
Development of optimization methods to deal with current
challenges in engineering design optimization

Author:
Singh, Hemant

Publication Date:
2011

DOI:
https://doi.org/10.26190/unsworks/15069

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/51426 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/15069
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/51426
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Development of optimization methods to
deal with current challenges in
engineering design optimization

Hemant Kumar Singh

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

MANU E T MEN
TE

SCIENTIA

School of Engineering and Information Technology

University College

University of New South Wales

Australian Defence Force Academy

28 February 2011

Copyright Statement

I hereby grant The University of New South Wales or its agents the right to

archive and to make available my thesis or dissertation in whole or part in the

University libraries in all forms of media, now or hereafter known, subject to

the provisions of the Copyright Act 1968. I retain all proprietary rights, such as

patent rights. I also retain the right to use in future works (such as articles or

books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the abstract of my thesis in

Dissertation Abstract International (this is applicable to doctoral thesis only).

I have either used no substantial portions of copyright material in my thesis

or I have obtained permission to use copyright material; where permission has

not been granted I have applied/will apply for a partial restriction of the digital

copy of my thesis or dissertation.

Signed .

Date .

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred

and if there are any minor variations in formatting, they are the result of the

conversion to digital format.

Signed .

Date .

Originality Statement

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no material previously published or written by another

person, or substantial portions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational institute,

except where due acknowledgment is made in the thesis. Any contribution made

to the research by others, with whom I have worked at UNSW or elsewhere, is

explicitly acknowledged in the thesis. I also declare that the intellectual content

of this thesis is the product of my own work, except to the extent that assistance

from others in the project’s design and conception or in style, presentation and

linguistic expression is acknowledged.

Signed .

Date .

Abstract

In engineering design, optimization is customary, and often indispensable. Typ-

ical cases include minimization of drag for vehicles, minimization of weight for

structures like buildings and bridges, maximization of power and lift for aircraft

and rockets, minimization of fuel consumption for engines, etc. Therefore it comes

as no surprise that development of fast and efficient optimization algorithms for

engineering design is an actively pursued research area.

In recent decades, metaheuristic algorithms have proven to be efficient, robust

and versatile methods for numerical optimization. However, they usually need

to evaluate a large number of candidate designs to find the optimum. This

becomes prohibitive for engineering optimization problems in which each design

evaluation may require computationally expensive analysis and, consequently, the

optimization process may take much longer time than affordable.

Considering that the number of design evaluations is a critical factor in

overall optimization time, it is imperative to develop techniques to search for

the optimum design using fewest evaluations possible. With this singular goal,

this thesis investigates a range of domains in which existing approaches can be

improved.

Engineering problems are often highly non-linear, discontinuous, and non-

differentiable, which rules out (or restricts) the applicability of analytical tech-

niques for solving them. However, they exhibit additional attributes that prove

challenging even to the existing metaheuristic techniques, thus making the search

difficult and, consequently, creating a necessity for carrying out large numbers

of evaluations. These include: (a) Constraints – constraints render a fraction

(possibly large fraction) of the search space infeasible, making it hard to find

the optimum and at times even a feasible design; (b) Large number of objec-

tives – Pareto-dominance sorting, a commonly used technique in multi-objective

i

ii

optimization algorithms, is inadequate to solve problems with large numbers of

objectives, a fact well reported in literature; (c) Large number of variables – the

search space grows exponentially with the number of variables, which results in

a corresponding increase in computational effort; and (d) Multiple models – For

certain problems, there may be multiple candidate models to choose a solution

from, with none of them being an obviously preferred one. In such a case, one

may need to explore each one of them to find the global best.

In this thesis, studies are conducted on each of these domains individually.

Shortcomings of the existing methods are analyzed, and novel techniques are de-

veloped for efficiently handling constraints, large number of objectives/variables

and multiple models. For effective constraint handling, conventional evolution-

ary algorithm is enhanced using a novel infeasibility driven ranking technique,

while conventional simulated annealing algorithm is enhanced using an approx-

imate descent direction coupled with dominance-based acceptance criteria. For

many-objective problems, improved secondary-ranking methods and a novel di-

mensionality reduction technique based on Pareto corner search are proposed.

For many-variable problems, conventional cooperative coevolutionary algorithm

is enhanced using a correlation based partitioning strategy which enables it to

deliver competitive performances across a variety of separable and non-separable

problems. Lastly, for trans-dimensional problems, a simulated annealing based

algorithm which searches through model space and variable space simultaneously

is presented.

The proposed methods are able to achieve competitive results using markedly

fewer numbers of design evaluations compared to conventional optimizers, which

is demonstrated through rigorous numerical experiments on benchmark prob-

lems. Finally, the proposed algorithms are applied to a number of engineering

design problems in order to accentuate their functionality and viability for solving

real-life problems.

Acknowledgments

This thesis would not have been possible without blessings, encouragement and

support of a number of people.

Foremost, I would like to thank my supervisor, Dr Tapabrata Ray, whose

passionate guidance helped me perform to the best of my abilities. His sugges-

tions, both in academic and non-academic matters, have served as life lessons

and helped me grow as a researcher and an individual. I also thank him for

funding countless lunches at Bharat, and his family, Jayati and Pritika for their

hospitality, especially during my initial days in Australia.

I would like to thank my co-supervisor Dr Warren Smith for his guidance. I

also thank him and Ms Denise Russell for their meticulous proof-reading of my

thesis, which resulted in a significant improvement over the initial draft.

I sincerely acknowledge the PhD scholarship from DSARC and Completion

scholarship from RRTO, UNSW@ADFA to support my work.

It is not possible to describe in words the role my friends have played in the

unforgettable time I have spent in UNSW@ADFA and in Australia in general.

They made the difficult times worthwhile and if some of them are not mentioned

here, I can only attribute it to my aging memory. Thanks to Kamal, Ovi,

Mizan, Lax, Vishwas, Abhi, Ram, Mahendra, Arif, Adnan, Najia, Vinod, Rajib,

Jeyakanth, Pira, Vishal, Vinh, Andrew, Dalim, Baki, Anup, Zaman, Sarah,

George, Kerry, Maruth, Chandrama, Mike, Sheila, Deepak, Ashraf, Varun and

Rishabh for the cherished times we spent together in the campus, soccer and

cricket sessions, barbecues, trips and places around town. Thanks to Khin for

her sumptuous treats and for being a person who can always be counted on.

Thanks to Priyanka, Amit and Tejas for their daily doses of sarcasm, geekism and

‘Americanism’, respectively. Thanks to the gang of Chinese students - Xiaoshan,

Fang, Zhifang, Chang, Jingfen, Xiaodan, Xiaoran, Wanrong, Fangfei, Zhipeng,

iii

iv

Guofeng, Yurong, Jin and Zhaosu - with whom I shared remarkable times, despite

my meager and eventually unsuccessful attempts at learning Chinese. Thanks to

my older friends, Vivek, Manish, Preeti, Sanjay, Ankur, Girish, Anuj, Sid, Rahul

and Niraj, without whom life would be hard to imagine.

I will always hold dear the days (and nights) spent in my office. While the

view from my window had a significant role to play in that, it would be a felony to

undermine the contribution of the fellow inhabitant PhD students. Thanks to Sud

for late night discussions about life, universe and everything (read optimization,

hypersonics and cricket). Also for the late night cricket itself. Thanks to Amitay

for the brainstorming sessions, technical support, and for converting me into a

Linux user. Thanks to Ahmad for his office humor and unflagging companionship

through tea breaks, organization of PRSF activities and ‘fighting fires’. To the

new students in the office - Sharif, Asaf, Khairul, Liu Min and Amit, thanks for

showing me the respect which I will strive to live up to in the years to come.

Thanks to the people upstairs from the Research Office - Danica for her

support and advice, her magnanimous laughter that permeates the corridors,

and also for not shooting me on account of frequently wandering into her office

unannounced; Joseph for his compassion and energy; Vera for diligently working

towards our scholarship issues and organizing events for postgraduate students

and staff; and Douglas for organizing various seminars and obstacle courses, apart

from his help in solving crossword puzzles during lunch-time. Thanks to the

people from the Student Administration Services - Mette for bringing color to the

campus life; and Christa for making my student life seamless through assistance

in enrollment, thesis and visa issues.

A special mention of Amitay for his cross-disciplinary presence in my PhD life

- as a colleague, housemate and friend. A special thanks also to his wife Deanna,

whose zest for life continues to inspire me. Thanks to Melroy and Daron for great

times in Melbourne and New Zealand.

Above all, I would like to thank my family members, who have stood by me

through thick and thin. To my brother and sister, I thank you for being my

guiding lights for life. To my sister-in-law, thank you for your care. To my little

niece, you make my life brighter. To my father and mother who have worked

painstakingly towards helping me realize my dreams while caring little for their

own comfort, I am forever indebted. To you I dedicate my work, my life.

List of Publications

Book Chapters

[1] H. K. Singh and T. Ray. Divide and conquer in coevolution: A
difficult balancing act. In Ruhul Sarker and T. Ray, editors, Agent
Based Evolutionary Search, Adaptation, Learning, and Optimization, pages
117–138. Springer-Verlag Berlin Heidelberg, 2010.

[2] T. Ray, H. K. Singh, A. Isaacs, and W. Smith. Infeasibility
Driven Evolutionary Algorithm for constrained optimization. In Efrén
Mezura-Montes, editor, Constraint Handling in Evolutionary Optimization,
Studies in Computational Intelligence, pages 147–167. Springer-Verlag Berlin
Heidelberg, 2009.

Journal Papers

[1] H. K. Singh, A. Isaacs, and T. Ray. A Pareto Corner Search Evolutionary
Algorithm and dimensionality reduction in many-objective optimization
problems. IEEE Transactions on Evolutionary Computation. Accepted.

[2] H. K. Singh and T. Ray. C-PSA: Constrained Pareto Simulated Annealing
for Constrained Multi-objective Optimization. Information Sciences,
180(13):2499–2513, 2010.

[3] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. Trans-dimensional optimization
problems: Preliminary studies using a simulated annealing based algorithm.
Journal of Hybrid Computing Research. Accepted.

[4] H. K. Singh, T. Ray, and R. Sarker. Optimum oil production
using Infeasibility Driven Evolutionary Algorithm (IDEA). Evolutionary
Computation. Under review.

[5] K. Alam, H. K. Singh, T. Ray, and S. Anavatti. An optimization framework
for the design of autonomous underwater vehicles. Ocean Engineering. Under
review.

v

vi LIST OF PUBLICATIONS

Conference Papers

[1] H. K. Singh and T. Ray. Performance of a hybrid EA-DE-memetic algorithm
on CEC 2011 real world optimization problems. In Proceedings of IEEE
Congress on Evolutionary Computation (CEC), New Orleans, USA, 2011.
IEEE Press.

[2] H.K. Singh, T. Ray, and W. Smith. Performance of Infeasibility Empowered
Memetic Algorithm(IEMA) on engineering design problems. In Proceedings
of 23rd Australasian Joint Conference on Artificial Intelligence (AI), volume
6464 of Lecture Notes in Computer Science, pages 425–434, Adelaide,
Australia, 2010. Springer.

[3] H. K. Singh, T. Ray, and W. Smith. Surrogate Assisted Simulated
Annealing (SASA) for constrained multi-objective optimization. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC), pages
4202–4209, Barcelona, Spain, 2010. IEEE Press.

[4] H. K. Singh, T. Ray, and W. Smith. Performance of Infeasibility Empowered
Memetic Algorithm for CEC 2010 constrained optimization problems. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC), pages
3770–3777, Barcelona, Spain, 2010. IEEE Press.

[5] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. An improved secondary
ranking for many objective optimization problems. In Proceedings of Genetic
and Evolutionary Computation Conference (GECCO), pages 1837–1838,
Montreal, Canada, 2009. ACM press.

[6] H. K. Singh, A. Isaacs, T. T. Nguyen, T. Ray, and X. Yao. Performance of
Infeasibility Driven Evolutionary Algorithm (IDEA) on constrained dynamic
single objective optimization problems. In Proceedings of IEEE Congress on
Evolutionary Computation (CEC), pages 3127–3134, Trondheim, Norway,
2009. IEEE Press.

[7] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. A study on the performance
of substitute distance based approaches for evolutionary many-objective
optimization. In Proceedings of 7th International Conference on Simulated
Evolution and Learning (SEAL), volume 5361 of Lectures Notes in Computer
Science, pages 401–410, Melbourne, Australia, 2008. Springer.

[8] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. Infeasibility Driven
Evolutionary Algorithm (IDEA) for engineering design optimization. In
Proceedings of 21st Australasian Joint Conference on Artificial Intelligence
(AI), volume 5360 of Lecture Notes in Artificial Intelligence, pages 104–115,
Auckland, New Zealand, 2008. Springer.

LIST OF PUBLICATIONS vii

[9] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. A simulated annealing
algorithm for single objective trans-dimensional optimization problems. In
Proceedings of 8th International Conference on Hybrid Intelligent Systems
(HIS), pages 19–24, Barcelona, Spain, 2008. IEEE Press.

[10] H. K. Singh, A. Isaacs, T. Ray, and W. Smith. A simulated annealing
algorithm for constrained multi-objective optimization problems. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC), pages
1655–1662, Hong Kong, 2008. IEEE Press.

Contents

Abstract i

List of Publications v

List of Figures xiii

List of Tables xvii

List of Algorithms xxi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Scope of Research . 3
1.4 Contributions of Thesis . 4
1.5 Organization of Thesis . 7

2 Optimization and Metaheuristics 11
2.1 Overview . 11
2.2 Optimization Problem . 14

2.2.1 Single-objective problem 15
2.2.2 Multi-objective problem 15

2.3 Optimization and Metaheuristics 17
2.3.1 Evolutionary Algorithms 24
2.3.2 Simulated Annealing . 27

2.4 Performance Measurement . 29
2.4.1 Single objective optimization 29
2.4.2 Multi-objective optimization 29

2.5 Current Challenges in Optimization 34
2.5.1 Constraint handling . 34
2.5.2 Large scale optimization 34
2.5.3 Trans-dimensional optimization 35

2.6 Summary . 36

ix

x CONTENTS

3 Constraint Handling in Optimization 37
3.1 Introduction . 38
3.2 Infeasibility Driven Evolutionary Algorithm 42

3.2.1 Problem reformulation . 44
3.2.2 Evolution . 44
3.2.3 Ranking and reduction . 45
3.2.4 Constraint Violation Measure (CVM) 48
3.2.5 Numerical experiments . 49
3.2.6 Variations in performance with infeasibility ratio 59

3.3 Constrained Pareto Simulated Annealing 60
3.3.1 Numerical experiments . 76
3.3.2 Greedy v/s non-greedy search 78
3.3.3 Discussion of C-PSA parameters 81

3.4 Performance on CEC 2009 Benchmarks 84
3.5 Summary . 86

4 Large-scale Optimization I: Large Number of Objectives 89
4.1 Overview of many-objective optimization 90
4.2 Existing Secondary Ranking Methods 93
4.3 Proposed Secondary Ranking Methods 96

4.3.1 Cluster-sort . 96
4.3.2 Modified-ǫ-DOM . 97

4.4 Numerical Experiments (Secondary Ranking) 101
4.4.1 Test problems studied . 102
4.4.2 Performance metrics . 103
4.4.3 Experimental setup and results 107

4.5 Existing Dimensionality Reduction Methods 115
4.5.1 Correlation-based objective reduction 116
4.5.2 Dominance structure-based reduction 118
4.5.3 Feature based selection . 119

4.6 Pareto Corner Search for Dimensionality Reduction 122
4.6.1 Motivation . 122
4.6.2 Pareto Corner Search Evolutionary Algorithm

(PCSEA) . 128
4.6.3 Dimensionality reduction 132

4.7 Numerical Experiments (Dimensionality Reduction) 134
4.7.1 Test cases . 134
4.7.2 Experimental setup . 136
4.7.3 Results . 137
4.7.4 Engineering design examples 147
4.7.5 Limitations of proposed dimensionality reduction approach 153
4.7.6 Applicability of proposed dimensionality reduction approach157

4.8 Summary . 159

CONTENTS xi

5 Large Scale Optimization II: Large number of variables 163
5.1 Overview . 164
5.2 Background . 166

5.2.1 Basic CCEA . 166
5.2.2 Why are CCEAs attractive ? 167
5.2.3 Shortcomings of basic CCEA 170

5.3 CCEA with Adaptive Variable Partitioning (CCEA-AVP) 174
5.4 Numerical Experiments . 177

5.4.1 Results on 50D test problems 178
5.4.2 Results for 100D problems 181
5.4.3 Variation in performance of CCEA-AVP with different val-

ues of the Correlation Threshold 185
5.5 Summary . 187

6 Trans-dimensional Optimization 191
6.1 Introduction . 191
6.2 Trans-dimensional Optimization Problems 195
6.3 SA based Trans-dimensional Optimization (SA-TDO) 195

6.3.1 Calculation of initial and final temperatures 196
6.3.2 Calculation of number of iterations 198
6.3.3 Archive . 199
6.3.4 Model selection . 199
6.3.5 Model exploration . 200
6.3.6 Acceptance criteria . 200

6.4 Numerical Experiments . 201
6.4.1 Clustering problem . 202
6.4.2 Warehouse problem . 205

6.5 Summary . 212

7 Further Enhancements and Applications 215
7.1 Overview . 215
7.2 Surrogate Assisted Simulated Annealing 217

7.2.1 Surrogate modeling . 217
7.2.2 Surrogate Assisted Simulated Annealing (SASA) algorithm 219
7.2.3 Preliminary experiments - SASA 222

7.3 Infeasibility Empowered Memetic Algorithm (IEMA) 224
7.3.1 Preliminary experiments - IEMA 227

7.4 Engineering Design Problems . 229
7.4.1 Results : single-objective problems 231
7.4.2 Results : multi-objective problems 235

7.5 Summary . 238

xii CONTENTS

8 Conclusions 239
8.1 Research and Outcomes . 239
8.2 Achievements . 244
8.3 Future Work . 247

References 251

A g-series problems 265
A.1 g01 . 265
A.2 g02 . 266
A.3 g04 . 266
A.4 g06 . 267
A.5 g07 . 267
A.6 g08 . 268
A.7 g09 . 268
A.8 g10 . 269
A.9 g12 . 269

B CTP problems 271

C CF problems 275
C.1 CF1 . 275
C.2 CF2 . 276
C.3 CF3 . 276
C.4 CF4 . 277
C.5 CF5 . 277
C.6 CF6 . 278
C.7 CF7 . 279

D DTLZ problems 281
D.1 DTLZ2 . 281
D.2 DTLZ3 . 282
D.3 DTLZ5-(I,M) . 283

E Engineering problems 285
E.1 Belleville Spring Design . 285
E.2 Design of Coil Compression Spring 287
E.3 Speed Reducer Design . 288
E.4 Design of a Welded Beam . 289
E.5 Design of a Pressure Vessel . 291
E.6 Car Side Impact Problem . 292
E.7 Bulk Carrier Design Problem . 294
E.8 Airfoil Design . 296
E.9 Water Resource Problem . 298

List of Figures

2.1 Dominance relationships for multi-objective optimization (A dom-
inates C; A, B and D form a non-dominated set) 17

2.2 Classification of optimization algorithms (figure adapted from [1]) 19
2.3 Non-dominated solutions obtained from multi-objective optimization 31
2.4 Calculation of displacement (P ≡ Pareto front, Q ≡ non-dominated

set) . 32
2.5 Calculation of hypervolume (both objectives are being minimized) 33

3.1 Median runs for g-series problems 51
3.2 Search space and constraints for g06. The optimum solution is

(14.0295,0.84296). Figure not to scale. 53
3.3 Final population for g06 . 54
3.4 Evolution of NSGA-II population over generations for CTP2 test

run (population size is 200) . 56
3.5 Evolution of IDEA population over generations for CTP2 test run

(population size is 200) . 57
3.6 Final fronts obtained for CTP2 using IDEA and NSGA-II (popu-

lation size of 100 evolved over 200 generations) 57
3.7 Variation of IDEA performance for problem g06 with change in α:

(a) over all the generations, (b) during initial generations. 60
3.8 Illustration of calculation of approximate descent direction. Here

F (y1) > F (x), and F (y2) < F (x). (Figure taken from [2]) 69
3.9 Probability of acceptance of a worse solution (∆dom = 0.1) 72
3.10 Comparison of greedy and non-greedy approaches. The plot shows

the non-dominated set obtained for a median run based on dis-
placement metric . 80

4.1 Numbers of non-dominated solutions in randomly initialized pop-
ulations for DTLZ. Population size used is 100. 91

4.2 Sample population of 12 non-dominated points 99

xiii

xiv LIST OF FIGURES

4.3 Calculation of Sammon mapping based diversity metric: (a) 5D
data projected in 2D using Sammon mapping; (b) 2D data scaled
using ratio of maximum Euclidean distance in objective space and
mapped data; (c) scaled 2D data after PCA analysis; and (d)
counting of occupied grids . 107

4.4 Final populations obtained for P* problems (in variable space)
using various secondary ranking methods with NSGA-II 109

4.5 Distributions of final populations obtained for 20 objective P*
problem (in variable space) using combination of schemes: (a)
SV-DOM with Cluster-sort; and (b) SOD-CNT with Cluster-sort. 110

4.6 Convergence metrics averaged over 20 runs 111
4.7 Diversity metrics based on Sammon mapping, averaged over 20 runs111
4.8 Grid count (D2) diversity metrics, averaged over 20 runs 112
4.9 Diversity metrics SDC (SD/mean of crowding distance), averaged

over 20 runs . 112
4.10 Pareto corners of a bi-objective problem (A and B are the corners,

I is the ideal point) . 125
4.11 Different types of Pareto corner solutions (corners shown using

circles) . 126
4.12 Combination of two different types of Pareto corner solutions (cor-

ners shown using circles) . 127
4.13 Minimization of M − 1 objectives (excluding f3) gives a solution

close to the corner where f2, f4, f5, f6 are minimum. The problem
considered here has a single variable, shown on x-axis. 129

4.14 Approximations of Pareto fronts for WFG3conv1 and WFG3conv2

problems (generated by evolving 200 solutions for 200 generations
using NSGA-II) . 136

4.15 Final population obtained for DTLZ2 using PCSEA 138
4.16 Final population obtained for DTLZ5-(2,3) using PCSEA 141
4.17 Non-dominated set obtained for DTLZ5-(2,3) using all objectives,

compared with those using two relevant objectives 141
4.18 Final population obtained for WFG3conv1 using PCSEA 144
4.19 Final population obtained for WFG3conv2 using PCSEA 145
4.20 Approximation of the Pareto front obtained for WFG3conv2 using

all objectives, compared with the approximations obtained using
two relevant objectives . 146

4.21 Function value plots of the final populations obtained for the water
resource problem using various combination of objectives 149

4.22 Function value plots of the final populations obtained for the radar
problem using various combination of objectives 152

4.23 Test problem 1 (Equation 4.3) . 155
4.24 Solutions obtained using PCSEA for test problem 1. The actual

corners for the Pareto front are shown with circles. 156

LIST OF FIGURES xv

5.1 Convergence plot of the median runs obtained using EA and CCEA
(fixed length partitions) for 50D problems 171

5.2 Convergence plot of the median run obtained using EA and CCEA
(fixed length partitions) for 100D problems 172

5.3 Convergence of the median runs obtained using EA and CCEA for
50D problems (fixed length partitions) 173

5.4 Convergence plots of the median runs for 50D problems; Com-
parison between CCEA with 10 fixed partitions, CCEA-AVP with
maximum 10 partitions (cutoff 0.6), and EA 180

5.5 Convergence plots of the median runs for 50D problems; Com-
parison between CCEA with 5 fixed partitions, CCEA-AVP with
maximum 5 partitions (cutoff 0.6), and EA 183

5.6 Convergence plots of the median runs for 100D problems; Com-
parison between CCEA with 10 fixed partitions, CCEA-AVP with
maximum 10 partitions (cutoff 0.6), and EA 185

5.7 Convergence plots of the median runs for 100D problems; Com-
parison between CCEA with 5 fixed partitions, CCEA-AVP with
maximum 5 partitions (cutoff 0.6), and EA 187

5.8 The performance of CCEA-AVP with different Correlation Thresh-
old values used in order to assign the variables into the same
partition. 188

6.1 Simulated annealing for trans-dimensional optimization (SA-TDO) 198
6.2 Sample data for clustering . 202
6.3 Results obtained for the clustering problem using SA-TDO 205
6.4 Results obtained for the warehouse problem using SA-TDO 210

7.1 Median runs for single objective engineering design problems . . . 234
7.2 Median runs (based on displacement metric) for multi-objective

engineering design problems. Reference Pareto fronts shown in
the figure are constructed by assembling non-dominated solutions
obtained from all runs. 237

7.3 Best runs (based on displacement metric) for multi-objective en-
gineering design problems. Reference Pareto fronts shown in the
figure are constructed by assembling non-dominated solutions ob-
tained from all runs. 238

B.1 Pareto fronts for CTP2-CTP8 problems 273

C.1 Pareto fronts for CF1-CF7 problems 280

D.1 Pareto front for 3-objective DTLZ2 problem 282
D.2 Pareto front for DTLZ5-(2,3) problem 284

xvi LIST OF FIGURES

E.1 Belleville spring configuration (Source: [3]) 285
E.2 Tension/Compression spring . 287
E.3 Speed Reducer and typical gear (Source: [4]) 289
E.4 Welded-Beam Problem Configuration 290
E.5 Center and End section of the pressure vessel 292
E.6 PARSEC representation for 2-D airfoil 297

List of Tables

3.1 Calculation of Constraint Violation Measure (CVM) 49
3.2 Parameters used for IDEA and NSGA-II for studies on g-series

and CTP test functions . 50
3.3 Results for g-series functions . 52
3.4 Marginally infeasible solutions for g06 obtained using IDEA . . . 54
3.5 Displacement metrics for CTP problems 58
3.6 Hypervolume metrics for CTP problems 59
3.7 Parameters used for the C-PSA 76
3.8 Parameters used for NSGA-II and IDEA 77
3.9 Comparison of hypervolume metric 77
3.10 Comparison of displacement metric 78
3.11 Comparison of greedy and non-greedy C-PSA algorithm 79
3.12 Performance of C-PSA and IDEA on CEC 2009 benchmarks . . . 86

4.1 Ranking of a sample population of 12 non-dominated points . . . 99
4.2 Crossover and mutation parameters 110
4.3 Summary of previous works in dimensionality reduction 122
4.4 Sample population for a 3-objective problem 131
4.5 Corner-sort ranking (columns represent solution IDs sorted using

objective values in Table 4.4) . 131
4.6 Parameters used for PCSEA . 137
4.7 Summary of numerical experiments 137
4.8 Dimensionality analysis for 3-objective DTLZ2 problem 138
4.9 Results obtained for DTLZ2 (M) test problems 139
4.10 Dimensionality analysis for DTLZ5-(2,3) 140
4.11 Dimensionality analysis for DTLZ5-(2,3) 142
4.12 Dimensionality analysis for DTLZ-(5,10) 143
4.13 Results obtained for DTLZ-(I,M) test problems 143
4.14 Number of evaluations used for DTLZ5-(5,M) test problems . . . 143
4.15 Dimensionality analysis for WFG3conv1 problem 145
4.16 Dimensionality analysis for WFG3conv2 146
4.17 Dimensionality analysis for water resource problem 148
4.18 Dimensionality analysis for water resource problem 148

xvii

xviii LIST OF TABLES

4.19 Comparison of results (hypervolume) for water resource problem
using original and reduced set of objectives 150

4.20 Reduced set of objectives obtained for Radar problem 151

5.1 Description of test functions used for the study 169
5.2 Parameters used for the study . 169
5.3 Results using CCEA (fixed partitions) and EA for 50D Rastrigin,

Schwefel, Rosenbrock and Ackley 170
5.4 Results using CCEA (fixed partitions) and EA for 100D Rastrigin,

Schwefel, Rosenbrock and Ackley 170
5.5 Results using CCEA (fixed partitions) and EA for 50D Shifted

Rotated Rastrigin and G2 . 173
5.6 Parameters used for the study . 178
5.7 Results using EA and CCEA (maximum 10 partitions) for 50D

problems . 179
5.8 Results using EA and CCEA (maximum 5 partitions) for 50D

problems . 182
5.9 Results using EA and CCEA (maximum 10 partitions) for 100D

problems . 184
5.10 Results using EA and CCEA (maximum 5 partitions) for 100D

problems . 186

6.1 Results for clustering problem (XB index values averaged over all
runs) . 205

6.2 Distance chart for the warehouse problem in km (C ≡ Canberra,
S ≡ Sydney, M ≡ Melbourne, B ≡ Brisbane) 206

6.3 Demand and capacity at each site for the warehouse problem (C ≡
Canberra, S ≡ Sydney, M ≡ Melbourne, B ≡ Brisbane) 208

6.4 Results (cost) for warehouse problem (all values in millions) . . . 209

7.1 Parameters used for SASA . 222
7.2 Parameters used for NSGA-II and IDEA 223
7.3 Parameters used for surrogate modeling in SASA 223
7.4 Comparison of displacement metric obtained using SASA, NSGA-II

and IDEA . 224
7.5 Comparison of hypervolume metric obtained using SASA, NSGA-II

and IDEA . 224
7.6 Preliminary studies of IEMA on g-series test problems 228
7.7 Numerical experiments. (Note: IEMA is run for (single objec-

tive) continuous problems only, since it employs gradient search.
C-PSA and SASA are run for (multi-objective) continuous variable
problems only due to the nature of mutation currently implemented)230

LIST OF TABLES xix

7.8 Parameters used for IDEA and NSGA-II for studies on engineering
design problems . 230

7.9 Parameters used for the C-PSA and SASA 230
7.10 Results for single objective engineering design problems. The num-

bers in the brackets indicate percent improvement in the objective
values compared to those obtained using NSGA-II. (BS≡ Belleville
spring, BC ≡ bulk carrier, CSI ≡ car side impact, HS ≡ helical
spring, AF ≡ airfoil, SR ≡ speed reducer, PV ≡ pressure vessel,
WB ≡ welded beam) . 233

7.11 Performance metrics for multi-objective engineering design prob-
lems (WB ≡ welded beam, BC ≡ bulk carrier, HS ≡ helical spring)236

B.1 Parameters for the test problems CTP2 to CTP8 272

E.1 Parameters for Belleville spring design 286
E.2 Parameters for coil compression spring design 288
E.3 Parameters for speed reducer design 290
E.4 Design variable limits for airfoil design problem 298

List of Algorithms

2.1 Evolutionary Algorithm framework 25
2.2 Simulated Annealing algorithm 29

3.1 Infeasibility Driven Evolutionary Algorithm (IDEA) 43
3.2 Crowding distance sorting mechanism 46
3.3 Constrained Pareto Simulated Annealing (C-PSA) 67
3.4 Acceptance Criterion for feasible → feasible jump 73

4.1 Cluster-sort . 97
4.2 -eps-dominance assignment (-ǫ-DOM) 100
4.3 Modified-eps-DOM assignment (Mod-ǫ-DOM) 101
4.4 Pareto Corner Search Evolutionary Algorithm (PCSEA) 130

5.1 Basic CCEA . 168
5.2 CCEA with correlation based Adaptive Variable Partitioning . . . 175
5.3 Partitioning strategy for CCEA-AVP 177

6.1 SA-TDO algorithm . 197

7.1 Surrogate Assisted Simulated Annealing (SASA) 221
7.2 Infeasibility Empowered Memetic Algorithm (IEMA) 226

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Background

Engineers endeavor to create the best possible designs. Whether to achieve goals

more conveniently and safely, save precious time and resources, or break new

grounds in technology, they aspire to take a leap from what barely works to what

works best. This pursuit for best designs is known as design optimization.

Engineering design process invariably involves the optimization of desirable

performance measures. Some typical examples include minimization of drag for

vehicles, minimization of building resources needed for structures like buildings

and bridges, maximization of power and lift for aircraft and rockets, minimization

of fuel consumption for engines, and many more.

These performance measures, or “objectives”, depend on a number of design

variables; and finding the best design(s) involves finding the best combination of

values of these design variables. Optimization algorithms provide a systematic

way of finding these values. They may be required at different stages of a design:

its conceptualization; design of individual components; and the multidisciplinary

1

2 1. INTRODUCTION

optimization of the overall design. Therefore, to support design activity, there is

a strong drive to develop faster and more effective optimization methods.

1.2 Motivation

Engineering optimization problems exhibit a number of attributes which make

them difficult to solve. The objective functions involved are often highly non-linear,

discontinuous and/or non-differentiable. In addition, for many cases, an explicit

mathematical expression for calculating the objective may not exist (e.g. numer-

ical simulations). This results in a severe restriction on the applicability of most

exact (analytical) mathematical optimization techniques since they require math-

ematical properties that engineering problems usually do not possess. Moreover,

many problems contain multiple objectives which most conventional optimization

methods are not equipped to solve.

Owing to these limitations, metaheuristic methods (discussed in the next

chapter) have recently gained popularity for solving difficult optimization prob-

lems. Instead of using the mathematical properties of functions (derivatives,

hessians etc.), these methods search based on objective values alone. Therefore,

they can be used to optimize black box functions (i.e., those for which formulation

is not explicitly available). Most of these methods are inspired from processes

occurring in nature; for example, Evolutionary Algorithms (EAs) are inspired

from biological evolution, swarm intelligence methods are inspired from collective

behavior of systems such as ant colonies, birds in a flock, etc., whereas Simulated

Annealing (SA) emulates the behavior of molten metal atoms during slow cooling.

Irrespective of the metaheuristic technique used, the optimization process involves

systematic evaluation of a number of candidate designs until the optimum (or near

1.3. SCOPE OF RESEARCH 3

optimum/satisfactory) design is found for the given mathematical formulation.

Numerical simulations are increasingly being used these days to evaluate

designs; typical examples include finite element analysis (FEA) and computa-

tional fluid dynamics (CFD). Simulations are preferred because they can model

and solve more complex systems commonly occurring in real-world problems

compared to purely analytical techniques. However, this comes at the cost

of computational overhead. As most of these simulations are computationally

intensive, evaluation of each design takes a long time. This imposes a limit on

the number of design evaluations able to be undertaken to find the optimum.

Therefore, efficient optimization algorithms that can find good quality designs in

as few evaluations as possible are necessary and useful. This is the motivation

behind the work presented in this thesis.

1.3 Scope of Research

In this thesis, various areas which pose challenges to the existing optimization

algorithms are identified. These include the presence of constraints, high numbers

of objectives and/or variables, and multiple candidate models. Thereafter, new,

improved strategies to deal effectively with these issues are proposed. Although

these strategies are implemented either in EA or SA frameworks, most of them

can be easily extended to other metaheuristic paradigms.

The aim of the work presented in this thesis is not to invent an optimization

algorithm that can solve all problems (if that’s possible), but to identify potential

areas for improvement in the current metaheuristic optimization algorithms, and

to demonstrate the proposed enhancements through rigorous testing on a number

of mathematical benchmarks and real-world engineering design problems.

4 1. INTRODUCTION

Modeling of specific problems is not included in the scope of the thesis.

Efficient and effective exploration of given model(s) is the primary focus of the

work. Dynamic problems, in which the objectives change with time, are also not

studied in this thesis.

Although the emphasis of the work is on engineering design optimization,

the methods developed are suitable as generic optimizers and can be applied to

problems in other disciplines such as scheduling, finance and statistics.

1.4 Contributions of Thesis

The following contributions are made in this thesis:

1. The first contribution of this thesis is towards developing a better constraint

handling method for EAs. A novel technique is proposed, in which infeasible

solutions near constraint boundaries are explicitly preserved during the

evolutionary search. This is in contrast to most conventional algorithms in

which the preference for feasible solutions weeds out all infeasible solutions

during the search. This constraint handling is incorporated in the Infeasi-

bility Driven Evolutionary Algorithm (IDEA). The presence of marginally

infeasible solutions in the population focuses the search near constraint

boundaries where the optimum solutions usually lie, thus resulting in faster

convergence. In addition, the marginally infeasible solutions obtained from

the algorithm are also of interest to designers for trade-off studies. A further

enhancement to IDEA (for single objective problems) is also studied by

embedding local search in the algorithm.

2. The second contribution is also in the area of constraint handling, but

with SA algorithm. Simulated annealing is a metaheuristic inspired from

1.4. CONTRIBUTIONS OF THESIS 5

the behavior of atoms during slow cooling of molten metals. However,

as SA is a single point method, EAs (which are population based) are

conventionally preferred for solving multi-objective optimization problems.

Nonetheless, with certain enhancements, the ability of SA to escape local

minima by accepting uphill moves can be advantageously used to solve

difficult multi-objective constraint optimization problems. To this effect, a

Constrained Pareto Simulated Annealing (C-PSA) is developed and studied

in this thesis. Further enhancement by using surrogate modeling within the

algorithm is also investigated.

3. The third contribution is in the area of optimization problems with large

numbers of objectives (many-objective optimization). Two relevant direc-

tions are pursued in the context:

(a) Secondary ranking : As reported in a number of studies in the liter-

ature, Pareto-dominance is an inadequate strategy for dealing with

problems with high numbers of objectives (typically more than three).

For handling many-objective optimization problems, two new secondary

ranking methods are proposed.

(b) Dimensionality reduction: For a number of many-objective problems,

it is possible to find a reduced set of objectives in lieu of the original

set in order to solve the problem. Traditional dimensionality reduction

methods predict the dimensionality by analyzing a representative set

of solutions obtained by running a conventional Multi-objective Evo-

lutionary Algorithm (MOEA) for large numbers of generations; which

is time consuming. The approach proposed in this thesis searches for a

few key solutions instead of the whole Pareto front, and thus requires

6 1. INTRODUCTION

far fewer evaluations than those used in the earlier studies. These key

solutions are then analyzed to estimate the true dimensionality of the

problem.

4. The fourth contribution is in the area of problems with large numbers of

design variables. Conventional EAs exhibit slow convergence for problems

with large numbers of variables, as the search space grows exponentially

with the number of variables. To deal with such problems, improvements

are proposed for existing Cooperative Coevolutionary Algorithms (CCEAs).

CCEAs divide the variables in to a number of partitions, and the variables

in each partition are evolved separately using a subpopulation. However, as

current CCEAs lack appropriate partitioning strategies, their performance

deteriorates for non-separable problems (problems with strong variables

interactions). In this thesis, a new partitioning strategy is proposed, which

partitions the variables based on correlations among them and enables

CCEAs to solve a broad class of problems efficiently.

5. In addition, the thesis also explores the scarcely studied area of trans-

dimensional optimization (TDO). Traditionally, most studies in design op-

timization have operated on a fixed model, in which the number of decision

variables is known. However, sometimes the optimization problem at hand

may have several possible candidate models. In such a case, one way to find

the global optimum solution is to optimize the problem exhaustively using

each model and then choose the best found solution; which is inefficient.

In this thesis, a SA based algorithm is proposed for TDO problems, which

searches through both, the “model space” and the variable space, thereby

identifying the most appropriate model and the corresponding optimum

1.5. ORGANIZATION OF THESIS 7

variable values simultaneously. Some preliminary studies are presented to

exemplify the potential of this approach.

6. Finally, a number of numerical experiments are conducted on several bench-

mark test problems and engineering applications using the above mentioned

algorithms. Comparison with previously reported studies are included in

order to highlight the improvements achieved in optimization algorithms

through the work presented in this thesis.

1.5 Organization of Thesis

Following this introduction, this thesis is divided into seven further chapters.

While Chapter 2 lays the groundwork for the research, Chapters 3–6 present

the principal technical contributions and the numerical experiments conducted

in detail. Chapter 7 focuses on application of proposed algorithm to real-life

engineering problems. Chapter 8 provides a summary and a few future direc-

tions of the presented work. Since the thesis explores diverse disciplines within

optimization, the relevant literature is included in each chapter instead of as one

large unit. Individual contents of the chapters are outlined as follows.

1. In Chapter 2, a brief introduction to optimization is given. A broad classifi-

cation of various contemporary stochastic techniques used for optimization

is discussed. Metaheuristic techniques, which form the skeleton of the

optimization methods developed in this thesis, are particularly discussed

in detail. Thereafter, various areas in which this thesis seeks to make

improvements in existing approaches are highlighted. These include con-

straint handling, large-scale problems (many-objective and many-variable),

8 1. INTRODUCTION

and the trans-dimensional problems. The detailed contributions in each of

these ares are presented individually in further chapters.

2. In Chapter 3, two new algorithms for dealing with constrained optimization

problems are proposed. One of them, IDEA, is an improved EA that uses

infeasible solutions effectively in order to converge faster to the Pareto front.

The other algorithm, C-PSA, extends the conventional SA to deal with

difficult constrained multi-objective problems.

3. In Chapter 4, two approaches for handling optimization problems with

large numbers of objectives are proposed: the first is a modification in

the secondary ranking procedure to improve the convergence while also

ensuring a good diversity among solutions; and second is a novel method

for identifying the true dimensionality of the Pareto front using Pareto

corner search.

4. In Chapter 5, a Cooperative Coevolutionary Algorithm with adaptive vari-

able partitioning (CCEA-AVP) for dealing effectively with optimization

problems containing large number of decision variables is proposed.

5. In Chapter 6, a Simulated Annealing based Algorithm for Trans-dimensional

Optimization (SA-TDO) is proposed. In the context of the presented

work, a trans-dimensional optimization problem refers to one in which the

objective function(s) can be evaluated using more than one model with

possibly a different number of design variables involved in each.

6. In Chapter 7, further enhancements to the IDEA and C-PSA algorithms

are explored, which include the embedding of local search and surrogate

modeling in these algorithms. Thereafter, results for a number of engineer-

1.5. ORGANIZATION OF THESIS 9

ing examples are presented using various algorithms proposed in the thesis.

The engineering design examples include both single- and multi-objective

constrained problems.

7. In Chapter 8, a summary of the findings of the work is presented. In

addition, future issues and directions which could be pursued with the

aim of making the algorithms more efficient for handling various types of

optimization problems, are identified.

Chapter 2

Optimization and Metaheuristics

Abstract

In this chapter, an introduction to optimization is presented. A broad classi-

fication of optimization algorithms developed to date is discussed and evaluated.

Subsequently, shortcomings of the existing optimization methods, especially in the

context of engineering design problems, are identified. These shortcomings have

motivated the research work conducted in this thesis.

2.1 Overview

In simple terms, optimization means the minimization or maximization of a given

quantity. This “quantity” to be optimized is referred to as the objective. The

objective may be calculated using an explicit mathematical function, a computer

simulation, a statistical estimate/metric or even a performance measure based on

a human decision making process.

This simple sounding process of optimization has immense manifestations in

11

12 2. OPTIMIZATION AND METAHEURISTICS

the real world. Many things we see around us are either optimized with respect

to certain performance measure(s) or are in the process of optimization. Nature,

in its own way, tries to optimize the chances of survival of various living forms

by evolution through natural selection. The development of wings for flying, the

ability of some animals to camouflage to escape predators, the development of

opposable thumbs in humans, etc., are some biological examples of how living

forms are “optimized”, albeit slowly but steadily, to suit their existence on earth.

In addition, physical processes such as crystallization; nuclear processes such as

carbon decay and radioactivity; and chemical processes such as combustion, favor

the formation of the most stable states (that have minimum energy) of isotopes,

elements or compounds.

In the context of engineering design, optimization is often essential, primarily

for the following reasons.

1. There is a limit on the available human resources, time, and physical

resources such as space, minerals, oil, etc. Therefore, an ideal design must

perform a given task at minimum possible expense of resources. In reality,

a competitive design will do it better than available alternatives.

2. Humans have a perpetual drive to break new frontiers in technology and

come up with new, previously inconceivable, designs. Although, in many

cases, the “absolute best” is either ambiguous or hard to conceive, any

sustainable improvement in existing technology can be considered to be a

step towards it.

For example, if a bridge or tunnel is to be constructed to meet certain

transportation requirements, it can be constructed using excessive quantities

of construction material (safe but over-designed), but considering the cost and

2.1. OVERVIEW 13

limited availability of the resources, it will not be a good or viable design.

Therefore, the design must be optimized in order to give a required standard of

safety using as little resources as possible. Similarly, for an efficient industry to

produce goods in large quantities, the manufacturing process has to be optimized

using concepts such as the assembly line. Sustainable transport vehicles, such as

cars, ships and aircraft have to be optimized for safety, power and fuel efficiency

by using better engines and body profiles.

Given the applicability of optimization at the root of most design processes,

there is a natural inclination among researchers to develop efficient methods of op-

timization, as even small improvements in optimization algorithms may amount

to huge collective benefits in the real world. As a simple example, consider a new

optimized body design for automobiles which reduces drag forces so that fuel

efficiency increases by merely 0.1 %. Currently, there are approximately 1 billion

automobiles in the world, predominantly cars running on gasoline. An average

car consumes about 1000 liters of gasoline per year. Saving 0.1% of that, or 1

liter per car, translates to a collective savings of about 1 billion liters per year,

which is an substantial amount.

In this thesis, an effort is made to explore the possible challenges facing

the existing optimization methods. Subsequently, novel methods for dealing

with these challenges effectively and countering the shortcomings of existing

optimization algorithms are proposed.

In the following sections, the mathematical definition of an optimization

problem is given and various optimization techniques proposed in literature are

presented. Thereafter, the challenges faced by the existing techniques are dis-

cussed in order to build a foundation for the work that is presented in the following

chapters.

14 2. OPTIMIZATION AND METAHEURISTICS

2.2 Optimization Problem

A generic optimization problem can be posed as shown in Equation 2.1

Minimize f1(x), . . . , fk(x)

Subject to gi(x) ≥ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(2.1)

where x1, . . . , xn (which form the decision vector x) are the design variables that

can be integer or real, continuous or discrete. If only one objective is to be

minimized (k = 1), the problem is called a single-objective problem, whereas

if more than one objective is to be minimized, then the problem is termed a

multi-objective problem. The design variables are usually bounded by lower

and upper bounds to form the design space S ⊂ Rn. The objective functions

f1(x), . . . , fk(x) are simultaneously minimized while satisfying the inequality con-

straints gi(x) ≥ 0 and equality constraints hj(x) = 0. In practice, the equality

constraints are converted to inequality constraints using a small tolerance as

|hj(x)| ≤ ǫ. A maximization problem can be easily converted into a minimization

problem by multiplying the objectives by -1. For optimization problems with

constraints, the design space is divided into feasible region F ⊂ S (in which all

constraints are satisfied) and infeasible region (in which one or more constraints

are violated).

Since maximization and minimization problems can be interchanged by merely

altering the sign of the objective functions (duality principle[5]), for the sake of

uniformity, (and without loss of generality), all optimization problems henceforth

considered are studied as minimization problems, unless stated otherwise.

2.2. OPTIMIZATION PROBLEM 15

2.2.1 Single-objective problem

If only one objective is to be optimized, the problem is termed a single-objective

optimization problem. The aim of optimization for such a problem is to find all

x ⊂ S such that f(x) assumes the minimum value f ∗. The solution x to such a

problem can be either a unique solution, or there may be multiple values of x for

which the objective value is f ∗.

2.2.2 Multi-objective problem

If multiple objectives have to be optimized simultaneously, the problem is termed

a multi-objective optimization problem. If the objectives are not in conflict with

each other (i.e., if optimizing one objective also optimizes the remaining objec-

tive(s)), the problem can be solved as a single objective problem by considering

any one objective. However, if the objectives are in conflict, the optimum values

of the individual objectives do not occur at the same solution(s). For such a

problem, the optimum does not comprise a single solution but instead a set of

solutions, which corresponds to the best trade-off front that can be achieved for

the given objectives. To explicate this, it is essential to introduce the concept of

dominance (also referred to as Pareto-dominance).

A solution x1 is said to dominate a solution x2 if

1. f(x1) is not worse than f(x2) for any objective, i.e.,

fi(x1) ≤ fi(x2), for i = 1, 2, . . . k;

and

16 2. OPTIMIZATION AND METAHEURISTICS

2. f(x1) is better than f(x2) for at least one objective, i.e.,

fi(x1) < f(x2) for at least one i ∈ {1, 2, . . . k}

If x1 does not dominate x2, and vice versa, x1 and x2 are said to be non-

dominated with respect to each other. By extension, a set of solutions in which

none of the solutions dominate any other solution(s), is known as a non-dominated

set. In multi-objective optimization, two non-dominated solutions are considered

equally good in terms of convergence. In Figure 2.1, four solutions, A, B, C

and D are shown in the objective space. Among these solutions, A dominates

C because it is better in both objectives, i.e. f1,A < f1,C and f2,A < f2,C . On

the other hand, A and B are non-dominated with respect to each other, since A

is better in f2, where as B is better in f1, i.e. f1,A > f1,B and f2,A < f2,B. For

the same reason, pairs B and C, A and D and C and D are non-dominated with

respect to each other.

Among these four solutions, A, B and D form a non-dominated set since they

are not dominated by any solution.

2.3. OPTIMIZATION AND METAHEURISTICS 17

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

A

B

C

D

f
1

f 2

Figure 2.1: Dominance relationships for multi-objective optimization (A dominates C;
A, B and D form a non-dominated set)

.

The aim of multi-objective optimization is to capture a non-dominated set

consisting of solutions that are not dominated by any other solution in the search

space. This non-dominated set is the optimum solution, known as Pareto optimal

front (POF), or Pareto front. It is then up to the end user to choose design(s)

from this set based on preference for different objectives.

Definition 1. A Pareto front is a non-dominated set F , such that there does

not exist a solution x /∈ F in the feasible search space S that dominates a solution

x∗ ∈ F .

2.3 Optimization and Metaheuristics

As optimization represents an expansive area of research with numerous appli-

cations, a number of approaches to optimization have been developed in the

literature. There is no unanimously accepted “best” approach, and perhaps never

will be, as different approaches are tailored to perform the best in their respective

18 2. OPTIMIZATION AND METAHEURISTICS

domain(s). Therefore, before applying optimization to any (class of) problem, it

is important to choose the approach wisely. At the same time, optimization tech-

niques that are widely applicable are also well sought for reducing the variability

of the final results due to the choice of algorithms, eventually making the choice

less critical in the overall design process.

A broad classification of single objective optimization problems and methods

in the literature is shown in Figure 2.2, which is adapted from the classification

that appears in Collette and Siarry [1]. At the top level, optimization problems

can be of three fundamental types: combinatorial (discrete), continuous, or

mixed. These properties refer to the nature of the design variables. In combi-

natorial problems, the design variables can take only certain discrete values (e.g.

integers), whereas in continuous problems, these variables can take any real value

withing certain bounds. This distinction is important because for combinatorial

problems, all possible solutions can be enumerated, but for continuous problems

this is not possible. In a mixed problem, some variables are continuous while

others are discrete.

2.3. OPTIMIZATION AND METAHEURISTICS 19

Figure 2.2: Classification of optimization algorithms (figure adapted from [1])

For solving optimization problems, there are two possible kinds of methods:

exact and approximate. Exact methods are those which guarantee to achieve the

precise optimum solution to the mathematical model posed. On the other hand,

approximate methods seek the best possible solution near the optimum solution

by searching the variable space through intelligent guesses and continually im-

20 2. OPTIMIZATION AND METAHEURISTICS

proving the solution in the process. Although the approximate methods do not

guarantee to find the optimum solution(s), they are useful for many reasons as

detailed in the following discussions.

Since all possible solutions can be enumerated for combinatorial problems,

a crude (but exact) technique is to enumerate all possible solutions, and then

choose the one corresponding to the minimum value of the objective. However,

the computational complexity of this procedure grows exponentially with the

number of variables, and is not practical for most applications. Other exact

techniques (such as branch and bound or dynamic programming) behave in

similar way for difficult problems (more specifically, NP-hard problems [1]), and

therefore tend to be as computationally expensive as complete enumeration.

On the other hand, complete enumeration is not possible for continuous

problems. Finding exact solution for such problems requires analytically solving

the equations, which is possible only for certain types of functions, e.g. linear

or quadratic. In addition, classical methods often use calculations of the first-

and/or second-order derivatives, which require the functions to be continuous and

smooth. Unfortunately, most problems encountered in engineering design do not

possess such properties. In fact, for many problems, an explicit mathematical

expression for calculating the objective function(s) may not even exist (e.g., the

objective value may be a result of a CFD/FEA analysis on a design with given

input variables). For this reasons, most exact techniques can not be applied to

engineering design problems.

Due to the limitations of exact optimization methods, a number of approx-

imate methods have been developed. While the usage of the term approximate

might suggest that these methods are inferior, in practice they are more ver-

satile and advantageous for handling complex problems. Approximate methods

2.3. OPTIMIZATION AND METAHEURISTICS 21

predominantly use objective values rather than derivatives to guide the search,

although some of them also use numerically calculated gradients. For combi-

natorial problems, approximate methods can be further classified into heuristic

and metaheuristic methods. Heuristic methods were defined by Reeves [6] in the

context of discrete optimization as follows.

Definition 2. A heuristic is a technique which seeks good (i.e., near optimal)

solutions at a reasonable computational cost without being able to guarantee either

feasibility or optimality, or even in many cases to state how close to optimality a

particular feasible solution is.

Heuristics are usually designed to solve a specific problem. More generic

methods, that still follow the above definition, and work for continuous, discrete

and mixed problems alike, are termed metaheuristics.

For continuous problems, approximate methods may be global or local in

nature. Local methods search for the optimum starting from a given solution,

and usually converge to the nearest local optimum solution. Therefore, for

multimodal problems (i.e., those with multiple local/global minima), the solution

achieved using local search depends on the starting solution. On the other hand,

global methods search for the global optimum solution. Metaheuristics are global

search methods which operate using one of the following approaches. First is

the neighborhood metaheuristics, where a single solution is evolved by searching

its neighborhood until no further improvements are possible in the objective

value(s). Second is the distributed metaheuristics, where a population of solutions

are evolved simultaneously. Information exchange amongst the individuals in the

population helps in effective explorations of the search space in order to find the

global optimum.

22 2. OPTIMIZATION AND METAHEURISTICS

Research on metaheuristic techniques has proliferated in recent years, the

reasons for which can be inferred from the classification given in Figure 2.2, as

detailed below.

1. Their biggest advantage is their versatility, as they can deal with combina-

torial, continuous, and mixed problems with no or minimal customization

being required.

2. They do not require the objective functions to be continuous, smooth or to

possess any specific properties such as linearity. As most real-life problems

lack such properties, metaheuristic methods are suitable for dealing with

them. Also, since they require only objective values to guide the search,

even black box functions (i.e., in which relationship between the objective

function and the design variables is not explicitly known) can be optimized.

