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Abstract:  

Despite several technological advancements, mining-induced fractures are still critical for 

the safety of underground coal mines. Rocking fracturing as a natural response to mining 

activities can pose a potential hazard to mine operators, equipment, and infrastructures. 

The fractures occur not only around the working face that can be visually measured but 

also above and in front of the working face and where geological structures are affected 

by mining activities. Therefore, it is of importance to detect and investigate the properties 

of mining-induced fractures. Mining-induced seismicity has been generated due to rock 

fracturing during progressive mining activities and can provide critical fracture 

information. Currently, the application of using seismic monitoring to characterise 

fractures has remained relatively challenged in mining because mining-induced fractures 

are initiated by stress change and strata movement after mineral extraction. Compared to 

seismic monitoring in the oil and gas industry, the fractures and seismic responses may 

show different characteristics. Therefore, seismic monitoring in mines lacks a 

comprehensive investigation of received seismic signals to the properties of induced 

fractures and the effect on mine workings by these fractures. Additionally, constraints 

such as the quality of seismic signals and the deficiency of correlation analysis of seismic 

events in underground mining pose great challenges in using seismic data for hazard 

prediction. 

This thesis aims to address these challenges in using seismic monitoring to understand 

and characterise mining-induced fractures by (1) calculating fracture properties related to 

seismic source location, magnitude and mechanism based on uniaxial seismic data, (2) 

spatial and temporal correlation analysis of seismic events, and (3) inspecting fracture 

distributions and simulation of the fractured zone in longwall coal mines. Firstly, since 

cheap and easily removable uniaxial geophones close to production areas are preferable 

in coal mines, a novel method to use uniaxial signal and moment tensor inversion to 

generate synthetic triaxial waves is designed for a comprehensive description of the 

fracture properties, including location, radius, aperture and orientation. Secondly, to apply 

seismic data for advanced analysis, such as rockburst prediction and caving assessment, 

the correlation of seismic events is proved to be quantitatively assessable, and their 

correlations may vary throughout the mineral extraction process. The spatial and temporal 

correlation of seismic event energy is quantitatively analysed using various statistical 

methods, including autocorrelation function (ACF), semivariogram and Moran's I 
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analysis. In addition, based on the integrated spatial-temporal (ST) correlation 

assessment, seismic events are further classified into seven clusters to assess the 

correlations within individual clusters. Finally, several source parameters such as seismic 

moment (M0), seismic source radius (R), fracture aperture (𝜏), failure type and fracture 

orientation were used to characterise fractures induced by longwall mining. This thesis 

also presents the fracture patterns induced caused progressive longwall mining for the 

first time. Besides, a discrete element method (DEM) model with seismic-derived 

fractures is generated and proves the impact of mining-induced fractures on altering stress 

conditions during mineral extraction. In addition, with the analysis of the seismic source 

mechanism and a synthetic triaxial method, a discrete fracture network (DFN) is 

generated from monitored seismic events to restore complete induced fractures. Overall, 

the outcomes of this study lead to a comprehensive assessment of mining-induced fracture 

properties based on real-time seismic monitoring, demonstrating its significant potential 

for hazard prediction and improving the safety of resource recovery. 
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𝑀  the norm of M 

𝑀1, 𝑀2, 𝑀3  the eigenvalues of the moment tensor 

G  Green’s function 

S(t)  source time function 

𝑢𝑘  amplitude measured on sensor  

k , 𝑢𝑘
0   corrected amplitude 

𝑆𝑘  Sensor polarity 

𝐺𝑠𝑘
  geometrical spreading 

𝑃𝑘   anelastic attenuation 

𝐹𝑘  free-surface amplification 

𝐶𝑤𝑘
  coupling weight of the receiver 

∆u(t)   the magnitude of dislocation 

𝛾   tensile angle 

𝑓  slip vector  

𝑛̂  normal vector of the fault plane 

𝒖𝑃  P wave displacement 

𝜇  Lame constant 

A   area of the fault segment 

𝜌  density, 

𝒓̂  direction of radiation 

𝑉𝑃  P wave velocity 

S   source dislocation tensor 

𝛽0   S wave velocity  

𝐾𝑐   a constant that depends on the source model 

E   elastic modulus  

𝜈   Poisson’s ratio 

𝑡𝑟(𝑀)   trace component of the diagonalised moment tensor matrix 

r   distance between source and receiver 

𝑊𝑉 𝑟𝑚𝑠𝑝𝑒𝑎𝑘 
   amplitude of the peak signal 

E   radiated energy 
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Chapter 1. Introduction  

This chapter explores the context and complexities of deep-level longwall coal mining, a 

procedure laden with difficulties such as probable rock failure, increased gas emissions, 

and changing stress conditions. The research reported here is intended to address these 

issues by improving seismic monitoring and thereby improving our understanding of 

mining-induced stress and cracks. This understanding is critical for the creation of risk-

mitigation measures, which will ultimately improve the safety and productivity of coal 

mining operations. The research goals are grouped into three major goals. The first is the 

creation of a seismic source mechanism-based analysis method, which will provide a 

more in-depth understanding of seismic activity sources and their relationship to the 

mining process. The second goal is to develop a method for analysing seismic parameter 

spatial and temporal correlation. This will give information on seismic activity patterns 

and their relevance to mining operations. The fourth and most important goal is to 

comprehend the distribution of mining-induced fractures. This will be accomplished by 

developing a computational model of these fractures that will allow us to forecast their 

behaviour and devise effective management techniques. The research aims to assure the 

safety, sustainability, and productivity of coal mining operations through these 

collaborative efforts, thereby contributing to the development of safer and more efficient 

mining practises. 

1.1. Background  

In recent years, the demand for coal resources has skyrocketed due to the increased social 

and economic needs of nations, particularly in developing nations (e.g., China, India, and 

Indonesia). As surface mineral reserves become depleted due to increased demand, 

operators are gradually transitioning to underground mining. However, the depth of 

mining and the scope of extracted orebodies continue to grow. Mining at greater depths 

under high-stress conditions causes a variety of problems, including falling rocks, roof 

collapses, roadway deformations, ground movements, and rock bursts, which raise 

serious health and safety concerns as well as costly production delays (Fujii and Ishijima 

1991; Ranjith et al. 2017; Zhao et al. 2021). 

To efficiently extract coal resources, longwall mining is a highly productive underground 

mining method that is normally applied. In longwall mining, a relatively long mining face 
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(typically in the range of 100 m to 300 m but maybe longer) is created by driving a 

preparation roadway at right angles between two entry roadways that form the sides of 

the longwall block. Once the longwall face equipment has been installed, coal can be 

extracted along the full length of the face in slices of a given width. The modern longwall 

face is supported by hydraulically powered supports, and these supports are progressively 

moved across to support the newly extracted face as slices are taken, allowing the section 

where the coal had previously been excavated and supported to collapse. The resource 

recovery ratio of longwall mining has been very high in recent years- in theory, 100% of 

the block of coal can be extracted, though, in practice, there is always some coal left in 

the goaf (Brady 1995). In addition, when longwall operates in a safe and efficient manner, 

coal is mined in a systematic, relatively continuous, and repetitive process, which is ideal 

for strata control and associated mining hazard management. 

The excavation of large volumes of mineral resources at depth and the resulting 

redistribution of stress can result in fracture initiation, propagation, and rock mass 

movement along pre-existing fracture planes. This is one of the most significant 

challenges associated with sustainable mining in longwall operations. Mining-induced 

fractures can interact with a pre-existing discrete fracture network and flow channels that 

connect to a nearby gassy coal seam or high-pressure aquifer, posing a serious threat to 

coal production faces in the event of a gas release or water inrush. Reliable prevention 

and management of mining-induced gas (water) inflows and reservoir (aquifer) 

interference are significant emerging issues for the mining industry. The Australian coal 

mining industry is subject to unprecedented public and political scrutiny, necessitating 

unprecedented environmental responsibility. Where significant aquifers, surface water, or 

flooded workings are involved, the lack of robust and reliable analysis tools may have a 

substantial impact on the industry's ability to obtain mining approval and licences 

(Adhikary and Guo 2014). 

In addition, rock failure as a natural response to mining activities can pose a potential 

hazard to mine operators, equipment, and infrastructures. These processes are usually 

accompanied by the generation of seismic waves known as mining-induced seismicity, 

which have been reported in underground mines worldwide (Li et al. 2007). As Figure 

1-1 shows, within the mined area of a longwall panel, gas or water can migrate into the 

workings through the destressed area and high-flow fracture channels. Thus, 

understanding mining-induced fractures are important to prevent water inrush, protect 
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shallow aquifers, and guide gas drainage designs. It has been documented that rock failure 

processes are associated with detectable seismic signals (Xiao et al. 2016; Cai et al. 2019; 

Cao et al. 2020). As Figure 1-1 shows, each seismic event recorded by geophones 

indicates rock failure at a certain location, and the associated seismic wave emissions may 

convey the source information of that fracture.  

 

Figure 1-1 Schematic diagram of fracture induced by longwall mining and generated seismicity 

In a large picture, mining-induced seismicity, as the response of rock mass to continuous 

mineral extraction, can represent either the initiation and propagation of new fractures or 

the slippage of pre-existing weak planes in rock mass induced by stress redistribution 

during mining (Lei et al. 2014). Mining-induced seismic events, which correspond to the 

sudden release of elastic strain energy in the rock mass, can be caused by fault slip due to 

the interaction of tectonic stresses and mining-induced stresses away from mine openings 

or the sudden failure of rock masses due to stress concentration near the mining area.  

Mining-induced seismicity is usually controlled by the mining depth, mining speed, 

excavation geometry and geological discontinuities. Also, one or the combination of the 

above factors would lead to different seismic behaviours (Guha 2000). Correspondingly, 

the inversion of seismic data collected at mine sites can reflect the characteristics of the 

above parameters to some extent (Bosch et al. 2010). For instance, the temporal variation 

of geomechanical properties of rock material can be inferred by seismic data (Zhao et al. 
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2018). A clustering of seismic events could indicate local rock instability or/and 

substantial stress changes (Mendecki et al. 1999). Therefore, seismic monitoring has been 

widely used to optimise rock failure-related engineering designs (hydraulic fracturing in 

unconventional gas recovery) (Schultz et al. 2020a) and predict potential rock failure and 

the induced seismic hazards (coal/rock bursts and gas outburst) (Zhao et al. 2018). Coal 

bursts or rock bursts are a particular case of seismic events induced by mining activities 

that cause injury to the workforce or damage to underground workings. As a result, all 

rock bursts are essentially seismic events, but not all mining-induced seismic events 

would trigger rock bursts (Dmowska and Saltzman 2001).  

The energy released from a seismic event is radiated as seismic waves. Seismic waves are 

essentially oscillations due to elastic deformations, which propagate through the Earth 

and can be recorded by seismic sensors and data acquisition systems. The seismic moment 

and seismic energy released by these sources may cover a tremendous range of 

magnitudes with various degrees of ground shaking intensities and associated damage. 

The seismic energy, magnitude, their mutual relationships as well as the determination of 

seismic source mechanisms are critical in seismic data analysis. In order to accurately 

calculate these seismic parameters, it is recommended to a large number of valid triaxial 

seismic wave signals. 

When monitoring seismicity in underground coal mines, both the uniaxial sensors and 

triaxial sensors can be installed near a longwall panel to monitor seismic waves generated 

during coal extraction. Uniaxial sensors only record the amplitude information of seismic 

waves along the installation direction, while triaxial sensors can record the other two 

seismic amplitudes perpendicular to the installation direction. The processing of triaxial 

seismic trace data will be more accurate and more convenient, given the S wave and 

source vector can be easily determined. However, for most mines, triaxial sensors are 

much more expensive and inflexible compared with uniaxial sensors. In general, triaxial 

sensors are permanently cemented in the host rock, while uniaxial sensors can be easily 

relocated. Thus, seismic data analysis methods introduced in previous investigations 

normally require high-quality triaxial seismic signals to calculate credible fracture 

parameters(Li et al. 2007; Leśniak and Isakow 2009; Si et al. 2015). This can be achieved 

in metalliferous mines with permanent triaxial geophones but is difficult in coal mines 

since the rapid material extraction rate requires frequent relocation of geophones. In coal 

mines, cheap and easily removable uniaxial geophones close to production areas are 
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preferable. This increases the difficulty of using seismic data from coal mines to obtain 

accurate source mechanism and clustering analysis, especially in Chinese mines where 

uniaxial geophones are dominant.  

Mining-induced seismicity has also been found to be internally correlated in both time 

and space domains as a result of rock fracturing during progressive mining activities. 

Based on the distribution of seismic events, seismic monitoring may contribute to 

predicting mining-induced seismic hazards. Mining-induced seismicity does not 

distribute uniformly in space or time. In the space domain, most of the explosive types of 

seismic events caused by mining activities are energetically weak. In contrast, events with 

high energy commonly occur in tectonic regions and are presumably caused by the 

interaction between tectonic stresses and mining-induced stresses (Stec 2007). While in 

the time domain, the seismic events tend to form nests, swarms, and sequences (Gibowicz 

2009). Previous research indicates seismic hazards are related to high-energy events near 

mine openings (Leśniak and Isakow 2009; Cai et al. 2019). A direct relationship between 

seismicity and gas emission rate has been reported by (Si et al. 2015), which can be used 

to provide early warning for uncontrolled gas emissions. Fault slip and seismic activities 

can be numerically simulated to comprehensively explore seismicity induced by mine 

extraction (Cao et al. 2018a). Thus, understanding the temporal and spatial correlation of 

mining-induced seismic events is an essential step in using seismic data for further 

advanced seismic analysis, such as rock burst prediction and caving assessment. 

However, there are no clear methods for carrying out this critical work. Input parameters 

for seismic hazard prediction, such as the time frame of historical data and effective 

prediction distance, are selected based on site-specific experience with no statistical or 

physical explanation. The only way to increase the accuracy of present seismic prediction 

algorithms is to determine the spatial and temporal correlations of mining-induced 

seismicity. The temporal and spatial correlation of seismic event energy obtained from a 

sample mine is quantitatively evaluated in this work using a number of statistical 

approaches, including the autocorrelation function (ACF), semivariogram, and Moran's I 

analysis. The examination of spatial-temporal (ST) correlations and cluster-based 

correlations is also noteworthy in this study. Seismic event correlations are quantitatively 

quantifiable, and their correlations can change during the mineral extraction process. 
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In recent years, motivated by improving coal mining safety, reducing fugitive gas 

emissions, and capturing clean energy, it is significantly important to improve the 

understanding of the rock failure process during coal extraction and fluid transport in 

mining-induced fractures. Previous research shows that the water flow in coal seam floors 

can be numerically simulated with the help of mining-induced fracture evolution (Lu and 

Wang 2015a). And rock failure and mining-induced fractures can be simulated by 

coupling the interrelation of stress and damages (Tang 2002). However, integrating 

induced seismic data is a more efficient and more reliable way of understanding fracturing 

activities at the coal mining process. Therefore, this thesis provides a systematic 

investigation of understanding the relationship between progressive rock failure and 

seismicity evolution induced by mining, particularly under the background of 

underground longwall coal mining. 

1.2. Motivation  

Since their introduction in the 1970s to the coal mining industries of the United Kingdom 

and West Germany, geophysical methods have been utilised in coal mines around the 

globe. There is a vast array of applications in both surface and underground mining. 

Applications include coal seam mapping and geological fault detection, lithological 

mapping, geotechnical evaluation, assessment of the rock mass response to mining, void 

detection, location of trapped miners, and guidance of drills and mining equipment. In 

addition to a wide array of techniques, which includes geophysical borehole logging, 

potential field methods, seismic reflection (2D and 3D), resistivity, electromagnetics, and 

seismic monitoring using active and passive sources, there is a wide range of techniques 

that can be employed. Consequently, mining-induced seismicity monitoring is essentially 

a geophysical technology. Apart from geophysics, geomechanical, geological, and 

reservoir engineering knowledge are all required for the advanced processing and 

interpretation of induced seismic data.  

Seismic event locations and magnitudes provide valuable information about the spatial 

extension of fracture zones (Wang et al. 2016), and the inversion of seismic moment 

tensors can provide extra information about the specific dynamics of rock fracturing 

processes (Gibowicz and Kijko 1994a; Sellers et al. 2003; Ma et al. 2019). The identified 

hypocentres may also reveal failure planes or other underlying structures that control the 

distribution of seismic events (Young et al. 1992). 
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The inversion of seismic source mechanisms as a typical seismic analysis method is a 

promising method for the mining industry to understand rock fracturing behaviour during 

resource extraction. By conducting seismic moment tensor inversion, discrete seismic 

events can be connected/clustered based on the physical mechanism at their source, such 

as the event failure mechanism, principal strain axes, and potential failure plane 

orientations (Young et al. 1992; Shearer 1999; Gibowicz 2009b; Zhao et al. 2018). 

Evaluating event failure mechanisms is crucial for understanding the fractures induced 

by progressive resource extraction in underground mines. Results on the failure plane 

orientation can also help describe the spatial distribution of mining-induced fractures and 

generate a probabilistic fracture network (Maxwell et al. 2010; Zhao et al. 2019). 

This thesis targets to have a comprehensive understanding of longwall mining-induced 

fractures and triggered stress change based on seismic monitoring. To achieve this, three 

main aspects are going to be investigated in this research: 

• Above all, the fracture information to be determined by seismic data includes 

multi-attributes of source location, released energy, fracture orientation, fracture 

radius and fracture aperture. As discussed in Section 1.1, these parameters cannot 

be achieved by uniaxial seismic signals based on current approaches that are 

developed for triaxial seismic signals. Therefore, developing a comprehensive 

method of processing uniaxial seismic signals from raw waveforms to back-

calculate fracture properties is required and will be explored in this thesis. Thus, 

this thesis focuses on developing a novel method to use uniaxial signals, radiation 

patterns, and moment tensor inversion to generate synthetic triaxial waves and 

then determine fracture geometries and distributions induced by longwall coal 

mining. This approach is demonstrated by analysing uniaxial data recorded in a 

case study coal mine in China.  

• Because fracturing operations include crack opening, sliding, and propagation, 

different fracture types can create distinct seismic waves. Understanding mining-

induced fractures necessitates the development of internal correlations of mining-

induced seismic data, which can, to some extent, represent parent fracture 

information. Mining-induced seismicity has been discovered to be internally 

correlated in both time and space domains during progressive coal extraction 

activities, and understanding the temporal and spatial correlation of mining-



8 
 

induced seismic events is a necessary step before using seismic data for further 

analysis, such as rock burst prediction and caving assessment. There are, however, 

no recognised ways to carry out this crucial work. In the spatial, temporal, and 

spatial-temporal domains, correlation analysis is an appropriate option. It is 

critical to determine which aspects are connected and which are not based on the 

fractures' spatial and temporal information. Furthermore, input parameters used 

for seismic hazard prediction, such as the time frame of historical seismic data 

and effective prediction distance, are calculated based on site-specific experience 

without statistical or physical backing. As a result, the accuracy of present seismic 

prediction systems is severely limited, which can only be addressed by 

quantifying the spatial and temporal correlations of mining-induced seismicity. 

• More importantly, seismic source parameters, such as seismic moment (M0) and 

seismic source radius (R), can be used to characterise fracture patterns induced by 

longwall mining, such as failure type, fracture aperture (τ), fracture length and 

fracture orientation. Thus, based on seismic data collected from a study site, this 

thesis also presents the fracture patterns induced by progressive longwall mining. 

The distribution of seismic-derived fractures can be inferred and assessed together 

with the geomechanical response and longwall advance rate during coal 

extraction. Afterwards, to better understand the relationship between the derived 

fractures and longwall mining, a numerical modelling approach has been 

proposed to simulate the longwall caving process with the derived fractures based 

on field seismic monitoring data. It has been proved in this thesis that the 

modelling results can be significantly different once considering seismic-derived 

fractures. 

1.3. Research problems, aims and objectives 

Coal mining is extending to deeper and deeper levels, facing ever-increasing gas content 

and much higher in-situ stress in production districts. This ever-increasing challenge of 

potential rock failure and gas emission in coal mining is caused by the significant 

alteration of stress during coal extraction. The primary limitation of applying longwall 

mining systems to recover coal resources in a safe, sustainable and productive manner 

comes from a throughout understanding of mining-induced stress and fractures, which 

can be potentially achieved by seismic monitoring. 
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The success of the longwall mining process is critically dependent on the behaviour of 

rock failure above and below the mining seam, as well as gas-water two-phase transport 

around the working area. Therefore, this thesis was systematically designed to optimise 

the use of seismic monitoring and interrogate seismic data obtained in underground coal 

mines by: 

• Improving the understanding of seismic source information and fracture patterns 

induced by longwall mining. 

• Quantitative analysing of the correlations of processed seismic data induced by 

longwall mining.  

• Establishing the relationship between fractures and seismicity evolution during 

the progressive rock failure caused by longwall mining. 

The aim of this thesis includes: 

AIM 1 – Develop a seismic source mechanism-based source parameter analysis method 

from uniaxial or triaxial traces of seismic waveforms. 

1.a) Investigate seismic monitoring procedures in underground mines. 

1.b) Investigate the information conveyed from seismic signals. 

1.c) Explore new methods for triggering, filtering, and processing seismic signals. 

AIM 2 – Develop an approach to analyse the spatial and temporal correlation of seismic 

parameters, which will benefit further fracture information analysis 

2.a) Develop a workflow for the quantitative correlation analysis of seismic data in the 

temporal and spatial domains separately. 

2.b) Propose an approach to conduct spatial-temporal (ST) correlation analysis at the 

same time. 

2.c) Develop a clustering method and analysis the correlation of seismic data before and 

after clustering. 

AIM 3 – Develop a comprehensive understanding of longwall mining-induced fracture 

distribution by seismic source parameter and mechanism analysis and then use that 

fracture information to build a numerical model based on a case study mine. 

3.a) Develop an approach to interpret fracture distribution from seismic data. 
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3.b) Analysis the mining-induced fractures and generate numerical models based on the 

interpreted fracture data. 

3.c) Model simulation based on observed fracture distribution. 

1.4. Thesis structure 

The structure of the thesis follows a logical progression of research in order to achieve 

the objectives stated in Section 1.3. Figure 1-1 displays the general structure of the thesis. 

First, a comprehensive review of the current state of knowledge regarding seismic 

monitoring in underground mining applications is conducted to identify research gaps and 

formulate objectives. The remaining chapters then address specific groups of objectives. 

All chapters, with the exception of Chapters 1 and 6, are either published or submitted for 

publication and serve as replacements for individual chapters. 

The content of each chapter is described in Figure 1-1 shown below: 

  

Figure 1-2 The content of this thesis 

Chapter 1 – Introduction 

This chapter provides background on (1) the need for seismic monitoring in underground 

mines to facilitate routine inspection, (2) an overview of the research problem, (3) the 

relevance of improving current seismic monitoring analysis methods for large-scale mine 

analysis, and (4) aims and objectives for the thesis. 

Chapter 2 – A review of seismic monitoring for underground mining applications 
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This chapter examines the current state-of-the-art seismic monitoring in critical 

underground mining applications. The main areas reviewed after a thorough literature 

review, followed by insights on existing challenges and scope for future work.  

The main research gaps identified from the literature review are addressed in subsequent 

body chapters. 

Chapter 3 –Processing of uniaxial and triaxial seismic data 

This chapter consists of three sections which are described below: 

Section 3.1 – A preliminary investigation of seismic signal acquisition and filtering 

Section 3.2 – The uniaxial seismic data processing, seismic event location and source 

mechanism determination. 

Section 3.3 – The synthetic triaxial data processing generated from uniaxial seismic signal 

Moreover, a discussion is provided on possible applications of synthetic triaxial data in 

underground mines. 

Chapter 4 – Statistical assessment of the correlation of mining-induced seismic events 

Section 4.1 - Statistical methods applied to analysing seismic correlations in the time and 

space domains 

Section 4.2 – Quantitative assessment of the temporal and spatial correlations of seismic 

events induced by longwall coal mining. 

Section 4.3 – Propose a clustering method and then apply the spatial and temporal 

correlations analysis on clustered seismic events 

Chapter 5 – Seismic-derived fractures during longwall mining and their integration into 

numerical modelling 

This chapter is split into three sections and focuses on seismic-derived fracture properties. 

Section 5.1 – Fracture properties determination from seismic parameters and moment 

tensor inversion 

Section 5.2 – Interpretation of fracture distribution and model generation based on 

calculated fracture properties 

Section 5.3 – Numerical modelling of fracture distribution inferred from seismic events 

during the coal extraction process 
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Chapter 6 – Conclusions and recommendations for future work 

Chapter 6 summarises the conclusions drawn from each chapter to enable seismic 

monitoring to ensure mine safety and improve mine planning by accurate and 

comprehensive distributions of mining-induced fractures in underground mines. The 

chapter also provides insights on further development required to facilitate the wider 

applicability of seismic monitoring. 

Note: Since the main body chapters are based on three publications, the introduction, 

literature review and conclusion part of each chapter will be used directly in those 

chapters. Hence, some amount of overlap may be encountered in the introduction and 

literature review sections of individual chapters. 

1.5. Research publications and presentations 

I. Si G, Cai W, Wang S, Li X. Prediction of Relatively High-Energy Seismic Events 

Using Spatial–Temporal Parametrisation of Mining-Induced Seismicity. Rock 

Mech Rock Eng. July 2020. doi:10.1007/s00603-020-02210-3 

II. Wang, S., Si, G., Wang, C., Cai, W., Li, B., Oh, J. and Canbulat, I., 2022. 

Quantitative assessment of the spatio-temporal correlations of seismic events 

induced by longwall coal mining. Journal of Rock Mechanics and Geotechnical 

Engineering. Apr 2022. doi:10.1016/j.jrmge.2022.04.002 

III. Wang S, Si G, ‘Using uniaxial seismic monitoring data to interpret the distribution 

of longwall mining-induced fractures’ (submitted to RMRE) 

  



13 
 

Chapter 2. Literature review  

This chapter presents a review of available literature covering seismic monitoring 

technology and applications in mines, geomechanical factors affecting seismic events, 

and numerical modelling work related to mining-induced seismicity. The objective of this 

review is to present the background knowledge for the investigation of mining-induced 

seismicity. 

2.1. Basic technics involved in longwall mining seismic monitoring 

The seismic monitoring system installed in underground mines and other underground 

engineering applications consists of sensors, data acquisition, data storage and 

transmission, data processing and visualisation, as well as real-time response. Seismic 

monitoring is not a new technology in the mining industry. It has primary applications in 

caving assessment and rock burst management (Zhu et al. 2017). Over the years, seismic 

monitoring has been developed as a real-time, remote, and non-invasive approach to 

detecting underground rock failure processes.  

The seismic processing techniques were initially applied to the study of earthquake-

generated seismic waves. It is logical to expect that the physical and mathematical 

relationships created to describe and evaluate earthquakes should also apply to mine-

induced seismic activity. Mendecki et al., (1997) noted that the physical rules driving 

centimetre-scale and kilometre-scale deformation are nearly equivalent, implying that 

seismology has a degree of scale independence. This means that the seismology theory 

can be applied to phenomena ranging from acoustic emission in laboratory rock cracking 

to earthquakes in geological faults. The mine seismicity can be detected at scales on both 

large-scale and laboratory rock failure. 

There are two types of seismic waves: the surface wave and the body wave. The surface 

wave is the wave that travels along the earth's surface or the boundary between two 

distinctly different rock strata. Since seismic monitoring in longwall mining is often 

conducted at deep subsurface, and sensors are not situated at the surface of any strata, this 

thesis will only discuss the body wave, i.e., the wave that travels through the interior of 

the rocks. P-waves (or compressional waves) and S-waves (or shear waves) are two types 

of body waves (Shearer 1999). Additionally, P-waves are known as longitudinal or 

dilatational waves, and S-waves known as transverse waves that do not affect the 
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material's volume. In a P-wave, the particles move in the direction of propagation, but in 

an S-wave, the particles move in the opposite direction. Usually, the speed of the P-wave 

is higher than the S-wave, and the S-wave cannot pass-through fluid material while P-

wave can. 

As described in Chapter 1, the seismic event is a phenomenon that releases detectable 

seismic waves with a sudden, inelastic deformation of a given rock volume. The radiation 

of seismic waves also radiates the energy and releases stress at the source. Different 

seismic events have different tremor amplitudes and frequencies, which depend on the 

stiffness and stress state of the rock, the amplitude and the magnitude of the seismic 

source, and the rate at which the rock deforms during fracturing (Mendecki 1996). 

