
Non-contact gas turbine blade vibration measurement from
casing pressure and vibration signals – A review

Author:
Forbes, Gareth Llewellyn; Randall, Robert Bond

Publication details:
Proceedings of the 8th IFToMM International Conference on Rotordynamics

Event details:
8th IFToMM International Conference on Rotordynamics
Seoul, Korea

Publication Date:
2010

DOI:
https://doi.org/10.26190/unsworks/1120

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/45493 in https://
unsworks.unsw.edu.au on 2024-04-26

http://dx.doi.org/https://doi.org/10.26190/unsworks/1120
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/45493
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


 1 ` 

Proceedings of the 8
th

 IFToMM International Conference on Rotordynamics 
September 12-15, 2010, KIST, Seoul, Korea 

NON-CONTACT GAS TURBINE BLADE VIBRATION MEASUREMENT FROM CASING 
PRESSURE AND VIBRATION SIGNALS – A REVIEW 

 

 

Gareth L. Forbes 
School of Mechanical and Manufacturing 

Engineering, The University of New South Wales 
Sydney, NSW, Australia 

Robert B. Randall 
School of Mechanical and Manufacturing 

Engineering, The University of New South Wales 
Sydney, NSW, Australia 

 

 

 

ABSTRACT  
This paper presents a summary of a recent research 

program, focusing on a new method of non-contact gas 

turbine blade vibration measurement using casing pressure 

and vibration signals. Currently the dominant method of 

non-contact measurement of turbine blade vibrations employs 

the use of a number of proximity probes located around the 

engine periphery measuring the blade tip (arrival) time (BTT). 

Despite the increasing ability of this method there still exist 

some limitations, viz: the requirement of a large number of 

sensors for each engine stage, difficulties in dealing with 

multiple excitation frequencies, sensors being located in the 

gas path, and the inability to directly measure the natural 

frequency of a given blade. 

Simulations established with a physics based model 

along with experimental measurements are presented in this 

paper, using internal pressure and casing vibration 

measurements, which have the potential to rectify some of 

these problems. 

INTRODUCTION 
 

The greatest cause of failures in gas turbines comes from 

blade faults, reported to be up to 42% of total gas turbine 

failures [1]. Blade vibration is unavoidable and inherent in the 

operation of any gas turbine and without proper design for the 

excitation forces present, blade vibrations can be a cause of 

blade degradation and lead to failure. It is paramount that 

blade vibration can be measured and blade fatigue be 

estimated in the design stage. High cycle fatigue (HCF) from 

these inherent blade vibrations is the largest single cause of 

component failures in modern military aircraft gas turbine 

engines, exceeding the number attributed to low cycle fatigue, 

corrosion, overstress, manufacturing processes, mechanical 

damage, and materials [2]. Another prominent need that has 

arisen, which requires the specific measurement of blade 

vibration in current turbines, is the situation when they are run 

beyond their design life or are subject to different conditions 

from those for which they were originally designed. For 

instance, some electricity plants in the Asia Pacific region are 

facing the dilemma of having to run their turbines beyond the 

original manufacturer’s recommended running hours in order 

to continue to provide an uninterrupted electricity supply [3]. 

It is clear that gas turbine blade vibration measurement is 

essential. 

Gas turbine blade vibration measurement is thus 

motivated by the desire to acquire two principal pieces of 

information, either the blade’s forced vibration magnitude and 

frequency, or to estimate the modal parameters of the blade. 

The impetus for this information is generally driven, 

respectively, by the need for knowledge of HCF estimates for 

blade life, or the use of blade modal parameter values for 

condition monitoring of the blades. 

Measurement of blade vibration can be achieved with the 

direct attachment of strain gauges to the blade surface, 

however the attachment of sensors to all blades within the 

engine is never desirable, and is certainly not practical outside 

of the design stage. This is due not only to the cost of 

instrumenting each blade, but additionally because of the 

complexities of bringing the measured signals to an external 

monitoring device. This needs to be done either with the use 

of slip rings or a wireless telemetry system. Strain gauges are 

also located on the engine working surface areas, such that 

they affect the aerofoil surface, and are exposed to the harsh 

internal engine environment, this not being conducive to 

sensor longevity. 

Such are the difficulties of direct measurement of blade 

vibration, non-contact blade vibration measurement has been 

sought, with BTT methods showing the most promise and 

receiving research attention since the 1970’s. Despite the 

promise of BTT methods they are still not without limitations 

or shortcomings four decades after their initial use. 

