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Abstract

We consider birational maps in affine space of two or more dimensions over finite fields.

We see that when we look at the mappings modulo p, we lose all topology and sense of

“closeness” of points that is present over the real or complex numbers. However, algebraic

properties such as the presence of a reversing symmetry (reversible maps) or preserving

an invariant algebraic surface (integrable maps) also reduce algebraically to the finite

field. For birational maps on the finite field, we have the possibility of periodic orbits or

singular orbits. We investigate how these algebraic properties manifest themselves in the

orbits and show how random (i.e. probabilistic) models tailored for these properties can

be used to predict various statistics of the orbits such as the number of periodic orbits, the

number of periodic points and the distribution of the lengths of the orbits. Furthermore,

this can be used as a diagnostic for whether a given mapping possesses such properties.

We see that these properties alone seem to be the constraining property for many of the

statistics of the dynamical system, and not the details of the map itself. We provide

in-depth analysis and numerical studies on a few representative examples and also show

the efficacy of these ideas on a menagerie of maps from the literature.
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Chapter 1

Introduction

In this thesis, we investigate the dynamics of birational (invertible rational) maps on

affine space reduced to the finite field. By studying maps on a finite field, we can describe

the dynamics completely by performing a full orbit decomposition, that is, finding the

orbit length of every point by direct computation (for small finite fields at least). The

main dynamical questions relate to orbit statistics: their number, length and distribution.

We are interested in studying the mathematical structure underpinning these statistics.

For polynomial automorphisms (invertible polynomial maps) over finite fields, all orbits

will be periodic cycles. A motivating question is whether there are classes of maps with

similar cycle structures or if we can find the average or expected statistics for classes of

maps.

For example, a polynomial automorphism over the finite field Fp in d dimensions has pd

points and is a realisation of a permutation over the same number of points. Thus, a

good analogy to this problem may be obtained by looking at the symmetric group Sn, the

set of permutations on n points. There are many questions we can ask about the cycle

structure of a permutation. What is the expected length of the longest cycle? How many

cycles do we expect of length k? What is the expected number of cycles? What is the

distribution of the number of cycles? The simplest non-trivial examples are linear maps

in two dimensions commonly known as cat maps which over the finite space F2
p can be

written as

x′ = αx− y

y′ = x,
(1.1)
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where each coordinate is taken modulo p and parameter α ∈ Fp. This map preserves the

conic section given by

I(x, y) = x2 − αxy + y2 (1.2)

since I(x′, y′) = I(x, y). We say that I(x, y) is an integral for the map (1.1). Percival and

Vivaldi [55] showed that in almost all cases, all orbits have the same cycle length which

is a divisor of p + 1 or p − 1. A more interesting example can be found by looking at

non-linear polynomial automorphisms. For example, take the classical Hénon quadratic

family [29] over F2
p,

x′ = y,

y′ = −δx+ y2 + ε
(1.3)

with integer parameters δ 6= 0, ε. For δ = 1, the map has the property called reversibility,

and can be written as the composition of two involutions. This gives the map a revers-

ing symmetry, and orbits can be classified as symmetric or asymmetric (see chapter 5).

In 2005, Roberts and Vivaldi [63] conjectured that the scaled distribution of the large

prime length symmetric orbits for reversible polynomial automorphisms (such as (1.3)) is

asymptotically the same as the distribution of all orbit lengths, which is independent of

the map and given by

R(x) := 1− e−x(1 + x). (1.4)

Here the scaled distribution Dp(x) for F2
p refers to

Dp(x) =
#{z ∈ F2

p | t(z) ≤ κx}
p2

, (1.5)

where κ is a scaling parameter and t(z) is the length of the orbit of z. Furthermore,

for these reversible maps we can obtain a good estimate for the number of orbits by

looking at the reversing symmetries (without calculating any dynamics). In contrast, for

non-reversible maps (for example for parameters δ 6= 1, 0 in (1.3)), Roberts and Vivaldi

[63] conjectured that the limiting distribution is the same as for a random permutation,

I(x) = x. They also observed that the length of the longest orbit was consistent with the

expected length for a random permutation [25]. Intuitively, this says that a map with

no symmetries or other constraining structure will behave like a random permutation,

while reversible maps obey a different universal distribution R(x). They investigated
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this further in [64], by considering the composition of random involutions by using a

combinatorial model, showing that the expected limiting distribution of the orbit lengths

(with mild restrictions on the size of their fixed sets) was indeed R(x).

A large part of the work in this thesis is motivated by and can be seen as an extension

the works of Roberts and Vivaldi [62, 63, 64] of studying maps over finite fields. They

used this idea to detect signatures of two algebraic properties: having an integral or being

reversible. Their work was concerned mainly with the length of orbits or the distribution

of the lengths, while in this thesis we put a larger focus on the number of orbits. We

will see that this is an effective discriminator for these two algebraic properties, even

for higher dimensional maps. There is much interest in detecting integrals in discrete

systems. In particular, the area of discrete integrable systems is a very active research

area. For a review of several integrability tests, see [27] and references therein. We will see

how the ideas for polynomial automorphisms can help us to study the more general case

of birational maps (invertible rational maps) which have singularities where the action of

the map is undefined.

In chapter 2, we introduce basic definitions related to mappings over a finite field and

briefly describe related literature in this area such as the study of permutation polyno-

mials, random permutations and random maps. The enumeration of the number, lengths

and distribution of orbits for higher dimensional maps on the finite field was only recently

considered by Roberts and Vivaldi in [62, 63, 64]. In chapter 3, we review some results on

the orbit statistics of random permutations. We compare these to the (dissipative) Hénon

map (1.3), a representative polynomial automorphism in two dimensions, and see that its

orbit statistics are well modelled by those of a random permutation. In chapter 4, we ex-

tend the random permutation to allow for singular points. We call these s-permutations,

where s is the number of singular points and s = 0 corresponds to the case of a permu-

tation in chapter 3. We see the distribution R(x) manifest itself in the distribution of

the lengths of singular orbits for s-permutations. We provide exact expected values in

the enumeration of the periodic orbits and points. We compare this to various birational

maps in two dimensions and see that these are well modelled by s-permutations.

In chapter 5, we introduce the algebraic property of reversibility and show the effect of the

reversing symmetries on the dynamics of the map reduced to the finite field. In chapter

6, we introduce the algebraic property of an integral of motion showing its effects on the

3
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Figure 1.1: Maps over finite fields Fp: growth of the number of cycles with prime p for an integrable
map (top), a non-integrable reversible map (middle), and a non-integrable, non reversible map
(bottom).

orbits. We consider in detail the cat map 1.1, a linear mapping in two dimensions reduced

to the finite field providing results on its orbit decomposition. We also study a family of

QRT maps, summarising results in [33] and adding some further observations. In chapter

7 we study the piecewise cat map, first studied by Lagarias and Rains [37, 38, 39] over the

real plane. We consider the map reduced to the finite field, where we also parameterise

the position of the transition in the piecewise function, which we call the “switch”. We

study the distribution of the orbits, and see that it seems to have limiting distribution

R(x). By varying the “switch”, we see the departure from the orbit length distribution

of the cat map from Percival and Vivaldi [55] to R(x).

In chapter 8, we revisit the combinatorial model in [64]. We extend the model to allow for

singular points, but also shift our attention to the number of asymmetric orbits, which

was not previously considered. In chapter 9, we develop a practical test for the number of

rational integrals in a reversible map by using the models for the number of asymmetric

periodic orbits. In [63], various statistics of maps were compared in the finite space F2
p.

For example, the number of cycles for integrable maps, non-integrable R-reversible map

and a non-integrable non-R-reversible map were conjectured to be asymptotic to p log p, p

and 2 log p respectively. This is shown in figure 1.1. Roberts and Vivaldi [62] proposed

a method to detect integrals in 2D by considering the maximum orbit lengths of orbits

when reduced to the finite field. This utilised the Hasse-Weil bound and was shown to
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be very effective, even for separating near-integrability from genuine integrability for 2D

maps. In chapter 9 we investigate the idea of using orbit statistics for detecting integrals

in higher dimensions. We will see that the method used in [62] is only effective as a test

of super-integrability (when the number of integrals is one less than the dimension of

the space). We propose a new method using the statistic of the number of asymmetric

periodic orbits. This uses the results from chapter 8 that provide a heuristic for how this

number changes for reversible maps with integrals. We test our model against a large

number of integrable maps in the literature and provide data showing the efficacy of this

method.

1.1 Original research contributions

This thesis aims at presenting the results of my research during my PhD. Here I will

outline the major contributions contained in this thesis. In order of appearance, they are:

1. A combinatorial model for maps with singularities which is effective in estimating

various statistics of birational maps (Chapter 4).

2. Analysis of the cycles of a Piece-wise linear map showing the departure from a

singular distribution to R(x) (Chapter 7).

3. Extension of the combinatorial model in [64] of the composition of two involutions on

a finite space to allow for singularities and providing asymptotic values for various

statistics, but in particular focussing on asymmetric cycles which was not previously

considered (Chapter 8).

4. A new method for testing the number of rational integrals in reversible maps using

a numerical test on the number of asymmetric cycles (Chapter 9).

5



Chapter 2

Maps and dynamics over finite fields

This chapter introduces maps and (discrete) dynamical systems and gives a brief overview

of some history and the current state of some results in dynamical systems. We focus on

finite dynamical systems as this is what we are mainly concerned with in this thesis.

2.1 Polynomial and rational maps

Definition 2.1.1. Let K be a field. A mapping over the d-dimensional affine space Kd is

a function L : Kd → Kd. This takes a point x = (x1, . . . , xd) ∈ Kd to x′ = (x′1, . . . , x
′
d) ∈

Kd via

L : x′1 = f1(x1, . . . , xd)

x′2 = f2(x1, . . . , xd)

...

x′d = fd(x1, . . . , xd),

(2.1)

where each fi is a function fi : Kd → K. Alternatively, more compactly, we can also

write

L : x′ = F (x), (2.2)

where F = (f1, f2, . . . , fd)
T .

With K a field, firstly consider polynomials f1, f2, . . . , fd ∈ K[x1, x2, . . . , xd]. Then L is

a polynomial map over Kd. We also consider the case when f1, f2, . . . , fd are rational

6



functions. That is, for 1 ≤ i ≤ d we can write fi = gi/hi where gi, hi ∈ K[x1, x2, . . . , xd],

that is,

fi(x1, x2, . . . , xd) =
gi(x1, x2, . . . , xd)

hi(x1, x2, . . . , xd)
. (2.3)

We will assume that gi and hi are coprime. One problem is that these rational functions

fi now may not be functions. The fi’s will be defined at all x ∈ Kd where hi(x) 6= 0 and,

in this case, the mapping L is defined at x where fi(x) in (2.1) is defined for all 1 ≤ i ≤ d.

The largest set for which L is defined is the domain of L. Its complement is called the

locus of indeterminacy which we denote as Sing(L). It is where L is not defined, that is,

Sing(L) = {x ∈ Kd | hi(x) = 0 for some i = 1, 2, . . . , d}. (2.4)

We will call x ∈ Sing(L) a singular point of L. Thus L is a rational map with domain

Kd − Sing(L).

2.2 Discrete dynamical systems

The core motivation for studying maps is that they can be used to model a variety of

phenomena. A dynamical system on a space S is a map L : S → S where we study the

action of L on points in S, namely for z ∈ S we consider

z′ = Lz, (2.5)

where z′ denotes the next iterate of z under the mapping L.

Definition 2.2.1. The (forward) orbit of a point z ∈ S is given by the set

σ(z) = {Lkz | k ∈ N}

= {z, Lz, L2z, . . .}
(2.6)

where Lk (for k ∈ N) denotes k iterations of the map and L0 is defined to be the identity

map.

The orbit of a point z is just the sequence of points obtained by repeatedly iterating L for

the point z. (For the time being, we ignore orbits of rational maps that will have singular

points as we will deal with this at the end of this chapter). A special type of orbit is one

that has a finite sequence of points.
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(a) Filled Julia set of fc with c = 1 − φ
where φ = (1 +

√
5)/2 is the golden ratio

from Wikimedia [72].

(b) (Filled) Julia set of fc with c = i from
Wikimedia [45]. There is no interior so the
filled Julia set is the same as the Julia set.

Figure 2.1

Definition 2.2.2. A point z is periodic with period k if Lkz = z for the least positive

integer k. We say z belongs to a k-cycle. Additionally, a point z is preperiodic if there

are integers s ≥ 0, k ≥ 1 such that Ls+kz = Lsz, that is, some iterate of z is periodic.

The main objects of study for a map L are its orbits. For some maps, the behaviour of

its orbits is difficult to solve in general, while for others it is well known and easily solved.

For example, for d = 1 and a polynomial map f , we may consider the filled Julia set for

f

J(f) = {z ∈ C | the orbit of z is bounded} (2.7)

whose boundary is the Julia set of f . A familiar complex dynamical system is given by

quadratic polynomials, that is, f : C→ C given by

fc(z) = z2 + c (2.8)

for some c ∈ C. Examples of the filled Julia set are given for c = 1−φ where φ = (1+
√

5)/2

and c = i in figure 2.1. This is a special case of rational maps (which we will be considering

in this thesis). We are interested in rational maps, although we do not consider them

over R or C but instead over a discrete space, say Q. An initial motivating problem is

the how many periodic or preperiodic points are rational? We have an important result

by Northcott [53]. Let PrePer(f) denote the set of preperiodic points of the map f .
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Theorem 2.2.3. (Northcott 1950) Let f : Kd → Kd be a polynomial map of degree n ≥ 2

defined over a number field K. Then

PrePer(f) ∩Kd is finite. (2.9)

In particular, a rational function f ∈ Q[z] of degree n ≥ 2 has only finitely many rational

preperiodic (and periodic) points.

This is an interesting result as there are infinitely many complex periodic points, and in

many cases even infinitely many real periodic points. Furthermore, Morton and Silverman

[51] conjectured that for a polynomial map with fixed degree n ≥ 2, the number of rational

periodic points is bounded by a constant C(d). For the map (2.8), it has been shown that

for any c, there are no rational periodic points of period 4 by Morton [50] and period 5 by

Flynn, Poonen, Schaefer [21]. Poonen [58] further conjectured that there are no rational

points with period 6 or more.

Conjecture 2.2.4. (Poonen 1998) If N ≥ 4, then there is no quadratic polynomial

f(z) ∈ Q[z] with a rational point of exact period N .

This conjecture was verified by Hutz and Ingram [31] for (2.8) with rational c whose

numerator or denominator (in absolute value) is less than or equal to 108. We now

examine dynamical systems on a discrete space that is also finite.

2.3 Finite dynamical systems

An interesting case to consider is when S is a finite set for which L : S → S. Now every

z ∈ S must be periodic or preperiodic. In this case, we can fully describe the dynamics of

L by simply computing the orbit of every point. For finite sets, a useful way to represent

the dynamics is by using a directed (or functional) graph where each z ∈ S is assigned

a vertex and we have directed edges (z, Lz). Every vertex has exactly one edge leaving

it, but may have zero, one or multiple edges entering it. A large class of these finite

systems is for S taken to be a finite field Fp and L a polynomial over S. Recall that

Fp = {0, 1, 2, . . . , p− 1} and all operations are done modulo p.

Example 2.3.1. Let f : F11 → F11 be defined by f(x) = x2 − 1. Then we have the

following table describing the function value of each point:
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x 0 1 2 3 4 5 6 7 8 9 10

f(x) 10 0 3 8 4 2 2 4 8 3 0

The directed graph corresponding to the map f is given by

1 0 10

5

6

2

9

3 8

7 4

Here we have 3 disjoint components, one with a 2-cycle and two with fixed points.

Notice that the directed graph consists of disjoint components, each with one cycle. In

general, we are interested in questions related to the structures seen in the directed graph,

for example,

• How many cycles are there?

• How long are the cycles?

• What is the distribution of the lengths of the cycles?

We may also ask similar questions about the preperiodic points in each disjoint component.

Of course, given a particular finite field Fq and polynomial f , we can explicitly compute

these statistics by direct computation but the goal is in understanding the mathematical

factors behind what we see which will enable us to comment about the dynamics for a

general finite field and polynomial.

The study of discrete dynamics over finite fields has for the most part been a recent

phenomena. The simplest dynamical systems (over finite fields) are linear. Elspas (1959)

[19] studied four dimensional linear systems modulo 2 for which he deduced necessary

conditions for the cycle structure by using the elementary divisors of the associated matrix.

Percival and Vivaldi (1987) [55] studied linear systems on rational points of the 2-torus

(reducing to finite rational lattices) using ideal theory and showed that all orbits are

periodic with the same cycle length. Vivaldi (1992) [77] studied the geometry of the orbits

of linear maps in two dimensions. For nonlinear maps over finite fields, the dynamics

can be much more exotic and its study is in general quite complicated. One of the
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applications of these dynamical systems is for pseudorandom number generation. A well

known example using this property was given by Pollard (1975) [57] in his famous paper

on integer factorisation, which was hinged on the behaviour of the quadratic polynomial

map in Fp given by

f(x) = x2 − 1. (2.10)

He suggested that quadratic polynomials modulo large primes behave like random map-

pings on Fp and used this fact to estimate the expected cycle lengths and pretail lengths

allowing him to give probabilistic arguments for the number of steps required before find-

ing a prime factor. Martins and Panario (2016) [47] provided heuristic arguments that

support this idea for quadratic polynomials and also for higher degrees by looking at the

rho length of the nodes. Furthermore, Benedetto et al. [6] also considered the normalised

cycle lengths of degree 2 polynomial maps over Fdp (for d = 1, 2, 3) and showed that it

follows random mapping behaviour modulo p. We will use these ideas in chapter 3 and

4 to construct a model for the number of cycles in polynomial automorphisms and bi-

rational maps. The difficulty in studying even quadratic polynomials over finite fields is

evident as even now, some 40 years later, their behaviour is still not fully understood in

general except for the maps x′ = x2 (mod p) which was studied by Rogers (1996) [65] and

x′ = x2 − 2 (mod p) studied by Gilbert et al. (2001) [24] and Vasiga and Shallit (2004)

[76].

2.4 Expected statistics of polynomial maps

The complexity of these systems has led some to consider the “average statistics” for

particular classes of maps. Chou and Shparlinski [14] studied the average values of various

statistics for repeated exponentiation x′ = xe (mod p) for some integer e ≥ 2, which was

extended by Sha [69] modulo prime powers. The idea of average statistics is an important

idea in this thesis. We want to be able to say something about the behaviour of a general

dynamical system described by some polynomial (or rational) map by looking at expected

statistics as, for example, even quadratic maps like (2.10) are not fully understood. Then,

depending on the distribution of the maps, we may be able to say something about the

expected statistics of a randomly chosen map from a given class of maps (e.g. degree 2

polynomials). We may wonder how random maps compare to polynomial maps (of a given

degree). Random maps are more general than polynomial maps and in some aspects are

easier to handle since they are less restrictive. Flajolet and Odlyzko [20] used generating
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functions to find the expected statistics for various properties of random maps of n points

such as the number of components, cyclic points, terminal points and image points in the

directed graph representation. Their asymptotic forms as n→∞ are

#Components
1

2
log n

#Cyclic points
√
πn/2

#Terminal points e−1n

#Image points (1− e−1)n

where a point is cyclic if it belongs to a periodic cycle, a point is terminal if it has no

preimage and is an image point otherwise. They also found the expected statistics when

seen from a random point in a random mapping for the tail length, cycle length, rho

length, tree size, component size and predecessor size. These results may be used to

model quadratic (or higher degree) polynomial maps. However, one may argue that ran-

dom mappings do not accurately represent the behaviour of polynomial maps as they do

not take into account that any point in a polynomial map with degree d has a preimage

set of size at most d. Thus, understanding the behaviour of polynomial maps is impor-

tant. Arney and Bender [2] considered random mapping statistics with constraints on the

number of origins and indegrees of points. Using this model may be more accurate but

it still may not take into account all the intricacies of polynomial maps. For example, in

quadratic maps defined by degree 2 polynomials, it is easy to show that the functional

graph has one node with indegree 1, (p−1)/2 with indegree 2 and the remaining (p−1)/2

with indegree 0 (for example see the directed graph of example 2.3.1.

We may ask what the expected statistics are for degree d polynomial maps and how do

they compare with random maps. For example, Kruskal [36] showed that the expected

number of components for a random map on n points is given by

K(n) =
1

2
log n+

(
log 2 + ψ

2

)
+ o(1) (2.11)

where ψ = 0.5772156649... is the Euler-Mascheroni constant. For polynomial maps of

degree d over Fq, Flynn and Garton [22] obtained upper and lower bounds on the average

number of components and periodic points. Furthermore, Bellah et al. [5] provided a
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probabilistic heuristic to count the number of components for the same polynomial maps

of degree d and found that this was equal to

K(q) +O(1) (2.12)

under some mild conditions. This gives some evidence that the expected statistics of

polynomial maps may not be too dissimilar to the expected statistics of random maps.

Konyagin et al. [35] also noted from their numerical tests that the average values of the

number of periodic points and the size of the largest connected components for polynomial

maps behave like random maps.

Another problem of interest is how many different or non-isomorphic functional graphs

(that is, different dynamical systems) we obtain when considering all degree d polynomial

maps. Bach and Bridy [3] considered the problem of finding Dq(d), the number of non-

isomorphic functional graphs of affine maps over the d dimensional space Fdq obtaining

the bound:

Theorem 2.4.1. (Bach and Bridy 2013) For fixed q and d→∞

√
d� logDq(d)� d

log log d
. (2.13)

Further, Konyagin et al. [35] considered degree m polynomials over Fq and obtained

bounds on the number of non-isomorphic functional graphs. In particular, their results

showed that for quadratic maps this number N2(p) is

p1/4+o(1) ≤ N2(p) ≤ p (2.14)

for q = p an odd prime. Interestingly, from their experiments they found that N2(p) = p

except for p = 2, 17 but noted that it may be difficult to prove as “there is no intrinsic

reason for this to be true”. This shows the difficulty of providing exact results for dy-

namical systems as even the quadratic case is extremely complex. These numbers were

further considered by Ostafe and Sha [54] for polynomials of special forms. Furthermore,

Bridy and Garton [9] considered the family of maps xk +m over Fp and showed that for

any positive integers k,M greater than 1, there are infinitely many sets of integers of size

M such that the family of maps are dynamically non-isomorphic as p → ∞. For more
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references of univariate dynamics over finite fields see this recent survey on iterations of

mappings over finite fields [46].

2.5 Permutation mappings

A special type of mapping is one that is bijective on a finite set. These are called per-

mutation mappings, and more specifically if the mapping is a polynomial, then we call

them permutation polynomials. It is natural to consider polynomial mappings since ev-

ery permutation g over a finite field Fq can be expressed as a polynomial by Lagrange

interpolation,

Pg(x) =
∑
a∈Fq

g(a)(1− (x− a)q−1). (2.15)

Dickson [18] in 1897 first introduced a class of permutation polynomials now known as

Dickson polynomials. Lidl and Mullen [41] in 1988 provided the major known classes

of permutation polynomials and presented a list of nine open questions related to them.

Since then, there has been increased attention and research in this area, for example,

in determining which polynomials f are permutation polynomials and efficient tests for

whether a given f is one. This led to work by Gathen [23] providing a probabilistic test

using O(d log q) operations while Shparlinski [71] provided a deterministic method in time

O(dq)6/7+ε. It is difficult to find or count all the permutation polynomials in a finite field.

The importance of the Dickson polynomials is due to a claim known as Schur’s conjecture.

Schur proved that every integral polynomial (a polynomial with integer coefficients) of

prime degree which is a permutation polynomials for infinitely many p, is a composition of

Dickson polynomials and linear polynomials. The conjecture was whether this statement

is also true for integral polynomials of general degree, which was proved in 1995 by

Turnwald [75].

For specific classes of permutation polynomials, their cycle structure is known. A mono-

mial fk(x) = xk is a permutation polynomial of Fq if and only if gcd(k, q−1) = 1. Ahmad

(1969) [1] studied the cycle lengths of permutation monomials and found criteria for spe-

cific cycle lengths and the number of them using elementary number theory. Rubio and

Corrada (2004) [67] provided conditions for which these maps have all cycles of the same
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length (ignoring fixed points). The Dickson polynomial polynomials of the first kind are

given by

Dn(x, α) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−α)ixn−2i. (2.16)

This is a permutation polynomial if and only if gcd(i, q2−1) = 1. Rubio et. al. (2008) [68]

showed conditions for which the cycle lengths of the Dickson polynomials are the same for

α = −1, 0, 1. Furthermore, the cycle lengths and the structure of the functional graphs

of Rédei functions were classified in [66] and [59] respectively. The Dickson polynomials

can be seen as a generalisation of these as monomials correspond to the case α = 0.

Through this brief review of some results in the area of maps over finite fields, we learn

some useful things. Even in one dimension, the dynamics of polynomial maps can be

very complicated, for which there are still many open problems. When we increase the

dimensions, this increases the complexity further. However, there are two ways which

we can make progress. Firstly, we can look at specific maps, or specific families of maps

which may have certain properties for which we may be able to obtain various results.

Alternatively, if we are interested in more general, larger classes of maps, instead of solving

its dynamics exactly, we can look at its expected behaviour.

2.6 Polynomial automorphisms and birational maps in higher dimensions

In this thesis, we will be working with the field K in (2.1) being the finite field Fp.

Furthermore, we will study polynomial maps L over Fdp that have an inverse that is also

a polynomial map which we denote by L−1. Necessarily, L and L−1 must be one-to-one

and we have

LL−1z = z, L−1Lz = z (2.17)

for all z ∈ Fdp. Such maps L (and L−1) are called polynomial automorphisms. Studying

these higher dimensional maps greatly increases the complexity of the system (compared

to d = 1) as these mappings are now a system of equations with multiple variables.

We are interested in how specific algebraic properties of a mapping manifest themselves

(if they do) in the finite space. Some results and ideas from permutation polynomials

can be extended to higher dimensions. For example, Maubach (2001) [48] showed that

higher dimensional polynomial automorphisms over Fdq give all possible bijections (or

permutations) for q = 2 or q = pr where p > 2. A similar result was given by Cantat (2009)
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[11] showing that every permutation on Fdq is induced by a birational transformation.

This means that we can obtain all possible permutations by considering only polynomial

maps. The increase in complexity of these systems raises the question of how we may

study general nonlinear maps of this type. The results above by Maubach and Cantat also

support the possibility that the observed statistics of a (random) permutation polynomial

may be similar to the average statistics of a random permutation. We examine this idea

by first finding the expected statistics for random permutations and comparing them to

permutation mappings in higher dimensions in chapter 3.

We also consider rational mappings L over Fdp that also have a rational inverse L−1 where

defined. That is, we have (recalling (2.4))

LL−1z = z, z 6∈ Sing(L−1) and L−1z 6∈ Sing(L), (2.18)

L−1Lz = z, z 6∈ Sing(L) and Lz 6∈ Sing(L−1). (2.19)

Here L,L−1 must be one-to-one (on the restricted spaces where they are defined). These

will be called birational maps. Note that the orbit of a point terminates in the affine

space when it hits a singular point of L. To account for orbits with singular points, we

redefine the orbit of a point for birational maps.

Definition 2.6.1. Suppose L is a birational map with inverse L−1. The forward orbit of

a point z is given by

σF (z) = {Lkz, k ∈ N | Ljz 6∈ Sing(L), 0 ≤ j ≤ k}, (2.20)

and the backward orbit of a point z is given by

σB(z) = {L−kz, k ∈ N | L−jz 6∈ Sing(L−1), 0 ≤ j ≤ k}, (2.21)

and the orbit is given by

σ(z) = σF (z) ∪ σB(z). (2.22)

The forward orbit is the largest sequence of points obtained by iterating L until hitting a

singular point or returning to itself and similarly the backward orbit is the same but for

L−1. We call any orbit with a point in Sing(L) ∪ Sing(L−1) to be a singular orbit. For
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periodic orbits, definition 2.6.1 is identical to definition 2.2.1. The orbit decomposition of

L consists of a disjoint union of periodic and singular orbits. The number and distribution

of these orbits is of interest and this is what we investigate in chapter 4 which can be seen

as an extension of the ideas in chapter 3. We will propose a model for the expected number

of these statistics and show that typically, a birational mapping has similar statistics.
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Chapter 3

Random permutations and polynomial automorphisms over finite

fields

A d-dimensional polynomial automorphism over the finite space Fdp is a permutation of

the space. It provides a realisation of one of the elements of the symmetric group Spd .

Thus, the orbits decompose into a finite number of periodic orbits (or cycles). In this

chapter, we review some statistical properties and expectations for permutations on n

points. In particular, we are interested in the number of cycles, and the distribution

of their lengths. In other words, if we randomly choose an element from the symmetric

group Sn, what do we expect to see? We compare these expected values with the observed

statistics for deterministic polynomial automorphisms and show that this is a good model

for the number of cycles. Practically speaking, this means that we expect a randomly

chosen polynomial automorphism (with no structural constraints) to behave like a random

permutation.

3.1 Random permutations

Let σ be a permutation on n points, e.g. (1, 2, 3, . . . , n), of which there are n! permuta-

tions. Each permutation has a corresponding cycle decomposition consisting of a disjoint

union of cycles of various lengths. Let Ck be the number of k-cycles (cycles of length k)

of σ. We have the constraint that

n∑
k=1

kCk = n. (3.1)

Let C :=
∑n

k=1Ck be the number of cycles. This has minimum value 1 when the permu-

tation has one cycle of length n, and maximum value n when the permutation consists of
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n fixed points. The following results on random permutations can be found in many texts

for example see [26, 49, 70]. Let σ be a randomly chosen among the n! permutations.

Theorem 3.1.1. The expected number of k-cycles (in a permutation of n points) is

En(Ck) = 1/k for 1 ≤ k ≤ n.

Proof. We construct all possible k-cycles and divide by the size of the probability space

#Sn = n!. To construct a k-cycle from n points, we first choose the k points from n in(
n
k

)
ways and then arrange these points into a cycle in k!

k ways. Then we assign the rest

of the n − k points which can be done in (n − k)! ways. Multiplying these together and

dividing by n! yields (
n
k

)
k!(n− k)!

n!k
=

1

k
. (3.2)

Corollary 3.1.2. The expected number of points belonging to k-cycles is 1 point.

This follows directly from theorem 3.1.1 since kEn(Ck) = 1 for all 1 ≤ k ≤ n. This follows

the discrete uniform distribution, that is, for a random permutation, the probability that a

chosen point belongs to a cycle of any length is equiprobable. The cumulative distribution

function is a step-function with n steps of height 1
n . If we scale the cumulative distribution

by n, in the limit, we get Dn(x) = x, 0 ≤ x ≤ 1.

Theorem 3.1.3. The expected number of cycles En(C) is

Hn =

n∑
k=1

1

k
= 1 +

1

2
+

1

3
+ . . .+

1

n
= log n+ ψ +O

(
1

n

)
, (3.3)

where ψ ≈ 0.5772156649 is the Euler-Mascheroni constant.