Seismic monitoring systems can only measure the part of deformation and strain related 

to recorded seismic waves. When many seismic events across a specific space are 

recorded and analysed, it is possible to quantify changes in deformation and stress states 

within that space. The stress and stress change caused by seismic activity are distinct 

(Mendecki et al. 1999). In a given space volume, generally, the seismic deformation is 

proportional to the seismic moment, and the stress is proportional to the ratio of seismic 

energy to seismic moment. Except the seismic moment and seismic energy, several basic 

parameters also help to describe the seismic events: the occurring time; the event location; 

the magnitude; the corner frequency, the stress drops and the source mechanism. Other 

parameters like seismic radius and apertures are calculated based on the above basic 

parameters. Listed below are some key parameters and pertinent studies. 

Typically, the first attributes to be established are the event origin's triggering time and 

location. Regardless of the size or duration of an event, the source location can be inferred 

from the arrival time (Shearer 1999). The travel time of seismic waves can then be 

inverted using various approaches to determine the event location. These methods will be 

contained in Chapter 3. Measuring both P- and S-waves allows for calculating a more 

precise location. The event can be readily mislocated if only P-wave arrival time data are 

supplied. In addition, a bad sensor network may result in significant location errors. 

Adding a second station on the opposite side of the event or measuring both P- and S-

wave arrival time could improve the event’s location. The time difference between P- and 

S-wave arrival time can be utilised to calculate the distance between the source and 

receiver at each station. 
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The seismic moment, M0, is the most dependable seismic intensity metric applicable to 

mining seismic occurrences (Gibowicz and Kijko 1994b; Sen et al. 2013; Eyre and van 

der Baan 2015). Seismic waveform data are frequently used to estimate the seismic 

moment, which involves complicated math. Slippage on an internal discontinuity in a 

rock mass is linked to seismic activity. To understand how seismic waves are created and 

how the radiated energy relates to the source, the physical properties of the source must 

be analysed in order to construct a mechanical model representing the physical process 

of fracture. The point-source approximation was used in the first mathematical 

description of the source mechanism, which is valid provided the observation locations 

are positioned at a sufficient distance from the source and the wavelengths are significant 

(Udías and Buforn 2017). The source is represented by a system of body forces operating 

at a place in this technique; these forces are referred to as similar forces since they must 

produce fracture. 

Moment tensor is a generalisation of forces that can act at a point in an elastic material. 

Despite being an idealisation, it has been proven to be a valuable approximation for 

modelling distant seismic reactions for tiny sources relative to the seismic wavelength 

(Shearer 1999). Since the moment tensor is symmetric, it can be diagonalised. Its 

eigenvalues and eigenvectors can be determined and further subdivided into an isotropic 

and a deviatoric component. The sum of the eigenvalues describes the source's volume 

change (Fletcher and McGarr 2005; Linzer 2005; Cesca et al. 2012). 

 

Figure 2-1 Four typical focal spheres and their corresponding fault geometries (Shearer 1999)  

The most prevalent way to determine a seismic event focal mechanism is to observe the 

first motion of the P-wave. It has the benefit of requiring only the vertical component to 

be recorded, and it is easy to recognise on the seismic signal at the same time as the arrival 

time is selected. The first motion of the P-wave at a receiver defines whether the wave 
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left the source in a compressional (upward) or dilatational (downward) quadrant (Shearer 

1999). The result is plotted on a focus sphere as a point. If enough points are plotted, it is 

possible to divide the focal sphere into compressional and dilatational quadrants and 

represent two orthogonal planes that define the focal mechanism. Figure 2-1 depicts three 

distinct focal mechanisms and their respective fault planes. The focus sphere is an 

effective means of demonstrating various focal tools. The compressional quadrant is 

darkened, creating the appearance of a beach ball for the focus sphere. In these types, 

normal and reverse faulting can be distinguished by noting whether the centre is black or 

white. The centre of normal faulting is white, while the centre of reverse faulting is black. 

 

Figure 2-2 An example of (a) velocity seismogram and frequency spectrum and (b) seismic moment as a function of 

source radius by (Fletcher et al. 1986) 

The corner frequency, f0, of a seismic event qis the dominating frequency emitted from 

the source; it is associated with the seismic moment and stress drop (Mendecki et al. 

1999). Figure 2-2a depicts a velocity seismogram and the matching frequency spectrum 

for the S-wave. Lower frequencies contain information on strain changes produced by 

seismicity, while higher frequencies contain information regarding stress changes. The 

radius of seismic source is found to be inversely proportional to f0 (Brune 1970; Duncan 

and Eisner 2010; Glazer 2018). Figure 2-2b depicts the seismic moment as a function of 

the source radius, defined by the range of continuous decrease (Fletcher et al. 1986). Over 

four orders of magnitude in the seismic moment, the source radius for these occurrences 
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is roughly consistent. This apparent consistency results in a strong relationship between 

stress drop and seismic moment (McGarr 1984). 

Shearer (1999) defines stress drop as the average stress difference across a fault before 

and after a seismic event occurs. Stress drop is the estimated stress that accurately depicts 

stress variation during fault slippage (Gibowicz and Kijko 1994b). Seismic data can be 

used to calculate the dynamic stress drop (or effective stress), which is the difference 

between the initial shear stress and kinetic friction on the fault. There are numerous ways 

to determine the stress drop, some of which involve using ground velocity and 

acceleration information. The static stress decrease can be estimated using the magnitude 

and radius of the seismic moment. The seismic radius can be calculated utilising corner 

frequency, as shown in Chapter 3. Stress reductions can vary significantly between events. 

The range stress drop in mine seismicity is 0.01 MPa to 10 MPa (Gibowicz and Kijko 

1994b). 

Seismic energy represents the total elastic energy it emits during an event (Gibowicz and 

Kijko 1994b). In analysing seismic hazards, seismic energy is more straightforward than 

seismic moment in describing the potential damage that one seismic event can cause to 

artificial structures. Seismic energy is often used to measure the magnitude of seismic 

occurrences in mines (Gibowicz and Lasocki 2001). Typically, for the mining-induced 

seismic events, the energy flux was estimated based on the peak velocity, the dominant 

period, and the duration of the body-wave arrivals. The connection between magnitude 

and seismic energy was then proposed, typically as a linear relationship between 

magnitude and logarithm of energy (Gibowicz and Kijko 1994b). If the magnitudes of 

seismic occurrences are assumed to be independent random variables with equal 

distributions, as depicted in Figure 2-3, the frequency-magnitude relationship follows the 

Gutenberg-Richter relation. The seismic events that deviate from this distribution should 

undergo a magnitude of completeness analysis (Rydelek and Sacks 1989; Woessner and 

Wiemer 2005). Correlated with Figure 2-2, seismic moment and the energy parameter in 

the Gutenberg-Richter relation of also share a common theme, representing the energy 

involved in seismic activity. 
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Figure 2-3 Sample case of frequency-energy distribution and a Gutenberg-Richter relation dashed curve by Głowacka 

and Kijko 1989)  

There are numerous distinct magnitude scales for seismic occurrences (Gutenberg and 

Richter 2010; Udías and Buforn 2017). The magnitude defines the quantity of energy 

released and is independent of the generating method. The seismic energy is proportional 

to the square of the amplitude; hence the magnitude is proportional to the energy's 

logarithm. Since amplitude is simple to measure, it is the most widely used of all 

magnitude scales (Shearer 1999). The amplitude is calculated for a single frequency, 

which defines the magnitude as seismic energy radiated over a set of narrow frequency 

band (Shearer 1999). To account for this, the most used magnitude scale is the local or 

Richter magnitude, represented by ML, which is defined as the logarithm of the highest 

amplitude measured by a conventional Wood-Anderson seismograph at a distance of 100 

km. The definition is based on the premise that the ratio of the most significant amplitudes 

at two given distances is independent of azimuth and the same for all considered 

seismicity (Gibowicz and Kijko 1994b). The advantage of the Richter scale is that it may 

be used as a reference for future magnitude scales. 

Mining seismic systems report maximum magnitudes between 3 and 5 and minimum 

magnitudes between -4 and 3 (Mendecki et al. 1999). The expected conner frequencies 

of all seismic events in the volume to be monitored specify the range of frequencies that 

must be recorded for processing to be helpful. The spectrum where the majority of energy 

is emitted partially depends on the magnitude of the seismicity. Low-frequency waves 

dominate a significant event, i.e., frequency lowers with rising energy magnitude, 
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whereas high frequency decays more quickly with increasing distance from the event's 

epicentre (Jaeger 1979). It has been demonstrated that mining-induced seismic events 

release seismic energy ranging from micro-seismic events of 10-5 J to massive rock 

shocks of 109 J (Jaeger 1979). The corresponding frequency ranges from less than 1 Hz 

to more than 10 kHz. The coverage area and sensitivity of seismic sensors determine the 

sensor type and layout of a seismic network. Two types of sensors span from 1 Hz to 10 

kHz frequencies: microdetectors and piezoelectric accelerometers (Mendecki et al. 1999). 

A standard workflow of seismic processing is listed in Figure 2-4. Firstly, the orientation 

of the three component geophone data and velocity model is calibrated by check shots (or 

perforation shots). After that, the noise is suppressed by filtering the raw waves with a 

defined time-frequency to enhance the signal-to-noise ratio. Subsequently, the events are 

triggered to identify the signals that belong to the event. The detected events can be 

located using the ray or full complete form methods based on the velocity model and 

onset time. The double difference method can future minimise the influence of uncertain 

velocity model on the event location. The source mechanism can also be derived by 

moment tensor inversion if data acquisition coverage is large, and the shear wave arrival 

time is precise.  

 

Figure 2-4 A standard workflow of micro-seismic processing 

2.2. Seismicity applied in mines 

The application of geophysics in coal mining can be dated back to the 1970s and 

originated primarily in Great Britain and West Germany. At that time, the majority of coal 
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mines in these counties were underground. They were digging deeper, and it was 

becoming increasingly difficult to extract coal. Priority was given to the maintenance of 

mine output, and delays caused by unforeseen geological faults posed significant 

difficulties (Madariaga 1976; Potvin et al. 2010; Cai et al. 2021a). 

Seismic monitoring in mines permits numerical evaluation of field observations. In 

mines, seismic monitoring is used to quantify seismicity exposure and to direct actions to 

prevent or reduce dynamic mining hazards. Mendecki et al. (1999)established the five 

objectives for measuring the seismic reaction of the rock mass after mining. The first is 

to locate probable rock bursts associated with moderate or large seismic events and to 

help prospective rescue efforts. Second, it aids in the validation of assumptions and 

parameters used in mine design and numerical modelling in order to improve design 

layouts, mining sequencing, and support procedures. Real-time seismic monitoring also 

helps to identify changes in seismic parameters over time and space in order to direct 

control measures such as the timing and placement of destressing blasts, the suspension 

or resumption of mining in each area, and the management of seismic exposure, among 

other things. The other goal is to detect unplanned or substantial changes in seismic 

parameter behaviour or to recognise trends that might lead to workplace instabilities. This 

would help in the control of any dynamic rock ejection incidents. The final goal is to 

improve the efficacy of the mine planning and monitoring procedures. Even if there is 

little damage, seismic back-analysis of huge instability is critical. To make mining safer 

and more productive, it is also required to examine seismic rock mass behaviour in 

relation to pillars, backfill, alternative mining layouts, procedures, and excavation rates. 

The information gathered by the seismic sensors is concealed within seismic waves. To 

extract information for use in mine processing, the seismology techniques have been 

applied. This section will first describe seismic monitoring procedure applied in mine 

field in general, followed by an explanation of the seismological parameters used to 

describe seismicity. 

There are numerous sensors available for seismic monitoring, including surface sensors 

and downhole sensors. At a minimal cost, the surface sensors are positioned with compact 

spacing and good coverage. However, the signal-to-noise ratio (SNR) is low due to the 

large distance from the subsurface events and the noise contamination near the surface 

(Duncan and Eisner 2010). The selection of downhole sensors for a seismic network relies 
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on the required coverage area and the system's sensitivity. The frequency range from 1 

Hz to 10 kHz is covered by small geophones and piezoelectric accelerometers (Mendecki 

et al. 1999). Geophones are suited for sparse networks, such as regional monitoring of 

multiple mining activities. The geophones can capture low frequencies at great distances, 

and it is unlikely that a significant event will occur close enough to multiple sensors to 

induce signal clipping. In dense networks, piezoelectric accelerometers are suitable. Since 

high frequencies are sensitive to distance, they attenuate rapidly. These accelerometers 

are useful for monitoring the entire mine. Both types of sensors should be installed in 

boreholes that extend beyond the fractured rock surrounding an excavation. The sensor 

should be grouted into the hole to ensure a strong connection to the rock. The grout should 

have the same acoustic impedance (density times propagation velocity) as the 

surrounding rock (Mendecki et al. 1999). To avoid trapping acoustic energy, the hole must 

be entirely filled around the sensor. Additionally, the sensors must be mounted with a 

specified orientation. Knowledge of the sensor's orientation is also beneficial for the 

localisation of events and the accurate estimation of the moment tensor. 

In addition, seismic monitoring systems consist of a network of geophones that measure 

the acoustic waveforms created by rock fractures at the individual geophone locations. 

With the digitisation of geophone monitoring systems, data are automatically uploaded 

for access by engineers, and large-scale patterns can be evaluated (de la Vergne 2003). 

The utility of geophones is contingent on the accuracy of the estimated seismic velocities 

and the precision of the acoustic waveform measurement. When identifying the location 

of the centre, accuracy is often within a few metres. Nonetheless, more precise results can 

be attained by deploying a robust seismic network of geophones. 

Implementing a monitoring network requires defining the network's spatial formation, 

volume, and configuration in order to reduce error. The distance to the event and the 

structural geometry between the event and the geophones should be considered while 

planning the geophones' spatial arrangement. In order to identify many waveforms from 

a single event, geophones should be configured at a variety of distances surrounding the 

event. The size of the monitoring network is determined by the number of sensors 

employed. The volume of the network will vary based on the identified critical structures 

or stops. The seismic sensor setup might be uniaxial or triaxial. Triaxial arrangements can 

evaluate the event's size, seismic energy, and seismic moment, although uniaxial 

geophones are more precise in locating the event's source. Uniaxial sensors are superior 
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for mine coverage, while triaxial sensors are superior for post-processing seismic data. 

Triaxial sensors consist of three uniaxial sensors positioned orthogonally. The 

fundamental role of uniaxial and triaxial sensors is distinct since uniaxial sensors pinpoint 

the precise location of event sources, whereas triaxial sensors determine the seismic 

source parameters. Although uniaxial sensors are less expensive, a proper balance 

between triaxial and uniaxial sensors is required for a complete record of seismic wave 

energy, which leads to precision in source parameters and mechanism, more accurate S-

wave detection, and an optimum seismic array. As a rule of thumb, one triaxial sensor is 

required for every three uniaxial sensors. 

The induced seismicity signals collected by the sensors contain both shear and 

compression waves. Based on the distance between the sensors and the treatment well, 

the frequency typically ranges from a few Hz to thousands of Hz. As the distance from 

the shot rises, both the noise and the high-frequency component of the signal decrease, 

resulting in the shot signal being scarcely detectable by surface monitoring sensors. Ideal 

seismic monitoring systems transmit data in real-time to the operator (or processing 

centre). Monitoring seismic activity is a real-time, non-invasive, and remote method for 

detecting underground collapse processes. In certain instances, the limitations of the field 

conditions make real-time transmission difficult. Therefore, the data are stored on a disc 

and analysed later. Despite this, it is worthwhile to investigate the recorded seismic data 

after a lengthy time period. The seismic processing procedure for both circumstances is 

comparable; the saved data can be analysed more thoroughly to construct a processing 

system for investigating real-time data. 

With the sensor received signal, fracture parameters, including location, radius, aperture 

and fracture orientation, as triggered by longwall mining operations, should be 

appropriately calculated using seismic data. Since seismic data collected from uniaxial 

geophones cannot provide intact displacement information at the sensor location, the 

energy and magnitude of the seismic source calculated by uniaxial data will not be 

complete. Thus, seismic data analysis methods introduced in previous investigations 

normally require high-quality triaxial seismic signals to calculate credible fracture 

parameters (Li et al. 2007; Leśniak and Isakow 2009; Si et al. 2015). As Figure 2-5 shows, 

characterising the source parameters such as M0, R, τ, failure type and fracture orientation 

were used to characterise fractures induced by longwall mining. This can be achieved in 

metalliferous mines with permanent triaxial geophones but is difficult in coal mines since 
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the rapid material extraction rate requires frequent relocation of geophones. In coal mines, 

cheap and easily removable uniaxial geophones close to production areas are preferable. 

This increases the difficulty of using seismic data from coal mines to obtain accurate 

source mechanism data for calculation and clustering analysis, especially in Chinese 

mines where uniaxial geophones are dominant. While in this thesis, the required 

parameters can be interpreted by the source mechanism derived complete triaxial signal. 

 

 

Figure 2-5 basic logic of applying seismic processing to help with fracture information 

From recent studies of mining-induced seismicity, two broad types of mine tremors are 

observed almost universally: (Gibowicz and Kijko 1994b). One type of seismicity is 

directly connected with mining operations, associated with fractures forming at stope 

faces. This is the one that has usually been a concern. Another type is the seismicity 

associated with the movement of major geologic discontinuities. The magnitude of 

mining-induced seismicity of the first type is between low to medium. The number is 

directly proportional to mining activity, which can be measured by the excavation rate.  

The seismicity will usually happen within 100m near the mining face and weak zones. 

When the stress induced by mining activity exceeds the shear strength of the material, the 

rock will be ruptured, which might trigger rock bursts and other disasters. The rock failure 

process is a natural response to mining activities and is associated with seismic events. It 

poses a potential hazard to mine operators, equipment, and infrastructures. Based on the 

distribution of seismic events, seismic monitoring may contribute to predicting mining-
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induced seismic hazards. Mining-induced seismicity does not distribute uniformly in 

space or time. In the space domain, most of the explosive types of seismic events caused 

by mining activities are energetically weak. In contrast, events with high energy 

commonly occur in tectonic regions and are presumably caused by the interaction 

between tectonic stresses and mining-induced stresses (Stec 2007). While in the time 

domain, the seismic events tend to form nests, swarms, and sequences (Gibowicz 2009a). 

Previous research indicates that seismic hazards are mostly related to high-energy events 

near mine openings (Leśniak and Isakow 2009; Cai et al. 2019). A direct relationship 

between seismicity and gas emission rate has been reported by (Si et al. 2015), which can 

be used to provide early warning for uncontrolled gas emissions. Fault slip and seismic 

activities can be numerically simulated to comprehensively explore seismicity induced 

by mine extraction (Cao et al. 2018a).  

The difficulty of using a large amount of seismic data collected from mining operations 

for prediction purposes lies in the lack of understanding of the internal correlation 

between seismic events, as mining-induced seismicity is not a random process (Gibowicz 

2009a), but has a high correlation with mining activities both spatially and temporally 

(Arabasz et al. 2005). Invalid prediction results or misleading data interpretation can be 

derived if the correlation is not well-understood. For instance, during seismic data 

analysis, questions need to be addressed beforehand, such as how much past data (time 

window) is required to predict future events and the maximum distance that can be 

effectively predicted with confidence (grid size). The time window and grid size are 

essential parameters for investigating spatial and temporal evolutions of seismic events. 

An undersized time window may not be enough to reflect the general pattern of seismic 

events. An oversized time window may include unnecessary noisy data that reduce 

prediction accuracy (Kijko and Funk 1996). Also, a too-large grid may significantly 

reduce the resolution/accuracy of seismic hazard prediction in space (Kisilevich et al. 

2010). A too-small grid can increase computational time and cause overfitting issues. 

Therefore, the determination of time window and grid size for the temporal and spatial 

prediction of seismic hazard, respectively, remains a significant challenge using historical 

seismic data. In order to determine the appropriate time window and grid size, a 

correlation assessment of seismic data would be required in both the time and space 

domains. 
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The correlation analysis of mining-induced seismicity, including its randomness, stationary, and 

memoryless, would provide an understanding of the past seismic data (Bischoff et al. 2010); 

(González et al. 2016). However, there has been no attempt to assess the correlation of mining-

induced seismicity quantitively so far. This paper focuses on filling this research gap by applying 

three different methods to various types of seismic data: 

• The autocorrelation function (ACF) calculates the correlation with a delayed copy of the 

data itself, and equidistant data is required. 

• The semivariogram is used to calculate the degree of correlation as a function of distance 

or time step. 

• The Moran’s I describes the correlation extended in a specific time window, commonly 

used for a cross-comparison and correlation threshold assessment. 

These quantitative correlation assessment approaches can be applied to any parameters of mining-

induced seismicity, including spatial location, onset time, energy, source radius, apparent stress, 

etc. This thesis will focus on radiated energy, which represents the total elastic energy radiated by 

mining activities and better reflects the influence on artificial structures compared to the 

magnitude and other parameters (Gibowicz and Kijko 1994a).  

Furthermore, many researchers proposed that seismic events can be divided into clusters due to 

the spatially distinct rock mass failure processes associated with temporally dependent mining 

activities (Gibowicz 1986; Leśniak and Isakow 2009; Woodward et al. 2018). The seismic events 

from different clusters may be independent, whereas events within one cluster are internally 

correlated (Kijko and Funk 1996). During a mining process, the overall correlation of the entire 

seismic dataset may be different from the correlation within individual clusters because the 

cluster-based data can be recognised as being related to a specific area or time. Thus, it is 

necessary to re-assess correlation characteristics within each cluster and between clusters after 

seismic data is clustered. 

Instead of seismic energy used in correlation analysis, the seismic source mechanism 

inversion as a typical seismic analysis method, is also essential for the mining industry to 

understand rock fracturing behaviour during resource extraction. By conducting seismic 

moment tensor inversion, the seismic observations of a discrete seismic event can be 

connected to the physical mechanism at its sources, such as the event failure mechanism, 

principal strain axes, and potential failure plane orientations (Young et al. 1992; Shearer 

1999; Gibowicz 2009; Zhao et al. 2018). Evaluating event failure mechanisms is crucial 

for understanding the fractures induced by progressive resource extraction in 

underground mines. The seismic event represents either the initiation and propagation of 
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new fractures or the slippage of pre-existing weak planes in rock mass as a response to 

mining activities (Lei et al. 2014). Results on the failure plane orientation can also help 

describe the spatial distribution of mining-induced fractures and generate a probabilistic 

fracture network (Maxwell et al. 2010; Zhao et al. 2019). 

In a pioneering work recently published to solve the problem of the impact of rock failure 

mechanism on the mine field, seismic imagining has been applied for downhole 

monitoring especially to image fracture network deformation (Maxwell 2010). A fracture 

network model defined by seismic data should contain information on the geometric 

properties of individual fractures, such as location, orientation, size and aperture, which 

can be obtained by advanced seismic signal processing and data analysis. Seismic events 

triggered during fracture initiation or reactivation are widely used to infer induced 

fracture network models that involve large-scale rock failure, such as hydraulic fracturing 

in unconventional reservoir recovery (Dershowitz et al. 2010; Cipolla et al. 2011; Sayers 

and den Boer 2012; Zhao et al. 2014; Carpenter 2017). Each seismic event can be 

regarded as a fractured opening (or sliding) in a tensile (or shear) mode, and each failure 

occurring on a new or pre-existing fracture plane with a specific geometry and radiated 

energy can be seen as part of the induced fracture network. Hence, the geometry and 

complexity of fractures can be determined by analysing seismic event patterns and 

estimating the stimulated volume during the generation of microfractures (Rogers et al. 

2010; Zhang et al. 2019; Schultz et al. 2020a). Therefore, similarly, seismic event 

distributions during mineral extraction can be used to reconstruct the induced fracture 

network. Note that the failure mechanism of hydraulic fracturing in the oil and gas 

industry is mostly driven by the pore pressure change caused by fluid injection, but 

mining-induced fractures are initiated by stress change and strata movement after mineral 

extraction. This suggests that mining-induced fractures and seismic responses may show 

different characteristics.  

There are other methods involved in seismic processing has the potential to help this 

thesis topic as well. Many researchers have also developed other methods for passive 

seismic emission tomography. Duncan and others have proposed a method for increasing 

the resolution of the amplitude selection by determining the vertical distribution as 

measured by parasitic sources. Surface monitoring methods have also been developed to 

stimulate fracturing (Abbott et al. 2007; Barker 2009). As a rule, a set of vertical 

telephones is placed along the spokes of a wheel centred on the head of a treatment well. 
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Duncan and Eisner (2010) investigated the details of the collection, processing, and 

migration of this technology. 

A fracture network model defined by seismic data should contain information on the 

geometric properties of individual fractures, such as location, orientation, size and 

aperture, which can be obtained by advanced seismic signal processing and data analysis. 

Seismic events triggered during fracture initiation or reactivation are widely used to infer 

induced fracture network models that involve large-scale rock failure, such as hydraulic 

fracturing in unconventional reservoir recovery (Dershowitz et al. 2010; Cipolla et al. 

2011; Sayers and den Boer 2012; Carpenter 2017; Zhao et al. 2019). Each seismic event 

can be regarded as a fractured opening (or sliding) in a tensile (or shear) mode, and each 

failure occurring on a new or pre-existing fracture plane with a specific geometry and 

radiated energy can be seen as part of the induced fracture network. Hence, the geometry 

and complexity of fractures can be determined by analysing seismic event patterns and 

estimating the stimulated volume during the generation of microfractures (Rogers et al. 

2010; Zhang et al. 2019; Schultz et al. 2020b). Therefore, similarly, seismic event 

distributions during mineral extraction can be used to reconstruct the induced fracture 

network. Note that the failure mechanism of hydraulic fracturing in the oil and gas 

industry is mostly driven by the pore pressure change caused by fluid injection, but 

mining-induced fractures are initiated by stress change and strata movement after mineral 

extraction. This suggests that mining-induced fractures and seismic responses may show 

different characteristics. Therefore, this paper mainly focuses on the inversion of fractures 

induced by longwall mining, especially the coupling with the solutions of rock failure 

mechanism and fracture geometry based on seismic moment tensors. 

In recent years, understanding the fundamental mechanisms and processes of rock failure 

and fluid transport in mining-induced fractures is significant and has a vital role in the 

safety of coal extraction above gassy seams or confined aquifers. It is investigated that 

mining-induced fracture evolution and water flow in coal seam floor above a confined 

aquifer by numerical simulation (Lu and Wang 2015a).  

Seismic techniques have developed as a crucial tool for monitoring fluid processes at the 

scale of a reservoir. Seismic activity in a subsurface reservoir may be caused by the brittle 

deformation of reservoir rocks resulting from the fluid injection. The capacity to locate 

the sites of seismic events enables the tracking of fluid movement and investigation of 
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the reservoir's stress level. Seismic monitoring applications have included seismic 

mapping activity caused during a programme of cyclic steam stimulation (McGillivray 

2005) or CO2 sequestration (White 2012) , as well as monitoring and characterisation of 

hydraulic fracturing (Nolen-Hoeksema et al.; Sasaki and Kaieda 2002; Rutledge and 

Phillips 2003). In many instances, the primary goals of seismic monitoring are to detect 

and precisely pinpoint all seismic activity above a specified magnitude threshold. 

Typically, this is achieved by utilising techniques derived from earthquake seismology, 

whose procedures are extensively documented in the literature. Beyond such first-order 

issues regarding the location and distribution of seismic activity, various earthquake-

related approaches can be used to define seismic occurrences in greater detail, assuming 

appropriate data quality. This may involve spectral analysis for determining rupture size 

and stress drop, moment-tensor inversion, and alterations to the Coulomb stress field. 

This tutorial's objective is to provide a quick summary of selected techniques for 

characterising seismic sources. Although the background theory is established from the 

standpoint of earthquake seismology, the approaches outlined are intrinsically scalable 

and extensively relevant to reservoir-scale seismic monitoring. 

Moreover, mining-induced seismicity is a persistent issue in the majority of mines. Large 

overburden pressure and tectonic pressures exert strain on subterranean rock and coal 

strata. The sequence of mining excavation perturbs the original stress field, which may 

stimulate the creation or re-opening and migration of microfractures around and beyond 

excavation openings, manifesting as seismic activity (Cao et al. 2018b). Hazzard and 

Young (2004) described a method for extracting quantitative seismic source information 

from events generated by a particle flow code (PFC) model with low numerical damping. 

