
Which Wald statistic? Choosing a parameterization of the
Wald statistic to maximize power in k-sample generalized
estimating equations

Author:
Warton, David

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/446

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/10285 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/446
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/10285
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Which Wald statistic? Choosing a

parameterization of the Wald statistic to

maximize power in k-sample generalized

estimating equations

David I. Warton ∗

Phone: (61)(2) 9385 7031

Fax: (61)(2) 9385 7123

email: David.Warton@unsw.edu.au

Running title – Wald statistics and power

∗ E-mail: David.Warton@unsw.edu.au

1



Abstract

The Wald statistic is known to vary under reparameterization. This raises the ques-

tion: which parameterization should be chosen, in order to optimize power of the

Wald statistic? We specifically consider k-sample tests of generalized linear models

and generalized estimating equations in which the alternative hypothesis contains

only two parameters. Amongst a general class of parameterizations, we find the pa-

rameterization that maximizes power via analysis of the non-centrality parameter,

and show how the effect on power of reparameterization depends on sampling design

and the differences in variance across samples. There is no single parameterization

with optimal power across all alternatives. The Wald statistic commonly used, that

under the canonical parameterization, is optimal in some instances but it performs

very poorly in others. We demonstrate results by example and by simulation, and

describe their implications for likelihood ratio statistics and score statistics. We con-

clude that due to poor power properties, the routine use of score statistics and Wald

statistics under the canonical parameterization for generalized estimating equations

is a questionable practice.

Keywords

Canonical parameterization, log-likelihood ratio statistic, power simulation, score

statistic, skewness-reducing parameterization, variance-stabilizing parameterization.
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1 Introduction

Wald statistics are commonly used in hypothesis testing of generalized linear models

(GLMs) and generalized estimating equations (GEEs). Wald statistics are particu-

larly useful in making inferences about parameters estimated using GEEs, for which

the likelihood ratio statistic is undefined in general (Rotnitzky and Jewell, 1990).

Another advantage of Wald statistics is computational efficiency. A Wald statistic

is only a function of parameters estimated under the alternative model, so it can

be calculated without fitting the null model to the data. Hence a Wald statistic can

be computed after fitting only one model, even when conducting several hypothesis

tests, as long as they involve the same alternative model. An example of such a sit-

uation is significance testing of multiple regression coefficients, and Wald statistics

are standard output for generalized linear models in most statistics packages for this

reason.

Whereas the likelihood ratio statistic and the score statistic of Rao (1948) are

invariant under reparameterization, this is not the case for Wald statistics. The

parameterization-variance of Wald statistics is usually considered to be a disadvan-

tage (for example Barndorff-Nielsen and Cox, 1994, page 120), however it could be

considered as an opportunity – which parameterization should we choose, in order

to obtain a Wald statistic with good properties? In this paper, the property we are

specifically interested in is power.

The study of properties of Wald and score statistics is an important issue, considering

the widespread use of these statistics. Various authors have explored the Type I error
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properties of these different statistics (Barnwal and Paul, 1988, for example) and

improvements therein when using different variance estimates (Mancl and DeRouen,

2001; Guo, Pan, Connett, Hannan, and French, 2005, for example) or higher-order

theory (Pierce and Peters, 1992, for example). Yet somewhat surprisingly, we found

relatively little study of the power properties of these statistics. Building on previous

literature (Peers, 1971; Hayakawa, 1975; Harris and Peers, 1980), Cordeiro, Botter,

and Ferrari (1994) and Ferrari, Botter, and Cribari-Neto (1997) derived analytical

expressions that could be used to compare the power of score, Wald and likelihood

ratio statistics, to second order, for generalized linear models. We found no previous

literature specifically studying the effect of reparameterization on power of Wald

statistics.

We derive in this paper a relationship between parameterization and the non-

centrality parameter of the Wald statistic, for a class of generalized estimating

equations where the non-centrality parameter is a function of two model parame-

ters. Hence we show that power properties depend on the extent of imbalance in the

sampling design, and that some parameterizations can be described as “extreme”

or “intermediate”, depending on their power behavior under different sampling de-

signs, for a fixed alternative hypothesis. Extreme statistics have very high power for

some sampling designs, but very low power for others. The commonly used canonical

parameterization is extreme in this sense, and we recommend that an intermediate

statistic such as one based on the variance-stabilizing parameterization would be

a better choice in most practical situations. We demonstrate these ideas by simu-

lation, and demonstrate the implications for other commonly used test statistics –
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score and likelihood ratio statistics.

We make recommendations regarding the usage of different statistics on the basis of

our power results. It should be emphasized, however, that comparison of statistics

on the basis of power is only relevant provided that the size of the tests has been

suitably controlled – hence our conclusions are only relevant for situations where one

either has a large enough sample size for Type I error properties to be sufficiently

good, or where one uses resampling to ensure valid test sizes, as in section 2 and as

in our simulations.

