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Abstract 

Understanding the oceans role in mitigating atmospheric CO2 and climate requires a 

good constraint on spatiotemporal variability in the ocean carbon system. However, 

large spatiotemporal data limitations hamper our ability to quantify and understand 

patterns of ocean carbon dynamics. Here, I have developed a novel empirical approach 

to predict inorganic CO2 concentrations (total inorganic carbon (CT), total alkalinity 

(AT) and partial pressure of CO2 (pCO2)) in the global ocean mixed-layer using standard 

hydrographic parameters (SHP; temperature, salinity, dissolved oxygen and nutrients) in 

order to provide independent constraints and insights on our understanding of ocean 

carbon dynamics, air-sea gas exchange and ocean acidification. 

The novel technique, called SOMLO (Self-Organizing Multiple-Linear Output), 

couples a neural-network clustering algorithm with a multiple-linear regression to 

derive empirical relationships using bottle-data. Deploying and testing the SOMLO 

approach on a newly synthesized global bottle-dataset showed significant improvements 

over traditional linear approaches; improving global predictive skill by 19% for CT, with 

a global capacity to predict CT to within ±10.9 μmol kg-1 (±9.2 μmol kg-1 for AT and 

±22.5 μatm for pCO2). In particular, the new non-linear method improved predictive 

skill in the most complex and dynamically important regions of the ocean (equatorial 

Pacific and Southern Ocean) by up to 30%. 

The SOMLO approach was then applied to monthly SHP climatologies 

(WOA09) in order to diagnose monthly ocean surface CT, AT and pCO2 patterns for the 

nominal year of 2000. Based on this analysis, patterns of air-sea CO2 flux were 

diagnosed and found to be broadly consistent with the global underway pCO2 database, 

suggesting a contemporary oceanic CO2 uptake of 1.10±0.25 PgC yr-1 for the year of 

2000. However, significant differences were found in 30% of the ocean, particularly in 

the equatorial Pacific and Southern Ocean. 
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For ocean acidification, seasonality in CO2 was found to bring forward the onset 

of aragonite under-saturation by about 19 years on average, exposing an additional 

24×106 km2 to at least month-long corrosive aragonite conditions by 2100. Strong 

seasonal variability was also found to obscure the detection of anthropogenic ocean 

acidification by ~45 years in subtropical regions and ~60 years in higher latitudes.
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1.1 Motivation 

For ten thousand years prior to the industrial revolution (~1750 AD), cycling of carbon 

between the ocean, land and atmosphere maintained a relatively stable atmospheric 

carbon dioxide (CO2) concentration between 260 to 280 ppm (Etheridge et al., 1996; 

Petit et al., 1999). The ensuing release of ~530 Pg (1 Pg = 1015 g) of carbon (PgC) 

through humanities consumption of geological carbon (~360 PgC; Boden et al., 2012) 

and land use changes (~170 PgC; Friedlingstein et al., 2010; Houghton, 2003), has 

resulted in the near exponential increase in atmospheric CO2 to be 392.6 ppm in 2012 

(Dlugokencky and Tans, 2012). As a potent greenhouse gas, the accumulation of CO2 

alters the global radiative energy budget by increasing the atmospheres infrared opacity 

– commonly known as greenhouse warming (Forster et al., 2007). Already, human-

derived CO2 has contributed ~60% to the positive shift in planetary radiative forcing 

since 1750 (Forster et al., 2007), and its relative contribution will continue to grow with 

rising emissions (Hofmann et al., 2006). Humanities demand for fossil-fuel derived 

energy (Andres et al., 2012) could result in atmospheric CO2 levels in excess of 730 

ppm by centuries end if no emission reduction policies are implemented (Friedlingstein 

et al., 2006; Meinshausen et al., 2011). The concomitant 2-4°C rise in global-mean 

surface temperature will significantly change both regional and global climate patterns, 

including sea-level rise, precipitation trends and extreme weather events (Meehl et al., 

2007); all of which present large consequences for society. 

Quantifying the redistribution of anthropogenic CO2 in the global carbon system 

is crucial for understanding future climate change, since only the fraction that remains 

airborne contributes to greenhouse warming. Within the global carbon system, only two 

reservoirs exchange CO2 fast enough to influence atmospheric concentrations on 

seasonal and longer time-scales; the oceans and terrestrial biosphere. Comparison 

between annual atmospheric CO2 accumulation and anthropogenic CO2 emissions 
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revealed that on average, 57% of man-made CO2 has been absorbed by the land and 

ocean carbon sinks each year since 1959 (Le Quéré et al., 2009). Despite this, there are 

large year-to-year variations in this airborne-fraction as a result of natural variability in 

oceanic and terrestrial CO2 sinks (Sarmiento et al., 2010). 

Partitioning between the terrestrial and ocean sinks represents an important 

challenge for constraining future atmospheric CO2 levels, since carbon residence time 

differs distinctly between the two systems. In the terrestrial biosphere, carbon storage 

ranges from seconds to decades, whereas the ocean can sequester anthropogenic carbon 

for thousands of years (Archer et al., 2009). Due to extreme heterogeneity in both space 

and time within the terrestrial carbon system (Raupach, 2011), partitioning between 

these two sinks has largely relied on better oceanic CO2 uptake constraints. 

Several independent studies estimate the global ocean sequesters ~30%         

(~2.0 PgC) of anthropogenic CO2 emissions each year (e.g., Gruber et al., 2009; 

Manning and Keeling, 2006; Takahashi et al., 2009). Despite the importance of this CO2 

sink from a climate change perspective, when CO2 dissolves in the ocean it acts as a 

weak acid lowering seawater pH. The uptake of ~155 Pg of anthropogenic carbon 

(Khatiwala et al., 2012) has already decreased the average ocean surface pH by ~0.1 

units relative to preindustrial times (Feely et al., 2004). The immediate impact of ocean 

acidification is a decrease in the ability of multiple marine organisms to perform their 

physiological processes (Fabry et al., 2008; and references within). This includes the 

ability of calcifying organisms to secrete and preserve their calcium carbonate (CaCO3) 

shells and skeletons; a process that plays a crucial role in the global carbon cycle. 

Additional to alterations in ocean carbon chemistry, an increasing number of studies are 

identifying changes in the natural cycling of carbon induced by shifts in the global 

climate system (e.g., Le Quéré et al., 2007, 2010; Lovenduski et al., 2007; Matear and 

Lenton, 2008). The influence of these alterations is estimated by models to have 
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dampened oceanic uptake of anthropogenic CO2 by ~18% since 1989 (McNeil and 

Matear, 2012). 

Understanding how the ocean will respond to a higher CO2 world requires 

accurate knowledge of natural variability in the ocean carbon system on seasonal to 

inter-annual time-scales. Despite significant efforts over recent decades to establish a 

global measurement network, large spatial and temporal data limitations hamper efforts 

to constrain higher-frequency variability and detect secular trends over the majority of 

the ocean. In order to advance our understanding of how natural variability in the ocean 

influences atmospheric CO2 levels, it’s important to understand the drivers of ocean 

carbon variability. 

1.2 Ocean carbon dynamics 

The world’s oceans act as a large reservoir of carbon that continuously exchanges CO2 

with the atmosphere. Exchange at the air-sea interface is driven by the air-sea gradient 

in partial pressure of CO2 (pCO2), where lower sea-surface concentrations relative to the 

atmosphere tend to absorb atmospheric CO2, while opposite conditions typically outgas 

CO2. Each year, approximately 90 PgC is naturally exchanged at the air-sea interface in 

both directions (Sarmiento and Gruber, 2002). Despite a near zero net annual flux of 

natural CO2, a recent synthesis of sea-surface pCO2 measurements suggests the pattern 

of CO2 exchange is not homogenous across the global ocean, but exhibits large spatial 

and temporal variability (Takahashi et al., 2009). For example, in the Southern Ocean, 

North Atlantic and North Pacific the ocean is estimated to act as a large annual-net sink 

for atmospheric CO2, while the equatorial Pacific and far south of the Southern Ocean 

are suggested to be large annual-net sources of CO2 to the atmosphere (Takahashi et al., 

2009). 
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1.2.1 Drivers of variability 

The capacity of the oceans to store CO2 is immense. On multi-centennial time-scales, 

the oceans will absorb up to 80% of anthropogenic CO2 (Archer et al., 1997). This is 

because CO2 does not simply dissolve in sea-water, but reacts with water molecules to 

form bicarbonate ( -
3HCO ) and carbonate ( -2

3CO ) ions (see Appendix A for more 

details). The sum of dissolved CO2, -
3HCO  and -2

3CO  is known as total dissolved 

inorganic carbon (CT) and is a conservative parameter with respect to changes in state. 

For a typical ocean surface pH of 8.2, CT is found in the approximate ratio of 1:90:9 for 

dissolved CO2, -
3HCO  and -2

3CO , respectively (Sarmiento and Gruber, 2006). Since 

oceanic pCO2 is only influenced by the concentration of dissolved CO2, processes that 

influence the speciation of CT provides a first insight into the drivers of oceanic pCO2 

variability. 

From the laws of thermodynamics, oceanic temperature and pressure are 

identified as parameters driving CT speciation due to their influence on the free energy 

in the system for chemical reactions; including the solubility of CO2 in seawater. 

Several data-based studies have also identified salinity as a minor player in CT 

speciation and CO2 solubility (e.g., Mehrbach et al., 1973; Weiss, 1974). These data-

based studies show that cold and saline surface waters exhibit much lower pCO2 

concentrations than warmer and fresher waters. It follows that cold and saline waters 

typically contain more CT than the global surface mean due to the oceans enhanced 

capacity to absorb atmospheric CO2. Temperature and salinity also drive ocean 

circulation pathways through the formation of deep waters in regions where surface 

waters are denser than the underlying ocean. Consequently, physical-solubility 

processes act in unison to pump atmospheric CO2 into the ocean interior where it’s 

transported laterally, and eventually ventilated back to the ocean surface decades to 

centuries later. 
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Another important parameter for understanding ocean carbon dynamics is total 

alkalinity (AT), which is related to the charge balance of the ocean (see Appendix A). 

Alkalinity helps define the oceans buffering capacity by providing negative ions 

( -
3HCO , -2

3CO  and others) to which can neutralize H+ ions. The effect of increasing AT 

results in a concomitant decrease in oceanic pCO2. For a full definition of AT see Zeebe 

and Wolf-Gladrow (2001) or Sarmiento and Gruber (2006). 

Biological processes reduce ocean surface pCO2 through the fixation of 

dissolved CO2 into organic material by photoplanktonic organisms (see Appendix A). 

Consumption of nutrients and hydrogen ions during photosynthesis slightly increases 

AT, resulting in a further, albeit small, reduction in pCO2. Approximately 25% of 

synthesized organic material is then transported into the ocean interior via settling and 

advection processes, where it is largely remineralised back into CT and nutrients by 

heterotrophic organisms (Falkowski et al., 1998). Oceanic CO2 uptake is therefore 

dependent on the strength of this pump, which is sensitive to physical changes         

(e.g., temperature and circulation) and the availability of nutrients and light (Langdon 

and Atkinson, 2005). 

In addition to the synthesis of organic material, some planktonic organisms   

(e.g., coccolothophorids) and zooplankton (e.g., pteropods) consume carbonate ions to 

form calcium carbonate (CaCO3) shells or skeletons. The net result of CaCO3 

precipitation is a reduction in AT and CT in the ratio of 2:1 respectively (see Appendix 

A). Following from the above discussion, biogenic CaCO3 formation therefore increases 

oceanic pCO2, while dissolution has the opposite effect. The strength of this process is 

dependent on ocean pH, with more acidic conditions typically restricting CaCO3 

production (Riebesell et al., 2000). 

Global carbon export from the ocean surface to the deep sea through organic 

material and CaCO3 is estimated to be between 11-16 PgC yr-1 (Boyd and Trull, 2007; 

Falkowski et al., 2000) and 0.4-1.8 PgC yr-1 (Berelson et al., 2007) respectively. This 
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indicates that organic matter fixation of CO2 accounts for approximately 90% of the net 

biological influence on ocean surface inorganic carbon. 

Biological and physical-solubility processes interact on different spatial and 

temporal time-scales to drive the observed distribution of inorganic carbon species and 

air-sea CO2 flux. Model simulations suggest the net effect of these processes regulates 

atmospheric CO2 by ~250 ppm on longer time-scales (Cameron et al., 2005). 

1.3 Global uptake of anthropogenic CO2 

The recent anthropogenic increase in atmospheric CO2 is inducing oceanic uptake via 

air-sea pCO2 disequilibrium. The characteristic time-scale for the ocean’s top 40 meters 

to establish air-sea equilibrium is about 6 months (Sarmiento and Gruber, 2006), 

indicating that on decadal time-scales, the rate-limiting step for anthropogenic CO2 

uptake is transport into the ocean interior (Sarmiento et al., 1992). Since biological 

processes are not limited by CO2 availability in the upper sunlit ocean, export 

production is assumed to have changed little since preindustrial times. This implies that 

physical-solubility processes are the dominate removal pathway for anthropogenic CT 

into the ocean interior. In particular, ocean regions that exhibit strong upwelling, such as 

the eastern equatorial Pacific and along upwelling margins in the Southern Ocean, will 

absorb large amounts of anthropogenic CO2 since interior waters were last exposed to 

the atmosphere when ambient atmospheric CO2 concentrations were much lower.  

Several independent methods have been proposed to quantify the oceans 

anthropogenic CT inventory using in situ hydrographic measurements.  Methods based 

on the “back calculation” approach estimates the small anthropogenic CT signal by 

correcting for the large biological and physical-solubility influences on measured values 

of CT (e.g., the ΔC* method of Gruber et al. (1996)). Other approaches use tracers such 

as chlorofluorocarbons (CFCs) to constrain the evolution of a water parcel, which are 

then used to diagnose anthropogenic CT distributions (e.g., Hall et al., 2002; Khatiwala 
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et al., 2009; McNeil et al., 2003), while changes in the oceanic 13C-to-12C ratio (Suess 

effect) can be used to quantify anthropogenic CO2 uptake (e.g., McNeil et al., 2001a; 

Olsen et al., 2006; Quay et al., 1992). These independent approaches estimate a global 

oceanic CT increase to be between 122 and 157 PgC, or ~30% of net anthropogenic CO2 

emissions (energy + land-use) over the period 1750 to 2010 (Khatiwala et al., 2012). 

Underlying all these data-based estimates are assumptions that biological and 

physical-solubility pathways for CT transport into the ocean interior have remained in 

steady-state throughout the anthropocene. Although this premise was likely adequate for 

most of the 20th century, recent studies have identified shifts in the oceans natural 

cycling of carbon due to climate and chemistry related alterations. For example, 

decadal-scale trends in ocean surface temperature and salinity via heat uptake (Levitus 

et al., 2005; Lyman et al., 2010) and intensification of the global hydrological cycle 

(Durack and Wijffels, 2010), are influencing both the solubility of CO2 and ocean 

circulation pathways. At the same time, ocean warming leads to increased stratification, 

which dampens the upwelling of nutrient rich subsurface waters crucial for 

phytoplanktonic growth (Behrenfeld et al., 2006; Boyce et al., 2010). Shifting wind 

patterns is also influencing circulation and seasonal mixing processes, resulting in either 

enhanced or diminished upwelling of waters rich in CT and nutrients (Le Quéré et al., 

2007; Lovenduski et al., 2007). Chemistry-related alterations arise from the uptake of 

~155 Pg of anthropogenic carbon over the last 250 years (Khatiwala et al., 2012). The 

resulting decrease in ocean surface pH (global mean of 0.1; Feely et al., 2004) restricts 

the ability of calcifying organisms to form and preserve their CaCO3 shells and 

skeletons (Fabry et al., 2008; and references within). Elevated CO2 levels in the ocean 

may also alter nutrient uptake stoichiometric ratios (Boyd and Doney, 2002). 

To estimate the extent of alterations in the oceans steady-state carbon cycle for 

anthropogenic CO2 uptake, Sarmiento et al. (2010) compared a new suite of coupled 

ocean-atmosphere models forced with observed trends in wind, heat and freshwater 
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fluxes, to a data-based steady-state model that assumes constant circulation and biology 

(Fig. 1.1). Since the late 1980’s, the time-varying ocean models absorbed on average 

0.35 PgC yr-1 (or 31%) less CO2 then expected if increasing atmospheric CO2 was the 

only function influencing uptake. This model-based result affirms the emergence of a 

non-steady-state signal that may have already dampened anthropogenic CO2 uptake by 

18% since 1989 (McNeil and Matear, 2012). 
 

 
Figure 1.1: Time-evolving net oceanic CO2 uptake estimates since 1960 for the 
expected steady-state (black line) and the mean uptake of five different ocean general 
circulation models (OGCM) forced with changes in wind, heat and freshwater fluxes 
(Red dots). The expected steady-state CO2 uptake is derived using the Mikaloff-Fletcher 
et al. (2006) estimate for the nominal year of 1995 and projected between 1960 and 
2010 by Sarmiento et al. (2010). The average net CO2 uptake (red dots) was taken as a 
combined mean between the five different OGCMs with minimum and maximum 
bounds shaded in light red (Le Quéré et al., 2007; Lovenduski et al., 2007; Matear and 
Lenton, 2008; Rodgers et al., 2008; Wetzel et al., 2005). This figure was taken from 
McNeil and Matear (2012). 

1.3.1 Detecting the non-steady-state signal 

If the natural cycling of carbon remained in steady-state throughout the last two 

centuries, the rate of increase in ocean surface pCO2 would have roughly followed the 

atmosphere. This provides a basis for detecting the effect of climate- and chemistry-

related alterations on air-sea CO2 exchange. In regions where the observed growth-rate 
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in ocean surface pCO2 is slower than atmospheric CO2, the oceanic sink can be 

interpreted as increasing, in contrast, faster oceanic pCO2 growth rates indicates a 

decreasing sink for atmospheric CO2. 

 Development of autonomous pCO2 measuring devices have provided more than 

6 million “underway” ocean surface pCO2 measurements since 1972 (Takahashi et al., 

2012). This accumulated dataset has allowed researchers to detect secular growth trends 

in ocean regions where temporal data coverage is sufficient to account for natural 

variability (~27% of the global open-ocean (Takahashi et al., 2009)). From a suite of 

regional studies, a global pattern is emerging that suggests high-latitude CO2 sinks are 

decreasing in strength, while low to mid-latitude regions appear to be tracking as 

expected (Lenton et al., 2012). 

1.3.2 Diagnosing the signal 

While the “underway” pCO2 network has provided great insight into the evolving air-

sea CO2 flux strength, it cannot be used by itself to constrain a mechanistic 

understanding of the changing ocean carbon system. To diagnose the non-steady-state 

signal requires coinciding measurements of CT, pH, total alkalinity (AT) and other 

carbon/climate relevant tracers (temperature, salinity, dissolved oxygen, nutrients, wind 

speed etc.) in order to partition the effects of biology and mixing. From an observational 

perspective, only a few time-series stations exist with sufficient temporal data coverage 

to diagnose the specific drivers of ocean carbon change (e.g. Bermuda Atlantic (BATS; 

Bates, 2007) and Hawaiian Ocean (HOT; Keeling et al., 2004)). However, due to spatial 

correlation length scales ranging from tens to hundreds of kilometers for inorganic 

carbon (Lenton et al., 2006; Li et al., 2005; Sweeney et al., 2002), any observed change 

can only be assumed over the local ocean region. 

It is therefore important to gain a better understanding of natural variability 

across the global ocean carbon system from which we can contextualize any observed 

change. Over the past four decades, significant time and resources have been devoted to 
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establishing a global carbon measurement network. Oceanographic measurement 

programs like the Geochemical Ocean Sections (GEOSECS) in the 1970s, and World 

Ocean Circulation Experiment (WOCE)/Joint Global Ocean Flux Study (JGOFS) in the 

1990s, have collected thousands of in situ bottle measurements of carbon and carbon 

relevant parameters (Key et al., 2004, 2010). Currently, the US and International 

Climate Variability and Predictability program (CLIVAR) is reoccupying key 

hydrographic surveys from the WOCE/JGOFS programs to monitor decadal changes in 

the ocean carbon system. Although this accumulated dataset amounts to ~330,000 

global measurements, short-term variability in the upper ocean hampers efforts to 

constrain natural seasonal variability. Numerical models can be used in conjunction 

with one-time cruise measurements, atmospheric CO2 inversions, or climate 

observations to understand drivers of the non-steady-state change (e.g., Le Quéré et al., 

2007; Lovenduski et al., 2007; Matear and Lenton, 2008), however, without a sufficient 

baseline of measurements to validate model output, the diagnostic capability of 

numerical simulations remains somewhat limited. These challenges, both 

observationally and within models, limit our ability to detect and diagnose the non-

steady-state changes in ocean carbon. 

1.4 Implications of oceanic CO2 uptake 

The immediate impact of additional CO2 in the ocean system is a lower pH and 

carbonate ion concentration – commonly referred to as ocean acidification (Zeebe et al., 

2008). A growing number of studies indicate detrimental impacts for multiple marine 

ecosystems under ocean acidification conditions (Fabry et al., 2008; and references 

within). 

 The effect a reduction in -2
3CO  ions will have for calcifying organisms can be 

inferred from the saturation state of CaCO3 minerals (Ω) 
*
sp

-2
3

2 ]/K][COCa[        (1.1) 
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where *
spK  represents the apparent stoichiometric solubility product for calcite or 

aragonite, and brackets the total concentrations in solution. When the saturation state 

falls below 1 (referred to as aragonite or calcite under-saturation) seawater becomes net 

corrosive for CaCO3 minerals, resulting in enhanced dissolution and lower calcification 

rates (Fabry et al., 2008; and references within). Although the ocean surface is currently 

super-saturated with respect to both calcite and aragonite (i.e. Ω>1), a model study by 

Orr et al. (2005) suggests that the annual-mean saturation state for aragonite (the more 

soluble CaCO2 mineral) will fall below 1 in the Southern Ocean and some subarctic 

regions by centuries end. However, natural carbon variability has been shown to induce 

earlier under-saturation conditions in the Southern Ocean by 20 years relative to annual-

mean projections (McNeil and Matear, 2008), which highlights the importance of 

constraining high-frequency variability. Since current data limitations hamper our 

capacity to constrain higher-frequency natural variability globally, this represents a 

significant gap in our ability to understand future ocean acidification implications over 

the majority of the ocean. 

Detecting robust secular trends in pH and Ω (referred to as ocean acidification 

trends) has also been the focus of intense research over recent years due its importance 

for understanding future implications for marine ecosystems (e.g., Byrne et al., 2010; 

Feely et al., 2012; Vázquez-Rodríguez et al., 2012; Wootton et al., 2008). Despite a 

growing network of measurements, large natural variability relative to the small 

anthropogenic signal hinders efforts to discern robust ocean acidification trends. To 

determine the best locations for detecting ocean acidification requires an accurate 

understanding of higher-frequency natural variability. 

1.5 Spatiotemporal patterns of air-sea CO2 exchange 

Quantifying where atmospheric CO2 is invading the ocean and at what rate is 

fundamental for understanding the impacts of oceanic CO2 uptake. Several independent 
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methods have been proposed to observationally diagnose spatial patterns of air-sea CO2 

exchange based on oceanic/atmospheric measurements. However, it’s important to first 

understand the different flux estimates derived via these independent methods. 

 Exchange of CO2 at the air-sea interface was in a long-term steady-state prior to 

the industrial revolution (~11,000 years), which includes the out-gassing of reverine 

derived carbon, and is referred to here as the natural (or preindustrial) flux (Fig. 1.2). 

The ensuing perturbation in atmospheric CO2 due to the combustion of fossils fuels and 

land-use change has resulted in a human-induced air-sea CO2 exchange; which is aptly 

referred to as the anthropogenic flux. As the natural (or preindustrial) carbon cycle has 

shifted in response to changes in climate and ocean chemistry, a non-steady-state out-

gassing signal has emerged. Currently, air-sea CO2 exchange reflects the superposition 

of natural, anthropogenic and the non-steady-state flux signals. Here, this integrated flux 

signal is referred to as the contemporary flux. 
 

 
Figure 1.2: Illustration of the different air-sea CO2 flux signals for pre-industrial 
(~1750) to present times.  
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Some methodologies estimate anthropogenic flux based on the assumption that 

natural CO2 exchange has remained in steady-state throughout the anthropocene. In this 

study, flux estimates derived via these methods are referred to as steady-state 

anthropogenic, and can be conceptualized in Fig. 1.2 as anthropogenic minus non-

steady-state flux signals.  

Care needs to be taken when comparing contemporary flux estimates derived via 

different approaches. When the contemporary signal is computed via summing 

estimates of the natural and steady-state anthropogenic fluxes, it will be different from 

other methods that can additionally resolve the emerging non-steady-state signal. 

1.5.1 Inversion methods 

Inversion approaches work on the premise that the distribution of a conservative tracer 

within a reservoir (e.g. CO2 in the atmosphere or anthropogenic CT in the ocean interior) 

directly reflects any exchange with external reservoirs and transport within the medium. 

It therefore stands to reason that if transport can be reversed, regional fluxes of the 

tracer can be quantified. 

 Atmospheric inversions capture regional contemporary CO2 sources and sinks 

using atmospheric CO2 measurements and transport models (e.g., Baker et al., 2006; 

Patra et al., 2005). Continuous CO2 measurements from a global array of stations have 

allowed atmospheric inversion studies to diagnose seasonal to inter-annual flux signals 

(Baker et al., 2006; Gurney et al., 2004). However, these results are not fully 

independent, as they require prior constraints on spatial air-sea fluxes and model 

transport signals. Furthermore, it has been shown that regional flux estimates are 

strongly sensitive to the chosen CO2 observation network (Law et al., 2003; Patra et al., 

2006), and that they have a poor capacity to partition flux signals between the land and 

marginal seas. 

 Ocean inversions, on the other hand, capture decadal-scale anthropogenic flux 

signals for a defined set of oceanic regions using data-based estimates of anthropogenic 



 15 

CT concentrations and ocean transport models (Gloor et al., 2003; Mikaloff-Fletcher et 

al., 2006). Since all transport models used in the most recent study were not forced with 

climate-related alterations (Mikaloff-Fletcher et al., 2006), this approach captures the 

steady-state anthropogenic flux signal. 

 Ocean inversions have also been used to capture the natural air-sea flux signal 

via data-based estimates of the gas-exchange component of CT (Mikaloff-Fletcher et al., 

2007). Although regional flux estimates range from -0.33 to 0.36 PgC yr-1, when 

integrated globally these regional differences largely cancel out, leaving a residual of 

0.03±0.08 PgC yr-1 (Mikaloff-Fletcher et al., 2007). However, ocean inversions cannot 

capture the natural out-gassing of riverine-derived carbon. To account for this, an 

estimated out-gassing of 0.45±0.2 PgC yr-1 (Jacobson et al., 2007a) was added to their 

global estimate to arrive at a final natural air-sea CO2 flux (Gruber et al., 2009). 

 Uncertain transport models, empirically derived tracers from measured CT and 

other hydrographic properties (i.e. ΔC* method of Gruber et al.(1996)), and uncertain 

riverine-derived CO2 out-gassing all contribute to uncertainties in ocean inversion 

estimates. 

A joint ocean/atmosphere inversion has also been developed to capture both 

preindustrial and steady-state anthropogenic CO2 fluxes (Jacobson et al., 2007a, b). 

1.5.2 Direct approach 

Constraints on the air-sea pCO2 gradient and CO2 gas transfer can be used to calculate 

contemporary air-sea CO2 fluxes (Wanninkhof, 1992). Takahashi et al. (1997, 2002, 

2009) has interpolated large ocean surface pCO2 measurement networks to diagnose 

monthly CO2 flux patterns for the nominal years of 1990, 1995 and 2000, respectively. 

Despite a current global network of almost 6.4 million “underway” pCO2 measurements 

(Takahashi et al., 2012), when coastal samples are removed and measurements are 

averaged over a 1°×1° grid-scale for each month and year, the dataset reduces to 

~115,000 independent samples. From a spatial perspective, the distribution is heavily 



 16 

biased to the Northern Hemisphere. For example, ~38% of measurements were 

collected in the temperate North Atlantic/Pacific (18°N to 44°N), while only 14% were 

collected in the Southern Ocean (>44°S), yet the Southern Ocean covers 30% more 

open-ocean area. Spatiotemporal bias, together with strong natural variability in some 

ocean regions (e.g. equatorial Pacific), limits the Takahashi et al. (2009) approach to a 

course 4°×5° resolution without the faculty to resolve inter-annual variability. 

 Some researchers have used the “underway” pCO2 network in conjunction with 

self-organizing maps (e.g., Friedrich and Oschlies, 2009b; Telszewski et al., 2009; 

Watson et al., 2009) or multi-linear regressions (e.g., Arrigo et al., 2010; Chierici et al., 

2009; Cosca et al., 2003) to derive empirical relationships using sea-surface temperature 

and salinity. Since “underway” pCO2 measurements generally have no coinciding 

biogeochemical information to help constrain the system (i.e. dissolved oxygen or 

nutrients), some researchers have additionally incorporated satellite-based estimates of 

Chlorophyll a and/or mixed-layer depth to help constrain the influence of 

phytoplanktonic growth and mixing (e.g., Arrigo et al., 2010; Telszewski et al., 2009). 

These empirical models have then been applied to basin wide predictor variable maps to 

diagnosed inter-annual flux fields. While this approach has only been applied on a 

basin-wide scale, a global application is currently being developed (Peter Landschützer; 

personal communication). Other researchers have related Takahashi et al. (2009) pCO2 

climatology values to sea-surface temperature (SST), which are then used to project 

around the year 2000 using observed trends in SST to capture inter-annual flux 

variability (Park et al., 2010). 

