the front inward the model (Fig 2.18) and a new front is

generated. This operation is done iteratively until the whole model is filled.

Advancing front is robust in triangle/tetrahedron mesh generation. However the

closure of the front is not guaranteed when extending to quadrilateral and hexahedron

meshes, especially when the model contains multiple holes. The mesh quality near

the boundary is usually good, while sometimes distorted elements will appear in the

interior part. This method is time consuming as a new front needs to be calculated
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(a) Quadrilateral
background grid

(b) Triangle back-
ground grid

(c) Hexagon back-
ground grid

Figure 2.19: Uniform background grid

in each step. Advancing front is well-developed for triangle/tetrahedron meshes, while

the application in quadrilateral/hexahedron mesh generation is still an open research

topic (Armstrong et al., 2015; Zhou et al., 2016).

2.2.4 Grid based method

Grid based method is a large group of methods using a background grid to discretize

the problem domain. The background grid can be composed of triangle, quadrilat-

eral, hexagon and polygon in 2D, tetrahedron, hexahedron and polyhedron in 3D. The

background grid can be used in analysis directly by selecting the elements inside the

model (Giovannelli et al., 2017). Alternatively, the background grid can be fitted into

the geometry by trimming or projection (Karman, 2004). Some typical uniform back-

ground grids are shown in Fig 2.19. An algorithm based on uniform triangle grid was

presented in Thacker et al. (1980) to study the storm surge. A grid based hexahedron

mesh generation algorithm was developed in Schneiders (1996).

Hierarchical background grids are more popular in FEM as local mesh refinement

can be implemented. Quadtree and octree background grids are shown in Fig 2.20.

A square/cube is recursively subdivided into 4/8 smaller squares/cubes, until certain

resolution is reached. Mesh generation based on quadtree algorithm was developed

in Yerry and Shephard (1983). The extension to 3D problems was presented in Yerry

and Shephard (1984); Shephard and Georges (1991). Several templates were proposed
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(a) Quadtree background grid (b) Octree background grid

Figure 2.20: Hierarchical background grid

to make the meshes conformal to the geometry.

There are many advantages of the grid based method. As the initial background

grid is independent of the model, theoretically it is robust for arbitrary complex ge-

ometry. The mesh size can be controlled easily if hierarchical background grid is used.

The quadtree/octree data structure is efficient in data retrieval and suitable for parallel

processing (Samet, 1984). However, the trimming of the background grid on the bound-

ary is usually difficult to implement (Karman and Betro, 2008). Not to mention that

the element quality on the boundary is usually poor. The handling of sharp edges and

corners in grid based method is another difficulty (Marechal, 2009). In conventional

FEM, shape function for arbitrary polytope element is not available, therefore trian-

gulation/tetrahedralization is usually required after the trimming of the background

grid (Ghisi et al., 2014). Recently, an octree mesh generation method for multiple

materials was reported in Fujita et al. (2016). A conforming mesh generation scheme

based on octree algorithm was proposed in Kudela et al. (2016). It was claimed that the

algorithm works for complex geometry with presence of sharp edges. Octree mesh was

used in adaptive mesh refinement in Hasbestan and Senocak (2018). The application

in biomedical science was discussed in Bols et al. (2016); Katsushima et al. (2018).

Octree based algorithm is applied in this research. The implementation will be
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presented in Chapter 4.

2.2.5 Combination of methods

In engineering practice, the methods introduced above are usually combined based

on the features of the geometry. For example, grid based method can be used to

generate initial point set for Delaunay triangulation (Schroeder and Shephard, 1990).

The mesh density can be controlled easily. Delaunay triangulation can be combined

with the advancing front method (Mavriplis, 1995). The boundary layers are generated

by advancing front and the interior nodes are connected using Delaunay triangulation.

There is no need for boundary recovery and the efficiency is improved. Alternatively,

the grid based method can be combined with the advancing front method (McMorris

and Kallinderis, 1997). While a few layers of high quality elements can be generated

near the boundary, the background grid can fill the interior of the model fast and

robust (Demargne et al., 2014). Octree based polyhedron mesh can be mapped into

a different geometry (Hu and Zhang, 2016). A complex geometry can be partitioned

using medial axis/surface (Owen, 1998), and each part with simple geometry can be

meshed using different methods.

2.3 Coupling of non-matching meshes

In the numerical analysis of complex and large scale structures, it is desirable to spa-

tially divide the problem domain into several simpler subdomains. The meshes of these

simpler subdomains are usually easier to generated using the methods introduced in

Section 2.2. These subdomains are only connected by their interfaces. The interface

meshes are matching if the mesh topologies and element shape functions are the same

on both sides of the interface (Fig. 2.21a), otherwise they are non-matching (Fig. 2.21b).

Obviously, the use of non-matching meshes offer greater flexibility in practice as they
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(a) Matching meshes (b) Non-matching meshes

Figure 2.21: Matching and non-matching meshes in 3D

enable users to generate meshes for different subdomains independently. This advantage

facilitates integrating geometric modeling and structure analysis by reducing the human

effort required in the mesh generation for complex models. The mesh of one subdomain

can be modified without affecting the meshes of the other subdomains. Parallel process-

ing can be employed to generate meshes for the subdomains. Therefore the structure

analysis in engineering design process can be largely simplified and accelerated.

These independent meshes need to be coupled (or“glued”) together when a numerical

analysis is performed. A large number of techniques have been developed to couple

non-matching meshes. They have been applied to a variety of problems such as domain

decomposition (Becker et al., 2003), contact mechanics (Laursen et al., 2012), fluid-

structure interaction (Bazilevs et al., 2012), multi-scale analysis (Unger and Eckardt,

2011), etc.

2.3.1 Early developments

A variety of methods have been developed for the coupling of non-matching meshes.

The nearest neighbor interpolation (de Boer et al., 2007) is among the earliest methods.

It searches for the nearest node pairs from the two meshes. The displacements of a node
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pair are set to be equal. Some modifications based on the nearest neighbor interpolation

were developed using Gauss interpolation and radial basis functions. In cases where the

nodes in a coarser mesh coincide with the nodes in a finer mesh, the shape function of

elements in the coarser mesh can be used to calculate displacement of nodes in the finer

mesh (Demkowicz et al., 1985). These methods, although simple to implement, often

lead to deterioration of accuracy.

2.3.2 Mortar element method

Mortar element method was developed by Maday et al. (1988). A set of mortar ele-

ments, which are lines in 2D and surfaces in 3D, are inserted between the two non-

matching meshes. The displacements in the two meshes and the mortar elements need

to minimize the total potential energy of the system (Pantano and Averill, 2002). It

can be solved by introducing Lagrange multipliers as interaction forces (Puso, 2004;

Flemisch et al., 2005). Some variants were also developed using dual space (Wohlmuth,

2000) and primal hybrid formulation (Belgacem, 1999). Methods based on the La-

grange multiplier technique enjoy the advantages of satisfying the continuity conditions

in a variational sense and the exact displacement constraints. On the other hand, this

method introduces additional degrees of freedom and must be subject to the inf-sup

or Ladyzhenskaya-Babuška-Brezzi condition (Brezzi and Bathe, 1990). The stiffness

matrix obtained by this method is not positive-definite. Penalty method (Pantano

and Averill, 2002, 2007) introduces no extra variables into the equation system and is

simple to implement. However, the penalty parameters are difficult to choose. This

method only applies the displacement constraints approximately. A combination of

penalty and the Lagrange multipliers methods was developed in Simo et al. (1985). It

is demonstrated that this method has higher accuracy than the penalty method.
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2.3.3 Nitsche’s method

Nitsche’s method was developed by Nitsche (1971) for imposing essential boundary con-

ditions weakly in the FEM. A variant of Nitsches method was proposed in Hansbo and

Hansbo (2002) for elliptic interface problems. It was claimed that optimal convergence

rate was obtained. The application in domain decomposition was investigated by Becker

et al. (2003). This method was utilized for coupling fluid and structure meshes in vibra-

tion analysis by Hansbo and Hermansson (2003) and Burman and Fernandez (2014). A

summary of Nitsche’s method in a variety of problems was presented in Hansbo (2005).

Nitsche’s method was applied in Apostolatos et al. (2014) to handle non-matching

meshes in 2D isogeometric analysis. It was extended to couple non-uniform rational

B-spline patches in 3D by Nguyen et al. (2014). The application of Nitsche’s method

to contact problems was investigated in Hu et al. (2018).

2.3.4 Non-conventional elements

Another class of coupling strategies consists of methods based on non-conventional

types of elements (Lim et al., 2007; Kim, 2008; Sohn and Jin, 2015). These methods

modify the element formulation in order to convert the non-matching interface into a

matching one. The stiffness matrix is positive-definite and banded. The compatibility

of displacement along the interface is also satisfied precisely. Coupling finite element

method was presented by Bitencourt Jr. et al. (2015) to build new interface element

using standard finite element shape function as a reference. It inserts one additional

node each time to the original element to construct a new interface element. In the

interface element method (Kim, 2002), polygon and polyhedron elements of arbitrary

shapes are constructed on the surfaces of non-matching meshes as interface elements.

This method was first utilized to connect 3D non-matching meshes which share a flat in-

terface (Lim et al., 2007). The capability of the interface element method was improved

in handling curved interface by employing the moving least square approximation (Kim,
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2008). Besides, polyhedron elements (Sohn and Jin, 2015) are developed to deal with

non-matching interfaces based on the cell-based smoothed finite element method (Liu

et al., 2007). Such a coupling strategy can potentially be employed with other formula-

tions of polytope elements (Beirao da Veiga et al., 2014; Natarajan et al., 2015, 2014,

2017; Francis et al., 2017; Chen et al., 2001, to name a few).

2.4 Numerical simulation of virtual reality models

Virtual reality technique has been widely used in industrial design (Jayaram et al.,

1997; Purschke et al., 1998; Kan et al., 2001). With the rapid development of modern

computers, it is possible to generate virtual reality models for a whole city (Ennis and

Lindsay, 2000). Virtual reality was employed to model the transportation network

in Sun et al. (2002). The concept of “virtual city” for 3D modeling and visualization

was presented in Dollner et al. (2006). A case study of virtual city reconstruction

of ancient Rome was reported in Dylla et al. (2008). Different modern techniques to

construct virtual city model were discussed in Singh et al. (2013). However, until now,

the virtual city technique is mainly used for geometric modeling rather than numerical

analysis. Such numerical analysis on urban scale models will have significant impact on

the study of earthquake (Taborda and Bielak, 2011b,a), aerodynamics (Kanda et al.,

2013), fluid dynamics (Blocken, 2015; Maronga et al., 2015; Hasbestan and Senocak,

2017) and many others (Ichimura et al., 2015; Hereth et al., 2017).

2.5 Adaptive analysis

Adaptive analysis is a technique to refine a mesh based on the error estimation in a

numerical analysis (Zienkiewicz and Zhu, 1987; Zhu and Zienkiewicz, 1988). The mesh

is only refined in regions where estimated errors are higher than a threshold, therefore

the convergence rate is expected to be faster than a uniform refinement. A review of
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the development of adaptive techniques can be found in Li and Bettess (1997). A large

number of error indicators have been developed (Ainsworth and Oden, 1993; Babuska

et al., 1994). Superconvergent patch was studied in adaptive analysis by Zienkiewicz

and Zhu (1992a,b). Adaptive technique was later applied to study linear (Zienkiewicz

et al., 1999), elasto-plastic (Boroomand and Zienkiewicz, 1999), acoustic (Bouillard and

Ihlenburg, 1999) and many other problems in the FEM (Ortiz and Quigley Iv, 1991).

Adaptive analysis has been applied to other numerical methods as well. In Deeks

and Wolf (2002a) a stress recovery and error estimation method was developed in the

SBFEM. Adaptive technique was investigated in meshfree particle method by Rabczuk

and Belytschko (2005). Adaptivity in isogeometric analysis was studied in Dorfel et al.

(2010); Vuong et al. (2011). A coupled FEM-BEM was used in adaptive analysis in Au-

rada et al. (2013). Recently, a novel error indicator without stress recovery was proposed

in Song et al. (2018) using the SBFEM.

In conventional FEM usually the whole mesh needs to be regenerated in each step,

even if the refinement is only in a local region. An adaptive refinement using quadtree

mesh was developed in Tabarraei and Sukumar (2005). A graph-based implementation

of quadtree meshes for adaptive analysis was reported in Burgarelli et al. (2006). It

was shown that the storage requirements and computational cost were low compared

with other methods. Unstructured polygon mesh was refined using a polytree algorithm

in Spring et al. (2014). A novel polytree based polygonal finite element method was

proposed in Nguyen-Xuan (2017); Nguyen-Xuan et al. (2017a,b); Chau et al. (2018).

High order element was employed in adaptive analysis by Grayver and Kolev (2015).
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Figure 2.22: Carbon nanotube

2.6 Mesh generation of fiber reinforced materials

and structures

Fiber reinforced materials have been widely used in engineering. It is reported that

the mechanical property of a matrix material can be significantly improved by adding

only a small amount of fibers (Spanos and Kontsos, 2008; Figiel and Buckley, 2009;

Djebara et al., 2016). A new class of fiber, carbon nanotube (CNT), has attracted

increasingly attention in the last decade. The geometry of a CNT can be considered

as a wrapped hexagonal mesh in nanoscale (Shokrieh and Rafiee, 2010) (see Fig 2.22).

It has shown exceptional mechanical properties (elastic modulus of 1TPa and tensile

strength of 150GPa (Tserpes et al., 2008; Tserpes and Chanteli, 2013)).

The evaluation of the material property of fiber reinforced materials becomes an

important task. Traditionally the material properties are evaluated via experiments,

Experiments can only be performed after specimens have been manufactured. The

process is time-consuming and expensive. An analytical method to evaluate of the

elastic properties of composite materials can be found in Hill (1963). Halpin-Tsai

equation (Halpin, 1969; Affdl and Kardos, 1976) and Mori-Tanaka equation (Mori and

Tanaka, 1973; Benveniste, 1987) were later proposed to study fiber reinforced materials.

In recent years, FEM has been widely used as an alternative to the experiment and
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the analytical methods. In FEM the fibers are generally modeled as 1D tension bars or

beams. FEM has a variety of advantages, such as the problems from macro to micro

even nano scale can be studied within the same framework (Sheng et al., 2004). Both

aligned (Sheng et al., 2004) and randomly distributed (Odegard et al., 2005; Hbaieb

et al., 2007) fibers can be modeled. Fibers with different shapes and aspect ratios

can be considered (long cylinder, sphere and thin discs (Mortazavi et al., 2013)). The

interphase effect between fiber and matrix can also be investigated (Odegard et al.,

2005; Vo et al., 2018). Parametric study can be easily performed without excessive

cost (Vo et al., 2018). In FEM a CNT can be simplified to an equivalent beam in

micro scale considering the tension, bending and torsion stiffness of the structure in

nano scale (Ayatollahi et al., 2011). The simplified beam is then added to the matrix

to evaluate the overall materiel properties. Alternatively, the hexagonal mesh of the

CNT can be coupled with the matrix directly, which has been reported in Banerjee

et al. (2016). However there are some difficulties in the modeling of fiber reinforced

materials in FEM. The mesh generation is difficult because the mesh usually needs to

be aligned with the fibers. Quadrilateral meshes generated for 2D problem are usually

distorted, not to mention that only tetrahedron meshes are possible in 3D (Hbaieb

et al., 2007; Vo et al., 2018). Sometimes the locations of the fibers are prescribed to be

non-overlapping (Silani et al., 2014), which may not reflect the real situation.
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Chapter 3

Scaled boundary finite element

method

In this chapter, the scaled boundary finite element method (SBFEM) is introduced. The

SBFEM is a semi-analytical method recently developed in the field of computational

mechanics. In this method, only the boundary of the domain needs to be discretized.

Polygons and polyhedrons with arbitrary number of nodes, edges and faces can be used

in an analysis, therefore this method offers greater flexibility in mesh generation and

domain decomposition. The fundamental theory of the scaled boundary finite element

is presented in Song (2018) accompanied by a computer program written in MATLAB.

3.1 Basic formulations of the scaled boundary finite

element method

In this section, the basic formulations of the scaled boundary finite element method in

3D are derived using the virtual work principle. The formulations in 2D problems and

unified 2D/3D formulations can be found in Song (2018).
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(a) S-domain in 2D

O

(b) S-domain in 3D

Figure 3.1: S-domains in 2D and 3D

3.1.1 Modeling of geometry in scaled boundary coordinates

3.1.1.1 S-domains and S-elements

In the SBFEM, polytope elements are utilized to model the problem domain. There is

no restriction on the number of nodes, edges and faces in the polytope elements. The

only requirement is that the whole boundary of the polytope element must be directly

visible from at least one point inside. Such polytope element is defined as an S-domain.

The point is defined as scaling center (point O in Fig. 3.1a and Fig. 3.1b). The visibility

angle is the minimum angle formed by the boundary and the line connecting the scaling

center to the boundary (dash lines in Fig. 3.1a and Fig. 3.1b). The visibility angle

should not be too small otherwise the Jacobian matrix of coordinate transformation in

Eq. (3.13) becomes ill-conditioned. It is discussed in Song (2018) that an S-domain is

closely related to a star polytope in mathematics. The scaling requirement can always

be satisfied by subdivision of the polytope elements.

Only the boundary of an S-domain needs to be discretized. The elements on the

boundary are standard isoparametric elements in the FEM, which are denoted as e.

In 2D the boundary of a polygon is discretized using 1D line elements (e1, e2, . . . , e5

in Fig. 3.2a), while in 3D the boundary of a polyhedron is discretized using triangle

and quadrilateral elements (e1, e2, . . . in Fig. 3.2b). The S-domain and its boundary
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(b) 3D S-domain dis-
cretized using triangle
and quadrilateral ele-
ments

Figure 3.2: Boundary discretizations of the S-domains

discretization define an S-element.

The coordinates of a point on the boundary can be interpolated using finite element

shape function in 2D (Fig. 3.3).

xb (η, ζ) =
ne∑
i=1

Ni (η, ζ)xi = [N (η, ζ)] {x} , (3.1a)

yb (η, ζ) =
ne∑
i=1

Ni (η, ζ) yi = [N (η, ζ)] {y} , (3.1b)

zb (η, ζ) =
ne∑
i=1

Ni (η, ζ) zi = [N (η, ζ)] {z} , (3.1c)

where {x}, {y} and {z} are the coordinates of nodes of the element on the boundary.

ne is the number of nodes of the element. Ni (η, ζ) is the shape function related to node

i. [N (η, ζ)] is the shape functions in matrix form

[N (η, ζ)] =

[
N1 (η, ζ) N2 (η, ζ) . . .

]
. (3.2)
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quadrilateral
element

Figure 3.3: Examples of isoparametric elements

The shape functions of an isoparametric linear triangle element are (Fig. 3.3a)

N1 (η, ζ) = 1− η − ζ, (3.3a)

N2 (η, ζ) = η, (3.3b)

N3 (η, ζ) = ζ. (3.3c)

The shape functions of an isoparametric linear quadrilateral element are (Fig. 3.3b)

N1 (η, ζ) =
1

4
(1− η) (1− ζ) , (3.4a)

N2 (η, ζ) =
1

4
(1 + η) (1− ζ) , (3.4b)

N3 (η, ζ) =
1

4
(1− η) (1 + ζ) , (3.4c)

N4 (η, ζ) =
1

4
(1 + η) (1 + ζ) . (3.4d)

3.1.1.2 Scaled boundary transformation

In this section, the scaled boundary coordinate transformation of an S-domain in 3D is

presented.
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The position vector of an arbitrary point is

r = x i + yj + zk, (3.5)

where i, j and k are unit vectors in Cartesian coordinates. The spherical coordinates

of the point are

r =
√
x2 + y2 + z2, (3.6a)

θ = arctan
y

x
, (3.6b)

φ = arccos
z

r
. (3.6c)

The position vector of a point on the boundary is written as

rb = xbi + ybj + zbk. (3.7)

where xb, yb and zb are the coordinates of the point on the boundary. Suppose the

position vector of the scaling center is r0, an arbitrary point inside the S-domain is

represented by

r = ξ (rb − r0) + r0, (3.8)

where ξ is a value between [0, 1]. Since the whole boundary is directly visible from

the scaling center, each point rb on the boundary is connected to r0 by a unique line.

Therefore, each point can be uniquely defined by a pair of rb and ξ . It can be written

as x, y and z components in Cartesian coordinates

x = ξ (xb − x0) + x0, (3.9a)

y = ξ (yb − y0) + y0, (3.9b)

z = ξ (zb − z0) + z0. (3.9c)
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Figure 3.4: Scaled boundary transformation of a surface element

The scaled boundary transformation of a linear quadrilateral element is shown in

Fig. 3.4. Substituting Eq. 3.1 into Eq. 3.9, a point inside an S-domain can be represented

using scaled boundary coordinates ξ, η and ζ

x = ξ ([N (η, ζ)] {x} − x0) + x0, (3.10a)

y = ξ ([N (η, ζ)] {y} − y0) + y0, (3.10b)

z = ξ ([N (η, ζ)] {z} − z0) + z0. (3.10c)

Applying the chain rule, the partial differential operators with respect to the scaled

boundary coordinates are expressed as

∂

∂ξ
=

∂

∂x

∂x

∂ξ
+

∂

∂y

∂y

∂ξ
+

∂

∂z

∂z

∂ξ
, (3.11a)

∂

∂η
=

∂

∂x

∂x

∂η
+

∂

∂y

∂y

∂η
+

∂

∂z

∂z

∂η
, (3.11b)

∂

∂ζ
=

∂

∂x

∂x

∂ζ
+

∂

∂y

∂y

∂ζ
+

∂

∂z

∂z

∂ζ
. (3.11c)
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It can be written in matrix form as
∂
∂ξ

∂
∂η

∂
∂ζ

 = [J ]


∂
∂x

∂
∂y

∂
∂z

 , (3.12)

where [J ] is the Jacobian matrix

[J ] =


x,ξ y,ξ z,ξ

x,η y,η z,η

x,ζ y,ζ z,ζ

 . (3.13)

Inverting Eq. 3.12, the partial derivatives of with respect to Cartesian coordinates can

be written as 
∂
∂x

∂
∂y

∂
∂z

 = [J ]−1


∂
∂ξ

∂
∂η

∂
∂ζ

 , (3.14)

In Cartesian coordinates, an infinitesimal increase in the displacement can be written

as

du =
∂u

∂x
dx +

∂u

∂y
dy +

∂u

∂z
dz =

[
dx dy dz

]
∂u
∂x

∂u
∂y

∂u
∂z

 . (3.15)

Similarly, in scaled boundary coordinates, du can be expressed as

du =
∂u

∂ξ
dξ +

∂u

∂η
dη +

∂u

∂ζ
dζ =

[
dξ dη dζ

]
∂u
∂ξ

∂u
∂η

∂u
∂ζ

 . (3.16)
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Comparing Eq. 3.15 and Eq. 3.16,

[
dx dy dz

]
∂
∂x

∂
∂y

∂
∂z

 =

[
dξ dη dζ

]
∂
∂ξ

∂
∂η

∂
∂ζ

 . (3.17)

Considering Eq. 3.12,

[
dx dy dz

]
=

[
dξ dη dζ

]
[J ] . (3.18)

The partial derivatives in the Jacobian matrix are obtained from Eq. (3.9) and Eq. (3.1)

x,ξ = xb − x0 y,ξ = yb − y0 z,ξ = zb − z0, (3.19a)

x,η = ξxb,η y,η = ξyb,η z,η = ξzb,η , (3.19b)

x,ζ = ξxb,ζ y,ζ = ξyb,ζ z,ζ = ξzb,ζ . (3.19c)

The Jacobian matrix can be written as a product of two matrices

[J ] =


1 0 0

0 ξ 0

0 0 ξ



xb − x0 yb − y0 zb − z0

xb,η yb,η zb,η

xb,ζ yb,ζ zb,ζ

 . (3.20)

Substitute Eq. (3.20) into Eq. (3.14),


∂
∂x

∂
∂y

∂
∂z

 = [Jb]
−1


∂
∂ξ

1
ξ
∂
∂η

1
ξ
∂
∂ζ

 , (3.21)
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where [Jb] = [J (ξ = 1)] is the Jacobian matrix on the boundary

[Jb] =


xb − x0 yb − y0 zb − z0

xb,η yb,η zb,η

xb,ζ yb,ζ zb,ζ

 . (3.22)

The entries of the Jacobian matrix on the boundary [Jb] are obtained from Eq. (3.1) as

xb − x0 = [N ] {x} yb − y0 = [N ] {y} zb − z0 = [N ] {z} , (3.23a)

xb,η = [N,η ] {x} yb,η = [N,η ] {y} zb,η = [N,η ] {z} , (3.23b)

xb,ζ = [N,ζ ] {x} yb,ζ = [N,ζ ] {y} zb,ζ = [N,ζ ] {z} . (3.23c)

The determinant of the matrix [Jb] is

|Jb| = (xb − x0) (yb,η zb,ζ −zb,η yb,ζ )

+ (yb − y0) (zb,η xb,ζ −xb,η zb,ζ )

+ (zb − z0) (xb,η yb,ζ −yb,η xb,ζ ) . (3.24)

The inverse of the Jacobian matrix on the boundary [Jb]
−1 can be written as

[Jb]
−1 =


j11 j12 j13

j21 j22 j23

j31 j32 j33

 , (3.25)
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where the entries in [Jb]
−1 are

j11 =
1

|Jb|
(yb,η zb,ζ −zb,η yb,ζ ) , (3.26a)

j21 =
1

|Jb|
(zb,η xb,ζ −xb,η zb,ζ ) , (3.26b)

j31 =
1

|Jb|
(xb,η yb,ζ −yb,η xb,ζ ) , (3.26c)

j12 =
1

|Jb|
((zb − z0) yb,ζ − (yb − y0) zb,ζ ) , (3.26d)

j22 =
1

|Jb|
((xb − x0) zb,ζ − (zb − z0)xb,ζ ) , (3.26e)

j32 =
1

|Jb|
((yb − y0)xb,ζ − (xb − x0) yb,ζ ) , (3.26f)

j13 =
1

|Jb|
((yb − y0) zb,η− (zb − z0) yb,η ) , (3.26g)

j23 =
1

|Jb|
((zb − z0)xb,η− (xb − x0) zb,η ) , (3.26h)

j33 =
1

|Jb|
((xb − x0) yb,η− (yb − y0)xb,η ) . (3.26i)

The partial derivatives in Eq. (3.21) can be rearranged as


∂
∂x

∂
∂y

∂
∂z

 =


j11

j21

j31


∂

∂ξ
+


j12

j22

j32


1

ξ

∂

∂η
+


j13

j23

j33


1

ξ

∂

∂ζ
. (3.27)

3.1.1.3 Geometrical properties in scaled boundary coordinates

The geometrical properties of a 3D S-domain in the scaled boundary coordinates are

discussed in this section.

