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The Two Dimens iona l S ta r t ing P lume . 

I . R . W o o d 

Un ive r s i t y of New South Wales 
W a t e r R e s e a r c h Labora to ry . 

A b s t r a c t . 

T h i s pape r p r e s e n t s the expe r imen ta l r e s u l t s for the r a t e of 
advance and the s p r e a d of e i the r a two-d imens iona l s t a r t ing 
p lume o r a two d imens iona l dens i ty cu r r en t on a ve r t i ca l s lope. 
It i s shown that the cap of the plume moves at 0. 38 t i m e s the max-
i m u m veloci ty of the s teady l aye r behind the plume and that the 
r a t i o of the length f r o m the v i r tua l or ig in to the leading edge of 
the cap to one half the m a x i m u m width of the cap is 3. The 
v i r tua l m a s s concept is used to show that t hese two ra t ios a r e 
connected. 

In t roduct ion 

A cons ide rab le amount of work has r ecen t ly been devoted to 
the s tudy of uns teady growing turbulent f lows. S co r e r (1), 
R icha rds (2), Saunders (3), Woodward (4), T u r n e r (5),(6) ex-
t ens ive ly s tudied the buoyant vor tex r ing or t h e r m a l . R ichards 
(7), has ex tens ive ly studied the buoyant vor tex pa i r or the cyl in-
d r i c a l t h e r m a l and T u r n e r (8) has a lso recen t ly examined the 
case of an a x i s y m m e t r i c p lume. It is the object of th is paper to 
extend the work and use a s l ight ly d i f fe ren t approach to cover the 
ca se of a two d imens iona l p lume. 

F o r th i s c a s e , f luid containing a densi ty excess is r e l e a s e d 
f r o m a l i n e s o u r c e and a two d i m e n s i o n a l p lume f o r m s a s in F i g u r e 
1. The p lume c o n s i s t s of two dis t inct por t ions; a "s teady" l aye r 
whe re the m e a n p r o p e r t i e s of the flow do not va ry with t ime and 
an uns teady head or cap . As t i m e p r o g r e s s e s the cap grows in 
s i ze , advances and lays down a f u r t h e r length of s teady l aye r . 
As with al l the flows mentioned above, only ve ry s m a l l densi ty 
d i f f e r ences wil l be used . This impl ies that although the buoyant 
f o r c e p e r unit m a s s i s suf f ic ien t ly l a r g e to produce ve r t i ca l 
a c c e l e r a t i o n s , the co r r e spond ing var ia t ions in the m a s s dens i t ies 
a re s m a l l enough to be neglected. F o r these ca ses the motion of 
a r i s i ng buoyant fluid wil l appear the s a m e as the motion of a 
fal l ing d e n s e r fluid (provided the densi ty excess in the f i r s t case 
equals the dens i ty def ic i t in the second) and two will be t r e a t e d as 
if only one c a s e exis ted . 
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NOMENCLATURE 

FIGURE 1. 

Theory 

In the development of the theory, the positive z axis will be 
taken as vertical and the zx plane will be taken as the plane of 
symmetry. The length from the virtual origin of the line source 
to the leading edge of the vorticity containing region is defined as 
{o and we can immediately write that 

^ is a function of the flux of density difference 
and time (t) and the density of the ambient fluid^o, 

where ^ is one half the volumetric flow rate per foot length 
of line source 

is the density of the ambient fluid 

is the density of any element of fluid which has a 
density different from 

P, is the density of the fluid released from the line source 

5 is the acceleration of gravity 
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Because of the absence of walls in the case of a plume in 
infinite surroundings, no force other than the buoyancy forces 
can act on the plume and it is therefore permissible to leave 
viscosity out of the variables. 

Dimensional analysis then leads to 

t 
tCçA 

or 
u 

C, 

c, 

(1) 

where C^ is a constant. 

Further, if A is the area of the vorticity containing region 
in the positive yz plane and the characteristic vorticity, ^^ and 
the dimensionless density difference times g are defined by 

Jo 

(2) 

(3) 

and if y is taken as the maximum y coordinate of the vorticity 
containmg region (i. e. the turbulent region of the plume) then 
dimensional analysis yields 

m 
c. 

^ Pi " 

n 

(4) 

(5) 

(6) 
A 
^TtK 

where C^ C^ and n are constants. 

Similar relationships hold for all lengths, velocities» 
vorticities at characteristic points in the flow. 