 Although the direct approach does not capture the anthropogenic flux signal, it is 

common in the literature to subtract estimates of the natural CO2 exchange and quote 

this value as the anthropogenic flux signal (e.g., Takahashi et al., 2009; Wanninkhof et 

al., 2013). However, this approach does not account for the non-steady-state out-gassing 

signal, and therefor under-estimates the anthropogenic flux. For clarity within this work, 
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flux estimates derived via this approach are referred to as net-contemporary (see Fig. 

1.2). 

1.6 Empirical approaches to investigate ocean carbon 
dynamics 

The introduction of autonomous measuring devices, such as gliders, moorings, ships of 

opportunity and ARGO floats (Roemmich et al., 2004), has amounted to an order of 

magnitude more standard hydrographic measurements (SHP; temperature, salinity, 

dissolved oxygen and nutrients) than bottle carbon data (Boyer et al., 2009). In 

particular, remote locations with harsh environments (e.g. the Southern Ocean) are 

where improved data coverage is most striking. Since bottle carbon data are nearly 

always complimented with a suit of SHP measurements, which are known to modulate 

inorganic carbon variability (see Sect. 1.2.1), it should be implicit that we can derive 

empirical relationships between carbon parameters and SHP. If a robust model is 

established, it can be applied to the much larger SHP datasets to dramatically improve 

on current carbon data limitations, with immediate implications for advancing our 

understanding of ocean carbon dynamics. 

 Divergent biological and mixing regimes throughout the ocean make it difficult 

to apply linear empirical techniques on a global scale. Researchers have therefore 

traditionally partitioned the global bottle dataset geographically, hydrographically and 

temporally in an attempt to better constrain the system and provide insights on 

anthropogenic CO2 accumulation, air-sea CO2 flux patterns and biological matter 

production (Bates et al., 2006; Lee et al., 2000b, 2006; McNeil et al., 2007). Employing 

ad-hoc methods however leads to issues with these empirical methods, such as 

boundary discontinuities, influence of outliers that are not consistent with the bulk 

biogeochemical dynamics of a region, or statistical issues when applying linear 

regressions to a small sample group; all of which contribute to uncertainties in model 



 18 

predictions. Furthermore, since the most recent global empirical studies for CT (Lee et 

al., 2000b) and AT (Lee et al., 2006), the number of mixed-layer measurements has 

increased by ~45%, thereby providing a much larger, and more accurate data pool to 

constrain the global system. 

1.7 Research goals and objectives 

Several questions motivated the research presented in this thesis:  

1) Can we develop and use non-linear empirical approaches to quantify and understand 

mixed-layer carbon dynamics (CT and AT) on seasonal to inter-annual time-scales? 

 Previous empirical approaches relating bottle-based inorganic carbon to SHP 

have employed subjective data partitioning methods in order to better constrain the 

system. In Chapter 2, I explore the ability of a non-linear empirical technique to capture 

CT and AT concentrations in the global mixed-layer using a newly synthesized bottle 

data network without the need for any traditional data partitioning that may contribute 

to uncertainties in previous model predictions. 

2) How important is natural CO2 seasonality in influencing the onset and detection of 

future ocean acidification? 

 The implications of natural CO2 variability for future ocean acidification remain 

largely unknown due to current spatiotemporal data limitations. In Chapter 3, I firstly 

diagnose monthly ocean surface climatologies for properties related to ocean 

acidification via the approach developed in Chapter 2. These monthly climatologies are 

then used to investigate the magnitude and influence of seasonal CO2 variability for the 

onset of aragonite under-saturation and detecting future ocean acidification. 

3) Can the global bottle carbon network be used to provide a new and independent 

constraint on the patterns of air-sea CO2 exchange across the global ocean?  

 Despite significant improvements over recent years, our understanding of spatial 

and temporal air-sea CO2 flux variability remains limited, since methods either require 
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the use of uncertain transport models or suffer from interpolation biases from regionally 

sparse “underway” oceanic pCO2 measurements (see Sect. 1.5). In Chapter 4, I deploy 

the new non-linear approach, as developed in Chapter 2, on ~22,000 bottle-derived 

pCO2 measurements to diagnose global monthly ocean surface pCO2 climatologies. 

This provides a new and independent constraint on the patterns of ocean surface pCO2 

and contemporary air-sea CO2 exchange. 
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Chapter 2.  
 

A novel empirical 
approach to diagnose 
seasonal ocean surface 
carbon from bottle data: 
SOMLO 

 

This chapter is an edited version of a paper published in Biogeosciences (BG). 

 

Sasse, T. P., McNeil, B. I., and Abramowitz, G. (2013), A novel method for diagnosing 

seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural 

networks, Biogeosciences, 10(6), 4319-4340, DOI: 10.5194/bg-10-4319-2013 
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Abstract 

The ocean’s role in modulating the observed 1-7 PgC yr-1 inter-annual variability in 

atmospheric CO2 growth rate is an important, but poorly constrained process due to 

current spatiotemporal limitations in ocean carbon measurements. Here, a non-linear 

empirical approach is developed to predict inorganic CO2 concentrations (total carbon 

dioxide (CT) and total alkalinity (AT)) in the global ocean mixed-layer from 

hydrographic properties (temperature, salinity, dissolved oxygen and nutrients). The 

benefit of this approach is that once the empirical relationship is established, it can be 

applied to hydrographic datasets that have better spatiotemporal coverage, and therefore 

provide an additional constraint to diagnose ocean carbon dynamics globally. Previous 

empirical approaches have employed multiple-linear regressions (MLR) and relied on 

subjective geographic and temporal partitioning of carbon data to constrain complex 

global carbon dynamics in the mixed-layer. Synthesizing a new global CT/AT carbon 

bottle dataset consisting of ~33,000 measurements in the open-ocean mixed-layer, a 

neural network based approach is developed to better constrain the non-linear carbon 

system. The approach classifies features in the global biogeochemical dataset based on 

their similarity and homogeneity in a self-organizing map (SOM). After the initial SOM 

analysis, which includes geographic constraints, a local linear optimizer is applied to the 

neural network, which considerably enhances the predictive skill of the new approach. 

This new approach is called SOMLO, or self-organizing multiple-linear output. Using 

independent bottle carbon data, the traditional MLR analysis is compared to the novel 

SOMLO approach to capture spatial CT and AT distributions. Globally, the SOMLO 

approach improves predictive skill in CT by 19% relative to the traditional MLR, with a 

global capacity to predict CT to within 10.9 μmol kg-1 (9.2 μmol kg-1 for AT). The non-

linear SOMLO approach is particularly powerful in complex but important regions like 

the Southern Ocean, North Atlantic and equatorial Pacific, where residual standard 
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errors were reduced by 25-30% over traditional linear methods. The SOMLO technique 

is further tested using the Bermuda Atlantic time-series (BATS) and Hawaiian ocean 

time-series (HOT) datasets, where hydrographic data was capable of explaining 90% of 

the seasonal cycle and inter-annual variability at those multi-decadal time-series 

stations. Finally, the model is applied to global monthly climatologies of the standard 

hydrographic parameters to diagnose monthly CT and AT distributions in the global 

open-ocean. 

2.1 Introduction 

The ocean’s role in modulating rising atmospheric carbon dioxide (CO2) levels has been 

found to be very important over a number of decades (Quay et al., 1992; Gruber et al. 

1996; Sabine et al., 2004; Khatiwala et al., 2012). A variety of data-based estimates 

suggest net oceanic uptake for CO2 to be 2.1±1.0 PgC yr-1 (1 Pg = 1015 g) since the year 

2000, or about 25-30% of total anthropogenic CO2 emissions (fossil-fuel + land use) 

over that period (Jacobson et al., 2007a; Khatiwala et al., 2009; Manning and Keeling, 

2006; McNeil et al., 2003; Mikaloff-Fletcher et al., 2006; Takahashi et al., 2009). 

Between 1990 and 2009, atmospheric CO2 accumulation rates vary between 1-7 PgC  

yr-1, indicating large inter-annual variability from both the terrestrial and oceanic 

reservoirs (Sarmiento et al., 2010). Although our long-term, decadal-scale 

understanding of oceanic CO2 uptake has advanced, our shorter-term understanding 

(seasonal to inter-annual) of ocean carbon dynamics remains poorly constrained due to 

current data limitations. 

 Atmospheric CO2 observations, inversion techniques and ocean models suggest 

a large range for inter-annual variability in oceanic CO2 uptake (0.1-1.5 PgC yr-1) 

(Bender et al., 2005; Le Quéré et al., 2003; Patra et al., 2006; Rayner et al., 2008). 

However, from an oceanic perspective, our understanding of natural variability in the 

ocean carbon system has come about sporadically, dominated by regional time-series 
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measurement programs (e.g., Bermuda Atlantic time-series (BATS; Bates, 2007) and 

Hawaiian Ocean time-series (HOT; Keeling et al., 2004)). Without a better 

understanding of shorter-scale natural variability, the ability to constrain and understand 

the time-evolving capacity for the ocean to absorb atmospheric CO2 in a high-CO2 

world will be limited, particularly since some evidence suggests the ability for the ocean 

to absorb CO2 has slowed since the late 1980s as a consequence of decadal-scale trends 

in winds and oceanic circulation (Le Quéré et al., 2010; McNeil and Matear, 2012; 

Sarmiento et al., 2010). 

 Standard hydrographic measurements in the ocean (temperature, salinity, 

dissolved oxygen and nutrients) are sampled and analyzed much more frequently than 

inorganic carbon. With the deployment of satellites, gliders and ARGO floats providing 

an immense capacity for capturing short-term seasonal to inter-annual variability in the 

oceans, the question is, can this new information be used to help infer and diagnose 

short-term carbon dynamics in the ocean? 

The oceans inorganic carbon system can be fully constrained by knowing any 

two measurements within its inorganic carbon constituents; partial pressure of CO2 

(pCO2), total dissolved carbon dioxide (CT), total alkalinity (AT) or pH. Significant time 

and resources have been devoted on national and international levels to survey the 

global oceanic CT and AT distribution. However, even with approximately 330,000 

bottle measurements taken sporadically over the past 30 years, our ability to globally 

understand natural seasonal CT and AT dynamics has been hindered due to the large 

spatiotemporal limitations in this current accumulated dataset (Key et al., 2004). 

Autonomous pCO2 measuring devices, mounted mainly onto commercial 

shipping vessels, has resulted in a global network of approximately 6.4 million ocean 

surface pCO2 measurements (Takahashi et al., 2012). This pCO2 dataset has given us 

the best idea of seasonal (Takahashi et al., 2009; herein after referred to as T-09) to 

inter-annual (McKinley et al., 2011; Park et al., 2010; Telszewski et al., 2009) CO2 
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variability within the ocean. However, the global pCO2 dataset cannot inform us on 

some very important processes and biogeochemical dynamics that modulate 

atmospheric CO2. The oceans biological carbon export flux has been estimated to be 

between 11-16 PgC yr-1 from satellite-based chlorophyll a measurements (Falkowski et 

al., 2000), some 5-8 times the net oceanic CO2 absorption from the atmosphere. Small 

changes in the biological carbon flux will therefore have large and important 

implications for atmospheric CO2. However, this large signal is yet to be constrained 

from inorganic carbon data itself, since it requires constraints on mixed-layer carbon 

dynamics rather than just sea-surface constraints like the pCO2 climatology. Secondly, 

without equivalent AT or CT measurements, pCO2 by itself cannot provide insights into 

partitioning the biological carbon pump into both organic and calcification components, 

particularly important with regard to future ocean acidification impacts. Previous 

estimates on this “rain ratio” (organic/calcifier export flux) have needed to assume a 

constant Redfield ratio on nutrient changes in the oceans mixed-layer (Sarmiento et al., 

2002). Finally, spatiotemporal deficiencies in the pCO2 measurement network, 

particularly in remote locations like the Southern Ocean, introduce uncertainties in the 

direct evaluation of short-term variability. To understand seasonal to inter-annual 

variability in these regions requires methods that have better spatiotemporal coverage 

than is constrained by historical pCO2 sampling. Here, I seek to diagnose seasonal to 

inter-annual CT and AT concentrations in the mixed-layer, which will provide 

independent, but important additional constraints to the global sea-surface pCO2 

climatology. 

To varying degrees, concentrations of CT and AT are influenced by the solubility 

of CO2, biological processes, vertical and lateral water transport and direct CO2 

exchange with the atmosphere (Sarmiento and Gruber, 2006). Ocean mixing is largely 

controlled by density dynamics via temperature (T) and salinity (S) variations in the 

ocean, which also regulate the solubility of CO2 (Weiss, 1974). Information on nitrate 
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(N), silicate (Si), phosphate (P) and dissolved oxygen (DO or O) variations provide 

insight into the biological influences on oceanic inorganic carbon (Anderson and 

Sarmiento, 1994). From this, it should be implicit that empirical relationships can be 

derived between these standard hydrographical parameters and the carbon constituents. 

If a robust empirical relationship is established, it could be applied to the order of 

magnitude more in situ measurements of these standard hydrographic parameters 

(Boyer et al., 2009), or the objectively analyzed 1°×1° climatologies (e.g. Locarnini et 

al. (2010)), to give new constraints on seasonal to inter-annual carbon dynamics in the 

mixed-layer. 

 The use of the global sea-surface pCO2 dataset would be ideal to develop such 

empirical algorithms. However, these continuous pCO2 measurements generally have 

no coinciding biogeochemical information (i.e. DO or nutrients) that could help 

establish an empirical relationship. Some have used satellite-based Chlorophyll a 

measurements to help constrain ocean surface pCO2 with varying degrees of success 

(Chen et al., 2011; Chierici et al., 2009; Telszewski et al., 2009). The benefits of using 

ship-based bottle measurements of CT and AT is that they are almost always 

complemented by a suite of hydrographic and biogeochemical parameters (T, S, DO and 

nutrients) that can be used to help derive empirical relationships. 

Wallace (1995) verified a multiple-linear regression (MLR) concept by 

successfully capturing CT using T, S, Si and apparent oxygen utilization (AOU) in the 

North Atlantic. Several studies have since investigated this MLR approach in capturing 

the surface distribution of CT and AT (Table 2.1). 
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Table 2.1: Previous empirical approaches to predict upper ocean AT and CT 
concentrations. T = temperature, S = salinity, DO = dissolved oxygen, AOU = Apparent 
Oxygen Utilization, N = Nitrate ( -

3NO ), Si = silicate (SiO4), P = phosphate ( -3
4PO ), 

Chl-a = Chlorophyll a, Lat = Latitude, Long = Longitude. 
Ocean 
Region 

Response 
variable 

Predictor variables Na  RSEb  
[μmol kg-1] 

Authors 

Global NAT
c T 1740  5 (Millero et al., 1998) 

Global AT T, T2, S, S2, Long 5692  8.1 (Lee et al., 2006) 
Indian AT T, S, N, AOU, Depth, Lat, P 2363  4.5 - 6.4d (Bates et al., 2006) 
Southern AT S, N, Si 1200  8.1 (McNeil et al., 2007) 
Arctic AT T, S 853  26.9, 75 (Arrigo et al., 2010) 
Global NCT

c T, T2, N ~4900  7 (Lee et al., 2000b) 
Indian CT  T, S, N, AOU, Depth, Lat, P 2395  4.4 - 6.0d (Bates et al., 2006) 
Southern CT T, S, DO, N, Si 1032  8 (McNeil et al., 2007) 
Arctic CT Chl-a, T, S 853  33.4, 61.6, 17.3 (Arrigo et al., 2010) 

a Number of measurements used in the study 
b Residual standard error as quoted by the authors 
c Salinity normalized concentrations of CT and AT (×35/S) 
d Range of RSE values presented for the four monsoonal/inter-monsoonal seasons 

Divergent biological and mixing regimes throughout the ocean have made it 

difficult to use linear empirical techniques on a global scale. Researchers have 

traditionally partitioned the global bottle dataset based on subjective geographical, 

hydrographical and temporal boundaries in an attempt to improve the ability of linear 

approaches to capture the non-linear relationship between inorganic carbon and the 

standard hydrographic parameters. Here, a non-linear empirical modelling approach is 

used to avoid this subjective partitioning and is shown to deliver considerable 

improvements in predictability. The non-linear model uses a self-organizing map 

(SOM; Kohonen, 1988) to classify (or cluster) measurements of hydrographic 

parameters into groups and then establish the relationship between these parameters and 

CT/AT separately for each group. The SOM model has already been found well suited in 

extracting features of the ocean surface pCO2 dataset in the North Atlantic using a 

combination of modelled and remotely sensed parameters to constrain the system, 

(Friedrich and Oschlies, 2009b, a; Lefèvre et al., 2005; Telszewski et al., 2009). 

To contextualize this work, a traditional MLR approach is first used to diagnose 

global seasonal carbon dynamics in the ocean. To do this, the MLR approach is 
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deployed on a newly synthesized CT/AT bottle dataset of ~33,000 mixed-layer samples. 

Next, the SOM-based approach is presented and used to diagnose seasonal carbon 

dynamics on a global scale, which better accounts for non-linearities that would limit 

the ability of the MLR. To compare the MLR and new SOM approach, a systematic 

independent test is developed to assess the model’s skill. The BATS and HOT in situ 

time-series are then used as an explicit test for the new approach. Finally, the capacity 

of the model is shown to capture coherent spatial and temporal carbon fields over the 

global open-ocean surface. 

2.2 Global bottle measurements and training dataset 

The extraordinary effort to collate and synthesis bottle hydrographic and 

biogeochemical data has been conducted by several groups; including GLODAP 

(Global Ocean Data Analysis Project; Key et al., 2004), CARINA (CARbon dioxide IN 

the Atlantic ocean; CARINA Group, 2009b, a, 2010) and PACIFICA (PACIFic ocean 

Interior CArbon; Suzuki et al., 2013). 

 Precision in bottle CT and AT measurements has consistently improved over the 

past 30 years as a result of advances in techniques and apparatus (e.g., Bradshaw et al., 

1981; Johnson et al., 1987). In particular, the introduction of standard operating 

procedures and certified reference materials (Department of Energy, 1994; Dickson et 

al., 2003; Dickson et al., 2007) has achieved quality consistency within independent 

laboratory measurements, which is currently estimated to be ±2 μmol kg-1 (Dickson et 

al., 2007). Despite this, systematic measurement biases exist between independent 

laboratories. To account for this issue when combining data, a secondary Quality 

Control (QC) method was incorporated by the project groups to identify and smooth out 

any systematic offsets, as outlined in Tanhua et al. (2010). The internal consistency of 

the CARINA CT/AT dataset is estimated to be ±2.5 μmol kg-1 (Tanhua et al., 2010).  
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More recent additional measurements included in the global dataset underwent a 

1st QC check to remove measurements flagged as bad or questionable under the World 

Ocean Circulation Experiment (WOCE) convention (Joyce and Corry, 1994). No 2nd 

QC was implemented since accuracy in recent measurements is estimated at ±2 μmol 

kg-1. 

 For this work, 470 cruises from GLODAP, PACIFICA, CARINA, CLIVAR and 

miscellaneous sources were merged with the BATS and HOT measurements to form the 

global carbon training dataset, as shown in Table 2.2 (see Appendix B for full cruise 

summary). Some cruise datasets were incorporated into two or more of the synthesis 

projects under different names or with slight variations in quoted time and position. To 

identify and remove duplicated data from the combined global dataset, the entire dataset 

was checked for measurements with exact and near exact position and time values. The 

global dataset was then refined to be within the mixed-layer, non-coastal and data post 

1980 due to large uncertainties in early measuring techniques. The final number of 

usable CT/AT discrete measurements in the global mixed-layer was ~33,000. 

Table 2.2: Data sources of the global merged dataset. The second column indicates the 
number of samples with a least one carbon parameter measurement (see Appendix B for 
full cruise summary). 

Source Number of Measurements 
CARINA 12599 
PACIFICA 9690 
GLODAP 6674 
CLIVARa 1689 
AAIWb 755 
BATSc 705 
HOTd 540 
NACPe 291 
Miscellaneous 192 
Total 33135 

a Climate Variability and Predictability 
b Antarctic Intermediate Cruise 
c Bermuda Atlantic time-series 
d Hawaiian Ocean time-series 
e North Atlantic Carbon Program 
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2.2.1 Defining mixed-layer depths 

Derived by wind stress and air-sea heat exchange, the mixed-layer depth (MLD) 

describes the maximum penetration depth of the quasi-homogeneous region of surface 

water (Kara et al., 2003). Typically ranging from 20m in summer months, to 500m 

during the winter season in some parts of the ocean (de Boyer et al., 2004; see Fig. 2.1), 

including MLD measurements is an important additional constraint on carbon dynamics 

that is added from bottle measurements. 

Discriminating mixed-layer measurements for each cast was conducted via a bi-

variant linear interpolation from a regular 2°×2° gridded MLD climatology developed 

by de Boyer et al. (2004) (Fig.2.1). Their methodology was based on a change in 

potential density from a 10m reference measurement of 0.03 kg m-3. Approximately 

900,000 CTD profiles including Argo data up to September 2008 were used to constrain 

the MLD climatology. 
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Figure 2.1: Global distribution of mean MLD for (a) summer months (b) winter 
months and (c) seasonal-mean difference (winter minus summer). Summer and winter 
months are defined as December to February and June to August for the Southern 
Hemisphere, respectively. Boreal summer/winter months are opposite. These seasonal 
MLD distributions were derived using the MLD climatologies of de Boyer et al. (2004). 
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2.2.2 Identifying coastal samples 

Carbon biogeochemical dynamics in coastal zones have been shown to be divorced 

from the open-ocean system due to terrigenous influences. For example, sediment 

upwelling, anthropogenic influences on coastal ecosystems, and nutrient/carbon 

delivery from rivers have all been identified as processes perturbing coastal 

biogeochemical dynamics from the open-ocean (Cotrim da Cunha et al., 2007; Gibbs et 

al., 2006; Jickells, 1998; Seitzinger et al., 2005). To mitigate these biases from the 

oceanic dataset, all casts with a seafloor bathymetry of 500m or less were removed from 

the global training dataset. The bathymetric depth for each cast was linearly interpolated 

from NOAA’s 1 arcminute global relief product re-gridded to 10 arcseconds (Amante 

and Eakins, 2009). Eliminating coastal influences reduces the global dataset by ~9%, 

but is important when applying the neural network approach. 

2.2.3 Biases in the global dataset 

While the distribution of measurements in the refined dataset exhibits no spatial bias 

over the major ocean basins (Fig. 2.2a), there are approximately 45% less wintertime 

measurements than were collected during summertime (Fig. 2.2b). This seasonal 

distribution is examined here as a potential cause for bias when applying the empirical 

approach. 
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Figure 2.2: (a) Spatial distribution of the global training dataset, together with (b) 
seasonal and (c) yearly histograms partitioned into Southern (light shade) and Northern 
(dark shade) Hemispheres. Southern Hemisphere seasons are defined as summer 
(December to February), autumn (March to May), winter (June to August) and spring 
(September to November), Northern Hemisphere seasons are opposite. 
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2.3 Normalization of CT measurements 

Global atmospheric CO2 concentrations during the 1980’s, 1990’s and 2000’s increased 

at 1.60±0.56, 1.47±0.66 and 1.90±0.38 ppm yr-1 respectively (Conway, T. and Tans, P., 

NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends). Since the air-sea pCO2 gradient 

represents the thermochemical driving potential for CO2 exchange, growth rates in 

ocean surface pCO2 have closely tracked atmospheric CO2 (e.g., Bates, 2007; Feely et 

al., 2006; McKinley et al., 2011; Takahashi et al., 2009). To account for anthropogenic 

CO2 uptake, all mixed-layer measurements were corrected to the reference year 2000 by 

calculating the change in mixed-layer CT in equilibrium with the atmospheric CO2 

increase using observed Revelle factors. This approach is somewhat equivalent to that 

of T-09, whereby all pCO2 measurements values were corrected to the year 2000 using 

a rate of 1.5 μatm yr-1. 

2.3.1 Revelle factor approach 

The Revelle factor (R) quantifies the relationship between the fractional change in 

oceanic pCO2 and CT in an otherwise static system (Eq. 2.1). For small changes, the 

partial derivatives in R can be expressed as a delta, which then provides a well suited 

empirical means to account for anthropogenic biases in CT measurements. 
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Rearranging Eq. 2.1 illustrates how the anthropogenic CT component )( TC  can 
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Revelle factors and pCO2 concentrations were calculated using bottle 

measurements of CT, AT, temperature and salinity (phosphate and silicate concentrations 

http://www.esrl.noaa.gov/gmd/ccgg/trends
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were also used where available) via the CO2SYS program developed by Pierrot et al. 

(2006). Selection of the Mehrbach et al. (1973) carbonic acid constants, as refitted by 

Dickson and Millero (1987), was based on comparison studies by Lee et al. (2000a), 

McNeil et al. (2007), Millero et al. (2002), and Wanninkhof et al. (1999), and 

maintained consistency with the GLODAP and CARINA products (Key et al., 2004; 

Pierrot et al., 2010). Here, the anthropogenic rate of increase in mixed-layer pCO2 is 

assumed to be equilibrium with the observed annual atmospheric CO2 growth rate at the 

Mauna Loa measurement site (Tans, P., NOAA/ESRL, 

www.esrl.noaa.gov/gmd/ccgg/trends and Keeling, R. Scripps Institute of Oceanography, 

scrippsco2.ucsd.edu/). The final expression to correct CT measurements to the reference 

year 2000 is given by 
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where superscripts sea and atm represent seawater and atmosphere respectively. 

Of the 31,438 global mixed-layer CT measurements, 28% (8,711) were missing 

at least one crucial parameter to constrain the anthropogenic correction via the proposed 

technique (i.e. AT, temperature and/or salinity). Rather than discarding these samples, 

the 22,727 corrected CT measurements were used to constrain the anthropogenic 

correction via a 4-D linear interpolation in latitude, longitude, in situ pressure and 

calculated annual anthropogenic rate of CT increase. The skill of this approach was 

evaluated by dividing the 22,727 measurements into 10 equal subsets, which were then 

each used as an independent test. This independent testing showed that interpolated 

values were accurate to within ±0.08 μmol kg-1 yr-1 (or 8% of the mean annual rate of 

CT increase). 

The global-mean rate of increase in mixed-layer CT concentration was found to 

be 0.996 μmol kg-1 yr-1 (Fig. 2.3), which is consistent with the 1 μmol kg-1 yr-1 

anthropogenic CT correction rate used by Lee et al. (2000b) for measurements between 

http://www.esrl.noaa.gov/gmd/ccgg/trends
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30°N and 30°S, and is consistent with reported rates of increase observed at the HOT  

(Winn et al., 1998) and BATS (Bates, 2007) time-series stations. 
 

 
Figure 2.3: Anthropogenic correction applied to mixed-layer CT measurements (defined 
by CT correction = CT (in situ) – CT (correct to the year 2000)). Deploying a linear regression 
between Year and CT correction (red line) indicates the mean rate of increase in global 
mixed-layer CT measurements is 0.996 μmol kg-1 yr-1 (r-squared value of 0.96). 

Although there are regions of the ocean where upwelling and sea-ice inhibit air-

sea gas exchange, resulting in considerable CO2 disequilibrium (e.g. Southern Ocean 

and equatorial Pacific), the anthropogenic CO2 correction technique used here, like 

those for T-09 and Lee et al. (2000b), will be biased in these regions. However, by 

performing a test using no anthropogenic CO2 correction (see Sect. 2.8.4), it was found 

that this anthropogenic correction had a very low impact on the models ability to predict 

global CT. This is in part due to the large natural fingerprint of CT (±50 μmol kg-1) 

relative to the small changes (~1 μmol kg-1 yr-1) resulting from anthropogenic CO2 

uptake. 
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2.3.2 Uncertainties in the correction method 

Two assumptions that could introduce uncertainties in the applied anthropogenic CO2 

corrections include a) a static Revelle factor over the correction period, and b) the 

atmospheric CO2 record observed at Mauna Loa is representative on a global scale. 

The direct result of additional CO2 in the oceans is an increase in the Revelle 

factor (Egleston et al., 2010). Between 1800 and 1994, the absorption of ~118 Pg of 

anthropogenic carbon is estimated to have increased R by 1 unit (Sabine et al., 2004). 

Since bottle-derived R values range from ~8 in (sub)tropical regions to 15 in higher 

latitudes (Fig. 2.4), this relatively small increase in R over the past ~200 years suggests 

that any change over the average correction period applied here of 5.7 years will be 

insignificant. 

 
Figure 2.4: Global distribution of bottle-derived Revelle factors (R).  

To ensure the observed annual-mean change in atmospheric CO2 (ΔCO2) at 

Mauna Loa is applicable on a global scale, the ΔCO2 term at Mauna Loa               

(ΔCO2 = CO2(2000) – CO2(year)) is compared to a global-mean ΔCO2 estimate derived 

from multiple measurement stations (Conway, T. and Tans, P., NOAA/ESRL, 

www.esrl.noaa.gov/gmd/ccgg/trends) (Fig. 2.5). The high degree of similarity between 

the two temporal records indicates that no bias is introduced though applying the 

http://www.esrl.noaa.gov/gmd/ccgg/trends
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observed Mauna Loa ΔCO2 on a global scale. This high correlation comes as no 

surprise, since the time for inter-hemisphere mixing is approximately 1 year for 

atmospheric CO2 (Bowman and Cohen, 1997). 
 

 
Figure 2.5: Difference in annual-mean atmospheric CO2 relative to the year 2000 
(ΔCO2) observed at Mauna Loa (closed circles) and a global estimate derived from 
multiple measurement stations (open triangles). 

2.4 Testing algorithm skill: a Systematic Independent 
Test (SIT) 

Most empirical studies report statistical errors calculated as the residual standard error 

(RSE) from linear regressions. For example, CT in the Indian Ocean was reported to be 

predicted to within ±5 μmol kg-1 using a suite of hydrographic parameters (Bates et al., 

2006), ±8 μmol kg-1 for the Southern Ocean (McNeil et al., 2007) and ±7 μmol kg-1 for 

a global dataset (Lee et al., 2000b). However, an independent dataset not used in the 
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regressions is needed to accurately report true statistical uncertainty for any empirical 

approach. 

