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Abstract— Placing multicast proxies on the Internet can largely
reduce the delivery delay of Internet live media streaming using
overlay multicast mechanisms. In this paper, we propose a new
approach to address the issue of proxy placement in an overlay
multicast network. The task is to decide an optimal placement
of multicast proxies in the overlay multicast network so as to
minimize the average end-to-end delay of the overlay skeleton tree
subject to out-degree balancing constraint and maximum delivery
delay bound. We present two heuristic methods for this proxy
placement problem. Experimental results demonstrate that proxy
placement due to our proposed approach can greatly improve the
overlay multicast routing performance. In comparison with an
existing approach commonly used for replica placement in con-
tent distribution networks, our proposed approach significantly
improves the end-to-end latency performance of overlay multicast
networks, and is not much sensitive to network dynamics.

I. INTRODUCTION

Live media streaming on the Internet is becoming increas-
ingly popular as more and more media companies wish to
leverage Internet broadcast channels to reach global audience.
Since sessions for sought-after events may incur tens of
thousands of simultaneous users [1], it is desirable to imple-
ment Internet live media streaming cost-effectively. While IP
multicast [2] is doubtlessly the ideal solution for supporting
large-scale Internet live media streaming, and extensive studies
on IP multicast have been conducted over the past two decades,
enabling IP multicast across the global Internet has not been
successful due to its various deployment issues [3]. Until the
global deployment of IP multicast could be eventually realized,
the Internet community has to resort to interim multicast
solutions [4]. Among them, end-system multicast [5]–[7] and
proxy-assisted multicast [8]–[10] are two representative over-
lay multicast solutions, both of which emulate the forwarding
mechanism of IP multicast at the application layer.

In end-system multicast, hosts wishing to participate in a
live streaming session self-organize into an overlay tree from
the source of the session. Multicast-related functionality is
completely implemented by end systems via unicast connec-
tions. Since broadband access technologies of today’s Internet
provide users with very limited outgoing bandwidth, the fanout
capability of end systems is significantly restricted. As a result,
overlay trees in end-system multicast can be rather tall, so that
hosts deep in the tree (hence far from the source) are likely to
suffer considerable lag [11]. Moreover, due to the presence
of group dynamics, reconstruction of overlay trees can be

very frequent in end-system multicast, which yields glitch
and incurs heavy maintenance overhead. Although studies
of live streaming workloads on the Internet [12] indicated
that it is possible to support large-scale live media streaming
using end-system multicast, the observations are drawn from
experiments with low-quality video streams. It is unlikely that
existing broadband access technologies can support efficient
end-system multicast for high-quality video streaming.

As a middle-ground solution between end-system multicast
and IP multicast, proxy-assisted multicast is designed to offer
better performance than end-system multicast and require less
infrastructure support than IP multicast [10]. This approach
relies on a set of dedicated multicast proxies with large
processing power and high fanout capability to construct a
backbone service domain for the overlay multicast network.
These application layer servers create overlay trees among
themselves via unicast connections. They are typically placed
at co-location facilities with high-speed connection to the
Internet, so that they can readily utilize the over-provisioned
links in the core networks without experiencing significant
variations in end-to-end delay. They are fairly static and
thus eliminate large maintenance overhead due to tree recon-
struction. Communication between end systems and multicast
proxies is flexible to use end-system multicast, IP multicast, or
any other technique. In comparison with overlay trees formed
entirely by end systems, overlay trees based on multicast
proxies are much flatter. It was shown in [10] that such a
two-tier overlay multicast architecture can achieve comparable
performance to IP multicast.

Studies of proxy-assisted multicast have primarily focused
on routing algorithms with the assumption that locations of
multicast proxies are predetermined [8], [9], [13]. Less atten-
tion has been given to the development of proxy placement
algorithms to further improve the performance of overlay
multicast networks [14], [15].

The proxy placement problem addressed in [14] was de-
signed for overlay multicast within a single autonomous sys-
tem (AS). The nature of their problem formulation requires the
detailed knowledge of the substrate network topology, which
does not scale to inter-domain proxy placement. An inter-
domain proxy placement problem was later considered in [15].
Their problem formulation aims to minimize the weighted
average delay between each node in the overlay network and
its closest multicast proxy, which resembles the K-median
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problem commonly used for replica placement in content
distribution networks (CDNs) [16]. However, connecting each
node in the overlay network to its closest multicast proxy
does not necessarily yield good latency performance from the
source-to-end point of view in overlay multicast networks [14].