3. They seek global optimum solution, without relying significantly on the

quality of the starting solution. Additionally, the search need not even start

from a feasible solution, as a number of constraint handling techniques can

be integrated into the algorithm so that it can find feasible solutions during

the search.

4. They can be combined with local search methods to form hybrid search

algorithms. Hybrid algorithms combine the advantages of effective global

search with rapid local search to get good quality solutions faster.

5. Distributed (population based) metaheuristic algorithms can provide the

Pareto front for multi-objective problems in a single run, whereas most of

the single-point methods can provide only one Pareto optimal solution in

one run.

2.3. OPTIMIZATION AND METAHEURISTICS 23

6. Population based algorithms can be implemented on parallel processors,

which can significantly reduce the overall time taken for optimization.

7. Metaheuristics are often inspired from physical / biological processes occur-

ring in nature. For example, evolutionary algorithm (EA) tries to simulate

the process of evolution of biological species in nature through natural

selection. Simulated annealing (SA) emulates the behavior of atoms during

slow cooling of metals to form crystals.

The consequences of these processes in nature (e.g., well adapted species,

minimum energy crystals etc.) provide a proof in principle of how the meta-

heuristics can be used to improve designs (objectives). Therefore, though

conclusive proof of optimality can not be guaranteed, these methods can

be applied with confidence to a number of real-life optimization problems.

Due to the advantages stated above, metaheuristic methods are used as a tool

for solving optimization problems in many studies, including this thesis. However,

in spite of their advantages, metaheuristic methods currently cannot be used for

a number of potential applications for the following reason.

Metaheuristic methods, being stochastic in nature, explore a number of solu-

tions during a search. Not all of these solutions lead to a better objective value

and such solutions are discarded. For example, in an EA, a new population (of

solutions) is created every generation and only those solutions which are better

than the existing ones are passed on to the next generation. Often, it may take

the algorithm a large number of generations to converge to the optimum. This

results in a correspondingly large number of function evaluations, which may be

prohibitive. For many engineering design problems in particular, each function

evaluation may be a result of a computationally intensive simulation such as

24 2. OPTIMIZATION AND METAHEURISTICS

CFD, FEA etc. Therefore, a very limited number of function evaluations are

affordable in order to come up with the best possible solution.

This defines the direction of the research carried out in this thesis. The

basic question this study tries to answer is: how can the existing algorithms be

enhanced so that they are able to find near optimum solutions in as few function

evaluations as possible ? To this effect, firstly, the major roadblocks for the

existing algorithms are identified, and thereafter, mechanisms for countering them

are proposed and documented in detail.

Before delving into the major challenges facing existing optimization algo-

rithms, the two most popular metaheuristic techniques are briefly described.

One of them, EA, is a distributed approach, where as the second, SA, is a

neighborhood approach. Both these methods are explored in this thesis, and

the proposed improvements to them can be implemented in other algorithms of

similar nature.

2.3.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are inspired by the evolution of biological species

in nature through Charles Darwin’s theory of natural selection[7] or survival

of the fittest. A detailed account on biologically inspired computing can be

found in [8]. In nature, the process of evolution operates by recombining

genes from the parents to produce offspring. Since all the individuals have

to compete for limited resources (food, water, sunlight etc.), only the fittest

members survive. This process repeats for generations, making these species

better suited for their survival. This evolutionary mechanism is simulated in EAs

to create fitter solutions (solutions with superior objective values). EAs evolve

a population of solutions iteratively. New solutions are generated by applying

2.3. OPTIMIZATION AND METAHEURISTICS 25

mathematical operators on the existing population (parents). These solutions

are then evaluated for fitness. Out of the parents and offspring solution, those

with good objective values are passed on to the next generation while the rest

are rejected. This process continues until all solutions are converged near the

optimum. A typical framework of an EA is shown in Algorithm 2.1.

Algorithm 2.1 Evolutionary Algorithm framework

Require: NG > 1 {Number of Generations}
1: Initialize(P1)
2: Evaluate(P1)
3: Rank(P1)
4: for i = 2 to NG do
5: Ci = Evolve(Pi−1)
6: Evaluate(Ci)
7: Rank(Pi−1 + Ci)
8: Pi = Reduce(Pi−1 + Ci)
9: end for

A typical EA comprises following key steps.

Initialization

The search starts with initialization of the population by sampling solutions from

the design space. Random sampling is commonly adopted, in which each design

variable is sampled with uniform probability between its lower and upper bounds.

Evaluation

For each solution in the population, the objective and constraint functions are

evaluated using appropriate simulation, analysis or mathematical formulation.

These objective and constraint values are used during ranking to assign fitness

to each solution.

26 2. OPTIMIZATION AND METAHEURISTICS

Evolution

In an EA, an offspring population is evolved from the current population using

crossover and mutation operations. In crossover, two new solutions are created

from two parent solutions using a crossover operator. In mutation, one or more

variables of a solution are perturbed using a mutation operator. To select a

parent, two solutions are picked randomly from the current population and the

solution with better fitness is considered for creating offspring. This comparison

between two solutions is referred to as binary tournament.

Ranking

Individual solutions in a population are ranked based on their fitness value. In

most algorithms, feasible solutions are ranked higher than infeasible solutions.

For single-objective optimization, feasible solutions are sorted based on the

objective value as the fitness. For multi-objective optimization, solutions are

compared using Pareto-dominance relationships.

For infeasible solutions the fitness corresponds to the maximum or the sum

of constraint violations. Infeasible solutions are sorted in the increasing order of

constraint violation (maximum or sum of violations).

Reduction

The reduction process is used to retain N best solutions (where N is the pop-

ulation size) from a set of 2N solutions (parent and offspring populations) for

the next generation. It uses the fitness values or ranks obtained in the ranking

procedure.

Currently, Non-dominated Sorting Algorithm II (NSGA-II)[9] is arguably the

best performing and most widely used generic EA for optimization. Therefore,

2.3. OPTIMIZATION AND METAHEURISTICS 27

NSGA-II is used as a benchmark algorithm in this thesis. The comparisons of

the newly proposed algorithms are done with NSGA-II in order to gauge their

efficacy. As the name suggests, NSGA-II uses non-dominated sorting as the

primary ranking method. For single-objective problems, non-dominated sorting

is equivalent to sorting the solutions based on the objective value itself, in which

case the algorithm reduces to a basic Real-coded Genetic Algorithm (RGA). To

evolve the solutions, NSGA-II uses Simulated Binary Crossover (SBX) [10] and

polynomial mutation [11]. For maintaining diversity, it uses crowding distance

sorting. The infeasible solutions are sorted based on the sum of constraint

violations, and ranked lower than the feasible solutions.

2.3.2 Simulated Annealing

Simulated Annealing (SA) [12] is an optimization algorithm which emulates the

behavior of hot metal atoms subjected to slow cooling. Initially, when the

atoms are at a high temperature (high energy state), they are relatively free

to move in the molten metal. As the temperature is lowered, the atoms try to

arrange themselves so as to attain the lowest possible energy state. During this

process, the atoms also occasionally make transitions to higher energy states, the

probability of which reduces as the temperature decreases. Freedom of movement

of the atoms is gradually restricted as the temperature is lowered, until finally

the atoms rearrange themselves to form solid crystals having minimum energy

state (provided the annealing is slow enough).

This concept is used for numerical optimization by incorporating similar kind

of properties into the search. To minimize a given objective (energy), the search

is started with a random solution. A trial solution is then generated in the

neighborhood of the current solution. Whether the search moves to the proposed

28 2. OPTIMIZATION AND METAHEURISTICS

trial solution depends on the acceptance ratio, which in turn is affected by a

parameter T which is analogous to the temperature for the physical annealing

process. If the current solution is x1 with a function value of f1, and the trial

solution x2 has a function value of f2, the trial solution is always accepted if f2 <=

f1 (thereby improving the function value, assuming a minimization problem).

However, if f2 > f1, the search moves to the new solution with an acceptance

ratio (or acceptance probability) AR which is calculated as

AR = e−(f2−f1)/T ,

where T is the current temperature. Note that this conventional formulation

is for single-objective unconstrained problems only. As is clear from the above

equation, for high values of T , AR will be high, thereby allowing the search to

accept even worse solutions, and consequently performing a random walk through

the search space. However, at low temperatures, this transition is very unlikely.

The search is started with a high value of T which is lowered gradually over

iterations to a small value. Hence, emphasis in the early stages of the search

is on global search, whereas the later stages focus on local search to fine-tune

the variables near the optimum. Usually, at a given temperature T , M(> 1)

trials are conducted, where M is called the epoch length. The temperature is

usually reduced exponentially using a cooling ratio α. However, other annealing

schemes such as linear decrement also appear in the literature. SA is outlined in

Algorithm 2.2. The built-in finite probability to accept worse or “uphill” solutions

during the search allows SA to escape local minima, thereby making it a robust

optimization algorithm. Under certain conditions, a proof of convergence to the

global optimum for SA has been shown by Geman and Geman [13].

2.4. PERFORMANCE MEASUREMENT 29

Algorithm 2.2 Simulated Annealing algorithm

Require: Tmax, Tmin, M > 1, α < 1
1: Calculate Number of Iterations N
2: Set T = Tmax, xold = random solution
3: for i = 1 to N do
4: for j = 1 to M do
5: xnew = perturb(xold)
6: if fnew ≤ fold then
7: Set xnew = xold

8: else
9: AR = exp(−(fnew − fold)/T)

10: Set xnew = xold with probability AR
11: end if
12: end for
13: T = T × α
14: end for

2.4 Performance Measurement

2.4.1 Single objective optimization

For a single objective optimization problem, performance comparison is relatively

straightforward as the objective value alone provides an unambiguous measure

of the quality of the solution. In addition, since stochastic algorithms (such as

those used in this study) can converge to a different solution every time they are

run, their reliability in performance has to be evaluated by conducting multiple

runs. In this thesis, multiple independent runs are carried out and the statistics

of the objective values for these runs are used to compare the performance of

various algorithms.

2.4.2 Multi-objective optimization

For a multi-objective optimization problem, the solution does not comprise a

unique minimum objective value, but instead a set of trade-off solutions. There-

30 2. OPTIMIZATION AND METAHEURISTICS

fore, the objective values alone cannot be used for direct comparison of the

performances of two or more algorithms.

Multi-objective optimization algorithms aim to achieve a non-dominated set

with the following two characteristics:

• Convergence: the solutions in the non-dominated set should be close to

the solutions on the Pareto optimal front.

• Diversity: the solutions should be uniformly spread to span the Pareto

front.

Illustrated in Figure 2.3 is a solution with good convergence but poor diversity,

a second with poor convergence but good diversity, and a third with both good

convergence and good diversity.

2.4. PERFORMANCE MEASUREMENT 31

0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f
1

f 2

Pareto front
Non−dominated set

(a) Good convergence, poor diver-
sity

0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f
1

f 2

Pareto front
Non−dominated set

(b) Poor convergence, good diversity

0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f
1

f 2

Pareto front
Non−dominated set

(c) Good convergence, good diver-
sity

Figure 2.3: Non-dominated solutions obtained from multi-objective optimization

A number of performance metrics have been formulated in the literature to

evaluate the quality of non-dominated solutions obtained by an algorithm. Of

these, the two most common performance metrics are used in this study, namely

displacement and hypervolume.

Displacement

The displacement metric [14, 15, 16] evaluates the quality of the solution set

by measuring the distance of the set from the Pareto front in objective space.

Mathematically, the displacement metric is calculated as shown in Equation 2.2.

32 2. OPTIMIZATION AND METAHEURISTICS

Displacement =
1

|P | ×
|P |
∑

i=1

(

min
|Q|
j=1d(i, j)

)

, (2.2)

where P is the known Pareto front, Q is the non-dominated solution set and

d(i, j) is the Euclidean distance between the ith solution of set P and the jth

solution of set Q (see figure 2.4).

Figure 2.4: Calculation of displacement (P ≡ Pareto front, Q ≡ non-dominated set)

A low displacement value indicates that the solutions in Q are close to those

in P , implying a good convergence. At the same time, diversity is also implicitly

captured in the metric. This is because if the solutions in the set Q lie in a

localized region of the front P (e.g. Figure 2.3(a)), then distance of the remote

regions of the Pareto front from the solutions in set Q will be high, thereby

resulting in an inferior value of the displacement metric.

Hypervolume

The hypervolume metric estimates the quality of a solution set Q by measuring

the dominated volume. Hypervolume for a set Q is defined as the volume occupied

by the set in objective space with respect to a reference point R. Mathematically,

2.4. PERFORMANCE MEASUREMENT 33

it is calculated as shown in Equation 2.3.

Hypervolume =

{

⋃

i

ai|viǫQ

}

, (2.3)

where ai is the volume (area in the case of two objectives) occupied by the solution

vi (Figure 2.5) with respect to a reference point R.

Figure 2.5: Calculation of hypervolume (both objectives are being minimized)

Like displacement, hypervolume also captures both the convergence and di-

versity of a set. The more converged the solutions are to the optimum, and the

larger their diversity is, the greater is the area dominated by them. For example,

the total area dominated by the non-dominated sets shown in Figures 2.3(a) and

(b) will be much less than that by the non-dominated set shown in Figure 2.3(c).

A higher value of hypervolume indicates a better quality of the non-dominated

set under consideration. Further discussion on the hypervolume metric can be

found in [1, 17, 18].

Some additional metrics are also used occasionally in the thesis for comparison

of non-dominated sets for certain problems. The definitions of these metrics are

provided where necessary.

34 2. OPTIMIZATION AND METAHEURISTICS

2.5 Current Challenges in Optimization

As stated earlier, the aim of the work reported in this thesis is to reduce the

computational effort (more specifically, the number of evaluations) required to

obtain near-optimum solutions. Evidently, the first step is to identify the factors

responsible for the high computational effort for engineering design optimization.

Through an extensive literature review, three major challenging factors are iden-

tified and studied in this thesis. A brief overview of them is given in the following

subsections, while their detailed description and contributions to counter them

are discussed in succeeding chapters.

2.5.1 Constraint handling

Engineering design optimization problems often involve a number of constraints,

which may result from factors such as practicality, safety and functionality of

the design and/or limit on time and resources. Mathematically, constraints have

the effect of rendering some (or a large) fraction of the search area infeasible.

Consequently, an optimization algorithm often has difficulty searching for the

optimum through the restricted feasible space, and often difficulty in even finding

a feasible solution. Therefore, an efficient constraint handling mechanism is

imperative to enable an algorithm to search effectively through the variable space.

2.5.2 Large scale optimization

The large scale of a problem can adversely affect the performance of most algo-

rithms. Large scale optimization problems can be of two kinds:

• Many-objective problems : most of the multi-objective optimization algo-

rithms predominantly use non-dominated sorting (or equivalent) in order

2.5. CURRENT CHALLENGES IN OPTIMIZATION 35

to drive the population towards the Pareto front. However, as will be

detailed later, non-dominated sorting is an inadequate strategy for cre-

ating a selection pressure towards the optimum if the problem has more

than three objectives. Problems with four or more objectives are termed

many-objective optimization problems.

• Many-variable problems: some problems encountered in engineering can

have a large number of variables (sometimes even hundreds or thousands).

The search space grows exponentially with the number of variables and

so does the corresponding search effort. This presents a major challenge

for optimization algorithms, especially the conventional metaheuristic algo-

rithms which do not utilize any mathematical relationships between various

variables during the search.

2.5.3 Trans-dimensional optimization

Most of the existing algorithms assume the number of design variables to be

fixed, thereby operating on a fixed model. However, for some design problems,

there may be a number of possible models to choose from, before solving for

optimum values of variables for that model. Such problems are referred to as

trans-dimensional optimization problems. Exhaustively exploring each model one

by one using conventional optimization methods may incur a huge computational

cost. Hence, techniques are needed which can explore the model space as well

as the variable space simultaneously. Very few studies have been undertaken

and reported in the literature to address such problems. Further, the available

methods for trans-dimensional optimization have very limited applicability for

engineering design problems due to the absence of mechanisms to handle con-

36 2. OPTIMIZATION AND METAHEURISTICS

straints and multiple objectives.

2.6 Summary

In this chapter, an introduction to optimization and a broad classification of

optimization algorithms developed to date are given. Subsequently, the advan-

tages of metaheuristic algorithms which make them ideal candidates for solving

engineering problems are highlighted. Thereafter, certain disadvantages of these

methods are described, which prevents them from being applied to a number

of potential areas presently. Finally, the factors that cause these shortcomings,

which build the basis for the work presented in this thesis, are discussed.

Chapter 3

Constraint Handling in

Optimization

Abstract

Real-life optimization problems often involve a number of constraints, and the

performance of an optimization algorithm depends largely on how effectively it can

handle them. In this chapter, two new algorithms to deal with constrained opti-

mization problems are proposed. One of them is implemented in an Evolutionary

Algorithm (EA) paradigm, the other in a Simulated Annealing (SA) paradigm.

However, the proposed ideas can also be extended to other similar frameworks,

such as Differential Evolution (DE), Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), etc. Comparison with the published state-of-the-art

algorithms on various benchmark problems are included in order to highlight the

contributions of the work.

37

38 3. CONSTRAINT HANDLING IN OPTIMIZATION

3.1 Introduction

In real life, one often encounters problems in which one or more objectives

have to be optimized simultaneously, subject to a set of constraints. In recent

years, population-based metaheuristic optimization algorithms have been largely

preferred for solving optimization problems, particularly MO problems, for the

reasons detailed in previous chapter. The performance of these methods for

constrained optimization problems is known to be largely dependent on the

mechanism used for handling constraints. A detailed review of various constraint

handling techniques used with EAs is presented in [19, 20, 21]. Some of the most

commonly used constraint-handling techniques are listed below.

• Penalty function-based methods: Penalty function methods are one of

the most commonly adopted forms of constraint handling. In this approach,

the fitness of infeasible solutions is degraded using a weighted sum of

constraint violations. Variants of the penalty function based approach

include static penalty [22, 23], dynamic penalty [24], annealing penalty [25,

26], adaptive penalty [27, 28] and death penalty [29]. Implementations of

most of these schemes often require additional parameters. The choice of

these parameters is often not trivial, and the result of the optimization

process is known to be highly sensitive to these parameters.

• Dominance-based approaches: “A dominance based” constraint han-

dling technique implies that while performing a Pareto-dominance ranking

of solutions, the constraints (or a quantity calculated based on them) are

also considered as objectives. Ray et al. [30] developed an EA based on

the non-dominance of solutions in both the objective and the constraint

space. Ho and Shimizu [31] converted the objective function value and the

3.1. INTRODUCTION 39

constraint violation into numerical values with the same order of magnitude.

Concepts of dominance have also been used in a recent simulated annealing

based optimization algorithm developed by Hedar and Fukushima [2]. Of-

ten, a single-objective constraint problem is solved by converting it into a

multi-objective problem by adding constraints as objectives. A comparison

of performance of various multi-objective evolutionary algorithms (MOEAs)

on constrained optimization (single-objective non-linear problems) using

concepts of Pareto-dominance can be found in [32]. For multi-objective

problems, Vieira et al. [33, 34] used constraints as additional objectives.

In the above approaches, a significant amount of time may be spent on

non-dominated sorting if there are a large number of constraints. There is

also a risk of generating solutions with excellent objective function values

but poor constraint satisfaction.

• Maintaining infeasible solutions: A few researchers have proposed

maintaining a proportion of infeasible solutions in the population dur-

ing the evolution. For single-objective optimization, Coello Coello [35]

proposed splitting the population into various sub-populations, each of

which use either the objective or one of the constraints as the fitness

function. Hamida and Schoenauer [36] developed an Adaptive Segregational

Algorithm (ASCHEA) in which the proportion of feasible solutions in the

population is controlled using an adaptive penalty. This approach used a

single penalty coefficient for all constraints and was later extended [37]

to incorporate a separate penalty coefficient for each constraint. Hin-

terding and Michalewicz [38] proposed another approach (CONGA) for

constraint handling using effective parent matching in which mating is

done between two infeasible solutions satisfying different constraints in

40 3. CONSTRAINT HANDLING IN OPTIMIZATION

order to create children which will satisfy all constraints. Mezura-Montes

and Coello Coello [39] suggested a Simple Multimembered Evolutionary

Strategy (SMES) in which the “best” infeasible solution determined by its

objective function value is allowed to be copied into the next generation.

Although these algorithms (ASCHEA, CONGA, and SMES) effectively

illustrate the benefits of preserving infeasible solutions in the population,

their scope was demonstrated on single-objective optimization problems

only and their extension to multi-objective domain has not been discussed.

In an attempt to simultaneously generate solutions to unconstrained and

constrained optimization formulations of a multi-objective problem, Isaacs,

Ray and Smith [40] introduced a Constraint Handling Evolutionary Algo-

rithm (CHEA). In CHEA, some of the infeasible solutions are preserved

during the search. The infeasible solutions in the population are ranked

using the original objectives along with an additional objective, the number

of constraint violations. The incorporation of search through the infeasible

space improves the efficiency of the algorithm. However, CHEA does not

have any provisions for quantifying the amount of constraint violation

and the infeasible solutions obtained are not suitable for trade-off studies.

Trade-off studies imply searching for a possibility of deriving benefits in the

objective value(s) by marginal compromise on the constraints.

• Other constraint-handling methods: These include special representa-

tion schemes for maintaining feasibility [41, 42], repair algorithms [43, 44,

45, 46], handling constraints and objectives separately [47], and incorpora-

tion of heuristic rules such as linear ranking [48] and binary tournament [49]

to compare individuals in the population. The main drawbacks of these

approaches include the need to develop problem-specific repair mechanisms,

3.1. INTRODUCTION 41

the unavailability of a feasible starting point, and early loss of diversity.

• Simulated annealing (SA): While many of the above mentioned con-

straint handling techniques have been used with EAs extensively, not many

efforts have been made to solve difficult constrained multi-objective prob-

lems using SA. This may be attributed to the single-point nature of its

search and also to the fact that, for multi-objective problems, defining the

“energy function” to be minimized becomes a problem in itself. However,

some recent works[50, 51, 2, 14, 52, 53, 54] have shown that with certain

enhancements, SA can be used to solve multi-objective or constrained prob-

lems. The robustness of SA as an optimizer stems from its unique ability

to accept worse or uphill solutions during the search in contrast to most

other single-point methods.

Based on the work done on constraint handling in the literature, two key ideas

for dealing with constrained problems effectively are explored in this chapter.

Both employ non-greedy search strategies, which are more suited for solving dif-

ficult constrained problems (with irregular features such as discontinuous search

space, narrow feasible regions etc.) than greedy strategies as they are less prone

to getting stuck in a local optimum.

1. Infeasibility Driven Evolutionary Algorithm (IDEA): Most existing

EAs consider a feasible solution to be better than an infeasible solution

during the ranking process. While this preference is justified as the final

aim is to get a feasible set of Pareto-optimal solutions, it may adversely

affect the convergence rate of the algorithm. This is because for constrained

optimization problems, the optimum solution(s) are very likely to lie on the

constraint boundary; in which case an infeasible solution near the constraint

42 3. CONSTRAINT HANDLING IN OPTIMIZATION

boundary may be more beneficial to guide the search than a feasible solution

far away from it.

2. Constrained Pareto Simulated Annealing (C-PSA): Owing to the

convenient applicability of MOEAs to constrained multi-objective problems,

single-point search methods such as SA have rarely been employed for

such problems. The key characteristic that differentiates SA from other

single-point methods is that it allows transitions to worse or uphill solu-

tions probabilistically during a search. This makes it less prone to getting

stuck in a local optimum and, consequently, an attractive choice to solve

optimization problems. In the present work, conventional SA is enhanced

to deal with multi-objective constrained optimization problems.

The above two concepts are detailed in the following sections. Numerical ex-

periments on benchmark problems are included, which highlight the performance

and the benefits of the proposed approaches.

3.2 Infeasibility Driven Evolutionary Algorithm

As evident from a number of previous studies [35, 33, 34, 36, 37, 39, 38], informa-

tion from infeasible solutions can be utilized to improve convergence. In addition,

a designer is often interested in exploring solutions that might be marginally

infeasible. This is because some of the constraints might have been imposed

artificially in order to set up the problem but, in reality, can be compromised

marginally if it results in a significant gain in the objective values. A classic

case is a budget constraint modeled so that the cost is less than q. However, with

negotiation, a cost of q+δq may be reasonably acceptable. Of course, for example,

some constraints that may perhaps deal with physics of a problem cannot be

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 43

violated. The proposed algorithm, IDEA, is aimed at delivering: (a) the set of

optimal solutions (best objective values for single-objective and Pareto fronts for

multi-objective problems); (b) a few marginally infeasible solutions for trade-off

studies; and (c) an improvement in the rate of convergence by effectively utilizing

the infeasible solutions during the search. Usually, as there are no defining limits

on the absolute values of constraint violations, the term marginal is used to denote

the solutions that have relatively small constraint violations among the members

of the population, and are likely to lie close to the constraint boundary. The

performance of IDEA is compared with NSGA-II on a number of SO problems

(g-series problems [55, 56]) and MO problems (CTP series problems [57]). IDEA

is outlined in Algorithm 3.1. The key steps involved in the algorithm are discussed

in the following subsections.

Algorithm 3.1 Infeasibility Driven Evolutionary Algorithm (IDEA)

Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: 0 < α < 1 {Proportion of infeasible solutions}
1: Ninf = α ∗N
2: Nf = N −Ninf

3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: childpopi−1 = Evolve(popi−1)
7: Evaluate(childpopi−1)
8: (Sf , Sinf) = Split(popi−1 + childpopi−1)
9: Rank(Sf)

10: Rank(Sinf)
11: popi = Sinf (1, Ninf) + Sf (1, Nf)
12: end for

44 3. CONSTRAINT HANDLING IN OPTIMIZATION

3.2.1 Problem reformulation

A generic optimization problem can be posed as shown in Equation 2.1 in Chap-

ter 2. Optimal solutions to constrained optimization problems often lie along the

constraint boundary. Therefore, in the proposed approach, to effectively search

along the constraint boundary, the original k objective constrained optimization

problem is reformulated as a k+1 objective unconstrained optimization problem,

as given in Equation 3.1. The first k objectives are the same as those in the

original constrained problem. The additional objective represents the amount of

the constraint violation, which is referred to as the Constraint Violation Measure

(CVM) in the present study. The details of the calculation of CVM are discussed

later in Section 3.2.4.

Minimize f ′
1(x) = f1(x), . . . , f ′

k(x) = fk(x)

f ′
k+1(x) = CVM

(3.1)

3.2.2 Evolution

The generation of offspring in IDEA is done the same way as in NSGA-II.

The parents are selected through binary tournament. For crossover, Simulated

Binary Crossover (SBX) [10] operator is applied (variable by variable), given in

Equation 3.2.

y1
i = 0.5 [(1 + βqi

) x1
i + (1− βqi

) x2
i]

y2
i = 0.5 [(1− βqi

) x1
i + (1 + βqi

) x2
i]

(3.2)

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 45

where βqi
is calculated as,

βqi
=















(2ui)
1/ηc+1, if ui ≤ 0.5,

(

1
2(1−ui)

)1/ηc+1

if ui > 0.5.

(3.3)

and where ui is a uniform random number in the range [0, 1) and ηc is the

user defined parameter Distribution Index for Crossover. The subscript i in the

parent(x) and child(y) solutions refer to the ith decision variable. For mutation,

a polynomial mutation [11] operator, as defined in Equation 3.4, is used.

yi = xi + (xi − xi) δ̄i (3.4)

where δ̄i is calculated as,

δ̄i =















(2ri)
1/(ηm+1) − 1, if ri < 0.5,

1− [2(1− ri)]
1/(ηm+1), if ri ≥ 0.5.

(3.5)

where ri is the uniform random number in the range [0, 1) and ηm is the user

defined parameter Distribution Index for Mutation.

3.2.3 Ranking and reduction

The main difference between NSGA-II and IDEA is the mechanism for elite

preservation. In IDEA, a few infeasible solutions are retained in the population

at every generation. Individual solutions in the population are evaluated as per

the original problem definition (Equation 2.1) and marked infeasible if any of the

constraints are violated. The solutions in the parent and the offspring population

are divided into a feasible set (Sf) and an infeasible set (Sinf). The solutions in

46 3. CONSTRAINT HANDLING IN OPTIMIZATION

the feasible and the infeasible sets are both ranked using non-dominated sorting

and crowding distance sorting (Algorithm 3.2) of k + 1 objectives. On the other

hand, NSGA-II uses non-dominated sorting and crowding distance for ranking

feasible solutions and ranks the infeasible solutions according to the increasing

value of maximum constraint violation. For the feasible solutions, non-dominated

sorting using k + 1 objectives is equivalent to non-dominated sorting using the

original k objectives, as the additional objective value (which is based on the

constraint violations) for feasible solutions is always 0.

Algorithm 3.2 Crowding distance sorting mechanism

Require: F {Non-dominated set}
1: Ns = |F | {Number of solutions in the non-dominated set}
2: M = Number of objectives
3: F (i).dist = 0 ∀ i = 1, 2, . . . Ns {Initialize distance}
4: for m = 1 to M do
5: F = sort(F,m) {Sort based on objective value}
6: F (1).dist = F (Ns).dist =∞ {Assign infinity to the corner points}
7: for i = 2 to (Ns − 1) do
8: F (i).dist = F (i).dist+(F (i+1,m)−F (i−1,m))/(fmax

m −fmin
m) {calculate

F(i).dist based on neighboring points}
9: end for

10: end for
11: Higher dist ⇒ Higher rank

The next step is to choose the solutions that form the population for the

next generation. In IDEA, a user-defined parameter α is used to identify the

proportion of the infeasible solutions to be retained in the population. The

numbers Nf (= (1 − α) × N) and Ninf (= α × N) denote the number of

feasible and infeasible solutions in the population respectively, where N is the

population size. If the infeasible set Sinf has more than Ninf solutions, the first

Ninf solutions are selected based on their ranking; otherwise all the solutions

from Sinf are selected. The rest of the solutions are selected from the feasible set

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 47

Sf , provided there are at least Nf feasible solutions. If Sf has fewer solutions, all

the feasible solutions are selected and the rest are filled with infeasible solutions

from Sinf . The solutions are ranked from 1 to N in the order they are selected.

Hence, the infeasible solutions selected first (at most Ninf) receive a higher rank

than the feasible solutions.

As an example, assuming a population size of 100, during any given generation

100 child solutions will be created. In the pool of 200 (parent + child) solutions,

if there are 40 infeasible and 160 feasible solutions, then NSGA-II will select the

best 100 feasible solutions for the next generation, hence preferring all feasible

solutions over all infeasible solutions. On the other hand, assuming α = 0.2 ,

IDEA would select the 20 best infeasible solutions (based on non-dominated +

crowding distance sorting of k + 1 objectives) and the 80 best feasible solutions

to form the new population. Hence, good infeasible solutions are preferred over

feasible solutions during the course of evolution.

In NSGA-II, the elite preservation mechanism weeds out the infeasible solu-

tions from the population. To retain the infeasible solutions in the population,

an alternate mechanism is required. In IDEA, the “good” infeasible solutions

are ranked higher than the feasible solutions, thus adding selection pressure to

generate better infeasible solutions. The presence of infeasible solutions with

higher ranks than the feasible solutions translates into an active search through

the infeasible space, in addition to the search through the feasible region. This

feature of IDEA accelerates the movement of solutions towards the constraint

boundary. With the modified problem definition and by ranking the infeasible

solutions higher than the feasible solutions, IDEA can find the solutions to the

original problem more efficiently and effectively.

48 3. CONSTRAINT HANDLING IN OPTIMIZATION

3.2.4 Constraint Violation Measure (CVM)

The additional objective, CVM, in the modified problem formulation is based

on the amount of relative constraint violations among the population members.

Consider one of the constraints (gi). All solutions in the population are sorted

in ascending order based on the value of the constraint violation for gi. The

solutions that do not violate the constraint gi are assigned a constraint violation

value of 0 (and gi does not contribute to the CVM of those solutions). The rest of

the solutions are assigned constraint violation for the constraint gi based on the

sorted list, starting with rank 1 for the solution with least constraint violation.

Solutions with the same value of constraint violation get the same rank. This

ranking procedure is repeated for all constraints. The CVM for each solution

is then calculated as the sum of the ranks (based on their constraint violations)

obtained for all the constraints.

The process of determining CVM is illustrated using the following example.

Consider an optimization problem with three constraints (C1, C2 and C3). A

sample population of 10 individuals is shown in Table 3.1. For each individual,

the first three columns list the value of the constraint violation. The constraint

violation values are sorted for each constraint and each individual is assigned

relative ranks for each constraint, which are shown in next three columns. In-

dividuals 3, 7 and 9 do not violate constraint C1 and get a relative rank of 0.

Individual 4 with the least constraint violation value (1.25) for C1 gets rank 1

and individual 6 with the highest constraint violation value (100.70) is assigned

rank 7. The last column shows the CVM which is the sum of the ranks with

respect to each constraint.

It can be seen that the CVM favors individuals with good ranks for most (or

all) of the constraints. As a result, an individual with large violation in only one

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 49

Table 3.1: Calculation of Constraint Violation Measure (CVM)
Violations Relative ranks

Individual C1 C2 C3 C1 C2 C3 CVM
1 3.50 90.60 8.09 3 8 7 18
2 5.76 7.80 6.70 4 6 5 15
3 0.00 3.40 7.10 0 4 6 10
4 1.25 0.00 0.69 1 0 1 2
5 13.75 90.10 5.87 6 7 4 17
6 100.70 2.34 3.20 7 3 2 12
7 0.00 5.09 4.76 0 5 3 8
8 1.90 0.00 0.00 2 0 0 2
9 0.00 0.56 0.00 0 1 0 1
10 8.90 2.30 9.80 5 2 8 15

of the constraints will have roughly the same preference as an individual with

marginal violations of multiple constraints. The scheme tries to incorporate the

amount of constraint violation and not just the number of violated constraints

as in CHEA [40]. As a consequence of using CVM (as an additional objective)

to rank infeasible solutions, the final population contains some solutions with

marginal constraint violations.

3.2.5 Numerical experiments

The performance of IDEA is studied and compared against NSGA-II. Two sets

of benchmark problems are chosen for the experiments. These problems and the

corresponding numerical experiments are as follows:

1. Single-objective optimization: The g-series problems g01, g02, g04, g06,

g07, g08, g09, g10 and g12 (g-series problems without equality constraints)

are used as single objective optimization test problems. The mathematical

formulations of the g-series test problems can be found in Appendix A.

Thirty independent runs of IDEA and NSGA-II are performed. The pa-

rameters used are listed in Table 3.2.

50 3. CONSTRAINT HANDLING IN OPTIMIZATION

Table 3.2: Parameters used for IDEA and NSGA-II for studies on g-series and CTP
test functions

Parameter Value

Crossover probability 0.9
Mutation probability 0.1
Crossover distribution index 15
Mutation distribution index 20
Infeasibility ratio α (for IDEA) 0.2

A population of size 200 is used and both algorithms are run for 1750

generations for all test runs, resulting in 350,000 function evaluations.

2. Multi-objective optimization: For multi-objective experiments, prob-

lems from the CTP series are chosen. CTP series is a set of seven con-

strained bi-objective optimization problems. CTP problems pose various

challenges to optimization algorithms – constricted feasible spaces near

the constraint boundaries, discontinuous Pareto fronts, discontinuity in

the variable and function space, etc. A detailed discussion on CTP test

functions can be found in [57]. The problem formulations are given in

Appendix B.

For CTP problems, thirty independent runs are performed using IDEA

and NSGA-II by varying the random seed. The crossover and mutation

parameters are the same as shown in Table 3.2. A population size of 200 is

evolved over 200 generations.

Results: g-series test problems

The results of the runs for the g-series test problems are compared using two

attributes – convergence rate and best solution obtained. Furthermore, trade-off

solutions obtained for one of the problems (g06) are also analyzed.

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 51

1. Convergence rate: The median runs of both algorithms for the g-series

test problems are shown in Figure 3.1. The plots are shown only for the

first 100,000 evaluations in order to aid visualization.

0 2 4 6 8 10

x 10
4

−15

−10

−5

0

Function evaluations

O
bj

ec
tiv

e
va

lu
e

NSGA−II
IDEA

(a) g01

0 2 4 6 8 10

x 10
4

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Function evaluations

O
bj

ec
tiv

e
va

lu
e

NSGA−II
IDEA

(b) (-)g02

0 2 4 6 8 10

x 10
4

−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4
x 10

4

Function evaluations

O
bj

ec
tiv

e
va

lu
e

NSGA−II
IDEA

(c) g04

0 2 4 6 8 10

x 10
4

−7000

−6000

−5000

−4000

−3000

−2000

−1000

Function evaluations

O
bj

ec
tiv

e
va

lu
e

NSGA−II
IDEA

(d) g06

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

Function evaluations

O
bj

ec
tiv

e
va

lu
e

NSGA−II
IDEA

(e) g07

0 2 4 6 8 10

x 10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Function evaluations

O
bj

ec
tiv

e
va

lu
e

NSGA−II
IDEA

(f) g10

Figure 3.1: Median runs for g-series problems

It is seen in Figure 3.1 that the convergence rate of IDEA is better than

52 3. CONSTRAINT HANDLING IN OPTIMIZATION

NSGA-II for problems g01, g02, g04, g06, g07 and g10. As for problems

g08, g09 and g12, the average convergence was found to be almost identical;

and the figures for these problems are not presented.

2. Converged values: The mean, best and worst objective values obtained

across all runs are listed in Table 3.3. It is seen that for the given number

of function evaluations, IDEA consistently obtains better or equal objective

values than NSGA-II does, for all problems. For the problems g08 and g12,

the average objective values obtained by both algorithms are the same.

Table 3.3: Results for g-series functions

NSGA-II Results IDEA Results
Best Mean Worst Best Mean Worst

g01 -14.9999 -14.9322 -12.9995 -15 -14.9333 -12.9999
g02 0.803283 0.791741 0.759453 0.803145 0.80241 0.794207
g04 -30665.1 -30660.7 -30649.8 -30665.5 -30665.5 -30665.4
g06 -6945.72 -6913.94 -6882.47 -6961.79 -6961.55 -6959.85
g07 24.5051 25.65 27.9891 24.3772 25.2732 27.7785
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.681 681.508 683.304 680.716 681.052 682.153
g10 7085.13 8006.19 9616.54 7058.42 7390.4 7990.62
g12 1 1 1 1 1 1

It is worth mentioning here that although the reported values for the g-series

functions using IDEA are an improvement over those of NSGA-II, some

recent studies have reported better results (than both these algorithms) for

g-series functions [58, 59, 39]. However, the scope of most of these studies

is limited to single-objective optimization.

3. Trade-off solutions: The problem g06 is chosen to illustrate the trade-off

solutions obtained from IDEA. The constraint boundary for g06 is formed

by two intersecting circles, shown in Figure 3.2. The feasible space is formed

by the narrow region enclosed between the points of intersection of the two

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 53

circles. The magnified view of the search space near the intersection is

shown in Figure 3.3. The optimum objective value occurs at the intersection

(14.095, 0.84296). The best solutions obtained by IDEA and NSGA-II

for problem g06 across all runs are shown in Figure 3.3. In addition,

the high ranked infeasible solutions in the final IDEA population are also

shown. All NSGA-II solutions lie in the feasible region as expected, whereas

the (feasible) IDEA solutions are converged very near to the intersection

(optimum) point. It is clear that NSGA-II has difficulty in searching along

the narrow region of the feasible space. The population of IDEA, however,

approaches the optimum solution from various directions (as apparent from

the distribution of the infeasible solutions around the intersection) and

manages to reach the optimum consistently.

−5 0 5 10 15 20

−5

0

5

10

15

x
1

x 2

(14.095,0.84296)

Feasbile space

Constraint 1
Constraint 2

Figure 3.2: Search space and constraints for g06. The optimum solution is
(14.0295,0.84296). Figure not to scale.

Some of the infeasible solutions in the final population obtained using IDEA

are listed in Table 3.4. The optimum objective value for g06 is -6961.81388. The

54 3. CONSTRAINT HANDLING IN OPTIMIZATION

14.04 14.06 14.08 14.1 14.12 14.14
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

x
1

x 2

Constraints
IDEA−Infeasible
IDEA−Feasible
NSGA−II

Figure 3.3: Final population for g06

objective can be improved substantially by relaxing one or both the constraints

marginally, as seen from the table.

Table 3.4: Marginally infeasible solutions for g06 obtained using IDEA

Violations
x1 x2 f(x) C1 C2

13.603 4.906e-15 -7953.2 0.98347 3.9606e-05
14.062 0.77939 -7033.7 0.065318 0.00054101
14.075 0.80391 -7005.9 0.036576 0.0033569
14.093 0.83829 -6967.1 0.0015724 0.0056683
14.064 0.7842 -7028.2 0.067479 0.0058579
13.609 0.011038 -7939.8 0.99474 0.022815
14.072 0.80192 -7008.2 0.071612 0.025974
14.09 0.83017 -6976.1 0.018567 0.028237
14.082 0.81432 -6994 0.0057509 0.031406
14.031 0.72543 -7095.2 0.1635 0.036114

Results: CTP-series test problems

1. Evolution: The progress plots of NSGA-II and IDEA populations for up

to 200 generations for test problem CTP2 are shown in Figure 3.4 and

Figure 3.5 respectively. For NSGA-II, the population approaches the Pareto

front from the feasible space and has difficulty in searching close to the

constraint boundary. On the other hand, IDEA maintains the population

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 55

in both the feasible and the infeasible spaces, thus capturing the entire

Pareto front much faster (See Figure 3.5). IDEA is able to cover most of

the disconnected segments of Pareto front for CTP2 by generation 50.

Test problem CTP2 has a disconnected Pareto front. Any population

based method that searches through the feasible space for a disconnected

Pareto front, is likely to face difficulty capturing the whole front unless a

reasonably large population size is chosen to maintain diversity. Once the

entire population converges to fewer regions of the Pareto front, NSGA-II

has to rely predominantly on mutation to spread the solutions to other

regions of the Pareto front. On the other hand, the IDEA population

can move through the infeasible regions, thus avoiding ‘detours’ through

feasible space. Hence, even with a relatively small population, IDEA is

able to capture the entire Pareto front.

To illustrate this, a single run is performed for CTP2 with both NSGA-II

and IDEA with a population size of 100 and 200 generations. The crossover

and mutation parameters are kept fixed as in the earlier experiments. The

results of the run are shown in Figure 3.6. It can be seen that IDEA

solutions are spread much more evenly across the entire Pareto front as

compared to NSGA-II solutions.

56 3. CONSTRAINT HANDLING IN OPTIMIZATION

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(a) 25 generations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(b) 30 generations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(c) 50 generations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(d) 200 generations

Figure 3.4: Evolution of NSGA-II population over generations for CTP2 test run
(population size is 200)

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(a) 25 generations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(b) 30 generations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(c) 50 generations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(d) 200 generations

Figure 3.5: Evolution of IDEA population over generations for CTP2 test run
(population size is 200)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(a) IDEA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Unconstrained Front
Constraint boundaries

(b) NSGA-II

Figure 3.6: Final fronts obtained for CTP2 using IDEA and NSGA-II (population size
of 100 evolved over 200 generations)

2. Performance metrics: The performance metrics are calculated using the

non-dominated solutions obtained by NSGA-II and IDEA. In the case of

58 3. CONSTRAINT HANDLING IN OPTIMIZATION

Table 3.5: Displacement metrics for CTP problems

IDEA Results NSGA-II Results
Best Mean S.D. Best Mean S.D.

CTP2 0.000101 0.001254 0.004286 0.000085 0.006415 0.009226
CTP3 0.001696 0.006992 0.017147 0.001820 0.024493 0.035827
CTP4 0.017625 0.028247 0.015927 0.019386 0.061003 0.047692
CTP5 0.000266 0.001369 0.003965 0.000268 0.003856 0.004762
CTP6 0.000463 0.000689 0.000924 0.000395 0.012739 0.050726
CTP7 0.000049 0.004057 0.013118 0.000041 0.008308 0.013071
CTP8 0.000251 0.004592 0.010069 0.000225 0.104338 0.137467

IDEA, only the feasible solutions in the final population are considered.

The displacement and hypervolume metrics for NSGA-II and IDEA are

listed in Tables 3.5 and 3.6 respectively for problems CTP2-CTP8. Shown

are the show the best, mean, and Standard Deviation (S.D.) of the metric

values across 30 runs. In the Table 3.5 it can be seen that IDEA obtains

significantly better mean displacement metric values than NSGA-II for

all CTP problems. The worse mean values of NSGA-II are due to its

tendency to converge to sub-optimal fronts for CTP problems. For the

best runs, the values of displacement metrics obtained by both algorithms

are quite close. It is also observed that IDEA results exhibit lower S.D.,

indicating better consistency compared to NSGA-II results over multiple

runs. Only for CTP7, the S.D. value obtained using IDEA is higher than

that obtained NSGA-II. It is so because in one of the runs, IDEA converged

to a sub-optimal front which is far away from the Pareto-optimal front.

NSGA-II on the other hand, converged to a sub-optimal that was closer

to the Pareto-optimal front, but went sub-optimal more times than IDEA.

Hence, for CTP7, the mean value using IDEA is still better than that using

NSGA-II, where as the S.D. is worse for IDEA.

The best, mean and the S.D. values for the hypervolume metric (across

3.2. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM 59

all 30 runs) are shown in Table 3.6. It is seen that the average metric

values obtained by IDEA are higher than those from NSGA-II for all CTP

problems. The small values of S.D. from IDEA suggest that the performance

of the algorithm is consistent. Also, it is seen that for the case of CTP7,

the IDEA results have a higher S.D. than NSGA-II results, due to the same

reason as given for the case of displacement metric results.

Table 3.6: Hypervolume metrics for CTP problems

IDEA Results NSGA-II Results
Best Mean S.D. Best Mean S.D.

CTP2 3.059180 3.011390 0.177100 3.059344 2.870703 0.270056
CTP3 3.015969 2.960771 0.163811 3.010435 2.828100 0.254690
CTP4 2.919011 2.744736 0.139271 2.848500 2.438106 0.352716
CTP5 3.024724 2.952929 0.162089 3.020914 2.723520 0.292627
CTP6 36.819072 36.787826 0.075797 36.822693 36.182922 2.187300
CTP7 3.617663 3.435931 0.594506 3.617716 3.240162 0.594118
CTP8 36.180362 35.970564 0.434540 36.170783 32.085918 5.176305

3. Trade-off solutions: As shown in Figure 3.5(d), the final population for

CTP2 evolved using IDEA contains infeasible points close to the constraint

boundary. One can evaluate the benefits in the objective values by relaxing

the constraints as done for g-series problems. For multi-objective optimiza-

tion problems, significant benefits may be derived in multiple objectives at

the cost of relaxing the constraints marginally.

3.2.6 Variations in performance with infeasibility ratio

To observe the effect of the infeasibility ratio (α) on the performance of IDEA,

fifteen independent runs are conducted with different values of α, for the problem

g06. The average convergence plots are shown in Figure 3.7. The parameters used

are the same as listed in Table 3.2. It is seen that the performance of IDEA is

consistent over a wide range of α. Even by maintaining a small proportion (α =

60 3. CONSTRAINT HANDLING IN OPTIMIZATION

0.05) of infeasible solutions in the population, significant improvement can be

achieved in the convergence rate. For α = 0, the performance of IDEA will

be the same as that of NSGA-II. For multi-objective problems, a high value

of α would lead to fewer solutions covering the Pareto front, and hence is not

recommended.

500 1000 1500
−7000

−6500

−6000

−5500

−5000

−4500

−4000

−3500

Generations

A
ve

ra
ge

 b
es

t v
al

ue

α = 0.05
α = 0.1
α = 0.2
α = 0.3
α = 0.4
α = 0.7
NSGA−II

(a)

200 400 600 800

−6900

−6800

−6700

−6600

−6500

Generations

A
ve

ra
ge

 b
es

t v
al

ue

α = 0.05
α = 0.1
α = 0.2
α = 0.3
α = 0.4
α = 0.7
NSGA−II

(b)

Figure 3.7: Variation of IDEA performance for problem g06 with change in α: (a) over
all the generations, (b) during initial generations.

3.3 Constrained Pareto Simulated Annealing

Simulated Annealing is a heuristic that draws an analogy from the slow cooling

process of metal atoms. It is an established robust optimization technique with a

strong mathematical basis. Additionally, it has been proven that it converges to

the global optimum if the annealing is sufficiently slow [13]. Although convergence

is guaranteed only for a very slow cooling rate, in practice it has been observed

that good results are obtained even with reasonably rapid cooling rates [52, 53].

The robustness of SA as an optimizer stems from its ability to accept unfavorable

solutions probabilistically, which aids it in escaping local minima. However, in

spite of its merits, the formulation of conventional SA is inherently suited for

single-objective optimization problems as the definition of the “energy function”

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 61

can be directly associated with the objective to be minimized in this case. For

multi-objective problems, defining the energy function becomes a problem in

itself. Also, there is no implicit constraint handling mechanism available in

conventional SA. There have been recent efforts to enhance SA to eliminate both

the limitations, i.e., constraint handling and multiple objectives.

For constraint handling in SA, the following approaches have been commonly

used.

1. Penalty function: As with other algorithms, a penalty function approach

is often employed (e.g. [54]) in the paradigm of SA. The penalty function

method can be easily implemented by merely modifying the objective func-

tion, which makes it a simple and effective constraint handling technique.

However, the drawback of using a penalty function is that a number of

penalty parameters have to be chosen a priori in order to formulate it. The

results obtained are often sensitive to the choice of these parameters.

2. Rejection of infeasible solutions: Another, more extreme way to weed

out infeasible solutions is the “hard constraint” approach, in which all the

proposals during the search that land on an infeasible solution [50] are

rejected. While this technique can work for continuous feasible spaces,

it is very likely to get stuck during the search if the feasible spaces are

discontinuous.

3. Approximate descent direction (ADD): Recently, a derivative-free fil-

tered simulated annealing (FSA) has been proposed by Hedar and Fukushima

[2] in which filter set concept [60] coupled with ADD[61] is employed for

constraint handling. In this approach, the trial solution is generated de-

pending on whether the current solution is feasible or infeasible. If the

62 3. CONSTRAINT HANDLING IN OPTIMIZATION

current solution is feasible, ADD is used to determine a direction in which

the function value is likely to decrease, and subsequently, a trial solution is

generated in that direction. If the current solution is infeasible, then ADD

is used to determine a direction in which the constraint violation is likely to

decrease, and a step is taken in that direction. A filter set is maintained and

continuously updated, and employed to decide upon the acceptance of trial

solutions. The efficacy of the algorithm was demonstrated on a number of

single-objective g-series test problems.

In order to enhance conventional SA for handling multiple objectives, a num-

ber of studies have been undertaken in recent years. They fall into three broad

categories:

1. Scalarizing function scheme: In this scheme, a scalar objective is formed

by a weighted aggregation of the multiple objectives, which is then used as

an energy function in SA [62]. Although solutions forming the Pareto front

can be found using the scalarizing function method, one run of SA renders

only one solution and, hence, a number of runs have to be made in order to

get the required number of solutions on the Pareto front. A more prominent

limitation of using a weighted sum approach is that the non-convex part of

the front cannot be recovered using any combination of weights.

2. Composite energy difference: As an alternate to scalarizing, methods

based on composite energy difference calculation [50, 63, 16] have been

suggested, in which the probability of acceptance of a trial solution is

calculated as a function of acceptance probabilities for individual objectives.

Nam and Park [51] studied six different criteria for calculating the cost

function from the change in the individual objective values. While using

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 63

composite energy techniques, care must be taken to scale the individual

objectives (or cost criterion) such that the search doesn’t become biased

towards particular objective(s). This can also be handled by using different

annealing temperatures for different objectives, as in [50].

3. Pareto-dominance based schemes: To overcome the difficulties asso-

ciated with scalarizing techniques and composite functions, attempts have

been made by various researchers to incorporate the concept of Pareto-dominance

in SA [16, 64, 53, 52, 54, 14].

In the earlier proposals [64, 54, 53] the energy function is calculated based

on the number of solutions (in the non-dominated set) that dominate a

trial solution under consideration. In the recently proposed Archive based

Multi-objective Simulated Annealing (AMOSA) [14], the amount of dom-

inance is defined in terms of hypervolume in function space enclosed by

the points to be compared. The acceptance scheme takes into account

all possible cases of the domination status between the current solution,

trial solution and the solutions in the existing archive of non-dominated

solutions. Comparisons were done with NSGA-II [65], PAES [66] and

MOSA [64] on a number of benchmark problems in order to establish the

benefits of AMOSA.

Although studies have been undertaken on handling constraints and multiple

objectives separately, very few studies have focused on solving difficult con-

strained MO problems. As mentioned earlier, schemes such as penalty function or

a “hard constraint” approach, which are either dependent on a number of param-

eters or are very limited in scope, have been used. Therefore, they not suitable

for a number of constraint optimization problems. In the present work, a SA

64 3. CONSTRAINT HANDLING IN OPTIMIZATION

algorithm is proposed for constrained multi-objective problems. The acceptance

criteria of a trial solution includes the feasibility status of the current and the

trial solutions, in addition to the domination status as considered in AMOSA.

A comparison with two MOEAs, IDEA (discussed in the previous section), and

NSGA-II [65] is presented on a benchmark set of problems (CTP series), in order

to highlight the benefits of the proposed approach.

Before discussing the C-PSA algorithm, a brief background of AMOSA [14]

is given, as similar concepts of domination are incorporated in the proposed

algorithm.

Archive based multi-objective simulated annealing (AMOSA)

AMOSA is a dominance based SA method. A prominent difference between

AMOSA and most of the earlier SA techniques is that for acceptance of a trial

solution, the domination status of the point is considered not only with respect

to the current solution, but also the archive of non-dominated solutions found

during the search. Another salient feature of AMOSA is that it compares the so-

lutions based on a dominance measure instead of on the number of solutions that

dominate the points as done in previous studies [54, 64]. Given two solutions a

and b, where a dominates b, the amount of domination is defined by Equation 3.6.

∆doma,b =

nobj
∏

i=1,fi(a) 6=fi(b)

(|fi(a)− fi(b)|
Ri

)

, (3.6)

where nobj is the number of objectives and Ri the range of ith objective. Ri is

determined using the solutions in the archive (set of non-dominated solutions

found so far in the search), the current and the proposed trial solution.

