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Abstract

ABSTRACT

Human papillomavirus (HPV) is one of the most common causes of sexually
transmitted disease worldwide. Infections by high-risk HPVs, such as HPV-18, have
been associated etiologically with cervical cancer. The successful development of HPV
vaccines may be beneficial to the HPV-naive population, but women that have already
been exposed to the virus are still at risk of developing HPV-associated malignancies. A
need for a systemic cure for HPV-infection therefore still exists. Gene therapies using
tissue-specific promoters have been reported to be a promising tool for treating cancers;
however, few studies have explored this possibility for cervical cancer.

The aim of this project is to construct a gene expression vector that can
specifically target HPV-infected cervical cancer cells, by making use of the activity and
selectivity of the Pjos promoter which is determined by transcription control elements
within the HPV-18 long control region (LCR). The first part of this study involved the
construction of LCR deletion plasmids, and examining the subsequent level of gene
expression induced within different mammalian cell lines. The results suggest the LCR
to be capable in achieving cervical cancer-specific gene expression. The 3'-end of the
viral L1 gene upstream of the LCR appeared to have a repressive effect on the promoter
and therefore should be excluded for maximum LCR promoter activity. The second part
of the project involved site-directed mutagenesis studies performed on selected
transcription factor binding sites with an attempt to further increase the level of LCR
promoter activity and specificity towards HPV-infected cervical cancer cells. The
results suggest that a GRE/YY1 mutation may significantly enhance promoter activity.
In terms of promoter regulation, the E2BSs appeared to be responsible for promoter
activation in the absence of viral E2 proteins.

The findings of this study suggest a possible gene therapy approach towards
the treatment of cervical cancer. By making use of the activity and specificity of the
HPV-18 Py¢s promoter to induce cervical carcinoma-specific expression of appropriate
therapeutic genes, suicidal phenotypes can be introduced selectively within HPV-

positive cervical cancer cells while normal HPV-negative cells are unaffected.
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Chapter One — Introduction

CHAPTER1 INTRODUCTION

1.1 Human papillomavirus and cervical cancer

Papillomavirus is a genus under the Papovaviridae family of viruses (ICTVdB,
2002). They are highly host-specific and each species is named after its natural host. All
presently known human and animal papillomaviruses together form 16 genera, 5 of
which are composed exclusively of human papillomaviruses (HPV) and other
papillomaviruses isolated from some apes and monkeys (de Villiers et al., 2004). An
HPV type is defined as a complete genome whose L1 gene sequence (details on
different HPV genes discussed in Section 1.2.2) varies at least 10% to that of any other
HPYV type (Bernard, 2005). To date, over 200 types of HPV have been recognised on
the basis of DNA sequence data (Shillitoe, 2006). The whole genome of about 100 HPV
types have been isolated and completely sequenced (Bernard, 2005), while the
remaining are potential new variants that are partially characterized. Table 1.1 is a table
extracted from Bernard (2005) which is a summarised list of human papillomavirus
types and their taxonomy that are relevant to understand most clinical, epidemiological

or molecular publications.



Chapter One — Introduction

Table 1.1 The most frequently studied papillomavirus types and their

biological and clinical properties.

Fanuly: papillomaviruses (Papillomaviridae)

Genns Species Type (s) Properties
Alpha-papillomaviruses 4 HPV-2 HPV-27 _HFV-37 Common skin warts, frequently in genital warts of children
5 HPV-26, HPV-31, HPV-69, HPVE2 High-risk malignant and benign mucosal lesions
3 HFV-33, HPV-30, HPV-36, HPV-66 High-risk malignant and benign mucosal lesions
T HPV-18, HPV-39, HPV-45, HPV-59, High-risk malignant nmeosal lesions, some (esp. HFV-18)
HPV-68, HPV-70 more frequent in adeno- than in squameous carcmoma of the
CErvIX
2 HPV-7, HPV.40, HPV-43 Low-nisk mucosal and cutaneous lestons, HPV.7 known as
butcher’s wart virus, often in lesions of HIV infected
patients
o HPV-16, HPV-31, HPV-33, HPV.33, High-risk malignant mmucosal lesions, some (esp. HFV-16)
HPV-32, HPV-38, HPV-67 more frequent in squamons than in adenccarcinoma of the

cervix, HPV-16 most prevalent HPV type m cervical
malignancies

10 HPV-6, HPV-11, HFV-13, HPV-44, HFV-T74 Benign mucosal lesions. HPV-6 and HPV-11 in male and
female gemital warts, condylomata acuminata of cervix,
laryngeal papillomas. Some of these lesions can progress

malignantly
Beta-papillomavirses 1 HPV-3, HPV-E (selected from a very Cutaneous benign and malignant lesions in EV and
type-rich genns) immune-suppressed patisnts
Gamma-papillomaviruses 1 HPV-4, HPV-63 (zelected from a very Cutaneous benign lesions
type-rich gemms)
Delta-papillomaviruses 4 Bovine papillomavirus-1 (BPV-1) (selected Fibropapillomas in cattle, sarcoids m horses. An important
from a type-rich genus) cell culture model.
Kappa-papillomaviruses 1 Cottontail rabbit papillomavirus (CRPV) Cutaneous lesions. An important animal model
Mu-papillomaviruses 1,2 HPV-1. HPV.463 Cutaneous lesions, frequently in footwarts
Nu-papillomaviruses 1 HPV-41 (unrelated to any other HPV type) Cutaneous lesions

Table reproduced from Bernard (2005).

1.1.1 Worldwide prevalence

HPV is the one of the most common causes of sexually transmitted disease
(STD) in the world (Vandepapeliere et al., 2005; Villa, 2006). Epidemiological
estimates suggest that the world prevalence of HPV infection is about 9-13% which
equates to about 630 million infected people, and approximately 70% of the sexually
active adult population are infected with HPV (WHO, 2001). About 70% of genital
HPYV infections are subclinical and regress spontaneously without progressing to disease,
presumably because the host eventually mounts a successful immune response (Lowy
and Schiller, 2006; Meijer et al., 2000). Chronic infection of HPV which may possibly
lead to cervical cancer in women develops only in a small proportion of infected

individuals. Cervical cancer is the second leading cause of female cancer mortality
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worldwide (Jo and Kim, 2005), with approximately 288,000 deaths and 510,000 new
cases reported each year (Saslow et al., 2007), and the DNA of HPV is found in
virtually all cervical cancers (>99.7%) (Doorbar, 2006).

Like many STDs, genital HPV infections often do not have any visible signs
and symptoms (Markowitz ef al., 2007). The best ways to prevent the development of
cervical cancer is through early detection and treatment. Cervical cancer can be detected
and diagnosed by cytology-based screening programs such as Papanicolaou (Pap) smear,
colposcopy, biopsy, pelvic exam and endocervical curettage (NCI, 2006). However, due
to the lack of knowledge and accessible resources, HPV-induced cervical cancer is
particularly prevalent in developing countries, where cervical cancer is the most
common cancer in women and accounts for about 80% of cases worldwide (WHO,
2006). In developed countries, a large and significant reduction in deaths from cervical
cancer has been attributed to advances in technology, where organised cervical
screening programmes are generally accepted to be responsible for a substantial fall in
cervical cancer-associated deaths (Cuschieri and Cubie, 2005). In the United States for
example, the number of deaths from cervical cancer has declined by over 80% in the
last 50 years coincidently with the implementation of Pap smear as a diagnostic
(Longworth and Laimins, 2004). However, even today, Pap smears are not regularly

performed on approximately 33% of eligible women worldwide (NCI, 2006).
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1.1.2 Pathogenesis

All known HPVs are greatly restricted in tissue tropism, infecting human cells
of epithelial origin only. HPVs are often found in the differentiating human
keratinocytes of the stratified cutaneous and secretory mucosal epidermis (Dybikowska
et al., 2002). There are 40 different genotypes of HPV that can infect the anogenital
region of men and women, including the skin of the penis, vulva and anus, and the
lining of the vagina, cervix and rectum (WHO, 2006; zur Hausen, 1998).

HPV infects in the basal layer of epithelial cells, where the cells are least
differentiated and are still able to proliferate, via microtraumas to the overlying
suprabasal epidermal cells (Lowy and Schiller, 2006; Schwartz, 2000). At the basal
epithelial cell level, which is referred to as the nonproductive stage of HPV infection (Jo
and Kim, 2005), the viral genome remains as a low copy number episome within host
cells and the viral genes are poorly expressed. During the productive stage of the viral
life cycle as the basal cell layer differentiates, the expression of late genes is initiated.
Viral replication takes place and structural proteins are formed. As the suprabasal layers
continue to migrate upwards, they eventually become enucleated and form a flattened
protein barrier known as squames, where complete viral particles are assembled. The
terminal stage of differentiation when virion-laden squames are shed from the skin is
referred to as the ‘productive’ phase of HPV infection. At the same time, ‘persistent’
infection occurs within the suprabasal cell layer where viral plasmids are being

replicated and continually passed on to the newly formed daughter cells (see Figure 1.1).
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Figure 1.1  Viral production in the differentiating epithelium of HPV-infected
cells.

The epidermis of the skin contains layers of keratinocytes. To establish infection, HPV
must infect the basal layer of epithelial cells which are least differentiated and therefore
able to divide, via microtraumas in the upper layers of the epithelium (suprabasal layers).
Viral genes are expressed at low levels in the basal layer. Viral replication takes place as
the keratinocytes migrate towards the top and become increasingly differentiated. At the
terminal stage of differentiation, viral progenies are released as the squames are shed
from the skin and a new cycle of infection can then begin. Figure reproduced from

Lowy and Schiller (2006).

HPVs are generally divided into two categories — the high-risk and low-risk
types, depending on their malignant properties within human cells. Infections with low-
risk HPV may lead to the formation of benign lesions, which includes non-genital and
anogenital skin warts, oral and laryngeal papillomas, and anogenital mucosal
condylomata (Lowy and Schiller, 2006). Genital warts often regress spontaneously over
time. In all benign lesions, the viral genome replicates autonomously as an extra-
chromosomal episome within the nucleus of the infected cells. These benign lesions
generally do not progress to cancer and the vegetative viral life cycle is closely related

to the differentiation state of the host keratinocytes (Steger et al., 2001). Two of the
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most common low-risk genotypes are HPV-6 and 11, which account for a substantial
proportion of low-grade cervical dysplasia detected in screening programs and more
than 90% of genital warts (Chan and Berek, 2007). Some of the other low-risk HPV
types are HPV-40, 42, 43, 44, 54, 61, 70, 72 and 81 (Munoz ef al., 2003).

Persistent infections with high-risk HPVs are responsible for the majority of
HPV-related cancers of the cervix, vagina, vulva, anus and penis (Basta et al., 1999;
Bosch et al., 1995; Cuschieri et al., 2005; Munoz et al., 1992; WHO, 2006; zur Hausen,
1996). There are also studies suggesting the involvement of HPV in oral cancer (Miller
and Johnstone, 2001; Shillitoe and Noonan, 2000). The association of papillomavirus
and human cancers is particularly strong for cancers of the uterine cervix as more than
90% of cervical cancer lesions are found to be HPV-positive (Bosch et al., 2002;
Castellsague et al., 2006; Munoz et al., 2003; Nakagawa et al., 2000; Pater and Pater,
1985; Walboomers et al., 1999), and cervical cancer accounts for about 70% of all the
cancer cases linked etiologically to HPV (Lowy and Schiller, 2006). In general, HPV
infection may lead to two types of cervical carcinoma. Squamous cell carcinoma refers
to the malignancy derived from epidermal cells and comprises approximately 90% of
cervical cancers, and the remainder being adenocarcinomas which originate from the
glandular tissue and are relatively rare. Primary sarcomas of the cervix have been
described occasionally, and malignant lymphomas of the cervix have also been reported
(Frey et al., 2006, Garavaglia et al., 2005). In most malignant lesions the viral DNA is
frequently integrated into the genome of the host cell (Kanodia et al., 2007), resulting in
cellular transformation and the formation of cervical intraepithelial neoplasias (CIN)
which are considered to be putative precancerous lesions (Meijer et al., 2000). CIN has
the potential for progression to invasive cervical carcinoma due to the expression of

viral oncogenes leading to unscheduled proliferation (see Figure 1.2).



Chapter One — Introduction

High-risk HPV types include HPV-16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58,
59, 68, 73 and 82. Case-control studies performed by Munoz et al. (2003) have shown
that these high-risk HPV types account for over 95% of HPV-positive squamous cell
carcinomas. Amongst HPV-associated cervical cancer, about 70% of cervical carcinoma
contain the DNA of either HPV-16 or 18 (Chan and Berek, 2007; Saslow et al., 2007)
(see Figure 1.3) and have been studied most intensively. Most high-risk HPVs are also
phylogenetically related to either HPV-16 (31, 33, 35, 52 and 58) or HPV-18 (39, 45, 59

and 68) (Chan et al., 1995).
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Figure 1.2 Progression from a benign cervical lesion to invasive cervical cancer.
LSIL: low-grade squamous intraepithelial lesion; HSIL: high-grade squamous
intraepithelial lesion; CIN: cervical intraepithelial neoplasia. Figure reproduced from

Lowy and Schiller (2006).
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Figure 1.3  Type-specific worldwide prevalence of HPV in invasive cervical
cancer.

About 70% of cervical carcinomas contain the DNA of HPV-16 and 18; with HPV-16
of the highest prevalence in squamous cell carcinomas (55%) and the highest prevalence

of HPV-18 in adenocarcinomas (38%). Figure reproduced from Clifford et al. (2003).

Although the most prevalent type of HPV leading to cervical cancer is HPV-
16, there are studies suggesting that HPV-18 is associated with a greater risk of
progression or a more rapid transition to malignancy, leading to the development of
more clinically aggressive disease (Arends et al., 1993; Burger et al., 1996; Kitagawa et
al., 1996). Previous studies also showed that HPV-18 is about 10- to 50-fold more
efficient in its immortalisation potential when compared with HPV-16 (Barbosa and
Schlegel, 1989; Schlegel et al., 1988; Villa and Schlegel, 1991). This may be associated
with the fact that the DNA of HPV-18 is nearly always integrated into the host genome,
whereas HPV-16 DNA can often be found both episomally and in an integrated form
within the host cells (Bosch et al., 2002). Sichero et al. (2005) have also tested 6
variants of HPV-18 and showed that all their P;os promoters were more active than the

Py; HPV-16 prototype promoter. In addition, HPV-18 related cervical cancers are
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shown to be associated with higher mortality rate than those associated with HPV-16
(Ault et al., 2004), because they are more often present in adenocarcinomas and small
cell carcinomas of the uterine cervix (Andersson et al., 2001; Burger et al., 1996;
Madeleine et al., 2001); which are lesions that have a particularly poor prognosis (Cid
etal, 1993; Liu et al., 2001). Approximately half of the HPV-positive adenocarcinomas
are attributed to HPV-18 (Goto ef al., 2005). Due to the above reasons, this study was

focused on HPV-18 in particular.

1.1.3 Treatment

At early stages, cervical cancer precursors can be treated with local measures
such as cryotherapy, electrocautery and surgical excision (Lacey, 2005). However,
while these surgical procedures remove the neoplasia, growth usually recurs due to
persistence of the virus in the healthy tissue (Bernard, 2004). At advance stages of the
disease, cervical cancer has to be treated with chemotherapy or radiotherapy. Previous
studies have also shown that cisplatin-based chemotherapy given concurrently with
radiation therapy provide improved treatment for cervical cancer (Morris et al., 1999;
Rose et al., 1999; Thomas, 1999). Unfortunately improvements in therapeutic
treatments did not manage to significantly decrease the mortality rate of cervical cancer
(Rein and Kurbacher, 2001), and patients with advanced, recurrent or metastatic
diseases still have poor prognosis (Rein et al., 2004). Moreover, these methods of
treatment can be physically exhausting for the patients with side effects such as hair loss,
nausea and vomiting, or to a more severe extent, depression of the immune system.

In June 2006, the first vaccine against cervical cancer, Gardasil® produced by

Merck, was approved by the Food and Drug Administration (FDA) in the United States
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(FDA, 2006). The vaccine protects against the four most common strains of HPV
leading to genital warts (HPV-6 and 11) and cervical cancer (HPV-16 and 18), and has
been approved by the Therapeutic Goods Administration (TGA) of Australia for use in
females aged 9 to 26 and males aged 9 to 15. The Australian government has also added
Gardasil® to the National Immunisation Program and made it available for free to
eligible women from July 2007 onwards. Another vaccine, Cervarix™ produced by
GlaxoSmithKline, protects against HPV-16 and 18. It has also been approved by TGA
for use in females aged 10 to 45 in April 2007, and is currently available on the
Australian market. Both vaccines work similarly by inducing immune responses against
different HPV types by making use of the viral L1 proteins which self-assemble into
virus like particles (VLP) when injected into the human body.

The successful development of the vaccines for cervical cancer is expected to
greatly reduce the incidence of HPV infections and subsequent cervical abnormalities in
the long run. However, issues remain as protection by the vaccines is restricted to a few
oncogenic HPV types. Moreover, the vaccines only manage to efficiently protect
women who are HPV-naive, and may not be beneficial to the current HPV-infected
population who are at risk of developing HPV-associated malignancies. On average, it
takes 12 to 15 years before a persistent high-risk HPV infection may ultimately, via
consecutive premalignant stages, lead to an overt cervical carcinoma (Snijders et al.,
2006). Since there is generally a delay between the acquisition of HPV infection and the
development of precancerous lesions, cytology-based screening methods may not
effectively identify the possible risk of developing cervical cancer at early stages, and
the positive effect of the HPV vaccine on the immunised population will not be
apparent in at least a decade’s time (see Figure 1.4). The development of an HPV

vaccine therefore is effective only on the preventative aspect for a limited population
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group, and promising novel treatment options such as DNA-based therapeutics for HPV

infection and HPV-associated cancer are still needed.
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Figure 1.4  Relationship among incidences of cervical HPV infection,
precancerous lesions and cervical cancer by age of women.

The incidence of HPV infection (blue curve) develops soon after women initiate sexual
activity during their teens and 20s, with the highest prevalence in females aged 20-24
(Dunne et al., 2007). The subsequently lower incidence is because infections can be
self-limited. There is generally a delay between the acquisition of HPV infection and the
development of precancer lesions, approximately 10 years later, and only a subset of
infected women develop precancers, hence a much lower peak for precancer incidence
(green curve). The incidence of invasive cancer (purple curve) reaches its peak as
women approach 40 years of age. Approximately 20 million women in the U.S. are
currently infected with HPV (CDC, 2008); 500,000 women are diagnosed with high-
grade cervical dysplasia each year and the American Cancer Society (2008) estimates
that 11,070 women will be diagnosed with cervical cancer in 2008 (The peaks of the
curves are not drawn to scale). Figure modified from Schiffman and Castle (2005) using

the updated information from Dunne ez al. (2008).
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1.2 The human papillomavirus type 18

1.2.1 Virion structure

HPV-18 belongs to the Alphapapillomavirus genus, species 7 (de Villiers et al.,
2004). The HPV-18 virion contains a covalently closed circular; double stranded
deoxyribonucleic acid (DNA) genome of 7,857 base pairs (bp). The viral DNA is
packed inside a capsid made up of 72 capsomers or subunits, arranged in an icosahedral
structure (Bishop et al., 2007). It is a relatively small virus of about 55 nm in diameter.
Unlike some of the larger DNA viruses, papillomaviruses have no lipid envelopes

surrounding the capsids (see Figure 1.5).

L1 pentamer

Figure 1.5  Viral structure of HPV.

A: Model of the papillomavirus capsid. The rosette-like surface structures (arrowed) are
pentamers each consisting of 5 molecules of L1; 1 molecule of L2 fits into the central
dimple of each pentamer. B: Transmission electronphotomicrograph of HPV particles.
Both full (contain DNA) and empty (no DNA) viral particles can be seen. Figures
reproduced from Stanley ef al. (2006).
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1.2.2 Genome organization

The genome of HPV-18 can be divided into three functional sections. The
early (E) region contains the E1, E2 and E4 to E7 open reading frames (ORF), and the
late (L) region contains the L1 and L2 ORFs. The long control region (LCR), also
known as the upstream regulatory region (URR) or the non-coding region (NCR); lies
between the L1 and E6 ORFs (see Figure 1.6). The LCR regulates transcription from
the early and late regions, and contains enhancer and promoter elements that are
responsive to cellular and virally encoded transcription regulatory factors (discussed in

detail in Section 1.4).

Figure 1.6  Circular map of the HPV-18 genome.

The localization of the open reading frames (E1, E2, E4 to E7 for early genes, L1 and
L2 for late genes) and the long control region (LCR) of HPV-18. The numbers (1 to
7,857) on the inside of the circle refer to the DNA base pairs starting from start of DNA

replication start site. Figure modified from zur Hausen (1996).

The late region is made up of the two ORFs L1 and L2, which encode for the
major and minor capsid proteins respectively. These are structural proteins required

during the packaging of viral DNA produced by replication during the productive stage
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of viral life cycle, forming infectious viral progenies. These proteins are expressed
during the later stages of viral life cycle, following the expression of the early viral
proteins (Jo and Kim, 2005) once viral genome amplification has been completed
(Doorbar, 2005). The L1 and L2 proteins are not found to be expressed in precancerous
and malignant cells (zur Hausen, 2002), hence they do not appear to be involved in the
immortalisation of HPV-infected cervical cancer cells.

The early region is made up of the E1, E2 and E4 to E7 ORFs, encoding the
early HPV proteins controlling viral DNA transcription and replication, and also
proteins that are responsible for cellular transformation. These genes are the first group
of genes to be expressed immediately after viral infection.

The E1 OREF is the largest of the HPV ORFs. El protein has been shown to
play an important role in the extra-chromosomal regulation of DNA replication
(Winkler and Richart, 1989) by binding to and unwinding the viral origin of replication,
an action which is facilitated by the E2 and chaperone proteins (Wilson et al., 2002). E1
then recruits replication protein A, DNA polymerase o and primase from host cells
(Conger et al., 1999) to initiate viral replication. Apart from origin binding activity, E1
also possesses helicase and ATPase activity (Auster and Joshua-Tor, 2004; Hughes and
Romanos, 1993). It is also believed that the E1 and E2 proteins are expressed in order to
maintain the viral DNA as an episome during the non-productive stage of the viral life
cycle (Wilson et al., 2002), and to facilitate the correct segregation of genomes during
cell division (You et al., 2004).

The main function of E2 protein is to enhance viral DNA replication by
recruiting E1, the viral replication factor, to the origin of replication (Bechtold ef al.,
2003; Wilson et al., 2002). E2 has also been suggested to assist the segregation of HPV

DNA as minichromosomes by association with mitotic spindles (Van Tine et al., 2004).
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The expression of HPV E2 has also been reported to be related to the induction of
apoptosis through p53-dependent and —independent mechanisms (Massimi et al., 1999;
Webster et al., 2000). Additionally E2 protein has been suggested to be responsible for
the transcriptional regulation of the viral early genes, including the E6 and E7
oncogenes, by binding to the LCR (Hines ef al., 1998; Jo and Kim, 2005; Swindle et al.,
1999; Tan et al., 1992). The involvement of E2 protein in cellular transformation is
discussed in more detail in Section 1.3 and 1.5.1

The E4 OREF is entirely contained within the E2-encoding sequences, and is
translated from spliced transcripts as a fusion with the first 5 amino acids of El to
generate E1"E4 fusion proteins, which are expressed in the late phase of the viral life
cycle (Longworth and Laimins, 2004). The E4 ORF itself lacks an initiator AUG codon
and uses the E1 sequence for translation initiation (Howley, 1996). The expression of
E17E4 is important for viral genome amplification and prevents premature transcription
of the late genes (Rush et al., 2005; Wilson et al., 2005), disrupts the cytokeratin
network (Doorbar ef al., 1991) and facilitates the release of viral particles (Longworth
and Laimins, 2004).

The HPV ES5 protein is a membrane-associated protein found in the
perinuclear region, associated with the Golgi body and endoplasmic reticulum (Conrad
et al., 1993; Disbrow et al., 2005; Gieswein et al., 2003). It is very important for the
amplification of viral genome, and the initiation of E1"E4 expression and other viral
late genes (Fehrmann et al., 2003; Genther et al., 2003). The E5 protein associates with
vacuolar ATPase (Conrad et al., 1993; Gieswein et al., 2003), which delays endosomal
acidification (Straight et al., 1995), slows down the degradation of epidermal growth
factor receptor (EGFR) and increases EGFR recycling to the cell surface (Straight et al.,

1995; Straight et al., 1993).
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A common feature of high-risk HPV is that their ES, E6 and E7 proteins all
possess growth stimulating and transforming properties. The expression of ES protein
has been shown to enhance E6/E7 immortalisation efficiency in human keratinocytes
(Stoppler et al., 1996). The expression of HPV-16 E5 in particular have also displayed
the ability to transform rodent fibroblasts (Straight et al., 1993), and its overexpression
in transgenic mice resulted in the development of spontaneous skin tumours (Genther
Williams et al. 2005). However, the role of ES protein in the development of uterine
cervical cancer is controversial as disruption of the E5 gene upon viral integration into
host genome has been observed (Scheffner e al, 1994; Schneider-Gadicke and
Schwarz, 1986; Schwarz et al., 1985). The E6 and E7 ORFs encode the two important
oncogenic proteins that are involved in the process of cellular immortalisation. During
natural infection, the activity of E6 and E7 allows the small number of infected cells to
expand, increasing the number of cells that subsequently go on to produce infectious
virions. The ability of E6 and E7 to drive cells into S-phase is also necessary, along with
E1 and E2, for viral replication and maintaining the viral DNA as an episome (Doorbar,
2006; Lee et al., 2006; Oh et al., 2004; Thomas et al., 1999). However, in HPV-infected
keratinocytes, the E6 and E7 proteins degrade and inactivate the tumour suppressor
proteins p53 and the retinoblastoma protein (pRb) respectively resulting in
immortalisation. The precise functions and transforming properties of E6 and E7 are

discussed in detail in Section 1.4.
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Table 1.2 Summary of the functions of the products of the HPV early region

open reading frames.

Early region

Protein functions

El

E2

E4

E5

E6

Unwinds the DNA strands working with E2 protein

Modulate the transcription activity of the E2 protein

Enables E1 protein to bind to the viral origin of replication located within the LCR
Encodes a LCR-binding protein that regulates transcription of the early region
Encodes a protein that interacts with cytokeratin

Expressed in later stages of infection, when complete virions are being assembled
Augment cellular proliferation and DNA synthesis in a context of cell membrane
receptors, such as EGF and PDGF

Induces an increase in mitogen-activated protein kinase activity

Binds to p53 and targets it for rapid degradation via a cellular ubiquitin ligase
Induces telomerase activation

Binds to the hypophosphorylated Rb proteins and liberate E2F, which results in S
phase entry

Interacts with inhibitors of cyclin dependent kinases

Induces abnormal centrosome duplication resulting in aneuploidy

Table reproduced from Jo and Kim (2005).
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1.3 The HPV-18 long control region

1.3.1 Components of the HPV-18 long control region

The LCR of HPV-18 is a 825 bp long non-coding region which lies between
the L1 and E6 ORF, from nucleotide (nt) 7,137 to 104, with the number of nucleotides
corresponding to the published sequence by Cole and Danos (1987). It is contained
within a 1,050 bp BamHI fragment which comprises three functional domains separated
by Rsal recognition sites (Bauknecht ef al., 1992; Garcia-Carranca et al., 1988; Gius et
al., 1988) (see Figure 1.7). At the 3'-end of the LCR lies a promoter of the early viral

genes which is known as the Pos promoter.
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Figure 1.7  Schematic representation of the HPV-18 LCR.

The HPV-18 LCR can be divided into different functional domains. The distal BamHI-
Rsal fragment (nt 6,930 to 7,119); the distal long Rsal-Rsal fragment (nt 7,120 to
7,508); the central Rsal-Rsal fragment (nt 7,509 to 7,738) and the proximal Rsal-
BamHI fragment (nt 7,739 to 119). Figure modified from Bernard ez al. (1989).

The distal BamHI-Rsal fragment (nt 6,930 to 7,119), which is 189 bp in size,
is entirely contained within the L1 ORF. No studies have been performed to identify its
significance in regards to P,os promoter regulation. The long Rsal-Rsal fragment (nt
7,120 to 7,508), which is 388 bp in size, is known as the distal enhancer but the precise

function of this region is unclear (Cid ef al., 1993). There were previous studies
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suggesting that it contributes about 25% of the basal level of P,os promoter activity
induced by the full-length BamHI LCR fragment (Garcia-Carranca et al., 1988), and
some other studies suggested it to be E6-responsive (Gius et al., 1988; Hoppe-Seyler et
al., 1991).

The central Rsal-Rsal fragment (nt 7,509 to 7,738), which is 229 bp in size, is
commonly known as the constitutive enhancer. Studies suggested that this enhancer
element is active in cell lines of epithelial origin only (Garcia-Carranca et al., 1988;
Nakshatri et al., 1990). Since there are no E2 binding sites (E2BS) present in the
constitutive enhancer region, it was also suggested to be independent of regulation by
the viral E2 protein (Bernard ef al., 1989). In fact previous studies have showed that the
constitutive enhancer is active in both HPV-positive HeLa cells, as well as in SW13
cells, which is a human adrenocortical cells that is not associated with HPV (Garcia-
Carranca et al., 1988; Thierry et al., 1987), thus supporting the idea that the activity of
the constitutive enhancer is not dependent on the presence of viral DNA.

The proximal Rsal-BamHI fragment of 237 bp (nt 7,739 to 119) is known as
the promoter proximal fragment, which was identified as E2-responsive (Gius et al.,
1988) and appeared to be highly repressed in the presence of the bovine papillomavirus
type 1 (BPV-1) E2 gene product (Garcia-Carranca et al., 1988). All three distinct
regions of HPV-18 LCR are capable of independent enhancer function when tested with
an enhancerless reporter plasmid containing a heterologous SV40 promoter (Gius et al.,
1988), and they work in a cooperative manner in the regulation of the Pjos promoter

downstream at the 3’-end of the LCR.
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1.3.2 The P95 promoter

The promoter element of the LCR is found to initiate transcription at nt 105,
which is the ATG transcription start codon of the downstream E6 ORF. For this reason
it is generally known as the Pj¢s promoter. The P;os promoter appears to be responsible
for directing the expression of the E6 and E7 oncogenes (Romanczuk et al., 1991;
Thierry et al., 1987). The mapping of transcripts encoding E6 and E7 in a range of
cervical carcinoma cell lines harbouring the integrated HPV-18, all showed the
initiation of transcription to be around nt 105 (Schneider-Gadicke and Schwarz, 1986;
Thierry et al., 1987). There have also been studies suggesting the presence of another
potential promoter of the early viral proteins initiating transcription at position 56
within the LCR of the HPV-18 (Steger et al., 2001). However, the P s promoter is still
considered to be the major early promoter responsible for the transcription of early viral
genes.

