
An integrated evolutionary system for solving optimization
problems

Author:
Barkat Ullah, Abu Saleh Shah Muhammad

Publication Date:
2009

DOI:
https://doi.org/10.26190/unsworks/22159

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/43764 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/22159
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/43764
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

An Integrated Evolutionary System for Solving
Optimization Problems

Abu Saleh Shah Muhammad Barkat Ullah

Bachelor of Science in Computer Science and Engineering
 Khulna University, Bangladesh

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy at the

School of Engineering and Information Technology

University of New South Wales

Australian Defence Force Academy

© Copyright 2009 by Abu Saleh Shah Muhammad Barkat Ullah

ii

Abstract

Many real-world decision processes require solving optimization problems which

may involve different types of constraints such as inequality and equality constraints.

The hurdles in solving these Constrained Optimization Problems (COPs) arise from the

challenge of searching a huge variable space in order to locate feasible points with

acceptable solution quality. Over the last decades Evolutionary Algorithms (EAs) have

brought a tremendous advancement in the area of computer science and optimization

with their ability to solve various problems. However, EAs have inherent difficulty in

dealing with constraints when solving COPs.

This thesis presents a new Agent-based Memetic Algorithm (AMA) for solving

COPs, where the agents have the ability to independently select a suitable Life Span

Learning Process (LSLP) from a set of LSLPs. Each agent represents a candidate

solution of the optimization problem and tries to improve its solution through co-

operation with other agents. Evolutionary operators consist of only crossover and one of

the self-adaptively selected LSLPs. The performance of the proposed algorithm is tested

on benchmark problems, and the experimental results show convincing performance.

The quality of individuals in the initial population influences the performance of

evolutionary algorithms, especially when the feasible region of the constrained

optimization problems is very tiny in comparison to the entire search space. This thesis

proposes a method that improves the quality of randomly generated initial solutions by

sacrificing very little in diversity of the population. The proposed Search Space

Reduction Technique (SSRT) is tested using five different existing EAs, including

AMA, by solving a number of state-of-the-art test problems and a real world case

problem. The experimental results show SSRT improves the solution quality, and speeds

up the performance of the algorithms.

The handling of equality constraints has long been a difficult issue for evolutionary

iii

optimization methods, although several methods are available in the literature for

handling functional constraints. In any optimization problems with equality constraints,

to satisfy the condition of feasibility and optimality the solution points must lie on each

and every equality constraint. This reduces the size of the feasible space and makes it

difficult for EAs to locate feasible and optimal solutions. A new Equality Constraint

Handling Technique (ECHT) is presented in this thesis, to enhance the performance of

AMA in solving constrained optimization problems with equality constraints. The basic

concept is to reach a point on the equality constraint from its current position by the

selected individual solution and then explore on the constraint landscape. The technique

is used as an agent learning process in AMA. The experimental results confirm the

improved performance of the proposed algorithm.

This thesis also proposes a Modified Genetic Algorithm (MGA) for solving COPs

with equality constraints. After achieving inspiring performance in AMA when dealing

with equality constraints, the new technique is used in the design of MGA. The

experimental results show that the proposed algorithm overcomes the limitations of GA

in solving COPs with equality constraints, and provides good quality solutions.

iv

Keywords

Agent-based Evolutionary Algorithms.

Agent-based Memetic Algorithm.

Constrained Optimization Problems.

Constraint Handling Technique.

Evolutionary Algorithms.

Genetic Algorithms.

Multi-agent Systems.

Memetic Algorithms.

v

Acknowledgement

No words of gratitude are enough to thank my supervisor Associate Professor Ruhul

A. Sarker (School of Engineering and Information Technology, UNSW@ADFA),

whose untiring support, motivation and supervision made this thesis, see the light of the

day. He always gives me timely and constructive feedback and thoughtful suggestions

for my research ideas, paper and thesis drafts. I am particularly thankful for his patience

and encouragement. His guidance has been indispensable in my academic, professional,

and personal development. I feel lucky and honored to work with him.

I am indebted to Dr. Chris Lokan (School of Engineering and Information

Technology, UNSW@ADFA) my co-supervisor. His critical advice and comments have

taught me the balance between careful research and exploratory investigation. I must

give him very special thanks for his deep concentration and enormous effort on my

thesis writing.

I also like to thank my external co-supervisors, Dr. David Cornforth (CSIRO Energy

Technology, Australia) for his guidance, enormous encouragements throughout my PhD

candidature.

Thanks to the School of Engineering and Information Technology, all its

administrative staff and IT support group who provided me with all the required

facilities and took care of my needs during my stay at the school.

It is my honor to thank the University of New South Wales at the Australian

Defence Force Academy (UNSW@ADFA) for providing me the University College

Postgraduate Research Scholarship (UCPRS) to carry out this research.

I am also thankful to UNSW for awarding me Postgraduate Research Student

Support Scholarship (for the year 2007 and 2008), ACM/GECCO for ACM / GECCO

Student Travel Grant 2008, IEEE Computational Intelligence for Student Travel Grant

vi

2007, and School of Engineering and Information Technology, UNSW@ADFA for

sponsoring my different conferences expanses.

I am also thankful to Prof. Kalyanmoy Deb (IIT, Kanpur) and Dr. Tapabrata Ray

(UNSW@ADFA) for their guidance, suggestions and providing their algorithms which

helped a lot during the initial experimentations.

All praises are due to Allah the almighty God, the most Beneficent, and the most

Merciful. I thank Him for bestowing His Blessings upon me to accomplish this task.

I would like to express gratitude to all my fellows in the campus. Particularly, I

would like to thank Mr. S. M. Kamrul Hasan, Mr. Ehab Zaky Elfeky, Mr. Ziauddin

Ursani, Mr. Mizanur Rahman, Mr. Shafiul Azam, and Mrs. Nafisa Tarannum for sharing

their time and extending their friendship to me.

I express my gratitude to all of my teachers who showed me divine light of

knowledge. Special thanks to my school teacher Mr. Israil who helped me to believe in

myself.

I owe a debt of gratitude to my wife Nusrat Jahan. Her support and encouragement

have been unfailing through the highs and lows of last two years. I thank my son

Raghib Barkat for being born two weeks earlier than his due date of confinement, which

allow me some more days to finalize the thesis.

Finally I would like to thank my parents (Abba and Amma) and my elder brother

(Vaia) for their unwavering support, guidance, encouragement, and emphasis on the

value of education that allowed me to get where I am today. I am forever grateful to

them.

vii

Dedication

To My Family

Abba (My Father Md. Hafizur Rahman)

Amma (My Mother Rumisa Begum)

Vaia (My Brother Maj. Saleh)

Vabi (My Sister in law Mouri)

My Wife (Nusrat Jahan Jhumu)

My Son (Raghib Barkat)

viii

Originality Statement

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another person,

or substantial proportions of material which have been accepted for the award of any

other degree or diploma at UNSW or any other educational institution, except where

due acknowledgement is made in the thesis. Any contribution made to the research by

others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in

the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the project's design and

conception or in style, presentation and linguistic expression is acknowledged.

Signed...................................

Date......................................

ix

Copyright Statement

I hereby grant the University of New South Wales or its agents the right to archive

and to make available my thesis or dissertation in whole or part in the University

libraries in all forms of media, now or here after known, subject to the provisions of the

Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in

Dissertation Abstract International (this is applicable to doctoral theses only).

I have either used no substantial portions of copyright material in my thesis or I

have obtained permission to use copyright material; where permission has not been

granted I have applied/will apply for a partial restriction of the digital copy of my thesis

or dissertation.

Signed...................................

Date......................................

x

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred and if

there are any minor variations in formatting, they are the result of the conversion to

digital format.

Signed...................................

Date......................................

xi

List of Publications

Journal Articles

1. Barkat Ullah, A. S. S. M., Sarker, R., Cornforth, D. and Lokan, C. (2009). AMA:

a new approach for solving constrained real-valued optimization problems. Soft

Computing - A Fusion of Foundations, Methodologies and Applications, 13(8):

741-762.

2. Barkat Ullah, A. S. S. M., Sarker, R. and Lokan, C (08/2009). Handling Equality

Constraints with Agent-based Memetic Algorithms, Memetic Computing

Journal, Springer, Under Review.

3. Barkat Ullah, A. S. S. M., Sarker, R. and Lokan, C. (10/2009). Evolutionary

Optimization: Exploring Larger Search Space!, Information Sciences, Under

Review.

Book Chapters

4. Barkat Ullah, A. S. S. M., Sarker, R. and Lokan, C. (2009). An Agent Based

Evolutionary Approach for Nonlinear Optimization with Equality Constraints. In

Sarker, R. and T. Ray, editor, Agent-Based Evolutionary Search, Springer. In

Press.

5. Barkat Ullah, A. S. S. M., Sarker, R. and Cornforth, D. (2007). An Evolutionary

Agent System for Mathematical Programming. In Advances in Computation and

Intelligence, Lecture Notes in Computer Science, Vol. 4683, pp. 187-196.

Springer.

xii

Conference Articles

6. Barkat Ullah, A. S. S. M., Sarker, R. and Lokan, C. (2009). An Agent-based

Memetic Algorithm (AMA) for nonlinear optimization with equality constraints.

In IEEE Congress on Evolutionary Computation, 2009. CEC '09, Norway, pp.

70-77.

7. Barkat Ullah, A. S. S. M., Sarker, R. and Cornforth, D. (2008). Search space

reduction technique for constrained optimization with tiny feasible space. In

Proceedings of the 10th annual conference on Genetic and evolutionary

computation, GECCO 2008, Atlanta, GA, USA, ACM, pp. 881-888.

8. Barkat Ullah, A. S. S. M., Elfeky, E. Z., Cornforth, D., Essam, D. L. and Sarker,

R. (2008). Improved evolutionary algorithms for solving constrained

optimization problems with tiny feasible space. In IEEE International

Conference on Systems, Man and Cybernetics, SMC 2008, Singapore, pp. 1426-

1433.

9. Barkat Ullah, A. S. S. M., Sarker, R., Cornforth, D. and Lokan, C. (2007). An

Agent-based Memetic Algorithm (AMA) for Solving Constrained Optimization

Problems. In IEEE Congress on Evolutionary Computation, CEC 2007,

Singapore, pp. 999-1006.

10. Barkat Ullah, A. S. S. M., Sarker, R. and Cornforth, D. (2007). A Combined

MA-GA Approach for Solving Constrained Optimization Problems. In 6th

IEEE/ACIS International Conference on Computer and Information Science,

ICIS 2007, Australia, pp. 382-387.

xiii

Contents

Abstract ii

Keywords iv

Acknowledgement v

Originality Statement viii

Copyright Statement ix

Authenticity Statement x

List of Publications xi

Contents xiii

List of Figures xviii

List of Tables xxi

List of Acronyms xxiii

Chapter 1 Introduction 1

1.1 Overview.. 1

1.2 Motivation and Scope of Research .. 2

1.3 Objective of the Thesis .. 5

1.4 Contribution to Scientific Knowledge ... 7

1.5 Organization of the Thesis ... 8

Chapter 2 Background Study 11

2.1 Optimization Problems and their Classification .. 11

2.2 Applications of Optimization... 14

2.3 Solution Methodology ... 16

2.3.1 Conventional Methods ... 16

2.3.2 Heuristic Methods .. 19

2.4 Genetic Algorithms (GAs) ... 23

2.4.1 Basic Structure ... 24

2.4.2 Operators and Parameters .. 26

xiv

2.4.3 Handling Constraints in GA... 32

2.5 Multi-agent Systems (MAS) .. 37

2.5.1 Characteristics of Multi-agent Systems ... 38

2.5.2 Advantages of MAS... 39

2.6 Agent-based Evolutionary Algorithms (AEAs) ... 40

2.7 Application of Intelligent Systems... 41

2.7.1 Application Areas of GAs.. 41

2.7.2 Application Areas of MAS... 46

2.7.3 Application Areas of Agent-based EA... 48

2.8 Chapter Summary .. 50

Chapter 3 Genetic Algorithms in Solving COPs 52

3.1 Introduction.. 52

3.2 Simple Genetic Algorithm ... 53

3.2.1 Representation.. 54

3.2.2 Fitness Evaluation and Constraint Handling.. 54

3.2.3 Selection... 55

3.2.4 Crossover ... 55

3.2.5 Mutation ... 56

3.3 Experimental Studies ... 56

3.3.1 Benchmark Problems ... 56

3.3.2 Experimental Results and Discussions .. 57

3.3.3 Effects of Parameters and Operators.. 63

3.3.4 The effect of more Fitness Evaluations.. 68

3.4 Chapter Summary .. 69

Chapter 4 Agent-based Evolutionary Algorithms 71

4.1 Introduction.. 71

4.2 Agent-based Evolutionary Algorithms .. 75

4.3 Agent-based Memetic Algorithm (AMA).. 78

4.4 AMA Operators.. 81

4.4.1 Crossover ... 82

4.4.2 Life Span Learning Processes .. 82

xv

4.5 Fitness Evaluation and Constraint Handling.. 86

4.6 Selection of LSLPs .. 88

4.7 Chapter Summary .. 89

Chapter 5 Experimental Studies of AMA 90

5.1 Introduction.. 90

5.2 Test Problems and Experimental Results... 91

5.3 Comparison with Other Algorithms... 94

5.4 Effects of Operators and Parameters.. 101

5.4.1 LSLP .. 102

5.4.2 Probability of using LSLP ... 104

5.4.3 Neighborhood Size... 106

5.4.4 Population Size .. 109

5.4.5 Crossover ..111

5.4.6 Section Summary ... 114

5.5 Chapter Summary .. 114

Chapter 6 Problems with Tiny Feasible Space 116

6.1 Introduction.. 116

6.2 Search Space Reduction Technique ... 118

6.2.1 Computational Cost ... 121

6.2.2 Issues Regarding SSRT.. 121

6.3 Experimental Results and Discussions .. 122

6.3.1 Experimentation with AMA... 123

6.3.2 Experimentation with other Evolutionary Algorithms........................... 129

6.3.3 Solving a Real World Problem... 138

6.4 Chapter Summary .. 140

Chapter 7 Handling Equality Constraints 141

7.1 Introduction.. 141

7.2 Equality Constraint Handling Technique (ECHT)....................................... 144

7.3 Extended AMA (AMA-II).. 149

7.4 Experimental Studies ... 150

7.4.1 Benchmark Problems ... 151

xvi

7.4.2 Initial Design Experience... 152

7.4.3 Experimental Results and Discussions .. 153

7.4.4 Effect of the new LSLP.. 157

7.4.5 Effect of Probability of using LSLP .. 159

7.4.6 Summary .. 162

7.5 AMA with only the new LSLP (AMA-III) .. 162

7.6 Chapter Summary .. 165

Chapter 8 ECHT with Genetic Algorithms 167

8.1 Introduction.. 167

8.2 Modified Genetic Algorithm.. 168

8.2.1 Fitness Evaluation .. 169

8.2.2 Selection... 170

8.2.3 Creating New Population... 170

8.3 Experimental Studies ... 170

8.3.1 Effect of ECHT .. 171

8.3.2 Tolerance in Constraint Violation .. 173

8.3.3 Selection Process ... 174

8.3.4 Design of Next Generation .. 177

8.3.5 Section Summary ... 179

8.4 Evaluation of the Proposed MGA.. 179

8.4.1 Experimental Results and Discussions .. 179

8.4.2 Comparison with Other Algorithms... 181

8.4.3 The Effect of more Fitness Evaluations... 183

8.5 Chapter Summary .. 184

Chapter 9 Conclusions and Future Research Directions 185

9.1 Summary of Research Done and Conclusions... 185

9.1.1 Genetic Algorithms in Solving COPs .. 186

9.1.2 Agent-based Evolutionary Algorithms .. 186

9.1.3 Problems with Tiny Feasible Space ... 188

9.1.4 Handling Equality Constraints ... 188

9.1.5 ECHT with Genetic Algorithms... 189

xvii

9.1.6 Summary .. 190

9.2 Future Research Directions.. 191

Appendix A Test Problem Suite I 194

Appendix B Test Problem Suite II 200

Appendix C Test Problem Suite III 207

References 211

xviii

List of Figures

Figure 1.1: Flowchart of the thesis ... 10

Figure 2.1: Binary representation of chromosome. .. 25

Figure 2.2: Floating point representation of cromosome.. 25

Figure 2.3: One-point crossover.. 28

Figure 2.4: Two-point crossover. .. 28

Figure 2.5: Canonical view of a Multi-agent system.. 38

Figure 3.1: Convergence Curve of the best and mean objective value for problem

g01... 60

Figure 3.2: Convergence Curve of the best and mean objective value for problem

g02... 60

Figure 3.3: Convergence Curve of the best and mean objective value for problem

g04... 61

Figure 3.4: Convergence Curve of the best and mean objective value for problem

g06... 61

Figure 3.5: Convergence Curve of the best and mean objective value for problem

g07... 61

Figure 3.6: Convergence Curve of the best and mean objective value for problem

g08... 62

Figure 3.7: Convergence Curve of the best and mean objective value for problem

g09... 62

Figure 3.8: Convergence Curve of the best and mean objective value for problem

g10... 62

Figure 3.9: Convergence Curve of the best and mean objective value for problem

g12... 63

Figure 3.10: Convergence Curve of the best and mean objective value for problem

g13... 63

xix

Figure 3.11: Convergence Curve of SGA using different values of PC for problem

g04... 65

Figure 3.12: Effect of probability of mutation (PM) on problem g04. 67

Figure 4.1: Agent-based Memetic Algorithm. .. 79

Figure 5.1: Effect of LSLP on g04. (1) Different types LSLPs vs. achieved best and

mean results, (2) Different types LSLPs vs. St.Dev. of achieved results.. 104

Figure 5.2: Effect of Probability of LSLP (PL) on problem g04. (1) Probability of

LSLP vs. achieved best and mean results, (2) Probability of LSLP vs.

St.Dev. of achieved results. ... 105

Figure 5.3: Different types of neighborhood. (1) Four Neighbors , (2) Eight

Neighbors, (3) Twelve Neighbors, (4) Sixteen Neighbors, (5) Twenty

Neighbors, (6) Twenty four Neighbors. .. 106

Figure 5.4: Effect of Neighborhood size on problems g04. (1)Different

Neighborhood size vs. achieved best and mean results, (2) Different

Neighborhood size vs. St.Dev. of achieved results. 108

Figure 5.5: Effect of population size on problem g04. (1) Population size vs.

achieved best and mean results, (2) Population size vs. St.Dev.of

achieved results. .. 110

Figure 6.1: Search Space Reduction Technique.. 119

Figure 6.2: Convergence Curve for Crop problem using AMA with and without

SSRT.. 140

Figure 7.1: ECHT (when the solution does not satisfy the equality constraint). 148

Figure 7.2: ECHT (when the solution satisfies the equality constraint). 149

Figure 7.3: Convergence Curve from the best objective function of AMA-I and

AMA-II for problem g13. ... 158

Figure 7.4: Convergence Curve from the average objective function of AMA-I and

AMA-II for problem g13. ... 159

Figure 7.5: Effect of Probability of LSLP (PL) on population diversity for problem

g13... 160

Figure 7.6: Effect of Probability of LSLP (PL) on problem g13. Probability of

LSLP vs. achieved best and mean results. .. 161

xx

Figure 7.7: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP

vs. St.Dev. of achieved results. ... 161

Figure 7.8: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP

vs. Average time required.. 162

Figure 8.1: Effect of Probability of ECHT (PE) on problem g13. Probability of

ECHT vs. Average Euclidian distance in the population. 172

Figure 8.2: Effect of Probability of ECHT (PE) on problem g13. Probability of

ECHT vs. achieved best and mean results. ... 173

Figure 8.3: Effect of Probability of ECHT (PE) on problem g13. Probability of

ECHT vs. St.Dev. of achieved results. .. 173

Figure 8.4: Convergence Curve from the objective function with and without using

delta (δ) for problem g13. ... 174

Figure 8.5: Effect of elites in selection process on problem g13. Percentage of Elites

vs. achieved best and mean results.. 176

Figure 8.6: Effect of elites in selection process on problem g13. Percentage of Elites

vs. St.Dev. of achieved results. ... 176

Figure 8.7: Diversity of population with different design of Next generation. 178

xxi

List of Tables

Table 3.1: Characteristics of the test problems. .. 57

Table 3.2: Statistics for 30 independent runs of the SGA... 58

Table 5.1: Characteristics of the test problems. .. 92

Table 5.2: Statistics for 30 independent runs of the proposed AMA. 94

Table 5.3: Comparison of results with different algorithms for 13 problems (g01-

g13). .. 96

Table 5.4: Comparison of results for problems B01-B05 ... 99

Table 5.5: Student’s t-test between RY and AMA for 13 benchmark problems. 101

Table 5.6: Comparison of results of AMA with SBX and Orthogonal crossover for

13 problems (g01-g13).. 112

Table 5.7: Comparison of results of AMA with SBX and Orthogonal Crossover for

problems B01-B05. ... 113

Table 6.1: Characteristics and the optimal results of the benchmark problems.......... 123

Table 6.2: Performance of AMA with and without SSRT from 30 independent runs. 125

Table 6.3: Effect of Allowable Range (AR) for calculating centroid on problem g01128

Table 6.4: Effect of Diversity Reduction (DR) on problem g01................................. 129

Table 6.5: Performance of SGA with and without SSRT from 30 independent runs.. 133

Table 6.6: Performance of NSGA-II with SSRT and without SSRT from 30

independent runs. .. 134

Table 6.7: Performance of MCA with and without SSRT from 30 independent runs. 135

Table 6.8: Performance of TC with and without SSRT from 30 independent runs 137

Table 6.9: Performance of SSRT on EAs in solving the benchmark problems 138

Table 6.10: Improvement of performance of different EAs using SSRT in solving

crop problem. .. 139

Table 7.1: Characteristics of the test problems. .. 151

Table 7.2: Statistics for 30 independent runs of different algorithms for problems

xxii

with equality constraints in g-Series. .. 155

Table 7.3: Statistics for 30 independent runs of different algorithms for the test

problems.. 156

Table 7.4: Experimental results of AMA-III for the test problems (30 runs). 164

Table 8.1: Statistics for 30 independent runs of different algorithms for problems

with equality constraints in g-series.. 181

Table 8.2: Statistics for 30 independent runs of different algorithms for other test

problems.. 182

xxiii

List of Acronyms

AEAs Agent-based Evolutionary Algorithms

AMA Agent-based Memetic algorithm

AR Allowable Range

COMOGA Constrained Optimization by Multi-Objective Genetic Algorithms

COPs Constrained Optimization Problems

CV Constraint Violation

DR Diversity Reduction

EAs Evolutionary Algorithms

ECHT Equality Constraint Handling Technique

EP Evolutionary Programming

ES Evolutionary Strategy

FGA Force-based Genetic Algorithm

GAs Genetic Algorithms

GP Goal Programming

HELPR Hybrid Evolutionary Learning for Pattern Recognition

II Improvement Index

IP Integer Programming

JSP Job-shop scheduling problem

LP Linear Programming

LS Local Search

LSLP Life Span Learning Process

MAs Memetic Algorithms

MAS Multi-agent Systems

MGA Modified Genetic Algorithm

MILP Mixed Integer Linear Program

MIP Mixed Integer Program

xxiv

MOGA Multi-Objective Genetic Algorithms

NLP Nonlinear Programming

NPGA Niched-Pareto Genetic Algorithms

SA Simulated Annealing

SBX Simulated Binary Crossover

SGA Simple Genetic Algorithm

SSRT Search Space Reduction Technique

TCV Total Constraint Violation

TS Tabu Search

TSP Traveling Salesman Problem

VEGA Vector Evaluated Genetic Algorithms

VRP Vehicle Routing Problem

Chapter 1

Introduction

1.1 Overview

Many real world decision processes require solving optimization problems. A good

number of these problems can be represented as nonlinear programming models. These

models consist of a nonlinear objective function that has to be optimized, while

satisfying a number of linear and/or nonlinear constraints. The constraint type could be

of equality, inequality or both. Due to their complex nature, many of these Constrained

Optimization Problems (COPs) may not contain nice mathematical properties required

by traditional solution techniques. Hence, conventional optimization algorithms are

often unable to provide even a feasible solution (Sarimveis and Nikolakopoulos, 2005).

For example, gradient based optimization techniques are only able to tackle

mathematical models where properties such as continuity and convexity exist. Solving

COPs with non-standard function properties has become an important research topic in

computer science and operations research, due to the presence of high dimensionality,

nonlinear parameter interaction, and multimodality of the objective function as well as

due to the physical, geometric, and other limitations of different constraints (Liang and

Suganthan, 2006).

Over the last few decades, Evolutionary Algorithms (EAs), as well as other bio-

inspired heuristics, have proven themselves as efficient optimization techniques

(Mezura-Montes, 2009). With the increasing recognition of the potential of EAs,

Genetic Algorithms (GAs) (the most well-known branch of EAs) have also been used to

solve a broad variety of problems in an extremely diverse array of fields, clearly

Chapter 1. Introduction

2

showing their power and potential for solving optimization problems (Marczyk, 2004;

Sarker et al., 2003).

EAs may be able to overcome the above mentioned drawbacks of conventional

optimization methods. However, in their initial versions, EAs were limited to only

unconstrained problems (Mezura-Montes, 2009). Therefore, over the last decade, an

extensive amount of research has been contributed to design and implement constraint-

handling techniques (Coello, 2002). EAs are still criticized as they have insufficient

ability to solve highly constrained and multi-modal problems efficiently. There is no

guarantee of achieving the optimality, and the stability and efficiency of searches is low

in those problems (Takahama and Sakai, 2009).

Recently, many hybridized algorithms have appeared in the literature to enhance the

performance of EAs. Examples are memetic algorithms, where local search techniques

are incorporated with EAs, and agent-based EAs that incorporate intelligent agent

concepts with EAs.

Constrained optimization problems require efficient solution approaches for

supporting quality decision making (Sarimveis and Nikolakopoulos, 2005). So, the

main focus of this thesis is to design efficient algorithms and techniques to enhance the

performance of EAs in solving constrained optimization problems.

1.2 Motivation and Scope of Research

This section briefly discusses the scope of research in solving constrained

optimization problems in this thesis, and the motivation for carrying out this research.

The hurdles in solving constrained optimization problems arise from the challenge

of searching a huge variable space in order to locate feasible points with an acceptable

quality. It becomes even more challenging when the feasible space is very tiny

compared to the search space. Over the last few decades, evolutionary algorithms have

brought a tremendous advancement in the area of computer science and optimization,

with their ability to solve various complex optimization problems. However, EAs have

Chapter 1. Introduction

3

inherent difficulty in dealing with constraints while solving the COPs. In spite of the

presence of many different constraint handling techniques, EAs still suffer in solving

COPs as stated by Takahama and Sakai (2009):

“While research on constrained optimization using evolutionary algorithms

has been actively pursued, it has had to face the problem that the ability to

solve multi-modal problems is insufficient, that the ability to solve problems

with equality constraints is inadequate, and that the stability and efficiency

of searches is low.”

To improve the performance of EAs, different hybridizations of algorithms have

been introduced in recent times. Memetic Algorithms (MAs), a hybridized algorithm,

can be considered as a marriage between the population-based global search and the

heuristic-based Local Search (LS). The concept of MAs is inspired from the model of

adaptation in natural systems, where an individual of a population may be improved

through self learning along with the evolutionary adaptation of the population

(Krasnogor and Smith, 2005; Moscato, 1989). Initially MAs were applied in

combinatorial optimization problems (Alkan and Ozcan, 2003; Burke and Smith, 1999;

Cheng and Gen, 1996; Merz and Freisleben, 1997; Merz and Freisleben, 2000; Tang et

al., 2005) and subsequently in continuous search spaces (Guimaraes et al., 2006;

Knowles and Corne, 2000; Molina et al., 2005; Ong and Keane, 2004), and the

performances were splendid. One of the critical issues regarding the performance of

MAs is the selection of appropriate LS while hybridizing LS with Genetic Algorithms

(GAs). If the selection of LS is not appropriate for a particular problem then MAs may

not perform well; the performance may even be worse than GAs alone (Davis, 1991;

Hart, 1994; Ong and Keane, 2004). Many types of local searches are available in the

literature but it is very difficult to know which type is appropriate for a particular

problem.

Several intelligent hybridized algorithms, such as agent-based evolutionary

algorithms, have appeared in the literature recently, showing enhanced performance in

solving optimization problems like unconstrained global optimization problems (Zhong

et al., 2004), constraint satisfaction problems (Liu et al., 2006), and multi-objective

Chapter 1. Introduction

4

problems (Dobrowolski et al., 2001; Siwik and Kisiel-Dorohinicki, 2006). However,

good performance in solving constrained optimization problems with an agent-based

evolutionary algorithm, to the best of our knowledge, has not been achieved in the

literature. This motivates the design of an Agent-based Memetic Algorithm (AMA),

which mitigates the shortcomings of MAs and solves COPs efficiently.

The quality of individuals in the initial population influences the performance of

evolutionary algorithms, especially when the feasible region of the constrained

optimization problems is very tiny in comparison to the entire search space. To solve

problems with tiny feasible space, EAs usually take a long time to find even feasible

solutions. With good quality initial solutions, the search operators reach the feasible

region quickly and find better solutions. Some algorithms like GENOCOP

(Michalewicz, 1994; Michalewicz and Janikow, 1996) assume a feasible starting point

(or feasible initial population), which implies that the user or the EA must have a way of

generating (in a reasonable time) such a starting point. The homomorphous mapping

method of Koziel and Michalewicz (1999) also requires an initial feasible solution. As

the initial populations of EAs are randomly generated, they may not be good quality

solutions. Careful preprocessing, rather than providing manually a feasible solution, can

improve the initial solutions, which not only accelerates the convergence but also finds

better solutions. This encourages designing a search space reduction technique for

solving COPs with tiny feasible space, by improving the quality of randomly generated

initial solutions.

As mentioned above, the handling of equality constraints has long been a difficult

issue for evolutionary optimization methods. In any optimization problems with

equality constraints, each feasible solution point must lie on each and every equality

constraint. The feasible space of the problems with equality constraints becomes too

tiny in comparison to the whole search space, which makes it difficult to locate feasible

and optimal solutions. Many traditional EAs convert the equality constraints hj(X) = 0

into inequality constraints −δ ≤ hj(X) ≤ δ (where δ is a small tolerance value) to increase

the feasible space temporarily (Deb, 2000). Still EAs may fail to achieve either feasible

or good quality solutions in solving many COPs with equality constraints problems

Chapter 1. Introduction

5

(Joines and Houck, 1994; Koziel and Michalewicz, 1999; Mezura-Montes and Coello,

2002). This shows the necessity of an efficient technique to handle equality constraints.

In the majority of optimization problems, the usual objective is either maximizing

the profit /revenue or minimizing the cost. A small improvement in solutions for such

problems would save millions of dollars for a real world problem. This is possible if an

effective algorithm and techniques can be developed to solve the COPs efficiently. The

research topic considered in this thesis is independent of country or regional boundaries

as it can be applied to any real valued constrained optimization problems.

1.3 Objective of the Thesis

The main objective of this research is to develop an integrated evolutionary system

for solving constrained optimization problems efficiently. In the trail of the research, we

have divided the research objective into three sub-objectives, which are described below

along with the steps taken to achieve them.

Objective 1: Developing an efficient evolutionary algorithm for solving COPs.

The steps in achieving this objective are:

• Study the conventional optimization and other algorithms for solving COPs;

• Study the evolutionary algorithms and constraint handling techniques for

EAs in solving COPs;

• Develop a simple genetic algorithm to solve COPs and analyze its

performance;

• Study the prospects of MAS and Agent-based evolutionary algorithms;

• Develop an agent-based memetic algorithm for solving COPs and carry out

experimental study;

• Analyze the performance of AMA and compare it with others from the

literature; and

• Analyze the effect of different components used in AMA.

Chapter 1. Introduction

6

Objective 2: Designing a technique for population-based EAs to enhance

performance in solving COPs with tiny feasible region.

The steps have been completed to achieve this objective are:

• Study and analyze the objective landscapes and the feasible spaces for

different COPs;

• Analyze the performance of different EAs in solving COPs with tiny feasible

space;

• Design a search space reduction technique (SSRT) to improve the quality of

the randomly generated initial population;

• Test the performance of SSRT in solving test problems and real world

problems, with a variety of EA-based algorithms including AMA; and

• Analyze the results and set suitable parameters of the better performance of

SSRT.

Objective 3: Designing a new equality constraint handling technique.

To achieve this objective, the steps have been completed are:

• Analyze the performance of different EAs and identify the hurdles in solving

COPs involving equality constraints;

• Develop a new Equality Constraint Handling Technique (ECHT);

• Integrate the ECHT in AMA as a learning process of the agents;

• Investigate the performance of the extended AMA for solving COPs with

equality constrained problems;

• Analyze the results and effect of the new learning process;

• Design a modified genetic algorithm (MGA) with ECHT to overcome the

limitations of GA in solving COPs with equality constraints; and

• Analyze the performance of MGA and the effects of its different

components.

Chapter 1. Introduction

7

1.4 Contribution to Scientific Knowledge

This section summarizes the unique contributions made in this research. The

scientific contributions made in this research, lie in the area of genetic and agent-based

evolutionary algorithms for solving constrained optimization problems, as outlined

below:

• Agent-based memetic algorithm for solving COPs. This thesis introduces a

new agent-based memetic algorithm for solving constrained real-valued

optimization problems, by tailoring multi-agent concepts into a new memetic

algorithm. The rationale of designing the AMA architecture is discussed and

analyzed. The agent learning processes and other operators used in AMA are

discussed and their performances are analyzed. The proposed AMA architecture,

for solving constrained real-valued optimization problems, is new in the

literature. It is shown that the performance of the algorithm is very impressive in

terms of achieving the optimal solutions.

• Search space reduction technique for solving COPs with tiny feasible space.

This thesis presents a simple search space reduction technique for population-

based evolutionary algorithms in solving constrained optimization problems

with tiny feasible region. The idea behind the SSRT is analyzed, and its ability is

explored solving a set of benchmark problems. This approach usually improves

the performance of the algorithms, in terms of either solution quality or

computational time or both, when investigated with AMA, a simple genetic

algorithm, and three other existing well-known algorithms. Interestingly, the

method is more appreciable for large scale problems with tiny feasible space.

This concept of SSRT has not been observed in the literature.

• A new technique to handle equality constraints. A new technique to handle

equality constraints is proposed in this thesis. The mathematical basis of the

technique is discussed and its ability is explored; the use of the method as an

Chapter 1. Introduction

8

agent learning process is justified. The constraint handling techniques used here

do not need any penalty functions or additional parameters. It is shown that a

faster convergence and better solutions can be achieved with the new learning

process. The idea behind the methodology is undoubtedly new in the literature.

• A modified genetic algorithm for solving equality constrained optimization

problems. Finally, the ability of simple GA is enhanced by combining it with

the proposed equality constraint handling technique. It is shown that the

modified algorithm not only performs very well in terms of achieving optimal

solutions, but also is robust in handling of both linear and nonlinear equality and

inequality constraints.

1.5 Organization of the Thesis

This thesis has nine chapters and is organized as follows:

In chapter 1, an introduction to the thesis is presented. It first provides an overview

of the research field, followed by the motivation behind this research. It also presents

the objective of the thesis and a list of scientific contributions stemming from this

research work. The last section of the chapter presents the organization of the thesis.

Chapter 2 provides a background study and basic fundamentals of the topics

covered in this thesis. In the beginning, it provides a brief discussion on optimization

problems and their existing solution methodologies. Then the characteristics and

applications of genetic algorithms, multi-agent systems, and agent-based evolutionary

algorithms are presented.

In chapter 3, a simple genetic algorithm is implemented to investigate the

performance of GA in solving constrained optimization problems. A set of state-of-the-

art test problems is used to investigate and analyze the performance of the algorithm.

Chapter 4 begins with a brief discussion on agent-based evolutionary algorithms.

Then it presents a new agent-based memetic algorithm for solving COPs. The design of

Chapter 1. Introduction

9

the algorithm and details of the learning processes and other operators are also

discussed in this chapter.

Chapter 5 reports detailed experimental studies of the AMA presented in chapter 4.

It provides the results on a set of benchmark problems, compares the results with other

well-known algorithms, and investigates the effect on its performance of different

components of the algorithm.

In chapter 6, a simple method is presented that improves the quality of randomly

generated initial solutions, while sacrificing very little in diversity of the population, in

solving COPs with tiny feasible space. The performance of the proposed technique is

tested using five different EAs, by solving a number of state-of-the-art test problems

and a real world case problem.

A new equality constraint handling technique is presented in chapter 7 for solving

constrained optimization problems with equality constraints. The technique is used as

an agent learning process in AMA. This chapter also provides the details of

experimental study, to see the performance of AMA with ECHT on a set of well-known

benchmark problems, and to see the effect of the new learning process.

Chapter 8 presents a modified genetic algorithm that incorporates the ECHT

presented in chapter 7 with a revised genetic algorithm. The algorithm is tested on a set

of standard benchmark problems. Details of the effects of different components of the

algorithm, and its performance on the test problems, are also presented in this chapter.

In Chapter 9, the main findings from this thesis are summarized. The chapter

concludes the thesis with a discussion of possible future research directions.

Since this thesis discusses different spheres of research in solving COPs such as

GA, AMA, SSRT for COPs with tiny feasible space, equality constraint handling

technique, it can be presented to the readers in different ways. Figure 1.1 shows the

flow chart of this thesis for readers with different interests.

Chapter 1. Introduction

10

Figure 1.1: Flowchart of the thesis

Chapter 9
Conclusions and Future Research

Chapter 1
Introduction

Chapter 2
Background Study

Chapter 3
GAs in Solving COPs

Chapters 4 & 5
AMA for COPs

Chapter 6
COPs with Tiny Feasible Space

Chapter 7
Dealing with Equality Constraints

Chapter 8
ECHT with MGA

Chapter 2

Background Study

This chapter provides a background study and basic fundamentals of the topics

covered in this thesis. It starts with a brief discussion on optimization problems and

their existing solution methodologies. Then the characteristics and applications of

genetic algorithms, multi-agent systems, and agent-based evolutionary algorithms are

presented.

The next few chapters of this thesis shall provide the literature review specific to

those chapters.

2.1 Optimization Problems and their Classification

Many real world decision processes require solving optimization problems. The

problems that need to optimize (either maximize or minimize) an objective function of a

number of variables, subject to satisfying certain constraints, may be called

optimization problems. Optimization problems are of high importance in industry and

science. Solving optimization problems has become a challenging research topic in

computer science and operations research due to the physical, geometric, and other

limitations of different constraints (Liang and Suganthan, 2006).

Any function (either objective or constraint) in optimization problems can be a

function of a single variable or a set of variables, depending on the problem

characteristics. In general, the optimization problems can be represented as (without

loss of generality, minimization is considered here):

Chapter 2. Background Study

12

Minimize

f(X), X=[x1,x2,…,xn]

Subject to
 li≤ gi(X) ≤ ui, i = 1,2,…,p
 hj(X)=cj, j = 1,2,…,q (2.1)

 kkk xxx ≤≤ k = 1,2,…,n

Where X∈Rn is a set of n variables of the solution, f(X) is the objective function

which needs to satisfy p inequality constraints (gi(X) represents ith inequality constraint)

and q equality constraints (hj(X) represents jth equality constraint), kx and kx are the

upper bound and lower bound of the variable xk. Not all bounds on constraints (li≤ gi(X)

≤ ui,) may be present in a problem.

Optimization problems can be classified based on the objective functions,

constraints, and variables involved. The problem may contain either a single objective

function or multiple objective functions, and the objective type may be either

maximization or minimization. In case of multiple-objective problems, the objectives

usually contradict each other. If the objectives do not contradict then the multiple

objectives can be converted easily into a meaningful single objective problem (Sarker

and Newton, 2007).

Depending on the presence or absence of functional constraints, the optimization

problems can be defined as constrained or unconstrained. The variable bounds are

sometimes considered as constraints. The functional constraint types may be of equality

(=), or inequality (≤ and ≥), or a mix of both. Unconstrained optimization problems

arise not only from many practical applications, but also from the reformulation of

constrained optimization problems required by many optimization algorithms (Turban

and Meredith, 1994).

Depending on the nature of the problem, the variables in the model may be real or

integer or a mix of both. An optimization problem with integer or discrete variables is

termed a combinatorial problem. In combinatorial problems, the feasible space contains

either a finite or infinite set of solution points. The feasible set for continuous

Chapter 2. Background Study

13

optimization problems is usually infinite as the values of variables are real numbers.

This thesis considers only continuous optimization problems.

The objective or constraint functions may be either linear, nonlinear, or both. If all

the functions are linear in a given problem, it is called a linear optimization problem. If

one or more of the functions of the problem involve nonlinearity, it is called a nonlinear

programming / nonlinear optimization problem. Many problems in engineering, science,

and economics are nonlinear. The solution approaches of nonlinear problems are quite

different and more complex than those of linear problems (Sarker and Newton, 2007).

The objective and the constraint functions may have mathematical properties such

as convex or nonconvex, differential or nondifferential, and unimodal or multimodal,

static or dynamic. The constraints may be treated as either soft or hard constraints. The

concept of convexity is fundamental in classical optimization. Many traditional

optimization techniques are developed based on the assumption that the function is

convex, which generally makes them easier to solve both in theory and practice. The

solution approaches in optimization can be classified in to two groups based on the use

of derivatives. When using derivative-based techniques differentiability of the function

is necessary, that is closely related to the continuity of functions. When a function has

only one peak that is a global optimum solution, it is known as a unimodal function. On

the other hand a function with more than one peak is considered as a multimodal

function. If a function changes over time, it is known as a dynamic function. Hard

constraints must be satisfied in the final solution, whereas soft constraints can be

violated with a certain penalty or under certain conditions (Bazaraa et al., 1990; Hillier

and Lieberman, 2005).

The problems considered in this research are single objective constrained

optimization problems. However, this research is not restricted to any particular

function properties.

Chapter 2. Background Study

14

2.2 Applications of Optimization

We can see the applications of optimization everywhere. In fact, both humans and

nature optimize many systems of interests. A few examples of optimization are briefly

stated in this section.

 Manufacturers plan for maximum efficiency in the design and operation of their

production processes. Farmers try to minimize the production cost. Investors seek to

create portfolios that avoid excessive risk while achieving a high rate of return.

Engineers adjust parameters to optimize the performance of their designs. In nature the

molecules in an isolated chemical system react with each other until the total potential

energy of their electrons is minimized. Rays of light follow paths that minimize their

travel time (Nocedal and Wright, 2006). Even the population relocation in response to

climate change, considering people's preferences, various costs and planning priorities,

is also an optimization problem (Zahir et al., 2009).

Some applications of optimization problems are given below:

Production Systems: The production planning problem can be looked at as a

system of systems: forecasting, material handling, personnel, purchasing, quality

assurance, production, assembly, marketing, design, finance, and other appropriate

systems. The design is needed to optimize in such a way that it is easy to produce by

using snap-in fasteners; materials easy to form; financial planning provides appropriate

working capital; purchases arrive on time and have appropriate quality (Miranker and

Lofaso, 1991; Van der Duyn Schouten and Vanneste, 1995; Vatn et al., 1996).

Energy Systems: The oil industry was one of the first users of optimization

techniques to help manage their refinery operations (Méndez et al., 2006; Reddy et al.,

2004). Electrical and hydro-electric companies use optimization techniques

(Alyabysheva et al., 1975; Hanjie and Baldick, 2007) to determine how to efficiently

produce power as well as trade power among their partners.

Transportation: Real-time dispatching and delivery truck routing (Handa et al.,

Chapter 2. Background Study

15

2006), healthy package delivery, and international freight including the scheduling and

pricing of containers need optimization techniques to minimize cost and enhance

performance (Loannou, 2008; Pursula and Niittymäki, 2001).

Airline Optimization: The airline industry was one of the first to apply operations

research methods to commercial optimization problems. The combination of

advancements in computer hardware and software technologies with clever

mathematical algorithms and heuristics has dramatically transformed the ability of

operations researchers to solve large scale, sophisticated airline optimization problems

over the past 60 years (Snowdon and Paleologo, 2007). Revenue management and

pricing, airline network planning, crew scheduling, maintenance planning, spares

inventory management, and fuel management all need optimization (Jacobs et al., 2005;

Wu, 2006).

Project Management: Project management techniques continue to be a major

avenue to accomplishing goals and objectives by optimization (Zarka, 2005) in various

organizations ranging from government, business, and industry to academia (Badiru and

Pulat, 1994).

Military applications: Military applications use optimization techniques for

solving personnel force management, logistics, transportation, war gaming, strategic

planning, tactical planning, and many other (Soon, 2003; Weber et al., 2006; White,

1990).

Data mining: With the widespread emergence of very large databases, many

different organizations are finding vital help from professionals in extracting the

information they really want. The data mining methods, which are growing rapidly, give

superior solutions in diverse database-plumbing applications such as: predicting

purchasing behavior, segmenting customers, detecting fraud, assessing credit risk, and

anticipating customer attrition. Optimization is a powerful and effective tool for these

applications (Shi et al., 2008).

E-commerce: E-commerce offers opportunities in business-to-business and

Chapter 2. Background Study

16

consumer areas of online purchasing, vendor purchasing models, online auctions, and
supply procurement. In addition to sellers, bidders are looking for decision support on
how to bid intelligently. In all the cases, the optimization process is involved (Kuechler
et al., 2001).

Environmental applications: Pollution control (Qiong et al., 2007; Shih et al.,

1998), the design of systems to prevent shipping accidents, and population relocation in

response to climate change (Zahir et al., 2009) are optimization problems.

2.3 Solution Methodology

The solution approaches for optimization problems can be divided into two major

groups: (1) conventional optimization techniques and (2) modern heuristic techniques.

Here some popular techniques from both groups are discussed, however the main

emphasis will be given to some of the modern heuristic techniques.

2.3.1 Conventional Methods

In the conventional optimization domain, the solution approach for a given type of

model is determined by the problem classification e.g. linear programming for linear

optimization problems, Integer Programming (IP) when some or all of the decision

variables are restricted to integer or discrete values. Some conventional methods are

briefly discussed below:

Linear Programming (LP)

Most of the LP methods determine the feasible solution space from the model of the

problem and then the optimal point is identified within the feasible space. The

graphical method, simplex method and its variants, and the interior point method are

basically the most popular approaches to solve linear optimization problems.

The main purpose of the graphical method is to illustrate the concepts of acceptable

solutions and search boundary. The method has practical value when solving small

Chapter 2. Background Study

17

problems with two decision variables and only a few constraints (Turban and Meredith,

1994). The simplex method is an iterative process which moves from one vertex of the

feasible space to another, in each iteration, until it reaches the optimal solution. On the

other hand, the interior point algorithm moves through the feasible space towards the

optimal solution. The method usually obtains a near optimal solution. For large-scale LP

models, the interior point method is much more efficient but provides only an

approximate solution (Dantzig and Thapa, 2003).

Integer Programming (IP)

Integer programs are mathematical programming models (linear or nonlinear) where

some or all of the variables are assumed to be integer or discrete values. If all variables

take integer values, then the problem is called a pure IP. On the other hand, if both

integer and continuous variables coexist, the problem is called a mixed integer program

(MIP) or mixed integer linear program (MILP). It is well known that integer and mixed

-integer linear models are difficult to solve. This is due to the fact that the number of

alternative solutions increases much faster (usually exponentially) than the size of the

problem. That makes the large-scale integer program extremely difficult to solve using

the existing algorithms.

Integer programming can be considered as an extension of the general LP problem.

IP borrows many concepts and techniques from LP when developing solution

approaches. The common solution approaches for solving IP models are complete

enumeration, graphical method, rounding the non-integer solution, branch-and-bound,

cutting plane, and branch-and-cut method. The details of these methods can be found

in (Hillier and Lieberman, 2005; Nemhauser and Wolsey, 1999).

Goal Programming (GP)

The basic idea of goal programming is to establish a specific numeric goal for each

of the objectives, formulate a new objective function as the weighted sum of all

absolute deviations from the goals, and then seek a solution that minimizes the revised

objective function. There are three possible types of goals:

Chapter 2. Background Study

18

1. A lower, one-sided goal sets a lower limit.

2. An upper, one-sided goal sets an upper limit.

3. A two-sided goal sets a specific target that does not want to miss on either side.

Goal programming problems can be categorized as preemptive and non-preemptive.

In non-preemptive goal programming, all the goals are of roughly comparable

importance. In preemptive goal programming, there is a hierarchy of priority levels for

the goals, so that the goals of primary importance receive first priority attention, those

of secondary importance receive second-priority attention, and so on. The non-

preemptive goal programming can be solved using the simplex method since the

coefficients of the objective function are known numerical values. The preemptive goal

programming models are solved either by using a sequential or a streamlined method

(Hillier and Lieberman, 2005).

Nonlinear Programming (NLP)

Nonlinear optimization problems can be classified as unconstrained or constrained.

The constrained problems can be divided into linearly constrained, quadratic, convex,

non-convex, separable, geometric, and fractional programming. No one algorithm can

solve all classes of nonlinear models since each of the nonlinear models has its own

well defined set of characteristics (Bazaraa et al., 2006).

The unconstrained problem solving approaches are divided into single variable and

multivariable problems with and without using derivatives. The one-dimensional search

is the backbone of many algorithms for solving a nonlinear programming problem.

There are a number of line search procedures described in the literature, for solving

unconstrained problems of one variable, with or without using derivatives.

Multidimensional search can also be performed with or without using derivatives.

Examples of the multidimensional search without using derivatives are the cyclic

coordinate method, the method of Hooke and Jeeves, and Rosenbrock’s method.

Examples of multidimensional search using derivatives include the steepest decent

method and the method of Newton. For more details, see (Bertsekas, 1995).

Chapter 2. Background Study

19

The penalty function method is a well-known approach for solving constrained

nonlinear optimization problems. The approach converts the constrained problem into

an equivalent unconstrained problem and then solves the problem using a suitable

search algorithm. The constraints are placed into the objective function via a penalty

parameter in such a way that the parameter penalizes any violation of the constraints.

There are many other existing algorithms for solving nonlinear models such as barrier

function, gradient projection, reduced gradient, method of Zoutendijk, and the convex–

simplex method. For more details see (Bertsekas, 1995).

Multi-Objective Models

In multi-objective models, it requires making compromises or trade-offs regarding

the outcomes of alternate objectives, hence in this type of problem there exists no single

optimal solution, rather a set of alternative solutions. There are several methods

described in the literature that can be used when solving multi-objective optimization

problems such as weighting method (Gass and Saaty, 2006; Zadeh, 1963), ε-constraint

method (Haimes et al., 1971), goal attainment, lexicographic ordering (Miettinen,

2001), interactive surrogate worth trade-off method (Chen et al., 2002), Geoffrin–Dyer–

Feinberg method (Geoffrion et al., 1972), sequential proxy optimization techniques

(Sakawa, 1982), the Tchebycheff method (Steuer and Choo, 1983; Steuer, 1986),

reference point method (Wierzbicki, 1982; Wierzbicki and Granat, 1999), satisfying

trade-off method, light beam search and the reference direction approach. Further

details of these methods can be found in (Eiselt et al., 1987; Miettinen, 1999; Miettinen,

2001)

2.3.2 Heuristic Methods

In optimization problem solving, a heuristic is a rule-of-thumb approach that may

not guarantee convergence and optimality. However, in most cases, they work well and

produce solutions of acceptable quality. Developing solutions with these methods offers

two major advantages: 1) development time is much shorter than when using more

traditional approaches, and, 2) the systems are very robust, being relatively insensitive

Chapter 2. Background Study

20

to noisy and/or missing data.