In this paper, we propose a new inter-domain proxy place-
ment problem for overlay multicast networks to support large-
scale Internet live media streaming. Our proposed approach
is going to help a content service provider to automate and
optimize the proxy placement decision across the Internet.
Similar to Qiu et al. [16], we allow the content service provider
to use the technique of [17] for strategically clustering its
Internet clients, and map each cluster to one client site for
potential proxy placement. We assume that in each client
site there exists a co-location center. To deploy a set of
multicast proxies and to operate the overlay multicast network,
the content service provider enters into contracts with the
selected co-location centers for access bandwidth usage and
service level agreements [18]. Once the multicast proxies are
deployed, live contents can be distributed in real-time from
the origin server to niche audience across the globe using the
overlay multicast network infrastructure.

Our proposed approach is routing-aware in a sense that it
explicitly measures the quality of a proxy placement solution
in terms of the long-term average latency performance of an
overlay skeleton tree. Given the set of N client sites and the set
of K (K < N ) multicast proxies, an overlay skeleton tree is
defined in such a way that it spans all N client sites via the set
of K multicast proxies. We identify two factors to support such
a routing-aware approach. Firstly, studies of live streaming
workloads on the Internet have found that it is not uncommon
that popular streams can reach a wide audience spanning
hundreds of AS domains [1]. Thus, it is reasonable to expect
that sessions for sought-after events may incur large amount
of user traffic from all client sites and bring all multicast
proxies into play for good quality live streaming. Secondly, for
sessions composed of a subset of client sites, we can readily
utilize subtrees of the overlay skeleton tree for the purpose of
data delivery. Thus, if the end-to-end latency performance of
the overlay skeleton tree is optimized, its subtrees are likely
to yield satisfactory latency performance.

We summarize our contributions in this paper as below:
1) We propose a new approach which we call RAPP to

address the issue of proxy placement in an overlay
multicast network. RAPP is a recursive acronym which
stands for RAPP is an Approach for Proxy Placement.
The proposed approach allows a content service provider
to automate and optimize the proxy placement decision
across the Internet. In comparison with the K-median
problem presented in [15], solutions to the RAPP prob-
lem can significantly improve the end-to-end latency
performance of overlay skeleton trees. The performance
gain is not much sensitive to network dynamics.

2) We present a simple heuristic method called STAMP for
the RAPP problem. STAMP stands for Simple Tech-
nique for Allocation of Multicast Proxies. It obtains

good quality solutions to the RAPP problem yet with
lower computational complexity O(N2) than O(KN2)
of the greedy algorithm proposed in [15] for the K-
median problem.

3) We design a weight-coded genetic algorithm (GA) for
the RAPP problem to obtain closer-to-optimal solutions
for fairly large size problem instances with reasonable
computational complexity.

4) We provide an integer linear programming (ILP) formu-
lation of the RAPP problem. The ILP model can be used
to compute optimal solutions for small size problem
instances. We believe that it paves the way for further
development of approximation approaches to solve the
RAPP problem [19].

The remainder of this paper is organized as follows. Section
II deals with the problem formulation. In Section III, we
describe our solution methods. Simulation experiments are
reported in Section IV. Finally, we provide concluding remarks
in Section V.

II. PROBLEM FORMULATION

We model the overlay multicast network as a complete
directed graph G = (V, E), where V is the set of N nodes and
E = V × V is the set of edges. Each node in V represents a
client site. Let node r be the client site where the origin server
is situated. K (K < N ) multicast proxies are to be placed
among N client sites, which constitute the set P ⊂ V . As in
[14], we place the root proxy in node r by default. For brevity,
we call client sites with proxies co-located as proxy nodes and
those without proxies co-located as non-proxy nodes.

The weight ci of node i is given by the long-term average
number of clients concentrated at the corresponding client site.
The directed edge 〈i, j〉 in E from node i to node j represents
the unicast path of latency li,j from node i to node j. In
practice, unicast latency quantities between any two nodes can
be estimated from long-term average latency of end-to-end
Internet paths using online measurement techniques [20], [21].
By {li,j}, we denote the matrix of unicast latency quantities
between each pair of nodes in G.