2 A motivating example

In this section we briefly describe an example application (Table 1) requiring a two-

sample test of overdispersed count data. The data (obtained from the Key Centre for

Biodiversity and Bioresources, Macquarie University) are counts of the abundance

of two orders of invertebrates, sampled from the leaf litter at ten different sites near

Sydney, Australia. Two of the ten sites are controls, and vegetation regeneration

projects have been undertaken in the remaining eight. It is of interest to test whether

the “regenerated” invertebrate communities are different to the controls in any way,

and if so, how.

For the purposes of this study, it is important to note that the data are strongly

overdispersed counts (Table 1), and that due to limited availability of control sites,

the data have been sampled in an unbalanced design.

From a cursory glance at the data, it appears that for both orders of invertebrate
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there is a clear effect of the “regeneration” treatment – to increase amphipod abun-

dance from zero and to decrease cockroach abundance, usually to zero. However,

whether or not we see this in a formal analysis depends which test statistic we use.

We fitted a negative binomial model to data, with mean-variance function V (µ) =

µ+φµ2, for φ fixed across all observations. We tested the hypothesis of no difference

between regeneration and control sites in terms of mean abundance (H0 : µC = µR)

separately for each invertebrate order, and obtain the results in Table 2. Because of

the small sample sizes involved, we evaluated statistical significance using permuta-

tion tests, evaluating all 45 possible permutations of treatment labels.

Despite a substantial apparent difference in amphipod abundance between regener-

ated and control sites, the only statistic suggestive of this difference was the like-

lihood ratio statistic (−2 log L). While −2 log L recorded a very large value for its

test statistic, which was significant at the 0.05 level, the score statistic (S) recorded

a small value which was not significant (P = 0.222), and the Wald statistic under

the canonical parameterization (W1) was undefined, because µ̂C = 0. If we resolve

this problem by replacing W1 with its limiting value as µ̂C → 0, we obtain W1 = 0

and P = 1! This effect has previously been explored by Væth (1985), who described

how reparameterization can be used to solve this particular problem.

For the Blattodea data, again there were substantial discrepancies in the values

taken by the test statistics. However, these discrepancies were not as large as for the

Amphipoda data, and they did not lead to differences in interpretation of results –

all statistics were significant at the 0.05 level for Blattodea abundances.

If we wanted to test simultaneously for a difference in abundance of both inverte-
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brate orders, between control and regeneration sites, then one approach would be

to use generalized estimating equations (GEEs). A problem that then arises, how-

ever, is that this is a semi-parametric modeling approach for which the likelihood

is undefined. Hence −2 log L, the only statistic which behaved well in the above

univariate tests, is not available to us for GEEs, and we must choose between S and

the Wald statistic under some parameterization. We explore in this paper the effect

of reparameterization on the power of the Wald statistic. This gives us guidance as

to which Wald statistic to use in hypothesis tests for GEEs, and it also sheds light

on why S had poor properties in the above example.

3 Parameterizations of the Wald statistic

Consider N observations y = (y1, . . . , yN)T that satisfy a k-sample generalized linear

model, i.e. var(yi) = V (µi) and E(yi) = µi satisfies:

hα(µi) =
k∑

j=1

I(i ∈ Sj)βj

for some link function hα(·), where I denotes the indicator function, and Sj de-

notes the set of all observations belonging to the jth sample. We also define β =

(β1, . . . , βk)
T , the vector storing the k mean parameters.

Note that for k-sample models, changing the link function does not change the form

of the model being fitted, and so has the effect of reparameterizing β. This is not

the case for generalized linear models as they are usually specified. Consider, for

example, a model in which the linear predictor contains an explanatory variable X

that is not an indicator variable, and takes more than two distinct values. In such a
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case, changing the link function would change the form of the relationship between

X and µ.

We specifically consider a class of parameterizations formed via changing α in the

link function, of the form

hα(µ) =
∫ µ

0
V (t)−αdt

for α ∈ [0, 1]. For exponential families, these parameterizations always exist, al-

though their solution does not always have a closed form (Hougaard, 1982, for ex-

ample).

Four parameterizations are of particular interest, due to their special properties:

Canonical (h1) The canonical parameterization (McCullagh and Nelder, 1989) of

µ, for which α = 1, gives the special property that

∂l(β; y)

∂βj

=
N∑

i=1

I(i ∈ Sj)(yi − µi)

Skewness reducing (h2/3) The skewness reducing (DiCiccio, 1984) or vanishing

third derivative (Slate, 1994) parameterization, for which α = 2/3, satisfies

∂3l(β; y)

∂βjβj′βj′′

∣∣∣∣∣
β=β̂

= 0. (1)

Variance stabilizing (h1/2) The variance stabilizing parameterization (DiCiccio,

1984; Slate, 1994), for which α = 1/2, ensures that the expected information is

not a function of µ:

− E

(
∂2l(β; y)

∂βjβj′

)∣∣∣∣∣
β=β̂

∝





∑N
i=1 I(i ∈ Sj) if j = j′

0 if j 6= j′
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Mean-value (h0) The mean-value parameterization (Væth, 1985), for which α =

0, satisfies h0(µ) = µ.