The use of a heuristic approach in optimization is not new. However, in the past,

heuristics were developed based on the concept of either conventional optimization

techniques or traditional artificial intelligence techniques. Nowadays, heuristics are also

inspired by biology, physics, neuroscience, and other disciplines. The field of heuristics

is growing very rapidly. Some of the widely used heuristics are discussed briefly in this

section.

Hill Climbing

The main idea of Hill climbing is to continue the search process until the new

solution is better than the best solution found so far. It is the greediest heuristic yet

encountered. The algorithm is more likely to trap into a local optimum as it represents

pure search intensification without any chance for search exploration. So this search

process can be very sensitive in regard to the starting point (Russell and Norvig, 2003).

Simulated Annealing (SA)

Based on the “annealing” process in the statistical mechanics, simulated annealing

was introduced for solving complicated optimization problems. SA accepts a lower-

quality solution in an iteration with some probability depending on a parameter called

temperature. The algorithm behaves like a random search at high temperature (using a

higher probability) and like a greedy hill-climbing at low temperature (with a

probability close to zero) (Sait and Youssef, 2000). In the algorithm, a cooling schedule

with an initial temperature must be defined by the user, which is not an easy task. The

SA algorithm grows exponentially with respect to the size of the problem. Another

disadvantage of using the iterative improvement is that it may be trapped in local

optima. To avoid this disadvantage, simulated annealing accepts in a limited way

neighboring solutions with a cost that is worse than the cost of the current solution. The

details of the algorithm can be found in (Gonzalez, 2007; Kirkpatrick et al., 1983;

Ravindran, 2007; Van Laarhoven and Aarts, 1987).

Chapter 2. Background Study

21

Tabu Search (TS)

Tabu search is a meta-heuristic that guides a local heuristic search procedure to

explore the solution space beyond local optimality (Gendreau, 2003). Unlike the

conventional hill-climbing approach, TS may allow lower-quality solutions in any

intermediate iteration. TS also forbids reverse moves to avoid cycling. The forbidden

movements are recorded in a data structure called a tabu list. This adaptive memory

feature of TS allows the implementation of procedures that are capable of searching the

solution space economically and effectively. However, the performance of TS is

sensitive to the size of the tabu list in many practical applications. A comprehensive

examination of this methodology can be found in (Glover and Laguna, 1997).

Evolutionary Algorithms (EAs)

Evolutionary Algorithms have attracted increasing attention in recent years, as

powerful computational techniques for solving many complex real-world problems

(Sarker et al., 2003). EAs can be regarded as a metaphor for building, applying, and

studying algorithms based on Darwinian principles of natural selection. They are

inspired by nature’s capability to evolve living beings well adapted to their

environment.

Each EA starts with a randomly generated population of individual solutions.

Different EAs use different representations (e.g. lists, trees, graphs) for the individuals.

A good representation will make a problem easier to solve and a poor representation

will do the opposite. At every algorithm generation/iteration a number of reproduction

operators are applied to the individuals of the current population to generate the

individuals of the population for the next generation. Evolutionary algorithms might use

operators called recombination or crossover to recombine two or more individuals to

produce new individuals. They also might use mutation operators that cause a self-

adaptation of individuals. The main driving force in EAs is the selection of individuals

based on their fitness (it may be based on the objective function, the result of a

simulation experiment, or some other kind of quality measure). Individuals with higher

Chapter 2. Background Study

22

fitness have a higher probability to be chosen as members of the population of the next

generation (or as parents for the generation of new individuals). This corresponds to the

principle of survival of the fittest in natural evolution. It is the capability of nature to

adapt itself to a changing environment, which gave the inspiration for EAs.

There has been a variety of different EAs proposed over the years such as Evolution

strategies (ES), Evolutionary Programming (EP), genetic algorithms and genetic

programming. Each of these algorithms approximates the evolutionary processes in

different ways. GAs, the most well known branch of EAs, have been successfully used

for numerical optimization, combinatorial optimization, classifier systems, wire routing,

scheduling, transportation problem and many other engineering problems (Goldberg,

1989; Michalewicz, 1994). GAs will be discussed in the next section in more detail as

some of the research in this thesis is based on GAs.

Memetic Algorithms (MAs)

MAs are population-based meta-heuristic search algorithms, inspired by Neo–

Darwinian’s principles of natural evolution and Dawkins’ notion of a meme defined as a

unit of cultural evolution that is capable of performing individual learning (Ong et al.,

2009). It can be considered as a marriage between the population-based global search

and the heuristic-based local search. Any constructive heuristics may be combined with

a population-based algorithm (e.g. GAs) to develop a memetic algorithm. When a local

search is combined with GAs (usually known as genetic local search), the algorithm

provides a much better performance than GAs alone can do (Hasan et al., 2008). MAs

have been successfully applied across a wide range of problem domains such as

combinatorial optimization (Alkan and Ozcan, 2003; Burke and Smith, 1999; Cheng

and Gen, 1996; Merz and Freisleben, 1997; Merz and Freisleben, 2000; Tang et al.,

2005), optimization of non-stationary functions (Vavak et al., 1996), and multi-

objective optimization (Hu et al., 2003; Knowles and Corne, 2000; Knowles and Corne,

2001; Knowles and Corne, 2005). They converge to high quality solutions as well as

search more efficiently than their conventional counterparts (Tang et al., 2007). Some

theoretical and empirical investigations on MAs can be found in (Goldberg and

Chapter 2. Background Study

23

Voessner, 1999; Hart, 1994; Krasnogor, 2002; Krasnogor and Smith, 2005; Merz and

Freisleben, 1999; Ong and Keane, 2004; Ong et al., 2009; Tang et al., 2007).

Other Heuristics

There are a number of other heuristics such as immune system, ant colony

optimization, particle swarm optimization, cultural algorithms, and cooperative search.

A brief description of these algorithms can be found in (Coello et al., 2002; Gonzalez,

2007; Olariu and Zomaya, 2006).

2.4 Genetic Algorithms (GAs)

Genetic Algorithms are stochastic algorithms which simulate both the natural

inheritance by genetics and the Darwinian strive for survival (Darwin, 1859). Genetic

algorithms were developed by Holland (1975) and his students and colleagues at the

University of Michigan in the 1960s and the 1970s. Genetic algorithms were first

proposed as adaptive search algorithms, although they have mostly been used as a

global optimization algorithm for either combinatorial or numerical problems. GAs are

the most widespread variant of EAs (Gonzalez, 2007; Sarker et al., 2003). They start

with a randomly generated population (a set of solutions) and then move from one

population to another. This process continues until the stopping criteria are met. At each

iteration, a new population is generated applying various search operators. Details of the

operators are discussed later in this section.

GAs do not require any rich domain knowledge, so they are not difficult to

implement. Considerations of convexity/concavity and continuity of functions are not

necessary in GAs. However, these attributes of functions are real concerns in most

mathematical programming techniques. GAs strike a remarkable balance between

exploration and exploitation of the search space, and so are very useful for solving

multi-modal problems. This property also helps to improve the solution by skipping

Chapter 2. Background Study

24

from the local optima. The most favorable point of using GAs is that they provide quick

approximate solutions. GAs are more suitable for multi-objective optimization than

conventional optimization techniques, because of their capability of simultaneous

optimization of conflicting objective functions and generation of a number of

alternative solutions in a single run (Sarker et al., 2003). These advantages of GAs over

the conventional mathematical programming techniques justify the use of them in

solving optimization problems.

2.4.1 Basic Structure

It turns out that there is no rigorous definition of genetic algorithm accepted by all

in the evolutionary computation community that differentiates GAs from other

evolutionary computation methods (Melanie, 1998). However, most methods called

GAs have at least the following elements in common: populations of chromosomes,

selection process according to fitness, crossover to produce new offspring, and random

mutation of new offspring.

A genetic algorithm explores a number of potential solutions in parallel. It initially

creates a population randomly. A population is a set of individuals, each of which has its

own genetic content called chromosome. The chromosomes are strings of smaller units

termed genes. The different values a gene can take are called the alleles for that gene.

Binary Representation is the most used chromosomes representation, in which each

decision variable is represented with more than a gene, where each gene is a binary

digit, as shown in Figure 2.1. It needs coding and decoding to map between the

genotype and the phenotype if the decision variables are not binary. The structure of a

solution vector and representation in any optimization problem depends on the

underlying problem (Bäck et al., 2000). Since any arbitrary contiguous region in the

search space cannot be represented by this representation and the feasible search space

can usually be of any arbitrary shape, we can use Floating point representation (also

known as real-coded representation). The real-coded GAs overcome the difficulties of

Chapter 2. Background Study

25

achieving arbitrary precision in decision variables and the Hamming cliff problem

(Goldberg, 1989) associated with binary representation of real numbers (Deb, 2000). In

floating point representation the decision variables are directly represented in real

numbers in only one gene shown in Figure 2.2. This floating point representation is

used in this research. There are also combined representation, finite-state

representations, Parse trees, or other complex structures used for representation

depending on the problem (Bäck et al., 2000).

Variable 1x 2x 3x

Genotype 0 0 1 1 0 0 0 1 0
Phenotype 1 4 2

Figure 2.1: Binary representation of chromosome.

Variable 1x 2x 3x …… nx

 4.1 2.2 3.1 …… 2

Figure 2.2: Floating point representation of cromosome.

In the initial population creation process, the genetic contents of individuals (i.e.

chromosomes) are generally produced in a randomized fashion in order to assure

diversity in the initial population. Afterwards, in a loop of evolution, individuals and

their offspring are transferred to new generations, taking into consideration the quality

of their chromosomes, which is called fitness. A better fitness value gives to an

individual a better chance to be selected for survival or reproduction. The main feature

of GAs is the use of a recombination operator as the primary search tool (Olariu and

Zomaya, 2006). The motivation is the assumption that different parts of the optimal

solution can be independently discovered, and be later combined to create better

solutions. Moreover the mutation is also used, but it is considered as a secondary

background operator whose purpose is merely “keeping the pot boiling” by introducing

new information in the population (Olariu and Zomaya, 2006). An individual that exists

in the current generation may be selected directly, or it may be matched with another

individual and the resulting offspring may be transferred to the next generation. This

process continues until the termination condition has been reached. Common

Chapter 2. Background Study

26

terminating conditions are when an upper limit on the number of generations is reached,

an upper limit on the number of evaluations of the fitness function is reached, the

chance of achieving significant changes in the next generations is excessively low, or

allocated budget (computation time/money) is reached, etc (Michalewicz, 1994; Safe et

al., 2004).

A general framework of basic genetic algorithm can be summarized as follows:

Pseudo code: Genetic Algorithm.

(1) Set i = 0;

(2) Generate the initial population P(i) at random;

(3) REPEAT

(a) Evaluate the fitness of each individual in P(i);

(b) Select parents from P(i) based on their fitness;

(c) Apply reproduction operators (crossover and/or mutation) to the

 parents and produce generation P(i+1);

(4) UNTIL the terminating conditions is reached.

2.4.2 Operators and Parameters

As discussed earlier the simplest form of genetic algorithm involves three types of

genetic operators: selection, crossover, and mutation. These genetic operators are

performed on the chromosomes of the current generation to produce child generations

that become fitter in the simulated evolution process. The details of these operators are

given below:

Selection

The selection scheme determines the probability of an individual to survive or be

Chapter 2. Background Study

27

selected to reproduce offspring. This operator is designed to improve the average

quality of the population by giving individuals of higher fitness a higher probability to

be copied to or produce the new individuals in the child generation. The quality of an

individual in the current generation is measured by its fitness value through the

evaluation of the fitness function; therefore, the selection can focus on more promising

regions in the search space. A number of selection schemes, such as roulette wheel

selection (also known as the fitness proportional selection) and rank-based selection, as

well as tournament selection, have been popularly used in GA (Sarker et al., 2003). In

the first scheme individuals are chosen for selection in proportion to their fitness value.

In rank-based selection, the population is sorted from best to worst. The fitness assigned

to each individual depends only on its position in the ranking; the higher ranked

individuals are given higher probabilities to survive. As the name suggests, in

tournament selection a random number of individuals are chosen from the population

and the best individual from this group is chosen as a parent for reproduction (Elfeky et

al., 2008; Liu and Han, 2003; Sarker et al., 2003). The selection operation is a

successful artificial emulation of natural selection of the Darwinian survival theory.

Crossover

After the selection operation is completed and the mating pool is formed, the

crossover operator may proceed. Crossover is an operation to exchange part of the

genes in the chromosomes of two parents in the mating pool to create new individuals

for the child generation. It is believed to be the key search operator in the working of a

GA as an optimization tool (Goldberg, 1989). In binary representation, one-point, n-

point, uniform crossovers are commonly used. In floating point representation,

offspring can be generated with different types of crossover such as one-point crossover,

n-point crossover, arithmetic crossover (Michalewicz, 1994), geometric crossover

(Michalewicz, 1994), heuristic crossover (Wright, 1991), Simulated Binary Crossover

(SBX) (Deb and Agrawal, 1995), orthogonal crossover (Leung, 2001), simplex

crossover (Renders and Bersini, 1994), and Partially Mapped Crossover (PMX)

(Goldberg and R. Lingle, 1985). Some of these crossover operators are briefly discussed

Chapter 2. Background Study

28

below.

For one-point crossover, a crossover point k is randomly selected at which an

exchange of parent chromosomes is made. In this crossover, the solution vectors

 XX 21 , of two parent solution vectors, each of dimension n, are swapped after the k

point and produce XX /
2

/
1 , offspring as shown in Figure 2.3. This operator can be

extended to a two-point crossover in which two crossover points k1, k2 are selected at

random and the segments between these two points is exchanged between the parents as

shown in Figure 2.4.

Parent 1 X 1 1.1x 2.1x . . kx .1 1kx +.1 . . nx .1

Parent 2 X 2 1.2x 2.2x . . kx .2 1kx +.2 . . nx .2

Child 1 /
1X 1.2x 2.2x . . kx .2 1kx +.1 . . nx .1

Child 2 /
2X 1.1x 2.1x . . kx .1 1kx +.2 . . nx .2

Figure 2.3: One-point crossover.

Parent 1 X 1 1.1x 2.1x . . 1.1 kx
1.1 1 +kx . .

2.1 kx 1.1 2 +kx

. . nx .1

Parent 2 X 2 1.2x 2.2x . . kx .2
1.2 1 +kx

. .

2.2 kx 1.2 2 +kx

. . nx .2

Child 1 /
1X 1.1x 2.1x . . 1.1 kx 1.2 1 +kx

. .

2.2 kx 1.1 2 +kx

. . nx .1

Child 2 /
2X 1.2x 2.2x . . kx .2 1.1 1 +kx . .

2.1 kx 1.2 2 +kx

. . nx .2

Figure 2.4: Two-point crossover.

Crossover point k

Crossover point k1 Crossover point k2

Chapter 2. Background Study

29

Based on the search features of the single-point crossover used in binary-coded

genetic algorithms, the simulated binary crossover operator respects the interval

schemata processing, in the sense that common interval schemata of the parents are

preserved in the offspring (Deb and Agrawal, 1995). The spread of offspring solutions

around parent solutions can be controlled using a distribution index. With this operator

any arbitrary contiguous region can be searched, provided there is enough diversity

maintained among the feasible parent solutions (Deb, 2000). SBX operator performs

well in solving problems having multiple optimal solutions with a narrow global basin,

and has been used in different applications successfully (Deb, 2000; Deb, 2001; Deb

and Agrawal, 1995; Deb et al., 2002; Gupta and Deb, 2005; Srinivas and Deb, 1994;

Srinivasan and Rachmawati, 2006).

For handling multiple variables, each variable of the solution vector is chosen with a

probability 0.5 in this study and the following SBX operator is applied variable-by-

variable. The procedure of computing children solutions variable)(c
i

1x and)(c
i

2x from

two parent solution variable)(p
i

1x and)(p
i

2x is as follows:

)]()[(5.0)(p
i

)(p
i

)(p
i

)(p
i

)(c
i

12211 xxβxxx −−+= (2.2)

)]()[(5.0)(p
i

)(p
i

)(p
i

)(p
i

)(c
i

12212 xxβxxx −++= (.2.3)

where β is the ordinate of a probability distribution, which is chosen in such a way that

the area under the probability curve from 0 to β equals a random number u (0≤ u≤1).

⎪
⎩

⎪
⎨

⎧

−

≤
= +η

+η

,
u

u u
β

otherwise)
)1(2

1(

,5.0if)2(

)1/(1

)1/(1

c

c

 (2.4)

where cη is the distribution index for SBX and can take any nonnegative value. A

small value of cη allows solutions far away from parents to be created as children

solutions and a large value restricts only near parent solutions to be created as children

solutions. In all simulation, Deb (2000) have used cη =1. For details of this crossover

see (Deb and Agrawal, 1995).

Chapter 2. Background Study

30

Neighborhood Orthogonal Crossover operator was proposed by Leung (2001). The

orthogonal crossover operator acts on two parents and generates a set of new

individuals from the search space defined by the two parents. The search space is

quantized into a finite number of points, and then orthogonal design is applied to select

a small but representative sample of points as potential offspring. The main advantage

of this crossover is that the orthogonal array can specify a small number of uniformly

scattered individuals over the search space. Then the best individuals among them can

be considered as the new offspring.

Consider the parents Ai,j=[a1,a2,…an] and Bi,j= [b1,b2,…,bn] where the search space is

[ABAB xx ,] and),(iiAB ba minx = , n.i),b,max(ax iiAB ,...,2,1for ==

Each domain value [ABAB xx ,] is quantized into Q levels such that the successive levels

are equally distant. The domain of each ith dimension is quantized to Qiii ,2,1, ,...,, βββ

where

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

−≤≤
−

−
−+

=

=

Qj b,amax

Qj2
Q

ba
jb,amin

j b,amin

β

ii

ii
ii

ii

ji,

)(

1)
1

).(1()(

1)(

 (2.5)

For simplicity the n variables Ai,j=[a1,a2,…an] are divided into F groups and each group
is considered as one factor. Each factor is quantized and produces

),....,(),...,,....,(),,....,(11211 1211 FF kkFkkk aafaafaaf ++ −
=== .

Here 121 ,...,, −Fkkk are random numbers such that nkkk F <<<< −121 ...1 .

After quantization, Q levels of ith factors are:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=
=

++

++

++

−−

−−

−−

),...,,()(

),...,,()2(
),...,,()1(

,,2,1

2,2,22,1

1,1,21,1

11

11

11

QkQkQki

kkki

kkki

iii

iii

iii

Qf

f
f

βββ

βββ
βββ

 (2.6)

The orthogonal array FMji
F

M bQL ×=
22

][)(, is then applied to generate the following

M2 offspring:

Chapter 2. Background Study

31

⎪
⎪
⎩

⎪
⎪
⎨

⎧

)(),...,(),(

)(),...,(),(
)(),...,(),(

,2,21,1

,22,221,21

,12,121,11

222 FMFMM

FF

FF

bfbfbf

bfbfbf
bfbfbf

 (2.7)

The orthogonal of)2(3

4L and)3(4
9L are as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
2
2
1

2
1
2
1

2
2
1
1

)2(3
4L

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
3
2
2
1
3
3
2
1

2
1
3
1
3
2
3
2
1

3
2
1
3
2
1
3
2
1

3
3
3
2
2
2
1
1
1

)3(4
9L (2.8)

The details of the crossover is discussed in (Leung, 2001).

Mutation

The mutation operator is designed so that one or more of the chromosome’s genes

will be mutated at a small probability. The goal of the mutation operator is to prevent

the genetic population from converging to a local minimum and to introduce a bit more

diversity to the population. Without this operator, the population would rapidly become

uniform under the so-called conjugated effect of selection and crossover operator (Liu

et al., 2002a). There are a number of mutation methods such as bit-flipping (for binary

representation), uniform mutation, non-uniform mutation, gaussian mutation,

parameter-based mutation and cauchy mutation. Details of mutation can be found in

(Bäck et al., 2000; Liu and Han, 2003).

Here we shall discuss the parameter-based mutation operator (Deb, 2000; Deb and

Goyal, 1996) in brief. Parameter-based mutation operator is applied for exploring the

vicinity of a parent solution, in which the variable ix is mutated to '
ix (where lower and

upper boundaries are not specified) as below:

Chapter 2. Background Study

32

'
ix = maxi δ x Δ+ (2.9)

where maxΔ is the maximum permissible perturbance to ix allowed in the parent

solution and δ is the perturbance factor, which can be calculated for a random number u

(0≤ u≤1)

⎪⎩

⎪
⎨
⎧

−−

≤
=

+η

+η

, u
u -u

δ
otherwise))1(2(1

,5.0if1)2(
)1/(1

)1/(1

m

m

 (2.10)

where mη is the distribution index for mutation and takes any nonnegative value.

For variables where lower and upper boundaries (ix and ix) are specified, the

above equation may be changed as follows:

⎪⎩

⎪
⎨
⎧

−+−−

≤−−−+
=

+η+η

+η+η

, δ0.5-uu
u δuu

δ
otherwise})1)((2)1(2{1

,5.0if1})1()21(2{
)1/(11

)1/(11

mm

mm

 (2.11)

where δ =min[(ii xx −),(ii xx −)/(ii xx −)].

Genetic Parameters

The parameters usually used in genetic algorithms are the population size,

generation number, probability of crossover, and probability of mutation. Population

size represents the total number of individuals in the population of the GAs. The

maximum number of generations the GAs will execute is indicated by the generation

number. The proportion of parents undergoing crossover and mutation in a generation

are controlled by the probability of crossover (PC) and probability of mutation (PM)

respectively.

2.4.3 Handling Constraints in GA

Although GAs perform well for unconstrained or simple Constrained Optimization

Problems (COPs), they may face difficulties when applied to solving highly constrained

Chapter 2. Background Study

33

problems since the initial version of GAs are designed as unconstrained optimization

procedures. The traditional search operators of GAs (i.e., crossover and mutation) are

blind to constraints. In such a circumstance, it is very likely that the candidate solutions

generated by these operators during the search process would violate certain constraints

(Chootinan and Chen, 2006). Hence constraint handling is one of the major concerns

when applying GAs to solve constrained optimization problems. The main challenge in

constrained optimization is to find the feasible as well as the optimal solution. Over the

past decade various constraint-handling techniques using genetic algorithms have been

proposed. According to Coello (2002) these techniques can be grouped as follows:

• Penalty functions,

• Special representations and operators,

• Repair algorithms,

• Separation of objectives and constraints, and

• Hybrid methods.

Penalty functions were popularly used in the conventional methods for constrained

optimization and were amongst the first methods used to handle constraints with

evolutionary algorithms (Coello, 2002; Fletcher, 1990). The principal idea of this kind

of method is to redefine or reformulate the constrained optimization problem as an

unconstrained one, by introducing a penalty term into the original objective function to

penalize constraint violations. The individuals are penalized in different ways based on

the constraint violations. In the static penalty method (Homaifar et al., 1994; Morales

and Quezada, 1998), the penalty term added to the objective function increases with the

degree of constraint violation. In the dynamic penalty approach (Joines and Houck,

1994), the penalty term increases with both the degree of constraint violation and

generation number. The greatest penalty that can be imposed on an infeasible solution is

applied in the death penalty method (Hoffmeister and Sprave, 1996) i.e. the infeasible

solutions are not considered for selection for the next generation. The idea of simulated

annealing (Kirkpatrick et al., 1983) is used in annealing penalty methods (Carlson and

Shonkwiler, 1998; Michalewicz, 1995; Michalewicz and Attia, 1994). When the

Chapter 2. Background Study

34

algorithm is trapped in a local optimum the penalty coefficients are changed. In the co-

evolutionary penalty method (Coello, 2000c) the penalty is split into two values to

provide enough information about how many constraints are violated and the

corresponding amounts of violation. Adaptive penalty methods (Bean and Hadj-

Alouane, 1993; Ben Hadj-Alouane and Bean, 1997; Coit et al., 1996; Crossley and

Williams, 1997; Eiben and Hauw, 1998; Farmani and Wright, 2003; Rasheed, 1998) can

make use of information obtained during the search to adjust their own parameters. Due

to their simplicity and ease of implementation penalty methods were the most common

methods used in solving real world problems (Farmani and Wright, 2003). However

most of the methods require a careful fine-tuning of parameters to obtain competitive

results. They also lack generality and are usually only fit for optimization problems with

certain constraint types (Cai and Wang, 2006; Coello, 2002).

Some researchers change the representation to simplify the shape of the search

space and have developed special operators to preserve the feasibility of solutions at all

times. The main application of this approach is naturally in problems in which it is very

difficult to locate at least a single feasible solution (Coello, 2002). For example,

Davidor (1991) introduced a varying-length genetic algorithm to generate robot

trajectories, and defined a special crossover operator called analogous crossover, which

uses phenotypic similarities to define crossover points in the parent strings. The

GENOCOP proposed by Michalewicz (1994) and Michalewicz and Janikow (1996) is

based on designing specialized operators that incorporate knowledge of the constraints.

This method uses projection operators that map feasible points back to feasible

boundaries. GENOCOP tries to locate an initial (feasible) solution by sampling the

feasible region. If it does not succeed after a certain number of trials, the user is asked

to provide such a starting point. GENOCOP works efficiently for problems with linear

constraints (Michalewicz, 1994). GENOCOP II enhanced the performance and was

able to solve general nonlinear programming problems (Michalewicz and Attia, 1994).

In the Decoder method, the chromosome does not directly encode a solution in the

feasible region but rather “gives instructions” on how to build a feasible solution. Each

decoder imposes a relationship between a feasible solution and a decoded solution

Chapter 2. Background Study

35

(Dasgupta and Michalewicz, 1997). The homomorphous mapping approach (Koziel and

Michalewicz, 1999) converts constrained problems into unconstrained optimization

problems by using a mapping between an n-dimensional cube and the feasible space of

the given problem. However, the implementation of this method is very difficult

especially for nonconvex feasible search spaces. It requires initial feasible solutions

which are difficult to find for most complex problems.

The repair algorithms attempt to improve infeasible solutions to feasible by taking

advantage of the problem’s characteristics (Chootinan and Chen, 2006; Jing et al., 1996;

Jing et al., 1997; Michalewicz and Nazhiyath, 1995). The repair method might be very

effective if the relationship between decision variables and constraints could be easily

characterized. Developing a repair procedure is usually problem-dependent and so prior

knowledge of the problem is required in order to design an efficient repair procedure.

However, the characteristics of the solution space for real-world problems are often

unknown. Sometimes repairing infeasible solutions can be as complex as solving the

original problem hence it is also time-consuming when the problem is involved with

complex constraints (Chootinan and Chen, 2006; Coello, 2002).

Some approaches such as Superiority of feasible points methods (Deb, 2000; Powell

and Skolnick, 1993) and Multi-objective optimization techniques (Cai and Wang, 2006;

Coello, 2000a; Surry and Radcliffe, 1997) handle constraints and objectives separately.

Deb (2000) suggested a modification of Powell and Skolnick (1993) that requires no

penalty parameters. This method uses a tournament selection operator, where two

individual solutions are compared at a time using the following criteria:

• A feasible individual is always better than an infeasible individual.

• If both of the individuals are feasible, then the individual with lower

objective function value is better (considering minimization problem).

• If both of them are infeasible, then the one with less constraint violation is

better. The total constraint violation (CV) of an individual is considered here

as the sum of absolute values by which the constraints are violated.

Chapter 2. Background Study

36

The results of Deb (2000) are very encouraging. However the main drawback of this

scheme is that it is hard to maintain a reasonable proportion of infeasible and feasible

solutions in the population, and the use of niching methods (Deb and Goldberg, 1989)

combined with higher than usual mutation rates is apparently necessary to avoid

stagnation (Cai and Wang, 2006; Coello, 2002).

Runarsson and Yao (2000) introduced a stochastic ranking method in their

evolutionary strategy-based algorithm in which the fitness of each individual is

determined through a stochastic ranking process. The ranking is achieved through a

stochastic version of bubble sort, in which the individuals are compared only to the

adjacent neighborhoods. The comparison is based on either the objective function or the

constraint violation, randomly determined by a user-specified probability parameter Pf.

Although the method proved to be effective in solving a wide range of constrained

optimization problems, it is also sensitive to the choice of probability parameter.

The Multi-objective algorithms (Cai and Wang, 2006; Coello, 2000a; Surry and

Radcliffe, 1997) have been used in the solution of constrained single objective

optimization problems, by treating the constraint violations as additional objectives.

Generally the constraint violations and the objective function are optimized using multi-

objective optimization methods. That means single-objective constrained optimization

of f(X) is redefined as a multi-objective optimization problem in which we will have

(m+1) objectives, where m is the total number of constraints. Then they apply any

multi-objective optimization technique to solve. Although the idea of handling

constraints through multi-objective optimization is very attractive, the approach appears

less robust than for constrained single objective algorithms (Farmani and Wright, 2003).

Finding the feasible solutions using the multi-objective technique is difficult since most

of the time is spent on searching infeasible regions (Runarsson and Xin, 2005). For

highly constrained problems, simply considering constraints as objectives might not

introduce enough pressure to direct the search toward the region of the optimum

(Farmani and Wright, 2003).

Different hybridization of algorithms has been introduced in recent times. Kim and
Myung (1997) presented a two-phase evolutionary programming method. An

Chapter 2. Background Study

37

evolutionary algorithm is used to optimize the function in the first phase. In the second
phase, Lagrange multipliers are used to place emphasis on the violated constraints
whenever the best solution does not fulfill the constraints.

2.5 Multi-agent Systems (MAS)

In the last decade, Agents and multi-agent systems open a new era of analyzing,

designing, and implementing complex systems. The technologies, methods, and theories

of agent and multi-agent systems are currently contributing to many diverse domains

including information retrieval, user interface design, robotics, electronic commerce,

computer mediated collaboration, computer games, education and training, smart

environments, ubiquitous computers, and social simulation (Zhang and Zhang, 2004).

Multi-agent systems are composed of multiple interacting autonomous computing

elements, known as agents. According to Wooldridge and Jennings (1995) an agent is a

computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives. Nicholas

(2001) elaborated this definition as: agents are clearly identifiable problem-solving

entities with well-defined boundaries and interfaces; situated (embedded) in a particular

environment over which they have partial control and observability—they receive

inputs related to the state of their environment through sensors and they act on the

environment through effectors; designed to fulfill a specific role—they have particular

objectives to achieve; autonomous—they have control both over their internal state and

over their own behavior; capable of exhibiting flexible problem-solving behavior in

pursuit of their design objectives—being both reactive (able to respond in a timely

fashion to changes that occur in their environment) and proactive.

 In MAS, each agent has incomplete information or capabilities for solving the

problem, thus each agent has a limited viewpoint, and there is no global system control.

The data is decentralized and the agents are connected thorough different schemes,

usually following mesh and hierarchical structures (Oprea, 2004). Multi-agent systems

are ideally suited to representing problems that have multiple problem solving methods,

Chapter 2. Background Study

38

multiple perspectives and/or multiple problem solving entities. Such systems have the

traditional advantages of distributed and concurrent problem solving, but have the

additional advantage of sophisticated patterns of interactions (Jennings et al., 1998).

Nicholas (2001) has defined the canonical view of a multi-agent system shown in

Figure 2.5. In the canonical view of a multi-agent system, it can be seen that adopting

an agent-oriented approach to software engineering means decomposing the problem

into multiple, autonomous components that can act and interact in flexible ways to

achieve their set objectives. The key abstraction models that define the agent-oriented

mind-set are agents, interactions, and organizations. Finally, explicit structures and

mechanisms are often used to describe and manage the complex and changing web of

organizational relationships that exist between the agents.

Figure 2.5: Canonical view of a Multi-agent system

2.5.1 Characteristics of Multi-agent Systems

The main characteristics of a multi-agent system (Vlassis, 2007) that distinguish it

from other systems are given below:

Agent design: The agents involved in MAS can be heterogeneous where the design

differences of agents may involve the hardware or the software. The agents can be

homogeneous which are designed in an identical way and have a priori the same

Environment
Sphere of visibility and
influence

Organization
relationship

Interaction

agent

Chapter 2. Background Study

39

capabilities. Agent heterogeneity can affect all functional aspects of an agent from

perception to decision making, while in single-agent systems the issue is simply

nonexistent.

Environment: The agents may need to face a static (time invariant) or dynamic

(nonstationary) environment.

Control: There is no central control or process that collects information from each

agent and then decides what action each agent should take. The decision making of each

agent lies to a large extent within the agent itself.

Knowledge: In MAS, the levels of knowledge of each agent about the current world

state can differ substantially. Each agent must consider the knowledge of each other

agent in its decision making.

Communication: Agents may need to communicate with each other in several

cases, for instance, for coordination among cooperative agents or for negotiation among

self-interested agents.

2.5.2 Advantages of MAS

MAS involves a set of autonomous agents working together to solve problems that

are beyond the capabilities of individual agents. Some of the advantages of using MAS

technology in large software systems are (Sycara, 1998):

• Computational efficiency due to the concurrency of computation.

• Reliability, as the whole system can undergo a ‘graceful degradation’ when
one or more agents fail.

• Extensibility, as the number and the capabilities of agents working on a
problem can be altered.

• Robustness, the system’s ability to tolerate uncertainty, because suitable
information is exchanged among agents.

• Maintainability, it is easier to develop and maintain modular software than a
monolithic one, MAS ensures easy development and reusability

Chapter 2. Background Study

40

2.6 Agent-based Evolutionary Algorithms (AEAs)

With the development of modern technologies, it creates demand for automated

systems that solve more complex problems utilizing information from different sources.

Recently different computational intelligence techniques such as evolutionary

algorithms, fuzzy logic, neural networks are incorporated into agents to solve these

complex problems. An agent-based evolutionary system is such a computationally

intelligent system that may be considered as an extension to classical evolutionary

algorithms.

The key idea of AEA is to incorporate the Evolutionary algorithms and MAS to

exploit their combined strength. There exist different approaches to incorporate them.

The first approach is the incorporation of evolutionary processes into a multi-agent

system (MAS) at a population level (Kisiel-Dorohinicki, 2002). This approach is

basically a population based evolutionary algorithm (EA), for solving complex decision

problems, where the individuals of the population are defined as agents (Siwik and

Kisiel-Dorohinicki, 2006; Zhong et al., 2004). The evolutionary process realized in the

multi-agent systems presents new possibilities such as: agents can act independently

and in consequence social relations in agents’ population may be developed. The

evolution process is decentralized and is performed with no common cadence.

Perception of the environment by agents and social relations enable rivalry and

competition among agents that assure decentralized process of agents’ selection. With

the incorporation of evolutionary concept, besides interaction mechanisms typical for

MAS, agents are able to reproduce new offspring and die (eliminated from the system).

A decisive factor of an agent’s activity is its fitness, expressed by amount of possessed

non-renewable resource called life energy. The Selection process is realized in such a

way that agents with high energy are more likely to reproduce, while low energy

increases possibility of death. Some AEA architecture designs have been proposed by

Kisiel-Dorohinicki (2002) and Byrski and Schaefer (2009). There are also several

algorithms (Alkemade et al., 2005; Chira et al., 2008; Dobrowolski et al., 2001; Siwik

and Kisiel-Dorohinicki, 2006; Zhong et al., 2004) based on this concept.

Chapter 2. Background Study

41

In the second type of agent-based evolutionary algorithms, the MAS incorporates an

evolutionary algorithm as a search technique to improve certain functionality of some

selected agents or the entire system. For example, a MAS may contain different types of

agents, and one or more types of these agents deal with some optimization tasks (Choi

et al., 2001; Liu and Frazer, 2002; Meng et al., 2007). More applications of this type of

AEA are discussed in section 2.7.3.

2.7 Application of Intelligent Systems

So far some well-known intelligent techniques have been briefly discussed. This

section will provide an idea about the application areas of three intelligent systems;

GAs, MAS and AEA.

2.7.1 Application Areas of GAs

EAs, particularly GAs, have received a lot of attention regarding their potential as

optimization techniques for complex numerical functions (Michalewicz, 1995). GAs

have been successfully applied in solving different types of problems. Some of the

noteworthy areas to which GAs have been put are discussed below.

2.7.1.1 General Optimization

Traveling Salesman Problem: The Traveling Salesman Problem (TSP) is one of

the most important and well known combinatorial optimization problems, since it is

simple to state but difficult to solve (Hung Dinh et al., 2007). GAs have been applied to

the TSP due to their global ability for problems with huge search spaces. The earliest

attempts at applying GAs to the TSP are pure GAs such as (Goldberg and R. Lingle,

1985; Grefenstette et al., 1985; Whitley et al., 1991). Hybrid GAs have extended its

performance to successfully solve large scale TSP problems (Helsgaun, 2000; Merz and

Chapter 2. Background Study

42

Freisleben, 1997; Merz and Freisleben, 2001).

Routing: The Vehicle Routing Problem (VRP) becomes more important with the

development of modern logistics (Yueqin et al., 2007). A typical vehicle routing

problem involves simultaneously determining the routes for several vehicles from a

central supply depot to a number of destinations (customers) and returning to the depot,

without exceeding the capacity constraints of each vehicle. Applications of genetic

algorithms to VRPs incorporating time windows have been reported by Thangiah et al.

(1991), Potvin and Bengio (1996), and Thangiah (1995). Applications of GAs have also

been reported for multi-depot routing problem (Ombuki-Berman and Hanshar, 2009;

Thangiah and Salhi, 2001), for Dynamic vehicle routing (Hanshar and Ombuki-Berman,

2007) and a school bus routing problem (Thangiah and Nygard, 1992). Some hybrid

approaches to vehicle routing using GAs have also been reported by (Jeon et al., 2007;

Potvin et al., 1996).

Telecommunications networks: Telecommunications networks are interconnected

by routers. Each router has a routing table, which specifies the next node in a route to a

specified destination according to a routing path. The routing tables are produced by

routing algorithms. The objective is to maximize the network utilization, and minimize

the transmission delay and data loss. Other objectives required by the networks may be

reliability, cost, and traffic load balancing in the network. This is an NP-hard

optimization problem (He and Mort, 2000). Over recent years, several researchers have

applied genetic algorithms to telecommunications routing problems. Pioneering papers

using GAs include Cox et al. (1991), Davis et al. (1993), and Pan and Wang (1991).

Recently different types of GAs (Bentall et al., 1997) (for heavily loaded networks)

including hybrid GAs (He and Mort, 2000; Sinclair, 1999) are also used in this area.

Job-shop Scheduling Problem: The Job-shop scheduling problem (JSP) is an

extremely hard problem because it requires very large combinatorial search space and

the precedence constraint between machines. This is an NP-hard optimization problem

with multiple criteria: factors such as cost, tardiness, and throughput must all be taken

into account, and job schedules may have to be rearranged on the fly due to machine

Chapter 2. Background Study

43

breakdowns, employee absences, delays in delivery of parts, and other complications,

making robustness in a schedule an important consideration. GAs as presented in

Chryssolouris and Subramaniam (2001), Ferrolho et al. (2007), Gen et al. (1994),

Jensen (2003), and Lae-Jeoung and Cheol Hoon (1995) have successfully solved JSPs.

Timetabling Problem: The timetabling problem consists of allocating a number of

events to a finite number of time slots (or periods) such that the necessary constraints

are satisfied (Burke and Newall, 1999). The timetable problem in general is known to

be NP-complete, meaning that no method is known to find a guaranteed-optimal

solution in a reasonable amount of time (Burke et al., 1995). Variants on genetic

algorithms have appeared in the literature for timetabling problems (Burke and Newall,

1999; Burke et al., 1996; Corne et al., 1994; Paechter et al., 1995).

2.7.1.2 Robotics

In recent years genetic algorithms have been applied to robot path and motion

planning problems. Tian and Collins (2004) proposed a novel trajectory planning

method for a robot manipulator whose workspace includes several obstacles. To

generate the robot’s trajectory Tian and Collins (2004) developed a genetic algorithm to

search for valid and optimal solutions to the trajectory in task space. Yano and Toyoda

(1999) applied a genetic algorithm to solve the position and movement of an end-

effector on the tip of a two-joint robot arm. Shintaku (1999) developed a simple method

based on a genetic algorithm, where a polynomial approximates time histories of the

trajectory in joint space. Pack et al. (1996) developed a method to search for valid

solutions in configuration space based on a genetic algorithm. Davidor (1991) as well

showed how to apply genetic algorithm techniques to the task of planning the path

which a robot arm is to take in moving from one point to another.

Chapter 2. Background Study

44

2.7.1.3 Aerospace Engineering

 In the field of aeronautical engineering, a series of studies for aerodynamic design

with genetic algorithms have been carried out. In the aerodynamic wing optimization

problem, the objectives are to minimize aerodynamic drag at supersonic cruising

speeds, minimize drag at subsonic speeds, and minimize aerodynamic load (the bending

force on the wing) (Obayashi and Sasaki, 2004). These objectives are mutually

exclusive, and optimizing them all simultaneously requires tradeoffs to be made.

Several multi-objective GAs have been applied to the aerodynamic wing optimization

problem (Obayashi and Sasaki, 2004; Obayashi et al., 2000; Sasaki et al., 2001).

Genetic Algorithms have successfully generated low-earth orbit sparse coverage

satellite constellations that appear to outperform traditionally developed constellations

(Williams et al., 2001). The objective of these constellations is to minimize the

maximum revisit time over a latitude band of interest. Williams et al. (2001) applied a

multi-objective genetic algorithm to the task of spacing satellite orbits to minimize

coverage blackout. Deb et al. (2007) also presented the development of a multi-

objective optimization software (GOSpel) for finding optimal interplanetary trajectories

between any two planets for a dual minimization of travel time and launch velocity

which is directly related to the fuel consumption.

2.7.1.4 Economics and Finance

 The areas of economics and finance, with special reference to predictability issues

related to stock and foreign exchange markets, seem to attract increasing interest during

the last few years (Andreou et al., 2002). More and more traders now rely on genetic

algorithms, neural networks, chaos theory, and other computerized decision-making

approaches to help them develop winning investment strategies (Richard, 1994).

Mahfoud and Mani (1996) presented a genetic algorithm based system and applied it to

the task of predicting the future performances of individual stocks. Andreou et al.

(2002) has presented a new hybrid algorithm based on a GA for the evolution of the

architecture of Multi-Layered Perceptron neural networks and a localized version of the

Chapter 2. Background Study

45

Extended Kalman Filter for the training. The application of this algorithm on the task of

exchange rate forecasting of different currencies was very positive and encouraging.

Another important research issues in finance is building effective corporate bankruptcy

prediction models, because they are essential for the risk management of financial

institutions. Ahn and Kim (2009) proposed a GA based approach to enhance the

prediction performance of case-based-reasoning for the prediction of corporate

bankruptcies.

2.7.1.5 Electrical Engineering and Circuit Design

 Efforts using techniques from evolutionary computation (specially GAs) for

different analog circuit design automation have appeared over the last few years (Xing

et al., 2005). Genetic algorithms have been successfully applied to select filter

component sizes (Horrocks and Khalifa, 1994), to select filter topologies (Grimbleby,

1995), to design operational amplifiers using a small set of topologies (Kruiskamp,

1996), and to automatically generate circuit designs (Lohn and Colombano, 1999).

Genetic algorithms have also been used to evolve antennas with pre-specified

properties, including wire antennas (Kuwahara, 2005; Linden, 1997), patch antennas

(Villegas et al., 2004), and antenna arrays (Buckley, 1996).

2.7.1.6 Pattern Recognition and Data Mining

The use of GA for pattern recognition has been widely studied (Man et al., 1996).

Smith and Gemperline (2000) have designed a wavelength selection and optimization of

pattern recognition methods using a genetic algorithm. Forrest et al. (1993) presented an

immune system model based on genetic algorithms to study the pattern-recognition

processes and learning that take place at both the individual and species levels in the

immune system. Roth and Levine (1992) applied GA, based on a minimal subset

representation, to perform primitive extraction from geometric sensor data. Tsang

(1995) proposed a GA based technique for matching images of object shapes that have

Chapter 2. Background Study

46

been subject to affine transformation caused by variations in the camera position. A

Faceprint system was designed in New Mexico State University (Caldwell and

Johnston, 1991) for reproducing the feature of a suspected criminal’s face. A genetic

algorithm is used to generate binary reference functions for optical pattern recognition

and classification by (Mahlab et al., 1991). Hybrid evolutionary learning algorithms

have also been designed to synthesize a complete multiclass pattern recognition system.

For example, Rizki et al. (2002) designed a Hybrid Evolutionary Learning for Pattern

Recognition (HELPR) that blends elements of evolutionary programming, genetic

programming, and genetic algorithms to perform a search for an effective set of feature

detectors.

Li et al. (2007) proposed a data mining genetic algorithm, to mine the association

rules from an image database. Tzung-Pei et al. (2008) introduced a genetic algorithm

based framework for finding membership functions suitable for data mining problems.

2.7.2 Application Areas of MAS

Agent-based systems have been applied in solving a wide variety of problems.

Major applications of agent-based systems are as follows: manufacturing, process

control, telecommunication systems, air traffic control, traffic and transportation

management, information filtering and gathering, electronic commerce, business

process management, entertainment and medical care (Jennings et al., 1998). A brief

description of these areas are given below, for a comprehensive review in all of these

areas see (Chaib-draa, 1995; Jennings et al., 1998; Jennings and Wooldridge, 1998;

Parunak, 1999).

Manufacturing: MAS have been applied in different areas of manufacturing,

namely manufacturing control (Parunak, 1999), configuration design of manufacturing

products (Darr and Birmingham, 1994), collaborative design (Cutkosky et al., 1993),

scheduling and controlling manufacturing operations (Oliveira et al., 1997; Sprumont

and P.Muller, 1997), controlling a manufacturing robot (Overgaard et al., 1996), and

determining production sequences for a factory (Wooldridge et al., 1996).

Chapter 2. Background Study

47

Process Control: Agent-based systems have been used for electricity transportation

management, monitoring and diagnosing faults in nuclear power plants (Huaiqing and

Chen, 1997), spacecraft control (Francois et al., 1992), and climate control (Clearwater

et al., 1996).

Telecommunications: Telecommunication systems are large, distributed networks

of interconnected components which need to be monitored and managed in real-time

(Jennings et al., 1998). The feature interaction problem (Griffeth and H.Velthuijsen,

1994), Network Control (Schoonderwoerd et al., 1997), transmission and switching

(Nishibe et al., 1993), and network management (Adler et al., 1989) are some examples

for which agent-based systems have been constructed.

Air Traffic Control and Transportation Systems: OASIS (Ljunberg and Lucas,

1992) presents a sophisticated agent-realised air traffic control system where agents are

used to represent both aircraft and the various air-traffic control systems in operation.

The domain of traffic and transportation management is well suited to an agent-based

approach because of its geographically distributed nature. For example, Burmeister et

al. (1997) describes a multi-agent system for implementing a future car pooling

application.

Information Management: With the development of the richness and diversity of

information available to us in our everyday lives, the need to manage this information

has grown. The lack of effective information management tools has given rise to an

information overload problem (Jennings et al., 1998). Agent-based systems opened a

new era in this area. Electronic mail filtering agents (Pattie, 1994) can learn to

prioritise, delete, forward, sort, and archive mail messages on behalf of a user. A multi-

agent system (Sycara et al., 1996) has been designed to integrate information finding

and filtering in the context of supporting a user to manage his financial portfolio. A

personal assistant (Chen and Sycara, 1998) that learns user interests and on the basis of

these compiles a personal newspaper, a personal assistant agent for automating various

user tasks on a computer desktop (Caglayan et al., 1997), and a web browsing assistant

(Lieberman, 1995) are some other applications in this area.

Chapter 2. Background Study

48

Electronic Commerce: Some commercial decision making is already placed in the

hands of agents. An example is realizing the marketplace by creating “buying” and

“selling” agents for each good to be purchased or sold respectively (Chavez and

Kasbah, 1996).

Medical Applications: The interest in applying agent technology to medical

applications has been a growing one (Cortés et al., 2008). From such seminal and

inspiring work as agent based patient monitoring by Hayes-Roth et al. (1989) and health

care by Huang et al. (1995), the use of agents in medical science has been continuously

evolving and covering more aspects. Intelligent agents are normally used to observe the

current situation and knowledge base, then support the expert’s decision-making on an

action consistent with the domain they are in, and finally perform the execution of that

action on the environment. For example, Laleci et al. (2008) designed MAS for

providing a Clininical Desicion Support system for remote monitoring of patients at

their homes and at the hospital, to decrease the load on medical practitioners and also

healthcare costs. HealthAgents designed by Lluch-Ariet et al. (2008) improves the

classification of brain tumors through multi-agent decision support over a secure and

distributed network of local databases or Data Marts.

2.7.3 Application Areas of Agent-based EA

AEA is a relatively newer area than GAs or MAS. To solve complex real world

problems, AEA opens a new era to incorporate intelligent techniques like EAs and

MAS. A number of agent-based hybrid evolutionary algorithms have appeared in the

literature for solving different types of problems.

The applications of the first type of AEA (incorporation of evolutionary processes

into a multi-agent system at population level, discussed in section 2.6) are mostly in

solving different types of optimization problems. For example, Dobrowolski et al.

(2001) used an evolutionary multi-agent system for solving unconstrained multi-

objective problems. Socha and Kisiel-Dorohinicki (2002) developed an agent-based

Chapter 2. Background Study

49

evolutionary approach to search for a global solution in the pareto sense for multi-

objective optimization. Siwik and Kisiel-Dorohinicki (2006) developed a semi-elitist

evolutionary multi-agent system and they solved the so called MaxEx multi-objective

problem. Niching techniques are aimed at maintaining the diversity through forming

subpopulations for evolutionary algorithms in multi-modal domains. Similar techniques

have applied to evolutionary multi-agent systems in Dreżewski and Kisiel-Dorohinicki

(2006). Job-shop scheduling problems are solved with multi-agent evolutionary

algorithms by Zhong et al. (2005) and Yan et al. (2004). Zhong et al. (2004) used a

MultiAgent Genetic Algorithm (MAGA) for solving unconstrained global numerical

optimization problems. Liu et al. (2006) used a multiagent evolutionary algorithm for

constraint satisfaction problems. Chira et al. (2008) proposed a geometric agent-based

model for several difficult unimodal and multimodal real-valued functions with many

dimensions. Byrski and Schaefer (2009) applied their evolutionary agents systems to a

difficult global optimization problem (optimization of the artificial neural network

architecture).

The second type of AEA usually applies EA as a part of the decision making

process. For example, Lim and Zhang (2002) designed an intelligent multi-agent system

with GA which integrates process planning and production scheduling, in order to

increase the flexibility of manufacturing systems in coping with rapid changes in the

market. This system consists of various autonomous agents who have the capability of

communicating with each other and making decisions based on their knowledge.

Pendharkar (2007) designed a multi-agent system for manufacturing flow shop

scheduling, where the agents contained a knowledge base of dispatching rules and a

genetic algorithm was used that learns new dispatching rules over time. Cetnarowicz et

al. (1996) proposed a new technology of designing and building agent systems based on

genetic methods, and a draft concept of a model-based approach to such systems. They

have applied this technology to a self-developing prediction system. Smith et al. (1999)

incorporated EA-based mechanisms into agent-based decentralized business

applications. Liu and Frazer (2002) showed the design process as generative and

evolutionary processes that are implemented by a group of cooperative agents.

