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Abstract

The novel contribution of the thesis is the design and implementation of decentralised

output feedback power system controllers for power oscillation damping (POD) over

the entire operating regime of the power system. The POD controllers are designed

for the linearised models of the nonlinear power system dynamics. The linearised

models are combined and treated as parameter varying switched systems. The thesis

contains novel results for the controller design, bumpless switching and stability

analysis of such switched systems.

Use of switched controllers against the present trend of having single controller

helps to reduce the conservatism and to increase the uncertainty handling capability

of the power system controller design. Minimax-LQG control design method is

used for the controller design. Minimax-LQG control combines the advantages of

both LQG and H∞ control methods with respect to robustness and the inclusion of

uncertainty and noise in the controller design. Also, minimax-LQG control allows

the use of multiple integral quadratic constraints to bound the different types of

uncertainties in the power system application.

During switching between controllers, switching stability of the system is guar-

anteed by constraining the minimum time between two consecutive switchings. An

expression is developed to compute the minimum time required between switchings

including the effect of jumps in the states. Bumpless switching scheme is used to

minimise the switching transients which occur when the controllers are switched.

Another contribution of the thesis is to include the effect of on load tap changing

transformers in the power system controller design. A simplified power system

model linking generator and tap changing transformer dynamics is developed for

this purpose and included in the controller design.

The performance of the proposed linear controllers are validated by nonlinear

computer simulations and through real time digital simulations. The designed con-

trollers improve power system damping and provide uniform performance over the

entire operating regime of the generator.
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Chapter 1

Introduction

The primary task of the power system control is to provide reliable and secure

electric power supply within a narrow band of voltage and frequency variation. As

the demand for electric power is continuously increasing power systems are growing

in size and complexity. Also, to meet the ever increasing demand, the system is

forced to operate as close as possible to its maximum limit without sacrificing the

reliability. The inherent damping of the system in most cases is low making the

system marginally stable. These issues make the power system control task very

difficult and challenging.

In an interconnected grid system, the rotor speed of all the machines connected to

the grid must always be synchronised to the grid frequency and run at synchronised

speed. When the steady state condition is disturbed due to load changes or fault

in the system, the rotors of different machines start oscillating with respect to each

other, exchanging energy between them. When these oscillations are allowed to

grow, machines are pulled out of synchronisation. Small signal disturbances occur

in a system continually because of small variations in load and generation. This

can produce sustained oscillations in power angles and frequency and may disrupt

the service [3]. There are several reasons for the dynamic instability in a power

system. Among them, the weak couplings between interconnected systems which are

randomly fluctuating, and a small group of machines with relatively low or negative

damping against other machines in the system, are a couple of important factors

which need to be considered. The work mentioned in [3] shows how the random

fluctuations in the coupling between machines due to variations in load impedances

and transmission line reactances can lead to instability. It also shows that such

systems will be unstable for almost every sample path, the random variations can

take, as time goes to infinity. Hence the power system should have proper control

to ensure the stability of the system.

An interconnected power system is made up of different utilities. There is an

agreement amongst the utilities on performance standards but each utility is free to

choose the way in which to maintain the agreed performance. This style of operation

1
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necessitates the decentralised control of the power system. Since the power system is

interconnected in a complex manner, the controller providing damping control of the

oscillations may require the knowledge of the states of the other machines connected

to the grid in real time. However, because of the geographic separation of the

location of the generating units, it is not always possible to transfer this information

amongst machines in real time. Under these conditions a decentralised controller,

which operates strictly based on the information of local states is desirable. However,

the power system control should ensure that the power system is stable locally and

globally. Global control is achieved through correct design and coordination of the

local controls of the power system components [4].

Generator stability is achieved mainly through speed governor control and Auto-

matic Voltage Regulator (AVR) control. Active power supplied by the generator is

controlled by speed governor and reactive power supply through AVR. The response

time of speed governor is usually slow when compared with local electromechanical

swings, hence the speed governors are of little use in containing these modes. Fast

operation of mechanical valves in steam turbines is found to cause torsional insta-

bilities if the signals are not properly filtered. In the case of hydraulic turbines the

droop characteristics and auxiliary controls need to be properly tuned to avoid in-

stabilities [4]. Under these situations, power system relies upon improving damping

through AVR control.

1.1 Power System Stabilisers

AVR plays an important role in keeping the generator in synchronism with other

generators in the grid. To achieve this it should be fast acting. Using high AVR

gains to increase the action time often lead to unstable and oscillatory responses. To

increase the damping of the lightly damped mode AVR uses a signal proportional to

rotor speed, although generator power and frequency also may be used [4, 5]. The

dynamic compensator which is used to modify the input signal to AVR is commonly

known as Power System Stabiliser (PSS). Most generators have a PSS to improve the

stability and to damp out oscillations. The PSS design based on Single Machine on

Infinite Bus (SMIB) model assumes that the grid to which the generator is connected

has constant voltage and frequency. The power system model is linearised around

a particular operating point and the design task is to synthesise the controller gain

to meet the controller requirements. To improve the frequency response and mode
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margins of the PSS, necessary tuned filters are also included. But in most situations,

neither the SMIB nor a single operating mode assumptions are valid as systems

undergo structural changes owing to large changes in load conditions. Also in an

interconnected system each machine is affected by the changes happening elsewhere

in the system.

1.1.1 Different design approaches

As the power systems grow in size, the complexities involved in the control design

also increase. To meet the challenges posed, several new control techniques such

as fuzzy control, adaptive control, control based on neural networks, LQR/LQG

control, robust control and control based on genetic algorithms are investigated for

the design of PSS [6–10] .

Fuzzy controllers

Fuzzy control is successfully applied in many practical applications. Power system

controller design using fuzzy control is proposed in many works including [11–13].

In these works, PSSs are designed using fuzzy-logic and shown that the performance

of the fuzzy controller is better than the conventional PSS. However, fuzzy-control

method suffers from the well known phenomenon of rule explosion. Also for large

scale systems, the number of linguistic variables and values become impractical to

be implemented [14].

Artificial neural networks based controllers

Artificial Neural Networks (ANNs) are trained to map the complex systems without

actually developing a mathematical model of those systems. Application of ANNs

to tune PSS and also successfully replacing the PSS with trained ANNs are reported

in many research works [6,15,16]. However, neural networks need to be trained with

a sufficient number of samples or they should include online training architecture

for successful implementation. Selection of a number of neurons and a number of

neuron layers are current research topics. Also, establishing stability and robustness

proofs is difficult on most situations [14].

Adaptive controllers

Conventional PSSs are designed using a power system model linearised around an

operating point. If the system parameters vary as the operating point changes,

the performance of the designed PSS degrades. Using adaptive control allows the

controller parameter to be updated as the system parameters change. Successful
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implementations of adaptive PSS are reported in [17,18]. In some works, Self Tuning

Regulators (STRs) are proposed to replace PSS [14]. The model parameters are

estimated based on the least square algorithm. However, it will be difficult to design

full pole-placement STR for a multimachine power system. Adaptive controller

performance during training is generally very poor and to overcome this solutions

are proposed to use fuzzy controller or ANN to initialise the adaptive controller [14].

Controllers based on genetic algorithms

Application of Genetic Algorithms (GAs) to solve complex optimisation problems is

a well established fact. Functioning of GA is based on the principle of natural eval-

uation mechanism. At each step of evolution, fitness values of each string is checked

before allowing the next step. The cost function which needs to be minimised is

assigned large fitness value. The process is repeated until maximum generation is

reached which will lead to global or near global optimum solution. GAs are applied

to PSS design successfully in many research works [8, 19, 20]. In [8], the PSS de-

sign problem is converted to an optimisation problem. The deviations of speeds,

torque angles and control inputs from the nominal values are included in the per-

formance cost to be minimised. The parameter variations during operating point

changes are included by defining different performance indices corresponding to dif-

ferent operating points. For formulating optimisation problem, single performance

index is defined with variation constraints to include parametric variations. Eigen

value analysis and simulation results are used to validate the designed controller [8].

However with GAs, it is generally difficult to produce necessary proofs for stability

and performance.

Robust Controllers

Apart from the above research, efforts were directed to improve upon the PSS design

using classical methods such as root locus, Eigenvalue techniques, pole placement

etc., but all these methods failed to address the model uncertainties in the con-

troller design stage itself [21, 22]. In the later part of the eighties, robust control

theory gained momentum as a control design tool to address the issue of model

uncertainty. In robust control, robust stability and robust performance are given

emphasis. A controller is said to be robust to a given set of system uncertainties if

it provides stability and satisfactory performance for all system models considered

in the design set [23]. Model uncertainties are usually bounded with the magnitude
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of the frequency response of the nominal system and represented as additive or mul-

tiplicative uncertainties. When considering a multiplicative uncertainty, the actual

plant model G(s) can be represented in terms of nominal plant model G0(s) and

uncertainty model ∆m(s) as:

G(s) = [1 + ∆m(s)]G0(s) (1.1)

For the system shown in Figure 1.1 we can define the complementary sensitivity

function (or the closed-loop transfer function) T (s) the sensitivity function S(s) as

follows [23]:

T (s) = [G0(s)K(s)] [I + G0(s)K(s)]−1 (1.2)

S(s) = [I + G0(s)K(s)]−1 (1.3)

The robust stability of the closed-loop system with the uncertainties, will be

guaranteed if the following condition is satisfied [24]:

‖∆m(s)T (s)‖∞ = sup {σmax [∆m(s)T (s)]} ≤ 1 (1.4)

where σmax represents the maximum singular value and sup denotes the supremum

or the least upper bound over all the frequency range considered. In Figure 1.1

K(s) is the robust controller, W1(s) and W3(s) are the weighting function which

are selected by the designer to achieve the control objectives. Choice of W1(s)

affects the desired steady-state performance of the system and W3(s) affects the

robustness property given by (1.4). Robust performance is achieved by synthesising

K(s) through optimisation of the following equation (1.5),

min
K(s)

∥

∥

∥

∥

∥

W1(s)S(s)

W3(s)T (s)

∥

∥

∥

∥

∥

∞

= min
K(s)

∥

∥

∥

∥

∥

W1(s) [I + G0(s)K(s)]−1

W3(s) [G0(s)K(s)] [I + G0(s)K(s)]−1

∥

∥

∥

∥

∥

∞

(1.5)

Robust control technique enabled the researchers to account for the uncertainties

in the power system model to be included in the power system controller design.

A considerable amount of research has been done from the early nineties till the

present time to apply robust control techniques to address the issues faced by power

system control and thereby to improve the controller performance [10, 25–37]. In

these works, controllers are designed for multimachine power systems using robust
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Figure 1.1. H∞ block diagram.

control techniques like H∞ optimisation, µ-synthesis and Linear Matrix Inequality

(LMI) approach. Variations in system parameters and modeling errors are treated as

uncertainties and included in the controller design [14,31]. In [31], a single controller

is designed for the entire operating regime of the generator. This approach gives

feasible controller solution only for systems having comparatively small uncertainty

magnitude over the entire operating regime of the generator.

Using LMI approach, the solution for the Riccati equation to synthesise the con-

troller is obtained by translating the quadratic matrix inequality representing Riccati

equation into standard LMI framework through the Schur Complement method [38].

In [34], robust power system controllers are designed using LMI approach. In this

work, the conventional PSS structure is assumed for the robust controller and the

controller is synthesised using LMIs. LMIs can be used as an effective tool for solving

robust controller optimisation problems [33].

As an alternative approach to control linearised power systems, one can consider

the power system as an interconnected nonlinear system and much attention has

been given to the design of nonlinear controllers using nonlinear system models

[26, 29, 39]. Nonlinear feedback linearisation techniques are employed to linearise

the power system models, thereby alleviating the operating point dependant nature

of the linear designs [31]. Even though these controllers do improve the transient
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stability of the system, their practical implementation is quite complicated and

difficult due to their structures and often excessive control levels. Also, feedback

linearisation schemes need exact plant parameters to cancel the inherent system

nonlinearities and make the stability analysis a formidable task [31].

1.1.2 Parameter variation

Multimachine power system model is highly nonlinear and its parameters are sub-

jected to wide variations when the load and generation varies. Power system con-

troller design should be able to include these variations in the controller design stage.

Different techniques are used to accomplish this, among these, use of gain scheduling

and switching control are widely researched.

Gain scheduling

To tackle the problem of parameter variation, gain scheduled control offers an effec-

tive solution. Gain scheduling is successfully applied to many engineering applica-

tions including in aircrafts [40]. Generally, gain scheduling is done as follows [41]:(i)

Several operating points are selected to cover the range of plant dynamics and these

points are indexed by some scheduling variables. (ii) For each of these operating

points a linearised plant model is constructed and a linear compensator is synthe-

sised.(iii) In between the operating points, the parameters of the compensator are

then interpolated or scheduled, thus resulting in a global compensator. Generally

the scheduling variable should vary slowly and should be able to capture the plant’s

nonlinearities. In conventional gain scheduling, one cannot a priori assess stability,

robustness and other performance properties of gain scheduled designs [41].

The lack of guaranteed stability property in gain scheduling is addressed through

quasi-LPV scheduling [36,42] and by using LMI based designs [43,44]. In quasi-LPV

scheduling the plant dynamics are rewritten to transform nonlinearities as time-

varying parameters that are used as scheduling variables. Quasi-LPV approaches are

computationally intensive, but offer guaranteed stability and performance properties

[36, 42]. LMI based constructions of H∞ optimal controllers can be adapted to

compute gain scheduled controllers for LPV systems that guarantee stability and

performance [42, 43].

Gain scheduling technique is applied successfully in power system control design

[36, 45–47]. In [45, 46], robust controllers are designed at different operating points

and the controller gain is interpolated to get continuous controller. In [47], linear
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observer based controllers are designed for different operating points and Youla-

Jahr-Bongiorno-Kucera parametrisation is used to schedule between the controllers.

In [36], the plant model is linearised at different operating points and by using LMIs

robust controller corresponding to these operating points are obtained. The curve

fitting technique is used to obtain the controllers between the operating points.

However, it is worth noting the following points in relation to gain scheduling [42]:

(i) Gain scheduling often involves several ad hoc steps, beginning with the problem

formulation, which can be suitable in simple situations, but increasingly troublesome

as more complex controllers are designed. (ii) The linearisation scheduling approach

does not apply when little information is carried by plant linearisations about con-

stant equilibria. The quasi-LPV approach, because of its conservative nature, may

not yield controllers. (iii) Linearisation gain scheduling depends on rules of thumb

and extensive simulation for the evaluation of stability and performance. Typically,

stability can be assured only locally and in a “slow-variation” setting, and there are

no performance guarantees. The quasi-LPV approach offers the potential of both

stability and performance guarantees. But accurate continuous LPV modeling of

the plant is required for successful implementation [48].

Switching controllers

Another approach to conquer wide variations in the plant parameter is to use switch-

ing controllers and suitably switching between them as the operating point shifts.

Control techniques based on switching between different controllers have been ap-

plied extensively in recent years, particularly in the control of mechanical systems,

the automotive industry, aircraft and air traffic control and switching power con-

verters. In these applications it has been shown that switching control is capable of

achieving stability and improve transient response. Different switching approaches

are extensively researched and reported with regard to switching methodologies and

switching stability proofs [49–62].

When two closed loop stable systems undergo switchings, we cannot guarantee

the stability of the switched system [56] unless additional conditions are imposed on

the switching frequency. Hence for systems undergoing switching, switching stability

of the systems need to be established. Most of the proposed methods use Lyaponov

function methods in some form or other to achieve switching stability. In [54, 62]

a common Lyapunov function method switching rule is used. Some approaches

[50, 54, 61] model the switching process as a stochastic process and develop the
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necessary switching proofs. Preserving switching stability in the slow switchings is

explored in detail in many works including [49,53,56]. Average dwell time approach

for switching stability is established in [53, 54, 59].

Switching transients and bumpless compensator

One can design linear multiple controllers corresponding to different operating points

to cover the entire operating regime of the plant. Controllers can then be suitably

switched as the operating point changes. Switching stability can be preserved by

employing some of the schemes mentioned above. However, if there is discontinuity

in the output of the current controller and the new controller, it will lead to switching

transients and create unwanted plant response.

The issue of switching between controllers with minimum transients was exten-

sively studied by many researchers [48, 63–66]. In [63, 65] the problem of switching

between two controllers is considered. The switching problem is formulated as a

linear quadratic optimisation problem, to minimise the difference between the out-

put of the online and to be switched offline controller is minimised at the time of

switching. The solution to the problem gives a bumpless compensator which is used

to drive the output of the offline controller to be equal to the online controller at

the time of switching. Thus the bumpless compensator helps to initialise the offline

controller states so that the jumps at the plant input is minimised at the switching

instant. The bumpless compensator does not play any part after switching. How-

ever, in the scheme proposed in [65,66], the interest is to minimise the net transient

including any further transients which may occur after switching.

1.1.3 Effect of on load tap changing transformers (OLTCs)

OLTCs are installed at many points in a power system to maintain the voltage at a

preset level. OLTCs continuously respond to the changes in grid voltage. However,

the action of OLTC after fault, is usually to weaken an already strained system [67].

This negative action of the OLTCs often leads to voltage collapse in the power

system [67–69].

The small-signal stability of the interconnected system is affected by the dy-

namics of both the generators and the OLTCs. It is important to consider the

interconnection effects due to OLTCs while designing PSS and also the interconnec-

tion effect of generators on OLTCs in the design of OLTC controllers. The effects of

the dynamics of OLTC with respect to voltage collapse, stability and power transfer
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ability are considered in [70–72]. In the works mentioned in [71, 72], the generators

feeding the OLTCs are assumed as constant voltage sources but the secondary volt-

age of the OLTC is affected by the changes in the primary voltage as well as the

load connected to the OLTC. Generally, the effects of OLTCs are not included while

designing the PSS.

1.1.4 Motivation for current research

From the above discussion on the power system controller design, we can summarise

the issues relating to the improvements in power system stability and power system

controller design as follows:

• Each generator is affected by the dynamics of other generators connected in

the grid. Therefore the interconnection effects from other machines need to

be considered while designing the controllers.

• Power system parameters vary over a wide range due to changes in power gen-

eration and load in the grid. These parameter variations need to be included

in the controller design.

• Designing a single controller for the entire operating range including the in-

terconnection effects and parameter variation will make the controller design

more conservative. This can be avoided by using swiching controllers.

• When using switching controllers, switching stability is to be ensured and the

transients during switching are to be minimised.

• OLTCs form an important dynamical element in a grid system, so it is appro-

priate to include the effects of OLTCs in the controller design.

