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P r e f a c e 

The work reported herein formed part of the programme of 
unsponsored research carried out in the Water Engineering 
Department of the School of Civil Engineering by Mr. T .R.Fietz , 
Senior Lecturer, as a contribution to an evaluation of methods which 
might be applied to analysis of small pipe networks. 

R. T. Hattersley. 
Associate Professor of Civil Engineering, 
Officer- in- Charge. 



Ab s t r a c t 

The linear theory of Wood and Charles (Proc. A. S .C .E . , 
J. Hyds. Div., July 1972) is generalised to analyse steady flow-
in water supply networks of pipes, pumps and reservoirs. The 
method is efficient stnd applicable to networks up to 50 lines. 
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1, Introduction 

1, 1 Contents 

This report describes an extension of the linear theory for -
analysis of steady flow in water supply networks as presented by 
Wood and Charles (Ref. 1). The original theory is generalised to 
include pumps and reservoirs in the network and to use a comp-
rehensive pipe head loss formula. 

The development of a computer program is outlined and a small 
test network is analysed. The linear theory is compared with 
simple loop method. 

1. 2 Network Definition 

The network consists of lines which join at the nodes. A line 
may be a pipe or a pump and three empirical coefficients are required 
to describe the head change-discharge relation for any line. One end 
node for a line is arbitrarily called the upstream node and flow is pos-
itive when from the upstream to the downstream node. 

Nodes are either reservoirs, junctions with no external flow, or 
junctions with outflow or inflow. 

A closed loop is a non-intersecting path through the network v\̂ hich 
returns to its starting point. An open loop is a non-intersecting path 
joining two reservoirs. The direction of a loop through a line is pos-
itive when the loop passes from the upstream to the downstream node 
of the line. 

A directed minimum resistance tree is a spanning subtree connect^ 
ing all nodes and composed of the lowest resistance lines. When add-
ing a line to the tree to include a new node the direction of the line is 
positive when the new node is the downstream node of that line. 

2, The Linear Theory 
2. 1 Basis of the Method 

For a network consisting of N^ nodes including Nj. reservoirs 
there are Nn - Nr junction nodes where continuity of line flow^s must 
be satisfied. At a junction node k--
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^Pk 
^ Qj + Sk = 0 

where np^ is the number of lines connected at node k, Qj is the flow 
in a line, and Sk is the external inflow or outflow ( i .e , demand). Flows 
towards the node are taken as positive. 

For a "fully floating" case where the head at none of the nodes is 
specified then N^ must be taken as 1, that is one of the nodes is ignored. 

The additional simultaneous equations required to find the line 
f lows are obtained from conservation of energy around closed or open 
loops. The number of independent loop equations N^ is (Ref. 2)^-

Ni = Np + Nr ~ Nn (2) 

where Np is the number of lines in the network. 

For loop 1 conservation of energy requires 
npi n^i 

( X i - Y i ) - 2 ^fj 2 PJ ^ ^ ^̂ ^ 

where Xi and Yi are the heads at the nodes at the beginning and end of 
the loop respectively; np^ and n^^ are the number of pipe lines and 
pump lines respectively; and hfj and hp, are the head changes through 
a pipe line and a pump line respectively. For a closed loop X^ minus 
Yi is zero. Unlike the simple loop method (Ref. 3) the selection of 
loops does not appear to affect the convergence of the solution. 

The node continuity equations (e,g. equation (1) ) are linear in 
the line flows. If the loop energy equations (e.g. equation (3) ) can 
be made linear in the line flows then any conventional method of solving 
simultaneous linear equations directly may be used. Linearisation of 
the loop energy equations is achieved by basing the current value on a 
previous estimate of the line flow. The solution procedure is therefore 
iterative and requires several solutions of a set of simultaneous linear 
equations. 
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2. 2 Head Change th rough a Line 
2 . 2 . 1 Sign of Head Change 
The head change t e r m s hf . and hp. in equation (3) a r e with r e s p e c t 

to the d i r ec t i on of the loop through the Jine j . F o r pipe l ine j in loop 1:-

h f j = T i j f j (Q^) (4) 
w h e r e Tj j i s the d i r ec t i on of loop 1 th rough l ine j , be ing set a s +1 when 
coincid ing with + Qj, that i s when p a s s i n g f r o m the u p s t r e a m to the 
d o w n s t r e a m node, and - 1 f o r the c o n v e r s e , f j (Qj) is the head l o s s 
func t ion f o r pipe j a s a func t ion of the d i s c h a r g e Qj, 