Proof. This is a well known result and follows directly from theorem 3.1.1 since

En(C) = En(
n∑
k=1

Ck) =
n∑
k=1

En(Ck) =
n∑
k=1

1

k
= Hn. (3.4)

Theorem 3.1.4. The variance of the number of cycles is

Hn −
n∑
i=1

1

i2
. (3.5)
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Proof. The number of permutations on n points withm cycles is by definition the unsigned

Stirling number of the first kind
[
n
k

]
which satisfies the recurrence

[
n

m

]
= (n− 1)

[
n− 1

m

]
+

[
n− 1

m− 1

]
(3.6)

for k > 0 and initial conditions
[
0
0

]
= 1,

[
n
0

]
= 0. This can be understood combinatorially,

since there are two ways to form a permutation with m cycles from n objects from a

permutation of n − 1 objects. The nth object can be a fixed point which increases the

cycle count by 1, so this accounts for the
[
n−1
m−1

]
term. Also, this nth object could be added

to one of the cycles. In this case, the cycle count stays the same, and there are n−1 ways

to add this point into a permutation of n − 1 with m cycles (1 way after each object).

Let Pn(m) be the probability of choosing at random a permutation with m cycles. Then,

Pn(m) =

[
n
m

]
n!

, (3.7)

and by applying the recurrence we have,

Pn(m) =
n− 1

n
Pn−1(m) +

1

n
Pn−1(m− 1). (3.8)

To find the variance we use the well known identity V arn(C) = En(C2)− [En(C)]2. Then

using (3.8) we have,

En(C2) =

n∑
m=1

m2Pn(m) = En−1(C2) +
2

n
En−1(C) +

1

n
, (3.9)

where En(C) = Hn and hence

En(C2) = Hn + 2
n−1∑
i=1

Hi

i+ 1
. (3.10)

Thus,

V arn(C) = Hn −
n∑
i=1

1

i2
, (3.11)

since
∑n−1

i=1
Hi
i+1 = 1

2H
2
n − 1

2

∑n
i=1

1
i2

.
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Note that as n→∞, the sum
∑n

i=1
1
i2

= π2

6 and so for n ≥ 1

1 ≤
n∑
i=1

1

i2
<
π2

6
< 1.65. (3.12)

Knowing the distribution of the number of cycles of a random permutation provides us

with more information on what we expect to see for repeated experiments, and also

how far we expect the observed values to be from the mean. The following asymptotic

distribution results were derived by Goncharov in 1942.

Theorem 3.1.5. [26] For a random permutation on n points, the distribution of the

number of k-cycles Ck converges in distribution to the Poisson distribution with parameter

1
k . That is,

lim
n→∞

Pn{Ck = a} = e−1/k (1/k)a

a!
, a = 0, 1, . . . , (3.13)

Theorem 3.1.6. [26] The number of cycles C for a random permutation on n points

converges in distribution to the Normal distribution with mean Hn and variance Hn.

That is,

lim
n→∞

P

(
C − log n√

log n
≤ x

)
= φ(x) =

1√
2π

∫ x

−∞
e−u

2/2du. (3.14)

In figure 3.1 we plot the results for the number of cycles for a sample of 5000 randomly

chosen permutations on n = 10000 points. The variance of the distribution provides how

much we expect samples to vary from the mean. We see its closeness with the (discretised)

normal distribution.
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Figure 3.1: Distribution of the number of cycles for 5000 permutations of n = 10000 points chosen
randomly, compared to the discretised normal distribution with mean and variance Hn.

3.2 Random permutations vs polynomial automorphisms

In this section, we compare the statistics of random permutations with the observed statis-

tics for polynomial automorphisms over finite fields. Since the latter induce permutations

of the space, and the action modulo p seems to “randomise” the iterations of the mapping,

we may expect to see similar statistics for the cycles of polynomial automorphisms as seen

in random permutations.

The concept of a mapping over a finite field acting “randomly” need not be an unfamiliar

idea or concept. Bober [8] studied the behaviour of the inverse mapping B : x → x−1

over a finite field as a permutation of the integers from 1 to p − 1. The mapping B is

bijective on Fp − {0}, and so 1−1, 2−1, . . . , (p − 1)−1, each taken modulo p defines the

image of a permutation of 1, 2, . . . , p − 1. This mapping is an involution with 2 fixed

points 1 and −1 = p − 1 (mod p). Bober examined the “randomness” of this map by

comparing the distribution of the length of the longest increasing subsequence to that

of a random fixed-point-free signed involution, and showed asymptotically, they were the

same. Notice that Bober did not compare to the statistics to a random permutation, but

restricted it to a more specific class of maps, random fixed point free signed involutions.

Also, recall the examples of Pollard, Martins and Panario, and Bendetto et al. mentioned

in chapter 2 which used and heuristically justified the use of random mapping models for
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polynomial maps. Using random mapping models for polynomial or rational maps will be

a common theme in this thesis when examining cycle statistics. If we know a map has a

specific property or structure, it is reasonable to compare it with the expected statistics

of an object with the same property or structure. However, one shortcoming or difficulty

of this is that it may be difficult to know some properties of a map a priori.

3.2.1 Dissipative Hénon map

Consider the two parameter (non-reversible) dissipative Hénon map over F2
p given by

Hénondis : x′ = y, y′ = −δx+ y2 + ε (3.15)

for ε ∈ Fp and δ ∈ Fp \ {0, 1}. Over R2 the map (3.15) is famous for possessing a chaotic

fractal attracting set [29]. We disallow δ = 0 since the mapping will be essentially one

dimensional, and δ = 1 since then the mapping will be “reversible”. (The definition of

reversible and this latter case is considered in chapter 5.) Over F2
p, (3.15) is a permutation

with inverse given by

Hénon−1
dis : x′ =

1

δ
(−y + x2 + ε), y′ = x. (3.16)

We take this map to be a representative polynomial automorphism. For each prime, we

consider the cycle decomposition focusing on the number of cycles. Figure 3.2 shows the

number of cycles for the dissipative Hénon map over primes compared to the Harmonic

number Hp2 of (3.3). On the left, for each prime we have δ = 2 and ε = 1 while on

the right we average over δ = 2, . . . , p − 1 with ε = 1. Recall from theorem 3.1.3 that a

random permutation of p2 points is expected to have this number of cycles. Figure 3.2

shows preliminary evidence that the expected cycle statistics of a random permutation is a

good model for a non-reversible polynomial automorphism. From observations, maps with

cubic, quartic or higher degree polynomials also exhibit similar behaviour. We may also

compare the number of points belonging to k-cycles to the expected number for a random

permutation in corollary 3.1.2. To do this, we average over ε for ε = 0, . . . , p− 1 as shown

in figure 3.3. The expected number for a random permutation is shown in red. Note here

that the possible range of values for the number of points in k-cycles is [0, p2]. Roberts and

Vivaldi [63] conjectured that an averaged scaled period distribution of planar polynomial

maps over F2
p has a universal distribution as p → ∞. They also showed experimentally
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Figure 3.3: The number of points belonging to cycles of length k for the dissipative Hénon map
with δ = 2 for p = 4999 averaged over ε = 0, 1, . . . , p− 1. Note the expected number of points in
k-cycles for a random permutation is 1 (independent of k).

that the expected maximum cycle length and the expected number of cycles of such a

map were well modelled by random permutation statistics.

3.2.2 Dissipative Hénon map in 3D

Consider the following three dimensional polynomial automorphism in F3
p where the first

two coordinates are the same as the 2D Hénon map (3.15) (with ε replaced with z) and
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Figure 3.4

we add a third coordinate,

Hénon3Ddis : x′ = y, y′ = −δx+ y2 + z, z′ = x+ y + z + 1 (3.17)

for δ 6= 0, 1, p− 1. We expect this to behave like a random permutation on p3 points and

thus the number of cycles will be approximately Hp3 ≈ log(p3). We plot this in figure 3.4

for δ = 2 on the left and averaged over δ on the right. Again, even in three dimensions, we

see a good fit between the expected cycles in a random permutation and the polynomial

automorphism. (Recall that the number of cycles can range between 1 and p3.) We see

that the dynamics of the polynomial automorphisms seems to be dependent only on the

number of points, and independent of dimension. For example for primes p1, p2 such that

p2 ≈ p2/3
1 we expect a two dimensional polynomial automorphism over F2

p1 to have similar

cycle statistics to a three dimensional map over F3
p2 .

3.3 Concluding Remarks

In this chapter, we reviewed some well known properties and statistics of random permu-

tations, in particular with regard to the number of (k-cycles and) cycles. The main result

is that the expected number of cycles of a permutation on n points is given by the nth

Harmonic number Hn ≈ log n. This result is surprising in a way as it is quite small when

we consider that a permutation can have up to n cycles. We also saw that this number
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was asymptotically normally distributed emphasising the “niceness” of this statistic. We

then compared this with the number of cycles in two polynomial automorphisms over the

finite field in two and three dimensions. There is no inherent reason why they should

give similar statistics but intuitively we can say that generally, (non-linear) polynomial

automorphisms act “randomly” in the finite space. The discreteness and action modulo

p mixes the points so it seems like the map is like a random permutation even though it

is completely deterministic. Here we are not saying that polynomial automorphisms and

random permutations are equivalent but there are similarities which can be exploited.

We will use this idea when we examine the statistics of birational maps in chapter 4 and

compare them to a model with similar restrictions and properties of the initial map, and

it will be used in chapter 8 when considering the statistics of the composition of two

involutions. The examples in this chapter serve as a taster for what is to come in this

thesis. For different maps, we will need to employ different suitable combinatorial models

as a comparison.
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Chapter 4

Random s-permutations and birational maps over finite fields

We consider rational mappings L over the finite space Fdp that also have a rational inverse

L−1 where defined. So each coordinate is defined by a rational function, that is, we can

write L (and similarly L−1) as

x′1 =
f1(x1, x2, . . . , xd)

h1(x1, x2, . . . , xd)
(4.1)

x′2 =
f2(x1, x2, . . . , xd)

h2(x1, x2, . . . , xd)
(4.2)

... =
... (4.3)

x′d =
fd(x1, x2, . . . , xd)

hd(x1, x2, . . . , xd)
(4.4)

where fi, hi are polynomials in x1, x2, . . . , xd. This map is not defined for the set Sing(L) =

{(x1, x2, . . . , xd) | hi(x1, x2, . . . , xd) = 0, for some i = 1, . . . , d}. Then L is a birational

mapping over Fdp and we have

LL−1z = z, z 6∈ Sing(L−1) and L−1z 6∈ Sing(L) (4.5)

L−1Lz = z, z 6∈ Sing(L) and Lz 6∈ Sing(L−1). (4.6)

We call any orbit (see definition 2.6.1) with a point in Sing(L) to be a singular orbit. This

point will be the “last point” in the forward orbit of L. Necessarily, due to L being a

birational map, this orbit will also have a point in Sing(L−1) which will be the “last point”

in the forward orbit of L−1. The orbit decomposition of L consists of the partition of

space into periodic and singular orbits. The number and distribution of these orbits is of

interest and this is what we investigate in this chapter. We present a probabilistic model

which mimics a birational map. We count the expected statistics of this model and show
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that typically, a birational mapping has similar statistics by comparing it to “randomly”

chosen birational maps. This idea supposes that the details of the mapping aren’t that

important, and the statistics are mainly constrained by the cardinality of singular sets

and phase space size, and that maps with the same numbers of these values appear to

behave similarly, and the same as our model.

4.1 Setting out the model

We now describe a new object which simulates a birational map. All of the following

definitions have direct correspondences with birational maps.

Let N, s be integers with 0 ≤ s < N . Let [N ] = {1, 2, . . . , N}, and S be an s-subset of

[N ] (a subset of [N ] containing exactly s points). Let f : [N ]− S → [N ] be a one-to-one

function and let W (N, s) be the set of all such functions f . We will call f an s-permutation

(on N).

Definition 4.1.1. S is called the singular set and a point z is called a singular point if

z ∈ S.

Definition 4.1.2. A point z is called an origin point if there does not exist y ∈ [N ]− S

such that f(y) = z.

Origin points are the points with no pre-image, that is, we cannot get to them by applying

f to any point in its domain. Since f is a one-to-one function, the number of origin points

is s. We denote the set of origin points as S̄. We call S̄ the origin set.

Definition 4.1.3. The forward orbit of a point z is the set of points σF (z) = {f j(z) |

f j−1(z) 6∈ S, j ∈ Z+} ∪ {z}.

This is the set of points obtained by repeatedly iterating f (until we return or reach a

singular point). Suppose that f has origin set S̄. Note that we can consider the equivalent

map f̄ : [N ]− S → [N ]− S̄ where f(a) = b =⇒ f̄(a) = b. This is well defined. We now

mean f̄ when we use f . Then we define the inverse of f̄ which we also call the inverse of

f .

Definition 4.1.4. The inverse function f−1 : [N ] − S̄ → [N ] − S is defined as follows:

f−1(z) = y ⇐⇒ f(y) = z.

The inverse function is well defined and one-to-one since f is one-to-one.

Definition 4.1.5. The backward orbit of a point z is the set of points σB(z) = {f−j(z) |

f j−1(z) 6∈ S̄, j ∈ Z+} ∪ {z}.

28



Definition 4.1.6. The orbit of a point z is the union of its backward and forward orbits,

σ(z) = σF (z) ∪ σB(z).

Definition 4.1.7. A point z is a periodic point if there exists a positive integer k such

that fk(z) = z and the smallest such k is its period.

If a point is periodic, then its forward orbit is the same as its backward orbit. The

following is now clear:

Lemma 4.1.8. Suppose that z is not a periodic point. Then there exists a non-negative

integer k such that fk(z) ∈ S, and a non-negative integer l such that f−l(z) ∈ S̄. We say

that the orbit of z is a singular orbit of length k + l + 1.

This is the natural definition of the length of the orbit, being its cardinality.

Definition 4.1.9. The orbit decomposition of an s-permutation is the partition of [N ]

into disjoint orbits. Following the cycle notation of permutations, we can also have a

similar cycle notation for s-permutations. We enclose periodic orbits (as before) with

round brackets and singular orbits with square brackets. With this notation, for singular

orbits the leftmost element in a square bracket is an origin point and the rightmost element

is a singular point. We call this orbit notation.

Example 4.1.10. Let N = 7 and s = 2. Then our phase space is the set [N ] =

{1, 2, 3, 4, 5, 6, 7} consisting of 7 points. Let S = {4, 7} and so [N ] − S = {1, 2, 3, 5, 6}.

Suppose we have f with

f(1) = 2, f(2) = 6, f(3) = 7, f(5) = 4, f(6) = 1.

The set S̄ of origin points is given by {3, 5}. The orbit decomposition of f has 3 disjoint

orbits, a periodic orbit of length 3 and two singular orbits each of length 2, which can be

written in our above-mentioned orbit notation as (126)[37][54].

4.1.1 Connection to random permutations

Construction 4.1.11. We can construct an s-permutation from a permutation f̂ in the

following way. Let f̂ be a bijection from [N ] to itself. Choose an s-subset of [N ] and

consider the mapping f : [N ]− s→ [N ] where f(n) = f̂(n) for n ∈ [N ]− s. Then f is an

s-permutation. If s = 0, then f = f̂ which is a permutation.
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Figure 4.1: Orbit decomposition of a permutation on 31 points and a corresponding s-permutation
obtained from this by choosing the 5-subset {3, 8, 10, 14, 30}. The edges removed are coloured in
red. Singular points are coloured in blue, origin points in green. We colour points that are both
singular and origin points in purple.

For example, consider the permutation with N = 31 given in cycle notation by

(13 27 9 8 10 24 25 11 14 18 22 2 29 23 26 20 21 17 5 15 1 30 )(6 12 19 28 3)(7 16 31 4).

This consists of periodic orbits of length 4, 5 and 22. Now suppose we have s = 5 and

have the s-subset S = {3, 8, 10, 14, 30}. This corresponds to the s-permutation with orbit

notation given by

[13 27 9 8][10][24 25 11 14][18 22 2 29 23 26 20 21 17 5 15 1 30][6 12 19 28 3](7 16 31 4).

Now we have singular orbits of length 1, 4, 5, 5, 12 and a periodic orbit of length 5. In

a directed graph representation of the permutation f̂ , this construction can be seen as

“cutting” or removing s edges corresponding to the vertices of the s-subset. This is

shown in figure 4.1 for the above example on 31 points where the cycles are shown for the

permutation on 31 points and the corresponding s-permutation by ignoring the directed

edges coloured red.

Let f be a permutation and suppose an s-subset is chosen. From the previous example,

the following should be clear.
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1. Any cycle not containing a singular point or an origin point is retained in the s-

permutation. Let l be the number of cycles retained.

2. There are s orbits of the s-permutation each starting with an origin point and ending

with a singular point.

3. The number of (periodic and singular) orbits of the s-permutation is s+ l.

4.2 Combinatorial model for birational map

Let S and S̄ be singular and origin sets respectively, so that |S| = s = |S̄|. Let W (N, s)

be the set of all functions f : [N ]− S → [N ]− S̄.

Theorem 4.2.1. The size of the set W (N, s) is

#W (N, s) =

(
N

s

)(
N

s

)
(N − s)! =

(
N

s

)
NN−s. (4.7)

where nk = n(n− 1) . . . (n− (k − 1)), the falling factorial.

Proof. The first term is the number of ways of choosing the s singular points, and the

second term is the number of ways of choosing the s origin points. The third term is the

number of ways of assigning the N − s points with an image in a one-to-one manner since

the first point has N − s choices (points in S̄ are unavailable to it) and the second point

has N − s− 1 and so on.

Theorem 4.2.2. For fixed N and 0 ≤ s < N every s-permutation on N points can be

constructed in this way from exactly s! distinct permutations.

Proof. Suppose we are given an s-permutation and an associated f : [N ] − S → [N ].

Consider the function f̄ : [N ] → [N ] where f̄(y) = f(y) for all y ∈ [N ] − S. Now, the

remaining n ∈ S can be assigned in |S|! = s! ways, and hence there are s! permutations

that contain the s-permutation.

Corollary 4.2.3. Picking an s-permutation on N points uniformly at random is equiva-

lent to picking a random permutation on N points and a random s-subset and performing

the construction in 4.1.11.

This gives an intuitive way to think of s-permutations in a constructive way from permu-

tations. Given a function f chosen uniformly at random in W (N, s), we wish to find the

expected statistics of its orbits. This will be used to model a birational map.
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Theorem 4.2.4. Let f be in W (N, s) with parameters N, s. Let SN (x) be the proportion

of [N ] occupied by singular orbits with length less than or equal to N
s x. That is,

SN (x) =
#{z ∈ [N ] | z belongs to a singular orbit, t(z) ≤ N

s x}
N

(4.8)

where t(z) is the length of the orbit of z. Also let s(N) be the number of singular points

as a function of N . Then if

lim
N→∞

s(N) =∞ lim
N→∞

s(N)

N
= 0, (4.9)

then for all x ≥ 0, we have the limit SN (x)→ R(x) := 1−e−x(1+x). In addition, almost

all points in [N ] belong to singular orbits.

This theorem states that if the number of singular points (and hence singular orbits)

grows as number of points N grows, but at a slower rate, then the expected scaled length

distribution of the singular orbits is the same as the distribution of all the orbits, and is

given by R(x). This is the cumulative distribution function of the gamma distribution

with shape and rate 2 and 1 respectively. Intuitively, the presence of singular points places

a constraint on the points in space and in a large part governs most of the statistics. The

proof of theorem 4.2.4 will follow after some preliminary results.

4.2.1 Distribution of singular orbits

Lemma 4.2.5. For 0 < x < 1 we have the inequality

−x
1− x

< log(1− x) < −x. (4.10)

This can also be proved easily using the mean value theorem by considering f(t) =

log(1− t) on [0, x].

Lemma 4.2.6. Let k, s,N be integers with 0 ≤ k < N and 0 ≤ s < N and k + s ≤ N .

Then,

e−
sk

N−k−s+1 ≤ (N − k)!(N − s)!
N !(N − k − s)!

≤ e−
sk
N (4.11)

with equality only if s = 0 or k = 0.
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Figure 4.2: The error in the lower (left) and upper (right) bounds in equation (4.11) with N = 100
and 1 ≤ k, s ≤ 100.

Proof. Note that this inequality is symmetric in s, k. For s = 0 or k = 0, we have equality

as all three terms are 1. Now we consider all other values. We can write the factorials as

the product

(N − k)!(N − s)!
N !(N − k − s)!

=

k−1∏
j=0

(
1− s

N − j

)
, (4.12)

and clearly we have

(
1− s

N − k + 1

)k
≤

k−1∏
j=0

(
1− s

N − j

)
≤
(

1− s

N

)k
(4.13)

with equality only when k = 1. Now focusing on the right hand term,

(
1− s

N

)k
= exp

[
k log

(
1− s

N

)]
< exp

(
−sk
N

)
(4.14)

since log(1 − x) < −x for 0 < x < 1 by lemma 4.2.5. Now for the left hand side, since

log(1− x) > −x
1−x the result follows immediately using the same method.

Figure 4.2 shows the errors for the lower and upper bounds in equation (4.11). We see

that the error is small for medium sized values of s, k. We now prove theorem 4.2.4 by

constructing and counting the number of singular k-orbits and finding their distribution.

Note that a singular orbit consists of exactly one origin point and one singular point.
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Proof. (Theorem 4.2.4) Let us count the number of singular k-orbits. Then (x1, x2, . . . , xk)

is the required k-arc where x1 ∈ S̄, xk ∈ S. The number of these k-arcs is Nk. They occur

with multiplicity determined by the reduced space with N − k points and s− 1 singular

points,

#W (N − k, s− 1) =

(
N − k
s− 1

)
(N − k)s−1 (4.15)

Let the average of P sk with respect to the uniform probability on W be denoted by 〈P sk 〉.

Then the average value of P sk (the space consumed by singular k-orbits) is

〈P sk 〉 =
k

N
Nk#W (N − k, s− 1)

#W (N, s)
(4.16)

=
s2k

N

(N − s)k−1

Nk
(4.17)

=
s2k

N(N − k + 1)

k−1∏
j=0

(
1− s

N − j

)
. (4.18)

Now let x be a positive real number. We consider the proportion of space consumed in

singular orbits of length less than or equal to x, that is, the sum of (4.18) from k = 1 to

bxc. Using (4.12) and summing, this can be shown to be

bxc∑
k=1

〈P sk 〉 = 1− N − s
N(s+ 1)

−
(

1− 1

s

)(
1 +
bxc s
N

+
1

N

)
(N − bxc)!(N − s)!
N !(N − s− bxc)!

. (4.19)

Now we apply Lemma 4.2.6 to obtain

bxc∑
k=1

〈P sk 〉 > 1− N − s
N(s+ 1)

−
(

1− 1

s

)(
1 +
bxc s
N

+
1

N

)
e−
bxcs
N . (4.20)

= 1− e−
bxcs
N

(
1 +
bxc s
N

)
+O

(
1

s

)
(4.21)

and

bxc∑
k=1

〈P sk 〉 < 1− N − s
N(s+ 1)

−
(

1− 1

s

)(
1 +
bxc s
N

+
1

N

)
e
− bxcs
N−bxc−s+1 . (4.22)

= 1− e−
bxcs

N−bxc−s+1

(
1 +
bxc s
N

)
+O

(
1

s

)
. (4.23)
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Now suppose that limN→∞ s(N) =∞ and limN→∞
s(N)
N = 0. Taking the limit as N →∞

and combining the inequalities we get the desired result

bxc∑
k=1

〈P sk 〉 = 1− e−
bxcs
N

(
1 +
bxc s
N

)
. (4.24)

This cumulative distribution is R(x), the gamma distribution with shape and rate 2

and 1 respectively, and shows that in the limit, all points belong to singular orbits as

R(x)→ 1 as x→∞. This shows that there is a universal scaled distribution for singular

orbits in birational maps. This is the same distribution for the (symmetric) cycles in

a reversible map as shown in [64]. This is interesting as these are two different types

of maps. However, the manifestation of singular orbits for a birational map and the

symmetric orbits in reversible maps is similar. For birational maps, singular orbits must

start at an origin point and end at a singular point. This has a direct correspondence

with the symmetric orbits in reversible maps which have a similar constraint with Fix(G)

and Fix(H) which will be seen in the combinatorial model in chapter 8.

4.2.2 Periodic orbits and points

In this subsection we consider the expected value for the number of periodic orbits, and

the number of points belonging to periodic orbits. Recall a periodic point is a point

belonging to a periodic orbit. We first provide a lemma which calculates a summation

which we will encounter later.

Lemma 4.2.7. For positive integers N, s with 0 ≤ s < N we have that

N−s∑
k=1

(N − k)!(N − s)!
N !(N − s− k)!

=

N−s∑
k=1

k−1∏
j=0

(
1− s

N − j

)
(4.25)

=
N − s
s+ 1

. (4.26)

Proof. Let s be fixed and let

σN =
N−s∑
k=1

k−1∏
j=0

(
1− s

N − j

)
. (4.27)
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Then by taking out the common factor corresponding to the j = 0 term, we have

σN =
(

1− s

N

)1 +
N−s∑
k=2

k−1∏
j=1

(
1− s

N − j

)
=
(

1− s

N

)1 +
N−s∑
k=2

k−2∏
j=0

(
1− s

N − 1− j

) (re-indexing)

=
(

1− s

N

)1 +
N−1−s∑
k=1

k−1∏
j=0

(
1− s

N − 1− j

) (re-indexing)

=
(

1− s

N

)
(1 + σN−1).

This gives us the recurrence relation

σN =
(

1− s

N

)
(1 + σN−1), (4.28)

which has solution

σN =
N − s
s+ 1

. (4.29)

This can be derived using standard methods for ordinary generating functions.

Another question of interest is the number of periodic orbits. From corollary 4.2.3, it is

clear that the expected number of periodic orbits must be less than the expected number

in a random permutation, HN .

Theorem 4.2.8. For fixed N and 0 ≤ s < N , the expected number of periodic orbits is

given by

〈#cycles〉 = HN −Hs, (4.30)

where Hn is the nth harmonic number and H0 = 0 (see (3.3)).

This result is also valid for the degenerate case s = N which will have no periodic orbits

as all points are singular orbits of length one. A proof of this theorem follows below. For

s = 0, this reverts to the case of a random permutation and this result is well known and

given in theorem 3.1.3.

Proof. For 0 ≤ s < N −1, let us consider the number of k-cycles. The k-arc required here

is (x1, x2, . . . , xk) where none of xi are in S or S̄. The number of these is Nk/k. They
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occur with multiplicity determined by the reduced space with N−k points and s singular

points. So the average number of k-cycles is given by

〈#k-cycles〉 =
1

k
Nk#W (N − k, s)

#W (N, s)
(4.31)

=
1

k

(N − k)!(N − s)!
N !(N − s− k)!

. (4.32)

Note that for k > N − s, we have 〈#k-cycles〉 = 0 since there are at most N − s points

in a periodic orbit. Now consider the sum over k,

〈#cycles〉 =

N−s∑
k=1

〈#k-cycles〉 (4.33)

=
N−s∑
k=1

1

k

(N − k)!(N − s)!
N !(N − s− k)!

. (4.34)

Now let P (s) be the statement

N−s∑
k=1

1

k

(N − k)!(N − s)!
N !(N − s− k)!

= HN −Hs. (4.35)

We prove that P (s) is true by for 0 ≤ s < N by induction. First for s = 0 on the left

hand side of P (0) we have

N∑
k=1

1

k

(N − k)!N !

N !(N − k)!
=

N∑
k=1

1

k
= HN = HN −H0, (4.36)

so P (0) is true. Let 0 ≤ t < N − 1. Now assume P (t) is true, we will show that P (t+ 1)

is true. Consider the left hand side of P (t+ 1), so we have

N−t−1∑
k=1

1

k

(N − k)!(N − t− 1)!

N !(N − t− 1− k)!
(4.37)

=

N−t−1∑
k=1

1

k

(N − k)!(N − t)!
N !(N − t− k)!

N − t− k
N − t

(4.38)

=

N−t−1∑
k=1

1

k

(N − k)!(N − t)!
N !(N − t− k)!

(
1− k

N − t

)
(4.39)

=

N−t−1∑
k=1

1

k

(N − k)!(N − t)!
N !(N − t− k)!

− 1

N − t

N−t−1∑
k=1

(N − k)!(N − t)!
N !(N − t− k)!

, (4.40)
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and using (4.35) and lemma 4.2.7

=HN −Ht −
1

N − t
s!(N − t)!

N !
− 1

N − t

(
N − t
t+ 1

− s!(N − t)!
N !

)
(4.41)

=HN −Ht −
1

t+ 1
(4.42)

=HN −Ht+1 (4.43)

so P (t+ 1) is true. Therefore, the statement P (s) is true by induction for 0 ≤ s < N .

Conjecture 4.2.9. Let X be the number of periodic orbits in an s-permutation on N

points. The variance is given by

V arN,s(X) =

(
HN −

N∑
i=1

1

i2

)
−

(
Hs −

s∑
i=1

1

i2

)
=

N∑
i=s+1

1

i
− 1

i2
. (4.44)

This is a statement on the variance on the number of periodic orbits. Indeed, it states that

the variance is strictly less than the expected value. This has been verified numerically

for small n, s (1 ≤ n ≤ 7, 0 ≤ s < n). This shows that the spread of the number of cycles

is quite “nice”.

Theorem 4.2.10. The expected number of periodic points is given by

〈#periodic points〉 =
N − s
s+ 1

. (4.45)

Proof. Using (4.32), the number of periodic points belonging to periodic orbits of length

k is given by

〈#k-periodic points〉 = k〈#k-cycles〉 (4.46)

=
(N − k)!(N − s)!
N !(N − s− k)!

. (4.47)

Thus summing over k, we have by lemma 4.2.7 the desired result.

Corollary 4.2.11. The proportion of periodic points is

N − s
N(s+ 1)

=
1

s+ 1
− 1

N
+

1

N(s+ 1)
, (4.48)

which shows the proportion of periodic cycles is asymptotic to 1
s+1 as N grows.

We may also be interested in the distribution of the periodic points.
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Theorem 4.2.12. Consider an s-permutation on N points with s singular points satis-

fying (4.9). As N →∞ has scaled distribution 1− e−x.

Proof. The longest possible periodic orbit has length N − s. Now for 0 ≤ x ≤ N − s,

consider the number of points belonging to periodic orbits of length less than or equal to

x, given by

Dper(x) =
1

N

bxc∑
k=1

〈#k-periodic points〉 (4.49)

=
1

N

bxc∑
k=1

(N − k!)(N − s)!
N !(N − s− k)!

(4.50)

=
1

N

(
N − s
s+ 1

− (N − s)!(N − bxc)!
(s+ 1)N !(N − s− bxc)!

(N − s− bxc)
)
. (4.51)

Now we apply Lemma 4.2.6 to yield

N − s
N(s+ 1)

(
1− e−

(s+1)bxc
N

)
< Dper(x) <

N − s
N(s+ 1)

(
1− e−

(s+1)bxc
N−bxc−s

)
. (4.52)

Now supposing the conditions in (4.9) and taking the limit as N →∞ we get

Dper(x) =
N − s
N(s+ 1)

(
1− e−

(s+1)bxc
N

)
, (4.53)

and we have the desired result with scaling factor (s+ 1)/N .