A sector in an S-domain is shown in Fig. 3.5. The tangential vectors of a surface

on the boundary can be obtained from the partial derivatives of the position vector rb
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Figure 3.5: Geometrical properties of an S-domain in the scaled boundary coordinates

with respect to η and ζ.

rb,η = xb,ηi + yb,ηj + zb,ηk, (3.28a)

rb,ζ = xb,ζi + yb,ζj + zb,ζk. (3.28b)

The outward normal vector of the surface is calculated by

gξ = rb,η × rb,ζ

=

∣∣∣∣∣∣∣∣∣∣
i j k

xb,η yb,η zb,η

xb,ζ yb,ζ zb,ζ

∣∣∣∣∣∣∣∣∣∣
= (yb,ηzb,ζ − zb,ηyb,ζ) i + (zb,ηxb,ζ − xb,ηzb,ζ) j + (xb,ηyb,ζ − yb,ηxb,ζ) k. (3.29)

It can be normalized as

nξ = nξxi + nξyj + nξzk =
gξ

|gξ|
, (3.30)
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where
∣∣gξ∣∣ is the length of the vector gξ. The normal vector is written as matrix form

{
nξ
}

=


nξx

nξy

nξz

 =
1

|gξ|


yb,ηzb,ζ − zb,ηyb,ζ

zb,ηxb,ζ − xb,ηzb,ζ

xb,ηyb,ζ − yb,ηxb,ζ

 . (3.31)

Similarly, the tangential vectors of an arbitrary surface with a constant ξ is

r,η = ξrb,η = ξxb,ηi + ξyb,ηj + ξzb,ηk, (3.32a)

r,ζ = ξrb,ζ = ξxb,ζi + ξyb,ζj + ξzb,ζk. (3.32b)

An infinitesimal area on the surface element is equal to

dSξ = |r,η × r,ζ | dηdζ

= |ξrb,η × ξrb,ζ | dηdζ

= ξ2
∣∣gξ∣∣ dηdζ. (3.33)

The tangential vector to the radial direction on the side faces with constant η or ζ is

r,ξ = x,ξi + y,ξj + z,ξk. (3.34)

Considering Eq. (3.9), the tangential vector can be written as

r,ξ = rb − r0 = (xb − x0) i + (yb − y0) j + (zb − z0) k. (3.35)
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The normal vectors on the side faces are

gη = rb,ζ × r,ξ

= ((zb − z0) yb,ζ − (yb − y0) zb,ζ) i + ((xb − x0) zb,ζ − (zb − z0)xb,ζ) j

+ ((yb − y0)xb,ζ − (xb − x0) yb,ζ) k, (3.36a)

gζ = r,ξ × rb,η

= ((yb − y0) zb,η − (zb − z0) yb,η) i + ((zb − z0)xb,η − (xb − x0) zb,η) j

+ ((xb − x0) yb,η − (yb − y0)xb,η) k. (3.36b)

The unit normal vectors are calculated as

nη = nηxi + nηyj + nηzk =
gη

|gη|
, (3.37a)

nζ = nζxi + nζyj + nζzk =
gζ

|gζ |
. (3.37b)

They are written in matrix form as

{nη} =


nηx

nηy

nηz

 =
1

|gη|


(zb − z0) yb,ζ − (yb − y0) zb,ζ

(xb − x0) zb,ζ − (zb − z0)xb,ζ

(yb − y0)xb,ζ − (xb − x0) yb,ζ

 , (3.38a)

{
nζ
}

=


nζx

nζy

nζz

 =
1

|gζ |


(yb − y0) zb,η − (zb − z0) yb,η

(zb − z0)xb,η − (xb − x0) zb,η

(xb − x0) yb,η − (yb − y0)xb,η

 . (3.38b)
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The infinitesimal areas on the side faces are determined as

dSη = |r,ζ × r,ξ| dζdξ = |ξrb,ζ × r,ξ| dζdξ = ξ |gη| dζdξ, (3.39a)

dSζ = |r,ξ × r,η| dξdη = |r,ξ × ξrb,η| dξdη = ξ
∣∣gζ∣∣ dξdη. (3.39b)

An infinitesimal volume is calculated as

dV = r,ξ · (r,η × r,ζ) dξdηdζ = ξ2 (rb − r0) · (rb,η × rb,ζ) dξdηdζ. (3.40)

Considering Eq. (3.28) and Eq. (3.35), the vector product is equal to the determinant

of Jacobian matrix on the boundary

(rb − r0) · (rb,η × rb,ζ) =

∣∣∣∣∣∣∣∣∣∣
xb − x0 yb − y0 zb − z0

xb,η yb,η zb,η

xb,ζ yb,ζ zb,ζ

∣∣∣∣∣∣∣∣∣∣
= |Jb| . (3.41)

Therefore, the infinitesimal volume is

dV = ξ2 |Jb| dξdηdζ. (3.42)

Comparing with Eq. (3.26), the entries in the inverse of Jacobian matrix can be written

as 
j11

j21

j31

 =

∣∣gξ∣∣
|Jb|


nξx

nξy

nξz

 , (3.43a)
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
j12

j22

j32

 =
|gη|
|Jb|


nηx

nηy

nηz

 , (3.43b)


j13

j23

j33

 =

∣∣gζ∣∣
|Jb|


nζx

nζy

nζz

 . (3.43c)

The inverse of Jacobian matrix is

[Jb]
−1 =

1

|Jb|


∣∣gξ∣∣nξx |gη|nηx ∣∣gζ∣∣nζx∣∣gξ∣∣nξy |gη|nηy ∣∣gζ∣∣nζy∣∣gξ∣∣nξz |gη|nηz ∣∣gζ∣∣nζz

 . (3.44)

Therefore, the partial differential operator in Eq. (3.27) is expressed as


∂
∂x

∂
∂y

∂
∂z

 =

∣∣gξ∣∣
|Jb|

{
nξ
} ∂

∂ξ
+

1

ξ

(
|gη|
|Jb|
{nη} ∂

∂η
+

∣∣gζ∣∣
|Jb|

{
nζ
} ∂

∂ζ

)
. (3.45)

3.1.2 Governing equations of linear elasticity in scaled bound-

ary coordinates

In 3D elasticity theory, the strain vector {ε} at an arbitrary point is calculated from

displacement field {u} as

{ε} = [L] {u} , (3.46)
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where [L] is the differential operator in 3D

[L] =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


. (3.47)

Substitute the rows in Eq. (3.27) into Eq. (3.47), the differential operator in scaled

boundary coordinates is expressed as

[L] = [b1]
∂

∂ξ
+

1

ξ

(
[b2]

∂

∂η
+ [b3]

∂

∂ζ

)
, (3.48)

where the matrices [b1], [b2] and [b3] are

[b1] =



j11 0 0

0 j21 0

0 0 j31

0 j31 j21

j31 0 j11

j21 j11 0


, (3.49a)
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[b2] =



j12 0 0

0 j22 0

0 0 j32

0 j32 j22

j32 0 j12

j22 j12 0


, (3.49b)

[b3] =



j13 0 0

0 j23 0

0 0 j33

0 j33 j23

j33 0 j13

j23 j13 0


. (3.49c)

The strain vector {ε} is expressed as

{ε} = [b1]
∂ {u}
∂ξ

+
1

ξ

(
[b2]

∂ {u}
∂η

+ [b3]
∂ {u}
∂ζ

)
. (3.50)

The stress vector is obtained considering constitutive model

{σ} = [D] {ε} , (3.51)
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where [D] is the elasticity matrix. It is expressed for an isotropic material as

[D] =
E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


, (3.52)

where E is Young’s modulus and ν is Poisson’s ratio. On the surfaces with constant ξ,

η and ζ, the surface tractions are

{
tξ
}

=
|Jb|
|gξ|

[b1]
T {σ} , (3.53a)

{tη} =
|Jb|
|gη|

[b2]
T {σ} , (3.53b)

{
tζ
}

=
|Jb|
|gζ |

[b3]
T {σ} . (3.53c)

3.1.3 Semi-analytical representation of displacement and strain

fields

An unknown displacement vector {u (ξ)} along the radial lines connecting the scaling

center and the nodes on the boundary is constructed as

{u (ξ)} =

[
u1x (ξ) u1y (ξ) u1z (ξ) u2x (ξ) u2x (ξ) u2x (ξ) . . .

]T
. (3.54)

On the boundary, nodal displacement functions are defined as

{d} = {u (ξ = 1)} . (3.55)
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The nodal displacement function can be assembled using element connectivity

{u (ξ)} =
∑
e

{ue (ξ)} , (3.56)

where {ue (ξ)} represents the nodal displacements along the radial lines in a sector

corresponding to a surface element e. The symbol
∑
e

indicates the standard finite

element assembly process. In the scaled boundary finite element method, it is assumed

that the displacement field at a constant value of ξ can be interpolated using the same

shape function as the boundary. Therefore the displacement at an arbitrary point is

evaluated in a sector as

ux (ξ, η, ζ) =
ne∑
i=1

Ni (η, ζ)ueix (ξ) = [N (η, ζ)] {uex (ξ)} , (3.57a)

uy (ξ, η, ζ) =
ne∑
i=1

Ni (η, ζ)ueiy (ξ) = [N (η, ζ)]
{
uey (ξ)

}
, (3.57b)

uz (ξ, η, ζ) =
ne∑
i=1

Ni (η, ζ)ueiz (ξ) = [N (η, ζ)] {uez (ξ)} , (3.57c)

where ne is the number of nodes of element e. It can be written in matrix form as

{u} = [Nu] {ue (ξ)} , (3.58)

where the shape function matrix is

[Nu] =

[
N1 [I] N2 [I] . . .

]
=


N1 0 0 N2 0 0 . . .

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2 . . .

 , (3.59)

where [I] is a 3×3 identity matrix. As the displacement at a constant value of ξ is only

interpolated by the shape functions of the isoparametric element, the partial derivatives
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of the displacement can be written as

∂ {u}
∂η

= [Nu] ,η {ue (ξ)} , (3.60a)

∂ {u}
∂ζ

= [Nu] ,ζ {ue (ξ)} . (3.60b)

The strain vector is expressed using {ue (ξ)}

{ε} = [b1] [Nu] {ue (ξ)} ,ξ +
1

ξ
([b2] [Nu] ,η + [b3] [Nu] ,ζ ) {ue (ξ)} . (3.61)

It can be written as

{ε} = [B1] {ue (ξ)} ,ξ +
1

ξ
[B2] {ue (ξ)} , (3.62)

where [B1] and [B2] are defined as

[B1] = [b1] [Nu] , (3.63a)

[B2] = [b2] [Nu] ,η + [b3] [Nu] ,ζ . (3.63b)

Substituting Eq. (3.62) into Eq. (3.51), the stress vector is written as

{σ} = [D]

(
[B1] {ue (ξ)} ,ξ +

1

ξ
[B2] {ue (ξ)}

)
. (3.64)

3.1.4 Derivation of the scaled boundary finite element equa-

tion by the virtual work principle

In this section, the scaled boundary finite element equation is derived using the virtual

work principle (Deeks and Wolf, 2002b). Alternatively, the same equation can be ob-

tained using the minimum potential energy principle or Galerkin’s method (Wolf and

Song, 2000).
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3.1.4.1 Virtual displacement and strain fields

The virtual displacement on the boundary where ξ = 1 is written as

{δd} = {δu (ξ = 1)} . (3.65)

The virtual displacement field at an arbitrary point is

{δu} = [Nu] {δue (ξ)} . (3.66)

The virtual strain field produced by the virtual displacement is expressed as

{δε} = [B1] {δue (ξ)} ,ξ +
1

ξ
[B2] {δue (ξ)} . (3.67)

3.1.4.2 Nodal force functions

The nodal force functions are introduced on the radial lines connecting the scaling

center and the nodes on the boundary. In a sector corresponding to a surface element,

{qe (ξ)} are statically equivalent to the surface traction on a surface with constant ξ.

Considering the virtual work principle,

{δue (ξ)}T {qe (ξ)} =

∫
Sξ
{δu}T

{
tξ
}

dS ξ. (3.68)

Substitute Eq. (3.66) into Eq. (3.68),

{δue (ξ)}T {qe (ξ)} =

∫
Sξ
{δue (ξ)}T [Nu]

T {tξ} dS ξ. (3.69)
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Considering the arbitrariness of the virtual displacement function, the nodal force func-

tions are written as

{qe (ξ)} =

∫
Sξ

[Nu]
T {tξ} dS ξ. (3.70)

Substituting the infinitesimal area in Eq. (3.33) into Eq. (3.70),

{qe (ξ)} =

∫ +1

−1

∫ +1

−1
[Nu]

T {tξ} ξ2 ∣∣gξ∣∣ dηdζ. (3.71)

Considering Eq. (3.53a), Eq. (3.63a) and Eq. (3.64), {qe (ξ)} can be written as

{qe (ξ)} = ξ2
∫ +1

−1

∫ +1

−1
[Nu]

T [b1]T {σ} |Jb| dηdζ

= ξ2
∫ +1

−1

∫ +1

−1
[B1]

T {σ} |Jb| dηdζ

= ξ2
∫ +1

−1

∫ +1

−1
[B1]

T [D]

(
[B1] {u (ξ)} ,ξ +

1

ξ
[B2] {u (ξ)}

)
|Jb| dηdζ. (3.72)

The nodal force vector of a S-domain is assembled using the nodal force vectors of all

the surface elements

{q (ξ)} =
∑
e

{qe (ξ)} . (3.73)

3.1.4.3 The scaled boundary finite element equation

The virtual work done by the external force is equal to the variation of the strain energy

∫
V

{δε}T {σ} dV = {δd}T {F} . (3.74)
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The strain energy is

Uε =

∫
V

{δε}T {σ} dV. (3.75)

The integration is evaluated sector by sector in the S-domain. The volume of a sector

corresponding to a surface element e is denoted as V e.

Uε =
∑∫

V e
{δu (ξ)} ,Tξ [B1]

T {σ} dV +
∑∫

V e
{δu (ξ)}T [B2]

T {σ} 1

ξ
dV. (3.76)

The right hand side can be divided into two parts. Considering Eq. (3.42), the first

part of Eq. (3.76) is expressed as

Uε1 =
∑∫ 1

0

{δu (ξ)} ,Tξ
∫ +1

−1

∫ +1

−1
[B1]

T {σ} ξ2 |Jb| dηdζdξ. (3.77)

The summation can be replaced by the finite element assembly

Uε1 =

∫ 1

0

{δu (ξ)} ,Tξ
∑
e

ξ2
∫ +1

−1

∫ +1

−1
[B1]

T {σ} |Jb| dηdζdξ. (3.78)

Considering Eq. (3.72) and Eq. (3.73)

Uε1 =

∫ 1

0

{δu (ξ)} ,Tξ
∑
e

{qe (ξ)} dξ

=

∫ 1

0

{δu (ξ)} ,Tξ {q (ξ)} dξ

= {δu (ξ)}T {q (ξ)} |10 −
∫ 1

0

{δu (ξ)}T {q (ξ)} ,ξ dξ

= {δd}T {q (ξ = 1)} −
∫ 1

0

{δu (ξ)}T {q (ξ)} ,ξ dξ. (3.79)
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The second part of Eq. (3.76) is

Uε2 =
∑∫ 1

0

{δu (ξ)}T
∫ +1

−1

∫ +1

−1
[B2]

T {σ} ξ |Jb| dηdζdξ

=

∫ 1

0

{δu (ξ)}T
∑
e

ξ

∫ +1

−1

∫ +1

−1
[B2]

T {σ} |Jb| dηdζdξ. (3.80)

Substitute Eq. (3.79) and Eq. (3.80) back to Eq. (3.76) and Eq. (3.74),

Uε = {δd}T {q (ξ = 1)}

−
∫ 1

0

{δu (ξ)}T
(
{q (ξ)} ,ξ −

∑
e

ξ

∫ +1

−1

∫ +1

−1
[B2]

T {σ} |Jb| dηdζ

)
dξ

= {δd}T {F} . (3.81)

The nodal force vector {q (ξ)} is statically equivalent to the traction on any surface with

a constant ξ. On the boundary, {q (ξ)} are equal to the nodal forces of the S-domain.

{F} = {q (ξ = 1)} . (3.82)

Eq. (3.81) holds for arbitrary selection of {δd} satisfying the boundary conditions,

therefore the term in the bracket is set to be zero

{q (ξ)} ,ξ =
∑
e

ξ

∫ +1

−1

∫ +1

−1
[B2]

T {σ} |Jb| dηdζ

=
∑
e

ξ

∫ +1

−1

∫ +1

−1
[B2]

T [D]

(
[B1] {u (ξ)} ,ξ +

1

ξ
[B2] {u (ξ)}

)
|Jb| dηdζ. (3.83)
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Coefficient matrices [Ee
0], [Ee

1] and [Ee
2] are introduced for the surface elements

[Ee
0] =

∫ +1

−1

∫ +1

−1
[B1]

T [D] [B1] |Jb| dηdζ, (3.84a)

[Ee
1] =

∫ +1

−1

∫ +1

−1
[B2]

T [D] [B1] |Jb| dηdζ, (3.84b)

[Ee
2] =

∫ +1

−1

∫ +1

−1
[B2]

T [D] [B2] |Jb| dηdζ. (3.84c)

Coefficient matrices [E0], [E1] and [E2] are assembled from [Ee
0], [Ee

1] and [Ee
2] according

to element connectivity

[E0] =
∑
e

[Ee
0] , (3.85a)

[E1] =
∑
e

[Ee
1] , (3.85b)

[E2] =
∑
e

[Ee
2] . (3.85c)

Eq. (3.72) and Eq. (3.83) can be written as

{q (ξ)} = [E0] ξ
2 {u (ξ)} ,ξ + [E1]

T ξ {u (ξ)} , (3.86a)

{q (ξ)} ,ξ = [E1] ξ {u (ξ)} ,ξ + [E2] {u (ξ)} . (3.86b)

Eliminating the terms with {q (ξ)} and {q (ξ)} ,ξ, the scaled boundary finite element

equation in displacement is expressed as

(
[E0] ξ

2 {u (ξ)} ,ξ + [E1]
T ξ {u (ξ)}

)
,ξ = [E1] ξ {u (ξ)} ,ξ + [E2] {u (ξ)} . (3.87)
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The derivatives on the left hand side can be written as

2 [E0] ξ {u (ξ)} ,ξ + [E0] ξ
2 {u (ξ)} ,ξξ + [E1]

T {u (ξ)}+ [E1]
T {u (ξ)} ,ξ (3.88)

= [E1] ξ {u (ξ)} ,ξ + [E2] {u (ξ)} . (3.89)

Rearranging the terms, the scaled boundary finite element equation in displacement is

obtained as

[E0] ξ
2 {u (ξ)} ,ξξ +

(
2 [E0] + [E1]

T − [E1]
)
ξ {u (ξ)} ,ξ +

(
[E1]

T − [E2]
)
{u (ξ)} = 0.

(3.90)

3.2 Solution of the scaled boundary finite element

equation

In this section, the solution procedure of Eq. (3.90) is presented using eigenvalue de-

composition. An alternative approach using Schur decomposition can be found in Song

(2018).

3.2.1 Solution procedure for the scaled boundary finite ele-

ment equations in displacement

Eq. (3.90) is a second order ordinary differential equation. It can be reduced to a set of

first order differential equations by eliminating {u (ξ)} ,ξ in Eq. (3.86b). Rearranging

Eq. (3.86a) and Eq. (3.86b),

ξ {u (ξ)} ,ξ = ξ−1 [E0]
−1 {q (ξ)} − [E0]

−1 [E1]
T {u (ξ)} , (3.91a)

ξ {q (ξ)} ,ξ = [E1] [E0]
−1 {q (ξ)} − ξ

(
[E1] [E0]

−1 [E1]
T − [E2]

)
{u (ξ)} . (3.91b)
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Introducing a pair of new variables {ū (ξ)} and {q̄ (ξ)}

{ū (ξ)} = ξ0.5 {u (ξ)} , (3.92a)

{q̄ (ξ)} = ξ−0.5 {q (ξ)} , (3.92b)

the nodal displacement vector on the radial lines {u (ξ)} and its derivative {u (ξ)} ,ξ are

written as

{u (ξ)} = ξ−0.5 {ū (ξ)} , (3.93a)

{u (ξ)} ,ξ = −0.5ξ−1.5 {ū (ξ)}+ ξ−0.5 {ū (ξ)} ,ξ , (3.93b)

while nodal force vector {q (ξ)} and its derivative {q (ξ)} ,ξ are written as

{q (ξ)} = ξ0.5 {q̄ (ξ)} , (3.94a)

{q (ξ)} ,ξ = 0.5ξ−0.5 {q̄ (ξ)}+ ξ0.5 {q̄ (ξ)} ,ξ . (3.94b)

Substitute Eq. (3.93) and Eq. (3.94) into Eq. (3.91)

ξ {ū (ξ)} ,ξ = [E0]
−1 {q̄ (ξ)} −

(
[E0]

−1 [E1]
T − 0.5 [I]

)
{ū (ξ)} , (3.95a)

ξ {q̄ (ξ)} ,ξ =
(
[E1] [E0]

−1 − 0.5 [I]
)
{q̄ (ξ)} −

(
[E1] [E0]

−1 [E1]
T − [E2]

)
{ū (ξ)} .

(3.95b)

Introducing a new vector {X (ξ)} containing both {ū (ξ)} and {q̄ (ξ)}

{X (ξ)} =

 {ū (ξ)}

{q̄ (ξ)}

 =

 ξ0.5 {u (ξ)}

ξ−0.5 {q (ξ)}

 , (3.96)
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Eq. (3.95) is expressed as

ξ {X (ξ)} ,ξ = [Zp] {X (ξ)} , (3.97)

where [Zp] is a 2n× 2n matrix (n is the number of degrees of freedom in the S-element)

[Zp] =

 − [E0]
−1 [E1]

T + 0.5 [I] [E0]
−1

− [E1] [E0]
−1 [E1]

T + [E2] [E1] [E0]
−1 − 0.5 [I]

 . (3.98)

A well-known solution to Eq. (3.97) is in the form of a power function

{X (ξ)} = ξλ {φ} . (3.99)

Eq. (3.97) becomes a eigenvalue problem

[Zp] {φ} = λ {φ} , (3.100)

where {φ} and λ are a pair of eigenvector and eigenvalue of the matrix [Zp]. Concatenate

all the eigenvectors and eigenvalues in matrix form,

[Zp] [Φ] = [Φ] 〈λ〉 , (3.101)

where [Φ] is the eigenvector matrix

[Φ] =

[
{φ1} {φ2} . . . {φ2n}

]
, (3.102)

and 〈λ〉 is a diagonal matrix of the eigenvalues

〈λ〉 = diag

(
λ1 λ2 . . . λ2n

)
. (3.103)
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The solution {X (ξ)} is expressed as

{X (ξ)} =
2n∑
i=1

ciξ
λi {φi}

= c1ξ
λ1 {φ1}+ c2ξ

λ2 {φ2}+ . . .+ c2nξ
λ2n {φ2n} , (3.104)

where c1, c2, . . . , c2n are the integration constants. The eigenvector can be divided into

two parts, corresponding to the displacement mode and nodal force mode

{φi} =


{
φ
(u)
i

}
{
φ
(q)
i

}
 . (3.105)

The displacement and nodal force along the radial lines are expressed as

{u (ξ)} =
2n∑
i=1

ciξ
λi
{
φ
(u)
i

}
, (3.106a)

{q (ξ)} =
2n∑
i=1

ciξ
λi
{
φ
(q)
i

}
. (3.106b)

The eigenvalues are sorted following descending order of their real parts. The last n

eigenvalues are negative. As the displacement has to be finite inside the S-element as

ξ approaches 0, the constants from cn+1 to c2n have to be 0. The solutions can be

expressed as

{u (ξ)} =
n∑
i=1

ciξ
λi
{
φ
(u)
i

}
, (3.107a)

{q (ξ)} =
n∑
i=1

ciξ
λi
{
φ
(q)
i

}
. (3.107b)
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Introducing displacement mode
[
Φ

(u)
b

]
and force mode

[
Φ

(q)
b

]
,

[
Φ

(u)
b

]
=

[ {
φ
(u)
1

} {
φ
(u)
2

}
. . .