F o r pump l ine j in loop 1:-
hp. = T]. pj (Qj) (5) 

w h e r e p^ (Qj) is the head r i s e funct ion f o r pipe j . 
2 . 2 . 2 Head L o s s Func t ions f o r P i p e s 
Head l o s s func t ions f o r p ipes a r e usua l ly exponent ia l o r comp-

r e h e n s i v e . The Hazen -Wi l l i ams f o r m u l a i s an example of the expo-
nen t i a l type. F o r a pipe j;-

. 1 , 8 5 2 
f^(QJ = Sign (Q^) Khw ^^^ (6) 

^ h w j 
whe re I j i s the length; d j the d i a m e t e r and Cj^-^. the Haz e n - W i l l i a m s co-
e f f i c i en t . K^w ^ constant depending on the ^ unit s y s t e m u s e d . 
Der iva t ion of equation (6) i s given in Appendix A. 

A c o m p r e h e n s i v e formula, applying over the whole of the r a n g e of 
tu rbulent flow i s p r e f e r r e d . One obtained by combining the Darcy -
Weisbach equation with an explici t approx imat ion f o r the f r i c t i o n 
f a c t o r iss" 

f j (Qj) = Sign (Qj) | A J ( I Qj I + ^ i Qj ^ } 
w h e r e Aj , Bj and Cj a r e e m p i r i c a l coe f f i c i en t s f o r pipe j , de t a i l s of 
which a r e g: ven in Appendix A . Equat ion (7) i s shown plot ted in 
F i g u r e 1(A). 
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2 .2 .3 Head Rise Functions for Pumps 

It is convenient to fit a curve to the experimentally obtained 
head rise-discharge curve for a rotodynamic pump. Using a second 
degree polynomial (Ref. 3) for pump y.~ 

pj (Qj) - Aj Qj2 + Bj Qj + Cj, Qj > 0 (8a) 

Pj (Qj) - lAj QJ2| +!Bj Qjl + Cj, Q j < 0 (8b) 

where Aj , Bj and Cj are coefficients for pump j . 

Alternatively, for the "flat" curves of water supply pumps, the 
tangent at the design point is a reasonable approximation:-

Pj (Qj) = Aj - BJ Cj + CJ Qj (9) 

where Aj, Bj and Cj are the head, discharge and tangent slope respect-
ively at the design point. Computation is simpler using equation (9) 
compared with that using equation (8). Equation (9) is adequate for net-
work synthesis problems where the pump performance curve is not known 
in detail in advance. 

Equations (8) and (9) are shown plotted in Figure 1(B^. 

2. 3 Linearisation of the Loop Energy Equations 

2.3. 1 Pipe Line Head Loss Terms 

If we have a previous estimate Qj^ for the flow in line j, with 
corresponding head loss f j (Qj®), then the head loss f j (Qj^) f o r the 
current flow Qjl is approximately: 

f j (Qjl) = f j ( Q f ) + f ' (Qj°) (Qjl^ Qj"") (10) 
' o 

where f (Qj ) is the slope of the tangent (always + ve) to the head loss 
curve at flow Qj° as shown in Figure 1(A). From the comprehensive 
equation (7), f' (Qj°) is : -

f j ' {Q "̂") = 2Aj \Qf\ + (2-Cj ) Bj ( (Qĵ l̂ ) (U) 

Using equation (4), (7), (10) and (11), a term - hf, in equation (3̂  
becomes:- ^ 
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'hf. = " T l j f j {QjS = - Tij Sign(Q.°) (Aj (iQj^i)^ +Bj( I Qj°! j 

(12) 

The first two terms on the right hand side of equation (12) are 
functions of the known flow while the third is linear in the current 
flow Qjl . Equation (12) is therefore in a form suitable for solution of 
linear simultaneous equations» 

An equation which is linear in Qj^ may also be derived by using 
equation (6) as the pipe head loss expression. Defining a pipe coeffic-
ient Dj for pipe j : -

^ ^4 .87 1.852 ci-i '-'hwj 
(13) 

then - ĥ  is given by^-

- hf, - - Tij f j (Qjl) - ^ Tij Sign (Qj^) Dj ) 
J 

+ T^ Q^^ I 1.852 D3 ( i Q . ^ i ) 