These techniques might be applied to any current PFC model in order to extract seismic 

data. The algorithms function in both 2D and 3D, and it was demonstrated that the PFC 

models in both dimensions create realistic locations, magnitudes, and mechanisms. 

2.3. The recent works related to seismic. 

The purpose of this thesis is to interpret the induced fracture using the seismic monitoring 

method. This method has been used in the petroleum industry and hard rock mines. The 

reproducibility of phenomena, such as fault initiation and development, elastic rebound, 

uplift or seismic activities, etc., offers an attractive supplement to physical model tests in 

both geological and geomechanical problems. 
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During the past decades, significant progress has been made in the development of 

induced seismicity monitoring for related human activities. Hydraulic fracturing (HF) and 

induced seismicity monitoring are operating procedures for the safe and effective 

production of oil and gas from unconventional resources, particularly shales (Li et al. 

2018). HF is a technique that is used for extracting petroleum resources from 

impermeable host rocks. In this process, fluid injected under high pressure causes 

fractures to propagate. One concern is HF‐induced seismicity since fluids driven under 

high pressure also have the potential to reactivate faults. Therefore, great effort has been 

made to provide the geometry of fractures, stimulated volume, geomechanical models of 

the relationship between seismicity and HF, the spatial-temporal distribution and source 

mechanisms of seismic events (Schultz et al. 2020b). Figure 2-6 presents an example of 

petroleum development of the Wufeng‐Longmaxi Formations, exceptional increases in 

earthquake rates in the Zhaotong and Changning shale gas fields (Chen et al. 2017; Lei et 

al. 2017). The location of seismicity is shown alongside focal mechanisms of larger 

magnitude events is shown in the figure. The cause of an abnormal earthquake as the 

overpressure-driven reactivation of pre-existing faults is investigated using seismic 

monitoring technology in this research. It indicates that careful monitoring of induced 

seismicity is essential for safe and effective shale gas exploitation. 
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Figure 2-6 China's Sichuan Basin, depicting HF wells and earthquakes near Changning shale gas block. Relocations 

of earthquakes are depicted alongside focal mechanisms of larger events (beach balls), stimulated HF pads (red 

polygons), pads (red polygons), producing HF wells (black polygons), disposal wells (pink polygons), faults (red lines), 

and recording stations (triangles). Figure reproduced from (Lei et al. 2017) 

Seismicity in underground coal mines, on the other hand, also requires the comprehensive 

fracture invitation, and this method has great potential to be applied in the longwall coal 

mine. However, different from hydraulic fractures, the mechanism applies to generate 

fractures, and seismicity is other than fluid injection. Experiments have been conducted 

to show that coal is an elastic, brittle- plastic material with strain-weakening behaviour 

(Wang et al. 2013). The stress-strain curves show the typical behaviour of coal with 

increasing strength and effective confining stress. An initial non-linear portion of the 

curve is caused by the closing of the pre-existing cleats in the coal and followed by a 

linear elastic response at intermediate stresses. A final non-linear portion develops due to 

pre-rupture cracking. The fracture generated in the mine is a result of stress condition 

change. There are two mechanisms causing seismic events. One type of rock failure 

results from the dynamic loads imposed by fault-slip events, and the other type results 

from the failure of the rock mass itself (Gill et al. 1993). Sometimes there is a third type 

defined, which is a combination of the two mechanisms and is referred to as pillar burst. 

A review is made to simply investigate the type of underlying mechanism that caused the 
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seismic event. Table 2-1 presents examples of case studies classifying the underlying 

mechanism involved in seismic events. 

Table 2-1 Classification according to the underlying mechanism 

The underlying mechanism causing seismic event 

Instantaneous slip on an existing geological discontinuity 

(Gill et al. 1993) 

(Kaiser and Maloney 1997) 

(Lei et al. 2021) 

(Pine et al. 2006) 

(Cai et al. 2021b) 

Instantaneous fracturing of highly stressed rock 

(Kleczek and Zorychta 2022) 

(Bischoff et al. 2010) 

(Lu and Wang 2015b) 

(Arabasz et al. 1997) 

Both 

(Brummer et al. 1990) 

(Yi and Kaiser 1993) 

(Bischoff et al. 2010) 

Despite the fact that different mechanisms occurred in the mining process, researchers 

already make an effort in hard rock mines. The failure process and the failure mechanism 

of a rock mass during transforming from open pit mining to underground mining in the 

Shirengou iron mine site is investigated by seismic processing (Zhao et al. 2017). Idea 

results were obtained with high efficiency from seismic monitoring and moment tensor 

analysis. However, their studies' limitations include the rock type, the assumption of a 

double-couple source model and a relatively low efficient classification method. In my 

research, I would like to apply the article's Hybrid MTI analysis approach to a working 

longwall mining face. The rock mass fracture processes are explored, including fracture 

orientations, fracture scales, and implemented planes. Figure 2-7 depicts three fracture 

zones and four fitting planes, as well as the slip tendency analysis. It demonstrates that 

the rock mass of the pit bottom and the top of the goaf are vulnerable to additional 

damage. The failure type of rock mass during the transition from open-pit to underground 

mining is mostly shear failure and tensile failure, which are generally concentrated in the 

ceiling of the goaf. This means that seismic monitoring and moment tensor inversion may 

effectively evaluate rock failure processes and mechanisms. 
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Figure 2-7 Azimuth statistics for fracture planes. (a) The stereographic projection of the fracture planes. (b) The 

schematic diagram of the four fitting planes (Zhao et al. 2017) 

Except for the source mechanism, the source radiation pattern more directly presents 

theoretical and observational results of the source displacement or velocity at the 

occurrence of the vibration of the source tremor. Within a shear-tensile failure, the 

radiation pattern is governed by two additional parameters: tensile angle α and Poisson’s 

ratio ν (Kwiatek and Ben-Zion 2013), as can be seen in Figure 2-8. It is assumed that the 

shape of a tensile motion is like a pulse with no displacement at the end, and the tensile 

angle concept is used to describe the angle between the unit slip vector and unit fault 

normal. The tensile angle is measured between the vector along the slip direction 

projected on the fault plane and the actual direction of the fault movement, which is 

positive for fracture opening and negative for closing motions. With the help of the 

radiation pattern, the radiated seismic energy is estimated accurately in complex station 

network conditions. Other than seismic energy, the radiation pattern has the potential to 

improve the understanding of the motion of the seismic source, and this will be discussed 

in this thesis.  
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Figure 2-8 Influence of the tensile angle on the shape of the radiation pattern of (top)P and (bottom) S Waves assuming 

Poisson's ratio 0.25 as a function of the tensile angle. (Kwiatek and Ben-Zion 2013) 

The seismic radiated energy also helps to understand the distribution of seismic events 

and the relevance within it, then develop the characteristic and prediction method of the 

onset of HE seismic events induced by mining (Si et al. 2020). Figure 2-9 presents the 

relevance and the cluster trend of seismic events around one high-energy seismic event 

using principal component analysis (PCA) and kernel density estimation. It represents 

that the high-energy events have a strong correlation with the clusters of past seismic 

events, i.e., high-energy events are not isolated and, therefore, can be predicted if the 

development of event clustering has been characterised early enough. 

 

Figure 2-9 Clustering of seismic events before the high energy (HE) event A: a 2D PCA transformation, and b 

probability density function obtained from the kernel density estimation (Si et al. 2020) 
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In order to have a more specific understanding of the correlation within the seismic data, 

the semivariogram function (SVF) as a geo-statistics method and autocorrelation function 

(ACF) from random field theory and time series analysis is applied to seven soundings of 

well logging at a location in Hayti, Pemiscot County, Missouri as Figure 2-10 shows 

(Onyejekwe et al. 2016). The scale of fluctuation (SOF) is also used to quantitively 

determine the spatial variability of geotechnical parameters in this research. The SOF 

calculated from SVF was mostly higher than that computed using the ACF based on the 

data analysis in his research. 

 

Figure 2-10 a) Semivariogram Plot and (b) Autocorrelation Plot (Onyejekwe et al. 2016) 

The correlation assessment of seismic data improves the understanding of fault initiation 

and development, elastic rebound, uplift or seismic activities, which offers an attractive 

supplement to physical model tests in both geological and geomechanical problems. It 

has been shown that the rock failure process analysis can model geological processes and 

rock engineering problems (Tang 2002). FLAC 3D, as a finite difference element method 

software, is suitable for simulating the 3D model related to the mining process.  

Cao et al. (2018b) use the built-in DFN facility inFLAC3D to create a discrete fracture 

model (Figure 2-11a) following a power law size distribution distributed throughout a 3D 

continuum model in a probabilistic way to account for the stochastic nature of seismicity. 

The DFN-based modelling approach developed was adopted to simulate the evolution of 

seismicity induced by the progressive face advance in a longwall top coal caving panel at 

Coal Mine Velenje, Slovenia. The model results indicate that the power law fracture size 

distribution can be used to model longwall-mining-induced seismicity. Cai et al. (2021b) 

apply the 3D model in Figure 2-11b to validate the mechanisms of fault reactivation and 

its induced coal burst based on the superposition of static and dynamic stresses, which 

include two kinds of fault reactivations from mining-induced quasi-static stress 
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(FRMSS)-dominated and seismic-based dynamic stress (FRSDS)-dominated. Yasitli and 

Unver (2005) present 3D modelling work of the top-coal-caving mechanism by using the 

finite difference code FLAC 3D at the M3 longwall panel of the Omerler Underground 

Mine located at Tuncbilek Turkey (Figure 2-11c). A special pre-fracture blasting strategy 

just sufficient enough to form cracks in the top coal is suggested by means of comparing 

with the results of numerical modelling. 

 

Figure 2-11 (a) Three-dimensional distribution of mining-induced seismicity and the released energy at LTCC panel 

K.-50/C during coal production. (Cao et al. 2018b) (b) Numerical modelling for the No. 25 mining district of Yuejin 

Coal Mine. (Cai et al. 2021b) and (c) State of failure in top coal during caving after pre-fracture blasting. (Yasitli and 

Unver 2005) 

On the other hand, Discrete element modelling is a more proper way of directly modelling 

the fracture behaviour based on the construction model but consumes a lot of computation 

(Lei et al. 2017). As shown in Figure 2-12a and b, Harthong et al. (2012) studied the 

influence of fracture network properties on the mechanical behaviour of fractured rocks 

by integrating 3D fractal DFNs into a bonded-particle model associated with the smooth 

joint contact treatment. Pine et al. (2006) apply the combined similar model to tackle the 

geomechanical problems for various engineering applications, as shown in Figure 2-12c. 

It illustrates that the presence of natural fractures may dominate the strength of slender 

pillars but have a reduced influence on wider pillars.  
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Figure 2-12 Integration of (a) a fractal DFN into (b) the YADE bonded-particle model (BPM) for mechanical modelling 

of fractured rocks. (Harthong et al. 2012) (c) Heterogeneous distribution of local maximum principal stresses in 

fractured rocks. (Lei et al. 2017) 

Figure 2-13 depicts another application of the discrete element approach. It created a 

discontinued modelling technique to explore Longwall Top Coal Caving behaviours, 

including stress distribution, coal and rock failures, top coal caving, and roof strata 

rupture, as well as the influence of overburden movement on top coal caving (Le et al. 

2018). Figure 2-13 shows an example of a state of failure in the top coal before its first 

caving. As can be seen, the top coal failed in both intact blocks and discontinuities. The 

mechanism of the first caving of top coal, in this case, can be attributed to stress caving 

 

Figure 2-13 Failure in top coal before the first caving. (a) Block failure and (b) discontinuity failure (Le et al. 2018). 

2.4. Summary 

This literature study is not meant to address all aspects of seismicity; rather, it will focus 

on fundamental concepts and vocabulary. The literature review will also provide 

background information for the identification of significant parameters to be explored in 

the Licentiate Thesis cases. 
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During the recovery of Mineral resources, instabilities in underground mines may arise 

from natural factors, including geological settings anomalies, structural discontinuities, 

fracture patterns and lithology changes in the rock mass. Therefore, the importance of 

seismic monitoring in the rock mass around the longwall mine cannot be underestimated. 

The review first introduces a comprehensive procedure of seismic processing and the 

involved challenges. According to the review, it shows a possibility to understand the 

seismic signal from the site of the source behaviour, which helps resume seismic signal 

information from incomplete seismic signals. Then seismic monitoring application in 

mines is introduced, which covers most of the techniques involved in this thesis. In the 

third section of this chapter, the cases are detailed and introduced at each aim of this thesis 

introduced in Chapter 1. Each case has challenges that will be addressed in this thesis and 

finally form a comprehensive seismic processing method to investigate fracture behaviour 

in longwall mining. 

The conclusion from this literature review is that the aspects that should be investigated 

for mining induced fractures in longwall mining are source mechanism, seismic energy 

and magnitude, spatial and temporal correlations, fracture location, orientation and size. 
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Chapter 3. Processing of uniaxial and triaxial seismic data 

This chapter investigates the induced seismic wave processing procedure, which 

generally includes the waveform pre-processing, seismic event location, energy and 

seismic source mechanism calculation. A novel method of generating synthetic triaxial 

waveforms from uniaxial seismic sensors has been proposed. 

First, the preliminary processing of mining-induced seismic signals is shown in Section 

3.1 based on the data received from a case study underground coal mine. The parameters 

related to the location and source mechanism of seismic events are then calculated in 

Section 3.2. In order to simultaneously investigate the parameters related to seismic 

source mechanism and energy magnitude at a specific event location, a new approach to 

generate synthetic triaxial waves from uniaxial signals is proposed in Section 3.3. This is 

achieved by using the source information and radiation pattern obtained in Section 3.2. 

Additionally, as a demonstration of the proposed method, seismic data obtained from the 

case study mine were analysed and shown in Section 3.3. 

Seismic wave signals were received from the Yuejin coal mine, which was operated by 

Yima Coal Mining Group in the west of Henan Province, China. Longwall (LW) 110 in 

this mine with comprehensive seismic monitoring data was selected as the case study 

panel. The panel was about 800-830 m deep with significantly high in-situ stress. The 

panel retreat started in May 2011 and was completed in October 2012, which only mined 

about 570 m (about 1.2 m per day) over the 16 months monitoring period due to the high 

coal burst risk. LW110 was adjacent to the mined goaf in the north, and the F16 reverse 

fault in the south, and solid unmined coal in the east and west (Cai et al. 2018). The panel 

was 865 m long and 191 m wide. The thickness of the target coal seam ranged from 8.4 

m to 13.2 m (about 11.5 m on average) with a moderate dipping angle of 12°. Longwall 

top coal caving was applied in this panel, which may also increase the coal burst risk (Li 

et al. 2018). During the retreating period, the panel was exposed to frequent seismic 

hazards, which induced more than ten coal bursts. This chapter is based on a submitted 

paper III. 

Chapter 3 is oriented to address Aim 1, which focuses on developing a seismic source 

mechanism-based parameter analysis method from uniaxial or triaxial seismic traces. 
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3.1. Uniaxial seismic signal acquisition and processing 

A 16-channel “ARAMIS M/E” seismic monitoring system developed by EMAG (Poland) 

was installed to record seismic signals from April 2011. More information about the 

monitoring system can be found in Cai et al. (2018). The "ARAMIS M/E" seismic 

monitoring system is designed to collect raw data from its sensor array in the form of 

electrical signals. These signals show movement produced by seismic activity. A 

succession of processing stages are used to make sense of these signals. The raw data is 

converted using an Analog-to-Digital Converter (ADC) as the initial stage in this 

procedure. This gadget converts analogue electrical signals into digital data that a 

computer can process. Following the ADC conversion, the data is de-noise processed. 

This stage is critical in reducing the impact of noise from diverse sources and so 

improving the clarity and dependability of the seismic data. The next step is to adjust for 

instrument responses. This is required to account for the system's sensors' distinctive 

properties and potential biases. The accuracy of data interpretation is increased by 

accounting for these issues. Following that, the data is processed through a series of 

stages, including Fourier Transformations. This mathematical method converts time-

domain signals to frequency-domain data. This transformation is critical for 

distinguishing between different types of seismic waves because it allows for the 

separation and analysis of the various frequency components within the seismic data. The 

procedure concludes with the analysis and interpretation of the produced data. This is 

frequently accomplished through the use of computer algorithms, such as triggering 

mechanisms and visualisation tools. These techniques aid in the identification and 

isolation of specific signals indicative of seismic events. 

The seismic dataset during the retreating period contains 4,725 seismic events, and each 

seismic event has seismograms detected by 4 to 16 sensors. The sampling rate (i.e., the 

number of samples acquired per second) of the sensors is 200 Hz. Four of the 16 sensors, 

S13, S14, S15, and S16, are installed in the two longwall entries for the LW110 panel. 

Since only uniaxial sensors are used in the Yima coal mine, it provides the advantage that 

these four sensors can be easily relocated during mining. As Figure 3-1 shows, S13 and 

S14 sensors are installed at the maingate, which relocated five times during progressive 

coal extraction in this panel. The sensors at the tailgate, S15 and S16, also relocated eight 

times since the rock is more unstable. The sensor would be relocated when the working 

face approached close to the sensor’s current location. Since all 16 sensors are located 
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around several different longwall and development workings and conduct the monitoring 

work at the same time, at least four sensors can receive waveform signals from each 

seismic event, which guarantees the quality of event location.  

This study used the commercial seismology software Insite-Geo from Applied 

Seismology Consulting (ASC) to extract seismic signal information and calculate 

moment tensors. Since the majority of seismic sensors were installed around the case 

study longwall panel, the input P wave velocity model was assumed as homogeneous with 

a velocity of 4,000 m/s as an average value based on Cai et al. (2014). Using this velocity 

model, the collapsing grid search algorithm was implemented to locate seismic events.  

 

Figure 3-1 Distribution of seismic sensors and their relocation time during the mining of LW110, the coloured lines 
also show the face positions when those sensors were relocated. 

3.1.1. Seismic wave attenuation 

Since seismic waves would not travel through a perfectly elastic medium, rocks as the 

transport media are causing dissipation of energy while seismic waves propagate through 

them. This also results in the decay of the amplitude of seismic waves. Attenuation is 

related to velocity dispersion. To calculate the difference between the source displacement 

and the displacement recorded by seismic sensors, the attenuation of seismic waves was 

considered. The amplitude attenuation through inhomogeneous media is calculated as 

(Aki and Richards 1980): 

𝐴 = 𝐴0𝑒
(− 

𝜋𝐷
𝑙𝑄

)
(3.1) 
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where D is the distance between the source and the sensor, 𝐴0  is the seismic wave 

amplitude at the source location, and l is the wavelength of the radiated P wave. 

Attenuation is measured by a dimensionless number known as the rock quality factor Q. 

Q is defined as the ratio of stored energy to dispersed energy, which is related to the 

physical state of the rock. It measures the relative energy loss per oscillation cycle. Q 

increases when the density and the velocity of rock material increase. In this study, P 

waves were assumed to be transported in a homogeneous media; thus, a constant Q was 

applied. The rock quality factor Q is selected as 200 in the following study for the case 

study coal mine, which is an average value of unsaturated mudstone. Since the abutment 

stress is about 50-200 m in front of the mined zone (Cai et al. 2018), according to Equation 

3.1, the amplitude attenuated about 15% of the original amplitude.  

3.1.2. Signal filtering 

Except considering the attenuation of seismic waves, the raw seismic waves need to be 

filtered before any signal processing. The signal frequency received by sensors is in a 

wide range, which depends on the geological condition, mining depth, distance to sensors, 

etc. When the distances between geophones and seismic sources are relatively short, there 

is minor interference to the signals. The dominant wavelength of seismic waves is given 

by: 

𝜆 =
𝑣

𝑓
(3.2) 

where v is wave velocity and f is the dominant frequency. A graph of wavelength as a 

function of velocity for various frequencies is plotted in Figure 3-2. The seismic wave 

velocity in the case study mine is assumed at about 4000 m/s. In addition, typical seismic 

wavelengths range from 100 m to 250 m and generally increase with depth. Therefore, 

the dominant frequency of seismic signals typically varies between 40 Hz and 16 Hz and 

decreases with depth.  
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Figure 3-2 The wavelength graph as a function of velocity for various frequency values (Sheriff 1976)  

To analyse seismic signals in the frequency domain, the fast Fourier transform (FFT) can 

convert a signal from its original domain (often time or space) to a representation in the 

frequency domain and vice versa. The FFT is obtained by decomposing a sequence of 

values into components of different frequencies. After calculation, the frequency spectra 

can be displayed and used to determine the main frequency range that is of interest. 

There are generally two kinds of frequency distributions of seismic signals. One of them 

is the seismic events triggered by the mining-induced fractures around the longwall panel. 

Such an example is the seismic event A that occurred at 07:22:36 on 23/07/2011, as shown 

in Figure 3-3. Since the sampling rate of the ARAMIS seismic monitoring system is 500 

Hz, the duration of the signal recorded is 3.2s in total. According to the FFT result in 

Figure 3-4, the dominant frequency of seismic event A is about 127 Hz. 
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Figure 3-3 Samples of uniaxial seismic signals with the pick of P wave arrival time. 

 

Figure 3-4 FFT result of the seismic event A at 23/07/2011 

The other kind of seismic signal has a low dominant frequency, which can be detected as 

rock failure events that occur far away from the panel. These events have a low dominant 

frequency. The signal duration of these events is normally very long, and the amplitude 

is small compared to other near-panel events. Figures 3-5 and 3-6 show that event B, 

which occurred on 19/08/2011, is located far away from the current panel using the 

lowpass filtering. It could be induced by other workings or fractures triggered by regional 

stress change. Therefore, the seismic event of this kind is excluded from this study. 
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Figure 3-5 Uniaxial seismic signals of Event B on 19/08/2011 with the pick of P wave arrival time. 

 

Figure 3-6 FFT result of Event B at 19/08/2011 

Because the low amplitude seismic signals are sensitive to background noise, researchers 

have proposed several filtering methods to filter these weak signals, such as the Hilbert–

Huang transform (HHT) method (Huang and Wu 2008) and wavelet-packet threshold 

filtering method (Donoho 1995). This thesis applied the band-pass filtering method to 

filter weak signals because seismic traces received typically contain some low-frequency 

and high-frequency ambient noise. To eliminate the influence of these artefacts during 

integration or differentiation, the received uniaxial seismic waveforms were bandpass 

filtered with the lower frequency cap of 30 Hz and upper-frequency cap of 150 Hz.  
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3.1.3. Signal picking  

After filtering, the quality of seismic signals has been improved remarkably. The P-wave 

arrival time can be easily recognised. The ratio of the average amplitude in the front 

window and back window (as shown in Figure 3-7a) of a seismic trace was used to pick 

the P-wave arrival time. During the background noise period (before the arrival of P-

waves), the amplitude ratio is close to zero. When the sensor receives ground vibration, 

the amplitude ratio will increase suddenly, and the arrival time can be characterised by 

this change. Using this method, the signal-to-noise (SNR) ratio of the filtered waveforms 

was significantly enhanced.  

The root mean square (RMS) algorithms can be used to optimise the picking of P-wave 

arrival time. Firstly, this algorithm calculates a picking function using a moving window 

approach. At each waveform data point i, two windows are generated: a front window 

and a back window. The value Fi is calculated by:  

𝐹𝑖 =
∑ 𝐴𝑗

2𝑖+𝑁𝐹
𝑗=𝑖+1

∑ 𝐴𝑗
2𝑖−𝑁𝐵

𝑗=𝑖−1

(3.3) 

where Aj is the amplitude, NF is the length of the front window in data points, NB is the 

length of the back window in data points. The 𝐹𝑖 function represents a difference in the 

energy contained in the front window compared to the back window. Peaks occur in the 

function where waveform signals suddenly increase in amplitude relative to the data 

behind them. These peaks can then be used to estimate the arrival time of different phases. 

The P-wave arrival can often be picked with high confidence as it emerges from just a 

background noise level. S-wave arrivals often emerge out of the P-wave coda (higher 

amplitude than the background noise) and so tend to have more uncertainty in their 

picking. 

Take Event A in Section 3.1.2 as an example. It is known that this event is caused by 

mining activities, and it was detected by seven different sensors in Figure 3-1. The 

amplitude of each signal varies to a large degree as a result of various hypocentre 

distances and wave attenuation introduced in Section 3.1.1. The P-pick result is shown in 

Table 3-1 Wave pick information of Event A at 23/07/2011Table 3-1. The SNR is also 

calculated for each sensor, and the large SNR suggests a high-quality seismic signal and 

always with relatively high amplitude.  

Table 3-1 Wave pick information of Event A at 23/07/2011 
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Sensor 

ID 
North East Down P-pick 

Theoretical 

P-wave pick 

time 

Theoretical 

S-wave pick 

time 

SNR 

5 41464.633 80507.063 193.026 1.212 1.21 1.318 4.71 

10 41452.213 80866.742 196.031 1.256 1.256 1.386 11.1 

12 40620.658 80545.382 324.809 1.08 1.078 1.132 193.4 

13 40601.791 79856.486 446 1.002 1.006 1.03 53.1 

14 40682.036 79684.164 453.461 1.054 1.054 1.096 9.44 

15 40938.318 79524.142 411.962 1.124 1.116 1.186 4.42 

16 40760.941 79959.275 412.933 0.992 1.008 1.03 493.7 

Figure 3-7a shows the seismic signal with the highest SNR from Sensor 16 for Event A. 

The P-wave pick time is at the first rise of the RMS from Equation 3.3, which is calculated 

by the amplitude from the front and back windows. To ensure the clear trend of the RMS 

curve, the front window is usually larger than the back window. Since the signal is 

uniaxial and the FFT shows a multi-peak in Figure 3-7b, the S-wave arrival is relatively 

hard to pick from RMS. In addition, without the polarization direction from the triaxial 

signal, the S-wave pick can only be calculated, and this will be introduced in Section 

3.1.4. 
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Figure 3-7 (a) Raw seismic signal and (b) frequency received by Sensor 16 as an example of wave picking for Event A 

at 23/07/2011 

Similar to Event A, the pick information of Event B in Section 3.1.2 on 19/08/2011 is 

shown in Table 3-2. Four sensors around the longwall panel detected this event. Each 

wave is picked at the P-wave arrival. These four sensors are not installed around LW 110, 

which means the mining activities from LW 110 did not trigger this seismic event. The 

SNR is also calculated for each sensor and compared to Event A. The SNR is very low 

since the average amplitude of this event is two orders (1%) lower than the amplitude of 

Event A. 

Table 3-2 Wave pick information of Event A at 19/08/2011 

sensor 

ID 
North East Down P-pick 

Theoretical 

P-wave 

pick time 

Theoretical 

S-wave 

pick time 

SNR 

1 43360.54 80226.084 170.5 1.01 1.006 2.27 18.5 

8 41184.08 79645.399 328.609 1.01 0.992 2.238 6.65 

11 41003.91 80767.61 249.729 0.684 0.708 1.672 13 

13 40601.79 79856.486 446 0.946 0.94 2.136 8.95 
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Figure 3-8a shows the seismic signal with the highest SNR from Sensor 16 for Event B. 

The FFT shows a single peak of this signal in Figure 3-8b. The frequency indicates this 

is a typical earthquake-like event that is not induced by the working of the study longwall 

panel. 

 

Figure 3-8 (a) Raw seismic signal and (b) frequency received by Sensor 11 as an example of wave picking for Event B 

at 19/08/2011 

3.1.4. Seismic event location 

This research employs a collapsing grid search algorithm with a single-velocity model. 

The basic method applied to decrease the location error is called the Downhill Simplex 

algorithm. This method is an iterative procedure that searches the error space for a 

minimum value (Nelder and Mead 1965; Press and Allen 1995). The method employs a 

geometric shape called a simplex. Each vertex of this three-dimensional tetrahedron is 

defined by its spatial coordinates (x, y, z). At each vertex, the error space is computed. 

For the subsequent iteration, the simplex is then instructed to move or deflate. The 

simplex explores the error space until it reaches a minimal. The algorithm calculates an 
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error value for each arrival time (P or S-wave) on each sensor by summing the travel-time 

residuals across the array. The error space at the specified location in space is then the 

average of these arrival error values.  

The collapsing grid search algorithm, instead, searches a three-dimensional space 

between the measured travel times chosen for each receiver and the theoretical travel 

times calculated based on the ray path and velocity model. This method is notoriously 

difficult to implement since the algorithm must search each 3D position. The search can 

cause lengthy computations in some cases within a large space.  