The transcriptional activity of the Pjos promoter is tightly regulated by a
complex interplay between viral and cellular proteins which act as transcription factors
binding to sites along the sequence of the LCR. The LCR contains binding sites for
many known cellular transcription factors and four recognition sequences for the viral
E2 protein.

There were many studies performed attempting to identify factors that
determine the activity of transcription control elements acting on their corresponding
promoter. Studies on the SV40 enhancer region suggested that proper spacing between
different cis-regulatory elements could be highly important for their functional
cooperation (Fromental et al., 1988). Butz and Hoppe-Seyler (1993) later suggested that
the activity of a given regulatory element within the enhancer region may also be

strongly dependent on the overall composition of a transcriptional control region, i.e. on
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the nature of potentially cooperating transcription factors. Other studies suggested that
the activity of transcription control elements is dependent on their proximity to the
promoter, similar to the E2-binding motifs within the LCR. The precise function of

these transcription regulatory elements is discussed in Section 1.5.
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14 Cellular transformation by early gene expression

With infections by the low-risk types of HPV, the viral DNA is often
transcribed and replicated separately from the host chromosome as an episome. The
viral regulatory protein E2 is being expressed (Hudelist et al., 2004; Park et al., 1997),
which leads to the repression of the Pjos promoter (regulation of the Pj¢s promoter
described in detail in Section 1.5) and thus the expression of the E6 and E7 genes are
being suppressed and carcinogenic progression do not occur. There have also been
study groups suggesting that the E6 protein expressed from low-risk HPV types have
low binding affinity to p53 and does not lead to its degradation (Crook et al., 1991;
Foster et al., 1994; Scheffner et al., 1990).

However, cell transformation often results from an infection caused by high-
risk types of HPV, where part of the viral genome has been integrated into the
chromosomal DNA of the host cells (Cullen et al., 1991; Pirami et al., 1997). The
integration of the viral DNA preferentially occurs within the E1 and E2 ORF resulting
in their disruption (Bednarek et al., 1998; Corden et al., 1999; Kitagawa et al., 1996;
Rosales ef al., 2001) (see Figure 1.8). There are also reports suggesting that the E1 and
E2 ORF are absent in all tumours positive for HPV-18 (Berumen er al., 1995). In
contrast the LCR, E6 and E7 ORF are found to be invariably intact in the integrated
viral genome within malignant cells (Butz ef al., 2000; Steger ef al., 2001), and the E6
and E7 genes are found to be expressed within cervical cancer cell lines (Schwarz et al.,
1985). Disruption of the E2 ORF results in the absence of viral E2 protein expression,
hence leading to the de-repression of the P1os promoter responsible for the expression of
the viral E6 and E7 proteins (Yee et al., 1985). According to the studies carried out by

Rosales ef al. (2001), the E6 and E7 proteins are expressed immediately after the
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disruption or inactivation of the E2 gene. This suggests that the expression of E6 and E7
genes are a consequence of the downregulation of E2 proteins within HPV-induced

carcinomas.
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Figure 1.8  The integration of HPV DNA into the genome of the host cell.

In the course of cancer development, part of the HPV DNA frequently integrates into
the genome of the host cell. The circular HPV DNA is often opened within the E2 ORF,
resulting in the partial deletion of the E2 and L2 ORF (partial genes represented by an
asterisk) and complete removal of the E4 and E5S ORF. The blue triangles indicate the
approximate start/end of the labelled genes and the LCR within the HPV genome.
Figure modified from zur Hausen (2002).

E6 proteins expressed from high risk HPV types interacts with the tumour
suppressor protein p53 via the cellular ubiquitin-dependent proteolytic pathway
resulting in p53 degradation (Scheffner et al., 1993; Scheffner and Whitaker, 2003). The
ubiquitin-dependent proteolytic pathway plays a major role in selective protein

degradation. The HPV E6 oncoprotein binds to a cellular protein termed E6-associated
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protein (E6-AP). The E6-E6-AP complex interacts with p53, resulting in the rapid
ubiquitin-dependent degradation of p53 (Werness et al, 1990). p53 functions in
response to DNA damage. When cells are under genotoxic stress, the half life of p53
protein is significantly extended (Alarcon et al., 1999; Geyer et al., 2000; Shin et al.,
1996), resulting in an accumulation of p53 protein in the cells (Alarcon et al., 1999;
Clarke et al., 1993; Inoue et al., 2001; Kapoor and Lozano, 1998; Kastan ef al., 1991;
Shin et al., 1996). Upon stabilisation, p53 is activated which leads to cell cycle arrest
(Geyer et al., 2000; Kastan ef al., 1991; Shin et al., 1996; Yin et al., 1992) or apoptosis
(Clarke et al., 1993; Lowe et al., 1993; Shaw et al., 1992), depending on the severity of
the DNA damage, cell type and cellular environment (Bates and Vousden, 1996;
Vousden and Lu, 2002). When cellular DNA is damaged or mutated, the cell cycle is
normally arrested at G and p53 activates the expression of cellular genes involved in
DNA repair. Once damaged DNA is repaired, the cell cycle resumes. If the extent of
DNA damage is too great, the cell undergoes apoptosis. However, in HPV-infected
cancer cells, p53 is often non-functional and degraded due to the interaction with the
E6-E6-AP complex. This allows the accumulation of genetic mutations and will
eventually lead to deregulated cell growth and malignant tumour formation (Scheffner
et al., 1990). In addition, E6 expressed from high risk HPVs is also associated with the
induction of telomerase activity (Damania, 2007; Kim et al., 2007; Liu et al., 2007), an
enzyme that synthesises the telomere repeat sequences. Activating this enzyme leads to
malignancy as the mutant cells continue to reproduce without control (Reddel, 2003).
E7 interacts with the retinoblastoma protein (pRb), which is also a tumour
suppressor protein. pRb binds to the transcription factors necessary for the progression
through the cell cycle, preventing the cells from dividing until it has bound sufficient

transcription factors for cell division. The important protein to which pRb binds is E2F,
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forming the pRb-E2F complex. The E2F proteins control the transcription of a number
of cellular genes necessary for S-phase entry and progression (Chien et al., 2002). The
pRb-E2F complex acts as a transcriptional repressor, while free E2F activates
transcription from promoters containing E2F binding sites. During HPV infection E7
can bind to and inactivate pRb, disrupting the pRb-E2F complex and releasing free E2F,
thus deregulating the repressive function of pRb in cell cycle progression (Hwang ef al.,
2002). This results in a cycle of uncontrolled cell proliferation leading to malignant
diseases.

The differences regarding the oncogenic potential of the high-risk and low-risk
types of HPV appear to correlate with the functional differences between their
oncoproteins. E6 and E7 proteins from high-risk types of HPV possess higher binding
affinity to p53 and pRb tumour suppressor proteins respectively (Hwang et al., 2002).
Both E6 and E7 (from high risk HPV) can immortalise human cells independently, but
their co-expression strongly increases their transforming potential, indicating their
functional cooperativity (Hawley-Nelson ef al., 1989; McDougall, 1994; Munger et al.,
1989). The two oncoproteins work cooperatively to induce cell cycling/cell division and
to overcome the G1/S and G2 checkpoints in the DNA-damaged cells (zur Hausen,
2000), resulting in an anti-apoptotic effect and increased chance of accumulation of
genetic mutations, which can result eventually in the progression to full malignancy
(Nishimura et al., 2000). Virtually all HPV-positive cervical neoplasia specimens
(Nakagawa et al., 2000; Rosales et al., 2001; Schwarz et al., 1985) contain the E6 and
E7 proteins. The expression of both viral proteins are necessary for the efficient
immortalisation of human squamous epithelial cells (Hawley-Nelson et al., 1989;

Hudson et al., 1990; Kaur et al., 1989; Munger et al., 1989), as well as for the
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maintenance of the transformed phenotype of cervical cancer cells (Crook et al., 1989;

von Knebel Doeberitz et al., 1992).
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1.5 Transcriptional control of the long control region

The activity of the Pjos promoter of HPV-18 is tightly regulated by a complex
interplay between viral and cellular proteins which act as transcription regulatory

elements binding to recognition motifs along the sequence of the LCR (Figure 1.9).
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Figure 1.9  Binding sites for viral and cellular transcription factors within the
LCR.

The diagram shows the 1,050 bp (nt 6,930 to 119) BamHI fragment of HPV-18, which
contains the LCR fragment in between the L1 and E6 ORF. The crooked arrow
represents the transcription start site of the Pjos promoter upstream of the E6 ORF (blue

line representing the promoter proximal region).

1.5.1 E2 binding sites

The viral E2 protein plays an important regulatory role in the activity of the
P05 promoter. It binds as a dimer to a 12-bp palindromic sequence, ACCN¢GGT, which
is found four times in the LCR of all genital HPV (Rapp et al., 1997). Three of the
E2BSs are located within the promoter proximal fragment of the LCR (E2BS#1 to 3),
while the fourth one lies within the distal enhancer fragment (E2BS#4) (see Figure 1.9).
These E2BS appeared to be highly conserved in their relative positions among different
types of HPV (Demeret et al., 1994; Rapp et al., 1997).

The E2 protein is the only viral product thought to regulate HPV transcription,
and is crucial in determining the level of expression of the E6 and E7 oncogenes

(Bednarek et al., 1998; Schwarz et al., 1985). Extensive studies have been performed on
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the E2BSs in an attempt to understand the precise mechanism of E2 modulation of the
P05 promoter. It has been well established that E2 can repress the expression of the E6
and E7 oncoproteins from their promoter (Bernard et al., 1989; Hirochika et al., 1987;
Hirochika et al., 1988; McBride et al., 1998; Thierry and Howley, 1991). Recent studies
performed on the LCR of HPV-16 by Soeda er al. (2006) confirmed that when
expressed from the viral genome, E2 is primarily a repressor of the Po; promoter; this
repression involves the E2BS#1, 2 and 3, and both the DNA binding and transactivation
functions of E2. They also found no evidence that Py is strongly activated by E2.
Similarly, results from previous mutation studies performed on HPV-18
suggest that, upon the induction of E2 expression, all three E2BSs within the promoter
proximal region (E2BS#1, 2 and 3) are responsible for full repression of LCR promoter
activity. Repression appeared to be mediated mainly though E2 binding to the promoter
proximal E2BS#1 and E2BS#2, while the E2BS#3 also contributed to maximal
transcription repression (Demeret et al., 1997). In contrast, the binding of E2 to the
distal E2BS#4 only weakly affects transcription activity of the Pyos promoter (Demeret
et al., 1994). E2BS#2 and #1 form a tandem repeat located just 3 bp upstream of the
TATA box of the Pos promoter, and was found to induce E2-mediated repression
through steric hindrance with the proteins binding to the TATA box and the Spl
binding site (Demeret ef al., 1994; Dostatni et al., 1988). This is due to the fact that
E2BS#1 functionally overlaps with the TATA box downstream, while E2BS#2
functionally overlaps with the Spl binding site upstream. The binding of E2 to these
E2BSs displaces the TATA box-binding proteins and Spl from their recognition motifs,
thus repressing transcription from the P,os promoter (Dong ef al., 1994; Dostatni et al.,
1991; Tan et al., 1992). This correlates very well with the situation of infection by low-

risk types of HPV, when the viral DNA exists within the host cell in the form of an
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episome, the viral E2 protein is continually expressed thus repressing the activity of the
P05 promoter and the expression of the E6 and E7 oncogenes. Low-risk HPV infections
are therefore not associated with malignancy.

However, some studies also suggested that E2 can function both as a
transcriptional activator at low concentrations or repressor at high concentrations,
depending on the differential occupancy of the four E2BSs within the LCR (Bernard et
al., 1989; Bouvard et al., 1994; Dell et al., 2003; Doorbar, 2006; Grm et al., 2005),
which is directly related to the affinity of E2-binding for the individual E2BS (Hou et
al., 2002; Moskaluk and Bastia, 1988). However, observations regarding the affinity of
protein binding to different E2BSs have not been consistent. The studies performed by
Romanczuk et al. (1990) showed that the E2BS#3 has a much lower affinity for protein
binding when compared to the other three E2BSs within the LCR of HPV-16. Several
studies have then suggested the promoter proximal E2BSs have lower affinity for the E2
protein than those located further upstream within the LCR (Jackson and Campo, 1995;
Sanders and Maitland, 1994; Steger ef al., 1995). Later studies performed by Demeret et
al. (1997) then showed that E2 proteins are associated with the four E2BSs in the HPV-
18 LCR with similar affinities.

That aside, the HPV-16 Py; promoter and the HPV-18 Pjos promoter have
always been thought to be regulated by similar mechanisms by viral E2 proteins
(Romanczuk et al., 1990), because a comparison of the sequences upstream showed a
similar spatial arrangement of the four E2BSs, the TATA boxes and the transcription

start sites (Figure 1.10).
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7850 7859

I | E2BS#3
HPV-16 . . . 76TGTGCANACCGTTTTGGGTTACACATTTACAAGCAACTTATATAATAATACTAAACTACAATAATTCATGTATAAAACT

7813 7822
| |

HPV-18 . . .GTTTATGCAACCGAAATAGGTTGGGCAGCACATACTATACTTTTCATTAATACTTTTAACAATTGTAGTATATAAAA

35 50 Pg7
: | E2BS#2 | E2BS#1 -

HPV-16  AAGGGCGTAACCGAAATCGGTTGARCCGARACCGGTTAGTATAAAAGCAGACATTTTATGCACCAAAAGAGAACTGCAATGTTTC
42 58 P105

I I
HPV-18 AAGGGAGTAACCGAAAACGGTCGGGACCGAAAACGGTIGTATATAAAAGATGTGAGAAACACACCACAATACTATGGCGCGCTTTG. | .

Figure 1.10 Comparison of the HPV-16 and 18 sequences upstream of their
respective Py; and P15 promoters.

The positions of E2BS are boxed, and the TATA boxes relative to the early promoter
downstream are underlined. The Py; and Pjs promoters of HPV-16 and 18 respectively
are indicated by the crooked arrows, and their ATG transcription start codons are
underlined. Similarity in their spatial arrangement suggests that the promoters of HPV-
16 and 18 may be regulated by similar mechanisms by the E2BS. Figure modified from
Romanczuk et al. (1990).

In general the sequences and spatial arrangement of the E2BS, in their relative
positions to the early promoter downstream, were found to be very similar in between
the two major types of low-risk (HPV-6 and 11) and high-risk (HPV-16 and 18) HPV.
The only exemption was that the E2BS#3 of HPV-16 and 18 did not appear to be a
perfect palindrome, when compared to HPV-6 and 11 which have all four E2BS in
perfect palindromic sequences of ACCGN4CGGT (Garcia-Carranca et al., 1988) (see
Figure 1.11). It was suggested that this corresponds to the differences in E2-mediated
transcriptional regulations in between the two groups of genital HPV. This may also be
an explanation to the lower binding affinity of the E2BS#3 as observed by Romanczuk

et al. (1990) as mentioned previously.
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EZES#4 EZES#3 EZES#z EZES#1

HEV-6h (7,202 bp) ACCGELttCGGT..ACCGELtCGET..ACCGaaaaCEETTea . ACCGaaaaCGET
{(-458) (-143) {(—&7) (=523

HEY-11 (7,931 bp) ACCGLtttOGET..ACCGEyLEtCEET. . ACCGaasalEGETLea. ACCGaaaaCEET
{—441) (—143) {(—&7) {-52)

HEYV-16 (7,204 bp) ACCGasttCeET..ACCEatttE6eGq. ACCGaaatlG6ETEya . ACCGaaac0GET
(—558) (-151) (-63) (-54)

HEV-18 (7,857 bp) ACCEatttlEGT..ACCGEtEtEtaGET..ACCEaaagCeeToyygRACCEaaaaCEET
(—504) (—140) (—83) (—47)

Figure 1.11 Comparison of the sequences of E2 palindromes in the LCR of HPV-
6,11, 16 and 18.

HPV-6 and 11 are the two major low-risk HPV associated with benign lesions, whereas
HPV-16 and 18 are high-risk HPV associated with cancer. All four E2BS within these
genital HPVs are perfect palindromes of ACCGN4CGGT, apart from the two E2BS#3
of HPV-16 and 18. This may account for the differences in E2-regulation of the two
groups of HPV, as well as a possible explanation to the lower binding affinity observed
at the E2BS#3 of HPV-16. In bold and caps are the bases matching with the perfect
palindromic sequence. Numbers in brackets represent relative positions of the E2BS to
the promoter downstream, assuming the start of transcription occurs at nt 1. Figure

modified from Garcia-Carranca et al. (1988).

As mentioned previously in Section 1.4, the E2 gene is often found to be
disrupted upon the integration of high-risk HPV into the host genome. In this case early
gene promoter activity appeared to be regulated entirely by cellular transcription factors.
The precise role of E2 in the regulation of the P;¢s promoter in LCR, in the context of
HPV-infected cervical cancer cells, is difficult to be determined. However, studies
performed on BPV-1 suggested that the binding of full-length E2 protein to various
E2BSs may transactivate the HPV promoter, whereas truncated E2 proteins may act as a
repressor instead (Androphy et al., 1987; Choe et al, 1989; Lambert et al., 1987;
Moskaluk and Bastia, 1987). Demeret ef al. (1997) also proposed that a N-terminally

truncated form of HPV-18 E2 protein repressed transcription more efficiently than the
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full-length protein. In the context of genital HPV infection, although truncated forms of
E2 protein has not been reported, it is theoretically possible for a truncated E2 protein to
be expressed, as E2 ORF is often disrupted during integration of the viral DNA. In fact
a recent review article by Shillitoe (2006) also suggested that in tumour cells from
HPV-associated cancers, the viral sequence integrated into the host cell chromosome
preserves the LCR, E6 and E7 genes, as well as the 5'-end of the E2 ORF. A truncated
form of E2 protein is therefore suggested to be expressed and together with other
cellular transcription factors, they act on the viral promoter in the LCR to control the
expression of E6, E7 and E2. It should also be noted that there have been studies
reporting the presence of intact E2 protein present in pre-malignant lesions (Durst et al.,
1992; Matsukura et al., 1989), which suggests that the disruption of the E2 ORF is often
a late event in cancer formation and the possible role of E2 in the regulation of
oncogene expression.

It is therefore logical to propose that the E2BSs within the LCR do not only
play an important role in the viral DNA replication, but may also be involved in the
regulation of oncogene expression from the P;¢s promoter within HPV-infected cervical
cancer cells. It is, however, important to take into account the fact that E2-mediated
promoter regulation can be modulated by other cis-regulatory elements present in the
HPV-18 LCR. Conclusions on the precise mechanism of P,os promoter regulation by E2
within HPV-infected cells cannot be drawn without understanding the nature of
transcription factors binding to the LCR and their possible interaction with the viral E2

proteins.
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1.5.2 Various transcription factor binding sites

Apart from the viral E2 protein, cellular transcription factors also play a very
important role in the regulation of the HPV-18 Pos promoter activity, and they bind to
recognition sequences which are commonly known as the cis-regulatory elements. The
locations of various transcription factor binding sites are shown in Figure 1.9. Most of
the sites identified to date are located within the constitutive enhancer and promoter
proximal fragment of the LCR. These include binding sites for nuclear factor 1 (NF1),
activator protein 1 (AP1), Ying Yang 1 (YY1), octamer-binding protein (Oct-1),
keratinocyte response factor (KRF-1), specific promoter factor (Spl) and also a
glucocorticoid response element (GRE). Previous studies have identified some of the
properties of these transcription factor binding sites in regards to their contribution
towards the Pjos promoter activity and specificity. However, the overall promoter
regulation is a very complex interplay of ubiquitous and cell-type specific transcription
factors, which leads to the tissue and differentiation specific activation of the HPV-18
promoter. It is impossible to mention every study for each individual transcription factor
binding site within the LCR of HPV-18. Below is a summary of significant findings
regarding the contribution of each protein binding elements towards the activity and

specificity of the P,os promoter.

(i) Nuclear factor 1

There are three NF1 binding sites identified within the constitutive enhancer of
the LCR by footprinting studies performed by Gloss et al. (1989). Although the NF1
consensus motif was identified to be 5'-TTGGCTN3;AGCCAA-3' (Jones et al., 1987),
the two distal NF1 binding sites (nt 7,513 to 7,527 and nt 7,569 to 7,583) did not display

the properties of such consensus sequence, while the third NF1 site at the proximal end
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of the constitutive enhancer only contains half of the recognition motif (Butz and
Hoppe-Seyler, 1993). Studies performed on the three NF1 sites within the HPV-18 LCR
suggested that both individual and combined mutations resulted in only a slight
decrease of the Pjos promoter activity induced within HeLa cells (HPV-18 positive
human cervical carcinoma cell line) (Butz and Hoppe-Seyler, 1993). These results
suggested that NF1 does not play a crucial role in the regulation of the P;¢s promoter in

the context of HPV-infected cervical cancer cells.

(ii) Activator protein 1

The two AP1 binding sites within the LCR of HPV-18 were first identified by
Garcia-Carranca et al. (1988) by DNase I footprinting assay, one within the constitutive
enhancer region (nt 7,608 to 7,614) and the another one within the promoter proximal
region (nt 7,792 to 7,798). It contains a recognition sequence of 5-TGACTAA-3".
Mutation studies performed individually on the two sites significantly reduced the level
of Pyos promoter activity within HeLa cells (Butz and Hoppe-Seyler, 1993), suggesting
that the AP1 binding sites are very strong transcriptional activators of the P;¢s promoter
in the context of HPV-infected cervical cancer cells. The two AP1 sites were also
suggested to functionally cooperate (Mack and Laimins, 1991), since mutation of one of
the AP1 binding sites located within the promoter proximal fragment resulted in a
downregulation of enhancer activity. This downregulation was suggested to be a result
of the loss of cooperatively with the other AP1 binding site located within the
constitutive enhancer region (Bauknecht et al., 1992). The enhancer activity induced by
AP1 was also reported to be directly repressed by silencer elements which bind the YY1

proteins within the LCR of HPV-18 (Bauknecht et al., 1992).
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In terms of promoter specificity, AP1 was shown to be a key regulator for
epithelial cell-specificity of the promoter (Mack and Laimins, 1991). Higher binding
affinity of AP1 was observed in cervical carcinoma cell lines both positive (HeLa) and
negative (C33A) for HPV-18, as well as in human keratinocytes positive for HPV-16

(Angel and Karin, 1991; Prusty and Das, 2005).

(iii) Ying Yang 1

The name of YY1 protein relates to the ability of YY1 being able to repress or
activate transcription depending on the context of the promoter. There are three YY1
binding sites identified within the HPV-18 LCR, one within the distal enhancer region
(nt 7,441 to 7,449), one within the constitutive enhancer region (nt 7,610 to 7,618)
which overlaps the 3'-end of a AP1 binding site (Bauknecht and Shi, 1998), and one
within the promoter proximal region (nt 7,847 to 12) which overlaps with the 3'-end of a
GRE binding site (Bauknecht ef al., 1992).

Initial studies of the YY1 site in the promoter proximal fragment suggested it
to be a strong repressor on the Pjos promoter activity by repressing the activation
induced by AP1 binding to the constitutive enhancer region. Mutation on the promoter
proximal YY1 site resulted in resulted in enhanced promoter activity (Bauknecht et al.,
1992; Shi et al., 1991). Later studies discovered that the activity of the promoter
proximal YY1 is determined by a C/EBPB-YY1 switch region located upstream within
the constitutive enhancer (nt 7,710 to 7,718) (Bauknecht ef al., 1995). In the absence of
an intact switch region, YY1 acts as a repressor of the LCR. A double mutation of the
C/EBPB-YY1 switch region and the promoter proximal YY1 site, however, completely
abolished Pj¢s promoter activity induced from the LCR. Mutations performed on the

other two YY1 sites showed no effect on the P;¢s promoter activity.

36



Chapter One — Introduction

An important point to note is that two of the YY1 sites in the LCR appeared to
be overlapping with AP1 and GRE binding sites in the distal enhancer and promoter
proximal region respectively, hence possible interference by YY1 on the binding of

AP1 and GRE to these sites may also occur.

(iv) Octamer-binding protein

A recognition motif for an octamer-binding protein, Oct-1, was first found
located close to the half-palindromic NF1 recognition sequence within HPV-16 LCR by
Chong et al. (1991). The site was found to contribute significantly towards enhancer
function in HPV-16, for upon deletion promoter activity was strongly reduced (Chong
et al., 1991; Morris et al., 1993). In the context of HPV-18, a corresponding sequence of
5'-AATTGCAT-3' (nt 7,721 to 7,728) was found just 2 bp upstream of the half NF1
motif within the constitutive enhancer. Mutational analysis on this site, however,
resulted only in a slight decrease of P15 promoter activity within HeLa cells (Butz and
Hoppe-Seyler, 1993), indicating this Oct-1 binding site is not crucial for promoter
activation in the physiological context of cells infected by HPV-18, and the binding of
Oct-1 proteins appeared to be positively regulating the promoter downstream.

Oct-1 was also found to bind at low affinity to another footprint mapped by
Garcia-Carranca ef al. (1988) from nt 7,644 to 7,657, which overlaps with the 5’ portion
of a KRF-1 footprint identified further downstream but also within the constitutive
enhancer. Since the binding of Oct-1 and KRF-1 to this site appeared to be mutually
exclusive, competitive binding was suggested to contribute to the cell-type specific

promoter activation of HPV-18 (Mack and Laimins, 1991).
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) Keratinocyte response factor

A KRF-1 footprint (nt 7,648 to 7,669) has been identified within the
constitutive enhancer region of the LCR, which slightly overlaps with a low affinity
Oct-1 binding site. The binding of KRF-1 to this site has shown to contribute
significantly to the epithelial cell-type specificity of the constitutive enhancer (Mack
and Laimins, 1991). Studies performed by Butz and Hoppe-Seyler (1993) further
defined that the activity of KRF-1 can vary significantly between different epithelial cell
types, with a mutation at this binding site resulting in the strongest reduction of Pjgs
promoter activity in primary keratinocytes, and the least reduction in HeLa cells. This
suggested that by abolishing KRF binding the LCR resulted in increased specificity

towards HPV-positive cervical cancer cells.

vi) Glucocorticoid response element

The GRE motif 5-~AGCACAT ACTATACT-3' (nt 7,839 to 7,853) within the
promoter proximal region of the LCR can positively regulate promoter activity when
induced by glucocorticoids such as dexamethasone or progesterone. This
responsiveness to progesterone was also suggested to be a possible explanation for the
higher incidence of malignant HPV lesions in women than in men, for oncogene
expression from HPV would go through recurrent boosts during part of the ovulation
cycle and also during pregnancy when the level of progesterone in the female body
increases (Chan et al., 1989).

Mutation studies performed on the GRE, however, significantly increased the
basal level of Pjos promoter activity by up to 2-fold in HeLa cells, while at the same
time completely abolished the hormonal response of the promoter when tested with

increasing doses of dexamethasone (Butz and Hoppe-Seyler, 1993). This suggested that
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the GRE within the LCR induces significant repression on the Pjgs promoter which

appeared to be independent of the binding of glucocorticoid or other hormonal elements.

(vii) Specific promoter factor

Sp! binds to a G-rich recognition motif 5'-GGAGT-3’ (nt 35 to 40) within the
promoter proximal region of the LCR, which contains two mismatches to the Spl
consensus recognition sequence 5'-GGGCGG-3' (Hoppe-Seyler and Butz, 1992).
Mutation lead to a strong reduction in the Pjos promoter activity from the LCR in HeLa
cells (Butz and Hoppe-Seyler, 1993), indicating that the Spl element contributes
significantly to strong promoter activation. The promoter proximal region, however,
was shown to induce only weak promoter activity (Hoppe-Seyler et al., 1991; Thierry et
al., 1987). This suggested that the Spl binding site has to functionally cooperate with
other cis-regulatory elements upstream in the distal and constitutive enhancer regions of
the LCR (Butz and Hoppe-Seyler, 1993). However, studies performed by Rose et al.
(1998) also suggested that naturally occurring mutations in the Sp1 motif may result in
an elevated level of binding affinity by the Sp1 protein, thus enhanced transcription by
up to 4-fold in HeLa cells.

The binding of Spl to its promoter proximal recognition motif has been
reported to be sterically hindered by the binding of viral E2 proteins to the promoter
proximal E2BS#1 as well as the TATA box-binding protein. (Dostatni ef al., 1988; Tan
et al., 1992). However, it was suggested by Demeret et al. (1994) that this repression
could be compensated and transcription restored by E2 binding to the E2BS#2 which is
located only 1 bp downstream and functionally overlaps the Sp1 recognition motif. This
was in agreement with earlier studies suggesting that Spl can functionally cooperate

with viral E2 protein to induce transactivation of the HPV promoter (Ham ez al., 1991;

39



Chapter One — Introduction

Li et al., 1991). This result also suggested the possibility of the viral E2 protein binding
to other cis-regulatory elements within the LCR, resulting in P,¢s promoter activation.
By gathering the results from previous studies, it is therefore possible to
identify some of the cis-regulatory elements which possess positive or negative
regulatory effects on the transcriptional activity induced from the P;¢s promoter within
the LCR. The sequences and exact locations of the previously mentioned transcription

control elements are shown in Figure 1.12.
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Figure 1.12  Sequences of transcription factor binding sites within the LCR.

atgtgagaaa
tacactcttt

t o
a k=

The 1,050 bp BamHI (highlighted in purple) fragment contains the entire LCR separated
into functional domains by Rasl sites (highlighted in green). Transcription factor
binding sites mentioned in Section 1.5.2 are labelled and boxed. The TATA box is
highlighted in red and the ATG start codon of the E6 ORF is highlighted in blue.
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1.6 Gene therapy for HPV-associated cervical cancer

1.6.1 Different approaches of gene therapy for cervical cancer

With advances in the understanding of the pathogenesis of cervical cancer and
the regulation of oncogene expression within HPV-infected cells, it is possible to
develop gene therapies which may selectively target the virally-infected cells. Possible
approaches for the gene therapy of HPV-associated cervical cancer has been reviewed

by Shillitoe (2006) (Figure 1.13).