An overlay skeleton tree can be represented by a directed
spanning tree T of G rooted at node r. A directed edge from
node i to node j, i ∈ V , j ∈ V − {r}, can be included in T
if and only if node i is in P . Consequently, the set of internal
nodes of T is composed of proxy nodes only, and the set of
leaf nodes of T is exclusively composed of non-proxy nodes.

The objective of the RAPP problem is to place the set of
multicast proxies on the set of client sites such that the average
end-to-end delay of T over all client sites is minimized. Since
client sites with higher weights are more important than those
with lower weights, we translate the optimality criterion of
the RAPP problem to minimizing the normalized weighted
sum of latencies from the root proxy to each client site
along T . Additionally, we introduce a maximum delivery delay
bound for the RAPP problem. This offers the content service
provider an additional degree of freedom for controlling the
maximum end-to-end delay of T within a certain threshold.
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Moreover, we further introduce a load balancing constraint for
the RAPP problem, since it is undesirable that any multicast
proxy is excessively loaded in the overlay skeleton tree. For
this purpose, it suffices by enforcing that the out-degree is
balanced among all internal nodes of T .

For each sink node in the set V − {r}, we define Rr,v as
the set of directed edges that form the overlay routing path
from the root proxy to node v. Let Lr,v denote the latency
of the overlay routing path from the root proxy to node v.
Let L̄ denote the average end-to-end delay. Let Lmax denote
the maximum end-to-end delay. Let LB

max denote the specified
bound on Lmax. Given the unicast latency matrix {li,j}, we
readily have

Lr,v =
∑

〈i,j〉∈Rr,v

li,j (1)

and
L̄ =

∑
v∈V −{r}

cvLr,v

/ ∑
v∈V −{r}

cv (2)

and
Lmax = max

v∈V −{r}
Lr,v . (3)

Let d(i) denote the out-degree of an internal node i, i ∈
P . The following proposition states a property on the sum∑

i∈P d(i) of out-degrees in an overlay skeleton tree.
Proposition 1: The sum of out-degrees in an overlay skele-

ton tree is N − 1.
Proof: It follows from Corollary 1.5.3 of [22] that a

spanning tree with N nodes has exactly N − 1 edges. By
the definition of an overlay skeleton tree, between each pair
of nodes i and j, the edge is either directed from node i to
node j, or directed from node j to node i. In either case, it
contributes one count towards the sum of out-degrees.

We define an out-degree balancing index F , given by

F = max
i∈P

d(i) − min
i∈P

d(i) . (4)

A smaller value of F indicates a more balanced out-degree
distribution within the set of internal nodes. Let FLB denote
the lower bound (LB) on F . Clearly, FLB = 0 if

N − 1 = mK, m = 1, 2, . . . (5)

and we require each internal node to have an out-degree of
exactly m. In situations where (5) does not hold, FLB = 1.
In such cases, letting m = �N−1

K � and n = N − 1 − mK ,
we require n internal nodes to have an out-degree of exactly
m + 1, and the remaining K − n internal nodes to have an
out-degree of exactly m.

Definition 1: The RAPP problem
Given a complete directed graph G = (V, E) of N nodes,

find a constrained directed spanning tree T of G rooted at node
r, such that L̄ is minimized, and T is subject to constraints
on: 1) K , K < N , nodes (including node r) are selected as
internal nodes, all other N − K nodes are for leaf nodes; 2)
Lmax is bounded by LB

max; 3) F is restricted to FLB.
Such a heavily constrained spanning tree problem is NP-

hard, which can be established by the theorem presented in the

Appendix. We thus resort to heuristic methods to find near-
optimal solutions for this challenging problem.

III. SOLUTIONS

In this section, we present two heuristic methods for the
RAPP problem. The first method is a simple technique for
allocation of multicast proxies which we call STAMP for
brevity in this paper. The second method is a meta-heuristic
approach based on a weight-coded GA. We also provide an
ILP formulation of the RAPP problem.

