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Abstract 

Many real-world decision processes require solving optimization problems which 

may involve different types of constraints such as inequality and equality constraints. 

The hurdles in solving these Constrained Optimization Problems (COPs) arise from the 

challenge of searching a huge variable space in order to locate feasible points with 

acceptable solution quality. Over the last decades Evolutionary Algorithms (EAs) have 

brought a tremendous advancement in the area of computer science and optimization 

with their ability to solve various problems. However, EAs have inherent difficulty in 

dealing with constraints when solving COPs.  

This thesis presents a new Agent-based Memetic Algorithm (AMA) for solving 

COPs, where the agents have the ability to independently select a suitable Life Span 

Learning Process (LSLP) from a set of LSLPs. Each agent represents a candidate 

solution of the optimization problem and tries to improve its solution through co-

operation with other agents. Evolutionary operators consist of only crossover and one of 

the self-adaptively selected LSLPs. The performance of the proposed algorithm is tested 

on benchmark problems, and the experimental results show convincing performance. 

The quality of individuals in the initial population influences the performance of 

evolutionary algorithms, especially when the feasible region of the constrained 

optimization problems is very tiny in comparison to the entire search space. This thesis 

proposes a method that improves the quality of randomly generated initial solutions by 

sacrificing very little in diversity of the population. The proposed Search Space 

Reduction Technique (SSRT) is tested using five different existing EAs, including 

AMA, by solving a number of state-of-the-art test problems and a real world case 

problem. The experimental results show SSRT improves the solution quality, and speeds 

up the performance of the algorithms. 

The handling of equality constraints has long been a difficult issue for evolutionary 
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optimization methods, although several methods are available in the literature for 

handling functional constraints. In any optimization problems with equality constraints, 

to satisfy the condition of feasibility and optimality the solution points must lie on each 

and every equality constraint. This reduces the size of the feasible space and makes it 

difficult for EAs to locate feasible and optimal solutions. A new Equality Constraint 

Handling Technique (ECHT) is presented in this thesis, to enhance the performance of 

AMA in solving constrained optimization problems with equality constraints. The basic 

concept is to reach a point on the equality constraint from its current position by the 

selected individual solution and then explore on the constraint landscape. The technique 

is used as an agent learning process in AMA. The experimental results confirm the 

improved performance of the proposed algorithm. 

This thesis also proposes a Modified Genetic Algorithm (MGA) for solving COPs 

with equality constraints. After achieving inspiring performance in AMA when dealing 

with equality constraints, the new technique is used in the design of MGA. The 

experimental results show that the proposed algorithm overcomes the limitations of GA 

in solving COPs with equality constraints, and provides good quality solutions. 
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Chapter 1                                             

Introduction 

1.1 Overview 

Many real world decision processes require solving optimization problems. A good 

number of these problems can be represented as nonlinear programming models. These 

models consist of a nonlinear objective function that has to be optimized, while 

satisfying a number of linear and/or nonlinear constraints. The constraint type could be 

of equality, inequality or both. Due to their complex nature, many of these Constrained 

Optimization Problems (COPs) may not contain nice mathematical properties required 

by traditional solution techniques. Hence, conventional optimization algorithms are 

often unable to provide even a feasible solution (Sarimveis and Nikolakopoulos, 2005). 

For example, gradient based optimization techniques are only able to tackle 

mathematical models where properties such as continuity and convexity exist. Solving 

COPs with non-standard function properties has become an important research topic in 

computer science and operations research, due to the presence of high dimensionality, 

nonlinear parameter interaction, and multimodality of the objective function as well as 

due to the physical, geometric, and other limitations of different constraints (Liang and 

Suganthan, 2006).  

Over the last few decades, Evolutionary Algorithms (EAs), as well as other bio-

inspired heuristics, have proven themselves as efficient optimization techniques 

(Mezura-Montes, 2009). With the increasing recognition of the potential of EAs, 

Genetic Algorithms (GAs) (the most well-known branch of EAs) have also been used to 

solve a broad variety of problems in an extremely diverse array of fields, clearly 
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showing their power and potential for solving optimization problems (Marczyk, 2004; 

Sarker et al., 2003).  

EAs may be able to overcome the above mentioned drawbacks of conventional 

optimization methods. However, in their initial versions, EAs were limited to only 

unconstrained problems (Mezura-Montes, 2009). Therefore, over the last decade, an 

extensive amount of research has been contributed to design and implement constraint-

handling techniques (Coello, 2002). EAs are still criticized as they have insufficient 

ability to solve highly constrained and multi-modal problems efficiently. There is no 

guarantee of achieving the optimality, and the stability and efficiency of searches is low 

in those problems (Takahama and Sakai, 2009).  

Recently, many hybridized algorithms have appeared in the literature to enhance the 

performance of EAs. Examples are memetic algorithms, where local search techniques 

are incorporated with EAs, and agent-based EAs that incorporate intelligent agent 

concepts with EAs. 

Constrained optimization problems require efficient solution approaches for 

supporting quality decision making (Sarimveis and Nikolakopoulos, 2005). So, the 

main focus of this thesis is to design efficient algorithms and techniques to enhance the 

performance of EAs in solving constrained optimization problems. 

 

1.2 Motivation and Scope of Research 

This section briefly discusses the scope of research in solving constrained 

optimization problems in this thesis, and the motivation for carrying out this research. 

The hurdles in solving constrained optimization problems arise from the challenge 

of searching a huge variable space in order to locate feasible points with an acceptable 

quality. It becomes even more challenging when the feasible space is very tiny 

compared to the search space. Over the last few decades, evolutionary algorithms have 

brought a tremendous advancement in the area of computer science and optimization, 

with their ability to solve various complex optimization problems. However, EAs have 
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inherent difficulty in dealing with constraints while solving the COPs. In spite of the 

presence of many different constraint handling techniques, EAs still suffer in solving 

COPs as stated by Takahama and Sakai (2009): 

“While research on constrained optimization using evolutionary algorithms 

has been actively pursued, it has had to face the problem that the ability to 

solve multi-modal problems is insufficient, that the ability to solve problems 

with equality constraints is inadequate, and that the stability and efficiency 

of searches is low.” 

To improve the performance of EAs, different hybridizations of algorithms have 

been introduced in recent times. Memetic Algorithms (MAs), a hybridized algorithm, 

can be considered as a marriage between the population-based global search and the 

heuristic-based Local Search (LS). The concept of MAs is inspired from the model of 

adaptation in natural systems, where an individual of a population may be improved 

through self learning along with the evolutionary adaptation of the population 

(Krasnogor and Smith, 2005; Moscato, 1989). Initially MAs were applied in 

combinatorial optimization problems (Alkan and Ozcan, 2003; Burke and Smith, 1999; 

Cheng and Gen, 1996; Merz and Freisleben, 1997; Merz and Freisleben, 2000; Tang et 

al., 2005) and subsequently in continuous search spaces (Guimaraes et al., 2006; 

Knowles and Corne, 2000; Molina et al., 2005; Ong and Keane, 2004), and the 

performances were splendid. One of the critical issues regarding the performance of 

MAs is the selection of appropriate LS while hybridizing LS with Genetic Algorithms 

(GAs). If the selection of LS is not appropriate for a particular problem then MAs may 

not perform well; the performance may even be worse than GAs alone (Davis, 1991; 

Hart, 1994; Ong and Keane, 2004). Many types of local searches are available in the 

literature but it is very difficult to know which type is appropriate for a particular 

problem.  

Several intelligent hybridized algorithms, such as agent-based evolutionary 

algorithms, have appeared in the literature recently, showing enhanced performance in 

solving optimization problems like unconstrained global optimization problems (Zhong 

et al., 2004), constraint satisfaction problems (Liu et al., 2006), and multi-objective 
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problems (Dobrowolski et al., 2001; Siwik and Kisiel-Dorohinicki, 2006). However, 

good performance in solving constrained optimization problems with an agent-based 

evolutionary algorithm, to the best of our knowledge, has not been achieved in the 

literature. This motivates the design of an Agent-based Memetic Algorithm (AMA), 

which mitigates the shortcomings of MAs and solves COPs efficiently. 

The quality of individuals in the initial population influences the performance of 

evolutionary algorithms, especially when the feasible region of the constrained 

optimization problems is very tiny in comparison to the entire search space. To solve 

problems with tiny feasible space, EAs usually take a long time to find even feasible 

solutions. With good quality initial solutions, the search operators reach the feasible 

region quickly and find better solutions. Some algorithms like GENOCOP 

(Michalewicz, 1994; Michalewicz and Janikow, 1996) assume a feasible starting point 

(or feasible initial population), which implies that the user or the EA must have a way of 

generating (in a reasonable time) such a starting point. The homomorphous mapping 

method of Koziel and Michalewicz (1999) also requires an initial feasible solution. As 

the initial populations of EAs are randomly generated, they may not be good quality 

solutions. Careful preprocessing, rather than providing manually a feasible solution, can 

improve the initial solutions, which not only accelerates the convergence but also finds 

better solutions. This encourages designing a search space reduction technique for 

solving COPs with tiny feasible space, by improving the quality of randomly generated 

initial solutions.  

As mentioned above, the handling of equality constraints has long been a difficult 

issue for evolutionary optimization methods. In any optimization problems with 

equality constraints, each feasible solution point must lie on each and every equality 

constraint. The feasible space of the problems with equality constraints becomes too 

tiny in comparison to the whole search space, which makes it difficult to locate feasible 

and optimal solutions. Many traditional EAs convert the equality constraints hj(X) = 0 

into inequality constraints −δ ≤ hj(X) ≤ δ (where δ is a small tolerance value) to increase 

the feasible space temporarily (Deb, 2000). Still EAs may fail to achieve either feasible 

or good quality solutions in solving many COPs with equality constraints problems 
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(Joines and Houck, 1994; Koziel and Michalewicz, 1999; Mezura-Montes and Coello, 

2002). This shows the necessity of an efficient technique to handle equality constraints.   

In the majority of optimization problems, the usual objective is either maximizing 

the profit /revenue or minimizing the cost. A small improvement in solutions for such 

problems would save millions of dollars for a real world problem. This is possible if an 

effective algorithm and techniques can be developed to solve the COPs efficiently. The 

research topic considered in this thesis is independent of country or regional boundaries 

as it can be applied to any real valued constrained optimization problems. 

 

1.3 Objective of the Thesis 

The main objective of this research is to develop an integrated evolutionary system 

for solving constrained optimization problems efficiently. In the trail of the research, we 

have divided the research objective into three sub-objectives, which are described below 

along with the steps taken to achieve them. 

Objective 1:  Developing an efficient evolutionary algorithm for solving COPs. 

The steps in achieving this objective are: 

• Study the conventional optimization and other algorithms for solving COPs; 

• Study the evolutionary algorithms and constraint handling techniques for 

EAs in solving COPs; 

• Develop a simple genetic algorithm to solve COPs and analyze its 

performance; 

• Study the prospects of MAS and Agent-based evolutionary algorithms; 

• Develop an agent-based memetic algorithm for solving COPs and carry out 

experimental study; 

• Analyze the performance of AMA and compare it with others from the 

literature; and 

• Analyze the effect of different components used in AMA. 
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Objective 2:  Designing a technique for population-based EAs to enhance 

performance in solving COPs with tiny feasible region. 

The steps have been completed to achieve this objective are: 

• Study and analyze the objective landscapes and the feasible spaces for 

different COPs; 

• Analyze the performance of different EAs in solving COPs with tiny feasible 

space; 

• Design a search space reduction technique (SSRT) to improve the quality of 

the randomly generated initial population; 

• Test the performance of SSRT in solving test problems and real world 

problems, with a variety of EA-based algorithms including AMA; and  

• Analyze the results and set suitable parameters of the better performance of 

SSRT. 

Objective 3:  Designing a new equality constraint handling technique. 

To achieve this objective, the steps have been completed are: 

• Analyze the performance of different EAs and identify the hurdles in solving 

COPs involving equality constraints; 

• Develop a new Equality Constraint Handling Technique (ECHT); 

• Integrate the ECHT in AMA as a learning process of the agents; 

• Investigate the performance of the extended AMA for solving COPs with 

equality constrained problems; 

• Analyze the results and effect of the new learning process; 

• Design a modified genetic algorithm (MGA) with ECHT to overcome the 

limitations of GA in solving COPs with equality constraints; and 

• Analyze the performance of MGA and the effects of its different 

components. 
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1.4 Contribution to Scientific Knowledge  

This section summarizes the unique contributions made in this research. The 

scientific contributions made in this research, lie in the area of genetic and agent-based 

evolutionary algorithms for solving constrained optimization problems, as outlined 

below:  

• Agent-based memetic algorithm for solving COPs. This thesis introduces a 

new agent-based memetic algorithm for solving constrained real-valued 

optimization problems, by tailoring multi-agent concepts into a new memetic 

algorithm. The rationale of designing the AMA architecture is discussed and 

analyzed. The agent learning processes and other operators used in AMA are 

discussed and their performances are analyzed. The proposed AMA architecture, 

for solving constrained real-valued optimization problems, is new in the 

literature. It is shown that the performance of the algorithm is very impressive in 

terms of achieving the optimal solutions.  

 

• Search space reduction technique for solving COPs with tiny feasible space. 

This thesis presents a simple search space reduction technique for population-

based evolutionary algorithms in solving constrained optimization problems 

with tiny feasible region. The idea behind the SSRT is analyzed, and its ability is 

explored solving a set of benchmark problems. This approach usually improves 

the performance of the algorithms, in terms of either solution quality or 

computational time or both, when investigated with AMA, a simple genetic 

algorithm, and three other existing well-known algorithms. Interestingly, the 

method is more appreciable for large scale problems with tiny feasible space. 

This concept of SSRT has not been observed in the literature.  

 

• A new technique to handle equality constraints. A new technique to handle 

equality constraints is proposed in this thesis. The mathematical basis of the 

technique is discussed and its ability is explored; the use of the method as an 
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agent learning process is justified. The constraint handling techniques used here 

do not need any penalty functions or additional parameters. It is shown that a 

faster convergence and better solutions can be achieved with the new learning 

process. The idea behind the methodology is undoubtedly new in the literature. 

 

• A modified genetic algorithm for solving equality constrained optimization 

problems. Finally, the ability of simple GA is enhanced by combining it with 

the proposed equality constraint handling technique. It is shown that the 

modified algorithm not only performs very well in terms of achieving optimal 

solutions, but also is robust in handling of both linear and nonlinear equality and 

inequality constraints.  
 

1.5 Organization of the Thesis 

This thesis has nine chapters and is organized as follows: 

In chapter 1, an introduction to the thesis is presented. It first provides an overview 

of the research field, followed by the motivation behind this research. It also presents 

the objective of the thesis and a list of scientific contributions stemming from this 

research work. The last section of the chapter presents the organization of the thesis. 

Chapter 2 provides a background study and basic fundamentals of the topics 

covered in this thesis. In the beginning, it provides a brief discussion on optimization 

problems and their existing solution methodologies. Then the characteristics and 

applications of genetic algorithms, multi-agent systems, and agent-based evolutionary 

algorithms are presented. 

In chapter 3, a simple genetic algorithm is implemented to investigate the 

performance of GA in solving constrained optimization problems. A set of state-of-the-

art test problems is used to investigate and analyze the performance of the algorithm. 

Chapter 4 begins with a brief discussion on agent-based evolutionary algorithms.  

Then it presents a new agent-based memetic algorithm for solving COPs. The design of 
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the algorithm and details of the learning processes and other operators are also 

discussed in this chapter.  

Chapter 5 reports detailed experimental studies of the AMA presented in chapter 4. 

It provides the results on a set of benchmark problems, compares the results with other 

well-known algorithms, and investigates the effect on its performance of different 

components of the algorithm.  

In chapter 6, a simple method is presented that improves the quality of randomly 

generated initial solutions, while sacrificing very little in diversity of the population, in 

solving COPs with tiny feasible space. The performance of the proposed technique is 

tested using five different EAs, by solving a number of state-of-the-art test problems 

and a real world case problem.  

A new equality constraint handling technique is presented in chapter 7 for solving 

constrained optimization problems with equality constraints. The technique is used as 

an agent learning process in AMA. This chapter also provides the details of 

experimental study, to see the performance of AMA with ECHT on a set of well-known 

benchmark problems, and to see the effect of the new learning process. 

Chapter 8 presents a modified genetic algorithm that incorporates the ECHT 

presented in chapter 7 with a revised genetic algorithm. The algorithm is tested on a set 

of standard benchmark problems. Details of the effects of different components of the 

algorithm, and its performance on the test problems, are also presented in this chapter.  

In Chapter 9, the main findings from this thesis are summarized. The chapter 

concludes the thesis with a discussion of possible future research directions. 

Since this thesis discusses different spheres of research in solving COPs such as 

GA, AMA, SSRT for COPs with tiny feasible space, equality constraint handling 

technique, it can be presented to the readers in different ways. Figure 1.1 shows the 

flow chart of this thesis for readers with different interests. 
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Figure 1.1: Flowchart of the thesis 
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Chapter 2                                                  

Background Study 

This chapter provides a background study and basic fundamentals of the topics 

covered in this thesis. It starts with a brief discussion on optimization problems and 

their existing solution methodologies. Then the characteristics and applications of 

genetic algorithms, multi-agent systems, and agent-based evolutionary algorithms are 

presented.  

The next few chapters of this thesis shall provide the literature review specific to 

those chapters.  

 

2.1 Optimization Problems and their Classification  

Many real world decision processes require solving optimization problems. The 

problems that need to optimize (either maximize or minimize) an objective function of a 

number of variables, subject to satisfying certain constraints, may be called 

optimization problems. Optimization problems are of high importance in industry and 

science. Solving optimization problems has become a challenging research topic in 

computer science and operations research due to the physical, geometric,  and other 

limitations of different constraints (Liang and Suganthan, 2006).  

Any function (either objective or constraint) in optimization problems can be a 

function of a single variable or a set of variables, depending on the problem 

characteristics. In general, the optimization problems can be represented as (without 

loss of generality, minimization is considered here): 
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Minimize  

f(X),     X=[x1,x2,…,xn] 

Subject to 
               li≤ gi(X) ≤ ui,            i = 1,2,…,p 
               hj(X)=cj,                   j = 1,2,…,q                                                         (2.1) 

          kkk xxx ≤≤             k = 1,2,…,n 

Where X∈Rn is a set of n variables of the solution, f(X) is the objective function 

which needs to satisfy p inequality constraints (gi(X) represents ith inequality constraint) 

and q equality constraints (hj(X) represents jth equality constraint), kx and kx  are the 

upper bound and lower bound of the variable xk. Not all bounds on constraints (li≤ gi(X) 

≤ ui,) may be present in a problem.  

Optimization problems can be classified based on the objective functions, 

constraints, and variables involved. The problem may contain either a single objective 

function or multiple objective functions, and the objective type may be either 

maximization or minimization. In case of multiple-objective problems, the objectives 

usually contradict each other. If the objectives do not contradict then the multiple 

objectives can be converted easily into a meaningful single objective problem (Sarker 

and Newton, 2007).  

Depending on the presence or absence of functional constraints, the optimization 

problems can be defined as constrained or unconstrained. The variable bounds are 

sometimes considered as constraints. The functional constraint types may be of equality 

(=), or inequality ( ≤ and ≥ ), or a mix of both. Unconstrained optimization problems 

arise not only from many practical applications, but also from the reformulation of 

constrained optimization problems required by many optimization algorithms (Turban 

and Meredith, 1994).  

Depending on the nature of the problem, the variables in the model may be real or 

integer or a mix of both. An optimization problem with integer or discrete variables is 

termed a combinatorial problem. In combinatorial problems, the feasible space contains 

either a finite or infinite set of solution points. The feasible set for continuous 
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optimization problems is usually infinite as the values of variables are real numbers. 

This thesis considers only continuous optimization problems. 

The objective or constraint functions may be either linear, nonlinear, or both. If all 

the functions are linear in a given problem, it is called a linear optimization problem. If 

one or more of the functions of the problem involve nonlinearity, it is called a nonlinear 

programming / nonlinear optimization problem. Many problems in engineering, science, 

and economics are nonlinear. The solution approaches of nonlinear problems are quite 

different and more complex than those of linear problems (Sarker and Newton, 2007).  

The objective and the constraint functions may have mathematical properties such 

as convex or nonconvex, differential or nondifferential, and unimodal or multimodal, 

static or dynamic. The constraints may be treated as either soft or hard constraints. The 

concept of convexity is fundamental in classical optimization. Many traditional 

optimization techniques are developed based on the assumption that the function is 

convex, which generally makes them easier to solve both in theory and practice. The 

solution approaches in optimization can be classified in to two groups based on the use 

of derivatives. When using derivative-based techniques differentiability of the function 

is necessary, that is closely related to the continuity of functions. When a function has 

only one peak that is a global optimum solution, it is known as a unimodal function. On 

the other hand a function with more than one peak is considered as a multimodal 

function. If a function changes over time, it is known as a dynamic function. Hard 

constraints must be satisfied in the final solution, whereas soft constraints can be 

violated with a certain penalty or under certain conditions (Bazaraa et al., 1990; Hillier 

and Lieberman, 2005).  

The problems considered in this research are single objective constrained 

optimization problems. However, this research is not restricted to any particular 

function properties. 
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2.2 Applications of Optimization  

We can see the applications of optimization everywhere. In fact, both humans and 

nature optimize many systems of interests. A few examples of optimization are briefly 

stated in this section. 

 Manufacturers plan for maximum efficiency in the design and operation of their 

production processes. Farmers try to minimize the production cost. Investors seek to 

create portfolios that avoid excessive risk while achieving a high rate of return. 

Engineers adjust parameters to optimize the performance of their designs. In nature the 

molecules in an isolated chemical system react with each other until the total potential 

energy of their electrons is minimized. Rays of light follow paths that minimize their 

travel time (Nocedal and Wright, 2006). Even the population relocation in response to 

climate change, considering people's preferences, various costs and planning priorities, 

is also an optimization problem (Zahir et al., 2009).  

Some applications of optimization problems are given below: 

Production Systems: The production planning problem can be looked at as a 

system of systems: forecasting, material handling, personnel, purchasing, quality 

assurance, production, assembly, marketing, design, finance, and other appropriate 

systems. The design is needed to optimize in such a way that it is easy to produce by 

using snap-in fasteners; materials easy to form; financial planning provides appropriate 

working capital; purchases arrive on time and have appropriate quality (Miranker and 

Lofaso, 1991; Van der Duyn Schouten and Vanneste, 1995; Vatn et al., 1996).  

Energy Systems: The oil industry was one of the first users of optimization 

techniques to help manage their refinery operations (Méndez et al., 2006; Reddy et al., 

2004). Electrical and hydro-electric companies use optimization techniques 

(Alyabysheva et al., 1975; Hanjie and Baldick, 2007) to determine how to efficiently 

produce power as well as trade power among their partners.  

Transportation: Real-time dispatching and delivery truck routing (Handa et al., 



Chapter 2. Background Study 

15 

2006), healthy package delivery, and international freight including the scheduling and 

pricing of containers need optimization techniques to minimize cost and enhance 

performance (Loannou, 2008; Pursula and Niittymäki, 2001).  

Airline Optimization: The airline industry was one of the first to apply operations 

research methods to commercial optimization problems. The combination of 

advancements in computer hardware and software technologies with clever 

mathematical algorithms and heuristics has dramatically transformed the ability of 

operations researchers to solve large scale, sophisticated airline optimization problems 

over the past 60 years (Snowdon and Paleologo, 2007). Revenue management and 

pricing, airline network planning, crew scheduling, maintenance planning, spares 

inventory management, and fuel management all need optimization (Jacobs et al., 2005; 

Wu, 2006). 

Project Management: Project management techniques continue to be a major 

avenue to accomplishing goals and objectives by optimization (Zarka, 2005) in various 

organizations ranging from government, business, and industry to academia (Badiru and 

Pulat, 1994).  

Military applications: Military applications use optimization techniques for 

solving personnel force management, logistics, transportation, war gaming, strategic 

planning, tactical planning, and many other (Soon, 2003; Weber et al., 2006; White, 

1990).  

Data mining: With the widespread emergence of very large databases, many 

different organizations are finding vital help from professionals in extracting the 

information they really want. The data mining methods, which are growing rapidly, give 

superior solutions in diverse database-plumbing applications such as: predicting 

purchasing behavior, segmenting customers, detecting fraud, assessing credit risk, and 

anticipating customer attrition. Optimization is a powerful and effective tool for these 

applications (Shi et al., 2008). 

E-commerce: E-commerce offers opportunities in business-to-business and 



Chapter 2. Background Study 

16 

consumer areas of online purchasing, vendor purchasing models, online auctions, and 
supply procurement. In addition to sellers, bidders are looking for decision support on 
how to bid intelligently. In all the cases, the optimization process is involved (Kuechler 
et al., 2001).  

Environmental applications: Pollution control (Qiong et al., 2007; Shih et al., 

1998), the design of systems to prevent shipping accidents, and population relocation in 

response to climate change (Zahir et al., 2009) are optimization problems.  

 

2.3 Solution Methodology 

The solution approaches for optimization problems can be divided into two major 

groups: (1) conventional optimization techniques and (2) modern heuristic techniques. 

Here some popular techniques from both groups are discussed, however the main 

emphasis will be given to some of the modern heuristic techniques.  

2.3.1  Conventional Methods  

In the conventional optimization domain, the solution approach for a given type of 

model is determined by the problem classification e.g. linear programming for linear 

optimization problems, Integer Programming (IP) when some or all of the decision 

variables are restricted to integer or discrete values. Some conventional methods are 

briefly discussed below:  

Linear Programming (LP) 

Most of the LP methods determine the feasible solution space from the model of the 

problem and then the optimal point is identified within the feasible space.  The 

graphical method, simplex method and its variants, and the interior point method are 

basically the most popular approaches to solve linear optimization problems.  

The main purpose of the graphical method is to illustrate the concepts of acceptable 

solutions and search boundary. The method has practical value when solving small 
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problems with two decision variables and only a few constraints (Turban and Meredith, 

1994). The simplex method is an iterative process which moves from one vertex of the 

feasible space to another, in each iteration, until it reaches the optimal solution. On the 

other hand, the interior point algorithm moves through the feasible space towards the 

optimal solution. The method usually obtains a near optimal solution. For large-scale LP 

models, the interior point method is much more efficient but provides only an 

approximate solution (Dantzig and Thapa, 2003). 

Integer Programming (IP) 

Integer programs are mathematical programming models (linear or nonlinear) where 

some or all of the variables are assumed to be integer or discrete values. If all variables 

take integer values, then the problem is called a pure IP. On the other hand, if both 

integer and continuous variables coexist, the problem is called a mixed integer program 

(MIP) or mixed integer linear program (MILP). It is well known that integer and mixed 

-integer linear models are difficult to solve. This is due to the fact that the number of 

alternative solutions increases much faster (usually exponentially) than the size of the 

problem. That makes the large-scale integer program extremely difficult to solve using 

the existing algorithms.  

Integer programming can be considered as an extension of the general LP problem. 

IP borrows many concepts and techniques from LP when developing solution 

approaches. The common solution approaches for solving IP models are complete 

enumeration, graphical method, rounding the non-integer solution, branch-and-bound, 

cutting plane, and branch-and-cut method. The details of  these methods can  be found 

in (Hillier and Lieberman, 2005; Nemhauser and Wolsey, 1999). 

Goal Programming (GP) 

The basic idea of goal programming is to establish a specific numeric goal for each 

of the objectives, formulate a new objective function as the weighted sum of all 

absolute deviations from the goals, and then seek a solution that minimizes the revised 

objective function. There are three possible types of goals: 
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1. A lower, one-sided goal sets a lower limit. 

2. An upper, one-sided goal sets an upper limit. 

3. A two-sided goal sets a specific target that does not want to miss on either side. 

Goal programming problems can be categorized as preemptive and non-preemptive. 

In non-preemptive goal programming, all the goals are of roughly comparable 

importance. In preemptive goal programming, there is a hierarchy of priority levels for 

the goals, so that the goals of primary importance receive first priority attention, those 

of secondary importance receive second-priority attention, and so on. The non-

preemptive goal programming can be solved using the simplex method since the 

coefficients of the objective function are known numerical values. The preemptive goal 

programming models are solved either by using a sequential or a streamlined method 

(Hillier and Lieberman, 2005).  

Nonlinear Programming (NLP) 

Nonlinear optimization problems can be classified as unconstrained or constrained. 

The constrained problems can be divided into linearly constrained, quadratic, convex, 

non-convex, separable, geometric, and fractional programming. No one algorithm can 

solve all classes of nonlinear models since each of the nonlinear models has its own 

well defined set of characteristics (Bazaraa et al., 2006). 

The unconstrained problem solving approaches are divided into single variable and 

multivariable problems with and without using derivatives. The one-dimensional search 

is the backbone of many algorithms for solving a nonlinear programming problem. 

There are a number of line search procedures described in the literature, for solving 

unconstrained problems of one variable, with or without using derivatives.  

Multidimensional search can also be performed with or without using derivatives. 

Examples of the multidimensional search without using derivatives are the cyclic 

coordinate method, the method of Hooke and Jeeves, and Rosenbrock’s method. 

Examples of multidimensional search using derivatives include the steepest decent 

method and the method of Newton. For more details, see (Bertsekas, 1995). 
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The penalty function method is a well-known approach for solving constrained 

nonlinear optimization problems. The approach converts the constrained problem into 

an equivalent unconstrained problem and then solves the problem using a suitable 

search algorithm. The constraints are placed into the objective function via a penalty 

parameter in such a way that the parameter penalizes any violation of the constraints. 

There are many other existing algorithms for solving nonlinear models such as barrier 

function, gradient projection, reduced gradient, method of Zoutendijk, and the convex–

simplex method. For more details see (Bertsekas, 1995). 

Multi-Objective Models 

In multi-objective models, it requires making compromises or trade-offs regarding 

the outcomes of alternate objectives, hence in this type of problem there exists no single 

optimal solution, rather a set of alternative solutions. There are several methods 

described in the literature that can be used when solving multi-objective optimization 

problems such as weighting method (Gass and Saaty, 2006; Zadeh, 1963), ε-constraint 

method (Haimes et al., 1971), goal attainment, lexicographic ordering (Miettinen, 

2001), interactive surrogate worth trade-off method (Chen et al., 2002), Geoffrin–Dyer–

Feinberg method (Geoffrion et al., 1972), sequential proxy optimization techniques 

(Sakawa, 1982), the Tchebycheff method (Steuer and Choo, 1983; Steuer, 1986), 

reference point method (Wierzbicki, 1982; Wierzbicki and Granat, 1999), satisfying 

trade-off method, light beam search and the reference direction approach. Further 

details of these methods can be found in (Eiselt et al., 1987; Miettinen, 1999; Miettinen, 

2001)  

2.3.2 Heuristic Methods 

In optimization problem solving, a heuristic is a rule-of-thumb approach that may 

not guarantee convergence and optimality. However, in most cases, they work well and 

produce solutions of acceptable quality. Developing solutions with these methods offers 

two major advantages: 1) development time is much shorter than when using more 

traditional approaches, and, 2) the systems are very robust, being relatively insensitive 
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to noisy and/or missing data. 

The use of a heuristic approach in optimization is not new. However, in the past, 

heuristics were developed based on the concept of either conventional optimization 

techniques or traditional artificial intelligence techniques. Nowadays, heuristics are also 

inspired by biology, physics, neuroscience, and other disciplines. The field of heuristics 

is growing very rapidly. Some of the widely used heuristics are discussed briefly in this 

section.  

Hill Climbing  

The main idea of Hill climbing is to continue the search process until the new 

solution is better than the best solution found so far. It is the greediest heuristic yet 

encountered. The algorithm is more likely to trap into a local optimum as it represents 

pure search intensification without any chance for search exploration. So this search 

process can be very sensitive in regard to the starting point (Russell and Norvig, 2003 ). 

Simulated Annealing (SA)  

Based on the “annealing” process in the statistical mechanics, simulated annealing 

was introduced for solving complicated optimization problems. SA accepts a lower-

quality solution in an iteration with some probability depending on a parameter called 

temperature. The algorithm behaves like a random search at high temperature (using a 

higher probability) and like a greedy hill-climbing at low temperature (with a 

probability close to zero) (Sait and Youssef, 2000). In the algorithm, a cooling schedule 

with an initial temperature must be defined by the user, which is not an easy task. The 

SA algorithm grows exponentially with respect to the size of the problem. Another 

disadvantage of using the iterative improvement is that it may be trapped in local 

optima. To avoid this disadvantage, simulated annealing accepts in a limited way 

neighboring solutions with a cost that is worse than the cost of the current solution. The 

details of the algorithm can be found in (Gonzalez, 2007; Kirkpatrick et al., 1983; 

Ravindran, 2007; Van Laarhoven and Aarts, 1987). 
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Tabu Search (TS) 

Tabu search is a meta-heuristic that guides a local heuristic search procedure to 

explore the solution space beyond local optimality (Gendreau, 2003). Unlike the 

conventional hill-climbing approach, TS may allow lower-quality solutions in any 

intermediate iteration. TS also forbids reverse moves to avoid cycling. The forbidden 

movements are recorded in a data structure called a tabu list. This adaptive memory 

feature of TS allows the implementation of procedures that are capable of searching the 

solution space economically and effectively.  However, the performance of TS is 

sensitive to the size of the tabu list in many practical applications. A comprehensive 

examination of this methodology can be found in (Glover and Laguna, 1997).   

Evolutionary Algorithms (EAs) 

Evolutionary Algorithms have attracted increasing attention in recent years, as 

powerful computational techniques for solving many complex real-world problems 

(Sarker et al., 2003). EAs can be regarded as a metaphor for building, applying, and 

studying algorithms based on Darwinian principles of natural selection. They are 

inspired by nature’s capability to evolve living beings well adapted to their 

environment.  

Each EA starts with a randomly generated population of individual solutions. 

Different EAs use different representations (e.g. lists, trees, graphs) for the individuals. 

A good representation will make a problem easier to solve and a poor representation 

will do the opposite. At every algorithm generation/iteration a number of reproduction 

operators are applied to the individuals of the current population to generate the 

individuals of the population for the next generation. Evolutionary algorithms might use 

operators called recombination or crossover to recombine two or more individuals to 

produce new individuals. They also might use mutation operators that cause a self-

adaptation of individuals. The main driving force in EAs is the selection of individuals 

based on their fitness (it may be based on the objective function, the result of a 

simulation experiment, or some other kind of quality measure). Individuals with higher 
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fitness have a higher probability to be chosen as members of the population of the next 

generation (or as parents for the generation of new individuals). This corresponds to the 

principle of survival of the fittest in natural evolution. It is the capability of nature to 

adapt itself to a changing environment, which gave the inspiration for EAs. 

There has been a variety of different EAs proposed over the years such as Evolution 

strategies (ES), Evolutionary Programming (EP), genetic algorithms and genetic 

programming. Each of these algorithms approximates the evolutionary processes in 

different ways. GAs, the most well known branch of EAs, have been successfully used 

for numerical optimization, combinatorial optimization, classifier systems, wire routing, 

scheduling, transportation problem and many other engineering problems (Goldberg, 

1989; Michalewicz, 1994). GAs will be discussed in the next section in more detail as 

some of the research in this thesis is based on GAs. 

Memetic Algorithms (MAs) 

MAs are population-based meta-heuristic search algorithms, inspired by Neo–

Darwinian’s principles of natural evolution and Dawkins’ notion of a meme defined as a 

unit of cultural evolution that is capable of performing individual learning (Ong et al., 

2009).  It can be considered as a marriage between the population-based global search 

and the heuristic-based local search. Any constructive heuristics may be combined with 

a population-based algorithm (e.g. GAs) to develop a memetic algorithm. When a local 

search is combined with GAs (usually known as genetic local search), the algorithm 

provides a much better performance than GAs alone can do (Hasan et al., 2008). MAs 

have been successfully applied across a wide range of problem domains such as 

combinatorial optimization (Alkan and Ozcan, 2003; Burke and Smith, 1999; Cheng 

and Gen, 1996; Merz and Freisleben, 1997; Merz and Freisleben, 2000; Tang et al., 

2005), optimization of non-stationary functions (Vavak et al., 1996), and multi-

objective optimization (Hu et al., 2003; Knowles and Corne, 2000; Knowles and Corne, 

2001; Knowles and Corne, 2005). They converge to high quality solutions as well as 

search more efficiently than their conventional counterparts (Tang et al., 2007). Some 

theoretical and empirical investigations on MAs can be found in (Goldberg and 
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Voessner, 1999; Hart, 1994; Krasnogor, 2002; Krasnogor and Smith, 2005; Merz and 

Freisleben, 1999; Ong and Keane, 2004; Ong et al., 2009; Tang et al., 2007). 

 

Other Heuristics  

There are a number of other heuristics such as immune system, ant colony 

optimization, particle swarm optimization, cultural algorithms, and cooperative search. 

A brief description of these algorithms can be found in (Coello et al., 2002; Gonzalez, 

2007; Olariu and Zomaya, 2006). 

 

2.4 Genetic Algorithms (GAs) 

Genetic Algorithms are stochastic algorithms which simulate both the natural 

inheritance by genetics and the Darwinian strive for survival (Darwin, 1859). Genetic 

algorithms were developed by Holland (1975) and his students and colleagues at the 

University of Michigan in the 1960s and the 1970s. Genetic algorithms were first 

proposed as adaptive search algorithms, although they have mostly been used as a 

global optimization algorithm for either combinatorial or numerical problems. GAs are 

the most widespread variant of EAs (Gonzalez, 2007; Sarker et al., 2003). They start 

with a randomly generated population (a set of solutions) and then move from one 

population to another. This process continues until the stopping criteria are met. At each 

iteration, a new population is generated applying various search operators. Details of the 

operators are discussed later in this section. 

GAs do not require any rich domain knowledge, so they are not difficult to 

implement. Considerations of convexity/concavity and continuity of functions are not 

necessary in GAs. However, these attributes of functions are real concerns in most 

mathematical programming techniques. GAs strike a remarkable balance between 

exploration and exploitation of the search space, and so are very useful for solving 

multi-modal problems. This property also helps to improve the solution by skipping 
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from the local optima. The most favorable point of using GAs is that they provide quick 

approximate solutions. GAs are more suitable for multi-objective optimization than 

conventional optimization techniques, because of their capability of simultaneous 

optimization of conflicting objective functions and generation of a number of 

alternative solutions in a single run (Sarker et al., 2003). These advantages of GAs over 

the conventional mathematical programming techniques justify the use of them in 

solving optimization problems. 

 

2.4.1 Basic Structure  

It turns out that there is no rigorous definition of genetic algorithm accepted by all 

in the evolutionary computation community that differentiates GAs from other 

evolutionary computation methods (Melanie, 1998). However, most methods called 

GAs have at least the following elements in common: populations of chromosomes, 

selection process according to fitness, crossover to produce new offspring, and random 

mutation of new offspring. 

A genetic algorithm explores a number of potential solutions in parallel. It initially 

creates a population randomly. A population is a set of individuals, each of which has its 

own genetic content called chromosome. The chromosomes are strings of smaller units 

termed genes. The different values a gene can take are called the alleles for that gene.  

Binary Representation is the most used chromosomes representation, in which each 

decision variable is represented with more than a gene, where each gene is a binary 

digit, as shown in Figure 2.1. It needs coding and decoding to map between the 

genotype and the phenotype if the decision variables are not binary. The structure of a 

solution vector and representation in any optimization problem depends on the 

underlying problem (Bäck et al., 2000). Since any arbitrary contiguous region in the 

search space cannot be represented by this representation and the feasible search space 

can usually be of any arbitrary shape, we can use Floating point representation (also 

known as real-coded representation). The real-coded GAs overcome the difficulties of 
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achieving arbitrary precision in decision variables and the Hamming cliff problem 

(Goldberg, 1989) associated with binary representation of real numbers (Deb, 2000). In 

floating point representation the decision variables are directly represented in real 

numbers in only one gene shown in Figure 2.2. This floating point representation is 

used in this research. There are also combined representation, finite-state 

representations, Parse trees, or other complex structures used for representation 

depending on the problem (Bäck et al., 2000). 
 

Variable 1x 2x 3x 

Genotype 0 0 1 1 0 0 0 1 0 
Phenotype 1 4 2 

Figure 2.1: Binary representation of chromosome. 

 

Variable 1x 2x 3x …… nx 

 4.1  2.2 3.1  …… 2 

Figure 2.2: Floating point representation of cromosome. 