The InSite software by Applied Seismology Consulting Ltd introduced a collapsing 

strategy to improve the search procedure of the above method to reduce computation 

(ASC 2022). In this instance, the initial course grid is searched for the position with the 

smallest error, Em1. The algorithm then assumes that this local minimum is spatially close 

to the global minimum and generates a smaller and finer grid (a collapsed grid) around 

this location. The minimum misfit within this grid is then identified as Em2, and a second 

collapsed grid is established. The algorithm continues until a specific location resolution 

is obtained. Figure 3-9 shows a collapsed cell dimension with respect to the not collapsed 

cell at the ratio that is used in all location processing in this thesis. The new collapsed 

grid consists of 64 not collapsed cells (4x4x4). 

  

Figure 3-9 Definition of a collapsed grid volume, idea inspired by (ASC 2022) 

The location of the event can be calculated based on this method. The advantage of this 

method, despite the extensive computations, is that the algorithm assumes that the deepest 

minimum it discovers within a particular grid is not a local minim located some distance 
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from the required global minim. Larger collapsed grids result in a greater number of 

collapsing loops and, consequently, longer computations. The location vector for Event 

A is listed in Table 3-3, and its relative location within the panel is presented in Figure 

3-10. The event is above the longwall panel and ahead of the current working face, which 

is the area of active rock failure with energy release. 

Table 3-3 Location-related properties of Event A at 23/07/2011 

Date Time North East Down SNR 

23/07/2011 7:22:36 40449.570 80055.087 462.751 69.980 

Signal properties 

sensor ID 

Sensor 

event 

Distance 

Sensor 

event 

Azimuth 

Sensor 

event 

Plunge 

Theoretical 

P-wave pick 

time 

Theoretical 

S-wave pick 

time 

5 1143.410 204.002 13.644 1.210 1.318 

10 1317.276 218.991 11.682 1.256 1.386 

12 537.297 250.764 14.876 1.078 1.132 

13 250.787 127.469 3.830 1.006 1.030 

14 437.847 122.076 1.216 1.054 1.096 

15 723.434 132.630 4.026 1.116 1.186 

16 329.566 162.896 8.694 1.008 1.030 

Within Table 3-3, the distances between the event and each sensor are also demonstrated, 

as well as the azimuth and plunge. As known from Section 3.1.1, the distance has a 

directly proportional relationship with the signal amplitude, and the amplitude affects the 

SNR of each seismic signal. Therefore, compared with Table 3-1, the large SNR generally 

has a low travel distance. In addition, the theoretical P and S wave pick time can be 

calculated with the event location, and the assumed P/S wave velocity. The theoretical P-

wave pick time can be used to verify the manually picked arrival time, and the theoretical 

S-wave pick can be used in further processing. 
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Figure 3-10 Location of Event A at 23/07/2011 

Since in Section 3.1.2, Event B is defined as a large seismic activity far away from the 

study panel, its location can only be calculated with a grid that is over 1000 m far from 

the panel. The location vector is listed in Table 3-4. The consistency of the manually P-

wave pick time and the theoretical P-wave pick time justify the reliability of the calculated 

location, and the event is over 3000 m away from the working face, which also verified 

that this event is caused by the reactivation of a large tectonic structure far from the 

longwall panel. 

Table 3-4 Location-related properties of Event B at 19/08/2011 

Date Time North East Down SNR 

23/07/2011 7:22:36 41130.7 83500.6 271.553 11.300 

Signal properties 

Sensor ID 
Sensor event 

Distance 

Sensor event 

Azimuth 

Sensor event 

Plunge 

Theoretical 

P-wave 

pick time 

Theoretical S-

wave pick time 

1 5049.653 119.548 2.561 1.006 2.270 

8 4986.464 93.584 -3.144 0.992 2.238 

11 3854.157 91.952 -2.894 0.708 1.672 

13 4781.845 86.740 -4.689 0.940 2.136 

3.1.5. Source mechanism calculation 

Seismic moment tensor inversion is used to study the source mechanism of a seismic event, which 

can imply the failure type, seismic moment, and the potential orientation of mining-induced 

fractures. The moment tensor matrix is used to solve the magnitude of seismic events, fracture 
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types and orientations, which allows us to understand the fracturing behaviour and evolving stress 

field (Baig and Urbancic, 2010). In a general form, the moment tensor (M) can be described by a 

matrix of nine force couples (Aki and Richards 1980): 

𝐌 = [

𝑀𝑥𝑥 𝑀𝑥𝑦 𝑀𝑥𝑧

𝑀𝑦𝑥 𝑀𝑦𝑦 𝑀𝑦𝑧

𝑀𝑧𝑥 𝑀𝑧𝑦 𝑀𝑧𝑧

] (3.4) 

where the 𝑀𝑖𝑗 indicates the strength of the stress measured along the vertical and horizontal axis 

of the x, y, and z directions (Figure 3-11). The seismic moment tensor is a symmetrical tensor 

consisting of six components (Eyre and van der Baan 2015), which can be decomposed into three 

different components: double couple (DC), isotropic components (ISO) and compensated linear 

vector dipole (CLVD). The DC component is the off-diagonal element (𝑀𝑥𝑦,𝑀𝑥𝑧,𝑀𝑦𝑧) to avoid 

rotation. The ISO component is the diagonal elements (𝑀𝑥𝑥,𝑀𝑦𝑦, 𝑀𝑧𝑧) to describe volumetric 

changes. If the volumetric change is zero, the moment tensor decomposition also contains the 

CLVD component when one of the diagonal elements is compensated by others, and the 

summation of the three diagonal elements is zero. The CLVD and ISO components play an 

important role in elucidating the underlying rock failure mechanism, as they imply the volumetric 

change of rock mass in response to mining stress. The moment tensor can be decomposed as 

(Vavryčuk 2015): 

𝐌 = 𝑀(𝐶𝐼𝑆𝑂𝐸𝐼𝑆𝑂 + 𝐶𝐷𝐶𝐸𝐷𝐶 + 𝐶𝐶𝐿𝑉𝐷𝐸𝐶𝐿𝑉𝐷) (3.5) 

where 𝑀 is the norm of M and represents a scalar seismic moment for a general seismic source. 

𝐸𝐼𝑆𝑂, 𝐸𝐷𝐶, and 𝐸𝐶𝐿𝑉𝐷 are the base tensor for the ISO, DC and CLVD component, respectively. 

𝐶𝐼𝑆𝑂, 𝐶𝐷𝐶, and 𝐶𝐶𝐿𝑉𝐷 control the relative strengths of ISO, DC and CLVD, respectively, and they 

can be calculated by: 

[

𝐶𝐼𝑆𝑂

𝐶𝐷𝐶

𝐶𝐶𝐿𝑉𝐷

] =
1

𝑀
[

𝑀𝐼𝑆𝑂

𝑀𝐷𝐶

𝑀𝐶𝐿𝑉𝐷

] =
1

𝑀

[
 
 
 
 
 

1

3
(𝑀1 + 𝑀2 + 𝑀3)

2

3
(𝑀1 + 𝑀3 − 2𝑀2)

1

2
(𝑀1 − 𝑀3 − |𝑀1 + 𝑀3 − 2𝑀2|)]

 
 
 
 
 

(3.6) 

Here 𝑀1, 𝑀2, and 𝑀3 are the eigenvalues of the moment tensor with the eigenvectors which are 

related to the fracture plane orientation and its sliding direction.  
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Figure 3-11 Moment-tensor elements, represented as force couples (Shearer 1999) 

To solve the moment tensor, the displacement d received by sensors can be expressed by Green’s 

function (G), moment tensor (M) and source time function (S(t)) (Zerva 1988): 

𝑑(𝑥, 𝑡) =  𝐺 ∗ 𝑀 ∗ 𝑆(𝑡) (3.7) 

where x is the location of the geophone sensor and t is the time. To solve the moment tensor 

matrix, it is required to display the full amplitude of the phase P and S waves in the focus sphere 

around the source. The first motion of a seismic wave (i.e., the P wave in this paper) or the 

combination of the first motion and S/P amplitude ratio is commonly used in seismology to 

determine source mechanisms. For a seismic event enclosed by sensors from different azimuths, 

the first motion of the P wave can be used to invert the source radiation pattern. Upward and 

downward first motions represent the compressional and dilatational source moment, respectively 

(Wang et al. 2016). 

The Green’s function takes into account the radiation pattern of the source, the propagation effects 

along the path, and the response effects of the receiver. By assuming that the receivers are in the 

far field and that the propagation medium is homogeneous and isotropic, these can be simplified. 

G contains the P-wave radiation components, which can be easily calculated from the known 

locations of the source and receiver (de Natale and Zollo 1989). 
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The source-sensor distance r can be calculated from Section 3.1.4, each amplitude in the vector u 

is first corrected for path and sensor effects using: 

𝑢𝑘
0 = 𝑆𝑘 ∙ 𝑃𝑘 ∙ 𝐹𝑘 ∙

1

𝐶𝑤𝑘

∙ 𝐺𝑠𝑘
∙ 𝑢𝑘 (3.8) 

Where 𝑢𝑘 is the amplitude measured on sensor k and 𝑢𝑘
0 is the corrected amplitude. The 𝑆𝑘 is the 

Sensor polarity. 𝐺𝑠𝑘
 is the geometrical spreading. The 𝑃𝑘  is anelastic attenuation. 𝐹𝑘  is free-

surface amplification. Take a simplified 𝐹𝑘=1 in this research because the sensor is grouted into 

the medium and there is no free surface (Aki and Richards 1980). 𝐶𝑤𝑘
 is the coupling weight of 

the receiver. In this study, the 𝐶𝑤𝑘
 remains at 1. 

Using Singular Value Decomposition (Stump and Johnson 1977), the matrix G can then be 

inverted, and the vector M can be calculated. The MT decomposition provides an analysis of the 

source mechanism's type and orientation (Pettitt 1998). 

To completely resolve the six independent elements, the complete amplitudes of at least two non-

planar linear matrices must be determined. Consequently, the sensor array must be widely 

dispersed and positioned on separate planes (Trifu and Shumila 2002). In other words, a high 

signal-to-noise ratio and adequate sensor coverage are required around a seismic event. Seismic 

events that occur outside the sensor's enclosed area or with a low energy release are difficult to 

analyse. This paper assumes that the mine's sensor distribution is adequate. Due to accuracy 

concerns, seismic events with very low energy that are detected by fewer than six sensors will not 

be analysed. 

Alternately, beach-ball diagrams are frequently used to depict this source type. In the early days 

of earthquake seismology, it was common to practise to deduce the focal mechanism from P-wave 

first-motion data. These diagrams illustrate a lower-hemispheric projection of P-wave first motion 

data, separating the lower focal hemisphere into regions with compressional and dilatational first 

motion. This presentation of seismic source mechanisms produces the classic beach-ball patterns 

that characterise numerous types of events, such as strike-slip, normal faulting, and normal 

faulting (Figure 3-12). 
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Figure 3-12 P-wave radiation pattern by beach ball diagrams for different types of faults. (Shearer 1999) 

The source mechanism of Event A and the component of the moment tensor are summarised in 

Table 3-5. The ISO, DC and CLVD components determined this event as a result of a tensile 

failure.  

Table 3-5 Moment tensor-related properties of Event A at 23/07/2011 

Date Time North East Down Moment Tensor (Euclidean): 

23/07/2011 7:22:36 40449.570 80055.087 462.751 -0.026 -0.0279 -0.1606 

%ISO %DC %CLVD T-Value K-Value  -0.022 -0.1561 

-42.68 -0.34 -56.99 0.99 -0.33   -0.9471 

The beach ball as a view representation of the moment tensor is also plotted in Figure 3-13a. The 

beach ball is a graphic symbol that indicates the type of slip that occurs during seismicity: strike-

slip, normal, thrust (reverse), or some combination. It also shows the orientation of the fault that 

slipped. The 2-dimensional focal mechanism circle is the projection of the fault orientation and 

slip on the lower half of a sphere surrounding the seismic source. In this case, the shadow area is 

the outward displacement, and the white area is the inward displacement. The direction of 

displacement at each direction can be implied from the beach ball as well. In addition, the Hudson 

T-K plot can represent the source mechanism more clearly in a special coordinate (Hudson 1984). 
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From the T-K plot in Figure 3-13b, the event is located close to the T=+1 zone, which indicates 

that this event is caused by compression near the excavated zone. 

In addition to the previously listed parameters, fracture toughness and filler material properties 

have a substantial impact on seismic monitoring outcomes. The degree of fracture toughness, for 

example, can influence the sort of failure that occurs. Shear failures are more prone to happen 

when the toughness is high. When toughness is low, the result is more likely to be tensile failures. 

The properties of the filler substance utilised are also important. Softer filler materials are more 

likely to cause shear failures. Harder materials, on the other hand, are more likely to cause tensile 

failures. These variables have a direct impact on seismic wave propagation and subsequent data 

interpretation. This emphasises the significance of these elements in seismic monitoring and 

emphasises the necessity for additional investigation in future studies. Understanding how these 

elements influence seismic monitoring can lead to more accurate data interpretation and, as a 

result, more successful seismic monitoring tactics. 

 

Figure 3-13 (a)Beach ball and (b)T-K plot of Event A at 23/07/2011 

3.2. Field seismic data analysis and radiation pattern determination 

In the study coal mine, 4,024 seismic event data from 17,202 seismic signals were 

received by geophones. Each signal contains information on a single seismicity caused 

by material extraction. The results from all these seismic data are presented and analysed 

in the following sections. 

3.2.1. Location and source mechanism 

The location of seismic events can be calculated using the collapse grid search method 

introduced in Section 3.1.4. The distribution of seismic events is shown in Figure 3-14. A 

few events are located around the F16 fault. Also, it has a trend that intensive seismic 

activities were reported at the tailgate side (LW 090) of the panel, near the goaf zone, 
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which suggests that frequent fracture generation and propagation occurred in the rock 

mass around the tailgate.  

 

 

Figure 3-14 Distribution of all recorded seismic events induced by LW 110 

Seismic moment tensor inversion was performed on 2,807 seismic events recorded in 

LW110, the other events are not satisfied for a proper moment tensor inversion since these 

events were not received by at least six uniaxial sensor or cannot have six clear signals 

enough to pick six arrival times. Using six or more sensors to identify the same seismic 

event may result in a buildup of monitoring mistakes. However, there are a number of 

solutions that can be used to address this issue in future research. One of these ways is to 

calibrate sensors on a regular basis. We can fix any systematic inaccuracies that may 

emerge over time by keeping the sensors at their peak performance and precision. Another 

useful option is the use of redundancy and sensor fusion techniques. Multiple sensors are 

used to monitor the same parameter with redundancy. This allows for more precise 

readings because the likelihood of all sensors malfunctioning at the same time is low. 

Sensor fusion, on the other hand, entails combining input from various sensors to make 

more thorough computations that can also improve accuracy. Kalman filters and other 

mathematical error correcting techniques can also be used. These strategies are utilised 

for mistake prediction and correction, which helps to reduce the risk of error accumulation 

even further. As a result, it is critical to consider these considerations while determining 

the optimal way to reducing monitoring errors. 
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The results are shown in beach balls in Figure 3-15. Figure 3-15 indicates that seismic 

events near the panel are mainly tensile failure with sub-horizontal fracture planes, which 

can be explained by the low energy of the explosive type of seismic events induced by 

roof buckling after stress relief. At the south side of the longwall panel in Figure 3-15, the 

F16 reverse fault presenting at about 50 m to 200 m away from the longwall panel has 

changed the seismic failure mechanism. In contrast with the predominant tensile failure 

in the near-panel region, the events near the F16 reverse fault are mostly shear failures. 

The high energy events that occurred in the tectonic regions (i.e., near the fault) are 

presumably caused by the interaction between tectonic stresses and mining-induced 

stresses. The longwall face retreated from the southeast to the northwest, which is 

consistent with the occurrence of seismic events (the green colour indicates old events 

while the red colour indicates new events in chronological order). As shown in Figure 

3-15, since the tailgate is next to the mined goaf, there are clearly more events near the 

tailgate than the maingate. The beach balls near the fault also indicate a reverse faulting 

mechanism with the minimum principal stress in the vertical direction (Vavryčuk 2015). 

This is consistent with the site condition of a minimum vertical principal stress of 20.5 

MPa and maximum horizontal principal stress of 29 MPa (Cai et al. 2014). 

 

Figure 3-15 Source mechanism of seismic events recorded in LW110 shown in beach balls. The colour of each beach 

ball shows the onset time per seismic event (green indicates old events, and red indicates new events in chronological 

order).  
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The result of moment tensor inversion in LW110 can be further presented in the Hudson 

T-K plot, which is a special coordinate projection to visualise source types of various 

seismic moment tensors (Hudson 1984). T and K values in the plot represent the 

decomposition of the moment tensor into a deviatoric (shear) and an isotropic 

(volumetric) component, respectively. As shown in Figure 3-16, seismic events in the 

pure DC domain will have T=0 and K=0, while T=±1 indicates a pure tensile. The 

explosion (T=0, K=+1) and implosion (T=0, K=-1) are barely observed in mining-

induced seismicity. Thus, the explosion/implosion component (K value) of most mining-

induced seismicity is also low. Figure 3-16 shows a clustering trend of seismic events in 

the T-K plot. The tensile failures concentrate in the two blue ovals, and the shear failures 

concentrate in the green oval. It demonstrates that most seismic events in LW110 were 

triggered by tensile failure, and only a small proportion was caused by shearing. 

 

Figure 3-16 T-K plot for the seismic events recorded in LW110 (each event was represented by one red circle). T and K 

represent the decomposition of the moment tensor into a deviatoric (shear) and an isotropic (volumetric) component, 

respectively. 

3.2.2. Fault plane solution 

Since the moment tensor inversion result indicates two potential fault planes and normal vectors, 

structure analysis is then conducted to determine the preferential orientation of the seismic events. 

Since seismicity tends to occur along one or more sets of pre-existing subparallel joints in rock, 

we can obtain the fault plane solutions (the orientation of the fractures) with the help of the three-

point method (Fehler et al. 1987). In this study, as shown in Figure 3-17, for a seismic event at 
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location X, the moment tensor inversion provides two fault plane solutions, Fault Plane 1 (FP1) 

and Fault Plane 2 (FP2). Points Y and Z are two events around X, which are assumed to be 

triggered along the same plane of X (the red plane in Figure 3-17). Therefore, the fault plane 

solution for X would be FP1, given the smaller angle difference with the red plane compared to 

FP2. To determine the orientation of mining-induced fractures, the three-point method is applied 

to back-calculate the preferential fracture orientation within a cloud of events by fitting every 

group of three events with one potential failure plane, resulting in a total of 𝐶𝑛
3 planes (a n-

combination of a set of three points, n is the total number of nearest points to Point X, including 

itself). Considering the location accuracy and the extent of the fracture zone, the events fitted in 

each plane can be constrained spatially within a particular range (100 m in this research) (Collins 

et al. 2002). The obtained fracture network can then be displayed in a stereonet, and areas with a 

high-density of fracture plane poles in the stereonet indicate the preferential orientation of mining-

induced fractures. 

 

Figure 3-17 Schematic of the three-point method used in the structural analysis, with three seismic events at Points X, 

Y and Z and two potential fault planes FP1 and FP2 for Point X. 

3.2.3. Radiation pattern  

The radiation pattern of seismic waves needs to be determined to further investigate the 

displacement of the seismic source based on the source mechanism and the fault plane solution. 

The radiation pattern characterises the source movement along all directions in space. It is 

controlled by the seismic wave type (P/S), source mechanism, azimuth of observation, and take-

off angle. For a shear faulting, its radiation pattern for a given take-off angle and azimuth can be 

determined by the strike, dip, and slip rake along the fault plane, according to Boore and 

Boatwright (1984).  

In this study, the radiation pattern method developed by (Ou, 2008) is adopted as a shear-tensile 

source model to demonstrate the radiation pattern of a seismic event. Within a shear-tensile failure, 

the radiation pattern is governed by two additional parameters: tensile angle 𝛾 and Poisson’s ratio 

ν (Kwiatek and Ben-Zion 2013). It is assumed that the shape of a tensile motion is like a pulse 

with no displacement at the end, and the tensile angle concept is used to describe the angle 

between the unit slip vector and unit fault normal. The tensile angle is measured between the 
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vector along the slip direction projected on the fault plane and the actual direction of the fault 

movement, which is positive for fracture opening and negative for closing motions (Figure 3-18). 

Note that although it is termed as the ‘tensile angle’, it can also represent a shear failure in the 

fracture when the tensile angle 𝛾  = 0°, the radiation from the shear-tensile source model 

corresponds to the classic pure shear source. When 𝛾 = 90°, the radiation corresponds to the pure 

tensile opening.  

Aki and Richards (1980) assumed that for non-homogeneous source material in homogeneous 

propagation media, the radiated pattern coefficient can describe the relative displacement of the 

source. To investigate the radiation pattern of P waves for a tensile-shear fault dislocated in a 

certain direction, the displacement vector function is written as: 

∆𝒖(𝑡) = ∆𝑢(𝑡)(sin 𝛾 𝑛̂ + cos 𝛾 𝑓) (3.9) 

where ∆u(t) is the magnitude of dislocation, 𝛾 is the tensile angle, 𝑓 is the slip vector and 𝑛̂ is the 

normal vector of the fault plane. The P wave displacement (𝒖𝑃 ) for a tensile fault segment 

dislocated in a direction is written as (Ou 2008): 

𝒖𝑃 =
𝜇𝐴∆𝑢(𝒓̂𝑻𝑺𝒓̂)

4𝜋𝜌𝑉𝑃
3𝑟

𝒓̂ (3.10) 

where 𝜇 is the Lame constant, A is the area of the fault segment, 𝜌 is density, 𝒓̂ is the direction of 

radiation, 𝑉𝑃 is the P wave velocity, and S is called the source dislocation tensor. The detailed 

explanation of S can be found in (Ou, 2008). As long as the strike, dip, rake of the fracture plane 

and the tensile angle are available, the radiation pattern at the source can be calculated. The 

calculation of the direction of the fracture plane is shown in Sections 3.2.1 and 3.2.2. Since the 

component of the seismic moment can be written as 𝑀𝑖𝑗 = 𝜇𝐴𝑟 , the tensile angle can be 

calculated based on the proportion of the DC component and the ISO+CLVD component. 

 

Figure 3-18 An example of a tensile-shear fault segment, and the displacement vector (∆u), the unit slip vector (f ̂), and 

the unit fault normal (n ̂). 

3.2.4. Source parameter estimation 
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Seismic source parameters considered in this study include seismic moment, moment magnitude, 

source radius, and the aperture change of induced fractures. The source dimension is usually 

expressed as the radius of the fracture plane and is related to the corner frequency of the seismic 

wave, which can be calculated as (Brune, 1970; Duncan and Eisner, 2010; Glazer, 2016):  

𝑅 =
𝐾𝑐𝛽0

2𝜋𝑓𝑐
(3.11) 

where 𝑅 is the source radius, 𝛽0 is the S wave velocity in the vicinity of the source, and 𝐾𝑐 is a 

constant that depends on the source model. In this paper, P waves are used to solve the corner 

frequency 𝑓𝑐, so 𝐾𝑐 is set as 1.32 based on (Madariaga, 1976). 

After the diagonalisation of the moment tensor, it can be expressed in the principal axis coordinate 

as follows: 

M = [

𝑀1 0 0
0 𝑀2 0
0 0 𝑀3

] = 𝑢𝑠 [
(𝜆 + 𝜇)𝑛̂𝑣̂ + 𝜇 0 0

0 𝜆𝑛̂𝑣̂ 0
0 0 (𝜆 + 𝜇)𝑛̂𝑣̂ − 𝜇

] (3.12) 

where u is the displacement in the direction of motion for fractures as derived by seismic data, s 

is the surface area of the fracture, and 𝑛̂ and 𝑣 are the normal and motion direction of the fracture, 

respectively. λ and µ are Lame constants defined as: 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
(3.13) 

𝜇 =
𝐸

2(1 + 𝜈)
(3.14) 

where E is the elastic modulus and 𝜈 is Poisson’s ratio. The fracture aperture change 𝜏 deduced 

from the focal mechanism can be obtained as (Zhao et al. 2019): 

𝜏 = 𝑢 × cos𝜃 =
4𝜋𝑓𝑐

2 × cos𝜃 × 𝑡𝑟(𝑀)

𝐾𝑐
2𝛽0

2 × (3𝜆 + 2𝜈)𝑛̂𝑣
(3.15) 

where θ is the angle between 𝒏 and 𝒗, which can be obtained by using moment tensor inversion, 

and 𝑡𝑟(𝑀) is the trace component of the diagonalised moment tensor matrix. 

3.2.5. Local magnitude and b-value 

The instrument magnitude is calculated for every instrument using, 

𝑀𝐼  =  𝐴 ∙  𝑙𝑜𝑔10 (𝑟 ∙ 𝑊𝑉 𝑟𝑚𝑠𝑝𝑒𝑎𝑘 
) + 𝐵 (3.16)  

where r is the distance between source and receiver. A single instrument magnitude for 

the event is calculated by averaging the magnitudes of the instruments used at the source 
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location. 𝑊𝑉 𝑟𝑚𝑠𝑝𝑒𝑎𝑘 
  is the amplitude of the peak signal (DC to peak) on the RMS 

Velocity Waveform. A and B are constants configured by the user. A is 1 and B is 0 for 

the purpose of this calculation. The magnitude is determined regardless of the number of 

channels present in the instrument. This calculation therefore maximises the use of the 

array's available data. 

With the local magnitude, the b-value can be calculated. Despite it is not the seismic 

moment magnitude, the instrument magnitude can also reflect the trend of b-value 

variation. The b-value is the slope of a log-normal distribution of passive seismic event 

sizes, namely the number of events versus their magnitudes. The b-value is defined by 

the Gutenberg–Richter law (Gutenberg and Richter 1956), which expresses the 

relationship between the magnitude and total number of seismic in any given region and 

period of larger than that magnitude: 

𝑁 = 10𝑎−𝑏𝑀 (3.17) 

where, N is the number of event that the magnitude large than M. 

The b-value is often used to describe the nature of seismic event distributions in time 

domain. Initially, it was believed that b-values could be used as a predictor of large-

magnitude event, but more commonly it has been used to describe the stress and fracture 

state of rock mass. Figure 3-19 illustrates the computed b-values from the cumulative 

frequency-magnitude relationship for LW 110. Figure 3-20 shows the temporal variation 

of the b-value measured for the LW 110 from 20/04/2011 to 30/10/2012. The blue line 

shows the rolling average, and it is clear to observe the cyclic trend, indicating several 

cycles of stress change. The slowly increase of the b-value could be the stress build-up or 

strain softening, and the slow drop can be seen as the strain hardening (Main et al. 1989). 
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Figure 3-19 b-value of seismic data using instrument magnitude 

 

Figure 3-20 b-value change along the coal extraction process 

3.3. synthetic triaxial data processing generated from the uniaxial 

signal 

With the help of the fault plane solution (Section 3.2.2) and radiation pattern (Section 

3.2.3), the displacement at the source location at each wave propagation direction can be 

easily determined. Along with the assumed seismic wave attenuation (Section 3.1.1), the 

3D displacement at the sensor location caused by seismicity can be calculated. This 

allows us to generate a synthetic triaxial wave as the signal received at triaxial sensors.  
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To this end, it is necessary to first calculate the seismic source mechanism, which can 

provide more explicit information on the source plane. After determining the source 

mechanism, a synthetic triaxial wave can be generated based on the wave attenuation and 

the relative location between the source and sensors. To be more specific, the following 

steps are performed to develop and validate synthetic triaxial waves: 

1. Assume a specific source mechanism that can be obtained using uniaxial seismic data, as 

shown in Figure 3-21a. There are eight sensors randomly distributed in space enclosing 

the event, 100–300 m away from the event hypocentre. 

2. Calculate the radiation pattern from the assumed source mechanism to solve the 3D 

displacement at the sensor location (Figure 3-21b). 

3. Use all eight sensors to record synthetic triaxial seismograms released from the radiation 

pattern in Step 2, as shown in Figure 3-21c, where the blue vertical line indicates the P-

wave pick. 

4. Back calculate the source mechanism (Figure 3-21d) based on the synthetic triaxial 

signal, and then compare the obtained source mechanism with the original input in Step 

1. 