It was recently proposed that blade vibration would have 

an affect on the casing wall pressure and casing vibration, and 

thus measurement of these parameters could be used for 

monitoring of blade vibration parameters [4]. The ensuing 

research program which was undertaken to follow up this 

proposal is reviewed in this paper. The presented work may 

be divided into three sections, these being: 

(i) Direct measurement of blade vibration amplitudes, 

which could be used for estimating blade HCF as 

first proposed in Ref. [5], by phase demodulating 

the measured internal casing pressure. Results are 

shown herein for simulated turbine pressure 

signals. 

(ii) The proposition of indirectly measuring rotor blade 

natural frequencies by varying the rotation speed 

such that the blade excitation traversed the blade 

natural frequency, allowing an observable increase 

in the casing vibration spectrum at this engine 

speed, was given in Ref. [4]. The results from 

simulated casing vibration signals using this 

indirect blade natural frequency measurement are 

given. 
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(iii) Lastly, it was suggested that rotor blade natural 

frequencies could be measured directly from the 

stochastic casing vibration response [6], and this 

was later verified experimentally [7]. Both 

analytical and experimental results obtained from 

the above research are presented. 

ROTOR BLADE PRESSURE PROFILE AND MOTION 
 

Firstly, the generation of the internal pressure inside a gas 

turbine and the associated rotor blade motion will be derived, 

since all the following analysis techniques are based on this 

derivation. 

As stated earlier, blade vibration in a gas turbine is 

inherent and unavoidable. This inevitable blade vibration 

develops from the unsteady pressure field through which the 

rotor blades pass during rotation. It is initiated by the transfer 

of the internal gas passing from rotating to stationary frames 

of reference as it passes through different engine stages. This 

can be visualised with the aid of a 1.5 stage turbine schematic 

as in Fig. 1. It is evident as the fluid passes from the inlet to 

the outlet though the inlet guide vanes (IGV’s), through the 

rotor stage, and finally through the stator stage the change in 

fluid rotation will cause fluctuating forces on all the blades 

inside the engine, and thus will cause them to vibrate. 

Generally rotor blades will be excited by dominant 

frequencies at stator passing frequencies (SPF). 

The excitation on the r
th

 blade could then be 

mathematically described as: 

 ( ) ( )0

0

cos
q q rr

q

f t F C q t γ γ
∞

=

   = Ω + +    
∑  (1) 

The above force can be of any shape depending on the 

selected Fourier series co-efficients of 
q

C , 
q

γ . 

 

 
 

Fig. 1 (a) longitudinal section of 1.5 stage turbine, 
(b) cross section of 1.5 stage turbine showing wake 

interaction between blade rows 
 

Along with the fluctuating pressure forces on the blades 

causing them to vibrate, the rotor blades and indeed the stator 

blades will have a static pressure profile which will develop 

as the fluid passes over the blade aerofoil surface. With this 

knowledge of the pressure interaction inside a gas turbine, 

analysis of the casing pressure and vibration signals will now 

be shown in order to achieve the reconstruction of some of the 

blade vibration parameters. 

PHASE DEMODULATION OF INTERNAL PRESSURE 
SIGNAL 

 

If a blade is excited by one single dominant discrete 

frequency, then the motion of the blade tip for the r
th

 blade 

can be stated, without loss of generality, as: 

 ( ) sin( ( ) )
r k k

x t X k t γ= Ω +  (2) 

For the case of synchronous vibration in a gas turbine, k 

is a positive integer and is often referred to as the engine 

order of excitation. If the blades have well separated modes 

and the excitation lies relatively close to one of the natural 

frequencies then 
k

X  and 
k

γ  can found from the solution of 

the forced vibration of the single degree of freedom system 

for the mode of interest of the rotor blade. 

With the assumption that the time averaged pressure 

profile around any blade is constant, the pressure profile 

around any blade can be described by a harmonic series, 

given by: 

 
[ ( ) ]

0

Re r iji t

r i

i

P A Pe
θ α γ

∞
+Ω + +

=

 
=  

 
∑  (3) 

where 1j = −  and 
i

A  and 
i

γ  are the amplitude and 

phase of the corresponding Fourier series. It is seen that 

equation (3) is a rotating wave form of any shape depending 

on the selected Fourier series co-efficients of 
i

A , 
i

γ  and 

initial phase offset of 
r

α . For instance in Fig. 2 a pressure 

profile shape is plotted, consisting of a raised cosine which 

spans one half blade spacing before and after each blade, for 6 

rotor blades. 