In the initial population creation process, the genetic contents of individuals (i.e. 

chromosomes) are generally produced in a randomized fashion in order to assure 

diversity in the initial population. Afterwards, in a loop of evolution, individuals and 

their offspring are transferred to new generations, taking into consideration the quality 

of their chromosomes, which is called fitness. A better fitness value gives to an 

individual a better chance to be selected for survival or reproduction. The main feature 

of GAs is the use of a recombination operator as the primary search tool (Olariu and 

Zomaya, 2006). The motivation is the assumption that different parts of the optimal 

solution can be independently discovered, and be later combined to create better 

solutions. Moreover the mutation is also used, but it is considered as a secondary 

background operator whose purpose is merely “keeping the pot boiling” by introducing 

new information in the population (Olariu and Zomaya, 2006). An individual that exists 

in the current generation may be selected directly, or it may be matched with another 

individual and the resulting offspring may be transferred to the next generation. This 

process continues until the termination condition has been reached. Common 
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terminating conditions are when an upper limit on the number of generations is reached,  

an upper limit on the number of evaluations of the fitness function is reached, the 

chance of achieving significant changes in the next generations is excessively low, or 

allocated budget (computation time/money) is reached, etc (Michalewicz, 1994; Safe et 

al., 2004). 

A general framework of basic genetic algorithm can be summarized as follows: 

Pseudo code: Genetic Algorithm. 

(1) Set i = 0; 

(2) Generate the initial population P(i) at random; 

(3) REPEAT 

(a) Evaluate the fitness of each individual in P(i); 

(b) Select parents from P(i) based on their fitness; 

(c) Apply reproduction operators (crossover and/or mutation) to the  

     parents and  produce  generation P(i+1); 

(4) UNTIL the terminating conditions is reached. 

 

2.4.2 Operators and Parameters  

As discussed earlier the simplest form of genetic algorithm involves three types of 

genetic operators: selection, crossover, and mutation. These genetic operators are 

performed on the chromosomes of the current generation to produce child generations 

that become fitter in the simulated evolution process. The details of these operators are 

given below: 

Selection 

The selection scheme determines the probability of an individual to survive or be 
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selected to reproduce offspring. This operator is designed to improve the average 

quality of the population by giving individuals of higher fitness a higher probability to 

be copied to or produce the new individuals in the child generation. The quality of an 

individual in the current generation is measured by its fitness value through the 

evaluation of the fitness function; therefore, the selection can focus on more promising 

regions in the search space. A number of selection schemes, such as roulette wheel 

selection (also known as the fitness proportional selection) and rank-based selection, as 

well as tournament selection, have been popularly used in GA (Sarker et al., 2003).  In 

the first scheme individuals are chosen for selection in proportion to their fitness value. 

In rank-based selection, the population is sorted from best to worst. The fitness assigned 

to each individual depends only on its position in the ranking; the higher ranked 

individuals are given higher probabilities to survive. As the name suggests, in 

tournament selection a random number of individuals are chosen from the population 

and the best individual from this group is chosen as a parent for reproduction (Elfeky et 

al., 2008; Liu and Han, 2003; Sarker et al., 2003). The selection operation is a 

successful artificial emulation of natural selection of the Darwinian survival theory. 

Crossover  

After the selection operation is completed and the mating pool is formed, the 

crossover operator may proceed. Crossover is an operation to exchange part of the 

genes in the chromosomes of two parents in the mating pool to create new individuals 

for the child generation. It is believed to be the key search operator in the working of a 

GA as an optimization tool (Goldberg, 1989). In binary representation, one-point, n-

point, uniform crossovers are commonly used. In floating point representation, 

offspring can be generated with different types of crossover such as one-point crossover, 

n-point crossover, arithmetic crossover (Michalewicz, 1994), geometric crossover 

(Michalewicz, 1994), heuristic crossover (Wright, 1991), Simulated Binary Crossover 

(SBX) (Deb and Agrawal, 1995), orthogonal crossover (Leung, 2001), simplex 

crossover (Renders and Bersini, 1994), and Partially Mapped Crossover (PMX) 

(Goldberg and R. Lingle, 1985). Some of these crossover operators are briefly discussed 
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below. 

For one-point crossover, a crossover point k is randomly selected at which an 

exchange of parent chromosomes is made. In this crossover, the solution vectors 

 XX 21 ,  of two parent solution vectors, each of dimension n, are swapped after the k 

point and produce  XX /
2

/
1 , offspring as shown in Figure 2.3. This operator can be 

extended to a two-point crossover in which two crossover points k1, k2 are selected at 

random and the segments between these two points is exchanged between the parents as 

shown in Figure 2.4. 

 

 

Parent 1 X 1 1.1x 2.1x . . kx .1 1kx +.1 . . nx .1

Parent 2  X 2 1.2x 2.2x . . kx .2 1kx +.2 . . nx .2

 
 

Child 1 /
1X 1.2x 2.2x . . kx .2 1kx +.1 . . nx .1

Child 2 /
2X 1.1x 2.1x . . kx .1 1kx +.2 . . nx .2 

Figure 2.3: One-point crossover. 

 
 

 

Parent 1  X 1 1.1x 2.1x . . 1.1 kx
1.1 1 +kx . .

2.1 kx 1.1 2 +kx
 

. . nx .1

Parent 2  X 2 1.2x 2.2x . . kx .2
1.2 1 +kx

 
. .

2.2 kx 1.2 2 +kx
 

. . nx .2

 
 

Child 1 /
1X 1.1x 2.1x . . 1.1 kx 1.2 1 +kx

 
. .

2.2 kx 1.1 2 +kx
 

. . nx .1

Child 2  /
2X 1.2x 2.2x . . kx .2 1.1 1 +kx . .

2.1 kx 1.2 2 +kx
 

. . nx .2
 

Figure 2.4: Two-point crossover. 

 

Crossover point k 

Crossover point k1 Crossover point k2 
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Based on the search features of the single-point crossover used in binary-coded 

genetic algorithms, the simulated binary crossover operator respects the interval 

schemata processing, in the sense that common interval schemata of the parents are 

preserved in the offspring (Deb and Agrawal, 1995). The spread of offspring solutions 

around parent solutions can be controlled using a distribution index. With this operator 

any arbitrary contiguous region can be searched, provided there is enough diversity 

maintained among the feasible parent solutions (Deb, 2000). SBX operator performs 

well in solving problems having multiple optimal solutions with a narrow global basin, 

and has been used in different applications successfully (Deb, 2000; Deb, 2001; Deb 

and Agrawal, 1995; Deb et al., 2002; Gupta and Deb, 2005; Srinivas and Deb, 1994; 

Srinivasan and Rachmawati, 2006).  

For handling multiple variables, each variable of the solution vector is chosen with a 

probability 0.5 in this study and the following SBX operator is applied variable-by-

variable. The procedure of computing children solutions variable )(c
i

1x  and )(c
i

2x  from 

two parent solution variable )(p
i

1x and )(p
i

2x  is as follows: 
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where β  is the ordinate of a probability distribution, which is chosen in such a way that 

the area under the probability curve from 0 to β  equals a random number u (0≤ u≤1). 
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where cη is the distribution index for SBX and can take any nonnegative value. A 

small value of cη  allows solutions far away from parents to be created as children 

solutions and a large value restricts only near parent solutions to be created as children 

solutions. In all simulation, Deb (2000) have used cη =1. For details of this crossover 

see (Deb and Agrawal, 1995).   
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Neighborhood Orthogonal Crossover operator was proposed by Leung (2001). The 

orthogonal crossover operator acts on two parents and generates a set of new 

individuals from the search space defined by the two parents. The search space is 

quantized into a finite number of points, and then orthogonal design is applied to select 

a small but representative sample of points as potential offspring. The main advantage 

of this crossover is that the orthogonal array can specify a small number of uniformly 

scattered individuals over the search space. Then the best individuals among them can 

be considered as the new offspring. 

Consider the parents  Ai,j=[a1,a2,…an] and  Bi,j= [b1,b2,…,bn] where the search space is 

[ ABAB xx , ] and ),( iiAB ba minx = , n.i ),b,max(ax iiAB ,...,2,1for ==   

Each domain value [ ABAB xx , ] is quantized into Q levels such that the successive levels 

are equally distant. The domain of each ith dimension is quantized to Qiii ,2,1, ,...,, βββ  

where 
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For simplicity the n variables Ai,j=[a1,a2,…an] are divided into F groups and each group 
is considered as one factor. Each factor is quantized and produces 
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Here 121 ,...,, −Fkkk are random numbers such that nkkk F <<<< −121 ...1 . 

After quantization, Q levels of ith factors are: 
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The orthogonal array FMji
F

M bQL ×=
22

][)( , is then applied to generate the following 

M2 offspring: 



Chapter 2. Background Study 

31 

      

⎪
⎪
⎩

⎪
⎪
⎨

⎧

)(),...,(),(

)(),...,(),(
)(),...,(),(

,2,21,1

,22,221,21

,12,121,11

222 FMFMM

FF

FF

bfbfbf

bfbfbf
bfbfbf

                                                                      (2.7) 

 
The orthogonal of )2( 3

4L and )3( 4
9L  are as follows:  

    

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
2
2
1

2
1
2
1

2
2
1
1

)2( 3
4L    

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
3
2
2
1
3
3
2
1

2
1
3
1
3
2
3
2
1

3
2
1
3
2
1
3
2
1

3
3
3
2
2
2
1
1
1

)3( 4
9L                                              (2.8) 

The details of the crossover is discussed in (Leung, 2001).  

Mutation  

The mutation operator is designed so that one or more of the chromosome’s genes 

will be mutated at a small probability. The goal of the mutation operator is to prevent 

the genetic population from converging to a local minimum and to introduce a bit more 

diversity to the population. Without this operator, the population would rapidly become 

uniform under the so-called conjugated effect of selection and crossover operator (Liu 

et al., 2002a). There are a number of mutation methods such as bit-flipping (for binary 

representation), uniform mutation, non-uniform mutation, gaussian mutation, 

parameter-based mutation and cauchy mutation. Details of mutation can be found in 

(Bäck et al., 2000; Liu and Han, 2003).  

Here we shall discuss the parameter-based mutation operator (Deb, 2000; Deb and 

Goyal, 1996) in brief. Parameter-based mutation operator is applied for exploring the 

vicinity of a parent solution, in which the variable ix  is mutated to '
ix  (where lower and 

upper boundaries are not specified) as below:  
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'
ix = maxi  δ  x Δ+                                                                                               (2.9) 

where maxΔ  is the maximum permissible perturbance to ix  allowed in the parent 

solution and δ is the perturbance factor, which can be calculated for a random number u 

(0≤ u≤1) 
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where mη  is the distribution index for mutation and takes any nonnegative value. 

For variables where lower and upper boundaries ( ix  and ix ) are specified, the 

above equation may be changed as follows: 
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where δ =min[( ii xx − ),( ii xx − )/( ii xx − )].  

Genetic Parameters 

The parameters usually used in genetic algorithms are the population size, 

generation number, probability of crossover, and probability of mutation. Population 

size represents the total number of individuals in the population of the GAs. The 

maximum number of generations the GAs will execute is indicated by the generation 

number. The proportion of parents undergoing crossover and mutation in a generation 

are controlled by the probability of crossover (PC) and probability of mutation (PM) 

respectively. 

 

2.4.3 Handling Constraints in GA 

Although GAs perform well for unconstrained or simple Constrained Optimization 

Problems (COPs), they may face difficulties when applied to solving highly constrained 
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problems since the initial version of GAs are designed as unconstrained optimization 

procedures. The traditional search operators of GAs (i.e., crossover and mutation) are 

blind to constraints. In such a circumstance, it is very likely that the candidate solutions 

generated by these operators during the search process would violate certain constraints 

(Chootinan and Chen, 2006). Hence constraint handling is one of the major concerns 

when applying GAs to solve constrained optimization problems. The main challenge in 

constrained optimization is to find the feasible as well as the optimal solution. Over the 

past decade various constraint-handling techniques using genetic algorithms have been 

proposed. According to Coello (2002) these techniques can be grouped as follows: 

• Penalty functions,  

• Special representations and operators,  

• Repair algorithms,  

• Separation of objectives and constraints, and  

• Hybrid methods. 

Penalty functions were popularly used in the conventional methods for constrained 

optimization and were amongst the first methods used to handle constraints with 

evolutionary algorithms (Coello, 2002; Fletcher, 1990). The principal idea of this kind 

of method is to redefine or reformulate the constrained optimization problem as an 

unconstrained one, by introducing a penalty term into the original objective function to 

penalize constraint violations. The individuals are penalized in different ways based on 

the constraint violations. In the static penalty method (Homaifar et al., 1994; Morales 

and Quezada, 1998), the penalty term added to the objective function increases with the 

degree of constraint violation. In the dynamic penalty approach (Joines and Houck, 

1994), the penalty term increases with both the degree of constraint violation and 

generation number. The greatest penalty that can be imposed on an infeasible solution is 

applied in the death penalty method (Hoffmeister and Sprave, 1996) i.e. the infeasible 

solutions are not considered for selection for the next generation. The idea of simulated 

annealing (Kirkpatrick et al., 1983) is used in annealing penalty methods (Carlson and 

Shonkwiler, 1998; Michalewicz, 1995; Michalewicz and Attia, 1994). When the 
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algorithm is trapped in a local optimum the penalty coefficients are changed. In the co-

evolutionary penalty method (Coello, 2000c) the penalty is split into two values to 

provide enough information about how many constraints are violated and the 

corresponding amounts of violation. Adaptive penalty methods (Bean and Hadj-

Alouane, 1993; Ben Hadj-Alouane and Bean, 1997; Coit et al., 1996; Crossley and 

Williams, 1997; Eiben and Hauw, 1998; Farmani and Wright, 2003; Rasheed, 1998) can 

make use of information obtained during the search to adjust their own parameters. Due 

to their simplicity and ease of implementation penalty methods were the most common 

methods used in solving real world problems (Farmani and Wright, 2003). However 

most of the methods require a careful fine-tuning of parameters to obtain competitive 

results. They also lack generality and are usually only fit for optimization problems with 

certain constraint types (Cai and Wang, 2006; Coello, 2002). 

Some researchers change the representation to simplify the shape of the search 

space and have developed special operators to preserve the feasibility of solutions at all 

times. The main application of this approach is naturally in problems in which it is very 

difficult to locate at least a single feasible solution (Coello, 2002). For example, 

Davidor (1991) introduced a varying-length genetic algorithm to generate robot 

trajectories, and defined a special crossover operator called analogous crossover, which 

uses phenotypic similarities to define crossover points in the parent strings. The 

GENOCOP proposed by Michalewicz (1994) and Michalewicz and Janikow (1996) is 

based on designing specialized operators that incorporate knowledge of the constraints. 

This method uses projection operators that map feasible points back to feasible 

boundaries. GENOCOP tries to locate an initial (feasible) solution by sampling the 

feasible region. If it does not succeed after a certain number of trials, the user is asked 

to provide such a starting point. GENOCOP works efficiently for problems with linear 

constraints (Michalewicz, 1994). GENOCOP II enhanced the performance  and was 

able to solve general nonlinear programming problems (Michalewicz and Attia, 1994).  

In the Decoder method, the chromosome does not directly encode a solution in the 

feasible region but rather “gives instructions” on how to build a feasible solution. Each 

decoder imposes a relationship between a feasible solution and a decoded solution 



Chapter 2. Background Study 

35 

(Dasgupta and Michalewicz, 1997). The homomorphous mapping approach (Koziel and 

Michalewicz, 1999) converts constrained problems into unconstrained optimization 

problems by using a mapping between an n-dimensional cube and the feasible space of 

the given problem. However, the implementation of this method is very difficult 

especially for nonconvex feasible search spaces. It requires initial feasible solutions 

which are difficult to find for most complex problems.  

The repair algorithms attempt to improve infeasible solutions to feasible by taking 

advantage of the problem’s characteristics (Chootinan and Chen, 2006; Jing et al., 1996; 

Jing et al., 1997; Michalewicz and Nazhiyath, 1995). The repair method might be very 

effective if the relationship between decision variables and constraints could be easily 

characterized. Developing a repair procedure is usually problem-dependent and so prior 

knowledge of the problem is required in order to design an efficient repair procedure. 

However, the characteristics of the solution space for real-world problems are often 

unknown. Sometimes repairing infeasible solutions can be as complex as solving the 

original problem hence it is also time-consuming when the problem is involved with 

complex constraints (Chootinan and Chen, 2006; Coello, 2002).  

Some approaches such as Superiority of feasible points methods (Deb, 2000; Powell 

and Skolnick, 1993 ) and Multi-objective optimization techniques (Cai and Wang, 2006; 

Coello, 2000a; Surry and Radcliffe, 1997) handle constraints and objectives separately. 

Deb (2000) suggested a modification of Powell and Skolnick (1993) that requires no 

penalty parameters. This method uses a tournament selection operator, where two 

individual solutions are compared at a time using the following criteria:  

• A feasible individual is always better than an infeasible individual. 

• If both of the individuals are feasible, then the individual with lower 

objective function value is better (considering minimization problem). 

• If both of them are infeasible, then the one with less constraint violation is 

better. The total constraint violation (CV) of an individual is considered here 

as the sum of absolute values by which the constraints are violated.  
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The results of Deb (2000) are very encouraging. However the main drawback of this 

scheme is that it is hard to maintain a reasonable proportion of infeasible and feasible 

solutions in the population, and the use of niching methods (Deb and Goldberg, 1989) 

combined with higher than usual mutation rates is apparently necessary to avoid 

stagnation (Cai and Wang, 2006; Coello, 2002).  

Runarsson and Yao (2000) introduced a stochastic ranking method in their 

evolutionary strategy-based algorithm in which the fitness of each individual is 

determined through a stochastic ranking process. The ranking is achieved through a 

stochastic version of bubble sort, in which the individuals are compared only to the 

adjacent neighborhoods. The comparison is based on either the objective function or the 

constraint violation, randomly determined by a user-specified probability parameter Pf. 

Although the method proved to be effective in solving a wide range of constrained 

optimization problems, it is also sensitive to the choice of probability parameter.  

The Multi-objective algorithms (Cai and Wang, 2006; Coello, 2000a; Surry and 

Radcliffe, 1997) have been used in the solution of constrained single objective 

optimization problems, by treating the constraint violations as additional objectives. 

Generally the constraint violations and the objective function are optimized using multi-

objective optimization methods. That means single-objective constrained optimization 

of f(X) is redefined as a multi-objective optimization problem in which we will have 

(m+1) objectives, where m is the total number of constraints. Then they apply any 

multi-objective optimization technique to solve. Although the idea of handling 

constraints through multi-objective optimization is very attractive, the approach appears 

less robust than for constrained single objective algorithms (Farmani and Wright, 2003). 

Finding the feasible solutions using the multi-objective technique is difficult since most 

of the time is spent on searching infeasible regions (Runarsson and Xin, 2005). For 

highly constrained problems, simply considering constraints as objectives might not 

introduce enough pressure to direct the search toward the region of the optimum 

(Farmani and Wright, 2003). 

Different hybridization of algorithms has been introduced in recent times. Kim and 
Myung (1997) presented a two-phase evolutionary programming method. An 
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evolutionary algorithm is used to optimize the function in the first phase. In the second 
phase, Lagrange multipliers are used to place emphasis on the violated constraints 
whenever the best solution does not fulfill the constraints.  

 

2.5 Multi-agent Systems (MAS) 

In the last decade, Agents and multi-agent systems open a new era of analyzing, 

designing, and implementing complex systems. The technologies, methods, and theories 

of agent and multi-agent systems are currently contributing to many diverse domains 

including information retrieval, user interface design, robotics, electronic commerce, 

computer mediated collaboration, computer games, education and training, smart 

environments, ubiquitous computers, and social simulation (Zhang and Zhang, 2004).  

Multi-agent systems are composed of multiple interacting autonomous computing 

elements, known as agents. According to Wooldridge and Jennings (1995) an agent is a 

computer system that is situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its design objectives. Nicholas 

(2001) elaborated this definition as: agents are clearly identifiable problem-solving 

entities with well-defined boundaries and interfaces; situated (embedded) in a particular 

environment over which they have partial control and observability—they receive 

inputs related to the state of their environment through sensors and they act on the 

environment through effectors; designed to fulfill a specific role—they have particular 

objectives to achieve; autonomous—they have control both over their internal state and 

over their own behavior; capable of exhibiting flexible problem-solving behavior in 

pursuit of their design objectives—being both reactive (able to respond in a timely 

fashion to changes that occur in their environment) and proactive. 

 In MAS, each agent has incomplete information or capabilities for solving the 

problem, thus each agent has a limited viewpoint, and there is no global system control.  

The data is decentralized and the agents are connected thorough different schemes, 

usually following mesh and hierarchical structures (Oprea, 2004). Multi-agent systems 

are ideally suited to representing problems that have multiple problem solving methods, 
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multiple perspectives and/or multiple problem solving entities. Such systems have the 

traditional advantages of distributed and concurrent problem solving, but have the 

additional advantage of sophisticated patterns of interactions (Jennings et al., 1998). 

Nicholas (2001) has defined the canonical view of a multi-agent system shown in 

Figure 2.5. In the canonical view of a multi-agent system, it can be seen that adopting 

an agent-oriented approach to software engineering means decomposing the problem 

into multiple, autonomous components that can act and interact in flexible ways to 

achieve their set objectives. The key abstraction models that define the agent-oriented 

mind-set are agents, interactions, and organizations. Finally, explicit structures and 

mechanisms are often used to describe and manage the complex and changing web of 

organizational relationships that exist between the agents. 

 

Figure 2.5: Canonical view of a Multi-agent system 

 

2.5.1 Characteristics of Multi-agent Systems  

The main characteristics of a multi-agent system (Vlassis, 2007) that distinguish it 

from other systems are given below: 

Agent design: The agents involved in MAS can be heterogeneous where the design 

differences of agents may involve the hardware or the software. The agents can be 

homogeneous which are designed in an identical way and have a priori the same 
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capabilities. Agent heterogeneity can affect all functional aspects of an agent from 

perception to decision making, while in single-agent systems the issue is simply 

nonexistent. 

Environment: The agents may need to face a static (time invariant) or dynamic 

(nonstationary) environment.  

Control: There is no central control or process that collects information from each 

agent and then decides what action each agent should take. The decision making of each 

agent lies to a large extent within the agent itself.  

Knowledge: In MAS, the levels of knowledge of each agent about the current world 

state can differ substantially. Each agent must consider the knowledge of each other 

agent in its decision making.  

Communication: Agents may need to communicate with each other in several 

cases, for instance, for coordination among cooperative agents or for negotiation among 

self-interested agents.  

2.5.2 Advantages of MAS 

MAS involves a set of autonomous agents working together to solve problems that 

are beyond the capabilities of individual agents. Some of the advantages of using MAS 

technology in large software systems are (Sycara, 1998): 

• Computational efficiency due to the concurrency of computation.  

• Reliability, as the whole system can undergo a ‘graceful degradation’ when 
one or more agents fail.  

• Extensibility, as the number and the capabilities of agents working on a 
problem can be altered. 

• Robustness, the system’s ability to tolerate uncertainty, because suitable 
information is exchanged among agents. 

• Maintainability, it is easier to develop and maintain modular software than a 
monolithic one, MAS ensures easy development and reusability 
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2.6 Agent-based Evolutionary Algorithms (AEAs) 

With the development of modern technologies, it creates demand for automated 

systems that solve more complex problems utilizing information from different sources. 

Recently different computational intelligence techniques such as evolutionary 

algorithms, fuzzy logic, neural networks are incorporated into agents to solve these 

complex problems.  An agent-based evolutionary system is such a computationally 

intelligent system that may be considered as an extension to classical evolutionary 

algorithms.  

The key idea of AEA is to incorporate the Evolutionary algorithms and MAS to 

exploit their combined strength. There exist different approaches to incorporate them. 

The first approach is the incorporation of evolutionary processes into a multi-agent 

system (MAS) at a population level (Kisiel-Dorohinicki, 2002). This approach is 

basically a population based evolutionary algorithm (EA), for solving complex decision 

problems, where the individuals of the population are defined as agents (Siwik and 

Kisiel-Dorohinicki, 2006; Zhong et al., 2004). The evolutionary process realized in the 

multi-agent systems presents new possibilities such as: agents can act independently 

and in consequence social relations in agents’ population may be developed. The 

evolution process is decentralized and is performed with no common cadence. 

Perception of the environment by agents and social relations enable rivalry and 

competition among agents that assure decentralized process of agents’ selection. With 

the incorporation of evolutionary concept, besides interaction mechanisms typical for 

MAS, agents are able to reproduce new offspring and die (eliminated from the system). 

A decisive factor of an agent’s activity is its fitness, expressed by amount of possessed 

non-renewable resource called life energy. The Selection process is realized in such a 

way that agents with high energy are more likely to reproduce, while low energy 

increases possibility of death. Some AEA architecture designs have been proposed by 

Kisiel-Dorohinicki (2002) and Byrski and Schaefer (2009). There are also several 

algorithms (Alkemade et al., 2005; Chira et al., 2008; Dobrowolski et al., 2001; Siwik 

and Kisiel-Dorohinicki, 2006; Zhong et al., 2004) based on this concept.  
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In the second type of agent-based evolutionary algorithms, the MAS incorporates an 

evolutionary algorithm as a search technique to improve certain functionality of some 

selected agents or the entire system. For example, a MAS may contain different types of 

agents, and one or more types of these agents deal with some optimization tasks (Choi 

et al., 2001; Liu and Frazer, 2002; Meng et al., 2007). More applications of this type of 

AEA are discussed in section 2.7.3.  

 

2.7 Application of Intelligent Systems  

So far some well-known intelligent techniques have been briefly discussed. This 

section will provide an idea about the application areas of three intelligent systems; 

GAs, MAS and AEA. 

 

2.7.1 Application Areas of GAs 

EAs, particularly GAs, have received a lot of attention regarding their potential as 

optimization techniques for complex numerical functions (Michalewicz, 1995). GAs 

have been successfully applied in solving different types of problems. Some of the 

noteworthy areas to which GAs have been put are discussed below. 
 

2.7.1.1 General Optimization 

Traveling Salesman Problem: The Traveling Salesman Problem (TSP) is one of 

the most important and well known combinatorial optimization problems, since it is 

simple to state but difficult to solve (Hung Dinh et al., 2007). GAs have been applied to 

the TSP due to their global ability for problems with huge search spaces. The earliest 

attempts at applying GAs to the TSP are pure GAs such as (Goldberg and R. Lingle, 

1985; Grefenstette et al., 1985; Whitley et al., 1991). Hybrid GAs have extended its 

performance to successfully solve large scale TSP problems (Helsgaun, 2000; Merz and 
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Freisleben, 1997; Merz and Freisleben, 2001). 

Routing: The Vehicle Routing Problem (VRP) becomes more important with the 

development of modern logistics (Yueqin et al., 2007). A typical vehicle routing 

problem involves simultaneously determining the routes for several vehicles from a 

central supply depot to a number of destinations (customers) and returning to the depot, 

without exceeding the capacity constraints of each vehicle. Applications of genetic 

algorithms to VRPs incorporating time windows have been reported by Thangiah et al. 

(1991), Potvin and Bengio (1996), and Thangiah (1995). Applications of GAs have also 

been reported for multi-depot routing problem (Ombuki-Berman and Hanshar, 2009; 

Thangiah and Salhi, 2001), for Dynamic vehicle routing (Hanshar and Ombuki-Berman, 

2007) and a school bus routing problem (Thangiah and Nygard, 1992). Some hybrid 

approaches to vehicle routing using GAs have also been reported by (Jeon et al., 2007; 

Potvin et al., 1996). 

Telecommunications networks: Telecommunications networks are interconnected 

by routers. Each router has a routing table, which specifies the next node in a route to a 

specified destination according to a routing path. The routing tables are produced by 

routing algorithms. The objective is to maximize the network utilization, and minimize 

the transmission delay and data loss. Other objectives required by the networks may be 

reliability, cost, and traffic load balancing in the network. This is an NP-hard 

optimization problem (He and Mort, 2000). Over recent years, several researchers have 

applied genetic algorithms to telecommunications routing problems. Pioneering papers 

using GAs include Cox et al. (1991), Davis et al. (1993), and Pan and Wang (1991). 

Recently different types of GAs (Bentall et al., 1997) (for heavily loaded networks) 

including hybrid GAs (He and Mort, 2000; Sinclair, 1999) are also used in this area. 

Job-shop Scheduling Problem: The Job-shop scheduling problem (JSP) is an 

extremely hard problem because it requires very large combinatorial search space and 

the precedence constraint between machines. This is an NP-hard optimization problem 

with multiple criteria: factors such as cost, tardiness, and throughput must all be taken 

into account, and job schedules may have to be rearranged on the fly due to machine 
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breakdowns, employee absences, delays in delivery of parts, and other complications, 

making robustness in a schedule an important consideration. GAs as presented in 

Chryssolouris and Subramaniam (2001), Ferrolho et al. (2007), Gen et al. (1994), 

Jensen (2003), and Lae-Jeoung and Cheol Hoon (1995) have successfully solved JSPs. 

Timetabling Problem: The timetabling problem consists of allocating a number of 

events to a finite number of time slots (or periods) such that the necessary constraints 

are satisfied (Burke and Newall, 1999). The timetable problem in general is known to 

be NP-complete, meaning that no method is known to find a guaranteed-optimal 

solution in a reasonable amount of time (Burke et al., 1995). Variants on genetic 

algorithms have appeared in the literature for timetabling problems (Burke and Newall, 

1999; Burke et al., 1996; Corne et al., 1994; Paechter et al., 1995).  

 

2.7.1.2 Robotics 

In recent years genetic algorithms have been applied to robot path and motion 

planning problems. Tian and Collins (2004) proposed a novel trajectory planning 

method for a robot manipulator whose workspace includes several obstacles. To 

generate the robot’s trajectory Tian and Collins (2004) developed a genetic algorithm to 

search for valid and optimal solutions to the trajectory in task space. Yano and Toyoda 

(1999) applied a genetic algorithm to solve the position and movement of an end-

effector on the tip of a two-joint robot arm. Shintaku (1999) developed a simple method 

based on a genetic algorithm, where a polynomial approximates time histories of the 

trajectory in joint space. Pack et al. (1996) developed a method to search for valid 

solutions in configuration space based on a genetic algorithm. Davidor (1991) as well 

showed how to apply genetic algorithm techniques to the task of planning the path 

which a robot arm is to take in moving from one point to another. 
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2.7.1.3 Aerospace Engineering 

 In the field of aeronautical engineering, a series of studies for aerodynamic design 

with genetic algorithms have been carried out.  In the aerodynamic wing optimization 

problem, the objectives are to minimize aerodynamic drag at supersonic cruising 

speeds, minimize drag at subsonic speeds, and minimize aerodynamic load (the bending 

force on the wing) (Obayashi and Sasaki, 2004). These objectives are mutually 

exclusive, and optimizing them all simultaneously requires tradeoffs to be made. 

Several multi-objective GAs have been applied to the aerodynamic wing optimization 

problem (Obayashi and Sasaki, 2004; Obayashi et al., 2000; Sasaki et al., 2001). 

Genetic Algorithms have successfully generated low-earth orbit sparse coverage 

satellite constellations that appear to outperform traditionally developed constellations 

(Williams et al., 2001). The objective of these constellations is to minimize the 

maximum revisit time over a latitude band of interest. Williams et al. (2001) applied a 

multi-objective genetic algorithm to the task of spacing satellite orbits to minimize 

coverage blackout. Deb et al. (2007) also presented the development of a multi-

objective optimization software (GOSpel) for finding optimal interplanetary trajectories 

between any two planets for a dual minimization of travel time and launch velocity 

which is directly related to the fuel consumption. 

 

2.7.1.4 Economics and Finance 

 The areas of economics and finance, with special reference to predictability issues 

related to stock and foreign exchange markets, seem to attract increasing interest during 

the last few years (Andreou et al., 2002). More and more traders now rely on genetic 

algorithms, neural networks, chaos theory, and other computerized decision-making 

approaches to help them develop winning investment strategies (Richard, 1994). 

Mahfoud and Mani (1996) presented a genetic algorithm based system and applied it to 

the task of predicting the future performances of individual stocks. Andreou et al. 

(2002) has presented a new hybrid algorithm based on a GA for the evolution of the 

architecture of Multi-Layered Perceptron neural networks and a localized version of the 
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Extended Kalman Filter for the training. The application of this algorithm on the task of 

exchange rate forecasting of different currencies was very positive and encouraging. 

Another important research issues in finance is building effective corporate bankruptcy 

prediction models, because they are essential for the risk management of financial 

institutions. Ahn and Kim (2009) proposed a GA based approach to enhance the 

prediction performance of case-based-reasoning for the prediction of corporate 

bankruptcies.  

 

2.7.1.5 Electrical Engineering and Circuit Design 

 Efforts using techniques from evolutionary computation (specially GAs) for 

different analog circuit design automation have appeared over the last few years (Xing 

et al., 2005). Genetic algorithms have been successfully applied to select filter 

component sizes (Horrocks and Khalifa, 1994), to select filter topologies (Grimbleby, 

1995), to design operational amplifiers using a small set of topologies (Kruiskamp, 

1996), and to automatically generate circuit designs (Lohn and Colombano, 1999). 

Genetic algorithms have also been used to evolve antennas with pre-specified 

properties, including wire antennas (Kuwahara, 2005; Linden, 1997), patch antennas 

(Villegas et al., 2004), and antenna arrays (Buckley, 1996). 

 

2.7.1.6 Pattern Recognition and Data Mining 

The use of GA for pattern recognition has been widely studied (Man et al., 1996). 

Smith and Gemperline (2000) have designed a wavelength selection and optimization of 

pattern recognition methods using a genetic algorithm. Forrest et al. (1993) presented an 

immune system model based on genetic algorithms to study the pattern-recognition 

processes and learning that take place at both the individual and species levels in the 

immune system. Roth and Levine (1992) applied GA, based on a minimal subset 

representation, to perform primitive extraction from geometric sensor data. Tsang 

(1995) proposed a GA based technique for matching images of object shapes that have 
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been subject to affine transformation caused by variations in the camera position. A 

Faceprint system was designed in New Mexico State University (Caldwell and 

Johnston, 1991) for reproducing the feature of a suspected criminal’s face. A genetic 

algorithm is used to generate binary reference functions for optical pattern recognition 

and classification by (Mahlab et al., 1991). Hybrid evolutionary learning algorithms 

have also been designed to synthesize a complete multiclass pattern recognition system. 

For example, Rizki et al. (2002) designed a Hybrid Evolutionary Learning for Pattern 

Recognition (HELPR) that blends elements of evolutionary programming, genetic 

programming, and genetic algorithms to perform a search for an effective set of feature 

detectors. 

Li et al. (2007) proposed a data mining genetic algorithm, to mine the association 

rules from an image database. Tzung-Pei et al. (2008) introduced a genetic algorithm 

based framework for finding membership functions suitable for data mining problems. 
 

2.7.2 Application Areas of MAS 

Agent-based systems have been applied in solving a wide variety of problems. 

Major applications of agent-based systems are as follows: manufacturing, process 

control, telecommunication systems, air traffic control, traffic and transportation 

management, information filtering and gathering, electronic commerce, business 

process management, entertainment and medical care (Jennings et al., 1998). A brief 

description of these areas are given below, for a comprehensive review in all of these 

areas see (Chaib-draa, 1995; Jennings et al., 1998; Jennings and Wooldridge, 1998; 

Parunak, 1999). 

Manufacturing: MAS have been applied in different areas of manufacturing, 

namely manufacturing control (Parunak, 1999), configuration design of manufacturing 

products (Darr and Birmingham, 1994), collaborative design (Cutkosky et al., 1993), 

scheduling and controlling manufacturing operations (Oliveira et al., 1997; Sprumont 

and P.Muller, 1997), controlling a manufacturing robot (Overgaard et al., 1996), and 

determining production sequences for a factory (Wooldridge et al., 1996). 
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Process Control: Agent-based systems have been used for electricity transportation 

management, monitoring and diagnosing faults in nuclear power plants (Huaiqing and 

Chen, 1997), spacecraft control (Francois et al., 1992), and climate control (Clearwater 

et al., 1996). 

Telecommunications: Telecommunication systems are large, distributed networks 

of interconnected components which need to be monitored and managed in real-time 

(Jennings et al., 1998). The feature interaction problem (Griffeth and H.Velthuijsen, 

1994), Network Control (Schoonderwoerd et al., 1997), transmission and switching 

(Nishibe et al., 1993), and network management (Adler et al., 1989) are some examples 

for which agent-based systems have been constructed. 

Air Traffic Control and Transportation Systems: OASIS (Ljunberg and Lucas, 

1992) presents a sophisticated agent-realised air traffic control system where agents are 

used to represent both aircraft and the various air-traffic control systems in operation. 

The domain of traffic and transportation management is well suited to an agent-based 

approach because of its geographically distributed nature. For example, Burmeister et 

al. (1997) describes a multi-agent system for implementing a future car pooling 

application.  

Information Management: With the development of the richness and diversity of 

information available to us in our everyday lives, the need to manage this information 

has grown. The lack of effective information management tools has given rise to an 

information overload problem (Jennings et al., 1998). Agent-based systems opened a 

new era in this area. Electronic mail filtering agents (Pattie, 1994) can learn to 

prioritise, delete, forward, sort, and archive mail messages on behalf of a user. A multi-

agent system (Sycara et al., 1996) has been designed to integrate information finding 

and filtering in the context of supporting a user to manage his financial portfolio. A 

personal assistant (Chen and Sycara, 1998) that learns user interests and on the basis of 

these compiles a personal newspaper, a personal assistant agent for automating various 

user tasks on a computer desktop (Caglayan et al., 1997), and a web browsing assistant 

(Lieberman, 1995) are some other applications in this area.  
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Electronic Commerce: Some commercial decision making is already placed in the 

hands of agents. An example is realizing the marketplace by creating “buying” and 

“selling” agents for each good to be purchased or sold respectively (Chavez and 

Kasbah, 1996). 

Medical Applications: The interest in applying agent technology to medical 

applications has been a growing one (Cortés et al., 2008). From such seminal and 

inspiring work as agent based patient monitoring by Hayes-Roth et al. (1989) and health 

care by Huang et al. (1995), the use of agents in medical science has been continuously 

evolving and covering more aspects. Intelligent agents are normally used to observe the 

current situation and knowledge base, then support the expert’s decision-making on an 

action consistent with the domain they are in, and finally perform the execution of that 

action on the environment. For example, Laleci et al. (2008) designed MAS for 

providing a Clininical Desicion Support system for remote monitoring of patients at 

their homes and at the hospital, to decrease the load on medical practitioners and also 

healthcare costs. HealthAgents designed by Lluch-Ariet et al. (2008) improves the 

classification of brain tumors through multi-agent decision support over a secure and 

distributed network of local databases or Data Marts. 

 

2.7.3 Application Areas of Agent-based EA  

AEA is a relatively newer area than GAs or MAS. To solve complex real world 

problems, AEA opens a new era to incorporate intelligent techniques like EAs and 

MAS. A number of agent-based hybrid evolutionary algorithms have appeared in the 

literature for solving different types of problems.  

The applications of the first type of AEA (incorporation of evolutionary processes 

into a multi-agent system at population level, discussed in section 2.6) are mostly in 

solving different types of optimization problems. For example, Dobrowolski et al. 

(2001) used an evolutionary multi-agent system for solving unconstrained multi-

objective problems. Socha and Kisiel-Dorohinicki (2002) developed an agent-based 
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evolutionary approach to search for a global solution in the pareto sense for multi-

objective optimization. Siwik and Kisiel-Dorohinicki (2006) developed a semi-elitist 

evolutionary multi-agent system and they solved the so called MaxEx multi-objective 

problem. Niching techniques are aimed at maintaining the diversity through forming 

subpopulations for evolutionary algorithms in multi-modal domains. Similar techniques 

have applied to evolutionary multi-agent systems in Dreżewski and Kisiel-Dorohinicki 

(2006). Job-shop scheduling problems are solved with multi-agent evolutionary 

algorithms by Zhong et al. (2005) and Yan et al. (2004). Zhong et al. (2004) used a 

MultiAgent Genetic Algorithm (MAGA) for solving unconstrained global numerical 

optimization problems. Liu et al. (2006) used a multiagent evolutionary algorithm for 

constraint satisfaction problems. Chira et al. (2008) proposed a geometric agent-based 

model  for several difficult unimodal and multimodal real-valued functions with many 

dimensions. Byrski and Schaefer (2009) applied their evolutionary agents systems to a 

difficult global optimization problem (optimization of the artificial neural network 

architecture).  

The second type of AEA usually applies EA as a part of the decision making 

process. For example, Lim and Zhang (2002) designed an intelligent multi-agent system 

with GA which integrates process planning and production scheduling, in order to 

increase the flexibility of manufacturing systems in coping with rapid changes in the 

market. This system consists of various autonomous agents who have the capability of 

communicating with each other and making decisions based on their knowledge. 