Chapter 2. Background Study

50

Usually it is difficult to design controllers for multi-agent systems without a

comprehensive knowledge about the system. To overcome this limitation, Jeong and

Lee (1997) used a genetic algorithm to discover rules that govern emergent cooperative

behavior. They proposed a self-organizing genetic algorithm for automating the

discovery of rules for multi-agents playing soccer.

Yang et al. (2006) used a GA based multi-objective optimization technique NSGA-

II to decide on the composition of forces using a complex land combat multi-agent

scenario planning tool. Sahin et al. (2008b) introduced a Force-based Genetic

Algorithm (FGA) for self-spreading mobile nodes deployed over an unknown territory.

Wireless mobile nodes adjust their speed and direction using a genetic algorithm, where

each mobile node exchanges its genetic information (of speed and direction) encoded in

its chromosomes with the neighboring nodes. The improved version of FGA is

presented in Sahin et al. (2008a).

2.8 Chapter Summary

In this chapter, different types of optimization problems and their solution

methodologies have been discussed. Most real world optimization problems are

constrained. In solving these constrained optimization problems, solution approaches

are needed to satisfy different types of linear or nonlinear, equality or inequality or both

constraints. Conventional methods are unlikely to provide quality solutions within

reasonable amount of time for real world complex constrained optimization problems.

During the last decades, several heuristic methods have been proposed to solve these

problems. Among them genetic algorithms is one of the most successful in solving

different types of optimization problems. To handle the constraints, different techniques

have been proposed to guide the search process of GAs. However several algorithms in

the literature have struggled while solving COPs, especially when the feasible space is

very tiny compared to the whole search space. Interactions of the constraints and

existence of equality constraints are some reasons behind that. Furthermore traditional

GAs suffers from slow convergence to locate a precise enough solution because of their

Chapter 2. Background Study

51

failure to exploit local information, and hence they are not well suited for fine tuning.

Some hybridized algorithms such as agent-based evolutionary algorithms have

appeared in the literature, incorporating the EAs with intelligent agent systems. These

algorithms show enhanced performance in solving optimization problems like

unconstrained global optimization problems, constraint satisfaction problems, and

multi-objective problems. However, good performance in solving constrained

optimization problems with agent-based evolutionary algorithms is, to the best of our

knowledge, yet to come in the literature. This motivates to design a new agent-based

evolutionary algorithm for solving COPs, and different techniques to enhance the

performance.

.

Chapter 3

Genetic Algorithms in Solving COPs

Many real world decision processes require solving Constrained Optimization

Problems (COPs). In this chapter, a simple genetic algorithm is implemented for solving

COPs. The performance of the algorithm is investigated and analyzed using a set of

state-of-the-art test problems. The experimental studies show the limitations of genetic

algorithms in solving COPS; this is the motivation for improving the algorithm in this

thesis.

3.1 Introduction

A large number of real world optimization problems are nonlinear and need to

satisfy different constraints. These constraints may involve equality, inequality or both

types. The objective function and the constraints, which may be linear or nonlinear, are

here assumed to be continuous (for details see Chapter 2). The aim of this thesis is to

develop effective solution approaches for solving these constrained optimization

problems.

Genetic Algorithms (GAs) are the most widely used approaches to computational

evolution and solving different types of optimization problems (Davis, 1991). In the

beginning of the research for this thesis, it would be interesting to see the performance

of a Simple Genetic Algorithm (SGA) in solving COPs.

In this chapter, a genetic algorithm is implemented and its performance is

investigated in solving the COPs. To design the SGA, well-known crossover and

Chapter 3. Genetic Algorithms in Solving COPs

53

mutation operators, and a suitable constraint handling technique are used. A set of well-

known test problems is used to investigate the performance. In pursuit of maximum

performance further investigation is made to see the performance of the algorithm by

changing different parameters such as the probability of crossover, the probability of

mutation and the population size, and additional fitness evaluations. The experimental

result shows the limitations of SGA in solving different types of COPs. The knowledge

gained in this chapter helps in designing improved solution approaches for solving

COPs.

The rest of this chapter is organized as follows. The next section describes the

design of a simple genetic algorithm and its components. The experimental results and

the effects of different components of the algorithm are described in section 3.3. Finally,

section 3.4 concludes the chapter and discusses the challenges to be addressed in the

following chapters.

3.2 Simple Genetic Algorithm

Over the last few decades genetic algorithms have been widely employed as

effective search and optimization methods in numerous fields of applications (Safe et

al., 2004). In this chapter a simple genetic algorithm is designed for solving COPs. The

design of the SGA and its components are discussed in this section.

In the SGA, the solutions for the initial population Pt=0 are randomly generated

within the boundary of each decision variable. The individual solutions are evaluated

and ranked based on their fitness. A set of individuals is selected as parents to produce

offspring using crossover with probability of crossover PC. This new population is

called tC . A percentage of individual solutions from tC with PM probability apply

mutation. After mutation, the population tC is called as tC ′ . To generate a new

population Pt+1
, the parent population Pt is merged with the evolved child population

tC ′ and then they are ranked based on fitness. The top ranked individuals form the next

generation Pt+1. The process is continued until the termination condition is reached.

Chapter 3. Genetic Algorithms in Solving COPs

54

The main steps of the proposed algorithm are as follows.

Pseudo code: Simple Genetic Algorithm (SGA).

Set generation no. t = 0;

Generate the initial population Pt at random;

REPEAT

Evaluate the fitness of each individual in Pt and rank them;

Apply tournament selection on Pt to select the parents then apply crossover (with PC

 probability) and generate tC ;

Apply mutation on tC with PM probability and generate tC ′ ;

Produce generation Pt+1 from Pt and tC ′ ;

Set t= t + 1;

UNTIL the terminating condition is reached.

The different components of the algorithm are discussed below.

3.2.1 Representation

As the search spaces of the optimization problems are continuous and the variables

under consideration are real, in this research floating point/real-coded representation is

used to represent the solutions.

3.2.2 Fitness Evaluation and Constraint Handling

For optimizing a constrained problem, the search technique should find not only the

feasible solutions from the search space but also the optimal solutions. So, while

evaluating solutions in solving COPs, attention should be given to both the objective

function value and the constraint violations of the solutions. For each individual, the

objective function value and total Constraint Violation (CV) are calculated. While

Chapter 3. Genetic Algorithms in Solving COPs

55

solving these problems the constraints are normalized in some cases. The total CV of an

individual is considered here as the sum of absolute values by which the constraints are

violated, however they are not normalized in this research. The pair-wise comparison

(Deb, 2000) is used in ranking and selection, which indirectly handles the constraints. In

the pair-wise comparison, the best infeasible individual is assigned worse fitness than

the worst feasible individual. As such, while comparing two individuals an infeasible

individual is penalized and a feasible individual is rewarded, so the constraints are

handled indirectly. Details of this constraint handling technique are discussed in section

2.4.3.

3.2.3 Selection

As discussed in chapter 2, there are several opportunities for biasing the selection

for mating. To design the SGA, tournament selection (Bäck et al., 2000) is used. The

tournaments are played between two individual solutions and the better solution is

chosen as a parent. The other parent is also selected in the same way. It is shown in

Goldberg and Deb (1991) that the tournament selection has better convergence and

computational time complexity properties compared to any other reproduction operator

that exists in the literature. Still tournament selection dominates in the practice of GA.

3.2.4 Crossover

With crossover, usually new offspring are generated with an expectation that they

combine the best features from the parents. Crossover is applied to a set of individuals,

each selected with a probability PC.

The Simulated Binary Crossover (SBX) operator proposed by Deb and Agrawal

(1995) is used here. Based on the search features of the single-point crossover used in

binary-coded genetic algorithms, the SBX operator respects the interval schemata

processing, in the sense that common interval schemata of the parents are preserved in

Chapter 3. Genetic Algorithms in Solving COPs

56

the offspring (Deb and Agrawal, 1995). SBX operator performs well in solving

problems having multiple optimal solutions with a narrow global basin (Deb, 2000; Deb

and Agrawal, 1995). Details of SBX are discussed in section 2.4.2.

3.2.5 Mutation

After crossover, the mutation operator is applied to a certain percentage of

individuals (with mutation probability PM). In SGA, the parameter-based mutation

operator is used, which allows the selected individual to explore its neighborhood. In

chapter 2 this mutation is discussed, and more details of it can be found in (Deb, 2000;

Deb and Goyal, 1996). Deb (2000) has reported that for solving optimization problems

in real space with arbitrary feasible regions shape, real-coded GAs with SBX and a

parameter-based mutation operator have been found to be useful.

3.3 Experimental Studies

In this section, the performance of simple genetic algorithms in solving a set of

well-known benchmark problems is studied. Then the effects of different components

on the performance of the algorithm are analyzed in quest of improved performance.

3.3.1 Benchmark Problems

The performance of SGA is evaluated using a set of 13 benchmark problems,

studied by Michalewicz and Schoenauer (1996), Koziel and Michalewicz (1999), and

further studied by Runarsson and Yao (2000) and others. The benchmark problems

include different forms of objective function (linear, quadratic, cubic, polynomial,

nonlinear) and different number of variables (n). The problems g02, g03, g08, and g12

are maximization problems and the other nine are minimization problems. The

maximization problems are transformed into equivalent minimization problems. The

Chapter 3. Genetic Algorithms in Solving COPs

57

main characteristics of the benchmark problems are presented in Table 3.1, and the

detailed mathematical representations are provided in the Appendix A.

The equality constraints of g03, g05, g11, and g13, hj(X)=0 have been converted

into inequality constraints −δ ≤ hj(X) ≤ δ, where δ is a small tolerance value. The use of

δ allows the algorithm to find some feasible solutions easily by increasing the solution

space. This is a common practice with equality constraints in EAs (Deb, 2000; Elfeky et

al., 2006).

Table 3.1: Characteristics of the test problems.

Fn (n) Obj. Fuc. ρ LI NI LE NE AC Optimal

g01 13 Quadratic 0.0111% 9 0 0 0 6 -15.000

g02 20 Nonlinear 99.8474% 0 2 0 0 1 -0.803619

g03 10 Polynomial 0.0000% 0 0 0 1 1 -1.000

g04 5 Quadratic 52.1230% 0 6 0 0 2 -30665.539

g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498

g06 2 Cubic 0.0066% 0 2 0 0 2 -6961.814

g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306

g08 2 Nonlinear 0.8560% 0 2 0 0 0 -0.095825

g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630

g10 8 Linear 0.0010% 3 3 0 0 6 7049.331

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750

g12 3 Quadratic 4.7697% 0 93 0 0 0 -1.000

g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053950

ρ = Ratio between the feasible space and the search space, LI = Linear Inequalities, NI = Nonlinear
Inequalities, LE = Linear Equalities, NE = Nonlinear Equalities, AC = Active Constraints.

3.3.2 Experimental Results and Discussions

In this study the performance of SGA is investigated in solving constrained

optimization problems. As the crossover operator is mainly responsible for the search

aspect of genetic algorithms, even though mutation operator is also used for this

purpose sparingly (Deb, 1999), a high probability for crossover (PC = 0.90) is used (as

Chapter 3. Genetic Algorithms in Solving COPs

58

in Deb (2000)) and a probability for mutation (PM = 0.2). The number of fitness

evaluations is set to 350,000 as in (Elfeky et al., 2006; Runarsson and Yao, 2000),

which allows a maximum of 3500 generations with a population size of 100.

The algorithm is executed for 30 independent runs with different seeds to solve each

of the test problems. The best, median, mean, standard deviation (st.dev.), and worst

results, as well as execution time, for the test problems are given in Table 3.2. An ‘×’ in

the Table indicates that the algorithm did not find any feasible solution.

Table 3.2: Statistics for 30 independent runs of the SGA.

Fn Optimal Best Median Mean St.Dev. Worst Time(s)

g01 -15.000 -14.998 -13.815 -13.990 9.41E-01 -11.780 4.70
g02 -0.803619 -0.782757 -0.739116 -0.724945 3.93E-02 -0.632602 17.43
g03 -1.000 × × × × × 4.14
g04 -30665.539 -30664.743 -30662.894 -30662.347 2.55E+00 -30653.675 2.92
g05 5126.498 × × × × × 3.52
g06 -6961.814 -6945.396 -6920.632 -6920.196 1.61E+01 -6888.569 3.45
g07 24.306 25.615 27.755 28.310 2.41E+00 36.594 6.50
g08 -0.095825 -0.095825 -0.095825 -0.095825 5.32E-09* -0.095825 2.93
g09 680.630 680.808 681.648 681.821 6.50E-01 683.944 5.32
g10 7049.331 7166.255 7823.128 8376.182 1.45E+03 13284.257 3.12
g11 0.750 × × × × × 2.55
g12 -1.000 -1.000 -1.000 -1.000 1.81E-10* -1.000 50.57
g13 0.053950 0.457442 0.922264 1.031979 6.59E-01 3.854752 4.29

*Though the best, worst, median, and mean results are the same, standard deviation is positive due to
rounding error.

From the results given in Table 3.2, it can be seen that SGA has achieved the

optimum in two problems (g08 and g12). In four problems (g01, g04, g06 and g09), the

best results are within 1% of the optimum. The achieved results are within 10% of the

optimum in three test problems (g02, g07 and g10). In one problem (g13), the result is

far away (747.90%) from the optimum, and for three problems (g03, g05 and g11) SGA

could not find any feasible solutions. The mean results are also very far from the

Chapter 3. Genetic Algorithms in Solving COPs

59

optimum in most of the problems; on average they are 186.54% from the optimum. In

some problems the percentage deviation of the achieved mean from the optimum is very

high, such as 1812.84% for g13, 18.82% for g10, 16.47% for g07, 9.79% for g02 and

6.73% for g01.

For g12, SGA achieved optimum in early generations for every run, and so SGA is

allowed to execute maximum 500 generations for this problem. This problem involves

729 constraints and took SGA the longest time to solve it (on average 50.57 seconds).

Though the performance of SGA is not very pleasing, its simplicity of design means

that SGA converges prematurely and is fast in solving the test problems. On average it

took only 8.57 seconds to solve each problem.

The performance of SGA is better for problems having considerable feasible space

(ρ > 1%) than for problems with tiny feasible space. For calculating the ratio of feasible

space over the search space (ρ) a metric is used, suggested by Michalewicz and

Schoenauer (1996): SFρ /= where S is the number of random solutions generated

(1,000,000 in this case), and F is the number of feasible solutions found (out of the

total randomly generated solutions). For the problems with considerable feasible space,

for example g02 (ρ =99.85%), g04 (ρ =52.12%), g12 (ρ =4.77%), the achieved best

results are on average within 0.866% of the optimum and the mean results are on

average within 3.267% of the optimum. On the other hand, in those problems with tiny

feasible space (ρ < 1%) the performance of SGA is not so good. In three problems, it

could not find any feasible solutions. For the other seven problems, the achieved mean

results are on average 265.092% from the optimum. This shows SGA suffers in solving

problems with tiny feasible space.

It is worth noting here that there are four problems (g03, g05, g11, and g13)

involving equality constraints. The ratios of the feasible space over the search space for

these problems are 0.00%. The existence of the equality constraints reduces the size of

the feasible space. For this type of problems SGA is seriously deficient. The algorithm

has found feasible solutions in only one problem, though the achieved best result is

747.90% away from the optimum.

Chapter 3. Genetic Algorithms in Solving COPs

60

The convergence curves of best and mean result of the population for 3500

generations with SGA for different problems are given in Figures 3.1−3.10 (g03, g05,

and g11 are not shown, because SGA could not find any feasible solutions for these

problems).

-16

-14

-12

-10

-8

-6

-4

-2

0
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.1: Convergence Curve of the best and mean objective value for problem g01.

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.2: Convergence Curve of the best and mean objective value for problem g02.

Chapter 3. Genetic Algorithms in Solving COPs

61

-30800

-30600

-30400

-30200

-30000

-29800

-29600

-29400

-29200

-29000
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.3: Convergence Curve of the best and mean objective value for problem g04.

-7100

-6100

-5100

-4100

-3100

-2100

-1100

-100
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.4: Convergence Curve of the best and mean objective value for problem g06.

20

25

30

35

40

45

50

1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.5: Convergence Curve of the best and mean objective value for problem g07.

Chapter 3. Genetic Algorithms in Solving COPs

62

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.6: Convergence Curve of the best and mean objective value for problem g08

650

700

750

800

850

900

950

1000

1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.7: Convergence Curve of the best and mean objective value for problem g09.

7000

7500

8000

8500

9000

9500

10000

1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.8: Convergence Curve of the best and mean objective value for problem g10.

Chapter 3. Genetic Algorithms in Solving COPs

63

-1.005

-1

-0.995

-0.99

-0.985

-0.98

-0.975

-0.97
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.9: Convergence Curve of the best and mean objective value for problem g12.

0.04

0.24

0.44

0.64

0.84

1.04

1.24

1.44

1.64

1.84

1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

Optimum
Best
Mean

Figure 3.10: Convergence Curve of the best and mean objective value for problem g13.

3.3.3 Effects of Parameters and Operators

Genetic algorithms work efficiently when the right values for parameters such as

probability of crossover, probability of mutation, and population size are chosen (Bingul

et al., 2000). When these parameters are set optimally, it is very beneficial as the GA

would yield better or similar fitness values with similar or less computational cost.

In this section, a number of experiments are reported to analyze the effects of

different parameters used in SGA e.g. the effect of probability of crossover (PC),

probability of mutation (PM), population size. In the following four sub-sections, these

Chapter 3. Genetic Algorithms in Solving COPs

64

experiments are discussed in detail.

3.3.3.1 Probability of Crossover (PC)

Crossover operator is considered as the main search operator of genetic algorithms.

It is one of the most important features distinguishing it from other search algorithms

(Tian, 2001). In this section, the effect of crossover on SGA with different probabilities

is investigated.

The performance of the algorithm is tested (over 30 runs each) with values for PC of

(0.80, 0.85, 0.90, and 0.95) for all the test problems. The other parameters (PM=0.20,

population size = 100) remain the same. A higher value of PC allows more offspring to

be generated from the parents, which may help the algorithm to perform better.

However, after a certain level, higher values of PC may cause diversity reduction in the

population. While analyzing the results, if we consider the best results, with lower PC =

0.80 SGA achieved better result in only one problem (g13). With a large value of PC

(0.95) it only achieved better results in g06. For two problems g02 and g09 it achieved

better results with PC = 0.90, and with PC = 0.85 SGA achieved better results in four

problems (g01, g04, g07 and g10). The performance remains the same for all values of

PC in g08 and g12; in those problems, SGA achieved the optimum in early generations.

For the other three problems SGA could not find any feasible solutions.

Sometimes, the best result may be an outlier for the population based stochastic

algorithms. If we consider the mean results, with very high value of PC (0.95) SGA

achieved better results in g06. For two problems (g07 and g10) SGA performs better

with lower PC (0.80). In g01 and g04 SGA achieved better mean results using PC =

0.85. For three problems (g02, g09, and g13) SGA achieved better results with PC =

0.90.

After analyzing the results, we can conclude that for better performance of SGA we

should use neither too low nor too high value of PC. In this experiment, SGA achieved

better results mostly using PC in the range of (0.85 − 0.90). However, even with these

Chapter 3. Genetic Algorithms in Solving COPs

65

parameters SGA still suffers in solving the equality constrained problems. For three

problems, it could not find any feasible solutions. The average deviation of the mean

results is still more than 150% from the optimum results with all values of PC.

Figure 3.11 shows the convergence curve of SGA using different values of PC (0.80,

0.85, 0.90, and 0.95) for problem g04. In some problems, ρ is very high (e.g. g02, ρ

=99.84%), in some other problems ρ is very low (0.00%). Here problem g04 is chosen

as an example as for this problem ρ is 52.123% which is in between the extreme values.

The curve shows that SGA using PC = 0.90 converges more slowly but with better final

performance.

-30700

-30600

-30500

-30400

-30300

-30200

-30100

-30000
1 501 1001 1501 2001 2501 3001

Generation no.

O
bj

. F
un

c.
 V

al
ue

0.80
0.85
0.90
0.95

Figure 3.11: Convergence Curve of SGA using different values of PC for problem g04.

3.3.3.2 Probability of Mutation (PM)

In genetic algorithms, mutation is used to introduce genetic diversity from one

generation of a population to the next generation. Mutation is known as the

“background” operator in the genetic algorithm, and it has a full range of alleles so that

the individuals are not trapped in local optima (Holland, 1975). Without mutation, the

Chapter 3. Genetic Algorithms in Solving COPs

66

evolution would be stagnated because no new variations are created (Soon et al., 2008).

In SGA, after crossover a certain percentage of the individuals are randomly

selected to apply mutation with a probability PM. The performance of the algorithm

(over 30 runs each) is tested with different values for PM of (0.05, 0.1, 0.15, 0.20, 0.25,

and 0.3) while keeping the other parameters the same (PC = 0.90, population size =

100).

With higher values of PM more individuals are allowed to apply mutation, ensuring

more diversity in the population. Diversity is an important issue for the performance of

any population based search algorithms. With the increase of PM, SGA performs better

up to a certain level, then the performance does not improve significantly. Considering

the best results achieved by SGA with different PM, SGA performed better with higher

value of PM. For g03 and g06 it has achieved better results using PM=0.30. For some

problems like g08 and g11 with all values of PM, it achieves the same results. If we

consider the mean values of the 30 runs, SGA achieves better results in g01, g02, g09

and g10 with PM=0.25, and with PM = 0.20 it achieves better results in g13. Though the

performance of SGA has improved with different values of PM, the overall performance

of SGA is still not convincing. The average deviation of the mean results is still more

than 180% from the optimum with any value of PM.

Figure 3.12 shows the performance of SGA with different values of PM for problem

g04. It can be seen that the best results are achieved by SGA after PM = 0.05. Then the

results remain almost the same. However if we consider the mean results, it is very clear

that the performance improves up to PM = 0.25. After that, the performance does not

improve significantly.

Chapter 3. Genetic Algorithms in Solving COPs

67

-30667

-30662

-30657

-30652

-30647
0.05 0.1 0.15 0.2 0.25 0.3

Probabiity of Mutation

O
bj

. F
un

c.
 V

al
ue

Mean

Best

Figure 3.12: Effect of probability of mutation (PM) on problem g04.

3.3.3.3 Population Size

Population size is another important parameter for the performance of GAs. If the

population size is too small, then an insufficient number of individuals are sampled

during the evolutionary process and the algorithm would not yield the best possible

solution. On the other hand, if the population size is too large, the algorithm becomes

inefficient as more tests are performed than necessary for each generation (Bingul et al.,

2000). In this section, the performance of SGA is tested with different population sizes.

The aim of the experiment is to see how SGA behaves with different population sizes,

whether SGA could achieve good quality solutions with higher population size.

To find the answers, SGA is executed with different population sizes (40, 100, 500,

1000, and 1500) for 30 independent runs for each problem. The other parameters remain

constant (e.g. PC = 0.9, PM = 0.20). To keep the budget of fitness evaluations fixed

(350,000), the maximum numbers of generations 8750, 3500, 700, 350 and 233 are used

respectively.

The experimental results show that the performance of the algorithm improves with

the increase of the population size, though it increases the computational time per

Chapter 3. Genetic Algorithms in Solving COPs

68

generation. With higher population size, the population becomes more diverse which is

helpful for better performance of the algorithm.

The achieved results of SGA with population size of 1500 (the average % deviation

of best results from optimum per problem is 13.42874%) are better than the results with

low population size (e.g. the average % deviation of best results from optimum per

problem is 75.78% with population size 100). In problems g07, g09 and g13, the best

results are better with population size of 1500. Considering mean results, again the

results with 1500 are better in g04, g05, g07 and g13. With higher population size

(1500), SGA achieves feasible solutions in g05, however the mean results are still

2.17% from the optimum. For the higher population sizes SGA needs more

computational time per generations: with population size 1500 it took on average 5.94

times more execution time than with population size 100. Though with huge population

size, SGA seems to improve its performance, still it could not solve half of the equality

constrained problems such as g03 and g11. The solution quality for other equality

constrained problems is also not satisfactory; the achieved best result is still 146.03%

from the optimum in g13.

In the experiments, considering the size of the test problems, maximum population

size is considered up to 1500. The experimental results show that although the

performance is improved with higher population size, SGA could not overcome its

limitations for the problems with equality constraints. However the performance of the

algorithms may be improved with further increase of the population size.

3.3.4 The effect of more Fitness Evaluations

So far, SGA is executed up to 350,000 fitness evaluations. It would be interesting to

see whether SGA can improve the solutions if it were allowed to run for more fitness

evaluations. To investigate this, the algorithm is executed up to 500,000 fitness

evaluations.

For most of the problems, the results are improved. However, the improvements are

not huge, and the results are still far from optimum in most of the problems. For

Chapter 3. Genetic Algorithms in Solving COPs

69

problems g01, g04, g06, and g09, the best results are improved by a maximum of

0.03%. Only in g07 has it improved the best results by more than 1% (2.88%), however

the result is still 2.34% from the optimal.

While considering mean results, for all these problems the greatest improvement is

made in g01, it is still only 0.60986%. The achieved mean results are still more than 5%

from the optimum in several problems e.g. g01 (5.94%), g02 (9.13%), g07 (15.35%),

and g10 (18.37%). SGA improved its performance, by achieving feasible solutions in

problems g03, and g11. However, the mean results of g03 and g11 are still 98.26% and

15.46% away from the optimum respectively. In g13, the result remains the same,

where the mean result is 1812.84% far from the optimum. For g05, still it could not find

any feasible solutions at all.

This experimental study shows that it is unlikely to find good quality solutions even

with the additional fitness evaluations.

3.4 Chapter Summary

This chapter presents a simple genetic algorithm for solving constrained

optimization problems. A set of benchmark problems is used to investigate the

performance of the algorithm. Although SGA is fast and achieved optimum results in

two problems out of a set of 13, the results are not convincing enough for practical use

of the current version of the algorithm. SGA suffers in solving problems with tiny

feasible space. Especially when the test problems involve equality constraints, the

performance of SGA is very poor. For the equality constrained problems it could not

solve most problems, and the performance is also not satisfactory for the remaining

problems.

The effect of different parameters on the performance of the algorithm is

investigated. Although the results can be improved with additional computational cost,

SGA is still unlikely to find good quality solutions for several problems.

The experimental results demonstrate that there is a need for improved algorithms in

Chapter 3. Genetic Algorithms in Solving COPs

70

solving the constrained optimization problems. Special measures should be taken while

solving problems with tiny feasible space, especially for problems involving equality

constraints. Improved algorithms, and different techniques to enhance the performance

of the algorithm are discussed in the next few chapters.

Chapter 4

Agent-based Evolutionary Algorithms

In this chapter, a new agent-based evolutionary algorithm is proposed for solving

constrained optimization problems, where the agents have the ability to independently

select a suitable Life Span Learning Process (LSLP). Each agent represents a candidate

solution of the optimization problem and tries to improve its solution through co-

operation with other agents. Evolutionary operators consist of only crossover and one of

the self-adaptively selected LSLPs. The performance of the proposed algorithm is tested

on a set of benchmark problems, and the experimental results show convincing

performance.

This chapter discusses the new algorithm, the different components of the algorithm,

and the related issues. The experimental studies are presented in the next chapter.

4.1 Introduction

Many real world decision processes require solving optimization problems, which

may not contain nice mathematical properties required by some solution techniques.

Most of these problems have different types of constraints involving a set of equalities,

non-equalities or both. The difficulties in solving these constrained optimization

problems arise from the challenge of finding good feasible solutions. Solving this type

of problems has become a challenging area in computer science and operations research

due to the presence of high dimensionality, nonlinear parameter interaction, and

multimodality of the objective function as well as due to the physical, geometric, and

Chapter 4. Agent-based Evolutionary Algorithms

72

other limitations of different constraints (Liang and Suganthan, 2006).

Evolutionary Algorithms (EAs) have brought a tremendous advancement in the area

of computer science and optimization with their ability to solve many complex

problems (Sarker et al., 2003). Genetic algorithms, the most well known branch of EAs,

have been successfully applied to many numerical and combinatorial optimization,

classifier system, and engineering problems (Goldberg, 1989; Michalewicz, 1994;

Sarker et al., 2003). GAs are stochastic algorithms which simulate both the natural

inheritance by genetics and the Darwinian strive for survival (Michalewicz and Janikow,

1996). Nevertheless, most GAs developed are unconstrained search techniques and lack

an explicit mechanism to bias the search in constrained search spaces (Liang et al.,

2006). Furthermore traditional GAs suffer from slow convergence to locate a precise

enough solution because of their failure to exploit local information (Tang et al., 2007),

and face difficulties solving multi-modal problems which have many local solutions

within the feasible space (Takahama and Sakai, 2006). Hence it is well established that

they are not well suited for fine tuning search (Krasnogor and Smith, 2005; Molina et

al., 2005; Muruganandam et al., 2005; Zhong et al., 2004) and so, to improve the

performance, hybridization of algorithms has been introduced in recent times.

The improved performances are achieved by hybridizing evolutionary algorithms

with Local Search (LS) techniques: so-called Memetic Algorithms (MAs). MAs have

been successfully applied across a wide range of problem domains such as

combinatorial optimization, optimization of non-stationary functions, and multi-

objective optimization (for details see chapter 2). They converge to high quality

solutions as well as search more efficiently than their conventional counterparts (Tang et

al., 2007). MAs are inspired by Dawkins’ notion of a meme (Dawkins, 1976) defined as

a unit of information that reproduces itself as people exchange ideas. One of the critical

issues regarding the performance of MAs is the selection of appropriate LS while

hybridizing LS with GAs. If the selection of LS is not appropriate for a particular

problem then MAs may not perform well; the performance may even be worse than

GAs alone (Davis, 1991; Hart, 1994; Ong and Keane, 2004). Many types of local

searches are available in the literature but it is very difficult to know which type is

Chapter 4. Agent-based Evolutionary Algorithms

73

appropriate for a particular problem.

Agent-based computation introduces a new paradigm for conceptualizing, designing

and implementing intelligent systems, and has been widely used in many branches of

computer science (Ferber, 1999; Sycara, 1998). The agents are discrete individuals

situated in an environment having a set of characteristics and rules to govern their

behavior and interactions. They sense the environment and act on it in pursuit of a set of

goals or tasks for which they are designed (Stan and Art, 1997).

To mitigate the shortcoming of MAs mentioned above, in this chapter an Agent-

based Memetic Algorithm (AMA) is proposed for solving constrained optimization

problems. Here an agent represents a candidate solution of the problem, carries out

cooperative and competitive behaviors, and selects the appropriate local search

adaptively to find optimal solutions for the problem in hand. In the proposed algorithm,

the concept of MAs follows the model of adaptation in natural systems, where an

individual of a population may be improved through self-learning along with the

evolutionary adaptation of the population (Krasnogor and Smith, 2005; Moscato, 1989).

Recently, a number of agent-based hybrid algorithms have appeared in the literature

for solving different problems (for details see chapter 2). However, to the best of our

knowledge, the application of agent-based memetic algorithms to COPs is new in the

literature. The real potential of AMA has not been fully explored yet, and very little has

been done in this area.

In the proposed framework of agent-based memetic algorithm, for each agent, the

neighborhood agents are compared with others to find the winner (like competition)

with whom it exchanges genetic materials (like cooperation) through the well known

simulated binary crossover proposed by Deb and Agrawal (1995), and learn through the

proposed different types of life span learning processes, to solve a COP with a suitable

constraint handling technique. Note that it does not use any mutation operator, as the

life span learning process would cover the purpose of mutation.

The life span learning processes are designed based on several local and directed

search procedures. An agent chooses a LSLP as a local search operator self-adaptively.

Chapter 4. Agent-based Evolutionary Algorithms

74

As we generally see in GAs, an individual in a generation produces offspring and the

offspring may be mutated to change the genetic materials. In reality, beside

reproduction, an individual learns and gains experiences in different ways during its life

time. This process is represented by the proposed LSLPs. As MAs rely on the concept

of natural evolution and learning, the proposed algorithm makes it even more

meaningful. An individual in the population of a certain generation lives for a certain

period of time, and explores the environment independently and interacts with other

individuals in many different ways to enhance learning. As an individual may decide to

have a particular learning process based on its belief, a number of different LSLPs are

incorporated in AMA. The individual’s ability to use its belief, to interact with the

environment, and to make independent decisions for exploration and learning, qualifies

an individual to be called an agent in the population.

In AMA, the agents are arranged in a lattice-like environment, as for cellular genetic

algorithms (Alba and Dorronsoro, 2005; Nakashima et al., 2003; Whitley, 1993) which

use a lattice-based population. In cellular GAs, each individual is located in a cell of the

lattice. Except for the neighborhood structure, all operations of cellular GAs and

traditional GAs are identical. The problem of premature convergence in cellular GAs is

also similar to the traditional GAs (Folino et al., 2001). Though AMA uses a lattice-

based population for the individuals, here each individual is considered as an agent,

which has its own purpose and behaviors. Unlike traditional genetic operators

(selection, crossover and mutation), in the proposed algorithm, the agents use SBX only

with its neighboring agents through cooperation and competition, and apply LSLP.

This work has some similarities with Ong and Keane (2004). Both use Meta-

Lamarckian learning, applying MA to optimization problems. Both use the concept of

multi-method LSs. AMA differs from Ong and Keane (2004) in several ways, however.

The adaptation mechanism in MA (Ong and Keane, 2004) is adaptive type whereas

AMA is self-adaptive type. A heuristic approach (named as Subproblem Decomposition)

used in MA with Meta-Lamarckian learning (Ong and Keane, 2004) selects a meme

based on the knowledge gained from only the k nearest individuals. However, in AMA

an agent selects a meme/LSLP based on the knowledge experienced by the parents. So

Chapter 4. Agent-based Evolutionary Algorithms

75

the adaptation level of both the algorithms is Local-level adaptation (Ong et al., 2006).

In the framework of MA with Meta-Lamarckian learning (Ong and Keane, 2004), it

includes LSs with other genetic operators such as selection, mutation and crossover.

AMA only uses crossover and life span learning with a constraint handling technique.

The merit function for performance of the local search techniques proposed in AMA is a

relative measure based on the objective function value for the feasible agents and

constraint violations for the infeasible agents from their initial condition, details can be

found in section 4.6. However the reward function used in Ong and Keane (2004) uses a

relative reward parameter with the simple measurement of fitness improvement.

Importantly, AMA and Ong and Keane (2004) deal with different types of optimization

problems: AMA is designed for constrained real-valued optimization problems while

(Ong and Keane, 2004) considers mainly real-valued function optimization with only

variable bounds.

To test the performance of the algorithms a number of state-of-the-art test problems

are solved and the results are compared with several existing well-known algorithms.

The comparisons show that the results of AMA are quite acceptable quality. The

detailed experimentation of the proposed algorithm is described in the next chapter.

The rest of this chapter is organized as follows. The next section describes the agent-

based evolutionary algorithms and related issues. Section 4.3 presents the proposed

AMA.The AMA operators are explained in section 4.4. The fitness evaluation and

constraint handling, and selection of LSLPs are described in section 4.5 and 4.6

respectively. Finally the last section concludes the chapter.

4.2 Agent-based Evolutionary Algorithms

As mentioned in chapter 2, the agent-based evolutionary algorithms can be of two

different approaches. The first type is population based evolutionary algorithms, for

solving complex decision problems, where the individuals of the population are defined

as agents (Siwik and Kisiel-Dorohinicki, 2006; Zhong et al., 2004). The second type is

Chapter 4. Agent-based Evolutionary Algorithms

76

the multi-agent system that incorporates an evolutionary algorithm as a search technique

to improve certain functionality of some selected agents or the entire system (Liu and

Frazer, 2002). There is a long debate about the first type whether we should call it an

‘agent based system’ or what does it add to EAs by naming it an ‘agent based EA’? This

section discusses how an agent-based EA can be different from an independent EA.

Here the agents are defined a bit differently. The individuals in the population of

EAs are not agents rather, based on the individual’s belief and learning experiences,

each agent stands (or supports) for one of the individuals of the population. A

population of agents is endowed with a set of individualistic and social behaviors, in

order to explore a local environment within the solution space. The combination of

agents’ local view exploration with EAs global search ability would establish a superior

balance between exploitation and exploration when solving complex optimization

problems. In fact, when we define the individual as an agent we can bring anything (like

rules for communication, cooperation and competition, intelligence, memory, and

learning) onboard which the traditional EAs do not deal with. Davidsson et al. (2007)

indicated that we must capitalize the strength of two approaches in a new hybrid method

as they complement each other. The agent activities, which can be considered with EAs

in the context of optimization problem solving, are discussed below.

Environment of Agents

The environment includes the agent’s social network structure, and the size of the

neighborhood for interactions. The network topology usually includes ring, two-

dimensional lattice, random small-world, and star type. However, we may consider any

special structure such as self-organizing network. In optimization problem solving, the

two-dimensional lattice-like structure is widely used. There are some similarities of this

structure with cellular genetic algorithms (Nakashima et al., 2003). The neighborhood

size controls the amount of interaction and diversity in the entire population.

Behavior of Agents

The agents can be cooperative or competitive. Cooperative agents share information

Chapter 4. Agent-based Evolutionary Algorithms

77

with their neighboring agents, whereas competitive agents compete with the

neighboring agents. The quality of an agent is represented by fitness value or energy

(Zhong et al., 2004). An agent with a higher fitness value has a better chance of survival

in its neighborhood. De Jong (2008) stated that the agent behavior is basically a

combination of “nature and nurture”, those are both inherited and learned components.

Learning of Agents

De Jong (2008) indicated that evolution operates at the population level while

“lifetime learning” occurs at the individual (agent) level. The agents learn throughout

their life span which improves their quality (fitness value). This learning process can be

chosen by the individual agents independently. For example, in optimization problem

solving, the local search techniques could be the learning processes for an agent. Vasile

and Locatelli (2008) indicated that each agent performs a sequence of actions at every

generation according to their defined behavior such as inertia, follow-the-tail, random-

step, linear blending and quadratic blending. These basically represent local search

techniques, which is labeled as learning processes in this research.

Reasoning Capability of Agents

It is well known that to move in the direction of producing the fastest rate of

improvement in the fitness value is not always best (Thornton and Boulay, 1999). So an

agent must find reasoning for its next move. An agent may apply either quantitative or

qualitative judgment (or both) based on its own belief, social interaction, knowledge and

intelligence. In optimization problem solving, the choice of self-learning process may

be based on either simple rules or chosen adaptively (like adaptation to environment

changes). The adaptation process also requires some rules or procedures to follow. To

make a rational choice of self-learning process, the knowledge must be retrieved,

reused, revised and retained. That means it requires systematic archiving of relevant

information. Bajo and Corchado (2006) defined the knowledge revising process as the

reasoning cycle.

The reasoning capability of agents will make a clear difference between the agent-

Chapter 4. Agent-based Evolutionary Algorithms

78

based EAs and EAs alone. It is known that the incorporation of MAS with EAs would

increase the computational time per generation of the new algorithm. However it is

expected that a carefully designed hybrid algorithm (MAS plus EAs) would not only

improve the quality of solution but also reduce the overall computation time, as is the

case for memetic algorithms (Hasan et al., 2008).

4.3 Agent-based Memetic Algorithm (AMA)

Memetic algorithms can be considered as a marriage between the population-based

global search and the heuristic-based local search (Krasnogor and Smith, 2005;

Moscato, 1989). The global search explores the search space while the local search

exploits the obtained solution of an individual. This approach may reflect the natural

adaptation and learning through (Krasnogor, 2002; Krasnogor and Smith, 2005;

Moscato, 1989):

• Evolutionary adaptation of the population and

• Individual localized learning.

Besides the evolutionary adaptation and learning, certain individuals may develop

themselves through self-learning and exploiting their own potential. Depending on the

environment, available resources, opportunities, and self-potential, the individuals

enhance their performance through different types of learning. This additional learning

step, which mimics both the natural and artificial knowledge building process, will add

more useful information than localized learning alone.

In this research, the agent concept is incorporated with memetic algorithms, where

an agent stands for a candidate solution in the population. The characteristics of an

agent can be defined as follows (Liu et al., 2002b):

• Ability to live and act in the environment.

• Ability to sense the local environment.

• Purpose driven.

Chapter 4. Agent-based Evolutionary Algorithms

79

• Reactive behavior.

In the proposed algorithm, the goal of each agent is to improve its fitness while

satisfying constraints. Following the natural adaptation process, in the proposed AMA

the agents improve their fitness by selecting intelligently a suitable self learning

technique, together with the evolutionary adaptation of the population. As shown in

Figure 4.1, if the goal is achieved the process stops, otherwise the modified agents go

through the same process. The agents are arranged in a lattice-like environment E of

size MM × (where M is always an integer). The agents communicate with their

surrounding neighbor agents and exchange information with them through comparison

and the crossover operator.

Figure 4.1: Agent-based Memetic Algorithm.

The overlapped small neighborhoods of the lattice-like environment help in

exploring the search space because the induced slow diffusion of solutions through the

population (by the competition and co-operations of the agents inside each

neighborhood) provides a kind of exploration (diversification), while exploitation takes

place by the individual agents through their learning processes. For a larger size of

neighborhood, the overlapping of the neighborhoods in comparisons and competitions is

higher. In this case, the dominant individuals can spread their genetic material

throughout the population faster than a small neighbourhood, which may result in

Modified
Agent

Population

Goal
Achieved?

Changing
Operators

Stop
Yes No

Population of
agents

Chapter 4. Agent-based Evolutionary Algorithms

80

premature convergence in the population. Different sizes of neighborhood are

considered in this research and the effect of neighborhood sizes is discussed in the next

chapter.

For LSLPs, a number of search processes are proposed as an appropriate choice of a

LSLP is very important for the performance of the algorithm. In each generation an

agent may select one of the several LSLPs based on several simple rules.

AMA involves Meta-Lamarckian learning (Ong and Keane, 2004), rather than

Lamarckian or Baldwinian learning. In the Lamarckian mechanism, the genotypes are

modified by learning in order to improve the fitness. The improvement is therefore

passed to these chromosomes. The idea is that the learnt behavior can directly change

genotypes. Therefore, the acquired knowledge through learning is directly coded into

the genotype, and knowledge can be transferred to the offspring (Houck et al., 1996;

Ishibuchi et al., 2005; Whitley et al., 1994). Baldwinian learning uses improvement

procedures to change the fitness landscape, but the solution that is found is not encoded

back into the genotype (Guimaraes et al., 2006; Houck et al., 1996; Ishibuchi et al.,

2005; Spalanzani, 2000; Whitley et al., 1994). In AMA the improved agent (after

applying LSLP) is sent back into the population which follows the Lamarckian learning.

Since multiple LSLPs (i.e. LSs) are used during a MA search in the spirit of Lamarckian

learning, it can be said AMA is following Meta-Lamarckian learning.

Chapter 4. Agent-based Evolutionary Algorithms

81

The main steps of the proposed algorithm are as follows:

Step 1. Create a random population, which consists of MM × agents.

Step 2. Arrange the agents in a lattice-like environment.

Step 3. Evaluate the agents individually.

− If the stopping criterion has been met, go to step 7; otherwise

continue.

Step 4. For each agent examine its neighborhood.

− Select an agent from its neighborhood and perform crossover.

Step 5. Select a certain percentage of agents.

− Select self-adaptively a life span learning process.

Step 6. Go to step 3.

Step 7. Stop.

To solve COPs along with crossover operator and different type of LSLPs, a suitable

constraint handling technique is added to handle the constraints in AMA: they are dealt

with indirectly in fitness evaluation. As the search spaces of the optimization problems

and the variables under consideration are real and continuous, real numbers are used to

represent the solutions.

The next sections provide details of how these steps are done: crossover in section

4.4.1, LSLPs in section 4.4.2, fitness evaluation and constraint handling in section 4.5

and selection of LSLPs in section 4.6.

4.4 AMA Operators

To search for optimum solutions efficiently, the search techniques of the agents need

to ensure two essential goals: exploration and exploitation. Exploration ensures that all

parts of the search space are investigated; exploitation concentrates searching around

the solutions found so far (Ong and Keane, 2004; Torn and Zilinskas, 1989). In the

proposed algorithm, the usual selection, ranking, and mutation processes of the

Chapter 4. Agent-based Evolutionary Algorithms

82

traditional MAs/GAs (Guimaraes et al., 2006) are not directly used. AMA only applies

simulated binary crossover operators (Deb and Agrawal, 1995) and the LSLPs which

ensures both the goals: exploration and exploitation.

As every agent interacts with its neighborhood to exchange information, the

information is diffused to the whole agent lattice. After this exploration, a certain

percentage of the agents are selected for different types of LSLPs for exploitation of the

currently obtained solution. During the learning process, the agent tries to improve its

present fitness by changing the solution vector. It continues to learn for a certain number

of steps. But if the fitness decreases then it stops the learning process. Details of these

operators are discussed below.

4.4.1 Crossover

In the proposed AMA, simulated binary crossover (Deb and Agrawal, 1995) is used.

SBX operator performs well in solving problems having multiple optimal solutions with

a narrow global basin, and has been used in different applications successfully (Deb,

2000; Deb, 2001; Deb and Beyer, 2001). Details of SBX are discussed in chapter 2.

When this crossover operator is applied on the solution of an agent Ai,j (located in

location (i,j) in the lattice), the agent searches for its best neighbor agent to mate. The

better offspring from these two, denoted as Ni,j, is stored in a pool. After completing the

crossover in a given generation, the fitness of each Ni,j (1 ≤ i,j ≤ M) is compared with its

parent Ai,j. If the new agent’s solution’s fitness is better than its parent then it takes the

place of Ai,j and Ai,j dies. Otherwise Ai,j would survive.

4.4.2 Life Span Learning Processes

After crossover a certain percentage of agents (with PL probability) of the

population are selected to learn with the designed LSLPs i.e. to apply local and directed

search. These LSLPs are designed to find better fitness values by changing the variable

Chapter 4. Agent-based Evolutionary Algorithms

83

vector of the existing solutions in different ways.

Here four different LSLPs are designed. The first is totally random in nature, the

second is restricted random, the third is gradient-based, and the last is directed search.

The random LSLPs ensure diversity, and the directed searches try to move towards a

better solution which is not necessarily in the individual’s locality. The pseudo codes of

the LSLPs are given below:

Let an agent Ai,j, residing at cell location (i,j) with solution vector of n variables

[a1, a2, …, an], be selected for LSLP. Let m be the maximum number of learning steps,

and Δ is a positive small value for perturbation. The procedure for calculating Δ is

discussed later in this section.

LSLP Type 1

Step 1. Choose a variable r randomly from n variables;

Step 2. Calculate Δ, add / subtract Δ with the variable value ar and evaluate fitness,

and detect in which direction the fitness of the solution vector improves;

Step 3. For t= 1 to m do

Step 3.1. Change the variable value ar with Δ according to the direction

found in step 2;

Step 3.2. If the fitness deteriorates go to step 1 else go to step 3;

[End of Step 3 Loop]

Step 4. Continue the previous steps (1 to 3) until all n variables are modified and

then go to step 5;

Step 5. Stop.

Chapter 4. Agent-based Evolutionary Algorithms

84

LSLP Type 2

Step 1. For all variables r =1 to n do

Step 2. Calculate Δ, add / subtract Δ with the variable ar and evaluate fitness, and

detect in which direction the fitness of the solution vector improves;

Step 3. For t = 1 to m do

Step 3.1. Change the variable ar with Δ according to the direction found in

step 2;

Step 3.2. If the fitness deteriorates, go to step 1 else go to step 3;

[End of Step 3 Loop]

[End of Step 1 Loop]

Step 4. Stop.

LSLP Type 3

Step 1. For all variables r = 1 to n do

Step 2. Calculate Δ, add/subtract Δ with the variable ar and evaluate fitness, and

detect in which direction the fitness of the solution vector improves;

Step 3. Change the variable ar according to the direction found in step 2. Find the

improvement of the fitness for this change;

[End of Step 1 Loop]

Step 4. Rank the variables based on their effect on the fitness improvement;

Step 5. For all n variables starting from highest rank do

Step 5.1. For t = 1 to m do

Step 5.2. Change ar as ar = ar ± Δ; based on the direction found in step 2;

Step 5.3. If the fitness deteriorates go to step 5, otherwise go to step 5.1;

[End of Step 5.1 Loop]

[End of Step 5 Loop]

Step 6. Stop.

Chapter 4. Agent-based Evolutionary Algorithms

85

LSLP Type 4

Step 1. Find the agent with best fitness in the current generation with solution vector

[b1,b2,…,bn];

Step 2. For all variables r = 1 to n do

Step 2.1. For t= 1 to m do

Step 2.2. Calculate Δ;

Step 2.3. If (ar >br) then ar = ar − Δ;

Step 2.4. If (ar <br) then ar = ar + Δ;

[End of Step 2.1 Loop]

[End of Step 2 Loop]

Step 3. Stop.

The first and second LSLPs are random in nature. Suppose an agent with the

solution vector of three variables [1.4, 2.0, 3.0] is using LSLP type 1. It will generate an

index number randomly in the range (1−3). Let the random index be 2, and Δ=0.1. a2

will be changed to a2= a2 ± Δ; if the fitness increases by adding Δ (i.e. now a2=2.1), the

agent will try to go in this direction by adding Δ for m times. While learning, if the

fitness decreases or the agent has passed m steps, this learning period stops and the

cycle starts again. The agent will generate another index number e.g. 3. Now a3 will be

selected to search for better fitness for maximum m times as before. This process will

continue until all the variables have been selected at least once.

The second LSLP type is same as the first, except for the sequence of variable

selection. Instead of selecting the variables randomly, the variables are selected in

ascending order of the index i.e. a1 will be selected first then a2 and so on.

The third LSLP is like the gradient-based search with the central difference method.

Initially every variable is changed by Δ. Then based on the effect of changing each

variable on the fitness, the variables are ranked. Variables are selected to be modified

according to the rank. Suppose by changing a1 in the positive direction, the fitness of

the solution of the agent is improved by 1%, for a2 the improvement is 20%, and for a3

Chapter 4. Agent-based Evolutionary Algorithms

86

the improvement is 30%. Then the sequence of selection of the variables will be a3, a2,

and then a1.

The last type of LSLP is similar to directed search. Here, the selected agent Ai,j with

solution vector [a1, a2, …, an] tries to reach nearer to the best agent of the previous

generation with solution vector [b1, b2, …, bn]. It attempts to change each variable a1,

a2, …, an by Δ to get closer to b1, b2,…, bn in up to m learning steps.

The first and second types of LSLP of the agent try to exploit the existing solution

vector by attempting to change the variables. The third type attempts to move the

solution vector in the direction of gradient and the last type of LSLP leads the agents

towards the current best solution. The last two LSLPs try to make the agents converge;

the first two maintain diversity.

During the LSLP the variables are changed with ± Δ. The direction of Δ (add/

deduct) is selected by observing the modified fitness value of the agent. The value of Δ

should be very small and gradually be decreasing with the generation numbers, to obtain

a high quality solution (high precision) at the end. Here the value of Δ is considered as Δ

= |G(0,1/g)| (for the first three types of LSLPs), where G(0,1/g) is a Gaussian random

number generator with zero mean and standard deviation (1/g), here g is the present

generation number. In the fourth LSLP 2)(rr a -b=Δ , where br is the rth solution

variable of the previous best agent, ar is the rth variable of the present agent and ar is

updated in each step, which speed up the directed search.