These relationships imply that the dimensionless shape, 
dimensionless velocity distribution pattern, dimensionless density 
distribution pattern are self preserving (i. e. are the same at all 
times during the flow). It is also important to note that the above 
solutions are consistent with the generation of circulation by the 
buoyant force acting over the plane of symmetry. It is therefore 
possible to replace the plane of symmetry with a frictionless plane. 
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Some further information can be obtained if the force 
applied to the vorticity containing region is equated to the rate of 
change of impulse. The total force applied to the vorticity con-
taining region in the positive zy plane at any time after the start 
of the experiment is . Lamb (9) gives the im-
pulse of a vorticity containing region as Jj^p^-^^f^ dî dJ^ 

Thus we get 

Xrt JJ^ J J ^ ^ - ^ o d y - l d ^ (7) 

If the flow around the cap at any time may be approximated 
to the flow around a solid of the same area as the vorticity con-
taining region of the cap then the virtual mass concept may be 
used and equation (7) becomes 

£ C .̂ /̂ cp 0 - Cv) UJJ -i- ^ - L ^ s ^ i ^ d ^ d ^ ^ ^ 
5ieadL{ ¿dt̂ er ĝ̂  

where ^ cp = area of the cap 
= coefficient of virtual mass of the cap 

UJc = velocity of the cap 

A more detailed analysis shows that this implies the neglect 
of terms which involve the integral of turbulent fluctuations over 
the plane of symmetry. The neglected term, however, would be 
of a relatively small magnitude. 

Making use of the fact that dimensionless velocities, areas 
etc. are preserved and assuming that the cap is cylindrical 

( ĉp By^, Cv " ' ] then the equation (8) may be written as 

innii jn a f d ' ^ l - feir^wSf Sxydyd^. - / = 0 
(9) 

It now remains to calculate the integral over the steady 
layer. This can be computed from the available measurements 
in steady plumes provided -

(1) the join between the steady layer and the head or cap can be 
identified, and 

(2) the steady layer velocity and density distributions hold up to 
this join. 
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The s teady l a y e r of a jet or p lume is confined to a reg ion 

which is r e l a t i ve ly long in the d i rec t ion of the ma in flow and r e l -
a t ively n a r r o w in the d i r ec t ion pe rpend icu la r to the main flow 
d i rec t ion . Hence in the s t eady l aye r the var ia t ion of the mean 
quant i t ies in the d i rec t ion pe rpend icu la r to the plane of s y m m e t r y 
a r e an o r d e r of magni tude g r e a t e r than the va r i a t ion along the 
plane of s y m m e t r y . That is 

-d^ ^ i 
and _ _ ^ur ^ _L ^ 

whe re L» is a n u m b e r of o r d e r 10. The continuity equation fo r 
the m e a n flow is __ ^^ ^ - ^ 
Hence tT = — ^IT 

^ — X " ^ • -by L^y 
f r o m the equation of continuity __ _ < i "biO ^ J_"ico 

• ^»y LLJ "by 
Thus to a r e a sonab l e approximat ion S*. ^ ^ 
and hence A. 

(10) 

where ^ i s the tevel of the join between the s t eady l aye r and 
the head o r cap . 

Now the n u m e r o u s expe r imen t s with f r e e turbulent flow in 
s t a t i ona ry su r round ings have shown tha t the veloci ty and dens i ty 
d i f f e r e n c e d i s t r ibu t ions at d i f f e ren t d i s t ances f r o m the v i r tua l 
o r ig in m a y be plat ted in a d imens ion le s s f o r m . Thus these 
d i s t r ibu t ions a r e p r e s e r v e d at a l l d i s t ances f r o m the v i r tua l 
or ig in and the veloci ty d is t r ibu t ion may be wr i t t en as 

tü - u ; 3. f ^V (11) 

whe re U)̂  is the c h a r a c t e r i s t i c veloci ty of the s teady l aye r at a 
p a r t i c u l a r d i s tance z f r o m the v i r tua l or igin. Throughout th is 
work th i s wil l be t aken as the m a x i m u m veloci ty at the level z and 
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? - ' ' /bv 
where by is the characteristic width of the steady layer at the 
level z and in this study this will be defined by 

- i ^ ^ ' i / w ^ (12) 

The dimensionless density difference times g distribution may be 
written as 

(13) 

where is the maximum dimensionless density difference 
times g at the level z. Using the expression for the velocity dis-
tribution equation (10) becomes 

^^J, i (14) 

where 

The form of the variation of with z has been 
derived using mixing length theories and a similarity approach 
(10). However, it is convenient to derive these relationships 
again using the entrainment concept introduced by Morton et al (11). 
At the boundary between the turbulent and non-turbulent fluid, there 
exists a small mean entrainment velocity in the ambient non-
turbulent fluid. This velocity is in the direction perpendicular to 
the main flow. 