The AMOSA search is initialized with a certain number of solutions, which

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 65

are refined over a few iterations by using a simple strategy in which a solution is

accepted only if it dominates the previous solution. The non-dominated solutions

obtained using this technique are used to initialize the archive of non-dominated

solutions. The main search is then started from a random solution in the archive.

Laplacian perturbation is used to create a trial solution. Thereafter, the domina-

tion status of the current solution, proposed solution and the archive is analyzed,

based on which a number of cases can arise. From the exhaustive list of cases, ac-

ceptance is calculated based on the one which applies. The set of non-dominated

solutions (archive) is maintained and continuously updated during the search.

Whenever an unfavorable move is considered for acceptance, the probability

of acceptance is calculated as

prob = 1/(1 + exp(∆dom× T)),

where T is the temperature, and ∆dom is calculated based on the dominance

relations between the current and trial solutions, and the archive.

During the search, to enforce diversity and limit the number of solutions in

the archive to a desired value, clustering is performed if needed. The archive is

allowed to grow to a prescribed soft limit SL, after which the clustering is done

to reduce the number of solutions to a prescribed hard limit HL.

Following this brief description of the AMOSA algorithm, the proposed C-PSA,

which is outlined in Algorithm 3.3, is discussed next. While operating in the

feasible region, acceptance of the trial point is determined based on the dom-

ination status of the current solution, the trial solution as well as the archive

of non-dominated solutions, similar to AMOSA (but with a key difference, as

described later). In a situation where one or both the solutions are infeasible,

66 3. CONSTRAINT HANDLING IN OPTIMIZATION

the acceptance criterion takes into account the feasibility status of the current

and trial solutions, as well as the constraint violation. Details are discussed in

the following subsections.

Initialization of archive

At the start of the search, the archive does not contain any solution. For

simplicity, a random solution within the variable space is chosen as a starting

point of the search. If the starting point is a feasible solution, the archive is

initialized with this solution. Otherwise, the archive is initialized when the first

feasible solution is found. More sophisticated initialization techniques, such as

the scatter search diversification generation method [67, 68, 2] also exist in the

literature, and can be used to initialize the archive instead.

Trial solution generation

Two different procedures are used to generate a trial solution, depending on

whether the current solution is feasible or infeasible.

1. If the current solution is feasible, Laplacian mutation is performed as sug-

gested in [64, 14]. One decision variable is chosen at random and perturbed

by a random variable ǫ drawn from the Laplacian distribution p(ǫ) ∝ e−‖σǫ‖,

where σ represents the spread of the perturbation. To effectively search the

variable space, the σ is scaled throughout the search. Initially it is set to be

sufficiently high for the algorithm to traverse the whole range of a variable.

As the iterations proceed, σ is exponentially reduced to a small value.

This scheme of updating σ is aimed at aiding the search in the following

ways: (a) during the initial stages, it will help the algorithm to conduct

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 67

Algorithm 3.3 Constrained Pareto Simulated Annealing (C-PSA)

Require: N , M , Tmax, Tmin, TG, HL, SL, α, Pi, Pf , σi, σf

1: Initialize archive
2: Set T = Tmax, xold = random solution in search space
3: for i = 1 to N do
4: for j = 1 to M do
5: xnew = perturb(xold) {Laplacian perturbation if xold is feasible, ADD

perturbation otherwise}
6: if both xold, xnew are feasible then
7: Follow procedure described in Algorithm 3.4.
8: else if xold is feasible, xnew is infeasible then
9: prob = Pi ∗ (Pf/Pi)

i/N

10: Set xold = xnew with a probability prob
11: else if xold is infeasible, xnew is feasible then
12: Set xold = xnew

13: if xnew is non-dominated w.r.t archive then
14: Add xnew to the archive
15: else if xnew dominates points in archive then
16: Add xnew to the archive.
17: Remove all dominated points from archive
18: end if
19: else if both xold, xnew are infeasible then
20: if gold ≤ gnew then
21: Set xold = xnew

22: else
23: prob = exp(−(gnew − gold)/TG)
24: Set xold = xnew with a probability prob
25: end if
26: end if
27: if Kmax solutions are rejected consecutively then
28: Restart.
29: end if
30: If |archive| ≥ SL, cluster to HL
31: end for
32: Update T, TG, σ
33: end for
34: If |archive| ≥ SL, cluster to HL

68 3. CONSTRAINT HANDLING IN OPTIMIZATION

a random walk through the search space, thereby identifying region(s) of

potential optima very swiftly; since it can be expected that the starting

point may be far from the global minimum and the search may waste a

considerable amount of time getting to an optimal region if the step size is

always small. (b) during the later stages of the SA run, it will be required to

fine-tune the variable values to get as close to the Pareto front as possible.

At this stage, a large step size will be detrimental to the search as it may not

produce any better solutions than those already existing in the archive. For

this reason, a small value of σ is used to increase the chances of improving

the solutions in the final stages.

2. If the current solution is infeasible, an effort is made to move along a

direction that will reduce the constraint violation. The ADD method,

suggested in [61, 2], is used to achieve this. Given a scalar function F ,

ADD is a derivative-free method which estimates the direction in which

F is likely to decrease, by exploring a few solutions around the current

solution. If the current solution is denoted by x, then ADD first generates

p solutions {yi}pi=1, within a small radius r from x. The descent direction

v is calculated as

v =

p
∑

i=1

wiei

where

wi = ∆Fi/

p
∑

j=1

|∆Fj|

ei = −(yi − x)/(||yi − x||)

∆Fi = F (yi)− F (x)

(3.7)

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 69

It can be seen from Equation 3.7 that if at an exploring solution yi, F (yi) >

F (x), wiei constitutes a direction opposite to (yi−x), since ∆F is negative.

On the other hand, if F (yi) < F (x), then wiei constitutes a direction

inline with (yi − x). Thus, for each yi, wiei is a direction in which F is

likely to decrease. The approximate descent direction v is calculated as a

linear combination of all these directions. The weights wi are calculated

based on the magnitude of the change in function at a given point yi

from x, normalized with the total magnitude of change summed over all

exploring points, as shown in Equation 3.7. An example of constructing

an approximate descent direction using two exploring points is shown in

Figure 3.8.

x

y
2 y

1

v

Figure 3.8: Illustration of calculation of approximate descent direction. Here F (y1) >
F (x), and F (y2) < F (x). (Figure taken from [2])

In the case of optimization problems in which multiple constraints are

present, it is a common practice to use one composite constraint value

g(x) for a solution x instead. It can be calculated by either :

• summing up all the constraint violation values : g(x) =
∑Ng

i=1 gi(x),

where Ng is the number of constraints, or

• taking the maximum constraint violation as the overall constraint

violation of the solution :g(x) = max(gi(x)), i = 1, 2, . . . Ng.

70 3. CONSTRAINT HANDLING IN OPTIMIZATION

For a constraint that is not violated, the value gi(x) is zero. Hence, for

a feasible solution (which does not violate any of the constraints), the

constraint violation value g(x) is zero, whereas for a solution that violates

any of the constraints, g(x) is positive.

In the present studies, the maximum constraint violation is considered

as the overall constraint violation (g(x) of a solution x. If the current

solution is infeasible, it is desirable that the search progress so as to reduce

the constraint violation, in order to eventually get to a feasible region.

Therefore, whenever the current solution is infeasible, ADD is used to

determine a direction which will reduce the constraint violation g(x).

Solution acceptance criterion

For the case in which both the current solution (xold) and the new solution (xnew)

are feasible, the acceptance criteria as described in Algorithm 3.4 are used. For

the cases in which the temperature (T) parameter does not play a role in the

acceptance, it can be seen that the acceptance criteria are the same as those

used in AMOSA. However, there is a significant difference in the case in which

a potentially worse solution is being considered for acceptance. In AMOSA, the

probability of acceptance is calculated as 1/(1 + exp(∆dom × T)). Since both

∆dom and T are positive quantities, this expression implies that when T is high,

the probability of acceptance is very low (behaving as a greedy search1) whereas,

for the same given value of ∆dom, when T is very low (towards the end of the

SA run), the probability of acceptance will asymptotically converge to 0.5. The

rationale behind using such a scheme is that, initially, the algorithm attempts to

1A greedy search is one which always prefers the locally optimal transitions in order to find
the global optimum

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 71

obtain good solutions in the archive using a greedy search and, later (assuming

a certain number of good solutions are already in the archive), an effort is made

to explore the search space more exhaustively by increasing the probability of

acceptance of worse solutions. This is contrary to the concept of a conventional

SA in which the algorithm initially conducts a global search to identify a good

region and later performs a (relatively) greedy search in a focused region in order

to get close to the Pareto Front.

A greedy approach at the beginning of the algorithm (such as that used in

AMOSA) may result in the search being attracted to a local optimum if the

objective functions are multimodal. For some cases, this may be a beneficial

approach, if the local optimum is not far from the global optimum, and the local

optimum (or the global optimum itself) can be found during the early stages of

the algorithm using a greedy search. However, this may not always be the case.

Considering a more generic scenario in which convergence to a local optimum is

detrimental to the global search (as it may require significant computational effort

to escape the local optimum and then converge to the global optimum), a more

conventional SA strategy is adopted here by setting the acceptance probability to

exp(−∆dom/T). The initial probability of acceptance is high, thereby giving even

worse solutions a good chance of acceptance, while ensuring that the algorithm

doesn’t get stuck in any local optimum. In the later stages of the search, the

probability of acceptance of worse solutions decreases, and the algorithm becomes

greedy in nature in order to focus the search on the potentially optimal region

of the search space. The variation in the probability of acceptance with SA

iterations (for a fixed value of ∆dom) is shown in Figure 3.9.

72 3. CONSTRAINT HANDLING IN OPTIMIZATION

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

ba
bi

lit
y

of
 a

cc
ep

ta
nc

e

AMOSA
C−PSA

Figure 3.9: Probability of acceptance of a worse solution (∆dom = 0.1)

If one or both of the current solution (xold) and trial solution (xnew) are

infeasible, the constraint violation value (g) for multiple constraints is taken as

the maximum constraint violation.

1. If xold is infeasible and xnew is feasible, xnew is accepted as the current

point. If none of the solutions in the archive dominates xnew, then xnew is

added to the archive and the solutions dominated by xnew are deleted from

the archive.

2. If xold is feasible and xnew is infeasible, then xnew is accepted with a

probability given by Equation 3.8.

prob = Pi × (Pf/Pi)
i/N (3.8)

where, Pi and Pf are prescribed values of the initial and final probabilities of

acceptance, i the current generation, and N the total number of generations.

The algorithm is started with a high value of acceptance so that the search

space can be adequately explored. Thereafter, the probability is reduced

exponentially to a low value towards the end so that convergence is not

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 73

Algorithm 3.4 Acceptance Criterion for feasible → feasible jump

1: Check the domination status of xold and xnew.
2: if xold dominates xnew then

3: ∆domavg =
(
Pk

i=1 ∆domi,new)+∆domold,new

k+1

4: (k = number of points in the archive that dominate xnew)
5: prob = exp(−∆domavg/T) (T = Current temperature)
6: Set xold = xnew with a probability prob
7: else if xold and xnew are non-dominating then
8: if xnew is dominated by k (≥ 1) points in the archive then

9: ∆domavg =
(
Pk

i=1 ∆domi,new)

k

10: prob = exp(−∆domavg/T)
11: else if xnew is non-dominating with respect to all points in the archive

then
12: Set xold = xnew and add it to the archive
13: else if xnew dominates k (≥ 1) points in the archive then
14: Set xold = xnew and add it to the archive
15: Remove the k dominated points from the archive.
16: end if
17: else if xnew dominates xold then
18: if xnew is dominated by k (≥ 1) solutions in the archive then
19: ∆dommin = minimum of the difference of domination amounts between

xnew and the k points
20: prob = 1

1+exp(−∆dommin)

21: Set the point of the archive corresponding to ∆dommin as xold with
probability prob, else set xold = xnew.

22: else if xnew is non-dominating with all points in archive then
23: Set xold = xnew and add it to the archive.
24: If xold is in the archive, remove it from the archive.
25: else if xnew dominates k other points in the archive then
26: Set xold = xnew and add it to the archive.
27: Remove all dominated points from the archive.
28: end if
29: end if

74 3. CONSTRAINT HANDLING IN OPTIMIZATION

delayed due to the acceptance of infeasible solutions.

A probabilistic jump to an infeasible solution, even though the current

solution is feasible, aids the search in escaping from the sub-optimal feasible

regions. If the feasible regions appear as islands in the objective space, the

only way the search can avoid getting trapped is by employing a sufficiently

large step size, or traversing through the infeasible region by accepting the

infeasible solutions. The drawback of using a large step size (throughout the

search) is that it loosely translates to a random search, which is inefficient.

3. If both xold and xnew are infeasible, the trial solution is accepted based on

similar principles to those used in SA, and the probabilities are calculated

using the constraint violation values.

(a) If the constraint violation of xnew is less than that of xold (gnew ≤ gold),

the trial solution is accepted.

(b) If the constraint violation of xnew is more than that of xold (gnew ≥

gold), the trial solution is accepted with a probability exp(−(gnew −

gold)/TG). Here, the parameter TG here is synonymous to anneal-

ing temperature T , but its initial value is calculated based on the

constraint violations of a few random trial solutions, instead of the

objective values. Similar to that for T , an exponential decay schedule

is used for TG.

Restart mechanism

As opposed to population based methods, single-point methods do not have

implicit means of maintaining diversity, which may result in the algorithm being

unable to escape from a local minimum. To mitigate this problem, a restart

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 75

mechanism is added to SA. In C-PSA, the search is restarted from a solu-

tion in the archive whenever a new proposal is rejected a prescribed number

of times (Kmax). Unlike some other restart methods in which temperature is

reset [50, 2], the annealing temperature is kept unchanged for the restart solution.

This is done in an effort to prevent the acceptance probability from increasing

abruptly up due to high temperature, which might cause the search to accept too

many unfavorable solutions. The restart point is chosen with equal probability

as:

1. a random point from the archive; or

2. the most isolated point in the archive, which is identified as the one with

the largest Euclidean distance from the rest of the points in the archive.

Archive update

The archive is updated whenever a new feasible solution is accepted. Unless the

new point is dominated by points in the archive, it is added to the archive and all

the dominated solutions are removed. If the number of solutions in the archive

exceed a prescribed limit (soft limit SL), clustering is used to reduce the size of

archive to a hard limit HL, similar to the procedure adopted in AMOSA. The

limits can be set depending upon the computational resources available and/or

the number of solutions desired in the final archive. A larger archive size will

require more run-time and memory, primarily due to the increased number of

non-domination checks.

76 3. CONSTRAINT HANDLING IN OPTIMIZATION

3.3.1 Numerical experiments

To evaluate the performance of the proposed algorithm, thirty independent runs

of C-PSA are conducted on CTP test problems. The average number of evalua-

tions used by C-PSA are observed. Thereafter, comparisons are performed (for

the same number of evaluations) with two MOEAs, namely NSGA-II [9] and

IDEA (proposed in the previous section).

To compare the performance of the above mentioned algorithms with that of

C-PSA, they are run for the average number of function evaluations taken by

C-PSA2. The parameters used for C-PSA are listed in Table 3.7, and those used

for IDEA and NSGA-II are listed in Table 3.8.

Table 3.7: Parameters used for the C-PSA

Parameter Value

Initial probability of feasible to infeasible jump (Pi) 0.5
Final probability of feasible to infeasible jump (Pf) 0.01
Probability of acceptance used for calculating initial temperature (PTi

) 0.9
Final temperature (Tf) 1e-5
No. of exploring solutions for ADD (Nadd) 1
Exploration radius for ADD (r) 1e-3
Initial scaling factor for Laplacian mutation (σi) 1
Final scaling factor for Laplacian mutation (σf) 0.1
Epoch length (M) 20 × nvar

Iterations (N) 200
Hard limit on no. of solutions in archive (HL) 200
Soft limit on no. of solutions in archive (SL) 300
Number of solutions rejected consecutively for restart (Kmax) 10

2In the current implementation, C-PSA is not tuned to complete the annealing schedule in
a given number of function evaluations. A step from a feasible solution requires one evaluation,
while that from an infeasible solution requires two. Since the numbers of feasible and infeasible
moves is not known beforehand, it is not possible to predict the number of function evaluations
taken by C-PSA before the run.

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 77

Table 3.8: Parameters used for NSGA-II and IDEA

Parameter Value

Population Size 200
Number of generations for CTP2, CTP3, CTP5, CTP7 : 150

for CTP4 : 400
for CTP6 : 200
for CTP8 : 500

Crossover probability 0.9
Crossover distribution index 15
Mutation probability 0.1
Mutation distribution index 20

A comparison of the hypervolume metric obtained using the various algo-

rithms is shown in Table 3.9. It is seen that C-PSA outperforms the other two

algorithms in terms of hypervolume for all problems except CTP8 for which the

performance of IDEA is marginally better than C-PSA.

Table 3.9: Comparison of hypervolume metric

C-PSA NSGA-II IDEA
Mean S.D. Mean S.D. Mean S.D.

CTP2 3.055 0.001 2.846 0.291 3.008 0.176
CTP3 2.987 0.008 2.810 0.250 2.936 0.162
CTP4 2.847 0.061 2.497 0.314 2.799 0.143
CTP5 2.997 0.019 2.709 0.304 2.940 0.159
CTP6 36.790 0.076 36.183 2.187 36.788 0.076
CTP7 3.617 0.000 3.212 0.581 3.436 0.594
CTP8 36.150 0.025 34.706 2.904 36.180 0.006

The displacement values obtained using various algorithms are listed in Ta-

ble 3.10. From the table, it is seen that C-PSA is able to outperform the other

algorithms for CTP2, CTP5 and CTP7. IDEA obtains the best results for CTP6

and CTP8, whereas NSGA-II obtains the best results for CTP3 and CTP4.

Apart from the competitive average metric values, a commendable feature

of C-PSA’s performance, as seen from the metrics, is the extremely low values

of S.D. This suggests that C-PSA obtains good quality solutions much more

78 3. CONSTRAINT HANDLING IN OPTIMIZATION

Table 3.10: Comparison of displacement metric

C-PSA NSGA-II IDEA
Mean S.D. Mean S.D. Mean S.D.

CTP2 0.0003 4.53e-5 0.0048 0.0135 0.0032 0.0083
CTP3 0.0084 0.0009 0.0063 0.0072 0.0065 0.0071
CTP4 0.0267 0.0030 0.0126 0.0091 0.0127 0.0111
CTP5 0.0008 0.0001 0.0038 0.0083 0.0034 0.0076
CTP6 0.0010 0.0008 0.0124 0.0628 0.0008 0.0007
CTP7 4.49e-5 5.60e-6 0.0100 0.0166 0.0063 0.0203
CTP8 0.0004 0.0001 0.0392 0.0865 0.0002 8.0e-6

consistently as compared to the other two algorithms.

3.3.2 Greedy v/s non-greedy search

As shown in some previous studies [53], a greedy search doesn’t necessarily

mean that the search will become trapped in a local optimum. If the step size

for perturbation is large enough to escape the local optimum, even a greedy

search can converge to a global optimum without any difficulties. This has been

demonstrated through studies on various DTLZ test problems in [53]. Thereafter,

two test problems, for which it is difficult (or with certain parameter settings,

impossible) to escape a local minimum without accepting a worse move, were

formulated. As a number of optimization problems may have such characteristics,

it is wise to use a technique such as SA whose ability to accept worse solutions

makes it sufficiently robust to cope with such problem attributes. Extending

this idea to constraint optimization, studies are presented in this section on CTP

problems using a greedy version of the proposed C-PSA. In this case, greedy

applies to both, the objectives and the constraints. The greedy version of the

proposed C-PSA is obtained by setting T, TG = 0 in Algorithms 3.3 and 3.4. The

probability of a jump from a feasible to an infeasible solution is also set to 0.

Experiments are conducted on problems CTP2-CTP8 using both the greedy

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 79

and non-greedy versions of C-PSA. Thirty independent runs are conducted for

each problem, using the same parameters as in the previous subsection. A sum-

mary of the results is shown in Table 3.11. It can be clearly seen that the greedy

C-PSA performs worse than its non-greedy counterpart, as reflected in both

the hypervolume and displacement metrics. The greedy algorithm has difficulty

escaping from the suboptimal regions, which results in inadequate convergence

within given function evaluations. The non-dominated solutions obtained from

the median run (based on the displacement metric) using the two algorithms

are shown in Figure 3.10. The figures echo the same trends as suggested by the

comparison metrics. It is seen that the solutions obtained using the non-greedy

approach are consistently closer to the true Pareto fronts as compared to those

from the greedy approach.

Table 3.11: Comparison of greedy and non-greedy C-PSA algorithm

Hypervolume Displacement

C-PSA Greedy C-PSA C-PSA Greedy C-PSA
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

CTP2 3.0546 0.0013 2.8501 0.3339 0.0003 0.0001 0.0075 0.0053
CTP3 2.9875 0.0085 2.7927 0.2958 0.0084 0.0009 0.0421 0.0041
CTP4 2.8468 0.0607 2.0976 0.2314 0.0267 0.0030 0.1731 0.0134
CTP5 2.9974 0.0191 2.7464 0.2867 0.0008 0.0008 0.0064 0.0055
CTP6 36.7901 0.0765 34.1873 5.5596 0.0010 0.0009 0.0643 1.8548
CTP7 3.6167 0.0004 3.6142 0.0140 4.49e-5 5.60e-6 7.93e-5 0.0002
CTP8 36.1496 0.0246 31.1527 6.6538 0.0004 0.0001 0.1162 2.0766

80 3. CONSTRAINT HANDLING IN OPTIMIZATION

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(a) CTP2

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(b) CTP3

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(c) CTP4

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(d) CTP5

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(e) CTP6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(f) CTP7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

f
1

f 2

Greedy C−PSA
C−PSA
Pareto−front

(g) CTP8

Figure 3.10: Comparison of greedy and non-greedy approaches. The plot shows the
non-dominated set obtained for a median run based on displacement metric

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 81

3.3.3 Discussion of C-PSA parameters

One of the limitations of using a SA is that it involves a number of parameters

which have to be appropriately chosen. In the proposed algorithm, the parameters

used are Tmax (calculated based on PTi
), TG, Tmin, N , M , HL, SL, Pi, Pf , σi,

and σf . It is often difficult to find the best match for so many parameter values

and some reasonable values have to be approximately chosen.

The choice of Tmax and Tmin are based on the amount of jump allowed in

the algorithm at the beginning and towards the final phases of convergence.

Typically, SA is started with a high value for the initial temperature Tmax in

order to explore the design space. A small value for the final temperature Tmin

ensures low acceptance probabilities for unfavorable solutions during the final

stages. Tmax can be set to infinity as done in [50], to accept all trial solutions

initially. It can also be determined based on a short “burn in” period as suggested

in [64]. In the proposed algorithm, Tmax is set using the method proposed by Ray

et al. [69], in which the initial temperature is set by allowing a large perturbation

with a high probability PTi
. In that case, the perturbation is calculated based on

evaluations of a few random solutions. In the present studies, the range of the

energy function (∆dom) is known, i.e., 0 to 1. The temperature Tmax is calculated

by allowing a large perturbation (∆dom = 0.9) with a high probability PTi
= 0.9.

Tmax = − ∆dom

ln(PTi
)

The initial value for the temperature TG (used for the acceptance probability for

infeasible → infeasible jump), is calculated based on the constraint violations

of a few random trial solutions in the same way by replacing ∆dom with the

maximum constraint violation (CVmax), found among those trial solutions. Tmin

82 3. CONSTRAINT HANDLING IN OPTIMIZATION

is set to a very low value of 1e-5, which allows almost zero probability of an

uphill move towards the termination of the algorithm. The minimum value of TG

is similarly set to 1e-5.

In the proposed algorithm, the parameters Pi and Pf are introduced to cal-

culate the acceptance probability of a jump from a feasible to an infeasible

solution. It is desirable that the acceptance probability should monotonically

decrease with the temperature. Starting from a relatively high value of Pi (=0.5)

initially to accept infeasible solutions, it is exponentially reduced to a low value

of Pf (0.01). The jump from a feasible to an infeasible solution is assigned a

finite probability of acceptance in order to search the space (including feasible

and infeasible) effectively and avoid getting trapped in local optima, especially

where the objective space consists of a disconnected feasible space. The benefit

derived by probabilistically accepting infeasible solutions is intended to be similar

to that obtained by maintaining infeasible solutions to expedite convergence in

IDEA [70].

The value of σ determines the spread of perturbation of the Laplacian dis-

tribution. It is exponentially reduced from σi to σf over the iterations. A high

value of σ can generate solutions with large jumps that have a better chance

of acceptance initially (due to high values of temperature). As the temperature

reduces, smaller jumps are favored and a lower value of σ enforces smaller jumps.

This is done in an effort to keep up with the probabilities of acceptance i.e., when

large jumps have high probabilities of acceptance, the value of σ is high in order to

create trial solutions with large steps. This aids the algorithm in doing a random

walk to identify optimal regions swiftly. When the acceptance of large jumps

becomes less probable, the value of σ is reduced, so that shorter jumps, which

have more probability of acceptance and of improving the objective values as the

3.3. CONSTRAINED PARETO SIMULATED ANNEALING 83

algorithm comes close to convergence, are attempted. In the present studies, the

initial value σi is set to 1, which implies that the algorithm can traverse the whole

range of a chosen variable in a single jump. The value is exponentially reduced

to a low final value of σf = 0.1.

The number of iterations N can be either prescribed or calculated based on the

prescribed initial temperature, final temperature and decay schedule. The value

of M should be chosen to allow for sufficient exploration at a given temperature.

In the present studies, N is set. For M , it is recommended that the value be

chosen based on the number of design variables. In the present studies, M is

calculated as 20× nvar, where nvar is the number of variables in the problem.

The temperature schedule is kept exponential for simplicity. Other rules,

such as logarithmic decrement, also exist in the literature. A more sophisticated

temperature schedule is used in [50] in which the decrement rule is adaptive

during the algorithm. The decay parameter for C-PSA is calculated based on the

initial and final temperatures, and the number of prescribed iterations N .

The radius of exploration r for the ADD method is kept the same as that

used in previous studies by Hedar and Fukushima [2]. As far as the number of

exploring solutions (p) is concerned, the number of function evaluations required

to create a trial solution increases by one for every exploring solution. Thus, this

number (p) is conservatively set to 1 so that a move can be made in the ADD

with minimum expense (i.e. two evaluations).

The hard limit HL and soft limit SL are user-defined choices and depend on

the number of non-dominated solutions desired. In this study the value of HL

is fixed to the same value as the population size used for NSGA-II and IDEA to

ensure a fair comparison. In order to avoid frequent clustering, SL should not be

too close to HL. The upper limit on SL is dictated by the available computational

84 3. CONSTRAINT HANDLING IN OPTIMIZATION

resources, as an increase in archive size will result in higher expenditure for

non-domination checks.

3.4 Performance on CEC 2009 Benchmarks

Before concluding this chapter, the performance of IDEA and C-PSA is reported

on a set of difficult constrained multi-objective test problems, proposed recently

by Zhang et al. [71] for the special session and competition in the IEEE Congress

on Evolutionary Computation (CEC) 2009. The mathematical formulation of

the problems is given in Appendix C. The final report on the performances of

the participating algorithms in the competition can be found in [72].

To compare the performance IDEA and C-PSA with these recent state-of-the-art

algorithms, the results for seven problems (CF1-CF7) from the CEC 2009 test

suite are reported. The evaluation criterion used in the competition is the

average inverse generational distance or IGD metric (which is the same as the

displacement metric used earlier in the chapter), averaged over thirty independent

runs.

For both algorithms, the parameters used are the same as those for the CTP

problems reported in previous sections. In accordance with the rules of the CEC

2009 competition, the maximum number of function evaluations is set to 300,000

and the maximum number of solutions used for evaluating the IGD is 100. If the

number of solutions in the final non-dominated set obtained for any run is more

than 100, the solutions are clustered into 100 clusters, and the solutions closest

to the centroids of these clusters are taken as representative solutions from the

non-dominated set for evaluating the IGD.

For C-PSA, the number of iterations is set to 1500 so that the algorithm

3.4. PERFORMANCE ON CEC 2009 BENCHMARKS 85

can reach the prescribed maximum limit of 300000 function evaluations. The

number of variables for these problems is nvar = 10, hence the epoch length

M is 20 × 10 = 200, which implies that the minimum number of evaluations

done by the C-PSA algorithm is 1500 × 200 = 300000. However, as two function

evaluations are required for generating a trial solution from an infeasible solution,

total evaluations reach the prescribed limit (300,000) sooner than the 1500th

iteration, at which point the algorithm is terminated. Also, HL is set to 100

which is the same as the maximum number of solutions allowed for calculating

the IGD metric. The soft limit SL is set to 150.

The mean IGD values obtained using IDEA and C-PSA are reported in

Table 3.12, along with the reported values using other algorithms. It is seen

that with the exception of CF4, C-PSA obtains competitive results (albeit not

the best) for most problems. The best performance by C-PSA is for the CF1

problem for which it is ranked 2nd. For CF3 and CF7, it shows a median

performance (ranked at 4th / 5 th), whereas for CF2 and CF5 its performance is

second worst. It is worth mentioning here that the proposed C-PSA, unlike other

algorithms in the competition, is not a population-based algorithm. To the best

of the author’s knowledge, there is no other SA-based algorithm whose results are

reported on difficult constrained problems such as those presented in this work.

The performance of IDEA is also found to be quite competitive. Again, the

best performance is for CF1 for which it is ranked 3rd. For other problems, it

is ranked either 5th or 6th. While the implementation of the constraint handling

mechanism proposed here is implemented in an EA framework, it is possible to

integrate it with other algorithms (such as DE, PSO, etc.) in order to further en-

hance the performance of multi-objective algorithms for constraint optimization.

86 3. CONSTRAINT HANDLING IN OPTIMIZATION

Table 3.12: Performance of C-PSA and IDEA on CEC 2009 benchmarks
Rank CF1 CF2 CF3

1 LiuLiAlgorithm 0.00085 DMOEADD 0.0021 DMOEADD 0.056305
2 C-PSA 0.00342 LiuLiAlgorithm 0.0042 MTS 0.10446
3 IDEA 0.00525 MOEADGM 0.008 GDE3 0.127506
4 NSGAIILS 0.00692 NSGAIILS 0.01183 C-PSA 0.1443
5 MOEADGM 0.0108 IDEA 0.01297 LiuLiAlgorithm 0.182905
6 DMOEADD 0.01131 GDE3 0.01597 IDEA 0.193059
7 MTS 0.01918 MTS 0.02677 NSGAIILS 0.23994
8 GDE3 0.0294 C-PSA 0.03403 MOEADGM 0.5134
9 DECMOSA-SQP 0.10773 DECMOSA-SQP 0.0946 DECMOSA-SQP 1000000

Rank CF4 CF5 CF6

1 DMOEADD 0.00699 DMOEADD 0.01577 LiuLiAlgorithm 0.013948
2 GDE3 0.00799 MTS 0.02077 DMOEADD 0.01502
3 MTS 0.011009 GDE3 0.06799 MTS 0.01616
4 LiuLiAlgorithm 0.01423 LiuLiAlgorithm 0.10973 NSGAIILS 0.02013
5 NSGAIILS 0.01576 NSGAIILS 0.1842 IDEA 0.037702
6 IDEA 0.061212 IDEA 0.239511 C-PSA 0.0591969
7 MOEADGM 0.0707 DECMOSA-SQP 0.41275 GDE3 0.06199
8 DECMOSA-SQP 0.15265 C-PSA 0.447294 DECMOSA-SQP 0.14782
9 C-PSA 5.88743 MOEADGM 0.5446 MOEADGM 0.2071

Rank CF7

1 DMOEADD 0.01905
2 MTS 0.02469
3 GDE3 0.04169
4 LiuLiAlgorithm 0.10446
5 C-PSA 0.185705
6 IDEA 0.186596
7 NSGAIILS 0.23345
8 DECMOSA-SQP 0.26049
9 MOEADGM 0.5356

3.5 Summary

In this chapter, two key contributions are made in terms of constraint handling

in optimization. While one is in the paradigm of EA, the other is an enhanced

SA. The two contributions are summarized below.

1. IDEA: A novel algorithm, IDEA, for constrained optimization problems is

proposed. The algorithm maintains infeasible solutions during the evolu-

tion, thereby searching the space through both the feasible and the infeasi-

ble regions. The original constrained optimization problem is reformulated

as an unconstrained optimization problem with one additional objective

3.5. SUMMARY 87

which is based on the constraint violation level of the solutions. In addi-

tion, the infeasible solutions are ranked higher than the feasible solutions

in order to focus the search near the constraint boundary. The search

through the infeasible space improves the convergence rate of IDEA over

NSGA-II which only searches through the feasible regions, as shown by the

experiments on g-series and CTP test problems. Furthermore, IDEA has

the additional advantage of providing marginally infeasible solutions for

beneficial trade-offs for design considerations.

The faster convergence rate of IDEA also makes it an attractive choice for

solving dynamic constrained optimization problems, in which the objective

and/or constraint functions can vary with time. To validate this, a study

on a set of dynamic constrained problems using IDEA is reported in [73].

However, since dynamic problems are not considered in the scope of this

thesis, the details are not discussed here.

2. C-PSA: SA is extended as C-PSA for constrained MO problems, and tested

on CTP test problems. The results obtained using C-PSA are compared

with those from NSGA-II and IDEA. C-PSA is found to deliver competitive,

and in some cases significantly better, results in terms of displacement

and hypervolume metrics. In addition, the consistency of the proposed

algorithm is reflected in very low deviations in results across multiple runs.

The study substantiates the fact that, in spite of being a single-point

method, SA (with a few enhancements) can be used to efficiently solve

constrained MO problems. The ability of C-PSA to accept uphill moves

makes it less prone to being trapped in a local minimum, thereby delivering

solutions close to the true Pareto front more consistently. The advantage of

88 3. CONSTRAINT HANDLING IN OPTIMIZATION

using a SA-based technique is also emphasized in this work by comparing

its performance with that of a greedy search.

Comparisons of the proposed algorithms with some of the most recent multi-

objective algorithms on the set of CEC 2009 benchmark problems are also re-

ported. Overall, the proposed algorithms, C-PSA and IDEA show great promise

for solving constrained optimization problems.

Chapter 4

Large-scale Optimization I: Large

Number of Objectives

Abstract

The existing Multi-objective Optimization (MO) algorithms can solve two- and

three-objective problems very efficiently. However, their performances deteriorate

rapidly for problems with a higher number of objectives, predominantly because of

the failure of Pareto-dominance sorting to induce selection pressure. To deal with

such problems, the ranking procedure has to be appropriately modified. Alterna-

tively, some problems can be reduced to fewer objectives, which can be handled

using conventional Multi-objective Evolutionary Algorithms (MOEAs). In this

chapter, three proposals are made to solve many-objective problems efficiently.

The first two are modified secondary ranking procedures for improving convergence

and diversity, while the third is a novel way of dimensionality reduction, which

requires nominal computational expense compared to existing techniques.

89

90 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

4.1 Overview of many-objective optimization

While conventional MOEAs perform reasonably well for two- and three-objective

optimization problems, their performances do not scale well with an increasing

number of objectives. This observation has been reported in a number of previous

studies [74, 75, 76]. These problems, in which the number of objectives is large,

are known as many-objective optimization problems. While there is no strict

agreement on how many objectives a problem should have in order to be classified

as a many-objective problem, it is understood that the term refers to problems

which are difficult to solve using the conventional Pareto-dominance methods

(typically containing four or more objectives).

Recently, many-objective optimization has attracted significant attention from

the Evolutionary Multi-objective Optimization (EMO) community. Many-objective

optimization problems are considered far more challenging than traditional two-

or three-objective optimization problems, for the following reasons:

1. Convergence: The main difficulty arises from the inability of Pareto- dom-

inance based schemes to generate selection pressure to drive the solutions

to the Pareto front. For a large number of objectives, most of the solutions

in the population become non-dominated very early in the evolutionary

search; a characteristic well reported in the literature [74, 75, 76].

This problem is illustrated in Figure 4.1, which shows the numbers of

non-dominated solutions in randomly initialized populations of 100 indi-

viduals for scalable test problems DTLZ1-DTLZ4[77]. It is clear from this

figure that 70% or more of the solutions of 20 objective DTLZ1-DTLZ4

problems are non-dominated even at the initialization stage. Since all

non-dominated solutions have essentially the same rank in terms of con-

4.1. OVERVIEW OF MANY-OBJECTIVE OPTIMIZATION 91

vergence, the selection pressure towards the optimum solution is lost if all

solutions (or most of them) become non-dominated.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Number of objectives

N
um

be
r

of
 n

on
−

do
m

in
at

ed
 s

ol
ut

io
ns

DTLZ1
DTLZ2
DTLZ3
DTLZ4

Figure 4.1: Numbers of non-dominated solutions in randomly initialized populations
for DTLZ. Population size used is 100.

2. Coverage: Many-objective optimization has difficulty associated with cov-

erage of the Pareto front. The number of solutions required to approximate

the Pareto front grows exponentially with the number of objectives. This

makes it very difficult to capture the whole front for a large number of

objectives, even with a reasonably large population size.

3. Visualization: There is a problem of visualization of multi-dimensional

data. The practicality of solving many-objective optimization is often

questioned owing to the fact that, even if the whole Pareto front is available,

there are no suitable means for the decision maker to visualize the front,

and thus, it is difficult to choose a preferred solution out of the innumerable

Pareto-optimal solutions.

Over the last few years, a number of efforts have been made to deal with these

issues of convergence, coverage and visualization. Some of them are highlighted

below.

92 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

1. Convergence: To improve convergence, there have been proposals such as

average ranking [78], modifying dominance relations [79], indicator-based

ranking [80] and substitute distance assignments [76].

2. Coverage: On the issue of the coverage of the Pareto front, it is often

argued that the decision maker might be interested in focusing on a specific

region of interest instead of the whole front. To aid such a preference based

search, proposals based on a reference point method [81] and a preference

articulation method [82] have been formulated.

3. Visualization: For the visualization of solutions, a number of methods,

such as Self-organizing maps [83], parallel plots [82], heatmaps [84] and web

diagrams [85], have been developed.

In spite of these improvements, the existing methods for dealing with many-objective

problems are still not nearly as efficient as they are for two- or three-objective

problems. Therefore, another direction that is relevant in the context of many-objective

optimization is dimensionality reduction. For many problems, it may be possible

to solve or analyze solutions to a many-objective problem by reducing the objec-

tive set to a much smaller set of relevant objectives. The rest of the objectives

are innately termed as redundant objectives. Identification of such redundant

objectives is an actively pursued area by the contemporary EMO community.

In the present work, efforts are made to improve upon two promising proposals

for many-objective optimization, namely improvement in secondary ranking and

dimensionality reduction:

1. Secondary ranking procedures: Conventionally, MO algorithms con-

tain a secondary ranking procedure for promoting diversity among the

4.2. EXISTING SECONDARY RANKING METHODS 93

non-dominated solutions (e.g. crowding distance ranking in NSGA-II).

However, for many-objective optimization, as non-dominance is not suffi-

cient to create convergence pressure, the secondary ranking procedures need

to be modified in order to enhance convergence as well. Two new secondary

ranking methods are proposed in order to improve both the convergence and

diversity of the solutions.

2. Dimensionality reduction: The dimensionality reduction techniques in

practice currently are often computationally overbearing. A novel method

for dimensionality reduction, which estimates the true dimensionality of

the optimization problems with relatively low computational expense, is

proposed.

The rest of the chapter is organized as follows. In Section 4.2, some of the

existing secondary ranking techniques are discussed, followed by the description

of the two proposed secondary ranking methods in Section 4.3. Numerical experi-

ments using various secondary ranking methods are presented in Section 4.4. Sim-

ilarly, the existing and proposed dimensionality reduction methods are discussed

in Section 4.5 and Section 4.6 respectively; followed by numerical experiments

using various dimensionality reduction techniques in Section 4.7. The findings of

these studies are summarized in Section 4.8.

4.2 Existing Secondary Ranking Methods

Pareto-dominance based algorithms often use what is known as a secondary

ranking technique. A secondary ranking technique is used to differentiate so-

lutions amongst those with a same non-dominance rank. In the present studies,

NSGA-II is considered as an example. The primary ranking in NSGA-II is the

94 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

non-dominated sorting of the solutions. The secondary ranking is called crowding

distance ranking (given in Chapter 3, Algorithm 3.2), which is intended to give a

higher rank to more isolated solutions, thereby preserving and promoting diversity

among the solutions. However, while the crowding distance can give a good

estimate of diversity for two- or three-objective problems, it is not able to do

so for many-objective problems [86]. This is because crowding distance assigns

the highest ranks to the solutions corresponding to the extreme values of each

objective. For a many-objective problem, since all (or most of) the solutions are

non-dominated, the search is driven mainly by the crowding distance which tries

to preserve all the extreme solutions. While preserving the extreme solutions

may be advantageous for creating a well-spread population for cases when the

population is already near the Pareto front, it is not so for the many-objective

problems. Consequently, the forced preservation of these extreme solutions may

actually hamper the convergence of the algorithm.

To overcome the drawback of selection pressure reduction due to a large

number of non-dominated solutions, a number of substitute distance assignment

measures have been suggested recently [76]. The idea is to devise measures that

would differentiate amongst the non-dominated solutions. This is in contrast

to NSGA-II, in which all the non-dominated solutions are considered equally

good in terms of convergence. Also, even though the focus is on convergence, the

secondary distance assignments also try to ensure that diversity is not lost during

the run. The following substitute distance assignment measures were suggested

in [76]:

1. Subvector dominance (SV-DOM): SV-DOM counts the number of

objectives in which a solution is better than other solutions. A solution

better in a larger number of objectives is considered a better solution. For

4.2. EXISTING SECONDARY RANKING METHODS 95

a given solution i in the population, procedure svd(i, j) counts the number

of objectives that another solution j is better than i. The values of svd(i, j)

are calculated for all j 6= i, and the largest among these values is assigned

as the distance dist(i) to the solution i. The smaller the value of dist(i),

the better is the solution.

2. -eps-dominance (-ǫ-DOM): -ǫ-DOM ranks a given solution based on the

smallest amount that should be subtracted from all objectives of the other

solutions in order to make them dominate the given solution. For a solution

i, the value mepsd(i, j) denotes the smallest amount to be subtracted from

all the objectives of solution j, so that it dominates solution i. The smallest

such value among all solutions j 6= i is the distance dist(i) assigned to the

solution i. A larger dist(i) value implies a better solution, as it means

that a large amount has to be subtracted from the objectives of the other

solutions to make them dominate the given solution.

3. Fuzzy Pareto dominance (FPD): FPD assignment is based on the Fuzzy

Pareto dominance relationship as proposed in [87]. For a solution i in

the population, the product of the bounded quotients F (i).m/F (j).m of

all objectives is calculated for all j 6= i (where F (i).m represents the mth

objective value for the ith solution). The largest value of the product among

all other solutions (such that j 6= i) is assigned to i as the distance value.

A smaller dist(i) value implies a better solution.

4. Sub-objective dominance count (SOD-CNT): SOD-CNT ranks the

solutions based on two separate rankings: SV-DOM and -ǫ-DOM. For each

solution i in the non-dominated set, a set Si is constructed as all pairs of two

single criterion distance measures: M − svd(i, j) (where M is the number

96 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

of objectives), and mepsd(i, j), for all j 6= i. The number of solutions in

the Pareto set PSOi of the set Si is assigned as dist(i) to the solution. A

larger dist(i) value implies a better solution.

A comparative study of these substitute distance assignments along with the

crowding distance was reported in [76]. It was observed that SV-DOM and

SOD-CNT have the best convergence properties, but attain poor diversity. On

the other hand, FPD has the worst convergence among the substitute distance

assignments (still better than the crowding distance), but the diversity obtained

among the solutions is good. The -ǫ-DOM was found to be a good compromise

of both convergence and diversity. It is to be noted that, unlike in conventional

practice, the diversity of solutions was compared in the variable space (for the P*

problem, described in Section 4.4) whereas the diversity is usually desired in the

objective space. In spite of its good performance, the -ǫ-DOM has a limitation,

which is described later in this chapter.

4.3 Proposed Secondary Ranking Methods

4.3.1 Cluster-sort

The first secondary ranking procedure in this chapter is referred to as Cluster-sort.

This method can be used as an alternate scheme for preserving diversity. The

proposed method doesn’t show any bias to the corner points, unlike crowd-

ing distance. The preference for corner solutions may be disadvantageous for

many-objective problems, as a large number of solutions in the front may be

“extreme” solutions in one or more of the objectives. In such cases, the distance

assigned using the crowding distance to each of those points will be infinity

4.3. PROPOSED SECONDARY RANKING METHODS 97

and hence, there will be no preferred point amongst them. The drawback of

maintaining corner solutions has also been highlighted in [86].

The Cluster-sort is outlined in Algorithm 4.1. The non-dominated front F

to be ranked is first clustered into half the number of points it contains, i.e.

|F | /2. (if |F | is odd, then ceiling(|F | /2) is used). Then within each cluster, a

point closest to its centroid is identified. The solutions closest to the centroids are

assigned a lower rank than the rest of the solutions in F . The procedure is shown

in Algorithm 4.1. For the present studies, hierarchical clustering is used. The

motivation behind clustering into |F | /2 points is that during the evolution, when

the (parent+child) population is largely non-dominated (rank 1), solutions with

good diversity could be chosen as the parent population for the next generation.

Algorithm 4.1 Cluster-sort

Require: Front data {non-dominated rank, corresponding set F}
1: for i = 1 to |F | do
2: Assign dist(i) = non-dominated rank + 0.5.
3: end for
4: A = cluster(F → |F | /2) {cluster set F into |F | /2 points}
5: C ← Centroids(A)
6: for i = 1 to |F | /2 do
7: id = min(norm(xid∈C(i) − C(i))) {Find id of closest point to ith cluster}
8: Assign dist(id) = non-dominated rank. {The points closest to centroids

get smaller dist}
9: end for

10: {Smaller dist⇒ Better solution.}

4.3.2 Modified-ǫ-DOM

The second method proposed in this chapter focuses on improving convergence as

well as diversity. A close look at the -ǫ-DOM ranking (shown in Algorithm 4.2)

reveals that if two solutions in a non-dominated set are located very close to each

other, there is a good chance that both of them will get depleted in the next

98 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

generation. For a given solution i, -ǫ-DOM ranking tries to identify a solution

j 6= i in the population, such that mepsd(i, j) is the minimum. Thereafter,

this value is assigned as dist(i). In other words, point j is used by point i

for distance assignment. The drawback of assigning the distances this way is

illustrated in Table 4.1 using a sample population containing 12 solutions. A

plot of the solutions is shown in Figure 4.2. Solutions 1 and 2 (which are almost

overlapping in the figure), receive very low dist values because the dist to Solution

1 is assigned using Solution 2 and vice-versa. As a result, both solutions receive

low ranks, and will most likely be deleted in the next generation. Ideally, if a

diverse set of points were to be chosen for the next generation, it should contain

at least one of these points (solution 1 or 2), which does not happen if the

conventional -ǫ-DOM is used.

To overcome this limitation of -ǫ-DOM, the following strategy is proposed.

While assigning the dist value to any solution A, solution B which will determine

the dist value for it is identified. Then, it is checked if solution A was used

to assign dist value to B. If not, then dist is assigned to A using solution B.

Otherwise, the dist value is calculated based on the set of points excluding

B. The same process is repeated until a solution is found which has not been

used to assign dist value to A. A pseudo-code outlining this process is shown in

Algorithm 4.3.

This method is expected to perform better than the original -ǫ-DOM for the

following two reasons:

1. During the search, -ǫ-DOM can loose two (or more) solutions if they are

very close in objective space, even if both (or all) of them are very good

solutions in terms of convergence. The modified -ǫ-DOM ensures that at

least one of the solutions among them obtains a good rank and is carried

4.3. PROPOSED SECONDARY RANKING METHODS 99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1,2 3
4

5
6

7
8

9
10

11 12

x
1

x 2

Figure 4.2: Sample population of 12 non-dominated points

Table 4.1: Ranking of a sample population of 12 non-dominated points

-ǫ-DOM Mod-ǫ-DOM
Sol. id f1 f2 conv (|f | − 1) dist sol. used rank dist sol. used rank

1 0.1090 1.0086 0.0145 0.0001 2 12 0.0001 2 12
2 0.1091 1.0075 0.0134 0.0011 1 11 0.2384 3 2
3 0.3475 0.9686 0.0290 0.0389 2 2 0.0391 4 7
4 0.3866 0.9295 0.0067 0.0391 3 1 0.0780 2 6
5 0.5705 0.8316 0.0085 0.0329 6 3 0.0329 6 8
6 0.6034 0.8156 0.0145 0.0160 5 6 0.0868 7 5
7 0.6902 0.7323 0.0063 0.0153 8 7 0.0153 8 10
8 0.7055 0.7193 0.0075 0.0130 7 8 0.0963 6 4
9 0.8295 0.5876 0.0165 0.0113 10 9 0.0113 10 11
10 0.8408 0.5786 0.0206 0.0090 9 10 0.1407 8 3
11 1.0103 0.0197 0.0105 0.0163 12 5 0.0163 12 9
12 1.0266 0 0.0266 0.0197 11 4 0.5786 10 1

on to succeeding generations to generate even better solutions.

2. From the perspective of diversity, if two points are close in the objective

space, it is desirable that at least one of them is carried forward to the

next generation, so that diverse solutions on the Pareto front can be cap-

tured. The modified -ǫ-DOM ensures this by eliminating the assignments of

mutual distance values (i.e. if solution A is used to assign dist to solution

B, then B will not be considered for A).

Table 4.1 shows the difference introduced by eliminating the mutual ranking.

100 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

Algorithm 4.2 -eps-dominance assignment (-ǫ-DOM)

Require: F {Non-dominated set}
Ns = |F | {Number of solutions in the non-dominated set}
M = Number of objectives
Define mepsd(i, j)
max = 0
for m = 1 to M do

max = max(F [j].m− F [i].m,max)
end for
return max
for i = 1 to Ns do

F [i].dist =∞
for all j 6= i do

v = mepsd(i, j)
if F [i].dist > v then F [i].dist = v

end for
end for
Larger dist ⇒ Higher rank

It can be seen that the solutions very close to each other no longer receive similar

distances or ranks; e.g., since solution 1 uses solution 2 for its dist value, solution

2 uses the next best candidate, i.e. solution 3 for its dist assignment. As a

result, solution 1 gets a poor rank, but solution 2 gets a good rank. Hence, one

representative solution is preserved to be carried over into the next generation.

On the other hand, in the conventional -ǫ-DOM, solution 1 uses solution 2 and

vice versa and in the process, both points are “killed”. From the convergence

point of view, it can be seen that points 1 and 2 have good convergence values of

0.0145 and 0.0134 respectively, which are the 7th and 6th best values respectively

among the 12 solutions. Using Mod-ǫ-DOM ranking, it is seen that solution 2

receives a good rank, which is also desirable for the convergence. At the same

time, it can be observed that solution 12 obtains a better rank than solution 11

which is disadvantageous in terms of convergence. However, the important thing

to note here is that, since both solutions are close, even by carrying solution

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 101

Algorithm 4.3 Modified-eps-DOM assignment (Mod-ǫ-DOM)

Require: F {Non-dominated set}
Ns = |F | {Number of solutions in the non-dominated set}
M = Number of objectives
for all i = 1, 2, . . . Ns do

Set F [i].used = 0 {F [i].used denotes id used by Solution i to calculate
F [i].dist}

end for
for i = 1 to Ns do

F [i].dist =∞
for all j 6= i do

if F [j].used 6= i then
v = mepsd(i, j)
if F [i].dist > v then F [i].dist = v
F [i].used = j

end if
end for

end for
Larger dist ⇒ Higher rank

12 into further generations, using crossover and mutation, solutions that are at

par or better than solution 11 will be generated. However, if the conventional

-ǫ-DOM is used, both solution 11 and 12 will receive very low rank owing to their

proximity in the objective space.

4.4 Numerical Experiments (Secondary Rank-

ing)

Following the description of the proposed secondary ranking procedures in the

previous sections, the numerical experiments to study their performance on many-

objective test problems are detailed in this section.

102 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

4.4.1 Test problems studied

To demonstrate the performance of the proposed secondary ranking procedures,

two sets of scalable problems (P* problems and DTLZ problems) are chosen:

P* problems

For most problems, as the number of objectives grows, it becomes increasingly

difficult to visually analyze the quality of the obtained non-dominated set. Kop-

pen and Yoshida [76] designed a set of problems for which the Pareto front is easy

to visualize, even for a high number of objectives. These problems are referred

to as P* problems. The problem definition is as follows.

Given a set of m fixed points (P1, P2, ..., Pm) in Euclidean place, the objective

values f1, f2, ..., fm at a given point xi are d(xi, P1), d(xi, P2),..., d(xi, Pm) respec-

tively, where d(A,B) denotes the Euclidean distance between the two points A

and B. The aim is to minimize all the objectives f1, f2, ..., fm.

The Pareto set (solutions in the variable space) of the problem is given by

the convex enclosure of the points Pi. The proof and a detailed discussion

can be found in [85]. In the present work, P* problems are studied in order

to qualitatively illustrate the performance of the proposed secondary ranking

methods. Thereafter, more rigorous numerical studies are conducted with DTLZ

test problems.

DTLZ problems

DTLZ is a set of multi-objective test problems [77] which are scalable in terms

of the number of objectives and the number of variables. Problems DTLZ2 and

DTLZ3 with up to 30 objectives are used for the present study. They are chosen

from the DTLZ suite because the distance of any solution from the Pareto front

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 103

for these two problems can be calculated as ‖f‖-1, which can be used as an

unambiguous measure of convergence. The definitions of DTLZ2 and DTLZ3

problems are given in Appendix D.1 and D.2. Performances of different secondary

ranking methods are compared using various performance metrics as described

in the following subsections.

4.4.2 Performance metrics

Since the optimum solution to a MO problem consists of not one solution but

a set of solutions, performance measures are required to evaluate the quality of

the obtained non-dominated set. Performance metrics can be broadly classified

into two categories: (a) metrics for convergence and (b) metrics for diversity. A

number of metrics to measure one or both of these qualities have been proposed

in the literature [88, 17]. Many of them essentially compare the obtained

non-dominated set with a true or representative Pareto front. Convergence is

usually measured by calculating distance of the obtained front from the refer-

ence set. Diversity is usually measured by comparing the distribution of the

non-dominated set with that of the reference set. However, when the Pareto

front is not known a priori, the choice or generation of a reference set becomes a

problem in itself. One of the suggestions in such a case [88] is to merge all the

non-dominated solutions from all the generations of EA and find the reference set

by non-dominated sorting of the combined pool. However, if the algorithm has

not converged sufficiently, the reference set so obtained will be far away from the

Pareto front and comparing the non-dominated set with this reference set may

give misleading results. This problem is more pronounced for many-objective

problems since the performance of MO algorithms is known to deteriorate as the

number of objectives increase. Test problems DTLZ2 and DTLZ3 are chosen

104 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

for the present studies as their Pareto front is known and the convergence of a

solution can be evaluated unambiguously.