We denote as Wα the Wald statistic under the parameterization using link function

hα(µ). For the test H0 : Lβ = 0 with some matrix of constraints L, the Wald statistic

can be written as

Wα = (Lβ̂)T
(
L ˆvar(β̂)LT

)−1
(Lβ̂)

Some interesting relations are known between Wald statistics under various para-

meterizations and other likelihood-based statistics. For example, consider the score

statistic due to Rao (1948), in which the expected information under the null hy-

pothesis is used to estimate the variance term. This is known to have the same power

as W1, to second order, under local alternatives (Cordeiro et al., 1994). A similar

relationship holds for the (log-)likelihood ratio statistic: under local alternatives, it

is known to be equivalent to W2/3 to order Op(N
−1) for k-sample tests (Warton and

Hudson, 2006), and these statistics have the same power to second order in more

general settings (Cordeiro et al., 1994).

4 Power of Wald statistics

To first order under local alternatives, it is well known that the power of a Wald

statistic can be calculated using a non-central chi-squared distribution (Barndorff-

Nielsen and Cox, 1994, for example). To second order, the power of a Wald statistic

can be calculated using a linear combination of non-central chi-squared distribu-

tions with differing degrees of freedom, yet with a constant non-centrality parameter
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(Hayakawa, 1975). Hence we study the power of Wald statistics under reparameter-

ization via their non-centrality parameter Φ.

The central result of this paper is Theorem 1 below.

Theorem 1. Consider a scenario in which the true model is a function of parameters

β1 = b11a1×1 and β2 = b21a2×1, where 1a×b is an a× b matrix of ones, and the non-

centrality parameter of Wα is a function of

Φ = (b1 − b2)
2

(
V (m1)

1−2α

N1

+
V (m2)

1−2α

N2

)−1

(2)

where hα(mi) = bi and Ni is the number of observations that satisfy µj = mi.

Assume (without loss of generality) that m2 > m1 such that m2 = m + δ for some

δ > 0, and m1 = m.

The non-centrality parameter can be written as

Φ =
δ2

V (m)
(

1
N1

+ 1
N2

)
{
1 + δψ + O(δ2)

}
(3)

where

ψ =
V ′(m)

V (m)

1
1

N1
+ 1

N2

{
α

(
1

N2

− 1

N1

)
− 1

N2

}
(4)

Based on the above expansion of the non-centrality parameter, for α ∈ [0, 1]:

• If N1 < N2, power is maximized at α = 0.

• If N1 = N2, all parameterizations have equal power.

• If N1 > N2, power is maximized at α = 1.

Further, because the non-centrality parameter is a linear function of α, to second

order, for N1 6= N2 power increases smoothly as α approaches its optimal value.
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Proof. A Taylor expansion of b2 about b1 gives

b2 = b1 + δh′(m) +
δ2

2
h′′(m) + O(δ2)

and so

(b2 − b1)
2 = δ2h′(m)2

(
1 + δ

h′′(m)

h′(m)
+ O(δ2)

)

= δ2V (m)−2α

(
1− δα

V ′(m)

V (m)
+ O(δ2)

)

since h′(m) = V (m)−α.

Now

(
V (m1)

1−2α

N1

+
V (m2)

1−2α

N2

)−1

=

(
V (m)1−2α

N1

+
V (m + δ)1−2α

N2

)−1

= V (m)2α−1

{(
1

N1

+
1

N2

)
+ δ

1− 2α

N2

V ′(m)

V (m)
+ O(δ2)

}−1

= V (m)2α−1
(

1

N1

+
1

N2

)−1
{

1− δ
1− 2α

N2

(
1

N1

+
1

N2

)−1 V ′(m)

V (m)
+ O(δ2)

}

And multiplying together the above two expressions we get

Φ =
δ2

V (m)
(

1
N1

+ 1
N2

)
(

1− δα
V ′(m)

V (m)
+ O(δ2)

) {
1− δ

1− 2α

N2

(
1

N1

+
1

N2

)−1 V ′(m)

V (m)
+ O(δ2)

}

This simplifies readily to the form of equation 3, where the coefficient of δ is

ψ = −1− 2α

N2

(
1

N1

+
1

N2

)−1 V ′(m)

V (m)
− α

V ′(m)

V (m)

=
V ′(m)

V (m)
(

1
N1

+ 1
N2

)
{

2α− 1

N2

− α
(

1

N1

+
1

N2

)}

=
V ′(m)

V (m)
(

1
N1

+ 1
N2

)
{
α

(
1

N2

− 1

N1

)
− 1

N2

}
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Remark 1. Note that the coefficient of α in the second order term ψ of equation 4

is proportional to

1
N2
− 1

N1

1
N1

+ 1
N2

=
N1 −N2

N1 + N2

This term is a measure of imbalance in sampling. More specifically, it is the differ-

ence in sample sizes as a proportion of total sample size. So the effect on power of

reparameterization increases with the extent of imbalance in sampling.