4.5 Fitness Evaluation and Constraint Handling

Evolutionary algorithms are well-known for their success in solving unconstrained

optimization problems. For solving constrained problems, an additional mechanism

must be incorporated into the fitness function or the evolution strategies to guide the

search direction (Liang and Suganthan, 2006). During the last decade several methods

were proposed for handling constraints for real valued optimization problems (Coello

Coello, 2002; Michalewicz and Schoenauer, 1996). A brief discussion of constraint

Chapter 4. Agent-based Evolutionary Algorithms

87

handling techniques can be found in section 2.4.3.

In AMA, the goal of the individual agent is to minimize the objective function value

while satisfying the constraints. To improve the fitness, agents first apply crossover

operators with their best neighbors. The best neighbor is found by using pair-wise

comparison among the neighbors. The pair-wise comparison indirectly handles the

constraints. Like Deb (2000) while comparing the fitness of two individual agents it

considers:

• A feasible individual is always better than an infeasible individual.

• If both of the individuals are feasible, then the individual with lower objective

function value is better (considering minimization problem).

• If both of them are infeasible, then the one with less constraint violation is better.

The total Constraint Violation (CV) of an individual is considered here as the

sum of absolute values by which the constraints are violated.

It is assumed here that the fitness of the best infeasible agent is worse than the worst

feasible agents. As such while comparing two agents, the infeasible agent is penalized

and feasible agent is rewarded, so the constraints are handled indirectly.

The equality constraints have been converted into inequality constraints −δ≤hj(X)≤δ,

where δ is a small tolerance value. Actually the presence of equality constraints (with δ

= 0) makes the feasible region very small compared to the search space, which makes it

harder for an evolutionary algorithm to find feasible solutions. A large value for δ

allows the algorithm to find some feasible solutions easily by temporarily increasing the

feasible space. If the search space is reduced after some generations by decreasing δ, the

algorithm tries to improve the previous feasible solutions to fit into the re-defined

feasible space. This dynamically changing value for δ is considered in AMA while

dealing with equality constraints. Details of the δ calculation will be discussed in next

chapter.

Chapter 4. Agent-based Evolutionary Algorithms

88

4.6 Selection of LSLPs

A certain percentage of the agents are allowed to apply different type of LSLPs to

exploit their current position for improving fitness. To select an appropriate LSLP, the

agents check a number of simple rules. Initially all the agents are assigned different

types of LSLPs randomly with Improvement Index (II) zero. Here, II indicates the rate

of fitness improvement made by a particular LSLP type assigned to an agent. A positive

value of II indicates that fitness is improved by the LSLP, while a negative value

indicates deterioration of fitness. When selecting a LSLP, an agent checks the parents’

type of LSLPs and II values. The parents may have different type of LSLPs associated

with II values. The offspring will choose the LSLP which has the higher II value. Since

an agent selects a LSLP based on the knowledge experienced by the parents the

adaptation level of the algorithms is Local-level adaptation (Ong et al., 2006).

The feasible and infeasible agents are separated for the calculation of II as a feasible

agent is given more preference than an infeasible one (this indirectly handles the

constraints). While calculating the II, if an infeasible solution vector of an agent

becomes feasible after applying a LSLP, the LSLP is rewarded by assigning the

maximum II value (+1). On the other hand a LSLP is penalized which converts a

feasible agent to an infeasible one by assigning worst II value (−1). As discussed earlier,

we should consider the objective function values for feasible agents that remain feasible

after applying the LSLP, and constraint violations for infeasible agents that remain

infeasible after the LSLP. Considering minimization problems, if the solution remains

feasible after the LSLP, the improvement index for feasible agent is then based on the

fitness values as follows:

LSLP) before value func. (Obj.

LSLP) after value func. (Obj.-LSLP) before value func. (Obj.II = (4.1)

Note that II is positive if the objective function value is smaller after LSLP, as desired

for a minimization problem.

If an agent with an infeasible solution uses a LSLP which still results in an

infeasible solution, the improvement index for the infeasible agent is based on total

Chapter 4. Agent-based Evolutionary Algorithms

89

constraint violations (CV) as follows:

LSLP) before CV (Total

LSLP) after CV (Total-LSLP) before CV (TotalII = (4.2)

The value of II is restricted in the range −1 ≤ II ≤ +1 by assigning values outside this

range to the boundary values.

4.7 Chapter Summary

This chapter has introduced a new agent-based memetic algorithm for solving

constrained real-valued optimization problems, by tailoring multi-agent concepts into a

new memetic algorithm. The individual candidate solutions of problems are represented

as agents with additional characteristics. Solving constrained real-valued optimization

by using agent-based memetic algorithm is new in the literature.

The performance of the algorithm is investigated in solving a set of test problems.

The details of experimental results, the comparisons with other algorithms, and the

effect of different components shall be discussed in the next chapter.

Chapter 5

Experimental Studies of AMA

The design of a new AMA is discussed in the previous chapter. This chapter reports

the experimental studies of the algorithm. It provides the detailed results of a set of

benchmark problems, comparison of the results with other well-known algorithms, and

the effect on the performance of different components of the algorithm. The results

show that the proposed algorithm is efficient in solving COPs.

5.1 Introduction

In the previous chapter, a framework of AMA for solving constrained optimization

problems has been proposed. In this chapter, the performance of the algorithm is

investigated by solving a set of 18 test problems which includes five new problems plus

13 existing well-known problems. The results are compared with four GA based well-

known algorithms (such as Koziel and Michalewicz, 1999; Chootinan and Chen, 2006;

Farmani and Wright, 2003; and Elfeky et al., 2006), one multi-populated differential

evolution algorithm (Tasgetiren and Suganthan, 2006) and one Evolutionary Strategy

(ES) based algorithm (Runarsson and Yao, 2000). In addition to the comparison of the

best fitness values, statistical significance testing is also carried out. The comparisons

show that the proposed approach gives mostly improved or comparable results to other

algorithms.

A number of experiments are designed and carried out to see the effect of different

parameters such as probability of LSLP, neighborhood size, crossover, and population

Chapter 5. Experimental Studies of AMA

91

size. These experimental results are analyzed, and their findings are discussed.

The organization of this chapter is as follows: the next section discusses the test

problems and their solutions using the proposed AMA. Then in section 5.3, the solutions

of AMA are compared with other algorithms. The contributions of different components

of AMA are analyzed in section 5.4. Finally the last section concludes the chapter.

5.2 Test Problems and Experimental Results

A set of 18 benchmark problems is used to test the performance of the proposed

AMA. The first 13 problems (indicated as g01-g13) are well known in the literature,

initially studied by Michalewicz and Schoenauer (1996), Koziel and Michalewicz

(1999), and Michalewicz (1995), and further studied by Runarsson and Yao (2000),

Chootinan and Chen (2006) and others. The other 5 problems (indicated here as B01-

B05) are new and collected from the literature (Floudas, 1999; Himmelblau, 1972). The

benchmark problems include different forms of objective function (linear, quadratic,

cubic, polynomial, nonlinear) and different number of variables (n). The characteristics

of the test problems are given in Table 5.1 and the detailed mathematical representations

are provided in the Appendix A and B. The first 13 problems are also presented in Table

3.1, and repeated in Table 5.1 for convenience.

The equality constraints hj(X)=0 of g03, g05, g11, g13, B01, and B02 have been

converted into inequality constraints −δ≤hj(X)≤δ, where δ is a small tolerance value.

Initially if we assign a very small value for δ, the solution space will be too small for the

algorithm to find feasible solutions. A large value for δ allows the algorithm to find

some feasible solutions easily by increasing the solution space. If the search space is

reduced after some generations by decreasing δ, the algorithm tries to improve the

previous feasible solutions to fit into the new solution space. This dynamic value for δ is

considered in this research while dealing with equality constraints. Initially δ is assigned

1. After every 16% of the maximum generation number, δ is divided by 10. Finally after

80% of the generations δ is left fixed at 0. The value of δ is reached to 0 after five steps,

which allows the algorithms to improve the solutions gradually.

Chapter 5. Experimental Studies of AMA

92

Table 5.1: Characteristics of the test problems.

Fn (n) Obj. Fuc. ρ LI NI LE NE AC Optimal

g01 13 Quadratic 0.0111% 9 0 0 0 6 -15.000

g02 20 Nonlinear 99.8474% 0 2 0 0 1 -0.803619

g03 10 Polynomial 0.0000% 0 0 0 1 1 -1.000

g04 5 Quadratic 52.1230% 0 6 0 0 2 -30665.539

g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498

g06 2 Cubic 0.0066% 0 2 0 0 2 -6961.814

g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306

g08 2 Nonlinear 0.8560% 0 2 0 0 0 -0.095825

g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630

g10 8 Linear 0.0010% 3 3 0 0 6 7049.331

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750

g12 3 Quadratic 4.7697% 0 93 0 0 0 -1.000

g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053950

B01 10 Nonlinear 0.0000% 0 0 3 0 3 -47.765

B02 3 Quadratic 0.0000% 0 0 1 1 2 961.715

B03 5 Nonlinear 0.0204% 4 34 0 0 4 -1.905

B04 9 Quadratic 0.0000% 0 13 0 0 6 -0.866025

B05 2 Linear 79.6556% 0 2 0 0 2 -5.508

ρ = Ratio between the feasible space and the search space, LI = Linear Inequalities, NI = Nonlinear
Inequalities, LE = Linear Equalities, NE = Nonlinear Equalities, AC = Active Constraints.

From Table 5.1, it is very clear that the benchmark problems are different in number

of variables, type of objective functions, and type of constraints. For different types of

problems, one would expect to use different parameters for population size, and

probability of learning (PL). Initially the algorithm is run for each of the problems

varying the population size (M×M) from M = 9 to 25 and PL from 0.05 to 0.25 with an

increment of 0.05. After this experimentation, the population size and PL are selected

based on the performance of the algorithm. The population size and the values of PL

used are given in the last column of Table 5.2. During the LSLP the agent is allowed at

Chapter 5. Experimental Studies of AMA

93

most m = 10 steps. The effect of learning steps have been investigated: lower values of

m slow down the convergence. On the other hand with larger values of m the

performance does not improve significantly with increase of the additional

computational cost. The maximum number of generations was set in this experiment at

3500. The initial solution vectors for the agents are randomly generated within the

bounds of each decision variable.

The best, mean, standard deviation, median, and worst of 30 independent runs with

30 different random seeds are given in Table 5.2. Following the same format used in the

literature (Elfeky et al., 2006; Koziel and Michalewicz, 1999; Runarsson and Yao,

2000) the results are rounded to 6 decimal places in g02, g08, g13, B04 and for the

remaining problems the results are rounded to 3 decimal points. The maximization

problems here are transformed into equivalent minimization problems.

All the experiments in this research have been carried using Visual C++ at

computers with Microsoft Windows XP operating systems (CPU 1.66 GHz, 1 GB

RAM).

Table 5.2 shows that among the first 13 problems (g01-g13) the proposed algorithm

has achieved the optimum for nine (g01, g02, g03, g04, g06, g08, g11, g12, and g13),

and for the new five problems (B01-B05) it has achieved the optimum for four (B02,

B03, B04, and B05). Though for the remaining problems AMA could not achieve

optimum, the achieved best results are very close to the optimum results. In g05, g09 the

achieved best results are within 0.0005% of the optimum (0.00027%, 0.00015%). For

g07 and B01 the best results are within 1% of the optimum (0.07817%, 0.02512%).

Only in g10 is the achieved best result more than 1% from the optimum (3.278%). In

spite of being a population based stochastic search algorithm, the mean results achieved

by AMA for the 30 runs are also very impressive. For 9 problems (g01, g03, g04, g06,

g08, g11, g12, B03, and B05) the achieved mean results are exactly the same as

optimum. For 7 problems the achieved mean are within 0.5% of the optimum results. In

the other two problems the mean results are close to the optimum, e.g. within 6.09% in

g10 and within 2.066% in B01. The other results e.g. median, worst, standard deviations

achieved by AMA are of very good quality. The results show AMA can be applied

Chapter 5. Experimental Studies of AMA

94

successfully in solving different types of COPs.

Table 5.2: Statistics for 30 independent runs of the proposed AMA.

Fn Optimal Best Mean St.Dev. Median Worst PS/PL

g01 -15.000 -15.000 -15.000 0.00E+00 -15.000 -15.000 400/0.2

g02 -0.803619 -0.803619 -0.803500 2.20E-05 -0.803488 -0.803465 400/0.2

g03 -1.000 -1.000 -1.000 6.59E-06* -1.000 -1.000 400/0.2

g04 -30665.539 -30665.539 -30665.539 1.46E-04 -30665.539 -30665.538 289/0.15

g05 5126.498 5126.512 5148.966 6.41E+01 5134.349 5482.953 400/0.2

g06 -6961.814 -6961.814 -6961.814 2.88E-08* -6961.814 -6961.814 169/0.15

g07 24.306 24.325 24.392 5.18E-02 24.378 24.491 256/0.15

g08 -0.095825 -0.095825 -0.095825 0.00E+00 -0.095825 -0.095825 400/0.2

g09 680.630 680.631 680.721 5.26E-02 680.726 680.802 324/0.05

g10 7049.331 7280.436 7479.064 9.84E+01 7498.673 7598.573 400/0.2

g11 0.750 0.750 0.750 2.99E-08* 0.750 0.750 400/0.2

g12 -1.000 -1.000 -1.000 0.00E+00 -1.000 -1.000 100/0.2

g13 0.053950 0.053950 0.054020 4.84E-05 0.054130 0.054340 400/0.2

B01 -47.765 -47.752 -46.777 5.35E-01 -46.633 -45.676 400/0.2

B02 961.715 961.715 961.722 9.15E-03 961.717 961.75 400/0.2

B03 -1.905 -1.905 -1.905 7.20E-04 -1.905 -1.901 400/0.2

B04 -0.866025 -0.866025 -0.866014 9.87E-06 -0.866016 -0.865994 400/0.2

B05 -5.508 -5.508 -5.508 9.03E-16* -5.508 -5.508 400/0.2

*Though the best, worst, median, and mean results are the same, standard deviation is positive due to
rounding error.

5.3 Comparison with Other Algorithms

To compare the performance of AMA with others, several well-known algorithms

are considered. The first 13 problems (g01-g13) are widely used in the literature. For

these 13 problems, AMA is compared with five well-known algorithms namely Koziel

and Michalewicz’s GA (Koziel and Michalewicz, 1999), Runarsson and Yao’s ES-based

algorithm (Runarsson and Yao, 2000), Chootinan and Chen’s GA with gradient-based

Chapter 5. Experimental Studies of AMA

95

repair method (Chootinan and Chen, 2006), Farmani and Wright’s self-adaptive fitness

formulation based GA (Farmani and Wright, 2003), Elfeky et al.’s GA (Elfeky et al.,

2006). However these algorithms have not attempted the five new problems. Tasgetiren

and Suganthan’s multi-populated differential evolution algorithm (Tasgetiren and

Suganthan, 2006) has solved these problems.

Koziel and Michalewicz’s GA (abbreviated as KM) depends on a homomorphous

mapping between an n dimensional cube and the feasible part of the search space. Its

drawback is that requires an initial feasible solution.

 Runarsson and Yao (2000) used an interesting ranking procedure known as

stochastic ranking in their ES-based algorithm and solved the first 13 problems. This

algorithm is well-known for its very good performance on these 13 problems. This

algorithm is abbreviated in this thesis as RY.

 Chootinan and Chen (2006) (abbreviated as CC) used a repair procedure embedded

into a simple GA as a special operator. They solved only the first 11 problems.

Farmani and Wright (2003) (indicated here as FW), proposed a self-adaptive fitness

formulation for constrained optimization and solved only the first 11 problems. They

designed a two stage dynamic penalty method which applies a small penalty for slightly

infeasible solutions with reasonable fitness values. In this way, it permits those

infeasible individuals to survive and be promoted to a feasible region near the optimal

solution.

Elfeky et al. (2006) used GAs with a new ranking, selection, and triangular

crossover methods. The algorithm is abbreviated as TC. The idea behind this new

method is the exploitation of some features of constrained problems. Here they have

calculated the constraint violation without penalizing the individuals, and have used this

information to rank and select the individuals. TC has solved only the 9 problems out of

first 13 that have only inequality constraints.

While comparing with different types of algorithms the population size is used 400

and maximum number of generation is considered 875 to ensure the same number of

fitness evaluations (350,000) used by the other algorithms (Chootinan and Chen, 2006;

Chapter 5. Experimental Studies of AMA

96

Elfeky et al., 2006; Farmani and Wright, 2003; Koziel and Michalewicz, 1999;

Runarsson and Yao, 2000) for the first 13 problems. Crossover is applied to all agents

and the probability of LSLP (PL) is 0.2 in all tests.

Table 5.3 gives the results (best, mean, standard deviation) of RY, KM, CC, FW, TC

and proposed AMA for the 13 test problems for 30 independent runs. The cells are left

empty when the algorithms have not reported that particular problem.

Table 5.3: Comparison of results with different algorithms for 13 problems (g01-g13).

Fn Optimal KM RY FW CC TC AMA

Best -14.786 -15.000 -15.000 -15.000 -15.000 -15.000

Mean -14.708 -15.000 -15.000 -15.000 -15.000 -15.000 g01 -15.000

St.Dev - 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Best -0.799530 -0.803515 -0.802970 -0.801119 -0.803516 -0.803619

Mean -0.79671 -0.781975 -0.79010 -0.785746 -0.791345 -0.803500g02 -0.803619

St.Dev 2.00E-02 1.20E-02 1.37E-02 9.42E-03 2.20E-05

Best -1.000 -1.000 -1.000 -1.000 - -1.000

Mean -1.000 -1.000 -1.000 -0.999 - -1.000 g03 -1.000

St.Dev - 1.90E-04 7.50E-05 5.99E-05 - 6.59E-06*

Best -30664.500 -30665.539 -30665.500 -30665.539 -30665.531 -30665.538

Mean -30655.3 -30665.539 -30665.200 -30665.539 -30665.531 -30665.537g04 -30665.539

St.Dev - 2.00E-05 4.85E-01 0.00E+00 9.16E-03 4.27E-04

Best - 5126.497 5126.9890 5126.4981 - 5126.512

Mean - 5128.881 5432.08 5126.4981 - 5148.966g05

5126.498

 St.Dev - 3.5E+00 3.89E+03 0.00E+00 - 6.41E+01

Best -6952.100 -6961.814 -6961.800 -6961.814 -6961.814 -6961.807

Mean -6342.6 -6875.940 -6961.800 -6961.814 -6961.814 -6961.804g06 -6961.814

St.Dev - 1.60E+02 0.00E+00 0.00E+00 3.70E-12 2.25E-03

Best 24.620 24.307 24.480 24.329 24.307 24.315

Mean 24.826 24.374 26.580 24.472 25.057 24.315 g07

24.306

 St.Dev - 6.60E-02 1.14E+00 1.29E-01 2.38E-01 1.08E-14*

Chapter 5. Experimental Studies of AMA

97

Fn Optimal KM RY FW CC TC AMA

Best -0.095825 -0.095825 -0.095825 -0.095285 -0.095825 -0.095825

Mean -0.089157 -0.095825 -0.095825 -0.095285 -0.095825 -0.095825g08

-0.095825

 St.Dev - 2.60E-17 0.00E+00 2.70E-09 4.23E-17 0.00E+00

Best 680.910 680.630 680.640 680.630 680.630 680.645

Mean 681.16 680.656 680.720 680.638 680.659 680.671 g09 680.630

St.Dev - 3.40E-02 5.92E-02 6.61E-03 1.98E-02 9.18E-03

Best 7147.900 7054.316 7061.340 7049.2607 7054.316 7280.436

Mean 8163.6 7559.192 7627.890 7049.5659 7493.719 7479.064g10 7049.331

St.Dev 5.30E+02 3.73E+02 5.70E-01 3.87E+02 9.84E+01

Best 0.750 0.750 0.750 0.750 - 0.750

Mean 0.750 0.750 0.750 0.750 - 0.750 g11

0.750

 St.Dev - 8.00E-05 0.00E+00 3.21E-08 - 2.99E-08*

Best -0.999 -1.000 - - -1.000 -1.000

Mean -0.999 -1.000 - - -1.000 -1.000 g12

-1.000

 St.Dev - 0.00E+00 - - 0.00E+00 0.00E+00

Best 0.054000 0.053957 - - - 0.053950

Mean 0.064000 0.067543 - - - 0.054020g13 0.053950

St.Dev - 3.10E-02 - - - 4.84E-05

KM = Koziel and Michalewicz (1999), RY = Runarsson and Yao (2000), FW = Farmani and Wright
(2003), CC = Chootinan and Chen (2006), TC = Elfeky et al. (2006), AMA= proposed Algorithm, *

Standard deviation is positive due to rounding error.

KM has solved 12 problems except g05 (the algorithms did not provide quality

results for this problem); AMA performs better in 10 of these problems and the same as

KM for the other 2 problems where both algorithms achieve the optimum.

In 5 problems (g01, g03, g08, g11, g12) the best and mean results of AMA are

exactly the same as the optimum results. RY has also achieved the same results for those

problems. FW and CC have achieved optimum for the first four problems (g01, g03,

g08, g11), however they have not tried g12 and g13. TC also achieved the optimal for

g01, g08, and g12, and they have not considered the other problems involving equality

Chapter 5. Experimental Studies of AMA

98

constraints (g03, g05, g11, and g13).

For g07, AMA could not achieve the optimum but the mean of AMA is the best

among these algorithms. The deviation of mean from optimum for AMA is only

0.03703%, when KM, FW, TC could not reach within 2% (2.13939%, 9.35571%,

3.08977% respectively).

The best result with AMA in g06 is 0.00010% away from the optimum result, which

is better than the achievements of KM and FW. In this problem the achieved mean of

AMA is 0.00014% from the optimum whereas KM, RY and FW are 8.89443%,

1.23350%, 0.00020% from optimum respectively.

AMA could not achieve the optimum in g04, however the achieved best result is

only 0.000003% away from the optimum. The achieved mean result of AMA is

0.000007% from the optimum, which is better than KM (0.033389%), FW

(0.001105%), and TC (0.000026%). For g10 the mean result of AMA is also better than

KM, RY, FW, and TC.

For g02 and g13 the performance of AMA is superior to the other algorithms. In g02

AMA has achieved the optimum and the deviation of achieved mean result of AMA

from optimum is 0.01481%. RY, FW, CC, and TC could not achieve mean results even

within 1% of the optimum in this problem (e.g. 2.69332%, 1.68226%, 2.22406%, and

1.52734% respectively). Among the other algorithms only KM’s mean is within

0.85974% of optimum, which is far way from AMA’s result.

AMA also achieved optimum in g13. FW, CC, and TC have not attempted g13. In

this problem the achieved mean result of AMA is 0.12975% from the optimum, which is

much better than the other two algorithms (KM, RY) as the achieved mean results of

KM and RY are 18.62836% and 25.19555% away from the optimum.

The five new test problems (B01-B05) were not solved by KM, RY, FW, CC, and

TC. The results of AMA are compared for B01-B05 with that of multi-populated

differential evolution algorithm (denoted here as TS) proposed by Tasgetiren and

Suganthan (2006). TS employed the notion of the near feasibility threshold to penalize

the infeasible solutions. However TS used a higher number of fitness evaluations

Chapter 5. Experimental Studies of AMA

99

(500,000). So, for comparing AMA results, the same number of fitness evaluations is

used. The best, mean and the standard deviations of these algorithms are given in Table

5.4. For these five new problems (B01-B05) from Table 5.4 we can see AMA has

achieved optimal results for 4 problems (B02, B03, B04, B05), the best results for B01

is 0.025% from the optimal. The mean and standard deviations of the 30 runs results are

also competitive with TS.

Table 5.4: Comparison of results for problems B01-B05

Fn Optimal TS AMA

Best -47.765 -47.752

Mean -47.765 -46.960 B01 -47.765

St.Dev 7.94E-15 1.92E-01

Best 961.715 961.715

Mean 961.715 961.716 B02 961.715

St.Dev 4.30E-06 9.59E-04

Best -1.905 -1.905

Mean -1.905 -1.905 B03 -1.905

St.Dev 0.00E+00 7.03E-08*

Best -0.866025 -0.866025

Mean -0.866025 -0.866014 B04 -0.866025

St.Dev 4.15E-17 7.17E-05

Best -5.508 -5.508

Mean -5.508 -5.508 B05 -5.508

St.Dev 0.00E+00 1.44E-09*

TS = Tasgetiren and Suganthan (2006), AMA= proposed Algorithm. * Standard deviation is positive due
to rounding error

The best fitness measures may not reflect the true performance of the algorithms.

This is due to the fact that EAs/MAs are stochastic search algorithms which may

produce only a single best solution with many other poor solutions. The best solution

might be considered here as an outlier. To avoid this, we can perform statistical

Chapter 5. Experimental Studies of AMA

100

significance testing for comparing two algorithms. If the distribution of sample is not

known, it is logical to use nonparametric tests such as Mann-Whitney-Wilcoxon

(MWW) test (Anderson et al., 1996; Conover, 1980), and Kolmogorov-Smirnov two

sample test (Conover, 1980). However, these algorithms require the full datasets which

is not available in the literature. A “goodness-of-fit” test such as the chi-square test

(Conover, 1980) is performed on the dataset which shows the dataset of AMA follows

approximately normal distribution. If other data sets are normally distributed, we can

use student’s t-test to compare the actual difference between two means in relation to

the variation in the data. It is assumed that other datasets are approximately normal.

Based on this assumption, student’s t-test is performed to compare the algorithms.

The performance of CC is quite promising (achieved optimal in 8 problems), but it

solved only 11 problems. However RY has solved all the 13 problems (g1-g13) and the

performance of RY is clearly better than the other algorithms. The proposed AMA is

compared with RY. The mean and standard deviation of 30 runs of both algorithms and

the comparisons using the Student’s t-test are presented in Table 5.5. The absolute value

of t (indicated as t-C) is considered here. If the calculated t value exceeds the tabulated t

value, then it can be said that the means are significantly different with 95% confidence

levels. If there is a significant difference it is indicated “Yes”, otherwise “No”, in Table

5.5. If the results are significantly different then it is indicated that the algorithm with

lower mean (for minimization problems) as the better algorithm in the final column.

When there is no significant difference between the means, it is indicated Equal. The

degrees of freedom is considered here 60 and t-tabulated value is 2.

From the t-test result in Table 5.5, we can see AMA is significantly better than RY in

4 test problems (g02, g06, g07 and g13), RY is better in 2 problems (g04, g09), and

there is no significant difference between the results of these two algorithms for the

other 7 problems. In those 7 problems both the algorithms have achieved optimal in 5

problems. It is worth noting that when RY is better, the difference is very tiny (small

fraction of a percent). But when AMA is better, the difference is much larger (for

example 25.03% improvement for problem g13).

This indicates that AMA is not only able to solve COPs but also performs better than

Chapter 5. Experimental Studies of AMA

101

some other algorithms.

Table 5.5: Student’s t-test between RY and AMA for 13 benchmark problems.

Mean St.Dev.
Significance

Level Fn Optimal

RY AMA RY AMA t-C 95%

Better/

Equal?

g01 -15.000 -15.000 -15.000 0.00E+00 0.00E+00 0.00 NO Equal

g02 -0.803619 -0.781975 -0.803500 2.00E-02 2.20E-05 5.89 YES AMA

g03 -1.000 -1.000 -1.000 1.90E-04 6.59E-06 0.00 NO Equal

g04 -30665.539 -30665.539 -30665.537 2.00E-05 4.27E-04 24.93 YES RY

g05 5126.498 5128.000 5148.966 3.50E+00 6.41E+01 1.79 NO Equal

g06 -6961.814 -6875.940 -6961.804 1.60E+02 2.25E-03 2.94 YES AMA

g07 24.306 24.374 24.315 6.60E-02 1.08E-14 4.91 YES AMA

g08 -0.095825 -0.095825 -0.095825 2.60E-17 0.00E+00 0.00 NO Equal

g09 680.630 680.656 680.671 3.40E-02 9.18E-03 2.28 YES RY

g10 7049.331 7559.192 7479.064 5.30E+02 9.84E+01 0.81 NO Equal

g11 0.750 0.750 0.750 8.00E-05 2.99E-08 0.00 NO Equal

g12 -1.000 -1.000 -1.000 0.00E+00 0.00E+00 0.00 NO Equal

g13 0.05395 0.067543 0.054020 3.10E-02 4.84E-05 2.39 YES AMA

RY = Runarsson and Yao (2000), AMA= proposed Algorithm.

5.4 Effects of Operators and Parameters

In this section, a number of experiments is reported to show the effects of different

search operators and parameters on the algorithm performance. In all these experiments,

a fixed number of fitness evaluations is used for a fairer comparison.

Chapter 5. Experimental Studies of AMA

102

5.4.1 LSLP

As mentioned earlier, a certain percentage (with probability PL) of the agents are

randomly selected to apply a life span learning process. Four types of LSLPs are

designed here, and agents select one of them adaptively. This section investigates: what

if AMA does not use LSLP, or just uses a particular LSLP always, or uses them

adaptively?

To answer these questions, the following six sets of experiments were carried out:

• In the first set (No LSLP) AMA has not used any LSLP.

• In the second set (Random LSLP) AMA has used only LSLP type 1.

• In the third set (Restricted Random LSLP) AMA uses only LSLP type 2.

• The fourth set (Gradient-based LSLP) uses only LSLP of type 3.

• The fifth set (Directed LSLP) uses only LSLP of type 4.

• In the sixth set, the agent selects one of the LSLPs adaptively.

The best, mean, and standard deviations of the six sets for 30 independent runs are

compared. Without LSLP (i.e. using only crossover) the results for all the test problems

are worse than the other 5 sets. This is due to lack of diversity in the population which is

ensured by the LSLP in this algorithm. The other five sets can all solve (and achieve the

optimum) problems g01, g08, g12, B05 as these problems have a large feasible region

compared to the other problems. Random and restricted random search based LSLP

(Type 1 and 2) perform well, as both try to maintain diversity in the population.

Sometimes random LSLP performs better than restricted random, and vice versa.

However, they may suffer from over diversification e.g. in solving g07 Random LSLP’s

standard deviation was maximum. Directed search-based LSLP always tries to make the

agent follow the previous generation’s best agent, which may force the algorithm to

converge. Sometimes it may cause convergence to a local optimum, which deteriorates

the performance of the algorithms. For example, in solving problems g03, g07, g11,

B04 the performance of Directed LSLP is worse than other sets (except No LSLP).

Chapter 5. Experimental Studies of AMA

103

Gradient-based LSLP also tries to converge to the solutions as it changes the variables

based on their effect on the objective function. For some problems it performs poorly

e.g. g04, as the direction of producing the fastest rate of improvement in the fitness

value is may no always best. The sixth set, i.e. adaptive approach in which the agent

adaptively selects any of these four LSLPs, ensures both diversity and convergence. The

performance of this set is the best of these six sets.

In some problems like g05, g13 the ratio of feasible space over the search space (i.e.

the value of ρ) is very low and for some problems the value of ρ is very high like g02 (ρ

=99.84%), g08 (ρ =85.60%). For the rest of this analysis g04 is used as an example as

for this problem ρ is 52.123% which is in between the extreme values. Figure 5.1

presents the best, mean, and standard deviation of the 30 runs of these six experiments

for test problem g04.

For this problem No LSLP’s performance is worst. All other LSLPs achieve the

optimum. In No LSLP the agents only use crossover, so after a while due to lack of

diversity they converge to a local optimum. On the other hand Random and Restricted

Random LSLPs try to change the variables randomly, aiming to maintain diversity, and

have performed well. Directed LSLP tries to improve the present agent towards the

previous generation’s best, which shows satisfactory performance here. Gradient-based

LSLP’s performance is poor for g04. As this LSLP changes the variables based on their

effect on the objective function, sometimes this may lead to a local optimum and may

decrease the performance. The adaptive approach shows the best performance as it

ensures both diversity and convergence.

From the experiments it is found that in adaptive LSLP the agents do not select any

of LSLPs uniformly. On average, 80% of the time the agents prefer random and

restricted random based LSLPs which try to diversify the population (the frequencies of

random and restricted random based LSLP are respectively 68.45%, 12.31%). To ensure

convergence they use gradient based and directed search on average 20% of the time.

The frequency of directed search is the lowest, at less than 1%; this indicates that the

agents rarely like to follow the previous generation’s best as it may mislead towards

local optima.

Chapter 5. Experimental Studies of AMA

104

-30700

-30650

-30600

-30550

-30500

-30450

-30400

-30350

Type of Learning

O
bj

ec
tiv

e
va

lu
e

Mean
Best

(1)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

No LSLP Random
LSLP

R.R. LSLP Gradient
LSLP

Directed
LSLP

Adaptive
LSLP

Type of Learning

S
t.D

ev
.

St. Dev.

(2)

Figure 5.1: Effect of LSLP on g04. (1) Different types LSLPs vs. achieved best and
mean results, (2) Different types LSLPs vs. St.Dev. of achieved results.

(All bar graphs start from zero. For the convenience of comparisons they are presented
within a shorter range.)

5.4.2 Probability of using LSLP

The probability of LSLP (PL) is another important parameter of the algorithm. For

low value of PL a small number of agents are selected for LSLP, which allows lower

diversity and so the algorithm may not perform well.

The performance of the algorithm is tested (over 30 runs each) with values for PL of

(0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30). For most of the problems, the algorithm may

No LSLP Random R.R. Gradient Directed Adaptive
 LSLP LSLP LSLP LSLP LSLP

O
bj

. F
un

c.
 V

al
ue

Chapter 5. Experimental Studies of AMA

105

achieve the optimum as an outlier with any of these values of PL. The mean and

standard deviations improve with an increase of PL, up to a point. For some easy

problems like g08, g12, B05, any PL over 0.05 achieves the same results. Sometimes a

high value of PL may over diversify the population, shown by high deviations in the

results. In solving g03, g08, B04 the standard deviation of the results is more for PL

=0.3 than for lower values of PL.

-30670

-30650

-30630

-30610

-30590

-30570

-30550

-30530

Probabilty of LSLP

O
bj

ec
tiv

e
va

lu
e

Mean
Best

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.01 0.05 0.1 0.15 0.2 0.25 0.3

Probability of LSLP

S
t.D

ev
.

St. Dev.

Figure 5.2: Effect of Probability of LSLP (PL) on problem g04. (1) Probability of LSLP
vs. achieved best and mean results, (2) Probability of LSLP vs. St.Dev. of achieved
results.

 0.01 0.05 0.10 0.15 0.20 0.25 0.30

 (1)

 (2)

O
bj

. F
un

c.
 V

al
ue

Chapter 5. Experimental Studies of AMA

106

Figure 5.2 demonstrated the best, mean and standard deviation of AMA in solving

g04. It shows by increasing PL both the mean and standard deviations improve

gradually, but after 0.2 the results are not improved significantly. That indicates that

increasing PL can improve the performance of the algorithm, however, after certain

point there will be no significant improvement.

5.4.3 Neighborhood Size

As discussed earlier, each agent communicates and interchanges information only

with its allowed neighboring agents. The size of the neighborhood plays an important

role in controlling the information diversification, hence indirectly controls the diversity

and convergence of solutions. Higher neighborhood size means lower diversity of

solutions as a better agent has a chance to dominate more agents in the entire lattice.

Hence it will accelerate the convergence. However, we need to ensure enough diversity

in the population to avoid the possibility getting trapped in local optima.

 T

 L A R

 B

 LT T RT

 L A R

 LB B RB

 TT

 LT T RT

LL L A R RR

 LB B RB

 BB

(1) (2) (3)

 LTT TT RTT

 LT T RT

LL L A R RR

 LB B RB

 LBB BB RBB

 LTT TT RTT

LLT LT T RT RRT

LL L A R RR

LLB LB B RB RRB

 LBB TT RBB

LLTT LTT TT RTT RRTT

LLT LT T RT RRT

LL L A R RR

LLB LB B RB RRB

LLBB LBB BB RBB RRBB

(4) (5) (6)

Figure 5.3: Different types of neighborhood. (1) Four Neighbors , (2) Eight Neighbors,
(3) Twelve Neighbors, (4) Sixteen Neighbors, (5) Twenty Neighbors, (6) Twenty four
Neighbors.

Chapter 5. Experimental Studies of AMA

107

Several experiments have been carried out with different neighborhood sizes in

order to find an appropriate size for better performance. We may consider the

surrounding four Left (L), Right (R), Top (T) and Bottom (B) agents as neighbor agents;

this neighborhood is indicated here as 4N. By increasing the number of neighbors from

four to eight the agents are allowed to communicate and interchange information with

more agents. As eight neighbors (8N), L, R, T, B, Left-Top (LT), Right-Top (RT), Left-

Bottom (LB), and Right-Bottom (RB) agents are considered. The neighborhood size is

extended to 12, 16, 20 and 24 neighbors. The different types of neighborhoods of an

agent A are shown in Figure 5.3 by the shaded areas. Another neighborhood size is also

considered which is called “Combined Approach”, here the agents consider both four

neighbors and eight neighbors interchangeably. Each approach is used for a certain

number of generations (25% of the maximum number of generations) alternately. This

approach is indicated as CA in the experiments.

Each agent mates with the best agents in its neighborhood and produces offspring. If

the neighborhood size is larger, the overlapping of the neighborhoods in comparisons

and competitions is higher. In this case, the dominant individuals tend to spread their

genetic material throughout the population, which drives the population convergence

prematurely. This is also reflected from the experiments: for most of the problems like

g02, g04, g05, g06, g07, g09, g10, g13 the mean of the results of 12N, 16N, 20N, and

24N are worse than 4N, 8N and CA, though the best results achieved by all the

approaches are optimal or very close to optimal. On the other hand, due to less

overlapping, the 4N maintains good diversity in the population and performs better than

8N in g13, B01, B03, B04. However 8N helps for slower convergence than the larger

neighborhood and performs even better than 4N in g06, B01. CA includes both the

characteristics of 4N and 8N and achieves comparatively better results than any of these

neighborhood sizes in g02, g04, g05, g06, g07, g09, g10, and g13. The performances of

different neighborhoods are same for the g01, g03, g08, g11, g12, B05 and each of the

approaches achieved the optimal and same mean.

Chapter 5. Experimental Studies of AMA

108

-30666

-30665

-30664

-30663

-30662

-30661

-30660

-30659

Different types of Neighborhood

O
bj

ec
tiv

e
va

lu
e

Mean

Best

(1)

0.00

5.00

10.00

15.00

20.00

4N 8N CA 12N 16N 20N 24N

Different types of Neighborhoods

S
t.D

ev
.

St. Dev.

(2)

Figure 5.4: Effect of Neighborhood size on problems g04. (1)Different Neighborhood
size vs. achieved best and mean results, (2) Different Neighborhood size vs. St.Dev. of
achieved results.

(All bar graphs start from zero. For the convenience of comparisons they are presented
within a shorter range.)

Figure 5.4 shows the best, mean and standard deviation achieved by the different

neighborhood sizes for g04 in 30 independent runs. CA performs the best of the all

approaches, however 4N and CA are very competitive and perform better (considering

mean and standard deviation) than other neighborhood sizes. The best, mean, standard

deviation achieved by CA are better than 4N.

 4N 8N CA 12N 16N 20N 24N

O
bj

. F
un

c.
 V

al
ue

s

Chapter 5. Experimental Studies of AMA

109

5.4.4 Population Size

Population size affects the algorithm’s performance. The agents start with randomly

generated solutions within the boundary of each decision variable, then they

communicate with others and exchange this information through the memetic operators

to reach the goal. A larger population allows more communication of information and

more diversity of initial solutions. As the total number of fitness evaluations (the

population size multiplied by the number of generations) is fixed, the number of

generations for a larger population size would be lower than that with a smaller

population size.

A set of experiments is carried out with different population sizes: 25, 81, 100, 225,

400, 625, 900, 1225, 1600, and 2500 (as the agents are organized in M×M, the

population size is a square number). Keeping the same budget of fitness evaluations

(350,000), the maximum number of generations used for them is 14000, 4320, 3500,

1555, 875, 560, 388, 285, 218, 140 respectively. The experimental results show that for

very small population sizes (e.g. 25) the algorithm rarely finds the optimum, and the

means of the results are also not impressive. For some easy problems like g01, g12,

AMA can find the optimum and achieve good mean and standard deviations. By

increasing population size the performance of the algorithms increases. However, after

certain level of population increment the results do not improve significantly. For

example in solving problems g02, g03, g04, g05, g08, g11, B01, B02 the performance

of AMA increases with the increase of population size up to a population size of 400.

Beyond 400, increasing the population size produces no significant improvement in

performance.

Figure 5.5 shows the best, mean, and standard deviations of results of 30 runs for

problem g04 with different population sizes. The optimum value for this problem is

−30665.539. For all population sizes AMA has achieved the optimum (or very close to

it) which is possible for AMA as a stochastic algorithm. However, for low population

sizes (25, 81 or 100) the mean of best results from 30 runs of them could not reach

−30650.0 and standard deviation is also large.

Chapter 5. Experimental Studies of AMA

110

-30700

-30650

-30600

-30550

-30500

-30450

-30400

-30350

Population size

O
bj

ec
tiv

e
va

lu
e

Mean
Best

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

25 81 100 225 400 625 900 1225 1600 2500

Population Size

St
.D

ev
.

St.Dev.

Figure 5.5: Effect of population size on problem g04. (1) Population size vs. achieved
best and mean results, (2) Population size vs. St.Dev.of achieved results.

With the increase of population size the performance of the algorithm improves. If

we consider the t-test result between population size 25 and 81, the performance is

significantly improved at 95% confidence level, however for population size 81 to 100

the performance is not significantly changed. It has improved from 100 to 225

significantly and after that there is no significant difference in the performance by

increasing the population size. This indicates that very low population sizes, despite

 25 81 100 225 400 625 900 1225 1600 2500

(1)

(2)

O
bj

. F
un

c.
 V

al
ue

Chapter 5. Experimental Studies of AMA

111

having more generations, cannot cover the whole search space. On the other hand, for

large population size (above 225/400) AMA performs well however they continue for

proportionally lower numbers of generations.

5.4.5 Crossover

In the preliminary framework of AMA, orthogonal crossover was used (this operator

was proposed by (Leung, 2001). The orthogonal crossover operator acts on two parents

and generates a set of new individuals from the search space defined by the two parents.

The search space is quantized into a finite number of points, and then orthogonal design

is applied to select a small but representative sample of points as potential offspring.

Orthogonal crossover is computationally expensive as it generates several offspring

from two parents, e.g. for problems containing more than 3 variables the orthogonal

array)3(4
9L generates 9 offspring, where 3 is the number of quantization level and 4 is

the number of factors (section 2.4.2 has discussed about this operator). For the same

problem SBX generates only two offspring.

To compare the performance of AMA with both crossovers, AMA is executed with

each of the crossover separately for the test problems. For the experiments other

parameters are remain the same (e.g. population size 400, PL =0.20). Table 5.6 and

Table 5.7 show the results of AMA using SBX operator (indicated as AMA-SBX) and

AMA using orthogonal crossover operator (indicated as AMA-OX), for the test

problems g01-g13, and B01-B05.

While comparing the best results, both approaches achieve same results in 8

problems. AMA-OX performs better in three problems (g05, g06, and g10). For the

remaining seven problems (g02, g07, g09, g13, B01, B02, and B04), AMA-SBX

performs better in achieving best results. AMA-OX achieves better mean result in only

g10. The mean results are same for three problems (g03, g08, and g12). However in g03

and g08 AMA-SBX achieves better standard deviations and same in g12. AMA-SBX

achieves better mean results in the remaining all 14 problems. The experimental results

show AMA with SBX is performing well. This crossover respects the interval schemata

Chapter 5. Experimental Studies of AMA

112

processing and guarantees that the extent of the children is proportional to the extent of

the parents (Deb and Agrawal, 1995; Ortiz-Boyer et al., 2005). With SBX operator any

arbitrary contiguous region can be searched, provided there is enough diversity

maintained among the feasible parent solutions.(Deb, 2000).

Table 5.6: Comparison of results of AMA with SBX and Orthogonal crossover for 13
problems (g01-g13).

Fn Optimal AMA-SBX AMA-OX
Best -15.000 -15.000
Mean -15.000 -14.798 g01 -15.000
St.Dev 0.00E+00 5.69E-01
Best -0.803619 -0.803514
Mean -0.803500 -0.798897 g02 -0.803619
St.Dev 2.20E-05 6.31E-03
Best -1.000 -1.000
Mean -1.000 -1.000 g03 -1.000
St.Dev 6.59E-06* 2.82E-05*
Best -30665.538 -30665.538
Mean -30665.537 -30660.315 g04 -30665.539
St.Dev 4.27E-04 9.38E+00
Best 5126.512 5126.509
Mean 5148.966 5251.551 g05 5126.498
St.Dev 6.41E+01 2.81E+01
Best -6961.807 -6961.810
Mean -6961.804 -6959.429 g06 -6961.814
St.Dev 2.25E-03 1.05E+01
Best 24.315 24.317
Mean 24.315 24.421 g07 24.306
St.Dev 1.08E-14* 7.56E-02
Best -0.095825 -0.095825
Mean -0.095825 -0.095825 g08 -0.095825
St.Dev 0.00E+00 7.62E-08*
Best 680.645 680.689
Mean 680.671 680.889 g09 680.630
St.Dev 9.18E-03 1.11E-01

Chapter 5. Experimental Studies of AMA

113

Fn Optimal AMA-SBX AMA-OX
Best 7280.436 7051.528
Mean 7479.064 7323.868 g10 7049.331
St.Dev 9.84E+01 2.06E+02
Best 0.750 0.750
Mean 0.750 0.762 g11 0.750
St.Dev 2.99E-08* 2.80E-02
Best -1.000 -1.000
Mean -1.000 -1.000 g12 -1.000
St.Dev 0.00E+00 0.00E+00
Best 0.053950 0.054007
Mean 0.054020 0.259113 g13 0.053950
St.Dev 4.84E-05 4.34E-01

* Standard deviation is positive due to rounding error.

Table 5.7: Comparison of results of AMA with SBX and Orthogonal Crossover for
problems B01-B05.

Fn Optimal AMA-SBX AMA-OX
Best -47.752 -47.246
Mean -46.777 -46.475 B01 -47.765
St.Dev 5.35E-01 3.14E-01
Best 961.715 961.733
Mean 961.722 968.085 B02 961.715
St.Dev 9.15E-03 5.46E+00
Best -1.905 -1.905
Mean -1.905 -1.901 B03 -1.905
St.Dev 7.20E-04* 4.57E-03
Best -0.866025 -0.866023
Mean -0.866014 -0.865841 B04 -0.866025
St.Dev 9.87E-06 2.31E-04
Best -5.508 -5.508
Mean -5.508 -5.503 B05 -5.508
St.Dev 9.03E-16* 4.36E-03

* Standard deviation is positive due to rounding error.

As SBX is simple and performs well in solving these types of problems with

multiple optimal solutions with a narrow global basin, SBX is preferable for the AMA

Chapter 5. Experimental Studies of AMA

114

framework.

5.4.6 Section Summary

In this section, experiments showed how the performance of the proposed AMA is

affected by various parameter settings and design decisions, and provided explanations

from the observations. It is established that:

• It is best to use adaptive approach in selecting a LSLP, which allows an agent

adaptively to select any of these four LSLPs, ensuring both diversity and

convergence.

• It is suggested to use a value of 0.20 for probability of learning PL, which provides

a balance between the diversity in the populations and performance of the

algorithm.

• The size of the neighborhood plays an important role in controlling the information

diversification. The “Combined Approach” shows better performance as it provides

indirectly a balanced control of the diversity and convergence of solutions.

• Population size also affects the algorithm’s performance. The experimental study

shows the performance AMA performs best with population size 400.

5.5 Chapter Summary

This chapter investigates the performance of the AMA in solving a set of test

problems which includes five new problems plus 13 existing well-known problems. The

results show the proposed algorithm is robust in its handling of both linear and

nonlinear equality and inequality constraints. As each of the agents exchanges

information with its neighbors, AMA does not need any ranking for the whole

population. The constraint handling techniques used here do not need any penalty

functions or parameters. The agent selects a neighborhood agent by using pair-wise

comparison to mate, which handles the constraints indirectly. Also in the self-adaptation

Chapter 5. Experimental Studies of AMA

115

process of learning, while calculating the improvement index, the constraints are

indirectly handled. These two levels of constraint handling with appropriate

neighborhood size, SBX crossover, and LSLP ensure the superior performance of AMA

in handling constraints.

The algorithm shows very impressive performance by achieving optimal results in

13 problems. The performance of the AMA is compared with five GA-based and one

ES-based algorithms. The comparison results show that the proposed approach gives

mostly improved or comparable results to other algorithms. A statistical significance

tests is used and the results show the proposed algorithm’s performance is better than

the ES-based algorithms for the well-known 13 problems.

The effect of the proposed LSLPs is analyzed, showing that adaptively selecting one

of the LSLPs achieves better results ensuring both diversity and convergence.

Probability of Learning (PL) is also an important parameter; the performance of the

algorithm increases with the increase of PL, but after a certain level it causes over

diversification. The size of neighborhood also affects the performance of the algorithm.

The combined approach (i.e. applying 4 neighbors and 8 neighbors interchangeably)

performs better than the other types of neighborhood. The effect of population size is

also investigated, which shows a low population size is not able to achieve good results.

With the increase of population size the performance improves, however after a certain

population size there is no significant improvement in the results.

The next chapter concentrates more in solving COPs where the feasible space is

very tiny in comparison to the search space, which makes it hard for the algorithms to

find even the feasible space.

Chapter 6

Problems with Tiny Feasible Space

The quality of individuals in the initial population influences the performance of

evolutionary algorithms, especially when the feasible region of the constrained

optimization problems is very tiny in comparison to the entire search space. This

chapter proposes a simple method to improve the quality of randomly generated initial

solutions by sacrificing very little in diversity of the population. The proposed method,

which is recognized as the Search Space Reduction Technique (SSRT) in this thesis,

directs the selected low quality infeasible solutions towards the feasible space. The

performance of the proposed technique is tested using five different EAs by solving a

number of state-of-the-art test problems and a real world case problem. The

experimental results show SSRT improves the solution qualities as well as speeds up the

performance of the algorithm.

6.1 Introduction

In many practical optimization problems, the feasible spaces are very tiny. These

problems are very challenging as it requires searching a huge variable space in order to

locate feasible points with acceptable quality. To solve problems with tiny feasible

space, EAs usually take a long time to find even feasible solutions. With good quality

initial solutions, the search operators reach the feasible region quickly and find better

solutions. As the initial populations of EAs are randomly generated, they may not be

good quality solutions. A careful preprocessing, with little sacrifice in diversity, can

improve the initial solutions, which not only accelerates the convergence but also leads

Chapter 6. Problems with Tiny Feasible Space

117

to better solutions.

In this chapter, to improve the quality of the initial population, a simple search space

reduction technique is presented, which can be considered as preprocessing or an

additional step before applying EAs for solving constrained optimization problems. The

COPs are considered having tiny feasible region when ρ (ratio between the feasible

region and search space) is less than 1%. The main idea of SSRT is to move some of the

poor quality infeasible solutions towards the feasible region. As the initial population of

EAs is randomly generated to ensure diversity, it may cause delay in reaching a

reasonably good solution for tiny feasible space. Once a good solution point is obtained,

EAs usually converge nicely to an acceptable solution. To enhance the performance of

the algorithm in reaching the feasible space quickly, the proposed SSRT guides the

initial population to move towards the feasible region. The method finds a centroid from

the initial feasible solutions (if any) with some infeasible solutions around the feasible

space (i.e. solutions with lower constraint violations). A certain percentage of the worse

infeasible solutions are then encouraged to move towards the centroid (only some are

moved, not all, to maintain a certain level of diversity). Such a move would help certain

individuals to reach the feasible region quickly by improving the solution quality.