Here, a ‘Systematic Independent Test’ (SIT) approach was developed in order to 

compare the MLR and NN empirical approaches consistently. The SIT method 

evaluates the algorithm’s skill through an independent test of each cruise or time-series 

without using it in the training or regression dataset. This implies that for a training data 

pool consisting of n cruises and i time series, n + i unique algorithms with identical 

model configurations are used to predict the excluded cruise or time series 

measurements. Calculating the residual standard error (RSE; Eq. 2.4) using all (or a 

subset) of the independent cruises and time-series predictions then provides a better and 

accurate estimate of the algorithms global (or regional) skill. In Eq. 2.4, the independent 

predictions and in situ measurements are represented by yindp-pred and yin-situ respectively, 

and N represents the number of discrete samples. 
 

2
RSE

2

N
yy situinpredindp       (2.4) 

The reason for independently testing each cruise dataset individually, rather than 

a randomly selected subset of data, is due to similar concentrations of carbon and 

auxiliary measurements within local casts of the same cruise. As there are typically two 

to three measurements within each cast of the training dataset, the independent 

prediction of one of these measurements will give a misleading representation of the 

model’s true skill, as the remaining two measurements with a very similar 

“biogeochemical fingerprint” will be used to train the algorithm. The independent 

prediction of an entire cruise will therefore provide a more robust measure of the 

algorithm’s skill. 
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2.5 Traditional MLR approach 

2.5.1 Method description 

Multiple-linear regression is a numerical estimation of the linear relationship between a 

set of predictor variables, Nn xxx1x , and response variable, y : 
 

N

n
nnxy

1
0         (2.5) 

where 0  and n  represent the intercept and empirically derived coefficients 

respectively. 

 Multi-collinearity (MCL) between predictor variables and non-normality of the 

residual errors are both issues that may affect the predictive and diagnostic ability of a 

model. MCL refers to the scenario when two or more predictor variables are linearly 

correlated to a high extent, or one predictor variable is a near linear combination of 

others. When MCL is present, it can result in misleading model results and hypothesis 

test conclusions (Faraway, 2004). A quantitative test for the presence and extent of 

MCL is the Variance Inflation Factor (VIF), which indicates the inflation to the 

coefficients standard errors due to MCL. Interaction terms between collinear variables 

can be incorporated into the model to reduce the effects of MCL. 

When the distribution of residual errors is deviated from normal, the estimated 

coefficients may not be optimal, resulting in inexact hypothesis tests and confidence 

intervals. Visual inspection of Q-Q plots is a typical approach to identify skewness 

within the residual errors. Although more quantitative methods are available, such as the 

Shapiro-Wilk, they should only be used in conjunction with subjective visualization of 

Q-Q plots. Depending on the degree of departure from normality, actions can range 

from transforming the response variable in cases of severe Cauchy distribution, to 

simply ignoring the issue when only short tailed skewness is observed. The simplest 

pre-emptive measure to reduce the effects of non-normality is through a robust MLR 

regression, which reduces the influence of outliers (Faraway, 2004). 
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In order to minimize the effects of MCL and non-normality, a forward stepwise 

robust MLR routine was developed here to constrain the empirical relationships 

between CT/AT and the standard hydrographic parameters. 

2.5.2 Robust MLR routine 

Following the schematic in Fig. 2.6, the routine initiates by ranking predictor variables 

Nppp ,,,,1 n  according to their degree of linear correlation to the response variable, 

y; where 1,np  represents the parameter with the highest correlation. The primary model 

(M1) is then established by applying a least-squares MLR between the top ranked 

predictor variable ( 1,np ) and y to constrain the regression coefficients 0  and 1,n . The 

routine then expands on M1 in step 3 by regressing the top two ranked predictor 

variables (m = 2); where m represents the modelled predictor variable with the lowest 

correlation to y. 

To determine if MCL exists in the expanded model (Mm), VIF values are 

calculated for each modelled variable in Mm and compare to VIF values for the same 

variables modelled in Mm-1. The existence of MCL is identified if the VIF value for any 

predictor variable in,p  (where mi ) increased by 5. For the scenario when MCL is 

detected, the model is updated with interaction terms between the newly added predictor 

variable ( mn,p ) and any modelled variable with a VIF increase greater than 5. An 

analysis of variance (ANOVA) between the previous model (Mm-1) and expanded model 

( *
mM ) is then applied to evaluate the significance of the newly added predictor variable 

and interaction terms. If the expanded model is found to statistically constrain the 

system with a higher degree of skill with a 95% confidence interval, the updates are 

accepted and the routine returns to step 3 to incorporate the next lowest ranked predictor 

variable (i.e. 1mm ). 

If MCL is not detected, a null-hypothesis test based on the t-statistic is applied to 

determine if the coefficient of the new predictor variable )( ,mn  is significantly 

different from 0 (i.e. the new predictor is important in constraining the system). If it 
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does not differ from 0 within a 95% confidence interval, the new predictor variable is 

defined as insignificant and is subsequently rejected from the model. The routine then 

returns to step 3 to again expand Mm with the next lowest ranked predictor variable. 

Once each predictor variable has had an opportunity to update the model (i.e. 

Im ), any desired higher order terms are incorporated into the model on the provision 

that the first order term was found to be statistically significant. The routine then prunes 

the model through an iterative process to remove insignificant terms based on the t-test. 

Once all terms are found to be statistically significant, the final stage of the routine 

applies a robust MLR to the set of significant terms to reduce any influence from 

outliers. 
 

 
Figure 2.6: Schematic diagram of the robust forward MLR routine. 
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This MLR routine is well suited for optimizing the model and dampening the 

influence of outliers that cannot be reasonably identified as bad measurements. This 

aspect is particularly important when the global dataset is subject to ad-hoc 

geographical and/or temporal separation methods, where measurements not consistent 

with the bulk biogeochemical dynamics within a region have the potential to influence 

the model. 

Although the primary interest here is to optimize the models ability to predict 

mixed-layer CT and AT concentrations, the regression fits can provide important 

information on the relationship between individual predictor parameters and the 

response variable. The regression routine was therefore developed to minimize any 

violation of the underlying MLR assumptions in order to provide future opportunities 

for diagnostic investigation. 

2.5.3 Ad-hoc versus universal MLR 

To investigate the application of the traditional MLR method, the skill of using one 

single regression globally (universal MLR) was compared to an ad-hoc approach that 

partitions the dataset into regions (ad-hoc MLR). The ad-hoc approach was based on 

dividing the global carbon dataset on the geographical and temporal guidelines outlined 

by Lee et al. (2000b, 2006) and Bates et al. (2006). In this way, the global dataset was 

partitioned into 5 geographic regions to constrain the AT system, and 11 geographic 

regions, 8 of which were subjected to further partitioning into summer and winter 

months to constrain CT (see Fig. 2.7). The universal method simply uses the entire 

global dataset without division. 
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Figure 2.7: Spatiotemporal division of the global training dataset for the ad-hoc MLR 
approach. Black boundaries are common for both CT and AT models, while red 
boundaries are for CT only, and blue for AT only. A red asterix indicates that MLR’s 
were developed for both summer months (November to April for austral hemisphere) 
and winter months (May to October for austral hemisphere) to constrain CT. Boreal 
summer/winter seasons are opposite. 

2.5.4 Optimal MLR parameter combination 

Defining the optimal predictor combination for the universal model was conducted via a 

two stage process. In the first stage, the model was initially trained and tested (SIT) 

using all available parameters, and then each individual parameter was excluded to 

evaluate its importance in constraining the system. This identified salinity, followed by 

temperature as the two most important parameters for capturing mixed-layer CT, while 

salinity was the only parameter to strongly influence the predictive skill of the AT model 

(Fig. 2.8).  
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Figure 2.8: Global RSE values calculated using the SIT predictions of the universal 
MLR model. Excluded parameter represent the variable not used in the MLR training 
and testing; including phosphate (P), nitrate (N), silicate (Si), dissolved oxygen (DO), 
salinity (S) and temperature (T). The dashed lines represent the RSE values for models 
trained using all parameters. 

To then converge on the optimal parameter combination for CT, the model was 

first trained and tested using only temperature and salinity information. Dissolved 

oxygen and nutrient parameters were then individually included to ascertain their 

importance (Fig. 2.9a). This revealed that phosphate and nitrate both provide important 

additional information beyond temperature and salinity, while dissolved oxygen did not 

improve the models predictive skill. Finally, testing the universal model using the 

predictor combinations TSPN, TSPNSi and TSPNO revealed only a slight improvement 

beyond TSP and TSN (Fig. 2.9b). Despite these improvements, the initial model using 

all available parameters captured global CT with the lowest RSE, and was therefore 

defined as the optimal predictor combination. The inclusion of second order terms for 

temperature and salinity did not further improve the models global skill for CT. 
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Figure 2.9: Global RSE values calculated using SIT predictions of the universal CT 
MLR model. Parameter Set represents the combination of parameters used to train and 
test the MLR; including phosphate (P), nitrate (N), silicate (Si), dissolved oxygen (O), 
salinity (S) and temperature (T). 

Applying the same approach using parameters beyond salinity to capture AT 

identified the optimal predictor combination to be T, S, S2, DO, P and Si. 

The optimal parameter combinations identified for the universal models were 

additionally used when applying the ad-hoc MLR approach. It is important to note that 

the MLR routine (Sect. 2.5.2) has the ability to define an optimal sub-set of predictors to 

capture the local system, and can include interaction terms when necessary. 

2.5.5 MLR results 

When universally applying the traditional MLR on the ~33,000 global mixed-layer CT 

measurements, the statistical regression RSE is 15.1 μmol kg-1 when using T, S, DO, P, 
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N and Si as predictors (Table 2.3). If applying the ad-hoc geographical and temporal 

separations, the statistical regression RSE reduces to 13.2 μmol kg-1. However, when 

the independent test (SIT) is used to evaluate the regressions, errors increase to be 16 

μmol kg-1 for the ad-hoc approach and 15.6 μmol kg-1 for the global regression. For AT, 

optimal predictors were found to be T, S, S2, DO, P and Si, while a global MLR 

algorithm captured the signal to within 11 μmol kg-1 using the SIT approach. All 

empirical relationships for the global and ad-hoc MLR models can be found in 

Appendix C.  

The MLR approach and results provides a framework to attempt to develop a 

better method that captures any potential non-linear biases that are contributing to errors 

of ±16 μmol kg-1 in CT predictions, and ±11 μmol kg-1 for AT on a global scale. 

Table 2.3: Universal and ad-hoc MLR results for (a) CT and (b) AT. 
 RSE [μmol kg-1] 
 Regression Independent test (SIT) 

Region Zonea Nb N cruisesc Ad-hoc Universal Ad-hoc Universal 
(a) CT 

Subtropical 1 5388 109 11.9 17.1 15.2 17.3 
Eq. Pacific 2 752 14 11.3 16.8 18.9 17.7 
North Atlantic 3 4626 69 13.2 15.5 15.5 16.2 
North Pacific 4 2344 112 17.7 17.2 16.8 17.5 
Southern Ocean 5 7856 75 12.5 12.4 16.4 12.8 
Global  20966 289 13.2 15.1 16.0 15.6 

(b) AT 

Subtropical 1 4917 94 10.2 10.2 11.0 10.4 
Eq. Pacific 2 513 7 6.9 12.4 9.4 13.0 
North Atlantic 3 3181 53 7.7 10.0 7.9 10.1 
North Pacific 4 1956 88 14.3 16.4 14.8 16.6 
Southern Ocean 5 6084 58 8.0 9.1 9.4 9.8 
Global  16651 224 9.5 10.8 10.4 11.1 

a Corresponding geographical region in Fig. 2.7 
b Number of measurements in the corresponding region 
c Number of unique cruises/time series in the region 
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2.6 Neural network approach 

The human brain is the most complex organ in the human body, acting as a non-linear 

information processing system. Its ability to perform complex tasks, such as pattern 

recognition, is attributed to the brains capacity to organize its processing units, known 

as neurons, in a highly structured manner through a learning process of its sounding 

environment (Haykin, 1999). From the inception of this recognition, numerous 

algorithms have been developed to mimic this learning process in solving highly non-

linear problems.  For geosciences, technological advances enabling scientists to collate 

databases of greater size and complexity are increasingly seeking neural networks to aid 

in the solution of complex and non-linear systems. 

2.6.1 Overview of neural network approach 

The self-organizing map (SOM) is a neural network algorithm which uses an iterative 

approach to classify multi-dimensional datasets into discrete groups, or neurons, usually 

arranged in a 2-dimensional grid (Kohonen, 1988). Using an algorithm that employs 

discrete clustering is appealing, as it removes the need for the type of ad-hoc data 

partitioning discussed in Sect. 2.5.3. This has led to application of SOMs in a wide 

range of disciplines (e.g., Abramowitz, 2005; Hales et al., 2012; Hsu et al., 2002; Pöllä 

et al., 2009). 

Figure 2.10 illustrates the routine of SOM training and prediction. For a training 

dataset of P samples consisting of predictor variables x and response variable y, the 

SOM clustering process allocates each sample to one of J neurons (sometimes also 

called clusters, nodes or groups). The neurons are typically arranged in a 2 dimensional 

BA  matrix so that a node is represented as ja,b . The clustering algorithm aims to 

ensure that nodes that are nearby in this matrix contain samples that have similar values 

of the predictor variables x. The )(xfy  input-output mapping is then completed by 

performing a linear regression between x and y separately for each neuron. 
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These SOM and regression parameters can then be used to make predictions of y 

for an independent set of Q predictor samples ),,,,( 1 Qq xxx . First, each qx  is 

allocated to a SOM neuron based on its similarity to the SOM weights from the training 

dataset. This is the “winning neuron” for a particular sample )( qj x . Then the regression 

parameters for )( qj x  are used to predict qy . 
 

 
Figure 2.10: Schematic diagram of neural network training and prediction phases. 

Here, two variants to this approach are explored. The first, as described above, 

uses a multiple-linear regression at each neuron, which is described here as self-

organizing multiple-linear output (SOMLO). The second takes the mean of all response 

values belonging to a node, which is referred to here as the self-organizing map mean 

(SOMM). Both approaches are now described in more detail. 
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2.6.2 Initialization of model constraints 

For this implementation of the SOM algorithm, the input-output pairs ),( pp yx , 

Pp1  in the training dataset are some subset of x = (T, S, DO, N, Si, P), and y = CT 

or AT. To ensure each predictor variable has an equal opportunity to define the features 

of the SOM during the training routine, the variables were normalized (zero-mean) and 

scaled by their standard deviation so that their distribution and range are similar. For 

nitrate, phosphate and silicate, due to the exponential decay in their distribution of 

measurements from low to high concentrations, these variables were 10log  scaled. 

The J-neuron SOM used here is structured in a hexagonal topology (Fig. 2.10). 

Careful consideration needs to be exercised when defining the size of the SOM, as too 

few neurons will not capture all important features, and too many will over-fit the 

training dataset. Each neuron ( ja,b ) is then assigned an initial weighting vector (ω) of 

length equal to the number of input variables (i.e. the SHP), and whose values are 

randomly selected from the input variable range. 

2.6.3 SOM training routine 

Once all the neuron weights have been initialized, training is an iterative process 

designed to cluster the P samples into J neurons. For each iteration step of the model 

(τ), the input data samples are individually presented to the SOM in a random order and 

the neuron whose weights are closest to the current input sample is declared the 

“winning neuron” for that sample, using 
 

5.0

1

2
,,, )( distance

N

n
njnpjp xωx      (2.6) 

 

That is, the “winning neuron”, )( pj x , for sample px , is simply the neuron that 

minimizes this distance. Once the winning neuron is established, the weights of the 

winning neuron, as well as the neurons in its topological neighbourhood, are adjusted 

towards the value of the current sample value )( px  via 
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jpjjjj h ωxωω
px,1      (2.7) 

 
In this expression, 

pxjjh ,  determines the extent to which a node’s weight is brought 

closer to the current sample value (termed a ‘learning rate’, 1h ). It also determines 

the size of the neighbourhood around the winning node that receives a significant 

adjustment. Here, the learning rate is calculate via 
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where, 

pjjd x,  represents the discrete distance in the SOM topology between the 

winning neuron )( pj x  and an arbitrary neuron j, and 2  and  are the 

neighbourhood width and learning rate respectively. As the model progresses through 

iterations, 2  ensures that the neighbourhood width shrinks from a value that 

significantly adjusts most of the neurons, to finish with only adjusting the winning 

neuron. Similarly, the learning rate decreases with iterations, so that regional 

features of the SOM gradually develop as iterations continue. 

2.6.4 Supervised SOM training 

The form of the model used here is known as a supervised SOM, whereby distributional 

information of the response parameter (CT or AT) is used as an additional constraint 

beyond the hydrographic information (T, S, DO, etc.) in clustering the global dataset 

into the set of J neurons. 

A supervised form of the SOM was first suggested by Kohonen (2001) and later 

developed by Melssen et al. (2006). In this approach, each neuron is assigned an initial 

weighting vector (ω) of length equal to number of predictor variables, as described 

above, together with a weighting number (γ) that is randomly selected from within the 

response variable range. The distance measure then incorporates both the weighting 

vector and weighting number in establishing the winning neuron.  
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For every iteration step (τ), each data sample ),( pp yx  is presented to the SOM 

model twice. In the first pass, the winning neuron is identified using  
 

jp

N

n
njnpjpp yxyj

5.0

1

2
,,1min),(x   (2.9) 

where 10  is responsible for regulating the relative weight of the similarity 

measures. By initially setting  to 0.75, more weight is given to the response 

variable (yp) in identifying the winning neuron. As  reduces linearly with iteration 

to 0.5, both similarity measures are given equal weighting in identifying the winning 

neuron. Once the winning neuron is established, the weighting vectors (ω) are updated 

using the same approach as presented in Sect. 2.6.3. 

In the second pass, the winning neuron is determined using 
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where more weight is now given to the predictor variables (xp) in identifying the 

winning neuron. Once the winning neuron has been identified, weighting numbers (γ) 

are adjusting following the same routine presented in Sect. 2.6.3. By alternating the 

adjustment between the weighting vectors and weighting numbers the model converges 

on the optimal distribution of the global dataset into the set of J neurons. 

2.6.5 Completing the input-output mapping 

The )(xfy  is completed here in one of two ways. First, the mean of all output values 

)( py  belonging to a node is used – the SOMM. Alternatively, MLRs are derived using 

the training data assigned to the winning neuron to establish this relationship (see Fig. 

2.10). Here, MLRs are derived after the SOM training through the application of either 

a principal component regression (PCR; see Appendix D for details), or the forward 

stepwise robust MLR routine (see Sect. 2.5.2).  
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To ensure confidence in regression coefficients, a minimum threshold value of 

10 times the number of predictor parameters was implemented. If the number of data 

points assigned to the winning neuron is below this threshold value, data from the 

second most similar neuron is merged with the winner, and then third, until the data 

pool reaches the threshold limit. 

2.6.6 Predicting with the SOMLO/SOMM models 

For any independent input data vector )( qx , the output value )( qy  can then be 

predicted using the SOM trained above via a two-step process. First, determine which 

neuron each new data sample is closest to using the distance measure in Sect. 2.6.3    

(Eq. 2.6). Then the output value (of CT or AT) is determined using either the mean value 

of the winning neuron’s training output values (using the SOMM), or the regression 

parameters established with the training data. 

2.7 Application to the global ocean 

A two phase process was employed to converge on the optimal SOMLO configuration 

for the ocean carbon mixed-layer dataset. Firstly, three unique subsets of ocean carbon 

data were extracted to ascertain which hydrographic parameter combination worked 

best. In the second phase, the SIT approach was applied to make an out-of-sample 

assessment of the global skill of the model. 

2.7.1 Defining optimal predictor parameters 

Correlations between hydrographic parameters may lead to redundancy in the 

information predictor variables provide. To investigate the importance of each variable 

in informing the SOM or constraining the MLR, independent tests were performed that 

exclude the variables one at a time. These test the models ability to capture three unique 

independent datasets that each represents about 10% of the global carbon dataset   
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(Table 2.4). As an example, Fig. 2.11 presents the spatial distribution of the T1 

independent dataset, which represents 11.4% of the global training dataset. 

Table 2.4: Summary of the three independent datasets used to constrain the general 
configuration of SOMLO. 

Independent dataset 
Number of  

measurements 
Percentage of  
global dataset 

T1 3769 11.4 
T2 2919 8.8 
T3 3391 10.2 

Total 10079 30.4 
 
 

 
Figure 2.11: Distribution of measurements constituting the T1 independent dataset. 

To explore the optimal SOM configuration, 800 iteration steps were used to train 

the SOM, using neuron map sizes ranging from 9 to 529 for every different input 

variable combination, with the ultimate aim to converge on the model with the lowest 

RSE. It’s important to note that the same datasets were used to train and validate the 

model for each test. This is because some bottle samples do not contain the entire suite 

of dissolved oxygen and nutrient measurements, so by using the same datasets to train 

and test each model combination eliminates any potential bias in the independent testing 

of SOMLO. 
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Salinity was found to be the most important parameter for capturing the mixed-

layer carbon signal, followed by temperature, then nutrients (Fig. 2.12). 
 

 
Figure 2.12: RSE values for the CT (open triangles) and AT (black circles) SOMLO 
models when applied to the three independent datasets. Numbers under the dotted lines 
are the optimal number of neurons to constrain the system. Excluded parameter 
represents the variable not used in the SOMLO training and testing; including phosphate 
(P), nitrate (N), silicate (Si), dissolved oxygen (DO), salinity (S) and temperature (T). 
The dashed lines represent the RSE values for the optimal models trained using all 
parameters. 

The final optimal parameter set and SOM neuron size using the three 

independent tests were (SOPSi, 25) and (TSPO, 56) for the global AT and CT models 

respectively (Fig. 2.13). The SOMLO model using the PCR constrained the CT system 

with a higher skill than the robust MLR, while AT was better constrained using the 

robust MLR model. 
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Figure 2.13: Optimal residual standard error (RSE) values for (a) CT and (b) AT 
SOMLO models. Numbers above the line represent the optimal number of neurons, 
while Parameter Set represents the combination of parameters used to train and test the 
SOMLO model; including phosphate (P), nitrate (N), silicate (Si), dissolved oxygen 
(O), salinity (S) and temperature (T). The dashed line represents the RSE value for the 
optimal model trained using all parameters. 

The addition of phosphate beyond temperature, salinity and dissolved oxygen 

improved the prediction of CT by ~27% or 5.1 μmol kg-1 (Fig. 2.13). Without air-sea gas 
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exchange modulating its behavior, phosphate likely provides clearer constraints on 

organic matter production and respiration than dissolved oxygen alone. The redundancy 

of nitrate for both CT and AT (Fig. 2.13) is likely due to the near constant stoichiometric 

uptake rate of phosphate and nitrate by photosynthesizing organisms (Revelle and 

Suess, 1957). The preference of phosphate over nitrate may be the result of continual 

production of organic matter by nitrogen-fixers after the nitrate pool is completely 

depleted (Gruber and Sarmiento, 1997), or from the re-naming of samples where only 

‘nitrate + nitrite’ was listed to nitrate in the GLODAP and CARINA products (Key et 

al., 2004). 

Precipitation and dissolution of calcium carbonates (CaCO3) affects the 

concentration of AT twice as much as CT (Sarmiento and Gruber, 2006). As waters high 

in silicate tend to relate to high biological respiration by diatoms (a non-calcifying 

organism), and waters of low silicate foster a more conducive environment for 

calcifying organisms (such as coccolithophores) (Kirchman, 2012), silicate helps 

constrain the spatial patterns of CaCO3 cycling which influences AT. 

Salinity’s significant importance in constraining AT is likely related to its 

influence on the charge difference between anions and cations in seawater (Zeebe and 

Wolf-Gladrow, 2001), leading to the known high correlation between these two 

parameters (Millero et al., 1998). In contrast, the addition of temperature to the 

parameter set was found to be redundant, as pointed out by some earlier studies (e.g. 

McNeil et al. (2007)). 

2.7.2 Importance of geography 

Carbon data from geographically diverse ocean regions will be clustered into the same 

neuron when input-output concentrations are similar. For example, a cluster of similar 

biogeochemical data in the North Atlantic Ocean can be equally represented by those in 

some parts of the North Pacific Ocean, despite there being little ocean inter-

connectedness between these two carbon datasets on shorter time-scales. Spatial length-
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scales of variability are known to be within ocean basins, not between them, especially 

those constrained by land. Without applying geographical boundary conditions, non-

linearities may be introduced into the final MLR which would limit the models 

predictive skill. To test this hypothesis, optimal model configurations were trained with 

the inclusion of geographical input parameters during the training of the SOM, but were 

excluded as predictor parameters in the linear regressions. 

Global position representation through latitude and longitude can be problematic 

due to the mid-Pacific discontinuity of longitude at ±180° and shortening of 

geographical distance between degrees of longitude towards the poles. As a measure to 

reduce the influence of longitudinal discontinuity at ±180° in the mid-Pacific, all 

longitude values were shifted by 160° West (or 20° East), thereby setting the 180° 

discontinuity at a position that bisects continental Africa and Europe (Fig. 2.14). 
 

 
Figure 2.14: Global map after longitude values were shifted by 160° West. 

A normal vector to the Earth ellipsoid (n-vector) was also tested that eliminates 

both issues mentioned above. The n-vector transforms the 2-D latitude/longitude 

position system into a 3-D vector whilst maintaining unique vectors for every 

geographical position. Latitude and longitude values were transformed here using a 

version of the n-vector presented by Gade (2010) 
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The introduction of geographical information was found to be a powerful 

addition in improving the global skill for CT by 16% or 2.2 μmol kg-1, however there 

was little improvement for AT (Fig. 2.15). The optimal SOMLO configuration 

additionally incorporates longitude and n-vector geographical inputs in constraining AT 

and CT respectively, and increased the optimal number of neurons for CT to 64. 
 

 
Figure 2.15: Skill of optimal SOMLO models with geographical constraints. Lat and 
Lon represent latitude and longitude respectively, while n-vector represents the normal 
vector to the Earths ellipsoid as defined by Gade (2010). Numbers below dashed line 
represent the optimal number of neurons. 

To better understand and visualize why geography is important, the spatial 

distribution of neurons is compared for CT models trained with only biogeochemical 

information, and both biogeochemical and geographical information (Fig. 2.16). To 
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illustrate the spatial distribution of the assigned neurons for the global carbon dataset, 

neurons are represented as different colours. Here, each colour represents a neuron, 

while shades of colour indicate close similarity in the weighting vectors. The broad 

regions of similarity that are captured when the SOM is constrained by only 

biogeochemical properties include the Southern Ocean, subtropical gyres, North Pacific 

and North Atlantic (Fig. 2.16a). However, these ocean “fingerprints” extend beyond the 

known spatial length scales, for example linking features in the Southern Ocean to that 

of the North Atlantic, while zonal bands stretch across ocean basins (Fig. 2.16a). When 

biogeochemical and geographical information are incorporated into the SOM training 

routine, the resulting distribution preserves the neuron boundaries at known frontal 

zones, such as the subtropical convergence zone, but is able to constrain the 

classification of data to be within each ocean basin (Fig. 2.16b). Using geography is an 

important additional constraint that implicitly shortens the length scales of variability 

which dominate seasonal mixed-layer dynamics in the ocean. It is important to note that 

the addition of geography did not alter the optimal parameter set for the technique. 
 

 
Figure 2.16: Distribution of assigned neurons for optimal CT SOM models trained with 
(a) biogeochemical information only and (b) biogeochemical and geographical 
information. Measurements of the same colour were assigned to the same neuron, while 
shades of colours represent close similarity of neuron weighting vectors. 
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2.7.3 SOMM versus SOMLO: Importance of the local linear optimizer 

To explore the predictive ability of the SOMM model, optimal model configurations 

were tested using the three independent datasets but with neuron sizes extending up to 

2500 (Fig. 2.17). Using all data, the SOMM model converged on an RSE value of 16 

μmol kg-1 in constraining CT. Although the SOMM is powerful in constraining complex 

non-linear systems, its ability to accurately predict independent data is dependent on the 

information coverage provided by the training dataset. If the information provided to 

SOM by the training dataset does not cover a large portion of the systems variability 

and drivers, then the predictive skill of SOMM will suffer. Since the global carbon 

system is highly variable in space and time, the current spatiotemporal deficiencies in 

the global bottle dataset limits the ability of SOMM to accurately predict CT on a global 

scale. Using a local multiple-linear optimizer in addition to the global SOM (i.e. the 

MLR), is shown here to significantly improve the model’s ability to constrain global CT 

by ~27%, or 4.4 μmol kg-1. Similar findings were found for the AT model. 
 

 
Figure 2.17: Skill comparison between the SOMLO (open triangles) and SOMM 
(closed triangles) models in capturing CT. The dashed lines represent the lowest RSE 
values for to two models. 
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Previous empirical approaches to capture ocean surface pCO2 using the 

“underway” pCO2 measurement network have either employed a SOM or MLR model 

(e.g., Arrigo et al., 2010; Chierici et al., 2009; Telszewski et al., 2009). Specifically, 

SOM based approaches first cluster a combination of re-analyzed fields of sea surface 

temperature (SST), salinity (SSS), and satellite-based estimates of Chl-a and MLD. 

“Underway” pCO2 measurements are then co-located with Chl a, SST, SSS and MLD 

values and assigned to a neuron using the same Euclidean distance measure as presented 

in Sect. 2.6.3. Finally, ocean surface pCO2 distributions are constrained by taking the 

mean of all “underway” measurements assigned to each neuron (e.g., Friedrich and 

Oschlies, 2009a; Telszewski et al., 2009). Conversely, studies based on a MLR 

approach first derive linear relationships between “underway” pCO2 and a combination 

of co-located Chl a, SST, SSS and MLD parameters, and then predict basin-wide pCO2 

maps (e.g., Chen et al., 2011; Chierici et al., 2009; Lefèvre and Taylor, 2002). 