1. Decoys eI -
\ & .
LCR EG/E7 E2
EEEEEEEN ’ EEEEEEEN
/ /{{H\ 3. Block ... . _y Unrelated
2.Subvert /N e Mutations
P53 }Rb
4. Replace

Figure 1.13  Gene therapy approaches to HPV-associated cervical cancer.

In cervical cancer cells, part of the HPV DNA sequences (green) are integrated into the
host cell chromosome (orange), with the LCR, the E6 and E7 genes and the 5'-end of
the E2 gene being preserved. The truncated E2 protein, together with cellular
transcription factors, act on the LCR to promote the expression of E6, E7 and E2. The
E6 and E7 genes inhibit the function of the p53 and pRb genes respectively. Approaches
to gene therapy (brown) include: 1. Decoy proteins to inhibit the function of the
enhancer/promoter elements of the LCR; 2. subversion by the use of the LCR to control
the expression of antitumour genes; 3. blocking of the expression of antisense,
ribozymes or siRNA, and 4. replacement of the missing p53 and pRb proteins. Figure
reproduced from Shillitoe (2006).
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Various gene therapy approaches to HPV-associated cervical cancer can be
generally classified into four main groups. As mentioned in Section 1.5, the activity of
the Pjos promoter of HPV-18 is regulated by viral proteins and cellular transcription
factors binding to recognition motifs along the sequences of the LCR. It is therefore
possible to make use of decoy factors that binds to the LCR as a substitution of specific
transcription factors, to produce an adverse effect on promoter activation/expression of
oncogenes. Previous studies performed by Hwang et al. (1993) and Hwang et al. (1996)
have demonstrated that the expression of the BPV-1 E2 protein in HeLa cells resulted in
an acute and profound decrease in cellular proliferation and a dramatic inhibition of
HPV-18 E6/E7 expression. However, the implication of these findings in the
development of a gene therapy for cervical cancer has remained unexplored.

The second approach to cervical cancer gene therapy is subversion by the use
of the HPV LCR, which is to make use of cell-type specificity of the LCR to direct
cervical cancer-specific expression of therapeutic or suicide genes. Promoter elements
that have been proposed and studied for similar use in oral cancer gene therapy include
the promoters of human cytomegalovirus (CMV), Simian Virus 40 (SV40), mouse
mammary tumour virus (MMTYV), HPV-16 and 18, and the multi-drug-resistance gene
(mdrl) (Shillitoe and Noonan, 2000). Tissue-specific promoters are therefore ideal
elements to be used for the selective targeting of cervical cancer cells. However, few
studies have explored this possibility for cervical cancer (Lim et al., 2004). This project
was set out to explore the possibility of using the LCR of HPV-18 as a tool to induce
selective gene expression within HPV-associated cervical cancer cells, with more
details in regards to this approach in Section 1.7.

As the development of cervical cancer is associated with the expression of the

E6 and E7 oncogenes, the third approach is to block the expression of E6 and E7 by
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making use of DNA-based therapeutics such as antisense RNA, ribozymes or small-
interfering RNAs (siRNAs) (Patil et al., 2005). Antisense RNA molecules bind to the
RNA transcripts of the target genes resulting in duplex formation and degradation. The
use of antisense RNA has been tested by von Knebel Doeberitz ef al. (1988) in C-4 1
cervical cancer cells (HPV-18 positive and expresses HPV-18 RNA) and by Steele ef al.
(1992) in other HPV-positive cervical and oral cancer cells, which resulted in the
elimination of many malignant phenotype of the HPV-associated cancer cells. This
approach has also been shown in a mouse model by He and Huang (1997) to result in
the inhibition of tumour growth by downregulating the expression of E6 and E7.
Ribozymes work in a similar fashion which compromises antisense molecules with
secondary structures that provide enzymatic ability to cleave the target molecules. Anti-
HPYV ribozymes have been demonstrated by Chen et al. (1996) and Alvarez-Salas et al.
(1998) to successfully inhibit the transformed phenotype of HeLa cells and prevent
immortalisation of cells by HPV-16, respectively. The advances on the use of antisense
RNA and ribozymes led to the development of siRNAs, which are typically 21 to 23-
nucleotide double-stranded RNA segments, designed to be used for the downregulation
of the oncogenes through RNA interference (RNAi). The silencing of E6 by siRNAs
has been shown to induce apoptosis of HeLa cells (Butz et al., 2003) and increase the
sensitivity of cancer cells to chemotherapy (Koivusalo et al., 2005). Overall, the use of
siRNAs in gene therapy is a relatively new invention with many possibilities yet to be
explored.

Since the expression of E6 and E7 in cervical cancer cells results in the loss of
function of the tumour suppressor proteins p53 and pRb respectively, another approach
of gene therapy is to restore the expression of functional p53 and pRb within the

cervical cancer cells. However, this method tends to be difficult to control in terms of
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the expression level and specificity, as overexpression of p53 is toxic to cells and
independent to the presence of HPV DNA (Ahn ef al., 2002). The potential use of p53
and pRb as gene therapy has been examined for many types of cancers, quite apart from
those that are associated with HPV, and has progressed to the stage of multiple human
trials but with limited success (McNeish et al., 2004). Results from clinical trials have

not mirrored the preclinical studies.

1.6.2 Delivery of anti-HPV gene therapy

Apart from the different approaches to target HPV-associated cervical cancer
cells, another significant problem associated with gene therapy is the delivery of
therapeutic molecules into the tumour of a patient. DNA delivery methods can be
classified into physical application using electrical and mechanical techniques, and viral
and non-viral vector-assisted delivery systems.

Since HPV-associated cervical cancers develop in the basal layer of epithelial
cells, the most obvious and direct way to transfer DNA to the site of a tumour would be
by physical application. Examples of electrical and mechanical strategies include
microinjection which is highly efficient but time-consuming as it targets one cell at a
time (McAllister et al., 2000). Particle bombardment of DNA-coated gold beads can
also be achieved using gene guns, which has, however, not shown sufficient efficiency
in previous study using oral cancer cells (Shillitoe et al., 1998). The Helios® gene gun
from Bio-Rad Laboratories has been designed to assist the delivery of therapeutic
plasmids for gene therapy in animal models, and is yet to be tested for its efficacy in the

treatment of human cancers. Mechanical transfection by electroporation uses high-
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voltage electrical current to facilitate DNA transfer, which results in high cell mortality
and is not suitable for clinical use (Patil ez al., 2005).

Most of the studies performed in regards to gene therapy for cervical cancer
have been relied on the utility of viral vector delivery systems (Green et al., 2006; Lim
et al., 2004; Song et al., 2003). Adenoviral vectors have been suggested to be capable of
inducing transgene expression in a wide range of tissues for a relatively long period of
time. The use of adenoviral vectors in gene therapy has also shown promising results in
preclinical studies and Phase I clinical trials ranging from cystic fibrosis to Parkinson's
disease (Li et al., 2005). In the context of cervical cancer, however, problems such as
low infection efficiency and lack of tissue specificity were observed (Kawakami et al.,
2004; Kawakami et al., 2005), thus limiting the efficacy of adenovirus-mediated gene
therapy for the treatment of cervical cancer. Moreover, the use of viruses to deliver and
integrate DNA into host cells in gene therapy is unavoidably associated with potential
dangers such as triggering undesirable cell-mediated immune responses (Ferber, 2001;
Glover et al., 2005). Hence the development of safer, non-viral gene delivery
approaches for cervical cancer gene therapy would be ideal.

Non-viral technologies consist of plasmid-based expression systems
containing a gene encoding a therapeutic protein and synthetic gene delivery systems
(Rolland, 1998). Commonly used non-viral gene vectors are in forms of DNA-polymer
complexes and DNA entrapped in and/or complexed to liposomes (Patil et al., 2005).
These systems do not carry the risk of developing adverse immune responses, and are
easy to formulate and assemble (Merdan et al., 2002). Non-viral vectors, however, are
generally lower in transfection efficiencies when compared to viral vectors. Further

advances in the development of safe and efficient DNA delivery platforms will be
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required to assist the successful implementation of gene therapy to target HPV-

associated cervical cancer cells.
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1.7 Aims of the project

Efforts to improve gene therapy strategies over the past years were mainly
aimed at solving the problem of delivery, without paying much attention to the
optimisation of the expression cassette (van Gaal et al., 2006). With the current
understanding of the eukaryotic transcription machinery and advanced molecular
biology techniques at our disposal, it is possible to create custom-made transgene
expression cassettes optimised for gene therapy applications.

In this study the focus was on the Pj¢s promoter of the HPV-18 LCR and
cervical cancer. The aim of this project is to investigate the regulation of the Pjgs
promoter within the HPV-18 LCR, with an attempt to develop a strategy to induce
selective gene expression within cervical cancer cells infected by HPV, which could be
a possible approach for gene therapy. It has already been proven that a continuous
expression of the HPV E6 and E7 genes are necessary factors for the malignant
phenotype of HPV-positive cervical cancers (von Knebel Doeberitz ef al., 1992), and
the HPV-18 LCR contains enhancer and promoter elements responsible for driving the
expression of the E6 and E7 oncogenes (Cid ef al., 1993; Romanczuk et al., 1991;
Thierry et al., 1987). It was therefore logical to hypothesise that the promoter element
of the HPV-18 LCR is active within HPV-infected cervical cancer cells, and could be
used to direct carcinoma-specific expression of appropriate therapeutic genes. The
HPV-18 LCR may not appear to be a very potent promoter element for the induction of
a high level of gene expression in eukaryotic cells. However, the HPV promoter
possesses unique specificity for squamous cells which was not observed from the other
more potent promoters such as the SV40 and CMV promoter (Shillitoe and Noonan,

2000).
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The first part of the project involved studies performed on the wild-type HPV-
18 LCR to determine its suitability to be used as a candidate promoter. The full-length
LCR was cloned into an expression vector for promoter analysis, and transiently
transfected into HPV-positive and HPV-negative cervical cancer cells as well as other
control mammalian cell lines. The level of gene expression induced from the promoter
element of the LCR was utilised to determine the reference level of promoter activity
and specificity. A series of LCR deletion constructs were then produced to identify the
locations of important transcription control elements, and to examine the effect of
removing different functional regions from the LCR in different cell types.

The second part of the project was an attempt to further increase the level of
promoter activity and enhance promoter specificity within HPV-infected cervical cancer
cells. This involved the construction of plasmids containing mutations at important
transcription control elements, with attempts to abolish possible transcriptional
repression and increase promoter specificity. These LCR mutation constructs were
again tested for their abilities to induce gene expression in different mammalian cells.
By means of creating a HPV-18 LCR expression vector with maximised promoter
activity and specificity, which can be selectivity expressed within HPV-infected
cervical cancer cells but remains silent or under-expressed in other cell types, will thus
provide the basis of possible gene therapy for targeting cervical cancer.

The ultimate aim of the project is to develop a tool for a gene therapy
treatment of cervical cancer. This can be accomplished by substituting the reporter gene
in the HPV-18 LCR expression vector with a suicide gene. A suicide gene can be any
gene that confers a suicidal phenotype in the target cells upon its expression. By
selective expression of the suicide gene induced by the HPV-18 LCR, cervical cancer

cells can be selectively destroyed
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CHAPTER 2 MATERIALS AND METHODS

2.1 Materials

2.1.1 General materials and chemicals

Ammonium persulfate, ethylaminediaminetetra acetic acid (EDTA), mineral
oil, o-nitrophenyl B-D-galactopyranoside (ONPG), phenol and sodium dodecyl sulfate
(SDS) were all purchased from Sigma-Aldrich, USA. Adenosine triphosphate (ATP)
was obtained from Progen, Australia. Calcium chloride, potassium acetate, sodium
acetate, sodium chloride and tris (hydroxymethyl) aminomethane were purchased from
BDH Chemicals, Australia. Chloroform, ethanol, glycerol, isopropanol, and sodium
hydroxide were purchased from APS Ajax Finechem, Australia. 100mM solutions of
deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP),
deoxyguanosine triphosphate (dGTP) and deoxythymidine triphosphate (dTTP)
(referred to as dNTPs) were obtained from Quantum Scientific, Australia.
Lipofectamine reagent was purchased from Invitrogen Australia Pty. Ltd., Australia,
and the luciferase assay system with reporter lysis buffer was from Promega
Corporation, Australia. Sodium bicarbonate was obtained from May & Baker Ltd.

Polymerase chain reactions (PCR) were performed using the RoboCycler®
gradient 96 temperature cycler with hot top assembly from Stratagene, Australia.
Medium scale plasmid purification was performed using the plasmid purification midi
kit from Qiagen Pty. Ltd., Australia. The concentration and purity of DNA was
measured by the NanoDrop® ND-1000 spectrophotometer from Biosciences Biolab,
Australia. Images of GFP-expressing mammalian cells were captured using the

Olympus BX60 system microscope and Olympus U-RFL-T camera from Olympus
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Australia Pty. Ltd., Australia. Computer software used for imaging was IPLab alias
version 3.2.3 from BD Biosciences Bioimaging, USA. Flow cytometry was performed
by a MoFlo™ high-performance cell sorter and the results were analysed by the
Summit software, both from Dako Cytomation, Dako Australia Pty. Ltd., Australia. The
luciferase assay system was purchased from Promega, Australia. Luciferase activity
was measured using the Turner Biosystems Model 20/20 single tube luminometer from
Quantum Scientific, Australia. The SpectraMax® 340 microplate spectrophotometer

was used to read absorbance of samples for - galactosidase activity.

2.1.2 Agarose gel electrophoresis

DNA-grade agarose powder was from Quantum Scientific, Australia, and
ethidium bromide (EtBr) from Sigma-Aldrich, USA. Scanning and analysis of agarose
gels were performed using a UV transilluminator and The Discovery Series: Quantity
One software from Bio-Rad Laboratories Pty. Ltd., Australia. DNA bands were purified

using the QIAquick Gel Extraction Kit from Qiagen Pty. Ltd., Australia.

2.1.3 Bacterial cell culture

The Escherichia coli (E. coli) host strain used was DH5a.: recAl, endAl,
grA96, thi-1, hsdR17 (1> mg'), supE44, relAl, deoR, A (lacZYA-argF), U169.
Antibiotics used for selection were ampicillin from Sigma-Aldrich, USA and
kanamycin from Roche, Australia. Agar and yeast extract were from Oxoid, Australia.
Tryptone was from Sigma-Aldrich, USA and glycerol from APS Ajax Finechem,

Australia.

52



Chapter Two — Materials and Methods

2.14 Enzymes

AmpliTag DNA polymerase was from Perkin Elmer Cetus, Australia.
Restriction enzymes BamHI, Hindlll and Xhol, and T4 DNA ligase were purchased
from Promega, Australia. Pancreatic RNase was from Sigma-Aldrich, USA. All enzyme

units were specified by manufacturers.

2.1.5 Mammalian cell culture

The HeLa, C33A, H1299 and MRC-5 cell lines were prepared from frozen
stocks maintained by Dr. Noel Whitaker in the School of Biotechnology and
Biomolecular Sciences, the University of New South Wales, Sydney, Australia. The
SiHa cell line was a kind gift from Dr. Murray Cairns from the Johnson and Johnson

Research Laboratories, Sydney, Australia. The cell lines used are listed in Table 2.1.

Table 2.1 Description of mammalian cell lines used.
Cell Line Description
HeLa HPV-18 positive human cervical carcinoma
SiHa HPV-16 positive human cervical carcinoma
C33A HPYV negative human cervical carcinoma
H1299 Human fetal non-small cell lung carcinoma
MRC-5 Human fetal lung fibroblast

Dulbecco’s Modified Eagle Media (DMEM) powder, fetal bovine serum (FBS)
and EDTA containing 0.25% (w/v) trypsin were all purchased from Invitrogen Australia
Pty. Ltd., Australia. Phosphate buffered saline (PBS) tablets were from MP Biomedicals,
Australia. Hibitane concentrate used as disinfectant was from ICI Australia. All tissue
culture flasks and plates, pipettes, polypropylene cryogenic vials and centrifuge tubes

were purchased from Interpath Services Pty. Ltd., Australia. Trypan blue solution (0.4%
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w/v) and dimethyl sulfoxide (DMSO) (>99.5%(GC)) was from Sigma-Aldrich, USA.
Filters (Sterivex-GP: SVGPB1010) and the filtering pump (XX8020230) used for
preparing media were purchased from Millipore, Australia. Coating buffer used to
attach adhesive cells to coverslips was prepared by courtesy of a postgraduate colleague
at work Miss Flora Kan, which contained BSA solution, fibronectin and MCDB 153
medium from Sigma, and collagen from Dr. Ken Moon at the University of New South

Wales, Sydney, Australia.

2.1.6 Oligonucleotides

All oligonucleotides used were purchased from Invitrogen Australia Pty. Ltd.,
Australia, at 50 nmole scale of synthesis, desalted and unmodified. Details of all
oligonucleotides designed for this project are listed in Table 2.2. Bases in bold indicates
restriction sites added to assist cloning or mutations introduced to the target sequences.
Oligonucleotides were designed with the help of various computer softwares such as the
Oligo Calculator version 3.08 available online (Kibbe, 2006) and DNA Strider 1.2 for

restriction mapping.

Table 2.2 List of oligonucleotides used in the EGFP constructs.

Primer Purpose Sequence (5'-37) bp |F/R| RE site
174 pLCRE74-EGFP |GTATCARAGCTTTGCGTGTACGTGCCAGGLAG 32 F HindIII
176 pLCRE74-EGFP |GTATCAAAGCTTATAGTATTGTGGTGTGTTTCTE 34 B HindIII
241 zequencing |GCTCACCTSTTCTTTCCTGEGT 22 F /
242 sequencing |CGGTGETGOAGATGLACTTE 20 R /

243 sequencing CELARTAGSTTGGCAGCACA z1 F /
Z44 sequencing |CGCAACCACATRACACACAGL 21 53 /
277 pLCR1000-EGFP |GGCTGAALATARGCTTCCCTATG 23 F HindIII
278 pLCRI1000-EGFP |CTCALLGGGATCCATAGTATTGTGGT z26 23 BarHI
279 pV40-EGFP TEFALTGTSTGARGCTTAGGGTGT Z4 F HindIII
280 pEV40-EGFP CATCTTGTHGATCCATGC GALLC 23 R EarmHI
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Table 2.3 List of oligonucleotides used in the luciferase deletion constructs.

Primer Purpose Sequence (5'-37) bp |F/R| RE site
285 Sequencing CTAGCALARTAGGCTGTCCC 20 F £
286 Sequencing GCTCTCCAGCGGTTCCATCTTCCA 24 R £
287 pGL3-LCR1000 |CGAGCTCALCTCGAGCTATGATALGTT 27 F *hol
283 pGLI-LCRE0O0  |GTGCGTCTCRAGGCCAGGALGTALTAT 27 F Zhol
zE0 pCGLI-LCR400  |GCACARTACACTCGAGTGGCACTAT 25 | F Fhol
280 pGLI-LCRZ0O0D  |GGCTTCTCGAGCTACTTTCATGT 23 F Zhol
291 pGL3-LCR GTGGCGLAABCTTGCGCCATAGTATTGTG 29 | R HindIII
292 pGL3-5V40 TGGAATGTGTGCTCRAGAGGGTGT 24 F *hol
293 pGLI-5V40 GCALTCCATARAGCTTCAATCATGCGAALC 29 33 HindIII

Table 2.4 List of oligonucleotides used in site-directed mutagenesis

experiments.

Primex Target Sequence (5'-37) bp |F/R
263 pGL3-E3E3#1 |CCGAALACGGTCGGGATTGAAAACCCTGTATATALLAGATGT | 42 | F
265 pGL3-ESES#2 | AAGGGAGTAATTGAAAACCCTCGGGACCGAL 31| F
267 pGL3-E3E5#3  |GTTTATGCAATTGAAATACCTTGGGCAGCAC 31 | F
269 pGL3-ESES#4 | TTGCTGTGCLATTGATTTCCCTTGCCTTTGG 31 | F
273 pGL3-ESES#1 |CACATCTTTTATATACABGGTTTTCAATCCCGACCGTTTTCGG | 43 | R
274 pGL3-ESES#Z | TTCGGTCCCGAGEGTTTTCARTTACTCCCTT il | B
275 pGL3-ESES#3  |GTGCTGCCCLLGETATTTCAATTGCATALLC it | ®
276 pGL3-ESES#4  |GCCAAAGGCALGGGLLLTCARTTGCACAGCA 31| =
294 pGL3-AF1/¥¥1 |ACCTGGTATTAGTCACCECEETGTCCAGGTG 31 | F
295 pGL3-AF1/¥¥1 |CACCTGGACACCECEETGACTAATACCAGGT 31| ®m
29§ pGL3-GRE/ YY1 |TAGGTTGGGCAGCAATTACTATAAGTTTCATTAATA 36 | F
297 pGL3-GRE/ YY1 |TATTAATGAAACTTATAGTAATTGCTGCCCARCCTA is | B
298 pGL3-Spl ATATLLLLRAACTAGTAACCGAALAC z6 | F
299 pGL3-Spl GTTTTCGGTTACTAGTTTTTTTATLT z6 | B
300 pGL3-KRF-1 |TGCTTAACGAACTATATCCACTAAATATGT 30| F
301 pGL3-KRF-1 |ACATATTTAGTGGATATAGTTCGTTAAGCR | =

2.1.7  Vectors

A plasmid vector containing the HPV-18 genome was a gift from Dr. Harald

zur Hausen, German Cancer Research Centre, Heidelberg, Germany.

The promoterless enhanced green fluorescent protein (EGFP) vector used was

pEGFP-1 purchased from Clontech, BD Australia. The vector diagram and restriction

sites within the multiple cloning site (MCS) of pEGFP-1 are shown in Figure 2.1.
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The pCMVp from Clontech, BD Australia, and the promoterless luciferase
vector pGL3-Basic from Promega, Australia, were kind gifts from Miss Jodie
Stephenson of the University of Technology Sydney, Sydney, NSW. The vector
diagram and restriction sites of pCMVp and pGL3-Basic are shown in Figure 2.2 and

Figure 2.3 respectively.
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Figure 2.1  Vector diagram and multiple cloning site of pEGFP-1.

The promoterless pEGFP-1 consists of a MCS upstream of an EGFP gene, which can be
used to induce the expression of EGFP upon the insertion of a functional enhancer and
promoter elements into the MCS. Further downstream contains an antibiotic resistance
cassette (Kan'/Neo") in the same orientation which confers kanamycin resistance in
E.coli, and neomycin selection in eukaryotic cells which is driven by an early SV40

promoter. Figure reproduced from Clontech Technical Manual (Clontech, 2002).
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Figure 2.2  Vector diagram of pCMV.

The pCMV vector contains a CMV promoter which is used to drive the expression of a
B-galactosidase gene within eukaryotic cells, and an antibiotic resistance gene (Amp') in
the opposite orientation which confers ampicillin resistance in E. coli. Figure

reproduced from Clontech Technical Manual (Clontech, 2003).
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Figure 2.3  Vector diagram of pGL3-Basic.

The promoterless pGL3-Basic vector consists of a MCS upstream of a luciferase (/uc+)
gene, which can be used to induce the expression of luciferase upon the insertion of a
functional enhancer and promoter elements into the MCS, and an antibiotic resistance
gene (Amp') in the opposite orientation which confers ampicillin resistance in E. coli.

Figure reproduced from Promega Technical Manual (Promega, 2007).
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2.2 Methods

2.2.1 Sterilization of solutions and disposables

Disposable pipettes tips, glassware, heat-stable solutions and microcentrifuge
tubes were sterilized for 20 minutes at 120°C and 125 kilopascal (kPa) in an autoclave.
Filter-sterilised Milli-Q water was prepared by the Milli-Q purification system. Other
solutions were sterilized by filtration through disposable 0.22 um cellulose acetate
filters from Millipore, Australia, when necessary.

All scientific wastes were disposed into designated bins, and biological

discards were autoclaved prior to disposal as scientific wastes.

2.2.2 Mammalian cell culture

(i) General cell culture techniques

All cell cultures were maintained at 37°C with humidified air containing 5%
(v/v) CO,. All procedures were performed aseptically in a Biohazard Class II Hood and
all materials being placed into the hood were sprayed with 70% (v/v) ethanol. Gloved
hands were sprayed with ethanol before handling materials that were to be placed into
the hood. Bottle and tube rims were wiped with alcohol wipes before and after pouring.
Cells were allowed to grow in 175 cm? tissue culture flasks with 50 mL of DMEM with
10% (v/v) FBS. Exhausted media was discarded into a beaker containing 10% Hibitane

diluted in 70% (v/v) ethanol.
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(ii) Preparing DMEM media

To make 1 L medium, DMEM powder and 3.7 g NaHCO0; were stirred in 810
mL Milli-Q water with a magnetic stirrer until completely dissolved. The pH of the
medium was adjusted to 7.4 using 1 M HCI or 1 M NaOH before making up to the final
volume of 900 mL. The media was then filtered into sterile 1 L bottles under sterile
conditions. Prepared medium were stored at 4°C and 100 mL FBS was added prior to

use.

(iii) Preparing cells from frozen stocks

Frozen stocks were kept under liquid nitrogen in 1 mL aliquots, in 2 mL
polypropylene cryogenic vials. Freezing medium for cell stocks contained 10% FBS
and 10% DMSO in DMEM. The 2 mL tubes were thawed in a 37°C water bath, and
then transferred into 25 cm? tissue culture flasks containing 9 mL of medium. After 12
hours of incubation in a 37°C incubator the media was poured off, and 10 mL fresh
medium was added. The cells in the flask were allowed to grow till confluent then

transferred into a 175 cm? flask.

(iv) Feeding mammalian cells

The medium was changed about two times per week depending on the growth
of the cells. Exhausted medium was discarded, and the flask was then filled with 10 mL
fresh medium. Cells were subcultured when they reached approximately 80-90%

confluence.

) Mammalian cell passaging

Cells were detached by trypsin-EDTA as they approach 90% confluence.

Exhausted medium was discarded; the flask was then washed twice with 1x PBS as the
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FBS supplement in DMEM inhibits the reaction of enzyme. 3 mL of trypsin-EDTA was
added to the flask and incubated at 37°C for approximately 3 minutes or until most the
cells have been detached from the tissue culture flask, which can be observed under a
light microscope. Prolonged incubation may kill the cells. When most of the cells were
detached from the bottom of the flask, DMEM with FBS was added to stop the
enzymatic reaction, making up the final volume to 10 mL. The mixture was then
transferred into a 50 mL tube and centrifuged for 5 minutes at 1,300 x g. The cells were
then washed twice with 10 mL of 1x PBS. A 10 ul aliquot was stained with an equal
volume of 0.4% trypan blue solution and the concentration of cells in the cell
suspension was calculated by counting cells using a haemocytometer under a light
microscope. Approximately 10° cells were added to a new 175cm” flask containing 50
mL fresh DMEM with FBS. The cells were then passaged again when the culture flask

reached approximately 90-100% confluence.

2.2.3 Preparation of HPV-18 LCR inserts

(i) Polymerase chain reaction

PCR was performed to amplify the desired LCR sequences from a plasmid
containing the HPV-18 DNA, as well as to attach restriction sites to the two ends of the
viral inserts to assist cloning. 20 pl of PCR reaction mixture contained approximately
50 ng of template DNA, 20 pmole forward primer and 20 pmole reverse primer, 0.3
mM dNTPs, 16.6 mM (NH4)SO4, 67 mM Tris-HCI (pH 8.8), 6.7 mM MgCl,, 10 mM
dithiothreitol (DTT) and 1.74 units of Tag DNA polymerase (stock concentration of 5

units/ul). Sterile water was used to make up the final volume to 20 pl.
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The PCR mixtures were first denatured at 95°C for 4 minutes, followed by 25
cycles of 95°C for 30 seconds (denaturing), 55°C to 60°C for 1 minute (annealing of
primers to DNA templates) and 72°C for 1.5 minutes (chain extension by 7ag DNA
polymerase), then finishing off with an extra extension time of 10 minutes at 72°C. PCR
samples were then combined with gel loading buffer (0.1% (w/v) bromophenol
blue/glycerol) and electrophoresed on 1% or 2% (w/v) agarose gels to detect for the

presence of appropriate sized PCR products.

(i) Site-directed mutagenesis

Site-directed mutagenesis (SDM) is the in vitro synthesis of mutant DNA. The
method used was by overlap extension using PCR, as described by (Ho et al., 1989)
illustrated in Figure 2.4.

For each of the mutations performed, a pair of oligonucleotides was designed
to cover and introduce the mutation into the wild-type HPV-18 LCR. Together with a
pair of primers flanking the entire LCR, two separate PCR reactions were performed
under the conditions as described in Section 2.2.3(i), generating two halves of the LCR
containing the desired mutations. The two aliquots of PCR products were then
electrophoresed on a 2% (w/v) agarose gel (see Section 2.2.3(iii)), visualised briefly by
a hand-held UV transilluminator and the bands of the appropriate sizes were cut out.
The DNA from the gel pieces was then extracted by the QIAquick gel extraction kit
from Qiagen, as per instruction by the manufacturer.

A second round of PCR was then performed by making use of both aliquots of
gel-purified DNA as templates and the pair of outer primers flanking the entire LCR.

During the reaction the overlapping ends anneal, allowing the 3' overlap of each strand
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to serve as a primer for the 3’ extension of the complementary strand. The resulting
fusion product is amplified further by PCR (Ho et al., 1989).

Since the pair of flanking primers was designed to contain appropriate
restriction sites, the final PCR product was then again gel purified before being digested

by restriction enzymes and ligated into an expression vector for promoter analysis.
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Figure 2.4  Schematic diagram of site-directed mutagenesis by overlap extension.
A: Original ds DNA template; B: The site of mutagenesis indicated by the small black
rectangle. Oligos #1 and #4 are primers flanking the region of interest, while oligos #2
and #3 cover and introduce the mutation into the region amplified by PCR; C: Two
separate first-round PCRs, to obtain two halves of the final PCR product; D: The
denatured fragments anneal at the overlap and are extended by DNA polymerase (dotted
line) to form the product containing the site of mutagenesis; E: Combine the two PCR
products and run a second-round PCR using the pair of flanking oligos #1 and #4 to

further amplify the mutant fusion product by PCR.
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(iii) Agarose gel electrophoresis

DNA fragments were separated and visualised on either a 1% or 2% (w/v)
agarose gel containing 1x TBE buffer (Tris-HCI, pH 8.3, 89 mM boric acid, 2 mM
EDTA), with the addition of 1 pg/mL ethidium bromide. The gel containing DNA
samples was electrophoresed at 100 volts for 30 to 45 minutes, depending on the size of
the DNA fragments to be analysed. 1x TBE buffer was used as a running buffer. The

gel was visualized using a UV transilluminator and photographed.