Pendharkar (2007) designed a multi-agent system for manufacturing flow shop 

scheduling, where the agents contained a knowledge base of dispatching rules and a 

genetic algorithm was used that learns new dispatching rules over time. Cetnarowicz et 

al. (1996) proposed a new technology of designing and building agent systems based on 

genetic methods, and a draft concept of a model-based approach to such systems. They 

have applied this technology to a self-developing prediction system. Smith et al. (1999) 

incorporated EA-based mechanisms into agent-based decentralized business 

applications. Liu and Frazer (2002) showed the design process as generative and 

evolutionary processes that are implemented by a group of cooperative agents.  
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Usually it is difficult to design controllers for multi-agent systems without a 

comprehensive knowledge about the system. To overcome this limitation, Jeong and 

Lee (1997) used a genetic algorithm to discover rules that govern emergent cooperative 

behavior. They proposed a self-organizing genetic algorithm for automating the 

discovery of rules for multi-agents playing soccer.  

Yang et al. (2006) used a GA based multi-objective optimization technique NSGA-

II to decide on the composition of forces using a complex land combat multi-agent 

scenario planning tool. Sahin et al. (2008b) introduced a Force-based Genetic 

Algorithm (FGA) for self-spreading mobile nodes deployed over an unknown territory. 

Wireless mobile nodes adjust their speed and direction using a genetic algorithm, where 

each mobile node exchanges its genetic information (of speed and direction) encoded in 

its chromosomes with the neighboring nodes. The improved version of FGA is 

presented in Sahin et al. (2008a). 

 

2.8 Chapter Summary 

In this chapter, different types of optimization problems and their solution 

methodologies have been discussed. Most real world optimization problems are 

constrained. In solving these constrained optimization problems, solution approaches 

are needed to satisfy different types of linear or nonlinear, equality or inequality or both 

constraints. Conventional methods are unlikely to provide quality solutions within 

reasonable amount of time for real world complex constrained optimization problems.  

During the last decades, several heuristic methods have been proposed to solve these 

problems. Among them genetic algorithms is one of the most successful in solving 

different types of optimization problems. To handle the constraints, different techniques 

have been proposed to guide the search process of GAs. However several algorithms in 

the literature have struggled while solving COPs, especially when the feasible space is 

very tiny compared to the whole search space. Interactions of the constraints and 

existence of equality constraints are some reasons behind that. Furthermore traditional 

GAs suffers from slow convergence to locate a precise enough solution because of their 
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failure to exploit local information, and hence they are not well suited for fine tuning.  

Some hybridized algorithms such as agent-based evolutionary algorithms have 

appeared in the literature, incorporating the EAs with intelligent agent systems. These 

algorithms show enhanced performance in solving optimization problems like 

unconstrained global optimization problems, constraint satisfaction problems, and 

multi-objective problems. However, good performance in solving constrained 

optimization problems with agent-based evolutionary algorithms is, to the best of our 

knowledge, yet to come in the literature. This motivates to design a new agent-based 

evolutionary algorithm for solving COPs, and different techniques to enhance the 

performance. 

 

                                               

. 



 

Chapter 3                                                           

Genetic Algorithms in Solving COPs 

Many real world decision processes require solving Constrained Optimization 

Problems (COPs). In this chapter, a simple genetic algorithm is implemented for solving 

COPs. The performance of the algorithm is investigated and analyzed using a set of 

state-of-the-art test problems. The experimental studies show the limitations of genetic 

algorithms in solving COPS; this is the motivation for improving the algorithm in this 

thesis. 

 

3.1 Introduction 

A large number of real world optimization problems are nonlinear and need to 

satisfy different constraints. These constraints may involve equality, inequality or both 

types. The objective function and the constraints, which may be linear or nonlinear, are 

here assumed to be continuous (for details see Chapter 2). The aim of this thesis is to   

develop effective solution approaches for solving these constrained optimization 

problems.  

Genetic Algorithms (GAs) are the most widely used approaches to computational 

evolution and solving different types of optimization problems (Davis, 1991). In the 

beginning of the research for this thesis, it would be interesting to see the performance 

of a Simple Genetic Algorithm (SGA) in solving COPs.  

In this chapter, a genetic algorithm is implemented and its performance is 

investigated in solving the COPs. To design the SGA, well-known crossover and 
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mutation operators, and a suitable constraint handling technique are used. A set of well-

known test problems is used to investigate the performance. In pursuit of maximum 

performance further investigation is made to see the performance of the algorithm by 

changing different parameters such as the probability of crossover, the probability of 

mutation and the population size, and additional fitness evaluations. The experimental 

result shows the limitations of SGA in solving different types of COPs. The knowledge 

gained in this chapter helps in designing improved solution approaches for solving 

COPs. 

The rest of this chapter is organized as follows. The next section describes the 

design of a simple genetic algorithm and its components. The experimental results and 

the effects of different components of the algorithm are described in section 3.3. Finally, 

section 3.4 concludes the chapter and discusses the challenges to be addressed in the 

following chapters. 

 

3.2 Simple Genetic Algorithm 

Over the last few decades genetic algorithms have been widely employed as 

effective search and optimization methods in numerous fields of applications (Safe et 

al., 2004). In this chapter a simple genetic algorithm is designed for solving COPs. The 

design of the SGA and its components are discussed in this section.   

In the SGA, the solutions for the initial population Pt=0 are randomly generated 

within the boundary of each decision variable. The individual solutions are evaluated 

and ranked based on their fitness. A set of individuals is selected as parents to produce 

offspring using crossover with probability of crossover PC. This new population is 

called tC . A percentage of individual solutions from tC  with PM probability apply 

mutation. After mutation, the population tC is called as tC ′ . To generate a new 

population Pt+1
, the parent population Pt is merged with the evolved child population 

tC ′ and then they are ranked based on fitness. The top ranked individuals form the next 

generation Pt+1. The process is continued until the termination condition is reached.  
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The main steps of the proposed algorithm are as follows. 

Pseudo code: Simple Genetic Algorithm (SGA). 

Set generation no. t = 0; 

Generate the initial population Pt at random; 

REPEAT 

Evaluate the fitness of each individual in Pt and rank them; 

Apply tournament selection on Pt to select the parents then apply crossover (with PC  

 probability) and generate tC ; 

Apply mutation on tC  with PM probability and generate tC ′ ; 

Produce generation Pt+1 from Pt and tC ′ ; 

Set  t= t + 1; 

UNTIL the terminating condition is reached. 

 

The different components of the algorithm are discussed below. 

 

3.2.1 Representation  

As the search spaces of the optimization problems are continuous and the variables 

under consideration are real, in this research floating point/real-coded representation is 

used to represent the solutions. 

 

3.2.2 Fitness Evaluation and Constraint Handling 

For optimizing a constrained problem, the search technique should find not only the 

feasible solutions from the search space but also the optimal solutions. So, while 

evaluating solutions in solving COPs, attention should be given to both the objective 

function value and the constraint violations of the solutions. For each individual, the 

objective function value and total Constraint Violation (CV) are calculated. While 
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solving these problems the constraints are normalized in some cases. The total CV of an 

individual is considered here as the sum of absolute values by which the constraints are 

violated, however they are not normalized in this research. The pair-wise comparison 

(Deb, 2000) is used in ranking and selection, which indirectly handles the constraints. In 

the pair-wise comparison, the best infeasible individual is assigned worse fitness than 

the worst feasible individual. As such, while comparing two individuals an infeasible 

individual is penalized and a feasible individual is rewarded, so the constraints are 

handled indirectly. Details of this constraint handling technique are discussed in section 

2.4.3. 

 

3.2.3 Selection 

As discussed in chapter 2, there are several opportunities for biasing the selection 

for mating. To design the SGA, tournament selection (Bäck et al., 2000) is used. The 

tournaments are played between two individual solutions and the better solution is 

chosen as a parent. The other parent is also selected in the same way. It is shown in 

Goldberg and Deb (1991) that the tournament selection has better convergence and 

computational time complexity properties compared to any other reproduction operator 

that exists in the literature. Still tournament selection dominates in the practice of GA.  

 

3.2.4 Crossover  

With crossover, usually new offspring are generated with an expectation that they 

combine the best features from the parents. Crossover is applied to a set of individuals, 

each selected with a probability PC.  

The Simulated Binary Crossover (SBX) operator proposed by Deb and Agrawal 

(1995) is used here. Based on the search features of the single-point crossover used in 

binary-coded genetic algorithms, the SBX operator respects the interval schemata 

processing, in the sense that common interval schemata of the parents are preserved in 
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the offspring (Deb and Agrawal, 1995). SBX operator performs well in solving 

problems having multiple optimal solutions with a narrow global basin (Deb, 2000; Deb 

and Agrawal, 1995). Details of SBX are discussed in section 2.4.2.  

 

3.2.5 Mutation 

After crossover, the mutation operator is applied to a certain percentage of 

individuals (with mutation probability PM). In SGA, the parameter-based mutation 

operator is used, which allows the selected individual to explore its neighborhood. In 

chapter 2 this mutation is discussed, and more details of it can be found in (Deb, 2000; 

Deb and Goyal, 1996). Deb (2000) has reported that for solving optimization problems 

in real space with arbitrary feasible regions shape, real-coded GAs with SBX and a 

parameter-based mutation operator have been found to be useful. 

 

3.3 Experimental Studies 

In this section, the performance of simple genetic algorithms in solving a set of 

well-known benchmark problems is studied. Then the effects of different components 

on the performance of the algorithm are analyzed in quest of improved performance. 

 

3.3.1 Benchmark Problems 

The performance of SGA is evaluated using a set of 13 benchmark problems, 

studied by Michalewicz and Schoenauer (1996), Koziel and Michalewicz (1999), and 

further studied by Runarsson and Yao (2000) and others. The benchmark problems 

include different forms of objective function (linear, quadratic, cubic, polynomial, 

nonlinear) and different number of variables (n). The problems g02, g03, g08, and g12 

are maximization problems and the other nine are minimization problems. The 

maximization problems are transformed into equivalent minimization problems. The 
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main characteristics of the benchmark problems are presented in Table 3.1, and the 

detailed mathematical representations are provided in the Appendix A. 

The equality constraints of g03, g05, g11, and g13, hj(X)=0 have been converted 

into inequality constraints −δ ≤ hj(X) ≤ δ, where δ is a small tolerance value. The use of 

δ allows the algorithm to find some feasible solutions easily by increasing the solution 

space. This is a common practice with equality constraints in EAs (Deb, 2000; Elfeky et 

al., 2006). 

Table 3.1: Characteristics of the test problems. 

Fn (n) Obj. Fuc. ρ LI NI LE NE AC Optimal 

g01 13 Quadratic 0.0111% 9 0 0 0 6 -15.000 

g02 20 Nonlinear 99.8474% 0 2 0 0 1 -0.803619 

g03 10 Polynomial 0.0000% 0 0 0 1 1 -1.000 

g04 5 Quadratic 52.1230% 0 6 0 0 2 -30665.539 

g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498 

g06 2 Cubic 0.0066% 0 2 0 0 2 -6961.814 

g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306 

g08 2 Nonlinear 0.8560% 0 2 0 0 0 -0.095825 

g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630 

g10 8 Linear 0.0010% 3 3 0 0 6 7049.331 

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750 

g12 3 Quadratic 4.7697% 0 93 0 0 0 -1.000 

g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053950 

ρ = Ratio between the feasible space and the search space, LI = Linear Inequalities, NI = Nonlinear 
Inequalities, LE = Linear Equalities, NE = Nonlinear Equalities, AC = Active Constraints. 

 

3.3.2 Experimental Results and Discussions 

In this study the performance of SGA is investigated in solving constrained 

optimization problems. As the crossover operator is mainly responsible for the search 

aspect of genetic algorithms, even though mutation operator is also used for this 

purpose sparingly (Deb, 1999), a high probability for crossover (PC = 0.90) is used ( as 
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in Deb (2000)) and a probability for mutation (PM = 0.2). The number of fitness 

evaluations is set to 350,000 as in (Elfeky et al., 2006; Runarsson and Yao, 2000), 

which allows a maximum of 3500 generations with a population size of 100.  

The algorithm is executed for 30 independent runs with different seeds to solve each 

of the test problems. The best, median, mean, standard deviation (st.dev.), and worst 

results, as well as execution time, for the test problems are given in Table 3.2. An ‘×’ in 

the Table indicates that the algorithm did not find any feasible solution. 

Table 3.2: Statistics for 30 independent runs of the SGA. 

Fn Optimal Best Median Mean St.Dev. Worst Time(s)

g01 -15.000 -14.998 -13.815 -13.990 9.41E-01 -11.780 4.70 
g02 -0.803619 -0.782757 -0.739116 -0.724945 3.93E-02 -0.632602 17.43 
g03 -1.000 × × × × × 4.14 
g04 -30665.539 -30664.743 -30662.894 -30662.347 2.55E+00 -30653.675 2.92 
g05 5126.498 × × × × × 3.52 
g06 -6961.814 -6945.396 -6920.632 -6920.196 1.61E+01 -6888.569 3.45 
g07 24.306 25.615 27.755 28.310 2.41E+00 36.594 6.50 
g08 -0.095825 -0.095825 -0.095825 -0.095825 5.32E-09* -0.095825 2.93 
g09 680.630 680.808 681.648 681.821 6.50E-01 683.944 5.32 
g10 7049.331 7166.255 7823.128 8376.182 1.45E+03 13284.257 3.12 
g11 0.750 × × × × × 2.55 
g12 -1.000 -1.000 -1.000 -1.000 1.81E-10* -1.000 50.57 
g13 0.053950 0.457442 0.922264 1.031979 6.59E-01 3.854752 4.29 

*Though the best, worst, median, and mean results are the same, standard deviation is positive due to 
rounding error. 

 
From the results given in Table 3.2, it can be seen that SGA has achieved the 

optimum in two problems (g08 and g12). In four problems (g01, g04, g06 and g09), the 

best results are within 1% of the optimum. The achieved results are within 10% of the 

optimum in three test problems (g02, g07 and g10).  In one problem (g13), the result is 

far away (747.90%) from the optimum, and for three problems (g03, g05 and g11) SGA 

could not find any feasible solutions. The mean results are also very far from the 
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optimum in most of the problems; on average they are 186.54% from the optimum. In 

some problems the percentage deviation of the achieved mean from the optimum is very 

high, such as 1812.84% for g13, 18.82% for g10, 16.47% for g07, 9.79% for g02 and 

6.73% for g01.  

For g12, SGA achieved optimum in early generations for every run, and so SGA is 

allowed to execute maximum 500 generations for this problem. This problem involves 

729 constraints and took SGA the longest time to solve it (on average 50.57 seconds).  

Though the performance of SGA is not very pleasing, its simplicity of design means 

that SGA converges prematurely and is fast in solving the test problems. On average it 

took only 8.57 seconds to solve each problem. 

The performance of SGA is better for problems having considerable feasible space 

(ρ > 1%) than for problems with tiny feasible space. For calculating the ratio of feasible 

space over the search space (ρ) a metric is used, suggested by Michalewicz and 

Schoenauer (1996): SFρ /=  where S is the number of random solutions generated 

(1,000,000 in this case), and F is the number of feasible solutions found (out of the 

total randomly generated solutions). For the problems with considerable feasible space, 

for example g02 (ρ =99.85%), g04 (ρ =52.12%), g12 (ρ =4.77%), the achieved best 

results are on average within 0.866% of the optimum and the mean results are on 

average within 3.267% of the optimum. On the other hand, in those problems with tiny 

feasible space (ρ < 1%) the performance of SGA is not so good. In three problems, it 

could not find any feasible solutions. For the other seven problems, the achieved mean 

results are on average 265.092% from the optimum. This shows SGA suffers in solving 

problems with tiny feasible space.   

It is worth noting here that there are four problems (g03, g05, g11, and g13) 

involving equality constraints. The ratios of the feasible space over the search space for 

these problems are 0.00%. The existence of the equality constraints reduces the size of 

the feasible space. For this type of problems SGA is seriously deficient. The algorithm 

has found feasible solutions in only one problem, though the achieved best result is 

747.90% away from the optimum.  
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The convergence curves of best and mean result of the population for 3500 

generations with SGA for different problems are given in Figures 3.1−3.10 (g03, g05, 

and g11 are not shown, because SGA could not find any feasible solutions for these 

problems). 
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Figure 3.1: Convergence Curve of the best and mean objective value for problem g01. 
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Figure 3.2: Convergence Curve of the best and mean objective value for problem g02.  



Chapter 3. Genetic Algorithms in Solving COPs  

61 

-30800

-30600

-30400

-30200

-30000

-29800

-29600

-29400

-29200

-29000
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

 

Figure 3.3: Convergence Curve of the best and mean objective value for problem g04. 
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Figure 3.4: Convergence Curve of the best and mean objective value for problem g06. 
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Figure 3.5: Convergence Curve of the best and mean objective value for problem g07. 
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Figure 3.6: Convergence Curve of the best and mean objective value for problem g08 
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Figure 3.7: Convergence Curve of the best and mean objective value for problem g09. 
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Figure 3.8: Convergence Curve of the best and mean objective value for problem g10. 
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Figure 3.9: Convergence Curve of the best and mean objective value for problem g12. 
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Figure 3.10: Convergence Curve of the best and mean objective value for problem g13. 

 

3.3.3 Effects of Parameters and Operators  

Genetic algorithms work efficiently when the right values for parameters such as 

probability of crossover, probability of mutation, and population size are chosen (Bingul 

et al., 2000). When these parameters are set optimally, it is very beneficial as the GA 

would yield better or similar fitness values with similar or less computational cost. 

In this section, a number of experiments are reported to analyze the effects of 

different parameters used in SGA e.g. the effect of probability of crossover (PC), 

probability of mutation (PM), population size. In the following four sub-sections, these 
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experiments are discussed in detail. 

 

3.3.3.1 Probability of Crossover (PC)  

Crossover operator is considered as the main search operator of genetic algorithms. 

It is one of the most important features distinguishing it from other search algorithms 

(Tian, 2001). In this section, the effect of crossover on SGA with different probabilities 

is investigated.  

The performance of the algorithm is tested (over 30 runs each) with values for PC of 

(0.80, 0.85, 0.90, and 0.95) for all the test problems. The other parameters (PM=0.20, 

population size = 100) remain the same. A higher value of PC allows more offspring to 

be generated from the parents, which may help the algorithm to perform better. 

However, after a certain level, higher values of PC may cause diversity reduction in the 

population. While analyzing the results, if we consider the best results, with lower PC = 

0.80 SGA achieved better result in only one problem (g13). With a large value of PC 

(0.95) it only achieved better results in g06. For two problems g02 and g09 it achieved 

better results with PC = 0.90, and with PC = 0.85 SGA achieved better results in four 

problems (g01, g04, g07 and g10). The performance remains the same for all values of 

PC in g08 and g12; in those problems, SGA achieved the optimum in early generations. 

For the other three problems SGA could not find any feasible solutions.  

Sometimes, the best result may be an outlier for the population based stochastic 

algorithms. If we consider the mean results, with very high value of PC (0.95) SGA 

achieved better results in g06. For two problems (g07 and g10) SGA performs better 

with lower PC (0.80). In g01 and g04 SGA achieved better mean results using PC = 

0.85. For three problems (g02, g09, and g13) SGA achieved better results with PC = 

0.90.   

After analyzing the results, we can conclude that for better performance of SGA we 

should use neither too low nor too high value of PC. In this experiment, SGA achieved 

better results mostly using PC in the range of (0.85 − 0.90). However, even with these 
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parameters SGA still suffers in solving the equality constrained problems. For three 

problems, it could not find any feasible solutions. The average deviation of the mean 

results is still more than 150% from the optimum results with all values of PC. 

Figure 3.11 shows the convergence curve of SGA using different values of PC (0.80, 

0.85, 0.90, and 0.95) for problem g04. In some problems, ρ is very high (e.g. g02, ρ 

=99.84%), in some other problems ρ  is very low (0.00%). Here problem g04 is chosen 

as an example as for this problem ρ is 52.123% which is in between the extreme values. 

The curve shows that SGA using PC = 0.90 converges more slowly but with better final 

performance.   
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Figure 3.11: Convergence Curve of SGA using different values of PC for problem g04. 

 

 

3.3.3.2 Probability of Mutation (PM) 

In genetic algorithms, mutation is used to introduce genetic diversity from one 

generation of a population to the next generation. Mutation is known as the 

“background” operator in the genetic algorithm, and it has a full range of alleles so that 

the individuals are not trapped in local optima (Holland, 1975). Without mutation, the 
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evolution would be stagnated because no new variations are created (Soon et al., 2008).  

In SGA, after crossover a certain percentage of the individuals are randomly 

selected to apply mutation with a probability PM.  The performance of the algorithm 

(over 30 runs each) is tested with different values for PM of (0.05, 0.1, 0.15, 0.20, 0.25, 

and 0.3) while keeping the other parameters the same (PC = 0.90, population size = 

100).  

With higher values of PM more individuals are allowed to apply mutation, ensuring 

more diversity in the population. Diversity is an important issue for the performance of 

any population based search algorithms. With the increase of PM, SGA performs better 

up to a certain level, then the performance does not improve significantly. Considering 

the best results achieved by SGA with different PM, SGA performed better with higher 

value of PM. For g03 and g06 it has achieved better results using PM=0.30. For some 

problems like g08 and g11 with all values of PM, it achieves the same results. If we 

consider the mean values of the 30 runs, SGA achieves better results in g01, g02, g09 

and g10 with PM=0.25, and with PM = 0.20 it achieves better results in g13. Though the 

performance of SGA has improved with different values of PM, the overall performance 

of SGA is still not convincing. The average deviation of the mean results is still more 

than 180% from the optimum with any value of PM.  

Figure 3.12 shows the performance of SGA with different values of PM for problem 

g04. It can be seen that the best results are achieved by SGA after PM = 0.05. Then the 

results remain almost the same. However if we consider the mean results, it is very clear 

that the performance improves up to PM = 0.25. After that, the performance does not 

improve significantly.  
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Figure 3.12: Effect of probability of mutation (PM) on problem g04. 

 

3.3.3.3 Population Size  

Population size is another important parameter for the performance of GAs. If the 

population size is too small, then an insufficient number of individuals are sampled 

during the evolutionary process and the algorithm would not yield the best possible 

solution. On the other hand, if the population size is too large, the algorithm becomes 

inefficient as more tests are performed than necessary for each generation (Bingul et al., 

2000). In this section, the performance of SGA is tested with different population sizes. 

The aim of the experiment is to see how SGA behaves with different population sizes, 

whether SGA could achieve good quality solutions with higher population size.  

To find the answers, SGA is executed with different population sizes (40, 100, 500, 

1000, and 1500) for 30 independent runs for each problem. The other parameters remain 

constant (e.g. PC = 0.9, PM = 0.20). To keep the budget of fitness evaluations fixed 

(350,000), the maximum numbers of generations 8750, 3500, 700, 350 and 233 are used 

respectively.  

The experimental results show that the performance of the algorithm improves with 

the increase of the population size, though it increases the computational time per 
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generation. With higher population size, the population becomes more diverse which is 

helpful for better performance of the algorithm. 

The achieved results of SGA with population size of 1500 (the average % deviation 

of best results from optimum per problem is 13.42874%) are better than the results with 

low population size (e.g. the average % deviation of best results from optimum per 

problem is 75.78% with population size 100). In problems g07, g09 and g13, the best 

results are better with population size of 1500. Considering mean results, again the 

results with 1500 are better in g04, g05, g07 and g13. With higher population size 

(1500), SGA achieves feasible solutions in g05, however the mean results are still 

2.17% from the optimum. For the higher population sizes SGA needs more 

computational time per generations: with population size 1500 it took on average 5.94 

times more execution time than with population size 100. Though with huge population 

size, SGA seems to improve its performance, still it could not solve half of the equality 

constrained problems such as g03 and g11. The solution quality for other equality 

constrained problems is also not satisfactory; the achieved best result is still 146.03% 

from the optimum in g13.  

In the experiments, considering the size of the test problems, maximum population 

size is considered up to 1500. The experimental results show that although the 

performance is improved with higher population size, SGA could not overcome its 

limitations for the problems with equality constraints. However the performance of the 

algorithms may be improved with further increase of the population size.  

3.3.4 The effect of more Fitness Evaluations 

So far, SGA is executed up to 350,000 fitness evaluations. It would be interesting to 

see whether SGA can improve the solutions if it were allowed to run for more fitness 

evaluations. To investigate this, the algorithm is executed up to 500,000 fitness 

evaluations.  

For most of the problems, the results are improved. However, the improvements are 

not huge, and the results are still far from optimum in most of the problems. For 
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problems g01, g04, g06, and g09, the best results are improved by a maximum of 

0.03%. Only in g07 has it improved the best results by more than 1% (2.88%), however 

the result is still 2.34% from the optimal.  

While considering mean results, for all these problems the greatest improvement is 

made in g01, it is still only 0.60986%. The achieved mean results are still more than 5% 

from the optimum in several problems e.g. g01 (5.94%), g02 (9.13%), g07 (15.35%), 

and g10 (18.37%). SGA improved its performance, by achieving feasible solutions in 

problems g03, and g11. However, the mean results of g03 and g11 are still 98.26% and 

15.46% away from the optimum respectively. In g13, the result remains the same, 

where the mean result is 1812.84% far from the optimum. For g05, still it could not find 

any feasible solutions at all. 

This experimental study shows that it is unlikely to find good quality solutions even 

with the additional fitness evaluations. 

 

3.4 Chapter Summary 

This chapter presents a simple genetic algorithm for solving constrained 

optimization problems. A set of benchmark problems is used to investigate the 

performance of the algorithm. Although SGA is fast and achieved optimum results in 

two problems out of a set of 13, the results are not convincing enough for practical use 

of the current version of the algorithm. SGA suffers in solving problems with tiny 

feasible space. Especially when the test problems involve equality constraints, the 

performance of SGA is very poor. For the equality constrained problems it could not 

solve most  problems, and the performance is also not satisfactory for the remaining 

problems.  

The effect of different parameters on the performance of the algorithm is 

investigated. Although the results can be improved with additional computational cost, 

SGA is still unlikely to find good quality solutions for several problems.  

The experimental results demonstrate that there is a need for improved algorithms in 
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solving the constrained optimization problems. Special measures should be taken while 

solving problems with tiny feasible space, especially for problems involving equality 

constraints. Improved algorithms, and different techniques to enhance the performance 

of the algorithm are discussed in the next few chapters.  

 

 



 

 

Chapter 4                                                                

Agent-based Evolutionary Algorithms  

In this chapter, a new agent-based evolutionary algorithm is proposed for solving 

constrained optimization problems, where the agents have the ability to independently 

select a suitable Life Span Learning Process (LSLP). Each agent represents a candidate 

solution of the optimization problem and tries to improve its solution through co-

operation with other agents. Evolutionary operators consist of only crossover and one of 

the self-adaptively selected LSLPs. The performance of the proposed algorithm is tested 

on a set of benchmark problems, and the experimental results show convincing 

performance. 

This chapter discusses the new algorithm, the different components of the algorithm, 

and the related issues. The experimental studies are presented in the next chapter. 

 

4.1 Introduction  

Many real world decision processes require solving optimization problems, which 

may not contain nice mathematical properties required by some solution techniques. 

Most of these problems have different types of constraints involving a set of equalities, 

non-equalities or both. The difficulties in solving these constrained optimization 

problems arise from the challenge of finding good feasible solutions. Solving this type 

of problems has become a challenging area in computer science and operations research 

due to the presence of high dimensionality, nonlinear parameter interaction, and 

multimodality of the objective function as well as due to the physical, geometric,  and 
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other limitations of different constraints (Liang and Suganthan, 2006).   

Evolutionary Algorithms (EAs) have brought a tremendous advancement in the area 

of computer science and optimization with their ability to solve many complex 

problems (Sarker et al., 2003). Genetic algorithms, the most well known branch of EAs, 

have been successfully applied to many numerical and combinatorial optimization, 

classifier system, and engineering problems (Goldberg, 1989; Michalewicz, 1994; 

Sarker et al., 2003). GAs are stochastic algorithms which simulate both the natural 

inheritance by genetics and the Darwinian strive for survival (Michalewicz and Janikow, 

1996). Nevertheless, most GAs developed are unconstrained search techniques and lack 

an explicit mechanism to bias the search in constrained search spaces (Liang et al., 

2006). Furthermore traditional GAs suffer from slow convergence to locate a precise 

enough solution because of their failure to exploit local information (Tang et al., 2007), 

and face difficulties solving multi-modal problems which have many local solutions 

within the feasible space (Takahama and Sakai, 2006). Hence it is well established that 

they are not well suited for fine tuning search (Krasnogor and Smith, 2005; Molina et 

al., 2005; Muruganandam et al., 2005; Zhong et al., 2004) and so, to improve the 

performance, hybridization of algorithms has been introduced in recent times.  

The improved performances are achieved by hybridizing evolutionary algorithms 

with Local Search (LS) techniques: so-called Memetic Algorithms (MAs). MAs have 

been successfully applied across a wide range of problem domains such as 

combinatorial optimization, optimization of non-stationary functions, and multi-

objective optimization (for details see chapter 2). They converge to high quality 

solutions as well as search more efficiently than their conventional counterparts (Tang et 

al., 2007). MAs are inspired by Dawkins’ notion of a meme (Dawkins, 1976) defined as 

a unit of information that reproduces itself as people exchange ideas. One of the critical 

issues regarding the performance of MAs is the selection of appropriate LS while 

hybridizing LS with GAs. If the selection of LS is not appropriate for a particular 

problem then MAs may not perform well; the performance may even be worse than 

GAs alone (Davis, 1991; Hart, 1994; Ong and Keane, 2004). Many types of local 

searches are available in the literature but it is very difficult to know which type is 
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appropriate for a particular problem.  

Agent-based computation introduces a new paradigm for conceptualizing, designing 

and implementing intelligent systems, and has been widely used in many branches of 

computer science (Ferber, 1999; Sycara, 1998). The agents are discrete individuals 

situated in an environment having a set of characteristics and rules to govern their 

behavior and interactions. They sense the environment and act on it in pursuit of a set of 

goals or tasks for which they are designed (Stan and Art, 1997).  

To mitigate the shortcoming of MAs mentioned above, in this chapter an Agent-

based Memetic Algorithm (AMA) is proposed for solving constrained optimization 

problems. Here an agent represents a candidate solution of the problem, carries out 

cooperative and competitive behaviors, and selects the appropriate local search 

adaptively to find optimal solutions for the problem in hand. In the proposed algorithm, 

the concept of MAs follows the model of adaptation in natural systems, where an 

individual of a population may be improved through self-learning along with the 

evolutionary adaptation of the population (Krasnogor and Smith, 2005; Moscato, 1989). 

Recently, a number of agent-based hybrid algorithms have appeared in the literature 

for solving different problems (for details see chapter 2). However, to the best of our 

knowledge, the application of agent-based memetic algorithms to COPs is new in the 

literature. The real potential of AMA has not been fully explored yet, and very little has 

been done in this area.  

In the proposed framework of agent-based memetic algorithm, for each agent, the 

neighborhood agents are compared with others to find the winner (like competition) 

with whom it exchanges genetic materials (like cooperation) through the well known 

simulated binary crossover proposed by Deb and Agrawal (1995), and learn through the 

proposed different types of life span learning processes, to solve a COP with a suitable 

constraint handling technique. Note that it does not use any mutation operator, as the 

life span learning process would cover the purpose of mutation.  

The life span learning processes are designed based on several local and directed 

search procedures. An agent chooses a LSLP as a local search operator self-adaptively. 
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As we generally see in GAs, an individual in a generation produces offspring and the 

offspring may be mutated to change the genetic materials. In reality, beside 

reproduction, an individual learns and gains experiences in different ways during its life 

time. This process is represented by the proposed LSLPs. As MAs rely on the concept 

of natural evolution and learning, the proposed algorithm makes it even more 

meaningful. An individual in the population of a certain generation lives for a certain 

period of time, and explores the environment independently and interacts with other 

individuals in many different ways to enhance learning. As an individual may decide to 

have a particular learning process based on its belief, a number of different LSLPs are 

incorporated in AMA. The individual’s ability to use its belief, to interact with the 

environment, and to make independent decisions for exploration and learning, qualifies 

an individual to be called an agent in the population. 

In AMA, the agents are arranged in a lattice-like environment, as for cellular genetic 

algorithms (Alba and Dorronsoro, 2005; Nakashima et al., 2003; Whitley, 1993) which 

use a lattice-based population. In cellular GAs, each individual is located in a cell of the 

lattice. Except for the neighborhood structure, all operations of cellular GAs and 

traditional GAs are identical. The problem of premature convergence in cellular GAs is 

also similar to the traditional GAs (Folino et al., 2001). Though AMA uses a lattice-

based population for the individuals, here each individual is considered as an agent, 

which has its own purpose and behaviors. Unlike traditional genetic operators 

(selection, crossover and mutation), in the proposed algorithm, the agents use SBX only 

with its neighboring agents through cooperation and competition, and apply LSLP.  

This work has some similarities with Ong and Keane (2004). Both use Meta-

Lamarckian learning, applying MA to optimization problems. Both use the concept of 

multi-method LSs. AMA differs from Ong and Keane (2004) in several ways, however. 

The adaptation mechanism in MA (Ong and Keane, 2004) is adaptive type whereas  

AMA is self-adaptive type. A heuristic approach (named as Subproblem Decomposition) 

used in MA with Meta-Lamarckian learning (Ong and Keane, 2004) selects a meme 

based on the knowledge gained from only the k nearest individuals. However, in AMA 

an agent selects a meme/LSLP based on the knowledge experienced by the parents. So 
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the adaptation level of both the algorithms is Local-level adaptation (Ong et al., 2006). 

In the framework of MA with Meta-Lamarckian learning (Ong and Keane, 2004), it 

includes LSs with other genetic operators such as selection, mutation and crossover. 

AMA only uses crossover and life span learning with a constraint handling technique. 

The merit function for performance of the local search techniques proposed in AMA is a 

relative measure based on the objective function value for the feasible agents and 

constraint violations for the infeasible agents from their initial condition, details can be 

found in section 4.6. However the reward function used in Ong and Keane (2004) uses a 

relative reward parameter with the simple measurement of fitness improvement. 

Importantly, AMA and Ong and Keane (2004) deal with different types of optimization 

problems: AMA is designed for constrained real-valued optimization problems while 

(Ong and Keane, 2004) considers mainly real-valued function optimization with only 

variable bounds.  

To test the performance of the algorithms a number of state-of-the-art test problems 

are solved and the results are compared with several existing well-known algorithms. 

The comparisons show that the results of AMA are quite acceptable quality. The 

detailed experimentation of the proposed algorithm is described in the next chapter.  

The rest of this chapter is organized as follows. The next section describes the agent-

based evolutionary algorithms and related issues. Section 4.3 presents the proposed 

AMA.The AMA operators are explained in section 4.4. The fitness evaluation and 

constraint handling, and selection of LSLPs are described in section 4.5 and 4.6 

respectively. Finally the last section concludes the chapter.  

 

4.2 Agent-based Evolutionary Algorithms 

As mentioned in chapter 2, the agent-based evolutionary algorithms can be of two 

different approaches. The first type is population based evolutionary algorithms, for 

solving complex decision problems, where the individuals of the population are defined 

as agents (Siwik and Kisiel-Dorohinicki, 2006; Zhong et al., 2004). The second type is 
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the multi-agent system that incorporates an evolutionary algorithm as a search technique 

to improve certain functionality of some selected agents or the entire system (Liu and 

Frazer, 2002). There is a long debate about the first type whether we should call it an 

‘agent based system’ or what does it add to EAs by naming it an ‘agent based EA’? This 

section discusses how an agent-based EA can be different from an independent EA.  

Here the agents are defined a bit differently. The individuals in the population of 

EAs are not agents rather, based on the individual’s belief and learning experiences, 

each agent stands (or supports) for one of the individuals of the population. A 

population of agents is endowed with a set of individualistic and social behaviors, in 

order to explore a local environment within the solution space. The combination of 

agents’ local view exploration with EAs global search ability would establish a superior 

balance between exploitation and exploration when solving complex optimization 

problems. In fact, when we define the individual as an agent we can bring anything (like 

rules for communication, cooperation and competition, intelligence, memory, and 

learning) onboard which the traditional EAs do not deal with. Davidsson et al. (2007) 

indicated that we must capitalize the strength of two approaches in a new hybrid method 

as they complement each other. The agent activities, which can be considered with EAs 

in the context of optimization problem solving, are discussed below. 

Environment of Agents 

The environment includes the agent’s social network structure, and the size of the 

neighborhood for interactions. The network topology usually includes ring, two-

dimensional lattice, random small-world, and star type. However, we may consider any 

special structure such as self-organizing network. In optimization problem solving, the 

two-dimensional lattice-like structure is widely used. There are some similarities of this 

structure with cellular genetic algorithms (Nakashima et al., 2003). The neighborhood 

size controls the amount of interaction and diversity in the entire population. 

Behavior of Agents 

The agents can be cooperative or competitive. Cooperative agents share information 
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with their neighboring agents, whereas competitive agents compete with the 

neighboring agents. The quality of an agent is represented by fitness value or energy 

(Zhong et al., 2004). An agent with a higher fitness value has a better chance of survival 

in its neighborhood. De Jong (2008) stated that the agent behavior is basically a 

combination of “nature and nurture”, those are both inherited and learned components. 

Learning of Agents 

De Jong (2008) indicated that evolution operates at the population level while 

“lifetime learning” occurs at the individual (agent) level. The agents learn throughout 

their life span which improves their quality (fitness value). This learning process can be 

chosen by the individual agents independently. For example, in optimization problem 

solving, the local search techniques could be the learning processes for an agent. Vasile 

and Locatelli (2008) indicated that each agent performs a sequence of actions at every 

generation according to their defined behavior such as inertia, follow-the-tail, random-

step, linear blending and quadratic blending. These basically represent local search 

techniques, which is labeled as learning processes in this research.  

Reasoning Capability of Agents 

It is well known that to move in the direction of producing the fastest rate of 

improvement in the fitness value is not always best (Thornton and Boulay, 1999). So an 

agent must find reasoning for its next move. An agent may apply either quantitative or 

qualitative judgment (or both) based on its own belief, social interaction, knowledge and 

intelligence. In optimization problem solving, the choice of self-learning process may 

be based on either simple rules or chosen adaptively (like adaptation to environment 

changes). The adaptation process also requires some rules or procedures to follow. To 

make a rational choice of self-learning process, the knowledge must be retrieved, 

reused, revised and retained. That means it requires systematic archiving of relevant 

information. Bajo and Corchado (2006) defined the knowledge revising process as the 

reasoning cycle.  

The reasoning capability of agents will make a clear difference between the agent-
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based EAs and EAs alone. It is known that the incorporation of MAS with EAs would 

increase the computational time per generation of the new algorithm. However it is 

expected that a carefully designed hybrid algorithm (MAS plus EAs) would not only 

improve the quality of solution but also reduce the overall computation time, as is the 

case for memetic algorithms (Hasan et al., 2008).  

 

4.3 Agent-based Memetic Algorithm (AMA) 

Memetic algorithms can be considered as a marriage between the population-based 

global search and the heuristic-based local search (Krasnogor and Smith, 2005; 

Moscato, 1989). The global search explores the search space while the local search 

exploits the obtained solution of an individual. This approach may reflect the natural 

adaptation and learning through (Krasnogor, 2002; Krasnogor and Smith, 2005; 

Moscato, 1989): 

• Evolutionary adaptation of the population and 

• Individual localized learning. 

Besides the evolutionary adaptation and learning, certain individuals may develop 

themselves through self-learning and exploiting their own potential. Depending on the 

environment, available resources, opportunities, and self-potential, the individuals 

enhance their performance through different types of learning. This additional learning 

step, which mimics both the natural and artificial knowledge building process, will add 

more useful information than localized learning alone.  

In this research, the agent concept is incorporated with memetic algorithms, where 

an agent stands for a candidate solution in the population. The characteristics of an 

agent can be defined as follows (Liu et al., 2002b):  

• Ability to live and act in the environment. 

• Ability to sense the local environment. 

• Purpose driven. 
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• Reactive behavior. 

In the proposed algorithm, the goal of each agent is to improve its fitness while 

satisfying constraints. Following the natural adaptation process, in the proposed AMA 

the agents improve their fitness by selecting intelligently a suitable self learning 

technique, together with the evolutionary adaptation of the population. As shown in 

Figure 4.1, if the goal is achieved the process stops, otherwise the modified agents go 

through the same process. The agents are arranged in a lattice-like environment E of 

size MM ×  (where M is always an integer). The agents communicate with their 

surrounding neighbor agents and exchange information with them through comparison 

and the crossover operator.  

 

Figure 4.1: Agent-based Memetic Algorithm. 

 

The overlapped small neighborhoods of the lattice-like environment help in 

exploring the search space because the induced slow diffusion of solutions through the 

population (by the competition and co-operations of the agents inside each 

neighborhood) provides a kind of exploration (diversification), while exploitation takes 

place by the individual agents through their learning processes. For a larger size of 

neighborhood, the overlapping of the neighborhoods in comparisons and competitions is 

higher. In this case, the dominant individuals can spread their genetic material 

throughout the population faster than a small neighbourhood, which may result in 
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premature convergence in the population. Different sizes of neighborhood are 

considered in this research and the effect of neighborhood sizes is discussed in the next 

chapter. 