4.3 Model vs birational maps

In this section, we compare the expected values calculated in the previous section using

the combinatorial model with the observed values in various birational maps. Consider a

general birational map over F2
p given by

L : x′ = y, y′ =
f1(y)x+ f2(y)

f3(y)x+ f4(y)
, (4.54)

where fi are polynomials and f3(y)x + f4(y) 6= 0 and f2(x)f3(x) − f4(x)f1(x) 6= 0. This

is invertible with inverse given by

L−1 : x′ =
f2(x)− yf4(x)

yf3(x)− f1(x)
, y′ = x. (4.55)
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(a) Number of periodic orbits in the bi-
rational map L1 in example 4.3.1 with
(a, b, c, d) = (4, 1, 3, 2) for p = 11, . . . , 997
compared with the expected value (4.30).
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(b) Number of periodic points in the bi-
rational map L1 in example 4.3.1 with
(a, b, c, d) = (4, 1, 3, 2) for p = 11, . . . , 997
compared with the expected value (4.45).

Figure 4.3

We can further simplify this map with the following 2 examples.

Example 4.3.1. Consider the birational map L1 over F2
p

L1 : x′ = y, y′ = x+
f(y)

g(y)
, g(y) 6= 0. (4.56)

This has inverse L−1
1 given by

L−1
1 : x′ = y − f(x)

g(x)
, y′ = x, g(x) 6= 0. (4.57)

For example, let f be the general cubic f(x) = ax3 + bx2 + cx+d, and g be the quadratic

g(x) = (2x + 1)(x + 1). The singular points of L1 are where g(y) = 0, that is, all points

with y-coordinate −1 or −2−1 modulo p. Thus, for a fixed p, there are 2p singular points

(and 2p origin points) since x is arbitrary and hence 2p singular orbits. The number of

periodic orbits and points is shown in figure 4.3 compared to the expected values given in

(4.30) and (4.45) with N = p2 and s = 2p. Once we introduce averaging over parameter

values δ, we obtain excellent agreement as per figure 4.4. Figure 4.5 shows the distribution

of the singular orbits for p = 997 compared with R(x) as discussed in theorem 4.2.4.

Example 4.3.2. Consider the birational map L2 over F2
p

L2 : x′ = y, y′ =
x+ f(y)

g(y)
, g(y) 6= 0 (4.58)
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(a) Number of periodic orbits in the bi-
rational map L1 in example 4.3.1 with
(a, b, c, d) = (4, 1, 3, δ) for p = 11, . . . , 997
averaged over δ = 0 . . . p− 1 compared with
the expected value (4.30).
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(b) Number of periodic points in the bi-
rational map L1 in example 4.3.1 with
(a, b, c, d) = (4, 1, 3, δ) for p = 11, . . . , 997
averaged over δ = 0 . . . p− 1 compared with
the expected value (4.45).

Figure 4.4
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Figure 4.5: Distribution of the scaled lengths of singular orbits for the birational map L1 compared
with R(x) with p = 997 with parameters (a, b, c, d) = (4, 1, 3, 2).

with inverse map L−1
2 given by

L−1
2 : x′ = g(x)y − f(x), y′ = x, g(x) 6= 0. (4.59)

We use the same polynomials f and g as in the previous example. Figure 4.6 compares

the number of periodic orbits and points in L2 compared with the expected number from

(4.30) and (4.45) respectively with N = p2 and s = 2p. Again, we see that once we

average over parameter δ as in figure 4.7 we obtain an excellent agreement. Figure 4.8

shows the distribution of the lengths of singular orbits for p = 997 compared with R(x)

as discussed in theorem 4.2.4.
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(a) Number of periodic orbits in the bi-
rational map L2 in example 4.3.2 with
(a, b, c, d) = (4, 1, 3, 2) for p = 11, . . . , 997
compared with the expected value (4.30).
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(b) Number of periodic points in the bi-
rational map L2 in example 4.3.2 with
(a, b, c, d) = (4, 1, 3, 2) for p = 11, . . . , 997
compared with the expected value (4.45).

Figure 4.6
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(a) Number of periodic orbits in the bi-
rational map L2 in example 4.3.2 with
(a, b, c, d) = (4, 1, 3, δ) for p = 11, . . . , 997
averaged over δ = 0 . . . p− 1 compared with
the expected value (4.30).
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(b) Number of periodic points in the bi-
rational map L2 in example 4.3.2 with
(a, b, c, d) = (4, 1, 3, δ) for p = 11, . . . , 997
averaged over δ = 0 . . . p− 1 compared with
the expected value (4.45).

Figure 4.7
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Figure 4.8: Distribution of the scaled lengths of singular orbits for the birational map L2 compared
with R(x) with p = 997 with parameters (a, b, c, d) = (4, 1, 3, 2).
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4.4 Concluding remarks

This whole chapter is entirely original work and the results and ideas are quite general. It

can be seen as an extension of the statistics of random permutations. We constructed and

derived a model for s-permutations on n points, an analog to that of random permutations

in chapter 3, but allowing for singular points. We did this by evaluating the expected value

for various cycle statistics of all functions on N points with s singular points. Now along

with periodic orbits as before, we also have singular orbits which are constrained by the

parameter for the number of singular points s. A main result obtained is the expected

number of cycles which was shown to be HN − Hs. We also considered the (scaled)

distribution of the singular orbits which was shown to be the Gamma distribution. This

will be seen again when we consider reversible maps in later chapters.

We also considered two specific examples of birational maps and saw that the expected

statistics of an s-permutation corresponds closely with the observed statistics for these

maps. This is similar to the case for random permutations and polynomial automor-

phisms. It appears that this combinatorial model is very effective as a model for the

number of cycles in birational maps and seems like a good way for eliciting the behaviour

of birational maps. We will see similar ideas used again in chapter 8 to great effectiveness.

Note that we only expect this behaviour for birational maps that have no structural con-

straints or constraining properties. We will consider some special birational maps that

are reversible and have integrals in the following chapters.
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Chapter 5

Reversibility and its effect over finite fields

5.1 Introduction

In this chapter, we consider a large class of maps having the property reversibility. The

origin of this can be traced back to the classical concept of time reversal symmetry in

mechanics which is a property of invariance of dynamics under the transformation t 7→ −t

and reversal of velocities [40]. Many physical laws exhibit this and it essentially means a

system evolves the same if we look at it with time reversed. Devaney [17] generalised this

idea of time reversal symmetry for dynamical systems to any involution (not just t 7→ −t)

with the following definition.

Definition 5.1.1. A dynamical system is reversible if there is an involution in phase

space which reverses the direction of time.

5.2 Reversibility and dynamical consequences

We focus here on reversible maps. For reversible maps on finite fields, we are interested

in the orbit statistics: the number, length, and distribution of the lengths of their orbits.

Recall, that the mapping L on a space S is a rule that defines the next point our system,

z′ = Lz (5.1)

for z ∈ S. Then we have that a mapping L is reversible if there exists an involution G

such that

L ◦Gz′ = Gz, (5.2)

which says that the action of G reverses the direction of our mapping in the sense that Gz

is obtained from applying the mapping to Gz′. This is shown using a diagram in figure
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z z′

Gz′Gz

L

L

G G

Figure 5.1: Arrow diagram showing the relationship in (5.2) of the action of the involution G and
the mapping L.

5.1. By combining (5.1) and (5.2) we obtain

L ◦G ◦ Lz = Gz (5.3)

or

L ◦G ◦ L = G (5.4)

since this holds for arbitrary z ∈ S. We can also write L as the composition of two

involutions H,G

L = H ◦G, (5.5)

where H = L ◦G is an involution since

H2 = (L ◦G) ◦ (L ◦G) = (L ◦G ◦ L) ◦G = G2 = Id. (5.6)

The inverse mapping L−1 can be written as

L−1 = G ◦H, (5.7)

and it is clear that this is well defined since L ◦L−1 = (H ◦G) ◦ (G ◦H) = I = (G ◦H) ◦

(H ◦G) = L−1 ◦ L.

5.2.1 Symmetric and asymmetric orbits

For a reversible mapping, we can classify orbits as symmetric or asymmetric. For L

written as (5.5), we call H and G reversing symmetries. The orbit of z, denoted as σ(z),
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•z−2

• z−1

• z0

•z1

• z2

• z3

•
Gz−2

•
Gz−1

•Gz0

•
Gz1

•
Gz2

•
Gz3

X

Y

Figure 5.2: Figure showing the effect of a reversing symmetry G : x′ = y, y′ = x in the plane.
Notice the direction of the arrows in the reflected orbit showing the reversing action of G.

is symmetric with respect to G if it is invariant under G, that is,

G ◦ σ(z) = σ(z), (5.8)

and similarly for H. Note that symmetry with respect to one reversing symmetry implies

the other. An orbit that is not invariant under H or G is called asymmetric. The fixed

sets of H,G defined as

Fix(H) = {z | Hz = z}, Fix(G) = {z | Gz = z} (5.9)

play an important role in the dynamics of the mapping L. We will call these the symmetry

sets. The results in the rest of this section are well known and standard (e.g. see [40]).

Proposition 5.2.1. An orbit is symmetric if and only if it intersects a symmetry set.

Proof. Suppose that z belongs to a symmetric orbit (under G). Then,

Gz = Liz (5.10)

for some i ∈ Z. If i is even, then using the identity L−n ◦G = G ◦ Ln we get

G ◦ Li/2z = Li/2z, (5.11)
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showing that the orbit intersects Fix(G). If i is odd, then

L ◦G ◦ L(i+1)/2z = L(i+1)/2z, (5.12)

and since H = L ◦G we have

H ◦ L(i+1)/2z = L(i+1)/2z, (5.13)

which shows the orbit intersects Fix(H). Conversely, suppose an orbit intersects a sym-

metry set for G at z. Then we have Gz = z and so

L−i ◦Gz = L−iz, (5.14)

and using the identity L−n ◦G = G ◦ Ln we get

G ◦ Liz = L−iz, (5.15)

showing that the orbit of z is symmetric as it is invariant under G.

Corollary 5.2.2. An asymmetric orbit does not intersect a symmetric set of L.

This follows directly from theorem 5.2.1.

Corollary 5.2.3. Asymmetric orbits come in pairs under G.

Proof. Let z belong to an asymmetric orbit denoted by σ(z). Since it is asymmetric, then

it does not intersect a symmetric set of L by corollary 5.2.2. Thus, the orbit σ(Gz) is

distinct from σ(z) and is also asymmetric (since G2z = z). Note that we do indeed only

get pairs and not any more by the involution H because σ(Gz) = σ(Hz).

Proposition 5.2.4. Let σ(z) be a symmetric periodic orbit, then σ(z) intersects Fix(G)∪

Fix(H) in two distinct points unless it is a fixed point in which case it belongs to both

Fix(G) and Fix(H). In particular, if

• σ(z) has even period 2k, it either has two points z1, z2 in either Fix(G) or Fix(H)

and Lkz1 = z2.

• σ(z) has odd period 2k + 1, it has a point z1 ∈ Fix(G) and z2 ∈ Fix(H) and

Lkz1 = z2.
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5.2.2 Necessary conditions for reversibility

Proposition 5.2.5. Suppose L : Cd → Cd is a reversible map and z0 is a symmetric

fixed point of L, that is, Lz0 = z0 and Gz0 = z0, then det(JLz0) = ±1.

Proof. Since L is reversible, we have L ◦G ◦ L = G. Now finding the Jacobian matrix of

both sides

JL ◦ (G ◦ Lz)(JG ◦ (Lz))JL(z) = JG(z). (5.16)

Now with z = z0 and simplifying we have

JL(z0)JG(z0)JL(z0) = JG(z0). (5.17)

Computing the determinant of both sides, we get

det(JL(z0)) det(JG(z0))det(JL(z0)) = det(JG(z0)), (5.18)

and since det(JG(z)) 6= 0 by the inverse function theorem,

det(JL(z0))2 = 1 (5.19)

=⇒ det(JL(z0)) = ±1. (5.20)

Note that since each point of a k-cycle is fixed by Lk, which is also a reversible map, for

the Jacobian determinant of a periodic point z0 with period k we have det(JLk(z0)) = ±1

also.

Proposition 5.2.6. Suppose L : Cd → Cd is a reversible map and z0 is an asymmetric

fixed point of L, that is, Lz0 = z0 and Gz0 6= z0. If JL(z0) has eigenvalue λ, then JL(Gz0)

(the asymmetric partner for z0) has eigenvalue λ−1.

Lemma 5.2.7. For invertible maps M : Cd → Cd we have that JM−1(Mz) is the inverse

of JM (z).

Proof. By applying the Jacobian matrix we have

M−1Mz = z =⇒ JM−1(Mz)JM (z) = I (5.21)
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as required.

Proof. (Proposition 5.2.6) Since L is reversible, we have L−1 = G ◦L ◦G−1. Now finding

the Jacobian matrix of both sides,

JL−1(y) = JG(LG−1y)JL(G−1y)JG−1(y). (5.22)

Putting y = Gz0,

JL−1(Gz0) = JG(LG−1Gz0)JL(G−1Gz0)JG−1(Gz0) (5.23)

= JG(Lz0)JL(z0)JG−1(Gz0) (5.24)

= JG(z0)JL(z0)JG−1(Gz0). (5.25)

Now applying lemma 5.2.7 we can write

JL−1(Gz0) = PJL(z0)P−1, (5.26)

where P = JG(z0). This tells us that JL−1(Gz0) has the same eigenvalues as JL(z0). Now

applying lemma 5.2.7 with M = L and z = L−1Gz0 we get that

JL−1(Gz0)JL(Gz0) = I, (5.27)

since L−1 ◦Gz0 = G ◦ Lz0 = Gz0. In particular, JL−1(Gz0) has reciprocal eigenvalues to

JL(Gz0), and thus, JL(z0) has reciprocal eigenvalues to JL(Gz0).

Note that by definition if z0 is an asymmetric fixed point, then Gz0 is also an asymmetric

fixed point. Proposition 5.2.5 and proposition 5.2.6 give necessary conditions for fixed

points of a reversible mapping. This can be used as a test to prove that a diffeomorphic

map is not reversible, although it can not prove that a map is reversible, nor can it find the

reversing symmetry. Nevertheless it is an effective method for many maps. We can simply

find all the fixed points of the mapping, and if their Jacobian determinant is not ±1 (that

is, they are not symmetric), then we check their eigenvalues which must be in reciprocal

pairs with another fixed point if the mapping is reversible. Given a diffeomorphism, an

algorithm which may be able to eliminate the possibility of reversibility is as follows:
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1. Find all fixed points of the mapping

2. Find the Jacobian determinants evaluated at the fixed points

3. If there are any fixed points with Jacobian determinants not equal to ±1, find the

eigenvalues of all of the Jacobians.

4. Check if there exist reciprocal eigenvalues for those fixed points with Jacobian de-

terminants not equal to ±1.

This algorithm becomes less useful for area-preserving maps of the plane that have

det(JL(z)) = 1 for all z and one can at most conclude that some unpartnered fixed points

are necessarily symmetric if the map is reversible. Determining whether area-preserving

maps are reversible or not is subtle [40].

5.3 Reversible dynamics over finite fields

When we consider dynamics over finite fields, we are restricted to a finite space, and

hence there are a finite number of orbits. An interesting problem is to find this number

or provide bounds on it. We can immediately obtain bounds by using properties of

symmetric points and orbits in proposition 5.2.4. Here we are considering reversible maps

that are defined for the whole space (so there are no singular orbits) and hence gives a

permutation over the finite space.

Corollary 5.3.1. [63] If L = H ◦G is reversible then

#Fix(G) = #SymOddCycles(L) + 2#SymEvenCycles(L)G, (5.28)

#Fix(H) = #SymOddCycles(L) + 2#SymEvenCycles(L)H . (5.29)

and consequently

#Fix(H) + #Fix(G) = 2#SymCycles(L). (5.30)

The subscript G in equation (5.28) denotes the even length symmetric cycles that intersect

Fix(G) (similarly for H). These equations hold because each symmetric odd cycle has
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exactly one point on each symmetry line, while the symmetric even cycles have two points

on a particular symmetry line by proposition 5.2.4 where we have used the basic fact that

#SymEvenCycles(L) = #SymEvenCycles(L)G + #SymEvenCycles(L)H , (5.31)

#SymCycles(L) = #SymOddCycles(L) + #SymEvenCycles(L). (5.32)

Proposition 5.3.2. We obtain the following bound on the number of cycles of L,

#Fix(G) + #Fix(H)

2
= #SymCycles(L) ≤ #Cycles(L) (5.33)

This follows directly by corollary 5.3.1. In practice we will see that this bound is quite

tight as asymmetric orbits are rare. This immediately gives us a lower bound for the

number of cycles in a reversible map. It is natural later that we may want to consider the

number of asymmetric orbits present and the proportion of space they occupy. We will

consider this in detail in Chapter 8.

5.4 Reversible Hénon map

Recall from chapter 3, we considered the dissipative Hénon map in equation (3.15). One

of the disallowed parameter values was for δ = 1 since in that case, the map is reversible.

This is what we now consider. The reversible Hénon map over F2
p is given by

L : x′ = y, y′ = −x+ y2 + ε, (5.34)

where ε ∈ Fp and can be written as L = H ◦G where H,G are involutions given by

H : x′ = x, y′ = −y + x2 + ε, G : x′ = y, y′ = x. (5.35)

Consider the fixed sets of the involutions (for p > 2),

Fix(H) =

{(
x,
x2 + ε

2

)∣∣∣∣x ∈ Fp
}
, Fix(G) = {(x, x) | x ∈ Fp}, (5.36)

both with cardinality p. Then, the number of symmetric cycles is p+p
2 = p and this

immediately tells us that the total number of cycles must be at least p. For chosen
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Figure 5.3: The number of cycles for the reversible Hénon map over F2
p with ε = 1 compared to

p for primes from 11 to 997 (left) and for primes 809 to 997 (right). Note that for each prime p,
the number of cycles is ≥ p.

prime p, we can count the number of cycles present which is shown in figure 5.3. We see

that for the reversible Hénon map, this bound is quite tight, that is, most of the cycles

are symmetric cycles, and furthermore that they take up most of the phase space. In

[63], Roberts and Vivaldi conjectured that asymptotically, the (scaled) distribution of the

symmetric cycles is R(x) = 1−e−x(1+x) and that the proportion of space they consume

goes to 1. In addition, they showed in [64] that this was also the expected distribution for

the composition of two involutions with mild constraints on the cardinality of the fixed

sets. This contrasts with the orbits of the Hénon map on the real plane where symmetric

orbits would be rare and asymmetric orbits should dominate [44].

For the reversible map the number of cycles is approximately p, while for the dissipative

map the number of cycles is expected to be Hp2 ≈ 2 log p. Thus, if we compare the

number of cycles of the reversible Hénon map (see figure 5.3) with the dissipative Hénon

map both over F2
p (see figure 3.2), we see that the number of cycles can be an indicator

of some additional structure, for example, reversibility.

5.5 Concluding remarks

In this chapter, we introduced the concept of reversibility in the context of maps. Re-

versibility is a property that equips a map with two reversing symmetries giving it a
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structure which the orbits must follow. This property also means that reversible maps

are invertible (where well defined) which motivated us in the previous chapters to focus

on polynomial automorphisms and birational maps which are invertible maps. Over the

finite field, reversibility greatly changes the orbit statistics and in particular, we saw that

since a cycle either has 0 or 2 points on the symmetry sets, we can obtain a lower bound

on the number of cycles (at least for a reversible map with no singularities) by counting

the total number of points on the symmetry sets. This is vastly different and greater

than the number of cycles we observed in the maps in chapter 3 and 4 which were not

reversible.

The rest of this thesis is mostly focusing on reversible maps. In chapter 6 we will consider

some reversible maps which in addition have an integral. In chapter 7, we will focus

on a specific example of a reversible map. In chapter 8, we will consider the problem

of modelling the number of cycles in a birational reversible map. Furthermore, we will

see that these statistics will be able to distinguish the number of integrals which will

considered in chapter 9.
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Chapter 6

Integrals of motion and their effect over finite fields

In this chapter, we consider a property of maps: possessing an integral of motion. We

focus on how this manifests itself in the finite field, and in particular, the effect on the

orbits of the dynamical system. We give a definition before considering examples of maps

with integrals by extending the Hénon map and a birational map from earlier chapters.

We then consider the most simple and natural example of linear maps in 2D. We end

with a more interesting example, a family of QRT maps and provide a brief heuristic of

the number of cycles for these maps.

6.1 Integrals of motion

A mapping L over the d-dimensional space Kd has an integral I : Kd → K if there exists

a non-constant I(z) such that

I(Lz) = I(z). (6.1)

for all z ∈ Kd. In other words, I is invariant under the mapping. We are interested in

particular in the case that L is birational and I is rational. Suppose I(z) = k, then we

call this the level set with height k. All points on the same orbit lie on the same level set.

A mapping may have more than one rational integral. Consider a mapping L with j < d

integrals

I1, I2, . . . , Ij . (6.2)

The j integrals are functionally independent if their gradient vectors {∇Ii | i = 1, . . . , j}

span a j-dimensional subspace of Kd. For a point z, there will be a level set height

associated with each integral say I1(z) = k1, I2(z) = k2, . . . Ij(z) = kj . It is clear that

all points in the same orbit must have the same level set heights for each integral. Also,
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the points that have the j-tuple of level set heights {k1, k2, . . . kj} describe an algebraic

variety given by the solution to the j equations: {z ∈ Kd | I1 = k1, I2 = k2, . . . , Ij = kj}.

Generally speaking, a dynamical system is integrable if it possesses a sufficient number

of integrals of motion. In classical mechanics, a dynamical system is called integrable

if it possesses a Poisson or symplectic structure [30]. The task of finding out whether

a mapping is “integrable” has been of interest to many and various methods have been

developed to detect it [27]. Most commonly, discrete mappings are considered over R,C,Q

but we note that the integrable definition (6.1) over these fields reduces to the finite field

Fp if I(z) is rational. One of the aims in this chapter is to develop a method to detect

(the number of) rational integrals of motion by examining the cycle structure of map over

the finite field. (For birational maps, (6.1) is valid wherever Lz is defined.)

6.2 Artificial integral construction

We introduce the idea of an integral by constructing an artificial integral for the dissipative

Hénon map considered previously in (3.15) and the birational map L1 in (4.3.1). To do

this, we add a third dimension and assign it the value of a parameter in the 2D map. We

will see how this naturally augments the number of cycles we see by a factor of p. This

idea will be useful for general maps with an integral and will enable us to develop a basic

test for integral detection.

6.2.1 Polynomial automorphism with integral

We modify the 2D Hénon dissipative map (3.15) by adding a third dimension and making

the parameter ε a variable. Let us replace ε with z and define our mapping over F3
p

Hénon3Ddis : x′ = y, y′ = −δx+ y2 + z, z′ = z (6.3)

for δ ∈ Fp, δ 6= 0, 1. This map is a polynomial automorphism and has the integral

I(x, y, z) = z. (6.4)

Each level set is a horizontal slice of the xyz-space. In this way, for fixed δ we can view

this as p copies of the dissipative Hénon map with the height of the level set corresponding

to the height of the horizontal slice. Then it follows that the number of cycles in this

mapping is the sum of the cycles of the dissipative Hénon map for each parameter ε. We
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expect this to be p times the expected number for a single dissipative Hénon map which

was shown in chapter 3 to be modelled by a random permutation with p2 points. That

is, the number of cycles for the map (6.3) would be expected to be

pHp2 = p(2 log p+ ψ) +O(1/p). (6.5)

Similarly, we could construct a map with more integrals by adding parameters appropri-

ately. For example, we could construct a d > 2 dimensional map with d− 2 integrals and

by extension, the number of cycles we would expect would be

pd−2Hp2 = pd−2(2 log p+ φ) +O(1/pd−2). (6.6)

By performing a variable transformation, we can warp the integral in (6.4) to appear

more interesting although the cycle structure of the map is the same. For example, we

can consider the invertible map

X = x, Y = y, Z = F (x, y) + z. (6.7)

Written explicitly, the transformed map arising from (6.3) is given by

X ′ = Y, Y ′ = −δX + Y 2 + Z − F (X,Y ), Z ′ = Z − F (X,Y ) + F (X ′, Y ′) (6.8)

with integral I(X,Y, Z) = F (X,Y ) − Z. The cycle statistics of this mapping over F3
p is

the same as the map in (6.3) if we choose F (x, y) to be polynomial. However given such

a map it may not be obvious that it has such an integral. This idea can be generalised if

we construct j integrals.

Suppose we have a mapping L̂ which is a collection of pj independent maps each acting

on pd−j points for a positive integer j < d. Note that L̂ acts on pjpd−j = pd points. Then

modelling each map as a random permutation using (3.3), the total number of cycles we

expect is

Nc(L̂) = pjHpd−j = pj
[
log pd−j + φ+O

(
1

pd−j

)]
≈ pj(d− j) log p. (6.9)

We can think of L̂ as a mapping with j integrals which partitions the space into pj

parts with each partition having the same number of points. For the above example,
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Figure 6.1: Number of cycles for the dissipative Hénon map in 3D (6.3) with δ = 2 for primes
p = 11, . . . , 997 (left) and number of cycles divided by p (right).

we have j = 1 and figure 6.1 shows the number of cycles for this map compared to

the probabilistic model for an ensemble of p random permutations of size p2 which has

approximately p log(p2) cycles. This example shows a first idea of how an integral affects

the number of cycles in a map.

To compare to the case of a map L of pd points where we expect Nc(L) = d log p + ψ +

O
(

1
pd

)
≈ d log p, using (6.9) consider the ratio

Nc(L̂)

Nc(L)
≈ pj(1− j/d) = O(pj) (6.10)

for fixed j, d. This shows that in the presence of the additional structure of an integral,

we expect an increase of order pj for the number of cycles. This shows that this may be

used a test for the additional structure of an integral. For example, in figure 6.2 we see

this being manifest.

This idea generalises to higher dimension, and when comparing maps that may both have

integrals. Then we expect the ratio of the number of cycles to be O(pj1−j2) where j1, j2

are the number of integrals in the first and second map respectively.

6.2.2 Birational map with integral

We modify the birational map L1 considered in example 4.3.1 with f(x) = 4x3+x2+3x+a

and g(x) = (2x+ 1)(x+ 1) and extend it to 3D. We let a be a variable and replace it with
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Figure 6.2: The ratio of number of cycles in (6.10) for the 3D Hénon map with 1 integral in (6.3)
and the 3D Hénon map with no integral in (3.17) both with δ = 2.

z to have the mapping over F3
p

L1 : x′ = y, y′ = x+
4y3 + y2 + 3y + z

(2y + 1)(y + 1)
, z′ = z (6.11)

for (2y+1)(y+1) 6= 0. This is a birational map and like (6.4) has the integral I(x, y, z) = z.

By an identical argument, we expect the number of cycles of

p(Hp3 −Hs), (6.12)

where s = 2p is the number of singular points. We do not provide a plot here as it would

be identical to figure 4.4a with the the number of cycles and expected number multiplied

by p.

We will examine how the above ideas may be used to identify the presence of integrals

at the end of this chapter using a heuristic model. We note that in general, integrals are

more exotic than in the constructed example above. For example, the number of points

on level sets do not have to be the same as in (6.3). We will see an example of a 2D

map with an integral where the level sets have varying number of points in section 6.4.

However, there are algebraic bounds (Hasse-Weil bounds) which enable us to use similar

arguments and ideas. We now move to a natural example of a map with an integral.

These are linear maps for which the cycles exhibit very controlled behaviour which is at
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one extreme of maps with an integral. The simplicity of the description allows for much

information about the orbits to be solved algebraically.

6.3 Linear map with integral in 2D

The linear map in 2D is perhaps the most natural example to illustrate the effect of an

integral over the finite space. We will see that we can say a lot about its dynamics and

orbits over the finite field. Consider the matrix

Aα =

α −1

1 0

 (6.13)

for α ∈ Fp. The matrix Aα has trace α and determinant 1. This induces the linear

permutation mapping fα : F2
p → F2

p given by fα : (x′, y′)T = Aα(x, y)T which can be

written as

fα : x′ = αx− y

y′ = x
(6.14)

with inverse given by

f−1
α : x′ = y

y′ = αy − x.
(6.15)

This can be seen as the simplest one-parameter family of linear mappings. The mapping

fα has integral I : F2
p → Fp given by the quadratic form

I(x, y) = x2 − αxy + y2. (6.16)

This is easily verified by checking that I(x′, y′) = I(x, y). Note that this map and cor-

responding integral is also well defined if considered over the real numbers. Each level

set of this integral is a circle for α = 0, an ellipse for |α| < 2, a hyperbola for |α| > 2,

and a pair of lines for α = ±2 (degenerate case). However, in the finite space, we lose

all topology, for example, an ellipse doesn’t “look like” a ellipse, and if we plot orbits of

the mapping, it will be “hard” to see the presence of an integral. Of course, this is not a

reliable way to spot an integral but shows even for simple integrals the possible difficulty

in detection.
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We now study the number of points on a level set of this linear map, and then we describe

the possible cycle lengths of its orbits. We will see how the presence of an integral restricts

and constrains these statistics. We note that the linear map induced by a general 2 × 2

matrices in SL(2,Z) can also be studied with similar results but we consider the above

example since we will consider a piece-wise linear map built from (6.14) in chapter 7.

6.3.1 Number of points on a level set

Consider some point (x0, y0) and suppose that I(x0, y0) = k for some k ∈ Fp. Since all

points in the same orbit must lie on the same level set, the maximum length of the orbit

of (x0, y0) is bounded by the number of points in F2
p on the curve

x2 − αxy + y2 = k (mod p). (6.17)

Baek et al. [4] found the number of points on a general conic over the finite space F2
p. They

transformed the equation of the conic to simplify the equation to have only the x2 and y2

term. Using elementary number theory, they found that the number of solutions in this

space depends on the quadratic residues of their coefficients modulo p. We demonstrate

this idea with the integral of our linear mapping. Let

q(x, y) = x2 − αxy + y2 − k (6.18)

and define q′(x) to be the image of q(x) under the following linear transformation to

remove the αxy term:

q′(x, y) = q(x+
α

2
y, y) = x2 − y2

(
α2

4
− 1

)
− k. (6.19)

Now both q′(x, y) = 0 and q(x, y) = 0 have the same number of solutions in F2
p since

there is a bijection between their solutions. Now define ∆ = α2

4 − 1. Below we present a

theorem compiling the results in [4].

Theorem 6.3.1. The number of solutions to (6.17) depends on the Legendre symbol
(

∆
p

)
.

1. For k 6= 0

• if
(

∆
p

)
= 1, then there are p− 1 solutions to q′(x, y) = 0.

• if
(

∆
p

)
= −1, then there are p+ 1 solutions to q′(x, y) = 0.
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• if
(

∆
p

)
= 0, then there are 2p solutions if

(
k
p

)
= 1 or no solutions if

(
k
p

)
= 0.

2. For k = 0,

• if
(

∆
p

)
= 1, then there are 2p− 1 solutions to q′(x, y) = 0.