1.1.5 Contributions of the research

This research work is aimed to improve the present power system control design

methodology. The proposed controller design is focussed upon to improve the damp-

ing and robustness provided by the power system controller. The major contribu-

tions of the thesis in this direction are summarised below:

1. The power system controllers are designed by treating the power system as

a parameter varying switched system. The nonlinear power system model is

linearised at different Selected Equilibrium Points (SEPs) covering the entire

operating regime of the power system. Linear power system controllers are

designed for these SEPs and the controllers are switched as the power system



Section 1.1 Power System Stabilisers 11

operating point changes. Use of switched control helps to reduce the con-

servatism of the controller design. This approach also helps to increase the

uncertainty handling capability of the design, as the net uncertainty is divided

among different controllers.

2. Decentralised robust output feedback controllers are proposed. The design

is based on the minimax LQG control design technique [22]. Minimax LQG

methodology can be considered as a robust version of standard LQG controller

design and it combines the advantages of both LQG control and H-infinity con-

trol [22]. Minimax LQG control provides a guaranteed cost controller enabling

the inclusion of multiple uncertainties and noise depending upon the applica-

tion.

3. The controller design takes into account the interconnection effects from other

machines and the parameter variations due to generation and load changes by

treating them as uncertainties and these effects are represented and bounded

using Integral Quadratic Constraints (IQCs). Representing uncertainty using

IQC has several advantages, among them the key feature of IQC is that the

uncertainty is described purely in terms of bounds on the signals rather than

bounding the magnitude of the uncertainty directly. To include the effect of

parameter variations, the results and proofs in the work of [73] are extended

in this research.

4. The stability of the switched system while switching among the controllers is

preserved through dwell time constrained switchings. An expression has been

developed to arrive at the dwell time required for stable switching, including

the jump in system states, when the system jumps between different operating

points during switchings.

5. The bumpless switching scheme was originally proposed in [74] for switch-

ing control in aerospace applications. We apply this scheme with necessary

modifications for minimising the transients during controller switchings.

6. Power system controller design was extended to include the dynamics of OLTCs.

For this purpose a simplified power system model was developed linking gen-

erator and OLTC dynamics. Robust output feedback controllers are designed

using the power system model developed.

The proposed power system control methodologies are validated through simula-

tions. Controllers are designed for test case power systems and simulations are
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carried out under generation / load variations, fault conditions and reference volt-

age changes. Two types of simulations are included; computer simulations with

nonlinear power system model and Real Time Digital Simulations (RTDSs) using

the RTDS facility at CPRI, Bangalore, India.

1.2 Thesis chapters

The thesis consists of seven chapters excluding the chapter on introduction and the

final conclusion chapter. The contents of each chapter are briefly introduced here.

Chapter 2: This chapter introduces the concepts of power system stability, power

system network model and the multimachine power system model considered in this

research. The dynamics of rotor swings and the effect of rotor dynamics are ex-

plained using a single machine on an infinite bus model system. The basic concepts

of conventional PSS are also included.

The mathematical model of the power system network and the network model

reduction are presented. This chapter also includes the network load flow analysis

using the Newton-Raphson method.

The multimachine power system model considered in this work is presented in

this chapter. A brief introduction to Park’s transformation and common axis ref-

erence frame are given. The nonlinear multimachine power system model used for

simulation studies and the linearisation of the nonlinear model are included. Lin-

earisation steps and the state space representation of the power system which are

used for controller design are also presented.

Chapter 3: The minimax LQG controller design methodology is explained in this

chapter. The first part of the chapter is devoted to the basic concepts of minimax

LQG design methodology and the uncertainty description using IQCs. A collection

of important results and theorems used in the controller design are presented next.

After this, the controller design is presented with controller stability proofs. The fi-

nal part of the chapter consists of LMI optimisation procedure used in the synthesis

of the controller.

Chapter 4: The dwell time switching scheme to preserve switching stability is

presented in this chapter. The basic concepts of slow switching and dwell time are
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given in the first part of the chapter. This is followed by the development of an

expression and conditions for the dwell time required for stable switching. To vali-

date the proposed scheme, a test case power system is selected and controllers are

designed. Different controller switching scenarios are simulated and the results are

presented.

Chapter 5: The bumpless switching scheme to reduce the switching transients

is included in this chapter. The linear quadratic bumpless switching scheme and the

bumpless compensator design are given in the first part of the chapter. In the second

part, application of the scheme for power system controller switching is presented.

The last part of the chapter consists of the validation of the bumpless switching

scheme through simulations. The effectiveness of the scheme is demonstrated by

comparing the simulation results with and without bumpless switchings.

Chapter 6: Validation of the controller design methodology through nonlinear

computer simulations is presented in this chapter. The test case power system pa-

rameters, load flow results and state space representation of the system are given

in the first part of the chapter. The controller design for different operating points,

dwell time computations and bumpless compensator design are included in the fol-

lowing part. Simulation model, methodology and cases are given in the next part.

The controllers are validated under different simulation cases involving load / gen-

eration variations, fault case and AVR reference voltage changes. The simulation

responses are also compared with conventional PSS and the analysis of the simula-

tion responses are also included.

Chapter 7: This chapter consists of the validation of the controller design us-

ing the RTDS facility. Introduction to the RTDS facility and the power system

considered for validation are given in the first part of the chapter. In the next part,

implementation details of the designed controllers are included. In the following

part, simulation cases and results of the simulation are included. The simulation

results are also compared with conventional PSS.

Chapter 8: Power system controller design including the dynamics of OLTCs is
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presented in this chapter. In the first part of this chapter, a simplified multima-

chine power system model with OLTCs is included. The next part comprises the

controller design, dwell time switching and bumpless switching methodologies. Sim-

ulation studies to validate the proposed controllers are included in the final part of

this chapter.



Chapter 2

Power System Stability and Model

Interconnected power system is a complex nonlinear system. For satisfactory opera-

tion of the system and to meet the voltage and frequency requirements, maintaining

the stability of the power system is crucial. In this chapter we introduce general

power system stability and in particular rotor angle stability and the Power System

Stabilisers (PSSs). Power generated from the generating station is transmitted and

distributed to the load centers through power system networks. For power system

studies, these networks and loads are represented using mathematical models. The

network model description and the load flow analysis of the power system used in

the research are included in the chapter. The dynamics of the power system consist-

ing of many generating units are represented through a set of nonlinear equations.

These equations are linearised for a particular equilibrium point to get the linearised

power system model. The chapter discusses the nonlinear multimachine power sys-

tem model and linear state space representation of the power system which are used

in this research.

2.1 Power system stability

The demand for electricity in modern day living is ever increasing. More and more

power stations are being continuously built and added to the grid. Thus grids grow

in size and complexity posing many challenges for proper operation and control. The

load connected to the grid is continuously changing so the generators in the grid need

to have enough spinning reserve to cater for these changes. Also the system should

meet constant voltage and frequency criteria in these circumstances and maintain

the required reliability of service. To ensure reliable supply, co-ordinated power

system control needs to be exercised at different levels. As a part of this, power

systems have to maintain voltage and frequency stability at all times. The power

system is highly complex and nonlinear, with dynamic responses influenced by a

wide array of devices with different response rates and characteristics [2]. These

issues make it difficult to maintain the power system stability.

15
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Figure 2.1. Power system stability classification [1]

Power system stability may be broadly defined as the ability of a power system,

for a given initial operating condition, to regain a state of operating equilibrium

after being subjected to a disturbance, with most system variables bounded so that

practically the entire system remains intact [1], [2]. We can classify power system

stability into three main classes as rotor angle stability, frequency stability and

voltage stability. Depending on the nature of the disturbance to which the power

system is subjected, stability is further classified as small disturbance or large dis-

turbance. Again depending on the time period, stability is further divided as short

term and long term stability. The power system stability classification is given in

Figure 2.1 [1]. In this thesis work we are concerned about the small signal rotor

angle stability of the power system.

2.1.1 Rotor angle stability

In an interconnected system, the frequencies of all the machines connected to the

grid must be the same and the rotor speed of all the machines must always be

synchronised to this frequency and run at the synchronised speed. The rotor angle
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stability refers to the ability of the interconnected synchronous machines of the power

system to remain in synchronism after being subjected to a disturbance. It depends

on the ability to maintain or restore equilibrium between electromagnetic torque and

mechanical torque of each synchronous machine in the system. Instability that may

result, occurs in the form of increasing angular swings of some generators leading to

their loss of synchronism with other generators [1].

Rotor angle

In a synchronous machine, the mechanical torque produced by the prime mover to

drive the rotor is opposed by the electrical torque produced by the generator. Due to

the spatial distribution of the windings in the stator of the generator, the magnetic

field produced by the stator rotates at the same speed as the rotor under steady state

conditions and the fields produced by stator and rotor align themselves. Depending

upon the load delivered by the generator, the rotor field maintains a constant angle

with the stator field; this angle is known as rotor angle (δ) Figure 2.2. To increase the

power output of the generator more mechanical torque is applied and this advances

the rotor with respect to the stator field increasing the rotor angle (δ) and conversely

reduction of mechanical torque retards the rotor and reduces δ.

Swing equation

When the steady state condition is disturbed by either an increase or decrease

in power, the rotor starts to oscillate about its equilibrium before settling to its

new steady state rotor angle. The dynamics of these oscillations are represented

mathematically by the equation (2.1) and generally known as the swing equation,

Jωm
d2δ

dt2
= PM − Pe, (2.1)

where J is the moment of inertia of the rotor, ωm the angular velocity of the rotor,

PM is the mechanical power, and Pe is the electrical power.

Under equilibrium conditions, mechanical power PM balances the generated elec-

trical power Pe. The electrical power Pe can change instantaneously, but it takes

finite time to change the mechanical power PM . This difference in power PM - Pe is

made up as the change in rotor kinetic energy. This stored energy is released during

rotor oscillations before the rotor settles for new equilibrium conditions. For large

synchronous machines the inherent mechanical damping of the rotor is negligible.

Hence sufficient damping needs to be provided through electro-mechanical means
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Figure 2.2. Rotor angle in a synchronous machine.

to damp out these oscillations. If these oscillations are allowed to grow, instability

may result.

Single Machine on Infinite Bus (SMIB)

In a single machine on infinite bus model, it is assumed that the machine is connected

to the grid with constant voltage and frequency as shown in Figure 2.3. The total

reactance XT is the sum of the transient reactance X ′
d and the network reactance

between the machine and the bus XE ; E ′
G∠δ the voltage behind X ′

d, leads the

reference bus voltage EB∠0 by δ. The active power Pe transferred by the machine

to the grid is given by [2],

Pe =
E ′
G EB

XT
sin δ (2.2)

From (2.2) it can be seen that power transferred by a machine to the grid is nonlinear

and varies sinusoidally with δ. Maximum power is transferred when δ = 900 and for

stable operation δ < 900 and for δ > 900 the operation is unstable.
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Figure 2.3. SMIB system

Effect of disturbance on rotor angle

Whenever the equilibrium between the mechanical power input and electrical power

output is disturbed, oscillations are induced on the rotor. During disturbance if

the mechanical power exceeds the electrical power the rotor accelerates, otherwise

it decelerates. If one generator temporarily runs faster than the other, the angular

position of its rotor relative to that of a slower machine will advance. Since the

power-angle relationship is highly non-linear, beyond a certain limit, an increase

in angular separation is accompanied by a decrease in power transfer such that

angular separation is increased further. Instability results if the system cannot

absorb the kinetic energy corresponding to these rotor speed differences. For any

given situation, the stability of the system depends on whether or not the deviations

in angular positions of the rotors result in sufficient restoring torques [1].

During a disturbance, the change in electromagnetic torque in a synchronous

machine has two components [1]:

• Synchronising torque component, in phase with rotor angle deviation and lack

of this component results in aperiodic or non-oscillatory instability.

• Damping torque component, in phase with speed deviation, and lack of this

component results in oscillatory instability

Small disturbance (or small signal) rotor angle stability is concerned with the abil-

ity of the power system to maintain synchronism under small disturbances. The

disturbances are considered to be sufficiently small that linearisation of the sys-

tem equations are permissible for the purpose of analysis [2, 75, 76]. Two types of

instabilities may arise:
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• Increase in rotor angle through a non-oscillatory or aperiodic mode due to lack

of synchronising torque.

• Rotor oscillations of increasing amplitude due to lack of sufficient damping

torque.

Generally small disturbance rotor angle instability occurs due to lack of sufficient

damping of oscillations [1].

Large disturbance rotor angle stability or transient stability is concerned with

the ability of the power system to maintain synchronism after a severe disturbance

such as short circuit on a transmission line is cleared. The resulting system response

involves large excursions of generator rotor angles and is influenced by the nonlin-

ear power-angle relationship. Transient stability depends on both initial conditions

and severity of the disturbance. Instability is usually in the form of aperiodic an-

gular separation due to insufficient synchronising torque manifesting as first swing

instability [1].

2.1.2 Conventional Power System Stabiliser

Synchronous machines connected to the grid employ Power System Stabilisers to

enhance the damping of the rotor oscillations. PSS uses the change in speed ∆ω as

the feedback variable and its output Vs is mixed with the reference voltage Vref to

produce the excitation signal. The block diagram in Figure 2.4 shows the excitation

system with Automatic Voltage Regulator (AVR) and PSS [2]. The amount of

damping provided by PSS depends on the value of the gain block KSTAB. The

phase compensation block introduces phase lead necessary to compensate for the

phase lag that is introduced between the exciter input and the generator electrical

torque. The wash out block serves as a high-pass filter, with the time constant TW

high enough to allow signals associated with oscillations in ωr to pass unchanged

and block slowly varying speed changes. It allows the PSS to respond only to the

fast changes in speed.

2.2 Network Model

We need a mathematical representation of electrical grid in order to study and

analyse the system. The electrical network consists of generators, transformers,

transmission lines, compensators, load etc., and these elements are to be included

in the mathematical model. After suitable representation of these elements we

can arrive at the network model of the system in terms of its admittance matrix.
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Figure 2.4. PSS with AVR Block diagram [2].

Generally because of a large number of nodes in the system, this matrix will be of

large size, which can be reduced in size for constant impedance loads.

Load flow analysis using Newton-Raphson (NR) method is used to solve the

power flow across various nodes of the system. Using the solutions of the power

flow equations we can determine the voltage and current flow at nodes. We briefly

describe the network representation and the load flow analysis used in this work.

2.2.1 Network Representation

We shall consider a network consisting of m + n buses with n generator buses and

m load buses. We can write the network equation for this grid system using node

admittance matrix as follows:
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(2.3)
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Figure 2.5. Network augmented with voltage behind syn.reactance.

The above equation (2.3) can be represented in short as,

Ibus = YbusVbus (2.4)

and the admittance matrix Ybus can be partitioned as,

Ybus =

[

Y1 Y2

Y3 Y4

]

(2.5)

where Y1 is (n × n), Y2 is (n × m), Y3 is (m × n) and Y4 is (m × m) matrices.

We can represent the ith synchronous machine connected to the grid as a voltage

source Ei∠δi, connected behind a transient reactance 1/Ygi. Using this represen-

tation we can augment the network by including the generator reactance as shown

in Figure 2.5. The augmented network can be renumbered with generator internal

nodes from 1 to n and original network buses from n + 1 to 2n + m.

In the augmented network, we can represent the transient admittances of the

generators as matrix YG = diag (Ygi) of size n × n. Now the admittance matrix of



Section 2.2 Network Model 23

the network becomes,

Ŷbus =







YG − YG 0

−YG Y1 + YG Y2

0 Y3 Y4






(2.6)

We assume the loads as constant impedances and the value of the equivalent load

admittances can be obtained from the load flow results as follows [77]:

YLi =
PLi − j QLi

|Vi|2
where i = n + 1, . . . , 2n + m (2.7)

where PLi− j QLi is the power flow and |Vi| is voltage at ith bus. We can represent

the load admittance at generator buses n+1 to 2n as matrix YLG = diag (YLi) where

i = n + 1 to 2n and the load admittance at load buses 2n + 1 to 2n + m as matrix

YLL = diag (YLi) where i = 2n + 1 to 2n + m.

Now by including the load admittance into the network admittance matrix, we

have:

Ỹbus =







YG −YG 0

−YG (Y1 + YG + YLG) Y2

0 Y3 Y4 + YLL






(2.8)

2.2.2 Network Reduction

To obtain the dynamic model we can simplify the network admittance matrix by

eliminating all buses except the generator buses 1 to n. This reduction can be

achieved as follows [77]:

We can partition the admittance matrix Ỹbus into generator node elements and

the remaining node elements. Now Ỹbus becomes,

Ỹbus =

[

YA YB

YC YD

]

(2.9)

where YA is (n × n), YB is (n × n + m), YC is (n + m × n) and YD is (n + m ×
n + m) matrices. Now we can rewrite the network equations corresponding to the
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admittance matrix given by (2.9) as,

[

IA

0

]

= Ỹbus

[

VA

VD

]

(2.10)

We can obtain the reduced admittance matrix YRED by eliminating the n+m buses

as,

IA = [YRED] VA, where YRED =
[

YA − YBY −1
D YC

]

(2.11)

We use the reduced admittance matrix in (2.11) in the multimachine power system

model. We represent the
(

ith, jth
)

element of the admittance matrix as Gij + jBij

and we use this notation in formulating the power system model.

2.2.3 Load flow by Newton-Raphson method

The real and reactive power flows at ith node of a power system with n nodes are

given by (2.12). To solve power flow at each node, we solve the set of equations

for these nodes. Since these equations are highly nonlinear, we can use Newton-

Raphson’s iterative technique for solving nonlinear equations to solve these power

flow equations [2]. The real and reactive power flows at the ith node are given by:

Pi = |Vi|
n
∑

j=1

|Vj| [Gij cos(θi − θj) + Bij sin(θi − θj)]

Qi = |Vi|
n
∑

j=1

|Vj| [Gij sin(θi − θj) − Bij sin(θi − θj)] (2.12)

where P is the real power, Q the reactive power, V the voltage and θ voltage angle

at the respective node of the power system. It can be seen from (2.12), that the

real power P and the reactive power Q at each node are the functions of voltage

magnitude V and angle θ of all nodes.

Let us designate the generator bus as PV bus and the load bus as PQ bus.

Generally we specify active power and voltage for PV buses and active and reactive

power for PQ buses. If we denote the specified values using superscript sp, then we
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can write the load flow equations for a power system with n buses as [2]:

P1 (θ1, . . . , θn, V1, . . . , Vn) = P sp
1

. . . . . . . . . . . . . . . . . .

Pn (θ1, . . . , θn, V1, . . . , Vn) = P sp
n

Q1 (θ1, . . . , θn, V1, . . . , Vn) = Qsp
1

. . . . . . . . . . . . . . . . . .

