
Probabilistic threshold range aggregate query processing over
uncertain data

Author:
Yang, Shuxiang

Publication Date:
2009

DOI:
https://doi.org/10.26190/unsworks/19575

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/43374 in https://
unsworks.unsw.edu.au on 2024-05-01

http://dx.doi.org/https://doi.org/10.26190/unsworks/19575
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/43374
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Probabilistic Threshold Range Aggregate

Query Processing over Uncertain Data

BY

Shuxiang Yang

B.Sc., Wuhan University, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE SCHOOL

OF

Computer Science and Engineering

February 21, 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

c© Shuxiang Yang 2008

Abstract

Uncertainty is inherent in many novel and important applications such as market

surveillance, information extraction sensor data analysis, etc. In the recent a few

decades, uncertain data has attracted considerable research attention. There are

various factors that cause the uncertainty, for instance randomness or incomplete-

ness of data, limitations of equipment and delay or loss in data transfer.

A probabilistic threshold range aggregate (PRTA) query retrieves summarized

information about the uncertain objects in the database satisfying a range query,

with respect to a given probability threshold. This thesis is trying to address and

handle this important type of query which there is no previous work studying on.

We formulate the problem in both discrete and continuous uncertain data model

and develop a novel index structure, asU-tree (aggregate-based sampling-auxiliary

U-tree) which not only supports exact query answering but also provides approx-

imate results with accuracy guarantee if efficiency is more concerned. The new

asU-tree structure is totally dynamic. Query processing algorithms for both exact

answer and approximate answer based on this new index structure are also pro-

posed. An extensive experimental study shows that asU-tree is very efficient and

effective over real and synthetic datasets.

i

To my beloved family.

ii

Acknowledgements

It is a great time of the two years research in the database group. Now I am grateful

to express my gratitude for all who have helped me to make this thesis possible.

First of all, I would like to present my great appreciation to my supervisor,

Prof. Xuemin Lin, for his gentleness to offered me such a cherishing opportunity

to study under his guard. Without his kind advice, encouragement and insightful

direction, this moment will never come true.

I wish to sincerely thank my co-supervisor, Dr. Qing Liu. I will never forget the

talk in every Friday night during the first year of my research life. She sacrificed

her spare time with her family to lead me to find the right way to do research. I

also learned a lot from her enthusiasm, broad knowledge and wise.

I also want to express my gratitude to Dr. Ying Zhang who kept eyes on my

research progress closely. He not only taught me valuable skills but also gave me

useful ideas, meaningful comments.

Many thanks goes to my fellow students as well: Yi Luo, Muhammad Aamir

Cheema, Bin Jiang, Wenjie Zhang, Chuan Xiao, Haichuan Shang. They shared

their wonderful research experience with me and made research easier for me. Par-

ticularly, I would like to thank Wenjie Zhang who worked closely with me for my

thesis topic. My thanks goes to Dr. Wei Wang for his refreshing criticism in our

group meeting discussions.

iii

I thank my school, Computer Science and Engineering, for supporting us with

sound research environment. I thank every friend in and out Australia, who helped

me through every difficulty.

Last but not least, I would like to thank my family, my beloved parents, for

their eternal support and love. No matter where I am, no matter what kind of

decision I make, they always stand behind me, and try their best to help me.

I dedicate this thesis to all of them.

iv

Contents

Abstract i

Dedication ii

Acknowledgements iii

List of Figures ix

List of Tables x

1 Introduction 1

1.1 The motivation . 2

1.2 The PTRA Query over Uncertain Data 2

1.3 Exact and Approximate Answer for PTRA Query 4

1.4 Challenges and Contributions . 5

1.4.1 Challenge 1: Formalizing The PTRA Query 6

1.4.2 Challenge 2: Indexing The Uncertain Data for PTRA Query 6

1.5 Thesis Organization . 8

2 Problem Definition 9

2.1 Discrete Model . 9

2.2 Continuous Model . 11

v

3 Related Work 14

3.1 Uncertain Data Management . 14

3.1.1 Uncertainty Models . 14

3.1.2 Work on Uncertain Data Analyzing 16

3.2 R*-tree and aR-tree . 17

3.2.1 R*-tree . 17

3.2.2 aR-tree . 18

3.3 U-tree . 19

3.3.1 Probabilistically Constrained Regions 19

3.3.2 Conservative Functional Boxes 21

3.3.3 Dynamic Update Algorithms 22

3.3.4 Query Algorithm . 22

3.4 Min-Skew Partitioning . 23

3.5 Dynamic Inverse Sampling . 24

3.5.1 Forward Distribution and Inverse Distribution 25

3.5.2 The Dynamic Inverse Sampling 25

3.6 Monte-Carlo . 27

4 Index Uncertain Data for PTRA Query 29

4.1 asU-tree . 30

4.1.1 Index Overview . 31

4.1.2 Aggregate Information Integration 33

4.1.3 Best K Nodes Construction 34

4.1.4 Sampling Auxiliary . 38

4.1.5 Dynamic Update of asU-tree 41

4.2 Query Processing Algorithms . 42

4.2.1 The Refinement Step . 44

vi

4.2.2 Exact Query Processing . 45

4.2.3 Approximate Query Processing 48

4.3 Experimental Analysis . 52

4.3.1 Construction Consumption 53

4.3.2 Efficiency Evaluation . 54

4.3.3 Accuracy Evaluation . 55

4.3.4 Impact of the parameters . 56

5 Conclusion and Future Work 64

Bibliography 66

vii

List of Figures

1.1 The record of locations for vehicle U in Sydney. 3

1.2 Certain Objects Indexed by aR-tree. 4

1.3 Uncertain objects. 5

2.1 uncertain object U in discrete model. 10

2.2 uncertain object U in continuous model. 12

3.1 An example of R*-tree. 17

3.2 An example of aR-tree. 19

3.3 Pruning/Validating by PCR of Uncertain Object. 20

3.4 Min-Skew Partitioning. 23

3.5 An example of DIS update process. 27

4.1 Uncertain Objects and its asU-tree. 33

4.2 Best K Nodes Selection . 38

4.3 Exact Query Processing . 46

4.4 Approximate Query Processing . 49

4.5 Performance vs Construction Time. 54

4.6 Efficiency Evaluation. 55

4.7 Accuracy Evaluation. 56

4.8 The Effect of KBNs on Efficiency. 58

viii

4.9 The Effect of KBNs on Accuracy. 59

4.10 The effect of sample size on Efficiency. 60

4.11 The effect of sample size on Accuracy(radq = 500). 61

4.12 The effect of sample size on Accuracy(radq = 1000). 62

4.13 The effect of sample size on Accuracy(radq = 1500). 63

ix

List of Tables

2.1 The summary of notations. 13

3.1 An example of Uncertain database and possible worlds. 16

3.2 Hash Mapping. 26

4.1 Parameter values. 53

x

Chapter 1

Introduction

Since last century, uncertain data has gained substantial amount of research work.

The sources of uncertainty are mainly due to various factors such as randomness or

incompleteness of data, limitations of equipment and delay or loss in data transfer.

Moreover, to keep privacy, uncertainty may be injected manually into the data

base.

With the importance and emergence in many traditional and novel applications,

such as data integration, sensor data analysis, moving objects, economic decision,

market surveillance and trends prediction, etc, uncertain data is catching more and

more attention recently.

Consider a database system server which monitors and maintains the locations

of moving vehicles in the area of Sydney. Each vehicle U sends its current position

periodically in Sydney (for example every 5 minutes). In this case, the server is

not able to return the precise location of U at any arbitrary time, because there is

no record of the vehicle U in the 5 minutes between the last update and the next

one. For example in Figure 1.1, there are 5 records of vehicle U in the database,

but we don’t know where is U between time2 and time3, because there are 2 paths

1

Chapter 1. Introduction 2

from the location at time2 to the point at time3. In that case, uncertainty models

are necessary to be introduced to capture the probabilistic location of U .

Extensive research has been done to model uncertain data and execute query

over it so far. Research directions include modeling uncertainty [Cod79, GUP06,

INV91, Lee92, SBHW06], query evaluation [SD07, CKP03, CKP07, DS04], in-

dexing [TCX+05, CXP+04, LS07, SMP+07, AY08], top-k queries [HPZL08a,

RDS, SIC, YLSK, RDS], skyline queries [JPY07, L08], clustering and Min-

ing [KP05, NKC+06, CCKN06], etc. Although probabilistic threshold range ag-

gregate query (PTRA query) on uncertain data is very important in practice, this

problem still remains unexplored.

1.1 The motivation

Sometimes, we are more interested in the aggregate information of the input objects

which satisfy the query, such as the total number of objects in the query region in

Figure 1.3 with certain probability. For example, it is more meaningful to figure

out how many vehicles currently in the city area of Sydney than to locate every

vehicle in the city, if we just want to know whether the traffic condition is busy or

not.

1.2 The PTRA Query over Uncertain Data

A range aggregate query (RA query) on certain data returns summarized infor-

mation about objects satisfying a given query range [TP04]. This type of query

is important since users may be interested in aggregate information instead of

specific data IDs. aR-tree [PKZT01] is one of the most popular index structure

to efficiently answer RA query on spatial space. aR-tree is a modification of R-

Chapter 1. Introduction 3

A

B

t i m e 1
t i m e 2

t i m e 3

t i m e 4

t i m e 5

Figure 1.1: The record of locations for vehicle U in Sydney.

tree [Gut84] by storing the number of objects in each entry. Figure 1.2 illustrates

the structure of 2-level aR-tree and RA query processing on an aR-tree. Besides

R-tree structure information, entries in root node also keep the number of objects

contained, such as entry e1 ∈ root contains 3 objects. The dashed rectangle is the

range of a RA query q. As shown in Figure 1.2, leaf node N3 is fully covered by q,

so N3 will not be accessed, but adding 3 to the final result. Node N1 does not need

to be accessed either since it does not intersect with q. The only accessed node is

N2 and object O5 is detected to satisfy q. So the final result is 4.

While many sophisticated techniques have been developed to answer RA query

Chapter 1. Introduction 4

Y

X

N 1: 3

N 2: 3

N 3: 3

o 1

o 2

o 3

o 4

o 5

o 6

o 7
o 8

o 9

R A q u e r y q

e 1: 3 e 2 : 3 e 3: 3

O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9

N 1 N 2 N 3

Figure 1.2: Certain Objects Indexed by aR-tree.

over certain data [TP04], the problem of RA query over uncertain data has not

attracted much research attention yet. Modeling and answering RA query over

uncertain data require comprehensive analysis of probabilities, as shown in Fig-

ure 1.3. Assume we still use an aR-tree to index the uncertain objects. A proba-

bilistic threshold range query q fully covers node N2 and intersects with node N3.

After accessing node N3, only part of the uncertain object U7 is in the query range

of q. Clearly in this case, we have to retrieve the instances or PDF (Probability

Density Function) of U7 to compute the appearance probability in the region of q,

which describes the likelihood that U7 appears in the region of q. If the appearance

probability is no less than the probabilistic threshold, then U7 will be included in

the total number otherwise, it will be excluded from final result. If there are many

uncertain objects intersecting with query, this process will be very expensive.

1.3 Exact and Approximate Answer for PTRA

Query

As the example shown before, when we try to figure out the current traffic condition

in the city area, the precise answer is the number of vehicles. However, it is possible

Chapter 1. Introduction 5

Y

X

U 1

U 4

U 2

U 3

U 7

U 9

U 5

U 6 U 8

P T R A q u e r y q

N 1

N 2

N 3

Figure 1.3: Uncertain objects.

that it will consume excessive cost to retrieve the exact number. In that case, it

could be quite useful to return an approximate result which keeps the accuracy

guarantee as well. It is a very important criterion that a good index structure for

uncertain data to process PTRA query should be able to support both the accurate

answer and the approximate answer.

1.4 Challenges and Contributions

As shown above, aggregate information retrieval on uncertain objects requires de-

tailed analysis of appearance probabilities from their instances or their PDFs. It

will be inflexible to compute the appearance probability for every uncertain ob-

ject to satisfy a probabilistic threshold range aggregate (PTRA) query. Effective

pruning/validating rules and approximation techniques are necessary to accelerate

probabilistic threshold range aggregate (PTRA) query processing over uncertain

objects efficiently. It is a laborious work to compute the appearance probability

Chapter 1. Introduction 6

with either instances or PDFs, so refining method maintaining the reliability of

the performance is often used in this step. The challenges and our contributions

are summarized as follows.