A. STAMP

Given the unicast latency matrix {li,j}, we compute sv for
each node v in the set V − {r} by

sv = cvlr,v +
∑

j∈V −{r,v}
cj(lr,v + lv,j) . (6)

We then identify K − 1 nodes in V − {r} with the smallest
values on sv . These K − 1 nodes together with node r
constitute the set P of internal nodes of the overlay skeleton
tree T . Intuitively, this method aims to find nodes that (should
they be chosen as internal nodes) would more likely result in
smaller latency of the overlay routing path between each leaf
node and the root node.

For each computation of (6), STAMP requires 2N − 4
additions and N − 2 multiplications. This results in O(N2)
complexity for computing sv for all N−1 nodes in the set V −
{r}. Then, in order to identify K − 1 nodes with the smallest
values on sv , it either requires a total of (K−1)(2N−K−2)/2
comparisons of complexity O(KN), or suffices by applying
a quick sort of complexity O(N log N) on sv if K > log N .
Therefore, STAMP is O(N2) in complexity.

B. Weight-coded GA

GAs are population-based stochastic search and optimiza-
tion approaches inspired by the mechanism of natural selection
which obeys the rule of “survival of the fittest” [23]. As shown
in Fig. 1, in a typical implementation of GAs, a population
of chromosomes is processed. Each chromosome represents
a candidate solution to the problem. Starting from an initial
population of randomly created chromosomes, GAs perform
multi-directional stochastic search through a genetic evolution
process without the need for any problem information except
the objective function values. It is hoped that after a certain
number of generations, the best chromosome represents a good
quality solution that is reasonably close to the optimal solution.

GAs have been extensively used for solving various real-
world complex optimization problems due to their broad
applicability, ease of use and global perspective. In particu-
lar, they have found successful applications in a number of
tree-based network optimization problems (see e.g. [24] and
references therein). In all cases, it was observed that GAs can
achieve near-optimal solutions for fairly large size instances
with reasonable computational effort. We choose to implement
a weight-coded GA [25] for the RAPP problem, since it uses a
node-based encoding approach for chromosome representation
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Fig. 1. Flowchart of GAs.

of candidate solutions to the problem, rather than an edge-
based encoding approach which is inefficient in the context of
a complete graph.

1) Tree computation heuristic: Implementing a weight-
coded GA for the RAPP problem requires a heuristic method
(preferably with low complexity) for computing the overlay
skeleton tree. For this purpose, we have modified the cen-
tralized greedy algorithm presented in [7] to obtain a low
complexity tree computation algorithm tailored to the RAPP
problem. Given the proxy placement solution computed from
STAMP, the greedy algorithm proceeds in two stages. The first
stage deals with the construction of the subtree of the overlay
skeleton tree connecting proxy nodes only. The second stage
manages the connection between non-proxy nodes and proxy
nodes to complete the overlay skeleton tree.

An important objective of the greedy algorithm is to guar-
antee that the out-degree balancing index F of T is restricted
to FLB. As we have discussed in Section II, if FLB = 0,
we require each proxy node to have an out-degree of exactly
m, where m = N−1

K . This case can be trivially resolved. For
each node v that has just been added to the partial tree of
T , we check the cumulated out-degree d(i) of node i which
connects node v. If d(i) = m, we mark node i so that node i
will not be considered by any of the remaining unconnected
nodes in the set V − {r}. On the other hand, if FLB = 1,
we require n proxy nodes to have an out-degree of exactly
m + 1, and the remaining K − n proxy nodes to have an
out-degree of exactly m, where in this case m = �N−1

K �
and n = N − 1 − mK . To achieve this, we make sure that
once the n-th proxy node whose out-degree reaches m + 1
has been marked, we further check for each unmarked proxy
node if its out-degree has reached m. If so, we mark such
nodes accordingly, again to make sure that they will not be
considered by any of the remaining unconnected nodes in the
set V − {r}.

The tree construction process starts by arranging all K − 1
proxy nodes in the set P − {r} in a non-decreasing order

according to their sv values computed from (6). Then, we add
these nodes one-by-one in that order to T . Let P ′ denote the
set of all proxy nodes in the partial tree of T constructed so
far. Let P̄ denote the set of all proxy nodes that have been
marked. Starting from the initial tree with P ′ including node
r only, for each unconnected proxy node v in the ordered set
P −{r}, we find an unmarked proxy node u in the partial tree
of T constructed so far such that cv(Lr,u+lu,v) is the smallest.
After node v is added to T , we update P ′, and we apply the
out-degree balancing module to check if node u needs to be
marked into the set P̄ .