Qn (θ1, . . . , θn, V1, . . . , Vn) = Qsp
n (2.13)

To solve the above equation iteratively, we make initial estimates for voltage and

angles, and denote them as V 0 and θ0. With these initial estimates, we can apply

Newton-Raphson method and rewrite the load flow equations as [2]:
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(2.14)

which can be written as,

[

∆P

∆Q

]

=

[

∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

][

∆θ

∆V

]

(2.15)

where the first matrix on the right hand side of equation (2.15) is called Jacobian

matrix. In (2.15), we assume all buses to be PQ buses, but for each PV bus, terms

corresponding to ∆Q and ∆V would be absent. At each step of the iteration, ∆θ

and ∆V are computed and the initial estimates are updated. This process is carried

out until the errors in ∆θ and ∆V falls below the specified tolerance.

2.3 Power system model

To develop a mathematical model for a multimachine system, each machine con-

nected to the grid is to be represented by a set of dynamic equations. Using Park’s

transformation, for a balanced operation, the three phase time varying currents can
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be expressed as two components. With this representation, it is possible to rep-

resent the time varying inductance as constant inductances making the dynamical

representation of the machine simple. Another simplification is achieved by adopt-

ing a common reference frame and transferring the variables of all machines to this

reference frame. After transferring the variables to the common reference frame,

the system can be represented by a set of nonlinear equations. These nonlinear

equations are linearised around an operating point to get a linear model which is

used for controller design and analysis.

2.3.1 Park’s transformation

Park’s transformation defines a new set of stator variables such as currents, voltages

or flux linkages in terms of the actual winding variables [78]. The new quantities

are obtained from the projection of the actual variables on to three axes; one along

the direct axis of the rotor field winding, called the direct axis (d-axis); a second

along the neutral axis of the field winding, called the quadrature axis (q-axis); and

the third on a stationary axis as shown in Figure 2.6.

With reference to Figure 2.6, let us define the d-axis of the rotor at some instant

of time to be at an angle θ with respect to the fixed reference frame. The three phase

stator currents ia, ib and ic are transformed as direct axis current Id, quadrature

axis current Iq and zero sequence current I0 using Park’s transformation as:
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(2.16)

when ia, ib and ic are balanced, Id, Iq and I0 are constant for all θ.

Then we can write the dynamic equations of the ith synchronous machine as

follows [78]:

δ̇i = ω0ωi (2.17)

ω̇i =
1

2Hi

[

Pmi
− E

′

qiIqi − (x′
di − x′

qi)IdiIqi

]

(2.18)

Ė
′

qi =
1

τ ′
doi

[

EFDi − E
′

qi − (xdi − x′
di)Idi

]

(2.19)

Vqi = E
′

qi − raiIqi + x′
diIdi (2.20)

Vdi = −riIdi + x′
qiIqi (2.21)
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Figure 2.6. Synchronous Machine d-q axis representation

where E ′
qi, Iqi and x′

qi are the stator voltage, current and reactance projected on

q-axis and Idi and x′
di are the current and reactance projected on d-axis using Park’s

transformation, rai is the stator resistance and EFDi is the field voltage. In the

above expressions normally ri is neglected and x′
qi = x′

di.

Terminal voltage sensor model

The terminal voltage measurement sensor dynamics is expressed as:

V̇oi =
1

Tri
(Voi − |Vti|) (2.22)

where |Vti| is the magnitude of synchronous machine terminal voltage, Voi is the

output of the transducer and Tri is the sensor time constant.

2.3.2 Common axis reference frame

In order to analyse the voltages and currents of different machines in a grid system

it is necessary that these quantities are expressed in a common reference frame.

Generally the terminal voltage of the swing bus is chosen as the reference axis and
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Figure 2.7. Reference frame vector representation

all other quantities are expressed with reference to this axis. In Figure 2.7, the

voltages and currents of ith generator are referred to the reference frame and this is

carried out as follows:

Vi and βi are the terminal voltage and angle obtained from the load flow. Generator

current Ii can be obtained using the expression, I = Y V where I and V are the

vector array of currents and voltages of all nodes and Y is the admittance matrix

of the network. The value of θ is obtained from, θ = tan−1
(

xqiIi
Vi

)

. The generator

load angle δi is given by δi = θ + βi.

Using the above data, generator current Ii can be resolved into direct and quadra-

ture axis currents as Idi = Ii cos γ and Iqi = Ii sin γ where γ = 90 − (α + δ). The

quadrature axis emf is given by E ′
qi = Vi + xdiIdi + xqiIqi.



Section 2.3 Power system model 29

The transformation matrix between dq-axis and the reference frame is given by,

Π =

[

cos δi sin δi

− sin δi cos δi

]

(2.23)

The dq-axis currents are expressed in reference axis as,

[

Iqi

Idi

]

= Π

[

IRi

IIi

]

(2.24)

2.3.3 Synchronous Machine Model

The following set of equations [78] can be used to describe the behavior of an ith

generator in a multimachine power system consisting of n generators:

δ̇i = ωsωi − ωs (2.25)

ω̇i =
1

2Hi

(

Pmi − E ′
qiIqi

)

(2.26)

Ė
′

qi =
1

τ ′
do

[

Kai(Voi − Vrefi + Vsi) − E ′
qi + (xdi − x′

di)Idi
]

(2.27)

V̇oi =
1

Tri
(Voi − |Vti|) (2.28)

where

Iqi = IRi cos δi + IIi sin δi (2.29)

Idi = −IRi sin δi + IIi cos δi (2.30)

With respect to the reference axis, the generator currents are given by,

IRi =

n
∑

k=1

|E ′
qk| (Gik cos δk − Bik sin δk) (2.31)

IIi =
n
∑

k=1

|E ′
qk| (Gik sin δk + Bik cos δk) (2.32)

2.3.4 Linearised Synchronous Machine Model

The nonlinear synchronous machine model described in Section 2.3.3 are linearised

about an equilibrium point to get a linear synchronous machine model. We can
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linearise the model (2.25)-(2.28) as follows: On linearising (2.25) we get ∆̇δi as,

∆̇δi = ω0
s∆ωi (2.33)

When equations (2.31) and (2.32) are linearised we get ∆IRi and ∆IIi as,

∆IRi =

n
∑

k=1

|E ′0
qk|
(

Gik cos δ0
k − Bik sin δ0

k

)

∆E
′

qk

−
n
∑

k=1

|E ′0
qk|
(

Gik sin δ0
k + Bik cos δ0

k

)

∆δk (2.34)

∆IIi =

n
∑

k=1

|E ′0
qk|
(

Gik cos δ0
k + Bik sin δ0

k

)

∆E ′
qk

+

n
∑

k=1

|E ′0
qk|
(

Gik cos δ0
k − Bik sin δ0

k

)

∆δk (2.35)

When equations (2.29) and (2.30) are linearised we get ∆Iqi and ∆Idi as,

∆Iqi = cos δ0
i∆IRi − I0

Ri sin δ0
i∆δi + sin δ0

i ∆IIi + I0
Ii cos δ0

i∆δi (2.36)

∆Idi = − sin δ0
i ∆IRi − I0

Ri cos δ0
i∆δi + cos δ0

i ∆IIi − I0
Ii sin δ0

i∆δi (2.37)

∆IRi and ∆IIi can be eliminated from (2.36) and (2.37) by substituting equations

(2.34) and (2.35) into equations (2.36) and (2.37).

To get ∆ω̇i, we linearise (2.26),

∆ω̇i =
1

2Hi
(∆Pmi − I0

qi∆E ′
qi − E

′0
qi∆Iqi) (2.38)

When we linearise (2.27), we get ∆Ė
′

qi as,

∆Ė
′

qi =
1

τ ′
doi

[

Kai(∆Voi + ∆Vsi) − ∆E ′
qi + (xdi − x′

di)∆Idi
]

(2.39)

From equations (2.38) and (2.39), ∆Iqi and ∆Idi can be eliminated by using equa-

tions (2.34) to (2.37).
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The terminal voltage Vti is given by,

|Vti| =
(

V 2
qi + V 2

di

)
1

2 (2.40)

=
[

(Eqi + x′
diIdi)

′2 + (−x
′

diIqi)
2
]

1

2

=
[

E
′2
qi + 2E

′

qix
′
diIdi + x

′2
di(I

2
qi + I2

di)
]

1

2

By eliminating Idi from equation (2.40) using equation (2.30) we get,

Vti =
[

E
′2
qi + 2E ′

qix
′
di(IIi cos δi − IRi sin δi) + x

′2
di(I

2
Ri + I2

Ii)
]

1

2

(2.41)

To linearise (2.41), we make the following substitution. Let Vti = y
1

2

i , then,

∆Vti =
1

2

(

1

y
1

2

i

)

∆yi

=
1

2

(

1

V 0
ti

)

∆yi (2.42)

where ∆yi is given by,

∆yi = 2E
′0
qi∆E ′

qi + 2x′
di(I

0
Ii cos δ0

i ∆E ′
qi + E

′0
qi cos δ0

i ∆IIi −
E

′0
qiI

0
Ii sin δ0

i ∆δi − I0
Ri sin δ0

i∆E ′
qi − E

′0
qi sin δ0

i∆IRi −
E

′0
qiI

0
Ri cos δ0

i∆δi) + 2x
′2
di

(

I0
Ri∆IRi + I0

Ii∆IIi
)

(2.43)

Finally to get ∆V̇oi, we linearise (2.28) as,

∆V̇oi =
1

Tri
(∆Voi − ∆|Vti|) (2.44)

From the above discussion, we define the state vectors for the linearised synchronous

machine as,

∆xi =
[

∆δi, ∆ωi, ∆E ′
qi, ∆Voi

]′
(2.45)

and input vector, ∆ui = [0, ∆Vsi, 0, 0]′ (2.46)
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2.3.5 Synchronous Machine Model for Interconnected System

For a power system consisting of n generators, using the linearised equations given

in Section 2.3.4, the state vectors and input vectors of all generators can be lumped

together as follows:

∆x = [∆δx1, ∆δx2, · · · , ∆δxn]
′ (2.47)

∆u = [∆δu1, ∆δu2, · · · , ∆δun]
′ (2.48)

Using equations in Section 2.3.4, we can write,

ẋ = f(x, u)

∆̇x = ASY S∆x + BSY S∆u

where ASY S =
∂f

∂x

∣

∣

∣

x=x0,u=u0

and BSY S =
∂f

∂u

∣

∣

∣

x=x0,u=u0

(2.49)

where matrix ASY S is the system transition matrix of size (4n × 4n) and BSY S is

the system input matrix of size (4n × 1)

2.4 Chapter summary

Power system stability and classification are briefly presented in this chapter. The

concepts of rotor angle stability and the dynamics of rotor swings are explained.

The dynamics of rotor swings of a single machine connected to SMIB system is

analysed. The structure of the conventional PSS is also briefed.

This chapter describes the network model used for the controller design and

simulation studies. It also details the load flow analysis that needs to be carried out

to determine the power flow across the network and the voltage vectors at various

buses in the network. The mathematical model of the power system network and

admittance matrix of the network are presented. Simplification of the network by

eliminating all the nodes except the ones with generator is also included. Load flow

analysis of the network using Newton-Raphson method is explained.

The linearised power system model and its state space representation which are

used in power system controller design are explained. The nonlinear multimachine

power system model using Park’s transformation is presented. Steps involved in
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obtaining the linearised multimachine model from the set of the nonlinear equa-

tions defining the system are given in detail. The state space representation of the

linearised power system model is included.



Chapter 3

Decentralised Robust Controller Design

3.1 Introduction

Classical controller design methodologies such as pole placement technique were

successfully applied to single input and single output systems. It became very

difficult to design controllers for multi-input and multi-output systems using classical

design methods. This prompted the need to develop optimal control design and also

aero-space applications demanded optimal control to optimise the use of propellant

to maximise the payload delivered to orbit. Optimal control techniques such as linear

quadratic regulator (LQR) gave systematic steps to design optimal controllers for

multi input-output systems by minimising the performance cost function.

To design controllers for systems with partial information and affected by sensor

noises, linear quadratic Gaussian (LQG) stochastic optimal control was developed.

LQG design techniques provided multivariable output feedback control. But these

design methods failed to address robustness of control which is the fundamental

requirement of any control system. Indeed, the enhancement of robustness is one

of the main reasons for using feedback [79]. Robustness is the property of a control

system, whereby it maintains specified performance and stability, in the presence of

variations in the plant dynamics and errors in the plant model used in the controller

design. To overcome the lack of robustness in the above mentioned control meth-

ods, robust control technique was developed. Among the robust control techniques,

minimax LQG is a recently developed robust control methodology. We use minimax

LQG approach to design the power system controllers. In this research, we extend

the results and stability proofs proposed in [73], to include the uncertainties arising

due to parameter variations around the Selected Equilibrium Point (SEP) when the

load and generation changes in the controller design.

Minimax LQG controller design methodology can be considered as a robust

version of standard LQG controller design methodology [80], [81]. It involves finding

a controller to minimise the worst case of a quadratic cost functional. The worst

case is taken over all admissible uncertainties in a given stochastic uncertain system

34
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model [82]. Synthesising the minimax LQG controller involves solving two algebraic

Riccati equations dependent on scaling parameters.

To solve the optimisation problem to synthesise the minimax LQG controller,

we first convert it to an parameterised unconstrained optimisation problem using

S-procedure. Then we express this parameterised objective function as linear matrix

relation. This representation enables us to use the rank constrained optimisation

solution proposed in [73], to solve the problem of optimising the performance bound.

The chapter is organised as follows: The first part gives a general introduction

to the uncertainty model used. The main theorems and results referred to in the

controller stability proof are given in the next part. The following part consists of

the proposed controller design and stability proofs. In the final part of the chap-

ter, the rank constrained LMI optimisation approach to synthesise the controller is

presented.

3.2 Uncertainty Description

To apply minimax LQG methodology for the control system design, we should spec-

ify the uncertain system model against which the control system has to be robust.

Uncertainty arising over the nominal plant model can be modeled in different

ways depending on the nature of the uncertainty expected and the type of the prob-

lem. By including all the possible uncertainties, the robustness of the system could

be improved but this would lead to conservative design and increased complexity

in the control design procedure and implementation. Thus, there is a trade off

between the conservatism of the uncertain model used and the tractability of the

corresponding robustness analysis and robust controller synthesis problem [83], [22].

Some of the common sources of uncertainty in a plant model are:

(i) Uncertainty in parameter values in the system model, which may be either

constant or time varying.

(ii) Uncertainty due to unmodeled system dynamics.

(iii) Uncertainty due to the effect of neglecting nonlinearities in the system.

3.2.1 Uncertain system with norm bounded uncertainty

Let us consider a nominal linear system of the form,

ẋ(t) = Ax(t) + B1u(t)

y = C2x(t) (3.1)
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Figure 3.1. Nominal and uncertainty model

An important class of uncertain models involves separating the nominal system

model from the uncertainty in the system in a feedback interconnection as shown

in Figure 3.1. Such a feedback interconnection between the nominal model and

uncertainty is sometimes referred to as Linear Fractional Transformation (LFT) [83].

In this model, uncertainty operator ∆ is bounded as follows:

‖∆(t)‖ ≤ 1, ∀t → Norm bounded time varying uncertainty

‖∆(jω)‖ ≤ 1, ∀ω → Norm bounded uncertainty at all frequencies.

Let us consider an uncertain system with norm bounded uncertainty. We can

describe such a system using the state equations as [22]:

ẋ(t) = [A + B2∆(t)C1]x(t) + [B1 + B2∆(t)D1] u(t) (3.2)

y(t) = [C2 + D2∆(t)C1]x(t) + D2∆(t)D1u(t) (3.3)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rl is the mea-

sured output and ∆(t) ∈ Rp×q is a time varying matrix of uncertainty parameters

satisfying the bound

∆(t)′∆(t) ≤ I (3.4)

Equation (3.4) can be equivalently re-written as,

‖w(t)‖ ≤ ‖z(t)‖ (3.5)
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Figure 3.2. Uncertainty transfer function

Even though the uncertainty bound description given by (3.5) allows for time-varying

uncertain parameters, it does not allow for dynamic uncertainties which may arise

from unmodeled dynamics. Along with some other reasons [22], which lead to the

representation of uncertainties using Integral Quadratic Constraints (IQCs).

3.2.2 Uncertain system with IQCs

An uncertain model should be capable of capturing the features of the real system

and uncertainty in the system. The uncertainty model should also allow us to get

a tractable solution to the control problem under consideration. There are number

of advantages in using IQC representation. This class of uncertainties satisfying an

IQC is richer than the class of uncertainties satisfying norm bound condition. It also

allows us to model structured uncertain dynamics in systems subject to stochastic

noise processes. Another key feature of IQC is that, the uncertainty is described

purely in terms of bounds on the signals rather than bounding the uncertainty ∆

directly [22].

Let us consider an uncertainty block as shown in Figure 3.2. Using Parseval’s

theorem, it follows that the frequency bound,

‖∆(jω)‖ ≤ 1, ∀ ω > 0

is equivalent to the time bound

∫ ∞

0

‖w(t)‖2dt ≤
∫ ∞

0

‖z(t)‖2dt (3.6)

for all signals z(t), provided these integrals exist. The time domain uncertainty

bound (3.6) is called an IQC [83]. Alternatively, if we are only interested in a finite
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horizon control problem, we can have the following IQC (3.7), [83]:

∫ T

0

‖w(t)‖2dt ≤
∫ T

0

‖z(t)‖2dt (3.7)

The IQC uncertainty description can be extended to include energy bounded

noise acting on the system. This situation is shown in Figure 3.3. Here w̃(t) is the

Figure 3.3. Uncertainty system with noise inputs.

energy bounded noise acting on the system. To model the uncertainty with noise,

we can modify the IQC given by (3.6) as follows:

∫ ∞

0

‖w̄(t)‖2dt ≤ d +

∫ ∞

0

‖z(t)‖2dt (3.8)

The presence of the term d in equation (3.8) can allow for nonzero initial condition

on the uncertainty conditions [22]. This property will be used in our controller

design later.

3.2.3 Systems with multiple uncertainty blocks

In some systems, it may be necessary to model several uncertainty sources which

are acting independently. We shall define a structured uncertainty in which multiple

uncertainty blocks can be admitted [22]. Consider such a system with multiple
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uncertainties as below:

ẋ(t) = Ax(t) + B1u(t) +
k
∑

j=1

B2jξj(t);

z1(t) = C11x(t) + D11u(t);

z2(t) = C12x(t) + D12u(t);
...

zk(t) = C1kx(t) + D1ku(t);

y(t) = C2x(t) +

k
∑

j=1

D2jξj(t); (3.9)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, ξ1(t) ∈ Rq1, ξ2(t) ∈ Rq2,

· · · , ξk(t) ∈ Rqk are the uncertainty inputs, z1(t) ∈ Rq1, z2(t) ∈ Rq2, · · · , zk(t) ∈ Rqk

are the uncertainty outputs, y(t) ∈ Rl is the measured output. Also in the above

equations, A, B1, B2, C11, · · · , C1k, C2, D11, · · · , D1k and D2 are constant matrices of

suitable sizes. The uncertainty in the above system can be described by equations

of the following form:

ξ1(t) = φ1 [t, x(·), u(·)] ;
ξ2(t) = φ2 [t, x(·), u(·)] ;

...