^ T^ Q3I [ 1.852 Dj ( IQj« ! )^-^^^] 

1,852 

(14) 

In the derivation of Wood and Charles (Ref. 1) the first two terms on 
the right hand side are ignored so that - hf. becomess-3 

- hf. ^ ~ Tj. f j (Qj^) - - T13 Q3^{i.852 D3 ( iQj^D^'^^^j (15) 

The improvement obtained by including the extra terms in equation 
(14) is shown graphically in Figure l(Ah When the additional terms are 
retained then there is no need to apply Wood and Charles- (Ref. 1) smooth-
ing equation to prevent oscillation of the solution and the dependence on 
good initial estimates for starting the iterative solution is reduced, 

2 o 3 o 2 Pump Line Head Rise Terms 
The counterpart of equation (10) for a pump line j is = 

Pj (Qjl) - PjCQj"") +Pj ' (Qj"") (Qjl ^ Qj") (16) 



6. 
where p̂  ^̂  î he slope of the tangent to the head rise curve at flow Q " 
as shown in Figure 1(BK Using equation (8) as the head rise function foi^ a 
pump, the tangent slope is given b y -

p / (Q^) = Q.°> 0 

Pj' i Q ° ) = - {|2A.Q.° + J Q j V o 

(17a) 

(17b) 
For the pump curve shown in Figure 1(B) the tangent slope is zero at 

Qj "" ~ There is a remote possibility that this could cause a sing-
ular element to appear when solving the simultaneous linear equations. This 
possibility^ has been ignored in this report. 

The counterpart of equation (12^ for a pump line j is°-

^Pj = Tlj P3 = T y f A j + B3. Q.° + C j 

+ Tij Qjl {2Aj Q.° + Bj], 0 (18a) 

- - [|Aj (Q.°) 2 hp. = T, . Pj (Q.M = + BQ. o + C. 3 
o 

^Ij S L 
o 

+ 

+ 

B, ) 

^3 (18b) + Ti- ( i2A3Q3 
Alternatively, using the linear equation, equation (9), where pj' (Q-°) = 

Cj for pipe j, then hp. is given by:- ^ 
hp. = Ti- Pj (Qjl) = Ty (Aj - Bj Cj) + Ty Q3I Cj (19) 

2.4 Method of Solution 
2« 4. 2 Necessity for an Iterative Solution 
There is a set of Np simultaneous equations which are linear in the 

line flows. In matrix notation:-

EQ = F (20) 

w^here E is the system matrix and F is the matrix of constants. The sol-
ution vector Q contains the unknown line flows, that is Qj^ for line j. 

For the node continuity subset the submatrix of E is a connectivity 
matrix containing elements +1, -1 or Oo The submatrix of F contains 
the fixed external node outflows or inflows. These submatrices remain 
constant from iteration to iteration. 



i , 

For the loop energy subset the submatrix of E contams terms 
such as the multiplicand of Qj l in equation (12). For a loop 1 correspond-
ing to equation i the element m the submatrix of F is the sum of the 
known value terms, such as the first two terms on the right hand side of 
equation (12) (with appropriate sign change), for all of the lines in loop L 
The F element also includes the head difference between the ends of the 
loop, again with appropriate sign change. The submatrices of E and F 
for the loop energy subset change from iteration to iteration. Methods of 
starting the iterative procedure are discussed in Sections 2.5 and 2. 6 
below. 

2. 4 e 2 Limitation on Network Size 

For networks up to about 50 lines solution of the linear simultaneous 
equations (equation (20) ) may be by a direct method, for example Gauss-
Jordan with maximum pivot strategy. For computers with built-in 
matrix operations the solution is readily obtained by matrix inversion:-

Q = E '^F (21) 

F^r networks of more than about 50 lines an iterative procedure, 
such as Gauss-Seidel, would be required to solve the linear simultaneous 
equations. Unfortunately the node continuity subset of the equations 
does not exhibit diagonal dominance (being composed of elements of value 
+1, - 1 or 0) so that iterative methods cannot be used, 

2 .4 ,3 Convergence Criteria 

Convergence of the solution is checked after each iteration using 
a;n absolute or relative criterion based on line f lows. For the absolute 
criterior 

Any I Q ^ ' Qj® | < Qa (22) 

where Q^ is a suitable small value of line flow. 