Once the subtree of T containing all proxy nodes is formed,
we then connect non-proxy nodes one-by-one to T . Let W
denote the set of all non-proxy nodes not yet in T , and
initialize W to V − P . At any iteration, for each node v in
the set W , we find an unmarked proxy node u in T which
minimizes δv = cv(Lr,u+lu,v). We then identify node v in W
with the largest value of such δv, and add it to T by creating a
directed edge from node u to node v. After node v is added to
T , we update W , and we again apply the out-degree balancing
module to check if node u needs to be marked into the set P̄ .

Clearly, this greedy algorithm ensures that T satisfies all
constraints of the RAPP problem except the bound LB

max on
Lmax. It can be shown that this greedy algorithm is O(KN2)
in complexity.

2) GA implementation: By weighted coding [25], we ex-
press a chromosome of GA in the form of a real-valued
vector w of size N . Each gene wi, i = 1, 2, . . . , N , of the
chromosome w holds a biasing weight in the range (0, 1).
The string of N biasing weights is used to produce an altered
version of the unicast latency matrix {li,j} by

l′i,j = li,j · wi · wj (7)

for all 〈i, j〉 ∈ E. STAMP and the tree computation heuristic
are applied to identify a candidate solution to the RAPP
problem represented by w using the altered matrix {l′i,j},
but the corresponding L̄ and Lmax values of this solution
are computed using the original matrix {li,j}. This way, we
can effectively operate GA in the heavily constrained solution
space of the RAPP problem by simply exploring the space of
biasing weights and handling any constraint violation on Lmax

in each generation of the evolution process.
For the purpose of constraint handling, we use an efficient

approach proposed in [26] to guide the weight-coded GA
towards the constrained optimum without the need for any
penalty parameter in the fitness function. Let Lmax(w) and
L̄(w) respectively denote the Lmax and L̄ values of the
candidate solution represented by w. Let L̄max be the L̄ value
of the worst feasible chromosome in the population. Let LUB

max

be an upper bound (UB) on Lmax. Let L̄UB be an upper bound
on L̄. Note that both LUB

max and L̄UB can be safely set to
(N − 1) · max〈i,j〉∈E li,j for the RAPP problem.

If w is a feasible chromosome, i.e. Lmax(w) ≤ LB
max, we

evaluate its fitness f(w) by

f(w) =
[
LUB

max − LB
max

]
+

[
L̄UB − L̄(w)

]
. (8)
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On the other hand, if w is an infeasible chromosome, i.e.
Lmax(w) > LB

max, we evaluate its fitness f(w) by

f(w) =
[
LUB

max − Lmax(w)
]

+
[
L̄UB − L̄max

]
. (9)

With the fitness function defined in this form, we ensure
that the higher fitness value a chromosome has, the better
candidate solution it represents. Moreover, we also guarantee
that 1) the fitness value of a feasible chromosome is higher
than that of an infeasible chromosome, 2) the comparison
between two feasible chromosomes is purely based on the
objective function value L̄, and 3) the comparison between
two infeasible chromosomes uses the information of constraint
violation on Lmax alone.

The evolution process is initiated with a randomly gen-
erated population of size M , except for one in which all
biasing weights are set to one. This chromosome represents
the approximate solution obtained from STAMP and the tree
computation heuristic directly using the original matrix {li,j}.
Seeding the population in this knowledge-augmented way
can substantially improve the search efficiency of GA [25].
Starting from this initial population, in each generation of
the evolution process, we form a mating pool by selecting
M good chromosomes, some of which may be duplicate,
from the current population. We use the tournament selection
operator for this purpose [26]. For two chromosomes chosen
for competition in a binary tournament, the winner goes to
the one with a higher fitness value. Moreover, we set the
rule such that any chromosome is made to participate in
exactly two tournaments. As a result, any chromosome in the
current population will have at most two copies as the parents
in the new population. This is particularly important in our
context to prevent the good quality approximate solution from
becoming a predominant chromosome which would likely lead
to premature convergence of GA.