Remark 2. Note, from equation 4, that the second order term δψ is proportional to

δ
V ′(m)

V (m)
≈ V (m2)− V (m1)

V (m1)

i.e. a linear approximation to the proportional difference in variance. So the effect on

power of reparameterization increases with the proportional difference in variance.

One might attempt to use Theorem 1 to choose a parameterization of the Wald

statistic that is expected to maximize power, for N1 6= N2. However, a practical

problem doing so is that one would need to know a priori which of V (m1) and

V (m2) is larger. This is possible in some situations, such as when interested in a

one-sided alternative, but otherwise this will not be the case. Hence it makes sense

as a general rule to choose an intermediate value such as α = 1/2, to “bet-hedge”:

this value will always have intermediate power between W0 and W1 and one would

expect this statistic to always perform reasonably and never perform poorly. In

contrast, for some alternatives W0 and W1 will have maximum power amongst the

Wα, α ∈ [0, 1], but for other alternatives they will have minimum power.

Although we have only considered Wald statistics in the above, our results also have

relevance for other members of the “Holy Trinity”, the log-likelihood ratio statistic
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(−2 log L) and the score statistic using expected information evaluated under the

null hypothesis (S). The log-likelihood ratio statistic and its power are known to ap-

proximate W2/3 to second order (Cordeiro et al., 1994; Warton and Hudson, 2006),

and the power of the score statistic is known to approximate W1 to second order

(Cordeiro et al., 1994). Hence the properties we describe for “intermediate” statis-

tics such as W2/3 have relevance for −2 log L: we expect it to have relatively good

power across all alternatives. We expect S to inherit the properties of the “extreme”

statistic W1: it is expected to similarly have either very high or very low power for

unbalanced designs, depending on the nature of the imbalance.

5 Generality of Theorem 1

In order to derive a closed form result in theorem 1, it was necessary to restrict

attention to models in which there were only two unique true parameters. The form

of the non-centrality parameter then had the familiar form of a two-sample test for a

generalized linear model. It should be noted however that the theorem is applicable

in a broader range of models, such as those for which we use generalized estimating

equations, in the specific case of a two-parameter alternative:

Theorem 2. Consider the non-centrality parameter of Wα in the following cases:

(1) A two sample test of a generalized linear model i.e. where for all i, hα(µi) ∈

{b1, b2} and we test H0 : b1 = b2 against H1 : b1 6= b2, or against a one-sided

alternative, such as H ′
1 : b1 > b2.

(2) A two-parameter alternative in k-sample tests of a generalized linear model. We

test H0 : βi = β for all i against H1 : βi 6= β for some i. We consider power of
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the specific alternative for which all k parameters satisfy βi ∈ {b1, b2}.

(3) A two sample test of generalized estimating equations, using a näıve estimator

of var(β̂i), which is correctly specified. We have two p-variate samples, where

all p variables have marginal distributions belonging to an exponential family

with the same mean-variance function var(yij) = V (µij). Mean parameters

are stored in the p-vectors β1 and β2. We estimate the βi using generalized

estimating equations, and test H0 : β1 = β2 against H1 : β1 6= β2. We calculate

power for a two-parameter alternative in which β1 = b11p×1 and β2 = b21p×1.

(4) A two sample test of generalized estimating equations, using a sandwich esti-

mator of the variance matrix. We require the same conditions here as for 3,

except we do not require that var(β̂i) is correctly specified, but instead the two

groups must share a common correlation matrix, i.e. E(R̂1) = E(R̂2).

(5) A two-parameter alternative in k-sample tests of generalized estimating equa-

tions. Either a näıve estimator of the variance matrix could be used, or a sand-

wich estimator, although for the former we require var(β̂i) to be correctly spec-

ified and for the latter we require E(R̂i) = R for all i. The setup is as for 3,

except that there are now k samples, k p-vectors of parameters βi, and we test

H0 : βi = β for all i against H1 : βi 6= β for some i. We consider the two

parameter alternative βi ∈ {b11p×1, b21p×1} for all i.

Wα has a non-centrality parameter that simplifies to a multiple of equation 2 in each

of these cases. Hence Theorem 1 is applicable in each case.

Proof. 1. The proof is straightforward in this case. var(b̂i) = V (mi) {h′(mi)}2 /Ni

and the result follows, given that the non-centrality parameter of the Wald statistic
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is (b1 − b2)
2var(b̂1 − b̂2)

−1.