 
 

Fig. 2 Schematic of simple first harmonic pressure 
distribution for a 6 bladed arrangement without 

blade motion 
 

If we now make the assumption that the pressure profile 

around one blade follows the motion of that blade when it 

vibrates around its equilibrium position, then the pressure 

r
α

Ω
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profile for the r
th

 blade will be modulated by the blade motion 

( )
r

x t  such that the pressure profile can now be written as: 

 
[ ( ) ( ) ]

0

Re r r iji t x t

r i

i

P A Pe
θ α γ

∞
+Ω + + +

=

 
=  

 
∑  (4) 

If we implement the Laurent power series expansion of 

an exponential function in terms of Bessel functions: 

 
( )2 1

( )
x t t n

n

n

e J x t
∞

−

=−∞

= ∑  (5) 

then it can be seen that 
r

P  is in the form of equation  

(5), such that 
r

P  can now be written as: 

( )[ ( ) ] [ ( ) ]

0

Re r i kji t jn k t

r i n k

i n

P A Pe J iX e
θ α γ γ

∞ ∞
+Ω + + Ω +

= =−∞

 
=  

 
∑ ∑  (6) 

Now taking the real part for all harmonics 

 
0

( ( ) )
( ) cos

( ( ) )

r i

r i n k

i n k

i t
P A PJ iX

n k t

θ α γ

γ

∞ ∞

= =−∞

+ Ω + + 
=  

+ Ω + 
∑ ∑  (7) 

As the measured pressure at the casing wall, 

mathematically represented in equation (7), is a phase 

modulated signal, then phase demodulation would result in 

obtaining information about the modulating frequency i.e. 

( )
r

x t  and the tip deflection 
k

X . It is on this simple premise 

of the phase demodulation of the internal pressure that it is 

proposed that information about rotor blade vibration can be 

obtained. However the phase demodulation of the signal, as 

given in equation (7), is not a straightforward process as this 

type of signal violates some assumptions for use with 

conventional demodulation techniques. For conventional 

phase demodulation, the maximum modulation frequency 

must certainly be less than half the carrier frequency to avoid 

aliasing. It can be seen that for the internal pressure signal this 

assumption will never be satisfied, as multiple carrier 

frequencies exist at harmonics of shaft speed, with the 

modulating frequency itself also a multiple of shaft speed. 

How to overcome the aliasing and demodulation problems of 

a signal of this type will now be introduced. 

A simplified example 

If we look at the special case of k s= , where s is the 

number of stator blades, and 0
k

γ = , then: 

 
spf

k s ωΩ = Ω =  

For illustration, if we also limit i s<  then we can see 

the spectrum of the pressure signal will be a sum of discrete 

harmonics of i with sets of sidebands at ±  
spf

ω . For 

instance the frequency at Ω  will be made up of a 

component from Ω  and ( 1)
spf

s ω− − Ω + , see Fig. 3 

1

2

s−1

i

Ω+3ω
spfΩ−3ω

spf

Ω+2ω
spf

frequency

Ω−2ω
spf

Ω+ω
spfΩ−ω

spf

Ω

 
Fig. 3 Discrete spectrum for carrier frequencies i 

and modulating sidebands ±  
spf

ω . 

 

Values of the measured pressure signal spectrum can be 

taken at frequency locations of , ,
spf spf

ω ωΩ − Ω + Ω  , these 

being respectively 
1 1 1
, ,

s s
y y y

− +
. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 0 11

1 1 1 01

1 1 1 21

1

1

1

s ss

s s ss

s s ss

y A PJ X A PJ s X

y A PJ X A PJ s X

y A PJ X A PJ s X

−−

− − −

+ −−

= + −  

= + −  

= + −  

 (8)-(9) 

( )1 1
, , ss

A P A P X
−

 are all unknowns. Now writing 

equations (8)-(9) in matrix form: 

 =y Dx  (10)(11) 

[ ]1 1 1

T

s s
y y y

− +
=y        

( )

1

1s

A P

A P
−

 
=  
  

x  (12)-(13) 

 

( ) ( )

( ) ( )

( ) ( )

