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Abstract

Vertical-axis wind turbines do not need to be oriented to the wind direction and

offer direct rotary output to a ground-level load, making them particularly suit-

able for water pumping, heating, purification and aeration, as well as stand-alone

electricity generation. The use of high-efficiency Darrieus turbines for such applica-

tions is virtually prohibited by their inherent inability to self-start. The provision

of blade-articulation (variable-pitch blades) has been demonstrated by a num-

ber of researchers to make Darrieus turbines self-starting. One aim of this thesis

is to evaluate the various concepts manifested in the numerous specific passive

variable-pitch designs appearing in the literature, often without theoretical anal-

ysis. In the present work, two separate mathematical models have been produced

to predict the performance of passive variable-pitch Darrieus-type turbines. A

blade-element/momentum theory model has been used to investigate the relation-

ships between the key parameter values and turbine steady-state performance. A

strategy for parameter selection has been developed on the basis of these results.

A free vortex wake model for passive variable-pitch turbines has been developed,

allowing the study of unsteady performance. Significant reduction of average ef-

ficiency in a turbulent wind is predicted for a Darrieus turbine. The improved

low-speed torque of passive variable-pitch turbines is predicted to significantly

improve turbulent wind performance.

Two new design concepts for passive variable-pitch turbines are presented that

are intended to allow greater control of blade pitch behaviour and improved tur-
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bulent wind performance. A prototype turbine featuring these design concepts

has been designed, constructed and tested in the wind tunnel. As part of this

testing, a technique has been developed for measuring the pitch angle response of

one of the turbine blades in operation. This allows comparison of predicted and

measured pitch histories and gives insight into the performance of turbines of this

type. Results have demonstrated the usefulness of the mathematical models as

design tools and have indicated the potential of one of the new design concepts in

particular to make a vertical axis wind turbine self-starting.
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Notation

Symbol Definition

a Flow induction factor

A Turbine swept area; ≡ R x L

AoA Angle of Attack

Cp Power coefficient; ≡ Power/1
2
ρAU∞

3

Cq Torque coefficient; ≡ Torque/1
2
ρARU∞

2

d Rolling profile contact point offset from centre of gravity

FN Normal component of aerodynamic force on blade

FT Tangential component of aerodynamic force on blade

Ipivot Mass moment of inertia of the blade assembly relative to the pivot axis

It Mass moment of inertia of the turbine, including rotor, blades and load

L Blade length

Nb Number of blades

R Turbine radius

Rac Distance from pitch axis to blade aerodynamic centre

Rcg Distance from pitch axis to centre of gravity of blade assembly

Tacc Torque component accelerating the turbine

Tload Torque component driving the load

TSR Tip Speed Ratio; ≡ Rω/U∞

U Wind velocity at blade

U∞ Free wind velocity
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y Rolling profile radial coordinate

y0 Value of rolling profile radial coordinate y at θ = 0

φ Azimuth angle - the orbital position of the blade relative to the wind direction

ρ Air density

θ Blade pitch angle. Positive ‘tail out’

ω Turbine angular velocity
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Chapter 1

Introduction

1.1 Background

The harnessing of the energy of the wind to perform useful work is a practice that

has been maintained from at least the sixth century until the beginning of the

twenty-first and interest in the field is growing.

Motivation for the increased use of wind-generated power arises from a num-

ber of fronts. Primary among these is the recognised need to reduce Greenhouse

gas emissions in order to avoid catastrophic climate change. While global fossil

fuel supplies remain plentiful, many nations are also wary of reliance on imported

energy sources in an international climate of uncertainty. Wind is an ideal alter-

native to fossil fuels in these regards, as a renewable, non-polluting, local resource.

These are the motivations that are prompting developed nations to increase the

proportion of their energy needs provided by wind energy.

For developing nations, the motivations are different. While the adoption of

large-scale wind electricity generation in the world’s most rapidly growing pop-

ulations would significantly assist the global effort to avert climate change and

improve local pollution problems, it is the decentralised nature of wind that offers

the greatest hope of improvement to a large number of people’s lives. Two billion

people throughout the world have no access to electricity (IEA, 1999). Renew-

able energy including wind is able to provide energy to remote communities and

1
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in developing nations where no electricity grid exists. In many instances, they

represent the only economically viable means of providing an energy source to

remote areas. The same argument applies to remote communities in countries like

Australia, where vast distances make the extension of the grid uneconomic.

Therefore while the utility-scale electricity-generating horizontal axis wind tur-

bines that are proliferating throughout Europe, the US and Australia are the

current focus of attention, the development of smaller turbines for stand-alone

applications deserves equal effort. It will be argued that vertical axis wind tur-

bines, if they can be made self-starting while retaining simplicity, could play an

important part in the provision of energy to people without access to grid power.

1.2 Wind Energy Industry

1.2.1 History and current industry status

Utility scale wind turbines

Wind energy’s contribution to global energy supply is currently very small. Ac-

cording to the IEA (2001a), renewable energy sources excluding hydro, combustible

renewables and waste contributed just 0.5% of the global total primary energy sup-

plies in 1999. This category includes wind energy, geothermal, solar and others.

The contribution of this same category to global electricity production was 1.6%

in 1999. Wind energy’s contribution to total US electricity generation was 0.12%

in 1999, constituting some 1% of the renewables category (EERE, 2001). In Aus-

tralia, as of 2001, approximately 9% of electricity supply came from renewables,

the vast bulk of which came from hydro. Only 0.04% of total electricity generation

came from the 41 MW of wind capacity installed in June 2000 (IEA, 2001b).

However global installed wind capacity is increasing rapidly. Figure 1.1 illus-
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Figure 1: Wind Power Cumulative Capacity
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Figure 1.1: Growth of installed wind power capacity in EU and the world to end 2001
(EWEA, 2002)

trates the global and European growth in installed wind generating capacity. At

the end of 2001 the European Union had 17,319 MW of installed wind capacity

(IEA, 2001a), the US 4,258 MW (AWEA, 2002a) and the world total was 24,000

MW (IEA, 2001a). In Europe 4,500 MW of new capacity was installed in 2001,

the most ever in a single year (EIA, 2002). The average annual market growth

rate in Europe over the period 1993 - 2000 was 40% (EWEA, 2002). Towards

the end of this period, the annual capacity installation rate was increasing at 35%

p.a. In the US, 1,700 MW or US$1.7 billion worth of new generating equipment

was installed in 16 states in 2001. This is more than twice the previous record for

installation in one year (732 MW in 1999) (AWEA, 2002b). The more than 6,000

MW of capacity installed globally in 2001 amounts to annual sales of about US$

7 billion (AWEA, 2001).

In Australia, the installed capacity at the end of 2001 had risen to 73 MW, up

128% on the previous year. A further 100 MW is expected to be operational by
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the end of 2002 (EIA, 2002) and 500 MW of wind projects currently at various

stages of planning and development. This trend is expected to continue.

The European Wind Energy Association (EWEA) has set a target that by 2010

Europe will have 60 GW of installed wind capacity, contributing 4.4% of Europe’s

total electricity generation, up from 1.0% in 2000 (EWEA, 2000). At the start of

2002, 50% of the EU’s wind capacity was in Germany providing some 3.5% of that

country’s electricity. The German government has announced plans to boost that

figure to “at least 25% by 2025” (EWEA, 2002).

In the US, according to the AWEA, “Wind is well on its way to providing six

percent of our nation’s electricity–as much as 25 million households use annually–

by the year 2020” (AWEA, 2002b).

The Australian Wind Energy Association (AusWEA) has set a target of 5000

MW of installed capacity in Australia by 2010 (IEA, 2001b).

Small wind turbines

Utility-scale wind turbines have a typical generating capacity of hundreds of kilo-

watts to more than a megawatt. However, small turbines ranging from 1 kilowatt

to a few tens of kilowatts find application in non-grid connected, or stand-alone,

roles. Opportunities for wind energy in the field of Remote Area Power Supply are

growing. The Australian Greenhouse Office (AGO, 2002) estimates that there are

in excess of 10,000 stand-alone and hybrid Remote Area Power Supply systems in

Australia. Diesel generators currently provide the bulk of non-grid connected elec-

tricity in regional Australia. High transport costs and the need to reduce Green-

house gas emissions provide a strong motivation to replace diesel with a clean

renewable source of energy such as solar or wind or both. The Australian govern-

ment has launched the Renewable Remote Power Generation Program (RRPGP)
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to support the replacement of diesel as fuel for off-grid generation by renewable

sources such as wind. RRPGP offers up to 50% rebate of capital cost of new

renewable energy RAPS installations.

1.3 Vertical Axis Wind Turbines (VAWTs)

1.3.1 History

The earliest known wind turbines featured a vertical axis. The earliest known

design was a panemone used in Persia between 500-900 A.D., which had a shield

to block the wind from the half of the rotor moving upwind. It was used to grind

grain and to pump water. It is widely believed that vertical axis windmills have

existed in China for 2000 years, however the earliest actual documentation of a

Chinese windmill was in 1219 A.D. by the Chinese statesman Yehlu Chhu-Tshai

(Dodge, 2001).

A patent for the particular design concept being studied here was filed in France

by military engineer Georges Jean Marie Darrieus in 1925. His idea received lit-

tle attention and in the late 1960s the design was independently re-invented by

Canadian researchers (South and Rangi, 1973) at the National Research Council

in Ottawa. Upon discovering the existing patent, they named the design after

the original inventor. Following the 1973 Arab oil embargo, the Canadians shared

their information with the US Department of Energy, which began a research pro-

gram to develop the technology (Sandia National Laboratories, 1987). Promising

results from a number of test turbines led to two companies - VAWTPOWER and

FloWind - to commence manufacture in the 1980s in California and by the mid

80s, some 500 VAWTs were generating electricity in that state.
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Vertical axis wind turbines have fallen out of favour with the wind turbine

industry. No new vertical axis wind turbines have been installed in California since

1986 (CEC, 1995). By 1999, of the 11,368 electricity generating turbines reported

in operation in that state, none were vertical axis (CEC, 1999). California alone

generated approximately 11% of the world’s wind generated electricity in 1999

(CEC, 2001).

Horizontal axis wind turbines are similarly dominant in Europe.

1.3.2 Lift and drag VAWTs

A distinction is made between vertical axis turbines that operate using the drag

force of the wind on its rotor and those that employ lift forces to generate torque.

Drag type devices employ a blade shape that has a higher drag coefficient with the

wind incident on one side than on the other. In this way the downwind drag force

on the retreating blades is greater than the retarding force on the blades advancing

in to the wind on the other side of the rotor. A net torque is thus generated.

Examples of drag type turbines are the cup anemometer and the Savonius turbine.

Well-designed Savonius turbines generate high torque at low rotational speed. The

speed of the rotor is inherently limited because the blades on the retreating side

can never travel faster than the wind. In wind turbine parlance, they are said to

operate at tip speed ratios (TSRs) of less than one. The TSR is the ratio of the

ground speed of the blade tips and the free wind velocity. It is a limitation of drag

type turbines that higher speeds and higher peak efficiencies cannot be attained.

In addition, relatively large amounts of material are required for a given swept

area, however construction is typically simple and inexpensive compared to other

types of turbine.

Lift type turbines, such as the Darrieus turbine, employ aerofoil-section blades

to generate lift. Such turbines are able to convert this lift into positive torque when
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their blades are travelling sufficiently fast relative to the free-stream flow. Such

turbines operate at TSRs up to approximately 6 and achieve greater efficiencies

than drag turbines. Theoretically achievable peak outputs are comparable to those

obtainable by a horizontal axis wind turbine (HAWT) with the same rotor area.

1.3.3 Explanation of Darrieus concept

y
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Figure 1.2: Illustration of Darrieus concept

Consider the two-dimensional case of a blade moving in a circular path, as

shown in Figure 1.2. As the blade rotates, it experiences a changing relative flow,

which is the vector sum of the local wind speed and the blade’s own speed. Both

the angle of incidence of this relative flow and the magnitude of its velocity vary

with the orbital position of the blade, called the azimuth. In general, the relative

flow always comes from the upwind side of the blade: that is the outer side of the
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blade on the upwind pass and the inner side on the downwind pass. Thus the angle

of attack swings through positive and negative values each revolution. At small

non-zero angles of attack the lift force generated by the blade has a tangential

component in the direction of rotation. Provided that drag is small, the blade

then contributes positive torque to the rotor on which it is mounted. This torque

is used to drive a load, thus extracting energy from the wind. In the absence of a

free wind the angle of attack is at all times zero and no lift is produced.

Figure 1.3: Illustration of troposkien Darrieus.

Due to the oscillating angle of attack, unlike a HAWT, the blades of the Dar-

rieus turbine always produce a fluctuating force, even in steady conditions. The

original form of the turbine features curved blades that have the shape that a rope

takes when its ends are fixed to a vertical axis and spun, called a troposkien (see

Figure 1.3). This shape is designed to eliminate bending loads in the blade due to

centrifugal force, so that loads are purely tensile. Straight-bladed turbines must

withstand greater bending due to centrifugal loads, but have all of the blade length

operating at the full tip radius and normal to the plane of rotation.
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1.3.4 Advantages of the vertical axis format

Wilson and Lissaman (1974) state that the Darrieus rotor has performance near

that of a propeller-type rotor. The principal advantages of the vertical axis format

are the ability to accept wind from any direction without yawing and the ability

to provide direct rotary drive to a fixed load.

The absence of yaw requirement simplifies the design of the turbine. Hansen

et al. (1990) state that failures of yaw drive subsystems have been the second

leading cause of horizontal axis turbine downtime in California. They state also

that smaller turbines with free-yaw (passive) systems also experience problems,

such as overloading due to excessive yaw rates and poor alignment with the wind.

The vertical turbine axis allows rotary loads to be driven directly. For example,

a generator may be driven either at the top of the tower or at ground level without

the need to mount it within the yawing nacelle. Wiring to the generator may be

fixed, rather than having to pass through slip rings and without requiring some

periodic ‘untwisting’ mechanism. A rotary drive pump, such as a helical rotor

borehole pump, may be driven directly, or using a step up belt drive at ground

level. There is anecdotal evidence of attempts to connect horizontal axis wind

turbines to such loads using bevel gearing resulting in the turbine being yawed

away from the wind by the shaft reaction torque.

VAWTs are also well suited to other, low speed, vertical axis loads such as the

aeration and destratification of ponds and the heating of water or other working

fluid by direct mechanical agitation.

A further potential application is the desalination or purification of water by re-

verse osmosis, for which the pressure head can be maintained by direct mechanical

input, bypassing the mechanical-electrical-mechanical conversion step.
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The market niche for vertical axis wind turbines is in relatively small-scale

applications such as these, and in Remote Area Power Supply uses in general.

To realise the potential of the format however, Darrieus turbines must be made

reliably self-starting without sacrificing mechanical simplicity.

1.4 Low and Intermediate Tip Speed Ratio Performance

Darrieus turbine blades typically use aerofoil sections designed as aircraft wing

profiles. The NACA0012, NACA0015 and NACA0018 profiles are commonly used

as blade sections. Typically these are designed to operate at small angles of attack

(less than 10◦). At angles higher than this the aerofoil undergoes stall: the flow

separates from the upper surface of the wing causing a loss of lift and an increase

in drag.

As explained in Section 1.3.3, each blade experiences a periodically varying

velocity and angle of incidence of apparent flow. The amplitude of this variation is

related to the tip speed ratio. This is illustrated in Figure 1.4. This is a simplified

representation of the change in angle of attack pattern with TSR. For simplicity

the effect of the turbine on the free wind velocity is neglected. In reality, as

turbine speed increases, more energy is extracted from the stream and the flow

is decelerated. This causes the ‘effective TSR’ felt by the blade to be greater

than is assumed here. However the relationship is qualitatively similar. At start

up, the angle of attack varies right through 360◦. At TSR 1, the angle of attack

ranges from -180◦ to +180◦. For TSR > 1, the cyclical variation in angle of attack

approaches a sinusoid of decreasing amplitude. As the blade’s velocity becomes

much larger than the free wind velocity, the amplitude of the variation approaches

zero.
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Figure 1.4: Illustration of the change in the pattern of cyclical angle of attack on a blade
with increasing TSR. Azimuth angle defines the orbital position of the blade relative to
the wind direction. Here the wind velocity is assumed constant and is not affected by
the turbine.

This pattern of angle of attack variation produces a variation in the tangential

aerodynamic force on a blade of the type shown in Figure 1.5. Again, the deceler-

ation of the flow that would occur in reality has been neglected here to illustrate

the principle. Also unsteady aerodynamic effects have been ignored and the static

lift and drag coefficients published for the NACA 0018 section have been used.

It can be seen from Figure 1.5 that at low tip speed ratios the blade is stalled at

virtually all azimuth angles. Some small positive force is experienced at azimuth

angles between 0◦ and 180◦. This is the half of the revolution in which the blade is

retreating from the wind and it is purely drag that is producing the small thrust.



CHAPTER 1. INTRODUCTION 12

Azimuth [deg]-90
0

90
180

270

FT

0

TSR

0

1

2

3

4

5

6

Figure 1.5: Illustration of the change in the pattern of tangential aerodynamic force on
a blade FT . Again the wind velocity is assumed constant, allowing a greater force at
high TSR than would really occur. Of interest here is the variation at lower TSR where
stall affects the average torque.

On the advancing side of the revolution, the blade enters regions either side of

azimuth 270◦ (pointing straight into the wind) where the angle of attack is below

the stall angle and lift thrust is produced. As the TSR increases, the extent of

these regions increases. These are visible as the ridges at either side of the FT

surface in Figure 1.5.

Once the TSR exceeds 1, similar regions of lift thrust occur either side of

azimuth 90◦ and it is only where the blade is travelling essentially across the wind

that the blade remains stalled. As speed increases further, these stall ‘depressions’

in the FT surface shrink until at TSR ≈ 4 they disappear and the blade does
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not stall at any point in the revolution. There are then two distinct peaks in

thrust separated by valleys where tangential force is zero or slightly negative,

corresponding to the points when the angle of attack passes through zero.

It should be remembered that in this simplified analysis the deceleration of

the flow is neglected and in reality the TSR at which stall is eliminated will in

general be lower than is shown here. The trends illustrated however remain valid

and explain the low torque produced by fixed bladed Darrieus turbines at low and

intermediate TSRs. Figure 1.5 shows the variation in tangential force for a single

blade. For a turbine with three blades the total torque is smoother, being the

summation of three such curves with 120◦ phase separation. The average turbine

torque for a revolution is found by integration of this tangential load. This is

shown in Figure 1.6.
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Figure 1.6: Illustration of the variation of non-dimensionalised torque Cq with TSR for
the case shown in Figure 1.5. Because deceleration of the wind is neglected the torque
rises later, achieves a higher peak and persists to higher TSRs than would occur in
reality.
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Figure 1.6 illustrates the trough in the torque curve that occurs at intermediate

tip speed ratios - between approximately 0.5 and 2.5 here. At TSR < 0.5 torque

is slightly positive due to the difference in drag between advancing and retreating

halves of the each blade’s revolution. Thus the turbine may well begin to move

from rest and accelerate up to some equilibrium speed at TSR ≈ 0.5. However

the trough where torque is negative prevents the turbine from accelerating of its

own accord to the TSR at which torque increases rapidly (and above which useful

work can be done).

The addition of flow deceleration, parasitic aerodynamic drag, transmission

friction and load torque to this simplified analysis would serve only to exacerbate

the inability to self-start. The only real factor neglected here that would improve

starting performance is the consideration of unsteady aerodynamic effects. Under

dynamic conditions, the flow is able to remain attached and stall is delayed to

higher angles of attack than apply under static conditions. These effects are im-

portant to the analysis of Darrieus starting performance and are also very difficult

to accurately account for. This subject will be discussed in detail in Chapter 5.

The actual location and depth of the torque trough is dependent on a number

of factors, including the number and size of the blades, the radius of the turbine

and the free wind velocity. In some cases the torque in the trough may actually

be small but positive. The most serious consequence of this characteristic is the

inability to reliably self-start. While the turbine may be able to begin spinning

and accelerate up to a speed where the torque curve reaches zero, it is not able

to accelerate beyond the trough to the high TSRs at which torque is high enough

for useful work to be done. Even if the ideal torque curve is at all speeds positive,
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parasitic aerodynamic drag, drive train friction and load resistance are likely to

exceed output torque in the trough.

The inability to self-start is not a major impediment to large grid-connected

turbines with control mechanisms that are able to drive the turbines up to speed

when sufficient wind is measured. However it is a virtually prohibitive shortcoming

for small, stand-alone turbines, which need to operate passively and unattended,

to be economically viable.

The negative torque region that prevents self-starting in a steady wind presents

a further problem for turbines operating in turbulent wind. In a real wind, ve-

locity fluctuations occur very much faster than inertia allows the turbine speed to

respond. Thus the instantaneous tip speed ratio varies significantly. If the torque-

speed curve has a deep trough immediately below the running TSR range, there

will be frequent periods during which the torque is low or negative. This may sig-

nificantly affect the total energy captured from the wind. As pointed out by Bayly

(1981), this phenomenon is especially significant for turbines driving synchronous

generators that are made to operate at a constant speed.

The primary focus of this thesis therefore is the investigation of methods of

increasing the torque produced by Darrieus turbines at intermediate tip speed

ratios, so that they may be reliably self-starting and more efficient in turbulent

wind conditions.

1.5 Variable-Pitch Darrieus Turbines

A number of methods for making a Darrieus turbine self-starting have been pro-

posed by previous researchers. A review of these is given by Kirke (1998). The

particular method studied here is the variable-pitch turbine design. It appears to
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offer the greatest potential for achieving significantly increased torque at low and

intermediate tip speed ratios without compromising peak efficiency.

As discussed in Section 1.4, the inability to self-start is due to the stalling of

the blades at low and intermediate tip speed ratios. Stall occurs when the angle

of attack becomes too large and the flow separates from the surface of the blade

resulting in a loss of lift and an increase in drag. If the angle of attack can be

reduced sufficiently, the flow over the blade can remain attached. This reduction

in angle of attack requires that the blade orientation be changed to point closer

to the apparent wind direction. Figure 1.4 shows that if the blade pitch angle is

varied as an approximately sinusoidal function of the azimuth angle, in phase with

the variation in angle of attack, the amplitude of the angle of attack oscillation

experienced by the blade can be reduced. Any reduction in the proportion of time

that the blade spends stalled will increase the average torque for the revolution.

Reduction of stall is the principal mechanism by which variable-pitch increases

torque at intermediate TSRs, but the concept may also produce significant im-

provements at start up and low TSRs. Below TSR = 1, it is not practical for

a blade to pitch sufficiently quickly to prevent stall. However even for moderate

pitch amplitudes, the blades are able to act as more efficient drag devices, like

the mainsail of a yacht running before the wind with the boom swung wide from

the keel line. These two separate mechanisms are able to significantly increase

the starting and intermediate TSR performance of Darrieus turbines. They are

illustrated in Figure 1.7.

1.5.1 Active variable-pitch

The question then is how to produce the required variation in blade pitch. A

central cam with pushrods connected to the blades may be used to produce a
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Figure 1.7: Darrieus rotor aerodynamics. Blade pitch variation allows the angle of
attack to be reduced. At high TSR, no pitching is required. At intermediate TSR,
pitching prevents the blade stalling. At low TSR, pitching produces a more favourable
combination of lift and drag.
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periodic variation in pitch angle as a function of azimuth angle. Such designs have

been tested by a number of researchers, including Drees (1978) and Grylls et al.

(1978). It is clear from Figure 1.4 that as the amplitude of the angle of attack

variation on a fixed blade decreases with tip speed ratio, so does the amplitude of

pitch variation required to prevent or reduce stalling.

This was confirmed experimentally by Grylls et al. (1978), whose results are

shown in Figure 1.8. They tested a variable-pitch VAWT whose blades were driven

by a central cam. They tested four different amplitudes of pitch variation and

found that while a large amplitude offered good starting torque and low TSR

performance, the turbine was unable to accelerate to higher TSRs, or to produce

a good maximum efficiency. Conversely, a small pitch amplitude was found to

produce good high speed efficiency, but the low TSR benefits were lost.

This finding was confirmed by mathematical modelling of a cam-driven turbine

by Pawsey and Barratt (1999). To elaborate on these results, a series of simula-

tions was run using the momentum theory mathematical model developed for this

project and discussed in Chapter 5. The performance of a turbine with a preset

sinusoidal pattern of pitch variation was predicted at a wind speed of 7 m/s for

different pitch amplitudes, ranging from ±30◦ to fixed blades. The dimensions and

solidity of the turbine are the same as those tested by Grylls et al.

The results for gross power coefficient Cp (parasitic drag not subtracted) are

shown in Figure 1.9. The requirement for pitch amplitude to diminish with TSR is

confirmed. In this case, the predicted gross power is positive at all TSRs, even for

the fixed-blade turbine (0◦ amplitude). However a significant improvement in low

and intermediate TSR performance is indicated given the appropriate pitch am-

plitude. These results indicate the desirability of having a pitch variation schedule
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Figure 1.8: Power coefficient wind tunnel test data from Grylls et al. (1978) for a 2.4
metre diameter x 1.6 metre VAWT with a cam-driven blade pitch schedule
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Figure 1.9: Predicted performance of a cam-driven variable pitch VAWT for a range of
pitch amplitudes. Gross power coefficient is shown, before parasitic drag and friction
are subtracted. Turbine 2.4 metre diameter x 1.6 metre, 3 blades NACA 0018, chord
145 mm.
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whose amplitude is variable. The turbine could then ‘ride the envelope’ of the in-

dividual curves in Figure 1.9, producing improved performance at tip speed ratios

from 0 to the higher design speeds of the standard Darrieus turbine.

This is difficult to achieve in practice with a cam design. Some measurement

and control system would also be required to sense the wind speed relative to the

rotor speed.

This is a major reason for opting for a ‘passive’ variable-pitch system: one in

which the pitch of the blades is determined directly by the wind forces on the blades

themselves. This removes the need for any sensing or central control and provides

the flexibility needed to overcome the limitations inherent in pre-determining the

blade pitch schedule.

1.5.2 Passive variable-pitch

The basis for the passive variable-pitch concept is that a blade that is free to pitch

about a spanwise (longitudinal) axis near the leading edge will seek to point into

the apparent wind.

Work done by Bayly and Kentfield (1981) and Kirke and Lazauskas (1993)

has demonstrated the ability of two different passive variable-pitch VAWTs to

achieve self-starting. Their work however also demonstrated the sensitivity of the

performance of their turbines to variation in the key parameters that affected the

blade pitch response. While an approximately sinusoidal pattern of pitch variation

is required, the amplitude, phase and higher order deviations from this pattern

have a great effect on the torque at any given speed. Under static conditions,

the magnitude of the equilibrium angle of attack adopted by a blade depends on

the relative strengths of the aerodynamic and restoring moments about the pivot

axis. Under dynamic conditions, the inertia of the blade becomes significant and
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the combination of these three factors determines the blade pitch response. The

magnitudes of all three of these factors may be determined by the specific design of

the blade and its connection to the rotor. It is the aim of this thesis to investigate

the features of desirable passive blade pitch response and the ways in which such

response may be achieved through the design of the blade-rotor connection.

1.6 Structure of Thesis

Mathematical modelling

In order to evaluate different turbine designs and their performance under differ-

ent operating conditions a mathematical model is required. Bayly and Kentfield

(1981) and Kirke and Lazauskas (1993) developed steady-state performance pre-

diction models for their respective designs. To assess the potential of different

designs for achieving desirable pitch response, for this thesis a more general math-

ematical model has been developed for steady-state performance. In addition, a

separate model has been developed for investigation of transient turbine behaviour,

especially performance in turbulent conditions.

New turbine design

On the basis of insights gained from the results of theoretical analysis, two new

design concepts have been conceived and studied. Predicted performance is pre-

sented for these designs and explanation of their potential advantages is given.

Experimental procedure

In order to assess the potential of the new design concepts, a prototype turbine has

been designed and constructed and tested in a wind tunnel. A new technique for

measuring the blade pitch response pattern of the turbine in operation has been
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developed. Results of this testing and conclusions on the potential of the designs

are presented.



Chapter 2

Review of Passive Pitch Control Systems for Darrieus

Turbines

2.1 Review of Existing Variable-Pitch Darrieus Turbines

2.1.1 Active variable-pitch Darrieus turbines

Variable-pitch Darrieus turbines may be divided into active and passive types.

Active designs may be defined as those systems that produce blade pitch change

through means other than the direct action of the aerodynamic forces acting on

them. These may range from systems that measure and calculate appropriate pitch

angles continuously and use hydraulic or similar actuators to drive the blades to

the desired angle, through to cam-driven designs mentioned in Section 1.5.

Work has been done on this type of turbine by McConnell (1979) and Meikle

(1993). The cost and complexity of such systems is not considered justifiable for

small stand-alone turbines. A more simple type of active system is one in which

the blades are moved by pushrods driven by a central cam, which produces a pre-

set schedule of pitch variation. Darrieus (1931) included such a cam-driven design

in his original patent for the fixed-pitch turbine (see Figure 2.1). Drees (1978)

developed a similar design called a ’Cycloturbine’ with the Pinson Energy Corpo-

ration. The blade pitch schedule is set using a central cam and pushrods to each

blade. The cam is oriented with the wind direction using a small tail vane. Drees

23
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Figure 2.1: Darrieus’ cam driven design

reported reliable self-starting and a high maximum power coefficient Cp of 0.45 in

field tests. As mentioned in Section 1.4, Grylls et al. (1978) performed theoretical

and experimental analysis of a turbine similar to that of Drees. They developed a

multiple streamtube type mathematical model that incorporated a preset schedule

of pitch variation. Both theoretical and wind tunnel results indicated one of the

major problems of such active designs: the amplitude of the pitch variation is fixed

by the cam and so cannot vary to suit the tip speed ratio. This limits the efficient

performance of the turbine to a narrow band of TSR. Large amplitude (±20◦)

produces good starting torque and performance up to TSR 1.5, which then drops

off rapidly with increasing speed. A small amplitude of ±5◦ yields good high speed

performance (and much higher efficiency) at the detriment of starting performance.

This limitation could be overcome by providing some means of varying the cam

profile with turbine speed, however the technical difficulty of accomplishing this

would greatly increase the cost.

Grylls et al. also reported problems of high friction associated with the cam

and pushrod mechanism. These problems and the increased cost and complexity
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of active systems are the reason for the exclusive focus on passive designs in the

current work.

2.1.2 Passive variable-pitch Darrieus turbines

Sicard (1977) patented a design in which the blades are free to pivot about an axis

in the chord line and are balanced so that their centre of mass lies radially outboard

of the pivot axis when the blade is in a ‘zero-pitch’ position - i.e. with its chord line

tangential to the orbit of the pivot axis. This design is shown in Figure 2.2. Under

the action of centrifugal ‘force’ a stabilising or restoring moment is applied to the

blade so that it seeks the zero-pitch position. Thus the blade is like a pendulum

in an inertial field. No stops are mentioned to limit the pitch angle of the blades

and so at rest there is nothing to prevent the blades all turning to point into the

wind, thus generating no thrust.

Sicard does mention a variation on the design in which the upper ends of the

blades are mounted at a slightly larger radius than the lower ends, thus causing

the blades to seek a zero pitch orientation at rest under the influence of gravity. It

seems unlikely however that for small tilt angles this would produce enough mo-

ment to allow the turbine to self-start using the drag of the blades. No theoretical

or experimental analysis of the design by Sicard was found.

Brenneman (1983) designed a turbine that in one form, which he terms an

‘inertial’ type, is identical to Sicard’s design with the addition of stops to limit

pitch angle. A second embodiment, which he calls an ‘elastic’ type, has the blades

balanced about the pivot axis, with some elastic device, such as a steel rod or

wire spring, to return the blade to its undisturbed position as shown in Figure 2.3.

For this design he makes the claim that it is inherently speed limiting, as the

natural frequency of the blade oscillation is fixed by the moment of inertia of the
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Figure 2.2: The design patented by Sicard (1977)

blade and the stiffness of the spring. This means that when the rotational speed

of the turbine, which is equal to the frequency of the driving force, exceeds the

natural frequency, the blade motion becomes out of phase with the angle of attack

variation, causing the turbine to lose thrust and decelerate rapidly.

He recognises that the inertial type does not have this feature, as the natural

frequency varies linearly with the rotational speed of the turbine, so that the ratio

of the two is constant. However he does not address the fact that for his elastic

design, the variation of the frequency ratio with turbine speed means the amplitude

and phase angle of the pitch response of the blades varies accordingly, in a manner

that is not likely to be favourable. Specifically at start up the frequency ratio is

close to zero, so while the response will be in phase with the driving force, its

amplitude is likely to be small. As speed increases and approaches the natural

frequency, the amplitude will increase. Coupled with the fact that the magnitude

of the driving aerodynamic force increases with the square of relative wind speed,
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a pitch amplitude that increases with speed will result. This is the opposite of the

trend that is desirable, as discussed in Section 1.5.

No experimental work to test the design concept is mentioned. An essentially

identical concept is embodied in the design of Cameron (1978).

Figure 2.3: The elastic (left) and inertial designs of Brenneman (1983)

Leigh (1980) proposed a design in which each blade is pivoted about a point

on the chord forward of the aerodynamic centre. The blade is balanced using

a counterweight hidden inside the radial arm (thus reducing parasitic drag) and

acting on the blade via a pushrod (see Figure 2.4). Springs produce a restoring

moment on the blade, returning it to the neutral position. Like Brenneman’s

elastic design, the restoring moment is independent of the centrifugal load and the

turbine should behave in the same manner as Brenneman’s.

Evans (1978) designed a passive variable pitch turbine in which the blades were

pivoted about a point at the 1/3 chord location and balanced about this point.

The stated aim of the design was to allow the blade to pitch to reduce the angle

of attack so that it is just below stall. The concept is based on pitching moment,
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Figure 2.4: Leigh’s ”automatic blade pitch” design concept (reproduced from Leigh,
1980)

or movement of the centre of pressure. For angles of attack well below stall, the

centre of pressure should be forward of the pivot axis (near the quarter chord),

while if stalled, the centre of pressure should be aft of the 1/3 chord position.

These movements were intended to always move the blade to the angle of attack

that was considered ideal, just below stall. The stated role of the spring is to bias

the pitch in the direction of decreased angle of attack, though it appears that it

would actually reduce the angle of pitch, which would often increase the angle of

attack.

As no test data is given for the turbine, it is difficult to say whether this concept

could be successful. Evans also proposed a design in which the blades are free to
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pivot and are linked to each other by a set of rods or wires. No counterweight

is used, but the blades mutually cancel out the tendency to flare outwards under

centrifugal force. The blades are hence not free to pitch independently and it is

not clear that the angles that they adopt would be optimum or even advantageous.

Liljegren (1984) patented a design in which the blades are pivoted about the

centre of mass, which is on the chord (see Figure 2.5). The pitching motion of the

blades is regulated by the action of two independent masses, the centrifugal weight

of which oppose the inward and outward pitch of the blade. In addition, springs

are used to supplement the restoring moment of the masses when rotational speed

is low. The design is intended to produce diminishing pitch response amplitude

with increasing speed and to finally prevent pitching altogether at running speeds.

No quantitative analysis or experimental work on the design could be found in

the literature, though Kirke (1998) demonstrated success with a similar design

concept.

Sharp (1982) designed a turbine in which the blade lies radially outboard of

the pivot axis. The centre of mass on the chord of the balanced blade is connected

via a ‘rocker arm’ to a hinge at the end of the support arm (see Figure 2.6). He

claims that this is superior to the Sicard concept because the moment of inertia

of the blade assembly is lower, thus allowing the blades to be more responsive and

faster moving. While the moment of inertia about the mass centre is lower, the

rocker arm arrangement means that the relevant moment of inertia, that about

the hinge, is almost the same.

The placement of the pivot axis off the blade chord means that the blade no

longer seeks a zero angle of attack under static conditions. When the turbine

is generating torque, as it is designed to do, the tangential load will produce
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Figure 2.5: Sketch of Liljegren’s inertial and spring design (Liljegren, 1984)
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a moment about the pivot hinge, which must result in some bias in the blade

angle. Apart from this characteristic, the turbine should operate in much the

same manner as the Sicard design, though no quantitative analysis was presented.

The design of Marie (1984) is essentially the same with the addition of a spring

to supplement the inertial restoring moment.

Figure 2.6: Images of Sharp’s design included in his patent (1982)

Verastegui (1996) patented a design for a passive variable-pitch turbine in which

the response is regulated through the aerodynamic loads acting on the blade and a

smaller ‘stabiliser’ blade just inboard and mechanically linked to it (see Figure 2.7).

The relative masses and pivot locations of the blade and stabiliser are set so that

there is no tendency to pitch under centrifugal force alone. The stabiliser is pivoted

about a point aft of its aerodynamic centre and the main blade is pivoted forward

of its aerodynamic centre, so that aerodynamic forces produce opposing moments,

causing the blade to seek at equilibrium “an optimum pitch angle”.
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Figure 2.7: Patent sketch of Verastegui’s aerodynamic stabiliser design (Verastegui,
1996)

The exact theory by which this is achieved is not disclosed, though a momen-

tum type analysis included in the patent is used to derive predictions of peak

power coefficient of 0.70 for the design, which exceeds the Betz limit for maximum

theoretical Cp of 0.593.

In addition to his work on the Cycloturbine described above, Drees (1979)

also patented a passive variable-pitch turbine in which the blades are not bal-

anced about their pivot point. In the simplest form of the invention, the blades

are allowed to swing inwards through 90◦ to act as drag translators at very low

tip speed ratios. As speed increases, centrifugal force holds the blades out in a

zero-pitch position against stops. Thus the design seeks to make use only of the

start up drag-dominant mode and the lift-dominant running mode of the standard
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Darrieus turbine, without any means of extending the lift-based operation down

to intermediate tip speed ratios. As such is seems unlikely to achieve self-starting.

Zheng (1984) recognised the need to have a progressively diminishing ampli-

tude of pitch response with increasing turbine speed for a given wind speed. His

design has no means of providing a restoring moment on the blade to balance aero-

dynamic moments, but instead features a weighted ‘guide’ piece that progressively

narrows the angle through which the blade is allowed to swing (see Figure 2.8).

It is not clear whether this design concept could work, however from a practical

standpoint the repeated impact of the swinging blade on the hard stops is likely

to be problematic.

Figure 2.8: Sketch of the key mechanism of Zheng’s variable pitch stop design (Zheng,
1984)



CHAPTER 2. REVIEW OF PASSIVE PITCH SYSTEMS 34

Martin (1989) patented a turbine in which cambered blades are free to pivot

about a point near the leading edge and are balanced using a counterweight about

a point on the chord line but forward of the pivot axis.

Bayly and Kentfield (Bayly, 1981; Bayly and Kentfield, 1981) performed a theo-

retical and experimental study on a turbine design they called a “Cyclobrid”. This

was a passive-pitching turbine essentially identical in concept to that patented by

Sicard (1977), but apparently conceived independently by Kentfield (1978). Kent-

field however used stops to limit the travel of the blades, thus allowing the turbine

to start from rest (see Figure 2.9). Bayly produced a momentum type mathemat-

Figure 2.9: The ‘pendulum’ type inertial design of Kentfield (1978)



CHAPTER 2. REVIEW OF PASSIVE PITCH SYSTEMS 35

ical model for the turbine and tested a 15 foot (4.57 m) diameter prototype. The

mathematical model indicated good running efficiency for the design.

The full-scale prototype turbine tested in the field achieved reliable self-starting

and a peak efficiency of 0.36 at a tip speed ratio of 3.7, which are in reasonable

agreement with predictions of the mathematical model. This work demonstrated

the ability of the passive variable-pitch systems to marry self-starting ability with

good running speed efficiency. It also demonstrated the ability of an inertial type

pitch control system to produce appropriate pitch response over a range of turbine

speeds.

Kirke (1998) conducted a study on self-starting vertical axis wind turbines as

a PhD thesis. Kirke performed an extensive survey of previous active and passive

variable pitch VAWT designs and his thesis is the most detailed and systematic

work on passive variable-pitch turbines found in the literature. He considered

passive variable-pitch Darrieus type turbines as just one of a number of options

available for achieving self-starting, but devoted most of his attention to them and

in particular the design he developed with Lazauskas (Kirke and Lazauskas, 1991).

The design concept is shown in Figure 2.10.

Kirke’s design is very similar in concept to that of Liljegren (1984), though

much simpler in execution. A single T-shaped stabiliser mass is used to oppose

the pitching of the blade, which is balanced about a point on the chord line near

the leading edge. No springs are used to assist the masses at low speeds in this case.

This design produces a restoring moment that is proportional to the centrifugal

force but is independent of the pitch angle.

Unlike Liljegren’s design, Kirke provided the ability to adjust the moment

arms at which the two masses acted independently, as well as the respective pitch
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Figure 2.10: The Kirke-Lazauskas inertial design (Kirke, 1998)

limits. This allows the pitch response to be biased in one direction or the other.

Unlike the ‘pendulum’ type of inertial system tested by Bayly and Kentfield (1981),

Kirke’s design has a threshold of restoring moment that must be exceeded by the

aerodynamic moment on the blade before any pitching will occur. This feature

is desirable because it prevents small oscillations at high speeds that occur with

pendulum type designs and allows the turbine to function as a standard fixed-

blade Darrieus turbine at high running speeds. However at lower TSR when the

pitch response amplitude is large there will be an impact between the blade and

the stabiliser mass each time the blade swings through the zero pitch position, as

the mass switches contact points and is asked to change direction instantaneously.

Thus the contact points between blade and mass would need to be cushioned in

some way to avoid damaging impact loading and prevent ‘bouncing’ in the pitch

response.
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It should also be noted that compared with the Kentfield ‘pendulum’ type

design, Kirke’s separation of the pivoting blade and the sliding stabiliser mass

does not necessarily result in a reduced moment of inertia of the blade or faster

pitch response. The radial movement of the stabiliser mass associated with blade

pitching adds to the effective mass moment of inertia about the pivot axis. It can

be shown that this effect is equivalent to lumping the stabiliser mass at the contact

point. This additional inertia was not included in the mathematical model (Kirke

and Lazauskas, 1992).

The model was of the momentum type and was validated through wind tunnel

testing of a model turbine. He also built and tested in the field a 6 metre diameter

turbine based on the same design. Some discrepancy was found between predicted

and measured results for this case. Both the wind tunnel and field testing demon-

strated the ability of the design to achieve self-starting and his results lend further

weight to the argument for inertial type pitch control.

2.1.3 Summary

From the wide range of often ingenious ideas embodied in the above designs a num-

ber of common themes emerge. By definition, all passive variable-pitch turbines

rely on aerodynamic forces to effect the change in blade pitch.

Drees and Evans produced designs in which the blades are not independent,

but instead move collectively. Martin, Drees and Zheng produced designs that rely

purely on aerodynamic forces to move the blades. While centrifugal force is used

to limit or prevent pitching at high speeds, it does not continuously influence the

pitch response.

All the remaining passive designs regulate the pitch response using a restoring

moment on the blades that counteracts the tendency of the wind to disturb the
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blade from its neutral position. Brenneman and Cameron produced designs in

which the restoring moment is provided by purely elastic means. Sharp, Sicard,

Kentfield and Kirke relied on inertial forces in their designs. Brenneman and

Liljegren also produced designs that used a combination of the two.

While Brenneman talks about elastic and inertial means of pitch control as

being different means of producing essentially the same effect, the major difference

between them is that the restoring moment provided by the elastic means (as

embodied to date) is independent of the turbine speed. Inertial loads on the other

hand are inherently proportional to the square of the turbine speed. The only

designs demonstrated to be effective to date (Bayly and Kentfield, 1981; Kirke

and Lazauskas, 1993) have utilised inertial pitch control. It will be shown that

such a relationship should be the starting point for effective pitch control, though

deviations from it may be required to optimise performance over the entire speed

range.

The number and variety of the designs described above indicates the need for a

systematic approach to the treatment of the problem of self-starting. Most of the

above designs appear with minimal theoretical basis presented in the patent and

no supporting work appearing in the literature. The aerodynamics and dynamics

of passive variable-pitch mechanisms are too complex to be effectively handled

without detailed quantitative analysis. The development of mathematical tools to

predict what is desirable pitching behaviour and what designs might go closest to

realising this is the primary aim of the present work.
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2.2 Review of Mathematical Models for Variable-Pitch Darrieus

Turbines

The two most studied and best validated approaches to the mathematical mod-

elling of Darrieus turbines are momentum models and vortex models. Momentum

models are fast and provide reasonably accurate prediction of steady state aver-

age turbine output. Vortex models are claimed to be more accurate at predicted

instantaneous blade loads, but are much more computationally expensive.

2.2.1 Momentum models

Momentum models were developed for standard fixed-blade Darrieus turbines.

They are based on the calculation of flow velocity through the turbine by equat-

ing the streamwise aerodynamic force on the blades with the rate of change of

momentum of the air.

The first application of momentum theory to the modelling of VAWTs is at-

tributed to Templin (1974). He used a single streamtube encompassing the entire

turbine within which the momentum balance was calculated. The flow velocity

within the streamtube was assumed to be uniform. Wilson and Lissaman (1974)

assumed a sinusoidal variation in inflow velocity across the width of the turbine to

account for non-uniform flow. In order to account for this effect more fully, Strick-

land (1975) extended the model so that the flow through the turbine is divided into

multiple independent streamtubes. The momentum balance is carried out sepa-

rately for each streamtube, allowing an arbitrary variation in inflow. Paraschivoiu

(1981) allowed for the difference between the upwind and downwind passes of each

blade by dividing each streamtube into an upwind half and a downwind half, in the
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so-called ‘Double Multiple Streamtube’ (DMS) model. The momentum balance is

carried out separately for each half of the streamtubes.

Two models have been found in the literature that apply momentum methods

to the performance prediction of passive variable-pitch Darrieus turbines. This

involves the added complexity of calculating the pitch response of the blades,

which is both affected by and affects the flow velocity. The momentum model

developed by Bayly (1981) is a two-dimensional model that predicts aerodynamic

loads and blade pitch response. It makes a number of simplifying assumptions that

are addressed in the current work. A single streamtube spanning the frontal area

of the turbine is used, with a sinusoidal variation in flow induction factor across

it, according to the method of Wilson and Lissaman (1974). The variation of

streamwise velocity across the rotor is thus assumed a priori rather than calculated.

Further, the use of a single streamtube does not allow any difference in flow velocity

between the upwind and downwind passes of the blades. When the turbine is

heavily loaded this simplification is no longer valid, as the flow is considerably

decelerated by the time it reaches the downwind pass. Blade aerodynamic loadings

are calculated using tabulated lift coefficients and centre of pressure locations

measured under static conditions. Drag is calculated using an empirical expression,

similarly for static conditions. Empirical corrections are made for the average

Reynolds number and finite aspect ratio, but no attempt is made to take into

account the difference between static and dynamic conditions. Also, since he

only had data for angles of attack less than 20◦, Bayly was unable to calculate

performance at tip speed ratios less than three, which is the very area of interest

for a self-starting turbine.
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The instantaneous torque is taken to be the product of the tangential compo-

nent of the aerodynamic forces on the blade and the radius of the turbine. No

account is taken of the effect of the inertia of the pitching blade assembly on the

reaction forces at the pivot. It will be seen that these forces, while integrating to

almost zero over the course of a revolution at steady-state, may instantaneously

be of the same order of magnitude as the aerodynamic tangential force.