 

Figure 3-21 An example of synthetic triaxial wave validation: (a) generation of a radiation pattern based on the 

assumed input parameters, (b) the displacement calculation at the sensor location, (c) synthetic triaxial waves 

generation for each sensor, and (d) invert the moment tensor, draw the beach ball, and solve the fault plane to compare 

with the initial radiation pattern. 
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Two more factors need to be considered to complete the synthetic triaxial wave: the fault plane 

and the slip vector. In the shear-tensile failure model (see Section 3.1.5), the radiation pattern is 

affected by the strike and dip of the fracture plane, the rake of the slip vector, the tensile angle 

and Poisson’s ratio (Aki and Richards 1980). Six different validation tests were conducted using 

different tensile angles (0°, 15°, 30°, 45°, 60°, and 90°). Figure 3-22 shows examples of a beach 

ball and its radiation pattern for the six different tensile angles. As P wave is used to invert the 

moment tensor in this study, only the P wave radiation pattern is presented. The other parameters 

are set as: amplitude = 10-4 m, Poisson’s ratio = 0.4, dip direction = 120°, dip = 30°, and rake = 

60°. Although constant values were used for strike, dip and rake in this study, they can still 

generate universal results given sensors are randomly distributed and their positions relative to 

the failure source are also random, without the need to vary these values in different tests.  

 

Figure 3-22 Radiation patterns and associated beach balls for the tensile angles of 0°, 15°, 30°, 45°, 60°, and 90°. 

The comparison between the initial radiation pattern (ground truth) and the inverted beach ball is 

shown in Figure 3-23, which suggests that the discrepancies are generally below 30 degrees. It 

indicates that the source mechanism generated by the synthetic triaxial signal can roughly restore 

the original source information. One possible reason for the discrepancy is that the radiation 

pattern does not actually consider the explosive component. The variation of the DC component 

of the source mechanism shows a linear declining trend with the tensile angle increasing (see 
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Figure 3-23). It suggests that the source mechanism of the synthetic triaxial signal can represent 

the true failure type, as DC represents the shear mechanism and lower tensile angle means more 

shearing (Section 3.1.5). 

 

Figure 3-23 Discrepancy between the true fracture plane and the source mechanism inverted fracture plane, and the 

variation of the DC component in the source mechanism with the increase of tensile angle. 

In the following study, the method of calculating the seismic parameter and generating an explicit 

mining-induced fracture network from the uniaxial seismic data includes seismogram processing, 

event location, moment tensor inversion and source parameter estimation. The workflow of 

generating a mining-induced fracture network is described in Figure 3-24.  

The uniaxial seismic waves are first obtained from a case study site. The P wave arrival time is 

picked on the uniaxial seismic data and the event location process is completed based on the P 

arrival pick. Using at least six P waves after picking, seismic moment tensors can be inverted as 

introduced in Section 3.1.5 using the first motion of seismograms (step ① in Figure 3-24). By 

applying the fault plane solution from Section 3.2.2, the most-likely fracture plane can be 

determined. Then the radiation pattern can be inferred (step ② Figure 3-24). Building on the 

required parameters calculated from moment tensor inversion and radiation pattern as introduced 

in Section 3.3, a triaxial seismic signal is generated by synthesising the P wave amplitudes in all 

three orthogonal directions (step ③ in Figure 3-24). Steps ② and ③ describe the overall 

synthetic triaxial generation process in Figure 3-21. This process includes the steps from (a) to (d) 

but does not include a comparison between (d) and (a). The validation of the synthetic triaxial can 

be found in Section 3.3. To generate the mining-induced fracture network, the processing and 

analysing of synthetic triaxial seismic waves, including calculation of the M0, seismic source 
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radius R and fracture aperture change τ, are executed as introduced in Section 3.3 (step ④ in 

Figure 3-24). With a comprehensive and quantitative identification of each seismic-related 

fracture, the induced fracture network along the longwall panel can be determined. 

  

Figure 3-24 A comprehensive workflow to determine mining-induced fracture network based on uniaxial seismic data. 

3.4. Conclusions 

This study developed a novel approach using uniaxial seismic data to derive synthetic 

triaxial waves from calculating source parameters by using seismic wave processing 

methods, including failure mechanism, fracture orientation, fracture radius and aperture. 



69 
 

Seismic monitoring data collected from the Yima underground coal mine in China was 

processed to verify the feasibility of the proposed method.  

The seismic moment tensor inversion was applied to each uniaxial seismic event, and the 

source failure type was analysed. The failure type was then used to determine the source 

radiation pattern. The uniaxial signal can be extrapolated to a synthetic triaxial wave with 

the help of failure plane solution analysis and radiation pattern. This method has been 

validated by a simple one-period waveform. The differences between the fracture 

orientation calculated by the synthetic triaxial wave and the initial hypothesis (ground 

truth angle) are generally less than 30 degrees. The source mechanism derived by the 

synthetic wave can basically restore the initial hypothesis.  

It should be highlighted that in deriving synthetic triaxial waves from uniaxial seismic 

data, it is critical to ensure that the synthetic process is not influenced by differences in 

data acquisition, processing, and interpretation methods between the new and old 

systems. This could include investigating [sensor sensitivity and resolution, noise 

handling, and any mathematical or statistical comparison that compensates for differences 

in computing models used. It is also worth noting that additional tests, simulations, or 

triaxial field seismic monitoring data will be required in the future work of this research. 

Taking the Yima coal mine as the case study site, the seismic signal processing, including 

pre-processing of filtering, frequency domain analysis, wave picks, event locates, and 

moment tensor inversion, are calculated in detail with the sample seismic waves and 

seismic events using the proposed uniaxial seismic data analysis method. The b-value is 

also analysed as an application of the novel synthetic triaxial seismic wave processing 

method. At last, the flowchart of the integrated seismic signal processing is presented as 

the preliminary signal process method of the following Chapter 4 and Chapter 5. 
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Chapter 4.  Statistical assessment of mining induced seismic 

events 

This chapter is based on published paper II. The analysis is based on a case study in this 

paper. Hujiahe Coal Mine is located in the west of Shaanxi province, China. The studied 

panel, longwall (LW) 102 is about 700 m in depth, 1493 m in length and 180 m in width. 

The target coal seam has a thickness varying from 13 m to 22.50 m, and the maximum 

dip angle is 9°. A fully mechanised longwall top coal caving method is adopted, with 3.50 

m mined by a shearer and the remaining coal at the top extracted by gravity caving. The 

coal seam is sequentially overlaid with a 5.95 m thick sandy mudstone layer, a 23.70 m 

thick siltstone, a 4.65 m thick mudstone, and a 4.80 m thick siltstone. 

The 16-channel “ARAMIS M/E” seismic monitoring system developed by EMAG in 

Poland was installed in the mine in September 2013. For more information about this 

monitoring system, please refer to Cai et al. (2018). The pre-process of the raw analog 

seismic signal used in the 16-channel “ARAMIS M/E” seismic monitoring system is the 

same process that already introduced in Section 3.1. LW102 started to retreat in May 2014 

and was completed in July 2015. Although the seismic monitoring system was installed 

before the start of the panel, due to the calibration delay in the early stage, the system was 

only available to record reliable seismic activities in the panel from September 2014. 

Therefore, seismic data from September to July 2015, a total of 293 days, were used for 

the spatial and temporal correlation analysis in this research.  

In this thesis, the seismic dataset contains 14,024 seismic events, and each seismic event 

is a 5-dimensional array including the 3D spatial location (longitude, latitude, and depth), 

onset time and recorded seismic energy. Due to the lower accuracy and variance compared 

to the longitude and latitude, the depth of each seismic event is not considered in this 

research. 

The distribution of cumulative radiated energy and the number of seismic events for one 

day and their evolution over time (Figure 4-1.a) and space (Figure 4-1.b and c) can be 

expressed. Over a period of time, the relationship between the number of events (N) and 

cumulative energy (Log(E)) within individual production days is unclear. A notable 

example is a comparison between Period 1 and 2 in Figure 4-1(a), a high number of 

seismic events with low energy level could be observed in Period 1, while in Period 2 
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only a few high radiated energy events along the main fracture occurs, which results in 

the maintenance of high cumulative energy but decrease of the event number. A similar 

pattern can be observed in the space domain as well, as presented in Figure 4-1(b). The 

conclusion can be drawn from Figure 4-1 that the distribution of seismic events and the 

energy level can vary significantly in space and time, and this leads to the significance of 

exploring the correlations based on event location, onset time and radiated energy. 

 

Figure 4-1 (a) time correlation (b)(c) spatial correlation of energy and number of seismic data 

Figure 4-2a shows the probability density of seismic events occurring time, while Figure 

4-2b and c shows the probability density of longitude and latitude. Figure 4-2d presents 

a contour map of spatial event density, and the longwall panel is drawn as the red dashed 

line. Excluding the depth and seismic energy, the distribution of the original seismic event 

shows both clustering and discrete characteristics in times (Figure 4-2a) and space (Figure 

4-2b).  



72 
 

 

Figure 4-2 Overview of the space and time distribution of all seismic data  including probability density of (a) seismic 

events occurring time, probability density of (b) longitude and (c) latitude, (d)contour map of spatial event density. 

The initially collected radiated energy (E) data from geophones can be calculated in the 

scale of log10(E), which has been widely used in seismology research. The probability 

density function of the energy distribution in local magnitude is shown in Figure 4-3, the 

energy level is ranged from about +1.0 to +7.0, and this has the significant consistency 

with the observation from (Fujii and Ishijima 1991). In seismology, the detection capacity 

of the seismic sensor depends on the density and distribution of geophones, the recording 

characteristics, and the attenuation in rock. Similar to the completeness 
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magnitude(Gutenberg and Richter 1956), the completeness energy level can be defined 

as the lowest energy level at which 100% of the seismic events in a space-time volume 

are detected. To ensure the completeness of the seismic data array during the study period, 

the magnitude of completeness (mc) is applied to determine the lowest energy magnitude 

of seismic events that the seismic monitoring system can fully detect. Only seismic events 

with energy magnitudes larger than mc are regarded as complete and used for further 

analysis. Figure 4-3 shows the probability density function of recorded seismic events 

over the monitoring period in LW102, where the mc is found to be at log E=2.3. According 

to the assumption, a completeness energy level, denoted by log E>2.3, is the lowest 

energy level at which all seismic events within the monitoring domain may be detected. 

This threshold is critical since it determines the monitoring system's sensitivity, ensuring 

that no seismic events are missed due to being below the detection limit. Thus, a total of 

8024 seismic events with log E>2.3 are selected for the temporal and spatial correlation 

analysis. 

 

Figure 4-3 Probability density plot of 𝑙𝑜𝑔 𝐸 for all recorded seismic events. 

Figure 4-4a shows the spatial distribution of the selected seismic events in LW102. A large number 

of events with higher energy magnitudes are located around Fault 5-6. Also, in Figure 4-4b, the 
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contour map of seismic event probability density indicates that intensive seismic activities were 

reported at the tailgate side of the panel due to the nearby goaf zone. 

 

Figure 4-4 (a) Spatial distribution of seismic events (colour represent 𝑙𝑜𝑔 𝐸), longwall layout and geophone stations, 

(b) the probability density distribution of seismic events in a horizontal plane. The red dashed line shows the longwall 

panel, and Event A, B and C are three typical event locations, which will be discussed in following sections. 

Besides the overall figure to show all seismic events recorded over the monitoring period, the 

monthly evolution of seismic events is shown in Figure 4-5.  
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Figure 4-5 Monthly evolution of seismic events spatial distribution in LW110 over the monitoring period. The two 

dashed lines in each figure indicate the start and the end of the working face over the specified period. 

 

4.1. Stationary test for time series data 

The property of stationary process test is of the essence in time series analysis, for 

implementing that whether the results of empirical analysis maintain appropriate 
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robustness with the change of input parameters. A stationary time series is one whose 

properties do not depend on the time at which the series is observed. Thus, time series 

with trends, or with seasonality, are not stationary. The trend and seasonality will affect 

the value of the time series at different times. In general, a stationary time series will have 

constant statistical properties such as mean, variance, autocorrelation, etc.  

In order to test whether a time series data is stationary, the Augmented Dickey Fuller Test 

(ADF) is a unique ‘Unit Root Test’, it is testing if 𝜙 = 0 in this model of the data: 

𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝜙𝑦𝑡−1 + 𝑒𝑡 (4.1) 

Which can be written as: 

∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝑒𝑡 (4.2) 

where 𝑦𝑡 is the time-serial data. It is written this way so we can do a linear regression of 

∆𝑦𝑡 against 𝑦𝑡−1 and t and test if 𝛾 is different from 0. If 𝛾 = 0, then we have a random 

walk process. If not and −1 < 𝛾 + 1 < 1then we have a stationary process. 

The ADF test allows for higher-order autoregressive processes by including ∆𝑦𝑡−𝑝 in the 

model. But the test is still if 𝛾 = 0. The null hypothesis for ADF tests is that the data are 

non-stationary. Rejecting the null hypothesis requires a p-value of less than 0.05 (or 

smaller). 

Table 4-1 ADF test result 

ADF test  1% 5% 10% test value accept/reject  conclusion 

discrete time 

serial data 

-3.4311 -2.8618 -2.5669 -15.0519 reject stationary  

daily event 

number 

-3.4531 -2.8715 -2.5721 -4.111167 reject stationary  

cumulative 

daily event 

energy 

-3.4532 -2.8716 -2.5721 -5.784185 reject stationary  

Table 4-1 provides the result of ADF test. It illustrates that for all of the three data series 

(discrete-time serial data, daily event number and daily cumulative event energy) that this 
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paper is going to study, they all meet the condition of rejecting the hypothesis, which, on 

other words, can be recognized as stationary data. Further correlation analysis of these 

three time-series data can be ubiquity, and the correlation pattern would not change with 

the different period or data format used in the research. 

4.2. Statistical methods applied on seismic parameters in time and space domain 

The difficulty of using a large amount of seismic data collected from mining operations 

for prediction purposes lies in the lack of understanding of the internal correlation 

between seismic events, as mining-induced seismicity is not a random process (Gibowicz 

2009) but has a high correlation with mining activities both spatially and temporally 

(Arabasz et al. 2005). Invalid prediction results or misleading data interpretation can be 

derived if the correlation is not well-understood. For instance, during seismic data 

analysis, questions need to be addressed beforehand, such as how much past data (time 

window) are required to predict future events and the maximum distance that can be 

effectively predicted with confidence (grid size). The time window and grid size are 

essential parameters for investigating spatial and temporal evolutions of seismic events. 

An undersized time window may not be enough to reflect the general pattern of seismic 

events. An oversized time window may include unnecessary noisy data that reduce 

prediction accuracy (Kijko and Funk 1996). Also, a too-large grid may significantly 

reduce the resolution/accuracy of seismic hazard prediction in space (Kisilevich et al. 

2010). A too-small grid can increase computational time and cause overfitting issues. 

Therefore, the determination of time window and grid size for the temporal and spatial 

prediction of seismic hazard, respectively, remains a significant challenge using historical 

seismic data. In order to determine the appropriate time window and grid size, a 

correlation assessment on seismic data would be required in both the time and space 

domain. 

The correlation analysis of mining-induced seismicity, including its randomness, 

stationary, and memoryless, would provide an understanding of the past seismic data 

(Bischoff et al. 2010; González et al. 2016); However, there is no attempt to assess the 

correlation of mining-induced seismicity quantitively so far. This paper focuses on filling 

this research gap by applying three different methods to various types of seismic data: 

• Autocorrelation function (ACF) calculates the correlation with a delayed copy of 

the data itself, and equidistant data is required. 
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• Semivariogram is used to calculate the degree of correlation as a function of 

distance or time step. 

• Moran’s I describes the correlation extended in a specific time window, commonly 

used for a cross-comparison and correlation threshold assessment. 

These quantitative correlation assessment approaches can be applied to any parameters 

of mining-induced seismicity, including spatial location, onset time, energy, source 

radius, apparent stress, etc. This paper will focus on radiated energy, which represents the 

total elastic energy radiated by mining activities and is better reflecting the influence on 

artificial structures compared to the magnitude and other parameters (Gibowicz and Kijko 

1994).  

Furthermore, many researchers proposed that seismic events can be divided into clusters 

due to the spatially distinct rock mass failure processes associated with the temporally 

dependent mining activities (Gibowicz 1986; Leśniak and Isakow 2009; Woodward et al. 

2018). The seismic events from different clusters may be independent, whereas events 

within one cluster are internally correlated (Kijko and Funk 1996). During a mining 

process, the overall correlation of the entire seismic dataset may be different from the 

correlation within individual clusters because the cluster-based data can be recognised as 

being related to a specific area or time. Thus, it is necessary to re-assess correlation 

characteristics within each cluster and between clusters after seismic data being clustered. 

The natural response of rock failure to mining activities is related to seismic occurrences, 

which can pose a risk to mine operators, equipment, and infrastructure. Because of rock 

fracture during progressive mining activities, mining-induced seismicity has been 

demonstrated to be intrinsically associated in both the time and space domains. 

Understanding the temporal and spatial correlation of mining-induced seismic events is a 

prerequisite for using seismic data for other purposes, such as rock burst prediction and 

caving assessment. There are, however, no recognised ways to carry out this crucial work. 

Input parameters for seismic hazard prediction, such as the time frame of prior data and 

effective prediction distance, are selected based on site-specific experience with no 

statistical or physical justification. As a result, the accuracy of present seismic prediction 

systems is severely limited, which can only be addressed by quantifying the spatial and 

temporal correlations of mining-induced seismicity. The temporal and spatial correlation 

of seismic event energy obtained from a sample mine is quantitatively evaluated in this 
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work, utilising several statistical approaches such as Autocorrelation Function (ACF), 

semivariogram, and Moran's I analysis. Furthermore, seismic events are further divided 

into seven clusters based on the integrated Spatial-Temporal (ST) correlation evaluation 

in order to analyse the correlations within particular clusters. The correlations of seismic 

events are determined to be quantitatively assessable, and their correlations may fluctuate 

during the mineral extraction process. 

Seismic monitoring data collected Hujiahe coal mine is used in this study. Firstly, the 

correlative period and correlative distance of seismic data are calculated by the ACF and 

semivariogram function, respectively. The Moran’s I is used to evaluate the extent of the 

correlation and temporal variability. Using the results obtained from the above methods, 

a spatial-temporal (ST) integrated analysis is conducted to examine the seismic 

correlation in time and space simultaneously. Finally, seismic events are divided into 

multiple clusters to investigate the local correlation within individual clusters. 

4.2.1. Autocorrelation function (ACF) 

In this paper, the ACF is used to analyse time-series data of seismic energy. This method 

normally requires the same time interval between data points (an evenly spaced dataset). 

A gridding process is required to pre-process the unevenly spaced seismic data onset time. 

Therefore, the raw seismic energy data recorded with uneven time interval are calculated 

as cumulative daily energy, which has the same time interval. Assuming k is the lag in the 

time domain, the temporal variability of two seismic data points with a time difference of 

k can be calculated based on the autocovariance 𝑐𝑘 and the autocorrelation 𝐴𝐶𝐹𝑘. The 

autocovariance 𝑐𝑘 is the covariance of the two seismic data 𝑥𝑖 and 𝑥𝑖+𝑘 at the time i and 

i+k, respectively (Equation 4.3): 

𝑐𝑘 =
∑ (𝑥𝑖 − 𝜇)(𝑥𝑖+𝑘 − 𝜇)𝑁

𝑖=1

𝑁
(4.3) 

Where N and 𝜇 are the number and the mean of the total studied data points, respectively. 

For an array of seismic data with lag k, its ACF is defined in Equation 4.4: 

𝐴𝐶𝐹𝑘 =
𝑐𝑘

𝑐0
=

∑ (𝑥𝑖 − 𝜇)𝑁−𝑘
𝑖=1 (𝑥𝑖+𝑘 − 𝜇)

∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1

(4.4) 

where 𝑐0  is the autocovariance when k=0, which is the self-covariance of 𝑥𝑖 . 𝐴𝐶𝐹𝑘 

ranges from -1 to 1, and it shows the variation of seismic data correlation along with k. A 
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typical ACF plot is shown in Figure 4-6a. 𝐴𝐶𝐹𝑘 equals 1 when k is 0, and it shows a 

downward trend with the increase of k. The seismic data array is regarded as correlated 

until the 𝐴𝐶𝐹𝑘 falls below Bartlett’s limit (IB), which is expressed as Equation 4.5 (Jaksa 

et al. 1999): 

𝐼𝐵 = ±
1.96

√𝑁
(4.5) 

The range of k before 𝐴𝐶𝐹𝑘 reaching Bartlett’s limit is called the correlative period. The 

highest correlative period of seismic data is presented when 𝐴𝐶𝐹𝑘 reaches the upper limit 

of 𝐼𝐵, and the corresponding time lag is called the scale of fluctuation (SOF). For the lag 

larger than the SOF, it is considered that seismic data presents no correlation. Apart from 

the correlative period calculated using ACF, SOF can also be used to represent correlative 

distance, which is calculated using Semivariogram (Onyejekwe et al. 2016). 

 

Figure 4-6 An example plots of (a) ACF, (b) semivariogram, and (c) Moran’s I 

4.2.2. Semivariogram function  

In order to quantitively evaluate the correlation of the unevenly spaced seismic data, 

semivariogram function is used here. Semivariogram is a graph showing the variation of 

semivariance with different lags. For a given lag k in the time or space domain, the 

semivariance Vs of a seismic data array is calculated as introduced by (Clark, 1979): 

𝑉𝑠 =
∑ (𝑥𝑖 − 𝑥𝑖+ 𝑘)

2𝑁(𝑘)
𝑖=1

2𝑁(𝑘)
(4.6) 

In Equation 4.6, N(k) is the number of data pairs separated by lag k. xi represents the ith 

seismic datum, and xi+k represents the paired seismic datum of xi with a spatial or temporal 

interval of k. Semivariogram is the curve of the semivariance results at different lags fitted 

by selected mathematical models. A typical semivariogram is shown in Figure 4-6b; the 
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semivariance of the data array increases along with the lag increase until a maximum is 

reached at a certain lag; the increasing of the semivariances indicates the decline of 

autocorrelation. Three parameters are used to characterise the correlation of a 

semivariogram: 

a) Nugget, the semivariance when k=0. 

b) Sill, the maximum semivariance of the data array. 

c) Range, i.e. SOF, the critical lag length for the semivariance to reach the sill. 

In a semivariogram, a lower nugget and sill indicate a higher correlation. A lower SOF 

suggests the faster attenuation of correlation along with the lag increase. The calculation 

of SOF varies slightly between different mathematical models. Table 4-2 lists three fitting 

models used in this research to calculate SOF. 

Table 4-2 Mathematical models available for semivariogram fitting 

Model Fitting Function SOF, 𝜃 

Gaussian G(𝑥) = 𝐶 (1 − 𝑒
−𝑘2

𝑎2 ) + 𝐶′ 𝜃 = 𝜋0.5𝑎 

Spherical 
G(𝑥) = 𝐶 (

3𝑘

2𝑎
−

𝑘3

2𝑎3) + 𝐶′   𝑘 < 𝑎 

G(𝑥) = 𝐶 + 𝐶′   𝑘 > 𝑎  

𝜃 =
3

4
𝑎 

Exponential G(𝑥) = 𝐶 (1 − 𝑒
−𝑘
𝑎 ) + 𝐶′ 𝜃 = 2𝑎 

Note: 𝑎, 𝐶, 𝐶′ are fitting parameters. 

4.2.3. Moran’s I 

Moran’s I (MI) is an index to describe the spatial similarity of a dataset. (Tiefelsdorf and 

Boots, 1995) suggest that Moran’s I is proved to be flexible for investigating the 

characteristics of the distribution and correlations for distinct spatial data. For a seismic 

data array with N seismic events, its MI is defined in Equation 4.7 (Tiefelsdorf and Boots 

1995): 

𝑀𝐼 =
𝑁

∑ ∑ 𝑤𝑖𝑗𝑗𝑖

∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥)(𝑥𝑗 − 𝑥)𝑗

∑ (𝑥𝑖 − 𝑥)𝑖

(4.7) 

Where 𝑥̅ is the mean of the seismic data array. xi and xj are the seismic data of events i 

and j. 𝑤𝑖𝑗 is a matrix of spatial weights. In this equation, spatial weights are calculated 
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based on the inverse distance weighting of k-nearest points (ten points are selected in this 

paper).  

MI can also be calculated graphically using Moran’s I scatter plot shown in Fig.1c. In this 

figure, the horizontal axis is (𝑥𝑖 − 𝑥). The vertical axis shows the difference between the 

average of the above ten nearest seismic data (xi) and 𝑥̅ . MI is then calculated as the 

linearly fitted line slope for all data points across the origin, which is shown as the red 

line. As the calculation of the slope in this figure is essentially the same as Equation 4.7, 

identical MI results will be achieved using this graphic method or Equation 4.7. In Figure 

4-6c, the four quadrants demonstrate different correlation conditions of seismic events. 

The first quadrant indicates high energy seismic events are clustered with high energy 

neighbouring events, and the third quadrant indicates low energy seismic events are 

clustered with low energy neighbours. Seismic events in the second and fourth quadrants 

show low energy events are sitting close to high energy neighbours and high energy 

events are close to low energy neighbours, respectively.  

4.3. Quantitative assessment of the temporal correlations of seismic events induced 

by longwall coal mining 

In this section, both ACF and Semivariogram are used to investigate the temporal 

correlation of the seismic data in LW102. ACF is used to assess the temporal correlation 

of an evenly spaced seismic data array (cumulative daily seismic energy). Semivariogram 

is used to investigate the temporal correlation of non-evenly spaced seismic data (seismic 

energy per event). The SOF in the time domain (SOF-time) is determined for both ACF 

and Semivariogram to quantify the correlative period of the seismic data. 

4.3.1. Autocorrelation functions (ACF)  

As mentioned in Section 2.1, the ACF analysis is applied to the evenly spaced data with 

the same interval. The raw seismic events are pre-processed into daily cumulative data. A 

total of 293 data points representing the cumulative energy within 293 monitoring days 

are applied to calculate 𝐴𝐶𝐹𝑘, where 𝑥 is substituted by log 𝐸𝑐, and Ec is the cumulative 

daily energy. The Bartlett’s limit is calculated. 

Figure 4-7 is the ACF results of cumulative daily seismic energy in LW102 with different 

lags. In this figure, the IB is ±0.1145 shown as the red dashed lines, and the SOF-time is 

calculated as six days, which indicates a relatively strong correlation of cumulative daily 
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energy in six days. In other words, the future daily seismic energy in LW102 is likely to 

be dependent on the recorded seismic energy in the past six days. It will be independent 

with any data beyond that period. The ACF of daily seismic energy drops to 0.44 when 

the lag is only one day, which shows the increase of randomness.  

 

Figure 4-7 ACF plot for cumulative daily energy. 

Besides, the value of cumulative daily energy is also affected by the number of events 

that occurred during the day and face advance distance on that day. Therefore, the daily 

average energy and energy per meter of face advance are also applied in the ACF analysis. 

The average daily energy can be calculated as log
𝐸𝑐

𝑁
, and the N is the number of seismic 

events that occurred on that day. The average energy per metre can be calculated as log
𝐸𝑐

𝐹
, 

where F is the face advance distance on that day.  
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Figure 4-8 ACF plot for (a) the average daily energy and (b) the average energy per metre of face advance. 

The ACF values of the above two parameters are presented in Figure 4-8. The SOF-time 

of average daily energy decreases to four days, and the SOF-time of average energy per 

metre remains at six days compared to Figure 4-7. The similar SOF-time calculated from 

Figure 4-7and Figure 4-8 indicates that the number of events and the face advance rate 

only have a marginal effect on the autocorrelation of cumulative energy. One possible 

reason could be that log (
𝐸𝑐

𝑁
) is equal to log(𝐸𝑐) − log(𝑁), and comparing with Ec, the 

value of N is much smaller in orders of magnitude. The same reason also applies to the 

face advance rate F. In other words, if one seismic event has a very high energy release 

in a typical production day, it will significantly increase the average value and decrease 

the correlation of cumulative energy. 

Therefore, the correlation of cumulative energy analysed via ACF provides an approach 

to quantitively assess the correlation of seismic event energy. The event number and face 

rate can also be considered and analysed. But the result is sensitive to high energy events. 

The method in this chapter is suitable for a zone with similar size of fractures that can 

trigger seismic events with comparable energy levels.  