0 1

1 0

1 2

1

1

1

s s

s s

s s

J X J s X

J X J s X

J X J s X

−

−

−

 −  
 

= −   
 

−    

D  (14) 

Although (11) is not linear, it is linear for any value of 

s
X  and can be solved by the linear least squares 

optimization of the over-determined system of equations (12)

-(14). The estimate for the unknown co-efficients at any value 

of 
s

X  is given, in the least squares sense, by: [8] 

 ( )ˆ =
-1

T T
x D D D y  (15) 

To find the optimal value of 
s

X  to fit the system of 

equations, the non-linear least squares grid search is 

undertaken to maximise ( )g x  [8], where 
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 ( ) ( )g x =
-1

T T T
y D D D D y  (16) 

A signal, of the type expressed in equation (7), that does 

not conform to the general requirements of conventional 

phase demodulation can therefore be demodulated with a non-

linear least squares grid search fit of the spectrum. 

The system is further complicated when noise is present 

in the signal; however utilising two measurement locations at 

a known angular offset from each other, this limitation can be 

overcome. Further results and complete derivation of the non-

linear least squares grid search phase demodulation algorithm 

can be found in Refs. [5, 9]. 

Implementation with more realistic pressure signal 
Now creating a more realistic internal turbine pressure 

signal with values as given in Table 1, substituted into 

equation (4), with a single known dominant rotor blade 

driving frequency at SPF, the results for the estimation of the 

rotor blade vibration amplitude are shown in Fig. 4 

It can be seen that for the simulated signal with realistic 

amounts of noise the amplitude is generally estimated to 

within a 10% error for SNR ratios less than 3. The normalised 

grid spacing refers to a decreasing spacing between estimated 

values of 
k

X  for which the least squared error is minimal 

over the variable space. 

 

Table 1. Parameter values for the example with more 
realistic input values. 

k
X  

(rad) 

No. of 

stator 

blades 

 

No. of 

rotor 

blades 

 

max ‘i’ 

carrier 

harmonics 

r
α  

(rad) 

k
γ  

(rad) 

Ω  

(Hz) 

0.01 6 19 48 
19

π
 

7

π
 10 

 

1 2 3 4 5 6 7 8
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Normalised grid spacing

E
st

im
at

e 
o
f 

X
k

 

 

SNR = Inf

SNR = 28.2584

SNR = 7.0528

SNR = 3.1477

actual

 

Fig. 4 Convergence of 
k

X  estimate for increasing 

normalised grid spacing with parameters from Table 
1 with increasing SNR as shown. Actual value of 

k
X  also as shown. 

 

It should be noted that phase demodulation of the internal 

pressure signal to estimate actual rotor blade vibration 

amplitudes requires the assumption to be met that the pressure 

at the blade tip is reasonably un-altered compared with that  

at the casing surface. 

INDIRECT MEASUREMENT OF BLADE NATURAL 
FREQUENCIES FROM CASING VIBRATIONS 

 

As non-intrusive measurement of blade condition within 

a gas turbine is the goal of most condition monitoring of these 

systems, a method of measuring blade vibration parameters 

without the need to place any sensors in the gas flow path 

would be optimal. It will now be shown that the blade natural 

frequencies of the rotor blades may be estimated indirectly by 

sweeping the engine speed over a range of speeds, such that 

engine order excitation frequencies excite the blade natural 

frequency. This method is similar to the indirect BTT methods 

[10, 11] which use the same engine sweeping technique, to 

monitor a blade’s natural frequency so that it could 

subsequently be used to monitor blade structural degradation. 

Only one other author is known to have previously 

attempted to find a correlation between casing vibration and 

blade condition [12]. Mathioudakis et al [12] used an inverse 

filtering technique to reconstruct the internal pressure signal 

within a gas turbine from the measured casing vibrations by 

constructing transfer functions between the two signals. This 

demonstrated that the internal pressure signal and casing 

vibrations are indeed correlated to one another. 

The proposed method of measuring casing vibrations to 

determine blade vibration characteristics has a discernible 

advantage over current tip timing techniques, as it does not 

require perforation of the casing, lending itself to much easier 

application to existing, and in the design of new, turbines. 