Bayly comments on the problem of significant scatter in the experimental

torque coefficient data. He attributes this principally to the fluctuating wind

measurements that are used to non-dimensionalise the output torque. However he

also suggests that “unwanted blade oscillations” may contribute to scatter. While

the momentum model predicts steady-state blade pitch response, several revolu-

tions are required to converge to steady-state from an arbitrary starting condition

even in a steady wind. Accordingly he says

“it seems logical then that the ever-changing speed and direction

of the real wind would prevent a Cyclobrid turbine from ever reaching

steady-state operation. Blade angles may be transiently favourable or

unfavourable causing fluctuations in power coefficient.”

This suggests the need to develop a mathematical model capable of examining the

transient as well as the steady-state behaviour of this type of turbine.

Bayly further comments that the mathematical model predicts small ampli-

tude high frequency oscillations superposed on the base pitch response. Previously

Kentfield (1978) measured blade pitch response on a wind tunnel turbine by view-

ing a small protractor mounted on a blade under stroboscopic lighting, however

such an approach was unable to detect high frequency oscillations. The existence

of these oscillations could only be confirmed by the continuous measurement of
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pitch angle as a function of azimuth. This task has been undertaken in the current

work.

Kirke and Lazauskas (1992) developed a more sophisticated model of the Dou-

ble Multiple Streamtube type. It incorporates flow velocity differences between

upwind and downwind blade passes, flow curvature and dynamic stall. It is specif-

ically designed to predict the blade pitch response for the control method shown

in Figure 2.10. Kirke (1998) obtained reasonably accurate predictions of the per-

formance of a 2 metre diameter turbine tested in a wind tunnel.

He also compared the results of the mathematical model with measured perfor-

mance of a 6 metre diameter demonstration turbine based on the same principle

operating in the field. He was unable to achieve the same level of agreement in this

case, with the mathematical model significantly over-predicting the experimental

results. He suggested a number of possible causes for the discrepancy, including

underestimated parasitic drag and the difficulty of measuring the temporally and

spatially fluctuating wind accurately, as reported by Bayly.

He suggests two further possible causes of discrepancy: the effect of the wake

of the blades in the upwind pass on those in the downwind pass; and the effect of

high frequency wind speed fluctuation. Neither of these effects can be accounted

for by a momentum theory mathematical model, which predicts time-averaged

performance. Kirke performed a simplified analysis of the effect of turbulence that

indicated the potentially large influence of this factor on average performance.

However a more complete investigation of this effect is only possible with an anal-

ysis tool able to deal with transient performance. This was the reason for the

development of a vortex method for passive pitching turbines.
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2.2.2 Vortex models

Vortex models are potential flow models based on the calculation of the velocity

field about the turbine through the influence of vorticity in the wake of the blades.

Discrete vortices are shed into the wake as the bound circulation at the blades

changes in order to maintain total conservation of vorticity as dictated by Kelvin’s

theorem. The velocity field is the summation of the induced velocities of all vortex

points, as calculated by the Biot-Savart law.

Early applications of vortex theory to Darrieus turbines were made by Larsen

(1975), Fanucci and Walters (1976), and Wilson (1978). Both Larsen’s and Wil-

son’s models were applied to variable-pitch Darrieus turbines. Larsen studied what

he termed a ‘cyclogiro’, in which the blades periodically flipped from a set positive

pitch angle to a set negative angle and back each revolution. He used a simplified

wake with only two vortices shed into the wake each revolution at the blade flip-

ping points, and calculated an average velocity by which to convect the vortices

downstream. Wilson (1978) analysed a ‘giromill’ with a preset schedule of pitch

angle variation. He again used a simplified analysis in which the pitch angle was

assumed to be varied to keep the circulation constant in magnitude, but flipping

twice per cycle in sign, for each revolution. The steady state performance was

calculated by representing the blade effect on the flow using circular vortex sheets

on the blade orbit and straight sheets extending downstream from the transverse

extremities of the orbit. The influence of these sheets on the flow at the blades

could be calculated analytically.

Strickland et al. (1979, 1980, 1981) produced a more sophisticated vortex model

for a fixed-blade turbine and compared results with instantaneous blade forces mea-

sured on a model turbine in a tow tank. Strickland incorporated blade stall using
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published lift and drag coefficients, modified to account for unsteady aerodynamic

effects including dynamic stall. He used a free wake in which the discrete vortices

convect downstream with the free stream and under their mutual influence. The

detailed account of the method given in the 1981 report was used as the basis for

the implementation of the vortex model in the present work.

Strickland found that the major weakness of his method was in the calculation

of the unsteady aerodynamic loads on the blades. His use of an empirical method

derived for helicopter applications to modify published static lift and drag data

was not able to capture all the details of the instantaneous blade loads measured

in his experiment.

Wilson et al. (1983) abandoned the use of aerofoil coefficient data and used

an analytical method, mapping the aerofoil onto the circle plane, to calculate

aerodynamic forces. They coupled this method with a standard free vortex wake

representation. This method however only deals with attached flow and so does

not handle stall.

The complexity of the flow around a blade in Darrieus motion has prompted

recent efforts to apply computational fluid dynamics approaches to the problem.

Allet et al. (1999) modelled the flow about a rotating Darrieus blade using a finite

element method to solve the Reynolds-averaged Navier-Stokes equations. Ponta

and Jacovkis (2001) solved the ‘constant-curl Laplacian equation’ for the flow

in the vicinity of the blade using the finite element method. Such methods are

very demanding in terms of computation time, and it was felt that due to the

added requirements of calculating blade pitch motion, the use of such methods in

the current case was not realistic. Instead semi-empirical unsteady aerodynamics
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treatments were used, despite their limited ability to model this highly complex

phenomenon.

Work on ‘fixed-wake’ or ‘prescribed-wake’ vortex models has been performed

by Wilson and Walker (1983) and Jiang et al. (1991). These methods aim to

reduce the computational expense involved in calculating the induced velocity at

every vortex point due to every other vortex point at each time step by assuming a

fixed wake geometry and incorporating momentum theory to assist in calculation

of the convection velocity. Such methods were not pursued in the present work

as the greatly increased computing power available now was judged to render the

effort not worthwhile. Similarly time-saving techniques such as the ‘vortex-in-cell’

method described by Baker (1979) and implemented by Vandenberghe and Dick

(1986) were not used.

The extension to existing Darrieus vortex models developed here is the capac-

ity to calculate the pitching motion of all the blades under the influence of the

aerodynamic forces. No previous effort to do this has been found in the literature.

2.2.3 Summary

Numerous designs of passive variable-pitch Darrieus turbines have been conceived,

but most lack rigorous theoretical grounding or experimental validation. The

most thorough existing works in the field were produced by Bayly (1981) and

Kirke (1998). These authors have produced momentum type mathematical models

to predict the performance of their own specific design of passive variable-pitch

turbine.

In order to examine the issue more generally so that different designs may be

compared and new designs tested, a model that allows for different methods of

pitch control is required. This has been produced in the current work. Each of
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these authors also commented on the need to examine the transient behaviour of

their turbines as a suspected cause of discrepancy between theoretical results and

field experimental data. For this purpose, a vortex type mathematical model has

been extended to deal with passive variable-pitch turbines.



Chapter 3

Passive Variable-Pitch Design Concepts

3.1 Introduction

Given the variety and complexity of the existing passive variable-pitch designs

reviewed in Chapter 2, it was desired to assess the relative merits of different

existing designs in a systematic manner. The common elements of existing passive

variable-pitch designs were identified as:

• Provision of a rotational ‘pitch’ degree of freedom for each blade;

• Reliance on aerodynamic forces acting on the blade to produce changes in

the blade pitch angle to reduce angle of attack;

• Provision of some regulating or moment about the pitch axis to produce pitch

response of the appropriate phase and amplitude for improved performance.

Taking this arrangement as a starting point, the desirable nature of the regulating

moment was investigated to assess which of the designs was most suitable for

achieving self-starting and if a new design concept could be produced for improved

performance.

Each blade was regarded as a rotating mass / torsion spring / damper system.

The torsion spring was regarded as completely general, providing a restoring mo-

ment on the blade whose magnitude was some function of the blade pitch angle

47
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and the turbine speed. These two quantities were chosen as they can be sensed di-

rectly and therefore passively. Speed, or more specifically the square of the speed,

is sensed as centrifugal force.

The evaluation and conceptual design process then involved three steps:

• To determine the nature of desirable pitch response and its variation with

tip speed ratio;

• To determine a suitable relationship between blade pitch, turbine speed and

restoring moment for the ‘spring’ to best approximate such a pitch response;

• To identify a design that can approximate this relationship, based on the

orientation of the blade relative to the rotor arm, the centrifugal load reacted

at the blade connection and the aerodynamic forces acting on the blade.

Certain features of Darrieus turbine operation may be identified without any

mathematical model. By the nature of the vector addition of free wind and blade

velocity, the amplitude of the oscillation in angle of attack on a fixed blade reduces

with increasing tip speed ratio. This was illustrated in Figure 1.7. At sufficiently

high tip speed ratios (TSRs) the amplitude of the oscillation is small enough

that the stall angle of the blades is never exceeded. It is at these speeds that

the standard Darrieus turbine operates. While the ability to vary pitch enables

stalling to be reduced at lower tip speed ratios, as explained in Section 1.4, at high

tip speed ratios no pitching is desirable as any pitching reduces the angle of attack

below stall so that lift is reduced. Thus the desired amplitude of pitch response

reduces with tip speed ratio until it almost is zero at design running speeds.

The magnitude of driving aerodynamic pitching moment about the pivot axis

depends on the strength of aerodynamic forces, which are proportional to the

square of the relative flow velocity. As tip speed ratio increases, the relative flow
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velocity at the blade becomes almost proportional to the rotational velocity of the

turbine. Thus the magnitude of the aerodynamic moment, which seeks to reduce

the angle of attack, is approximately proportional to the square of the turbine

speed. As was mentioned in Chapter 2, almost all the documented passive variable-

pitch turbines used some form of regulating moment to balance the aerodynamic

loads that move the blades. In order to keep the motion of the blade in phase with

the variation in angle of attack, a restoring moment, such as a torsional spring, is

applied to the blade to move it always back toward the angle at which the blades

of a standard Darrieus turbine are fixed.

Figure 3.1 illustrates a number of design concepts for passive variable-pitch

turbines. Figure 3.1(a) shows the general mass/spring/damper arrangement that

all designs were regarded as in essence.

The designs of Bayly & Kentfield (Figure 3.1(b)) and Kirke & Lazauskas (Fig-

ure 3.1(c)) employed inertial loads to play the role of the torsion spring in providing

restoring moment. By their nature, the magnitude of this restoring moment is pro-

portional to the centripetal acceleration, and so relates directly to the square of

the turbine speed. Thus the ratio of the magnitudes of the driving aerodynamic

moment and the restoring inertial moment remains relatively constant over the

entire speed range. The demonstrated potential of these two designs made the

square law relationship between restoring moment and speed the starting point

for evaluation in this study.

It was then examined whether deviations from this basic relationship might

yield improved performance. Specifically it was suspected that greater control at

high tip speed ratios was required to effectively lock the blade and prevent pitching,

without compromising starting performance.
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(a)

(b) (c)

(d) (e)

(f) (g)

SEE DETAILS
(a) TO (g)

Figure 3.1: Passive variable-pitch design concepts
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3.2 Elastomeric Pitch Control Concept

3.2.1 Origin of concept

The above reasoning led to the idea of designing an elastic type pitch regulation

whose stiffness increased with centrifugal force. The concept differs from that of

Brenneman’s elastic design, shown in Figure 3.1(d), by making the radial cen-

trifugal load be taken through the spring itself, rather than by a bearing. This is

done by removing the radial constraint on the axis of the blade, while retaining

the tangential constraint, as shown in Figure 3.1(e). The torsional stiffness of the

elastic part can then increase with the centrifugal load. The idea of designing a

mounting piece made from an appropriate elastomer and shaped to produce the

desired stiffening effect was conceived. By constraining the piece within a radial

slot, tangential loads can be transmitted to the rotor without affecting the blade

pitch. As speed increases, the elastomeric piece stretches, progressively stiffening

in the torsional sense, until it makes contact with the flat end of the slot, at which

point further pitching is prevented. This allows the turbine to function like a stan-

dard fixed-pitch Darrieus turbine at running speed. This concept is illustrated in

Figure 3.1(f).

The concept relies upon the ability to design the flexible blade mounting part

to achieve the desired relationship between radial load and torsional stiffness. Both

the material and the geometry of the part can be tailored to achieve this.

Initially a geometry with two curved members coupling the mounting pin with

the blade was envisaged. At low speed, pitching of the blade would occur primar-

ily through bending of the curved members. As speed increased and the tensile

load arising from centrifugal force increased, the curved arms would straighten.

This would mean that pitching would require stretching of the arms, rather than
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bending, which would provide greater resistance. As centrifugal force increased

further, the end of the elastomeric part would eventually make contact with the

radial end of its housing, preventing further pitching. This, conceptually, fulfills

the required trend of increasing torsional stiffness with increasing speed, and the

prevention of pitching at design running speeds.

Concurrent with this work, a finite element analysis of possible geometries

for an elastomeric blade mount was conducted at the University of New South

Wales by Azim (2001). The highly non-linear nature of the problem made the

analysis difficult, however he concluded that progressive torsional stiffening of an

elastomeric part is possible. As a result of his investigation Azim recommended

that the elastomeric mounting part have a curved end profile. This would allow a

more gradual torsional stiffening after the mounting part had stretched to make

contact with the end of its housing. Once contact is made, as centrifugal loads rise

the load taken through compression increases while the tensile load remains fairly

static. He modelled this further stiffening as arising from progressive compression

of the elastomer, resulting in a contact patch whose area increased with centrifugal

load. He states that

“The profile of the base of the mount is very critical when the

compressive forces dominate. This profile can be used to tailor the

response of the mount...”

These recommendations were incorporated into the design process for the ge-

ometries that were tested on the wind tunnel prototype turbine. These are dis-

cussed in Section 3.4.

The appeal of this design concept is the potential to tailor the pitch response of

the blades more generally than can be achieved with a purely ‘inertial’ design. The
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response of the blades and the performance of the turbine could be determined

entirely through the geometry and material of the blade mounting part. Different

geometries could be designed for different wind speed regimes in different locations.

The parts could be easily and cheaply manufactured and replaced. They also

would remove the need for rotating element or journal bearings and offer greater

simplicity than is achieved by most existing designs.

All of this however relies on the ability to arrive at a geometry and material

that produces the desired pitch response.

3.2.2 Initial geometry testing

Experimental work was conducted on an initial test geometry. A rig was con-

structed to allow loading of a blade mounting piece simultaneously in tension and

torsion.

The initial geometry chosen for testing is shown in Figure 3.2. It featured two

curved arms designed to straighten and stiffen with increasing tensile load. It had

two holes through which the blade spars were to pass. They were not symmetrical

about the centreline of the elastomeric part in order to accommodate the offset of

the blade. It was intended that the leading edge of the blade would be located

near to the centre of the elastomeric part. Two spars protruding from the end of

the blade, one of 20 mm diameter and a 10 mm dilater pin near the nose, would

transmit force and moment to the elastomeric mounting part. The blade would be

balanced so that the centre of mass lay on the centreline of the elastomeric part.

The part was made at full scale for the prototype turbine being designed and

was 15 mm thick. It was made from soft 60 durometer polyurethane, cast in

a hard polyurethane mould. The mould was made by casting about a master

copy NC milled in High Density Polyethylene (HDPE). This technique is simple
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Figure 3.2: The initial elastomeric test piece
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and inexpensive and produces parts of acceptable dimensional accuracy for this

purpose.

Masses were suspended from a crossbar attached to two pins representing the

blade. Different masses and positions on the crossbar were used to produce differ-

ent total tensile load and moment about the centre point.

The results for five tensile loads are shown in Figure 3.3. Applied moment

about the centre point is plotted against the resulting angular deflection. The

following conclusions can be drawn from the results:

• Stretching around the spar holes in the elastomeric piece caused asymmetry

in the results. The offset angle under zero moment became increasingly

negative as tensile load was increased.

• The elastomeric component was not stiff enough in tension. While torsional

stiffness was of the right order, the part stretched excessively in tension,

resulting in contact being made with the end of the housing at a load of only

58.8 N. This corresponds to a turbine speed of approximately 40 rpm, or a

tip speed ratio of approximately 0.6 in a wind of 7 m/s.

• No appreciable torsional stiffening occurred with increasing tensile load prior

to contact being made with the end of the housing. The geometry of the

part failed to deliver the progressive stiffening in tension that was intended.

Because stiffening was only evident as a result of compression in the elastomeric

part, a further set of measurements was taken with no initial clearance between

the part and the end of the housing. This was designed to examine the purely

compressive behaviour of the piece. The results are shown in Figure 3.4.

Asymmetry in the results is clearly visible. Not only does a zero offset angle

develop under zero moment with increasing compressive load, but the slope of the

moment-angle curve is different under positive and negative moments.
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There is also no significant torsional stiffening with increasing compressive load.

It seems that torsional stiffening is only available with this geometry as a status

change, from purely tensile loading to combined tensile/compressive, when the

part makes contact with the end of its housing.

These tests also made it clear that it would be difficult to achieve the low tor-

sional stiffness needed at start up with the tensile stiffness needed to delay contact

with the end of the housing until a suitably high running speed. If compressive

contact is made at too low a speed pitching is inhibited when it is still required

for self-starting to occur.

3.3 Rolling Profile Pitch Control Concept

3.3.1 Origin of concept

The results of the experimental work described in Section 3.2.2 and the finite

element analysis by Azim (2001) lead to a focus on the outer radial portion of the

mounting part and its behaviour under compression.

The conclusion that the end should be rounded rather than square, so that

pitching was not halted immediately on contact, lead to the idea of using the

exact shape of the end to dictate the pitch response. A rounded end would allow

the blade to pitch by ‘rolling’. It was realised that the curvature of the end profile

would determine the amount of pitching that was permitted, even in the absence

of any elastic constraint. As the profile tends toward a straight line, the resistance

to pitching increases.

3.3.2 Derivation of mathematical basis

Referring to Figure 3.5, consider a two dimensional body with a curved convex end

profile in the vertical plane, in rolling contact with the ground under the influence



CHAPTER 3. DESIGN CONCEPTS 58

of gravity. In the absence of external forces, the body will seek an equilibrium

position with its centre of mass, the contact point with the ground and the local

centre of curvature all lying on a vertical line. So long as the mass centre is below

the centre of curvature, the body will roll back to this position from a disturbance.

Accordingly, in order to maintain equilibrium at some other angle, an applied

moment is required. For a general profile as shown in Figure 3.5, the magnitude

d
y

θ

X

Y M
d

y

θ

X

Y

W

y

x

Figure 3.5: Rolling profile concept

of the moment M is proportional to the weight force W and the horizontal offset,

d, of the mass centre from the normal through the point of contact. The moment

M required to maintain a given angle θ (defined as the angle between the contact

point normal for M = 0 and the current contact point normal) is therefore a

function of the geometry of the profile. This profile can then be generated relative

to the mass centre to produce a desired relationship between the applied moment

and the resulting equilibrium angle. This is analogous to a torsion spring whose

stiffness characteristic may be non-linear, can be tailored precisely and need not

be symmetrical about its undisturbed position.

The method of generating the required profile for a specified moment-angle

relationship is then required. A coordinate system attached to the profile body
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with origin at the mass centre and X- and Y-axes parallel and perpendicular to the

ground surface respectively when the profile is in the neutral position is defined,

as shown in Figure 3.6. The final goal is a description of the required profile in the

Cartesian X-Y coordinates. However the profile is most simply specified in terms

of the three coordinates θ, d and y shown in Figure 3.6. θ is the disturbance angle

from the neutral position. d is the ‘horizontal’ or distance parallel with the ground

from the mass centre to the contact point. y is the ‘vertical’ or normal distance of

the origin from ground at the given disturbance angle θ. Any combination of θ, d

and y specifies a point in the plane. The profile curve is described parametrically

in terms of d and y, taking θ to be the parameter.
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Figure 3.6: Derivation of profile. The infinitesimal displacements of the point C are
shown in terms of variation in the d, y, θ coordinates.

Since for a given weight force the restoring moment at a given disturbance

angle θ is proportional to d, the chosen relationship between restoring moment

and θ, M(θ), may be treated as a relationship between d and θ. The input to the

process is then a function of the form:

d(θ) =
M(θ)

W
(3.1)
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It then remains to find the appropriate variation of y with θ to make the profile

smooth and continuous, with the tangent at any angle θ to the X-axis meeting the

curve at the required distance d from the origin. Referring to Figure 3.6, consider

a coordinate system p-q at the X-Y origin, rotated so that the angle between the

X-axis and the p-axis is θc. The required contact point for the angle θc is at

p = d(θc), q = y(θc) and the tangent to the curve must be parallel with the p-axis.

This is achieved by satisfying:

∂q

∂θ

∣∣∣∣
θc

= 0 (3.2)

From Figure 3.6 it is seen that

δq = δy − δθd (3.3)

Dividing Equation (3.3) by δθ to produce a differential equation, the required

function for y is seen to be:

∂y

∂θ
=

∂θ

∂θ
d

or

∂y

∂θ
= d(θ) =

M(θ)

W
(3.4)

The required profile is thus defined by a simple differential equation. There is

a family of parallel curves that satisfy the equation for any given function M(θ).

A specific profile is determined by the choosing a value of y0 = y(0).

If the moment-angle function M(θ) is analytic and integrable, then the profile

may be found analytically, else it may be generated numerically. Once the function

y(θ) is found and y0 chosen, the Cartesian coordinates of the profile may be easily
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extracted:

X(θ) = d(θ) cos θ + y(θ) sin θ (3.5)

Y (θ) = d(θ) sin θ − y(θ) cos θ (3.6)

3.3.3 Application of concept to wind turbines

This concept is employed to govern the motion of the blades of the turbine. This is

illustrated in Figure 3.1(g). The design utilises a profile attached to each blade that

rolls on a flat vertical surface that is part of the rotor. This surface is tangential

to the circular path of its midpoint. The blade assembly is free to move in a

fashion determined by the rolling contact of the profile on the flat surface. Were

θθ

(a) (b)

Figure 3.7: Comparison between rolling profile (a) and pendulum (b) concepts

the turbine to be spinning in a vacuum at constant speed, the blade would orient

itself so that the centre of mass of the blade assembly lay on the radial line through

the point of contact of the profile. Here centrifugal ‘force’ replaces gravity in the
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original example. The shape and position of the rolling profile can be adjusted so

that the blade assembly adopts the desired neutral orientation.

It may be noted that for application to the vertical axis turbine, the surface on

which the profile rolls should ideally follow a circular arc with centre of curvature

at the turbine axis, rather than being flat. However the small size of the arc

subtended by the landing makes the difference negligible.

The restoring moment is a function of the separation between inertial force

resultant and the reaction force. For a simple circular profile at constant rotational

speed this separation is a function of sin θ, as it is for the pendulum design, as

shown in Figure 3.7. Instead of the mass centre moving relative to the pivot axis in

a circular arc as it does for the pendulum, with the rolling profile it is the contact

point that does most of the moving. For a circular profile the mass centre’s path

relative to the rotor is a cycloid. The mass centre need not be located on the

circumference of the profile itself. It is the distance from the centre of curvature

to the mass centre that determines the restoring moment. The locus of the mass

centre is then a general trochoid, whose form is determined by the value of y0 (see

Figure 3.8).

While the relationship between d and θ, and therefore the restoring moment

under static conditions, is unaffected by the value of y0, the dynamic response of the

profile body is significantly affected. For the pendulum type design (Figure 3.7(b)),

the mass centre is constrained to move in a circular arc centred on the pivot axis.

This case is equivalent to the limit of the circular rolling profile with the offset

y0 equal to the negative of the mass centre radius, giving a rolling radius of zero.

This is then an ideal pin joint. Pitching of the blade in this case involves a

significant ‘horizontal’, or on the turbine, tangential, motion of the centre of mass.
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Figure 3.8: Variation with offset y0 of the locus of the centre of gravity (C.G.) of the
profile relative to the rotor. The C.G. is at unit radius. The general form of the loci for
a circular profile is the trochoid, with the special case for y0 = 0 being the well-known
cycloid. The locus for the pendulum is that corresponding to y0 = −1, which gives zero
rolling radius, or a pin joint. All loci are for the disturbance angle range ±40◦.
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The inertial effect of this motion is reflected in the polar mass moment of inertia

relative to the pivot axis, which increases with the square of the offset of the mass

centre. The corresponding circular rolling profile offering the same static restoring

moment, but with offset y0 = 0, is able to greatly reduce the tangential travel of

the mass centre. Note however that the radial travel is the same.

The tangential component of aerodynamic force on the blade is transmitted

principally through friction between the cam and the flat surface on which it rolls.

The radial centrifugal force on the blade is several orders of magnitude greater

than the tangential aerodynamic force at running speeds, so a large coefficient of

friction should not be required.

It is possible however to constrain the profile tangentially using its housing

within the end of the rotor arm. The profile may be made to roll on a flat ‘landing’

on a radial post, as shown in Figure 3.9(b). If the width of the landing is made

equal to the arc length of the profile over the chosen angular range, then the

edges of the landing may be used to constrain the profile radially. As shown in

Figure 3.9(a), the ends of the landing trace out on the profile body involutes to

the profile curve. If the profile part is designed with extensions following these

involutes, its tangential position is always constrained for no-slip rolling contact.

There must be slip between the edges of the landing and the profile part, so the

edges must be slightly rounded to accommodate this.

Alternatively, or in addition, the tangential constraints may be provided on the

outer surfaces by making them offset a constant distance from the inner involutes.

This means the profile part is able to be constrained between the parallel sides of

the housing, against which it has to slide as pitching occurs. A careful choice of

materials is required to allow such sliding without excessive friction and wear.
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The radial location of the part may also be constrained using the housing. This

may be necessary at start up where there is no centrifugal load to keep the rolling

profile on the landing. Care must be taken with the design of the geometry to

ensure that jamming does not occur.

It is also possible to combine the rolling profile concept with the elastomeric

concept. At start up there is little or no centrifugal force to provide restoring

moment and performance may be improved by providing some elastic restoring

moment. If this is of a constant stiffness and does not increase with centrifugal

load, then at running speeds it will be insignificant compared to the centrifugal

based moment.

The profile material may be a hard elastomer, such as the polyurethane used

in the prototype, or perhaps steel or other metal, depending on the wearing and

friction properties.

The possibility of incorporating an overspeed protection feature into the design

remains. Some flexibility, either in the rolling part itself or its attachment to the

blade would allow the blade to flare outwards at high speed, producing extra drag

to slow the turbine.

3.3.4 Potential advantages

Reduced mass moment of inertia

Compared with other inertial type pitch systems, the rolling profile concept has the

potential to allow a reduced mass moment of inertia of the balanced blade about

its centre of mass. This is advantageous because it improves the ability of the

blade to respond quickly to aerodynamic forces. This reduction can be estimated

by representing the blade assembly as a combination of the unbalanced blade and

the counterweight, each of which has a known mass and moment of inertia (see
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CIRCULAR ROLLING
PROFILE FORMS
BASE CIRCLE
FOR INVOLUTES

INVOLUTE
CURVES

CONSTANT
OFFSET

(a) Generation of profile involute curves

DETAIL

BLADE

(b) Constraint of the rolling profile component (that is attached to the blade)
using involute curves. The housing shown is within the end of the rotor arm.

Figure 3.9: Use of involute curves to provide tangential constraint for a circular rolling
profile
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Figure 3.10). The total mass moment of inertia about the pivot point is given by

cwm
cwI

bladeIbladem

cg bladex

acR

cgRpivot

A.C.

counterweight

Figure 3.10: Calculation of the blade assembly moment of inertia

Equation 3.7.

I = Iblade + Icw +
mtotal

mcw

(mblade(Rac − 0.25c + xcgblade)
2 + mtotalR

2
cg) (3.7)

where xcgblade is the distance from the leading edge to the centre of gravity of the

unbalanced blade.

For the pendulum design of Kentfield and Sicard, the moment of inertia that

determines the pitching dynamic response is that about the pivot axis, found by

the translation of axes theorem. For the rolling profile, the relevant moment of

inertia is that about the contact point (this is discussed in detail in Appendix A).

The inertia therefore changes slightly with the pitch angle and is a minimum when

pitch is zero.

This means that for a circular rolling profile that produces the same restoring

moment as a pendulum under static conditions, the inertia of the blade may be

reduced because the counterweight is on the chord line, not offset from it. This

allows the blade to respond more quickly to driving aerodynamic loads.
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Figure 3.11: Comparison between the aerodynamic and inertial torque variation over a
one blade’s revolution for three different passive variable-pitch systems: spring, pendu-
lum and rolling profile. All three have the same relationship between pitch angle and
static restoring moment. Ta is the aerodynamic contribution to turbine torque. Ti is
the inertial contribution due to the pitching blade, or due to the torsion spring.

Figure 3.11 shows the predicted torque variation for a blade for three different

pitch control systems: a purely elastic, or torsion spring design; a pendulum type

inertial design; and a rolling profile inertial design. All three are arranged so that

the offset between the aerodynamic centre and the nominal pitching axis is the

same, as is the restoring moment for a given pitch angle under static conditions.

The polar moment of inertia of the balanced blade about the pitch axis in each

case was calculated from the mass and moment of inertia of the blade and the

counterweight. In this case the moment of inertia of the spring and rolling profile

blades about the centre of mass is 3.17 kgm2, while for the pendulum design, the

fact that the counterweight is offset from the chord line means that the moment

of inertia is higher: 3.77 kgm2.
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The predicted pitch responses at this tip speed ratio are almost identical for

the spring and rolling profile turbines. The response is slightly different for the

pendulum design due to its higher moment of inertia. The aerodynamic contribu-

tions to the torque are therefore similar. For a turbine of this solidity at this tip

speed ratio, virtually all of the torque is generated between azimuth angles of -90◦

and 90◦, in the upwind pass of the blade.

The sinusoidal variation in the non-aerodynamic torque component reflects

the sinusoidal pitch response. The amplitude of this torque component is largest

for the pendulum design. In the case of the elastic system, the torsion spring

that provides the restoring moment exerts a reaction torque on the rotor that is

proportional to the pitch angle. The amplitude of this reaction is smaller than the

inertial reaction of the pendulum blade because the mass centre is not offset from

the pivot axis.

The predicted inertial reaction for the rolling profile system is lower than for

the pendulum design in this case. Its amplitude is slightly higher than is predicted

for the spring case. Here the offset y0 has been set to zero so that the centre of

mass lies on the circular rolling profile. Because the point of rolling contact rather

than the centre of mass does most of the movement, the reaction forces are much

lower. If some positive y0 value were used, the inertial reaction amplitude would

increase. The kinematics of the rolling profile concept are described in more detail

in Appendix A.

Customisation of profile

The application of the rolling profile concept to the wind turbine also allows the

response of the blades at different wind and rotational speeds to be tailored by the
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Figure 3.12: Example of predicted ability to tailor the rolling profile to produce different
effective stiffness at high and low tip speed ratios



CHAPTER 3. DESIGN CONCEPTS 71

design of the profile. The stiffness may be made asymmetrical about the neutral

position as it may be in Kirke’s stabiliser mass design.

In addition there is the possibility of designing the profile to alter the response

at different tip speed ratios. For example, if the region surrounding the ‘nose’ of the

profile is flattened slightly, then the effective stiffness is increased over the range

of a few degrees either side of the neutral position. This change can significantly

affect the response of the blade at high tip speed ratios where the blade pitch

amplitude is small, but has much less effect on the motion of the blade at slow

speeds where the amplitude is large.

The performance predicted by the momentum theory mathematical model de-

scribed in Chapter 5 for such a profile is shown in Figure 3.12(a). The predicted

performance is shown for two rolling profiles which produce under static conditions

a linear relationship between restoring moment and pitch angle. The ‘stiffest’ of

these, labelled “Profile 100”, produces a offset of d = 100 mm x θ. This profile is

predicted to achieve the best peak efficiency at high tip speed ratios. This profile

produces a pitch response whose amplitude diminishes rapidly with tip speed ratio,

shown in Figure 3.12(b). The ‘softest’ profile, Profile 45, gives a greater amplitude

at all tip speed ratios, resulting in improved intermediate speed performance, but

significantly diminished peak performance.

The predicted performance for a profile that does not produce a simple linear

relationship between restoring moment and pitch angle, but instead is ‘stiffer’ over

the range of a few degrees either side of zero, is shown as “Blend 100-45”. The

blend profile is predicted to produce the best of the stiffest and softest linear

profiles, combining the good intermediate TSR performance of Profile 45 with the

good high TSR peak performance of Profile 100. The predicted pitch amplitude
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for this profile is shown in Figure 3.12(b). The amplitude moves from being close

to that for Profile 45 at intermediate TSRs to being almost equal to that for Profile

100 at high TSRs.

The d − θ relationship of the blend profile is shown in Figure 3.13(a), along

side those of the two linear profiles. A relationship of the form

d =
(K1 −K2)θ

(K3θ)2 + 1
+ K2θ (3.8)

was used to blend between two linear relationships, where K1 is the steeper slope,

here 100 mm/rad, and K2 is the lesser slope, 45 mm/rad. K3 is a factor that

controls the rate at which the blend between the two slopes occurs. Here K3 was

chosen by trial and error to be 40. This gives only a very small region either side of

the zero pitch angle in which the slope is close to 100 mm/rad, before it diverges to

asymptote towards the 45 mm/rad line. The form of this relationship was chosen

because it is twice analytically integrable, allowing the equation of motion to be

calculated.

The Cartesian coordinates of the profile can also be calculated analytically. The

profiles for the two linear relationships and the blend are shown in Figure 3.13(b).

This shows that the difference between the blend profile and the 45 linear profile

is very small, only a fraction of millimetre. The magnitude of the difference in the

performance predicted for such a small difference in the profiles is very surprising.

It remains to be seen whether in reality performance is as sensitive to profile

geometry as is predicted. It is possible that in practice, deformation of the profile

around the contact point and any wear of the profile would have a significant

impact on the blade pitch response. Some discussion on this point is given in

Chapter 10.
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3.4 Experimental Work

Three new geometries were designed on the basis of the initial experimental re-

sults, the recommendations of Azim (2001) and the rolling profile design concept

described above. They are shown in Figure 3.14.

The first was designed along the same lines as the initial geometry and manu-

factured in the same grade of 60 durometer polyurethane, but modified to rectify

some of the shortcomings observed.

• The blade design was modified so that equal-sized spars that were sym-

metrical about the centre of mass were used. This allowed the elastomeric

mounting part to be made symmetrical about its centreline, eliminating the

problems of asymmetry noted earlier. This required significant modification

to blade design. An endplate was added that allowed the forward spar to be

placed outside the blade section profile.

• The two curved arms of the original design were replaced with a single stem

at the centreline. This produced a lower sectional moment of inertia and so

lower bending stiffness for the same cross sectional area. This was an attempt

to minimise the torsional stiffness while maximising the tensile stiffness.

• The end of the part was made curved instead of flat. This was designed to

produce a more gradual stiffening once end contact did occur, by providing

a contact patch that grew as the compressive load increased.

This geometry is hereafter referred to as ‘Type A’. It is shown in place on the

turbine in Figure 3.15 and in the test rig in Figure 3.16.

The other two geometries were based on a combination of the elastomeric and

rolling profile concepts described above in Sections 3.2 and 3.3. They were made

from a harder grade of polyurethane, of 90 durometer hardness, than the Type A
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TYPE A

TYPE B

TYPE C

Figure 3.14: The three second-generation blade mounting part geometries.
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Figure 3.15: Pro/ENGINEER representation of the Type A geometry component in
place on the prototype turbine.

part. Both feature a thin flexible ‘stem’ to provide elastic resistance to pitching.

Each also has a rounded ‘nose’ part designed to provide further restoring moment

through centrifugal force by rolling on a flat surface, as described in Section 3.3.

They were designed to test the rolling profile concept.

For simplicity, each had a circular profile with an offset between the location of

the centre of mass of the blade assembly and the centre of curvature of the profile

of 7 mm. This value was chosen on the basis of mathematical modelling. The

geometry labelled ‘Type B’ had a y0 value of 13 mm, giving a radius of curvature

of 20 mm for the profile. The ‘Type C’ part had y0 = 0, for a radius of curvature of

7 mm. Each part should, according to the theory, provide the same static restoring

moment for a given pitch angle, but the different y0 values should produce different

dynamic results.
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Each was designed with a special mating part that was fastened to the end of

the housing to provide the landing on which the profile rolled. These parts were

manufactured in 95 durometer polyurethane.

Figure 3.16: Test rig for elastomeric blade mounting pieces

A new test rig was designed to allow greater ‘radial’ loads to be applied to the

parts (see Figure 3.16). This was achieved by a lever arrangement that magnified

the applied weight force by a factor of five.

For each of the tested geometries, the deflection angles resulting from different

applied moments were measured over a range of ‘radial’ loads. It was found that

the moment-angle relationship in each case was fairly linear. The slope of the

relationship, representing the linearised torsional stiffness, was estimated through

regression for each geometry, at each ‘radial’ load. The results are shown in Fig-

ure 3.17.

Some scatter is evident in the results arising from friction between the polyurethane

parts and the housing. This allowed the part to occasionally ‘stick’ at angles that

were not the true frictionless equilibrium. This was not considered to be a sig-

nificant problem as the vibration of the turbine in operation would reduce the

tendency to stick.
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Figure 3.17: Results of testing of Type A, B and C geometries. The dashed line represents
the theoretical linearised stiffness for the rolling profile alone.

It is clear that the Type A part is significantly stiffer in torsion that the other

two parts. This time contact with the end of the housing was delayed until an

applied radial load of approximately 125 N, but again the difficulty of decoupling

this stiffness from the torsional stiffness is highlighted.

For reference the theoretical linearised stiffness for the rolling profile alone

is plotted. It can be seen from Figure 3.17 that the slopes of the stiffness-load

curves is approximately equal to that of the theoretical rolling profile, but that

they are offset by different amounts. This is in keeping with the additional elastic

constraint, which effectively adds a constant stiffness that is independent of radial

load. The slightly higher stiffness of the Type C geometry reflects its slightly

shorter flexible ‘stem’.

Both Types B and C exhibit a departure from the basically linear range at

loads above approximately 750 N, where the stiffness begins to increase more
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rapidly. The reason for this additional stiffening is not known, but it may be due

to compression of both parts at the rolling contact. This will be discussed further

in Section 10.4.4.

3.5 Conclusion

Two distinct design concepts were conceived to allow the blade pitch response to

be tailored on the basis of theoretical results. Each of these concepts differs from

existing designs in the degree of control they offer over the relationship between

blade restoring moment and centrifugal load.



Chapter 4

Development of a Pro/MECHANICA model of a passive

variable-pitch turbine

4.1 Introduction

Preliminary investigation of passive variable-pitch turbine performance and dy-

namics was conducted using the commercial motion simulation software package

Pro/MECHANICA, produced by Parametric Technology Corporation - website

http://www.ptc.com. The package is used within the School of Mechanical and

Manufacturing Engineering at UNSW in the Pro/ENGINEER integrated mode.

Pro/MECHANICA is able to simulate the motion of the turbine rotor and

blades over time as a multi-degree-of-freedom mechanism under the influence of

prescribed loads. It was used to investigate the general performance of the pen-

dulum type inertial design and to gain insight into the dynamics of this type of

turbine.

4.2 Pro/MECHANICA Model

Parts are created and assembled in Pro/ENGINEER, then converted to a mecha-

nism with the desired degrees of freedom within Pro/MECHANICA.

The model created in Pro/ENGINEER and used in Pro/MECHANICA is

shown in Figure 4.1. It was designed to represent the essential features of the

turbine and the manner in which they are connected.

80

http://www.ptc.com
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Figure 4.1: Pro/MECHANICA model of the pendulum type inertial turbine
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In the initial version of the model, the rotor body was connected to the base

via a “pin joint”, giving it one rotational degree of freedom. The base is fixed

as “ground”. Each of the three blades is connected to the rotor by a pin joint,

making the mechanism planar.

Each blade consists of two discs whose diameter and thickness can be adjusted

to achieve any combination of mass and polar moment of inertia. The aerofoil-

shaped features are massless surfaces and are purely cosmetic. One disc represents

the mass of an unbalanced blade, centred at the aerodynamic centre of the aerofoil

profile. As before, the distance between the aerodynamic centre and the pin joint

axis is termed Rac. The position of the other disc is adjusted so that the combined

centre of mass lies on a line perpendicular to the blade chord line passing through

the pivot axis. The offset of the centre of mass from the pivot axis is labelled Rcg.

This arrangement causes the blade to seek a zero pitch angle under the action of

centrifugal force.

This double disc model was designed to reflect the fact that blade mass and

polar moment of inertia are constrained by structural design considerations, and

so the parameters Rac and Rcg cannot be adjusted independently.

Later the model was given two additional degrees of freedom of horizontal

translation of the rotor hub. This freedom was designed to represent the flexibility

of the turbine tower, so that the potential significance of this motion on the blade

pitch response may be investigated.

4.2.1 Aerodynamic load simulation

While Pro/MECHANICA is well suited to investigation of the dynamics of the

turbine mechanism, it is not designed to simulate aerodynamic loads. The aero-

dynamic forces experienced by each of the blades were approximated using a
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combination of the standard loads available in Pro/MECHANICA based on two-

dimensional blade element theory.

Pro/MECHANICA allows the user to create a set of “measures”, which are

either kinematic variables such as joint axis positions or velocities, or are values

calculated from these via user-entered expressions. The values of measures are

computed at each time step and can be used to control the magnitudes of loads

applied to the mechanism.

For this analysis, measures were created to compute the magnitude and direc-

tion of the apparent wind on each blade at each time step, based on the blade’s

own velocity and the free wind velocity. The angle of attack, which takes into

account the blade’s instantaneous pitch angle, is then used to find the value of

measures for lift, drag and pitching moment coefficients from a lookup table of

values published for the NACA 0018 profile (Lazauskas, 2002).

Further measures are computed for the magnitude of lift and drag forces on

each blade, based on the relative wind speed. It is not possible to adjust the

direction of a force in Pro/MECHANICA during a run. Therefore the variable

direction of the lift and drag forces on each blade was simulated using a set of

four fixed force components. These forces are fixed in direction relative to the

World Coordinate System (ground) and together can simulate any direction and

magnitude of resultant force. They are applied to the aerodynamic centre of each

blade, assumed to be fixed at the quarter chord. The key measures defined for

each blade are shown in Table 4.1.

In this simplified analysis no account is taken of any reduction in wind ve-

locity due to the force transmitted to the flow by the blades (so no energy is

extracted from the air), nor for the effects of dynamic stall, flow curvature, finite
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Measure Definition

U Free wind velocity
Set manually prior to run

theta Rotor azimuth angle.
= Joint Axis Measure

azimuth Theta normalised to 0 to 2π.
= mod(theta + blade.theta0, 2π)

pivot Blade pitch angle.
= Joint Axis Measure

blade.theta0 Azimuth angle offset from
the reference blade for this blade.
Set manually

V Speed of the blade.
= if(omega<1e-5, 0, omega x radius)

Wx X component of the relative wind at the blade.
= -V cos(azimuth)

Wy Y component of the relative wind at the blade.
= V sin(azimuth) - U

W Magnitude of relative wind.
= sqrt(Wx2 + Wy2)

zp.alpha Angle of attack on zero pitch blade.
= if(W <1e-5, 0,
if(V <1e-5, -π/2− azimuth,
if(mod(azimuth, π) == π/2,
if(V < U && mod(azimuth, 2π) == π/2, -π, 0),
if(cos(azimuth)< 0, acos((W 2 + V 2 − U2)/(2WV )),
-acos((W 2 + V 2 − U2)/(2WV )))))

alpha Actual angle of attack.
= zp.alpha - pivot

AoA alpha normalised to 0◦ to 360◦.
= (alpha - 2π floor(alpha/(2π)) x 180/π

Cl Lift coefficient.
= Look-up table, input AoA

Cd Drag coefficient.
= Look-up table, input AoA

Dx Drag force due to Wx
= 0.5 rho chord span Wx W Cd

Lx Lift force due to Wx
= 0.5 rho chord span Wx W Cl

Dy Drag force due to Wy
= 0.5 rho chord span Wy W Cd

Ly Lift force due to Wy
= 0.5 rho chord span Wy W Cl

Table 4.1: Key Pro/MECHANICA measures. Relevant measures are duplicated for each
blade.
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aspect ratio, wind shear or parasitic drag. These simplifications were considered

justifiable because the aim of the exercise was to investigate the dynamics of the

turbine rather than assess its efficiency. The assumption of constant wind veloc-

ity is significant not so much because of the consequent overestimation of average

output torque (this could be corrected), but because of the variation in wind ve-

locity both across the width of the turbine and between upwind and downwind

passes that is neglected. This variation significantly effects the pitch cycle when

the turbine is heavily loaded and the wind is greatly decelerated. Therefore the

Pro/MECHANICA simulations were confined to low tip speed ratios and corre-

spondingly small loads, where deceleration of the flow is minimal.

The turbine speed was chosen to give a relatively low tip speed ratio of 1.3 at

a wind speed of 6 m/s. This speed is also in the operating region of interest for a

study of self-starting ability.

4.3 Summary

A simplified model of a pendulum type inertial passive variable-pitch turbine was

created in Pro/MECHANICA. The model may be used to study the dynamics of

this type of turbine under the influence of simplified aerodynamic loads. As no

account of flow deceleration is made, the model is not useful for predicting the

operating output of the turbine, except at very low speeds. This model was used

to conduct initial investigations of the relationships between key design parameters

and blade pitch response. Results of its use are presented in Chapter 7.



Chapter 5

Development of a Momentum Theory Mathematical Model

for Passive Variable-Pitch Darrieus Turbines

5.0.1 Background of momentum models

The development of momentum theory models for VAWTs has been discussed

in Section 2.2.1. The model produced here was based on the Double Multiple

Streamtube method set out by Sharpe (1990).

Momentum theory (or more specifically Blade Element/Momentum (BEM)

theory) is based on obtaining two expressions for the streamwise force on the

rotor. The force is given by the rate of change of momentum of the flow, which is

equal to the overall change in velocity times the mass flow rate. The force is also

equal to the average pressure difference across the rotor. Bernoulli’s equation is

applied separately to the flow upstream and downstream of the rotor, assuming

energy is lost from the flow only at the rotor. These two equations produce the

well-known result that the overall flow velocity change is twice the velocity change

that has occurred by the time the flow passes the rotor.

Expressed in terms of the widely used ‘flow induction factor’ a, if the flow

velocity at the rotor U is defined as

U = U∞(1− a) (5.1)

86
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where U∞ is the free stream velocity, then the final flow velocity in the far wake

Uw is:

Uw = U∞(1− 2a) (5.2)

This result relates the streamwise force on the rotor to the flow velocity at the

rotor.

A second expression relating these quantities is obtained using blade-element

theory. The flow velocity at the blade is used to calculate the angle of attack and

the known aerodynamic properties of the blade section are used to calculate the

resulting streamwise force. Simultaneous solution of these two equations allows

the calculation of the blade loads and the flow velocity given the blade speed and

orientation. This is done using an iterative procedure.

In order to accommodate the variation in velocity across the rotor, the width

is divided into a number of independent streamtubes, for each of which the mo-

mentum balance is carried out separately.