By applying SSRT the randomly generated initial solutions are no longer random,

rather they are directed towards the feasible space, which helps the algorithms to reach

the feasible region faster and improve the solution quality. However, in implementing

the process appropriately, the following questions must be answered.

• When should be the SSRT applied?

• How to calculate the centroid for SSRT?

• How long shall be SSRT applied as it decreases the diversity?

The experiments aim to find the answers to these questions.

Initially the SSRT has been tested with the agent-based memetic algorithms

(presented in chapter 4). From the initial experiments and analysis of SSRT with AMA,

it is clear that the performance of any EAs can be enhanced by incorporating SSRT in

Chapter 6. Problems with Tiny Feasible Space

118

solving constrained optimization problems with tiny feasible region. Then an extensive

investigation is made for the effectiveness of SSRT by incorporating it with simple

genetic algorithm and three other well known algorithms such as Deb et al. (2002),

Elfeky et al. (2006), and Sarker and Ray (2005) from the literature for a set of

benchmark problems with tiny search space and a real world case problem (Sarker and

Quaddus, 2002; Sarker and Ray, 2009). The experiments show SSRT improves the

solution qualities as well as speeds up the performance of the algorithms.

The rest of this chapter is organized as follows. Section 6.2 describes the proposed

search space reduction technique and its different issues. Section 6.3 describes the

performance of the proposed approach with different algorithms on the test problems

and the effect of parameters used in SSRT. Finally, Section 6.4 concludes the chapter.

6.2 Search Space Reduction Technique

In a population-based method, such as EA, it is not expected that the random initial

solutions would always be of good quality. Some algorithms like GENOCOP

(Michalewicz, 1994; Michalewicz and Janikow, 1996) assume a feasible starting point

(or feasible initial population), which implies that the user or the EA must have a way of

generating (in a reasonable time) such a starting point. The homomorphous mapping

method of Koziel and Michalewicz (1999) also requires an initial feasible solution.

The proposed SSRT deals with the initial randomly generated populations. It allows

the most infeasible individuals to move towards the feasible region, before the

evolutionary process starts, which is basically squeezing the search space. That means

the evolutionary process starts with a better population in a reduced search space.

If there are no or few (less than 1%) feasible solutions in the initial random

population, the EAs are allowed to apply SSRT. The infeasible solutions are then ranked

based on the extent of constraints violation. The feasible solutions (if any) and a certain

percentage of the top ranked infeasible individuals are then used to find a centroid. If

there is no feasible individual, only the top ranked infeasible individuals are first

Chapter 6. Problems with Tiny Feasible Space

119

modified to reduce the violation of constraints and then use them to calculate the

centroid.

After calculating the centroid a certain percentage of worst infeasible solutions in

the population are allowed to move towards the centroid. Although this process guides

the worst infeasible solutions towards the feasible space, it reduces the diversity of the

population. To ensure diversity only a small number of the worst infeasible solutions are

allowed to follow the centroid, and discontinue the process when the diversity of initial

population is decreased to a certain level.

Figure 6.1 demonstrates the working principle of SSRT. First it calculates a centroid.

If there are not enough feasible solutions (in the figure only one feasible) in the

population, it considers a percentage of good quality infeasible solutions (shown in

shaded area) to calculate the centroid. These good quality infeasible solutions are

mentioned as allowable infeasible solutions. After that a portion of the non-allowable

infeasible solutions (i.e. worst infeasible solutions in the population) move towards the

centroid, which is shown by the arrows.

Figure 6.1: Search Space Reduction Technique

Chapter 6. Problems with Tiny Feasible Space

120

The proposed algorithm for SSRT is given below:

Step 1. Rank the infeasible solutions based on the Constraint Violation (CV). Define

the allowable infeasible range. Calculate the diversity of the population.

Step 2. Check the number of feasible individuals. If it is more than 1% of the

population, go to step 7. Otherwise go to step 3.
Step 3. If there are feasible individuals, calculate the centroid using the feasible and

allowable infeasible individuals and go to step 5, else go to step 4.

Step 4. Select the top ranked infeasible solution (i.e. the best infeasible individual

based on the CV).

a. Find the constraint which has maximum CV for this individual.

b. Select a variable randomly, which is involved in the constraint which is not

yet modified.

c. Change the variable with δ± and mark as modified.

d. If the individual became feasible, go to step 2, else go to step 4e.

e. If all constraints are checked or all the variables are modified, then find the

centroid of the allowable infeasible along with this one, otherwise go to

step 4.

Step 5. Force a certain percentage of the non-allowable infeasible solutions to follow

the centroid.

Step 6. Calculate the diversity of the population. If the diversity decreases up to a

certain level then go to step 7, otherwise go to step 2.

Step 7. Stop.

Here the value of δ is small; δ = |G(0,1)|, where G(0,1) is a Gaussian random

number generator with zero mean and standard deviation 1.

For calculating the centroid, for each variable of the centroid c
ix , the arithmetic

mean of the participating solutions of respective variables ix is considered. For

calculating the diversity, the mean Euclidian distance of all solutions from the centroid

is taken.

Chapter 6. Problems with Tiny Feasible Space

121

A portion of the non-allowable solutions follow the centroid as follows:

n = i xαx αx c
ii

n
i 1,)1(−+= (6.1)

Where n
ix and c

ix are the ith variable of the non-allowable solution and the centroid

respectively, n is the number of variables in the solution vector and α is a uniform

random number from 0 to1.

6.2.1 Computational Cost

Since SSRT is applied to the randomly generated initial population before the

evolutionary process, it will increase the computational cost to the selected EA. In the

algorithm Step 1 needs to sort the infeasible solutions based on the constraint violations,

and so simple bubble sort can be used, which needs O(M2) comparisons for worst case if

the initial population contain M infeasible solutions. However if the size of M is very

large then it would be better to replace the bubble sort with other efficient sorting

algorithm, e.g. quick sort which needs less computational complexity O(Mlog M 2).

Step 3a requires finding the most violated constraint, which can be done by using

normal linear search. If the problem needs to satisfy R number of constraints (R = p

inequality constraints + q equality constraints) then the linear search needs O(R)

comparisons for worst case. So the overall complexity of the SSRT is O(M2), which is

governed by the sorting. We can consider this additional complexity acceptable if the

solution quality of EAs is enhanced by SSRT.

6.2.2 Issues Regarding SSRT

The proposed SSRT should be applied when there are very few feasible solutions

(e.g. less than 1% of the population size) in the initial random population. In SSRT, a

centroid is calculated to guide the worst individuals. Using certain feasible and top

ranked infeasible solutions the centroid is calculated. A good quality centroid will guide

Chapter 6. Problems with Tiny Feasible Space

122

the worst individuals to move towards the feasible space. In finding a quality centroid,

we need to decide an appropriate number (or percentage) of infeasible solutions that

will be used in calculating the centroid.

Another important issue in designing SSRT is the stopping criterion for SSRT. As

the centroid attracts the other low quality individuals towards it, the diversity of the

population decreases. However in any population based search algorithm, the diversity

is an important factor. As diversity of the population decreases with application of

SSRT, how long we should apply the SSRT?

Experimental studies are made regarding these issues in the next section.

6.3 Experimental Results and Discussions

The issue of dealing with constraints has long been difficult for optimization

methods (Takahashi et al., 2003). It has become harder when the feasible region is very

tiny. In this study only those benchmark problems are chosen, used in Chapter 5, whose

feasible region is very small compared to their search space. To get an estimate of how

tiny is the feasible space of these problems, a metric suggested by Michalewicz and

Schoenauer (1996) is used, ρ = SF , where S is the number of random solutions

generated (1,000,000 in this case), and F is the number of feasible solutions found (out

of the total randomly generated solutions). Here only those problems are considered,

whose ρ is less than 1%. The characteristics of these benchmark problems and the

optimal values are shown in Table 6.1.

In this section first an investigation is made for the performance of SSRT on AMA

with the benchmark problems and the effect of parameters used in SSRT. Then it

discusses the effectiveness of SSRT by incorporating it with simple genetic algorithm

and three different existing EAs for solving this type of constrained problems with tiny

feasible solutions.

The research has not been restricted only on the benchmark problems: the

Chapter 6. Problems with Tiny Feasible Space

123

performance of SSRT is also tested on a real world case problem collected from the

literature (Sarker and Quaddus, 2002; Sarker and Ray, 2009). Details of these

experimentations are discussed in section 6.3.3.

Table 6.1: Characteristics and the optimal results of the benchmark problems

Prob (n) Obj. Fuc. ρ  LI NI LE NE AC Optimal

g01 13 Quadratic 0.0111% 9 0 0 0 6 -15.000

g03 10 Polynomial 0.0000% 0 0 0 1 1 -1.000

g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498

g06 2 Cubic 0.0066% 0 2 0 0 2 -6961.814

g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306

g08 2 Nonlinear 0.8560% 0 2 0 0 0 -0.095825

g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630

g10 8 Linear 0.0010% 3 3 0 0 6 7049.331

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750

g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053950

B01 10 Nonlinear 0.0000% 0 0 3 0 3 -47.765

B02 3 Quadratic 0.0000% 0 0 1 1 2 961.715

B03 5 Nonlinear 0.0204% 4 34 0 0 4 -1.905

B04 9 Quadratic 0.0000% 0 13 0 0 6 -0.866025

ρ = Ratio between the feasible space and the search space, LI=Linear Inequalities, NI=Nonlinear
Inequalities, LE= Linear Equalities, NE= Nonlinear Equalities, AC=Active Constraints

6.3.1 Experimentation with AMA

In this research, two sets of experiments are carried out for AMA to justify the

necessity of SSRT on AMA. In this chapter AMA used the same parameters proposed

in chapter 5.

• In the first set, 30 sets of initial populations are generated randomly for each test

problem under consideration, and then AMA is used to solve the problems with

the same initial population in 30 independent runs.

Chapter 6. Problems with Tiny Feasible Space

124

• In the second set of experiment, SSRT is applied to all the initial populations

randomly generated in the first set of experiments, and then AMA uses the same

modified populations for solving the each test problem in 30 independent runs.

The maximum number of generations is set in this experiment at 3500. The

allowable range (AR) of infeasible solutions for calculating the centroid is at most 50%

of the infeasible solutions and maximum diversity reduction allowed from the initial

random population is 10%. The initial solution vectors for the solutions are randomly

generated within the bounds of each decision variable. The probability of learning used

here is 0.2. As higher population size initially provides enough diversity and AMA

achieved good quality solutions with that (presented in chapter 5), here lower

population size (100) is used to see the effect of SSRT more clearly.

The two sets of results of AMA are compared to see whether the results are

improved with SSRT, and how fast the algorithms converge to the best results. The

amount of time is also calculated to see how much time is expended for the execution.

The best, median, mean, standard deviation, and worst results of 30 independent runs

(with 30 different random seeds) are given in Table 6.2. The last two columns of Table

6.2 shows the average number of generations required to find the best results (as an

indication of how quickly the algorithm achieves the quality solutions) and the whole

execution time.

From Table 6.2 we can see AMA with SSRT has achieved better results in different

aspects than without SSRT (bold fonts indicates better achievements of AMA with

SSRT). If we consider the mean results, AMA with SSRT has achieved better mean

results in 78.57% of cases and the same mean in the other 21.43% of problems. It has

improved the mean results by more than 5% in several problems, such as 71.44% in

problem g13, 5.71% in g01, and 5.61% in g06. The improvements in other problems are

also remarkable.

AMA with SSRT has also performed better in achieving the best results in 35.71%

of the problems, and the same best results in 42.85% of problems. On 78.57% times the

worst results and on 57.14% times the median results of AMA with SSRT were better

than only AMA.

Chapter 6. Problems with Tiny Feasible Space

125

Table 6.2: Performance of AMA with and without SSRT from 30 independent runs.

Fn AMA Best Median Mean StDev Worst AvgGen Time(s)

NST -15.000 -15.000 -14.190 1.30E+00 -10.109 3027.467 81.75
g01

ST -15.000 -15.000 -15.000 3.78E-09* -15.000 3083.067 85.62

NST -1.000 -1.000 -1.000 2.76E-06* -1.000 3500 80.86
g03

ST -1.000 -1.000 -1.000 4.32E-06* -1.000 3500 69.91

NST 5127.388 5186.761 5208.999 8.20E+01 5463.927 3500 27.62
g05

ST 5127.457 5226.753 5200.580 4.94E+01 5249.292 3500 28.08

NST -6961.813 -6961.809 -6592.092 1.38E+03 -1204.787 3352.4 20.78
g06

ST -6961.813 -6961.811 -6961.974 6.18E-01 -6961.810 3375.6 14.47

NST 24.329 24.436 24.510 3.12E-01 25.958 3191.4 207.66
g07

ST 24.324 24.358 24.360 1.55E-02 24.384 3057.8 150.64

NST -0.095825 -0.095825 -0.095825 1.49E-08* -0.095825 1558.2 15.27
g08

ST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 1766.867 16.43

NST 680.731 681.177 681.714 1.06E+00 684.146 2482.267 54.31
g09

ST 680.659 680.906 680.882 9.80E-02 680.965 2204.733 52.54

NST 7077.282 7444.316 7453.023 2.79E+02 8062.957 3172.233 30.22
g10

ST 7058.727 7143.765 7155.326 7.05E+01 7276.031 3039.933 33.24

NST 0.750 0.750 0.750 3.35E-03* 0.750 3500 14.92g11

 ST 0.750 0.750 0.750 4.92E-09* 0.750 3500 15.24

NST 0.054212 0.065926 0.193989 2.07E-01 0.811584 3500 40.72
g13

ST 0.053969 0.055524 0.055411 9.22E-04 0.056924 3500 46.17

NST -46.542 -44.950 -44.652 1.63E+00 -39.808 3500 85.48
B01

ST -47.292 -45.594 -45.870 5.39E-01 -45.293 3500 85.43

NST 961.716 964.836 965.085 2.39E+00 970.210 3500 17.98
B02

ST 961.721 963.914 963.134 1.18E+00 964.474 3500 19.33

NST -1.905 -1.884 -1.878 3.83E-02 -1.694 3308.567 45.95
B03

ST -1.905 -1.900 -1.900 3.14E-03 -1.894 3476.6 48.13

NST -0.866022 -0.865896 -0.865748 3.73E-04 -0.864446 3301.4 117.61
B04

ST -0.866018 -0.865988 -0.865988 1.62E-05 -0.865960 3135.467 106.22

NST= AMA without SSRT, ST = AMA with SSRT. Avg.Gen.= Average generation required to find best
results, Bold font indicates the best result achieved by AMA with SSRT, * indicates though the best, worst,
median, and mean results are the same, standard deviation is positive due to rounding error.

Chapter 6. Problems with Tiny Feasible Space

126

If we consider the average number of generations required to find out the best result,

in 28.5% of problems AMA with SSRT is faster than the other approach. For all

problems on average AMA needed 3170.995 generations to find the best results while

AMA with SSRT needed 3152.862 generations. For the problems involving equality

constraints (g03, g05, g11, g13, g14, g15) the dynamic relaxation (described in previous

chapter) is used and so it is considered that the best results are found in both approaches

after the algorithms are terminated (i.e after 3500 generations). For this reason in

54.55% of problems each approach needs the same number of generations. However if

we exclude those problems from this calculation then AMA with SSRT reduced by an

average of 1.09% (i.e, 31.73 generation per problem) the required average number of

generations to find out the best result.

Not only that, if AMA is executed with the initial population generated by SSRT,

then it takes less time for the whole execution than the time required by AMA with

random initial population. The last column of Table 6.2 shows the amount of time

required by each approach. It shows AMA with randomly generated initial population

needs on average 60.08 seconds to solve a problem. On the other hand AMA with SSRT

generated initial population needs only 55.10 seconds, which saves 8.28% of the

execution time of AMA.

So we can say by applying SSRT in most of the problems AMA has improved either

the solution or computational time or both.

Now the effects of parameters used in SSRT on AMA shall be discussed.

In applying SSRT, a centroid is calculated using certain feasible and top ranked

infeasible solutions. In the process, we need to decide the number (or percentage) of

infeasible solutions in calculating the centroid, and a stopping criteria for SSRT. As the

diversity of the population decreases with application of SSRT, diversity measure is

used as a stopping criterion. These two parameters will be discussed in the following

subsections.

Chapter 6. Problems with Tiny Feasible Space

127

6.3.1.1 Effect of Allowable Range (AR) in calculating SSRT

While calculating the centroid, if we allow all of the infeasible solutions with the

feasible solutions (if any), it may move the centroid towards an infeasible region. In the

process, the infeasible solutions are ranked based on their constraint violation and

consider a certain percentage of the top ranked infeasible solutions. As these

participating solutions are better than the others, it is expected that the centroid may

have better fitness than the low ranked solutions. To see the effect of the percentage of

top ranked infeasible solutions used in SSRT on the overall solution, experiments have

been carried out by varying the percentage of the top ranked infeasible solutions (from

10% to 50% with an increment of 10%) while leaving the other parameters constant e.g.

population size 100, PL 0.2, Diversity Reduction (DR) 10%. The solutions are compared

with that of AMA without SSRT.

The best, mean, standard deviations, worst, median, and average number of

generations required to find out the best result for 30 independent runs are compared. As

the centroid guides the worse infeasible solutions, the quality of the centroid plays a

vital role to the performance of the algorithms. If we consider a very small number of

top ranked infeasible solutions with feasible solutions (if any, since the feasible space is

very tiny), they may not provide a good quality centroid. If we increase the allowable

range (AR), there is a high chance that it will produce a good quality centroid. However,

the range of AR should not be too large, since the use of higher percentage could

mislead the search process where multiple disjointed feasible spaces exist for a problem.

In most of these test problems AR ranges 30% to 50% provides better results.

In Table 6.3 the results of problem g01 are shown as an example. For the best results

of the 30 runs, in all the cases AMA has achieved the optimal. When we have

considered 50% top infeasible to find the centroid, the performance of the algorithm is

the best among the 6 sets of results. We should not consider too many infeasible

solutions, which may not help the solutions rather direct them to other areas of the

search space, resulting in longer processing time. Though the test problems are diverse

in nature, in solving most of the problems AMA shows similar behavior.

Chapter 6. Problems with Tiny Feasible Space

128

Table 6.3: Effect of Allowable Range (AR) for calculating centroid on problem g01

AR (%) Best Mean St. Dev. Worst Median AvgGen

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 3211.98

10 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 3056.19

20 -15.000 -14.960937 2.14E-01 -13.828124 -15.000 3146.19

30 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 3198.01
40 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 3178.89

50 -15.000 -15.000000 3.78E-09 -15.000000 -15.000 3083.07

AR= Allowable range of infeasible solutions for centroid, Avg Gen = Average number of generation
required to find the best result.

6.3.1.2 Effect of Diversity Reduction (DR)

The diversity of the population decreases when the low ranked infeasible solutions

move towards the centriod. If the diversity of the population decreases too much then

the performance of the algorithm also deteriorates. So for SSRT it is a critical issue to

maintain diversity while attracting the low ranked infeasible solutions towards the

feasible region. A small reduction of the diversity of the population by applying SSRT

improves the performance of AMA. By applying SSRT, we can still provide sufficient

diversity by controlling the diversity reduction.

To show the effect of reducing diversity during SSRT, a set experiments is carried

out with different percentage of diversity reduction (10% to 50% with an increment of

10%) while keeping other parameters constant (Population size 100, PL 0.20, AR 50%).

SSRT is stopped when the diversity reduced to a certain percent (e.g. 10% for the first

experiment) from the initial stage. In general, a low range of diversity reduction (10-

20%) improves the performance of AMA. However a higher value of diversity

deteriorates the quality of performance due to the lack of diversity in the population.

The Results of the experiment for 30 independent runs for problem g01 are given in

Table 6.4.

The experimental results show the small reduction of diversity like 10%-20% gives

the algorithm better performance. However a large amount of diversity reduction is not

Chapter 6. Problems with Tiny Feasible Space

129

helping the AMA significantly. If we consider the mean, standard deviation and worst

results, the performance of AMA is best with 10% relative diversity reduction. That

indicates SSRT improves the performance of the algorithm, however we need to ensure

enough diversity in the population although SSRT reduces the diversity up to certain

level.

Table 6.4: Effect of Diversity Reduction (DR) on problem g01

DR(%) Best Mean St. Dev. Worst Median AvgGen

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 3165.19

10 -15.000 -15.000000 3.78E-09 -15.000000 -15.000 3083.07

20 -15.000 -15.000000 2.91E-08 -15.000000 -15.000 3126.52

30 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 3073.60

40 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 2983.95

50 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 3011.67

DR= Relative Diversity Reduction from the initial randomly generated population after SSRT, Avg Gen =
Average number of generations required to find the best result.

6.3.1.3 Summary

The experiments described in this section show how the performance of SSRT is

affected by various parameter settings. It is shown that:

• The allowable range for calculating the centroid should not be too large, since

the use of higher percentage could mislead the search process. For best

performance it is suggested to use AR in the range of 30% to 50%.

• Since SSRT reduces the diversity in the population, the experimental study

shows the algorithm performs best with 10% relative diversity reduction.

For the experiments described in the next section, AR is 50% and relative diversity

reduction is 10%.

6.3.2 Experimentation with other Evolutionary Algorithms

This section investigates the performance of SSRT with other evolutionary

Chapter 6. Problems with Tiny Feasible Space

130

algorithms. Three well known Evolutionary Algorithms by Deb et al.(2002), Elfeky et

al. (2006), and Sarker and Ray (2005), and simple genetic algorithms have been chosen

to evaluate the effect of SSRT.

A simple genetic algorithm (SGA) (same as chapter 3) using tournament selection,

SBX crossover (Deb and Agrawal, 1995) and parameter based mutation operator (Deb,

2000) is used to see the performance of SSRT in solving constrained optimization

problems with tiny feasible space.

Deb et al. (2002) have proposed a computationally fast and elitist multi-objective

evolutionary algorithm, based on a nondominated sorting approach called NSGA-II.

The difference between the conventional single objective GA and NSGA-II lies with the

assignment of fitness of an individual. The fitness of an individual in NSGA-II is based

on the non-domination level of an individual. Moreover, they have modified the

definition of dominance in order to solve constrained multi-objective problems

efficiently. NSGA-II is a well-known and well-accepted algorithm for solving both

single- and multi-objective constrained optimization problems.

Multi-objective Constrained Algorithm (MCA) proposed by Sarker and Ray (2005)

is a close variant of NSGA-II. It has two major differences, which include the selection

of parents and the process of population reduction. The process is more computationally

expensive than NSGA-II, and can be thought as a diversity maintaining mechanism

which might be useful for problems where the diversity in the variable space is

important. This algorithm can also be used for solving both single- and multi-objective

constrained optimization problems. MCA performs better than NSGA-II for some

special cases of constrained optimization problems (Sarker and Ray, 2005).

The previous chapter mentioned Elfeky et al.’s (2006) GA. They have introduced

new ranking, selection, and triangular crossover methods to solve constrained

optimization problems. They have exploited some features of constrained problems in

the algorithm. This algorithm is indicated in this chapter as TC.

As with AMA, all these algorithms have been applied in two sets of experiments. In

the first set, each of the algorithms is executed for 30 independent runs with 30 sets of

Chapter 6. Problems with Tiny Feasible Space

131

randomly generated initial populations. In the second set of experiments, each of the

algorithms is executed for 30 independent runs with SSRT applied to the initial

populations taken from the first set of experiments.

These two sets of results of each algorithm are then compared to see whether the

results are improved with SSRT. In all four algorithms, a fixed set of parameters are

used for SSRT (probability of crossover 0.90, probability of mutation 0.20), as our

objective is to test the influence of SSRT on the performance of algorithms and we are

not interested here in finding the best set of parameters corresponding to the best

solutions. In addition, as we are focusing on a given aspect of the algorithm, it is not

appropriate to make a general conclusion on the overall performance of the algorithms.

As with AMA the maximum number of generations is set at 3500 and the population

size is 100. The maximum number of fitness evaluations is set in this experiment at

350,000. For the best performance of TC, we have used the population size 30,

probability of crossover 0.8 and probability of mutation 0.1 as suggested in (Elfeky et

al., 2006). Despite using less population size, the algorithm was applied up to 350,000

fitness evaluation counts. The allowable range (AR) of infeasible solution for

calculating centroid is used at most 50% of the infeasible solutions, and the maximum

diversity reduction from the initial random population is 10%.

The best, mean, standard deviation, worst, and median results of 30 independent

runs (with 30 different random seeds) of the four algorithms are given in Table 6.5, 6.6,

6.7 and 6.8 and summarized in Table 6.9. Numbers in boldface mean that algorithms

using SSRT achieved better result than without using SSRT. ‘×’ symbol indicates that

the particular algorithm could not achieve feasible solutions in all of the 30 independent

runs.

From Table 6.5 we can see that SSRT has enhanced the performance of SGA in most

of the problems. Although SGA without SSRT could not achieve any feasible solutions

for g03, g05, and g11, with the help of SSRT it found a feasible solution in g05. For the

other 11 problems, if we consider the mean results, in 81.82% of problems SSRT

improves the performance of SGA. In 45.45% of problems the mean results are

improved more than 5%, such as 5.45% in g01, 7.26% in g07, 9.36% in g10, 33.21% in

Chapter 6. Problems with Tiny Feasible Space

132

g13, and 8.83% in B04. While achieving the best results, 54.55% of the time SSRT

improves the performance of SGA. For the case of achieving median and worst results

SGA with SSRT achieved better results in 81.82% and 72.73% of problems respectively.

Table 6.6 shows the results for NSGA-II with and without SSRT. In achieving best

results SSRT improves the performance of NSGA-II in 71.43% of problems, and in

21.43% of problems the performance remains the same. It is worth mentioning in

problem g03 it has improved the best results by 5.19%, and by 31.62% in g13. It has

improved the mean results in 78.57% of problems. For 64.29% of problems the median

results, and in 42.86% of problems the worst results, are improved by SSRT.

Chapter 6. Problems with Tiny Feasible Space

133

Table 6.5: Performance of SGA with and without SSRT from 30 independent runs.

Fn SGA Best Median Mean StDev Worst

NST -14.998 -13.815 -13.990 9.41E-01 -11.780
g01

ST -14.995 -14.986 -14.753 4.76E-01 -13.811

NST × × × × ×
g03

ST × × × × ×

NST × × × × ×
g05

ST 5277.204** × × × ×

NST -6945.396 -6920.632 -6920.196 1.61E+01 -6888.569
g06

ST -6958.979 -6925.673 -6929.641 1.11E+01 -6916.950

NST 25.615 27.755 28.310 2.41E+00 36.594
g07

ST 24.912 26.184 26.255 8.98E-01 27.799

NST -0.095825 -0.095825 -0.095825 5.24E-09* -0.095825
g08

ST -0.095825 -0.095825 -0.095825 7.76E-11* -0.095825

NST 680.808 681.648 681.821 6.50E-01 683.944
g09

ST 680.826 681.375 681.322 2.70E-01 681.702

NST 7166.255 7823.128 8376.182 1.45E+03 13284.257
g10

ST 7126.020 7568.463 7591.785 2.62E+02 7988.912

NST × × × × ×
g11

ST × × × × ×

NST 0.457442 0.922264 1.031979 6.59E-01 3.854752
g13

ST 0.078772 0.781332 0.689290 2.66E-01 0.970765

NST -44.775 -41.773 -41.553 1.81E+00 -37.910
B01

ST -42.576 -40.870 -40.536 1.44E+00 -37.794

NST 964.124 975.253 973.961 3.76E+00 978.575
B02

ST 961.240 973.966 972.857 5.06E+00 979.036

NST -1.905 -1.903 -1.903 2.98E-03 -1.890
B03

ST -1.905 -1.904 -1.904 4.70E-04 -1.904

NST -0.848895 -0.645441 -0.678532 8.76E-02 -0.575312
B04

ST -0.859386 -0.793935 -0.738429 1.18E-01 -0.528032

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold
font indicates the best result achieved by algorithm with SSRT. , * indicates though the best, worst,
median, and mean results are the same, standard deviation is positive due to rounding error; ** indicates
algorithm achieved feasible solutions in only 1 run.

Chapter 6. Problems with Tiny Feasible Space

134

Table 6.6: Performance of NSGA-II with SSRT and without SSRT from 30 independent
runs.

Fn NSGA-II Best Median Mean StDev Worst

NST -15.000 -14.998 -14.646 8.07E-01 -12.429 g01
ST -15.000 -15.000 -14.999 7.19E-04 -14.997

NST -0.616 -0.106 -0.171 1.66E-01 -0.003 g03
ST -0.648 -0.162 -0.194 1.50E-01 -0.009

NST × × × × ×
g05

ST × × × × ×

NST -6950.884 -6940.375 -6941.099 4.14E+00 -6935.730 g06
ST -6960.390 -6942.121 -6942.705 5.47E+00 -6931.173

NST 24.438 25.299 25.462 8.72E-01 27.901 g07
ST 24.363 25.098 25.244 8.49E-01 28.330

NST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825 g08
ST -0.095825 -0.095825 -0.095825 9.80E-17* -0.095825

NST 680.746 681.178 681.232 3.88E-01 682.302 g09
ST 680.644 680.918 681.008 3.36E-01 682.302

NST 7128.741 7940.550 8252.011 1.12E+03 11953.460 g10
ST 7077.327 7443.979 7835.171 1.27E+03 16105.790

NST 0.754 0.867 0.878 9.05E-02 0.999 g11
ST 0.751 0.870 0.867 8.90E-02 0.996

NST 0.974036 0.994066 0.991300 8.59E-03 0.999997 g13
ST 0.666042 0.997573 0.914083 1.15E-01 0.998898

NST -46.874 -41.384 -41.831 1.64E+00 -39.527 B01
ST -46.894 -42.137 -42.079 2.04E+00 -39.189

NST 963.764 973.842 973.671 4.16E+00 978.789 B02
ST 963.698 974.373 974.351 3.54E+00 978.843

NST -1.905 -1.904 -1.903 2.07E-03 -1.896 B03
ST -1.905 -1.904 -1.904 7.95E-04 -1.902

NST -0.864224 -0.666732 -0.731112 1.02E-01 -0.574267 B04
ST -0.865643 -0.770036 -0.761072 9.89E-02 -0.625385

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold font
indicates the best result achieved by algorithm with SSRT. , ∗ indicates though the best, worst, median, and mean
results are the same, standard deviation is positive due to rounding error.

Chapter 6. Problems with Tiny Feasible Space

135

Table 6.7: Performance of MCA with and without SSRT from 30 independent runs.

Fn MCA Best Median Mean StDev Worst

NST -15.148 -13.200 -13.656 1.48E+00 -10.300
g01

ST -15.149 -13.200 -13.639 1.52E+00 -9.752

NST* -1.000 -1.000 -1.000 1.90E-04 -1.000
g03

ST* -1.000 -1.000 -1.000 1.46E-03 -1.000

NST 5131.295 5364.948 5450.763 3.27E+02 6111.453
g05

ST 5126.582 5429.567 5470.412 2.89E+02 6058.473

NST × × × × ×
g06

ST × × × × ×

NST 24.310 25.784 26.802 2.41E+00 34.997
g07

ST 24.319 25.609 26.720 2.76E+00 34.997

NST* -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825
g08

ST* -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825

NST 680.776 681.380 681.454 4.23E-01 682.616
g09

ST 680.776 681.311 681.383 3.76E-01 682.357

NST** 7073.306 7656.054 7623.999 4.29E+02 8281.761
g10

ST 7050.513 7510.483 7594.795 4.04E+02 8153.756

NST 0.750 0.750 0.750 8.00E-05* 0.750
g11

ST 0.750 0.750 0.750 1.43E-04* 0.750

NST 0.137313 0.416643 0.455166 1.69E-01 0.999374
g13

ST 0.129549 0.421717 0.422981 2.00E-01 0.998991

NST -47.764 -47.764 -47.764 0.00E+00 -47.764
B01

ST -47.764 -47.764 -47.764 0.00E+00 -47.764

NST 961.870 964.849 965.128 2.35E+00 968.546
B02

ST 961.863 962.963 964.330 2.65E+00 967.907

NST × × × × × B03
ST × × × × ×

NST × × × × × B04
ST × × × × ×

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold font indicates
the best result achieved by algorithm with SSRT. , ∗ indicates though the best, worst, median, and mean results are the
same, standard deviation is positive due to rounding error. ** indicates algorithm achieved feasible solutions in only
10 run.

Chapter 6. Problems with Tiny Feasible Space

136

Form Table 6.7 we can see SSRT has improved the performance of MCA as well.

However, with both approaches MCA could not find any feasible solutions for problem

g06, B03, and B04. For the other 11 problems, the best results improve with SSRT in

45.45% of problems and remain the same in 45.45% of problems. The mean results are

improved in 54.55% of problems and remain the same in 36.36% of problems. In

36.36% of problems the median results, and in 45.45% of problems the worst results,

are improved with the help of SSRT. We should mention that in problem g10, MCA

achieved feasible results in only 10 runs from the 30 runs. However with the help of

SSRT it achieves feasible results in every run.

TC using SSRT achieved the same result for most of the problems as shown in Table

6.8. However, in g03, g05, g10, and B04, the results are mostly improved. This

algorithm uses triangular crossover (Elfeky et al., 2006) which chooses parents from

both feasible and infeasible to generate offspring close to the boundary of the feasible

region. Since the aim of this crossover is very similar to SSRT, that is to bring the

population inside the feasible region, after the genetic process the results remain the

same.

In Table 6.9 the comparison of the results (best, median, mean, st.dev and worst)

achieved by the algorithms using SSRT and without SSRT are shown in the form of

xxxxx = [Best, Median, Mean, St.Dev, Worst, results]. Symbol ‘+’ indicates the

algorithm using SSRT achieved a better result than without SSRT; ‘−’ indicates

algorithm achieved a worse result using SSRT; and ‘0’ indicates same results.

Chapter 6. Problems with Tiny Feasible Space

137

Table 6.8: Performance of TC with and without SSRT from 30 independent runs

Fn TC Best Median Mean StDev Worst

NST -15.000 -15.000 -15.000 0.00E+00 -15.000
g01

ST -15.000 -15.000 -15.000 0.00E+00 -15.000

NST -0.963 -0.886 -0.891 4.40E-02 -0.808
g03

ST -0.997 -0.991 -0.977 2.55E-02 -0.880

NST 5126.581 5215.653 5318.166 2.35E+02 5898.594
g05

ST 5126.505 5215.762 5317.374 2.37E+02 5954.586

NST -6961.814 -6961.814 -6961.814 3.70E-12* -6961.814
g06

ST -6961.814 -6961.814 -6961.814 3.70E-12* -6961.814

NST 24.566 25.832 25.855 4.80E-01 26.825
g07

ST 25.130 25.890 25.941 4.87E-01 26.944

NST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825
g08

ST -0.095825 -0.095825 -0.095825 4.23E-17* -0.095825

NST 680.634 680.654 680.660 1.98E-02 680.703
g09

ST 680.634 680.661 680.663 2.11E-02 680.703

NST 7098.481 7862.190 8058.985 8.21E+02 10509.988
g10

ST 7071.489 7979.785 8097.473 8.47E+02 9603.307

NST 0.750 0.750 0.750 0.00E+00 0.750
g11

ST 0.750 0.750 0.750 0.00E+00 0.750

NST 0.055147 0.597604 0.481420 3.32E-01 1.000000
g13

ST 0.055147 0.597604 0.481420 3.32E-01 1.000000

NST -47.193 -46.199 -46.220 5.87E-01 -44.844
B01

ST -47.193 -46.199 -46.220 5.87E-01 -44.844

NST 961.724 962.661 963.293 1.86E+00 968.000
B02

ST 961.724 962.661 963.293 1.86E+00 968.000

NST* -1.905 -1.905 -1.905 3.29E-04 -1.903
B03

ST* -1.905 -1.905 -1.905 3.66E-04 -1.903

NST -0.865939 -0.672910 -0.741236 1.05E-01 -0.500000
B04

ST -0.866011 -0.859673 -0.785920 1.05E-01 -0.500000

NST= Algorithm without SSRT, ST = Algorithm with SSRT, ×’= feasible solution were not found, Bold
font indicates the best result achieved by algorithm with SSRT. , ∗ indicates though the best, worst,
median, and mean results are the same, standard deviation is positive due to rounding error.

Chapter 6. Problems with Tiny Feasible Space

138

Table 6.9: Performance of SSRT on EAs in solving the benchmark problems

Fn AMA SGA NSGA-II MCA TC

g01 0 0 + + + − + + + + 0 + + + + + 0 + − − 0 0 0 0 0

g03 0 0 0 + 0 × + + + + + 0 0 0 − 0 + + + + +

g05 − − + + + +* × + − − ++ + − + − −

g06 0 + + + + + + + + + + + + − − × 0 0 0 0 0

g07 + + + + + + + + + + + + + + − − + + − 0 − − − − −

g08 0 0 0 + 0 0 0 0 + 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0

g09 + + + + + − + + + + + + + + 0 0 + + + + 0 − − − 0

g10 + + + + + + + + + + + + + − − + + + + + + − − − +

g11 0 0 0 + 0 × + + + + + 0 0 0 − 0 0 0 0 0 0

g13 + + + + + + + + + + + − + − + + − + − + 0 0 0 0 0

B01 + − + + + − − − + − + + + − − 0 0 0 0 0 0 0 0 0 0

B02 − + + + + + + + + − + − − + − + + + − + 0 0 0 0 0

B03 0 + + + + 0 + + + + 0 0 + + + × 0 0 0 0 0

B04 − + + + + + + + − + + + + − + × + + + 0 0

xxxxx = [Best, Median , Mean, St.Dev, Worst, results]. Symbols: +, better; 0, similar; −, worse, ×’=
feasible solution were not found, * with SSRT, SGA found 1 feasible solution.

After analyzing the results, we can see for most of these benchmark problems SSRT

has enhanced the performance of the evolutionary algorithms.

6.3.3 Solving a Real World Problem

The test problems considered in the previous section are smaller in size. Although the

contribution of SSRT is positive in those problems, the real improvements may seem very

little. To test the true performance of SSRT in solving a reasonable size problem, we use a

real world crop planning problem (Sarker and Quaddus, 2002; Sarker and Ray, 2005;

Sarker and Ray, 2009) in this section. As our objective is to test the performance of SSRT,

we ignore the description of the problem here. However, the interested readers can find the

details in (Sarker and Ray, 2005; Sarker and Ray, 2009) and in Appendix C. Here a

Chapter 6. Problems with Tiny Feasible Space

139

constrained non-linear single objective model of the crop planning problem is solved.

The original model consists of 68 variables and 45 constraints. By applying variable /

constraint reduction technique, the model can be reduced to 39 variables and 15

constraints. A given instance of the problem is considered, where the ratio of the feasible

region and search space ρ is almost 0.00%.

As with the benchmark problems, two sets of experiments have been made for each

of the algorithms. The results on the improvements of the 30 independent runs of the

algorithms are summarized in Table 6.10. Using SSRT, most of the algorithms achieve

remarkably better fitness value, for example, 1.24% better fitness value by AMA, 7.61%

by SGA, 0.25% by NSGA-II, 1.38% by MCA than without SSRT. If we consider in

terms of profit gain, AMA gains $0.28 million, SGA gains $0.63 million when NSGA-II

and MCA gain $0.06 and $ 0.33 million respectively. SSRT also provides better mean,

standard deviation, worst, and median values with these algorithms. The results of TC is

not mentioned here in Table 6.10, since its result is not improved, like most other test

problems, for the reason discussed earlier.

Table 6.10: Improvement of performance of different EAs using SSRT in solving crop
problem.

Algorithms Best Median Mean Worst

AMA 1.24% 3.32% 1.64% 3.65%

SGA 7.61% 42.41% 23.01% 0.58%

NSGA-II 0.25% 0.68% 0.75% 6.51%

MCA 1.38% 4.31% 4.19% 3.89%

The convergence curve on this problem using AMA and AMA with SSRT is given in

Figure 6.2. It is clear that AMA with SSRT provides faster convergence towards better

results than AMA without SSRT.

Chapter 6. Problems with Tiny Feasible Space

140

-2.50E+07

-2.40E+07

-2.30E+07

-2.20E+07

-2.10E+07

-2.00E+07

-1.90E+07

-1.80E+07

-1.70E+07

-1.60E+07

-1.50E+07

1 1001 2001 3001 4001

Generation no.

O
bj

. F
un

c.
 V

al
ue

SSRT

NoSSRT

Figure 6.2: Convergence Curve for Crop problem using AMA with and without SSRT.

6.4 Chapter Summary

This chapter presents a simple search space reduction technique (SSRT) for

population-based evolutionary algorithms to solve constrained optimization problems

with tiny feasible region. The proposed SSRT allows certain infeasible solutions in the

initial population to move slowly towards the feasible region. The performance of SSRT

is investigated by solving a set of test problems and a real world case problem with

AMA, simple genetic algorithm and three well-known algorithms found in the

literature. This approach usually improves the performance of the algorithms in terms of

either solution quality or computational time or both, at the cost of an additional step

with O(M2) complexity. From the results of the real world problem, it is evident that the

method is more appreciable for large scale problems with tiny feasible space. Although

the idea of SSRT is very simple, the results justify the use of SSRT with evolutionary

algorithms.

Regardless of the other limitations of the constraints it has been noticed that the

existence of equality constraints reduces the size of the feasible space. In all the

problems involving equality constraints in the test set the ratio of feasible space over the

search space is almost zero. In the next chapter, a method is proposed to deal with

equality constraints.

Chapter 7

Handling Equality Constraints

In addition to inequality constraints, many mathematical models require equality

constraints to represent the practical problems appropriately. The existence of equality

constraints reduces the size of the feasible space significantly, which makes it difficult

to locate feasible and optimal solutions. This chapter presents a new Equality

Constraint Handling Technique (ECHT) which enhances the performance of AMA in

solving constrained optimization problems with equality constraints. The technique is

basically used as an agent learning process in AMA. The performance of AMA with

ECHT is tested on a set of well-known benchmark problems. The experimental results

confirm the improved performance of the proposed technique.

7.1 Introduction

Many mathematical optimization models involve a set of equality, inequality or both

types of constraints. The size of feasible space of these problems depends on the type of

constraints and their interactions. In any optimization problems with equality

constraints, each feasible solution point must lie on each and every equality constraint.

The existence of equality constraints reduces the size of the feasible space drastically. In

the previous chapter, we have seen in all the problems with equality constraints that the

ratio of feasible space over the search space is almost zero. It is not easy to find the

feasible points while solving such equality constrained problems. As a consequence,

EAs have inherent difficulty in dealing with equality constraints when solving

Chapter 7. Handling Equality Constraints

142

constrained problems. As in Mezura-Montes and Coello (2002), it is very hard for

traditional EAs to find feasible and optimal solutions for such problems.

Many traditional EAs (Deb, 2000; Elfeky et al., 2006) convert equality constraints

hj(X) = 0 into inequality constraints −δ ≤ hj(X) ≤ δ (where δ is a small tolerance value)

to increase the feasible space temporarily. Still they may fail to achieve either feasible or

good quality solutions, for example, Koziel and Michalewicz (1999) have not found

good quality solutions for problem g05 which involves equality constraints.

In solving problem g13 (which involves equality constraints), the mean and worst

results achieved by the stochastic ranking algorithm (Runarsson and Yao, 2000) were

25.20% and 302.07% from the optimum respectively. Runarsson and Yao (2000) also

reported that they failed to solve some equality constrained problems such as g03 and

g05 using the dynamic penalty method as in Joines and Houck (1994). Although Deb

(2000) has solved one optimization problem with equality constraints optimally, the

percentage variation of median from the optimal was 346.29%. Mezura-Montes and

Coello (2002) reported a comparison of several well-known multi-objective-based

techniques to handle constraints such as Constrained Optimization by Multi-Objective

Genetic Algorithms (COMOGA) by Surry and Radcliffe (1997), Vector Evaluated

Genetic Algorithms (VEGA) (Schaffer, 1985) used by Coello (2000b), Multi-Objective

Genetic Algorithms (MOGA) (Fonseca and Fleming, 1993) applied by Coello (2000a),

Niched-Pareto Genetic Algorithms (NPGA) (Horn et al., 1994) implemented by Coello

and Mezura-Montes (2002). Most of these algorithms successfully solved the problems

with inequality constraints. However, for 75% of the problems with equality constraints,

the algorithms could not achieve optimal. Interestingly, they were unable to find any

feasible solutions for 50% of the problems. This demonstrates the difficulties in solving

constrained optimization problems with equality constraints, which motivates to design

a new equality constraint handling technique.

In this chapter, a new technique is presented to handle the equality constraints. In

any optimization problems with equality constraints, to satisfy the condition of

feasibility and optimality, the solution points must lie on each and every equality

constraint. That means it might be possible to find an optimal solution by simply

Chapter 7. Handling Equality Constraints

143

exploring an equality constraint function where the constraint function contains all the

variables. This common knowledge encourages to design a new ECHT for dealing with

equality constraints. The basic idea is to reach a point on the equality constraint from

the current position of an individual solution, and then explore on the constraint

landscape. That means an individual would explore only a portion of the entire search

space. In practical problems, an equality constraint may not contain all the variables

which require exploring the landscapes of other equality constraints. To the best of our

knowledge, this approach for handling equality constraints has not appeared in the

literature.

The proposed ECHT is added as a new LSLP in AMA. The new LSLP is particularly

valuable during the early stage of the algorithm, to speed the search towards the feasible

space. For that reason it is used exclusively for the first N generations, and thereafter

other LSLP's are used to refine the solution. Chapter 6 was all about speeding the search

towards the feasible space by calculating an approximate centroid from better initial

randomly generated solutions. A percentage of worse solutions are then allowed to

follow the centroid. Here the new LSLP tries to bring any individual solution to an

equality constraint or to explore on that.

The new version of AMA is capable of dealing with the equality constraints more

efficiently. To test the performance of the algorithm, a set of ten benchmark problems

with equality constraints is selected, and the results are compared with different

algorithms. The comparisons show that the results are of improved quality with low

computational time. This chapter also analyzes the effect of the new learning process for

handling the equality constraints.

The rest of this chapter is organized as follows. Section 7.2 describes the proposed

equality constraint handling technique. Section 7.3 presents the extended Agent-based

memetic algorithm. Section 7.4 provides computational experience, results of the

proposed approach on benchmark problems. Another approach of incorporating ECHT

in AMA and its performance is discussed in section 7.5. Finally, Section 7.6 concludes

the chapter and provides future research directions.

Chapter 7. Handling Equality Constraints

144

7.2 Equality Constraint Handling Technique (ECHT)

The size of the feasible space within the search space may depend on the type of the

constraints involved in the problem. For example, the existence of equality constraints

significantly reduces the size of the feasible space, which makes it difficult for the

algorithms to find the feasible points.

Consider a simple numerical example as follows.

Maximize f(X) = x1+ x2 ;

Subject to

1 ≤ x1 ≤ 2;

1 ≤ x2 ≤ 2;

For simplicity, assume that up to two decimal points are allowed for x1 and x2 (i.e.

their values can be 1.00, 1.01, 1.02 etc). If there are no other constraints, there are

10201 solution points in the discrete search space, and the optimal solution is 4.00

(when x1 = 2.00, x2= 2.00). If we add an inequality constraint g(X) = x1− x2 ≤ 0.80, 9991

points (97.94%) in the discrete search space still satisfy the constraint, and the optimal

result remains the same 4.00 (when x1 = 2.00, x2= 2.00). However if we replace the

inequality constraint g(X) with an equality constraint h(X) = x1− x2 = 0.80, the feasible

space becomes very tiny in comparison to the search space. Now all the feasible points

must lie on the equality constraint h(X). If we consider up to two decimal points, only

21 points satisfy the constraints among 10201 possible candidates and the optimal

objective is now 3.20 (with x1 = 2.00, x2= 1.20). The feasible space is now reduced to

0.21% of the original search space which is very hard to locate.

The complexity can be greatly increased by the number of constraints and the

interference among them. However the existence of the equality constraints can be

useful for solving COPs, as it might be possible to find an optimal solution by simply

exploring the equality constraint functions. In this chapter, a new search process for

handling equality constraints is introduced. To explain the technique, let us consider an

Chapter 7. Handling Equality Constraints

145

optimization model with all or a subset of constraints of equality type. Three

propositions related to equality constraints are presented next.

Proposition 1: For a given constrained optimization model, where all or a subset of

the constraints are of equality type, a feasible solution cannot be found without

satisfying any of the equality constraints. We assume that the solution point under

consideration satisfies all inequality constraints (if any).

Proof: By definition, a feasible solution point must satisfy all the constraints. To

satisfy an equality constraint, the point must be on that constraint.

Proposition 2: A feasible and optimal solution point must lie on each and every

equality constraint.

Proof: To satisfy all the equality constraints, a feasible point must lie on all the

equality constraints. By definition, the best feasible point is the optimal solution.

Proposition 3: It is possible to find a feasible and optimal solution point by simply

searching on an equality constraint function landscape when the function contains all

the variables and is continuous.

Proof: As the feasible and optimal point must lie on all equality constraints, by

simply moving on a constraint (i.e. points which satisfy the constraint), which involves

all the variables, one may be able to reach the optimal solution.

As all variables may not exist in a certain equality constraint and there is no

guarantee of having a continuous function, finding a better solution by simply exploring

on the equality constraint may not work. The above arguments are used to design a new

technique for handling equality constraints in solving optimization problems, as

follows:

Choose an equality constraint randomly, and a randomly selected individual.

1. If the equality constraint is not satisfied in this individual, change only one

variable so that the constraint is satisfied.

Chapter 7. Handling Equality Constraints

146

2. If the individual satisfies the constraint, choose two variables and modify them

in such a way that the resulting point still satisfies the constraint and the total

constraint violation reduces.

The first move would help to reduce overall constraint violation, and the second move

would help to increase diversity of individuals in the population. The second move also

considers the total constraint violations that include all the equality and inequality

constraints.

It is not always possible to satisfy the constraints by changing a single variable. The

variable may violate its bound. For simplicity of the algorithms in that case the variable

is restricted to the boundary. Sometimes the required value of the variable might be an

imaginary number (because of nonlinearity), in that case a random number is assigned

between its bounds. The method of calculating change of fitness value is somehow

similar to the Generalized Reduced Gradient (GRG) algorithm (Lasdon et al., 1978).

However, it has been done here numerically.

It is not always easy to move on an equality constraint function landscape. To explore

on the constraint landscape it may be needed to change several variables involved in

that constraint. We may need to increase the value of some variables while decreasing

the value of some other variables in order to remain on the same equality constraint but

at a different point. This is very simple when the constraint involves one or two

variables, but becomes complex with more variables. To reduce this complexity in that

case, only two variables are randomly selected, that are involved in the selected equality

constraint and then a small random change is made on the first variable. The second

variable is then modified in such a way that the solution remains on the constraint

surface.

Chapter 7. Handling Equality Constraints

147

Pseudo code: Equality Constraint Handling Technique.

Let X=[x1,x2,…,xn] be the current solution vector, CVj = constraint violation for
hj(X)=0; j =1,2,…,q with solution vector X and Xj presents a vector that contains the
variables involved in constraint hj(X)=0. rnd(.,.) is a uniform random number generator,
TCV=Total Constraint Violation.

Select any of the equality constraints hj(X)=0; j=1,2,…,q randomly.