Apart from the daily cumulative seismic energy, the daily seismic event number can also 

be analysed via ACF. Figure 4-9 shows the ACF results of the daily event number. It 

indicates that the SOF-time of the daily event number is 26 days, given the IB at ±0.1145, 

representing a strong correlation of daily seismic event number within 26 days. Also, the 

ACF of the daily event number is larger than 0.5 when the lag is lower than four days. It 
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indicates that the daily event number is significantly influenced by those event numbers 

recorded in the past four days. Due to the strong correlation in the low lag of seismic 

event number, seismic event number prediction would yield more reliable results than 

that of cumulative energy. 

 

Figure 4-9 ACF plot for daily event number. 

4.3.2. Semivariogram function 

(1). Overall semivariogram evaluation 

Unlike ACF dealing with evenly spaced seismic data (cumulative daily energy), the 

semivariogram function is applied to assess the temporal correlation of the unevenly 

spaced seismic data, such as the onset time of individual seismic events. The algorithm 

of this method can be referred to as Section 2.2. The semivariances of seismic energy 

based on time lag are calculated and presented in Figure 4-10 as red circles. To obtain the 

semivariogram function, a goodness-of-fit test is conducted to select the best-fit model 

from three mathematical models, i.e., Gaussian, spherical, and exponential. The fitting 

performance of each model is evaluated by Root-Mean-Square (RMS) and R-square. 

These results are summarised in Table 4-3, indicating that the exponential model best fits 

the semivariances of the studied seismic data because of the lowest RMS and the highest 

R-square. It should be noted that the exponential fitting is the best-fit model when 

analysing the temporal correlation using all seismic energy data. The best-fit model may 

vary depending on the type and amount of seismic data inputted in this method.  
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Table 4-3 Comparison of three fitting models for the temporal semivariogram of seismic energy. 

 
RMS R-square 

Gaussian 0.00642483 0.362562 

Spherical 0.00641485 0.364542 

Exponential 0.00635507 0.37633 

 

 

Figure 4-10 Semivariogram of seismic energy, the red circles are the semivariance value at each time lag, and they are 

fitted by the exponential function as presented in the black curve. 

The black line in Figure 4-10 shows the semivariogram of the seismic energy of the 

studied events in LW102. The SOF-time of about 12 days indicates that the seismic energy 

of individual events is becoming less correlated along with the lag increase within 12 

days. The difference between the sill and nugget is 0.025, which is significantly lower 

than the nugget, which implies a rapid decline of the correlation and high variability of 

seismic energy in a short time range.  

It should be noted that the SOF-time of 12 days correlative period is calculated based on 

the unevenly spaced seismic energy data. In comparison, the SOF-time of six days 

correlative period obtained by ACF is based on the daily cumulative seismic energy data. 

Compared with the semivariogram method, ACF requires pre-processing unevenly 

spaced seismic energy as cumulative daily energy, which may introduce an artificial effect 

or bias to the correlation analysis. Thus, it is believed that SOF-time calculated by the 

semivariogram function can better reflect the correlation nature of raw seismic data. An 

application of the 12 days SOF-time will be presented in Section 5.2. 

 (2). The maximum correlation period determined by semivariances  
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The SOF-time calculated by semivariogram is the average correlative period of all 

seismic energy data in the study period, which means that if the correlative period of 

partial data is assessed, the result could fluctuate around 12 days. Besides the average 

correlative period of the overall data, the maximum correlative period is critical to be 

evaluated. This could be achieved by the semivariances calculation based on all the 

seismic data with a time difference smaller than the lag k, rather than using the paired 

seismic data xi+k in Eq.4. 

This specific semivariance is called the cumulative semivariance, which represents the 

evolution of semivariance along with the increasing of input data. Figure 4-11 shows the 

cumulative semivariance of the studied seismic data (marked as red crosses), which 

increases rapidly at the beginning and then flattens. The first-order derivative of the 

cumulative semivariance (marked as blue dots) is also calculated. The derivative has a 

gradual downward trend and tends to reach the elbow point when lag k is at around 40 

days. The slop drops to around 0 for the first time at this elbow point. It suggests that 40 

days is the maximum correlative period of studied seismic energy data. The reason is that 

when lag k is larger than 40 days, most of the first-order derivative is close to 0 due to the 

slow increase of the cumulative semivariance. It means that semivariance considering the 

data within 40 days will not be much different from the semivariance considering more 

than 40 days. Therefore, the correlation analysis of seismic data within 40 continuous 

days can capture the general correlation characteristics over that period. 

 

Figure 4-11 cumulative semivariance (marked as red cross) and its first-order derivative (marked as blue dot), the 

green arrow noted the elbow point. The green dashed line represents its lag of 40 days and cumulative semivariance of 

0.514. 
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 (3). The evolution of seismic data correlation in the time domain 

Besides the average correlative period and the maximum correlative period, an attempt 

has been made to analyse the evolution of the temporal correlation of the studied seismic 

data over the ten months of the monitoring period, the semivariogram function is used to 

assess the correlation of seismic data recorded within sequential periods. A moving time 

window based on the maximum correlative period is defined here, which can sequentially 

select seismic data within that time window. The moving window is large enough to 

capture the inherent correlation of seismic data within the selected period. Still, it should 

not be too large to ensure enough sequential periods to reflect the temporal variation of 

seismic data correlation.  

According to the maximum correlative period calculated above, semivariogram analysis 

can be applied to every moving time window with 40 days of seismic data. The moving 

step is set as one day. The SOF-time, nugget and sill are sequentially calculated by the 

best-fit from Gaussian, exponential and spherical models for each time window. The 

variations of SOF-time selected by the best-fit and its RMS are shown in Figure 4-12. It 

should be noted that the trend of how SOF changes at a different time is more critical than 

the exact magnitude of SOF because of the variability of fitting quality in each period. As 

expected, the temporal correlation of seismic energy is not a constant value but varies 

with time. The trend of the correlative period evolution shows a periodic distribution 

during the whole process of the coal extraction, and it tends to form seven peaks with 

different sizes. It should also be noted that before March 2015, the SOF shows a 

significant variance with a relatively high RMS, indicating the low quality of the 

semivariogram fitting. After March 2015, a more reliable SOF can be derived due to the 

lower RMS. 
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Figure 4-12 (a) The evolution of SOF-time in each time window calculated by semivariogram using the best-fit method 

from Gaussian, Spherical and Exponential models. (b) the RMS of semivariogram fitting in each time window 

4.4. Quantitative assessment of the spatial correlations of seismic events induced by 

longwall coal mining 

Moran’s I and the Semivariogram are used to investigate the spatial correlation 

characteristics of the seismic energy. The degree of spatial dependence between seismic 

events is quantified. Only the horizontal locations of the studied seismic events are used 

here due to the location errors in the vertical direction of seismic data recorded in tabulate 

coal deposits. The SOF in the space domain (SOF-space) is determined based on 

semivariogram to quantify the correlative area of the seismic data. 

4.4.1. Moran’s I  

Moran’s I is applied to assess the extent of spatial correlation and identify a strong spatial 

correlation period based on a moving time window method. As mentioned in the previous 

section, the correlative period of the studied seismic data is about 12 days, which is the 

average SOF-time of unevenly spaced seismic energy data calculated in Section 4.3. 

Therefore, the time window of Moran’s I calculation is set as 12 days. The reason for not 

using the maximum correlative period is that MI does not require the moving time 
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window to be large enough to reflect the general correlation characteristics over a long 

period. The variation of the spatial correlation is more critical in this section. Also, since 

the analysis should be based on randomisation assumption and conduct null hypothesis 

testing, the MI results are further standardised as the Z-value using Eq.6. A P-value less 

than 5% is considered significant (reject the null hypothesis), suggesting seismic events 

are spatially autocorrelated on the global scale. 

𝑍 =
𝑀𝐼 − 𝐸(𝑀𝐼)

√𝑣𝑎𝑟(𝑀𝐼)
(4.8) 

Figure 4-13 shows the plot of MI and Z for seismic events recorded over the monitoring 

period. The MI value is calculated by both the mathematic equation and the graphic 

method mentioned in Section 4.2. These two methods show identical MI values. The 

evolution of MI value indicates various correlation degrees of seismic events in space 

when LW102 is retreating. Except for one date below the confidence limit, most of the Z 

values are higher than the 5% confidence interval limit, indicating seismic energy are 

spatially correlated at various degrees, which supports the concept of seismic event 

prediction in space.  

 

Figure 4-13 MI values calculated from two different methods (in the left axis) and Z value (in the right axis) over the 

monitoring period, a 5% P-Value of Z is drawn as the blue dashed line. 
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Figure 4-14 (a) Typical Moran’s I calculated using the graphic method, and the red line is the linear fitting; MI value 

is the slope of the red line, (b) the spatial distribution plots of seismic events for Period I and II, size of the circle 

indicates the seismic 

To examine the spatial energy distribution when different MI value is detected, the seismic 

event distributions at two typical periods (Period I and Period II) with MI>0 and MI=0, 

respectively, are presented in Figure 4-14. Figure 4-14a shows the scatter plot of MI 

values calculated using the graphic method for Period I and Period II. Figure 4-14b 

illustrates the spatial energy distributions of the seismic events at these two periods. 

According to this figure, from 31 October 2014 to 12 November 2014 (Period I), the MI 

reaches the maximum of the entire monitoring period. The seismic events have a clear 

trend of high energy events clustered together in space, and so as the low energy events. 

From 09 February 2015 to 21 February 2015 (Period II), MI is close to 0, which means 

no spatial correlation of seismic energy among these events. By visually inspecting the 

plot of the seismic event distribution in Period II in Figure 4-14b, the same conclusion 

can be achieved: the high energy events and low energy events are distributed randomly 

in this 2D horizontal space. 

4.4.2. 2D spatial semivariogram 
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In order to obtain the correlative distance (radius), the method used here to measure the 

correlation from point to point is the 2D spatial semivariogram, which can quantify the 

degree of spatial dependence between samples in a specific orientation and assess the 

degree of attribute’s continuity. The algorithm of the semivariogram can be referred to as 

Section 4.2. 

In Equation 4.6, 𝑥𝑖 indicates the ith seismic event energy and lag k represents the radius 

of the searching circle in the calculation of spatial semivariogram. Table 4-4 shows the 

evaluation results of three fitting methods and the best-fit method is the exponential 

function. Figure 4-15 presents the spatial semivariogram plot for the LW102 working 

face, in which the calculated semivariance is shown in red circles and the fitted 

exponential model in black curve. The correlative distance is defined as the SOF-space, 

which is 23m in this case. The released energy of a seismic event has a gradually 

decreasing correlation along with the increase of the distance from its hypocentre within 

23 m radius, and no correlation presents beyond this radius. The difference between the 

sill and nugget is 0.127, which is relatively higher than the temporal semivariogram but 

still much smaller than the nugget and sill. It implies a rapid decline of the correlation and 

high variability of seismic energy in a short distance. 

Table 4-4 Comparison of three fitting models for the spatial semivariogram of seismic energy. 

 
RMS R-square 

Gaussian 0.018912 0.615597 

Spherical 0.017715 0.662701 

Exponential 0.017561 0.668547 
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Figure 4-15 Spatial variogram plot for seismic energy over the monitoring period. The red circles are the semivariance. 

They are fitted by the exponential function as presented in the black curve. 

4.5. Spatial-temporal correlation assessment using reference seismic events. 

To simultaneously investigate the spatial and temporal (ST) correlation around a reference 

location and time registered by the occurrence of a reference seismic event in LW102, the 

distance and time difference between the reference event and other seismic events need 

to be considered together. The calculation of distance only considers longitude and 

latitude coordinates for the same reason mentioned in Section 3. Three seismic events 

were selected as the reference events in this research. These selected seismic events all 

have relatively high energy and located close to the longwall panel because the high 

energy events in the coal extraction process always represent a large formation of 

discontinuities and massive energy release. It is worth noting that the method proposed 

in this section could be used in any reference events with a specific onset time and 

location. The selected Event A has the seismic energy of 2.6 MJ, which is located around 

Fault 5-6. Event B is located near the tailgate (goaf side) with seismic energy of 1.4 MJ. 

Event C is a seismic event with an energy of 280 kJ located near the maingate (solid coal 

side). The location of these three events, as well as their occurring time, are highlighted 

in Figure 4-4.  

Based on Event A, B and C, the time difference and distance between all other events and 

the reference events are calculated, which are shown as scatter plots in Figure 4-16a. The 

y-axis shows the Euclidean distance difference, while the x-axis shows the time 

difference. Based on the data in Figure 4-16a, to calculate the semivariogram for both 

time and distance simultaneously, a unity-based normalisation needs to be applied to these 

two parameters. The maximum distance is taken as 800m, and the maximum time 
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difference is taken as 300 days. The corresponding semivariogram is calculated and 

presented in Figure 4-16b, following the method introduced in Section 4.2. Herein, the 

property xi represents event energy, and lag k is a unity-based normalisation of the time 

difference and distance. The exponential function is used because it is proved in Section 

4.3 as the best-fit method when dealing with all studied seismic data. The lag k in the 

semivariogram plots in Figure 4-16b contains the information conveyed in both the time 

and space domain. 

 

Figure 4-16 (a) 2D distribution of time difference and distance between reference events and all other seismic events 

(b) semivariograms for the three reference events. 

The distance-time difference plots in Figure 4-16a show that a linear relationship between 

distance and time difference can be observed for the reference events. The semivariogram 



95 
 

plots in Figure 4-16b all show an upward trend before levelling off. The parameters of 

the three semivariogram plots are also similar, with nugget at around 0.4 and sill at 0.54. 

The similarity of the nugget and sill for all three reference events indicates that the extent 

of ST correlation close to or far from the reference events is similar and less affected by 

the specific location or onset time of the reference events. 

Based on the semivariogram plot, the SOF of time difference and distance can be obtained 

by inverting the process of the unity-based normalisation. The SOF-time for the three 

reference events A, B, and C are 2, 4, and 2 days, respectively, and the SOF-space are 4.9, 

9.2 and 3.9 m, respectively. Compared to the SOF-time of 12 days in Section 5.1.2 and 

SOF-space of 23 m in Section 4.3, the SOF obtained by ST correlation analysis is much 

smaller in both the time and space domain. This is because it is less likely to have seismic 

events with strong temporal and spatial correlation at the same time.  

The ST correlation gives relatively stable correlation results when assessing the 

correlation characteristics around three reference events. The nugget and sill are very 

similar, and the SOF only has a marginal difference. This conclusion seems to be the 

opposite of the conclusion that the correlation is variational in the time and space domain, 

as discussed before. But in fact, the temporal and spatial correlation assessments are 

designed to detect the overall correlation trend. In contrast, ST correlation chooses three 

reference points and assesses the correlation by taking the three points as a basis. The 

correlation near the reference points (nugget) and the correlation far from the reference 

points (sill) are purely based on the location and onset time of three reference events. The 

three points all have relatively high energy, which indicates that they might be induced 

by the slipping of pre-existing fractures. Besides, the three locations all have a similar 

event density, energy distribution, and even seismicity source mechanism.  

4.5.1. Discussion on the impact of energy uncertainty. 

We appreciate that, as a basic parameter to assess the interactions among seismic events, 

seismic energy can be very uncertain. This is highly related to the network configuration 

and coverage concerning the orientation of the tectonic structures that radiate the energy 

during seismic rupture. To investigate how energy uncertainty may affect the correlation 

analysis results and whether bias would be introduced if seismic input data contain 

inherent uncertainties, a 50% variation was added to the seismic energy data (each energy 

is changed into a random value within ±50% of its original value, following a Gaussian 
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distribution). Figure 4-17 presents the correlation results calculated using the proposed 

three methods. Figure 4-17 a and b show that the seismic events with and without energy 

uncertainty have very similar ACF values and almost identical SOF-time from ACF. 

Figure 4-17c and d indicate that a slight difference of sill and nugget is shown when 

considering energy uncertainty. The change of SOF-time is less than 1 day, and thus the 

SOF-time from the semivariogram remains the same value. Figure 4-17e and f also 

indicate a very similar MI value. The results in Figure 4-17 demonstrate the energy 

uncertainty of seismic events will cause limited impact on the correlation results. 
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Figure 4-17 Correlation analysis results using the ACF method on (a) raw seismic energy data and (b) seismic energy 

considering uncertainty; the semivariogram method on (c) raw seismic energy data and (d) seismic energy considering 

uncertainty; the Moran’s I method 

 

4.6. Clusters methods and spatial, temporal correlations based on clusters 
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4.6.1. Spatial-temporal cluster based on face advances. 

The spatial and temporal correlation analysis in Section 5 demonstrates the overall 

correlation of all seismic events in LW102. However, as seismic events from similar 

sources are more likely to be clustered in time and space, the correlation result of seismic 

events in one cluster may be interfered by events in other clusters. A seismic event in a 

cluster commonly presents a significant correlation with other seismic events in that 

cluster but shows independence to the evens that belong to other clusters (Kijko and 

Sciocatti, 1995). To remove the interference between different seismic event clusters and 

explore the correlation within individual clusters, a spatial-temporal based clustering 

method is used.  

According to the data of LW102 face position at each production date, the distances of 

individual seismic events to the longwall face at the time of being recorded can be 

calculated (hereafter referred to as face-event distance). Figure 4-18 shows the boxplot of 

face-event distances on each production date over the monitoring period in LW102. In 

this figure, each box shows the face-event distance distribution within the day. The 

coloured box ranges from the 25th percentile and 75th percentile, and the transverse line 

within the box indicates the median of the face-event distance.  

 

Figure 4-18 Boxplot of face-event distance distribution in each day versus the date, red circle indicates the range of 

clusters. 
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Figure 4-18 shows that seismic events generally first presented at around 200-300 m 

ahead of the face, and as the progressive advance of the face, the face-event distance 

reduced to about 50 m. This trend repeated seven times over the monitoring period, 

representing the cyclical change of mining-induced stress, which forms the basis of 

clustering. Therefore, 7 clusters of seismic events are determined based on the cyclical 

tendency of the median face-event distance in Figure 4-18. The identified clusters are 

listed in Table 4-5, and the spatial distribution of seismic events in seven clusters can be 

seen in Figure 4-19. 

Table 4-5 The details of seven clusters of seismic events. 

Cluster 

# 

Start time End time Number of seismic events with log E > +2.3 

1 18-Sep-14 12-Nov-14 952 

2 13-Nov-14 29-Nov-14 402 

3 30-Nov-14 17-Jan-15 1395 

4 18-Jan-15 17-Feb-15 1436 

5 18-Feb-15 21-Apr-15 1568 

6 22-Apr-15 6-Jun-15 1716 

7 7-Jun-15 8-Jul-15 751 
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Figure 4-19 Spatial distribution of seismic events in different clusters in LW102 

4.6.2. Temporal correlation assessment of seismic events within individual clusters 

Based on the clustering result in Section 4.5, temporal correlations within individual 

clusters can be explored using both ACF and the semivariogram function similar to the 

procedure in Section 5.1. Figure 4-20 shows the ACF of the identified seven seismic 

clusters. According to this figure, for most of the seismic clusters, the SOF-time of 

cumulative daily energy is 2-4 days, respectively. Furthermore, a lower SOF-time of 

cumulative daily energy is presented when investigating the ACF in clustered data. The 

reason could be that in the plot of ACF like Fig.1a, at a specific lag k, the ACF value for 

total seismic data is approximately the average of the ACF values for individual clusters. 

Therefore, for the ACF of each cluster, the ACF value with smaller k tends to be lower. 

The SOF-time only depends on the first point when the ACF value is lower than Bartlett’s 
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limit. Therefore, if the ACF value at a small k in one of the clusters is occasionally lower 

than Bartlett’s limit, the SOF-time for this cluster would be low.  

 

Figure 4-20 SOF-time result of each cluster calculated by ACF using the cumulative daily energy. 

Figure 4-21 shows the semivariogram result of the identified seismic clusters. 

Exponential fitting is used as determined in Section 4.3. According to Figure 4-21, 

seismic clusters show different fitting curves and parameters, indicating various 

correlations between clusters. The SOF-time, nugget and sill of the seismic event energy 

for each cluster are summarised in Figure 4-22. Compared to the SOF-time using 

cumulative daily energy, a higher SOF-time is presented when using the non-evenly 

spaced seismic energy data. It suggests that converting the non-evenly spaced seismic 

energy data to the cumulative daily energy data may weaken its temporal correlation. 

As discussed in Section 4.2, in order to compare the correlation between clusters, the 

SOF-time is not the only assessment measure; the nugget and the sill can also reflect vital 

information. A relatively strong correlation cluster should have a large difference between 

sill and nugget with an appropriate SOF-time. In addition, the small nugget indicates a 

strong correlation of the events within a short period, and the small sill indicates a strong 

correlation of the events with a large time difference. 
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Figure 4-21 Semivariogram plot for each cluster 

 
Figure 4-22 SOF-time, nugget, and sill for each cluster 

4.6.3. Spatial correlation assessment of seismic events within clusters 

Apart from the temporal correlation, the spatial correlation can also be investigated based 

on the identified clusters. The spatial correlation of different seismic clusters can be 

represented by the evolution of Moran’s I over the monitoring period. Figure 4-23a shows 

the Moran’s I result of seismic data in LW102 during the monitoring period, separated by 

different clusters. For most clusters, such as Clusters 1, 3, 5, 6, and 7, there will be one or 

more peaks of MI located in the middle of each cluster period, and MI values at the start 

and end of the cluster are lower than the peak value. It illustrates the concentration and 

transfer of the high-density seismic activity area from one cluster to another as a response 
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to progressive coal extraction in the longwall face. The reason could be that the seismic 

events tend to assemble in the centre of clusters. Still, with the advance of the longwall 

face, the seismic events transfer from one centre to another, which positively increase the 

randomness of the event location and decreases the MI value. Furthermore, the peak 

value, the range of MI, and the evolutionary process show different patterns among the 

identified seven seismic clusters, which is mainly because of the varying spatial 

correlation of seismic events during the panel retreating.  

To investigate the MI characteristics within one cluster, three typical MI at the start, the 

highest MI and the end of Cluster 5 are used for analysis. Usually, the transformation of 

seismic events between clusters leads to a relatively low MI value. However, at the start 

of Cluster 5, MI may present a higher value if the events are concentrated in more than 

one centre. Also, in Figure 4-23b and Figure 4-23d, the semivariogram at the start shows 

a higher nugget and a lower SOF-space, indicating a low spatial correlation and a low 

radius of the correlative area. In contrast, in Figure 4-23c, the peak MI point presented a 

lower nugget and higher SOF-space due to a large and concentrated seismic events area. 

Due to limited seismic data available within each week, discrete semivariance points and 

poor semivariogram fitting were encountered. This may introduce an error in the 

correlative radius estimation. Therefore, a certain amount of data that can be used in 

semivariogram analysis should be required. 
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Figure 4-23 (a)Moran’s I separated by clusters of seismic events and semivariogram for the (b) start, (c) peak and (d) 

end of Cluster 5. 

4.7. Discussions 

In Section 4.3, the temporal correlations for both unevenly spaced and cumulative data 

are investigated. The unevenly spaced seismic data are cumulated based on days in order 

to implement ACF to investigate the SOF. The unit of cumulation is a critical parameter 

that will primarily affect the correlation accuracy if not defined appropriately. Due to a 

working circle of 8 hours in the study mine site, and to guarantee enough samples in each 

cumulative unit, the unit of cumulation is set as one day as a multiple of 8 hours. The SOF 

is calculated based on ACF appropriately in Section 4.3, while it is relatively different 

from the SOF calculated for unevenly spaced data using semivariograms in Section 4.3. 

One reason could be a difference in the input data, while the other reason might be the 

limitation of the sample number after temporal cumulation based on one day. The 

cumulation has the advantage of smoothing the seismic data in the time domain but may 

also hide the short-term correlation behaviour inherited on that day.  

In the temporal correlation of the SOF evolution in Section 4.3, the selection of a moving 

time window is critical. A too-short moving time window will not reflect the real 

correlative period. A too-long moving time window will decrease the variance and 

increase the chance that the data being affected by noise within each time window. 40 
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days moving time window is selected to calculate the variation of SOF along the total 

period in Section 4.3. In this variation distribution, the trend of how SOF changes a 

different times is more critical than the exact value of SOF. The reason is that the SOF 

value will be affected by the length of the moving time window, no matter if it is the best 

moving time window, but an appropriate moving time window will present the most 

apparent trend of the SOF variation. 

Similar to SOF changes over time in Section 4.3, the Spatial SOF could be variational 

along with different locations and the range of study area. The whole space can be 

separated into grids and calculate SOF based on spatial semivariogram. The grid size will 

be critical, as well. A too-large grid size will increase the chance that the data being 

affected by noise. In contrast, a too-small grid size will limit the number in calculating 

the correlation and decrease the reliability of the result of the correlation. Meanwhile, due 

to an aggregation of the most seismic events and randomness of high energy events, the 

spatial correlation calculated by grids will have a large difference with nearby grids. 

Therefore, the correlation evolution analysis in the space domain for seismic-like data is 

still a challenge. 

In Section 4.5, the ST correlation gives a relatively stable correlation property when 

calculating the correlation around three typical points. The nugget and sill are very 

similar, and the SOF has some differences. This conclusion seems to be the opposite of 

the conclusion that the correlation is variational in the time and space domain discussed 

before. But in fact, the temporal and spatial correlation assessment detects the overall 

trend of correlation. In contrast, ST correlation chooses three typical points and assesses 

the correlation by taking the three points as a basis. The correlation near the reference 

points (nugget) and the correlation far from the reference points (sill) are based on the 

three points. The three points all have relatively high energy, which indicates that they 

might be induced by the slipping of pre-existing fractures. They are indeed located in the 

major centre of one cluster. The similar nugget and sill value might result in the major 

cluster centre. There is a concentrated fractured zone, no matter if there is a natural fault. 

The three locations all have a similar event density, energy distribution, and even 

seismicity source mechanism. And the different SOF values might reflect the difference 

in the fractured zone size and the different stages of fractures that most of the events are 

in. 
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4.8. Conclusions 

In this study, quantitative approaches were applied for temporal, spatial and spatial-

temporal correlation analysis of a set of seismic data in the longwall mining process.  

ACF was used to evaluate the correlation of evenly spaced seismic data and in 

combination with semivariogram, whereby the temporal correlation of unevenly spaced 

seismic energy was also assessed. The SOF-time is applied to represent the period that a 

notable correlation of seismic data shows within. The SOF-time is calculated as six days 

for cumulative daily energy and 12 days for unevenly spaced seismic energy data, 

representing a potential reference period that seismic events within this period can 

contribute to further evaluation and prediction. A semivariances assessment detects the 

maximum correlative period as 40 days, and the temporal correlation within this period 

can represent a universal correlation of a period larger than 40 days. With the maximum 

correlative period as a moving time window and on account of the long-term mining 

operation and the variability of the temporal correlation in different mining stages, the 

evolution of the temporal correlation is determined.  

The spatial correlation of the seismic data was estimated using Moran’s I. Based on the Z 

value, most of the monitoring periods present a strong spatial correlation. To determine 

the radius of the correlative area (SOF-space), the spatial semivariogram assessment was 

applied. The seismic data shows a strong spatial correlation within 23 metres area, which 

can be explained as the seismic response to mining abutment stress or a set of localised 

discontinuities. The correlative period and distance scale can be used as the critical input 

parameters for seismic/rock burst hazard prediction, seismic attributes inversion, and 

mining-induced fracture characterisation.  

The spatial-temporal correlation has been assessed by investigating the distance and time 

difference with respect to three reference points. The quantitative assessment shows 

similarity on all three points and can be explained by the fracture behaviour during coal 

extraction. The proposed method introduced in Sections 5 and 6 improved the 

understanding of correlation for various purposes and multiple data types. It provides a 

rational approach to quantitatively assess the seismic data correlations in longwall 

mining.  
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To assess the spatial and temporal correlation between different clusters, clear clustering 

characteristics have been observed by investigating distance distribution to working face 

versus time distributions. Within each cluster, the evaluation of correlation can have 

variable patterns. More parameters, such as nuggets and sills, must be applied when 

assessing the correlation between or within clusters. The investigation of correlations 

within clusters provides an understanding of the correlation within a specific period of 

mine activities or an area of rock mass discontinuities. The SOF-time and SOF-space of 

each cluster offer references to select a more accurate time window and grid size for other 

seismic data-driven prediction tasks. The ACF value, MI value, the nugget and sill in the 

semivariogram all contribute to evaluating the reliability of the SOF. 
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Chapter 5. Seismic-derived fractures during longwall mining and 

their integration into numerical modelling 

The case study mine is the same site used in Chapter 3, which is Yuejin coal mine, 

operated by Yima Coal Mining Group, in the west of Henan Province, China. Longwall 

(LW) 110 in this mine with comprehensive seismic monitoring data was selected as the 

case study panel. The extraction of LW 110 applied the Longwall Top Coal Caving 

(LTCC) mining method. The detailed panel information can be found in Chapter 3. The 

pre-process of the raw analog seismic signal used in the 16-channel “ARAMIS M/E” 

seismic monitoring system is the same process that already introduced in Section 3.1. 