For each pair of coupled chromosomes in the mating pool,
a uniform crossover operator is used to promote random
information exchange between the two parents. One such
operation at rate rc generates a pair of new chromosomes, each
of which inherits some parts of genetic materials from both
parents. To introduce greater variability into the offspring, for
each gene wi, i = 1, 2, . . . , N , of an offspring w, we further
apply a uniform mutation operator with a small probability
rm. If wi is chosen for mutation, it is altered with a biasing
weight randomly generated from the range (0, 1).

We evaluate the fitness of each offspring using either (8) or
(9) depending on if it represents a valid candidate solution.
The parents and the offspring are then combined into one
transitional population (of size ≥ M and ≤ 2M ). The M
chromosomes with highest fitness values are chosen and placed
in the new population of the next generation.

The evolution process is terminated after a predefined
number of generations have been completed. Alternatively,
we presume convergence if the best chromosomes are not
improved over a certain succession of generations. In either
case, we decide the best candidate solution with the highest

fitness value from the last population.
For each generation of the weight-coded GA, it is clear

that the complexity of selecting M parents from the current
population of M chromosomes is no more than O(M). It
then requires at most M crossover operations each of which
has complexity O(N), and is followed by MN mutation
operations of overall complexity O(MN) in the worst case.
Since the evaluation of the fitness for each of the M offsprings
requires exactly one computation of STAMP of complexity
O(N2) and one computation of the tree computation heuristic
of complexity O(KN2), the overall computational complexity
of one generation of GA is no more than O(MKN2).

C. ILP formulation

Here we provide an ILP formulation for the RAPP problem.
Let the 0-1 variables xi, i ∈ V , indicate if node i is selected
as an internal node. Let the 0-1 variables pv

i,j , v ∈ V − {r},
〈i, j〉 ∈ E, indicate if the directed edge 〈i, j〉 is included in
the overlay routing path from node r to node v. Let the 0-1
variables ti,j , 〈i, j〉 ∈ E, indicate if the directed edge 〈i, j〉
is included in the overlay skeleton tree. Let the non-negative
variables dmax and dmin respectively identify the maximum
out-degree and the minimum out-degree among the internal
nodes. For the latter, it is useful to define a non-negative
variable yi for each i ∈ V .

The RAPP problem can now be formulated as:

Minimize
( ∑

v∈V −{r}
cv

∑
〈i,j〉∈E

pv
i,j li,j

) / ∑
v∈V −{r}

cv (10)

subject to

xr = 1 (11)∑
v∈V −{r}

xv = K − 1 (12)

∑
j:〈i,j〉∈E

pv
i,j −

∑
j:〈j,i〉∈E

pv
j,i =




1, if i = r
0, if i ∈ V − {r, v}
−1, if i = v

∀v ∈ V − {r} (13)∑
v∈V −{r}

pv
i,j ≤ (N − 1) · ti,j , ∀〈i, j〉 ∈ E (14)

∑
〈i,j〉∈E

ti,j = N − 1 (15)

∑
j:〈i,j〉∈E

ti,j ≤ (N − 1) · xi, ∀i ∈ V (16)

∑
〈i,j〉∈E

pv
i,j li,j ≤ LB

max, ∀v ∈ V − {r} (17)

dmax ≥
∑

j:〈i,j〉∈E

ti,j , ∀i ∈ V (18)

yi = (N − 1) · (1 − xi) +
∑

j:〈i,j〉∈E

ti,j , ∀i ∈ V (19)

dmin ≤ yi, ∀i ∈ V (20)

dmax − dmin ≤ FLB (21)
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The objective function presented in (10) is equivalent to
(2) by the definition of pv

i,j . Equations (11) and (12) restrict
that K nodes (including node r by default) are selected as
internal nodes. Equations (13) and (14) ensure that the solution
is a directed spanning tree rooted at node r. More explicitly,
they enforce one single overlay routing path for each root-sink
pair. Equation (15) restricts that the sum of out-degrees counts
N − 1, which is a necessary property of an overlay skeleton
tree established in Proposition 1. Equation (16) ensures that
the directed edge 〈i, j〉 can be included in the overlay skeleton
tree if and only if node i is an internal node. Equation (17)
restricts that the maximum end-to-end delay is bounded by
LB

max. Equations (18) to (21) enforce the balance of out-degree
among nodes selected as internal nodes. All equations jointly
ensure that the solution is a directed spanning tree rooted at
node r and satisfies all constraints of the RAPP problem.