For the relative criterion; 

Any 
QO 

where Qr is a suitable small value. 

5 Q r (23) 

Because of the accumulation of errors in direct methods of sol 
ution of the equations, care must be taken not to make Qa or Qp too 
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small, otherwise the solution will never satisfy the convergence cri-
terion, particularly for networks approaching the upper limit of about 
50 lines. 

2. 5 Starting the Iterative Procedure using Initial Estimates for E and 
F Matrices 

2.5. 1 Closed Loop of Pipe Lines Only 

Wood and Charles (Ref. 1) take E -̂ for pipe j in equation i for loop 
l a s : - ^ 

Eij - - Tij D. (24) 

The effect of this is to divide the head loss in pipe j (as given by 
equation (15) ) by 1. 852 ( I Qj I or to assume that the pipe flow is 
laminar. 

2 
Alternatively, taking the wholly rough turbulent element Aj ( t Qj I ) 

from equation (7) as the pipe head loss, the appropriate E element for 
pipe j in equation i for loop 1 is ; -

Eij = - T i j A j (25) 

For a closed loop 1 the element Fĵ  is zero. 

Equations (24) or (25) may be used for pipe lines in the following 
loop situations providing due allowance is made for dividing the pipe head 
losses by their discharges. 

2.5. 2 Closed Loop with Pump Lines 

For a pump line in a closed loop the pump is assumed to be working 
near the design point and the head rise through the pump is divided by the 
design discharge Qjj)« 

If the linear approximation given by equation (9) is used as the 
pump head rise function then the E element for pump j in equation i 
f o r loop 1 is : -

Eij = T^j ^ (26) 

The contribution to the F element is:-

AFi = - Tlj - <27) 
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If the parabolic approximation given by equation (8) is used as the 
pump head rise function then the design discharge must first be found. 
Taking the design discharge for a water-supply pump as 0. 6 of the max-
imum discharge, then for pump j the design discharge Qjj-) is given by 

2 ^ N0.5 B ^ - Sign (A )̂ B. 
A- (28) 

and Hj^ is the head at the design point, found by putting Q̂  = Qj in 
equation (8a). 

Dividing Hjj^ by Qĵ ,̂ then from equation (18a) the starting value 
of the E element Tor pump j in equation i is:-

EiJ = Tij (2A3 . | L , 

The contribution to the F element of equation i is:-

2 .5 . 3 Open Loop of Pipe Lines Only 

Here it is necessary to divide the head difference between the ends 
of the loop by a convenient discharge value so that the head difference term 
in equation (3) is not excessive relative to the pipe head loss terms. A 
convenient discharge is found by assuming that the pipe with the minimum 
resistance accounts for all of the head loss in the loop. 

(29) 

(30) 

Using the Ha z en-Williams formula as the pipe head rise function 
then from equation (3) the required discharge Q^^ for open loop 1 is 
given by:-

0.54 
(31) Q bl 

X i - Yi 

where (Dj)jnin. ^̂  minimum pipe coefficient (from equation (13) ) 
of the pipes in the loop. 

Using the comprehensive head loss function (equation (7) ) with the 
transition term involving Bj ignored, the discharge Q^^ is given by:-

0. 5 
Q. 

'1 \ 
(32) 
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addit ional contr ibut ion to the4^ e 
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where (Aj)j^^j^^ i s the m i n i m u m pipe coeff ic ient of the p ipes in loop 1. 

The E e lement fo r pipe j in equation i f o r open loop 1 i s given by 
e i the r equation (24) o r (25), and the F e lement i s : -

F i = - (33) 

2 . 5 . 4 Open Loop with Pump Lines 
The head d i f fe rence between the ends of the loop i s divided by the 

^ of the pump l ines in the loop. The 
ement fo r equation i i s then:-

= - ( ^ L l J l ) (34) 
^QjD ^ max . 

The E e lements and the other contr ibutions to the F e lement a r e a s 
given in Sections 2 . 5 . 1 and 2 . 5 . 2 above. 

2. 6 Star t ing the I te ra t ive P r o c e d u r e using Initial E s t i m a t e s f o r Line 
Di scha rges 

2 . 6 . 1 Al te rna t ive Start ing P r o c e d u r e 
As an a l t e rna t ive method to es t imat ing the e l emen t s in the loop 

energy subset of the E and F m a t r i c e s d i rec t ly , the l ine d i s cha rges may 
b e in i t ia l i sed to s t a r t the i t e ra t ive p r o c e d u r e . 