For LSLPs, a number of search processes are proposed as an appropriate choice of a 

LSLP is very important for the performance of the algorithm. In each generation an 

agent may select one of the several LSLPs based on several simple rules. 

AMA involves Meta-Lamarckian learning (Ong and Keane, 2004), rather than 

Lamarckian or Baldwinian learning. In the Lamarckian mechanism, the genotypes are 

modified by learning in order to improve the fitness. The improvement is therefore 

passed to these chromosomes. The idea is that the learnt behavior can directly change 

genotypes. Therefore, the acquired knowledge through learning is directly coded into 

the genotype, and knowledge can be transferred to the offspring (Houck et al., 1996; 

Ishibuchi et al., 2005; Whitley et al., 1994). Baldwinian learning uses improvement 

procedures to change the fitness landscape, but the solution that is found is not encoded 

back into the genotype (Guimaraes et al., 2006; Houck et al., 1996; Ishibuchi et al., 

2005; Spalanzani, 2000; Whitley et al., 1994). In AMA the improved agent (after 

applying LSLP) is sent back into the population which follows the Lamarckian learning. 

Since multiple LSLPs (i.e. LSs) are used during a MA search in the spirit of Lamarckian 

learning, it can be said AMA is following Meta-Lamarckian learning. 
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The main steps of the proposed algorithm are as follows:  

Step 1. Create a random population, which consists of MM × agents. 

Step 2. Arrange the agents in a lattice-like environment.  

Step 3. Evaluate the agents individually.  

− If the stopping criterion has been met, go to step 7; otherwise 

continue.  

Step 4. For each agent examine its neighborhood. 

− Select an agent from its neighborhood and perform crossover. 

Step 5. Select a certain percentage of agents. 

− Select self-adaptively a life span learning process. 

Step 6. Go to step 3. 

Step 7. Stop. 
 

To solve COPs along with crossover operator and different type of LSLPs, a suitable 

constraint handling technique is added to handle the constraints in AMA: they are dealt 

with indirectly in fitness evaluation. As the search spaces of the optimization problems 

and the variables under consideration are real and continuous, real numbers are used to 

represent the solutions. 

The next sections provide details of how these steps are done: crossover in section 

4.4.1, LSLPs in section 4.4.2, fitness evaluation and constraint handling in section 4.5 

and selection of LSLPs in section 4.6.  

 

4.4 AMA Operators 

To search for optimum solutions efficiently, the search techniques of the agents need 

to ensure two essential goals: exploration and exploitation. Exploration ensures that all 

parts of the search space are investigated; exploitation concentrates searching around 

the solutions found so far (Ong and Keane, 2004; Torn and Zilinskas, 1989). In the 

proposed algorithm, the usual selection, ranking, and mutation processes of the 
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traditional MAs/GAs (Guimaraes et al., 2006) are not directly used. AMA only applies 

simulated binary crossover operators (Deb and Agrawal, 1995) and the LSLPs which 

ensures both the goals: exploration and exploitation.  

As every agent interacts with its neighborhood to exchange information, the 

information is diffused to the whole agent lattice. After this exploration, a certain 

percentage of the agents are selected for different types of LSLPs for exploitation of the 

currently obtained solution. During the learning process, the agent tries to improve its 

present fitness by changing the solution vector. It continues to learn for a certain number 

of steps. But if the fitness decreases then it stops the learning process. Details of these 

operators are discussed below. 

 

4.4.1 Crossover 

In the proposed AMA, simulated binary crossover (Deb and Agrawal, 1995) is used. 

SBX operator performs well in solving problems having multiple optimal solutions with 

a narrow global basin, and has been used in different applications successfully (Deb, 

2000; Deb, 2001; Deb and Beyer, 2001). Details of SBX are discussed in chapter 2. 

When this crossover operator is applied on the solution of an agent Ai,j (located in 

location (i,j) in the lattice), the agent searches for its best neighbor agent to mate. The 

better offspring from these two, denoted as Ni,j, is stored in a pool. After completing the 

crossover in a given generation, the fitness of each Ni,j (1 ≤ i,j ≤ M) is compared with its 

parent Ai,j. If the new agent’s solution’s fitness is better than its parent then it takes the 

place of Ai,j and Ai,j dies. Otherwise Ai,j would survive. 

 

4.4.2  Life Span Learning Processes  

After crossover a certain percentage of agents (with PL probability) of the 

population are selected to learn with the designed LSLPs i.e. to apply local and directed 

search. These LSLPs are designed to find better fitness values by changing the variable 
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vector of the existing solutions in different ways.  

Here four different LSLPs are designed. The first is totally random in nature, the 

second is restricted random, the third is gradient-based, and the last is directed search. 

The random LSLPs ensure diversity, and the directed searches try to move towards a 

better solution which is not necessarily in the individual’s locality. The pseudo codes of 

the LSLPs are given below: 

Let an agent Ai,j, residing at cell location (i,j) with solution vector of n variables   

[a1, a2, …, an], be selected for LSLP. Let m be the maximum number of learning steps, 

and Δ is a positive small value for perturbation. The procedure for calculating Δ is 

discussed later in this section.  

LSLP Type 1  

Step 1. Choose a variable r randomly from n variables; 

Step 2. Calculate Δ, add / subtract Δ with the variable value ar and evaluate fitness, 

and detect in which direction the fitness of the solution vector improves; 

Step 3. For  t= 1 to m do 

Step 3.1. Change the variable value ar with Δ according to the direction 

found in step 2; 

Step 3.2. If the fitness deteriorates go to step 1 else go to step 3; 

[End of Step 3 Loop] 

Step 4. Continue the previous steps (1 to 3) until all n variables are modified and 

then go to step 5; 

Step 5. Stop. 
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LSLP Type 2  

Step 1. For all variables r =1 to n do 

Step 2. Calculate Δ, add / subtract Δ with the variable ar and evaluate fitness, and 

detect in which direction the fitness of the solution vector improves; 

Step 3. For t = 1 to m do 

Step 3.1. Change the variable ar with Δ according to the direction found in 

step 2; 

Step 3.2. If the fitness deteriorates, go to step 1 else go to step 3; 

[End of Step 3 Loop] 

[End of Step 1 Loop] 

Step 4. Stop. 

 

LSLP Type 3 

Step 1. For all variables r = 1 to n do  

Step 2. Calculate Δ, add/subtract Δ with the variable  ar and evaluate fitness, and 

detect in which direction the fitness of the solution vector improves; 

Step 3. Change the variable ar according to the direction found in step 2. Find the 

improvement of the fitness for this change; 

[End of Step 1 Loop] 

Step 4. Rank the variables based on their effect on the fitness improvement; 

Step 5. For all n variables starting from highest rank do  

Step 5.1. For t = 1 to m do 

Step 5.2. Change ar as  ar = ar  ±  Δ; based on the direction found in step 2; 

Step 5.3. If the fitness deteriorates go to step 5, otherwise go to step 5.1; 

[End of Step 5.1 Loop] 

[End of Step 5 Loop] 

Step 6. Stop. 
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LSLP Type 4 

Step 1. Find the agent with best fitness in the current generation with solution vector 

[b1,b2,…,bn]; 

Step 2. For all variables r = 1 to n do  

Step 2.1. For t= 1 to m do  

Step 2.2. Calculate Δ; 

Step 2.3. If (ar >br) then  ar =  ar − Δ;  

Step 2.4. If (ar <br) then  ar =  ar + Δ; 

[End of Step 2.1 Loop] 

[End of Step 2 Loop] 

Step 3. Stop.  

 

The first and second LSLPs are random in nature. Suppose an agent with the 

solution vector of three variables [1.4, 2.0, 3.0] is using LSLP type 1. It will generate an 

index number randomly in the range (1−3). Let the random index be 2, and Δ=0.1. a2 

will be changed to a2= a2 ± Δ; if the fitness increases by adding Δ (i.e. now a2=2.1), the 

agent will try to go in this direction by adding Δ for m times. While learning, if the 

fitness decreases or the agent has passed m steps, this learning period stops and the 

cycle starts again. The agent will generate another index number e.g. 3. Now a3 will be 

selected to search for better fitness for maximum m times as before. This process will 

continue until all the variables have been selected at least once.  

The second LSLP type is same as the first, except for the sequence of variable 

selection. Instead of selecting the variables randomly, the variables are selected in 

ascending order of the index i.e. a1 will be selected first then a2 and so on. 

The third LSLP is like the gradient-based search with the central difference method. 

Initially every variable is changed by Δ. Then based on the effect of changing each 

variable on the fitness, the variables are ranked. Variables are selected to be modified 

according to the rank. Suppose by changing a1 in the positive direction, the fitness of 

the solution of the agent is improved by 1%, for a2 the improvement is 20%, and for a3 
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the improvement is 30%. Then the sequence of selection of the variables will be a3, a2, 

and then a1. 

The last type of LSLP is similar to directed search. Here, the selected agent Ai,j with 

solution vector [a1, a2, …, an] tries to reach nearer to the best agent of the previous 

generation with solution vector [b1, b2, …, bn]. It attempts to change each variable a1, 

a2, …, an by Δ to get closer to b1, b2,…, bn in up to m learning steps. 

The first and second types of LSLP of the agent try to exploit the existing solution 

vector by attempting to change the variables. The third type attempts to move the 

solution vector in the direction of gradient and the last type of LSLP leads the agents 

towards the current best solution. The last two LSLPs try to make the agents converge; 

the first two maintain diversity.   

During the LSLP the variables are changed with ± Δ. The direction of Δ (add/ 

deduct) is selected by observing the modified fitness value of the agent. The value of Δ 

should be very small and gradually be decreasing with the generation numbers, to obtain 

a high quality solution (high precision) at the end. Here the value of Δ is considered as Δ 

= |G(0,1/g)| (for the first three types of LSLPs), where G(0,1/g) is a Gaussian random 

number generator with zero mean and standard deviation (1/g), here g is the present 

generation number. In the fourth LSLP 2)(  rr a -b=Δ , where br is the rth solution 

variable of the previous best agent, ar is the rth variable of the present agent and ar is 

updated in each step, which speed up the directed search.  

 

4.5 Fitness Evaluation and Constraint Handling  

Evolutionary algorithms are well-known for their success in solving unconstrained 

optimization problems. For solving constrained problems, an additional mechanism 

must be incorporated into the fitness function or the evolution strategies to guide the 

search direction (Liang and Suganthan, 2006). During the last decade several methods 

were proposed for handling constraints for real valued optimization problems (Coello 

Coello, 2002; Michalewicz and Schoenauer, 1996). A brief discussion of constraint 
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handling techniques can be found in section 2.4.3. 

In AMA, the goal of the individual agent is to minimize the objective function value 

while satisfying the constraints. To improve the fitness, agents first apply crossover 

operators with their best neighbors. The best neighbor is found by using pair-wise 

comparison among the neighbors. The pair-wise comparison indirectly handles the 

constraints. Like Deb (2000) while comparing the fitness of two individual agents it 

considers: 

• A feasible individual is always better than an infeasible individual. 

• If both of the individuals are feasible, then the individual with lower objective 

function value is better (considering minimization problem). 

• If both of them are infeasible, then the one with less constraint violation is better. 

The total Constraint Violation (CV) of an individual is considered here as the 

sum of absolute values by which the constraints are violated.  

It is assumed here that the fitness of the best infeasible agent is worse than the worst 

feasible agents. As such while comparing two agents, the infeasible agent is penalized 

and feasible agent is rewarded, so the constraints are handled indirectly. 

The equality constraints have been converted into inequality constraints −δ≤hj(X)≤δ, 

where δ is a small tolerance value. Actually the presence of equality constraints (with δ 

= 0) makes the feasible region very small compared to the search space, which makes it 

harder for an evolutionary algorithm to find feasible solutions. A large value for δ  

allows the algorithm to find some feasible solutions easily by temporarily increasing the 

feasible space. If the search space is reduced after some generations by decreasing δ, the 

algorithm tries to improve the previous feasible solutions to fit into the re-defined 

feasible space. This dynamically changing value for δ is considered in AMA while 

dealing with equality constraints. Details of the δ calculation will be discussed in next 

chapter. 
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4.6 Selection of LSLPs  

A certain percentage of the agents are allowed to apply different type of LSLPs to 

exploit their current position for improving fitness. To select an appropriate LSLP, the 

agents check a number of simple rules. Initially all the agents are assigned different 

types of LSLPs randomly with Improvement Index (II) zero. Here, II indicates the rate 

of fitness improvement made by a particular LSLP type assigned to an agent. A positive 

value of II indicates that fitness is improved by the LSLP, while a negative value 

indicates deterioration of fitness. When selecting a LSLP, an agent checks the parents’ 

type of LSLPs and II values. The parents may have different type of LSLPs associated 

with II values. The offspring will choose the LSLP which has the higher II value. Since 

an agent selects a LSLP based on the knowledge experienced by the parents the 

adaptation level of  the algorithms is Local-level adaptation (Ong et al., 2006). 

The feasible and infeasible agents are separated for the calculation of II as a feasible 

agent is given more preference than an infeasible one (this indirectly handles the 

constraints). While calculating the II, if an infeasible solution vector of an agent 

becomes feasible after applying a LSLP, the LSLP is rewarded by assigning the 

maximum II value (+1). On the other hand a LSLP is penalized which converts a 

feasible agent to an infeasible one by assigning worst II value (−1). As discussed earlier, 

we should consider the objective function values for feasible agents that remain feasible 

after applying the LSLP, and constraint violations for infeasible agents that remain 

infeasible after the LSLP. Considering minimization problems, if the solution remains 

feasible after the LSLP, the improvement index for feasible agent is then based on the 

fitness values as follows: 

    
LSLP)  before  value  func. (Obj.

LSLP)  after  value  func. (Obj.-LSLP)  before  value  func. (Obj.II =              (4.1) 

Note that II is positive if the objective function value is smaller after LSLP, as desired 

for a minimization problem. 

If an agent with an infeasible solution uses a LSLP which still results in an 

infeasible solution, the improvement index for the infeasible agent is based on total 
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constraint violations (CV) as follows:  

    
LSLP) before CV (Total

LSLP) after CV (Total-LSLP) before CV (TotalII =                                         (4.2) 

The value of II is restricted in the range −1 ≤ II ≤ +1 by assigning values outside this 

range to the boundary values. 

 
 

4.7 Chapter Summary 

This chapter has introduced a new agent-based memetic algorithm for solving 

constrained real-valued optimization problems, by tailoring multi-agent concepts into a 

new memetic algorithm. The individual candidate solutions of problems are represented 

as agents with additional characteristics. Solving constrained real-valued optimization 

by using agent-based memetic algorithm is new in the literature. 

The performance of the algorithm is investigated in solving a set of test problems. 

The details of experimental results, the comparisons with other algorithms, and the 

effect of different components shall be discussed in the next chapter.  

 

 



 

 

Chapter 5                                                            

Experimental Studies of AMA  

The design of a new AMA is discussed in the previous chapter. This chapter reports 

the experimental studies of the algorithm. It provides the detailed results of a set of 

benchmark problems, comparison of the results with other well-known algorithms, and 

the effect on the performance of different components of the algorithm. The results 

show that the proposed algorithm is efficient in solving COPs.  

 

5.1 Introduction  

In the previous chapter, a framework of AMA for solving constrained optimization 

problems has been proposed. In this chapter, the performance of the algorithm is 

investigated by solving a set of 18 test problems which includes five new problems plus 

13 existing well-known problems. The results are compared with four GA based well-

known algorithms (such as Koziel and Michalewicz, 1999; Chootinan and Chen, 2006; 

Farmani and Wright, 2003; and Elfeky et al., 2006), one multi-populated differential 

evolution algorithm (Tasgetiren and Suganthan, 2006) and one Evolutionary Strategy 

(ES) based algorithm (Runarsson and Yao, 2000). In addition to the comparison of the 

best fitness values, statistical significance testing is also carried out. The comparisons 

show that the proposed approach gives mostly improved or comparable results to other 

algorithms.  

A number of experiments are designed and carried out to see the effect of different 

parameters such as probability of LSLP, neighborhood size, crossover, and population 
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size. These experimental results are analyzed, and their findings are discussed. 

The organization of this chapter is as follows: the next section discusses the test 

problems and their solutions using the proposed AMA. Then in section 5.3, the solutions 

of AMA are compared with other algorithms. The contributions of different components 

of AMA are analyzed in section 5.4. Finally the last section concludes the chapter. 
 

5.2 Test Problems and Experimental Results  

A set of 18 benchmark problems is used to test the performance of the proposed 

AMA. The first 13 problems (indicated as g01-g13) are well known in the literature, 

initially studied by Michalewicz and Schoenauer (1996), Koziel and Michalewicz 

(1999), and Michalewicz (1995), and further studied by Runarsson and Yao (2000), 

Chootinan and Chen (2006) and others. The other 5 problems (indicated here as B01-

B05) are new and collected from the literature (Floudas, 1999; Himmelblau, 1972). The 

benchmark problems include different forms of objective function (linear, quadratic, 

cubic, polynomial, nonlinear) and different number of variables (n). The characteristics 

of the test problems are given in Table 5.1 and the detailed mathematical representations 

are provided in the Appendix A and B. The first 13 problems are also presented in Table 

3.1, and repeated in Table 5.1 for convenience. 

The equality constraints hj(X)=0 of g03, g05, g11, g13, B01, and B02 have been 

converted into inequality constraints −δ≤hj(X)≤δ, where δ is a small tolerance value. 

Initially if we assign a very small value for δ, the solution space will be too small for the 

algorithm to find feasible solutions. A large value for δ  allows the algorithm to find 

some feasible solutions easily by increasing the solution space. If the search space is 

reduced after some generations by decreasing δ, the algorithm tries to improve the 

previous feasible solutions to fit into the new solution space. This dynamic value for δ is 

considered in this research while dealing with equality constraints. Initially δ is assigned 

1. After every 16% of the maximum generation number, δ is divided by 10. Finally after 

80% of the generations δ is left fixed at 0. The value of δ is reached to 0 after five steps, 

which allows the algorithms to improve the solutions gradually.  
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Table 5.1: Characteristics of the test problems. 

Fn (n) Obj. Fuc. ρ LI NI LE NE AC Optimal 

g01 13 Quadratic 0.0111% 9 0 0 0 6 -15.000 

g02 20 Nonlinear 99.8474% 0 2 0 0 1 -0.803619 

g03 10 Polynomial 0.0000% 0 0 0 1 1 -1.000 

g04 5 Quadratic 52.1230% 0 6 0 0 2 -30665.539 

g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498 

g06 2 Cubic 0.0066% 0 2 0 0 2 -6961.814 

g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306 

g08 2 Nonlinear 0.8560% 0 2 0 0 0 -0.095825 

g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630 

g10 8 Linear 0.0010% 3 3 0 0 6 7049.331 

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750 

g12 3 Quadratic 4.7697% 0 93 0 0 0 -1.000 

g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053950 

B01 10 Nonlinear 0.0000% 0 0 3 0 3 -47.765 

B02 3 Quadratic 0.0000% 0 0 1 1 2 961.715 

B03 5 Nonlinear 0.0204% 4 34 0 0 4 -1.905 

B04 9 Quadratic 0.0000% 0 13 0 0 6 -0.866025 

B05 2 Linear 79.6556% 0 2 0 0 2 -5.508 

ρ = Ratio between the feasible space and the search space, LI = Linear Inequalities, NI = Nonlinear 
Inequalities, LE = Linear Equalities, NE = Nonlinear Equalities, AC = Active Constraints. 

 

From Table 5.1, it is very clear that the benchmark problems are different in number 

of variables, type of objective functions, and type of constraints. For different types of 

problems, one would expect to use different parameters for population size, and 

probability of learning (PL). Initially the algorithm is run for each of the problems 

varying the population size (M×M) from M = 9 to 25 and PL from 0.05 to 0.25 with an 

increment of 0.05. After this experimentation, the population size and PL are selected 

based on the performance of the algorithm. The population size and the values of PL 

used are given in the last column of Table 5.2. During the LSLP the agent is allowed at 
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most m = 10 steps. The effect of learning steps have been investigated: lower values of 

m slow down the convergence. On the other hand with larger values of m the 

performance does not improve significantly with increase of the additional 

computational cost. The maximum number of generations was set in this experiment at 

3500. The initial solution vectors for the agents are randomly generated within the 

bounds of each decision variable. 

The best, mean, standard deviation, median, and worst of 30 independent runs with 

30 different random seeds are given in Table 5.2. Following the same format used in the 

literature (Elfeky et al., 2006; Koziel and Michalewicz, 1999; Runarsson and Yao, 

2000) the results are rounded to 6 decimal places in g02, g08, g13, B04 and for the 

remaining problems the results are rounded to 3 decimal points. The maximization 

problems here are transformed into equivalent minimization problems. 

All the experiments in this research have been carried using Visual C++ at 

computers with Microsoft Windows XP operating systems (CPU 1.66 GHz, 1 GB 

RAM). 

Table 5.2 shows that among the first 13 problems (g01-g13) the proposed algorithm 

has achieved the optimum for nine (g01, g02, g03, g04, g06, g08, g11, g12, and g13), 

and for the new five problems (B01-B05) it has achieved the optimum for four (B02, 

B03, B04, and B05). Though for the remaining problems AMA could not achieve 

optimum, the achieved best results are very close to the optimum results. In g05, g09 the 

achieved best results are within 0.0005% of the optimum (0.00027%, 0.00015%). For 

g07 and B01 the best results are within 1% of the optimum (0.07817%, 0.02512%). 

Only in g10 is the achieved best result more than 1% from the optimum (3.278%). In 

spite of being a population based stochastic search algorithm, the mean results achieved 

by AMA for the 30 runs are also very impressive. For 9 problems (g01, g03, g04, g06, 

g08, g11, g12, B03, and B05) the achieved mean results are exactly the same as 

optimum. For 7 problems the achieved mean are within 0.5% of the optimum results. In 

the other two problems the mean results are close to the optimum, e.g. within 6.09% in 

g10 and within 2.066% in B01. The other results e.g. median, worst, standard deviations 

achieved by AMA are of very good quality. The results show AMA can be applied 
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successfully in solving different types of COPs.  

Table 5.2: Statistics for 30 independent runs of the proposed AMA. 

Fn Optimal Best Mean St.Dev. Median Worst PS/PL 

g01 -15.000 -15.000 -15.000 0.00E+00 -15.000 -15.000 400/0.2 

g02 -0.803619 -0.803619 -0.803500 2.20E-05 -0.803488 -0.803465 400/0.2 

g03 -1.000 -1.000 -1.000 6.59E-06* -1.000 -1.000 400/0.2 

g04 -30665.539 -30665.539 -30665.539 1.46E-04 -30665.539 -30665.538 289/0.15

g05 5126.498 5126.512 5148.966 6.41E+01 5134.349 5482.953 400/0.2 

g06 -6961.814 -6961.814 -6961.814 2.88E-08* -6961.814 -6961.814 169/0.15

g07 24.306 24.325 24.392 5.18E-02 24.378 24.491 256/0.15

g08 -0.095825 -0.095825 -0.095825 0.00E+00 -0.095825 -0.095825 400/0.2 

g09 680.630 680.631 680.721 5.26E-02 680.726 680.802 324/0.05

g10 7049.331 7280.436 7479.064 9.84E+01 7498.673 7598.573 400/0.2 

g11 0.750 0.750 0.750 2.99E-08* 0.750 0.750 400/0.2 

g12 -1.000 -1.000 -1.000 0.00E+00 -1.000 -1.000 100/0.2 

g13 0.053950 0.053950 0.054020 4.84E-05 0.054130 0.054340 400/0.2 

B01 -47.765 -47.752 -46.777 5.35E-01 -46.633 -45.676 400/0.2 

B02 961.715 961.715 961.722 9.15E-03 961.717 961.75 400/0.2 

B03 -1.905 -1.905 -1.905 7.20E-04 -1.905 -1.901 400/0.2 

B04 -0.866025 -0.866025 -0.866014 9.87E-06 -0.866016 -0.865994 400/0.2 

B05 -5.508 -5.508 -5.508 9.03E-16* -5.508 -5.508 400/0.2 

*Though the best, worst, median, and mean results are the same, standard deviation is positive due to 
rounding error. 

 

5.3 Comparison with Other Algorithms 

To compare the performance of AMA with others, several well-known algorithms 

are considered. The first 13 problems (g01-g13) are widely used in the literature. For 

these 13 problems, AMA is compared with five well-known algorithms namely Koziel 

and Michalewicz’s GA (Koziel and Michalewicz, 1999), Runarsson and Yao’s ES-based 

algorithm (Runarsson and Yao, 2000), Chootinan and Chen’s GA with gradient-based 
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repair method (Chootinan and Chen, 2006), Farmani and Wright’s self-adaptive fitness 

formulation based GA (Farmani and Wright, 2003), Elfeky et al.’s GA (Elfeky et al., 

2006). However these algorithms have not attempted the five new problems. Tasgetiren 

and Suganthan’s multi-populated differential evolution algorithm (Tasgetiren and 

Suganthan, 2006) has solved these problems. 

Koziel and Michalewicz’s GA (abbreviated as KM) depends on a homomorphous 

mapping between an n dimensional cube and the feasible part of the search space. Its 

drawback is that requires an initial feasible solution. 

 Runarsson and Yao (2000) used an interesting ranking procedure known as 

stochastic ranking in their ES-based algorithm and solved the first 13 problems. This 

algorithm is well-known for its very good performance on these 13 problems. This 

algorithm is abbreviated in this thesis as RY. 

 Chootinan and Chen (2006) (abbreviated as CC) used a repair procedure embedded 

into a simple GA as a special operator. They solved only the first 11 problems.  

Farmani and Wright (2003) (indicated here as FW), proposed a self-adaptive fitness 

formulation for constrained optimization and solved only the first 11 problems. They 

designed a two stage dynamic penalty method which applies a small penalty for slightly 

infeasible solutions with reasonable fitness values. In this way, it permits those 

infeasible individuals to survive and be promoted to a feasible region near the optimal 

solution.  

Elfeky et al. (2006) used GAs with a new ranking, selection, and triangular 

crossover methods. The algorithm is abbreviated as TC. The idea behind this new 

method is the exploitation of some features of constrained problems. Here they have 

calculated the constraint violation without penalizing the individuals, and have used this 

information to rank and select the individuals. TC has solved only the 9 problems out of 

first 13 that have only inequality constraints.  

While comparing with different types of algorithms the population size is used 400 

and maximum number of generation is considered 875 to ensure the same number of 

fitness evaluations (350,000) used by the other algorithms (Chootinan and Chen, 2006; 
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Elfeky et al., 2006; Farmani and Wright, 2003; Koziel and Michalewicz, 1999; 

Runarsson and Yao, 2000) for the first 13 problems. Crossover is applied to all agents 

and the probability of LSLP (PL) is 0.2 in all tests.  

Table 5.3 gives the results (best, mean, standard deviation) of RY, KM, CC, FW, TC 

and proposed AMA for the 13 test problems for 30 independent runs. The cells are left 

empty when the algorithms have not reported that particular problem.  

Table 5.3: Comparison of results with different algorithms for 13 problems (g01-g13). 

Fn Optimal  KM RY FW CC TC AMA 

Best -14.786 -15.000 -15.000 -15.000 -15.000 -15.000 

Mean -14.708 -15.000 -15.000 -15.000 -15.000 -15.000 g01 -15.000 

St.Dev - 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Best -0.799530 -0.803515 -0.802970 -0.801119 -0.803516 -0.803619

Mean -0.79671 -0.781975 -0.79010 -0.785746 -0.791345 -0.803500g02 -0.803619 

St.Dev  2.00E-02 1.20E-02 1.37E-02 9.42E-03 2.20E-05

Best -1.000 -1.000 -1.000 -1.000 - -1.000 

Mean -1.000 -1.000 -1.000 -0.999 - -1.000 g03 -1.000 

St.Dev - 1.90E-04 7.50E-05 5.99E-05 - 6.59E-06*

Best -30664.500 -30665.539 -30665.500 -30665.539 -30665.531 -30665.538

Mean -30655.3 -30665.539 -30665.200 -30665.539 -30665.531 -30665.537g04 -30665.539 

St.Dev - 2.00E-05 4.85E-01 0.00E+00 9.16E-03 4.27E-04

Best - 5126.497 5126.9890 5126.4981 - 5126.512

Mean - 5128.881 5432.08 5126.4981 - 5148.966g05 

 

5126.498 

 St.Dev - 3.5E+00 3.89E+03 0.00E+00 - 6.41E+01

Best -6952.100 -6961.814 -6961.800 -6961.814 -6961.814 -6961.807

Mean -6342.6 -6875.940 -6961.800 -6961.814 -6961.814 -6961.804g06 -6961.814 

St.Dev - 1.60E+02 0.00E+00 0.00E+00 3.70E-12 2.25E-03

Best 24.620 24.307 24.480 24.329 24.307 24.315 

Mean 24.826 24.374 26.580 24.472 25.057 24.315 g07 

 

24.306 

 St.Dev - 6.60E-02 1.14E+00 1.29E-01 2.38E-01 1.08E-14*
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Fn Optimal  KM RY FW CC TC AMA 

Best -0.095825 -0.095825 -0.095825 -0.095285 -0.095825 -0.095825

Mean -0.089157 -0.095825 -0.095825 -0.095285 -0.095825 -0.095825g08 

 

-0.095825 

 St.Dev - 2.60E-17 0.00E+00 2.70E-09 4.23E-17 0.00E+00

Best 680.910 680.630 680.640 680.630 680.630 680.645 

Mean 681.16 680.656 680.720 680.638 680.659 680.671 g09 680.630 

St.Dev - 3.40E-02 5.92E-02 6.61E-03 1.98E-02 9.18E-03

Best 7147.900 7054.316 7061.340 7049.2607 7054.316 7280.436

Mean 8163.6 7559.192 7627.890 7049.5659 7493.719 7479.064g10 7049.331 

St.Dev  5.30E+02 3.73E+02 5.70E-01 3.87E+02 9.84E+01

Best 0.750 0.750 0.750 0.750 - 0.750 

Mean 0.750 0.750 0.750 0.750 - 0.750 g11 

 

0.750 

 St.Dev - 8.00E-05 0.00E+00 3.21E-08 - 2.99E-08*

Best -0.999 -1.000 - - -1.000 -1.000 

Mean -0.999 -1.000 - - -1.000 -1.000 g12 

 

-1.000 

 St.Dev - 0.00E+00 - - 0.00E+00 0.00E+00

Best 0.054000 0.053957 - - - 0.053950

Mean 0.064000 0.067543 - - - 0.054020g13 0.053950 

St.Dev - 3.10E-02 - - - 4.84E-05

KM = Koziel and Michalewicz (1999), RY = Runarsson and Yao (2000), FW = Farmani and Wright 
(2003), CC = Chootinan and Chen (2006), TC = Elfeky et al. (2006), AMA= proposed Algorithm, * 

Standard deviation is positive due to rounding error. 

 
KM has solved 12 problems except g05 (the algorithms did not provide quality 

results for this problem); AMA performs better in 10 of these problems and the same as 

KM for the other 2 problems where both algorithms achieve the optimum.  

In 5 problems (g01, g03, g08, g11, g12) the best and mean results of AMA are 

exactly the same as the optimum results. RY has also achieved the same results for those 

problems. FW and CC have achieved optimum for the first four problems (g01, g03, 

g08, g11), however they have not tried g12 and g13. TC also achieved the optimal for 

g01, g08, and g12, and they have not considered the other problems involving equality 
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constraints (g03, g05, g11, and g13). 

For g07, AMA could not achieve the optimum but the mean of AMA is the best 

among these algorithms. The deviation of mean from optimum for AMA is only 

0.03703%, when KM, FW, TC could not reach within 2% (2.13939%, 9.35571%, 

3.08977% respectively).  

The best result with AMA in g06 is 0.00010% away from the optimum result, which 

is better than the achievements of KM and FW. In this problem the achieved mean of 

AMA is 0.00014% from the optimum whereas KM, RY and FW are 8.89443%, 

1.23350%, 0.00020% from optimum respectively. 

AMA could not achieve the optimum in g04, however the achieved best result is 

only 0.000003% away from the optimum. The achieved mean result of AMA is 

0.000007% from the optimum, which is better than KM (0.033389%), FW 

(0.001105%), and TC (0.000026%).  For g10 the mean result of AMA is also better than 

KM, RY, FW, and TC. 

For g02 and g13 the performance of AMA is superior to the other algorithms. In g02 

AMA has achieved the optimum and the deviation of achieved mean result of AMA 

from optimum is 0.01481%. RY, FW, CC, and TC could not achieve mean results even 

within 1% of the optimum in this problem (e.g. 2.69332%, 1.68226%, 2.22406%, and 

1.52734% respectively). Among the other algorithms only KM’s mean is within 

0.85974% of optimum, which is far way from AMA’s result. 

AMA also achieved optimum in g13. FW, CC, and TC have not attempted g13. In 

this problem the achieved mean result of AMA is 0.12975% from the optimum, which is 

much better than the other two algorithms (KM, RY) as the achieved mean results of 

KM and RY are 18.62836% and 25.19555% away from the optimum.  

The five new test problems (B01-B05) were not solved by KM, RY, FW, CC, and 

TC. The results of AMA are compared for B01-B05 with that of multi-populated 

differential evolution algorithm (denoted here as TS) proposed by Tasgetiren and 

Suganthan (2006). TS employed the notion of the near feasibility threshold to penalize 

the infeasible solutions. However TS used a higher number of fitness evaluations 
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(500,000). So, for comparing AMA results, the same number of fitness evaluations is 

used. The best, mean and the standard deviations of these algorithms are given in Table 

5.4. For these five new problems (B01-B05) from Table 5.4 we can see AMA has 

achieved optimal results for 4 problems (B02, B03, B04, B05), the best results for B01 

is 0.025% from the optimal. The mean and standard deviations of the 30 runs results are 

also competitive with TS. 

Table 5.4: Comparison of results for problems B01-B05 

Fn Optimal  TS AMA 

Best -47.765 -47.752 

Mean -47.765 -46.960 B01 -47.765 

St.Dev 7.94E-15 1.92E-01 

Best 961.715 961.715 

Mean 961.715 961.716 B02 961.715 

St.Dev 4.30E-06 9.59E-04 

Best -1.905 -1.905 

Mean -1.905 -1.905 B03 -1.905 

St.Dev 0.00E+00 7.03E-08* 

Best -0.866025 -0.866025 

Mean -0.866025 -0.866014 B04 -0.866025 

St.Dev 4.15E-17 7.17E-05 

Best -5.508 -5.508 

Mean -5.508 -5.508 B05 -5.508 

St.Dev 0.00E+00 1.44E-09* 

TS = Tasgetiren and Suganthan (2006), AMA= proposed Algorithm. * Standard deviation is positive due 
to rounding error 

 

The best fitness measures may not reflect the true performance of the algorithms. 

This is due to the fact that EAs/MAs are stochastic search algorithms which may 

produce only a single best solution with many other poor solutions. The best solution 

might be considered here as an outlier. To avoid this, we can perform statistical 
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significance testing for comparing two algorithms. If the distribution of sample is not 

known, it is logical to use nonparametric tests such as Mann-Whitney-Wilcoxon 

(MWW) test (Anderson et al., 1996; Conover, 1980), and Kolmogorov-Smirnov two 

sample test (Conover, 1980). However, these algorithms require the full datasets which 

is not available in the literature. A “goodness-of-fit” test such as the chi-square test 

(Conover, 1980) is performed on the dataset which shows the dataset of AMA follows 

approximately normal distribution. If other data sets are normally distributed, we can 

use student’s t-test to compare the actual difference between two means in relation to 

the variation in the data. It is assumed that other datasets are approximately normal. 

Based on this assumption, student’s t-test is performed to compare the algorithms. 

The performance of CC is quite promising (achieved optimal in 8 problems), but it 

solved only 11 problems. However RY has solved all the 13 problems (g1-g13) and the 

performance of RY is clearly better than the other algorithms. The proposed AMA is 

compared with RY. The mean and standard deviation of 30 runs of both algorithms and 

the comparisons using the Student’s t-test are presented in Table 5.5. The absolute value 

of t (indicated as t-C) is considered here. If the calculated t value exceeds the tabulated t 

value, then it can be said that the means are significantly different with 95% confidence 

levels. If there is a significant difference it is indicated “Yes”, otherwise “No”, in Table 

5.5. If the results are significantly different then it is indicated that the algorithm with 

lower mean (for minimization problems) as the better algorithm in the final column. 

When there is no significant difference between the means, it is indicated Equal. The 

degrees of freedom is considered here 60 and t-tabulated value is 2.  

From the t-test result in Table 5.5, we can see AMA is significantly better than RY in 

4 test problems (g02, g06, g07 and g13), RY is better in 2 problems (g04, g09), and 

there is no significant difference between the results of these two algorithms for the 

other 7 problems. In those 7 problems both the algorithms have achieved optimal in 5 

problems. It is worth noting that when RY is better, the difference is very tiny (small 

fraction of a percent). But when AMA is better, the difference is much larger (for 

example 25.03% improvement for problem g13).  

This indicates that AMA is not only able to solve COPs but also performs better than 
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some other algorithms. 

Table 5.5: Student’s t-test between RY and AMA for 13 benchmark problems. 

Mean St.Dev. 
Significance 

Level Fn Optimal 

RY AMA RY AMA t-C 95% 

Better/

Equal?

g01 -15.000 -15.000 -15.000 0.00E+00 0.00E+00 0.00 NO Equal 

g02 -0.803619 -0.781975 -0.803500 2.00E-02 2.20E-05 5.89 YES AMA 

g03 -1.000 -1.000 -1.000 1.90E-04 6.59E-06 0.00 NO Equal 

g04 -30665.539 -30665.539 -30665.537 2.00E-05 4.27E-04 24.93 YES RY 

g05 5126.498 5128.000 5148.966 3.50E+00 6.41E+01 1.79 NO Equal 

g06 -6961.814 -6875.940 -6961.804 1.60E+02 2.25E-03 2.94 YES AMA 

g07 24.306 24.374 24.315 6.60E-02 1.08E-14 4.91 YES AMA 

g08 -0.095825 -0.095825 -0.095825 2.60E-17 0.00E+00 0.00 NO Equal 

g09 680.630 680.656 680.671 3.40E-02 9.18E-03 2.28 YES RY 

g10 7049.331 7559.192 7479.064 5.30E+02 9.84E+01 0.81 NO Equal 

g11 0.750 0.750 0.750 8.00E-05 2.99E-08 0.00 NO Equal 

g12 -1.000 -1.000 -1.000 0.00E+00 0.00E+00 0.00 NO Equal 

g13 0.05395 0.067543 0.054020 3.10E-02 4.84E-05 2.39 YES AMA 

RY = Runarsson and Yao (2000), AMA= proposed Algorithm. 

 

5.4 Effects of Operators and Parameters  

In this section, a number of experiments is reported to show the effects of different 

search operators and parameters on the algorithm performance. In all these experiments, 

a fixed number of fitness evaluations is used for a fairer comparison. 
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5.4.1 LSLP  

As mentioned earlier, a certain percentage (with probability PL) of the agents are 

randomly selected to apply a life span learning process. Four types of LSLPs are 

designed here, and agents select one of them adaptively. This section investigates: what 

if AMA does not use LSLP, or just uses a particular LSLP always, or uses them 

adaptively?  

To answer these questions, the following six sets of experiments were carried out: 

• In the first set (No LSLP) AMA has not used any LSLP.  

• In the second set (Random LSLP) AMA has used only LSLP type 1.  

• In the third set (Restricted Random LSLP) AMA uses only LSLP type 2.  

• The fourth set (Gradient-based LSLP) uses only LSLP of type 3.  

• The fifth set (Directed LSLP) uses only LSLP of type 4.  

• In the sixth set, the agent selects one of the LSLPs adaptively.  

The best, mean, and standard deviations of the six sets for 30 independent runs are 

compared. Without LSLP (i.e. using only crossover) the results for all the test problems 

are worse than the other 5 sets. This is due to lack of diversity in the population which is 

ensured by the LSLP in this algorithm. The other five sets can all solve (and achieve the 

optimum) problems g01, g08, g12, B05 as these problems have a large feasible region 

compared to the other problems. Random and restricted random search based LSLP 

(Type 1 and 2) perform well, as both try to maintain diversity in the population. 

Sometimes random LSLP performs better than restricted random, and vice versa. 