{
φ
(u)
n

} ]
, (3.108a)[

Φ
(q)
b

]
=

[ {
φ
(q)
1

} {
φ
(q)
2

}
. . .

{
φ
(q)
n

} ]
. (3.108b)

the solutions are written in matrix form

{u (ξ)} =
[
Φ

(u)
b

]
ξ〈λb〉 {c} , (3.109a)

{q (ξ)} =
[
Φ

(q)
b

]
ξ〈λb〉 {c} . (3.109b)

where {c} is the vector containing the integration constants

{c} =

[
c1 c2 . . . cn

]T
. (3.110)

Eliminating the integration constant in Eq. (3.109a) and Eq. (3.109b),

{q (ξ)} =
[
Φ

(q)
b

] [
Φ

(u)
b

]−1
{u (ξ)} . (3.111)

On the boundary, {q (ξ = 1)} and {u (ξ = 1)} represent nodal force and node displace-

ment respectively, comparing with

{F} = [K] {d} , (3.112)

the element stiffness matrix can be obtained from displacement mode and nodal force

mode directly

[K] =
[
Φ

(q)
b

] [
Φ

(u)
b

]−1
. (3.113)
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3.2.2 Assembly of S-elements and solution of global system of

equations

Eq. (3.113) is evaluated in each S-element. The global stiffness matrix is assembled in

the same way as in finite element method

[KG] =
∑
Se

[K] , (3.114)

where
∑
Se

denotes the assemblage of all the S-elements. The global nodal displacement

vector is assembled as

{dG} =
∑
Se

{d} . (3.115)

The nodal force vector is assembled as

{FG} =
∑
Se

{F} . (3.116)

The global equilibrium equation is written as

[KG] {dG} = {FG} . (3.117)

The nodal displacement vector {dG} is divided into two vectors, the unknown dis-

placement {d1} and the prescribed boundary condition {d2}. Similarly, the nodal force

vector is divided into {F1}, where the nodal force is already calculated, and {F2}, where

reaction forces are to be solved. The stiffness matrix is also divided into 4 blocks. K11 K12

K21 K22


 {d1}{d2}

 =

 {F1}

{F2}

 . (3.118)
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Rearrange Eq. (3.118) by moving {d2} to the other side,

 K11

K21

 {d1} =

 {F1}

{F2}

−
 K12

K22

 {d2} . (3.119)

The unknown displacement is solved from the upper part of the equation,

[ K11 ] {d1} = {F1} − [ K12 ] {d2} . (3.120)

The unknown reaction forces are solved after {d1} is obtained

{F2} =

[
K21 K22

] {d1}{d2}
 . (3.121)

3.2.3 Evaluation of internal displacements and stresses of an

S-element

Substituting ξ = 1 into Eq. (3.109a), the nodal displacement on the boundary is

{d} =
[
Φ

(u)
b

]
{c} . (3.122)

The integration constant vector {c} is evaluated as

{c} =
[
Φ

(u)
b

]−1
{ub} . (3.123)

The displacement at the scaling center is only related to the last 3 columns of the

displacement mode because all the other terms ξλi vanish as ξ approaches zero.

{u (ξ = 0)} =
n∑

i=n−2

ci

{
φ
(u)
i

}
. (3.124)
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The derivative of {u (ξ)} with respect to ξ is

{u (ξ)} ,ξ =
n∑
i=1

ciλiξ
λi−1

{
φ
(u)
i

}
. (3.125)

The strain inside a sector corresponding to an element e is

{ε} = [B1] {ue (ξ)} ,ξ +
1

ξ
[B2] {ue (ξ)} , (3.126)

where the nodal displacement on the radial lines of the sector is

{ue (ξ)} =
n∑
i=1

ciξ
λi
{
φ
(u)e
i

}
. (3.127)

It can be written in matrix form as

{ue (ξ)} =
[
φ
(u)e
i

]
ξ〈λb〉 {c} . (3.128)

The strain is expressed using the displacement modes as

{ε} =
n−3∑
i=1

ciξ
λi−1 (λi [B1] + [B2])

{
φ
(u)e
i

}
. (3.129)

As the last 3 modes correspond to the rigid body motions, they do not contribute to

the strain. Introducing the strain mode
{
φ
(ε)
i

}
{
φ
(ε)
i

}
= concat

[
(λi [B1] + [B2])

{
φ
(u)e
i

}]
, (3.130)

where concat [•] stands for array concatenation. The strain vector is written as

{ε} =
n−3∑
i=1

ciξ
λi−1

{
φ
(ε)
i

}
. (3.131)
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Using the constitutive model in Eq. (3.52), the stress mode is defined as

{
φ
(σ)
i

}
= concat

[
[D] (λi [B1] + [B2])

{
φ
(u)e
i

}]
. (3.132)

Therefore the stress at an arbitrary point inside the S-element is

{σ} =
n−3∑
i=1

ciξ
λi−1

{
φ
(σ)
i

}
. (3.133)

Substituting Eq. (3.128) and Eq. (3.123) into Eq. (3.58) leads to the displacement field

in a sector

{u} = [Nu]
[
Φ

(u)e
b

]
ξ〈λb〉

[
Φ

(u)
b

]−1
{d} . (3.134)

The shape functions of the S-element are give sector by sector as

[N e
V ] = [Nu]

[
Φ

(u)e
b

]
ξ〈λb〉

[
Φ

(u)
b

]−1
. (3.135)

3.2.4 Dynamics and vibration analysis

The principle of virtual work is augmented to include inertial force

∫
V

{δε}T {σ} dV +

∫
V

{δu}T ρ {ü} dV = {δd}T {F} . (3.136)

The increment of the virtual work by inertial force Uρ is evaluated sector by sector

Uρ =
∑∫

V e
{δu}T ρ {ü} dV. (3.137)

The acceleration is interpolated using the same shape function as the displacement in

Eq. (3.135)

{ü} = [N e
V ]
{
d̈
}
. (3.138)
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Substitute Eq. (3.138) into Eq. (3.137) and replace the summation with finite element

assembly

Uρ =
∑
e

{δde}T
∫
V e

[N e
V ]T ρ [N e

V ] dV
{
d̈e
}
. (3.139)

Assembling the contribution of all sectors, Eq. 3.139 is expressed as

Uρ = {δd}T [M ]
{
d̈
}
, (3.140)

where the mass matrix is

[M ] =
∑
e

∫
V e

[N e
V ]T ρ [N e

V ] dV. (3.141)

The virtual work principle is now expressed as

{δd}T [K] {d}+ {δd}T [M ]
{
d̈
}

= {δd}T {F} . (3.142)

Considering the arbitrariness of the virtual displacement,

[K] {d}+ [M ]
{
d̈
}

= {F} . (3.143)

The mass matrix is determined by substituting Eq. (3.135) into Eq. (3.141)

[M ] =
[
Φ

(u)
b

]−T ∫ 1

0

ξ〈λb〉
∑
e

[
Φ

(u)e
b

]T ∫ +1

−1

∫ +1

−1
[Nu]

T ρ [Nu] ξ
2 |Jb|

× dηdζ
[
Φ

(u)e
b

]
ξ〈λb〉dξ

[
Φ

(u)
b

]−1
=
[
Φ

(u)
b

]−T ∫ 1

0

ξ〈λb〉
[
Φ

(u)e
b

]T
[M0]

[
Φ

(u)e
b

]
ξ〈λb〉dξ

[
Φ

(u)
b

]−1
. (3.144)
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The coefficient matrix [M0] is introduced

[M0] =
∑
e

[M e
0 ] , (3.145)

where the element coefficient matrix [M e
0 ] is defined as

[M e
0 ] =

∫ +1

−1

∫ +1

−1
[Nu]

T ρ [Nu] |Jb| dηdζ. (3.146)

In order to perform the integration in Eq. (3.144) analytically, the abbreviation is

introduced

[m0] =
[
Φ

(u)
b

]T
[M0]

[
Φ

(u)
b

]
. (3.147)

The integration in Eq. (3.144) is rewritten as

[m] =

∫ 1

0

ξ〈λb〉 [m0] ξ
〈λb〉ξ2dξ. (3.148)

The mass matrix [M ] is written as

[M ] =
[
Φ

(u)
b

]−T
[m]
[
Φ

(u)
b

]−1
. (3.149)

Each entry of the matrix [m] is integrated analytically

mij =

∫ 1

0

ξλbim0ijξ
λbjξ2dξ

=
m0ij

λbi + λbj + 3
. (3.150)

The natural frequencies and mode shapes are considered without external forces

[K] {d}+ [M ]
{
d̈
}

= 0. (3.151)
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The solution of the system describes a harmonic vibration

{d} = {D} sin (ωt) , (3.152a){
d̈
}

= −ω2 {D} sin (ωt) , (3.152b)

where {D} is the amplitude of the nodal displacement and ω is the circular frequency.

Substitute Eq. 3.152 into Eq. 3.151 yields a generalized eigenvalue problem

([K]− λ [M ]) {D} = 0. (3.153)

where the natural frequencies can be calculated from the eigenvalues

ω =
√
λ. (3.154)
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Chapter 4

Octree based polyhedron mesh

generation

Mesh generation plays an important role in the numerical analysis. In this chapter, the

octree based mesh generation algorithm employed in this research is presented. Octree

based method is robust for complex geometries because the initial background mesh is

generated independent of the model. Fast mesh size transition can be achieved. The

octree data structure is efficient in data retrieval and suitable for parallel processing.

Moreover, the difficulty associated with hanging node in the conventional finite element

method can be overcome by using the polyhedron shape function in the scaled boundary

finite element method (SBFEM). Six numerical examples are provided to demonstrate

the proposed algorithm. It is shown that the polyhedron meshes generated by octree

algorithm is highly complementary to the SBFEM for incorporating geometric models

with numerical analysis.

The key idea of the octree algorithm is briefly illustrated using an example in 2D

(where it is called quadtree) in Fig. 4.1. A uniform background mesh is generated to

cover the model (Fig. 4.1a). The background mesh is refined near the boundary of the

model (Fig. 4.1b). The refined mesh is trimmed by the boundary, as shown in Fig. 4.1c.
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(a) Initial background
mesh

(b) Background mesh af-
ter refinement

(c) Polygon mesh
after trimming

(d) Polygon mesh
after optimization

Figure 4.1: Mesh generation in 2D

The quality of the mesh after trimming is optimized in Fig. 4.1d.

4.1 Data structure

In this section, the data structures of the mesh generation algorithm are introduced.

Two different data structures are utilized in the different stages. Octree data structure

is fast and robust in constructing a background mesh at the beginning. Polyhedron data

structure, on the other hand, is suitable for trimming and smoothing operations. The

data is converted from octree structure to polyhedron structure after the background

mesh is generated and refined.

4.1.1 Octree data structure

An octree is a tree data structure widely used in computer graphics, image processing,

computational geometry, geographic information systems and robotics (Samet, 1984).
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(c) Octree mesh
after second re-
finement
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(d) Hierarchical structure of the octree mesh
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Parent pointer

Child pointer

(e) Parent and child pointers

Figure 4.2: Octree data structure

In a numerical method, octree is employed to recursively partition of a volume in 3D

into axis-aligned cubes (Eppstein, 1994). The application of octree data structure in

the SBFEM was developed by Saputra et al. (2017). The terminology is presented in

the following of this section using the example shown in Fig. 4.2.

Octant

Each cube in an octree structure is called an octant. The set of all octants in Fig. 4.2 is

written as O = {o0, o1, o2, · · · , o16}. The level of an octant is the number of times it has

been subdivided from the initial cube. The size of an octant can be directly calculated

from its level and the initial cube size. The location of each octant in space is also

stored (usually the corner with minimum x, y and z coordinates).

101



Root

A root is an octant on level 0, e.g. o0 in Fig. 4.2a. It is allowed to start with multiple

roots to cover the model. Usually starting with multiple roots will occupy more storage

space, but it reduces the number of subdivision required in the refinement steps. A typ-

ical case where starting with multiple roots has significant advantage is when modeling

a slender or flat object. It is more efficient to generate a group of smaller roots than a

large root.

Parent

When an octant is subdivided, it is called parent to the new generated octants. In the

refinement step from Fig. 4.2a to Fig. 4.2b, o0 is the parent of o1, o2, · · · , o8. Pointers are

defined from a parent to all its children (Fig. 4.2e). The pointers are labeled according

to the children’s relative location to the parent. For instance, the child o1 is located

at the upper front left corner of its parent o0, Therefore the pointer can be written as

Cufl (o0) = o1. Similarly, the concept of ancestor is defined. The ancestors of an octant

are the octants above it on the same branch, including its parent. For example, the

ancestors of o9 include o0 and o2.

Child

An octant is child to another octant if it is subdivided from that octant. For example,

octants o9, o10, · · · , o16 are the children of o2. A pointer is also defined from each child

to its parent, e.g. P (o1) = o0.

Leaf

An octant is called a leaf if it has no children. The blocks in black in Fig. 4.2d represent

the leaves of the octree mesh. The leaves are the elements which will be finally used in

the analysis.
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Neighbor

Two octants are neighbors to each other if they are spatially connected. There are three

types of neighbors in an octree structure, the neighbors sharing a face, an edge and a

node, respectively. The subscripts of a neighbor pointer indicate the relative location

of the neighbor, including up(u), down(d), front(f), back(b), left(l) and right(r). In

Fig. 4.2c, the neighbor on top of of octant o5 is o1, i.e. Nu (o5) = o1. The bottom front

neighbor of octant o4 is o6, i.e. Ndf (o4) = o6. The top right back neighbor of octant

o13 is o12, i.e. Nubr (o13) = o12. An octant may have more than one neighbors in one

direction if the size of the octant is larger than its neighbors. Neighbors of an octant

are not explicitly stored in the data, but it can be easily retrieved using parent and

child information (Eppstein, 1994).

4.1.2 Polyhedron data structure

The polyhedron data structure is illustrated with a simple example in Fig. 4.3 and

Table 4.1.

An arbitrary polyhedron mesh Ω is a 4-tuple (C,F,E,N) (Staten et al., 2010a),

where C is a non-empty set of polyhedron cells, F is a set of polygon faces incident to

one or two polyhedrons in C, E is a set of edges incident to two or more polygons faces

in F , N is a set of nodes incident to two or more edges in E.

A polygon surface mesh Γ is a 3-tuple (FS, ES, NS), where FS is a non-empty set

of polygon faces on the surface, ES is a set of edges incident to one or two polygons in

FS, NS is a set of nodes incident to two or more edges in ES.

Node

The node set N stores the coordinates of nodes (Table 4.1a). Each node is assigned

with a unique nodal number (Fig. 4.3a), same as in the finite element method.
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(a) Node set N = {n1, n2, n3, · · · }
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(b) Edge set E = {e1, e2, e3, · · · }
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f11

f12

(c) Face set F = {f1, f2, f3, · · · }

c1

c2

(d) Cell set C = {c1, c2}

Figure 4.3: A polyhedron mesh Ω with two cells
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Table 4.1: Data structure of a polyhedron mesh Ω

(a) Node set

Node index Coordinates

1 (0,0,0)
2 (1,0,0)
3 (2,0,0)
... ...

(b) Edge set

Edge index Nodes

1 (n1, n2)
2 (n2, n3)
3 (n3, n6)
... ...

(c) Face set

Face index Edges

1 (e1, e9,−e13,−e8)
2 (e2, e10,−e14,−e9)
3 (e3, e21,−e17,−e10)
... ...

(d) Cell set

Cell index Faces

1 (f1, f6, f7, f8, f10, f12)
2 (f2, f3, f4, f5, f9, f11,−f12)

Edge

In the edge set E, each edge is described by the starting and ending nodes (Table 4.1b).

For consistency, an edge always starts from the node with smaller ID and ends with the

one with larger ID. The edges of a mesh Ω are shown in Fig. 4.3b.

Face

A face is represented by a closed loop of edges (Table 4.1c). The sign of the edge ID is

positive if the edge is in the same direction with the loop, otherwise it is negative. The

faces of the mesh Ω are shown in Fig. 4.3c.

Cell

A polyhedron cell is formed by a group of faces enclosing a volume (Table 4.1d). The

sign of the face ID is positive if the normal vector of the face is pointing outward of
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the cell. Two polyhedron cells are shown in Fig. 4.3d. The faces of a cell have to be

manifold, i.e. each edge is shared by exactly two faces, except for the cells constructed

in Section 4.7.3.

4.2 Boundary representation of the geometry

The geometry of a model can be represented by the volume or the boundary. In a

volume representation, the space is partitioned into a uniform grid of points. The in-

formation of whether a point is inside the model is stored. A typical example of volume

representation is the digital image, which is stored as pixels in 2D and voxels in 3D. Vol-

ume representation is usually robust and Boolean operation can be easily implemented.

However, it is difficult to represent models with curved surfaces accurately. The storage

required by a volume representation is usually higher than a boundary representation.

The boundary representation, on the other hand, defines the geometry of the model

by its boundary only. It can be further classified as explicit and implicit boundary

representations. In an explicit boundary representation, the analytical or discrete form

of the boundary is expressed using an explicit function. An implicit representation can

be defined as as a signed distance function ϕ (x, y, z) which can determine the interior,

exterior and boundary of a region. The points where ϕ (x) = 0 are known as zero

level set. Boundary representation is more accurate in modeling curved and complex

geometry. However it is difficult to perform Boolean operation on an explicit boundary

model. The boundary model may not be manifold, which may cause difficulties in the

mesh generation. The typical boundary representations including non-uniform ratio-

nal B-Spline (NURBS), stereolithography (STL) and virtual reality modeling language

(VRML) are already introduced in Section 1.

In this research, explicit discrete boundary representation is used as input format.
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(a) A bounding box covering the
whole model
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(b) A user-specified bounding box
covering a part of the model

Figure 4.4: Bounding box of a ellipsoid

4.3 Octree background mesh generation

In this section, the procedure to obtain an octree background mesh is presented. Dif-

ferent refinement criteria are discussed. A properly refined octree background mesh is

crucial to the accuracy and efficiency in the analysis.

4.3.1 Bounding box of geometric model

A bounding box is generated to cover the whole or a part of the model. By default,

the maximum and minimum coordinates from all the nodes in the model are calculated

and a cuboid slightly larger than the model is generated so that the whole model will

be covered (Fig. 4.4a). Otherwise, users can input two specific points as the corners

of the bounding box (Fig. 4.4b). The dimensions of the bounding box is expressed as

Lx × Ly × Lz. It is noted that the size of the bounding box may be adjusted based on

the element size, which will be described in the next section.

4.3.2 Maximum and minimum element size

Two control parameters are defined by users, the maximum element size smax and

minimum element size smin. In octree based algorithm, the ratio between smax and

smin should be an integer power of 2. If it is not, smax will be adjusted to another
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value ˆsmax, which is calculated as

ˆsmax = 2round(log2 smaxsmin ) × smin = s× smin, (4.1)

where round (•) represents rounding towards the nearest integer and s is defined as the

maximum mesh size ratio. If the ratio between the dimensions of the bounding box and

ˆsmax is not an integer, the bounding box is also adjusted. The adjusted length, width

and height are expressed as

L̂x = ceil

(
Lx
ˆsmax

)
× ˆsmax, (4.2a)

L̂y = ceil

(
Ly
ˆsmax

)
× ˆsmax, (4.2b)

L̂z = ceil

(
Lz
ˆsmax

)
× ˆsmax, (4.2c)

where ceil (•) means rounding to the nearest integer towards infinity. It is noted that

ˆsmax merely represents the maximum allowed element size in the octree mesh. The ac-

tual maximum element size depends on different factors such as the refinement criteria,

mesh size transition rate and geometry of the model.

An example is shown in Fig. 4.5 to illustrate the generation of background mesh

considering element size. The dimensions of the ellipsoid is 2mm× 0.99mm× 0.99mm.

A default bounding box is generated by scaling the dimensions of the model by 1.1.

The user input element sizes are smax = 0.5mm and smin = 0.15mm. The adjusted

maximum element size is calculated using Eq. (4.1), ˆsmax = 0.6mm. The dimensions

of the bounding box are adjusted according to Eq. (4.2). The adjusted bounding box

is 2.4mm× 1.2mm× 1.2mm. The bounding box is initially divided into 4 octants in x

direction and 2 octants in y and z directions as shown in Fig. 4.5a. These octants are

refined until minimum element size 0.15mm is reached (Fig. 4.5b).
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(a) Initial octree background
mesh

(b) Final octree background mesh
after refinement

Figure 4.5: Octree background mesh

4.3.3 Refinement criteria

Usually an octree background mesh is not refined uniformly. The mesh is only refined in

selected regions so that the computational resources can be used most efficiently. There

are several different refinement criteria which can be selected and combined during the

refinement.

4.3.3.1 Refinement based on curvature

As the shape of the surface elements on the boundary is interpolated by piece-wise

polynomials, it is desirable that the mesh size is smaller at the location where the

curvature is high, therefore the geometry can be better represented. A variety of method

have been proposed to estimate the curvature in a discrete boundary model (Surazhsky

et al., 2003; Razdan and Bae, 2005; Gatzke and Grimm, 2006). A simple approach

reported in Liu et al. (2017) is employed. In an octant, the intersection points I =

{I1, I2, ..., In} between the edges and the boundary model are calculated. The point at

the average coordinates of I is denoted as O. The shortest distance from O to all the

triangles near the octant is calculated (the length of segment OO′ in Fig. 4.6). The
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Figure 4.6: Estimation of curvature

curvature is estimated as

κ =
n ‖O −O′‖
n∑
i=1

‖O − Ii‖
. (4.3)

If the curvature is larger than a predefined threshold κtol, the octant will be refined.

The typical value of κtol is between 0.05 and 0.1.

4.3.3.2 Refinement based on surface patch

The octree mesh can be refined near a specified patch of surface. The patch can be

represented in the same way as the input model. This criterion is especially useful in

contact problems, i.e. the region near the contact interface will be refined to better

represent the contact pressure.

4.3.3.3 Refinement based on ridge

Sharp ridges, especially concave ridges, may cause stress singularities in an analysis.

The mesh size can be refined around the sharp ridges. The detailed definition and

processing of the ridges will be addressed in Section 4.5.2.

4.3.3.4 Refinement based on location

Sometimes the octree mesh in a special location needs to be refined. A refinement

function can be defined by the coordinates as f (x, y, z). If f = 1 at some nodes of an
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octant, it will be refined. Otherwise, if f = 0 for all the nodes of an octant, it will

not be refined. A typical application of this refinement criterion is the elasto-plastic

analysis, where the mesh in the potential plastic zone can be refined beforehand.

4.3.3.5 Combination of refinement criteria

These criteria in Sections 4.3.3.1–4.3.3.4 can be combined based on the user requirement.

Each of the criteria is assigned with an individual maximum refinement level. An STL

model is shown in Fig. 4.7a. 3 refinement criteria are defined based on location, surface

patch and curvature. The refinement levels are 5, 6 and 5, respectively. After the

refinement and trimming (trimming will be presented in Section 4.4), the mesh size

near the surface patch (refinement level 6) is refined to the minimum size, while the

mesh size of the region in the box (refinement level 5) is twice the minimum size. In

the whole model where the curvature is higher than 0.05 the mesh is refined to twice

the minimum size (refinement level 5). The final mesh is shown in Fig. 4.7b.

4.3.4 Balance of octree mesh

A so called “1:2 rule” is enforced on the octree mesh, which means the maximum size

ratio between adjacent elements can not exceed 2. This requirement provides a smooth

mesh size transition and reduces the number of possible configurations of octants. In

Fig. 4.8a, the octree mesh contains octants of three different levels. There are octants

from level 0 directly adjacent to those from level 2, which means the maximum size ratio

between adjacent elements is 4. Those octants on level 0 are subdivided into smaller

octants on level 1 to obtain the balanced octree mesh in Fig. 4.8b.