(iv) Restriction enzyme digestion

Oligonucleotides flanking the region of interest within the LCR were designed
to incorporate corresponding restriction enzyme digestion sites. HPV LCR inserts
produced by PCR and promoterless vectors were digested with restriction enzymes so
as to produce adhesive ends to assist the cloning process. Approximately 2 pg of PCR
products or vector DNA was digested in a 20 pl digestion mixture with 5 units of
restriction enzyme(s), 1x final concentration of the corresponding buffer and the rest of

the volume was made up with sterile water. Digestion was carried out at for at least 2

hours at 37°C.

2.24 Construction of HPV-18 promoter plasmids

@) Preparation of calcium chloride competent bacterial cells

Competent E. coli cells were prepared using CaCl, prior to plasmid
transformation experiments. The method used was based on that described by (Maniatis
et al., 1982). A fresh overnight culture of DH5a was prepared and 1 mL of it was used

to inoculate 100 mL of Luria-Bertani (LB) broth (10 g tryptone, 5 f yeast extract and 10
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g NaCl in 1 L Milli-Q water, autoclaved). The media was allowed to grow to Agy = 0.5-
0.7, with vigorous shaking at 37°C for approximately 3-4 hours. Cultures were
transferred into two sterile capped 50 mL tubes and chilled on ice for 10-15 minutes,
then centrifuged at 2,000 x g for 10 minutes at 4°C. The supernatant was discarded; the
cell pellet in each tube was resuspended in 25 mL of cold 100 mM CaCl, and incubated
on ice for 20 minutes. The suspension was again centrifuged at 2,000 x g for 10 minutes
at 4°C, and the supernatant was removed. The cell pellet in each tube was then
resuspended in 5 mL of cold 100 mM CaCl, and dispensed in 850 ul aliquots into 2 mL
polypropylene cryogenic vials containing 150 pl of 100% glycerol, making the final
glycerol concentration 15%. Competent cells prepared were stored at -80°C for no

longer than 2 months prior to use.

(ii) Ligation reaction

Ligation experiments were carried out to clone the HPV LCR inserts into
promoterless expression vectors using T4 DNA ligase. The vector to insert molar ratio
used was 1:5. Appropriate amount of restriction enzyme digested inserts and linearised
vectors were combined in a 20 pl ligation mixture containing 1x T4 DNA ligase buffer,
1 mM ATP, 5 units of T4 DNA ligase (5 U/ul) and the rest of the volume made up by
sterile Milli-Q water. The mixture was either incubated at room temperature for 2 hours
or at 4°C overnight. Half of the ligated plasmid was then transformed into fresh

competent E. coli.

(iii) Plasmid transformation into competent bacterial cells

Ligation mixtures were subsequently transfected into CaCl, competent DH5a

cells to obtain transformants of bacterial cells containing the desired recombinant clone.
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250 pl of competent DH5a cells was mixed with 10 pl of ligation mixture in a pre-
chilled 5 mL capped culture tube and incubated on ice for 30 minutes. The mixture was
then heat-shocked in a 42°C water bath with gentle shaking for 2 minutes. | mL of LB
broth was then added and the suspension was incubated on a shaking platform at 37°C
for 1 hour before being transferred to a 1.5 mL microcentrifuge tube and centrifuged for
10 seconds. After the removal of the bulk supernatant the cell pellet was resuspended in
the remaining solution. The suspension was then spread onto a LB agar plate (15 g agar
in 1 L LB broth) containing appropriate antibiotic with a hockey stick and incubated for

overnight at 37°C.

2.2.5 Screening of transformed colonies

The screening for successfully transformed colonies were either carried out by
performing colony PCR, which is a relatively fast method but more inaccurate; or by
performing a small scale plasmid purification, known as miniprep, followed by a series

of experiments such as restriction enzyme digestion and agarose gel electrophoresis.

(i) Colony PCR

Transformed bacterial colonies were selected and colony PCRs were
performed to confirm the presence of HPV LCR inserts within the recombinant clones.
PCR was carried out under similar conditions as described in Section 2.2.3(i) but the
DNA template used was from the transformed bacterial colonies instead. This was
performed by gently touching the selected bacterial colony grown on the agar plate with
a pipette tip, then mixing the cells through the PCR mixture by pipetting. The initial

denaturing step at 95°C for 4 minutes was sufficient to lyse the cells in the suspension
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and release their DNA content. Primers used for colony PCR usually consist of one
insert primer and one vector primer, so as to ensure that the colony was successfully
transformed with the recombinant plasmid containing the insert. PCR products were

then separated by a 1% (w/v) agarose gel electrophoresis.

(i) Small scale plasmid purification (miniprep)

This method was based on that described by Ish-Horowicz and Burke (1981).
A recombinant colony was picked up by toothpick using aseptic technique, and was
grown in 2 mL of LB broth or Superbroth (12 g tryptone, 14 g yeast extract and 6.3 g
glycerol in 900 mL Milli-Q) containing the appropriate antibiotic at 37°C with vigorous
shaking overnight. The bacterial cells were collected by centrifugation at 16,100 x g for
20 seconds. The cell pellet was then resuspended with 100 pul GTE (50 mM glucose, 25
mM Tris, pH 8.0, 10 mM EDTA) and was lysed with 200 ul of freshly made lysis
solution containing 0.2 M NaOH and 1 % (w/v) sodium dodecylsulphate (SDS). Lysis
was allowed to proceed for 10 minutes on ice. The cell suspension was then mixed with
150 pl of cold 5 M potassium acetate (KOAc) at pH 5.0 to precipitate cellular protein
and lipid in the cells. Precipitation was allowed to proceed for another 10 minutes on ice
and was then centrifuged at 16,100 x g for 10 minutes. The supernatant was transferred
into new microcentrifuge tube. An equal volume of isopropanol was mixed with the
supernatant to precipitate the nucleic acids. Precipitation was allowed to proceed for 10
minutes at room temperature. The nucleic acid was collected by centrifugation at 16,100
x g for 10 minutes and the supernatant was removed. The pellet was then washed with
80% (v/v) ethanol to remove excess salt. After removal of all the ethanol, the pellet was
allowed to air dry for 10 minutes and was then resuspended in the 40 ul of 1x TE buffer

(10 mM Tris-HCI/0.1 mM EDTA, pH 8.8).
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(iii) Ribonuclease treatment

DNA extracted from bacterial cells; such as those from miniprep and colony
PCR, contained a significant amount of RNA. Since both DNA and RNA are visible
when samples are electrophoresed and exposed under a UV transilluminator, the
presence of RNA would be a problem if the bands of interest were covered up by the
RNA patches on a gel photo. Another problem associated with RNA is that its
absorbance can be detected at 260 nm (Aje) together with DNA. Thus when the
concentration of a plasmid DNA sample is measured by a spectrophotometer (see
Section 2.2.5(vi)), the presence of RNA will lead to an over-estimated concentration
reading (indicated by Ase/Azgo ratio of 1.9 or higher). To remove RNA prior to gel
electrophoresis, approximately 4 pg of RNase was added to each 20 pul DNA sample,
and incubated at 37°C for 30 minutes to allow the digestion of RNA by RNase. Treated
samples were then phenol/chloroform extracted and ethanol precipitated before being

loaded onto agarose gel for analysis or to be used in other experiments.

(iv) Phenol-chloroform extraction

This was an extraction method used to remove all the protein impurities
within a DNA sample, such as enzymes and cellular proteins. The volume of DNA
sample to be purified was made up to 100 pl. 50 ul of phenol was added and the
solution was mixed by vigorous vortexing, followed by 20 seconds of centrifugation
which separated the mixture into two phases. The upper aqueous layer contained the
DNA extracted and the lower phenol layer contained all the impurities. The upper DNA
layer was then transferred to a new microcentrifuge tube. 150 pl of chloroform was
added and again vortexed vigorously, followed by 30 seconds of centrifugation. The

upper layer was DNA and the lower layer contained the chloroform. Impurities of some
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insoluble proteins showed up as a thin layer between the two phases. The upper
aqueous DNA layer was transferred to a new tube and chloroform extraction was
repeated. The sample was then subjected to ethanol precipitation to further purify and

concentrate (see Section 2.2.5(v)).

v Ethanol precipitation

Ethanol precipitation was often performed as a clean-up procedure for DNA
samples, or sometimes when it was necessary to concentrate the DNA samples into a
lower volume. About 1/10 volume of 3 M sodium acetate (NaOAc) was added to the
DNA sample to be purified, followed by the addition of 3 volumes of cold 95% (v/v)
ethanol. The solution was mixed thoroughly then allowed to precipitate for 30 minutes
to 2 hours at -80°C or overnight at -20°C. The DNA pellet was then collected by
centrifugation at 16,100 x g for 10 minutes at 4°C and washed twice with 70% (v/v)
ethanol. Supernatant was removed and the pellet was allowed to dry completely before
being dissolved in a desired volume of 1x TE buffer. Purified DNA samples were stored

at -20°C.

i) Measurement of DNA concentration and purity

The concentration of DNA samples were calculated by measuring its
absorbance at Ajg, given that Ayep of 1 corresponds to 50 pg/mL of double stranded-
DNA. To estimate the purity of DNA with respect to contaminants that absorb in the
UV, such as protein, the ratio of spectrophotometric readings at 260 nm and 280 nm
(Az60/Azs0) was determined. The DNA sample was considered as pure if the ratio of
Aseo/Azgo was close to 1.8. Since the Axeo/Asgo ratio is known to be influenced by pH

(Wilfinger et al., 1997), DNA samples to be measured were all diluted in 1x TE to
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produce a buffered environment, and the same buffer was also for calibrating the

spectrophotometer prior to any measurements.

(vii) Automated DNA sequencing

In automated sequencing a different fluorescent label is attached to each of the
four dideoxy nucleotides ddA, ddC, ddG and ddT. Sequencing was essential on all the
purified plasmids preparations to ensure the mutations of interest were successfully
created by site-directed mutagenesis and no random mutations had occurred during the
cloning processes. For the sequencing of one strand, a sequencing mixture containing 1
ul Big Dye terminator, 3.2 pmol of primer, 1.5 ul of 5x sequencing buffer, and 100 ng
to 500 ng plasmid DNA was made up to 20 pl. Sequencing cycles were carried out with
the following parameters for 25 cycles: 96°C for 10 sec, 50°C for 5 sec and 60°C for 4
min. The samples were then ethanol precipitated (Section 2.2.5(v)), dried thoroughly,
and run on the ABI 3730 capillary sequencer. Results were analysed using the ABI
Prism Sequencing Analysis software (version 3.3), and other computer programs
available online such as WebAngis from the Australian National Genomic Information
Services (ANGIS, 2005) and ClustalW from the European Bioinformatics Institute

(EMBL-EBI, 2006) to assist sequence alignment.

2.2.6 Plasmid DNA purification

Following DNA sequencing which confirmed that the recombinant plasmids
contained the correct inserts, a larger scale of plasmid purification was performed to
obtain a sufficient quantity for the various experiments. This was achieved by either

using the Qiagen Plasmid Midi Kits (instructions as per manufacturer) which produced
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a maximum of 100 pg per preparation, or by a large scale plasmid purification method

(maxiprep) which could yield up to 500 pg per preparation.

) Large scale plasmid purification (maxiprep)

This method was based on the one described by (Ish-Horowicz and Burke,
1981). A recombinant colony was picked up by a toothpick aseptically. It was grown in
500 mL of superbroth containing 100 pg/mL ampicillin in a 37°C shaker set at 200 rpm
overnight. Bacterial cells were collected by centrifugation at 10,750 to 16,800 x g for
10 minutes or until the superbroth was clear. The cell pellet was then suspended in 4
mL GTE, and was lysed in 8 mL of freshly prepared lysis solution containing 0.2 M
NaCl and 1% (w/v) SDS. The lysis was allowed to proceed for 10 minutes on ice. The
cell suspension was mixed with 6 mL of cold 5 M KOAc at pH 5.0 to precipitate
cellular protein and lipid. Precipitation was allowed to proceed for 10 minutes on ice
and was then centrifuged at 12,300 x g for 5 minutes. The supernatant was transferred
into a new SS34 centrifuge tube. Equal volume of isopropanol was mixed with the
supernatant to precipitate nucleic acids. Precipitation was allowed to proceed for 20
minutes at room temperature. The nucleic acid was collected by centrifugation at
12,300 x g for 15 minutes. After removal of all isopropanol, the pellet was allowed to
air dry for 10 minutes, and was then resuspended in 3 mL of 1x TE buffer.

A CsCl density gradient was created by adding 4.1 g of CsCl into the
resuspended pellet and the mixture was vigorously vortexed until all the CsCl were
dissolved. 200 pl of 100 mg/mL EtBr was added to the mixture to precipitate cellular
protein and lipid, as well as intercalating into DNA. This mixture was centrifuged at
2,000 x g for 10 minutes and the supernatant was transferred into 5 mL ultracentrifuge

tube. The ultracentrifuge tube was then filled up with 1x TE buffer. This was then
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centrifuged at 287,600 x g in a Beckman VT65 rotor at 20°C overnight. During
centrifugation a different density was created between chromosomal DNA and plasmid
DNA, which allowed the isolation of plasmid DNA. The plasmid sample was collected
by a 2 mL disposable syringe and 22-gauge needle. The EtBr content was then removed
by extracting the plasmid sample with equal volume of CsCl/water saturated
isopropanol. The plasmid sample was then dialysed at 4°C against 1x TE buffer for 6
hours with a change of buffer every 2 hours. This was carried out to remove CsCl from
plasmid sample. The plasmid sample was transferred to a clean microcentrifuge tube
and stored at -20°C. Measurement of plasmid DNA concentration and purity was again

performed by spectrophotometry (see Section 2.2.5(vi)).

2.2.7  Plasmid transformation in mammalian cells by lipofection

Recombinant plasmids containing the HPV-18 LCR insert, or together with
the transfection control plasmid pCMVp, were transfected into different mammalian
cell lines using lipofectamine as a transfection reagent. Transfection experiments were
performed in either 6-well or 24-well tissue culture plates. The day before transfection,
cells were seeded into a tissue culture plate together with complete growth medium. The
cells were incubated at 37°C in a CO; incubator until they were 50-80% confluent. The
plasmid DNA and lipofectamine reagent were then diluted with serum-free growth
medium separately before being mixed together and incubated at room temperature for
45 minutes, allowing DNA-liposome complexes to form. While complexes were
forming, the complete growth medium on the cells were rinsed thoroughly and replaced
by serum-free growth medium. The DNA-liposome complexes were then further diluted

with serum-free medium and gently overlayed onto the rinsed cells. The cells with the

71



Chapter Two — Materials and Methods

complexes were incubated for 5 hours at 37°C in a CO, incubator, before the
transfection medium was replaced by complete growth medium containing serum. The
transfected cells were continually incubated at 37°C in a CO; incubator for 48 hours
from the start of transfection, before cells were harvested and assayed for transient gene
expression. All transfection experiments were repeated at least 3 times with each

experiment performed in triplicate.

2.2.8 Fluorescence microscopy

In order to detect the level of promoter activity by making use of a GFP
reporter plasmid, the method of fluorescence microscopy was employed to examine
fluorescing cells by the naked eye. A piece of coverslip was placed in each well of a
new 6-well tissue culture plate and was covered with 200 ul of coating buffer (5 mg
fibronectin, 1% collagen and 10 mg BSA in 100 mL of MCDBI153 medium). This
treatment enables adhesive cells to attach and grow on the coverslips. During the
incubation time, transfected cells (48 hours post-transfection) in plates were rinsed 3
times by 1x PBS. About 400 pl of trypsin-EDTA, just enough to cover up the cells, was
added to each of the wells and the plates were incubated at 37°C for approximately 1
minute or until most of the cells have been detached from the base of the well by
observation under the microscope. Harvested cells were then centrifuged and washed
thoroughly by 1x PBS and the number of cells was counted by using a haemocytometer
(see Section 2.2.2(V)).

Excess coating buffer was then removed from the incubated plates containing
the coverslips. Approximately 10° cells were plated onto the treated coverslips in each

of the wells, with the addition of 2 mL of complete growth medium, and allowed to
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recover for a 24-hour period at 37°C in a CO; incubator. The coverslips were then
carefully lifted out of the wells by using a cell scraper and placed upside down on a
glass slide for observation under an upright fluorescence microscope. The number of
GFP-expressing whole cells was counted by randomly picking a field of view through
the 20x magnification objective. This was repeated three times per coverslip and the
average numbers were calculated. Photos of the transfected cells were taken by a

camera connected to the fluorescent microscope.

2.2.9 Flow cytometry analysis

Flow cytometry is a more accurate and precise detection method for
fluorescence when compared to fluorescence microscopy, enabling us to quantify both
the number of fluorescing cells in a sample as well as the level of fluorescence induced
from each individual cell particle. Approximately 10° transfected cells harvested 48
hours post-transfection were collected and made up to 200 pl with 1x PBS in disposable
plastic culture tubes, the cell suspension was then ran through a MoFlo™ cell sorter and
the amount of fluorescence emitted was measured. Fluorescence induced from the
expression of EGFP protein has an excitation maximum at 488 nm and emission
maximum at 507 nm (Clontech, 2002). Results obtained were plotted into graphs

against different parameters using the Summit software.

2.2.10 Luciferase assay

Another method to detect promoter activity was the use of a luciferase reporter
plasmid. Luciferase assay works by measuring the level of luminescence from a sample

of cell lysate, therefore it was not necessary to keep the transfected cells in the form of
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whole cells. Instead of treating the transfected cells attached on the tissue culture plates
with trypsin, cells were treated with lysis buffer directly. Cells in 24-well tissue culture
plates that had been incubated for 48 hours post-transfection were rinsed 3 times with
1x PBS, then 110 pL of 1x reporter lysis buffer (RLB) was added to each well. A single
freeze-thaw cycle at -80°C was performed to ensure complete lysis of cells. Lysed cells
were scraped off from the plate and transferred to a microcentrifuge tube and placed on
ice. The tubes were vortexed for 10-15 sec, then centrifuged at 12,000 x g for 2 min at
4°C. The supernatant was transferred to a clean microcentrifuge tube. Cell supernatants
were stored at -80°C until ready for assay.

The luciferase assay reagent was prepared by reconstituting the luciferase
assay substrate with 10 mL of luciferase assay buffer. 1 mL aliquots of the luciferase
assay reagent were stored in microcentrifuge tubes at -80°C. Prior to the luciferase assay,
cell lysates and luciferase assay reagents prepared previously were thawed at room
temperature since luciferase activity is optimum at room temperature. The luminometer
was programmed to perform a 2-second delay followed by a 10-second measurement
for luciferase activity. Samples were assayed by adding 20 pL of cell lysate to 100 pL
of luciferase assay reagent. The tube was vortexed briefly then placed in the

luminometer. Each sample was measured three times and the average was calculated.

2.2.11 pB-galactosidase assay

A pCMVp (see Figure 2.2 for details) plasmid was used as a transfection
control plasmid in co-transfection experiments to allow for variations in transfection
efficiencies between individual experiments. B-galactosidase assay reagents are able to

work in the cell lysates prepared in the reporter lysis buffer for the luciferase assays.
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Prior to the measurement of -galactosidase activity, the cell lysates and ONPG solution
(3 mM ONPG, 50 mM Tris, 50 mM KCI, pH 7) were equilibrated at 37°C. 50 pl of
ONPG solution was added to aliquots of 50 pL cell lysates in a 96-well microtitre plate
and mixed well by pipetting. The plate was incubated at 37°C for 3 hours during which
the substrate B-galactosidase hydrolyses the colourless ONPG to o-nitrophenol, which
has a yellow colouration. The absorbances of the samples were then measured at 405

nm in a microplate spectrophotometer.

2.2.12  Statistical analysis

For graphical results of the mean of experiments repeated for two times (n=2),
error bars were added to represent the range of the results obtained from the two
individual experiments. For graphical results of the mean of experiments repeated for
three times (n=3) or more, error bars were added to represent the standard error of the
mean (SEM) of results obtained from the repeated experiments. Since all the
experiments were performed with less than ten repeats, the errors were quoted to one
significant figure. Mean results represented by numerical values were quoted to the
number of significant figures so that the last digit was the same order of magnitude as

the error (Hase and Hughes, 2004).
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CHAPTER 3 THE LCR AND DELETION CONSTRUCTS

3.1 Introduction

The first part of the project was to determine the reference level of promoter
activity induced from the full-length HPV-18 LCR. Preliminary work was performed by
isolating the LCR region from a HPV-18 plasmid, which lies between the 3’-end of the
L1 ORF and 5’-end of the E6 ORF from nt 7,114 to 105 (numbering according to Cole
and Danos (1987). Primers used to amplify this region were designed by similar
methods as described by Villa and Schlegel (1991) with minor alterations to
accommodate the appropriate restriction enzyme recognition sequences (Figure 3.1).
The initial reporter plasmid utilised was pEGFP-1. The plasmid pLCR874-EGFP was
produced which, as its name suggests, contained a LCR fragment from HPV-18 which
was 874 bp in size (Figure 3.2) cloned upstream of an EGFP gene. Preliminary results
obtained by transiently transfecting the pLCR874-EGFP plasmid into mammalian cell
lines suggested that the HPV-18 Pjos promoter could be selectively activated within
HPV-positive cervical cancer cells, since promoter activity could be observed in HelLa
cells but not in H1299 and MRC-5 cells (Lung, 2002). Further work was required to

confirm these previously obtained preliminary results.

77



7141

TzZ01

TZel

7321

7381

7441

7301

7561

Tezl

Tegl

7741

7801

[=n8

togtgtgtgta
acacacacat

togtatgattyg
acatactaac

gttoggtatgt
caacocataca

ctagtgagta
gatcactoat

tgtootgtat
acaggacata

ctoocatittty
gaggtaaasas

caatacagta
Fttatgtoat

ttgaacaatt
aacttgttaa

togtcocaggtyg
acaggtocac

tgottttagy
acgaaaatcc

caactacttt
gttgatgaaa

tgtgoataca
acacgtatgt

attaatactt
taattatgaa

gaaaacggtg
cttttgocac

tatatatata
atatatatat

cattgtatogg
gtaacatace

gogcattaaat
cogtaattta

acaactgtat
togttgacata

ttoaagttat
aagttcocaata

ctgtgcaaco
gacacgttgy

cgotggoact
gogacogtga

googogocte
cogegegyay

cogotacaaca
gegatgttgt

cacatatttt
gtgtataaaa

catgtcocaac
gtacaggttg

tagtttatge
atcaaatacg

ttaacaattg
aattgttaac

tatataaaag
atatatttto

Chapter Three — LCR & Deletion Constructs

#174

7107 ARG

TTC

catctattgt
gtagataaca

tatgtatggt
atacatacaoa

aaaatatgtt
ttttatacaa

ttgtgtttgt
AaCAacadaca

asaactgoac
ttttgacgtyg

gatttoggtt
ctaaagooaa

attgcaaact
taacgtttga

tttggogcat
aaacogogta

attgocttgoea
taacgaacgt

agtttgtttt
tcaaacaaaa

attoctgtcta
taagacagat

aaccgaaata
ttggotttat

tagtatataa
atcatatatt

atgtyagaaa
tacactottt

CTTtgegtgt
GARacgoaca

tgtgtttgta
acacaaacat

togttgttgta
acaacaacat

ttogtgogttet
aacaccaaga

gotatggotog
coatacoocac

acoettacage
tggaatgteg

gootttggot
cggaaasoga

ttaatotttt
aattagyaaaa

ataaggcocgca
tattoogogt

taactatate
attgatatag

tacttaaget
atgaattcga

cocttaacat
goggaattgta

ggttgggoay
ccaaccoghc

aaaagggagt
ttttocctca

cacaccacaa
gtgtggtgtt

acgtgocagg
togcacggtac

tgtocctgtgt
acaggacaca

tgttgtatgt
acaacataca

gtgtgttatg
cacacaatac

ttgettgttg
aacgaacaas

atooatttta
taggtaaaat

tatgtotgty
atacagacac

gggcactget
cocgbgacga

coctggtatta
ggaccataat

cactocctaa
gtgagggatt

aattgoatac
ttaacgtatg

gaactataat
cttgatatta

cacatactat
gtgtatgata

aacogaaaadc
ttggottttg

tac GC
atga CG

*

#1176

aagtaatatg
ttocattatac

ttgtgtttgt
aacacaaaca

tactatattt
atgatataaa

toggttgogos
acocaacgogy

gogctatatat
cogatatata

toctacaats
aggatgttag

gttttctgea
<“aaaagasgh

cctacatatt
ggatgtataa

gtocatttteo
cagtaaaagy

gtaataaaac
cattattttyg

titggottgta
aaccgaacat

atgactaago
tactgatteg

acttttc
tgaaaaqg

gotogggace
ccagoootog

TT 112
ARD

Figure 3.1  DNA sequence of LCR insert of pLCR874-EGFP.

The 874 bp LCR insert of pLCR874-EGFP was amplified by oligonucleotides #174 and
#176 (see Table 2.2 for details). The region indicated by the arrows represents the exact
length of the amplified LCR insert after being digested by Hindlll and cloned into the
pEGFP-1 vector. nt 1 represents the beginning of the HPV-18 genome, as established by
Cole and Danos (1987). Letters in capital and bold are base changes to the wild-type
sequence, so as to accommodate a restriction enzyme recognition sequence for Hindlll

(AAGCTT) to assist cloning. Highlighted in blue is the position of the ATG start codon

for early gene transcription in the original wild-type sequence.
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Figure 3.2  Schematic diagram of preliminary study of the HPV-18 LCR.

A 874 bp fragment of the HPV-18 LCR was amplified by PCR and cloned into the
MCS upstream of the EGFP coding sequence of the pEGFP-1 plasmid, to produce the
pLCR874-EGFP plasmid.
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3.2 Results and discussion

3.2.1 Continuation from preliminary studies using a GFP reporter plasmid

The pEGFP-1 vector is a promoterless EGFP plasmid which can be used to
monitor transcription from different enhancer and promoter elements inserted into the
MCS located upstream of the EGFP coding sequence (see Figure 2.1 for vector
diagram). It encodes a red-shifted variant of wild-type GFP which has been optimized
for brighter fluorescence and higher expression levels in mammalian cells. Without the
addition of a functional promoter, this vector is not expected to express EGFP. A
bacterial promoter is located upstream of a neomycin/kanamycin resistance gene which
confers kanamycin resistance in E. coli (Clontech, 2002).

The pLCR874-EGFP plasmid was sequenced (see Section 2.2.5(vii)) to ensure
it contained the correct insert with no random mutations. The primers designed to be
used for sequencing purpose were oligonucleotides #241, #242, #243 and #244 (see

Table 2.2 for details).

() Determination of optimal transfection conditions

Careful optimization of transfection conditions was essential for higher
efficiency transfections and lower toxicity. Optimization of transfection was performed
on Hela cells, in which the HPV promoter activity was of our main interest.
Experiments were initially performed in 6-well tissue culture plates, so as to
accommodate the coverslips required for observation of transfected cells under an
upright fluorescent microscope.

The plasmid was transfected into mammalian cells using lipofectamine.

Lipofectamine works at its best in cells at 50-80% confluence according to the
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manufacturer’s instructions. In order to determine the optimal seeding density, HeLa
cells were plated into the 35 mm wells of 6-well tissue culture plates, in a range from
0.5 to 3.0x10° cells per well, then incubated overnight with 3 mL of DMEM containing
10% (v/v) FBS. The percentage confluence of cells in each individual well was recorded
24 hours later. Results are represented in Figure 3.1 below. The seeding density was

chosen to be 3.0x10° cells which resulted in about 60% confluence after a 24-hour

incubation.
% confluence of HelLa cells after 24 hours
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Figure 3.3  Seeding density for transfection in HeLa cells (6-well plate).
HeLa cells ranging from 0.5 to 3x10° cells per well were seeded into a 6-well tissue
culture plate, and percentage confluence of individual wells were recorded after 24
hours. The % confluence shown for different seeding densities are averages of triplicate
wells. The seeding density of 3x10° cells per well resulted in about 60% confluence and

was utilised as the seeding density for HeLa cells.

Since cellular toxicity is often associated with the use of lipofectamine in
transfection experiments (Ahrens et al., 2005; Rasmussen et al., 2006), the next step
was to determine the optimal combination of lipofectamine and plasmid DNA

concentrations to be used. All optimisation experiments were again performed on HelLa
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cells in 6-well tissue culture plates. The range of pPLCR874-EGFP plasmid DNA tested
was from 0.5 to 5.0 pg with an addition of 3, 6 and 12 pl of lipofectamine (2 mg/mL).
Transfected cells were examined under an upright fluorescent microscope 48 hours
post-transfection.

The numbers of EGFP-expressing whole cells were counted by randomly
picking a field of view through the 20x magnification eyepiece. This procedure was
repeated three times per coverslip. The average numbers of fluorescing cells of each
transfection condition were calculated and expressed as the mean of three counts = SEM,
and the % fluorescence were calculated by dividing the average numbers of fluorescing
cells by the estimation of total cell count visible under a field of view of 20x
magnification. The data results are shown in Table 3.1. Pictures of Hela cells
transfected by different amounts of lipofectamine captured under fluorescent light are
shown in Figure 3.4, while Figure 3.5 are pictures captured by phase contrast which

shows the relative cell integrity and density of the transfected cells.
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Table 3.1 Optimal amount of plasmid DNA and lipofectamine for transfection in
HeLa cells (6-well plate).