If (CVj ≠ 0)

Select a random variable { ∈aa xx Xj};

Calculate ax′ so that CVj =0;

If ax′ is an imaginary number, set),(x x rndx aab =′ ;

If (aa xx >′) set aa xx =′ ;
If)(aa xx <′ set aa xx =′ ;

Else
Select a random variable { ∈aa xx Xj};
Calculate ax rnd φ ×−=)1.0,1.0(;
Set φx x aa ±=′ ;(add/subtract, based on which direction the TCV is reduced);

Select a random variable { ∈bb xx Xj, ba ≠ }.Calculate bx′ such that

ba xC xC ′⊕′ 21 = ba xC xC 21 ⊕ , where ⊕ represents any mathematical operators
(e.g. +, −, ×,/) , 21 C ,C are constants.

End.

Figure 7.1 and 7.2 show an example of how the new ECHT works. Consider a

nonlinear optimization problem, consisting of two equality constraints, which can be

defined as follows:

Minimize f(X), where X = [x1, x2], X∈Rn is a set of 2 variables of the solution.

Subject to,

h1(X) = 0;

h2(X) = 0;

X ≥ 0;

Chapter 7. Handling Equality Constraints

148

For an example of the first type of move, assume the graphical representation of the

problem is like Figure 7.1. The two equality constraints h1(X) = 0 and h2(X) = 0 intersect

at two points. Since the two intersection points of the constraints satisfy both of the

constraints, we have only two feasible solution points for this problem. As it is a

minimization problem, the objective function value f(X) is optimal on the lower

intersection point. The new ECHT randomly selects an equality constraint, suppose here

h1(X) = 0, for an individual. If the solution (the black dot in Figure 7.1) does not satisfy

the constraint (i.e. it does not lie on the arc satisfying the equality constraint), then select

a random variable involved in that constraint, e.g. x2. Then x2 shall be changed so that

h1(X) = 0.

Figure 7.2 shows the second type of move. If the constraint is satisfied, the ECHT will

choose two variables x1 and x2 and modify them in a way that the resulting point is still

on the constraint. This helps to increase the diversity and move towards the optimal

solution.

Figure 7.1: ECHT (when the solution does not satisfy the equality constraint).

h2(X) = 0
 Optimal

x1

x2
h1(X) = 0

Individual Solution

Chapter 7. Handling Equality Constraints

149

Figure 7.2: ECHT (when the solution satisfies the equality constraint).

7.3 Extended AMA (AMA-II)

In chapter 4, AMA is presented, where the agent concept is incorporated with

memetic algorithms. The goal of each agent is to improve its fitness while satisfying

constraints. Following the natural adaptation process, in the proposed AMA the agents

improve their fitness by adaptively selecting a life span learning process from the

designed set, together with the evolutionary adaptation of the population.

In this chapter, to enhance the performance of AMA in solving equality constrained

problems, ECHT introduced in the previous section is used as a new life span learning

process (LSLP). Through this LSLP an agent moves from its current position towards

the curvature of an equality constraint by changing one or two variables. In AMA, after

performing the crossover, a certain percentage of the agents are selected for LSLP. Here

in extended AMA (indicated as AMA-II), the agents select only the new LSLP in the

early stage of the evolution process e.g. first N generations. This LSLP directs the

agents towards the feasible space, which speeds up the search process. Then for the later

generations, the agents apply the other four LSLPs (described in chapter 4) self-

adaptively for refining the solutions.

h2(X) = 0 Optimal
x1

x2

h1(X) = 0

Individual Solution

Chapter 7. Handling Equality Constraints

150

The main steps of AMA-II are given below.

Step 1. Create a random population, which consists of MM × agents.

Step 2. Arrange the agents in a lattice-like environment.

Step 3. Evaluate the agents individually. If the stopping criterion has been met,

go to step 7, otherwise go to step 4.

Step 4. For each agent examine its neighborhood. Select an agent from its

neighborhood and perform crossover.

Step 5. Select a certain percentage of agents; During the initial generations apply

only the LSLP designed for equality constraint, then switch to other

LSLPs.

Step 6. Go to step 3.

Step 7. Stop.

In the algorithm, the equality constraints are given special preference using the

proposed learning process of the agents. At the same time, the constraints are also

handled indirectly while comparing the individuals. Details of this constraint handling

have been already discussed in section 4.5.

7.4 Experimental Studies

In this section, first the benchmark problems are presented, then the initial design

experience for the new LSLP with the proposed ECHT is discussed. The performance of

AMA with the new LSLP in solving COPs with equality constraints is analyzed next. A

set of experiments is also carried to investigate the effect of the LSLP to the

performance of the algorithm.

Chapter 7. Handling Equality Constraints

151

7.4.1 Benchmark Problems

To test the performance of AMA with the new LSLP, ten benchmark problems that

involve equality constraints have been selected. The first four problems (g03, g05, g11,

g13) are taken from 13 well known benchmark problems (g-series) (Runarsson and Yao,

2000). Mezura-Montes and Coello (2002) categorized some test problems based on

difficulty and reported problems g05 and g13 as “Very difficult” and g03 as “Difficult”.

Two problems (B01 and B02) used in the previous chapters are also included, as they

involve equality constraints. The other four problems (indicated here as B06-B09) are

taken from (Floudas, 1999; Himmelblau, 1972; Hock and Schittkowski, 1981).

The benchmark problems involve different forms of objective functions and

different number of variables (n). The maximization problems are transformed into

equivalent minimization problems. The characteristics of the test problems are given in

Table 7.1, and the detailed mathematical representations are provided in Appendix A

and B.

Table 7.1: Characteristics of the test problems.

Fn (n) Obj. Fuc. LI NI LE NE AC Optimal

g03 10 Polynomial 0 0 0 1 1 -1.000

g05 4 Cubic 2 0 0 3 3 5126.498

g11 2 Quadratic 0 0 0 1 1 0.750

g13 5 Nonlinear 0 0 0 3 3 0.053950

B01 10 Nonlinear 0 0 3 0 3 -47.765

B02 3 Quadratic 0 0 1 1 2 961.715

B06 7 Linear 0 1 0 5 6 193.724

B07 5 Quadratic 0 0 2 0 1 0.000

B08 6 Nonlinear 0 0 6 0 6 6.334

B09 4 Linear 0 0 0 2 2 -1.000

LI = Linear Inequalities, NI = Nonlinear Inequalities, LE = Linear Equalities, NE = Nonlinear Equalities,
AC = Active Constraints.

Chapter 7. Handling Equality Constraints

152

7.4.2 Initial Design Experience

During the initial design of the LSLP for equality constraints I have experienced

some interesting situations. I would like to share some of them with the readers.

According to proposition 2, a feasible and optimal solution point must lie on each

and every equality constraint. So if we explore any of the equality constraints it is

possible to reach the optimal solution. In the initial design of the new LSLP for equality

constraints, only a single equality constraint function is examined, by ignoring all other

functions, for finding a good quality solution. However, this approach was not

consistently providing benefit, as a single equality constraint may not contain all the

variables involved in the model.

 In the second attempt, one of the equality constraints is selected randomly and then

one variable is changed by assigning it a value to reach the constraint. For example let

us consider problem g13 constraint 0)(2 == 5432 xx5 - xx xh .

According to the first move of the new ECHT, the LSLP needs to select a random

variable (e.g. x2). The required value of x2 to reach to the equality constraint is

3

54
2

5
x

xxx = . If the target constraint cannot be reached, due to the variable bounds, the

variable is assigned its upper/lower bound value (whichever is closest to the calculated

value). This works fine for most of the problems. However in some test problems it

raises a different issue e.g. in problem B01 if any xi=0 (lower bound) then objective

function value
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

∑
∑

=
=

10

1

10

1
ln

j j

i
i

i
i

x

x
cxxf)(will be infinity. To avoid this, in this case a

very low value (e.g. xi =1E-20) is assigned to xi.

Sometimes the required value of the variable might be an imaginary number, e.g. in

problem g11 where () ,02
12 =+= xxxh for any negative value of x2, the required value of

x1 = 2x- must be an imaginary number. In that case a random number between its

boundary ranges is assigned.

Chapter 7. Handling Equality Constraints

153

Furthermore when trying to explore on an equality constraint the values of only two

variables are changed, to keep it computationally simple. For example

in 0)(2 == 5432 xx5 - xx xh , suppose we select randomly the variables x2 and x5. Then

we change the value of x2 as 2
'
2 xrnd xx ×−+=)1.0,1.0(2 and we calculate the new value

of '
5x as '

543
'
25432 xx5 - xxxx5 - xx = . However this process was not simple after all, as

the variable may contain any type of nonlinearity. In particular, a variable with a power

of 2 could have negative or positive value and have the same impact on satisfying the

constraint. For example in problem g03 for any value xi (positive or negative value) the

result is same as () 01
1

2
1 =−= ∑

=

n

i
ixxh . If we always assign a positive value, or always a

negative value, we could find it impossible to find the global optimum. The initial LSLP

is changed so that in cases of variables with even powers, it is assigned randomly either

a positive or negative value. This process consistently provided better solutions.

In third attempt, the new LSLP is used for only the first 100 generations (arbitrarily

chosen) and the other four LSLPs afterward. The reason for this choice was due to the

fact that the new LSLP increases the diversity of the population. It is observed that this

process provided even better results.

7.4.3 Experimental Results and Discussions

First the performances of three algorithms in solving the test problems are

investigated:

• SGA: a simple genetic algorithm with tournament selection, SBX crossover

and parameter based mutation operator (Deb, 2000) as described in chapter 3.

• AMA-I: AMA as described in chapter 4.

• AMA-II: AMA with the new LSLP for equality constraints.

The initial solution vectors for the agents were randomly generated within the

boundary of each decision variable. For AMA-I and AMA-II the agents are arranged in

a lattice-like environment of size M×M, so the number of the agents (i.e. the population

Chapter 7. Handling Equality Constraints

154

size) must be a square number. In AMA-II the new LSLP is used only in the first 100

generations then the other four LSLPs are used. For each algorithm the same population

size (100), and probability of learning/LSLP (PL= 0.2) are used. For SGA the

probability of crossover is PC = 0.90 and the probability of mutation used is PM=0.2.

The maximum number of generations considered was 3500.

The best, median, mean, standard deviation (st.dev.), and worst results, as well as

execution time, for the well-known problems (g03, g05, g11, and g13) from 30

independent runs are given in Table 7.2. The results for remaining problems (B01, B02

B06-B09) are given in Table 7.3. An ‘×’ in the Tables indicates that the algorithm did

not find any feasible solution.

Form Tables 7.2 and 7.3 we can see that SGA could not find any feasible solution

for problems g03, g05, and g11. Although SGA is able to find feasible solutions for the

other problems, the best solution obtained is far from the known best. Both AMA-I and

AMA-II have solved those problems successfully. AMA-I achieves the optimum in four

problems (g03, g11, B07, and B09). AMA-II achieves the optimum in six problems

(g03, g11, g13, B02, B07, and B09) and very close to optimum in the other four

problems. For example, the achieved best results of AMA-II in g05 and B01 are within

0.00002% and 0.15912% of the optimum respectively. B06 is a special type of problem

which involves a set of equality and inequality constraints with several variables, and

the objective function depends on only one variable which is involved in the inequality

constraint. Though the algorithm could not achieve the optimum for this problem the

achieved result is within 3.97266% of optimum. The algorithm could not find the

optimum (only 3.91538% far from optimum) for B08 which involves a set of linear

equality problems.

Chapter 7. Handling Equality Constraints

155

Table 7.2: Statistics for 30 independent runs of different algorithms for problems

with equality constraints in g-Series.

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)
SGA × × × × × 4.14
AMA-I -1.000 -1.000 -1.000 2.76E-06* -1.000 80.86 g03 -1.000
AMA-II -1.000 -1.000 -1.000 1.70E-06* -1.000 86.54
SGA × × × × × 3.52
AMA-I 5127.388 5186.761 5208.999 8.20E+01 5463.927 27.62 g05 5126.498
AMA-II 5126.499 5126.985 5129.054 3.69E+00 5136.921 24.13
SGA × × × × × 2.55
AMA-I 0.750 0.750 0.750 3.35E-03* 0.750 14.92 g11 0.750
AMA-II 0.750 0.750 0.750 4.00E-07* 0.750 11.11
SGA 0.457442 0.922264 1.031979 6.59E-01 3.854752 4.29
AMA-I 0.054212 0.065926 0.193989 2.07E-01 0.811584 40.72 g13 0.053950
AMA-II 0.053950 0.055993 0.055616 8.63E-04 0.056540 35.80

Opt= Optimal, ‘×’= feasible solution were not found, *indicates though the best, worst, median, and mean
results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the
literature. Bold fonts indicate the best result achieved.

The mean results achieved by AMA-II are also of good quality. In six problems

(g03, g05, g11, B02, B07, and B09) the mean results are within 0.05% of the optimum.

The results are within 4% of optimum in 3 problems (g13, B01, and B08) and only in

one problem (B06) is the result more than 10% away (13.28%) from optimum. If we

compare the mean results, AMA-II achieves better mean results than AMA-I in five

problems (g05, g13, B01, B02, and B06). Although the mean results of AMA-I and

AMA-II are same for the other five problems, AMA-II achieves better standard

deviation for all those problems. The qualities of the other results of AMA-II are also

remarkable.

Chapter 7. Handling Equality Constraints

156

Table 7.3: Statistics for 30 independent runs of different algorithms for the test
problems.

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)

SGA -44.775 -41.773 -41.553 1.81E+00 -37.910 3.47

AMA-I -46.542 -44.950 -44.652 1.63E+00 -39.808 85.48B01 -47.765

AMA-II -47.688 -47.145 -47.155 3.09E-01 -46.696 77.93

SGA 964.124 975.253 973.961 3.76E+00 978.575 2.82

AMA-I 961.716 964.836 965.085 2.39E+00 970.210 17.98B02 961.715

AMA-II 961.715 961.715 961.716 1.21E-03 961.720 15.73

SGA 218.009 661.675 653.398 2.05E+02 960.191 3.52

AMA-I 196.970 215.719 229.847 3.07E+01 300.080 41.14B06 193.724

AMA-II 201.420 216.121 219.455 1.36E+01 237.181 46.09

SGA 0.076 0.754 0.797 4.50E-01 1.717 2.84

AMA-I 0.000 0.000 0.000 8.40E-17 0.000 17.28B07 0.000

AMA-II 0.000 0.000 0.000 0.00E+00 0.000 11.83

SGA 6.567 6.583 6.582 5.15E-03 6.593 2.46

AMA-I 6.582 6.582 6.582 5.39E-09 6.582 13.56B08 6.334

AMA-II 6.582 6.582 6.582 2.15E-09 6.582 19.81

SGA -0.935 0.465 0.314 6.74E-01 1.282 3.71

AMA-I -1.000 -1.000 -1.000 1.08E-08 -1.000 20.79B09 -1.000

AMA-II -1.000 -1.000 -1.000 8.43E-10* -1.000 18.25

Opt= Optimal, ‘×’= feasible solution were not found, * indicates though the best, worst, median, and mean
results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the
literature. Bold fonts indicate the best result achieved.

After analyzing the results it is very clear that SGA is very simple and quick in

solving the problems (on average it needs 3.33 seconds to solve each problem).

However SGA could not solve three problems and the results for the other problems are

not of high quality. Only in two problems (B02 and B08) the best results are within 5%

of the optimum. Compared to SGA, AMA-II has a trade-off of speed against solution

quality: AMA-II is slower but gives better results.

In AMA-II, during the initial generations it only uses the new LSLP process and so

Chapter 7. Handling Equality Constraints

157

the improvement index calculation and other four LSLPs (involving iterative process)

are not used in that period. As a result the new LSLP reduces the execution time of

AMA-II by 3.64% compared to AMA-I. The new AMA-II took on average 34.72

seconds to solve each problem. The results achieved by AMA-II show that the

inclusion of the new LSLP has enhanced the ability of AMA in solving constrained

optimization problems with equality constraints.

7.4.4 Effect of the new LSLP

The test results show that with the inclusion of the new LSLP, AMA-II always

performs better than AMA-I. To visualize the internal effect of the new LSLP, two

convergence curves are presented from the results with AMA-I and AMA-II, on

problem g13. The objective function of this problem is nonlinear and involves equality

constraints. As this problem is very difficult to solve (according to Mezura-Montes and

Coello (2002)), this problem is chosen to show the effect of the new LSLP. Figure 7.3

shows the best objective function value achieved by the two algorithms at every

generation for 1000 generations. To see the effect on the whole population, Figure 7.4

shows the average objective function of the whole population.

As the test problems include equality constraints, the feasible space is very tiny.

During the initial generation, several individuals in the agent population may have

better objective function values but with huge constraint violations. This is why the

convergence curves drop from initial high values: although the initial objective function

values may be good, the constraints are not satisfied. With time the constraint violation

is reduced and objective function values move back towards optimal values, now with

low constraint violation.

In most problems, AMA-II converges faster towards the best objective function

value. It exploits the advantages of both the new LSLP early in the evolutionary

process, and the other four LSLPs afterwards. Usually when the new LSLP is applied, it

tries to move the agent’s existing solution towards the randomly selected equality

Chapter 7. Handling Equality Constraints

158

constraints. As a result the agents may reach (or nearly reach) different points of

different equality constraints. Hence it ensures enough diversity in the population with

good quality solutions. After that AMA-II uses the other LSLPs, as did AMA-I. That is

why AMA-II converges faster than AMA-I in Figure 7.3. However in some problems,

like g03, g11, B07, and B09 both versions of AMA show similar behavior, since both

versions achieve the optimal solution in their early generations and solved the problems

easily.

-0.2

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901 1001

Generation no.

O
bj

. F
un

c.
 V

al
ue

AMA I
AMA II

Figure 7.3: Convergence Curve from the best objective function of AMA-I and AMA-II
for problem g13.

In Figure 7.4, for AMA-II, during the first 100 generations (while the new LSLP is

working) the average of the objective function values of the population is very high with

a high rate of change. This is due to the effect of the increased diversity by the new

LSLP. When the new LSLP stops (after 100 generations) the average objective function

improves slowly with the other four LSLPs. On the other hand AMA-I has lower

diversity and converges slowly. The same behavior is seen for most other problems. So

the new LSLP helps AMA-II to converge faster, with better quality solutions, than

AMA-I.

Chapter 7. Handling Equality Constraints

159

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 101 201 301 401 501 601 701 801 901 1001

Generation no.

O
bj

. F
un

c.
 V

al
ue

AMA I
AMA II

Figure 7.4: Convergence Curve from the average objective function of AMA-I and
AMA-II for problem g13.

7.4.5 Effect of Probability of using LSLP

The probability of LSLP (PL) is another important parameter of the algorithm. For

low value of PL a small number of agents are selected for LSLP. As discussed earlier the

purposes of the LSLPs are to bring the agents’ solutions towards different equality

constraints (with the new LSLP) and explore the search space (through the other

LSLPs). So a low value PL allows lower diversity. On the other hand a higher value of

PL allows more agents to use LSLP. Figure 7.5 shows the diversity of the population, for

the first 500 generations for problem g13, with different probability of LSLP (only the

diversity using PL values of 0.05, 0.1, 0.15 are shown to see the effects clearly). The

average Euclidian distance among all solution vectors in the population is used to

measure the diversity. In the first 100 generations the agents use the LSLP designed for

handling equality constraints, which ensures enough diversity during that period.

Afterwards we can see that higher PL allows higher diversity in the population. The

behavior is same for the other test problems.

Diversity is an important issue for the performance of any population-based search

algorithm. Lack of diversity means the algorithm may not perform well; on the other

hand, over-diversification causes slower convergence. To see the effect of PL on the

performance of AMA-II, the algorithm is run 30 times on each problem with different

Chapter 7. Handling Equality Constraints

160

values of PL (0.05, 0.1, 0.15, 0.20, 0.25, and 0.3). For some problems, the algorithm

may achieve the optimal solution as an outlier with any of these values of PL. However

if we consider the mean and standard deviation of the results we can see the effect of PL.

From the experiments we realize that for most problems the mean and standard

deviations improve with an increase of PL up to a point, then the quality degrades due to

the over diversification. For g05, g13, and B01, AMA-II achieves the better mean

results with PL = 0.20. With PL = 0.25 it has achieved better mean for B02. For some

problems like g03, g11, B07 and B09 the algorithm achieves almost the same results

with any PL.

0

0.5

1

1.5

2

2.5

3

1 51 101 151 201 251 301 351 401 451

Generation no

D
iv

er
si

ty PL 0.05
PL 0.10
PL 0.15

Figure 7.5: Effect of Probability of LSLP (PL) on population diversity for problem g13.

Figure 7.6 shows the best and the mean performance of AMA-II on problem g13 as

PL varies; Figure 7.7 shows standard deviation, and Figure 7.8 shows average execution

time, as PL varies. It shows by increasing PL both the mean and standard deviations

improve gradually, but once PL exceeds 0.2 the results are not improving. This is

because higher PL causes slow convergence in the population and so the performance

degrades at the same level of generations. That indicates that increasing PL can improve

the performance of the algorithm, however, after a certain point there will be no

significant improvement.

.

Chapter 7. Handling Equality Constraints

161

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05 0.1 0.15 0.2 0.25 0.3

Probability of LSLP

O
bj

. F
un

c.
 v

al
ue

Best
Mean

Figure 7.6: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP vs.
achieved best and mean results.

0.17

0.18

0.19

0.20

0.21

0.05 0.1 0.15 0.2 0.25 0.3

Probability of LSLP

S
t.D

ev
.

St. Dev.

Figure 7.7: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP vs.
St.Dev. of achieved results.

Chapter 7. Handling Equality Constraints

162

More agents are allowed to apply LSLP by increasing the probability of PL. This

causes extra time to perform the additional task. The required time is increasing in

proportion to the increase of PL as shown in Figure 7.8.

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

0.05 0.1 0.15 0.2 0.25 0.3

Probability of LSLP

Ti
m

e
(s

)

Avg time

Figure 7.8: Effect of Probability of LSLP (PL) on problem g13. Probability of LSLP vs.
Average time required.

7.4.6 Summary

 The experimental studies presented in this section demonstrate the value of ECHT

in solving COPs. It is established that:

• AMA-II achieves faster convergence than AMA with the incorporation of ECHT

while solving COPs with equality constraints, and enhances the quality of solutions

in faster computational time.

• It is best to use a value of 0.20 for PL, as it provides a balance between diversity in

the population, quality of solutions and computational cost.

7.5 AMA with only the new LSLP (AMA-III)

So far the performance and issues of the new LSLP with AMA have been discussed.

The new LSLP is used during the initial generations. After that the AMA uses other

Chapter 7. Handling Equality Constraints

163

LSLPs. As discussed earlier, although the existence of equality constraints reduces the

feasible space size, it provides an advantage in finding the feasible solutions by

exploring on the equality constraints. Since the new LSLP is designed to utilize this

advantage, we are interested to see the performance if AMA uses only the new LSLP

through the whole evolutionary process. To test this, AMA is modified. Here after the

crossover, a percentage of agents only use the new LSLP, that means, at Step 5 the

agents only use the new LSLP rather using all the LSLPs. This algorithm is called

AMA-III, and the main steps of it are as follows:

Step 1. Create a random population, which consists of MM × agents.

Step 2. Arrange the agents in a lattice-like environment.

Step 3. Evaluate the agents individually. If the stopping criterion has been met,

go to step 7, otherwise go to step 4.

Step 4. For each agent examine its neighborhood. Select an agent from its

neighborhood and perform crossover.

Step 5. Select a certain percentage of agents; Apply only the LSLP designed for

equality constraint

Step 6. Go to step 3.

Step 7. Stop.

To test the performance of the modified algorithm a set of experiments is carried

out. For this experiment all the parameters are used as before i.e. population size (100),

and probability of learning/LSLP (PL= 0.2). The maximum number of generations

considered is 3500. For each problem Table 7.4 shows the results from 30 independent

runs for the new algorithm.

From the results in Table 7.4, we can see AMA-III is also very efficient in solving

the test problems involving equality constraints. From the 10 problems it has achieved

optimum results in 5 problems (g03, g11, B02, B07, and B09). The performance of the

algorithm is also quite good in solving the other five problems. The achieved best

results are very close to the optimum. For example the achieved best results for 3

problems are within 1% of the optimum results e.g. g05 (0.0003%), g13 (0.01%), and

Chapter 7. Handling Equality Constraints

164

B06 (0.89%), and for the other 2 problems the results are within 4% of the optimum

results e.g. B01 (1.69%) and B08 (3.06%). Other results such mean, median, and worst

results of AMA-III are also of good quality.

Table 7.4: Experimental results of AMA-III for the test problems (30 runs).

Prob Optimal Best Median Mean StDev Worst Avg time

g03 -1.000 -1.000 -1.000 -1.000 9.75E-07* -1.000 15.93

g05 5126.498 5126.511 5129.637 5133.582 8.51E+00 5155.896 18.33

g11 0.750 0.750 0.750 0.750 0.00E+00 0.750 14.44

g13 0.053950 0.053956 0.059302 0.060656 5.50E-03 0.070242 19.42

B01 -47.765 -46.957 -45.478 -45.589 6.27E-01 -44.748 17.27

B02 961.715 961.715 961.726 961.731 1.52E-02 961.773 12.05

B06 193.724 195.443 217.201 227.783 3.38E+01 355.225 14.66

B07 0.000 0.000 0.000 0.000 0.00E+00 0.000 14.50

B08 6.334 6.528 6.544 6.544 9.90E-03 6.564 15.67

B09 -1.000 -1.000 -1.000 -1.000 0.00E+00 -1.000 17.73

∗ indicates though the best, worst, median, and mean results are the same, standard deviation is positive
due to rounding error.

The execution time of AMA-III is faster than AMA-I and AMA-II. On average it

needs only 16.00 seconds to solve each problem. This is 55.60% less than AMA-I and

53.92% less than AMA-II. As AMA-III is not using the other four LSLPs and the

calculation of improvement index, it is quite a bit faster than the previous versions.

As the execution of AMA-III is much faster than AMA-II, we are interested to see

how good is the solution quality of AMA-III compared to AMA-II. In achieving best

results both algorithms achieved optimum in five problems (g03, g11, B02, B07 and

B08) and only AMA-II in g13. AMA-III has improved the performance in two problems

in achieving best results e.g 2.967% in B06 and 0.8204% in B08. With the help of five

LSLPs including the new LSLP for handling equality constraints, AMA-II performs

better in three problems (g05, g13, and B01). However, the improvement with AMA-II

Chapter 7. Handling Equality Constraints

165

is not very high e.g. g05 (0.0002%), g13 (0.0111%) and B01 (1.5329%).

The mean results are same for the both algorithms in four problems (g03, g11, B07

and B09). However AMA-III shows better performance by achieving better standard

deviation in g03, g11, and B09. In B08 AMA-III achived 3.9154% better mean result

than AMA-II. For the other five problems the mean results of AMA-II are on average

3.2536% better than AMA-III. However for those five problems the best and mean

results of AMA-III are on average only 0.5177% and 6.9409% from the optimum

results.

Although AMA-II achieves better results with more LSLPs and more computational

time than AMA-III, the achieved results of AMA-III are also of good quality. If we use

student’s t-test (95% confidence level, 60 degrees of freedom, and t-tabulated value 2),

we can see in five problems (g03, g11, B6, B7 and B9) there is no significant difference

between the performance of the two algorithms. In one problem (B08) AMA-III is

significantly better than AMA-II. For the other four problems AMA-II is better.

Compared to AMA-III, AMA-II has a trade-off of speed against solution quality:

AMA-II is slower but gives better results. However AMA-III is more than 50% faster

than AMA-II and achieves good quality of solutions.

7.6 Chapter Summary

This chapter has introduced a new technique to handle equality constraints. The

technique is used as a learning process in AMA. The extended AMA is now capable of

solving nonlinear optimization problems with equality constraints more efficiently. The

results show the enhanced performance achieved by the new AMA in terms of solution

quality and computational time. The constraint handling techniques used here do not

need any penalty functions or additional parameters. The performance of the proposed

algorithms is tested using benchmark problems and the experimental results show

promising performance.

The effect of the new learning process and probability of using the learning process

Chapter 7. Handling Equality Constraints

166

is also analyzed. The experimental results show that faster convergence can be achieved

with the new learning process. The probability of learning (PL) is also an important

parameter. The performance of the algorithm improves with the increase of PL up to

certain point; beyond that point, high values of PL may over diversify the population

and slow down the convergence.

As the proposed equality constraint handling technique is experimentally successful

with AMA, we are interested to see its performance with other EAs. In the next chapter,

an investigation is made with a simple genetic algorithm.

Chapter 8

ECHT with Genetic Algorithms

In the last chapter, a new equality constraint handling technique was proposed. The

technique was tested with AMA (presented in Chapters 4 and 5), and the revised AMA

(known as AMA-II and AMA-III) performs better than AMA. It would be interesting to

see how the technique performs with simple GA for equality constrained problems. The

revised GA is tested on a set of standard benchmark problems. The results show that the

proposed technique works very well on the benchmark problems considered in this

research. This reinforces that the ECHT is useful in its own right, and not just as an

addition to AMA.

8.1 Introduction

As discussed in earlier chapters, traditional GA has difficulty in dealing with

equality constraints. In the previous chapter, a new equality constraint handling

technique has been proposed and implemented successfully with AMA. In this chapter,

it would be interesting to investigate the performance of the proposed equality

constraint handling technique in conjunction with a simple traditional genetic algorithm

to solve the equality constrained problems.

Here, the GA used in Chapter 3 is modified to incorporate ECHT. The revised GA is

labeled as the Modified Genetic Algorithm (MGA) in this thesis. The modified

algorithm is tested on the set of ten benchmark problems considered in the last chapter.

The results are compared with the simple genetic algorithm presented in Chapter 3.

Further comparison is made with a well-known ES-based based algorithm and with

 Chapter 8. ECHT with Genetic Algorithms

168

AMA-II. The experimental results show that MGA has successfully solved all ten

problems, achieving the optimum for six of them. The overall results are of acceptable

quality with reasonable computational time.

The rest of this chapter is organized as follows. The next section describes the

proposed MGA and its components. The effects of different components of the

algorithm are studied in section 8.3. The outcome from these experiments is an

understanding of how the performance of the proposed MGA is affected by these

decisions, and thus how best to configure it. Then the performance of the proposed

approach is described in section 8.4. Finally, section 8.5 concludes the chapter.

8.2 Modified Genetic Algorithm

In this section, the Modified Genetic Algorithm (MGA), which incorporates the new

ECHT into GA, is introduced. In the proposed algorithm, the initial population Pt=0 is

randomly generated. The individuals are evaluated and ranked based on their fitness. A

set of individuals is selected as parents to produce offspring using crossover. This new

population is called tC . The selection process used here is based on tournament

selection. From tC certain percentages of the individuals apply the new ECHT, wherein

the individuals try to reach and explore on the equality constraints. After applying

ECHT, population tC is called tC ′ . The population for the next generation Pt+1 is

created from Pt and tC ′ . The process is continued until the termination condition is

reached. The main steps of the proposed algorithm are follows.

 Chapter 8. ECHT with Genetic Algorithms

169

Pseudo code: Modified Genetic Algorithm.

Set generation no. t = 0;

Generate the initial population Pt at random;

REPEAT

Evaluate the fitness of each individual in Pt and rank them;

Apply modified tournament selection on Pt to select the parents, then apply

crossover and generate tC ;

Apply ECHT on tC and generate tC ′ ;

Produce generation Pt+1 from Pt and tC ′ ;

Set t= t + 1;

UNTIL the terminating condition is reached.

The representation of chromosome, ranking, and crossover operator used in MGA are

as in chapter 3. The ECHT operator is as in chapter 7. The fitness evaluation, selection

process, and the design of MGA are discussed below.

8.2.1 Fitness Evaluation

In solving constrained optimization problems it is necessary to evaluate the solution,

particularly in the context of the underlying objective and constraint functions. For each

individual the objective function value and Total Constraint Violation (TCV) are

calculated. The TCV of an individual is the sum of absolute values by which the

constraints are violated. A small tolerance δ on the total constraint violation is used i.e.

if the TCV of an individual is less than δ, it is considered as feasible. As the

evolutionary process continues the value of δ is gradually reduced. The equality

constraints make the feasible region very small compared to the search space, which

makes it hard for evolutionary algorithms to find feasible solutions. By using a positive

δ, the algorithms can find some near feasible solutions, which are treated as feasible at

 Chapter 8. ECHT with Genetic Algorithms

170

that stage. The value of δ is then gradually decreased, after every few generations, until

it equals zero. Details of this process are discussed in section 8.3.1.

8.2.2 Selection

In the proposed selection process a parent is randomly selected from the elite

individuals (e.g. top 30% of individuals). Another parent is the winner from a

tournament selection between two individuals that are randomly selected from the rest

of the individuals (i.e. non elites). These two parents then produce offspring after

crossover. The elite parent plays an important role since the feasible space of this type

of problem is very tiny.

8.2.3 Creating New Population

To generate a new population Pt+1
, the current parent population Pt and the evolved

child population tC ′ are merged and ranked. Based on experiments described below in

section 8.3.1, the method for creating the new population is as follows. The top ranked

95% of individuals are selected for the next generation Pt+1. If all the individuals that

have applied ECHT are not in Pt+1 yet (as applying the ECHT may or may not improve

the fitness of the individual), the remaining individuals are allowed to pass to the next

generation. This allows individuals that are close to a particular equality constraint but

have high TCV through to the next generation. Then some random individuals are

allowed from Pt and tC ′ until the population Pt+1 is filled up.

8.3 Experimental Studies

In this section, the experiments carried out to investigate the effect of different

parameter values and design decisions are discussed. The outcome from these

 Chapter 8. ECHT with Genetic Algorithms

171

experiments is an understanding of how the performance of the proposed MGA is

affected by these decisions, and thus how best to configure it.

In the following few sub-sections, a number of experiments, to study the effects of

different components of MGA on MGA’s performance, is reported. In all these

experiments, a fixed number of fitness evaluations is used for a fairer comparison.

8.3.1 Effect of ECHT

 In MGA, after crossover a certain percentage of the individuals are randomly

selected to apply ECHT (with probability PE). The performance of the algorithm (over

30 runs each) with different values for PE of (0.05, 0.1, 0.15, 0.20, 0.25, and 0.3) is

tested while keeping the other parameters the same (PC=0.90, dynamic tolerance in CV

etc.).

Unlike traditional GAs, which use mutation to maintain diversity in the population,

in the proposed MGA there is no mutation operator. However this purpose can be served

by the ECHT. As discussed earlier (chapter 7), the proposed ECHT tries to bring the

individuals towards the equality constraints or explore on the equality constraints. Up to

a point, with lower value of PE, ECHT may increase the diversity of the population.

However, a higher value of PE forces many individuals towards the equality constraints.

As the feasible space is very tiny, the population loses diversity. Note that the effect of

PE is different from the effect of PL described in chapter 7. AMA-II used PL as a

probability of LSLPs, which includes the new LSLP for equality constraints (only in the

initial generations) and the other four LSLPs (in later generations). The last four LSLPs

increase the diversity with the increases of PL.

The effect of PE on diversity is shown in Figure 8.1 for problem g13. The problem

g13 is chosen since according to Mezura-Montes and Coello (2002) it is very difficult to

solve. The objective function of this problem is nonlinear and involves equality

constraints. To measure the diversity of the population the average Euclidian distance of

the individuals is used. Figure 8.1 shows that the diversity of the population rises for a

 Chapter 8. ECHT with Genetic Algorithms

172

while as PE increases; then, as higher values of PE drive lots of individuals towards the

equality constraints, the population starts losing diversity.

If the performance is considered, for some problems such as g03, g11, and B09,

MGA achieves the same result regardless of the value of PE. In these problems MGA

achieves the optimum easily. MGA achieves better results with lower values of PE in

problems B08 (PE=0.05) and B06 (PE=0.15). MGA achieves better results with a higher

value of PE (0.25) in B02. However in most problems (e.g. g05, g13, B01, and B08)

MGA achieves better mean results with medium value of PE = 0.20. This shows for

better performance of the algorithm one should consider medium values for PE, which

ensures a balanced diversity in the population.

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.05 0.1 0.15 0.2 0.25 0.3

Probability of ECHT

Av
g.

 E
uc

lid
ia

n
Di

st
an

ce

Figure 8.1: Effect of Probability of ECHT (PE) on problem g13. Probability of ECHT
vs. Average Euclidian distance in the population.

Figures 8.2 and 8.3 show the best, mean, and standard deviation of MGA in solving

g13. They show by increasing PE both the mean and standard deviations improve

gradually, but after 0.2 the mean results are losing quality. This echoes the result that

diversity increases as PE increases up to a certain level, then the diversity decreases. For

better performance of the algorithm we need a balanced diversity, neither too low nor

too high, that is achieved here at PE = 0.20.

 Chapter 8. ECHT with Genetic Algorithms

173

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.05 0.1 0.15 0.2 0.25 0.3

Probability of ECHT

O
bj

. F
un

c.
 V

al
ue

Best
Mean

Figure 8.2: Effect of Probability of ECHT (PE) on problem g13. Probability of ECHT
vs. achieved best and mean results.

0.00

0.20

0.40

0.60

0.80

0.05 0.1 0.15 0.2 0.25 0.3

Probability of ECHT

St
. D

ev
.

St. Dev.

Figure 8.3: Effect of Probability of ECHT (PE) on problem g13. Probability of ECHT
vs. St.Dev. of achieved results.

8.3.2 Tolerance in Constraint Violation

During the fitness evaluation, a small tolerance δ on the total constraint violation is

used. If the TCV is of an individual is less than δ, the individual is considered as

feasible. To see the effect of δ, two set of experiments are carried out for 30 runs. In the

 Chapter 8. ECHT with Genetic Algorithms

174

first set, the value of δ is used equal to 0. The objective function value and the TCV was

calculated normally. In the second set, the value of δ > 0. Since the equality constraints

make the feasible region very small, by using δ > 0, the algorithm allows some good

quality infeasible solutions to be considered as feasible. Initially δ is assigned to 1.

After every 16% of the maximum generation number, δ is divided by 10. Finally after

80% of the generations δ is left fixed at 0.0. During this experimentation the other

parameters remain the same (e.g. PC=0.90, PM=0.20).

In problems g03 and g11, both approaches achieved the optimal result, since they

are easy for MGA to solve. For the rest of the problems MGA achieves better results

with the use of the small tolerance.

Figure 8.4 presents a convergence curve to show the effect of using δ in equality

constraint for problem g13, up to 350 generations. It is clear that the algorithm, with a

positive δ, converges to a better solution compared to the algorithm without δ.

0

0.5

1

1.5

2

1 51 101 151 201 251 301

Generation number

O
bj

. F
un

c.
 V

al
ue

No delta

Delta

Figure 8.4: Convergence Curve from the objective function with and without using delta
(δ) for problem g13.

8.3.3 Selection Process

 As discussed earlier, a group of best individuals is defined as the elite group. In our

selection process for reproduction, one parent is directly chosen from the elite group and

no.

 Chapter 8. ECHT with Genetic Algorithms

175

another parent is chosen via a tournament of two individuals. The elite parent plays an

important role since the feasible space of this type of problem is very tiny. Selection of

an elite as a parent will help to produce good quality offspring quickly. In this sub-

section, the effect of the size of the elite group on the algorithm’s performance is

examined.

Five sets of experiments are carried out, considering the top 10%, 20%, 30%, 40%,

and 50% of individuals as the elite group. The other parameters remain the same during

this experimentation (e.g. PC=0.90, PM=0.20). In each case, the algorithm is executed 30

times with different seeds. The experimental results show that in problems (g03, g11) all

the approaches achieve the optimal result. In problem B02, MGA achieves better results

with the elite consisting of the top 20% of individuals. For B08 and B09, it achieves

better results with the top 40% of individuals as the elite. In most other problems (e.g.

g05, g13, B01, B06), performance was better with the top 30% of individuals as the

elite.

In problems with equality constraints the feasible space is very tiny, and it is very

difficult to find feasible solutions. If only a low percentage (e.g. the top 10%) of

individuals is considered as elite, it always selects a parent from a small group of

individuals. The diversity of the population will be reduced, since every offspring

inherits genetic properties from these elites. However it needs the help of the top elites

to guide the evolutionary process. If a high percentage (e.g. the top 50%) of individuals

is considered as elite, the performance also suffers. In this case, a significant portion of

the population is considered as elite, but many of the individuals may not be feasible

since the feasible space is very tiny. It needs a balanced percentage of the top ranked

individuals in the elite group. That is why MGA performs better for most problems with

the top-ranked 30% of individuals as the elite.

 Chapter 8. ECHT with Genetic Algorithms

176

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

10% 20% 30% 40% 50%

% Elites in Selection

O
bj

. F
un

c.
 V

al
ue

Best
Mean

Figure 8.5: Effect of elites in selection process on problem g13. Percentage of Elites vs.
achieved best and mean results.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

10% 20% 30% 40% 50%

% Elites in Selection

St
. D

ev
.

St. Dev.

Figure 8.6: Effect of elites in selection process on problem g13. Percentage of Elites vs.
St.Dev. of achieved results.

Figures 8.5 and 8.6 show the effect of the percentage of top ranked individuals as the

elite in best, mean, and standard deviations for problem g13. The best achieved results

of all approaches are very close to the optimal. As the best results could be an outlier in

the case of evolutionary algorithms, we need to consider the mean and standard

deviation. The performance (mean results, st.dev.) of MGA is improving with increasing

 Chapter 8. ECHT with Genetic Algorithms

177

the elite zone up to 30%, then it starts decreasing.

8.3.4 Design of Next Generation

Diversity is a critical issue in population based algorithms. Lack of diversity may

lead the algorithm to be trapped in local optima. On the other hand, over diversification

may cause slow convergence. The design of the next generation plays an important role

in this regard. Now the question arises how the next generation will be created?

In this section, experiments are carried out to investigate the performance with three

different approaches.

The first approach (called MGA-C below) is to consider the child generation

(generated after crossover and ECHT) as the next generation population. It will ensure

enough diversity in the population since the offspring from ECHT try to reach or

explore on different equality constraints.

The second approach (MGA-PC) is to rank the parent and child population, and take

the top ranked individuals from them to form the next generation. As this approach is

only giving preference to good individuals, it may decrease the diversity.

In the third approach (MGA), most (e.g. 95%) of the next generation is chosen from

the top ranked individuals from the parent and child population. The rest of the

population is filled up by lower ranked individuals that applied ECHT (and so are close

to an equality constraint) and random individuals.

After running each set of experiments for 30 runs the best, median, mean, standard

deviation, and worst results are compared. It is found that MGA-C achieved the

optimum in one problem (B02), MGA-PC achieved the optimum in three problems

(g03, g11, B08), and MGA achieved the optimum in six problems (g03, g11, g13, B02,

B07, and B09). In addition, for most problems (g05, g13, B01, B02, B06-B09) the

results (mean, standard deviation, median) with MGA were better than with the other

two approaches.

 Chapter 8. ECHT with Genetic Algorithms

178

0

0.1

0.2

0.3

0.4

0.5

1 51 101 151 201 251 301 351 401 451

Generation no.
M

ea
n

di
st

an
ce

MGA

MGAPC

MGAC

`

(8.7.1)

0

0.03

0.06

0.09

0.12

0.15

150 160 170 180 190

Generation no.

M
ea

n
D

is
ta

nc
e

`

(8.7.2)

Figure 8.7: Diversity of population with different design of Next generation.

(8.7.2 is an enlargement of 8.7.1)

The reason for MGA’s superiority can be found from Figure 8.7. Figure 8.7.1 shows

the average Euclidian distance of the individuals (i.e. Diversity of population) for the

first 500 generations when solving problem g13, with each of MGA, MGA-C and

MGA-PC. To visualize the effect more clearly Figure 8.7.2 shows the expanded version

of Figure 8.7.1 from generation number 150 to 200. Figure 8.7 shows that the diversity

of the population is very high in MGA-C, since the next generation is formed from the

child population. On the other hand, in MGA-PC the diversity is very low, since only

the best individuals from the parent and child population are allowed to move to the

next generation and the feasible space is very tiny (the top ranked individuals may be

very close to each other). In the case of MGA, it maintains balanced trade-off between

 Chapter 8. ECHT with Genetic Algorithms

179

the diversity and convergence, and its diversity lies between MGA-C and MGA-PC.

8.3.5 Section Summary

In this section, experiments are described which show how the performance of the

proposed MGA is affected by various parameter settings and design decisions, and

provided explanations from the observations. It is established that:

• It is best to use a value of 0.20 for PE, and an elite consisting of the top 30% of

individuals. These are both medium settings, which provide a balance between

diversity in the population, quality of solutions, and rate of convergence;

• Allowing a small tolerance for violation of equality constraints helps the quality of

solutions and the speed of convergence. By gradually reducing the tolerance to zero

it can ensure that the equality constraints are met;

• The third approach to forming the next generation, based mainly on elitism but also

including lower ranked individuals that are likely to be close to equality constraints,

is best.

In the experiments described in the next section, the proposed MGA is configured

with these “best” settings.

8.4 Evaluation of the Proposed MGA

In this section, the proposed MGA is evaluated on the selected benchmark problems,

and compared to SGA, a well-known algorithm from the literature, and AMA-II.

8.4.1 Experimental Results and Discussions

Initially, a simple genetic algorithm (SGA) (presented in chapter 3) using tournament

selection, SBX crossover (Deb and Agrawal, 1995) and parameter based mutation

 Chapter 8. ECHT with Genetic Algorithms

180

operator (Deb, 2000) was used to solve the test problems. The aim was to see the

performance of SGA in solving constrained optimization problems with equality

constraints. The initial solution vectors are randomly generated within the boundary of

each decision variable. As crossover is the major instrument of variation and innovation

in GAs, with mutation insuring the population against permanent fixation at any

particular locus and thus playing more of a background role (Holland, 1975), a high

probability for crossover (PC = 0.90) and with a low probability for mutation (PM = 0.2)

is used. The number of fitness evaluations is set to 350,000 as in (Elfeky et al., 2006;

Runarsson and Yao, 2000), which allows a maximum of 3500 generations with a

population size of 100.

The best, median, mean, standard deviation (st.dev.), and worst results, as well as

execution time, for the well-known problems (g03, g05, g11, and g13) are given in

Table 8.1. The results for the other test problems (B01, B02, B06-B09) are given in

Table 8.2. An ‘×’ in the Tables indicates that the algorithm did not find any feasible

solution.

From Table 8.1 and 8.2, it can be seen that SGA is very fast considering the execution

time. However it could not find feasible solutions for 30% of the test problems (g03,

g05, and g11). For the other test problems, the results are not convincing, even the best

results achieved are far from the known optimum.

The MGA is then run with the same parameters. From the results in Table 8.1 and 8.2,

it is clear that MGA overcomes the shortcomings of SGA while solving the COPs with

equality constraints. MGA obtains the optimum for six of the ten benchmark problems

(g03, g11, g13, B02, B07, and B09), and for the other four problems the results are

extremely close (within 0.30%) to the known best values. For g05 and B06, which

involve both equality and inequality constraints, MGA achieved very close to the

optimal results. B06 can be considered as a special type of problem. In this problem the

objective function depends only on one variable and this variable is involved in only the

inequality constraint. Since the proposed algorithm is mainly designed to exploit the

advantage of equality constraints, the other genetic operators used in MGA help to solve

this problem.

 Chapter 8. ECHT with Genetic Algorithms

181

8.4.2 Comparison with Other Algorithms

In this section, the performance of MGA is compared with another well-known

algorithm (Runarsson and Yao, 2000) and AMA-II. Runarsson and Yao (2000)

(abbreviated as RY) used an interesting ranking procedure (known as stochastic

ranking) in their ES-based algorithm, and solved all the g-series problems. As the ES-

based algorithm has produced the best results known so far for all the test problems

(g01-g13) its results have been included for comparison.

Table 8.1: Statistics for 30 independent runs of different algorithms for problems with
equality constraints in g-series

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)
SGA × × × × × 4.14
RY -1.000 -1.000 -1.000 1.90E-04 -1.000 − g03 -1.000

MGA -1.000 -1.000 -1.000 0.00E+00 -1.000 4.47
SGA × × × × × 3.52
RY 5126.497 5127.372 5128.881 3.50E+00 5142.472 − g05 5126.498

MGA 5126.459 5126.907 5128.144 5.21E+00 5137.793 4.85
SGA × × × × × 2.55
RY 0.750 0.750 0.750 8.00E-05 0.750 − g11 0.750

MGA 0.750 0.750 0.750 4.52E-09* 0.750 3.77
SGA 0.457442 0.922264 1.031979 6.59E-01 3.854752 4.29
RY 0.053957 0.057006 0.067543 3.10E-02 0.216915 − g13 0.053950

MGA 0.053950 0.056655 0.057864 3.81E-03 0.065063 4.71

Opt= Optimum, ‘×’= feasible solution were not found, * indicates though the best, worst, median, and
mean results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the
literature. Bold font indicates the best result achieved.

Since the six test problems (B01, B02, and B06-B09) are new in the literature, no

results for RY are available. RY successfully solved the first four problems, and are well

known for their performance in solving the g series problems.

For g05, none of the algorithms has achieved the optimum. Due to the use of

tolerance in equality constraint, RY’s best result is lower than the optimal. However the

mean, median, and worst results of MGA are better than RY.

 Chapter 8. ECHT with Genetic Algorithms

182

For problems g11 and g03, both RY and MGA achieved the optimal result and the

same mean and median results. However MGA achieved better standard deviation. For

g13, only MGA has achieved the optimal result. The achievement of MGA is better than

RY. The difference is statistically significant (for the statistical test Student’s t-test is

used and degrees of freedom is considered here 60 and t-tabulated value is 2).

Table 8.2: Statistics for 30 independent runs of different algorithms for other test
problems

Fn Optimal App. Best Median Mean St.Dev Worst Time(s)

SGA -44.775 -41.773 -41.553 1.81E+00 -37.910 3.47
B01 -47.765

MGA -47.627 -47.022 -46.988 3.50E-01 -46.497 6.04
SGA 964.124 975.253 973.961 3.76E+00 978.575 2.82

B02 961.715
MGA 961.715 961.717 961.717 1.71E-03 961.721 3.80
SGA 218.009 661.675 653.398 2.05E+02 960.191 3.52

B06 193.725
MGA 194.113 225.487 205.921 7.87E+01 288.427 5.24
SGA 0.076 0.754 0.797 4.50E-01 1.717 2.84

B07 0.000
MGA 0.000 0.000 0.000 0.00E+00 0.000 3.55
SGA 6.567 6.583 6.582 5.15E-03 6.593 2.46

B08 6.333
MGA 6.338 6.324 6.316 3.60E-02 6.366 3.49
SGA -0.935 0.465 0.314 6.74E-01 1.282 3.71

B09 -1.000
MGA -1.000 -1.000 -1.000 1.78E-05* -1.000 5.06

Opt= Optimal, ‘×’= feasible solution were not found, ∗ indicates though the best, worst, median, and mean
results are the same, standard deviation is positive due to rounding error. ‘−’= No result found in the literature.
Bold fonts indicates best result achieved.

The comparison of the execution time against RY can not be done, because their

code was not available. For SGA a fair comparison of execution time can be made

because it is being used in the same computing environment.

SGA is very simple and on average it needs only 3.33 seconds to solve each of these

test problems. However SGA could not solve three problems (g03, g05, and g11). In

B02 and B08 the achieved mean results of SGA is within 5% of optimum; in all other

problems it could not achieve mean results within 10% of optimum.