The Double Multiple Streamtube version developed by Paraschivoiu (1981)

models the turbine’s interaction with the wind in the upwind and downwind passes

of the blades separately. The assumption is made that the wake from the upwind

pass is fully expanded and the ultimate wake velocity has been reached before the

interaction with the blades in the downwind pass. The downwind blades therefore

see a reduced ‘free-stream’ velocity. This approach more accurately represents the

variation in flow through the turbine.

5.0.2 Present extension

In the present work, the two-dimensional Double Multiple Streamtube model for

Darrieus turbines has been extended to incorporate the prediction of blade pitch
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response for a passive variable-pitch turbine. While similar work has been con-

ducted by Bayly and Kentfield (1981) and Kirke and Lazauskas (1993), their work

was limited in application to the specific design conceived by the respective au-

thors. In order to evaluate particular designs and also to examine passive pitch

systems more generally (so that different and new designs may be compared), a

model that allowed for different methods of pitch control was required.

Accordingly the present model is able to deal with 5 different types of pitch

control:

• General elastic pitch control, in which the blade is free to pivot about a

specified point on the chord line, is balanced so that the centre of mass lies

on the pivot axis and pitch is controlled by a torsion spring whose stiffness

is a function of the turbine speed.

• ‘Pendulum’ type inertial pitch control, as designed by Sicard (1977), Kent-

field (1978) and Brenneman (1983).

• ‘Stabiliser mass’ type inertial pitch control, based on the principle of the

designs of Liljegren (1984) and Kirke and Lazauskas (1987).

• ‘Rolling profile’ type inertial pitch control, as described in Section 3.3

• ‘Cycloturbine’ type cam-driven preset pitch schedule, for comparison pur-

poses. This includes fixed-pitch standard Darrieus turbines.

Any combination of the above passive pitch control types can be handled, for

example a pendulum type inertial system can be supplemented with some elastic

pitch control. The kinematics of these designs is discussed in Appendix A.

5.0.3 Basis of the mathematical model

In the Double Multiple Streamtube model for the Darrieus turbine, the flow

through the rotor is divided into a number of independent streamtubes. In this
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case the orbit of the single representative blade is divided into discrete ‘nodes’, sep-

arated by a constant angular distance labelled ∆φ. The pitch angle of the blade

and the forces on it are calculated at each of these nodes. The nodes are also

used as the boundaries of the streamtubes. This is illustrated in Figure 5.1. The

φ

U0 U U2 U U41 3

Figure 5.1: Illustration of the Double Multiple Streamtube concept. The flow through
the rotor is divided into multiple independent streamtubes. The final wake velocity of
the upwind half streamtube is taken to be the initial upwind velocity for the downwind
half. The boundaries of the streamtubes lie on the equispaced nodes which discretise
the orbit of the representative blade.

angle step between nodes is chosen to divide the revolution into an even number

of nodes. For each node in the upwind half of the orbit there is a corresponding

node directly downstream of it in the downwind half. Each streamtube may then

be divided into a ‘double streamtube’, with the outlet velocity from the upwind

half being the inlet velocity for the downwind half.
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For a standard Darrieus turbine, the blade orientation within each streamtube

is a function only of the azimuth angle. For a variable-pitch Darrieus turbine

however, the additional degree of freedom means that the angle of attack for the

segment cannot immediately be calculated and used for the iteration procedure

described above. Instead, the blade pitch is affected by the aerodynamic forces

on the blade, and the calculation of its position must be incorporated into the

iteration. The process used is shown in Figure 5.2.

The motion of the blade and the forces on it are tracked around the orbit

starting from the point at which the blade is advancing directly into the wind, at

azimuth φ = −90◦. Each node is then handled in sequence, so that the upwind

half of the orbit is completed and the outlet velocities are calculated and available

to be used as the inlet velocities for the downwind half.

At each node, the velocity experienced by the blade there is taken to be that

for the streamtube it is about to cross. An initial flow induction factor is assumed

for the streamtube, usually zero, and the resulting forces on the blade calculated

based on its current orientation.

Blade force is calculated using blade-element theory. The blade is treated as

a two dimensional aerofoil profile and published lift, drag and pitching moment

coefficients for the section are used to calculate aerodynamic forces and moments

based on the angle of attack, relative flow velocity and blade Reynolds number.

The coefficients for the NACA 0018 section used here are the data of Sheldahl and

Klimas (1981), corrected by Lazauskas (2002). They provide data for the full 360◦

range of angle of attack at Reynolds numbers from 40,000 to 500,000.

Unsteady aerodynamics, including dynamic stall, greatly affect the perfor-

mance of Darrieus turbines, especially at the low tip speed ratios that are the
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Calculate the pitching moment on the blade for the induced wind 

Assume a value of the flow induction factor,

speed found from a

a

Calculate instantaneous aerodynamic loads and the resulting change
in pitch and pitch velocity over time interval t∆

Use the average pitch angle for the streamtube to calculate the 
streamwise force from blade element theory, Fbe

Compare Fbe with the force Fm calculated by momentum theory using 
the current value of the flow induction factor

Calculate an updated value of the flow induction factor, 

Is the change in less

an+1from the 
difference between Fm and Fbe , to use for next iteration

a

a
than ?acritical

Accept current value of as correct for the streamtube

NO

YES

Figure 5.2: Iterative procedure used to calculate the flow velocity and blade motion
within a streamtube
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focus of the present work. Detailed discussion of the treatment of unsteady aero-

dynamics, for both the momentum and vortex models, is given in Section 5.1.

Once the aerodynamic loads have been calculated, the instantaneous pitching

acceleration resulting from aerodynamic forces, any elastic forces and inertial forces

is then calculated. The pitching acceleration depends on the kinematics of the

particular variable-pitch design. Kinematics are treated in detail in Appendix A.

For example, the instantaneous pitching acceleration for a blade of the ‘pen-

dulum’ inertial type of Sicard (1977) and Kentfield (1978) is given by:

θ̈ =

∑
M −Rcg sin θmR φ̇2 − {(Icg + mR 2

cg) + mRcgR cos θ} φ̈

Icg + mR 2
cg

(5.3)

where
∑

M is the total aerodynamic and elastic moment acting on the blade;

Rcg is the offset of the centre of gravity from the pivot axis; R is the turbine

radius; θ is the current pitch angle and φ̇ is the turbine speed. I is the polar

mass moment of inertia of the blade assembly about the centre of gravity and m is

the blade assembly mass. Note that for the assumption of constant turbine speed

made for the momentum model, the term in the numerator proportional to turbine

acceleration φ̈ vanishes.

A fourth-order Runge-Kutta numerical integration scheme (de Vahl Davis,

1991) is used to predict the pitch and pitching velocity for the blade at the next

node, on the other side of the streamtube. The blade orientation at the midpoint

of the streamtube is then estimated using the mean of the initial and final pitch

angles (i.e. constant pitching velocity across the streamtube is assumed). The

angle of attack based on this pitch angle at the midpoint is then used to calculate

the blade element aerodynamic force for the streamtube. The difference between
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blade element force and the momentum derived force for the assumed flow in-

duction factor is then calculated and used to generate a new estimate of the flow

induction factor. Here Newton’s method (de Vahl Davis, 1991) is used to find the

zero crossing of the function that is the difference between momentum and blade

element estimates of streamwise force. The independent variable is the flow in-

duction factor a. The process is repeated until the change in flow induction factor

between iterations is acceptably small.

Once the flow induction factor iterations have converged and the blade pitch

and velocity at the next node have been predicted, the forces on the blade at the

current node are finalised and stored.

This process is repeated for each node until the entire revolution has been

completed. Since the whole procedure began with an arbitrarily assumed pitch

and pitching velocity (usually both zero), calculation must continue for several

revolutions until a steady-state pitching pattern has been established. Equilibrium

is checked by comparing the initial and final pitch angles and velocities, as well as

the integrated torque for the revolution.

5.1 Unsteady Aerodynamics including Dynamic Stall

5.1.1 Introduction

Unlike the blades of a horizontal axis turbine, VAWT blades experience a con-

stantly changing angle of attack and flow velocity even under steady operating

conditions. While the static aerodynamic properties of the aerofoil sections typ-

ically employed for the blades are well documented, prediction of loads under

dynamic conditions remains difficult.
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The difference between static and dynamic loads is dependent on the rate of

change of the angle of attack and is significant for Darrieus turbine operation. Noll

and Ham (1982) state that maximum aerodynamic loads may be as much as three

times greater under dynamic conditions than under static conditions, while the

peak pitching moment may be up to five times greater.

Many authors (Klimas, 1982; Noll and Ham, 1982; Paraschivoiu and Allet,

1988; Jiang et al., 1991) emphasise the importance of accounting for unsteady

aerodynamic loads from the perspective of structural design, fatigue life and drive-

chain and generator sizing. The effect on overall turbine performance may also

be significant. In general, the increased peak loads and delayed stall that are

associated with dynamic conditions lead to an improvement in performance over

that predicted using only static characteristics. Paraschivoiu and Allet state that:

“[The effects of dynamic stall] can be seen in particular on the

power performance curves, which exceed the steady-flow prediction for

tip speed ratios of less than four. The ability to predict dynamic stall

is therefore of crucial importance for optimising the Darrieus wind

turbine.”

Thus unsteady aerodynamics and specifically dynamic stall are important to

the study of the low tip speed ratio performance of Darrieus turbines. While a

passive variable-pitch turbine is designed to reduce the incidence of stalling at

intermediate tip speed ratios, stall is inevitable at start-up and the timing and

magnitude of the associated aerodynamic loads and moments can have a significant

impact on the blade pitch history for the entire revolution. The average torque

and not just the peak load is therefore sensitive to stall behaviour. Consequently



CHAPTER 5. MOMENTUM THEORY MODEL 95

it is vital that unsteady aerodynamics be incorporated in any mathematical model

of a passive variable-pitch turbine.

The following section covers the basic features of unsteady turbine blade aero-

dynamics and the available methods of quantifying their effect on turbine perfor-

mance.

5.1.2 Attached flow unsteady aerodynamics

Unsteady aerodynamic forces may be divided into circulatory and non-circulatory

components.

Circulatory unsteady effects

Unsteady circulatory effects for attached flow are:

• the change in circulation about the aerofoil due to the influence of vorticity

in the wake;

• the change in circulation about the aerofoil due to the motion of the foil.

The latter effect is commonly included by calculating the circulation based on

the angle of incidence at the 3/4 chord location, rather than the quarter chord lo-

cation. Since the blade is rotating about the turbine axis and possibly also about

its own pivot axis, the angle of incidence varies along the chord line. Fung (1955)

presents a quasi-steady analysis of lift and drag for use in aeroelastic analysis,

using classical thin aerofoil theory, where the influence of unsteady wake vorticity

is neglected. He shows that for an aerofoil that is both pitching and plunging, the

lift is proportional to the angle of attack at the 3/4-chord position. He presents

a further analysis for an oscillating aerofoil without the quasi-steady assumption,

based on complex potential flow and conformal mapping of a circle to a flat plate.

This analysis confirms the significance of the 3/4-chord point, which Fung terms

the “rear aerodynamic centre”. Strickland et al. (1981) use a similar complex po-

tential flow analysis for a flat plat in general motion presented by Milne-Thomson
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(1968) to show that the additional circulation required to preserve the Kutta con-

dition of a stagnation point at the trailing edge for a pitching aerofoil can be

quantified by accounting for the downwash at the 3/4-chord point.

Some treatment of the vorticity shed in the unsteady wake of the aerofoil is

also required. Under steady conditions vorticity is not shed into the wake. When

a change in angle of attack occurs the circulation about the aerofoil must change

to maintain the stagnation point at the trailing edge. In order to conserve total

circulation according to Kelvin’s theorem, vorticity of equal and opposite strength

must be shed in to the wake. This wake induces a ‘downwash’ at the aerofoil

(according to the Biot-Savart law) that effectively reduces the angle of attack,

mitigating the change in lift. As this wake vorticity convects away from the foil,

the induced downwash diminishes until the new steady-state lift is acting.

Theodorsen (1935) developed an analytic frequency-domain treatment of this

wake-induced lift deficiency for a thin aerofoil undergoing small-amplitude har-

monic motion in a steady flow.

Approximate analytic treatment of unsteady aerodynamic forces is made in the

study of aeroelastic flutter (see for example Fung, 1955). The change in circulation

in response to a step change in incidence is assumed to build up to its steady state

value according to Wagner’s function. This function accounts for the changing

downwash at the aerofoil resulting from the wake that is shed from the trailing

edge. This is akin to the influence of the ‘starting vortex’ shed from a wing at an

impulsive start. Wagner’s function starts at 0.5 at approaches 1 asymptotically.

For an aerofoil in general motion, Wagner’s function may be used to calculate the

growth of circulation due to a step change in the downwash.

Similarly Kussner’s function, as amended by Von Karman and Sears (1938)

provides an analytic treatment of the transient lift on an aerofoil entering a sharp-
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edged vertical gust. This analysis is based on the influence of the unsteady wake of

the aerofoil, assumed to be planar (or linear, in the two-dimensional case) behind

the foil.

Unsteady wake effects on attached flow behaviour may be incorporated using

a semi-empirical unsteady aerodynamics model such as the Beddoes-Leishman

model described in Section 5.1.3. However the complexity of the wake in the

Darrieus turbine case makes the task of such methods very difficult. This topic is

discussed further in the context of the free vortex mathematical model described

in Chapter 6.

Non-circulatory unsteady effects

Non-circulatory aerodynamic loads are generally termed “added mass” forces.

They arise from the acceleration of air due to blade motion and exist even in

the absence of a free stream.

By contrast, Leishman and Beddoes (1986) use piston theory to calculate the

non-circulatory, or impulsive, load on the blade. It is assumed to arise from a

compression wave on one side of the blade with an expansion wave on the other,

and allows the effects of compressibility to be included, which is important for

helicopter applications, but should not be significant for wind turbines.

Quantification of unsteady effects in attached flow

Strickland et al. (1981) cite an analysis by Milne-Thomson (1968) for forces on a

moving and rotating flat plate in potential flow. This analysis yields expressions

for the additional circulation around the aerofoil due to its rotation, as well as the

added mass forces that are independent of circulation. This results in expressions

for the total normal and tangential (chordwise) forces. The tangential force is

found to be proportional to the angle of attack at the mid-chord position. The
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normal force consists of a term that is proportional to the angle of attack at the

3/4-chord position and an added mass term proportional to the normal acceleration

of the foil. Strickland et al. state that an order-of-magnitude analysis justifies the

omission of this added mass term. Likewise, the added mass pitching moment

term is judged to be small.

They conclude that unsteady pitching and added mass effects may be treated

in practice by:

• calculating the tangential force using the angle of attack at the mid-chord in

the static look-up table of aerodynamic coefficients for the section;

• calculating the normal force similarly using the 3/4 chord angle of attack;

• assuming the pitching moment about the quarter-chord is negligible for at-

tached flow.

This method has been adopted for both the momentum model and the vortex

wake model described in Chapter 6.

Unsteady wake effects have been neglected in the momentum model due to

the complexity of the wake structure and the difficulty in using a semi-empirical

model based on a linear wake to represent its influence. Wake effects are modelled

explicitly in the vortex model.

5.1.3 Dynamic stall

At zero incidence, a symmetric aerofoil generates no lift. As the angle of attack

increases, the lift increases in an approximately linear fashion, until at a critical

angle the flow begins to separate from the upper surface of the foil. Flow separation

leads to the sudden loss of lift and increase in drag that is termed stall.

The angle at which stall occurs depends on the rate of change of the angle of

attack. Traditionally, published lift and drag coefficients for an aerofoil section are
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obtained from measurements made under quasi-static conditions. Under dynamic

conditions stall occurs at a higher angle of attack than under static conditions,

with an associated increase in the maximum lift attained. This phenomenon is

termed dynamic stall.

Stage 1: Airfoil exceeds static stall angle, then
flow reversals take place in boundary layer.

Stage 2: Flow separation at the leading−edge, followed
by the formation of a ’spilled’ vortex. Moment stall.

Stage 2−3: Vortex convects over chord, it induces
extra lift and aft center of pressure movement.

Stage 3−4: Lift stall. After vortex reaches trailing−edge,  the
flow over upper surface becomes fully separated.

Stage 5: When angle of attack becomes low enough, the flow
reattaches to the airfoil, front to back.
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Figure 5.3: Schematic showing the features of the dynamic stall process. Reproduced
from Leishman (2002)

Dynamic stall is characterised by the formation of a distinct vortex on the

upper side of the aerofoil that detaches from the leading edge region and convects

downstream over the surface of the foil. The convection of this vortex produces

a rearward motion of the centre of pressure and a corresponding negative peak in

pitching moment about the quarter chord. Once the dynamic stall vortex travels
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past the trailing edge, lift drops sharply and the flow is fully separated. Upon

return to lower angles of attack, reattachment of the flow may be delayed to a

significantly lower angle than that at which separation occurred. These features

are illustrated in Figure 5.3, reproduced from Leishman (2002).

Considerable experimental attention has been devoted to the topic of dynamic

stall by measuring forces and pressure distributions on pitching aerofoils in the

wind tunnel (for example Daley and Jumper, 1984; Francis and Keesee, 1985;

Strickland and Graham, 1986; Lorber and Carta, 1988; Niven and Galbraith, 1997;

Gracey et al., 1996, 1997). It is clear from this work that the magnitude of the

delay of stall and the peak loads attained is a function of the pitch rate. There

is however some disagreement in the literature as to the exact nature of this re-

lationship. Lorber and Carta (1988) concluded from their experiments at low

pitch rates that the angle at which moment stall occurs is linearly dependent on

the pitch rate. However Gormont (1973) proposed a correlation that is based

on Theodorsen’s theory and is extended using experimental data from oscillating

aerofoil tests. It suggests that the stall delay angle is related to the square root

of the non-dimensionalised pitch rate. Experimental work by Daley and Jumper

(1984), Francis and Keesee (1985) and Strickland and Graham (1986) appear to

confirm this relationship. More recent work at the University of Glasgow (for

example Niven and Galbraith, 1997; Gracey et al., 1996, 1997) suggests a combi-

nation of the two. For pitch rates that are high enough for fully dynamic stall,

characterised by the formation of the stall vortex, the stall delay was found to

be linearly proportional to pitch rate. At lower pitch rates, the stall is termed

“quasi-steady”, with no discernible stall vortex. In this region, their stall delay

correlation includes a square root term.
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Semi-empirical dynamic stall Models

Most of the work on the dynamic stall phenomenon appearing in the literature has

been conducted by researchers in helicopter aerodynamics. Empirical dynamic stall

models that have been applied to Darrieus wind turbines are the Massachusetts

Institute of Technology (MIT) method (Johnson, 1970), Gormont or Boeing-Vertol

method (Gormont, 1973), ONERA method (Petot, 1989) and Beddoes-Leishman

(Leishman and Beddoes, 1986, 1989) method.

The MIT method was modified by Noll and Ham (1982) to include the empir-

ical representation developed by Boeing-Vertol for the dynamic stall angle. They

applied the method to the performance prediction of the variable-pitch Pinson

‘cycloturbine’ VAWT.

Boeing-Vertol - The Gormont, or Boeing-Vertol model is a simple empirical re-

lation commonly used for Darrieus turbine analysis. The original Boeing-Vertol

model was modified by Strickland et al. (1979) for use with their vortex code. It

was used by Paraschivioiu et al. (1988) in their Double Multiple Streamtube code.

The model assumes that the lift-curve slope and the zero-lift angle for the

aerofoil are unchanged by dynamic effects and it is the angle at which stall occurs

and the peak lift coefficient attained that are modified. Effectively the linear region

of the lift curve slope is extended beyond the static stall angle. A modified angle

of attack is found for use in a look-up table of static lift and drag coefficients.

The degree of stall delay is assumed to be proportional to a reduced pitch rate

parameter √
cα̇

2W

where c is blade chord length, α̇ is the rate of change of angle of attack and W is

the relative wind speed.
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Paraschivoiu (1983) compared aerodynamic forces predicted by a Double-Multiple

Streamtube model incorporating the Boeing-Vertol dynamic stall model with ex-

perimental data from a small straight-bladed Darrieus turbine in the wind tunnel.

He reported small differences in the magnitude of the predicted steady state power

coefficient when the dynamic stall model is included, but significant differences in

instantaneous blade loads. He concluded that while the dynamic stall model pro-

vided large improvement over the static model, the results were still different from

experimental data. The difficulty of obtaining accurate instantaneous force mea-

surements should however be remembered.

The Boeing-Vertol model was implemented in both the momentum and vortex

models presented here. The criteria for its use suggested by Strickland et al.

(1979), that it be turned on when the angle of attack is above static stall or when

the angle is decreasing below stall having been above it, were adopted.

It was found that this model caused significant reduction in the estimated

torque, compared with the use of static lift and drag, at tip speed ratios where the

maximum angle of incidence just exceeds the static stall angle. A small excursion

beyond the designated static stall angle does not allow much time for increased

peak lift before the angle of attack starts to decrease again, at which point the

modified angle switches to be greater than the geometric angle and delays the

reattachment of flow until angles much lower than the static stall angle. This phe-

nomenon of delayed reattachment has been observed in experiments (for example

Wickens, 1985).

Kirke (1998) used a momentum model for a passive-pitching VAWT that in-

corporated the Boeing-Vertol model as modified by Cardona (1984). Cardona

recommended two modifications to the model used by Strickland:
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1. that dynamic stall not be considered when the model predicts rapidly oscil-

lating angle of attack and that the static coefficients be used instead;

2. that the average of the static and predicted dynamic values of lift and drag

coefficients be used when the angle of attack is much greater than the stall

angle.

The second modification was a response to the observed overprediction of peak

tangential force by his free vortex VAWT model compared with the experimental

results of Strickland et al. (1981).

The first modification may have been a method for dealing with the numerical

instability that the vortex model is prone to when a rapid change in angle of attack

occurs. This will be discussed in more detail in Section 6.3.

Details of the model are given in Appendix B.

MIT - Noll and Ham (1982) modified the original MIT model developed by John-

son (1970) for application to wind turbines and presented predicted results for a

small Darrieus turbine. Details of the method are given in Appendix B.

The original MIT method was developed for helicopter aerodynamics. It was

based on the delay of stall to a prescribed elevated angle of attack at which point

peak values of lift and moment were instantaneously attained and held until the

angle of attack began to decrease again. The coefficients then decayed exponen-

tially with time until the static stall angle was reached. The values of the peak

lift and moment were given as a function of the reduced pitch rate

α̇c

W

derived from experimental results.
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Noll and Ham modified the method to calculate the dynamic stall angle using

the Boeing-Vertol empirical method, in which the stall delay is a function of the

square root of the reduced pitch rate.

Static sectional coefficients are used while the angle of attack is below static

stall. When it exceeds static stall but is still below dynamic stall, CL is calculated

from

CL = as sin α (5.4)

where as is the lift curve slope at static stall. When the dynamic stall angle is

reached the dynamic stall vortex is assumed to commence its motion from the

leading edge. In this region the lift coefficient continues to be calculated from

Equation (5.4) until either it reaches an empirically derived maximum value, or

the angle of attack starts to decrease again.

In Noll and Ham’s method the attainment of peak angle of attack marks the

commencement of the exponential decay of lift and pitching moment coefficients

from the peak value down to the static stall values.

A number of modifications to this method to make it suitable for application

to the starting performance of Darrieus turbines are suggested. These are detailed

in Appendix B.

Beddoes-Leishman - The Beddoes-Leishman method is based on an indicial aero-

dynamic response function, which is defined as the response to a step change

between two steady-state conditions. The theory is that if the indicial response

is known, the total response to an arbitrary time history of input (i.e. angle of

attack) can be obtained using superposition.

The model is composed of three distinct sections:
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• an attached flow region;

• a separated flow region where the effect of trailing edge separation is mod-

elled;

• a dynamic stall region, where the effect on lift and moment of the formation,

convection and detachment of the dynamic stall vortex are modelled.

Beddoes and Leishman used an indicial response function for the normal force in

attached flow on an aerofoil composed of two parts: a non-circulatory component

that acts instantaneously and then decays exponentially towards zero; and a circu-

latory component builds up from zero to asymptotically approach the steady state

value. Time constants for these processes are obtained empirically for a specific

aerofoil shape and a range of Mach numbers.

5.1.4 Comparisons

Paraschivoiu and Allet (1988) compared predictions from the Boeing-Vertol dy-

namic stall model and those from the MIT model as modified by Noll and Ham

(1982) with experimental data from the Sandia 17m turbine for the normal force

and average torque. Both models overestimated the maximum normal force on the

upwind side of the rotor, but the MIT model successfully predicted no dynamic

stall on the downwind pass, whereas the Boeing-Vertol model did. Paraschivoiu

and Allet point out that Noll and Ham assume that the coefficients return to the

linear (unstalled) domain when the angle of attack returns to below the static stall

angle, however the experimental data indicates that flow remains separated until

well below static stall.

The experimental data was from free wind operation and the tip speed ratio was

not stated. The Boeing-Vertol method’s use in the Double Multiple Streamtube
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model was limited to those zones determined to have low turbulence from water-

tunnel observations. Turbulence is stated to delay the dynamic stall phenomenon

and the static aerofoil characteristics are used where turbulence is high.

Major and Paraschivoiu (1992) preformed a comparison between the Gormont,

MIT and an indicial method based on the Beddoes-Leishman model and exper-

imental data from the Sandia 17m turbine. They found that for some cases the

indicial and Gormont methods predicted the occurrence of dynamic stall when the

MIT model agreed with experiment in predicting a static stall case. Nevertheless

they concluded that the indicial method offers a better representation of dynamic

stall than the other two, thus allowing more accurate local blade load prediction.

5.1.5 Summary

Three dynamic stall models were implemented in the code for the momentum

theory model and the vortex theory model to be described in Chapter 6. These

were:

• The Boeing-Vertol method;

• The Boeing-Vertol model with modifications suggested by Cardona;

• The MIT model modified by Noll and Ham.

Details of these methods are given in Appendix B. The three models were im-

plemented for comparison and are selectable via the GUI in the program. The

Beddoes-Leishman model has not been implemented because it was not clear that

its much greater complexity would result in greater stability and accuracy. How-

ever this model, or any improved model that is developed in the future, could be

implemented as an additional module.
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5.2 Sample Results

The momentum theory model was used to generate predictions of power coefficient

for a passive variable-pitch turbine. The results from three dynamic stall models

are shown in Figure 5.4.

The significant difference between the three dynamic stall models is clearly

visible at tip speed ratios less than 5.5 for the case of fixed blades and 4.5 for the

variable-pitch turbine. All three models produce significant increase in predicted

power coefficient for the TSR range 1 to 3 compared with the static case where

dynamic stall is ignored. At higher speeds the MIT model tends to converge with

the static prediction, while the Boeing-Vertol model predicts first a lower Cp before

converging at a higher TSR.

At intermediate tip speed ratios the dynamic stall models all produce an in-

crease in the predicted integrated torque for the revolution by delaying stall and

increasing the proportion of time for which flow remains attached. At higher tip

speed ratios, the Boeing-Vertol model predicts a reduced output. At these speeds

the angle of attack is, at its extremes, just exceeding the static stall angle each

revolution. The dynamic stall model is activated whenever the static stall angle

is exceeded and when the angle of attack is decreasing below stall having been

above static stall. In this operating region, this results in only a small extension

of the attached flow time when angle of attack is increasing, while dynamic stall

hysteresis, resulting in delayed reattachment of flow as the angle decreases again,

produces a net increase in the amount of time that the blades are stalled. The

integrated torque for the revolution suffers accordingly.

This phenomenon is not observed in the MIT model because it effectively

switches off when the angle of attack drops below the static stall angle. While
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Figure 5.4: Predicted power coefficient against tip speed ratio showing significant vari-
ation between dynamic stall models.
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hysteresis is a known feature of the dynamic stall process, from these results it ap-

pears to be overestimated by the Boeing-Vertol model in this form. The Cardona

modified version mitigates this effect by simply using the mean of the modified

and static coefficients. This produces results that are more like those of the MIT

model at all speeds.

The effect of all of the dynamic stall models disappears when the tip speed

ratio is sufficiently high to keep the angle of attack below the static stall angle at

all times.

The effect of the passive variable-pitch system is also clearly seen from these

results. The starting and intermediate tip speed ratio performance is significantly

improved. For this choice of parameters, the peak power coefficient is reduced

because some pitching is still occurring at the tip speed ratio at which this occurs

(approximately 4). This reduces the amplitude of the periodic variation in angle

of attack well below stall, reducing the lift produced. A trade-off between starting

and high-speed performance is necessary and may be controlled by the choice of

the blade mass centre offset parameter Rcg, which determines the strength of the

restoring moment.

5.2.1 Summary

The treatment of unsteady aerodynamic effects is the greatest difficulty facing

mathematical models of vertical-axis wind turbines. The approach of starting

with static empirical lift and drag data and modifying it according to the rate of

change of angle of attack cannot hope to accurately capture the full complexity

of the unsteady aerodynamics. However a more fundamental computational fluid

dynamics (CFD) approach remains excessively expensive and impractical in such
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models. Accordingly the shortcomings of more economical treatments must be

tolerated.

The MIT model was favourably compared with the Boeing-Vertol model by

Paraschivoiu and Allet (1988). Comparisons with published experimental data

presented in Section 6.4 indicate the modified MIT model is the most suitable of

those tested. The Boeing-Vertol method predicts significant reduction in turbine

power when the angle of attack just exceeds the static stall angle.

5.3 Limitations of Momentum Theory

Equation 5.2 implies that if the flow is decelerated to less than half its initial

magnitude by the time it reaches the rotor, then in order to satisfy the momentum

balance, the flow velocity in the far wake must be negative and there must be a

point somewhere upstream of that at which velocity is zero. Clearly this result

is not physically realistic. Wilson and Lissaman (1974) state that the momentum

analysis should not be considered valid for a > 0.5.

In reality, the assumption of lossless expansion of the flow on the downstream

side of the rotor needed to apply Bernoulli’s equation is not justified when the rotor

is heavily loaded. When the deceleration is large, the flow through and around

the rotor becomes turbulent, resulting in significant loss of energy. This operating

state is termed the ‘Turbulent Wake State’ by Stoddard (1976). Momentum theory

predicts that as the flow induction factor increases above a = 0.5 towards a = 1 the

streamwise thrust (proportional to the pressure drop across the rotor) will decrease

towards zero. Experimental work by Glauert (1926) on free-running windmills

indicates that in fact the thrust increases in this region, until at a = 1 the thrust

is akin to that on a solid disc that allows no flow to pass through and about which

there is large scale turbulence and recirculation.
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In order to accommodate the breakdown of momentum theory in this region the

modification suggested by Sharpe (1990) is used. A straight line is fitted through

experimental data to produce an empirical expression for the streamwise thrust

coefficient CT in terms of the flow induction factor a (see Figure 5.5).

Figure 5.5: The empirical modification to momentum theory used by Sharpe (1990) to
deal with heavily loaded rotor operation

Instead of the standard expression for CT :

CT = 4a(1− a) (5.5)

in the region aT < a < 1, CT is given by:

CT = CT1 − 4(C0.5
T1 − 1)(1− a) (5.6)



CHAPTER 5. MOMENTUM THEORY MODEL 112

where

aT = 1− 0.5C0.5
T1

and CT1 is 1.816. This value approaches the drag coefficient for a solid disc per-

pendicular to the flow.

While this modification avoids the obvious impossibility of wake reversal and

allows the model to be used for a > 0.5, the predicted power may still not be

accurate. Stoddard (1976) states that:

“Entrance into Turbulent Wake by a wind generator brings with it

reversals in induced velocity (bound circulation along the blade), high

turbulence, vibration, and a precipitous decrease in shaft torque.”

In addition, the relationship between the pressure on the downstream side of the

rotor and the far wake final velocity is now lost, as Bernoulli’s equation cannot be

used. While for a horizontal axis rotor, this does not matter as the wake velocity

is of little concern, for the double multiple streamtube approach used here, the

wake velocity calculated from the upwind pass of the blades is used as the input

velocity for the downwind pass.

The modification allows the blade-element force iteration process to converge

to flow induction factors greater than 0.5, whereas without it no convergence can

be reached in this region due to the negative slope of the CT curve. However the

wake velocity will still be predicted as negative for a > 0.5. In reality the wake

velocity will approach zero as a approaches 1, but turbulence and recirculation

will dominate.

So while the modified momentum theory predicts smooth deceleration of the

flow right up to complete blockage, the real situation is very much more compli-

cated, and the turbine output in this operating region is likely to be significantly
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overestimated. This fact provided further motivation for the development of a free

vortex model for turbine performance.

5.4 Summary

An extended Double Multiple Streamtube type mathematical model has been pro-

duced as part of this thesis to predict the steady-state performance of passive

variable-pitch Darrieus turbines. The model is able to handle the specific kine-

matics of five different passive designs. The inertial reactions on the rotor produced

by the pitching blades are accounted for in the model. A modified version of the

MIT model is used to treat dynamic stall.

The speed of the model enables it to be used to investigate the effects of

variation of design parameters. Use of the model to develop a parameter selection

strategy for passive variable-pitch turbines is described in Chapter 7.



Chapter 6

Development of a Free Vortex Mathematical Model for

Passive Variable-Pitch Darrieus Turbines

6.1 Background to Vortex Methods

Vortex methods are a more complex and computationally expensive alternative to

blade-element/momentum methods. The benefit is that they are able to handle

more general scenarios than can momentum methods, with fewer limitations. They

have been widely applied to helicopter, HAWT and Darrieus VAWT rotor analysis.

A review of vortex methods applied to wind turbines is given by Leishman (2002).

Vortex methods assume incompressible, potential flow in the wake. A La-

grangian approach is used, tracking discrete vortex sheet segments in the wake of

the rotor. Rather than referring to momentum, the velocity at any point in the

flow field can be calculated by applying the Biot-Savart law.

6.1.1 Reasons for using a free vortex method

The free vortex wake model used here and extended for passive variable-pitch

turbines is based on the 2 dimensional method for the Darrieus turbine developed

by Strickland et al. (1979, 1980, 1981). They list the deficiencies of momentum

models as:

• The breakdown of momentum theory at large tip speed ratios;

114
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• The inaccuracy of predicted blade loads due to the quasi-steady approach

and inability to deal with details such as individual blade wakes and flow

normal to the free stream;

• Inability to model the structure of the near wake for the purpose of wind

farm layout.

The first two issues are relevant in the current work.

The breakdown of momentum theory at high tip speed ratios has been discussed

in Section 5.3. Vortex methods do not suffer from this limitation. While the area

of interest here is starting and intermediate TSR performance, where momentum

theory breakdown is not expected to be a problem, it is still possible for large flow

deceleration to be predicted for high solidity rotors.

Given that the output of a passive pitch turbine is highly dependent on the

blade pitch response, the accuracy of the predicted instantaneous aerodynamic

loads is critical to the overall accuracy of the method.

A further motivation for developing a vortex method was the desire to inves-

tigate the transient behaviour of the turbine and average output under turbu-

lent wind conditions. Turbulence was identified by both Bayly (1981) and Kirke

(1998) as a likely cause of the often significant discrepancies found between their

predictions and field turbine experimental results. Momentum methods calculate

steady-state performance both in terms of the induced inflow velocities and the

blade pitch response for a constant wind. These states may take several revolu-

tions to develop. In turbulent wind conditions with constantly varying velocity

and direction of flow, the turbine may spend little or none of its time at the pre-

dicted steady-state condition. Drees (1978) states that the Cycloturbine tested at

Pinson Energy Corp. recorded a maximum power coefficient Cp of 0.45 in “very
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smooth wind conditions”, while a “nominal” Cp of 0.3 is maintained in gusty condi-

tions. The time-marching free vortex method, which tracks the motion of discrete

vorticies in the wake, is naturally able to deal with transient behaviour.

A two-dimensional free vortex mathematical model for passive variable-pitch

turbines was accordingly developed. While three-dimensional vortex models have

been produced for Darrieus turbines (see Strickland et al., 1980), the added com-

puting cost and coding complexity were not considered justified in this case. The

model has been used to investigate the significance of rotor speed variation in the

prediction of starting performance and to examine the turbulent wind performance

of a turbine connected to a load. The circumstances under which the order of mag-

nitude greater computational expense justify its use over a momentum model are

also examined.

6.2 Free Vortex Aerodynamic Model

The turbine blades are represented by bound or lifting-line vortices whose strengths

are determined using aerofoil coefficient data and the calculated relative flow ve-

locity and angle of attack. The bound vortex strength ΓB is related to the flow at

the blade via the section lift coefficient:

ΓB =
1

2
CLcW (6.1)

where CL is the lift coefficient, c is the blade chord and W is the local relative flow

velocity. Blade stall is accommodated through the use of empirical lift, drag and

pitching moment coefficients.

In the wake, potential flow is assumed. Discrete vortices are shed into the

wake at regular intervals, whose strength is equal to the incremental change in

the bound vorticity at the blade in order to satisfy Kelvin’s theorem, namely the
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Figure 6.1: Discrete vortex representation of the unsteady blade wake

conservation of total system circulation (see Figure 6.1).

ΓWN
= ΓBN

− ΓBN−1
(6.2)

The velocity induced by the shed vortices is calculated at the turbine blades

as well as at the locations of all of the wake vortices using the Biot-Savart law.

Expressed in the z = x + iy plane, the complex velocity induced by a point vortex

at zv of strength ΓW is:

q(z) =
−1

2πi

(
ΓW (z − zv)

|z − zv|2
)

(6.3)

To remove the singularity at zv, a smoothing factor δ is used to give a finite core

radius, producing vortex ‘blobs’. The simple core function is that used by Krasny

(1987).

q(z) =
−1

2πi

(
ΓW (z − zv)

|z − zv|2 + δ2

)
(6.4)
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The maximum induced velocity occurs at a radius δ, which is the ‘core’ radius.

Following the method of Strickland et al. (1980), the core radius is chosen so that

the maximum velocity induced by a vortex blob is equal to the velocity on either

side of the trailing edge at the time that it is shed. From the definition of vorticity

it may be seen that for an infinite vortex sheet the local vorticity is equal to the

difference in tangential velocity immediately above and below the sheet. For a

vortex blob at the trailing edge this velocity difference is taken to be twice the

maximum induced velocity:

γ = 2Vmax (6.5)

By Kelvin’s theorem, the strength of the vortex sheet arising from the trailing

edge of a blade in motion is equal to the rate of change of bound vorticity relative

to the rate of vortex sheet generation:

γ =
dΓB

ds
(6.6)

where s is the path distance along the sheet. Using the maximum induced velocity

from Equation (6.4), with Equations (6.5) and (6.6) we get:

δ =
ΓW

2π

(
dΓB

ds

)−1

(6.7)

Then for discretised time, approximating ΓW by ∆ΓB and dΓB

ds
by ∆ΓB

∆s
we get:

δ ≈ ∆s

2π
≈ Rω∆t

2π
(6.8)

where R is the turbine radius and ω is the rotor speed. The vortex core size is

thus a function of the time interval ∆t between vortices.
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6.2.1 Treatment of unsteady aerodynamics

The same treatment methods used for the momentum model described in Sec-

tion 5.1 were used for the vortex model. There are however different factors to

be considered in the implementation of some of the semi-empirical dynamic stall

models in a free vortex scheme. Semi-empirical models such as the Boeing-Vertol

model incorporate the effect of the unsteady wake implicitly as they were developed

on the basis of tests on oscillating foils in the wind tunnel, on which the measured

forces were affected by the unsteady wake. Semi-empirical methods such as the

Beddoes-Leishman model, which were developed from a theoretical basis that at-

tempted to reflect the relevant physical processes, incorporate Duhamel summation

of Kussner function indicial responses to a discretised history of changing angle of

attack (refer to Leishman and Beddoes, 1989). As such it explicitly incorporates

the effect of the unsteady wake.

Strickland et al. (1980) stated that the treatment of unsteady circulatory lift

is handled automatically in an approximate fashion in a free vortex scheme by

the downwash induced at the blade by the discrete vortex points tracked in the

wake. The wake vorticity that is shed in response to step change in angle of attack

mitigates the magnitude of that change. As the discrete vortex convects away from

the blade, this ‘downwash’ reduces towards zero and the angle of attack approaches

a steady state value. Thus the time-dependent nature of the response is inherently

handled in an approximate way by the discrete vortex wake model, rather than by

an empirically derived analytic method.

If a semi-empirical unsteady aerodynamic model is applied where the wake vor-

ticity is modelled explicitly, the unsteady wake effects may in fact be treated twice.

Jiang et al. (1991) recognised this in the application of the Beddoes-Leishman
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model to their fixed-wake vortex model for VAWTs. However they reconciled this

duplication by pointing out that the discrete vortex modelling of each blade’s wake

included the effect of wake influence on the other blades and on the same blade

at subsequent crossings, while the semi-empirical unsteady aerodynamics model of

course did not. They stated,

“the degree of overlap [between the two methods] is considered small

enough to be insignificant in the present analysis”.

The geometry of the wake of a wing oscillating in a wind tunnel is very different

from that in the case of the Darrieus turbine, even for similar histories of angle

of attack experienced at the blade. For the former, the wake may have sinusoidal

oscillations but is still basically linear in structure and is carried directly away

from the aerofoil. For a Darrieus turbine, especially at high tip speed ratios, the

wake is coiled into a much smaller space in the immediate vicinity of the blades

and is repeatedly crossed. Thus its influence may be expected to be significantly

different from that in the wind tunnel. If the only input to the semi-empirical

unsteady aerodynamics model is the angle of attack history, then no account can

be taken of the actual wake geometry.

For dynamic stall experiments in the wind tunnel the specified angle of attack

is the geometric angle of the chord line with the free stream velocity, accounting

for the aerofoil’s own plunging and/or pitching velocity. No account is taken of

the induced velocity or downwash at the foil due to the unsteady wake, as this

cannot be measured directly and is indeed the very factor whose influence is being

predicted.

In a discrete vortex wake model of a Darrieus turbine the influence of the

unsteady wake on the angle of attack at the blade is already calculated. If a
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semi-empirical model that is validated using wind tunnel data is to be applied to

the calculation of unsteady lift on a Darrieus turbine blade then the influence of

the wake should not be included in the calculation of angle of attack, so long as

the semi-empirical model can accurately reproduce the effect of the omitted wake.

However because such models assume an essentially linear wake shape, then it is

unlikely that this will be done accurately.

Alternatively the effects of the unsteady wake could be omitted from the semi-

empirical unsteady aerodynamics model and this aspect left to the influence of

the discrete vortex wake. Leishman and Beddoes (1989) model the effect of the

wake as the induction of a change in the effective angle of attack experienced at

the blade. This change affects the unsteady lift under attached flow conditions,

as well as delaying the onset of stall. This change in angle of attack is handled

automatically by the discrete vortex wake. In addition to this however, they

account for a time lag in the leading edge pressure response used to detect the

onset of leading edge stall. They state that:

“this mechanism significantly contributes to the overall delay in the

onset of dynamic stall”

Further, there is a lag in the unsteady boundary layer response that further delays

trailing edge separation. Both of these effects are separate from the wake effect

and so are not modelled by the discrete vortex wake.

Modification of the angle of attack alone also cannot produce the increased

maximum lift coefficients observed under dynamic conditions. In the Beddoes-

Leishman model, this increased lift is provided to some extent by the extension of

the linear lift slope region through the delay of trailing edge separation, but also

through the addition of lift generated by the:
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“excess accumulation of circulation lift that is retained in the vicin-

ity of the airfoil. . . ”

This circulation is transferred to the dynamic stall vortex that detaches from the

leading edge and convects downstream over the upper (low pressure) surface of

the blade before being shed into the wake. This aspect of dynamic behaviour is

also not accounted for purely by modification of angle of attack. Hence ideally the

non-wake dynamic effects should still be modelled separately and the wake effects

left to the discrete vortex modelling of the wake.

The preceding discussion only applies to the circulatory lift component of the

unsteady blade loading. The non-circulatory components, such as added mass

effects, are not handled by the discrete vortex wake. Accordingly, in the present

analysis, the angle of attack history incorporating the influence of the discrete

vortex wake is used as input to the modified MIT dynamic stall model. Given the

approximate nature of the semi-empirical model, any duplication of treatment of

wake effects is regarded as insignificant.

6.3 Extension of the Vortex Method for Passive Variable-Pitch

VAWTs

The basic Darrieus free vortex model is modified here in a number of ways.

Strickland et al. (1981) used a look-up table for lift and drag coefficients against

angle of attack up to 180◦ for the NACA0012 section. No pitching moment coeffi-

cients were used. The aerodynamic coefficients were for a single Reynolds number.

For the Darrieus turbine, not only does blade Reynolds number change apprecia-

bly with varying wind speed and tip speed ratio, but it also changes within each

revolution. Accordingly tabulated coefficients spanning Reynolds numbers from
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40,000 to 500,000 were used in the present model (data from Sheldahl and Klimas,

1981, presented in Lazauskas, 2002). At each timestep the Reynolds number based

on blade chord and local relative flow velocity, as well as the angle of attack, is

calculated. The appropriate lift, drag and pitching moment coefficients are then

obtained from the tabulated data using bi-linear interpolation.

In the present work, the model has been coded in Visual C++ for Windows.

The source code developed for this thesis is included on a CD inside the back cover

of this thesis. A graphical user interface (GUI) has been implemented to facilitate

the adjustment of parameter values. An animated display (see Figure 6.2) of the

turbine and the vortex wake is generated so that the evolution of the wake and

the motion of the blades can be viewed.

Figure 6.2: Screen capture of the animated output of the free vortex model

Strickland et al. (1979) used a prediction-correction method to calculate the

strength of the bound vortex at each time step. The induced velocity at the

blade element is calculated using the wake vortex positions and the bound vortex

strengths at the other blade elements at the previous time step; the bound vortex
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strength is calculated on the basis of this induced velocity; the induced velocities

at all blade elements is then updated for these new values and the bound vortex

strengths then recalculated.

Here a full iterative scheme is used to calculate bound vortex strength at each

step. The reason for this is that problems were encountered with oscillation in

the bound vortex strength. Any sudden change in the angle of attack, and hence

change in bound vortex strength, produces a correspondingly large change in the

strength of the wake vortex of opposite sense, following Equation (6.2). This

wake vortex, which is still close to the blade at the following time step, induces a

correction in the angle of attack at the blade, causing a change in bound vortex

strength of the opposite sign. A wake vortex corresponding to this change is then

shed, continuing the oscillation at the next time step. This process is usually

instigated by the sharp change in lift occurring at blade stall. A string of wake

vortices of alternating signs then results, along with a sharply oscillating angle of

attack and lift history.

This instability is exacerbated by the use of a semi-empirical dynamic stall

method, such as the Boeing-Vertol model, which is dependent on the instantaneous

rate of change of angle of attack. If this is estimated using a simple first order

backward difference then the oscillation in lift due to oscillation in angle of attack

is amplified. A higher order backward difference estimate reduces the sensitivity

of the value to the instantaneous angle.

In order to decouple the rate of change from the latest estimate of angle of

attack completely, an approximate closed-form expression was derived. If the

effect of changing rotor speed and non-uniformity in the wind field is neglected,

the analytic expression for the instantaneous angle of attack may be differentiated
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to obtain an estimate of the rate of change. The angle of attack on a blade at zero

pitch is given by:

α0 = −(γ + φ) (6.9)

γ is the clockwise angle between the chord line and the relative wind vector and

is calculated in the code by γ = atan2(−Wx,−Wy). Wx and Wy are the x and y

components of the relative wind velocity. They are given by:

Wy = Uy + φ̇R sin φ

Wx = Ux − φ̇R cos φ

Ux and Uy are the components of the free wind velocity at the current blade

position, φ is the blade’s azimuth angle and R is the turbine radius. Differentiating

(6.9) with respect to time and subtracting the pitching velocity θ̇:

α̇0 = −φ̇[φ̇R(Ux cos φ− Uy sin φ− φ̇R)/W 2 + 1]− θ̇ (6.10)

where W =
√

W 2
x + W 2

y .