2. Let the sample sizes in each of the k groups be stored in N . Consider a partition

of the k-vector of parameters β = (β1, β2) where β1 = 1(k1+1)×1b1 and β2 = 1k2×1b2.

Similarly, let N = (n1, n2), but let us further partition n1 = (n11, n12) where n11 is

the sample size in the first group, and n12 is the sample size of the remaining k1

groups in the first partition. Let N1 = 11×(k1+1)n1 and N2 = 11×k2n2. Hence there

are k1 + 1 groups with βi = b1, and the total sample size across all these groups is

N1, while there are k2 groups with βi = b2, and the total sample size across these

groups is N2.

The Wald statistic can be written as

(Lβ̂)T
(
L ˆvar(β̂)LT

)−1
Lβ̂

where L = [1k−1×1, −Ik−1], and Ia is the a × a identity matrix. In this case the

non-centrality parameter can be written as




0k1×1

(b1 − b2)1k2×1




T 


v1diag(n−1
12 ) + v1

n11
1k1×k1

v1

n11
1k1×k2

v1

n11
1k2×k1 v2diag(n−1

2 ) + v1

n11
1k2×k2




−1 


0k1×1

(b1 − b2)1k2×1




= (b2 − b1)
211×k2 V 22 1k2×1

where V 22 is the bottom-right term of the inverse of Lvar(β̂)LT , and vi = V (mi)
1−2α.
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Now

(V 22)−1 = V22 − V21 (V11)
−1 V12

= v2diag(n−1
2 ) +

v1

n11

1k2×k2 −
v2

1

n2
11

1k2×k1

(
v1diag(n−1

2 ) +
v1

n11

1k1×k1

)−1

1k1×k2

(5)

Now it can be shown using (Petersen and Pedersen, 2006, page 16, for example) that

(A + b1k×k)
−1 = A−1 − bA−11k×kA

−1

1 + b11×kA−11k×1

Also, 1a×k1diag(n12)1k1×b = (N1 − n11)1a×b and so

v1

n11

1k2×k1

(
v1diag(n−1

12 ) +
v1

n11

1k1×k1

)−1

1k1×k2

=
1

n11

1k2×k1

(
diag(n12)− diag(n12)1k1×k1diag(n12)

n11 + 11×k1diag(n12)1k1×1

)
1k1×k2

=
1

n11

(
N1 − n11 − (N1 − n11)

2

n11 + (N1 − n11)

)
1k2×k2

=
N1 − n11

N1

1k2×k2

Equation 5 then simplifies to

(V 22)−1 = v2diag(n−1
2 ) +

v1

n11

1k2×k2 −
v1

n11

N1 − n11

N1

1k2×k2

= v2diag(N−1
2 ) +

v1

N1

1k2×k2

hence

φ = (b2 − b1)
211×k2

(
v2diag(N−1

2 ) +
v1

N1

1k2×k2

)−1

1k2×1
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Using the same identities above, this simplifies to

φ = (b2 − b1)
2

{
N2

v2

− v1N
2
2

N1v2
2

(
1 +

v1N2

N1v2

)−1
}

= (b2 − b1)
2N2

v2

(
1 +

v1N2

N1v2

)−1

= (b2 − b1)
2

(
v1

N1

+
v2

N2

)−1

which has the same form as equation 2.

3. A näıve estimator for ˆvar(β̂i) has the form

ˆvarnäıve(β̂i) =
1

Ni

diag(V (M̂i)
1−2α)1/2 R̂w diag(V (M̂i)

1−2α)1/2 (6)

where R̂w is the working correlation structure, and Mi is the vector of means for the

ith group.

Now if βi = 1p×1bi, then Mi = 1p×1mi and diag(V (Mi)) = V (mi)Ip, hence

varnäıve(β̂i) =
1

Ni

V (mi)
1−2αE(Rw)

and so, provided that the variance has been correctly specified, Φ simplifies to

(β1 − β2)
T

(
var(β̂1) + var(β̂2)

)−1
(β1 − β2)

= (b1 − b2)
2

(
V (m1)

1−2α

N1

+
V (m2)

1−2α

N2

)−1

11×pE(Rw)−11p×1

which is proportional to equation 2.

4. A sandwich estimator for var(β̂i) has the form

ˆvarsandwich(β̂i) = ˆvarnäıve(β̂i) κ̂ ˆvarnäıve(β̂i)
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where

κ̂ = Ni diag(V (M̂i)
1−2α)−1/2 R̂−1

w R̂iR̂
−1
w diag(V (M̂i)

1−2α)−1/2

and R̂i is the sample correlation matrix of Pearson residuals calculated within the

ith group, diag(Mi)
−1/2(Yi − 1N1×1Mi).

varsandwich(β̂i) simplifies to

ˆvarsandwich(β̂i) =
1

Ni

diag(V (M̂i)
1−2α)1/2 R̂i diag(V (M̂i)

1−2α)1/2

This has the same form as equation 6, except that the working correlation matrix

R̂w has been replaced by a within-group unstructured correlation matrix, R̂i. So we

can use the same approach as for 3 to show that provided that E(R̂1) = E(R̂2), the

non-centrality parameter is proportional to equation 2.