Combining both the SOM and MLR technique, as done here, is shown to significantly 

improve the predictive skill of the global bottle-based model. Applying the SOMLO 

technique to “underway” pCO2 measurements could therefore provide a more accurate 

approach to predict ocean surface pCO2. 

2.7.4 Using different neural network algorithms 

Although Kohonens SOM algorithm has been found well suited for geophysical 

problems, there exists a suite of other neural network algorithms, such as k-means, 

back-propagation and radial-basis function (Haykin, 1999), that may capture the oceans 

inorganic carbon system with a higher degree of accuracy. 

The k-means approach clusters any M×N dataset into k groups, such that the 

sum of squares from all data samples assigned to each group is minimized (Hartigan and 

Wong, 1979). During early stages of this PhD work, a comparison test between the 

supervised-SOM and k-means algorithms found that accuracy in the SOM-based 

approach is slightly better than k-means estimates when applied to the bottle-carbon 
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dataset. Based on these early results, the SOM algorithm was further developed to 

incorporate the MLR routines. 

While it’s important to pursue novel empirical methods to better constrain the 

system, the presence systematic and random sources of error in historical bottle 

measurements will cap empirical accuracy. Precision in historical AT and CT 

measurements is estimated to be between 5-10 μmol kg-1 prior to the early 1990’s, 4-5 

μmol kg-1 after the introduction of certified reference materials by Dickson (1990c), and 

is currently less than 2 μmol kg-1 (Key et al., 2010). Since 68% of samples in the global 

training dataset were collected during the period 1990 to 2003, with only 10% prior to 

1990, the benchmark for empirical carbon predictions is estimated here to be ~4-5 μmol 

kg-1. However, this estimate is based on perfect SHP measurements, whereas accuracy 

in nutrient measurements has been typically no greater than 2% (Key et al., 2010). 

2.8 Evaluating the empirical approaches 

2.8.1 Measuring the improvement over traditional MLR 

To evaluate the skill of the two independent approaches used here (MLR versus 

SOMLO), the global SIT predictions for each technique were divided into 5 

geographical regions and evaluated globally (Table 2.5). The SOMLO approach was 

found to improve the predictive skill of CT by between 11-30% in all 5 regions (Table 

2.5). In particular, known complex dynamical regions with global CO2 importance like 

the equatorial Pacific, Southern Ocean and North Atlantic are where the non-linear 

SOMLO approach excelled, improving CT prediction by between 23-30% (or 4-6 μmol 

kg-1). From a global point of view, SOMLO improves the predictive skill of CT in the 

mixed-layer by 19%. 

For AT, the benefits of using SOMLO are much weaker, with only a marginal 

global improvement by 6.7% (or 0.7 μmol kg-1) and even deterioration of detection in 

the equatorial Pacific and North Atlantic. This is likely related to the known high linear 
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relationship between alkalinity and salinity (e.g. Millero et al. (1998)), which limits the 

benefits of SOMLO, since it better constrains more complex non-linear systems. 

Table 2.5: Skill comparison between the traditional MLR and SOMLO approaches for 
(a) CT and (b) AT. 

 RSEa [μmol kg-1]  
Region Zone b Nc Ad-hoc MLR SOMLO % Improvement 

  
(a) CT 
Subtropical 1 5388 15.2 13.5 11.2 
Eq. Pacific 2 752 18.9 13.3 29.7 
North Atlantic 3 4626 15.5 11.7 24.5 
North Pacific 4 2344 16.8 14.3 14.9 
Southern Ocean 5 7856 16.4 12.7 22.6 
Global 20966 16.0 (15.6)d 12.9 19.4 (17.4)d 

  
(b) AT 
Subtropical 1 4917 11.0 9.2 16.4 
Eq. Pacific 2 513 9.4 9.6 -2.1 
North Atlantic 3 3181 8.0 8.5 -6.3 
North Pacific 4 1956 14.8 14.4 2.7 
Southern Ocean 5 6084 9.4 8.8 6.4 
Global 16651 10.4 (11.1)d 9.7 6.7 (12.6)d 

a Calculated using the SIT predictions  
b Corresponding geographical region in Fig. 2.7 
c Number of measurements 
d Universal MLR 

2.8.2 SOMLO regional error assessment 

Plotting the distribution of global SIT residual errors permits investigation into the 

spatial skill of the SOMLO model (Fig. 2.18). Although the Arctic Ocean, Bay of 

Bengal and Sea of Okhotsk are regions not well constrained by the novel technique, the 

majority of the ocean maintains a relatively homogenous residual error range (Fig. 

2.18). These unconstrained regions are either coastal or marginal seas with known 

locally complex biogeochemical regimes, so it is understandable that a trained global 

open-ocean technique will poorly constrain these local regions. 
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Figure 2.18: Distribution of global SIT residual errors (i.e. predicted – in situ) for 
optimal (a) CT and (b) AT SOMLO models, given in μmol kg-1. Error values were 
interpolated around in situ locations using VG gridding software of Ocean Data Viewer 
(Schlitzer, R.: Ocean Data View, http://odv.awi.de, 2011). 

Further scrutinizing the 395 samples with a SIT residual error greater than ±50 

μmol kg-1
 for CT and/or AT revealed that 70% (277) are located within 300 km of a 

major coastline (Fig. 2.19). Since a study by Gibbs et al. (2006) identified terrestrial 

influences extend up to 345 km from land, and well beyond the bathymetric defined 

coastal ocean limit of 500m used here, these anomalous independently predictions are 

likely the result of land-ocean interactions affecting the carbon and SHP concentrations.  

http://odv.awi.de
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Figure 2.19: Geographical distribution of the 277 samples with a SIT residual error 
greater than ±50 μmol kg-1 for CT and/or AT and are located within 300 km of a major 
coastline. 

Separating the SIT predictions into 14 geographical regions (see Appendix E) 

and excluding these anomalous coastal samples then provides the most accurate 

estimate of SOMLOs regional open-ocean skill (Table 2.6). This reconfirms that the 

Arctic Ocean and Bay of Bengal are the two regions were the model’s skill is poorest. 

By finally excluding all Arctic Ocean measurements (North of 70°N), the estimate for 

the global open-ocean accuracy for SOMLO CT and AT predictions is 10.9 and 9.2 μmol 

kg-1 respectively. 
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Table 2.6: Regional and global SOMLO skill evaluation (see Appendix E for map of 
spatial division). 

 RSEb
 Nc

 

Region Zonea CT AT CT AT 

Arctic Ocean 1 26.6 22.1 782 795 
  

Sup-Polar North Atlantic 2 11.6 9.0 4425 2641 
Subtropical North Atlantic 3 9.1 6.6 1481 1254 
Equatorial Atlantic 4 13.7 13.0 654 582 
Subtropical South Atlantic 5 10.6 8.7 659 551 

  
Sub-polar North Pacific 6 11.2 14.7 2053 1615 
Subtropical North Pacific 7 11.1 8.2 2367 1446 
Equatorial Pacific 8 11.2 8.3 1524 802 
Subtropical South Pacific 9 12.3 7.7 1824 1404 

  
Subtropical North Indian 
(Exc. Bay of Bengal) 

10 22.1 
(13.9) 

13.4  
(7.5) 

143  
(111) 

168 
(136) 

Equatorial Indian 11 11.8 7.7 512 500 
Subtropical South Indian 12 11.5 5.6 1411 1388 

  
Southern Ocean 13 8.7 8.8 3950 3088 
Sub-Antarctic waters 14 9.5 8.5 2250 1474 

  
Global  11.8 10.2 24035 17708 
Global (below 70°N)  10.9 9.2 23253 16913 

a For a plot of corresponding geographical regions see Appendix E 
b Residual Standard Error [μmol kg-1] 
c
 Number of measurements in the region. 
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To investigate skewness and bias in SOMLO predictions, global SIT predictions 

where plotted against their corresponding in situ measurement and the distribution of 

residual errors examined (Fig. 2.20). For both CT and AT, skewness is limited               

(r2 ≥ 0.97), while SOMLO predictions are globally biased by 0.02 and 0.15 μmol kg-1 

for CT and AT, respectively. These results provide additional confidence in SOMLO’s 

ability to accurately predict CT and AT concentrations for any given set of temperature, 

salinity, dissolved oxygen, silicate, and phosphate measurements in the global open-

ocean mixed-layer. 
 

 
Figure 2.20: (a) and (c) Global SIT predictions versus in situ measurements for optimal 
CT and AT SOMLO models respectively. (b) and (d) Residual error density distributions 
for optimal CT and AT models respectively. 2r  = r-squared correlation and N = number 
of samples. 
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2.8.3 Is there a temporal bias in SOMLO predictions? 

The influence of seasonal data bias is investigated via partitioning the global SIT 

predictions into seasons and calculating the RSE values (Fig. 2.21; Table 2.7). No 

strong seasonal bias was found on a global scale (Fig. 2.21). On a regional scale, 

wintertime samples in the Southern Ocean (south of 44°S) represents only ~10% of 

measurements within this region, yet SOMLO is able to predict wintertime samples 

with an accuracy of ±7.7 μmol kg-1 for both CT and AT (Table 2.7). 

 
Figure 2.21: RSE values for optimal SOMLO CT and AT SIT predictions partitioned by 
season, where seasons are defined as Summer (December to February), Autumn (March 
to May), Winter (June to August) and Spring (September to November) for Southern 
Hemisphere data. Northern Hemisphere seasons differ by 6 months. 
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Table 2.7: RSE values of SIT predictions partitioned into 5 regions and by season. 
Seasons are defined as summer (December to February), autumn (March to May), 
winter (June to August) and spring (September to November) for Southern Hemisphere 
data. Northern Hemisphere seasons differ by 6 months. 

a Number of measurements 

2.8.4 Significance of anthropogenic CT corrections 

To test the significance of the applied anthropogenic CT corrections, the optimal CT 

model was trained and tested using measurements that were not corrected for 

anthropogenic CO2 uptake. Applying the SIT approach globally, revealed a global 

predictive skill of 13.2 μmol kg-1, which is ~26% higher than the optimal model trained 

with corrected CT measurements (10.9 μmol kg-1). This difference of 2.3 μmol kg-1 

between the two approaches indicates that anthropogenic corrections have a low impact 

on the models ability to predict global CT. Despite this, the importance of accounting for 

anthropogenic CO2 uptake is illustrated by partitioning the SIT predictions by year and 

calculating the difference in RSE values between the models trained and tested using 

corrected (RSE(yr; corrected)) and non-corrected CT measurements (RSE(yr; not corrected)): 
 

  RSE [μmol kg-1]   (Na)  
Region Latitudinal 

band 
Summer Autumn Winter Spring Net N 

       
(a) CT 

High North 44°N – 70°N 12.70  (1323) 9.57   (1322) 12.45   (704) 10.54     (971)   4320 
Temperate 
North 

18°N – 44°N 13.49  (1434) 10.40 (1335) 9.16   (1448) 11.39   (1201)   5418 

Tropical 18°S – 18°N 10.39  (1224) 14.28   (928) 11.18   (947) 11.86   (1324)   4423 
Temperate 
South 

18°S – 44°S 11.90  (1037) 11.42   (464) 13.54   (774) 9.73     (1369)   3644 

Southern Ocean South of 44°S 9.78    (1851) 9.58   (1475) 7.74     (585) 7.97     (1537)   5448 
Global Below 70°N 11.63  (6869) 10.84 (5524) 10.85  (4458) 10.27   (6402) 23253 
       

(b) AT 
High North 44°N – 70°N 11.26 (1026) 13.67  (768) 17.69   (304) 11.09    (524)   2622 
Temperate 
North 

18°N – 44°N 8.64   (1216) 8.91    (970) 7.16     (922) 7.62      (904)   4012 

Tropical 18°S – 18°N 8.19     (771) 9.55    (769) 9.20     (579) 9.70    (1155)   3274 
Temperate 
South 

18°S – 44°S 8.42     (896) 8.17    (387) 6.94     (542) 5.85    (1185)   3014 

Southern Ocean South of 44°S 8.40   (1383) 8.47   (1356) 7.72     (387) 10.12    (869)   3995 
Global Below 70°N 9.04   (5292) 9.86   (4250) 9.36   (2734) 8.75    (4637) 16913 
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corrected) (yr;corrected)-non (yr;(yr) RSERSERSE     (2.12) 

where yr represents year and spans the global dataset range (i.e. 1981 to 2010). The 

positive and increasing ΔRSE(yr) as year diverges from the normalized year of 2000 

indicates that anthropogenic adjustments directly enhances the models global skill    

(Fig. 2.22). Although this result does not advocate that the applied corrections were 

globally accurate, it does verify the importance of accounting for anthropogenic CO2 

uptake when deriving empirically relationships for CT using measurements collected 

over several decades. 

 

 
Figure 2.22: Annual RSE difference between CT models trained and tested using 
measurements that were either correct or non-corrected for anthropogenic CO2 uptake 
(defined by: ΔRSE(yr) = RSE(yr; non-corrected) – RSE(yr; corrected)). The positive and increasing 
ΔRSE(yr) as year diverges from the normalized year of 2000 indicates that anthropogenic 
corrections improve the predictive skill of SOMLO. 



 72 

2.8.5 How effective is a bathymetric approach for identifying coastal data? 

Identifying and removing samples influenced by terrestrial processes is an important 

aspect when deriving empirical relationships for open-ocean regions. To evaluate the 

appropriateness of identifying coastal data under a bathymetric depth approach, RSE 

values were calculated for near-coast (within 300 km of a major coastline) and open-

ocean measurements using the global SIT predictions, but excluding the 298 

measurements already suspected as terrestrially influenced and data North of 70°N.  

Accuracy in SOMLOs capacity to predict open-ocean samples is 14.4% better 

than near-coast samples for AT, and 10.9% for CT (Table 2.8). This result indicates that 

identifying coastal samples under a bathymetric depth approach may not be effective in 

ocean regions where coastal biogeochemical processes and terrestrial influences are not 

coupled to a shelf break, but are rather dependent on biotic distributions, as shown by 

Gibbs et al. (2006). Future attempts to identify coastal measurements should therefore 

not solely rely on bathymetric depth. 

Table 2.8: SOMLO skill comparison between near-coast and open-ocean regions. 

 RSEa (Nb)  
Model Near-coast Open-ocean % difference 

CT 11.9 (4338) 10.6 (18875) 10.9 
AT 10.4 (2856) 8.9 (14014) 14.4 

       a Residual Standard Error [μmol kg-1] 
       b Number of in situ measurements 

2.8.6 Are the neurons capturing the system? 

Optimal model configurations established here may be biased to the three independent 

subsets that were used to constrain the optimal parameter combination and SOM neuron 

size (see Sect. 2.7.1). To ensure the optimal SOM model captures all important features 

within the global carbon system, and therefore minimizes any potential influence due to 

grouping biases, the SIT approach was applied globally using the optimal parameter 

combinations but with an increases in the optimal SOM neuron size (Table 2.9). This 
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essentially evaluates the models global skill when the data is partitioned into more 

neurons than was optimal when tested on the three independent subsets. 

Table 2.9: Global RSE values [μmol kg-1] computed using model predictions under the 
optimal configuration and with two increases in SOM neuron size. The small 
differences indicate that all important features are captured under the optimal model 
configuration. 

 CT model AT model 
 Number of neurons RSE Number of neurons RSE 

Optimal 64 12.45 25 9.78 
Step 1 72 12.59 30 10.16 
Step 2 81 12.82 36 10.28 

The increase in global RSE values by 0.1 to 0.4 μmol kg-1 for each step in SOM 

neuron size (Table 2.9) indicates that all important features were captured when using 

the three independent datasets, and more importantly, that the optimal SOM 

configuration defined by the three independent test-sets remains valid on a global scale. 

2.8.7 SOMLO model without Arctic data 

Uniqueness in parameter concentrations within the Arctic region (North of 70°N), in 

particular that of salinity due to intense freshening of the water body, results in the 

classification of Arctic measurements into features that are near exclusive to the region 

(Figure 2.23). This suggests Arctic measurements have little influence in constraining 

the remaining global samples. This facet is particularly important since residual errors 

in the Arctic are ~100% higher than all other regions (see Table 2.6). 
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Figure 2.23: Distribution of measurements assigned to a neuron containing at least one 
sample collected within the Arctic region (above 70°N). Numbers represent the neuron 
each measurement was assigned to (maximum of 64). 

To evaluate the influence of Arctic samples on the models global predictive 

skill, the optimal SOMLO model was trained and tested (SIT) using a global dataset that 

excluded Arctic Ocean data (samples North of 70°N). Comparison between the global 

RSE values of this model, and the same samples predicted under the optimal ‘all data’ 

model, revealed that SOMLOs ability to predict samples below 70°N differed by 0.1% 

and 2% between the two CT and AT models respectively (Table 2.10). This very small 

difference confirms that Arctic samples present an insignificant influence on the models 

capacity to predict carbon samples below 70°N, and that no bias exists in comparing the 

skill of the global SOMLO model to the universal MLR, which excluded Arctic data 

when fitting and testing the regression. 
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Table 2.10: RSE values of SIT predictions below 70°N, where the optimal SOMLO 
configurations were trained and tested using a global dataset either with or 
without Arctic data. 

 RSE [μmol kg-1]  
 Model with Arctic data Model without Arctic data % difference 

CT 12.45 12.44 0.1% 
AT 9.71 9.9 2% 

2.8.8 Stochastic nature of the SOM 

Initialization of the SOM neuron weights is a stochastic process (See Sect. 2.6.2), and 

can therefore lead to predictions that are not reproducible. In this study, this facet is 

dampened by the small neuron to training dataset ratio (1:375 for CT and 1:700 for AT), 

and the use of 800 training iteration steps, which should converge on a similar grouping 

of measurements when the model is trained under static conditions (i.e. same parameter 

combination, number of neurons and training dataset). 

As a test to explore the influence of stochastic initialisation, the optimal 

SOMLO model was trained and tested 100 times using the three independent subsets, 

and then the RSE values examined for reproducibility (Table 2.11). The small 1st 

standard deviation of 0.2 μmol kg-1 (or 1.6%) around the mean RSE for CT demonstrates 

reproducibility in SOMLO predictions, and therefore a negligible influence due to the 

stochastic SOM initialization. 

Table 2.11: Mean and first standard deviation in RSE values of the three independent 
subsets (see Sect. 2.6.2) when tested 100 times each. The small 1st deviation indicates 
negligible influence due to the stochastic SOM initialization. 

 

 

 
 

Model 
Mean RSE  
[μmol kg-1] 

1st Standard Deviation  
[μmol kg-1] 

% of mean  

CT 12.2 0.2 1.6% 
AT 8.2 0.1 1.2% 
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2.9 Application to the Bermuda Atlantic and Hawaiian 
Ocean time-series stations 

The SOMLO model was trained using a global CT and AT dataset that consisted mostly 

of sporadic one-time cruises in time. To test how well seasonal to inter-annual 

variability is captured using the new technique, the carbon time-series data from the 

BATS and HOT stations were used as an independent test-bed. 

2.9.1 Predicting the North Atlantic seasonal cycle for inorganic carbon (BATS) 

The BATS hydrographic site is a high frequency measurement program of carbon and 

auxiliary parameters that has been ongoing since 1989 (Bates, 2007). Located in the 

Sargasso Sea at 31°43'N and 64°10'W (see Fig. 2.25), a strong seasonal cycle exists at 

BATS that is characterized by warm surface temperatures in summertime increasing 

stratification, while cooler temperatures during the wintertime enhances the mixed-layer 

depth, and therefore delivery of nutrient and CT enriched deep waters to the surface 

(Bates et al., 1996). To test SOMLOs capacity to reconstruct the BATS seasonal cycle, 

the global algorithm was first re-trained without using the BATS 1989-2007 carbon 

time-series dataset, and then the measured monthly hydrographic properties between 

1987-2007 were used to independently predict CT and AT concentrations at the BATS 

site. Finally, the independent carbon predictions were compared to the in situ 

measurements to investigate the temporal skill of the technique. The BATS CT/AT 

values were also independently predicted using the traditional MLR approach as a 

further test. 

Figure 2.24a-b shows the measured versus predicted CT and AT annual cycles at 

BATS. Within the uncertainty of the SOMLO prediction, both the magnitude and 

structure of the seasonal CT cycle at BATS is well constrained, capturing 90% of the 

signal (Fig. 2.24a, Table 2.12). For a global MLR approach, the seasonal cycle is 

overestimated significantly by ~50%, while the ad-hoc approach under-predicts the 
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seasonal cycle by ~20 μmol kg-1. For AT, the small seasonality is captured by both 

techniques (Fig. 2.24b). 
 

 
Figure 2.24: BATS in situ and independently predicted seasonal cycles for (a) CT and 
(b) AT. Black dots represent in situ measurements and blue shaded region represents the 
uncertainty in SOMLO predictions. 
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To gain a better insight into how the SOMLO substantially improves the 

prediction of the BATS seasonal cycle from the traditional MLR analysis, the neuron 

distribution for CT measurements in the North West Atlantic is examined (Fig. 2.25). 

Applying a traditional ad-hoc MLR analysis requires defining somewhat subjective 

longitude and latitude boundaries for the data to be used in the linear regressions. Here, 

as an illustration, the spatial boundaries of 30°N to 70°N and 40°W to 85°W that were 

also used by Lee et al. (2000b) in their MLR approach are presented. The traditional 

MLR explicitly uses all carbon data within the prescribed region, whilst the SOMLO 

approach partitions the data into neurons without any prior geographic constraints. The 

benefit in this approach is that when SOMLO is applied to a new dataset (in this case 

BATS) the SOM only uses neurons (data) most consistent with its “biogeochemical 

fingerprint”, and therefore reduces the potential bias that would be introduced from 

including all data in the regression. 

 
Figure 2.25: Distribution of assigned neurons in the North-west Atlantic region for 
optimal CT SOMLO model (30°N to 70°N and 40°W to 85°W). Numbers represent the 
neuron each measurement was assigned to (maximum of 64). 
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2.9.2 How well does SOMLO capture inter-annual signals? 

Inter-annual variability of CT at BATS is captured to within the uncertainty of the 

SOMLO technique over the 18 year period (Fig. 2.26). This illustrates a new and 

powerful way to diagnose year-to-year carbon variability in the ocean by using the 

many more long-term hydrographic time-series that are available in the ocean (McNeil, 

2010). To further test the SOMLO approach in capturing inter-annual variability, the CT 

signal at the HOT time-series as reported by Brix et al. (2004) was independently 

predicted. The SOMLO predictions capture the smoothed inter-annual trend-line at the 

HOT site to within 85% (Fig. 2.27, Table 2.12). 

The BATS and HOT comparisons provide additional confidence that the 

SOMLO approach provides good constraints on both seasonal and inter-annual 

variability for CT. This illustrates the potential of the new technique to be used on a 

wider scale to help understand the oceans role in modulating atmospheric CO2. 

Table 2.12: Statistical summary of independent predictions at the BATS and HOT 
stations. Including; RSE of independent predictions, correlation between predictions 
and in situ measurements, and variance in measured values. 

Site RSE  
[μmol kg-1] 

Correlation  
(Pearson) 

Variance in measured  
data [(μmol kg-1)2] 

CT 
BATS 7.4 0.90 232 
HOT 10.0 0.72 180 

AT 
BATS 6.9 0.77 108 
HOT 7.2 0.90 195 
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Figure 2.27: In situ and independently predicted HOT CT measurements with a loess 
(locally weighted scatterplot smoothing) line fit. 

2.10 Comparison to previous techniques 

It’s important to emphasize that reported error estimates of previous empirical studies 

are calculated from the regressions residual error rather than independent tests as done 

here (see Table 2.1). This means direct comparison between previous studies and results 

presented here is not valid. The systematic independent test approach (see Sect. 2.4) was 

therefore used to accurately report the differences between SOMLO results and 

previous traditional MLR approaches. 

Two sets of calculations were conducted as shown in Table 2.13. The first set of 

calculations (MLRold) involved taking the regressions from a suite of prior work (Bates 

et al., 2006; Lee et al., 2000b, 2006; McNeil et al., 2007) and applying them to the new 

larger dataset within each region. The second set of calculations (MLRnew) involved 

developing a new set of regressions using the same geographical and temporal 

boundaries and predictor variables as the previous authors within the much larger 

dataset. Using the SIT predictions, the skill of the models were calculated (RSE) and 

could then be directly compared to SOMLO results (see Table 2.13). 
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The SOMLO, as shown at BATS and HOT, improved the predictive skill of CT 

and AT in most regions by between 10-40% relative to the new set of regressions, and by 

10-48% compared to previous regressions (Table 2.13). Globally, the SOMLO reduces 

the error in predicted CT by 28% beyond the MLR method used to conduct the only 

global analysis (Lee et al., 2000b). For AT, the new technique reduces the global error 

by 9% relative the MLR regressions presented by the only other global empirical study 

(Lee et al., 2006). 

Table 2.13: Skill comparison between optimal SOMLO models and previous MLR 
approaches. MLRold involves applying a suit of regressions from previous work to the 
new larger dataset, MLRnew involved developing a new set of regressions using the 
same ad-hoc partitioning approaches as previous authors, finally, SOMLO is the skill of 
the optimal SOMLO models. N represent the number of measurements used to calculate 
the RSE values, and % the percentage improvement between the MLRold/new and 
SOMLO approaches. 

Study   RSE [μmol kg-1]  % differenced  
Region Model N MLRold MLRnew SOMLO  MLRold MLRnew Author 
Globala CT 13881 22.0 17.8 12.8  42 28 (Lee et al., 

2000b) 
Indian Oceanb CT 2052 15.2 21.4 13.0  14 39 (Bates et 

al., 2006) 
Southern Ocean CT 4196 17.3 8.8 9.0  48 -2 (McNeil et 

al., 2007) 
Global (exc. North 
Pacific)c 

AT 10360 
(8995) 

11.7  
(10.3) 

10.9 
(10.4) 

10.7  
(9.9) 

 9 2 (Lee et al., 
2006) 

Indian Oceanb AT 2042 9.4 11.8 7.1  24 40 (Bates et 
al., 2006) 

Southern Ocean AT 4196 10.3 10.3 9.3  10 10 (McNeil et 
al., 2007) 

a Using only surface data (above 30m)  
b Only measurements from within the mixed-layer defined here were used to constrain new and test 
previous regressions. 
c The North Pacific empirical regression of Lee et al. (2006) included an interaction term between 
temperature and longitude. Here, longitude values were taken to range from 0°-360°. 
d Calculated by ((MLRold (or new) – SOMLO) / MLRold (or new))×100  

2.11 Diagnosing global CT and AT distributions 

Large historical and recent datasets up until 2008 of temperature, salinity, dissolved 

oxygen and nutrients has allowed researchers to objectively interpolate global monthly 

1°×1° resolution climatologies – the World Ocean Atlas 2009 project (WOA09; 
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Antonov et al., 2010; Garcia et al., 2010a; Garcia et al., 2010b; Locarnini et al., 2010). 

These WOA09 regularly gridded maps have provided important boundary and/or initial 

conditions for numerical models and aided in evaluating model performance. However, 

irregular sampling density in the SHP network, particularly nutrients (Boyer et al., 

2009), limits the WOA09 monthly distributions to be only representative of large-scale 

features, without the ability to resolve smaller-scale features such as boundary currents 

and eddy fields (Boyer et al., 2009). Here, the WOA09 ocean surface (0m) 

climatologies were used as an independent dataset (see Fig. 2.10) to diagnose monthly 

CT and AT distributions for the nominal year of 2000 via the global bottle-trained 

SOMLO model. 

2.11.1 WOA09 unit conversions 

Parameter units used in the WOA09 products and global bottle dataset are listed in 

Table 2.14. To assimilate WOA09 nutrient units to the bottle dataset, nutrient 

concentrations were multiplied by seawater density computed via the equation of state 

approximation of Brydon et al. (1999). For dissolved oxygen, WOA09 concentrations 

were first converted from ml to μmol using a conversion factor of 44.6596 (derived 

from the molar volume of oxygen gas at standard temperature and pressure; 22.3916 L 

mol-1), and then multiplied by seawater density. 

Table 2.14: Summary of units used in the WOA09 products and global bottle dataset. 

 Dataset 
Variable Global bottle dataset WOA09 
Temperature °C °C 
Salinity psu psu 
Dissolved oxygen μmol kg-1 ml L-1 
Phosphate μmol kg-1 μmol L-1 
Silicate μmol kg-1 μmol L-1 
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2.11.2 Spatial variability 

Large-scale features in SOMLO-predicted annual-mean CT and AT distributions are in 

good agreement with the bottle measurements, and follow our broader understanding of 

spatial carbon variability (Fig. 2.28 and 2.29). In the Southern Ocean, carbon 

distributions are found in longitudinally homogenous bands driven by the Antarctic 

Circumpolar Current (ACC), and higher CT concentrations relative to the global-mean 

resulting from strong upwelling of CO2 enriched subsurface waters and cooler surface 

temperatures enhancing CO2 solubility (McNeil et al., 2007; Metzl et al., 2006). In 

equatorial upwelling regions, cold waters enriched with remineralized organic material 

are brought to surface resulting in elevated CT and AT concentrations (Feely et al., 

2002). As the surface waters are then transported laterally from the site of upwelling, 

biological processes and loss of CO2 to the atmosphere reduces CT to some of the lowest 

concentrations observed globally. For AT, maxima concentrations are found in the 

central subtropical gyres (~25°), where stronger evaporation relative to precipitation 

elevates salinity concentrations resulting in higher AT values (Lee et al., 2006; Millero et 

al., 1998). Conversely, freshwater input from rivers and seasonal ice melt lowers AT in 

regions like the Bay of Bengal (George et al., 1994) and Arctic marginal waters 

(Dyurgerov and Carter, 2004). 