• if
(

∆
p

)
= −1, then there is 1 solution to q′(x, y) = 0.

• if
(

∆
p

)
= 0, then there are p solutions to q′(x, y) = 0.

See [4] for the proof which uses only elementary number theory. By considering all the

level sets (i.e. all values of k) for a given p, for some fixed p and α we can classify the

distribution of points on the p level sets.

Corollary 6.3.2. The distribution of the p2 points in F2
p over the p level sets in (6.17)

are as follows. We have three cases depending on the Legendre symbol
(

∆
p

)
:

1. If
(

∆
p

)
= 1, we have p − 1 level sets with p − 1 points each and one level set with

2p− 1 points.

2. If
(

∆
p

)
= −1, we have p− 1 level sets with p+ 1 points each and one level set with

1 point.

3. If
(

∆
p

)
= 0, there are p−1

2 level sets with 2p points each, p−1
2 level sets with 0 points

each, and one level set with p points.

This provides bounds on the possible lengths of the orbits. We now examine in more

detail the possible orbit lengths (on each level set) of this linear mapping.

6.3.2 Orbit length and distribution

We will provide a more general result on the distribution of the periodic orbits for any

mapping induced by a unimodular matrix. Let A ∈ SL(2,Z), A 6= ±Id. The result

is stated in corollary 6.3.8. Let trace(A) = α. Then A induces a toral automorphism

on the 2-torus. We are interested in the periodic orbits on prime rational lattices with

denominator p which is equivalent to solving the dynamics of (6.14) modulo p. We will

show that all orbits have the same period which must be a divisor of p− 1 or p+ 1. The

lemma below provides a recursive identity for powers of A. This is obtained by repeatedly

applying the Cayley-Hamilton theorem which says that A satisfies the matrix version of

its characteristic polynomial.
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Lemma 6.3.3. We have the following recursive formula for A ∈ SL(2,Z):

Ak = uk(α)A− uk−1(α)Id, (6.20)

where uk(α) is a polynomial of degree k − 1 in α such that

uk+2(α) = αuk+1(α)− uk(α), k ≥ 0

u1(α) = 1

u0(α) = 0.

(6.21)

(In the following, we will write uk for uk(α) for brevity.) Now since A has determinant

1, so does Ak and by using lemma 6.3.3 we have

det(Ak) = det(ukA− uk−1Id)

= u2
k det(A)− ukuk−1 trace(A) + u2

k−1

= u2
k − αukuk−1 + u2

k−1

= 1.

(6.22)

Also,

trace(Ak) = uk trace(A)− 2uk−1

= αuk − 2uk−1.
(6.23)

Theorem 6.3.4. Suppose that α 6= ±2. The following are equivalent:

1. trace(Ak) = 2 (mod p)

2. uk−1 = −1 (mod p) and uk = 0 (mod p)

3. Ak = Id (mod p).

Proof. (1) =⇒ (2): Suppose α = 0 and trace(Ak) = 2 (mod p). Then from (6.23)

trace(Ak) = −2uk−1 = 2 (mod p), (6.24)
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which gives us uk−1 = −1. Also, uk = 0 (mod p) because if α = 0 every alternate term

is 0. Now for α 6= 0, suppose trace(Ak) = 2 (mod p), then

trace(Ak) = αuk − 2uk−1 = 2 (mod p). (6.25)

Rearranging we get

αuk = 2(uk−1 + 1) (mod p) (6.26)

and squaring,

u2
k =

4

α2
(uk−1 + 1)2 (mod p). (6.27)

Now substituting (6.26) and (6.27) into (6.22) to eliminate uk and simplifying we get

(4− α2)(uk−1 + 1)2 = 0 (mod p) (6.28)

which gives us the solution uk−1 = −1 (mod p) and uk = 0 (mod p) (α 6= 0).

(2) =⇒ (3): Suppose uk−1 = −1 (mod p) and uk = 0 (mod p). Then substituting into

(6.20) we get

Ak = Id (mod p). (6.29)

(3) =⇒ (1): Suppose Ak = Id (mod p). Then it is clear trace(Ak) = 2 (mod p).

Corollary 6.3.5. If α 6= ±2 all orbits of the dynamical system induced by A modulo p

have the same period length t.

Proof. Suppose z is periodic with (minimum) period length k. Then we have

Akz = z (mod p). (6.30)

Rearranging,

(Ak − Id)z = 0 (mod p). (6.31)

For non-trivial solutions we must have

det(Ak − Id) = det(Ak) + 1− tr(Ak) = 0 (mod p). (6.32)
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Now A is unimodular so det(Ak) = 1. Thus we have trace(Ak) = 2 (mod p). But by

theorem 6.3.4, we get

Ak = Id (mod p). (6.33)

This tells us that all points must have period a divisor of k. Now suppose z′ is periodic

with minimum period length d where d | k. Following the same argument, we get that

Ad = Id (mod p). (6.34)

But this also shows that

Adz = z (mod p). (6.35)

Since k was chosen to be the (minimum) period length of z we get that d = k. Thus, if z

has minimum period k, z′ must also have minimum period k.

Here we see that trace(Ak) = 2 (mod p) is a necessary and sufficient condition for period

k cycles. (Note k here is not necessarily the minimal period.) We will now show how to

find possible values of k for a given A. The binary recurrence sequence (6.21) is a Lucas

sequence [42]. For α 6= ±2, this recurrence relation has solution given by

un =
βn − γn

β − γ
, (6.36)

where

β =
α+
√
α2 − 4

2
, γ =

α−
√
α2 − 4

2
. (6.37)

It is useful to note that

β + γ = α, β − γ =
√
α2 − 4, βγ = 1. (6.38)

Now we let ∆ = (β−γ)2 = α2−4. Then we have the following theorem (Theorem 2.2.4 in

[42]). This theorem provides a specific k for which trace(Ak) = 2 (mod p) from theorem

6.3.4 for α 6= ±2.

Theorem 6.3.6. Let p be a prime number. We have the following properties:

1. If (∆/p) = 1, then up−1 = 0 (mod p) and up−2 = −1 (mod p).

2. If (∆/p) = −1, then up+1 = 0 (mod p) and up = −1 (mod p).
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Proof. 1.: Suppose (∆/p) = 1. Let us consider βp:

βp =

(
α+
√

∆

2

)p
(6.39)

=
1

2p

(
αp + ∆p/2 +

p−1∑
k=1

(
p

k

)
αp−k∆k/2

)
(6.40)

=
1

2p
(αp + ∆p/2) (mod p). (6.41)

Now rearrange to get

2pβp = αp + ∆(p−1)/2
√

∆ (mod p) (6.42)

= αp +
√

∆ (mod p), (6.43)

where we have used that (∆/p) = 1. Now p is an odd prime, so 2p = 2 (mod p) and

αp = α (mod p) (Fermat’s little theorem). This gives us

2βp = α+
√

∆ = 2β (mod p). (6.44)

So finally we obtain βp = β (mod p) and βp+1 = β2 (mod p). The same congruences

are obtained if we change β to γ, that is, γp = γ (mod p) and γp+1 = γ2 (mod p).

Subtracting these congruences we get

(β − γ)(up − 1) = 0 (mod p) and (β − γ)(up+1 − α) = 0 (mod p). (6.45)

From this we obtain p |
√

∆(up − 1) and p |
√

∆(up+1 − α) but p - ∆, so up = 1 (mod p)

and up+1 = α (mod p). Now using the recurrence (6.21) and reducing modulo p with

k = p− 1,

up+1 = αup − up−1 (mod p) (6.46)

gives us

α = α− up−1 (mod p), (6.47)

and so we get up−1 = 0 (mod p). Applying the recurrence again with k = p−2 we obtain

up−2 = −1 (mod p) as required.
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(2): We use the same technique as (1) but now with (∆/p) = −1.Suppose (∆/p) = −1.

Then

2βp = α−
√

∆ = 2γ (mod p). (6.48)

This gives us the equations

βp = γ (mod p), and βp+1 = βγ = 1 (mod p). (6.49)

The same argument also gives us

γp = β (mod p), and γp+1 = βγ = 1 (mod p), (6.50)

and subtracting these equations we get

√
∆(up + 1) = 0, and

√
∆up+1 = 0 (mod p), (6.51)

from which we obtain up = −1 (mod p) and up+1 = 0 (mod p) as required.

We now present the main result of this subsection. This was first obtained by Percival

and Vivaldi [55] for general linear maps using ideal theory but our proof and methods

are completely different. Here we present a new proof of this for our linear system using

elementary number theory.

Theorem 6.3.7. Let ∆ = α2 − 4.

1. If (∆/p) = −1 then Ap+1 = Id (mod p).

2. If (∆/p) = 1 then Ap−1 = Id (mod p).

3. If (∆/p) = 0 we have two cases:

i) for α = 2 (mod p) we have Ap = Id (mod p).

ii) for α = −2 (mod p) we have Ap = −Id (mod p).

Proof. (1) and (2) follow directly from theorem 6.3.6 and theorem 6.3.4.
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(3i): Consider the case when (∆/p) = 0 where α = 2 (mod p). Then, it is easy to

show that the solution to the recurrence (6.21) is uk = k (mod p). In particular, up = 0

(mod p), up−1 = −1 (mod p). Then putting k = p in (6.20) and reducing modulo p

Ap = Id (mod p) (6.52)

as required.

(3ii): Now we consider (∆/p) = 0 where α = −2 (mod p). Here the solution to the

recurrence (6.21) is uk = (−1)k+1k (mod p). In particular up = 0 (mod p) and up−1 = 1

(mod p) (since p is odd). Then putting k = p in (6.20) and reducing modulo p

Ap = −Id (mod p) (6.53)

as required.

Corollary 6.3.8. From theorem 6.3.4 and 6.3.7 it follows that:

1. If (∆/p) = −1 then all orbits have the same period t which is a divisor of p+ 1. If

t = (p+ 1)/m, then there are m(p− 1) orbits.

2. If (∆/p) = 1 all orbits have the same period t which is a divisor of p − 1. If

t = (p− 1)/m, then there are m(p+ 1) orbits.

3. If (∆/p) = 0 we have two cases:

i) for α = 2 (mod p) there are p− 1 fixed points and p− 1 orbits of period p.

ii) for α = −2 (mod p) there are (p− 1)/2 orbits of period 2 and (p− 1)/2 orbits

of period 2p.

Proof. Cases (1) and (2) follow directly as corollary 6.3.5 showed that for α 6= ±2 all

orbits have the same period, and theorem 6.3.7 showed that they must divide p + 1 or

p− 1 respectively. Now theorem 6.3.4 does not apply for case (3). For (3i), we have that

Ap = Id (mod p) from theorem 6.3.7. This tells us that all orbits must be a divisor of p.

But the only divisors of p are 1 and itself. Now for trace(A) = 2 and for A 6= Id we will

get p− 1 fixed points (note we don’t include the origin). Then the rest of the space must

be consumed in cycles of length p and the result follows.
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(3ii): In this case we have Ap = −Id (mod p) from which we obtain A2p = Id (mod p).

This tells us that all orbits must be a divisor of 2p which has divisors 1, 2, p, 2p. Now

trace(A) = −2 and trace(Ap) = −2 so we cannot get any fixed points or period p orbits.

Now if A2 6= Id (mod p) then we will get (p − 1)/2 orbits of period 2 (eigenspace has

p − 1 points excluding origin). The rest of the phase space must be consumed in period

2p orbits and the result follows.

This describes the distribution of orbits on F2
p. Thus our period distribution will be a

singular distribution as all orbits have the same period. Notice that corollary 6.3.8 is

consistent with corollary 6.3.2. In table 6.1 we show this result for α = 5 with the map

in (6.14) and for various primes. Note that origin (0, 0) is excluded as it is a fixed point.

Table 6.1: Period length and number of orbits of fα in (6.14) with parameter α = 5.

p (∆/p) # orbits period length.

11 -1 10 12
13 -1 12 14
17 1 18 16
19 -1 36 10
23 -1 66 8
29 -1 168 5
31 -1 60 16
37 1 152 9

Now for a fixed prime p we may be interested in the distribution of the scaled period t/p

for each parameter α 6= ±2 (mod p). From corollary 6.3.8 we know that t is a divisor of

p + 1 or p − 1. Figure 6.4 displays this distribution. The distribution has been studied

for the generalised Cat maps and Chen et al. [13] give the explicit number of parameter

values for which we see each period. By applying their results, we can obtain a similar

one for our one parameter cat map in (6.14) which follows.

Theorem 6.3.9. For each t > 2 and t|p±1 there are φ(t)
2 parameter values corresponding

to common period t where φ(t) is the Euler totient function, the number of positive integers

up to t that are coprime to t.

Example 6.3.10. Table 6.2 displays the results that we see for p = 769 where the first

column t shows the periods we see, the second column #α shows the number of parameter

values α where t was the minimum period of the orbits, and the third column is the value

φ(t)/2.
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Table 6.2: Table of the period t and number of parameter values. Left for t|p+ 1, right for t|p− 1
for p = 769. Note that 770 = 2.5.7.11 and 768 = 28.3.

t #α φ(t)/2

5 2 2
7 3 3
10 2 2
11 5 5
14 3 3
22 5 5
35 12 12
55 20 20
70 12 12
77 30 30
110 20 20
154 30 30
385 120 120
770 120 120

sum 384 384

t #α φ(t)/2

3 1 1
4 1 1
6 1 1
8 2 2
12 2 2
16 4 4
24 4 4
32 8 8
48 8 8
64 16 16
96 16 16
128 32 32
192 32 32
256 64 64
384 64 64
768 128 128

sum 383 383

As we vary α and α 6= ±2 (mod p), we have a total of p− 2 cat maps. From the table we

see that 384 + 383 = 767 where we have not included parameters a = ±2 (mod p) since

not all orbits have the same period. In fact, it is well known from number theory that

∑
i|N

φ(i) = N, (6.54)

so performing the summation for divisors of N + 1 and N − 1 which are greater than 2,

∑
i>2,i|p+1

φ(i)

2
+

∑
i>2,i|p−1

φ(i)

2
=
p+ 1− φ(2)− φ(1)

2
+
p− 1− φ(2)− φ(1)

2
= p−2 (6.55)

Remark 6.3.11. For α = −1, 0, 1 (mod p) the matrix Aα (6.13) is conjugate to the

rotation matrix with angle of rotation given by θ = π/3, π/4, π/6 respectively and so

have all orbits with period 3, 4 and 6 respectively. This is consistent with corollary 6.3.8.

For example, consider α = 0. So ∆ = −4. Then the Legendre symbol is

(
∆

p

)
=

(
−4

p

)
=

(
4

p

)(
−1

p

)
= (−1)

p−1
2 =


1 if p = 1 (mod 4)

−1 if p = 3 (mod 4).

(6.56)
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Note that there are values at p+1
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in the plot.

So if p = 4n+ 1, then the theorem tells us that all orbits have the same period which is

a divisor of p − 1 = 4n. Alternatively, if p = 4n + 3, the theorem tells us that all orbits

have the period which is a divisor of p + 1 = 4n + 4. In both cases this is consistent as

we know for k = 0 all orbits have period 4. Similar analysis can be done for k = ±1.
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6.4 Nonlinear map with integral in 2D

In the previous section we considered the dynamics of a family of linear maps over the

finite field, showing the effect of an integral of motion. We saw that conic sections have

tight bounds on the number of points in the finite field. For nonlinear maps, their integrals

typically will be of higher degree (genus). We also want to know how the number of points

are distributed among the level sets of the integral. This problem was solved by Hasse for

elliptic curves and later in general by Weil. The Hasse-Weil Bound provides the bounds

for this number, and for irreducible algebraic curves on the number of points N on the

curve C of genus g ≥ 1 over the finite field Fp is bounded by

|N − (p+ 1)| ≤ 2g
√
p. (6.57)

Roberts et al. [61] showed that this bound was effective as a test for integrability (and

distinguishing near-integrability) for a family of (reversible) maps, as any particular orbit

cannot exceed the upper bound p + 1 + 2g
√
p. This was used to develop a Monte-Carlo

type test for integrability by computing the length of orbit of a point for various primes

p, and if the length of any was outside the Hasse-Weil bound, either the integral was
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reducible or the map did not have an integral. It will be useful to have a running example

of a two dimensional map with one integral. Consider over the finite space F2
p the three

parameter family (ε, ξ, λ) of QRT maps which are reversible given by

x′ = −x− εy + ξ

y2 + 1
, y′ = −y − εx′ + λ

(x′)2 + 1
, (6.58)

which has integral

I(x, y) = x2y2 + x2 + y2 + εxy + ξx+ λy. (6.59)

This is an elliptic curve of genus 1. The QRT map has reversing symmetries H,G

H : x′ = x, y′ = −y − εx+ λ

x2 + 1
, G : x′ = −x− εy + ξ

y2 + 1
, y′ = y. (6.60)

We will consider the orbit statistics for this map across various primes p and parameter

values. For p = 3 (mod 4), the map is a permutation as the denominator is non-zero and

all orbits are periodic. For p = 1 (mod 4), there will be singularities and thus singular

(terminating) orbits.

This family of QRT maps was used as an example to show the efficacy of the orbit length

test for integrability. It should be noted that in many instances, the orbit length of a

point was near the upper bound, when the level set consisted of just one (symmetric)

orbit. Of interest is also the distribution of the number of points on level sets. We plot

this in figure 6.5a. The problem of the distribution of the number of points on elliptic

curves over finite fields has been of interest in number theory. For a fixed prime p, let

Nk be the number of points on the level set with value k, that is where I(x, y) = k, for

k = 0, . . . , p−1. Then with each k by using (6.57) with g = 1 we can associate a θk where

p+ 1−Nk = 2
√
p cos θk, (0 ≤ θk ≤ π). (6.61)

For a fixed elliptic curve and increasing p, the Sato-Tate [73] conjecture states that for

0 ≤ a < b ≤ π, the density of the set of primes p (in the limit) for which a ≤ θk ≤ b,

exists and is equal to
2

π

∫ b

a
sin2 θdθ =

1

π

[
θ − sin(2θ)

2

]b
a

. (6.62)

This was first proved by Taylor [74] under mild conditions and he and others have made

improvements in some papers following [see [15][28]]. However, here we are interested in
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Figure 6.5: Both figures are for the QRT map with p = 10007 and parameters (ε, ξ, λ) = (8, 25, 13)

Table 6.3: The 1-norm distance of partitions from Sato-Tate

p 1-norm

10007 0.1400
20011 0.1056
30011 0.0904
39983 0.0735

the distribution of the points for fixed p and varying elliptic curves over a one-parameter

family. This was studied by Birch in 1968 [7] showing that we expect to have a distribution

that approximates the Sato-Tate conjecture (6.62) when p is large. We can look at the

distribution of θk by doing a histogram of 99 equal partitions of [0, π]. We plot this in

figure 6.6 for p = 10007, 20011, 30011, 39983 where the value of the red curve is given by

(6.62) for each partition. We can calculate the distance of our experimental data from

this using the 1-norm which is shown in table 6.3.

Furthermore, Jogia et al. [33] showed that the action of birational maps in two dimensions

with an integral is conjugate to addition on a Weierstrass cubic.

Theorem 6.4.1. ([33] Theorem 4) Let L be an infinite order birational map defined over

C(t) that preserves an algebraic foliation C(x, y, t) = 0 where C = E/C(t) is an elliptic

curve. Then L is conjugate to a map L̃ : P 7→ P + Ω(t) on the associated Weierstrass

W/C(t), where Ω(t) = (ω1(t), ω2(t)) and ωi(t) ∈ C(t). Furthermore, L is reversible, i.e.,

can be written as the composition of two rational involutions over C(t), and the dynamics

of L on each curve can be parametrized in terms of Weierstrass elliptic functions.
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Figure 6.6: Plots of θk for large p.

This means that for the QRT map all (periodic) orbits on each level set have the same

period. This is similar to the result for the linear map in the previous section. For each

level set with value k = I(x, y), let αk be the common period and βk be the number of

orbits of length αk. Then using the Hasse-Weil bound (6.57) we get in the case p = 3

(mod 4) where the QRT map is a permutation

p+ 1− 2
√
p ≤ βkαk ≤ p+ 1 + 2

√
p. (6.63)

Then for fixed p and arbitrary k, since β ∈ Z+ we obtain the possible periods of αk

1

n
(p+ 1− 2

√
p) ≤ αk ≤

1

n
(p+ 1 + 2

√
p), n = 1, 2, . . . (6.64)

This gives us a series of allowed intervals for αk. The Hasse-Weil Bound (6.57) tells us

that the number of points on a level set must lie in the interval [p+ 1−2
√
p, p+ 1 + 2

√
p].

Thus, the allowable periods lie in the intervals

ρn(p) :=

[
1

n
(p+ 1− 2

√
p),

1

n
(p+ 1 + 2

√
p)

]
, n = 1, 2, . . . . (6.65)

With p fixed, for large enough n, these intervals will overlap. This occurs when the upper

bound of pn+1(p) is greater than or equal to the lower bound of pn(p), that is,

1

n+ 1
(p+ 1 + 2

√
p) ≥ 1

n
(p+ 1− 2

√
p), (6.66)
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Figure 6.7

which gives

n ≥
√
p

4
+

1

4
√
p
− 1

2
, (6.67)

and we define

np :=

⌈√
p

4
+

1

4
√
p
− 1

2

⌉
, (6.68)

the smallest integer such that the intervals overlap. Thus this gives restrictions on the

possible orbit lengths for large period lengths. This can be seen in the plateaus (which

signify there are no orbits of such lengths) in figure 6.7 (note these p values satisfy p = 3

(mod 4)).

Example 6.4.2. Consider the QRT map (6.58) with p = 4999 and ε = 3, λ = 5, ξ = 2.

The first few intervals of allowable periods (rounding to integers) are

ρ1 = [4859, 5141], ρ2 = [2430, 2570], ρ3 = [1620, 1713], ρ4 = [1215, 1285], ... (6.69)

Thus, there can be no periods from 2571 to 4858, 1714 to 2429 and so on. Furthermore,

we have np = 18 and ρ18 = [270, 285], and thus ∪∞i=18ρi = [1, 285] and all periods from 1

to 285 are possible.

6.5 The number of symmetric and asymmetric periodic orbits in the QRT map

In this section we consider the number of cycles in the QRT map over F2
p. We compare

this number with other maps considered previously also over F2
p. Recall from chapter

3 that the expected number of cycles for a polynomial automorphism over F2
p is Hp2 of
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Figure 6.8: These figures show the effect of singularities on the distribution of αk for the QRT
map (6.58). We see that the larger values of αk disappear for p = 10009 while the smaller αk
remain the same.

(3.3), and from chapter 4 that the expected number of cycles for a birational map over

F2
p is Hp2 − Hs where Hn is the nth harmonic number and s is the number of singular

points of the map. Recall from chapter 5, the number of symmetric cycles for reversible

polynomial automorphisms is 1
2#Fix(G) + #Fix(H)) (see corollary 5.3.1), and that the

number of cycles is close to this lower bound in general. The QRT is also reversible, so

we can also further divide the cycles into symmetric or asymmetric.

6.5.1 QRT map with no singularities

For the QRT map (6.58) with no singularities, the number of symmetric periodic orbits can

be calculated from the fixed sets of G and H using corollary 5.3.1. Since the cardinalities

of Fix(G) and Fix(H) are both p from (6.60), then we have

#symmetric cycles =
p+ p

2
= p. (6.70)

Recall that theorem 6.4.1 tells us all periodic orbits on the same level set have the same

orbit length. Then we need to know the distribution of these periods for each level set. A

figure of this is shown for p = 10007 and p = 10009 in figure 6.8. Without any better way

to proceed, we assume that these follow a uniform distribution. This is not accurate since

as mentioned before, there are windows of disallowable periods. However, we see that this

is a good approximation as level sets with large αk in (6.63) contribute relatively little to

the number of (symmetric) periodic orbits. Most of the contribution will be with small
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αk meaning there will be many periodic orbits on the corresponding level set. Using this

idea, we consider the number of cycles. This is given by the sum of βk (see (6.63)). So

we have

#cycles =

p−1∑
k=0

βk

≈
p−1∑
k=0

p

αk
(using the Hasse-Weil bound)

≈ p
p∑

k=1

1

k
(assuming uniform distribution of αk)

= pHp.

(6.71)

There are few things to notice here. Recall from section 3.2.1 that the expected number

of cycles for the dissipative Hénon map was Hp2 . This is essentially a magnitude of p

times more. In fact, it is p times the expected number of cycles in a random permutation

with p points. This is similar to the expected number of cycles for the 3D dissipative

Hénon map with 1 integral in (6.5). We will see these ideas again in the later chapters

how each additional integral multiplies the number of (asymmetric) cycles by a factor of

p. Then it follows from (6.70) and (6.71) that we have

#asymmetric cycles = #cycles−#symmetric cycles (6.72)

≈ pHp − p (6.73)

= p(Hp − 1). (6.74)

Again, we note that the number of (asymmetric) cycles is an approximation but the

important part is the leading term behaviour which is vastly different to the other types

of maps for example the expected number of cycles in a random permutation. The

accuracy of this model is shown in figure 6.9.

6.5.2 QRT map with singularities

For the QRT map (6.58) with singularities, we need to consider the effect of singulari-

ties as they will consume a proportion of the space in singular orbits. From numerical

experiments, it seems that for the QRT map with singular points, that we have

#symmetric cycles ≈ 2p

7
, (6.75)
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as shown in figure 6.10.

Now we want to find the total number of cycles. We use a basic model to consider the

effect of the singular points in reducing the number of cycles on each level set. From

(6.58) there are 4p singular points when p = 1 (mod 4) since -1 is a quadratic residue and

almost all the level sets have exactly four singular points. Experimentally, we generally

obtain four asymmetric singular orbits of the same length as the periodic orbits (we may

also see pairs of asymmetric singular orbits which combine to be of that same length).
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Thus, when comparing with the case of no singularities, we can subtract four cycles for

each level set with four or more cycles. Figure 6.8 shows the loss of long periodic orbits

for p = 10009 (singularities) when compared p = 10007 (no singularities). So to account

for this, we count the number of cycles βk of period αk for level sets with greater than

four cycles. That is,

#cycles ≈
p−1∑
k=0

max(βk − 4, 0) (6.76)

≈
p−1∑
k=0

max

(
p

αk
− 4, 0

)
(6.77)

≈
p∑

k=1

max
(p
k
− 4, 0

)
(assuming equidistribution of αk) (6.78)

= p

bp/4c∑
k=1

1

k
− p (6.79)

≈ pHp/4 − p. (6.80)

Thus, we have that

#asymmetric cycles = #cycles−#symmetric cycles (6.81)

≈ (pHp/4 − p)− 2p/7 (6.82)

= p(Hp/4 − 9/7). (6.83)

In figure 6.9 we compare the number of asymmetric cycles divided by p with the heuristic

model. We see that it is a good approximate fit, albeit generally overestimating. However,

when we consider the expected statistics of Hp2 and at least p for the dissipative Hénon

map and the area-preserving reversible Hénon map respectively, we can see a vast differ-

ence in the number of cycles which is shown in figure 1.1. This gives some preliminary

evidence that the number of cycles in the finite field can be a good discriminator of the

algebraic properties of integrability and reversibility.

6.6 Basic model for number of asymmetric periodic orbits for with integrals

In this section, we generalise the ideas above to count the number of asymmetric periodic

orbits for any reversible map that has the same cycle lengths on level sets. This will

be a heuristic argument using similar assumptions to the model for the QRT map. In
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particular, we assume that there is equidistribution of the cycle lengths on level sets. We

also assume uniformity in how the symmetric and singular points are distributed and

their effect on cycle lengths. It is necessary to do this because there is not much that has

been proved regarding these and it seems to be difficult to have any meaningful results

in generality.

Suppose L is a d-dimensional map with j integrals. Let N = pd be the number of points

in our space. We will use the following notation throughout the rest of the thesis. We let

g denote #Fix(G), the cardinality of the fixed set of G, and similarly h denote #Fix(H),

the cardinality of the fixed set of H. We also let γ, η denote the singular set of G and

H respectively. Then the number of fixed points of the involutions is g + h and the

number of singular points be γ + η. Each j-tuple of heights of each integral represent

a different intersection of level sets. Suppose there are pj level sets with the number of

points distributed uniformly, so each level set has

N

pj
(6.84)

points,
g + h

pj
(6.85)

fixed points of involutions and
γ + η

pj
(6.86)

singular points. Now any orbit without any fixed points of G or H or singular points will

be an asymmetric cycle. We will model this number. For each level set, we will simply

subtract the number of possible symmetric cycles and the number of singular orbits and

consider over all level sets. Now let αm and βm denote respectively the common length

of the cycles and the number of cycles on the mth level set, 1 ≤ m ≤ pj . Consider

the number of asymmetric cycles of length k. We define a k-level set as a level set with

αm = k. On a k-level set with no singularities, the number βm of k-periodic cycles is on
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average N/(kpj). Then,

#asymmetric k-cycles = #k-level set.

(
N

kpj
− g + h

2pj
− γ + η

pj

)
(6.87)

=
p2j

N

(
N

kpj
− g + h

2pj
− γ + η

pj

)
(6.88)

= pj
(

1

k
− g/2 + h/2 + γ + η

N

)
(6.89)

where we have used that #k-level set = p2j/N . This is because there are pj level sets

with possible values of αm from 1 to approximately N/pj , and by assuming a uniform

distribution, we get #k-level set = #{αm | αm = k} = p2j−d, recalling N = pd. The

number of k-asymmetric cycles must be non-negative for each k, so this model works for

k such that
1

k
>
g/2 + h/2 + γ + η

N
(6.90)

or

k <
N

g/2 + h/2 + γ + η
. (6.91)

Then we largest such k is

kmax =

⌊
N

g/2 + h/2 + γ + η

⌋
. (6.92)

Equation (6.89) tells us that the number of k-cycles increases (or decreases) by a factor

of p if we increase (or decrease) the number of integrals by one. We can sum k from 1 to

kmax in (6.89) to obtain an estimate of the total number of asymmetric periodic cycles.

Here we use the approximation that kmax ≈ N
g/2+h/2+γ+η , to get

#asymmetric cycles =

kmax∑
k=1

pj
(

1

k
− g/2 + h/2 + γ + η

N

)
(6.93)

≈ pj(Hkmax − 1) (6.94)

≈ pj log

(
N

g/2 + h/2 + γ + η

)
. (6.95)

This means that we expect the number of asymmetric periodic cycles to increase by a

factor of p for each additional integral present. This is significant for p of a reasonable
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size. By making j the subject of (6.95) we obtain

j̄∗ =
log(#asymmetric cycles)− log log

(
N

g/2+h/2+γ+η

)
log p

(6.96)

This gives us a test for j using the number of asymmetric cycles. Note we can’t use any

other type of orbit (symmetric periodic, symmetric aperiodic, asymmetric aperiodic) as

a test as they are constrained by the fixed points and singular points whether there are

integrals or not (see (8.4) and (8.5)). This result is useful because it can be used as a test

for the number of integrals j of a reversible map without any a priori knowledge of the

integrals or level sets. One concern of the model may be summing up values of k not in

the allowed windows for period α but note that most of the sum is consumed by small

k and larger values of k do not contribute much to the sum. Another concern may be

the accuracy of this model as we have made some large assumptions and simplifications.