ξk(t) = φk [t, x(·), u(·)] ; (3.10)

For the uncertain system (3.9) and uncertainties (3.10), a bound on the uncer-

tainty is determined by the following IQC condition [22]:

Definition 1 An uncertainty of the form (3.10), is an admissible uncertainty for

the system (3.9), if the following conditions hold: Given any locally square integrable

control input u(·) and any corresponding solution to equations (3.9), (3.10) defined

on an existence interval (0,t∗), where t∗ is the upper limit of the time interval over

which the solution exists, then there exists a sequence {ti}∞i=1 and constants d1 ≥
0, · · · , dk ≥ 0 such that ti → t∗, ti ≥ 0 and

∫ ti

0

‖ξj(t)‖2dt ≤ dj +

∫ ti

0

‖zj(t)‖2dt (3.11)



Section 3.3 Collection of results referred in the thesis 40

for all i and for j = 1, 2, · · · , k. Also note that t∗ and ti may be equal to infinity.

It may also be noted that the class of uncertainties satisfying an IQC of the form

(3.11) includes norm bounded uncertainties as particular case.

3.3 Collection of results referred in the thesis

The thesis uses several results from different sources to develop the controller design

and stability proofs. Some of these results are included here for ready reference.

3.3.1 H∞ norm

The H∞ norm of the transfer function for a linear time invariant (LTI) system can

be defined as follows [22]. Consider the LTI system,

ẋ = Ax + Bw

z = Cx, (3.12)

where A is a stable matrix and B, C are real constant matrices of appropriate

dimensions. Also, x ∈ Rn is the state, w ∈ Rp is the disturbance input and

z ∈ Rq is the uncertainty output. Suppose that the disturbance input satisfies

w(·) ∈ L2[0, +∞). Let Wwz denote the linear operator which maps w(·) to z(·)
for this system. Furthermore, let ‖Wwz‖∞ denote the induced norm of this linear

operator:

‖Wwz‖∞ := sup
w(·)∈L2[0,+∞),‖w(·)‖2 6=0

‖z(·)‖2

‖w(·)‖2
(3.13)

where z(·) is the output of the system (3.12) corresponding to the disturbance input

w(·) and the initial condition, x(0) = 0. The H∞ norm of the corresponding transfer

function Hwz(s) = C(sI − A)−1B is defined as follows:

‖Hwz(s)‖∞ := sup
w∈R

σ
[

C(sI − A)−1B
]

(3.14)

where σ(·) denotes the maximum singular value of a matrix. It then follows that

‖Hwz(s)‖∞ = ‖Wwz‖∞ [84]. This fact motivates the notion ‖Wwz‖∞ in (3.13).
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3.3.2 Strict bounded real lemma

With reference to the H∞ control theory and the associated Riccati equations fol-

lowing conditions are stated [22]:

Lemma 1 (Strict bounded real lemma) The following statements are equivalent:

(i) A is stable and ‖C(sI − A)−1B‖∞ < 1;

(ii) There exists a matrix P̃ > 0 such that

A′P̃ + P̃A + P̃BB′P̃ + C ′C < 0; (3.15)

(iii) The Riccati equation

A′P + PA + PBB′P + C ′C = 0; (3.16)

has a stabilising solution P ≥ 0.

Furthermore, if these statements hold then P < P̃ .

3.3.3 S-procedure

The robust control problems involving constrained optimisation can be converted

to an intermediate unconstrained minimax optimisation problem and solved. In

convex optimisation theories, this is achieved through Lagrange multipliers [85].

Another method similar to Lagrange multipliers is known as S-procedure which

allows one to convert the constrained optimisation problem to unconstrained game

type problem. S-procedure method converts the constrained optimisation problem

to unconstrained minimax optimisation problem involving a number of “scaling”

parameters which are analogous to Lagrange multipliers. In fact, the S-procedure

converts robust control problems involving structured uncertainty into parameter

dependent unstructured uncertainty and also leads to non conservative results for

control problems [22]. A general and systematic description of the S-procedure can

be found in [86].

Let the real-valued functionals g0(x), g1(x), · · · , gk(x) be defined on an abstract

space χ. Also, let τ1, · · · , τk be a collection of real numbers and τ = [τ1, · · · , τk]
′, let

S(τ, x) := g0(x) −
k
∑

j=1

τjgj(x) (3.17)
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We consider the following conditions on the functionals g0(x), g1(x), · · · , gk(x):

(i) g0(x) ≥ 0 for all x such that g1(x) ≥ 0, · · · , gk(x) ≥ 0.

(ii) There exists a collection of constants τ1 ≥ 0, · · · , τk ≥ 0, such that S(τ, x) ≥ 0

for all x ∈ χ.

In general, condition (ii) implies condition (i). The term S-procedure refers to the

procedure of replacing condition (i) by the stronger condition (ii). In a typical

application of the S-procedure, the functionals g0(x), g1(x), · · · , gk(x) depend on

physical parameters [22].

Now let us consider a S-procedure result for a quadratic functional and k quadratic

constraints [22]. Consider a linear system of the following form:

η̇(t) = Φη(t) + Λµ(t);

σ(t) = Πη(t) (3.18)

where Φ is a stability matrix. For this system with a given initial condition η(0) =

η0, a corresponding set L ⊂ L2[0, +∞) is defined as follows:

L :=

{

λ(·) =

[

σ(·)
µ(·)

]

: µ(·) ∈ L2[0, +∞) and η(0) = η0

}

(3.19)

Also, we consider the following set of integral functionals mapping from L into R:

g0(λ(·)) :=

∫ ∞

0

λ(t)′M0λ(t)dt + γ0;

g1(λ(·)) :=

∫ ∞

0

λ(t)′M1λ(t)dt + γ1;

...

gk(λ(·)) :=

∫ ∞

0

λ(t)′Mkλ(t)dt + γk; (3.20)

where M0, M1, · · · , Mk are given matrices and γ0, γ1, · · · , γk are given constants.

Theorem 1 Consider a system of the form (3.18), a set L of the form (3.19) and

a set of functionals of the form (3.20). Suppose that these functionals have the

following properties:
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(i) g0(λ(·)) ≤ 0 for all λ(·) ∈ L such that

g1(λ(·)) ≥ 0, g2(λ(·)) ≥ 0, · · · , gk(λ(·)) ≥ 0; (3.21)

(ii) there exists a λ(·) ∈ L such that

g1(λ(·)) > 0, g2(λ(·)) > 0, · · · , gk(λ(·)) > 0; (3.22)

Then there will exist constants τ1 ≥ 0, τ2 ≥ 0, · · · , τk ≥ 0 such that

g0(λ(·)) +

k
∑

j=1

τjgj(λ(·)) ≤ 0 (3.23)

for all λ(·) ∈ L.

3.3.4 Collection of Definitions and Prepositions

Consider the uncertain system described by (3.9), associated with the system, is the

following cost functional of the form;

J =

∫ ∞

0

[x(t)′Rx(t) + u(t)′G(u)] dt (3.24)

where R = R′ > 0 and G = G′ > 0 are given weighting matrices [87]. The

uncertainties described by (3.10) are said to be admissible uncertainties if satisfying

the following definition [22].

Definition 2 Let S1 > 0, S2 > 0, · · · , Sk > 0, be given positive-definite matrices.

Then an uncertainty of the form (3.10) is an admissible uncertainty for the system

(3.9), if the following conditions hold: Given any locally square integrable control

input u(·) and any corresponding solution to equations (3.9), (3.10) with an interval

of existence (0,t∗) (that is t∗ is the upper time limit for which the solution exists),

then there exists a sequence {ti}∞i=1 such that ti → t∗, ti ≥ 0 and

∫ ti

0

[

‖zj(t)‖2 − ‖ξj(t)‖2
]

dt ≥ −x(0)′Sjx(0) (3.25)

for all i and for j = 1, 2, · · · , k. Also note that t∗ and ti may be equal to infinity.
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We shall consider a problem of optimizing of the worst case of the cost functional

(3.24) via a linear state feedback controller of the form,

ẋ(t) = Acxc(t) + Bcx(t); xc(0) = 0;

u(t) = Ccxc(t) + Dcx(t) (3.26)

When the controller of the form (3.26) is applied to the uncertain system then the

resulting closed loop system can be described as,

ḣ(t) = Âh(t) + B̂2ξ(t);

z(t) = Ĉh(t);

u(t) = K̂h(t) (3.27)

where

h(t) =

[

x(t)

xc(t)

]

; ξ(t) =









ξ1(t)
...

ξk(t)









; z(t) =









z1(t)
...

zk(t)









; Â =

[

A + B1Dc B1Cc

Bc Ac

]

;

B̂2 =

[

B21 . . . B2k

0 . . . 0

]

; Ĉ =









C11 + D11Dc D11Cc

...
...

C1k + D1kDc D1kCc









K̂ = [Dc Cc] .

Definition 3 The controller (3.26) is said to be a guaranteed cost controller for the

uncertain system (3.9), (3.10) with cost functional (3.24) and initial condition x(0)

= x0 if the following conditions hold [22]:

(i) The matrix Â defined in (3.27) is stable.

(ii) There exists a constant c0 > 0 such that the following conditions hold: For all admis-

sible uncertainties, the solution to the closed loop system (3.25), (3.27) corresponding

to the initial condition h(0) = [x′
0, 0]′ satisfies

[x(·), u(·), ξ1(·), · · · , ξk(·)] ∈ L2[0, +∞) (3.28)

and hence, t∗ = ∞. Also, the corresponding value of the cost functional (3.24)

satisfies the bound J ≤ c0.
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An uncertain system (3.9), (3.10) with the cost function (3.24) which admits a guar-

anteed cost controller (3.26) with initial condition x(0) = x0 is said to be guaranteed

cost stabilisable with this initial condition.

The absolute stability of the closed loop system (3.27) can be defined as follows [22]:

Definition 4 The closed loop uncertain system (3.27), (3.25) is said to be absolutely

stable if there exists a constant c > 0 such that the following conditions hold:

(i) For any initial condition h(0) = h0 and any uncertainty inputs ξj(·) ∈ L2[0, +∞),

the system (3.27) has a unique solution defined on [0, +∞).

(ii) Given any admissible uncertainty for the uncertain system (3.27) then all corre-

sponding solutions to equations (3.27), (3.25) satisfy [h(·), ξ(·), · · · , ξk(·)] ∈ L2[0, +∞)

(hence, t∗ = ∞) and

‖h(·)‖2
2 +

k
∑

j=1

‖ξj(·)‖2
2 ≤ c‖h0‖2. (3.29)

The required guaranteed cost controller can be constructed by solving a parameter

dependant Riccati equation. This Riccati equation can be defined as follows [22]:

Let τ1 > 0, · · · , τk > 0 be given constants and consider the following Riccati equation

(

A − B1G
−1
τ D′

τCτ

)′
Xτ + Xτ

(

A − B1G
−1
τ D′

τCτ

)

− XτB1G
−1
τ B1Xτ

+Xτ B̃2B̃
′
2Xτ + C ′

τ

(

I − DτG
−1
τ D′

τ

)

Cτ = 0 (3.30)

where

Cτ :=



















R
1

2

0
√

τ1C11

...
√

τkC1k



















; Dτ :=



















0

G
1

2

√
τ1D11

...
√

τkD1k



















;

Gτ := D′
τDτ ; B̃2 :=

[

1√
τ1

B21 · · · 1√
τk

B2k

]

.

The parameter τ1 > 0, · · · , τk > 0 are to be chosen so that this Riccati equation has

a positive-definite solution Xτ > 0. Hence we can consider a set T0 ⊂ Rk defined
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as follows:

T0 :=

{

τ = [τ1, · · · , τk] ∈ Rk : τ1 > 0, · · · , τk > 0

and Riccati equation (3.30) has a solution Xτ > 0

}

(3.31)

If Xτ is the minimal positive-definite solution to Riccati equation (3.30), then the

corresponding guaranteed cost controller to be considered is given by

u(t) = −G−1
τ (B′

1Xτ + D′
τCτ )x(t) (3.32)

In the above context, the following Theorem 2, [22], gives the bound on the cost

function.

Theorem 2 Consider the uncertain system (3.9), (3.10) with cost function (3.24).

Then for any [τ1, · · · , τk]
′ ∈ T0, the corresponding controller (3.32) is a guaran-

teed cost controller for this uncertain system with any initial condition x0 ∈ Rn.

Furthermore, the corresponding value of the cost function (3.24) satisfies the bound

J ≤ x′
0Xτx0 +

k
∑

j=1

τjx
′
0Sjx0 (3.33)

for all admissible uncertainties and moreover, the closed loop uncertain system (3.9),

(3.10), (3.32) is absolutely stable.

The following Theorem 3, [22], shows that the controller construction given in Theo-

rem 2 can be used to construct a controller which approaches the minimax optimum.

Theorem 3 Consider the uncertain system (3.9), (3.10) with cost function (3.24)

with and suppose that B21 6= 0, · · · , B2k 6= 0. Then:

(i) Given a non-zero initial condition x0 ∈ Rn, the uncertain system (3.9), (3.10) will

be guaranteed cost stabilisable with initial condition x(0) = x0 if and only if the set

T0 defined in (3.31) is not empty.

(ii) Suppose the set T0 is not empty and let Ξ be the set of all admissible uncertainties

for the uncertain system (3.9), (3.10). Also for any initial condition x0 6= 0, let Θ

denote the set of all guaranteed cost controllers of the form (3.26) for the uncertain
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system with this initial condition. Then

inf
u(·) ∈ Θ

sup
ξ(·) ∈ Ξ

J = inf
τ ∈ T0

[

x′
0Xτx0 +

k
∑

j=1

τjx
′
0Sjx0

]

. (3.34)

3.4 Controller Design

Our aim is to design a robust output feedback controller which includes parameter

variations, interconnection effects and any other local uncertainties as the admissi-

ble uncertainties in the controller design. Recent work by Li Li et al [73], describes

the methodology to design decentralised robust output feedback control for large

interconnected systems. In [73], a controller design scheme is proposed to design

controllers for systems with randomly varying operating point; each operating point

is considered as a mode and the jumping process from one mode to another is

modeled as Markov jump parameter process. In [73], IQCs are used to describe the

uncertainties and Linear Matrix Inequality (LMI) solution technique is used to solve

the optimisation problem. Two classes of uncertainties are considered in [73], which

are uncertainties in local subsystem model and uncertainties in interconnection sig-

nals from other subsystems and these uncertainties are defined using IQCs.

The results in [73] are extended in this thesis: We consider a deterministic sys-

tem as compared to the randomly varying system in [73]. Also, we include the

parameter variations around the model corresponding to the selected equilibrium

point due to generation and load changes as additional uncertainty along with local

and interconnection uncertainties. In this section complete problem formulation,

stability proofs and optimisation procedure are given for the interconnected power

system controller design method.

Let us consider a generator in a power system with variable power output ρ(·) In

[88]. Each generator connected to the grid is treated as a subsystem and formulated

as a system affected by parameter variations and by the interconnection effects.

Effects due to parameter variations around the operating point and interconnection

effects are treated as uncertainties on the subsystem. IQCs are used to describe

the uncertainties and LMI optimisation technique is used to solve the optimisation

problem.
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Figure 3.4. Subsystem configuration

We consider a large scale system S comprising of N subsystems Si, as shown in

Figure 3.4, of the following form [89], [90] and [88]:

Si : ẋi(t) = Ai(γ)xi(t) + Biui(t) + Eiξi(t) + βiφi(t) + Liri(t),

zi(t) = Cixi(t) + Diui(t),

ζi(t) = Hixi(t) + Giui(t),

ζ̂i(t) = αiIxi(t),

yi = Cy,ixi(t) + Dy,iξi(t), (3.35)

where Ai(γ) is the system matrix corresponding to the SEP with power output

ρ(·) = γ, xi is the state vector and in the case of generators, it is obtained from the

SEP (2.25) to (2.28), xi = [∆δi, ∆ωi, ∆Eqi, ∆Voi]
′, ui the control inputs which are the

PSS outputs ∆Vsi, ξi ∈ Rpi is the perturbation, ζi ∈ Rhi is the uncertainty output

(made up of both the system states, and the control inputs), ζ̂i is the uncertainty

output due to parameter variation around operating point, zi ∈ Rqi is the controlled

output of the subsystem which consists of both the subsystem states and control
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inputs, and yi is output of the system which is ∆ωi feedback to the controller. The

input ri is the interconnection signals from the other subsystems Sj, j 6= i, on the

subsystem Si. The input ξi describes the effect of local uncertain modeling errors in

this subsystem and αi and βi are constants and will be defined later.

For the interconnected power system, the subsystem matrices Ai, Bi and Li can

be obtained from the system matrices ASY S and BSY S defined by (2.49) as follows:

Ai = ASY S [4i − 3 : 4i, 4i − 3 : 4i] (3.36)

Bi = BSY S [4i − 3 : 4i] (3.37)

LiA1 = ASY S [4i − 3 : 4i, 1 : 4(i − 1)]

for i = 2, · · · , n and for i = 1, LiA1is vacuous

LiA2 = ASY S [4i − 3 : 4i, 4(i + 1) − 3 : 4n]

for i = 2, · · · , n − 1 and for i = n, LiA2is vacuous

LiA = [LiA1, LiA2]

LiB = [B1, · · · , Bi−1, Bi+1, · · · , Bn]

Li = [LiA, LiB] (3.38)

where n is the number of subsystems.

The variations in Ai(·) due to load and generation changes are treated as an

additional disturbance and the system is regarded as a perturbation of a linear fixed

parameter system. The variations in the matrix Ai(·) can be regarded as modeling

uncertainty and driven by φi(t), [91], where

φi(t) :=
1

βi
[Ai(γ + ∆γ) − Ai(γ)]xi(t) (3.39)

The designed controller will stabilize the nominal plant corresponding to the SEP

with the specified parameter variations around the SEP provided, the constraint

(3.39) is satisfied. The size of neighborhood is determined by the choice of αi and

βi where positive real numbers αi, βi and γ ∈ Γ be so chosen that

sup
ρ∈Ωγ

‖Ai(ρ) − Ai(γ)‖ < αiβi (3.40)

where ‖ · ‖ in (3.40) denotes the largest singular value.
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System S satisfies the following assumptions [73]:

Assumption 1 For each i = 1, · · · , N , given locally square integrable signals

[ui(·), ri(·), ξi(·), φi(·)] for any initial condition xi(0) = xi0, the solution to the sub-

system (3.35) exists on any finite time interval [0,T] of the interval [0, +∞) and is

locally square integrable i.e,
∫ T

0
‖xi(·)‖2dt|xi0 < ∞

Assumption 2 For all i = 1, · · · , N D′
iDi + G′

iGi > 0, DyiD
′
yi > 0.