However, they may suffer from over diversification e.g. in solving g07 Random LSLP’s 

standard deviation was maximum. Directed search-based LSLP always tries to make the 

agent follow the previous generation’s best agent, which may force the algorithm to 

converge. Sometimes it may cause convergence to a local optimum, which deteriorates 

the performance of the algorithms. For example, in solving problems g03, g07, g11, 

B04 the performance of Directed LSLP is worse than other sets (except No LSLP). 
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Gradient-based LSLP also tries to converge to the solutions as it changes the variables 

based on their effect on the objective function. For some problems it performs poorly 

e.g. g04, as the direction of producing the fastest rate of improvement in the fitness 

value is may no always best. The sixth set, i.e. adaptive approach in which the agent 

adaptively selects any of these four LSLPs, ensures both diversity and convergence. The 

performance of this set is the best of these six sets. 

In some problems like g05, g13 the ratio of feasible space over the search space (i.e. 

the value of ρ) is very low and for some problems the value of ρ is very high like g02 (ρ 

=99.84%), g08 (ρ =85.60%). For the rest of this analysis g04 is used as an example as 

for this problem ρ is 52.123% which is in between the extreme values. Figure 5.1 

presents the best, mean, and standard deviation of the 30 runs of these six experiments 

for test problem g04.  

For this problem No LSLP’s performance is worst. All other LSLPs achieve the 

optimum. In No LSLP the agents only use crossover, so after a while due to lack of 

diversity they converge to a local optimum. On the other hand Random and Restricted 

Random LSLPs try to change the variables randomly, aiming to maintain diversity, and 

have performed well. Directed LSLP tries to improve the present agent towards the 

previous generation’s best, which shows satisfactory performance here. Gradient-based 

LSLP’s performance is poor for g04. As this LSLP changes the variables based on their 

effect on the objective function, sometimes this may lead to a local optimum and may 

decrease the performance. The adaptive approach shows the best performance as it 

ensures both diversity and convergence.  

From the experiments it is found that in adaptive LSLP the agents do not select any 

of LSLPs uniformly. On average, 80% of the time the agents prefer random and 

restricted random based LSLPs which try to diversify the population (the frequencies of 

random and restricted random based LSLP are respectively 68.45%, 12.31%). To ensure 

convergence they use gradient based and directed search on average 20% of the time. 

The frequency of directed search is the lowest, at less than 1%; this indicates that the 

agents rarely like to follow the previous generation’s best as it may mislead towards 

local optima.  
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Figure 5.1: Effect of LSLP on g04. (1) Different types LSLPs vs. achieved best and 
mean results, (2) Different types LSLPs vs. St.Dev. of achieved results.  

(All bar graphs start from zero. For the convenience of comparisons they are presented 
within a shorter range.) 

 

5.4.2 Probability of using LSLP 
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achieve the optimum as an outlier with any of these values of PL. The mean and 

standard deviations improve with an increase of PL, up to a point. For some easy 

problems like g08, g12, B05, any PL over 0.05 achieves the same results. Sometimes a 

high value of PL may over diversify the population, shown by high deviations in the 

results. In solving g03, g08, B04 the standard deviation of the results is more for PL 

=0.3 than for lower values of PL.  
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Figure 5.2: Effect of Probability of LSLP (PL) on problem g04. (1) Probability of LSLP 
vs. achieved best and mean results, (2) Probability of LSLP vs. St.Dev. of achieved 
results. 
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Figure 5.2 demonstrated the best, mean and standard deviation of AMA in solving 

g04. It shows by increasing PL both the mean and standard deviations improve 

gradually, but after 0.2 the results are not improved significantly. That indicates that 

increasing PL can improve the performance of the algorithm, however, after certain 

point there will be no significant improvement. 

 

5.4.3 Neighborhood Size 

As discussed earlier, each agent communicates and interchanges information only 

with its allowed neighboring agents. The size of the neighborhood plays an important 

role in controlling the information diversification, hence indirectly controls the diversity 

and convergence of solutions. Higher neighborhood size means lower diversity of 

solutions as a better agent has a chance to dominate more agents in the entire lattice. 

Hence it will accelerate the convergence. However, we need to ensure enough diversity 

in the population to avoid the possibility getting trapped in local optima. 
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Figure 5.3: Different types of neighborhood. (1) Four Neighbors , (2) Eight Neighbors, 
(3) Twelve Neighbors, (4) Sixteen Neighbors, (5) Twenty Neighbors, (6) Twenty four 
Neighbors. 
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Several experiments have been carried out with different neighborhood sizes in 

order to find an appropriate size for better performance. We may consider the 

surrounding four Left (L), Right (R), Top (T) and Bottom (B) agents as neighbor agents; 

this neighborhood is indicated here as 4N. By increasing the number of neighbors from 

four to eight the agents are allowed to communicate and interchange information with 

more agents. As eight neighbors (8N), L, R, T, B, Left-Top (LT), Right-Top (RT), Left-

Bottom (LB), and Right-Bottom (RB) agents are considered. The neighborhood size is 

extended to 12, 16, 20 and 24 neighbors. The different types of neighborhoods of an 

agent A are shown in Figure 5.3 by the shaded areas. Another neighborhood size is also 

considered which is called “Combined Approach”, here the agents consider both four 

neighbors and eight neighbors interchangeably. Each approach is used for a certain 

number of generations (25% of the maximum number of generations) alternately. This 

approach is indicated as CA in the experiments. 

Each agent mates with the best agents in its neighborhood and produces offspring. If 

the neighborhood size is larger, the overlapping of the neighborhoods in comparisons 

and competitions is higher. In this case, the dominant individuals tend to spread their 

genetic material throughout the population, which drives the population convergence 

prematurely. This is also reflected from the experiments: for most of the problems like 

g02, g04, g05, g06, g07, g09, g10, g13 the mean of the results of 12N, 16N, 20N, and 

24N are worse than 4N, 8N and CA, though the best results achieved by all the 

approaches are optimal or very close to optimal. On the other hand, due to less 

overlapping, the 4N maintains good diversity in the population and performs better than 

8N in g13, B01, B03, B04. However 8N helps for slower convergence than the larger 

neighborhood and performs even better than 4N in g06, B01. CA includes both the 

characteristics of 4N and 8N and achieves comparatively better results than any of these 

neighborhood sizes in g02, g04, g05, g06, g07, g09, g10, and g13. The performances of 

different neighborhoods are same for the g01, g03, g08, g11, g12, B05 and each of the 

approaches achieved the optimal and same mean.  
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Figure 5.4: Effect of Neighborhood size on problems g04. (1)Different Neighborhood 
size vs. achieved best and mean results, (2) Different Neighborhood size vs. St.Dev. of 
achieved results.  

(All bar graphs start from zero. For the convenience of comparisons they are presented 
within a shorter range.) 

 

Figure 5.4 shows the best, mean and standard deviation achieved by the different 

neighborhood sizes for g04 in 30 independent runs. CA performs the best of the all 

approaches, however 4N and CA are very competitive and perform better (considering 

mean and standard deviation) than other neighborhood sizes. The best, mean, standard 

deviation achieved by CA are better than 4N. 
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5.4.4 Population Size 

Population size affects the algorithm’s performance. The agents start with randomly 

generated solutions within the boundary of each decision variable, then they 

communicate with others and exchange this information through the memetic operators 

to reach the goal. A larger population allows more communication of information and 

more diversity of initial solutions. As the total number of fitness evaluations (the 

population size multiplied by the number of generations) is fixed, the number of 

generations for a larger population size would be lower than that with a smaller 

population size. 

A set of experiments is carried out with different population sizes: 25, 81, 100, 225, 

400, 625, 900, 1225, 1600, and 2500 (as the agents are organized in M×M, the 

population size is a square number). Keeping the same budget of fitness evaluations 

(350,000), the maximum number of generations used for them is 14000, 4320, 3500, 

1555, 875, 560, 388, 285, 218, 140 respectively. The experimental results show that for 

very small population sizes (e.g. 25) the algorithm rarely finds the optimum, and the 

means of the results are also not impressive. For some easy problems like g01, g12, 

AMA can find the optimum and achieve good mean and standard deviations. By 

increasing population size the performance of the algorithms increases. However, after 

certain level of population increment the results do not improve significantly. For 

example in solving problems g02, g03, g04, g05, g08, g11, B01, B02 the performance 

of AMA increases with the increase of population size up to a population size of 400. 

Beyond 400, increasing the population size produces no significant improvement in 

performance. 

Figure 5.5 shows the best, mean, and standard deviations of results of 30 runs for 

problem g04 with different population sizes. The optimum value for this problem is 

−30665.539. For all population sizes AMA has achieved the optimum (or very close to 

it) which is possible for AMA as a stochastic algorithm. However, for low population 

sizes (25, 81 or 100) the mean of best results from 30 runs of them could not reach 

−30650.0 and standard deviation is also large.  
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Figure 5.5: Effect of population size on problem g04. (1) Population size vs. achieved 
best and mean results, (2) Population size vs. St.Dev.of achieved results. 

 

With the increase of population size the performance of the algorithm improves. If 

we consider the t-test result between population size 25 and 81, the performance is 

significantly improved at 95% confidence level, however for population size 81 to 100 

the performance is not significantly changed. It has improved from 100 to 225 

significantly and after that there is no significant difference in the performance by 
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having more generations, cannot cover the whole search space. On the other hand, for 

large population size (above 225/400) AMA performs well however they continue for 

proportionally lower numbers of generations. 

 

5.4.5 Crossover  

In the preliminary framework of AMA, orthogonal crossover was used (this operator 

was proposed by (Leung, 2001). The orthogonal crossover operator acts on two parents 

and generates a set of new individuals from the search space defined by the two parents. 

The search space is quantized into a finite number of points, and then orthogonal design 

is applied to select a small but representative sample of points as potential offspring. 

Orthogonal crossover is computationally expensive as it generates several offspring 

from two parents, e.g. for problems containing more than 3 variables the orthogonal 

array )3( 4
9L  generates 9 offspring, where 3 is the number of quantization level and 4 is 

the number of factors (section 2.4.2 has discussed about this operator). For the same 

problem SBX generates only two offspring.  

To compare the performance of AMA with both crossovers, AMA is executed with 

each of the crossover separately for the test problems. For the experiments other 

parameters are remain the same (e.g. population size 400, PL =0.20). Table 5.6 and 

Table 5.7 show the results of AMA using SBX operator (indicated as AMA-SBX) and 

AMA using orthogonal crossover operator (indicated as AMA-OX), for the test 

problems g01-g13, and B01-B05. 

While comparing the best results, both approaches achieve same results in 8 

problems. AMA-OX performs better in three problems (g05, g06, and g10). For the 

remaining seven problems (g02, g07, g09, g13, B01, B02, and B04), AMA-SBX 

performs better in achieving best results. AMA-OX achieves better mean result in only 

g10. The mean results are same for three problems (g03, g08, and g12). However in g03 

and g08 AMA-SBX achieves better standard deviations and same in g12. AMA-SBX 

achieves better mean results in the remaining all 14 problems. The experimental results 

show AMA with SBX is performing well. This crossover respects the interval schemata 
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processing and guarantees that the extent of the children is proportional to the extent of 

the parents (Deb and Agrawal, 1995; Ortiz-Boyer et al., 2005). With SBX operator any 

arbitrary contiguous region can be searched, provided there is enough diversity 

maintained among the feasible parent solutions.(Deb, 2000).  

 

Table 5.6: Comparison of results of AMA with SBX and Orthogonal crossover for 13 
problems (g01-g13). 

Fn Optimal  AMA-SBX AMA-OX 
Best -15.000 -15.000 
Mean -15.000 -14.798 g01 -15.000 
St.Dev 0.00E+00 5.69E-01 
Best -0.803619 -0.803514 
Mean -0.803500 -0.798897 g02 -0.803619 
St.Dev 2.20E-05 6.31E-03 
Best -1.000 -1.000 
Mean -1.000 -1.000 g03 -1.000 
St.Dev 6.59E-06* 2.82E-05* 
Best -30665.538 -30665.538 
Mean -30665.537 -30660.315 g04 -30665.539 
St.Dev 4.27E-04 9.38E+00 
Best 5126.512 5126.509 
Mean 5148.966 5251.551 g05 5126.498 
St.Dev 6.41E+01 2.81E+01 
Best -6961.807 -6961.810 
Mean -6961.804 -6959.429 g06 -6961.814 
St.Dev 2.25E-03 1.05E+01 
Best 24.315 24.317 
Mean 24.315 24.421 g07 24.306 
St.Dev 1.08E-14* 7.56E-02 
Best -0.095825 -0.095825 
Mean -0.095825 -0.095825 g08 -0.095825 
St.Dev 0.00E+00 7.62E-08* 
Best 680.645 680.689 
Mean 680.671 680.889 g09 680.630 
St.Dev 9.18E-03 1.11E-01 
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Fn Optimal  AMA-SBX AMA-OX 
Best 7280.436 7051.528 
Mean 7479.064 7323.868 g10 7049.331 
St.Dev 9.84E+01 2.06E+02 
Best 0.750 0.750 
Mean 0.750 0.762 g11 0.750 
St.Dev 2.99E-08* 2.80E-02 
Best -1.000 -1.000 
Mean -1.000 -1.000 g12 -1.000 
St.Dev 0.00E+00 0.00E+00 
Best 0.053950 0.054007 
Mean 0.054020 0.259113 g13 0.053950 
St.Dev 4.84E-05 4.34E-01 

* Standard deviation is positive due to rounding error. 

Table 5.7: Comparison of results of AMA with SBX and Orthogonal Crossover for 
problems B01-B05. 

Fn Optimal  AMA-SBX AMA-OX 
Best -47.752 -47.246 
Mean -46.777 -46.475 B01 -47.765 
St.Dev 5.35E-01 3.14E-01 
Best 961.715 961.733 
Mean 961.722 968.085 B02 961.715 
St.Dev 9.15E-03 5.46E+00 
Best -1.905 -1.905 
Mean -1.905 -1.901 B03 -1.905 
St.Dev 7.20E-04* 4.57E-03 
Best -0.866025 -0.866023 
Mean -0.866014 -0.865841 B04 -0.866025 
St.Dev 9.87E-06 2.31E-04 
Best -5.508 -5.508 
Mean -5.508 -5.503 B05 -5.508 
St.Dev 9.03E-16* 4.36E-03 

* Standard deviation is positive due to rounding error. 

 

As SBX is simple and performs well in solving these types of problems with 

multiple optimal solutions with a narrow global basin, SBX is preferable for the AMA 
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framework.  

5.4.6 Section Summary 

In this section, experiments showed how the performance of the proposed AMA is 

affected by various parameter settings and design decisions, and provided explanations 

from the observations. It is established that:  

• It is best to use adaptive approach in selecting a LSLP, which allows an agent 

adaptively to select any of these four LSLPs, ensuring both diversity and 

convergence. 

• It is suggested to use a value of 0.20 for probability of learning PL, which provides 

a balance between the diversity in the populations and performance of the 

algorithm. 

• The size of the neighborhood plays an important role in controlling the information 

diversification. The “Combined Approach” shows better performance as it provides 

indirectly a balanced control of the diversity and convergence of solutions.   

• Population size also affects the algorithm’s performance. The experimental study 

shows the performance AMA performs best with population size 400. 

 

5.5 Chapter Summary 

This chapter investigates the performance of the AMA in solving a set of test 

problems which includes five new problems plus 13 existing well-known problems. The 

results show the proposed algorithm is robust in its handling of both linear and 

nonlinear equality and inequality constraints. As each of the agents exchanges 

information with its neighbors, AMA does not need any ranking for the whole 

population. The constraint handling techniques used here do not need any penalty 

functions or parameters. The agent selects a neighborhood agent by using pair-wise 

comparison to mate, which handles the constraints indirectly. Also in the self-adaptation 
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process of learning, while calculating the improvement index, the constraints are 

indirectly handled. These two levels of constraint handling with appropriate 

neighborhood size, SBX crossover, and LSLP ensure the superior performance of AMA 

in handling constraints.  

The algorithm shows very impressive performance by achieving optimal results in 

13 problems. The performance of the AMA is compared with five GA-based and one 

ES-based algorithms. The comparison results show that the proposed approach gives 

mostly improved or comparable results to other algorithms. A statistical significance 

tests is used and the results show the proposed algorithm’s performance is better than 

the ES-based algorithms for the well-known 13 problems.  

The effect of the proposed LSLPs is analyzed, showing that adaptively selecting one 

of the LSLPs achieves better results ensuring both diversity and convergence. 

Probability of Learning (PL) is also an important parameter; the performance of the 

algorithm increases with the increase of PL, but after a certain level it causes over 

diversification. The size of neighborhood also affects the performance of the algorithm. 

The combined approach (i.e. applying 4 neighbors and 8 neighbors interchangeably) 

performs better than the other types of neighborhood. The effect of population size is 

also investigated, which shows a low population size is not able to achieve good results. 

With the increase of population size the performance improves, however after a certain 

population size there is no significant improvement in the results.  

The next chapter concentrates more in solving COPs where the feasible space is 

very tiny in comparison to the search space, which makes it hard for the algorithms to 

find even the feasible space. 



 

 

Chapter 6                                                            

Problems with Tiny Feasible Space 

The quality of individuals in the initial population influences the performance of 

evolutionary algorithms, especially when the feasible region of the constrained 

optimization problems is very tiny in comparison to the entire search space. This 

chapter proposes a simple method to improve the quality of randomly generated initial 

solutions by sacrificing very little in diversity of the population. The proposed method, 

which is recognized as the Search Space Reduction Technique (SSRT) in this thesis, 

directs the selected low quality infeasible solutions towards the feasible space. The 

performance of the proposed technique is tested using five different EAs by solving a 

number of state-of-the-art test problems and a real world case problem. The 

experimental results show SSRT improves the solution qualities as well as speeds up the 

performance of the algorithm. 

 

6.1 Introduction 

In many practical optimization problems, the feasible spaces are very tiny. These 

problems are very challenging as it requires searching a huge variable space in order to 

locate feasible points with acceptable quality. To solve problems with tiny feasible 

space, EAs usually take a long time to find even feasible solutions. With good quality 

initial solutions, the search operators reach the feasible region quickly and find better 

solutions. As the initial populations of EAs are randomly generated, they may not be 

good quality solutions. A careful preprocessing, with little sacrifice in diversity, can 

improve the initial solutions, which not only accelerates the convergence but also leads 
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to better solutions. 

In this chapter, to improve the quality of the initial population, a simple search space 

reduction technique is presented, which can be considered as preprocessing or an 

additional step before applying EAs for solving constrained optimization problems. The 

COPs are considered having tiny feasible region when ρ  (ratio between the feasible 

region and search space) is less than 1%. The main idea of SSRT is to move some of the 

poor quality infeasible solutions towards the feasible region. As the initial population of 

EAs is randomly generated to ensure diversity, it may cause delay in reaching a 

reasonably good solution for tiny feasible space. Once a good solution point is obtained, 

EAs usually converge nicely to an acceptable solution. To enhance the performance of 

the algorithm in reaching the feasible space quickly, the proposed SSRT guides the 

initial population to move towards the feasible region. The method finds a centroid from 

the initial feasible solutions (if any) with some infeasible solutions around the feasible 

space (i.e. solutions with lower constraint violations). A certain percentage of the worse 

infeasible solutions are then encouraged to move towards the centroid ( only some are 

moved, not all, to maintain a certain level of diversity). Such a move would help certain 

individuals to reach the feasible region quickly by improving the solution quality.  

By applying SSRT the randomly generated initial solutions are no longer random,  

rather they are directed towards the feasible space, which helps the algorithms to reach 

the feasible region faster and improve the solution quality.  However, in implementing 

the process appropriately, the following questions must be answered. 

• When should be the SSRT applied? 

• How to calculate the centroid for SSRT? 

• How long shall be SSRT applied as it decreases the diversity? 

The experiments aim to find the answers to these questions.  

Initially the SSRT has been tested with the agent-based memetic algorithms 

(presented in chapter 4). From the initial experiments and analysis of SSRT with AMA, 

it is clear that the performance of any EAs can be enhanced by incorporating SSRT in 
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solving constrained optimization problems with tiny feasible region. Then an extensive 

investigation is made for the effectiveness of SSRT by incorporating it with simple 

genetic algorithm and three other well known algorithms such as Deb et al. (2002), 

Elfeky et al. (2006), and Sarker and Ray (2005) from the literature for a set of 

benchmark problems with tiny search space and a real world case problem (Sarker and 

Quaddus, 2002; Sarker and Ray, 2009). The experiments show SSRT improves the 

solution qualities as well as speeds up the performance of the algorithms.  

The rest of this chapter is organized as follows. Section 6.2 describes the proposed 

search space reduction technique and its different issues. Section 6.3 describes the 

performance of the proposed approach with different algorithms on the test problems 

and the effect of parameters used in SSRT. Finally, Section 6.4 concludes the chapter. 

 

6.2 Search Space Reduction Technique  

In a population-based method, such as EA, it is not expected that the random initial 

solutions would always be of good quality. Some algorithms like GENOCOP 

(Michalewicz, 1994; Michalewicz and Janikow, 1996) assume a feasible starting point 

(or feasible initial population), which implies that the user or the EA must have a way of 

generating (in a reasonable time) such a starting point. The homomorphous mapping 

method of Koziel and Michalewicz (1999) also requires an initial feasible solution.  

The proposed SSRT deals with the initial randomly generated populations. It allows 

the most infeasible individuals to move towards the feasible region, before the 

evolutionary process starts, which is basically squeezing the search space. That means 

the evolutionary process starts with a better population in a reduced search space. 

If there are no or few (less than 1%) feasible solutions in the initial random 

population, the EAs are allowed to apply SSRT. The infeasible solutions are then ranked 

based on the extent of constraints violation. The feasible solutions (if any) and a certain 

percentage of the top ranked infeasible individuals are then used to find a centroid. If 

there is no feasible individual, only the top ranked infeasible individuals are first 
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modified to reduce the violation of constraints and then use them to calculate the 

centroid.   

After calculating the centroid a certain percentage of worst infeasible solutions in 

the population are allowed to move towards the centroid. Although this process guides 

the worst infeasible solutions towards the feasible space, it reduces the diversity of the 

population. To ensure diversity only a small number of the worst infeasible solutions are 

allowed to follow the centroid, and discontinue the process when the diversity of initial 

population is decreased to a certain level. 

Figure 6.1 demonstrates the working principle of SSRT. First it calculates a centroid. 

If there are not enough feasible solutions (in the figure only one feasible) in the 

population, it considers a percentage of good quality infeasible solutions (shown in 

shaded area) to calculate the centroid. These good quality infeasible solutions are 

mentioned as allowable infeasible solutions. After that a portion of the non-allowable 

infeasible solutions (i.e. worst infeasible solutions in the population) move towards the 

centroid, which is shown by the arrows. 

 
Figure 6.1: Search Space Reduction Technique 
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The proposed algorithm for SSRT is given below: 

Step 1. Rank the infeasible solutions based on the Constraint Violation (CV). Define 

the allowable infeasible range. Calculate the diversity of the population.  

Step 2. Check the number of feasible individuals. If it is more than 1% of the 

population, go to step 7. Otherwise go to step 3. 
Step 3. If there are feasible individuals, calculate the centroid using the feasible and 

allowable infeasible individuals and go to step 5, else go to step 4. 

Step 4. Select the top ranked infeasible solution (i.e. the best infeasible individual 

based on the CV). 

a. Find the constraint which has maximum CV for this individual. 

b. Select a variable randomly, which is involved in the constraint which is not 

yet modified. 

c. Change the variable with δ±  and mark as modified. 

d. If the individual became feasible, go to step 2, else go to step 4e.  

e. If all constraints are checked or all the variables are modified, then find the 

centroid of the allowable infeasible along with this one, otherwise go to 

step 4. 

Step 5. Force a certain percentage of the non-allowable infeasible solutions to follow 

the centroid. 

Step 6. Calculate the diversity of the population. If the diversity decreases up to a 

certain level then go to step 7, otherwise go to step 2. 

Step 7.  Stop. 

 

Here the value of δ is small; δ = |G(0,1)|,  where G(0,1) is a Gaussian random 

number generator with zero mean and standard deviation 1.  

For calculating the centroid, for each variable of the centroid c
ix , the arithmetic 

mean of the participating solutions of respective variables ix  is considered. For 

calculating the diversity, the mean Euclidian distance of all solutions from the centroid 

is taken.  
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A portion of the non-allowable solutions follow the centroid as follows: 

n .....  = i    xαx αx c
ii

n
i 1,)1( −+= (6.1) 

Where n
ix  and c

ix are the ith variable of the non-allowable solution and the centroid 

respectively, n is the number of variables in the solution vector and α is a uniform 

random number from 0 to1.  

 

6.2.1 Computational Cost 

Since SSRT is applied to the randomly generated initial population before the 

evolutionary process, it will increase the computational cost to the selected EA. In the 

algorithm Step 1 needs to sort the infeasible solutions based on the constraint violations, 

and so simple bubble sort can be used, which needs O(M2) comparisons for worst case if 

the initial population contain M infeasible solutions. However if the size of M is very 

large then it would be better to replace the bubble sort with other efficient sorting 

algorithm, e.g. quick sort which needs less computational complexity O( Mlog M 2 ). 

Step 3a requires finding the most violated constraint, which can be done by using 

normal linear search. If the problem needs to satisfy R number of constraints (R = p 

inequality constraints + q equality constraints) then the linear search needs O(R) 

comparisons for worst case. So the overall complexity of the SSRT is O(M2), which is 

governed by the sorting. We can consider this additional complexity acceptable if the 

solution quality of EAs is enhanced by SSRT.  

 

6.2.2 Issues Regarding SSRT  

The proposed SSRT should be applied when there are very few feasible solutions 

(e.g. less than 1% of the population size) in the initial random population. In SSRT, a 

centroid is calculated to guide the worst individuals. Using certain feasible and top 

ranked infeasible solutions the centroid is calculated. A good quality centroid will guide 
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the worst individuals to move towards the feasible space. In finding a quality centroid, 

we need to decide an appropriate number (or percentage) of infeasible solutions that 

will be used in calculating the centroid. 

Another important issue in designing SSRT is the stopping criterion for SSRT. As 

the centroid attracts the other low quality individuals towards it, the diversity of the 

population decreases. However in any population based search algorithm, the diversity 

is an important factor. As diversity of the population decreases with application of 

SSRT, how long we should apply the SSRT?  

Experimental studies are made regarding these issues in the next section. 

 

6.3 Experimental Results and Discussions 

The issue of dealing with constraints has long been difficult for optimization 

methods (Takahashi et al., 2003). It has become harder when the feasible region is very 

tiny. In this study only those benchmark problems are chosen, used in Chapter 5, whose 

feasible region is very small compared to their search space. To get an estimate of how 

tiny is the feasible space of these problems, a metric suggested by Michalewicz and 

Schoenauer (1996) is used, ρ = SF , where S is the number of random solutions 

generated (1,000,000 in this case), and F is the number of feasible solutions found (out 

of the total randomly generated solutions). Here only those problems are considered, 

whose ρ is less than 1%. The characteristics of these benchmark problems and the 

optimal values are shown in Table 6.1.  

In this section first an investigation is made for the performance of SSRT on AMA 

with the benchmark problems and the effect of parameters used in SSRT. Then it 

discusses the effectiveness of SSRT by incorporating it with simple genetic algorithm 

and three different existing EAs for solving this type of constrained problems with tiny 

feasible solutions. 

The research has not been restricted only on the benchmark problems: the 
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performance of SSRT is also tested on a real world case problem collected from the 

literature (Sarker and Quaddus, 2002; Sarker and Ray, 2009). Details of these 

experimentations are discussed in section 6.3.3. 

Table 6.1: Characteristics and the optimal results of the benchmark problems 

Prob (n) Obj. Fuc. ρ  LI NI LE NE AC Optimal 

g01 13 Quadratic 0.0111% 9 0 0 0 6 -15.000 

g03 10 Polynomial 0.0000% 0 0 0 1 1 -1.000 

g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498 

g06 2 Cubic 0.0066% 0 2 0 0 2 -6961.814 

g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306 

g08 2 Nonlinear 0.8560% 0 2 0 0 0 -0.095825 

g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630 

g10 8 Linear 0.0010% 3 3 0 0 6 7049.331 

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750 

g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053950 

B01 10 Nonlinear 0.0000% 0 0 3 0 3 -47.765 

B02 3 Quadratic 0.0000% 0 0 1 1 2 961.715 

B03 5 Nonlinear 0.0204% 4 34 0 0 4 -1.905 

B04 9 Quadratic 0.0000% 0 13 0 0 6 -0.866025 

ρ = Ratio between the feasible space and the search space, LI=Linear Inequalities, NI=Nonlinear 
Inequalities, LE= Linear Equalities, NE= Nonlinear Equalities, AC=Active Constraints 

 

6.3.1 Experimentation with AMA 

In this research, two sets of experiments are carried out for AMA to justify the 

necessity of SSRT on AMA.  In this chapter AMA used the same parameters proposed 

in chapter 5. 

• In the first set, 30 sets of initial populations are generated randomly for each test 

problem under consideration, and then AMA is used to solve the problems with 

the same initial population in 30 independent runs.  
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• In the second set of experiment, SSRT is applied to all the initial populations 

randomly generated in the first set of experiments, and then AMA uses the same 

modified populations for solving the each test problem in 30 independent runs. 

The maximum number of generations is set in this experiment at 3500. The 

allowable range (AR) of infeasible solutions for calculating the centroid is at most 50% 

of the infeasible solutions and maximum diversity reduction allowed from the initial 

random population is 10%. The initial solution vectors for the solutions are randomly 

generated within the bounds of each decision variable. The probability of learning used 

here is 0.2. As higher population size initially provides enough diversity and AMA 

achieved good quality solutions with that (presented in chapter 5), here lower 

population size (100) is used to see the effect of SSRT more clearly.  

The two sets of results of AMA are compared to see whether the results are 

improved with SSRT, and how fast the algorithms converge to the best results. The 

amount of time is also calculated to see how much time is expended for the execution. 

The best, median, mean, standard deviation, and worst results of 30 independent runs 

(with 30 different random seeds) are given in Table 6.2. The last two columns of Table 

6.2 shows the average number of generations required to find the best results (as an 

indication of how quickly the algorithm achieves the quality solutions) and the whole 

execution time. 

From Table 6.2 we can see AMA with SSRT has achieved better results in different 

aspects than without SSRT (bold fonts indicates better achievements of AMA with 

SSRT). If we consider the mean results, AMA with SSRT has achieved better mean 

results in 78.57% of cases and the same mean in the other 21.43% of problems. It has 

improved the mean results by more than 5% in several problems, such as 71.44% in 

problem g13, 5.71% in g01, and 5.61% in g06. The improvements in other problems are 

also remarkable. 

AMA with SSRT has also performed better in achieving the best results in 35.71% 

of the problems, and the same best results in 42.85% of problems. On 78.57% times the 

worst results and on 57.14% times the median results of AMA with SSRT were better 

than only AMA. 
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Table 6.2: Performance of AMA with and without SSRT from 30 independent runs. 

Fn AMA Best Median Mean StDev Worst AvgGen Time(s)

NST -15.000 -15.000 -14.190 1.30E+00 -10.109 3027.467 81.75
g01 

ST -15.000 -15.000 -15.000 3.78E-09* -15.000 3083.067 85.62

NST -1.000 -1.000 -1.000 2.76E-06* -1.000 3500 80.86
g03 

ST -1.000 -1.000 -1.000 4.32E-06* -1.000 3500 69.91

NST 5127.388 5186.761 5208.999 8.20E+01 5463.927 3500 27.62
g05 

ST 5127.457 5226.753 5200.580 4.94E+01 5249.292 3500 28.08

NST -6961.813 -6961.809 -6592.092 1.38E+03 -1204.787 3352.4 20.78
g06 

ST -6961.813 -6961.811 -6961.974 6.18E-01 -6961.810 3375.6 14.47

NST 24.329 24.436 24.510 3.12E-01 25.958 3191.4 207.66
g07 

ST 24.324 24.358 24.360 1.55E-02 24.384 3057.8 150.64

NST -0.095825 -0.095825 -0.095825 1.49E-08* -0.095825 1558.2 15.27
g08 

ST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 1766.867 16.43

NST 680.731 681.177 681.714 1.06E+00 684.146 2482.267 54.31
g09 

ST 680.659 680.906 680.882 9.80E-02 680.965 2204.733 52.54

NST 7077.282 7444.316 7453.023 2.79E+02 8062.957 3172.233 30.22
g10 

ST 7058.727 7143.765 7155.326 7.05E+01 7276.031 3039.933 33.24

NST 0.750 0.750 0.750 3.35E-03* 0.750 3500 14.92g11 

 ST 0.750 0.750 0.750 4.92E-09* 0.750 3500 15.24

NST 0.054212 0.065926 0.193989 2.07E-01 0.811584 3500 40.72
g13 

ST 0.053969 0.055524 0.055411 9.22E-04 0.056924 3500 46.17

NST -46.542 -44.950 -44.652 1.63E+00 -39.808 3500 85.48
B01 

ST -47.292 -45.594 -45.870 5.39E-01 -45.293 3500 85.43

NST 961.716 964.836 965.085 2.39E+00 970.210 3500 17.98
B02 

ST 961.721 963.914 963.134 1.18E+00 964.474 3500 19.33

NST -1.905 -1.884 -1.878 3.83E-02 -1.694 3308.567 45.95
B03 

ST -1.905 -1.900 -1.900 3.14E-03 -1.894 3476.6 48.13

NST -0.866022 -0.865896 -0.865748 3.73E-04 -0.864446 3301.4 117.61
B04 

ST -0.866018 -0.865988 -0.865988 1.62E-05 -0.865960 3135.467 106.22

NST= AMA without SSRT, ST = AMA with SSRT. Avg.Gen.= Average generation required to find best 
results, Bold font indicates the best result achieved by AMA with SSRT, * indicates though the best, worst, 
median, and mean results are the same, standard deviation is positive due to rounding error.  
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If we consider the average number of generations required to find out the best result, 

in 28.5% of problems AMA with SSRT is faster than the other approach. For all 

problems on average AMA needed 3170.995 generations to find the best results while 

AMA with SSRT needed 3152.862 generations. For the problems involving equality 

constraints (g03, g05, g11, g13, g14, g15) the dynamic relaxation (described in previous 

chapter) is used and so it is considered that the best results are found in both approaches 

after the algorithms are terminated (i.e after 3500 generations). For this reason in 

54.55% of problems each approach needs the same number of generations. However if 

we exclude those problems from this calculation then AMA with SSRT reduced by an 

average of 1.09% (i.e, 31.73 generation per problem) the required average number of 

generations to find out the best result.  

Not only that, if AMA is executed with the initial population generated by SSRT, 

then it takes less time for the whole execution than the time required by AMA with 

random initial population. The last column of Table 6.2 shows the amount of time 

required by each approach. It shows AMA with randomly generated initial population 

needs on average 60.08 seconds to solve a problem. On the other hand AMA with SSRT 

generated initial population needs only 55.10 seconds, which saves 8.28% of the 

execution time of AMA.  

So we can say by applying SSRT in most of the problems AMA has improved either 

the solution or computational time or both.  

Now the effects of parameters used in SSRT on AMA shall be discussed.  

In applying SSRT, a centroid is calculated using certain feasible and top ranked 

infeasible solutions. In the process, we need to decide the number (or percentage) of 

infeasible solutions in calculating the centroid, and a stopping criteria for SSRT. As the 

diversity of the population decreases with application of SSRT, diversity measure is 

used as a stopping criterion. These two parameters will be discussed in the following 

subsections. 
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6.3.1.1 Effect of Allowable Range (AR) in calculating SSRT 

While calculating the centroid, if we allow all of the infeasible solutions with the 

feasible solutions (if any), it may move the centroid towards an infeasible region. In the 

process, the infeasible solutions are ranked based on their constraint violation and 

consider a certain percentage of the top ranked infeasible solutions. As these 

participating solutions are better than the others, it is expected that the centroid may 

have better fitness than the low ranked solutions. To see the effect of the percentage of 

top ranked infeasible solutions used in SSRT on the overall solution, experiments have 

been carried out by varying the percentage of the top ranked infeasible solutions (from 

10% to 50% with an increment of 10%) while leaving the other parameters constant e.g. 

population size 100, PL 0.2, Diversity Reduction (DR) 10%. The solutions are compared 

with that of AMA without SSRT. 

The best, mean, standard deviations, worst, median, and average number of 

generations required to find out the best result for 30 independent runs are compared. As 

the centroid guides the worse infeasible solutions, the quality of the centroid plays a 

vital role to the performance of the algorithms. If we consider a very small number of 

top ranked infeasible solutions with feasible solutions (if any, since the feasible space is 

very tiny), they may not provide a good quality centroid. If we increase the allowable 

range (AR), there is a high chance that it will produce a good quality centroid. However, 

the range of AR should not be too large, since the use of higher percentage could 

mislead the search process where multiple disjointed feasible spaces exist for a problem. 

In most of these test problems AR ranges 30% to 50% provides better results. 

In Table 6.3 the results of problem g01 are shown as an example. For the best results 

of the 30 runs, in all the cases AMA has achieved the optimal. When we have 

considered 50% top infeasible to find the centroid, the performance of the algorithm is 

the best among the 6 sets of results. We should not consider too many infeasible 

solutions, which may not help the solutions rather direct them to other areas of the 

search space, resulting in longer processing time. Though the test problems are diverse 

in nature, in solving most of the problems AMA shows similar behavior.  
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Table 6.3: Effect of Allowable Range (AR) for calculating centroid on problem g01 

AR (%) Best Mean St. Dev. Worst Median AvgGen 

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 3211.98 

10 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 3056.19 

20 -15.000 -14.960937 2.14E-01 -13.828124 -15.000 3146.19 

30 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 3198.01 
40 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 3178.89 

50 -15.000 -15.000000 3.78E-09 -15.000000 -15.000 3083.07 

AR= Allowable range of infeasible solutions for centroid, Avg Gen = Average number of generation 
required to find the best result.  

 

6.3.1.2 Effect of Diversity Reduction (DR) 

The diversity of the population decreases when the low ranked infeasible solutions 

move towards the centriod. If the diversity of the population decreases too much then 

the performance of the algorithm also deteriorates. So for SSRT it is a critical issue to 

maintain diversity while attracting the low ranked infeasible solutions towards the 

feasible region. A small reduction of the diversity of the population by applying SSRT 

improves the performance of AMA. By applying SSRT, we can still provide sufficient 

diversity by controlling the diversity reduction.  

To show the effect of reducing diversity during SSRT, a set experiments is carried 

out with different percentage of diversity reduction (10% to 50% with an increment of 

10%) while keeping other parameters constant (Population size 100, PL 0.20, AR 50%). 

SSRT is stopped when the diversity reduced to a certain percent (e.g. 10% for the first 

experiment) from the initial stage. In general, a low range of diversity reduction (10-

20%) improves the performance of AMA. However a higher value of diversity 

deteriorates the quality of performance due to the lack of diversity in the population. 

The Results of the experiment for 30 independent runs for problem g01 are given in 

Table 6.4. 

The experimental results show the small reduction of diversity like 10%-20% gives 

the algorithm better performance. However a large amount of diversity reduction is not 
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helping the AMA significantly. If we consider the mean, standard deviation and worst 

results, the performance of AMA is best with 10% relative diversity reduction. That 

indicates SSRT improves the performance of the algorithm, however we need to ensure 

enough diversity in the population although SSRT reduces the diversity up to certain 

level.  

Table 6.4: Effect of Diversity Reduction (DR) on problem g01 

DR(%) Best Mean St. Dev. Worst Median AvgGen 

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 3165.19 

10 -15.000 -15.000000 3.78E-09 -15.000000 -15.000 3083.07 

20 -15.000 -15.000000 2.91E-08 -15.000000 -15.000 3126.52 

30 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 3073.60 

40 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 2983.95 

50 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 3011.67 

DR= Relative Diversity Reduction from the initial randomly generated population after SSRT, Avg Gen = 
Average number of generations required to find the best result.  

 

6.3.1.3 Summary  

The experiments described in this section show how the performance of SSRT is 

affected by various parameter settings. It is shown that: 

• The allowable range for calculating the centroid should not be too large, since 

the use of higher percentage could mislead the search process. For best 

performance it is suggested to use AR in the range of 30% to 50%. 

• Since SSRT reduces the diversity in the population, the experimental study 

shows the algorithm performs best with 10% relative diversity reduction. 

For the experiments described in the next section, AR is 50% and relative diversity 

reduction is 10%. 
 

6.3.2 Experimentation with other Evolutionary Algorithms 

This section investigates the performance of SSRT with other evolutionary 
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algorithms. Three well known Evolutionary Algorithms by Deb et al.(2002), Elfeky et 

al. (2006), and Sarker and Ray (2005), and simple genetic algorithms have been chosen 

to evaluate the effect of SSRT.  

A simple genetic algorithm (SGA) (same as chapter 3) using tournament selection, 

SBX crossover (Deb and Agrawal, 1995) and parameter based mutation operator (Deb, 

2000) is used to see the performance of SSRT in solving constrained optimization 

problems with tiny feasible space. 