However, it is quite robust, as additional integrals mean an increase of asymmetric cycles

by factors of p. This means that if the model is out by a factor of o(p), we should still be

able to tell how many integrals it has.

This test is appropriate for reversible maps that have the same length cycles on level

sets. However, we will see in chapter 8 a combinatorial model for reversible maps without

integrals and in chapter 9 how we can generalise this to reversible maps with integrals

(without the same length of cycles on level sets). In the end, we will see the model and

the integral test give similar results for the expected number of asymmetric cycles and

hence provide useful tests in any case. These two models will be compared in chapter 9

along with numerical tests showing its effectiveness.

6.7 Concluding Remarks

The presence of an integral affects the dynamics of a map over the finite field as the

additional structure constrains the orbit structure. Through the example of the linear

cat map and the QRT map, we showed the effects on the number of orbits and also the

length of the orbits. In addition, for the QRT map, which is also reversible, we further

considered the number of asymmetric orbits and provided a heuristic argument which

may be used as a test to detect the number of integrals in higher dimensional reversible

maps.
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Chapter 7

Piece-wise Cat map

In this chapter, we study the periodic orbits of a three-parameter family of piecewise

linear maps on the 2-torus. This map is invertible and for integer parameter values, the

map preserves rational lattices and so each lattice decomposes into periodic orbits. We

study the distributional properties of these periodic orbits on prime (rational) lattices

and based on numerical evidence, we conjecture that asymptotically, almost all orbits

are symmetric and for almost all parameter pairs, the distribution of normalised periods

approaches the gamma distributionR(x) = 1−e−x(1+x). Note that studying the rational

orbits on prime lattices is equivalent to a study of the dynamics over the finite space F2
p.

This had been conjectured by Roberts and Vivaldi for all reversible planar polynomial

automorphisms with a single family of reversing symmetries on the finite space F2
p [63] and

shown to be the expected distribution for the composition of two involutions satisfying

mild conditions on their fixed sets [64]. We also study parameter values for which this

distribution is not followed. Some of these can be explained with knowledge about the

action of toral automorphisms. In fact, when the parameter values are equal, we get

precisely the action of toral automorphisms and hence we obtain a singular distribution

for the period lengths of the orbits which was examined in the previous chapter 6.3.

7.1 Piecewise linear map

Consider area-preserving reversible maps of the form

L : x′ = f(x)− y, y′ = x (7.1)
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over some fieldK2. This map is reversible for any choice of f , since we can write L = H◦G,

where

G : x′ = x, y′ = f(x)− y H : x′ = y, y′ = x. (7.2)

It is easy to check that G and H are orientation-reversing involutions. Any 2nd order

difference equation of the form

xn+1 = f(xn)− xn−1 (7.3)

can be written as the area-preserving reversible map in equation 7.1 by associating the

points so that

(xn, xn−1)↔ (x, y), (7.4)

(xn+1, xn)↔ (x′, y′). (7.5)

Here, we specialize the map L to be a three parameter family of piece-wise linear maps

T of the two-dimensional torus T2, where f in (7.1) is given by

f(x) =


bx if x ∈ [0, s)

ax if x ∈ [s, 1)

(7.6)

where a, b are integers and s ∈ [0, 1). This map can be seen to be a very simple area-

preserving and non-trivial perturbation of the map (6.14). This map can also be written

as

T (x, y) =

θ(x) −1

1 0

x
y

 (mod 1), (7.7)

where

θab(x) =


b if x ∈ [0, s)

a if x ∈ [s, 1).

(7.8)

We will study the idea of reversibility through this mapping. This property should be

thought of as a global algebraic property and we will see how the period structure in

finite representations can be used to identify it. Thus, we are interested in studying the

rational periodic orbits of T . Note that all rational points on the torus are periodic. This
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is easily seen by considering the orthogonal rational lattice with N2 points, ΛN , on the

torus defined by

ΛN = {( i
N ,

j
N ) | i, j ∈ ZN}, N ∈ Z+. (7.9)

Now ΛN is finite and invariant under T and since T is invertible, then each point in

ΛN is periodic under T . For a fixed rational lattice ΛN , we can consider the cumulative

distribution function of the period for all the N2 points given by:

DN (x) =
#{z ∈ ΛN | t(z) ≤ κx}

N2
(7.10)

where constant κ is a normalisation parameter. DN (x) represents the proportion of points

in ΛN that have period less than or equal to κx. Since t(z) is an integer, the function DN

is a step function where the number of steps is equal to the number of distinct periods

of T over ΛN . Note that the distribution function is dependent on the parameter choices

a, b, s. This periodic distribution function has been studied [63, 52] for various maps of

finite spaces including the area-preserving Hénon map. The following was conjectured in

[63]:

Conjecture 7.1.1. For a reversible polynomial automorphism (with a single family of

reversing symmetries) acting on a space Λp ∼= F2
p then

lim
p→∞

Dp(x) = R(x) = 1− e−x(1 + x) x ≥ 0 (7.11)

where the normalisation parameter is taken to be the mean period, that is,

κ =
p2

#cycles
. (7.12)

The distribution function R(x) is the cumulative distribution function of the gamma

function with shape parameter 2 and scale parameter 1. This distribution has been shown

to be the expected limiting distribution of the composition of two random involutions

with some conditions on the cardinality of their fixed sets [64]. This suggests that the

convergence of the period distribution to R(x) may be enough to infer reversibility over

a finite space. Referring back to (7.1), one might ask which functions f will see the

asymptotics (7.11). For f(x) = x2 + ε (the area preserving Hénon map), there is strong

evidence that it follows the gamma distribution [63]. For linear functions f(x) = cx, c ∈ N,

we obtain singular distributions corresponding to hyperbolic toral automorphisms which
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was categorised in [55]. In fact under T , if a = b or s = 0, then we obtain the linear map

on the torus

T (x, y) =

a −1

1 0

x
y

 (mod 1). (7.13)

Thus the map T , a three parameter family of piece-wise linear maps can be seen as a

small deviation from linear toral automorphisms which motivates the study of this map.

In section 7.3.1, by fixing a, b, p and considering small values of s, we will see the gradual

departure of Dp(x) from the singular distribution to R(x).

We will study the convergence of the distribution function DN for T when N = p is a

prime number. For some special parameter pairs, we will see that the period distributions

differ from R(x). We are interested in the convergence of the period distribution of R(x)

and we will provide evidence using “large” primes p and by examining the norm of the

difference |Dp−R| as a function of the parameters of the map. Figure 7.1 is a plot of the

distribution function DN (x) for various primes N which provides preliminary evidence

for a similar result to conjecture 7.1.1 for the map (7.7). Thus we present the following

conjecture:

Conjecture 7.1.2. The cumulative distribution function of the map T of (7.7) for fixed

a, b, s where s 6= 0 and a 6= b has limiting distribution

lim
N→∞

DN (x) = R(x) = 1− e−x(1 + x) x ≥ 0 (7.14)

where the normalisation parameter is taken to be the mean period, that is,

κ =
p2

#cycles
. (7.15)
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Figure 7.1: Plot of the distribution of cycle lengths DN (x) of (7.10) and the conjectured dis-
tribution R(x) for p = 31, p = 313 and p = 1009 with parameters a = 13, b = 7, s = 0.5 in
(7.7). We have E31(a, b) = 0.373562712177397, E313(a, b) = 0.122287773626187 and E1009(a, b) =
0.060146308097751 where E(a, b, s) is defined in (7.26).

7.2 Reversibility and symmetry of piece-wise linear map

The family of maps (7.7) can be written as the composition of two involutions, that is,

T = H ◦G where

G : x′ = x, y′ = θab(x)x− y H : x′ = y, y′ = x. (7.16)

Now consider the fixed sets of the involutions G,H given by

Fix(G) = {(x, y) : 2y = θab(x)x}, Fix(H) = {(x, y) : x = y}. (7.17)

These are one-dimensional curves on the torus and classify the symmetric orbits.

We now focus our study of T to the rational lattice ΛN . By clearing the denominator in

(7.9) we obtain the integer lattice of the numerators which we still denote by ΛN . The

action of T on the rational lattice ΛN can now be described by the permutation (with

abuse of notation we also call it T and henceforth T refers to the below mapping) T given

by

T : x′ = θNab(x)x− y (mod N) y′ = x (mod N) (7.18)
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where we identify x, y with their respective numerators over the denominator N , so in

(7.18) we have x, y ∈ ZN and

θNab(x) =


b x ∈ {0, 1, . . . , dNse − 1}

a x ∈ {dNse , . . . , N − 1}.
(7.19)

Note that for s = 0, we get exactly the dynamics of the linear map on the torus. This

behaviour has been documented in section 6.3. However (for a 6= b), increasing s to a

non-trivial value “perturbs” the structure of the map, at first minimally, but we will see

entirely different cycle structure. This will be discussed in section 7.3 and motivates the

study of this map. The map T acquires the corresponding reversibility (7.17) with

Fix(H) = {(x, x) | x ∈ ZN}

Fix(G) = {(x, y) | 2y = θNab(x)x (mod N)}.
(7.20)

Here, Fix(H) are the integer coordinates (modN) on the line x = y while Fix(G) is the

union of two half lines. Now over a finite space with invertible mapping T , all points

are periodic. We consider the symmetric periodic orbits, that is, those that intersect

Fix(G) ∪ Fix(H).

When N is odd, 2 has a modular inverse and Fix(H),Fix(G) each have N points. We

obtain the following bound on the number of cycles of L,

#Fix(G) + #Fix(H)

2
= N = #SymCycles(L) ≤ #Cycles(L) (7.21)

from theorem 5.3.2. In practice, we see very few asymmetric cycles and they seem to play

no part in the asymptotics of the distribution of the cycles.

Below we will prove that there is also a reflection in the parameter space where we write

θNa,b,s to differentiate θN with different parameter values.

Lemma 7.2.1. For θNa,b,s(x) defined in (7.19), we have θNa,b,s(x) = θNb,a,1−s(−x) for x 6= 0.

Proof. Suppose x ∈ {1, . . . , dNse−1} so θNa,b,s(x) = b. Then working modulo N it is clear

that −x ∈ {N − dNse + 1, . . . , N − 1}. But for N ≥ dNse ≥ 0 and Ns 6∈ Z, we have
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N − dNse+ 1 = dN −Nse = dN(1− s)e, then

θNa,b,s(x) = b = θNb,a,1−s(−x). (7.22)

Similarly for x ∈ {dNse . . . N − 1} and thus the relation is clear.

We now write Ta,b,s to refer to the map T with parameters a, b, s for convenience.

Claim 7.2.2. The distribution of orbits under Ta,b,s is the same as that under Tb,a,1−s,

that is, Dp,a,b,s(x) = Dp,b,a,1−s(x).

Proof. We prove this by showing that Ta,b,s and Tb,a,1−s are conjugate. Consider the

mapping h : Z2
N → Z2

N where h = −Id. Noting that h = h−1, we can write

Tb,a,1−s ◦ h = h−1 ◦ Ta,b,s (7.23)

since for x 6= 0 we have

Tb,a,1−s ◦ h(x, y) = Tb,a,1−s(−x,−y) =

θNb,a,1−s(−x) −1

1 0

−x
−y


=

θNa,b,s(x) −1

1 0

−x
−y

 by lemma (7.2.1)

= h ◦ Ta,b,s(x, y)

(7.24)

and for x = 0, (7.23) is clearly true. Thus, we have the one-to-one parameter relation for

the nth iterates of the TN ,

(Ta,b,s)
n = h−1 ◦ (Tb,a,1−s)

n ◦ h (7.25)

for n ∈ Z+ which complete the proof.

In particular from the above claim, if we set s = 1/2 and for a fixed odd N consider the

value of DN,a,b,s(x) for all parameters a, b, we need only look at values {(a, b) | b ≤ a}.
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7.3 Evidence for convergence to R(x) for almost all parameters

We now provide experimental evidence and results for the mapping T and take N = p a

large prime. In order to quantify convergence, we define a function to measure the distance

between the conjectured distribution R(x) and the empirical distribution function Dp(x).

We use the L1-norm and define the error function Ep(a, b, s) as:

Ep(a, b, s) =

∫ ∞
0
|Dp,a,b,s(x)−R(x)|dx. (7.26)

A restatement of conjecture 7.1.1 applied to the map T is that for all fixed a, b, s (such

that T has a single family of reversing symmetries) we have

lim
p→∞

Ep(a, b, s) = 0. (7.27)

The case for a = b or s = 0 reduces to the linear map which was studied in chapter 6.3

and has more than a single family of reversing symmetries.

7.3.1 Increasing s (fixed a,b,p)

As we increase s slightly, visually we can see the change from the singular distribution

corresponding to s = 0 to the gamma distribution R(x). The change of value in s from 0

perturbs the linear structure of the toral automorphism and brings a different structure

and period distribution. We see the effects of small increases in s in figure 7.2 for fixed

a, b, p. The top left frame is for p = 821, a = 123, b = 379, s = 0, with all points period 82

except for fixed point at the origin. In the subsequent subfigures, as the value of s increases

slightly, we continue to see a “spike” in the distribution where a large proportion of points

have the same period 82. Indeed, the repeated period is the same for each subfigure and

in each subsequent figure is a smaller subset of orbits of this period from the previous

subfigure. This is because increasing s (slightly) to s′ = s+ ε does not affect those orbits

that have x > s′ for each point. This is also shown in figure 7.3 where our distribution

functions are shown without scaling. Here we see the common spike at 82 decreases with

the increase of s. As s increases, we slowly filter out these repeated periods from the linear

map and as they disappear, we see that the distribution of the periods moves closer to

the conjectured distribution R(x). We can see the rate of this by plotting the “spike” for
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(a) s = 0 (b) s = 0.0125

(c) s = 0.00499 (d) s = 0.1122

Figure 7.2: Plots of Dp(x) for fixed p = 821, a = 123, b = 379 and varying s.

every value of s. Formally, for fixed p, a and b = a (where xn represents the x coordinate

of the nth iteration), we define f(s) as:

f(s) =
{(x0, y0) | xn > s for all n ≥ 0}

p2
(7.28)

which represents the proportion of space with orbits fully contained in (s, 1) × [0, 1) for

s ∈ [0, 1). By assuming spatial equidistribution of the points in orbits [16], we can estimate

f(s) using a probabilistic approach. To see a (repeated) orbit under T , each point must

be in the region (s, 1)× [0, 1). Now take the common period length to be t then,

E[f(s)] = (1− s)t. (7.29)

This is shown in figure 7.4 where the blue line is f(s) and the magenta line is E[f(s)] =

(1− s)t.
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Figure 7.5: Plot of error Ep(a, b, s) of (7.26) capped at 5 with p = 769 with s = 0.5 for parameter
space a, b.

7.3.2 Varying a,b (fixed s,p)

One way we can explore convergence of Ep(a, b, s) is by fixing s and (a large) p and

considering its value over all parameters a, b. We can represent this pictorially through

a p × p image of boxes where each box is shaded corresponding to its value of Ep(a, b, s)

as shown in figure 7.5 for p = 769, s = 0.5. There, the value is represented by the

colour bar on the right which we have capped at 5 because we are mainly concerned with

convergence. Here, small deviations from the gamma distribution are in dark blue, while

large deviations are shown in dark red. Representing the distance for R(x) in this way

can be helpful to identify (linear) patterns in (a, b) parameter space. This computation

is not trivial as for a fixed p, we find the period distributions for the p2 parameter pairs

where each is over a space of p2 points. Thus computation increases proportional to p4.

Savings in computation can be made by exploiting parameter symmetry and by searching

along the symmetry lines for symmetric orbits. To analyse the convergence for parameter
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Figure 7.6: Proportion of parameter space where the error Ep(a, b, s) is less than c for p =
233, 421, 769, 1049 for s = 0.5.

values as a whole, we define the following function,

Ep,s(c) =
#{(a, b) ∈ Λp | Ep(a, b, s) < c}

p2
. (7.30)

This is the proportion of parameter pairs for which the period distribution has distance

less than c from R(x). For some fixed p and s, this is also a distribution function as

it is non-decreasing in c and is equal to 1 for sufficiently large c. Figure 7.6 shows the

plot of Ep,s(c) for 4 values of p. We see that for fixed c and increasing p with s = 0.5,

the proportion of parameter pairs that have error value Ep(a, b, s) less than c seems to

increase. This leads us to define

Es(c) = lim inf
p→∞

Ep,s(c) c > 0. (7.31)

The function Es is non-decreasing and numerical evidence suggests the following:

Conjecture 7.3.1. The function Es is identically equal to 1.

This conjecture states that for almost all parameter pairs (fixed p, s), the period distribu-

tion of the rational cycles of Tp is the same as the gamma distribution. (By construction,

the function Es is not affected by anomalous distributions which may appear for sets of

parameters of size o(p2).)
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Figure 7.7: Proportion of parameter space where the space taken up by asymmetric orbits is less
than c. Note the scale of the x-axis.

In [63] is was shown that for random reversible maps, asymptotically, asymmetric cycles

have zero probability. Here, we provide evidence that TN shares this same property. For

TN we consider the proportion of points (x, y) on the rational lattice which belong to

asymmetric periodic orbits. Then we define

Ap(a, b, s) =
#{(x, y) ∈ Λp | (x, y) belongs to an asymmetric cycle}

p2
. (7.32)

We also fix a constant c > 0 and define

Ap,s(c) =
#{(a, b) | Ap(a, b) < c}

p2
(7.33)

which is the proportion of parameter pairs for which the proportion of asymmetric points

is less than c. This function is non-decreasing and equal 1 for c ≥ 1. Now define

As(c) = lim inf
p→∞

Ap(c), c ≥ 0. (7.34)

Conjecture 7.3.2. The function As is identically equal to 1.

Figure 7.7 provides numerical evidence for this conjecture. For example, we see that for

p = 521 and c = 0.005, we have that 257661 out of the 5212 = 271441 or 94.92% of the

parameter pairs have asymmetric cycles taking up less than 0.5% of the phase space.
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Figure 7.8: Plot of error for a = 123, b = 421 and all primes from p = 431 to 45343 with the curve
y = 1

0.3309
√
p+5.229 (a curve of best fit).

7.3.3 Varying p (fixed a,b,s)

We can also fix a, b, s and observe this error function Ep(a, b, s) for increasing p. This is

shown in figure 7.8. We calculated the error function Ep for all primes p = 431 to 45343

with a = 123, b = 421, s = 0.5. To fit this curve, we used least squares (and trimming).

The error Ep(a, b) = O( 1√
p). This gives us an approximate rate of convergence as p→∞.

7.4 Anomalous distributions for fixed p

In this section, we discuss various parameter values for fixed p where the value of Ep(a, b, s)

of (7.26) is “large”. For these parameter values, we are typically seeing many asymmetric

cycles, many with the same small cycle length. Note that this does not contradict conjec-

ture 7.1.2 as we still believe that as p→∞, the distribution has the expected convergence.

However, this also means that the convergence is not uniform as even for large values of

p, some parameter values will have a “large” error. We describe some specific examples

of the parameter values where this occurs and present necessary conditions for this. Now,

for fixed p and s, we can separate the parameters in which anomalous distributions occur

into two types:

1. Occurs for a particular a and for all b (independent of b).
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2. Occurs for particular combinations a, b.

Type 1: We can see type 1 in figure 7.5, in the horizontal and vertical lines for s = 0.5.

(Since this is symmetric with respect to the axes, we concentrate without loss of generality

on the vertical lines.) For the values of a corresponding to vertical lines, this is related to

the linear map in (6.14). There we saw that for s = 0, the distribution was singular with all

orbits having the same period length, and as s increased, the distribution became closer to

R(x). These occur when many of the orbits have points entirely on one side of the switch

s. The rate of this is dependent on the value of the common period t in the linear case.

For parameter values a corresponding to small common period t (section 3.1, theorem

3.1), the proportion of space occupied by these common cycles can be approximated by

(1 − s)t. In this case, the distribution will have a spike at this value which leads to a

larger error when compared to the “average” parameter pair (a, b). The abundance of

small cycles also affects the scaling factor κ.

Type 2: Parameter combinations for type 2 cover the rest of the anomalous distribu-

tions. The parameters a, b that fall under this category satisfy some special relation that

causes the many small repeated cycles to occur. These are different to those in type 1

because the small cycle orbits in this case will have points on both sides of the switch. In

contrast to type 1, as s becomes closer to 0 (from 1/2), the number of these small cycles

will decrease.

We can see examples of both types of anomalous distribution in figure 7.9. Type 1 are the

horizontal and vertical lines while type 2 are the lines with gradient 1,2 or 3. The latter

correspond to parameters a, b satisfying ab = 1, 2, 3 (mod p) respectively. Note that the

density of these anomalous distribution goes to 0 as p→∞ (see conjecture 7.3.1).

In figure 7.9 for p = 769 we can see horizontal lines corresponding to type 1 errors at

a = 2, 311, 338, 430, 594, 632, 768.

Example 7.4.1. If we look into the periodic orbits of Ta,b,s for a = 338 = b on Λ769, we

see that there are 118272 distinct orbits with period length 5. We also find that 3696 of

these orbits have a spatial distribution confined to [1
2 , 1) × [0, 1). This tells us that the

mapping Ta,b,s with a = 338, s = 0.5 will have at least 3696 distinct orbits of period 5 for

independent of b.
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Figure 7.9: Plot of error Ep(1/a, b, s) capped at 5 with p = 769, s = 0.5 for parameter space 1/a, b
showing a hyperbolic relation.

7.4.1 Words and matrix words

To better understand the nature of these anomalous parameter values we introduce some

notation. We will associate each point z = (x, y) with a “word” consisting of a sequence

of letters in {a, b}. Let us denote the word of a point z = (x, y) by ω. We define θ as

θ(x) =


b x ∈ [0, s)

a x ∈ [s, 1)

(7.35)

and we build a word where the (k+1)th letter is given by θ(xk) where (xk, yk) = T k(x0, y0)

and here we regard b, a as letters rather than as parameter values. We write the let-

ters in our word from right to left, that is, a word of length n will have word ω =

98



θ(xn−1)θ(xn−2) . . . θ(x0). If a point z has period n then its associated word can be rep-

resented with n letters. Then points in the same orbit will have words that are cyclic

permutations. Suppose (x, y) has associated word ωx,y of length n and denote the kth

letter of the word by ck. We define an associated matrix word Ωx,y = CnCn−1 . . . C1

where

Ck =


B ck = b

A ck = a

(7.36)

and

A =

a −1

1 0

 B =

b −1

1 0

 . (7.37)

Now recall that for a point (x, y) to be periodic with period n, we must have

Tn(x, y)T = (x, y)T . (7.38)

Then we also have that

Ωx,y(x, y)T = (x, y) (mod 1) (7.39)

where Ωx,y ∈ SL(2,Z). Now consider solutions (x, y) in Λp the rational lattice with prime

denominator p. Since Ωx,y is an integer matrix, this induces modulo p arithmetic so that

(Ωx,y − Id)(x, y)T = 0 (mod p) x, y ∈ Fp. (7.40)

If ∆ = det(Ωx,y−Id) = det(Ωx,y)− trace(Ωx,y)+1 6= 0, then using Cramer’s rule the only

solution is the trivial solution. So, every non-trivial point (x, y) in Λp has a corresponding

matrix word Ωx,y that satisfies trace(Ωx,y) = det(Ωx,y) + 1 = 2. Now for a given word

wx,y and corresponding matrix word Ωx,y, we may want to find all (x′, y′) ∈ Λp that have

word wx,y. A necessary condition is that it must satisfy (7.40). For non-trivial solutions,

the dimension of ker(Ωx,y − Id) must be 1 or 2. If the dimension of ker(Ωx,y − Id) = 1

then there are p possible solutions while if ker(Ωx,y − Id) = 2, then every lattice point is

a possible solution. However, for a point (x′, y′) to be a valid solution to (7.40), we must

also have wx,y = wx′,y′ . Let us call words ωx,y that have dim(ker(Ωx,y − Id)) = 2 singular

words. A singular word is equivalent to having Ωx,y = Id (mod p). When s = 0, every

point has the same singular word of length t, consisting entirely of the letter a. As we

increase s, the word of each point may or may not change, and for small t the proportion
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that keep the initial word is approximately (1− s)t. When there is an (x, y) with singular

word of short length n, the distance of the period distribution from R(x) will be large.

This is because there will be many small orbits with the same singular word. The number

is dependent on the value of s. In general, for a fixed p, we observe the following:

1. The number of points with singular words in type 1 error parameters decreases as

s increases (from 0 to 0.5).

2. The number of points with singular words in type 2 error parameters increases as s

increases (from 0 to 0.5).

We can see the manifestation of (1) in figure 7.3 and 7.4. This phenomenon is clear

because f in (7.28) is a non-increasing function. For (2) we have provided evidence that

show this general trend in figure 7.10 although in this case it is not strict as in figure

7.10b and 7.10c we see that the peak is not at s = 0.5.

For some parameter values, we see some patterns in the words that occur. In particular

for some anomalous distribution we saw common words for different prime lattices. Now

we will look at some examples of these words and describe some parameter values where

they occur and hence where we see anomalous distributions. These are some examples of

parameters with type 2 error along with their singular words. For a fixed p and parameter

pair in the set {(a, b) : ab = 1, 2, 3 (mod p)}, there exist singular words of length 6, 8, 12

corresponding to ab = 1, 2, 3 (mod p) respectively. We will state the words explicitly and

study the proportion of space occupied by these words for s = 0.5.

• For parameters satisfying ab = 1 (mod p) there exists singular words bababa.

• For parameters satisfying ab = 2 (mod p) there exists singular words bbabaaba.

• For parameters satisfying ab = 3 (mod p) there exists singular words bbababaababa.

Consider the word w = bababa. Then the corresponding matrix word Ω = BABABA is

Ω =

a3b3 − 5a2b2 + 6ab− 1 −a2b3 + 4ab2 − 3b

a3b2 − 4a2b+ 3a −a2b2 + 3ab− 1

 (7.41)

and

trace(Ω)− 2 = (ab− 4)(ab− 1)2. (7.42)
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(c) Plot of number of 12 cycles as the switch changes for p = 613, a = 5, b = 2a−1.

Figure 7.10
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This has solutions ab = 4 or ab = 1 (mod p) . For ab = 4 (mod p), ker(Ω − I) = 1

while for ab = 1 (mod p), putting ab = 1 into Ω yields the identity matrix and hence

ker(Ω− I) = 2. For parameters satisfying ab = 1 (mod p) we see anomalous distribution

as the period distribution has an abundance of 6 cycles following the above word. For

example, with p = 769, a = 5, b = a−1 (mod p) = 154, s = 0.5 we see 5852 six cycles

out of the total of 6549 cycles. The parameters satisfying ab = 4 (mod p) correspond to

period 2 cycles with word ω = ab. Writing the matrix word explicitly,

T 2
p (x, y) = AB(x, y) (mod p) =

ab− 1 −a

b −1

x
y

 (mod p) =

3 −a

b −1

x
y

 (mod p).

(7.43)

Now for period 2 points, we require

3 −a

b −1

x
y

 =

x
y

 (mod p) (7.44)

which is satisfied when 2x − by = 0 (mod p). We will get approximately p/4 solutions

for this. For example, for p = 769, a = 5, b = 4a−1 (mod p) = 616 we have 192 distinct

orbits of period 2. Note that 192*4 = 768.

Also for w = bbabaaba and with corresponding word matrix Ω = BBABAABA we have

trace(Ω)− 2 = (ab+ a+ b)(ab− a− b)(ab− 2)2 (7.45)

and for ab = 2 (mod p) we again get the identity matrix for Ω. Figure 7.11b shows the

points with period 8 for p = 613, a = 117, b = 2a−1, s = 0.5. Note that for parameters

satisfying ab − a − b = 0 we obtain 4 cycles with word BAAB. For w = bababaababab

with corresponding word matrix Ω = BABABAABABAB we have

trace(Ω)− 2 = (ab+ a+ b)(ab− a− b)(ab− 1)2(ab− 3)2 (7.46)

and for ab = 3 (mod p) we see the identity matrix for Ω. Figure 7.11c shows the points

with period 8 for p = 769, a = 41, b = 3a−1, s = 0.5.

The anomalous values of these above parameter values can be seen in figure 7.9 where

we have rescaled the x axis to be 1/a (mod p). For s = 0.5 we provide plots illustrating

the proportion of space taken up by the singular codes corresponding to the parameter
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(a) Plot of period 6 points for p = 769, a = 542, b = a−1 showing a very distinct pattern.
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(b) Plot of period 8 points for p = 613, a = 117, b = 2a−1 showing a very distinct pattern.
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(c) Plot of period 12 points for p = 769, a = 542, b = 3a−1 showing a very distinct pattern.

Figure 7.11: Plot showing period 6, 8, 12 points for parameters satisfying ab = 1, 2, 3 respectively
corresponding to words ω = ababab, aababbab, bababaababa.
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Figure 7.12: Plot of filtering at each stage for 6 cycles.

values ab = 1, 2, 3 (mod p) in figure 7.13a 7.13b 7.13c. As p → ∞ the proportion seems

to converge to a non-zero limit.

Claim 7.4.2. The average proportion of the integer lattice taken up by period 6 orbits

for parameters satisfying ab = 1 (s = 0.5) is 1/32 or 3.125% as p→∞.

Remark 7.4.3. Consider the action of the map B on the left half of the torus. This will

map it to another quadrilateral with the same area but sheared. If we look on the unit

square, it will look like it has been sliced into many pieces which approximately distribute

it evenly with respect to the number of points with x coordinate less than s = 0.5 and

greater than s = 0.5. In other words, heuristically we can think that there is a 50% chance

of applying either map A or B at each iteration. So given a point (x, y), the x coordinate

will determine which map is applied first. Then for each subsequent mapping there is a

50% chance of alternating which we must do 5 times. Thus yielding the value 1/32 or

3.125%. This is shown in figure 7.12 where the top left is the image of the mapping of the

left half of the unit square and subsequent plots show the filtering out of points that do

not follow the word BABABA. Figure 7.13a shows the average proportion of the integer

lattice taken up by period 6 orbits for parameters satisfying ab = 1 seems to approach

this value. Figure 7.11c shows all the period 6 points with word ABABAB or BABABA

for p = 769, a = 542, b = a−1.
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(a) The average proportion of the integer lattice taken up by period 6 orbits over all parameters
(b−1, b) for all primes from p = 73 to p = 2281 and s = 0.5.
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(b) The average proportion of the integer lattice taken up by period 8 orbits over all parameters
(2b−1, b) for all primes from p = 73 to p = 2281 for s = 0.5.
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(c) The average proportion of the integer lattice taken up by period 12 orbits over all parameters
(3b−1, b) for all primes from p = 73 to p = 2281 for s = 0.5.