MGA achieved mean results within 10% of optimum in all the test problems. In

 Chapter 8. ECHT with Genetic Algorithms

183

seven problems the achieved means of MGA are within 1% of optimum. For the other

three problems the achieved mean results are within 10% of optimums (1.27% in B01,

6.3% in B06 and 7.25% in g13). In spite of better performance, MGA only took on

average 4.45 seconds to solve each problem.

The incorporation of ECHT radically enhanced the performance of MGA. If we

compare the result of it with AMA-II (presented in chapter 7), both algorithms are now

able to handle the equality constraints efficiently and achieve good quality solutions. In

60% of the test problems both algorithms achieve optimum results. In some problems

like g03, g11, B07, and B09, the algorithms achieve the optimum as the best, mean,

median, and worst results. However in two problems (g03 and g13) MGA achieved

better standard deviation than AMA-II. In one problem (B09) AMA-II achieves better

standard deviation. MGA achieves better mean results than AMA-II in three problems

(g05, B06 and B08). In those problems the best and mean results of AMA-II are only on

average 2.629% and 5.749% from optimum. AMA-II also achieves better mean results

than MGA in three problems (g13, B01, and B02). However the achieved results of

MGA are also very convincing in those problems. On average the best and mean results

are only 0.095% and 2.96% far from the optimum. On average AMA-II needs 34.72

seconds to solve the test problems. So MGA provides competitive quality solutions with

faster execution time.

Form the results we can see with help of ECHT, the proposed algorithm not only

achieves better quality solutions, but is also time efficient in solving the COPs with

equality constraints.

8.4.3 The Effect of more Fitness Evaluations

So far, SGA is executed up to 350,000 fitness evaluations. One question that may

arise is whether SGA could find as good solutions as MGA if it were allowed to run for

enough generations (i.e. allowed for more fitness evaluations). To investigate this SGA

is executed for 500,000 fitness evaluations.

It is found that SGA improved its performance, by achieving feasible solutions in

 Chapter 8. ECHT with Genetic Algorithms

184

problems g03, g11, B02, and B09. The new mean results for B02 and B09 are 0.55%

and 3.99% respectively from the optimum. However the mean results of g03 and g11

are still 98.26% and 15.46% away from the optimum.

This shows that SGA is still so unlikely to find an optimal solution (even with the

additional fitness evaluations), because the feasible space of these problems is so small,

that an idea like this new ECHT is essential in order to have a realistic chance of finding

optimal solutions in practice.

8.5 Chapter Summary

This chapter has introduced a modified genetic algorithm which combined simple

GA with the proposed equality constraint handling technique. The constraint handling

technique used here does not need any penalty functions or parameters, and provides

good quality solutions in less computation time compared to other algorithms

considered in this thesis.

The performance of the algorithm is investigated in solving a set of ten test

problems. The results show that the proposed algorithm is robust in its handling of both

linear and nonlinear equality and inequality constraints. The algorithm shows very

impressive performance by achieving optimal results in six problems. The performance

of the proposed algorithm is compared with genetic algorithm, AMA-II and one ES-

based algorithm. The results show that the proposed approach gives mostly improved or

comparable results to other algorithms.

The effects of the proposed ECHT and other design components of the algorithm

have been analyzed. The experimental results show probability of ECHT is an important

parameter for MGA. The performance of the algorithm increases with the increase of

PE, up to a certain level. The algorithm uses a small tolerance on the total constraint

violation, which allows finding some near feasible solutions easily at that stage. The

experimental studies justify this use of dynamic relaxation of the total constraint

violation.

Chapter 9

Conclusions and Future Research Directions

This chapter briefly describes the research carried out in this thesis. It also discusses

the findings and conclusions, and indicates some possible future research directions.

9.1 Summary of Research Done and Conclusions

In this thesis, genetic algorithms for solving constrained optimization are studied

and analyzed. To enhance the performance of the algorithms, first, a new Agent-based

Memetic Algorithm (AMA) is designed. In the new algorithm, a number of local search

techniques are proposed for agent learning. Then a Search Space Reduction Technique

(SSRT) is proposed to improve the quality of randomly generated initial solutions, while

sacrificing very little in diversity of the population. After successfully implementing the

SSRT with different evolutionary algorithms including AMA, an investigation is made

to handle the equality constraints efficiently. The equality constraint handling technique

is used as a new learning process for AMA. The superior performance of AMA, for

problems with equality constraints, inspires to test the technique with simple GA. With

this aim, this thesis also proposes a modified genetic algorithm for solving COPs with

equality constraints.

The details of these developments, experimental results, and findings are briefly

discussed below.

Chapter 9. Conclusions and Future Research Directions

186

9.1.1 Genetic Algorithms in Solving COPs

In Chapter 3, a simple genetic algorithm (SGA) is implemented for solving a set of

state-of-the-art constrained optimization problems. To design the genetic algorithm,

suitable crossover, mutation and constraint handling techniques are used. Although SGA

is fast in execution time, the quality of the results are not convincing enough for use of

this algorithm for solving constrained optimization problems. In only 15.38% of

problems has it achieved optimum results. However, for the rest of the test problems,

the results are not pleasing. In 23.07% of problems it could not find any feasible

solutions at all. The average deviation of the best result achieved by SGA for the rest of

the problems is 107.89% from the optimum results. The study also shows that SGA

suffers in solving problems with tiny feasible space. Especially when the test problems

involve equality constraints, the performance of SGA is very poor. For the equality

constrained problems, the algorithm could not solve 75% of them and the performance

is also not satisfactory for the remaining problem.

The effect of different parameters is investigated in pursuit of better performance of

SGA. Though the results can be improved slightly by increasing the number of

generations, still SGA is unlikely to find good quality solutions for several problems.

This demonstrates that an improved algorithm is required to solve constrained

optimization problems.

9.1.2 Agent-based Evolutionary Algorithms

Chapter 4 discusses agent-based evolutionary algorithms, and different issues that

differentiate an agent-based EA from an independent EA. The chapter has also

introduced a new agent-based memetic algorithm for solving COPs, by tailoring multi-

agent concepts into a memetic algorithm. The individual candidate solutions of

problems are represented as agents with additional characteristics. The agents have the

ability to independently select a suitable life span learning process as an agent learning

approach. Evolutionary operators consist of only crossover and one of the self-

Chapter 9. Conclusions and Future Research Directions

187

adaptively selected LSLPs. To the best of our knowledge, solving constrained

optimization problems using an agent-based memetic algorithm is new in the literature.

In chapter 5, the performance of AMA is investigated in solving a set of test

problems, which includes five new problems plus 13 existing well-known problems.

The results show that the proposed algorithm is robust in solving different types of

COPs. As the agent exchanges information with its neighbors, AMA does not need any

ranking for the whole population. The agent selects a neighborhood agent by using pair-

wise comparison to mate, which handles constraints indirectly. Also in the self-

adaptation process of learning, while calculating the improvement index, the constraints

are indirectly handled. These two levels of constraint handling, with appropriate

neighborhood size, SBX crossover, and LSLP, ensure the superior performance of AMA

in handling constraints.

The algorithm shows very impressive performance by achieving optimal results in

13 problems. The performance of the AMA is compared with five GA-based and one

ES-based algorithms. The comparisons show that the proposed approach gives mostly

improved or comparable results to other algorithms. Statistical significance tests show

that the proposed algorithm’s performance is better than the well-known ES-based

algorithms for the well-known 13 problems.

The effect of the proposed LSLPs is analyzed, showing that adaptively selecting one

of the LSLPs achieves better results ensuring both diversity and convergence. The effect

of Probability of Learning (PL) is also analyzed. The performance of the algorithm

increases with the increase of PL, but after a certain level it causes over diversification.

While analyzing the effect of neighborhood size, the experimental studies show the

combined approach (i.e. applying 4 neighbors and 8 neighbors interchangeably)

performs better than the other types of neighborhood. The effect of population size is

also analyzed, which shows a low population size is not able to achieve good results.

With the increase of population size the performance improves, however after a certain

population size there is no significant improvement in the solutions.

Chapter 9. Conclusions and Future Research Directions

188

9.1.3 Problems with Tiny Feasible Space

In many practical optimization problems, the feasible spaces are very tiny. These

problems are very challenging, as they require searching a huge variable space in order

to locate feasible points with acceptable quality. Chapter 6 proposes a simple method to

improve the quality of randomly generated initial solutions, while sacrificing very little

in diversity of the population, for solving COPs with tiny feasible space. The proposed

method, which is termed the search space reduction technique in this thesis, directs the

selected low quality infeasible solutions towards the feasible space.

The performance of SSRT is investigated, in conjunction with AMA, simple genetic

algorithm and three well-known algorithms found in the literature, by solving a set of

test problems and a real world case problem. This approach usually improves the

performance of the algorithms in terms of either solution quality or computational time

or both, at the cost of an additional step with O(M2) complexity (where M is the number

of infeasible solutions in the initial population). From the results of the real world

problem, it is evident that the method is more appreciable for large scale problems with

tiny feasible space. Although the idea of SSRT is very simple, the results justify the use

of SSRT with evolutionary algorithms.

9.1.4 Handling Equality Constraints

Chapter 7 presents a new equality constraint handling technique, which enhances the

performance of AMA in solving constrained optimization problems with equality

constraints. The technique is basically used as an agent learning process in AMA. The

ECHT brings an individual solution to a point on an equality constraint from the current

position of an individual solution, and then explores on the constraint landscape. The

extended AMA is capable of solving nonlinear optimization problems with equality

constraints more efficiently. The constraint handling techniques used here do not need

any penalty functions or additional parameters. The performance of the proposed

algorithms is tested using benchmark problems. The experimental results show the

Chapter 9. Conclusions and Future Research Directions

189

enhanced performance achieved by the new AMA in terms of solution quality and

computational time.

The effect of the new learning process and probability of using the learning process

is also analyzed. The experimental results show that faster convergence can be achieved

with the new learning process. The probability of learning is an important parameter in

the process. The performance of the algorithm improves with the increase of PL up to a

certain point; beyond that point, high values of PL may over diversify the population

which slows down the convergence.

9.1.5 ECHT with Genetic Algorithms

The superior performance of AMA (in chapter 7), for problems with equality

constraints, inspires to test the same technique with GA. Chapter 8 proposes a modified

genetic algorithm for solving COPs with equality constraints. In MGA, only crossover

operator and the ECHT are used. The results show that the proposed approach

overcomes the limitations of SGA discussed in Chapter 3, and provides significantly

improved results compared to SGA reported in this thesis. The algorithm shows very

impressive performance by achieving optimal results for 60% of the problems, whereas

SGA could not solve 75% of these equality constrained optimization problems. The

achieved best results are on average 0.05668% from the optimum. In 70% of problems

the achieved mean results of MGA are within 1% of optimum. For the other three

problems the achieved mean results are within 10% of optimums. In spite of better

performance, MGA only took on average 4.45 seconds to solve each problem. This

shows the proposed algorithm not only achieves better quality solutions, but also is time

efficient in solving COPs with equality constraints.

The effects of the proposed ECHT and other design components of the algorithm have

been analyzed. Probability of ECHT is an important parameter; the performance of the

algorithm increases with the increase of PE, up to a certain level.

The algorithm uses a small tolerance on the total constraint violation, which allows

Chapter 9. Conclusions and Future Research Directions

190

finding some near feasible solutions easily at the earlier stage of evolution. The

experimental results justify the use of dynamic relaxation of the total constraint

violation.

9.1.6 Summary

The key contributions in this thesis are the AMA architecture and the ECHT. In

problems with only inequality constraints, the AMA architecture helps a lot, while the

ECHT is not relevant. The algorithm can solve all the test problems efficiently, with

suitable parameter settings. In problems with equality constraints, the ECHT helps a lot

with both AMA and SGA. With ECHT, AMA-II can solve the problems with better

quality solutions and even with lower computational cost such as a 3.64% reduction of

execution time compared to AMA-I. With ECHT, the proposed MGA is able to solve all

the test problems, which was not at all possible with SGA.

One other important contribution of this research is the design of SSRT and its

implementation with different EAs in solving COPs with tiny feasible space. The

technique shows its value by improving the solutions when it is used with any of a

variety of different techniques such as AMA, SGA, NSGA-II and MCA.

The detailed experiments have shown in the individual chapters how each of the

algorithm performance behaves as various important parameters are varied. This

demonstrates the robustness of the algorithms − small changes in the values of

parameter do not cause large changes in performance − and it helps to identify the

optimum settings for some parameters.

Some of the key experimental results are briefly indicated below.

• Adaptively selecting one of the LSLPs achieves better results, as that ensures

both diversity and convergence (see Chapter 5).

• For the neighborhood size of the agents, the combined approach performs better

than the other types of neighborhood (see Chapter 5).

Chapter 9. Conclusions and Future Research Directions

191

• With the increase of population size the performance of AMA improves,

however after a certain population size there is no significant improvement in

the solutions (see Chapter 5).

• In the design process of SSRT, the number (or percentage) of infeasible

solutions used in calculating the centroid, and a stopping criterion for SSRT, are

very important factors. As the diversity of the population decreases with

application of SSRT, the diversity measure is considered as a stopping criterion.

• The ECHT, which is considered as a learning process in AMA, achieves faster

convergence.

• A small tolerance for violation of equality constraints helps the quality of

solutions and the speed of convergence.

In conclusion: with the help of the algorithms proposed in this thesis, COPs can be

solved more efficiently. For a new constrained optimization problem, if the size of the

feasible space is not tiny, AMA (see Chapter 5 and 6) can be used. However for

problems with tiny feasible space, SSRT (see Chapter 7) can be applied before the

evolutionary process. With the presence of equality constraints, the use ECHT (see

Chapter 8) with AMA is recommended. For faster performance in solving such

problems, MGA (see Chapter 8) is highly recommended. The experimental study shows

the strength of the algorithms, and the achieved results of the algorithms presented in

the thesis are as good or better than others in the existing literature.

9.2 Future Research Directions

Various avenues of further research stem from the work carried out in this thesis.

The current research can be extended in a number of different ways. The performance of

proposed AMA and SSRT can be tested on more test and practical problems. The

performance of the equality constraint handling technique can be extended for more

equality constrained optimization problems.

Chapter 9. Conclusions and Future Research Directions

192

In addition, some other aspects can also be introduced in conjunction with our

proposed techniques, which are described below.

• In the design of AMA, more intelligent characteristics can be incorporated in the

agents. The agents may have their own information storage, information

retrieval, and decision support system to analyze the characteristics and fitness

landscape of the problems and make their own judgment accordingly.

• In AMA, the individual agents select a LSLP from their parents LSLPs based on

their improvement index. However, a different approach could be chosen to

select the LSLPs. For example, an individual could select a LSLP, based on its

fitness or random.

• In designing the SSRT (chapter 6), to calculate the centroid, the arithmetic mean

of the participating solutions of respective variables is considered, that gives

equal priority to all the individuals under consideration. However, weighted

approach or other techniques may be considered to calculate the centroid.

• For the stopping criterion of SSRT, diversity reduction is considered in this

thesis. Other measures such as the feasibility of the whole population could be

used.

• In the design of ECHT (presented in Chapter 7), to explore on the equality

constraint, only two variables are considered to be changed. More than two

variables could be considered.

• In solving equality constrained problems, it could be possible to find the

optimum by searching only one constraint that involves all the variables. This

could be considered in the design of ECHT.

• The methodologies proposed in this research can be incorporated easily with

different population-based evolutionary algorithms to improve their

performance. The proposed search space reduction technique can be used with

any population-based algorithms, even with multi-objective based evolutionary

algorithms for constraints handling. After applying SSRT, the algorithms can

Chapter 9. Conclusions and Future Research Directions

193

start the evolutionary process with a set of improved quality solutions. The

multi-objective based constraints handling algorithms can also use the ECHT

proposed in this research while solving optimization problems with equality

constraints. In those problems these algorithms can easily replace the traditional

mutation operator with the proposed ECHT to handle the equality constraints

efficiently.

• Many real world optimization problems may involve a wide range of

uncertainties and dynamically changing environments. The objective function

and/or constraint functions may be changed with time and conditions. These

functions may also be noisy in some cases. The proposed algorithms can be

extended on these types of problems. that are dynamic and noisy.

• This research considers single objective optimization problems. However, the

application of evolutionary algorithms in multi-objective optimization is

currently receiving growing interest from the researchers and practitioners. The

proposed algorithms can be extended to solving multi-objective problems.

Appendix A

Test Problem Suite I

All benchmark functions (g1-g13) are described in (Runarsson and Yao, 2000). They are
summarized here for completeness. The original sources of the functions are also cited.

a. g01 (Floudas and Pardalos, 1987)

Minimize

() ∑∑∑
===

−−=
13

5

4

1

2
4

1
55

i
i

i
i

i
i xxxxf

subject to
()
()
()
()
()
()
()
()
() ,02

,02
,02

,08
,08
,08

,01022
,01022
,01022

12989

11768

10547

1236

1125

1014

1211323

1210312

1110211

≤+−−=
≤+−−=
≤+−−=

≤+−=
≤+−=
≤+−=

≤−+++=
≤−+++=
≤−+++=

xxxxg
xxxxg
xxxxg

xxxg
xxxg
xxxg

xxxxxg
xxxxxg
xxxxxg

where the bounds are 10 ≤≤ ix (),9,...,1=i 1000 ≤≤ ix ()12,11,10=i , and 10 13 ≤≤ x .

The global minimum is at *x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where six constraints

are active (,,,,, 87321 ggggg and)9g and () 15* −=xf .000.

b. g02 (Koziel and Michalewicz, 1999)

Maximize

()
() ()

∑

∏∑

=

==

−
=

n

ii
i

n

i
i

n

i
i

ix

xx
xf

2

1

2

1

4 cos2cos

Appendix A

195

subject to

() 075.0
1

1 ≤−= ∏
=

n

i
ixxg ,

() 05.7
1

2 ≤−= ∑
=

nxxg
n

i
i ,

where 20=n and 100 ≤≤ ix ()ni ,...,1= . The global maximum is unknown; However
the best reported global minimum (to the best of our knowledge) reported at *x =
3.61246061572185, 3.12833142812967, 3.09479212988791, 3.06145059523,
3.0279291588, 2.993826067, 2.958668717, 2.9218422731, 0.494825114566933,
0.48835711005490, 0.4823164271186, 0.476644750927, 0.47129550835,
0.46623099264167, 0.46142004984199, 0.45683664767, 0.45245876903267,
0.448267622418, 0.44424700958760, 0.44038285956317), where

() 25598036191041.0* =xf . Constraint 1g is close to being active ()8
1 10−−=g .

c. g03 (Michalewicz et al., 1996)

Maximize

() () ∏
=

=
n

i
i

n
xnxf

1

subject to

() 01
1

2
1 =−= ∑

=

n

i
ixxh

where 10=n and 10 ≤≤ ix ()ni ,...,1= . The global maximum is at ()ninx ,...,11* ==
where () 1* =xf .000.

d. g04 (Himmelblau, 1972)

Minimize
() 141.40792293239.378356891.03578547.5 151

2
3 −++= xxxxxf

subject to
()
()
()
()
()
() ,0200019085.00012547.00047026.0300961.9

,0250019085.00012547.00047026.0300961.9
,0900021813.00029955.00071317.051249.80

,01100021813.00029955.00071317.051249.80

,00022053.00006262.00056858.0334407.85
,0920022053.00006262.00056858.0334407.85

4331536

4331535

2
321524

2
321523

5341522

5341521

≤+−−−−=
≤−+++=
≤+−−−−=

≤−+++=

≤+−−−=
≤−−++=

xxxxxxxg
xxxxxxxg
xxxxxxg

xxxxxxg

xxxxxxxg
xxxxxxxg

where 10278 1 ≤≤ x , 4533 2 ≤≤ x , and 4527 ≤≤ ix ()5,4,3=i .

The optimum solution is *x = (78, 33, 29.995256025682, 45, 36.775812905788) where

Appendix A

196

() 539.30665−=*xf . Two constraints are active (1g and 6g).

e. g05 (Hock and Schittkowski, 1981)

Minimize
() 3

22
3
11)3000002.0(2000001.03 xxxxxf +++=

subject to
()
()
() () ()
() () ()
() () () ,08.129425.0sin100025.0sin1000

,08.89425.0sin100025.0sin1000
,08.89425.0sin100025.0sin1000

,055.0
,055.0

3444

24334

1433

432

341

=+−−+−=
=−+−−+−=

=−+−−+−−=
≤−+−=
≤−+−=

xxxxh
xxxxxh

xxxxh
xxxg
xxxg

where 12000 1 ≤≤ x , 12000 2 ≤≤ x , 55.055.0 3 ≤≤− x , and 55.055.0 4 ≤≤− x .

The best known solution is *x = (679.9453, 1026.067, 0.1188764, -0.3962336) where

() 4981.5126* =xf .

f. g06 (Floudas and Pardalos, 1987)

Minimize
() () ()3

2
3

1 2010 −+−= xxxf
subject to

() () ()
() () () ,081.8256

,010055
2

2
2

12

2
2

2
11

≤−−+−=

≤+−−−−=

xxxg

xxxg

where 10013 1 ≤≤ x , and 1000 2 ≤≤ x .

The optimum solution is *x = (14.095, 0.84296) where () 81388.6961* −=xf . Both

constraints are active.

g. g07 (Hock and Schittkowski, 1981)

Minimize
() () () ()

() () () () 457102117512

354101614
2

10
2

9
2

8
2
7

2
6

2
5

2
4

2
32121

2
2

2
1

+−+−+−++−+

−+−+−+−−++=

xxxxx

xxxxxxxxxxf

Appendix A

197

subject to
()
()
()
() () ()
() ()
() ()
() () ()
() () ,0781263

,03034285.0

,0614222

,0402685

,0120723423

,0122528
,0217810

,09354105

10
2

9218

6
2
5

2
2

2
17

6521
2

2
2
16

4
2

32
2
15

4
2
3

2
2

2
14

109213

87212

87211

≤−−++−=

≤−−+−+−=

≤−+−−+=

≤−−−++=

≤−−+−+−=

≤−−++−=
≤+−−=

≤+−++−=

xxxxxg

xxxxxg

xxxxxxxg

xxxxxg

xxxxxg

xxxxxg
xxxxxg

xxxxxg

where 1010 ≤≤− ix ()10,...,1=i .

The optimum solution is *x = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,

1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where () 3062091.24* =xf . Six

constraints are active (,,,,, 54321 ggggg and)6g .

h. g08 (Koziel and Michalewicz, 1999)

Minimize

() () ()
()21

3
1

21
3 2sin2sin

xxx
xxxf

+
=

ππ

subject to
()
() () ,041

,01
2

212

2
2
11

≤−+−=

≤+−=

xxxg

xxxg

where 100 1 ≤≤ x , and 100 2 ≤≤ x .

The optimum solution is *x = (1.2279713, 4.2453733) where () 095825.0* −=xf . The

solution lies within the feasible region.

i. g09 (Hock and Schittkowski, 1981)

Minimize
() () () () 7676

4
7

2
6

6
5

2
4

4
3

2
2

2
1 810471011312510 xxxxxxxxxxxxf −−−+++−++−+−=

Appendix A

198

subject to
()
()
()
() ,0115234

,08623196

,01037282

,05432127

76
2
321

2
2

2
14

7
2
6

2
213

54
2
3212

5
2
43

4
2

2
11

≤−++−+=

≤−+++−=

≤−++++−=

≤+++++−=

xxxxxxxxg

xxxxxg

xxxxxxg

xxxxxxg

where 1010 ≤≤− ix ()7,...,1=i .

The optimum solution is *x = (2.330499, 1.951372, −0.4775414, 4.365726,

−0.6244870, 1.038131, 1.594227) where = () 3680.630057* =xf . Two constraints are

active (1g and)4g .

j. g10 (Hock and Schittkowski, 1981)

Minimize
() 321 xxxxf ++=

subject to
() ()
() ()
() ()
()
()
() ,025001250000

,012501250
,0333.8333310033252.833

,001.01
,00025.01

,00025.01

553836

4425725

14614

583

4752

641

≤−++−=
≤−++−=

≤−++−=
≤−+−=

≤−++−=
≤++−=

xxxxxxg
xxxxxxxg

xxxxxg
xxxg

xxxxg
xxxg

where 10000100 1 ≤≤ x , 100001000 ≤≤ ix ()3,2=i and 100010 ≤≤ ix ()8,...,4=i .

The optimum solution is *x = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,

217.9799, 286.4162, 395.5979) where () 7049.3307* =xf . Three constraints are active

(21, gg and)3g .

k. g11 (Koziel and Michalewicz, 1999)

Minimize
() ()2

2
2
1 1−+= xxxf

Appendix A

199

subject to
() ,02

12 =−= xxxh
where 11 1 ≤≤− x and 11 2 ≤≤− x .

The optimum solution is ()21,21* ±=x where () 75.0* =xf .

l. g12 (Koziel and Michalewicz, 1999)

Maximize
() () () ()() 100555100 2

3
2

2
2

1 −−−−−−= xxxxf
subject to

() () () () 00625.02
3

2
2

2
1 ≤−−−−−−= rxqxpxxg

where 100 ≤≤ ix ()3,2,1=i and 9,...,2,1,, =rqp .

The feasible region of the search space consists of 39 disjointed spheres. A point

()321 ,, xxx is feasible if and only if there exist ()rqp ,, such that the above inequality

holds. The optimum is located at =*x (5,5,5) where () 1* =xf . The solution lies within

the feasible region.

m. g13 (Hock and Schittkowski, 1981)

Minimize
54321 xxxxxexf)(=

subject to

,01)(

,0)(
,010)(

3

2

1

=++=

==

=−++++=

 x x xh

xx5 - xx xh
 x x x x x xh

3
2

3
1

5432

2
5

2
4

2
3

2
2

2
1

where 3.23.2 x i ≤≤− (i = 1, 2) and 2.32.3 x i ≤≤− (i = 3, 4, 5).

 The best known solution is at

)763659.0,763659.0,827250.1, 595721.1, 717142.1(* −−−= x where () 0539498.0=*xf .

Appendix B

Test Problem Suite II

a. B01 (Himmelblau, 1972)

Minimize

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

∑
∑

=
=

10

1

10

1
ln

j j

i
i

i
i

x
xcxxf)(

Subject to

 xx xx x xh
, x xx x xh

 x x xx x xh

,012)(
012)(

,0222)(

1098733

76542

1063211

=−++++=
=−+++=

=−++++=

where 100 x i ≤≤ (i = 1,…,10) and 089.61 −= c , 164.172 −= c , 054.343 −= c , 914.54 −= c ,
721.245 −= c , 986.146 −= c , 1.247 −= c , 708.108 −= c , 662.269 −= c , 179.2210 −= c .

The best known solution is at *x = (0.0406684113, 0.147721240, 0.783205732,

0.0014143393, 0.4852936367, 0.0006931383, 0.0274052040, 0.0179509660,

0.0373268186, 0.0968844604) where () 764888459.47−=*xf .

b. B02 (Himmelblau, 1972)

Minimize
3121

2
3

2
2

2
1 21000 xxxxxxxxf −−−−−=)(

subject to
0 25) (2

3
2
2

2
11 =−++= xxxxh ,

0567148) (3212 =−++= xxxxh ,
where the bounds are 100 x i ≤≤ (i = 1, 2, 3).

The best known solution is at
*x =(3.5121281261, 0.2169875104, 3.5521785492), where () =*xf 961.715022.

Appendix B

201

c. B03 (Himmelblau, 1972)

Minimize

17
12

2

16

15
5

12161314

0000005843.048.370001.0004324.0

0321.0000001502.000002358.01365.0000117.0

y
c
y

c
cy

yyyyxf

−+++

++++=)(

Subject to
0

72.0
28.0)(1 yyxg 45 ≤−= ,

05.1)(232 x xxg ≤−= ,

021)(
12

3
c
y 3496xg 2 ≤−= ,

0622126.110)(
17

14 ≤−+=
c

yxg ,

01.213)(15 ≤−= yxg ,
023.405)(16 ≤−= yxg ,

0505.17)(27 ≤−= yxg ,
06667.1053)(28 ≤−= yxg ,

0275.11)(39 ≤−= yxg ,
003.35)(310 ≤−= yxg ,

0228.214)(411 ≤−= yxg ,
0585.665)(412 ≤−= yxg ,

0458.7)(513 ≤−= yxg ,
0463.584)(514 ≤−= yxg ,

0961.0)(615 ≤−= yxg ,
0916.265)(616 ≤−= yxg ,

0612.1)(717 ≤−= yxg ,
0046.7)(718 ≤−= yxg ,
0146.0)(819 ≤−= yxg ,
0222.0)(820 ≤−= yxg ,
099.107)(921 ≤−= yxg ,
0366.273)(922 ≤−= yxg ,

0693.922)(1023 ≤−= yxg ,
0105.1286)(1024 ≤−= yxg ,

0832.926)(1125 ≤−= yxg ,
0046.1444)(1126 ≤−= yxg ,

0766.18)(1227 ≤−= yxg ,

Appendix B

202

0141.537)(1228 ≤−= yxg ,
0163.1072)(1329 ≤−= yxg ,
0039.3247)(1330 ≤−= yxg ,
0448.8961)(1431 ≤−= yxg ,
0086.26844)(1432 ≤−= yxg ,

0063.0)(1533 ≤−= yxg ,
0386.0)(1534 ≤−= yxg ,

033.71084)(1635 ≤−= yxg ,
0140000)(1636 ≤+−= yxg ,

02802713)(1737 ≤−= yxg ,
012146108)(1738 ≤−= yxg ,

where
6.41321 x x y ++= ,

62.4024.0 41 x c −= ,

c

y 12 5.12

1
2 += ,

121
2
12 08705.0 5311.0 0003535.0 xyxxc ++= ,

1213 002377.0 78 052.0 xyxc ++= ,

3

2
3

c
cy = ,

34 19 yy = ,

34
2

2
31

314 594.16376.0

) - (1956.0) - (04782.0 yy
x

yxyxc +++= ,

25 100 xc = ,

4316 - - yyxc = ,

 - 950.0
5

4
7 c

cc =

765 ccy = ,

34516 yyyxy −−−= ,
995.0)(458 yyc += ,

 187 ycy = ,

3798
8

8
cy = ,

3153.00663.0
8

7
79 −−=

y
yyc ,

Appendix B

203

 321.082.96
1

9
9 y

c
y += ,

634510 71.129.2258.129.1 yyyyy +++= ,

34111 580.0452.071.1 yyxy +−= ,

3.752

3.12 10 =c ,

)995.0)(75.1 (1211 xyc = ,
1998 995.0 1012 += yc ,

12

11
11012 c

c xc y += ,

21213 75.1 ycy −= ,

59
3214

1463124.584.643623
xy

xxy
+

+++= ,

50951121.0488.60995.0 14421013 −−++= yxxyc ,

13

13
15 c

yy = ,

1315131516 6140331000148000 yyyyy −+−= ,

214 28740000102324 yyc −= ,

12

14
111017 531132814130000

c
cyyy +−−= ,

52.0
13

15

13
15

y
y
yc −= ,

1516 72.0104.1 yc −= ,

5917 xyc += ,
where the bounds are 3855.9064148.704 1 ≤≤ x , 88.2886.68 2 ≤≤ x , 75.1340 3 ≤≤ x ,

0966.287193 4 ≤≤ x , and 1988.84 25 5 ≤≤ x .

 The best known solution is at *x = (705.1745370700, 68.599999999, 102.8999999999,

282.3249315936, 37.5841164258) where () 9051552585.1−=*xf .

d. B04 (Himmelblau, 1972)

Minimize
) (5.0 768595933241 xxxxxxxxxxxxxf −+−+−−=)(

subject to
01)(2

4
2
31 xxxg ≤−+= ,

01)(2
92 xxg ≤−= ,

0 1)(2
6

2
53 ≤−+= xxxg ,

Appendix B

204

0)()(2
92

2
14 ≤−+= xxxxg ,

01)()()(2
62

2
515 ≤−−+−= xxxxxg ,

01)()()(2
82

2
716 ≤−−+−= xxxx xg ,

01)()()(2
64

2
537 ≤−−+−= xxxxxg ,

01)()()(2
84

2
738 ≤−−+−= xxxxxg ,

01)()(2
98

2
79 ≤−−+= xxxxg ,

0)(413210 ≤+= xxxxxg ,
0)(9311 ≤−= xx xg ,

0)(9512 ≤= xx xg ,
0)(857613 ≤−= xxxx xg ,

where the bounds are)8,...,1 (1010 =≤≤− i xi and 200 ≤≤ 9x .

The best known solution is at *x = (6577761924.0− , 1534187734.0− , 3234138716.0 ,

9462576116.0− , 6577761943.0− , 7532134346.0− , 3234138741.0 ,

3464629479.0− , 5997946628.0) where () 8660254037.0−=*xf .

e. B05 (Floudas, 1999)

Minimize
 21 xxxf −−=)(

subject to
02882)(2

2
1

3
1

4
11 xxxxxg ≤−+−+−= ,

0369688324)(21
2
1

3
1

4
12 xxxxxxg ≤−++−+−= ,

where the bounds are 30 1 ≤≤ x and 40 2 ≤≤ x .

The feasible global minimum is at *x =) 1784930741.3 ,3295201974.2(.

where () 65080132715.5−=*xf . This problem has a feasible region consisting on two

disconnected sub-regions.

f. B06 (Himmelblau, 1972)

Minimize

1xxf =)(
subject to

0 253535) (6.0
3

6.0
211 ≤−++−= xxxxg ,

0 252575007500300) (4364546531 =++−−+−= xxxxxxxxxxh ,

Appendix B

205

0 5.15536252500365.155100) (74427422 =−−−++= xxxxxxxxh ,
0)900() (253 =+−+−= xlnxxh ,
0)300() (464 =+−+−= xlnxxh ,

0)7002() (475 =+−+−= xlnxxh ,
where the bounds are 10000 1 x ≤≤ , 40,0 32 xx ≤≤ , 300100 4 x ≤≤ , 7.63.6 5 x ≤≤ ,

4.69.5 6 x ≤≤ , 25.65.4 7 x ≤≤ .

The best known solution is at *x = 193.7245100700, 5.5694413155E-27,

17.3191887294, 100.0478978013, 6.6844518536, 5.9916842844, 6.2145164888; where

() 724510070.193=*xf .

g. B07 (Hock and Schittkowski, 1981)

Minimize
2

54
2

32
2

1)()()1()(x-x x-x -x xf ++=
Subject to
 05)(543211 =−++++= xxxxx xh ,
 03)(2)(5432 =+++= xxx xh ,
where 0.20.0 x i ≤≤ (i = 1,…,5).

The optimum solution is)000.1,000.1,000.1,000.1000.1(* ,x = where () 0000.0=*xf .

h. B08 (Hock and Schittkowski, 1981)

Minimize
41

511 42)(xxexxx xf +++=
Subject to
 0652)(5211 =−++= xxx xh ,

03)(3212 =−++= xxx xh ,
02)(6543 =−++= xxx xh ,

01)(414 =−+= xx xh ,
02)(525 =−+= xx xh ,
02)(636 =−+= xx xh ,

where 0.20.0 x i ≤≤ (i = 1,…,6).

The optimum solution is

)333334.0,666667.0,000000.1,666667.1,333334.1000000.0(* ,x = where () 3334.6=*xf .

Appendix B

206

i. B09 (Hock and Schittkowski, 1981)

Minimize
1)(x xf −=

Subject to
 0)(2

3
3
121 =−−= xxx xh ,

 0)(2
42

2
12 =−−= xxx xh ,

where 0.20.0 x i ≤≤ (i = 1,…,4).

The optimum solution is)000000.0,000000.0,000000.1000000.1(* ,x = where

() 000000.1−=*xf .

Appendix C

Test Problem Suite III

Crop Planning Model

a. A Linear Crop Planning Model (Sarker and Ray, 2005; Sarker and Ray, 2009)

Index:

i for a crop which can be considered for production

j a crop combination made up from i

k land type

Set:

CE set of crops that can be imported

CAL set of crops having area limitation

CIL set of crops having import limitation

Parameters:

n1 number of alternative crops for single-cropped land

n2 number of crop combinations for double-cropped land

n3 number of crop combinations for triple-cropped land

N1j a crop in each j for single-cropped land, j = 1, …, n1

N2j the j-th crop pair of the possible crop combinations of double-cropped land, j = 1, …,

 n2

N3j the j-th crop triple of the possible crop combinations of triple-cropped land, j = 1, …,

 n3

YRijk yield rate that is the amount of production per unit area for crop i of crop

combination j in land type k.

CPijk variable cost required per unit area for crop i of crop combination j in land type k.

Appendix C

208

Pi market price of crop i per metric ton

Bijk gross margin that is the benefit that can be obtained per unit area of land from crop i

of crop combination j in land type k = (Pi * YRijk - CPijk)

ICi gross margin from import of crop i (=Market revenue - Import cost)

Di yearly demand of crop i

Lk available area of land type k

LTk land type coefficient for land type k (=1, 1/2 or 1/3)

Ca working capital available, this indicates the total amount of money that can be used

for covering variable costs.

A area suitable and available for crop i when k = 1

IL upper limit of total crop import

Variables

Xijk Area of land to be cultivated for crop i of crop combination j in land type k.

Ii Amount of crop i that should be imported.

Objective function 1: The first objective is to maximize the total gross margin (from

cultivated plus imported crops) that can be obtained from cropping in a single crop year.

∑ ∑∑

∑ ∑∑ ∑

= ∈∈
==

= ∈
==

= ∈
==

++

+=

3

21

1 3
)3()3(

1 2
)2()2(

1 1
)1()1(1

 Maximize

n

j CEi
ii

Ni
kijkij

n

j Ni
kijkij

n

j Ni
kijkij

IICXB

XBXBZ

j

jj

(1)

The first, second, third and fourth terms represent the gross margin from single crop land,

double crop land, triple crop land and imported crop respectively. Note that there is only

one crop for each j in single crop land, two crops in doubled crop land and three crops in

triple crop land.

Constraints:

Demand constraint: The sum of local production and the imported quantity of crop i in a

Appendix C

209

year must be greater than or equal to the total requirements in the country.

 iDIXYR iCEi
j k

ijkijk ∀≥+ ∈∑∑ (3)

Land constraint: The total land used for a given type of land must be less than or equal to

the total available land of that type.

kLXLT kijk
i j

k ∀≤∑∑ (4)

Here, for k = 1, 2 and 3, the coefficients (LTk) are 1, ½ and 1/3 respectively. If a piece of

land is used by two crops (in a double cropped land) one after another (consecutive

production) in a given year, it is assumed equivalent to the use of half the land for one of

these two crops in a year - that is LTk= ½. This assumption makes the constraint (4) simpler

and it is required only for land constraint.

Capital constraint: The total amount of money that can be spent for covering the variable

costs in crop production must be less than or equal to the working capital available. Note

that minimization of capital requirements is one of our two objectives formulated above.

This additional constraint basically sets the upper bound of capital availability.

a

n

j Ni
kijkij

n

j Ni
kijkij

n

j Ni
kijkij CXCPXCPXCP

jjj

≤++ ∑ ∑∑ ∑∑ ∑
= ∈

==
= ∈

==
= ∈

==

321

1 3
)3()3(

1 2
)2()2(

1 1
)1()1(

(5)

Contingent constraint: The area used for any crop under a crop combination for double- or

triple-cropped land must be equal for every crop. For example, in a double-cropped land,

the area used by two crops belonging to any crop combination must be equal.

jXX kjNikjNi jj
∀=− =∈=∈ 0)2()2()2()2(21

 (6)

In double cropped land, for a given crop combination j there is only two crops: i1 and i2

where i1 is the first crop and i2 is the second crop in the combination. Both crops use the

same area of land but one after another. In a triple-cropped land, the area used by three

crops belonging to any crop combination must be equal.

jXX kjNikjNi jj
∀=− =∈=∈ 0)3()3()3()3(21

 (7)

Appendix C

210

jXX kjNikjNi jj
∀=− =∈=∈ 0)3()3()3()3(32

 (8)

Here, i1 is the first crop, i2 is the second crop and i3 is the third crop for combination j.

Area and import bound constraint: Due to soil characteristics and regional aspects, in some

regions, the amount of area to be used for certain crops is restricted. For example, the

unsuitability of certain lands for fruit cultivation needs to set an area limit for fruit. This is

true only for single-cropped land. Similarly, a constraint needs to be set for import

restriction as there is an upper limit on the importation of some crops.

 1,1 ==∀≤∑
∈

kjAX
CALi

ijk Area bound: (9)

 ILI
CILi

i ≤∑
∈

 Import bound: (10)

Non-negativity constraint: The decision variables must be greater than or equal to zero.

 andi,j,kXijk ∀≥ 0

iIi ∀≥ 0

(11)

b. A Nonlinear Crop Planning Model (Sarker and Ray, 2005; Sarker and Ray,

2009)

It is interesting that, for a given crop, the yield rate in double- and triple- cropped

land is little higher than the single-cropped land. This is due to frequent use of fertilizers

and insecticides in double- and triple-cropped land. The difference is significant for

triple-cropped land and a nonlinear relationship is established to reflect this change. The

change is related to the triple crop decision variables by expressing as b
ijkx)(. The value

of b varies from situation to situation. For higher yield rate, the value of b will be more

than one. In situations, where fertilizers are not appropriately used, the yield rate may

decrease for double- and triple-cropped lands. So the value of b is assumed that it will

be less than one. In addition, the nonlinearity may arise due to soil characteristics and

the level of agricultural inputs used. In the model, the triple crop variables for the first

objective function and demand constraints will be assumed as nonlinear.

References

Adler, M. R., Davis, A. B., Weihmayer, R. and Worrest, R. W. (1989). Conflict

resolution strategies for nonhierarchical distributed agents. In Distributed

Artificial Intelligence, vol. 2, pages 139–16. Pitman Publishing: London and

Morgan Kaufmann, San Mateo, CA.

Ahn, H. and Kim, K. J. (2009). Bankruptcy prediction modeling with hybrid case-based

reasoning and genetic algorithms approach. Applied Soft Computing, 9(2): 599-

607.

Alba, E. and Dorronsoro, B. (2005). The exploration/exploitation tradeoff in dynamic

cellular genetic algorithms. IEEE Transactions on Evolutionary Computation

9(2): 126-142.

Alkan, A. and Ozcan, E. (2003). Memetic algorithms for timetabling. In The 2003

Congress on Evolutionary Computation, Vol. 3, pp. 1796-1802

Alkemade, F., Van Bragt, D. D. B. and La Poutre, J. A. (2005). Stabilization of tag-

mediated interaction by sexual reproduction in an evolutionary agent system.

Information Sciences, 170(1): 101-119.

Alyabysheva, T., Parfenov, L., Rudnev, A., Stepanov, V. and Tsvetkov, E. (1975).

Optimizing the operating schedules of hydroelectric stations in power systems.

Power Technology and Engineering (formerly Hydrotechnical Construction), 9(9):

818-822.

Anderson, D. R., Sweeney, D. J., Williams, T. A., Harrison, N. J. and Rickard, J. A.

(1996). Essentials of Statistics for Business and Economics Harper educational

(Australia) Pty. Limited.

Andreou, A. S., Georgopoulos, E. F. and Likothanassis, S. D. (2002). Exchange-Rates

Forecasting: A Hybrid Algorithm Based on Genetically Optimized Adaptive

Neural Networks. Computational Economics, 20(3): 191-210.

References

212

Bäck, T., Fogel, D. B. and Michalewicz, Z., Eds. (2000). Handbook of Evolutionary

Computation. Institute of Physics Publishing Ltd, Bristol and Philadelphia, UK.

Badiru, A. B. and Pulat, P. S. (1994). Comprehensive Project Management: Integrating

Optimization Models, Management Principles, and Computers. Prentice Hall

PTR.

Bajo, J. and Corchado, J. (2006). Multiagent Architecture for Monitoring the North-

Atlantic Carbon Dioxide Exchange Rate. In Current Topics in Artificial

Intelligence, pages 321-330. Springer, Berlin.

Bazaraa, M., Jarvis, J. and Sherali, H. (1990). Linear Programming and Network Flows.

John Wiley & Sons, New York.

Bazaraa, M., Sherali, H. and Shetty., C. (2006). Nonlinear Programming: Theory and

Algorithms. 3 ed., A John Wiley & Sons, Inc, New York.

Bean, J. C. and Hadj-Alouane, A. B. (1993). A dual genetic algorithm for bounded

integer programs. Technical Report, Department of Industrial and Operations

Engineering, The University of Michigan.

Ben Hadj-Alouane, A. and Bean, J. C. (1997). A Genetic Algorithm for the Multiple-

Choice Integer Program. Operations Research, 45(1): 92-101.

Bentall, M., Turton, B. C. H. and Hobbs, C. W. L. (1997). Benchmarking the restoration

of heavily loaded networks using a two dimensional order-based genetic

algorithm. In Second International Conference On Genetic Algorithms in

Engineering Systems: Innovations and Applications, GALESIA 97, pp. 151-156.

Bertsekas, D. (1995). Nonlinear Programming. Athens Scientific, Belmont.

Bingul, Z., Sekmen, A. S., Palaniappan, S. and Zein-Sabatto, S. (2000). Genetic

algorithms applied to real time multiobjective optimization problems. In

Proceedings of the IEEE Southeastcon 2000, pp. 95-103.

Buckley, M. J. (1996). Linear array synthesis using a hybrid genetic algorithm. In

Antennas and Propagation Society International Symposium, 1996. AP-S. Digest,

Vol. 1, pp. 584-587.

Burke, E. K., Dave, E. and Rupert, F. W. (1995). A Hybrid Genetic Algorithm for

Highly Constrained Timetabling Problems. In Proceedings of the 6th International

Conference on Genetic Algorithms, pp. 605-610, Morgan Kaufmann Publishers

References

213

Inc.

Burke, E. K. and Newall, J. P. (1999). A multistage evolutionary algorithm for the

timetable problem. IEEE Transactions on Evolutionary Computation, 3(1): 63-74.

Burke, E. K., Newall, J. P. and Weare, R. F. (1996). A Memetic Algorithm for University

Exam Timetabling. In Selected papers from the First International Conference on

Practice and Theory of Automated Timetabling, pp. 241 - 250, Springer-Verlag.

Burke, E. K. and Smith, A. J. (1999). A memetic algorithm to schedule planned

maintenance for the national grid. Journal of Experimental Algorithmics 4(6):

Article No. 1 (1-13).

Burmeister, B., Haddadi, A. and Matylis, G. (1997). Application of multi-agent systems

in traffic and transportation. In IEE Proceedings Software Engineering, Vol. 144,

pp. 51-60.

Byrski, A. and Schaefer, R. (2009). Formal Model for Agent-Based Asynchronous

Evolutionary Computation. In IEEE Congress on Evolutionary Computation

(CEC) 2009, Norway, pp. 78-85.

Caglayan, A., Snorrason, M., Mazzu, J., Jacoby, J., Jones, R. and Kumar, K. (1997).

Open sesame – a learning agent engine. Applied Artificial Intelligence, 11(5):

393–412.

Cai, Z. and Wang, Y. (2006). A Multiobjective Optimization-Based Evolutionary

Algorithm for Constrained Optimization. IEEE Transactions on Evolutionary

Computation, 10(6): 658-675.

Caldwell, C. and Johnston, V. S. (1991). Tracking a criminal suspect through face-space

with a genetic algorithm. In Proceedings of the 4th International Conference on

Genetic Algorithms, pp. 416-421.

Carlson, S. E. and Shonkwiler, R. (1998). Annealing a genetic algorithm over

constraints. In 1998 IEEE International Conference on Systems, Man, and

Cybernetics, 1998, Vol. 4, pp. 3931-3936.

Cetnarowicz, K., Kisiel-Dorohinicki, M. and Nawarecki, E. (1996). The Application of

Evolution Process in Multi-Agent World to the Prediction System. In Proceedings

of the 2nd International Conference on Multi-Agent Systems (ICMAS’96), pp. 26-

32, AAAI Press.

References

214

Chaib-draa, B. (1995). Industrial applications of distributed AI. Communications of the

ACM, 38(11): 49-53.

Chavez, A. and Kasbah, P. M. (1996). An agent marketplace for buying and selling

goods. In Proceedings of the First International Conference on the Practical

Application of Intelligent Agents and Multi-Agent Technology (PAAM-96),

London, UK, pp. 75–90.

Chen, L. and Sycara, K. (1998). Webmate : A personal agent for browsing and

searching. In Proceedings of the Second International Conference on Autonomous

Agents (Agents 98), Minneapolis/St Paul, MN, pp. 132 - 139.

Chen, Y. L., Liao, W. B., Yang, Y. R., Shen, K. Y., Wang, S. C. and Chang, Y. C. (2002).

The interactive surrogate worth trade-off method for multi-objective decision-

making in reactive power sources planning. In International Conference on Power

System Technology, 2002, Vol. 2, pp. 863-866.

Cheng, R. and Gen, M. (1996). Parallel machine scheduling problems using memetic

algorithms. In IEEE International Conference on Systems, Man, and Cybernetics,

1996, Vol. 4, pp. 2665-2670.

Chira, C., Gog, A. and Dumitrescu, D. (2008). Exploring population geometry and

multi-agent systems: a new approach to developing evolutionary techniques. In

Proceedings of the 2008 GECCO conference companion on Genetic and

evolutionary computation, Atlanta, GA, USA, pp. 1953-1960, ACM.

Choi, S. P. M., Liu, J. and Chan, S. P. (2001). A genetic agent-based negotiation system.

Computer Networks, 37(2): 195 - 204.

Chootinan, P. and Chen, A. (2006). Constraint handling in genetic algorithms using a

gradient-based repair method. Computers & Operations Research, 33(8): 2263-

2281.

Chryssolouris, G. and Subramaniam, V. (2001). Dynamic scheduling of manufacturing

job shops using genetic algorithms. Journal of Intelligent Manufacturing, 12(3):

281-293.

Clearwater, S. H., Costanza, R., Dixon, M. and Schroeder, B. (1996). Saving energy

using market-based control. In Clearwater, S. H., editor, Market Based Control,

pages 253–273. World Scientific, Singapore.

References

215

Coello, C. A. C. (2000a). Constraint-handling using an evolutionary multiobjective

optimization technique. Civil Engineering and Environmental Systems 17: 319–

346.

Coello, C. A. C. (2000b). Treating constraints as objectives for single-objective

evolutionary optimization. Engineering Optimization, 32(3): 275–308.

Coello, C. A. C. (2000c). Use of a self-adaptive penalty approach for engineering

optimization problems. Computers in Industry, 41(2): 113-127.

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: a survey of the state of the art. Computer Methods

in Applied Mechanics and Engineering, 191(11-12): 1245-1287.

Coello, C. A. C. and Mezura-Montes, E. (2002). Handling Constraints in Genetic

Algorithms using Dominance-Based Tournaments. In Proceeding of the Fifth

International Conference on Adaptive Computing Design and Manufacture

(ACDM 2002), Devon, UK, Vol. 5, pp. 273-284, Springer-Verlag.

Coello, C. A. C., Van Veldhuizen, D. A. and Lamont, G. B. (2002). Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,

New York.

Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art. Computer

Methods in Applied Mechanics and Engineering, 191(11-12): 1245-1287.

Coit, D. W., Smith, A. E. and Tate, D. M. (1996). Adaptive Penalty Methods for Genetic

Optimization of Constrained Combinatorial Problems. Informs Journal on

Computing, 8(2): 173-182.

Conover, W. J. (1980). Practical Nonparametric Statistics. John Wiley & Sons.