This expression ignores the effect of the movement of the blade through a

non-uniform and unsteady flow field, as well as specific local events such as wake

crossings. However as the empirical angle modifying correlation for which the

value is used as an input is itself inexact, it is felt that this error is not significant.

The MIT dynamic stall model is also inherently less sensitive to the instanta-

neous rate of change of the angle of attack and was found to be more stable.

This instability was treated by placing the next vortex to be shed at the trailing

edge and including its influence in the calculation of the flow at the lifting-line.

Since the strength of the trailing edge vortex is related to the velocity it induces

at the lifting line by Equations (6.2) and (6.1), an iterative process is used to
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calculate it and the bound vortex strength at each time step. This stabilises the

calculation of bound circulation. Damped simple iteration, a technique in which

each new estimate of the convergence variable is moderated by a comparison with

the previous estimate (see de Vahl Davis, 1991), is used to treat the same insta-

bility previously exhibited over successive time steps, now shown over successive

iterations at each time step.

This process also allows wake vortices to be shed less frequently than every time

step if desired. The string of vortices shed by each blade is a discrete representation

of the continuous vortex sheet that is shed as a result of the ever-changing angle of

incidence experienced by the blade through each revolution. It is the nature of this

representation that a large number of vortices of small strength is not necessarily

preferable to a smaller number of vortices of greater strength. It has been shown by

Moore (1981) that dividing the sheet into more vortices only serves to exacerbate

the problems of instability that eventually appear in the modelling of the roll-up

of such sheets. In addition, CPU time increases with the square of the number

of vortices. Therefore it is desirable to make the time interval between shedding

of vortices larger than the time step required for accurate numerical integration

of the equations of motion of the turbine mechanism, even with a fourth-order

scheme.

It was discovered however that decoupling the vortex and turbine motion in-

tegration time steps caused problems. Because the velocity induced by a vortex

blob according to Equation (6.4) is inversely proportional to the distance from

it, its effect on the velocity at the lifting line diminishes as it is convected away

from the blade. If a vortex is shed at each time step, the closest (most recently

shed) vortex is always at approximately the same distance from the lifting line and

so the effect is relatively smooth. If a vortex is shed only every third time step,

wake vorticity for three time intervals is accumulated in a single vortex blob and
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when it is shed, there is a significant and abrupt change in the flow induced at

the lifting-line. This effect decays as the vortex is convected away until another

vortex is shed and another spike in the angle of attack at the lifting-line occurs.

By maintaining a trailing edge vortex whose strength is calculated iteratively

to satisfy Equation (6.2) at each time step, the spikes in the flow produced each

time a vortex is shed are smoothed. The trailing edge vortex is shed into the wake

after a set interval, to be replaced by a new trailing edge vortex, initially of zero

strength. This method effectively represents the most recently shed portion of the

blade wake by a discrete vortex blob at the trailing edge.

The blade incidence history may be further smoothed by representing this

nearest wake region using straight vortex sheet segments, in the manner of Fink

and Soh (1978). The two most recently shed free wake vortices are replaced by

straight vortex sheet segments joining them and the trailing edge, (see Figure 6.1)

in the calculation of the velocity induced at the lifting-line. These segments are

desingularised in the same manner as the vortex blobs, as suggested by Krasny

(1987). This ensures that the sensitivity of the lifting-line circulation to the wake

strength is not exaggerated by the concentration of the most recently shed part at

the trailing edge.

6.4 Validation Using Published Results

Several researchers have compared their vortex models with the experimental re-

sults obtained by Strickland et al. (1981). A rotor with 1, 2 or 3 straight fixed-pitch

blades of NACA 0012 section was tested in a water tow tank. The turbine had

the following parameters:
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Blade chord 9.14 cm

Turbine diameter 1.22 m

Blade length in water 1.1 m

Tow tank depth 1.25 m

Strain gauges were used to measure the normal and tangential forces on the blades.

Dye injection in the water was used to observe the ‘streak line’ of particles passing

over the trailing edge. Images of the streak lines were compared with predicted

wake structures from the VDART2 program. Reasonable agreement between an-

alytical and experimental results was achieved, though some areas of discrepancy

existed. The primary area of difficulty appears to lie with the dynamic stall model.

Strickland resorted to modifying the empirically derived stall delay time constants

of the Boeing-Vertol model in order to obtain better agreement with experimental

data. Even so there are major areas of discrepancy and no single set of values

could be found to best fit all tested operating points.

Cardona (1984) published results from a modified vortex model that included

the effects of flow curvature and modified the application of the Boeing-Vertol

dynamic stall model. He claimed this improved agreement, though there are still

regions of significant discrepancy.

Ponta and Jacovkis (2001) recently developed a vortex model incorporating a

finite element calculation of the blade forces and near flow field. The free vortex

model is used to compute the ‘macro’ flow field and its results are used as boundary

conditions for the ‘micro’ local blade model, which is based on a finite element

solution of the constant-curl Laplacian equation. The velocities in each region

are calculated iteratively at each time step to find the bound vorticity. Surface

pressures and shear forces calculated by a viscous boundary layer model are then



CHAPTER 6. VORTEX THEORY MODEL 129

-2

-1

0

1

2

3

4

5

6

1080 1125 1170 1215 1260 1305 1350 1395 1440 1485 1530

Azimuth [deg]

F
T

+

Experiment (Strickland)

Static

Boeing-Vertol

Boeing-Vertol (Cardona)

MIT (mod)

MIT (Noll & Ham)

-50

-40

-30

-20

-10

0

10

20

30

1080 1125 1170 1215 1260 1305 1350 1395 1440 1485 1530

Azimuth [deg]

F
N

+

Experiment (Strickland)

Static

Boeing-Vertol

Boeing-Vertol (Cardona)

MIT (mod)

MIT (Noll & Ham)

Figure 6.3: Comparison of predicted non-dimensionalised tangential and normal forces
FT+ and FN+ for three different dynamic stall treatments with the experimental data
of Strickland et al. (1981). 1 blade, TSR = 5.
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used to compute blade forces. The circulatory and added mass effects are thus

accounted for naturally and there is no reliance on experimental static aerofoil

coefficients. The finite element model however is only applied prior to stall. Once

separation is detected, the method reverts to the standard vortex model using

aerofoil coefficients and so the issue of dynamic stall, which appears to be the

most problematic, is not addressed. Nevertheless the results obtained for normal

and tangential blade forces and wake structure visualisation show good agreement

with Strickland’s experimental data.

Tangential and normal force predictions for two tip speed ratios tested by

Strickland et al. are shown in Figures 6.3 and 6.4. The degree of agreement

in general is reasonable considering the simplifying assumptions made. Primary

among these is the assumption of 2 dimensionality, which is dubious as the exper-

imental rig had a blade length of 1.1 m and a gap of 15 cm to the bottom of the

tank. The effect of the trailing tip vortex is not accounted for in the model.

Results for the dynamic stall models implemented in the code are compared.

These are the Boeing-Vertol model; the Boeing-Vertol model as modified by Car-

dona; the MIT model as modified by Noll and Ham; and the MIT model with

present modifications. All of the above models were used in conjunction with

the measures to account for finite aspect ratio, flow curvature and dynamic ef-

fect. Included for reference are the predictions using the unmodified static section

coefficients.

For the TSR = 5 case shown in Figure 6.3 none of the dynamic stall models

are able to accurately predict the upwind (left hand half of the graph) pass peak.

The Boeing-Vertol model overestimates the peak and then predicts a significant

undershoot to negative values on the descending side that does not appear in
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the experimental values. The Cardona modification mitigates this effect, but still

underpredicts the duration of the peak. Noll and Ham’s MIT model underpredicts

the size of the peak and then exhibits an extended period of almost zero tangential

load that does not occur in the experiment. This is the post-stall region in which

the tangential load would be exactly zero were it not for the slight angle of attack

and drag coefficient modifications for finite aspect ratio and flow curvature. The

modified MIT method designed to remedy this shows improved but still imperfect

agreement with measured values. The descending portion of the tangential force

curve around azimuth = 1200◦ shows artifacts of the model’s representation of lift

decay and flow reattachment after stall that appears to be problematic. The MIT

models give by far the best agreement with experimental values for tangential force

in the downwind pass (azimuth 1260◦ - 1440◦).

Note that if no account is taken of dynamic effects then the upwind tangential

force peak is greatly truncated, indicating stall.

All three models give good agreement with normal force data at TSR = 5,

though the fact that these forces are an order of magnitude greater than the

tangential loads makes the agreement appear better. Again all three models have

difficulty matching the smooth decline from the negative peak at azimuth 1170◦

(the upwind most point of the orbit) that was measured by Strickland et al.. The

measured values seem to indicate that no blade stall occurred at this TSR, despite

the fact that if no dynamic stall model is used, the tangential and normal force peak

in the upwind half of the revolution is truncated to less than half of the measured

peak, indicating flow separation. All the literature surveyed on dynamic stall

indicated the presence of significant hysteresis in lift, drag and moment coefficients,

with reattachment delayed to lower angles of attack than under static conditions.
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This separation and delayed reseparation is apparently triggered when the angle

of attack reaches a maximum and starts to decrease, even if stall would not have

occurred at this angle had pitching continued beyond it. The experimental results

seem to indicate that flow separation has not occurred at any stage, despite the

excursion to angles greater than the static stall angle. This phenomenon is not

predicted by any of the dynamic stall models examined. Nevertheless the quality

of agreement is reasonable.

Agreement for the TSR = 2.5 case shown in Figure 6.4 is not as good, with all

dynamic stall models overpredicting the upwind tangential force peak at azimuth

1160◦. The Cardona modified Boeing-Vertol model show and the modified MIT

model show best agreement here, but the MIT model shows much better agreement

over the rest of the revolution.

The MIT models show the best level of agreement for normal force. Again the

inadequacy of ignoring dynamic effects at this TSR are highlighted.

Figures 6.5 and 6.6 show comparisons between vortex model predictions with

the various dynamic stall models and the experimental results published by Paraschivoiu

(1983). He presented normal and tangential force coefficient data for a small

straight-bladed turbine operating in air.

Blade chord 6.1 cm

Turbine diameter 0.61 m

Blade length 0.61 m

Blade section NACA 0018

In general the level of agreement with these results is not as good as with

those of Strickland et al. The modified MIT model gives a marginally better

prediction of the measured results than the other models, however there are still
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Figure 6.5: Comparison of predicted non-dimensionalised tangential and normal forces
FT+ and FN+ for three different dynamic stall treatments with the experimental data
of Paraschivoiu (1983). 2 blade, TSR = 3.
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areas of significant discrepancy. The measured tangential force data for TSR 1.5 in

Figure 6.6 shows an oscillation that may be due to some vibration in the turbine.

The MIT model, both in its unmodified and modified forms, grossly overpredicts

the upwind (negative) peak in the normal force, while the Boeing-Vertol models

underpredict.

Overall it is concluded that the MIT method, with modifications described in

Appendix B, offers the best agreement with experimental results of the models

tested. However none of the models is able to capture all of the details of the

blade force histories measured in the experiment.

6.5 Limitations of Vortex Methods

While vortex methods incorporate a good deal more of the complexities of Dar-

rieus turbine aerodynamics than momentum models, they still rely on significant

simplification. Potential flow is assumed in the wake and the effect of viscosity

in the blade aerodynamics is included through empirical force coefficients. The

present model is two dimensional. For a turbine with straight blades of large as-

pect ratio, this simplification is acceptable. While the affect of finite aspect ratio

is accounted for in the modification of sectional lift and drag coefficients, span-

wise flow and trailing tip vortices have not been included. Turbine shaft or tower

shadow has also been neglected in the present model.

The primary area of limitation is still the handling of unsteady aerodynam-

ics, as it has been for more than twenty years. It is clear that researchers have

investigated many different approaches to the modelling of this area that is so

important for accurate prediction of Darrieus turbine performance. These range

from the entirely empirical to complete first-principles CFD approaches, with al-

most every possible blend of the two in between. Clearly a compromise must be
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reached between accuracy and simplicity. Because the real flow is so complex, the

diminishing returns of accuracy gained for ever greater investment of effort in first

principles approaches make the use of semi-empirical methods attractive.

Even so, the free vortex method is still expensive in terms of computing re-

quirements. The repeated use of the Biot-Savart law is the main cause of this

expense. For example if 200 discrete vortices are maintained for each of three

blades, 6002 = 360, 000 Biot-Savart induced velocity calculations are required at

each time step. The method is several orders of magnitude more time consum-

ing than the momentum method and it is not practical to perform comprehensive

optimisation studies using it. This task remains the domain of more economical

methods, for conditions under which their accuracy is known and acceptable.

6.6 Motion Simulation Model

Existing momentum theory methods assume constant turbine speed and steady-

state operation. These assumptions are limiting in the study of the self-starting

performance of passive variable-pitch turbines.

The steady-state pattern of pitch angle variation predicted under the assump-

tion of constant turbine speed may be slightly different from the actual pitch vari-

ation for a turbine with finite rotor and load inertia where speed ripple is likely to

exist. The angular acceleration of the turbine rotor affects, and is affected by, the

pitching motion of the blades.

In addition, for the study of starting performance, the turbine will naturally be

accelerating, rather than operating at steady-state. Further, the passive variable-

pitch mechanism is intended to be applied to small stand-alone systems, almost

certainly driving non-constant speed and maybe non-electrical loads. Therefore

in fluctuating wind, turbine speed will almost always be changing. Acceleration
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will be shown to have significant effect on the predicted pitch pattern and on the

average torque over a single revolution.

In addition to transient blade motion, the unsteady wake may also affect aero-

dynamic loads. When the turbine is heavily loaded, the deceleration of the flow

is significant. It may take a finite time for the wake to fully develop and if the

turbine speed and the wind speed are varying, the instantanteous performance at

a given tip speed ratio may be different from that at steady state with a fully

developed wake.

In order to accommodate these factors, turbine acceleration must be included in

the mathematical model. It is then necessary to model the entire turbine as a single

mechanism with multiple degrees of freedom. This differs from the initial approach

of assuming a constant turbine speed (effectively infinite rotor or load inertia) and

tracking the motion of a single blade under the influences of aerodynamic, elastic

and inertial forces. This single degree of freedom system permitted the use of

Newton’s vector method to arrive at the differential equation of motion by use of

a free body diagram. If the turbine speed is allowed to vary however, it becomes

necessary to calculate the rotor acceleration at every time step, since this both

affects and is affected by the motions of all of the blades at that instant. It is

therefore no longer possible to model only a single blade and to take its motion as

representative of the remaining blades.

The principle of virtual work is much better suited to deal with this multi-

degree-of-freedom system than is Newton’s approach. It enables the motions of

interconnected bodies to be tracked without reference to any joint or constraint

forces. D’Alembert’s principle allows application of the virtual work principle to

dynamic systems by including inertia forces. The Lagrangian form of the virtual
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work principle, which uses a set of generalised coordinates to describe the system

position, is used to produce a set of differential equations of motion, one equation

for each degree-of-freedom. The linear set of differential equations is solved to

calculate the instantaneous accelerations of all generalised coordinates.

A numerical integration scheme is then used to predict the change in positions

and velocities of all bodies in the system during a timestep. As for the momentum

model, a fourth-order Runge-Kutta scheme is used for this purpose.
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Figure 6.7: Schematic of turbine mechanism defining the generalised coordinates q for a
turbine of the pendulum type.

For the pendulum type configuration studied by Bayly and Kentfield (1981)

the turbine may be modelled as an open-loop planar mechanism - effectively a
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number of double pendula connected at the turbine shaft (see Figure 6.7). A set

of F = n+1 generalised coordinates is used for a turbine having n blades: one for

the pitch angle of each blade and one for the rotor azimuth angle. q0 is defined as

the azimuth angle of the reference blade, being the clockwise angle specifying the

orbital position of the blade relative to the wind direction. q1 to qn are the blade

pitch angles.

The notation used by Paul (1979) is adopted, but the equation is reformulated

here in matrix form. The velocity coefficients for the M = n+1 members relate

the velocity of the mass centres of the members to the rate of change of each of

the F generalised coordinates. The coefficients are termed U , V and Ω for the x,

y and clockwise directions respectively, as defined in Figure 6.7. For example, the

coefficient Uij gives the influence of the rate of change of the generalised coordinate

qj on the x-direction velocity of the i-th member of the assembly. That is:

ẋi =
n∑

j=0

Ui,j · q̇i (6.11)

or in matrix form




ẋ0

ẋ1

...

ẋn




=




U00 U01 . . . U0n

U10 U11 . . . U1n

...
...

. . .
...

Un0 Un1 . . . Unn




·




q̇0

q̇1

...

q̇n




In matrix notation:

ẋ = U · q̇ (6.12)
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The rotor centre of mass is assumed fixed at the origin and has zero velocity at

all times, so all coefficients relating to its translation are zero. The change in the

pitch angles of the blades has no kinematic effect on the rotor speed. Therefore

all coefficients concerning the rotor are zero, except that relating the generalised

coordinate for the azimuth to the rotor position, which is one.

U0j = V0j = 0 for j = 0, 1, 2, ...n

Ω00 = 1

Ω0j = 0 for j = 0, 1, 2, ...n

The velocity of the mass centre of the each blade is affected by both the rotor

azimuth and that blade’s pitch angle, but is independent of the pitch angles of

any other blade. For the ‘pendulum’ type inertial pitch control design shown with

three blades, the velocity coefficient matrices are:

U =




0 0 0 0

A(q0, q1) B(q0, q1) 0 0

A(q0, q2) 0 B(q0, q2) 0

A(q0, q3) 0 0 B(q0, q3)




(6.13)

V =




0 0 0 0

C(q0, q1) D(q0, q1) 0 0

C(q0, q2) 0 D(q0, q2) 0

C(q0, q3) 0 0 D(q0, q3)




(6.14)
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Ω =




1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1




(6.15)

where

A(q0, qi) = R cos(q0 + φi) + Rcg cos(qi + q0 + φi)

B(q0, qi) = Rcg cos(qi + q0 + φi)

C(q0, qi) = −R sin(q0 + φi)−Rcg sin(qi + q0 + φi)

D(q0, qi) = −Rcg sin(qi + q0 + φi)

These kinematic relations may be replaced by those applicable to any other

design. These are given in Appendix A.

φi is the azimuth angle of blade i when q0 is zero. For the three bladed turbine

φi = 0◦, 120◦, 240◦ for i = 1, 2, 3 respectively. The elements of these matrices must

be updated for the current values of the generalised coordinates at each timestep.

The accelerations of the mass centres of the members are also defined in terms

of coefficients. For example in the x-direction:

ẍi = Ui +
n∑

j=0

Ui,j · q̈i (6.16)

The coefficients summed in the second term are the velocity coefficients defined

above. The first term is the acceleration coefficient for the i-th member, which is a

function of both the generalised velocities and displacements. In matrix notation,
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the x-direction acceleration is given by:

ẍ = U′ + U · q̈ (6.17)

Similar equations exist for the y and clockwise directions. For the rotor, the

acceleration coefficients are all zero. The acceleration coefficient matrices are:

U′ =




0

E(q0, q̇0, q1, q̇1)

E(q0, q̇0, q2, q̇2)

E(q0, q̇0, q3, q̇3)




(6.18)

V′ =




0

F (q0, q̇0, q1, q̇1)

F (q0, q̇0, q2, q̇2)

F (q0, q̇0, q3, q̇3)




(6.19)

where

E(q0, q̇0, qi, q̇i) = −Rcg(q̇0 + q̇i)
2 sin(qi + q0 + φi)−

R q̇0
2 sin(q0 + φi)

F (q0, q̇0, qi, q̇i) = −Rcg(q̇0 + q̇i)
2 cos(qi + q0 + φi)−

R q̇0
2 cos(q0 + φi)

All the angular acceleration coefficients are zero. Again, the form of these coeffi-

cients is specific to the pendulum type turbine. Expressions for the other types of

turbine discussed in this thesis are given in Appendix A.
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To treat an elastic type system, the expressions are the same, but the mass

centre radial offset Rac may be set to zero. The spring moment on each blade

is included as an external moment with magnitude calculated based on the in-

stantaneous pitch angle. An equal and opposite moment must be applied to the

rotor.

For the rolling profile design concept, the appropriate kinematic relationships

must be used to define the velocity and acceleration coefficients. These are given

in Appendix A.

External forces are also expressed in generalised terms. The generalised force

component Qj corresponding to qj is defined by:

Qj =
n∑

i=0

(Xi · Uij + Yi · Vij + Mi · Ωij) (6.20)

or in matrix notation:

QT = X ·U + Y ·V + M ·Ω (6.21)

where X,Y and Ω are vectors containing the x, y and clockwise external forces

and moments acting at the centre of mass of each of the members. In this case

these are the aerodynamic forces and pitching moments acting on the blades. The

external forces acting directly on the rotor are the neglected but a load torque

may be applied.

Paul defines a vector C whose elements represent the inertia forces on the

members due to centripetal and Coriolis accelerations. The term corresponding to
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the qj is given by:

Cj =
n∑

i=0

(U ′
imiUij + V ′

i miVij + Ω′
iJiΩij) (6.22)

In matrix notation:

CT = U′ T ·m ·U + V′ T ·m ·V + Ω′ T · J ·Ω (6.23)

using the diagonal mass and inertia matrices defined as:

m =




mrotor 0 0 0

0 mblade 0 0

0 0 mblade 0

0 0 0 mblade




(6.24)

J =




Jrotor 0 0 0

0 Jblade 0 0

0 0 Jblade 0

0 0 0 Jblade




(6.25)

where the J terms are the polar mass moments of inertia about the respective

centres of mass.

The generalised inertia matrix is the square FxF symmetric matrix whose ele-

ments are defined as:

Irj =
n∑

i=0

(UirmiUij + VirmiVij + ΩirJiΩij) (6.26)
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in matrix notation:

I = UT ·m ·U + VT ·m ·V + ΩT · J ·Ω (6.27)

The above matrices are used to form the equation of motion derived from La-

grange’s form of d’Alembert’s principle:

n∑
i=0

(
Qi − Ci −

F∑
j=1

Iij · q̈j

)
· q̇i = 0 (6.28)

The matrix form of the equation of motion is:

(Q−C− I · q̈) · q̇ = 0 (6.29)

The instantaneous accelerations may be found by solving the equation for q̈. For

general velocities, Equation (6.29) requires:

(Q−C− I · q̈) = 0 (6.30)

The solution is found by performing Gaussian elimination on the augmented ma-

trix:

[ I | (Q−C) ]

with matrices updated for the instantaneous positions, velocities and external

forces. The position and speeds at time t+∆t can be found through numerical

integration. Here a fourth-order Runge-Kutta numerical integration scheme is

used.
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6.7 Constrained Cases

For comparison purposes it is sometimes desirable to simulate the performance

either of a fixed bladed turbine whose speed is allowed to vary, or of a passive

variable-pitch turbine whose speed is held constant. For these constrained cases the

general procedure above is modified to remove the redundant degrees of freedom.

For the first case the system reverts to a single degree-of-freedom. The blades

may be fixed or their motion may be prescribed as a function of the azimuth, as for

a cycloturbine. The generalised force for the rotor degree of freedom is calculated

as normal, but an additional external load is added to account for the moment on

the blades that is now transmitted directly to the rotor and the moment required

to produce the prescribe blade motion.

For the second case, because the rotor speed is prescribed, the top row of the

normal augmented matrix is removed and the remaining rows (one for each of the

blades) are row-reduced to find the pitching accelerations.

6.7.1 Calculation of turbine torque

At any instant there is a certain torque applied to the turbine by aerodynamic

loads on the blades. Because the blades of a passive variable-pitch turbine are free

to move, not all of this torque is automatically available at the turbine shaft. The

shaft torque may be found by calculating the reaction forces acting on the rotor

itself at the blade connections. Since the Lagrangian analysis does not calculate

the internal reactions of the mechanism, these must be found by performing a

separate kineto-static analysis for each blade.

The joint reactions include the inertial loads due to the oscillating blades as well

as the aerodynamic forces on them. Both Bayly and Kentfield (1981) and Kirke

and Lazauskas (1992) neglected inertial effects of the swinging blades on the rotor
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torque. Both considered the blade inertia in predicting the pitch response, but

assumed that only the aerodynamic forces on the blade contributed to torque, as

is true for a fixed bladed turbine. At high speeds and for heavy blades, fluctuating

tangential inertial loads may be significant. In a detailed study of turbine dynamics

including possible speed ripple, the inclusion of such loads may be important. Also,

while for a periodically oscillating blade at steady-state the fluctuating tangential

reaction at each blade pivot due to the inertia of the blade should integrate to

almost zero, it is possible for some net energy to be imparted or lost through

hysteresis in the aerodynamic loads.

Where the blade has a fixed pivot axis, the torque contributed by the blade

is equal to the product of the tangential reaction force at the connection and the

turbine radius. For the rolling profile type design, because the contact point moves

fore and aft, the torque contribution also involves the normal reaction force. The

total rotor torque at any instant is the sum of these contributions from all blades.

Whether or not the turbine accelerates under the influence of the torque de-

pends on the load connected to the shaft. Speed may be held constant either

through an actively controlled load or an effectively infinite inertia passive load.

If the load torque at that speed is less than the torque applied to the rotor by

the blades then the turbine will accelerate. In this case the power generated by

the turbine is split between the load and acceleration of the rotor. In either case

useful work is performed. The self-starting of the turbine is the focus of this work

and is a task that otherwise must be performed by an external energy source.

In order to obtain a measure of turbine performance that accounts for both of

these outputs, the total torque is taken to be the sum of the load torque at the shaft

and the torque used to accelerate the turbine. This is calculated as the turbine
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acceleration multiplied by the total turbine and load inertia. For this purpose

the blades and rotor are considered as a single body. This provides an smoothed

estimate of the torque, as the instantaneous motion of the blades relative to the

rotor is neglected.

Alternatively, the total torque may be estimated by performing the kineto-

static analysis of the blades to find the joint reactions assuming the rotor accel-

eration to be zero. This method allows the fluctuating inertial reactions arising

from pitching acceleration to still be included. If these fluctuating loads happen to

integrate to some non-zero value over a complete revolution then this is included

in the torque.

6.8 Validation of Motion Simulation Code using

Pro/MECHANICA

In order to validate the motion simulation part of the code, results were compared

with those generated by the commercial motion simulation package Pro/MECHANICA.

A simplified scenario was modelled, consisting of three blades mounted on a rotor,

with a constant magnitude downwind force applied to each blade. Body masses

and moments of inertia were matched and the time step in each set at 0.02 s. A

damping moment of 0.05 Nm/rad/s was applied to the pitch axes. The radial loca-

tion of the mass centre of the blade with respect to its pivot axis was adjustable, as

was the location of the ‘aerodynamic centre’ or point of application of the constant

wind force.

The motion of the blades and the rotor was tracked for 315 time steps. The

predicted pitch angles for the three blades are shown in Figure 6.8. Note that for

clarity the vortex program’s results have been thinned, only every tenth time step
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Figure 6.8: Comparison of Pro/MECHANICA and vortex code predicted pitch responses
for constant wind force. Note that the vortex data has been thinned for clarity.

is shown. The maximum discrepancy in pitch angle at the end of 315 time steps is

0.33◦. This level of agreement gives confidence that the motion simulation module

of the vortex code is free from errors.

6.9 Comparison with Momentum Method

Simulations were run for a turbine of the pendulum type, shown in Figure 6.7,

with the parameters shown in Table 6.1. Rac is the distance from the pivot

axis to the aerodynamic centre, assumed to be at the quarter chord, and its value

determines the magnitude of aerodynamic pitching moment. Rcg is the distance

from the pivot axis to the centre of gravity of the blade assembly and it determines

the magnitude of the restoring moment on the blade.
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Diameter: 6 m
Height: 3 m
Blades: 3 NACA0018
Rac: 20 mm
Rcg: 45 mm
Blade chord: 400 mm
mblade: 28 kg
Jblade: 2.7 kgm2

Jrotor: 500 kgm2

Table 6.1: Turbine parameters for DMS - vortex model comparison

The present vortex method and the Double Multiple Streamtube method de-

scribed in Chapter 5 were used to predict turbine performance at a wind speed of

10 m/s and two different tip speed ratios.
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Figure 6.9: Predicted pitch response for vortex method and Double Multiple Streamtube
(DMS) method.

The predicted pitch responses are shown in Figure 6.9. At TSR = 3.1 the

turbine is at steady state, connected to a load whose torque is proportional to the

square of turbine speed. At TSR = 1 the turbine is accelerating when connected
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to the same load. The steep positive slope of the torque-speed curve prevents the

turbine from having a stable operating point at this TSR. Instead it is accelerating

up to the stable operating point at TSR = 3.1

At TSR = 1 the difference in pitch response predicted by the DMS and vortex

methods is largely due to the acceleration of the turbine. When using the DMS

model to study the starting behaviour of this type of turbine, stable operation is

assumed at all speeds, even if this is not possible when connected to a realistic

passive load. The difference in pitch response between steady-state and transient

cases is clear at this TSR. The difference is partly due to the different velocity field

predicted for the transient case, but is largely due to the effect of acceleration of the

rotor. The TSR increased from 0.89 to 1.03 during the course of this revolution.

The average torque calculated for the revolution by the DMS model is 277 Nm,

while the average torque for the transient vortex case is 343 Nm, including torque

driving the load and accelerating the turbine. The significant difference between

the two values is due to the difference in pitch response, especially in the azimuth

range -90◦ to +90◦, which is the upwind half of the orbit. The greater pitch

amplitude in this region reduces the amount of time spent by the blade in stalled

conditions, increasing the time spent developing useful torque.

The difference in the pitch responses at TSR = 3.1 is largely due to the dif-

ference in the velocity fields predicted by the models. The difference in average

torque is much smaller at this speed: 438 Nm for the DMS model and 417 Nm for

the vortex model.

The torque variations for one of the blades is shown in Figure 6.10.

While the momentum model is much simpler than the vortex model, it achieves

good agreement in the calculation of integrated quantities such as average torque
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Figure 6.10: Predicted torque variation for vortex method and Double Multiple Stream-
tube (DMS) method. (a) TSR = 3.1; (b) TSR = 1.0

at steady-state. However the prediction of starting performance using a steady-

state analysis may lead to significant discrepancies, not only in the instantaneous
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quantities, but also in averaged values. The free vortex model is better suited

to study of this aspect of turbine performance, which is critical to variable-pitch

turbines of this type.

6.10 Conclusion

A free vortex wake model has been developed for passive variable-pitch Darrieus

turbines. The model incorporates a motion simulation module that treats the en-

tire turbine as a multi-degree of freedom mechanism. The model provides the more

accurate and detailed aerodynamic load prediction commonly claimed for standard

vortex codes in comparison with momentum models. It also allows prediction of

transient turbine performance, which is important in the study of self-starting

ability as well as turbulent wind output.



Chapter 7

Development of a Parameter Selection Strategy for Passive

Variable-Pitch Systems

7.1 Introduction

The passive variable-pitch systems examined in Chapter 3 each consist in essence

of a blade free to pitch under the influence of aerodynamic forces, regulated by

some restoring moment, be it elastic or inertial in origin. For each specific design,

the magnitudes of the aerodynamic and restoring moments may be adjusted by

selection of the values of a number of design parameters. The predicted perfor-

mance has proven to be very sensitive to the values of these parameters. A logical

basis for the selection of appropriate values was therefore sought.

7.2 Study of Blade Pitch Response Using Pro/MECHANICA

7.2.1 Introduction

The Pro/MECHANICA model of a three-bladed pendulum type passive variable-

pitch turbine described in Chapter 4 has been used to study the effect of variation

in key design parameters on the blade pitch response. The polar moment of in-

ertia of the blade assembly and the magnitude of the aerodynamic and inertial

moment arms were varied and the predicted pitch responses in a steady wind were

compared.

155
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7.2.2 Simulation method

The Reynolds number for the simulations was assumed to be constant at 80,000,

based on a blade chord length of 150 mm and a free wind speed of 6 m/s. The lift

and drag coefficients used to calculate the aerodynamic forces on the blades were

those published by Lazauskas (2002) based on the data of Sheldahl and Klimas

(1981) for the NACA 0018 profile at this Reynolds number.

The model described in Chapter 4 allowed the variation of the blade polar

moment of inertia for a given mass. It also allowed the parameters Rac and Rcg to

be varied. These are the distance from the pivot axis to the aerodynamic centre

for the blade (assumed to be at the quarter chord) and the distance from the pivot

axis to the centre of mass respectively. These moment arms determine the relative

strengths of the restoring inertial moment and the driving aerodynamic moment

on the blade.

Eight different blade parameter sets were examined. The ratio of aerodynamic

moment to inertial moment was kept constant by fixing the ratio Rac : Rcg (see

Figure 7.1). The value of this ratio was arrived at by a process of trial and error

as one which produced favourable results over a range of tip speed ratios.

Each configuration tested is identified by the value of the normalised aero-

dynamic centre offset, R̄ac defined as Rac/c, where c is the blade chord. Here

c = 150 mm with turbine radius, R = 860 mm. The polar mass moment of inertia

of the blade assembly about the pivot axis varies with R̄ac as shown in Figure 7.1.

For each configuration the steady state blade pitch cycle was obtained with the

tower vibration degrees of freedom locked. Initially this was attempted by setting

an arbitrary load magnitude on the turbine shaft and an arbitrary initial turbine
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Figure 7.1: Definition of parameters Rac and Rcg.

velocity and allowing the turbine to proceed towards an equilibrium velocity and

pattern of pitch variation.

No equilibrium was reached without viscous damping in the blade pin joints.

A damping moment of 20 Nmm/(rad/s) was accordingly applied. It was discov-

ered that this approach still did not readily yield a steady-state operating point,

especially for large values of Rcg, with correspondingly large polar moments of

inertia.

In addition, for much of the speed range the turbine torque curve increases

sharply with speed, precluding the possibility of a stable operating point. Conse-

quently a “driver” was used to fix the turbine speed at a predetermined value and

the turbine was allowed to run until the blade pitch cycles reached steady state.

The simulation time required to reach steady-state increased with the value of

R̄ac of the blade configuration. The arrangements with the largest inertia required

an initially larger damping coefficient, which was then progressively reduced with

time until the final value of 20 Nmm/rad/s was reached.
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Once steady-state had been reached, blade pitch cycles and driver shaft torque

histories were recorded for a simulation run of 5 seconds (500 timesteps at 0.01s)

for each configuration.

7.2.3 Results

Fixed speed steady-state tests

Figure 7.2 shows the average torque for each configuration. It was found that there

was a threshold value of R̄ac below which torque was (highly) negative. Above the

threshold, torque was positive, but decreased with increasing R̄ac to a minimum

before rising slightly again. The reason for this distribution is apparent from the
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Figure 7.2: Pro/MECHANICA steady-state average torque results

steady state pitch cycles for the various configurations shown in Figure 7.3. For

all cases the pitch response is essentially sinusoidal. As R̄ac is decreased from the

maximum value the amplitude of the pitch response increases. However for those

cases where R̄ac is less than 0.137 the amplitude increases markedly and the phase

of the response changes. The sharp drop in torque that corresponds to this change
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is due to the fact that the pitch response becomes significantly out of phase with

the variation in incident wind direction.

As was shown in Figure 1.4 (page 11), the angle of attack variation on a fixed

blade is almost sinusoidal for tip speed ratios greater than one. In order to maintain

angles of attack of the correct sign for positive thrust to be generated, the pitch

response of the blades must be similarly sinusoidal and, ideally, in phase with the

zero-pitch angle of attack. If the phase angle between zero-pitch angle of attack

and pitch angle becomes too large, the blade then experiences angles of attack of

the wrong sign to produce lift with a forward component. Figure 7.4 shows the

variation in angle of attack on one of the blades for two of values of R̄ac tested. The

configuration with the greater pitch amplitude (R̄ac = 0.103) is almost completely

out of phase with the zero-pitch angle of attack.

The amplitude and phase of the blade pitch responses varies with the polar

moment of inertia in a fashion consistent with the variation in natural frequency

of the blade assembly.

While the turbine speed is constant, each blade can be regarded as a pendulum

suspended in an inertial field, where centrifugal force takes the place of gravity.

Ignoring the small variation in this acceleration with radius (and so with pitch

angle) for small angles the damped natural frequency is

ωd =

√√√√
[

mRcgRφ̇2

I + mR2
cg

]
−

[
b

2(I + mR2
cg)

]2

(7.1)

where m is the mass of the blade assembly; R is the turbine radius; φ̇ is the turbine

speed; b is the pitch axis damping coefficient; I is the blade moment of inertia

about its centre of mass. For small damping the natural frequency is an almost
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linear function of the rotor speed, so frequency ratio ω/ωd is almost independent

of speed.

The blade pitch response is akin to that of a single degree-of-freedom system

being excited by an approximately harmonic driving force. While the natural

frequency is higher than the running speed (the frequency ratio is less than one),

the motion of the blades is close to being in phase with the driving aerodynamic

force. However once the natural frequency drops through and below the running

speed, the response amplitude increases greatly and the phase angle passes through

90◦ toward 180◦. This is shown in Figure 7.5. According to Equation 7.1 the

frequency ratio is one when R̄ac is equal to approximately 0.1.
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Figure 7.5: Calculated mass-spring-damper system frequency ratio and phase angles.
The pitch response phase angles estimated from the zero-crossings are also shown.

The greatest output torque achieved here is at R̄ac = 0.137, for which the

frequency ratio is 0.90. This point represents a trade-off between the large pitching
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amplitude and small phase angles required to prevent stalling of the blades over a

significant portion of the revolution.

Variable speed steady-state tests

In order to investigate the significance of rotor speed fluctuations, further sim-

ulations were performed for two of the configurations with the driver removed.

Turbine average speed was held (approximately) constant over the 5 second run

by applying a shaft torque proportional to the square of the turbine speed, in the

style of a hydraulic load. The magnitude of the load was set so as to produce

an average torque equal to the average torque that the driver had applied when

holding the turbine at that constant speed.

Results for the these runs were almost identical to those with the driver in place.

This finding reflects the small magnitude of speed fluctuations. Fluctuations have a

three per period cycle for the three bladed turbine. It is apparent that interaction

between blades and rotor is minimal at steady-state because the effect of each

blade, which may be quite significant, tends to be cancelled out by those of the

other blades.

Transient response results

Further simulation runs were then conducted with the blades started from the

zero pitch position and allowed to progress towards steady state over 15 seconds.

This was done for two values of R̄ac (0.137 and 0.820), first with speed fixed at 9

rad/s and then with an initial velocity of 9 rad/s and the same hydraulic load as

before. The pitch angle histories (for one of the blades) are shown in Figure 7.6.

It can be seen that the interaction between blade and rotor for R̄ac = 0.137 is

minimal and steady state operation is already being approached after 15 seconds.
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By comparison the pitch histories for the driver and free cases for R̄ac = 0.820

diverge markedly, indicating the effect on pitch of fluctuation in rotor speed.

The turbine accelerations for steady state and transient cases are shown in

Figure 7.7. For R̄ac = 0.137, (b), the magnitudes of the acceleration variations

are not greatly different. For R̄ac = 0.820 however the transient case exhibits

significantly larger acceleration peaks than the steady state case. It is also the

only case for which a regular three per revolution pattern (reflecting the three

blades) has not developed by the end of the 6th revolution. This reflects the

stronger coupling between blade pitch speed and turbine speed associated with

larger moments of inertia Ipivot and greater mass centre offsets (Rcg).

While minimisation of Ipivot and Rcg does not appear to be critical to steady

state performance, it does affect transient performance and especially the time

taken to adjust to a change in conditions, such as a change in wind velocity. The

performance of the turbine in the turbulent conditions inevitably encountered in

the field is likely to be highly dependent on these parameters.

Turbine shaft reaction forces

The shaft radial reaction forces predicted by Pro/MECHANICA for two parameter

sets (R̄ac = 0.137 and 0.820) are shown in Figure 7.8. These results are for the

constant speed (driver) simulation runs at steady-state pitch patterns. It can

be seen that the maximum reactions are significantly higher for the turbine with

blades of greater mass moment of inertia. This indicates the significance of blade

inertial loads, showing that load fluctuations do not arise only from aerodynamic

forces.
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Figure 7.6: Pro/MECHANICA transient pitch responses for two parameter sets for the
constant speed ‘Driver’ case and the variable speed ‘Free’ case.



CHAPTER 7. PARAMETER SELECTION STRATEGY 165

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

4 5 6
Azimuth [rev]

T
u

rb
in

e 
A

cc
el

er
at

io
n

 [
ra

d
/s

/s
]

Steady State Transient
Rac/c = 0.82

(a)R̄ac = 0.820

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

4 5 6
Azimuth [rev]

T
u

rb
in

e 
A

cc
el

er
at

io
n

 [
ra

d
/s

/s
]

Steady State Transient
Rac/c = 0.137

(b)R̄ac = 0.137

Figure 7.7: Pro/MECHANICA turbine acceleration fluctuations over two consecutive
rotor revolutions for two parameter sets.
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The influence of tower stiffness was investigated by freeing the two planar

translation degrees of freedom at the rotor main bearing and applying a“point-

to-point” spring load between the centre of the rotor and the centre of the base.

The motion of the turbine under different values of stiffness of this spring was

examined. The shaft load was removed and the turbine allowed to accelerate from

an initial speed of 9 rad/s at a free wind speed of 6 m/s. The most successful

set of blade parameters (R̄ac = 0.137) and the appropriate initial blade velocities

and positions found from the steady-state analysis were used. The predicted shaft

reaction force magnitude fluctuations for three values of spring stiffness are shown

in Figure 7.9.
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Figure 7.8: Pro/MECHANICA turbine shaft reaction force magnitude fluctuations for
a locked rotor axis with two different blade inertias.

The stiffest spring (300 N/mm) kept total rotor axis displacement to less than

0.1 mm, resulting in a reaction force of approximately 30 N. The softest spring
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Figure 7.9: Pro/MECHANICA turbine shaft reaction force magnitude fluctuations for
three values of ‘tower’ stiffness.

(4 N/mm) resulted in an almost steady downwind displacement of the axis of

approximately 3 mm and a corresponding reaction of approximately 12 N. The

intermediate spring (35 N/mm) produced the largest displacement - approximately

10 mm and a corresponding force of 350 N. This displacement rotated at the

rotor speed. This spring stiffness corresponds to a simple translatory natural

frequency based on the rotor mass of approximately three times the rotor speed.

The 4 N/mm spring gives a natural frequency close to the rotor speed. The

relative displacements for the two stiffnesses indicates that the primary excitation

of the system occurs at three times the rotor speed, arising from the fluctuating

aerodynamic and inertial loads on the three blades of the turbine.

These results are for a simplified turbine/tower analysis where the mass of the

tower is not included. The trend of the results should not be altered by a change of

mass, only the speeds at which resonances lie. The results indicate that the inertial
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effects of the pitching blades of this type of turbine produce fluctuating reaction

loads at the shaft, at a frequency equal to the rotor speed times the number of

blades (blade pass frequency). The magnitude of these inertial effects is dependent

on the mass moment of inertia of the blades.

7.2.4 Summary

Pro/MECHANICA was used to examine the dynamic behaviour of a pendulum

type inertial passive variable-pitch turbine. Simulations were conducted for a range

of blade parameters at a steady state operating point with a wind speed of 6 m/s

and a tip speed ratio of 1.3. It was found that best performance was obtained when

the blade parameters were set so that the natural frequency was approximately

10% higher than the rotational speed of the turbine.

Rotor speed fluctuation at steady state was found to be small and the effect on

blade pitching was negligible, due to the mutual cancellation of inertial reaction

forces at the pivots of the three blades. Under transient conditions interaction

between blades and rotor was again minimal for the best blade parameter set but

was evident for the blade with the largest moment of inertia. It is concluded that

response time to changes in wind speed will be minimised by minimisation of blade

moment of inertia (Ipivot) and mass centre offset (Rcg).

Fluctuating turbine shaft reaction forces were found to be stronger for blade

arrangements with larger moments of inertia, further indicating the desirability

of minimising the blade inertia. The simulation indicates the possibility of large

displacements and reaction forces at the main bearing when the tower stiffness

places the natural frequency close to the blade pass frequency.
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7.3 Parametric Study of an Elastic Passive Pitch System using the

Momentum Model

In order to undertake a more comprehensive study of parameter selection on tur-

bine performance, the momentum theory mathematical model described in Chap-

ter 5 was used. The quantities most critical to turbine performance are the strength

of the driving aerodynamic moment and the strength of the restoring moment.

These quantities are most easily examined in the context of an elastic-type passive

variable-pitch turbine, where the restoring moment is produced by a spring. In

this case adjustment of the spring stiffness does not affect the mass moment of

inertia of the blade assembly as it does in an inertial-type system.

7.3.1 Selection of restoring moment parameter

A turbine with the parameters shown in Table 7.1 was tested. These parameters

are based on those quoted by Kirke (1998) for his demonstration turbine.

Parameter Value
Diameter: 6 m
Height: 3 m
Blades: 3 (NACA0018)
Blade chord: 400 mm
Aerodynamic moment arm Rac: 25 mm
Inertial moment arm Rcg: 0 mm
Blade mass mblade: 28 kg
Blade mass moment of inertia I: 2.55 kgm2

Damping coefficient, b: 2 Nm/(rad/s)

Table 7.1: Turbine parameters used for DMS study

The restoring moment on the blade was assumed to be provided by a torsion

spring, which applied a moment linearly proportional to the pitch angle. The

spring constant is labelled K. The steady-state performance of the turbine was
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predicted at tip speed ratios (TSRs) ranging from 0.2 to 5 for different values of

K at a wind speed of 7 m/s.
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Figure 7.10: Steady-state torque coefficient Cq predicted by the momentum model for
a range of TSR and torsion spring constant K. Each dot represents an operating point
and Cq is indicated by the colour. The three reference curves shown are:

A : K = 0.070 mbladeRφ̇2

B : K = 0.045 mbladeRφ̇2

C : K = 0.034 mbladeRφ̇2
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Figure 7.10 shows clearly that the torsion spring stiffness K should be approxi-

mately a function of the square of the tip speed ratio. The red band of high torque

is very narrow for low speeds (TSR< 1.5), but broadens at higher speeds. At tip

speed ratios greater than approximately three, the spring stiffness may increase

toward infinity with almost no change in torque. This reflects the small pitch am-

plitude at these speeds, making the turbine behave much like a standard Darrieus

turbine (which may be regarded as having blade springs of infinite stiffness).

Shown for reference are three curves representing different relationships be-

tween K and turbine speed. These are of the form K = aFR, where FR =

mbladeRφ̇2 is the centrifugal load on the blade and a is a constant. The significance

of the form of this relationship is that inertial pitch control systems naturally pro-

vide a restoring moment that scales with centrifugal force. If an elastic-type system

were to be used the torsional stiffness should somehow be made to increase with

centrifugal load. This is the aim underlying the elastomeric pitch control concept

explained in Section 3.2. Designs using a simple spring with a constant stiffness,

such as those of Brenneman (1983) and Leigh (1980) shown in Section 2.1.2, will

clearly not be as effective, based on these results.

An inertial system like the pendulum type of Sicard (1977) and Kentfield (1978)

has a sine relationship between pitch angle and restoring moment; however over

small angles it may be regraded as linear. An inertial system may then be regarded

as equivalent to an elastic system in which the stiffness increases with centrifugal

force. These results indicate a clear basis for implementing such a torsion spring

stiffness function.

