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The Two Dimensional Starting Plume.

I.R. Wood

University of New South Wales
Water Research Laboratory.

Abstract.

This paper presents the experimental results for the rate of
advance and the spread of either a two-dimensional starting
plume or a two dimensional density current on a vertical slope.
It is shown that the cap of the plume moves at 0. 38 times the max-
imum velocity of the steady layer behind the plume and that the
ratio of the length from the virtual origin to the leading edge of
the cap to one half the maximum width of the cap is 3. The
virtual mass concept is used to show that these two ratios are
connected.

Introduction

A considerable amount of work has recently been devoted to
the study of unsteady growing turbulent flows. Scorer (1),
Richards (2), Saunders (3), Woodward (4), Turner (5),(6) ex-
tensively studied the buoyant vortex ring or thermal. Richards
(7), has extensively studied the buoyant vortex pair or the cylin-
drical thermal and Turner (8) has also recently examined the
case of an axisymmetric plume. It is the object of this paper to
extend the work and use a slightly different approach to cover the
case of a two dimensional plume.

For this case, fluid containing a density excess is released
from a line source and a two dimensional plume forms as in Figure
1. The plume consists of two distinct portions; a "steady' layer
where the mean properties of the flow do not vary with time and
an unsteady head or cap. As time progresses the cap grows in
size, advances and lays down a further length of steady layer.

As with all the flows mentioned above, only very small density
differences will be used. This implies that although the buoyant
force per unit mass is sufficiently large to produce vertical
accelerations, the corresponding variations in the mass densities
are small enough to be neglected. For these cases the motion of
a rising buoyant fluid will appear the same as the motion of a
falling denser fluid (provided the density excess in the first case
equals the density deficit in the second) and two will be treated as

if only one case existed.
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Theory

In the development of the theory, the positive z axis will be
taken as vertical and the zx plane will be taken as the plane of
symmetry. The length from the virtual origin of the line source
to the leading edge of the vorticity containing region is defined as
{. and we can immediately write that

G is a function of the flux of density difference
[‘Z Ap,g] and time (t) and the density of the ambient fluid,o,

where CZ is one half the volumetric flow rate per foot length
of line source
/3 is the density of the ambient fluid

R AP is the density of any element of fluid which has a
density different from jp,

P 780 is the density of the fluid released from the line source

g is the acceleration of gravity
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Because of the absence of walls in the case of a plume in
infinite surroundings, no force other than the buoyancy forces
can act on the plume and it is therefore permissible to leave
viscosity out of the variables.

Dimensional analysis then leads to

a c

Tlgapgs W
or ! L
24 ¢ [q,éé. g3

where C1 is a constant.

Further, if A is the area of the vorticity containing region
in the positive yz plane and the characteristic vorticity, % and
the dimensionless density difference times g are defined by

% = fn’idﬂ /A (2)
[é;g.ji - [Mq A /1 (3)

and if y__ is taken as the maximum y coordinate of the vorticity
containing region (i.e. the turbulent region of the plume) then
dimensional analysis yields

Se - % (4
[s9], - G[espq Lo
L n

Y = (6)

where 02 C3 and n are constants.
Similar relationships hold for all lengths, velocities,
vorticities at characteristic points in the flow.

These relationships imply that the dimensionless shape,
dimensionless velocity distribution pattern, dimensionless density
distribution pattern are self preserving (i. e. are the same at all
times during the flow). It is also important to note that the above
solutions are consistent with the generation of circulation by the
buoyant force acting over the plane of symmetry. It is therefore
possible to replace the plane of symmetry with a frictionless plane.
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Some further information can be obtained if the force
applied to the vorticity containing region is equated to the rate of
change of impulse. The total force applied to the vorticity con-
taining region in the positive zy plane at any time after the start
of the experiment is [ 80,9) T . Lamb (9) gives the im-
pulse of a vorticity containing region as //A:Sx)(j d-’;jd'é

Thus we get

%'//;/:'iydﬁ% * %t‘//;jz;ﬂdr% - [g40.4)t

If the flow around the cap at any time may be approximated
to the flow around a solid of the same area as the vorticity con-
taining region of the cap then the virtual mass concept may be
used and equation (7) becomes

L le Rep 1+ C) W] + %;%O‘S" ydyds = [gap4)T

(7

Steady Layer (8)
where A ¢ = area of the cap
Cv = coefficient of virtual mass of the cap
We =

velocity of the cap

A more detailed analysis shows that this implies the neglect
of terms which involve the integral of turbulent fluctuations over
the plane of symmetry. The neglected term, however, would be
of a relatively small magnitude.