Figure 7.13
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Now suppose we are interested in a particular word ω. We are interested which parameters

a, b, s, p we observe this ω in the dynamics. From above, we know that a necessary

condition is that

C = trace(Ω)− 2 = 0 (mod p). (7.47)

This is an equation in a, b and it is known that it can be expressed as a polynomial

with variables (tr(A), tr(B), tr(AB)) [56, 34]. For a unimodular matrix A, applying the

Cayley-Hamilton theorem, we get

A2 = αA− I (7.48)

where α = trace(A) and I is the identity matrix. By repeatedly applying this equation,

we can represent the kth matrix power of A in terms of (the 1st power of) A using the

following recursive formula:

Ak = dk(α)A− dk−1(α)I, (7.49)

where dk(α) is a polynomial in α such that

dk+1(α) = αdk(α)− dk−1(α), (7.50)

d1(x) = 1 (7.51)

d0(x) = 0. (7.52)

Let B also be a unimodular matrix with trace(B) = β. Then using equation (7.49) for A

and B,

trace(AkBl) = trace((dk(α)A− dk−1(α)I)(dl(β)B − dl−1(β)I))

= dk(α)dl(β) trace(AB)− αdk(α)dl−1(β)− βdk−1(α)dl(β) + 2dk−1(α)dl−1(β).

(7.53)

Now let s1, s2 be arbitrary unimodular matrices (such as products of unimodular matrices

A,B). Using equation (7.53) with B = s2s1 and l = 1 and noting that trace is invariant

under cyclic permutation,

trace(s1A
ks2) = dk(α) trace(s1As2)− 2dk−1(α) trace(s1s2). (7.54)
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Using equation (7.49), (7.53), (7.54) we can represent the trace of any product of matrix

powers in A and B as a polynomial function of (tr(A), tr(B), tr(AB)).

For our case, trace(A) = a, trace(B) = b, trace(AB) = ab− 2. So C will be polynomial in

a, b of degree length of ω. The Hasse-Weil bound states that for a irreducible curve C in

a finite field with characteristic p, we have

|#C − (p+ 1)| ≤ 2g
√
p (7.55)

where #C is the number of solutions and g is the genus of C. The genus of an irreducible

curve C is g ≤ (d − 1)(d − 2)/2 where d is the degree of C with equality if C has no

singularities. Each singularity reduces the genus depending on its multiplicity. This will

give us a bound on the maximum number of parameter values for each p where we see

particular words.

We may systematically classify words into parameters which they can occur in. Note that

trace of a product is invariant under cyclic permutation. (Also without loss of generality

we can look at words with #a ≥ #b.) The valid parameter values are obtained using

the trace condition where we have also excluded smaller factors (e.g. the condition for

ω = a is not included in ω = aa). Table 7.1 shows all the words of length 1 to 5 and the

corresponding parameter values a, b where they can occur.

Recall that in the heat map 7.5, we saw vertical (horizontal) lines which correspond the

words ω consisting of just one letter a (or b). By explicitly solving the trace equation for

ω with repeated a we can find the potential positions of these lines. For example, consider

the word ω = aaaaa. We see this when a satisfies

a2 + a− 1 = 0 (mod p). (7.56)

From section 6.3 we know that if s = 0 all points have the same period length. For

non-zero s, we approximate the proportion taken up by these 5 cycles by (1 − s)5. So,

even for s = 0.5, we expect to see 1/32 of the phase space consumed by cycles of length

5. Now for a given p, the solutions to (7.56) are

a =
−1±

√
5

2
(mod p). (7.57)
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Table 7.1: Classification of all possible words for period 1 to 5 with the corresponding a, b where
they can occur. All equations here are read modulo p.

t ω a, b

1 a a = 2
2 aa a = −2

ab ab = 4
3 aaa a = −1

aab (a+ 1)(ab− b− 2) = 0
4 aaaa a = 0

aaab a(a2 − 2a− 2b) = 0
abab ab = 0
aabb (ab+ a+ b)(ab− a− b) = 0

5 aaaaa a2 + a− 1 = 0
aaaab (a2 + a− 1)(a2 − ab− 2a− b+ 2) = 0
aaabb (ab+ a− 1)(a2b− a2 − a− 2b+ 2) = 0
aabab (ab+ b− 1)(a2 − ab− 3a+ 2) = 0

6 aaaaaa a = 1
aaaaab (a− 1)(a+ 1)(a3b− 2a2 − 3ab+ 4) = 0
aaaabb (a2b+ a2 + ab− b− 2)(a2b− a2 − ab− b+ 2) = 0
aaabab (ab− 1)(a3b− 3a2 − 2ab+ 4) = 0
aabaab (a− 1)(a+ 1)(ab+ b− 2)(ab− b− 2) = 0
aaabbb (ab− 1)(a2b2 − 2a2 − ab− 2b2 + 4) = 0
aababb a3b3 − a3b− 4a2b2 − ab3 + 2a2 + 5ab+ 2b2 − 4 = 0
ababab ab = 1

We have 5 as a quadratic residue if and only if p = ±1 (mod 5). Thus for these primes,

we will see vertical lines at the values of a in (7.57). For example, if p = 769, we will

obtain the solutions a = 338, 430 and we see vertical (horizontal) lines for those values in

figure 7.5. We will provide the conditions in table 7.2 for these singular words of repeated

a for period 6 to 12.

Table 7.2: Classification of period 6 to 12 words with repeated a. All equations here are read
modulo p.

t ω a

6 aaaaaa a = 1
7 aaaaaaa a3 + a2 − 2a− 1 = 0
8 aaaaaaaa a2 − 2 = 0
9 aaaaaaaaa a3 − 3a+ 1 = 0
10 aaaaaaaaaa a2 − a− 1 = 0
11 aaaaaaaaaaa a5 + a4 − 4a3 − 3a2 + 3a+ 1 = 0
12 aaaaaaaaaaaa a2 − 3 = 0

We see that the number of solutions to the equations in table 7.2 are consistent with φ(t)/2

from theorem 6.3.9. The equations allow us to find lines of large error. For example, in
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Figure 7.14: Plot of Dp(x) with parameters a = 5 and b = 2a−1 for primes p =
479, 613, 821, 1021, 1301 showing that the space occupied by small cycles as a proportion of p2

is constant as p increases.

figure 7.5 we can see distinct lines a = 2, 311, 338, 430, 594, 632, 768. From tables 7.1,7.2

we see a = 2 corresponds to one cycles ω = a, parameters a = 768 correspond to 3 cycles

ω = aaa, parameters a = 338, 430 correspond to 5 cycles ω = aaaaa, and a = 311, 594, 632

correspond the 7 cycles ω = aaaaaaa.

However, the parameter values in tables 7.1,7.2 are not sufficient conditions and a natural

question then is if for any given word ω, there exists a, b, p, s such that there exists a point

(x, y) under Tp where we see this word. We have found this is not true.

Example 7.4.4. Consider Ω = ABABABAB. This word cannot exist for any a, b, p, s

such that a 6= b or s 6= 0. We find that trace(ABABABAB − I) = ab(ab − 4)(ab − 2)2.

The first 2 factors correspond to period 4 and 2 words respectively. For ab = 2 we find

that ABAB = −Id. So ABAB(x, y) = (−x,−y), but this ensures this is an unallowable

word.

7.5 Concluding Remarks

In this chapter, we studied a three-parameter family of piecewise linear maps. We studied

the distribution of the length of its orbits, seeing a departure from the singular distribution

of the linear map to R(x), the gamma distribution with with shape parameter 2 and scale

parameter 1. We also observed that anomalous parameter values where we see many
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repeated orbits of the same length, something we do not expect to see for polynomial

automorphisms whose limiting distribution of orbit lengths is also R(x). This comes

from the piecewise linear nature of map where we may still see remnants of the linear

action of the map. However, the proportion of these parameter pairs seems to vanish

and this was stated in conjecture 7.3.1. Thus, although we can see that the individual

details of the map can be useful in eliciting its behaviour, the asymptotic behaviour is

still largely governed by its reversibility property as seen in the asymptotic distribution

of orbit lengths.

110



Chapter 8

Reversible birational maps over finite fields

In this chapter, we consider reversible birational maps with no integrals. We will re-

vise previous results on the orbit statistics of these maps in 2D without integrals and a

probabilistic model to find the expected statistics of these reversible maps [64]. In 2005,

Roberts and Vivaldi conjectured that the distribution of period lengths for reversible

maps in the limit was R(x). In 2009 [64], they used a combinatorial model that showed

that the expected distribution for the composition of two involutions was R(x). Here the

number of fixed points of each of the involutions was fixed. Lugo [43] has also studied

the cycle structure of compositions of random involutions with no restrictions, and those

with no fixed points. It should be noted that the composition of two involutions is a

permutation but that sampling this uniformly at random is not the same as picking a

random permutation. Burnette and Schmutz [10] studied the number of ways of repre-

senting random permutations as a composition of two involutions and showed that for

large n, most permutations σ ∈ Sn, the number of representations of σ by ordered pairs

of involutions Nn(σ) is

e( 1
2
−ε) log2 n < Nn(σ) < e( 1

2
+ε) log2 n. (8.1)

For non-reversible maps, we saw that the statistics of random permutations could be used

to model the number of cycles in chapter 3 and 4. For reversible maps, we extend the

probabilistic model by Roberts and Vivaldi [64] to account for singular orbits and find

average statistics for their orbit lengths. We observe that the expected distribution of

cycles in the composition of two involutions is (asymptotically) R(x) which is universal

when appropriately scaled. This was conjectured for the distribution of reversible polyno-

mial automorphisms by the same authors in 2005 [63]. We will also see this distribution
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for birational maps. Here, we put a larger focus on the asymmetric periodic orbits, in

particular in their expected number which was not previously considered. We will see

the usefulness of this statistic in detecting the number of integrals in reversible maps in

chapter 9.

We extend the model in [64] to allow for singular points to represent those in reversible

birational maps on the space Fdp. This also accounts for the case with no singularities.

Now the involutions G,H will have domains a subset of N . They satisfy the involutory

property G2 = I and H2 = I where defined. The set of points where they are not defined

are called singular sets, denoted by Sing(G) and Sing(H) respectively. Then the singular

sets for L and L−1 are given by

Sing(L) = Sing(H ◦G) = Sing(G) ∪G(Sing(H)), (8.2)

Sing(L−1) = Sing(G ◦H) = Sing(H) ∪H(Sing(G)). (8.3)

Now we obtain four types of orbits depending on whether they intersect the fixed sets

and the singular sets or not, namely

1. symper symmetric periodic orbits,

2. asymper asymmetric periodic orbits,

3. asymaper asymmetric aperiodic orbits,

4. symaper symmetric aperiodic orbits.

Symmetric periodic orbits contain two points of the sets Fix(G) and Fix(H) while sym-

metric aperiodic orbits contain only one point. Let g = #Fix(G) and h = #Fix(H). This

gives us the equation

2#symper + #symaper = g + h. (8.4)

Also let γ = # Sing(G) and η = # Sing(H). Aperiodic orbits must reach one point

Sing(L) in forward time and one point in Sing(L−1) in backward time. Then we obtain

#symaper + #asymaper = γ + η. (8.5)

These two equations constrain the number of symmetric periodic, symmetric aperiodic

and asymmetric aperiodic orbits. The asymmetric periodic orbits are not constrained
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directly by g, h, γ, η, and it is possible that they do not exist at all. The combinatorial

model will be used to count the expected number of these orbits. In essence, by using

this model, we are saying that the dynamics of a reversible map is controlled mainly by

its number of fixed points and singular points and not necessarily in the particular details

of the map.

8.1 Combinatorial model

In [64], one of the the main focuses was using the combinatorial model to obtain the

expected distribution of the cycle lengths in the reduction to the finite space Fdp. It was

shown that the expected orbit distribution for the composition of two involutions was

R(x) and that the proportion of asymmetric periodic points was asymptotically zero. A

similar idea was used in chapter 4 to model birational maps. Here, we extend the model

to provide the expected number of asymmetric cycles and also allow for singularities.

Although in most cases, the proportion of points belonging to asymmetric cycles is small

and in the limit approaches zero, the expected number of asymmetric cycles is non-zero.

By counting the numbers of each type of orbit, we can find the asymptotic expected

values for their distribution, the number of each type of orbit, and the number of points

corresponding to each type of orbit. The calculations for each are similar as we count

the number of k-orbits for each type, sum over k and take the asymptotic limit. The

main ingredients for counting the statistics of the orbits is by considering the number

of ways of building each type of orbit in terms of the reduction in size of fixed sets and

singular sets and of the phase space. We also account for the reversibility property of the

symmetric orbits which have symmetry about the fixed sets of G and H and asymmetric

orbits which come in pairs.

It was shown that the combinatorial model produced the same distribution as observed in

reversible polynomial automorphisms. For birational maps with the reversibility property,

we also need to account for the involutions having singular points. Orbits reaching these

points will be not be periodic, and we expect different statistics for the periodic orbits.

In addition, these singular orbits may also consume points in the fixed sets, and hence

the number of symmetric orbits in general will be less than (g + h)/2. By incorporating

singular points into the involutions of the model, we are able to model various statistics

of the composition of random involutions with singularities. We provide evidence that

these statistics model reversible birational maps well.
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8.1.1 Composition of random involutions

Let N be a positive integer. Let 0 ≤ g, h, γ, η ≤ N such that N − (g+ γ) and N − (h+ η)

are both even. We consider ordered pairs (G,H) of random involutions on a set of N − γ

and N − η points respectively. In addition, G and H fix g, h points respectively, so G

has (N − g − γ)/2 two-cycles and similarly H has (N − h − η)/2. For each pair (G,H)

we consider the composition L = H ◦ G. This will decompose into four types of orbits

described previously. We are interested in various statistics corresponding to these orbits.

Consider the space of the composition of two involutions G,H on N points.

Lemma 8.1.1. Let E(g, h, γ, η,N) be the set of all involutions with the given parameters.

Then the number of such pairs of involutions is given by

#E(g, h, γ, η,N) =
1

2N−(g+h+γ+η)/2

(N !)2

g!h!γ!η![(N − g − γ)/2]![(N − h− γ)/2]!
. (8.6)

Proof. The number of involutions G on N points with g fixed points and γ singular points

is given by (
N

g

)(
N − g
γ

)
(N − g − γ)!

2(N−(g+γ)/2)[(N − g − γ)/2]!
(8.7)

where the first term is the number of ways of choosing g fixed points, the second term

is the number of ways of choosing γ singular points, and the third term is the number

of ways of partitioning the remaining points into two-cycles. Multiplying this with the

corresponding expression for the number of involutions H on N points with h fixed and

η singular points, we obtain the required number.

Our methodology is as follows. For each type of orbit, we count the number of possible

orbits of length k. From this, it is possible to obtain the number of points belonging

to orbits of the length k and hence also the distribution by summing and scaling appro-

priately. The inclusion of singularities yields additional points in the phase space where

we must avoid in the construction of asymmetric periodic orbits. In a sense, they play

a similar role to the fixed sets of the involutions. If an orbit reaches a singular point in

forward time, it must also reach a singular point in backward time in which case, the

singular orbit is completed. A singular orbit may also be symmetric if it intersects either

of the fixed sets. It can only hit at most one. (If an orbit hits two symmetric points, then

is necessarily a symmetric periodic orbit.) We are interested in the expected values for L

with the specified parameters. For fixed N , our phase space is finite and we can provide
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exact calculations for the expected values for the various statistics involving sums and

products. However, for more meaningful results we provide asymptotic analysis yielding

computationally efficient and relatively accurate results. Let us define

z = g + h+ γ + η (8.8)

as this term will appear frequently. We summarise the results below. In the following, by

asymptotic results (unless otherwise stated), we mean that as

N →∞, z

N
→ 0. (8.9)

Theorem 8.1.2. The asymptotic expected number of the four types of orbits is given by

〈#symper〉 =
1

2

(g + h)2

z
(8.10)

〈#symaper〉 =
(g + h)(γ + η)

z
(8.11)

〈#asymaper〉 =
(γ + η)2

z
(8.12)

〈#asymper〉 = log

(
N

z

)
. (8.13)

Corollary 8.1.3. The expected number of orbits (of all types) asymptotically is

#σ =
z

2
+

(γ + η)2

2z
+ log

(
N

z

)
. (8.14)

These expected values satisfy (8.4) and (8.5). Also if γ = η = 0, then there are no

aperiodic orbits and the number of symmetric periodic orbits is

g + h

2
(8.15)

as expected for a reversible map with no singularities.
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Theorem 8.1.4. The asymptotic distribution of the four types of orbits with scaling factor

κ = N
g+h+γ+η is given by

Rsymper(x) ∼ (g + h)2

z2
R(x) (8.16)

Rsymaper(x) ∼ 2(g + h)(γ + η)

z2
R(x) (8.17)

Rasymaper(x) ∼ (γ + η)2

z2
R(x) (8.18)

Rasymper(x) ∼ 1

z
(1− e−x). (8.19)

Corollary 8.1.5. The asymptotic proportion of space consumed by the four types of orbits

is

〈P symper〉 =
(g + h)2

z2
(8.20)

〈P symaper〉 =
2(g + h)(γ + η)

z2
(8.21)

〈P asymaper〉 =
(γ + η)2

z2
(8.22)

〈P asymper〉 =
1

z
. (8.23)

Corollary 8.1.6. The asymptotic number of points in the four types of orbits is

〈#symperpt〉 =
N(g + h)2

z2
(8.24)

〈#symaperpt〉 =
2N(g + h)(γ + η)

z2
(8.25)

〈#asymaperpt〉 =
N(γ + η)2

z2
(8.26)

〈#asymperpt〉 =
N

z
. (8.27)

The sum of the first three distributions in theorem 8.1.4 is R(x) and their coefficients

give the fraction of space occupied by orbits of their respective type. The asymmetric

periodic orbits have asymptotically zero density which can be seen by the coefficient of

(1 − e−x). To obtain the asymptotic number of points of each type given in corollary

8.1.6, we simply multiply the proportions in corollary 8.1.5 by N .
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8.1.2 Number and bounds on asymmetric periodic points and cycles

Theorem 8.1.7 states the expected number of asymmetric cycles (and points) of each

length k and by summing we also obtain the total expected number of asymmetric cycles

(and points).

Theorem 8.1.7. Let L = H ◦ G be the composition of two involutions on a space with

N points. Denote g(N), h(N) as the size of the fixed sets of G,H and γ(N), η(N) as the

size of the singular sets of G,H. The expected number of asymmetric periodic points and

asymmetric periodic cycles of length k is:

〈#asymperk〉 =
1

k

k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
(8.28)

〈#asyperptk〉 = k〈#asymperk〉 (8.29)

and it follows by summing over k we can obtain the expected number of asymmetric

periodic points and asymmetric periodic cycles,

〈#asymper〉 =
kmax∑
k=1

1

k

k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
(8.30)

〈#asymperpt〉 =
kmax∑
k=1

〈#asymperptk〉 =
kmax∑
k=1

k〈#asymperptk〉 (8.31)

where kmax = N−max(g,h)−max(γ,η)
2 is the maximum length of an asymmetric periodic

orbit.

The value for kmax is obtained by noting that asymmetric periodic cycles must come in

pairs and can’t occupy any of the points in the fixed sets or singular sets of G and H.

The result on the expected number of asymmetric orbits is the most important result in

this chapter. This was not studied in [64] and it will prove useful as a discriminator for

the number of integrals in a reversible map in chapter 9. Thus, we put most of the detail

in this proof, and provide a sketch of the proof for some of the other statistics following.

However, the method for counting any type of orbit is largely the same as in [64] with

some modifications needed to adjust for the different types of orbits. We now derive the

result for the number of asymmetric periodic orbits and points.
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Proof. (Theorem 8.29) We count all possible asymmetric k-cycles in the E(g, h, γ, η,N)

pairs of involutions, and divide by the number of pairs of involutions E(g, h, γ, η,N) to

obtain the expected value. Now, asymmetric k-cycles come in pairs, mapped to one

another under G. We relate this pair to a periodic 2k-arc connecting a point x1 ∈ Ω that

is not in Fix(G) or Fix(H) to itself:

(x1, y1, . . . , xk, yk) yj = G(xj) 6= xj , xj+1 = H(yj) 6= yj (mod k), j = 1, . . . , k ≥ 1.

(8.32)

We compute the expected number of asymmetric cycles of length k. Let us fix a specific

arc Γ of the form (8.32), corresponding to two explicit cycles of length k. Consider looking

for this pair across the ensemble E(g, h, γ, η,N), using the indicator function 1Γ which

is 1 if Γ is present in an element of the ensemble and 0 otherwise. Then the expected

number of appearances of the arc Γ is given by 〈#Γ〉 = (
∑

E 1Γ)/#E(g, h, γ, η,N) =

#E(g, h, γ, η,N − 2k)/#E(g, h, γ, η,N), where the numerator of the latter is the number

of ensemble members that contain Γ. Note there is no reduction in the cardinalities of

the involution fixed sets and their singular sets between numerator and denominator as Γ

contains no points of such sets. It remains to count the number of distinct Γ that can be

built in the ensemble. Each Γ corresponds to 2 k-cycles and there are N2k possible arcs

Γ. But we must quotient out from this the number of arcs that correspond to one and

the same pair. A cyclic permutation of the {xj , yj} pairs in Γ (k possibilities) gives the

same pair as does the switch xj ↔ yj together with reversing the order of the switched

pairs (2 possibilities). So we have:

〈#asymperk〉 = 2
N2k

2k

#E(g, h, γ, η,N − 2k)

#E(g, h, γ, η,N)
(8.33)

=
N2k

k
22k

(
(N − 2k)!

N !

)2

(
N−(g+γ)

2

)
!
(
N−(h+η)

2

)
!(

N−(g+γ)
2 − k

)
!
(
N−(h+η)

2 − k
)

!
(8.34)

=
22k

kN2k

(
N − (g + γ)

2

)k (N − (h+ η)

2

)k
(8.35)

=
1

k

k−1∏
j=0

[N − 2j − (g + γ)] [N − 2j − (h+ η)]

(N − 2j)(N − 2j − 1)
(8.36)

=
1

k

k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
. (8.37)
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This is the exact value for the expected number of asymmetric k-cycles. By summing

over k, we obtain the expected number of asymmetric cycles as required.

Unlike the number of cycles for random permutations and s-permutations in chapter 3

and 4 there is no (simple) closed form expression for this sum of products. There are

various ways we can approximate it using asymptotic values. We present a conjecture

that rewrites the number of asymmetric periodic orbits in (8.30) into an alternate form

which can be used to obtain bounds on this number, as well as exact numbers for special

parameter values. Note that N, g + γ, h+ η must be of all the same parity.

Conjecture 8.1.8. The expected number of asymmetric periodic orbits for even N, g +

γ, h+ η is

〈#asymper〉 = HN
2
− 1

2
−H z

2
− 1

2
+

min(g+γ,h+η)
2∑

k=1

1

k

k−1∏
j=0

(g + γ − 2j)(h+ η − 2j)

(N − 2j)(z − 2j − 1)
(8.38)

and for odd N, g + γ, h+ η is

〈#asymper〉 =HN+1
2
− 1

2
−H z

2
− 1

2
+

min(g+γ,h+η)−1
2∑

k=1

1

k

k−1∏
j=0

(g + γ − 2j − 1)(h+ η − 2j − 1)

(N − 2j − 1)(z − 2j − 1)
.

(8.39)

Although the above form still contains a sum of products as in (8.30), notice that asymp-

totically, this sum of products vanishes. Also notice the appearance of the harmonic

numbers again which hints at some similarity to the results in earlier chapters. The form

written above using harmonic numbers with half integers is more for convenience of nota-

tion as the difference of these two half integer valued harmonic numbers can be written in

terms of integer valued harmonic numbers. This is shown in the following lemma which

is straightforward to prove.

Lemma 8.1.9. For non-negative integers a, b, we have

Hb− 1
2
−Ha− 1

2
=

b−1∑
j=a

1

j + 1
2

= 2H2b−1 −Hb−1 − (2H2a −Ha). (8.40)
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If g+γ = 0 or h+η = 0 we can obtain a simple exact value for the number of asymmetric

periodic orbits by using the above conjecture in terms of Harmonic numbers.

Corollary 8.1.10. Suppose that g + γ = 0. Then, necessarily, h + η,N are also even.

Then the number of asymmetric periodic orbits is

〈#asymper〉 = HN
2
− 1

2
−Hh+η

2
− 1

2
=

N/2−1∑
j=(h+η)/2

1

j + 1
2

. (8.41)

In particular, if g + γ = 0 = h+ η, then the number of asymmetric periodic orbits is

〈#asymper〉 = HN
2
− 1

2
−H− 1

2
=

N/2−1∑
j=0

1

j + 1
2

. (8.42)

This result is similar to the expected number of periodic orbits in an s-permutation in

chapter 4 and the expected number of periodic orbits in a random permutation in chapter

3 respectively. We bound the sum of products in (8.30) which gives a practical method

for approximating this number especially for large parameter values. We first present two

lemmas needed to obtain bounds for the inequality.

Lemma 8.1.11. The Harmonic numbers have the following expansion using the Euler-

Maclaurin formula

Hn = log n+ ξ +
1

2n
−
∞∑
k=1

B2k

2kn2k
= log n+ ξ +

1

2n
− 1

12n2
+

1

120n4
− . . . (8.43)

where Bk are the Bernoulli numbers.

Lemma 8.1.12. (Convergence of Maclaurin series) Let Sm =
∑m

n=1
xn

n . Then for −1 <

x < 1,

lim
m→∞

Sm = − log(1− x). (8.44)

It is well known that the following identity holds for |x| < 1 using Taylor series

− log(1− x) =

∞∑
j=1

xj

j
. (8.45)

Define the remainder Rk(x) to be

Rk(x) = − log(1− x)−
k∑
j=1

xj

j
. (8.46)
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Let f(x) = − log(1− x). The Cauchy form of the remainder tells us that

Rk(x) =
f (k+1)(ξ)

k!
(x− ξ)kx (8.47)

for some real number ξ between 0 and x. Since fk(x) = (k−1)!
(1−x)k

for k ≥ 1, we get

Rk(x) =
x

1− ξ

(
x− ξ
1− ξ

)k
. (8.48)

For 0 < x < 1 and k > x/(1 − x), we find that Rk(x) < xk+1 using elementary calculus

and hence

|− log(1− x)−
k∑
j=1

xj

j
| < xk+1. (8.49)

Theorem 8.1.13. Subject to conjecture 8.1.8, we have the following inequality for all

N, g, h, γ, η

HN
2
− 1

2
−H z

2
− 1

2
< 〈#asymper〉 < log

[
N(N − 1)

N(z − 1)− (g + γ)(h+ η)

]
. (8.50)

Proof. The left hand side of the inequality follows directly from conjecture 8.1.8 since

each term in the sum of products is positive. Now we consider the right hand side. Using

equation (8.30), we have

〈#asymper〉 =
kmax∑
k=1

1

k

k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
(8.51)

≤
kmax∑
k=1

1

k

k−1∏
j=0

(
1− g + γ − 1

N − 1

)(
1− h+ η

N

)
(8.52)

=
kmax∑
k=1

[(
1− g+γ−1

N−1

)(
1− h+η

N

)]k
k

(8.53)

<
∞∑
k=1

[(
1− g+γ−1

N−1

)(
1− h+η

N

)]k
k

(8.54)

= − log

[
1−

(
1− g + γ − 1

N − 1

)(
1− h+ η

N

)]
(8.55)

= log

[
N(N − 1)

N(z − 1)− (g + γ)(h+ η)

]
(8.56)
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where we have used lemma 8.1.12 for the infinite sum.

Corollary 8.1.14. For N →∞ and z →∞, we have

log

(
N − 1

z

)
< 〈#asymper〉 < log

(
N − 1

z − 1− ψ

)
(8.57)

where ψ = (g+γ)(h+η)
N .

Proof. We first consider the left inequality. From the left inequality in theorem 8.1.13 we

have HN
2
− 1

2
−H z

2
− 1

2
< 〈#asymper〉. Now using lemma 8.1.9 and 8.43,

HN
2
− 1

2
−H z

2
− 1

2

= 2HN−1 −HN
2
−1 − (2Hz− 1

2
−H z

2
)

> 2

[
log(N − 1) + ξ +

1

2(N − 1)
− 1

12(N − 1)2

]
−
[
log

(
N

2
− 1

)
+ ξ +

1

N − 2

]
− 2

[
log

(
z − 1

2

)
+ ξ +

1

2z − 1

]
+

[
log
(z

2

)
+ ξ +

1

z
− 1

3z2

]
= 2 log(N − 1)− log(N − 2) + log 2 +

1

N − 1
− 1

N − 2
− 1

6(N − 1)2

− 2 log

(
z − 1

2

)
+ log z − log 2− 1

z − 2
+

1

z
− 1

3z2

> log(N − 1)− log z + 1 +
1

N − 1
− 1

N − 2
− 1

6(N − 1)2
− 1

z − 2
+

1

z
− 1

3z2

> log(N − 1)− log z

which is valid for N, z ≥ 4.

Now for the right inequality, we take the right inequality in theorem 8.1.13 and notice

that

log

[
N(N − 1)

N(z − 1)− (g + γ)(h+ η)

]
= log

[
N − 1

z − 1− (g + γ)(h+ η)/N

]
(8.58)

which gives the result as required.

Note that ψ < min(g + γ, h+ η) < z and asymptotically ψ = o(z).

Corollary 8.1.15. Then asymptotically we have

〈#asymper〉 → log

(
N − 1

z

)
→ log

(
N

z

)
. (8.59)
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This follows directly from corollary 8.1.14. Thus we can use this number as an estimate

for the number of asymmetric periodic cycles. We provide similar analysis for the number

of asymmetric periodic points. From the combinatorial model, the exact number is given

by the sum of products,

〈#asymperpt〉 =

kmax∑
k=1

〈#asyperptk〉 =

kmax∑
k=1

k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
.

(8.60)

We present a conjecture similar to that in conjecture 8.1.8 which rewrites this number.

Conjecture 8.1.16. The expected number of asymmetric periodic points for even N, g+

γ, h+ η is

〈#asymperpt〉 =
N − z
z + 1

+
N + 1

z + 1

min(g+γ,h+η)
2∑

k=1

k−1∏
j=0

(g + γ − 2j)(h+ η − 2j)

(N − 2j)(z − 2j − 1)
(8.61)

and for odd N, g + γ, h+ η is

〈#asyperpt〉 =
N + 1− z
z + 1

+
N + 2

z + 1

min(g+γ,h+η)−1
2∑

k=1

k−1∏
j=0

(g + γ − 2j − 1)(h+ η − 2j − 1)

(N − 2j − 1)(z − 2j − 1)
.

(8.62)

Again note that for z � N , the sum of products is small and as such the first term

gives the main contribution. Below is an alternate formulation of the conjecture for even

N, g + γ, h+ η,

kmax∑
k=1

4k
(N−g−γ

2
k

)(N−h−η
2
k

)(
N
2k

)(
2k
k

) =
N − z
z + 1

+
N + 1

z + 1

min(g+γ,h+η)/2∑
k=1

4k
((g+γ)/2

k

)((h+η)/2
k

)(z/2
k

)(N/2
k

)(
z
2k

)(
2k
k

)
(8.63)

since we have

N − z
z + 1

=

N−z
2∑

k=1

4k
((N−z)/2

k

)(N/2
k

)(
N
2k

)(
2k
k

) . (8.64)

Note that the number of terms in the summation is determined by the size of g + γ or

h+ η. Suppose that g+γ = 0, then this tells us that the expected number of asymmetric
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periodic points is just

N − h− η
h+ η + 1

or
N + 1− h− η
h+ η + 1

(8.65)

for N even or odd respectively. This is similar to the expected number of periodic points

in an s-permutation from chapter 4. We now present a theorem which bounds the number

of asymmetric periodic points.