Key et al. (2004) interpolated bottle carbon measurements collected between 

1985 and 1999 to diagnose 1°×1° global climatologies for CT and AT on 33 depth 

surfaces (GLODAP-v1.1). Comparison between the GLODAP-v1.1 0m distributions 

and SOMLO predictions reveals good general agreement between the two approaches 

(Fig. 2.28 and 2.29). However, the average annual-mean SOMLO CT concentration 

between 65°N and 77°S is 14 μmol kg-1 higher than the GLODAP-v1.1 average of 2033 

μmol kg-1. In particular, CT concentrations in the Southern Ocean and equatorial Pacific 

are where the largest discrepancies are found. This observation could either reflect the 

uptake of anthropogenic CO2 that was not accounted for by the GLODAP study (Key et 



 85 

al., 2004), or result from a 30% improvement in Southern Ocean data coverage since 

1999. However, these observed discrepancies are most likely caused by spatiotemporal 

biases within the GLODAP dataset.
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Figure 2.28: Global distributions of (a) bottle CT measurements corrected to the year 
2000, (b) annual-mean ocean surface SOMLO CT predictions for the nominal year of 
2000, and (c) GLODAP-v1.1 0m CT distribution of Key et al. (2004). Values are given 
in μmol kg-1. 
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Figure 2.29: Global distributions of (a) bottle AT measurements, (b) annual-mean ocean 
surface SOMLO AT predictions, and (c) GLODAP-v1.1 0m AT distribution of Key et al. 
(2004). Values are given in μmol kg-1. 
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2.11.3 Seasonal variability 

Comparison between seasonal amplitudes in predicted CT and AT reveals variability in 

AT is on average, 24 μmol kg-1 lower than CT (Fig. 2.30). This is likely related to the 

much stronger influence of biogenic CaCO3 formation on AT relative to organic matter 

synthesis, coupled to CaCO3 only representing ~10% of total organic carbon export  

(see Sect. 1.2.1). Despite this, large amplitudes in AT are found in regions where strong 

seasonal variability in riverine inputs drives large seasonal shifts in salinity and nutrient 

concentrations, for example, in the Bay of Bengal (George et al., 1994) and Amazonian 

outflow (Cooley et al., 2007).  

For CT, a more pronounced spatial pattern of variability is found, which is 

characterized by weak amplitudes in the permanently stratified subtropical gyres, and 

stronger variability in high latitudes via the combination of biological CO2 consumption 

during summertime and enhanced upwelling of carbon enriched sub-surface waters in 

wintertime (Sarmiento and Gruber, 2006). The observed stronger seasonal variability in 

the northern subpolar region (North of ~30°N) relative to the Southern Hemisphere 

(South of ~45°S), has been explained by weaker biological production in the Southern 

Ocean due to low micro-nutrient supply, in particular that of iron (Boyd, 2009). 

 Monthly SOMLO-predicted CT and AT climatologies for the surface ocean are 

presented in Figs. 2.31 and 2.32. 
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Figure 2.30: Seasonal amplitudes for SOMLO predicted (a) CT and (b) AT ocean 
surface distributions, given in μmol kg-1. Calculated as the difference between the 
maximum and minimum predictions in each 1°×1° grid cell. See Figs. 2.31 and 2.32 for 
monthly distributions. 



 90 

 
Figure 2.31: Monthly SOMLO-predicted ocean surface CT distributions [μmol kg-1]. 
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Figure 2.32: Monthly SOMLO-predicted ocean surface AT distributions [μmol kg-1]. 
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2.12 Conclusion 

In this study, a newly synthesized global carbon CT/AT mixed-layer bottle database 

(~33,000) was exploited to investigate two different empirical approaches that diagnose 

mixed-layer carbon dynamics from standard hydrographic parameters. Using 

independent data as a test, the traditional multiple-linear regression approach constrains 

the global CT system to within 15.6 μmol kg-1, and 10.4 μmol kg-1 for AT. By then 

deploying a new non-linear neural network based approach, the global predictive skill 

was improved by 2.7 to 3.0 μmol kg-1 for CT, or 19.4% over the MLR, and 0.7 to 1.4 

μmol kg-1 for AT, or ~10%. In particular, regions of known complexity and importance 

to carbon cycling like the Southern Ocean, North Atlantic and equatorial Pacific are 

where the new non-linear approach excels, reducing errors by up to 30% over traditional 

linear approaches. The neural network technique was further tested at the BATS and 

HOT hydrographic time-series sites and found to predict both seasonal and inter-annual 

variability of carbon very well, while the traditional MLR approach does not. 

The predictive skill of the neural network approach is shown to be spatially and 

temporally robust, making the model a powerful tool for diagnosing carbon dynamics in 

the ocean. In reality, the intensity of a sampling regime needed to constrain seasonal to 

inter-annual variability for carbon is so great that it will always be difficult to achieve 

on a global scale. I have demonstrated here, that applying the SOMLO model to the 

WOA09 climatologies can capture coherent spatial and temporal carbon fields over the 

global open-ocean surface. This new constraint will immediately advance our 

understanding of oceanic carbon variability and allow us to probe important issues 

relating to carbon dynamics in a high CO2 world.  
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Abstract 

Approximately one-third of anthropogenic CO2 emissions produced over the last 250 

years have been absorbed into the world’s oceans. Although this ecosystem service has 

largely mediated human-induced climate change, oceanic uptake of CO2 lowers 

seawater pH and carbonate ion concentrations, with potentially detrimental impacts for 

multiple marine ecosystems. Detecting ocean acidification trends and predicting the 

onset of threshold limits for marine organisms requires accurate knowledge of natural 

variability in the ocean carbonate system. Here, a first bottle-based estimate of monthly 

pH and aragonite saturation-state distributions is presented in the global open-ocean for 

the nominal year of 2000. This new information is then used to investigate the influence 

of seasonal variability for aragonite under-saturation onset and detecting ocean 

acidification trends. On a global scale, seasonal variability brings forward aragonite 

under-saturation by ~19 years on average relative to annual-mean estimates, exposing of 

an additional 24×106 km2 of ocean surface to at least month-long under-saturation 

conditions by centuries end. For detecting ocean acidification trends, seasonality will 

likely hamper efforts to discern robust anthropogenic signals by ~40 years in most of 

the subtropics, increasing to 60 years in higher latitudes. 
 
 
 
 
 
 
 
 
 
 
 



 97 

3.1 Introduction 

Rising atmospheric CO2 concentrations via fossil-fuel emissions is inducing oceanic 

CO2 uptake. Several tracer-based techniques estimate that one-third of anthropogenic 

CO2 emissions released since the industrial revolution have been absorbed by the oceans 

(Khatiwala et al., 2009; McNeil et al., 2003; Sabine et al., 2004). The immediate impact 

of this additional CO2 is a shift in the oceans chemical composition, resulting in lower 

seawater pH and carbonate ion ( -2
3CO ) concentrations – commonly referred to as ‘ocean 

acidification’ (Zeebe et al., 2008). 

Recent studies have identified detrimental impacts for multiple marine 

ecosystems as a consequence of ocean acidification. For example, a reduction in the 

availability of  carbonate ions affects the ability of marine calcifying organisms to form 

and preserve their calcium carbonate (CaCO3) shells and skeletons (e.g., Gattuso et al., 

1998; Langdon and Atkinson, 2005; Riebesell et al., 2000), while lower pH disrupts 

physiological processes (e.g., Michaelidis et al., 2007; Wootton et al., 2008). 

 The extent to which ocean acidification will affect marine organisms has been 

the focus of major research over recent years, but remains largely unknown (Fabry et 

al., 2008). Some laboratory and mesocosm studies suggest a 0.2 to 0.3 drop in pH will 

inhibit marine calcification (e.g., Riebesell et al., 2000; Ries et al., 2009). To 

contextualize this change, the average ocean surface pH has already decreased by ~0.1 

units since preindustrial times (Feely et al., 2004), and is projected to drop by a further 

0.3-0.4 units by 2100 (Orr et al., 2005). A reduction of this magnitude is estimated to 

reduce subtropical coral reef calcification by 60% relative to preindustrial times 

(Friedrich et al., 2012). 

The saturation state of CaCO3 minerals also provides a metric for understanding 

the implications of carbonate ion depletion for marine calcifiers. Calculated from the 
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product of in situ Ca2+ and -2
3CO  concentrations divided by the apparent stoichiometric 

solubility product ( *
spK ) for either aragonite (Ar) or calcite (Ca): 

 

*
sp(Ca)

-2
3

2
Ca

*
sp(Ar)

-2
3

2
Ar

]/K][COCa[
]/K][COCa[

       (3.1) 

Ocean regions where ΩAr or ΩCa is under-saturated (<1) represents corrosive seawater 

conditions for CaCO3, resulting in enhanced dissolution and reduced calcification rates 

(Fabry et al., 2008). 

In addition to understanding the effects of ocean acidification, one of the 

greatest challenges facing the ocean acidification community is detecting robust secular 

trends in pH and ΩAr. However, strong variability on seasonal to inter-annual and longer 

time-scales hampers our ability to discern robust ocean acidification trends.  

Despite significant efforts over recent years to establish a global carbonate 

measurement network, such a large-scale initiative remains very limited, resulting in a 

near unknown level of understanding regarding regional natural higher-frequency 

dynamics (Monteiro and Co-Authors, 2010). This represents a critical gap in our ability 

to probe important questions relating to the influence of natural variability on future 

ocean acidification, and validate numerical models from which the majority of our 

understanding is derived. 

3.1.1 Onset of aragonite under-saturation 

Although global measurements indicate that the contemporary ocean surface is super-

saturated with respect to CaCO3 minerals, model studies suggest the entire Southern 

Ocean and some parts of the subarctic Pacific will become under-saturated in the more 

soluble form of CaCO3, aragonite, by 2100 (Orr et al., 2005). However, these model-

based estimates are derived from annual-mean projections and do not account for the 

influence of natural variability inducing earlier under-saturation conditions. McNeil and 

Matear (2008) demonstrated how strong -2
3CO  seasonality in the Southern Ocean leads 



 99 

to earlier aragonite under-saturation by ~20 years relative to the model based annual-

mean predictions. More recent data-based studies in Australia’s Great Barrier Reef 

reconfirm the importance of understanding natural variability to accurately predict 

future ocean acidification onset (Shaw et al., 2012, 2013). Here, this understanding is 

expanded on by evaluating the influence of natural carbonate variability for aragonite 

under-saturation across the global ocean. 

3.1.2 Detecting Ocean acidification trends 

Detecting robust secular trends in pH and ΩAr provides important information on the 

oceans evolving carbonate system and risks for marine ecosystems. Despite a growing 

global network of measurements, the ability to detect robust ocean acidification trends 

is obscured by natural variability on seasonal to inter-annual time-scales. By comparing 

the magnitude of anthropogenic change to natural noise, referred to as the signal-to-

noise ratio (SNR), it is possible to quantify the influence of natural variability for 

detecting robust secular trends. In general, a lower SNR requires a longer measurement 

period to identify a robust trend. 

Friedrich et al. (2012) employed a numerical model to constrain global 

detection-times for human-induced ΩAr trends based on a SNR approach. In their study, 

they computed SNR as the ratio between anthropogenic ΩAr change since preindustrial 

times (1750), and the seasonal peak-to-peak amplitude in model based estimates. By 

assuming a SNR exceedance factor of 2 as the detection-limit, their results suggest 

anthropogenic ΩAr trends were first detectable prior to 1900 in subtropical regions, and 

within the last 50 years in the equatorial Pacific and high latitudes. However, accurate 

carbonate measurements only began in the early 1990’s. Here, the SOMLO-predicted 

CT and AT distributions are used to calculate monthly pH and ΩAr distributions that are 

then projected between 1990 and 2100 to estimate ocean acidification detection-times. 

By prescribing a baseline year of 1990 for anthropogenic change, detection-time 
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estimates are applicable for current global repeat measurement programs that began in 

the early 1990s (i.e. WOCE followed by CLIVAR), and provide important insights for 

establishing new time-series measurement programs. 

Detection-times for physical climate trends (e.g. sea surface temperature) have 

been well established from direct observations and statistical approaches due to large 

availability of data (e.g. Leroy et al., 2008). These methodologies are designed for time-

series datasets with sampling frequencies greater than the time-scales for natural 

variability. While there exists some ocean carbon time-series with sufficient temporal 

measurements to apply these techniques (e.g., Bermuda Atlantic and Hawaiian Ocean 

time-series sites), the global measurement network for pH and ΩAr consists primarily of 

one time samples, and is therefore ill suited for the global application of these statistical 

approaches. 

In this chapter, data-based monthly pH and ΩArg global distributions for the 

nominal year of 2000 are first presented and then projected between 1990 and 2100 

based on a constant air-sea pCO2 gradient. This new ocean surface constraint is then 

used to explore the influence of natural seasonal variability for aragonite under-

saturation onset and detection-times for ocean acidification trends. 

3.2 Diagnosing global pH and ΩAr distributions 

The oceans inorganic carbon system can be fully constrained by knowing any two 

measurements within its inorganic carbon constituents; partial pressure of CO2 (pCO2), 

CT, AT or pH (Dickson et al., 2007). Since CT and AT are the only two carbon parameters 

that are conservative with respect to changes in state (i.e. temperature and pressure), it is 

typical for numerical models to only employ CT and AT as state variables from which 

the remaining carbon parameters are computed. Ocean surface pH and ΩAr distributions 

were therefore computed here using SOMLO-predicted monthly CT and AT 

climatologies, along with the World Ocean Atlas 2009 (WOA09) temperature, salinity, 
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phosphate and silicate ocean surface (0m) climatologies (Antonov et al., 2010; Garcia et 

al., 2010b; Locarnini et al., 2010). All calculations were conducted using the CO2SYS 

program developed by Pierrot et al. (2006) and the carbonic acid dissociation constants 

of Mehrbach et al (1973), as refitted by Dickson and Millero (1987), 
4SOK  dissociation 

constant of Dickson (1990a), boric acid dissociation constant of Dickson (1990b), and 

the free pH scale. 

3.2.1 Spatiotemporal variability 

Global mean pH (free scale) and ΩAr for the ocean surface is estimated to be 8.17 and 

2.8 respectively. This is in good agreement with a previous data-based pH estimate of 

8.1 for the nominal year of 1994 (Orr, 2011). Annual-mean pH and ΩAr distributions 

exhibit a high degree of similarity to mixed-layer bottle-derived values (Fig. 3.1 and 

3.2). In particular, regions that exhibit strong gradients in ΩAr via the influence of 

surface thermoclines are mirrored in the bottle-derived distribution (~40° North and 

South), while strong upwelling of acidic deep-waters depleted in -2
3CO  ions in the 

eastern equatorial Pacific is evident in both distributions. The SOMLO-predicted global 

ΩAr distributions also reconfirms that the contemporary ocean surface is supersaturated 

with respect to aragonite, showing 99.5% of predicted ΩAr values are greater or equal to 

1. 
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Figure 3.1: Global distributions of (a) bottle-derived pH measurements corrected to the 
year 2000 and (b) annual-mean SOMLO-derived pH predictions for the nominal year of 
2000 (see Appendix F for monthly distribution plots). 
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Figure 3.2: Global distributions of (a) bottle-derived ΩAr measurements corrected to the 
year 2000 and (b) annual-mean SOMLO-derived ΩAr predictions for the nominal year 
of 2000 (see Appendix F for monthly distribution plots). 
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 Seasonal amplitudes for pH are found to range from 0.05±0.03 in (sub)tropical 

regions (35°S to 35°N) to 0.12±0.14 in higher latitudes, with a global mean of 0.08   

(Fig. 3.3a). Since ocean surface pH is estimated to have decreased by 0.1 over the last 

~250 years (Feely et al., 2004), any anthropogenic trend over the past 20 years will be 

heavily obscured by natural variability. 

 Comparison between seasonal pH and ΩAr amplitudes reveals a somewhat 

consistent spatial pattern (Figs. 3.3), with weak variability found in subtropical regions 

that strengths towards the higher latitudes. However, a global correlation of 0.7 

indicates that the magnitude and direction differs distinctly over 30% of the ocean. In 

the Southern Ocean for example (South of 40°S), seasonal variability for pH exhibits a 

much stronger relative signal than ΩAr, while between 20°S to 40°S the amplitudes are 

stronger for ΩAr compared to pH. Given that marine calcifying organisms are typically 

more sensitive to changes in either pH or ΩAr (Doney et al., 2009; and references 

within), spatiotemporal differences in pH and ΩAr illustrates the importance to discern 

secular trends in both carbonate parameters. Furthermore, this somewhat independent 

variability between pH and ΩAr are in contrast with that found in models (Matsumoto 

and McNeil, 2012; McNeil and Matear, 2007). 
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Figure 3.3: Seasonal amplitudes for SOMLO-derived (a) pH and (b) ΩAr distribution. 
Calculated as the difference between the maximum and minimum predictions in each 
1°×1° grid cell (see Appendix F for seasonal distribution figures). 
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3.2.2 Error analysis 

The approach employed here to constrain pH and ΩAr distributions includes both 

random and systematic sources of error. Random errors are introduced through the use 

SOMLO predicted CT and AT distributions that have global uncertainties of ±10.9 and 

±9.2 μmol kg-1 respectively (see Sect. 2.8.2). To estimate the associated uncertainty in 

SOMLO-derived pH and ΩAr distributions, the independently predicted CT and AT 

concentrations (see Sect. 2.8.2) were used to calculate the carbonate parameters via 

CO2SYS, and then compared to the corresponding bottle-derived measurements to 

compute global residual standard errors for pH and ΩAr (RSE; Eq. 2.4). Uncertainty in 

global pH and ΩAr predictions are estimated to be ±0.03 and ±0.15 respectively        

(Fig. 3.4).  

Sources of systematic error include biases in SOMLO-derived pH and ΩAr 

predictions. By exploring the distribution of independent residual errors (Fig. 3.4c, d), 

the global bias in SOMLO-derived predictions is found to be 0.005 and 0.02 μmol kg-1 

for pH and ΩAr respectively. 

Finally, it’s important to acknowledge that uncertainties and biases in the 

WOA09 objectively analyzed maps will influence the SOMLO-derived pH and ΩAr 

distributions. However, since uncertainty estimates in the WAO09 products are yet to be 

quantified, the resulting error in SOMLO predictions cannot be accounted for at this 

time. 
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Figure 3.4: SIT predictions versus bottle-derived measurements for (a) pH and (b) 
aragonite saturation-state (ΩAr). r2 and N are the r-squared correlation and number of 
measurements respectively, and red-line is the y = x straight line. Panels (c) and (d) 
present the residual error density distributions for pH and ΩAr respectively. 
Comparatively small residual means of 0.005 and 0.02 for pH and ΩAr indicates a 
negligible bias in SOMLO-derived predictions. 
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3.3 Projecting past and future carbonate distributions 

Global pH and ΩAr distributions were predicted for each year between 1990 and 2100 

by assuming a constant air-sea pCO2 difference. In this approach, annual-mean CT 

concentrations were first computed between 1990 and 2100 using SOMLO-predicted 

annual-mean pCO2 (see Sect. 4.4) and AT ocean surface concentrations, where ocean 

surface pCO2 tracked the Representative Concentration Pathways 8.5 (RCP8.5)  

atmospheric CO2 projections (Meinshausen et al., 2011; downloaded from 

http://www.pik-potsdam.de/~mmalte/rcps/). Seasonal variability in CT was then added 

to the annual-mean predictions to reconstruct monthly pH and ΩAr distributions from 

1990 to 2100. Note that reconstructed seasonal amplitudes were initially constant, 

however, as ocean carbon chemistry changed with additional CO2 input                     

(i.e., changes in the Revelle factor), the amplitudes in calculated pH and ΩAr changed; 

as has been observed in a previous model study by Rodgers et al. (2008), and can be 

seen in Fig. 3.6. All calculations were performed using the seacarb R package of 

Lavigne H. and Gattuso J.-P. (2012). 

RCP atmospheric CO2 concentrations are a combination of historical 

observations/emission estimates between 1765 and 2005 and model-based emission 

projections from 2005 to 2100, which account for socioeconomic change (Meinshausen 

et al., 2011). The suite of RCP scenarios are defined as four families: RCP3, RCP4.5, 

RCP6 and RCP8.5; where RCP8.5 representing the highest emissions scenario         

(Fig. 3.5). Comparison between global CO2 emission estimates and RCP projections 

between 2005 and 2012, indicate that emissions are tracking the RCP8.5 scenario 

(Peters et al., 2012). 

http://www.pik-potsdam.de/~mmalte/rcps/
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Figure 3.5: Atmospheric CO2 projections between 1990 and 2100 as determined by the 
Representative Concentration Pathways (RCP) project (Meinshausen et al., 2011). 
Concentrations are for dry air given in parts per million (ppm). 

3.3.1 Influence of air-sea pCO2 disequilibrium 

One source of uncertainty in projected carbon concentrations relates to the air-sea pCO2 

disequilibrium signal, whereby ocean surface pCO2 growth rates diverge from the 

atmosphere in some ocean regions (mainly high latitudes) due to natural (e.g. upwelling 

and seasonal sea-ice coverage) and anthropogenic influences (e.g. temperature change 

and shifting wind patterns). In the southern Indian Ocean for example, a faster oceanic 

pCO2 growth rate relative to atmospheric CO2 is suggested to be driven by enhanced 

upwelling of CO2 enriched deep-waters (Metzl, 2009), while time-series stations in the 

subtropics indicate that ocean surface pCO2 is closely tracking atmospheric CO2 (Bates, 

2007; Santana-Casiano et al., 2007). 
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McNeil and Matear (2008) investigate how future pCO2 disequilibrium influences 

pH and ΩAr predictions in the Southern Ocean by comparing steady-state predictions to 

estimates from an ocean carbon model (Matear, 2007). They found steady-state pH and 

ΩAr predictions lagged by an average of ~8 years due to an average slower oceanic 

pCO2 growth rate of ~0.48 μatm yr-1 over the coming century. Since observed air-sea 

pCO2 disequilibrium signals are typically no greater than ±0.48 μatm yr-1 (Table 3.1), 

the projected basin-scale pH and ΩAr values presented here will be likely dampened by 

up to ~8 years in high latitudes, while (sub)tropical regions will be subject to little, or no 

disequilibrium influence. It is important to note that on a regional scale, disequilibrium 

has been estimated to dampen the signal by up to 30 years in some parts of the Southern 

Ocean (McNeil et al., 2010). 
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3.4 Estimating the onset of aragonite under-saturation 

The data-based ΩAr predictions between 2000 and 2100 are used here to estimate the 

onset year for aragonite under-saturation within the 21st century (i.e. ΩAr = 1). To 

illustrate the influence of seasonal variability, future ΩAr estimates at two unique sites 

are presented; one located in the Southern Ocean and the other in the North Atlantic 

(Fig. 3.6). Strong seasonality in the North Atlantic brings forward the onset of aragonite 

under-saturation by approximately 27 years relative to the annual-mean estimate (black 

line; Fig. 3.6a), while weaker variability in the Southern Ocean brings forward under-

saturation by 13 years (Fig. 3.6b). It’s important to emphasize that this onset starts over 

one-month, and then eventually extends to be permanent over all months. As much as 

seasonality brings forward the initial onset of aragonite under-saturation, it also delays 

the permanent onset (Fig. 3.6). For the Southern Ocean, seasonality delays the 

permanent onset by ~18 years (Fig. 3.6b). 
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Figure 3.6: Future aragonite under-saturation (ΩAr<1) onset at locations in the (a) north 
Atlantic and (b) Southern Ocean. The influence of seasonal variability accelerates 
under-saturation conditions by 27 and 13 years relative to annual-mean estimates (black 
line) in the north Atlantic and Southern Ocean, respectively. The red a, b, and c 
represent the month-long, annual-mean and permanent onset respectively.  
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 On a global scale, annual-mean results suggest aragonite under-saturation will 

start to occur by 2040 in high latitude surface waters, while tropical and temperate 

regions (~40°S to ~40°N) will remain super-saturated beyond centuries end (Fig 3.7a). 

When seasonality is taken into consideration, aragonite under-saturation is brought 

forward by a global average of 19 years (Fig. 3.7b); with the North Pacific and North 

Atlantic experiencing the greatest influence, where corrosive surface conditions are 

accelerated by 35 and 25 years, respectively (Fig. 3.7c). 



 115 

 
Figure 3.7: Estimated aragonite under-saturation onset years for (a) annual-mean, (b) 
one-month, and (b) the temporal difference between the annual-mean and one-month 
estimates. 
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Although there has been a wealth of studies investigating temporal onset of 

aragonite under-saturation (e.g., McNeil and Matear, 2008; Orr et al., 2005; Shaw et al., 

2013), seasonality also presents significant implications for the geographical extent of 

under-saturation. By centuries end, seasonal variability will increase the latitudinal 

extent of ocean regions exposed to at least month-long corrosive aragonite conditions. 

On average, seasonality extends the global-mean by about 4.8° degrees relative to 

annual-mean estimates (Fig. 3.8a). This extension translates to an additional ~24×106 

km2 of ocean surface area (or 7.6% of total open-ocean area) exposed to at least one 

month of aragonite under-saturation in 2100 (Fig. 3.8b). This new insight poses a 

significant threat for multiple calcifying organisms that inhabit these regions. Pteropods 

for example, are a calcifying zooplankton group that comprise up to 30% of total 

zooplankton around the Prince Edward Islands (PEI; Fig. 3.8a), and have been found 

partially dissolved just below the ΩAr saturation horizon (Hunt et al., 2008). 
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Figure 3.8: (a) Area exposed to at least monthly (blue) and annual-mean (red) aragonite 
under-saturation conditions within the 21st century. The latitudinal extension (blue 
region) represents ~24×106 km2. (b) Evolution of ocean surface area exposed to under-
saturation conditions for at least monthly (blue line) and annual-mean (red line). At 
centuries end, the difference between the two estimates is ~24×106 km2. The area 
labeled PEI represents the pteropod study region of Hunt et al. (2008) around the Prince 
Edward Islands. 

The implication of these results are not limited to the high latitudes, strong 

seasonal ΩAr variability in some subtropical regions (30°S-30°N; see Fig. 3.3b) will 

likely bring forward the onset of aragonite under-saturation by similar temporal periods 
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beyond 2100. Since these regions are rich with calcifying coral reef ecosystems, the 

influence of seasonality presents a major threat to multiple marine ecosystems.  

It should be emphasized that the aragonite under-saturation estimates presented 

here are based on the assumption of a constant air-sea pCO2 gradient and RCP8.5 

atmospheric CO2 projections. However, the timeframe for under-saturation could be 

further accelerated or dampened depending on future CO2 emissions and the air-sea 

pCO2 disequilibrium signal. 

3.5 Detection-times for ocean acidification 

Detection-times for robust ocean acidification trends were estimated here using a 

similar SNR approach as the model-based study of Friedrich et al. (2012). In this 

approach, SNR were first calculated using annual-mean pH and ΩAr values from 1990 to 

2100 and seasonal amplitudes for the nominal year of 2000. An SNR detection-limit of 

2 was then applied to estimate the first year for robust anthropogenic trend detection 

from a 1990 baseline.  

To illustrate this approach, Figs. 3.9a, b presents the seasonal pH and ΩAr cycles 

at a location in the North Atlantic. Peak-to-Peak amplitudes are used here as a metric for 

natural noise in the system. Embedded within this natural noise is an anthropogenic 

signal that is constrained by calculating the difference between annual-mean pH and ΩAr 

values in 1990 to values in 5 year increments up until 2100 (Fig. 3.9c,d). Finally, SNR 

are calculated as the ratio between the anthropogenic signal and natural noise via 
 

amplitudepeak -to-peak

mean-annualYr mean-annual 1990

X
XXSNR      (3.2) 

where X represents either pH and ΩAr. An SNR detection-limit of 2 is then applied to 

finally estimate the first year after 1990 for which a robust anthropogenic trend can be 

detected (Fig. 3.9e, f). For this example, the first year for robust anthropogenic trend 

detection is estimated to be 2020 and 2075 for pH and ΩAr respectively. 
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Figure 3.9: Example of the detection-time approach at a location in the north Atlantic 
(40.5°N and 30.5°W). Panels (a) and (b) illustrate the seasonal pH and ΩAr cycles used 
to constrain the magnitude of natural noise (red dashed lines), panels (c) and (d) 
presents the anthropogenic change relative to the year 1990 in 5 year increments, and 
panels (e) and (f) are the calculated signal-to-noise ratios (SNR, see Eq. 3.2). By 
applying an SNR detection-limit of 2, the first year after 1990 for robust anthropogenic 
trend detection is estimated (red dashed lines). In this case, robust anthropogenic pH 
and ΩAr trends will be detectable by 2020 and 2075, respectively. 
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3.5.1 Application to the global ocean 

Applying this method over the global ocean reveals distinct zonal bands for robust 

anthropogenic detection-years (Fig. 3.10). In the (sub)tropics for example (40°S to 

30°N), the average detection-year for pH and ΩAr is 2033 and 2048 respectively, while 

the first year for robust detection in higher latitudes is estimated to be 2050 and 2067 

respectively. From a global perspective, the average detection-year for anthropogenic 

pH is ~15 years earlier than ΩAr, indicating that pH is a more suitable carbonate 

parameter for detecting ocean acidification trends within the 21st century. 

On a global scale, the earliest detection-years are found in the (sub)tropical 

Atlantic and eastern Pacific, indicating that these regions are the most economical for 

detecting ocean-acidification trends (Fig. 3.10). Although it is fortunate that some 

carbon time-series sites are located in these regions (e.g., BATS, HOT and ESTOC; see 

Fig. 3.10), any residing calcifying organisms will experience the largest degree of 

change due to high SNR (i.e. the ocean-acidification signal is much larger than natural 

variability). Beyond the subtropics, stronger seasonality delays ocean acidification 

detection-times by ~17 years, indicating that substantially larger investments of time 

and resources will be required to capture robust trends in higher latitudes relative to the 

subtropics. 
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Figure 3.10: Global estimates for the first year robust anthropogenic trends can be 
detected from a 1990 baseline for (a) pH and (b) aragonite saturation state. Regions 
with no estimate (i.e. white) indicate robust anthropogenic trends will not be detectable 
within the 21st century. The BATS and HOT time-series locations are shown in panel 
(a).  