The casing of a gas turbine, under test conditions, can be 

excited by two groups of forces [12], viz: (a) forces from the 

engine and running gear through casing/bearing attachments, 

(b) forces from the aerodynamic/structural interaction within 

the engine. The second group of forces, (b), understood to be 

dominant, can then be further broken down into its presumed 

constituents; (i) interaction with the rotating pressure profile 

around each rotor/stator blade, (ii) propagation of acoustic 

waves inside the casing, (iii) pressure fluctuations due to 

turbulent and impulsive flows. 

If the first constituent of the second group of forces, viz 

(b)(ii), is highlighted then it can be seen that this excitation 

force arises from the rotating internal pressure which was 

derived in the previous section and is given in its most general 

form in equation (4). These forces are the dominant 

contributor to the deterministic casing wall pressure and 

vibration. 

Essentially the casing vibration will act in a similar 

manner to the internal casing pressure which drives its 

motion, after it has passed through the linear time invariant 

(LTIV) filter of the casing structural transfer function. The 

mathematical derivation of the casing vibration will not be 

given here for brevity but can be found in Refs. [6, 9]. The 

properties present in the casing vibration spectrum can 

however be discussed with respect to the casing pressure, as 

the transfer through the casing will only provide an amplitude 

and phase modification of the pressure signal. 
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Deterministic casing vibration for a simulated 
turbine 

Casing vibration results are shown for a simulated turbine 

with the parameters given in Table 2. The blades are modelled 

as uncoupled single degree of freedom spring/mass/damper 

systems, with a dominant excitation frequency at SPF 

assumed to be only exciting a single blade mode with a 

nominal natural frequency of 500Hz. Shown in Fig. 6 is the 

deterministic casing vibration response for a simulated turbine 

when the casing is modelled as a circular ring under the 

influence of an internal pressure signal, of the same form as 

that given in equation (4), for an engine speed of 80Hz. 

Inspection of equation (4) and Fig. 6 shows that discrete 

harmonics of engine speed will be present. As the engine 

speed is swept over a range such that the excitation frequency, 

5 Ω , traverses the blade natural frequency, 500Hz, the 

displacement of the rotor blade vibration will be increase as 

will the harmonics of the engine speed, especially the 

excitation frequency sidebands, these being BPF±SPF . Thus, 

if a waterfall plot is made of the deterministic casing response 

spectrum over a range of running speeds, an increase in the 

engine speed harmonics will be seen when the blade natural 

frequency is excited, in this case when 100HzΩ = , as can be 

seen in Fig. 5. This increase is most evident when observing 

the first positive SPF sideband, which is indicated, and with 

the first SPF sideband plotted in Fig. 7 over the range of 

engine speeds. The increase in sideband amplitude is very 

evident in Fig. 7 by the increase in amplitude when the 

natural frequency is traversed. 

 

 
Fig. 5 Waterfall plot of analytical casing response 
spectrum for engine shaft speed of 75-125 Hz. The 
analytical model consists of 6 rotor blades 5 stator 

blades with a rotor blade natural frequency of 
500Hz. Indicated by the arrow is the increase in the 
first positive SPF sideband when the blade natural 

frequency is traversed. 
 

Table 2. Parameter for simulated turbine 

Rotor blade natural 

frequency 

(Hz) 

Swept engine speeds 

(Hz) 

No. of 

stator 

blades 

 

No. of 

rotor 

blades 

 

500 75-125 5 6 
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Fig. 6 Analytic casing radial response at 80Hz shaft 

speed in reference to Fig. 5. Indicated by double 

arrow is BPF, other arrows indicate BPF SPF±  
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Fig. 7 First positive SPF sideband amplitude plotted 

against the shaft input speed. Clearly indicated is 
the peak in the response amplitude when the blade 

natural frequency is traversed by the force 

frequency being 5Ω . 

DIRECT MEASUREMENT OF BLADE NATURAL 
FREQUENCIES FROM CASING VIBRATIONS 

 

It was shown that the indirect measurement of rotor blade 

natural frequencies could be achieved by observing the 

deterministic portion of the turbine casing vibration signal as 

the engine speed is swept over a range of speeds. It would 

however be much less restrictive if the blade natural 

frequency estimates could be achieved from casing vibration 

measurements at any given engine running speed. This has 

been shown to be achievable if the stochastic portion of the 

turbine casing response is observed instead. 