Theorem 8.1.17. For all N, g, h, γ, η we have

N − z
z + 1

< 〈#asymperpt〉 < (N − g)(N − h)

N(z − 1)− gh
=
N − z + ψ

z − 1− ψ
(8.66)

where ψ = (g+γ)(h+η)
N .

Corollary 8.1.18. The proportion of points in asymmetric periodic cycles is

1

z + 1
− z

N(z + 1)
< 〈P asymper〉 < 1

z − 1− ψ
− z − ψ
N(z − 1− ψ)

(8.67)

and asymptotically we have

〈P asymper〉 → 1

z
. (8.68)

If there are no singularities (γ = 0 = η) this is identical to the result in [64]. In most

cases, this proportion will go to 0 but there are (many) non-trivial constructions where

this is not the case. The map in equation (8.94) below is an example of a 2D map with

g = 1 = h, γ = 0 = η. In this case, we expect half of the space to be consumed in

asymmetric periodic points, and the other half to be consumed in symmetric periodic

points. In fact, this map has only one symmetric periodic orbit.

We present a lemma which was a basis of the distributional results in [64]. We use it to

prove the distribution result for asymmetric cycles and also provide an asymptotic result

for the number of asymmetric cycles of length k.

Lemma 8.1.19. [64] Let k be a fixed integer with 0 < k ≤ N/2. Now fix m with

0 < 2m < N , and define

λ− =

(
1− g + γ

N −m

)(
1− h+ η

N −m

)
λ+ =

(
1− g + γ − 1

N

)(
1− h+ η

N

)
(8.69)
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and

λ =

(
1− g + γ

N

)(
1− h+ η

N

)
. (8.70)

Then for all k such that 1 ≤ k ≤ m we have

λk− ≤
k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
≤ λk+. (8.71)

Let m = m(N) be a positive integer sequence such that

lim
N→∞

m(N) =∞ m = o(N). (8.72)

We have λ± ≈ λ and hence asymptotically

k−1∏
j=0

(
1− g + γ − 1

N − (2j + 1)

)(
1− h+ η

N − 2j

)
→ λk. (8.73)

We now look at the distribution of the asymmetric periodic orbits given in theorem 8.1.4

which can be can be proved similarly using the combinatorial model.

Proof. Denote 〈P asymperk 〉 to be the proportion of space in asymmetric periodic orbits of

length k. Then from theorem 8.29, using lemma 8.1.19 and dividing by N to get the

proportion and summing from 1 to m,

m∑
k=1

λk− ≤
m∑
k=1

〈P asymperk 〉 ≤
m∑
k=1

λk+. (8.74)

Putting m = bxc we have the distribution function as N →∞

RasymperN (x) ≈
bxc∑
k=1

λk (8.75)

≈ 1− λbxc

z
(8.76)

≈ 1− e−bxc
N
z

z
(8.77)

as required.

We now consider the asymptotic values for the number of asymmetric cycles of length k.
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Theorem 8.1.20. The number of asymmetric cycles of length k is asymptotically

〈asymperk〉 →
λk

k
(8.78)

where λ is given in (8.70).

This follows directly from theorem 8.29 and lemma 8.1.19.

8.1.3 Number of symmetric cycles

We are mainly concerned with the asymmetric cycles since we will see they are the only

type of orbit that is useful for detecting integrals so we do not give much attention to the

other types of orbits but their statistics may be calculated similarly. We provide a sketch

for the number of symmetric periodic orbits below.

Proof. ((8.16) in theorem 8.1.2) A symmetric periodic orbit is characterised by having

two points in Fix(G) ∪ Fix(H). If it contains two points from the one fix set, then it has

even length, otherwise if it contains one point from each fix set, then it is of odd length.

We count each of these cases. For the odd case with one point each from Fix(G) and

Fix(H), we have the expected number of symmetric periodic orbits of length 2k− 1 to be

〈#symper2k−1〉 = N2k−1 #E(g − 1, h− 1, γ, η,N − 2k + 1)

#E(g, h, γ, η,N)
(8.79)

=
gh

N − 2k + 2

k−2∏
j=0

(
1− g + γ

N − 2j

)(
1− h+ η − 1

N − 2j − 1

)
(8.80)

≈ gh

N
λk−1 (8.81)

and for even length 2k with two fixed points in Fix(G) we have

〈#symper2k〉g =
N2k

2

#E(g − 2, h, γ, η,N − 2k)

#E(g, h, γ, η,N)
(8.82)

≈ g2

2N
λk−1 (8.83)
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where we divide by 2 since we count twice all orbits beginning and ending on Fix(G).

This calculation is identical for Fix(H) where we write h for g,

〈#symper2k〉h =
N2k

2

#E(g, h− 2, γ, η,N − 2k)

#E(g, h, γ, η,N)
(8.84)

≈ h2

2N
λk−1. (8.85)

Now for each of these, to obtain the total number, we sum over k and taking the asymp-

totic limit
∑∞

k=1 λ
k−1 and then adding the terms together. This yields the value

〈#symper〉 =
(g + h)2

2N(1− λ)
≈ 1

2

(g + h)2

z
. (8.86)

A similar procedure can be repeated to obtain the values for the symmetric and asym-

metric aperiodic orbits.

Remark 8.1.21. It is important to remember that the calculations above are for the

expected value of the composition of two involutions. Although, we expect most reversible

birational maps to behave similarly to this, there will be exceptions and various details

of the map may invariably give more restrictions on the map than what we expect to see

using this probabilistic model. However, we will show that in many cases, this model is

a very good guide for the orbit statistics of a reversible map.

Although the results above are for the asymptotic values, we may be interested in how

well this approximates the exact value for fixed N . For fixed parameter values, these ex-

act values are complicated expressions involving sums and products but we can compare

these to the asymptotic values. The exact value for asymmetric periodic orbits of length

k is given by (8.37) compared with the asymptotic value λk

k . Note that the product is

approximated better by λk for smaller k. We expect the number of asymmetric peri-

odic orbits to converge much faster than the asymmetric periodic points because we are

weighting the smaller k. Table 8.1 compares the exact values for the asymmetric periodic

orbits and points to the asymptotic values in theorem 8.1.7 and shows its convergence.

Remark 8.1.22. These results give us the expected number as N → ∞. The results

here for the asymmetric periodic orbits look similar to the total number of cycles for a
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N Relative error for #asymper Relative error for #asymperpt

100 1.8979e-03 2.1428e-02
400 3.2702e-04 1.1754e-02
900 1.219e-04 8.0210e-03
1600 6.1357e-05 6.0794e-03
2500 3.6256e-05 4.8927e-03
3600 2.3675e-05 4.0930e-03
4900 1.6551e-05 3.5178e-03
6400 1.2158e-05 3.0842e-03
8100 9.2730e-06 2.7457e-03
10000 7.2839e-06 2.4741e-03

Table 8.1: Comparing asymptotic values for asymmetric periodic orbits and points with the exact
expected number for varying N and g = h = γ = η =

√
N .

Table 8.2: Comparing asymptotic values for symmetric periodic orbits and points with the exact
expected number for varying N and g = h = γ = η =

√
N .

N Relative error for #symper Relative error for #symperpt

100 2.0407e-02 2.5640e-02
400 1.0101e-02 1.2658e-02
900 6.7114e-03 8.4033e-03
1600 5.0251e-03 6.2893e-03
2500 4.0161e-03 5.0251e-03
3600 3.3445e-03 4.1841e-03
4900 2.8653e-03 3.5842e-03
6400 2.5063e-03 3.1348e-03
8100 2.2272e-03 2.7855e-03
10000 2.0040e-03 2.5063e-03

random permutation for a fixed space of N points. In fact, from theorems 8.1.2 and 8.1.6,

we can write

〈#asymper〉 = log(〈#asymperpt〉). (8.87)

This says that the (expected) number of asymmetric periodic orbits is the log of the

(expected) phase space consumed by asymmetric periodic points. This is reminiscent

of the result for a random permutation. We also see the Harmonic numbers again in

conjecture 8.1.8. Comparing the number of asymmetric cycles of length k, ≈ λk/k for a

reversible map, and the number of k-cycles for a random permutation 1/k, we get

∣∣∣∣1k − λk

k

∣∣∣∣ =
1

k
(1− λk) =

g + γ + h+ η

N
+O

([
g + h+ γ + η

N

]2
)
. (8.88)

using binomial expansion for λk. Also if g(N)
N , h(N)

N , γ(N)
N , η(N)

N → 0 as N → ∞, then we

have g+γ+h+η
N → 0. In general, we will have N = Fdp and we will have g+h+γ+η

N = O(1
p)→
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0 as p→∞. This shows that the cycle structure of the asymmetric orbits of a reversible

map is similar to the cycles of a random permutation, and the smaller the cardinality of

the fixed sets and singular sets the closer it is. There does seem to be some similarity

between asymmetric periodic orbits and cycles in non-reversible maps.

8.1.4 Multiple reversing symmetries or additional symmetries

These results model reversible birational maps L with a single pair of reversing sym-

metries. It is possible that a map can be written as a composition of different pairs of

involutions. For example, suppose L can be written as two distinct pairs of involutions,

L = H ◦G, L = Ĥ ◦ Ĝ (8.89)

where H,G, Ĥ, Ĝ are involutions and H 6= Ĥ,G 6= Ĝ. In this case, we can classify each

orbit as being symmetric or asymmetric with respect to each of the pairs of reversing

symmetries. Thus, we can categorise cycles into four types. This model does not account

for this, however, if one pair of the reversing symmetries has an asymptotic greater growth

than the other, using those parameters for the combinatorial model will yield reasonable

results. This is because the other symmetry will be in some sense dominated and its effect

will not be greatly manifested.

We also note that this may be used to detect reversibility. We will see an example below

where some parameters show strong evidence of an additional reversing symmetry by

looking at the cycle statistics. In this case, it is visible because we choose a reversible

map where the fixed sets of the involutions contain only one point each. Thus, if there

is another pair of reversing symmetries with larger cardinalities they will be clearly seen.

Maps may also have a symmetry S such that

S ◦ L = L ◦ S. (8.90)

In this case, we expect to see more repeated cycles compared to the model.

8.2 Numerical tests for asymmetric orbits in reversible maps

We will compare the results in theorem 8.1.7 for various reversible maps in 2,3 and 4

dimensions. We do not go into much detail for all of the maps as they are simply intended
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to show the efficacy of the combinatorial model although we point out some features of

the Hénon map and the map 8.2.2. We focus on the asymmetric periodic orbits (and

points) since they are not constrained directly by the parameters of the map (in terms of

any bounds) and they will be useful for detecting integrals in maps in the next chapter.

For the following maps, we provide plots to compare the asymptotic expected number of

asymmetric cycles with the observed number.

We follow the notation of Roberts and Lamb in [40] in labelling involutions according

to the dimension of its fixed set in Rd. We then label reversible maps according to the

labelling of the pair of involutions involved. For example, a type 0-I mapping is a reversible

map made up of a type 0 involution and a type I involution, and a type II-II mapping is

a reversible map made up of two type II involutions. This will be convenient as the type

of involutions control the number of symmetric orbits in a mapping.

For a fixed prime p, we use the result in theorem 8.1.20 and compare the number of

asymmetric cycles of length k (for small k) with the observed values. Here, we average

over parameter values since the expected number is less than 1 for all k. We also use

theorem 8.1.2 and plot the asymptotic expected number compared with the observed

value for varying primes p. It is worth noting that the combinatorial approach doesn’t

depend on dimension, and so we can apply it to any d-dimensional reversible map. We

first look at two maps in 2D which we consider in some detail.

Example 8.2.1. We can compare this result of the expected number of asymmetric

periodic orbits and points to the reversible Hénon map in 2D over F2
p given by

L : x′ = y, y′ = −x+ y2 + ε (8.91)

with parameter ε which can be written as L = H ◦G where

H : x′ = x, y′ = −y + x2 + ε, G : x′ = y, y′ = x (8.92)

and H,G are involutions. This is a type I-I map with g = #Fix(G) = p = #Fix(H) = h.

There are no singularities so γ + η = 0. In table 8.3 we give the expected and observed

values for the number of k-orbits for p = 1009 averaged over parameters ε = 1, . . . , 1008.

This shows the effectiveness of the model. There is no rigorous reason why we should

expect a reversible map to have such similar statistics. Here we average over parameter
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values to compare to the model since each of the expected values is less than 1 (and for a

map the number of cycles must be discrete). Note that these values of relative error are

very good. It would not be unreasonable to see a relative error greater than 1, if there was

a value of k where we saw say twice or three times the expected number. One thing we

notice though, is the absence of asymmetric cycles of length 1,2,3,4,5. This is one of the

shortcomings of this model, as obviously, it cannot account for these properties specific to

the map. For a prime p, we also count the number of asymmetric periodic orbits. Figure

8.1 shows the number of asymmetric cycles for ε = 1 for primes up to 5000 compared

with the asymptotic expected value of log (p/2). It does seem to be fairly close but due

to the discreteness of the cycle count, it’s hard to see how good this model is. Thus for

each p, we average over parameter values ε = 1, . . . , p − 1 and compare with the model.

(We exclude ε = 0 since it appears that there is another reversing symmetry here.) This

is shown in figure 8.3. For the Hénon map, we have an average absolute error of 2.2675

for the number of asymmetric cycles for p < 5000. Recall that the number of symmetric

cycles is p, and so the relative error for this is small in terms of the total number of

cycles. This error is due to the observed property above that there are no cycles of length

1,2,3,4,5. When we take this into account, we get a better fit for the expected number (see

the dashed curve in figure 8.3). However, even without this, the number of asymmetric

cycles is modelled well we consider the number of symmetric cycles is p � log(p/2). In

figure 8.4 we plot the number of asymmetric points compared to the asymptotic expected

number of p/2 from the model. This is a very good fit. Note that the asymmetric cycles

of 1, 2, 3, 4, 5 contribute little to the number of asymmetric points so this is more robust

to “missing” small cycles.

Example 8.2.2. We consider a 2D reversible map L = H ◦G that when reduced to the

finite space F2
p, the involutions H,G have just one fixed point each. We show some results

on the number of cycles. We construct this map by letting G be the area-preserving

involution given by the negative identity map,

G : x′ = −x, y′ = −y, (8.93)

and letting H = PGP−1 where we choose P to be a non-linear invertible polynomial

map. With this construction, Fix(G),Fix(H) have one point each and hence there is one

symmetric cycle and the rest of the cycles will be asymmetric periodic orbits. Let us
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k Expected #k-orbits Observed #k-orbits Relative Error

1 9.9802e-01 0 1
2 4.9802e-01 0 1
3 3.3136e-01 0 1
4 2.4802e-01 0 1
5 1.9803e-01 0 1
6 1.6470e-01 1.5278e-01 7.2361e-02
7 1.4089e-01 1.6667e-01 1.8298e-01
8 1.2303e-01 1.1905e-01 3.2389e-02
9 1.0915e-01 1.0317e-01 5.4706e-02
10 9.8036e-02 9.3254e-02 4.8782e-02
11 8.8947e-02 8.5317e-02 4.0810e-02
12 8.1374e-02 7.9365e-02 2.4683e-02
13 7.4965e-02 6.3492e-02 1.5305e-01
14 6.9473e-02 5.5556e-02 2.0033e-01
15 6.4713e-02 5.7540e-02 1.1084e-01
16 6.0548e-02 5.7540e-02 4.9685e-02
17 5.6873e-02 3.7698e-02 3.3715e-01
18 5.3607e-02 5.1587e-02 3.7683e-02
19 5.0685e-02 3.7698e-02 2.5623e-01
20 4.8056e-02 5.5556e-02 1.5607e-01

Table 8.3: Comparing asymptotic values for asymmetric periodic orbits of length k given in
theorem 8.1.20, that is, (1−2/p)k/k, with the observed number for the Hénon map with p = 1009
averaged over parameters ε = 1, . . . , p− 1.
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Figure 8.1: Hénon (8.91): Plot of number of asymmetric cycles for ε = 1 compared with theorem
8.1.2.
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Figure 8.2: Hénon (8.91): Plot of number of asymmetric points for ε = 1 compared with corollary
8.1.6.
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Figure 8.3: Hénon (8.91): Plot of the number of asymmetric periodic orbits averaged over pa-
rameters ε = 1, . . . , p− 1 for primes from 11 to 4999 (blue) compared to the expected number of
log(p/2) from theorem 8.1.2.
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Figure 8.4: Hénon (8.91): Plot of the number of asymmetric periodic points averaged over param-
eters ε = 1, . . . , p − 1 for primes from 11 to 4999 compared to the expected number of p/2 from
corollary 8.1.6.

choose

P : x′ = x+ y2 + ε, y′ = (x′)2 + y + 2. (8.94)

Again, we are interested in the number of cycles of this map. We note that for this

map, there seem to be some parameter values which have multiple reversing symmetries.

We will discuss this below. Let us first fix p = 997. Figure 8.5 shows the number

of cycles for each parameter value in the x-axis. There are three spikes in this plot

corresponding to three parameter values where there are many more cycles than we expect.

For parameters ε = 2, 387, 608, we have 999, 1007, 1009 cycles respectively. This hints

that these parameters have an additional pair of reversing symmetries and associated

with them are p symmetric cycles. If we subtract p = 997 from each of these counts, we

get 2, 10, 12 respectively which is the around the number of asymmetric cycles we would

expect for a reversible map on F2
p with p symmetric orbits. Thus, even for a reversible map,

the cycle count can be indicative of parameters with additional reversing symmetries. We

now exclude these three parameter values as they are exceptional. In figure 8.6 we show

a histogram of the number of asymmetric cycles. The expected number from the model is

log(p2/2) = 13.12. We see that the distribution is approximately normal, and in particular

most values are near this value, and (excluding the three anomalies) the largest parameter

value has 30 asymmetric cycles. We can also consider the number of asymmetric cycles

of length k. We expect λk

k asymmetric cycles of length k where λ = (1 − 1/p2)2. This
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Figure 8.5: Example 8.2.2: Number of cycles for p = 997 for parameters ε = 0, . . . , p − 1. Note
the spikes at ε = 2, 387, 608.
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Figure 8.6: Example 8.2.2: Histogram of the number of asymmetric cycles for p = 997 considered
over all parameters. The vertical axes measure the frequency of occurrence.

is shown in table 8.4 where we have averaged over (non-exceptional) parameter values.

From the plot this seems to be fairly accurate except that there are no asymmetric cycles

of length 1 for p = 997 while we expect around 1. By looking at the cycle lengths of

primes, we see that for p = 1 or 3 (mod 8) there are two 1-cycles but for p = 5 or 7

(mod 8) there are no 1-cycles. However, the model expects about one 1-cycle. Taking

this into account, we see that we obtain a better fit for the number of cycles.
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k Expected #k-orbits Observed #k-orbits Relative Error

1 1.0000e+00 0 1.0000e+00
2 5.0000e-01 4.9497e-01 1.0056e-02
3 3.3333e-01 3.8229e-01 1.4689e-01
4 2.5000e-01 2.6761e-01 7.0431e-02
5 2.0000e-01 1.7706e-01 1.1468e-01
6 1.6666e-01 1.8511e-01 1.1068e-01
7 1.4286e-01 1.4688e-01 2.8183e-02
8 1.2500e-01 1.2877e-01 3.0198e-02
9 1.1111e-01 9.6579e-02 1.3077e-01
10 9.9998e-02 8.0483e-02 1.9515e-01
11 9.0907e-02 1.0262e-01 1.2880e-01
12 8.3331e-02 8.2495e-02 1.0036e-02
13 7.6921e-02 7.2435e-02 5.8325e-02
14 7.1427e-02 6.6398e-02 7.0396e-02
15 6.6665e-02 8.4507e-02 2.6764e-01
16 6.2498e-02 6.2374e-02 1.9799e-03
17 5.8822e-02 6.4386e-02 9.4605e-02
18 5.5554e-02 5.2314e-02 5.8316e-02
19 5.2630e-02 3.4205e-02 3.5008e-01
20 4.9998e-02 4.4266e-02 1.1465e-01

Table 8.4: Example 8.2.2: Comparing asymptotic values for asymmetric periodic orbits of length
k in theorem 8.1.20, that is, (1− 1/p2)k/k, with the observed number for p = 997 averaged over
parameters ε = 0, . . . , p− 1 excluding ε = 2, 387, 608.
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Figure 8.7: Example 8.2.2: The number of asymmetric cycles compared to the expected number
of log(p2/2) for the combinatorial model in theorem 8.1.2 (left) and the number of asymmetric
cycles with p = 1 or 3 (mod 8) and p = 5 or 7 (mod 8) separated and compared with the model
with adjustments (right).
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8.2.1 Reversible maps in higher dimensions with no integral

We now consider various maps in 3D with no integral and examine the number of asym-

metric periodic orbits. For each particular prime, the number will be few, but we can

consider the averaged number over the parameter values and compare it to the model.

For the following maps, we only consider the statistic of the number of asymmetric cycles.

We could perform similar analysis to the two examples above, and provide various tables

and figures for the different statistics and show the histogram over parameter values but

it is not of the utmost importance. The analysis performed above was to show that there

are certain properties of maps that will not be accounted for in the model but in most

cases have a minor effect and can be ignored for the convenience of a simple global and

general model.

Example 8.2.3. Consider the 3D map of type I-I called J I-I in example 6.17 in [32]

given by

x′ = −y, y′ = z, z′ = −x+ z2 + y2 + ε (8.95)

which has involutions

H : x′ = y, y′ = x, z′ = −z + x2 + y2 + ε, G : x′ = z, y′ = −y, z′ = x. (8.96)

This map is a permutation and has p+p
2 symmetric periodic orbits. We compare the

number of periodic orbits averaged over parameters with the model shown in figure 8.8.

Example 8.2.4. Consider the 3D map type II-II GM. Pert (example 6.13 in [32]) given

by

x′ = y, y′ = z, z′ = x+
y − z

1 + y2z2
+ ε(y3 − z3) (8.97)

which has involutions

G : x′ = z, y′ = y, z′ = x, H : x′ = y, y′ = x, z′ = z+
y − x

1 + x2y2
+ε(y3−x3). (8.98)

For p = 3 (mod 4) this map is a permutation but for p = 1 (mod 4) there are singular

orbits. We show the number of asymmetric cycles averaged over parameters in figure 8.9.

Here N = p3, g = p2 = h and η = 0 for p = 3 (mod 4), η = 2p(p−1) for p == 1 (mod 4).
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Figure 8.8: Example 8.2.3: The number of asymmetric cycles compared to the expected number
of log(p2/2) in the combinatorial model from theorem 8.1.2.
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Figure 8.9: Example 8.2.4: The number of asymmetric cycles averaged over ε = 1, . . . , p − 1
compared to the expected number of log(N/z) in the combinatorial model from theorem 8.1.2.
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Figure 8.10: Example 8.2.5: The number of asymmetric cycles with e = 1 and averaged over
k = 1, . . . p − 1 compared to the expected number of log(N/z) in the combinatorial model from
theorem 8.1.2.

Example 8.2.5. Consider the 3D map type I-II (example 6.14 in [32]) given by

x′ = (k − y)(1 + (y′ − 1)2)

y′ =
x+ e(2y − k)(z + e(y − k))

1 + (y + 1− k)2

z′ = −z + e(k − 2y),

(8.99)

which has involutions

G : x′ = x+ e(2y − k)(z + e(y − k)), y′ = k − y, z′ = z + e(2y − k),

H : x′ = y(1 + (y′ − 1)2), y′ =
x

1 + (1− y)2
, z′ = −z.

(8.100)

This map is a permutation for p = 3 (mod 4) and has singular points for p = 1 (mod 4).

The number of asymmetric cycles compared with the combinatorial model is shown in

figure 8.10 with e = 1 and averaged over parameters k = 1, . . . p − 1. For this map we

have N = p3, g = p2, h = p, γ = 0 and η = 0 for p = 3 (mod 4), η = 4p(p − 1) for p = 1

(mod 4).

Example 8.2.6. Consider the 4D type II-II map (example 6.20 in [32]) given by

w′ = w − 3y2 + 2yz, x′ = x− 6z2 + y2 − ε, y′ = y + w′, z′ = z + x′ (8.101)
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Figure 8.11: Example 8.2.6: The number of asymmetric cycles for varying primes averaged over
ε = 0, . . . , p − 1 compared to the expected number of log(N/z) in the combinatorial model from
theorem 8.1.2.

which has involutions

G : w′ = −w, x′ = −x, y′ = y − w, z′ = z − x,

H : w′ = −w + 3y2 − 2yz, x′ = −x− y2 + 6z2 + ε, y′ = y, z′ = z.

This map is a permutation of the space and the number of asymmetric cycles averaged

over parameter values is shown in figure 8.11. Here N = p4, g = p2 = h, γ = 0 = η.

8.3 Concluding Remarks

In this chapter, we presented a combinatorial model for the statistics of reversible maps.

We extended the model of Roberts and Vivaldi in [64] by accounting for singularities

and in particular, focusing on the number of asymmetric cycles and points which was

not considered previously. Although, in general, the number of asymmetric cycles is very

small compared to the symmetric cycles and their proportion vanish, we are able to obtain

meaningful results. Numerical tests to check the model are simple to perform as obtaining

the number of asymmetric cycles requires an orbit decomposition of the map in a finite

space, while calculating the expected number from the model requires the cardinality of

the fixed points and singular points. We provided numerical tests to show the model

seems to be a good estimator for the number of asymmetric cycles for various types of

maps in different dimensions, with and without singularities. It is with this confidence
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that we will present a test for integrals based on this in the following chapter. We see that

after filtering out symmetric cycles (and singular orbits), the statistics of the asymmetric

cycles are indicative of the number of algebraic integrals present in a map.
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Chapter 9

Detecting integrals in d-dimensional reversible maps

In this final chapter, we use the number of asymmetric periodic orbits as a discriminator

for the number of integrals by providing a heuristic for this number based on the ideas

and results in chapter 3, 4, 6 and 8. The basis of this heuristic is that the combinatorial

models are good in approximating the statistics for (reversible) maps. We will also be

able to model maps with integrals by modifying the parameters in these models and

considering multiple copies of a reduced system. This proves to be effective despite

simplifying assumptions for which there seems to be no easy way around. (This has

been a common technique throughout the literature.) However, many times we see maps

behaving like random maps with similar constraints (e.g. see [8, 47, 57]). This culminates

in a practical algorithm for detecting the number of integrals in reversible maps of any

dimension. We apply this to a menagerie of reversible maps from the literature and show

its efficacy.

9.1 Modelling reversible maps with integrals

In the previous chapter, we considered a combinatorial model for various statistics of

reversible maps. This model assumed that the map in some sense is constrained only

by its reversibility, that is, it has no other (known) algebraic properties like an integral

or other (reversing) symmetries. We want to see if we can use this idea to also model

the statistics for reversible maps with integrals. Suppose we are given a d-dimensional

reversible (algebraic) map L = H ◦G with j > 0 integrals that are rational (the case with

j = 0 was considered in chapter 8). We reduce to the finite space Fdp and consider the

number of orbits we see. Let N, g, h, γ, η be the value of size of the space, fixed set of G,

fixed set of H, singular set of G, singular set of H respectively. How can we account for the
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fact that now there are j integrals? There will now be pj level sets defined by the j-tuple

(l1, l2, . . . , lj) where li is the value of the ith level set where each li ∈ Fp. For convenience,

we can define the level set value Λ =
∑j

i=1 lip
i−1 where each li ∈ {0, . . . , p− 1} and hence

0 ≤ Λ ≤ pj−1, and talk about the level set with value Λ to mean a particular j-tuple. For

each level set we will have the four types of orbits described by being either symmetric

or asymmetric and either periodic or aperiodic. In terms of the combinatorial model, we

can think of a reversible map with j integrals as pj reversible systems of reduced size for

its phase space, fixed sets and singular sets.

Let Ni, gi, hi, γi, ηi be the values of the reduced parameters for the the level set with Λ = i

corresponding to number of points on the level set, fixed set of G, fixed set of H, singular

set of G, singular set of H respectively. Clearly, we must have

pj−1∑
i=0

Qi = Q, (9.1)

forQ = N, g, h, γ, η. Similarly, we can also let #symperi,#asymperi,#asymaperi,#symaperi

be the number of each type of orbit on the ith level set where we must have

2#symperi + #symaperi = gi + hi (9.2)

and

#symaperi + #asymaperi = γi + ηi. (9.3)

However, when we consider the total number over all level sets, the #symper, #asymaper,

#symaper are not affected by the presence of integrals. For example, if γ + η = 0 then

the symmetric cycles are given by the sum of the number of symmetric cycles on each

level set, that is, ∑
i

gi + hi
2

=
g + h

2
(9.4)

independent of the number of integrals j. In general, this is also the case as the parameters

g, h, γ, η constrain the number of orbits of each type whether there are integrals or not.

So, these three types of orbits cannot be used to differentiate the presence of integrals.

This leaves us with asymmetric cycles. These are not constrained by these parameters

(as we also noted in the case with no integrals). We examine the effect of integrals of this

number.
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9.2 Asymmetric cycles for reversible maps with integrals

Recall from the previous chapter for a reversible map with no integrals we have in theorem

8.1.2 and 8.1.20 the expected number of asymmetric cycles of length k and asymmetric

cycles asymptotically as

〈#asymperk〉 =
λk

k
(9.5)

〈#asymper〉 = log

(
N

z

)
. (9.6)

Now suppose that a reversible mapping L̂ defined on a space of N points possesses j

integrals of motion. Then each point and orbit will lie on a j-tuple (l1, . . . , lj) of the level

sets. The points on the fixed sets and singular sets must also be distributed among the

level sets. To proceed, we present a lemma which will be the basis of our model for the

number of asymmetric cycles and points.

Assumption 9.2.1. Suppose that the number of fixed points and singular points dis-

tributed on each level set is proportional to the number of points on the level set. So for

each i we have

Ni

gi
=
N

g
,

Ni

hi
=
N

h
,

Ni

γi
=
N

γ
,

Ni

ηi
=
N

η
(9.7)

and hence
Ni

zi
=
N

z
. (9.8)

Then on each level set indexed by i the expected number of asymmetric cycles and points

is

〈#asymper〉i = log

(
Ni

zi

)
= log

(
N

z

)
(9.9)

〈#asymperpt〉i =
Ni

zi
=
N

z
(9.10)

which is independent of the level set i.

The big caveat here is if the assumption is ever satisfied or if not, if it is a reasonable

one. It is generally not satisfied except in artificially constructed cases. Essentially, it

is saying that the ratio of the various special points on the level sets is the same as the

global ratio. Even if this is not true, it is not unreasonable that we expect this ratio to be
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relatively constant. For example, the Hasse-Weil bound in higher dimensions give some

uniformity of the size of the levels sets. If so, this result says that the expected number

of asymmetric cycles and points on a level set is independent on the level set i, and is

equal to the expected number of asymmetric cycles and points of a map with the same

parameters but no integrals where the expected number is log(N/z) as in theorem (8.1.2).