Deb et al. (2002) have proposed a computationally fast and elitist multi-objective 

evolutionary algorithm, based on a nondominated sorting approach called NSGA-II. 

The difference between the conventional single objective GA and NSGA-II lies with the 

assignment of fitness of an individual. The fitness of an individual in NSGA-II is based 

on the non-domination level of an individual. Moreover, they have modified the 

definition of dominance in order to solve constrained multi-objective problems 

efficiently. NSGA-II is a well-known and well-accepted algorithm for solving both 

single- and multi-objective constrained optimization problems. 

Multi-objective Constrained Algorithm (MCA) proposed by Sarker and Ray (2005) 

is a close variant of NSGA-II. It has two major differences, which include the selection 

of parents and the process of population reduction. The process is more computationally 

expensive than NSGA-II, and can be thought as a diversity maintaining mechanism 

which might be useful for problems where the diversity in the variable space is 

important. This algorithm can also be used for solving both single- and multi-objective 

constrained optimization problems. MCA performs better than NSGA-II for some 

special cases of constrained optimization problems (Sarker and Ray, 2005).  

The previous chapter mentioned Elfeky et al.’s (2006) GA. They have introduced 

new ranking, selection, and triangular crossover methods to solve constrained 

optimization problems. They have exploited some features of constrained problems in 

the algorithm. This algorithm is indicated in this chapter as TC.  

As with AMA, all these algorithms have been applied in two sets of experiments. In 

the first set, each of the algorithms is executed for 30 independent runs with 30 sets of 



Chapter 6. Problems with Tiny Feasible Space 

131 

randomly generated initial populations. In the second set of experiments, each of the 

algorithms is executed for 30 independent runs with SSRT applied to the initial 

populations taken from the first set of experiments. 

These two sets of results of each algorithm are then compared to see whether the 

results are improved with SSRT. In all four algorithms, a fixed set of parameters are 

used for SSRT (probability of crossover 0.90, probability of mutation 0.20), as our 

objective is to test the influence of SSRT on the performance of algorithms and we are 

not interested here in finding the best set of parameters corresponding to the best 

solutions. In addition, as we are focusing on a given aspect of the algorithm, it is not 

appropriate to make a general conclusion on the overall performance of the algorithms. 

As with AMA the maximum number of generations is set at 3500 and the population 

size is 100. The maximum number of fitness evaluations is set in this experiment at 

350,000. For the best performance of TC, we have used the population size 30, 

probability of crossover 0.8 and probability of mutation 0.1 as suggested in (Elfeky et 

al., 2006). Despite using less population size, the algorithm was applied up to 350,000 

fitness evaluation counts. The allowable range (AR) of infeasible solution for 

calculating centroid is used at most 50% of the infeasible solutions, and the maximum 

diversity reduction from the initial random population is 10%.  

The best, mean, standard deviation, worst, and median results of 30 independent 

runs (with 30 different random seeds) of the four algorithms are given in Table 6.5, 6.6, 

6.7 and 6.8 and summarized in Table 6.9. Numbers in boldface mean that algorithms 

using SSRT achieved better result than without using SSRT. ‘×’ symbol indicates that 

the particular algorithm could not achieve feasible solutions in all of the 30 independent 

runs.   

From Table 6.5 we can see that SSRT has enhanced the performance of SGA in most 

of the problems. Although SGA without SSRT could not achieve any feasible solutions 

for g03, g05, and g11, with the help of SSRT it found a feasible solution in g05. For the 

other 11 problems, if we consider the mean results, in 81.82% of problems SSRT 

improves the performance of SGA. In 45.45% of problems the mean results are 

improved more than 5%, such as 5.45% in g01, 7.26% in g07, 9.36% in g10, 33.21% in 
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g13, and 8.83% in B04. While achieving the best results, 54.55% of the time SSRT 

improves the performance of SGA. For the case of achieving median and worst results 

SGA with SSRT achieved better results in 81.82% and 72.73% of problems respectively.  

Table 6.6 shows the results for NSGA-II with and without SSRT. In achieving best 

results SSRT improves the performance of NSGA-II in 71.43% of problems, and in 

21.43% of problems the performance remains the same. It is worth mentioning in 

problem g03 it has improved the best results by 5.19%, and by 31.62% in g13. It has 

improved the mean results in 78.57% of problems. For 64.29% of problems the median 

results, and in 42.86% of problems the worst results, are improved by SSRT.  

 



Chapter 6. Problems with Tiny Feasible Space 

133 

Table 6.5: Performance of SGA with and without SSRT from 30 independent runs. 

Fn SGA Best Median Mean StDev Worst 

NST -14.998 -13.815 -13.990 9.41E-01 -11.780 
g01 

ST -14.995 -14.986 -14.753 4.76E-01 -13.811 

NST × × × × × 
g03 

ST × × × × × 

NST × × × × × 
g05 

ST 5277.204** × × × × 

NST -6945.396 -6920.632 -6920.196 1.61E+01 -6888.569 
g06 

ST -6958.979 -6925.673 -6929.641 1.11E+01 -6916.950 

NST 25.615 27.755 28.310 2.41E+00 36.594 
g07 

ST 24.912 26.184 26.255 8.98E-01 27.799 

NST -0.095825 -0.095825 -0.095825 5.24E-09* -0.095825 
g08 

ST -0.095825 -0.095825 -0.095825 7.76E-11* -0.095825 

NST 680.808 681.648 681.821 6.50E-01 683.944 
g09 

ST 680.826 681.375 681.322 2.70E-01 681.702 

NST 7166.255 7823.128 8376.182 1.45E+03 13284.257 
g10 

ST 7126.020 7568.463 7591.785 2.62E+02 7988.912 

NST × × × × × 
g11 

ST × × × × × 

NST 0.457442 0.922264 1.031979 6.59E-01 3.854752 
g13 

ST 0.078772 0.781332 0.689290 2.66E-01 0.970765 

NST -44.775 -41.773 -41.553 1.81E+00 -37.910 
B01 

ST -42.576 -40.870 -40.536 1.44E+00 -37.794 

NST 964.124 975.253 973.961 3.76E+00 978.575 
B02 

ST 961.240 973.966 972.857 5.06E+00 979.036 

NST -1.905 -1.903 -1.903 2.98E-03 -1.890 
B03 

ST -1.905 -1.904 -1.904 4.70E-04 -1.904 

NST -0.848895 -0.645441 -0.678532 8.76E-02 -0.575312 
B04 

ST -0.859386 -0.793935 -0.738429 1.18E-01 -0.528032 

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold 
font indicates the best result achieved by algorithm with SSRT. , * indicates though the best, worst, 
median, and mean results are the same, standard deviation is positive due to rounding error; ** indicates 
algorithm achieved feasible solutions in only 1 run.  
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Table 6.6: Performance of NSGA-II with SSRT and without SSRT from 30 independent 
runs. 

Fn NSGA-II Best Median Mean StDev Worst 

NST -15.000 -14.998 -14.646 8.07E-01 -12.429 g01 
ST -15.000 -15.000 -14.999 7.19E-04 -14.997 

NST -0.616 -0.106 -0.171 1.66E-01 -0.003 g03 
ST -0.648 -0.162 -0.194 1.50E-01 -0.009 

NST × × × × × 
g05 

ST × × × × × 

NST -6950.884 -6940.375 -6941.099 4.14E+00 -6935.730 g06 
ST -6960.390 -6942.121 -6942.705 5.47E+00 -6931.173 

NST 24.438 25.299 25.462 8.72E-01 27.901 g07 
ST 24.363 25.098 25.244 8.49E-01 28.330 

NST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 g08 
ST -0.095825 -0.095825 -0.095825 9.80E-17* -0.095825 

NST 680.746 681.178 681.232 3.88E-01 682.302 g09 
ST 680.644 680.918 681.008 3.36E-01 682.302 

NST 7128.741 7940.550 8252.011 1.12E+03 11953.460 g10 
ST 7077.327 7443.979 7835.171 1.27E+03 16105.790 

NST 0.754 0.867 0.878 9.05E-02 0.999 g11 
ST 0.751 0.870 0.867 8.90E-02 0.996 

NST 0.974036 0.994066 0.991300 8.59E-03 0.999997 g13 
ST 0.666042 0.997573 0.914083 1.15E-01 0.998898 

NST -46.874 -41.384 -41.831 1.64E+00 -39.527 B01 
ST -46.894 -42.137 -42.079 2.04E+00 -39.189 

NST 963.764 973.842 973.671 4.16E+00 978.789 B02 
ST 963.698 974.373 974.351 3.54E+00 978.843 

NST -1.905 -1.904 -1.903 2.07E-03 -1.896 B03 
ST -1.905 -1.904 -1.904 7.95E-04 -1.902 

NST -0.864224 -0.666732 -0.731112 1.02E-01 -0.574267 B04 
ST -0.865643 -0.770036 -0.761072 9.89E-02 -0.625385 

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold font 
indicates the best result achieved by algorithm with SSRT. , ∗ indicates though the best, worst, median, and mean 
results are the same, standard deviation is positive due to rounding error.   
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Table 6.7: Performance of MCA with and without SSRT from 30 independent runs. 

Fn MCA Best Median Mean StDev Worst 

NST -15.148 -13.200 -13.656 1.48E+00 -10.300 
g01 

ST -15.149 -13.200 -13.639 1.52E+00 -9.752 

NST* -1.000 -1.000 -1.000 1.90E-04 -1.000 
g03 

ST* -1.000 -1.000 -1.000 1.46E-03 -1.000 

NST 5131.295 5364.948 5450.763 3.27E+02 6111.453 
g05 

ST 5126.582 5429.567 5470.412 2.89E+02 6058.473 

NST × × × × × 
g06 

ST × × × × × 

NST 24.310 25.784 26.802 2.41E+00 34.997 
g07 

ST 24.319 25.609 26.720 2.76E+00 34.997 

NST* -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 
g08 

ST* -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 

NST 680.776 681.380 681.454 4.23E-01 682.616 
g09 

ST 680.776 681.311 681.383 3.76E-01 682.357 

NST** 7073.306 7656.054 7623.999 4.29E+02 8281.761 
g10 

ST 7050.513 7510.483 7594.795 4.04E+02 8153.756 

NST 0.750 0.750 0.750 8.00E-05* 0.750 
g11 

ST 0.750 0.750 0.750 1.43E-04* 0.750 

NST 0.137313 0.416643 0.455166 1.69E-01 0.999374 
g13 

ST 0.129549 0.421717 0.422981 2.00E-01 0.998991 

NST -47.764 -47.764 -47.764 0.00E+00 -47.764 
B01 

ST -47.764 -47.764 -47.764 0.00E+00 -47.764 

NST 961.870 964.849 965.128 2.35E+00 968.546 
B02 

ST 961.863 962.963 964.330 2.65E+00 967.907 

NST × × × × × B03 
ST × × × × × 

NST × × × × × B04 
ST × × × × × 

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold font indicates 
the best result achieved by algorithm with SSRT. , ∗ indicates though the best, worst, median, and mean results are the 
same, standard deviation is positive due to rounding error. ** indicates algorithm achieved feasible solutions in only 
10 run.  
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Form Table 6.7 we can see SSRT has improved the performance of MCA as well. 

However, with both approaches MCA could not find any feasible solutions for problem 

g06, B03, and B04. For the other 11 problems, the best results improve with SSRT in 

45.45% of problems and remain the same in 45.45% of problems. The mean results are 

improved in 54.55% of problems and remain the same in 36.36% of problems. In 

36.36% of problems the median results, and in 45.45% of problems the worst results, 

are improved with the help of SSRT. We should mention that in problem g10, MCA 

achieved feasible results in only 10 runs from the 30 runs. However with the help of 

SSRT it achieves feasible results in every run.  

TC using SSRT achieved the same result for most of the problems as shown in Table 

6.8. However, in g03, g05, g10, and B04, the results are mostly improved. This 

algorithm uses triangular crossover (Elfeky et al., 2006) which chooses parents from 

both feasible and infeasible to generate offspring close to the boundary of the feasible 

region. Since the aim of this crossover is very similar to SSRT, that is to bring the 

population inside the feasible region, after the genetic process the results remain the 

same.  

In Table 6.9 the comparison of the results (best, median, mean, st.dev and worst) 

achieved by the algorithms using SSRT and without SSRT are shown in the form of 

xxxxx = [Best, Median, Mean, St.Dev, Worst, results]. Symbol ‘+’ indicates the 

algorithm using SSRT achieved a better result than without SSRT; ‘−’ indicates 

algorithm achieved a worse result using SSRT; and ‘0’ indicates same results. 
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Table 6.8: Performance of TC with and without SSRT from 30 independent runs 

Fn TC Best Median Mean StDev Worst 

NST -15.000 -15.000 -15.000 0.00E+00 -15.000 
g01 

ST -15.000 -15.000 -15.000 0.00E+00 -15.000 

NST -0.963 -0.886 -0.891 4.40E-02 -0.808 
g03 

ST -0.997 -0.991 -0.977 2.55E-02 -0.880 

NST 5126.581 5215.653 5318.166 2.35E+02 5898.594 
g05 

ST 5126.505 5215.762 5317.374 2.37E+02 5954.586 

NST -6961.814 -6961.814 -6961.814 3.70E-12* -6961.814 
g06 

ST -6961.814 -6961.814 -6961.814 3.70E-12* -6961.814 

NST 24.566 25.832 25.855 4.80E-01 26.825 
g07 

ST 25.130 25.890 25.941 4.87E-01 26.944 

NST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 
g08 

ST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 

NST 680.634 680.654 680.660 1.98E-02 680.703 
g09 

ST 680.634 680.661 680.663 2.11E-02 680.703 

NST 7098.481 7862.190 8058.985 8.21E+02 10509.988 
g10 

ST 7071.489 7979.785 8097.473 8.47E+02 9603.307 

NST 0.750 0.750 0.750 0.00E+00 0.750 
g11 

ST 0.750 0.750 0.750 0.00E+00 0.750 

NST 0.055147 0.597604 0.481420 3.32E-01 1.000000 
g13 

ST 0.055147 0.597604 0.481420 3.32E-01 1.000000 

NST -47.193 -46.199 -46.220 5.87E-01 -44.844 
B01 

ST -47.193 -46.199 -46.220 5.87E-01 -44.844 

NST 961.724 962.661 963.293 1.86E+00 968.000 
B02 

ST 961.724 962.661 963.293 1.86E+00 968.000 

NST* -1.905 -1.905 -1.905 3.29E-04 -1.903 
B03 

ST* -1.905 -1.905 -1.905 3.66E-04 -1.903 

NST -0.865939 -0.672910 -0.741236 1.05E-01 -0.500000 
B04 

ST -0.866011 -0.859673 -0.785920 1.05E-01 -0.500000 

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold 
font indicates the best result achieved by algorithm with SSRT. , ∗ indicates though the best, worst, 
median, and mean results are the same, standard deviation is positive due to rounding error.  
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Table 6.9: Performance of SSRT on EAs in solving the benchmark problems 

Fn AMA SGA NSGA-II MCA TC 

g01 0 0 + + + − + + + + 0 + + + + + 0 + − − 0 0 0 0 0 

g03 0 0 0 + 0 × + + + + + 0 0 0 − 0 + + + + + 

g05 − −  + + + +* × + − − ++ + − + − − 

g06 0 + + + + + + + + + + + + − − × 0 0 0 0 0 

g07 + + + + + + + + + + + + + + − − + + − 0 − − − − − 

g08 0 0 0 + 0 0 0 0 + 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 

g09 + + + + + − + + + + + + + + 0 0 + + + + 0 − − − 0 

g10 + + + + + + + + + + + + + − − + + + + + + − − − + 

g11 0 0 0 + 0 × + + + + + 0 0 0 − 0 0 0 0 0 0 

g13 + + + + + + + + + + + − + − + + − + − + 0 0 0 0 0 

B01 + − + + + − − − + − + + + − − 0 0 0 0 0 0 0 0 0 0 

B02 − + + + + + + + + − + − − + − + + + − + 0 0 0 0 0 

B03 0 + + + + 0 + + + + 0 0 + + + × 0 0 0 0 0 

B04 − + + + + + + + − + + + + − + × + + + 0 0 

xxxxx = [Best, Median , Mean, St.Dev, Worst, results]. Symbols: +, better; 0, similar; −, worse, ×’= 
feasible solution were not found, * with SSRT, SGA found 1 feasible solution. 

 

After analyzing the results, we can see for most of these benchmark problems SSRT 

has enhanced the performance of the evolutionary algorithms.   

 

6.3.3 Solving a Real World Problem 

The test problems considered in the previous section are smaller in size. Although the 

contribution of SSRT is positive in those problems, the real improvements may seem very 

little. To test the true performance of SSRT in solving a reasonable size problem, we use a 

real world crop planning problem (Sarker and Quaddus, 2002; Sarker and Ray, 2005; 

Sarker and Ray, 2009) in this section. As our objective is to test the performance of SSRT, 

we ignore the description of the problem here. However, the interested readers can find the 

details in (Sarker and Ray, 2005; Sarker and Ray, 2009) and in Appendix C. Here a 
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constrained non-linear single objective model of the crop planning problem is solved. 

The original model consists of 68 variables and 45 constraints. By applying variable / 

constraint reduction technique, the model can be reduced to 39 variables and 15 

constraints. A given instance of the problem is considered, where the ratio of the feasible 

region and search space ρ is almost 0.00%. 

As with the benchmark problems, two sets of experiments have been made for each 

of the algorithms. The results on the improvements of the 30 independent runs of the 

algorithms are summarized in Table 6.10. Using SSRT, most of the algorithms achieve 

remarkably better fitness value, for example, 1.24% better fitness value by AMA, 7.61% 

by SGA, 0.25% by NSGA-II, 1.38% by MCA than without SSRT. If we consider in 

terms of profit gain, AMA gains $0.28 million, SGA gains $0.63 million when NSGA-II 

and MCA gain $0.06 and $ 0.33 million respectively. SSRT also provides better mean, 

standard deviation, worst, and median values with these algorithms. The results of TC is 

not mentioned here in Table 6.10, since its result is not improved, like most other test 

problems, for the reason discussed earlier. 

Table 6.10: Improvement of performance of different EAs using SSRT in solving crop 
problem. 

Algorithms Best Median Mean Worst 

AMA 1.24% 3.32% 1.64% 3.65% 

SGA 7.61% 42.41% 23.01% 0.58% 

NSGA-II 0.25% 0.68% 0.75% 6.51% 

MCA 1.38% 4.31% 4.19% 3.89% 

 

The convergence curve on this problem using AMA and AMA with SSRT is given in 

Figure 6.2. It is clear that AMA with SSRT provides faster convergence towards better 

results than AMA without SSRT. 
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Figure 6.2: Convergence Curve for Crop problem using AMA with and without SSRT. 

 

6.4 Chapter Summary 

This chapter presents a simple search space reduction technique (SSRT) for 

population-based evolutionary algorithms to solve constrained optimization problems 

with tiny feasible region. The proposed SSRT allows certain infeasible solutions in the 

initial population to move slowly towards the feasible region. The performance of SSRT 

is investigated by solving a set of test problems and a real world case problem with 

AMA, simple genetic algorithm and three well-known algorithms found in the 

literature. This approach usually improves the performance of the algorithms in terms of 

either solution quality or computational time or both, at the cost of an additional step 

with O(M2) complexity. From the results of the real world problem, it is evident that the 

method is more appreciable for large scale problems with tiny feasible space. Although 

the idea of SSRT is very simple, the results justify the use of SSRT with evolutionary 

algorithms.  

Regardless of the other limitations of the constraints it has been noticed that the 

existence of equality constraints reduces the size of the feasible space. In all the 

problems involving equality constraints in the test set the ratio of feasible space over the 

search space is almost zero. In the next chapter, a method is proposed to deal with  

equality constraints.   



 

 

Chapter 7                                                            

Handling Equality Constraints 

In addition to inequality constraints, many mathematical models require equality 

constraints to represent the practical problems appropriately. The existence of equality 

constraints reduces the size of the feasible space significantly, which makes it difficult 

to locate feasible and optimal solutions.  This chapter presents a new Equality 

Constraint Handling Technique (ECHT) which enhances the performance of AMA in 

solving constrained optimization problems with equality constraints. The technique is 

basically used as an agent learning process in AMA. The performance of AMA with 

ECHT is tested on a set of well-known benchmark problems. The experimental results 

confirm the improved performance of the proposed technique. 

 

7.1 Introduction 

Many mathematical optimization models involve a set of equality, inequality or both 

types of constraints. The size of feasible space of these problems depends on the type of 

constraints and their interactions. In any optimization problems with equality 

constraints, each feasible solution point must lie on each and every equality constraint. 

The existence of equality constraints reduces the size of the feasible space drastically. In 

the previous chapter, we have seen in all the problems with equality constraints that the 

ratio of feasible space over the search space is almost zero. It is not easy to find the 

feasible points while solving such equality constrained problems. As a consequence, 

EAs have inherent difficulty in dealing with equality constraints when solving 
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constrained problems. As in Mezura-Montes and Coello (2002), it is very hard for 

traditional EAs to find feasible and optimal solutions for such problems.  

Many traditional EAs (Deb, 2000; Elfeky et al., 2006) convert equality constraints 

hj(X) = 0 into inequality constraints −δ ≤ hj(X) ≤ δ (where δ is a small tolerance value) 

to increase the feasible space temporarily. Still they may fail to achieve either feasible or 

good quality solutions, for example, Koziel and Michalewicz (1999) have not found 

good quality solutions for problem g05 which involves equality constraints. 

In solving problem g13 (which involves equality constraints), the mean and worst 

results achieved by the stochastic ranking algorithm (Runarsson and Yao, 2000) were 

25.20% and 302.07% from the optimum respectively. Runarsson and Yao (2000) also 

reported that they failed to solve some equality constrained problems such as g03 and 

g05 using the dynamic penalty method as in Joines and Houck (1994). Although Deb 

(2000) has solved one optimization problem with equality constraints optimally, the 

percentage variation of median from the optimal was 346.29%. Mezura-Montes and 

Coello (2002) reported a comparison of several well-known multi-objective-based 

techniques to handle constraints such as Constrained Optimization by Multi-Objective 

Genetic Algorithms (COMOGA) by Surry and Radcliffe (1997), Vector Evaluated 

Genetic Algorithms (VEGA) (Schaffer, 1985) used by Coello (2000b), Multi-Objective 

Genetic Algorithms (MOGA) (Fonseca and Fleming, 1993) applied by Coello (2000a),  

Niched-Pareto Genetic Algorithms (NPGA) (Horn et al., 1994) implemented by Coello 

and Mezura-Montes (2002). Most of these algorithms successfully solved the problems 

with inequality constraints. However, for 75% of the problems with equality constraints, 

the algorithms could not achieve optimal. Interestingly, they were unable to find any 

feasible solutions for 50% of the problems. This demonstrates the difficulties in solving 

constrained optimization problems with equality constraints, which motivates to design 

a new equality constraint handling technique. 

In this chapter, a new technique is presented to handle the equality constraints. In 

any optimization problems with equality constraints, to satisfy the condition of 

feasibility and optimality, the solution points must lie on each and every equality 

constraint. That means it might be possible to find an optimal solution by simply 
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exploring an equality constraint function where the constraint function contains all the 

variables. This common knowledge encourages to design a new ECHT for dealing with 

equality constraints. The basic idea is to reach a point on the equality constraint from 

the current position of an individual solution, and then explore on the constraint 

landscape. That means an individual would explore only a portion of the entire search 

space. In practical problems, an equality constraint may not contain all the variables 

which require exploring the landscapes of other equality constraints. To the best of our 

knowledge, this approach for handling equality constraints has not appeared in the 

literature.  

The proposed ECHT is added as a new LSLP in AMA. The new LSLP is particularly 

valuable during the early stage of the algorithm, to speed the search towards the feasible 

space. For that reason it is used exclusively for the first N generations, and thereafter 

other LSLP's are used to refine the solution. Chapter 6 was all about speeding the search 

towards the feasible space by calculating an approximate centroid from better initial 

randomly generated solutions. A percentage of worse solutions are then allowed to 

follow the centroid. Here the new LSLP tries to bring any individual solution to an 

equality constraint or to explore on that.  

The new version of AMA is capable of dealing with the equality constraints more 

efficiently. To test the performance of the algorithm, a set of ten benchmark problems 

with equality constraints is selected, and the results are compared with different 

algorithms. The comparisons show that the results are of improved quality with low 

computational time. This chapter also analyzes the effect of the new learning process for 

handling the equality constraints.  

The rest of this chapter is organized as follows. Section 7.2 describes the proposed 

equality constraint handling technique. Section 7.3 presents the extended Agent-based 

memetic algorithm. Section 7.4 provides computational experience, results of the 

proposed approach on benchmark problems. Another approach of incorporating ECHT 

in AMA and its performance is discussed in section 7.5. Finally, Section 7.6 concludes 

the chapter and provides future research directions. 
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7.2 Equality Constraint Handling Technique (ECHT)  

The size of the feasible space within the search space may depend on the type of the 

constraints involved in the problem. For example, the existence of equality constraints 

significantly reduces the size of the feasible space, which makes it difficult for the 

algorithms to find the feasible points.  

Consider a simple numerical example as follows. 

Maximize f(X) = x1+ x2 ; 

Subject to   

1 ≤ x1 ≤ 2; 

1 ≤ x2 ≤ 2;  

For simplicity, assume that up to two decimal points are allowed for x1 and x2 (i.e. 

their values can be 1.00, 1.01, 1.02 etc). If there are no other constraints, there are 

10201 solution points in the discrete search space, and the optimal solution is 4.00 

(when x1 = 2.00, x2= 2.00). If we add an inequality constraint g(X) = x1− x2 ≤ 0.80, 9991 

points (97.94%) in the discrete search space still satisfy the constraint, and the optimal 

result remains the same 4.00 (when x1 = 2.00, x2= 2.00). However if we replace the 

inequality constraint g(X) with an equality constraint h(X) = x1− x2 = 0.80, the feasible 

space becomes very tiny in comparison to the search space. Now all the feasible points 

must lie on the equality constraint h(X). If we consider up to two decimal points, only 

21 points satisfy the constraints among 10201 possible candidates and the optimal 

objective is now 3.20 (with x1 = 2.00, x2= 1.20). The feasible space is now reduced to 

0.21% of the original search space which is very hard to locate. 

The complexity can be greatly increased by the number of constraints and the 

interference among them. However the existence of the equality constraints can be 

useful for solving COPs, as it might be possible to find an optimal solution by simply 

exploring the equality constraint functions. In this chapter, a new search process for 

handling equality constraints is introduced. To explain the technique, let us consider an 
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optimization model with all or a subset of constraints of equality type. Three 

propositions related to equality constraints are presented next.  

Proposition 1: For a given constrained optimization model, where all or a subset of 

the constraints are of equality type, a feasible solution cannot be found without 

satisfying any of the equality constraints. We assume that the solution point under 

consideration satisfies all inequality constraints (if any).  

Proof: By definition, a feasible solution point must satisfy all the constraints. To 

satisfy an equality constraint, the point must be on that constraint.  

Proposition 2: A feasible and optimal solution point must lie on each and every 

equality constraint.  

Proof: To satisfy all the equality constraints, a feasible point must lie on all the 

equality constraints. By definition, the best feasible point is the optimal solution. 

Proposition 3: It is possible to find a feasible and optimal solution point by simply 

searching on an equality constraint function landscape when the function contains all 

the variables and is continuous.  

Proof: As the feasible and optimal point must lie on all equality constraints, by 

simply moving on a constraint (i.e. points which satisfy the constraint), which involves 

all the variables, one may be able to reach the optimal solution.  

As all variables may not exist in a certain equality constraint and there is no 

guarantee of having a continuous function, finding a better solution by simply exploring 

on the equality constraint may not work. The above arguments are used to design a new 

technique for handling equality constraints in solving optimization problems, as 

follows: 

Choose an equality constraint randomly, and a randomly selected individual.  

1. If the equality constraint is not satisfied in this individual, change only one 

variable so that the constraint is satisfied.  
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2. If the individual satisfies the constraint, choose two variables and modify them 

in such a way that the resulting point still satisfies the constraint and the total 

constraint violation reduces.  

The first move would help to reduce overall constraint violation, and the second move 

would help to increase diversity of individuals in the population. The second move also 

considers the total constraint violations that include all the equality and inequality 

constraints.  

It is not always possible to satisfy the constraints by changing a single variable. The 

variable may violate its bound. For simplicity of the algorithms in that case the variable 

is restricted to the boundary. Sometimes the required value of the variable might be an 

imaginary number (because of nonlinearity), in that case a random number is assigned 

between its bounds. The method of calculating change of fitness value is somehow 

similar to the Generalized Reduced Gradient (GRG) algorithm (Lasdon et al., 1978). 

However, it has been done here numerically.  

It is not always easy to move on an equality constraint function landscape. To explore 

on the constraint landscape it may be needed to change several variables involved in 

that constraint. We may need to increase the value of some variables while decreasing 

the value of some other variables in order to remain on the same equality constraint but 

at a different point. This is very simple when the constraint involves one or two 

variables, but becomes complex with more variables. To reduce this complexity in that 

case, only two variables are randomly selected, that are involved in the selected equality 

constraint and then a small random change is made on the first variable. The second 

variable is then modified in such a way that the solution remains on the constraint 

surface. 
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Pseudo code: Equality Constraint Handling Technique. 

Let  X=[x1,x2,…,xn] be the current solution vector, CVj = constraint violation for 
hj(X)=0;  j =1,2,…,q with solution vector X  and Xj presents a vector that contains the 
variables involved in constraint hj(X)=0. rnd(.,.) is a uniform random number generator, 
TCV=Total Constraint Violation. 
 
Select any of the equality constraints hj(X)=0;  j=1,2,…,q randomly. 
   

If (CVj ≠ 0)   

Select a random variable { ∈aa xx  Xj}; 

Calculate ax′ so that CVj =0;  

If ax′ is an imaginary number, set ),(  x x rndx aab =′ ; 

If ( aa xx >′ ) set aa xx =′ ;  
If )( aa xx <′    set aa xx =′ ;  

Else 
Select a random variable { ∈aa xx  Xj}; 
Calculate ax  rnd  φ ×−= )1.0,1.0( ; 
Set φx x aa ±=′ ;( add/subtract, based on which direction the TCV is reduced); 

Select a random variable { ∈bb xx Xj, ba ≠ }.Calculate bx′  such that 

ba xC xC ′⊕′ 21 = ba xC xC 21 ⊕ , where ⊕  represents any mathematical operators 
(e.g. +, −, ×,/  ) , 21 C ,C  are constants.  

End. 

 

Figure 7.1 and 7.2 show an example of how the new ECHT works. Consider a 

nonlinear optimization problem, consisting of two equality constraints, which can be 

defined as follows: 

Minimize f(X), where X = [x1, x2], X∈Rn is a set of 2 variables of the solution. 

Subject to, 

h1(X) = 0; 

h2(X) = 0; 

X ≥ 0; 
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For an example of the first type of move, assume the graphical representation of the 

problem is like Figure 7.1. The two equality constraints h1(X) = 0 and h2(X) = 0 intersect 

at two points. Since the two intersection points of the constraints satisfy both of the 

constraints, we have only two feasible solution points for this problem. As it is a 

minimization problem, the objective function value f(X) is optimal on the lower 

intersection point. The new ECHT randomly selects an equality constraint, suppose here 

h1(X) = 0, for an individual. If the solution (the black dot in Figure 7.1) does not satisfy 

the constraint (i.e. it does not lie on the arc satisfying the equality constraint), then select 

a random variable involved in that constraint, e.g. x2. Then x2 shall be changed so that 

h1(X) = 0.  

Figure 7.2 shows the second type of move. If the constraint is satisfied, the ECHT will 

choose two variables x1 and x2 and modify them in a way that the resulting point is still 

on the constraint. This helps to increase the diversity and move towards the optimal 

solution.  

 

 

Figure 7.1: ECHT (when the solution does not satisfy the equality constraint). 

h2(X) = 0 
 Optimal  

x1  

x2 
h1(X) = 0 

Individual Solution 
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Figure 7.2: ECHT (when the solution satisfies the equality constraint). 

 

7.3 Extended AMA (AMA-II) 

In chapter 4, AMA is presented, where the agent concept is incorporated with 

memetic algorithms. The goal of each agent is to improve its fitness while satisfying 

constraints. Following the natural adaptation process, in the proposed AMA the agents 

improve their fitness by adaptively selecting a life span learning process from the 

designed set, together with the evolutionary adaptation of the population.  

In this chapter, to enhance the performance of AMA in solving equality constrained 

problems, ECHT introduced in the previous section is used as a new life span learning 

process (LSLP). Through this LSLP an agent moves from its current position towards 

the curvature of an equality constraint by changing one or two variables. In AMA, after 

performing the crossover, a certain percentage of the agents are selected for LSLP. Here 

in extended AMA (indicated as AMA-II), the agents select only the new LSLP in the 

early stage of the evolution process e.g. first N generations. This LSLP directs the 

agents towards the feasible space, which speeds up the search process. Then for the later 

generations, the agents apply the other four LSLPs (described in chapter 4) self-

adaptively for refining the solutions. 

h2(X) = 0  Optimal  
x1  

x2 

h1(X) = 0 

Individual Solution 
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The main steps of AMA-II are given below.   
 

Step 1. Create a random population, which consists of MM × agents. 

Step 2. Arrange the agents in a lattice-like environment.  

Step 3. Evaluate the agents individually. If the stopping criterion has been met, 

go to step 7, otherwise go to step 4.  

Step 4. For each agent examine its neighborhood. Select an agent from its 

neighborhood and perform crossover. 

Step 5. Select a certain percentage of agents; During the initial generations apply 

only the LSLP designed for equality constraint, then switch to other 

LSLPs. 

Step 6. Go to step 3. 

Step 7. Stop. 

 

In the algorithm, the equality constraints are given special preference using the 

proposed learning process of the agents. At the same time, the constraints are also 

handled indirectly while comparing the individuals. Details of this constraint handling 

have been already discussed in section 4.5. 

 

7.4 Experimental Studies 

In this section, first the benchmark problems are presented, then the initial design 

experience for the new LSLP with the proposed ECHT is discussed. The performance of 

AMA with the new LSLP in solving COPs with equality constraints is analyzed next. A 

set of experiments is also carried to investigate the effect of the LSLP to the 

performance of the algorithm.  
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7.4.1 Benchmark Problems 

To test the performance of AMA with the new LSLP, ten benchmark problems that 

involve equality constraints have been selected. The first four problems (g03, g05, g11, 

g13) are taken from 13 well known benchmark problems (g-series) (Runarsson and Yao, 

2000). Mezura-Montes and Coello (2002) categorized some test problems based on 

difficulty and reported problems g05 and g13 as “Very difficult” and g03 as “Difficult”. 

Two problems (B01 and B02) used in the previous chapters are also included, as they 

involve equality constraints. The other four problems (indicated here as B06-B09) are 

taken from (Floudas, 1999; Himmelblau, 1972; Hock and Schittkowski, 1981).  

The benchmark problems involve different forms of objective functions and 

different number of variables (n). The maximization problems are transformed into 

equivalent minimization problems. The characteristics of the test problems are given in 

Table 7.1, and the detailed mathematical representations are provided in Appendix A 

and B. 

 

Table 7.1: Characteristics of the test problems. 

Fn (n) Obj. Fuc. LI NI LE NE AC Optimal 

g03 10 Polynomial 0 0 0 1 1 -1.000 

g05 4 Cubic 2 0 0 3 3 5126.498 

g11 2 Quadratic 0 0 0 1 1 0.750 

g13 5 Nonlinear 0 0 0 3 3 0.053950 

B01 10 Nonlinear 0 0 3 0 3 -47.765 

B02 3 Quadratic 0 0 1 1 2 961.715 

B06 7 Linear 0 1 0 5 6 193.724 

B07 5 Quadratic 0 0 2 0 1 0.000 

B08 6 Nonlinear 0 0 6 0 6 6.334 

B09 4 Linear 0 0 0 2 2 -1.000 

LI = Linear Inequalities, NI = Nonlinear Inequalities, LE = Linear Equalities, NE = Nonlinear Equalities, 
AC = Active Constraints. 
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7.4.2 Initial Design Experience  

During the initial design of the LSLP for equality constraints I have experienced 

some interesting situations. I would like to share some of them with the readers.  

According to proposition 2, a feasible and optimal solution point must lie on each 

and every equality constraint. So if we explore any of the equality constraints it is 

possible to reach the optimal solution. In the initial design of the new LSLP for equality 

constraints, only a single equality constraint function is examined, by ignoring all other 

functions, for finding a good quality solution. However, this approach was not 

consistently providing benefit, as a single equality constraint may not contain all the 

variables involved in the model.  

 In the second attempt, one of the equality constraints is selected randomly and then 

one variable is changed by assigning it a value to reach the constraint. For example let 

us consider problem g13 constraint 0)(2 == 5432 xx5 - xx xh . 

According to the first move of the new ECHT, the LSLP needs to select a random 

variable (e.g. x2). The required value of x2 to reach to the equality constraint is 

3

54
2

5
x

xxx = . If the target constraint cannot be reached, due to the variable bounds, the 

variable is assigned its upper/lower bound value (whichever is closest to the calculated 

value). This works fine for most of the problems. However in some test problems it 

raises a different issue e.g. in problem B01 if any xi=0 (lower bound) then objective 

function value 
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cxxf   )( will be infinity. To avoid this, in this case a 

very low value (e.g. xi =1E-20) is assigned to xi.  

Sometimes the required value of the variable might be an imaginary number, e.g. in 

problem g11 where ( ) ,02
12 =+= xxxh for any negative value of x2, the required value of 

x1 = 2x-  must be an imaginary number. In that case a random number between its 

boundary ranges is assigned.   
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Furthermore when trying to explore on an equality constraint the values of only two 

variables are changed, to keep it computationally simple. For example 

in 0)(2 == 5432 xx5 - xx xh , suppose we select randomly the variables x2 and x5. Then 

we change the value of x2 as 2
'
2 xrnd xx ×−+= )1.0,1.0(2  and we calculate the new value 

of '
5x as '

543
'
25432 xx5 - xxxx5 - xx = . However this process was not simple after all, as 

the variable may contain any type of nonlinearity. In particular, a variable with a power 

of 2 could have negative or positive value and have the same impact on satisfying the 

constraint. For example in problem g03 for any value xi (positive or negative value) the 

result is same as ( ) 01
1

2
1 =−= ∑

=

n

i
ixxh . If we always assign a positive value, or always a 

negative value, we could find it impossible to find the global optimum. The initial LSLP 

is changed so that in cases of variables with even powers, it is assigned randomly either 

a positive or negative value. This process consistently provided better solutions.  

In third attempt, the new LSLP is used for only the first 100 generations (arbitrarily 

chosen) and the other four LSLPs afterward. The reason for this choice was due to the 

fact that the new LSLP increases the diversity of the population. It is observed that this 

process provided even better results. 

7.4.3 Experimental Results and Discussions 

First the performances of three algorithms in solving the test problems are 

investigated: 

• SGA: a simple genetic algorithm with tournament selection, SBX crossover 

and parameter based mutation operator (Deb, 2000) as described in chapter 3.  

• AMA-I: AMA as described in chapter 4. 

• AMA-II: AMA with the new LSLP for equality constraints. 

The initial solution vectors for the agents were randomly generated within the 

boundary of each decision variable. For AMA-I and AMA-II the agents are arranged in 

a lattice-like environment of size M×M, so the number of the agents (i.e. the population 
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size) must be a square number. In AMA-II the new LSLP is used only in the first 100 

generations then the other four LSLPs are used. For each algorithm the same population 

size (100), and probability of learning/LSLP (PL= 0.2) are used. For SGA the 

probability of crossover is PC = 0.90 and the probability of mutation used is PM=0.2. 

The maximum number of generations considered was 3500.  

The best, median, mean, standard deviation (st.dev.), and worst results, as well as 

execution time, for the well-known problems (g03, g05, g11, and g13) from 30 

independent runs are given in Table 7.2. The results for remaining problems (B01, B02 

B06-B09) are given in Table 7.3. An ‘×’ in the Tables indicates that the algorithm did 

not find any feasible solution. 

Form Tables 7.2 and 7.3 we can see that SGA could not find any feasible solution 

for problems g03, g05, and g11. Although SGA is able to find feasible solutions for the 

other problems, the best solution obtained is far from the known best. Both AMA-I and 

AMA-II have solved those problems successfully. AMA-I achieves the optimum in four 

problems (g03, g11, B07, and B09). AMA-II achieves the optimum in six problems 

(g03, g11, g13, B02, B07, and B09) and very close to optimum in the other four 

problems. For example, the achieved best results of AMA-II in g05 and B01 are within 

0.00002% and 0.15912% of the optimum respectively. B06 is a special type of problem 

which involves a set of equality and inequality constraints with several variables, and 

the objective function depends on only one variable which is involved in the inequality 

constraint. Though the algorithm could not achieve the optimum for this problem the 

achieved result is within 3.97266% of optimum. The algorithm could not find the 

optimum (only 3.91538% far from optimum) for B08 which involves a set of linear 

equality problems.  
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Table 7.2: Statistics for 30 independent runs of different algorithms for problems 

with equality constraints in g-Series. 