4.3.5 Control of mesh size transition

The mesh size transition based on the “1:2 rule” only may lead to more rapid change

of mesh size than desired. The mesh size transition can be controlled by a mesh size
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(a) Unbalanced octree mesh (b) Balanced octree mesh

Figure 4.8: Balance of the octree mesh

(a) Default mesh size transition
based on “1:2 rule”

(b) Slower mesh size transition
with m = 2

Figure 4.9: Control of mesh size transition

transition rate m. As an example, a balanced octree mesh is shown in Fig. 4.9a. If

an octant satisfies the refinement criteria in Section 4.3.3 or it needs to be balanced

according to Section 4.3.4, its neighbor octants within m layers will be refined as well.

As a result, there will be at least m layers of octants of level n before the mesh size can

increase to level n − 1. The transition rate is m = 2 in Fig. 4.9b, so on each level at

least two layers of octants are generated.

4.4 Trimming of octree mesh

The octree mesh can be used in an analysis directly. However, when the boundary

of the model is curved it takes a large number of cube elements to approximate the
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Figure 4.10: Trimming of an octree cell

geometry to obtain an accurate solution. Although this approach is simple and robust,

its computational efficiency may not be optimal. To overcome this shortcoming, the

data structure of the octree mesh is converted to that of a polyhedron mesh as specified

in Section 4.1.1 and Section 4.1.2. The cube elements are trimmed by the boundary of

the model so that a conforming polyhedron mesh is generated. The related work can

be found in Liu et al. (2017).

In this section the trimming procedure is illustrated using a simple cube shown in

Fig. 4.10a. The data of the cube is shown in Table 4.2. The trimming process follows

a bottom-up scheme in the sequence of edges (on the bottom level of the polyhedron

data structure) as illustrated in Fig. 4.10c, faces (the middle level) in Fig. 4.10d and

polyhedron cells (the top level) in Fig. 4.10e.
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Table 4.2: Original data of a cube

(a) Node set

Index Coordinates Index Coordinates

1 (0,0,0) 5 (1,0,0)
2 (0,0,1) 6 (1,0,1)
3 (0,1,0) 7 (1,1,0)
4 (0,1,1) 8 (1,1,1)

(b) Edge set

Index Nodes Index Nodes Index Nodes

1 (n5, n7) 5 (n5, n6) 9 (n6, n8)
2 (n1, n5) 6 (n7, n8) 10 (n2, n6)
3 (n3, n7) 7 (n1, n2) 11 (n4, n8)
4 (n1, n3) 8 (n3, n4) 12 (n2, n4)

(c) Face set

Index Edges Index Edges

1 (−e1,−e2, e4, e3) 4 (−e3, e8, e11,−e6)
2 (e5,−e10,−e7, e2) 5 (−e4, e7, e12,−e8)
3 (e1, e6,−e9,−e5) 6 (e9,−e11,−e12, e10)

(d) Cell set

Index Faces

1 (f1, f2, f3, f4, f5, f6)
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4.4.1 Intersection mark and node sign

The first step of trimming is to obtain the intersection mark and determine the node

sign. The edges intersected by the boundary are marked and the intersection points

in those edges are stored. If an intersection point is located at one end of the edge,

the node is marked as intersected. The node sign is obtained using a breadth first

search (Moore, 1959; Luo et al., 2010). The sign of a node is defined as positive if the

node is located outside the model, negative if it is inside the model and zero if it is on

the boundary.

The breadth first search to assign node signs is shown in Algorithm 4.1. An initial

node sign s1 and a starting point n1 are specified. By default, the starting point is

located at the bottom back left corner of the initial octree grid. The default initial

node sign is positive (outside). A queue q1 is generated with the starting point added

at the beginning. All the nodes connected to the starting point by edges which are not

intersected by the boundary are searched and appended to the queue. The starting

point is marked as “visited”. Then this procedure will continue for the next node in the

queue. If a node is already visited, it will be skipped and the next node will be checked.

This process is repeated until all the members in the queue are visited. Those visited

nodes will be assigned the initial node sign (positive by default). Then an edge with

one and only one intersection is located, the end node which has not been assigned the

initial sign is found. A new queue q2 is generated starting from this new node. The

searching process is conducted once more and all the nodes visited this time will be

assigned the inverse of initial sign s2 (negative by default). The remainder of the nodes,

which are located on the boundary, will be assigned zero sign. The intersection points

on the edges are appended to the node list (row 9 to 11 in Table 4.3a), and their signs

are zero as well (points ip1, ip2, ip3 in Fig. 4.10b).
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Algorithm 4.1 Breadth first search
1: Input mesh
2: Define starting node n1 and initial sign s1
3: Generate empty queue q1
4: Append n1 to the end of q1
5: i = 1
6: while not all nodes in q1 are ”visited” do
7: if ni is ”visited” then
8: Continue
9: else

10: Find all nodes connected to ni by unintersected edges
11: Append the nodes to the end of q1
12: Mark ni as ”visited”
13: i = i+ 1
14: end if
15: end while
16: Assign s1 to all the nodes in q1
17: Locate starting node n1 with inversed initial sign s2
18: Generate empty queue q2
19: Append n1 to the end of q2
20: i = 1
21: while not all nodes in q2 are ”visited” do
22: if ni is ”visited” then
23: Continue
24: else
25: Find all nodes connected to ni by unintersected edges
26: Append the nodes to the end of q2
27: Mark ni as ”visited”
28: i = i+ 1
29: end if
30: end while
31: Assign s2 to all the nodes in q2
32: Assign zero sign to all the rest of the nodes
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Table 4.3: Data of the trimmed cube

(a) Node set

Index Coordinates Index Coordinates Index Coordinates

1 (0,0,0) 5 (1,0,0) ip1 (1,0,0.7)
2 (0,0,1) 6 (1,0,1) ip2 (1,0.8,0)
3 (0,1,0) 7 (1,1,0) ip3 (0.5,0,0)
4 (0,1,1) 8 (1,1,1)

(b) Edge set

Index Nodes Index Nodes Index Nodes Index Nodes

1(trimmed) (n5, n7) 7 (n1, n2) 13 (n5, ip2) 19 (ip1, ip2)
2(trimmed) (n1, n5) 8 (n3, n4) 14 (ip2, n7) 20 (ip2, ip3)

3 (n3, n7) 9 (n6, n8) 15 (ip3, n5) 21 (ip1, ip3)
4 (n1, n3) 10 (n2, n6) 16 (n1, ip3)

5(trimmed) (n5, n6) 11 (n4, n8) 17 (n5, ip1)
6 (n7, n8) 12 (n2, n4) 18 (ip1, n6)

(c) Face set

Index Edges Index Edges

1(trimmed) (−e1,−e2, e4, e3) 7 (−e13,−e15,−e20)
2(trimmed) (e5,−e10,−e7, e2) 8 (−e16, e4, e3,−e14, e20)
3(trimmed) (e1, e6,−e9,−e5) 9 (e15, e17, e21)

4 (−e3, e8, e11,−e6) 10 (e18,−e10,−e7, e16,−e21)
5 (−e4, e7, e12,−e8) 11 (−e17, e13,−e19)
6 (e9,−e11,−e12, e10) 12 (e14, e6,−e9,−e18, e19)

13 (e19, e20,−e21)

(d) Cell set

Index Faces

1(trimmed) (f1, f2, f3, f4, f5, f6)
2 (f7, f9, f11, f13)
3 (f4, f5, f6, f8, f10, f12,−f13)
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4.4.2 Trimming of edges

The trimming of edges is a straight forward procedure. The edges are partitioned into

new edges at the intersection points. For example, edge e1 is divided into two new edges

e13 = (n5, ip2) and e14 = (ip2, n7) in Fig. 4.10c. The new edges are appended to the

edge list (row 13 to 18 in Table 4.3b). The original edges are marked as “trimmed” and

will be deleted later. A map from the original edges to the new edges is generated. The

faces will be updated according to the map, for instance, face f1 = (−e1,−e2, e4, e3)

will be updated as f1 = (−e14,−e13,−e15,−e16, e4, e3). It is allowed to have more than

one intersection points in one edge. Those edges will be divided into more than two

new edges.

4.4.3 Trimming of faces

The new edges connecting the intersection points will be appended to the edge list

as well (row 19 to 21 in Table 4.3b). The faces containing the trimmed edges will

be trimmed at the intersection points. The edge set is divided into several smaller

segments at the intersection points, e.g. the edge set of face f1 is divided in to two

connected segments: (−e13,−e15) and (−e16, e4, e3,−e14). Each of the segments can

form a closed loop together with the appended edge. For example, the face f1 becomes

f7 = (−e13,−e15,−e20) and f8 = (−e16, e4, e3,−e14, e20) as illustrated in Fig. 4.10d.

The new faces are appended to the end of the face list (row 7 to 12 in Table 4.3c) and

original faces are marked as“trimmed”. The cells are updated according to the mapping

from the original faces to the new faces. Cell c1 = (f1, f2, f3, f4, f5, f6) will be updated

as c1 = (f4, f5, f6, f7, f8, f9, f10, f11, f12). If there are more than two intersection points

in one face, it will be divided into more than two new faces. The first step is to divide

the edge set into segments at intersection points. The segments which can be closed by

one appended edge will be constructed as new faces first. Then the remaining segments

will be closed by all the appended edges.
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4.4.4 Trimming of cells

The cells will be trimmed using a similar approach as in the trimming of faces. A new

face is generated by connecting the new appended edges, e.g. f13 = (e19, e20,−e21). The

face set of the cell is divided into two groups based on the node sign. In Fig. 4.10e, faces

f7, f9 and f11 contain negative and zero node sign only, therefore they are stored in a

negative group. The rest of the faces are stored in a positive group. The two groups

are closed by the appended face f13. Therefore, cell c1 becomes c2, c3 (Fig. 4.10f).

If there are more than one new faces generated from the cell, it will be divided into

more new cells. More than two groups will be generated. The principle is that the faces

in a group are connected by shared edges. If the non-manifold edges in a group are

identical to the edges of one of the appended faces, the face is appended to the group

so that the group of faces can be closed. The remaining of the groups, will be closed

by appending all the new faces.

4.5 Handling sharp ridges and corners

The trimming procedure in Section 4.4 is designed for the models with smooth bound-

aries. When there are sharp ridges and corners in the model , they cannot be preserved

in the obtained mesh. Therefore, special treatments are developed in this section to

recover sharp ridges and corners from the model.

4.5.1 Ridge and corner mark

In computational geometry, a ridge is an edge connecting two boundary faces which

form a sharp dihedral angle (Seidel, 1986). A corner is a node connected to two or more

ridges.

The information of ridge and corner is not explicitly stored in an STL model, there-

fore it needs to be extracted from the model first. As the STL model contains duplicated
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nodes, firstly a unique node list needs to be constructed. Then the unique edges are

identified. The normal vectors of the two faces sharing an edge are calculated. If the

angle between the two vectors is larger than a threshold, e.g. 45°, the edge is identified

as a sharp ridge. The nodes connected to more than two sharp ridges are identified as

corners.

The faces in the octree mesh intersected by the ridges of the STL model are marked.

The locations of the intersection points are also stored. The octree cells containing the

corners of the STL model are marked.

4.5.2 Recovery of ridges

The trimming procedure of a cell containing ridges is illustrated using an example in

Fig. 4.11. The original cell is the same as the one in Fig. 4.10a. The boundary of the

model near the cell is shown in the shaded area in Fig. 4.11a. It can be observed that

there is a sharp ridge passing through the cell, leaving two intersection points rd1 and

rd2. They are located in face f2 and f3, respectively.

The trimming of edges is the same as the process in Fig. 4.10c. 6 new edges (row

13 to 18 in Table 4.4b) are generated and appended to the edge list.

The trimming of faces intersected with ridges is different. In Fig. 4.11c, face f3 is

intersected with a ridge. Therefore, the intersection point rd2 is appended to the node

list. The intersection points in the face, ip1 and ip2, are connected to rd2, respectively.

Two new edges will be generated. The face is then partitioned into f11 and f12 as shown

in Fig. 4.11d. When trimming cell c1, a new edge e24 connecting the ridge points rd1

and rd2 is constructed first. This edge, together with the new appended edges (row 19

to 23 in Table 4.4b), will form two new faces f13 and f14 (see Fig. 4.11d). The new

faces will be appended to the other faces to form two new cells c2 and c3.
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Table 4.4: Data of the trimmed polyhedron mesh with a ridge

(a) Node set

Index Coordinates New nodes Coordinates

1 (0,0,0) ip1 (1,0,0.6)
2 (0,0,1) ip2 (1,0.5,0)
3 (0,1,0) ip3 (0.5,0,0)
4 (0,1,1) rd1 (0.7,0,0.6)
5 (1,0,0) rd2 (1,0.6,0.4)
6 (1,0,1)
7 (1,1,0)
8 (1,1,1)

(b) Edge set

Index Nodes Index Nodes Index Nodes Index Nodes

1(trimmed) (n5, n7) 7 (n1, n2) 13 (n5, ip2) 19 (ip1, rd2)
2(trimmed) (n1, n5) 8 (n3, n4) 14 (ip2, n7) 20 (ip2, rd2)

3 (n3, n7) 9 (n6, n8) 15 (ip3, n5) 21 (ip1, rd1)
4 (n1, n3) 10 (n2, n6) 16 (n1, ip3) 22 (ip3, rd1)

5(trimmed) (n5, n6) 11 (n4, n8) 17 (n5, ip1) 23 (ip2, ip3)
6 (n7, n8) 12 (n2, n4) 18 (ip1, n6) 24 (rd1, rd2)

(c) Face set

Index Edges Index Edges

1(trimmed) (−e1,−e2, e4, e3) 7 (−e13,−e15,−e23)
2(trimmed) (e5,−e10,−e7, e2) 8 (−e16, e4, e3,−e14, e23)
3(trimmed) (e1, e6,−e9,−e5) 9 (e15, e17, e21,−e22)

4 (−e3, e8, e11,−e6) 10 (e18,−e10,−e7, e16, e22 − e21)
5 (−e4, e7, e12,−e8) 11 (−e17, e13, e20,−e19)
6 (e9,−e11,−e12, e10) 12 (e14, e6,−e9,−e18, e19,−e20)

13 (e19,−e24,−e21)
14 (−e20, e23, e22, e24)

(d) Cell set

Index Faces

1(trimmed) (f1, f2, f3, f4, f5, f6)
2 (f7, f9, f11, f13, f14)
3 (f4, f5, f6, f8, f10, f12,−f13,−f14)
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Figure 4.11: Trimming of an octree cell with a ridge

4.5.3 Recovery of corners

The trimming of a cell with a sharp corner inside is shown in Fig. 4.12. There are 3

sharp ridges passing through the cell, leaving 3 intersection points rd1, rd2 and rd3.

The joint of the 3 ridges cr1, which is a sharp corner, is located inside the cell.

The trimming procedure of edges and faces is the same as the procedure in Sec-

tion 4.5.2. The difference is in the trimming of the cell (Fig. 4.12d). The sharp corner

point cr1 is appended to the node list (row 15 in Table 4.5a). 3 new edges, connecting

the ridge points to the corner point, are appended to the edge list (row 25 to 27 in

Table 4.5b). The appended edges on the surface of the cell, are divided in to 3 groups

at the ridge points. For example, one such group consists of edge 21 and 23. These

edges are combined with the appended edges inside the cell to form a closed loop (in

this case, edge 25 and 26). The closed loop is constructed as a new face inside the cell

(row 13 in Table 4.5c). The new faces will be appended to the trimmed faces to form

2 new cells (Fig. 4.5d).
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Figure 4.12: Trimming of an octree cell with a corner

Currently it is not allowed to have more than one corner point inside a cell.

4.6 Face discretization of polyhedron cells

4.6.1 Triangle quality

In the presented approach, the polygon faces of a polyhedron cell are discretized with

triangular and quadrilateral elements if the polygons have more than 4 edges. Degen-

erated quadrilateral faces will also be triangulated. The algorithm is to enumerate all

the possible triangulation schemes and select the scheme which can produce triangles

with best qualities. Different measures of triangle quality can be found in (Pebay and

Baker, 2003). A simple approach is followed here. Denoting the lengths of the three
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Table 4.5: Data of the trimmed polyhedron mesh with a corner

(a) Node set

Index Coordinates Index Coordinates

1 (0,0,0) ip1 (1,0,0.5)
2 (0,0,1) ip2 (1,0.3,0)
3 (0,1,0) ip3 (0.3,0,0)
4 (0,1,1) rd1 (0.3,0,0.5)
5 (1,0,0) rd2 (1,0.3,0.5)
6 (1,0,1) rd3 (0.3,0.3,0)
7 (1,1,0) cr1 (0.3,0.3,0.5)
8 (1,1,1)

(b) Edge set

Index Nodes Index Nodes Index Nodes Index Nodes

1(trimmed) (n5, n7) 7 (n1, n2) 13 (n5, ip2) 19 (ip2, rd3)
2(trimmed) (n1, n5) 8 (n3, n4) 14 (n7, ip2) 20 (ip3, rd3)

3 (n3, n7) 9 (n6, n8) 15 (n5, ip3) 21 (ip1, rd1)
4 (n1, n3) 10 (n2, n6) 16 (n1, ip3) 22 (ip3, rd1)

5(trimmed) (n5, n6) 11 (n4, n8) 17 (n5, ip1) 23 (ip1, rd2)
6 (n7, n8) 12 (n2, n4) 18 (n6, ip1) 24 (ip2, rd2)

25 (rd1, cr1)
26 (rd2, cr1)
27 (rd3, cr1)

(c) Face set

Index Edges Index Edges

1(trimmed) (−e1,−e2, e4, e3) 7 (−e13, e15, e20,−e19)
2(trimmed) (e5,−e10,−e7, e2) 8 (−e16, e4, e3, e14, e19,−e20)
3(trimmed) (e1, e6,−e9,−e5) 9 (−e15, e17, e21,−e22)

4 (−e3, e8, e11,−e6) 10 (−e18,−e10,−e7, e16, e22 − e21)
5 (−e4, e7, e12,−e8) 11 (−e17, e13, e24,−e23)
6 (e9,−e11,−e12, e10) 12 (−e14, e6,−e9, e18, e23,−e24)

13 (−e21, e23, e26,−e25)
14 (e19, e27,−e26,−e24)
15 (−e20, e22, e25,−e27)

(d) Cell set

Index Faces

1(trimmed) (f1, f2, f3, f4, f5, f6)
2 (f7, f9, f11, f13, f14, f15)
3 (f4, f5, f6, f8, f10, f12,−f13,−f14,−f15)
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edges of a triangle as l1, l2 and l3, the quality q of a triangle is expressed as:

q =
r

max (l1, l2, l3)
, (4.4)

with

r =

√
(s− l1)(s− l2)(s− l3)

s
, (4.5)

and

s =
l1 + l2 + l3

2
. (4.6)

4.6.2 Triangulation schemes

Two triangulation schemes are tested in the enumeration. The first scheme uses only the

existing nodes of the polygon. The other scheme introduces a Steiner point (Eppstein,

1994; Berg et al., 2008), which is always inside the polygon, to triangulate the polygon.

For each polygon, the worst quality of all generated triangles is recorded as the quality

of the discretization of the polygon. The discretization of the highest quality is selected.

Examples of the two scheme are shown in Fig. 5.8. The pentagon face f in Fig. 5.8a is

divided into 3 triangles by connecting the existing nodes. A sample of such connection

(triangles f1, f2 and f3) is shown in Fig. 5.8b. The second scheme is inserting a Steiner

point ns1 in Fig. 5.8c. The point ns1 is connected to all the edges of the polygon to

form new triangles (from f1 to f5). In this case, the triangles have better quality than

those obtained by direct triangulation without inserting the Steiner point. After the

discretization of all the faces of the polyhedron cells, the polyhedron mesh can be used

in the scaled boundary finite element analysis as formulated in Section 3.
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(a) A polyhedron cell

f1
f2

f3

(b) Triangulation without
inserting node

f1

f2 f3

f4

f5
ns1

(c) Triangulation with in-
serted Steiner point

Figure 4.13: Face discretization of a polyhedron cell

4.7 Optimization of mesh quality

A well-known disadvantage of octree based mesh is that the element quality near the

boundary is usually poor, especially when the boundary of the model forms a small

angle with the octree grid. Distorted surface elements and short edges will appear on

the boundary which are not suitable for analysis. There are a variety of techniques de-

veloped to optimize the mesh quality. They can be classified into mainly two different

groups. The first group of methods relocate the nodes without changing the connectiv-

ity, such as Laplacian smoothing, optimization based method, physically based method

just to name a few (Owen, 1998). The other group of methods modify the node con-

nectivity, such as edge flipping, edge bisection, node insertion and many others. In this

research, Laplacian smoothing is utilized to improve mesh quality.

4.7.1 Laplacian smoothing

Laplacian smoothing is the simplest and most straight forward optimization technique.

A node is shifted towards the average coordinate of all the nodes connected to it. The
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average coordinate is expressed as

p̄ =

n∑
i=1

pi

n
, (4.7)

where pi is the coordinates of i-th neighbor node and n is the number of neighbor nodes

to be considered. The new coordinate of the point is

pn = λ (p̄− po) + po, (4.8)

where po is the original coordinate and λ is a parameter to control the smoothing speed.

The value of λ ranges from (0, 1]. A larger λ moves the nodes faster, however sometimes

it will result in oscillation of the node position, which makes it difficult to converge.

Usually the a value between 0.2 and 0.4 is selected. The smoothing operation iterates

several times until the mesh quality is good enough. A comparison between different

iteration steps is shown in Fig. 4.14.

As the element quality inside the octree mesh is usually good, the smoothing op-

eration doesn’t modify the location of the nodes inside. The smoothing operation is

restricted to the boundary layer and the the nodes directly connected to the boundary

layer (which is referred to as the second boundary layer). This restriction also improves

the efficiency of the algorithm. In order to preserve original geometry, several rules are

followed when using Eq. (4.7):

1. The node on a corner will not be smoothed;

2. The node on a ridge will only be smoothed using the neighbor nodes on the same

ridge;

3. The node on the boundary will only be smoothed using the neighbor nodes on

the boundary.

128



(a) Polyhedron mesh of a
part of an ellipsoid before
smoothing

(b) Iteration step 1 (c) Iteration step 2

(d) Iteration step 3 (e) Iteration step 5

(f) Iteration step 10 (g) Iteration step 20

Figure 4.14: Smoothing at different steps using λ = 0.3
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(a) λ = 0.2, iter = 3 (b) λ = 0.2, iter = 10

Figure 4.15: Shrinking of the boundary without projection

After each smoothing step, the boundary layer needs to be projected to the original

geometry. Otherwise a convex geometry will shrink as shown in Fig. 4.14 (the dash line

represents the original geometry).

4.7.2 Validity of S-domains

In the scaled boundary finite element method, the S-domains need to satisfy the scaling

requirement, i.e. a point from which all the boundary is directly visible can be identified.

The point is defined as scaling center. Therefore, it is necessary at this stage to check

the scaling requirement and locate the scaling centers before the mesh is passed to the

solver. The procedure is discussed in this section.

The barycenter of the all the nodes in a cell is calculated as a first trial point. It

is checked that whether all the surface elements can form a positive volume with the

barycenter. For example, in Fig. 4.16a, the barycenter O forms a positive volume with

the surface element e, along with all the other surface elements. Therefore O is selected

as the scaling center. Convex polyhedron always satisfy visibility condition and the

barycenter is always a valid scaling center.

If the volume formed by barycenter and a surface element is negative or nearly zero,

it means the surface element is invisible from the barycenter (see Fig. 4.16b, barycenter

O is located outside the subdomain). This doesn’t necessarily mean that the S-domains

is invalid, the visibility might be improved by selecting another scaling center. A set
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(a) Positive volume formed
by the barycenter and sur-
face element

O

e

(b) Negative vol-
ume formed by the
barycenter (outside
the polyhedron) and
surface element

(c) Group of the trial
points of the concave
polyhedron

(d) Concave polyhe-
dron not satisfying the
scaling requirement

Figure 4.16: Location of the scaling centers

of points are generated surrounding the barycenter as new trial points (the points in

Fig. 4.16c). The scaling requirement is checked for the trial points one by one. If some

of them satisfy the scaling requirement, the point which has the best visibility will be

selected as the final scaling center. Otherwise, if no such point can be identified (see

Fig. 4.16d), the S-domains is invalid and will be discarded.