This differs from the other three types of orbits for which we would expect each level set

to only have a small proportion when compared the case with no integrals.

Corollary 9.2.2. It follows directly from theorem 9.2.1 that the expected number of asym-

metric cycles and asymmetric periodic points on L̂ is given by

〈#asymper〉 = pj〈#asymper〉i = pj〈#asymper〉 = pj log

(
N

z

)
(9.11)

〈#asymperpt〉 = pj〈#asymperpt〉i = pj〈#asymperpt〉 = pj
N

z
. (9.12)

Similarly, we can consider asymmetric periodic orbits and points of length k and by the

assumptions in (9.7) we get that λi = λ.

Corollary 9.2.3. The expected number of asymmetric orbits and points of length k is

given by

〈#asyperorbk〉 = pj
λk

k
(9.13)

〈#asyperptk〉 = pjλk. (9.14)

Note that the above results also apply for reversible maps with no integrals (j = 0) as

they reduce exactly to the results in chapter 5. Although, reversible maps with an integral

will not satisfy the conditions in assumption 9.2.1, corollary 9.2.2 and 9.2.3 are still good

heuristic models in general for the asymmetric cycle and point statistics. This is because

the conditions are still approximately equal. In fact, using the combinatorial model for
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each level set we have

pj∑
i=1

log

(
Ni

zi

)
< pj log

 1

pj

pj∑
i=1

Ni

zi

 (9.15)

≈ pj log

(
N

z

)
(9.16)

where the first line is due to the AM-GM inequality. The second line relies upon the

Ni and zi being relatively equidistributed among the level sets. The inequality is not

important to us but these equations give some justification for being able to use (9.11).

Similar arguments can be used for the other equations.

9.3 Detecting integrals in reversible maps

We now present the main result of this chapter which use the results in corollary 9.2.2

and 9.2.3 to form a test for the number of integrals in a reversible map. Supposing that

this accurately models the statistics of asymmetric orbits and points in a reversible map

with j integrals, by replacing the expected number in this model by the observed number

in a reversible map and making j the subject in the above equations, we obtain estimates

for the number of integrals j. That is, using the number of asymmetric cycles, we have

from (9.11) and (9.12),

j∗ =
log(#asymper)− log log(N/z)

log p
(9.17)

and using the asymmetric points, we have

j∗ =
log(#asyperpt)− log(N/z)

log p
. (9.18)

Using asymmetric cycles is more robust to (anomalous) long asymmetric cycles but may

be sensitive to (anomalous) repeated small asymmetric cycles (of a specific number).

Conversely, using the asymmetric periodic points is robust to having (anomalous) repeated

small asymmetric cycles but sensitive to (anomalous) long asymmetric cycles. These are

practical and useful results as finding the number of asymmetric cycles and points is easy

for appropriately chosen prime p. This is the advantage of working in the finite field as

we can find these numbers by performing an orbit decomposition of the space in finite

time. Note that we also have control of prime p chosen. In fact, for different primes, we
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will obtain different estimates j∗ (but of course it should be near-integer in value). Thus,

by considering a reversible map for various primes p, we can check the consistency and

accuracy of the obtained values

Additionally, for a fixed prime p, we can obtain a test for the number of asymmetric orbits

of length k using corollary 9.2.3 as

j∗k =
log(k#asymper)− k log λ

log p
. (9.19)

This should be more accurate for smaller k as the data will be less sparse. This will

also show how accurate the model is on a smaller level. We would expect that using

the number of all asymmetric cycles or points would be more accurate as it is in a sense

averaging over all k. We will not use this as this is zooming in and gives multiple values

for a chosen prime but just mention it in passing.

Our result can be useful because integral detection is an important area of research [27].

This result can be used to estimate the numbers of integrals in a reversible map. It will

be most effective for maps that do not have any other constraining properties (which may

be hard to know beforehand). It is simple in the sense that no difficult calculations need

to be carried out. We note that this test is quite robust in that the number of asymmetric

cycles do not need to be that close to the expected number to have good results. This is

because the model has a factor of pj which means that for each extra integral, we expect

a factor of p more cycles which is significant. Thus for reasonably sized prime p, if the

map gives us two or three times more asymmetric cycles than expected the value of j∗

would still be close to the true value. Explicitly, for a d dimensional rational map, we do

the following:

1. Pick a prime p.

2. Calculate the parameters g, h, γ, η.

3. Perform a full orbit decomposition of the map in Fdp, counting the number of asym-

metric cycles.

4. Compute j∗ from (9.17) [or (9.18)].

5. (Optional) Repeat steps 1-4 for a different prime p.
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9.3.1 Similarity to the model in section 6.6

This model for the number of asymmetric cycles assumes that level sets “look similar”,

and in essence, the presence of integrals gives us a stack of copies of a reversible map

with reduced parameters. However, in chapter 6 we saw that the QRT map (a reversible

map with an integral) had additional structure. All cycles on level sets had the same

cycle length and this value varied for different level sets. We presented a basic model

which gave us an estimate of the number of asymmetric cycles in (6.95). By making j

the subject we obtained a test for integrals in (6.96). Comparing the two, since

log

(
N

z

)
≤ log

(
N

g/2 + h/2 + γ + η

)
≤ log

(
N

z

)
+ log 2. (9.20)

Then by comparing (9.17) and (6.96), for large p, we have that j̄∗ → j∗. This gives

us support to combine these two different models into one. We do this because given a

reversible map (with integrals), we in general do not know a priori the behaviour of the

cycles on level sets. This allows us to perform this calculation without discrimination

or need of selecting a particular model. Thus for all reversible maps we use the 5 step

procedure described above.

9.4 Numerical tests for reversible maps

We perform the above steps for a variety of reversible maps where the number of integrals

is known. We show that the model for the asymmetric cycles is good and hence the test

for the number of integrals is good. We also consider the distribution of the symmetric

and singular points over the level sets for some maps to show their distribution has a nice

“bell shape” which justifies the approximation in (9.16).

9.4.1 Hénon map 2D

The first map we consider is the Hénon map considered in example (8.2.1). This map has

no integrals and figures 8.1,8.2 show the number of asymmetric cycles and asymmetric

points respectively. We can also use these numbers to obtain a value for the estimate of

the number of integrals j∗ shown in figure 9.1. The scarcity and discrete nature of the

asymmetric cycles (and points) is reflected in the plot. Here we see that the asymmetric

cycles give a more consistent estimate. This is generally true as this statistic is not affected

by the length of the cycles as the asymmetric points are, which seems to have a higher
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Figure 9.1: Hénon map (8.91): Plot of the j∗ in (9.17) and (9.18) for primes from 11 to 4999

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

p

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

j *  (asym per points)

j *  (asym per orbs)

Figure 9.2: Hénon map (8.91): Plot of the j∗ in (9.17) and (9.18) where we averaged the number
of asymmetric cycles and points over parameter values ε = 1, . . . , p − 1 in (8.91) for primes from
53 to 4999.

variance. Additionally, the primes with 0 asymmetric cycles and points are not shown as

they are assumed to be non-zero for the formulas and j∗ is undefined for them.

It is worth noting that if we average over parameter values, we will obtain smooth plots as

the number of asymmetric cycles (and points) will no longer be discrete. (This is similar

to what we did in the previous chapter in figure 8.4 and 8.3.) This is shown in figure 9.2

where we see the values indicating 0 integrals.
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9.4.2 Hénon map 3D

We first consider here a simple example to illustrate the idea of this model for estimating

the number of integrals for a reversible map. We construct a reversible map with 1 integral

where the conditions of (9.7) hold, that is, we have Ni
zi

= N
z for every level set i. Thus,

we expect the model to be good. This reversible map is derived from the Hénon map in

(8.91) but we add a third coordinate to get the following map with an integral,

L : x′ = y, y′ = −x+ y2 + z, z′ = z. (9.21)

We have replaced the parameter ε with z and created a “trivial” integral I(x, y, z) = z.

Each level set of this map is the 2D Hénon map with parameter determined by the value

of z. In this case, we will have p level sets each with p2 points. This map is just p copies

of the 2D Hénon map considered over each of the p parameter values. This has reversing

symmetries H,G such that L = H ◦G,

H : x′ = x, y′ = −y + x2 + z, z′ = z, G : x′ = y, y′ = x, z′ = z. (9.22)

Thus, we have N = p3, g = p2, h = p2 and γ = 0 = η since there are no singularities.

Thus, z = g + h+ γ + η = 2p2 and we expect the number of asymmetric cycles to be

p log

(
N

z

)
= p log

(p
2

)
. (9.23)

Similarly, we expect p2

2 asymmetric periodic points. These values are shown in figure 9.3

where for the asymmetric cycles, we have divided by p to see the behaviour better. We can

also think of dividing by p as obtaining the average number of asymmetric cycles on level

sets. The appearance of two “lines” in the figures is that for the level set I(x, y, 0) = 0

some primes p have many more asymmetric cycles than expected. This may be the sign

of some additional structure. In figure 9.4 we plot the value of j∗ from the tests for

integrals in (9.17) and (9.18) showing that the asymmetric statistics point to 1 integral.

This example shows the idea in general that of reversible maps with j integrals being p

copies of reduced “reversible systems”.
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(a) Hénon 3D: The number of asymmetric
cycles divided by p compared with the value
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(b) Hénon 3D: The number of asymmet-
ric periodic points compared with the value
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Figure 9.4: Hénon 3D: Plot of j∗ in (9.17) and (9.18) for primes from 53 to 4999.
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9.4.3 GM 3D

We now consider a 3D map called GM (example 6.9 in [32]) which is type II-II with one

integral. It is given by

x′ = y, y′ = z, z′ = x+
y − z

1 + y2z2
. (9.24)

Note that this map is the map in example 8.2.4 when ε = 0. This map has an integral of

motion

I(x, y, z) = x2 + y2 + z2 + xy + yz − xz + x2y2z2. (9.25)

and is the composition of involutions H,G with

H : x′ = y, y′ = x, z′ = z +
y − x

1 + x2y2
, G : x′ = z, y′ = y, z′ = x. (9.26)

Here we have N = p3, g = p2 = h. For p = 3 (mod 4) there are no singularities and so

γ = 0 = η but for p = 1 (mod 4) there are singularities and we have γ = 0, η = 2p(p− 1).

There are p level sets corresponding to the p values of the integral I. In contrast to the

3D Hénon map previously, the values of the reduced parameter values Ni, gi, hi, γi, ηi are

not all the same on level sets. We will investigate how the dynamics of this map breaks

down into its level sets in terms of these parameters and the numbers of cycles.

We will investigate the distribution of these values for p = 601. For this prime there are

singularities. We will first examine a particular level set and zoom out gradually to look at

the distribution of values on the level sets, and then finally the total number of asymmetric

cycles and points of the whole map. Firstly, consider the level set corresponding to

I(x, y, z) = 227. The number of points on this level set is the number of solutions

(x, y, z) ∈ F3
p to the equation I(x, y, z) = 227 which is 363204 points. We can also find

the number of these points in the fixed sets of G,H and the singular sets of G,H which

we denote by g227, h227, γ227, η227 respectively. For p = 601 we find that

N227 = 363204, g227 = 594, h227 = 560, η227 = 1196, γ227 = 0. (9.27)

We can use these parameter values for the combinatorial model in theorem 8.1.2. This

will give us expected values for the number of orbits of each type. This is shown in table

9.1 for the level set I(x, y, z) = 227. This is typical of what we see for any level set for
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orbit model actual

asymmetric cycles 5.04 2
symmetric cycles 282.34 268

symmetric aperiodic 608.69 618
asymmetric aperiodic 587.31 578

Table 9.1: GM3D (9.24): The expected number from the combinatorial model and the actual
number for p = 601 and the level set I(x, y, z) = 227.

0 1 2 3 4 5 6 7

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 

D
p
(x)

R(x)

Figure 9.5: GM3D (9.24): Distribution of the lengths of symmetric cycles for p = 601 on the level
set I(x, y, z) = 227. Here there are 268 symmetric cycles with mean length 322.67.

this map. We also consider the distribution of the different types of orbits compared

to theorem 8.1.4. This is shown in figure 9.5 for symmetric cycles and figure 9.6 for

symmetric and asymmetric singular orbits (left and right respectively).

Now we zoom out one level and look at the distribution of these statistics over level sets.

Each level set will have different numbers for the parameters, and for the numbers of

each type of orbit. For p = 601, we find that the number of points on the 601 level

sets lie between 358044 and 367398. The distribution is shown in figure 9.7. Note that

358044/6012 = 0.9913 and 367398/6012 = 1.0172 so the number of points do not differ

much from the average value of 6012. We provide plots for the prime p = 601 to show

the break down of the level sets in terms of number of points in Fix(G) ∪ Fix(H) and

Sing(G) ∪ Sing(H), denoted on each level set by gi + hi and γi + ηi respectively in figure

9.8. We also plot a histogram of the ratio Ni/zi which represents the expected number of

asymmetric points on the level set with value i and also the corresponding plot with log

applied to the x-axis to represent the expected number of asymmetric periodic orbits on

the level set with value i.
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(a) GM3D (9.24): Distribution of the
lengths of symmetric singular orbits for p =
601 on the level set I(x, y, z) = 227. Here
there are 618 symmetric singular orbits with
mean length 299.83.
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(b) GM3D (9.24): Distribution of the
lengths of asymmetric singular orbits for
p = 601 on the level set I(x, y, z) = 227.
Here there are 578 asymmetric singular or-
bits with mean length 157.56.

Figure 9.6

3.58 3.6 3.62 3.64 3.66 3.68

N
i

10
5

1

2

3

4

5

6

7

8

#
 o

f 
le

v
e
l 
s
e
ts

Figure 9.7: GM3D (9.24): The distribution of the number of points on level sets for p = 601.
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(a) GM3D (9.24): We consider the distribu-
tion of the symmetric points over the level
sets (that is, those fixed under the involu-
tions G or H). This is for p = 601 where
there are 2p2 symmetric points and p level
sets for the full space. All the level sets have
between 1065 and 1325 symmetric points ex-
cept for one with 1646 (corresponding to
I(x, y, z) = 0).
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(b) GM3D (9.24): We consider the distribu-
tion of the singular points over the level sets.
This is for p = 601 where there are 2p(p−1)
singular points and p level sets for the full
space.
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(a) GM3D (9.24): This shows the ratio
bNi/zic where the parameters are the re-
duced values on the level sets. We have
p = 601. Here we have N/z = 150.71 for
the full space. We took the floor function
for purposes of the histogram.
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(b) GM3D (9.24): The same plot as left but
log is applied to the x-axis to show the his-
togram of the expected number of asymmet-
ric cycles on level sets using the reduced pa-
rameter values.

Figure 9.9
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(a) GM3D (9.24): Histogram of the num-
ber of asymmetric cycles over the level sets
for p = 601. Here it ranges from 0 to 22.
The mean number of asymmetric cycles on a
level set is 5.25. Note that log(N/z) = 5.01.
Here we have 3156 asymmetric cycles and
p log(N/z) = 3013.
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(b) GM3D (9.24): Histogram of number of
symmetric periodic orbits per level set for
p = 601. The expected number averaged
over the number of level sets is given by
299.26.
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Figure 9.11: GM3D (9.24): Cumulative distribution of symmetric periodic orbit lengths for
p = 601 scaled by the number of symmetric orbits compared with R(x). They are virtually
indistinguishable.

In figure 9.10 we plot the distribution of the number of asymmetric periodic orbits and

symmetric periodic orbits on each level set using a histogram. We also see that the

distribution of the three types of orbit lengths follows R(x) shown in figures 9.11 and

9.12. This shows that the model works well for predicting many of the orbit statistics

and supports the idea that we can view this map as p copies of a smaller system.
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(a) GM3D (9.24): Cumulative distribution
of symmetric aperiodic orbit lengths for p =
601 scaled by the number of symmetric sin-
gular orbits compared with R(x). They are
virtually indistinguishable.
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(b) GM3D (9.24): Cumulative distribution
of asymmetric aperiodic orbit lengths for
p = 601 scaled by the number of asymmetric
singular orbits with R(x). They are virtu-
ally indistinguishable.

Figure 9.12

These results for the level sets show that the various parameters are fairly evenly dis-

tributed, and so the idea of having p copies of reversible systems with phase spaces and

fixed sets, and the use of the average values is justified. Finally, for varying primes p, we

consider the number of asymmetric cycles averaged over the level sets compared with the

expected value of log(N/z) in figure 9.13a. Here we see the difference in the values for

those primes with and without singularities. The integral test using asymmetric cycles

and asymmetric points is also shown for primes with no singularities or singularities in

figure 9.13b. The values being close to 1 shows that the number of asymmetric cycles are

a good indicator of the number of integrals by using our model. We show that both the

asymmetric periodic points and cycles give good results. Notice that we did not require

any knowledge of the integral to do these calculations. It also shows that this test works

well irrespective of whether there are singularities or no singularities.
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(a) GM3D (9.24): Plot of the number of
asymmetric periodic orbits divided by p for
primes 11 to 997.
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(b) GM3D (9.24): Plot of j∗ in equations
(9.17) and (9.18) for primes from 11 to 997.

Figure 9.13

9.4.4 eq51 (j=1 or 2)

This is a 4D map (equation 5.1 in [12]) given by

L : w′ = x,

x′ = y,

y′ = z,

z′ =
1

w

[xz(y + a5)a2h2 + (y + a6)h6]

[xyz(y + a1)h1 + y(y + a2)h2]

(9.28)

which has involutions

G : w′ = z,

x′ = y,

y′ = x,

z′ = w

H : w′ = y

x′ = x

y′ = w

z′ =
1

z

[wy(x+ a5)a2h2 + (x+ a6)h6]

[wxy(x+ a1)h1 + x(x+ a2)h2]

(9.29)

where H is defined for wxy(x+a1)h1+x(x+a2)h2 6= 0 and wy(x+a5)a2h2+(x+a6)h6 6= 0.

For general a1, a2, a5 and a6 with a2a5 = a1a6 this mapping has one integral. However,

for the following two possibilities

h2 = 0, h1 6= 0, h6 6= 0, (9.30)
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(a) eq51j1 9.28: Plot of the average number
of asymmetric periodic orbits on each level
set for eq51 with j = 1.
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(b) eq51j1 9.28: Plot of the j∗ in (9.17) and
(9.18) for eq51 with j = 1.

Figure 9.14

and

h1 = h6 = 0, h2 6= 0 (9.31)

the mapping has two independent integrals. Over the finite space F4
p the values of the

parameter values for Sing(G),Sing(H),Fix(G),Fix(H) differ depending on the parameter

values but in general, N = p4, g = p2, h = O(p2), γ = 0, η = O(p3). For numerical tests in

figure 9.14, we chose a1 = 4, a2 = 6, a5 = 2, a6 = 3, h1 = α, h2 = 5, h6 = 2 so there is only

one integral. In figure 9.14a the values for p = 37, 73 are outside the limits of the plot

with values 84.05 and 24.96 respectively. For p = 37 there are 3110 asymmetric cycles

where 3076 are of length 12. For p = 73, there are 1822 asymmetric cycles where 1656 are

of length 3. This explains the unusual values for these two primes. This model cannot

account for specific lengths where there are an exceptional number of cycles as this is

not the expected behaviour. This suggests that the map for those specific combination

of primes and parameters has a property that allows it to have many copies of a cycle

length. However, in figure 9.14b for most primes, we see that the model suggests that

there is 1 integral.

We also do similar figures for the map with two integrals. We chose parameters a1 =

7, a2 = 3, a5 = 4, a6 = 2, h1 = 1, h2 = 0, h6 = 2. The numerical tests are shown in figure

9.15. For this case we see many more asymmetric cycles. We will also provide numerical

support that the other types of orbits cannot be used to differentiate the number of inte-

grals. Table 9.2 compares the numbers of the different types of orbits for various primes
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prime #asym cyc (j=1) #asym cyc (j=2) #sym cyc (j=1) #sym cyc (j=2)

31 40 894 24 57
61 110 4746 47 145
101 263 20222 73 287
131 396 40830 94 380
163 491 66684 129 352
181 616 95346 152 518
211 703 143462 155 545

prime #asym sing (j=1) #asym sing (j=2) #sym sing (j=1) #sym sing (j=2)

31 109940 164934 1874 1687
61 864606 1307210 7137 7031
101 4000850 6029974 20055 20427
131 8788780 13231380 34193 35641
163 17059378 25592492 52847 48545
181 23329534 35087716 64891 67005
211 37133933 55701070 87941 86271

Table 9.2: eq51 9.28: Comparison of the number of asymmetric cycles,symmetric cycles, asymmet-
ric singular orbits and symmetric singular orbits for the map eq51 for parameters corresponding
to j = 1 and j = 2 integrals.

for parameters corresponding to j = 1 or j = 2 integrals. The symmetric cycles, symmet-

ric singular orbits and asymmetric singular orbits differ only by a constant ratio which

cannot help us to detect the number of integrals. This is actually just due to differences

in the parameters g, h, γ, η for the different choices of ai, hi for the map. However, for the

asymmetric cycles we see significant differences in number which differ by a ratio of about

p (for j = 1 to j = 2) - see figure 9.14b versus figure 9.15b. This illustrates clearly the

idea of the model we presented at the beginning of this chapter that additional integrals

increase the number of asymmetric cycles by a factor of p. Thus, for example, suppose

we did not know the conditions for two integrals given in (9.30) and (9.31), by looking at

the number of asymmetric cycles it is possible to find out these conditions because they

would give us many more asymmetric cycles than expected (for the same map with one

integral).

9.4.5 QRT Map

We refer again to the QRT map in (6.58). It is easy to show that g = p = h for p ≡ 3

(mod 4) and g = p − 2 = h for p = 1 (mod 4). Also for p = 3 (mod 4) there are no

singularities but for p = 1 (mod 4) we have γ = 2p = η. As mentioned in subsection

9.3.1, although we had the model given in (6.95), we can simply use (9.17) and (9.18)

to estimate the number of integrals, and corollary 9.2.3 for the number of asymmetric
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(a) eq51j2 9.28: Plot of the average number
of asymmetric periodic orbits on each level
set for eq51 for j = 2.
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(b) eq51j2 9.28: Plot of j∗ in (9.17) and
(9.18) for eq51 with j = 2.
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Figure 9.16: QRT (6.58): The number of asymmetric periodic orbits divided by p compared to
the model in corollary 9.2.2.

points and cycles. Figure 9.16 shows the number of asymmetric cycles for the QRT

map compared with the expected numbers using corollary 9.2.2. We separate the primes

into those with and without singular points and provide the two different lines for each

corresponding case. In figure 9.17 we provide the estimate for the number of integrals j∗

using asymmetric cycles (left) and asymmetric periodic points (right) for primes from 11

to 4999. This clearly shows that we see approximately the number of asymmetric cycles

and points we expect for a map with the parameters N, g, h, γ, η of the QRT map.

161



0 1000 2000 3000 4000 5000

p

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

j *  (asym per orbs) p=3 (4)

j *  (asym per orbs) p=1 (4)

(a) QRT (6.58): The number of asymmetric
cycles divided by p to estimate the number
of integrals j as in (9.17).
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(b) QRT (6.58): Using the number of asym-
metric periodic points to estimate the num-
ber of integrals j as in (9.18).

Figure 9.17

9.4.6 L3 Map

The map L3 [60] is a 4D map with j = 2 integrals and type II-II reversibility. It is given

by

L3 : w′ = y

x′ = z

y′ = x+K[1/(1 + y)− 1/(1 + z)]

z′ = −w − x+K[1/(1 + z)− 1/(1− y − z)]

(9.32)

with reversing symmetry given by

G : w′ = z

x′ = y

y′ = x

z′ = w

H : w′ = x

x′ = w

y′ = y +K[1/(1 + x)− 1/(1 + w)]

z′ = −z − y +K[1/(1 + w)− 1/(1− x− w)].

(9.33)

Here we have N = p4, g = p2, h = p2, γ = 0, η = 3p2(p−1). Figure 9.18 shows the average

number of asymmetric cycles for each level set, and figure 9.19 shows the values of j∗.
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Figure 9.18: L3 (9.32): The number of asymmetric periodic orbits divided by p2 compared to the
model.
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Figure 9.19: L3 (9.32): Plot of j∗ in (9.17) and (9.18) for primes from 11 to 293.

9.4.7 CS311 Map

The map CS311 (equation 3.11 in [12]) is a 4D map with j = 3 integrals and type II-II

reversibility. It is given by

w′ = x

x′ = y

y′ = z

z′ = w
(κ1y + λ1)xz + (κx+ λ1z)(y + 1) + (λ1y + κ1)

(κ1y + λ1)xz + (κ1z + λ1x)(y + 1) + (λ1y + κ1)
.

(9.34)

Here we have g = p2, h = p2, γ = 0, η = p2(p+ 1) + 1. We look at the square of the map

CS311. This is because we noticed that half of the level sets had no points and noticed
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Figure 9.20: CS311 (9.34): The number of asymmetric periodic orbits divided by p compared to
the model.
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Figure 9.21: CS311 (9.34): Plot of j∗ from (9.17) and (9.18) for primes from 11 to 241.

that there were many more even periodic orbits compared to odd periodic orbits. Looking

at the square of CS311 gives us very similar numbers of asymmetric periodic orbits as

what we expect for each k.
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9.5 Concluding remarks

In this chapter, we provided a test for the number of integrals j for birational reversible

maps. From the numerical tests, we see that this test gives agreeable answers to the true

answer. Note that this test is done without any prior knowledge of the integrals of the

map. We considered some reversible birational maps (with integrals) in detail to show

the basis of the model. In many cases, the breakdown of map into the level sets defined

by the integral gives us pj copies of a reversible map on a reduced space. Thus, by using

the expected numbers of orbit statistics for reversible maps obtained in chapter 8 we

could also estimate (relevant) orbit statistics for reversible maps with integrals. This was

predicated on the idea that the various parameters would be relatively equidistributed on

the level sets. In general, this is what happens, and we showed for the example of the GM

map, the distributions of the various statistics which justifies the idea of the model. We

turned the expected statistics for asymmetric cycles and asymmetric periodic points into

an estimate for the number of integrals j∗ in (9.17), (9.18) and showed that due to the

similarity to the model in chapter 6, we could use all the estimates and expected values

from this chapter for any reversible birational map. Figure 9.22 is the culmination of

this chapter comparing the result of the test for various birational reversible maps. This

figure shows the test works extremely well in estimating the number of integrals. For each

map, there is a clear trend of the values of j∗ toward the integer value corresponding to

its number of integrals. We also see that this test is independent of the prime p chosen.

This indicates the orbit statistics are on the whole largely dependent on the number of

points in the space, fixed points and singular points, rather than the specific details of

the map or the prime for which the map is being reduced on. In practice, one could pick

a handful of primes for which to calculate j∗ and if they all give a value close to the same

integer, that would give a strong indication of the number of integrals.

This method is not foolproof though, as for example, if the map has many other symme-

tries or some structure giving it many cycles of a specific length, this test may not work

well. This was observed for the map eq51 (9.28) with j = 1 for p = 37, 73 (and specific

parameters) we obtained many more asymmetric cycles than expected. This could be a

sign of other symmetries or constraining behaviour. In these exceptional cases it will be

difficult to have a general test using orbit statistics will be able to determine the number

of integrals accurately. There may be ways by digging deeper into the specific asymmetric
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cycle lengths to filter out specific unusual behaviour or to give these less weighting in the

overall value of j∗. Our test is based on the observation that reversible maps are con-

strained mainly by the reversing symmetries and integrals and not the particular details

of the map, and that maps with the same constraints have similar statistics. Thus, we

also expect the statistics to be close to the expected value of these classes of maps. This

model requires that the main structures in the map are its reversibility and integrals.
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Chapter 10

Conclusion

In this thesis, we studied the orbit statistics of dynamical systems over finite fields. We

were particularly interested in reversible maps and the property of possessing integrals.

This started modestly with an introduction followed by some definitions and examples

with each chapter building on concepts and ideas of the previous ones. Thus, chapters 7,

8, 9 is the culmination of my research and is all original work (although chapter 4 is also

entirely original and 6 also has some original work).

This adventure began in chapter 2 with general maps over finite fields, and then consid-

ering the special cases of polynomial automorphisms or birational maps. In chapter 3

we reviewed some results on random permutations and compared them with polynomial

automorphisms showing a strong connection in their number of cycles. This idea of using

or comparing combinatorial models with polynomial (or rational) maps has been utilised

to great effect in the past, for example in Pollard’s factorisation algorithm [57]. We take

full advantage of this building further combinatorial models for our maps in the future

chapters. This was done immediately in chapter 4 where we extended the random per-

mutation model for random s-permutations. We obtain some nice summation results in

counting the number of cycles and cyclic points. Finally, we compared this model with

some birational maps showing their close agreement. All the results in this chapter were

original. This laid the foundation for the following chapters. Polynomial automorphisms

or birational maps can possess the property of being reversible. Reversibility and some

basic consequences were presented in chapter 5. Integrals of motion were introduced in

chapter 6 with some examples. We provided in-depth analysis on the effects of integrals

on the orbit statistics for a few different maps that indicated what may occur in general.
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In chapter 7 we studied a family of piecewise linear maps which can be seen as a simple

reversible perturbation of linear reversible maps. (Any linear map which is unimodular is

reversible and the dynamics can be solved completely and the orbit statistics is known as

seen in chapter 6.) By observing this map, we can see the departure from a linear map,

and in particular, the distribution of normalised periods appears to change from a singular

distribution (for a linear map) to the gamma distribution R(x) = 1 − e−x(1 + x). This

distribution has appeared in [63] where it was conjectured to be the limiting distribution

for reversible planar polynomial automorphisms over F2
p and in [64] where it was shown

to be the expected distribution for the composition of two involutions (satisfying some

mild conditions). It was also conjectured in [52] to be the asymptotic distribution of the

Casati-Prosen map.

In chapter 8, we revisited the combinatorial model in [64]. Here, we generalised it to

include singular points (analogous to the extension of the model in chapter 4 from ran-

dom permutations to random s-permutations). This was important because most higher

dimensional reversible maps have singular points. We shifted our focus to the number of

asymmetric orbits and points which were not previously considered in detail. We com-

pared the results from this model with various reversible maps and show that they seem

to be effective in predicting the number of asymmetric cycles in reversible maps.

Finally, in chapter 9, we provided a test for the number of integrals in a reversible bira-

tional map. This was based on the results and ideas in the previous chapters, and required

only the calculation of the number of asymmetric cycles in the orbit decomposition. We

justified the simplifying assumptions required for this model by considering a range of

reversible maps in high dimensions over the finite field. We also showed the efficacy of

this test by comparing its prediction for the number of integrals for these maps with the

known values. The advantage of this test is that it is simple to perform and yields good

results for many maps. The difficulty is that it cannot account for properties (other than

reversibility and integrals) that may alter the orbit statistics of the map such as other

symmetries. Anomalies in the test, however, suggest further investigations are needed.
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