If the spring constant can be made to vary in such a fashion with rotor speed

then significant torque can be developed at all tip speed ratios. The predicted
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torque-TSR curves for the three relationships A, B and C shown in Figure 7.10

are shown in Figure 7.11. Also shown is the predicted torque curve for fixed blades.

Spring characteristic C is too soft, and falls off the high torque ‘ridge’ evident

in Figure 7.10. This is especially true at tip speed ratios between 0.5 and 1.5.

Spring A is marginally too stiff and improved torque at virtually all tip speed

ratios is gained by using spring B.
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Figure 7.11: Torque coefficient Cq predicted by the momentum model for the three
spring characteristics shown in Figure 7.10. For reference the prediction for a fixed-
bladed turbine is also shown.

The reason for the nature of this relationship is evident from the different

pitch responses of the blade for the three spring characteristics. These are shown

in Figure 7.12.

It is evident that the amplitude of the pitch response at all tip speed ratios

reduces with increasing spring stiffness. More importantly, the phase lag of the

response is smaller for the stiffer springs. As shown in Figure 1.4, the angle of
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characteristics A,B and C shown in Figure 7.10.
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attack variation that drives the pitch response is approximately a sinusoid with

zero crossings at azimuth angles 90◦ and 270◦. The pitch response to this variation

should be as close to being in phase as possible. The predicted response for Spring

C, which is the softest spring, shows that for TSR less than one, the pitch angle

is still significantly positive at azimuth 270◦. This causes the angle of attack on

the blade to be temporarily negative, resulting in severe negative thrust and thus

negative torque.

The stiffer springs A and B show a smaller phase lag and correspondingly

better torque at low TSR in Figure 7.11. At the lowest TSR tested of 0.2, all three

springs produce similar torque. This is because at this low speed the blade swings

from one limit to the other (here set to ±40◦). The limits effectively supplement

the springs and prevent the blade from ever becoming too far out of phase.

As discussed in Section 7.2.3, insight into the pitch response can be gained

by regarding the blade as a single degree of freedom spring/mass/damper system.

The small angle natural frequency for constant rotor speed is (see for example

Thomson (1993)):

ωn =

√
K

I
(7.2)

K is the spring stiffness, I is the mass moment of inertia of the blade assembly.

The damped natural frequency is given by:

ωd =

√(
K

I

)
−

(
b

2I

)2

(7.3)

where b is the damping coefficient.
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The response to a harmonic excitation force of frequency ω of such a system is

of the form:

θ = X sin(ωt− β) (7.4)

The response phase angle β for such a system for a harmonic driving force is given

by:

tan β =
b ω

K − Iω2
(7.5)

The amplitude of response to a harmonic excitation is given by:

X =
M√

(K − Iω2)2 + (b ω)2
(7.6)

where M is the amplitude of the harmonic driving moment. The amplitude may

be expressed in terms of the natural frequency ratio ω
ωn

and damping ratio ζ:

X =
M√

(1− ( ω
ωn

)2)2 + (2ζ( ω
ωn

))2
(7.7)

These relations are illustrated in Figure 7.13.

If K = amRω2 is proportional to the square of turbine speed as it is in this

case, with small blade damping, the frequency ratio (of turbine speed to natural

frequency) is virtually constant for all but very low speeds.

ω

ωd

≈ ω

ωn

= ω

√
I

K
= ω

√
I

amRω2
=

√
I

amR
(7.8)

Recall that a is a constant defining the spring stiffness. Also note that in the

discussion of natural frequency the notation ω = φ̇ has been adopted for the

turbine speed.
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Figure 7.13: Non-dimensionalised response amplitude and phase angle for harmonic
excitation for a single degree of freedom spring/mass/damper system. Reproduced from
Thomson, W., Theory of Vibration with Applications, 4th ed. Chapman & Hall, 1993.

Figure 7.14 shows that Spring C is closest to the damped natural frequency

at speeds above TSR = 0.5 in this case. The torque coefficient results shown in

Figure 7.10 are plotted again in terms of the damped natural frequency. It is clear

from this plot that maximisation of torque at all tip speed ratios is achieved by a

constant frequency ratio of approximately 0.82 in this case.

The relationship between frequency ratio and the theoretical phase angle for the

spring/mass/damper system is shown in Figure 7.15. Since the damping coefficient

is constant, the damping ratio decreases as turbine speed increases. The phase

angle therefore is greatest at low speeds. The response lags the driving force by

π/2 radians at resonance (frequency ratio of 1), and the proximity to the natural

frequency produces large phase angles even at TSR = 4.
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While the stiffest spring, A, puts the blade furthest from the natural frequency

and thus produces the smallest phase angle, the reduced amplitude of response at

this frequency ratio is detrimental. At low and intermediate tip speed ratios, the

natural variation in relative wind direction requires a large pitching amplitude to

produce useful torque. If the pitch amplitude is too small, little improvement over

a fixed-blade turbine is gained.

In summary, it is desirable to minimise the natural frequency ratio in order

to minimise the phase angle between aerodynamic driving moment and the pitch

response. If the blade operates too close to or above its natural frequency, the

pitch response lags the wind incidence variation by so much that the sense of

the lift produced is opposite to that needed and severe negative torque results.

A frequency ratio of one is a ‘hard boundary’ beyond which torque drops very

rapidly to negative values.

It is also in general desirable to maximise the pitch response amplitude. For

intermediate tip speed ratios, at which improved performance is the primary focus

of this work, output is generally improved by maximising the pitch amplitude,

so long as the phase angle remains small. A large pitch response reduces the

amplitude of the variation in angle of attack experienced by the blade, which

reduces the proportion of time spent in blade stall. If the pitch response amplitude

is too small, the performance of the turbine approaches that of a fixed bladed

turbine. The region of excessively low frequency ratio constitutes a ‘soft boundary’,

as performance is gradually diminished.

A balance must therefore be struck between an adequately large pitch am-

plitude and an adequately small phase angle. This compromise is assisted by

maximising the aerodynamic driving moment and minimising the blade inertia.
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For example, if Rac could somehow be increased without changing I, the response

amplitude could be increased without increasing the frequency ratio and so the

phase lag. The desirability of finding blade materials and a design that minimise

mass and moment of inertia is clear. For whatever mass properties are given, Rac

and the inertial or the elastic stiffness may be adjusted to produce a natural fre-

quency ratio that represents an appropriate balance between amplitude and phase.
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Figure 7.14: Spring/mass/damper frequency ratio for the three spring characteristics
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Figure 7.15: Spring/mass/damper theoretical harmonic excitation response phase angle
for the three spring characteristics A,B and C.

7.3.2 Selection of aerodynamic moment arm Rac

The foregoing analysis was conducted with the aerodynamic moment arm Rac set

at 25 mm. Rac is the distance from the pivot axis to the aerodynamic centre.

Assuming that the driving aerodynamic moment is predominantly provided by

the lift force, the moment is given by:

Maero ∝ 1

2
ρ c L CL W 2Rac (7.9)

where ρ is the air density, c is the blade chord, L is the blade length, CL is the lift

coefficient and W is the relative flow velocity.

For a given blade and counterweight the mass moment of inertia of the blade

assembly, I, is a function of Rac. I may be estimated by Equation 3.7:

I = Iblade + Icw +
mtotal

mcw

(mblade(Rac − 0.25c + xcgblade)
2 + mtotalR

2
cg)



CHAPTER 7. PARAMETER SELECTION STRATEGY 180

From Equation7.6, the response amplitude is proportional to:

X ∝
1
2

ρ c L CL W 2Rac√
(K − Iω2)2 + (b ω)2

(7.10)

So for a given blade, increasing the aerodynamic moment arm Rac linearly

increases the strength of the aerodynamic driving moment, but also increases the

polar moment of inertia according to Equation 3.7. As Rac approaches zero, Maero

approaches zero but the moment of inertia approaches a finite minimum. The

response amplitude therefore approaches zero. As Rac goes to infinity, I becomes

almost proportional to Rac according to Equation 3.7. The response amplitude

therefore again approaches zero. At some intermediate value of Rac, the ratio

Rac : I is a maximum. Using Equation 3.7 this value, labelled R ∗
ac, is found to be

R ∗
ac =

√
mcw

mtotal
(Iblade + Icw) + (mblade(−0.25c + xcgblade)

2 + mtotalR2
cg)

mblade

(7.11)

If damping is zero, the response amplitude for a spring/mass/damper system given

by Equation 7.6 is a maximum at R ∗
ac. For non-zero blade damping, the amplitude

is reduced and the value of Rac giving maximum amplitude increases. For small

damping ratios the ratio Rac : I gives a good indication of the response amplitude.

Figure 7.16 shows the pitch response amplitude over a range of tip speed ratios

predicted by the momentum model for values of Rac between 25 mm and 200 mm.

Also plotted is the variation of the ratio Rac : I with Rac. The value of R ∗
ac given

by Equation 7.11 is 100 mm in this case, which is the location of the peak Rac : I

value. The variation pitch response amplitude at each tip speed ratio mirrors the

variation in Rac : I. The elastic restoring stiffness is adjusted for each value of Rac

to maintain the same frequency ratio.
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Figure 7.16: Pitch response amplitudes predicted by the momentum model for values of
Rac between 25 mm and 200 mm. The elastic restoring moment is adjusted to maintain
the frequency ratio at 0.82 in each case. The variation of the ratio Rac : I with Rac is
also plotted.

Figure 7.17 shows the variation in the stiffness of the restoring spring that

is required to maintain the frequency ratio at a value of 0.822 for the turbine

parameters given in Table 7.1. For any value of Rac, the spring stiffness is assumed

to be proportional to the square of the turbine speed.

Figure 7.18 shows the performance predicted by the momentum model for the

turbine with Rac varied between 25 mm and 200 mm and the spring stiffness

varied as shown in Figure 7.17. For all cases the frequency ratio is the same. The

variation in performance reflects the variation in response amplitudes, as shown in

Figure 7.16, as well as variation in damping ratio, which affects the phase angle.

In general, the larger pitch amplitudes produce improved performance at lower

tip speed ratios, but degrade higher speed performance. The value of Rac chosen

for the analysis shown in Figure 7.10 of 25 mm produces a smaller amplitude
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Figure 7.17: Variation in stiffness of the ‘ideal restoring spring’ required to keep the
frequency ratio constant for a range of values of Rac.
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than would be produced by larger values of Rac. In this case, improved overall

performance results. The value chosen for a particular turbine would depend on

its specific combination of parameters, such as the blade and counterweight mass

and moment of inertia, blade centre of gravity location, aerofoil profile and chord

length and so on.

A large Rac makes the driving aerodynamic moment large relative to the re-

sistance of friction and damping. However there are a number of constraints that

limit the value of Rac. For a large Rac, the pitching motion of the blade results

in significant translatory motion of the aerodynamic centre. The angle of attack

experienced by the blade is then modified by its own motion. This increases the

aerodynamic damping on the blade that arises from its positive lift curve slope

(this phenomenon is discussed further in Section 7.3.3).

Secondly, a large Rac also places the pivot axis a long way forward, outside

the blade profile. This presents problems from a design point of view. The blade

connection components are then not concealed within the blade and require fairing

to reduce parasitic drag. Further, the large moment arm at which the counter-

weight acts results in large bending loads on the member on which the weight is

mounted. It is likely that such structural considerations would take precedence

over aerodynamic optimisation in most cases.

7.3.3 Blade damping

The current analysis suggests that deliberate damping of the blade motion is not

desirable. Damping serves to reduce the amplitude of the pitch response as well

as increasing the phase lag. If the amplitude is too great, then in general it would

be better to reduce it by reducing the aerodynamic centre moment arm, Rac, to

reduce the driving moment, rather than to add damping. This does not affect
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the phase of the response and results in a reduced mass moment of inertia for the

blade assembly.

Kirke (1998) stated that the blades on his demonstration turbine were heavy

enough to require damping, by means of damping cylinders that were also used to

limit the blade travel.

Even if some form of damping is not included deliberately, it is assumed that

some damping of the blade pitch motion will arise naturally. Such damping would

exist within the blade connection itself and as aerodynamic damping.

Hansen (1995) concluded that aerodynamic damping on horizontal axis wind

turbine blades arises primarily from the positive lift-curve slope of the aerofoil. If

the blade ‘flaps’ normal to the rotor plane in the upwind direction, the blade’s

own velocity increases the angle of attack, resulting in increased lift that opposes

the flap motion. Conversely, if the blade moves downwind, the angle of attack

is decreased, resulting in a loss of lift. This effect is inherently related to the

transverse velocity and produces positive damping of blade flap motion. This

damping is not related to viscosity of the air and arises in a potential flow analysis.

It is dependent on the fact that lift is proportional to angle of attack. If the blade

is operating near its stall angle, the negative slope of the lift curve beyond stall

can result in ‘negative damping’, which produces instability.

Aerodynamic damping of this form should emerge naturally from the calcula-

tion of aerodynamic loads so long as the angle of attack takes into account the

motion of the blade. This damping does not need to be included in the damping

coefficient.

Aerodynamic damping arising from the viscosity of the air would need to be

accounted for in the damping coefficient, but this effect is likely to be small. Fung
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(1955) does not include a separate viscous aerodynamic damping term of this form

in his text on the theory of aeroelasticity.

The value of the damping coefficient is therefore determined mainly from the

structural damping of the blade connection. This damping may well not be viscous,

but instead may be structural (force proportional to displacement). According to

Cook (1995), structural damping is difficult to model mathematically, and it may

be idealised as viscous damping so long as it is small (< 10%).The amount of

structural damping that exists would depend on the exact design of the blade

connection. For an elastic type system, especially one using an elastomeric mate-

rial, the damping may be significant. However for a purely inertial system where

nominally no deformation of material is involved, damping would seem to be very

low.

Bayly (1981) included a damping term in his analysis, though did not comment

on its physical origin. He found that the predicted blade pitch pattern would

not converge for critical damping ratios less than 0.1. He tested damping ratios

between 0.1 and 2, and concluded that the value of the damping ratio does not

have a strong influence on performance at tip speed ratios greater than 3.5 (this

was the lower limit of his range of study). It seems logical that the influence of

damping should decrease with increasing tip speed ratio, as the amplitude of the

pitch response naturally decreases with speed.

Kirke (1998) and Lazauskas (1992) make no mention of a damping term in

their mathematical model.

It was found that the value of the damping constant may have a significant

effect on predicted blade pitch response patterns and on the average torque for

the revolution, especially at low and intermediate tip speeds. Increased damping
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alters the frequency ratio, decreasing the amplitude and increasing the phase angle

of the response.

Damping also accelerates convergence of the pitch response to the steady state

pattern. It was found that instead of converging to a single steady state pitch

response, the blade often settled into a two-revolution period cycle, with the

revolution-average torque alternating between two distinct values. Less commonly,

a three revolution cycle may develop. When this occurred, the check for steady-

state convergence would fail, as this was based solely on comparing the torque

coefficient values for the two most recent revolutions.

Increased damping reduces the tendency for multiple-revolution cycles to de-

velop, but also significantly changes the predicted pitch pattern and average torque

(see Figure 7.19). It may also be noted that the general trend is for the torque to

decrease with increasing damping.

For the purposes of these analyses, the damping coefficient has been set to

the lowest value possible that allows convergence to a single torque to occur at

most tip speed ratios. Where a two-revolution pattern persists, an average of

the alternating torque values is taken. This value approximates the steady-state

average torque that would be produced by a turbine with such a two-revolution

period.

It is not clear whether multiple-revolution pitch cycles occur in reality. In the

field, even if the actual damping were low enough for such patterns to develop, it

is likely that continual changes in conditions would not allow precise repetition of

any pattern, whether it had a period of one or two revolutions.
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Figure 7.19: Comparison of the convergence of predicted torque coefficient Cq with
successive revolutions for different blade damping coefficients.

7.4 Validity of the Spring/Mass/Damper Analogy

The analogy of a mass/spring/damper system response to harmonic forcing is

clearly a simplification of the real situation. Specifically, the aerodynamic forces

and moments that drive blade pitching do not vary in a simple sinusoidal fashion,

especially for TSR< 1 and around blade stall. Aerodynamic forces on the blade

always cause it to seek zero angle of attack. As the amplitude of the pitch response

increases, the angle of attack experienced by the blade tends to zero and so does the

lift force that causes the pitching. If the inertia of the blade causes it to overshoot,

the angle of attack will switch sign and begin to reduce the pitch angle. The pitch

response amplitude is therefore limited by the amplitude of the variation in angle

of attack that would be experienced by a fixed blade at that tip speed ratio. The
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harmonic forcing spring/mass/damper analogy also breaks down as this point is

approached.

However the analogy is a useful starting point in the design of passive variable-

pitch turbines for which the restoring moment is roughly proportional to the blade

pitch angle.

There are designs for which this approximation is not applicable. The stabiliser

mass concept used in the designs of Liljegren (1984) and Kirke and Lazauskas

(1991) produce a restoring moment that is constant in magnitude at a given turbine

speed and is independent of the pitch angle. It is difficult to predict the behaviour

of such a system based on the replacement of the stabiliser mass with a spring. At

best, the stabiliser mass restoring moment could be taken as a kind of average of

a torsion spring moment taken over the pitch amplitude. However the stabiliser

mass moment at pitch angles close to zero is very much greater than would be

applied by the spring and conversely, the mass moment at the extremes of pitch

would be less than the spring moment.

In Section 3.3.4 the concept of tailoring the shape of the rolling profile was ex-

plained. The shape of the profile may be designed so that the relationship between

pitch angle and restoring moment is not linear. In terms of the present analogy

this is akin to providing a torsion spring with a non-linear stiffness characteristic.

If the slope of the moment-angle curve is made to decrease with increasing pitch

angle, then the blade should feel an effectively stiffer spring when its pitch ampli-

tude is small than when the amplitude is large. Theoretically this should enable

the performance of the turbine to be improved, by effectively blending a relatively

‘soft spring’ at low tip speed ratios, where the pitch amplitude is large, with a

‘hard spring’ at high tip speed ratios where the amplitude is small.
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In some respects the mass stabiliser concept is an extension of this idea. The

‘average’ stiffness of the torsion ‘spring’ felt by the blade depends on the amplitude

of the pitch response. At small amplitudes the mass acts like a very stiff spring,

while at large amplitudes it is more like a soft spring (see Figure 7.20).
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average moment
as stabiliser mass
for large amplitude

Linear spring
with same
average moment
as stabiliser mass
for small amplitude

Figure 7.20: Stabiliser mass torsion spring analogy

For this reason, the stabiliser mass concept is able to allow large pitch ampli-

tudes at low speeds to provide good starting torque, while effectively locking the

blade to zero pitch at high speeds, so the turbine acts like a standard Darrieus.

There is a threshold of restoring moment that has to be overcome in order to

move from zero pitch prevents small oscillations. While this is a desirable trend,

the variation in effective stiffness with pitch amplitude in some instances may be

excessive. Kirke (1998) states in his conclusion that a large pitch amplitude, up

to 45◦, is an advantage at low tip speed ratios, but that mathematical modelling

indicated that a higher maximum efficiency (attained at high tip speed ratios) was

produced by a smaller pitch amplitude (typically less than 10◦). It is possible that
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the limiting of blade pitch to relatively small angles (using stops) was found to be

advantageous because the stops supplemented the stabiliser mass at intermediate

tip speed ratios, preventing the blade motion from becoming too far out of phase

with the wind.

7.5 Summary

Most of the passive variable-pitch design concepts discussed in Chapters 2 and 3

are able to be approximated by a simple mass/spring/damper. The mass stabiliser

designs of Lilegren and Kirke are difficult to characterise in this way because the

restoring moment is constant and not proportional to the pitch angle.

The following conclusions have been reached on the basis of this analysis:

• The magnitude of the restoring moment should be approximately

proportional to the square of the rotor speed. For small damping, this

makes the natural frequency of the blade almost proportional to speed and

the frequency ratio almost constant. Inertial-type designs naturally produce

such a moment.

• The ‘stiffness’ of the restoring moment should be chosen so that

the frequency ratio is less than one. This prevents the blade motion

from being completely out of phase with the driving aerodynamic moment.

• The frequency ratio must be high enough to produce an adequate

pitch response amplitude, but low enough to keep the phase angle

of the response small. If the frequency ratio is too near one, the pitch

response approaches 90◦. If the frequency ratio is too low, the blade does

not pitch sufficiently and no great improvement over a fixed-bladed turbine



CHAPTER 7. PARAMETER SELECTION STRATEGY 191

is obtained. The exact value depends on the specific turbine parameters and

the degree of damping in the blade mechanism.

• There is a value of the aerodynamic moment arm Rac for which the

ratio Rac : I is a maximum. This value should yield the greatest amplitude

of pitch response and should allow the use of the lowest frequency ratio. A

smaller value may however yield better overall performance, especially at

higher tip speed ratios. It is likely that structural design considerations

would override aerodynamic optimisation in the selection of Rac.

• The above conclusions, based on the modelling of each blade as a

spring/mass/damper system, provide starting points for more de-

tailed analysis using a mathematical model such as the momentum

model. The complexity of Darrieus turbine aerodynamics makes the design

process difficult. The analogy is especially tenuous at tip speed ratios less

than one. Also specific design concepts such as the mass stabiliser design are

not readily treated in this manner.



Chapter 8

Analysis of Turbulent Wind Performance

8.1 Introduction

One of the advantages of the free vortex wake mathematical model over the mo-

mentum model is its ability to handle unsteady conditions. While the self-starting

ability of passive variable-pitch turbines in steady wind has been the focus of this

thesis, the performance of this type of turbine in a turbulent wind has also been

studied.

Both Bayly (1981) and Kirke (1998) identified unsteady wind and its effect on

blade pitch response as an area requiring further study.

8.2 Performance in a Wind of Varying Velocity

Simulation runs using the vortex model were conducted for a turbine operating in

a free wind of fixed direction but sinusoidally varying velocity.

Nattuvetty and Gunkel (1982) performed an analysis of the performance of a

cycloturbine in varying wind. The pattern of pitch variation is predetermined for

the cycloturbine and is independent of tip speed ratio. The present analysis takes

into account the gradual change in pitch response that occurs with changing wind

conditions.

Since the power of the wind is a function of the cube of the wind speed, more

energy passes through a fixed area in one period of a wind of sinusoidally varying

192
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Parameter Value
Type: Rolling profile
Diameter: 6 m
Height: 3 m
Blades: 3 (NACA0018)
Blade chord: 400 mm
Rac: 40 mm
Profile: Circular arc - Rcg 55 mm
Blade mass: 28 kg
Ipivot: 3.19 kgm2

Damping, b: 0.5 Nm/(rad/s)
Friction: 0.0003 Nm/N
Pitch limits: ±30◦

Table 8.1: Turbine parameters for variable velocity wind simulation. Ipivot is the mass
moment of inertia of the blade about its nominal pivot point, the centre of mass.

velocity than for a steady wind of the mean velocity. In order to enable direct

comparisons between steady and unsteady winds, the mean and amplitude of the

sine function were selected to make the average power the same. That is, for the

wind velocity given by:

U(t) = U ′ sin(t
2π

T
) + Ū (8.1)

the steady wind U0 that gives the same average power is found by:

1

2
ρA

[
1

T

∫ T

0

[U ′ sin(t
2π

T
) + Ū ]3 dt

]
=

1

2
ρAU3

0 (8.2)

where A is the swept area of the turbine and ρ is the air density. This gives:

U0 = (
3

2
U ′2Ū + Ū3)

1
3 (8.3)

A turbine with the parameters given in Table 8.1 was studied. A load was

applied to the turbine with torque proportional to the square of turbine speed.

This type of load allows the turbine to operate at constant steady-state tip speed
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ratio and power coefficient regardless of wind speed. Such a load arises for example

from the direct heating of water by an impeller attached to the turbine shaft

(Nattuvetty and Gunkel, 1982). The magnitude of the load was chosen so that the

steady-state operating point lies at close to the peak of the power coefficient - tip

speed ratio curve. The steady-state efficiency was found using the vortex model

by performing a simulation run with a constant wind speed of 7 m/s.

Several runs were then conducted using the vortex model with a sinusoidally

varying wind. From Equation 8.3 the values U ′ = 6.93 m/s, Ū = 0.99 m/s

were found to give the same average power as a steady wind of 7 m/s, regardless

of the period. The period of oscillation was varied between 2 and 50 seconds.

The resulting oscillation of power transmitted to the load with time is shown in

Figure 8.1. Since the load torque is proportional the square of the speed, the load

power is proportional to the cube of the speed. The speed oscillates at the same

frequency as the wind speed variation. Due to the inertia of the turbine and its

load, the turbine speed lags the wind speed and as the frequency increases, the

amplitude of the turbine speed oscillation diminishes, as the turbine is not able to

respond to the rapid fluctuations.

Nattuvetty and Gunkel (1982) found that for a cycloturbine connected to a

load of this type, all the operating points predicted by his analysis lay on a cubic

curve on the power coefficient-tip speed ratio plot. This fact results from the use

of the load torque to define the power coefficient. Under unsteady conditions, part

of the total torque developed by the turbine drives the load while the remainder

accelerates the inertia of the turbine and load. Because of this the total instanta-

neous power is different from the load power. In examining the self-starting ability

of turbines, the total power was used because both the energy being fed to the load
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and being used to accelerate the turbine were considered as useful. In the case of a

statistically stationary varying wind, any work done in changing the turbine speed

may be considered as lost. The use of the load power does produce apparently non-

sensical instantaneous power coefficients greater than the steady-state optimum in

a fluctuating wind. This occurs when the turbine speed lags a drop in wind speed

due to inertia and is temporarily driving the load faster than is sustainable. The

turbine soon decelerates however and then lags the wind speed when it rises again,

resulting in a lower than optimum power coefficient. The turbine is never allowed

to settle to steady-state and the average power delivered to the load is less than

would be extracted from a steady wind of the same average power.

Rosen and Sheinman (1994) performed a simulation of a horizontal axis wind

turbine in a sinusoidally varying wind. They found that for low frequency vari-

ation the average power coefficient was not significantly lower than for a steady

wind. However as the frequency increased, the effect on efficiency become more

pronounced. There was a frequency at which the deviation from steady wind

performance was greatest and for higher frequencies, the performance recovered

towards the steady wind level. This was explained as the turbine’s inability to

respond to such rapid variations in the wind. A similar trend was observed with

the present results, shown in Table 8.2.

Results for two different total (turbine and load) mass moments of inertia (It)

are presented. The lower inertia is for a turbine with a bare rotor plus load moment

of inertia of 100 kgm2, resulting in a total moment of inertia of 866 kgm2. The

heavier rotor has a mass moment of inertia of 1000 kgm2, giving a total inertia of

1766 kgm2. The remainder of the inertia comes from the blades.
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It = 866 kgm2 It = 1766 kgm2

Period Cpavg Difference Cpavg Difference
s % %

steady 0.405 0 0.405 0
2 0.392 -3.4 0.389 -4.0
3 0.375 -7.6 0.375 -7.5
5 0.385 -5.1 0.389 -4.0
8 0.391 -3.6 0.391 -3.6
10 0.393 -3.1 0.393 -3.1
20 0.388 -4.2 0.394 -2.8
50 0.393 -3.1 0.391 -3.7

Table 8.2: Average power coefficients for the turbine with two different values of rotor
inertia in a wind of sinusoidally varying velocity magnitude.

The oscillating power output for the various frequencies tested are shown in

Figure 8.1. The effect of turbine inertia is obvious, with the heavier rotor experi-

encing a smaller amplitude of speed (and therefore load power) oscillation at every

frequency. The difference in average power produced by each turbine, shown in

Table 8.2, is surprisingly small and for some frequencies, the heavier rotor actu-

ally results in higher predicted efficiency. This unexpected result contradicts the

intuitive notion that reduced rotor inertia improves performance by allowing the

turbine to better track fluctuations in wind velocity. Such a result may be possible

if the load is not perfectly matched to the turbine to yield maximum efficiency.

8.3 Performance in a Wind of Varying Direction

A second set of vortex model runs was conducted for a wind of constant velocity

magnitude but varying direction.

One of the attractions of the vertical axis format is that the turbine does not

need to be oriented with the wind direction. While this feature simplifies the

turbine design, it does not guarantee that changes in wind direction have no effect

on performance. Passive variable-pitch turbines rely on the development of an
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Figure 8.1: Variation in power at steady-state in winds of fluctuating magnitude for two
values of turbine mass moment of inertia. The different frequencies of oscillation are
evident in the power fluctuations.

appropriate pattern of blade pitch response. This pattern is oriented relative to

the wind direction and takes some time to develop. If the wind direction changes,

the pattern of pitch must change in response and this change takes some finite

time. In the interim, the phase of the pitch response is effectively changed. If the

wind direction is constantly varying, then the steady-state pitch response pattern

may never have a chance to develop, and the efficiency of the turbine may be

diminished.

A turbine with the parameters given in Table 8.1 and with turbine inertia It

equal to 1766 kgm2 was simulated using the vortex model in a wind of constant

magnitude but varying direction. The wind speed was set at 7 m/s and the direc-

tion varied sinusoidally between limits of ±45◦. The frequency of the oscillation

was varied between 2 and 20 seconds.

Once the turbine had reached steady-state, the average output power was cal-

culated over an integer number of periods for each case. The results are compared

with the steady-state power for a steady wind in Table 8.3. The trend of the
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results is consistent with those for the sinusoidally varying velocity. The effect on

average output is small for low frequency variation and increases as the frequency

increases. For a period of 4 seconds, the blade pitch response was so disturbed

by the wind variation that the turbine decelerated almost to rest. At frequencies

higher than this however, the performance recovered, as the blades seemed to be

unable to ‘feel’ such rapid variations.

Period Average power coeff. Difference
s Cpavg %

Steady 0.405 0
2 0.366 -9.7
3 0.111 -72.6
4 0.005 -98.7
5 0.395 -2.4
10 0.403 -0.6
20 0.409 +1.0

Table 8.3: Average power coefficient results for wind of constant velocity magnitude and
sinusoidally varying direction.

Of interest is the slight improvement in efficiency predicted for low frequency

(period 20 second) direction variation over steady wind performance. The result

could be dismissed as a product of the numerical model with these specific initial

conditions, however it is not inconceivable that the result could be real. Axial

momentum theory for wind turbines states that the power coefficient can not

exceed the Betz limit due to the deceleration of flow through the turbine. The

flow velocity at the turbine is related to the flow velocity in the wake via Bernoulli’s

equation. In a wind of varying direction, the wake is no longer linear and stationary

behind the turbine and this may allow a higher velocity to persist at the turbine

for a given loading. This may allow a higher torque to be produced than could be

with a fixed wake. Further work is needed to investigate this possibility further.
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Figure 8.2 indicates the oscillation in output power resulting from a wind of

varying direction. This oscillation reflects an increase in torque during periods in

which the wind direction is moving in the same direction as the turbine rotation,

and a decrease in the opposite direction. This behaviour may be explained by the

effective phase change of the pitch response that results from the wind direction

change. If the wind direction moves to a positive azimuth angle, the phase angle of

the pitch response is effectively decreased. Since for a passive variable-pitch system

the blades always lag the driving aerodynamic force function by some amount, this

reduction in phase angle is generally favourable. Conversely, a negative change in

wind direction exaggerates the phase lag, reducing torque.
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Figure 8.2: Fluctuating power transmitted to the load for a wind velocity of constant
magnitude but direction varying sinusoidally between ±45◦. The effect of different fre-
quencies (indicated by the period T ) is evident. The high frequency ripple superposed
on all traces is due to the three blades of the turbine.
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8.4 Performance in “Real” Wind

In order to simulate a real wind, the Dryden turbulence model was used to generate

a time series of lateral and longitudinal free wind velocity components. The Dryden

filtering technique presented by McFarland and Duisenberg (1995) was used to

generate the velocity series from a random number input. A similar method was

employed by Pesmajoglou and Graham (2000) in a study of horizontal axis wind

turbines.

The input parameters for the filter - the longitudinal and lateral turbulence

length scales and velocity standard deviations - were selected from data from the

Engineering Sciences Data Unit (ESDU, 2001) for a surface roughness parameter

of 0.03 corresponding to “typical farm land” at a height of 10 m. These parameters

are shown in Table 8.4. The resulting velocity series is shown in Figure 8.3.

Nominal mean flow velocity: 7 m/s
Time interval: 1 s
Longitudinal turbulence length scale: 92 m
Lateral turbulence length scale: 22 m
Longitudinal velocity standard deviation: 1.28 m/s
Lateral velocity standard deviation: 1.00 m/s

Table 8.4: Turbulence parameters for “real” wind simulation

A number of factors influence the average output of a turbine in turbulent

wind. The shape of the power coefficient-tip speed ratio curve is important. For

a turbine operating at constant speed in a wind of varying velocity, the tip speed

ratio will vary as the inverse of the wind speed. Because the power in the wind is

proportional to the cube of the wind speed, the power coefficient that applies at

the higher speeds has a disproportionately large influence on the average efficiency.

For constant speed operation, the tip speed ratio is lower at these high wind speeds.

Therefore if the power coefficient for a turbine decreases with increasing tip speed



CHAPTER 8. ANALYSIS OF TURBULENT WIND PERFORMANCE 201

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500

Time [s]

V
el

o
ci

ty
 [

m
/s

]

Longitudinal component
Lateral component

Figure 8.3: Longitudinal and lateral velocity components generated by the Dryden tur-
bulence filter.

ratio in the range of interest, then the overall efficiency may actually be greater

than that for the mean steady wind. The opposite is true for a positive Cp-TSR

slope. The work of Rosen and Sheinman (1994) on horizontal axis wind turbines

demonstrates this relationship.

Ideally, the turbine speed should be set so that it operates at close to the peak

of the Cp-TSR curve as possible. In this case, any deviation in wind speed causes

a reduction in power coefficient and so the overall efficiency will be reduced, as

stated by Nattuvetty and Gunkel (1982).

For a turbine that is not constrained to operate at a constant speed, the inertia

of the system becomes important. For a hydraulic type load, where the torque is

proportional to the square of the speed, the turbine should operate at the same

steady-state tip speed ratio, no matter what the wind speed. If it had zero inertia,

the turbine would always be able to operate at this tip speed ratio even in a

turbulent wind and would suffer no loss of efficiency. The slope of the Cp curve
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would be irrelevant as the turbine would never leave its ideal operating point.

However for a real turbine with non-zero inertia, the turbine speed lags the wind

speed and it will be forced to operate at off-design tip speed ratios. For infinite

inertia, the system returns to the constant speed case described above. The inertia

of the system then determines to what extent the shape of the Cp-TSR curve affects

the overall efficiency.

For these reasons Kirke (1998) recommended that in order to minimise the

loss of efficiency that occurs in gusty conditions, the system inertia should be

minimised and the Cp-TSR curve should be made as flat as is practicable.

The above factors apply to any type of wind turbine. A third factor may

influence the performance of passive variable-pitch turbines. It has been assumed

above that the shape of the Cp-TSR curve is constant, and that the instantaneous

turbine output in unsteady conditions is always equal to the steady-state output

that would develop were the current wind and turbine speeds to be held constant.

However this is not necessarily the case for passive variable-pitch turbines. It has

been shown that the performance of the turbine is very sensitive to the blade

pitch pattern and that this pattern may take several revolutions to settle to its

final form. It is possible then that this settling time might significantly influence

the instantaneous output and also the overall average efficiency. It was desired to

test whether differences in the moment of inertia of the blades would affect this

settling time and would produce a measurable difference in average efficiency.

Four different passive variable-pitch turbines were tested in the turbulent wind

field. The parameters of these turbines are presented in Table 8.5. The ‘Elas-

tic’ and ‘Pendulum A’ turbines were selected to match as closely as possible the

parameters for the original rolling profile turbine whose parameters are given in
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Table 8.1. The blade mass moments of inertia (Ipivot) were calculated using Equa-

tion 3.7 in Section 3.3.4. It was found that because the Pendulum A turbine

had a greater mass moment of inertia, it had a higher natural frequency ratio

for the same restoring moment. In this case diminished performance resulted, so

the Pendulum B turbine was included with an increased mass centre moment arm

to match the frequency ratio of the other designs. The steady-state performance

predicted for this design closely matched those of the Rolling Profile and Elastic

designs (see Figure 8.4). It was desired to see whether the higher mass moment of

inertia of the Pendulum designs would affect performance in a turbulent wind.

Parameter Rolling Elastic Pendulum Pendulum Fixed
profile A B blades

Rac / mm 40 40 40 40 40
Restoring moment 55a 55b 55c 75c -
Ipivot / kgm2 3.19d 3.19 3.79 4.30 -
Load torque / (Nm/(rad/s)2) 3.6 3.6 3.6 3.6 1.5

aDistance from centre of curvature to mass centre [mm]
bTorsion spring stiffness constant (stiffness proportional to centrifugal load) [(Nmm/rad)/N]
cDistance from pivot axis to mass centre [mm]
dMass moment of inertia about the centre of mass

Table 8.5: Parameters of turbines simulated in a “real” wind. All other parameters are
the same as for Table 8.1.

A fixed-bladed (standard Darrieus) turbine was also included in the compar-

ison. The predicted steady state performance is included in Figure 8.4. Because

the shape of the torque speed for the Darrieus turbine is different from that of

the variable-pitch turbines, a different load characteristic was chosen to suit it.

It was found that the operating point had to be located at a slightly higher tip

speed ratio than would yield the greatest steady-state efficiency because the lack

of torque at lower speeds made it difficult to converge to the steady-state. A load

of 1.5 Nm/(rad/s)2 was finally used.
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The load power histories of the turbines over 500 seconds (some 26,000 time

steps) is shown in Figure 8.5. The average power coefficients for the period are

presented in Table 8.6. These values include the integrated load power and the

change in kinetic energy of the turbine calculated from the difference between in

initial and final speed. The runs were started with the turbines at approximately

the steady-state speed for the equivalent steady wind of 7.7 m/s. This speed yields

the same average power as the turbulent wind series. The average efficiency in the

turbulent wind is compared with the steady-state power coefficient at this wind

speed.

It is evident that the average power in a more realistic wind is reduced by a

greater amount than in the simple sinusoidally varying cases. The rolling profile

design is predicted to handle the turbulent wind slightly better than the other

designs. The pendulum designs, with their greater blade inertia, suffered more in

these conditions.

The predicted performance loss for the fixed-bladed Darrieus turbine is consid-

erably greater than for the variable-pitch turbines, despite the fact that it does not

suffer from any lag of blade pitch response. It appears that the sharper drop-off

in torque at intermediate tip speed ratios characteristic of fixed-bladed turbines

significantly affects the average efficiency in a turbulent wind, where sudden gusts

force the turbine to operate for considerable periods in this region. Figure 8.4

shows clearly that while the torque produced by the variable-pitch turbines is

maintained at low tip speed ratios, the Darrieus turbine curve drops sharply be-

low the peak. The difference between the turbine torque and the load torque at

a given tip speed ratio determines the acceleration of the turbine. It is clear that

even for the smaller load (1.5 Nm/(rad/s)2), the gap between turbine and load
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torque curves below the intersection point is smaller than for the variable-pitch

turbines. This means that when a gust of wind arrives and the tip speed ratio

is momentarily reduced, less torque is available to accelerate the turbine. The

Darrieus turbine is therefore less able to track variations in wind speed.

A simulation run was also conducted for the rolling profile and fixed bladed

turbines with reduced rotor moment of inertia (It = 866 kgm2 compared with

It = 1766 kgm2 as before). In this instance the lower inertia allowed the turbine

with the rolling profile to track the wind velocity more effectively, reducing the

variation in tip speed ratio and resulting in a clear improvement in performance.

This is in line with expectation, unlike the results obtained for the sinusoidally

varying wind speed presented in Section 8.2.

The difference in performance between the two fixed-bladed turbines is smaller

than expected. It appears from Figure 8.6 that during gusts the lighter rotor allows

the turbine to accelerate and extract more power, however this gain is offset by

the deceleration of the rotor during lulls.

These results suggest that the shape of the turbine torque curve is the most

important factor in determining the average efficiency of the turbine in turbulent

conditions. The proportions of time spent at tip speed ratios above and below the

equilibrium is influenced by the shape of the torque curve either side of the steady

operating point.

8.5 Conclusion

Vortex model simulations of a passive variable-pitch VAWT were conducted for

winds of sinusoidally varying magnitude and direction over a range of frequencies.
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Figure 8.5: Load power generated by four passive variable-pitch turbine systems and a
fixed bladed turbine in a simulated turbulent wind.
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Average power coefficient 7.7 m/s Turbulent Difference
Cpavg steady wind %
Rolling profile 0.407 0.364 -10.5
Elastic 0.414 0.367 -11.3
Pendulum A 0.367 0.321 -12.5
Pendulum B 0.405 0.354 -12.5
Fixed blades 0.333 0.240 -27.9
Rolling profile - low inertia 0.407 0.373 -8.3
Fixed blades - low inertia 0.333 0.245 -26.3

Table 8.6: Average power coefficient results for five turbines in a turbulent wind

It was found that the deviation of average output from steady-wind perfor-

mance increased with increasing frequency of variation up to a point, beyond

which the turbine appeared to be unable to respond to such rapid variations.

Simulation of performance in a turbulent wind has indicated the importance of

a ‘flat’ Cp-TSR curve to maximise total energy capture. In the current trial, tur-

bulent wind efficiency was predicted to be 28% lower than steady wind efficiency

for a Darrieus turbine. The corresponding difference for a rolling profile passive

variable-pitch was 10.5%. Variable-pitch mechanisms are therefore not only im-

portant for self-starting, but can also significantly increase the average efficiency

in turbulent conditions. Minimisation of the mass moment of inertia of the turbine

and load appears to be of secondary importance, as does the minimisation of blade

inertia.



Chapter 9

Experimental Evaluation of New Design Concepts

9.1 Introduction

In order to test the potential of the design concepts described in Chapter 3, a

prototype turbine was designed and constructed for testing in the wind tunnel at

UNSW. Testing was intended to assess the performance of the design concepts and

of the mathematical models developed for them.

The development of a technique for measuring the pitch response pattern of

at least one of the blades while the turbine was in operation was a priority. This

information would provide insight into the performance of the turbine and the

ability of the mathematical models to predict it.

Three options were considered for testing of a prototype turbine: wind tunnel

testing, field testing and vehicle-mounted testing.

Wind tunnel testing offered the greatest control over flow conditions and was

the simplest option. The drawbacks however were the limitation that the available

test section placed on the size of the turbine and the effects of blockage. It was

desired to maximise the size of the prototype to increase the Reynolds number

of operation, reduce rotational speeds and in general be as close to full-scale as

possible. However if the turbine were made too large for the test section, the flow

field around the turbine would be affected by the walls of the section, altering its

performance in ways that would be difficult to predict.

209
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The option of field testing would remove the limitation on size and allow the

turbine to be studied in the conditions in which it would ultimately operate. The

inability to control or even accurately measure the free wind velocity and direc-

tion at the turbine however would make analysis of performance difficult. Only

averaged quantities would be reliably obtained.

The third option of vehicle or trailer-mounted testing offered the possibility of

controlling the wind velocity and direction, if still air conditions occurred. There

remained the possibility of disturbed flow from the vehicle affecting turbine per-

formance. Also practical considerations would limit the size of the turbine that

could be tested in this fashion. A final major disadvantage was the likelihood that

movement and vibration of the vehicle would significantly affect the pitch response

patterns of the blades. Given the predicted sensitivity of turbine performance to

the blade response pattern, this would be a major problem.

The final issue affecting any form of outdoor testing was that the photogram-

metric pitch measurement method that was developed (which is described in Sec-

tion 9.4.3) relied upon the ability to reduce ambient light. This could only be

achieved in the wind tunnel. Accordingly, the wind tunnel was chosen as the most

appropriate method of testing.

9.2 Prototype Turbine Design

A turbine was built for testing in the large test section of the closed-circuit wind

tunnel at the UNSW. The size of the turbine was determined by the size of the

available wind tunnel test section. As mentioned above, it was desired to make

the turbine as close to a real operational size as possible within the constraints

of the test section area. The smaller the turbine of a given solidity, the smaller

the blade chord and therefore the smaller blade Reynolds number. This results in
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earlier blade stall and reduced starting performance. If the blade chord is made

large relative to the turbine radius to overcome this, the effect of flow curvature is

amplified.

The turbine speed required to achieve a given tip speed ratio at a given wind

speed is inversely proportional to the turbine radius. The centrifugal load on a

blade is therefore inversely proportional to the square of turbine radius. Maximis-

ing the radius at which a blade of given length is mounted therefore reduces the

bending loads on it, as well as increasing the swept area and power capacity of the

turbine.

The test section available at UNSW is octagonal in cross section with a height

and width of approximately 3 metres (see Figure 9.1). The turbine dimensions

were chosen to be diameter 1.8 metres and height 1.3 metres, giving a swept area

of 2.34 square metres.

Figure 9.1: Turbine in the 3 metre high wind tunnel test section
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The blade chord was set at 150 millimetres, giving an aspect ratio of 8.67. The

turbine was designed with three blades, giving a solidity of Nbc/R = 0.5. This

relatively high solidity was chosen to assist starting performance.

The NACA 0018 profile was chosen as the blade section. This section is com-

monly used for Darrieus turbines. Its relatively high thickness to chord ratio gives

it good strength in bending and its aerodynamic properties are well documented.

The radial arms of the turbine were made from high strength aluminium grade

6061-T6. They were NC milled to an Eppler 862 non-lifting profile to reduce

parasitic drag.

9.3 Blade Design

Unlike horizontal-axis turbines, the straight blades of a vertical axis turbine are

loaded in bending by their self-weight under centrifugal force. Horizontal axis tur-

bine blades take centrifugal loads in tension, which produces much lower maximum

stresses. While aerodynamic forces produce bending loads, these are an order of

magnitude lower than inertial loads at design speed.

The blade bending loads are a significant hurdle to be overcome in the design of

a straight-bladed VAWT. The curved troposkien-shaped blades of large Darrieus

turbines are designed to minimise bending loads, but blade articulation is then not

possible.

Often blades designed for this type of turbine are based around a central struc-

tural spar, to which ribs are attached and around which a thin skin is fastened, to

form the desired blade profile. The blade designs described by Bayly (1981) and

Kirke (1998) are of this type.

Since the primary concern is bending stress due to the self-weight of the blades,

the minimisation of mass and maximisation of cross-sectional area moment of



CHAPTER 9. EXPERIMENTAL EVALUATION 213

inertia are paramount. Apart from selecting a material with a high strength-to-

weight ratio, these criteria require that material be located as far from the section

neutral axis (the blade chord line) as possible. For a prismatic blade the ratio

of area moment of inertia of the section to cross-sectional area, I/A, should be

maximised. For this application, a solid section blade is far worse than a hollow

blade, as material near the neutral axis adds mass without contributing much

bending strength. It may be shown that for a given profile with constant wall

thickness, the limit of I/A as wall thickness goes to zero is two times that for the

solid section. This principle led to the adoption of a design in which the blade skin

is the structural component, rather than an aerodynamic covering over a structural

skeleton. Clearly design to avoid buckling failure must be done carefully in this

case.

Often blades are constructed so that they are attached to the rotor at two

points. In order to minimise bending stress, the mounting points are located at

some distance in from the ends. For example Evans (1978) calculates that for a

blade of uniform section, the bending moment at midspan and mounting points

is made equal by locating the supports a distance of L/(2 + 2
√

2), approximately

0.207L, in from each end. This reduces the maximum bending moment by a factor

of 1/5.8 compared with simply supporting the blades at its ends.