Assumption 3 The pair (Ai, C
′
iCi), i = 1, · · · , N , is observable.

Assumption 4 The pair (Ai, Bi), i = 1, · · · , N , is stabilisable.

Assumption 5 For all i = 1, · · · , N , C ′
iDi = 0, H ′

iGi = 0, EiD
′
yi = 0.

Assumption 6 For all i = 1, · · · , N , [Ei Li] 6= 0.

The above assumptions are standard assumptions used in H∞ type of problems.

Assumption 1 states that the plant under consideration is well defined on each finite

time sub interval [0, T ]. Assumptions 2 to 4 are technical assumptions which will

be used to prove the feasibility of the coupled Riccati equations and inequalities

arising in the necessary part of Theorem 4; these assumptions formulate the basic

controllability and observability properties of the uncertain system S. They are

often used in Riccati approach to robust control design [92] and [93]. Typically,

these assumptions allow one to infer that the corresponding Riccati equations have

positive definite and minimal solutions [92] and [94]. Assumptions 5 and 6 are made

for convenience; they are not restrictive and are often made to simplify the derivation

of robust control solutions.

3.4.1 Uncertainty Description

The uncertainties, in (3.35), are driven by signals ξi(t), ri(t) and φi(t) and their cor-

responding outputs are ζi(t), ζµ(t) and ζ̂i(t). We shall use the IQC description given

by Definition 2 to characterise the uncertainties. Let M1i, M2i, M3i, i = 1, · · · , N be

three collections of positive definite symmetric matrices. The following definitions

describe the three kinds of feasible uncertainty sets considered in this work.

Definition 5 A collection of uncertainty inputs ξi(·), i = 1, · · · , N , represents an

admissible uncertainty for the large scale system S if the following conditions hold:
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Given locally square integrable control inputs ui(·), locally square integrable pa-

rameter variation inputs φi(·),and locally square integrable interconnection inputs

ri(·), i = 1, · · · , N there exists a sequence{tl}+∞
l=1 , tl → +∞, such that

∫ tl

0

(

‖ζi(t)‖2 − ξi(t)‖2
)

dt ≥ −x′
i0M1ixi0, M1i = M ′

1i > 0, ∀i = i = 1, · · · , N

(3.41)

The set of all such admissible uncertainties is denoted by Ξ.

Definition 6 A collection of uncertainty inputs φi(·), i = 1, · · · , N represents an

admissible parameter variation for the large scale system S if the following conditions

hold: Given any locally square integrable control inputs ui(·), locally square integrable

local uncertainty inputs ξi(·), and locally square integrable interconnection inputs

ri(·), i = 1, · · · , N there exists a sequence{tl}+∞
l=1 , tl → +∞, such that

∫ tl

0

(

‖ζ̂i(t)‖2 − ‖φi(t)‖2
)

dt ≥ −x′
i0M2ixi0, M2i = M ′

2i > 0, ∀i = i = 1, · · · , N

(3.42)

The set of all such admissible parameter variation uncertainties is denoted by Ψ.

Definition 7 The subsystem Si of the large scale system S is said to have admissible

interconnections to other subsystems of this large-scale system, if the following hold:

Given any locally square integrable control inputs ui(·), locally square integrable lo-

cal uncertainty inputs ξi(·) and locally square integrable parameter variation inputs

φi(·), i = 1, · · · , N there exists a sequence{tl}+∞
l=1 , tl → +∞, such that

∫ tl

0

(

∑

µ6=i
‖ζµ(t)‖2 − ‖ri(t)‖2

)

dt ≥ −x′
i0M3ixi0, M3i = M ′

3i > 0, ∀i = 1, . . . , N ;

(3.43)

The corresponding uncertain interconnection input ri(·) is referred to as an admis-

sible uncertain interconnection input. The set admissible interconnection inputs is

denoted by Π.

With the uncertainties defined, we shall proceed to describe the decentralised robust

controller.
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3.4.2 Robust Decentralised Control

For uncertain large scale system S comprising subsystems Si of the form (3.35)

and subject to the constraints (3.41), (3.42) and (3.43), we consider the problem of

decentralised absolute stabilisation by means of decentralised linear output feedback

controllers of the form,

ẋc,i(t) = Ac,ixc,i(t) + Bc,iyi(t);

ui(t) = Kc,ixc,i(t), (3.44)

where xci ∈ R
nci is the ith controller state vector.

We can define the absolute stability achieved through the decentralised linear

output feedback controllers (3.44) using Definition 4, as follows:

Definition 8 The large scale system S subject to perturbations and interconnections

satisfying the constraints (3.41), (3.42) and (3.43) is said to be absolutely stabilis-

able via decentralised output feedback control if there exists a decentralised output

feedback controller of the form (3.44) and a constant C1 > 0 such that for any ini-

tial conditions [x′
i(0), x′

ci(0)], any local uncertainty inputs ξi(·), parameter variation

uncertainty inputs φi(·), and any admissible interconnection inputs ri(·) subject to

constraints (3.41), (3.42) and (3.43), the signals xi(·), xci(·), ui(·), ξi(·), φi(·) and

ri(·) belong to L2[0, +∞) and are uniformly bounded.

N
∑

i=1

[

‖ xi(·) ‖2
2 + ‖ xci(·) ‖2

2 + ‖ ui(·) ‖2
2 + ‖ ξi(·) ‖2

2 + ‖ φi(·) ‖2
2 + ‖ ri(·) ‖2

2

]

≤

C1

N
∑

i=1

[

‖ xi(0) ‖2
2 + ‖ xci(0) ‖2

2

]

(3.45)

The stability property (3.45) provides a bound on the norm of closed loop transients,

which is uniform with respect to admissible uncertainties and interconnections sat-

isfying the magnitude constraints (3.41), (3.42) and (3.43). This justifies referring

to this property as an absolute stability property.

One common approach to achieve robust stabilisation is via evaluation of the

worst case performance of uncertain system. The idea is to seek a controller of the

form (3.44), which achieves a bounded system performance measured in terms of
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the performance cost,

sup
Ξ,Ψ,Π

∫ ∞

0

N
∑

i=1

‖zi‖2dt (3.46)

where Ξ, Ψ and Π are admissible set of uncertainties and interconnection inputs

given in Definitions 5, 6 and 7 respectively. Once such a controller is found, it is

often possible to show that this controller is also absolutely stabilising in the sense of

Definition 8. We note that in some problems given a set U of allowable controllers,

it is possible to find a controller which attains a optimal system performance given

by,

inf
U

sup
Ξ,Ψ,Π

∫ ∞

0

N
∑

i=1

‖zi‖2dt (3.47)

For other problems such as the one considered here, it is only possible to obtain

a controller of the form (3.44) which guarantees a bound on the optimal system

performance (3.47).

3.4.3 Controller Design and Stability Conditions

Let τi > 0, ηi > 0, θi > 0, i = 1, · · · , N, be given constants, and θ̄i =
∑N

j=1,j 6=i θj . We

consider a collection of the coupled generalized algebraic Riccati equations (GAREs)

[73]:

A′
iXi + XiAi + C̄ ′

iC̄i − Xi

(

BiR
−1
i B′

i − B̄2,iB̄
′
2,i

)

Xi + ηiα
2
i I + Xi

(

η−1
i β2

i

)

Xi = 0,

(3.48)

A′
iYi + YiAi + YiB̄2,iB̄

′
2,iYi −

(

C ′
y,iW

−1
i Cy,i − C̄ ′

iC̄i

)

+ ηiα
2
i I + Yi

(

η−1
i β2

i

)

Yi = 0

(3.49)

where Ri = D̄′
iD̄i, Wi = D̄y,iD̄

′
y,i and

C̄i =

[

Ci

(τi + θ̄i)
1/2Hi

]

,

D̄i =

[

Di

(τi + θ̄i)
1/2Gi

]

,

B̄2,i =
[

τ
−1/2
i Ei θ

−1/2
i Li

]

,

D̄y,i =
[

τ
−1/2
i Dy,i 0

]

. (3.50)



Section 3.4 Controller Design 54

Then associated with (3.48) and (3.49) is a collection of decentralized dynamic

output feedback controllers of the form

ẋc,i =
[

Ai −
(

BiR
−1
i B′

i − B̄2,iB̄
′
2,i − η−1

i β2
i I
)

Xi

]

xc,i(t)

+ (Yi − Xi)
−1 C ′

y,iW
−1
i [yi(t) − Cy,ixc,i(t)] ,

ui =
(

−R−1
i B′

iXi

)

xc,i(t). (3.51)

Furthermore, consider a set of vectors,

T = {{τi, ηi, θi}Ni=1 ∈ R3N , τi > 0, ηi > 0, θi > 0 : the set of coupled GAREs (3.48),

admits a set of solutions Xi ≥ 0and the set of coupled GAREs (3.49)

admits a set of solutions Yi ≥ 0 such that Yi > Xi} (3.52)

Note that the minimal positive definite solutions Xi to the coupled equations (3.48)

as well as solutions Yi to the GAREs (3.49) depending upon the chosen {τi, ηi, θi}Ni=1 ∈
T and this dependance is assumed throughout.

We can state the following Theorems 4 and 5 using the results of [73] and Theo-

rem 3. Necessary and sufficient conditions for the uncertain interconnected system S

to be robustly stabilisable by means of the controller (3.44) is given in the Theorem

4. Theorem 5 characterises guaranteed robust performance achievable by means of

such controller.

Theorem 4 Consider a large scale system S in which the uncertainties and inter-

connections satisfy the constraints (3.41), (3.42) and (3.43). This system is abso-

lutely stabilisable via a decentralised dynamic output feedback controller of the form

(3.44) if and only if the set T is non-empty.

Theorem 5 Given a vector of initial conditions xi(0) = xi0, consider a U of de-

centralised controllers (3.44). The optimal worst case performance achievable via

decentralised controllers of the class U is upper bounded as follows:

inf
U

sup
Ξ,Ψ,Π

∫ ∞

0

N
∑

i=1

‖zi‖2dt ≤ inf
T

J(τ, η, θ) (3.53)
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where Ξ, Ψ and Π are the sets of admissible uncertainties and admissible intercon-

nection inputs given in Definitions 5, 6 and 7 respectively and

J(τ, η, θ) ,

N
∑

i=1

x′
i0 (Xi + τiM1i + ηiM2i + θiM3,i) xi0. (3.54)

Suppose {τ ∗
i , η

∗
i , θ

∗
i }Ni=1 attains the infimum on the right-hand side of (3.53). Then

a decentralized controller satisfying this upper-bound is given by (3.51) in which

τi = τ ∗
i ,, ηi = η∗

i , and θi = θ∗i , i = 1, · · · , N with initial condition xc,i(0) = xi(0).

Remark 1 To achieve the claimed bound on the worst case performance, the op-

timisation problem defined on the right hand side of (3.53) must be solved, which

requires the knowledge of plant initial states xi(0). When the plant’s initial states

are completely known, it is natural to pass that knowledge on to the controller by

setting xci(0) = xi(0). In practice however, the initial state of the plant may not

be known. As will be seen from the proof of Theorem 5, in that case an alternative

stabilising controller can be obtained by letting xci(0) = 0. However, this controller

will generally guarantee a higher bound on the system performance. Specifically in

this case the bound on the performance is given by the quantity on the right hand

side of (3.53) in which the matrices Xi is replaced with Yi.

3.4.4 Proof of the “only if” part of Theorem 4: Necessary condition

for absolute stability

Suppose given large scale system S is stabilisable via decentralised output feedback

and condition (3.45) holds. That is, there exists a linear decentralised output feed-

back controller of the form (3.44), such that the corresponding closed loop system

with uncertainty perturbations and interconnections of the sets Ξ, Ψ and Π satisfies

(3.45). Then we conclude that there exists a decentralised controller of the form

(3.44) and finite constant c > 0 such that,

sup
Ξ,Ψ,Π

∫ ∞

0

N
∑

i=1

‖zi‖2dt < c (3.55)

Our objective is to infer from (3.55) that the set T is not empty. The proof of

the statement will proceed as follows. First using the general S-procedure results

of Section 3.3.3 and [22], we will show that condition (3.55) implies the solvability
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of certain family of scaled H∞ control problems. Each problem is formulated for a

subsystem of an uncertain system (3.35), and involves some scaling parameters τi,

ηi and θi. The next step will be to use the existing results of H∞ control to establish

that the vector of scaling parameters {τi, ηi, θi}Ni=1 belongs to the set T .

For an arbitrary pair of elements of Ξ, Ψ and Π, let us rewrite the corresponding

closed loop system in the form,

˙̄xi(t) = Āix̄i(t) + B̃2iwi(t) (3.56)

where

Āi =

[

Ai BiKci

BciCyi Aci

]

, B̃2i =

[

Ei Li βiI

BciDyi 0 0

]

x̄i(t) =
[

x′
i x′

ci

]′
,

wi =
[

ξ′i(t) r′i(t) φ′
i(t)
]′

, w = [w′
1(t) · · ·w′

N(t)]
′

(3.57)

In view of (3.55), one can choose a sufficiently small constant ε > 0 such that,

(1 + ε)

∫ ∞

0

N
∑

i=1

‖zi‖2dt < c − ε (3.58)

Let us define the following quadratic functionals,

g0(w) = (1 + ε)

∫ ∞

0

N
∑

i=1

‖zi‖2dt − c + ε

gi,1(w) =

∫ ∞

0

(

‖ζi(t)‖2 − ‖ξi(t)‖2
)

dt + x′
i0M1ixi0

gi,2(w) =

∫ ∞

0

(

‖ζ̂i(t)‖2 − ‖φi(t)‖2
)

dt + x′
i0M2ixi0

gi,3(w) =

∫ ∞

0

(

∑

µ6=i
‖ζµ(t)‖2 − ‖ri(t)‖2

)

dt + x′
i0M3ixi0 (3.59)

Now we consider a set of inputs w ∈ L2[0, +∞) for which

gi,1(w) ≥ 0, gi,2(w) ≥ 0 and gi,3(w) ≥ 0 (3.60)
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Condition (3.60) implies that each such input satisfies the constraints (3.41), (3.42)

and (3.43) with tl = +∞. Therefore in view of the assumption that the chosen con-

troller guarantees the satisfaction of the condition (3.55), inequality (3.60) implies

that g0(w) < 0 (follows from (3.58)). Further more since M1i > 0, M2i > 0 and

M3i > 0, one can choose an input w to satisfy the results of [22]. According to the

S-procedure results in Theorem 1 and [22], these facts imply that one can find the

constants τi ≥ 0, ηi ≥ 0, θi ≥ 0, i = 1, · · · , N such that,

g0(w) +
N
∑

i=1

[τigi,1(w) + ηigi,2(w) + θigi,3(w)] ≤ 0 (3.61)

for any input w ∈ L2[0, +∞). Using the notation I(w) =
∫∞
0

∑N
i=1 ‖zi‖2dt, and

substituting in (3.61)

I(w)(1 +ε) + ε − c +

N
∑

i=1

[

τi

∫ ∞

0

(

‖ζi(t)‖2 − ‖ξi(t)‖2
)

dt + τi (x
′
i0M1ixi0)

]

+

N
∑

i=1

[

ηi

∫ ∞

0

(

‖ζ̂i(t)‖2 − ‖φi(t)‖2
)

dt + ηi (x
′
i0M2ixi0)

]

+
N
∑

i=1

[

θi

∫ ∞

0

(

∑

µ6=i
‖ζµ(t)‖2 − ‖ri(t)‖2

)

+ θi (x
′
i0M3ixi0)

]

dt ≤ 0 (3.62)

on simplification we can write,

I(w) +

∫ ∞

0

[(

N
∑

i=1

(

τi + θ̄i
)

‖ζi(t)‖2 + ηi‖ζ̂i(t)‖2

)

− ‖w̄i(t)‖2

]

dt ≤

−εI(w) + c − ε −
N
∑

i=1

x′
i0 (τiM1i + ηiM2i + θiM3i) xi0 (3.63)

where

w̄i =
[

τ
1

2

i ξ′i(t), θ
1

2

i r′i(t), η
1

2

i φ′
i(t)
]

, w̄ = [w̄1, · · · , w̄N ]
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In view of (3.63), a scaled subsystem can be written as,

ẋi(t) = Aixi(t) + Biui(t) + τ
− 1

2

i Eiτ
1

2

i ξi(t) + η
− 1

2

i βiη
1

2

i φi(t) + θ
− 1

2

i Liθ
1

2

i ri(t),

zi(t) = Cixi(t) + Diui(t),
(

τi + θ̄i
)

1

2 ζi(t) =
(

τi + θ̄i
)

1

2 Hixi(t) +
(

τi + θ̄i
)

1

2 Giui(t),

η
1

2

i ζ̂i(t) = η
1

2

i αIxi(t),

yi(t) = Cy,ixi(t) + Dy,iξi(t), (3.64)

The above equations can be written in a compact form as,

ẋi(t) = Aixi(t) + Biui(t) + B̂2,iw̄i(t)

z̄i(t) = Ĉixi(t) + D̂iui(t),

yi(t) = Cy,ixi(t) + D̂y,iw̄i(t), (3.65)

where

B̂2,i =
[

B̄2,i η
− 1

2

i βiI
]

, B̄2,i =
[

τ
− 1

2

i Ei θ
− 1

2

i Li

]

, z̄i =
[

zi (τi + θ̄i)
1

2 ζ ′
i(t) η

1

2

i ζ̂ ′
i(t)
]′

Ĉi =

[

C̄i

η
1

2

i αiI

]

, C̄i =

[

Ci

(τi + θ̄i)
1

2 Hi

]

, D̂i =

[

D̄i

0

]

, D̄i =

[

Di

(τi + θ̄i)
1

2 Gi

]

,

and D̂y,i =
[

τ
− 1

2

i Dyi 0 0
]

System (3.65) is similar to the systems described by (3.9) and (3.27). We can

now use the results concerning the controller design of Section 3.3.4 and the relevant

results of [22]. Using the Preposition 3 of Section 5.3.1 of [22], it can be shown that

condition (3.63) implies that τi > 0, η > 0, θi > 0. We also note that in case of zero

initial conditions xi(0) = 0, xc,i(0) = 0, in (3.63) we can use Preposition 2 of Section

5.3.1 of [22] and we can write,

c − ε −
N
∑

i=1

x′
i0 (τiM1i + ηiM2i + θiM3i)xi0 ≤ 0; (3.66)
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Substituting (3.66) in (3.63) we get,

I(w)+

∫ ∞

0

[(

N
∑

i=1

(

τi + θ̄i
)

‖ζi(t)‖2 + ηi‖ζ̂i(t)‖2

)

− ‖w̄i(t)‖2

]

dt ≤ −εI(w)

∀w ∈ L2[0, +∞); (3.67)

We can write,

I(w) +

∫ ∞

0

[(

N
∑

i=1

(

τi + θ̄i
)

‖ζi(t)‖2 + ηi‖ζ̂i(t)‖2

)

− ‖w̄i(t)‖2

]

dt ≥

I(w) −
∫ ∞

0

‖w̄i(t)‖2dt (3.68)

Using (3.67) and (3.68) we can write,

I(w) −
∫ ∞

0

‖w̄i(t)‖2dt ≤ −εI(w)

(1 + ε) I(w) ≤
∫ ∞

0

‖w̄i(t)‖2dt

I(w)
∫∞
0

‖w̄i(t)‖2dt
≤ 1

1 + ε
(3.69)

Condition (3.69) implies that the closed loop augmented system corresponding to

the chosen controller (3.44),

˙̄x(t) = Āx̄(t) + B̃2w̄(t)

z̄(t) = C̃x̄(t) (3.70)

where

A = diag
{

Āi

}N

i=1
, x̄ = [x̄′

1, · · · , x̄′
N ]

′
,

B̄2 = diag

{[

τ
− 1

2

i Ei θ
− 1

2

i Li η
− 1

2

i βiI

τ
− 1

2

i Bc,iDyi 0 0

]}N

i=1

and

C̃ = diag
{[

Ĉi D̂iKc,i

]}N

i=1
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satisfies the following H∞ type condition given by (3.13)

sup
w̄ 6≡0,w̄∈L2[0,+∞]

∫ +∞
0

‖z̄‖2dt
∫ +∞
0

‖w̄‖2dt
< 1 (3.71)

Here, z̄ is the output of the system (3.70) corresponding to the initial condition x̄(0).