1.4.1 Challenge 1: Formalizing The PTRA Query

Although the range aggregate query over certain data has been well studied, this

is the first work to address probabilistic threshold range aggregate (PTRA) query

over uncertain data. It is quite crucial to give explicit definition with appropriate

uncertainty model to clearly represent what is PTRA query and what are the

specialties of this kind of query.

Our contributions

We formally define range aggregate query over uncertain objects with a given prob-

abilistic threshold which is called PTRA query for short.

As shown before, there are two kinds of models for uncertain data: discrete

model, in which each uncertain object contains various number of instances asso-

ciated with their probabilities, and continuous model, in which PDFs are used

to describe the probability distribution in each uncertain object. We provide the

problem definition for both models to satisfy different applications. Our problem

formulations are quite explicit and we further explain them with simple examples.

1.4.2 Challenge 2: Indexing The Uncertain Data for PTRA

Query

As illustrated above, it is very costly to compute the appearance probability of

an object. If we use traditional aR-tree based techniques to index uncertain data,

the object can be validated when it is covered completely by the query region.

Chapter 1. Introduction 7

In practical terms, objects are more likely to intersect with query region, in such

condition, effective rules to prune/validate these objects without calculating the

appearance probability will greatly improve the efficiency.

U-tree [TCX+05] is one of the most popular index structure for uncertain data

with series pruning/validating rules aimed to process range query. For our PTRA

query, it is not necessary to retrieve every qualified object but a summarized result,

so qualifying intermediate entries and supporting approximate answer are impor-

tant to improve the speed of processing.

Our contributions

A novel index structure, asU -tree is developed to support PTRA query processing.

As aR-tree to R-tree, asU -tree is modified based on the U-tree [TCX+05] by storing

aggregate information in each entry in the node of asU -tree. Hence if one of the

intermediate entries is validated, the aggregate information for the subtree under

it can be obtained without accessing the objects contained.

Moreover, to support approximate query processing when efficiency is of more

concern, we split the asU-tree into K subtrees and employ dynamic inverse sampling

to keep S samples for each subtree to provide approximate result with guaranteed

accuracy.

Exact and approximate query processing algorithms are also developed based

on asU -tree to answer PTRA query over uncertain objects.

An extensive experimental study over synthetic and real data sets shows that

asU -tree supports PTRA query efficiently. Furthermore, sampling based method

is not only efficient but also highly accurate.

Chapter 1. Introduction 8

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 1, we introduce the probabilistic

threshold range aggregate query over uncertain data, then we formally give the

problem definition in Chapter 2. The related work are introduced in Chapter 3.

In Chapter 4, we develop our novel index structure asU-tree in Section 4.1 and the

query processing algorithm for exact answer and approximate answer is proposed

in Section 4.2. The empirical study is reported in Section 4.3. We conclude the

thesis in Chapter 5.

The work presented in this thesis is developed by Prof. Xuemin Lin, Dr. Ying

Zhang, Dr. Wenjie Zhang and me. As a main contributor, I formalized the defini-

tion of the problem, developed and implemented all the algorithms, and conducted

experiments.

Chapter 2

Problem Definition

In this section, we give the formal definition of Probabilistic Threshold Range

Aggregate query (PTRA query) over uncertain data for both discrete model and

continuous model.

2.1 Discrete Model

In discrete model, each uncertain object U is represented with a set of instances

such that each instance u ∈ U is a point in a d-dimensional numeric space D =

D1 × D2 × ... × Dd with probability P (u) to appear where 0 < P (u) ≤ 1 and

∑
u∈U P (u) = 1.

Problem Definition 1. Given a set of d-dimensional uncertain objects U =

{U1, ..., Un}, a query region and a probabilistic threshold pq, a probabilistic threshold

range aggregate query (PTRA query) q returns the number of uncertain objects in

U satisfying q with probability no less than pq. Formally, the result is

|{U ∈ U|P (U ∩ q) ≥ pq}| (2.1)

where P (U ∩ q) is the probability that U satisfies q. P (U ∩ q) is defined as the sum

9

Chapter 2. Problem Definition 10

of probabilities of instances in U in the query region of q. We denote instance u in

the query region of q as u � q.

P (U ∩ q) =
∑

u∈U,u�q

P (u) (2.2)

The P (U ∩ q) is also called as the appearance probability Papp(U, q) of an object

U in the query region rq.

u 5

u n c e r t a i n
r e g i o n

u 2

u 1

u 3

u 4

u 7

u 6

u 8

u 9 u 1 0

q u e r y r e g i o n

Figure 2.1: uncertain object U in discrete model.

Example 2.1 (PTRA Query in Discrete Model). As the example illustrated in

Figure 2.1, suppose there is only one uncertain object U intersects with the query

region, and the object is represented as 10 instances with the same probability to

occur, namely 10%. Since there are 2 instances from U falls into the region of

PTRA query q, so P (U ∩ q) = 20%. If pq ≤ 20%, then the result for q is 1;

otherwise, the result is 0 (U is excluded from the final result).

Chapter 2. Problem Definition 11

2.2 Continuous Model

In continuous model, each uncertain object U is associated with (1) a probability

density function U.pdf(x) to describe the probability distribution of U , where x is

an arbitrary d-dimensional point, and (2) a d-dimensional uncertain region U.ur to

present the appearance region of the center of U .

Problem Definition 2. Given a d-dimensional query region rq and a probabilistic

threshold pq, the appearance probability Papp(U, q) of an object U in the query region

rq is:

Papp(U, q) =
∫

U.ur∩rq
U.pdf(x)dx

(2.3)

Where U.ur ∩ rq represents the intersection region between U.ur and rq. A

probabilistic threshold range aggregate query (PTRA query) q returns the number

of uncertain objects in U satisfying q with probability no less than pq. The result is

in the form:

|{U ∈ U|Papp(U ∩rq) ≥ pq}|
(2.4)

Where P (U ∩ q) is the appearance probability that U intersects with rq.

Example 2.2 (PTRA Query in Continuous Case). As the example illustrated in

Figure 2.2, suppose there is only one uncertain object U intersects with query q,

and the PDF of object U follows uniform distribution, then the PDF of object

U can be represented as U.pdf(x) = 1/area(U.ur). Following the formula 2.3, the

appearance probability of U2 can be calculated as:

Papp(U2, q) =
∫

U2.ur∩rq
U2.pdf(x)dx = area(rq∩U2.ur)

area(U2.ur)

Chapter 2. Problem Definition 12

r e c o r d i n d a t a b a s e

u n c e r t a i n
r e g i o n

q u e r y r e g i o n

Figure 2.2: uncertain object U in continuous model.

(2.5)

If PU2 ≤pq, then the result for q is 1; otherwise, the result is 0 (U2 is excluded from

the final result).

Although we will focus on the continuous case in the next section of this the-

sis, the idea can be applied to handle the discrete case in similar way. The only

difference between discrete and continuous model is the function to compute the

appearance probability of uncertain objects.

To make the presentation more clearly for this thesis, a summary of notations

is given in table 2.1.

In this thesis, we aim at the solution to handle the PTRA search. The challenges

are as follows:

• It is a laborious work to compute the appearance probability for each object.

It is critical for a system to prune or validate objects, as much as possible,

Chapter 2. Problem Definition 13

Notation Definition

U uncertain objects
u instances of uncertain objects

U.pdf(x) the probability density function of U
P (u) the probability of instance u to appear

q probabilistic threshold range aggregate query
pq probabilistic threshold

Papp(U, q) the appearance probability of object U in the query region

Table 2.1: The summary of notations.

without calculating the appearance probability.

• In different cases, precision and efficiency have different order of priority based

on requirements. A good solution should be able to meet various situations.

Our technique is not only able to get the exact answer for PTRA query, but

also to give the approximate answer with accuracy guarantee.

To further simplify the process of computing appearance probability of an ob-

ject, we use the monte-carlo approach in [TCX+05].

Chapter 3

Related Work

In this chapter, we first summarize the literature on uncertain data management

to have a comprehensive view on this important area in Section 3.1, then we review

the related techniques which inspire our work in the next 5 sections.

3.1 Uncertain Data Management

In this section, we first introduce the uncertainty models in the existing work, and

then various query types will be summarized and the related techniques will be

introduced as well.

3.1.1 Uncertainty Models

Uncertain data has been studied for dozens of years. A number of models have

been proposed to capture the characteristics of the uncertainty. In [ZLPZ08], the

authors classified the uncertainty models into three groups:fuzzy model, evidence-

oriented model and probabilistic model. Here we focus on probabilistic model which

is dominant in the literature in recent years.

14

Chapter 3. Related Work 15

In [SBHW06], the probabilistic models have been categorized ranging from in-

complete model where every object in the uncertain database has a certain proba-

bility independently to complete model. Although complete model [IJ84] is much

more powerful because of its ability to represent any probability distribution of

the data instances, it is more complicated and infeasible to handle. Normally, we

choose an appropriate model for different situations by making tradeoff between

the usability and completeness.

In a probabilistic model, an uncertain database D can be in any one of a finite

set of states named possible worlds [DS04, DS07]. Each possible world appears in

certain probability. Formally, an uncertain database consists of a set Ω of possible

worlds W . The probability Pr(W) of a possible world W ∈ Ω is ranging in (0, 1],

and
∑

W∈Ω Pr(W) = 1. A query q defines an event. The probability of an event

is the sum of the probabilities of all possible worlds in which this event happens.

That is, Pr(p) =
∑

W∈Ω,W |=q Pr(W).

We introduce a widely used model called x-relation model [ABS+06, ZLY08]

here for its reasonable approximation of the nature of uncertain data.

x-relation model: An uncertain database D is comprised of plenty of independent

x-tuples called x-relations. Every x-relation U has one or more alternatives as its

instances, and each instance u is associated with probability P (u) representing the

probability this alternative being selected, and
∑

u∈U P (u) ≤ 1. Assume that U1,

..., Un are the x-relations of D, and W is any subset of the x-relations in D. The

probability of W occurring is Pr[W] =
∏n

i=1 pw(Ui) which:

pw(U) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(u) if U ∩ W = {u};

1 -
∑

u∈U p(u) if U ∩ W = ∅;

0 otherwise.

(3.1)

Chapter 3. Related Work 16

Pr[W] > 0, W is denoted as a possible world. Instances from the same x-

relation are mutually exclusive, that means at most one of them could appear in

a possible world, while instances from different x-relations are independent. There

is an example below. Here we use a pair (u, p(u)) as instance u with probability

p(u):

x − relations
U1 (u1, p(u1)), (u2, p(u2))
U2 (u3, p(u3)), (u4, p(u4))

W Pr[W]
∅ (1 − p(u1) − p(u2))(1 − p(u3) − p(u4))
u1 p(u1)(1 − p(u3) − p(u4))
u2 p(u2)(1 − p(u3) − p(u4))
u3 (1 − p(u1) − p(u2))p(u3)
u4 (1 − p(u1) − p(u2))p(u4)

u1u3 p(u1)p(u3)
u1u4 p(u1)p(u4)
u2u3 p(u2)p(u3)
u2u4 p(u2)p(u4)

Table 3.1: An example of Uncertain database and possible worlds.

3.1.2 Work on Uncertain Data Analyzing

Zhang et al [ZLPZ08] grouped the work on analyzing uncertain data into two big

classes based on the types of uncertain data: relational uncertain data and spatial

uncertain data.

For relational uncertain data, a lot of research effort has been done on query

evaluation [Fuh95, FR97, DS04, DS05, CKP03, CKP07], aggregate queries [CCT96,

JKV07, MSS01, MW, RSG05, RB91, SM], join queries [AW, CSP+06] and Top-k

queries [HPZL08a, HPZL08b, RDS, SIC].

For spatial uncertain data, the research work has been focused on range

Chapter 3. Related Work 17

queries [TCX+05, BGK+07, BPS06b], nearest neighbor queries [CCMC08, KKR07],

skyline queries [JPY07, L08], similarity joins [KKR07, BPS06a] and clustering and

mining [CCKN06, KP05, NKC+06].