In this case, because the focus of the project was on the design of the blade

mounts, it was felt that it was desirable to have the blade mounted at its ends.

This would allow easiest access to the blade connection area, which would require

frequent adjustment. In addition, it allowed the blade to be mounted without

breaking the skin - an important consideration if the skin is to be used as the

structural member. Finally, it was intended to mount the turbine in the wind
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tunnel using supports connected to the floor and ceiling, making end-mounting of

the blade more desirable.

In order to reduce the bending moment in the middle of the blade, it was de-

cided to utilise counterweights, cantilevered above and below the mounting points.

The counterweights that are needed to balance the blade about its pivot axis can

then serve two purposes. They will act as ‘virtual’ blade length outside the mount-

ing points, playing the same role as the roughly 20% of the uniform section blade

calculated by Evans (1978). This design is shown in Figures 9.2 and 9.3.

Figure 9.2: Blade design featuring cantilevered counterweights

The difficulty with this design is that the cantilevered spar on which the coun-

terweight is mounted is subjected to significant bending and torsional loading. The

spar must be made of a high strength material capable of withstanding these high

loads. In this case high strength stainless steel - Sandvik SAF 2205 - was chosen.

This has a high yield stress (450 MPa) and was selected for its corrosion resistance

so that the turbine could be used for outdoor testing in the future.

An undergraduate thesis completed at UNSW by Dawson (2000) involved a

detailed finite element analysis of different blade designs for this project using

MSC/PATRAN and MSC/NASTRAN. His work indicated that the lowest max-

imum stresses could be obtained using a structural skin with no internal spars

or ribbing. The skin could be aluminium or fibreglass. Dawson performed linear
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Figure 9.3: Detail of blade design concept showing cantilevered counterweight

static analyses to predict maximum Von Mises stress, as well as running buckling

analyses to check for buckling failure.

Further finite element analysis using Pro/FEM was conducted by the author

on the specific design chosen for the prototype turbine that was built for the wind

tunnel. The mesh generated for the blade is shown in Figure 9.4. Symmetry was

exploited to allow modelling of one half of the blade. A ‘gravity’ acceleration of

200 g was applied, corresponding to a rotational speed of approximately 450 rpm

at a radius of 900 mm.

Skin material was chosen as 1.27 mm thick aluminium sheet. Carbon fibre

was investigated as a possible material for blade manufacture, but the cost for

the manufacture of three blades was found to be prohibitive. A relatively high-

strength alloy - 6061-T6 - was chosen, giving a nominal yield stress of 240 MPa.

A counterweight mass was chosen and its chordwise location adjusted so that the
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Figure 9.4: Finite element mesh
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(a)

(b)

Figure 9.5: Colour fringe plot indicating predicted von Mises stress in the blade skin (a)
and the counterweight spar (b)
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centre of mass lay 20.5 mm ahead of the quarter chord location - a position that

had been selected on the basis of momentum theory modelling. The degree of

overhang on the mass was then adjusted so as to balance the safety factors with

respect to yield in the blade skin and the counterweight spar.

The design relied upon the ability to form the sheet to the required profile with

sufficient accuracy. The structural blade skin is thicker and stronger than a thin

skin that would be used around a series of ribs. Tests were done in first rolling a

flat piece of sheet to gain the general curvature of the sides of the aerofoil, then

forming the nose by bending in a press using progressively smaller radius dies.

Initial tests were encouraging. Ultimately the forming was done by a specialist

sheet metal company using a similar technique. The sheet was rolled then bent to

match as closely as possible a template of the desired NACA 0018 profile.

Ribs were NC milled to the correct profile from 15 mm thick 6061-T6 alu-

minium. One rib was located at each end of the blade, and another 150 mm in

from each end. Each rib had holes to locate the spar on which the cantilevered

counterweight was mounted. This assembly is shown in Figure 9.6. The formed

blade skin was glued to all ribs and also rivetted to the end ribs to pull them into

the correct profile. The assembly process is shown in Figure 9.7.

The trailing edge was closed using a ‘V’-strip of aluminium sheet. The strip

was glued and rivetted to each side of the blade skin and the edges of the sheet

were then glued together at the trailing edge. Araldite 2015 was selected as a

suitable adhesive, as it is slightly flexible, giving it greater toughness. Pictures of

the formed blades and the assembly process are shown in Figure 9.7.

The blade in place on the turbine rig is shown in Figure 9.8. The Type A

elastomeric blade mounting component is shown. The completed turbine rig, fixed
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Pro/ENGINEER model

Finished assembly

Figure 9.6: Blade end assembly
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(a) Application of glue to blade trailing edge

(b) Blade skin in mould used for clamping while the glue set

Figure 9.7: Construction of the blades
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Figure 9.8: The ‘Type A’ elastomeric blade mounting component on the turbine rig.

inside the wind tunnel test section is shown in Figure 9.9.

9.3.1 Aerodynamic testing of blades

The major concern for the blade design chosen was whether the construction

method would deliver sufficient accuracy in the blade profile from an aerodynamic

standpoint. In order to test the aerodynamic properties of the blades, wind tunnel

testing was performed to measure lift and drag coefficients. The test blade had

the same chord length of 150 mm as the blades used on the turbine, but was cut

shorter to fit inside the 3 x 4 ft (614 x 1218 mm) wind tunnel test section. The

test blade was 1 m long, giving an aspect ratio of 6.67. The blades used on the
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Figure 9.9: The author with the finished rig in the wind tunnel.

turbine were 1300 mm long, with an aspect ratio of 8.67. The test blade is shown

in the test section in Fig. 9.10.

Lift and drag coefficients were measured at wind speeds ranging from 16 m/s

to 36 m/s and at angles of attack from -15◦ to +50◦. Forces were measured using

a 6-component pyramidal balance. A calibration was performed with zero wind

velocity to eliminate the effect of the mass of the blade. The results are shown in

Fig. 9.11.

For comparison the data of Sheldahl and Klimas (1981) for the NACA 0018

section are also shown in Figure 9.11. These data were used in the mathematical

models because they provide a complete range of values for all angles of attack and
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Figure 9.10: Test blade mounted in the wind tunnel

over a large range of Reynolds numbers. It can be seen from Figure 9.11 that the lift

and drag coefficients measured here are quite similar to the published values. At all

tested Reynolds numbers, stall occurs at a higher angle of attack and occurs more

suddenly than was measured by Sheldahl and Klimas. Correspondingly higher

maximum lift coefficients were also recorded. As expected, the stall is delayed

with increasing Reynolds number over this range.

The delayed stall may be a result of the manufacturing technique, which does

leave slight artifacts of the forming process. A series of parallel bends are visible

near the leading edge, which may serve to ‘trip’ laminar flow to become turbulent.

There was however little measured increase in drag associated with this effect.

It was concluded on the basis of this testing that the chosen blade design and

manufacturing technique produced blades of sufficient profile accuracy to be used

as turbine blades.
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Figure 9.11: Measured lift and drag coefficients for a test turbine blade
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9.4 Instrumentation

9.4.1 Torque and speed measurement

The quantities measured were the turbine rotational speed and torque. Speed was

measured using a 720 pulse-per-revolution shaft encoder mounted at the top of the

turbine shaft. Torque was measured using a load cell attached to a brake calliper

that acted on a brake disc keyed to the shaft. Commercial panel meters were used

for signal conditioning and digital conversion. The data was logged by a PC, which

was connected to the panel meters via the serial port.

The turbine torque calculated is a combination of shaft torque measured by

the load cell on the brake and torque that is accelerating the turbine. Acceleration

torque was calculated by numerically differentiating the logged turbine speed data.

Because numerical differentiation magnifies the small scatter in the measured speed

values, the acceleration curve was smoothed by fitting a cubic spline through the

velocity data. The data was thinned from the sampling frequency of approximately

3 Hz to a period of 5 seconds, which was judged sufficient to capture the features of

interest in the speed history. The spline was then fitted through the thinned data

points. The slope of the spline at the data points, which is naturally calculated in

the process of fitting the spline, is then used as the acceleration at that time.

Torque is calculated by multiplying acceleration by the polar moment of inertia

of the rotor and blades, calculated using the Pro/ENGINEER model.

The shaft or load torque measured by the load cell connected to the brake

calliper exhibited considerable scatter resulting from slight misalignment between

the disc, shaft and calliper. The fluctuating torque data was smoothed taking a

rolling average.

The total torque produced by the turbine at any point in time was then taken

to be the sum of the acceleration torque and the load torque. The non-dimensional
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torque coefficient, Cq, is defined as:

Cq =
Tacc + Tload

1
2
ρAU2∞R

(9.1)

where ρ is the air density, A is the swept area of the turbine, U∞ is the free wind

velocity and R is the turbine radius.

The torque coefficient calculated in this way reflects the total aerodynamic

torque generated by the turbine at a given speed. If the turbine is at steady-

state, the torque used to accelerate the turbine, Tacc is zero, and all the torque

is used to drive the load. At tip speed ratios lower than the steady-state speed,

the turbine will be accelerating and Tacc will be non-zero. This means that the

torque coefficient calculated using Equation 9.1 is larger than that calculated using

the load torque alone. In the study of the self-starting ability of turbines, the

transmission of energy to the load is not considered to be the only useful work

being done: the acceleration of the turbine to steady-state operating speed is a

task that otherwise must be done using external energy. This measure of torque

reflects the success of the blades in extracting energy from the wind. This is the

aspect of turbine performance that is being studied.

9.4.2 Wind speed measurement

Initially the wind speed was measured manually using a fluid manometer connected

to a static pitot tube mounted approximately one diameter upstream of the turbine

axis in the wind tunnel. This was the furthest forward position possible. Later

a digital micromanometer was used to measure the pressure differential from the

pitot tube, allowing flow velocity data to be logged along with the torque and

speed data.
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Some scatter was observed in the logged data from the digital manometer. This

scatter was due to signal noise, rather than being a reflection of the turbulence

level in the test section. It may be seen that the scatter in the wind velocity

measurement is evident only during periods when the mean velocity is constant.

The same degree of scatter is evident at the end of the run even when the wind

speed was definitely zero.

Separate turbulence measurements were carried out using a hot wire anemome-

ter. The turbulence intensity was found to be between 1.0% and 1.3%.

To smooth the wind velocity data, a rolling average technique was again em-

ployed, over an interval of 100 samples. Torque coefficient Cq was calculated from

Equation 9.1 using the smoothed wind speed. These values are then plotted against

the current turbine speed, non-dimensionalised in the form of tip speed ratio. This

allows results at different wind velocities to be compared.

9.4.3 Blade pitch measurement

The most difficult quantity to measure was the blade pitch angle. Several methods

of measurement and data collection were conceived, involving linear or rotary

variable displacement transducers, onboard microprocessors, slip rings or radio

communications. Ultimately problems of complexity, invasiveness and inadequate

sampling frequency forced the abandonment of such designs in favour of a simpler

and more direct method.

The pitch measurement system presented a number of major difficulties. First,

it must provide sufficient accuracy and resolution, both in terms of the pitch an-

gle and the azimuth angle (the blade’s position in its orbit) and it must be able

to convey information from the rotating frame of reference of the turbine rotor

to ground. While any of the transducers listed above could provide satisfactorily
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accurate measurement of the instantaneous pitch angle, determination of the az-

imuth angle at which this pitch occurred was more difficult. A second transducer

would be needed to sense the rotor position and the sampling of signals from the

pitch and azimuth transducers would have to be accurately synchronised. The

sampling frequency would also have to be sufficiently high to provide adequate

azimuthal resolution at the highest turbine speeds. This would require a rela-

tively expensive radio transmitter (and signal conditioning and A/D circuitry) to

be mounted on the rotor. Slip rings would also require pre-amplification of the

signal and be prone to signal noise. A further problem was the sensitivity of the

blades’ pitching behaviour to friction and interference from the transducer. Worse,

in some variants of the new design, the pitching axis of the blade is not actually

fixed with respect to the turbine rotor on which the blade is mounted. The sensor

therefore must also be able to accommodate these additional translatory degrees

of freedom.

On the basis of these constraints, it was decided to measure the blade pitch

angle photogrammetrically by recording the motion of two target points on one of

the blades. Instead of attempting to capture motion with a series of high speed

images, the periodic nature of the pitching motion was exploited by using light

emitting diodes (LEDs) as targets and recording their trajectories using a long

exposure on a digital still camera.

This approach yields continuous position information for the targets around

the entire cycle (see Figure 9.12). By comparison a video camera operating at 25

frames per second would only record one image every 48 degrees at a turbine speed

of 200 rpm.
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Figure 9.12: Variable pitch Darrieus turbine concept showing LED traces.

Two LEDs were mounted on the chord line of one of the blades, equidistant

fore and aft of the axis of pitching, as shown in Figure 9.13. The trajectories

of these points were then analysed to retrieve the blade pitch angle history over

the duration of the exposure (see Figure 9.14). Assuming central projection, the

world space trajectories can be found from the image traces with knowledge of

the camera position and orientation. As physical measurement of the location of

the camera was difficult, this data was estimated for each image using reference

targets. For this purpose, two further LEDs were mounted on one of the radial

arms of the turbine in the same horizontal plane as the blade LEDs. In the image

these circular traces appear as ellipses whose proportions and positions, together

with knowledge of the actual radii, reveal the viewing angle and distance. Once

these quantities are found the pitch angle indicated by the blade LEDs can be

determined.
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Figure 9.13: The target LEDs mounted on one of the blades.

Determination of perspective transformation

It is well known that a circle appears as an ellipse in the image plane under per-

spective projection and that the centre of the circle is not projected to the centre

of the ellipse in the image. Here the elliptical images of two concentric circular ref-

erence traces are used to determine the inverse perspective transformation needed

to convert image coordinates into object space coordinates of points.

The perspective projection of an inclined circular trace of radius R in the X2,Y2

plane in object space onto the image plane is shown in Figure 9.15. The image

plane x,y coordinate system and the object space X2,Y2,Z2 coordinate system are

defined such that their origins lie on the camera (z) axis and the X2 and x axes
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Figure 9.14: Two example images of LED traces for blade pitch measurement. The
upper image is for a low tip speed ratio, the lower image for a high tip speed ratio.
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Figure 9.15: Projection of a circle in the inclined X2-Y2 plane onto the image plane x-y.

are both parallel with the line of intersection of the image plane and the plane

containing the LED traces.

The first step then is to find algebraic expressions for the two ellipses. The

process of obtaining the image coordinates of points on the reference ellipses was

automated in order to speed up analysis and improve repeatability of results. A

program was written in Visual C++ for Windows for the purpose of image analysis.

Analysis was not conducted in real time for this application; instead images were

stored and downloaded after each wind tunnel run.

A number of sample points need to be located on the traces. For this purpose

the approach of Vincze (2001) was adopted. In order to obtain initial positions

for the sample points, the parameters of the two ellipses (centre, major and minor

semi-axes and rotation angle) are adjusted manually so that, when drawn on the
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screen over the digital image, the ellipses coincide with the image traces as closely

as possible. Sample points are then distributed at equal angular spacing around

each ellipse. Pixels along a tracker line normal to the local tangent are then tested

using an 8 x 1 Prewitt edge detection filter based on pixel intensity. The points

of maximum and minimum intensity gradient are taken to be the inner and outer

edges of the LED trace. The pixel closest to midway between the two edge pixels

is then taken to be the location of the sample point on that tracker line. Since the

analysis is not conducted in real time, it is possible to manually check each of the

sample points to ensure that the detection has succeeded.

If detection fails, either due to a gap in the trace where a turbine blade passed

in front of it or due to insufficient contrast in the image, the sample point on that

tracker line is positioned either by interpolating between the two neighbouring

points, or is positioned manually as close as possible to the centre of the trace

using a magnified image.

Once the sample points have been located on the traces (12 points were found

to be sufficient), ellipses are fitted to these points using Halir and Flusser’s (1998)

version of the direct least squares ellipse fitting method of Fitzgibbon et al. (1999).

This method produces 6 coordinates to define the ellipse in polynomial form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

Two approaches may be used to find the camera distance and angle from the

reference ellipse coordinates.

The viewing parameters may be estimated using a direct geometric method.

The 6 coordinates used to represent each ellipse in the horizontal and vertical

screen axes are transformed by rotation to principal axes and the five parameters
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of major and minor axis length, angle of orientation and location of centre are

extracted for each.

For the general case of the circles’ common centre not lying on the camera axis,

the major axes of the elliptical images of the circles will be parallel neither with

the x axis nor with each other. For strict central projection, a line constructed

through the centre points of the two elliptical images will pass through the location

in the image of the actual centre of the circles and proceed to the vanishing point

for lines parallel with the Y2 axis. The tangents to both ellipses at the points of

intersection with this line should all be parallel with the X2 axis. This is illustrated

in Figure 9.16.

Y2

X2

Y2

X2

Figure 9.16: The perspective projection of circles and their bounding squares, rotated
about the X2 axis, which is parallel to the image plane. The dashed horizontal line
indicates the vertical position in the image of the centre of all ellipses, independent of
the X2 coordinate.

Once the ellipses are identified in the image therefore, the line through their

centres is found and the slope of the tangents at the intersection points determines

the orientation of the x,y image coordinate system. The x-axis will not necessarily

be horizontal in the image and so image coordinates must be found by a rotation
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about the principal point from their pixel coordinates. Next the location in the

image of the centre point of the circles is determined. Referring to Figure 9.17,

the y-direction ‘height’ of each ellipse is defined as 2b and the y offset of the image

of the circle centre from the ellipse centre is labelled δ. The values for the outer

ellipse, subscripted 1, are shown. The x-direction ‘width’ of the ellipse at the

location of the image of the circle centre is defined as 2rs. These 3 quantities are

used to characterise each ellipse and to determine the viewing angle.

1sr 1sr

CONVERGE AT VANISHING POINT

y

x

PRINCIPAL POINT

1b

1b

1d

Figure 9.17: Elliptical images of concentric circular reference traces.

The location of the image of the circle centre is termed (xo, yo). The corre-

sponding object space coordinates of the circles’ centre are (X2o, Y2o, Z2o). For

the coordinate systems chosen the image y-coordinate is independent of the X2-

coordinate and the x-coordinate is proportional to the X2-coordinate on lines par-

allel with the X2 axis. That is, X2 distances are mapped linearly to the image
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plane. Therefore the values of b, δ and rs defined above are independent of the

value of X2o and so can be found for the simplest case of X2o = 0.

Using perspective projection, expressions for the image coordinates of the top,

bottom and centre points of the circle can be found for general viewing angle θ,

distance d and image plane distance g as defined in Figure 9.17. The quantities

(b + δ) and (b − δ) can then be expressed in terms of θ, d, g, circle radius R and

centre Y2o and Z2o. It is found that:

y0 =
g(Y2o sin θ − Z2o cos θ)

d− Y2o cos θ − Z2o sin θ
(9.2)

b + δ

b− δ
=

d− Y2o cos θ − Z2o sin θ + R cos θ

d− Y2o cos θ − Z2o sin θ −R cos θ
(9.3)

We also get directly

rs =
gR

d− Y2o cos θ − Z2o sin θ
(9.4)

From (9.2),(9.3) and (9.4) the viewing angle can be expressed as

θ = sin−1

(
b2 − δ2 − y0δ

rsb

)
(9.5)

and the viewing distance and the focal length are then

d =
(b2 − δ2)R

rsδ tan θ
+

Z2

sin θ
(9.6)

g = rs
b

δ
cos θ (9.7)

In using Equations 9.5, 9.6 and 9.7 to find θ, d, g and Y2o for an assumed

value of Z2o (which may be defined as zero), we can measure b directly from the

image, but do not yet know δ. If we have two ellipses that we know are the
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images of concentric circles then we know that the image of the common centre

lies somewhere on the line through the centres of the ellipses. The location of that

point is then determined for a given value of the distance δ for either ellipse, as is

the value of δ for the other ellipse. From Equation 9.3 we get for each ellipse

d− Y2o cos θ − Z2o sin θ = R
b

δ
cos θ (9.8)

Given that we know the ellipses are projections of two concentric coplanar circles

of known radii, and as such d, Y2o, Z2o and θ are the same for both, the ratio of

the two centre offsets δ1 and δ2 is from (9.8):

δ1

δ2

=
b1R1

b2R2

(9.9)

meaning that

δ2 = ∆δ
b2R2

b2R2 − b1R1

(9.10)

where ∆δ = δ2 − δ1 is the y-distance between ellipse centres.

Even if the actual radii of the circles are not accurately known, the location of

the circle centre that makes the ellipses consistent with each other can be found

using (9.3) giving

δ1

δ2

=
b1rs1

b2rs2

(9.11)

The values of rs1 and rs2 have to be identified at trial values of δ1 and the corre-

sponding δ2, so that the values which satisfy (9.11) can be found numerically. The

viewing angle and distance can then be calculated for each ellipse from (9.5) and

(9.6).
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These values will inevitably not be identical due primarily to random error in

the sampling of the ellipses. Where the difference between the two values is small

the averages of those for the two ellipses may then be used directly. If however the

discrepancy is significant then a more systematic approach is required, as described

below.

The elliptical image of a circle lying in a plane of constant Z2 with known

viewing angle and distance can be expressed in terms of d, g and θ. For a circle

radius R centred at (X2o, Y2o, Z2o):

(X2 −X2o)
2 + (Y2 − Y2o)

2 = R; Z2 = Z2o (9.12)

the image in the x,y coordinate system is found using:

X2 =
x(d sin θ − Z2)

y cos θ + g sin θ
; Y2 =

yd− Z2(y sin θ − g cos θ)

y cos θ + g sin θ
(9.13)

Substituting these expressions and expanding, the resulting ellipse is found to be:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (9.14)
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where

A = (Z2o − d sin θ)2

B = 2X2o cos θ(Z2o − d sin θ)

C = cos2 θ(X2
2
o + Y2

2
o −R2) + (d− Y2o cos θ − Z2o sin θ)2 − (Y2o cos θ)2

D = 2X2og sin θ(Z2o − d sin θ)

E = g sin 2θ(X2
2
o + Y2

2
o − Z2

2
o −R2)−

2gY2oZ2o cos 2θ + 2dg(Z2 cos θ − Y2o sin θ)

F = g2(X2
2
o + Y2

2
o − Z2

2
o −R2) + Z2og

2(Z2o − Y2o sin 2θ)

For two ellipses of known radius, the twelve coefficients obtained from the

digital image through the ellipse fitting method described above can be used in

Equation 9.14 to yield twelve equations that may be solved simultaneously on a

minimisation of error basis to estimate the values of d, g, θ, X2o and Y2o. This op-

timisation may be performed by a commercial software package such as Mathcad.

The values obtained from the direct geometric method are used as initial estimates

for the unknowns.

The advantage of these approaches is that they do not require physical mea-

surement of the camera position and angle relative to the experimental rig, which

is often difficult to perform in practice.

Calculation of pitch angle pattern

Once the viewing angle and distance have been calculated, any point on the image

can then be projected back onto the inclined plane of the LED traces. The traces of

the two blade-mounted LEDs are sampled in a similar manner to the two reference

ellipse traces as described above, this time using 36 sample points. The image
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coordinates of these points are then transformed to space coordinates, for a set

value of the Z2 coordinate, usually zero. Calculation of the pitch angle at any

location in the orbit relies on knowledge of the actual separation of the leading

and trailing edge LEDs on the experimental rig.
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θ

TRAILING
LED

LEADING
LED

R

r

r

RT

RL

φ
WIND

∆φT ∆φL

Figure 9.18: Geometry of the blade LED trajectories.

For a given azimuth (orbital) location of the pitch axis of the blade, the radial

distance from the origin at which each of the two blade LEDs lies needs to be

found. These radii are not the radii of the respective traces at the azimuth of the

pitch axis, which is mid way between the two LEDs, but those at some azimuths

slightly ahead of and behind the axis azimuth (see Figure 9.18). The angles by

which the LEDs lead and lag the axis are not the same and depend on the pitch

angle. An iterative procedure is therefore adopted to find the appropriate angles

and radii.

The lead/lag angles are first approximated by the angle that would apply for

zero pitch, knowing the separation of the two LEDs and assuming a nominal

pitch axis radius. The radius of each of the traces at these locations is then
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calculated. Linear interpolation (in terms of radius as a function of azimuth) is

used to calculate the radius between sample points.

The actual radius of the blade pitch axis and the pitch angle are then calculated

on the basis of these values. This estimate of the pitch allows calculation of new

estimates of the lead/lag angles and so re-measurement of the trace radii. This

process is repeated until the pitch angle converges. The pitch angle can thus be

calculated at as many points around the orbit as desired and so a plot of pitch

against azimuth angle obtained.

Validation of measurement method

The prototype wind turbine for which the method was developed is of radius 870

mm, height 1.3 m and blade chord length 150 mm. LEDs were mounted on one

of the three blades, whose motion was taken as representative of all blades. The

blade LEDs were 150 mm fore and aft of the pitch axis on the chord line. The two

reference LEDs were mounted at radii of 0.364 m and 0.674 m respectively.

The camera was on a tripod outside the wind tunnel test section, looking up

through a window at the LED plane, which was at the top end of the blades (see

Figure 9.19). The viewing angle θ was approximately 50◦ and viewing distance 2.8

m to the centre of rotation in the LED plane.

A series of images was taken with the blade locked at known pitch angles

ranging through ±25◦. The results are shown in Figure 9.20. The calculated pitch

angle should be constant for the revolution, but random errors in the sampling

of the traces and small errors in the location of the turbine axis and the viewing

angle produce non-constant results. The standard deviations of the pitch angle

results range from 0.41◦ to 0.83◦. Here the results have been corrected for zero
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DIGITAL
CAMERA

LED
TRACES

3 m

Figure 9.19: Illustration of prototype turbine mounted in the 3 metre wind tunnel test
section. The digital camera was mounted on a tripod on the floor just outside the section
looking through one of the viewing windows as shown.
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offset resulting from slight misalignment of the blade LEDs with the reference edge

that was used to set the blade pitch. The offset here was found to be 1.2◦.
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Figure 9.20: Calibration chart obtained by clamping the blade at known angles. Vertical
error bars are ±1 standard deviation calculated for the revolution. Horizontal error bars
are ±0.5◦. A zero offset of 1.2◦ has been added to all points.

Figure 9.21 shows results for the turbine in operation. The blade is swinging

from positive to negative pitch limits (approximately ±20◦) at this speed. The

azimuth angle is measured anti-clockwise (viewed from below) from the upwind

direction. This is estimated from the image by manually setting a line to coincide

with the cross-tunnel edges on the turbine frame.

The accuracy of the calculated pitch angle variation using the above method

is limited by a number of factors. These are listed below:
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Figure 9.21: Blade pitch measurement results for turbine in operation at approximately
30 rpm and wind speed 7 m/s. The digital image (a) is sampled to obtain a discrete
number of points (b). The inner reference ellipses are used to calculate projection of the
outer samples back onto the LED plane in space (c). The resulting pitch angle pattern
is shown in (d). Here the blade is just hitting its pitch limits at ±20◦.
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• Lens distortion and location of the principal point in the image. Lens dis-

tortion may result in error, however the calculated pitch angle is relatively

insensitive to distortion as it is based on the separation between the LED

traces in the same part if the image, rather than the absolute position rela-

tive to the principal point. The two traces are likely to be locally offset by

a similar amount. For similar reasons, the pitch results are also quite insen-

sitive to the exact location of the principal point in the image. In this case

the principal point was assumed to be at the centre of the frame, however

deviations of up to 50 pixels resulted in maximum changes in calculated pitch

of less than 0.25◦. Greater accuracy may be obtained by use of a calibrated

camera, however even without this, results appear to be sufficiently accurate

for many uses.

• LED traces not coplanar. Any out-of-plane errors for either of the blade

LEDs or a reference LED will result in errors in the object space coordinates

calculated. These can be corrected for if the out-of-plane distance can be

measured by projecting image points back to the appropriate Z2 plane. If one

of the LEDs is slightly out-of-plane, its trajectory is effectively shifted ‘ver-

tically’ in the image, and if no correction is made, an error in the calculated

pitch angle that varies approximately sinusoidally with azimuth results.

The magnitude of this error was estimated by generating trace images for

zero pitch, but with one LED 5 mm out-of-plane. Then traces were then

analysed with no out-of-plane correction. It was found that the calculated

pitch had a mean of −0.4◦ with amplitude 0.8◦. This is a reasonably small

error for quite a large out-of-plane distance for the present set up.
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• Fitting of ellipses to reference trace sample points. The minimisation of

algebraic distance ellipse fitting method is known to be biased, unlike a true

geometric distance minimisation method. However if care is taken to ensure

the sample points are positioned at accurately, the error involved here with

regularly spaced samples on a complete ellipse should be small.

• Estimation of the perspective transformation parameters from the reference

ellipses. The optimisation method used to find the ‘best’ values of viewing

parameters to fit the reference ellipses are sensitive to the measured radii

of these trajectories and the quality of the ellipse fitting process. However

the accuracy of the calculated camera position can be checked by generating

predicted images of the reference circles and measuring the goodness of fit

to the image sample points.

• Overlap of blade LED traces. Small pitch angles where the leading and

trailing LEDs produce traces on the image that are close to each other and

sometimes overlapping would be better measured using LED’s of different

colour. This was tried initially but it was found that colours other than red

did not record as well in the digital image and produced difficulty for trace

detection.

• Smearing of traces. Another source of uncertainty is the ‘smearing’ of LED

traces over several revolutions being recorded in a single exposure. For exam-

ple a 2 second exposure at 180 rpm records 6 revolutions. Small fluctuations

in the LED paths visible to the naked eye were not recorded by the digital

camera, but must have caused the recorded traces to be wider and less dis-

tinct. To some extent however the uncertainty produced by this effect does
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directly reflect actual uncertainty in the pitch of the blade because the traces

are ‘average’ paths for the several revolutions recorded during the exposure.

• Refraction through wind tunnel window. All images were taken through the

Perspex window in the wind tunnel test section. Refraction of light through

the window may have contributed to distortion of the digital image.

By quantifying and minimising the above sources of error, the method has been

demonstrated to be sufficiently accurate to quantify the pitching response of the

turbine and gain insight into its performance characteristics.

9.5 Summary

A prototype turbine was designed and constructed for testing in the wind tunnel.

The turbine was designed to investigate the potential of the new design concepts

described in Chapter 3.

A design for the blades, which are subjected to large bending loads in operation,

was chosen through extensive theoretical analysis.

Instrumentation to measure the shaft torque and speed of the turbine was

incorporated. In addition, a new photogrammetric method of measuring the blade

pitch angle response pattern was conceived and developed.

Results of wind tunnel testing and comparison with theoretical results are

presented in Chapter 10.



Chapter 10

Wind Tunnel Test Results

The prototype turbine described in Chapter 9 was tested in the wind tunnel at

UNSW with different designs of blade connecting components.

10.1 Rig Design Modifications

10.1.1 Pivot joint friction

Initially friction in the blade connections hampered starting performance of the

turbine. In order to reduce the friction, the bearing surfaces on which the weight

of the blades was taken were covered with plastic sheet to lower the coefficient of

friction. The plastic surfaces were then lubricated using first WD40 then a silicone

spray, however the moment required to initiate rotation (measured using a spring

balance) was still at least 0.8 Nm.

In order to reduce the friction further, the upper arms were modified so that

the weight of the blade was taken on a 6 mm brass screw head as the pivot

point for the blade. The upper turbine arms were given an initial upward angular

displacement using shims at the hub to offset the deflection under the weight of

the blade. This allowed the blade weight to be taken entirely at the upper arm,

with only the lightest contact remaining on the bearing surfaces at the lower arm.

This modification reduced the friction in the pivot joint by an order of magnitude.

Problems were encountered with this arrangement once greater turbine speeds

were attained. The increasing centrifugal load and the movement of the upper,

248
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load-bearing, arms towards horizontal would cause the elastomeric component at

the lower end of the blade to ride up out of its housing. The blade would then jam

and pitching would cease.

In order to avoid this, a second load-bearing pivot point was installed at the

lower arm, so that the weight of the blade was shared. These modifications greatly

reduced the friction in the blade connection.

10.1.2 Brake friction

Even when the brake was released, the friction of the pads on the brake disc

produced an appreciable amount of residual torque, which had to be overcome

by the turbine. The minimum torque varied between 0.35 Nm and 1.5 Nm at

different azimuthal positions, producing a cyclic average of approximately 0.8 Nm.

The cyclical variation was due to misalignment of the brake disc on the shaft,

causing periodic binding between the brake pads. The cyclical average figure also

varied from run to run as braking caused movement of the calliper with respect to

the disc.

All of the early trials of the turbine suffered from excessive friction torque, ham-

pering attempts to achieve self-starting. The problem was addressed by grinding

the brake pads to chamfer the edges, first in the tangential direction and then

also in the radial direction. This reduced the area of the contact patch between

pad and disc and so reduced the tendency to bind when the disc was not in cor-

rect alignment. This reduced the cyclical average brake friction to approximately

0.15 Nm.

The brake calliper used was a rear motorcycle brake. While the residual friction

associated with it is of no consequence on a bike, the lack of springs to completely
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release the brake was a significant problem for the turbine. Ultimately, the motor-

bike brake was replaced with one for a bicycle. This ensured that the brake pads

were not in contact with the disc when the brake was not applied.

10.1.3 Parasitic drag

Parasitic drag was found to be more significant than was anticipated. While the

radial arms themselves were produced with a streamlined profile, the fittings at

the outer ends produced considerable drag. It was intended to provide fairings for

this part of the rotor, however it was found that it was very difficult to reduce

the drag while still allowing unrestricted movement of the blade and access to the

connections.

Still air tests were conducted to estimate the magnitudes of aerodynamic drag

and brake friction. The deceleration of the turbine in still air at the end of a

wind tunnel run was used to calculate the torque arising from residual brake pad

friction and rolling element bearing friction. The values of aerodynamic drag and

dry friction coefficients of retarding torque were then estimated by numerically

differentiating the speed data, as described in Appendix C.

10.2 Experimental Procedure

The turbine was allowed to accelerate from rest without the brake applied until a

steady state speed was reached. In general, two different wind speeds were used:

approximately 5.7 m/s and 7.1 m/s, corresponding to dynamic pressures measured

at the pitot static tube of 2 mmH2O and 3 mmH2O respectively.

In general the turbine performance was assessed by allowing it to accelerate

under no-load conditions and calculating the torque from the acceleration as de-

scribed in Section 9.4.1.
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The entire wind tunnel testing process was characterised by significant variation

in turbine performance under nominally identical conditions. The sensitivity of

performance to the blade pitch response meant that small changes in lubrication

or alignment of parts could have a significant effect on the measured output.

10.3 Results

10.3.1 Fixed blades

For reference the turbine was tested with the blades fixed in the zero-pitch position,

as a standard Darrieus turbine. The turbine did not operate at all, reaching a

runaway speed of only approximately 10 rpm at a wind speed of 7 m/s. Since no

external drive was included it was not possible to accelerate the turbine to a speed

at which the turbine may have been able to operate with fixed blades.

10.3.2 Type A component

TYPE A

Figure 10.1: Type A geometry

Initial testing was conducted with the Type A geometry elastomeric pieces (see

Figure 10.1). It was quickly apparent that the pieces were too stiff in torsion and

did not allow adequate pitching. Under no load, the turbine reached a steady state

speed of only 25 rpm at a wind speed of 7.1 m/s, a TSR of only 0.32.
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In order to reduce the stiffness of the pieces, the stems of the elastomeric

components were modified to reduce their cross sectional area. However little

improvement was achieved. The maximum TSR at 7.0 m/s increased only to 0.41.

10.3.3 Type B component

TYPE B

R7 mm

C.G.

R20 mm

Figure 10.2: Type B geometry

The Type B geometry shown in Figure 10.2 was tested. Despite the much

smaller cross sectional area of the flexible stem compared to the Type A geometry,

the harder material made the component still too stiff in torsion. Insufficient pitch

amplitude for starting resulted. Again, the turbine failed to exceed TSR 0.4 under

no load.

It was therefore decided to test only the rolling profile portion of the Type B

geometry components by removing the flexible stems. The restoring moment was

then supplied only by inertial forces. This arrangement proved more successful.

The blade was able to pitch easily at start up, producing significant torque.

At a wind speed of 5.7 m/s, the turbine initially failed to accelerate beyond

approximately 20 rpm. At the higher wind speed, a similar steady-state velocity

was initially attained at approximately 30 rpm. These speeds correspond to tip

speed ratios of approximately 0.3 and 0.4 respectively.
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Figure 10.3: Measured torque coefficient versus tip speed ratio for the Type B purely
inertial geometry.

Efforts to reduce the friction and sticking in the blade connections and resid-

ual drag in the brake calliper allowed the turbine to accelerate to higher speeds.

However the turbine was still not able to accelerate beyond a tip speed ratio of ap-

proximately 1.5. Measured torque coefficient values for this geometry are presented

in Figure 10.3. The torque coefficient values were calculated using Equation 9.1.

Different symbols are used for separate test runs. Tests were conducted at two

different wind speeds: 5.7 m/s and 7.1 m/s.

Significant variation in the results is evident from run to run, especially in

the most successful run in which a maximum tip speed ratio of 1.5 was attained.

Despite this variation, all runs show a high starting torque with a trough around

TSR 0.4-0.5, a peak around TSR 0.6 and then a steady decline in torque towards

the maximum speed.
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Initial testing with this arrangement produced vigorous pitching of the blades

at start up, but the blades were prone to becoming jammed at the extremes of

their range due to the force with which they hit the limits. This problem was

addressed using modified elastomeric components, where the flexible stem part

was used to cushion the stops (see Figure 10.4).

Figure 10.4: Use of the flexible stem to provide ‘cushioned’ pitch limits

This modification resulted in slightly improved starting performance, as well

as an increase in the runaway speed to approximately TSR 1.6 (see Figure 10.5).

It was thought that friction and resistance to blade pitching was still the main

problem preventing the turbine from reaching higher speeds, despite the fact that

minimal resistance was detectable when the turbine was stopped. The weight of

the blade was supported entirely at the upper arm and the lower arm was used

only to locate the blade horizontally. Increasing rotational speed resulted in a

reduction in the vertical deflection of the weight-bearing arm, causing an increase

in the distance between the arms and a tendency for the blade to jump out of its

housing. To avoid this a second pivot point was fitted to the lower arm so that the

weight of the blade could be shared. This arrangement had the desired effect and
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Figure 10.5: Measured torque coefficient versus tip speed ratio for the Type B with
flexible stem

reduced misalignment and sticking of the blade at speed. Results of this improved

arrangement are shown in Figure 10.6.

The logged data for the most successful run and the corresponding power co-

efficient curve is shown in Figure 10.7. The maximum power coefficient achieved

was approximately 0.18 at a tip speed ratio of 2.9. There is a marked dip in output

between tip speed ratios 1.6 and 1.9. Once the turbine emerged from this trough it

accelerated rapidly up to a tip speed ratio of 3.2. At this point a load was applied

to control the speed of the turbine and to attempt to extract sustained power from

the shaft via the brake. However excessive load caused the turbine to decelerate

rapidly.

The trough in torque around TSR 1.6-1.7 was repeatedly observed in these

tests. True self-starting, with the turbine accelerating in a constant wind to a tip

speed ratio above 2.5, was achieved on three occasions. However in subsequent
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Figure 10.6: Torque results for the Type B polyurethane component with flexible stem
and upper and lower pivot points.

tests the turbine failed to accelerate of its own accord past the trough in the torque

curve at TSR 1.7. If the wind speed were increased to above 7 m/s until the steady-

state speed corresponding to this TSR had been reached, then dropped back to

5.7 m/s to elevate the TSR, then the turbine would accelerate to a maximum tip

speed ratio above 2.5. However this does not constitute self-starting as such a

fluke of ambient wind conditions cannot be relied upon.

The reason for variation in performance is not known. It was suspected at the

time that problems with friction and jamming of the blades caused by vertical

movement of the arms at speed was still responsible. However extensive efforts

to improve alignment and prevent interference were not able to repeat the initial

successful results.

It was also suspected that the amplitude of the pitch response that was being

observed using the LEDs mounted on the blade was diminishing too rapidly with
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Figure 10.7: Logged speed, torque and wind velocity data for a run of the Type B
inertial/elastic geometry (a). The corresponding power coefficient curve (b).
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increasing speed. Blade pitching was observed to effectively cease at the threshold

tip speed ratio of approximately 1.7 at which the turbine was stalling. This was

not predicted by the mathematical models. It was thought that the pitch response

may be reduced because of the compressibility of the polyurethane rolling profile,

resulting in rolling resistance.

Accordingly, new profile components were manufactured from High Density

Polyethylene (HDPE). The parts were NC milled to the same profile as the original

moulded polyurethane components. These components were very much harder

than the polyurethane parts. The original ‘pillar’ components on which the profile

rolled, which were also moulded in polyurethane, were retained.
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Figure 10.8: Torque results for the Type B High Density Polyethylene component.

Testing of the turbine with these components however did not yield radically

different results. The results are shown in Figure 10.8. The trough in the torque

curve between approximately TSR 1.5 and 1.7 was slightly negative, preventing
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the turbine from accelerating up to running speed unassisted. However if the wind

speed were temporarily increased to accelerate the turbine, then dropped back to

‘leapfrog’ the negative torque zone, the turbine would then accelerate again to a

steady-state no-load TSR of 3.0.

The pitch response patterns for one of the turbine blades were measured using

the technique described in Section 9.4.3. The variation of pitch response with tip

speed ratio for one run is shown in Figure 10.9 for two different components. The

flexible stem results in less ‘dwell’ at high pitch angles at low tip speed ratios (a)

than is evident for the HDPE component (b). At higher tip speed ratios however

there is little difference between the two sets of responses.
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Figure 10.9: Measured blade pitch responses for two blade mounting geometries.
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It was felt that the pitch response amplitude was decreasing too rapidly with

turbine speed and that performance would be improved by reducing the restoring

moment applied to the blades. Accordingly, the HDPE components were modified

to reduce the radius of curvature from 20 mm to 16 mm. This reduced the centre

of gravity radius Rcg from 7 mm to 3 mm, while maintaining the y0 offset at 13

mm (see Figure 10.10). The restoring moment should then be reduced to 3/7 of its

initial value. According to the predictions of the momentum theory mathematical

model, this level of torsional stiffness should be too low for the turbine to operate.

The frequency ratio calculated by Equation 7.1 should be greater than one and

the pitch response therefore out of phase with the variation in incidence at the

blade.

TYPE B II

C.G.

R3 mm

R16 mm

Figure 10.10: Type B II geometry

The performance of the turbine with the modified components (designated

Type B II) was however not greatly different from that with the original Type B

components. The torque coefficient data is shown in Figure 10.11(a), page 262.

The measured pitch response is shown in Figure 10.11(b).

In a further attempt to increase the pitch response amplitude, another set of

rolling profile components were manufactured from High Density Polyethylene.
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(b) Measured pitch response.

Figure 10.11: Torque and pitch results for the Type B II modified geometry.
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In this geometry, labelled Type B III and shown in Figure 10.12, the radius of

curvature over a range if ±12◦ either side of the ‘nose’ was 14 mm, while outside

this range the radius was 16 mm. This geometry produced a centre of gravity

offset of just 1 mm at the nose. It was desired to test whether the concept of

tailoring the profile could result in different pitch response behaviour at different

tip speed ratios.

TYPE B III

C.G.

R14 mm

24
o

R16 mm

R1 mm

R16 mm

Figure 10.12: Type B III geometry

The torque coefficient results for this geometry are shown in Figure 10.13(a)

and the measured pitch response is shown in Figure 10.14(a). The pitch response

exhibits characteristics of a reduced restoring moment: the amplitude is greater

at a given tip speed ratio than for the Type B and Type B II geometries; also the

phase lag of the response is greater, indicating the blade is operating closer to its

natural frequency. The turbine however did not progress beyond tip speed ratio

1.7.

Springs were then fitted to the blades to supplement the inertial restoring

moment, to see how this would affect performance. The aim was to increase the

torsional stiffness at low tip speed ratios, while allowing greater pitching at higher

speeds. As the added springs acted independently of centrifugal force, they are
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Figure 10.13: Results for the Type B III geometry.
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Figure 10.14: Results the Type B III modified geometry with additional spring.
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able to add a constant amount of stiffness that is significant at low speeds but

becomes insignificant as the inertial component restoring moment increases.

The results are shown in Figures 10.13(b) and 10.14(b). This addition allowed

the turbine to properly self-start on its initial test run, however subsequent runs

failed to accelerate beyond the torque trough at TSR 1.8 without increasing then

dropping the wind speed to jump the negative zone. Once above TSR 2, the

turbine accelerated to a runaway speed of approximately TSR 2.7.



CHAPTER 10. WIND TUNNEL TEST RESULTS 267

10.3.4 Type C geometry

TYPE C

R7 mm
C.G.

Figure 10.15: Type C geometry

Testing of the turbine with the Type C geometry was expected to yield similar

performance to that obtained with the Type B geometry. The Type C component

also had a circular arc rolling profile, with the centre of mass at a radius of 7 mm,

as shown in Figure 10.15. The y0 value was in this case zero.

As for the Type B geometry, the components in their original form were too

stiff due to the elastic portion of the parts. Accordingly, as before, flexible stems

of the components were cut and allowed to act as cushions on the pitch limits of

the blade. In this case, the flexible stem made contact with the side of the housing

at a pitch angle of approximately 14◦, with a pitch limit of 28◦.

Testing produced good low speed performance, but the turbine failed to accel-

erate beyond a tip speed ratio of 1.8. Significantly higher torque was produced

in this speed range than for the Type B geometry. Torque coefficient results are

plotted in Figure 10.16(a). For this geometry the results were relatively consistent,

with maximum torque occurring at start-up, a dip in torque at TSR 0.5

The measured pitch responses for this geometry are shown in Figure 10.16(b).
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Figure 10.16: Torque coefficient data and measured pitch response for the Type C ge-
ometry. Different symbols are used for separate test runs.
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10.4 Comparison with Theoretical Results

The performance of the prototype turbine was predicted using both the Double

Multiple Streamtube (DMS) model and the vortex model.

The Double Multiple Streamtube model by its nature predicts steady-state

performance. It is therefore not strictly applicable to the prediction of performance

of the turbine while accelerating. Neither the blade pitch response nor the unsteady

wake can be assumed to be the same as those under steady conditions at a given

tip speed ratio. Nevertheless, where acceleration is small the difference may be

minimal and so the results are presented here for comparison. The vortex model

on the other hand is designed to deal with unsteady behaviour.

The parameters used for the theoretical predictions are shown in Table 10.1.

Parameter Value
Radius 0.87 m
Height 1.3 m
Blades 3
Chord 150 mm
Blade mass 7.36 kg
Blade moment of inertia 0.035 kgm2

Rac 20.5 mm
Damping coefficient 0.015 Nm

rad/s

Friction coefficient 0.0002

Table 10.1: Prototype turbine parameters

The friction coefficient is defined as the ratio of the frictional moment on the

blade to the radial reaction at the blade connection.

The predicted performance of the turbine at a wind speed of 7 m/s with the

Type B and Type C geometry rolling profile components under ideal conditions

is shown in Figure 10.17. Here parasitic drag and blade friction have been set to

zero.
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Figure 10.17: Torque and power coefficient predicted by the Double Multiple Stream-
tube (DMS) mathematical model under ideal conditions (ie no parasitic drag, no blade
friction)
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10.4.1 Type B component
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Figure 10.18: Torque coefficient predicted by the Double Multiple Streamtube (DMS)
and vortex mathematical models, compared with experimental data

The DMS results are shown in Figure 10.18. The predicted values are net

torque, parasitic drag and bearing friction, as estimated from turbine run-down

tests (see Appendix C), have been subtracted.