This study used the commercial seismology software Insite-Geo from Applied 

Seismology Consulting (ASC) to extract seismic signal information and calculate 

moment tensors. Since the majority of seismic sensors were installed around the case 

study longwall panel, the input P wave velocity model was assumed as homogeneous with 

the velocity of 4,000 m/s as an average value (Cai et al., 2014). Based on this single-

velocity model, the collapsing grid search algorithm was implemented to locate seismic 

events. To eliminate the influence of artefacts during the integration and differentiation, 

the received uniaxial seismic waveforms were bandpass filtered with the cap frequency 

of 150 Hz. The ratio of the average amplitude in the front window and back window (as 

shown in Figure 5-1) was used to pick the P wave arrival time. During the background 

noise period, the amplitude ratio is close to zero. When the sensor receives seismic 

signals, the amplitude ratio will have a sudden increase, and the arrival time can be picked 

up by this change. Using this method, the signal-to-noise ratio of the filtered waveform 

was significantly enhanced. An example of the synthetic waveform pick-up is shown in 

Figure 5-1. The seismic event is picked up by six different sensors, and each sensor 

received three seismic signals that indicate the displacement at the sensor location in x, y, 

and z directions, as Figure 5-1 shows. In this research, the x direction is set as east–west, 

the y direction is set as north–south, and the z direction is the depth. Since the original 

uniaxial sensor is cemented on the floor, the original received uniaxial seismic signal is 

the signal in the z direction only.  

 



109 
 

 

Figure 5-1 An example of synthetic triaxial seismograms and its P wave pick-up. 

5.1. Fracture properties determination from seismic parameters and moment tensor 

inversion 

Seismic source parameters considered in this study include seismic moment, moment 

magnitude, source radius, and the aperture change of induced fractures. The source 

dimension is usually expressed as the radius of the fracture plane and is related to the 

corner frequency of the seismic wave, which can be calculated as (Brune 1970; Duncan 

and Eisner 2010; Glazer 2016):  

𝑅 =
𝐾𝑐𝛽0

2𝜋𝑓𝑐
(5.1) 

where 𝑅 is the source radius, 𝛽0 is the S wave velocity in the vicinity of the source, and 

𝐾𝑐 is a constant that depends on the source model. In this paper, P waves are used to solve 

the corner frequency 𝑓𝑐, so 𝐾𝑐 is set as 1.32 based on (Madariaga, 1976). 

After the diagonalisation of the moment tensor, it can be expressed in the principal axis 

coordinate as follows: 

M = [
𝑀1 0 0
0 𝑀2 0
0 0 𝑀3

] = 𝑢𝑠 [
(𝜆 + 𝜇)𝑛̂𝑣̂ + 𝜇 0 0

0 𝜆𝑛̂𝑣 0
0 0 (𝜆 + 𝜇)𝑛̂𝑣̂ − 𝜇

] (5.2) 
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where u is the displacement in the direction of motion for fractures as derived by seismic 

data, s is the surface area of the fracture, and 𝑛̂ and 𝑣 are the normal and motion direction 

of the fracture, respectively. λ and µ are Lame constants defined as: 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
(5.3) 

𝜇 =
𝐸

2(1 + 𝜈)
(5.4) 

where E is the elastic modulus and 𝜈 is Poisson’s ratio. The fracture aperture change 𝜏 

deduced from the focal mechanism can be obtained as (Zhao et al. 2019): 

𝜏 = 𝑢 × cos 𝜃 =
4𝜋𝑓𝑐

2 × cos 𝜃 × 𝑡𝑟(𝑀)

𝐾𝑐
2𝛽0

2 × (3𝜆 + 2𝜈)𝑛̂𝑣
(5.5) 

where θ is the angle between 𝒏 and 𝒗, which can be obtained by using moment tensor 

inversion, and 𝑡𝑟(𝑀) is the trace component of the diagonalised moment tensor matrix. 

To apply the Equation 5.5, some basic assumptions are required: first, the failure type of 

the seismic induced fracture need to be shear-tensile; and the rock material is 

impermeable, inert and incompressible. 

Using the synthetic triaxial signal generated from shear or tensile events, M0, R and τ can 

be calculated based on the empirical equations in Chapter 3. The spatial distribution of 

seismic events used for this analysis is shown in Figure 5-2. A few events are located 

around the F16 fault. Also, the contour map of the seismic event probability density 

indicates that intensive seismic activities were reported at the tailgate side of the panel, 

near the goaf zone, which suggests that frequent fracture generation and propagation 

occurred in the rock mass around the tailgate.  
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Figure 5-2 2D spatial distribution of seismic events in LW110 that are used for this analysis. The blue lines are the 
kernel density contours, the colour bar indicates the moment magnitude, and the red line denotes the reverse fault. 

The source parameters of the seismic events were calculated based on synthetic triaxial 

signals. Figure 5-3 shows the density distribution of seismic moment magnitude, fracture 

source radius, and fracture aperture (in the logarithm scale). The moment magnitude 

ranges from -2 to 2.3, the fracture radius ranges from 7 m to 17.6 m, and the aperture 

ranges from 0 m to 0.023 m, with most of them between 0.01 mm to 1 mm. Note that the 

aperture here is only taken as the aperture change. As shown in Figure 5-3a, the moment 

magnitude has a normal distribution as a result of incomplete recording of low-energy 

seismic events due to sensor sensitivity. For fracture radius in Figure 5-3b, it also follows 

a similar distribution but with a long tail. Some events showed an apparent higher radius 

than others, which might be the seismic events generated by the interaction of material 

extraction and tectonic activities. Since the aperture tends to have a directly proportional 

relationship with the source radius, certain events also have much larger apertures as 

Figure 5-3c shows. Most mining-induced fractures are less than 1 mm wide while a few 

events with high seismic moments can have aperture change of 1–2 cm.  
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Figure 5-3 Density distribution of (a) seismic moment magnitude, (b) mining-induced fracture radius and (c) aperture. 

As introduced in Section 2.1, seismic events can be classified by different failure types 

according to the moment tensor inversion. The failure type can be characterised as the 

DC majored (shear failure) and non-DC majored (tensile failure). To investigate the 

distribution of shear failure and tensile failure conveyed by seismic data, the probability 

density distributions of M0, R and τ as clustered by different failure types are shown in 

Figure 5-4. In general, the seismic events of two different failure types show similar 

density distributions. Theoretically, shear failure should have a higher seismic energy 

release compared to tensile failure.  

 

Figure 5-4 Probability density plot of (a) moment magnitude and (b) source radius and (c) seismic induced aperture of 
mining-induced fractures as classified by different failure types. 

On the other hand, the shear failure with large energy release is related to the interaction 

of mining activities with geological structures. To further investigate the spatial 

distribution of shear failure and tensile failure related to the F16 reverse fault, Figure 5-5 

cross-plots the moment magnitudes of seismic events with different failure types and their 

distances to the reverse fault F16 in LW110. It shows that the distance to the reverse fault 
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does affect the energy magnitude of mining-induced seismic events, especially the shear 

type failure. When approaching the reverse fault, the moment magnitude of shear-type 

events increases with a steeper slope than the tensile-type events.  

 

Figure 5-5 Correlation between moment magnitudes of seismic events and their distances to the F16 fault for (a) tensile 
failure and (b) shear failure. 

The other condition that affects the distribution of seismic events and the induced 

fractures is the relative location of the goaf area. The goaf area is noted in Figure 5-2, and 

from these two figures, the seismic events present a cluster trend near the goaf area. 

Besides, the M0, R and 𝜏 can also reflect different conditions on the goaf side and the 

solid side. In Figure 5-6, the parameter X at the x-axis represents the location along the 

working face (from the first hydraulic support to the last). The X=0 is the middle of the 

working face. Thus, the length of the face is from -100 m to 100 m on the x-axis, as the 

red dashed line shows. The X<-100 m area is the solid coal side, and the X>100 m area 

is the goaf side. From Figure 5-6 a and c, the moment magnitude and the aperture at the 

goaf side are slightly lower than the solid side for both shear and tensile failures, which 

is due to more frequent seismic activities on the tailgate side. Although the total energy 
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release of rock fracturing would be larger on the tailgate side, the magnitude of each 

seismic event is lower, with a more frequent fracture activity and smaller fracture size. 

On the other hand, the radius in Figure 5-6b shows a low peak in the centre of the not 

mined area compared to the tunnel area for both failure types. The average size of each 

single fracture is wider near the tunnel than the not mined area.  

 

Figure 5-6 The box plot of (a) moment magnitude, (b) source radius and (c) aperture change in the logarithm scale as 
classified by different failure types. The red dashed line shows the edge of the longwall panel. 
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5.2. Interpretation of fracture distribution and model generation based on 

calculated fracture properties. 

This section is going to analysis fracture plane orientation and the mining-induced 

fracture network model derived from seismic data. the orientation is given by the method 

of fault plane solution which decides the fault plane from two potential fracture planes 

from moment mechanism resolution. 

Since the moment tensor inversion result indicates two potential fault planes and normal 

vectors, structure analysis is then conducted to determine the preferential orientation of 

the seismic events. Since seismicity tends to occur along one or more sets of pre-existing 

subparallel joints in rock, we can obtain the fault plane solutions (the orientation of the 

fractures) with the help of a three-point method (Fehler et al. 1987). In this study, as 

shown in Figure 5-7, for each seismic event X, the moment tensor inversion provides two 

fault plane solutions, Fault Plane 1 (FP1) and Fault Plane 2 (FP2). Points Y and Z are two 

events around X, which are assumed to be triggered along the same plane of X (the red 

plane in Figure 5-7). Therefore, the fault plane solution for X would be FP1 given the 

smaller angle difference with the red plane, compared to FP2. To determine the 

orientation of mining-induced fractures, the three-point method is applied to back-

calculate the preferential fracture orientation within a cloud of events by fitting every 

group of three events with one potential failure plane, resulting in a total of 𝐶𝑛
3 planes (a 

n-combination of a set of three points, n is the total number of nearest points to Point X 

including itself). Considering the location accuracy and the extent of the fracture zone, 

the events fitted in each plane can be constrained spatially within a particular range (100 

m in this research) (Collins et al. 2002). The obtained fracture network can then be 

displayed in a stereonet, and areas with high-density fracture poles in the stereonet 

indicate the preferential orientation of mining-induced fractures. 

 
Figure 5-7 Schematic of the three-point method used in the structural analysis, with three seismic events at Points X, 
Y and Z and two potential fault planes FP1 and FP2 for Point X. 
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The distribution of the seismic events reflects the shape of mining-induced fractures. 

First, the cross-sectional view (facing the longwall retreat direction) of the spatial 

relationship between seismic events and the longwall panel is shown in Figure 5-8. Most 

seismic events are located about 10–30 m above the longwall panel, which is within the 

thick mudstone layer. The densest clustered area of seismic events is ~20 m above the 

longwall panel, which is mainly caused by the top coal caving operation. Since the rock 

will be more vulnerable near the goaf side (tailgate), more seismic events are concentrated 

near that side.  

 

Figure 5-8 The probability density plot of seismic events: a cross-sectional view along the face retreat direction. 

The orientation of mining-induced fractures can also be calculated from the moment 

tensor decomposition as Section 3.1 shows. From two potential sets of fracture planes, 

the most likely fault plane orientation can be solved by the three-point method. 

Considering the location error and fracture slip, the preferred fault plane direction is 

determined based on every set of three seismic events within the total of 2,807 events. 
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The obtained pole (the normal vector) distribution of fracture planes is displayed in the 

stereonet, and the high-density area indicates the overall preferential orientation of 

mining-induced fractures (Figure 5-9a). 

 

Figure 5-9 (a) Density distribution of the poles of mining-induced fractures determined by the three-point method in a 
stereonet. The stereographic projection of the pole density of raw fracture planes (left) and fracture planes (right) 
determined by the three-poi 

The fault plane solutions for the tensile and shear failure are shown in Figure 5-9b and 

Figure 5-9c, respectively. The left figures show the pole distribution of all potential 

fracture planes, while the right figures show the pole distribution after applying the three-

point method for structural analysis. It is also interesting to observe that tensile fractures 

are clustered in low dipping angles (<10°), representing near-horizontal fracture planes, 

and the dip direction is towards NNE. On the other hand, shear fractures are sparser, with 

dipping angles being less than 40 degrees. The dip direction for the majority of shear 

fractures is also NNE, and the secondary dip direction is towards NW. The northern-
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facing dip direction is believed to be caused by the combined effect of the longwall 

mining direction (moving into NW) and the previously mined area (goaf) in the NE 

direction of LW 110.  

With the distribution of moment magnitude classified by failure types in Figure 5-9b and 

Figure 5-9c, the fracture orientation of both failure types does not show a clear 

relationship with the moment magnitude. The high magnitude events are distributed 

evenly, which indicates that there is not a clear geological structure or structure set with 

a dominating dip direction and dip angle. 

The spatial distribution of fractures induced by longwall mining is presented in Figure 

5-10. Each fracture is represented by a disk. The radius of the disk is the source radius. 

The average aperture change of all fractures was 0.001 m, which is too small to be 

correctly presented and thus is not shown. The distributions of the tensile failure and the 

shear failure are visualised separately in Figure 5-10.  

 

Figure 5-10 Fracture distribution induced by the coal extraction process in LW110 from May 2011 to October 2012, as 
coloured by the shear failure and tensile failure. It is presented as overview (a) and side view (b). 

To investigate the relationship of fracture orientations with the goaf area, the probability 

density plots of dip direction and dip angle along the face-line (X as defined in Figure 

5-7) are plotted in Figure 5-11. In Figure 5-11a, most events have a dip direction of 100–

300 degrees, the red dashed line is the dip direction of the longwall panel, which is about 

204 degrees, and the dip direction of the seismic event shows a symmetrical pattern at the 

centre of about 204 degrees. The dip direction at the tailgate side has more variation than 

the maingate side. There are two other clusters that concentrate on the goaf side, which 

have about ±50 degrees variation from the longwall panel dip direction. In Figure 5-11b, 

the dip angle of the seismic events shows a similar pattern with the dip direction, and the 
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highest density area is about 12 degrees which is close to the dip angle of the longwall 

panel. The dip angle of seismic events also varies more on the tailgate side.  

 

Figure 5-11 The probability density plots of (a) dip direction and (b) dip angle of seismic events across the face-line. 
The red dashed line shows the dip direction and dip angle of the longwall panel. 

The difference of the failure type also presents different fracture geometries. As shown in 

Figure 5-12 a and b, the dip direction and dip angle of shear-type events are more widely 

distributed (higher variance) compared with the tensile-type events. The average dip 

angle of tensile-type events is slightly lower than that of shear-type events, suggesting 

that tensile failure fault planes are closer to the horizontal direction, the same as reported 

in Section 4.1. 
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Figure 5-12 Probability density plots of the (a) dip direction and (b) dip angle of mining-induced fractures as classified 
by tensile and shear failure types. 

5.3. Numerical modelling of fracture displacement coupled with seismic events 

during the mine extraction process 

With the seismic-derived fractures analysed in Sections 5.1 and 5.2, the spatial 

distribution of fractures induced by longwall mining along with their fracture size, 

fracture orientation and aperture change can be characterised around the longwall panel. 

In order to comprehensively analyse the effect of the induced fractures on the rock 

properties around the longwall panel during progressive coal extraction, a number of 

numerical models have been developed based on the seismic events recorded at the study 

mine. 

Seismic event selection was made according to the b-value calculated in Section 3.2. As 

shown in Figure 5-13a, the red line is the b-value calculated based on instrument 

magnitude within every five days of time interval, and the blue line indicates the rolling 

average of every five b-values nearby. A cyclical increase and decrease in the b-value can 

be observed over the life span of this longwall. The b-value increase can be seen as the 

strain softening or elastic stress build-up, and the b-value drop may indicate strain 

hardening or dynamic failure (Main et al. 1989). According to Figure 5-13b, the start and 

the end of the monitoring period with a low number of seismic events are excluded in this 

analysis, and thus the overall mining period of LW 110 can be roughly divided into four 
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cycles to be used for the following numerical modelling tasks, as the green lines shown 

in Figure 5-13a. Each cycle contains a b-value increase and a b-value drop. 

 

Figure 5-13 Evolution of (a) b-value and (b) seismic event frequency (number of events) during the monitoring period.  

The date period and face advance distance of each cycle are shown in Table 5-1. The 

spatial location of seismic events and corresponding cycle position can be seen in Figure 

5-14. The corresponding face-line position at the start of seismic monitoring is indicated 

by the solid red line in Figure 5-14, and the selected four cycles are at the middle to the 

end segment of the longwall panel. The upper side of LW 110 is the tailgate, as introduced 

earlier in Chapter 5, and the F16 reverse fault is located next to the maingate side of LW 

110, as the green dashed line shows. Seismic events are concentrated at the tailgate side. 



122 
 

A similar conclusion can be drawn from Figure 5-14: in the space domain, the four cycles 

are also located in the area where the seismic events are generally concentrated. From the 

conclusions of Chapter 4, the seismic events involved in these four cycles are both spatial 

and temporal correlated. The b-value variation can be used as the basis for the clustering 

analysis of seismic events. Therefore, the correlation analysis applied to the evens in four 

different cycles separately will yield different results, and the simulation of coal 

excavation all together in one go or by multiple sequential steps will show different 

phenomena. Also, in order to eliminate the model instability and convergency issues 

caused by large-scale excavation, the simulation in this project is designed to cover the 

four b-value cycles, with a total of eight sequential excavation steps on the numerical 

model to be proposed in the following section. 

Table 5-1 Date of Cycles 1-4 and their face advance distances 

 Start date Peak b-value date End date 
Face advance 

distance (m) 

Cycle 1 16/10/2011 11/12/2011 14/01/2012 96.7 

Cycle 2 14/01/2012 17/02/2012 16/03/2012 67.4 

Cycle 3 16/03/2012 13/04/2012 17/05/2012 71.8 

Cycle 4 17/05/2012 23/07/2012 9/08/2012 66.8 
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Figure 5-14 Spatial location of Cycle 1-4. The green dashed line indicates the F16 fault, and the red solid lines indicate 
the face location when the seismic monitoring started. Five red dashed lines outline the face advance ranges during 
the four cycles. The red star indicates nine vertical stress measurement points in the following numerical simulation. 
Seismic events were clustered into four cycles and others. The density probability of all seismic events estimated by 
KDE is shown in the blue line contour.  

5.3.1. Model development 

A 3DEC numerical model was developed by simplifying the mining layout at the Yuejin 

Coal Mine, China. The model workflow is shown in Figure 5-15. A numerical model is 

first created following the stratigraphy and geometry of the study longwall panel with 

extensive seismic monitoring. The model is large enough to simulate longwall panel 

excavation during the abovementioned Cycles 1-4. In this research, the fault and rock-

solid are modelled using the discrete element method. The seismic-derived DFN is used 

to segment the model as well as an intermediate structure between discrete elements. The 

rock properties, mechanical properties of the fault, and in-situ stress are then set and input 

into the model based on previous research (Wang et al. 2020; Cai et al. 2021b). 

Afterwards, since the study mine contains multiple panels and the target panel, LW 110, 

was at the edge and scheduled to be mined last, the adjacent longwall panel had already 

been extracted and was simulated as goaf. By doing so, the model has been restored to its 

original state before the mining operation starts at the LW 110 panel. Therefore, the 
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displacement for rock and fractures are reset to zero to complete initialization before the 

simulation runs.  

During simulating the excavation process of LW 110, at each excavation step, the relevant 

seismic-derived fractures for that step are activated in the model step by step (eight 

excavation steps for four cycles in total), and the coal material is extracted at once during 

each excavation step. The relevant fractures contain the spatial and temporal information 

recorded over that specific excavation step. As shown in Figure 5-14, some events 

(denoted as Pre-existing fractures) occurred within the area where the working face 

passed but before the earliest cycle started. They are chosen from all seismic event in LW 

110 panel and occurs before the Cycle 1 started within the target area and spatially 

occurred within the target area. These seismic events are inputted into the model before 

adding in any mining-induced fractures from Cycle 1-4. After each step of coal extraction, 

the stress distribution and fracture information around the mining area are recorded and 

updated in the model. The model result of stress distribution is then compared with the 

same simulation without considering and simulating seismic-derived fractures. 

Meanwhile, the fracture information is also analysed and compared with the result of 

seismic monitoring. 

 

Figure 5-15 Workflow of the simulation process. The first five steps in the flowchart are only required for the model 
set-up, and the loop covers an iterative process to be executed within each excavation step 
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The LW 110 panel is 200 m wide and fairly deep at about 800-830 m underground. The 

coal seam thickness is about 10 m with a maximum dip angle of 12°. The seam is overlain 

successively by 18 m thick mudstone, 2 m thick coal layer, 4 m thick sandy mudstone, 

and underlain by 4 m thick mudstone as described in Figure 5-16. The interbedding layers 

are mainly mudstone. Another thin coal seam (about 2 m) is located at 28 m above the 

mining level and the strata above the thin coal are mainly sandy mudstone and sandstone. 

The fully mechanized top coal caving method was used to recover the total 10 m height 

of the panel.  

Primarily, the numerical model developed contains 95,756 grids with a geometry of 800 

m×500 m×300 m (in the order of X, Y, and Z axes). The model’s upper boundary is 400 

meters higher than the working face, which is about two times the size of the face width 

to avoid the boundary effect. The width of the simulated longwall panel is fixed at 200 m 

and at 800 m deep. This gives the panel width-to-depth ratio of 0.25, which falls in the 

subcritical mining category. 

The target panel, LW 110 has an adjacent panel (LW 090), which is extracted before the 

start of mining LW 110. As Figure 5-16 shows, LW 090 is located at the top-right side of 

LW 110. In this research, solid rock layers are simulated by grids with a brick shape. The 

grid size of rock layers is the smallest in the surrounding area of the longwall panel and 

gradually increases towards the model boundary. The smallest grid size is 6 m×6 m×3 m, 

while the largest is 40 m×40 m×20 m (in the order of x, y, and z axes). The longwall face 

retreat direction is along the y-axis.  
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Figure 5-16 Model configuration based on the field geological condition, the thickness and lithology of each strata 
layer are shown in the table at the right side.  

According to the simulation workflow, the in-situ stress condition is then applied to the 

model. The stress measurement locations at the mine site were in the main haulage 

roadway, which is too far away from the modelling area. Therefore, the in-situ stress is 

applied according to Cai et al. (2020), in which a FLAC3D model was developed to 

simulate regional stress distribution and later verified by in-situ stress measurement. 

Therefore, the same stress condition is applied in this model: 𝜎1=28.9 MPa, 𝜎2=23.9 MPa 

and 𝜎3 =20.5 MPa. The minimum principal stress (𝜎3) is in the vertical direction (z axis), 

and the maximum (𝜎1 ) and intermediate (𝜎2 ) principal stresses are in the horizontal 

direction along x and y axes, respectively.  

The boundary condition of the model is that: the bottom boundary is fixed, (velocity = 0) 

and roller boundary (i.e., displacement in the vertical direction is allowed, and the 

horizontal direction is fixed) is applied onto the four sidewalls (Chaulya et al. 1999).  

After model initialization, the contour plot of the vertical in-situ stress at the model front 

view (cross-section of the x-z plane) is shown in Figure 5-17. To better eliminate the 

artificial effects caused by small-size elements, the stress contour plot is shown in the 

volumetric average of each element. As presented, despite a dipping stratum, the vertical 

stress roughly follows the 0.025 MPa per metre gradient. The plot indicates about a 0.75 

MPa difference between the highest and lowest vertical stress within the longwall panel, 

as a result of the dipping angle and 30 m elevation difference across the panel. Despite 
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the stress distribution looks discontinuous in Figure 5-17, the structure is expected to be 

continuous. The discontinuity is a result of the bedding plane and does not reflect the 

actual physical conditions. 

  

Figure 5-17 Contour plot of the vertical stress distribution for the modelled area. The figure shows the front view (cross-
section of the x-z plane) of the panel with face moving along the y-axis, and the location of LW 110 is shown in the 
middle.  

 

5.3.2. Material and seismic-derived fracture properties  

The physical properties and thickness of the coal and coal measure rocks were determined 

based on field geological and experimental investigations (Cai et al. 2020b). The 

properties of all layers introduced in this research are summarised in Table 5-2. The 

density of the coal layer is at about 1,300 kg.m-3, and the mudstone and sandstone have a 

density of 2,200 kg.m-3 and 2,700 kg.m-3, respectively.  

Table 5-2 Mechanical properties of each layer used in the numerical model 

Lithology Density (kg.m-3) 
Young’s modulus 

(GPa) 
Poisson’s ratio 

Cap rock/Basement 2700 8.9 0.19 

Sandy Mudstone 2600 7.7 0.18 

Mudstone 2200 6.64 0.17 



128 
 

Coal 1300 5.87 0.17 

Sandstone 2700 8.9 0.19 

Since this research will mainly focus on the performance of the fractures, the rock blocks 

are defined as elastic material. Therefore, the joint between rock block elements is defined 

as elasto-plastic and follows the Mohr-Coulomb failure criteria. The Mohr-Coulomb 

failure criterion is determining the point of failure in materials like soil and rock. It works 

on the principle that failure occurs when the shear stress on a plane surpasses the shear 

strength of the material. This strength is a function of normal stress, defined by cohesion 

and internal friction angle. In terms of stress-strain, the model assumes an elastic-

perfectly plastic response. Deformation is elastic until reaching the yield point, defined 

by the Mohr-Coulomb criterion, then becomes plastic with no further stress increase. 

Since the mechanical properties of all joints are difficult to be directly measured, they can 

only be determined by trials and errors to match with field observations. The calibrated 

results are reported by Cai et al. (2020) which used cohesion = 2.0 MPa and friction angle 

= 30° for joint planes. 

An additional property to be determined is the ratio between the normal (𝑘𝑛) and shear 

joint stiffness (𝑘𝑠). From the perspective of calculation efficiency, that the stiffness of the 

blocks and joints are of the same order of magnitude. Therefore, based on information in 

the previous research, it was selected that (Gao and Stead 2014): 

0.1 <
𝐾 +

4
3𝐺

𝑏𝑘𝑛
< 1 (5.6) 

where b is the average block size, and 𝐾  and 𝐺  are the bulk and shear moduli of the 

blocks, respectively. With these considerations, there is a single elastic micro-parameter 

that is independent. The model's macro-deformability was then matched by rescaling the 

micro-elastic properties. After obtaining 𝑘𝑛 , the relationship of 𝑘𝑛  and 𝑘𝑠  is also 

summarised by (Li et al. 2022). The results shown in Figure 5-18 as well as the Equation 

5.6, suggest that for weak bedding planes, especially infilled with claystone, the normal 

stiffness can be set as 4 - 40 GPa/m. Based on mostly used value in Australian and 

worldwide benchmark, the ratio between normal and shear stiffness (𝑘𝑛/𝑘𝑠) is normally 

set as 10 (Bandis et al. 1983; Li et al. 2022). The range defined by Equation 5.6 and an 
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average block size of 3 m is shown in the figure as well. Thus, the model selected 𝑘𝑛 = 

10 GPa/m and 𝑘𝑠 = 1 GPa/m. 

 

Figure 5-18 The normal and shear stiffness of bedding planes used in previous studies and this research (Li et al. 2022) 

Additionally, the seismic-derived fractures will also affect the performance of the model 

by initiating sliding between rock block elements. The radius of disk-shaped fractures is 

calculated based on the fracture size shown in Section 5.2 with an initial aperture of zero. 

Here we assume that the seismic-derived fractures are all generated during coal 

extraction. As Figure 5-19 shows, each seismic-derived fracture is implemented in the 

model by cutting the rock block elements and generating a new joint of the same size, 

orientation, and location using the fracture information obtained from the seismic data 

above. In other words, before running the simulation, every fracture was put into the 

model, but they were initially considered closed due to their high cohesion values. As the 

simulation progresses, any fractures participating in the process are redefined to be open 

by setting their cohesiveness to zero. This change makes it easier for fracturing activities 

to occur within the model. The model effectively reflects the real-world process in which 

initially stable geological structures become destabilised as a result of mining-induced 

stress, resulting in fracture formation and propagation. The timing of adding each fracture 

also align with the onset time of the corresponding seismic event, which is reflected by 
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the eight longwall extraction steps at various face retreat distances in the numerical 

model.  