Condition (3.71) implies that for each i = 1, · · · , N ,

sup
w̄i 6≡0,w̄i∈L2[0,+∞]

∫ +∞
0

‖z̄i‖2dt
∫ +∞
0

‖w̄i‖2dt
< 1 (3.72)

where w̄i is the disturbance input of the closed loop subsystem corresponding to the

open loop subsystem,

ẋi(t) = Aixi(t) + Biui(t) + B̂2,iw̄i(t)

z̄i(t) = Ĉixi(t) + D̂iui(t),

yi(t) = Cy,ixi(t) + D̂y,iξi(t), xi(0) = 0 (3.73)

and the ith entry of the considered controller (3.44) with initial condition xc,i = 0.

To verify this fact, it is sufficient to let w̄j(·) = 0, j 6= i, in (3.71) and (3.70). Indeed

all entries z̄j(·), j 6= i of the corresponding output vector of the system (3.70) will

be equal to zero, hence (3.72) follows from (3.71).

Condition (3.72) and the internal stability of the closed loop system imply that

the entry ui of the given controller of the form (3.44) solves the H∞ disturbance

attenuation problem. Now we can apply the results of [22] to each system (3.73).

The satisfaction of (3.72) for the internally stable closed loop system consisting of

(3.73) and the controller (3.44) is equivalent to the following conditions [22]: The

GAREs (3.48) admit a set of minimal positive definite solutions Xi > 0 and GAREs

(3.49) admit a set of positive definite solutions Yi > 0 such that Yi > Xi. That is

the selected collection of the constants τi, ηi, θi belong to the set T , hence this set

is not empty. Also the system (3.65) is in similar form of the system mentioned

in [22] (3.2.1), hence we can apply Lemma 3.2.3 of [22] to (3.65) and considering the

GAREs in [22] and [73] we can write,

A′
iXi + XiAi + Ĉ ′

iĈi − Xi

(

BiR
−1
i B′

i − B̂2,iB̂
′
2,i

)

Xi = 0, (3.74)
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A′
iYi + YiAi + YiB̂2,iB̂

′
2,iYi −

(

C ′
y,iW

−1
i Cy,i − Ĉ ′

iĈi

)

= 0, (3.75)

from (3.74) and (3.75) the GAREs mentioned in (3.48) and (3.49) are obtained.

3.4.5 Proof of the “if” statement of Theorem 4: The sufficient

condition for absolute stabilisability

Suppose the set T defined in (3.52) is not empty. To prove the condition of absolute

stabilisability, we wish to show that the set T being non empty implies the absolute

stabilisability of the uncertain system (3.35) subject to the uncertainty constraints

(3.41), (3.42) and (3.43) using Theorem 3.

To prove this claim, we select a collection {τi, ηi, θi}Ni=1 ∈ T and show that the

decentralised controller (3.51) defined using this collection solves a H∞ control prob-

lem for an aggregated system comprising scaled subsystems of the system (3.35) and

driven by arbitrary square integrable interconnection and local uncertainty inputs.

In particular, this will imply that this controller is an internally stabilising controller.

Then we will show that, this fact and assumption of the theorem that the admissible

uncertainty and interconnections of the system (3.35) satisfy IQCs (3.41), (3.42) and

(3.43) together imply absolute stability of the corresponding uncertain closed loop

system consisting of the plant (3.35) and the decentralised controller (3.51).

Let us choose a collection {τi, ηi, θi}Ni=1 ∈ T . Associated with this collection of

constants, consider the system

ẋ(t) = Ax(t) + Bu(t) + B̂2w̄(t)

z̄(t) = Ĉx(t) + D̂u(t),

y(t) = Cyx(t) + D̂yw̄(t), (3.76)

where

x = [x′
1, · · · , x′

N ]
′
, u = [u′

1, · · · , u′
N ]

′
, A = diag (Ai)

N
i=1

B = diag (Bi)
N
i=1 , B̂2 = diag

(

B̂2,i

)N

i=1
, Ĉ = diag

(

Ĉi

)N

i=1

D̂ = diag
(

D̂i

)N

i=1
, Cy = diag (Cy,i)

N
i=1 , D̂y = diag

(

D̂y,i

)N

i=1

in which Ĉi, D̂i, B̂2,i and D̂y,i were defined in (3.50) and (3.65) and the input

w̄ ∈ L2[0, +∞). Also consider the matrices X = diag{Xi}Ni=1 and Y = diag{Yi}Ni=1



Section 3.4 Controller Design 62

whose entries Xi, Yi satisfy the conditions described in the definition of set T . Then

we conclude that X ≥ 0, Y ≥ 0 solve the GAREs:

A′X + XA + Ĉ ′Ĉ − X
(

BR−1B′ − B̂2B̂
′
2

)

X = 0, (3.77)

A′Y + Y A + Y B̂2B̂
′
2Y −

(

C ′
yW

−1Cy − Ĉ ′Ĉ
)

= 0, (3.78)

Y > X, R := diag{Ri}Ni=1, W := diag{Wi}Ni=1

Further more the pair (A, B) is stabilisable since the pair (Ai, Bi) corresponding to

each subsystem of the system (3.76) are stabilisable by Assumption 4. Similarly the

pairs (A, Ĉ ′Ĉ) is observable through Assumption 3.

Consider the augmented controller (Ac, Bc, Kc) with state vector xc = [x′
c1, · · · , x′

cN ]′

where Ac = diag (Ac,i)
N
i=1, Bc = diag (Bc,i)

N
i=1 and Kc = diag (Kc,i)

N
i=1 and Ac,i, Bc,i

and Kc,i are given by (3.51). Then it follows from the H∞ control theory [22], that

the controller (Ac, Bc, Kc) solves the output feedback H∞ control problem defined

by the system (3.76) and the H∞ norm bound (3.71).

Write the closed loop system as,

˙̃x(t) =

[

A BKc

BcCy Ac

]

x̃(t) +

[

B̂2

BcD̂y

]

w̄(t)

, Aclx̃(t) + Bclw̄(t),

z̄(t) =
[

Ĉ D̂Kc

]

x̃(t) (3.79)

where x̃(t) = (x′, x′
c)

′, then ‖Tz̄w̄‖∞ < 1; here Tz̄w̄ denotes the closed loop system

mapping from w̄ to z̄. Because the chosen controller (3.51) solves the H∞ problem,

this fact implies internal stability of the closed loop system (3.79). Then ‖x̃‖2
2 < ∞,

and hence there exists a sufficiently small ǫ > 0 such that z̃ =
[

ǫ
1

2 x̃′, z̄′
]′

and

‖Tz̃w̄‖∞ < 1.

Let,

z̄ =
[

Ĉ D̂Kc

]

x̃(t)

= Čx̃(t) (3.80)
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then,

Č ′Č =

[

Ĉ ′Ĉ Ĉ ′D̂Kc

K ′
cD̂

′Ĉ K ′
cD̂

′D̂Kc

]

=

[

Ĉ ′Ĉ 0

0 XBR−1D̂′D̂R−1B′X

]

=

[

Ĉ ′Ĉ 0

0 XBR−1B′X

]

(3.81)

In (3.81), Ĉ ′D̂Kc = 0, using Assumption 5 and Kc = −R−1B′X and R = D̂′D̂,

using equations (3.48), (3.48) and (3.51).

Applying the strict bounded real lemma conditions by Lemma 1 and equation

(3.15), there exist P̌ > 0, such that

P̌Acl + A′
clP̌ + P̌BclB

′
clP̌ +

[

Ĉ ′Ĉ 0

0 XBR−1B′X

]

+ ǫI < 0 (3.82)

Using (3.80) and (3.81) we have,

∫ T

0

‖z̃(t)‖2dt ≤
∫ T

0

x̃′(t)

([

Ĉ ′Ĉ 0

0 XBR−1B′X

]

+ ǫI

)

x̃(t)dt

Let x̃′P̌ x̃ be a Lyaponov function associated with the system (3.79). We have,

d

dt

(

x̃′P̌ x̃
)

= 2x̃′P̌ (Aclx̃ + Bclw̄)

= x̃′ (P̌Acl + A′
clP̌
)

x̃ + 2x̃′P̌Bclw̄ (3.83)

Since the closed loop system is internally stable, then for each w̄ ∈ L2[0, +∞) and

any initial condition x̃(0), we have z̃ ∈ L2[0, +∞). Let T > 0 be a time constant.

Since P̌ > 0 from Lemma 1, it is easy to establish by completing the squares that

for any w̄ ∈ L2[0, +∞) and any initial condition x̃(0) and using equation (3.83), the



Section 3.4 Controller Design 64

trajectories of the closed loop system (3.76) satisfy,

∫ T

0

‖z̃(t)‖2dt ≤
∫ T

0

‖z̃(t)‖2dt + x̃(T )′P̌ x̃(T )

≤
∫ T

0

‖z̃(t)‖2dt + x̃(T )′P̌ x̃(T ) − x̃′(0)P̌ x̃(0) + x̃′(0)P̌ x̃(0)

≤
∫ T

0

‖z̃(t)‖2dt + x̃′(0)P̌ x̃(0) +

∫ T

0

d

dt

[

x̃′(t)P̌ x̃(t)
]

dt

=

∫ T

0

x̃′(t)

([

Ĉ ′Ĉ 0

0 XBR−1B′X

]

+ ǫI

)

x̃(t)dt

+

∫ T

0

x̃′(t)
(

P̌Acl + A′
clP̌
)

x̃(t)dt +

∫ T

0

2x̃′(t)P̌Bclw̄(t)dt + x̃′(0)P̌ x̃(0)

=

∫ T

0

x̃′(t)

(

P̌Acl + A′
clP̌ +

[

Ĉ ′Ĉ 0

0 XBR−1B′X

]

+ ǫI

)

x̃(t)dt

+

∫ T

0

2x̃′(t)P̌Bclw̄(t)dt + x̃′(0)P̌ x̃(0)

≤ x̃′(0)P̌ x̃(0) −
∫ T

0

[

x̃′(t)P̌BclB
′
clP̌ x̃(t) − 2x̃′(t)P̌Bclw̄(t)

]

dt

= x̃′(0)P̌ (0)x̃(0) +

∫ T

0

‖w̄(t)‖2dt −
∫ T

0

‖w̄(t) − B′
clP̌ x̃(t)‖2dt

≤ ‖w̄(t)‖2
2 + x̃′(0)P̌ (0)x̃(0) (3.84)

Now, let {tl}+∞
l=1 be a sequence of times as in Definitions 5, 6 and 7. Let us

fix a time tl and choose an arbitrary collection of admissible local uncertainty

inputs ξ1(·), · · · , ξN(·) and φ1(·), · · · , φN(·) and admissible interconnection inputs

r1(·), · · · , rN(·). Based on the chosen admissible uncertainties, we define the follow-

ing uncertainty input w̄l for the system (3.79):

w̄l(·) =
[

τ
1

2

1 ξl
′

1 (·), η
1

2

1 φl
′

1 (·), θ
1

2

1 rl
′

1 (·), · · · , τ
1

2

Nξl
′

N(·), η
1

2

Nφl
′

N(·), θ
1

2

Nrl
′

N (·)
]′

(3.85)

where ξli, φ
l
i and rli are obtained by extending the chosen admissible uncertainty in-

puts ξi(·) and φi(·) and interconnections ri(·) to have the value zero in the interval

[tl, +∞]. Then, w̄l(·) ∈ L2[0, +∞) and hence condition (3.84) holds for this partic-

ular uncertainty input and for any T = tl. From (3.41), (3.42), (3.43), (3.63), (3.65)
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and (3.84) we have that,

∫ tl

0

N
∑

i=1

[

ǫ‖x̃i‖2 + ‖zi‖2 + ‖
(

τi + θ̄i
)

ζi‖2 + ‖ηiζ̂i‖2
]

dt ≤ x̃′(0)P̌ x̃(0)

+

∫ tl

0

N
∑

i=1

‖τiξi‖2
2 + ‖θiri‖2

2 + ‖ηiφi‖2
2

∫ tl

0

N
∑

i=1

(

ǫ‖x̃i‖2 + ‖zi‖2
)

dt ≤ x̃′(0)P̌ x̃(0)

+

N
∑

i=1

x′
i(0) (τiM1i + ηiM2i + θiM3i)xi(0) (3.86)

Here zi(·) are the outputs of (3.35) corresponding to the state trajectory of the

closed loop system (3.79) driven by the input w̄l(·). By definition, we can choose

tl → +∞. Then (3.86) implies xi(·), xc,i(·), ui(·) ∈ L2[0, +∞). Consequently

ξi(·), φi(·), ri(·), ζi(·), ζ̂i(·) ∈ L2[0, +∞). Then condition (3.45) follows from (3.86),

(3.41), (3.42) and (3.43). This proves absolute stability of the closed loop system as

formulated in Definition 8.

3.4.6 Proof for Theorem 5

Let us write the GAREs for the aggregated system using (3.74) and (3.75) as,

P(X) := A′X + XA + Ĉ ′Ĉ − X
(

BR−1B′ − B̂2B̂
′
2

)

X = 0, (3.87)

Q(Y ) := A′Y + Y A + Y B̂2B̂
′
2Y −

(

C ′
yW

−1Cy − Ĉ ′Ĉ
)

= 0, (3.88)

Let Σ =

[

Y X − Y

X − Y Y − X

]

then we can show that the matrix Σ satisfy the

following GAREs:

ΣAcl+A′
clΣ+ΣBclB

′
clΣ+

[

Ĉ ′Ĉ 0

0 XBR−1B′X

]

=

[

Q(Y ) P(X) − Q(Y )

P(X) − Q(Y ) Q(Y ) − P(X)

]

= 0

(3.89)
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We shall evaluate the terms on the left hand side of the equation (3.89) as follows:

ΣAcl + A′
clΣ =

[

Y X − Y

X − Y Y − X

][

A BKc

BcCy Ac

]

+

[

A′ C ′
yB

′
c

K ′
cB

′ A′
c

][

Y X − Y

X − Y Y − X

]

=

[

Y A + (X − Y )BcCY Y BKc + (X − Y )Ac

(X − Y )A + (Y − X)BcCY (X − Y )BKc + (Y − X)Ac

]

+

[

A′Y + C ′
yB

′
c(X − Y ) A′(X − Y ) + C ′

yB
′
c(Y − X)

K ′
cB

′Y + A′
c(X − Y ) K ′

cB(X − Y ) + A′
c(Y − X)

]

(3.90)

ΣBclB
′
clΣ =

[

Y X − Y

X − Y Y − X

][

B̂2

BcD̂y

]

[

B̂′
2 D̂′

yB
′
c

]

[

Y X − Y

X − Y Y − X

]

=

[

Y B̂2 + (X − Y )BcD̂y

(X − Y )B̂2 + (Y − X)BcD̂y

]

×

[

B̂′
2Y + D̂′

yB
′
c(X − Y ) B̂′

2(X − Y ) + D̂′
yB

′
c(Y − X)

]

=

[

a11 a12

a21 a22

]

(3.91)

where

a11 =
[

Y B̂2 + (X − Y )BcD̂y

] [

B̂′
2Y + D̂′

yB
′
c(X − Y )

]

,

a12 =
[

Y B̂2 + (X − Y )BcD̂
′
y

] [

B̂′
2(X − Y ) + D̂′

yB
′
c(Y − X)

]

a21 =
[

(X − Y )B̂2 + (Y − X)BcD̂y

] [

B̂′
2Y + D̂′

yB
′
c(X − Y )

]

a22 =
[

(X − Y )B̂2 + (Y − X)BcD̂y

] [

B̂′
2(X − Y ) + D′

yB
′
c(Y − X)

]

Let

ΣAcl + A′
clΣ + ΣBclB

′
clΣ +

[

Ĉ ′Ĉ 0

0 XBR−1B′X

]

=

[

λ11 λ12

λ21 λ22

]

(3.92)
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Using equation (3.51) we have,

Ac = A − BR−1B′X + B̂2B̂
′
2X − (X − Y )−1C ′

yW
−1Cy

Kc = −R−1B′X and Bc = (Y − X)−1C ′
yW

−1 (3.93)

From (3.49), (3.75), (3.90), (3.91), (3.92) and (3.93) we have,

λ11 = [Y A + (X − Y )BcCY ] +
[

A′Y + C ′
yB

′
c(X − Y )

]

+
{[

Y B̂2 + (X − Y )BcD̂y

] [

B̂′
2Y + D̂′

yB
′
c(X − Y )

]}

+ Ĉ ′Ĉ

= Y A − C ′
yW

−1Cy + A′Y − C ′
yCyW

−1 + Y B̂2B̂
′
2Y − Y B̂2D̂

′
yCyW

−1 − C ′
yW

−1D̂yB̂
′
2Y

+ C ′
yW

−1Cy + Ĉ ′Ĉ

= A′Y + Y A + Y B̂2B̂
′
2Y −

(

C ′
yW

−1Cy − Ĉ ′Ĉ
)