The amount of computat ion fo r ini t ia l is ing l ine d i s c h a r g e s i s l e s s 
than that r equ i r ed fo r in i t ia l i s ing the E and F subset but addit ional i t -
e r a t ions a r e r equ i r ed to r e a c h f inal convergence. 

2 , 6 . 2 P r o c e d u r e fo r Init ial ising Line Discha rges 
A d i r ec t ed min imum r e s i s t a n c e t r e e i s cons t ruc ted f o r the ne twork , 

s t a r t ing at a r e s e r v o i r node. P r i m ' s (Ref. 4) method i s convenient fo r 
manual cons t ruc t ion of the t r e e . Pipe l ine r e s i s t a n c e s a r e taken as the 
coef f ic ien t A j of equation (7) o r Dj of equation (13). Pump l ine r e s i s t a n c e s 
a r e taken as the slope of the tangent to the design point . This slope is 
equal to the coeff ic ient Cj when equation (9) i s used as the pump head r i s e 
funct ion. Al te rna t ive ly when equation (8) i s used the tangent s lope m a y 
be r ead i ly der ived f r o m the actual p e r f o r m a n c e cu rve . 

S tar t ing with the l a s t l ine added to the t r e e , the ini t ial d i s c h a r g e s 
a r e found a s fol lows:-
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(a) If the node at the free end of the line ( i .e. the unconnected node in 
the tree) is a reservoir node the flow is assumed to be from or into the 
reservoir through the line to satisfy the current external flow at the 
fixed end node. The external flows at the nodes (usually - ve demands) 
are supplied in the initial node data for the network. The external flow 
at the fixed end node is then set equal to zero. 

(b) If the free end node is an ordinary junction node of the network the 
line flow is assumed to be towards the free end to satisfy the external 
flow at the free end. The free end external flow is set equal to zero 
and the fixed end node external outflow is incremented by the line flow. 

(c) The initial flows in the high resistance lines which do not appear 
in the directed tree are taken as zero. 

The above procedure is an extension of that outlined by Epp and 
Fowler (Ref.5) who dealt with ordinary junction nodes only. 

3. Programming the Linear Theory 

The method has been programmed for use on a small time-sharing 
computer. It is convenient to split the procedure into three sub-programs 
which communicate through common variables. 

The first sub-program is for data input. For a pipe line the up-
stream node number, the downstream node number, the length, the 
diameter, and the wall roughness (or Hazen-Williams coefficient) are 
required. For a pump line the end node numbers and the three head 
r i se function coefficients are required. For a node the head and fixed 
external flow are supplied. The head is set at zero for an ordinary 
junction node while the external flow is always zero for a reservoir 
node. For a loop the end node numbers, the number of lines in the 
loop, and each line number in the loop is required. The line number 
is signed according to the direction of the loop through the line 
(Ref. 1). When the line discharge method of starting the iterative pro-
cedure (Section 2. 6) is used then a directed minimum resistance tree 
is also supplied as data. The tree may also be used subsequently for 
calculating node heads after the line flows have been found (Ref. 3). 

The second sub-program finds values for initialising the iterative 
procedure. The elements of the E and F matrices for the node 
connectively subset are found and then either the E and F elements for 
the loop energy subset (Section 2.5) or, alternatively, the initial line 
discharges (Section 2,6). 
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The third sub-program performs the iterative solution and checks 
for convergence. The programming is simplified if the computer has 
built-in matrix operations. 

The maximum number storage required for a network of Np lines 
is about 40 Np for the third sub-program. This compares imfavourably 
mth 8 Np for the simple loop method with similar chaining of sub-programs 
(Ref. 3). 

4. Application to a Test Network 

The program has been used to analyse the small test network shown 
in Figure 2. The line, loop and minimum resistance tree details are 
shown in Table 1. The comprehensive formula (equation (7) ) has been 
used as the pipe head loss function and the linear approximation (equation 
(9) ) as the pump head rise function. 

The results obtained are compared with those from a simple loop 
method analysis of the same network in Table 2. The results are 
practically identical. For a similar convergence criterion the linear 
method required 6 iterations using initial estimates for the E and F 
matrices or 7 iterations using initial estimates for line flows. The 
loop method required 9 iterations and the time per iteration was at 
least twice that for the linear method. 