IV. SIMULATION EXPERIMENTS

We have examined our proposed algorithms for the RAPP
problem through detailed simulation experiments. The various
network topologies used in our experiments were obtained
from the GT-ITM topology generator [27]. In particular, the
small-size topologies (N = 20) were generated using the flat
random graph model with an average node degree between
3 and 5. Unicast latency between different pairs of nodes in
these flat random graphs varied from 1 to 50 msec. The two
large-size topologies (N = 100, 300) were generated from the
transit-stub graph model with an average node degree between
3 and 4. Unicast latency between different pairs of nodes in
these transit-stub graphs ranged from 1 to 350 msec. It was
reported in [27] that the transit-stub model was designed to
generate a domain structure resembling that of the Internet.

Based on these network topologies, we designed the fol-
lowing experiments to study the performance of the proposed
algorithms for the RAPP problem. For the small-size topolo-
gies, we considered the various instances in which we set each
different node to be the root node. In all such instances, the
number of multicast proxies was fixed to K = 3 and K = 5.
Due to the small size of these topologies, we were able to
compute the optimal solutions by solving the ILP model of the
RAPP problem. For the purpose of performance comparison,
we also computed the optimal proxy placement solutions due
to the K-median approach using the ILP model presented in
[15]. The CPLEX tool [28] was used to solve the ILP models
in our experiments.

ILP is, however, known to have an exponential computa-
tional complexity and is unlikely to be solved for problems
with a large number of integer variables. Consequently, we
were unable to obtain ILP results for the large-size topolo-
gies. Instead, for the large-size topologies, we evaluated the
performance of STAMP against that of the weight-coded GA,
since the capability of GA in large-size problem instances has
been widely established in the literature. Since the K-median
problem is also NP-hard, we used an efficient greedy algorithm
called greedy-proxy (GP) presented in [15]. There, it was
shown that GP can obtain good quality approximate solutions

to the K-median problem with complexity O(KN2). Due to
the limited space, we did not present results for the large-
size topologies with respect to different root nodes. Instead,
we randomly chose one node as the root node and varied K
from 10 to 30 for each such topology. In all experiments, we
conducted the weight-coded GA with ten independent runs
each of which starts from a different initial population. The
crossover rate rc was varied from 0.5 to 1.0 at the step size
of 0.1. The mutation probability rm was set to 1/N . Each run
repeated the evolution process with up to 1000 generations.
The population size M was set to 100.

A. Results on flat random graphs

For each instance, we first utilized the ILP model of RAPP
to identify the minimal value on Lmax achievable by RAPP.
We set this value as LB

max. Then, we proceeded to compute the
minimal value on L̄. We also used the ILP model of RAPP to
compute the best overlay skeleton tree solution based on the
given proxy placement solution obtained from STAMP, K-
median and GP. This is done by fixing the indicator variables
xi defined for proxy placement in the ILP model of RAPP to
the corresponding proxy nodes found by each other algorithm.

We observe from Fig. 2 that, in almost all instances, both
STAMP and GP hit the optimal solutions identified by their
corresponding ILP models. For K = 3, the performance
ratio of RAPP to K-median is between 0.7 and 1 for L̄ and
between 0.5 and 1 for Lmax. For K = 5, the ratio is between
0.5 and 0.8 for L̄ and between 0.5 and 0.7 for Lmax. It is
interesting to see that in several instances where GP obtains
only suboptimal solutions to the K-median problem, such
solutions indeed yield better performance from the perspective
of the latency performance of the overlay skeleton tree. This
again justifies that proxy placement in the context of overlay
multicast networks can not be modeled by the K-median
approach in general.

B. Results on transit-stub graphs

Similarly, for each instance in these large-size topologies,
we first found the minimal reachable value on Lmax within the
predefined number of generations. For doing this, we modified
the fitness function of the weight-coded GA to account for
Lmax directly. We set this value as LB

max. Then, we proceeded
to find the minimal value on L̄ within the predefined number
of generations. We also used the weight-coded GA to find the
best overlay skeleton tree solution based on the given proxy
placement solution obtained from STAMP and GP.