It’s important to note that pH and ΩAr experience natural variability on seasonal 

to inter-annual and longer time-scales. Although time-series measurements show 

seasonal variability dominates the natural noise signal (Bates, 2007; Keeling et al., 

2004), the exclusion of inter-annual variability translates to detection-year estimates that 

are likely earlier than the required measurement period to detect a robust secular trend. 
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In addition, observational evidence of air-sea pCO2 disequilibrium introduces further 

uncertainty in detection-times estimated here, which assumes steady-state. 

For monthly distribution plots see Appendix F. 

3.6 Conclusion 

Ocean surface pH and carbonate ion concentrations continue to decline as a result of 

anthropogenic CO2 invasion. An increasing number of studies are identifying ocean 

acidification as a growing concern for multiple marine organisms (e.g., Caldeira and 

Wickett, 2003; Fabry et al., 2008; Koch et al., 2013). In this study, a data-based 

approach was used to investigate the influence of natural seasonal variability for 

aragonite under-saturation onset and detecting robust ocean acidification trends.  

This study estimates seasonal variability will bring forward the onset of 

aragonite under-saturation by a global average of 19 years relative to annual-mean 

estimates. For multiple calcifying organisms, this results represents the exposure to 

corrosive conditions much earlier than was previous suggested by studies based on 

annual-mean estimates (e.g., Orr et al., 2005). In particular, the North Pacific and North 

Atlantic are regions where seasonality will have the largest influence, bring forward 

aragonite under-saturation by no less than 25 years relative to annual-mean predictions. 

In the Southern Ocean, the results presented here are consistent with a similar study by 

McNeil and Matear (2008), whereby natural variability accelerates aragonite under-

saturation by ~16 years.  

In addition to the temporal influence, natural seasonal variability increases the 

latitudinal extent for aragonite under-saturation by ~4.8° relative to the annual-mean in 

2100. The resulting exposure of an additional 24×106 km2 to at least month-long 

corrosive aragonite condition by centuries end, will present detrimental implications for 

multiple marine ecosystems (e.g., pteropods). Despite this, seasonality will also delay 
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the permanent onset of ocean acidification, which will reduce the severity for calcifying 

organisms that can tolerate short exposures to corrosive conditions.  

Natural variability impedes our ability to detect robust ocean acidification 

trends, which are crucial for understanding future implications for marine ecosystems. 

Using a baseline of 1990 and an SNR technique, the first year for robust ocean 

acidification detection is estimated to be 2033 and 2048 in (sub)tropical regions for pH 

and ΩAr respectively, while smaller SNRs in higher latitudes increase the average 

detection year by ~17 years. This analysis also found that the detection-period for pH is 

on average 15 years earlier than ΩAr on a global scale. This is due to the faster rate of 

increase in SNR for pH relative to ΩAr (i.e, the ratio between anthropogenic change 

since 1990 and natural seasonal variability is increasing at a faster rate for pH). For 

organisms that more sensitive to changes in pH, the implication of this result will be the 

exposure to adverse conditions much sooner than other organisms that are more 

sensitive to changes in ΩAr. In addition, measurement programs can be dramatically 

shortened in regions where high correlations between pH and ΩAr exist. 
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Abstract 

Numerous tracer-based techniques show that the ocean has absorbed about 70ppm-

equivalent of fossil fuel CO2 since the industrial revolution, dramatically mediating 

climate change. Despite this, our understanding of spatial and temporal patterns of 

oceanic CO2 fluxes remains poorly constrained, since methods either require the use of 

uncertain transport models or suffer from interpolation biases from regionally sparse 

underway oceanic CO2 measurements. Here, these issues are addressed by presenting a 

new observationally-derived ocean surface climatology for the partial pressure of CO2 

(pCO2) that provides an independent constraint on contemporary air-sea CO2 fluxes. 

The approach uses a neural network, trained on ~17,800 bottle-derived measurements of 

pCO2, to diagnose monthly pCO2 levels from standard ocean hydrographic data. 

Although the pattern of contemporary air-sea CO2 fluxes are generally consistent with 

the independent “underway” pCO2 data network, the new results show a strong shift in 

the magnitude of oceanic sources and sinks of CO2. In particular, the contemporary 

Southern Hemisphere ocean CO2 uptake of 0.93 PgC yr-1, driven by a prominent CO2 

sink in the sub-polar region (25°-60°S), is five times the magnitude of the Northern 

Hemisphere oceanic sink (0.18 PgC yr-1). Globally, the bottle-derived results suggest a 

net anthropogenic open-ocean CO2 sink of 1.55±0.32 PgC yr-1 for the nominal year of 

2000. 

4.1 Introduction 

Understanding how the ocean modulates atmospheric carbon dioxide (CO2) on higher-

frequency (seasonal to inter-annual) scales is important since the ocean is absorbing up 

to one-third of anthropogenic CO2 emissions based on a range of data-based and 

modelling estimates (Wanninkhof et al., 2013 and references therein). Although our 

constraint on the global air-sea CO2 flux has improved over recent years, large 
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uncertainties remain, particularly in understanding higher-frequency regional air-sea 

flows. Indirect methods have been useful in providing insights for regional flows using 

inversions of atmospheric CO2 (Gurney et al., 2008) or ocean interior data (Gruber et 

al., 2009), however, they require the use of uncertain transport models and data 

synthesis methods. We have therefore solely relied on global “underway” pCO2 

measurements and their synthesis (Takahashi et al., 2009; herein after referred to as T-

09) as the only direct data-based constraint for contemporary air-sea CO2 fluxes. 

Although the underway pCO2 data network has given us tremendous insight into the 

distributions of contemporary air-sea CO2 fluxes, considerable uncertainties remain. 

The Northern Hemispheric oceans for example, are well constrained for oceanic pCO2 

due to autonomous sampling undertaken mainly by commercial ships of opportunity. In 

the Southern Hemisphere however, where ships of opportunity are sparse, large spatial 

and temporal data-gaps exist in the underway pCO2 network. Where underway pCO2 

data is sparse, simplistic interpolation schemes are required, contributing to large 

regional uncertainty in constraining contemporary air-sea CO2 fluxes in the ocean. Here, 

a new and independent monthly ocean surface pCO2 distribution is presented using an 

observationally-derived empirical technique that diagnoses pCO2 from biogeochemical 

information. This new pCO2 climatology provides an additional data-based constraint 

on spatial and temporal patterns of contemporary air-sea CO2 fluxes throughout the 

ocean. 

4.2 Global training dataset 

For over twenty years, global oceanographic measurement programs like the World 

Ocean Circulation Experiment (WOCE) and Climate Variability and Predictability 

(CLIVAR), have collected and analysed hundreds of thousands of in situ bottle carbon 

measurements of total dissolved carbon dioxide (CT) and total alkalinity (AT), along 

with standard hydrographic parameters (SHP; temperature, salinity, dissolved oxygen 
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and nutrients) (Key et al., 2004, 2010). In situ concentrations of CT and AT allows pCO2 

to be calculated using well known dissociation constants of CO2 in seawater (Dickson et 

al., 2007), thereby providing a global-scale independent pCO2 dataset (Fig. 4.1).  

Bottle-derived pCO2 concentrations were calculated here via the CO2SYS 

program developed by Pierrot et al. (2006) using bottle measurements of CT, AT, 

temperature, salinity and silicate/phosphate where available. Selection of the   

Mehrbach (1973) equilibrium constants for CO2 chemistry, as refitted by Dickson and 

Millero (1987), was based on comparison studies between measured and computed 

pCO2 concentrations using different equilibrium constants (Lee et al., 2000a; McNeil et 

al., 2007; Millero et al., 2002; Wanninkhof et al., 1999), and maintained consistency 

with carbon calculations used in the GLODAP and CARINA products (Key et al., 2004; 

Pierrot et al., 2010). Accuracy in bottle-derived pCO2 concentrations has been estimated 

to be ±8μatm (Lee et al., 2000a; Wanninkhof et al., 1999). 

 

 
Figure 4.1: Global distribution of mixed-layer bottle-derived pCO2 measurements. 

Although spatiotemporal coverage of the global bottle-derived pCO2 dataset is 

too sparse on its own, the coinciding SHP provides powerful biogeochemical 

information that can help diagnose pCO2 where only SHP data exist. Empirical 
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predictions of CO2 from hydrographic properties have been successfully deployed to 

quantify decadal anthropogenic CO2 accumulation (e.g., McNeil et al., 2001b; Wallace, 

1995; Wanninkhof et al., 2010) and regional contemporary air-sea CO2 fluxes          

(e.g., Bates et al., 2006; McNeil et al., 2007). If a robust empirical relationship can be 

established, it can be applied to much larger hydrographic datasets that have been 

objectively analyses to monthly 1°×1° climatologies (e.g. Locarnini et al., 2010), 

thereby providing an independent data-based constraint on monthly ocean surface pCO2 

distributions and air-sea CO2 fluxes. 

4.3 Neural network overview 

The model used here couples a neural network clustering algorithm with a principle-

component regression (PCR; see Appendix D) to derive the empirical relationship 

between mixed-layer pCO2 and SHP. In this approach, the algorithm captures larger-

scale ocean dynamics via clustering data into “biogeochemical fingerprints” in a self-

organizing map (SOM; Kohonen, 1988). In brief, the SOM approach utilizes bottle-

derived pCO2 measurements and SHP distribution information, along with geographical 

constraints, to iteratively cluster the bottle measurements into a set of J neurons based 

on similarities and homogeneity within the dataset. Using an algorithm that employs 

discrete clustering is appealing, as it removes the need for any ad-hoc data partitioning 

to help empirically constrain the system. This has led to application of SOMs in a wide 

range of disciplines (e.g., Abramowitz, 2005; Hsu et al., 2002; Telszewski et al., 2009). 

After the SOM routine has clustered the multi-dimensional dataset, PCRs are derived 

between pCO2 and the SHP using data within each neuron, each of which can be 

thought of as a local-scale optimizer that follows the global non-linear optimization 

analysis performed by the SOM. To then predict pCO2 using any independent set of 

SHP measurements, a similarity measure is first used to determine which neuron best 

represents the SHP measurements, then the pCO2 value is predicted using the regression 
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parameters established with training data of that neuron. This approach is called 

SOMLO: self-organizing multiple-linear output (see Sect. 2.6 for more details). 

4.4 Application to the global dataset 

Training the SOMLO model is conducted using bottle-derived pCO2 measurements 

within the mixed-layer where coinciding SHP exist. The global pCO2 training dataset is 

further refined to be post-1980, due to large uncertainties in early measuring techniques, 

and excluded coastal margins to mitigate terrigenous biases on coastal samples (see 

Sects. 2.2.1 and 2.2.2 for details). The final dataset of usable mixed-layer measurements 

to train the global model (22,688 samples) was derived from 293 cruises (see Auxiliary 

B for list of cruises) and data from the Bermuda Atlantic (BATS; Bates, 2007) and 

Hawaiian Ocean (HOT; Keeling et al., 2004) time-series stations. 

In order to account for the influence of oceanic uptake of anthropogenic CO2, all 

bottle-derived pCO2 samples were normalized to the nominal year of 2000 in a similar 

way to T-09. This was achieved by assuming rates of change in mixed-layer pCO2 were 

in equilibrium with the observed rate at the Mauna-Loa CO2 measuring site (Tans, P., 

NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends and Keeling, R., Scripps Institute 

of Oceanography scrippsco2.ucsd.edu/). Although there are regions that are known to 

break this assumption (e.g. some high latitude regions (Lenton et al., 2012)), a 

sensitivity analysis was performed by training and testing the SOMLO model using data 

without anthropogenic corrections. Comparison between the two approaches revealed a 

small difference of 1.6 μatm (or 6.6%), which suggests an insignificant impact on the 

models ability to predict surface-ocean pCO2, and therefore the final air-sea flux results 

(see Sect. 4.5.2 for more details). 

The optimal parameter combination and SOM size was determined by 

employing the same approach as outline in Sect. 2.7.1. In this SOMLO analysis, the 

SHP parameter set which captured global pCO2 with the highest skill was a combination 

http://www.esrl.noaa.gov/gmd/ccgg/trends
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of temperature, salinity, dissolved oxygen and phosphate. The inclusion of geographical 

information (n-vector; see Sect. 2.7.1) in classifying the dataset into 49 neurons also 

enhanced the global skill of the SOMLO technique by ~9%. Due to missing phosphate 

or dissolved oxygen measurements in some bottle samples, the final number of usable 

data-points to train the optimal model was 17,753. 

It is worth noting that some previous studies derived linear relationships 

between “underway” pCO2 and either sea surface temperature and/or salinity           

(e.g., Cosca et al., 2003; Lefèvre and Taylor, 2002; Nakaoka et al., 2006). Here, the 

addition of biogeochemical information (i.e. dissolved oxygen and nutrients) improves 

the predictive skill of SOMLO by ~5 μatm (or 17%). 

4.5 Testing the new approach 

To independently test the model, each cruise and time-series dataset were individually 

excluded during the SOMLO training process, and then used as an independent dataset 

to predict pCO2 concentrations (SIT; see Sect. 2.4). Of the 17,753 bottle measurements 

used to independently test the SOMLO model, 876 had a residual error greater than 

±50μatm. Further investigation of these samples revealed that 43% (403) were located 

within 300 km of a major coastline. Since these anomalous coastal predictions are likely 

the result of terrogenious influences perturbing local biogeochemical processes, these 

anomalous coastal measurements were excluded from further SOMLO skill analysis. 

Comparison between the remaining independent predictions and bottle-derived pCO2 

measurements indicates SOMLO estimates follow a normal distribution with a mean 

bias of +0.08 μatm and residual standard error (RSE, see Eq. 2.4) of 22.5 μatm 

(N=17,350; Fig. 4.2). 
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Figure 4.2: (a) SIT pCO2 predictions versus bottle-derived pCO2 concentrations and (b) 
residual error density distribution. r2, N and RSE represent the r-squared correlation, 
number of measurements and residual standard error, respectively. 

4.5.1 Probing the model for seasonal bias 

Partitioning the global independent predictions by season and calculating the residual 

standard errors (RSE; Eq. 2.4) allowed the influence of seasonal data bias in SOMLO 

predictions to be investigated (Fig. 4.3). Although there are twice as many summertime 

measurements as winter, no global seasonal bias from the independent testing of 

SOMLO was found. 
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Figure 4.3: RSE values for pCO2 SIT predictions partitioned by season. Austral seasons 
are defined as summer (December to February), autumn (March to May), winter (June 
to August) and spring (September to November). Boreal hemisphere seasons differ by 6 
months. Number of measurements in each season is represented in the brackets. 

Further scrutinizing the independent SOMLO predictions on a regional-scale 

reveals no strong seasonal bias over most of the ocean (Table 4.1). This provides 

additional confidence in SOMLO predictions for any given set of temperature, salinity, 

dissolved oxygen and phosphate measurements in the global open-ocean mixed-layer. 

Exceptions are however found in the high north autumn/winter and tropical autumn 

months (Table 4.1), where RSE values range between 30-40 μatm. However, caution 

needs to be exercised when computing RSE from a small group of samples, since only a 

few measurements with large residual errors can have a strong influence due to the 

squared residual error term in the RSE equation (see Eq. 2.4). For example, the 

exclusion of 13 samples (or 2%) in the high north autumn reduces the RSE by ~7 μatm 

(or to 22.5 μatm). Similar results were found in the high north winter and tropical 

autumn. 
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Table 4.1: RSE values of SIT predictions partitioned into 5 regions and by season. 
Seasons are defined by summer (December to February), autumn (March to May), 
winter (June to August) and spring (September to November) for Southern Hemisphere 
data. Northern Hemisphere seasons differ by 6 months. 

a Number of measurements 

4.5.2 Influence of anthropogenic correction 

To evaluate the models sensitivity to anthropogenic pCO2 corrections, the optimal 

SOMLO configuration was trained and tested using data that was not corrected for 

anthropogenic CO2 uptake (via the SIT approach). The global residual standard error 

(24.1 μatm) was found to be 1.6 μatm higher than the optimal pCO2 model trained and 

tested using correct pCO2 data (22.5 μatm) (Table 4.2). This small discrepancy between 

the two approaches indicates an insignificant influence of anthropogenic corrections to 

the model’s ability to predict mixed-layer pCO2, which is likely related to the small 

anthropogenic corrections of ~1.8 μatm yr-1 compared to large natural seasonal 

variability of ~60 μatm. 

Table 4.2: Global skill comparison between optimal SOMLO models trained and tested 
using data either corrected, or not corrected for anthropogenic CO2 uptake. 

Optimal SOMLO model  
trained and tested using: 

Global SIT residual  
standard error [μatm] 

Data not corrected 24.1 
Corrected data 22.5 

 

 

  RSE [μmol kg-1]   (Na)  
Region Latitudinal band Summer Autumn Winter Spring Total N 
       
High North 44°N – 70°N 25.89    (969) 29.27    (688) 40.21     (303) 23.38     (526) 2486 
Temperate North 18°N – 44°N 24.95  (1101) 16.52  (1016) 15.91   (1124) 19.41     (952) 4193 
Tropical 18°S – 18°N 21.60    (722) 36.92    (744) 18.39     (570) 23.06   (1179) 3215 
Temperate South 18°S – 44°S 22.34    (854) 19.24    (380) 12.63     (526) 16.14   (1165) 2925 
Southern Ocean South of 44°S 22.17  (1357) 15.86  (1261) 10.97     (367) 22.41     (870) 3855 
Global  23.85  (5353) 24.05  (4293) 19.43   (2890) 21.32   (4814) 17350 
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4.5.3 How well does SOMLO capture temporal variability at BATS? 

To illustrate SOMLO’s ability to diagnose temporal pCO2 concentrations using SHP 

information, the 18-year Bermuda Atlantic time-series dataset was excluded during the 

training of SOMLO, and then used to independent predict the BATS bottle-derived 

pCO2 time-series (Fig. 4.4). Although there is a ~20% underestimate of the peak 

summertime pCO2 levels, SOMLO is able to reconstruct the 18-year seasonal pattern 

within its uncertainty range (blue shaded) at a location where no hydrographic 

information was used to train the global SOMLO model. It is important to emphasize 

that BATS data was used to train the final SOMLO model. 
 

 
Figure 4.4: In situ and independently predicted annual pCO2 cycle at the BATS 
hydrographic station between 1989 to 2006 (Bates, 2007). Annual-mean cycle and 
natural variability of the bottle-derived pCO2 measurements (black points) over the 18 
years are represented by the red line and red shading respectively, while the blue line 
and blue shading represents annual-mean cycle and uncertainty in the independent 
SOMLO pCO2 predictions. The SOMLO predictions do not use any in situ CO2 
measurements from BATS, but are based only on standard hydrographic properties 
(temperature, salinity, dissolved oxygen and phosphate) measured at BATS over the 18 
years. 
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4.6 Diagnosing monthly pCO2 climatologies 

The world ocean atlas 2009 project (WOA09) has objectively analysed millions of SHP 

measurements taken over a fifty year period to produce monthly 1°×1° SHP 

climatologies (Antonov et al., 2010; Garcia et al., 2010a, 2010b; Locarnini et al., 2010). 

Using the SOMLO model, these SHP monthly surface-ocean climatologies are 

exploited to estimate monthly pCO2 distributions for the nominal year of 2000. 

Large scale features in the estimated annual-mean pCO2 distribution (Fig. 4.5a) 

are consistent with our broad understanding of CO2 rich waters in the eastern equatorial 

Pacific via upwelling (Feely et al., 2002), and lower pCO2 levels via solubility-drivers 

in temperate regions. In the subtropical regions (20°-35° North and South), seasonal 

amplitudes vary by 20 μatm around a mean of 50 μatm (Fig. 4.5b), with lowest 

concentrations found during winter months reflecting the dominate influence of cooler 

temperatures on CO2 solubility (See Fig. 4.6 for monthly pCO2 distributions); as has 

been observed by previous studies (e.g., Bates et al., 1996; González-Dávila et al., 2003; 

Keeling et al., 2004; Metzl et al., 1998). Moving poleward from the subtropics (35°-50° 

North and South), seasonal amplitudes vary by 30 around a mean of 60 μatm. This 

larger seasonal signature is driven by a complex interplay of biological and physical-

solubility processes (Bates et al., 1996; Brix et al., 2013). Finally, large seasonal cycles 

in high latitude regions (>50°) are typically driven by biological production in 

summertime and enhanced deep water ventilation during wintertime (McNeil et al., 

2007). 
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Figure 4.5: (a) Annual-mean SOMLO pCO2 predictions for the nominal year of 2000 
and (b) seasonal variability in pCO2 calculated as the difference between the maximum 
and minimum predictions in each 1°×1° grid cell (see Fig. 4.6 for monthly distribution 
plots). 
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Figure 4.6: Monthly SOMLO-predicted ocean surface pCO2 distributions [μatm]. 
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4.6.1 Evaluating SOMLO-predictions in the subtropical North Atlantic 

ESTOC (European station for time-series in the ocean at the Canary Islands) is a high 

frequency measurement program of pCO2 and auxiliary parameters that has been 

ongoing since September 1995 (González-Dávila et al., 2010). The site is located in the 

subtropical North Atlantic about 100 km North of the island of Gran Carnaria (29.07°N, 

15.83°W) (Fig, 4.7a). Seasonal variability in ocean pCO2 is characterized by minimum 

concentrations in wintertime and maximum values in summertime via the dominate 

influence of seasonal temperature variability (González-Dávila et al., 2003). Since the 

ESTOC dataset was not available for inclusion in the global bottle dataset, nor is it 

listed as a contributor to the World Ocean Database 2009 (Boyer et al., 2009), it 

provides an ideal test-bed to evaluate SOMLOs ability to capture seasonal pCO2 via the 

WOA09. 

Figure 4.7b shows the monthly mean and spread of ocean-surface pCO2 

measurements normalized to year 2000 at ESTOC versus SOMLO pCO2 predictions 

using the WOA09 hydrographic information at 29.5°N and 15.5°W (see Fig. 4.7a). All 

pCO2 measurements were normalized to the year 2000 using the observed 1.55 μatm   

yr-1 rate of increase at the ESTOC time-series site (Santana-Casiano et al., 2007). 

Although SOMLO predictions are ~20 μatm lower than the monthly-mean at ESTOC, 

which is likely related to data limitations in the local region, both the magnitude and 

structure of the seasonal pCO2 cycle is well constrained within the uncertainty of 

SOMLO predictions (red-shade; ±22.5 μatm). This illustrates SOMLOs ability to 

capture seasonal carbon structures using WOA09 hydrographic values at locations 

where no information was used to either train the SOMLO model or constrain the 

WOA09 climatologies.  
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Figure 4.7: (a) Location of the ESTOC site (29.07°N, 15.83°W) and WOA09 1°×1° 
grid-cell at 29.5°N and 15.5°W, where black points represents bottle measurements 
used to train SOMLO. (b) Monthly mean and spread of pCO2 measurements at ESTOC 
(black line and shade) versus monthly SOMLO predictions using the WOA09 
hydrographic information at (29.5°N, 15.5°W) (red line and shade). 
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4.6.2 Comparison to T-09 ocean surface pCO2 climatology 

Comparison between the two independent pCO2 climatologies reveals a global 

correlation of 0.64 between the bottle-derived SOMLO-pCO2 climatology and the 

“underway” T-09 pCO2 climatology re-gridded to a 1°×1° resolution (Fig. 4.8a). This 

indicates that over most of the ocean, these two independent data-based approaches 

confirm the general spatiotemporal pattern of pCO2 in the ocean. However, over one-

third of the ocean, the magnitude of pCO2 concentrations differs distinctly, particularly 

in the Southern Ocean and equatorial Pacific (Fig. 4.8b). 

 
Figure 4.8: (a) Climatological pCO2 concentrations of T-09 (Takahashi et al., 2009) 
(re-gridded to a 1°×1° resolution) versus SOMLO predicted values. corr(X,Y) and N 
represent the correction co-efficient and number of data points respectively. (b) Annual-
mean ocean surface pCO2 difference between SOMLO-predictions and “underway” T-
09 (defined as SOMLO minus T-09; given in μatm).  
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To investigate the observed regional discrepancies between SOMLO-predictions 

and T-09, the distribution of residual errors using the independent SOMLO predictions 

are examined within the Southern Ocean and equatorial Pacific (Fig. 4.9b,d). In the 

equatorial Pacific, the independent testing of SOMLO reveals pCO2 predictions are 

biased by -3.42 μatm (N = 1655), and 0.055 μatm for the Southern Ocean (N = 3941). 

These SOMLO related regional biases are insignificant in comparison to the mean 

differences from T-09 in the Southern Ocean (~12 μatm) and equatorial Pacific            

(~ -21 μatm) (Fig. 4.9a,c). This suggests there must be other reasons for the large 

regional differences between the two methods.  

In the equatorial Pacific, the discrepancy may result from the exclusion of 

almost 200,000 ocean surface pCO2 measurements collected during El Niño years from 

the T-09 synthesis (1982-1983, 1986-1987, 1991-1994, 1997-1998, 2002-2003 and 

2004-2005). In contrast, of the 1655 equatorial Pacific bottle measurements used to train 

the global SOMLO model, 60% were collected during these El Niño years. However, El 

Niño events are characterized by weakened easterly trade winds in the western and 

central equatorial, which results in a depression of CO2 enriched subsurface water 

upwelling and thus lower ocean surface pCO2 concentrations relative to non-El Niño 

years (Cosca et al., 2003; Feely et al., 2006). Since the equatorial Pacific pCO2 

distribution of T-09 (18°S to 18°N) is on average 21 μatm lower than SOMLO 

estimates (Fig. 4.7a), the T-09 exclusion of El Niño data is unlikely related to the 

observed discrepancy.  
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Figure 4.9: Comparison between SOMLO-predicted and T-09 pCO2 climatology values 
in (a) equatorial Pacific (18°S to 18°N) and (c) Southern Ocean (South of 44°S). Panels 
(b) and (d) present the residual error distributions for independent SOMLO predictions 
in the equatorial Pacific and Southern Ocean, respectively. 

4.6.3 Why not use the CT and AT climatologies to compute pCO2? 

When any two constituents within the oceans inorganic carbon system are known      

(i.e. pCO2, CT, AT or pH), the remaining parameters can be calculated using well known 

dissociation constants of CO2 in seawater (Dickson et al., 2007). This permits global 

pCO2 distributions to be computed using the SOMLO-predicted CT and AT 

concentrations. However, uncertainties in global SOMLO predictions of ±10.9 and ±9.2 
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μmol kg-1 for CT and AT respectively (see Sect. 2.8.2), would introduce uncertainties 

into calculated pCO2 concentrations. To quantify the associated uncertainty using this 

approach, the independent CT and AT predictions were used to compute pCO2 

concentrations from which the RSE could be calculated and compared to the pCO2-

SOMLO model (Eq. 2.4). When computing pCO2 using the independent CT and AT 

predictions, the global RSE was found to be 25.0 μatm, which is 2.4 μatm (or 10.6%) 

higher than the independent testing of SOMLO using bottle-derived pCO2 (Table 4.3). 

This indicates that predicting global pCO2 concentrations via the pCO2-SOMLO model 

is a more accurate approach. 

Table 4.3: Comparison between global RSE values computed using SIT predictions of 
the pCO2-SOMLO model and computed pCO2 values via the optimal CT and AT 
SOMLO SIT predictions. 

Method to predict pCO2 RSE [μatm] Number of  
measurements 

Calculated using CT and AT 25.0 16455 
Predicted via optimal pCO2-SOMLO model 22.6 16455 

4.7 Computing air-sea CO2 exchange 

Exchange of CO2 across the air-sea interface )(
2COF  is a function of the air-sea pCO2 

difference (ΔpCO2) and gas transfer coefficient (kg); which is typically expressed as the 

product of gas transfer velocity (kw) and solubility of CO2 in seawater (α) via 
 

)COCO(CO air
2

sea
2w2gCO2

ppkpkF      (4.1) 

where the air-sea gradient follows convention resulting in oceanic CO2 out-gassing 

being expressed as a positive value. Air-sea flux estimates presented in this study were 

calculated using the widely used quadratic kw-wind parameterization of Wanninkhof 

(1992), in conjunction with the CCMP (Cross-Calibrated Multi-Platform) wind field 

product of Atlas et al. (2011). The Wanninkhof (1992) equation was recently updated 

by Wanninkhof et al. (2013) to be 
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5.0

w 660
Sc251.0 Uk        (4.2) 

where Sc is the Schmidt number of CO2 in seawater (kinetic viscosity in water/diffusion 

coefficient of CO2 in water) calculated via a third-order polynomial in seawater 

temperature (Wanninkhof, 1992), and 2U  represents the time-mean of the second 

moment in wind speed at a height of 10m above sea level. All 1°×1° 2U  values were 

interpolated from the 4°×5° squared CCMP 10m wind speeds averaged over the years 

1987 to 2008; as constrained by Wanninkhof et al. (2012). Solubility of CO2 in seawater 

was calculated using the temperature and salinity dependent function of Weiss (1974).  

Atmospheric pCO2 concentrations were computed using: 
 

)(COCO wv
2

air
2 PPXp baro       (4.3) 

where XCO2 is the molar fraction of CO2 in dry-air, Pbaro is the sea-surface barometric 

pressure, and Pwv is the water vapour pressure for a given sea surface temperature and 

salinity. Atmospheric pCO2 distributions for the nominal year of 2000 were calculated 

using the GLOBALVIEW-CO2 weekly XCO2 product, which was derived using 

atmospheric CO2 measurements collected in the year 2000 and averaged into zonal 

bands (GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – 

Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado. [Also available on 

Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW], 

2011), and the NCEP/NCAR reanalysis 1981-2010 monthly mean sea-surface 

barometric pressure (Kalnay et al., 1996) provided by the NOAA/OAR/ESRL PSD, 

Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. 