Q(Y ) = 0

(3.94)

λ12 = [Y BKc + (X − Y )Ac] +
[

A′(X − Y ) + C ′
yB

′
c(Y − X)

]

+
{[

Y B̂2 + (X − Y )BcD̂
′
y

] [

B̂′
2(X − Y ) + D̂′

yB
′
c(Y − X)

]}

= −Y BR−1B′X + XA − XBR−1B′X + XB̂2B̂
′
2X − X(Y − X)−1C ′

yW
−1Cy − Y A

+ Y BR−1B′X − Y B̂2B̂
′
2X + Y (Y − X)−1C ′

yW
−1Cy + A′X − A′Y + C ′

yCyW
−1

+ Y B̂2B̂
′
2X − Y B̂2B̂

′
2Y + Y B̂2D̂

′
yCyW

−1 + C ′
yW

−1D̂yB̂
′
2(X − Y ) + C ′

yW
−1Cy

= A′X + AX − A′Y − Y A − XBR−1B′X + XB̂2B̂
′
2X − Y B̂2B̂

′
2Y + C ′

yW
−1Cy

= P(X) − Q(Y ) = 0 (3.95)

λ21 = λ12 = 0 (3.96)
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λ22 = [(X − Y )BKc + (Y − X)Ac] + [K ′
cB(X − Y ) + A′

c(Y − X)]

+
{[

(X − Y )B̂2 + (Y − X)BcD̂y

] [

B̂′
2(X − Y ) + D′

yB
′
c(Y − X)

]}

= −XBR−1B′X + Y BR−1B′X + Y A − Y BR−1B′X + Y B̂2B̂
′
2X

− Y (Y − X)−1C ′
yW

−1Cy − XA + XBR−1B′X − XB̂2B̂
′
2X

+ X(Y − X)−1C ′
yW

−1Cy − XBR−1B′X + Y BR−1B′X + A′Y − XBR−1B′X

+ XB̂2B̂
′
2Y − C ′

yW
−1Cy(X − Y )−1Y − A′X + XBR−1B′X − XB̂2B̂

′
2X

+ C ′
yW

−1Cy(X − Y )−1X + XB̂2B̂
′
2X − XB̂2B̂

′
2Y − Y B̂2B̂

′
2X + Y B̂2B̂

′
2Y

+ (X − Y )B̂2D̂
′
yCyW

−1 + C ′
yW

−1D̂yB̂
′
2(X − Y ) − C ′

yW
−1Cy + XBR−1B′X

= A′Y + Y A − A′X − XA + yB̂2B̂
′
2Y − C ′

yW
−1Cy + XBR−1B′X − XB̂2B̂

′
2X

= P(Y ) − Q(X) = 0 (3.97)

Equations (3.94) to (3.97) show that Σ satisfies GAREs (3.89). Now choose x̃′(t)Σx̃(t)

as candidate Lyapunov function similar to (3.83), (3.84) and (3.86) we have,

∫ tl

0

‖z̄‖2dt ≤ ‖w̄‖2 + x̃′(0)Σx̃(0) (3.98)

∫ tl

0

N
∑

i=1

‖zi‖2dt ≤ x̃′(0)Σx̃(0) +

N
∑

i=1

x′
i(0) (τiM1i + ηiM2i + θiM3i) xi(0) (3.99)

where z̄ is the output of the closed loop system (3.79) and zi(·) are the outputs of

(3.35) corresponding to the state trajectory of the closed loop system (3.79) driven

by the input w̄l(·) in (3.85). Therefore

sup
Ξ,Ψ,Π

∫ +∞

0

N
∑

i=1

‖zi‖2dt ≤ x̃′(0)Σx̃(0) +

N
∑

i=1

x′
i(0) (τiM1i + ηiM2i + θiM3i)xi(0)

(3.100)



Section 3.4 Controller Design 69

We have

x̃′Σx̃ =
[

x xc

]

[

Y X − Y

X − Y Y − X

][

x

xc

]

= x′Y x + x′
c(X − Y )x + x′(X − Y )xc + x′

c(Y − X)xc

= x′Y x − x′
c(Y − X)x − x′(Y − X)xc + x′

c(Y − X)xc

= x′Y x + (x′
c − x)′(Y − X)xc − x′

c(Y − X)x + x′(Y − X)x − x′(Y − X)x

= x′Xx + (xc − x)′(Y − X)xc − (x′
c − x)(Y − X)x

= x′Xx + (xc − x)′(Y − X)(xc − x) (3.101)

Using (3.101) in (3.100), we can write,

sup
Ξ,Ψ,Π

∫ +∞

0

N
∑

i=1

‖zi‖2dt ≤ x′(0)Xx(0) + [xc(0) − x(0)]′ (Y − X) [xc(0) − x(0)]

+
N
∑

i=1

x′
i(0) (τiM1i + ηiM2i + θiM3i)xi(0)

=

N
∑

i=1

x′
i(0) (Xi + τiM1i + ηiM2i + θiM3i) xi(0) (3.102)

by letting xc(0) = x(0). It is obvious from (3.102) that (3.53) holds and provides

the smallest bound over all xc(0). This concludes the proof.

3.4.7 Rank Constrained LMI Realisation

LMIs in robust control

We can reduce a very wide variety of problems arising in system and control theory

to a few standard convex or quasi-convex optimisation problems involving linear

matrix inequalities (LMIs). In comparison with the conventional approach to seek an

analytic or frequency-domain solution to the matrix inequalities, in certain situations

numerical solutions to matrix inequalities can be obtained more efficiently using

LMIs, [95]. The robust control analysis and design generally involves the solution of

Lyaponov and Riccati equations. Using LMIs, solutions for the robust control and

optimisation problem can be achieved quite easily [38, 96].
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Let us consider a system with rational transfer function matrix G(s) and de-

scribed by (3.103):

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (3.103)

If all the poles of G(s) are in the left half of the s-plane then,

‖G(s)‖∞ := sup
ω∈R

{σ [G(jω)]} (3.104)

The transfer function of the system (3.103) will satisfy (3.104) if and only if, the

Riccati equation (3.105),

ATP + PA + CTC +
(

PB + CTD
) (

I − DTD
) (

PB + CTD
)T

(3.105)

has a positive solution, P = P T > 0 [38]. Here, equation (3.105) is a Quadratic

Matrix Inequality (QMI). We can convert the solvability of the QMI (3.105) into a

LMI condition as follows [38]. The solvability of (3.105) is equivalent to

P > 0,

[

ATP + PA + CTCPB + CT

BTP + DTCDTD − I

]

≤ 0 (3.106)

The above equation is a standard LMI with positive matrix P and solution of the

LMI equation (3.105) can be used to solve the control problem [38].

Solution to optimisation problem through rank constrained LMIs

Optimisation algorithm proposed by [97], has been used to solve the optimisation

problem on the right hand side of (3.53). Here, the idea is to replace the optimisa-

tion problem inf T J(τ, η, θ) with an equivalent optimisation problem involving rank

constrained LMIs.

To introduce the rank constrained LMI optimisation problem related to the op-

timisation problem stated in Theorem 5, consider the following matrix inequalities,

instead of the Riccati equations (3.48), (3.74)

A′
iXi + XiAi + Ĉ ′

iĈi − Xi

(

BiR
−1
i B′

i − B̂2,iB̂
′
2,i

)

Xi < 0, (3.107)
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by left and right multiplying (3.107) with X̃i = X−1
i , we get,

X̃iA
′
i + AiX̃i + X̃iĈ

′
iĈiX̃i −

[

BiR
−1
i B′

i − B̂2,iB̂
′
2,i

]

< 0, (3.108)

Introducing matrices Fi of appropriate dimensions, without changing the feasibility

of (3.108), we add a quadratic term of Fi to the left-hand side of (3.108) as follows,

X̃iA
′
i + AiX̃i + X̃iĈ

′
iĈiX̃i + B̂2,iB̂

′
2,i + F ′

iRiFi + BiFi + F ′
iB

′
i < 0, (3.109)

Using (3.50), the terms of (3.109) can be represented as follows,

B̂2,iB̂
′
2,i = τ−1

i EiE
′
i + θ−1

i LiL
′
i + η−1

i β2
i I

X̃iĈ
′
iĈiX̃i = X̃i

[

C ′
iCi + (τi + θ̄i)H

′
iHi + ηiα

2
i I
]

X̃i

F ′
iRiFi = F ′

i

[

D′
iDi + (τi + θ̄i)G

′
iGi

]

Fi (3.110)

Let τ̃i = τ−1
i , η̃i = η−1

i , θ̃i = θ−1
i . By combining (3.109), (3.110) and applying Schur

complement, we obtain the following LMIs with variables X̃i, Fi, τ̃i, θ̃i, η̃i:













Ni αiX̃i F ′
iD

′
i + XiC

′
i Qi

⋆ −η̃iI 0 0

⋆ ⋆ −I 0

⋆ ⋆ ⋆ −Θi













< 0 (3.111)

where

Ni = X̃iA
′
i + AiX̃i + τ̃iEiE

′
i + θ̃iLiL

′
i + η̃iβ

2
i I + BiFi + F ′

iB
′
i

Qi =
[

F ′
iG

′
i + X̃ ′

iH
′
i, · · · , F ′

iG
′
i + X̃ ′

iH
′
i

]

(Nentries)

Θi = diag
[

τ̃iI, θ̃1I, · · · , θ̃i−1I, θ̃i+1I, · · · , θ̃NI
]

.

Similarly, by substituting (3.50), into (3.49) and applying the Schur complement,

we obtain following LMIs with variables Yi, τi, ηi, θi:













Mi βiYi YiEi YiLi

⋆ −ηiI 0 0

⋆ ⋆ −τiI 0

⋆ ⋆ ⋆ −θiI













< 0 (3.112)
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where

Mi = A′
iYi + YiAi − τiC

′
y,i[Dy,iD

′
y,i]

−1Cy,i + C ′
iCi + (τi + θ̄i)H

′
iHi + ηiα

2
i I

The coupling condition Yi > Xi > 0 is equivalent to

[

X̃i I

I Yi

]

> 0 (3.113)

Now consider the performance upper bound on the right hand side of (3.53). Note

that minimizing J(τ, η, θ) is equivalent to minimizing W1 + · · · + WN subject to

Wi > x′
i0 [Xi + τiM1i + ηiM2i + θiM3i]xi0. (3.114)

Using Schur complement again, (3.114) is equivalent to following LMIs:



















Wi x′
i0 x′

i0M
1

2

1i x′
i0M

1

2

2i x′
i0M

1

2

3i

⋆ X̃i 0 0 0

⋆ ⋆ τ̃iI 0 0

⋆ ⋆ ⋆ η̃iI 0

⋆ ⋆ ⋆ ⋆ θ̃iI



















> 0 (3.115)

The conditions τ̃i > 0, τi > 0, τ̃iτi = 1,, η̃i > 0, ηi > 0, η̃iηi = 1, θ̃i > 0, θi > 0 and

θ̃iθi = 1 are equivalent to

[

τ̃i 1

1 τi

]

≥ 0, rank

[

τ̃i 1

1 τi

]

≤ 1,

[

η̃i 1

1 ηi

]

≥ 0, rank

[

η̃i 1

1 ηi

]

≤ 1,

[

θ̃i 1

1 θi

]

≥ 0, rank

[

θ̃i 1

1 θi

]

≤ 1, (3.116)
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Consider the following optimisation problem in the variables Wi, X̃i, Fi, Yi, τ̃i, η̃i, θ̃i, τi, ηi

and θi:

inf (W1 + · · ·+ WN) subject to (3.111), (3.112), (3.113), (3.115) and (3.116)

(3.117)

This problem is a problem of minimizing a linear cost subject to rank constrained

LMIs. The proof showing equivalence between the optimisation problem (3.117) and

optimisation on the right hand side of (3.53) is established in [97].

3.4.8 Controller design steps

The controller design steps corresponding to a SEP can be summarised as follows:

(i) Using the load flow results corresponding to the SEP, the system matrices

ASY S and BSY S can be found using (2.33), (2.38), (2.39), (2.44) and (2.49).

(ii) From the system matrices ASY S and BSY S , the subsystem matrices and un-

certainty definitions are obtained using (3.36), (3.37), (3.38) and (3.40).

(iii) With the subsystem matrices and uncertainties defined, the rank constrained

LMI problem (3.117) is solved, to a desired accuracy, obtaining a collection of

θi, τi, ηi, X̃i, Yi.

(iv) Substituting the found θi, τi, ηi into GAREs (3.48) and solving (3.48) to obtain

Xi. Note that Yi can be selected from the found feasible solution the problem

(3.117) (refer the proof of Theorem 3 of [97]).

(v) The robust stabilising controller can be constructed (3.51) using the computed

θi, τi, ηi, Xi and Yi.

3.5 Chapter summary

The proposed controller design methodology and stability proofs are given in this

chapter. The basics of minimax LQG control and the representation of the uncer-

tainties using IQCs are given in detail. Important results and theorems used in

the control design development are also included for reference. The proposed decen-

tralised control with subsystem representation, uncertainty description and stability

theorems used are stated in detail. The proofs for the stability theorems are derived

step by step. The LMI optimisation method to synthesise the controller and the

steps involved in the controller design for a SEP are also included.



Chapter 4

Switching Stability Through Dwell Time

4.1 Introduction

In this research, we design power system controllers which provide robust perfor-

mance over the entire operating regime of the power system. To achieve this, we

treat the power system as parameter varying switched system. We divide the entire

operating regime of the generator into several zones with respect to power output

of the generator and each zone consisting of one Stable Equilibrium Point (SEP).

We design a decentralised output feedback controller as explained in Chapter 3, for

the power system linearised around each such SEPs and capable of providing ro-

bust performance within the zone with admissible uncertainties considered. When

the power output of the generator changes from one zone to another, the controller

corresponding to the new zone has to be selected and switched.

Even though the controllers and plant are closed loop stable, we need to ensure

that the switched system is stable. One method of achieving the switching stability

is through slow switching. For the power system considered here the dynamics of

power variation can be treated as a slow process and the corresponding switching

stability during controller switching can be achieved by allowing dwell time between

consecutive switchings.

Switching stability through slow switching is established in many works includ-

ing [98] and [64]. Generally, these works assume that the states are continuous during

switching and individual switching systems have their origin as common equilibrium

point. In our work, we switch controllers with power system corresponding to differ-

ent SEPs. This will lead to jumps in states at the switching instants. In this thesis,

the work in [56] is extended to system states which jump at switching instances.

The first section of this chapter gives a brief introduction to switched systems and

need for switching stability. In the next section, we develop the stability criteria and

an expression for dwell time. Determination of dwell time is given in the following

section. Finally we illustrate this theory by selecting a test case power system

and computing at the required dwell time and simulation results are presented.

74
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Simulation cases which are related to dwell time study are included in this chapter

and detailed simulations are given in Chapter 6.

4.2 Switching system and stability

Switching control finds many applications in different fields. In complex control

situations, often control objectives and plant models are subjected to changes. To

meet the control requirements, it may not be always possible, by employing a single

controller. In such scenarios, it is usual to design multiple linear controllers corre-

sponding to the linearised operating points of the nonlinear plant and then these

controllers are switched properly to meet the design objectives.

When switching control is used, stability of the switched systems need to be

established apart from individual systems stability. Even though the individual

systems are closed loop stable it is not necessary that when switching takes place

between these systems, the resulting system will be stable. It is shown with numer-

ical example in [64], when switching was done between two stable systems this can

lead to unstable state trajectories.

There are many methods available to deal with the stability issue arising due to

controller switchings [98–100]. Sufficient conditions for uniform stability, uniform

asymptotic stability, exponential stability and instability are established in [101].

Stability analysis of switched systems is usually carried out using a Lyapunov func-

tion for each subsystem [99]. These Lyapunov functions are connected together in

some manner, in order to compose a Lyapunov function that guarantees that the

energy of the overall system decreases to zero along the state trajectories of the

system.

If the dynamics of the switching systems are of slow varying nature, we can

introduce a number τ > 0 and restrict the class of admissible switching signals to

signals with the property that the interval between any two consecutive switching

is greater than τ . This time τ is usually referred as “dwell time” [98]. If all the

linear systems under consideration for switching are globally asymptotically stable,

then the switched linear system also will be globally asymptotically stable [98], if

the dwell time τ is sufficiently large enough. The required lower bound on τ can

be explicitly calculated from the parameters of the individual subsystems. The

procedure to arrive at the lower bound on τ is established in [56, 98]. The systems

considered in [56, 98] have the assumptions that the states are continuous during
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switching and individual switching systems have the origin as common equilibrium

point. In the switching of power system controllers corresponding to the different

SEPs using dwell time, we consider the effect of different equilibria and the jumps

in the state trajectory at switching instants. We extend the results of [56, 98] to

include these additional complexities during switching. In the following section, we

develop the conditions for switching stability and arrive at lower bound on the dwell

time required for stable switching.

4.3 Algebraic constraints on dwell time for stable

switching

Now we discuss the stability of a switched system made up of two systems P1 and

P2:

P1 : ẋ = A1x, (4.1)

P2 : ẋ = A2x − A2Ψ, (4.2)

where x ∈ Rn is the state-vector and Ψ ∈ Rn is a constant vector; the equilibrium

point for P1 is 0 and that of P2 is Ψ; matrices A1 and A2 are stable matrices

and further, there exist Lyapunov functions V1(x) and V2(x − Ψ) for P1 and P2

respectively.

We look at the configuration where the system is continuously switching between

P1 and P2 and determine the stability of this system. The first question is: if both

P1 and P2 are stable then how is it that switching between the two will make the

overall system unstable? For finite number of switchings, stability is guaranteed but

the same cannot be said of infinite number of switchings.

Formally we define stability as follows:

Definition 9 Given systems P1 and P2 and an infinite switching sequence P1 →
P2 → P1, the system is stable if there exists a r-ball

Br = {z : V1(z) ≤ r}

such that for every P1-state x(t0) 6∈ Br, where t0 {t01, t02, t03, · · · } is the instance

when the system switches from P1 to P2, there exists a τ 12
d such that when the system

switches back to P1 from P2, at time t0 + τ 12
d , P1-state x(t0 + τ 12

d ) approaches Br as
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the number of switching goes to infinity. We can similarly define stability for the

switching sequence P2 → P1 → P2.

Let the system states at the switching instances be denoted as follows (see Fig-

ure 4.1 and 4.2):

x1 = x(t0) and x2 = x1 − Ψ (4.3)

y1 = x(t1) and y2 = y1 − Ψ (4.4)

where the system switches from P1 to P2 at t0 and back to P2 at t1.