3.2 R*-tree and aR-tree

R*-tree proposed in [BKSS90] is one of the most popular index for points and

rectangles in spatial database to handle range query, while aR-tree modify R*-tree

by adding aggregate information in each entry of R*-tree for aggregate range query.

We will introduce the properties of the R*-tree and aR-tree below.

3.2.1 R*-tree

R*-tree is a data structure developed from R-tree [Gut84] which is similar to B-

tree. R*-tree splits the data space into hierarchical Minimum Bounding Rectangles

(MBR), and it is possible that there are overlaps between MBRs at the same

hierarchical level. Figure 3.1 depicts an example of R*-tree which is built from the

spatial data.

Y

X

N 1

N 2

N 3

o 1

o 2

o 3

o 4

o 5

o 6

o 7
o 8

o 9

r a n g e q u e r y

e1 e 2 e 3

O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9

N 1 N 2 N 3

r o o t

Figure 3.1: An example of R*-tree.

Each node of a R*-tree contains a number of entries (ranged from pre-defined

Min number to pre-defined Max number) and each entry in a non-leaf node stores

Chapter 3. Related Work 18

the address of its child node and the bounding box of all entries within this child

node.

R*-tree attempts to minimize :(i) the overlap between two MBRs, (ii) the

coverage of a MBR, (iii) the margin of a MBR, (iv) the distance between center

of two MBRs. In the insertion/deletion time, the object will enter/leave the leaf

node to make sure the metrics above are always minimized, therefore the closest

objects are bundled together in the same leaf node.

In the insertion/deletion time, if the entries overflow the node, the split algo-

rithms will sort the coordinates of the MBRs of the entries to find the split axis

and then decide the entry distribution.

At searching time, the query visits the R*-tree from the root and validate the

entries contained in the query region. For the node that intersects with the query

region but can not be asserted, go further down to the subtree under it, and do the

same procedure above recursively. As shown in Figure 3.1, if the entry e2 in the

root can be qualified for it is in the query region rq, then the object in the child

node N3 will be added to the final answer. The entry e3 intersects with query region

rq, then its child node will be retrieved and do the same validating processing for

the entries in it.

3.2.2 aR-tree

Although the R*-tree is quite efficient for range query, while for range aggregate

query in which the aggregate information are needed, a great deal of redundant

work has been done. For instance, if the range aggregate query is processed on

R*-tree in Figure 3.1, even though the e2 is qualified, the query window still needs

drilling down to the leaf nodes under e2, and retrieve the objects stored in it to

compute the aggregate answer.

Chapter 3. Related Work 19

Y

X

N 1: 3

N 2: 3

N 3: 3

o 1

o 2

o 3

o 4

o 5

o 6

o 7
o 8

o 9

R A q u e r y q

e1: 3 e 2:3 e 3:3

O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9

N 1 N 2 N 3

r o o t

Figure 3.2: An example of aR-tree.

This problem has been handled by aR-tree [JL, LM01, TP04] which adds ag-

gregate information in every entry. There is an example of aR-tree in Figure 3.2

built from the R-tree in Figure 3.1. If e2 qualified, the aggregate information can

be obtained without accessing the nodes under it.

3.3 U-tree

One of the most popular index structure for multi-dimensional uncertain data with

arbitrary PDFs is U-tree [TCX+05], which is built based on the structure of R*-

tree with a set of pruning and validating rules to support range queries over uncer-

tain data. U-tree is used to prune subtrees that contain no result of a range query,

for the leaf entries. Both pruning and validating rules are used to accelerate the

query processing.

3.3.1 Probabilistically Constrained Regions

In Figure 3.3, polygon U.ur is the uncertain region of 2-dimensional object U . For

a given probability pq = 0.2, in the horizontal dimension, two lines are calculated.

U has probability p to occur on the left side of line l1−, also probability p to occur

on the right side of line l1+. In the vertical dimension, two such lines are also

Chapter 3. Related Work 20

computed according to the PDF of U . The portion in these four lines is called

probabilistically constrained regions (PCRs).

U . u r

l1 - l1 +

l2 -

l2 +

q1 q2

���
���

(a) Pruning Case.

U . u r

l1 - l1 +

l2 -

l2 +

q5
q3

���
���

q4

(b) Validating Case.

Figure 3.3: Pruning/Validating by PCR of Uncertain Object.

Example 3.1 (Pruning Case). Suppose probabilistic threshold of range query q1

in Figure 3.3 is 0.8, U can be pruned without accessing the pdf of U since it does

not fully contain PCR(0.2). On the other hand, suppose probabilistic threshold of

range query q2 is 0.2, U can not be qualified for the result of q2 because q2 does not

intersect with PCR(0.2).

Example 3.2 (Validating Case). Another example explains the validating rules in

Figure 3.3. Assume probabilistic threshold of range query q3 is 0.2, then the object

U can be asserted to the result for the probability on the left of line l1− is 0.2 and

rq3 fully covers the part on the left of line l1−. Similarly, suppose q4 and q5 with

probabilistic threshold 0.6 and 0.8, respectively, the object is qualified for the both

queries q4 and q5, because the PCR(0.2) is totally in the query region rq4 and rq5.

Chapter 3. Related Work 21

3.3.2 Conservative Functional Boxes

For different probability values, lines described above are obtained along each di-

mension. Ideally, U-tree [TCX+05] compute such lines for every probability value

to maximize the pruning/validating power. However, this is impossible due to the

space limitation. To trade-off between pruning/validating power and space cost,

only a set of m probability values are chosen as representatives and their corre-

sponding lines are computed, which are called U -catalog. There are 2 ∗ d ∗m lines

kept overall. Conservative functional boxes (CFB) are used to further decrease

the size of U -tree. Along each dimension, instead of 2 ∗ m values (each line can

be determined by one value), a constant number of values 8 are kept for CFB (4

lines, each determined by 2 values). Two lines aim to bound the m PCRs from the

“outside” and are called U.cfbout. Two lines aim to be contained in the m PCRs, so

they are called U.cfbin. These two lines further trades-off between pruning power

and space consumption. A U-tree is built by organizing the cfbout and cfbin of

uncertain objects for all probability values in the U-catalog.

For every intermediate entry e, two d-dimensional rectangles called e.MBR�

and e.MBR⊥ are stored in it. Here e.MBR⊥ is the MBR of U.cfbout(pmin) of all

objects in e, where pmin is the smallest value of the U-catalog. The definition of

e.MBR� is similar but with regard to U.cfbout(pmax), where the pmax is the biggest

value of the U-catalog.

Based on e.MBR� and e.MBR⊥, a linear function of p for e is defined as follow:

e.MBR(p) = α − β.p

(3.2)

Where α and β are solved as: α = e.MBR⊥ and β = (e.MBR�−e.MBR⊥)/pm

Chapter 3. Related Work 22

.

3.3.3 Dynamic Update Algorithms

Although U-tree has the common tree structure with R*-tree, the optimization

metric for update algorithm is different with the one of R*-tree because the en-

tries of U-tree have more complex properties. The optimization metrics of R*-tree

in 3.2.1 have been changed with their summed counterparts for U-tree.

For an intermediate entry E, the summed margin is
∑m

j=1 Margin(e.MBR(pj))

where pj is the jth value in U-catalog. Similarly the summed overlap

and summed center distance are
∑m

j=1 Overlap(e1.MBR(pj), e2.MBR(pj)) and

∑m
j=1 Dist(e1.MBR(pj), e2.MBR(pj)), respectively. U-tree aims to minimize the

summed metrics.

The insertion/deletion processing for a U-tree is exactly same with R*-tree

with the new optimization metrics except the algorithm to split a node which is

overflown. For U-tree, they first compute the e.MBR(p�m/2�) of each entry E in

the node which needs split, then use the R*-split to decide the entry distribution

after splitting.

3.3.4 Query Algorithm

The probability range query algorithm given in [TCX+05] is that the subtree of an

intermediate entry e is filtered if query region rq dose not intersect with e.MBR(pj),

where pj is the largest value of the U-catalog satisfying pj ≤ pq and pq is the

probabilistic threshold. When the leaf node is reached, they try to prune or validate

every object in it with the pruning/validating rules. For the objects that can not

be pruned or qualified, they put them in a candidate set Scan, and use the Monte-

Carlo(MC) method in the refinement step to compute appearance probability.

Chapter 3. Related Work 23

3.4 Min-Skew Partitioning

Min-Skew partitioning skill was proposed by [APR99]. This technique is aimed at

separating the data space into a number of buckets according to the distribution of

input data to approximate spatial data. Min-Skew partitioning has non-ignorable

advantages compared with the Equi Partitioning skills and tree structure index

techniques: first, the splitting is much more reasonable if the space has skew;

second, the number of buckets can be controlled at the right one we need.

Two critical notions are proposed in [APR99] to capture the underlying feature

of the input data distribution: spatial density of a point representing the number of

rectangles that include the point, the other one is spatial skew of a bucket which is

the statistical variance of the spatial densities of all points grouped in that bucket

to describe the space skew of that bucket.

By Min-Skew partitioning, the input data are grouped into a certain number

of buckets, and each bucket is associated with its spatial skew. The objective of

Min-Skew partitioning is to minimize the sum of spatial skew of the bucket of the

entire input data space.

i n p u t r e c t a n g l e

g r i d r e g i o n

(a) step I.

1

1

2

12

1

3

2

3

1

3

2

1

2

2

2

9 7 8 5

S p a t i a l D e n s i t y o f R e g i o n

7

6

9

7

M a r g i n a l D e n s i t y

(b) step II.

1

1

2

12

1

3

2

3

1

3

2

1

2

2

2

9 7 8 5

4

5

5

b u c k e t b o u n d a r y

3

1

3

2

6

(c) step III.

Figure 3.4: Min-Skew Partitioning.

Figure 3.4 illustrates the Min-Skew partitioning process: use a uniform grid of

regions with the spatial density in each grid to represent the spatial density of the

Chapter 3. Related Work 24

input data. The process starts from a single bucket including the whole space,

if there are less buckets, then split the bucket along the boundary of the grid to

reduce the spatial skew mostly. The iteration stops when the buckets reaches the

number required.

The empirical study shows that, for small queries, the precision for Min-Skew

partitioning is improved by more cells in the uniform grid that are used to approx-

imate data space, however for large queries, the error gets worse with too many

regions. To address this problem, they proposed progressive refinement to handle

both small and large queries: the algorithm starts from a small number of regions,

and for equal intervals of buckets, the regions are refined by splitting each one

of them into four. The new regions replace the original ones and properties of

the buckets in the algorithm are recomputed using the new regions. The remaining

steps are the same as before. In fact, the progressive refinement selectively specifies

the buckets which have high-skew regions.

3.5 Dynamic Inverse Sampling

There are many sampling methods [CMN99, CMN98, GM98, Olk, Vit] in the ex-

isting literature. A dynamic inverse sampling technique is proposed in [CMR05]

aiming at drawing uniform samples from the inverse distribution for data

stream [ACc+03, CCD+03, CJSS03] to answer the Inverse distribution queries such

as Inverse heavy hitters, point queries, range queries [CM05, GM98], inverse quan-

tiles.

Chapter 3. Related Work 25

3.5.1 Forward Distribution and Inverse Distribution

For data streams, there are many existing solutions to handle forward distribution

problems such as samples [CM05] and sketches [MM02], however the inverse distri-

bution problems had not been studied well before [CMR05]. Let’s take an example

to catch the differences between forward distribution and inverse distribution.

Example 3.3. Consider the IP traffic on a link as packet p representing (ip, sp)

pairs where ip is a source IP address and sp is the size of a packet. There are two

kinds of problem:

Forward Distribution Problem.Which IP address sent the most bytes? That

is, find i such that
∑

p|ip=i sp is maximum.

Inverse Distribution Problem.What is the most common volume of traffic sent

by an IP address? That is, find traffic volume W such that |i|W =
∑

p|ip=i sp| is

maximum.