3uL lipofectamine — EGFP-expressing whole cell count (~250 cells/field of view)
DNA (ug) 0.5 1.0 2.0 3.0 4.0 5.0

i1 4 2 3 0 0 0

ri#2 4 2 2 0 0 0

r#3 3 3 2 0 0 0

mean 3.7+03 | 23+0.3 | 2.3+£0.3 0 0 0

% fluorescence 1.5 0.93 0.93 0 0 0
6uL lipofectamine — EGFP-expressing whole cell count (~150 cells/field of view)
DNA (ug) 0.5 1.0 2.0 3.0 4.0 5.0

i1 7 8 2 2 2 3

r#2 11 12 2 1 1 0

r#3 6 11 1 1 0 2

mean 8+2 10+ 1 1.7+03 | 1.3+03 [ 1.0+£06 | 1.7+0.9

% fluorescence 5.3 6.9 1.1 0.89 0.67 1.1
12yL lipofectamine — EGFP-expressing whole cell count (~80 cells/field of view)
DNA (ug) 0.5 1.0 2.0 3.0 4.0 5.0

i1 7 6 6 4 2 0

r#2 9 5 7 3 3 0

r#3 6 5 5 3 3 0

mean 7+1 53+0.3 | 6.0+06 | 3.3+0.3 | 2.7+0.3 0

% fluorescence 9.2 6.7 7.5 4.2 3.3 0

The number of EGEP-expressing whole cells per field of view was counted. Three
random field of views were chosen and the mean number of fluorescing cells, expressed
as the mean + SEM of the three counts, were used to calculate the percentage
fluorescence. Note that for different amounts of lipofectamine used, the number of cells
per field of view were different, since as the amount of lipofectamine increased the level
of cellular toxicity increased resulting in a lower cell density (3 pL lipofectamine: 250
cells/field of view; 6 uL lipofectamine: 150 cells/field of view; 12 pL lipofectamine: 80
cells/field of view). The highest EGFP-expressing cell count is boxed in red; while the
highest percentage fluorescence is boxed in blue. The % fluorescence is rounded off to

two significant figures.

Although the highest transfection efficiency was obtained when 12 pL of
lipofectamine was used (see Table 3.1), that was not an ideal transfection condition
since toxicity was induced by the high level of lipofectamine. Cells were less healthy

and a significant number of dead cells were observed resulting in lower cell density.
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The percentage cell growth was highest when the least amount of lipofectamine was
used (see Figure 3.5(A)). In contrast, cells were relatively unhealthy, as indicated by
detached cells and debris of dead cells in the background, when the lipofectamine
concentration was too high (see Figure 3.5(C)). The optimal conditions chosen for
transfection in a 6-well tissue culture plate were at a seeding density of 3.0x10° HeLa
cells, transfected with 1 pg of plasmid DNA by 6 puL of lipofectamine. All subsequent

experiments with the EGFP constructs were performed under these optimal conditions.

A C

Figure 3.4  EGFP-expressing cells under the fluorescent microscope.

Photomicrographs of HeLa cells captured under an upright fluorescent microscope
exposed to fluorescent light, all transfected with 0.5 pg of pLCR874-EGFP plasmid but
using varying amounts of lipofectamine. A: 3 pL; B: 6 puL and C: 12 pL of

lipofectamine.

Figure 3.5  Cellular toxicity induced by lipofectamine.

Photomicrographs of HeLa cells grown on coverslips captured under an upright phase
contrast microscope, all transfected with 0.5 pg of pPLCR874-EGFP plasmid but varying
amount of lipofectamine. A: 3 puL; B: 6 uL and C: 12 pL of lipofectamine.
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(ii) HPV-18 Pys promoter activity from the GFP LCR constructs

In order to quantify the level of promoter activity induced by the wild-type
LCR, it was necessary to have negative and positive control plasmids. The promoterless
pEGFP-1 vector was used as the negative control; without the addition of a functional
promoter, EGFP was not expected to be induced. As for the positive control, the SV40
early promoter and enhancer elements from the pEGFP-1 vector (nt 1,689 to 2,049),
which was initially present to assist neomycin selection in mammalian cells, was
amplified by oligonucleotides #279 and #280 (see Table 2.2 for details) and cloned into
the MCS of the promoterless pEGFP-1 vector. The pSV40-EGFP plasmid was produced
and its sequence was confirmed by automated sequencing using oligonucleotides #241
and #242 (see Table 2.2 for details) prior to experiments.

Transfection experiments were then repeated in HeLa cells under the pre-
determined optimal conditions, and aliquots of transfected cells were subjected to flow
cytometry analysis (see Section 2.2.9 for details). The experiment was repeated three
times and results from experiment #2 are shown in Figure 3.6. In each experiment five
transfections were performed. Forward (FCS) and side scatter (SSC) signals were used
to restrict the analysis to viable cells only (grouped as “R1”). Fluorescence induced
from non-expressing cells were measured by a sample containing HeLa cells only
(Figure 3.6(A)) and a mock transfection sample containing HeLa cells treated with
lipofectamine but no plasmid DNA (Figure 3.6(B)), which was set as background
fluorescence (gated as “R2”). The level of fluorescence induced from the viable cell
population (R1) excluding background fluorescence (R2) was gated as “R3”.
Transfection of the promoterless pEGFP-1 (Figure 3.6(C)) resulted in expression levels
which was about 15-fold over background (mean of R2 = 7.06; mean of R3 = 104.02).

Similar results were obtained from the EGFP constructs with inserts containing
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functional enhancer/promoter elements from HPV-18 (Figure 3.6(D)) and SV40 (Figure
3.6(E)).

The average results from three repeats of the experiment (represented
graphically in Figure 3.7) showed that samples of cells only and mock transfection
resulted in percentage fluorescence of less than 1% with a mean fluorescence of less
than 14, which was identified as the background fluorescence from non-expressing cells.
The negative control plasmid pEGFP-1 which was a promoterless vector resulted in a
significant increase both in the percentage and intensity of fluorescence. Addition of a
functional HPV promoter in the LCR insert of pLCR874-EGFP and the SV40 promoter
in the positive control plasmid pSV40-EGFP did not affect the percentage of
fluorescing cell population, indicating the consistency in transfection efficiency, and the
intensity of mean fluorescence induced by both plasmids were only increased by less

than 2-fold.
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Figure 3.6  Flow cytometry analysis of transfection of GFP constructs in HeLa.

Histograms showing flow cytometry results of experiment #2 in (left; in red) side scatter
(SSC) against forward scatter signals (FSC), and (right; in green) cell counts against
fluorescence intensity (FL1). A: HeLa cells only; B: mock transfection with
lipofectamine and no plasmid DNA; C: pEGFP-1; D: pLCR874-EGFP; E: pSV40-
EGFP. Analysis was restricted to viable cells only (grouped as R1). Background
fluorescence of non-expressing cells (fluorescence induced from A and B) was gated as
R2. The percentages of cell population expressing EGFP and mean fluorescence figures

are shown in the prints underlined in green.
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Figure 3.7  Graphical representation of the average flow cytometry result from
the EGFP constructs in HeLa cells.

The pLCR874-EGFP plasmid was transfected into HeLa cells together with positive and
negative control plasmids for comparison. The solid black bar represents the percentage
of viable cell population that was fluorescing. The striped bar represents the level of
mean fluorescence of the fluorescing population. The SEM of the three independent

experimental repeats are represented by the error bars on the graph.

From results obtained it was concluded that the pEGFP-1 vector failed to serve
as an efficient tool to monitor transcription for promoter analysis purpose in mammalian
cells. The level of self-induced fluorescence from the promoterless pEGFP-1 vector
itself was very high, which did not make it sensitive enough for the study of weak
enhancer/promoter elements. In this case the addition of the HPV-18 promoter as well
as the positive control SV40 promoter, only managed to induce a slightly higher level of

transcription when compared to the promoterless pEFP-1 which served as a negative
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control. It was therefore necessarily find a more suitable reporter plasmid and the pGL-3

luciferase reporter vector was chosen for this purpose.

3.2.2 Introduction to the luciferase reporter plasmid

The pGL3-Basic vector is similar to the pEGFP-1 vector used previously, as it
is a promoterless plasmid for the quantitative analysis of enhancer and promoter
elements that potentially regulate mammalian gene expression (see Figure 2.3 for vector
diagram). Instead of a gene that encodes for the EGFP protein in pEGFP-1, the pGL3-
Basic vector contains a modified coding region for firefly (Photinus pyralis) luciferase
that has been optimised for monitoring transcriptional activity in transfected eukaryotic
cells (Promega, 2007). Without the addition of a functional promoter into the MCS, the
luc+ gene downstream will not be expressed. The vector also contains an Amp' gene

conferring ampicillin resistance in E. coli.

() Design and construction of the LCR deletion constructs

Instead of the exact 874 bp of the HPV-18 LCR, most of the research groups
studying the transcriptional control of the HPV-18 LCR (Bauknecht et al., 1992; Cid et
al., 1993; Demeret ef al., 1994; Gius et al., 1988; Hoppe-Seyler et al., 1991; Thierry et
al., 1987) make use of a 1,050 bp BamHI fragment (as described in Section 1.4.1)
which, in addition to the entire length of the LCR, also contained 208 bp at its 5'-end
corresponding to the end of the L1 ORF and the 20 bp at its 3’-end corresponding to the
beginning of the E6 ORF (Thierry et al., 1987). However, no explanation has been
given on why this BamHI fragment was preferably chosen.

Since the aim of the project is to induce the maximum level of gene expression

in HPV-positive cervical cancer cells by making use of the HPV-18 LCR, to avoid
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excluding important elements which may possibly influence the level of promoter
activity, new primers were designed to include this longer BamHI fragment.
Transcription activities induced from the 1,050 bp BamHI fragment were compared
with those from the 874 bp LCR fragment.

Fragments containing different components of the HPV-18 LCR as described
in Section 1.41 were also amplified from the HPV-18 plasmid by PCR (see Section
2.2.3(i) for details) and cloned into the pGL3-Basic vector (see Figure 3.8). The
template used for these deletion fragments was a pPLCR1000-EGFP plasmid which was
constructed previously, containing the LCR of HPV-18 from nt 6,928 to 107 amplified
by oligonucleotides #277 and #278 (see Table 2.2 for details). All the primers were
designed based on the studies performed by Cid ef al. (1993) and Kim and Taylor
(2003), with appropriate alterations to include the restriction enzyme recognition
sequences of choice.

The full-length BamHI fragment of HPV-18 LCR was amplified by
oligonucleotides #287 and #291 to produce the insert for the pGL3-LCR1000 plasmid
(nt 6,930 to 112); the distal enhancer/constitutive enhancer/promoter fragment was
amplified by oligonucleotides #288 and #291 to produce the insert for the pGL3-
LCR800 plasmid (nt 7,120 to 112); the constitutive enhancer/promoter fragment was
amplified by #289 and #291 to produce the insert for the pGL3-LCR400 plasmid (nt
7,509 to 112) and the promoter proximal fragment was amplified by #290 and #291 to
produce the insert for the pGL3-LCR200 plasmid (nt 7,739 to 112) (see Table 2.3 for
details of oligonucleotides used). All the forward primers used contained a Xhol
restriction enzyme recognition sequence and the same reversed primer was used for all
the fragments which contained a HindlIl restriction enzyme recognition sequence. The

positions of oligonucleotides binding to the target sequence are shown in Figure 3.9. A
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positive control plasmid pGL3-SV40 was also made by amplifying the early promoter
and enhancer elements from pEGFP-1 (nt 1,689 to 2,049) by oligonucleotides #292 and
#293 (see Table 2.3 for details of oligonucleotides used) and cloned into the pGL3-
Basic vector. Figure 3.10 is a photo of a 2% agarose gel which shows the different

length of LCR fragments and the SV40 promoter fragment obtained by PCR.
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Figure 3.8  Schematic diagram of fragments of the HPV-18 LCR being cloned
into the pGL3-Basic vector.

The pGL3-LCR1000 plasmid contained the 1 kb BamHI LCR fragment cloned into the
pGL3-Basic vector; removal of the distal 200 bp resulted in the pGL3-LCR800 plasmid,
further removal of the distal enhancer region resulted in the pGL3-LCR400 plasmid and

removal of the constitutive enhancer region resulted in the pGL3-200.
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Figure 3.9  DNA sequences of the inserts of luciferase LCR deletion constructs.

The complete HPV-18 LCR comprises a BamHI fragment of 1,050 bp (nt 6,930 to 123)
(positions of BamHI sites in wild-type sequence highlighted in purple), with three
functional domains separated by Rsal recognition sites as described in Section 1.4.1
(positions of Rsal sites in wild-type sequence highlighted in green). The region
indicated by the arrows represents the exact length of the amplified LCR fragment after
being digested by restriction enzymes and cloned into the pGL3-Basic vector. pGL3-
LCR1000 (nt 6,930 to 112; 1,040 bp): #287/#291; pGL3-LCR800 (nt 7,120 to 112; 850
bp): #288/#291; pGL3-LCR400 (nt 7,509 to 112; 461 bp): #289/#291 and pGL3-
LCR200 (nt 7,739 to 112; 231 bp): #290/#291 (see Table 2.3 for details of
oligonucleotides used). nt 1 represents the beginning of the HPV-18 genome, as
established by Cole and Danos (1987). Letters in capital and bold are base changes to
the wild-type sequence to accommodate restriction enzyme recognition sequences
(CTCGAG for Xhol in the forward primers; AAGCCT for Hindlll in the reverse primer)
to assist cloning. Highlighted in blue is the start codon ATG for early gene transcription

from the Pos promoter.
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Figure 3.10 PCR products for luciferase LCR deletion constructs.

A 2% (w/v) agarose gel ran at 90V for 25 minutes, showing all the PCR products of the
LCR deletion constructs as described in Figure 3.8. Lane 1 was 500 ng of pUC/Hinfl
DNA marker. Lane 2 was the PCR product from oligonucleotides #287/#291 for pGL3-
LCR1000 (1,062 bp). Lane 3 was the PCR product from oligonucleotides #288/#291 for
pGL3-LCRS800 (869 bp). Lane 4 was the PCR product from oligonucleotides #289/#291
for pGL3-LCR400 (484 bp). Lane 5 was the PCR product from oligonucleotides
#290/#291 for pGL3-LCR200 (249 bp). Lane 6 was the PCR product from
oligonucleotides #292/#293 for pGL3-SV40 (392 bp).

The PCR products obtained were gel-purified and digested by restrictions
enzymes Xhol and Hindlll (see Section 2.2.3(iv) for details). The pGL3-Basic vector
was also linearised by the same pair of restriction enzymes. All the digested products
were again gel-purified prior to ligation to form the pGL3-LCR constructs.

The LCR deletion constructs were designed to contain both the ATG start
codon from the insert sequence as well as that from the pGL3-Basic vector for the
luciferase gene, and two ATG start codons were ensured to be in frame. Figure 3.11
shows the joining ends of the LCR inserts for the deletion constructs as well as the

SV40 promoter insert for the positive control plasmid to the pGL3-Basic vector.

95



Chapter Three — LCR & Deletion Constructs

A pGL3-LCR constructs
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gaggategtttegeatgattgd AGCTTogoattocggtactgttgytaaagocaccatggaagacgooa
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Figure 3.11 Joining ends of the luciferase LCR deletion inserts and the SV40
promoter insert to the pGL3-Basic vector.

Both the inserts and the pGL3-Basic vector were double-digested by X#ol and Hindlll
to obtain sticky ends for cloning purpose. The diagram shows the 3'-ends of the inserts
(left) and 5'-ends of the pGL3-Basic vector, which were joined to each other by the
Hindlll restriction enzyme recognition sequence (AAGCTT) in caps and bold. (A)
shows the joining ends of all the LCR deletion constructs, containing the ATG start
codon of early gene transcription initiated by the P;¢s promoter (highlighted in blue) at
nt 105 of HPV-18. The ATG start codon of the luciferase gene is located 39 bp
downstream (highlighted in green) at nt 88 of pGL3-Basic. (B) shows the joining end of
the positive control plasmid pGL3-SV40, containing the ATG start codon of the
kanamycin/neomycin resistance gene initiated by the SV40 early promoter (highlighted
in yellow) at nt 2,047 of pEGFP-1. The ATG start codon of the luciferase gene is again
located 39 bp downstream (highlighted in green) at nt 88 of pGL3-Basic.

Ligation of the inserts to the linearised pGL3-Basic vector was performed as
described in Section 2.2.4(ii); the ligation mixture was then transformed into CaCl,
competent E. coli (see Section 2.2.4(iii) for details) and selected on LB plates
containing ampicillin. Minipreps were performed on selected colonies (see Section
2.2.5(ii) for details) and 5 uL of the miniprep samples were digested again with XAhol
and Hindlll and analysed on an agarose gel to check for the presence of the original

insert. Clones containing the inserts of the right sizes were then subjected to automated
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sequencing (see Section 2.2.5(vii) for details) using oligonucleotides #285 and #286
(see Table 2.3 for details oligonucleotides used). Plasmid constructs containing the
correct sequences were purified in large scale either by maxiprep (see Section 2.2.6(i)
for details) or using the Qiagen Midi kit. The concentration and purity of plasmid
preparations were measured by the NanoDrop® as described in Section 2.2.5(vi). A
flow diagram to illustrate the procedures involved in the construction of the luciferase

plasmids containing the LCR inserts is shown in Figure 3.12.
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Figure 3.12 Flow diagram of the construction of the LCR deletion constructs.

Different length fragments of the LCR and the SV40 promoter fragment were amplified

by PCR and gel purified prior to restriction enzyme digestion by Xhol and Hindlll to

produce the adhesive ends for cloning purpose. Similarly, the pGL3-Basic vector was

also digested by the same restriction enzymes. Both digested inserts and vectors were

again gel purified prior to ligation, and transformed into competent E. coli. Small-scale

plasmid purification was performed on selected recombinant clones, and again digested

by Xhol and Hindlll to identify the presence of the inserts. Successfully ligated

plasmids were then subjected to sequencing prior to large-scale plasmid purification to

produce sufficient amount of plasmids for subsequent transfection experiments.
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(ii) Determination of optimal transfection conditions

As mentioned previously in Section 2.2.10, for luciferase assays it was not
necessary to maintain transfected cells in the form of whole cells since luciferase assays
were performed on cell lysates. Furthermore it was no longer necessary to attach
transfected cells to coverslips for no microscopy procedures were involved.
Transfection experiments could therefore be performed in a much smaller scale in order
to conserve resources. Instead of performing transfections in 6-well tissue culture plates
for the pEGFP-1 constructs, 24-well tissue culture plates were being used for the
transfection of luciferase plasmid constructs into different cell lines.

The seeding density of cells was the first parameter to be optimised. An ideal
seeding density should result in approximately 60% confluence in 24 hours, which is
the optimal cell density for transfection with lipofectamine. HeLa cells were seeded in
triplicate into the wells of 24-well tissue culture plates in a range from 2 to 6x10* cells
per well, and the cell densities were observed and recorded after 24 hours. Results are
graphically represented in Figure 3.13. A seeding density of 3x10* cells per well was
chosen for HelLa cells in a 24-well tissue culture plate. Similar experiments were
performed on all the other cell lines used and the optimal seeding densities determined

are shown in Table 3.2.
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Figure 3.13 Optimal seeding density for transfection in HeLa cells (24-well plate).
HeLa cells ranging from 2 to 6x10* cells per well were seeded into triplicate wells of
24-well tissue culture plates, and percentage confluence of individual wells were
recorded after 24 hours. The standard error of the mean of the triplicate wells are

represented by error bars.

Table 3.2 Optimal seeding densities for transfection in various cell lines.
cell line | optimal seeding densities (x10” cells per well)
HeLa 3.0
SiHa 3.0
C33A 3.5
H1299 5.5
MRC-5 4.0

The optimal seeding densities of different cell lines were determined by seeding 2 to
6x10* cells per well in a 24-well tissue culture plate and recording the percentage
confluence of individual wells after 24 hours. Seeding densities which resulted in

approximately 60% confluence were chosen to be optimal for each cell line.

To ensure that the self-expressing problem of the pEGFP-1 vector did not exist
in the pGL3-Basic vector, a preliminary experiment was carried out by transfecting the
pGL3-LCRS800 construct into HeLa cells together with the negative and positive control

plasmids, pGL3-Basic and pGL3-SV40. The luciferase activities were expressed in
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relative light units (RLU) measured by the luminometer. Results showed that the
promoterless pGL3-Basic vector induced a relatively low level of level of luciferase
activity. With the addition of the HPV promoter in the LCR insert of pGL3-LCR800 the
level of luciferase activity increased by almost 10-fold, and with the positive control
SV40 promoter by almost 40-fold when compared to the empty vector (Figure 3.14).
This result showed that the problem of promoterless expression, as seen in the
previously used pEGFP-1 vector, is not apparent in the pGL3-Basic luciferase reporter
system. This low background luciferase activity detected from the promoterless vector,

pGL3-Basic, facilitated accurate promoter analysis.

Luciferase assay of HeLa transfected with pGL3 constructs
00

400

330

300

250

200

130

luciferase activity (RLU)

96
100

a0

0.081 0.15 il
0 ; — r .

cells only mock pGL3 Basic pGL3-LCR800 pGL3-SV40

Figure 3.14 Preliminary testing of the pGL3-Basic vector in HeLa cells.

The pGL3-LCR800 plasmid was transfected into HeLa cells together with positive and
negative control plasmids for comparison. The levels of luciferase activities detected
were expressed in RLU, represented by the solid black bars in the graph. The error bars

represent the range of results obtained from two experimental repeats.

The next step was to determine the optimal amount of plasmid DNA to be

used. The pGL3-SV40 plasmid was transfected into HeLa cells in a range of 75 to 350
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ng per well in a 24-well tissue culture plate with 3 pL of lipofectamine (see Section
2.2.7 for details). Transfected cells were harvested after 48 hours and cell lysates were
prepared for luciferase assay (see Section 2.2.10 for details). The relative light units of
luciferase activity induced per ng of plasmid DNA were calculated. The amount of
plasmid DNA resulting in the highest RLU per ng DNA was determined as the optimal
amount. Results are shown in Figure 3.15, and the optimal amount of plasmid DNA

chosen for Hel a cells was 300 ng.
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Figure 3.15 Optimal amount of DNA for transfection in HeLa (24-well plate).

HeLa cells were transfected by the positive control plasmid pGL3-SV40 in different
amounts ranging from 75 to 350 ng per well in a 24-well tissue culture plate.
Luminescence detected was expressed in RLU represented by the bar graph (primary y-
axis on the right); RLU induced per ng DNA was calculated and represented by the line
graph (secondary y-axis on the left). The optimal amount was determined by the highest
RLU per ng DNA used. The error bars represent the range of results obtained from two

experimental repeats.
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(iii) Co-transfection with the f-galactosidase vector

A reference plasmid, pCMVp, was employed to be co-transfected into the cells
together with the test plasmids. pCMV is a vector containing a -galactosidase gene
linked to the CMV promoter and expresses high level of B-galactosidase in eukaryotic
cells (Clontech, 2003) (see Figure 2.2 for vector diagram). The luciferase activities
measured with the test plasmids were divided by the B-galactosidase activity expressed
from the reference plasmid to obtain a normalised luciferase reading which represents
gene expression induced from the population of cells that were successfully transfected
by the plasmids only. A schematic diagram demonstrating the principle of co-

transfection is shown in Figure 3.16.

O 70 ) luc activity = 40%

< ) —  40:>-0 _
o TOn 0 — __ Transfection #1

HPV promoter + luciferase vector oo p -gal reading = 80%
CMV promoter + B-gal vector Normalised luc activity 4/8 x 100% = 50%
Transfection #2 0
luc activity = 20% ; —

B-gal reading = 20%
Normalised luc activity 212 x 100% = 100%

Figure 3.16 Schematic diagram demonstrating the principle of co-transfection.
The test plasmid (HPV promoter in luciferase vector) was co-transfected with a
reference plasmid (CMV promoter in B-gal vector) into mammalian cell lines. By
performing luciferase assay alone transfection #1 (40%) appeared to have a higher level
of gene expression induced when compared to transfection #2 (20%). However, when
B-galactosidase readings induced from the reference plasmid was also measured and
used to normalise the luciferase activity detected, the relative luciferase activity of
transfection #1 (50%) was in fact lower than that of transfection #2 (100%), which is a
more accurate indication of luciferase expression restricted to the actual transfected

population only.
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Since the two plasmids to be co-transfected contained different promoters, the
CMYV promoter and the HPV-18 P95 promoter, that are known to be functional within
mammalian cell lines, it was necessary to determine the optimal reference plasmid to
test plasmid ratio; in order to minimise the interference from possible promoter
competition in co-transfection experiments. The pCMVp and pGL3-LCR800 plasmids
were transfected into HeLa cells in ratios of 1:1, 1:2, 1:4 and 1:9 in a total of 500 ng of
plasmid DNA (see Section 2.2.7 for details), and luciferase assays were performed on
the cell lysates of the transfected cells at 48 hours post-transfection (see Section 2.2.10
for details). The relative light units of luciferase activity induced per ng of pGL3-SV40
were calculated. The CMV to Pyos promoter ratio resulting in the highest RLU per ng of
pGL3-LCR800 DNA was determined as the optimal ratio. Results are shown in Figure
3.17, and the optimal CMV to P,¢s promoter ratio for co-transfection in HeLa was found
to be 1:4. A point to note is that the competition in between two promoter elements is
dependent on their relative molar ratio in the co-transfection experiment, and the molar
ratio stays the same regardless of the total amount of plasmid DNA used (in ng) as long
as the ratio (in ng) remains to be 1:4. Hence, although the competition experiments were
performed in a total amount of 500 ng DNA, the subsequent co-transfection
experiments were performed using the optimal DNA amount determined previously (as
shown in Figure 3.15).

All the subsequent co-transfection experiments were performed in 24-well
tissue culture plates, transfected with the pCMVp and pGL3 plasmids in 1:4 reference
plasmid to test plasmid ratio (in a total of 300 ng of plasmid DNA) using 3 pL of
lipofectamine. Although optimisation experiments were all performed on only HeLa

cells, the same parameters were used for all the other cell lines used. This is to allow
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more accurate comparison of promoter activity in between different cell lines by

limiting variable factors.

Optimal CMV:P105 ratio for cotransfection in HelLa
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Figure 3.17 Optimal CMYV to Pys promoter ratio for co-transfection in HeLa.

The optimal CMV to Pjys promoter ratio to be used in co-transfection experiments in
HeLa cells was determined by transfecting the pCMVp and the pGL3-LCR800 plasmids
in ratios of 1:1, 1:2, 1:4 and 1:9 (total plasmid DNA = 500 ng). Luminescence detected
in RLU were represented by the bar graph (primary y-axis on the right); RLU induced
per ng pGL3-LCR800 was calculated and represented by the line graph (secondary y-
axis on the left). The optimal amount was determined by the highest RLU per ng pGL3-
LCR800 DNA used. The error bars represent the range of results obtained from two

experimental repeats.
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3.2.3 HPV-18 LCR promoter studies

The prepared luciferase constructs containing different sized fragments of the
HPV-18 LCR were subsequently transfected into the five mammalian cell lines as
described in Table 2.1, together with the positive control plasmid pGL3-SV40.
Transfected cells were harvested 48 hours after transfection and cell lysates were
collected for luciferase and P-galactosidase assays as described in Sections 2.2.10 and
2.2.11. An independent experiment on each cell line was repeated at least three times
and each independent experiment was carried out in triplicate. A sample of data results
from HeLa cells is shown in Table 3.3 to show how the results were processed, and
results from all the other cell lines were calculated by the same method. A summary of
results from the transfection experiments of the LCR deletion constructs in all five cell
lines is graphically represented in Figure 3.18. The raw data results are shown in the

appendix chapter.
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Table 3.3 Interpretation of data results from transfection of luciferase LCR

deletion constructs into HeLa cells (experiment #1 and summary).

A | 5] | C [ D [ E [ F |
1 |Hela experiment #1
2 |b-galactosidase assay pELI-LCR1000 pGL3-LCREB00 | pGL3-LCR40D | pGL3-LCR200 | pGL3-5WA0
| 3 | repeat #1 0.945 1.018 0.998 0.775 0.729
4 repeat # 0.945 0.937 1.023 0.714 0.702
5 repeat #3 0.981 0.935 0.994 0.889 0.700
B
7 |luciferase assay pGL3-LCR1000 pGL3-LCREO0 | pGL3-LCR400 | pGL3-LCR200 | pGL3-Sw40
=N repeat #1 283.2 584.7 126.0 4.68 G630
| 9 | repeat # 314.9 585.0 1250 469 5940
10 repeat #3 396.1 622.4 126.9 474 9600
11
12 |Normalised data {luc/bh-gal) pGLI-LCR1000 p5L3-LCRE00 | pGL3-LCR400 | pGL3-LCR200 | pGL3-3W40
13 repeat #1 300 570 130 B.00 9400
14 repeat # 330 530 120 B.60 8300
|15 | repeat #3 400 670 130 5.30 11000
16 average 350 520 130 B.00 9900
17 SW40 as 100% 3.5 6.3 1.3 0.061 100
18
19 |HeLa SUMMARY
20 [pGL3-LER1000 | pGL3-LCRA00 | pGL3-LCR400 | pGL3-LCR200 | pGL3-Sv4l
21 |HelLa experiment #1
| 22 | average luc activity 330 G20 130 B.00 9900
23 SW40 as 100% 3.5 6.3 1.3 0.061 100
24 |HelLa experiment #2
125 average luc activity 430 520 250 2.2 15000
26 Swidl as 100% 3.2 5.4 1.6 0.015 100
27 |HelLa experiment #3
| 28 | average luc activity G20 770 180 1.2 14000
29 SW40 as 100% 4.5 5.6 1.3 0.0089 100
30 |Average Hela experiment #13
| 31 | average luc activity 430 740 180 3.1 13000
| 32| average 5V40 as 100% 3.7 5.8 14 0.028 100
33 stardard error of mean 0.38 0.29 0.12 0.016

The upper part of the table (rows 1 to 17) is results from experiment #1 of HeLa cells.
Cells were transfected with the same plasmid in triplicates (repeats #1 to 3) in three
separate wells. Rows 3 to 5 are the -galactosidase readings of each well, which were
used to normalise their relative luciferase readings (rows 8 to 10) to control for
transfection efficiency. For example, the luciferase reading of pGL3-LCR1000 in repeat
#1 (B8) was divided by its relative B-galactosidase reading (B3) to obtain a normalised
luciferase reading (B13) of repeat #1. The averages of the three repeats of normalised
luciferase readings for each plasmid construct were calculated (row 16). Results were
then calculated as a percentage relative to the normalised luciferase reading of the
positive control pGL3-SV40 (row 17). By repeating the same procedure for experiment
#2 (row 26) and experiment #3 (row 29), an average of relative luciferase activity to the
positive control of the three individual experiments was calculated (row 32), which was
taken as the final reading for HeLa cells. The standard error of the average values of the
three repeats of the experiment were calculated (row 33). Numbers shown in the table

were all rounded off to two significant figures.
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premoter activity of pGL3 LCR deletion constructs
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Figure 3.18 Luciferase activity from LCR deletion constructs in different cell
lines.