Agreement between experimental and theoretical results from both models is

reasonable for tip speed ratios less than 1.7. Both predict a high starting torque,

dropping to a local minimum at approximately TSR 0.5. Both models predict

a recovery of torque, with a local maximum at TSR 1.0, then a decline to zero

torque at approximately TSR 1.7. These predictions match the general trends of

the experimental data. The DMS model slightly overpredicts the torque, while the

vortex model predicts a dip in torque between TSR 1.1 and 1.2 that is not evident

in the measured data.
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The main discrepancy between theoretical and experimental results is for tip

speed ratios greater than 1.7. Both mathematical models predict a steady pro-

gression to increasingly large negative values. By contrast, the turbine exhibited a

tendency to dip to zero torque at approximately TSR 1.7, but was able to produce

positive torque for TSRs between 2 and 3.

To gain insight into the cause of this discrepancy, the pitch response for one of

the experimental runs was compared with theoretical predictions. These results

are presented in Figures 10.19, 10.20 and 10.21.

The predicted pitch responses for the DMS and vortex models are very similar

for each tip speed ratio, despite the fact that the DMS model predicts the steady-

state pattern while the vortex model predicts what is a transient pattern for the

single revolution closest to the tip speed ratio of the measured pattern.

These predictions are made with the values of the damping coefficient and

friction coefficient adjusted to best match the measured values. In the absence

of damping and friction in the blade connection, the predicted pitch response is

greater in amplitude than the measured response at almost all speeds. Only with

the addition of friction does the blade settle to virtually zero amplitude at TSR

3.0, as was measured. It is clear that if the damping and friction are adjusted to

match the measured pitch amplitude, the phase of the response changes. For all tip

speed ratios shown in Figures 10.19, 10.20 and 10.21 the predicted pitch response

lags the measured pitch response by approximately 30◦ to 40◦. The shape of the

predicted pitch response is otherwise fairly similar to the measured response. The

predicted amplitude is slightly greater than the measured amplitude at most tip

speed ratios. The asymmetry in the pitch response is slightly underpredicted. At
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Figure 10.19: Measured and predicted pitch responses, Type B, TSR 0.3 - 0.7
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Figure 10.20: Measured and predicted pitch responses, Type B, TSR 1.1 - 1.6
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Figure 10.21: Measured and predicted pitch responses, Type B, TSR 2.1 - 3.0
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TSR 3, the blade was observed to settle to an almost constant pitch of approx-

imately -3◦, while the momentum and vortex models predict an almost constant

pitch of approximately -1◦.

10.4.2 Type B II geometry

The theoretical results for the Type B II geometry predict that the restoring

moment produced by this geometry should be too small. The frequency ratio for

the blades should be greater than one, resulting in pitch response out of phase

with the natural angle of incidence variation and negative torque for tip speed

ratios greater than approximately 0.4. Below this speed the pitch stops limit

the phase lag and result in positive torque at start up. Figure 10.22 shows the

comparison between theoretical and experimental results for torque coefficient for

this geometry. It is evident that agreement is good for tip speed ratios up to 0.4.

At this speed the torque is almost zero. While in the wind tunnel the torque

recovered at higher speeds and a maximum tip speed ratio of three was reached,

both the mathematical models predict increasingly large negative torque.

The pitch responses shown in Figures 10.23 to 10.25 (pages 278 to 280) show the

large phase difference, at times more than 90◦, between the measured and predicted

patterns, especially above TSR 0.4. It is the large phase lag of predicted pitch

response that produces the negative predicted torque. The measured response

however exhibits a much smaller lag angle. This phase difference suggests a greater

than predicted restoring moment acting in the experimental rig. To test this

hypothesis, the simulations were repeated with an additional restoring moment

added to the inertial moment supplied by the rolling profile. The best agreement

with the measured pitch responses was found by setting the additional moment

proportional to centrifugal force at 0.006 (Nm/rad)/N. The new responses are
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Figure 10.22: Measured and predicted torque coefficient, Type B II geometry

shown in Figures 10.26 and 10.27 (pages 281 to 282). The reduced phase angle is

evident.

The predicted torque coefficient with this additional spring moment is shown

in Figure 10.28 (page 283). The agreement with experimental data is improved,

though the torque above TSR 1.7 is still negative.
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Figure 10.23: Measured and predicted pitch responses, Type B II, TSR 0.3 - 0.7
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Figure 10.24: Measured and predicted pitch responses, Type B II, TSR 0.9 - 1.6
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Figure 10.25: Measured and predicted pitch responses, Type B II, TSR 2.0 - 2.7
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Figure 10.26: Measured pitch responses for the Type B II geometry compared with
predicted pitch responses for Type B II with additional spring; TSR 0.3 - 0.7



CHAPTER 10. WIND TUNNEL TEST RESULTS 282

-30

-20

-10

0

10

20

30

-90 0 90 180 270

Azimuth [deg]

P
it

ch
 [

d
eg

]

Experiment

DMS

Vortex

TSR 0.9

-30

-20

-10

0

10

20

30

-90 0 90 180 270

Azimuth [deg]

P
it

ch
 [

d
eg

]

Experiment

DMS

Vortex

TSR 1.4

-30

-20

-10

0

10

20

30

-90 0 90 180 270

Azimuth [deg]

P
it

ch
 [

d
eg

]

Experiment

DMS

Vortex

TSR 1.6

Figure 10.27: Measured pitch responses for the Type B II geometry compared with
predicted pitch responses for Type B II with additional spring; TSR 0.9 - 1.6.



CHAPTER 10. WIND TUNNEL TEST RESULTS 283

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3

TSR

C
q

Experiment

Vortex

DMS

Figure 10.28: Measured torque coefficient for the Type B II geometry compared with
predicted torque for Type B II with additional spring

If the same additional spring restoring moment is applied to the simulations

for the original Type B geometry, the agreement between measured and predicted

pitch response patterns similarly improves, as shown in Figures 10.29, 10.30 and

10.31 (pages 284 to 286). The predicted torque, shown in Figure 10.32 (page 287),

however now over-estimates the actual torque, up to TSR 2 where the torque

becomes negative.
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Figure 10.29: Measured pitch responses for the Type B geometry compared with pre-
dicted pitch responses for Type B with additional spring; TSR 0.3 - 0.7
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Figure 10.30: Measured pitch responses for the Type B geometry compared with pre-
dicted pitch responses for Type B with additional spring; TSR 1.1 - 1.6.
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Figure 10.31: Measured pitch responses for the Type B geometry compared with pre-
dicted pitch responses for Type B with additional spring; TSR 2.1 - 3.0.
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Figure 10.32: Measured torque coefficient for the Type B geometry compared with
predicted torque for Type B with additional spring

10.4.3 Type C component

Comparison between predicted and measured torque coefficients for the Type C

geometry is shown in Figure 10.33. Both the DMS and vortex model predictions

follow the general trend of the experimental data and predict the maximum tip

speed ratio fairly well.

The predicted and measured pitch response patterns for a range of tip speed

ratios is shown in Figures 10.34 and 10.35 (pages 289 and 290). Unlike the results

for the Type B and Type B II geometries, there is no significant phase differ-

ence between the predicted and measured pitch responses. This suggests there

is no significant additional restoring moment acting that is not included in the

mathematical models.

The vortex model predicted torque exhibits oscillations in the range TSR 0.7

- TSR 1.1. The exact location and magnitude of the peaks and troughs in the



CHAPTER 10. WIND TUNNEL TEST RESULTS 288

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TSR

C
q

Experiment 5.7 m/s

Experiment 7.1 m/s

DMS 5.7 m/s

Vortex 5.7 m/s

Type C inertial/elastic

Figure 10.33: Measured and predicted torque coefficient, Type C geometry

torque curve in this region are dependent on the initial conditions set for the run.

To illustrate this, two runs were conducted with an initial velocity corresponding

to a tip speed ratio of 0.01. In one run, the blades were given an initial pitch of

zero degrees and for the other they were all set to +14◦. The predicted speed-time

histories and corresponding torque coefficient curves are shown in Figure 10.36. It

is evident that the initial conditions affect the output of the turbine throughout

the run, even producing different final speeds after 250 seconds of simulated time.

While the general nature of the torque coefficient curves are the same, the exact

locations of the various peaks, corresponding to ‘spurts’ in the speed histories, are

different. This indicates that for the accelerating turbine the pitch response at a

given speed is transient and may result in appreciably different torques from those

produced under different unsteady conditions or at steady-state at that speed.
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Figure 10.34: Measured and predicted pitch responses, Type C, TSR 0.4 - 1.0
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Figure 10.35: Measured and predicted pitch responses, Type C, TSR 1.4 - 1.5

10.4.4 Discussion

Friction

For all the Type B geometries the blades settled to a fixed, non-zero pitch at a tip

speed ratio less than three. Initial modelling predicted significant pitch amplitude

at this speed. The discrepancy must be attributed to friction. Friction in the

blade connections was not initially included in the mathematical models as it was

expected to have negligible effect. For the rolling profile design concept there

is not supposed to be any sliding contact, except between the pivot point and
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Figure 10.36: Comparison of the speed-time histories (a) and corresponding torque
coefficient-TSR curves (b) for the Type C geometry component with two different initial
conditions.
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its bearing surface. Since this contact had to transmit only the weight of the

blade due to gravity rather than its centrifugal weight, and because vibration was

expected to reduce resistance under operating conditions, friction at this point was

not expected to be high.

The pitch response patterns measured during operation however indicate ap-

preciable friction that is proportional to centrifugal load. This must be due to

rolling resistance caused by deformation of the rolling profile component and the

surface on which it rolls. This deformation produces a finite area contact patch and

moves the location of the resultant normal contact force forward (in the direction

of motion). There is then effectively an additional moment retarding the rolling

motion. The magnitude of this resistance is dependent on the geometry and mate-

rial properties of the two components. The initial rolling profile components were

manufactured in polyurethane in order to incorporate an elastic restoring moment

through the flexibility of the material. However this flexibility would have resulted

in increased contact patch deformation and increased rolling resistance. This point

was realised during testing and replacement parts manufactured in much harder

High Density Polyethylene. The polyurethane mating components however were

retained and little change was measured in the pitching behaviour.

In order to reduce such resistance both the rolling profile component and the

mating part should be manufactured in a harder material, possibly steel. The

wearing properties of the two materials must be considered. Wear resistance was

a factor in the selection of polyurethane as the original material.

Some aspects of the turbine performance cannot be attributed to friction. The

fact that the Type B II and Type B III geometry components produced success-
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ful operation of the turbine when both mathematical models predicted that they

should not work indicates a stronger than expected restoring moment.

Increased restoring moment could result if the centre of mass of the blade

assembly were displaced radially outwards. This would increase the centrifugal

restoring moment at any pitch angle.

The mathematical models produce the best agreement with measured pitch

patterns when an additional spring of stiffness 0.006 Nm/rad/N centrifugal force

is added. For small angles this is equivalent to a mass centre offset of 6 mm.

A check of the balance of the blades however ruled out a balance error of the

magnitude needed to explain the discrepancy. In addition, the fact that very little

‘additional’ restoring moment was evident for the smaller radius Type C geometry

suggests that there was no significant balance error.

It is possible that deformation of the components does alter the contact between

them in such a way as to produce not just resistance to movement but actually a

resistance to displacement, even with the use of HDPE. The experimental results

presented in Section 3.4 indicated a rise in the torsional stiffness of both the Type

B and Type C polyurethane components for radial loads greater than 750 N. For

a blade mass of 7.36 kg and turbine radius of 870 mm, this force corresponds

to a turbine speed of approximately 15 rad/s, or 146 rpm. While the increase

in the torsional stiffness on the turbine was modelled as increasing linearly with

centrifugal force, it is possible that the effect becomes increasingly non-linear as

speed increases. In order to minimise this effect metal components could be used.

It is evident also that the measured pitch response exhibits an offset in mean

pitch angle. This offset is matched by an asymmetry in the predicted pitch re-

sponse. At low tip speed ratios this is a result of the asymmetry in the pattern
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of incidence angle variation. The incident wind swings around the trailing edge

of the blade as it travels downwind much more rapidly than it travels around the

leading edge as it travels upwind. To take a sailing analogy, the angle of attack

changes much faster as the blade ‘gybes’ than it does as it ‘tacks’. This results

in a more gradual motion of the blade from its positive limit to the negative limit

than in the reverse direction.

As tip speed ratio increases, the deceleration of the flow through the turbine

becomes more pronounced. For a high solidity turbine like that tested here, most

of the deceleration occurs at the upwind half of the blades’ orbit. By the time the

flow reaches the blades in the downwind half, most of its energy has already been

extracted. This results in smaller angles of attack on the downwind pass than

on the upwind pass. The positive pitch excursion that occurs in the downwind

pass can then be expected to be smaller than the negative angle excursion on

the upwind pass. This effect should become more pronounced as tip speed ratio

increases.

This effect however cannot explain a constant negative pitch offset being main-

tained with virtually zero pitch amplitude. The decelerated flow experienced by

the blades in the downwind pass only reduces the disturbing aerodynamic moment.

If the inertial restoring moment is moving the blade towards zero pitch, then the

pitch should approach zero, not adopt a constant negative value.

The only factor that would produce a constant negative pitch offset is the

aerodynamic force on the blade that is pivoted about a point forward of its aero-

dynamic centre. The zero pitch line is defined as being perpendicular to the radius

through the pivot axis. Here the quarter chord point of the blade is 20.5 mm aft

of the pivot axis. At zero pitch there is therefore a some negative angle of attack
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experienced at the aerodynamic centre. This would cause the blade to adopt some

small negative pitch angle to find the orientation of least resistance as the turbine

spins, even in still air. In addition, the curvature of the flow experienced by a

blade moving in a circular path causes further negative deflection of the blade.

The observed decrease in the pitch offset with decreasing turbine speed as the

turbine decelerates from speed in still air is in keeping with the idea that these

effects contribute to the offset.

Both of these effects are handled in the mathematical models. The calculated

angle of attack takes into account the distance between the pivot axis and the

aerodynamic centre and the flow curvature method of Migliore (1984) modifies

the effective angle of attack. The inclusion of friction in the model successfully

reproduces the settling to an almost constant negative pitch angle at high tip speed

ratios, albeit of a smaller magnitude than was measured.

Blockage

The other major area of discrepancy between predicted and experimental perfor-

mance was for tip speed ratios greater than 1.7. While the mathematical models

predict negative torque at these speeds, positive torque was produced experimen-

tally. The mathematical models predict positive ‘gross’ torque, but when parasitic

drag is subtracted, the net torque is negative.

The reason for this discrepancy is not known. The quality of agreement at lower

tip speed ratios is reasonable. It is possible that the effects of blockage in the wind

tunnel contribute to this difference. The constraints of the tunnel walls may force

the flow velocity to be higher than would be the case in the open, especially in the

downwind half of the turbine.
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Grylls et al. (1978) however attributed a lower than predicted maximum torque

to blockage effects. They tested a ‘cycloturbine’, with a cam driving a preset sched-

ule of pitch variation, in a wind tunnel and measured the power coefficient using a

dynamometer. They measured a maximum power coefficient of approximately 0.2.

This was lower than their predicted value of more than 0.3. They speculated that

the discrepancy may be due to the wind tunnel walls preventing the full expansion

of the wake that would occur under free conditions. Their turbine had a diameter

of 2.4 m and a height of 1.6 m. The wind tunnel test section measured 10 ft x 12

ft (3.05 m x 3.66 m), giving a blockage of approximately 34%. Grylls et al. state

that:

“It is believed that the wake of the rotor is unable to expand any

further than the size corresponding to a 20% power extraction. . .

Our experience . . . suggests that blockage does not give an increased

speed at the rotor, but rather higher speed in the wake than antici-

pated.”

The maximum Cp recorded by Kirke (1998) for the 2 m diameter turbine

he tested in the wind tunnel was approximately 0.22. Bayly (1981) recorded a

maximum Cp of approximately 0.36 for a 508 mm diameter model turbine tested

in the wind tunnel, however this was of the open-jet type where blockage does not

occur.

The effect of blockage is likely to be even more significant in the present case

due to the short length of the working section. At a distance of approximately one

turbine diameter downstream of the turbine axis, the air enters a 10:1 contraction,

further inhibiting the natural expansion of the wake.
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Sheldahl (1981) compared the performance of a 2 metre diameter troposkien

Darrieus turbine measured in the wind tunnel and in the field. He found good

agreement for the maximum power coefficient, with slightly higher efficiency mea-

sured in the field than in the wind tunnel for tip speed ratios greater than that at

which peak efficiency occurred. Sheldahl was not able to conclude if the difference

was due to the blockage correction factor used for the wind tunnel results (Sheldahl,

1976) or whether the difference was real. The wind tunnel test section measured

4.6 m x 6.1 m, giving a ratio of turbine swept area to tunnel cross-sectional area

of 0.092. In the present work, the test section area is 7.46 m2 and the turbine

swept area is 2.09 m2, making the corresponding ratio 0.28. The much greater

value makes it impossible to rely on Sheldahl’s work to determine the significance

of blockage in this case.

The only way to tell how the performance of the turbine in the wind tunnel

differs from that in the open would be to conduct outdoor tests. Field testing

however brings its own problems, particularly the inevitable turbulence of the

wind, which would make direct comparison with wind tunnel results difficult. The

estimation of the effect of wind tunnel blockage on the performance of passive

variable-pitch turbines is particularly difficult, given the sensitivity of the pitch

response and the measured torque to the variation of flow velocity across and

through the turbine.

However significant the effect of blockage, its influence should be smaller at low

tip speed ratios where the deceleration of the flow is small. This is the operating

region of interest in the present study.
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10.5 Conclusion

10.5.1 Performance of turbine

The turbine was able to generate torque at low tip speed ratios using a number

of components embodying the rolling profile design concept. Virtually no starting

torque was produced with the blades fixed. The turbine was demonstrated to be

self-starting, however variability in performance was observed. It appears that the

compressibility of the rolling profile components affected the pitching behaviour

of the blades and the performance of the turbine as a whole.

The potential of the elastomeric pitch control concept was not demonstrated

by use of the particular geometry tested. The components tested proved to be

excessively stiff and did not allow sufficient pitching to occur at start up. Further

testing using different geometries is required.

Aerodynamic drag was higher than was anticipated and significantly affected

the measured performance of the turbine. On the basis of run-down tests con-

ducted to measure resistance, at design speeds most of the torque produced by

the blades was lost in overcoming aerodynamic drag on the radial arms and blade

fittings. While this is an inherent disadvantage of straight-bladed vertical axis

wind turbines, in hindsight insufficient design attention was given to this prob-

lem in this case. Even a modest reduction in drag would result in a significant

percentage increase in the peak efficiency measured here.

The size of the turbine relative to the test section is suspected to have had

a significant effect on performance at higher tip speed ratios. Restriction of the

natural expansion of the wake may be responsible for the discrepancy between pre-

dicted and measured performance at tip speed ratios greater than approximately

1.7.
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10.5.2 Development of pitch measurement technique

A photogrammetric method was developed to allow measurement of the pitch

response pattern of one of the turbine blades in operation. This allowed comparison

with the pitch patterns predicted by the mathematical models. The technique

proved invaluable in providing insight into the behaviour of the passive variable-

pitch mechanisms.

10.5.3 Performance of mathematical models

In general the momentum and vortex models produced similar results, with similar

levels of agreement with experimental data. Uncertainty surrounding the true

kinematics of the blade connections and the effects of the wind tunnel on the

aerodynamics makes comparison of theoretical and experimental results difficult.

Three-dimensional effects, which are neglected in these two-dimensional analyses,

may also play an important role in the turbine’s aerodynamics.

The vortex model predicted slightly lower torque than the momentum model

for virtually all cases. This should be expected, as the momentum model predicts

the steady-state performance at each speed, while the vortex model models the

more realistic case of the accelerating turbine, where the blades do not always have

time to approach the steady-state response pattern.

The vortex model results also exhibited some degree of variability in the same

manner as the experimental results. The location and magnitude of peaks and

troughs in the torque curve (corresponding to spurts and plateaus in the speed

history) were dependent on the exact initial conditions for the run. Both the

initial turbine speed and even initial blade pitch angles were found to effect the

predicted performance for the entire run. Similar variability of performance under

nominally identical conditions was continually observed in the wind tunnel. At
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the time this was attributed to variation in friction, alignment and resistance to

pitching. It seems that to some degree such variation reflects the complexity of

the system and the sensitivity of performance to small disturbances.

This sensitivity made both physical testing and mathematical modelling diffi-

cult. Ultimately the quantity of interest for a wind turbine is the average energy

capture over a long period in a real wind. Not only is the task of isolating a test

system from disturbances in order to distill its ‘ideal’ performance characteristic

difficult, it is also not straightforward to use this ideal characteristic to predict its

performance in the ‘real world’, where disturbances dominate. While the vortex

model is conceptually more appealing on these grounds, as it is able to simulate

directly the unsteady performance of the turbine, its results have not in general

proven to be in better agreement with experiments. Consequently the momentum

theory mathematical model may be viewed as delivering greater ‘value-for-effort’

than the vortex model, whose complexity and order-of-magnitude greater expense

do not in general yield commensurate gains in accuracy.
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Conclusion

Darrieus turbines with fixed blades are characterised by low or even negative torque

at tip speed ratios below that at which they are designed to run (greater than ap-

proximately three). This feature prevents or greatly inhibits the ability of such

turbines to self-start. It also significantly affects total energy capture in a turbulent

wind. The use of passive variable-pitch blade mechanisms to improve this aspect

of performance of straight-bladed vertical axis wind turbines is the subject of this

thesis. A momentum theory mathematical model and a vortex theory mathemat-

ical model have been developed as part of this work to predict the performance

of different designs of passive variable-pitch turbine. Wind tunnel testing of a

prototype turbine featuring two new design concepts has also been undertaken.

Evaluation of existing designs

A review of existing passive variable-pitch vertical axis wind turbine designs has

been performed. The provision of some form of ‘restoring moment’ acting inde-

pendently on each blade is a common feature of almost all the design concepts

found in the literature. This moment may be produced by elastic means or by

the inertial loads on the blade. Insight into the operation of passive variable-pitch

turbines and a basis for systematic selection of design parameter values has been

gained through use of Pro/MECHANICA and the momentum model. It is con-

cluded that greatest torque at all tip speed ratios is achieved if the magnitude of

301
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this restoring moment increases with the square of turbine speed. Inertial-type

designs inherently produce such a moment.

A theoretical basis for the selection of parameters governing the strength of

the restoring moment has been developed. Treatment of the pitching blade as a

spring/mass/damper system excited by a harmonic driving force indicates that

the natural frequency is a function of turbine speed and that the frequency ratio

is therefore a constant function of design parameters. This ratio must be less

than one to ensure that the blade motion is not too far out of phase with the

aerodynamic driving force and that positive torque is produced.

Potential of new designs

Elastomeric blade mounting component concept - A design concept featuring elas-

tomeric blade mounting components has been proposed. The aim is to produce

an elastic restoring moment on the blades that increases with centrifugal load.

The turbine using the particular design of flexible elastomeric components

tested in the wind tunnel did not perform well. The combination of geometry

and material that was chosen proved to be excessively stiff in torsion, preventing

the blade from pitching sufficiently. A different geometry could be selected to re-

duce this stiffness, however it is likely that the tensile stiffness of the component

would then be reduced. It appears that it would be difficult to find a suitable

compromise between these two constraints.

A further potential difficulty is that if an appropriate combination of part ge-

ometry and material properties could be found to produce the desired relationship

between torsional stiffness and radial force, the properties of the material may
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change with time. This may result from fatigue, moisture absorption or tempera-

ture. Given the sensitivity of blade pitch response and turbine performance to the

torsional stiffness of the blade connection, this may prove to be a significant issue.

Rolling profile concept - A design concept that produces restoring moment from

inertial loads using a component in rolling contact with the rotor has been pro-

posed. Mathematical modelling, using both the momentum and vortex mathemat-

ical models has indicated the potential of the concept. The design allows greater

control over restoring moment than is available with other inertial type passive

variable-pitch designs. It also reduces the mass moment of inertia of the blades,

allowing smaller aerodynamic moment arms to be used and producing faster blade

response.

Wind tunnel testing of a prototype turbine has been conducted and the rolling

profile concept was demonstrated to enable self-starting. Further refinement of

the design is required to reduce the effects of friction and parasitic drag. The

compressibility of the components used for testing is thought to have affected

performance significantly.

The ‘pendulum’ design of Sicard (1977) and Kentfield (1978) is probably the

simplest design of passive variable-pitch VAWT and its predicted performance

is not greatly different from that of the rolling profile concept. The conceptual

advantages of the new design - of reduced blade mass moment of inertia and

greater control over restoring moment - will be of little value if the turbine is

significantly less reliable or more expensive. Further development of the detailed

design is required before the concept can be judged as successful.
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Development of a blade pitch response measurement technique

A significant part of the present thesis has been the development of a technique

for the measurement of the pattern of blade pitch angle variation when the turbine

is in operation. A photogrammetric technique using long exposures to record the

trajectories of light emitting diodes mounted on one of the blades was adopted.

A computer program has been written to extract the pitch angle history from the

digital camera images. This method has been used successfully to measure the

pitch response patterns of the prototype turbine operating in the wind tunnel.

Performance of mathematical models

Each of the mathematical models was able to produce results that are in general

agreement with torque coefficient data measured from the wind tunnel experiments

with the prototype turbine. The difference in results from the two models is

surprisingly small given the different approaches to calculation of the velocity

field. Both models failed to reproduce the higher tip speed ratio performance

observed for a number of variations of the rolling profile design, potentially due

to the effect of blockage. The pitch response patterns produced by both models

were reasonably close to those measured over a range of tip speed ratios once

adjustments to friction and restoring moment values had been made.

The difference in performance predicted by the momentum and vortex models

was not great, despite the greater complexity of the vortex model. It is concluded

that for general design analysis and parameter selection the faster momentum

model is adequate. The much greater computational expense of the vortex model

appears only to be justified for the study of turbulent wind performance, which

momentum methods cannot handle.



CHAPTER 11. CONCLUSION 305

Turbulent wind performance

The vortex model has been used to simulate turbulent wind performance of a

number of passive variable-pitch turbines. The results indicate that significant re-

ductions in average efficiency occur in unsteady conditions. Well-designed passive

variable-pitch turbines are predicted to suffer losses in efficiency of around 10%

in typical wind conditions. A standard Darrieus turbine is predicted to lose ap-

proximately 28% of its steady-state efficiency. The results indicate the importance

of a ‘flat’ turbine power coefficient curve and the ability of passive variable-pitch

turbines to achieve this. Rotor and blade mass moment of inertia also influence

turbulent wind efficiency, though to a lesser extent. The results indicate that a

major advantage of variable-pitch turbines is improved total energy capture, not

just self-starting ability.

11.1 Summary of Research outcomes

The key outcomes of the research are:

• Development and wind tunnel testing of two new design concepts for passive

variable-pitch turbines. These are the use of a specially designed elastomeric

component to produce a connection whose torsional stiffness increases with

centrifugal force; and the use of a rolling profile component whose shape

determines the relationship between pitch angle and the restoring moment

arising from inertial force. Refer to Chapters 3 and 10.

• Extension of the Double Multiple Streamtube type mathematical model to

include the full inertia effects of pitching blades, as well as different passive

variable-pitch designs. Refer to Chapter 5.
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• Development of a free vortex wake mathematical model for passive variable-

pitch Darrieus turbines, allowing modelling of unsteady performance. Refer

to Chapter 6.

• Development of a parameter selection strategy for passive variable-pitch tur-

bines based on a frequency response analysis of the blade pitching. Refer to

Chapter 7.

• Investigation of the turbulent wind performance of VAWTs, indicating the

ability of passive variable-pitch turbines to achieve significantly greater av-

erage efficiency than the corresponding fixed-bladed turbine. Refer to Chap-

ter 8.

• Development of a simple, non-invasive method for measuring the blade pitch

response of a turbine in operation in the wind tunnel. Refer to Section 9.4.3.

• Modification of the semi-empirical MIT dynamic stall method to allow it to

be used in the modelling of the starting performance of Darrieus turbines.

Refer to Section 5.1 and Appendix B.

11.2 Conclusion and Recommendations for Further Work

This thesis has identified a logical basis for the design and selection of key parame-

ters for passive variable-pitch vertical axis wind turbines. This knowledge enables

specious ideas to be identified amongst the variety of possible design concepts and

provides guidance for blind trial and error optimisation processes. A range of

design paths remain open for passive variable-pitch turbines and the question of

which, or if any, of these can lead to an economical and reliable self-starting VAWT

remains to be answered. The most critical hurdles may lie in the detailed design

and materials selection to produce a simple, economical, reliable machine with ad-

equate fatigue life. Before these issues are tackled however a sound design concept
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must be selected and confidence must exist that the effect of different parameter

selections on performance can be adequately predicted. Continued development of

mathematical models and experimental validation is therefore required. A number

of specific areas warrant further attention:

• The greatest area of weakness of all mathematical models of Darrieus tur-

bines is the prediction of unsteady aerodynamic forces, including dynamic

stall. The complexity of the phenomenon places upper limits on the ability of

semi-empirical techniques to accurately predict unsteady forces by modify-

ing static lift, drag and pitching moment coefficients. While greater accuracy

may be obtained by using computational fluid dynamics techniques, greater

computing power will be required to make their use practical.

• Further testing of a passive variable-pitch turbine using metal rolling profile

components is needed to further assess the potential of this concept.

• Outdoor testing of this turbine is needed to assess the effect of constraint of

the turbine wake in the wind tunnel.

Such work may ultimately allow passive variable-pitch vertical axis wind tur-

bines to be widely used as a decentralised, renewable and economical energy source.
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Appendix A

Turbine Kinematics

The various designs of passive variable-pitch turbine examined are distinguished

by the specific kinematics of the blade motion.

In order to generate the velocity and acceleration coefficients required for the

Lagrangian equation of motion for the turbine described in Section 6.6, the kine-

matic relationships reflecting the specific turbine mechanism are required. The

velocity and acceleration coefficients relate the generalised coordinates for the sys-

tem (the rotor position and the pitch angle of each blade) to the x-y ground-based

Cartesian coordinate system, defined such that the y-axis points into the mean

free wind.

The position of the rotor is always directly represented by the q0 generalised

coordinate. The motion of the mass centres of the blades is dependent on the

specific turbine design. The first step is to express velocities and accelerations of

the blade mass centre in a Cartesian coordinate system fixed to the rotor.

Referring to Figure A.1, the ρ-τ coordinate system rotates with the rotor, has

its origin at radius R from the rotor axis and marks radial and tangential directions.

The general velocity and acceleration components of the mass centre of the blade

assembly are shown.

The acceleration includes components due to the rotation and acceleration of

the coordinate system, as well as the Coriolis acceleration, normal to the direction

319
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Figure A.1: Kinematics of the blade mass centre

of relative velocity.

The absolute velocities and accelerations of the blades are then found in the

X-Y coordinate system shown in Figure A.1. Using the velocity components il-

lustrated and noting that the rotor position is labelled φ, the absolute velocities

are:

Ẋ = (τ φ̇− ρ̇) sin φ + ((R− ρ) φ̇− τ̇) cos φ (A.1)

Ẏ = (τ φ̇− ρ̇) cos φ− ((R− ρ) φ̇− τ̇) sin φ (A.2)

α̇ = φ̇ + θ̇ (A.3)

The absolute acceleration components are:

Ẍ = {(R− ρ)φ̈− τ̈ − 2ρ̇φ̇ + τ φ̇2} cos φ

+ {τ φ̈− ρ̈ + 2τ̇ φ̇− (R− ρ)φ̇2} sin φ (A.4)

Ÿ = {τ φ̈− ρ̈ + 2τ̇ φ̇− (R− ρ)φ̇2} cos φ

−{(R− ρ)φ̈− τ̈ − 2ρ̇φ̇ + τ φ̇2} sin φ (A.5)

α̈ = φ̈ + θ̈ (A.6)
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The quantities ρ̇, τ̇ , ρ̈, τ̈ must be determined as functions of the pitch angle θ for

the specific turbine design.

The above kinematic relations are used to generate the velocity and acceleration

coefficients used in the Lagrangian dynamics part of the free vortex model. The X

and Y direction coefficients are dependent on the kinematics of the specific blade

suspension design. The angular coefficients however are fixed by the definition of

the generalised coordinates. The only non-zero angular coefficients are:

Ωi0 = 1

Ωii = 1 (A.7)

They are also used calculate the reactions at the rolling contact point for each

blade, once the external forces and moments and the velocities and accelerations

have been calculated. This is done by a kineto-static analysis of each blade - effec-

tively creating a free body diagram of the blade and using d’Alembert’s principle

to find the reaction forces.

A.1 Pendulum Kinematics

For the pendulum inertial pitch control design, the mass centre of the blade moves

in a circular arc centred on the origin of the ρ-τ coordinate system. As a function
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of pitch angle, it may be verified that:

τ = −Rcg sin θ (A.8)

ρ = −Rcg cos θ (A.9)

τ̇ = −Rcgθ̇ cos θ (A.10)

ρ̇ = Rcgθ̇ sin θ (A.11)

τ̈ = Rcg(θ̇
2 sin θ − θ̈ cos θ) (A.12)

ρ̈ = Rcg(θ̇
2 cos θ + θ̈ sin θ) (A.13)

Rcg is the ‘length’ of the pendulum - the distance from the pivot axis to the mass

centre of the blade.

For the momentum theory model, where the turbine speed is pre-determined,

the pitching acceleration of the blade is calculated using d’Alembert’s principle.

It may be verified that

θ̈ =

∑
M −Rcg sin θmR φ̇2 − {(I + mR 2

cg) + mRcgR cos θ} φ̈

I + mR 2
cg

(A.14)
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where
∑

M is the total external moment acting on the blade about the mass

centre in the direction of positive θ; I is the polar mass moment of inertia of the

blade assembly about the mass centre. For the constant speed case, φ̈ is zero and

so the final term in the numerator drops out.

For the whole mechanism treatment used in the free vortex model, the veloc-

ity and acceleration coefficients used by Paul (1979) are required. In this case,

substituting the above into Equations (A.1) and (A.2) and simplifying we get :

Ẋ = {Rcg cos(θ + φ) + R cos φ} φ̇ +

{Rcg cos(θ + φ)} θ̇ (A.15)

Ẏ = {−R sin(φ)−Rcg sin(φ + θ)} φ̇ +

{−Rcg sin(φ + θ)} θ̇ (A.16)

(A.17)

Equations (A.4) and (A.5) become:

Ẍ = −{Rcg sin θ(θ̇ + φ̇)2 −Rcg cos θ(θ̈ + φ̈)−Rφ̈} cos φ

−{Rcg cos θ(θ̇ + φ̇)2 + Rcg sin θ(θ̈ + φ̈) + Rφ̇2} sin φ (A.18)

Ÿ = {Rcg sin θ(θ̇ + φ̇)2 −Rcg cos θ(θ̈ + φ̈)−Rφ̈} sin φ

−{Rcg cos θ(θ̇ + φ̇)2 + Rcg sin θ(θ̈ + φ̈) + Rφ̇2} cos φ (A.19)

In order to extract the acceleration coefficients used by Paul (1979), Equations

(A.37) and(A.38) need to be reformulated to extract terms proportional to the
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generalised coordinate accelerations:

Ẍ = {Rcg cos(θ + φ) + R cos φ} φ̈ +

{Rcg cos(θ + φ)} θ̈

−Rcg(φ̇ + θ̇)2 sin(φ + θ)−R φ̇2 sin φ (A.20)

Ÿ = {−R sin(φ)−Rcg sin(φ + θ)} φ̈ +

{−Rcg sin(φ + θ)} θ̈

−Rcg(φ̇ + θ̇)2 cos(φ + θ)−R φ̇2 cos φ (A.21)

The non-zero velocity coefficients for blade i are then:

Ui0 = R cos φ + Rcg cos(φ + θ)

Uii = Rcg cos(φ + θ)

Vi0 = −R sin(φ)−Rcg sin(φ + θ)

Vii = −Rcg sin(φ + θ) (A.22)

Equations (A.20) and (A.21) can then be seen to be:

Ẍ = Uii θ̈ + Ui0 φ̈ + U ′

Ÿ = Vii θ̈ + Vi0 φ̈ + V ′ (A.23)
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where the acceleration coefficients, which contain centripetal and Coriolis acceler-

ation components, are:

U ′ = −Rcg(φ̇ + θ̇)2 sin(φ + θ)−R φ̇2 sin φ

V ′ = −Rcg(φ̇ + θ̇)2 cos(φ + θ)−R φ̇2 cos φ

A.2 Rolling Profile Kinematics

The derivation of the rolling profile shape for a desired moment-angle relationship

is described in Section 3.3.
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Figure A.3: Kinematics of the rolling profile design concept

The radial coordinate ρ is equal to the dimension y. According to Equation

(3.4) on page 60, y is defined in terms of the specified relationship between d and

θ:

∂y

∂θ
= d(θ) (A.24)

giving:

y = ρ =

∫
d dθ + y0 (A.25)
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The τ coordinate is found by assuming no-slip rolling contact. Then τ is the

arc length from the initial contact point to the current contact point minus the

offset d. Labelling the arc length coordinate between the initial position (θ = 0)

and the contact point corresponding to pitch angle θ as s:

τ = s− d (A.26)

d
yθ

X

Y D

C relative to
point D

p

q

δ
δθ

d

δy

δθ

d

y

Figure A.4: Rolling profile coordinate system, showing the infinitesimal displacements
of a point C at (d, y, θ) in terms of infinitesimal changes in the coordinates.

Figure A.4 shows the infinitesimal displacements of a point C in terms of in-

finitesimal changes in the coordinates d, y and θ. It can be seen that:

δs = δd + y δθ (A.27)
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Accordingly,

s =

∫ θ

0

(
dd

dΘ
+ y

dΘ

dΘ

)
dΘ

= d +

∫ θ

0

y dΘ (A.28)

From Equations (A.26) and (A.28),

τ =

∫ θ

0

y dΘ (A.29)

The relative velocities are then obtained by differentiation. From Equation(A.29):

τ̇ =
dτ

dθ

dθ

dt
= yθ̇ (A.30)

and from Equation (A.25):

ρ̇ =
dρ

dθ

dθ

dt
= dθ̇ (A.31)

Differentiating again to obtain accelerations:

τ̈ =
d2τ

dθ2
θ̇2 +

dτ

dθ
θ̈

= d θ̇2 + y θ̈ (A.32)

and

ρ̈ =
d2ρ

dθ2
θ̇2 +

dρ

dθ
θ̈

=
dd

dθ
θ̇2 + d θ̈ (A.33)
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For the single-degree-of-freedom treatment used in the momentum model, the

pitching acceleration is found for the instantaneous values of the pitch and pitching

velocity θ and θ̇ and the turbine speed and acceleration φ̇ and φ̈. It may be verified

using Figure A.3 that

θ̈ =

∑
M − [I −m{τd + ρ(R− ρ)}] φ̈−mA

I + m(d2 + ρ2)
(A.34)

where

∑
M = M + Fρd + Fτρ

A =

[
d(ρ +

dd

dθ
)θ̇2 − {τρ− d(R− ρ)}φ̇2

]

As in Section A.1, M is the external moment about the mass centre. Fρ and Fτ

are the radial and tangential components of the external aerodynamic force on the

blade.

In this case, Equations (A.1) and (A.2) become:

Ẋ = (−ρ cos φ− d sin φ) θ̇ + ((R− ρ) cos φ + τ sin φ) φ̇ (A.35)

Ẏ = (ρ sin φ− d cos φ) θ̇ + ((ρ−R) sin φ + τ cos φ) φ̇ (A.36)

Equations (A.4) and (A.5) become:

Ẍ = {(R− ρ)φ̈− (dθ̇2 + ρθ̈)− 2dθ̇φ̇− τ φ̇2} cos φ

+ {τ φ̈− (
dd

dθ
θ̇2 + dθ̈) + 2τ̇ φ̇− (R− ρ)φ̇2} sin φ (A.37)

Ÿ = {τ φ̈− (
dd

dθ
θ̇2 + dθ̈) + 2τ̇ φ̇− (R− ρ)φ̇2} cos φ

−{(R− ρ)φ̈− (dθ̇2 + ρθ̈)− 2dθ̇φ̇− τ φ̇2} sin φ (A.38)
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In order to extract the acceleration coefficients used by Paul (1979), Equations

(A.37) and(A.38) need to be reformulated to extract terms proportional to the

generalised coordinate accelerations:

Ẍ = (−ρ cos φ− d sin φ) θ̈ + ((R− ρ) cos φ + τ sin φ) φ̈

+ (−d cos φ− dd

dθ
sin φ) θ̇2 + (−2d cos φ + 2ρ sin φ) φ̇θ̇

+ {(ρ−R) sin φ + τ cos φ} φ̇2 (A.39)

Ÿ = (ρ sin φ− d cos φ) θ̈ + ((ρ−R) sin φ + τ cos φ) φ̈

+ (d sin φ− dd

dθ
cos φ) θ̇2 + (2d sin φ + 2ρ cos φ) φ̇θ̇

+ {(ρ−R) cos φ− τ sin φ} φ̇2 (A.40)

The non-zero velocity coefficients for blade i are then:

Ui0 = (R− ρ) cos φ + τ sin φ

Uii = −ρ cos φ− d sin φ

Vi0 = (ρ−R) sin φ + τ cos φ

Vii = ρ sin φ− d cos φ (A.41)

Equations (A.39) and (A.40) can then be seen to be:

Ẍ = Uii θ̈ + Ui0 φ̈ + U ′

Ÿ = Vii θ̈ + Vi0 φ̈ + V ′ (A.42)
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where the acceleration coefficients are:

U ′ = (−d cos φ− dd

dθ
sin φ) θ̇2 + (−2d cos φ + 2ρ sin φ) φ̇θ̇

+ {(ρ−R) sin φ + τ cos φ} φ̇2

V ′ = (d sin φ− dd

dθ
cos φ) θ̇2 + (2d sin φ + 2ρ cos φ) φ̇θ̇

+ {(ρ−R) cos φ− τ sin φ} φ̇2 (A.43)

If the specified relationship between d and θ is analytic, differentiable and

integrable, then the positions, velocities and accelerations derived above may be

found analytically.

For example, for a simple circular profile or radius Rp and centre of gravity

located at radius Rcg from the centre of curvature, d = Rcg sin θ and y = Rp −

Rcg cos θ. We then get:

τ =

∫ θ

0

y dΘ = Rpθ − q sin θ

ρ = y = Rp −Rcg cos θ

τ̇ = yθ̇ = (Rp −Rcg cos θ)θ̇

ρ̇ = dθ̇ = (Rcg sin θ)θ̇

τ̈ = d θ̇2 + y θ̈ = (Rcg sin θ)θ̇2 + Rp − (Rcg cos θ)θ̈

ρ̈ =
dd

dθ
θ̇2 + d θ̈ = (Rcg cos θ)θ̇2 + (Rcg sin θ)θ̈

If d is not defined analytically, then the above quantities must be determined

numerically. Note that it may be defined in a piecewise analytical fashion also.
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Equation A.34, giving the pitching acceleration for known position, velocity

and rotor acceleration, becomes

θ̈ =

∑
M − [

I −m{RRp −R2
cg −R2

p + RpθRcg sin θ − (R− 2Rp)Rcg cos θ}] φ̈−mA

I + m(R2
cg + R2

p − 2RRcg cos θ)

(A.44)

where

∑
M = M + Fρ(Rcg sin θ) + Fτ (Rp −Rcg cos θ)

A =
[
(RpRcg sin θ)θ̇2 − {R2

pθ −RpθRcg cos θ −RRcg sin θ}φ̇2
]

Note that if Rp is set to zero, the situation reverts to that for a pendulum of

length Rcg. It may be checked that Equation A.44 reverts to Equation A.14.

A.3 Kinematics of the Kirke-Lazuaskas Design

In the Kirke-Lazauskas design (Kirke and Lazauskas, 1992; Kirke, 1998), a separate

stabiliser mass that is free to slide radially along the support arm provides the

restoring moment. Unlike other designs, the magnitude of the restoring moment is

independent of the pitch angle, and depends only on the offset between pivot axis

and the point of contact between stabiliser mass and blade (labelled af and ar in

Figure A.5. The design allows the restoring moment to be different for positive

and negative pitch angles.

Referring to Figure A.6, the restoring moment Mr is given by

Mr = ms{ρ̈ + (R− ρ)φ̇2} af for θ > 0

= −ms{ρ̈ + (R− ρ)φ̇2} ar for θ < 0 (A.45)
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Figure A.5: Key parameters of the Kirke-Lazauskas design (reproduced from Kirke,
1998)

where ms is the mass of the stabiliser, R is the turbine radius and ρ is the radial

offset of the stabiliser centre of mass from the ρ-τ coordinate system at radius R.

Noting that

ρ = af tan θ for θ > 0

= −ar tan θ for θ < 0 (A.46)

ρ̇ = af sec2 θ for θ > 0

= −ar sec2 θ for θ < 0 (A.47)

ρ̈ = af sec2 θ(2 tan θ θ̇2 + θ̈) for θ > 0

= −ar sec2 θ(2 tan θ θ̇2 + θ̈) for θ < 0 (A.48)
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Figure A.6: Acceleration components of the blade and stabiliser mass for the Kirke-
Lazauskas design (Kirke, 1998)

Equation (A.49) becomes

Mr = ms{af sec2 θ(2 tan(θ) θ̇2 + θ̈) + (R− af tan θ)φ̇2} af for θ > 0

= −ms{−ar sec2 θ(2 tan(θ) θ̇2 + θ̈) + (R + ar tan θ)φ̇2} ar for θ < 0

(A.49)

Using d’Alembert’s principle, the pitching acceleration is found to be:

θ̈ =

∑
M −Mr − φ̈

I
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which becomes:

θ̈ =

∑
M −ms{af sec2 θ(2 tan(θ) θ̇2) + (R− af tan θ)φ̇2} af − φ̈

I + ms(af sec θ)2
for θ > 0

=

∑
M + ms{−ar sec2 θ(2 tan(θ) θ̇2) + (R + ar tan θ)φ̇2} ar − φ̈

I + ms(ar sec θ)2
for θ < 0

(A.50)

where
∑

M is the total aerodynamic moment about the pivot axis and I is the

polar mass moment of inertia about the pivot axis.

Note that there is a step change in the restoring moment across θ = 0. When

θ = 0, the restoring moment may vary to match the disturbing aerodynamic

moment up to a magnitude equal to that given by Equation A.49.

It is very difficult to properly model the motion of the blade pitching through

θ = 0. Because the stabilising mass is asked to change directions instantaneously,

the real force will be determined by the compressibility and damping of the contact

regions. This complexity is neglected in the present analysis.

It should also be noted that the radial movement of the stabiliser mass results

in inertial moment and tangential reactions on the rotor. From Figure A.6 it may

be seen that the tangential reaction, decelerating the rotor, is given by:

Rτ = ms{(R− ρ)φ̈− 2φ̇ρ̇}

= ms{(R− af tan θ)φ̈− 2φ̇θ̇af sec2 θ} for θ > 0

= ms{(R + ar tan θ)φ̈ + 2φ̇θ̇ar sec2 θ} for θ < 0
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The inertial moment reaction, also decelerating the rotor, is:

Mreac = Isφ̈−ms{af sec2 θ(2 tan(θ) θ̇2 + θ̈) + (R− af tan θ)φ̇2} for θ > 0

= Isφ̈ + ms{−ar sec2 θ(2 tan(θ) θ̇2 + θ̈) + (R + ar tan θ)φ̇2} for θ < 0

(A.51)

These reactions affect the instantaneous turbine torque, just as inertial reac-

tions affect the torque for the pendulum and rolling contact designs.