Convergence metric

The problems DTLZ2 and DTLZ3 have a spherical Pareto front, given by ‖f‖ =

1, where ‖f‖ =
∑M

i=1 fi, fi > 0∀i, M denotes the number of objectives, and fi

denotes the ith objective value corresponding to the solution. The distance of

any solution from the Pareto front can be found using (‖f‖-1). This value is

computed for all solutions in the population and the mean value is then used as

a measure for convergence.

Diversity metrics

In addition to convergence to the Pareto front, it is desirable that the obtained

set possesses good diversity, i.e., the non-dominated set is adequately and evenly

spread in the objective space. A number of diversity metrics exist in the literature.

Again, many of them require a reference set which is difficult to obtain, especially

for many-objective problems. Three diversity metrics that do not use a reference

set are considered here. These metrics measure “pure” diversity, i.e., they mea-

sure sparseness of points in the set disregarding the range of the set or closeness

to the Pareto front. When examined in isolation, these diversity measures alone

may not be of great significance as a non-dominated set far away from the Pareto

front may have a much bigger spread than a set near to it. However, combined

with convergence metrics, they can provide a reasonable measure of the overall

quality of the non-dominated set. A brief description of the three diversity metrics

follows.

1. Standard deviation of the crowding distances: The Standard De-

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 105

viation (S.D.) of the crowding distance values of solutions in the final

population can give an indication of how regularly the points are spaced.

The idea was proposed in [89]. The same metric is used here, but with

a slight modification. The S.D. will be large if the non-dominated set is

spread over a larger volume (even though it may not be a better set) as

compared to a set that is spread over a smaller volume. Therefore, the S.D.

is normalized using the mean crowding distance of the population. Hence,

the metric used is given by Equation 4.1

SDC =







√

√

√

√

1

|F |

|F |
∑

i=1

(d− d̄)2






/d̄ (4.1)

The lower the value of the metric, the better the solutions are distributed

in the objective space.

2. Grid-count (D2) diversity metric: This metric was proposed by Deb

and Jain [88]. The obtained non-dominated points for an M objective

problem are projected to an (M − 1) dimensional plane. Thereafter, a

uniform grid is generated in the projected plane, and the number of occupied

grids is counted; the higher the count, the better the distribution of the

points. The recommended value for the number of grids for each objective

is suggested as Gi = N1/M−1, where N is the population size.

3. Sammon mapping-based diversity measure: In addition to the above

metrics, another metric that can be used to visualize the distribution of

points for multi-objective problems, is proposed. Sammon mapping is a

data projection technique for reducing the dimensionality of data so that

the relative topology of the points is preserved. A detailed discussion of

106 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

Sammon mapping can be found in [90]. The proposed metric is calculated

as follows.

(a) Firstly, the M -dimensional data is projected via Sammon mapping

to a 2D space. As Sammon mapping preserves the distance relations

among the multidimensional data, the distribution of the projected

data D on a 2D plane closely resembles the distribution of the points

in the objective space.

(b) The bounds of the data, as well as their orientation along any partic-

ular axes, are disregarded during the mapping. To take care of the

bounds, the 2D data is scaled using the ratio between the maximum

distance among the points in the objective and the 2D spaces. Hence,

if r1 is the maximum Euclidean distance between the data points in

objective space and s1 is the corresponding distance in the projected

space, then the scaled data values are calculated as D1 = D ∗ (r1/s1).

(c) Principle component analysis (PCA) of the scaled 2D data D1 is

performed to take care of the orientation of the mapped data.

(d) Thereafter, the 2D plane within the bounds of the data is divided into

a regular grid and the number of grids occupied by the transformed

points in the 2D plane is counted. The higher the value of this count,

the better the distribution of the points. In the present studies, a

10× 10 grid is used, resulting in 100 boxes.

The calculation of this proposed diversity metric for a 5-dimensional sample

data containing 100 points is illustrated in Figure 4.3.

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 107

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(a)

−6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

(b)

−6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

(c)

−6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

(d)

Figure 4.3: Calculation of Sammon mapping based diversity metric: (a) 5D data
projected in 2D using Sammon mapping; (b) 2D data scaled using ratio
of maximum Euclidean distance in objective space and mapped data;
(c) scaled 2D data after PCA analysis; and (d) counting of occupied

grids

4.4.3 Experimental setup and results

P* problems

For P* problems, the fixed points used to calculate the objectives are chosen as

the corners of an M -sided regular polygon in the variable (2D) space, where M is

the number of objectives (see Figure 4.4). The parameters used are: probability of

crossover = 0.9, probability of mutation = 0.1, crossover index = 15, and mutation

108 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

index = 20. A population of 20 solutions is evolved over 100 generations. The

results are shown for 15 and 20 objective P* problems.

As previously discussed, the Pareto front for a P* problem consists of all

the solutions bounded by the polygon. This implies that the more solutions an

algorithm obtains lying inside the polygon, the better its convergence. Also,

the more evenly the solutions are distributed inside the polygon, the better the

diversity among them.

The final populations from a typical run using each of the 7 strategies are

shown in Figure 4.4. It is observed that all the solutions obtained using SV-DOM

and SOD-CNT converge near to one point inside the polygon, indicating a good

convergence but poor diversity. Crowding distance, due to its preference for

extreme points, obtains solutions in the periphery of the polygon (also observed

in [76]). Cluster-sort obtains a good distribution of solutions inside the polygon

indicating good diversity, but poor convergence as indicated by the presence of a

number of solutions outside the polygon. Mod-ǫ-DOM and -ǫ-DOM show the best

trade-off between convergence and diversity, with convergence of Mod-ǫ-DOM

observed to be better than that of -ǫ-DOM. The performance of FPD is also

close to that of -ǫ-DOM.

From the preceding discussion, it is observed that Mod-ǫ-DOM is able to

improve upon the existing -ǫ-DOM ranking method. Cluster-sort mechanism is

able to obtain good diversity among the solutions but, since it is also merely a

mechanism for preserving diversity, no benefit is derived in terms of convergence.

Therefore, it would be more suitable to use this scheme in conjunction with other

fast convergence schemes (with poor diversity) such as SV-DOM and SOD-CNT.

Further studies are conducted for 20-objective P* problem by using a combination

of Cluster-sort with SV-DOM and SOD-CNT. The parameters used are the same

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 109

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x
1

x 2

crow−dist
sv−dom
−ε−dom
fpd
sod−cnt
cluster
Mod−ε−dom

(a) 15-objectives

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x
1

x 2

crow−dist
sv−dom
−ε−dom
fpd
sod−cnt
cluster
Mod−ε−dom

(b) 20-objectives

Figure 4.4: Final populations obtained for P* problems (in variable space) using various
secondary ranking methods with NSGA-II

as those used previously in this section. Results obtained using SV-DOM for the

first 40 generations and Cluster-sort thereafter (up to 100 generations) are shown

in Figure 4.5(a). Figure 4.5(b) shows the results obtained using SOD-CNT for

the first 40 generations and Cluster-sort thereafter. Also shown are the results

obtained using the schemes individually. It can be seen that, if SV-DOM or

SOD-CNT alone are used, the solutions show poor diversity. On the other hand,

if Cluster-sort alone is used, the convergence is not good, as reflected in the

presence of a number of solutions outside the 20-sided polygon. However, when

the schemes are used in combination, the solutions have better convergence (fewer

solutions outside the polygon). At the same time, the solutions show more even

distribution, indicating better diversity.

DTLZ problems

For DTLZ2 and DTLZ3, experiments are undertaken for 5-, 10-, 15-, 20-, 25-

and 30-objective problems. Twenty independent runs are performed using the 7

different secondary ranking assignments, viz., crowding distance, Cluster-sort,

-ǫ-DOM, Mod-ǫ-DOM, FPD, SV-DOM and SOD-CNT, and their results are

110 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x
1

x 2

cluster
sv−dom
cluster−sv−dom

(a)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x
1

x 2

cluster
sod−cnt
cluster−sod−cnt

(b)

Figure 4.5: Distributions of final populations obtained for 20 objective P* problem (in
variable space) using combination of schemes: (a) SV-DOM with Cluster-sort;

and (b) SOD-CNT with Cluster-sort.

compared in terms of convergence and diversity of the obtained non-dominated

sets. The crossover and mutation parameters are kept the same for each run

and across all strategies, and are listed in Table 4.2. A population size of 100 is

evolved over 200 generations. The same number of function evaluations are used

for all strategies to ensure a fair comparison.

Table 4.2: Crossover and mutation parameters

Parameter Values

Crossover probability 1.0
Mutation probability 1/n, n = number of variables
Crossover distribution index 15
Mutation distribution index 20

Convergence values obtained using various substitute distance assignments

are shown in Figure 4.6. For DTLZ2, it is seen that SOD-CNT obtains the

best convergence values except in the 30-objective case, for which SV-DOM has

a marginally better value. However, both SV-DOM and SOD-CNT have very

poor diversity values, as evident from Figures 4.7- 4.9. Cluster-sort, crowding

distance and FPD have the poorest convergence values among all the assignments.

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 111

5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

No. of objectives

C
on

ve
rg

en
ce

 m
et

ric

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(a) DTLZ2

5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

No. of objectives

C
on

ve
rg

en
ce

 m
et

ric

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(b) DTLZ3

Figure 4.6: Convergence metrics averaged over 20 runs

However, while Cluster-sort and crowding distance perform the best in terms of

diversity, FPD performs poorly in diversity as well. -ǫ-DOM and Mod-ǫ-DOM

perform well in terms of both convergence and diversity. The convergence of

these two assignments are not as good as that of SOD-CNT, but they achieve

much more diverse sets of non-dominated points compared to SOD-CNT which

tends to obtain solutions in a very concentrated region. Mod-ǫ-dom shows better

convergence values than -ǫ-DOM.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

No. of objectives

S
am

m
on

 m
ap

pi
ng

 b
as

ed
 m

et
ric

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(a) DTLZ2

5 10 15 20 25 30
10

20

30

40

50

60

70

No. of objectives

S
am

m
on

 m
ap

pi
ng

 b
as

ed
 m

et
ric

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(b) DTLZ3

Figure 4.7: Diversity metrics based on Sammon mapping, averaged over 20 runs

DTLZ3, which is a more difficult problem to solve compared to DTLZ2, puts

112 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

No. of objectives

G
rid

 c
ou

nt
 (

D
2)

 m
et

ric

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(a) DTLZ2

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

No. of objectives

G
rid

 c
ou

nt
 (

D
2)

 m
et

ric

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(b) DTLZ3

Figure 4.8: Grid count (D2) diversity metrics, averaged over 20 runs

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No. of objectives

S
D

/M
ea

n
of

 c
ro

w
di

ng
 d

is
ta

nc
e

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(a) DTLZ2

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

No. of objectives

S
D

/M
ea

n
of

 c
ro

w
di

ng
 d

is
ta

nc
e

crow−dist
−ε−dom
fpd
cluster
sv−dom
Mod−ε−dom
sod−cnt

(b) DTLZ3

Figure 4.9: Diversity metrics SDC (SD/mean of crowding distance), averaged over 20
runs

the convergence ability of the various algorithms to a tougher test. From Fig-

ure 4.6, it can be seen that -ǫ-DOM and Mod-ǫ-DOM comprehensively outperform

all other assignments in terms of convergence. Among these two, Mod-ǫ-DOM

shows better values than -ǫ-DOM. Also, the difference in their convergence values

becomes greater with increasing numbers of objectives. In terms of diversity,

crowding distance and Cluster-sort give the best results, but they have very

poor convergence. Mod-ǫ-DOM and -ǫ-DOM have comparable performances in

terms of all the three diversity metrics considered. The convergence values of

4.4. NUMERICAL EXPERIMENTS (SECONDARY RANKING) 113

SV-DOM show an interesting property. As opposed to the other assignments

in which convergence values tend to become worse as the number of objectives

is increased, SV-DOM shows an improvement in performance as the number of

objectives is increased. This is because it assigns the dist value based on the

number of objectives for which a solution is better than others. Hence, the

dist value can take at the most M unique values, where M is the number of

objectives. Therefore, as the number of objectives is increased, the probability

of the solutions in the population to get different dist value increases, thereby

creating a selection pressure for better solutions. However, when the number of

objectives is few, a number of solutions are likely to get the same dist, thereby

losing the selection pressure. But in spite of good convergence, SV-DOM loses

diversity, because unlike -ǫ-DOM, it does not have an implicit diversity-preserving

mechanism.

Individually, the performance of each secondary ranking assignment is as

follows:

1. -ǫ-DOM shows extremely good convergence values, especially for DTLZ3.

At the same time, it also maintains relatively good diversity, which makes

it an attractive ranking process for many-objective problems.

2. Mod-ǫ-DOM performs even better than -ǫ-DOM in terms of convergence.

Elimination of the mutual ranking helps it to preserve good solutions irre-

spective of closeness to other points. At the same time, it helps to maintain

good diversity by retaining at least one representative point from a “group”

of points.

3. Crowding distance shows very good values in terms of all the diversity

metrics but has the worst convergence. This is expected, as the crowding

114 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

distance operator is designed to improve the diversity, taking into consid-

eration only the sparseness of points, not convergence.

4. Cluster-sort also shows good values of the diversity metrics. It does not have

a preference for the extreme solutions unlike crowding distance. However,

the convergence is still poor, and therefore it is recommended that it be

used in conjunction with other schemes that have good convergence.

5. The performance of FPD is found to vary across the experiments. In terms

of convergence, it is better than Cluster-sort and crowding distance, but

worse than the other schemes. It is able to obtain better diversity than

SV-DOM and SOD-CNT for most, but not all, test cases. The diversity

obtained using FPD is poorer than that of the other schemes (except

SV-DOM and SOD-CNT) for all test cases.

6. SV-DOM obtains good convergence values, especially for higher objectives,

but fails to maintain diversity among the population members.

7. SOD-CNT shows also good values of convergence, but it deteriorates rapidly

as the number of objectives is increased. For lower objective problems, its

convergence is better than SV-DOM but, for higher objective problems it is

worse. However, like SV-DOM, SOD-CNT also shows very poor diversity.

This concludes the discussion on the secondary ranking procedures for many-

objective optimization problems. For a number of many-objective problems,

significant benefits can also be derived by the reduction of the objectives to fewer

relevant objectives (dimensionality reduction); which is discussed in next three

sections.

4.5. EXISTING DIMENSIONALITY REDUCTION METHODS 115

4.5 Existing Dimensionality Reduction Meth-

ods

Although many of the studies described above show great promise, in general,

MOEAs need to improve a lot before they can be deemed nearly as efficient for

many-objective optimization problems as they are for two- and three-objective

problems. Given the limitation on the availability of computational resources, it

is prudent to first investigate whether the many-objective problem is, in fact,

a many-objective problem. More often than not, the problem at hand may

have many objectives, but they may be reducible to fewer relevant objectives

which can be easily handled by existing MOEAs. The relevant objectives, in the

context of the presented studies, are the ones which are sufficient to generate

the Pareto front of the many-objective optimization problem. The rest of the

objectives, which are not necessary to obtain the Pareto front, are innately termed

redundant objectives. As pointed out in earlier studies by Saxena et al. [91], the

redundancy of objectives can result from two scenarios: (a) the objectives are of

a non-conflicting nature; or (b) the objectives are conflicting, but their removal

from the problem makes a statistically insignificant difference to the Pareto front.

Dimensionality reduction has been a widely researched topic in data analysis;

e.g., in image and signal processing, the raw data can often have very high

dimensionality. A number of schemes for transforming high-dimensional data

into lower-dimensional data have been suggested in the literature [92]. By finding

a subset of features that adequately represent high-dimensional data, these tech-

niques aid in data compression, visualization and classification. A comparative re-

view of such dimensionality reduction procedures is reported by Maaten et al. [92].

In many-objective optimization, dimensionality refers to the number of objec-

116 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

tives in the problem, and the term “dimensionality reduction” refers to finding

a (potential) subset of the original set of objectives which can represent the

optimization problem adequately. While the aim of reducing dimensionality

remains the same for both cases (i.e. data analysis data and many-objective

optimization), the difference arises due to the involvement of Pareto-dominance

in the case of many-objective optimization. As the Pareto-dominance needs to

be taken into account for dimensionality analysis, the standard dimensionality

reduction techniques cannot be directly applied to many-objective optimization

problems [93]. However, many concepts from data analysis can still be useful for

identifying a relevant set of objectives in many-objective optimization.

The early seminal work discussing the issue of redundancy of objectives is by

Gal and Leberling [94], in the context of linear optimization problems. Another

work, also dealing with linear problems relating to Multi-criteria Decision Mak-

ing (MCDM) is by Agrell [95]. More extensive studies in the domain, especially

in the context of evolutionary optimization, have taken place only in the last

decade or so. Some recent significant contributions in the field of dimensionality

reduction in many-objective optimization are summarized below.

4.5.1 Correlation-based objective reduction

One line of thought for dimensionality reduction relies on information regarding

correlations among various objectives. PCA-based reduction proposed by Saxena

and Deb [96] is among the early works using correlation. In their proposal (re-

ferred as PCA-NSGA-II), a representative set of solutions for dimensionality

analysis is obtained by running NSGA-II for a large number of generations.

Thereafter, the correlation matrix R (w.r.t. objectives) is computed using the

objective values of the final population. The eigenvalues and corresponding

4.5. EXISTING DIMENSIONALITY REDUCTION METHODS 117

eigenvectors are then analyzed in order to reduce the objectives. The procedure

starts with the original set of objectives which are eliminated iteratively based

on their contribution to the principal components and their degree of conflict

with other objectives. Once the set of objectives cannot be reduced further, the

procedure is stopped and the reduced set of objectives is declared.

Further studies revealed that the linear PCA technique has the drawback

of misinterpreting the data when it lies on sub-manifolds. To mitigate this

problem, techniques based on non-linear correlations were proposed by Saxena

and Deb [97]. While the reduction procedure remains largely the same, the

key difference lies in the way in which the correlations were calculated. In-

stead of the linear PCA, two new proposals were put forward: Correntropy

PCA (C-PCA), and Maximum variance unfolding (MVU). The corresponding

algorithms were named C-PCA-NSGA-II and MCU-PCA-NSGA-II respectively.

Using these non-linear techniques, more accurate results were obtained for up

to 50-objective DTLZ-(2,M) problems [96]. Even so, the algorithms were found

to be ineffective for a number of other problems (such as DTLZ5-(5,10) and

DTLZ5-(5,20) [96]), since the population for dimensionality analysis was not

converged near enough to the Pareto front for a meaningful analysis. To overcome

this problem, Saxena et al. [91] suggested the use of two different algorithms in

place of NSGA-II, namely NSGA-II (ǫ-dom) [76] and Infeasibility driven evolu-

tionary algorithm (IDEA) [98]. The representative sets of non-dominated solu-

tions obtained using these two algorithms were found to be much closer to the

Pareto front as compared with those obtained using NSGA-II, and DTLZ5-(5,M)

test problems with up to 30 objectives were solved accurately. A concept of

dimensionality reduction was also similarly extended to reducing the number of

constraints by Saxena and Deb [99, 100].

118 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

4.5.2 Dominance structure-based reduction

Another salient direction in dimensionality reduction for optimization problems

has been explored by Brockhoff and Zitzler [101, 102, 103]. In their studies, they

investigated how adding and omitting an objective affects problem characteris-

tics, and discuss formal definitions of conflict and redundancy of objective sets.

Subsequently, a quantification (δ) for measuring the change in the dominance

structure of a problem based on ǫ-dominance was introduced. Thereafter, two

following problems related to dimensionality reduction were identified:

1. δ-MOSS problem: If the original set of objectives is denoted by F , a δ-MOSS

problem involves finding a minimum subset F ′ ⊂ F given an error δ.

2. k-EMOSS problem: If the original objective set F has k objectives, a k-EMOSS

problem involves finding a subset F ′ containing k < k objectives, with the

smallest possible δ error.

An exact algorithm for solving the above problems was proposed by the

authors of [101]–[103]. However, the time complexity of the exact algorithm

limits its practical usage. Therefore, a few heuristic techniques, with relatively

quick run-times but no guarantee of achieving the exact solutions, were also

suggested.

In their approach, the dimensionality reduction is achieved by solving one of

the two problems defined above using a set of representative Pareto solutions. A

population obtained from the Indicator Based Evolutionary Algorithm (IBEA) [80]

is used as a representative Pareto front. The dimensionality reduction makes

the decision-making process easier for the user by providing a reduced set of

objectives, without significant loss of information regarding Pareto-dominance.

This offline technique was further extended in their later works to address online

4.5. EXISTING DIMENSIONALITY REDUCTION METHODS 119

dimensionality reduction by combining them with hypervolume based EAs [104,

105]. To this effect, three kinds of dimensionality reduction schemes were em-

bedded into the baseline algorithm Simple IBEA (SIBEA) [106]: a) the random

selection of a reduced set of objectives, b) the selection of reduced objectives

based on k-EMOSS, and c) the selection of reduced objectives based on δ-MOSS. In

their experiments, in which a fixed run-time was allotted to each algorithm, the

algorithms which try to use reduced dimensionality are able to outperform the

baseline SIBEA in terms of the hypervolume indicator, for DTLZ2BZ and DTLZ7

test problems with up to 9 objectives.

4.5.3 Feature based selection

Recently, Jaimes, Coello and Chakraborty [107] developed a dimensionality re-

duction scheme based on an unsupervised feature selection technique by Mi-

tra et al. [108]. In their approach, the objective set is first divided into homo-

geneous neighborhoods based on a correlation matrix of a non-dominated set

obtained using an EA. Conflict between the objectives takes the role of distance,

meaning that the more conflict between the objectives, the more distant they are

in the objective “conflict” space. Thereafter, the most compact neighborhood is

chosen and all the objectives in it, except the center one, are dropped as they

are the least conflicting. Similar to previously mentioned studies, two algorithms

were developed. The first finds the minimum set of objectives with the minimum

error possible whereas the second finds a subset of objectives of a given size with

minimum error possible. The algorithm is claimed to be computationally less ex-

pensive than the earlier proposed algorithms [102]. This dimensionality reduction

scheme was later integrated into a MOEA by Jaimes, Coello and Barrientos [109]

to form the Reduction Genetic Algorithm (RedGA). Two different schemes for

120 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

integration were studied. In the first, the objectives are successively reduced every

few generations of the MOEA and, towards the end of the search, all objectives

are considered again. In the second scheme, both the reduced and original sets

of objectives are considered alternately every few generations during the search.

The results obtained using these reduction techniques, combined with NSGA-II,

are found to outperform the baseline NSGA-II for DTLZ2BZ test problems with

up to 10 objectives.

At this juncture, it is important to point out a key difference between the

approaches mentioned in subsection 4.5.1 versus those mentioned in subsections

4.5.2 and 4.5.3. While all the approaches do emphasize the importance of reduc-

ing objectives, they try to solve two fundamentally different kinds of problems:

1. Problem 1 (approaches given in subsection (4.5.1)): Given a problem with

a set of k objectives F , is there a subset F ′ ⊂ F of size k < k sufficient

to solve the problem instead? If so, which k objectives form the subset

F ′? This question can also be posed as: what is the dimensionality of the

Pareto front? The approaches mentioned in subsection 4.5.1 try to find a

reduced relevant set of objectives in order to expedite the search in lieu of

using the complete set of objectives.

2. Problem 2 (approaches given in subsections 4.5.2 and 4.5.3): Given a Pareto

front obtained for a problem with a set of k objectives F , is it possible to

analyze the solutions with respect to an objective set F ′ ⊂ F of size k < k,

without losing much information regarding the dominance structure? If so,

which k objectives form the subset F? The primary aim of such approaches

is to aid in the decision making process by using fewer objectives.

Extensions to the online dimensionality reduction address the problem

4.5. EXISTING DIMENSIONALITY REDUCTION METHODS 121

of reducing objectives during the search, but are still not equivalent to

solving Problem 1, as the search is not for a relevant subset(s) of objectives,

optimizing which alone will give the solution to the original problem.

As a simple example, consider the scalable DTLZ2 test problem proposed by

Deb et al. [77]. If Problem 1 is attempted (as in [96, 97]) for an M -dimensional

DTLZ2, then the result should indicate that all M objectives are relevant, and

the problem should be solved by considering all objectives.

On the other hand, Problem 2 was solved in [103, 102], where it was indicated

that it is possible to analyze the set of solutions with respect to a smaller subset

of original objectives while preserving the dominance structure (e.g. use of 18

objectives instead of the original 25 for the 25-objective DTLZ2). However, in

such a case, it should be noted that the reduced set of identified objectives is

with respect to the set of solutions being analyzed. Identifying 18 objectives

(with δ = 0) instead of 25 indicates that solutions analyzed do not cover the

complete Pareto front (since the true Pareto front lies in the 25-objective space).

In this work, an attempt is made to solve Problem 1, i.e. to identify the

dimensionality of the Pareto front. A new approach to identify a reduced set of

objectives (if it exists), whose optimization alone should be sufficient to pro-

vide the solution to the original optimization problem, is proposed. In this

approach, the true dimensionality of a many-objective optimization problem is

identified with a relatively low computational cost by searching for a specific

set of non-dominated solutions on the Pareto front for dimensionality analysis

instead of an approximation of the whole Pareto front. Earlier studies in this field

have emphasized that both – convergence and coverage are difficult to achieve for

any many-objective optimization problem using non-dominance based techniques.

Therefore, an alternate ranking scheme that provides solutions on the boundaries

122 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

of the Pareto front is used in the proposed approach. These solutions lying on

the Pareto front are diverse in terms of the range of their objective values and

should aid in the accurate estimation of the true dimensionality of the Pareto

front.

The proposed approach, in which the dimensionality of a Pareto front is

identified using a specialized set of solutions, is discussed in detail in the next

section.

4.6 Pareto Corner Search for Dimensionality Re-

duction

4.6.1 Motivation

All dimensionality reduction schemes mentioned in the previous section essen-

tially have two major components: (a) the generation of an approximation of the

Pareto front using an MOEA, and (b) the dimensionality analysis of the obtained

approximation of the Pareto front. These components may be applied either once

or repetitively to come up with a reduced set of objectives. The approaches used

in the studies mentioned in Section 4.5 for these two components are summarized

in Table 4.3.

Table 4.3: Summary of previous works in dimensionality reduction

Reference work Pareto front approximation Dimensionality reduction Focus of work

Saxena and Deb ([96, 97]) NSGA-II PCA (linear/non-linear) Problem 1
Saxena et al. ([91]) IDEA, NSGA-II+ǫ-dominance PCA (non-linear) Problem 1
Brockhoff and Zitzler ([102, 103]) IBEA δ-MOSS, k-MOSS Problem 2
Jaimes et al. ([107, 109]) NSGA-II Feature selection Problem 2

The methods used for Pareto front approximations in the literature suffer

4.6. PARETO CORNER SEARCH FOR DIMENSIONALITY REDUCTION 123

from (at least one of) the following drawbacks.

1. If a conventional MOEA (e.g. NSGA-II) is used to generate a repre-

sentative Pareto front, it usually has to be run for a large number of

generations, thereby resulting in huge numbers of function evaluations;

e.g., in the previous studies on DTLZ5-(I,M) problems ([96, 97]), the

number of evaluations used for generating an approximate Pareto front

run in millions for every iteration of dimensionality reduction. Such large

numbers of function evaluations may not be practical, especially if each

function evaluation is expensive. More importantly, even after running for

so long, the population may still be far away from the Pareto front, which

might render extraction of any information (with respect to dimensionality

reduction) meaningless. Although the studies on DTLZ5-(I,M) problem

by Saxena et al. [91] emphasize this problem and also partly overcome it

by using better convergence techniques, the number of evaluations used is

still substantially large (500,000 per iteration).

2. On the other hand, if an indicator-based algorithm based on hypervolume

is used to generate the Pareto front, the number of evaluations required

to get close to the Pareto front is less, but the time for the hypervolume

calculation itself grows significantly with the number of objectives. This

makes it impractical to use for problems with more than 10 objectives, as

mentioned in the studies by Brockhoff and Zitzler [104]. However, some

recent studies [110] have used a faster method of hypervolume estimation

based on Monte-Carlo sampling which makes it viable to study problems

with higher numbers of objectives using hypervolume.

3. Another impediment in using a conventional MOEA to generate an ap-

124 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

proximation to the Pareto front is that it seeks an approximation to the

entire Pareto front which becomes impossible for high numbers of objectives

even with a large population size; as the number of solutions required

to approximate the Pareto front grows exponentially with the number of

objectives.

Using the current state-of-the-art MOEAs, it is difficult to get a representative

set of solutions that approximates the entire Pareto front. Therefore, it is worth-

while exploring whether a smaller set of solutions that capture the dimensionality

information of the Pareto front can be found. If so, these solutions should have

the following properties:

• Convergence: The solutions should be sufficiently close to the Pareto front

to capture the dimensionality correctly.

• Diversity: The solutions should have a good spread to ensure that variations

in all objective values are captured.

In the proposed approach, it is hypothesized that if sufficient solutions are

found on the boundaries of the Pareto front, the dimensionality of the Pareto

front can be predicted using those solutions. The search is focused on a few key

solutions on the boundaries of the Pareto front. These solutions are termed the

“corner” solutions of the Pareto front where the boundaries intersect.

Definition 3. For an M -dimensional minimization problem, an ideal point is

the point in the M -objective space corresponding to the minimum value of each

objective.

Pideal = (f ∗
1 , f ∗

2 , . . . , f ∗
M)

4.6. PARETO CORNER SEARCH FOR DIMENSIONALITY REDUCTION 125

Definition 4. Consider an optimization problem with M objectives in which

the objective set is denoted by FM . Now, consider a subset Fk of the original

objectives set, with k < M objectives. If minimizing the k-objectives in this

subset results in a single solution in the M -objective space, this solution is referred

to as a corner (or Pareto corner) solution.

For a bi-objective optimization problem, it is straightforward to visualize the

corner solutions of the Pareto front. The corner solutions correspond to the

minimum value of each objective, as shown in Figure 4.10. However, for a generic

M -objective problem, k can take values from 1 to M -1, and hence there are

2M -1 possible corners to an M -objective optimization problem. This number

corresponds to all possible sets of objectives which, when minimized, result in a

single solution. The case in which all objectives when simultaneously minimized

result in a single solution is omitted, because then the problem will reduce to a

single-objective optimization problem.

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

f
1

f 2

A

B

I

Figure 4.10: Pareto corners of a bi-objective problem (A and B are the corners, I is
the ideal point)

Out of all possible 2M -1 sets, two extreme cases can be identified as follows:

126 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

• Case 1: The corner solutions lie on a hyperplane where only one of the

objectives fm is minimum (fm = f ∗
m). An example of which is shown in

Figure 4.11(a), in which it can be seen that minimization of each objective

individually gives a single solution lying on the plane fm = f ∗
m (the corners

of the Pareto front are shown by circles).

• Case 2 : The corner solutions lie on an objective axis with origin at the ideal

point. This happens in a case in which M −1 objectives are simultaneously

minimized to their minimum value (fi = f ∗
i , ∀i 6= m). A simple example is

shown in Figure 4.11(b). For the corner solution lying on the f1 axis, both

f2 and f3 are at their minimum value, and so on.

0
0.5

1
1.5

0
0.5

1
1.5

0

0.5

1

1.5

f
1

f
2

f 3

(a) Case 1

0
0.5

1
1.5

0
0.5

1
1.5

0

0.5

1

1.5

f
1

f
2

f 3

(b) Case 2

Figure 4.11: Different types of Pareto corner solutions (corners shown using circles)

Figure 4.12 shows a case in which the Pareto front has both of the above

described cases of corner solutions, with one of the corner points lying on the f3

axis, whereas the other is on the plane f3 = f ∗
3 .

As previously mentioned, the number of possible corner solutions increases

exponentially with the number of objectives (M). If all these corner solutions are

to be explicitly searched, the search effort required will become impractical as M

4.6. PARETO CORNER SEARCH FOR DIMENSIONALITY REDUCTION 127

0
0.5

1
1.5

0
0.5

1
1.5

0

0.5

1

1.5

f
1

f
2

f 3

Figure 4.12: Combination of two different types of Pareto corner solutions (corners
shown using circles)

grows. However, in reality the actual number of corner solutions of the Pareto

front is often much less; e.g., the Pareto fronts for the widely studied scalable test

problems DTLZ [77] and WFG [111] have a maximum of M corner solutions, for

M -objective problems.

The proposed approach comprises two steps– a) finding the corner solutions,

and (b) dimensionality reduction using the corner solutions. Pareto corner search

evolutionary algorithm (PCSEA) is proposed to search for the corner solutions.

As PCSEA does not use dominance-based ranking, it does not suffer from the lim-

itation of convergence pressure loss while handling a large number of objectives.

As the evolutionary search in PCSEA is focused on finding only a few solutions

on the Pareto front, it can converge quite close to the corner solutions within

a reasonable number of evaluations. In the dimensionality reduction step, the

final population of PCSEA is used to determine whether any of the objectives

are redundant. Although the proposed dimensionality reduction is unable to

predict the exact dimensionality in some cases (as discussed later), it gives a

good estimate for a number of problems shown in the following section.

128 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

4.6.2 Pareto Corner Search Evolutionary Algorithm

(PCSEA)

PCSEA is designed to search for the corners of the Pareto front. However, not all

possible 2M−1 corners are explicitly searched for. In PCSEA, the solutions which

minimize either one of the objectives or the rest of the objectives simultaneously

are preferred and ranked higher. The minimization of M−1 objectives is achieved

using a composite scalar function, the L2 norm of these objectives. Any other

norm that tries to simultaneously minimize these objectives could also be used

instead.

The idea behind minimizing M−1 objectives using the L2 norm is that, for the

problems for which it is possible to minimize k < M−1 objectives simultaneously,

it is likely that minimizing all M − 1 objectives will give a solution close to such

a corner, provided all values of the objectives are of approximately the same

order of magnitude1. Thus, it might be possible to search for the corner solutions

corresponding to all sets of k < M − 1 objectives in a single pass. Also, it should

be kept in mind that minimizing the L2 norm will minimize the objective values

only if the objective values are positive. If the objectives can assume negative

values, a constant quantity can be added to each of them in order to ensure they

take only positive values.

For example, consider the objective functions of the single-variable problem

shown in Figure 4.13. Of the six objectives, four (f2, f4, f5, f6) have minima

at x = 0.5, making this point a corner solution as per the considered definition.

Minimization of the L2 norm of M−1 objectives (excluding f3) gives the solution

0.535 which is quite close to the actual corner solution, as shown in the figure.

1However, no scaling has been used in the presented studies in order to convert the objective
values to the same order. The objective values have been used as is.

4.6. PARETO CORNER SEARCH FOR DIMENSIONALITY REDUCTION 129

Although this may not always be the case, it is likely to be for problems with large

numbers of objectives, many of which are redundant (which can be minimized

simultaneously).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

f

f
1

f
2

f
3

f
4

f
5

f
6

L
2
(exluding f

3
)

Figure 4.13: Minimization of M − 1 objectives (excluding f3) gives a solution close to
the corner where f2, f4, f5, f6 are minimum. The problem considered here

has a single variable, shown on x-axis.

PCSEA is outlined in Algorithm 4.4. Like NSGA-II, it uses SBX crossover

and polynomial mutation operators to create offspring solutions. However, un-

like NSGA-II, which uses non-dominated sorting and crowding distance based

ranking, PCSEA uses the corner-sort ranking procedure in which the solutions

are ranked based on the individual objective values and L2 norms of all-but-one

objectives.

The corner-sort ranking procedure is described below. Firstly, the solutions

are sorted based on the increasing individual objective values and increasing

all-but-one objective values (converted to a single composite value using the L2

norm).

1. Sort the solutions in increasing order of the objective values fi, i = 1, . . . ,M .

For M objectives, this corresponds to M sorted lists.

130 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

Algorithm 4.4 Pareto Corner Search Evolutionary Algorithm (PCSEA)

Require: N {Population size}
Require: NG > 1 {Number of generations}
1: Initialize(pop1)
2: Evaluate(pop1)
3: for i = 2 to NG do
4: childpopi = Evolve(popi−1)
5: Evaluate(childpopi)
6: S ← corner-sort(popi−1+childpopi)
7: popi = S(1 : N)
8: end for

2. Sort the solutions in increasing order based on the values of the rest of the

objectives except the current one. For more than two objectives (M > 2)

a single composite value is calculated using the L2 norm of the rest of

the objectives (
∑M

j=1,j 6=i f
2
j where i = 1, . . . ,M). For M objectives, this

corresponds to M sorted lists.

This gives a total of 2M sorted lists. The solutions are picked up from each

sorted list in turn and are assigned ranks based on the order in which they are

picked up. This way, the corner solutions are promoted over generations in order

to eventually capture the corners of the Pareto front.

The corner-sort ranking procedure is illustrated using a sample population of

12 solutions for a 3-objective minimization problem (Table 4.4). The solutions

are sorted using the single and all-but-one objectives (L2 norm) and each of the

2×3 = 6 sorted lists are shown in Table 4.5. Each column shows the solution IDs

corresponding to the sorting criteria. To assign the overall ranks, the solutions

are picked in turn from each of the sorted lists.

The first rank is assigned to the first solution in the first sorted list. Thus,

the solution ID 5 is picked as the rank 1 solution. The second rank is assigned to

the first solution in the second sorted list, so the solution ID 3 is picked as rank

4.6. PARETO CORNER SEARCH FOR DIMENSIONALITY REDUCTION 131

Table 4.4: Sample population for a 3-objective problem

Solution ID f1 f2 f3

1 0.0617 0.1561 0.1173
2 0.3924 0.5660 0.0336
3 0.5446 0.0183 0.4089
4 0.6359 0.2619 0.0731
5 0.0365 0.7365 0.6474
6 0.2322 0.4008 0.0357
7 0.2440 0.3225 0.1113
8 0.6014 0.0876 0.1886
9 0.9205 0.1960 0.1153

10 0.7453 0.0277 0.2315
11 0.1123 0.0914 0.3017
12 0.0551 0.5851 0.7805

Table 4.5: Corner-sort ranking (columns represent solution IDs sorted using objective
values in Table 4.4)

Rank f1 f2 f3 f2
2 + f2

3 f2
1 + f2

3 f2
1 + f2

2

1 5 3 2 1 1 11

2 12 10 6 8 6 1

3 1 8 4 9 7 7
4 11 11 7 10 11 6
5 6 1 9 4 2 3
6 7 9 1 11 8 12
7 2 4 8 7 4 8
8 3 7 10 6 5 4
9 8 6 11 3 3 2
10 4 2 3 2 10 5
11 10 12 5 12 12 10
12 9 5 12 5 9 9

2 solution. The process is repeated, spanning all columns, and the corresponding

solutions are assigned ranks in the increasing order. The solutions selected in

the first pass are circled in Table 4.5. If a solution has already been picked,

then the next solution in the same column is picked instead. In the example, as

the solution ID 1 is already selected using f 2
2 + f 2

3 criterion, it is skipped and

the next solution, ID 6 is selected for f 2
1 + f 2

3 criterion. If there are multiple

copies of a solution in the population, the ranking is done based on the unique

solutions. The time complexity of the ranking procedure can be calculated as

132 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

follows: each list can be sorted in O(Nlog(N)) time, where N is the number of

solutions. Since there are 2M lists to be sorted, the complexity of ranking the

solutions is O(2MNlog(N)).

In addition to the corner solutions, PCSEA may also identify additional

solutions on the Pareto front boundaries. This is because the L2 norm is used to

combine minimizations of all-but-one objectives together. For exact corner points,

true minimization of the objective set has to be carried out, but this is impractical

for many-objective problems. These solutions may affect the dimensionality

analysis in some cases, as described later.

4.6.3 Dimensionality reduction

Once the corner solutions of the Pareto front are identified using PCSEA, the

dimensionality analysis of the obtained solutions is performed using a heuristic

technique proposed in this section. While conducting the dimensionality analysis,

it is assumed that the population obtained using PCSEA is converged close to

the (corners of the) Pareto front, so as to appropriately represent the dependency

of the Pareto front on various objectives. If this is the case, the Pareto-dominance

among the solutions will be largely due to the relevant objectives. Therefore, if

one of the redundant objectives is omitted from the set, there will be no (or neg-

ligible) change in the number of non-dominated solutions in the population. On

the other hand, if a relevant objective is omitted, the number of non-dominated

solutions will be significantly affected. Building on this idea, the reduction process

is done as follows.

Firstly, a representative set F is formed using the non-dominated solutions

present in the final population obtained using PCSEA. If multiple copies of a

solution are present in the population, they are removed and only unique solutions

4.6. PARETO CORNER SEARCH FOR DIMENSIONALITY REDUCTION 133

are considered2. This set F is used for the dimensionality reduction procedure.

To quantify change in the number of non-dominated solutions, a parameter R is

defined as follows:

R = NFR−fm
/NF ,

where

NF = Number of non-dominated solutions

in the reference set F

NFR−fm
= Number of non-dominated solutions

corresponding to the objective set obtained after

omitting fm from the set FR

(4.2)

where FR denotes the set of relevant objectives. If the value of R is very high for

an objective fm, this means that omitting that particular objective does not have

a significant impact on the number of non-dominated solutions, and therefore it

can be omitted from the set FR.

The set of relevant objectives FR is initialized as the original objective set

(f1, f2 . . . fM). Thereafter, starting from the first objective (f1), each objective

(fm) is omitted in turn, and changes in the number of non-dominated solutions are

observed. If the quantity R for an objective fm exceeds a user defined threshold C,

then the objective is deemed redundant and is removed from FR. This process is

repeated until all the objectives have been considered. Thereafter, FR is declared

as the final reduced objective set.

2For identifying unique solutions, a tolerance of 0.01 for the objectives is used consistently
for the examples presented in this chapter. However, it is recommended that while dealing
with objectives of different orders of magnitudes, the objectives should either be normalized
before using a constant tolerance, or the tolerance value for each objective should be computed
individually based on its range.

134 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

The result of dimensionality reduction is not entirely independent of the order

in which the objectives are omitted. Depending on the sequence of the objectives

considered, FR may contain different objectives. The redundancy of an objective

is a result of the non-conflict between the objective under consideration and one

(or more) other objective(s). Therefore, any of the non-conflicting objectives

can be included in the final set. It is essential to maintain at least one of

these non-conflicting objectives in order to maintain the dimensionality of the

Pareto front. Thus, even though each objective can be evaluated independently,

not all the redundant objectives can be dropped simultaneously. Therefore, the

objectives are dropped sequentially after considering the conflict between various

objectives at every step.

4.7 Numerical Experiments (Dimensionality Re-

duction)

In this section, numerical experiments are conducted on a number of test cases

to study the performance of Pareto corner search for dimensionality reduction.

4.7.1 Test cases

To test the performance of the proposed approach for dimensionality reduction,

three different test problems with various numbers of objectives are studied. The

test functions are DTLZ2, DTLZ5-(I,M) and WFG. The first two of these test

functions have also been studied extensively in the literature [97, 96, 91] for

dimensionality reduction.

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 135

DTLZ2

In order to build the basis for studying the performances of various MOEAs, a

scalable test problem suite DTLZ was formulated by Deb et al. [77]. DTLZ2 is

one of the test functions from the suite. The formulation of DTLZ2 can be found

in Appendix D.1. The notation DTLZ2(M) is used to refer to an M -dimensional

DTLZ2 problem.

DTLZ5-(I,M)

Another function from the DTLZ test suite, DTLZ5 was later modified to con-

struct a set of test problems in which the dimensionality of the Pareto front is

less than the original number of objectives [96]. These test problems are known

as DTLZ5-(I,M) problems. Here, I denotes the actual dimensionality of the

Pareto front and M is the original number of objectives for the problem. The

intent of formulating these problems was to critically evaluate dimensionality

reduction techniques for many-objective optimization problems. The formulation

of DTLZ5-(I,M) is given in Appendix D.3.

WFG

Both problems considered in the above subsections have concave fronts. To

demonstrate the performance of the proposed approach for problems with convex

fronts, walking fish group (WFG) problems are chosen. WFG is a flexible toolkit

for construction of scalable test problems developed by Huband et al. [111]. While

constructing a problem using this toolkit, various attributes of the test problem

can be controlled, including continuity, shape, dimensionality and modality of

the Pareto front.

136 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

0

1

2

0 1 2 3 4

0

1

2

3

4

5

f
1

f
2

f 3

(a) WFG3conv1

0

0.5

1

0
0.5

1
1.5

0

1

2

3

4

5

6

f
1

f
2

f 3

(b) WFG3conv2

Figure 4.14: Approximations of Pareto fronts for WFG3conv1 and WFG3conv2

problems (generated by evolving 200 solutions for 200 generations using
NSGA-II)

To study the performance of the proposed approach, two three-objective prob-

lems are formulated here. Both the problems are similar to the problem WFG3

defined in [111], but instead of linear shape function, the convex shape function

is used (hm=1:M = convexm). In addition, for the first problem, A1 = 1, A2 = 1 is

used, resulting in a non-degenerate Pareto front (one whose dimensionality is less

than the number of objectives) whereas, for the second problem, A1 = 1, A2 = 0

is used, resulting in a degenerate Pareto front (dimensionality reduced by one).

For convenience, these problems are referred to as WFG3conv1 and WFG3conv2.

The approximate Pareto fronts for these problems are shown in Figure 4.14. The

details regarding the construction of problems using the toolkit can be found

in [111].

4.7.2 Experimental setup

The crossover and mutation parameters for PCSEA used in the numerical exper-

iments are listed in Table 4.6. The experiments are performed on a number

of values of M for each problem. A summary of the experiments and the

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 137

corresponding numbers of evaluations (population size × number of generations)

are shown in Table 4.7. For the dimensionality reduction procedure described in

subsection 4.6.3, the threshold value C is chosen as 0.8, implying that if R ≥ 0.8

for a particular objective fm, then fm is considered to be redundant, and is

discarded from the relevant set of objectives FR. The experiments are repeated

thirty times in order to establish the repeatability of performances.

Table 4.6: Parameters used for PCSEA

Parameter Value

Crossover probability 0.9
Crossover distribution index 10
Mutation probability 0.1
Mutation distribution index 20

Table 4.7: Summary of numerical experiments

Test Problem Number of Evaluations used
objectives (M) (pop size × generations)

DTLZ2 3 100× 200
5,10 200 × 500
15,20 200 × 1000

DTLZ5-(5, M) 10,20,30, . . . 100 200 × 200

WFG 3 200 × 200

4.7.3 Results

The results obtained from experiments on the various test cases are summarized

as follows.

DTLZ2

The final population for three-objective DTLZ2 obtained using PCSEA is shown

in Figure 4.15. It can be seen that the whole population has converged to the

138 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

corners of the Pareto front of DTLZ2. The dimensionality analysis is carried

out by omitting each objective in turn (see Table 4.8), as according to the

procedure discussed in subsection 4.6.3. The first column in the table contains the

objective under consideration of being dropped. Hence, the objectives considered

for calculating R for the objective fm belong to the set FR − fm, shown in the

second column. The calculated value of R is shown in the third column. From the

table, it is clear seen that eliminating any objective induces considerable change

in the percentage of non-dominated solutions, as reflected in low values of R.

Thus, none of the objectives are redundant and, consequently, the relevant set of

objectives is identified as {f1, f2, f3}.

0
0.5

1
1.5

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f
2

f 3

Figure 4.15: Final population obtained for DTLZ2 using PCSEA

Table 4.8: Dimensionality analysis for 3-objective DTLZ2 problem

fm Objectives considered R Discard fm ?
(FR − fm)

f1 f2, f3 0.33 No
f2 f1, f3 0.33 No
f3 f1, f2 0.33 No

Similar experiments are performed on DTLZ2 with higher numbers of objec-

tives. The proposed approach is able to accurately identify the dimensionality

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 139

of the Pareto front for up to 20 objectives studied. The results for DTLZ2(M)

problems are summarized in Table 4.9. The efficiency of the approach can be

inferred from the fact that a much higher number of function evaluations (400

× 2000) was used in the earlier study [97] to solve DTLZ2(5) accurately. Using

the proposed approach, the same problem is solved accurately in a mere 200 ×

500 evaluations. In addition, a problem with a much larger number of objectives,

DTLZ2(20), is solved in only 200,000 evaluations. The last column in the table

shows the success rate, i.e. the number of times correct dimensionality is iden-

tified, out of the 30 independent runs conducted. It is seen that the approach

demonstrates consistent results over multiple trial runs.

Table 4.9: Results obtained for DTLZ2 (M) test problems

Test Problem Critical set of objectives Success rate

DTLZ2 (5) f1, f2, f3, f4, f5 30/30
DTLZ5 (10) f1, f2, . . . f10 30/30
DTLZ5 (15) f1, f2, . . . f15 30/30
DTLZ5 (20) f1, f2, . . . f20 30/30

DTLZ5 (I,M)

Next, the dimensionality of the Pareto front for DTLZ5-(2,3) is identified using

the proposed approach. The Pareto front for DTLZ5-(2,3) is a 2-dimensional

curve with endpoints (0,0,1) and (1/
√

2, 1/
√

2, 0). The final population obtained

using PCSEA for the problem is shown in Figure 4.16. It can be seen that the

corners are accurately captured by the algorithm. Thereafter, the dimensionality

analysis is performed on this converged population, as shown in Table 4.10.

From the table, it is clear that omitting f1 does not change the number of

non-dominated solutions, thereby implying redundancy of this objective. There-

fore, f1 is removed from the set of relevant objectives. For the remaining set of

140 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

objectives (f2 and f3), it is observed that removing either objective significantly

affects the number of non-dominated solutions, implying that both of them are

non-redundant. Hence, the set of relevant objectives is identified as {f2, f3}. It is

to be noted here that different sequences of omitting objectives might identify a

different set of relevant objectives. In such a case, either of the reduced objective

sets can be used for reconstructing the Pareto front; for example, in this case,

if the sequence of dropping the objectives is reversed (i.e. f3 is dropped first

instead of f1), the reduced set of objectives will be identified as {f1, f3}, as seen

from Table 4.11. To validate this observation, NSGA-II is run using the reduced

sets of objectives (both cases, {f1, f3} and {f2, f3}). The recombination and

mutation parameters used for NSGA-II are the same as those given in Table 4.6.

For ease of visualization, a small population size (20) is used. The population

is evolved for 200 generations. The original objectives are then reconstructed

from the final population, and plotted in Figure 4.17. A population obtained by

running NSGA-II on the original set of objectives is also plotted. It can be seen

that the approximations of the Pareto front obtained for all three cases coincide,

which confirms that the original 3D problem can be solved using reduced sets of

objectives identified by the proposed methodology. However, in some cases, not

all sets of reduced objectives may give the entire front, a limitation that will be

highlighted in the next section.

Table 4.10: Dimensionality analysis for DTLZ5-(2,3)

fm Objectives considered R Discard fm ?
(FR − fm)

f1 f2, f3 1.00 Yes
f2 f3 0.50 No
f3 f2 0.50 No

Next, the reducible set of test problems DTLZ-(5,M) is attempted for various

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 141

0

0.5

1

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f
2

f 3

Figure 4.16: Final population obtained for DTLZ5-(2,3) using PCSEA

0

0.2

0.4

0.6

0.8

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f
2

f 3

All Objectives
Objectives 1,3
Objectives 2,3

Figure 4.17: Non-dominated set obtained for DTLZ5-(2,3) using all objectives,
compared with those using two relevant objectives

142 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

Table 4.11: Dimensionality analysis for DTLZ5-(2,3)

fm Objectives considered R Discard fm ?
(FR − fm)

f3 f1, f2 0.50 No
f2 f1, f3 1.00 Yes
f1 f3 0.50 No

values of M . The dimensionality analysis for one case, DTLZ-(5,10) is shown in

Table 4.12. It can be seen that omitting the objectives does not substantially af-

fect the number of non-dominated solutions until all the redundant objectives are

dropped, as reflected in high R values for these objectives. However, reducing the

objective set any further results in a substantial decrease in the non-dominated

solutions, as seen from the low R value for these cases (f6, f7, . . . f10). Hence,

the reduced objective set is identified as {f6, f7, f8, f9, f10}. The results for the

rest of the test problems are summarized in Table 4.13. As for the DTLZ2 test

problems, it is seen that the algorithm is able to consistently identify the reduced

sets of objectives across multiple runs. The success rate mentioned in the last

column indicates the number of times the algorithm is able to identify these

objectives in the reduced set, out of 30 runs. For a few runs for DTLZ5 (I,M),

the dimensionality analysis identifies an additional objective apart from the last

five (thus giving a total of six relevant objectives). These cases are limited in

number, as seen in Table 4.13, and are counted as unsuccessful runs. While not

the exact minimum subset, still a close approximation of it is found in such cases.

Once again, the efficacy of the proposed approach compared with existing

approaches in the literature can be noted. The test problems shown in bold in

Table 4.13 have been reported earlier in [91]. The numbers of evaluations used in

these studies compared with those used in this study are listed in Table 4.14. It

can be seen that the numbers of evaluations required to solve the problems using

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 143

Table 4.12: Dimensionality analysis for DTLZ-(5,10)

fm Objectives considered R Discard fm ?
(FR − fm)

f1 f2, f3, f4, f5, f6, f7, f8, f9, f10 1.00 Yes
f2 f3, f4, f5, f6, f7, f8, f9, f10 1.00 Yes
f3 f4, f5, f6, f7, f8, f9, f10 1.00 Yes
f4 f5, f6, f7, f8, f9, f10 1.00 Yes
f5 f6, f7, f8, f9, f10 0.83 Yes
f6 f7, f8, f9, f10 0.33 No
f7 f6, f8, f9, f10 0.06 No
f8 f6, f7, f9, f10 0.06 No
f9 f6, f7, f8, f10 0.06 No
f10 f6, f7, f8, f9 0.06 No

Table 4.13: Results obtained for DTLZ-(I, M) test problems

Test Problem Reduced set of objectives Success rate

DTLZ5-(5-10) f6, f7, f8, f9, f10 30/30
DTLZ5-(5-20) f16, f17, f18, f19, f20 26/30
DTLZ5-(5-30) f26, f27, f28, f29, f30 24/30
DTLZ5-(5-40) f36, f37, f38, f39, f40 26/30
DTLZ5-(5,50) f46, f47, f48, f49, f50 27/30
DTLZ5-(5,60) f56, f57, f58, f59, f60 28/30
DTLZ5-(5,70) f66, f67, f68, f69, f70 25/30
DTLZ5-(5,80) f76, f77, f78, f79, f80 26/30
DTLZ5-(5,90) f86, f87, f88, f89, f90 26/30
DTLZ5-(5,100) f96, f97, f98, f99, f100 28/30

the proposed approach are significantly less than those used earlier. In addition,

DTLZ-(I,M) problems with many more objectives (up to 100) are also solved

using the proposed approach, using very few function evaluations.