The graph represents results obtained from transfection experiments using five different
cell lines. Luciferase activities detected from various LCR deletion constructs were
plotted as percentages relative to the luciferase readings from the pGL3-SV40 plasmid
which served as a positive control. The standard error of the mean of three experimental

repeats in each cell line are represented by error bars.

@) Overall Pyys promoter activity and specificity

The results showed a significant level of luciferase activity induced from the
LCR deletion constructs in the three cervical cancer cell lines tested (HeLa, SiHa and

C33A), with the luciferase reading detected in SiHa cells being the highest (8%),
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followed by HelLa (3.7%) and C33A (2.4%). This shows that the P;¢s promoter is highly
active within cervical carcinoma cell lines in the context of the cell lines tested. Similar
results were reported by Hoppe-Seyler and Butz, (1992) when the HPV-18 LCR
promoter activity was tested by a different reporter system, suggesting the HPV-18 LCR
to be highly active in SiHa, HeLa and C33A cells. The level of luciferase readings
detected in H1299 (0.079%) and MRC-5 cells (0.07%) were extremely low, indicating
that the Pjos promoter is essentially inactive in the carcinoma cell lines tested that are
not of a cervical origin, and also in the non-cancerous cell line tested. These results are
very similar to previously reported findings by Hoppe-Seyler et al. (1991) which
studied the HPV-18 LCR promoter activity in different mammalian cell lines using
different reporter systems, suggesting the HPV-18 LCR could be strongly stimulated
within HeLa and C33A cells, weakly stimulated in primary human fibroblast and almost
completely inactive in HepG2 cells (human hepatoma cell line).

It is important to note that since the level of normalised luciferase activities
detected from H1299 and MRC-5 cells were extremely low, the differences in promoter
activity induced by the LCR deletion constructs may not be significant and accurate
enough for comparison purpose, due to the overlapping error bars. For the above reason,
contribution from different LCR components towards promoter activation in H1299 and
MRC-5 cells has only been briefly discussed in this section, but not included as major
findings of this thesis. The summary of this chapter has been focused on the three
cervical cancer cell lines tested instead.

In terms of promoter specificity, in the context of limited cell lines used in this
project, the results indicate that the Pjos promoter of the LCR is not only specific
towards epithelial cells in general, but more precisely towards cervical epithelial cells in

particular. This observation is in agreement with Butz and Hoppe-Seyler (1993)
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suggesting that although a number of transcription factors binding to the LCR have been
implicated as contributing to the tissue-specificity of the HPV-18 LCR, the regulatory
mechanisms resulting in the transcriptional activation of the HPV E6 and E7 genes can
significantly differ among epithelial cells. It seems unlikely that epithelial cell-specific
activity of the HPV-18 LCR observed was simply the effect of common, epithelial
transactivating factors but rather a result from alternate regulatory pathways in different

epithelial cells.

(ii) Comparison of promoter activity from pGL3-LCR1000 and pGL3-LCR800

In order to examine the effect of removing the distal 200 bp from the LCR on
the Pjos promoter strength, the level of luciferase activity detected from pGL3-
LCR1000 was set as 1 and activities from pGL3-LCR800 were calculated as a ratio

relative to the undeleted LCR fragment (Figure 3.19).

Distal Enhancer Constitutive  Promoter Hela SiHa C33A H1299 | MRC-5
Enhancer Proximal
pGL3-LCR1000 1 1 1 1 1
pGL3-LCR800 15 17 13 18 2.1

Figure 3.19 Relative promoter activity from pGL3-LCR800 in different cell lines.
The level of luciferase activity detected from the full length LCR insert in the pGL3-
LCR1000 plasmid was set at 1, and the ratios of luciferase readings from the pGL3-
LCRS800 plasmid were calculated. Numbers were all rounded off to two significant

figures.

Removal of the distal 200 bp fragment (pGL3-LCR800) resulted in a
significantly increased level of luciferase activity, indicated by a ratio above 1
(increased by 50% in HeLa, 70% in SiHa, 30% in C33A, 80% in H1299 and 110% in

MRC-5). This suggests that the shorter 800 bp LCR fragment in the pGL3-LCR800
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plasmid has the ability to induce stronger promoter activation when compared with the
full-length LCR fragment in the pGL3-LCR1000 plasmid. This result has not been
reported previously, as earlier studies have been focused on promoter activity induced
by the entire BamHI LCR fragment and no attempts have been made in identifying the
possible contribution of the extra 208 bp from the L1 ORF at the 5'-end of the BamHI
LCR fragment towards promoter activation. The results suggest the existence of
possible transcriptional repressor elements present within the distal BamHI-Rsal
fragment, which contains about 200 bp from the 3’-end of the L1 ORF.

In order to identify whether the promoter element within the LCR may
possibly possess selectivity towards HPV-positive cervical cancer cells in particular, the
ratios of luciferase activity from HeLa and SiHa cells against the other control cell lines

were calculated and shown in Table 3.4.

Table 3.4 Comparison of luciferase activity from the LCR deletion constructs

in HeLa and SiHa with other cell lines.

(HPV?:BIic::g::i\::{:::l:r:eel;iells} LCR1000 | LCRE00 (HPVfIzIiftﬂev::t:rtvoi\:aalr:l:nileliacells} LCR1000 | LCR800
HeLa (HPV-18) : SiHa (HPV-16) 047 0.40 SiHa (HPV-16) : HeLa (HPV -18) 2.1 2.5

HeLa (HPV +ve) : C33A (HPV -ve) 16 18 SiHa (HPV +ve) : C33A (HPV -ve) 3.3 4.5
HelLa (cervix) : H1299 (lung) 48 39 SiHa (cervix) : H1299 (lung) 100 98
s | % 0 ]| et | w |

A ratio higher than 1 represents selectivity towards HeLa cells or SiHa and vice versa.
A green square on the top right corner of each box in the columns of the pGL3-LCR800
plasmid denotes an increase in specificity towards HeLa cells or SiHa upon the deletion
of the distal 200 bp fragment. A red square denotes a decrease in specificity towards

HeLa or SiHa cells instead. All numbers were rounded off to two significant figures.
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The level of promoter activity has already shown to be significantly higher
within the three cervical cancer cell lines tested (see Figure 3.18). Moreover ratios
calculated in Table 3.4 showed that the P,os promoter appeared to have higher activity
level within the two HPV-positive cervical cancer cells tested in particular. Promoter
activities detected from the pGL3-LCR1000 plasmid in HeLa and SiHa cells were 1.6-
fold and 3-fold higher than that in C33A cells respectively. Deletion of the distal 200 bp
BamHI-Rsal fragment (pGL3-LCR800) resulted in a further increase in the selectivity
of the Pjos promoter towards the two HPV-positive cervical cancer cells tested was
observed. Promoter activities detected from the pGL3-LCR800 plasmid in HeLa and
SiHa cells were almost 1.8-fold and 4.5-fold higher than that in C33A cells respectively.
These results suggest the presence of HPV-dependent promoter repressors acting on the
distal 200 bp fragment. The shorter fragment of the LCR within the pGL3-LCR800
plasmid therefore appeared to be a better option to be used as a tool for selecting HPV-
positive cervical cancer cells when compared to the BamHI LCR fragment within the

pGL3-LCR1000 plasmid, both in terms of promoter strength and specificity.

(iii) Significance of the distal enhancer region

As mentioned in Section 1.5, since most of the transcription control elements
identified within the HPV-18 LCR are located within the constitutive enhancer and
proximal promoter region, and the precise function of the distal enhancer region
contributing to the LCR promoter activation is unclear (Cid et al., 1993). From the
results obtained from the LCR deletion constructs, further deletion of the distal
enhancer region (pGL3-LCR400) resulted in a decreased level of luciferase activity in
both HeLa and C33A cells, showing only 38% and 77% promoter activity of the full-

length LCR respectively. In SiHa cells, however, upon the corresponding deletion
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luciferase activity detected was still 12% higher than that from the full-length LCR. It is
difficult to draw a conclusion regarding the contribution of the distal enhancer to
promoter activity based on these results. However, when another set of ratios were
calculated by setting the luciferase activity from the pGL3-LCR800 as 1 instead, the

effect upon the deletion of the distal enhancer became more apparent (Figure 3.20).

Distal Enhancer Constitutive  Promoter HelLa SiHa C33A T e
GL3.LCR800 Enhancer Proximal
pGL3- 1 1 : 1 1
pGL3-LCR400
I B 0.25 0.64 0.57 0.65 1.2

Figure 3.20 Ratios of changes in promoter activity upon removal of the distal
enhancer region in different cell lines.

The level of luciferase activity detected from the pGL3-LCR800 plasmid was set at 1,
and the ratios against the luciferase readings from the pGL3-LCR400 plasmid were

calculated. Numbers were all rounded off to two significant figures.

The results showed that the removal of the distal enhancer region has the most
significant impact in the downregulation of promoter activity in HeLa cells, which
retained only 25% of promoter activity of that prior to deletion. The other three
epithelial cell lines tested showed similar results, retaining about 60% of promoter
activity of that prior to deletion. A higher impact on HeLa cells suggested that the distal
enhancer region may contain cis-regulatory elements that can be more specifically
activated by the presence of HPV-18 DNA in Hela cells, which may not be found in
the other cell lines tested. These results differ slightly from those obtained by Hoppe-
Seyler et al. (1991) which suggested that the deletion of the distal enhancer resulted in a
20% decrease in the promoter activity induced from the HPV-18 LCR. However, it was
not mentioned which cell line was tested. In addition the HPV-18 LCR was not

examined in a range of carcinoma cell lines.
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(iv) The constitutive enhancer and proximal promoter region

It was difficult to determine the contribution of the constitutive enhancer
region towards promoter activation, since further removal of the constitutive enhancer
region (pGL3-LCR200) almost completely abolished the luciferase activity in all
cervical cancer cell lines tested. Similar to Figure 3.20, the effect upon the deletion of
the constitutive enhancer was clearer when another set of ratios were calculated by

setting the luciferase activity from the pGL3-LCR400 as 1 (Figure 3.21).

Distal Enhancer Constitutive  Promoter HeLa SiHa C33A H1299 | MRC-5
Enhancer Proximal
pGL3-LCR400 1 1 1 1 1
pGL3-LCR200 0.017 0.0019 0.11 0.76 14
E—

Figure 3.21 Ratios of changes in promoter activity upon removal of the
constitutive enhancer region in different cell lines.

The level of luciferase activity detected from the pGL3-LCR400 plasmid was set at 1,
and the ratios against the luciferase readings from the pGL3-LCR200 plasmid were

calculated. Numbers were all rounded off to two significant figures.

The results showed that the removal of the constitutive enhancer region has the
most significant impact in the downregulation of promoter activity in HeLa and SiHa
cells, down to 2% and 0.2% of promoter activity prior to the deletion respectively. This
was then followed by C33A cells, which retained about 11% of promoter activity. The
impact of the deletion was not as apparent in H1299 cells, which still managed to retain
76% of activity upon deletion, and in contrast MRC-5 cells showed an increase in
promoter activation upon the deletion. These results correlates well with previous
studies by Garcia-Carranca et al. (1988) and Nakshatri et al. (1990) that the constitutive
enhancer region is active in cell lines of epithelial origin only (see Section 1.3.1). The

more significant decrease in promoter activity in the three cervical cell lines tested also
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suggests that the constitutive enhancer region may contain cis-regulatory elements that
may be more specifically activated within cervical cancer cells and in particular in those
that were transformed by HPV.

The proximal promoter region alone did not manage to induce significant
luciferase activity in all the cell lines tested. These results correlates with previous
deletion studies performed by Hoppe-Seyler et al. (1991) suggesting that the promoter
proximal region by itself exhibits only weak cis-stimulatory activity and requires the
cooperative interaction with transcriptional elements contained within other parts of the
LCR (Hoppe-Seyler and Butz, 1992). This abolishment of promoter activity, however,
does not exist in the two non-cervical carcinoma cell lines tested, H1299 and MRC-5
cells. One of the possible explanations is that most of the cis-regulatory elements within
the HPV LCR are highly specific towards cervical carcinoma cells, thus the impact of
removing majority of the enhancer elements from the LCR was not as high in H1299
and MRC-5 cells; or the very low level of luciferase activity detected from H1299 and
MRC-5 cells were in fact not induced from the P;¢s promoter but background activity
independent on the Pj¢s promoter activity, thus promoter activity in these two cell lines

were not affected by the removal of important components of the LCR.
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3.3 General discussion

3.3.1 The choice of vector for promoter analysis - pEGFP-1 versus pGL3-Basic

GFP is widely used as a marker for gene expression. It allows in vivo
quantification of promoter activity because GFP is able form a fluorophore in the
absence of exogenous substrates and cofactors other than oxygen (Chalfie et al., 1994;
Scholz et al., 2000). GFP can also be used as a trace of cell lineage and as a fusion tag
to monitor protein localization within living organisms (Chalfie er al., 1994; Cubitt et
al., 1995).

Due to the above reasons, a GFP expression vector was initially chosen to be
used as a tool for promoter analysis. It was hoped that, since transfected cells can be
analysed at single-cell level and in the same cells, the expression of a reference plasmid
can be monitored by two-colour fluorescence (Ducrest er al., 2002), variations in
transfection efficiencies in between cell lines tested would not be a problem,
particularly within primary human cell lines such as MRC-5 CELLS which are
commonly known to be difficult to transfect (Ducrest et al., 2002). The problem
encountered was, however, a significant level of autofluorescence detected from the
promoterless pEGFP-1 vector in HeLa cells. This can be problematic particularly when
the strength of the promoter of interest is not strong enough to induce a significantly
higher level of fluorescence when compared to that induced by the empty vector,
resulting in an inaccurate estimation of promoter activity.

Enquires to the manufacturer suggested that there were previous reports of the
promoterless pEGFP-1 vector expressing EGFP, but it was emphasised that the problem
appeared to be cell-type dependent. It was then decided that instead of continuing to

work with the pEGFP-1 vector with the need of locating another source of HPV-18
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positive cervical cancer cell line, and at the same time be at risk of detecting self-
induced fluorescence from the promoterless vector, it was more convenient to adopt a
new reporter plasmid for promoter analysis.

The pGL3-Basic luciferase reporter vector was then utilised since there are
previous studies suggesting that the sensitivities of the GFP and luciferase reporter
systems are very similar (Ducrest et al., 2002). Although transfected cells could no
longer be analysed at single-cell level, and the pGL3-Basic vector does not contain any
antibiotic resistance gene to assist selection in eukaryotic cells, this, however, did not
cause any inconvenience in the aspect of this project since only transient transfection
was involved. In fact the luciferase assay allows more flexibility because cell lysates
could be stored for postponed assays. Our results showed that the promoterless pGL3-
Basic vector produced a very low level of background luciferase activity which was
significantly better than the pEGFP-1 vector chosen previously.

There are several ways to explain the level of fluorescence detected from
pEGFP-1 without a functional promoter. As seen in the vector diagram of pEGFP-1
(Figure 2.1), it contains a functional SV40 early promoter which is responsible driving
the expression of the neomycin resistance gene within successfully transfected
eukaryotic cells. Although the SV40 promoter is located about 2 kb downstream from
the MCS, but since the promoter is in the same orientation as the EGFP gene within the
vector, there is a chance of SV40-induced EGFP expression from the pEGFP-1 vector
without the addition of functional enhancer and promoter elements. Another possible
explanation of the problem could be random integration of the pEGFP-1 vector into the
host cell genome upon transfection, resulting in transcription initiation signals upstream

of EGFP gene leading to non-specific transcription. However, in the context of this
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project only transient transfection was involved, and thus the integration of transfected

plasmid into the host genome is not like to be involved (Wang et al., 2004).

3.3.2 The choice of mammalian cell lines tested

Due to the availability of resources and time constraints, the testing of the
promoter constructs was performed in a limited number of cell lines. As discussed
earlier in Section 1.5, the activity of the HPV-18 Pjys promoter is regulated by viral E2
proteins and various cellular transcription factors that bind to recognition sequences
within the LCR. Attempts were made when choosing cell lines to be tested, so as to
cover both positive and negative controls for most of the known crucial factors
contributing towards Pjos promoter activity. Table 3.5 is a summary table which

explains the choice of cell lines used for the testing of the LCR promoter constructs.

Table 3.5 The choice of mammalian cell lines tested.
HelLa SiHa C33A | H1299 | MRC-5
HPV type 18 16 Nil Nil Nil
Presence of HPV Yes Yes No No No
Origin from cervix Yes Yes Yes No No
Cancerous Yes Yes Yes Yes No

The differences in characteristics of the five mammalian cell lines chosen are
summarised in the above table, illustrating the significant characteristics of each cell

line that contribute towards the promoter activity of Pos in the LCR promoter constructs.

The choice of cell lines provided general representations of different cell types
and comparison pairs for various contributing factors, which may not be sufficient to

draw solid conclusions from results of the experiments performed, but good enough to
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support the hypothesis of the mode of action and idea behind this project, which is to
activate a foreign gene within cervical cancer cells selectivity with the use of the HPV-

18 promoter element for gene therapy purpose.

3.3.3 Transfection efficiencies in different cell lines

It is known that transfection efficiency of plasmid DNA into eukaryotic cells is
dependent on many factors such as the type of transfection reagent used, the
reagent/DNA ratio, cell passage number and most importantly, on the cell type used
(Kiefer et al., 2004). Viral vectors have proven to be efficient in the delivery of genetic
materials into a wide range of cell types (Imai ez al., 1998) but in the context of this
project, a non-viral delivery system was employed. In this project five different
mammalian cell lines were used, however, all transfection experiments were performed
under the optimal conditions determined for HeLa cells. Optimisation experiments have
not been performed on each individual cell lines, for transfection conditions had to be
consistent to allow direct comparison of results across all five cell lines. For this reason,
variations in between the transfection efficiencies of the different cell lines used were
expected. Transfection efficiencies achieved by using lipofectamine were very high in
HeLa, C33A and H1299 cells, as indicated by the high level of [B-galactosidase
expression induced in the co-transfection experiments. However, transfection
efficiencies were markedly lower in SiHa and MRC-5 cells (tables of raw data results in
the appendix chapter).

This was expected for MRC-5 cells, which is a primary human fibroblast cell
line, since it is known that transfection efficiency is particularly low in primary cells

(Martin and Murray, 2000; Sipehia and Martucci, 1995; Teifel et al., 1997). In regards

119



Chapter Three — LCR & Deletion Constructs

to SiHa cells, however, a possible explanation of the problem of low transfection
efficiency could be, since the SiHa cell stock was not cultured in our own laboratory,
the number of passages that the given cell stock had gone through was unknown.
Although the levels of luciferase activity detected have been normalised by making use
of a transfection control plasmid (pCMVp) and the results showed significant promoter
activation within SiHa cells, but one cannot rule out the possibility of inaccuracy
associated with normalisation using extremely low level of B-galactosidase results. It
would therefore be ideal to confirm results in SiHa cells by obtaining another cell line
that can be transfected with higher efficiency which is more comparable with the other

cell lines used.

3.34 Specificity of the HPV-18 Pyys promoter

) Overall cell-type specificity

One of the most important aspects of a successful gene therapy approach is the
ability to induce selective activation within the target cells. In our results the HPV-18
LCR has shown significant selectivity towards two HPV-induced cervical carcinoma
cell lines tested (HeLa and SiHa), and almost negligible activity in a lung carcinoma
cell line (H1299) and a primary human fibroblast cell line (MRC-5) tested (see Section
3.2.3(i)). This cell-type specificity observed is in agreement with most of the studies
performed the past, with the promoter activity of the HPV-18 LCR often reported to be
inactive or very weakly activated in primary or transformed human fibroblast (Hoppe-
Seyler and Butz, 1992; Hoppe-Seyler et al., 1991; Romanczuk et al., 1990; Thierry et

al., 1987).
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In terms of epithelial cell-type specificity, as discussed in Section 3.2.3(i),
although a number of transcription factors binding to the LCR of HPV-18 have been
suggested to contribute to the epithelial cell-type specificity of the Pjos promoter, it
seems unlikely that the epithelial cell-specific activity of the HPV-18 LCR is induced
from a common, epithelial transactivating factor, and alternate regulatory pathways may
exist in different epithelial cell types (Butz and Hoppe-Seyler, 1993). In agreement with
this idea, apart from the results obtained from the non-cervical epithelial cell line used
in this project (H1299), which showed negligible level of promoter activity, a number of
studies performed in the past have made use of a human hepatocellular carcinoma cell
line HepG2, in which the HPV-18 LCR has constantly been reported to be inactive
(Hoppe-Seyler and Butz, 1992; Hoppe-Seyler et al., 1991; Thierry et al., 1987). In
contrast, the HPV-18 LCR has often been reported to be active within cervical
carcinoma cell lines (Gius et al., 1988; Hoppe-Seyler and Butz, 1992; Hoppe-Seyler ef
al., 1991; Thierry et al., 1987). These observations show that the HPV-18 LCR
appeared to be selectivity activated not only within epithelial cells, but in particular
within epithelial carcinomas of a cervical origin, which makes it an ideal promoter

element to be used for gene therapy to selectively target cervical cancer cells.

(i) HPV-positive versus HPV-negative cervical cancer cells

Promoter activities from the BamH/ fragment containing the HPV-18 LCR
observed in SiHa and HeLa cells was about 3 and 1.5 times stronger than that in C33A
cells respectively, indicating that the HPV-18 LCR possesses selectivity for HPV-
positive cervical cancer cells in the context of the limited number of cell lines tested.
This observation is in agreement with previous work performed by Hoppe-Seyler and

Butz (1992) who tested the HPV-18 LCR in six different cervical carcinoma cell lines,
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and the level of gene expression induced was lower in two of the cell lines that were not
transformed by HPV. The results in Section 3.2.3(ii) identified the distal 200 bp of the
BamHI fragment of HPV-18 to possess stronger repressor activity in HeLa and SiHa
cells, results in Section 3.2.3(iii) showed that the removal of the distal enhancer region
has the most significant impact in the downregulation of promoter activity in HeLa cells,
and results in Section 3.2.3(iv) also showed that upon the removal of the constitutive
enhancer region from the LCR, a larger percentage reduction in promoter activity was
observed in HeLa and SiHa cells when compared to the other cell lines tested. These
results suggest possible differences in Pyos promoter regulation within HPV-positive and
HPV-negative cell lines tested, and the involvement of HPV viral gene products in
promoter regulation within the context of HPV-transformed cells. It was hoped that the
mutational studies performed in the second part of the project would be able to identify
transcription control elements responsible for the promoter regulation of the LCR within

HPV-positive cervical cancer cells.

(iii) HPV-18 versus HPV-16 infected cervical cancer cells

Results from the estimation of the HPV-18 P;¢s promoter activity in HeLa and
SiHa cells suggested that the promoter may be able to induce stronger activity in the
presence of the HPV-16 DNA when compared to HPV-18, with the promoter being
about two times stronger in SiHa (HPV-16 positive) than in HeLa cells (HPV-18
positive). This result correlates with previous findings by Hoppe-Seyler and Butz (1992)
which detected an almost 2-fold higher promoter activity of the HPV-18 LCR from
SiHa compared with HeLa cells. This was unexpected for, by making use of the novel
early promoter of HPV-18 in the LCR reporter constructs, the strongest level of

promoter activity was expected to be detected in HeLa instead of SiHa cells. The results
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obtained also identified a larger percentage reduction in promoter activity upon the
deletion of the distal enhancer fragment from the LCR in HeLa cells when compared to
the other cell lines tested, suggesting that the distal enhancer may be more dependent on
HPV-18 viral gene products for promoter activation (see Section 3.2.3(iii)).

However, it has been well documented that the HPV-18 P;os promoter is
functionally equivalent to the HPV-16 Py; promoter (Romanczuk et al., 1990; Thierry et
al., 1987), and the LCR of the two types of HPV can be regulated by similar
mechanisms due to the similarities in their composition of transcriptional control
elements (Butz and Hoppe-Seyler, 1993; Chong ef al., 1990). Moreover, many common
cellular transcription factors appear to interact with both the HPV-18 and HPV-16 LCR
(Bednarek ef al., 1998). Romanczuk ef al. (1990) have also suggested that the two viral
promoters may be similarly regulated by E2, since a comparison of the sequences
upstream showed a similar spatial arrangement of the four E2BS, the TATA boxes and
the transcription start sites (see Figure 1.10). Due to the above reasons it is therefore not
surprising that the promoter element within the HPV-18 LCR constructs produced could
be activated not only within HPV-18 positive HeLa cells, but also within HPV-16
infected SiHa cells. This result is favourable in the context of gene therapy, since it
permits the HPV-18 P;¢s promoter to be used to target cervical cancer cells transformed
by both HPV-18 and 16. Further experiments will be required to confirm the higher
level of promoter activation observed within SiHa cells when compared to HeLa cells.
These experiments could be mutational studies of transcription control elements and

examination of their effects on promoter activation within the two cell types.
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3.3.5 Possible unidentified transcription factor binding sites

As mentioned in Section 3.2.2(i), the luciferase reporter constructs produced
contained a 1,050 bp BamHI fragment (as described in Section 1.4.1) which, in addition
to the entire length of the LCR, also contained the 208 bp at its 5’-end corresponding to
the end of the L1 ORF and the 20 bp at its 3'-end corresponding to the beginning of the
E6 ORF (Thierry et al., 1987). Results from the LCR deletion constructs showed that
upon the removal of the distal 200 bp BamHI-Rsal fragment, promoter activity detected
from the LCR significantly increased within the three cervical cancer cell lines tested,
and in particular towards the HPV-positive cervical cancer cell lines HeLa and SiHa
cells. This observation suggested the presence of both cellular and HPV-dependent
transcription control elements within the distal 200 bp fragment that may be repressive
on the Pjs promoter activity and has not been identified to date.

Most of the identified transcription factor binding sites are located within the
constitutive enhancer and promoter proximal region of the HPV-18 LCR (see Section
1.5), and the precise contribution of the distal enhancer region towards the Pjgs
promoter activity was suggested to be unclear (Cid ef al., 1993). There have also been
previous studies suggesting that the removal of the distal enhancer region from the LCR
diminished transcription only slightly (Bednarek ez al., 1998; Hoppe-Seyler ef al., 1991).
The results obtained from the LCR deletion constructs as described in Section 3.2.3(iii),
however, detected a significant drop in promoter activity upon the removal of the distal
enhancer region, and transcription control elements present in the region appeared to be
strongly activated by HPV-18 viral gene products. In correlation to these results, DNase
I footprinting experiments of the HPV-18 LCR performed by Garcia-Carranca et al.
(1988) have identified four footprints within the distal enhancer region caused by

cellular factors not yet known (footprints I, II, III and IV) (see Figure 3.22). Attempts
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have been made in identifying the functional significance of these footprints, and
footprint III has been suggested by Hoppe-Seyler and Butz (1993) to contain
recognition sites for the cellular transcription factor Spl, which contributes to the
activation of the HPV-18 LCR in driving gene expression from a HSV thymidine kinase
(tk) promoter. These observations may explain for the significant decrease in promoter
activity detected from the LCR deletion constructs, since Spl has been shown to be a

strong transcriptional activator of the P;os promoter (see Section 1.5.2).
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Figure 3.22 Footprint analysis in the distal enhancer region of HPV-18 LCR.

DNase I footprinting studies performed by Garcia-Carranca et al. (1988) have identified
four sites of protein-DNA interactions within the distal enhancer region caused by
unidentified cellular transcription factors (footprints I, II, III and IV highlighted in grey).
The Rsal recognition sequences (GTAC) which defines the distal enhancer region are
highlighted in green. The only transcription factors binding to this region that has been
identified to date are the YY1 binding site (highlighted in blue) and the E2BS#4
(highlighted in yellow).
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34 Summary

The first part of the project was focused on determining the suitability of the
P05 promoter within HPV-18 LCR to be used as a tool for gene therapy in targeting
selective foreign gene expression within HPV-positive cervical cancer cells. The Pjs
promoter activity induced from the HPV-18 LCR was examined by making use of a
promoterless luciferase expression vector, pGL3-Basic. The LCR reporter constructs
produced were transiently transfected into five different mammalian cell lines to
examine the level of promoter activity and specificity. The results showed that while the
1,050 bp BamHI fragment has been most commonly used in the context of studying the
promoter activity induced from the HPV-18 LCR, the shorter 850 bp Rsal-BamHI
fragment resulted in a stronger level of promoter activity and increased promoter
specificity towards the two HPV-positive cervical cancer cells HeLa and SiHa cells.
Hence it appeared to be a better option to be used as a LCR fragment for gene therapy
purpose.

The overall promoter activity induced from the HPV-18 LCR appeared to be
highly specific towards the three cervical carcinoma cell lines tested (HeLa, SiHa and
C33A), and in particular towards the two cervical carcinoma cell lines that were
transformed by HPV. The results from the LCR deletion constructs also showed that the
distal 200 bp of the BamHI LCR fragment, which was derived from the 3’ of the L1
OREF, appeared to be repressive on the Pjos promoter activity in all the cell lines tested.
On the other hand, selective promoter activation in the two HPV-positive cervical
cancer cells tested appeared to be determined by the constitutive enhancer region,
whereas selectivity towards the HPV-18 positive HeLa cells in particular was observed

from the distal enhancer region. It is, however, problematic to draw conclusions on the
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regulation of the HPV-18 promoter simply by examining the level of activity induced or
suppressed by different Sections of the LCR. The next attempt was to further enhance
the level of promoter activity and increase specificity of the HPV-18 LCR towards
HPV-infected cervical cancer cells for gene therapy purpose, thus leading to the

mutation studies performed in Chapter 4.
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3.5 Future directions

In future experiments, the specificity of the HPV-18 LCR can be confirmed in
a wider range of mammalian cell lines. To test for the promoter selectivity in different
types of high-risk HPV, other HPV-transformed cervical cancer cell lines can be used
such as C-4 I (HPV-18), MS751 (HPV-18), CaSki (HPV-16) and ME-180 (HPV-39)
(ATCC, 2007). The results from SiHa cells can also be confirmed by obtaining another
stock of the same cell line which is known to have a low passage number. To test the
promoter specificity in different epithelial cell types, other human carcinoma cell lines
may be used such as breast cancer cells (MCF7), prostate cancer cells (PC-3), ovarian
cancer (A2780) (Godwin et al., 1992) and colorectal cancer (SW948) (ATCC, 2007). In
the context of this project, an ideal negative control cell line to be used is a normal
cervical cell line, which is, however, extremely difficult to obtain due to ethical issues.
Therefore it would only be possible to confirm inactivity of the Pyys promoter in normal
cells by using a wider range of primary human keratinocytes and fibroblasts.