Making use of the fact that dimensionless velocities, areas
etc. are preserved and assuming that the cap is cylindrical
(ACP = ]%3:) Cv =1} then the equation (8) may be written as

1 D,
(n—) T D [6D6] — #Sxydyd} 1 =0
t Dtl° Dt 409
n* [2429] i % ] Steadty kager- (9)
It now remains to calculate the integral over the steady

layer. This can be computed from the available measurements
in steady plumes provided -

(1) the join between the steady layer and the head or cap can be
identified, and

(2) the steady layer velocity and density distributions hold up to
this join.
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The steady layer of a jet or plume is confined to a region
which is relatively long in the direction of the main flow and rel-
atively narrow in the direction perpendicular to the main flow
direction. Hence in the steady layer the variation of the mean
quantities in the direction perpendicular to the plane of symmetry
are an order of magnitude greater than the variation along the
plane of symmetry. That is

27 = L 2V
3—5 Loy
and _
P on LW
23 L 2y

where L is a number of order 10. The continuity equation for
the mean flow is

3T - -20
Yy 23
Hence = W — IV
ES 2y > _
- W -~ v

L 23
= 20 2w
© vy M L] 2y

Thus to a reasonable approximation i = %—%

and hence P 3.7
D [” D[ 2wy
ﬁt[*/s‘ﬂd"d} Dt// LI

where ’}3 is the level of the join between the steady layer and
the head or cap.

Now the numerous experiments with free turbulent flow in
stationary surroundings have shown that the velocity and density
difference distributions at different distances from the virtual
origin may be plotted in a dimensionless form. Thus these
distributions are preserved at all distances from the virtual
origin and the velocity distribution may be written as

w - w, T (11)

where («)3 is the characteristic velocity of the steady layer at a
particular distance z from the virtual origin. Throughout this

work this will be taken as the maximum velocity at the level z and
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= Y

? /b,

where b, is the characteristic width of the steady layer at the
level z and in this study this will be defined by

b, = ,[wd":’/w} (iz)

The dimensionless density difference times g distribution may be
written as
[2e9) - (23] $o
/2 Py

where ( } is the maximum dimensionless density difference
times g at the level z. Using the expression for the veloc1ty dis-
tribution equation (10) becomes

Y% dy = Hy D/ w, b, dy
t./o/sggwg v (19
where Hs =/ f(,')) 3 d,?

The form of the variation of wyb;and {A-é‘_g],_ with z has been
derived using mixing length theories and a similarity approach
(10). However, it is convenient to derive these relationships
again using the entrainment concept introduced by Morton et al (11).
At the boundary between the turbulent and non-turbulent fluid, there
exists a small mean entrainment velocity in the ambient non-
turbulent fluid. This velocity is in the direction perpendicular to
the main flow.

(13)

The velocity distribution at all distances from the virtual
origin may be plotted in the same dimensionless form and thus the
velocity at any point in a section at a level z will depend onlty on
the characteristic width and velocity at this section. Thus the. in-
flow velocity at a particular section is likely to depend only on the
characteristic velocity and width at that section. Dimensional
analysis then leads to an entrainment velocity proportional to the
characteristic velocity at the particular section.. The constant of
proportiionality is called the entrainment constant E. Using this
constant the eql.atlon of cominuity for the steady layer becomes

/w} by fipdy = Ew, (15)

The equatlon of contmulty of densny deficit may be written as

D} “rfage) b 5 10) ¢y <

(16)
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The momentum equation may be written as

£ 2 L
B, [w;b* [fo)*dy - / [g%a]}b}gé(})q

(17)
Defining H, = [ o) ds H,- [ o ¢ 4y
- [y K- (Yoo

The solution of equatlons (15), (16), (17) is
Db, .
Dy
_ 9.00.9)% (18)
Wy = H,_Hs J[ ]

Thus for a two-dimensional plume

B, oo [t ] 4 O°p2 55y

I

(19)
Now the results of Rouse, egla}gl:(9) experiments may be written as
w - w, e * 5
?.
-2 Y
4-

[59] - [5g9 e “En
D - lSé
3
This yields a value of E of 0.156. Ellison and Turner (12) in a
series of experiments described in the next section measured E
directly and obtained a value of 0.06. They suggest that the re-
sults of the earlier experiments were affected by wall effects.
Ellison and Turner's value of E is much closer to the values ob-
tained in other free turbulent flows (12),(14), and will be adopted.
Further, in view of the small difference in the characteristic
widths obtained in the velocity and density difference distributions
and the doubt in the value of E, it seems reasonable to assume that
the characteristic widths for the velocity and density difference
distributions are the same. Making this assumption, equation
(19) begcomes L . ( s
Q— A = — {2 3006 Kl ! - d r}
e ) S 49% (2 *0-06) 1%9] BaE

(20)

Hence using the geometry in Figure 1 and the above equation, (9)
becomes

M- o |(B8) + PP om%[ é_i ) a2 sz;

but since all characteristic points move at a constant rate
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0"'5:-: dit. - -) = —_t_.él
,[tz, ‘arz‘d 1 ZJ[D]

and the equation (22) becomes

om (r%.)q%m [%%]3 . z’s[o~06J§_/%79J%f—%n%]1-— =0

3
Now multiplying throughout by =~ — [‘l 9;010—: 3] /{%—%’]

(23)

the equation may be written as

1253 ot - oro(-2) (12093 — 2L )0

This equation is plotted in Figure 2
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FIGURE 2.