Table 4.14: Number of evaluations used for DTLZ5-(5, M) test problems

Number of evaluations
Test Problem Earlier studies Present studies

DTLZ5-(5-10) [91] 2 × 100 × 5000 200 × 200
DTLZ5-(5-20) [91] 2 × 100 × 5000 200 × 200
DTLZ5-(5-30) [91] 2 × 100 × 5000 200 × 200

144 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

WFG

The final population (of size 200, evolved over 200 generations) for WFG3conv1

obtained using PCSEA is shown in Figure 4.18. The algorithm is able to capture

the corner solutions, as seen from the figure. In addition, the algorithm obtains

a few additional solutions on the curve due to the L2 norm minimization. While

these solutions do not lie on corners of the curve (intersection of the Pareto front

boundaries), they are still close to the boundaries of the Pareto front. These

solutions are present in the final population because they have low values of the

L2 norm compared with those on any of the corners. For concave problems, such

as those discussed in the previous subsections, this case does not arise.

The dimensionality analysis of the problem is shown in Table 4.15. As

the omission of any objective from the set significantly affects the number of

non-dominated solutions, all objectives are identified as relevant.

0

1

2

0 1 2 3 4

0

1

2

3

4

5

6

f
1

f
2

f 3

Figure 4.18: Final population obtained for WFG3conv1 using PCSEA

The final population (of size 200, evolved over 200 generations) for WFG3conv2

obtained using PCSEA is shown in Figure 4.19. Similar to the case of WFG3conv1,

PCSEA obtains the corner solutions along with some intermediate solutions on

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 145

Table 4.15: Dimensionality analysis for WFG3conv1 problem

fm Objectives considered R Discard fm ?
(FR − fm)

f1 f2, f3 0.03 No
f2 f1, f3 0.03 No
f3 f1, f2 0.03 No

the Pareto front boundaries. The dimensionality analysis of the obtained solu-

tions is shown in Table 4.16. As mentioned before, the choice of the parameters

A1 = 1 and A2 = 0 makes the Pareto front of the problem degenerate, as

can be seen in the Table 4.16. Only two (f2 and f3) of the three objectives

are identified as relevant whereas, with a different sequence, f1 and f3 can be

identified as relevant. To verify the dimensionality analysis, the results using

both the original and the reduced sets of objectives are shown in Figure 4.20. For

better visualization, a small population size (20) is used. Since the population

size is small, the algorithm is run for a larger number of generations (2000) to

obtain the Pareto front. The number of evaluations is the same as that used to

generate Figure 4.14(b). Also, the WFGconv2 problem takes a larger number of

evaluations than does the DTLZ5-(2,3) problem previously discussed.

0

0.5

1

0
0.5

1
1.5

0

1

2

3

4

5

6

f
1

f
2

f 3

Figure 4.19: Final population obtained for WFG3conv2 using PCSEA

146 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

1

2

3

4

5

6

f
1

f
2

f 3

All Objectives
Objectives 1,3
Objectives 2,3

Figure 4.20: Approximation of the Pareto front obtained for WFG3conv2 using all
objectives, compared with the approximations obtained using two relevant

objectives

Table 4.16: Dimensionality analysis for WFG3conv2

fm Objectives considered R Discard fm ?
(FR − fm)

f1 f2, f3 0.89 Yes
f2 f3 0.11 No
f3 f2 0.11 No

The value of C (cutoff value of R) used in the presented studies is set to 0.8.

However, from the dimensionality analysis for the problems studied, it can be seen

that, even if a cutoff value as low as 0.6 is used instead, the results would remain

unchanged as there is a significant decrease in the number of non-dominated

solutions when omitting any of the relevant objectives. This suggests that the

proposed methodology is not very sensitive to the choice of the threshold. Also,

if a higher value of threshold (say 0.9) is used, the elimination of objectives will

be stricter, meaning more conservative estimate of the reduced dimensionality

will be obtained, i.e. although the reduced set of objectives obtained will be able

to capture the front, it may not be the smallest possible subset to do so.

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 147

4.7.4 Engineering design examples

After demonstrating the performance of the proposed dimensionality reduction

procedure on commonly studied benchmark problems, its performance is investi-

gated on two real life engineering design problems: a water resource problem [112]

and a radar waveform optimization problem [113]. The experiments are detailed

in the following subsections.

Water resource problem

The water resource problem, proposed by Musselman and Talavage [112] consists

of 5 objectives and 7 constraints; and its formulation is given in Appendix E.9.

A detailed description of the problem can be found in [112]. The problem was

also studied earlier from a dimensionality reduction perspective by Saxena and

Deb [100].

In an attempt to identify the true dimensionality of the problem, PCSEA is

run on the problem, using the same crossover and mutation parameters as in the

previous section. A population of 200 solutions is evolved for 200 generations.

Table 4.17 shows the dimensionality reduction analysis of the population obtained

using PCSEA. From the table, it is clear that omitting objectives f1 and f4

does not significantly affect the number of non-dominated solutions and, hence,

they can be deemed redundant. The reduced set of objectives is identified as

{f1, f2, f5}. Omitting the objectives in a different order (for example, starting

from f5 and going down to f1), identifies the reduced objective set as {f2, f3, f5},

as shown in Table 4.18. Thus, either of these two sets can be used to reconstruct

the Pareto front. To validate this result, the water resource problem is optimized

using both sets of reduced objectives and the results compared with the those

obtained using the original set of objectives. The function value plots for the

148 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

results obtained are shown in Figure 4.21. In order to aid visualization, the

values shown in the plot are scaled appropriately by constant factors suggested

in [69]. It can be seen that the plots corresponding to the reduced set of objectives

closely match those obtained using the original set of objectives. This confirms

that either of the reduced sets obtained is sufficient to obtain the Pareto front

for the test problem.

Table 4.17: Dimensionality analysis for water resource problem

Objectives fm Objectives considered R Discard fm ?
(FR − fm)

f1 f2, f3, f4, f5 1.00 Yes
f2 f3, f4, f5 0.20 No
f3 f2, f4, f5 0.39 No
f4 f2, f3, f5 0.99 Yes
f5 f2, f3 0.05 No

Table 4.18: Dimensionality analysis for water resource problem

Objectives fm Objectives considered R Discard fm ?
(FR − fm)

f5 f1, f2, f3, f4 0.20 No
f4 f1, f2, f3, f5 0.99 Yes
f3 f1, f2, f5 1.00 Yes
f2 f1, f5 0.04 No
f1 f2, f5 0.40 No

Also shown in Figure 4.21 are the results obtained using the reduced set of ob-

jectives suggested by Saxena and Deb [100]. According to the PCA-based scheme

employed by them, the reduced set consists of objectives {f3, f4}. However, from

Figure 4.21, it can be observed that, when the problem is solved using these two

objectives, certain regions of the front are not obtained, which is reflected as

missing values in the function value plots.

Since the reduced set has fewer objectives than the original set, an MOEA is

likely to converge faster to the front using the reduced set. This can be verified

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 149

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

S
ca

le
d

fu
nc

tio
n

va
lu

es

Objective number

(a) All objectives considered

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

S
ca

le
d

fu
nc

tio
n

va
lu

es

Objective number

(b) Objectives 1,2,5 considered

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

S
ca

le
d

fu
nc

tio
n

va
lu

es

Objective number

(c) Objectives 2,3,5 considered

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

S
ca

le
d

fu
nc

tio
n

va
lu

es

Objective number

(d) Objectives 3,4 considered

Figure 4.21: Function value plots of the final populations obtained for the water
resource problem using various combination of objectives

by comparing the performances for different formulations (original objectives and

the reduced sets). For this study, multiple (30) runs of NSGA-II are conducted

for the above 4 formulations of the water resource problem, considering: (a) all

objectives; (b) objectives 1,2,5; (c) objectives 2,3,5; and (d) objectives 3,4. For

cases b-d, the rest of the objectives are reconstructed using the solutions in the

final population. The results are compared using the hypervolume metric. To

estimate the hypervolume, the MATLAB code available from [114] is used. A

higher value of hypervolume indicates better performance. The reference point for

the calculation of the hypervolume is set to max(f1),max(f2), . . . max(f5) found

across all runs performed. A very limited number of evaluations (population

size 100, evolved for 25 generations) are used for the study. The crossover and

150 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

mutation parameters used are the same as in Table 4.6. The statistics for the

hypervolume metrics across all runs is given in Table 4.19. It can be seen that

the mean hypervolume values obtained using the reduced sets of objectives (both

{f1, f2, f5} and {f2, f3, f5}) are better that those obtained using all the objectives.

The mean hypervolume values obtained using objectives {f3, f4} are inferior to

all others, indicating that using these two objectives may not be sufficient to

adequately represent the problem.

Table 4.19: Comparison of results (hypervolume) for water resource problem using
original and reduced set of objectives

f1, f2, f3, f4, f5 f2, f3, f5 f1, f2, f5 f3, f4

Mean 0.061700 0.064700 0.063400 0.059000
Best 0.075000 0.088000 0.085000 0.078000
Worst 0.046000 0.047000 0.044000 0.044000
S.D. 0.006374 0.008226 0.009608 0.008204

Radar problem

The second example considered here is that of the radar waveform design prob-

lem [113]. The problem contains 9 objectives and 4 to 12 decision variables.

Since objectives f1 to f8 are to be maximized, they are first multiplied by -1, in

order to convert the problem to one with minimization of all objectives. The

code to evaluate the objectives is taken from [115]. As in the previously reported

study [113], an unconstrained problem is considered.

To identify possible redundant objectives, PCSEA is run on the problem. A

population of 200 solutions is evolved for 100 generations, resulting in 20,000

evaluations as used in [113]. Also, since objectives f1 to f8 can assume negative

values, a constant value of 20000 is added to all the objectives while running

PCSEA, so that all the objectives take only positive values. Consequently, the

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 151

minimization of the L2 norm corresponds to the minimization of objectives, as

discussed in Section 4.6.2.

Of thirty independent runs of PCSEA, using a threshold C = 0.8, most result

in identifying 6 or 7 objectives as relevant. The different relevant sets identified

are listed in Table 4.20. Subsequently, two of them – {f3, f4, f5, f6, f7, f8, f9}

and {f3, f4, f6, f7, f8, f9} – are used to solve the problem. NSGA-II is run for

20,000 evaluations using the reduced sets (population of size 200 evolved for

100 generations). The non-dominated solutions collected from 10 independent

NSGA-II runs are shown in Figure 4.22. Also shown in the figure are the solutions

obtained from NSGA-II (10 runs) considering all 9 objectives. It can be seen that

the function value plots obtained using the identified reduced set(s) of objectives

are almost identical to that obtained using the original set.

Table 4.20: Reduced set of objectives obtained for Radar problem

Run Reduced objectives Run Reduced objectives

1 f2, f3, f4, f6, f7, f8, f9 16 f2, f3, f4, f5, f7, f8, f9

2 f2, f3, f4, f5, f6, f8, f9 17 f2, f3, f5, f6, f7, f8, f9

3 f2, f3, f4, f6, f7, f8, f9 18 f2, f3, f4, f5, f7, f8, f9

4 f3, f4, f6, f7, f8, f9 19 f3, f4, f5, f6, f7, f8, f9

5 f3, f4, f5, f6, f7, f8, f9 20 f3, f4, f5, f6, f7, f8, f9

6 f2, f3, f4, f5, f6, f7, f8, f9 21 f3, f4, f5, f6, f7, f9

7 f2, f3, f4, f5, f6, f7, f9 22 f2, f3, f4, f6, f7, f8, f9

8 f3, f4, f6, f7, f8, f9 23 f3, f4, f6, f7, f8, f9

9 f3, f4, f5, f6, f7, f8, f9 24 f3, f4, f5, f6, f7, f8, f9

10 f3, f4, f6, f7, f8, f9 25 f3, f4, f5, f6, f7, f8, f9

11 f3, f4, f5, f6, f7, f8, f9 26 f3, f4, f5, f6, f7, f8, f9

12 f2, f3, f5, f6, f7, f8, f9 27 f3, f4, f5, f6, f7, f8, f9

13 f2, f3, f4, f6, f7, f8, f9 28 f2, f3, f4, f5, f6, f7, f9

14 f3, f4, f5, f6, f7, f8, f9 29 f3, f4, f5, f6, f7, f8, f9

15 f2, f3, f4, f6, f7, f8, f9 30 f2, f3, f4, f5, f7, f8, f9

152 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

1 2 3 4 5 6 7 8 9
−20000

−15000

−10000

−5000

0

5000
O

bj
ec

tiv
e

va
lu

es

Objective number

(a) All objectives considered

1 2 3 4 5 6 7 8 9
−20000

−15000

−10000

−5000

0

5000

O
bj

ec
tiv

e
va

lu
es

Objective number

(b) Objectives 1,2 dropped

1 2 3 4 5 6 7 8 9
−20000

−15000

−10000

−5000

0

5000

O
bj

ec
tiv

e
va

lu
es

Objective number

(c) Objectives 1,2,5 dropped

Figure 4.22: Function value plots of the final populations obtained for the radar
problem using various combination of objectives

Another observation worthwhile mentioning is the concurrence of the results

with some of the predictions in [113]. From the problem formulation, it is

expected that certain objectives have a degree of correlation with each other,

e.g. the objective pairs {f1, f3}, {f5, f7}, {f2, f4}, and {f6, f7} are not in strong

conflict with each other. From Table 4.20, it is clear that any of these pairs of

objectives are not dropped simultaneously during objective reduction. For all

these runs, at least one objective of these non-conflicting sets is retained (e.g.,

either f1 or f3 is always retained; similarly at least one objective out of f2, f4 and

at least one out of f5, f6, f7 is always retained).

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 153

4.7.5 Limitations of proposed dimensionality reduction

approach

As indicated in [113], the non-dominated front obtained using NSGA-II with

20,000 evaluations for the original problem is likely to be quite close to its Pareto

front. In such a case (i.e., if the problem can be solved using the original set of

objectives), the objective reduction may not provide a major advantage in terms

of convergence. However, this experiment further verifies the validity of the pre-

sented approach for identifying possible redundant objectives for many-objective

problems.

While the proposed approach for finding the redundant objectives works effi-

ciently for the problems studied in this chapter, there are a number of limitations

to the method which might deteriorate its performance for certain problems.

While some of the limitations are due to the use of (only) corner solutions to

identify dimensionality, others relate to the way in which PCSEA is implemented

in the current work. These limitations are summarized below.

1. Firstly, since only the corner solutions are used for predicting the relevant

objectives, the resulting set may not be able to capture the entire infor-

mation regarding conflict among all the objectives. Consequently, some

of the relevant sets identified using the proposed approach may not be

able to capture the entire Pareto front. To illustrate this, consider the

three-objective, one-variable example given in Equation 4.3.

154 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

Minimize

f1(x) = x2

f2(x) = 1− (x− 0.4)2

f3(x) = 1− x2

0 ≤ x ≤ 1.

(4.3)

Individual variations in objectives are shown in Figure 4.23(a) and the

Pareto front for the problem in Figure 4.23(b). According to the definition

of the corner solutions considered here, the Pareto front for this problem has

two corners, corresponding to x = 0 and x = 1. The dimensionality analysis

using these two corner solutions reveals that either {f1,f3} or {f1,f2} can

be used as relevant objectives for the problem. However, these two sets

of objectives have different regions of conflict. f1 and f3 are conflicting in

x ∈ [0, 1], whereas f1 and f2 are conflicting for x ∈ [0.4, 1]. Thus, while

one set of objectives (f1, f3) is able to generate the whole Pareto front, the

second (f1, f2) is able to achieve only a part of it. Similarly, for certain

problems, different sets may give different regions of the Pareto front, with

or without some overlap. As only the corner solutions are being used here

to predict dimensionality, such conflicts cannot be entirely captured.

However, on the other hand, it is also important to realize that for many-

objective problems, even if only a part of the Pareto front is achievable

using a reduced set of objectives, it is still more advantageous than using

the entire set of objectives (and not getting any near-optimal solutions).

In such a case, although a user preference for which part of the front is

preferable is not currently built in to the proposed approach, it is definitely

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 155

an enhancement worth exploring.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

f
1

f
2

f
3

(a) Objective functions

0

0.5

1

0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

f
1

f
2

f 3

(b) Pareto front

Figure 4.23: Test problem 1 (Equation 4.3)

2. Another concern regarding the presented approach is its performance for

problems in which certain objective(s) do not contribute to the extremities

of the Pareto front, but contribute elsewhere. While it might seem from the

nomenclature that corner solutions only refer to the physical extremities of

the Pareto front, it is to be noted from Definition 2 that the corners include

the solutions with a minimum of each individual objective, irrespective of

which part of the front they are contributing to. Hence, even if, in theory,

it is possible to have a problem with objective(s) that contribute only to

the non-extreme regions of the Pareto front, the solutions with extreme

values of these objectives will still be preserved by the PCSEA (and used

for dimensionality reduction) irrespective of their location on the front.

3. The use of the L2 norm in the implementation of PCSEA may result in

certain additional solutions which are not corner points; for example, if

PCSEA is run for the above test problem 1, it yields three solutions, as

shown in Figure 4.24. One of these solutions does not have any objective at

156 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

its minimum value. The presence of this artifact solution overestimates the

dimensionality (as it results in identifying three relevant objectives). Such

solutions, if present, should ideally be removed from the final population

before the dimensionality analysis which, again, is a exponentially growing

computational task because all possible sets of objectives have to be consid-

ered to locate all intermediate solutions. Alternatively, a more intelligent

selection scheme, which does not result in such artifact solutions in the final

population, is required.

0

0.5

1

0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

f
1

f
2

f 3

Figure 4.24: Solutions obtained using PCSEA for test problem 1. The actual corners
for the Pareto front are shown with circles.

4. The use of a user-defined threshold to determine the relevance of the objec-

tives is also an approximation. Ideally, any change in the non-dominated

set due to exclusion of an objective under consideration should imply that

it is a relevant objective. Similarly, only if R = 1, should an objective be

deemed redundant. However, this will work only if the corner solutions

are exactly obtained as opposed to the present case in which the solutions

obtained are approximations to the Pareto corners.

Consider an optimization problem in which all the Nc exact corners con-

4.7. NUMERICAL EXPERIMENTS (DIMENSIONALITY REDUCTION) 157

sist of solutions where only one of the objectives is the minimum (e.g.,

Figure 4.11(a)). Now, if an objective is dropped, the corner solution corre-

sponding to that objective being minimum, will become dominated by other

corner solutions. As only a single corner solution is dominated each time an

objective is dropped, the R value for such a case would be 1 - 1/Nc. Now, for

a large number of corners (Nc), the value of R will approach unity. So, for

a fixed value of the threshold C, the objectives will be marked redundant

although all objectives are relevant. Thus, approximate analysis using a

threshold may be misleading for such cases.

4.7.6 Applicability of proposed dimensionality reduction

approach

Before concluding the discussion on the proposed dimensionality reduction tech-

nique, it is important to summarize some of the observations from the numerical

experiments presented in the previous sections, in order to usefully apply the

proposed approach to many-objective problems.

Firstly, it has to be kept in mind that the focus of the current work is

to investigate if certain objectives can be omitted from a problem in order to

improve its convergence with as little compromise as possible in terms of the

final solution achieved. The term redundancy is also used here accordingly, which

might differ from some other studies in which this term is used in the context

of decision making. For the many-objective optimization problems in which the

Pareto front is somehow achievable without prohibitive computational effort, the

proposed approach does not offer any significant benefits in terms of convergence,

other than perhaps reducing the number of evaluations by using a smaller set of

158 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

objectives.

Secondly, for some many-objective problems, it may be possible to find ob-

jective(s) that are completely redundant (meaning that the entire Pareto front

can be achieved without considering them); e.g., if there are two objectives with

strictly monotonic behavior throughout the search space (i.e., if both are either

increasing or decreasing), the exclusion of one of them will have no effect on the

problem. This seems to be the case for the DTLZ5-(I,M) problems studied here,

for which the exact Pareto fronts can be achieved using the reduced set. However,

in other cases, the redundant objective (as identified by the proposed approach)

may still have a contribution to the Pareto front and, thus, if that objective is

removed, the Pareto front will be compromised, i.e., some part of the Pareto front

will not be achieved. In the proposed approach, since only the extreme values of

the objectives are searched for (and used for dimensionality reduction), it is not

possible to guarantee whether the complete front can be constructed using the

identified reduced set of objectives. Evidently, this also means that the extreme

solutions are not sufficient to characterize the entire front. Therefore, depending

on the nature of conflict between the objectives, the applicability and benefits of

the proposed approach can vary.

At the same time, as previously emphasized, it is also to be considered that it

is difficult to predict such conflicts even by analyzing solutions obtained from a

conventional MOEA. This is because a) since the Pareto-dominance sorting does

not create any convergence pressure, it is difficult to obtain an approximation

close to the front with all objectives even with a very large number of evaluations;

and b) even a reasonably large population size is insufficient to approximate the

front for a many-objective problem. On the other hand, preference-based methods

may give solutions only in a specific region of interest and can, therefore, be

4.8. SUMMARY 159

misleading for a dimensionality analysis of the entire front. In such cases, the

offline dimensionality analysis using the PCSEA, which takes far fewer function

evaluations, is certainly attractive. Even if a part of the front can be recovered

using a reduced objectives (from the corner search), it is more desirable than

solving the problem using all objectives and not achieving any near optimal

solutions.

The experiments presented here on three widely studied benchmark prob-

lems (DTLZ2, DTLZ5-(I,M) and WFG) and two engineering design problems (wa-

ter resource and radar waveform), and their comparison with previously reported

studies clearly indicate that, by using the corner solutions, it is possible to esti-

mate redundancy in the objectives with reasonable accuracy and, consequently,

reduce the computational effort for achieving the Pareto front. However, like

other heuristic methods, there are elements of uncertainty in the performance,

and the best (or exact) results cannot be perpetually guaranteed.

4.8 Summary

In this chapter, the challenges involved in dealing with many-objective prob-

lems are highlighted and, to enhance existing methods, two different approaches

are discussed. One is the use of improved secondary ranking and the other is

identifying the reduced dimensionality of a problem (if applicable) with minimal

computational expense. In addition, a new diversity metric, which can be used to

evaluate various algorithms in terms of their performance in maintaining diversity,

is proposed. The major contributions of the chapter are summarized below.

160 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

Secondary ranking : Cluster-sort

The Cluster-sort ranking is proposed and its performance studied in terms of

convergence and diversity. It is observed that though it does not accelerate

convergence, it is able to achieve a good diversity among the population members.

This ranking method can be used in conjunction with approaches with faster

convergence.

Secondary ranking : Mod-ǫ-DOM

Mod-ǫ-DOM is proposed to eliminate the drawback of the conventional -ǫ- DOM

ranking procedure. The results obtained from using it on benchmark problems

indicate that it has better convergence with similar levels of diversity when

compared with -ǫ-DOM.

Dimensionality reduction using Pareto corner search

A novel methodology for predicting the true dimensionality of a Pareto front and

identifying redundant objectives, if any, is presented. The key idea is that for

many-objective problems, as it is impractical to search for an approximation for

the whole front even with a reasonably huge population size, it may be worthwhile

searching for a few key solutions instead, such as the corners of the Pareto front.

By focusing the search on these key solutions, the search can get much closer to

the front than if it were searching for the entire front. In addition, the corner

solutions have maximum diversity. The obtained set of solutions is much more

suitable for dimensionality analysis as it is closer to the Pareto front and has

good diversity in terms of range of function values. Consequently, such a set

is a better indicator of the dimensionality than that obtained by conventional

MOEAs. PCSEA to search for the corners of the Pareto front, and a heuristic

4.8. SUMMARY 161

technique identification of redundant objectives, are proposed.

The proposed methodology, while being simple, overcomes the following key

issues.

1. As PCSEA does not use non-dominated sorting, it is not likely to suffer from

the lack of selection pressure during the evolutionary search. Consequently,

it takes fewer number of evaluations to find solutions close to the Pareto

front.

2. The computational complexity of PCSEA does not grow exponentially with

the number of objectives, unlike most hypervolume-based MOEAs. This

makes it suitable for identifying dimensionality for problems with large

numbers of objectives whereas the exponential complexity of hypervolume-based

MOEAs limits their applicability to problems with up to 10 objectives or

so.

3. A very large population size is not required with growing number of ob-

jectives. This is because the proposed approach does not attempt to ap-

proximate the entire Pareto front, but only a few characteristic solutions

instead.

The efficacy of the proposed dimensionality reduction approach is demon-

strated using three benchmark test problems and two engineering optimization

problems. Dimensionality is predicted accurately for many-objective test prob-

lems containing up to 100 objectives (DTLZ5-(I,M), using significantly fewer

function evaluations than those used previously in the literature. Comparison

with previously reported studies clearly demonstrate the potential of the proposed

approach. Although the approach is not without limitations, it provides a novel

162 4. LARGE-SCALE OPTIMIZATION I: LARGE NUMBER OF OBJECTIVES

way of evaluating many-objective optimization problems and approximating the

Pareto front with, possibly, a smaller set of relevant objectives. Further studies

are required to overcome the drawback of dimensionality reduction techniques

using Pareto corner solutions (or some other key Pareto solutions), in order to

correctly identify the relevant objectives for all types of problems.

Chapter 5

Large Scale Optimization II:

Large number of variables

Abstract

While conventional Evolutionary Algorithms (EAs) can be used to efficiently

solve problems with small numbers of design variables, their performance degrades

for problems containing a large numbers of design variables because the search

space grows exponentially. To efficiently solve such a problem, the “separability”

of the problem can be effectively utilized in order to individually evolve smaller

groups (collaborators) of variables. In this chapter, a cooperative coevolutionary

algorithm with adaptive variable partitioning (CCEA-AVP) is proposed, which

automatically partitions the variables using the correlation among them. The

experiments demonstrate a competitive performance of CCEA-AVP across a range

of separable and non-separable problems with large numbers of variables.

163

164 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

5.1 Overview

In the previous chapter, the challenges posed by large numbers of objectives in

multi-objective optimization were discussed. In this chapter, another form of

a “curse of dimensionality”, which relates to the number of design variables in

the problem, is discussed. Although EAs have proven to be quite competent

for problems with a few variables, their performance tends to deteriorate for

problems with a large number of design variables. This can be attributed to the

exponential increase in the search space as the number of variables increases.

In order to efficiently solve optimization problems with a large number of

variables, the notion of dividing the variable space into multiple partitions (or

“subcomponents”) of smaller dimensions, which are then evolved individually,

was introduced by Potter and De Jong [116]. This approach is referred to as

Cooperative Coevolutionary Algorithm (CCEA). These individual partitions also

frequently interact (collaborate) with each other in order to improve global fitness.

Using this approach, the modularity of an optimization problem can be exploited

to generate solutions with higher fitness with relatively less computational ex-

pense. This approach is also commonly referred to as a “problem decomposition”

or a “divide and conquer” strategy.

While the concept of evolving subcomponents of a problem independently

and co-adaptively sounds natural and attractive, the dynamics of a CCEA is far

more complex as compared to an EA [117]. In a CCEA, in addition to basic pa-

rameters (population size, number of generations, crossover and mutation rates),

various other factors play a significant role in the algorithm’s performance; such

as the number of variable partitions, the number of generations for evolving each

subpopulation, and collaboration strategies (single best, random etc). Without

5.1. OVERVIEW 165

a careful choice of these additional parameters, the performance of basic CCEA

may exhibit a large variation in performance, ranging from good to poor, as

echoed in the studies by Popovici and De Jong [118].

In an attempt to better understand the underlying dynamics of a CCEA,

empirical studies have focused on its various aspects – choice of collaborators [119,

120], interaction frequency [121], sequential and parallel versions of information

exchange (referred to as update timing) [122], and disconnection between the

external goal and the internal behavior of CCEA [117], etc. All these studies

have highlighted the complexity of the dynamics of CCEAs.

On a parallel front, CCEA and its variants such as coevolutionary particle

swarms [123, 124], coevolutionary differential evolution [125], cooperative coevo-

lutionary models based on self-adaptive neighborhood search differential evolu-

tion [126], non-dominance based cooperative coevolution, and the original CCEA

[116] have been applied to a number of single- and multi-objective, separable and

non-separable benchmark problems.

While excellent performances of CCEAs have been reported in many studies,

very few techniques have been proposed for a methodical decomposition of a

problem to capture the variable interactions appropriately. Apart from fixed

partitioning, as proposed in the original CCEA, the most prominent scheme

used for problem decomposition is known as random grouping [126, 124, 127] in

which the variables are assigned randomly to different groups during the search,

rather than assigning the variables into a fixed group for the whole search. Some

of the previous studies [126] have suggested that the probability of assigning

two interacting variables into a single sub-component is increased by random

grouping. However, this probability decreases significantly if the number of

interacting variables is higher. In the most recent studies [128], a decomposition

166 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

based on changes in improvement intervals has been proposed.

In this chapter, the drawbacks of the conventional CCEA are highlighted.

Thereafter, a new CCEA with adaptive variable partitioning (CCEA-AVP) is

proposed, which tries to identify the best collaborators adaptively during the

search. Comparisons are conducted with conventional fixed-partition CCEAs in

order to highlight the performance improvements attained. Numerical experi-

ments on problems containing up to 100 variables are presented.

The remainder of this chapter is organized as follows. Details of the basic

CCEA are discussed in Section 5.2. The proposed algorithm (CCEA-AVP) is

described in Section 5.3. The numerical experiments and related discussions are

presented in Section 5.4. A summary of the findings is given in Section 5.5.

5.2 Background

5.2.1 Basic CCEA

The CCEA proposed by Potter and De Jong [116]1 consists of 3 major steps:

1. Decompose the decision space into multiple subsystems of smaller dimen-

sions. In the basic CCEA, the population is partitioned into s (>1) sub-

populations, containing equal (or near equal) numbers of variables. The

variables to be grouped into any particular subpopulation are chosen ran-

domly at each CCEA generation.

2. Evolve each subsystem individually for a specified number of subevolve

generations using a conventional EA. Since the complete set of variables

1Potter and De Jong used the term CCGA for their GA- based algorithm. CCEA has also
been referred to as CCA in certain studies.

5.2. BACKGROUND 167

are required in order to evaluate objective value(s), collaborators are needed

from other subpopulations in order to evolve any individual subpopulation.

The following two strategies were suggested in [116]:

(a) Single best collaboration strategy: The subpopulation under consider-

ation is combined with variable values corresponding to the best solu-

tion obtained so far. The subpopulations are evolved in a round-robin

fashion, and the best function value is continuously updated.

(b) Random/best collaboration strategy: The subpopulation is combined

with either the best or a random solution from remaining subpopula-

tions, whichever has the better global fitness value.

3. After subpopulations are evolved for a specified number of generations,

integrate them back together, so that the subpopulations can co-adapt and

interact in order to obtain high global fitness value.

The pseudo-code of the basic CCEA is given in Algorithm 5.1.

5.2.2 Why are CCEAs attractive ?

As suggested by various studies in the past [116, 126], for many large-scale

problems, CCEAs can provide much better solutions than conventional EAs.

While dealing with a large number of variables, evolving different modules of a

problem individually can expedite convergence rate appreciably as compared to

traditional EAs which attempt to evolve all variables simultaneously. A simple

illustration of this effect for four common scalable benchmark problems (viz.

Rastrigin, Schwefel, Rosenbrock and Ackely, defined in Table 5.1) is shown in

Table 5.3 (for 50 Dimension problem) and Table 5.4 (for 100 Dimension prob-

lems). Both algorithms are run for 100,000 evaluations and use identical crossover

168 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

Algorithm 5.1 Basic CCEA

Require: NG (Number of CCEA Generations), NV (Number of variables for the
problem), NP (Population size), CR (Crossover Rate), MR (Mutation Rate),
Distribution index of Crossover and Distribution index of Mutation.

1: Initialize Population pop
2: Set Solnbest as the best individual in the population
3: for cgen = 2 to NG do
4: Split popcgen into s partitions pop1,cgen, pop2,cgen . . . pops,cgen.{Each partition

consisting of randomly assigned NV /s variables. Let the Vj denote the
indices of variables contained in a partition j}

5: for i = 1 to s do
6: Construct spopi by combining variable values in partition i with

best/random variable values from other partitions
7: for subgen = 2 to NSG do
8: childpopi,subgen ← Subevolve (spopi,subgen−1)
9: Evaluate (childpopi,subgen)

10: CP ← Sort (childpopi,subgen + spopi,subgen−1)
11: spopi,subgen ← Reduce (CP)
12: end for
13: Set popcgen(Vi) = spopi

14: Update Solnbest {Update best solution}
15: end for
16: end for

and mutation parameters, listed in Table 5.2. The statistics shown are for 30

independent runs. For the CCEA, single best collaboration strategy is used2.

The number of subevolve generations used is 10. Results are obtained using 5

and 10 equal partitions in CCEA. It can be seen that, for both 50D and 100D

problems, the CCEA is able to achieve results which are, at times, orders of

magnitude better than those obtained by the EA. Figures 5.1 and 5.2 show the

convergence plot for the median run. The figures indicate faster convergence rates

of CCEA compared with that of the conventional EA. For the presented studies,

NSGA-II (equivalent to a real coded GA for single-objective optimization) is used

2Although the single best collaboration strategy makes the search greedy, it is used
consistently throughout this study, in order to limit the variation in results due to stochastic
selection of collaborators.

5.2. BACKGROUND 169

as the representative EA. This same EA is also used as the base algorithm for

implementing CCEA, i.e. SBX and polynomial mutation are used for evolving

solutions during the search. The ranking of feasible solutions is done based on

the sorted objective values, while that of infeasible solutions is done based on

constraint violations.

Table 5.1: Description of test functions used for the study
Test problem Objective function

Rastrigin f(x) =
Pn

i=1

ˆ

x2
i − 10 cos(2πxi) + 10

˜

(Minimize) −5.12 ≤ xi ≤ 5.12

Schwefel f(x) = 418.9829n −
Pn

i=1

“

xi sin
“

p

|xi|
””

(Minimize) −500 ≤ xi ≤ 500

Rosenbrock f(x) =
Pn−1

i=1

ˆ

100(xi+1 − x2
i)2 + (xi − 1)2

˜

(Minimize) −30 ≤ xi ≤ 30

Ackley f(x) = −20 exp
“

−0.2
q

1
n

Pn
i=1 x2

i

”

− exp
`

1
n

Pn
i=1 cos(2πxi)

´

+ 20 + e

(Minimize) −32 ≤ xi ≤ 32

Shifted Rotated f(x) =
Pn

i=1

ˆ

z2
i − 10 cos(2πzi) + 10

˜

Rastrigin [129] −5.12 ≤ xi ≤ 5.12, z = (x − o) × M , where
(Minimize) o is the shifted global optimum,

M is the linear Transformation Matrix (Rastrigin M D50).

G2 [55] f(x) = −

˛

˛

˛

˛

˛

P

n

i=1
cos4(xi)−2

Q

n

i=1
cos2(xi)

q

P

n

i=1
ix2

i

˛

˛

˛

˛

˛

(Maximize) Subject to g1(x) = 0.75 −
Qn

i=1 xi ≤ 0
and g2(x) =

Pn
i=1 xi − 7.5n ≤ 0

0 ≤ xi ≤ 10 (i = 1, . . . , n)

Table 5.2: Parameters used for the study
Parameter Value(s)
Population Size 100
Maximum function Evaluations 100000
Crossover probability 1.0
Mutation probability 0.1
Crossover distribution index 15
Mutation distribution index 20

Apart from obtaining better function values, the CCEA also offers an ad-

ditional advantage of saving on the cost of evolving the population. This is

because for each new solution generated during the run, CCEA has to deal with

far fewer variables as only a part of the population is evolved at a time; whereas

conventional EA has to perform recombination and mutation operators on all

170 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

Table 5.3: Results using CCEA (fixed partitions) and EA for 50D Rastrigin, Schwefel,
Rosenbrock and Ackley

Test Problem Algorithm Best Mean Worst S.D.
Fixed 5 8.731096e-03 1.776637e-02 3.059190e-02 6.328858e-03

Rastrigin Fixed 10 5.779232e-03 1.154832e-02 2.345529e-02 4.235983e-03
EA 1.662080e+01 2.367404e+01 2.875840e+01 3.018061e+00

Fixed 5 4.353910e-02 1.895843e+02 4.738343e+02 1.411670e+02
Schwefel Fixed 10 4.113830e-02 1.586701e+01 1.185799e+02 4.095543e+01

EA 5.291690e+02 1.331623e+03 2.766410e+03 4.266604e+02
Fixed 5 3.826361e+01 6.667871e+01 1.513366e+02 2.989787e+01

Rosenbrock Fixed 10 2.656768e+01 9.651688e+01 1.540250e+02 3.973974e+01
EA 4.204690e+01 8.385528e+01 1.892910e+02 3.590212e+01

Fixed 5 2.178630e-02 3.020990e-02 4.191100e-02 5.403417e-03
Ackley Fixed 10 1.804900e-02 2.684102e-02 4.221360e-02 5.015803e-03

EA 5.964560e-01 9.039441e-01 1.185250e+00 1.374061e-01

Table 5.4: Results using CCEA (fixed partitions) and EA for 100D Rastrigin, Schwefel,
Rosenbrock and Ackley

Test Problem Algorithm Best Mean Worst S.D.
Fixed 5 2.759770e+00 6.940710e+00 1.332520e+01 2.324321e+00

Rastrigin Fixed 10 2.646480e-01 5.665662e-01 2.433088e+00 5.157489e-01
EA 1.649800e+02 1.840125e+02 2.036640e+02 1.209635e+01

Fixed 5 3.653240e+02 9.442860e+02 1.550470e+03 3.218071e+02
Schwefel Fixed 10 1.507234e+00 3.610878e+02 8.309508e+02 2.072720e+02

EA 4.346710e+03 5.280894e+03 6.328550e+03 5.714214e+02
Fixed 5 8.440033e+01 1.472800e+02 2.613990e+02 4.064567e+01

Rosenbrock Fixed 10 8.771310e+01 1.311911e+02 3.167990e+02 4.927446e+01
EA 1.259630e+02 2.385880e+02 3.612080e+02 5.010407e+01

Fixed 5 2.263960e-01 2.689068e-01 3.276250e-01 2.660889e-02
Ackley Fixed 10 8.540569e-02 1.083423e-01 1.413097e-01 1.431065e-02

EA 3.975440e+00 4.172588e+00 4.423220e+00 9.634730e-02

variables simultaneously. For problems with large numbers of variables, this

may result in a considerable computational overhead for conventional EAs, as

mentioned in [116]. However, this effect may not be a major concern in terms of

computational complexity if the cost of evaluating a solution itself is considerably

higher than the cost of recombination and mutation operators.

5.2.3 Shortcomings of basic CCEA

Although it is clear from the previous subsection that the basic CCEA is capable

of achieving much better results than an EA for certain problems, its perfor-

mance is likely to deteriorate if the subsystems are not chosen appropriately. In

5.2. BACKGROUND 171

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(a) Rastrigin

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(b) Schwefel

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(c) Rosenbrock

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(d) Ackley

Figure 5.1: Convergence plot of the median runs obtained using EA and CCEA (fixed
length partitions) for 50D problems

particular, random partitioning as used in the basic CCEA performs well only if

interdependence between the variables are non-existent, which allows each sub-

system to be evolved towards the global optimum variable values independently of

other subsystems. However, if the problem has a strong interdependence among

the variables, it becomes imperative for good performance that the partitioning

is intelligent enough to create subsystems such that: (a) the variables within any

subsystems are strongly dependent on each other, and (b) interactions among dif-

ferent subsystems are minimal. The problems without substantial inter-variable

dependence are commonly referred to as separable problems, whereas problems

with strong inter-variable dependence are known as non-separable problems.

172 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

0 2 4 6 8 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(a) Rastrigin

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(b) Schwefel

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(c) Rosenbrock

0 2 4 6 8 10

x 10
4

10
−1

10
0

10
1

10
2

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(d) Ackley

Figure 5.2: Convergence plot of the median run obtained using EA and CCEA (fixed
length partitions) for 100D problems

To illustrate this, two non-separable problems are chosen. The first is the

Shifted 50D rotated Rastrigin function from the IEEE CEC 2005 benchmark

problem suite [129], and the second problem is the 50D G2 [55]. The problem

definitions are given in Table 5.1. The performance of CCEA and EA on these

two problems, using 100,000 evaluations, is shown in Table 5.5. It is seen that

the EA outperforms the CCEA for both these test problems, which is just the

opposite of what is observed for the benchmark functions studied earlier. Because

of the strong interaction between the variables, random partitioning is ineffective

for evolving the solutions individually. The median convergence plots for the

problems are shown in Figure 5.3.

5.2. BACKGROUND 173

Table 5.5: Results using CCEA (fixed partitions) and EA for 50D Shifted Rotated
Rastrigin and G2

Test Problem Algorithm Best Mean Worst S.D.
Fixed 5 1.413440e+02 2.198485e+02 3.333840e+02 5.209684e+01

Rastrigin-sr Fixed 10 1.642592e+02 3.094703e+02 6.378410e+02 9.178733e+01
EA 7.684920e+01 1.168063e+02 1.635920e+02 1.956704e+01

Fixed 5 -7.603430e-01 -6.009613e-01 -4.526570e-01 7.011863e-02
(-)G2 Fixed 10 -5.199560e-01 -3.890296e-01 -2.560880e-01 6.062659e-02

EA -7.847690e-01 -7.517443e-01 -6.991770e-01 2.251734e-02

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(a) Rastrigin-sr

0 2 4 6 8 10

x 10
4

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − 10 partitions
EA

(b) (-)G2

Figure 5.3: Convergence of the median runs obtained using EA and CCEA for 50D
problems (fixed length partitions)

The above examples make it clear that for some problems partitioning vari-

ables into non-overlapping populations and coevolving may work well while for

others keeping all variables together as a single population EA works better. In

the next section, CCEA-AVP is proposed, which exploits the dependence between

variables to adaptively create partitions, resulting in good performance of the

algorithm across a wide variety of test problems.

174 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

5.3 CCEA with Adaptive Variable Partitioning

(CCEA-AVP)

For problems with significant variable interactions, the design vectors with high

global function fitness are likely to exhibit certain mathematical relationships

among the variables, as they tend to lie on objective/constraint boundaries. The

proposed CCEA tries to derive benefit from this characteristic by capturing and

employing correlations between the variables for their effective partitioning during

the search. CCEA-AVP algorithm is outlined in Algorithm 5.2.

In the proposed CCEA algorithm, first of all, the solutions are evolved as

done in a conventional EA for a few generations; after which the partitioning

is invoked. An archive (arc) of all the solutions explored during the run is

maintained. To partition the design space into smaller subsets, the following

strategy is employed. Firstly, the solutions in arc are sorted based on their fitness

function value. Thereafter, correlations among the variables are calculated based

on the top 50% of the solutions in the sorted archive. For the presented studies,

Pearson’s correlation coefficient is used, whose magnitude varies between 0 and 1,

0 indicating no correlation, and 1 (or -1) indicating very strong correlation in the

data. Once the pairwise correlation values are obtained for each variable (D×D

matrix, where D is the number of variables), the absolute correlation values

exceeding a cutoff value are identified and collected to form a partition. This

process identifies disjoint sets with strong interdependence of variables within

the partition and weak interdependence across partitions. Such a scheme for

non-separable problems will create large block(s) of interdependent variables,

thereby behaving similar to EA. On the other hand, if the problem is separable,

the variable correlations will be considerably low, and the results closer to those

5.3. CCEA WITH ADAPTIVE VARIABLE PARTITIONING (CCEA-AVP) 175

Algorithm 5.2 CCEA with correlation based Adaptive Variable Partitioning

Require: NEA) (Number EA generations),NG (Number of CCEA Generations),
NV (Number of variables for the problem), NP (Population size),
CR (Crossover Rate), MR (Mutation Rate), Distribution index of Crossover
and Distribution index of Mutation.

1: Initialize Population (pop), Archive (arc)
2: Set Solnbest as the best individual in the population
3: Run EA for a NEA generations:
4: for gen = 2 to NEA do
5: childpopgen ← Evolve (popgen−1)
6: Evaluate (childpopgen)
7: P ← Sort (childpopgen + popgen−1)
8: popgen ← Reduce (P)
9: Update arc, Solnbest

10: end for
11: Invoke CCEA:
12: for cgen = 2 to NG do
13: Determine number of partitions s based on correlation (1 ≤ s ≤

Smax){Refer Algorithm 5.3}
14: Split popcgen into s partitions pop1,cgen, pop2,cgen . . . pops,cgen. Let the Vj

denote the indices of design parameters contained in a partition j
15: for i = 1 to s do
16: Construct spopi by combining variable values in partition i with

best/random variable values from other partitions
17: for subgen = 2 to NSG do
18: childpopi,subgen ← Subevolve (spopi,subgen−1)
19: Evaluate (childpopi,subgen)
20: CP ← Sort (childpopi,subgen + spopi,subgen−1)
21: spopi,subgen ← Reduce (CP)
22: end for
23: Set popcgen(Vi) = spopi

24: Update Solnbest {Update best solution}
25: end for
26: Update arc
27: end for

obtained using uniform partitioning. Hence, the adaptive strategy tries to opt for

the better option (whether to evolve the variables together or separately; and how

to partition the variables), depending on the problem’s behavior. The following

cases may arise while partitioning the variables:

176 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

1. The total number of correlation based partitions and uncorrelated variables

amounts to the exact number of maximum subsystems (Smax).

2. The total number of partitions based on the correlation (NSc) is less than

Smax. In such a case, if the number of remaining variables (NSu) is greater

than the remaining Nr subsystems (Nr = Smax − NSc), the remaining

variables are distributed in those Nr systems as uniformly as possible.

On the other hand, if the number of remaining variables is less than the

number of remaining subsets, then each remaining variable is assigned to

an individual subset and the left-over subsets are discarded.

3. If the number of correlation based partitions (NSc) are greater than Smax,

the excess partitions are forcibly merged into one partition so that the

total number of partitions does not exceed Smax. This limit is imposed on

partitioning because the presence of too many partitions will result in lower

interaction frequency among the partitions, which is likely to result in an

inferior performance of CCEA.

The details of the partitioning strategy are given in Algorithm 5.3. For

CCEA-AVP, different partitions can contain different numbers of variables. There-

fore, the number of subevolve generations for each partitions is not kept same.

Each partition is allotted 2×ns generations for evolution, where ns is the number

of variables in that partition. An upper bound on subevolve generations is

imposed as 10, so that the interaction frequency (calls to the top-level CCEA)

are not significantly reduced.

5.4. NUMERICAL EXPERIMENTS 177

Algorithm 5.3 Partitioning strategy for CCEA-AVP

Require: arc (Archive of explored solutions), Smax (maximum number of
subsystems), NV (number of variables for the problem), Correlation
Threshold T

1: A = Sort (arc) {Sort the solutions in terms of function finesses}
2: Na = |A|
3: C ← Correlation (A(1 : Na/2))
4: for i = 1 to NV do
5: Si ← {j|Ci,j ≥ T}
6: end for
7: Sc← {Si ; |Si| > 1} (Sets of variables correlated with at least one other

variable)
8: Su← {Si ; |Si| = 1} (Variables not correlated with any other variable)
9: while { Si ∩ Sj 6= φ∀{Si, Sj} ∈ Sc, i 6= j } do

10: if Si ∩ Sj 6= φ (where Si, Sj ∈ Sc) then
11: Snew = Si ∪ Sj (Merge sets with common elements)
12: Sc← Insert Snew

13: Sc← Delete Si, Sj

14: end if
15: end while
16: NSc = Number of sets in Sc
17: if NSc

≥ Smax then
18: ScSmax−1 ← {ScSmax−1 ∪ ScSmax

∪ . . . ∪ ScNSc
} ∪ Su

19: else
20: Nr = Smax − NSc (Number of subsystems left after assigning correlation

based partitions)
21: Su← Distribute Su into Nr partitions uniformly.
22: S = {Sc, Su}
23: end if

5.4 Numerical Experiments

Six test functions, listed in Table 5.1, are used to study the proposed algorithm.

The first four (Rastrigin, Schwefel, Rosenbrock, Ackley) have relatively low vari-

able interactions, where as the remaining two (Shifted Rotated Rastrigin and G2)

are highly non-separable problems.

To study the performance of various algorithms on the aforementioned test

functions, multiple (30) independent runs using each algorithm (for each combi-

178 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

nation of parameters) on all test functions are conducted. The parameters used

for the EA and CCEA are listed in Table 5.6. For Rastrigin, Schwefel, Rosenbrock

and Ackley functions, 50D and 100D problems are studied, whereas for the

Shifted Rotated Rastrigin and G2 functions, only 50D problems are considered.

Experiments are conducted using different numbers of partitions (number of fixed

partitions for the basic CCEA and maximum partitions for the CCEA-AVP), and

also with different values of the threshold for correlation, as shown in Table 5.6.

For the CCEA-AVP, partitioning is invoked after 10000 function evaluations.

Table 5.6: Parameters used for the study
Parameter Value(s)
Population Size 100
Maximum function evaluations 100000
Crossover probability 1.0
Mutation probability 0.1
Crossover distribution index 15
Mutation distribution index 20
Maximum partitions for CCEA-AVP 5,10
Correlation threshold T 0.3, 0.4, 0.5, 0.6

5.4.1 Results on 50D test problems

Listed in Table 5.7 are the results obtained using the basic CCEA with 10

partitions, CCEA-AVP with a maximum of 10 partitions, and the EA. It is

seen that, for Rastrigin, Schwefel, Rosenbrock and Ackley functions, the best

performance is achieved using the basic CCEA (fixed 10) partitions, which is

expected due to relatively low interactions among the variables for these test

functions. The results are closely followed by those obtained using CCEA-AVP.

As expected, the results using both these CCEA strategies are much better than

those obtained by evolving the solutions as a single population in the EA. On the

other hand, for the remaining two functions (Shifted Rotated Rastrigin and G2),

the standings of the algorithms are reversed; the EA obtains the best solutions,

5.4. NUMERICAL EXPERIMENTS 179

closely followed by CCEA-AVP. The performance of the basic CCEA for these

two problems is inferior to the other two algorithms.

Table 5.7: Results using EA and CCEA (maximum 10 partitions) for 50D problems
Test Problem Algorithm Best Mean Worst S.D.

Fixed 10 5.779232e-03 1.154832e-02 2.345529e-02 4.235983e-03
AVP(0.3) 1.836837e-01 2.154502e+00 6.299632e+00 1.555445e+00

Rastrigin AVP(0.4) 3.544890e-02 6.113226e-01 2.716340e+00 6.822502e-01
AVP(0.5) 1.410410e-02 1.495670e-01 1.102570e+00 2.673272e-01
AVP(0.6) 1.057469e-02 6.634232e-02 1.015830e+00 1.802082e-01

EA 1.662080e+01 2.367404e+01 2.875840e+01 3.018061e+00
Fixed 10 4.113830e-02 1.586701e+01 1.185799e+02 4.095543e+01
AVP (0.3) 5.925140e+02 1.279976e+03 2.842700e+03 4.391927e+02

Schwefel AVP (0.4) 4.737855e+02 1.275286e+03 2.724200e+03 4.261194e+02
AVP (0.5) 4.737964e+02 1.274598e+03 2.724150e+03 4.294707e+02
AVP (0.6) 4.738365e+02 1.275259e+03 2.724160e+03 4.261098e+02

EA 5.291690e+02 1.331623e+03 2.766410e+03 4.266604e+02
Fixed 10 2.656768e+01 9.651688e+01 1.540250e+02 3.973974e+01
AVP (0.3) 4.068637e+01 8.381610e+01 1.562630e+02 3.228476e+01

Rosenbrock AVP (0.4) 4.017283e+01 8.319730e+01 1.609554e+02 3.519238e+01
AVP (0.5) 4.007405e+01 7.699733e+01 1.515280e+02 3.135647e+01
AVP (0.6) 3.911556e+01 7.452101e+01 1.518760e+02 2.923009e+01

EA 4.204690e+01 8.385528e+01 1.892910e+02 3.590212e+01
Fixed 10 1.804900e-02 2.684102e-02 4.221360e-02 5.015803e-03
AVP (0.3) 2.287620e-02 6.374764e-02 1.453340e-01 3.483065e-02

Ackley AVP (0.4) 1.609523e-02 3.154126e-02 4.651380e-02 7.028948e-03
AVP (0.5) 1.538815e-02 2.633498e-02 3.463329e-02 5.177229e-03
AVP (0.6) 1.590089e-02 2.692727e-02 3.425910e-02 5.114675e-03

EA 5.964560e-01 9.039441e-01 1.185250e+00 1.374061e-01
Fixed 10 1.642592e+02 3.094703e+02 6.378410e+02 9.178733e+01
AVP (0.3) 6.449470e+01 1.025146e+02 1.380228e+02 2.011653e+01

Rastrigin-sr AVP (0.4) 6.678959e+01 9.939273e+01 1.443156e+02 2.119351e+01
AVP (0.5) 6.683000e+01 1.012824e+02 1.557940e+02 2.379061e+01
AVP (0.6) 6.673130e+01 1.009536e+02 1.531503e+02 2.261265e+01

EA 7.684920e+01 1.168063e+02 1.635920e+02 1.956704e+01
Fixed 10 -5.199560e-01 -3.890296e-01 -2.560880e-01 6.062659e-02
AVP (0.3) -7.492240e-01 -7.049272e-01 -6.323944e-01 3.067198e-02

(-)G2 AVP (0.4) -7.469640e-01 -7.005932e-01 -6.329717e-01 3.264801e-02
AVP (0.5) -7.648944e-01 -6.920226e-01 -6.269927e-01 3.363706e-02
AVP (0.6) -7.506297e-01 -6.901807e-01 -6.237227e-01 3.048877e-02

EA -7.847690e-01 -7.517443e-01 -6.991770e-01 2.251734e-02

The median convergence plots for the 50D test problems obtained using the

three algorithms: CCEA-AVP with maximum 10 partitions, CCEA with fixed 10

partitions, and EA, are shown in Figure 5.4. It can be seen that for the Rastrigin,

Schwefel, Rosenbrock and Ackley functions, the CCEA-AVP performs better than

the EA, and in most cases is quite similar to the performance of the CCEA with

fixed partitioning. On the other hand, for the Shifted Rotated Rastrigin and G2

functions, the convergence trend of the CCEA-AVP is similar to EA. Note that

180 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

in the figure, only the convergence plots corresponding to CCEA-AVP with a

cutoff value of 0.6 are shown. Other cases (cutoff 0.3, 0.4 and 0.5) have similar

trends, and are omitted for the sake of brevity.