As inherent as blade vibration is in the running of a gas 

turbine engine, so is the presence of turbulence in the fluid 

flow within the engine. This turbulence will also drive blade 

motion along with the deterministic pressure forces. The force 

on any rotor blade can then be described, including stochastic 

forces and driven predominantly by stator pass harmonics as: 
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 ( ) ( )0

0

( ) cos
q spf q rr

q

f t F b t C q tω γ γ
∞

=

   = + +       
∑  (17) 

the Fourier co-efficients can be given values to describe 

any shaped impulse. ( )b t  is modelled as a white random 

variable with zero mean, however in practice the turbulence 

will be somewhat bandlimited and coloured. 

As before if the rotor blades are modelled as a single 

degree of freedom system, the spectrum of the blade motion 

will result from the multiplication of the force spectrum, 

which will display the same first order statistics as that of the 

random variable ( )b t , and the blade transfer function. The 

spectrum of the blade motion will thus be stochastic in nature 

and in the ensemble average response the blade motion 

spectrum will correspond with that of the amplitude of the 

blade transfer function. This process is shown schematically 

in Fig. 8 with the instantaneous spectrum of the blade force, 

equation (17), multiplied by the blade transfer function 

resulting in the instantaneous spectrum of the blade response. 

 

× =
 

Fig. 8 Schematic of the derivation the stochastic 
blade forced motion 

 

Now that the blade motion is known, the internal pressure 

under the influence of the stochastic blade motion can be 

derived, observing equation (4) it can be seen that this 

equation can be rearranged as: 

 
( )

0

Re r i r
ji x tji t

r i

i

P A Pe e
θ α γ

∞
 +Ω + +    

=

 
=  

 
∑  (18) 

The left-hand component of the exponential function in 

equation (18) is deterministic and its spectrum will be a 

discrete set of harmonics of shaft speed, Ω . The spectrum of 

the real part of the right-hand component of the exponential 

function in equation (18), will have the same form as the 

spectrum of the blade motion ( )
r

x t . The spectrum of the 

rotating pressure force with the inclusion of the stochastically 

forced blade motion will therefore be made from the 

convolution of the spectrum of the deterministic portion of the 

rotating pressure. This process is shown schematically in Fig. 

9. It can be seen that the instantaneous rotating pressure 

spectrum will now be made up of a series of narrowband 

peaks located at shaft speed, Ω , plus and minus the blade 

natural frequency, due to this convolution. This is a 

significant result as it shows the stochastic portion of the 

casing pressure spectrum will contain directly measureable 

information about blade natural frequencies. 

 

 

=⊗

 
Fig. 9 Schematic of the derivation of internal 

pressure spectrum 
 

Once again the casing vibration will contain the same signal 

properties as that of the internal pressure signal just derived, 

after it has passed through a LTIV filter. Results will be 

shown for analytically derived internal pressure and casing 

vibration signals along with experimental measurements 

taken on a simplified test rig which will now be briefly 

described. More information on the test rig and the data 

capture and post processing procedure can be found in Refs. 

[7, 9]. 

UNSW test rig 
The UNSW test rig consists of a rotor arrangement with 

19 flat blades, driven by an electric motor which is currently 

capable of running at speeds up to 2500rpm. A toroidal ring in 

front of the bladed arrangement, supplied with high pressure 

air, produces six air jets which act like trailing edge flow from 

upstream stator blade rows, exciting the rotor blades at 

multiples of shaft speed. A microphone is flush mounted in 

the casing in the vertical plane above the rotor blades to 

measure the pressure inside the casing, along with an 

accelerometer located at the same location to measure casing 

vibration, shown in Fig. 10. One blade was also instrumented 

with an accelerometer placed near the root of the blade, with 

the signal running through a set of slip rings mounted on the 

input shaft. The first bending, torsional and second bending 

mode natural frequencies were observed from the 

instrumented blade response spectrum and are listed in Table 

3 for stationary and 1200rpm shaft speeds. 

 

 

 

 

 
Fig. 10 Experimental test rig. (1) Air jets located on a 

toroidal ring which is supplied with high pressure 
air. (2) location of microphone and accelerometer 

mounting 
 

 

1 

2 
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Table 3 UNSW test rig 9
th

 blade natural frequencies 
Mode Stationary 1200 rpm 

1st bending 116.3 Hz 118.8 Hz 

1st torsion 515 Hz 522.5 Hz 

2nd bending 720 Hz 728.8 Hz 

 