In regards to the promoter regulation of the P,os promoter, attempts can be
made to identify the repressive transcription control elements within the distal 200 bp of
the BamHI fragment containing the LCR, which is part of the 3'-end of the L1 ORF.
This can be performed by DNase footprinting studies (Galas and Schmitz, 1978) or
more conveniently, by making use of computer softwares which may assist in the
localisation of transcription factor binding sites in sequences of unlimited length, such
as the Matlnspector software (Genomatix, 2007). Gel retardation assays can also be
performed on the footprints discovered by Garcia-Carranca et al. (1988) within the
distal enhancer region, to confirm the identity of the transcription factors binding to

these sites, and their contribution towards the Pos promoter activity.

128



CHAPTER 4

HPV-18 LCR
MUTATION CONSTRUCTS

129



Chapter Four — LCR Mutation Construct

CHAPTER 4 MUTATION STUDIES ON HPV-18 LCR

4.1 Introduction

As discussed in the previous chapter, the HPV-18 Pjos promoter within the
LCR showed selective activation within cervical cancer cells, and in particular towards
cells that were infected by HPV. The next series of experiments was to identify
transcription control elements within the LCR that might contribute to the observed
selectivity of the promoter, and to further increase the level of promoter strength and
specificity within cervical cancer cells. There are a number of transcription factor
binding sites within the LCR of HPV-18 that have been identified to date, along with
four binding sites for the HPV-18 E2 protein which is known to be involved in
controlling viral gene expression. In the second part of this project transcriptional
control elements that were previously reported to possess repressor effect on the HPV-
18 LCR promoter activity and specificity were chosen to be mutated, which was an
attempt to further elevate the level of promoter activity and selectivity towards HPV-
infected cervical cancer cells in particular.

Transcription factor binding sites that were chosen to be mutated along the
LCR were the four E2BSs which are recognition motifs for the viral E2 protein and the
AP1/YY1, KRF-1, GRE/YY1 and Spl binding sites. The mutations were introduced
into the LCR fragment by site-directed mutagenesis (see Section 2.2.3(ii)) and again
cloned into the promoterless luciferase vector pGL3-Basic (Section 3.2.2(i)). The
sequences of all the plasmid constructs were confirmed by automated sequencing (see
Section 2.2.5(vii)) to ensure they contained the designated mutations. The mutation

constructs and the positive control plasmid pGL3-SV40 were then co-transfected into
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the five mammalian cell lines together with the transfection control plasmid pCMV] as
described in Section 3.2.2(iii). The levels of luciferase activity were then normalised
with respect to the corresponding B-galactosidase values, and promoter activities were
either calculated as percentages relative to the positive control SV40 promoter, or as

ratios relative to the wild-type LCR promoter activity.
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4.2 Results and discussion

4.2.1 The E2BS mutation constructs

Previous studies have found the E2 proteins to be repressive in the regulation
of the Pjos promoter (Bernard et al., 1989; Bouvard et al., 1994; Dong et al., 1994;
Jackson and Campo, 1995; Romanczuk et al., 1990; Thierry and Howley, 1991). In the
context of HPV-infected cervical cancer cells, the E2 ORF is disrupted upon integration
of the viral DNA into the host genome (Berumen et al., 1994; Schwarz et al., 1985), and
E2 protein expression has been reported to be lost within these cells (Demeret ef al.,
1997). Hence E2-mediated response of the LCR within cervical cancer cells has always
been studied by co-transfecting the LCR constructs with an E2-expressing plasmid
(Bernard et al., 1989; Demeret et al., 1997). Experiments performed in the first part of
the project, however, have managed to detect a higher level of LCR promoter activity
within the two HPV-positive cell lines tested when compared to the HPV-negative cell
line (see Section 3.3.3(ii)), which suggested the possible involvement of viral gene
products in promoter regulation. In correlation to these findings, there have been studies
suggesting the possibility of a truncated form of E2 protein being expressed (Bernard et
al., 1989; Shillitoe, 2006). In addition, components of the LCR have also been reported
to be responsive to other viral products such as the E6 protein (Gius et al., 1988), which
is known to be expressed within HPV-infected cervical cancer cells (Demeret et al.,
1997). Since the only transcription factor binding sites within the LCR which are known
to be recognised by viral proteins are the four E2BSs, these sites may possibly be
targeted by other viral gene products.

In the second part of the project, the four E2BSs within the LCR were chosen

to be mutated, with an attempt to identify possible repression induced by protein
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binding at these sites, which may either be a form of truncated E2 protein, or other viral
proteins that work in similar mechanisms as the binding of the homologous viral E2
protein. By mutating the E2BSs and preventing protein binding, repression at the
promoter can be abolished, thus further increasing the basal level of promoter activity
from the LCR. It was also hoped to identify possible promoter regulation by viral
proteins within cells HPV-positive cervical cancer cells, which can be used as a

selective marker to identify cells infected by HPV.

() Design and construction of the E2BS mutation constructs

There are four E2BSs within the LCR of HPV-18. E2BS#1-3 are located
within the promoter proximal region of the LCR, whereas E2BS#1 is in the distal
enhancer region. The E2BS is a 12-bp palindromic ACCN¢GGT motif, where Ng
represents the six base pairs that differ between the four sites (Boner and Morgan, 2002;
Demeret et al., 1994; McBride et al., 1991; Sverdrup and Khan, 1995). The E2 protein
consists of a C-terminal DNA binding domain linked to an N-terminal transactivation
domain by a non-conserved hinge region (McBride and Myers, 1997). The C-terminal
domain of E2 binds specifically to the recognition motifs as a dimer, hence resulting in
two contact points on the motif with a spacer sequence in between (see Figure 4.1(A)).
Previous studies performed by McBride et al. (1988) with in vitro binding assays
suggest that synthetic polypeptides corresponding to the full-length E2 protein binds to
the original E2 motif ACCNgGGT but not to a mutated motif of ATTNgCCT.

In order to examine the contribution of each of the four E2BSs on Pjgs
promoter regulation, site-directed mutagenesis was performed on the pGL3-LCR800
plasmid by the method described in Section 2.2.3(ii). Primers were designed to contain

mutations to convert the recognition motifs from ACCN¢GGT to ATTNGCCT (see
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Figure 4.1(B)). Four LCR fragments containing individually mutated E2 binding sites
were produced (Figure 4.2). Mutations were introduced to E2BS#4 by oligonucleotides
#269 and #276 to produce the LCR insert for the pGL3-E2BS#4 plasmid; to E2BS#3 by
oligonucleotides #267 and #275 to produce the LCR insert for the pGL3-E2BS#3
plasmid; to E2BS#2 by oligonucleotides #265 and #274 to produce the LCR insert for
the pGL3-E2BS#2 plasmid and to E2BS#1 by oligonucleotides #263 and #273 to
produce the LCR insert for the pGL3-E2BS#1 plasmid (see Table 2.4 for details of the
oligonucleotides used). The outer primers used in the second-round PCR for site-
directed mutagenesis were oligonucleotides #288 and #291, which were the same
primers used for the construction of the pGL3-LCR800 plasmid construct as described
in Section 3.2.2(i) (see Table 2.3 for details of oligonucleotides used). The positions of

oligonucleotides binding to the LCR are shown in Figure 4.3.

ACCNNNNNNGGT

1—_—

ATTNNNNNNCCT

Figure 4.1  The E2 binding site.

A: X-ray crystal structure of the E2 DNA binding domain-DNA complex. The region of
the E2BSs where the E2 protein contacts the DNA upon binding are circled in red
(Hines et al., 1998). B: The E2 binding domain consists of a consensus sequence of
ACCNgGGT. By mutating the two contact points of E2 protein as shown (CC mutated
to TT; GG mutated to CC), the E2 protein would not be able to recognize its binding

domain.
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7857 bp Pogs
6‘33|0 hp | ATA >
| LT ORF
E2BS 4 E2BS3 E2BS24&1
Distal Enhancer Constitutive Enhancer Promoter Proximal
GL3-E2BS#4
P x Y
GL3-E2BS#3
B X
GL3-E2BS#2
p P
GL3-E2BS#1
P b

Figure 4.2  Schematic diagram of the pGL3-LCRS800 plasmids containing the
four individually mutated E2BSs.

E2BS mutation constructs were produced by making use of the pGL3-LCR800 plasmid
as a template. The pGL3-E2BS#4 plasmid contained a mutation at the E2BS#4 within
the distal enhancer region; the pGL3-E2BS#3, pGL3-E2BS#2 and pGL3-E2BS#1
contained mutations at the E2BS#3, E2BS#2 and E2BS#1 respectively within the

promoter proximal fragment of the LCR
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Figure 4.3  Binding positions of oligonucleotides used for site-directed
mutagenesis of E2BSs within the LCR.

For the site-directed mutagenesis performed on each individual E2BS, a pair of
oligonucleotides was needed to introduce the designated mutations into both strands
during the first round of PCR. Oligonucleotides #269/#276 was used for mutation on
E2BS#4; #267/#275 for E2BS#3; #265/#274 for E2BS#2 and #263/#273 for E2BS#1.
The E2BS were highlighted in yellow, with the mutations introduced in bold and caps.
The outer pair of oligonucleotides #288/#291 were used to generate the 850 bp Rsal-
BamHI fragment containing the mutations in the second round of PCR, with the
restriction enzyme recognition sequences added to assist cloning (X#ol in #288 and
Hindlll in #291; in bold and caps). The TATA box and ATG start codon of the E6 ORF
were highlighted in red and blue respectively.
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TZ01
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7381

7441

7501

756l

TeZl
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7741

7801
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tgtgtgtgta
acacacasat

tgtatogattg
acatactaac

gttggtatgt
caacocataca

ctagtogagta
gatcactcat

togtoctgtat
acaggacata

#2609

tatatatata
atatatatat

cattgtatog
gtaacataca

gogoattaaat
cogtaattta

acaactgtat
tgttgacata

ttocaagttat
aagttcaata

catotattgt
gtagataaca

tatgtatggt
atacatacca

aaaatatgtt
ttttatacaa

ttgtgtttgt
aacacaaaca

aaaactgoac
ttttgacgtg

EZBS#4
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#288

7119 CT
Gh

tgtgtttgta
acacaaacat

tgttgttgta
acaacaacat

ttgtggttet
aacaccaaga

gotatggogtyg
acatacocas

accttacageo
tggaatgtog

ctocattbtyg
gaggtaaaac

ctgtgoaaTT
gacacgthAl

gatttoCCtt
ctagagEGaa

gootttggot
cogaaaccga

caatacagta
gttatgtcat

ttgaacaatt
aacttgttaa

togtocaggtyg
acaggtocac

tgottttagy
acyasaatoc

caactacttt
gttgatgaaa

tgtgoataca
acacgtatgt

attaatactt
taattatgaa
EZBS#1

cgotggoact
gogacogtga

googogocte
A i o L

cgotacaaca
gogatgttgt

cacatatibtt
gtotatasas

catgtocaac
gtacaggttyg
#2467

attgoasact
taacgtttoga

tttggogcat
aaaccgogta

attgoettgeoa
taacgaacgt

agtttgtttt
tcaasacaaaa

attotgtoeta
taagacagat
EZBS#3

#2776
ttaatoctttt
aattagaaaa

ataagyogoa
tattocogogt

taactatate
attgatatag

tacttaaget
atgaattoga

cocttaacat
goggaattgta

CEAGgocagg
GCTCogogtoe

tgtectgtgt
acaggacaca

tgttgtatgt
acaacataca

gtgtogttatg
cacacaatas

ttgottgttg
aacgaacaadc

atococatttta
taggtaaaat

tatgtotgtg
atacagacac

gogoactget
coocgtgacga

cotggtatta
gyaccataat

cactocctaa
gtgagggatt

aattgoatac
ttaacgtato

gaactataat
cttogatatta

tagtttatgo
atcasatacg

aaTTgaaata
ttAlhctttat

CCttogggoag
GG aacoogto

cacatactat
gtgtatgata

ttaacaattyg
aattgttaac

tagtatataa
atocatatatt

gagaacCCtg
cttttgGGac

tatataaaag
atatattttc

atg%gagaaa
tacactottt

#2714

#2773

#2715
#263 EZBS#2

#265

aagtaataty
ttoattatac

ttgtgtttgt
aadacaaaca

tactatattt
atgatataaa

toggtigogos
accaacgagg

gogotatatat
cogatatata

toctacaate
aggatgttag

gttttotgoa
caaaagacght

actacatatt
goyatgtataa

gtocattttoo
cagtaaaagg

gtaataaaac
cattattttg

ttgogottgta
agoogyaacat

atgactaage
tactgattog

actttto
tgaaaadg

aaaagygagt aaTTgaasac CCtoggoaTT
ttttoccteca tLAActtttg GGagocctAA

cacaccacaa
gtgtggtgtt

tac (e fate
atogal Lafs £

cARGCTT 117
gTTCGAL

#2091
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(ii) Effect of E2BS mutations on Pjys promoter activity and specificity

Similar to the transfection experiments described in Chapter 3, plasmid
constructs containing the wild-type LCR and LCR fragments carrying mutations at
individual E2BSs were co-transfected into the five mammalian cell lines as described in
Table 2.1, together with the positive control plasmid pGL3-SV40. Transfected cells
were harvested 48 hours after transfection and cell lysates were collected for luciferase
and B-galactosidase assays as described in Sections 2.2.10 and 2.2.11. Experiment on
each cell line was repeated at least three times and each individual experiment was
performed in triplicate. Results were analysed as described in Table 3.3 and calculated
into percentage luciferase activity relative to the activity detected from the positive
control plasmid pGL3-SV40. A summary of the results is graphically represented in
Figure 4.4. The raw data results are shown in the appendix chapter.

As discussed earlier in Section 1.5.1, the HPV-18 E2 protein may function as
either an activator or repressor of viral gene transcription depending on many possible
factors such as the concentration and length of E2 protein expressed, the binding
affinity of E2 protein to different E2BSs and the location of the E2BSs within the LCR.
However, it is generally accepted that the E2 region of HPV normally represses the
transcription of early viral genes from the promoter element of the LCR (Bernard et al.,
1989; Finzer et al., 2002; Jo and Kim, 2005). In contrast to the expected outcome, the
mutations introduced to the E2BSs did not result in an elevated level of promoter
activity. The luciferase activities detected from the four E2BS mutation constructs were
all lower than that from the LCR before the mutations were introduced in the three
cervical cancer cell lines tested, suggesting that the Pjos promoter is not repressed by
protein binding to the E2BSs in the context of this project. Results of the E2BS

mutations are graphically represented in Figure 4.4.
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Figure 44  Promoter activity of E2BS mutation constructs in different
mammalian cell lines.

The graph represents results obtained from transfection experiments using five different
cell lines. Relative luciferase activities from various E2BS mutation constructs were
plotted as percentages relative to the luciferase activity from the pGL3-SV40 plasmid
which served as a positive control. The error bars indicate the SEM from the three

experimental repeats performed in each cell line.

Instead of a repressive effect on the P;os promoter induced by viral E2 proteins
binding to the E2BSs, the decreased level of promoter activity detected upon the E2BS

mutations suggested the presence of promoter activation from protein binding at the
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E2BSs. A similar pattern of activities were observed for all three cervical cancer cell
lines tested, including both HPV-positive and negative cell lines, suggesting the
possible presence of cellular transcription factors that are commonly found within
cervical cancer cells which bind to the E2BSs leading to the activation of the Pjgs
promoter within the LCR. However, E2-mediated promoter repression was suggested to
be a result of E2-binding to the two promoter proximal E2BSs which displaces Sp1 and
TATA box-binding protein from their recognition sequences (Demeret et al, 1994;
Dong et al., 1994; Dostatni ef al., 1991; Tan et al., 1992). Hence if the binding of other
cellular transcription factors occur at these E2BSs within cervical cancer cells,
subsequent mutations at E2BS#2 and E2BS#1 should also result in an increased level of
promoter activation due to the same steric hindrance effect. In contrast if the E2BS only
recognises the viral E2 proteins and E2 is not expressed within cervical cancer cells,
mutations introduced to the E2BSs should not affect the activity of the promoter. The
performed experiments were not sufficiently detailed enough to explain for the
decreased promoter activation upon the E2BS mutations. Additional DNA footprinting
assays would be required to identify possible transcription factors binding to the E2
recognition sequences within the LCR. It is, however, not within the context of this
project to examine the precise mechanism of promoter regulation in the HPV-18 LCR.
In order to compare the effect of the individual E2BS mutations on the Pjos
promoter strength in different cell lines, the level of luciferase activity detected from
pGL3-LCR800 was set as 1 and activities from E2BS mutation constructs were

calculated as a ratio relative to the wild-type LCR fragment (Figure 4.5).
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7857 hp Pis
| | |
E2BSE4 E2BSZ3 E2B5 2 &1
Distal Enhancer Constitutive Promoter HelLa SiHa C33A H1299 | MRC-5
Enhancer Proximal
pGL3-LCR300 {wt) 1 1 1 1 1
pGL3.E2BSH3 ——— | .16 0.44 0.56 0.50 0.68
pGLI E2BSA2 ——————— 0.32 0.34 0.64 0.38 1.2
pGL3.E285#1 —— | .28 0.91 0.76 0.60 3.3

Figure 4.5  Relative promoter activity from the E2BS mutation constructs in
different cell lines.

The level of luciferase activity detected from the wild-type LCR insert in the pGL3-
LCRS800 plasmid was set at 1, and the ratios of luciferase readings from various E2BS
mutation constructs were calculated. A green square on the top right corner denotes an
increase in promoter activity and a red square denotes a decrease in promoter activity
when compared to the wild-type LCR. Numbers were all rounded off to two significant

figures.

The strongest reduction of promoter activity occurred within HeLa cells, with
an over 50% decrease for all the E2BS mutations. The reduction in promoter activity
was particularly larger within HelLa cells upon the mutations of E2BS#4, E2BS#3 and
E2BS#1. This suggests the possible involvement of HPV-18 viral gene products in
promoter activation, and the differences in promoter regulation within cervical cancer
cells infected by different HPV types. A larger decrease in promoter activity observed in
HeLa and SiHa cells upon the mutation at E2BS#2 (decreased by about 65%) when
compared to C33A cells (decreased by 35%) also suggested the possible presence of
viral gene products from HPV-18 and HPV-16 which works in similarly towards Pjs
promoter activation. In general, these results suggest the involvement of both cervical
cancer cell-type specific transcription factors and viral gene products in promoter

activation at the four E2BSs. Similar to the results from the LCR deletion constructs
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discussed in Chapter 3, luciferase activity detected from H1299 and MRC-5 cells were
extremely low with overlapping error bars, and hence the differences in promoter
activity induced from the E2BS mutation constructs were difficult to determine. Overall
in terms of promoter activity, the E2BS mutations did not lead to an increased level of
promoter activation within the three cervical cancer cell lines tested; hence the results
were not favourable towards the aim of the project, which was to increase promoter
activity and specificity towards cervical cancer cells.

The effect of E2BS mutations in regards to the promoter specificity towards
HPV-positive cervical cancer cells in particular can be examined more precisely by
calculating the ratios of luciferase activity from HeLa and SiHa cells against the other

control cell lines (Tables 4.1 and 4.2).

Table 4.1 Ratios of luciferase activity from E2BS mutation constructs in HeLa

against other cell lines.

Selectivity towards HelLa

wt-LCR | E2BS#4 | E2BS#3 | E2BS42 | E2BS#1
(HPV-18 +ve cervical cancer cells)

HelLa (HPV-18) : SiHa (HPV-16) 0.40 0.28 0.15 0.37 0.13
HeLa (HPV +ve) : C33A (HPV -ve) 18 1.2 0.51 0.90 0.64
HeLa (cervix) : H1299 (lung) 39 28 12 33 16

HeLa (¢cancerous epithelial) :

50 46 1 14 49
MRC-5 (normal fibroblast)

A ratio higher than 1 represents selectivity towards HeLa cells and vice versa. A red
square at the top right corner denotes a decrease in promoter specificity towards HeLa
cells upon mutations on the specified E2 binding sites of the LCR. All numbers shown

were rounded off to two significant figures.
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Table 4.2 Ratios of luciferase activity from E2BS mutation constructs in SiHa

against other cell lines.

Selectivity towards SiHa

wt-LCR | E2BS#4 | E2BS#3 | E2BS#2 | E2BS#1
(HPV-16 +ve cervical cancer cells)

SiHa (HPV-16) : HeLa (HPV -18) 25 6.6 6.5 27 79
SiHa (HPV +ve) : C33A (HPV -ve) 45 42 33 2.4 5.0
SiHa (cervix) : H1299 (lung) 98 100 77 87 130

SiHa (cancerous epithelial) :

130 170 69 38 39
MRC-5 (normal fibroblast)

A ratio higher than 1 represents selectivity towards SiHa cells and vice versa. A green
square at the top right corner denotes an increase in promoter specificity towards SiHa
cells upon mutations on the specified E2 binding sites of the LCR. A red square denotes
a decrease in promoter specificity towards SiHa cells instead. All numbers shown were

rounded off to two significant figures.

The E2BS#4 and E2BS#1 mutations slightly increased promoter specificity for
SiHa cells compared with other cell lines, but the same effect was not observed in HeLa
cells. Overall none of the E2BS mutations resulted in an increased level of promoter
specificity towards both HPV-positive cervical cancer cells tested. These results suggest
HPV viral gene products are not likely to be involved in the regulation of the LCR
promoter specificity at the four E2BSs, and also supported previous observation
suggesting that the Pjos promoter may be regulated by different mechanisms within

cervical cancer cells that were infected by different types of HPV.

4.2.2  Transcription factor binding sites mutation constructs

AP1/YY1: As mentioned earlier in Section 1.5.2(ii), AP1 is a very strong transcription

activator of the P;os promoter (Butz and Hoppe-Seyler, 1993), and also appeared to be a
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key regulator for epithelial cell-type specificity (Mack and Laimins, 1991). Since AP1
is such an important transcription control element of the Pjos promoter, one of the
possible ways to further enhance promoter activity and specificity would be to eliminate
existing competition for AP1 at its binding sites. There have been two AP1 sites
identified within the LCR of HPV-18, and one of which is located within the
constitutive enhancer region and is overlapped by a YY1 site at its 3’-end. It is therefore
possible for AP1 binding to be interfered by the binding of YY1 due to their proximity,
and hence limiting the level of promoter activation induced by AP1. Electrophoretic
mobility shift assays (EMSA) performed by Bauknecht et al. (1995) has determined that
mutation introduced at the YY1 binding site, while managed to abolish YY1 binding,
did not affect AP1 binding activity. The experiment, however, was performed on
oligonucleotides corresponding to the constitutive enhancer fragment of the LCR and
the same regulation may not apply in the context of the HPV-18 LCR. The LCR
carrying the same YY1 mutation has also been tested by Bauknecht et al. (1995) in
HeLa and HepG?2 cells, and was reported to have no effect on promoter activity. Hence
suggesting it does not play a major role in regulating the activity of the LCR. The
results, however, have not been confirmed in other cervical cancer cell lines apart from
HeLa cells. This YY1 site within the constitutive enhancer region was therefore chosen
to be mutated to observe possible repression on the Pjos promoter activity and

specificity.

KRF-1: A KRF-1 binding site is located further downstream within the constitutive
enhancer, which overlaps with an Oct-1 binding site at its 5'-end, and is known to be an
important determinant of the cell-type specificity of the LCR promoter activity.

Mutation studies performed by Butz and Hoppe-Seyler (1993) on the KRF-1 site
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showed that promoter activity was only decreased by 20% and 25% in HeLa and C33A
cells respectively, while a significant decrease was observed from HaCaT, a human
immortalised keratinocyte cell line (Boukamp et al., 1988), and in primary
keratinocytes. A KRF-1 mutation is therefore an ideal approach to enhance promoter
selectivity against cervical cancer cells in particular. The slight decrease in promoter
activity resulted from the KRF-1 mutation observed by Butz and Hoppe-Seyler (1993)
was likely to be due to the effect of base changes introduced to the overlapping region
with the Oct-1 binding site. Although Oct-1 is known to be a promoter activator of the
LCR, the binding affinity of Oct-1 to this overlapping site with KRF-1 is relatively low
(Butz and Hoppe-Seyler, 1993). Hence, the corresponding mutation would still be in
favour towards the aim of the project by increasing the selectivity ratio of the Pjos

promoter towards cervical cancer cells.

GRE/YY1: The most direct approach to enhance promoter activity is to identify a
repressor element which when mutated may lead to significant increase in transcription.
A GRE binding site is located in the promoter proximal region which overlaps with a
YY1 site at its 3’-end. Mutation studies performed by Butz and Hoppe-Seyler (1993)
suggested that a GRE mutation resulted in 2 to 3-fold increase of the basal activity of
the HPV-18 LCR in HeLa and HaCaT cells. In addition the overlapping YY1 site has
also been demonstrated to increase promoter activity upon mutation when the promoter
proximal fragment was isolated and tested for its ability to induce gene expression
(Bauknecht et al., 1992; Shi et al., 1991). Ideally mutation of both sites at their
overlapping region will result in a further increase in promoter activity when compared
to the two individual mutations. As seen in Figure 4.6, when comparing the GRE

recognition sequences of the most common types of HPV, a similar pattern was
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observed which appeared to be crucial in determining the binding affinity of the GRE
proteins. Hence these bases should be chosen to be mutated in the attempt to abolish
GRE-binding. As for the YY1 recognition sequence, Bauknecht et al. (1995) suggested
that the TTTT motif is important for YY1-binding and hence was taken into account
when oligonucleotides to be used for site-directed mutagenesis were designed. Selected

bases were mutated by substituting purines with pyrimidines and vice versa.

Palindrome AGARACH ;

HPFVE  7630. GGTRC! T| -7644
HPV-11 7674. GGTAC! T| -7688
HPV-16 7641- TGTI|ACA T| -7655
HPV-18 7839. AGCAC! T| -7853
HPV-33 7452. AGHNACI [T| - 7467

Figure 4.6  Comparison of GRE recognition sequences in common HPV types.

GRE recognition sequences of the major low-risk (HPV-6 and 11) and high-risk (HPV-
16, 18 and 33) HPV. Bases identical to the functionally analysed palindrome (Strahle et
al., 1987) are boxed, suggesting that they are crucial for binding. The numbers represent
the relative positions of the GRE recognition sequences in the genome of the

corresponding HPV type. Figure modified from Chan ez al. (1989).

Spl: The transcription factor Sp1 has been identified to be an activator of the HPV-18
LCR (Butz and Hoppe-Seyler, 1993; Demeret et al., 1994; Hoppe-Seyler and Butz,
1992). A Spl recognition sequence is located downstream of the GRE/YY1 site in the
promoter proximal region. Studies performed by Butz and Hoppe-Seyler (1993)
suggested that a mutation of this element resulted in a strong reduction of transcription
activity from the Pj¢s promoter both in HeLa and HaCaT cells. However, Rose et al.

(1998) has also reported that point mutations in the Spl motif of the HPV-18 LCR may
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lead to an increase in promoter activity by 2 to 3-fold. In addition Demeret et al. (1994)
suggested the transcriptional repression induced by mutation on the Sp1 binding motif
can be compensated by the binding of E2 to the E2BS#2, which is located immediately
downstream of the Sp1 binding site. Based on these observations, the Spl mutation may
possibly be used to induce selective promoter activation within HPV-positive cells.
Hence a LCR construct carrying a Spl mutation was produced and tested for promoter
activation in different cell lines.

Double mutation of AP1/YY1 and GRE/YY1: In addition to all the individual

mutations, an extra double mutation construct was also produced by combining the
mutations on the AP1/YY1 and GRE/YY1 sites. It was produced to examine whether a
combined effect of two individual mutation plasmids would result from a plasmid
containing the corresponding double mutation. It was also hoped that by combining the
effect of mutations on three of the potential transcriptional repressors, a maximum

increase in the Pjos promoter activity could be induced.

The five LCR fragments containing mutations at different transcription factor

binding sites were produced and represented by a schematic diagram shown in Figure

4.7.
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Figure 4.7  Schematic diagram of pGL3-LCR1000 plasmids containing
mutations on various transcription factor binding sites.

The transcription factor binding sites mutation constructs were produced by making use
of the pGL3-LCR1000 plasmid as a template. The pGL3-AP1/YY1 plasmid and the
pGL3-KRF-1 plasmid contained mutations at the YY1 and KRF-1 binding sites
respectively within the constitutive enhancer region; the pGL3-GRE/YY1 and pGL3-
Sp1 plasmids contained mutations at the GRE/YY1 and Spl binding sites respectively
within the promoter proximal region of the LCR. The pGL3-DM plasmid contained
both mutations of the pGL3-AP1/YY1 and pGL3-GRE/YY1 plasmids.

() Design and construction of the transcription factor binding sites mutation

constructs

The oligonucleotides #294 (5'-ACCTGGTATTAGTCACCGCGGTGTCCAG
GTG-3'; underlined CCGCGQG replaces TTTTCC in wild-type sequence) and #295 (5'-
CACCTGGACACCGCGGTGACTAATACCAGGT-3"); underlined CCGCGG replaces
GGAAAA in wild-type sequence) were designed to introduce mutations to the
AP1/YY1 site as described by Bauknecht et al. (1995), which showed no binding of
YY1, to produce the pGL3-AP1/YY1 plasmid. The oligonucleotides #300 (5'-TGCTTA
ACGAACTATATCCACTAAATATGT-3'; underlined replaces GCAT, CCC and A in
wild-type sequence) and #301 (5'-ACATATTTAGTGGATATAGTTCGTTAAGCA-3;

underlined replaces T, GGG and ATGC in wild-type sequence) were designed to
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introduce mutations to the KRF-1 site as described by Butz and Hoppe-Seyler (1993), to
produce the pGL3-KRF-1 plasmid. The oligonucleotides #296 (5'-TAGGTTGGGCAG
CAATTACTATAAGTTTCATTAATA-3'; underlined replaces CA and CT in wild-type
sequence) and #297 (5'-TATTAATGAAACTTATAGTAATTGCTGCCCAACCTA-3"
underlined replaces AG and TG in wild-type sequence) were designed to introduce
mutations to the GRE/YY1 binding site as described in Section 4.2.2(iii), to produce the
pGL3-GRE/YY1 plasmid. The oligonucleotides #299 (5'-ATATAAAAAAACTAGTA
ACCGAAAAC-3"; underlined replaces GGG in wild-type sequence) AND #300 (5'-GT
TTTCGGTTACTAGTTTTTTTATAT-3"; underlined replaces CCC in wild-type
sequence) were designed to introduce mutations to the Sp1 binding site as described by
Hoppe-Seyler and Butz (1992), which has been shown to abolish Sp1 binding to the site,
to produce the pGL3-Spl plasmid. The pGL3-DM plasmid containing the double
mutation of AP1/YY1 and GRE/YY1 was produced by performing a second-round site-
directed mutagenesis on the pGL3-AP1/YY1 plasmid with the GRE/YY1 mutation
oligonucleotides #296 and #297. The pair of outer primers used for the second-round
PCR of site-directed mutagenesis was the same pair of primers used to produce the LCR
insert of the pGL3-LCR1000 plasmid, oligonucleotides #287 and #291 (see Table 2.3
for details of oligonucleotides used).