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(a) Rastrigin

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(b) Schwefel

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(c) Rosenbrock

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(d) Ackley

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(e) Rastrigin-sr

0 2 4 6 8 10

x 10
4

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(f) (-)G2

Figure 5.4: Convergence plots of the median runs for 50D problems; Comparison
between CCEA with 10 fixed partitions, CCEA-AVP with maximum 10

partitions (cutoff 0.6), and EA

5.4. NUMERICAL EXPERIMENTS 181

Next, the same set of results are reproduced using 5 fixed partitions in the

basic CCEA, and 5 maximum partitions in the CCEA-AVP to observe the effect

of partitioning size. The result are presented in Table 5.8 It is observed that

while the relative standings of the algorithms remain unchanged for all the test

problems, their converged values show difference from the 10 partition case.

It is interesting to note that reducing the number of partitions for the CCEA

from 10 to 5 worsens its performance for the first four problems (Rastrigin,

Schwefel, Rosenbrock, Ackley), but improves it for the remaining two cases.

This is understandable as, for separable functions, the greater the number of

partitions, the easier it is to evolve the subpopulations owing to their smaller

sizes. On the other hand, the results using the CCEA-AVP show very marginal

variations between the two partitions size limits used. This is because the

partitions are created adaptively and the maximum limit is imposed only if the

number of adaptively created subsets exceeds the limit on the maximum number

of subsets (Smax). Thus, the proposed CCEA-AVP is less sensitive to the number

of maximum subsets allowed.

The convergence plots for performance on the 50D test problems using 5

partitions for the basic CCEA, a maximum of 5 partitions for the CCEA-AVP,

and the EA, are shown in Figure 5.5. The plots reflect the same trends as seen

in Table 5.8.

5.4.2 Results for 100D problems

As an extension to the studies on 50D problems described in the previous subsec-

tion, additional studies are conducted on 100D test problems using the CCEA-AVP.

This is done in order to establish that increasing the problem dimensionality

does not adversely effect on the performance of the proposed CCEA-AVP. The

182 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

Table 5.8: Results using EA and CCEA (maximum 5 partitions) for 50D problems
Test Problem Algorithm Best Mean Worst S.D.

Fixed 5 8.731096e-03 1.776637e-02 3.059190e-02 6.328858e-03
AVP (0.3) 2.783710e-01 1.930074e+00 6.417341e+00 1.522614e+00

Rastrigin AVP (0.4) 3.544890e-02 8.509676e-01 3.351182e+00 8.333593e-01
AVP (0.5) 3.077880e-02 2.718896e-01 1.345560e+00 3.599091e-01
AVP (0.6) 1.421517e-02 7.525285e-02 2.209411e-01 5.821036e-02

EA 1.662080e+01 2.367404e+01 2.875840e+01 3.018061e+00
Fixed 5 4.353910e-02 1.895843e+02 4.738343e+02 1.411670e+02

AVP (0.3) 5.923904e+02 1.282985e+03 2.842700e+03 4.341656e+02
Schwefel AVP (0.4) 4.738339e+02 1.275315e+03 2.724200e+03 4.261159e+02

AVP (0.5) 4.738473e+02 1.271342e+03 2.724230e+03 4.320383e+02
AVP (0.6) 5.922526e+02 1.279239e+03 2.605790e+03 4.083936e+02

EA 5.291690e+02 1.331623e+03 2.766410e+03 4.266604e+02
Fixed 5 3.826361e+01 6.667871e+01 1.513366e+02 2.989787e+01

AVP (0.3) 4.126986e+01 8.421877e+01 1.759625e+02 3.512069e+01
Rosenbrock AVP (0.4) 4.067930e+01 8.041582e+01 1.524260e+02 3.016519e+01

AVP (0.5) 3.981255e+01 7.538767e+01 1.519500e+02 2.948130e+01
AVP (0.6) 3.968770e+01 7.478881e+01 1.516210e+02 3.098170e+01

EA 4.204690e+01 8.385528e+01 1.892910e+02 3.590212e+01
Fixed 5 2.178630e-02 3.020990e-02 4.191100e-02 5.403417e-03

AVP (0.3) 2.287620e-02 5.546456e-02 1.453340e-01 3.171820e-02
Ackley AVP (0.4) 2.418390e-02 3.286762e-02 4.651380e-02 6.782573e-03

AVP (0.5) 2.298943e-02 3.100161e-02 4.219020e-02 5.266403e-03
AVP (0.6) 2.020320e-02 3.006383e-02 3.911600e-02 4.950653e-03

EA 5.964560e-01 9.039441e-01 1.185250e+00 1.374061e-01
Fixed 5 1.413440e+02 2.198485e+02 3.333840e+02 5.209684e+01

AVP (0.3) 6.449470e+01 1.005986e+02 1.379169e+02 1.914945e+01
Rastrigin-sr AVP (0.4) 6.702810e+01 1.003611e+02 1.406950e+02 2.056791e+01

AVP (0.5) 6.401050e+01 9.872883e+01 1.440974e+02 2.148299e+01
AVP (0.6) 6.384430e+01 9.813578e+01 1.438673e+02 2.149457e+01

EA 7.684920e+01 1.168063e+02 1.635920e+02 1.956704e+01
Fixed 5 -7.603430e-01 -6.009613e-01 -4.526570e-01 7.011863e-02

AVP (0.3) -7.760420e-01 -7.137156e-01 -6.425938e-01 2.665650e-02
(-)G2 AVP (0.4) -7.694752e-01 -7.102947e-01 -6.459791e-01 3.129272e-02

AVP (0.5) -7.718898e-01 -7.064999e-01 -6.478198e-01 3.122347e-02
AVP (0.6) -7.741146e-01 -7.063887e-01 -6.432024e-01 3.292225e-02

EA -7.847690e-01 -7.517443e-01 -6.991770e-01 2.251734e-02

100-variable Rastrigin, Schwefel, Rosenbrock and Ackley functions are used for

this study. As for the 50D case, 30 independent runs are made using partition

sizes of 5 and 10 for the basic CCEA and maximum partition sizes of 5 and 10

for CCEA-AVP. The parameters used are the same as those used for 50D studies,

listed in Table 5.2.

The results obtained using the basic CCEA (10 partitions), the CCEA-AVP

(maximum 10 partitions), and the EA for 100D test problems are shown in

Table 5.9. The observations are consistent with those for 50D case – the basic

CCEA performs best for these problems, closely followed by CCEA-AVP, whereas

5.4. NUMERICAL EXPERIMENTS 183

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(a) Rastrigin

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(b) Schwefel

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(c) Rosenbrock

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(d) Ackley

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(e) Rastrigin-sr

0 2 4 6 8 10

x 10
4

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(f) (-)G2

Figure 5.5: Convergence plots of the median runs for 50D problems; Comparison
between CCEA with 5 fixed partitions, CCEA-AVP with maximum 5

partitions (cutoff 0.6), and EA

the performance of the EA is significantly inferior to that of these two algorithms.

The corresponding convergence plots are shown in Figure 5.6.

Finally, the same set of studies for 100D problems are repeated with 5 par-

184 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

titions for the CCEA and a maximum of 5 partitions for the CCEA-AVP. The

average converged values after 100000 evaluations are shown in Table 5.10, and

the corresponding convergence plots in Figure 5.7. Once again, it is seen that

while the CCEA performance consistently degrades for all four test problems

when the number of partitions is reduced, the CCEA-AVP performance is not

significantly different from the maximum 10-partition case.

Table 5.9: Results using EA and CCEA (maximum 10 partitions) for 100D problems
Test Problem Algorithm Best Mean Worst S.D.

Fixed 10 2.646480e-01 5.665662e-01 2.433088e+00 5.157489e-01
AVP (0.3) 1.681521e+01 3.827224e+01 6.670020e+01 1.335660e+01

Rastrigin AVP (0.4) 8.706855e-01 1.669110e+01 3.341113e+01 8.153672e+00
AVP (0.5) 1.483221e+00 4.623035e+00 1.321691e+01 3.104135e+00
AVP (0.6) 3.742920e-01 2.156513e+00 7.478845e+00 1.860296e+00

EA 1.649800e+02 1.840125e+02 2.036640e+02 1.209635e+01
Fixed 10 1.507234e+00 3.610878e+02 8.309508e+02 2.072720e+02
AVP (0.3) 2.573690e+03 3.853914e+03 4.802564e+03 5.113526e+02

Schwefel AVP (0.4) 2.643870e+03 3.310721e+03 4.094800e+03 3.945394e+02
AVP (0.5) 2.374810e+03 3.212740e+03 4.030107e+03 4.004432e+02
AVP (0.6) 2.253450e+03 3.195682e+03 4.028548e+03 4.042763e+02

EA 4.346710e+03 5.280894e+03 6.328550e+03 5.714214e+02
Fixed 10 8.771310e+01 1.311911e+02 3.167990e+02 4.927446e+01
AVP (0.3) 1.468420e+02 2.487470e+02 3.439314e+02 5.251006e+01

Rosenbrock AVP (0.4) 1.386270e+02 2.085760e+02 2.792287e+02 4.088388e+01
AVP (0.5) 9.676000e+01 1.870135e+02 2.897350e+02 4.469083e+01
AVP (0.6) 9.506310e+01 1.828531e+02 2.689460e+02 4.757594e+01

EA 1.259630e+02 2.385880e+02 3.612080e+02 5.010407e+01
Fixed 10 8.540569e-02 1.083423e-01 1.413097e-01 1.431065e-02
AVP (0.3) 9.503202e-01 1.545042e+00 2.208593e+00 4.023391e-01

Ackley AVP (0.4) 1.032025e-01 3.802399e-01 1.544246e+00 2.809987e-01
AVP (0.5) 6.707651e-02 8.916227e-02 1.907402e-01 2.303647e-02
AVP (0.6) 6.798911e-02 8.959588e-02 1.220725e-01 1.318414e-02

EA 3.975440e+00 4.172588e+00 4.423220e+00 9.634730e-02

This study clearly shows that a fixed partitioning scheme as used in the CCEA

can lead to significantly poor performance for certain classes of problems while

it may be useful for others. The CCEA-AVP is designed to be applicable as a

generic optimizer with improved mean performance when compared to those of

the EA and CCEA over a wide range of problems.

5.4. NUMERICAL EXPERIMENTS 185

0 2 4 6 8 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(a) Rastrigin

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(b) Schwefel

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(c) Rosenbrock

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 10 partitions
CCEA − AVP (cutoff 0.6)
EA

(d) Ackley

Figure 5.6: Convergence plots of the median runs for 100D problems; Comparison
between CCEA with 10 fixed partitions, CCEA-AVP with maximum 10

partitions (cutoff 0.6), and EA

5.4.3 Variation in performance of CCEA-AVP with dif-

ferent values of the Correlation Threshold

In the preceding subsections, studies using different values of correlation thresh-

olds in order to assign the variables together into one partition are presented.

Although all four threshold values (0.3, 0.4, 0.5 and 0.6) have worked well for

the given problems, there are slight variations in the performance introduced

by the cutoff value. The relative standings of the CCEA-AVP using the above

four cutoff values, for the 50D maximum 10 partitions case, are shown in Fig-

ure 5.8. It is observed that the 0.6 correlation value works best for most of

186 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

Table 5.10: Results using EA and CCEA (maximum 5 partitions) for 100D problems
Test Problem Algorithm Best Mean Worst S.D.

Fixed 5 2.759770e+00 6.940710e+00 1.332520e+01 2.324321e+00
AVP (0.3) 1.961420e+01 4.171061e+01 6.578003e+01 1.164476e+01

Rastrigin AVP (0.4) 1.012750e+01 2.176104e+01 3.822304e+01 6.795122e+00
AVP (0.5) 5.136025e+00 1.198904e+01 2.377627e+01 4.137389e+00
AVP (0.6) 3.562711e+00 8.626150e+00 1.334070e+01 2.392076e+00

EA 1.649800e+02 1.840125e+02 2.036640e+02 1.209635e+01
Fixed 5 3.653240e+02 9.442860e+02 1.550470e+03 3.218071e+02

AVP (0.3) 2.573690e+03 3.705760e+03 4.945437e+03 5.973603e+02
Schwefel AVP (0.4) 2.568155e+03 3.282633e+03 4.057032e+03 4.499224e+02

AVP (0.5) 2.507350e+03 3.249588e+03 4.038401e+03 4.626884e+02
AVP (0.6) 2.384250e+03 3.201359e+03 4.039300e+03 4.548267e+02

EA 4.346710e+03 5.280894e+03 6.328550e+03 5.714214e+02
Fixed 5 8.440033e+01 1.472800e+02 2.613990e+02 4.064567e+01

AVP (0.3) 1.217372e+02 2.278973e+02 3.412558e+02 4.463483e+01
Rosenbrock AVP (0.4) 1.107537e+02 1.926592e+02 2.588505e+02 3.599144e+01

AVP (0.5) 1.004080e+02 1.695221e+02 2.169891e+02 3.484527e+01
AVP (0.6) 8.913882e+01 1.619662e+02 2.436310e+02 3.954275e+01

EA 1.259630e+02 2.385880e+02 3.612080e+02 5.010407e+01
Fixed 5 2.263960e-01 2.689068e-01 3.276250e-01 2.660889e-02

AVP (0.3) 5.068778e-01 1.353864e+00 2.170572e+00 3.949441e-01
Ackley AVP (0.4) 1.914989e-01 3.516999e-01 8.454164e-01 1.451268e-01

AVP (0.5) 2.387114e-01 2.975644e-01 4.632740e-01 4.476273e-02
AVP (0.6) 2.489790e-01 3.408935e-01 4.818140e-01 5.677084e-02

EA 3.975440e+00 4.172588e+00 4.423220e+00 9.634730e-02

the problems (although for Schwefel and G2 its performance is worse compared

with other cases, but a look into the mean values reveal that the difference in

performance is negligible for these two cases across all cutoff values).

Although it may not be a straightforward choice to determine the best cutoff

value for any problem, empirically it is evident that if a too low a cutoff-value (≈

below 0.3) is used, then even the weakly correlated variables will be evolved in

the same partition, and the algorithm’s performance will be roughly equivalent

to that of an EA. At the other extreme, if a too high cutoff-value is used, even

strongly correlated variables might end up in different partitions, which will

result in the performance of the algorithm being like that of the basic CCEA.

Therefore, the cutoff value should be reasonably chosen in order to avoid both

extremes and achieve a balance among interacting variable partitions. Based

on the experiments conducted in this chapter, a value of 0.4-0.6 should work

5.5. SUMMARY 187

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(a) Rastrigin

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(b) Schwefel

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

10
5

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(c) Rosenbrock

0 2 4 6 8 10

x 10
4

10
−1

10
0

10
1

10
2

Function Evaluations

F
un

ct
io

n
va

lu
e

CCEA − 5 partitions
CCEA − AVP (cutoff 0.6)
EA

(d) Ackley

Figure 5.7: Convergence plots of the median runs for 100D problems; Comparison
between CCEA with 5 fixed partitions, CCEA-AVP with maximum 5

partitions (cutoff 0.6), and EA

reasonably well for a broad variety of problems.

5.5 Summary

This chapter investigates the performance of a single best collaboration strategy

CCEA for a set of benchmark test functions The results suggest that while the

CCEA shows definite promise for solving large scale optimization problems, it is

sensitive to a number of factors, in particular the partitioning scheme. Studies

suggest that the basic CCEA with random partitioning may not be suitable for

non-separable problems, and in such cases, evolving the variables together as in

188 5. LARGE SCALE OPTIMIZATION II: LARGE NUMBER OF VARIABLES

Rastrigin Schwefel Rosenbrock Ackley Rastrigin−sr G2

1

2

3

4

R
el

at
iv

e
ra

nk
s

Cutoff 0.3
Cutoff 0.4
Cutoff 0.5
Cutoff 0.6

Figure 5.8: The performance of CCEA-AVP with different Correlation Threshold values
used in order to assign the variables into the same partition.

an EA might be more beneficial.

Drawing motivation from the aforementioned observations, a novel CCEA al-

gorithm with adaptive variable partitioning (CCEA-AVP), as an extension of Ray

and Yao’s earlier work [130] is proposed. This algorithm identifies correlations

among the variables in each generation and partitions the strongly correlated

variables together. Such a scheme preserves the advantages of both, the basic

CCEA and an EA. This is because the modularity of the problem at hand is

not compromised while creating partitions. If the problem exhibits sufficient

separability, the partitioning is similar to that of the basic CCEA, whereas if the

variables are highly interdependent, the algorithm behaves similar to an EA. This

adaption ensures that the proposed algorithm performs well for both separable

and non-separable problems.

Studies are conducted on six benchmark functions to test the efficacy of the

proposed algorithm and the results obtained are encouraging. On an average, for

separable problems, the algorithm obtains results comparable with those obtained

using the basic CCEA, whereas for non-separable problems, it obtains results

5.5. SUMMARY 189

comparable with those from the EA. Since the separability of a problem may often

not be know a priori, the proposed algorithm demonstrates a wider applicability

as a generic optimization tool. Additionally, it is also observed that CCEA-AVP

tends to be less sensitive to changes in the number of (maximum) partitions, as

it only uses them as an upper bound, and otherwise, the partitions are created

based on correlations.

Chapter 6

Trans-dimensional Optimization

Abstract

Trans-dimensional Optimization (TDO) refers to optimization problems in which

there exist a number of candidate models that may be used to evaluate the objec-

tive(s). In such problems, finding the best model as well as the corresponding

variable values is of interest. In this chapter, some exploratory studies are con-

ducted on trans-dimensional optimization. Preliminary experiments are presented

using one proposed approach to deal with such problems.

6.1 Introduction

In the problems considered so far in this thesis, the number of variables and the

physical quantities they represent have been considered to be fixed. In other

words, optimization is carried out on a given fixed model. However, there are

practical problems for which this may not be the case: there may be multiple

possible models for a problem, with none being obviously preferred. In such

191

192 6. TRANS-DIMENSIONAL OPTIMIZATION

a case, the optimization process involves finding the best model as well as the

corresponding optimum design variable values. Such problems are referred to

as Trans-dimensional Optimization (TDO) problems. While studies on opti-

mization for fixed models are abundant in the literature, very few studies have

been conducted on TDO problems. In this chapter, exploratory studies are

presented on trans-dimensional optimization. The studies, though preliminary,

try to emphasize the importance of the field and present one possible approach

that can be pursued towards designing efficient algorithms for handling such

problems.

A simple example of a TDO problem is finding the optimal clustering of

a given data set. While clustering a given data set, finding both the number

of clusters and the locations of cluster centroids are of interest. The number

of clusters determine the number of variables in the problem, because the cor-

responding optimum centroid locations have to be searched for. For example,

if the data is two dimensional, for K centroids, there will be a total of 2K

variables involved ({xi, yi}, i = 1, 2, . . . K) in the search, where (xi, yi) denotes

the centroid of the ith cluster. If the locations of the centroids are searched

using a conventional optimizer, the number of clusters has to be specified to the

algorithm beforehand. The optimization has to be carried out using different

possible numbers of clusters (different models) in order to finally determine the

globally optimum solution across all models.

Similar cases of TDO may arise for a number of real life problems; for example,

finding the optimum number and locations of warehouses to minimize the cost of a

goods-transport network; identification of the number of layers, their thicknesses

and constituents for a composite laminate design (MOC problem [131]); and

optimizing the configuration of a vehicle during conceptual design.

6.1. INTRODUCTION 193

Very few attempts have been made so far to deal with such problems efficiently.

Since algorithms exist for solving problems with a fixed model, a round-about

way is to exhaustively solve the problem for each possible model in order to

find out which one is the optimum. However, this may be very inefficient as

one may waste a considerable amount of computational effort on evaluating the

sub-optimal models.

One way to handle TDO problems is to use variable length chromosomes

for evolutionary algorithms (EAs). Such an approach necessitates defining op-

erators that can delete or duplicate genes in order to represent the appropriate

dimensionality of a solution [132, 133]. These operators need a careful choice of

which genes could be recombined or inserted, and if so, what values should be

chosen for the inserted genes. Maintaining a variable length chromosome can be

particularly difficult if the variables for two different models represent entirely

different physical quantities in the variable space.

To overcome the limitations of variable chromosome representation, an alter-

native approach was proposed in [134]. The idea is to use a representation with a

fixed length vector together with a binary string which contains information about

reducing the number of variables to the dimensionality of the solution. A mapping

is made from the fixed-dimensional representation using the binary string to

find variable values for the solution to be evaluated. Although this method

was successfully applied to solve two problems (the MOC and ARMA modeling

problems) [135], it was observed that such representation leads to variable bias

towards medium-dimensional solutions because of the higher probability of having

almost equal numbers of zeros and ones in the binary string.

Another approach for model selection, called Reversible Jump Markov Chain

Monte Carlo (RJMCMC) was developed by Green [136]. RJMCMC traverses dif-

194 6. TRANS-DIMENSIONAL OPTIMIZATION

ferent dimensions by using reversible moves such as birth, death, split and merge.

It has been used predominantly in statistics for various inverse problems, such

as variable selection in regression [137], mixture deconvolution [138], multi-point

change problems, image segmentation [136], clustering [139] etc. However, sim-

ilar to the gene insertion/duplication process discussed earlier for evolutionary

algorithms, constructive definitions for the birth/death/merge/split moves for the

RJMCMC can be difficult for a number of problems.

In this chapter, a new approach, implemented in simulated annealing (SA),

is introduced to deal with trans-dimensional problems. As opposed to the neigh-

borhood schemes earlier employed [139], which explored the models using con-

structive moves, this approach evolves all models simultaneously and, at each

iteration, chooses a model to explore based on its fitness value. At the same

time, the model variables are evolved using exploratory moves within the model.

This approach is adopted for three main reasons:

1. The algorithm can be run without designing specific operators for each

problem to be solved.

2. Since the models are selected at each iteration from all the possible models

based on their performance, there is no need for deciding on “large” or

“small” jump from one model to another in order to improve the objective

value.

3. The proposed approach can be easily extended to counter various char-

acteristics of engineering problems, such as highly non-linear objectives,

constraints, and the presence of multiple objectives.

Remainder of this chapter is organized as follows. The definition of a single-

objective TDO problem is given in Section 6.2. The proposed algorithm is

6.2. TRANS-DIMENSIONAL OPTIMIZATION PROBLEMS 195

introduced in Section 6.3, which is followed by description of the numerical

experiments in Section 6.4. The findings of the presented studies are summarized

in Section 6.5.

6.2 Trans-dimensional Optimization Problems

A generic single-objective TDO problem can be defined as follows. Consider an

objective function f(xµi
), which can be evaluated using candidate solutions which

have different numbers of variables (referred to as different models here). A set

of all possible models for the problem is represented by µ = {µ1, µ2, . . . µnmodels
}.

Each model µi has a set of variables xµi
associated with it. For example, to design

a cantilever beam for a given application, two possible models could be: a circular

cross section (with radius as a variable), and rectangular cross section (with

height and breadth as variables). At the same time, there may be some common

variables, such as length of the beam and thickness of the wall. If the variable

space of a model µi is denoted by Si, the aim is to find the model µ∗
i and the

corresponding variable values x∗
µi
∈ Si that optimize the objective function

f(xµi
).

6.3 SA based Trans-dimensional Optimization

(SA-TDO)

As discussed in Chapter 2, SA [12] is an optimization algorithm which emulates

the behavior of hot metal atoms subjected to slow cooling. In the work presented

here, the traditional SA is extended to enable it to traverse the model space

along with the variable space. The resulting algorithm is referred to as Simu-

196 6. TRANS-DIMENSIONAL OPTIMIZATION

lated Annealing for Trans-dimensional Optimization (SA-TDO). In this study,

it is assumed that the number of possible candidate models are enumerable and

known. During the search, at each iteration, the algorithm first chooses a model

to explore based on the relative performance of the models until that point in the

search. The models that show good objective values are selected more often in

subsequent iterations whereas those with inferior performances are explored less

often. This way, elite models are preferred during the search in the same way

as elite solutions are preferred in evolutionary search algorithms. In addition,

a provision is included in the proposed algorithm whereby a random model is

evaluated occasionally , in order to prevent the algorithm from prematurely

converging to a model which might eventually turn out to be sub-optimal. Once

the model to be explored is chosen, its variable space is searched for a certain

number of trials (epoch length). Epoch length in this study is decided based on

the number of variables in the chosen model. The proposed approach is outlined

in Algorithm 6.1, while a flowchart of the algorithm is given in Figure 6.1 for

easier visualization. The details of the various steps involved in the proposed

algorithm are discussed in the following subsections.

6.3.1 Calculation of initial and final temperatures

In SA-TDO, the initial and final temperatures are calculated using the method

suggested in [69]. To calculate the initial temperature (Tmax), a certain num-

ber (100 in presented studies) of random solutions are generated (with all models

considered), and the maximum (fmax) and minimum (fmin) function values are

identified. Tmax is then calculated using the equation

Pi = e−((fmax−fmin)/Tmax),

6.3. SA BASED TRANS-DIMENSIONAL OPTIMIZATION (SA-TDO) 197

Algorithm 6.1 SA-TDO algorithm

Require: Pi, Pf , α, µ
1: Calculate Tmax, Tmin, N
2: Initialize Archive
3: Set T = Tmax

4: for i = 1 to N do
5: if rand[0 1] ≤ p then
6: Choose model µi ∈ µ based on fitness
7: else
8: Choose a random model µi ∈ µ
9: end if

10: Calculate epoch length M
11: for j = 1 to M do
12: Set xold = Best solution for µi found so far
13: xnew = perturb(xold)
14: if fnew ≤ fold then
15: Set xnew = xold

16: else
17: prob = exp(−(fnew − fold)/T)
18: Set xnew = xold with a probability prob
19: end if
20: Update Archive
21: end for
22: Set T = T × α
23: end for

where Pi denotes the initial probability of jump, and is given as an input param-

eter. Usually a high value of Pi is chosen so as to allow for sufficient exploration

of the search space during the initial stages.

The final temperature (Tmin) is calculated using the equation

Pf = e−(ftol/Tmin),

where Pf is the probability of a jump in the final iteration, and ftol the desired

accuracy of the objective value being minimized. Generally, a low value of

probability Pf is chosen so that towards the end of the run, when the algorithm

198 6. TRANS-DIMENSIONAL OPTIMIZATION

S T A R T

C a l c u l a t e I n i t i a l , F i n a l T e m p e r a t u r e s ,
No . o f i t e ra t i ons ,
I n i t i a l i ze A rch i ve

C r e a t e T r i a l S o l u t i o n

S e l e c t M o d e l t o e x p l o r e ,
C a l c u l a t e E p o c h L e n g t h

 A c c e p t a n c e
c r i t e r i o n m e t ?

N o

Y e s

S e t x _ o l d = x _ n e w ,
U p d a t e A r c h i v e

E p o c h L e n g t h
 r e a c h e d ?

M a x i t e r a t i o n s
 r e a c h e d ?

Y e s

S T O P

N oN o

Y e s

R e d u c e
T e m p e r a t u r e

Figure 6.1: Simulated annealing for trans-dimensional optimization (SA-TDO)

is expected to have located an optimal region, it can perform a fine local search

and convergence is not delayed due to the acceptance of poor solutions.

6.3.2 Calculation of number of iterations

Once the initial and final temperatures are determined, the number of iterations

can be calculated based on the annealing schedule. A very simple and widely

used annealing scheme is the exponential schedule, in which the temperature is

reduced as

Ti+1 = α× Ti,

where Ti+1 and Ti represent temperatures at the (i + 1)th and ith iteration

respectively, and α (< 1) is the annealing ratio which determines the rate of

reduction of temperature; the higher the ratio, the faster the cooling.

6.3. SA BASED TRANS-DIMENSIONAL OPTIMIZATION (SA-TDO) 199

With an exponential schedule, the number of iterations N can be calculated

using

Tmin = Tmax × αN−1.

6.3.3 Archive

All the trial solutions accepted during the search are stored in an archive; which

consists of “bins” corresponding to each model. Whenever a solution is accepted,

the archive is updated by storing the accepted solution into its respective bin.

The archive is initialized at the beginning of the algorithm with one random

solution belonging to each model.

6.3.4 Model selection

At each iteration, the fitness (performance based on the search so far) of each

model is calculated by averaging the best 20% of the solutions in its bin in

the archive. The fitness value of a model i (µi) is denoted here by Fi, where

i ∈ {1, 2, . . . nmodels} . The fitness values are then normalized using

Fi,norm =
max(F)− Fi

max(F)−min(F)

Hence, the model with better (lower) function value so far in the search gets a

higher normalized fitness value (a minimization problem is assumed).

With a (predefined) probability p, a model to be explored is selected based on

the roulette wheel of the normalized fitness values. Otherwise (with a probability

of (1-p)), a random model is selected. To prefer the fitness-based selection, a

high value of p (≈ 0.7 − 0.9) is recommended. This scheme tries to achieve

model selection such that (a) the model(s) with better function values, (which

200 6. TRANS-DIMENSIONAL OPTIMIZATION

are better contenders for the global optimum), are preferred during the search;

and (b) even the inferior models are explored with a low probability.

6.3.5 Model exploration

Once the model to be explored is selected, the epoch length M is calculated.

Epoch length represents the number of trials made at each iteration (within an

epoch length, the temperature is kept constant). For trans-dimensional problems,

as different models can have a different number of variables, epoch length is

calculated here as

M = L× nvar

where L is a user-defined proportionality constant and nvar represents the number

of variables in the chosen model. The epoch length is calculated this way in order

to deal with the complexity of the models. Those with higher numbers of decision

variables are allowed proportionately higher numbers of evaluations during an

iteration.

In each iteration, the search starts with the best solution of the chosen model

found so far. During the search, a trial solution is generated from the current

solution using Laplacian perturbation, as suggested in [64]. One decision variable

is chosen at random and perturbed by a random variable ǫ drawn from the Lapla-

cian distribution p(ǫ) ∝ e−‖σǫ‖, where σ represents the spread of the perturbation.

For the presented studies, the value of σ is set to 0.1.

6.3.6 Acceptance criteria

The acceptance criterion used here is the same as those in conventional SA for a

minimization problem, which is as follows:

6.4. NUMERICAL EXPERIMENTS 201

• if fnew ≤ fold, then accept the trial solution,

• else, accept the trial solution with a probability exp
(

−fnew−fold

T

)

.

6.4 Numerical Experiments

Two simple problems are formulated to demonstrate the working of the proposed

algorithm. The first one is a clustering problem, in which a given data set is to

be grouped into an optimum number of clusters, and the second is a transport

network cost minimization problem with a set of possible warehouse locations.

These test problems, along with numerical experiments are discussed in the

following sub-sections. To assess the performance of the SA-TDO algorithm, the

proposed problems are also solved using the conventional optimization algorithm

NSGA-II [9] for each model individually, and the results obtained from both

algorithms are compared. The method of comparison is as follows. Firstly,

the problem is solved using the SA-TDO algorithm. The total number of func-

tion evaluations used by SA-TDO are noted. Then, given the same number of

evaluations (for a fair comparison), if the same problem is to be solved with a

conventional algorithm, one is likely to assign the budget of function evaluations

evenly among all the candidate models. The same is done here, i.e., for each

model, NSGA-II is allowed to run for the average total number of evaluations

used divided by the total number of candidate models. Thereafter, the quality

of solutions obtained using both the algorithms is compared using the obtained

objective values.

202 6. TRANS-DIMENSIONAL OPTIMIZATION

6.4.1 Clustering problem

Clustering is a process of grouping a given data set based on a similarity mea-

sure, for example the Euclidean distance between them. Various methods have

been suggested in the literature for clustering [140, 141]. The goodness of clus-

tering can be measured using various cluster validity indices available in the

literature, such as the Davis Bouldin (DB) [142], Xie-Beni [143] Dunn [144],

Calinski-Harabasz [145], PBM [146], etc.

The problem considered here is as follows: A data set of 100 points is sam-

pled using a Gaussian distribution around 5 selected points as centroids. The

coordinates of the centroids are (2,2), (2,8), (5,5), (8,2) and (8,8). Around each

centroid, 20 points are created by perturbing the center’s coordinates using a

random number from a normal distribution with a mean of zero and a standard

deviation of 0.8. All the points are confined within the space (x, y) ∈ [0, 10]2. A

plot of the data set is shown in Figure 6.2. The Xie Beni (XB) [143] index is used

as the cluster validity index to be optimized (minimized). The lower the value of

the XB index, the better the clustering.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x

y

Data points
Centres

Figure 6.2: Sample data for clustering

6.4. NUMERICAL EXPERIMENTS 203

In this study, the number of clusters is chosen between 3 and 7, resulting in

5 models: µ1 ≡ 3 clusters, µ2 ≡ 4 clusters, µ3 ≡ 5 clusters, µ4 ≡ 6 clusters

and µ5 ≡ 7 clusters. A model with K clusters has 2K variables, i.e., the cluster

centroid coordinates (xi,yi), i = 1 . . . K. “Hard clustering” is assumed, which

means a point can belong to only one cluster. Assuming a perfect random number

generator, since the points are generated using 5 centers within a small radius,

the optimum number of clusters should be 5, with the centroids very close to the

points used for generating the data.

The above clustering problem is first solved using the proposed SA-TDO

algorithm. The parameters used for the algorithm are: Pi = 0.9, Pf = 0.01, L

= 15 and α = 0.92. The probability of choosing a model based on fitness (p) is

set to 0.8. Multiple (30) independent runs are made varying the random seed.

The average total number of evaluations used by the SA-TDO algorithm across

all runs is 22,964. Hence, NSGA-II is run for 22964/5 ≈ 4600 evaluations for

each model so that the total number of evaluations used by both algorithms is

approximately the same. For NSGA-II, the population size used is 100 (evolved

over 46 generations). The probabilities of crossover and mutation are set to 0.9

and 0.1 respectively. A crossover index of 15 and mutation index of 20 is used.

The results for the clustering problem from the SA-TDO and NSGA-II algo-

rithms are shown in Table 6.1. The best value of the XB index corresponds to

the model with 5 centers (µ3), using both the algorithms. Hence, the optimum

model is correctly identified using both algorithms. The search for the optimum

model (and corresponding solution) in a typical SA-TDO run is depicted in

Figure 6.3(a), which shows the best XB index values obtained during the search

for each model, along with the total number of evaluations used. It can be seen

how the best value of the objective (XB index) improves over the iterations, with

204 6. TRANS-DIMENSIONAL OPTIMIZATION

model µ3 finally outperforming the other models. Also, it can be noted that the

objective values corresponding to models with three to six clusters (µ1 − µ4) are

fairly close during the search. Comparatively, the model with seven clusters (µ5)

shows significantly worse values throughout the run. It follows that most of the

exploration during the search is done within the first four models (µ1 − µ4),

whereas the model µ5 is assigned very few evaluations owing to its comparatively

poor performance. The number of evaluations assigned to different models during

the run are shown in Figure 6.3(b).

It is to be noted here that since the assignment of function evaluations is

fitness-based, the SA-TDO may face the problem of insufficient convergence

(in terms of objective values) of the optimum model if the candidate models

have closely comparable fitness. For example, in this case, the average XB

values corresponding to µ3 obtained using the SA-TDO algorithm are inferior

to those obtained using the NSGA-II, as can be seen in Table 6.1. The statistical

significance of the results is tested using the Mann-Whitney U test [147, 148].

The U and z values obtained for the results (corresponding to µ3) using the

SA-TDO and NSGA-II algorithms are U = 134 and z = 4.6, indicating that the

difference between the two data sets is statistically significant. The reason for

the inferior performance of the SA-TDO algorithm may be that, since the models

are closely competing, even the non-optimal models have good probabilities of

being selected during the search. Owing to this, in some runs, the non-optimum

models may receive undesirably higher numbers of evaluations than the optimum

model which could not converge sufficiently due to the inadequate number of

evaluations assigned to it. In the worst case, there is a possibility of identifying a

wrong model as the optimum, because of the assignment of a disproportionately

large number of evaluations to a non-optimal model. However, if the fitness levels

6.4. NUMERICAL EXPERIMENTS 205

Table 6.1: Results for clustering problem (XB index values averaged over all runs)

SA-TDO NSGA-II
Model Mean Best Worst Mean Best Worst

µ1 (3 clusters) 0.1078 0.1062 0.1108 0.1080 0.1060 0.1102
µ2 (4 clusters) 0.0828 0.0779 0.0977 0.0805 0.0775 0.0961
µ3 (5 clusters) 0.0759 0.0626 0.1885 0.0641 0.0608 0.0882
µ4 (6 clusters) 0.0940 0.0739 0.1467 0.0782 0.0710 0.1071
µ5 (7 clusters) 0.1402 0.0886 0.2848 0.0963 0.0792 0.1234

are reasonably distinct, the selection pressure will be more biased towards the

fittest (and potentially the best) model, thereby identifying the optimum more

accurately. The benefits of the proposed approach will be more pronounced in

such cases.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Total number of evaluations

F
un

ct
io

n
va

lu
e

(X
B

 in
de

x)

3 clusters
4 clusters
5 clusters
6 clusters
7 clusters

(a) Evolution of function values (XB
index) of different models

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Total number of evaluations

E
va

lu
at

io
ns

 p
er

 m
od

el
 /

T
ot

al
 e

va
lu

at
io

ns

3 clusters
4 clusters
5 clusters
6 clusters
7 clusters

(b) Proportion of evaluations as-
signed to the various models

Figure 6.3: Results obtained for the clustering problem using SA-TDO

6.4.2 Warehouse problem

A simple warehouse problem is formulated to demonstrate another application of

the SA-TDO algorithm, as follows. There are K locations with specific demands,

which have to be catered for through N warehouses, to be set up at any of these

K locations. The number of warehouses can vary from 1 to K. The warehouse at

each location has a limit on the maximum capacity of the goods it can produce.

206 6. TRANS-DIMENSIONAL OPTIMIZATION

The overall cost of the operation of this setup includes the following two key

components:

1. The installation cost (IC), which is assumed to depend upon the number of

warehouses and the total capacity of all warehouses. It is calculated using

Equation 6.1.

IC = 5× 106 ×N + 500× T (6.1)

where N is the number of warehouses and T is the sum of their capacities.

2. The transportation cost (TC), which depends on the units transported, and

the distance between the supplying and receiving ends. For the presented

study, four locations are chosen. A distance matrix D between the various

locations is shown in Table 6.2. The diagonal elements in the matrix are

set to a small value (assuming that in general the distance between the

supplying and receiving ends will not be zero).

Table 6.2: Distance chart for the warehouse problem in km (C ≡ Canberra, S ≡
Sydney, M ≡ Melbourne, B ≡ Brisbane)

C S M B

C 5 246.99 466.35 940.61
S 246.99 5 713.33 728.83
M 466.35 713.33 5 1371.06
B 940.61 728.83 1371.06 5

The TC is then calculated as given in Equation 6.2.

TC =
N
∑

i=1

K
∑

j=1

DijWji × Cu (6.2)

6.4. NUMERICAL EXPERIMENTS 207

where Dij denotes the distance between the ith and jth locations, Wij

denotes the supply received by a location i from a warehouse at location j,

and Cu is the cost of transportation of a unit mass for a unit distance. Cu

is set to 1 for the problem considered.

The aim is to minimize the total cost = TC + IC, subject to the demand and

supply constraints :

N
∑

j=1

Wij ≥ Demi for i = 1 . . . K,

and
K
∑

i=1

Wij ≤ Capj for j = 1 . . . N

(6.3)

where Demi denotes the demand at the ith location and Capj the maximum

capacity of the jth warehouse. The demand at various sites and the maximum

capacity of the warehouse at each site are listed in Table 6.3. In this study,

the number of warehouses is allowed to vary from 1 to 4 and, hence, there are

4C1 +4 C2 +4 C3 +4 C4 = 15 competing models, which correspond to the possible

placements of warehouses at different locations. Denoting the cities Canberra,

Sydney, Melbourne and Brisbane by C, S, M and B respectively, the possible

models corresponding to the location(s) of warehouses are: µ1 ≡ {C}, µ2 ≡ {S},

µ3 ≡ {M}, µ4 ≡ {B}, µ5 ≡ {C, S}, µ6 ≡ {S,M}, µ7 ≡ {M,B}, µ8 ≡ {C,M},

µ9 ≡ {C,B}, µ10 ≡ {S,B}, µ11 ≡ {C, S,M}, µ12 ≡ {S,M,B}, µ13 ≡ {C,M,B},

µ14 ≡ {C, S,B}, µ15 ≡ {C, S,M,B}.

The variables for each model are the outflows (supplies) from the warehouse

locations to all the receiving ends. The constraints on demand at each location

and total supply from each warehouse are handled using the penalty function

approach in which the objective value infeasible solutions are deteriorated by

208 6. TRANS-DIMENSIONAL OPTIMIZATION

Table 6.3: Demand and capacity at each site for the warehouse problem (C ≡
Canberra, S ≡ Sydney, M ≡ Melbourne, B ≡ Brisbane)

C S M B

Demand 10000 15000 12000 20000
Capacity 7000 26000 10000 33000

adding a penalty proportional to the violation of the constraints. The penalty

for a feasible solution is zero. The penalty function (PF) used here is formulated

as in Equation 6.4.

PF = 106 ×
K
∑

i=1

(max(0, Demi −
N
∑

i=1

Wij))

+ 106 ×
N
∑

i=1

(max(0,
K
∑

j=1

Wij − Capi))

(6.4)

Hence, the (penalized) objective to be minimized, takes the form given in

Equation 6.5.

F =
N
∑

i=1

K
∑

j=1

DijWji × Cu

+ 106 ×
K
∑

i=1

(max(0, Demi −
N
∑

i=1

Wij))

+ 106 ×
N
∑

i=1

(max(0,
K
∑

j=1

Wij − Capi))

(6.5)

This is a simple scenario for illustrating the working of the proposed algo-

rithm. However, better estimates can be made based on real-life data. It is also

noteworthy here that, of the fifteen models listed, only four (µ10, µ12, µ14, µ15)

6.4. NUMERICAL EXPERIMENTS 209

can have feasible solutions. This is because for the rest of the models, the total

demand of all the locations exceeds the maximum total capacity of the supplying

warehouses. However, these models are still considered while solving the problem,

in order to pose an additional challenge to the SA-TDO algorithm.

The warehouse problem is first solved using the SA-TDO algorithm, and

then using NSGA-II. The former is run independently thirty times with differ-

ent random seeds, with the same parameters as used for solving the clustering

problem. The average number of evaluations utilized by the SA-TDO algorithm

is approximately 73, 000. Since 15 models are being evaluated, NSGA-II is run

for 73000/15 ≈ 5000 evaluations for each model. Thirty independent NSGA-II

runs are done for each model. The crossover and mutation parameters used for

NSGA-II are the same as those used for the clustering problem. The population

size used is 100. A comparison of solutions obtained using SA-TDO and NSGA-II

for the warehouse problem is shown in Table 6.4. Only the feasible models (for

which total capacity of warehouses is greater than or equal to the total demand)

are shown.

Table 6.4: Results (cost) for warehouse problem (all values in millions)

NSGA-II
SA-TDO 5000 eval/model 10000 eval/model 15000 eval/model

Model Mean Best Worst Mean Best Worst Mean Best Worst Mean Best Worst
µ10 66.61 58.28 78.14 70.55 58.44 82.24 69.15 58.39 81.77 67.65 58.39 80.84
µ12 59.62 54.48 73.69 69.21 60.40 79.54 60.86 57.41 67.82 57.93 55.31 60.10
µ14 63.58 60.56 78.97 71.9 62.87 88.08 65.58 61.26 79.74 62.75 60.43 71.84
µ15 66.58 60.45 108.11 77.06 69.15 87.36 67.00 62.96 75.52 62.90 60.71 69.02

Based on the average values obtained from multiple runs, model 12 (µ12) is

identified as the optimum model by both the SA-TDO and NSGA-II algorithms.

However, unlike for the clustering problem, the average function values obtained

for the optimum model obtained using SA-TDO are better than those using

210 6. TRANS-DIMENSIONAL OPTIMIZATION

NSGA-II. This is because, unlike the case of clustering, the fitness values for the

different models are reasonably distinct, which makes it easier for the SA-TDO

algorithm to converge to the optimum model. Once again, the Mann-Whitney

U test is used to establish the statistical significance of the difference between

the results obtained by the two algorithms for µ12 across multiple runs. The

U and z values corresponding to the objective values obtained using SA-TDO

and NSGA-II are U = 835 and z = −5.68 respectively, which indicates that

the difference in the results obtained using the two algorithms is statistically

significant. This confirms that the results from SA-TDO are better than those

from NSGA-II.

0 1 2 3 4 5 6 7

x 10
4

10
8

10
9

10
10

Total number of evaluations

F
un

ct
io

n
va

lu
e

Model 12 (optimum)
Other feasible models (10,14,15)
Infeasible models

(a) Evolution of objective values of dif-
ferent models with function evaluations

0 1 2 3 4 5 6 7

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Total number of evaluations

E
va

lu
at

io
ns

 p
er

 m
od

el
 /

T
ot

al
 e

va
lu

at
io

ns

Model 12 (optimum)
Other feasible models (10,14,15)
Infeasible models

(b) Proportion of evaluations assigned
to various models

Figure 6.4: Results obtained for the warehouse problem using SA-TDO

Evolutions of the function values of various models for a typical SA-TDO run

are shown in Figure 6.4(a). The four feasible models (µ10, µ12, µ14, µ15) start off

with high values of objective function, i.e. penalized infeasible solutions. As the

search progresses, feasible solutions are found for these models, and the function

values reduce significantly where as the infeasible models continue to exhibit

worse function values as expected. Eventually, model 12 outperforms the other

6.4. NUMERICAL EXPERIMENTS 211

candidate models in terms of the objective value, in this case the total cost.

The assignment of function evaluations to each model during the search for a

typical run is shown in Figure 6.4(b). Owing to their better fitness, the feasible

models are assigned significantly higher proportion of function evaluations, as

can be seen in the Figure 6.4(b). Amongst the feasible models themselves, the

relatively fitter model (µ12) is chosen more often for evaluation during the course

of evolution. It is also to be noted here that the number of function evaluations

depends not only on the fitness of the model, but also the number of variables

in that model (recall that epoch length M = L× nvar). Therefore, a model with

a larger number of variables (such as µ15) may be selected fewer times than a

model with smaller number of variables (such as µ12), but may still have been

evaluated a greater number of times. Eventually, towards the end of the run, the

optimum model (µ∗) is expected to have been evaluated a sufficient number of

times to converge to the corresponding optimum variables (xµ∗).

In two further experiments, NSGA-II is run with 10,000 and 15,000 evalu-

ations respectively for each model, and the results compared with those from

the SA-TDO. The results are listed in Table 6.4. It can be seen that the

SA-TDO algorithm is able to obtain better results in terms of total cost as

compared to NSGA-II for the 10000 evaluations per model case. For the case of

15,000 evaluations per model, NSGA-II outperforms SA-TDO in terms of average

function values, but at the expense of much higher total number of function

evaluations.

212 6. TRANS-DIMENSIONAL OPTIMIZATION

6.5 Summary

The presented work identifies a need to develop optimization methods for TDO

problems, in which a number of candidate models may exist for the design.

Possible solutions to such problems can vary in terms of number of variables and

also the physical quantities they represent, depending upon the models. Very

limited studies are available currently in the field of TDO.

A simulated annealing based algorithm is proposed for handling TDO prob-

lems. The proposed algorithm (SA-TDO) evaluates all models in parallel and

allocates function evaluations based on their relative fitness. By spanning model

and variable space simultaneously, the algorithm avoids extensive evaluation of

each candidate model, and identifies the best model (and optimum solutions)

with much less computational expense. The performance of the algorithm is

demonstrated on two different problems – a clustering problem with a variable

number of clusters, and a warehouse problem in which possible number and

locations of warehouses can vary. Although the empirical examples considered

are very simple in nature, the studies clearly identify the benefits the proposed

algorithm offers. The approach shows great promise for application to a number

of optimization problems, in which function evaluations may be computationally

intensive and therefore explicitly optimizing each model may not be viable.

While potentially promising, the proposed algorithm is still rudimentary in

its current form. A number of directions for further research can be identified to

make it more rigorous and competitive for real life applications. As a prelimi-

nary implementation, the constraint handling in the algorithm is done using the

penalty function method, the performance of which is usually sensitive to the

choice of penalty coefficients. However, the framework allows for the incorpora-

6.5. SUMMARY 213

tion of a more explicit constraint handling mechanism, such as that presented

earlier in Chapter 3. Similarly, the algorithm can be enhanced to handle multiple

objectives by incorporating concepts from the C-PSA algorithm in Chapter 3.

In such cases, the fitness measure of each model can be calculated based on the

non-dominated solutions achieved for each model. Thus, the foundation laid in

this chapter allows for the further development of SA-TDO to deal with generic

problems with constraints and multiple objectives.

Chapter 7

Further Enhancements and

Applications

Abstract

In this chapter, the IDEA and C-PSA algorithms proposed in previous chapters

are further enhanced by embedding a local search and surrogate modeling in them,

respectively, to enable them to deal with engineering problems which have severe

restrictions on function evaluations owing to their computational complexity.

Thereafter, a number of engineering design problems are solved using the proposed

algorithms. Comparisons with previously published results are undertaken to

gauge their performances.

7.1 Overview

In the preceding chapters of this thesis, the challenges encountered in engineering

design optimization are highlighted, and proposals to deal with them are dis-

215

216 7. FURTHER ENHANCEMENTS AND APPLICATIONS

cussed. In this chapter, the performances of the proposed algorithms are studied

on a set of engineering design problems.

As engineering design problems are often computationally expensive, the

limits on the number of evaluations are severe. The algorithms proposed in the

previous chapters result in better convergence as compared to the conventional

EAs. However, for computationally expensive problems, additional mechanisms

may be required to find near-optimal solutions in an affordable number of evalua-

tions. In this chapter, two such mechanisms are integrated within the algorithms

proposed previously in this thesis. The enhancements include:

1. Surrogate modeling: When evaluation of objective(s) and/or constraints

is expensive, the search can be guided by using approximate objective and

constraint values instead, predicted from surrogate function(s) built using

the already existing solutions. In the literature, surrogate assistance has,

to date, been used predominantly in the EA paradigm. In this work, it is

extended to SA. Surrogate modeling is integrated in the C-PSA algorithm

proposed earlier. The resulting algorithm is termed Surrogate Assisted

Simulated Annealing (SASA).

2. Local search: When used independently, local search methods have lim-

ited applicability. While they can quickly converge to a local optimum

solution, the global optimum solution is difficult to achieve, since their

performance depends significantly on the starting solution. However, the

swiftness of local search can be taken advantage of by integrating it with

global search methods. This approach of combining a global search method

with local search is known as a memetic algorithm. In this work, a local

search is embedded in IDEA to further expedite convergence. The resulting

7.2. SURROGATE ASSISTED SIMULATED ANNEALING 217

algorithm is referred to as Infeasibility Empowered Memetic Algorithm

(IEMA).

Following the description of these final two methods, experiments are con-

ducted on a number of engineering examples using the algorithms proposed in

this thesis. In order to highlight the contributions, comparisons with some of

the results available in the literature are included. The rest of the chapter is

organized as follows. SASA and IEMA are described in Sections 7.2 and 7.3

respectively. Numerical experiments on engineering design problems are detailed

in Section 7.4. Section presents a summary of the chapter.

7.2 Surrogate Assisted Simulated Annealing

In surrogate modeling, an appropriate mathematical model that can fit the given

problem (objective and constraint functions) is sought. If such a model can

be identified, the approximate values of the objective functions and constraints

determined using the model can be used to guide the search, thereby avoiding

a need for time-consuming real evaluations of solutions. The process of building

a model (based on truly evaluated data) is referred to as training, whereas the

determination of approximate function and constraint values using the model is

referred to as prediction. For problems in which good predictions (close to the

actual objective values) can be made, surrogate modeling is a beneficial tool for

solving computationally expensive problems [149].

7.2.1 Surrogate modeling

Given a data set comprising input variables x and an output response y, building

a surrogate involves constructing a function F (x), such that F (x) ≈ y. A model

218 7. FURTHER ENHANCEMENTS AND APPLICATIONS

is an accurate representation of the given data if the predicted responses using

the model are close to the actual responses y. A number of surrogate models are

available in the literature. In the presented work, two of them are considered.

Response Surface Method (RSM)

The RSM is a linear or polynomial regression which uses first or second degree

polynomials to fit the data [150]. A generic second order quadratic polynomial

model, with m input variables {x1, x2, . . . xm} can be written as

y(x) = β0 +
m
∑

i=1

βi xi +
m
∑

i=1

βii x
2
i +

m−1
∑

i=1

m
∑

j=i+1

βij xi xj (7.1)

where β0, βi, andβij are the unknown parameters of the model that are determined

from the given data. In vector form, this can be written as y(x) = fTb, where

the vector f contains all the terms of x1, x2, . . . , xm and vector b contains all

the unknown coefficients. The values of the unknown coefficients are determined

using the least squares method. The least squares estimate of b is given by,

b̂ = (FTF)−1FTY, (7.2)

where F is a matrix containing N rows, with each row being a vector fT evaluated

at an observation and Y indicates the observed responses.

Radial Basis Function (RBF)

Another technique for approximating responses is known as the RBF [151]. The

function for approximating the response y is constructed as

7.2. SURROGATE ASSISTED SIMULATED ANNEALING 219

y(x) =
k
∑

i=1

wi φ(‖x− xi‖) (7.3)

where φ(·) are the radial basis functions, ‖ · ‖ is usually taken as the Euclidean

norm and wi are the unknown weights to be determined for the model. A RBF

is symmetric around its associated center xi. A common RBF is the Gaussian

function with the Euclidean norm.