5. This follows by generalizing result 2 using the approach of results 3 and 4.

While the above only represent a restricted class of GEE’s and GLM’s, they give

some indication of how Theorem 1 generalizes to more complex contexts. Hence, for

example, we suggest that in k-sample testing of GEE’s in general, if the more variable

groups tend to be more intensively sampled, then a Wald statistic will have higher

power when α is smaller. This corresponds to the N1 < N2 situation. Conversely,

when the more variable groups tend to be less intensively sampled, larger α gives

higher power. Finally, for a GEE based on a balanced sampling design, we expect

all parameterizations to have similar power.
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6 Simulations

In this section, the above results are demonstrated via simulation, focussing specif-

ically on the case of two-sample or three-sample designs for overdispersed count

data.

To ensure that any differences among statistics were due to power and not due to

accuracy of the test, we measured statistical significance using permutation tests

rather than through reference to the chi-squared distribution. This ensured that all

tests were approximately exact, the approximation being due to a very small amount

of Monte Carlo error.

In all cases, power was estimated at the 0.05 level from 1000 simulated datasets. Sta-

tistical significance at the 0.05 level was evaluated using permutation tests, where

the group labels of each observation were permuted. We used 999 randomly chosen

permutations of the data to estimate significance levels. There were two levels of

sampling involved in simulations – sampling datasets, then resampling them to esti-

mate P -values. This was computationally burdensome, and required approximately

20 hours of total time when using an AMD Opteron 246 processor (2.6 GHz).

We calculated six test statistics: W0, W1/2, W2/3, W1, S and −2 log L. Theorem 1

applies directly to Wald statistics only, but given that S ≈ W1 and −2 log L ≈ W2/3,

it has implications for these statistics also. We did not calculate −2 log L for GEEs,

as it is undefined.

In the case of GEEs, we used a sandwich estimator of the variance matrix with

slight modifications. The use of a sandwich estimator has the potential to introduce

19



considerable inefficiencies, and is often not a good idea for small samples (Drum

and McCullagh, 1993). This is pertinent in our case, where a sandwich estimator

would require the use of R̂i in calculations, where Ni is typically 15 or less. Hence

we replaced R̂i with a pooled estimate R̂ obtained by moment estimation using all

Pearson residuals, not just those from the ith group.

We considered 9 power simulations in a 3 × 3 design, in which we varied the data

structure and the parameter that was varied in simulations.

Each of the following three data structures were considered:

• Two-sample tests for data from a negative binomial distribution, with a total of

30 observations.

• Two samples tests for data from a bivariate negative binomial distribution, fitted

using generalized estimating equations, with a total of 30 observations.

• Three-sample tests for negative binomial counts, for a total of 45 observations,

with the sample size and mean of group 2 fixed at N2 = 15 and m2 = 2.

In each case we sampled data from geometric distributions, such that data satisfied

the mean-variance function V (µ) = µ + φµ2 where φ = 1. For bivariate data, we

sampled X1, X2 and Z independently from a negative binomial distribution with

V (µ) = µ + µ2/2 and µ = mi/2. We then calculated the two response variables

as Y1 = X1 + Z and Y2 = X2 + Z, whose correlation is 0.5, and whose marginal

distributions are geometric with mean mi (Johnson et al., 1997).

For each data structure, we explored the effect on power of varying key parameters

in three settings:
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Sample size ratio varied The relative sample size in two groups was varied, while

keeping means and variances fixed. For k-sample tests, we varied Nk/N1 while

keeping N1+Nk = 30. In the two sample case, m1 = 1, m2 = 3, hence V (m2)/V (m1) =

6. In the three sample case, N2 = 15 and m1 = 1, m2 = 2, and m3 = (731/2−1)/2,

hence V (m3)/V (m2) = V (m2)/V (m1) = 3.

Variance ratio varied, balanced sampling The ratio of variances across groups

V (mk)/V (m1) was varied, by varying the means, while keeping sample sizes fixed

in a balanced sampling design with Ni = 15 for all i. For the two-sample case, we

set m2 = 3 and varied m1. For the three-sample case, we set m2 = 2, and varied

m1 and m3 such that V (m2)/V (m1) = V (m3)/V (m2).

Variance ratio varied, unbalanced sampling The ratio of variances across groups

V (mk)/V (m1) was varied, by varying the means, while keeping sample sizes fixed

in an unbalanced design. We repeated the conditions of the previous variance ratio

simulation, except that now N1 = 10 and Nk = 20.

In modeling the data we assumed that the dispersion parameter φ was unknown.

For bivariate data, we estimated φ separately for each response variable.