4.7.3 Open S-domains

As shown in Section 4.5.2 and Section 4.5.3, the trimming of cells containing sharp

ridges and corners is more complex than the trimming of other cells. Sometimes the

resulting cells cannot satisfy the visibility condition or the visibility is poor if the scaling

centers are placed inside the cells. Therefore it is necessary to develop a scheme which

can reduce the complexity of the trimming procedure and produce cells with better
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(a) A closed S-
domain with a
concave ridge

O

(b) An open S-
domain with a
concave ridge

(c) A closed S-
domain with a
concave corner

O

(d) An open S-
domain with a
concave corner

Figure 4.17: Concave S-domains

quality.

One of the advantages of the SBFEM is that the polyhedron cells don’t have to

be closed. The scaling center can be placed at the corner in the geometry and the

boundary is scaled towards the scaling center to form a volume. This means as long as

the boundary of a cell is properly trimmed, the volume is naturally represented without

further operation. The side faces connecting the scaling center and the boundary are not

explicitly modeled. This advantage reduces the dimension of problem by one. The stress

singularity around the concave corner can be represented analytically in the SBFEM

shape function.

If there is only one sharp ridge passing through a cell, the scaling center can be

placed anywhere on that ridge inside the cell. However, it is usually placed in the

middle of the segment (Fig. 4.17b) for better visibility. If a corner is located inside the

cell, the scaling center will be place at the corner (Fig. 4.17d).

The complete procedure of polyhedron mesh generation is shown in Algorithm 4.2.

132



Algorithm 4.2 Polyhedron mesh generation based on octree algorithm
1: Input model
2: Extract sharp ridges and corners
3: Define background mesh parameters: bounding box, maximum and minimum ele-

ment size
4: Define refinement criteria and mesh size transition rate
5: Define smoothing parameters: lambda, iteration number
6: Calculate bounding box
7: while minimum refinement level not reached do
8: Octree mesh refinement
9: end while

10: Balance octree mesh
11: Convert octree data to polyhedron data
12: Obtain intersection mark
13: Obtain ridge and corner mark
14: Trim edges
15: Trim faces
16: Trim cells
17: while iteration step < iteration number do
18: Smooth boundary layer
19: Project boundary layer
20: Smooth second boundary layer
21: end while
22: Boundary triangulation
23: Calculate scaling center
24: Discard invalid cells
25: Output mesh
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4.8 Numerical examples

In this section, six numerical examples are presented. To verify the meshes generated

by the proposed method are valid, linear elastic analysis are performed. The accuracy

of the results is evaluated by the relative error norm in displacement:

eu =
‖unum − uref‖
‖uref‖

, (4.9)

where unum is the numerical result calculated by the proposed method. Analytical

solution can be used as reference when available. When analytical solution is not

available, numerical result calculated from refined mesh or high order elements are used

as reference solutions.

4.8.1 A pressurized hollow sphere

A pressurized hollow sphere is shown in Fig. 4.18. Only an octant of the sphere is

modeled due to symmetry. The radius of the inner sphere and the outer sphere are

a = 1m and b = 2m. A uniform normal pressure P = 1Pa is applied on the inner

surface of the sphere. At the surfaces at x = 0, y = 0 and z = 0, the displacements

perpendicular to surfaces are prescribed as zero. The Young’s modulus is E = 1Pa and

Poisson’s ratio ν = 0.3.

The exact solution can be found in (Bower, 2009). The displacement solution in

spherical coordinates r, θ, φ is expressed as

ur =
P

2E

a3

b3 − a3

(
2 (1− 2ν) + (1 + ν)

b3

r2

)
, (4.10a)

uθ = uφ = 0, (4.10b)
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Figure 4.18: Geometry and boundary conditions of the hollow sphere

and the stress solution is

σr = P
a3

b3 − a3
r3 − b3

r3
, (4.11a)

σθ = σφ =
P

2

a3

b3 − a3
2r3 + b3

r3
, (4.11b)

τθφ = τφr = τrθ = 0. (4.11c)

Meshes of different element sizes are generated as shown in Fig. 4.19. The two

corners of the bounding box are fixed, the coordinates of which are (0.0m, 0.0m, 0.0m)

and (2.1m, 2.1m, 2.1m). The maximum mesh size ratio is set to be 4. The minimum

element sizes are 0.2625m, 0.1313m, 0.0656m, 0.0328m, and 0.0164m respectively. The

mesh is refined to the minimum element size on the inner surface. The mesh size

transition rate is m = 2. The displacements are plotted in Fig. 4.20.

A convergence study is performed using linear and quadratic elements. The theo-

retical error norm of finite elements is expressed as

error = O
(
DOF−

p+1
3

)
, (4.12)

135



(a) Minimum element size
0.2625m

(b) Minimum element size
0.1313m

(c) Minimum element size 0.0656m (d) Minimum element size
0.0328m

Figure 4.19: Meshes of different element sizes of the hollow sphere
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(a) Minimum element size 0.2625m (b) Minimum element size 0.1313m

(c) Minimum element size 0.0656m (d) Minimum element size 0.0328m

Figure 4.20: Displacement of the hollow sphere
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Figure 4.21: Convergence behavior of the hollow sphere in terms of error norm in
displacement

where DOF is degrees of freedom and p is the order of element.

The relative error norm is plotted versus DOF in log-log scale in Fig. 4.21. The con-

vergence rates are calculated by fitting the curves with power functions. The theoretical

convergence rates are achieved for both linear and quadratic elements.

4.8.2 An ellipsoid with two holes

In this example, a ellipsoid with two holes is considered. The geometry is shown in

Fig. 4.22. Only an octant of the ellipsoid is modeled because of symmetry. The longer

diameter of the ellipsoid is a = 2m and the shorter diameter b = 1m. The diameters of

the two spheres are both c = 0.4m. Only self-weight is considered. At the surfaces at

x = 0, y = 0 and z = 0, the displacements perpendicular to the surfaces are constrained.

The Young’s modulus is E = 1Pa and Poisson’s ratio is ν = 0.3. The mass density of

the material is ρ = 1kg/m3.

Meshes of different sizes are generated as shown in Fig. 4.23. The two corners

of the bounding box are (0.0m, 0.0m, 0.0m) and (0.55m, 0.55m, 1.1m). The maximum

mesh size ratio is 4. The minimum element sizes are 0.0688m, 0.0344m, 0.0172m, and

0.0086m. The mesh is refined to the minimum element size on the inner and outer

138



O

x y

z

Figure 4.22: The geometry of the ellipsoid with two holes

(a) Minimum ele-
ment size 0.0688m

(b) Minimum ele-
ment size 0.0344m

(c) Minimum ele-
ment size 0.0172m

Figure 4.23: Meshes of the the ellipsoid

boundaries. The mesh size transition rate is m = 2. The displacements in z direction

of different meshes are plotted in Fig. 4.24.

The point at the top of the ellipsoid is selected to compare the results. A convergence

study using a series of tetrahedron meshes of second order finite elements (C3D10) is

performed in ABAQUS to obtain the reference solution. The relative error of the

displacement in z direction at the point is plotted versus the number of degrees of

freedom in log-log scale in Fig. 4.25.
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(a) Minimum element
size 0.0688m

(b) Minimum element
size 0.0344m

(c) Minimum element
size 0.0172m

Figure 4.24: Displacement of the ellipsoid
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Figure 4.25: Convergence behavior of the ellipsoid in terms of error norm in displace-
ment
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Figure 4.26: Geometry of the hand bone

4.8.3 A human hand bone

An STL model of a human hand bone is shown in Fig. 4.26 (https://www.thingiverse.

com/thing:147800). The geometry of the model is irregular and there are a large num-

ber of distorted triangles, which makes it difficult to generate a standard finite element

mesh. However, a polyhedron mesh with relative good quality can be generated using

the proposed method automatically, as shown in Fig. 4.27. The material is cortical

bone. The Young’s modulus is E = 1.7 × 1010Pa and Poisson’s ratio ν = 0.3. The

mass density of the material is ρ = 1.9× 103kg/m3. The bounding box of this model is

53.8462mm× 76.9231mm× 100mm. The maximum element size is 0.9616mm and the

minimum element size is 0.2404mm.

A modal analysis is performed without applying any constraints. The mesh is

clipped using a plane perpendicular to y axis (Fig. 4.28). The magnitude of displace-

ment of the 14th mode shape is plotted.
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Figure 4.27: Mesh of the hand bone

4.8.4 A socket

In this example, a socket is considered. The geometry of the model is shown in

Fig. 4.29a. It can be observed that the model contains sharp ridges and corners. A

uniform distributed load P = 1000Pa is applied to the surfaces shown in Fig. 4.29b.

The top surface of the model is fixed in all directions.

A polyhedron mesh is generated using the proposed method as shown in Fig. 4.30.

The maximum element size is 1.5mm and the minimum element size is 0.375mm.

The Young’s modulus of ABS plastic is E = 2.6 × 109Pa and Poisson’s ratio is

ν = 0.35. The mass density is ρ = 1.4× 103kg/m3. The magnitude of the displacement

is plotted in Fig. 4.31a. A clip view of the model is shown in Fig. 4.31b.
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(a) Geometry of the socket (b) Boundary conditions of the
socket

Figure 4.29: Geometry and boundary conditions of the socket

Figure 4.30: Mesh of the socket
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(a) Overall view of the displacement (b) Clip view of the displacement

Figure 4.31: Displacement of the socket

4.8.5 A car engine

A car engine with 8 cylinders is considered in this example (https://www.thingiverse.

com/thing:2007841). Only 2 cylinders on the left side are covered by the bounding

box as shown in Fig. 4.32. The dimensions of the bounding box is 28.5714mm ×

100mm× 71.4286mm. The maximum element size is 3.5714mm and the minimum ele-

ment size is 0.4464mm. The octree mesh is shown in Fig. 4.33a. The Young’s modulus

of the cast iron is E = 9 × 1010Pa and Poisson’s ratio ν = 0.2. The mass density is

ρ = 7.8× 103kg/m3. The bottom of the engine is fixed and self-weight of the engine is

considered. The displacement of the engine is plotted in Fig. 4.33b.

4.8.6 A Chinese guardian lion

A sculpture of a Chinese guardian lion is modeled in this example (https://www.

thingiverse.com/thing:635242). The geometry of the STL model is shown in Fig. 4.34.

A clipped view of the mesh is shown in Fig. 4.35. The size ratio between maximum

element and minimum element in the mesh is 32.
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Figure 4.32: Geometry of the car engine
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Figure 4.34: Geometry of the Chinese guardian lion

Figure 4.35: Mesh of the Chinese guardian lion
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The Young’s modulus of the stone is E = 2 × 1010Pa and Poisson’s ratio ν = 0.2.

The mass density is ρ = 2.7×103kg/m3. The bottom of the lion is fixed and self-weight

is considered as external load. The displacement is plotted in Fig. 4.36.
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Chapter 5

Coupling of non-matching meshes

In the analysis of complex and large scale structures, it is desirable to divide the prob-

lem domain into several simpler subdomains. The meshes of the subdomains can be

generated individually, which reduces the difficulty in meshing the complex models.

Parallel processing can be employed for the mesh generation of the subdomains to fur-

ther accelerate the whole analysis procedure. In a variety of other applications such

as contact mechanics (Laursen et al., 2012), fluid-structure interaction (Bazilevs et al.,

2012), multi-scale analysis (Unger and Eckardt, 2011), it is also preferable to model the

subdomains individually.

The meshes of those subdomains are only connected by their interfaces. The inter-

face meshes are matching if the mesh topologies and element shape functions are the

same on both sides of the interface, otherwise they are non-matching. Obviously, the use

of non-matching meshes offer greater flexibility in practice as they enable users to gen-

erate meshes for different subdomains independently. These independent meshes need

to be coupled (or “glued”) together when a numerical analysis is performed. Some of

the techniques of coupling non-matching meshes have been summarized in Section 2.3.

In this research, a coupling method is presented which is able to handle arbitrary

non-matching polygon meshes in 2D and polyhedron meshes in 3D (including standard
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(a) Two non-
matching meshes

(b) New nodes are in-
serted and edges are
split

(c) Two meshes
matching on the
interface are created

Figure 5.1: Coupling of non-matching meshes in 2D

finite element meshes). The key idea is briefly illustrated in Fig. 5.1 using a 2D example

with a straight interface. Two meshes generated independently are shown in Fig. 5.1a.

Their interfaces are non-matching. The non-matching nodes of one mesh are inserted

to the interface of the other mesh by splitting the edges of the elements (Fig. 5.1b).

The elements affected by the node insertion are modeled as polygon elements. The

boundary discretization of the polygon elements is constructed using the split edges to

replace the original ones. As mentioned previously, domain discretization of the polygon

elements is not needed. The two meshes become matching on the interface, as shown

in Fig. 5.1c. The two meshes can be merged into one for analysis. This procedure can

be applied recursively to combine multiple non-matching meshes. A MATLAB code

implementing this procedure is found in Song (2018).

This approach is extended to 3D in the following of this chapter. The surface

meshes on the common interface are extracted from two volume meshes. The two

interface meshes at the opposite sides are merged and new polygons are constructed

from intersected edges. Therefore the two volume meshes become matching on the

interface (Section 5.1). A shifting procedure is designed before the merging to improve

the element quality on the interface (Section 5.2). A refinement technique based on
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polytree algorithm is implemented in Section 5.3 to produce a smooth element size

transition between the two volume meshes. As only the boundary of a polyhedron

element needs to be discretized in an analysis, no volume discretization is required.

The discretization scheme introduced in Section 4.6 is applied to the merged mesh.

The proposed coupling method is verified using seven numerical examples. The results

are compared to available analytical solutions or results from finite element analyses.

5.1 Construction of matching surface mesh

In a numerical method, a 3D mesh consists of volume elements, such as tetrahedra,

hexahedra and polyhedra. The boundary of a 3D mesh is described by a surface mesh.

The typical surface elements are triangles, quadrilaterals and polygons. The polyhedron

element constructed using the scaled boundary finite element formulation in Chapter 3

is highly flexible in geometry. The element may have arbitrary number of faces, edges

and nodes. Therefore, the polyhedron elements are utilized in this approach to couple

the non-matching meshes. The data structure of polyhedron mesh has been presented

in Section 4.1.2.

The interface meshes of the two non-matching meshes are extracted based on the

geometry of the two subdomains (Section 5.1.1). On the interface, a new surface mesh

of polygon elements is constructed from the intersected edges (Section 5.1.2). The

polyhedron elements connected to the interface are modified by replacing their faces on

the interface with the new polygon elements, leading to matching discretization on the

interface (Section 5.1.3). The modified polyhedron elements are modeled by the scaled

boundary finite element method and no further volume discretization is required.

The coupling of the two non-matching polyhedron meshes Ω1 and Ω2 shown in

Fig. 5.2a is used as an example to illustrate the proposed approach. The boundaries

are expressed as Γ1 and Γ2.
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(e) The matching
meshes Ωm1 and Ωm2

Figure 5.2: Construction of matching surface mesh
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5.1.1 Extraction of interface

The interfaces of the two meshes, ΓI1 and ΓI2 are the patches in Γ1 and Γ2 which are

overlapping in geometry (see Fig. 5.2b). Generally, the two patches are not the same,

i.e. ΓI1 6= ΓI2. A face fi in the boundary face set FS1 will be extracted and included in

the interface if:

1. For all the nodes of the face, ∃n ∈ fi, the distance between n and any fj ∈ FS2 is

less than a tolerance εd; and

2. The normal vector vi of fi is opposite to at least one normal vector vj of a nearby

face fj ∈ FS2, i.e.
vi·vj

‖vi‖×‖vi‖ < cos (εθ), where εθ is a parameter related to the

curvature of the interface.

The two parameters εd and εθ are used to control the initial gap and penetration due to

different discretizations. εd is related to the mesh size, for example, can be chosen as 0.1

times the minimum edge length. εθ should be smaller than the minimum angle formed

by the normal vectors of the nearby faces on two sides of the interface. Typically a value

between 150° and 170° is selected. Usually the higher the curvature of the interface is,

the smaller εθ should be. However, εθ should always be larger than the dihedral angle

formed by the interface and the side faces of the model.

The first requirement guarantees that all the faces, including those only partially

overlapping with the other mesh, can be extracted. The second requirement, on the

other hand, excludes all the side faces which are not on the interface.

5.1.2 Insertion of non-matching nodes and edges

The two interfaces ΓI1 and ΓI2 are matched by inserting non-matching nodes and edges

from one interface to the other as in the 2D case shown in Fig. 5.1. A common interface

ΓI is constructed as ΓI = (FI , EI , NI). The set of new nodes of the common interface

is NI = NI1∪NI2∪NIs. NI1 and NI2 are the nodes copied from ΓI1 and ΓI2. NIs is the
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set of intersection points of EI1 and EI2 (see Fig. 5.2c). EI1 and EI2 are partitioned

at those intersection points. EI = EIp1 ∪ EIp2, where EIp1 and EIp2 are the set of new

edges partitioned from EI1 and EI2. FI is the set of new faces enclosed by EI .

5.1.3 Assembly of matching surface mesh

The matching surface mesh ΓI is then connected to the volume meshes Ω1 and Ω2, as

shown in Fig. 5.2d. If a face fi of a polyhedron cell cj is on the interface, it is replaced by

the corresponding set of new faces. The set of faces in the cell cj is updated accordingly.

The two new volume meshes Ωm1 and Ωm2 share the same surface mesh ΓI on

the interface. Therefore, the matching meshes are constructed (Fig. 5.2e). Standard

procedures of the finite element method for conforming meshes are directly applicable.

5.2 Optimization of surface mesh quality

On the interface of the two non-matching meshes, some nodes and edges on one surface

mesh may be close to those on the other mesh. Coupling the meshes directly can

result in short edges and distorted surface elements. These distorted elements not

only reduce the robustness of the merging procedure, but also affect the accuracy of a

stress analysis. A shifting operation is designed to eliminate the potential short edges

and distorted elements. This operation is performed before the intersection calculation

mentioned in Section 5.1. This operation includes two steps, with the first step merging

adjacent nodes and the second step handling the edges. An illustrative example is

shown in Fig. 5.3.

5.2.1 Merging of adjacent nodes

If a node ni ∈ NI1 is close to a node nj ∈ NI2, the two nodes will be merged into one

(Fig. 5.3c). In order to ensure the validity of the surface mesh, the merging tolerance
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(a) Two non-matching
meshes Ω1 and Ω2
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(b) Two nodes ni and
nj close to each other
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(e) Partition of edge ei

Figure 5.3: Optimization of surface mesh quality

is set to be related to the element size near each node.

The merging tolerance at the node ni is defined as tol = εn × l (ni), where l (ni) =

min (l (ek1) , l (ek2) , · · · , l (ekp)). ek1, ek2, · · · , ekp ∈ EI1 are the edges connected to ni.

l (e) represents the length of en edge e. εn is a predefined relative tolerance. Typically,

a value between 0.2 and 0.3 is selected.

If the distance between the two nodes d (ni, nj) < εn × min (l (ni) , l (nj)), the two

nodes will be merged. The merged node is usually located at the average coordinate of

the two original nodes, except for the cases included in Section 5.2.3.

5.2.2 Partition of edges close to nodes

Only merging the nodes may not eliminate all the short edges. The edges which are

close to nodes in the other mesh need to be processed as well.

If an edge ei ∈ EI1 is close to a node nk ∈ NI2 within a specified tolerance (Fig. 5.3d),
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two new edges, (ei (1) , nk) and (nk, ei (2)), will be generated to replace the original ei

(Fig. 5.3e). ei (1) and ei (2) represent the two end nodes of the original edge ei.

The tolerance is tol = εe × min (l (ei) , l (nk)). The relative tolerance εe is a value

smaller than εn, and is typically chosen as 0.1 ∼ 0.2.

5.2.3 Preserving corners and ridges of shapes

In computational geometry, a ridge is an edge connecting two boundary faces which

form a sharp dihedral angle (Seidel, 1986). A corner is a node connected to two or more

ridges. The merging and partition operations above may shift the ridges and corners

from their exact locations in the original geometry. To preserve the geometry, special

treatments are applied on the ridges and corners on the interface. The rules are stated

as follows:

1. The node on a corner will not be moved (see Fig. 5.4a).

2. The node on a ridge will only be moved along the same ridge (see Fig. 5.4b).

3. The edge on a ridge will only be partitioned into new edges on the same ridge

(see Fig. 5.4c).

5.3 Transition of mesh size

Meshes with significantly different element sizes usually cause difficulties in coupling as

well as in analysis. Degenerated polygons will appear on the merged interface if the

lengths of its edges are significantly different. In the present approach, the mesh with

the larger element size will be refined near the interface until the difference between the

sizes of the two meshes is acceptable. The refinement using polytree algorithm (Spring

et al., 2014; Nguyen-Xuan et al., 2017b) involves the treatment of surfaces (2D) and

volumes (3D). Surface refinement can be performed as a standalone operation, it can
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(a) The node on a corner will not be moved

(b) The node on a ridge will only be moved along the same ridge

(c) The edge on a ridge will only be partitioned into new edges on the
same ridge

Figure 5.4: Preserving corners and ridges of shapes during shifting
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also be utilized as the first step of volume refinement, which is described in Section 5.3.2.

In the following of this chapter, “surface refinement” refers to the standalone surface

refinement operation only. Volume refinement is performed before surface refinement.

Two parameters rv and rs are defined, typically, rv is chosen as 1.5 ∼ 2.0 and rs is

1.2 ∼ 1.5. If the size ratio between volume elements is larger than rv, the volume

mesh with the larger element size will be refined recursively until it is less than rv. If

the size ratio between surface elements is still larger than rs, the surface mesh will be

further refined until it is less than rs. The sequence of the refinement is illustrated

in Algorithm 5.1. Since the polyhedron elements based on the scaled boundary finite

element method can have arbitrary number of edges and nodes, the modification is

limited to the local region near the interface.

5.3.1 Polytree refinement in 2D

A polygon face in 2D is expressed as f = (E,N), where E = {e1, e2, · · · , em} and

N = {n1, n2, · · · , nm}. m is the number of nodes and edges of the face (see Fig. 5.5a).

A polygon face is partitioned by bisecting all of its edges. The mid-points of the edges

Ne = {ne1, ne2, · · · , nem} are inserted as new nodes, as shown in Fig. 5.5b. The edges are

split into Ep = {(n1, ne1) , (ne1, n2) , (n2, ne2) , · · · , (nem, n1)}. The centroid of the poly-

gon, nf , is also inserted as a new node. The new edges inside the face are constructed

by connecting nf and the mid-points in Ne, Ef = {(ne1, nf ) , (ne2, nf ) , · · · , (nem, nf )}.

The new node list becomes N = N ∪Ne ∪ {nf} and the new edge list is E = Ep ∪ Ef .

The original polygon face of m edges is divided into m new polygons (quadrilaterals)

by connecting one original node from N with two mid-points of the two adjacent edges

from Ne and the center node nf . For example, in Fig. 5.5c the nodes of a new face

f2 are collected following the clockwise order {ne1, n2, ne2, nf}. The m new faces F =

{f1, f2, · · · , fm} will replace the original face.
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Figure 5.5: Polytree refinement of a polygon in 2D

5.3.2 Polytree refinement in 3D

A polyhedron cell (see Fig. 5.6a) to be subdivided is expressed as c = (F,E,N), where

F = {f1, f2, · · · , fm}, E = {e1, e2, · · · , ep} and N = {n1, n2, · · · , nq}. m is the number

of faces, p is the number of edges and q is the number of nodes.

To partition a polyhedron, all the faces are partitioned first using the procedure

in the previous section as illustrated in Fig. 5.6b. Ne and Nf denote the set of mid-

points of the edges and the set of centroids of the faces, respectively. A new node

nc is inserted at the centroid of the polyhedron. The new node list is expressed as

N = N ∪Ne ∪Nf ∪ {nc}.

New edges Ec = {(nf1, nc) , (nf2, nc) , · · · , (nfm, nc)} are formed by connecting the

centroid of the polyhedron nc to the centroids Nf of all the original faces in F , as shown

in Fig. 5.6c. The new edge list is E = Ep ∪ Ef ∪ Ec.

New interior faces (quadrilaterals) Fc are constructed by connecting one mid-points

from Ne with the centroids of two adjacent faces from Nf and the cell centroid nc (see

Fig. 5.6d). The new face list is F = Fp ∪ Fc.