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)
SGA × × × × × 4.14 
AMA-I -1.000 -1.000 -1.000 2.76E-06* -1.000 80.86 g03 -1.000 
AMA-II -1.000 -1.000 -1.000 1.70E-06* -1.000 86.54 
SGA × × × × × 3.52 
AMA-I 5127.388 5186.761 5208.999 8.20E+01 5463.927 27.62 g05 5126.498 
AMA-II 5126.499 5126.985 5129.054 3.69E+00 5136.921 24.13 
SGA × × × × × 2.55 
AMA-I 0.750 0.750 0.750 3.35E-03* 0.750 14.92 g11 0.750 
AMA-II 0.750 0.750 0.750 4.00E-07* 0.750 11.11 
SGA 0.457442 0.922264 1.031979 6.59E-01 3.854752 4.29 
AMA-I 0.054212 0.065926 0.193989 2.07E-01 0.811584 40.72 g13 0.053950 
AMA-II 0.053950 0.055993 0.055616 8.63E-04 0.056540 35.80 

Opt= Optimal, ‘×’= feasible solution were not found, *indicates though the best, worst, median, and mean 
results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the 
literature. Bold fonts indicate the best result achieved. 

 

The mean results achieved by AMA-II are also of good quality. In six problems 

(g03, g05, g11, B02, B07, and B09) the mean results are within 0.05% of the optimum. 

The results are within 4% of optimum in 3 problems (g13, B01, and B08) and only in 

one problem (B06) is the result more than 10% away (13.28%) from optimum. If we 

compare the mean results, AMA-II achieves better mean results than AMA-I in five 

problems (g05, g13, B01, B02, and B06). Although the mean results of AMA-I and 

AMA-II are same for the other five problems, AMA-II achieves better standard 

deviation for all those problems. The qualities of the other results of AMA-II are also 

remarkable. 
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Table 7.3: Statistics for 30 independent runs of different algorithms for the test 
problems. 

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)

SGA -44.775 -41.773 -41.553 1.81E+00 -37.910 3.47 

AMA-I -46.542 -44.950 -44.652 1.63E+00 -39.808 85.48B01 -47.765 

AMA-II -47.688 -47.145 -47.155 3.09E-01 -46.696 77.93

SGA 964.124 975.253 973.961 3.76E+00 978.575 2.82 

AMA-I 961.716 964.836 965.085 2.39E+00 970.210 17.98B02 961.715 

AMA-II 961.715 961.715 961.716 1.21E-03 961.720 15.73

SGA 218.009 661.675 653.398 2.05E+02 960.191 3.52 

AMA-I 196.970 215.719 229.847 3.07E+01 300.080 41.14B06 193.724 

AMA-II 201.420 216.121 219.455 1.36E+01 237.181 46.09

SGA 0.076 0.754 0.797 4.50E-01 1.717 2.84 

AMA-I 0.000 0.000 0.000 8.40E-17 0.000 17.28B07 0.000 

AMA-II 0.000 0.000 0.000 0.00E+00 0.000 11.83 

SGA 6.567 6.583 6.582 5.15E-03 6.593 2.46 

AMA-I 6.582 6.582 6.582 5.39E-09 6.582 13.56B08 6.334 

AMA-II 6.582 6.582 6.582 2.15E-09 6.582 19.81

SGA -0.935 0.465 0.314 6.74E-01 1.282 3.71 

AMA-I -1.000 -1.000 -1.000 1.08E-08 -1.000 20.79B09 -1.000 

AMA-II -1.000 -1.000 -1.000 8.43E-10* -1.000 18.25

Opt= Optimal, ‘×’= feasible solution were not found, * indicates though the best, worst, median, and mean 
results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the 
literature. Bold fonts indicate the best result achieved. 

 

After analyzing the results it is very clear that SGA is very simple and quick in 

solving the problems (on average it needs 3.33 seconds to solve each problem). 

However SGA could not solve three problems and the results for the other problems are 

not of high quality. Only in two problems (B02 and B08) the best results are within 5% 

of the optimum. Compared to SGA, AMA-II has a trade-off of speed against solution 

quality: AMA-II is slower but gives better results.  

In AMA-II, during the initial generations it only uses the new LSLP process and so 
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the improvement index calculation and other four LSLPs (involving iterative process) 

are not used in that period. As a result the new LSLP reduces the execution time of 

AMA-II by 3.64% compared to AMA-I. The new AMA-II took on average 34.72 

seconds to solve each problem.  The results achieved by AMA-II show that the 

inclusion of the new LSLP has enhanced the ability of AMA in solving constrained 

optimization problems with equality constraints. 

 

7.4.4 Effect of the new LSLP 

The test results show that with the inclusion of the new LSLP, AMA-II always 

performs better than AMA-I. To visualize the internal effect of the new LSLP, two 

convergence curves are presented from the results with AMA-I and AMA-II, on 

problem g13. The objective function of this problem is nonlinear and involves equality 

constraints. As this problem is very difficult to solve (according to Mezura-Montes and 

Coello (2002)), this problem is chosen to show the effect of the new LSLP. Figure 7.3 

shows the best objective function value achieved by the two algorithms at every 

generation for 1000 generations. To see the effect on the whole population, Figure 7.4 

shows the average objective function of the whole population. 

As the test problems include equality constraints, the feasible space is very tiny. 

During the initial generation, several individuals in the agent population may have 

better objective function values but with huge constraint violations. This is why the 

convergence curves drop from initial high values: although the initial objective function 

values may be good, the constraints are not satisfied. With time the constraint violation 

is reduced and objective function values move back towards optimal values, now with 

low constraint violation. 

In most problems, AMA-II converges faster towards the best objective function 

value. It exploits the advantages of both the new LSLP early in the evolutionary 

process, and the other four LSLPs afterwards. Usually when the new LSLP is applied, it 

tries to move the agent’s existing solution towards the randomly selected equality 
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constraints. As a result the agents may reach (or nearly reach) different points of 

different equality constraints. Hence it ensures enough diversity in the population with 

good quality solutions. After that AMA-II uses the other LSLPs, as did AMA-I. That is 

why AMA-II converges faster than AMA-I in Figure 7.3. However in some problems, 

like g03, g11, B07, and B09 both versions of AMA show similar behavior, since both 

versions achieve the optimal solution in their early generations and solved the problems 

easily.  
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Figure 7.3: Convergence Curve from the best objective function of AMA-I and AMA-II 
for problem g13. 

 
In Figure 7.4, for AMA-II, during the first 100 generations (while the new LSLP is 

working) the average of the objective function values of the population is very high with 

a high rate of change. This is due to the effect of the increased diversity by the new 

LSLP. When the new LSLP stops (after 100 generations) the average objective function 

improves slowly with the other four LSLPs. On the other hand AMA-I has lower 

diversity and converges slowly. The same behavior is seen for most other problems. So 

the new LSLP helps AMA-II to converge faster, with better quality solutions, than 

AMA-I. 
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Figure 7.4: Convergence Curve from the average objective function of AMA-I and 
AMA-II for problem g13. 

 

7.4.5 Effect of Probability of using LSLP 

The probability of LSLP (PL) is another important parameter of the algorithm. For 

low value of PL a small number of agents are selected for LSLP. As discussed earlier the 

purposes of the LSLPs are to bring the agents’ solutions towards different equality 

constraints (with the new LSLP) and explore the search space (through the other 

LSLPs). So a low value PL allows lower diversity. On the other hand a higher value of 

PL allows more agents to use LSLP. Figure 7.5 shows the diversity of the population, for 

the first 500 generations for problem g13, with different probability of LSLP (only the 

diversity using PL values of 0.05, 0.1, 0.15 are shown to see the effects clearly). The 

average Euclidian distance among all solution vectors in the population is used to 

measure the diversity. In the first 100 generations the agents use the LSLP designed for 

handling equality constraints, which ensures enough diversity during that period. 

Afterwards we can see that higher PL allows higher diversity in the population. The 

behavior is same for the other test problems.  

Diversity is an important issue for the performance of any population-based search 

algorithm. Lack of diversity means the algorithm may not perform well; on the other 

hand, over-diversification causes slower convergence. To see the effect of PL on the 

performance of AMA-II, the algorithm is run 30 times on each problem with different 



Chapter 7. Handling Equality Constraints 

160 

values of PL (0.05, 0.1, 0.15, 0.20, 0.25, and 0.3). For some problems, the algorithm 

may achieve the optimal solution as an outlier with any of these values of PL. However 

if we consider the mean and standard deviation of the results we can see the effect of PL. 

From the experiments we realize that for most problems the mean and standard 

deviations improve with an increase of PL up to a point, then the quality degrades due to 

the over diversification. For g05, g13, and B01, AMA-II achieves the better mean 

results with PL = 0.20. With PL = 0.25 it has achieved better mean for B02. For some 

problems like g03, g11, B07 and B09 the algorithm achieves almost the same results 

with any PL.  
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Figure 7.5: Effect of Probability of LSLP (PL) on population diversity for problem g13. 

Figure 7.6 shows the best and the mean performance of AMA-II on problem g13 as 

PL varies; Figure 7.7 shows standard deviation, and Figure 7.8 shows average execution 

time, as PL varies. It shows by increasing PL both the mean and standard deviations 

improve gradually, but once PL exceeds 0.2 the results are not improving. This is 

because higher PL causes slow convergence in the population and so the performance 

degrades at the same level of generations. That indicates that increasing PL can improve 

the performance of the algorithm, however, after a certain point there will be no 

significant improvement.  

 

.
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Figure 7.6: Effect of Probability of LSLP (PL) on problem g13.  Probability of LSLP vs. 
achieved best and mean results. 
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Figure 7.7: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP vs. 
St.Dev. of achieved results. 
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More agents are allowed to apply LSLP by increasing the probability of PL. This 

causes extra time to perform the additional task. The required time is increasing in 

proportion to the increase of PL as shown in Figure 7.8. 
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Figure 7.8: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP vs. 
Average time required. 

7.4.6 Summary  

 The experimental studies presented in this section demonstrate the value of ECHT 

in solving COPs. It is established that:  

• AMA-II achieves faster convergence than AMA with the incorporation of ECHT 

while solving COPs with equality constraints, and enhances the quality of solutions 

in faster computational time. 

• It is best to use a value of 0.20 for PL, as it provides a balance between diversity in 

the population, quality of solutions and computational cost.  

 

7.5 AMA with only the new LSLP (AMA-III) 

So far the performance and issues of the new LSLP with AMA have been discussed. 

The new LSLP is used during the initial generations. After that the AMA uses other 
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LSLPs. As discussed earlier, although the existence of equality constraints reduces the 

feasible space size, it provides an advantage in finding the feasible solutions by 

exploring on the equality constraints. Since the new LSLP is designed to utilize this 

advantage, we are interested to see the performance if AMA uses only the new LSLP 

through the whole evolutionary process. To test this, AMA is modified. Here after the 

crossover, a percentage of agents only use the new LSLP, that means, at Step 5 the 

agents only use the new LSLP rather using all the LSLPs. This algorithm is called 

AMA-III, and the main steps of it are as follows: 
 

Step 1. Create a random population, which consists of MM × agents. 

Step 2. Arrange the agents in a lattice-like environment.  

Step 3. Evaluate the agents individually. If the stopping criterion has been met, 

go to step 7, otherwise go to step 4.  

Step 4. For each agent examine its neighborhood. Select an agent from its 

neighborhood and perform crossover. 

Step 5. Select a certain percentage of agents; Apply only the LSLP designed for 

equality constraint  

Step 6. Go to step 3. 

Step 7. Stop. 

 

To test the performance of the modified algorithm a set of experiments is carried 

out. For this experiment all the parameters are used as before i.e. population size (100), 

and probability of learning/LSLP (PL= 0.2). The maximum number of generations 

considered is 3500. For each problem Table 7.4 shows the results from 30 independent 

runs for the new algorithm. 

From the results in Table 7.4, we can see AMA-III is also very efficient in solving 

the test problems involving equality constraints. From the 10 problems it has achieved 

optimum results in 5 problems (g03, g11, B02, B07, and B09). The performance of the 

algorithm is also quite good in solving the other five problems. The achieved best 

results are very close to the optimum. For example the achieved best results for 3 

problems are within 1% of the optimum results e.g. g05 (0.0003%), g13 (0.01%), and 
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B06 (0.89%), and for the other 2 problems the results are within 4% of the optimum 

results e.g. B01 (1.69%) and B08 (3.06%). Other results such mean, median, and worst 

results of AMA-III are also of good quality.  

Table 7.4: Experimental results of AMA-III for the test problems (30 runs). 

Prob Optimal Best Median Mean StDev Worst Avg time 

g03 -1.000 -1.000 -1.000 -1.000 9.75E-07* -1.000 15.93 

g05 5126.498 5126.511 5129.637 5133.582 8.51E+00 5155.896 18.33 

g11 0.750 0.750 0.750 0.750 0.00E+00 0.750 14.44 

g13 0.053950 0.053956 0.059302 0.060656 5.50E-03 0.070242 19.42 

B01 -47.765 -46.957 -45.478 -45.589 6.27E-01 -44.748 17.27 

B02 961.715 961.715 961.726 961.731 1.52E-02 961.773 12.05 

B06 193.724 195.443 217.201 227.783 3.38E+01 355.225 14.66 

B07 0.000 0.000 0.000 0.000 0.00E+00 0.000 14.50 

B08 6.334 6.528 6.544 6.544 9.90E-03 6.564 15.67 

B09 -1.000 -1.000 -1.000 -1.000 0.00E+00 -1.000 17.73 

∗ indicates though the best, worst, median, and mean results are the same, standard deviation is positive 
due to rounding error. 

 

The execution time of AMA-III is faster than AMA-I and AMA-II. On average it 

needs only 16.00 seconds to solve each problem. This is 55.60% less than AMA-I and 

53.92% less than AMA-II. As AMA-III is not using the other four LSLPs and the 

calculation of improvement index, it is quite a bit faster than the previous versions.  

As the execution of AMA-III is much faster than AMA-II, we are interested to see 

how good is the solution quality of AMA-III compared to AMA-II. In achieving best 

results both algorithms achieved optimum in five problems (g03, g11, B02, B07 and 

B08) and only AMA-II in g13. AMA-III has improved the performance in two problems 

in achieving best results e.g 2.967% in B06 and 0.8204% in B08. With the help of five 

LSLPs including the new LSLP for handling equality constraints, AMA-II performs 

better in three problems (g05, g13, and B01). However, the improvement with AMA-II 
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is not very high e.g. g05 (0.0002%), g13 (0.0111%) and B01 (1.5329%).  

The mean results are same for the both algorithms in four problems (g03, g11, B07 

and B09). However AMA-III shows better performance by achieving better standard 

deviation in g03, g11, and B09. In B08 AMA-III achived 3.9154% better mean result 

than AMA-II. For the other five problems the mean results of AMA-II are on average 

3.2536% better than AMA-III. However for those five problems the best and mean 

results of AMA-III are on average only 0.5177% and 6.9409% from the optimum 

results.  

Although AMA-II achieves better results with more LSLPs and more computational 

time than AMA-III, the achieved results of AMA-III are also of good quality. If we use 

student’s t-test (95% confidence level, 60 degrees of freedom, and t-tabulated value 2), 

we can see in five problems (g03, g11, B6, B7 and B9) there is no significant difference 

between the performance of the two algorithms. In one problem (B08) AMA-III is 

significantly better than AMA-II. For the other four problems AMA-II is better.  

Compared to AMA-III, AMA-II has a trade-off of speed against solution quality: 

AMA-II is slower but gives better results. However AMA-III is more than 50% faster 

than AMA-II and achieves good quality of solutions. 
 

7.6 Chapter Summary 

This chapter has introduced a new technique to handle equality constraints. The 

technique is used as a learning process in AMA. The extended AMA is now capable of 

solving nonlinear optimization problems with equality constraints more efficiently. The 

results show the enhanced performance achieved by the new AMA in terms of solution 

quality and computational time. The constraint handling techniques used here do not 

need any penalty functions or additional parameters. The performance of the proposed 

algorithms is tested using benchmark problems and the experimental results show 

promising performance.   

The effect of the new learning process and probability of using the learning process 
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is also analyzed. The experimental results show that faster convergence can be achieved 

with the new learning process. The probability of learning (PL) is also an important 

parameter. The performance of the algorithm improves with the increase of PL up to 

certain point; beyond that point, high values of PL may over diversify the population 

and slow down the convergence.  

As the proposed equality constraint handling technique is experimentally successful 

with AMA, we are interested to see its performance with other EAs. In the next chapter, 

an investigation is made with a simple genetic algorithm. 

 
 



 

 

Chapter 8                                                             

ECHT with Genetic Algorithms  

In the last chapter, a new equality constraint handling technique was proposed. The 

technique was tested with AMA (presented in Chapters 4 and 5), and the revised AMA 

(known as AMA-II and AMA-III) performs better than AMA. It would be interesting to 

see how the technique performs with simple GA for equality constrained problems. The 

revised GA is tested on a set of standard benchmark problems. The results show that the 

proposed technique works very well on the benchmark problems considered in this 

research. This reinforces that the ECHT is useful in its own right, and not just as an 

addition to AMA.  

 

8.1 Introduction 

As discussed in earlier chapters, traditional GA has difficulty in dealing with 

equality constraints. In the previous chapter, a new equality constraint handling 

technique has been proposed and implemented successfully with AMA. In this chapter, 

it would be interesting to investigate the performance of the proposed equality 

constraint handling technique in conjunction with a simple traditional genetic algorithm 

to solve the equality constrained problems.  

Here, the GA used in Chapter 3 is modified to incorporate ECHT. The revised GA is 

labeled as the Modified Genetic Algorithm (MGA) in this thesis. The modified 

algorithm is tested on the set of ten benchmark problems considered in the last chapter. 

The results are compared with the simple genetic algorithm presented in Chapter 3. 

Further comparison is made with a well-known ES-based based algorithm and with 
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AMA-II. The experimental results show that MGA has successfully solved all ten 

problems, achieving the optimum for six of them. The overall results are of acceptable 

quality with reasonable computational time.  

The rest of this chapter is organized as follows. The next section describes the 

proposed MGA and its components. The effects of different components of the 

algorithm are studied in section 8.3. The outcome from these experiments is an 

understanding of how the performance of the proposed MGA is affected by these 

decisions, and thus how best to configure it. Then the performance of the proposed 

approach is described in section 8.4. Finally, section 8.5 concludes the chapter. 

 

8.2 Modified Genetic Algorithm  

In this section, the Modified Genetic Algorithm (MGA), which incorporates the new 

ECHT into GA, is introduced. In the proposed algorithm, the initial population Pt=0 is 

randomly generated. The individuals are evaluated and ranked based on their fitness. A 

set of individuals is selected as parents to produce offspring using crossover. This new 

population is called tC . The selection process used here is based on tournament 

selection. From tC  certain percentages of the individuals apply the new ECHT, wherein 

the individuals try to reach and explore on the equality constraints. After applying 

ECHT, population tC  is called tC ′ . The population for the next generation Pt+1 is 

created from Pt and tC ′ . The process is continued until the termination condition is 

reached. The main steps of the proposed algorithm are follows. 
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Pseudo code: Modified Genetic Algorithm. 

 

Set generation no. t = 0; 

Generate the initial population Pt at random; 

REPEAT 

Evaluate the fitness of each individual in Pt and rank them; 

Apply modified tournament selection on Pt to select the parents, then apply  

crossover and generate tC ; 

Apply ECHT on tC  and generate tC ′ ; 

Produce generation Pt+1 from Pt and tC ′ ; 

Set  t= t + 1; 

UNTIL the terminating condition is reached. 

 

The representation of chromosome, ranking, and crossover operator used in MGA are 

as in chapter 3. The ECHT operator is as in chapter 7. The fitness evaluation, selection 

process, and the design of MGA are discussed below.  

 

8.2.1 Fitness Evaluation 

In solving constrained optimization problems it is necessary to evaluate the solution, 

particularly in the context of the underlying objective and constraint functions. For each 

individual the objective function value and Total Constraint Violation (TCV) are 

calculated. The TCV of an individual is the sum of absolute values by which the 

constraints are violated. A small tolerance δ on the total constraint violation is used i.e. 

if the TCV of an individual is less than δ, it is considered as feasible. As the 

evolutionary process continues the value of δ is gradually reduced. The equality 

constraints make the feasible region very small compared to the search space, which 

makes it hard for evolutionary algorithms to find feasible solutions. By using a positive 

δ, the algorithms can find some near feasible solutions, which are treated as feasible at 
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that stage. The value of δ is then gradually decreased, after every few generations, until 

it equals zero. Details of this process are discussed in section 8.3.1.  

 

8.2.2 Selection 

In the proposed selection process a parent is randomly selected from the elite 

individuals (e.g. top 30% of individuals). Another parent is the winner from a 

tournament selection between two individuals that are randomly selected from the rest 

of the individuals (i.e. non elites). These two parents then produce offspring after 

crossover. The elite parent plays an important role since the feasible space of this type 

of problem is very tiny. 

 

8.2.3 Creating New Population 

To generate a new population Pt+1
, the current parent population Pt and the evolved 

child population tC ′  are merged and ranked. Based on experiments described below in 

section 8.3.1, the method for creating the new population is as follows. The top ranked 

95% of individuals are selected for the next generation Pt+1. If all the individuals that 

have applied ECHT are not in Pt+1 yet (as applying the ECHT may or may not improve 

the fitness of the individual), the remaining individuals are allowed to pass to the next 

generation. This allows individuals that are close to a particular equality constraint but 

have high TCV through to the next generation. Then some random individuals are 

allowed from Pt and tC ′ until the population Pt+1 is filled up.  

 

8.3 Experimental Studies  

In this section, the experiments carried out to investigate the effect of different 

parameter values and design decisions are discussed. The outcome from these 
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experiments is an understanding of how the performance of the proposed MGA is 

affected by these decisions, and thus how best to configure it. 

In the following few sub-sections, a number of experiments, to study the effects of 

different components of MGA on MGA’s performance, is reported. In all these 

experiments, a fixed number of fitness evaluations is used for a fairer comparison.   

 

8.3.1 Effect of ECHT  

 In MGA, after crossover a certain percentage of the individuals are randomly 

selected to apply ECHT (with probability PE). The performance of the algorithm (over 

30 runs each) with different values for PE of (0.05, 0.1, 0.15, 0.20, 0.25, and 0.3) is 

tested while keeping the other parameters the same (PC=0.90, dynamic tolerance in CV 

etc.).  

Unlike traditional GAs, which use mutation to maintain diversity in the population, 

in the proposed MGA there is no mutation operator. However this purpose can be served 

by the ECHT. As discussed earlier (chapter 7), the proposed ECHT tries to bring the 

individuals towards the equality constraints or explore on the equality constraints. Up to 

a point, with lower value of PE, ECHT may increase the diversity of the population.  

However, a higher value of PE forces many individuals towards the equality constraints. 

As the feasible space is very tiny, the population loses diversity. Note that the effect of 

PE is different from the effect of PL described in chapter 7. AMA-II used PL as a 

probability of LSLPs, which includes the new LSLP for equality constraints (only in the 

initial generations) and the other four LSLPs (in later generations). The last four LSLPs 

increase the diversity with the increases of PL.  

The effect of PE on diversity is shown in Figure 8.1 for problem g13. The problem 

g13 is chosen since according to Mezura-Montes and Coello (2002) it is very difficult to 

solve. The objective function of this problem is nonlinear and involves equality 

constraints. To measure the diversity of the population the average Euclidian distance of 

the individuals is used. Figure 8.1 shows that the diversity of the population rises for a 
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while as PE increases; then, as higher values of PE drive lots of individuals towards the 

equality constraints, the population starts losing diversity.  

If the performance is considered, for some problems such as g03, g11, and B09, 

MGA achieves the same result regardless of the value of PE. In these problems MGA 

achieves the optimum easily. MGA achieves better results with lower values of PE in 

problems B08 (PE=0.05) and B06 (PE=0.15). MGA achieves better results with a higher 

value of PE (0.25) in B02. However in most problems (e.g. g05, g13, B01, and B08) 

MGA achieves better mean results with medium value of PE = 0.20. This shows for 

better performance of the algorithm one should consider medium values for PE, which 

ensures a balanced diversity in the population.   
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Figure 8.1: Effect of Probability of ECHT (PE) on problem g13. Probability of ECHT 
vs. Average Euclidian distance in the population. 

 

Figures 8.2 and 8.3 show the best, mean, and standard deviation of MGA in solving 

g13. They show by increasing PE both the mean and standard deviations improve 

gradually, but after 0.2 the mean results are losing quality. This echoes the result that 

diversity increases as PE increases up to a certain level, then the diversity decreases. For 

better performance of the algorithm we need a balanced diversity, neither too low nor 

too high, that is achieved here at PE = 0.20.  
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Figure 8.2: Effect of Probability of ECHT (PE) on problem g13. Probability of ECHT 
vs. achieved best and mean results. 

 

0.00

0.20

0.40

0.60

0.80

0.05 0.1 0.15 0.2 0.25 0.3

Probability of ECHT

St
. D

ev
.

St. Dev.

 

Figure 8.3: Effect of Probability of ECHT (PE) on problem g13. Probability of ECHT 
vs. St.Dev. of achieved results. 

 

8.3.2  Tolerance in Constraint Violation   

During the fitness evaluation, a small tolerance δ on the total constraint violation is 

used. If the TCV is of an individual is less than δ, the individual is considered as 

feasible. To see the effect of δ, two set of experiments are carried out for 30 runs. In the 
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first set, the value of δ is used equal to 0. The objective function value and the TCV was 

calculated normally. In the second set, the value of δ > 0. Since the equality constraints 

make the feasible region very small, by using δ > 0, the algorithm allows some good 

quality infeasible solutions to be considered as feasible. Initially δ is assigned to 1.  

After every 16% of the maximum generation number, δ is divided by 10. Finally after 

80% of the generations δ is left fixed at 0.0. During this experimentation the other 

parameters remain the same (e.g. PC=0.90, PM=0.20).  

In problems g03 and g11, both approaches achieved the optimal result, since they 

are easy for MGA to solve. For the rest of the problems MGA achieves better results 

with the use of the small tolerance. 

Figure 8.4 presents a convergence curve to show the effect of using δ in equality 

constraint for problem g13, up to 350 generations. It is clear that the algorithm, with a 

positive δ, converges to a better solution compared to the algorithm without δ. 
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Figure 8.4: Convergence Curve from the objective function with and without using delta 
(δ) for problem g13. 

 

8.3.3 Selection Process 

 As discussed earlier, a group of best individuals is defined as the elite group. In our 

selection process for reproduction, one parent is directly chosen from the elite group and 

no. 
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another parent is chosen via a tournament of two individuals. The elite parent plays an 

important role since the feasible space of this type of problem is very tiny. Selection of 

an elite as a parent will help to produce good quality offspring quickly. In this sub-

section, the effect of the size of the elite group on the algorithm’s performance is 

examined.  

Five sets of experiments are carried out, considering the top 10%, 20%, 30%, 40%, 

and 50% of individuals as the elite group. The other parameters remain the same during 

this experimentation (e.g. PC=0.90, PM=0.20). In each case, the algorithm is executed 30 

times with different seeds. The experimental results show that in problems (g03, g11) all 

the approaches achieve the optimal result. In problem B02, MGA achieves better results 

with the elite consisting of the top 20% of individuals. For B08 and B09, it achieves 

better results with the top 40% of individuals as the elite. In most other problems (e.g. 

g05, g13, B01, B06), performance was better with the top 30% of individuals as the 

elite.  

In problems with equality constraints the feasible space is very tiny, and it is very 

difficult to find feasible solutions. If only a low percentage (e.g. the top 10%) of 

individuals is considered as elite, it always selects a parent from a small group of 

individuals. The diversity of the population will be reduced, since every offspring 

inherits genetic properties from these elites. However it needs the help of the top elites 

to guide the evolutionary process. If a high percentage (e.g. the top 50%) of individuals 

is considered as elite, the performance also suffers. In this case, a significant portion of 

the population is considered as elite, but many of the individuals may not be feasible 

since the feasible space is very tiny. It needs a balanced percentage of the top ranked 

individuals in the elite group. That is why MGA performs better for most problems with 

the top-ranked 30% of individuals as the elite.  
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Figure 8.5: Effect of elites in selection process on problem g13. Percentage of Elites vs. 
achieved best and mean results. 
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Figure 8.6: Effect of elites in selection process on problem g13. Percentage of Elites vs. 
St.Dev. of achieved results. 

 
Figures 8.5 and 8.6 show the effect of the percentage of top ranked individuals as the 

elite in best, mean, and standard deviations for problem g13. The best achieved results 

of all approaches are very close to the optimal. As the best results could be an outlier in 

the case of evolutionary algorithms, we need to consider the mean and standard 

deviation. The performance (mean results, st.dev.) of MGA is improving with increasing 
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the elite zone up to 30%, then it starts decreasing. 

8.3.4 Design of Next Generation    

Diversity is a critical issue in population based algorithms. Lack of diversity may 

lead the algorithm to be trapped in local optima. On the other hand, over diversification 

may cause slow convergence. The design of the next generation plays an important role 

in this regard. Now the question arises how the next generation will be created?  

In this section, experiments are carried out to investigate the performance with three 

different approaches. 

The first approach (called MGA-C below) is to consider the child generation 

(generated after crossover and ECHT) as the next generation population. It will ensure 

enough diversity in the population since the offspring from ECHT try to reach or 

explore on different equality constraints.  

The second approach (MGA-PC) is to rank the parent and child population, and take 

the top ranked individuals from them to form the next generation. As this approach is 

only giving preference to good individuals, it may decrease the diversity.  

In the third approach (MGA), most (e.g. 95%) of the next generation is chosen from 

the top ranked individuals from the parent and child population. The rest of the 

population is filled up by lower ranked individuals that applied ECHT (and so are close 

to an equality constraint) and random individuals.  

After running each set of experiments for 30 runs the best, median, mean, standard 

deviation, and worst results are compared. It is found that MGA-C achieved the 

optimum in one problem (B02), MGA-PC achieved the optimum in three problems 

(g03, g11, B08), and MGA achieved the optimum in six problems (g03, g11, g13, B02, 

B07, and B09). In addition, for most problems (g05, g13, B01, B02, B06-B09) the 

results (mean, standard deviation, median) with MGA were better than with the other 

two approaches.  
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Figure 8.7: Diversity of population with different design of Next generation.  

(8.7.2 is an enlargement of 8.7.1) 

 

The reason for MGA’s superiority can be found from Figure 8.7. Figure 8.7.1 shows 

the average Euclidian distance of the individuals (i.e. Diversity of population) for the 

first 500 generations when solving problem g13, with each of MGA, MGA-C and 

MGA-PC. To visualize the effect more clearly Figure 8.7.2 shows the expanded version 

of Figure 8.7.1 from generation number 150 to 200. Figure 8.7 shows that the diversity 

of the population is very high in MGA-C, since the next generation is formed from the 

child population. On the other hand, in MGA-PC the diversity is very low, since only 

the best individuals from the parent and child population are allowed to move to the 

next generation and the feasible space is very tiny (the top ranked individuals may be 

very close to each other). In the case of MGA, it maintains balanced trade-off between 
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the diversity and convergence, and its diversity lies between MGA-C and MGA-PC.  

 

8.3.5 Section Summary   

In this section, experiments are described which show how the performance of the 

proposed MGA is affected by various parameter settings and design decisions, and 

provided explanations from the observations. It is established that:  

• It is best to use a value of 0.20 for PE, and an elite consisting of the top 30% of 

individuals. These are both medium settings, which provide a balance between 

diversity in the population, quality of solutions, and rate of convergence; 

• Allowing a small tolerance for violation of equality constraints helps the quality of 

solutions and the speed of convergence. By gradually reducing the tolerance to zero 

it can ensure that the equality constraints are met; 

• The third approach to forming the next generation, based mainly on elitism but also 

including lower ranked individuals that are likely to be close to equality constraints, 

is best. 

In the experiments described in the next section, the proposed MGA is configured 

with these “best” settings. 

 

8.4 Evaluation of the Proposed MGA 

In this section, the proposed MGA is evaluated on the selected benchmark problems, 

and compared to SGA, a well-known algorithm from the literature, and AMA-II. 
 

8.4.1 Experimental Results and Discussions  

Initially, a simple genetic algorithm (SGA) (presented in chapter 3) using tournament 

selection, SBX crossover (Deb and Agrawal, 1995) and parameter based mutation 
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operator (Deb, 2000) was used to solve the test problems. The aim was to see the 

performance of SGA in solving constrained optimization problems with equality 

constraints. The initial solution vectors are randomly generated within the boundary of 

each decision variable. As crossover is the major instrument of variation and innovation 

in GAs, with mutation insuring the population against permanent fixation at any 

particular locus and thus playing more of a background role (Holland, 1975), a high 

probability for crossover (PC = 0.90) and with a low probability for mutation (PM = 0.2) 

is used. The number of fitness evaluations is set to 350,000 as in (Elfeky et al., 2006; 

Runarsson and Yao, 2000), which allows a maximum of 3500 generations with a 

population size of 100.  

The best, median, mean, standard deviation (st.dev.), and worst results, as well as 

execution time, for the well-known problems (g03, g05, g11, and g13) are given in 

Table 8.1. The results for the other test problems (B01, B02, B06-B09) are given in 

Table 8.2. An ‘×’ in the Tables indicates that the algorithm did not find any feasible 

solution. 

From Table 8.1 and 8.2, it can be seen that SGA is very fast considering the execution 

time. However it could not find feasible solutions for 30% of the test problems (g03, 

g05, and g11). For the other test problems, the results are not convincing, even the best 

results achieved are far from the known optimum. 

The MGA is then run with the same parameters. From the results in Table 8.1 and 8.2, 

it is clear that MGA overcomes the shortcomings of SGA while solving the COPs with 

equality constraints. MGA obtains the optimum for six of the ten benchmark problems 

(g03, g11, g13, B02, B07, and B09), and for the other four problems the results are 

extremely close (within 0.30%) to the known best values. For g05 and B06, which 

involve both equality and inequality constraints, MGA achieved very close to the 

optimal results. B06 can be considered as a special type of problem. In this problem the 

objective function depends only on one variable and this variable is involved in only the 

inequality constraint. Since the proposed algorithm is mainly designed to exploit the 

advantage of equality constraints, the other genetic operators used in MGA help to solve 

this problem. 
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8.4.2 Comparison with Other Algorithms 

In this section, the performance of MGA is compared with another well-known 

algorithm (Runarsson and Yao, 2000) and AMA-II. Runarsson and Yao (2000) 

(abbreviated as RY) used an interesting ranking procedure (known as stochastic 

ranking) in their ES-based algorithm, and solved all the g-series problems. As the ES-

based algorithm has produced the best results known so far for all the test problems 

(g01-g13) its results have been included for comparison.  

Table 8.1: Statistics for 30 independent runs of different algorithms for problems with 
equality constraints in g-series 

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)
SGA × × × × × 4.14 
RY -1.000 -1.000 -1.000 1.90E-04 -1.000 − g03 -1.000 

MGA -1.000 -1.000 -1.000 0.00E+00 -1.000 4.47 
SGA × × × × × 3.52 
RY 5126.497 5127.372 5128.881 3.50E+00 5142.472 − g05 5126.498 

MGA 5126.459 5126.907 5128.144 5.21E+00 5137.793 4.85 
SGA × × × × × 2.55 
RY 0.750 0.750 0.750 8.00E-05 0.750 − g11 0.750 

MGA 0.750 0.750 0.750 4.52E-09* 0.750 3.77 
SGA 0.457442 0.922264 1.031979 6.59E-01 3.854752 4.29 
RY 0.053957 0.057006 0.067543 3.10E-02 0.216915 − g13 0.053950 

MGA 0.053950 0.056655 0.057864 3.81E-03 0.065063 4.71 

Opt= Optimum, ‘×’= feasible solution were not found, * indicates though the best, worst, median, and 
mean results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the 
literature. Bold font indicates the best result achieved. 

 

Since the six test problems (B01, B02, and B06-B09) are new in the literature, no 

results for RY are available. RY successfully solved the first four problems, and are well 

known for their performance in solving the g series problems.  

For g05, none of the algorithms has achieved the optimum. Due to the use of 

tolerance in equality constraint, RY’s best result is lower than the optimal. However the 

mean, median, and worst results of MGA are better than RY. 
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For problems g11 and g03, both RY and MGA achieved the optimal result and the 

same mean and median results. However MGA achieved better standard deviation. For 

g13, only MGA has achieved the optimal result. The achievement of MGA is better than 

RY. The difference is statistically significant (for the statistical test Student’s t-test is 

used and degrees of freedom is considered here 60 and t-tabulated value is 2).  

Table 8.2: Statistics for 30 independent runs of different algorithms for other test 
problems 

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)

SGA -44.775 -41.773 -41.553 1.81E+00 -37.910 3.47 
B01 -47.765 

MGA -47.627 -47.022 -46.988 3.50E-01 -46.497 6.04 
SGA 964.124 975.253 973.961 3.76E+00 978.575 2.82 

B02 961.715 
MGA 961.715 961.717 961.717 1.71E-03 961.721 3.80 
SGA 218.009 661.675 653.398 2.05E+02 960.191 3.52 

B06 193.725 
MGA 194.113 225.487 205.921 7.87E+01 288.427 5.24 
SGA 0.076 0.754 0.797 4.50E-01 1.717 2.84 

B07 0.000 
MGA 0.000 0.000 0.000 0.00E+00 0.000 3.55 
SGA 6.567 6.583 6.582 5.15E-03 6.593 2.46 

B08 6.333 
MGA 6.338 6.324 6.316 3.60E-02 6.366 3.49 
SGA -0.935 0.465 0.314 6.74E-01 1.282 3.71 

B09 -1.000 
MGA -1.000 -1.000 -1.000 1.78E-05* -1.000 5.06 

Opt= Optimal, ‘×’= feasible solution were not found, ∗ indicates though the best, worst, median, and mean 
results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the literature. 
Bold fonts indicates best result achieved. 

 

The comparison of the execution time against RY can not be done, because their 

code was not available. For SGA a fair comparison of execution time can be made 

because it is being used in the same computing environment.  

SGA is very simple and on average it needs only 3.33 seconds to solve each of these 

test problems. However SGA could not solve three problems (g03, g05, and g11). In 

B02 and B08 the achieved mean results of SGA is within 5% of optimum; in all other 

problems it could not achieve mean results within 10% of optimum.  

MGA achieved mean results within 10% of optimum in all the test problems. In 
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seven problems the achieved means of MGA are within 1% of optimum. For the other 

three problems the achieved mean results are within 10% of optimums (1.27% in B01, 

6.3% in B06 and 7.25% in g13). In spite of better performance, MGA only took on 

average 4.45 seconds to solve each problem.   

The incorporation of ECHT radically enhanced the performance of MGA. If we 

compare the result of it with AMA-II (presented in chapter 7), both algorithms are now 

able to handle the equality constraints efficiently and achieve good quality solutions. In 

60% of the test problems both algorithms achieve optimum results. In some problems 

like g03, g11, B07, and B09, the algorithms achieve the optimum as the best, mean, 

median, and worst results. However in two problems (g03 and g13) MGA achieved 

better standard deviation than AMA-II. In one problem (B09) AMA-II achieves better 

standard deviation. MGA achieves better mean results than AMA-II in three problems 

(g05, B06 and B08). In those problems the best and mean results of AMA-II are only on 

average 2.629% and 5.749% from optimum. AMA-II also achieves better mean results 

than MGA in three problems (g13, B01, and B02). However the achieved results of 

MGA are also very convincing in those problems. On average the best and mean results 

are only 0.095% and 2.96% far from the optimum. On average AMA-II needs 34.72 

seconds to solve the test problems. So MGA provides competitive quality solutions with 

faster execution time.  

Form the results we can see with help of ECHT, the proposed algorithm not only 

achieves better quality solutions, but is also time efficient in solving the COPs with 

equality constraints. 

 

8.4.3 The Effect of more Fitness Evaluations 

So far, SGA is executed up to 350,000 fitness evaluations. One question that may 

arise is whether SGA could find as good solutions as MGA if it were allowed to run for 

enough generations (i.e. allowed for more fitness evaluations). To investigate this SGA 

is executed for 500,000 fitness evaluations.  

It is found that SGA improved its performance, by achieving feasible solutions in 
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problems g03, g11, B02, and B09. The new mean results for B02 and B09 are 0.55% 

and 3.99% respectively from the optimum. However the mean results of g03 and g11 

are still 98.26% and 15.46% away from the optimum.  