The velocity distribution at all distances from the virtual 
origin may be plotted in the same dimensionless form and thus the 
velocity at any point in a section at a level z will depend only on 
the characteristic width and velocity at this section. Thus the in-
flow velocity at a particular section is likely to depend only on the 
characteristic velocity and width at that section. Dimensional 
analysis then leads to an entrainment velocity proportional to the 
characteristic velocity at the particular section. The constant of 
proportionality is called the entrainment constant E. Using this 
constant the e(^ation of coriinuity for the steady layer becomes 

P f Lo.b. fh) d} - E to, 
^ y i ^ ^ • ^ ^ (15) 

The equation of continuity of density deficit may be written as 
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The m o m e n t u m equa t ion m a y be w r i t t e n as 

I Jo^ pi» V 
Defining ^ / f KV^^^^^l 

T h e so lu t ion of equat ions (15), (16), (17) i s ^ = £ 

UJ^ 

(17) 

LH^^h^EJL P, J 
l e n s i o n a l p lume 

(18) 
Thus f o r a t w o - d i m e n s i o n a l p lume 

(19) 
Now the r e s u l t s of Rouse , et al^(9) e x p e r i m e n t s m a y be w r i t t e n as 

U) - e V 

Dby 
e ^ F i s y ^ 

(20) 

This y ie lds a va lue of E of 0.156. E l l i s o n and T u r n e r (12) in a 
s e r i e s of e x p e r i m e n t s d e s c r i b e d in the next s ec t ion m e a s u r e d E 
d i r e c t l y and obta ined a va lue of 0.06. They sugges t that the r e -
su l t s of t he e a r l i e r e x p e r i m e n t s w e r e a f fec ted by wa l l e f f e c t s . 
E l l i son and T u r n e r ' s value of E is much c l o s e r to the va lues ob-
ta ined in o the r f r e e t u rbu len t f lows (12), (14)^ and wi l l be adopted. 
F u r t h e r , in view of the s m a l l d i f f e r e n c e in the c h a r a c t e r i s t i c 
widths obta ined in the ve loc i ty and dens i ty d i f f e r e n c e d i s t r ibu t ions 
and the doubt in the value of E , it s e e m s r e a s o n a b l e to a s s u m e that 
the c h a r a c t e r i s t i c wid ths f o r the veloci ty and dens i ty d i f f e r e n c e 
d i s t r i bu t ions a r e the s a m e . Making th i s a s sumpt ion , equat ion 
(19) b e ^ m e s ^ ^ 

£ j s . y ^ ^ - - C2l 1 0 - 0 6 ] ^ U ^ ^ ^ (21) 

Hence u s i n g the g e o m e t r y in F i g u r e 1 and the above equat ion, (9) 
b e c o m e s 

h^P^ i t J d t (22) 
but s ince al l c h a r a c t e r i s t i c points move at a cons tant r a t e 
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t 
and the equation (22) becomes 

' -
i-r 

n- L ^ J 

n ' a/7.9 L v t . i^A^.gj L nllDtJ (23) 

Now multiplying throughout by — ^ 3 ^ 

the equation may be written as 

V P t J ^ nJ L J / Vt 

This equation is plotted in Figure 2 

P, 

lO 

0-9 

0 - 8 

0-7 

0 - 6 

0 - 5 

\ 1 
^Exper 
1 

iffleirtal poini 

2 3 4 5 6 
n 

The Two Dimcnstonoi Plume 
THEORETICAL CURVE 

FIGURE 2. 

Experiments 

The experiments were performed i n a l . 5 x 3 . 0 x 6 . 0 foot 
tank with a 3. 0 x 3. 5 foot perspex window. The tank was filled 
with fresh water and a line source of denser fluid (salt water) was 
introduced through a 0. 125" x 1. 5 foot long slot. A fine gravel 
filter was placed above the slot to ensure that the fluid entered 
the tank with the minimum of momentum. Before carrying out the 
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series of experiments the variation of discharge along the slot was 
checked and found to be negligible. The discharge was measured 
by timing between points in a calibrated tank and then the discharge 
tubes were moved above the slot and the experiment was com-
menced. The heavier salt solution was marked with a fine suspen-
sion of graphite and the plume was photographed at 0. 5 second in-
tervals using a Shackman automatic camera. Relative density-
measurements were made by weighing samples of the fresh water 
collected immediately prior to the test and of the salt water 
collected from the discharge line immediately after the test in the 
same specific gravity bottle. The trace from a typical series 
of photographs is shown in Figure 3. The flux of density deficit 
was varied over a fortyfold range and this gave a threefold range 
in velocity. Two sets of experiments were carried out, one with 
the slot over the centre of the tank and one with wall plumes pro-
duced with the slot at the edge of the tank. The films were 
analysed by projecting the l " x l " negatives on a microfi lm reader, 
tracing the plume outlines and using a marker rod placed alongside 
the tank as a scale. — L i n e lource 