φ(‖x− xi‖) = e−r2/σ2

where r is the Euclidean distance between x and xi, and σ is the scale or width

parameter. In the generalized RBF network, the number of centers (k) are

usually less than the number of observations (N). The unknown weights wi

are determined using least squares estimates.

7.2.2 Surrogate Assisted Simulated Annealing (SASA) al-

gorithm

The proposed SASA is outlined in Algorithm 7.1. The main steps of SASA are the

same as those of the C-PSA proposed in Chapter 3, with the addition of the surro-

gate modeling. In SASA, an archive of all truly evaluated solutions (archive all) is

maintained in addition to the archive of all non-dominated solutions. After every

prescribed number of function evaluations ttrain, a surrogate model is built for the

objective and constraint functions. The surrogate framework used for building

the surrogate model is the same as that proposed in [149]. During the search,

the most recently evaluated 1000 solutions are used for the surrogate modeling.

Out of these solutions, 90% are used for building the surrogate, whereas the rest

220 7. FURTHER ENHANCEMENTS AND APPLICATIONS

of them are used for validation of the surrogate. Two different surrogates (RSM

and RBF) are used in the presented studies to approximate the objective and

constraint function responses. Of these, the model that gives a lower prediction

error is used to predict the responses, provided the prediction error is smaller

than a threshold (0.05). This is because a model with large prediction error may

not be an accurate representation of the function response; and using solutions

predicted by such a model can misguide the search. The prediction error (perr)

is calculated as shown in Equation 7.4

perr =
1

maxi(y)−mini(y)

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2, (7.4)

where yi is the actual response and ŷi the predicted response. If a valid surrogate

model is found (if its prediction error is less than the threshold) then it is used

to determine the objective and constraint values for that particular iteration. If

a valid surrogate model is not found, then the true evaluation of the solution

is done instead. If a surrogate is used for prediction during an iteration, all

the predicted solutions for that particular iteration are stored separately in a

different archive (archive pred). At the end of the iteration (when the search

has progressed through M predicted solutions, where M is the epoch length),

a non-dominated sorting is done on the feasible solutions in archive pred. The

non-dominated solutions so obtained are then truly evaluated and merged with

the archive of (truly evaluated) non-dominated solutions. From this merged

set (archive + archive pred), any dominated solutions, if present, are removed

and the resulting set becomes the updated archive (of non-dominated solutions).

Thereafter, all solutions in the archive pred are removed.

7.2. SURROGATE ASSISTED SIMULATED ANNEALING 221

Algorithm 7.1 Surrogate Assisted Simulated Annealing (SASA)

Require: N , M , Tmax, Tmin, TG, HL, SL, α, Pi, Pf , σi, σf

1: Initialize archive, archive all {archive contains non-dominated solutions,
archive all contains all evaluated solutions}

2: Set T = Tmax, xold = random solution in search space
3: for i = 1 to N do
4: if Nevals > ttrain and modulo(Nevals, ttrain) = 0 then
5: train surrogate = 1
6: sur = Build Surrogate(archive all)
7: if perr < 0.05 then
8: surr valid = 1
9: Initialize archive pred

10: else
11: surr valid = 0
12: end if
13: else
14: train surrogate = 0
15: end if
16: for j = 1 to M do
17: xnew = perturb(xold) {Laplacian perturbation if xold is feasible, ADD

perturbation otherwise}
18: if train surrogate = 0 or surr valid = 0 then
19: fnew,gnew ←Evaluate(xnew)
20: else
21: fnew,gnew ←Predict(xnew, sur)
22: Update archive pred
23: end if
24: Follow acceptance criteria as described in Algorithms 3.3 and 3.4

(Chapter 3)
25: end for
26: archive pred ← non-dominated-sort(archive pred)
27: Evaluate (archive pred) {Evaluate all non-dominated solutions in

archive pred}
28: archive ← non-dominated-sort(archive ∪ archive pred)
29: Remove all solutions from archive pred
30: Update T, TG, σ
31: end for

222 7. FURTHER ENHANCEMENTS AND APPLICATIONS

7.2.3 Preliminary experiments - SASA

The proposed SASA algorithm is first tested on the set of CTP test problems. To

evaluate its performance, thirty independent runs are conducted on each CTP

test problem using a small number of iterations (50). The average number of

actual evaluations (FES) used by SASA are observed. Thereafter, each of the

multi-objective algorithms, NSGA-II and IDEA, are run thirty times for the same

number of FES (listed in Table 7.2), and the results obtained using the three

algorithms are then compared. For comparison, displacement and hypervolume

metrics are used. The parameters used for SASA are listed in Table 7.1, and those

used for NSGA-II and IDEA are listed in Table 7.2. The building of surrogates

in SASA is performed using the framework suggested in [149]. The parameters

corresponding to the surrogate modeling are listed in Table 7.3.

Table 7.1: Parameters used for SASA

Parameter Value

Initial probability of feasible to infeasible jump (Pi) 0.5
Final probability of feasible to infeasible jump (Pf) 0.01
Probability of acceptance used for calculating initial temperature (PTi

) 0.9
Final temperature (Tf) 1e-5
No. of exploring solutions for ADD (Nadd) 1
Exploration radius for ADD (r) 1e-3
Initial scaling factor for Laplacian mutation (σi) 1
Final scaling factor for Laplacian mutation (σf) 0.1
Epoch length (M) 20 × nvar

Iterations (N) 50
Hard limit on no. of solutions in archive (HL) 100
Soft limit on no. of solutions in archive (SL) 150
Number of solutions rejected consecutively for restart (Kmax) 10

Comparison of displacement metric values obtained using various algorithms

is shown in Table 7.4. It is seen that SASA outperforms NSGA-II and IDEA for

all problems except CTP8 in terms of mean values. For CTP8, the performance

of IDEA is the best among the three algorithms studied. This may be due

7.2. SURROGATE ASSISTED SIMULATED ANNEALING 223

Table 7.2: Parameters used for NSGA-II and IDEA

Parameter Value

Population size 100
Max. FES for CTP2 : 6000

for CTP3 : 5900
for CTP4 : 6800
for CTP5 : 5900
for CTP6 : 9900
for CTP7 : 7300
for CTP8 : 11900

Crossover probability 0.9
Crossover index 15
Mutation probability 0.1
Mutation index 20

Table 7.3: Parameters used for surrogate modeling in SASA

Parameter Value

Training data fraction 0.9
Training samples used 1000
Prediction accuracy threshold (perr) 0.05
Periodic training interval (ttrain) 500

to the highly discontinuous objective space, in which IDEA has the advantage

of searching using the infeasible solutions, whereas SASA may have problems

building a surrogate for the objective functions/constraints.

Hypervolume metric comparison (Table 7.5) also shows similar trend as those

by the displacement metric. SASA obtains higher values of hypervolume as

compared to NSGA-II and IDEA, except for CTP8 for which IDEA shows the

best performance on average.

Apart from obtaining good average metric values, SASA also exhibits low

values of the standard deviation (S.D.) in the results (except for CTP8). This

suggests that the proposed SASA is able to obtain good quality approximation

to the Pareto fronts consistently.

224 7. FURTHER ENHANCEMENTS AND APPLICATIONS

Table 7.4: Comparison of displacement metric obtained using SASA, NSGA-II and
IDEA

SASA NSGA-II IDEA

Mean S.D. Mean S.D. Mean S.D.

CTP2 0.0016 0.0021 0.0236 0.0122 0.0204 0.0112
CTP3 0.0179 0.0047 0.1256 0.0621 0.0999 0.0567
CTP4 0.0712 0.0314 0.1703 0.0577 0.1349 0.0519
CTP5 0.0021 0.0006 0.0129 0.0100 0.0113 0.0106
CTP6 0.0037 0.0022 0.1195 0.1382 0.0129 0.0122
CTP7 0.0041 0.0103 0.0451 0.0307 0.0306 0.0223
CTP8 0.0493 0.0931 0.1905 0.1462 0.0259 0.0267

Table 7.5: Comparison of hypervolume metric obtained using SASA, NSGA-II and
IDEA

SASA NSGA-II IDEA

Mean S.D. Mean S.D. Mean S.D.

CTP2 9.0160 0.0874 8.2395 0.5006 8.3093 0.5095
CTP3 8.9366 0.0295 8.1545 0.4789 8.2709 0.4942
CTP4 8.4892 0.1705 7.7931 0.4147 8.0195 0.3826
CTP5 8.9121 0.0344 8.1760 0.4858 8.2564 0.4803
CTP6 36.6061 0.2096 31.4846 5.5777 36.0543 0.6057
CTP7 9.4315 0.4734 7.7532 1.3039 8.2832 0.9949
CTP8 33.8385 4.2748 28.3557 5.6023 34.9932 1.1874

7.3 Infeasibility Empowered Memetic Algorithm

(IEMA)

In the literature, global search methods (such as EAs) are often used in conjunc-

tion with local search methods (such as the gradient search) to search efficiently

for the optimum solutions. This hybrid approach is referred to as a memetic

algorithm [152]. A comprehensive review of memetic algorithms can be found in

[153].

The primary purpose of the local search is to inject good quality solutions

into the population early in the search. Local search methods are usually quick

to converge to an optimum in the neighborhood. Population-based global search

7.3. INFEASIBILITY EMPOWERED MEMETIC ALGORITHM (IEMA) 225

methods can provide a number of promising starting solutions to a local search,

which in turn can help in identifying good quality solutions quickly. These solu-

tions then further help to generate better quality solutions through evolutionary

recombination and mutation.

The algorithm presented in this section, the IEMA, is a memetic algorithm

which uses IDEA as a global search method. Within each generation, a local

search is initiated from a promising solution in the population. The IEMA tries to

exploit the advantages of two approaches, i.e., a) intensifying the search near the

constraint boundary by preserving marginally infeasible solutions and b) using the

effectiveness of a local search to expedite the convergence in potentially optimal

regions of the search space.

The proposed IEMA is outlined in Algorithm 7.2. In IEMA, during each

generation, apart from the evolution of the solutions using IDEA, a local search

is performed from a solution in the population for a prescribed number of function

evaluations (set to 20×nvar in the presented studies, where nvar is the number of

design variables). Sequential quadratic programming (SQP) [154] is used in the

presented studies for the local search. The starting solution for the local search

is determined from the solutions in the population in the following way:

1. If the local search in the previous generation was able to improve the best

solution, the new best solution is used as the starting solution for the local

search.

2. If the local search was unable to improve the best solution in the previous

generation, it is evident that the existing best solution (in the previous

generation) is either not a good starting solution for the local search, or close

enough to optimum (either local or global) so that further improvements

226 7. FURTHER ENHANCEMENTS AND APPLICATIONS

are difficult. In such a case, a random solution is selected from the high

ranked infeasible solutions and the feasible solutions in the population, in

an attempt to further improve the objective value. High ranked infeasible

solutions consist of the Ninf = α ∗N solutions (refer to Algorithm 7.2)

After performing the local search the worst solution in the population is

replaced by the best solution found from the local search. The ranking of solutions

is done in the same way as in IDEA. The injection of good quality solutions found

using the local search guides the population towards potentially optimal regions

of the search space. In turn, the evolved solutions act as good starting solutions

for the local search in subsequent generations. In this way, IDEA and local search

work together to identify the optimum solution.

Algorithm 7.2 Infeasibility Empowered Memetic Algorithm (IEMA)

Require: N {Population size}
Require: NG > 1 {Number of generations}
Require: 0 < α < 1 {Proportion of infeasible solutions}
1: Ninf = α ∗N
2: Nf = N −Ninf

3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: childpopi−1 = Evolve(popi−1)
7: Evaluate(childpopi−1)
8: (Sf , Sinf) = Split(popi−1 + childpopi−1)
9: Rank(Sf)

10: Rank(Sinf)
11: popi = Sinf (1 : Ninf) + Sf (1 : Nf)
12: x← Choose starting solution in popi

13: xbest ← Local search (x) {xbest is the best solution found using local
search from x}

14: Replace worst solution in popi with xbest

15: Rank(popi) {Rank the solutions again in popi}
16: end for

7.3. INFEASIBILITY EMPOWERED MEMETIC ALGORITHM (IEMA) 227

7.3.1 Preliminary experiments - IEMA

The performance of the IEMA is first tested on g-series constrained test problems.

A small number of function evaluations is used for this study, as compared to

350,000 used earlier in Chapter 3. Thirty independent runs are conducted for

each problem using NSGA-II, IDEA and IEMA. The crossover and mutation

parameters used are the same as listed in Table 7.2. A population size of 40 is

used, and the maximum number of function evaluations is set to 10000.

The results obtained using NSGA-II, IDEA and IEMA are summarized in

Table 7.6. It is seen that IEMA is able to achieve better (or same) median and

mean values compared with NSGA-II and IDEA for the problems g01, g04, g07,

g08, g09 and g12. For the remaining three problems (g02, g06 and g10), the

performance of IDEA is better than those of NSGA-II and IEMA.

228 7. FURTHER ENHANCEMENTS AND APPLICATIONS

Table 7.6: Preliminary studies of IEMA on g-series test problems

NSGA-II IDEA IEMA
Median -12.5276 -13.4862 -15
Best -14.9823 -14.9756 -15

g01 Mean -12.378 -13.307 -14.6094
Worst -8.97155 -9.62892 -13.8281
Std. 1.80534 1.53221 0.561871
Feasible runs 30 30 30
Median 0.694529 0.747131 0.535252
Best 0.78176 0.787357 0.670918

g02 Mean 0.689805 0.741544 0.545908
Worst 0.56026 0.627344 0.391273
Std. 0.0501933 0.0420695 0.0607081
Feasible runs 30 30 30
Median -30438.5 -30642.2 -30665.5
Best -30659.5 -30664.5 -30665.5

g04 Mean -30435.3 -30624.8 -30665.5
Worst -30067.4 -30462.4 -30665.5
Std. 167.35 49.9505 1.2509e-06
Feasible runs 30 30 30
Median -5650.15 -6641.44 -6187.59
Best -6785.81 -6934.38 -6958.4

g06 Mean -5677.13 -6718.05 -6363.21
Worst -1289.75 -6412.88 -5622.84
Std. 1079.54 148.66 408.332
Feasible runs 22 22 24
Median 28.528 27.924 24.8033
Best 24.637 24.9373 24.3066

g07 Mean 31.941 30.0609 25.238
Worst 61.1841 44.5458 28.9968
Std. 8.00498 4.99691 1.0988
Feasible runs 30 30 30
Median -0.0958232 -0.095825 -0.095825
Best -0.095825 -0.095825 -0.095825

g08 Mean -0.0868064 -0.0913778 -0.095825
Worst -0.025423 -0.0291436 -0.095825
Std. 0.0233829 0.0169171 1.945e-09
Feasible runs 30 30 30
Median 685.131 682.588 680.65
Best 681.878 680.973 680.63

g09 Mean 686.583 683.268 680.769
Worst 696.628 692.745 681.773
Std. 4.22735 2.27533 0.244093
Feasible runs 30 30 30
Median 8957.87 8179.32 9360.77
Best 7593.53 7282.61 7049.25

g10 Mean 9310.95 8814.34 9784.72
Worst 13331.9 16859.8 23449.3
Std. 1448.28 1911.75 3426.46
Feasible runs 29 29 25
Median -1 -1 -1
Best -1 -1 -1

g12 Mean -1 -1 -1
Worst -1 -1 -1
Std. 1.28959e-08 1.28959e-08 1.17494e-14
Feasible runs 30 30 30

7.4. ENGINEERING DESIGN PROBLEMS 229

7.4 Engineering Design Problems

In this section, the experiments undertaken on engineering design optimization

problems are presented. A number of benchmark problems are selected for

this study, including Belleville spring design [3], helical spring design [3], heat

exchanger design [155], speed reducer design [4], pressure vessel design [156],

welded beam design [57], car side impact problem [99], bulk carrier design [157],

and airfoil design [158]. The problem definitions are given in Appendix E.

A summary of the design experiments is provided in Table 7.7. For each

experiment, thirty independent runs are done by varying the random seed. The

parameters used for NSGA-II, IDEA and IEMA are listed in Table 7.8 and those

for C-PSA and SASA in Table 7.9. The parameters for surrogate building in

SASA remain the same as listed in Table 7.3 earlier. While NSGA-II and IDEA

are run for all problems, IEMA is run only for continuous variable problems

since it uses a gradient-based search. C-PSA and SASA, being multi-objective

algorithms, are run only for the multi-objective problems. Also, C-PSA and

SASA are run for continuous problems only because of the nature of mutation

(Laplacian/ADD) currently implemented.

A population size of 40 is used for single-objective problems, while a popu-

lation size of 100 is used for multi-objective problems. The number of function

evaluations is limited to 1000 and 5000 for single and multi-objective problems

respectively.

230 7. FURTHER ENHANCEMENTS AND APPLICATIONS

Table 7.7: Numerical experiments. (Note: IEMA is run for (single objective)
continuous problems only, since it employs gradient search. C-PSA and SASA
are run for (multi-objective) continuous variable problems only due to the

nature of mutation currently implemented)
NSGA-II IDEA IEMA C-PSA SASA

Belleville spring X X X - -
Car side impact X X X - -
Airfoil design X X X - -
Welded beam design (SO) X X X - -
Bulk carrier design (SO) X X X - -
Speed reducer X X - - -
Pressure vessel X X - - -
Heat exchanger X X - - -
Helical spring (SO) X X - - -
Helical spring (MO) X X - - -
Bulk carrier design (MO) X X - X X

Welded beam design (MO) X X - X X

Table 7.8: Parameters used for IDEA and NSGA-II for studies on engineering design
problems

Parameter Value

Crossover probability 0.9
Mutation probability 0.1
Crossover distribution index 15
Mutation distribution index 20

Table 7.9: Parameters used for the C-PSA and SASA

Parameter Value

Initial probability of feasible to infeasible jump (Pi) 0.5
Final probability of feasible to infeasible jump (Pf) 0.01
Probability of acceptance used for calculating initial temperature (PTi

) 0.9
Final temperature (Tf) 1e-5
No. of exploring solutions for ADD (Nadd) 1
Exploration radius for ADD (r) 1e-3
Initial scaling factor for Laplacian mutation (σi) 1
Final scaling factor for Laplacian mutation (σf) 0.1
Epoch length (M) 20 × nvar

Hard limit on no. of solutions in archive (HL) 100
Soft limit on no. of solutions in archive (SL) 150
Number of solutions rejected consecutively for restart (Kmax) 10

7.4. ENGINEERING DESIGN PROBLEMS 231

7.4.1 Results : single-objective problems

The results obtained using NSGA-II, IDEA and IEMA are summarized in Ta-

ble 7.10. It is seen that the average and median values obtained using IDEA

and IEMA are better than those from NSGA-II for all the problems, except the

airfoil problem for which NSGA-II obtains better values than IEMA. The best

values obtained for each problem are also better than those from NSGA-II for all

problems except the speed reducer problem for which IDEA is marginally worse

than NSGA-II. The percentage improvements obtained using IDEA and IEMA

over NSGA-II (where applicable), are shown in brackets alongside the objective

values in Table 7.10.

The percentage improvement attained in using IEMA and IDEA over NSGA-II

varies for different problems, but it can be seen that as high as 26.52 % improve-

ment over the best result was obtained using IEMA (for the case of Belleville

spring design). Furthermore, improvements in the median values indicate that

IEMA is able to achieve good objective values consistently. Again, for the case

of Belleville spring design, 46.07 % improvement is seen in the median value

using IEMA compared with that obtained using NSGA-II. Improvements in the

other problems are comparatively less in magnitude, but are still significant and

consistent. The convergence plots for the median runs of each algorithm are

shown in Figure 7.1.

In the summary of results shown in Table 7.10, the function evaluations

used in some of the previous studies are also listed in addition to the best

values reported. Except for recent studies by Isaacs [149] which also use 1000

evaluations for comparison, the numbers of function evaluations used in most

other studies are much higher than those used here. Even so, the objectives

values obtained using IEMA are better than (or very close to) the best reported

232 7. FURTHER ENHANCEMENTS AND APPLICATIONS

previously1. Also worth mentioning here is that although the best results reported

for Belleville spring design and welded beam design in [149] use surrogate assisted

algorithms, superior results are obtained in the presented studies without the use

of surrogates. This also highlights a further scope of improvement over current

studies, i.e., the inclusion of surrogate-modeling techniques in IDEA and IEMA.

Although the results obtained using the proposed IEMA are very promising,

it is not without limitations. The most prominent limitation of IEMA (at least in

the current implementation, since a gradient-based local search SQP is used) is

its inability to handle discrete variables (during the local search). Therefore,

experiments have been reported only on problems with continuous variables.

However, it could be resolved with use of more specialized operators. Secondly,

the performance is also likely to deteriorate if the number of variables is very high,

because the calculation of gradients itself will become computationally expensive

in that case.

1Please note that slight variations in the results might also result from different precision
of the variables or machines used for conducting previously reported experiments. In addition,
for the Belleville spring design, the thickness of the spring is considered as a discrete variable
in [11], but as a continuous variable in others, including the present studies.

7.4. ENGINEERING DESIGN PROBLEMS 233

Table 7.10: Results for single objective engineering design problems. The numbers in
the brackets indicate percent improvement in the objective values compared
to those obtained using NSGA-II. (BS ≡ Belleville spring, BC ≡ bulk carrier,
CSI ≡ car side impact, HS ≡ helical spring, AF ≡ airfoil, SR ≡ speed reducer,

PV ≡ pressure vessel, WB ≡ welded beam)
.

NSGA-II IDEA IEMA Other best reported
[reference] (evals)

Median 3.67072 3.37236 (8.13 %)
1.97968 (46.07
%)

2.121964 [159] (24K),

Best 2.694 2.45197 (8.98 %)
1.97967 (26.52
%)

2.29 [149] (1K),

Mean 3.67317 3.34078 (9.05 %) 2.3326 (36.50 %) 2.16256 [11](10K),
BS [3] Worst 6.12532 6.08839 7.5429 1.978715[3] (infeas.)

Std. 0.99401 0.870218 1.17039
Feas. runs 23 23 30

Median 9.78935 9.50139 (2.94 %) 8.90361 (9.05 %)
Best 9.01664 8.79626 (2.44 %) 8.60617 (4.55 %)
Mean 10.0897 9.81623 (2.71 %) 9.20434 (8.77 %)

BC [157] Worst 12.4753 12.0867 13.3163 8.6083[70](25K)
Std. 0.857135 0.906221 1.2412
Feas.runs 30 30 21
Median 24.356 23.9561 (1.64 %) 23.5857 (3.16 %) 23.585651 [99]
Best 23.7872 23.6447 (0.60 %) 23.5857 (0.85 %) 23.59 [160]
Mean 24.414 24.0859 (1.34 %) 23.5857 (3.39 %)

CSI [99] Worst 25.9416 25.16 23.5857
Std. 0.530955 0.357412 1.51e-07
Feas. runs 30 30 30

Median 3.23683 3.08335 (4.74 %)
Best 2.82821 2.68817 (4.95 %)
Mean 3.55707 3.29658 (7.32 %) 2.665 [161]

HS[3] Worst 6.77149 6.74868 - 2.71 [149] (1K)
Std. 1.09286 0.82978 2.798 [162]
Feas. runs 24 24
Median 0.00219 0.00198 (9.5 %) 0.00243 (-)
Best 0.00193 0.00192 (0.5 %) 0.00198 (-)

Mean 0.00330
0.00204 (35.15
%)

0.00340 (-) 1.9303e-3 [149] (1K)

AF[158] Worst 0.01171 0.00238 0.01264
Std. 0.00244 0.00013 0.00209
Feas. runs 30 30 29

Median 3028.82 3019.99 (0.29 %)
Best 3003.1 3003.77 (-)
Mean 3129.38 3082.8 (1.49 %)

SR[4] Worst 3742.32 3778.73 - 2994.74424[163] (54K)
Std. 230.015 183.629
Feas. runs 30 30

Median 7253.97 6953.62 (4.14 %)
Best 6270.69 6190.3 (1.28 %)
Mean 7284.16 7076.27 (2.85 %)

PV [156] Worst 9334.1 9738.97 - 6119.97 [149] (1K)
Std. 678.625 720.031
Feas. runs 30 30

Median 3.47566 3.03597 (12.65 %)
2.38096 (31.50
%)

2.3854347 [163] (33K)

Best 2.55464 2.49649 (2.28 %) 2.38096 (6.80 %) 2.44 [149](1K)

Mean 3.67048 3.13758 (14.52 %)
2.65987 (27.53
%)

2.38119 [49](40K)

WB [57] Worst 5.58366 4.95963 6.14381
Std. 0.84549 0.548607 0.846031
Feas. runs 30 30 30

234 7. FURTHER ENHANCEMENTS AND APPLICATIONS

0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

Function evaluations

f

NSGA−II
IDEA
IEMA

(a) Belleville spring

0 200 400 600 800 1000
8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Function evaluations

f

NSGA−II
IDEA
IEMA

(b) Bulk carrier

0 200 400 600 800 1000
22

24

26

28

30

32

34

Function evaluations

f

NSGA−II
IDEA
IEMA

(c) Car side impact

0 200 400 600 800 1000
3

3.5

4

4.5

Function evaluations

f

NSGA−II
IDEA

(d) Coil compression spring

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

Function evaluations

f

NSGA−II
IDEA
IEMA

(e) Airfoil

0 200 400 600 800 1000
3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

Function evaluations

f

NSGA−II
IDEA

(f) Speed Reducer

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

5

Function evaluations

f

NSGA−II
IDEA

(g) Pressure Vessel

0 200 400 600 800 1000
0

5

10

15

20

25

30

Function evaluations

f

NSGA−II
IDEA
IEMA

(h) Welded Beam

Figure 7.1: Median runs for single objective engineering design problems

7.4. ENGINEERING DESIGN PROBLEMS 235

7.4.2 Results : multi-objective problems

For multi-objective optimization problems, comparison of performances is done

using displacement and hypervolume metrics. For calculating the displacement

metric, the Pareto front is required. However, since the actual Pareto fronts

are not known for these problems, reference Pareto fronts are constructed by

collecting all the final solutions (obtained across all runs), and performing a

non-dominated sorting on them. For calculating hypervolume, the reference point

is constructed using the maximum value of each individual objective from the

collection of all final solutions.

A summary of hypervolume and displacement metrics for multi-objective

problems is given in Table 7.11. The mean and median hypervolume values

obtained using IDEA are the best among the four algorithms. For the welded

beam and bulk carrier problems, the best hypervolume value is obtained using

C-PSA. Similarly, The mean displacement values obtained using IDEA outper-

form those from the other algorithms. Median values are also better than those

from other algorithms, except for the case of welded beam where NSGA-II is

marginally better than IDEA. For visualization, the median and best runs (based

on displacement metric) are shown in Figures 7.2 and 7.3 respectively.

The performance of SASA is found to be poor for these problems, indicating

that it could not find good approximations to the objective functions and/or

constraints using a single surrogate. Another factor affecting the performance

of SASA and C-PSA might be the premature termination of the algorithms due

to the fixed number of function evaluations. In the current implementation,

each trial solution from an infeasible solution requires two evaluations (using

ADD) whereas from a feasible solution it requires only one evaluation (using

Laplacian mutation). Therefore, the number of iterations can not be set to a fixed

236 7. FURTHER ENHANCEMENTS AND APPLICATIONS

value to obtain a given number of function evaluations. If a complete annealing

schedule is not achieved, the results obtained may be pre-converged as the more

aggressive (greedy) search happens in SA during later iterations. Thus, possible

enhancements to these algorithms in the future include a better way of controlling

the number of function evaluations so that a full annealing schedule can be

achieved for a given (fixed) number of evaluations. In addition, currently, only

one surrogate (with least error) is used to approximate the objectives/constraints

in the whole search space. Multiple surrogates could be used to obtain better

approximations of objective and constraint values instead.

Table 7.11: Performance metrics for multi-objective engineering design problems (WB
≡ welded beam, BC ≡ bulk carrier, HS ≡ helical spring)

NSGA-II IDEA C-PSA SASA

Hypervolume
Best 0.619668 0.620004 0.62048 0.618914

WB [57] Mean 0.608964 0.61107 0.60001 0.597384
Worst 0.569534 0.583043 0.563317 0.552339
Median 0.615523 0.615665 0.60627 0.603992

Best 1.82735e+07 1.84188e+07 1.85733e+07 1.84227e+07
BC [157] Mean 1.70845e+07 1.71724e+07 1.48915e+07 1.48888e+07

Worst 1.47561e+07 1.36718e+07 61542.2 35208.2
Median 1.73023e+07 1.73994e+07 1.73611e+07 1.7085e+07

Best 1.21144e+06 1.21e+06
HS[3] Mean 1.12776e+06 1.15204e+06 - -

Worst 777936 967152
Median 1.16512e+06 1.16765e+06

Displacement
Best 0.00275881 0.00367227 0.00940382 0.00973421

WB [57] Mean 0.0082894 0.00786422 0.0211862 0.0229821
Worst 0.0232389 0.0314141 0.0530463 0.0688903
Median 0.00412279 0.00449162 0.0129685 0.0138647

Best 1957.08 1154.46 611.706 668.657
BC [157] Mean 4691.03 4421.62 10514.3 10062.2

Worst 9502.72 12559.8 53267.1 53605.3
Median 4611.97 4156.97 4372.48 5030.96

Best 150.11 108.516
HS[3] Mean 610.232 425.89 - -

Worst 2245.43 1292.64
Median 492.299 379.889

7.4. ENGINEERING DESIGN PROBLEMS 237

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

f
1

f 2

Pareto front
NSGA−II
IDEA
C−PSA
SASA

(a) Welded beam

6 8 10 12 14 16
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7
x 10

6

f
1

f 2

Pareto front
NSGA−II
IDEA
C−PSA
SASA

(b) Bulk carrier

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5
x 10

5

f
1

f 2

Pareto front
NSGA−II
IDEA

(c) Coil compression spring

Figure 7.2: Median runs (based on displacement metric) for multi-objective engineering
design problems. Reference Pareto fronts shown in the figure are constructed

by assembling non-dominated solutions obtained from all runs.

238 7. FURTHER ENHANCEMENTS AND APPLICATIONS

2 4 6 8 10 12 14 16 18
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

f
1

f 2

Pareto front
NSGA−II
IDEA
C−PSA
SASA

(a) Welded beam

6 8 10 12 14 16
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7
x 10

6

f
1

f 2

Pareto front
NSGA−II
IDEA
C−PSA
SASA

(b) Bulk carrier

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5
x 10

5

f
1

f 2

Pareto front
NSGA−II
IDEA

(c) Coil compression spring

Figure 7.3: Best runs (based on displacement metric) for multi-objective engineering
design problems. Reference Pareto fronts shown in the figure are constructed

by assembling non-dominated solutions obtained from all runs.

7.5 Summary

In this chapter, the algorithms proposed in previous chapters are further enhanced

by the use of local search and surrogate modeling. A number of engineering design

problems are then studied using the proposed algorithms with limited function

evaluations. The proposed algorithms are able to achieve competitive and, in

some cases, significantly better results than the current state-of-the-art algorithm

NSGA-II as well as some others from previously published studies. Overall, the

algorithms show a great deal of potential for applications in real-life engineering

design optimization problems.

Chapter 8

Conclusions

8.1 Research and Outcomes

Optimization is an integral part of engineering design. In recent times, meta-

heuristic techniques have gained popularity as generic optimizers. Their ability to

handle complex objective functions commonly occurring in design optimization

and to find solutions to multi-objective optimization problems in a single run,

along with some other advantages, gives them a clear edge over conventional

analytical optimization techniques. However, as these algorithms require a large

number of computationally expensive simulations to find the optimum design,

they are slow and unsuitable for a number of applications. Since the time taken to

evaluate a design is independent of the optimizer itself, reduction in optimization

time requires finding the optimum design with as few design evaluations as

possible. The work presented in this thesis is directed towards finding potential

areas in which function evaluations can be saved, thereby improving convergence

and finding the optimum design in minimal time.

As a first step towards achieving the above mentioned goal, the constraint

239

240 8. CONCLUSIONS

handling mechanisms used with existing optimization algorithms are examined.

Constraints which impose necessary restrictions on cost, strength, geometry or

other relevant factors, are inevitably present in most engineering problems. It

is also evident that optimum solutions are often bounded by these constraints,

or in other words, the optimum solutions often lie on constraint boundaries.

Since the final goal of optimization is to find feasible optimum design, during the

course of a search most of the algorithms prefer feasible solutions over infeasible

solutions. In this process, infeasible solutions are weeded out, effectively resulting

in the search being conducted through the feasible space only. In this thesis, a

new approach which is in contrast with the conventional feasible-first ranking

techniques is proposed. The main idea proposed here is that since optimum

solutions lie on constraint boundaries, an infeasible solution near a constraint

boundary is better (in terms of convergence) as compared to a feasible solution

away from it. Consequently, preserving infeasible solutions near the constraint

boundaries can help achieve faster convergence to the optimum. In addition, these

marginally infeasible solutions are also useful for trade-off studies, i.e. to find out

if significant benefits can be achieved in the objective values by slight compromise

of one or more of the constraints. In this work, this concept is implemented in an

evolutionary algorithm (Infeasibility Driven Evolutionary Algorithm, IDEA) to

demonstrate consistent and significant improvements in convergence for a number

of single- and multi-objective mathematical benchmarks and engineering design

problems. For the engineering problems studied, up to 9% and 35% improvements

in the best and mean objective values, respectively, were achieved using this

improved constraint handling method.

The next related study is also in the area of constraint handling, but within

the framework of another metaheuristic, Simulated Annealing (SA). SA is a

8.1. RESEARCH AND OUTCOMES 241

robust optimization technique with a strong mathematical foundation, and also

has a proof of convergence subject to certain conditions. Its ability to escape

local minima by probabilistically accepting worse solutions during the search sets

it apart from greedy search methods such as hill climbing. However, being a

single-point method, SA has an inherent disadvantage for multi-objective opti-

mization problems compared with population-based methods which can capture

the whole Pareto front in a single run. Additionally, SA also lacks an explicit

constraint handling method. In recent times, some efforts have been made to

handle these two issues separately. However, none of them have been directed

towards solving difficult constrained multi-objective optimization problems. In

this thesis, SA is enhanced to deal with such problems. The resulting SA is

termed as Constrained Pareto Simulated Annealing (C-PSA). Its performance is

studied on a number of difficult constrained problems; and it is found to be very

competitive, and in some cases much better than those of the multi-objective

evolutionary algorithms NSGA-II and IDEA.

The two algorithms for constrained optimization described above are further

enhanced by the addition of local search (in IDEA) and surrogate modeling

(in C-PSA). The local search in IDEA helps to induce good quality solutions

during early generations, while the solutions evolved through IDEA provide good

starting points for the local search. Together, these two mechanisms help to

further improve the convergence rate. On the other hand, the surrogate modeling

helps in reducing the number of function evaluations required by guiding the

search based on approximate (predicted) objective and constraint values in lieu

of actual evaluations (which may be expensive). These predictions are done by

periodically building surrogate models during the search using the truly evaluated

solutions.

242 8. CONCLUSIONS

A second aspect which proves prohibitive for the use of optimization algo-

rithms is the case of large scale problems. While most of the existing algorithms

are able to solve low dimensional problems effectively, their performance scales

poorly with number of objectives and/or variables. This is commonly referred to

as the curse of dimensionality. Both these situations (a high number of objectives

and a high number of variables) are studied in this thesis.

For the case of many-objective problems, improvements are made in two

different directions. Firstly, convergence is improved by using better ranking tech-

niques. Conventional Pareto-dominance ranking is an inadequate means to drive

the solutions towards the optimum since most solutions in the population are

non-dominated with respect to each other. Therefore, additional mechanisms are

required for better convergence, while also ensuring that the solutions have good

diversity. In this thesis, two secondary ranking methods namely Cluster-sort and

Modified-ǫ-dominance are proposed. Studies conducted on problems containing

up to 30 objectives indicate that the proposed ranking methods are able to achieve

improved convergence and diversity. Secondly, in the context of many-objective

optimization, dimensionality reduction is studied. For certain many-objective

problems, it is possible to reduce the original set of objectives to a subset with a

smaller number of objectives, which can be solved more easily using conventional

MOEAs. Current dimensionality reduction techniques use a population obtained

after evolution through excessive number of generations in order to identify

the reduced set of objectives. In this thesis, a novel method of dimensionality

reduction in which the corners of the Pareto front are sought and used to identify

the true dimensionality of the Pareto front is proposed. This approach has a

number of advantages over conventional dimensionality reduction techniques, the

foremost being that it is able to estimate the dimensionality with much fewer

8.1. RESEARCH AND OUTCOMES 243

evaluations. Additionally, the population size required to capture the corners

does not, in general, increase exponentially with the number of objectives. Lastly,

this method does not involve computationally expensive procedures such as the

calculation of hypervolume. Experiments on benchmark problems containing up

to 100 objectives and two engineering design examples illustrate the immense

potential of this dimensionality reduction technique.

In the field of problems with large numbers of variables, the research con-

ducted in this thesis improves upon the existing Cooperative Coevolutionary Al-

gorithms (CCEAs). Coevolutionary algorithms operate by dividing the variables

into several partitions and using different sub-populations to individually opti-

mize variables in each partition. However, the conventional CCEAs do not have

a suitable method for partitioning the variables appropriately. Partitioning them

into constant or random groups, as practiced currently, may actually cause them

to perform worse than typical evolutionary algorithms, especially for the case of

non-separable problems. In this thesis, this drawback of conventional CCEAs

is emphasized by studying two non-separable problems. A novel algorithm,

CCEA-AVP, in which the partitioning is done adaptively based on the correlations

among the variables, is proposed. In this way, strongly interacting variables

are grouped together whereas there is minimal interaction among the different

partitions. Separable and non-separable problems containing up to 100 variables

are studied and the results indicate consistently competitive performance of the

proposed CCEA-AVP.

Lastly, some exploratory studies are done on trans-dimensional optimization.

Trans-dimensional optimization refers to problems where the set of variables is

not unique, as assumed in all of the other problems studied above. The problem

may have a number of candidate models, each of which has a corresponding set of

244 8. CONCLUSIONS

associated variables. Therefore, the global optimization process involves identify-

ing the best model as well as the corresponding variable values. The conventional

approach in such a case is to carry out optimization for each model exhaustively,

and then choose the best model. However, this is inefficient. In this thesis,

a SA-based Trans-dimensional Optimization algorithm (SA-TDO) is proposed,

which searches through the variable and model space simultaneously. During the

search, each model is optimized in parallel and the promising models (those which

show superior objective values) are promoted by allotting them a relatively higher

number of evaluations. The efficacy of this approach is demonstrated using two

trans-dimensional optimization problems: the first is the clustering of a given

data where the number and location of centroids is unknown; and the second is

the minimization of operating cost for a transportation network.

8.2 Achievements

In summary, the contributions of this thesis can be grouped into four broad areas:

1. Constraint handling: Four algorithms are proposed to effectively deal

with constrained optimization problems. Numerical experiments conducted

on a number of constrained benchmark and engineering problems demon-

strate significant improvements achieved over conventional EA. These are

as follows.

(a) Infeasibility Driven Evolutionary Algorithm (IDEA): an evolutionary

algorithm incorporating new constraint handling mechanism, in which

the search is focused near the constraint boundaries by explicitly pre-

serving marginally infeasible solutions during the evolution.

8.2. ACHIEVEMENTS 245

(b) Constrained Pareto Simulated Annealing (C-PSA): a simulated an-

nealing algorithm for solving constrained multi-objective optimization

problems.

(c) Infeasibility Empowered Memetic Algorithm (IEMA): a memetic al-

gorithm that uses IDEA as a global search method and SQP to make

local improvements in the solutions. In its current form, IEMA can

handle single-objective continuous variable problems only.

(d) Surrogate Assisted Simulated Annealing (SASA): similar to C-PSA,

with the inclusion of surrogate modeling to occasionally guide the

search based on approximate objective values instead of actual func-

tion evaluations.

2. Large scale optimization (many objectives): Three improvements are

proposed for handling problems with large numbers of objectives, as follows.

(a) Cluster-sort: a secondary ranking method for many-objective prob-

lems in which diversity is promoted based on clustering instead of

the crowding distance method (implemented in NSGA-II framework).

While this method does not improve convergence, it helps to achieve

good diversity among solutions; and can be used in conjunction with

faster converging schemes with poor diversity for good overall results.

(b) Modified-ǫ-dom: another secondary ranking method, which removes

mutual ranking from the earlier proposed -ǫ-dom procedure, resulting

in better convergence while maintaining good diversity.

(c) Pareto corner based dimensionality reduction: a novel technique for

dimensionality reduction in which the true dimensionality of a problem

246 8. CONCLUSIONS

is identified using a key set of solutions (corners) on the Pareto front.

An algorithm to identify the set of corners, namely the Pareto Corner

Search Evolutionary Algorithm (PCSEA), is proposed; followed by

the dimensionality analysis which involves analysis of the obtained

corner solutions by omitting each objective sequentially. The proposed

method is able to estimate the dimensionality using a fraction of

evaluations required by contemporary techniques.

3. Large scale optimization (many variables): a novel partitioning strat-

egy, based on correlations among the variables, is proposed for Cooperative

Coevolutionary Algorithms (CCEAs) to handle problems with large num-

ber of variables. The resulting algorithm, CCEA with Adaptive Variable

Partitioning (CCEA-AVP) is able to solve a broad class of separable and

non-separable problems more efficiently as compared to conventional EA

and CCEA.

4. Trans-dimensional optimization: a SA-based trans-dimensional opti-

mization (SA-TDO) algorithm is proposed to deal with optimization prob-

lems with multiple candidate models. This algorithm searches through the

model and variable spaces simultaneously by preferably assigning evalua-

tions to the models that exhibit better objective values during the search.

This results in better quality solutions than when the same number of func-

tion evaluations is distributed equally among the models for their individual

optimization.

All the above algorithms and strategies are coded in MATLAB. The list of

the publications based on the research presented in this thesis is given at the

beginning of the thesis. The algorithms developed herein are also currently being

8.3. FUTURE WORK 247

used by the Multi-disciplinary Design Optimization (MDO) group at the Univer-

sity of New South Wales at Australian Defence Force Academy (UNSW@ADFA)

for various applications. This includes designs of an unmanned underwater

vehicle, an optimum hull-form for fast crafts (patrol boats) and an optimum inlet

geometry of scram-jets for next generation spacecrafts in the ongoing Australian

Space Research Program (ASRP).

8.3 Future Work

While this thesis highlights a number of areas in which existing optimization

algorithms can be improved, it is by no means an exhaustive account. With the

proliferation of research, particularly in metaheuristic techniques for optimiza-

tion, we are bound to regularly come across exciting ideas and new insights in

this field. No research is complete. However, from the work conducted in this

thesis, a few directions (of many) that need further investigation can be identified

as follows.

In terms of constraint handling, maintaining good infeasible solutions is cer-

tainly a beneficial idea, as adequately demonstrated. There may be a number of

ways in which this concept may be utilized, one of which is studied in this thesis.

While calculating the Constraint Violation Measure, effectively the same weight

has been given to each constraint. However, since only critical/active constraints

are of real interest to us (that’s where optimum solutions lie), a better technique

could be devised in which such constraints are identified and intrinsically preferred

during the evolution, so as to focus the search near only the relevant portions of

the constraint boundaries. Additionally, surrogate modeling can be embedded in

IDEA for further reduction in the number of function evaluations and improved

248 8. CONCLUSIONS

computational efficiency.

While the SA-based algorithms (C-PSA and SASA) proposed in this thesis

show good results for most problems, their performance is unreliable for studies

using a fixed number of function evaluations (especially the engineering design

problems studied in Chapter 7). This primarily appears to be due to insufficient

time being available for the full annealing schedule to elapse within the given

number of evaluations. Therefore, a better annealing scheme has to be devised so

that these algorithms can be fairly compared with others for a fixed computational

budget. Furthermore, multiple surrogates can be employed for a more accurate

prediction of the objective and constraint values.

The study in dimensionality reduction for many-objective algorithms has

potential extensions, the foremost of which is identifying the possibility of using

appropriate set(s) of solutions rather than the whole Pareto front for dimension-

ality reduction. This work demonstrates one such possible set, termed corner

solutions which, while being novel and apt for solving a wide range of problems,

has a number of limitations as detailed in Chapter 4. Also, the corner search

algorithm PCSEA itself has some limitations, and further studies are required to

eliminate them. In addition, studies are required to build a stronger theoretical

basis for such dimensionality reduction; which will also provide insights into

further possibilities for improving this approach.

Another improvement would be to minimize the number of user-defined pa-

rameters in the above algorithms by making them self-adaptive during the search.

Lastly, while all the above contributions are implemented in either the EA or

SA paradigm, they can be extended to other metaheuristics. In particular, recent

studies have demonstrated superior performance of recombination/mutation op-

erators used by Differential Evolution (DE) methods compared to those used in

8.3. FUTURE WORK 249

conventional EAs. When coupled with some of the techniques presented in this

thesis, the benefits of operators and constraint handling can be compounded to

give more efficient algorithms.

REFERENCES 251

References

[1] Collette, Y., Siarry, P.: Multiobjective optimization: Principles and case studies.
Springer-Verlag Berlin Heidelberg (2003)

[2] Hedar, A., Fukushima, M.: Derivative-free filter simulated annealing method
for constrained continuous global optimization. Journal of Global Optimization
35(4) (2006) 291–308

[3] Siddall, J.N.: Optimal engineering design - principles and applications. Marcel
Dekker, Inc., New York (1982)

[4] Golinski, J.: Optimal synthesis problems solved by means of nonlinear
programming and random methods. Journal of Mechanisms 5(3) (1970) 287–309

[5] Deb, K.: Optimization For Engineering Design: Algorithms And Examples.
Prentice-hall of India Pvt. Ltd. (1998)

[6] Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Orient
Longman (1993)

[7] Darwin, C.: On the origin of species by means of natural selection. Murray,
London (1859)

[8] Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural
Computing Series. Spriger-Verlag Berlin Heidelberg (2003)

[9] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6 (2002) 182–197

[10] Deb, K., Agrawal, S.: Simulated binary crossover for continuous search space.
Complex Systems 9 (1995) 115–148

[11] Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for
engineering design. Computer Science and Informatics 26 (1996) 30–45

[12] Kirkpatrick, S., Gelatt, C. D., J., Vecchi, M.P.: Optimization by Simulated
Annealing. Science 220(4598) (1983) 671–680

[13] Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence 6(6) (1984) 721–741

[14] Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based
multiobjective optimization algorithm: AMOSA. IEEE Transactions on
Evolutionary Computation 12(3) (2008) 269–283

[15] Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Transactions on Evolutionary Computing 7(2) (2003) 204–223

252 REFERENCES

[16] Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing - a metaheuristic
techinique for multiple-objective combinatorial optimization. Journal of
Multi-Criteria Decision Analysis 7(1) (1998) 34–47

[17] Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- a comparitive case study. In: Proceedings of Parallel Problem Solving from
Nature (PPSN-V). (1998) 292–301

[18] Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. Shaker Verlag, Germany, ISBN 3-8265-6831-1 (1999)

[19] Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering 191(11-12) (2002) 1245–1287

[20] Michalewicz, Z.: A Survey of Constraint Handling Techniques in Evolutionary
Computation Methods. In McDonnell, J.R., Reynolds, R.G., Fogel, D.B., eds.:
Proceedings of the 4th Annual Conference on Evolutionary Programming. The
MIT Press, Cambridge, Massachusetts (1995) 135–155

[21] Mezura-Montes, E., ed.: Constraint-Handling in Evolutionary Optimization.
Volume 198 of Studies in Computational Intelligence. Springer-Verlag Berlin
Heidelberg (2009)

[22] Kuri-Morales, A., Quezada, C.V.: A Universal Eclectic Genetic Algorithm for
Constrained Optimization. In: Proceedings 6th European Congress on Intelligent
Techniques & Soft Computing (EUFIT), Aachen, Germany, Verlag Mainz (1998)
518–522

[23] Homaifar, A., Lai, S.H.Y., Qi, X.: Constrained Optimization via Genetic
Algorithms. Simulation 62(4) (1994) 242–254

[24] Joines, J., Houck, C.: On the use of non-stationary penalty functions to
solve nonlinear constrained optimization problems with GAs. In Fogel, D., ed.:
Proceedings of the first IEEE Conference on Evolutionary Computation, Orlando,
Florida, IEEE Press (1994) 579–584

[25] Michalewicz, Z.: Genetic Algorithms, Numerical Optimization, and Constraints.
In Eshelman, L.J., ed.: Proceedings of the Sixth International Conference on
Genetic Algorithms (ICGA), San Mateo, California, University of Pittsburgh,
Morgan Kaufmann Publishers (July 1995) 151–158

[26] Michalewicz, Z., Attia, N.F.: Evolutionary Optimization of Constrained
Problems. In: Proceedings of the 3rd Annual Conference on Evolutionary
Programming, World Scientific (1994) 98–108

[27] Bean, J.C., Hadj-Alouane, A.B.: A Dual Genetic Algorithm for Bounded Integer
Programs. Technical Report TR 92-53, Department of Industrial and Operations
Engineering, The University of Michigan (1992)

REFERENCES 253

[28] Hadj-Alouane, A.B., Bean, J.C.: A Genetic Algorithm for the Multiple-Choice
Integer Program. Operations Research 45 (1997) 92–101

[29] Hoffmeister, F., Sprave, J.: Problem-independent handling of constraints by
use of metric penalty functions. In Fogel, L.J., Angeline, P.J., Bäck, T., eds.:
Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP),
San Diego, California, The MIT Press (February 1996) 289–294

[30] Ray, T., Tai, K., Seow, K.: Multiobjective design optimization by an evolutionary
algorithm. Engineering Optimization 33(4) (2001) 399–424

[31] Ho, P.Y., Shimizu, K.: Evolutionary constrained optimization using an addition
of ranking method and a percentage-based tolerance value adjustment scheme.
Information Sciences 177 (2007) 2985–3004

[32] Mezura-Montes, E., Coello Coello, C.A.: Constrained Optimization via
Multiobjective Evolutionary Algorithms. In Knowles, J., Corne, D., Deb, K., eds.:
Multiobjective Problem Solving from Nature: From Concepts to Applications.
Natural Computing Series. Springer-Verlag (2008) 53–75

[33] Vieira, D.A.G., Adriano, R.L.S., Krahenbuhl, L., Vasconcelos, J.A.: Handing
constraints as objectives in a multiobjective genetic based algorithm. Journal of
Microwaves and Optoelectronics 2(6) (December 2002) 50–58

[34] Vieira, D.A.G., Adriano, R.L.S., Vasconcelos, J.A., Krahenbuhl, L.: Treating
constraints as objectives in multiobjective optimization problems using niched
pareto genetic algorithm. IEEE Transactions on Magnetics 40(2) (Mar 2004)
1188 – 1191

[35] Coello Coello, C.A.: Constraint-handling using an evolutionary multiobjective
optimization technique. Civil engineering and environmental systems 17(4)
(2000) 319–346

[36] Hamida, S.B., Schoenauer, M.: An adaptive algorithm for constrained
optimization problems. In: Proceedings of Parallel Problem Solving from Nature
(PPSN-VI), Lecture notes in Computer Science 1917, Springer Berlin/Heidelberg
(2000) 529–538

[37] Hamida, S.B., Schoenauer, M.: ASCHEA: new results using adaptive
segregational constraint handling. In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC). (May 2002) 884–889

[38] Hinterding, R., Michalewicz, Z.: Your brains and my beauty: parent matching
for constrained optimisation. Proceedings of IEEE Conference on Evolutionary
Computaion (CEC) (May 1998) 810–815

[39] Mezura-Montes, E., Coello Coello, C.: A simple multimembered evolution
strategy to solve constrained optimization problems. IEEE Transactions on
Evolutionary Computation 9(1) (Feb. 2005) 1–17

254 REFERENCES

[40] Isaacs, A., Ray, T., Smith, W.: Blessings of maintaining infeasible solutions
for constrained multi-objective optimization problems. In: Proceedings of
IEEE Congress on Evolutionary Computation (CEC), Hong Kong (June, 2008)
2785–2792

[41] Davis, L., ed.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, New York (1991)

[42] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Third edn. Springer-Verlag (1996)

[43] Xiao, J., Michalewicz, Z., Zhang, L.: Evolutionary Planner/Navigator: Operator
Performance and Self-Tuning. In: Proceedings of the 3rd IEEE International
Conference on Evolutionary Computation, Nagoya, Japan, IEEE Press (May
1996)

[44] Xiao, J., Michalewicz, Z., Trojanowski, K.: Adaptive Evolutionary
Planner/Navigator for Mobile Robots. IEEE Transactions on Evolutionary
Computation 1(1) (1997) 18–28

[45] Michalewicz, Z., Xiao, J.: Evaluation of Paths in Evolutionary Plan-
ner/Navigator. In: Proceedings of the 1995 International Workshop on
Biologically Inspired Evolutionary Systems, Tokyo, Japan (May 1995) 45–52

[46] Michalewicz, Z., Nazhiyath, G.: Genocop III: A co-evolutionary algorithm
for numerical optimization with nonlinear constraints. In Fogel, D.B., ed.:
Proceedings of the Second IEEE International Conference on Evolutionary
Computation, Piscataway, New Jersey, IEEE Press (1995) 647–651

[47] Surry, P.D., Radcliffe, N.J.: The COMOGA method: Constrained optimisation
by multi-objective genetic algorithms. Control and Cybernetics 26(3) (1997)

[48] Powell, D., Skolnick, M.M.: Using genetic algorithms in engineering design
optimization with non-linear constraints. In Forrest, S., ed.: Proceedings of
the Fifth International Conference on Genetic Algorithms (ICGA), San Mateo,
California, University of Illinois at Urbana-Champaign, Morgan Kaufmann
Publishers (July 1993) 424–431

[49] Deb, K.: An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering 186 (2000) 311–338

[50] Suppapitnarm, A., Seffen, K., Parks, G., Clarkson, P.: A simulated annealing
algorithm for multiobjective optimization. Engineering Optimization 33(1)
(2000) 59–85

[51] Nam, D., Park, C.: Multiobjective simulated annealing: A comparative study
to evolutionary algorithms. International Journal of Fuzzy Systems 2(2) (2000)
87–97

REFERENCES 255

[52] Smith, K.I., Everson, R.M., Fieldsland, J.E., Murphy, C., Mishra, R.:
Dominance-based multiobjective simulated annealing. IEEE Transactions on
Evolutionary Compuration 12(3) (2008) 323–342

[53] Smith, K.I.: A Study of Simulated Annealing Techniques for Multi-Objective
Optimisation. PhD thesis, University of Exeter, Exeter, UK (2006)