This shows that SGA is still so unlikely to find an optimal solution (even with the 

additional fitness evaluations), because the feasible space of these problems is so small, 

that an idea like this new ECHT is essential in order to have a realistic chance of finding 

optimal solutions in practice.  

 

8.5 Chapter Summary 

This chapter has introduced a modified genetic algorithm which combined simple 

GA with the proposed equality constraint handling technique. The constraint handling 

technique used here does not need any penalty functions or parameters, and provides 

good quality solutions in less computation time compared to other algorithms 

considered in this thesis.  

The performance of the algorithm is investigated in solving a set of ten test 

problems. The results show that the proposed algorithm is robust in its handling of both 

linear and nonlinear equality and inequality constraints. The algorithm shows very 

impressive performance by achieving optimal results in six problems. The performance 

of the proposed algorithm is compared with genetic algorithm, AMA-II and one ES-

based algorithm. The results show that the proposed approach gives mostly improved or 

comparable results to other algorithms.  

The effects of the proposed ECHT and other design components of the algorithm 

have been analyzed. The experimental results show probability of ECHT is an important 

parameter for MGA. The performance of the algorithm increases with the increase of 

PE, up to a certain level. The algorithm uses a small tolerance on the total constraint 

violation, which allows finding some near feasible solutions easily at that stage. The 

experimental studies justify this use of dynamic relaxation of the total constraint 

violation.  



 

 

Chapter 9                                            

Conclusions and Future Research Directions 

This chapter briefly describes the research carried out in this thesis. It also discusses 

the findings and conclusions, and indicates some possible future research directions.  

 

9.1 Summary of Research Done and Conclusions 

In this thesis, genetic algorithms for solving constrained optimization are studied 

and analyzed. To enhance the performance of the algorithms, first, a new Agent-based 

Memetic Algorithm (AMA) is designed. In the new algorithm, a number of local search 

techniques are proposed for agent learning. Then a Search Space Reduction Technique 

(SSRT) is proposed to improve the quality of randomly generated initial solutions, while  

sacrificing very little in diversity of the population. After successfully implementing the 

SSRT with different evolutionary algorithms including AMA, an investigation is made 

to handle the equality constraints efficiently. The equality constraint handling technique 

is used as a new learning process for AMA. The superior performance of AMA, for 

problems with equality constraints, inspires to test the technique with simple GA. With 

this aim, this thesis also proposes a modified genetic algorithm for solving COPs with 

equality constraints.  

The details of these developments, experimental results, and findings are briefly 

discussed below.  
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9.1.1 Genetic Algorithms in Solving COPs 

In Chapter 3, a simple genetic algorithm (SGA) is implemented for solving a set of 

state-of-the-art constrained optimization problems. To design the genetic algorithm, 

suitable crossover, mutation and constraint handling techniques are used. Although SGA 

is fast in execution time, the quality of the results are not convincing enough for use of 

this algorithm for solving constrained optimization problems. In only 15.38% of 

problems has it achieved optimum results. However, for the rest of the test problems, 

the results are not pleasing. In 23.07% of problems it could not find any feasible 

solutions at all. The average deviation of the best result achieved by SGA for the rest of 

the problems is 107.89% from the optimum results. The study also shows that SGA 

suffers in solving problems with tiny feasible space. Especially when the test problems 

involve equality constraints, the performance of SGA is very poor. For the equality 

constrained problems, the algorithm could not solve 75% of them and the performance 

is also not satisfactory for the remaining problem.  

The effect of different parameters is investigated in pursuit of better performance of 

SGA. Though the results can be improved slightly by increasing the number of 

generations, still SGA is unlikely to find good quality solutions for several problems.  

This demonstrates that an improved algorithm is required to solve constrained 

optimization problems.  

 

9.1.2 Agent-based Evolutionary Algorithms 

Chapter 4 discusses agent-based evolutionary algorithms, and different issues that 

differentiate an agent-based EA from an independent EA. The chapter has also 

introduced a new agent-based memetic algorithm for solving COPs, by tailoring multi-

agent concepts into a memetic algorithm. The individual candidate solutions of 

problems are represented as agents with additional characteristics. The agents have the 

ability to independently select a suitable life span learning process as an agent learning 

approach. Evolutionary operators consist of only crossover and one of the self-
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adaptively selected LSLPs. To the best of our knowledge, solving constrained 

optimization problems using an agent-based memetic algorithm is new in the literature.  

In chapter 5, the performance of AMA is investigated in solving a set of test 

problems, which includes five new problems plus 13 existing well-known problems. 

The results show that the proposed algorithm is robust in solving different types of 

COPs. As the agent exchanges information with its neighbors, AMA does not need any 

ranking for the whole population. The agent selects a neighborhood agent by using pair-

wise comparison to mate, which handles constraints indirectly. Also in the self-

adaptation process of learning, while calculating the improvement index, the constraints 

are indirectly handled. These two levels of constraint handling, with appropriate 

neighborhood size, SBX crossover, and LSLP, ensure the superior performance of AMA 

in handling constraints.  

The algorithm shows very impressive performance by achieving optimal results in 

13 problems. The performance of the AMA is compared with five GA-based and one 

ES-based algorithms. The comparisons show that the proposed approach gives mostly 

improved or comparable results to other algorithms. Statistical significance tests show 

that the proposed algorithm’s performance is better than the well-known ES-based 

algorithms for the well-known 13 problems.  

The effect of the proposed LSLPs is analyzed, showing that adaptively selecting one 

of the LSLPs achieves better results ensuring both diversity and convergence. The effect 

of Probability of Learning (PL) is also analyzed. The performance of the algorithm 

increases with the increase of PL, but after a certain level it causes over diversification. 

While analyzing the effect of neighborhood size, the experimental studies show the 

combined approach (i.e. applying 4 neighbors and 8 neighbors interchangeably) 

performs better than the other types of neighborhood. The effect of population size is 

also analyzed, which shows a low population size is not able to achieve good results. 

With the increase of population size the performance improves, however after a certain 

population size there is no significant improvement in the solutions.  
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9.1.3 Problems with Tiny Feasible Space 

In many practical optimization problems, the feasible spaces are very tiny. These 

problems are very challenging, as they require searching a huge variable space in order 

to locate feasible points with acceptable quality. Chapter 6 proposes a simple method to 

improve the quality of randomly generated initial solutions, while sacrificing very little 

in diversity of the population, for solving COPs with tiny feasible space. The proposed 

method, which is termed the search space reduction technique in this thesis, directs the 

selected low quality infeasible solutions towards the feasible space.  

The performance of SSRT is investigated, in conjunction with AMA, simple genetic 

algorithm and three well-known algorithms found in the literature, by solving a set of 

test problems and a real world case problem. This approach usually improves the 

performance of the algorithms in terms of either solution quality or computational time 

or both, at the cost of an additional step with O(M2) complexity (where M is the number 

of infeasible solutions in the initial population). From the results of the real world 

problem, it is evident that the method is more appreciable for large scale problems with 

tiny feasible space. Although the idea of SSRT is very simple, the results justify the use 

of SSRT with evolutionary algorithms.  

 

9.1.4 Handling Equality Constraints 

Chapter 7 presents a new equality constraint handling technique, which enhances the 

performance of AMA in solving constrained optimization problems with equality 

constraints. The technique is basically used as an agent learning process in AMA. The 

ECHT brings an individual solution to a point on an equality constraint from the current 

position of an individual solution, and then explores on the constraint landscape. The 

extended AMA is capable of solving nonlinear optimization problems with equality 

constraints more efficiently. The constraint handling techniques used here do not need 

any penalty functions or additional parameters. The performance of the proposed 

algorithms is tested using benchmark problems. The experimental results show the 
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enhanced performance achieved by the new AMA in terms of solution quality and 

computational time. 

The effect of the new learning process and probability of using the learning process 

is also analyzed. The experimental results show that faster convergence can be achieved 

with the new learning process. The probability of learning is an important parameter in 

the process. The performance of the algorithm improves with the increase of PL up to a 

certain point; beyond that point, high values of PL may over diversify the population 

which slows down the convergence. 

 

9.1.5 ECHT with Genetic Algorithms 

The superior performance of AMA (in chapter 7), for problems with equality 

constraints, inspires to test the same technique with GA. Chapter 8 proposes a modified 

genetic algorithm for solving COPs with equality constraints. In MGA, only crossover 

operator and the ECHT are used. The results show that the proposed approach 

overcomes the limitations of SGA discussed in Chapter 3, and provides significantly 

improved results compared to SGA reported in this thesis. The algorithm shows very 

impressive performance by achieving optimal results for 60% of the problems, whereas 

SGA could not solve 75% of these equality constrained optimization problems. The 

achieved best results are on average 0.05668% from the optimum. In 70% of problems 

the achieved mean results of MGA are within 1% of optimum. For the other three 

problems the achieved mean results are within 10% of optimums. In spite of better 

performance, MGA only took on average 4.45 seconds to solve each problem. This 

shows the proposed algorithm not only achieves better quality solutions, but also is time 

efficient in solving COPs with equality constraints. 

The effects of the proposed ECHT and other design components of the algorithm have 

been analyzed. Probability of ECHT is an important parameter; the performance of the 

algorithm increases with the increase of PE, up to a certain level.  

The algorithm uses a small tolerance on the total constraint violation, which allows 
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finding some near feasible solutions easily at the earlier stage of evolution. The 

experimental results justify the use of dynamic relaxation of the total constraint 

violation.  

 

9.1.6  Summary  

The key contributions in this thesis are the AMA architecture and the ECHT. In 

problems with only inequality constraints, the AMA architecture helps a lot, while the 

ECHT is not relevant. The algorithm can solve all the test problems efficiently, with 

suitable parameter settings. In problems with equality constraints, the ECHT helps a lot 

with both AMA and SGA.  With ECHT, AMA-II can solve the problems with better 

quality solutions and even with lower computational cost such as a 3.64% reduction of 

execution time compared to AMA-I. With ECHT, the proposed MGA is able to solve all 

the test problems, which was not at all possible with SGA.  

One other important contribution of this research is the design of SSRT and its 

implementation with different EAs in solving COPs with tiny feasible space. The 

technique shows its value by improving the solutions when it is used with any of a 

variety of different techniques such as AMA, SGA, NSGA-II and MCA.  

The detailed experiments have shown in the individual chapters how each of the 

algorithm performance behaves as various important parameters are varied. This 

demonstrates the robustness of the algorithms − small changes in the values of 

parameter do not cause large changes in performance − and it helps to identify the 

optimum settings for some parameters.  

Some of the key experimental results are briefly indicated below. 

• Adaptively selecting one of the LSLPs achieves better results, as that ensures 

both diversity and convergence (see Chapter 5). 

• For the neighborhood size of the agents, the combined approach performs better 

than the other types of neighborhood (see Chapter 5).   
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• With the increase of population size the performance of AMA improves, 

however after a certain population size there is no significant improvement in 

the solutions (see Chapter 5).  

• In the design process of SSRT, the number (or percentage) of infeasible 

solutions used in calculating the centroid, and a stopping criterion for SSRT, are 

very important factors. As the diversity of the population decreases with 

application of SSRT, the diversity measure is considered as a stopping criterion.  

• The ECHT, which is considered as a learning process in AMA, achieves faster 

convergence.  

• A small tolerance for violation of equality constraints helps the quality of 

solutions and the speed of convergence.  

In conclusion: with the help of the algorithms proposed in this thesis, COPs can be 

solved more efficiently. For a new constrained optimization problem, if the size of the 

feasible space is not tiny, AMA (see Chapter 5 and 6) can be used. However for 

problems with tiny feasible space, SSRT (see Chapter 7) can be applied before the 

evolutionary process. With the presence of equality constraints, the use ECHT (see 

Chapter 8) with AMA is recommended. For faster performance in solving such 

problems, MGA (see Chapter 8) is highly recommended. The experimental study shows 

the strength of the algorithms, and the achieved results of the algorithms presented in 

the thesis are as good or better than others in the existing literature. 

 

9.2 Future Research Directions 

Various avenues of further research stem from the work carried out in this thesis. 

The current research can be extended in a number of different ways. The performance of 

proposed AMA and SSRT can be tested on more test and practical problems. The 

performance of the equality constraint handling technique can be extended for more 

equality constrained optimization problems.  
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In addition, some other aspects can also be introduced in conjunction with our 

proposed techniques, which are described below. 

• In the design of AMA, more intelligent characteristics can be incorporated in the 

agents. The agents may have their own information storage, information 

retrieval, and decision support system to analyze the characteristics and fitness 

landscape of the problems and make their own judgment accordingly. 

• In AMA, the individual agents select a LSLP from their parents LSLPs based on 

their improvement index. However, a different approach could be chosen to 

select the LSLPs. For example, an individual could select a LSLP, based on its 

fitness or random. 

• In designing the SSRT (chapter 6), to calculate the centroid, the arithmetic mean 

of the participating solutions of respective variables is considered, that gives 

equal priority to all the individuals under consideration. However, weighted 

approach or other techniques may be considered to calculate the centroid. 

• For the stopping criterion of SSRT, diversity reduction is considered in this 

thesis. Other measures such as the feasibility of the whole population could be 

used. 

• In the design of ECHT (presented in Chapter 7), to explore on the equality 

constraint, only two variables are considered to be changed. More than two 

variables could be considered.  

• In solving equality constrained problems, it could be possible to find the 

optimum by searching only one constraint that involves all the variables. This 

could be considered in the design of ECHT.  

• The methodologies proposed in this research can be incorporated easily with 

different population-based evolutionary algorithms to improve their 

performance. The proposed search space reduction technique can be used with 

any population-based algorithms, even with multi-objective based evolutionary 

algorithms for constraints handling. After applying SSRT, the algorithms can 
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start the evolutionary process with a set of improved quality solutions. The 

multi-objective based constraints handling algorithms can also use the ECHT 

proposed in this research while solving optimization problems with equality 

constraints. In those problems these algorithms can easily replace the traditional 

mutation operator with the proposed ECHT to handle the equality constraints 

efficiently. 

• Many real world optimization problems may involve a wide range of 

uncertainties and dynamically changing environments. The objective function 

and/or constraint functions may be changed with time and conditions. These 

functions may also be noisy in some cases. The proposed algorithms can be 

extended on these types of problems. that are dynamic and noisy. 

• This research considers single objective optimization problems. However, the 

application of evolutionary algorithms in multi-objective optimization is 

currently receiving growing interest from the researchers and practitioners. The 

proposed algorithms can be extended to solving multi-objective problems. 

 



 

 

Appendix A                                                                 

Test Problem Suite I 

All benchmark functions (g1-g13) are described in (Runarsson and Yao, 2000). They are 
summarized here for completeness. The original sources of the functions are also cited. 

a. g01 (Floudas and Pardalos, 1987) 
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i
i xxxxf  

subject to 
( )
( )
( )
( )
( )
( )
( )
( )
( ) ,02

,02
,02

,08
,08
,08

,01022
,01022
,01022

12989

11768

10547

1236

1125

1014

1211323

1210312

1110211

≤+−−=
≤+−−=
≤+−−=

≤+−=
≤+−=
≤+−=

≤−+++=
≤−+++=
≤−+++=

xxxxg
xxxxg
xxxxg

xxxg
xxxg
xxxg

xxxxxg
xxxxxg
xxxxxg

 

where the bounds are 10 ≤≤ ix ( ),9,...,1=i  1000 ≤≤ ix ( )12,11,10=i , and 10 13 ≤≤ x .  

The global minimum is at *x  = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where six constraints 

are active ( ,,,,, 87321 ggggg  and )9g  and ( ) 15* −=xf .000. 

b. g02 (Koziel and Michalewicz, 1999) 

Maximize  

( )
( ) ( )

∑

∏∑

=

==

−
=

n

ii
i

n

i
i

n

i
i

ix

xx
xf

2

1

2

1

4 cos2cos
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subject to 

( ) 075.0
1

1 ≤−= ∏
=

n

i
ixxg , 

( ) 05.7
1

2 ≤−= ∑
=

nxxg
n

i
i , 

where 20=n  and 100 ≤≤ ix ( )ni ,...,1= . The global maximum is unknown; However 
the best reported global minimum (to the best of our knowledge) reported at *x  = 
3.61246061572185, 3.12833142812967, 3.09479212988791, 3.06145059523, 
3.0279291588, 2.993826067, 2.958668717, 2.9218422731, 0.494825114566933, 
0.48835711005490, 0.4823164271186, 0.476644750927, 0.47129550835, 
0.46623099264167, 0.46142004984199, 0.45683664767, 0.45245876903267, 
0.448267622418, 0.44424700958760, 0.44038285956317), where 

( ) 25598036191041.0* =xf . Constraint 1g  is close to being active ( )8
1 10−−=g . 

c. g03 (Michalewicz et al., 1996) 

Maximize  

( ) ( ) ∏
=

=
n

i
i

n
xnxf

1

 

subject to 

( ) 01
1

2
1 =−= ∑

=

n

i
ixxh  

where 10=n  and 10 ≤≤ ix ( )ni ,...,1= . The global maximum is at ( )ninx ,...,11* ==  
where ( ) 1* =xf .000. 

d. g04 (Himmelblau, 1972) 

Minimize  
( ) 141.40792293239.378356891.03578547.5 151

2
3 −++= xxxxxf  

subject to 
( )
( )
( )
( )
( )
( ) ,0200019085.00012547.00047026.0300961.9

,0250019085.00012547.00047026.0300961.9
,0900021813.00029955.00071317.051249.80

,01100021813.00029955.00071317.051249.80

,00022053.00006262.00056858.0334407.85
,0920022053.00006262.00056858.0334407.85

4331536

4331535

2
321524

2
321523

5341522

5341521

≤+−−−−=
≤−+++=
≤+−−−−=

≤−+++=

≤+−−−=
≤−−++=

xxxxxxxg
xxxxxxxg
xxxxxxg

xxxxxxg

xxxxxxxg
xxxxxxxg

 

where 10278 1 ≤≤ x , 4533 2 ≤≤ x , and 4527 ≤≤ ix  ( )5,4,3=i .  

The optimum solution is *x  = (78, 33, 29.995256025682, 45, 36.775812905788) where 
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( ) 539.30665−=*xf . Two constraints are active ( 1g  and 6g ). 

e. g05 (Hock and Schittkowski, 1981) 

Minimize  
( ) 3

22
3
11 )3000002.0(2000001.03 xxxxxf +++=  

subject to 
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ,08.129425.0sin100025.0sin1000

,08.89425.0sin100025.0sin1000
,08.89425.0sin100025.0sin1000

,055.0
,055.0

3444

24334

1433

432

341

=+−−+−=
=−+−−+−=

=−+−−+−−=
≤−+−=
≤−+−=

xxxxh
xxxxxh

xxxxh
xxxg
xxxg

 

where 12000 1 ≤≤ x , 12000 2 ≤≤ x , 55.055.0 3 ≤≤− x , and 55.055.0 4 ≤≤− x .  

The best known solution is *x  = (679.9453, 1026.067, 0.1188764, -0.3962336) where 

( ) 4981.5126* =xf . 
 

f. g06 (Floudas and Pardalos, 1987) 

Minimize  
( ) ( ) ( )3

2
3

1 2010 −+−= xxxf  
subject to 

( ) ( ) ( )
( ) ( ) ( ) ,081.8256

,010055
2

2
2

12

2
2

2
11

≤−−+−=

≤+−−−−=

xxxg

xxxg
 

where 10013 1 ≤≤ x , and 1000 2 ≤≤ x .  

The optimum solution is *x  = (14.095, 0.84296) where ( ) 81388.6961* −=xf . Both 

constraints are active. 

 

g. g07 (Hock and Schittkowski, 1981) 

Minimize  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 457102117512

354101614
2

10
2

9
2

8
2
7

2
6

2
5

2
4

2
32121

2
2

2
1

+−+−+−++−+

−+−+−+−−++=

xxxxx

xxxxxxxxxxf
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subject to 
( )
( )
( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ,0781263

,03034285.0

,0614222

,0402685

,0120723423

,0122528
,0217810

,09354105

10
2

9218

6
2
5

2
2

2
17

6521
2

2
2
16

4
2

32
2
15

4
2
3

2
2

2
14

109213

87212

87211

≤−−++−=

≤−−+−+−=

≤−+−−+=

≤−−−++=

≤−−+−+−=

≤−−++−=
≤+−−=

≤+−++−=

xxxxxg

xxxxxg

xxxxxxxg

xxxxxg

xxxxxg

xxxxxg
xxxxxg

xxxxxg

 

where 1010 ≤≤− ix ( )10,...,1=i .  

The optimum solution is *x  = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 

1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where ( ) 3062091.24* =xf . Six 

constraints are active ( ,,,,, 54321 ggggg  and )6g . 

h. g08 (Koziel and Michalewicz, 1999) 

Minimize  

( ) ( ) ( )
( )21

3
1

21
3 2sin2sin

xxx
xxxf

+
=

ππ  

subject to 
( )
( ) ( ) ,041

,01
2

212

2
2
11

≤−+−=

≤+−=

xxxg

xxxg
 

where 100 1 ≤≤ x , and 100 2 ≤≤ x .  

The optimum solution is *x  = (1.2279713, 4.2453733) where ( ) 095825.0* −=xf . The 

solution lies within the feasible region. 

i. g09 (Hock and Schittkowski, 1981) 

Minimize  
( ) ( ) ( ) ( ) 7676

4
7

2
6

6
5

2
4

4
3

2
2

2
1 810471011312510 xxxxxxxxxxxxf −−−+++−++−+−=  
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subject to 
( )
( )
( )
( ) ,0115234

,08623196

,01037282

,05432127

76
2
321

2
2

2
14

7
2
6

2
213

54
2
3212

5
2
43

4
2

2
11

≤−++−+=

≤−+++−=

≤−++++−=

≤+++++−=

xxxxxxxxg

xxxxxg

xxxxxxg

xxxxxxg

 

where 1010 ≤≤− ix ( )7,...,1=i .  

The optimum solution is *x  = (2.330499, 1.951372, −0.4775414, 4.365726, 

−0.6244870, 1.038131, 1.594227) where = ( ) 3680.630057* =xf . Two constraints are 

active ( 1g  and )4g  . 

j. g10 (Hock and Schittkowski, 1981) 

Minimize  
( ) 321 xxxxf ++=  

subject to 
( ) ( )
( ) ( )
( ) ( )
( )
( )
( ) ,025001250000

,012501250
,0333.8333310033252.833

,001.01
,00025.01

,00025.01

553836

4425725

14614

583

4752

641

≤−++−=
≤−++−=

≤−++−=
≤−+−=

≤−++−=
≤++−=

xxxxxxg
xxxxxxxg

xxxxxg
xxxg

xxxxg
xxxg

  

where 10000100 1 ≤≤ x , 100001000 ≤≤ ix ( )3,2=i  and 100010 ≤≤ ix ( )8,...,4=i .  

The optimum solution is *x  = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 

217.9799, 286.4162, 395.5979) where ( ) 7049.3307* =xf . Three constraints are active 

( 21, gg  and )3g . 

k. g11 (Koziel and Michalewicz, 1999) 

Minimize  
( ) ( )2

2
2
1 1−+= xxxf  
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subject to 
( ) ,02

12 =−= xxxh  
where 11 1 ≤≤− x  and 11 2 ≤≤− x .  

The optimum solution is ( )21,21* ±=x  where ( ) 75.0* =xf . 

l. g12 (Koziel and Michalewicz, 1999) 

Maximize  
( ) ( ) ( ) ( )( ) 100555100 2

3
2

2
2

1 −−−−−−= xxxxf  
subject to 

( ) ( ) ( ) ( ) 00625.02
3

2
2

2
1 ≤−−−−−−= rxqxpxxg  

where 100 ≤≤ ix ( )3,2,1=i  and 9,...,2,1,, =rqp . 

The feasible region of the search space consists of 39  disjointed spheres. A point 

( )321 ,, xxx  is feasible if and only if there exist ( )rqp ,,  such that the above inequality 

holds. The optimum is located at =*x (5,5,5) where ( ) 1* =xf . The solution lies within 

the feasible region. 

m. g13 (Hock and Schittkowski, 1981) 

Minimize 
54321 xxxxxexf   )( =  

subject to 

,01)(

,0)(
,010)(

3

2

1

=++=

==

=−++++=

 x  x xh

xx5 - xx xh
  x x x x  x xh

3
2

3
1

5432

2
5

2
4

2
3

2
2

2
1

 

where 3.23.2  x i ≤≤−  (i = 1, 2) and 2.32.3  x i ≤≤− (i = 3, 4, 5).  

 The best known solution is at 

)763659.0,763659.0,827250.1, 595721.1, 717142.1(* −−−=     x  where ( ) 0539498.0=*xf . 
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Test Problem Suite II 

a. B01 (Himmelblau, 1972) 

Minimize 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

∑
∑

=
=

10

1

10

1
ln

j j

i
i

i
i

x
xcxxf   )(  

Subject to 

 xx xx  x xh
, x xx  x xh

  x x xx  x xh

,012)(
012)(

,0222)(

1098733

76542

1063211

=−++++=
=−+++=

=−++++=
 

where 100  x i ≤≤  (i = 1,…,10) and 089.61 −=  c , 164.172 −=  c , 054.343 −=  c , 914.54 −=  c , 
721.245 −=  c , 986.146 −=  c , 1.247 −=  c , 708.108 −=  c , 662.269 −=  c , 179.2210 −=  c .  

The best known solution is at *x  = (0.0406684113, 0.147721240, 0.783205732, 

0.0014143393, 0.4852936367, 0.0006931383, 0.0274052040, 0.0179509660, 

0.0373268186, 0.0968844604) where  ( ) 764888459.47−=*xf . 

b. B02 (Himmelblau, 1972) 

Minimize  
3121

2
3

2
2

2
1 21000 xxxxxxxxf −−−−−= )(  

subject to 
0  25 ) ( 2

3
2
2

2
11 =−++= xxxxh , 

0567148 ) ( 3212 =−++= xxxxh , 
where the bounds are 100  x i ≤≤ (i = 1, 2, 3).  

The best known solution is at  
*x =(3.5121281261, 0.2169875104, 3.5521785492), where ( ) =*xf 961.715022. 



Appendix B 

201 

c. B03 (Himmelblau, 1972) 

Minimize 

17
12

2

16

15
5

12161314

0000005843.048.370001.0004324.0

0321.0000001502.000002358.01365.0000117.0

y
c
y

c
cy

yyyyxf

−+++

++++= )(

 

Subject to 
0

72.0
28.0)(1  yyxg 45 ≤−= , 

05.1)( 232   x xxg ≤−= , 

021)(
12

3  
c
y 3496xg 2 ≤−= , 

0622126.110)(
17

14 ≤−+=
c

yxg , 

01.213)( 15 ≤−= yxg , 
023.405)( 16 ≤−= yxg , 

0505.17)( 27 ≤−= yxg , 
06667.1053)( 28 ≤−= yxg , 

0275.11)( 39 ≤−= yxg , 
003.35)( 310 ≤−= yxg , 

0228.214)( 411 ≤−= yxg , 
0585.665)( 412 ≤−= yxg , 

0458.7)( 513 ≤−= yxg , 
0463.584)( 514 ≤−= yxg , 

0961.0)( 615 ≤−= yxg , 
0916.265)( 616 ≤−= yxg , 

0612.1)( 717 ≤−= yxg , 
0046.7)( 718 ≤−= yxg , 
0146.0)( 819 ≤−= yxg , 
0222.0)( 820 ≤−= yxg , 
099.107)( 921 ≤−= yxg , 
0366.273)( 922 ≤−= yxg , 

0693.922)( 1023 ≤−= yxg , 
0105.1286)( 1024 ≤−= yxg , 

0832.926)( 1125 ≤−= yxg , 
0046.1444)( 1126 ≤−= yxg , 

0766.18)( 1227 ≤−= yxg , 
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0141.537)( 1228 ≤−= yxg , 
0163.1072)( 1329 ≤−= yxg , 
0039.3247)( 1330 ≤−= yxg , 
0448.8961)( 1431 ≤−= yxg , 
0086.26844)( 1432 ≤−= yxg , 

0063.0)( 1533 ≤−= yxg , 
0386.0)( 1534 ≤−= yxg , 

033.71084)( 1635 ≤−= yxg , 
0140000)( 1636 ≤+−= yxg , 

02802713)( 1737 ≤−= yxg , 
012146108)( 1738 ≤−= yxg , 

where 
6.41321  x  x  y ++= , 

62.4024.0 41   x c −= , 

 
c

y 12 5.12

1
2 += , 

121
2
12 08705.0  5311.0  0003535.0  xyxxc ++= , 

1213 002377.0  78  052.0  xyxc ++= , 

3

2
3  

c
cy = , 

34 19 yy = , 

34
2

2
31

314 594.16376.0
 

) - (1956.0) - (04782.0 yy
x

yxyxc +++= , 

25 100  xc = , 

4316  -  -   yyxc = , 

  - 950.0  
5

4
7 c

cc =  

765   ccy = , 

34516  yyyxy −−−= , 
995.0)( 458 yyc += , 

  187 ycy = , 

3798
8

8
cy = , 

3153.00663.0
8

7
79 −−=

y
yyc , 
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 321.082.96
1

9
9 y

c
y += , 

634510 71.129.2258.129.1 yyyyy +++= , 

34111 580.0452.071.1  yyxy +−= , 

 
3.752

3.12 10 =c , 

)995.0)(75.1 ( 1211 xyc = , 
1998  995.0  1012 += yc , 

12

11
11012 c

c xc  y += , 

21213 75.1 ycy −= , 

59
3214

1463124.584.643623
xy

xxy
+

+++= , 

50951121.0488.60995.0 14421013 −−++= yxxyc , 

13

13
15 c

yy = , 

1315131516 6140331000148000 yyyyy −+−= , 

214 28740000102324 yyc −= , 

12

14
111017 531132814130000

c
cyyy +−−= , 

52.0
13

15

13
15

y
y
yc −= , 

1516 72.0104.1 yc −= , 

5917 xyc += , 
where the bounds are 3855.9064148.704 1 ≤≤ x , 88.2886.68 2 ≤≤ x , 75.1340 3 ≤≤ x , 

0966.287193 4 ≤≤ x , and 1988.84 25 5 ≤≤ x . 

 The best known solution is at *x = (705.1745370700, 68.599999999, 102.8999999999, 

282.3249315936, 37.5841164258) where ( ) 9051552585.1−=*xf . 

d. B04 (Himmelblau, 1972) 

Minimize 
) (5.0 768595933241 xxxxxxxxxxxxxf −+−+−−= )(  

subject to 
01)( 2

4
2
31  xxxg ≤−+= , 

01)( 2
92   xxg ≤−= , 

0 1)( 2
6

2
53 ≤−+= xxxg , 
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0)()( 2
92

2
14 ≤−+= xxxxg , 

01)()()( 2
62

2
515 ≤−−+−= xxxxxg , 

01)()()( 2
82

2
716 ≤−−+−= xxxx xg , 

01)()()( 2
64

2
537 ≤−−+−= xxxxxg , 

01)()()( 2
84

2
738 ≤−−+−= xxxxxg , 

01)()( 2
98

2
79 ≤−−+= xxxxg , 

0)( 413210 ≤+= xxxxxg , 
0)( 9311 ≤−= xx xg , 

0)( 9512 ≤= xx xg , 
0)( 857613 ≤−= xxxx xg , 

where the bounds are )8,...,1  (1010 =≤≤− i   xi and 200 ≤≤ 9x .  

The best known solution is at *x = ( 6577761924.0− , 1534187734.0− , 3234138716.0 , 

9462576116.0− , 6577761943.0− , 7532134346.0− , 3234138741.0 , 

3464629479.0− , 5997946628.0 ) where ( ) 8660254037.0−=*xf . 

e. B05 (Floudas, 1999) 

Minimize 
 21 xxxf −−= )(  

subject to 
02882)( 2

2
1

3
1

4
11  xxxxxg ≤−+−+−= , 

0369688324)( 21
2
1

3
1

4
12  xxxxxxg ≤−++−+−= , 

where the bounds are 30 1 ≤≤ x  and 40 2 ≤≤ x .  

The feasible global minimum is at *x = ) 1784930741.3 ,3295201974.2(  . 

where ( ) 65080132715.5−=*xf . This problem has a feasible region consisting on two 

disconnected sub-regions.  

f. B06 (Himmelblau, 1972) 

Minimize 

1xxf = )(  
subject to 

0 253535 ) ( 6.0
3

6.0
211 ≤−++−= xxxxg , 

0  252575007500300 ) ( 4364546531 =++−−+−= xxxxxxxxxxh , 
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0  5.15536252500365.155100 ) ( 74427422 =−−−++= xxxxxxxxh , 
0)900( ) ( 253 =+−+−= xlnxxh , 
0)300( ) ( 464 =+−+−= xlnxxh , 

0)7002( ) ( 475 =+−+−= xlnxxh , 
where the bounds are 10000 1  x ≤≤ , 40,0 32  xx ≤≤ , 300100 4  x ≤≤ , 7.63.6 5  x ≤≤ , 

4.69.5 6  x ≤≤ , 25.65.4 7  x ≤≤ . 

The best known solution is at *x = 193.7245100700, 5.5694413155E-27, 

17.3191887294, 100.0478978013, 6.6844518536, 5.9916842844, 6.2145164888; where 

( ) 724510070.193=*xf . 

g. B07 (Hock and Schittkowski, 1981) 

Minimize  
2

54
2

32
2

1 )()()1()( x-x x-x  -x  xf ++=  
Subject to 
 05)( 543211 =−++++= xxxxx xh ,  
     03)(2)( 5432 =+++= xxx xh , 
where 0.20.0  x i ≤≤  (i = 1,…,5). 

The optimum solution is )000.1,000.1,000.1,000.1000.1(*     ,x =  where ( ) 0000.0=*xf . 

h. B08 (Hock and Schittkowski, 1981) 

Minimize  
41

511 42)( xxexxx  xf +++=   
Subject to 
 0652)( 5211 =−++= xxx xh ,  

03)( 3212 =−++= xxx xh ,  
02)( 6543 =−++= xxx xh , 

01)( 414 =−+= xx xh , 
02)( 525 =−+= xx xh , 
02)( 636 =−+= xx xh , 

where 0.20.0  x i ≤≤  (i = 1,…,6).  

The optimum solution is 

)333334.0,666667.0,000000.1,666667.1,333334.1000000.0(*      ,x = where ( ) 3334.6=*xf . 
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i. B09 (Hock and Schittkowski, 1981) 

Minimize   
1)( x  xf −=  

Subject to 
 0)( 2

3
3
121 =−−= xxx xh , 

    0)( 2
42

2
12 =−−= xxx xh , 

where 0.20.0  x i ≤≤  (i = 1,…,4).  

The optimum solution is  )000000.0,000000.0,000000.1000000.1(*    ,x =  where 

( ) 000000.1−=*xf .
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Test Problem Suite III  

Crop Planning Model  

a. A Linear Crop Planning Model (Sarker and Ray, 2005; Sarker and Ray, 2009) 

Index: 

i for a crop which can be considered for production 

j a crop combination made up from i 

k land type 

 

Set: 

CE set of crops that can be imported 

CAL  set of crops having area limitation 

CIL  set of crops having import limitation 

 

Parameters: 

n1   number of alternative crops for single-cropped land 

n2  number of crop combinations for double-cropped land 

n3  number of crop combinations for triple-cropped land 

N1j   a crop in each j for single-cropped land, j = 1, …, n1 

N2j  the j-th crop pair of the possible crop combinations of double-cropped land, j = 1, …, 

          n2 

N3j  the j-th crop triple of the possible crop combinations of triple-cropped land, j = 1, …, 

          n3 

YRijk  yield rate that is the amount of production per unit area for crop i of crop 

combination j in land type k.  

CPijk  variable cost required per unit area for crop i of crop combination j in land type k. 
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Pi  market price of crop i per metric ton 

Bijk  gross margin that is the benefit that can be obtained per unit area of land from crop i 

of crop combination j in land type k = (Pi * YRijk  -  CPijk) 

ICi  gross margin from import of crop i (=Market revenue - Import cost)   

Di  yearly demand of crop i  

Lk  available area of land type k   

LTk land type coefficient for land type k (=1, 1/2 or 1/3) 

Ca working capital available, this indicates the total amount of money that can be used 

for covering variable costs. 

A   area suitable and available for crop i when k = 1  

IL  upper limit of total crop import 

 

Variables 

Xijk   Area of land to be cultivated for crop i of crop combination j in land type k. 

Ii     Amount of crop i that should be imported. 

 

Objective function 1: The first objective is to maximize the total gross margin (from 

cultivated plus imported crops) that can be obtained from cropping in a single crop year. 

∑ ∑∑

∑ ∑∑ ∑

= ∈∈
==

= ∈
==

= ∈
==

++

+=

3

21

1 3
)3()3(

1 2
)2()2(

1 1
)1()1(1

                                            

   Maximize

n

j CEi
ii

Ni
kijkij

n

j Ni
kijkij

n

j Ni
kijkij

IICXB

XBXBZ

j

jj 

          

 

 

(1) 

 

The first, second, third and fourth terms represent the gross margin from single crop land, 

double crop land, triple crop land and imported crop respectively. Note that there is only 

one crop for each j in single crop land, two crops in doubled crop land and three crops in 

triple crop land.  

 

Constraints:  

Demand constraint:  The sum of local production and the imported quantity of crop i in a 
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year must be greater than or equal to the total requirements in the country.  

         iDIXYR iCEi
j k

ijkijk ∀≥+ ∈∑∑ (3) 

 

Land constraint: The total land used for a given type of land must be less than or equal to 

the total available land of that type.  

kLXLT kijk
i j

k ∀≤∑∑               (4) 

Here, for k = 1, 2 and 3, the coefficients (LTk) are 1, ½ and 1/3 respectively. If a piece of 

land is used by two crops (in a double cropped land) one after another (consecutive 

production) in a given year, it is assumed equivalent to the use of half the land for one of 

these two crops in a year - that is LTk= ½. This assumption makes the constraint (4) simpler 

and it is required only for land constraint. 

 

Capital constraint: The total amount of money that can be spent for covering the variable 

costs in crop production must be less than or equal to the working capital available. Note 

that minimization of capital requirements is one of our two objectives formulated above. 

This additional constraint basically sets the upper bound of capital availability.  

a

n

j Ni
kijkij

n
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jjj

≤++ ∑ ∑∑ ∑∑ ∑
= ∈

==
= ∈

==
= ∈

==

321

1 3
)3()3(

1 2
)2()2(

1 1
)1()1(   

(5) 

Contingent constraint: The area used for any crop under a crop combination for double- or 

triple-cropped land must be equal for every crop. For example, in a double-cropped land, 

the area used by two crops belonging to any crop combination must be equal. 

jXX kjNikjNi jj
∀=− =∈=∈               0)2()2()2()2( 21

 (6) 

 

In double cropped land, for a given crop combination j there is only two crops: i1 and i2 

where i1 is the first crop and i2 is the second crop in the combination. Both crops use the 

same area of land but one after another. In a triple-cropped land, the area used by three 

crops belonging to any crop combination must be equal. 

jXX kjNikjNi jj
∀=− =∈=∈                 0)3()3()3()3( 21

 (7) 
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jXX kjNikjNi jj
∀=− =∈=∈                  0)3()3()3()3( 32

 (8) 

Here, i1 is the first crop, i2 is the second crop and i3 is the third crop for combination j. 

 

Area and import bound constraint: Due to soil characteristics and regional aspects, in some 

regions, the amount of area to be used for certain crops is restricted. For example, the 

unsuitability of certain lands for fruit cultivation needs to set an area limit for fruit. This is 

true only for single-cropped land. Similarly, a constraint needs to be set for import 

restriction as there is an upper limit on the importation of some crops.  

 1,1             ==∀≤∑
∈

kjAX
CALi

ijk Area bound: (9) 

 ILI
CILi

i ≤∑
∈

 Import bound: (10) 

 

Non-negativity constraint: The decision variables must be greater than or equal to zero.   

    andi,j,kXijk ∀≥           0     

iIi ∀≥               0     

(11) 

 

b. A Nonlinear Crop Planning Model (Sarker and Ray, 2005; Sarker and Ray, 

2009) 

It is interesting that, for a given crop, the yield rate in double- and triple- cropped 

land is little higher than the single-cropped land. This is due to frequent use of fertilizers 

and insecticides in double- and triple-cropped land. The difference is significant for 

triple-cropped land and a nonlinear relationship is established to reflect this change. The 

change is related to the triple crop decision variables by expressing as b
ijkx )( . The value 

of b varies from situation to situation. For higher yield rate, the value of b will be more 

than one. In situations, where fertilizers are not appropriately used, the yield rate may 

decrease for double- and triple-cropped lands. So the value of b is assumed that it will 

be less than one. In addition, the nonlinearity may arise due to soil characteristics and 

the level of agricultural inputs used. In the model, the triple crop variables for the first 

objective function and demand constraints will be assumed as nonlinear.  
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