In data stream, if f is a discrete forward distribution over a large set of items X,

then inverse distribution, f 1(i), gives fraction of items from X with count i. Inverse

distribution is f−1[0...N],

f−1(i) = fraction of IP addresses which sent i bytes = |x:f(x)=i,i−1 	=0|
|x:f(x)−1 	=0|

(3.3)

F−1(i) = cumulative distribution of f−1 =
∑

i>j f−1(j)[sum of f−1(j) above i] (3.4)

3.5.2 The Dynamic Inverse Sampling

In dynamic inverse sampling technique, three arrays are used. I tem stores the item

from the input; Count stores item counts, namely, how many times this item has

Chapter 3. Related Work 26

x 1 2 3 4 5
l(x) 1 3 2 1 1

Table 3.2: Hash Mapping.

appeared; Unique stores a set of boolean flags to indicate whether the element kept

is still unique. Each array is of size L = log1/r M , where r is the ratio to partition

input items and M is the range of hash function used. L is also the maximum level

number for this data structure. For every item from the data stream, firstly use the

hash function to determine its level l in the data structure, then insert it into the

corresponding level. If the item ID is the same as item in this level, then increase

count and keep unique as true; otherwise, increase count and set unique to false.

When output, from L to 0, output the first item and count pair with unique equals

to true. Overall, k such data structures are constructed for the pursue of higher

precision.

Example 3.4. Consider the following sequence of elements:

Input: 3, 1, 5, 4, 2, 1, 1

Suppose the hash function map the elements to the levels as below:

Figure 3.5 shows the state of the data structure at the update process for inser-

tion. We can find that at time 1, the pair (3,1) returned as sampled value; at time

2, (1,1) and (3,1) are returned; at time 3 and 4, only (3, 1) can be found; from

time 5 to 7, both (3, 1) and (2, 1) can be returned.

Given a sample from the inverse distribution with size O(1
ε2

log 1
δ
), Inverse Dis-

tribution Queries can be answered with additive error less than ε with probability

at least 1 - δ.

If we divide the whole data space into enough number of buckets and consider

the appearance of an element as an instance and this element as an uncertain

object, the dynamic inverse sampling technique can be directly used to answer the

Chapter 3. Related Work 27

S t e p L e v e l 1
i t e m c o u n t u n i q

L e v e l 2
i t e m c o u n t u n i q

L e v e l 3
i t e m c o u n t u n i q u

1 0 0 T 3 1 T 0 0 T

2 1 1 T 3 1 T 0 0 T

3 1 2 F 3 1 T 0 0 T

4 1 3 F 3 1 T 0 0 T

5 1 3 F 3 1 T 2 1 T

6 1 4 F 3 1 T 2 1 T

7 1 5 F 3 1 T 2 1 T

Figure 3.5: An example of DIS update process.

PTRA query.

3.6 Monte-Carlo

Monte Carlo methods [PTVF] are a class of computational algorithms used to

simulate physical and mathematical systems. Monte Carlo methods compute the

result by repeated random sampling. The result of computation relies on good

random numbers and its slow convergence to a better precision when having more

samples.

Monte Carlo methods follow the general pattern below:

First, define a domain of possible inputs; then generate inputs from the domain

Chapter 3. Related Work 28

defined randomly; and next perform a deterministic computation on each input;

Lastly, aggregate the results of the individual computations into the final result.

Example 3.5. Let’s take an example to use Monte Carlo method to approximate

the value of π.

First we draw a circle in a square of unit area, then some small objects with

equal area are uniformly scattered over the square. Because the proportion of objects

in the circle vs objects in the square is nearly π/4, which is also the ratio of the

circle’s area to the square’s area, then we can get a rough number to π by counting

the number of objects within the circle, multiplying by four and dividing by the

number of objects within the square.

Chapter 4

Index Uncertain Data for PTRA

Query

In this chapter, we will introduce our novel technique aiming at handling PTRA

queries. This technique is inspired by the previous work we introduced in Chapter 3.

The Construction of Index: Our hierarchical model to index uncertain data

is based on the structure of U-tree. For the sake of PTRA queries, we modify

the U-tree by adding the aggregate information in every entry, and call this new

U-tree as aU -tree as the base index structure. Besides that, another framework

is developed on the structure of aU -tree by M in-Skew partitioning and Dynamic

Inverse Sampling aiming to support approximate answer. We name this novel

structure as asU -tree (aggregate-based sampling-auxiliary U-tree).

The Query Processing: The query algorithms over asU -tree for both exact

answer and approximate answer are proposed in this chapter. The exact query

processing is based on the aU -tree and similar with the one over U-tree. The

approximate query processing over the novel index structure reflects on the crucial

gains of our asU -tree.

29

Chapter 4. Index Uncertain Data for PTRA Query 30

The index structure of uncertain data for PTRA queries, asU -tree, will be

presented with detail in Section 4.1, then in Section 4.2 the corresponding query

algorithms will be proposed based on the structure of asU -tree. At the end, in

Section 4.3, an extensive empirical study will show the advantages of our technique

in various aspects.

4.1 asU-tree

U-tree is a very good index structure for probability range queries over uncertain

data. With its pruning/validating rules, U-tree is used to speed up the range

query processing on uncertain object, because amount of objects can be filtered

without referring to the PDFs or instances of each object U to calculate the exact

appearance probability Papp(U, q).

However, for the PTRA query, the summarized information is required, there-

fore it seems no necessary to access the objects in the leaf nodes if they can be

asserted in the upper node. For example, in Figure 4.1, node N2 is totally in the

PTRA query region, so the objects contained in N2 are obviously qualified for

the query, we only need to add the number of objects stored in this node to the

answer and stop here digging down the subtree under it. In the case above, if use

U-tree directly to process our PTRA queries, plenty of redundant work has to be

done because aggregate information is not available in the intermediate entries and

moreover U-tree is not able to validate intermediate entries as well.

On the other hand, sometimes we are more interested in the approximate an-

swer. For example, we are planning to cross the downtown, and wondering if the

traffic is busy or not in that area right now. At that time, it is luxurious to search

the exact number of vehicles in downtown and an appropriate approximate num-

Chapter 4. Index Uncertain Data for PTRA Query 31

ber is enough for our request. Another deficiency of U-tree for our PTRA queries

searching is that U-tree does not support approximate query processing.

From the observations above, based on the structure of U -tree, and inspired

by M in-Skew partitioning and Dynamic Inverse Sampling, we construct a novel

structure, asU -tree, to handle the PTRA queries with high accuracy and efficiency

guarantee. Compared with U-tree, the following improvements are made for asU -

tree:

• Aggregate information is added in every entry of U-tree. This information

can be updated whenever we insert or delete an object in the U-tree.

• Creative rules are developed for validating intermediate entries to accelerate

the PTRA query processing.

• Another framework is constructed on the structure of aU-tree: splitting the

whole tree into K subtrees, and doing Dynamic Inverse Sampling for each

subtree to support the approximate query processing.

• Exact query processing and approximate query processing are proposed with

efficiency and accuracy guarantee, respectively.

4.1.1 Index Overview

The original U-tree is used to prune the intermediate entry that contains no result.

For the intermediate entry that can not be pruned, we have to drill down the

subtree under it, in the worst case, to the leaf nodes to verify the uncertain objects

contained in it. For the objects that can not be eliminated or asserted by the

rules, we have to compute the appearance probability with the PDFs/instances.

In fact, as the example showed before, the intermediate entry E can be validated

Chapter 4. Index Uncertain Data for PTRA Query 32

if it is totally covered by the query region rq, thus we only need to step down the

intermediate entry which intersects with the query region rq but can not be pruned

or qualified.

From the observation above, for our asU -tree, we add aggregate information

in every entry of U-tree. Similar with the modification of aR-tree to R-tree, the

aggregate information can be updated dynamically. With this improvement, when

the intermediate entry can be qualified, the aggregate information is adopted di-

rectly in this entry without accessing the subtree under it. This modification can

save the amount of cost, especially when the query has broad searching region.

The asU -tree shares same tree structure with U-tree: The tree is built in a

bottom-up manner. The leaf nodes are on level 0, and the root is on level L,

where L is the height of the tree. Each node N occupies a disk page size which

records: (i)the disk address of N ; (ii)the entries in N . Each entry E in a leaf

node corresponds an uncertain object U and it keeps: (i): U.pcr(r); (ii): U.pdf .

For the entry E in non-leaf node, we keep: (i): a pointer to its child node; (ii):

e.mbr(C1)...e.mbr(Cm), where e.mbr(c) is the MBR of e1.mbr(c)...ef .mbr(c) and

ei...ef are in the child node of E; (iii): e.sl(C1) ... e.sl(Cm), where e.sl(c) is the

smallest value in e1.sl(c), ..., ef .sl(c) and sl means side length.

To support approximate answer, we divide the asU -tree into K non-overlapping

subtrees by picking up K nodes of the asU -tree as the representatives of the asU -

tree, and we call these K nodes as Best K Nodes(BKN). These K subtrees cover

the whole data set without overlap and each of them keeps S objects randomly

sampled from the subtree it represents. We use a virtual node for each BKN to

keep the samples selected from the subtree under it, and call the virtual node as its

Sampling Node. Now the whole asU -tree is condensed by the K Sampling Nodes.

When a query region rq reaches the BKN and this BKN can not be pruned or

Chapter 4. Index Uncertain Data for PTRA Query 33

qualified, the query region rq goes to its Sampling Node rather than digs down the

subtree under it.

Y

X

N 3

N 7

N 4

N 6

N 9

N 8

P T R A q u e r y q

N 1

N 2

N 5

U3 8
U3 7

U3 6

U1 8

U1 9

U2 0

U2 1
U2 2

U2 3

U2 4

U2 5

U2 6

U2 7

U2 8
U2 9

U3 0

U3 2

U3 1
U3 3

U3 4

U3 5

(a) Uncertain Objects.

e1: 1 2 e 2: 9

e5 : 3 e 6: 3 e 7: 3 e 8: 3 e9 : 3 e 1 0 : 3 e 1 1 : 3

e1 8 e1 9 e2 0 e2 1 e2 2 e2 3 e2 4 e2 5 e2 6 e3 0 e3 1 e 3 2 e3 3 e3 4 e 3 5 e3 6 e3 7 e 3 8

r o o t : N 0

N 1 N 2

N 3 N 4 N 5 N 6 N 7 N 8 N 9

L e v e l 0

L e v e l 1

L e v e l 2

e2 7 e2 8 e2 9

(b) asU-tree.

Figure 4.1: Uncertain Objects and its asU-tree.

The ideal case is that given certain number of K, each BKN stands for one

node of an asU -tree. However, in most cases, the BKN is not always ready-made

in the asU -tree. Take the Figure 4.1 as an example, there are 2 nodes on level 1

and 7 nodes on level 0, if we want to divide the asU -tree into 4 subtree, we have to

merge the nodes on level 0 or split some node on level 1 for there is no combination

of the nodes to get BKNs. At that time, Min-Skew partitioning skill is applied to

solve this problem.

The Figure 4.2 illustrates the structure of an asU -tree, where K is 3.

In the following subsections, we will introduce how to construct asU -tree and

process PTRA queries on it. After that, the advantages of asU -tree will be shown.

4.1.2 Aggregate Information Integration

As said before, to answer the PTRA query, it will be much more efficient if the

aggregate information can be obtained at hand whenever the intermediate entry

has been qualified, because it saves considerable number of unnecessary work to

Chapter 4. Index Uncertain Data for PTRA Query 34

access the subtree under that intermediate entry to retrieve the objects stored in

it for the aggregate function to calculate the result.

Similar with the adjustment of aR-tree to R-tree for the range aggregate query

over certain data, U-tree is modified by embedding aggregate information in every

entry of U-tree for requirement of PTRA query. We call this modified U-tree as

aU-tree.

With aU-tree, if the intermediate entry is totally covered by the query range, the

aggregate result for the subtree underneath can be released immediately without

accessing every object in it.

The process to update the aggregate information for aU-tree is similar as the one

for aR-tree: whenever insert or delete an object, besides rectifying the correlative

information of U-tree, the aggregate information of the corresponding entries are

updated automatically as well.

4.1.3 Best K Nodes Construction

Compared with U-tree, aU-tree makes a great improvement to save considerable

labor for the PTRA queries. However, the structure of aU-tree is still not able

to support the approximate answer. The most creative part of our technique is

that the aU-tree is further modified to support approximate query processing. The

intuitive idea is that we divide the aU-tree into K non-overlapping subtrees, and

for each subtree we keep S objects which are sampled from the objects stored in

this subtree. If the subtree can not be pruned or qualified, the query range visits

the samples rather than drill down into the subtree. The procedure to check if

the samples qualify the query or not is the same as the one to check the normal

uncertain objects in U-tree: prune or validate it using the proposed rules, if it can

not be eliminated or qualified, put it to the Scan set to calculate the appearance

Chapter 4. Index Uncertain Data for PTRA Query 35

probability by the refinement method.