Corne, D. W., Ross, P. and Fang, H.-L. (1994). Fast practical evolutionary timetabling.

In Evolutionary Computing, pages 250-263. Springer, Berlin / Heidelberg.

Cortés, U., Annicchiarico, R. and Urdiales, C. (2008). Agents and Healthcare: Usability

and Acceptance. In Annicchiarico, R., Cortés, U. and Urdiales, C., editor, Agent

Technology and e-Health, pages 1-4. Birkhäuser Basel.

Cox, L. A. J., Davis, L. and Qiu, Y. (1991). Dynamic anticipatory routing in circuit-

switched telecommunications networks. In Davis, L., editor, Handbook of Genetic

References

216

Algorithms, pages 124-143. Van Nostrand Reinhold.

Crossley, W. A. and Williams, E. A. (1997). A study of adaptive penalty functions for

constrained genetic algorithm based optimization. In AIAA 35th Aerospace

Sciences Meeting and Exhibit, AIAA-1997-83, Reno, Nevada.

Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber, T. R.,

Mark, W. S., Tenenbaum, J. M. and Weber, J. C. (1993). PACT: an experiment in

integrating concurrent engineering systems. Computer, 26(1): 28-37.

Dantzig, G. B. and Thapa, M. N. (2003). Linear Programming: Theory and extensions .

vol. 2, Springer.

Darr, T. P. and Birmingham, W. P. (1994). Automated design for concurrent engineering.

IEEE Expert, 9(5): 35-42.

Darwin, C. R. (1859). The Origin of Species: By Means of Natural Selection or the

Preservation of Favoured Races in the Struggle for Life. John Murray, London.

Dasgupta, D. and Michalewicz, Z., Eds. (1997). Evolutionary Algorithms in

Engineering Applications. Springer, Berlin.

Davidor, Y. (1991). A genetic algorithm applied to robot trajectory generation. In Davis,

L., editor, Handbook of Genetic Algorithms, pages 144–165. Van Nostrand

Reinhold, New York.

Davidsson, P., Persson, J. and Holmgren, J. (2007). On the Integration of Agent-Based

and Mathematical Optimization Techniques. In Agent and Multi-Agent Systems:

Technologies and Applications, pages 1-10. Springer-Verlag, Berlin / Heidelberg.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

Davis, L., Orvosh, D., Cox, A. and Qiu, Y. (1993). A Genetic Algorithm for Survivable

Network Design. In Proceedings of the 5th International Conference on Genetic

Algorithms, pp. 408 - 415, Morgan Kaufmann Publishers Inc.

Dawkins, R. (1976). The selfish gene. Oxford University Press, New York.

De Jong, K. A. (2008). Evolving intelligent agents: A 50 year quest. Computational

Intelligence Magazine, IEEE, 3(1): 12-17.

Deb, K. (1999). An Introduction to Genetic Algorithms. Sadhana, 24(4): 293-315.

Deb, K. (2000). An efficient constraint handling method for genetic algorithms.

Computer Methods in Applied Mechanics and Engineering, 186(2-4): 311-338.

References

217

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John

Wiley & Sons, Inc.

Deb, K. and Agrawal, R. B. (1995). Simulated Binary Crossover for Continuous Search

Space. Complex Systems, 9: 115-148.

Deb, K. and Beyer, H.-g. (2001). Self-Adaptive Genetic Algorithms with Simulated

Binary Crossover. Evolutionary Computation, 9(2): 197-221.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation in

genetic function optimization. In Proceedings of the Third International

Conference on Genetic Algorithms, George Mason University, CA, pp. 42–50.

Deb, K. and Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for

engineering design. Computer Science and Informatics, 26(4): 30-45.

Deb, K., Padhye, N. and Neema, G. (2007). Interplanetary Trajectory Optimization with

Swing-Bys Using Evolutionary Multi-objective Optimization. In Advances in

Computation and Intelligence, pages 26-35. Springer, Berlin / Heidelberg.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2): 182.

Dobrowolski, G., Kisiel-Dorohinicki, M. and Nawarecki, E. (2001). Evolutionary

multiagent system in multiobjective optimisation. In Proceedings of the IASTEDI

nternational Symposium: Applied Informatics, IASTED/ACTA Press.

Dreżewski, R. and Kisiel-Dorohinicki, M. (2006). Maintaining Diversity in Agent-

Based Evolutionary Computation. In Computational Science – ICCS 2006, pages

908-911.

Eiben, A. E. and Van Der Hauw Hauw, J. K. (1998). Adaptive penalties for evolutionary

graph coloring. In Artificial Evolution, pages 95-106. Springer, Berlin /

Heidelberg.

Eiselt, H. A., Pederzoli, G. and Sandblom, C. L. (1987). Continuous Optimization

Models. Walter de Gruyter, Berlin.

Elfeky, E. Z., Sarker, R. A. and Essam, D. L. (2006). A Simple Ranking and Selection

for Constrained Evolutionary Optimization. In Simulated Evolution and Learning,

Lecture Notes in Computer Science, Vol. 4247, pages 537-544. Springer-Verlag,

References

218

Berlin / Heidelberg.

Elfeky, E. Z., Sarker, R. A. and Essam, D. L. (2008). Analyzing the simple ranking and

selection process for constrained evolutionary optimization. Journal of Computer

Science And Technology 23 (1): 19-34.

Farmani, R. and Wright, J. A. (2003). Self-adaptive fitness formulation for constrained

optimization. IEEE Transactions on Evolutionary Computation, 7(5): 445.

Ferber, J. (1999). Multiagent systems as introduction to distributed artificial

intelligence. Addision-Wesley.

Ferrolho, A., Crisostomo, M. and Wojcik, R. (2007). Job shop scheduling problems with

Genetic Algorithms. In International Conference on Computer Engineering &

Systems, 2007. ICCES '07, pp. 76-80.

Fletcher, R. (1990). Practical Methods of Optimization. 2 ed., Wiley, New York.

Floudas, C. (1999). Handbook of Test Problems in Local and Global Optimization.

Nonconvex Optimization and its Applications. Kluwer Academic Publishers, The

Netherlands.

Floudas, C. A. and Pardalos, P. M. (1987). A Collection of Test Problems for

Constrained Global Optimization. vol. 455, Series: Lecture Notes in Computar

Science, Springer-Verlag, Berlin, Germany.

Folino, G., Pizzuti, C. and Spezzano, G. (2001). Parallel hybrid method for SAT that

couples genetic algorithms and local search. IEEE Transactions on Evolutionary

Computation, 5(4): 323-334.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization. In Proceedings of the

Fifth International Conference on Genetic Algorithms, San Mateo, California

University of Illinois at Urbana-Champaign, pp. 416-423, Morgan Kauffman

Publishers.

Forrest, S., Javornik, B., Smith, R. E. and Perelson, A. S. (1993). Using Genetic

Algorithms to Explore Pattern Recognition in the Immune System. Evolutionary

Computation, 1(3): 191-211.

Francois, F. I., Michael, P. G. and Anand, S. R. (1992). An architecture for Real-Time

Reasoning and System Control. IEEE Expert: Intelligent Systems and Their

References

219

Applications, 7(6): 34-44.

Gass, S. and Saaty, T. (2006). The computational algorithm for the parametric objective

function. Naval Research Logistics Quarterly, 2(1-2): 39-45.

Gen, M., Tsujimura, Y. and Kubota, E. (1994). Solving job-shop scheduling problems

by genetic algorithm. In 1994 IEEE International Conference on Systems, Man,

and Cybernetics, Vol. 2, pp. 1577-1582.

Gendreau, M. (2003). An Introduction to Tabu Search. In Glover, F. and Kochenberger,

G. A., editor, Handbook of Metaheuristics, pages 37-54. Springer.

Geoffrion, A. M., Dyer, J. S. and Feinberg, A. (1972). An Interactive Approach for

Multi-Criterion Optimization, with an Application to the Operation of an

Academic Department. Management Science, 19(4): 357-368.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, London.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley.

Goldberg, D. E. and Deb, K. (1991). A comparison of selection schemes used in genetic

algorithms. In Rawlins, G. J. E., editor, Foundations of Genetic Algorithms, pages

69–93.

Goldberg, D. E. and R. Lingle, J. (1985). Alleles, Loci, and Traveling Salesman

Problem. In Proceedings of 1st International Conference on Genetic Algorithms

and Their Applications, Pittsburgh, pp. 154-159.

Goldberg, D. E. and Voessner, S. (1999). Optimizing Global-Local Search Hybrids. In

Proceedings of the Genetic and Evolutionary Computation Conference, pp. 220–

228.

Gonzalez, T. F. (2007). Handbook of Approximation Algorithms and Metaheuristics

Chapman & Hall/Crc Computer and Information Science Series.

Grefenstette, J. J., Gopal, R., Rosmaita, B. and VanGucht, D. (1985). Genetic algorithms

for the traveling salesman problem In Proceedings International Conference

Genetic Algorithms and Their Applicaions pp. 160–168.

Griffeth, N. D. and H.Velthuijsen (1994). The negotiating agents approach to run-time

feature interaction resolution. In Bouma, L. G. and Velthuijsen, H., editor, Feature

Interactions in Telecommunications Systems, pages 217–235. IOS Press.

References

220

Grimbleby, J. B. (1995). Automatic analogue network synthesis using genetic

algorithms. In First International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications, 1995. GALESIA, pp. 53-58.

Guimaraes, F. G., Wanner, E. F., Campelo, F., Takahashi, R. H. C., Igarashi, H.,

Lowther, D. A. and Ramirez, J. A. (2006). Local Learning and Search in Memetic

Algorithms. In IEEE Congress on Evolutionary Computation, CEC 2006, pp.

2936-2943.

Gupta, H. and Deb, K. (2005). Handling Constraints In Robust Multi-Objective

Optimization. In The 2005 IEEE Congress on Evolutionary Computation, 2005,

Edinburgh, Scotland, Vol. 1, pp. 25-32.

Haimes, Y. Y., Lasdon, L. S. and Wismer, D. A. (1971). On a Bicriterion Formulation of

the Problems of Integrated System Identification and System Optimization. IEEE

Transactions on Systems, Man and Cybernetics, 1(3): 296-297.

Handa, H., Chapman, L. and Xin, Y. (2006). Robust route optimization for

gritting/salting trucks: a CERCIA experience. IEEE Computational Intelligence

Magazine, 1(1): 6-9.

Hanjie, C. and Baldick, R. (2007). Optimizing Short-Term Natural Gas Supply Portfolio

for Electric Utility Companies. IEEE Transactions on Power Systems, 22(1): 232-

239.

Hanshar, F. T. and Ombuki-Berman, B. M. (2007). Dynamic vehicle routing using

genetic algorithms. Applied Intelligence, 27(1): 89-99.

Hart, W. E. (1994). Adaptive Global Optimization With Local Search. San Diego, CA,

University of California, PhD Thesis.

Hasan, S. M. K., Sarker, R., Essam, D. and Cornforth, D. (2008). Memetic Algorithms

for Solving Job-Shop Scheduling Problems. Memetic Computing, Springer, 1(1):

69-83.

Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R. and Seiver, A. (1989).

Distributing intelligence within an individual. In Gasser, L. and Huhns, M.,

editor, Distributed Artificial Intelligence vol. II, pages 385–412. Pitman

Publishing, CA.

He, L. and Mort, N. (2000). Hybrid Genetic Algorithms for Telecommunications

References

221

Network Back-Up Routeing. BT Technology Journal, 18(4): 42-50.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling

salesman heuristic. European Journal of Operational Research, 126(1): 106–130.

Hillier, F. S. and Lieberman, G. J. (2005). Introduction to Operations Research, 8 ed.,

McGraw-Hill, Boston.

Himmelblau, D. M. (1972). Applied Nonlinear Programming. McGraw-Hill, New York.

Hock, W. and Schittkowski, K. (1981). Test Examples for Nonlinear Programming

Codes. Springer-Verlag, New York, Inc., Secaucus, NJ, USA.

Hoffmeister, F. and Sprave, J. (1996). Problem-independent handling of constraints by

use of metric penalty functions. In Proceedings of the Fifth Annual Conference on

Evolutionary Programming (EP’96), San Diego, CA, pp. 289–294, MIT Press.

Holland, J. H. (1975). Adaption in Natural and Artificial Systems. The University of

Michigan Press.

Homaifar, A., Qi, C. X. and Lai, S. H. (1994). Constrained optimization via genetic

algorithms Simulation, 62(4): 242-254.

Horn, J., Nafploitis, N. and Goldberg, D. E. (1994). A niched Pareto genetic algorithm

for multiobjective optimization. In Proceedings of the First IEEE Conference on

Evolutionary Computation, pp. 82–87, IEEE Press.

Horrocks, D. H. and Khalifa, Y. M. A. (1994). Genetically derived filter circuits using

preferred value components. In IEE Colloquium on Analogue Signal Processing,

London, UK, pp. 4/1-4/5.

Houck, C. R., Joines, J. A. and Kay, M. G. (1996). Utilizing Lamarckian Evolution and

the Baldwin Effect in Hybrid Genetic Algorithms. NCSU-IE Technical Report,

Department of Industrial Engineering, North Carolina State University.

Hu, X., Huang, Z. and Wang, Z. (2003). Hybridization of the multi-objective

evolutionary algorithms and the gradient-based algorithms. In The 2003 Congress

on Evolutionary Computation, Vol. 2, pp. 870-877.

Huang, J., Jennings, N. R. and Fox, J. (1995). An Agent-based Approach to Health Care

Management. Int. Journal of Applied Artificial Intelligence, 9(4): 401-420.

Huaiqing, W. and Chen, W. (1997). Intelligent agents in the nuclear industry. Computer,

IEEE Computer Society. 30: 28-31.

References

222

Hung Dinh, N., Yoshihara, I., Yamamori, K. and Yasunaga, M. (2007). Implementation

of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1): 92-

99.

Ishibuchi, H., Kaige, S. and Narukawa, K. (2005). Comparison Between Lamarckian

and Baldwinian Repair on Multiobjective 0/1 Knapsack Problems. In

Evolutionary Multi-Criterion Optimization, pages 370-385. Springer, Berlin /

Heidelberg.

Jacobs, P. H. M., Verbraeck, A. and Mulder, J. B. P. (2005). Flight scheduling at KLM.

In Proceedings of the 37th conference on Winter simulation, Orlando, Florida pp.

299 - 306.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998). A Roadmap of Agent Research

and Development. Autonomous Agents and Multi-Agent Systems, 1(1): 7-38.

Jennings, N. R. and Wooldridge, M. (1998). Applying agent technology. In Jennings, N.

R. and Wooldridge, M., editor, Agent Technology: Foundations, Applications, and

Markets. Springer-Verlag, Berlin, Germany.

Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic

algorithms. IEEE Transactions on Evolutionary Computation, 7(3): 275-288.

Jeon, G., Leep, H. R. and Shim, J. Y. (2007). A vehicle routing problem solved by using

a hybrid genetic algorithm. Computers & Industrial Engineering, 53(4): 680-692.

Jeong, I. K. and Lee, J. J. (1997). Evolving multi-agents using a self-organizing genetic

algorithm. Applied Mathematics and Computation, 88(2-3): 293.

Jing, X., Michalewicz, Z. and Lixin, Z. (1996). Evolutionary Planner/Navigator:

operator performance and self-tuning. In Proceedings of IEEE International

Conference on Evolutionary Computation, pp. 366-371.

Jing, X., Michalewicz, Z., Lixin, Z. and Trojanowski, K. (1997). Adaptive evolutionary

planner/navigator for mobile robots. IEEE Transactions on Evolutionary

Computation, 1(1): 18-28.

Joines, J. A. and Houck, C. R. (1994). On the use of non-stationary penalty functions to

solve nonlinear constrained optimization problems with GA's. In Proceedings of

the First IEEE Conference on Evolutionary Computation, Vol. 2, pp. 579-584.

References

223

Kim, J. H. and Myung, H. (1997). Evolutionary programming techniques for

constrained optimization problems. IEEE Transactions on Evolutionary

Computation, 1(2): 129-140.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220: 671–680.

Kisiel-Dorohinicki, M. (2002). Agent-Oriented Model of Simulated Evolution. In

SOFSEM 2002: Theory and Practice of Informatics, pages 253-261.

Knowles, J. and Corne, D. W. (2000). M-PAES: a memetic algorithm for multiobjective

optimization. In Proceedings of the 2000 Congress on Evolutionary Computation,

California, USA Vol. 1, pp. 325-332.

Knowles, J. and Corne, D. W. (2001). A comparative assessment of memetic,

evolutionary and constructive algorithms for the multi-objective d-msat problem.

In GECCO-2001 Workshop Program, pp. 162–167.

Knowles, J. and Corne, D. W. (2005). Memetic Algorithms for Multiobjective

Optimization: Issues, Methods and Prospects. In Hart, W. E., Krasnogor, N. and

Smith, J. E., editor, Recent Advances in Memetic Algorithms, pages 313-352.

Springer.

Koziel, S. and Michalewicz, Z. (1999). Evolutionary Algorithms, Homomorphous

Mappings, and Constrained Parameter Optimization. Evolutionary Computation,

7(1): 19-44.

Krasnogor, N. (2002). Studies on the Theory and Design Space of Memetic Algorithms,

University of the West of England. Ph.D. Thesis.

Krasnogor, N. and Smith, J. (2005). A tutorial for competent memetic algorithms:

model, taxonomy, and design issues. IEEE Transactions on Evolutionary

Computation, 9(5): 474-488.

Kruiskamp, M. W. (1996). Analog design automation using genetic algorithms and

polytopes. Dept. Elec. Engineering. Eindhoven, The Netherlands, Eindhoven

University of Technology. Ph.D. Thesis.

Kuechler, W., Vaishnavi, V. K. and Kuechler, D. (2001). Supporting optimization of

business-to-business e-commerce relationships. Decision Support Systems, 31(3):

363-377.

References

224

Kuwahara, Y. (2005). Multiobjective optimization design of Yagi-Uda antenna. IEEE

Transactions on Antennas and Propagation, 53(6): 1984-1992.

Lae-Jeoung, P. and Cheol Hoon, P. (1995). Genetic algorithm for job shop scheduling

problems based on two representational schemes. Electronics Letters, IET

Periodicals 31: 2051-2053.

Laleci, G. B., Dogac, A., Olduz, M., Tasyurt, I., Yuksel, M. and Okcan, A. (2008).

SAPHIRE: A Multi-Agent System for Remote Healthcare Monitoring through

Computerized Clinical Guidelines. In Annicchiarico, R., Cortés, U. and Urdiales,

C., editor, Agent Technology and e-Health, pages 25-44. Birkhäuser Basel.

Lasdon, L. S., Waren, A. D., Jain, A. and Ratner, M. (1978). Design and Testing of a

Generalized Reduced Gradient Code for Nonlinear Programming. ACM

Transactions on Mathematical Software 4(1): 34-50.

Leung, Y. W. (2001). An Orthogonal Genetic Algorithm with Quantization for Global

Numerical Optimization Optimization. IEEE Transactions on Evolutionary

Computation, 5(1): 41-53.

Li, G., Shangping, D., Shijue, Z. and Guanxiang, Y. (2007). Using Genetic Algorithm

for Data Mining Optimization in an Image Database. In Fourth International

Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, Vol. 3, pp.

721-723.

Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N., Coello,

C. A. C. and Deb, K. (2006). Problem Definitions and Evaluation Criteria for the

CEC 2006 Special Session on Constrained Real-Parameter Optimization. In

Special Session on Constrained Real-Parameter Optimization, IEEE Congress on

Evolutionary Computation, CEC 2006. Singapore.

Liang, J. J. and Suganthan, P. N. (2006). Dynamic Multi-Swarm Particle Swarm

Optimizer with a Novel Constraint-Handling Mechanism. In IEEE Congress on

Evolutionary Computation, CEC 2006, pp. 9-16.

Lieberman, H. (1995). Letizia: An agent that assists web browsing. In Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-

95), Canada, pp. 924–929.

Lim, M. K. and Zhang, Z. (2002). Iterative multi-agent bidding and co-ordination based

References

225

on genetic algorithm. In Proceeding of 3rd International Symposium on Multi-

Agent Systems, Large Complex Systems, and E-Businesses, Erfurt, pp. 682-689.

Linden, D. S. (1997). Automated Design and Optimization of Wire Antennas using

Genetic Algorithms. Cambridge, MA, MIT. Ph.D. Thesis.

Liu, G. R. and Han, X. (2003). Computational Inverse Techniques in Nondestructive

Evaluation, CRC Press, Washington, D.C.

Liu, G. R., Ma, W. B. and Han, X. (2002a). An inverse procedure for determination of

material constants of composite laminates using elastic waves. Computer Methods

in Applied Mechanics and Engineering, 191(33): 3543-3554.

Liu, H. and Frazer, J. H. (2002). Supporting evolution in a multi-agent cooperative

design environment. Advances in Engineering Software, 33(6): 319-328.

Liu, J., Jing, H. and Tang, Y. Y. (2002b). Multi-agent oriented constraint satisfaction.

Artificial Intelligence, 136(1): 101-144.

Liu, J., Zhong, W. and Jiao, L. (2006). A multiagent evolutionary algorithm for

constraint satisfaction problems. IEEE Transactions on Systems, Man and

Cybernetics, Part B, 36(1): 54-73.

Ljunberg, M. and Lucas, A. (1992). The OASIS air traffic management system. In

Proceedings of the Second Pacific Rim International Conference on AI (PRICAI-

92), Seoul, Korea.

Lluch-Ariet, M., Estanyol, F., Mier, M., Delgado, C., González-Vélez, H., Dalmas, T.,

Robles, M., Sáez, C., Vicente, J., Huffel, S., Luts, J., Arús, C., Silveira, A. P. C.,

Julià-Sapé, M., Peet, A., Gibb, A., Sun, Y., Celda, B., Bisbal, M. C. M., Valsecchi,

G., Dupplaw, D., Hu, B. and Lewis, P. (2008). On the Implementation of

HealthAgents : Agent-Based Brain Tumour Diagnosis. In Agent Technology and e-

Health, pages 5-24. Birkhäuser Basel.

Loannou, P. A. (2008). Intelligent Freight Transportation. 1 ed., CRC Press.

Lohn, J. D. and Colombano, S. P. (1999). A circuit representation technique for

automated circuit design. IEEE Transactions on Evolutionary Computation, 3(3):

205-219.

Mahfoud, S. and Mani, G. (1996). Financial forecasting using genetic algorithms.

Applied Artificial Intelligence, 10(6): 543-565.

References

226

Mahlab, U., Shamir, J. and Caulfield, H. J. (1991). Genetic algorithm for optical pattern

recognition. Optics Letters, 16(9): 648-650.

Man, K. F., Tang, K. S. and Kwong, S. (1996). Genetic algorithms: concepts and

applications. IEEE Transactions on Industrial Electronics, 43(5): 519-534.

Marczyk, A. (2004). "Genetic Algorithms and Evolutionary Computation." TalkOrigins

Archive, from http://www.talkorigins.org.

Melanie, M. (1998). An Introduction to Genetic Algorithms. The MIT Press.

Méndez, C. A., Grossmann, I. E., Harjunkoski, I. and Kaboré, P. (2006). A simultaneous

optimization approach for off-line blending and scheduling of oil-refinery

operations. Computers & Chemical Engineering, 30(4): 614-634.

Meng, A., Ye, L., Roy, D. and Padilla, P. (2007). Genetic algorithm based multi-agent

system applied to test generation. Computers & Education, 49(4): 1205-1223.

Merz, P. and Freisleben, B. (1997). Genetic local search for the TSP: new results. In

IEEE International Conference on Evolutionary Computation, 1997, Indianapolis,

IN, USA, pp. 159-164.

Merz, P. and Freisleben, B. (1999). A comparison of memetic algorithms, tabu search,

and ant colonies for the quadratic assignment problem. In Proceedings of the 1999

Congress on Evolutionary Computation, CEC 99, Vol. 3, pp. 2063-2070.

Merz, P. and Freisleben, B. (2000). Fitness landscape analysis and memetic algorithms

for the quadratic assignment problem. IEEE Transactions on Evolutionary

Computation, 4(4): 337-352.

Merz, P. and Freisleben, B. (2001). Memetic algorithms for the traveling salesman

problem. Complex Systems, 13(4): 297–345.

Mezura-Montes, E. and Coello, C. A. C. (2002). A Numerical Comparison of Some

Multiobjective-Based Techniques to Handle Constraints in Genetic Algorithms.

Technical Report EVOCINV-03-2002, Evolutionary Computation Group at

CINVESTAV-IPN, Mexico.

Mezura-Montes, E. , Ed. (2009). Constraint-Handling in Evolutionary Optimization.

Studies in Computational Intelligence. Springer, Berlin / Heidelberg.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag.

References

227

Michalewicz, Z. (1995). Genetic algorithms, numerical optimization and constraints. In

The 6th International Conference on Genetic Algorithms, University of Pittsburgh,

Morgan Kaufmann, San Mateo, CA, pp. 151–158.

Michalewicz, Z. and Attia, N. F. (1994). Evolutionary optimization of constrained

problems. In Proceedings of the 3rd Annual Conference on Evolutionary

Programming, pp. 98–108, World Scientific, Singapore.

Michalewicz, Z. and Janikow, C. Z. (1996). GENOCOP: a genetic algorithm for

numerical optimization problems with linear constraints. Communications of the

ACM, 39(12).

Michalewicz, Z. and Nazhiyath, G. (1995). Genocop III: a co-evolutionary algorithm for

numerical optimization problems with nonlinear constraints. In IEEE

International Conference on Evolutionary Computation, 1995, Vol. 2, pp. 647-

651.

Michalewicz, Z., Nazhiyath, G. and Michalewicz, M. (1996). A Note on Usefulness of

Geometrical Crossover for Numerical Optimization Problems. In Proceeding of

the 5th Annual Conference on Evolutionary Programming, San Diego, CA, pp.

305-312, MIT Press, Cambridge, MA.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained

parameter optimization problems. Evolutionary Computation, 4(1): 1-32.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. In Kluwer’s International

Series in OR/MS. Kluwer Academic Publishers, Boston.

Miettinen, K. (2001). Some Methods for Nonlinear Multi-objective Optimization. In

Evolutionary Multi-Criterion Optimization, pages 1-20. Springer, Berlin /

Heidelberg.

Miranker, D. P. and Lofaso, B. J. (1991). The organization and performance of a

TREAT-based production system compiler. IEEE Transactions on Knowledge and

Data Engineering, 3(1): 3-10.

Molina, D., Herrera, F. and Lozano, M. (2005). Adaptive local search parameters for

real-coded memetic algorithms. In The 2005 IEEE Congress on Evolutionary

Computation Edinburgh, UK, Vol. 1, pp. 888-895.

Morales, A. K. and Quezada, C. V. (1998). A universal eclectic genetic algorithm for

References

228

constrained optimization. In The 6th European Congress on Intelligent Techniques

and Soft Computing, EUFIT’98, Verlag Mainz, Aachen, Germany, pp. 518–522.

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts Towards Memetic Algorithms. Caltech Concurrent Computation

Program Report Pasadena, CA, U.S.A, California Institute of Technology.

Muruganandam, A., Prabhaharan, G., Asokan, P. and Baskaran, V. (2005). A memetic

algorithm approach to the cell formation problem. The International Journal of

Advanced Manufacturing Technology, 25(9): 988-997.

Nakashima, T., Ariyama, T., Yoshida, T. and Ishibuchi, H. (2003). Performance

evaluation of combined cellular genetic algorithms for function optimization

problems. In Proceedings of the 2003 IEEE International Symposium on

Computational Intelligence in Robotics and Automation, Vol. 1, pp. 295-299.

Nemhauser, G. and Wolsey, L. (1999). Integer and Combinatorial Optimization. John

Wiley & Sons, New York.

Nicholas, R. J. (2001). An agent-based approach for building complex software systems.

Communications of the ACM, 44(4): 35-41.

Nishibe, Y., Kuwabara, K., Suda, T. and Ishida, T. (1993). Distributed channel allocation

in ATM networks. In IEEE Global Telecommunications Conference, GLOBECOM

'93. Houston.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. 2 ed., Springer.

Obayashi, S. and Sasaki, D. (2004). Multi-objective optimization for aerodynamic

designs by using ARMOGAs. In Proceedings of the Seventh International

Conference on High Performance Computing and Grid in Asia Pacific Region, pp.

396-403.

Obayashi, S., Sasaki, D., Takeguchi, Y. and Hirose, N. (2000). Multiobjective

evolutionary computation for supersonic wing-shape optimization. IEEE

Transactions on Evolutionary Computation, 4(2): 182-187.

Olariu, E. B. S. and Zomaya, A. Y., Eds. (2006). Handbook of Bioinspired Algorithms

and Applications. Computer and Information Science Series. Chapman &

HALL/CRC.

Oliveira, E., Fonseca, J. M. and Steiger-Garcao, A. (1997). MACIV: A DAI based

References

229

resource management system. Applied Artificial Intelligence, 11(6): 525–550.

Ombuki-Berman, B. and Hanshar, F. (2009). Using Genetic Algorithms for Multi-depot

Vehicle Routing. In Bio-inspired Algorithms for the Vehicle Routing Problem,

pages 77-99. Springer, Berlin / Heidelberg.

Ong, Y. S. and Keane, A. J. (2004). Meta-Lamarckian learning in memetic algorithms.

IEEE Transactions on Evolutionary Computation, 8(2): 99-110.

Ong, Y. S., Lim, M. H., Neri, F. and Ishibuchi, H. (2009). Special issue on emerging

trends in soft computing: memetic algorithms. Soft Computing - A Fusion of

Foundations, Methodologies and Applications, 13(8): 739-740.

Ong, Y. S., Lim, M. H., Zhu, N. and Wong, K. W. (2006). Classification of adaptive

memetic algorithms: a comparative study. IEEE Transactions on Systems, Man

and Cybernetics, Part B, 36(1): 141-152.

Oprea, M. (2004). Applications of Multi-Agent Systems. In Information Technology,

pages 239-270. Springer, Boston.

Ortiz-Boyer, D., Hervas-Martınez, C. and Garcıa-Pedrajas, N. (2005). A Crossover

Operator for Evolutionary Algorithms Based on Population Features. Journal of

Artificial Intelligence Research, 24: 1-48.

Overgaard, L., Petersen, H. G. and Perram, J. W. (1996). Reactive motion planning: a

multi-agent approach. Applied Artificial Intelligence, 10(1): 35–52.

Pack, D. J., Toussaint, G. J. and Haupt, R. L. (1996). Robot trajectory planning using a

genetic algorithm. In Adaptive Computing: Mathematical and Physical Methods

for Complex Environments, Denver, CO, USA, Vol. 2824, pp. 171-182, SPIE.

Paechter, B., Cumming, A. and Luchian, H. (1995). The use of local search suggestion

lists for improving the solution of timetable problems with evolutionary

algorithms. In Evolutionary Computing, pages 86-93. Springer, Berlin /

Heidelberg.

Pan, H. and Wang, I. Y. (1991). The bandwidth allocation of ATM through genetic

algorithm. In Global Telecommunications Conference, GLOBECOM '91, Vol. 1,

pp. 125-129.

Parunak, H. V. D. (1999). Industrial and practical applications of DAI. In Multiagent

systems: a modern approach to distributed artificial intelligence, pages 377-421.

References

230

MIT Press, Cambridge, MA, USA.

Pattie, M. (1994). Agents that reduce work and information overload. Communications

of the ACM, 37(7): 30-40.

Pendharkar, P. C. (2007). The theory and experiments of designing cooperative

intelligent systems. Decision Support Systems, 43(3): 1014-1030.

Potvin, J. Y. and Bengio, S. (1996). The vehicle routing problem with time windows—

Part II: genetic search. INFORMS Journal on Computing, 8 (2): 165–172.

Potvin, J. Y., Dubé, D. and Robillard, C. (1996). A hybrid approach to vehicle routing

using neural networks and genetic algorithms. Applied Intelligence 6(3): 241–252.

Powell, D. and Skolnick, M. M. (1993). Using genetic algorithms in engineering design

optimization with non-linear constraints. In Proceedings of the 5th International

Conference on Genetic Algorithms, pp. 424 - 431, Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA

Pursula, M. and Niittymäki, J., Eds. (2001). Mathematical Methods on Optimization in

Transportation Systems. Springer.

Qiong, L., Tao, J., Yuchen, F., Quan, L. and Zhiming, C. (2007). Application of Genetic

Algorithm in the Optimization of Water Pollution Control Scheme. In Workshop

on Intelligent Information Technology Application, pp. 189-191.

Rasheed, K. (1998). An adaptive penalty approach for constrained genetic-algorithm

optimization. In Proceedings of the Third Annual Genetic Programming

Conference, Morgan Kaufmann, San Francisco, CA, pp. 584–590.

Ravindran, A. R., Ed. (2007). Operations Research and Management Science

Handbook. CRC Press.

Reddy, P. C. P., Karimi, I. A. and Srinivasan, R. (2004). Novel solution approach for

optimizing crude oil operations. AIChE Journal, 50(6): 1177-1197.

Renders, J. M. and Bersini, H. (1994). Hybridizing genetic algorithms with hill-

climbing methods for global optimization: two possible ways. In Proceedings of

the First IEEE Conference on Evolutionary Computation, 1994. IEEE World

Congress on Computational Intelligence, Orlando, FL, USA, Vol. 1, pp. 312-317.

Richard, J. B. (1994). Genetic Algorithms and Investment Strategies. John Wiley &

Sons, Inc.

References

231

Rizki, M. M., Zmuda, M. A. and Tamburino, L. A. (2002). Evolving pattern recognition

systems. IEEE Transactions on Evolutionary Computation, 6(6): 594-609.

Roth, G. and Levine, M. D. (1992). Geometric primitive extraction using a genetic

algorithm. In Proceedings of the 1992 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, CVPR '92, pp. 640-643.

Runarsson, T. P. and Yao, X. (2005). Search biases in constrained evolutionary

optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Reviews, 35(2): 233-243.

Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolutionary

optimization. IEEE Transactions on Evolutionary Computation, 4(3): 284-294.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach, 2 ed.,

Prentice Hall.

Safe, M., Carballido, J., Ponzoni, I. and Brignole, N. (2004). On Stopping Criteria for

Genetic Algorithms. In Bazzan, A. L. C. and Labidi, S., editor, Advances in

Artificial Intelligence – SBIA 2004, pages 405-413. Springer-Verlag.

Sahin, C. S., Urrea, E., Uyar, M. U., Conner, M., Hokelek, I., Bertoli, G. and Pizzo, C.

(2008a). Uniform distribution of mobile agents using genetic algorithms for

military applications in MANETs. In IEEE Military Communications Conference,

2008. MILCOM 2008, pp. 1-7.

Sahin, C. S., Urrea, E., Uyar, M. U., Conner, M., Hokelek, I., Conner, M., Bertoli, G.

and Pizzo, C. (2008b). Genetic algorithms for self-spreading nodes in MANETs.

In Proceedings of the 10th annual conference on Genetic and evolutionary

computation, Atlanta, GA, USA, pp. 1141-1142, ACM.

Sait, S. M. and Youssef, H. (2000). Iterative Computer Algorithms with Applications in

Engineering : Solving Combinatorial Optimization Problems. 1 ed., Wiley-IEEE

Computer Society.

Sakawa, M. (1982). Interactive multiobjective decision making by the sequential proxy

optimization technique: SPOT. European Journal of Operational Research, 9 (4):

386-396.

Sarimveis, H. and Nikolakopoulos, A. (2005). A line up evolutionary algorithm for

solving nonlinear constrained optimization problems. Computers & Operations

References

232

Research, 32(6): 1499-1514.

Sarker, R., Kamruzzaman, J. and Newton, C. (2003). Evolutionary optimization

(EvOpt): a brief review and analysis. International Journal of Computational

Intelligence and Applications 3(4): 311-330.

Sarker, R. and Newton, C. S. (2007). Optimization Modelling: A Practical Approach.

Taylor & Francis/CRC Press.

Sarker, R. and Quaddus, M. (2002). Modelling a Nationwide Crop Planning Problem

Using a Multiple Criteria Decision Making Tool. Computers and Industrial

Engineering, 42(2-4): 541-553.

Sarker, R. and Ray, T. (2005). Multiobjective Evolutionary Algorithms for solving

Constrained Optimization Problems. In International Conference on

Computational Intelligence for Modelling, Control and Automation

(CIMCA2005), Vienna, Austria, pp. 197-202, IEEE Press-USA.

Sarker, R. and Ray, T. (2009). An improved evolutionary algorithm for solving multi-

objective crop planning models. Computers and Electronics in Agriculture, 68:

191-199.

Sasaki, D., Morikawa, M., Obayashi, S. and Nakahashi, K. (2001). Aerodynamic Shape

Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic

Algorithms. In Coello, C. A. C., Aguirre, A. H. and Zitzler, E., editor,

Evolutionary Multi-Criterion Optimization, pages 639-652. Springer, Berlin /

Heidelberg.

Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. In Proceedings of the 1st International Conference on Genetic

Algorithms, pp. 93 - 100, L. Erlbaum Associates Inc.

Schoonderwoerd, R., Holland, O. and Bruten, J. (1997). Ant-like agents for load

balancing in telecommunications networks. In Proceedings of the First

International Conference on Autonomous Agents (Agents 97), CA, pp. 209–216.

Shi, Y., Liu, R., Yan, N. and Chen, Z. (2008). A Family of Optimization Based Data

Mining Methods. In Progress in WWW Research and Development, Lecture Notes

in Computer Science, Vol. 4976, pages 26-38. Springer, Berlin / Heidelberg.

Shih, J. S., Russell, A. G. and McRae, G. J. (1998). An optimization model for

References

233

photochemical air pollution control. European Journal of Operational Research,

106(1): 1-14.

Shintaku, E. (1999). Minimum energy trajectory for an underwater manipulator and its

simple planning method by using a Genetic Algorithm. Advanced Robotics, 13(2):

115–138.

Sinclair, M. C. (1999). Minimum cost wavelength-path routing and wavelength

allocation using a genetic-algorithm/heuristic hybrid approach. In IEE

Proceedings-Communications, Vol. 146, pp. 1-7.

Siwik, L. and Kisiel-Dorohinicki, M. (2006). Semi-elitist Evolutionary Multi-agent

System for Multiobjective Optimization. In Computational Science – ICCS 2006,

pages 831-838. Springer, Berlin / Heidelberg.

Slowinski, R., Jaszkiewicz, Andrzej (1999). The 'Light Beam Search' approach - an

overview of methodology and applications. European Journal of Operational

Research, 113(2): 300-314.

Smith, B. M. and Gemperline, P. J. (2000). Wavelength selection and optimization of

pattern recognition methods using the genetic algorithm. Analytica Chimica Acta,

423(2): 167-177.

Smith, R. E., Kearney, P. J. and Merlat, W. (1999). Evolutionary Adaptation in

Autonomous Agent Systems — A Paradigm for the Emerging Enterprise. BT

Technology Journal, 17(4): 157-167.

Snowdon, J. L. and Paleologo, G. (2007). Airline Optimization. In Ravindran, A. R.,

editor, Operations Research and Management Science Handbook. CRC Press.

Socha, K. and Kisiel-Dorohinicki, M. (2002). Agent-based evolutionary multiobjective

optimisation. In Proceedings of the 2002 Congress on Evolutionary Computation,

2002, Vol. 1, pp. 109-114.

Soon, G. K., Anthony, P., Teo, J. and Chin Kim, O. (2008). The effect of mutation rate in

the evolution of bidding strategies. In International Symposium on Information

Technology, ITSim 2008, Vol. 1, pp. 1-8.

Soon, N. Y. (2003). Optimizing a Military Supply Chain in the Presence of Random,

Non-Stationary Demands. Naval Postgraduate School. Monterey, CA, Masters

Thesis.

References

234

Spalanzani, A. (2000). Lamarckian vs Darwinian Evolution for the Adaptation to

Acoustical Environment Change. In Artificial Evolution, pages 136-144. Springer,

Berlin / Heidelberg.

Sprumont, F. and P.Muller, J. (1997). Amacoia: A multi-agent system for designing

flexible assembly lines. Applied Artificial Intelligence, 11(6): 573–590.

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation, 2(3): 221–248.

Srinivasan, D. and Rachmawati, L. (2006). An efficient multi-objective evolutionary

algorithm with steady-state replacement model. In Proceedings of the 8th annual

conference on Genetic and evolutionary computation, Seattle, Washington, USA,

pp. 715 - 722, ACM Press.

Stan, F. and Art, G. (1997). Is It an agent, or just a program?: A taxonomy for

autonomous agents. In Intelligent Agents III Agent Theories, Architectures, and

Languages, pages 21-35. Springer, Berlin / Heidelberg.

Steuer, R. and Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for

multiple objective programming. Mathematical Programming, 26(3): 326-344.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and

Application. John Wiley & Sons Inc.

Surry, P. D. and Radcliffe, N. J. (1997). The COMOGA method: Constrained

optimization by multi-objective genetic algorithms. Control Cybern., 26(3): 391–

412.

Sycara, K., Decker, K., Pannu, A., M.Williamson and Zeng, D. (1996). Distributed

Intelligent Agents. IEEE Expert, 11(6).

Sycara, K. P. (1998). Multiagent Systems. The American Association for Artificial

Intelligence.

Takahama, T. and Sakai, S. (2006). Constrained Optimization by the ε Constrained

Differential Evolution with Gradient-Based Mutation and Feasible Elites. In IEEE

Congress on Evolutionary Computation, CEC 2006, pp. 1-8.

Takahama, T. and Sakai, S. (2009). Solving Difficult Constrained Optimization

Problems by the ε Constrained Differential Evolution with Gradient-Based

Mutation. In Mezura-Montes, E., editor, Constraint-Handling in Evolutionary

References

235

Optimization, pages 51-72. Springer, Berlin / Heidelberg.

Takahashi, R. H. C., Saldanha, R. R., Dias-Filho, W. and Ramirez, J. A. (2003). A new

constrained ellipsoidal algorithm for nonlinear optimization with equality

constraints. Magnetics, IEEE Transactions on, 39(3): 1289-1292.

Tang, J., Lim, M. and Ong, Y. (2007). Diversity-adaptive parallel memetic algorithm for

solving large scale combinatorial optimization problems. Soft Computing - A

Fusion of Foundations, Methodologies and Applications, 11(9): 873-888.

Tang, J., Lim, M. H., Ong, Y. S. and Er, M. J. (2005). Solving large scale combinatorial

optimization using PMA-SLS. In Proceedings of the 2005 conference on Genetic

and evolutionary computation, Washington DC, USA, pp. 621-628, ACM Press.

Tasgetiren, M. F. and Suganthan, P. N. (2006). A Multi-Populated Differential Evolution

Algorithm for Solving Constrained Optimization Problem. In IEEE Congress on

Evolutionary Computation, CEC 2006, pp. 33-40.

Thangiah, S. R. (1995). Vehicle routing with time windows using genetic algorithms. In

Chambers, L., editor, Application handbook of genetic algorithms: new frontiers,

vol. 2, pages 253–277. CRC Press, Boca Raton, FL.

Thangiah, S. R., Nygard, K. E. and Juell, P. L. (1991). GIDEON: a genetic algorithm

system for vehicle routing with time windows. In Proceedings of the Seventh

IEEE Conference on Artificial Intelligence Applications, 1991, pp. 322-328.

Thangiah, S. R. and Nygard, P. L. (1992). School bus routing using genetic algorithms.

In Proceedings of the SPIE Conference on Applications of Artificial Intelligence

Knowledge Based Systems, Orlando, FL, pp. 387–397.

Thangiah, S. R. and Salhi, S. (2001). Genetic Clustering: An Adaptive Heuristic For The

Multidepot Vehicle Routing Problem. Applied Artificial Intelligence, 15(4): 361-

383.

Thornton, C. and Boulay, B. d. (1999). Artificial Intelligence: Strategies, Applications,

and Models Through SEARCH. AMACOM, New York, USA.

Tian, L. (2001). The Nature of Crossover Operator in Genetic Algorithms. In Rough

Sets and Current Trends in Computing, pages 619-623. Springer,

Berlin/Heidelberg.

Tian, L. and Collins, C. (2004). An effective robot trajectory planning method using a

References

236

genetic algorithm. Mechatronics, 14(5): 455-470.

Torn, A. and Zilinskas, A. (1989). Global Optimization. Lecture Notes in Computer

Science, vol. 350. Springer- Verlag, New York.

Tsang, P. W. M. (1995). A genetic algorithm for affine invariant object shape

recognition. In First International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications, GALESIA, pp. 293-298.

Turban, E. and Meredith, J. R. (1994). Fundamentals of Management Science. 6 ed.,

Irwin McGraw-Hill, Boston, MA.

Tzung-Pei, H., Chun-Hao, C., Yeong-Chyi, L. and Yu-Lung, W. (2008). Genetic-Fuzzy

Data Mining With Divide-and-Conquer Strategy. IEEE Transactions on

Evolutionary Computation, 12(2): 252-265.

Van der Duyn Schouten, F. A. and Vanneste, S. G. (1995). Maintenance optimization of

a production system with buffer capacity. European Journal of Operational

Research, 82(2): 323-338.

Van Laarhoven, P. J. M. and Aarts, E. H. L. (1987). Simulated Annealing: Theory and

Applications. Kluwer Academic Publishers, Dordrecht.

Vasile, M. and Locatelli, M. (2008). A hybrid multiagent approach for global trajectory

optimization. Journal of Global Optimization, 44(4): 461-479.

Vatn, J., Hokstad, P. and Bodsberg, L. (1996). An overall model for maintenance

optimization. Reliability engineering & systems safety, 51(3): 227-354.

Vavak, F., Fogarty, T. and Jukes, K. (1996). A genetic algorithm with variable range of

local search for tracking changing environments. In Parallel Problem Solving

from Nature - PPSN IV, pages 376-385. Springer, Berlin / Heidelberg.

Villegas, F. J., Cwik, T., Rahmat-Samii, Y. and Manteghi, M. (2004). A parallel

electromagnetic genetic-algorithm optimization (EGO) application for patch

antenna design. IEEE Transactions on Antennas and Propagation, 52(9): 2424-

2435.

Vlassis, N. (2007). A Concise Introduction to Multiagent Systems and Distributed

Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine

Learning 2007, 1(1): 1-71.

Weber, B., Bojduj, B. and Pohl, J. G. (2006). Tabu Search for Optimization of Military

References

237

Supply Distribution. In The 18th International Conference on Systems Research,

Informatics and Cybernetics, Germany, pp. 87-91.

White, D. J. (1990). A Bibliography on the Applications of Mathematical Programming

Multiple-Objective Methods. The Journal of the Operational Research Society,

41(8): 669-691.

Whitley, D., Gordon, V. and Mathias, K. (1994). Lamarckian evolution, the Baldwin

effect and function optimization. In Lecture Notes in Computer Science: Parallel

Problem Solving from Nature — PPSN III, pages 5-15. Springer, Berlin /

Heidelberg.

Whitley, D., Starkweather, T. and Shaner, D. (1991). The traveling salesman and

sequence scheduling: Quality solutions using genetic edge recombination. In

Davis, L., editor, The Handbook of Genetic Algorithms, pages 350-372. Van

Nostrand, New York.

Whitley, L. D. (1993). Cellular Genetic Algorithms. In Proceedings of the 5th

International Conference on Genetic Algorithms, Morgan Kaufmann Publishers

Inc.

Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making.

Mathematical Modelling, 3(5): 391-405.

Wierzbicki, A. P. and Granat, J. (1999). Multi-objective modeling for engineering

applications: DIDASN++ system. European Journal of Operational Research,

113(2): 374-389.

Williams, E., Crossley, W. and Lang, T. (2001). Average and maximum revisit time

trade studies for satellite constellations using a multiobjective genetic algorithm.

Journal of the Astronautical Sciences, 49(3): 385-400.

Wooldridge, M., Bussmann, S. and Klosterberg, M. (1996). Production sequencing as

negotiation. In Proceedings of the First International Conference on the Practical

Application of Intelligent Agents and Multi-Agent Technology (PAAM-96),

London, UK, pp. 709–726.

Wright, A. H. (1991). Genetic Algorithms for Real Parameter Optimization. In Rawlins,

G. J. E., editor, Foundations of Genetic Algorithms, pages 205-218. Morgan

Kaufmann.

References

238

Wu, C. L. (2006). Improving Airline Network Robustness and Operational Reliability

by Sequential Optimisation Algorithms. Networks and Spatial Economics, 6(3):

235-251.

Xing, C., Kama, H. and Xiao-Bang, X. (2005). Automated design of a three-

dimensional fishbone antenna using parallel genetic algorithm and NEC. IEEE

Antennas and Wireless Propagation Letters, 4: 425-428.

Yan, C., Zeng-Zhi, L. and Zhi-Wen, W. (2004). Multi-agent based genetic algorithm for

JSSP. In Proceedings of the 2004 International Conference onMachine Learning

and Cybernetics, 2004, Vol. 1, pp. 267-270.

Yang, A., Abbass, H. and Sarker, R. (2006). Land Combat Scenario Planning: A

Multiobjective Approach. In Simulated Evolution and Learning, pages 837-844.

Springer, Berlin / Heidelberg.

Yano, F. and Toyoda, Y. (1999). Preferable movement of a multi-joint robot arm using

genetic algorithm. In Proceedings of SPIE, Intelligent Robots and Computer

Vision XVIII: Algorithms, Techniques, and Active Vision Boston, MA, USA, Vol.

3837, pp. 80–88.

Yueqin, Z., Jinfeng, L., Fu, D. and Jing, R. (2007). Genetic Algorithm in Vehicle

Routing Problem. In Third International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, IIHMSP 2007, Vol. 2, pp. 578-581.

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE

Transactions on Automatic Control, 8(1): 59-60.

Zahir, S., Sarker, R. and Al-Mahmud, Z. (2009). An interactive decision support system

for implementing sustainable relocation strategies for adaptation to climate

change: a multi-objective optimisation approach. International Journal of

Mathematics in Operational Research 1(3): 326 - 350.

Zarka, A. (2005). Project management optimization based on an optical cavity laser

modelization. In Proceedings of the 2005 IEEE International Engineering

Management Conference, Vol. 2, pp. 798-803.

Zhang, Z. and Zhang, C. (2004). Agent-Based Hybrid Intelligent Systems. Springer,

Berlin / Heidelberg.

Zhong, W., Liu, J. and Jiao, L. (2005). Job-Shop Scheduling Based on Multiagent

References

239

Evolutionary Algorithm. In Advances in Natural Computation, Lecture Notes in

Computer Science, Vol. 3612, pages 925-933. Springer, Berlin / Heidelberg.

Zhong, W., Liu, J., Xue, M. and Jiao, L. (2004). A multiagent genetic algorithm for

global numerical optimization. IEEE Transactions on Systems, Man and

Cybernetics, Part B, 34(2): 1128-1141.

	Title page :
An Integrated Evolutionary System for Solving Optimization Problems
	Abstract
	Keywords
	Acknowledgement
	Dedication
	Originality Statement
	Copyright Statement
	Authenticity Statement
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	Chapter 1
Introduction
	Chapter 2
Background Study
	Chapter 3
Genetic Algorithms in Solving COPs
	Chapter 4
Agent-based Evolutionary Algorithms
	Chapter 5
Experimental Studies of AMA
	Chapter 6
Problems with Tiny Feasible Space
	Chapter 7
Handling Equality Constraints
	Chapter 8
ECHT with Genetic Algorithms
	Chapter 9
Conclusions and Future Research Directions
	Appendix
	References