5. Conclusions 

(a) The linear theory is an efficient method of analysis of steady flow 
in small water supply networks of pipes, pumps atnd reservoirs up to 
50 lines. 

(b) The Hazen-Williams or comprehensive formulas may be used as 
the pipe head loss function. 

(c) A parabolic or straight line approximation may be used as the 
pump head rise function. The latter requires less computation and is 
preferable for network synthesis. 

(d) The linear theory requires more computer storage than the simple 
loop method but the computing time is less. 
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N o t a t i o n 

a,b , c 

A, B, C 

A., B., C. 
J 3 3 

(A.) . 3 mm 
C hw 

'hw. 

d 

dn 

Di 

(^j^min. 

e 

e/d 

E 

3 

F 

g 
hf 

hf 

Coefficients in friction factor approximation for a pipe 

Empirical coefficients in head loss function for a pipe or 
head rise function for a pump 

A, B, C for line j 

Minimum A^ for pipes in a loop 

Hazen-Williams coefficient for a pipe 

^hw pip® 3 

Pipe diameter 

Diameter of pipe j 

Coefficient for pipe j using Hazen-Williams formula 

Minimum Dj for pipes in a loop 

Nikuradse wall roughness for a pipe 

Relative roughness of a pipe 

System matrix 

E element for line j in equation i 

Head loss function for pipe j 

Slope of tangent to f j at a particular discharge 

Constants matrix 

F element in equation i 

Gravitational acceleration 

Head loss in a pipe 

Head loss in pipe j in a loop 

Head rise through pump j in a loop 



2. 
Hjj^ Head at des ign point fo r pump j 
K^-^ Unit s y s t e m cons tant f o r H a z e n - W i l l i a m s f o r m u l a 
1 P ipe leng th 
I j Length of p ipe j 
Hp^ Number of p ipes in loop 1 
np^ Number of l i n e s connected at node k 
n^^ Number of p u m p s in loop 1 
N]̂  Number of loops in ne twork 
N^ Number of nodes in ne twork 
Np Number of l i n e s in ne twork 
Np Number of r e s e r v o i r nodes in ne twork 
Pj Head r i s e funct ion f o r pump j 
p . ' Slope of tangent to p- at a p a r t i c u l a r d i s c h a r g e J J 
Q Solution v e c t o r fo r l ine f lows 
Q Flow in a l ine 
Qĝ  Max imum abso lu te value of change in any l ine f low f o r convergence 
QQ D i s c h a r g e f o r ad jus t i ng head d i f f e r e n c e be tween the ends 

1 of open loop 1 
Q^ Flow in l ine j 
Q- D i s c h a r g e a t des ign point f o r pump j JD 
(Q-^) Max imum Q^ f o r pumps in a loop 3D m a x . JD 
Q-^ Flow in l ine j f r o m p r e v i o u s i t e r a t i o n 

J 
Qj l F low in l ine j f o r c u r r e n t i t e r a t i o n 



3 . 

Qp Maximum absolute value of relative variation in any 

line flow for convergence 

S^ External inflow or outflow at node k 

Ty Direction of loop 1 through line j 

V Mean velocity in a pipe 

Xi Head at node at beginning of loop 1 

Y^ Head at node at end of loop 1 

Kinematic viscosity of liquid 

AFi Contribution to Fi 



Appendix A - Head Loss Functions for Pipes 

A l : The Hazen-Williams Formula 

A l . h Using English-Engineering Units 

For English Engineering units the Hazen-Williams formula 
(Ref. 6) i s : -

0.63 , sO.54 
V = 1.318 Chw ( j ) { f ) (35) 

where V is the mean velocity in ft. C is the Haz en-Williams co-
efficient for the particular pipe material; W îs the diameter in ft; hf is 
the head loss in ft. over the length I in ft» 

Rearranging equation (35) to make the head loss the dependent 
variable gives 

1.85185 
7 4 . 8 7 0 4 , 1.85185 ^̂ ^̂  d Chw 

3 - 1 
where Q is the discharge in ft. s , and 4.7273 is the unit system con-
stant K, . 

hw 
When the exponents are corrected to the third decimal place Kj^^ 

changes slightly. For a typical pipe (V = 6 ft. s" d = 1 ft; C^w ^ 
the head loss is given by:-

hf = 4.7295 Q 3 ^ (37) 
d Chw 

For practical purposes K^w ^ in equation (37), 

A1.2i Using SI Units 

To convert equations (36) and (37) for use in SI units the dimensions 
of the Hazen-Williams coefficient Cĵ w required. Vennard (Ref. 6) 
contends that Cj^^ is a measure of relative roughness e /d and not 
absolute roughness e. The use of smaller Cj^^ values for increasing 
diameters of pipes of the same material tends to support this argument. 