Direct natural frequency estimation results 
The power spectrum, over a limited frequency range of 

the measured pressure signal, is shown in Fig. 11. The 

residual signal is overlaid on the synchronously averaged 

deterministic signal. The discrete signals can be seen to be 

made up of multiple discrete peaks at harmonics of shaft 

speed. The residual signal in Fig. 11 can be seen to be 

relatively flat, for the internal pressure signal, with sets of 

peaks spaced at multiples of shaft speed. The zoomed 

spectrum in Fig. 12 shows this more clearly. The casing 

vibration signal in Fig. 11(c) can be seen to also have other 

non-harmonically related peaks corresponding to the 

structural resonances of the casing which are excited by the 

internal pressure. 
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Fig. 11 Power spectrum of measured pressure and 

casing vibration signals, separated discrete and 
residual signal overlaid on each other. (a) 1200rpm 
pressure signal. (b) 2000rpm pressure signal. (c) 
2000rpm casing vibration signal. Zoomed section 

indicated. 
 

The zoomed spectrum shown in Fig. 12(a) highlights the 

narrow band peaks centred around multiples of shaft speed. A 

harmonic cursor at multiples of shaft speed is shown by the 

solid vertical lines; the other dashed vertical lines show the 

corresponding multiples of shaft speed ±  the second 

bending mode natural frequency. Analytical results are also 

shown, Fig. 12(b), for the simulated pressure signal with the 

same operating parameters as the experimental test rig; i.e. 19 

rotor blades, 6 stator blades, and 1200rpm shaft speed, and 

second bending mode blade natural frequency of 728.8 Hz. 

The same harmonic series is shown in Fig. 12(c) for the 

measured pressure signal and in Fig. 12(d) for the casing 

vibration signal with a second bending mode natural 

frequency estimated to be 736 Hz when the input shaft speed 

is running at 2000rpm. This corresponds well with the 

expected increase in natural frequency which would result 

from centrifugal stiffening, as seen in the increase in natural 

frequencies from stationary measurements and those at 

1200rpm, cf. Table 3. 
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Fig. 12 Zoomed spectrum of the measured residual 
signals as indicated in Fig. 11 Vertical         line 

at shaft speed spacing, vertical          line at 
shaft speed – second bending mode natural 

frequency, vertical          line at shaft speed + 
second bending mode natural frequency. (a) 

1200rpm pressure signal. (b) 1200rpm analytical 
pressure signal. (c) 2000rpm pressure signal. (d) 

2000rpm casing vibration signal 
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Within the frequency range shown for the simulated 

pressure signal, Fig. 12(b), only the harmonics at multiples of 

shaft speed minus second bending mode natural frequency are 

visible, which is predominantly the case also for the measured 

signal at 1200 rpm. 

Generally it might be presumed that the first bending 

mode would be dominant in the response; however, as is seen, 

the second bending mode is the most dominantly excited 

blade mode visible in the measured signals, this being 

confirmed by measurement of the actual blade response 

results which can be found in Refs. [7, 9]. This is thought to 

be due to the fact that the pressure fluctuations are related to 

the acceleration of the blade rather than the displacement and 

as thus gives increasing weighting to higher modes and results 

in the second bending mode being at least as strong as the 

first mode. 

CONCLUSIONS 
 

The use of non-contact blade vibration measurement 

through the analysis of a gas turbine internal pressure and 

casing vibration signals was outlined in this paper. 

Estimation of rotor blade vibration amplitudes from the 

non-conventional phase demodulation of a simulated internal 

pressure signal showed promise for conducting HCF 

estimates with a limited number of probes and providing 

robust amplitude estimates in the presence of measurement 

noise. Further research is envisaged to be undertaken with 

experimental verification of the effectiveness of this blade 

vibration measurement technique. 

Measurement of rotor blade natural frequencies which 

could be subsequently used for the monitoring of blade health 

was shown to be achievable from casing vibration 

measurements. A significant advantage over other non-contact 

blade vibration measurement techniques is offered with the 

use of accelerometer transducers as the sensor does not need 

to be located within the gas flow path and are relatively easily 

retro mounted on existing equipment. Monitoring of the 

stochastic portion of the casing vibration signal also 

represents a noteworthy improvement over current non-

contact blade vibration techniques as the analytical and 

experimental results showed promise in the measurement of 

blade natural frequencies at any engine running speed. The 

next step to be carried out in relation to the use of casing 

vibration measurements to determine rotor blade natural 

frequencies is an investigation into the ability of the method 

to isolate a single faulty blade in an experimental 

environment. 
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