In contrast to the E2BS mutation constructs as described in Section 4.2.1, the
pGL3-LCR1000 plasmid was used as the template for the mutations performed on the
transcription factor binding sites instead. This is due to the fact that it was not
appreciated that, the 850 bp Rsal-BamHI fragment was stronger in inducing promoter
activity when these experiments were designed. However, as results were interpreted by
calculating the promoter activity induced as a relative percentage compared to the

positive control plasmid pGL3-SV40, the different length of LCR inserts in the two sets
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of mutation constructs will not interfere with the results. The positions of

oligonucleotides binding to the LCR are shown in Figure 4.8.
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Figure 4.8  Binding positions of oligonucleotides used for site-directed
mutagenesis of transcription factor binding sites within the LCR.

For site-directed mutagenesis performed on the chosen transcription factor binding sites,
a pair of oligonucleotides was needed to introduce the designated mutations into both
strands during the first round of PCR. Oligonucleotides #294/#295 was used for
mutation on AP1/YY1; #300/#301 for KRF-1; #296/#297 for GRE-Y Y1 and #298/#299
for Spl. The E2BSs were highlighted in yellow and the transcription factor binding sites
chosen to be mutated are boxed. The outer pair of oligonucleotides #287/#291 was used
to generate the 1,040 bp BamHI fragment containing the mutations in the second round
of PCR, with the restriction enzyme recognition sequences added to assist cloning (X#ol
in #287 and Hindlll in #291; in bold and caps). The TATA box and ATG start codon of
the E6 ORF was highlighted in red and blue respectively.
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The steps involved in the construction of the pGL3-KRF-1 plasmid are shown
below as an example of typical results obtained. The pGL3-KRF-1 plasmid contains the
1,040 bp BamHI LCR fragment carrying the mutations introduced at the KRF-1 binding
site as an insert. The oligonucleotides designed to introduce the mutations at the KRF-1
binding site by site-directed mutagenesis were #300 (forward) and #301 (reverse) (see
Figure 4.8 for details). A first-round PCR was performed using the pGL3-LCR1000
plasmid as the template with oligonucleotide pairs #287/#301 and #300/291 (see Table
2.3 for details of oligonucleotides used), producing two separate PCR products
containing partial fragments of the insert (Figure 4.9). The two PCR products obtained
from the first-round PCR were then mixed and used as the template for the second-
round PCR, using the outer oligonucleotide pair #287/#291 as primers (Figure 4.10).
The resulting PCR product carrying mutation at the KRF-1 binding site was digested by
restriction enzymes Xkol and Hindlll, and ligated to the pGL3-Basic vector which was
linearised by the same restriction enzymes. The ligation mixture was then transformed
into competent DHS5a cells and the clones obtained were screened by colony PCR to

ensure the successful cloning of the pGL3-KRF-1 plasmid (Figure 4.11).
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Figure 4.9  Construction of the pGL3-KRF-1 plasmid — first-round PCR.

A 2% (w/v) agarose gel ran at 90V for 25 minutes, showing the PCR products of the
first-round PCR during the construction of the pGL3-KRF-1 plasmid by site-directed
mutagenesis. Lane 1 was 500 ng of pUC/Hinfl DNA marker. Lane 2 was PCR product
from the positive control reaction using the outer oligonucleotide pair #287/#291 as the
primers and the pGL3-LCR1000 plasmid as the template (1,062 bp). Lane 3 was the
negative control reaction with no DNA template. Lane 4 was the PCR product from
oligonucleotides #287/#301 (753 bp). Lane 5 was the PCR product from
oligonucleotides #300/#291 (339 bp).

Figure 4.10 Construction of the pGL3-KRF-1 plasmid — second-round PCR.

A 2% (w/v) agarose gel ran at 90V for 25 minutes, showing the PCR products of the
second-round PCR during the construction of the pGL3-KRF-1 plasmid by site-directed
mutagenesis. Lane 1 was 500 ng of pUC/Hinfl DNA marker. Lane 2 was PCR product
from the positive control reaction using the outer oligonucleotide pair #287/#291 as the
primers and the pGL3-LCR1000 plasmid as the template (1,062 bp). Lane 3 was the
negative control reaction with no DNA template. Lane 4 was the PCR product from
oligonucleotides #287/#301 by using a mixture of the two PCR products obtained from
the first-round PCR previously (1,062 bp), which is also the final PCR product of the
LCR1000 fragment carrying the mutation at the KRF-1 binding site.
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Figure 4.11 Construction of the pGL3-KRF-1 plasmid — colony PCR.

A 2% (w/v) agarose gel ran at 90V for 30 minutes, showing the PCR products of the
colony PCR performed on selected clones from the transformation of the pGL3-KRF-1
plasmid into DH5a. Lane 1 was 500 ng of pUC/Hinfl DNA marker. Lane 2 was PCR
product from the positive control reaction using the outer oligonucleotide pair
#287/#291 as the primers and the pGL3-LCR1000 plasmid as the template (1,062 bp).
Lane 3 was the negative control reaction with no DNA template. Lane 4 to 10 were
PCR products of colony PCR performed on seven of the selected clones using the outer
oligonucleotides pair #287/#301, which should produce a product size of 1,062 bp if an
insert was present. As shown in the gel lane 6, 8, 9 and 10 represent 4 clones which

have been successfully transformed with the pGL3-KRF-1 plasmid.

(i) Effect of transcription factor binding sites mutations on P;ys promoter activity
and specificity

Similar to transfection experiments performed in Chapter 3, plasmid constructs
containing the wild-type LCR and LCR fragments carrying mutations at selected
transcription factor binding sites were co-transfected into the five mammalian cell lines
in Table 2.1, together with the positive control plasmid pGL3-SV40. Transfected cells
were harvested 48 hours after transfection and cell lysates were collected for luciferase
and B-galactosidase assays as described in Sections 2.2.10 and 2.2.11. Experiments on
each cell line were repeated for at least three times and each individual experiment was

performed in triplicates. Results were analysed as described in Table 3.3 and calculated
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into percentage luciferase activity relative to the activity detected from the positive

control plasmid pGL3-SV40. A summary of the results is graphically represented in

Figure 4.12. The raw data results are shown in the appendix chapter.
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Figure 4.12 Promoter activities of transcription factor binding sites mutation

constructs in different mammalian cell lines.

The graph represents results obtained from transfection experiments using five different

cell lines. Relative luciferase activities detected from various transcription factor

binding sites mutation constructs were plotted as percentages relative to the luciferase

activity from the pGL3-SV40 plasmid which served as a positive control. The error bars

indicate the SEM from the three experimental repeats performed in each cell line.

As seen in Figure 4.12, not all the transcription factor binding sites chosen to

be mutated resulted in an increased level of promoter activity. In all three cervical
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cancer cell lines tested, an increase in luciferase activity was observed from the
mutation performed at the GRE/YY1 binding site. In contrast, mutation at the AP1/YY1
site resulted in increased activity only in the HPV-negative cervical cancer cell line
tested. The double mutation of the AP1/YY1 and GRE/YY1 binding sites appeared to
have an additive effect of the two individual mutations, which resulted in significant
increase of luciferase activity in both of the HPV-16 positive and HPV-negative cervical
cancer cell lines tested. Mutations of the KRF-1 and Spl binding sites resulted in a
decreased level of luciferase activity from all three cervical cancer cell lines tested.

In order to compare the effect of the individual transcription factor binding
sites mutations on the Pjos promoter strength in different cell lines, the level of
luciferase activity detected from pGL3-LCR1000 was set as 1 and activities from the
mutation constructs were calculated as ratios relative to the wild-type LCR fragment

(Figure 4.13).
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Figure 4.13 Relative promoter activity from the transcription factor binding
sites mutation constructs in different cell lines.

The level of luciferase activity detected from the wild-type LCR insert in the pGL3-
LCR1000 plasmid was set at 1, and the ratios of luciferase readings from various
transcription factor binding sites mutation constructs were calculated. A green square on

the top right corner denotes an increase in promoter activity and a red square denotes a
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decrease in promoter activity when compared to the wild-type LCR. Numbers were all

rounded off to two significant figures.

The effect of the mutations was analysed individually for their contribution
towards the Pyos promoter activity. The ratios calculated in Figure 4.13 showed that a
mutation at the YY1 site adjacent to an APl binding site within the constitutive
enhancer region resulted in a significant decrease in the Pjos promoter activity within
HelLa cells, retaining only 27% of activity from the wild-type LCR, as opposed to
observations by Bauknecht ef al. (1995) suggesting the corresponding mutation did not
affect promoter activity in Hela cells. The same mutation also led to a decrease in
promoter activity within SiHa cells but to a lesser extent, retaining about 77% of wild-
type LCR promoter activity. These results suggest that protein binding to this YY1
recognition motif enhances the P;os promoter activity within the HPV-positive cervical
cancer cells tested in the context of this project. In contrast, the mutation resulted in an
almost two-fold increase in promoter activity within the HPV-negative C33A cells,
suggesting the possibility of HPV-dependent promoter activation which appeared to
overcome the repressive effect of common cervical cancer cell-specific transcription
factors binding to the YY1 site.

Previous results obtained by Butz and Hoppe-Seyler (1993) suggested that a
mutation at the KRF-1 binding site within the constitutive enhancer region had a
significantly stronger effect in reducing the level of LCR promoter activity in non-
cervical cancer cell lines HaCaT and primary keratinocytes (about 75% decrease), when
compared to cervical cancer cell lines HeLa and C33A cells (about 25% decrease). It
was initially hoped that a mutation introduced to this KRF-1 binding site would lead to

an increase in promoter specificity towards the cervical cancer cells tested, which
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contributes towards the aim of the project. Although the KRF-1 mutation construct
carrying exactly the same mutations resulted in decreased promoter activity in all three
cervical cancer cell lines tested, which correlates with previous observations by Butz
and Hoppe-Seyler (1993), however, the extent of reduction in promoter activity
appeared to be different. Promoter activity was almost completely abolished within
HelL a cells; about 47% decrease in SiHa cells and about 18% decrease C33A cells when
compared to the wild-type LCR promoter activity. These results suggest possible
binding of common cervical cancer cell-specific transcription activators to the KRF-1
recognition motif. The more significant decrease in promoter activity upon the mutation
in HeLa and SiHa cells suggested the possible involvement of HPV viral gene products
in promoter activation at the KRF-1 binding site, which is particularly significant in the
presence of HPV-18. The mutation of the KRF-1 binding site, however, is not beneficial
towards the aim of the project for it completely abolished the activity of the Pjos
promoter in HeLa cells.

The mutation introduced at the GRE/YY1 site within the promoter proximal
region was the only mutation that resulted in an increased promoter activity in all three
cervical cancer cell lines tested. A 1.5-fold increase in promoter activity was observed
in HeLa cells and almost 2-fold and 2.5-fold increase in SiHa and C33A cells
respectively. Although the pGL3-GRE/YY1 plasmid contained mutations at both the
GRE and YY1 binding sites, it did not appear to have a combined effect of the two
individual mutations performed in previous studies. Butz and Hoppe-Seyler (1993)
reported that a mutation at the GRE binding site resulted in a 2 to 3-fold increase in
promoter activity in both HeLa and HaCaT cells, whereas Bauknecht et al. (1995)
suggested that the mutation of the adjacent YY1 binding site in the context of the LCR

resulted in a decrease in promoter activity in HeLa cells by 3 to 4-fold. The elevated
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level of promoter activity all three cervical cancer cell lines suggested the possible
existence of cellular transcriptional repressors, which may be commonly found in
cervical cancer cells, binding to the GRE/YY1 site. The less significant increase in the
level of promoter activation observed in HPV-positive HeLa and SiHa cells suggested
possible HPV-dependent promoter activation which compensates for the repressive
effect of common cellular transcription factors found in all three cervical cancer cell
lines.

Similar to the mutation on the KRF-1 binding site, mutation of the Sp1 binding
site within the promoter proximal region resulted in decreased level of promoter activity
in all three cervical cancer cell lines tested, which suggested the possible existence of
common cellular transcription activators acting on the Spl binding site. The decrease
was most significant in HeLa cells, retaining only about 44% of wild-type LCR
promoter activity, whereas in SiHa and C33A promoter activities were both decreased
slightly by about 15%. The results were dissimilar to those reported by Butz and Hoppe-
Seyler (1993), which suggested the same mutation reduced the level of promoter
activity in HeLa cells by almost 75%. A more significant decrease in promoter activity
upon mutation was observed in Hela cells, whereas the mutation exerted a similar
effect in SiHa and C33A cells, suggesting that promoter activation at the Spl binding
site may possibly be related to the expression of viral gene products from HPV-18 in
particular.

The pGL3-DM plasmid contained both mutations of the AP1/YY1 and the
GRE/YY1 binding sites within the LCR, and appeared to display an additive effect of
the two individual mutations. A reduction in promoter activity was still observed in

HeLa cells, retaining about 56% of wild-type LCR promoter activity. In contrast an
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increase in promoter activity was observed in both SiHa and C33A cells, by over 1.5-
fold and almost 4-fold respectively.

The effect of transcription factor binding sites mutations in regards to the
promoter specificity towards HPV-positive cervical cancer cells can be examined more
precisely by calculating the ratios of luciferase activity from HelLa and SiHa cells

against the other control cell lines (Tables 4.3 and 4.4).

Table 4.3 Ratios of luciferase activity from transcription factor binding sites

mutation constructs in HeLa against other cell lines.

Selectivity towards HeLa AP1/ GRE!
wt-LCR KRF-1 Sp1 DM
(HPV-18 +ve cervical cancer cells) YY1 YY1 B
HeLa (HPV-18) : SiHa (HPV-16) 047 0.18 0.021 0.37 0.29 0.15
HelLa (HPV +ve) : C33A (HPV -ve) 16 0.24 0.040 11 0.86 0.22
HeLa (cervix) : H1299 (lung) 48 23 21 43 20 16
HeLa (cancerous epithelial) :
54 8.1 0.38 28 24 14
MRC-5 (normal fibroblast)

A ratio higher than 1 represents selectivity towards HeLa cells and vice versa. A red
square at the top right corner denotes a decrease in promoter specificity towards HelLa
cells upon mutations on the specified transcription factor binding sites of the LCR. All

numbers shown were rounded off to two significant figures.

161



Chapter Four — LCR Mutation Construct

Table 4.4 Ratios of luciferase activity from transcription factor binding sites

mutation constructs in SiHa against other cell lines.

Selectivity towards SiHa AP1/ GRE!
wt-LCR KRF-1 Sp1 DM
(HPV-16 +ve cervical cancer cells) YY1 YY1 B
SiHa (HPV-16) : HeLa (HPV -18) 21 5.6 47 27 3.5 6.7
SiHa (HPV +ve) : C33A (HPV -ve) 3.3 13 19 29 3.0 15
SiHa (cervix) : H1299 (lung) 100 130 97 120 68 100
SiHa (cancerous epithelial) :
110 46 18 75 82 95
MRC-5 (normal fibroblast)

A ratio higher than 1 represents selectivity towards SiHa cells and vice versa. A green
square at the top right corner denotes an increase in promoter specificity towards SiHa
cells upon mutations on the specified transcription factor binding sites of the LCR. A
red square denotes a decrease in promoter specificity towards SiHa cells instead. All

numbers shown were rounded off to two significant figures.

As shown in Tables 4.3 and 4.4, the wild-type LCR promoter activity is 1.6-
fold stronger in HeLa cells, and over 3-fold stronger in SiHa cells, when compared to
C33A cells. None of the mutations of transcription factor binding sites introduced
resulted in an increased level of promoter specificity towards both of the HPV-positive
cervical cancer cell lines tested when compared to HPV-negative ones, suggesting that
HPV-dependent repression of the Pyos promoter may not be involved at the transcription
factor binding sites chosen to be studied. Although the mutations at the AP1/YY1 and
GRE/YY1 binding sites resulted in increased Pos promoter specificity towards SiHa
cells when compared to H1299 cells, which may represent the presence of HPV-
dependent and cervical cancer cell type-specific promoter repression; but since the same
effect of the mutations was not observed in HeLa cells, hence these mutations may not
be ideal to be used to further increase promoter specificity within HPV-positive cervical

cancer cells.
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4.3 General discussion

As discussed in Section 3.3.3, the HPV-18 LCR can be selectively activated
within cervical cancer cells, in the context of the limited number of cell lines used in
this project, suggested the involvement of transcription factors that are specifically
found within cervical cancer cells in the regulation of the P,os promoter activity.
Moreover, a higher level of promoter activity was observed within two cervical cancer
cells tested that are HPV-positive, and in particular, within the HPV-16-positive SiHa
cells when compared to the HPV-18-positive HeLa cells. These results also suggested
the possible involvement of HPV viral gene products in the regulation of P;os promoter
activity. Hence the second part of the project was aimed at identifying transcription
control elements which may responsible for the observed promoter specificity, and also
to further increase promoter activity and specificity towards cervical cancer cells by
performing mutations at transcription factor binding sites which were suggested by

previous studies to be transcriptional repressor on the HPV-18 LCR.

4.3.1 Promoter regulation by cervical cancer cell type-specific transcription

factors

It has been suggested that the epithelial cell-specific activity of the HPV-18
LCR is unlikely to be induced from common, epithelial transactivating factors, and
alternate regulatory pathways may exist in different epithelial cell types (Butz and
Hoppe-Seyler, 1993). In the context of the five mammalian cell lines tested in this
project, the results obtained from the LCR deletion constructs also suggested that the
HPV-18 LCR promoter activity is not only specific towards epithelial cells, but more

precisely towards epithelial carcinomas of a cervical origin. In addition, the mutations at
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the four E2BSs, as well as the KRF-1 and Spl binding sites, resulted in decreased
promoter activities within all three cervical cancer cell lines tested. These results
suggest the presence of cervical cancer cell type-specific transcriptional activators
acting on these transcription factor binding sites prior to mutation, which may also
explain the promoter specificity observed from the LCR. Alternatively, the introduced
mutations may have caused conformational changes in the promoter which could be
expected to affect the binding of transcription factors and regulators. In contrast,
mutations at the GRE/YY1 binding site resulted in increased promoter activities in all
three cervical cancer cell lines tested, while the promoter activities detected from both
non-cervical cancer cell lines H1299 and MRC-5 cells remained very low. This result
suggests the presence of cellular transcriptional repressors, which are commonly found

in cervical cancer cells, binding to the GRE/YY1 site prior to mutation.

4.3.2 Promoter regulation by HPV viral gene products

) HPV-positive versus HPV-negative cervical cancer cells

One of the main issues in the context of the project was the involvement of
HPV wviral gene products in the regulation of the Pjos promoter. As mentioned
previously that the E2 protein is the only viral gene product known to be responsible in
the regulation of HPV transcription and is crucial in determining the level of expression
of the E6 and E7 oncogenes (Bednarek er al., 1998; Schwarz et al., 1985), and only
recognition sequences for the E2 protein are found to be present within the LCR. Upon
the integration of high-risk HPV into the host genome during the cellular transformation
process, the E2 ORF has been reported to be always disrupted (Bednarek et al., 1998;

Corden et al., 1999; Kitagawa et al., 1996; Rosales et al., 2001) with the viral E2
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protein not being expressed. Hence promoter regulation in the context of HPV-infected
cervical cancer cells is thought to be dependent solely on cellular transcription factors
present. However, other studies suggest the involvement of truncated forms of E2
proteins in the regulation of the Pos promoter within HPV-infected cervical cancer cells,
which may in turn influence early promoter activation and the expression of E6 and E7
oncogenes (see Section 1.5.1). Moreover, studies performed by Gius et al. (1988)
suggest that the distal enhancer region of the LCR is induced by E6. It is therefore
reasonable to suggest that the presence of the integrated part of viral DNA within HPV-
infected cervical cancer cells does contribute to promoter activation within the LCR,
and attempted were made to identify the difference in promoter regulation in between
HPV-positive and HPV-negative cervical cancer cell lines.

Results obtained from the LCR deletion constructs as discussed in Chapter 3
suggested that the Pos promoter is not only specific towards the three cervical cancer
cells tested, but more precisely towards the two cervical cancer cells that are infected by
HPV. In addition, results obtained from the mutation studies identified several
transcription factor binding sites to be particularly responsive within the HPV-positive
cervical cancer cell lines tested. The mutation at the AP1/YY1 resulted in decreased
promoter activity only within the two HPV-positive cervical cancer cell lines, as
opposed to increased activity observed in the HPV-negative cervical cancer cell line
tested. Moreover, mutations at E2BS#3, E2BS#2, and the KRF-1 binding sites all
resulted in a stronger reduction in promoter activity within the HPV-positive cervical
cancer cell lines when compared to the HPV-negative cell line tested. These results
suggest the presence of HPV-dependent promoter activation. In contrast to promoter
regulation by cervical cancer cell type-specific transcription factors, HPV-dependent

promoter repression was not observed at the chosen transcription factor binding sites.

165



Chapter Four — LCR Mutation Construct

The results obtained have therefore suggest the possible involvement of HPV viral gene
products in the regulation of the Pjos promoter in the context of HPV-infected cervical
cancer cells. The precise mechanism of promoter regulation, however, remains unclear

as experiments performed were not designed for detailed studies on that aspect.

(ii) HPV-18 versus HPV-16 infected cervical cancer cells

In addition to differences observed in promoter regulation between HPV-
positive and HPV-negative cervical cancer cell lines, differences were also observed
with respect to cervical cancer cells infected by different types of HPV. Results
obtained from the LCR deletion constructs as mentioned in Chapter 3 identified a larger
percentage reduction in promoter activity upon the deletion of the distal enhancer
fragment from the LCR in HeLa cells when compared to the other cell lines tested,
suggesting the involvement of HPV-18 viral gene products in promoter activation at
transcriptional control elements present within the distal enhancer region (see Section
3.2.3(iii) for details). In addition, the mutations introduced at the four E2BSs, the
AP1/YY1 and Spl binding sites all resulted in a more significant reduction of promoter
activity in HeLa cells when compared to SiHa cells, which suggested promoter
regulation to be more dependent on activation by HPV-18 viral gene products when
compared to HPV-16 at the selected transcription factor binding sites. This may be due
to the fact that the Pjos promoter was originally derived from HPV-18; hence the
binding of HPV-18 viral gene products to the LCR is crucial in determining the level of
P05 promoter activity induced in the context of HeLa cells.

Ideally, a lower level of Pjys promoter activity should also be observed from
other cell lines that do not contain the DNA of HPV-18 if the above assumption on

HPV-dependent promoter regulation is true. Results obtained from the LCR deletion
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constructs, however, showed that P;os promoter activity within cervical cancer cell line
infected by HPV-18 (HeLa) was significantly lower than that infected by HPV-16
(SiHa), and only slightly higher than promoter activity from HPV-negative cervical
cancer cells tested (C33A). Moreover, none of the transcription factor binding sites
chosen to be studied appeared to be responsible for stronger promoter activation by
HPV-16 viral gene products when compared to HPV-18. The higher level of promoter
activity observed within SiHa cells when compared to Hela cells, and the less
significant decrease in promoter activity upon mutations at corresponding transcription
factor binding sites, may possibly be due to a higher binding affinity of HPV-16 viral
proteins to the transcriptional control elements of the HPV-18 LCR, since viral proteins
from different HPV types are known to possess different binding affinities to their target

recognition sites (Hwang et al., 2002).
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4.4 Conclusion

In conclusion, there are three novel observations arising from this project.
Firstly, the HPV-18 Po5s promoter is shown to possess selective activity within cervical
cancer cells in the context of the five mammalian cell lines tested, and therefore may
serve as a novel tool to achieve cervical cancer-specific gene expression. Upon linkage
to a suicide gene, the HPV-18 LCR may be used as a tissue-specific promoter element
for gene therapy targeting cervical cancer cells. Secondly, in regards to promoter
regulation of the HPV-18 LCR, the 3’-end of the HPV L1 gene (distal BamHI-Rsal
fragment) appeared to possess repressive properties on the activity of the Pj¢s promoter.
In contrast, the distal enhancer fragment (distal Rsal-Rsal fragment) appeared to contain
important transcription control elements responsible for strong promoter activation,
which may not have been identified to date. Thirdly, results from the mutation studies
performed suggest that the E2BSs are not responsible for promoter repression within
three cervical cancer cell lines tested, as opposed to the E2-mediated promoter
repression during the normal viral life cycle of HPV. Instead, the E2BSs appeared to be
involved in Pj¢s promoter activation by possible interaction with cellular transcription
factors.

In regards to the specificity of the LCR towards HPV-associated cervical
cancer cells in particular, most of the transcription control elements chosen to be studied
in this project induced a more significant decrease in promoter activity upon mutation
within the two cervical cancer cells that are HPV-positive, and in particular, in HeLa
cells which is infected by HPV-18. These results suggest the presence of transcription

control elements involved in promoter specificity towards HPV-positive cervical cancer
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cells, and the Pjos promoter may be regulated by the same transcription factors to a
different extent in cervical cancer cells infected by different HPV types.

Overall, the findings of this project support the use of the HPV-18 LCR in
cervical cancer gene therapy. The Pjos promoter of HPV-18 appeared to be an ideal
promoter element to be used for directing cervical carcinoma-specific expression of
therapeutic or suicide genes. Optimal activity and specificity from the P;os promoter can
be achieved by making use of the 850 bp Rsal-BamHI fragment of the LCR carrying a
mutation at the GRE/YY1 binding site within the promoter proximal region (proximal
Rsal-BamHI fragment). From the results obtained in this project, the introduced
GRE/YY1 mutation did not induce a significantly higher level of P;os promoter activity
within the HPV-18-positive cervical cancer cell line (HeLa) when compared to the
HPV-negative cervical cancer cell line (C33A). However, since virtually all cervical
cancer cases are linked to genital infection with HPV (WHO, 2006) and HPV-negative
cervical cancer cells are extremely rare (Walboomers and Meijer, 1997), it is in theory
unnecessary for the candidate promoter element to distinguish cervical cancer cells that
are HPV-positive in particular. However, this would be an ideal outcome in the aspect
of retaining promoter activation by the candidate promoter element within a highly
specific population of target cells, hence minimising the chances of promoter activation

in normal non-cancerous cells that are HPV-negative.
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4.5 Future directions

In terms of promoter regulation of the HPV-18 LCR, in addition to future
experiments as described in Section 3.5, it would be beneficial to further investigate the
precise mechanism of the Pjos promoter regulation. The mutations introduced at the
selected transcription factor binding sites may have resulted in the formation of
recognition sequences for other unknown transcription factors, which may affect the
level of promoter activity induced in unexpected ways. Hence DNase footprinting
studies can be performed on the mutated sequences to identify possible binding of other
transcription factors, and their contribution towards the P95 promoter activity. Attempts
can also be made to identify transcription factors responsible for the HPV-dependent
promoter regulation observed. Since the viral gene products expressed in the context of
HPV-infected cervical cancer cells are limited, gel retardation assays can be performed
to identify the viral proteins binding to the transcription factor binding sites studied. A
deeper understanding of the HPV-dependent promoter regulation may also contribute
towards the improvement of the HPV-18 LCR promoter selectivity towards HPV-
positive cervical cancer cells in particular, which would be beneficial towards the
development of a highly specific HPV promoter to be used for gene therapy.

The ultimate aim of the project is to develop a tool for gene therapy in the
treatment of cervical cancer. This can be accomplished by substituting the /uc gene in
the LCR constructs produced with a suicide gene. A suicide gene can be any gene that
confers a suicidal phenotype in target cells upon its expression. By selective expression
of the suicide gene induced by the HPV-18 LCR, cervical cancer cells can be
preferentially destroyed. A schematic diagram illustrating the ultimate aim of the project

is shown in Figure 4.14. Examples of a suicide gene may be a gene that encodes for an
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endonuclease such as DNase I, or a cytotoxin such as saporin. Saporin is a ribosome-
inactivating protein from seeds of the plant Saponaria officinalis, and a recent study by
Zarovni et al. (2007) have demonstrated the efficacy of making use of a saporin gene in
cancer gene therapy via a non-viral gene delivery approach. The HPV-18 LCR
constructs can first be tested in vitro by transfecting into different mammalian cell lines
and performing cytotoxicity assays to determine the efficiency of the promoter
constructs in inducing apoptosis within cervical cancer cell lines. In the application of
cervical cancer gene therapy in vivo, however, additional studies will be required
regarding the efficient delivery of the therapeutic plasmids into the targeted cervical
carcinomas cells (as discussed in Section 1.6). Despite the efficacy of the use of the
HPV-18 LCR to target cervical cancer cells, which has been explored in this project; a
safe and effective delivery system of the anti-HPV therapeutic genes will be required
before the activity and specificity of the HPV-18 promoter element can be fully utilised

for the gene therapy of HPV-associated cervical cancer.
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Figure 4.14 Schematic diagram illustrating the ultimate aim of the project.

The ultimate aim of this project is to develop a gene therapy which can specifically
target cervical cancer cells. By constructing a suicide gene expression vector containing
the LCR of HPV-18, and by increasing its promoter activity and specificity by
performing appropriate mutations at selected transcription factor binding sites, suicide
gene expression can be induced selectivity within HPV-infected cervical cancer cells,
leading to the self-destruction of the target cells. In normal cells that are HPV-negative,
the promoter element within the HPV-18 LCR will remain inactive and the suicide gene

will not be expressed thus the cells remain healthy and unaffected.
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