The original polyhedron of q nodes will be divided into q new polyhedron cells. For

node ni, a new polyhedron ci is enclosed by all the new faces connected to the node

and the interior faces connected to those faces, as shown in Fig. 5.6e. The q new cells

C = {c1, c2, · · · , cq} in Fig. 5.6f will replace the original cell c.
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Figure 5.6: Polytree refinement of a polyhedron in 3D
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(a) Two cuboids meshed
with different element types
and sizes

(b) Polytree refinement on
the lower part

(c) Construction of matching
interface

(d) Merged volume mesh (e) Interior view of the
merged volume mesh

Figure 5.7: Merging of non-matching meshes of two cuboids use polytree refinement

The coupling procedure using polytree refinement is illustrated with an example

in Fig. 5.7. The upper cuboid is discretized with hexahedron elements and the lower

cuboid with polyhedron elements (Fig. 5.7a). The size ratio between the two meshes

is 1.7. The thresholds in this example are rv = 1.5 and rs = 1.2. The volume mesh of

the lower part connected to the interface is refined (Fig. 5.7b). The size ratio becomes

1.1 after the refinement, so both the volume and surface refinement stop. A matching

interface is then constructed leading to matching meshes with good quality (Fig. 5.7c).
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5.4 Face discretization of polyhedron cells

In the presented approach, the polygon faces of a polyhedron cell are discretized with

triangular and quadrilateral elements if the polygons have more than 4 edges. Degener-

ated quadrilateral faces will also be triangulated. The measurement of triangle qualities

and triangulation schemes are already stated in Section 4.6. In this section only two

examples are presented to illustrate the two triangulation schemes. An example of first

scheme is shown is Fig. 5.8c. The polygon in shaded area is divided into 4 triangles by

connecting the existing nodes. The second scheme is illustrated by the shaded polygon

in Fig. 5.8d. The new inserted node is connected to all the edges of the polygon to

form new triangles. In this case, the triangles have better quality than those obtained

by direct triangulation without inserting the Steiner point. After the discretization of

all the faces of the polyhedron cells, the polyhedron mesh (Fig. 5.8e) can be used in the

scaled boundary finite element analysis as formulated in Section 3.

The complete procedure of coupling non-matching meshes is shown in Algorithm 5.1.

5.5 Numerical examples

In this section, seven numerical examples are presented to verify the proposed method.

The first example is a pure bending patch test of a cube modeled with two non-matching

meshes. It is shown that the proposed method produces results with machine accuracy.

The second example is a cantilever beam subject to an end-shear load. The mesh

is refined and the convergence rate is examined. The third example is a mechanical

handle with a ball joint. The non-matching meshes of three parts are merged. The

fourth example is a fist holding a stick. The mesh of the stick is rotated to produce

different non-matching interfaces and the results are consistent. The fifth example is

an arch dam with a foundation. The different meshes of the foundation (polyhedron,

tetrahedron and hexahedron elements) are merged with mesh of the dam. The next
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(a) Non-matching meshes (b) Construction of match-
ing interface

(c) Triangulation without
inserting node

(d) Triangulation with in-
serted Steiner point

(e) Final discretization of
the polyhedrons

Figure 5.8: Face discretization of polyhedron cells

165



Algorithm 5.1 Coupling of non-matching meshes
1: Input meshes
2: Define parameters: εd, εθ, εn, εe, rv, rs
3: Calculate mesh size ratio r
4: while r >= rv do
5: Polytree volume refinement
6: Update mesh size ratio r
7: end while
8: while r >= rs do
9: Polytree surface refinement

10: Update mesh size ratio r
11: end while
12: Extract interfaces (based on εd and εθ)
13: while not converged do
14: Merge adjacent nodes (based on εn)
15: Partition edges close to nodes (based on εe)
16: end while
17: Insert non-matching nodes and edges
18: Assemble matching surface mesh
19: Discretize boundary of polyheron cells
20: Output matching meshes

example is a mechanical part composed of three components. The meshes are refined on

the two interfaces using polytree algorithm in 3D. The last example is a propeller blade

attached to a shaft. The surface mesh of the shaft is refined using polytree algorithm

in 2D.

The relative error norm in displacement is calculated using Eq. (4.9). Similarly, the

relative error norm in stress is calculated using Eq. (5.1).

es =
‖σnum − σref‖
‖σref‖

, (5.1)

where unum and σnum are the numerical results calculated by the proposed method.

When available, an analytical solution is used as the reference solution. When an

analytical solution is not available, the numerical result obtained from a convergence

study using the finite element method is selected as the reference solution.
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Figure 5.9: The boundary conditions of pure bending patch test

5.5.1 Patch test

This example is a cube subject to a pure bending load. The side view of the cube and the

boundary conditions are shown in Fig. 5.9. The dimension of the cube is 10× 10× 10m

(h = 10m). Young’s modules and Poisson’s ratio are E = 1 × 106Pa and ν = 0.3. On

one surface of the cube a linearly distributed load is applied. On the opposite surface

the displacements perpendicular to that surface are prescribed as zero. The boundary

conditions are shown in Fig. 5.9.

The only non-zero stress component of pure bending is given by Eq. (5.2) as

σx =
M

I
z, (5.2)

whereM = 6×105N ·m is the bending moment applied on the surface and I = 833.33m4

is the second moment of area. The displacement field can be calculated by

ux =
M

EI
xz, (5.3a)

uy = −ν M
EI

(
yz − h2

4

)
, (5.3b)

uz = − M

2EI

(
x2 + ν

(
z2 − y2

))
. (5.3c)

The cube is divided into two parts by a curved surface. The two parts are meshed

independently using 4 and 9 hexahedron elements (Fig. 5.10a and Fig. 5.10b). On

the interface, the ratio between the element sizes of the meshes of the two parts is
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(a) Mesh of the
first part

(b) Mesh of the sec-
ond part

(c) Surface mesh on the
interface

(d) Boundary dis-
cretization of the
coupled mesh

Figure 5.10: Coupling of non-matching meshes of the two parts of a cube connected by
a curved interface

Table 5.1: Error of SBFEM results compared with analytical solution

Relative error norm in displacement 1.8256e-12
Relative error norm in stress 1.4747e-13

approximately 2:3 (Fig. 5.10c). Only the surface mesh needs to be triangulated. Second

order triangle and quadrilateral elements are used in the analysis.

The results in displacement and stress of the proposed method are shown in Fig. 5.11.

The errors of numerical results compared to the analytical solution are calculated using

Eq. (4.9) and Eq. (5.1). Machine accuracy is obtained in the solution as shown in

Table 5.1.

FEM analysis is performed using ABAQUS for comparison. The two non-matching

meshes are connected using tie constraint (Fig. 5.12). The geometry and boundary

conditions are the same as those in Fig. 5.9. The element type is C3D20. The errors

are shown in Table 5.2. It is shown that ABAQUS fails to pass the patch test.
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Figure 5.11: The displacement and stress distribution of the pure bending patch test
in the SBFEM

(a) The displacement ux of non-matching
meshes. Unit: mm

(b) The stress σx of non-matching meshes.
Unit: kPa

Figure 5.12: The displacement and stress distribution of the pure bending patch test
in the FEM

Table 5.2: Error of FEM results compared with analytical solution

Relative error norm in displacement 9.1545e-3
Relative error norm in stress 1.7633e-2
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Figure 5.13: Geometry of the cantilever beam

5.5.2 A cantilever beam subject to an end-shear load

A cantilever beam subject to an end-shear force is shown in Fig. 5.13. The total length

of the beam is L = 4m, the width is b = 1m and the height is h = 1m. The Young’s

modulus of the beam is E = 1×109Pa, and Poisson’s ratio is ν = 0. The shear modulus

is G = 5 × 108Pa. The origin of the coordinate system is located at the center of the

section at one end of the beam. The beam is fixed in weak form on the plane x = 0

by applying the analytical solution of displacement as the boundary condition. At the

free end of the beam where x = 4m, parabolic distributed shear force is applied. The

total magnitude of the shear force is P = 1.67× 103N.

The stress field is described by quadratic shear stress and linear normal stress (Liu

et al., 2008)

σx =
P (L− x) z

I
, (5.4a)

σy = 0, (5.4b)

σz = 0, (5.4c)

τyz = 0, (5.4d)

τxz = − P
2I

((
h

2

)2

− z2
)
, (5.4e)

τxy = 0. (5.4f)
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(a) Non-matching meshes for the
two beam segments

(b) The interface meshes are ex-
tracted

(c) Merged interface (d) Merged volume mesh

Figure 5.14: Coupling of meshes of two beam segments

where I is the second moment of area of the beam. At point (0,−0.5m,−0.5m), ux =

uy = uz = 0. Rigid body translation and rotation are constrained. Considering the

constitutive equation and the boundary conditions, analytical solution in displacement

can be derived by integration

ux =
P

EI

(
Lx− x2

2

)
z − P

6GI

((
h

2

)2

z − z3
)
, (5.5a)

uy = 0, (5.5b)

uz = − P

EI

(
L

2
x2 − x3

6

)
− P

3GI

(
h

2

)2

x. (5.5c)

The beam is divided into two segments, the dimensions of both are 2× 1× 1m, as

shown in Fig. 5.14a. The first segment is discretized with hexahedron elements and the

second with tetrahedron elements. The interface meshes are extracted (Fig. 5.14b) and

merged (Fig. 5.14c). The merged surface mesh is assembled to the volume meshes to

replace the original faces.
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Figure 5.15: The deformation of the beam. Unit: mm. The deformation is scaled by
2× 106.

The errors of numerical results compared to the analytical solution are calculated

using Eq. (4.9). A high-order patch test is performed with third order elements. Solution

of machine accuracy is obtained.

Convergence study is performed using linear and quadratic elements. The meshes

of the two segments are refined respectively, while 2:3 mesh size ratio is enforced. The

theoretical error norm of finite elements is in Eq. (4.12).The relative error norm is

plotted versus DOF in log-log scale. The convergence rates are calculated by fitting

the curves with power functions. The theoretical convergence rates are achieved for

both linear and quadratic elements.

5.5.3 A handle with a ball joint

In this example a mechanical handle consisting of three components is considered. The

geometries of the three components are a box, a sphere and a cylinder. The sphere

is carved out of the box and the cylinder by Boolean operations, leaving two concave

sphere interfaces. The dimension of the box is 400 × 400 × 150mm. The diameter of

the sphere is 200mm. The diameter and length of the cylinder are 100mm and 300mm

respectively. The three parts are meshed separately using hexahedron elements, as
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Figure 5.16: Convergence behavior of the cantilever beam in terms of error norm in
displacement

shown in Fig. 5.17b. The mesh sizes of the box and sphere are both 20mm. The mesh

size of cylinder is 10mm. The three meshes are merged into one mesh in Fig. 5.17e.

The model is fixed on the bottom of the box. A uniform pressure of the magnitude

p = 1×106Pa is applied to the top surface of the cylinder. The direction of the pressure

is perpendicular to the surface and towards the center of sphere, as shown in Fig. 5.18a.

The Young’s modulus of the material is E = 2.1×1011Pa, and Poisson’s ratio is ν = 0.3.

The deformation is plotted in Fig. 5.18b.

A convergence study is performed using a group of meshes of different sizes. The

meshes of the three parts are refined at the same time while maintaining the size ratio

of the elements. A specific point A (Fig. 5.18a) is selected to compare the results. The

reference solution is obtained using ABAQUS. A convergence study using a series of

tetrahedron meshes of second order finite elements (C3D10) is performed. The relative

error of the displacement in z direction at point A is plotted versus the number of

degrees of freedom in log-log scale in Fig. 5.19.

173



(a) The geometry of the
handle

(b) Non-matching meshes of
the handle

(c) Interface meshes extracted

(d) Merged interface mesh (e) Merged volume mesh

Figure 5.17: The geometry and mesh of the handle
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(b) The deformation of the handle. Unit:
mm.

Figure 5.18: The boundary conditions and deformation of handle
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Figure 5.19: The convergence curve of displacement in z direction at point A of the
handle

5.5.4 A fist holding a stick

In this example, a sculpture of a human fist holding a rigid stick is considered. The

model of the fist is given in STL format (https://www.thingiverse.com/thing:

12629). The STL model contains a large number of degenerated triangles (Fig. 5.20),

which makes it difficult to generate a standard finite element mesh. A polyhedron mesh

with relative high quality can be generated from the STL model directly without human

intervention using the algorithm present in Liu et al. (2017). In addition to the STL

boundary, a cylinder passing through the model is considered as an additional bound-

ary. This cylindrical hole will be filled by the stick meshed with hexahedron elements.

The polyhedron mesh of the fist and the hexahedron mesh of the stick are coupled

automatically using the present approach.

To test the robustness of the present approach, different interfaces are generated by

rotating the stick around its central axis as shown in Fig. 5.21a. Four different rotation

angles from 0° to 11.25° are considered. The rotated meshes of the stick are merged

with the mesh of the fist (Fig. 5.21b).

The material properties of the fist are E = 1 × 105Pa and ν = 0.3. The stick is

considered as rigid by choosing E = 1 × 1010Pa and ν = 0. The boundary conditions

are shown in Fig. 5.22a. A uniform pressure along the direction of the stick is applied
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Figure 5.20: The STL model of the fist
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(a) Rotation of the stick
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(b) Different interfaces extracted from
rotated mesh

Figure 5.21: Rotation of mesh of the stick
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(a) The boundary condi-
tions of the fist and stick

U, magnitude
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(b) The deformation of the fist and stick. Unit:
mm.

Figure 5.22: The boundary conditions and deformation of the fist and stick

Table 5.3: Comparison of results from different meshes of the stick

Rotation angle θ (degree) 0 3.75 7.5 11.25

Number of nodes 19135 19158 19142 19144
Displacement uz of point A (mm) -1.25620 -1.25790 -1.25814 -1.25842

Relative difference - 0.14% 0.15% 0.18%

on the top surface. The plane near the wrist of the fist is fixed in all directions. The

deformation of the model is plotted in Fig. 5.22b. The vertical displacements at the

central point A of the top surface of the stick (Fig. 5.21a) is shown in Table 5.3 for

the four meshes at different rotation angles. The differences caused by the rotation are

negligible.

5.5.5 An arch dam

To demonstrate the capability of the proposed method in engineering practice, an arch

dam with a foundation is considered in this example (Fig. 5.23). A hexahedron mesh

is generated for the dam. Three meshes are generated for the foundation using poly-

hedron, tetrahedron and hexahedron elements, respectively. Each of the three meshes

of the foundation is merged with the mesh of the dam as shown in Fig. 5.24 with the
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Figure 5.23: Geometry of the arch dam. Unit: m

corresponding interface mesh.

The material of the dam is concrete. The Young’s modulus is E = 17× 109Pa and

Poisson’s ratio ν = 0.3. The mass density of the concrete is ρ = 2.4×103kg/m3. The self

weight of the foundation is not considered. At the vertical boundaries and the bottom

of the foundation, the displacements perpendicular to the surfaces are constrained.

The hydro-static pressure p = ρwgh is applied on the surface of the dam, where ρw =

1× 103kg/m3 is the mass density of water, g = 9.81N/kg and h is the vertical distance

of a point to the water surface.

A perspective view and the top view of the deformation of the dam and foundation

obtained with the polyhedron mesh in Fig. 5.24a is shown in Fig. 5.25. To compare the

results, a point A is selected at the middle of the top surface of the dam. The horizon-

tal displacements along the downstream direction calculated from different meshes are

shown in Table 5.4. It is observed that relative difference between polyhedron mesh and

hexahedron mesh is small. The difference between polyhedron mesh and tetrahedron

mesh is larger because of the fewer number of nodes of the tetrahedron mesh.

It is worth mentioning that the polyhedron mesh of the foundation is easy to generate

using the octree algorithm and provides a smooth transition of element size. However,
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(a) Polyhedron mesh for the foundation

+ =
(b) Tetrahedron mesh for the foundation

+ =
(c) Hexahedron mesh for the foundation

Figure 5.24: Coupling of non-matching meshes of the arch dam and foundation. Dif-
ferent meshes are generated for the foundation.
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(a) Perspective view (b) Top view

Figure 5.25: The deformation of the dam and foundation obtained with polyhedron
mesh. Maximum displacement occurs in the middle of dam. The deformation is scaled
by 1000. Unit: mm

Table 5.4: Comparison of results from different meshes of the arch dam

Element type of the foundation polyhedron tetrahedron hexahedron

Number of elements 8871 15005 36100
Number of nodes 13743 7970 41349

Displacement uz (mm) 52.424 51.771 52.146
Relative difference - 1.36% 0.53%
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the other two meshes requires tedious manual operations, such as partition, merging

and repairing, which makes the mesh generation process time consuming. The element

sizes also need to be controlled carefully to successfully generate the mesh. Therefore,

the proposed coupling method and octree algorithm provide a powerful approach in

automated analysis of models with complex geometry.

5.5.6 A mechanical part

A mechanical part is shown in Fig. 5.26a. The geometry consists of three components:

a base plate with two cylindrical holes, a vertical plate with a hole and a ring. The

three parts are meshed independently (Fig. 5.26b). Polyhedron meshes are generated

for the base plate and the vertical plate using octree algorithm. Structured hexahedron

mesh is generated for the ring. The sizes of the three meshes are different on the two

interfaces. On the first interface, where the ring and the vertical plate are connected,

the mesh of the plate is refined using polytree algorithm. Similarly, on the interface

between the vertical plate and the base plate, the mesh of the base plate is refined, as

shown in Fig. 5.26c. After refinement, the three meshes are connected (Fig. 5.26d). It

can be observed that near the two interfaces the sizes of volume elements are similar

(Fig. 5.26f), which contributes to maintaining the mesh quality after merging.

The material of the mechanical part is steel. Young’s modulus is E = 2.1× 1011Pa

and Poisson’s ratio ν = 0.3. The two holes on the base plate are fixed. Uniform surface

traction t = 1 × 106Pa is applied on the inner surface of the cylindrical hole in the

vertical plate (See Fig. 5.27a). The deformation is shown in Fig. 5.27b.

5.5.7 A propeller blade attached to a shaft

The STL model of a propeller is considered (https://www.thingiverse.com/thing:

2137615). Only one blade and the shaft are modeled. The dimension of the propeller

is shown in Fig. 5.28b and Fig. 5.28c. Hexahedron meshes are generated for the two
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(e) The merged volume mesh (f) Clip view of the merged
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Figure 5.26: The geometry and mesh of the mechanical part

Fixed faces
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(a) The boundary conditions of
the mechanical part
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(b) The deformation of the mechanical
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Figure 5.27: The boundary conditions and deformation of the mechanical part
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(a) The blade and shaft of the propeller

t=3

R1=43

R2=10

R3=18

R4=13

L1=12

L2=17

L3=17

(b) Top view of the propeller. Unit:
cm.

H1=40

H2=31

(c) Side view of the pro-
peller. Unit: cm.

Figure 5.28: The geometry of the propeller

parts. The surface mesh of the shaft is refined on the interface, as shown in Fig. 5.29a.

The bottom of the shaft is fixed. Young’s modulus is E = 2.1×1011Pa and Poisson’s

ratio is ν = 0.3. A uniform downward surface traction t = 1× 106Pa is applied on the

top surface of the blade (Fig. 5.30a). The deformation is shown in Fig. 5.30b.
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(a) The mesh of the shaft is refined on
the interface

(b) The interface meshes are extracted

(c) The merged interface mesh (d) The merged volume mesh

Figure 5.29: The geometry and mesh of the propeller
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(a) The boundary
conditions of the
propeller

(b) The deformation of the propeller.
Unit: mm

Figure 5.30: The boundary conditions and deformation of the propeller
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Chapter 6

Adaptive mesh refinement

Adaptive analysis is an important technique in the finite element analysis. The error

of an analysis is estimated using a posterior indicator. The mesh in a region with high

estimated error is refined therefore the discretization error is expected to reduce in the

region. As a result, the mesh is only refined where necessary and the computational

resource can be used efficiently. The convergence rate of an adaptive refinement is usu-

ally higher than the uniform refinement. In this chapter, an adaptive mesh refinement

method is proposed. A simple error indicator is implemented together with a refinement

technique based on polytree algorithm. Numerical examples are provided to validate

the proposed method.

6.1 Error indicator

A large amount of error indicators have been developed in the finite element analysis.

In this research, a simple approach is followed using the discontinuity of the stress field.

If linear element is utilized in the finite element analysis, a piecewise linear displacement

field uh is calculated to approximate the exact solution ue (Fig. 6.1a). The numerical

solution of stress σh is represented by the derivative of uh, which is a step function

as shown in Fig. 6.1b. The stress at an internal node can be calculated from the
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Figure 6.1: Discontinuity in the stress field in 1D
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Figure 6.2: Error indicator based on stress discontinuity

two elements connected to the node. Those two values are usually different, and the

difference can be used as an error indicator.

In the scaled boundary finite element analysis, polygon elements in 2D are con-

structed from 1D line elements. The stress of a line element can be evaluated from the

two polygons on both sides. In Fig. 6.2a, the line element n1n2 is shared by two polygon

faces f1 and f2. The results are usually different as the displacement field only satisfies

Co continuity on the boundary. Therefore, the difference between the stresses can be

used as an error indicator. In 3D the stress on a face can be calculated from the two

polyhedrons containing the face. In Fig. 6.2b, the polyhedrons c1 and c2 share the same

polygon face (it will be triangulated before the analysis). The stresses calculated from

the two polyhedrons are compared and the difference is used as the error indicator.

The stress components on the faces can be calculated following Eq. 3.133 in Sec-
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tion 3. The von Mises stress σv is calculated as

σv =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
, (6.1)

where σ1, σ2 and σ3 are the principle stresses. The average von Mises stress at a face i

is

σvi =
σvi1 + σvi2

2
, (6.2)

where σvi1 and σvi2 are the stresses calculated from the two cells connected to the face.

The absolute value of the difference between the stresses is

∆σvi = |σvi1 − σvi2| . (6.3)

The maximum von Mises stress of all the faces in the whole mesh is found as

σmax = max (σvi) for i = 1, 2, . . . , n, (6.4)

where n is the total number of faces in the mesh. The local relative error at face i is

estimated as

ei =
∆σvi
σmax

× 100%. (6.5)

The faces on the boundary are not considered in this process as they are connected to

one cell only. A tolerance etol is defined. The typical range of the value is 1% ∼ 5%.

All the faces satisfying

ei ≥ etol, (6.6)

will be selected. All the cells containing these faces will be refined in the next iteration.
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(a) First refinement (b) Second refinement

Figure 6.3: Polytree mesh refinement in 2D

6.2 Mesh refinement technique

A complete adaptive remeshing includes refinement and coarsening of the mesh. In

this research, only refinement is implemented as coarsening is usually less frequently

required, especially when the initial mesh size is reasonably coarse.

A polytree algorithm is employed for mesh refinement. The details of the imple-

mentation can be found in Section 5.3. A polygon with n nodes will be divided into n

new polygons. The new polygons are always quadrilaterals in 2D because the nodes are

connected by two edges in each polygon. In 3D the number of new polyhedrons is equal

to the number of nodes in the original polyhedron. The shape of the new polyhedrons

depend on the number of faces connected to each node. If a node is shared by 3 faces in

the polyhedron, the obtained polyhedron around that node will be a hexahedron. If a

node is shared by 4 faces in the polyhedron, the obtained polyhedron around that node

will be an octahedron. In all the cases the faces of the new polyhedrons are always

quadrilaterals.

All the faces and cells are assigned with a level number. In the initial mesh, all the

faces and cells are on level 0. In the refinement iterations, each time a cell or a face is

refined, the level number is increased by 1. The mesh is balanced after the refinement

(maximum level difference between adjacent cells can not exceed 1). In other words, the

difference between the level of a cell and the maximum level of its faces can not exceed
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Figure 6.4: Polytree mesh refinement in 3D

(a) Unbalanced poly-
tree mesh

(b) Balanced polytree
mesh

Figure 6.5: Balance of polygon mesh after polytree refinement

1. The idea of is similar to the balancing in octree mesh presented in Section 4.3.4. In

Fig. 6.5a, the quadrilaterals on level 2 are adjacent with 2 polygons on level 0. Those

polygons contain edges on level 0, 1 and 2. Therefore they are refined in Fig. 6.5b.

The complete procedure of mesh refinement in 3D is shown in the flow chart in

Fig. 6.6. An initial polyhedron mesh is imported at the first step. The surface meshes

of the polyhedrons are triangulated. A copy of the initial polyhedron mesh is still

stored in the program for later use. These two meshes share the same cell index. The

analysis of the cells is performed using their triangulated surface meshes and the errors

are estimated based on the error indicator in Section 6.1. If all the faces satisfy the

requirement in Eq. (6.6), the program stops. Otherwise, a list containing the index of

cells which need to be refined is generated. A polytree refinement is performed on the

polyhedron mesh (before triangulation) based on this list. The refined polyhedron mesh

is used as input for the next iteration. This process is repeated until the requirement
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Figure 6.6: Adaptive analysis procedure

in Eq. (6.6) is satisfied on all of the faces or a predefined maximum iteration number is

reached.

6.3 Numerical examples

In this section, five numerical examples are presented to validate the adaptive refinement

method. The convergence behavior is examined.

6.3.1 A pressurized hollow sphere

A pressurized hollow sphere is shown in Fig. 6.7. Only an octant of the sphere is

modeled due to symmetry. The radius of the inner surface is a = 20m while the outer

surface b = 50m. A uniform normal pressure P = 1Pa is applied on the inner surface of

the sphere. At the surfaces at x = 0, y = 0 and z = 0, the displacements perpendicular

to surfaces are constrained. The Young’s modulus is E = 1000Pa and Poisson’s ratio

ν = 0.3.
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Figure 6.7: Geometry and boundary conditions of the hollow sphere

The refinement criteria is etol = 1%. In the first two iterations almost all the cells are

refined. From the third iteration, only the region near the inner sphere where the stress

is higher than the outer sphere is refined. The contour of displacement on different

meshes is shown in Fig. 6.8.