For bivariate data, we estimated parameters using an independence estimating equa-

tions approach, i.e. using the identity matrix as the working correlation structure.

This is much more computationally efficient than joint estimation of β and R, in fact

it leads to important computational savings. This was an important consideration

due to the extensive computation times in conducting these simulations.

Simulations varying the sample size ratio were designed to demonstrate remark 1,

and simulations changing the variance ratio were designed to demonstrate remark 2.
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While the simulations using a two-sample design represent a demonstration of The-

orem 1, the three-sample design considered here represents a situation in which

Theorem 1 does not apply directly. In this simulation, the true model is a three-

parameter alternative. It is included to demonstrate how lessons learnt from The-

orem 1 for two-parameter alternatives provide a guide for performance in other

situations. Specifically, we expected that for the three-sample case, just as in the

two-sample case, α = 1 would have highest power when more variable groups were

less intensively sampled, α = 0 would have highest power when more variable groups

were more intensively sampled, and that reparameterization would have negligible

effect on power when sampling was balanced.

In all simulations, we observed the patterns predicted by Theorem 1 (Figure 1).

These patterns were just as evident for three-sample tests (Figure 1c) as for the two

sample situations that are directly covered by Theorem 1.

In the first and third columns of Figure 1, W1 had highest power when the more

variable group was less intensively sampled, and lowest power when the more variable

group was more intensively sampled. W0 had the opposite behavior of W1. The

extent of differences in power increased as Nk/N1 or V (mk)/V (m1) moved away

from 1, as expected from remarks 1 and 2, respectively. Differences in power with

parameterization were most extreme in the first column of Figure 1, where W1 often

had over twice the power or less than half the power of W0 and W1/2, depending

whether N1 > Nk or N1 < Nk, respectively.

W1/2 and W2/3 were intermediate between W0 and W1, with W1/2 closer in power to

the former and W2/3 closer to the latter. W1/2 was the only statistic whose power
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was roughly symmetrical when plotted against log(Nk/N1) and log {V (mk)/V (m1)}

(Figure 1). This approximate symmetry can be understood from equation 4, where

the second order term δψ is symmetric with respect to N1 and N2 when α = 1/2.

When sampling was balanced, all statistics had almost identical power. This was

evident in the almost coincident power curves when sampling was balanced (second

column of Figure 1), and in the almost perfect intersection of the power curves at

Nk/N1 = 1 (first column of Figure 1).

As expected, we found that S and −2 log L behaved like their respective Wald sta-

tistics in power simulations (Figure 2). Power curves for S and W1 were almost

perfectly co-incident, and similarly for −2 log L and W2/3, with the exception of ex-

tremely unbalanced designs, where Nk/N1 > 3 or Nk/N1 < 1/3. Because we sampled

such that N1 + Nk = 30, such unbalanced designs correspond to situations where

Ni ≤ 7 for some i. Hence we suspect that the divergence of power curves is due to

small sample size rather than being related to imbalanced design per se.

7 Discussion

We find our results quite concerning, from the perspective that the two test statistics

routinely used with generalized estimating equations – W1 and S – both have some

quite undesirable power properties. For k-sample tests with unbalanced sampling

designs, these statistics have extreme power behavior, either performing very well

or very badly. Which of these two possibilities will eventuate can only be known

a priori if a restricted form of alternative model is expected, e.g. m1 < m2. In
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other situations, it would be more prudent to use a test statistic with intermediate

properties – one that has relatively high power across a range of alternatives, such

as W2/3, −2 log L where it is applicable, or perhaps W1/2.

We expect that the effect of reparameterization on power of Wα will be larger for

some types of data than for others, and quite substantial for overdispersed count

data in particular. This is because the extent of effects of α on power is a function

of the amount of variation in V (mi) across samples (remark 2, and third column of

Figure 1), which is related to the derivative V ′(mi). When modeling overdispersed

count data in particular, V ′(mi) > 1, hence V (mi) can vary considerably across sam-

ples and the properties of Wα might change considerably as α changes. In contrast,

when modeling binomial data, |V ′(mi)| ≤ 1 and V (mi) will only vary considerably

across samples when we encounter cells with rare responses, i.e. some mi near 0

or 1. Hence we might expect that reparameterization will have comparatively little

effect on power of Wα for most binary problems. When fitting a normal model with

constant variance, of course, we expect negligible effect of reparameterization on

power.

For k-sample tests of generalized estimating equations where a single test statistic

is required, we recommend W1/2, the Wald statistic under the variance stabilizing

parameterization. This statistic has been shown to have relatively good power across

a range of scenarios. A further important advantage of this statistic is that it is

defined when µ = 0, and does not have the undesirable properties as µ → 0 described

by Væth (1985). Returning to the invertebrate data introduced in Section 2, W1/2

took large, significant values for both variables, when analyzing each separately,
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whereas W2/3 had problems for the amphipod data because µ̂C = 0. Similar results

were obtained when fitting GEEs to the bivariate data.