The Obstacles to Locate BKNs

The ideal situation is that we separate the aU -tree into K non-overlapping subtrees

by picking up K nodes called BKNs on the aU -tree. For example in Figure 4.1, we

can take N1, N7, N8, N9 as the BKNs to split the whole aU -tree into 4 subtrees.

However, the situation becomes obscure if we attempt to divide the aU -tree into

some ’inconvenient’ number of subtrees. Take another example in Figure 4.1: if we

attempt to make 6 subtrees, which group of nodes should be chosen as the BKNs

from N1, N2, N3, N4, N5, N6, N7, N8, N9. How about if we attempt to make 8

subtrees?

If we consider the objects in U-tree as normal spatial rectangles, the U-tree can

be treated as R*-tree. As pointed out in [APR99], there are some defects of R-tree

family structure to index the spatial rectangles, such as the insertion algorithm

didn’t take the spatial skew as one of the optimization metric to construct the R-

tree, so the spatial skew of the nodes that split the data space is unknown. Another

defect is that it is impossible to control the exact number of entries that further

separate the node they are stored in, when the R-tree is being built by inserting

the objects.

The U-tree has the same problems with the R-tree to index the spatial data.

It is impossible to choose the BKNs before finishing the construction of U-tree

because we are unable to control the number of nodes on each level of U-tree. Set

the number of input objects as Num, the maximum number of entries in a node

of U-tree as Max, and the minimum number as Min, then on level L, the total

number of entries Ent is between Num
MaxL and Num

MinL . It is hard for us to fix the exact

number of entries in each node, therefore it is not convenient to locate the nodes

Chapter 4. Index Uncertain Data for PTRA Query 36

as BKNs on the aU -tree to separate the aU -tree into K subtrees when the U-tree

is still under construction.

From the analysis above, we can see that the main difficulty lies on how to

locate the BKNs on an aU -tree structure and how to verify the BKNs that we

choose is the best option.

BKNs Construction

A novel tuning skill is proposed here to split aU -tree into arbitrary number of

subtrees automatically, and it does not depend on the number of entries in every

node. This skill is inspired by the fundamental work of Min-Skew partitioning

proposed in [APR99].

To construct the arbitrary K subtrees from the aU-tree, the splitting criteria

to ensure the nodes we choose are the best ones to separate the aU -tree: the sum

of the spatial skew of the K subtrees should be minimized. The notion of spatial

skew is defined by [APR99] as we introduced in Chapter 3.

If we take the MBRs of the objects as the initial grid of regions in Min-Skew

partitioning algorithms, the most straightforward method following the original

algorithm to divide the aU -tree into K subtrees is: we group those MBRs of the

uncertain objects into K buckets which lead the greatest reduction of the total

spatial skew. Take Figure 4.1 as an example, in order to form 3 subtrees, we

compute the spatial skews for N3, N4, N5, N6, N8 and N9, then find that it will

reduce the spatial skew mostly if N3 and N4 are grouped together, N5, N6 are put

into same bucket, and the others are in the same bucket. Therefore we get the 3

BKNs as shown in Figure 4.2.

The special situation which is different from the traditional Min-Skew partition-

ing is that we do Min-Skew partitioning on an aU -tree which already is a hierarchial

Chapter 4. Index Uncertain Data for PTRA Query 37

index structure of uncertain objects rather than do it on the spatial space. In an

aU -tree, the nodes on level L can be considered as the boundary dividing the

aU -tree into S non-overlapping subtrees(N
MaxL <= S <= N

MinL). Following the

optimization metric for aU -tree, on each level of aU-tree, the closest objects have

been bounded together in the same node.

Based on the observation above, we give a progressive approach to reduce time

and space consumption to construct K subtrees using Min-Skew partitioning. In-

stead of doing Min-Skew partitioning from the root of the aU -tree, we first locate

the right level L where the number of nodes is equal to or less than K, but the

number in the lower level is greater than K. If the number of nodes on level L is

equal to K, these K nodes are the BKNs we are looking for; otherwise, split each

node Ni on level L into Gi buckets and the sum of the buckets Gi equals K, that is

∑
Gi∈Ni

Gi = K. The number of buckets Gi of node Ni depends on the portion of

spatial skew of Ni . Set the skew of Ni as Si, then Gi : Si = Gj : Sj. We put the

nodes in the same bucket together as one of the BKNs.

Example 4.1. As illustrated in Figure 4.2, suppose we attempt to split the aU-tree

into 3 subtrees, first we locate at level 1 which have 2 nodes N1, N2 and 7 nodes

on level 0, then compute their skew S1, S2, respectively, if S1 : S2 = 2 : 1, then we

split N1 into 2 buckets B11 which contains N3 and N4, B12 which contains N5 and

N6 by Min-Skew partitioning skill. Now we get the 3 subtrees represented by the 3

buckets B11, B12, B2, and the nodes in the same bucket are considered as the same

BKN . For example N3 and N4 are taken together as one of the BKNs.

When the entry needs further split, the Min-Skew partitioning will be applied

on its child node.

The algorithm to apply Min-Skew partitioning is the same with the one

in [APR99] except that we use the MBRs of entries in the node which will be

Chapter 4. Index Uncertain Data for PTRA Query 38

e1: 1 2 e 2: 9

e5 : 3 e 6: 3 e 7: 3 e 8: 3 e9 : 3 e 1 0 : 3 e 1 1 : 3

e1 8 e1 9 e2 0 e2 1 e2 2 e2 3 e2 4 e2 5 e2 6 e3 0 e3 1 e 3 2 e3 3 e3 4 e 3 5 e3 6 e3 7 e 3 8

r o o t : N 0

N 1 N 2

N 3 N 4 N 5 N 6 N 7 N 8 N 9

L e v e l 0

L e v e l 1

L e v e l 2

e2 7 e2 8 e2 9

B K N 1 B K N 2

B K N 3

Figure 4.2: Best K Nodes Selection

Algorithm 1: SplitEntry(E, B)

Input : The entry needs to be split E; The number of bucket B

Output: The buckets Buckets

get the child node N of E;1

MinSkew(N,B);2

split as the uniform grid of regions in the original algorithm. The pseudo-code for

this step is provided in algorithm 2:

If the BKNs are not available from the existing nodes of asU -tree, we have to

split some node into different number of buckets. The algorithm 3 illustrates the

process to find which node needs to be split and how many buckets it should have.

4.1.4 Sampling Auxiliary

After the aU -tree has been divided into K subtrees, we start to apply an appro-

priate sampling technique to condense each subtree to be a smaller tree. As we

introduced before, if we treat an object as an item and an instance of the object as

Chapter 4. Index Uncertain Data for PTRA Query 39

Algorithm 2: MinSkew(N , B)

Input : The node N ; The number of buckets B required

Output: The buckets Buckets

while the number of bucket BT ≤ Bdo1

for each current bucket do2

compute the spatial skew of the bucket;3

split point along its dimensions that will lead the maximum reduction in4

spatial skew;

for the bucket whose split reduces the spatial skew greatest, split the bucket5

into two;

assign regions from the old buckets into the new ones;6

return the buckets Buckets7

the appearance frequency of the item, Dynamic Inverse Sampling (DIS) can be

applied directly to select S samples for each subtree. However, to make it meaning-

ful to keep the appearance probability of the object, further splitting the subtree

into smaller subregions, such as uniform grids, has to be done. However, it will

take much more storing space to keep the information of subregions for every sub-

tree. Enlarging the storing space for each subtree means enlarging the pagesize for

U-tree. The pagesize is linear with time to construct aU-tree and process query, so

we would better avoid making further space division for the subtree to bring more

information which needs to be kept.

According to the original DIS algorithm, three arrays should be kept: item

storing the ID of item from the input, count storing the appearance of the item,

uniq is the boolean flag indicating if this item is still unique. Here, we just need

to keep two arrays because the appearance probability of any object in the subtree

Chapter 4. Index Uncertain Data for PTRA Query 40

Algorithm 3: Construct BKNs

Input : The aU-tree U

Output: The BKNs

L =
log(K)/log(C)�;1

Entry.Level = L count the spatial skew of this entry SK;2

insert the entry into list List according to SK in decreasing order;3

if the number of entries in the List equals K then4

assign List to BKNs;5

return BKNs6

else7

for each E ∈ Listdo8

Compute the number of buckets B for E;9

SplitEntry(E, B);10

put the Entries in each buckets into BKNs;11

return BKNs12

Chapter 4. Index Uncertain Data for PTRA Query 41

equals one at all time, then the count array can be eliminated.

For approximate answer, the precision is in direct proportion to the number of

samples, while the efficiency is in inverse proportion to the number of samples. We

will test the ideal number of samples in the empirical study. The samples will be

inserted in a new node for the subtree called Sampling Node.

The remaining step is to apply DIS in the same manner as explained

in [CMR05]: keep desired size of data structure as we introduced before for each

subtree, and use hash function to map the objects stored in the subtree to different

levels with uniq to imply that the object is still the unique one in this level or

not. At the output time, we choose the unique object for each data structure as

the sample and insert it to the Sampling Node. This procedure will halt when the

required size of samples is obtained.

After DIS, small number of objects are sampled uniformly for each of the K

subtrees that are represented by the BKNs. Now the asU -tree, which stands for

aggregate based sampling auxiliary U-tree, has been constructed completely.

4.1.5 Dynamic Update of asU-tree

Whenever an uncertain object is inserted into or deleted from the asU -tree, three

sets of information need to be updated. Take insertion operation as an example

and deletion operation is similar.

Dynamic Insertion/Deletion Procedure: Firstly, the object is inserted into

asU-tree as described in [TCX+05] except that the aggregate information for each

entry in each node of the asU-tree needs to be updated as well.

Dynamic Splitting Procedure: If there is any change in the node distribution,

the Min-Skew partitioning will be applied as described in 4.1.3 to adjust the location

of BKNs based on the renewed node distribution of the asU-tree.

Chapter 4. Index Uncertain Data for PTRA Query 42

Dynamic Sampling Procedure: Lastly, if the BKNs are changed, the dynamic

inverse sampling will be applied for the new BKNs, otherwise the corresponding

dynamic inverse sampling structure for all BKNs will be updated as described

in [CMR05].

Algorithm 4: Dynamic Update(T)

Input : The asU-tree T

Output: The updated asU-tree T

insert/delete objects;1

if any node split occurs then2

Construct BKNs;3

for each new BKN do4

do DIS;5

else6

for each BKN do7

update DIS;8

return the updated asU-tree T9

4.2 Query Processing Algorithms

With our asU -tree, both exact and approximate queries can be executed with high

efficiency and effectiveness. In fact, the exact PTRA query processing and the

proximate PTRA query processing on asU -tree have many similarities with the

probability range query processing on U-tree, because asU -tree shares the same

foundation with U-tree. The major difference between the two kinds of queries

over uncertain data lies in their different goals. The PTRA query is aimed to

Chapter 4. Index Uncertain Data for PTRA Query 43

find the aggregate information for the whole data set instead of retrieving every

object which is qualified for the query. To answer PTRA queries, based on the

rules in [TCX+05], we proposed the rules to eliminate/validate both subtrees and

objects on asU -tree for PTRA queries.

The rules to prune/validate subtrees for PTRA query q with search region rq

and probability pq are given as following:

• Rule 1: For pq > 1 − pm, an object U can be pruned if query region rq does

not totally cover U.cfbin(pj), where pj(1 ≤ j ≤ m) is the smallest value in

the U-catalog not less than 1 − pq;

• Rule 2: For pq ≤ 1−pm, an object U can be eliminated if query region rq does

not intersect with U.cfbout(pj), where pj is the largest value in the U-catalog

not greater than pq;

• Rule 3: An object U can satisfy query q if query region rq fully contains

the part of U.MBR between planes U.cfbi−
out(pj) and U.cfbi+

out(pj) for some

i ∈ [1, d], where pj is the largest value in the U-catalog not greater than

(1 − pq)/2;

• Rule 4: For pq > 0.5, an object U can be validated if the query region rq

completely covers the part of U.MBR on the right (or left) of U.cfbi−
out(pj)

(or U.cfbi+
out(pj)) for some i ∈ [1, d], where pj is the largest value in the U-

catalog not greater than 1 − pq;

• Rule 5: For pq ≤ 0.5, an object U can be qualified when query region rq

totally contains the part of U.MBR on the left (or right) of U.cfbi−
in (pj) (or

U.cfbi+
in (pj)) for some i ∈ [1, d], where pj is the smallest value in the U-catalog

not less than pq;

Chapter 4. Index Uncertain Data for PTRA Query 44

• Rule 6: For pq, the subtree of an intermediate entry e can be pruned if query

region rq does not intersect e.MBR(pj) (for some j ∈ [1,m]), where pj is the

largest value in the U-catalog satisfying pj not greater than pq;

• Rule 7: For pq, the subtree under an intermediate entry e can be validated if

the e.MBR inside rq.