Figure 3 shows that the performance ratio of STAMP to GP
is between 0.6 and 0.8 for L̄ and between 0.6 and 0.9 for Lmax

in the case of N = 100. For N = 300, the ratio is between
0.6 and 0.7 for both L̄ and Lmax. The performance ratio of
STAMP to RAPP in terms of L̄ is only between 1.0 and 1.1 for
both N = 100 and N = 300. It is also interesting to observe
that the Lmax results obtained by STAMP and RAPP are
identical in all the various instances. This is because in these
cases, both solutions from STAMP and RAPP have indeed
reached the lower bound on Lmax, which is the unicast latency
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Fig. 2. Quality of proxy placement with tree computation using ILP.
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Fig. 3. Quality of proxy placement with tree computation using weight-coded GA.
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Fig. 4. Impact of network dynamics on proxy placement. ∼ x denotes the interval [x − 0.1, x).

from the root node to the farthest sink node in the physical
topology. This again confirms the capability of STAMP as well
as the weight-coded GA.

C. Impact of network dynamics

To study the impact of network dynamics on the perfor-
mance of STAMP and GP, we randomly altered each element
of the unicast latency matrix in the range between li,j/α and
α·li,j . The parameter α was varied from 2 up to 5. We used the
transit-stub graphs with N = 100 and set K = 20. For each
setting of α, we conducted 200 independent runs. Figure 4
shows the best, mean, and worst performance ratio of STAMP
to GP under each setting of α. We also plotted the density
histogram of the ratio in Fig. 4 for both L̄ and Lmax.

We observe that the performance ratio of STAMP to GP is
around 0.5 in both L̄ and Lmax, even when α is as high as
5. Although the ratio in the worst scenario is as high as 0.88,
such a case is indeed rare as can be confirmed from the density
histogram of the ratio. Besides, Internet measurements [29]
have shown that the vast majority of connections in today’s
Internet do not actually experience significant variations in
end-to-end delay during their lifetime.

Since STAMP consistently obtains proxy placement solu-
tions leading to better latency performance of the overlay
skeleton tree even in the presence of considerable network
dynamics, we draw the conclusion that STAMP is more
applicable than GP to address inter-domain proxy placement
in overlay multicast networks. This is especially true in
consideration of the lower complexity O(N2) of STAMP
than O(KN2) of GP. Consequently, STAMP can obtain much
better proxy placement solutions yet at the cost of smaller
amount of CPU time as demonstrated in Fig. 5.

V. CONCLUSION

Proxy placement can have a large impact on the latency
performance of overlay multicast networks, especially for
emerging applications like large-scale Internet live media
streaming. The existing proposal tackled the problem of
inter-domain multicast proxy placement by adopting the K-
median approach. However, our experiments in this paper
have demonstrated that the K-median approach does not yield
good quality proxy placement solutions from the source-to-
end latency performance point of view in overlay multicast
networks. Strongly motivated, we have proposed in this paper
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computation of GP and one computation of STAMP.

a new approach and formulated the RAPP problem to address
inter-domain proxy placement, aiming to support large-scale
Internet live media streaming more efficiently using over-
lay multicast mechanisms. We have presented two efficient
heuristic methods for the RAPP problem, which have been
shown by simulation experiments to be scalable for large-
size overlay multicast networks and yield near-optimal latency
performance of overlay skeleton trees. Simulation experiments
have confirmed that our proposed algorithms can significantly
improve the latency performance of overlay skeleton trees
in comparison with the K-median approach. In addition, the
performance gain is not much sensitive to network dynamics.

APPENDIX

Theorem 1: The RAPP problem is NP-hard.
Proof: It is easy to see that the decision version Π of

the RAPP problem is in the class of NP. This is because a
non-deterministic algorithm needs only to guess a directed
spanning tree rooted at node r and check in polynomial time
if it satisfies all constraints of the RAPP problem. Having
M = N − 1, ci = cj , ∀i, j ∈ V − {r}, i 
= j, and allowing
LB

max = LUB
max, this restricts Π to a variant of the traveling

salesman problem respecting mean arrival time of the tour
starting from the root node ([30], page 211), which is NP-
complete according to [31].
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