We have demonstrated the relevance of our results for other members of the “Holy

Trinity”, the score statistic (S) and likelihood ratio statistic (−2 log L). We conclude

that the score statistic, like W1, is an “extreme statistic” which should not be used

for unbalanced designs, unless testing a one-sided alternative for which it is known

to be favorable. The log-likelihood ratio statistic, like W2/3, is an “intermediate

statistic” which has reasonably high power across a broad range of alternatives.

Hence −2 log L is a natural choice of test statistic for generalized linear models, as

it will have more reliable power than the other commonly used statistics S and W1.

Our conclusions contrast with those of Barnwal and Paul (1988), who recommended

the use of a score statistic in place of a log-likelihood statistic in the analysis of

overdispersed count data, because of more reliable Type I error properties. We

reached a very different conclusion, by controlling Type I error and comparing sta-

tistics on the basis of power. We emphasize that our results are only relevant for

situations where one either has a large enough sample size for Type I error properties

to be good, or where one uses resampling to ensure valid test sizes.

Our results for S and W1 are analogous to results found in the analysis of variance

literature for the Behrens-Fisher problem (Miller, 1986). An ANOVA F statistic

tends to take smaller values when more variable groups are more intensively sampled,

and larger values when less intensively sampled, just as S and W1 did in this paper.

In fact, it can be shown that the score statistic is proportional to an ANOVA statistic

in one-way classifications (Cordeiro et al., 1994, page 715, for example). Hence it is
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unsurprising that S has poor properties when variances differ considerably across

groups, for unbalanced samples, and that these properties co-incide with those of

an ANOVA F -statistic in the same scenario.

It is unclear exactly how to generalize these results beyond k-sample tests. As men-

tioned previously, in the k-sample case, changing the link function hα(µ) does not

change the model. This is not the case in general. While we can still reparameter-

ize β without changing the model, this can not be done directly through the link

function, which complicates the situation.

It is currently standard practice when using GEE’s to base hypothesis tests either

on the score statistic (S) or the Wald statistic under the canonical parameterization

(W1). Our results suggest that certainly in the case of k-sample testing of GEE’s,

these statistics should not be used as the standard test statistics, because they cannot

be relied upon to have good power properties when sampling is unbalanced. This

is especially the case when dealing with overdispersed counts, for which variances

can differ considerably under the alternative, exacerbating the poor properties of

S and W1. For this situation, we propose using the Wald statistic based on the

variance stabilizing transformation (W1/2), or when it is defined, the log-likelihood

ratio statistic (−2 log L). A priority in future research is to establish whether or

not the undesirable properties of W1 and S observed here can also be seen in more

general marginal models – and if so, what statistics can be used in their place.
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Nk/N1 varies, V (mk)/V (m1) varies, V (mk)/V (m1) varies,

V (mk) > V (m1) Nk = N1 Nk > N1
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Fig. 1. Power of four parameterizations of the Wald statistic. Simulations vary the sample

size while holding means and variances fixed (first column), or vary the variance ratio

whilst holding sample sizes fixed in a balanced (second column) or unbalanced (third

column) sampling design. The data generating mechanism was varied in different rows:

(a) Two sample negative binomial simulations; (b) Two sample bivariate negative binomial

simulations; (c) Three sample negative binomial simulations.
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Fig. 2. Comparison of the power of S with that of W1, and comparison of −2 log L with

W2/3, in simulations varying the sample size ratio whilst holding means and variances

fixed. In all cases, m1 < m2 (< m3), similarly for variances. (a) Two sample negative

binomial simulations; (b) Two sample bivariate negative binomial simulations; (c) Three

sample negative binomial simulations. Note that −2 log L is undefined for GEE’s, so in

(b) only S and W1 are shown.
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Table 1

Counts of the abundance of amphipods, order Amphipoda, and cockroaches, order Blat-

todea, obtained from 10 sites near Sydney, Australia. Two sites were controls (C), eight

had undergone regeneration (R).

Site C1 C2 R1 R2 R3 R4 R5 R6 R7 R8

Amphipoda abundance 0 0 156 31 1 52 376 159 21 11

Blattodea abundance 3 4 0 0 0 1 0 0 0 0
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Table 2

Two-sample test statistics and their significance, for the invertebrate data of Table 1. We

fitted a negative binomial log-linear model, as described in the text, and compared the log-

likelihood ratio statistic (−2 log L), the score statistic (S) and the Wald statistic under the

canonical parameterization (W1). P -values were obtained using exact permutation tests.

Statistic: −2 log L S W1

Amphipoda abundance

Observed value 13.9 1.12 ?

P 0.022 0.222 ?

Blattodea abundance

Observed value 17.0 8.37 9.72

P 0.022 0.022 0.022
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