To account for seasonal ice formation inhibiting air-sea CO2 exchange, all flux 

estimates were multiplied by monthly mean ice cover percentage estimates (ICP) 
 

ICP/1001
22 COCO FF        (4.4) 

http://www.esrl.noaa.gov/psd/
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ICP values were interpolated using the monthly mean NCEP/DOE 2 Reanalysis product 

(Fig. 4.10) (provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from 

their web site at http://www.cdc.noaa.gov/). Open water conditions (i.e. ICP = 0) were 

assumed in all grid cells where ICP was less than 10%. The inclusion of seasonal ice 

coverage decreased the global open-ocean uptake estimate by 13% (or 0.16 PgC yr-1). 
 

 
Figure 4.10: Ice cover percentage distributions for January (JAN), April (APR), July 
(JUL) and October (OCT). White regions indicate no ice coverage. 

4.8 Air-sea CO2 flux pattern 

The annual contemporary flux distribution shows large CO2 out-gassing in the 

equatorial region, and strong uptake in the sub-polar regions (25°-60°), in particular 

throughout the Southern hemisphere (Fig. 4.11 and 4.12). For the equatorial Pacific 

Ocean (18°S-18°N), SOMLO predictions estimates a +1.1 PgC yr-1 out-gassing, more 

than double that estimated using T-09 pCO2 values (Fig. 4.11). However, relatively 

sparse bottle measurements in the eastern equatorial Pacific and large inter-annual flux 

variability in the equatorial Pacific (Feely et al., 2002, 2006) make it difficult to 

http://www.cdc.noaa.gov/
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establish whether SOMLO flux estimates are a true reflection of the long-term trend in 

this region. For the Southern Ocean, where there is better spatiotemporal data coverage 

and weaker El-Niño/Sothern-Oscillation influence, SOMLO results suggest a 

contemporary sink for atmospheric CO2 of -0.81 PgC yr-1, which is much larger than the 

T-09 based estimate of -0.28 PgC yr-1, but consistent with a linear empirical approach 

(McNeil et al., 2007) and estimates from some ocean biogeochemical models (Lenton et 

al., 2013). 

See Fig. 4.13 for monthly SOMLO-derived contemporary air-sea CO2 flux 

distributions. 
 

 
Figure 4.11: Annual contemporary air-sea CO2 flux distribution (i.e. flux estimates 
where integrated over the 12 months in each 1°×1° grid cell; see Fig. 4.13 for monthly 
contemporary flux distributions). This yields a global open-ocean contemporary air-sea 
CO2 flux of 1.10 PgC yr-1. 
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Figure 4.13: Monthly SOMLO-derived contemporary air-sea CO2 flux distributions, 
given in grams of carbon per meter2 per month [gC m-2 month-1]. 
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4.8.1 Zonal flux distribution 

Scrutinizing the latitudinal distribution of air-sea CO2 fluxes reveals a slight 

amplification in SOMLO-derived estimates compared to the “underway” based T-09 

estimates (Fig. 4.14). These zonally integrated air-sea flux estimates are a combination 

of biological and physical-solubility influences on ocean surface pCO2. Despite this 

slight amplification, the high degree of similarity between these two independent 

distributions indicates that we currently have a good data-based constraint on the open-

ocean air-sea CO2 flux distribution, which therefore provides an important benchmark 

for numerical models. 
 

 
Figure 4.14: Zonally integrated annual contemporary air-sea CO2 fluxes using 
SOMLO-predicted (red line) and T-09 pCO2 estimates (blue line). The step like 
appearance of T-09 likely reflects the courser 4°×5° pCO2 resolution used by T-09, 
which was re-gridded here to a 1°×1° resolution. 

4.9 Oceanic CO2 uptake estimates and uncertainty 

Integrating SOMLO-derived CO2 flux estimates over the global open-ocean suggests a 

contemporary uptake of 1.10 PgC yr-1 for the year 2000. To quantify errors in 

contemporary CO2 flux estimates, both systematic and random sources of error in 



 151 

SOMLO-predicted pCO2 distributions are evaluated. The systematic bias of +0.08 μatm, 

calculated using an independent sub-sample test (see Sect. 4.5), translates to a 0.02 PgC 

yr-1 over-estimation in the global contemporary flux estimate. For random errors in 

diagnosing surface-ocean pCO2, both the first standard deviation (σ) in the residual 

error distribution (22.5 μatm) along with quoted uncertainty in bottle-derived pCO2   

(±8 μatm) were used. To constrain the net variance in ΔpCO2 requires the additional 

consideration of uncertainty in atmospheric pCO2 estimates, which has been estimated 

to be ±0.2 μatm with no known systematic offset (Takahashi et al., 2009). Assuming 

these uncertainty estimates are all one σ around a normal distribution, the net variance 

in ΔpCO2 is calculated to be 930.29 μatm2 ( = (22.5 + 8)2 + 0.22 ). The corresponding 

variance in flux estimates for any 1°×1° grid cell (i) can be calculated using 
 

)COvar()()var( 2
2 pkF iii       (4.5) 

When integrating flux estimates over grid cells (1...i...I), the net variance for un-

correlated uncertainties is the sum of individual variances: 
 

I

i
iFF

1
)var()var(         (4.6) 

For the SOMLO-derived global integrated flux estimate, net variance due to random 

uncertainties in ΔpCO2 is 1.04×10-4 (PgC yr-1)2, which translates to a standard deviation 

of ±0.03 PgC yr-1 within a 99.7% confidence interval. 

A second, potentially significant source of uncertainty in predicted ocean surface 

pCO2 climatology relates to reliability in the WOA09 objectively analysed products. 

Parameter sensitivity tests identified temperature and phosphate as the two most 

important parameters for capturing ocean surface pCO2 in the global SOMLO model. 

Despite high confidence in the global WOA09 temperature climatology (Locarnini et 

al., 2010), sparse in situ phosphate measurements in some ocean regions (e.g. Southern 

Ocean) contributes to uncertainty in the WOA09 interpolated monthly distributions 
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(Garcia et al., 2010b), and therefore the surface-ocean pCO2 predictions. As uncertainty 

estimates in WOA09 objectively analysed products remains elusive, quantifying the 

related uncertainty in SOMLO-derived flux estimates is currently unachievable. 

Combining both atmospheric and ocean surface pCO2 sources of error, along 

with estimated uncertainties relating to k-wind parameterization (±0.2 PgC yr-1) and 

windspeeds (±0.15 PgC yr-1) (Wanninkhof et al., 2013), the net uncertainty in the 

SOMLO-derived global contemporary flux estimate is calculated to be ±0.25 PgC yr-1   

( = (0.022 + 0.032 + 0.22 + 0.152)0.5). 

4.9.1 Net-contemporary air-sea CO2 flux 

The SOMLO-derived open-ocean contemporary CO2 uptake of 1.10±0.25 PgC yr-1 for 

the year 2000 is similar to the estimate of 1.21±0.59 PgC yr-1 derived using T-09 pCO2 

distributions; where the uncertainty estimate is taken from the most recent error analysis 

by Wanninkhof et al. (2013). These pCO2-constrained global contemporary air-sea CO2 

fluxes are a combination of natural, anthropogenic and the non-steady-state CO2 flux 

signals (see Sect. 1.5). By including an estimated natural steady-state CO2 out-gassing 

of 0.45±0.2 PgC yr-1 from organic matter deposition from rivers (Jacobson et al., 

2007b), the estimate for the net-contemporary open-ocean CO2 sink is 1.55±0.32 PgC 

yr-1 for the year 2000. 

4.9.2 Coastal air-sea CO2 exchange 

Coastal margins account for approximately ~7% of the global ocean surface area and 

plays host to some of the oceans most biogeochemically active regions (Borges and Co-

Authors, 2010). Since flux estimates presented here are for open-ocean regions only, it’s 

important to account for coastal air-sea CO2 exchange when comparing flux estimates 

derived via different methods that capture both the open- and coastal- oceanic flux 

signals. Wanninkhof et al. (2013) scaled-up T-09 contemporary CO2 fluxes in 23 ocean 

regions to estimate a coastal-oceanic sink of 0.2 PgC yr-1 for the nominal year of 2000, 
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which is consistent with other data-based estimates that suggests the coastal 

contemporary CO2 sink ranges between 0.2 to 0.4 PgC yr-1 (Borges et al., 2005; Cai et 

al., 2006; Chen and Borges, 2009). A coastal uptake of 0.2 PgC yr-1 was therefore added 

to arrive at a final global net-contemporary oceanic CO2 sink of 1.75 ± 0.32 PgC yr-1 for 

the nominal year of 2000. 

4.10 Conclusion 

Inversions of ocean interior data (Gloor et al., 2003; Mikaloff-Fletcher et al., 2006), 

atmospheric CO2 inversions (Gurney et al., 2008), atmospheric O2/N2 (Ishidoya et al., 

2012; Manning and Keeling, 2006), indirect tracer-based techniques (Khatiwala et al., 

2009; McNeil et al., 2003) and ocean general circulation models participating in the 

RECCAP project (REgional Carbon Cycle Assessment and Processes), suggest ocean 

anthropogenic CO2 uptake ranges between 1.9-2.5 PgC yr-1 for the year 2000 (Table 

4.4), somewhat higher than both the underway pCO2 estimate of 1.83±0.6 PgC yr-1 

(without the under-sampling correction) (Wanninkhof et al., 2013) and the new bottle-

derived pCO2 estimate presented here of 1.75±0.32 PgC yr-1. It’s important to 

emphasise however, that the new technique constrains the oceans net-contemporary 

CO2 uptake, which includes the net effect of both the anthropogenic and non-steady-

state CO2 flux. The discrepancy between the net-contemporary CO2 constraint and other 

anthropogenic CO2 estimates could be due to a range of issues including natural 

variability in the oceanic CO2 sink, discrepancies in quantifying the coastal air-sea CO2 

budget, uncertainties in the riverine out-gassing signal, under-sampling biases, or 

uncertain transport models. Aside from providing a new constraint on the global net-

contemporary oceanic CO2 sink, the SOMLO technique also provides a new 

independent way to diagnose ocean surface pCO2 distributions, which will be important 

in helping understand any future changes in the efficiency of the oceanic CO2 sink. 
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Chapter 5.  
 
Closing remarks 

 

5.1 Summary of findings 

Despite the ocean’s importance in absorbing anthropogenic CO2, our ability to detect 

changes and diagnose spatiotemporal carbon distributions is hampered due to large 

spatiotemporal data deficiencies. In this thesis, I have developed a novel non-linear 

empirical technique, called SOMLO (Self-Organizing Multiple-Linear Output), that 

captures mixed-layer inorganic carbon concentrations (CT, AT and pCO2) from standard 

hydrographic parameters which have a much greater global data coverage (SHP; 

temperature, salinity, dissolved oxygen and nutrients). By then applying the model to 

monthly SHP climatologies has provided a first data-based constraint on all inorganic 

carbon variables, with immediate implications for advancing our understanding of 

ocean carbon dynamics. The specific focus in this thesis was on diagnosing patterns of 

air-sea CO2 exchange and investigating the influence of natural seasonal variability for 

future ocean acidification onset and detection. 
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In Chapter 2, the SOMLO approach was presented and deployed on ~33,000 

mixed-layer bottle measurements collected between 1980 and 2010 to capture global CT 

and AT concentrations. This new dataset represents a ~45% increase in the global 

measurement network used to derive the empirical relationships in previous global 

studies (Lee et al., 2000b; 2006). Developing and applying a systematic independent 

test approach (see Sect. 2.4) demonstrated significant improvements in SOMLO 

predictions over traditional linear ad-hoc approaches; improving global predictive skill 

by 19.4% for CT. In particular, the new non-linear method improved accuracy in the 

most complex and dynamically important ocean regions (i.e. equatorial Pacific and 

Southern Ocean), reducing errors by up to 30% over traditional approaches. On a global 

scale, SOMLO is able to predict CT and AT to within ±10.9 and ±9.2 μmol kg-1 

respectively. No seasonal bias was found in SOMLO predictions. 

To further scrutinize the model’s temporal skill, the 18 year Bermuda Atlantic 

(BATS) and 20 year Hawaiian Ocean (HOT) hydrographic time-series stations were 

used as independent test-beds. Hydrographic information was shown to capture 90% of 

the seasonal cycle and inter-annual variability at these locations. Finally, the new model 

was used to diagnose monthly open-ocean CT and AT distributions for the nominal year 

of 2000 using the World Ocean Atlas 2009 objectively analyzed SHP surface (0m) 

climatologies (WOA09; Antonov et al., 2010; Garcia et al., 2010a, 2010b; Locarnini et 

al., 2010). 

The new ocean surface carbon distributions were used in Chapter 3 to better 

investigate the influence of natural variability on future ocean acidification onset and 

detection. Under business-as-usual conditions, seasonality was found to bring forward 

the onset of aragonite under-saturation globally by about 19 years relative to annual-

mean estimates, exposing an additional 24×106 km2 (7.6% of total open-ocean area) to 

at least month-long corrosive aragonite conditions by centuries end.  
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Strong seasonal variability relative to human-induced changes will also hamper 

our ability to detect robust trends in aragonite saturation state and pH. To quantify 

detection-times for ocean acidification trends, a similar signal-to-noise approach used 

by the model-based study of Freidrich et al. (2012) was employed. For repeat 

measurement programs that began in the early 1990’s, seasonality will obscure 

anthropogenic trends in pH and ΩAr by ~45 and ~60 years in (sub)tropical regions (40°S 

to 30°N), while stronger variability in higher latitudes will lengthen this periods by ~15 

years. 

In Chapter 4, the new SOMLO technique was applied to bottle-derived pCO2 

measurements to diagnose monthly ocean surface pCO2 distributions for the nominal 

year of 2000 via the WOA09. Comparison to the Takahashi et al. (2009) “underway” 

pCO2 climatology (herein after referred to as T-09) revealed broad consistencies 

between the two independent data-based constraints; showing a global correlation of 

0.64. However, large discrepancies were found in the Southern Ocean and equatorial 

Pacific, which are likely related to spatiotemporal measurement biases coupled to strong 

seasonal to inter-annual variability; particularly in the equatorial Pacific (Feely et al., 

2002).  

The bottle-derived pCO2 distributions where then used to diagnose patterns of 

contemporary air-sea CO2 exchange via the flux equation of Wanninkhof et al. (2013) 

and CCMP 10m wind fields of Atlas et al. (2011). This new and independent constraint 

suggests a much stronger CO2 out-gassing in the equatorial Pacific and large uptake 

signal in the Southern Ocean relative to the T-09 “underway” pCO2 climatology. 

Despite this, the integrated open-ocean CO2 sink was found to be consistent with the 

global underway pCO2 database, suggesting a contemporary oceanic CO2 uptake of 

1.10±0.25 PgC yr-1 for the nominal year of 2000. 
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By finally accounting for the stead-state natural out-gassing of riverine-derived 

carbon (0.45±0.2 PgC yr-1; Jacobson et al. (2007a)) and coastal CO2 uptake (0.2 PgC  

yr-1; Wanninkhof et al. (2012)), the net-contemporary global oceanic CO2 sink was 

estimated to be 1.75±0.32 PgC yr-1 for the nominal year of 2000. Although this estimate 

is slightly lower than other anthropogenic flux estimates (see Table 4.3), it is consistent 

with other studies that suggest the global oceanic sink is decreasing (e.g., McNeil and 

Matear, 2012; Sarmiento et al., 2010). 

5.2 Significance and way forward 

5.2.1 Understanding ocean carbon dynamics 

Predicting how the ocean will respond to a high CO2 world requires a vast 

spatiotemporal carbon measurement network from which to diagnose drivers of 

variability and validate numerical model output. Despite a significant growth in global 

measurements over recent decades, large spatial and temporal data deficiencies limit our 

ability to achieve these goals. 

In this thesis, I have diagnosed monthly ocean surface carbon distributions for 

the nominal year of 2000 using a novel empirical method. This new data-based 

constraint presents an important tool for advancing our understanding of ocean carbon 

dynamics and validating model output. For example, the thermal influence on oceanic 

pCO2 can be quantified following the method outlined by Takahashi et al. (2002), while 

other studies have applied decompositions to separate the influence of temperature, 

salinity, CT and AT on oceanic pCO2 variability (e.g., Lenton et al., 2012; McNeil and 

Matear, 2008). From a more fundamental level, the distribution of weighting vectors in 

the self-organizing map and multiple-linear regression coefficients contain valuable 

information regarding the importance and magnitude of each predictor variable in 

driving the ocean carbon system. This type of statistical analysis is one possible focus 

for future research. 
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 Beyond diagnosing carbon climatologies, the SOMLO model provides a 

powerful tool for predicting mixed-layer carbon concentrations from SHP. As the global 

network of SHP measurements increases exponentially due to autonomous measuring 

devices (e.g. the Argo array of temperature/salinity profiling floats), empirical carbon 

predictions will become increasingly important for understanding the oceans evolving 

carbon system and inter-annual variability. Other SHP time-series stations, such as the 

array of hydrographic stations around Australia (Critchley et al., 2009), presents 

attractive opportunities to apply the SOMLO model to capture seasonal to inter-annual 

inorganic carbon variability, thereby providing a platform for diagnosing drivers of 

variability, and identifying potential future implications for marine ecosystems. 

5.2.2 Constraining biogeochemical provinces 

Defining biogeochemical provinces is an important aspect when grouping sporadic 

measurements to detect robust secular trends (e.g., in the “underway” pCO2 network). 

Previous approaches have solely relied on physical processes (mixed-layer depth and 

upwelling) and somewhat subjective geographical partitioning to establish a global 

province array (Longhurst et al., 1995; Sarmiento et al., 2004). Here, the ability of the 

SOM model in clustering measurements with similar “biogeochemical fingerprints” has 

been demonstrated. This presents the possibility to apply the neural network algorithm 

to global distributions of biogeochemical properties to provide a new and dynamical 

constraint on biogeochemical provinces. In doing so, it could provide a more accurate 

method for detecting secular trends in sporadic measurements by reducing the influence 

of measurements that are not consistent with the larger “biogeochemical fingerprint” 

within a province.  

5.2.3 Influence of natural seasonal variability 

Traditional studies investigating future aragonite under-saturation have solely focused 

on temporal aspects (e.g., McNeil and Matear, 2008; Orr et al., 2005). Here, I have 
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presented a first study probing the influence of natural variability in a geographical 

context. This revealed a significant spatial expansion (24×106 km2) of at least month-

long corrosive aragonite conditions relative to annual-mean estimates by centuries end. 

For multiple calcifying organisms that inhabit these regions, for example some pteropod 

species (Hunt et al., 2008), this represents a major challenge in preserving and secreting 

their aragonite shells and skeletons over the coming century. Since oceanic CaCO3 

plays an important role in the global carbon cycle, the implications of ocean 

acidification presented here provides new insight into the future system, thereby 

allowing us to better understand and model the changing carbon cycle. 

The estimated detection-times will also aid in the direction of available funds 

and resources when determining the location and experimental set up for measurement 

programs aimed at detecting ocean acidification trends. 

 It’s important to note that air-sea pCO2 disequilibrium will likely affect the 

future pH and ΩAr predictions presented here, which assume steady-state. In order to 

account for this influence, ocean general circulation models will be incorporated into 

future work to better predict ocean acidification properties. 

5.2.4 A new constraint on air-sea CO2 flux 

Despite significant advances in diagnosing air-sea CO2 flows over the last decade, 

uncertain transport models and spatiotemporal biases in “underway” pCO2 

measurements contribute to large uncertainties in regional estimates. These issues are 

addressed in this thesis by presenting a new observationally-derived ocean surface 

climatology for the partial pressure of CO2 (pCO2), which provides an independent 

constraint on the patterns of contemporary air-sea CO2 fluxes. When integrated 

globally, the contemporary air-sea CO2 flux estimate is consistent with the global 

“underway” pCO2 network. However, the new results suggests a strong shift in the 

magnitude of oceanic sources and sinks, particularly in the Southern Ocean and 

equatorial Pacific. Although the cause of these discrepancies is likely related to 
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spatiotemporal data limitations, the exponential increase in satellite and autonomous 

measurements will dramatically enhance the ability of empirical models, like SOMLO, 

to constrain the patterns of air-sea CO2 fluxes over the coming years.  

Empirical pCO2 predictions will also become increasing important for capturing 

changes in the oceanic CO2 sink, and therefore better informing us on the ocean’s future 

role in mediating human-induced climate change. 
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Appendix A. 
 
The ocean carbon system 
A more in-depth summary of the oceans inorganic carbon cycle is presented in this 

appendix. For a complete discussion, see Sarmiento and Gruber (2006), or Bopp and Le 

Quéré (2009). 

A1.1  Inorganic carbon chemistry 

Following the series of chemical reactions presented below, when aqueous carbon 

dioxide (CO2(aq)) reacts with water molecules it yields a diprotic carbonic acid molecule 

(H2CO3), which can then dissociate to form a bicarbonate and further to a carbonate ion. 

Since the hydration of (CO2(aq)) is slow compared to the subsequent ionization of H2CO3 

(Soli and Byrne, 2002), it is difficult to distinguish between these two species. The sum 

of CO2(aq) and H2CO3 is therefore expressed as a hypothetical species *
32COH  following 

Sarmiento and Gruber (2006) 
 

*
3222(aq) COHOHCO 0k       (A1.1) 
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Rapid chemical reactions allows for the assumption of thermodynamic equilibrium 

between the inorganic carbon species, which are expressed by the following equilibrium 

relationships: 
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where pCO2 is the partial pressure of CO2 and the square brackets represent the total 

concentration in solution (expressed as micro-moles per kilogram of solution [μmol   

kg-1]). These carbonic acid equilibrium constants are well constrained for a given 

temperature, salinity and pressure (e.g., Weiss 1974, Mehrbach et al., 1973, Dickson 

and Millero 1987).  

 The sum of *
32COH , -

3HCO  and -2
3CO  is referred to as the total dissolved 

inorganic carbon (CT): 
 

 ]CO[]HCO[]COH[ -2
3

-
3

*
32TC      (A1.7) 

In the literature, the symbols DIC, ΣCO2 and TCO2 are all used to define CT. For a 

typical ocean surface pH of 8.2, CT is found in the approximate ratio of 1:90:9 for 

]CO[H *
32 : ][HCO-

3 : ][CO -2
3  (Sarmiento and Gruber, 2006). Given that oceanic pCO2 is 

only influenced by the concentration of *
32COH , this speciation represents the oceans 

ability to absorb atmospheric CO2 far in excess than solubility alone. 

Another important parameter to constrain the ocean carbon system is total 

alkalinity (AT), which is a measure of the charge balance in the ocean: 
 

 
%2.0

-

%2.4

-
4

%8.18

-2
3

76.8%

-
3T ][H-]OH[]B(OH)[]CO[2]HCO[A    (A1.8) 

Percentages shown under the ion species indicates their relative contributions in a 

typical surface water sample with a pH of 8.2 (as quoted by Sarmiento and Gruber 

(2006)). The reason why carbonate ions are counted twice is due to their double 

negative charge. 

 In the ocean carbon system, CT, AT, pCO2 and pH can all be measured directly, 

or if any two parameters are known together with temperature and salinity, all 

parameters (CT, AT, pCO2, pH, ][CO*
2 , ][HCO-

3  and ][CO -2
3 ) can be theoretically 

computed using the previous set of equations. Ocean carbon models therefore typically 
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employ CT and AT as the only state variables, since they are both conservation with 

respect to changes in state, whereas pCO2 and pH are not. 

A1.2  Photosynthesis 

Photosynthesis, also referred to as primary production, describes the biological 

consumption of CO2 and nutrients (nitrate, phosphate, silicate and micro-nutrients such 

as iron) to form organic matter and oxygen: 
 

 2
Light

22 OMatter OrganicNutrientsOHCO   (A1.9) 

where phytoplanktonic organisms utilize light as their energy source and water as the 

reducing agent  (Ulloa and Grob 2009).  

The uptake of CO2, nutrients and protons during photosynthesis maintains a 

relatively constant stoichiometric ratio of approximately 106:16:1:19 for carbon, 

nitrogen (as nitrate, nitrite or ammonia), phosphorus (as phosphate) and protons 

(Redfield et al., 1963). The net result of photosynthesis is a decrease in CT and 

relatively smaller increase in AT due to proton depletion. Efficiency of photosynthesis is 

limited to a first degree by the availability of nutrients and light.  

Respiration of organic matter is the reverse process of photosynthesis, whereby 

heterotrophic organisms oxidize organic matter as a source of energy. In the marine 

ecosystem, a fraction of organic carbon is exported into the deep ocean through settling 

or advection processes. This transport of organic carbon into the ocean depths, 

commonly referred to as export production, has been estimated to be between 11-16 

PgC yr-1 using satellite-based chlorophyll a measurements (Falkowski et al., 2000, 

Schlitzer, 2002). 
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A1.3  Calcification 

Biogenic formation and dissolution of calcium carbonate minerals (calcite and 

aragonite) from some phytoplankton (e.g. Coccolithophorids) and zooplankton         

(e.g. pteropods) species is expressed by 
 

3
-2

3
2 CaCOCOCa       (A1.10) 

Combining equation A1.10 with equations A1.1 to A1.3 illustrates how CaCO3 

formation releases CO2 into the ocean 
 

OHCOCaCOHCO2Ca 223
-
3

2     (A1.11) 

A significant fraction of 3CaCO  formed in the ocean surface sinks into the 

ocean depths where it’s either dissolved in the water column, releasing CT and AT, or is 

deposited in the sediments. The net result of this process is an export of CT and AT in a 

ratio of 1:2 respectively. 
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Appendix B. 
 
Summary of cruise data 
Table B1: Cruise summary of global combined bottle dataset. Dataset name refers to 
project group responsible for synthesizing the data, including; CARINA (CARbon 
dioxide IN the Atlantic ocean; CARINA Group, 2009a, 2009b, 2010), PACIFICA 
(PACIFic ocean Interior Carbon project; http://pacifica.pices.jp) and GLODAP (Global 
Ocean Data Analysis Project; Key et al., 2004). Dataset file refers to the project file 
name where the cruise data was taken from. EXPOCODE is the expedition code 
assigned to each cruise, as defined by the National Oceanographic Data Centre (NODC) 
of the United States of America, and Year represents the year of first sample. 

Dataset name Dataset file EXPOCODE Year 
Number of measurements  
in the surface mixed-layer. 