Experiments

The experiments were performed ina 1.5 x 3.0 x 6.0 foot
tank with a 3.0 x 3.5 foot perspex window. The tank was filled
with fresh water and a line source of denser fluid (salt water) was
introduced through a 0.125" x 1.5 foot long slot. A fine gravel
filter was placed above the slot to ensure that the fluid entered

the tank with the minimum of momentum. Before carrying out the
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series of experiments the variation of discharge along the slot was
checked and found to be negligible. The discharge was measured
by timing between points in a calibrated tank and then the discharge
tubes were moved above the slot and the experiment was com-
menced. The heavier salt solution was marked with a fine suspen=
sion of graphite and the plume was photographed at 0.5 second in-
tervals using a Shackman automatic camera. Relative density
measurements were made by weighing samples of the fresh water
collected immediately prior to the test and of the salt water
collected from the discharge line immediately after the test in the
same specific gravity bottle. The trace from a typical series

of photographs is shown in Figure 3. The flux of density deficit
was varied over a fortyfold range and this gave a threefold range

in velocity. Two sets of experiments were carried out, one with
the slot over the centre of the tank and one with wall plumes pro-
duced with the slot at the edge of the tank. The films were
analysed by projecting the 1" x 1" negatives on a microfilm reader,
tracing the plume outlines and using a marker rod placed alongside

the tank as a scale. o——Line source

Calibrated tank
Gravel filter

\4 seconds
'
~
/ " \8 seconds

\ \Iz seconds

S 20 seconds

TRACE OF THE PLUME

Outlines at 4 second intervals

FIGURE 3.
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For each experiment a plot of A against time was obtained
(Figure 4) and from the line of best fit the velocity of the cap was
deduced. In addition, values of n were taken from about one
half of the negatives. In spite of the cap velocity being approx-
imately constant from the beginning of the observations, the val-
ues of n for the first five seconds were always considerably
higher than the later values. The earlier values were therefore
disregarded. It was also noted that in almost every case the
velocity of the cap exhibited a periodic variation about the mean
velocity and it was thought at first that this might be correlated
with the irregular rate of growth of width of the cap. However,
no definite correlation has been established.

35
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Results

Th nst L2297
e rate of advance of the cag) was plotted %%ié_nst r=3
(Figure 5) and the mean line gave 5‘; = [-20 @'%g where the
constant of 1. 20 has a standard deviation of ¥10.10. If Ellison
and Turner's (9) figures for the entrainment coefficient into the
steady plume are accepted, this leads to the ratio of the velocity of
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the cap to the maximum velocity of steady layer at level of cap of
0.38 ¥ 0.05. The maximum and minimum value as well as the
mean value of n were recorded for each experiment. The spread
in these values was considerably greater than those obtained in
Turner's (8) three dimensional plume experiments. However, if
it is accepted that the vorticity containing region extends to the
maximum spread of the coloured region then the appropriate value
of n (the average minimum value) 3.0 % 0.30 when plotted against

D 5 Dlo - >
[i 7409: Cj] / 2 lies close to the theoretical curve.
The method used  to obtain the relationship bJe/tween n and
the combination of variables of 6, tand (242 9|73 is

completely general. It has been applied for an axisymmetric plume
and yields the relationship plotted in Figure 6. Turner's ex-
perimental points are also plotted in the figure and it can be seen
that they are extremely close to the theoretical curve. It must be
emphasised that further information is necessary to obtain a
complete solution and that use of the virtual mass concept can only
yield a relationship between the variables.
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Where Q is the volumetric flow from the point
source

The Axisymmetric Plume
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FIGURE 6.

Conclusions

Dimensional analysis predicts the form of the variation of &
with time and the use of the Vu'tual mass assumption yields a
relationship between ﬁ/P‘EE‘?] and n. These relation-
ships are satisfied by the experlmental results provided that n is
taken as £  divided by maximum spread of the vorticity
containing region.
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List of Symbols.

= area of the cap

=  the characteristic width of the steady layer at the level z
= constants

= coefficient of virtual mass

= the entrainment constant

= a function

the acceleration of gravity

HlH 2H3H4 and H5 = integral constants connected with the steady

L
A

layer

a number of order of magnitude 10

the length from the virtual origin to the leading edge of
the vorticity oontaining region

e

= Ym
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Q = the volumetric flow rate from a point source
q = the volume flow rate per foot length of line source
=  time
v,w = velocities in the y and z directions respectively
Xyz = cartesian coordinate
Y = the .maximum y coordinate of the vorticity containing
region
z. = the z coordinate of the join between the cap and the

steady layer

z, = the z coordinate of the centre of the cap
x = the x component of the vorticity
Se = the characteristic vorticity
o X
b

z
A = the density of the surrounding fluid
bo = the density difference between an element of fluid and

the surrounding fluid

D/O, = the density difference between the inflowing fluid and the
surrounding fluid

{4}%’_9} "[‘},/%QL = the characteristic dimensionless density

difference times g for the vorticity containing
region and the steady layer at the level z
respectively

9 = a function