The actual error of this problem can be calculated by comparing with analytical

solution Eq. (4.10). The convergence curve is plotted in Fig. 6.9. It is observed that the

result converges faster than the convergence rate from a uniform refinement in Section 4.

6.3.2 A short cantilever beam

In this example, a short cantilever beam is considered. A similar problem in 2D can

be found in Song et al. (2018). The dimension of the beam is 20m× 10m× 10m

(Fig. 6.10a). The beam is fixed at one end where x = 0. A uniform pressure P = 1Pa

is applied on the top surface of the beam as shown in Fig. 6.10b. The Young’s modulus

is E = 1000Pa and Poisson’s ratio ν = 0.3.

The initial mesh is a uniform hexahedron grid. The refinement criteria is etol = 1%.

The von Mises stress is plotted on each of the meshes in Fig. 6.11. In the first two

iterations almost all the cells are refined. From the third iteration, only the region
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(a) Initial mesh (b) First refinement

(c) Second refinement (d) Third refinement

(e) Fourth refinement

Figure 6.8: Displacement of the hollow sphere after adaptive refinement

193



y = 7.3532x-0.744

R² = 0.9811

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1 E+03 1 E+04 1 E+05 1 E+06 1 E+07

Degrees of freedom

R
el

at
iv

e 
er

ro
r 

n
o
rm
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Figure 6.10: Geometry and boundary conditions of the beam
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near the fixed end is refined. It agrees with the expectation because of the high stress

concentrations near the fixed end.

6.3.3 A hook

In this example, a hook is considered. A similar problem in 2D can be found in Chau

et al. (2018). The geometry of the hook is shown in Fig. 6.12a. The hook is fixed around

the sphere on the top as shown in Fig. 6.12b. A uniform downward pressure P = 1000Pa

is applied at the lower part of the hook. The Young’s modulus is E = 2.1× 1011Pa and

Poisson’s ratio ν = 0.3.

The initial mesh composes of three parts, the two spherical shapes on the two ends

and the segment in the middle. Structured hexahedron meshes are generated for those

parts individually and merged together. The refinement criteria is etol = 3%. The von

Mises stress is plotted on each of the meshes in Fig. 6.13. It is observed that only the

region near the middle of the curve is refined.

A detailed view of the mesh after the third refinement step is shown in Fig. 6.14.

6.3.4 A connecting rod

A connecting rod is shown in Fig. 6.15a. A similar problem can be found in Nguyen

et al. (2014). The rod is fixed at the left end as shown in Fig. 6.12. A uniform downward

pressure P = 1000Pa is applied at the inner surface of the ring at the right end. The

Young’s modulus is E = 2.1× 1011Pa and Poisson’s ratio ν = 0.3.

The initial mesh composes several parts of structured hexahedron meshes. The

refinement criteria is etol = 5%. The von Mises stress is plotted on each of the meshes

in Fig. 6.16. It is observed that the region in the middle of the rod, where large bending

moment is located, is refined. The joint between the rod and the larger ring on the left

is also refined.

A plane view of the mesh after the third refinement step is shown in Fig. 6.17.
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(a) Initial mesh (b) First refinement

(c) Second refinement (d) Third refinement

(e) Fourth mesh (f) Fifth refinement

Figure 6.11: Von Mises stress of the beam after mesh refinement
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R=5
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(a) Geometry of the
hook. Unit: mm

(b) Boundary con-
ditions of the hook

Figure 6.12: Geometry and boundary conditions of the hook

6.3.5 A sculpture

In this example, a sculpture of a lion is considered. The geometry of the model is given

in STL format and quite complex (https://www.thingiverse.com/thing:1393345).

A polyhedron mesh is generated using octree based algorithm. The bottom of the model

is fixed, as shown in Fig. 6.18. Only the self-weight of the sculpture is considered. The

material is granite. The Young’s modulus is E = 7×1010Pa and Poisson’s ratio ν = 0.3.

The density of the material is ρ = 2.8× 103kg/m3.

The von Mises stress is plotted on the initial model (Fig. 6.19). It is observed that

on the supporting legs the stress is high.

The refinement tolerance is etol = 5%. The mesh of the sculpture is refined twice as

shown in Fig. 6.20.
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(a) Initial mesh (b) First refinement

(c) Second refinement (d) Third refinement

Figure 6.13: Von Mises stress of the hook with each refinement step
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Figure 6.14: Detailed view of the mesh of the hook after the third refinement
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Figure 6.15: Geometry and boundary conditions of the connecting rod

199



(a) Initial mesh (b) First refinement

(c) Second refinement (d) Third refinement

Figure 6.16: Von Mises stress of the connecting rod after each refinement step

Figure 6.17: Mesh of the connecting rod after the third refinement

200



Figure 6.18: Boundary conditions of the sculpture

Figure 6.19: Von Mises stress of the sculpture
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(a) Initial mesh (b) First refinement

(c) Second refinement

Figure 6.20: Meshes of the sculpture
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Chapter 7

Towards engineering analysis of

virtual city

Virtual reality technique creates an immersive environment for engineers to interact

with the models. It can help engineers with a variety of tasks such as design, mainte-

nance and modification of models. With the rapid development of modern computers,

modeling of a city in the virtual reality environment becomes possible, which can be

referred to as a virtual city. Virtual city has been explored in the fields such as architec-

ture (Dollner et al., 2006), transportation (Sun et al., 2002), archaeology (Dylla et al.,

2008) and many others. Combining virtual city modeling and structural analysis has

great potential in numerous engineering applications, such as urban planning, hazard

simulation, structural health monitoring, etc. However, the progress in this field is still

lacking. The key impedance is the difficulty in mesh generation from the geometric

model. The geometric model of a virtual city can include conventional CAD model,

image based model, STL model and virtual reality model. The virtual reality model is

described in a data format different from the traditional CAD models. Furthermore,

the models may contain defects which are not suitable for numerical modeling. Manual

operations are frequently required, which are time consuming and error prone. Combin-
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ing these meshes generated from those different data formats in an analysis is another

difficulty as they are usually non-matching on the interface. In this chapter, a new

approach to combine virtual city modeling with structural analysis is presented using

the techniques developed in Chapter 3, Chapter 4 and Chapter 5.

7.1 Geometric modeling of virtual city

This section is a summary of the emerging techniques to construct virtual reality models

for the buildings in a city. Three commonly used techniques, photogrammetry, LiDAR

(light detection and ranging) and computed tomography are reviewed.

7.1.1 Photogrammetry

Photogrammetry is a technique to construct 3D models from 2D photos captured from

different view angles. It is illustrated using an example in Fig. 7.1 (Modernist House #3,

https://3dwarehouse.sketchup.com). This method is highly automatic and efficient,

therefore it has been widely used in large scale modeling of buildings (Kobayashi, 2006).

However, as photos only contain 2D information, the reconstruction of the 3D objects

is a challenging task. Usually several simple shapes are predefined as templates for

the buildings (Zlatanova et al., 1998; Hammoudi and Dornaika, 2011). The buildings

in the photos are identified based on the templates. The photos are mapped to those

templates as texture. A novel photo based modeling method without templates can be

found in Xiao et al. (2009). Machine learning can be used in image recognition and

classification. Aerial images can be used to construct large scale 3D models, such as

terrain.
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Figure 7.1: Geometric modeling of a building using photos captured from different
angles

7.1.2 LiDAR

LiDAR is another commonly used approach in 3D city modeling. The LiDAR device

transmits a light beam and receives the reflection signal. The distance between the

LiDAR device and the object can be calculated. A 3D point cloud is constructed

(Fig. 7.2), which can be later connected as a surface model. The advantage of LiDAR

is that the 3D geometric information is obtained directly form the data. No predefined

template is required. Buildings with complex and irregular geometries can be modeled

using this technique. However, this approach is usually more time-consuming and

requires more human effort when obtaining the raw data. Point reduction is often

required due to the huge amounts of LiDAR data normally involved, which often fail

to load in 3D modeling software (Heo et al., 2013).

7.1.3 Computed tomography

Computed tomography (CT) scan is a different method to construct 3D models using

irradiation to produce internal and external representations. Different techniques based

on X-ray (Du Plessis et al., 2016) and neutron radiography (Dewanckele et al., 2014)
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Figure 7.2: Geometric modeling of a building using LiDAR

have been developed. The advantage of CT scan is that it is able to model the interior

structure, such as cracks, inclusions and voids inside the model, while photogrammetry

and LiDAR only provide information of the boundary. However, the application is

usually limited by the size of the model. High resolution 3D digital images obtained

from CT scan usually require more storage space compared with photos and point

clouds.

7.2 Numerical modeling of virtual city

After the geometric model is constructed, it will be converted to a numerical model for

structure analysis. The process is described in the following of this section and several

issues are discussed.

7.2.1 Automatic mesh generation

The virtual reality models are usually designed for visualization of the geometry rather

than numerical analysis. Therefore there may be defects in the geometric models, such

as self-intersection (Fig. 7.3a) and holes (Fig. 7.3b). These defects are difficult to handle
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(a) Self-intersection (b) Hole

Figure 7.3: Defects in the geometric model

for mainstream mesh generation methods such as mapping and advancing front, as they

require manual repair and reconstruction. In large scale numerical modeling, manual

operation is not preferable. Therefore, octree based method is utilized to generate

polyhedron mesh automatically for the models. In the octree based method, the self-

intersection can be tolerated as long as the intersection points between the model and

the octree background mesh can be identified. The holes smaller than the element size

can also be accepted if there is no edge in the octree background mesh passing through

the holes.

Fast mesh size transition can be achieved using octree based algorithm. Each time

the mesh is refined, the element size is halved. In virtual city analysis the mesh is only

refined in the interested region, while in other regions element size grows fast. Therefore

in large scale problems computational resources can be used effectively.

7.2.2 Local mesh modification

Another impedance in virtual city analysis using the conventional FEM is the difficulty

in local modification of the mesh. For instance, the modification of a building will affect

the mesh of the soil under the building, which may result in remeshing of the whole city.

Apparently this is not preferable in an analysis. In the present approach, different parts

of a city can be meshed independently by different groups of engineers. The mesh of

the terrain can be generated by geotechnical engineers using surface model obtained by
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photogrammetry and the drilling data of the soil layers. The buildings can be modeled

by individual design companies. These meshes are generated independently, therefore

they are usually non-matching on the interface. The coupling method proposed in

Chapter 5 is able to merge those meshes automatically. Only a small number of elements

near the interface need to be modified.

When the design of a building is modified, only the mesh of that building needs to

be regenerated. The original mesh of the soil can be coupled with the new mesh of

the building. If a part of the model needs to be removed, such as ground evacuation

and tunnel drilling, some elements in the original octree mesh are removed first, leaving

an empty space. Then a new mesh is inserted between the remaining elements and

the evacuated boundary. These modifications enable the same meshes to be reused in

different problems, which saves a large amount of human effort. The details will be

demonstrated in the numerical examples in Section 7.3.3 and Section 7.3.4.

7.3 Numerical examples

In this section, four numerical examples are presented to demonstrate the idea of virtual

city analysis.

7.3.1 Stonehenge

The Stonehenge is considered in this example to test the robustness of the proposed

mesh generation method (https://www.thingiverse.com/thing:2250774). The ge-

ometry is shown in Fig. 7.4a. It can be observed that the geometric model contains

distorted triangles and self-intersections, which makes it difficult to generate a conven-

tional FEM mesh. A polyhedron mesh is generated in Fig. 7.4b automatically using

the octree algorithm.

At the vertical boundaries and the bottom of the soil, the displacements perpendic-
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(a) Geometry of the Stonehenge (b) Mesh of the Stonehenge

Figure 7.4: Geometry and mesh of the Stonehenge

Figure 7.5: Displacement of the Stonehenge

ular to the surfaces are constrained. The material is granite. The Young’s modulus is

E = 5× 1010Pa and Poisson’s ratio ν = 0.2. The mass density is ρ = 2.7× 103kg/m3.

The displacement under self-weight is shown in Fig. 7.5.

7.3.2 Virtual repair of a column

In this example, the combination of image based model and virtual reality model is

explored. A damaged column in an ancient temple is shown in Fig. 7.6 (https://www.

thingiverse.com/thing:56740). There is a notch in the middle part of the column.

The geometry of the column is stored as 3D digital images (Fig. 7.7a). Mesh of

209

https://www.thingiverse.com/thing:56740
https://www.thingiverse.com/thing:56740


Figure 7.6: A damaged column
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the column is generated based on the images using the technique developed in Saputra

et al. (2017). A replacement part is produced using 3D printing techniques. The STL

model of the replacement part is shown in Fig. 7.7b. Mesh of the replacement part

is generated from the STL model without trimming (Fig. 7.7c). The two meshes are

merged in Fig. 7.7d.

The material of the column is limestone. The Young’s modulus is E = 7 × 1010Pa

and Poisson’s ratio ν = 0.2. The mass density of is ρ = 2.7× 103kg/m3. It is assumed

that the material properties of the 3D printing material is the same as the material

of the damaged column. The deformations of the column under self-weight before and

after the repair are shown in Fig. 7.8a and Fig. 7.8b.

7.3.3 Modeling of city and foundation

In this example, several buildings in a city are modeled together with several layers

of soil representing the foundation. The different stages of the modeling process are

presented and the local modification techniques are applied.

7.3.3.1 Modeling of foundation

The soil in this example is divided into three different layers according to their differ-

ent material properties. The different materials are represented by different colors in

Fig. 7.9. The bottom layer is well graded gravel (Fig. 7.9a). The Young’s modulus

is E = 7 × 107Pa and Poisson’s ratio ν = 0.15. The middle layer is clay (Fig. 7.9b).

The Young’s modulus is E = 3 × 107Pa and Poisson’s ratio ν = 0.2. The top layer

is assumed to be silty sand (Fig. 7.9c). The Young’s modulus is E = 1 × 107Pa and

Poisson’s ratio ν = 0.3. The meshes are generated using the same bounding box and

element size. The three layers are merged together for later analysis.
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(a) Images
of the
damaged
column

(b) STL model of a re-
placement part

(c) Merging of the
meshes

(d) Mesh of the re-
paired column

Figure 7.7: Repair of the column
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(a) Deformation of the
column before repair

(b) Deformation of the
column after repair

Figure 7.8: Deformation of the column

(a) Lower layer (b) Middle layer (c) Top layer

Figure 7.9: Different layers of soil
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(a) Mesh of the tunnel (b) Mesh of the tunnel merged with the founda-
tion

Figure 7.10: Construction of a tunnel

7.3.3.2 Modeling of tunnel

A tunnel passing through the interface between the top and middle soil layer is con-

structed. The elements in the merged mesh of the foundation are removed around the

location of the tunnel, leaving an empty space slightly larger than the tunnel. A hex-

ahedron mesh is generated using sweeping method, filling the gap between the tunnel

and the remaining mesh of the foundation (Fig. 7.10a). The two non-matching meshes

are connected by merging their interface (Fig. 7.10b).

7.3.3.3 Modeling of bridge

A bridge is constructed on ground. Structured hexahedron meshes are generated for

the columns and slab of the bridge. The columns are merged with the foundation

(Fig. 7.11a) and then the slab is merged with the columns (Fig. 7.11b).

7.3.3.4 Modeling of buildings

Several buildings are constructed on both sides of the bridge. The buildings are repre-

sented in STL format. Polyhedron meshes are generated for the buildings based on oc-
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(a) Meshes of the columns of the bridge (b) Mesh of the slab of the bridge

Figure 7.11: Construction of a bridge

tree algorithm. The meshes of the buildings are merged with the foundation (Fig. 7.12a).

At the vertical boundaries and the bottom of the foundation, the displacements per-

pendicular to the surfaces are constrained. The material of the buildings and the bridge

is assumed to be concrete. The Young’s modulus is E = 1.7 × 1010Pa and Poisson’s

ratio ν = 0.3. The mass density of the concrete is ρ = 2.4× 103kg/m3. The self-weight

of the soil is not considered. The displacement under the self-weight of the bridge and

buildings is shown in Fig. 7.12b.

7.3.4 Modeling of city and terrain

In this example, the combination of the city and the terrain is explored.

7.3.4.1 Modeling of terrain

A part of the terrain near Mount Crichton in New Zealand on Google map is shown in

Fig. 7.13. The size of the area is 12km× 6km (red rectangle in Fig. 7.14a). The surface

model of the terrain is saved in STL format (Fig. 7.14c). Octree mesh can be generated

using the surface model. The size of the bounding box is 8km× 5km× 3km. The ratio

between maximum element size and minimum element size is 16 (Fig. 7.14d).
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(a) Merged mesh of the buildings and foundation (b) Displacement of the model

Figure 7.12: Construction of buildings

Figure 7.13: Mount Crichton in Google map
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(a) 3D terrain in Google map (b) STL surface overlapping Google
map

(c) Extracted STL surface (d) Octree mesh of the terrain

Figure 7.14: Numerical modeling of the terrain
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(a) STL model of the buildings (b) Octree mesh of the buildings

Figure 7.15: Numerical modeling of the buildings

(a) Overall view of the terrain and buildings (b) Detailed view of the terrain and
buildings

Figure 7.16: Coupling of the meshes of the terrain and buildings

7.3.4.2 Coupling of terrain and city

Several buildings representing a city block are shown in Fig. 7.15a. The buildings are

also meshed using the octree algorithm (Fig. 7.15b).

The meshes of the buildings are connected to the mesh of the terrain (Fig. 7.16). To

simplify the problem, a flat interface is constructed by removing some elements from

the mesh of the terrain.

The displacements perpendicular to the surfaces are constrained at the vertical

boundaries and the bottom of the terrain. Only the self-weight of the buildings is applied

as external load. The material of the ground is assumed to be rock and homogeneous.
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(a) Boundary conditions
of the model

(b) Displacement of the merged terrain
and buildings

Figure 7.17: Boundary conditions and displacement of the merged terrain and buildings

(a) Location of the new build-
ing

(b) Mesh of the new building
merged with existing mesh

Figure 7.18: Construction of a new building

The Young’s modulus is E = 5×109Pa and Poisson’s ratio ν = 0.15. The material of the

buildings is concrete. The Young’s modulus is E = 1.7×1010Pa and Poisson’s ratio ν =

0.3. The mass density of the concrete is ρ = 2.4× 103kg/m3. The boundary conditions

are shown in Fig. 7.17a. The displacement of the model is plotted in Fig. 7.17b.

7.3.4.3 Interaction between new and existing structures

A new building is constructed next to the site (Fig. 7.18a). The meshes of the terrain

and existing buildings can be reused. Only the elements on the interface near the new

building needs to be modified. The meshes become matchingon the interface, which is

shown in Fig. 7.18b.
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(a) STL model of the tunnel (b) Octree mesh after the tunnel is sub-
tracted

Figure 7.19: Construction of a tunnel

(a) Displacement before
construction of the new
building

(b) Displacement after con-
struction of the new build-
ing

(c) Displacement after con-
struction of the tunnel

Figure 7.20: Displacement of the model at different stages

7.3.4.4 Construction of a tunnel

The geometry of a tunnel is represented by a cylinder (Fig. 7.19a). The mesh of the ter-

rain is trimmed by the tunnel. The trimming follows the same procedure in Section 4.4.

The elements located inside the tunnel are removed after trimming (Fig. 7.19b). No

remeshing is required for the whole model.

The displacements of the model in different stages are shown in Fig. 7.20. A com-

parison of the deformations in a selected section is shown in Fig. 7.21.
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Figure 7.21: Slice view of the deformation of the city. The deformation is scaled by
1000.
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Chapter 8

Discrete modeling of fiber

reinforced material

Fiber reinforced materials have been widely used in engineering due to their excellent

mechanical and thermal properties. A large number of fiber reinforced materials have

been designed and manufactured to fit different purposes in modern engineering. The

mechanical property of the matrix (base) material can be significantly improved by

adding only a small number of fibers. It is important to evaluate the mechanical prop-

erty of the fiber reinforced material. A traditional evaluation method is experiment.

However, experiments are usually time consuming and expensive. The experiments can

only be carried out after the specimen has been produced. Several empirical formulae

were proposed as alternatives (Halpin, 1969; Mori and Tanaka, 1973). The drawback of

this approach is that it is difficult to represent complex fiber distribution and orienta-

tion. Numerical method offers better flexibility and feasibility in the modeling of fiber

reinforced materials. The numerical methods to model fiber reinforced materials can

be divided into two categories, the smeared method and the discrete method (Radtke

et al., 2010; Kang et al., 2014). In the smeared method, the effect of fibers is dis-

tributed in the matrix (Owen et al., 1983; Vecchio, 1989; Barzegar and Maddipudi,
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1997). The material properties of the matrix in certain directions are modified. The

mesh generation is simple in a smeared method. It is efficient as no additional degree

of freedom is introduced to the system. However, this method can not describe the

stress distribution along the fibers. The discrete method can be further classified into

two approaches. The first approach requires that the nodes of the fibers have to be

coincident with some nodes of the matrix (Hbaieb et al., 2007; Kang et al., 2014; Silani

et al., 2014). Conventional finite element solver can be utilized to solve the equations.

The cost is that the mesh generation is difficult, especially when large amount of fibers

are considered (Radtke et al., 2010). In the other approach, the mesh of the matrix can

be generated independently, and special interface constraints are employed to connect

the fibers and the matrix (Vanalli et al., 2008; Bolander et al., 2008). The difficulty in

mesh generation can be greatly reduced. However, additional degrees of freedom need

to be added to the system, which may result in non positive-definite matrix.

In this chapter, a discrete method for the modeling of fiber reinforced material based

on the scaled boundary finite element method (SBFEM) is presented. The meshes of

the matrix and the fibers can be generated independently. Polygon elements are used

to model the matrix. The fibers are modeled with truss elements. A novel embedment

method is developed to combine the meshes of the matrix and the fibers. The edges

in the matrix intersected with the fibers are partitioned and the intersection points are

inserted to the mesh. The fiber tips located inside the elements of matrix are embedded

by subdividing those elements into several smaller elements using polytree algorithm.

The remaining of the elements in the matrix don’t need subdivision as polygons with

arbitrary number of edges and nodes can be analyzed in SBFEM directly. All the nodes

in the fibers are overlapping with some nodes of the matrix. Therefore, the two meshes

become matching along the fibers. This work focuses on the mesh generation. The

slippage of fibers is not considered. The stiffness matrix of the fibers is superposed

to the matrix material directly. No interface elements are introduced to the system.
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Realistic, random fiber distributions can be analyzed in the model.

8.1 Embedment of fiber to matrix

In the finite element method, the fibers are usually modeled as truss or beam elements.

The fibers usually need to be matching with the mesh of the matrix, i.e. for each

point on the fiber, there must be a point in the matrix overlapping with it. Due to the

advantage of arbitrary polytope element formulated in SBFEM, a simple algorithm can

be implemented to make the mesh of the fiber and the matrix compatible.

8.1.1 Embedment of fiber in 2D

The procedure of embedding fiber to matrix is illustrated in Fig. 8.1 and Fig. 8.2 in

2D. A quadrilateral element ABCD is shown in Fig. 8.2a. A fiber l1 is passing through

the solid element with a random orientation. The intersection points are marked as E

and F , as shown in Fig. 8.1b. The two intersected edges of the quadrilateral element,

AB and BC, are partitioned into new edges AE, EB and BF , FC, respectively. The

quadrilateral element becomes a polygon with 6 edges. If there are more than one fibers

passing through the element (Fig. 8.1c), all the intersection points are inserted and the

edges are partitioned. The stiffness matrix of the fibers is formulated using

Kbar =
EA

L



C2
x CxCy −C2

x −CxCy

CxCy C2
y −CxCy −C2

y

−C2
x −CxCy C2

x CxCy

−CxCy −C2
y CxCy C2

y


, (8.1)

and superposed into the stiffness of the polygon element based on node connectivity. E

is the Young’s modulus of the fiber and A is the cross section area. L is the length of
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(a) An element in
the mesh of the
matrix

A B

CD

l1

E

F

(b) A fiber inter-
sected by the ele-
ment

A B

CD

l1

E

F

l2

G

H

(c) Two fibers in-
tersected by the
element

Figure 8.1: Intersection between the fiber and the matrix in 2D

the segment. Cx and Cy are defined as

Cx =
x2 − x1
L

, (8.2a)

Cy =
y2 − y1
L

, (8.2b)

where (x1, y1) and (x2, y2) are the coordinates of starting point and end point of the

bar segment.

If a fiber tip is located inside a polygon element as shown in Fig. 8.2a, the element

will be subdivided into several smaller elements using polytree algorithm introduced

in Section 5.3.1. A new node is inserted at the fiber tip. The polygon is partitioned

by bisecting all of its edges. The mid-points of the edges are inserted as new nodes

(Fig. 8.2b). The fiber tip is connected to the mid-points, which is shown in Fig. 8.2c.