Calibrated tank 
Gravel filter 

4 seconds 

8 seconds 

seconds 

20 seconds 

T R A C E OF THE PLUME 

Outlines at 4 second intervals 

FIGURE 3. 
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For each experiment a plot of ^ against time was obtained 
(Figure 4) and from the line of best fit the velocity of the cap was 
deduced. In addition, values of n were taken from about one 
half of the negatives. In spite of the cap velocity being approx-
imately constant from the beginning of the observations, the val-
ues of n for the first five seconds were always considerably 
higher than the later values. The earlier values were therefore 
disregarded. It was also noted that in almost every case the 
velocity of the cap exhibited a periodic variation about the mean 
velocity and it was thought at first that this might be correlated 
with the irregular rate of growth of width of the cap. However, 
no definite correlation has been established. 

O 20 30 
Tine in seconds 

PLUME VELOCITY 

FIGURE 4. 

Results 

The rate of advance of the c ^ was plotted ^ y n s t ^ ^ ] 
(Figure 5) and the meaji line gave f-2G ® where the 
constant of 1. 20 has a standard deviation of t 0.10. If Ellison 
and Turner's (9) figures for the entrainment coefficient into the 
steady plume are accepted, this leads to the ratio of the velocity of 
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the cap to the maximum velocity of steady layer at level of cap of 

0. 38 i" 0. 05. The maximum and minimum value as well as the 

mean value of n were recorded for each experiment. The spread 

in these values was considerably greater than those obtained in 

Turner's (8) three dimensional plume experiments. However, if 

it is accepted that the vorticity containing region extends to the 

msLximum spread of the coloured region then the appropriate value 

of n (the average minimum value) 3. 0 t 0. 30 when plotted against 

^ / D^ 

/ X>t 
lies close to the theoretical curve. 

to obtain the relationship between n and 

IS 
The method used 

the combination of variables of , t and 

completely general. It has been applied for an axisymmetric plume 

and yields the relationship plotted in Figure 6. Turner's ex-

perimental points are also plotted in the figure and it can be seen 

that they are extremely close to the theoretical curve. It must be 

emphasised that further information is necessary to obtain a 

complete solution and that use of the virtual mass concept can only 

yield a relationship between the variables. 
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FIGURE 6. 

Conclusions 

Dimensional analysis predicts the form of the variation of L 
with time and the use of the virtua} mass assumption yields a 
relationship between and n. These relation-
ships are satisfied by the experimental results provided that n is 
taken as ¿ divided by maximum spread of the vorticity 
containing region. 
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L i s t of Symbols . 

A = a r e a of the cap 
b^ = the c h a r a c t e r i s t i c width of the s teady l a y e r at the level z 

= cons tan t s 
Cv = coef f ic ien t of v i r t ua l m a s s 
E = the en t r a inmen t constant 
f = a funct ion 
g = the a c c e l e r a t i o n of g rav i ty 
K H H H and H_ = in t eg ra l cons tan ts connected with the s teady 

J. 2 3 4 5 l a y e r 
L = a n u m b e r of o r d e r of magni tude 10 
^ = the length f r o m the v i r t ua l o r ig in to the leading edge of 

the vo r t i c i ty containing reg ion 
n = 
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Q = the volumetric flow rate from a point source 
q = the volume flow rate per foot length of line source 
t = time 
v,w = velocities in the y and z directions respectively 
xyz = cartesian coordinate 

y ^ = the maximum y coordinate of the vorticity containing 
region 

z. = the z coordinate of the join between the cap and the 
steady layer 

z^ = the z coordinate of the centre of the cap 
= the X component of the vorticity 

Sc = "the characteristic vorticity 
? = ^ 

b z 
/O. = the density of the surrounding fluid 

ĵO = the density difference between an element of fluid and 
the surrounding fluid 

Ẑ yO, = the density difference between the inflowing fluid and the 
surrounding fluid 

A ^ g W ^ g = the characteristic dimensionless density 
/Oi Jo f- difference times g for the vorticity containing 

region and the steady layer at the level z 
respectively 

0 = a function 