For the object in the candidate set Scan which is required to refer to the

PDF/instances of it to calculate the appearance probability to determine if it

belongs to the result or not, we follow the refinement step in [TCX+05] using

Monte-Carlo method. The asU -tree does not make any innovative improvement

to calculate the appearance probability, since its contributions in the novel index

structure for uncertain objects.

4.2.1 The Refinement Step

When the uncertain object U can not be pruned or validated, the appearance

probability papp of it in the query region rq needs to be calculated and compared

with the probabilistic threshold pq. It is not hard to get the appearance probability

papp if the uncertain region U.ur and query range rq are both in regular shape

and the probability distribution is described in integrated function PDFs. For

example, for any uncertain object U from the input if U.ur and rq are rectangles

and U.pdf describes a uniform distribution, the appearance probability papp(U, p)

can be simply computed by the ratio between the part of U.ur ∩ rq and rq.

However, the situation is much more complicated in reality because normally

the probability distribution is irregular and the intersection area between U.ur and

rq is not always rectangles but some complex shape. At that time, it is very costly

to compute the exact appearance probability papp. The Monte-Carlo(MC) method

Chapter 4. Index Uncertain Data for PTRA Query 45

is introduced here to remedy the problem.

In MC method, a function f(x) is used to represent U.pdf(x) for a d-dimensional

point x in U.ur∩ rq. The query region rq is represented by rmbr which is the MBR

of the rq, then a number of uniform points are randomly generated in the area

rmbr ∩ rq. Set these points as x1, ..., xm, respectively, the appearance probability

can be estimated with accurate guarantee if the number n of points is big enough

in the following equation:

Papp(U, q) = vol.
1

n

n∑
i=1

f(xi) (4.1)

Where vol denotes the volume of rmbr ∩ rq.

4.2.2 Exact Query Processing

When accurate result for the PTRA query required, the query q traverses the

asU -tree from the root with Rule 6 and Rule 7 to prune/qualify the entries in the

root. If the intermediate entry can be asserted, the aggregate information in this

entry is contributed to the final result and the subtree under it is not going to be

further visited. For the entry which can not be eliminated or validated, we retrieve

its child node and do the same procedure for the child node recursively. When

the leaf node is reached, we will try to prune/validate its entries which are the

uncertain objects with Rule 1 to Rule 5. If the object can not be neither pruned

nor qualified, we send it to the candidate set Scan. After processing all necessary

nodes of the asU -tree, we start to apply the tuning step for the objects in the set

Scan as described in 4.2.1. The pseudo-code for exact query processing is given in

algorithm 5 and algorithm 6:

Example 4.2. Take an example to show the exact query processing in Figure 4.3:

Chapter 4. Index Uncertain Data for PTRA Query 46

Algorithm 5: ProcessNodeForExactResult(N , Stack, Result)

Input : The asU-tree node N ; storing stack Stack; final result Result

Output: storing stack Stack; final result Result

for each entry Ec in N do1

if the entry Ec is qualified then2

add the aggregate information of Ec to Result;3

else if Ec can not be pruned then4

put Ec to Stack;5

e 1: 1 2 e 2: 9

e5 : 3 e 6: 3 e 7: 3 e 8: 3 e9 : 3 e 1 0 : 3 e 1 1 : 3

e1 8 e1 9 e2 0 e2 1 e2 2 e2 3 e2 4 e2 5 e2 6 e2 7 e2 8 e 2 9 e3 0 e3 1 e 3 2 e3 3 e3 4 e 3 5 e3 6 e3 7 e 3 8

r o o t : N 0

N 1 N 2

N 3 N 4 N 5 N 6 N 7 N 8 N 9
L e v e l 0

L e v e l 1

L e v e l 2

q u e r y

q u e r y

Figure 4.3: Exact Query Processing

The query visits the asU-tree from the root which contains Entries E1, E2 and the

query region rq fully covers E2, intersects with E1. The aggregate result 3 from E2

is added to the final result that is 3 now and the query region rq stops to go down

the subtree under E2, while E1 can not be disqualified by rule 6 and needs to be

further explored, then we retrieve the child node N1 of E1.

In node N1, the entries e7 and e8 are intersected with query region rq and still

can not be pruned or validated, then we retrieve their child node N5 and N6 which

are leaf nodes and contain uncertain objects. Now there are 6 objects need to be

checked totally. Suppose we process the objects in N5 and N6 one by one and find

Chapter 4. Index Uncertain Data for PTRA Query 47

Algorithm 6: Exact Query Processing(T , rq, pq)

Input : The asU-tree T ; the query region rq; the threshold pq

Output: The aggregate result Result

initialize the stack Stack for storing entries;1

initialize the final result Result;2

get the root node R of asU -tree;3

ProcessNodeForExactResult(R; Stack; Result);4

while Stack is not empty do5

take the first entry E in Stack;6

if E is not in the leaf node then7

get the child node N of E;8

ProcessNodeForExactResult(N , Stack, Result);9

pop E from Stack;10

else11

if E can be validated then12

add the aggregate information to Result;13

else if E can not be pruned then14

send it to the candidate set Scan;15

pop E from Stack;16

Chapter 4. Index Uncertain Data for PTRA Query 48

that there are 3 objects qualified, then the final answer is 6.

4.2.3 Approximate Query Processing

It is the biggest contribution of asU -tree to support approximate query processing

for PTRA queries with accurate and efficient guarantee.

The approximate query processing has no difference with the accurate query

processing from the beginning step until starting to process the BKN . When

the BKN is reached, instead of doing the recursion to retrieve the subtree of the

BKN , the query visits the Sampling Node of the BKN to estimate an approximate

answer.

There are S samples which are selected from the objects stored in the subtree

of BKN by DIS in the Sampling Node. We prune/validate the samples with

Rule 1 to Rule 5, for the sample which can not be pruned or validated, apply the

refinement step to check if it belongs to the answer. After accessing every sample

in Sampling Node, the approximate result for this subtree is valuated as:

R = M ∗ N

S
; (4.2)

Where R represents the approximate result for this subtree, M is the number

of samples that satisfy the query q, and N is the number of total objects in this

subtree.

It needs to be pointed out that if the Sampling Node is built from more than

one intermediate entries, once one of these entries processed, the others in the same

Sampling Node should not be accessed any more to avoid repetition of calculation.

Example 4.3 (Avoiding Repetition). Let’s specify the procedure to deal with the

Sampling Node which consists of more than one entries with an example in Fig-

Chapter 4. Index Uncertain Data for PTRA Query 49

e 1: 1 2 e 2: 9

e5 : 3 e 6: 3 e 7: 3 e 8: 3 e3 1 e3 3 e3 8

e1 8 e2 0 e2 2 e2 4 e2 7 e2 9 e3 0 e3 1 e 3 2 e3 3 e3 4 e 3 5 e3 6 e3 7 e 3 8

r o o t : N 0

N 1 S3

S1 S2 N 7 N 8 N 9

L e v e l 0

L e v e l 1

L e v e l 2

B K N (B 2)

B K N (B 1 1) B K N (B 1 2)

q u e r y

q u e r y

Figure 4.4: Approximate Query Processing

ure 4.4. The entry e2 in the root is qualified and its aggregate information 3 is

added to the result, while entry e1 can not be neither asserted nor eliminated by the

asU-tree rules, and needs to be further explored, then we retrieve the child node N1

of e1.

For the node N1, we access its entries in it and find that entry e7 is selected in

the bucket as one BKN with other entry e8 in N3, then we visit the Sampling Node

S2 to check the objects sampled in it. There are 3 samples stored in S2 which are

selected from the 6 objects in entry e7 and entry e8, and we just check these 3 objects.

If there are 2 samples qualified, the answer for the subtree which is represented by

S2 is: 2 ∗ 6
3

= 4, and then we get the final answer which is: 3 + 4 = 7.

After accessing Sampling Node S2, the entry e8 is eliminated from processing

queue because it is marked as the other one in the same bucket with e7.

We give the pseudo-code for approximate query processing in algorithm 7 and

algorithm 8:

Example 4.4 (Approximate Query Processing). Let’s use an example in Figure 4.4

to illustrate the approximate query processing: The procedure starts from the root

node R: prune or validate the entries e1, e2 in the root. Obviously, e2 is validated

for it is totally in the query region rq, then the aggregate information 3 in e2 is

Chapter 4. Index Uncertain Data for PTRA Query 50

Algorithm 7: ProcessNodeForApproximateResult(N ; Stack; Result)

Input : The asU-tree node N ; storing stack Stack; final result Result

Output: storing stack Stack; final result Result

for each entry E in N do1

if E is qualified then2

add the aggregate information of E to Result;3

else if E can not be pruned then4

if E is marked as BKN which is not processed then5

return approximate result R for E from Sampling Node Ns;6

add R to the final result Result;7

else if E is not BKN then8

put E to the stack Stack;9

added to the final result. if entry e1 can neither be pruned nor qualified, and it is

not one of the BKNs, then we retrieve its child node N1 and put the entries in N1

to the stack. we start from the first entry in the stack to apply the rules to prune

or validate.

Suppose entry e7 is marked as one of the BKNs, then we go to its sampling

node S2 rather than its child node and check the samples in S2. Assume there are

2 objects qualified in the 3 samples that are selected from 6 objects, then the result

for the subtree under e7 is: R = 2∗ 6
3

= 4, so we add R to the final result which is 7

now. Then we fetch the last entry e8 in the stack and find that it has been marked

as the same BKNs with e7, so the final approximate result is returned as 7.

Chapter 4. Index Uncertain Data for PTRA Query 51

Algorithm 8: Approximate Query Processing(T , rq, pq)

Input : The asU-tree T ; the query region rq; the threshold pq

Output: The aggregate result Result

initialize the stack Stack for storing entries;1

initialize the final result Result;2

get the root node R of asU -tree;3

ProcessNodeForApproximateResult(R; Stack; Result);4

while Stack is not empty do5

take the first entry E in Stack;6

if E is not in the leaf node then7

get the child node N of E;8

ProcessNodeForApproximateResult(N ; Stack; Result);9

pop E from Stack;10

else11

if E can be validated then12

add the aggregate information to Result;13

else if E can not be pruned then14

send it to the candidate set Scan;15

pop E from Stack;16

Chapter 4. Index Uncertain Data for PTRA Query 52

4.3 Experimental Analysis

We present a thorough study on the performance of our techniques in this section.

All algorithms are implemented in C++. Experiments are run on PCs with Intel

P4 2.8GHz CPU and 2G memory under Debian Linux. The disk page size is fixed

to 8192 bytes.

The asU -tree is updated from the U-tree to index uncertain objects for PTRA

query. There is no previous work aiming at this kind of query, for comparison, we

implement parallel experiment on both asU -tree and U-tree using the same data

sets in [TCX+05]: two real spatial data sets LB with 53K points and CA with 62K

points presenting locations in the Long Beach country and California respectively.

Data domain along each dimension is [0, 10000]. Given a data point p, an uncertain

data U is generated with uncertainty region U.ur which is a circle centering at p and

has radius radU 250. The PDF of an uncertain object U follows either uniform or

Constrained-Gaussian (Con-Gau for short) distribution. In uniform distribution,

the distribution of an object is uniformly inside the uncertain region U.ur with the

same probability. The Con-Gau is based on the traditional Gaussian distribution

except that the distribution of an object U is in U.ur.

The query region rq is a square/cube with radius radq, and the distribution of

its center follows that of the underlying data. In our experiments, parameter pq

(the probabilistic threshold) is ranged from 0.1 to 0.9, and radq (radius of query

region) is from 500 to 1500. For each parameter group, 5000 queries are executed

and the average result is used to measure the performance.