Taking Cj^^ as a measure of relative roughness, and hence as 
dimensionless, gives a unit system constant K^^ = 10. 67 for use in 
equation (36), where hf is in m; Q is in m^s" 1; 1 is in m; and d is in m. 
In equation (37) Khw " 10. 685 for SI units. 



A2. 

A2: A Comprehensive Formula 

By combining the Darcy-Weisbach expression for pipe head loss 
with an explicit approximation (Ref. 7) for the Colebrook-White friction 
factor farmula a comprehensive formula for pipe head loss is obtained 
(Ref.3):-

h|. = AQ^ + (38a) 

where A = a / ^ ^ \ (38b) 

B = b 

yglt d 
- c 

/ 81 \ / 4 \ 
J \ t d v 

(38c) 
J 

C = c (38d) 

and g is gravitational acceleration and l ) is the kinematic viscosity of 
the liquid. 

The coefficients a, b, c are functions of the relative roughness e /d 
of the pipe, and are given by (Ref. 7):-

0 225 p a = 0.094 (e/d) ' + 0.53 4 (39a) a 
0.44 

b = 88 (e/d) (39b) 
0 1S4 c = 1.62 (e/d) ' (39c) 

The pipe coefficient C in equation (40) is dimensionless but the 
values of A and B depend on the unit system used. The advantages of 

equation (40) over the Hazen-Williams formula are that it applies over 
the entire range of turbulent flow and that it may be used for liquids 
other than watero 



Table 1 Details of Test Network 

Pipe Lines 

Line Length 1 Dia. d Roughness e 
No. (m) (mm) (mmxl0"2 ) 

2 2438.4 914.4 1.524 
3 609.6 609.6 1,524 
4 914.4 457.2 1,524 
5 1524 609.6 1.524 
6 1524 609.6 1.524 
7 914.4 304,8 1.524 
8 1219.2 609.6 1.524 
9 3657.6 914.4 60.96 

10 1828.8 304.8 1.524 
11 1219,2 609. 6 1.524 
12 914.4 304.8 1.524 
13 1219.2 304.8 1.524 

Pump Line 

Loops 

Line No. A B C 
1 67. 78 0.54015 -107 

Loop No. Directed Lines in Loop 

1 
2 
3 
4 

-5 , 7, 8, 6, - 4 , ~3 
-10 , 12, 11, -8 

1, 2, 3, 4, - 6 , 9 
13, 5, 3, 4, - 6 , 9 

Minimum Resistance Tree 

Directed Lines in Tree: 1, 2, 3, - 5 , 4, - 6 , 9 , - 8 , - 1 1 , - 1 2 , - 1 3 



Table 2 2 Summary of Results of Network Analyses 

Line 
No. 

Line Flow from 
Simple Loop 

Method 
(M^S- 1 X 1 0 " ^ ) 

Line Flow 
Variation, Linear 
Method, Initial E 
& F Estimates 
( M ^ S - 1 X 1 0 " ^ ) 

Line Flow 
Variation, Linear 
Method, Initial 
Line Flow Estimates 

x lO"^) 

1 771.286 -0 .54 +0.25 
2 771.286 -0 .54 +0.25 
3 337.970 -0 .25 +0. 19 
4 148.550 -0 .25 +0. 17 
5 - 227.607 -0 .46 +0.26 
6 230.290 +0. 25 - 0 . 17 
7 47.731 +0.02 +0.24 
8 -266.178 -0 .08 -0 .09 
9 -807.340 +0.08 -0 .20 

10 - 86.608 0 0 
11 -310.872 -0 .01 -0 .02 
12 -121.452 -0 . 01 -0 .02 
13 9.544 +0.46 -0 .04 

Notes (1) Flow variation = IFIOW] - |F1OW from Simple Loop Method! 

(2) Simple loop method convergence criterion: loop flow correction 
changing by less than 1 x 10"^ m^s"^ 

(3) Linear method convergence criterion; line flow changing by 
less than 1 x 10"^ m^s"^ 
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