A.4 Comparison of Blade Responsiveness for Different Designs

The three designs analysed above all rely on inertial forces to produce the restoring

moment on the blade. For the same blade and counterweight, each design results

in a different ‘effective moment of inertia’ for the blade assembly, resulting in

different dynamic response to aerodynamic driving forces.

Compare the expressions for the pitching acceleration given a values of external

driving moment, blade position and velocity and turbine velocity and acceleration,

for the three designs:

θ̈ =
FtRcg + M −Rcg sin θmR φ̇2 − {(I + mR 2

cg) + mRcgR cos θ} φ̈

I + mR 2
cg

for the pendulum type (A.14)

θ̈ =

∑
M − [I −m{τd + ρ(R− ρ)}] φ̈−mA

I + m(d2 + ρ2)

for the rolling profile (A.34)

θ̈ =

∑
M −ms{af sec2 θ(2 tan(θ) θ̇2) + (R− af tan θ)φ̇2} af − φ̈

I + ms(af sec θ)2
for θ > 0

for the Kirke-Lazauskas design (A.50)
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The denominators of the three expressions may be regarded as the effective

mass moments of inertia for the three designs. The pendulum type is simply the

moment of inertia about the pivot axis using the translation of axes theorem.

For the rolling profile, the relevant moment of inertia is that about the con-

tact point. The moment of inertia therefore changes with the pitch angle, and is

minimum at zero.

For the Kirke-Lazauskas design, the effective moment of inertia also changes

with pitch angle, and may be seen to be that equivalent to lumping the stabiliser

mass at the contact point.



Appendix B

Dynamic Stall Models

Details of the Boeing-Vertol dynamic stall method, including modifications sug-

gested by Cardona (1984), and the MIT model as modified by Noll and Ham (1982)

are given below.

B.1 Boeing-Vertol (Gormont) Dynamic Stall Model

The Boeing-Vertol method is not a full unsteady aerodynamics model as it does

not modify the aerodynamic forces on an aerofoil pitching at angles below static

stall. It models the delayed stall and increased lift observed in pitching aerofoil

experiments. Delayed stall is handled by using static lift, drag and moment co-

efficient look-up tables with a modified angle of attack. The empirical angle of

attack modification is derived from wind tunnel data on oscillating aerofoils. The

modified angle of attack is a function of the square root of a dimensionless pitch

rate parameter:

αm = αB − γK1

(
cα̇B

2W

)1/2

sign(α̇B) (B.1)

where αm is the modified angle, αB is the geometric angle of attack, c is the

blade chord, W is the relative flow velocity.

The drag and moment coefficients based on this modified angle of attack are

found directly from the static look-up table, while the lift coefficient is increased

337
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by a factor proportional to the angle of attack modification:

CL = CL(αm)

(
αm

αB − α0

)

CD = CD(αm) (B.2)

CM = CM(αm)

where α0 is the angle of attack at which lift is zero (0◦ for a symmetrical section).

The gamma functions are also empirically derived and are functions of the

blade thickness to chord ratio.

γL = 1.4− 6

(
0.06− t

c

)

γD = 1− 2.5

(
0.06− t

c

)
(B.3)

γM = γD

K1 changes with the sign of the rate of change of angle of attack and is specified

as 1.0 when a is increasing in magnitude and 0.5 when it is decreasing in magnitude.

Paraschivoiu and Allet (1988) state that the model is especially applicable to

thin aerofoils (t/c < 12%) and is not suited to deep stall (α > αstatic stall + 5◦).

Strickland et al. (1981) applied the model when the angle of attack exceeds the

static stall angle or when the angle is decreasing having been above stall. This

models the hysteresis observed oscillating aerofoil experiments.

B.2 MIT Dynamic Stall Model

The MIT dynamic stall model similarly does not deal with dynamic effects in the

attached flow case, only with the delay of stall under dynamic conditions. In the
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version modified by Noll and Ham (1982) the angle at which dynamic stall occurs

is found using the Boeing-Vertol empirical relation:

αDS = αSS + γ

∣∣∣∣
cα̇

2W

∣∣∣∣
1/2

(B.4)

Noll and Ham show the experimentally derived value of γ for a NACA0012

aerofoil as being 1.6 radians. While the geometric angle of attack is less than the

static stall angle, the static coefficients are used for lift, drag and pitching moment.

If the angle of attack exceeds the static stall angle but is still less than the

dynamic stall angle, the drag and moment coefficients are selected from the static

coefficient look-up tables, while the lift is estimated by

CL = as sin α (B.5)

where as is the lift curve slope at static stall. This allows the lift to continue to

increase, while the drag and moment increase as for static stall.

When the geometric angle of attack reaches the dynamic stall angle the dynamic

stall vortex is assumed to be released from the leading edge. It then convects

rearward over the upper surface of the aerofoil, continuing to build in strength

as it does. Consequently the lift continues to increase and the centre of pressure

moves aft, contributing to nose-down pitching moment. The maximum lift and

moment coefficients are calculated based on an instantaneous pitch rate parameter
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from an empirically derived relation:

CLmax = 1.0 + 40.0

∣∣∣∣
cα̇

W

∣∣∣∣ if 0 ≤
∣∣∣∣
cα̇

W

∣∣∣∣ ≤ 0.05

= 3.0 otherwise (B.6)

CM max = −0.15 if 0 ≤
∣∣∣∣
cα̇

W

∣∣∣∣ ≤ 0.02

= −0.15− 21.0

(∣∣∣∣
cα̇

W

∣∣∣∣− 0.02

)
if 0.02 <

∣∣∣∣
cα̇

W

∣∣∣∣ ≤ 0.05

= −0.78 otherwise (B.7)

The lift coefficient continues to be calculated from Equation B.5 until it reaches

the maximum value. It is assumed that the maximum lift occurs when the dynamic

stall vortex reaches the midchord, while the maximum pitching moment occurs

when it reaches the 3/4 chord position. Pitching moment about the quarter chord

in this region is calculated on the basis of the position of the centre of pressure.

CM = −CN(XCP − 0.25) (B.8)

where XCP is the distance (in chords) of the centre of pressure from the leading

edge. The rearward velocity of the centre of pressure is assumed to be constant,

and the position, prior to reaching CLmax, is given by:

XCP = (t− tDS)
V

4c
+ 0.25 (B.9)

and subsequent to reaching CLmax by:

XCP = (t− tL)(0.75−XCP L)
2V

c
+ XCP L (B.10)
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Once the lift and moment coefficients reach their pre-determined maximum values,

according to the MIT model they are held at this level until the peak angle of

attack is reached. Only after this point do the lift and moment begin to decay

exponentially back to the static stall values.

CL = (CLmax − CLSS)e−(ψ−ψ0)2R/c + CLSS (B.11)

CM = (CM max − CM SS)e−(ψ−ψ0)2R/2.5c + CM SS (B.12)

where time has been expressed in terms of the azimuth angle specifically for Dar-

rieus turbines. ψ is the current azimuth and ψ0 is the azimuth at the start of

decay.

This part of the model is problematic. Derived from oscillating aerofoil wind

tunnel test data and developed for helicopter applications, it is not suitable for

studying the low speed performance Darrieus turbines in this form. At low tip

speed ratios the amplitude of the angle of attack oscillations may be very large (up

to 90◦) and it is not plausible that this peak lift and moment would be maintained

for so long after the inception of dynamic stall. Worse, at tips speed ratios less

than one, the angle of attack does not oscillate but continuously decreases, the

relative wind orbiting the blade with each revolution of the rotor.

Thus some alternative criterion is required for the commencement of the decay

of lift. The passage of the dynamic stall vortex beyond the trailing edge of the

aerofoil would seem to be a reasonable criterion, as this is used in the indicial

Beddoes-Leishman model. Since it has already been assumed that the velocity

of the vortex is constant and that the maximum lift occurs when it reaches the

midchord, the time of arrival at the trailing edge is simply twice the time after
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the start of dynamic stall to the attainment of maximum lift. At this point decay

begins, whether or not the peak angle of attack has been reached.

The decay of lift and moment coefficients towards the static stall values is also

not compatible with a monotonic increase in the magnitude of angle of attack.

Accordingly, the coefficients are made to decay towards the static value at the

current angle of attack. That is:

CL = [CLmax − CLstatic(α)] e−(ψ−ψ0)2R/c + CLstatic(α) (B.13)

CM = [CM max − CM static(α)] e−(ψ−ψ0)2R/2.5c + CM static(α) (B.14)

In this way, as the blade continues into deep stall, the lift and moment coefficients

approach the static values at high angles of attack, effectively ‘turning off’ the

dynamic stall model.

If angle of attack starts to decrease before peak lift is attained, decay begins

immediately from the currently attained lift and moment values.

The exponential decay continues until the angle of attack drops to below the

static stall angle once more and attached flow is assumed to resume. Paraschivoiu

and Allet (1988) claim that the MIT model fails to predict the delayed reattach-

ment of flow, to angles well below static stall, that is observed in experiments.

Above the dynamic stall angle and during the exponential decay of coefficients,

Noll and Ham calculate the drag by

CD = CL tan α (B.15)

The problem with this relation is that while it produces plausible values for the

drag coefficient, for a blade at zero-pitch on a Darrieus turbine, the tangential



APPENDIX B. DYNAMIC STALL MODELS 343

component of the aerodynamic force is identically zero. This is not in agreement

with experimental results (for example Strickland et al. (1981) and Paraschivoiu

(1983) - refer to Section 6.4 ).

Stage 1: Airfoil exceeds static stall angle, then
flow reversals take place in boundary layer.

Stage 2: Flow separation at the leading−edge, followed
by the formation of a ’spilled’ vortex. Moment stall.

Stage 2−3: Vortex convects over chord, it induces
extra lift and aft center of pressure movement.

Stage 3−4: Lift stall. After vortex reaches trailing−edge,  the
flow over upper surface becomes fully separated.

Stage 5: When angle of attack becomes low enough, the flow
reattaches to the airfoil, front to back.
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Figure B.1: Schematic showing the features of the dynamic stall process. Reproduced
from Leishman (2002)

Referring to the characterisation of the dynamic stall process given by Leish-

man (2002) (see Figure B.1), the drag coefficient increases rapidly under dynamic

conditions as the angle of attack increases beyond the static stall angle and the

linear region of the lift curve is extended. The peak drag coefficient and peak

lift occur close to the peak angle of attack for an oscillating aerofoil, before both

coefficients drop rapidly, in the region governed by the exponential decay in the
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MIT model. These features are confirmed by the experimental work of Laneville

and Vittecoq (1986) and of Lorber and Carta (1988).

Instead of using Equation B.15 therefore, the drag for the period after the

dynamic stall angle (determined from Equation B.4) is reached but before lift

coefficient decay begins is calculated here by:

CD = CD(α)|α/αDS| (B.16)

The normal static increase in drag associated with angles of attack above static

stall is exaggerated by scaling the static coefficient by the ratio of the current angle

to the angle at which dynamic stall began.

Once the decay of the lift coefficient begins, the drag coefficient is linked to the

lift coefficient using the expression:

CD = CDstatic(α)|CL/CLstatic(α)| (B.17)

CL is calculated using Equation B.11. The drag coefficient is thus naturally linked

to the decay time constant for the lift coefficient and decays with it towards the

static value at the current angle of attack.

While the above modifications to the MIT method are to some extent arbitrary

in their specific form, they are consistent with the documented features of dynamic

stall and address aspects of the model that are clearly inappropriate for application

to the starting behaviour of Darrieus turbines. The modifications were settled on

because they provided the best agreement with available experimental data on

Darrieus blade forces. Validation against this data is discussed in Section 6.4.



Appendix C

Calculation of the prototype turbine drag coefficient

Calculations of the torque lost to bearing and brake friction and parasitic aerody-

namic drag for the prototype turbine are presented.

Drag losses were estimated by measuring the decay of turbine speed in still

air. As no motor was provided to accelerate the turbine, these measurements had

to be conducted at the end of wind tunnel test runs by reducing the wind speed

to zero and allowing the turbine to coast to rest. Data from five separate runs is

shown in Figure C.1.

The total torque decelerating the turbine was estimated by calculating the

deceleration by numerical differentiation. To reduce scatter in the results, the

data was thinned, taking speed values every 5 seconds. A cubic spline was fitted

through the values and the slopes at the data points used as the acceleration values.

The acceleration was multiplied by the total moment of inertia of the turbine to

give the torque. Torque is plotted as a function of speed for these five runs in

Figure C.2.

A curve was then fitted through the torque-speed data. The curve fitting was

function was chosen to be of the form

T = Aω2 + B (C.1)

345
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Figure C.1: Measured still air speed decay for five runs.
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Figure C.2: Torque found by numerical differentiation.
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This assumes that the total resistance is composed of aerodynamic drag, which is

assumed proportional to the square of the turbine speed, and dry friction, which

is independent of speed. The values of A and B for this data were found to be

0.0187 and 0.215 respectively. The curve provides a good fit to the data, except for

speeds below approximately 1 rad/s, where the drag appears to increase slightly.

This measured drag includes that from the blades themselves, as well as the

non-working parts of the turbine. For application to the mathematical models, the

drag contributed by the blades was subtracted from the total, as this component

is accounted for by the blade section drag coefficient data.

The still air drag due to the blades alone was calculated as:

Tblades = Nb
1

2
Cd0 ρ L c R (Rω)2 (C.2)

where Nb is the number of blades, Cd0 is the zero incidence drag coefficient, ρ is

the air density, L is the length of the blades, c is the blade chord, R is the turbine

radius and ω is the turbine speed.

The blade drag coefficient is defined as:

Ablades = Tblade/ω
2

= Nb
1

2
Cd0 ρ L c R3

= 3 x 0.5 x 0.02 x 1.2 x 1.3 x 0.15 x 0.873

= 0.0046 (C.3)

This coefficient is subtracted from the total aerodynamic drag coefficient mea-

sured for the turbine above. In the momentum and vortex mathematical models,
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a retarding torque calculated by

Tdrag = (A− Ablades) ω2 + B

= (0.0187− 0.0046) ω2 + 0.215

= 0.0141 ω2 + 0.215 Nm (C.4)

is subtracted from the raw torque at turbine speed ω rad/s.



Appendix D

Aerofoil aerodynamic data

The following data was used for the NACA0018 profile used in the mathematical

models. It was still available as at 3/10/2002 online at

http://www.maths.adelaide.edu.au/Applied/llazausk/aero/foil/foil.htm. Lift and

drag coefficient data is plotted in Figure D.1.

---------------------------------------------------------------------

AIRFOIL: NACA 0018

DATA: Lift Coefficients

---------------------------------------------------------------------

ORIGINAL SOURCE: Sheldahl, R. E. and Klimas, P. C., Aerodynamic

Characteristics of Seven Airfoil Sections Through

180 Degrees Angle of Attack for Use in Aerodynamic

Analysis of Vertical Axis Wind Turbines, SAND80-2114,

March 1981, Sandia National Laboratories, Albuquerque,

New Mexico.

NOTES: The data herein were synthesised from a combination of

experimental results and computer calculations.

The original report contains data for lower Reynolds numbers

than contained herein, but there are some anomalies, in

particular with CL at small angles of attack.

Data extended to 360 degrees of attack and glaring anomalies

corrected by L. Lazauskas. All deviations from the original

are due to L. Lazauskas.

Please refer to the original report for more details.

349
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------------------------------------------------------------------------

Lift Coefficient

-------------------------------- REYNOLDS NUMBER -----------------------

ALPHA 40000 80000 160000 360000 700000 1000000 2000000 5000000

------------------------------------------------------------------------

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0936 0.0889 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100

2 0.1833 0.1935 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200

3 0.2688 0.2924 0.3088 0.3300 0.3300 0.3300 0.3300 0.3300

4 0.3495 0.3880 0.4114 0.4400 0.4400 0.4400 0.4400 0.4400

5 0.4117 0.4753 0.5068 0.5240 0.5500 0.5500 0.5500 0.5500

6 0.4573 0.5615 0.5960 0.6228 0.6328 0.6600 0.6600 0.6600

7 0.4758 0.6224 0.6724 0.7100 0.7291 0.7362 0.7449 0.7700

8 0.4428 0.6589 0.7373 0.7879 0.8156 0.8256 0.8439 0.8538

9 0.3544 0.6606 0.7781 0.8526 0.8904 0.9067 0.9314 0.9525

10 0.2108 0.6248 0.7949 0.8983 0.9541 0.9751 1.0111 1.0404

11 0.1124 0.5531 0.7852 0.9249 0.9973 1.0284 1.0772 1.1211

12 0.0139 0.4408 0.7488 0.9279 1.0245 1.0664 1.1296 1.1884

13 0.0314 0.3332 0.6923 0.9104 1.0289 1.0804 1.1662 1.2430

14 0.0489 0.2256 0.6237 0.8803 1.0175 1.0793 1.1813 1.2808

15 0.0889 0.2142 0.5567 0.8405 0.9938 1.0624 1.1813 1.3004

16 0.1287 0.2027 0.4896 0.8007 0.9648 1.0402 1.1695 1.3067

17 0.1758 0.2315 0.4549 0.7663 0.9399 1.0181 1.1550 1.3038

18 0.2228 0.2603 0.4202 0.7319 0.9150 0.9959 1.1383 1.2960

19 0.2732 0.3038 0.4292 0.7158 0.9014 0.9833 1.1278 1.2853

20 0.3236 0.3472 0.4382 0.6997 0.8877 0.9707 1.1172 1.2768

21 0.3751 0.3951 0.4704 0.7024 0.8872 0.9702 1.1150 1.2741

22 0.4265 0.4430 0.5026 0.7050 0.8867 0.9696 1.1127 1.2714

25 0.5840 0.5963 0.6321 0.7724 0.9326 1.0107 1.1468 1.2925

30 0.8550 0.8550 0.8550 0.8550 0.8550 0.8550 0.8550 0.8550

35 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800

40 1.0350 1.0350 1.0350 1.0350 1.0350 1.0350 1.0350 1.0350

45 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500

50 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200

55 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550

60 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750

65 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600

70 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300
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75 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

80 0.3650 0.3650 0.3650 0.3650 0.3650 0.3650 0.3650 0.3650

85 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300

90 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900

95 -0.0500 -0.0500 -0.0500 -0.0500 -0.0500 -0.0500 -0.0500 -0.0500

100 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850

105 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200

110 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500

115 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750

120 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700

125 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600

130 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500

135 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300

140 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800

145 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000

150 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700

155 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700

160 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350

165 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800

170 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500

175 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600

180 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

185 0.6600 0.6600 0.6600 0.6600 0.6600 0.6600 0.6600 0.6600

190 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500

195 0.6800 0.6800 0.6800 0.6800 0.6800 0.6800 0.6800 0.6800

200 0.6350 0.6350 0.6350 0.6350 0.6350 0.6350 0.6350 0.6350

205 0.6700 0.6700 0.6700 0.6700 0.6700 0.6700 0.6700 0.6700

210 0.7700 0.7700 0.7700 0.7700 0.7700 0.7700 0.7700 0.7700

215 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

220 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800

225 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300

230 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500

235 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600

240 0.6700 0.6700 0.6700 0.6700 0.6700 0.6700 0.6700 0.6700

245 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750

250 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500

255 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200

260 0.1850 0.1850 0.1850 0.1850 0.1850 0.1850 0.1850 0.1850

265 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
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270 -0.0900 -0.0900 -0.0900 -0.0900 -0.0900 -0.0900 -0.0900 -0.0900

275 -0.2300 -0.2300 -0.2300 -0.2300 -0.2300 -0.2300 -0.2300 -0.2300

280 -0.3650 -0.3650 -0.3650 -0.3650 -0.3650 -0.3650 -0.3650 -0.3650

285 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000

290 -0.6300 -0.6300 -0.6300 -0.6300 -0.6300 -0.6300 -0.6300 -0.6300

295 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600

300 -0.8750 -0.8750 -0.8750 -0.8750 -0.8750 -0.8750 -0.8750 -0.8750

305 -0.9550 -0.9550 -0.9550 -0.9550 -0.9550 -0.9550 -0.9550 -0.9550

310 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200

315 -1.0500 -1.0500 -1.0500 -1.0500 -1.0500 -1.0500 -1.0500 -1.0500

320 -1.0350 -1.0350 -1.0350 -1.0350 -1.0350 -1.0350 -1.0350 -1.0350

325 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800

330 -0.8550 -0.8550 -0.8550 -0.8550 -0.8550 -0.8550 -0.8550 -0.8550

335 -0.5840 -0.5963 -0.6321 -0.7724 -0.9326 -1.0107 -1.1468 -1.2925

338 -0.4265 -0.4430 -0.5026 -0.7050 -0.8867 -0.9696 -1.1127 -1.2714

339 -0.3751 -0.3951 -0.4704 -0.7024 -0.8872 -0.9702 -1.1150 -1.2741

340 -0.3236 -0.3472 -0.4382 -0.6997 -0.8877 -0.9707 -1.1172 -1.2768

341 -0.2732 -0.3038 -0.4292 -0.7158 -0.9014 -0.9833 -1.1278 -1.2853

342 -0.2228 -0.2603 -0.4202 -0.7319 -0.9150 -0.9959 -1.1383 -1.2960

343 -0.1758 -0.2315 -0.4549 -0.7663 -0.9399 -1.0181 -1.1550 -1.3038

344 -0.1287 -0.2027 -0.4896 -0.8007 -0.9648 -1.0402 -1.1695 -1.3067

345 -0.0889 -0.2142 -0.5567 -0.8405 -0.9938 -1.0624 -1.1813 -1.3004

346 -0.0489 -0.2256 -0.6237 -0.8803 -1.0175 -1.0793 -1.1813 -1.2808

347 -0.0314 -0.3332 -0.6923 -0.9104 -1.0289 -1.0804 -1.1662 -1.2430

348 -0.0139 -0.4408 -0.7488 -0.9279 -1.0245 -1.0664 -1.1296 -1.1884

349 -0.1124 -0.5531 -0.7852 -0.9249 -0.9973 -1.0284 -1.0772 -1.1211

350 -0.2108 -0.6248 -0.7949 -0.8983 -0.9541 -0.9751 -1.0111 -1.0404

351 -0.3544 -0.6606 -0.7781 -0.8526 -0.8904 -0.9067 -0.9314 -0.9525

352 -0.4428 -0.6589 -0.7373 -0.7879 -0.8156 -0.8256 -0.8439 -0.8538

353 -0.4758 -0.6224 -0.6724 -0.7100 -0.7291 -0.7362 -0.7449 -0.7700

354 -0.4573 -0.5615 -0.5960 -0.6228 -0.6328 -0.6600 -0.6600 -0.6600

355 -0.4117 -0.4753 -0.5068 -0.5240 -0.5500 -0.5500 -0.5500 -0.5500

356 -0.3495 -0.3880 -0.4114 -0.4400 -0.4400 -0.4400 -0.4400 -0.4400

357 -0.2688 -0.2924 -0.3088 -0.3300 -0.3300 -0.3300 -0.3300 -0.3300

358 -0.1833 -0.1935 -0.2200 -0.2200 -0.2200 -0.2200 -0.2200 -0.2200

359 -0.0936 -0.0889 -0.1100 -0.1100 -0.1100 -0.1100 -0.1100 -0.1100

-------------------------------------------------------------------------
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---------------------------------------------------------------------

AIRFOIL: NACA 0018

DATA: Drag Coefficients

---------------------------------------------------------------------

ORIGINAL SOURCE: Sheldahl, R. E. and Klimas, P. C., Aerodynamic

Characteristics of Seven Airfoil Sections Through

180 Degrees Angle of Attack for Use in Aerodynamic

Analysis of Vertical Axis Wind Turbines, SAND80-2114,

March 1981, Sandia National Laboratories, Albuquerque,

New Mexico.

NOTES: The data herein were synthesised from a combination of

experimental results and computer calculations.

The original report contains data for lower Reynolds numbers

than contained herein, but there are some anomalies, in

particular with CL at small angles of attack.

Data extended to 360 degrees of attack and glaring anomalies

corrected by L. Lazauskas. All deviations from the original

are due to L. Lazauskas.

Please refer to the original report for more details.

------------------------------------------------------------------------

Drag Coefficient

-------------------------------- REYNOLDS NUMBER -----------------------

ALPHA 40000 80000 160000 360000 700000 1000000 2000000 5000000

------------------------------------------------------------------------

0 0.0214 0.0162 0.0128 0.0101 0.0085 0.0082 0.0077 0.0073

1 0.0215 0.0163 0.0129 0.0102 0.0087 0.0082 0.0077 0.0073

2 0.0219 0.0167 0.0131 0.0104 0.0088 0.0083 0.0078 0.0075

3 0.0225 0.0172 0.0137 0.0107 0.0091 0.0086 0.0080 0.0077

4 0.0235 0.0181 0.0144 0.0112 0.0096 0.0089 0.0084 0.0079
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5 0.0247 0.0192 0.0153 0.0121 0.0102 0.0095 0.0087 0.0083

6 0.0263 0.0206 0.0166 0.0132 0.0112 0.0102 0.0093 0.0087

7 0.0282 0.0223 0.0181 0.0145 0.0123 0.0115 0.0101 0.0093

8 0.0303 0.0242 0.0198 0.0159 0.0136 0.0126 0.0111 0.0100

9 0.0327 0.0264 0.0217 0.0176 0.0150 0.0139 0.0122 0.0108

10 0.0620 0.0288 0.0238 0.0194 0.0166 0.0154 0.0134 0.0117

11 0.0925 0.0315 0.0262 0.0213 0.0183 0.0170 0.0148 0.0128

12 0.1230 0.0800 0.0288 0.0235 0.0202 0.0187 0.0163 0.0140

13 0.1405 0.1190 0.0770 0.0259 0.0223 0.0206 0.0179 0.0153

14 0.1580 0.1580 0.1580 0.0940 0.0245 0.0227 0.0197 0.0168

15 0.1770 0.1770 0.1770 0.1450 0.1020 0.0251 0.0218 0.0185

16 0.1960 0.1960 0.1960 0.1960 0.1960 0.1080 0.0240 0.0203

17 0.2170 0.2170 0.2170 0.2170 0.2170 0.1730 0.1200 0.0223

18 0.2380 0.2380 0.2380 0.2380 0.2380 0.2380 0.2380 0.0244

19 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.1400

20 0.2820 0.2820 0.2820 0.2820 0.2820 0.2820 0.2820 0.2820

21 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055

22 0.3290 0.3290 0.3290 0.3290 0.3290 0.3290 0.3290 0.3290

25 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050

30 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700

35 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450

40 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200

45 1.0750 1.0750 1.0750 1.0750 1.0750 1.0750 1.0750 1.0750

50 1.2150 1.2150 1.2150 1.2150 1.2150 1.2150 1.2150 1.2150

55 1.3450 1.3450 1.3450 1.3450 1.3450 1.3450 1.3450 1.3450

60 1.4700 1.4700 1.4700 1.4700 1.4700 1.4700 1.4700 1.4700

65 1.5750 1.5750 1.5750 1.5750 1.5750 1.5750 1.5750 1.5750

70 1.6650 1.6650 1.6650 1.6650 1.6650 1.6650 1.6650 1.6650

75 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350

80 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800

85 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000

90 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000

95 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800

100 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500

105 1.7000 1.7000 1.7000 1.7000 1.7000 1.7000 1.7000 1.7000

110 1.6350 1.6350 1.6350 1.6350 1.6350 1.6350 1.6350 1.6350

115 1.5550 1.5550 1.5550 1.5550 1.5550 1.5550 1.5550 1.5550

120 1.4650 1.4650 1.4650 1.4650 1.4650 1.4650 1.4650 1.4650

125 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500
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130 1.2250 1.2250 1.2250 1.2250 1.2250 1.2250 1.2250 1.2250

135 1.0850 1.0850 1.0850 1.0850 1.0850 1.0850 1.0850 1.0850

140 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250

145 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550

150 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750

155 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200

160 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200

165 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300

170 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400

175 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550

180 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250

185 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550

190 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400

195 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300

200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200

205 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200

210 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750

215 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550

220 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250 0.9250

225 1.0850 1.0850 1.0850 1.0850 1.0850 1.0850 1.0850 1.0850

230 1.2250 1.2250 1.2250 1.2250 1.2250 1.2250 1.2250 1.2250

235 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500

240 1.4650 1.4650 1.4650 1.4650 1.4650 1.4650 1.4650 1.4650

245 1.5550 1.5550 1.5550 1.5550 1.5550 1.5550 1.5550 1.5550

250 1.6350 1.6350 1.6350 1.6350 1.6350 1.6350 1.6350 1.6350

255 1.7000 1.7000 1.7000 1.7000 1.7000 1.7000 1.7000 1.7000

260 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500

265 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800

270 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000

275 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000

280 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 1.7800

285 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350

290 1.6650 1.6650 1.6650 1.6650 1.6650 1.6650 1.6650 1.6650

295 1.5750 1.5750 1.5750 1.5750 1.5750 1.5750 1.5750 1.5750

300 1.4700 1.4700 1.4700 1.4700 1.4700 1.4700 1.4700 1.4700

305 1.3450 1.3450 1.3450 1.3450 1.3450 1.3450 1.3450 1.3450

310 1.2150 1.2150 1.2150 1.2150 1.2150 1.2150 1.2150 1.2150

315 1.0750 1.0750 1.0750 1.0750 1.0750 1.0750 1.0750 1.0750

320 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200
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325 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450

330 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700 0.5700

335 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050

338 0.3290 0.3290 0.3290 0.3290 0.3290 0.3290 0.3290 0.3290

339 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055 0.3055

340 0.2820 0.2820 0.2820 0.2820 0.2820 0.2820 0.2820 0.2820

341 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.1400

342 0.2380 0.2380 0.2380 0.2380 0.2380 0.2380 0.2380 0.0244

343 0.2170 0.2170 0.2170 0.2170 0.2170 0.1730 0.1200 0.0223

344 0.1960 0.1960 0.1960 0.1960 0.1960 0.1080 0.0240 0.0203

345 0.1770 0.1770 0.1770 0.1450 0.1020 0.0251 0.0218 0.0185

346 0.1580 0.1580 0.1580 0.0940 0.0245 0.0227 0.0197 0.0168

347 0.1405 0.1190 0.0770 0.0259 0.0223 0.0206 0.0179 0.0153

348 0.1230 0.0800 0.0288 0.0235 0.0202 0.0187 0.0163 0.0140

349 0.0925 0.0315 0.0262 0.0213 0.0183 0.0170 0.0148 0.0128

350 0.0620 0.0288 0.0238 0.0194 0.0166 0.0154 0.0134 0.0117

351 0.0327 0.0264 0.0217 0.0176 0.0150 0.0139 0.0122 0.0108

352 0.0303 0.0242 0.0198 0.0159 0.0136 0.0126 0.0111 0.0100

353 0.0282 0.0223 0.0181 0.0145 0.0123 0.0115 0.0101 0.0093

354 0.0263 0.0206 0.0166 0.0132 0.0112 0.0102 0.0093 0.0087

355 0.0247 0.0192 0.0153 0.0121 0.0102 0.0095 0.0087 0.0083

356 0.0235 0.0181 0.0144 0.0112 0.0096 0.0089 0.0084 0.0079

357 0.0225 0.0172 0.0137 0.0107 0.0091 0.0086 0.0080 0.0077

358 0.0219 0.0167 0.0131 0.0104 0.0088 0.0083 0.0078 0.0075

359 0.0215 0.0163 0.0129 0.0102 0.0087 0.0082 0.0077 0.0073

------------------------------------------------------------------------
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---------------------------------------------------------------------

AIRFOIL: NACA 0018

DATA: Pitching Moment Coefficients

---------------------------------------------------------------------

ORIGINAL SOURCE: Sheldahl, R. E. and Klimas, P. C., Aerodynamic

Characteristics of Seven Airfoil Sections Through

180 Degrees Angle of Attack for Use in Aerodynamic

Analysis of Vertical Axis Wind Turbines, SAND80-2114,

March 1981, Sandia National Laboratories, Albuquerque,

New Mexico.

NOTES: The data herein were synthesised from a combination of

experimental results and computer calculations.

The original report contains data for lower Reynolds numbers

than contained herein, but there are some anomalies, in

particular with CL at small angles of attack.

Data extended to 360 degrees of attack and glaring anomalies

corrected by L. Lazauskas. All deviations from the original

are due to L. Lazauskas.

Please refer to the original report for more details.

------------------------------------------------------------------------

Pitching Moment Coefficient

-------------------------------- REYNOLDS NUMBER -----------------------

ALPHA 360000 500000 680000

------------------------------------------------------------------------

0 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000
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5 0.0000 0.0000 0.0000

6 0.0300 0.0000 0.0075

7 0.0300 0.0000 0.0150

8 0.0300 0.0150 0.0225

9 0.0300 0.0275 0.0275

10 0.0300 0.0400 0.0350

11 0.0300 0.0420 0.0380

12 0.0300 0.0440 0.0410

13 0.0320 0.0460 0.0435

14 0.0350 0.0480 0.0475

15 0.0400 0.0500 0.0500

16 0.0000 0.0000 0.0380

17 -0.0600 -0.0600 0.0220

18 -0.0600 -0.0600 0.0000

19 -0.0600 -0.0700 -0.0125

20 -0.0600 -0.0600 -0.0250

21 -0.0630 -0.0610 -0.0300

22 -0.0660 -0.0620 -0.0400

23 -0.0690 -0.0630 -0.0450

24 -0.0720 -0.0640 -0.0575

25 -0.0750 -0.0650 -0.0600

26 -0.0765 -0.0850 -0.0850

27 -0.0782 -0.0950 -0.1000

30 -0.0800 -0.1100 -0.1300

35 -0.0800 -0.1250 -0.1400

40 -0.1000 -0.2000 -0.1650

45 -0.2250 -0.1500 -0.1550

50 -0.3400 -0.2500 -0.2650

55 -0.3500 -0.2500 -0.0500

60 -0.4000 -0.2100 -0.2700

65 -0.4600 -0.3200 -0.1500

70 -0.1500 -0.1500 -0.4100

75 -0.4800 -0.4000 -0.3000

80 -0.2600 -0.4250 -0.2100

85 -0.4600 -0.2250 -0.3800

90 -0.5000 -0.3150 -0.4200

95 -0.2800 -0.2300 -0.4150

100 -0.4500 -0.3400 -0.4500

105 -0.2750 -0.4250 -0.4500
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110 -0.4900 -0.5400 -0.1900

115 -0.5400 -0.3600 -0.3900

120 -0.5600 -0.5800 -0.5400

125 -0.4700 -0.4800 -0.4900

130 -0.4100 -0.4000 -0.4400

135 -0.4200 -0.4300 -0.5250

140 -0.4000 -0.4150 -0.4750

145 -0.5000 -0.4200 -0.3800

150 -0.3500 -0.4000 -0.3800

155 -0.3250 -0.3200 -0.3300

160 -0.2850 -0.3000 -0.3000

165 -0.2750 -0.2900 -0.3500

170 -0.4200 -0.4600 -0.4250

175 -0.2800 -0.2800 -0.3100

180 0.0250 0.0800 -0.0600

185 0.2800 0.2800 0.3100

190 0.4200 0.4600 0.4250

195 0.2750 0.2900 0.3500

200 0.2850 0.3000 0.3000

205 0.3250 0.3200 0.3300

210 0.3500 0.4000 0.3800

215 0.5000 0.4200 0.3800

220 0.4000 0.4150 0.4750

225 0.4200 0.4300 0.5250

230 0.4100 0.4000 0.4400

235 0.4700 0.4800 0.4900

240 0.5600 0.5800 0.5400

245 0.5400 0.3600 0.3900

250 0.4900 0.5400 0.1900

255 0.2750 0.4250 0.4500

260 0.4500 0.3400 0.4500

265 0.2800 0.2300 0.4150

270 0.5000 0.3150 0.4200

275 0.4600 0.2250 0.3800

280 0.2600 0.4250 0.2100

285 0.4800 0.4000 0.3000

290 0.1500 0.1500 0.4100

295 0.4600 0.3200 0.1500

300 0.4000 0.2100 0.2700
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305 0.3500 0.2500 0.0500

310 0.3400 0.2500 0.2650

315 0.2250 0.1500 0.1550

320 0.1000 0.2000 0.1650

325 0.0800 0.1250 0.1400

330 0.0800 0.1100 0.1300

333 0.0782 0.0950 0.1000

334 0.0765 0.0850 0.0850

335 0.0750 0.0650 0.0600

336 0.0720 0.0640 0.0575

337 0.0690 0.0630 0.0450

338 0.0660 0.0620 0.0400

339 0.0630 0.0610 0.0300

340 0.0600 0.0600 0.0250

341 0.0600 0.0700 0.0125

342 0.0600 0.0600 0.0000

343 0.0600 0.0600 -0.0220

344 0.0000 0.0000 -0.0380

345 -0.0400 -0.0500 -0.0500

346 -0.0350 -0.0480 -0.0475

347 -0.0320 -0.0460 -0.0435

348 -0.0300 -0.0440 -0.0410

349 -0.0300 -0.0420 -0.0380

350 -0.0300 -0.0400 -0.0350

351 -0.0300 -0.0275 -0.0275

352 -0.0300 -0.0150 -0.0225

353 -0.0300 0.0000 -0.0150

354 -0.0300 0.0000 -0.0075

355 0.0000 0.0000 0.0000

356 0.0000 0.0000 0.0000

357 0.0000 0.0000 0.0000

358 0.0000 0.0000 0.0000

359 0.0000 0.0000 0.0000

------------------------------------------------------------------------
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The following lift and drag data was used for the mathematical modelling of the performance

of the wind tunnel turbine. It has been synthesised using the experimental data measured for

the test turbine blade (see Section 9.3.1) for angles of attack up to 50◦ and the data of Lazauskas

(2002) for higher angles. Pitching moment data from Lazauskas (2002) was used for all angles.

The data is plotted in Figure D.2.

Lift coefficients Drag coefficients

AoA Reynolds Number AoA Reynolds Number

1600000 250000 360000 1600000 250000 360000

0 0 0 0 0 0.0272 0.0173 0.0173

1 0.09 0.09 0.09 1 0.0266 0.0185 0.0185

2 0.177 0.177 0.177 2 0.0272 0.0194 0.0194

3 0.26 0.26 0.26 3 0.0272 0.0208 0.0208

4 0.336 0.336 0.336 4 0.0295 0.0225 0.0225

5 0.414 0.414 0.414 5 0.0324 0.0246 0.0246

6 0.487 0.487 0.487 6 0.0364 0.0277 0.0277

7 0.559 0.559 0.559 7 0.0393 0.0315 0.0315

8 0.635 0.635 0.635 8 0.0428 0.0353 0.0353

9 0.718 0.718 0.718 9 0.048 0.04 0.04

10 0.802 0.802 0.802 10 0.0543 0.046 0.046

11 0.873 0.873 0.873 11 0.0613 0.0517 0.0517

12 0.916 0.916 0.916 12 0.0665 0.0575 0.0575

13 0.959 0.959 0.959 13 0.0711 0.0627 0.0627

14 1.001 1.001 1.001 14 0.078 0.0702 0.0702

15 0.782 1.044 1.044 15 0.1292 0.0774 0.0774

16 0.497 1.065 1.065 16 0.2211 0.084 0.084

17 0.453 1.082 1.082 17 0.2393 0.0936 0.0936

18 0.46 1.058 1.1 18 0.2532 0.108 0.102

19 0.475 0.864 1.106 19 0.2749 0.191 0.114

20 0.487 0.496 1.099 20 0.29 0.29 0.132

21 0.506 0.506 0.884 21 0.309 0.309 0.253

22 0.524 0.524 0.524 22 0.329 0.329 0.329

25 0.566 0.566 0.566 25 0.378 0.378 0.378

30 0.68 0.68 0.68 30 0.5 0.5 0.5

35 0.737 0.737 0.737 35 0.607 0.607 0.607

40 0.783 0.783 0.783 40 0.728 0.728 0.728

45 0.803 0.803 0.803 45 0.855 0.855 0.855

50 0.791 0.791 0.791 50 0.983 0.983 0.983
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55 0.764 0.764 0.764 55 1.11 1.11 1.11

60 0.738 0.738 0.738 60 1.237 1.237 1.237

65 0.682 0.682 0.682 65 1.364 1.364 1.364

70 0.611 0.611 0.611 70 1.503 1.503 1.503

75 0.492 0.492 0.492 75 1.613 1.613 1.613

80 0.375 0.375 0.375 80 1.676 1.676 1.676

85 0.23 0.23 0.23 85 1.711 1.711 1.711

90 0.09 0.09 0.09 90 1.728 1.728 1.728

95 -0.05 -0.05 -0.05 95 1.734 1.734 1.734

100 -0.185 -0.185 -0.185 100 1.705 1.705 1.705

105 -0.32 -0.32 -0.32 105 1.676 1.676 1.676

110 -0.45 -0.45 -0.45 110 1.613 1.613 1.613

115 -0.575 -0.575 -0.575 115 1.555 1.555 1.555

120 -0.67 -0.67 -0.67 120 1.465 1.465 1.465

125 -0.76 -0.76 -0.76 125 1.35 1.35 1.35

130 -0.85 -0.85 -0.85 130 1.225 1.225 1.225

135 -0.93 -0.93 -0.93 135 1.085 1.085 1.085

140 -0.98 -0.98 -0.98 140 0.925 0.925 0.925

145 -0.9 -0.9 -0.9 145 0.755 0.755 0.755

150 -0.77 -0.77 -0.77 150 0.575 0.575 0.575

155 -0.67 -0.67 -0.67 155 0.42 0.42 0.42

160 -0.635 -0.635 -0.635 160 0.32 0.32 0.32

165 -0.68 -0.68 -0.68 165 0.23 0.23 0.23

170 -0.85 -0.85 -0.85 170 0.14 0.14 0.14

175 -0.66 -0.66 -0.66 175 0.055 0.055 0.055

180 0 0 0 180 0.025 0.025 0.025

185 0.66 0.66 0.66 185 0.055 0.055 0.055

190 0.85 0.85 0.85 190 0.14 0.14 0.14

195 0.68 0.68 0.68 195 0.23 0.23 0.23

200 0.635 0.635 0.635 200 0.32 0.32 0.32

205 0.67 0.67 0.67 205 0.42 0.42 0.42

210 0.77 0.77 0.77 210 0.575 0.575 0.575

215 0.9 0.9 0.9 215 0.755 0.755 0.755

220 0.98 0.98 0.98 220 0.925 0.925 0.925

225 0.93 0.93 0.93 225 1.085 1.085 1.085

230 0.85 0.85 0.85 230 1.225 1.225 1.225

235 0.76 0.76 0.76 235 1.35 1.35 1.35

240 0.67 0.67 0.67 240 1.465 1.465 1.465

245 0.575 0.575 0.575 245 1.555 1.555 1.555
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250 0.45 0.45 0.45 250 1.613 1.613 1.613

255 0.32 0.32 0.32 255 1.676 1.676 1.676

260 0.185 0.185 0.185 260 1.705 1.705 1.705

265 0.05 0.05 0.05 265 1.734 1.734 1.734

270 -0.09 -0.09 -0.09 270 1.728 1.728 1.728

275 -0.23 -0.23 -0.23 275 1.711 1.711 1.711

280 -0.375 -0.375 -0.375 280 1.676 1.676 1.676

285 -0.492 -0.492 -0.492 285 1.613 1.613 1.613

290 -0.611 -0.611 -0.611 290 1.503 1.503 1.503

295 -0.682 -0.682 -0.682 295 1.364 1.364 1.364

300 -0.738 -0.738 -0.738 300 1.237 1.237 1.237

305 -0.764 -0.764 -0.764 305 1.11 1.11 1.11

310 -0.791 -0.791 -0.791 310 0.983 0.983 0.983

315 -0.803 -0.803 -0.803 315 0.855 0.855 0.855

320 -0.783 -0.783 -0.783 320 0.728 0.728 0.728

325 -0.737 -0.737 -0.737 325 0.607 0.607 0.607

330 -0.68 -0.68 -0.68 330 0.5 0.5 0.5

335 -0.566 -0.566 -0.566 335 0.378 0.378 0.378

338 -0.524 -0.524 -0.524 338 0.329 0.329 0.329

339 -0.506 -0.506 -0.884 339 0.309 0.309 0.253

340 -0.487 -0.496 -1.099 340 0.29 0.29 0.132

341 -0.475 -0.864 -1.106 341 0.2749 0.191 0.114

342 -0.46 -1.058 -1.1 342 0.2532 0.108 0.102

343 -0.453 -1.082 -1.082 343 0.2393 0.0936 0.0936

344 -0.497 -1.065 -1.065 344 0.2211 0.084 0.084

345 -0.782 -1.044 -1.044 345 0.1292 0.0774 0.0774

346 -1.001 -1.001 -1.001 346 0.078 0.0702 0.0702

347 -0.959 -0.959 -0.959 347 0.0711 0.0627 0.0627

348 -0.916 -0.916 -0.916 348 0.0665 0.0575 0.0575

349 -0.873 -0.873 -0.873 349 0.0613 0.0517 0.0517

350 -0.802 -0.802 -0.802 350 0.0543 0.046 0.046

351 -0.718 -0.718 -0.718 351 0.048 0.04 0.04

352 -0.635 -0.635 -0.635 352 0.0428 0.0353 0.0353

353 -0.559 -0.559 -0.559 353 0.0393 0.0315 0.0315

354 -0.487 -0.487 -0.487 354 0.0364 0.0277 0.0277

355 -0.414 -0.414 -0.414 355 0.0324 0.0246 0.0246

356 -0.336 -0.336 -0.336 356 0.0295 0.0225 0.0225

357 -0.26 -0.26 -0.26 357 0.0272 0.0208 0.0208

358 -0.177 -0.177 -0.177 358 0.0272 0.0194 0.0194
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359 -0.09 -0.09 -0.09 359 0.0266 0.0185 0.0185

360 0 0 0 360 0.0272 0.0173 0.0173
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Figure D.1: Lift and drag coefficient data from Sheldahl and Klimas (1981) presented
by Lazauskas (2002)
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Figure D.2: Lift and drag coefficient data synthesised from experimental data for angles
of attack below 50◦ and that of Sheldahl and Klimas (1981) presented by Lazauskas
(2002) for higher angles.



Appendix E

Code listing

The momentum and vortex theory mathematical models described in Chapters 5

and 6 are embodied in a Windows 98/NT/XP application written using Visual

C++ 5. The source code and a compiled executable file are included on a CD-

ROM inside the back cover.

Note that there is a bug in the Release version of the executable that produces

erroneous results from the momentum theory analysis. All results presented in

this thesis were obtained by using the Debug version of the program.
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Appendix F

Photographs of Test Rig

The completed turbine set up in the wind tunnel test section. The section is then

rolled into place in the wind tunnel.
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The completed turbine set up in the wind tunnel test section. The section is

then rolled into place in the wind tunnel.



APPENDIX F. PHOTOGRAPHS OF TEST RIG 370

Detail of blade and arm housing.
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View from above showing blade with Type B High Density Polyethylene

component.
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Close up of the High Density Polyethylene Type B component on one of the

turbine blades.
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