Chapter 4. Index Uncertain Data for PTRA Query 53

dimensionality d 2
data domain [0, 10000] in each dimension

number of objects 53k, 62k
radU 250

PDFs uniform, Constrained-Gaussian
number of queries 5000

radq 500, 1000, 1500
pq in [0.1, ..., 0.9]

Table 4.1: Parameter values.

4.3.1 Construction Consumption

In practice, to construct an asU -tree, an aU -tree should be built first, then the

BKNs are decided on the aU -tree by Min-Skew partitioning skill, once the BKNs

ready, DIS is applied on each BKN to keep S samples for its Sampling Node,

therefore it is inevitable that construction of asU -tree takes more time and space

than aU -tree, but according to our experiment, the extra cost for asU -tree is quite

limited. Figure 4.5 compares the construction consumption for aU -tree and asU -

tree.

In this part of the experiment, for each data set, we set 5 groups on the number

of BKNs ranged from 5 to 20 and each BKN keeps 150 samples. As illustrated in

Figure 4.5, the consumption to construct an asU -tree mainly lies on the procedure

of building the aU-tree part. the cost for Min-Skew partitioning and DIS to

form the second framework on aU-tree is almost negligible compared with inserting

objects to build the tree structure as the basic framework to index uncertain data.

It should be noticed that the construction time does not go with the number

of BKNs in linear relationship, because besides the consumption of building tree

structure, the cost is not only related with the number of BKNs and the number

of samples for each BKN , but also affected by the distribution of nodes in the

asU -tree. If there are K nodes which can be used to separate the aU -tree into K

Chapter 4. Index Uncertain Data for PTRA Query 54

non-overlapping subtrees, it will save lots of time to apply Min-Skew Partitioning

to re-group the aU -tree nodes into buckets.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

4 5 6 7 8 9

C
on

st
ru

ct
io

n
Ti

m
e(

th
ou

sa
nd

 s
ec

on
ds

)

Catalog Size m

aUtree
BKNs5

BKNs10
BKNs15

BKNs20

(a) construction time(LB).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

4 5 6 7 8 9

C
on

st
ru

ct
io

n
Ti

m
e(

th
ou

sa
nd

 s
ec

on
ds

)
Catalog Size m

aUtree
BKNs5

BKNs10
BKNs15

BKNs20

(b) construction time(CA).

Figure 4.5: Performance vs Construction Time.

4.3.2 Efficiency Evaluation

Processing time with respect to data sets, dimensionality, query region, and prob-

abilistic threshold is computed by a workload of 5000 queries. We evaluate the

efficiency by the average time cost for all the queries.

Improving the efficiency to handle PTRA queries is the major contribution of

asU-tree for the PTRA queries. In our experiment, we measured the efficiency of

approximate query processing on asU-trees with BKNs from 5 to 20 and 150 sam-

ples in each BKN . We compared to the efficiency of approximate query processing

with the one of accurate query processing.

Figure 4.6 shows that for approximate query processing, if the asU-tree consists

of less BKNs, higher efficiency will be gained, because less BKNs means less

nodes access to get the approximate answer. Apparently, the cost is much higher

for accurate query processing.

Chapter 4. Index Uncertain Data for PTRA Query 55

 0

 2

 4

 6

 8

 10

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size m

aUtree
BKNs5

BKNs10
BKNs15

BKNs20

(a) Efficiency(LB).

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size m

aUtree
BKNs5

BKNs10
BKNs15

BKNs20

(b) Efficiency(CA).

Figure 4.6: Efficiency Evaluation.

4.3.3 Accuracy Evaluation

Accuracy can be defined as a relative error of approximate answer and exact answer

by the formula: accuracy = |Rex−Rap

Rex
|, where Rex and Rap present the exact result

and approximate result, respectively.

Accuracy with respect to data sets, dimensionality, query edge length, and

probabilistic threshold is also measured by a workload of 5000 queries. In this part

of empirical study, the number of BKNs and the number of samples are fixed the

same as the efficiency evaluation part.

As illustrated in Figure 4.7, with appropriate number of BKNs, the accuracy

can be guaranteed: the best result we can see is that the average error is less than

0.1, and most of the average errors are lower than 0.4. In the worst case, the

average error reaches 0.8. If we adjust the number of BKNs, the approximate

result could obtain high accuracy.

There are many factors working together to lead different precision besides the

length of query range as illustrated in Figure 4.7, so the error has some irregularities.

We are analyzing different roles of parameters on accuracy in the next section.

Chapter 4. Index Uncertain Data for PTRA Query 56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Catalog Size m

BKNs=5 BKNs=10 BKNs=15 BKNs=20

(a) Accuracy(LB):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Catalog Size m

BKNs=5 BKNs=10 BKNs=15 BKNs=20

(b) Accuracy(CA):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Catalog Size m

BKNs=5 BKNs=10 BKNs=15 BKNs=20

(c) Accuracy(LB):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Catalog Size m

BKNs=5 BKNs=10 BKNs=15 BKNs=20

(d) Accuracy(CA):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Catalog Size m

BKNs=5 BKNs=10 BKNs=15 BKNs=20

(e) Accuracy(LB):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Catalog Size m

BKNs=5 BKNs=10 BKNs=15 BKNs=20

(f) Accuracy(CA):radq = 1500.

Figure 4.7: Accuracy Evaluation.

4.3.4 Impact of the parameters

There are various factors affecting the result of the performance for both efficiency

and accuracy. Our asU -tree is built on the basic structure of U-tree, so besides

the parameters which have been revealed in [TCX+05] to show their significant

Chapter 4. Index Uncertain Data for PTRA Query 57

influences on the performance of asU -tree, such as the catalog size, the size of

query region and the probabilistic threshold, there are two other key factors of the

asU -tree which are critical for the result of the experiments: the number of the

BKNs and the number of samples for each BKN .

The effect of the number of the BKNs on efficiency and precision

As illustrated in our experiment, the number of the BKNs and the distribution of

nodes are crucial for the performance of approximate query processing over asU -

tree. As pointed out before, picking up the BKNs is actually using Min-Skew

partitioning technique on the structure of asU -tree to split the input space into

K buckets. Intuitively, if raise the number of BKNs, the efficiency to process

PTRA query should be decreased because more nodes need to be retrieved, while

the accuracy of the result should be improved correspondingly. This intuition is

approved by the result of our experiment.

In this part of experiment, the impact of sample size is not considered, so we

fix it at 150 as before and test the influence of BKNs number from 5 to 20.

From Figure 4.8, it is quite obvious that between the asU-trees with different

BKNs, the efficiency decreases when the number of BKNs increases. This trend

is very clear for the asU -tree for both LB data set and CA data set in Figure 4.8.

For the accuracy analysis, we can find in Figure 4.9 that the accuracy is im-

proved with larger query region, and generally, the error decreases if the number

of BKNs increases, except some abnormal results revealing that the accuracy is

not only affected by the number of BKNs, but also by the distribution of nodes

on asU -tree. In Figure 4.9, for CA data set, the asU -tree with U-catalog size 4 has

highest precision on 15 BKNs asU -tree than 20 BKNs asU -tree.

Chapter 4. Index Uncertain Data for PTRA Query 58

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

5 10 15 20

Q
ue

ry
 T

im
e

(d
ec

ad
e

se
co

nd
s)

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(a) LB.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

5 10 15 20

Q
ue

ry
 T

im
e

(d
ec

ad
e

se
co

nd
s)

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(b) CA.

Figure 4.8: The Effect of KBNs on Efficiency.

The effect of sample size on efficiency and precision

Theoretically, if there are more samples in each BKN , the approximate query

processing has lower speed but higher accuracy. In this part of experiment, we

analyze the effect of sample size on the result for both efficiency and accuracy.

As shown in 4.10, the procedure of PTRA query performs slower as the samples

increase, and the speed varies with the number of samples in linear time.

The Figure 4.11, Figure 4.12 and Figure 4.13 reveal that the accuracy of ap-

proximate result is not totally determined by the number of samples. on the other

hand, the influence of the sample size is trivial. The average error does reduce

while the samples increase, but the improvement is quite small.

Chapter 4. Index Uncertain Data for PTRA Query 59

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20

av
er

ag
e

ab
so

lu
te

 e
rr

or

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(a) LB:radq = 500.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20

av
er

ag
e

ab
so

lu
te

 e
rr

or
BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(b) CA:radq = 500.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20

av
er

ag
e

ab
so

lu
te

 e
rr

or

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(c) LB:radq = 1000.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20

av
er

ag
e

ab
so

lu
te

 e
rr

or

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(d) CA:radq = 1000.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20

av
er

ag
e

ab
so

lu
te

 e
rr

or

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(e) LB:radq = 1500.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

5 10 15 20

av
er

ag
e

ab
so

lu
te

 e
rr

or

BKNs

catalog size=4
catalog size=5
catalog size=6

catalog size=7
catalog size=8
catalog size=9

(f) CA:radq = 1500.

Figure 4.9: The Effect of KBNs on Accuracy.

Chapter 4. Index Uncertain Data for PTRA Query 60

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(a) 5 BKNs(LB).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(b) 5 BKNs(CA).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(c) 10 BKNs(LB).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(d) 10 BKNs(CA).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(e) 15 BKNs(LB).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(f) 15 BKNs(CA).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(g) 20 BKNs(LB).

 0

 1

 2

4 5 6 7 8 9

Q
ue

ry
 T

im
e(

hu
nd

re
d

se
co

nd
s)

Catalog Size

sample size 50
sample size 150

sample size 250

(h) 20 BKNs(CA).

Figure 4.10: The effect of sample size on Efficiency.

Chapter 4. Index Uncertain Data for PTRA Query 61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(a) 5 BKNs(LB):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(b) 5 BKNs(CA):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(c) 10 BKNs(LB):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(d) 10 BKNs(CA):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(e) 15 BKNs(LB):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(f) 15 BKNs(CA):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(g) 20 BKNs(LB):radq = 500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(h) 20 BKNs(CA):radq = 500.

Figure 4.11: The effect of sample size on Accuracy(radq = 500).

Chapter 4. Index Uncertain Data for PTRA Query 62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(a) 5 BKNs(LB):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(b) 5 BKNs(CA):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(c) 10 BKNs(LB):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(d) 10 BKNs(CA):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(e) 15 BKNs(LB):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(f) 15 BKNs(CA):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(g) 20 BKNs(LB):radq = 1000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(h) 20 BKNs(CA):radq = 1000.

Figure 4.12: The effect of sample size on Accuracy(radq = 1000).

Chapter 4. Index Uncertain Data for PTRA Query 63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(a) 5 BKNs(LB):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(b) 5 BKNs(CA):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(c) 10 BKNs(LB):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(d) 10 BKNs(CA):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(e) 15 BKNs(LB):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(f) 15 BKNs(CA):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(g) 20 BKNs(LB):radq = 1500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 5 6 7 8 9

av
er

ag
e

ab
so

lu
te

 e
rr

or

Catalog Size

sample size 50
sample size 150

sample size 250

(h) 20 BKNs(CA):radq = 1500.

Figure 4.13: The effect of sample size on Accuracy(radq = 1500).

Chapter 5

Conclusion and Future Work

An important problem, probabilistic threshold range aggregate query is investi-

gated in this thesis. After formally defining this problem, we firstly propose a novel

index structure, asU-tree, which integrates aggregate information for range aggre-

gate query as well as sampling techniques to support approximate query. Exact

and approximate query processing algorithms are developed based on the asU -tree.

Our comprehensive experimental study confirms the efficiency and effectiveness of

the techniques we proposed.

As a future work direction, firstly, we will optimize the algorithm to split the

asU-tree into K subtrees. Min-Skew partitioning works very well on spatial space,

but in our case, Min-Skew partitioning is applied on the aU-tree which is of hier-

archical structure. If the insertion or deletion leads to modification on the nodes

distribution over asU-tree, the BKNs need to be adjusted by applying Min-Skew

partitioning all over again.

Secondly, we are trying to find an approach to choose the best number of K for

different asU-tree. From the experiment, the performance is affected by both the

number of BKNs and the nodes distribution of asU -tree. When the number of

64

Chapter 5. Conclusion and Future Work 65

BKNs brings less splitting by Min-Skew partitioning, the result has more efficiency

and accuracy.