[54] Suman, B.: Study of self-stopping PDMOSA and performance measure in
multiobjective optimization. Computers and Chemical engineering 29 (2001)
1131–1147

[55] Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained
Parameter Optimization Problems. Evolutionary Computation 4(1) (1996) 1–32

[56] Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous Mappings,
and Constrained Parameter Optimization. Evolutionary Computation 7(1)
(1999) 19–44

[57] Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley and Sons Pvt. Ltd. (2001)

[58] Wang, Y., Cai, Z., Guo, G., Zhou, Y.: Multiobjective optimization and
hybrid evolutionary algorithm to solve constrained optimization problems. IEEE
Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 37(3) (June
2007) 560–575

[59] Takahama, T., Sakai, S.: Constrained optimization by applying the /spl alpha/
constrained method to the nonlinear simplex method with mutations. IEEE
Transactions on Evolutionary Computation 9(5) (Oct. 2005) 437–451

[60] Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function.
Mathematical Programming 91 (2002) 239–269

[61] Hedar, A., Fukushima, M.: Heuristic pattern search and its hybridization with
simulated annealing for nonlinear global optimization. Optimization Methods
and Software 19(3–4) (2004) 291–308

[62] Engrand, P.: A multi-objective approach based on simulated annealing and its
application to nuclear fuel management. In: Proceedings of 5th International
Conference on Nuclear Engineering, Nice, France (1997) 416–423

[63] Ulungu, E., Teghem, J., Fortemps, P., Tuyttens, D.: MOSA method: A
tool for solving multiobjective combinatorial optimization problems. Journal
of Multi-Criteria Decision Analysis 8 (1999) 221–236

[64] Smith, K., Everson, R., Fieldsend, J.: Dominance measures for multi-objective
simulated annealing. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC), Portland, Oregon, USA (2004) 23–30

256 REFERENCES

[65] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computing
6(2) (2002) 182–197

[66] Knowles, J., Corne, D.: Approximating the nondominated front using the Pareto
Archived Evolution Strategy. Evolutionary Computation 8(2) (2000) 149–172

[67] Laguna, M., Marti, R.: Experimental testing of advanced scatter search designs
for global optimization of multimodal functions. Journal of Global Optimization
33(2) (2005) 235–255

[68] Laguna, M., Marti, R.: Scatter Search: Methodology and Implementations in C.
Kluver Academic Publishers, Boston (2003)

[69] Ray, T., Gokarn, R., Sha, O.: A global optimization model for ship design.
Computers in Industry 26(2) (1995) 175–192

[70] Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility Driven Evolutionary
Algorithm (IDEA) for Engineering Design Optimization. In: Proceedings of 21st
Australiasian Joint Conference on Artificial Intelligence (AI). (2008) 104–115

[71] Zhang, Q., Zhou, A., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective
optimization test instances for the CEC 2009 special session and competition.
Technical Report CES-487, The School of Computer Science and Electronic
Engineering, University of Essex, Colchester, C04, 3SQ, UK (2009)

[72] Zhang, Q., Suganthan, P.N.: Final report on CEC ’09 MOEA competition.
Technical report, The School of CS and EE, University of Essex,UK and School
of EEE, Nangyang Technological University, Singapore (2009)

[73] Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of
Infeasibility Driven Evolutionary Algorithm (IDEA) on constrained dynamic
single objective optimization problems. In: Proceedings of IEEE Congress
on Evolutionary Computation (CEC), Trondheim, Norway, IEEE Press (2009)
3127–3134

[74] Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary
algorithms. In: Proceedings of Evolutionary Multi-Criterion Optimization
(EMO), Lecture notes in Computer Science 2632, Springer Berlin/Heidelberg
(2003) 376–390

[75] Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective
optimization: A short review. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC), Hong Kong (2008) 2424–2431

[76] Koppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for
handling many-objective optimization problems. In: Proceedings of Evolutionary
Multi-Criterion Optimization, Lecture notes in Computer Science 4403, Springer
Berlin/Heidelberg (2007) 727–741

REFERENCES 257

[77] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective
optimization test problems. Proceedings of IEEE Congress on Evolutionary
Computation (CEC) 1 (May 2002) 825–830

[78] Corne, D.W., Knowles, J.D.: Techniques for highly multiobjective optimisation:
some nondominated points are better than others. In: Proceedings of the 9th
annual conference on Genetic and Evolutionary Computation (GECCO), London,
England, ACM, New York, NY, USA (2007) 773–780

[79] Sato, H., Aguirre, H., Tanaka, K.: Controlling dominance area of solutions
and its impact on the performance of moeas. In: Proceedings of Evolutionary
Multi-Criterion Optimization (EMO), Lecture notes in Computer Science 4403,
Springer-Verlag, Berlin (2007) 5–20

[80] Zitzler, E., Kunzli, S.: Indicator-based selection in multiobjective search. In:
Proceedings of Parallel Problem Solving from Nature (PPSN VIII), Lecture notes
in Computer Science 3242), Springer Berlin/Heidelberg (2004) 832–842

[81] Deb, K., Sundar, J.: Reference point based multi-objective optimization using
evolutionary algorithms. In: Proceedings of the 8th annual conference on Genetic
and evolutionary computation (GECCO), New York, NY, USA, ACM (2006)
635–642

[82] Fleming, P., Purshouse, R., Lygoe, R.: Many-objective optimization: An
engineering design perspective. In: Proceedings of Evolutionary Multi-Criterion
Optimization (EMO), Lecture notes in Computer Science 3410, Springer
Berlin/Heidelberg (2005) 14–32

[83] Obayashi, S., Sasaki, D.: Visualization and data mining of pareto solutions
using self-organizing map. In: Proceedings of Evolutionary Multi-Criterion
Optimization (EMO), Lecture notes in Computer Science 2632, Springer
Berlin/Heidelberg (2003) 796–809

[84] Andy Pryke, Sanaz Mostaghim, A.N.: Heatmap visualization of population based
multi objective algorithms. In: Proceedings of Evolutionary Multi-Criterion
Optimization (EMO), Lecture notes in Computer Science 4403, Springer Berlin
/ Heidelberg (2007) 361–375

[85] Koppen, M., Yoshida, K.: Many-objective particle swarm optimization by
gradual leader selection. In: Lecture notes in Computer Science 4431: Adaptive
and Natural Computing Algorithms, Springer Berlin/Heidelberg (2007) 323–331

[86] Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based
methods in many-objective optimization. In: Proceedings of Evolutionary
Multi-Criterion Optimization (EMO), Lecture notes in Computer Science 4403,
Springer Berlin / Heidelberg (2007) 742–756

[87] Koppen, M., Vincente-Garcia, R., Nickolay, B.: Fuzzy-pareto-dominance and
its application in evolutionary multi-objective optimization. In: Proceedings of

258 REFERENCES

Evolutionary Multi-Criterion Optimization (EMO), Lecture notes in Computer
Science 2632, Springer Berlin/Heidelberg (2005) 399–412

[88] Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective
optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL). (2002) 13–20

[89] Hernandez-Daz, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Molina, J.
Evolutionary Computation 15(4) 493–517

[90] Sammon, J.: A nonlinear mapping for data structure analysis. IEEE Transactions
on Computers 18(5) (1969) 401–409

[91] Saxena, D.K., Ray, T., Deb, K., Tiwari, A.: Constrained many-objective
optimization: A way forward. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC), Trondheim, Norway (May 2009) 545–552

[92] Maaten, L., Postma, E., Herik, J.: Dimensionality reduction: A comparative
review. Technical Report TiCC TR 2009-005, Tilburg centre for Creative
Computing, Tillburg University, Netherlands (2009)

[93] Purshouse, R., Fleming, P.: Conflict, harmony and independence: Relationships
in evolutionary multi-criterion optimisation. In: Proceedings of Evolutionary
Multi-Criterion Optimization (EMO), Lecture Notes in Computer Science 2632,
Springer-Berlin (2003) 16–30

[94] Gal, T., Leberling, H.: Redundant objective functions in linear vector maximum
problems and theirdetermination. European Journal of Operational Research 1

(1977) 176–184

[95] Agrell, P.: On redundancy in multi criteria decision making. European Journal
of Operational Research 98 (1997) 571–586

[96] Deb, K., Saxena, D.K.: Searching for pareto-optimal solutions through di-
mensionality reduction for certain large-dimensional multi-objective optimization
problems. In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC), Vancouver, Canada (2006) 3353–3360

[97] Saxena, D.K., Deb, K.: Non-linear dimensionality reduction procedures for
certain large-dimensional multi-objective optimization problems: Employing
correntropy and a novel maximum variance unfolding. In: Proceedings of
Evolutionary Multi-Criterion Optimization (EMO), Lecture Notes in Computer
Science 4403, Springer-Verlag Berlin Heidelberg (2007) 772–787

[98] Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary
algorithm for constrained optimization. In Mezura-Montes, E., ed.: Constraint
Handling in Evolutionary Optimization. Studies in Computational Intelligence.
Springer (2009) 145–165

REFERENCES 259

[99] Saxena, D.K., Deb, K.: Trading on infeasibility by exploiting constraint’s
criticality through multi-objectivization: A system design perspective. In:
Proceedings of IEEE Congress on Evolutionary Computation (CEC), Singapore
(25-28 Sept. 2007) 919–926

[100] Saxena, D.K., Deb, K.: Dimensionality reduction of objectives and constraints
in multi-objective optimization problems: A system design perspective. In:
Proceedings of 2008 IEEE Congress on Evolutionary Computation (CEC). (2008)
3204–3211

[101] Brockhoff, D., Zitzler, E.: Dimensionality reduction in multiobjective
optimization with (partial) dominance structure preservation: Generalized
minimum objective subset problems. Technical Report TIK-Report No. 247,
ETH Zurich (2006)

[102] Brockhoff, D., Zitzler, E.: Are all objectives necessary ? On dimensionality
reduction in evolutionary multiobjective optimization. In: Proceedings of Parallel
Problem Solving fron Nature (PPSN IX), Springer-Verlag Berlin Heidelberg
(2006) 533–542

[103] Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective
optimization: Theory and applications. Evolutionary Computation 17(2) (2009)

[104] Brockhoff, D., Zitzler, E.: Improving hypervolume-based multiobjective
evolutionary algorithms by using objective reduction methods. In: Proceedings
of IEEE Congress on Evolutionary Computation (CEC), Singapore (2007)
2086–2093

[105] Brockhoff, D., Zitzler, E.: Offline and online objective reduction in evolutionary
multiobjective optimization based on objective conflicts. Technical Report
TIK-Report No. 269, ETH Zurich (2007)

[106] Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On
the design of pareto-compliant indicators via weigted integration. In: Proceedings
of Evolutionary Multi-Criterion Optimization (EMO), Lecture notes in Computer
Science 4403. (2007) 862–876

[107] James, A.L., Coello, C.A.C., Chakraborty, D.: Objective reduction using
a feature selection technique. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO). (2008) 673–680

[108] Mitra, P., Murthy, C., Pal, S.: Unsupervised feature selection using feature
similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3)
301–312

[109] Jaimes, A.L., Coello, C.A.C., Barrientos, J.E.U.: Online objective reduction
to deal with many-objective problems. In: Proceedings of Evolutionary
Multi-Criterion Optimization (EMO), Lecture Notes in Computer Science 5467,
Springer-Verlag Heidelberg (2007) 423–437

260 REFERENCES

[110] Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based
Many-Objective Optimization. Technical Report TIK-Report No. 286, ETH
Zurich (2008)

[111] Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5) (2006) 477–506

[112] Musselman, K., Talavage, J.: A tradeoff cut approach to multiple objective
optimization. Operations Research 28(6) 1424–1435

[113] Hughes, E.J.: Radar waveform optimsation as a many-objective application
benchmark. In: Proceedings of Evolutionary Multi-Criterion Optimization
(EMO), Lecture notes in Computer Science 4403, Springer-Verlag Berlin
Heidelberg (2007) 700–714

[114] Cao, Y.: Hypervolume indicator. http://www.mathworks.com/matlabcentral

/fileexchange/19651-hypervolume-indicator

[115] Hughes, E.J.: Many-objective radar design software.
http://code.evanhughes.org

[116] Potter, M.A., Jong, K.A.D.: A cooperative coevolutionary approach to function
optimization. In: Proceedings of Parallel Problem Solving from Nature (PPSN
III). (1994) 249–257

[117] Popovici, E., De Jong, K.: Relationships between internal and external metrics
in co-evolution. In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC), Edinburgh, UK (2005) 2800–2807

[118] Popovici, E., De Jong, K.: Understanding cooperative co-evolutionary dynamics
via simple fitness landscapes. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), New York, NY, USA, ACM (2005) 507–514

[119] Wiegand, R.P., Liles, W.C., Jong, K.A.D.: An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), Morgan Kaufmann (2001)
1235–1242

[120] McNamara, J.M., Barta, Z., Fromhage, L., Houston, A.I.: The coevolution of
choosiness and cooperation. Nature 451(7175) (2008) 189–192

[121] Popovici, E., De Jong, K.: The effects of interaction frequency on the
optimization performance of cooperative coevolution. In: Proceedings of Genetic
and Evolutionary Computation (GECCO), Seattle, Washington, USA, ACM,
New York, NY, USA (2006) 353–360

[122] Popovici, E., De Jong, K.: Sequential versus parallel cooperative coevolutionary
algorithms for optimization. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC), Vancouver, Canada (2006) 1610–1617

http://www.mathworks.com/matlabcentral
/fileexchange/19651-hypervolume-indicator
http://code.evanhughes.org

REFERENCES 261

[123] Tan, C., Goh, C., Tan, K., Tay, A.: A cooperative coevolutionary algorithm for
multiobjective particle swarm optimization. In: Proceedings of IEEE Congress
on Evolutionary Computation (CEC), Singapore (2007) 3180–3186

[124] Li, X., Yao, X.: Tackling high dimensional nonseparable optimization problems
by cooperatively coevolving particle swarms. In: Proceedings of IEEE Congress
on Evolutionary Computation (CEC), Trondheim, Norway (2009) 1546–1553

[125] Liu, B., Ma, H., Zhang, X.: A coevolutionary differential evolution algorithm
for constrained optimization. In: Proceedings of International Conference on
Natural Computation (ICNC), Los Alamitos, CA, USA (2007) 51–57

[126] Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using
cooperative coevolution. Information Sciences 178(15) (2008) 2985 – 2999

[127] Omidvar, M.N., Li, X.: Cooperative co-evolution for large scale optimization
through more frequent random grouping. In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC), Barcelona, Spain (2010) 1754–1761

[128] Omidvar, M.N., Li, X.: Cooperative co-evolution for with delta grouping for large
scale non-separable function optimization. In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC), Barcelona, Spain (2010) 1762–1769

[129] Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A.,
Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005
Special Session on Real-Parameter Optimization. Technical report, Nanyang
Technological University, Singapore and Kanpur Genetic Algorithms Laboratory,
IIT Kanpur, India (2005)

[130] Ray, T., Yao, X.: A cooperative coevolutionary algorithm with correlation
based adaptive variable partitioning. In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC), Trondheim, Norway (2009) 983–989

[131] Back, T., Schutz, M.: Evolution strategies for mixed-integer optimization of
optical multilayer systems. In: Proceedings of Fourth Annual Conference on
Evolutionary Programming (EP). (1995) 33–51

[132] Davidor, Y.: An evolution standing on the design of redundant robot
manipulators. In: Proceedings of Parallel Problem Solving from Nature (PPSN
I), 1st Workshop. (1991) 60–69

[133] Mandischer, M.: Evolving recurrent neural networks with non-binary encoding.
In: Proceedings of IEEE International Conference on Evolutionary Computation.
Volume 2., Perth, Australia (1995) 584–589

[134] Schutz, M., Sprave, J.: Application of parallel mixed-integer evolution strategies
with mutation rate pooling. In: Proceedings of the Fifth Annual Conference on
Evolutionary Programming (EP), The MIT Press (1996) 345–354

262 REFERENCES

[135] Sprave, J., Rolf, S.: Variable-dimensional optimization with evolutionary
algorithms using fixed-length representations. In: Proceedings of Seventh Annual
Conference on Evolutionary Programming (EP). (1998) 261–269

[136] Green, P.: Reversible jump markov chain monte carlo computation and bayesian
model determination. Biometrika 82 (1995) 711–732

[137] Brooks, S., Friel, N., R.King: Classical model selection via simulated annealing.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65(2)
(May 2003) 503–520

[138] Kang, D., Verotta, D.: Reversible jump markov chain monte carlo for
deconvolution. Journal of Pharmacokinetics and Pharmacodynamics 34(3)
(2007) 263–287

[139] Bandyopadhyay, S.: Simulated annealing using a reversible jump markov chain
monte carlo algorithm for fuzzy clustering. IEEE Transactions On Knowledge
and Data Engineering 17(4) (2005) 479–490

[140] Hartigan, J.A.: Clustering Algorithms. John Wiley & Sons, Inc., New York, NY,
USA (1975)

[141] Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1988)

[142] Davis, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1 (1979) 224–227

[143] Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence 13(8) (Aug 1991) 841–847

[144] Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Cybernetics and Systems 3(3) (1973) 32–57

[145] Calinski, R., Harabasz, J.: A dendrite method for cluster analysis.
Communications in Statistics 3(1) (1974) 1–27

[146] Pakhira, M., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy
clusters. Pattern recognition 37(3) (2004) 487–501

[147] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin
1(6) (1945) 80–83

[148] Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics
18(1) (1947) 50–60

[149] Isaacs, A.: Development of optimization methods to solve computationally
expensive problems. PhD thesis, University of New South Wales, Australian
Defence Force Academy (UNSW@ADFA), Canberra, Australia (2009)

REFERENCES 263

[150] Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and
Product in Optimzation using Designed Experiments. John Wiley & Sons, Inc.,
NY, USA (1995)

[151] Powell, M.: Radial basis functions for multivariate interpolation: a review. In
Mason, J., Cox, M., eds.: Algorithms for approximation. Oxford: Clarendon
Press (1987) 143–167

[152] Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P report 826, Caltech
Concurrent Computation Program, Caltech, California, USA (1989)

[153] Ong, Y.S., Lim, M., Chen, X.: Research frontier: memetic computation - past,
present and future. IEEE Computational Intelligence Magazine 5(2) (May 2010)
24–31

[154] Powell, M.: A fast algorithm for nonlinearly constrained optimization
calculations. In Watson, G., ed.: Numerical Analysis. Volume 630 of Lecture
Notes in Mathematics. Springer (1978) 144–157

[155] Avriel, M., Williams, A.C.: An extension of geometric programming with
applications in engineering optimization. Journal of Engineering Mathematics
5 (1971) 187–194 10.1007/BF01535411.

[156] Coello Coello, C.A.: Use of a Self-Adaptive Penalty Approach for Engineering
Optimization Problems. Computers in Industry 41(2) (January 2000) 113–127

[157] Parsons, M., Scott, R.: Formulation of multicriterion design optimization
problems for solution with scalar numerical optimization methods. Journal of
Ship Research 48(1) (2004) 61–76

[158] Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic
optimization methods and computational intelligence. Progress in Aerospace
Sciences 38(1) (2002) 43–76

[159] Coello Coello, C.A.: Treating constraints as objectives for single-objective
evolutionary optimization. Engineering Optimization 32 (2000) 275–308

[160] Gu, L., Yang, R., Tho, C., Makowski, M., O.Faruque, Li, Y.: Optimisation and
robustness for crashworthiness of side impact. International Journal of Vehicle
Design 26(4) (2001) 348 – 360

[161] Deb, K., Goyal, M.: A flexible optimization procedure for mechanical component
design based on genetic adaptive search. Journal of Mechanical Design 120 (1998)
162–164

[162] Sandgren, E.: Nonlinear integer and discrete programming in mechanical design.
In: Proceedings of the ASME Design Technology Conference, Kissimee, FL.
(1988) 95–105

264 REFERENCES

[163] Ray, T., Liew, K.: Society and civilization: An optimization algorithm based
on the simulation of social behavior. IEEE Transactions on Evolutionary
Computation 7(4) (August 2003) 386 – 396

[164] Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for
multi-objective evolutionary optimization. In: Proceedings of Evolutionary
Multi-Criterion Optimization (EMO), Lecture Notes in Computer Science 1993.
(2001) 284–298

[165] Sen, P., Yang, J.: Multiple criteria decision support in engineering design.
Springer-Verlag, London (1998)

[166] Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the euler
equations by finite volume methods using Runge-Kutta Time-Stepping schemes.
In: Proceedings of the AIAA 14th Fluid and Plasma Dynamic Conference, Palo
Alto (1981)

Appendix A

g-series optimization problems

The g-series of problems consists of constrained single objective problems [55, 56].

The g-series has a total of eleven problems out of which nine problems without

equality constraints are studied.

A.1 g01

Minimize f(x) = 5
4
∑

i=1

xi − 5
4
∑

i=1

x2
i −

13
∑

i=5

xi

subject to

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, · · · , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12),

and 0 ≤ x13 ≤ 1. The global minimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)

265

266 A. G-SERIES PROBLEMS

where six constrains are active (g1, g2, g3, g7, g8, g9) and f(x∗) = −15.

A.2 g02

Maximize f(x) =

∣

∣

∣

∣

∣

∑n
i=1 cos4(xi)− 2

∏n
i=1 cos2(xi)

√
∑n

i=1 ix2
i

∣

∣

∣

∣

∣

subject to

g1(x) = 0.75−
n
∏

i=1

xi ≤ 0

g2(x) =
n
∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown;

the best found is f(x∗) = 0.803619.

A.3 g04

Minimize f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45 (i = 3, 4, 5). The

optimum solution is x∗ = (78, 33, 29.99526025682, 45, 36.775812905788) where

f(x∗) = −30665.539. Two constraints are active (g1 and g6).

A. G-SERIES PROBLEMS 267

A.4 g06

Minimize f(x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ =

(14.095, 0.84296) where f(x∗) = −6961.81388. Both constraints are active.

A.5 g07

Minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 − 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The optimum solution is x∗ = (2.171996,

2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,

8.375927) where f(x∗) = 24.3062091. Six constraints are active (g1, g2, g3, g4, g5, g6).

268 A. G-SERIES PROBLEMS

A.6 g08

Maximize f(x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

subject to

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum is located at x∗ =

(1.2279713, 4.2453733) where f(x∗) = 0.095825. The solution lies within the

feasible region.

A.7 g09

Minimize f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+ 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 − 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The optimum solution is x∗ = (2.330499,

1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131, 1.594227) where f(x∗) =

680.6300573. Two constraints are active (g1 and g4).

A. G-SERIES PROBLEMS 269

A.8 g10

Minimize f(x) = x1 + x2 + x3

subject to

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3), and 10 ≤ xi ≤
1000 (i = 4, . . . , 8). The optimum solution is x∗ = (579.3167, 1359.943, 5110.071,

182.0174, 295.5985, 217.9799, 286.4162, 395.5979) where f(x∗) = 7049.3307.

Three constraints are active (g1, g2, and g3).

A.9 g12

Maximize f(x) = (100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100

subject to

g1(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of

the search space consists of 93 disjointed spheres. The optimum is located at

x∗ = (5, 5, 5) where f(x∗) = 1. The solution lies within the feasible region.

Appendix B

CTP problems

Deb et al. [164, 57] proposed constrained bi-objective test problems (CTP). The

test functions CTP2-CTP7 have a single constraint and CTP8 has two con-

straints. The mathematical formulation of CTP2-CTP8 is given in Equation B.1.

Both the constraints of CTP8 are of the same form as the single constraint in

other CTP problems.

Min. f1(x) = x1,

Min. f2(x) = C(x)
(

1−
√

f1(x)/C(x)
)

,

g(x) = cos(θ) (f2(x)− e)− sin(θ)f1(x) ≥
a| sin (bπ (sin(θ) (f2(x)− e) + cos(θ)f1(x))c) |d,

C(x) = 1 +
10
∑

i=2

(

x2
i − 10 cos(2πxi) + 10

)

,

(B.1)

where 0 ≤ xi ≤ 1, i = 1, . . . , 10, and C(x) is the generalized Rastrigin function.

The constraint parameters θ, a, b, c, d, e for CTP2 to CTP8 are listed in Table B.1.

271

272 B. CTP PROBLEMS

Table B.1: Parameters for the test problems CTP2 to CTP8

θ a b c d e

CTP2 −0.20π 0.20 10.0 1 6.0 1
CTP3 −0.20π 0.10 10.0 1 0.5 1
CTP4 −0.20π 0.75 10.0 1 0.5 1
CTP5 −0.20π 0.75 10.0 2 0.5 1
CTP6 0.10π 40.00 0.5 1 2.0 −2
CTP7 −0.05π 40.00 5.0 1 6.0 0

CTP8 0.10π 40.00 0.05 1 2.0 −2
−0.05π 40.00 2.0 1 6.0 0

B. CTP PROBLEMS 273

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(a) CTP2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(b) CTP3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(c) CTP4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(d) CTP5

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1
(x)

f 2(x
)

(e) CTP6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
1
(x)

f 2(x
)

(f) CTP7

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

f
1
(x)

f 2(x
)

(g) CTP8

Figure B.1: Pareto fronts for CTP2-CTP8 problems

Appendix C

CF problems

CF series of multi-objective test problems were proposed by Zhang et al.[71] for

the IEEE Congress on Evolutionary Computation (CEC) 2009 algorithm contest.

The mathematical formulation of the problems CF1-CF7, studied in this thesis,

are given in the following sections. Their Pareto fronts are shown in Figure C.1.

C.1 CF1

Min. f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − x
0.5(1.0+

3(j−2)
n−2

)

1

)2

Min. f2(x) = 1− x1 +
2

|J2|
∑

j∈J1

(

xj − x
0.5(1.0+

3(j−2)
n−2

)

1

)2

where J1 = {j|j is odd and 2 ≤ j ≤ n}
and J2 = {j|j is even and 2 ≤ j ≤ n}

Subject to

g(x) =f1 + f2 − a|sin| [Nπ(f1 − f2 + 1)] | − 1 ≥ 0

where N ∈ Z, a ≥ 1

2N

0 ≤ xi ≤ 1, i = 1, . . . , n

N = 10; a = 1; n = 10

(C.1)

275

276 C. CF PROBLEMS

C.2 CF2

Min. f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − sin

(

6πx1 +
jπ

n

))2

Min. f2(x) = 1−√x1 +
2

|J2|
∑

j∈J2

(

xj − cos

(

6πx1 +
jπ

n

))2

where J1 = {j|j is odd and 2 ≤ j ≤ n}
and J2 = {j|j is even and 2 ≤ j ≤ n}

Subject to

g(x) =
f2 +

√
f1 − asin[Nπ(

√
f1 − f2 + 1)]− 1

1 + e4‖t‖
≥ 0

0 ≤ x1 ≤ 1;−1 ≤ xi ≤ 1, i = 2, . . . , n

N = 2; a = 1; n = 10

(C.2)

C.3 CF3

Min. f1(x) = x1 +
2

|J1|

(

4
∑

j

∈ J1y
2
j − 2

∏

j∈J1

cos(
20yiπ√

j
) + 2

)

Min. f2(x) = x1 +
2

|J2|

(

4
∑

j

∈ J2y
2
j − 2

∏

j∈J2

cos(
20yiπ√

j
) + 2

)

where J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

and yj = xj − sin

(

6πx1 +
jπ

n

)

, j = 2, . . . , n

Subject to

g(x) =f2 + f 2
1 − asin[Nπ(f 2

1 − f2 + 1)]− 1 ≥ 0

0 ≤ x1 ≤ 1;−2 ≤ xi ≤ 2, i = 2, . . . , n

N = 2; a = 1; n = 10

(C.3)

C. CF PROBLEMS 277

C.4 CF4

Min. f1(x) = x1 +
∑

j∈J1

hj(yi)

Min. f2(x) = 1− x1 +
∑

j∈J2

hj(yi)

where J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

h2(t) =

{

|t| if t < 3
2
(1− 1/

√
2)

0.125 + (t− 1)2 otherwise

and hj(t) = t2 for j = 3, . . . n

Subject to

g(x) =
t

1 + e4|t|
≥ 0

t =x2 − sin(6πx1 + 2π/n)− 0.5x1 + 0.25

0 ≤ x1 ≤ 1;−2 ≤ xi ≤ 2, i = 2, . . . , n; n = 10

(C.4)

C.5 CF5

Min. f1(x) = x1 +
∑

j∈J1

hj(yi)

Min. f2(x) = 1− x1 +
∑

j∈J2

hj(yi)

where J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

yj =

{

xj − 0.8x1cos(6πx1 + jπ/n) if j ∈ J1

xj − 0.8x1sin(6πx1 + jπ/n) if j ∈ J2

h2(t) =

{

|t| if t < 3
2
(1− 1/

√
2)

0.125 + (t− 1)2 otherwise

and hj(t) = 2t2 − cos(4πt) + 1 for j = 3, . . . n

Subject to

g(x) =x2 − 0.8x1sin(6πx1 + 2π/n)− 0.5x1 + 0.25 ≥ 0

0 ≤ x1 ≤ 1;−2 ≤ xi ≤ 2, i = 2, . . . , n; n = 10

(C.5)

278 C. CF PROBLEMS

C.6 CF6

Min. f1(x) = x1 +
∑

j∈J1

(yj)
2

Min. f2(x) = x1 +
∑

j∈J2

(yj)
2

where J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

yj =

{

xj − 0.8x1cos(6πx1 + jπ/n) if j ∈ J1

xj − 0.8x1sin(6πx1 + jπ/n) if j ∈ J2

Subject to

g1(x) =x2 − 0.8x1sin(6πx1 + 2π/n)−
sign(0.5(1− x1)− (1− x1)

2)
√

|0.5(1− x1)− (1− x1)2| ≥ 0

g2(x) =x4 − 0.8x1sin(6πx1 + 4π/n)−

sign(0.25
√

1− x1 − 0.5(1− x1))

√

|0.25
√

1− x1 − 0.5(1− x1)| ≥ 0

0 ≤ x1 ≤ 1;−2 ≤ xi ≤ 2, i = 2, . . . , n; n = 10

(C.6)

C. CF PROBLEMS 279

C.7 CF7

Min. f1(x) = x1 +
∑

j∈J1

hj(yj)

Min. f2(x) = x1 +
∑

j∈J2

hj(yj)

where J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}

yj =

{

xj − cos(6πx1 + jπ/n) if j ∈ J1

xj − sin(6πx1 + jπ/n) if j ∈ J2

h2(t) = h4(t) = t2

hj(t) = 2t2 − cos(4πt) + 1 for j = 3, 5, 6, . . . , n

Subject to

g1(x) =x2 − sin(6πx1 + 2π/n)−
sign(0.5(1− x1)− (1− x1)

2)
√

|0.5(1− x1)− (1− x1)2| ≥ 0

g2(x) =x4 − sin(6πx1 + 4π/n)−

sign(0.25
√

1− x1 − 0.5(1− x1))

√

|0.25
√

1− x1 − 0.5(1− x1)| ≥ 0

0 ≤ x1 ≤ 1;−2 ≤ xi ≤ 2, i = 2, . . . , n; n = 10

(C.7)

280 C. CF PROBLEMS

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(a) CF1

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(b) CF2

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(c) CF3

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(d) CF4

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(e) CF5

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(f) CF6

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

Pareto front

(g) CF7

Figure C.1: Pareto fronts for CF1-CF7 problems

Appendix D

DTLZ problems

A multi-objective test problem suite, DTLZ, was formulated by Deb et al. [77].

The problems of the suite are scalable both in terms of objectives and variables.

Two problems from the test suite are studied in this thesis. They are described

in next two sections.

D.1 DTLZ2

An M -objective DTLZ2 problem is formulated as follows.

Minimize

f1(x) = r(xM) cos(πx1/2) · · · cos(πxM−2/2) cos(πxM−1/2),

f2(x) = r(xM) cos(πx1/2) · · · cos π(xM−2/2) sin(πxM−1/2),

f3(x) = r(xM) cos(πx1/2) · · · sin(πxM−2/2),
...

fM−1(x) = r(xM) cos(πx1/2) sin(πx2/2),

fM (x) = r(xM) sin(πx1/2),

where

r(xM) = 1 + g(xM) = 1 +
∑

xi∈xM
(xi − 0.5)2,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(D.1)

The total number of variables involved is n = M + k − 1. A prescribed value

of k = 10 is used. The Pareto-optimal solutions correspond to x∗
M = 0.5. The

Pareto front for an M -objective DTLZ2 problem is M -dimensional, i.e. none of

the objectives are redundant in the problem. In the objective space, the Pareto

281

282 D. DTLZ PROBLEMS

front corresponds to the positive the set of solutions with
∑M

i=1 f 2
i = 1, fi >

0 for i = 1, . . . ,M , which, for a 3-objective problem, is shown in Figure D.1. The

notation DTLZ2(M) is used to refer to an M -dimensional DTLZ2 problem.

0
0.5

1
1.5

0
0.5

1
1.5

0

0.5

1

1.5

f
1

f
2

f 3

Figure D.1: Pareto front for 3-objective DTLZ2 problem

D.2 DTLZ3

An M -objective DTLZ3 problem is formulated as follows.

Minimize

f1(x) = r(xM) cos(πx1/2) · · · cos(πxM−2/2) cos(πxM−1/2),

f2(x) = r(xM) cos(πx1/2) · · · cos π(xM−2/2) sin(πxM−1/2),

f3(x) = r(xM) cos(πx1/2) · · · sin(πxM−2/2),
...

fM−1(x) = r(xM) cos(πx1/2) sin(πx2/2),

fM (x) = r(xM) sin(πx1/2),

where

r(xM) = 1 + g(xM) = 1 + 100
[

|xM |+
∑

xi∈xM
(xi − o.5)2 − cos(20π(xi − 0.5))

]

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(D.2)

D. DTLZ PROBLEMS 283

The total number of variables involved is n = M + k − 1. A prescribed value

of k = 10 is used. The g function used in the formulation introduces (3k-1) local

fronts, posing significant challenge to the multi-objective algorithms. The Pareto

front correspond to the solutions with x∗
M = 0.5, where g∗ = 0. The Pareto front

of a DTLZ3 problem identical to that of a DTLZ2 of same dimension.

D.3 DTLZ5-(I,M)

Another function from the DTLZ test suite, DTLZ5 was later modified to con-

struct a set of test problems in which the dimensionality of the Pareto front is

less than the original number of objectives [96]. These test problems are known

as DTLZ5-(I,M) problems. Here, I denotes the actual dimensionality of the

Pareto front and M the original number of objectives for the problem. The

intent for formulating these problems was to critically evaluate dimensionality

reduction techniques for many-objective optimization problems. The formulation

of DTLZ5-(I,M) is given in Equation D.3.

Minimize

f1(x) = r(xM) cos(θ1) · · · cos(θM−2) cos(θM−1),

f2(x) = r(xM) cos(θ1) · · · cos(θM−2) sin(θM−1),

f3(x) = r(xM) cos(θ1) · · · sin(θM−2),
...

fM−1(x) = r(xM) cos(θ1) sin(θ2),

fM (x) = r(xM) sin(θ1),

where

r(xM) = 1 + g(xM) = 1 +
∑

xi∈xM
(xi − 0.5)2,

θi =

{

π
2 xi, for i = 1, . . . , (I − 1),

π
4r(xM) (1 + 2g(xM)xi), for i = I, . . . , (M − 1)

Subject to:
∑I−2

j=0 f2
M−j + 2pif2

i ≥ 1, for i = 1, 2 . . . (M − I + 1)

where

pi =

{

M − I, for i = 1;

(M − I + 2)− i, for i = 2 . . . (M − I + 1)

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(D.3)

The total number of variables involved is n = M +k−1, where, k = |xM | = 10 is

284 D. DTLZ PROBLEMS

prescribed. In addition, there are M−I+1 constraints to be satisfied, as shown in

Equation D.3. The problem is designed so that the Pareto front corresponds to:

(i) a zero value of the g function, in turn implying xi = 0.5 for i = M, . . . , (M+k−1);

(ii) a fixed value of π/4 for the variables xI to xM−1; and (iii) independent values

for the variables x1 to xI−1. Hence, by simply setting I to an integer between 2

and M , the dimensionality (I) of the Pareto front can be controlled. Pareto front

for DTLZ5-(2,3) is shown in Figure D.2.

0
0.5

1
1.5

0
0.5

1
1.5

0

0.5

1

1.5

f
1

f
2

f 3

Figure D.2: Pareto front for DTLZ5-(2,3) problem

Appendix E

Engineering problems

E.1 Belleville Spring Design

The Belleville spring design problem is to find the minimum weight spring subject

to the stress and displacement constraints [3]. The configuration of the Belleville

spring is shown in Figure E.1. The design variables are external diameter (De),

internal diameter (Di), thickness t, and free height h. The variable bounds are

0.01 ≤ De ≤ 6.0, 0.05 ≤ Di ≤ 0.50, 5.0 ≤ t ≤ 15.0 and 5.0 ≤ h ≤ 15.0. Other

parameters used in the design are listed in Table E.1.

Figure E.1: Belleville spring configuration (Source: [3])

The Belleville spring design optimization problem is defined as follows:

285

286 E. ENGINEERING PROBLEMS

Table E.1: Parameters for Belleville spring design

Parameter Value

Maximum load (Pmax) 5400 lb
Maximum deflection (δmax) 0.2 in
Maximum outside diameter (Dmax) 12.01 in
Maximum allowable stress (σD) 200000 psi
Maximum total height (l) 2.0 in

Minimize f =
0.283π(D2

e −D2
i)t

4

subject to g1 = σD − σ ≥ 0

g2 = P − Pmax ≥ 0

g3 = δl − δmax ≥ 0

g4 = l − h− t ≥ 0

g5 = Dmax −De ≥ 0

g6 = De −Di ≥ 0

g7 = 0.3− h

De −Di
≥ 0

where σ is the stress at the upper edge (marked I in Figure E.1), P is the load

corresponding to the limiting deflection δmax. The stress σ on the upper edge is

given by

σ =
Eδmax

(1− µ2)α(De/2)2

[

β

(

h− δmax

2

)

+ γt

]

.

The load P corresponding to the limiting deflection δmax is given by

P =
Eδmax

(1− µ2)αa2

[(

h− δ

2

)

(h− δ)t + t3
]

.

The geometric parameters α, β and γ are defined in terms of K = De/Di as

follows:

α =
6

π ln K

(

K − 1

K

)2

, β =
6

π ln K

(

K − 1

ln K
− 1

)

, γ =
6

π ln K

(

K − 1

2

)

E. ENGINEERING PROBLEMS 287

E.2 Design of Coil Compression Spring

A tension/compression spring is shown in Figure E.2. The design of the spring

involves minimizing the weight of the spring subject to constraints on minimum

deflection, shear stress, surge frequency [3]. The design variables are the mean

coil diameter D, the wire diameter d and the number of active coils N .

Figure E.2: Tension/Compression spring

The optimization problem is defined as follows:

Minimize f =
π2

4
(N + 2)Dd2

subject to g1 = S − Cf8Fmax
D

πd3
≥ 0

g2 = lmax − lf ≥ 0

g3 = d− dmin ≥ 0

g4 = Dmax −D − d ≥ 0

g5 = C − 3 ≥ 0

g6 = δpm −
Fp

K
≥ 0

g7 = lf − δp −
Fmax − Fp

K
− 1.05(N + 2)d ≥ 0

g8 =
Fmax − Fp

K
− δw ≥ 0

g9 =
Pcrit

1.25
− Fmax ≥ 0

where g1 is a stress constraint, g2–g5 are geometry constraints, g6–g7 are deflection

constraints and g9 is a buckling constraint. The variables used in the constraints

are defined as follows:

C =
D

d
, δ =

Fmax

K
, K =

Gd4

8ND3
, Cf =

4C − 1

4C − 4
+

0.615

C
,

288 E. ENGINEERING PROBLEMS

lf = δ + 1.05(N + 2)d, Pcrit =
lf
K

The other parameters required for the design are specified in Table E.2. The

variable bounds are 0.05 ≤ D ≤ 2.0, 0.25 ≤ d ≤ 1.3, 2 ≤ N ≤ 20.

Table E.2: Parameters for coil compression spring design

Parameter Value

Maximum working load (Fmax) 1000.0 lb
Maximum free length (lmax) 14.0 in
Minimum wire diameter (dmin) 0.2 in
Maximum outer diameter (Dmax) 3.0 in
Preload compression force (Fp) 300.0 lb
Maximum allowable deflection under preload (δpm) 6.0 in
Deflection from preload to maximum load (δw) 1.25 in
Maximum allowable shear stress (S) 189000 psi
Shear modulus of the material (G) 1.15e7 psi
Modulus of elasticity (E) 3.0e7 psi
End coefficient for spring (CE) 1.0

A multi-objective formulation of the problem is also considered, where the

second objective is to minimize the shear stress.

E.3 Speed Reducer Design

A speed reducer configuration and a typical gear are shown in Figure E.3. The

design variables consist of width of gear face (b) and teeth module (m), number

of pinion teeth (z), shaft lengths (l1, l2) and diameters (d1, d2) for each of the two

gears. The design problem is to minimize the weight of the speed reducer subject

to stress and geometry constraints [4].

The objective function is to minimize the weight of the speed reducer given

by

f =
2
∑

i=1

[

(d2
st(i)
− d2

w(i)
)
πb

4
+ (d2

w(i)
− d2

p(i)

πb

12
+ (d2

p(i)
− d2

(i))2b

]

+ π

2
∑

i=1

d(i)

4
l(i)

where,

dp(i)
= d(i) + 2e(i), e(i) = 0.7d(i),

dst(i) = mz(i) − 2.4m, dw(i)
= dst(i) − 4m.

E. ENGINEERING PROBLEMS 289

Figure E.3: Speed Reducer and typical gear (Source: [4])

The constraints for the optimization problem are:

σy =
2Mq

bm2z
≤ kg, P 2

s =
2BM

m2z2b
≤ P 2

d

5 ≤ b

m
≤ 12, m(z1 + z2) ≤ 160

f1 =
1

48

Pl31
EI1

≤ f01 = 0.001

f1 =
1

48

Pl32
EI2

≤ f02 = 0.001

σg1 =
Mz1

Wz1

≤ kg1, σg2 =
Mz2

Wz2

≤ kg2

d2 ≥ 5, 1.5d1 + 1.9 ≤ l1, 1.1d2 + 1.9 ≤ l2

The bounds of the variables are – 2.6 ≤ m ≤ 3.6, 0.7 ≤ b ≤ 0.8, 17 ≤ z ≤ 28,

7.3 ≤ l1, l2 ≤ 8.3, 2.9 ≤ d1 ≤ 3.9, and 5.0 ≤ d2 ≤ 5.5. The values of other

parameters are listed in Table E.3.

E.4 Design of a Welded Beam

The design of a welded beam is to minimize the manufacturing cost of the beam

subject to constraints on deflection, shear stress, bending stress and buckling

290 E. ENGINEERING PROBLEMS

Table E.3: Parameters for speed reducer design

Parameter Value

Transmitted Power (N) 100 km
Pinion Speed (n) 1500 1/min
Transmission Ratio (i) 3
Permissible bending stress of gear teeth (kg) 900 k G cm−2

Permissible surface compressive stress (pd) 5800 k G cm−2

Permissible bending stress for shaft 1 (kg1
) 1100 k G cm−2

Permissible bending stress for shaft 2 (kg2
) 850 k G cm−2

Tooth form factor (q) 2.54

load [57]. The optimization problem has four continuous design variables – h and

l are the height and the length of the weld; t and b are the thickness and the

breadth of the beam as shown in Figure E.4.

Figure E.4: Welded-Beam Problem Configuration

The mathematical formulation of the optimization problem with five con-

straints is as follows:

Minimize f = 1.10471h2l + 0.04811tb(14 + l)

Subject to g1 = 0.25− δ ≥ 0

g2 = 13600− τ ≥ 0

g3 = 30000− σ ≥ 0

g4 = b− h ≥ 0

g5 = Pc − 6000 ≥ 0

E. ENGINEERING PROBLEMS 291

where,

δ =
2.1952

t3b

σ =
504000

t2b

Pc = 64746.022(1− 0.0282346t)tb3

τ =

√

(τ ′)2 + (τ ′′)2 +
lτ ′τ ′′

√

0.25(l2 + (h + t)2

τ ′ =
6000√

2hl

τ ′′ =
6000(14 + 0.5l)

√

0.25[l2 + (h + t)2]

2[0.707hl(l2/12 + 0.25(h + t)2)]

The bounds for the design variables are 0.125 ≤ h ≤ 5.0, 0.125 ≤ t ≤ 5.0,

0.1 ≤ l ≤ 10.0 and 0.1 ≤ b ≤ 10.0.

A multi-objective formulation of this problem is also solved, where the ad-

ditional objective is to minimize the deflection at the end of the beam. This

objective is in conflict with the first objective (cost), since beam deflection is

likely to be large for a beam with smaller dimensions [57].

E.5 Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown

in Figure E.5. The objective is to minimize the total cost, including the cost

of material, forming and welding [156]. There are four design variables: Ts

(thickness of the shell), Th (thickness of the head), R (inner radius) and L (length

of the cylindrical section of the vessel, not including the head). Ts and Th are

integer multiples of 0.0625 inch, which are the available thicknesses of rolled steel

plates, and R and L are continuous.

292 E. ENGINEERING PROBLEMS

Figure E.5: Center and End section of the pressure vessel

The optimization problem is defined as follows:

Minimize f = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0

g4 = x4 − 240 ≤ 0

The bounds on the design variables are 0.0625 ≤ Ts, Th ≤ 6.25 and 10 ≤
L,R ≤ 200.

E.6 Car Side Impact Problem

Car side impact problem is a single objective problem, where the objective is

to minimize the weight of the car subject to constraints on safety performance

characteristics when subjected to side impact. The problem formulation is taken

from [99], as shown below.

E. ENGINEERING PROBLEMS 293

Minimize f = 1.98 + 49x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5

+ 0.00001x6 + 2.73x7

Subject to

g1 =1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0

g2 =0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0008757x5x10

+ 0.0144x3x5 + 0.08045x6x9 + 0.00139x8x11

+ 0.00001575x10x11 − 0.32 ≤ 0

g3 =0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.0007715x5x10

− 0.018x2x7 + 0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 − 0.018x2x2

− 0.0005354x6x10 + 0.00121x8x11 + 0.00184x9x10

+ 0.03099x2x6 − 0.32 ≤ 0

g4 =0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9

+ 0.227x2x2 − 0.32 ≤ 0

g5 =28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.77x7x8

+ 0.32x9x10 − 32 ≤ 0

g6 =33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11x2x8 − 0.0215x5x10

− 9.98x7x8 + 22x8x9 − 32 ≤ 0

g7 =46.36− 9.9x2 − 12.9x1x8 + 0.1107x3x10 − 32 ≤ 0

g8 =4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10

+ 0.000191x11x11 − 4 ≤ 0

g9 =10.58− 0.67x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10

+ 0.028x6x10 − 9.9 ≤ 0

g10 =16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11

− 0.000786x11x11 − 15.7 ≤ 0

294 E. ENGINEERING PROBLEMS

E.7 Bulk Carrier Design Problem

The bulk carrier design problem was originally formulated by [165]. The same

formulation with corrections for Froude number has been presented in [157]. The

original problem has three objectives: (1) Minimization of transport cost, (2)

Minimization of light ship mass and (3) Maximization of annual cargo transport

capacity. There are six independent variables in the problem: L = length(m), B

= beam(m), D = depth(m), T = draft(m), Vk = speed(knots) and CB = block

coefficient. The variable bounds are given by 0 ≤ L ≤ 500, 0 ≤ T50, 0 ≤ D ≤ 50,

0.63 ≤ CB ≤ 0.75, 0 ≤ B ≤ 100 and 14 ≤ Vk ≤ 18. The objective formulation

for the problem is given below.

Minimize transportation cost = annual costs / annual cargo

Minimize light ship weight = Ws + Wo + Wm(t)

Maximize annual cargo = cargoDWT.RTPA(t/yr)

The objectives are calculated based on the following model for a family of

bulk carriers ranging from 3000 to 500000 DWT and the speed ranging from 14

to 18 knots [157]:

E. ENGINEERING PROBLEMS 295

Bulk carrier design model

annual cost = capital costs + running costs + voyage costs

capital costs = 0.2× ship cost

ship cost = 1.3(2000W 0.85
s + 3500Wo + 2400P 0.8

steel weight = Ws = 0.034L1.7B0.7D0.4C0.5
B

outfit weight = Wo = 1.0L0.8B0.6D0.3C0.1
B

machinery weight = Wm = 0.17P 0.9

displacement = 1.025LBTCB

power = P = displacement2/3V 3
k /(a + bFn)

Froude number = Fn = V/(gL)0.5, V = 0.5144m/s; g = 9.8065m/s2

a = 4977.06C2
b − 8105.61CB + 4456.51

b = −10847.2C2
B + 12817CB − 6960.32

running costs = 40000DWT 0.3

deadweight = DWT = displacement - light ship

voyage costs = fuel cost + port cost.RTPA

fuel cost = 1.05daily consumption.sea daysfuel price

daily consumption = 0.19P.24/1000 + 0.2

sea days = round trip miles/24Vk

fuel price = 100

port cost = 6.3DWT 0.8

round trips per year = RTPA = 350/(sea days + port days)

port days = 2[(cargo deadweight/handling rate) + 0.5]

cargo deadweight = DWT − fuel carried - miscellaneousDWT

handling rate = 8000(t/day)

vertical center of buoyancy = KB = 0.53T

metacentric radius = BMT = (0.085CB − 0.002)B2/(TCB)

vertical center of gravity = KG = 1.0 + 0.52D

296 E. ENGINEERING PROBLEMS

Subject to:

L/B ≤ 6, L/D ≤ 15, L/T ≤ 19

T ≤ 0.45DWT 0.31

T ≤ 0.7D + 0.7

3000 ≤ DWT ≤ 500000

0.63 ≤ CB ≤ 0.75

Fn ≤ 0.32

GMt = KB + BMT −KG ≥ 0.07B

Studies on two different formulations of the problem are presented in this

paper, as detailed below:

Single objective problem: For single objective formulation, only the mini-

mization of transport cost is considered. Along with the original constraints,

an additional constraint on the minimum cargo transported (106 tonnes/year) is

imposed.

Multi-objective design problem: For multi-objective formulation, two objec-

tives are considered: minimization of transport cost and maximization of annual

cargo transport capacity.

E.8 Airfoil Design

The airfoil shape is represented using a PARSEC formulation [158] as shown in

Figure E.6. The PARSEC method uses eleven parameters to represent the airfoil.

They are leading edge radius (rle), upper crest location (Xup, Zup), upper crest

curvature (ZXXup), lower crest location (Xlo, Zlo), lower crest curvature (ZXXlo),

trailing edge wedge direction (αTE), trailing edge wedge angle (βTE), trailing edge

offset (ZTE) and trailing edge thickness (∆ZTE).

E. ENGINEERING PROBLEMS 297

Figure E.6: PARSEC representation for 2-D airfoil

The mathematical formulation of PARSEC is given by,

Zu =
6
∑

i=1

aiX
n−1/2

Zl =
6
∑

i=1

biXn−1/2

where X is the chord wise location, Zu is the coordinate of the upper surface and

Zl is coordinate of the lower surface of the airfoil. The chord length is assumed

to be one. The coefficients ai and bi are solved using the eleven parameters.

In this study, a multigrid Euler code is used to compute the flow around the

airfoil. The governing Euler equations are solved using a finite volume formulation

as proposed in [166]. The field grid is generated algebraically using a conformal

mapping method to create an O-grid airfoil of size 161 × 33 around the airfoil.

In the interest of robustness in the multigrid computation, full coarsening up till

a minimum of four cells was used with lower values of Courant-Friedrichs-Lewy

number set at seven.

Aerodynamic design of the airfoil is carried out to minimize the drag coefficient

(Cd) subject to the lift coefficient (Cl) value of 0.824 (Cl ≥ 0.824). Flow Mach

number is set to 0.73 and the angle of attack is set at two degrees. The trailing

edge offset (ZTE) and the trailing edge offset (∆ZTE) are set to zero. The bounds

for the remaining variables are listed in Table E.4.

298 E. ENGINEERING PROBLEMS

Table E.4: Design variable limits for airfoil design problem

Variable Lower Bound Upper Bound

Rle 0.0055 0.0085
Xup 0.3 0.5
Zup 0.0055 0.0085

ZXXup -0.6 -0.4
Xlo 0.28 0.42
Zlo -0.075 -0.05

ZXXlo 0.55 0.85
αTE -12 -8
βTE -14.5 -9.5

E.9 Water Resource Problem

The water resource problem, proposed by Musselman and Talavage [112] consists

of 5 objectives and 7 constraints; and its formulation is given in Equation E.1.

Minimize

f1(x) = 106780.37(x2 + x3) + 61704.67,

f2(x) = 3000x1,

f3(x) = (305700/(0.06× 2289)0.65)× 2289x2,

f4(x) = 250× 2289× exp(−39.75x2 + 9.9x3 + 2.74),

f5(x) = 25× (1.39/(x1x2) + 4940x3 − 80),

Subject to

g1(x) = 0.00139/x1x2 + 4.94x3 − 0.08 ≤ 1

g2(x) = 0.0000306/x1x2 + 0.1082x3 − 0.00986 ≤ 0.10

g3(x) = 12.307/x1x2 + 49408.24x3 − 4051.02 ≤ 50000

g4(x) = 2.098/x1x2 + 8.046.33x3 − 696.71 ≤ 16000,

g5(x) = 2.138/x1x2 + 7883.39x3 − 705.04 ≤ 10000,

g6(x) = 0.417/x1x2 + 1721.36x3 − 136.54 ≤ 2000,

g7(x) = 0.164/x1x2 + 631.13x3 − 54.48 ≤ 550

where

0.01 ≤ x1 ≤ 0.45, 0.01 ≤ x2, x3 ≤ 0.10

(E.1)

	Title page : Development of optimization methods to deal with current challenges in engineering design optimization
	Copyright Statement
	Authenticity Statement
	Originality Statement
	Abstract
	Acknowledgments
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	Chapter 1 Introduction
	Chapter 2 Optimization and Metaheuristics
	Chapter 3 Constraint Handling in Optimization
	Chapter 4 Large-scale Optimization I: Large Number of Objectives
	Chapter 5 Large Scale Optimization II: Large number of variables
	Chapter 6 Trans-dimensional Optimization
	Chapter 7 Further Enhancements and Applications
	Chapter 8 Conclusions
	References
	Appendix