        CT AT pCO2 
CARINA ATL.v1.0 06GA19960613 1996 105 0 0 
CARINA ATL.v1.0 06GA20000506 2000 39 39 39 
CARINA ATL.v1.0 06MT19920316 1992 0 257 0 
CARINA ATL.v1.0 06MT19920509 1992 117 114 113 
CARINA ATL.v1.0 06MT19941012 1994 41 30 30 
CARINA ATL.v1.0 06MT19941115 1994 140 0 0 
CARINA ATL.v1.0 06MT19960613 1996 4 4 4 
CARINA ATL.v1.0 06MT19960910 1996 32 32 32 
CARINA ATL.v1.0 06MT19970107 1997 55 64 54 
CARINA ATL.v1.0 06MT19970515 1997 35 33 31 
CARINA ATL.v1.0 06MT19970707 1997 38 38 37 
CARINA ATL.v1.0 06MT19970815 1997 66 0 0 
CARINA ATL.v1.0 06MT19990610 1999 27 26 26 
CARINA ATL.v1.0 06MT19990711 1999 37 37 37 
CARINA ATL.v1.0 06MT20010507 2001 35 35 35 
CARINA ATL.v1.0 06MT20010717 2001 103 102 101 
CARINA ATL.v1.0 06MT20011018 2001 16 16 16 
CARINA ATL.v1.0 06MT20021013 2002 2 4 2 
CARINA ATL.v1.0 06MT20030723 2003 46 44 44 
CARINA ATL.v1.0 06MT20040311 2004 87 89 87 
CARINA ATL.v1.0 18HU19920527 1992 20 0 0 
CARINA ATL.v1.0 18HU19930405 1993 37 0 0 
CARINA ATL.v1.0 18HU19930617 1993 10 0 0 
CARINA ATL.v1.0 18HU19931105 1993 60 0 0 
CARINA ATL.v1.0 18HU19940524 1994 12 0 0 
CARINA ATL.v1.0 18HU19941012 1994 62 0 0 
CARINA ATL.v1.0 18HU19950419 1995 43 0 0 

http://pacifica.pices.jp
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CARINA ATL.v1.0 18HU19970509 1997 55 70 37 
CARINA ATL.v1.0 29CS19930510 1993 18 29 18 
CARINA ATL.v1.0 29GD19821110 1982 103 103 103 
CARINA ATL.v1.0 29GD19831201 1983 149 150 149 
CARINA ATL.v1.0 29GD19840218 1984 247 247 247 
CARINA ATL.v1.0 29GD19840711 1984 68 68 68 
CARINA ATL.v1.0 29GD19860904 1986 92 92 92 
CARINA ATL.v1.0 29HE19980730 1998 31 31 31 
CARINA ATL.v1.0 29HE20030408 2003 14 14 14 
CARINA ATL.v1.0 31AN19890420 1989 88 110 75 
CARINA ATL.v1.0 316N19971005 1997 106 101 100 
CARINA ATL.v1.0 316N20010627 2001 41 41 41 
CARINA ATL.v1.0 316N20030922 2003 93 90 89 
CARINA ATL.v1.0 316N20031023 2003 135 126 124 
CARINA ATL.v1.0 32OC19950529 1995 4 0 0 
CARINA ATL.v1.0 33LK19960415 1996 70 70 70 
CARINA ATL.v1.0 33RO19980123 1998 192 192 191 
CARINA ATL.v1.0 33RO20030604 2003 211 173 172 
CARINA ATL.v1.0 33SW20010102 2001 108 108 108 
CARINA ATL.v1.0 33SW20030418 2003 35 35 35 
CARINA ATL.v1.0 35A320010203 2001 336 336 336 
CARINA ATL.v1.0 35A320010322 2001 140 144 140 
CARINA ATL.v1.0 35LU19890509 1989 45 45 45 
CARINA ATL.v1.0 35LU19950909 1995 41 41 41 
CARINA ATL.v1.0 35TH19990712 1999 117 117 117 
CARINA ATL.v1.0 35TH20010823 2001 141 141 141 
CARINA ATL.v1.0 35TH20020611 2002 44 85 44 
CARINA ATL.v1.0 35TH20040604 2004 108 108 108 
CARINA ATL.v1.0 64PE20000926 2000 68 0 0 
CARINA ATL.v1.0 64TR19890731 1989 55 51 50 
CARINA ATL.v1.0 64TR19900417 1990 0 50 0 
CARINA ATL.v1.0 64TR19900701 1990 2 0 0 
CARINA ATL.v1.0 64TR19900714 1990 4 0 0 
CARINA ATL.v1.0 64TR19910408 1991 194 0 0 
CARINA ATL.v1.0 67SL19881117 1988 33 33 33 
CARINA ATL.v1.0 74AB19900528 1990 3 0 0 
CARINA ATL.v1.0 74AB19910501 1991 612 612 612 
CARINA ATL.v1.0 74AB19910614 1991 28 0 0 
CARINA ATL.v1.0 74AB20050501 2005 49 49 46 
CARINA ATL.v1.0 74DI19890511 1989 778 159 159 
CARINA ATL.v1.0 74DI19890612 1989 7 0 0 
CARINA ATL.v1.0 74DI19900425 1990 39 38 38 
CARINA ATL.v1.0 74DI19900515 1990 14 0 0 
CARINA ATL.v1.0 74DI19900612 1990 14 16 14 
CARINA ATL.v1.0 74DI19970807 1997 163 163 163 
CARINA ATL.v1.0 74DI19980423 1998 134 134 134 
CARINA ATL.v1.0 74DI20040404 2004 58 53 51 
CARINA ATL.v1.0 IrmingerSea 1991 411 0 0 
CARINA ATL.v1.0 OMEX2 1997 0 149 0 



 194 

CARINA AMS.v1.2 06AQ19930806 1993 45 0 0 
CARINA AMS.v1.2 06AQ19960712 1996 79 79 79 
CARINA AMS.v1.2 06MT19920701 1992 0 81 0 
CARINA AMS.v1.2 18RD19980404 1998 107 92 89 
CARINA AMS.v1.2 18RD19990827 1999 63 53 53 
CARINA AMS.v1.2 18SN19940724 1994 35 34 34 
CARINA AMS.v1.2 18SN19970803 1997 7 7 7 
CARINA AMS.v1.2 18SN19970831 1997 1 1 1 
CARINA AMS.v1.2 18SN19970924 1997 10 9 9 
CARINA AMS.v1.2 316N20020530 2002 112 115 109 
CARINA AMS.v1.2 32H120020505 2002 14 11 11 
CARINA AMS.v1.2 32H120020718 2002 40 42 40 
CARINA AMS.v1.2 32H120040515 2004 12 12 12 
CARINA AMS.v1.2 32H120040718 2004 38 35 35 
CARINA AMS.v1.2 32L919920715 1992 1 3 1 
CARINA AMS.v1.2 32L919930718 1993 15 0 0 
CARINA AMS.v1.2 58AA19940224 1994 181 159 154 
CARINA AMS.v1.2 58AA19940826 1994 76 69 68 
CARINA AMS.v1.2 58AA19961121 1996 30 20 11 
CARINA AMS.v1.2 58AA19970225 1997 172 180 169 
CARINA AMS.v1.2 58AA19980308 1998 159 165 133 
CARINA AMS.v1.2 58AA19991003 1999 1 1 1 
CARINA AMS.v1.2 58AA20010527 2001 70 35 33 
CARINA AMS.v1.2 58GS20030922 2003 61 72 60 
CARINA AMS.v1.2 58JH19920712 1992 21 0 0 
CARINA AMS.v1.2 58JH19940723 1994 92 0 0 
CARINA AMS.v1.2 58JH19970414 1997 88 88 88 
CARINA AMS.v1.2 58JH19980801 1998 77 77 77 
CARINA AMS.v1.2 58JM20040724 2004 3 3 3 
CARINA AMS.v1.2 58JM20050520 2005 7 7 7 
CARINA AMS.v1.2 74JC19960720 1996 54 49 49 
CARINA AMS.v1.2 77DN19910726 1991 54 57 47 
CARINA AMS.v1.2 77DN20010717 2001 0 62 0 
CARINA AMS.v1.2 77DN20020420 2002 169 169 169 
CARINA AMS.v1.2 IcelandSea 1991 409 0 0 
CARINA SO.v1.1 06AQ19920929 1992 181 184 165 
CARINA SO.v1.1 06AQ19980328 1998 197 0 0 
CARINA SO.v1.1 09AR19960822 1996 204 182 181 
CARINA SO.v1.1 09AR20011029 2001 181 178 175 
CARINA SO.v1.1 29HE19951203 1995 45 45 45 
CARINA SO.v1.1 29HE19960117 1996 34 34 34 
CARINA SO.v1.1 29HE20010305 2001 56 56 56 
CARINA SO.v1.1 29HE20020304 2002 34 34 34 
CARINA SO.v1.1 33RO20050111 2005 183 176 176 
CARINA SO.v1.1 35MF19980121 1998 75 69 69 
CARINA SO.v1.1 35MF19980818 1998 103 89 89 
CARINA SO.v1.1 35MF19981205 1998 76 71 71 
CARINA SO.v1.1 35MF19990104 1999 74 69 69 
CARINA SO.v1.1 35MF20000117 2000 74 0 0 
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CARINA SO.v1.1 35MF20000719 2000 98 98 98 
CARINA SO.v1.1 35MF20010103 2000 42 42 42 
CARINA SO.v1.1 35MF20020104 2002 57 57 57 
CARINA SO.v1.1 35MF20030123 2003 47 47 47 
CARINA SO.v1.1 35MF20040103 2004 54 54 54 
CARINA SO.v1.1 49HH19941213 1994 40 40 40 
CARINA SO.v1.1 49HH20011208 2001 58 0 0 
CARINA SO.v1.1 49NZ20031106 2003 54 54 54 
CARINA SO.v1.1 49NZ20031209 2003 69 69 69 
CARINA SO.v1.1 49ZS19921203 1992 70 68 68 
CARINA SO.v1.1 58A119890214 1989 21 6 6 
CARINA SO.v1.1 61TG20020206 2002 29 0 0 
CARINA SO.v1.1 61TG20030217 2003 17 0 0 
CARINA SO.v1.1 74AB20020301 2002 95 112 95 
CARINA SO.v1.1 74DI20041103 2004 76 77 76 
CARINA SO.v1.1 74DI20041213 2004 69 68 68 
CARINA SO.v1.1 90AV20041104 2004 82 82 82 
CARINA SO.v1.1 91AA19971204 1997 140 138 137 
PACIFICA 09FA20010524 2001 209 208 206 
PACIFICA 18DD19890213 1989 15 0 0 
PACIFICA 18DD19920203 1992 32 4 4 
PACIFICA 18DD19920908 1992 7 0 0 
PACIFICA 18DD19930226 1993 8 0 0 
PACIFICA 18DD19930514 1993 1 1 1 
PACIFICA 18DD19940510 1994 5 3 3 
PACIFICA 18DD19950207 1995 2 0 0 
PACIFICA 18DD19950508 1995 2 0 0 
PACIFICA 18DD19960219 1996 9 6 6 
PACIFICA 18DD19960506 1996 8 6 6 
PACIFICA 18DD19960812 1996 7 4 4 
PACIFICA 18DD19970212 1997 10 8 7 
PACIFICA 18DD19970604 1997 5 3 2 
PACIFICA 18DD19970827 1997 4 8 3 
PACIFICA 18DD19980219 1998 4 0 0 
PACIFICA 18DD19990602 1999 9 5 5 
PACIFICA 18DD19990824 1999 2 2 2 
PACIFICA 18DD20000208 2000 3 3 3 
PACIFICA 18DD20000531 2000 8 8 8 
PACIFICA 18DD20000905 2000 3 3 3 
PACIFICA 18DD20010206 2001 21 18 18 
PACIFICA 18DD20040218 2004 21 13 13 
PACIFICA 18DD20040602 2004 10 10 10 
PACIFICA 18DD20040821 2004 10 0 0 
PACIFICA 18DD20050211 2005 22 22 22 
PACIFICA 18DD20060130 2006 22 21 21 
PACIFICA 18DD20060919 2006 14 13 13 
PACIFICA 18DD20070208 2007 21 20 20 
PACIFICA 18DD20070530 2007 9 9 9 
PACIFICA 18DD20070814 2007 10 10 10 
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PACIFICA 18DD20080131 2008 16 16 16 
PACIFICA 18DD20080813 2008 15 12 12 
PACIFICA 18EN19870330 1987 19 0 0 
PACIFICA 18EN19870717 1987 6 0 0 
PACIFICA 18EN19911017 1991 4 0 0 
PACIFICA 18PZ19861014 1986 6 0 0 
PACIFICA 18PZ19870923 1987 5 0 0 
PACIFICA 18PZ19871124 1987 8 0 0 
PACIFICA 18PZ19880502 1988 9 0 0 
PACIFICA 18PZ19880628 1988 9 0 0 
PACIFICA 18PZ19881129 1988 15 0 0 
PACIFICA 18PZ19890501 1989 10 0 0 
PACIFICA 18PZ19891003 1989 6 0 0 
PACIFICA 18PZ19900509 1990 26 0 0 
PACIFICA 18PZ19900822 1990 9 0 0 
PACIFICA 32MB19900222 1990 71 0 0 
PACIFICA 33KB20020923 2002 44 44 44 
PACIFICA 33KK20020701 2002 12 12 12 
PACIFICA 33RR20030714 2003 32 32 32 
PACIFICA 35A319940923 1994 195 190 187 
PACIFICA 49EW19981003 1998 8 7 7 
PACIFICA 49EW19991007 1999 8 8 8 
PACIFICA 49EW20001000 2000 4 5 4 
PACIFICA 49FA20000509 2000 49 0 0 
PACIFICA 49FA20010518 2001 7 0 0 
PACIFICA 49FA20010710 2001 24 0 0 
PACIFICA 49FA20020625 2002 22 0 0 
PACIFICA 49FA20021031 2002 19 0 0 
PACIFICA 49FA20030225 2003 11 0 0 
PACIFICA 49FA20030422 2003 20 0 0 
PACIFICA 49FA20030625 2003 56 0 0 
PACIFICA 49FA20031028 2003 60 0 0 
PACIFICA 49FA20040120 2004 56 0 0 
PACIFICA 49FA20040421 2004 40 0 0 
PACIFICA 49FA20040616 2004 60 0 0 
PACIFICA 49FA20050114 2005 52 0 0 
PACIFICA 49FA20050419 2005 46 0 0 
PACIFICA 49FA20050615 2005 14 0 0 
PACIFICA 49FA20060118 2006 41 0 0 
PACIFICA 49FA20060429 2006 25 0 0 
PACIFICA 49FA20060614 2006 34 0 0 
PACIFICA 49FA20070117 2007 20 0 0 
PACIFICA 49FA20070424 2007 6 0 0 
PACIFICA 49FA20071024 2007 12 0 0 
PACIFICA 49FA20080117 2008 18 21 17 
PACIFICA 49FA20080422 2008 7 0 0 
PACIFICA 49H519960509 1996 6 0 0 
PACIFICA 49H520010113 2001 9 0 0 
PACIFICA 49H520010508 2001 1 0 0 
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PACIFICA 49H520020510 2002 5 0 0 
PACIFICA 49H520021001 2002 3 0 0 
PACIFICA 49H520030115 2003 9 0 0 
PACIFICA 49H520030609 2003 1 0 0 
PACIFICA 49H520030701 2003 2 0 0 
PACIFICA 49H520060510 2006 3 0 0 
PACIFICA 49H520060715 2006 3 0 0 
PACIFICA 49H520070123 2007 10 0 0 
PACIFICA 49H520070508 2007 2 0 0 
PACIFICA 49HG19920807 1992 98 101 97 
PACIFICA 49HG19930431 1993 35 35 35 
PACIFICA 49HG19930807 1993 81 83 81 
PACIFICA 49HG19940413 1994 89 87 87 
PACIFICA 49HG19940808 1994 35 36 35 
PACIFICA 49HG19950414 1995 44 47 44 
PACIFICA 49HG19950807 1995 61 65 61 
PACIFICA 49HG19960412 1996 19 19 19 
PACIFICA 49HG19960807 1996 51 51 51 
PACIFICA 49HG19971110 1997 102 0 0 
PACIFICA 49HG19980812 1998 33 33 33 
PACIFICA 49HG19990804 1999 47 46 46 
PACIFICA 49HG20000912 2000 40 40 40 
PACIFICA 49HG20010813 2001 39 39 39 
PACIFICA 49HH20011127 2001 20 0 0 
PACIFICA 49HH20030930 2003 3 0 0 
PACIFICA 49HO19920620 1992 5 0 0 
PACIFICA 49HO19950615 1995 1 0 0 
PACIFICA 49HO19970602 1997 7 0 0 
PACIFICA 49HO19970711 1997 1 0 0 
PACIFICA 49HO19980601 1998 9 11 6 
PACIFICA 49HO19980622 1998 6 8 6 
PACIFICA 49HO19980718 1998 33 6 5 
PACIFICA 49HO19990601 1999 6 6 6 
PACIFICA 49HO19990622 1999 6 7 6 
PACIFICA 49HO19990719 1999 31 31 31 
PACIFICA 49HO20000601 2000 12 12 12 
PACIFICA 49HO20000621 2000 11 10 10 
PACIFICA 49HO20000729 2000 13 14 13 
PACIFICA 49HO20010604 2001 8 10 8 
PACIFICA 49HO20010710 2001 12 12 12 
PACIFICA 49NB20030700 2003 4 4 4 
PACIFICA 49NB20040500 2004 7 2 2 
PACIFICA 49NZ19971111 1997 37 35 35 
PACIFICA 49NZ19981030 1998 58 57 57 
PACIFICA 49NZ19981222 1999 24 0 0 
PACIFICA 49NZ19990508 1999 45 43 43 
PACIFICA 49NZ19990911 1999 15 15 15 
PACIFICA 49NZ19991013 1999 16 0 0 
PACIFICA 49NZ19991120 1999 26 0 0 
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PACIFICA 49NZ20000105 2000 118 118 118 
PACIFICA 49NZ20000509 2000 8 8 8 
PACIFICA 49NZ20000803 2000 11 11 11 
PACIFICA 49NZ20001227 2001 30 0 0 
PACIFICA 49NZ20010604 2001 43 41 41 
PACIFICA 49NZ20010723 2001 38 36 36 
PACIFICA 49NZ20010828 2001 6 6 6 
PACIFICA 49NZ20020107 2002 27 0 0 
PACIFICA 49NZ20020822 2002 40 40 38 
PACIFICA 49NZ20021011 2002 12 12 12 
PACIFICA 49NZ20021113 2002 5 0 0 
PACIFICA 49NZ20021217 2002 23 0 0 
PACIFICA 49NZ20030220 2003 109 104 101 
PACIFICA 49NZ20030521 2003 19 19 19 
PACIFICA 49NZ20030803 2003 130 127 126 
PACIFICA 49NZ20030909 2003 106 103 103 
PACIFICA 49NZ20040327 2004 26 25 25 
PACIFICA 49NZ20040807 2004 43 41 41 
PACIFICA 49NZ20040901 2004 0 90 0 
PACIFICA 49NZ20041013 2004 15 15 15 
PACIFICA 49NZ20041117 2004 52 51 51 
PACIFICA 49NZ20050228 2005 20 21 20 
PACIFICA 49NZ20050525 2005 62 62 62 
PACIFICA 49NZ20050913 2005 62 26 25 
PACIFICA 49NZ20051031 2005 66 64 64 
PACIFICA 49NZ20051127 2005 113 112 112 
PACIFICA 49NZ20060526 2006 74 65 64 
PACIFICA 49NZ20060801 2006 6 6 6 
PACIFICA 49NZ20060821 2006 2 2 2 
PACIFICA 49NZ20070216 2007 151 76 76 
PACIFICA 49NZ20070724 2007 45 44 44 
PACIFICA 49NZ20070904 2007 42 30 29 
PACIFICA 49NZ20071008 2007 95 94 94 
PACIFICA 49NZ20071122 2007 67 67 67 
PACIFICA 49NZ20081011 2008 82 57 56 
PACIFICA 49NZ20090410 2009 100 100 100 
PACIFICA 49NZ20090521 2009 87 87 87 
PACIFICA 49OS19930611 1993 36 39 33 
PACIFICA 49OS20020600 2002 3 3 3 
PACIFICA 49OS20030300 2003 10 0 0 
PACIFICA 49OS20030500 2003 2 0 0 
PACIFICA 49OS20030600 2003 2 0 0 
PACIFICA 49OS20030800 2003 3 0 0 
PACIFICA 49RY19970121 1997 18 0 0 
PACIFICA 49RY20000607 2000 29 0 0 
PACIFICA 49RY20030425 2003 2 0 0 
PACIFICA 49RY20030620 2003 22 0 0 
PACIFICA 49RY20030714 2003 34 0 0 
PACIFICA 49RY20040114 2004 70 0 0 
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PACIFICA 49RY20040608 2004 22 0 0 
PACIFICA 49RY20040704 2004 23 0 0 
PACIFICA 49RY20041021 2004 20 0 0 
PACIFICA 49RY20050114 2005 29 0 0 
PACIFICA 49RY20050615 2005 28 0 0 
PACIFICA 49RY20050708 2005 17 0 0 
PACIFICA 49RY20051021 2005 16 0 0 
PACIFICA 49RY20060113 2006 38 0 0 
PACIFICA 49RY20060607 2006 11 2 0 
PACIFICA 49RY20060630 2006 21 0 0 
PACIFICA 49RY20061021 2006 20 0 0 
PACIFICA 49RY20070118 2007 9 0 0 
PACIFICA 49RY20070606 2007 26 0 0 
PACIFICA 49RY20070724 2007 22 0 0 
PACIFICA 49RY20080124 2008 44 0 0 
PACIFICA 49SO19970113 1997 96 54 47 
PACIFICA 49SO19970509 1997 16 12 11 
PACIFICA 49SO19970820 1997 16 16 16 
PACIFICA 49SO19980414 1998 1 1 1 
PACIFICA 49SU19980422 1998 2 0 0 
PACIFICA 49SU19980709 1998 3 0 0 
PACIFICA 49SU19980819 1998 4 0 0 
PACIFICA 49SU19981007 1998 5 0 0 
PACIFICA 49SU19990121 1999 6 0 0 
PACIFICA 49SU19990428 1999 4 0 0 
PACIFICA 49SU19990709 1999 4 0 0 
PACIFICA 49SU19990830 1999 4 0 0 
PACIFICA 49SU19991006 1999 5 0 0 
PACIFICA 49SU20000121 2000 7 0 0 
PACIFICA 49SU20000507 2000 4 0 0 
PACIFICA 49SU20000628 2000 4 0 0 
PACIFICA 49SU20000817 2000 4 0 0 
PACIFICA 49SU20001011 2000 5 0 0 
PACIFICA 49TA19980418 1998 16 0 0 
PACIFICA 49TA20010417 2001 8 0 0 
PACIFICA 49TA20020108 2002 9 0 0 
PACIFICA 49TA20020313 2002 5 0 0 
PACIFICA 49TA20020416 2002 3 0 0 
PACIFICA 49TA20020705 2002 2 0 0 
PACIFICA 49WA19960516 1996 24 24 24 
PACIFICA 49WA20021107 2002 2 0 0 
PACIFICA 49WA20030905 2003 1 0 0 
PACIFICA 49WA20040924 2004 3 0 0 
PACIFICA 49WA20060301 2006 13 0 0 
PACIFICA 49XK19940106 1994 80 0 0 
PACIFICA 49XK19971129 1997 34 0 0 
PACIFICA 49K619990523 1999 35 54 34 
PACIFICA 90BM19930830 1993 25 21 21 
PACIFICA 318M200406 2004 173 163 162 



 200 

PACIFICA 49K619940107 1994 76 77 71 
PACIFICA 316N19920530 1992 95 0 0 
PACIFICA 316N19920502 1992 74 0 0 
PACIFICA 316N19920713 1992 48 0 0 
PACIFICA 49XK19960617 1996 14 2 2 
PACIFICA 49RY19940707 1994 46 0 0 
PACIFICA 325019931005 1993 42 42 41 
PACIFICA 09AR19930311 1993 94 0 0 
PACIFICA 322019920816 1992 90 89 88 
PACIFICA 325019930705 1993 94 89 88 
PACIFICA 31DS19960105 1996 250 188 185 
PACIFICA 18DD19940906 1994 29 28 26 
PACIFICA 18DD19941013 1994 36 37 34 
PACIFICA 316N19921006 1992 192 0 0 
PACIFICA 31WT19910831 1991 28 28 27 
PACIFICA 325020060213 2006 238 232 229 
PACIFICA 31DS19910307 1991 67 0 0 
PACIFICA 33RR20050106 2005 155 158 155 
PACIFICA 31WT19910716 1991 134 9 9 
PACIFICA 31WT19910531 1991 36 27 27 
PACIFICA 316N19921204 1992 160 0 0 
PACIFICA 325019930515 1993 69 74 61 
PACIFICA 33RO20071215 2007 456 414 413 
PACIFICA 31DS19940126 1994 302 296 273 
PACIFICA 316N19930222 1993 204 0 0 
PACIFICA 318M19940327 1994 238 250 237 
PACIFICA 325019940124 1994 41 38 32 
GLODAP Atlantic v1.1 06MT18_1 1991 33 0 0 
GLODAP Atlantic v1.1 18HU95011_1 1995 31 0 0 
GLODAP Atlantic v1.1 18HU98023_1 1998 15 15 15 
GLODAP Atlantic v1.1 06MT39_3 1997 20 20 20 
GLODAP Atlantic v1.1 06MT28_1 1994 55 26 26 
GLODAP Atlantic v1.1 06MT15_3 1991 3 0 0 
GLODAP Atlantic v1.1 06MT22_5 1992 50 17 17 
GLODAP Atlantic v1.1 06MT11_5 1990 111 112 110 
GLODAP Atlantic v1.1 06AQANTX_4 1992 143 0 0 
GLODAP Atlantic v1.1 06AQANTXIII_4 1996 254 0 0 
GLODAP Atlantic v1.1 35A3CITHER3_2 1995 35 30 28 
GLODAP Atlantic v1.1 35A3CITHER3_1 1995 40 92 39 
GLODAP Atlantic v1.1 316N142_3 1994 105 105 104 
GLODAP Atlantic v1.1 OACES91_1-2 1991 68 63 59 
GLODAP Atlantic v1.1 OACES93 1993 135 134 126 
GLODAP Atlantic v1.1 3230CITHER2_1-2 1994 153 97 93 
GLODAP Atlantic v1.1 316N151_3 1997 61 78 61 
GLODAP Atlantic v1.1 316N151_4 1997 48 51 40 
GLODAP Atlantic v1.1 316N151_2 1997 126 131 124 
GLODAP Atlantic v1.1 316N147_2 1996 107 116 102 
GLODAP Atlantic v1.1 06AQANTX_7 1992 127 0 0 
GLODAP Atlantic v1.1 35MF103_1 1996 181 183 181 
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GLODAP Atlantic v1.1 316N83_a,c 1983 178 175 175 
GLODAP Atlantic v1.1 06AQANTV-2,3 1986 168 161 161 
GLODAP Atlantic v1.1 Somov 1981 0 62 0 
GLODAP Atlantic v1.1 TTONAS_1-7 1981 207 204 203 
GLODAP Atlantic v1.1 TTOTAS_1-3 1982 103 103 103 
GLODAP Atlantic v1.1 29HE06_1-3 1992 43 38 37 
GLODAP Atlantic v1.1 318MSAVE_1-5 1987 469 330 329 
GLODAP Indian v1.1 3175MB95_07 1995 172 172 164 
GLODAP Indian v1.1 320696_3 1996 312 187 181 
GLODAP Indian v1.1 35MFCIVA_1 1993 148 150 145 
GLODAP Indian v1.1 316N145_5 1994 133 110 109 
GLODAP Indian v1.1 316N145_6 1995 128 127 127 
GLODAP Indian v1.1 316N145_7 1995 147 144 139 
GLODAP Indian v1.1 316N145_8 1995 115 120 111 
GLODAP Indian v1.1 316N145_9 1995 264 249 239 
GLODAP Indian v1.1 316N145_10 1995 166 183 147 
GLODAP Indian v1.1 316N145_11,12 1995 161 159 158 
GLODAP Indian v1.1 316N145_13 1995 49 43 43 
GLODAP Indian v1.1 316N145_14 1995 162 156 150 
GLODAP Indian v1.1 INDIGO-1 1985 177 176 176 
GLODAP Pacific v1.1 90KDIOFFE6_1 1992 170 167 167 
GLODAP Pacific v1.1 09AR9404_1 1994 60 58 58 
GLODAP Pacific v1.1 EQ92SPR 1992 222 245 222 
GLODAP Pacific v1.1 EQ92FAL 1992 244 276 238 
GLODAP Pacific v1.1 RR_KIWI_6 1997 136 135 132 
GLODAP Pacific v1.1 RR_KIWI_7 1997 64 59 59 
GLODAP Pacific v1.1 NBP-97_1 1997 90 0 0 
GLODAP Pacific v1.1 NBP-97_3 1997 140 142 138 
CLIVAR 58GS20060721 2006 31 26 26 
CLIVAR 77DN20050819 2005 59 52 52 
CLIVAR 18DD20030212 2003 21 21 21 
CLIVAR 18DD20100203 2010 17 15 15 
CLIVAR 18DD20100606 2010 10 10 10 
CLIVAR 33RO20100308 2010 189 183 183 
CLIVAR 33RR20090320 2009 419 418 417 
CLIVAR 33RR20080204 2008 196 258 192 
CLIVAR 33RR20070204 2007 200 202 199 
CLIVAR 33RR20070322 2007 128 123 122 
CLIVAR 318M20091121 2009 134 142 128 
CLIVAR 318M20100105 2010 127 104 101 
CLIVAR 325020080826 2008 65 63 62 
CLIVAR   21OR20080102 2008 4 4 4 
GOMECC RB-07-05 2007 63 64 63 
NACP 32WC20070511 2007 226 224 223 
S.O ss0299 ANZCW0306005204 1999 38 0 0 
S.O ss1195 ANZCW0306004894 1995 42 0 0 
S.O v697 ?199697060 1997 93 69 69 
WOCE 18HU19960512 1996 19 18 18 
AAIW   316N20050821 2005 668 748 661 
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BATS 1989-2006 702 479 476 
HOT 1988-2008 517 497 474 
TOTAL       31438 24392 22688 
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Appendix D.  
 
Principle Component Regression 
Principal Component Regression (PCR) is an empirical approach when multi-

collinearity exists between predictor variables. The process (outlined in Fig. D1) first 

calculates the principal components ),,,,( 1 Ii nnn  of the predictor variables 

),,,,( 1 Nppp n . Then a least-squares multiple-linear regression is established 

between a subset of the principal components and the response variable (y). The subsets 

begin with just the first principal component, then the first two, through to all principal 

components. The PCR deemed optimal is simply the regression with the lowest 

Residual Standard Error (RSE; see Eq. 2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D1: Principle Component Regression schematic. 
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Appendix E. 
 
Geographic boundaries used to 
partition the global SIT predictions 

 

 
Figure E1: Geographical boundaries used to partition the global systematic independent 
test (SIT) predictions. 
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Appendix F. 
 
Monthly pH and ΩAr distributions 
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Figure F1: Monthly SOMLO-derived ocean surface ΩAr distributions for the nominal 
year of 2000. 
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Figure F2: Monthly SOMLO-derived ocean surface pH distributions for the nominal 
year of 2000. 
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Appendix G. 
 
Table of regional air-sea CO2 flux 
estimates  
Table G1: Regional contemporary air-sea CO2 flux estimates using SOMLO predicted 
and Takahashi et al. (2009) (referred to as T-09) ocean surface pCO2 distributions. 

Region Latitudinal 
band 

Area 
[106km2] 

Contemporary air-sea CO2 
flux [PgC yr-1] 

 SOMLO T-09 
High North Atlantic North of 44°N 11.1 -0.37 -0.30 
High North Pacific North of 44°N 10.6 -0.07 -0.06 
Temperate North 
Atlantic 18°N - 44°N 18.0 -0.12 -0.14 

Temperate North Pacific 18°N - 44°N 30.8 -0.21 -0.38 
Equatorial Atlantic 18°N - 18°S 20.9 0.13 0.11 
Equatorial Pacific 18°N - 18°S 63.0 1.06 0.50 
Equatorial Indian 24.5°N - 18°S 24.3 0.11 0.10 
Temperate South 
Atlantic 18°S - 44°S 17.7 -0.20 -0.11 

Temperate South Pacific 18°S - 44°S 36.2 -0.32 -0.28 
Temperate South Indian 18°S - 44°S 24.4 -0.31 -0.36 
Southern Ocean South of 44°S 61.7 -0.81 -0.28 
Northern Hemisphere North of 0° 124.3 -0.18 -0.64 
Southern Hemisphere South of 0° 194.4 -0.93 -0.57 
Global open-ocean 318.7 -1.10±0.25 -1.21±0.59 
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