In 2D the new elements are always quadrilaterals.

8.1.2 Embedment of fiber in 3D

In 3D the procedure of embedment is similar. If a fiber intersects with a solid element

as shown in Fig. 8.3a, the intersection points between the fiber and the faces of the solid

element are inserted as new nodes. The faces intersected by the fiber are subdivided

into several new faces using the polytree refinement in 2D. No volume discretization is

required. In Fig. 8.3b, the hexahedron becomes a polyhedron with 12 faces after the
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(a) A fiber tip
located inside an
element

A B
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(b) Bisecting of
the edges of the
element

A B

CD

(c) The new ele-
ments generated
by connecting
the fiber tip
and the middle
points

Figure 8.2: Embedment of fiber tip in 2D

embedment. The stiffness matrix of the bar in 3D is expressed as

Kbar =
EA

L



C2
x CxCy CxCz −C2

x −CxCy −CxCz

CxCy C2
y CyCz −CxCy −C2

y −CyCz

CxCz CyCz C2
z −CxCz −CyCz −C2

z

−C2
x −CxCy −CxCz C2

x CxCy CxCz

−CxCy −C2
y −CyCz CxCy C2

y CyCz

−CxCz −CyCz −C2
z CxCz CyCz C2

z


, (8.3)

where Cx, Cy and Cz are defined as

Cx =
x2 − x1
L

, (8.4a)

Cy =
y2 − y1
L

, (8.4b)

Cz =
z2 − z1
L

, (8.4c)

where (x1, y1, z1) and (x2, y2, z2) are the coordinates in 3D of starting point and end

point of the segment.

If a fiber tip is located inside a solid element in 3D (Fig. 8.4a), the solid element

will be divided into several new polyhedrons using polytree refinement in 3D, which is
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(a) A hexahedron
element in the
mesh of the ma-
trix

(b) A fiber inter-
sected by the ele-
ment

Figure 8.3: Intersection between the fiber and the matrix in 3D

described in Section 5.3.2. The fiber tip is then connected to the new inserted node

inside the solid element as shown in Fig. 8.4c.

8.2 Optimization of matrix mesh quality

The mesh quality of the matrix has significant influence on the accuracy of the result.

In this section, a shifting scheme is developed to improve mesh quality while embedding

the fiber into the matrix.

8.2.1 Shifting to fiber tips

If a node in the mesh of matrix is close a fiber tip, it will result in distorted polygons.

In Fig. 8.5a the fiber tip O is close the the node A in element ABCD. If the element is

subdivided using the method in Section 8.1 directly, there will be a concave quadrilateral

AEOH which should be avoided in an analysis. Therefore node A is shifted to fiber

tip O in Fig. 8.5b. No subdivision is required in this case, and the mesh quality of is

maintained. The shifting tolerance at a node is tol = εn × ln, where εn is a predefined

relative tolerance (typically, a value between 0.2 and 0.3) and ln is the minimum length

of edges connected to the node.

A similar case in shown in Fig. 8.5c, where the fiber tip O is close to an edge AD.

The obtained quadrilateral DHOG is also distorted by direct subdivision. In order
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(a) A fiber tip lo-
cated inside an el-
ement

(b) The faces of
the element are
partitioned

(c) The element
is divided into
new elements
connecting the
fiber tip and
the centers of
original faces

(d) The hexahe-
dron elements after
subdivision

Figure 8.4: Embedment of fiber tip in 3D
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Figure 8.5: Shifting of nodes and partitioning of edges near a fiber tip in 2D

to improve the mesh quality, edge AD is partitioned into AO and OD and no further

subdivision is required for this element. The tolerance at an edge is tol = εe× le, where

εe is a another relative tolerance smaller than εn (usually between 0.1 and 0.2) and le

is the length of the edge.

In 3D more cases need to be considered in the shifting procedure. The shifting of

nodes (Fig. 8.6a) and partition of edges (Fig. 8.6c) are the similar to the process in 2D.

In addition, if there is a fiber tip located near a face, e.g. face ABCD in Fig. 8.6e,

the polyhedrons after subdivision will be distorted around the face. Therefore, the

face is subdivided into several new faces at the fiber tip as shown in Fig. 8.6f. The

volume of the polyhedron is not subdivided anymore, and no distorted polyhedron will

be generated. The shifting tolerance at a face is tol = εf × lf , where εf is a relative

tolerance typically between 0.05 and 0.1) and lf is the average length of the edges in

the face.
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Figure 8.6: Shifting of nodes and partitioning of edges and faces near a fiber tip in 3D
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Figure 8.7: Shifting of nodes near the fiber in 2D

8.2.2 Shifting to fiber segments

The shifting scheme in Section 8.2.1 eliminates the distortion around the fiber tips.

However, the nodes which are close to the middle of the fibers may cause distortion as

well. In Fig. 8.7a a node C is close to the fiber (but not the fiber tip). After partition

of the edges, there will be a short edge CF in the polygon. In order to avoid such

cases, the node is shifted to the nearest point to the fiber. The same shifting tolerance

tol = εn × ln can be used.

In 3D the nodes close to the fibers are shifted using the same approach as shown

in Fig. 8.8a and Fig. 8.8b. The new case is when some edges of the solid element are

close the fiber (Fig. 8.8c). The quality of the faces on the boundary are distorted. A

point is located on the fiber which is closest to the edge, e.g. point E on the fiber

in Fig. 8.8d. The edge AB is partitioned into AE and EB. The faces containing the

original edge AB will be updated accordingly. As a result, the faces on the boundary

after discretization will have better quality.

8.3 Numerical examples

In this section, six numerical examples are presented to validate the proposed method.

A variety of different applications are considered.
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Figure 8.8: Shifting of nodes and partitioning of edges near fiber in 3D

8.3.1 Patch test in 2D

This example is a square reinforced with two bars subject to a uniaxial tension load.

Plane stress condition is considered. The dimension of the square is 1 × 1m. The

length of the bars is 1m and the radius is 0.01m (Fig. 8.9). The rigid body motion is

constrained. On the top and bottom surfaces of the matrix, uniform surface tractions

t are applied. Point loads F are applied to the ends of the bars. Young’s modules and

Poisson’s ratio of the matrix are Em = 1 × 103Pa and ν = 0.3. The Young’s modules

of the bars is Ef = 1× 106Pa.

The normal strain in vertical direction in both the matrix and the bar is prescribed

as a constant εy = 0.001. Therefore, the exact displacement field is linearly distributed

ux = −νεyx = −0.0003x, (8.5a)

uy = εyy = 0.001y, (8.5b)
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Figure 8.9: Geometry and boundary conditions of the patch test

where x and y are the coordinates of a point. The only non-zero stress component in

the matrix is

σmy = Emεy = 1Pa. (8.6)

The magnitude of the tractions applied on the top and bottom surfaces is t = 1Pa. The

stress in the bars is

σfy = Efεy = 1000Pa. (8.7)

The axial forces in the bars are

F = πr2σfy = 0.1πN. (8.8)

The square is discretized into 4 subdomains (Fig. 8.10a). Each subdomain contains

6 edges. Each of the bars is discretized into 2 segments (Fig. 8.10b).

The deformation of the matrix and the bars is shown in Fig. 8.11. The vertical

displacement of the matrix is plotted in color. It is observed that the displacement
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Figure 8.10: The meshes of the matrix and the reinforcement bars

Figure 8.11: The vertical displacement of the matrix. The deformation is scaled by 500.

is linear along the the vertical direction. As first order element is accurate enough to

represent linear displacement field, the error norm is 1.6588× 10−14.

8.3.2 Patch test in 3D

A 3D version of the patch test is considered. This example is a cube reinforced with

4 bars subject to a uniaxial tension load. The geometry of the patch test is shown in

Fig. 8.12a. The dimension of the cube is 1× 1× 1m. The length of the bars is 1m and

the radius is 0.01m. The rigid body motion is constrained. On the top and bottom

surfaces of the cube, uniform tractions of magnitude t are applied. In addition, point

loads F are applied to the ends of the bars (Fig. 8.12b). Young’s modules and Poisson’s
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Figure 8.12: Geometry and boundary conditions of the patch test

ratio of the matrix are Em = 1× 103Pa and ν = 0.3. The Young’s modules of the bars

is Ef = 1× 106Pa.

The strain in vertical direction in both the matrix and the bar is prescribed as a

constant εz = 0.001. The displacement field is expressed as

ux = −νεzx = −0.0003x, (8.9a)

uz = −νεzy = −0.0003y, (8.9b)

uz = εzz = 0.001z, (8.9c)

where x, y and z are the coordinates of a point. Only the normal stress in z direction

is non-zero in the matrix

σmz = Emεz = 1Pa. (8.10)

The magnitude of the tractions on the top and bottom surfaces is t = 1Pa. The stress
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Figure 8.13: The meshes of the matrix and the bars

in the bars is

σfz = Efεz = 1000Pa. (8.11)

The axial forces in the bars are

F = πr2σfz = 0.1πN. (8.12)

The square is discretized into 8 hexahedron subdomains. Each of the bars is dis-

cretized into 2 segments. Each bar is intersected by 3 faces in the mesh of the matrix.

Those faces are divided into new faces and the bars are embedded into the matrix. The

meshes of the matrix and the bars are shown in Fig. 8.13.

The deformation of the matrix and the bars is shown in Fig. 8.14. The vertical

displacement of the matrix is plotted in color with transparency. The displacement

of the bars is plotted in solid color. It is observed that the displacement is linearly

distributed in the model. The relative error norm is 7.4534× 10−14.

8.3.3 A parametric study

In this example a parametric study is performed to investigate the influence of fiber

distribution on the overall elastic properties of a fiber reinforced material. Three pa-
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Figure 8.14: The vertical displacement of the matrix and the bars. The deformation is
scaled by 500.

���

L

Figure 8.15: Geometry of the fiber reinforced material

rameters are considered in this example, the fiber number N , the fiber length L and

the fiber distribution angle θ (Fig. 8.15). The size of the sample is 2.5 × 2.5mm. The

range of fiber number N is between 200 and 1000. The length L varies between 0.2mm

and 1mm. The fibers are randomly distributed. The minimum distribution angle is 30°

while the maximum angle is 180°.

The numerical result of the effective Young’s modulus is compared with Halpin-Tsai

equation. The effective Young’s modulus in the longitudinal direction E11 is calculated

237



(a) Relation between effective Young’s modulus and fiber
number

(b) Relation between effective Young’s modulus and fiber
length

(c) Relation between effective Young’s modulus and
fiber distribution angle

Figure 8.16: Homogenization of fiber reinforced material with different fiber distribu-
tions
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Figure 8.17: Comparison between numerical result of 180° fiber distribution angle and
Halpin-Tsai equation

as

E11

Em
=

1 + ηvf
1− ηvf

, (8.13)

where Em is the Young’s modulus of the matrix, vf is the volume fraction of the fiber,

and η is calculated as

η =

Ef
Em
− 1

Ef
Em

+ 2L
d

, (8.14)

where Ef is the Young’s modulus of the fiber, L and d are the length and diameter

of the fiber. As Halpin-Tsai equation only considers 180° fiber distribution angle, one

curve in the numerical result is selected for comparison in Fig. 8.17. It is observed that

the numerical result agrees with the prediction of Halpin-Tsai equation well.

8.3.4 A fiber reinforced porous material

In this example, a piece of porous material reinforced by fibers is considered (Fig. 8.18a).

Plane stress condition is considered. The dimension of the matrix is 60 × 60mm. The

diameter of the pores is 4mm. There are 31 pores in the matrix. The porosity of

the material is φ = 10.8%. 87 fibers are randomly distributed in the porous matrix.

The length of the fibers is L = 10mm and diameter d = 1mm. A quadtree mesh is

239



(a) The geometry and
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(b) The mesh of the
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Figure 8.18: The geometry and mesh of the porous material

generated for the matrix with the region near the pores refined (Fig. 8.18b). The fibers

are embedded into the matrix. A uniform tension load is applied on the top surface of

the matrix. Young’s modules and Poisson’s ratio of the concrete are E = 1.7× 1010Pa

and ν = 0.3. The Young’s modules of the fibers is E = 2.1× 1011Pa.

The vertical displacement of the porous material is plotted in the deformed mesh in

Fig. 8.19.

8.3.5 A fiber reinforced concrete

In this example, a fiber reinforced concrete specimen is considered. The model is rep-

resented by a digital image of the concrete (Fig. 8.20a). The dimension of the matrix

is 256 × 256mm. There are two materials in the concrete, the mortar (grey) and the

aggregate (black). Fibers are randomly distributed in the mortar. The length of the

fibers is L = 40mm and diameter d = 1mm. A quadtree mesh is generated based on

the image (Fig. 8.20b). The mesh is refined on the interface between the mortar and

the aggregate. The fibers are embedded into the matrix. A uniform tension load is

applied on the top surface of the matrix. Young’s modules and Poisson’s ratio of the
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Figure 8.19: The displacement of the porous material

(a) The geometry and bound-
ary conditions of the concrete

(b) The mesh of the concrete

Figure 8.20: The geometry and mesh of the concrete

aggregate are E = 5.5 × 1010Pa and ν = 0.25. Young’s modules and Poisson’s ratio

of the mortar are E = 1 × 1010Pa and ν = 0.2. The Young’s modules of the fibers is

E = 2.1× 1011Pa.

The deformation of the concrete is shown in Fig. 8.19.

8.3.6 A carbon nanotube (CNT) reinforced polymer

In this example, a CNT reinforced polymer is considered. A similar problem can be

found in Guo et al. (2018) and Banerjee et al. (2016). The CNTs are modeled as groups

of hexagons in Fig. 8.22a. The dimension of the matrix is 30× 30nm. The edge length

241



Figure 8.21: The vertical displacement of the concrete

(a) The geometry and boundary
conditions of the CNT reinforced
polymer

(b) The mesh of the CNT rein-
forced polymer

Figure 8.22: The geometry and mesh of the CNT reinforced polymer

of the hexagons in the CNTs is a = 0.246nm and diameter d = 0.1nm. A quadtree

mesh is generated with a 1 : 16 mesh size ratio (Fig. 8.22b). The CNTs are embedded

into the matrix. A uniform tension load is applied on the top surface of the matrix.

Young’s modules and Poisson’s ratio of the polymer are E = 3.4× 109Pa and ν = 0.3.

The Young’s modules of the CNT is E = 1× 1012Pa.

The vertical displacement of the CNT reinforced polymer is plotted on the deformed

mesh in Fig. 8.23.
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Figure 8.23: The vertical displacement of the CNT reinforced polymer
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Chapter 9

Conclusions and recommendations

In this chapter, conclusions of the previous chapters and recommendations for the future

work are presented.

9.1 Conclusions

In this thesis, a numerical framework was developed to link geometric modeling and

structure analysis. The objective of this research was to automate the process converting

geometric models to numerical models for analysis, which took significant amount of

time in the engineering design. This framework was based on the SBFEM, which is

a semi-analytical method requiring the discretization of the boundary only. In the

SBFEM, polygons/polyhedrons with arbitrary number of nodes, edges and faces can

be utilized as elements, which offers greater flexibility in mesh generation and domain

decomposition.

The following developments were completed: 1) An octree based mesh generation

method was proposed, which is highly complementary to the SBFEM. The geometric

models represented by a variety of data formats can be converted to numerical models

seamlessly with minimum human intervention. 2) A technique to handle non-matching

meshes was developed. Complex and large scale models can be divided into smaller
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models with simpler shapes and meshed independently, which further reduces the dif-

ficulty in mesh generation. These individual meshes can be merged using arbitrary

polyhedron elements formulated in the SBFEM. 3) An adaptive analysis procedure,

including error estimation and local mesh refinement, was established. The analysis

performed with minimum remeshing starts from a coarse mesh. The mesh is refined

iteratively in the regions with high estimated errors. The computational resources can

be used efficiently. 4) Numerical simulation using virtual reality models was investi-

gated. It can be applied to large scale models to facilitate different tasks such as urban

planning, hazard simulation, structural health monitoring, etc. The numerical model

is reusable when local modifications of the virtual reality model are performed. 5) A

discrete modeling method for fiber reinforced material was proposed. It is a simple but

effective approach to evaluate the mechanical properties of fiber reinforced materials

with complex fiber distributions. The summaries of each chapter will be presented in

the following of this section.

The proposed method based on the SBFEM utilizes polygon/polyhedron element in

the analysis, therefore reduces the difficulty in mesh generation in conventional FEM.

It offers more flexibility than FDM when the geometry of the model is complex. Com-

paring with BEM, no fundamental solution is required. The proposed method doesn’t

need node enrichment as in XFEM. The singular stress field near the crack tip can be

represented by the shape function directly. IGA is mostly limited to NURBS based

models. The proposed approach is more versatile in the analysis of models represented

by STL format and digital image. The shape function in SBFEM constructs an exact

partition of unity, therefore patch tests can be successfully passed while the meshfree

method usually fails.
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9.1.1 Octree based polyhedron mesh generation

An automatic polyhedron mesh generation method was proposed based on the octree

algorithm in Section 4. The octree background mesh was refined considering several

different refinement criteria. Users were able to specify different mesh size transition

rate. Octree and polyhedron data structures were utilized to store and process the mesh

data in different stages. A trimming procedure following the bottom-up scheme was im-

plemented for the polyhedron cells on the boundary. Special treatments were designed

to trim the cells near the sharp ridges and corners using the information extracted

from the boundary model. An optimization algorithm using Laplacian smoothing was

designed to improve the element quality near the boundary. Only the outmost two

layers of the nodes were relocated by smoothing, therefore the octree mesh structure

inside the model was maintained. The smoothed polyhedron cells can be used in anal-

ysis with only their boundaries discretized. Two different discretization schemes were

developed to obtain best element quality. One of the schemes inserted Steiner points

on the boundary and another did not. The scaling centers were located by generating

a set of test points and checking their visibility angles.

The versatility and efficiency of the method were demonstrated using six numeri-

cal examples. It was shown that high quality meshes can be automatically generated

for models with complex geometries. The theoretical convergence rates for linear and

quadratic elements were achieved.

9.1.2 Coupling of non-matching meshes

In Section 5 a coupling method of non-matching meshes was presented using arbitrary

polyhedron elements based on the SBFEM. On the interface, a surface mesh of polygon

elements was constructed by merging the non-matching meshes. The volume elements

on the interface were updated by replacing their faces on the interface with the new

constructed polygon elements, leading to a matching discretization on the interface. The
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updated polyhedron elements were formulated by the SBFEM. No interface constraints

or special shape functions were required in the analysis. A polytree refinement algorithm

was applied to produce a smooth transition of element size. A shifting procedure

was designed to prevent short edges and distorted elements. The method was simple,

efficient and versatile in handling flat and curved interface meshes of different types of

elements.

The proposed method was illustrated using seven numerical examples. High order

patch tests of non-matching meshes ware successfully passed due to the compatibility

on the interface. Convergence studies and examples with complex geometries were

presented.

9.1.3 Adaptive analysis

3D adaptive analysis using the SBFEM was developed in Section 6. A simple error

indicator based on discontinuity of the stress field was proposed. The stresses on an

interior face were calculated from the two polyhedron cells connected to the face. The

difference between the two stresses was used to indicate the error. If the difference

was larger than a predefined threshold, the two polyhedron cells connected to the face

would be refined. The error was not estimated for the faces on the boundary. A polytree

based mesh refinement technique was developed for arbitrary star-convex polyhedron

elements. The refinement was performed locally in the interested region. Remeshing of

the whole model was not required.

Five numerical examples were presented using this technique. In each example

several adaptive iterations were performed. It was observed that the convergence rate

of adaptive refinement was faster than the uniform refinement.
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9.1.4 Towards engineering analysis of virtual city

In Section 7 a numerical simulation scheme based on virtual reality models of urban

scale was presented, which was referred to as virtual city analysis. Techniques for the ge-

ometric modeling of buildings in the city using photogrammetry, LiDAR and computed

tomography were reviewed. Meshes of different parts were generated independently,

such as buildings, soil layers, tunnels, bridges, etc. The meshes were combined in an

analysis by modifying their interfaces only. The reusability of the meshes was discussed.

The applications of the proposed method were demonstrated using four numerical ex-

amples.

9.1.5 Discrete modeling of fiber reinforced material

A discrete modeling method for fiber reinforced material was proposed in Section 8. The

matrix material was modeled using polygon elements in 2D and polyhedron elements in

3D. The fibers were modeled using bar elements. The mesh of the matrix was generated

without considering the location of fibers. The fibers were attached to the matrix by

adding the intersection points to the mesh of the matrix. The elements of the matrix

were still polygons/polyhedrons after adding the fibers. Only the boundaries of the

polygon/polyhedron elements were discretized, except for the elements near the fiber

tips where the volume was discretized to embed the fiber tips. A shifting procedure

was designed to improve the mesh quality of the matrix near the fiber tips and the fiber

segments. The shifting procedure was implemented for both 2D and 3D meshes.

The method was tested using six numerical examples. The patch tests for linear

elements were successfully passed. A parametric study was performed to evaluated the

overall material property considering different fiber length, number and distribution

angle. The applications in porous material, concrete and nanocomposite were presented.
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9.2 Future work

9.2.1 Mesh generation using high order elements

In the present work, the mesh is generated using linear elements. A large number

of elements are required in order to represent a curved boundary accurately. Mesh

generation using high order elements has attracted significant attention recently (Moxey

et al., 2015; Fortunato and Persson, 2016; Fries, 2018). Using high order elements not

only reduces the number of elements required to approximate the geometry, but also

produces faster convergence rate. However, the research on high order mesh generation

based on octree algorithm is still lacking. Therefore, developing a mesh generation

method using high order elements is useful in the numerical analysis.

9.2.2 Mesh generation for crack propagation in 3D

In conventional FEM, the modeling of crack is difficult due to the stress singularity on

the crack front. The mesh needs to be refined near the crack front to represent the

singular stress field. The propagation of the crack will result in frequent remeshing,

which is especially challenging in 3D problems. A new mesh generation method for

crack propagation can be developed based on the proposed numerical framework. In

3D the crack face is represented by a surface and the crack front is modeled with a line

(Fig. 9.1). The octree background mesh will be cut by the crack face. The elements

intersected by the crack front will be modeled using open subdomains mentioned in

Section 4.7.3. The crack face will propagate based on the result of the analysis, and the

background mesh will be cut by the new crack face again. In each step the background

mesh can be refined near the crack front.
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Figure 9.1: Modeling of a crack in 3D

9.2.3 Alternate mesh refinement techniques

In the present polytree mesh refinement method, a polygon with n nodes will be divided

into n quadrilaterals (Fig. 9.2a). The quality of the quadrilaterals will degenerate with

the increase of n, e.g. greater than 7. A new refinement technique was proposed

in Nguyen-Xuan et al. (2017a), which divides a polygon into n+1 new polygons, among

which are n pentagons on the boundary and one n sided polygon inside (Fig. 9.2b). This

scheme usually produces polygons with better quality.

However, this idea has not been extended to 3D. In the present approach, a poly-

hedron with n nodes is divided into n new polyhedrons. In the future, the polyhedron

can be divided into n+ 1 new polyhedrons. The additional polyhedron will be located

inside the original polyhedron. The number of faces of the new polyhedron will be equal

to the number of nodes of the original polyhedron.

9.2.4 Modeling of curved fibers

Curved fibers have been widely used in engineering (Silani et al., 2014; Khudari Bek

et al., 2018). The present approach can be easily extended to the modeling of curved

fibers by modifying the intersection calculation and shifting procedure. The fibers will
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(a) Polygons divided
into n quadrilaterals

(b) Polygons divided
into n+ 1 polygons

Figure 9.2: Comparison between different polytree refinement techniques

Figure 9.3: Curved fibers

be represented by arcs (Fig. 9.3). The intersection points between the arcs and the

background mesh will be calculated and inserted to the background mesh. The nodes

in the background mesh will be shifted to the arcs to prevent short edges and distorted

elements.

9.2.5 Fracture analysis of fiber reinforced material

In the present work it is assumed that the fibers and the matrix are perfect bonded.

In engineering practice, the slippage of the fibers often needs to be considered if the

matrix is cracked, as shown in Fig. 9.4. The present discrete modeling method can be

applied to fracture analysis of fiber reinforced material by introducing bond-slip model

between the fibers and the matrix.
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Figure 9.4: Fiber reinforced material with crack

Figure 9.5: Anchor reinforced slope

9.2.6 Elasto-plastic analysis of anchor reinforced slope

The anchor reinforced slope can also be considered as a special fiber reinforced material.

The treatment of the fibers can be applied to the anchors with a simple modification.

The anchors will be divided into the free segments and the grouted segments (Fig. 9.5).

The grouted segment is embedded to the mesh of the soil. As for the free segment, only

the two end points are connected to the soil. The stability of the slope can be studied

considering the plasticity of the soil.
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