Finally, we will study the performance of other summarizing techniques, such as

histograms [TGIK02], to provide approximate answers for range aggregate queries

over uncertain data, and make the summarizing technique works well with the

index technique.

Bibliography

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,

Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A

system for data, uncertainty, and lineage. In VLDB, pages 1151–1154,

2006.

[ACc+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack,

Christian Convey, C. Erwin, Eduardo F. Galvez, M. Hatoun, Anurag

Maskey, Alex Rasin, A. Singer, Michael Stonebraker, Nesime Tatbul,

Ying Xing, R. Yan, and Stanley B. Zdonik. Aurora: A data stream

management system. In SIGMOD Conference, page 666, 2003.

[APR99] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. Selec-

tivity estimation in spatial databases. In SIGMOD Conference, pages

13–24, 1999.

[AW] P. Agrawal and J. Widom. Confidence-aware joins in large uncertain

databases. In Stanford University Technical Report, 2007.

[AY08] Charu C. Aggarwal and Philip S. Yu. On high dimensional indexing

of uncertain data. In ICDE, pages 1460–1461, 2008.

66

BIBLIOGRAPHY 67

[BGK+07] Christian Böhm, Michael Gruber, Peter Kunath, Alexey Pryakhin,

and Matthias Schubert. Prover: Probabilistic video retrieval using

the gauss-tree. In ICDE, pages 1521–1522, 2007.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The R*-tree: An efficient and robust access method for points

and rectangles. In Proceedings of the 1990 ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD), pages 322–331,

1990.

[BPS06a] Christian Böhm, Alexey Pryakhin, and Matthias Schubert. The gauss-

tree: Efficient object identification in databases of probabilistic feature

vectors. In ICDE, page 9, 2006.

[BPS06b] Christian Böhm, Alexey Pryakhin, and Matthias Schubert. Probabilis-

tic ranking queries on gaussians. In SSDBM, pages 169–178, 2006.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel Madden, Frederick Reiss, and Mehul A. Shah. Telegraphcq:

Continuous dataflow processing. In SIGMOD Conference, page 668,

2003.

[CCKN06] Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng. Uncertain

data mining: An example in clustering location data. In PAKDD,

pages 199–204, 2006.

[CCMC08] Reynold Cheng, Jinchuan Chen, Mohamed F. Mokbel, and Chi-Yin

Chow. Probabilistic verifiers: Evaluating constrained nearest-neighbor

queries over uncertain data. In ICDE, pages 973–982, 2008.

BIBLIOGRAPHY 68

[CCT96] Arbee L. P. Chen, Jui-Shang Chiu, and Frank Shou-Cheng Tseng. Eval-

uating aggregate operations over imprecise data. volume 8, pages 273–

284, 1996.

[CJSS03] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and

Vladislav Shkapenyuk. Gigascope: A stream database for network

applications. In SIGMOD Conference, pages 647–651, 2003.

[CKP03] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Eval-

uating probabilistic queries over imprecise data. In Proceedings of

the 2003 ACM SIGMOD International Conference on Management of

Data (SIGMOD), pages 551–562, 2003.

[CKP07] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evalua-

tion of probabilistic queries over imprecise data in constantly-evolving

environments. Information Systems, 32(1):104–130, 2007.

[CM05] Graham Cormode and S. Muthukrishnan. What’s hot and what’s not:

tracking most frequent items dynamically. volume 30, pages 249–278,

2005.

[CMN98] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Ran-

dom sampling for histogram construction: How much is enough? In

SIGMOD Conference, pages 436–447, 1998.

[CMN99] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. On

random sampling over joins. In SIGMOD Conference, pages 263–274,

1999.

BIBLIOGRAPHY 69

[CMR05] Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summa-

rizing and mining inverse distributions on data streams via dynamic

inverse sampling. In VLDB, pages 25–36, 2005.

[Cod79] E. F. Codd. Extending the database relational model to capture more

meaning. ACM Transactions on Database Systems (TODS), 4(4):397–

434, 1979.

[CSP+06] Reynold Cheng, Sarvjeet Singh, Sunil Prabhakar, Rahul Shah, Jef-

frey Scott Vitter, and Yuni Xia. Efficient join processing over uncertain

data. In CIKM, pages 738–747, 2006.

[CXP+04] Reynold Cheng, Yuni Xia, Sunil Prabhakar, Rahul Shah, and Jef-

frey Scott Vitter. Efficient indexing methods for probabilistic threshold

queries over uncertain data. In Proceedings of 30th International Con-

ference on Very Large Data Bases (VLDB), pages 876–887, 2004.

[DS04] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on proba-

bilistic databases. In Proceedings of 30th International Conference on

Very Large Data Bases (VLDB), pages 864–875, 2004.

[DS05] Nilesh N. Dalvi and Dan Suciu. Answering queries from statistics and

probabilistic views. In Proceedings of 31st International Conference on

Very Large Data Bases (VLDB), pages 805–816, 2005.

[DS07] Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data:

foundations and challenges. In Proceedings of the Twenty-Sixth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database sys-

tems (PODS), pages 1–12, 2007.

BIBLIOGRAPHY 70

[FR97] Norbert Fuhr and Thomas Rölleke. A probabilistic relational algebra

for the integration of information retrieval and database systems. ACM

Transactions on Information Systems (TOIS), 15(1):32–66, 1997.

[Fuh95] Norbert Fuhr. Probabilistic datalog - a logic for powerful retrieval

methods. In Proceedings of the 18th annual international ACM SI-

GIR conference on Research and development in information retrieval

(SIGIR), pages 282–290, 1995.

[GM98] Phillip B. Gibbons and Yossi Matias. New sampling-based summary

statistics for improving approximate query answers. In SIGMOD Con-

ference, pages 331–342, 1998.

[GUP06] Jose Galindo, Angelica Urrutia, and Mario Piattini. Fuzzy Databases:

Modeling, Design, and Implementation. Idea Group Publishing, 2006.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data (SIGMOD), pages 47–57, 1984.

[HPZL08a] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Efficiently an-

swering probabilistic threshold top-k queries on uncertain data. In

ICDE, pages 1403–1405, 2008.

[HPZL08b] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Ranking queries

on uncertain data: a probabilistic threshold approach. In SIGMOD

Conference, pages 673–686, 2008.

[IJ84] Tomasz Imielinski and Witold Lipski Jr. Incomplete information in

relational databases. Journal of the ACM, 31(4):761–791, 1984.

BIBLIOGRAPHY 71

[INV91] Tomasz Imielinski, Shamim A. Naqvi, and Kumar V. Vadaparty. In-

complete objects - a data model for design and planning applications.

In Proceedings of the 1991 ACM SIGMOD International Conference

on Management of Data (SIGMOD), pages 288–297, 1991.

[JKV07] T. S. Jayram, Satyen Kale, and Erik Vee. Efficient aggregation algo-

rithms for probabilistic data. In SODA, pages 346–355, 2007.

[JL] M. Jurgens and H. Lenz. The ra*-tree: An improved r-tree with ma-

terialized data for supporting range queries on olap-data. In DEXA

workshop, 1998.

[JPY07] Xuemin Lin Jian Pei, Bin Jiang and Yidong Yuan. Probabilistic sky-

lines on uncertain data. In Proceedings of the 33rd International Con-

ference on Very Large Data Bases (VLDB), 2007.

[KKR07] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilistic

nearest-neighbor query on uncertain objects. In DASFAA, pages 337–

348, 2007.

[KP05] Hans-Peter Kriegel and Martin Pfeifle. Density-based clustering of

uncertain data. In KDD, pages 672–677, 2005.

[L08] Xiang Lian and Lei Chen 0002. Monochromatic and bichromatic re-

verse skyline search over uncertain databases. In SIGMOD Conference,

pages 213–226, 2008.

[Lee92] Suk Kyoon Lee. An extended relational database model for uncer-

tain and imprecise information. In Proceedings of 18th International

Conference on Very Large Data Bases (VLDB), pages 211–220, 1992.

BIBLIOGRAPHY 72

[LM01] Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggre-

gate queries with a multi-resolution tree structure. In SIGMOD Con-

ference, pages 401–412, 2001.

[LS07] Vebjorn Ljosa and Ambuj K. Singh. Apla: Indexing arbitrary proba-

bility distributions. In ICDE, pages 946–955, 2007.

[MM02] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency

counts over data streams. In Proceedings of 28th International Confer-

ence on Very Large Data Bases (VLDB), pages 346–357, 2002.

[MSS01] Sally I. McClean, Bryan W. Scotney, and Mary Shapcott. Aggregation

of imprecise and uncertain information in databases. volume 13, pages

902–912, 2001.

[MW] R. Murthy and J. Widom. Making aggregation work in uncertain and

probabilistic databases. In MUD workshop, 2007.

[NKC+06] Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael

Chau, and Kevin Y. Yip. Efficient clustering of uncertain data. In

ICDM, pages 436–445, 2006.

[Olk] F. Olken. Random sampling from databases. In PhD thesis, Berkeley.

[PKZT01] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient

olap operations in spatial data warehouses. In SSTD, pages 443–459,

2001.

[PTVF] William H. Press, Saul A. Teukolsky, William T. Vetterling, and

Brian P. Flannery. Numerical recipes in c++. In Cambridge University

Press, 2002.

BIBLIOGRAPHY 73

[RB91] Elke A. Rundensteiner and Lubomir Bic. Evaluating aggregates in

possibilistic relational databases. volume 7, pages 239–267, 1991.

[RDS] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on

probabilistic data. In Proceedings of the 23th International Conference

on Data Engineering(ICDE), 2007.

[RSG05] Robert B. Ross, V. S. Subrahmanian, and John Grant. Aggregate

operators in probabilistic databases. volume 52, pages 54–101, 2005.

[SBHW06] Anish Das Sarma, Omar Benjelloun, Alon Y. Halevy, and Jennifer

Widom. Working models for uncertain data. In Proceedings of the

22nd International Conference on Data Engineering (ICDE), page 7,

2006.

[SD07] Prithviraj Sen and Amol Deshpande. Representing and querying corre-

lated tuples in probabilistic databases. In ICDE, pages 596–605, 2007.

[SIC] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query process-

ing in uncertain databases. In Proceedings of the 23th International

Conference on Data Engineering(ICDE), 2007.

[SM] B. Scotney and S. McClean. Database aggregation of imprecise and

uncertain evidence. In Inf. Sci. Inf. Comput. Sci, 155(3):245C263,

2003.

[SMP+07] Sarvjeet Singh, Chris Mayfield, Sunil Prabhakar, Rahul Shah, and Su-

sanne E. Hambrusch. Indexing uncertain categorical data. In ICDE,

pages 616–625, 2007.

[TCX+05] Yufei Tao, Reynold Cheng, Xiaokui Xiao, Wang Kay Ngai, Ben Kao,

and Sunil Prabhakar. Indexing multi-dimensional uncertain data with

BIBLIOGRAPHY 74

arbitrary probability density functions. In Proceedings of 31st Interna-

tional Conference on Very Large Data Bases (VLDB), pages 922–933,

2005.

[TGIK02] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. Dynamic

multidimensional histograms. In SIGMOD Conference, pages 428–439,

2002.

[TP04] Y. Tao and D. Papadias. Range aggregate processing in spatial

databases. ACM TODS, 16(12):1555–1570, 2004.

[Vit] J. S. Vitter. Random sampling with a reservoir. In ACM Transactions

on Mathematical Software, 11(1):37C57, 1985.

[YLSK] K. Yi, F. Li, D. Srivastava, and G. Kollios. Efficient processing of top-

k queries in uncertain databases. In Technical report, Florida State

University, 2007.

[ZLPZ08] Wenjie Zhang, Xuemin Lin, Jian Pei, and Ying Zhang. Managing

uncertain data: Probabilistic approaches. In WAIM, pages 405–412,

2008.

[ZLY08] Qin Zhang, Feifei Li, and Ke Yi. Finding frequent items in probabilistic

data. In SIGMOD Conference, pages 819–832, 2008.

	Title Page - Probabilistic Threshold Range Aggregate Query Processing over Uncertain Data
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Problem Definition
	Chapter 3 - Related Work
	Chapter 4 - Index Uncertain Data for PTRA Query
	Chapter 5 - Conclusion and Future Work
	Bibliography