 

Figure 5-19 Rock block elements intersected by seismic-derived fractures 

5.3.3. Goaf extraction 

Since the modelled area also contains LW 090, which was mined before LW 110, the goaf 

formed by LW 090 needs to be considered before simulating the extraction of LW110. 

The physical location of LW 090 is at the top right side of LW 110 as shown in Figure 

5-20.  
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Figure 5-20 Vertical stress profile from LW 110 to LW 090 

Figure 5-20 shows the variation of normalized vertical stress along a profile line from LW 

110 to LW 090 at a depth of 2 m below the coal seam. It presents the vertical stress trend 

after extracting LW 090 and before mining LW 110. The stress curve follows the general 

trend of the stress distribution around a mined zone. Zones of vertical stress exceeding 

the in-situ overburden stress are known as the abutment zones, and the elevated stresses 

are known as abutment stresses. After the extraction of LW 090, high magnitude abutment 

stress appears around the neighbouring longwall panel LW 110. The location in which the 

elevated vertical stress decrease back to the in-situ stress is about 60 m from the tailgate, 

which means that about 60 m is affected by the extraction of LW 090. As the mining starts 

in LW 110, the dramatic decrease of the vertical stress after the face passing over will 

occur within 60 m from the tailgate. Within this area, the surrounding strata are in a 

transition state from the compression to extension. This phenomenon will inevitably 

reduce the inherent stability of the rock strata and induce mining fractures. This also 

explains that seismic-derived fractures are more active in this area compared to the area 

that are close to the maingate. 

5.3.4. Mining steps 
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After the goaf extraction, the overall displacement of the model was reset to zero. 

Therefore, in the following analysis, the model would only show new displacements 

caused by the extraction of LW 110. The extraction of the LW 110 in this simulation 

extracts the total of 10 m coal at the same time within each step though the extraction of 

LW 110 applied the (LTCC) mining method as stated above. The actual height of the 

shields and the coal cut at the working face is 3 m, and the rest of the coal is extracted by 

gravity caving behind shields. The extraction of total 10 m in simulation is reasonable 

because that the stress distribution caused by LTCC is in general similar to that caused by 

conventional longwall mining (Le et al. 2018). The similarity is due to the fact that LTCC 

uses the conventional longwall method for extracting the lower coal section.   

The extraction of the studied area in LW 110 was simulated by four mining cycles as 

defined earlier (Cycles 1-4 and each cycle has two excavation steps). After each 

excavation step, the unbalanced force in the model is monitored continuously to check 

whether equilibrium has been reached. A threshold value of 10-4 is set for the ratio of 

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐹𝑜𝑟𝑐𝑒

𝐹𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑔𝑟𝑖𝑑𝑝𝑜𝑖𝑛
 to control the completion of each excavation step in the model. If the 

unbalanced ratio is larger than 10-4 and the maximum vertical roof displacement is smaller 

than the mining height, this solving process continues until the unbalanced ratio becomes 

less than 10-4, and then, the next excavation step is simulated. Using this unbalanced ratio, 

about 40,000 to 50,000 calculation timesteps are completed in each excavation step. The 

ratio variation during the model equilibrium process is shown in Figure 5-21. Cycle 4 

takes longer to equilibrium according to the figure, and this may be because at this step 

the excavation runs through the entire model. In addition, a few fractures generated from 

Cycle 4 are not considered within the model domain as Figure 5-14 shows, since the 

induced fractures tend to occur at a certain distance ahead of the longwall face. Thus, the 

simulation result in Cycle 4 will only be used to show the final model state, and not be 

compared against the other three cycles hereafter.  

The mining-induced fractures considered in this model were pre-defined at the model set-

up stage to intersect rock blocks as shown in Section 5.3.3. The cohesion and tension of 

the fractures at this stage were assigned with an extremely high value (107 Pa) to force 

these fractures to maintain closed. After the initialise of the model (i.e., LW 090 is 

extracted), the fractures that located within the modelled area but occurred before Cycle 

1 starts are reset to be active, i.e., the cohesion and tension of these fractures are re-
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assigned to zero. This step resumes the mining state that the working face approaches the 

starting position of Cycle 1. In addition, before simulating each extraction step in Cycles 

1-4, the fractures involved in that step are also reset to be active according to the triggering 

time of these fractures and face positions. Therefore, a total of nine groups of fractures 

were activated in sequence during the whole simulation process. 

  

Figure 5-21 The evolution of unbalance force ratio during the equilibrium process for each excavation step in all four 
cycles 

5.3.5. Stress and displacement caused by progressive mining 

Figure 5-22a shows the displacement contour for a typical excavation step after reaching 

the model equilibrium. It can be seen that the roof overlying strata in the inclined direction 

of the goaf will gradually drop with the movement of the mining face. After coal 

extraction, the direct roof caves in and the old roof collapses, the height of roof caving 

and fracturing above the goaf expands, and the maximum subsidence of the roof increases 

gradually (in the blue area, the deeper the colour, the larger is the subsidence). After coal 

extraction, the floor is in the unloading state, and the floor heave phenomenon can be 

observed. Compared to the roof collapse, the displacement of the floor is relatively low. 

At the final excavation step within the study area, the roof subsidence value at the centre 

of LW 090 reaches 3.2 m, and the roof subsidence value at the centre of LW 110 reaches 

4.2 m (as Figure 5-22 presents). The subsidence displacement contour of the overlying 

strata above the extracted panel shows an inverted trapezoid shape. In addition, the floor 

at the centre of LW 110 is affected by the unloading of the coal seam, and the amount of 

floor heave ranges from 0 m to 0.27 m with the advance of the mining face. However, the 
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displacement is not as large as the amount of roof subsidence. Figure 5-23 also presents 

the subsidence profile from the centre of LW 110 to the model top boundary (a vertical 

profile line). As this figure shows, the subsidence can be up to 4.2 m and drops sharply 

within the mudstone area (as annotated by the dashed lines).  

  

Figure 5-22 The equilibrium state of the model showing the contour of (a) the displacement and (b) the vertical stress 
at the front view (i.e., the cross-section of x-z plane) 

The final modelling result of vertical stress distribution around the panel in the nearby 

rock formations is shown in Figure 5-22b. As can be seen from the figure, abutment stress 

can be observed at both the tailgate and maingate sides due to the bending and subsidence 

of the overlying strata after a large area of the coal seam is mined out. In other words, 

coal extraction leads to high-stress concentration near the remanent coal pillars. Since the 

high-stress area caused by LW 090 was superimposed with the abutment stress induced 
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by LW 110, the dynamic mining of LW 110 triggered more fractures at the tailgate side, 

which is also confirmed by the spatial distribution of microseismic data.  

 

Figure 5-23 Subsidence profile of the roof strata from the centre of the LW 110 panel to the model top boundary 

Note that before the modelled coal extraction, the vertical and horizontal stresses denoted 

the minor and major principal stresses in the in-situ condition, respectively. Due to the 

extraction, the vertical stress was relieved above and below the mined-out area, whereas 

it concentrated in the unmined coal (abutment stress). With the face advancing, the area 

of vertical stress relief and the abutment stress also increased. The horizontal stress, from 

the start of the extraction, continued to concentrate on the immediate roof and main roof. 

When the strata failed, the horizontal stress was significantly released; however, it could 

still be transferred to the broken but not fully caved strata. 

The distributions of vertical stresses at different stages of mining in the model are shown 

in Figure 5-24. As the mining advances, the region of abutment stress keeps moving 

forward along with the face and its magnitude also increases continuously. This 

phenomenon can be observed in all three figures in Figure 5-24. Such results indicate that 

as the extraction advances, the stress redistribution in the floor strata may experience three 

stages: (i) the origin stress state before mining, (ii) a gradual increase as the mining face 

approaches, and (iii) a dramatic decrease after the face passing over. The measurement 

points are 1 m above the seam floor at the middle of the panel (Figure 5-24a), the tailgate 

(Figure 5-24b) and the maingate (Figure 5-24c). The location of these measurement points 

seen from the plan view is shown in Figure 5-14. The magnitude and location of abutment 

stress are displayed at the face advance at the end of Cycles 1-3. The results of Figure 

5-24a suggest that the maximum abutment stress was twice the overburden stress and 
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occurred about 6 m ahead of the face after Cycle 1 excavation. After Cycles 2 and 3, the 

peak abutment stresses are about 1.5 and 1.9 times the pre-mining stress, respectively. 

Simultaneously, the peak abutment stress reached 10 m and 6 m ahead of the face line. 

This is because the relief of high horizontal principal stress is significant and may cause 

a reduction in vertical stress.  

Alternatively, at the tailgate and the maingate, the roof stress shows relief after the 

working face passes by (see Figure 5-24 b and c). The vertical stress can decrease to 0.5 

times the initial stress and occur gradually until about 100 m away from the face. An even 

more significant stress drop occurs at the tailgate side since the tailgate is already in the 

high-stress area. On the other hand, it shows a very unlikely trend that the vertical stress 

at the tailgate can resume the in-situ stress state after mining. 
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Figure 5-24 Vertical stress changes of the measurement points at (a) the centre of LW 110, (b) the tailgate, and (c) the 
maingate after the completion of mining Cycles 1-3 

 

5.3.6. Seismic-derived fracture simulation results 

During mining operations, the abutment stress progresses along with the direction of face 

advancement, which consequently generates a mostly quasistatic loading on the roof-

coal-floor system. Under this loading condition, coal fracturing usually starts at the 

excavation boundary, where the vertical stress is the post-peak residual stress and 
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transfers gradually to the deeper solid coal along with the coal excavation (Cai et al. 

2019). It has also been observed in this research. 

The failure state of seismic-derived fractures at the end of the coal extraction is displayed 

in Figure 5-25. Despite appearing as quadrilaterals due to mesh separation in the 

simulation, the fractures remain functionally round. This is a visual discrepancy that 

doesn't impact the simulation's operation or data interpretation. The discontinuities failed 

in both tension and shear. The discontinuities that have slipped (shear failure) are shown 

in Figure 5-25a, and those that have opened (tensile failure) are shown in Figure 5-25b. 

As can be seen from the figure, both slipping and opening fractures were observed in the 

upper strata. Comparing the shear displacement and the normal displacement in the same 

colour scale, both the shear and normal displacement occurred at the area above the 

support, while the shear displacement is obviously larger than the normal displacement. 

This can be explained in combination with the maximum principal stress distribution and 

fracture spatial distribution as shown in Figure 5-26, which takes Cycle 2 as an example. 

From this figure, it can be observed that in a normal mining cycle, the stress is 

accumulated in the above strata ahead the working face and then released at the fracture 

locations. Therefore, in the fractures relative far above the panel in the overlaying strata, 

the confining stress becomes greater, and that causes discontinuities to have a shear 

displacement. Meanwhile, in the roof strata immediately above the support, the horizontal 

stress is considerably released. The vertical stress still acts owing to the weight of the 

overlying strata. A low confining stress is formed in this area and a normal displacement 

occurred in the fractures along the similar dip as the working face. In this condition, coal 

mass tend to fail in tension along the vertical joints (Kelly et al. 2002; Gao et al. 2014). 

It is also noted that the assumption of discontinuities with zero tensile strength and zero 

cohesion in the simulation process can facilitate the development of the in the model and 

generate reasonable results.  
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Figure 5-25 The seismic-derived fractures displacement in log10 scale: (a) shear displacement and (b) normal 
displacement 
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Figure 5-26 The equilibrium state of the maximum principal stress contour with the seismic-derived fractures 

The modelling of seismic-derived fractures shows that the fracture geometry control 

stress regimes and failure responses, and then affects the damage zone development. In 

the meantime, the fracture responses from the simulation results can also be compared 

with the seismic monitoring results. Figure 5-27 presents the box plot of normal and shear 

displacement of seismic-derived fractures, which can be related to Figure 5-6. Again, the 

X represents the width of the longwall face, and the two red dashed line shows the edge 

of the longwall panel. The fractures are mainly recorded within the excavated zone. The 

shear and normal displacement within this area has a similar magnitude, while the mean 

value of normal displacement is larger than the value of shear displacement in most of the 

area of the excavated zone. Comparing along the X axis direction, the displacement within 

the longwall panel is larger than the edge area (maingate and tailgate). However, the 

fractures within the not mined area shows fluctuation along the panel. The shear and 

normal displacement have similar trends with the radius and aperture of seismic-derived 

fractures. However, the magnitude has about 100 times difference, which is a result that 

the released energy from rock failure may be dissipated in many forms and the seismic 

wave energy only accounts for a small fraction (Venkataraman and Kanamori 2004) 

It should be noted that in Figure 5-27b, only the seismic-derived fractures that are active 

are being counted. In other words, only the fractures involved within Cycle 2 are activated 

and counted in the simulation process. This might cause a limited number of fractures 

being counted in Figure 5-27b, but the trend remains relatively clear still.  
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Figure 5-27 The box plot of normal and shear displacement of seismic-derived fractures at the (a) mined area and (b) 
solid coal 

5.3.7. Impact of fractures on the modelling results 

In Section 5.3.6 the fracture behaviours have been validated using results derived from 

seismic monitoring. Another significant aspect to consider is the impact of the originally 

inputted fracture model on the improvement and influence of the mining modeling 

process. In order to identify the impact of the fractures on the modelling, a similar model 

is run at the same condition following the same mining procedure but without considering 

the seismic-derived fractures. The in-situ stress, mechanical properties, and boundary 

conditions applied to the no-fracture models were the same as the models introduced 

above. 



142 
 

  

Figure 5-28 The vertical stress contour at the end of mining Cycles 1-3: (a) with seismic-derived fractures and (b) 
without seismic-derived fractures 

The vertical stress contours at the end of mining Cycles 1-3 with considering seismic-

derived fractures and without considering seismic-derived fractures are compared in 

Figure 5-28. The face advance is from the right side to the left. The comparison of Figure 

5-28 (a) and (b) obviously shows the effect of seismic-derived fractures on the regional 

stress distribution, especially in the roof strata. The high-stress area caused by extraction 

is usually about 30-50 m ahead of the face. The fractures located within this area can 

generate a low stress zone. The fractures can release the accumulated stress caused by 

coal excavation and disperse the high-stress zones.  

To further investigate the effects of seismic-derived fractures on the model results, Figure 

5-29 presents the stress distribution around these fractures. Within the area above the 

goaf, a low-stress area has already been generated in an arched shape. The initial input 

fractures are hardly affecting the stress condition since plenty of fractures have been 

generated in this area with a large opening. The seismic-derived fractures are connected 

with each other above the goaf area. The stress is already released, so the fractures are 

dispersed and connected with the natural joints between the rock elements. It should be 

noted that since seismic sensors are frequently relocated when the working face moves 

during seismic monitoring, the fractures noted in the figure were generated before the 
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working face arrived. After the coal extraction passes over this area, the fracture 

distribution is going to be close to homogeneous in the caved zones. However, when 

investigating the not mined area, the dense fracture zone shows a clear trend of stress 

release, and the range can be up to 20 m, which depends on fracture radii (the area that is 

affected by the seismic energy release). In addition, within the area that the seismic-

derived fractures concentrate in and have a chance to be connected, the low-stress area 

may also connect and form a large stress relief zone. This can be observed in the top right 

region of Figure 5-29b. Although the volume of low-stress area around a single fracture 

is limited, a large low-stress layer is formed with the connected fractures along the 

orientation of most fracture planes. 

 

Figure 5-29 The clipped box of the excavated area and a solid coal area representing the contour of the maximum 
principal stress 

Figure 5-30 shows the principal stress and the direction of the principal plane (i.e., the 

plane at which the maximum stress is induced) around the study panel at the end of Cycle 

2 excavation. Figure 5-30a is at the roof of the coal layer, and Figure 5-30b is the plane 

that is 20-25 m above the coal layer, which is the layer where most of the seismic-derived 
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fractures are located at. From the maximum principal figure, the stress is accumulated at 

the working face, and a large number of fractures occur within this area. Fractures affect 

more on the dip angle of the principal plane and maximum principal stress within this 

area. The dip angle of the principal plane is vertical but turns horizontal near the working 

face. The fractures cause the dip angle to turn horizontal as well. At the same time, the 

dip direction of the principal plane is more likely to be north-south but turns to the east-

west near the working face. The influence of the seismic-derived fractures is uncertain 

since the fracture's dip direction has a wide distribution range, as Figure 5-9 shows. 

These statistics also show that the direction of major principal stresses shifted from 

vertical to horizontal or near horizontal in the unmined coal seam upstream of the face 

line. Meanwhile, smaller principal stresses tend to shift from horizontal to vertical or 

inclined. These alterations are the result of horizontal stress concentration mixed with 

vertical stress release at this location. The orientations of principal stresses were 

progressively restored to their pre-mining status as one moved deeper into the unmined 

region. When the pre-mining major principal stress is horizontal, the direction shift may 

occur above and below the mined-out area. 
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Figure 5-30 The principal stress and the direction of the principal plane at the end of Cycle 2 excavation at (a) the coal 
layer roof and (b) 20-25m above the coal layer 

5.4. Conclusions 

With the help of the synthetic triaxial signal, seismic source parameters of M0, R and τ 

can be calculated. Taking the Yima coal mine as the case study site, the fracture network 

induced by longwall coal extraction was established using the proposed uniaxial seismic 

data analysis method. The seismic-induced fractures were classified by the types of failure 

mechanism, i.e., tensile and shear. The radius, aperture change, and orientation of each 

induced fracture were calculated. Most fractures are reported within the longwall panel 

and the mudstone strata above the panel. The fractures are more active on the goaf side 

compared with the solid coal side, and the magnitude of the fractures triggered by shear 

failure is affected by the F16 reverse fault near the panel. Most fracture orientations 
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follow the orientation of the longwall panel, and the dip direction and dip angle have a 

variation within 50 degrees and 5 degrees, respectively. 

With a comprehensive understanding of the spatial distribution of a mining-induced 

fracture network, the model of induced fracture map around the longwall panel was 

created and simulated with the working face advanced. Four cycles separate the total 

mining process to step the simulation process according to the b-value discussed in 

Chapter 3. The result apparently presents the stress condition along the face advance 

affected by seismic-derived fractures. And the mining induced fracture change in 

geometry matches the analysis of seismic signal processing.  

The proposed methodology for characterising mining-induced fractures is clearly 

promising. However, additional validation is required to not only improve its reliability 

but also to acquire a fuller understanding of its strengths and limitations. One good 

approach to accomplish this is to perform further case studies in a variety of mining 

situations. These additional studies could be used to assess the applicability and 

generalizability of the proposed methodologies in the actual world. We can get useful 

information by evaluating how these strategies operate in diverse geological and 

operational circumstances. These findings may give information on the approaches' 

adaptability and robustness, as well as whether they can be depended on in a range of 

settings. 

Furthermore, a comparison with existing fracture characterisation procedures could be 

quite valuable. This analysis would provide a fair assessment of the viability of the 

proposed methods. It would be especially valuable in cases when there are issues with 

data quality, resource accessibility, or computing needs. Such an analysis could aid in 

determining if the proposed methods offer any advantages over existing procedures and, 

if so, under what conditions these advantages may be most relevant. Furthermore, as 

described in Section 5.3, there is a need for a more complete investigation of roof falls 

during coal extraction. It is critical to comprehend the impact of these roof falls on 

fracture development and stress distribution. This greater comprehension could provide a 

more complete view of the processes at work in these complex systems. It may also lead 

to the creation of more effective ways for dealing with similar difficulties in the future, 

thereby boosting mining operations' safety and efficiency. 
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To sum up, the novel method introduced in this research helps to comprehensively 

understand the spatial distribution of a mining-induced fracture network using uniaxial 

seismic data. This analysis has the potential to not only dynamically update rock mass 

mechanical parameters but can also guide decision-makers to take preventive measures 

according to the dynamic development of mining-induced fractures. 

 

  



148 
 

Chapter 6. Conclusions and recommendations to the future 

research 

A comprehensive literature review of applications of seismic monitoring revealed its 

benefits, limitations and future potential. Following the analysis of recent research 

outcomes and reports and documents from mine sites that applied seismic monitoring, the 

thesis narrowed down the problem into the mining-induced fractures assessment, which 

can be addressed by improving the analysis of the most applied type of seismic signals in 

the industry. Compared to numerous research of seismic monitoring in hydraulic 

fracturing, the review suggested that research is required in the seismic monitoring 

applied to the underground mining industry, such as correlation assessment and fracture 

distribution, due to the fact that mining-induced fractures are initiated by stress change 

and strata movement after mineral extraction instead of fluid injection. Since these 

applications are critical for monitoring rock behaviour and maintaining safe operating 

conditions, an effort was made to develop comprehensive seismic processing algorithms 

to achieve them. However, several tasks in achieving fracture monitoring using these 

algorithms still need to be solved in sequence.  

The preliminary investigation of the seismic monitoring in underground mines exhibited 

a large limitation of the seismic-related parameters that could be calculated. The primary 

reason is that the uniaxial seismic sensors installed are widely used in underground mines 

as a result of low cost and high mobility is hard to receive complete signals from 

seismicity. An approach of artificial restoration of complete seismic information is 

required. Besides, seismic correlation is also a major problem for all the applications that 

rely on spatial-temporal seismic data. Thus, the assessment of spatial and temporal 

correlation was given equal importance, and an efficient approach was developed in this 

thesis to define the correlation period and range in temporal and spatial domains, 

respectively as well as the overall consideration of space and time. With the help of this 

research, the fracture distribution can be drawn and modelled with the effect of the site 

operation, and major decisions and plans can be made by synthesising research in this 

thesis suppose thesis methods are applied in ongoing underground longwall mining.  

6.1. Contributions of the research 
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The conclusion of each chapter has been included by the end of each chapter. To give a 

comprehensive discussion of this project, this research aimed to advance the current 

methods of seismic monitoring at underground mine sites to provide comprehensive 

seismic-related induced fractures. Through this research, an effort was made to improve 

the mining-induced seismicity inverted in-situ fracture characteristic and provide reliable 

methods and data processing tools to support this assessment. The main contributions 

coming from the thesis are listed below. 

• In Chapter 3, a novel approach using uniaxial seismic data to derive fracture 

network properties induced by mining has been developed. This is achieved by 

seismic moment tensor inversion, failure type analyses, source radiation pattern 

and the failure plane solution analysis in sequence. The Seismic monitoring data 

collected from the Yima underground coal mine in China was processed to verify 

the feasibility of the proposed method. The seismic signal processing, including 

pre-processing of filtering, frequency domain analysis, wave picks, event 

locations, and moment tensor inversion, are calculated in detail with the sample 

seismic waves and seismic events using the proposed uniaxial seismic data 

analysis method. 

• In Chapter 4, quantitative approaches were applied for temporal, spatial and 

spatial-temporal correlation analysis of a set of seismic data in the longwall 

mining process. ACF was used to evaluate the correlation of evenly spaced 

seismic data in combination with semivariogram, whereby the temporal 

correlation of unevenly spaced seismic energy was also assessed. The SOF-time 

is applied to represent the period that a notable correlation of seismic data shows 

within. On the other hand, the spatial correlation of the seismic data was estimated 

using Moran’s I. The spatial semivariogram assessment was applied to determine 

the radius of the correlative area (SOF-space). The spatial-temporal correlation 

has been assessed by investigating the distance and time difference with respect 

to three reference points. And clear clustering characteristics have been observed 

by investigating distance distribution to working face versus time distributions to 

assess the spatial and temporal correlation between different clusters at the last 

step of this research. 
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• In Chapter 5, With the help of the synthetic triaxial signal, seismic source 

parameters of M0, R and τ can be calculated at the Yima coal mine. The seismic-

induced fractures were classified by the types of failure mechanism, i.e., tensile 

and shear. Most fractures are reported within the longwall panel and the mudstone 

strata above the panel. With a comprehensive understanding of the spatial 

distribution of a mining-induced fracture network, the model of induced fracture 

map around the longwall panel was created and simulated with the working face 

advanced. The result apparently presents the stress condition along the face 

advance affected by seismic-derived fractures. And the mining induced fracture 

change in geometry matches the analysis of seismic signal processing. 

6.2. Scope of improvements and recommendations for future work 

Although this study has successfully delivered an improvement in the understanding of 

the fractures which caused by longwall mining, it has certain limitations. This section will 

discuss the potential improvement and scope for future work that can be built on this 

study. 

• The uniaxial wave is synthesised to a triaxial wave if the number of uniaxial 

signals is sufficient. Despite a limit of the accuracy of triaxial as a result of only 

four sensors located in the maingate and tailgate at the same time, the synthetic 

triaxial wave can still provide abutment information that uniaxial wave can not 

provide, such as source vector, S-wave pick and rotate, corner frequency, ground 

motion, peak ground acceleration (PGA) and all the attributes already applied in 

this thesis. The significance of his novel method allows a bunch of analysed that 

requires a triaxial signal can be applied to the field, which installed mainly in 

uniaxial sensors. It significantly simplifies the planning of seismic monitoring 

system installation. On the other hand, the uniaxial sensor is cost friendly and easy 

to relocate. It provides a probability of using the lowest amount of triaxial sensors 

and the maximum number the uniaxial sensor to extend the wide range of 

recovered area so that the seismic signal can be detected with a friendly cost. 

• The correlation assessment within this thesis mainly applied the seismic event 

temporal and spatial distribution as well as the energy of each seismic event. This 

can cover most conditions since most seismic attributes are related to the seismic 

event itself and energy. However, there are still correlations more reasonable to 
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use parameters other than those two in some situations. The significance of the 

correlation assessment algorism in Chapter 4 is that they are universally 

applicable and the only change in the current algorithm is to change the 

parameters. 

• Beside the single parameter. With the wide range of attributes that uniaxial signals 

can calculate and the universally applicable correlation assessment algorism, 

multi-attributes assessment can be potentially conducted and improve the 

authenticity of the result. On the other hand, with enough type of attributes, the 

neural network can potentially help to predict the correlation spatially and 

temporally, even predict the occurrence of seismic in the time and space domain 

then. Moving forward, with a prediction of seismic event, the future activity of 

fractures can be detected with the method mentioned in Sections 5.1 and 5.2. The 

following research has a chance to predict the behaviour of fractures and the 

failure of rock within the longwall mining process.  

• Despite being simplified, the numerical models proposed in Section 5.3 are 

subject to restricted computation in this work, particularly the true-dimensional 

models, surrendering some of their authenticity. As a result, several rock mass 

characteristics, such as joint set spacing and rock block size, could not be depicted 

as accurately or as detailed as in reality. Moreover. The material properties 

employed in the models were acquired mostly from the Yima Coalfield, and it 

appears that the fractures and stress distribution patterns may not be relevant to 

all other situations. It should also be remembered that knowledge of the properties 

of discontinuities inside the rock is always limited. Despite the fact that these 

model input parameters are appropriately and realistically approximated, the 

approximations of the rock mass material properties may still be a restriction. 

Future advances in understanding of mining-induced fracture behaviour could be 

made by taking into account: better time separation of the face advance; a better 

consideration of the failure mechanisms of the induced and natural fractures; and 

a better understanding of the aspect of a natural fault that disturbs the induced 

fracture behaviour. 

6.3. Concluding remarks 
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With the mining sector focusing on safe and sustainable mining operations, seismic 

monitoring will play an important role due to its low cost, precision, wide monitoring 

range, mobility, and large-scale application. The outcomes of the major body chapters 

contribute to this purpose by refining the uniaxial seismic signal processing approach via 

synthetic triaxial waves, assessing the spatial and temporal correlation of seismic data, 

and detecting and processing fracture information for geotechnical applications. All of 

the suggested technologies have been tested using field data and can be easily 

implemented at mine sites to offer in-situ monitoring solutions as the longwall face 

advances. Furthermore, the study can be expanded to address and cover a broader range 

of application domains, such as comprehensive seismic-derived attribute analysis and 

density prediction from uniaxial data, multi-attribute correlation assessment, in-situ DFN 

mapping, predicting rock bursts, and assessing stability. More research is needed to 

enhance seismic processing algorithms in order to decrease inaccuracy and better 

comprehend mining-induced fractures around subterranean longwall panels.
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