Figure 4.1. Representation of system states at switching instances.

Note that the definition of stability is satisfied, once the system reaches inside a

ball and not necessarily as it approaches the origin. There is a good reason for this.

Systems P1 and P2 have different equilibrium points and when the system switches

to P2, the state approaches Ψ, the equilibrium point of P2. This means that the

ball B1 has to be large enough to include both equilibrium points (0 and Ψ) (see

Figure 4.2).

To see the motivation for the above stability definition, we define balls B0 B1,

and B2, shown in Figure 4.2:

B0 = {z : V1(z) ≤ V1(x(t0))} (4.5)

B1 = {z : V1(z) ≤ V1(x(t1))} (4.6)

B2 = {z : V2(z − Ψ) ≤ V2(x(t0) − Ψ)} (4.7)
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Figure 4.2. Balls B0 and B1 and system trajectory (dashed)

The interpretation of what these balls are is simple. (Please note that since

V1(x), V2(x − Ψ) are positive-definite, balls B0, B1, and B2 define closed volumes.)

Let t0 be the time at which the system switches from P1 to P2 and then at time t1,

switches back from P2 to P1; the two balls B0 and B1 correspond to the bound on

system states at time instants t0 and t1. Ball B2 gives the bound on the trajectory

when the system is switched to P2.

Our notion of stability is that if B1 ⊂ B0, for all switchings P1 → P2 → P1, then

the infinite switchings result in a stable system. If such is not the case then every

switching may push the state into a larger and larger ball leading to instability.

The condition that B1 be a subset of B0 can be ensured by imposing a condition

on the minimum time spent in P2 during every P1 → P2 → P1 cycle. This time is

called the dwell time, denoted as τ 12
d , and our final result is that if the time spent

in P2 is greater than the dwell time, i.e., t1 − t0 ≥ τ 12
d , then the switched system is

stable.

Next, we obtain an expression for the dwell time to ensure the stability of the

switched system. Let Lyapunov functions V1 and V2 satisfy the following inequalities

for some positive constants a1, a2, b1, b2, c1 and c2:

a1 |x|2 ≤ V1(x) ≤ b1 |x|2 (4.8)
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a2 |x − Ψ|2 ≤ V2(x − Ψ) ≤ b2 |x − Ψ|2 (4.9)

∂V1

∂x
A1x ≤ −c1 |x|2 (4.10)

∂V2

∂x
(A2x − A2Ψ) ≤ −c2 |x − Ψ|2 (4.11)

From equation (4.8),
V1(x)

b1
< |x|2 ,

substituting this in (4.10),

∂V1

∂x
A1x ≤ −2λ1V1(x) (4.12)

where λ1 = c1
2b1

. This implies that for any positive τ ,

V1 (x (t0 + τ)) ≤ e−2λ1τV1 (x (t0)) (4.13)

since dV1(x)
dt

≤ −2λ1V1(x) and V1 decays exponentially. Similarly we have

V2 (x (t0 + τ) − Ψ) ≤ e−2λ2τV2 (x (t0) − Ψ) .

From (4.8) and definitions (4.3) and (4.4) we have:

a1 |x1|2 ≤ V1(x1) ≤ b1 |x1|2 (4.14)

a2 |x2|2 ≤ V2(x2) ≤ b2 |x2|2 (4.15)

We find the dwell time, τ 12
d , by showing that when t1−t0 ≥ τ 12

d then, there exists

a ν such that (for x1 and y1 defined in (4.3), (4.4))

V1(y1) − V1(x1) ≤ −ν |x1|2 (4.16)

Since V1 is a positive definite function, we can substitute an upper bound for V1(y1)

and lower bound for V1(x1) and obtain,

b1 |y1|2 − a1 |x1|2 ≤ −ν |x1|2 (4.17)
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Next we get a bound on |y1|; we know that,

V2(y2) ≤ e−2λ2τ12
d V2(x2) (4.18)

=⇒ a2 |y2|2 ≤ b2e
−2λ2τ12

d |x2|2 (4.19)

=⇒ a2 |y1 − Ψ|2 ≤ b2e
−2λ2τ12

d |x1 − Ψ|2 (4.20)

Fact:

(a + b − b)2 = (a − b)2 + b2 + 2(a − b)b

≤ (a − b)2 + b2 + (a − b)2 + b2

∴ (a − b)2 > 0 =⇒ 2ab < a2 + b2 =⇒ 2(a − b)2 ≥ a2 − 2b2 (4.21)

Using the fact that 2(a − b)2 ≥ a2 − 2b2 with (4.20), we have,

−a2 |Ψ|2 +
a2

2
|y1|2 ≤ e−2λ2τ12

d b2 |x1 − Ψ|2

≤ e−2λ2τ12
d b2

(

|x1|2 + |Ψ|2
)

(4.22)

Substituting the upper bound on |y1|2 from (4.22) into (4.17) we have,

4
b1b2

a2
e−2λ2τ12

d |x1|2 + 2
b1

a2
|Ψ|2

(

2e−2λ2τ12
d b2 + a2

)

−a1 |x1|2 ≤ −ν |x1|2 (4.23)

The middle term in the left-hand-side of the above equation (4.23) is independent of

|x1| and unless x1, the state at which the system switches from P1 to P2, is outside

of some region, inequality (4.23) cannot be satisfied. We ensure that x1 is outside

of some region by constraining it as follows:

|x1|2 ≥ 2
b1

a1
K12

Ψ |Ψ|2 where K12
Ψ > 1. (4.24)

Substituting (4.24) in (4.23) we have,

4
b1b2

a2
e−2λ2τ12

d |x1|2 +
a1

a2K12
Ψ

|x1|2
(

2e−2λ2τ12
d b2 + a2

)

− a1 |x1|2 ≤ −ν |x1|2(4.25)
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From (4.25) we have the condition that τ 12
d should be such that,

4
b1b2

a2

e−2λ2τ12
d +

a1

a2K
12
Ψ

(

2e−2λ2τ12
d b2 + a2

)

− a1 < 0 (4.26)

Thus for stable switching τ 12
d should satisfy,

2e−2λ2τ12
d

(

2b1b2K
12
Ψ + a1b2

a2K12
Ψ

)

< a1

(

K12
Ψ − 1

K12
Ψ

)

2e−2λ2τ12
d <

a1a2 (K12
Ψ − 1)

2 (2b1b2K12
Ψ + a1b2)

τ 12
d >

1

2λ2
log

[

a1a2 (K12
Ψ − 1)

2 (2b1b2K12
Ψ + a1b2)

]

(4.27)

In the above, we have proved that the r-ball into which system trajectories converge

is given by:

B12
r = {z : V1(z) ≤ 2b1K

12
Ψ |Ψ|2} (4.28)

From this, it can be seen that there is a trade-off between K12
Ψ and τ 12

d .

So far we have only considered the P1 → P2 → P1 cycle but the development for

the P2 → P1 → P2 cycle is symmetrical to this and the dwell time τ 21
d required for

dwelling in P1 can be obtained by replacing a1 → a2, b1 → b2, c1 → c2, λ2 → λ1 and

K12
Ψ → K21

Ψ constants in the above expression (4.27) and is given by,

τ 21
d >

1

2λ1
log

[

a1a2 (K21
Ψ − 1)

2 (2b1b2K21
Ψ + a2b1)

]

(4.29)

The corresponding r-ball into which system trajectories converge is given by:

B21
r = {z : V2(z) ≤ 2b2K

21
Ψ |Ψ|2} (4.30)

From the above discussions we conclude that for any switching sequence P1 →
P2 → P1 → P2 → P1 · · · satisfying the corresponding dwell time conditions given

by inequalities (4.27) and (4.29), the state x reaches the region Br = B12
r ∪ B21

r
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4.4 Determination of dwell time

To estimate the dwell time τd, the constants ap, bp, cp, λp and KΨ are evaluated.

Let the system under consideration be ẋ = Apx and the corresponding Lyapunov

function Vp(x) of the system is given by,

Vp(x) = x′Mpx (4.31)

where Mp satisfies,

A′
pMp + MpAp < 0 (4.32)

Mp can be evaluated by solving the Riccati equation (4.32). Equation (4.8) will be

satisfied if,

ap = minimum Eigen value of Mp

bp = maximum Eigen value of Mp (4.33)

From equations (4.9) and (4.31), we can write,

2MpxApx ≤ −cp |x|2

< Ap′Mpx, x > + < x, MpApx >≤ −cp |x|2

< (MpAp + A′
pMp)x, x >≤ −cp |x|2 (4.34)

The above inequality will hold if,

cp = maximum Eigen value of < A′
pMp + MpAp > (4.35)

now λp = cp
2bp

. The value of KΨ should be depending on the system under consider-

ation, taking any practical limitations into account so that it satisfies the inequality

KΨ > 1.

4.5 Validation of switching with dwell time

In order to demonstrate the practical implementation of the dwell time switching

scheme for a power system, we consider a test case power system. We design the

controllers corresponding to the SEPs and arrive at the dwell time required for dif-

ferent controller switching combinations. Simulations are carried out under different

scenarios for validation.
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Figure 4.3. Two area four machine system.

4.5.1 Simulation setup

To demonstrate dwell time switching scheme through simulations, the grid system

shown in Figure 4.3 is used. The system consists of two power system areas Area

1 and Area 2 connected through a twin circuit tie line of 220 km in length. The

transmission system nominal voltage is 400 kV. Generation voltages are stepped up

by the transformers connected to the generators. Load centers are located at buses 7

and 9. The buses 7 and 9 have shunt capacitors. Generators 1 to 4 and transformers

1 to 4 are identical and their parameters are given in Appendix A, Table A.1 and A.3.

The generator AVR parameter are given in Table A.2. Transmission line parameters

are given in 400 kV, 100 MVA base in Table A.4. For the analysis of the system,

400 kV and 100 MVA are chosen as base quantities.

Controllers for the considered system are designed as explained in Section 3.4.8.

The generators G1, G3 and G4 operate as base generators and deliver 400 MW.

Single controller is designed for generators G1, G3 and G4 corresponding to this

SEP. Generator G2 takes up the variations in the power demand by the load. The

operating range of G2 is from 0 to 400 MW. We divide the operating range of G2

into 16 equal power zones of 25 MW each. We have one SEP corresponding to each

power zone. We design 16 controllers for G2 corresponding to each SEP providing

robust stabilisation for a power variation of ± 25 MW within the zone. Generators

G1, G3 and G4 have single controller corresponding to 400 MW SEP. Different SEP

identification numbers are given in Table 4.1.
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SEP 1 SEP 2 SEP 3 SEP 4 SEP 5 SEP 6 SEP 7 SEP 8
25 MW 50 MW 75 MW 100 MW 125 MW 150 MW 175 MW 200 MW
SEP 9 SEP 10 SEP 11 SEP 12 SEP 13 SEP 14 SEP 15 SEP 16

225 MW 250 MW 275 MW 300 MW 325 MW 350 MW 375 MW 400 MW

Table 4.1. Identification of different the SEPs of generator G2.

4.5.2 Stability conditions and dwell time computation

As the generation of G2 varies from one zone to another, we select the suitable

controller and switch in. While switching, the stability of the switched system are

preserved through dwell time. We arrive at the dwell time required for different

possible switching combinations. As the first step for the computation of satisfying

dwell time, we work out the closed loop system matrices corresponding to each SEP.

Next, to check wether the SEPs satisfy our stability conditions, we verify following.

Let us consider two switching sequences, Pi → Pj → Pi and Pj → Pi → Pj . To

meet switching stability as per Definition 9, inequalities (4.36) should be met,

Vi(Ψ
ij) < rij = 2biK

ij
Ψ |Ψij|2

Vj(Ψ
ji) < rji = 2bjK

ji
Ψ |Ψji|2 (4.36)

The values of Ψij and Ψji are given by the difference between the steady state

vectors corresponding to the closed loop system of ith and jth SEPs. The Lyaponov

functions Vi(Ψ
ij) and Vj(Ψ

ji) can be evaluated from (4.31). The radius of the

stability balls rij and rji can be evaluated using the equations in (4.36). The value

of KΨ is chosen as 1.5 for all SEPs. The conditions given by (4.36), are verified for

all SEPs by evaluating the corresponding Lyaponov function values and the radius

of the stability balls. After establishing the condition given by (4.36), we can find

the lower bound on the required dwell time by using equations (4.27) and (4.29) for

switching between consecutive SEPs. Dwell times computed for different switching

combinations are given in Table 4.2.

4.5.3 Simulation cases

Simulations are carried out using the nonlinear multimachine power system model

given by equations (2.25) to (2.32). Prime mover dynamics is not included in the

simulation model and it is assumed that prime mover power changes instantaneously.
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Figure 4.4. Case 1: Simulation responses of generator G1 to G4 for switching up and
down around 200 MW.



Section 4.5 Validation of switching with dwell time 86

Power Change Controller τ 12
d (s) Power Change Controller τ 21

d (s)
SEP 1 to 2 C1 to C2 23.9890 SEP 2 to 1 C2 to C1 24.7884
SEP 2 to 3 C2 to C3 22.8243 SEP 3 to 2 C3 to C2 21.5976
SEP 3 to 4 C3 to C4 23.4500 SEP 4 to 3 C4 to C3 21.2590
SEP 4 to 5 C4 to C5 22.9490 SEP 5 to 4 C5 to C4 23.4500
SEP 5 to 6 C5 to C6 21.0466 SEP 6 to 5 C6 to C5 22.9490
SEP 6 to 7 C6 to C7 21.4581 SEP 7 to 6 C7 to C6 20.1177
SEP 7 to 8 C7 to C8 24.1736 SEP 8 to 7 C8 to C7 22.7254
SEP 8 to 9 C8 to C9 22.8836 SEP 9 to 8 C9 to C8 24.1736
SEP 9 to 10 C9 to C10 24.0231 SEP 10 to 9 C10 to C9 21.0308
SEP 10 to 11 C10 to C11 23.6559 SEP 11 to 10 C11 to C10 24.1475
SEP 11 to 12 C11 to C12 22.4421 SEP 12 to 11 C12 to C11 23.9659
SEP 12 to 13 C12 to C13 23.3025 SEP 13 to 12 C13 to C12 22.7156
SEP 13 to 14 C13 to C14 24.3393 SEP 14 to 13 C14 to C13 23.3025
SEP 14 to 15 C14 to C15 21.4414 SEP 15 to 14 C15 to C14 24.2053
SEP 15 to 16 C15 to C16 24.8533 SEP 16 to 15 C16 to C15 21.5085

Table 4.2. Values of required dwell time for different controller switchings.

Further details of simulations are included in the Chapter 6. To evaluate the perfor-

mance of the proposed switching scheme, we have done three cases of simulations.

In all the simulations, the necessary controller switchings are carried out after the

elapse of the required dwell time.

Case 1: Continuous up and Down

Simulation is carried out for 125 s with generator G2 initially at 200 MW and op-

erating with controller C8. At t = 25 s, output of G2 is increased to 225 MW

and corresponding controller C9 is switched in. At t = 50 s, after the lapse of the

corresponding dwell time, output of G2 is reduced to 200 MW and corresponding

controller C8 is switched in. Again at t = 75 s, output of G2 is reduced to 175 MW

with the corresponding controller C7 is switched in. At t = 100 s, output of G2 is

increased to 200 MW and corresponding controller C8 is switched in and the simula-

tion is continued up to t = 125 s. With this continuous up and down switching, with

corresponding controllers and after satisfying the required dwell time constraints,

the overall system was found to be performing normally. The responses of the gener-

ators G1 to G4 with respect to rotor angle, angular velocity, terminal voltage sensor

output and generated power are given in Figure 4.4.
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Figure 4.5. Case 2: Simulation responses of generator G1 to G4 for generation variation
from 25 MW to 400 MW.

Case 2: Generation variation continuous up and down

In this case, power output of generator G2 is gradually increased from 100 MW to

300 MW in steps of 25 MW. At each step of power change corresponding SEP con-

troller is switched in after meeting the dwell time constraints. Again from 300 MW

the power output of generator G2 is gradually decreased from 300 MW to 100 MW

in steps of 25 MW with respective controllers switched in at each power changing

instances.

At t = 0 s, output of generator G2 is at 100 MW with controller C4, and the t
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= 25 s, output of generator G2 is increased to 125 MW with controller C5 switched

in. At every 25 sec interval the output of generator G2 is increased by 25 MW

with respective controller switched. At t = 200 s, the output of generator G2 is at

300 MW with controller C12. In similar steps the output of generator G2 is reduced

back to 100 MW with 25 MW power changes at 25 s intervals. Again at each power

change respective controllers are switched. The responses of the generators G1 to

G4 with respect to rotor angle, angular velocity, terminal voltage sensor output and

generated power are given in Figure 4.5.

4.5.4 Inferences

From the simulation results in Figures 4.4 and 4.5, it is shown that when con-

trollers are switched during power changes satisfying the dwell time constraints, we

can ensure the stability of the switched system. Simulation also validates different

switching combinations either progressively load up or down conditions (Figure 4.5)

and also for switching up and down conditions around a particular SEP(Figure 4.4).

4.6 Chapter summary

The concept of preserving switching stability through dwell time approach is pre-

sented. The conditions for switching stability are stated and the expression for the

required dwell time for stable switching while switching between different operating

points with jumps in the states are included. Simulations are carried out to validate

dwell time switching by selecting a test case power system with multiple controllers.

Required dwell times for the possible controller switching combinations are com-

puted. The results of different cases of simulations involving controller switchings

are presented.



Chapter 5

Bumpless Switching Scheme

5.1 Introduction

To cover the entire operating regime of the power system, we design one controller

each around different SEPs. These controllers are needed to be selected and switched

with respect to the power output of the generator. At the instant of controller

switching, if there is a difference between the output of the new controller to be

switched in and the output of the currently active controller, there will be a jump

in the control input to the plant. This jump in the input to the plant will cause

switching transients in the plant response. A smooth controller transition could

be achieved, if we can minimise the difference between the controller outputs at

the time of switching. Also the controllers considered in this work are dynamical

systems, their states must have correct values when switching occurs and if this

is not the case, the corresponding control loops may experience undesirable and

harmful switching transients [66].

To minimise the difference between the outputs of the controller at switching in-

stant, the output difference can be translated into conditions on the states of the new

controller to be switched in. A direct approach to bumpless switching between two

controller configuration is considered in [74]. Here, the controller switching prob-

lem is formulated as an optimal linear quadratic control problem. Solution to this

problem yields a feedback gain which acts as bumpless compensator. The bumpless

compensator makes the new controller to track the output of the active controller

and initialises the states of the new controller to a proper value to minimise the

transients at switching. The bumpless scheme in [74], has been applied successfully

to aerospace applications [48]. We apply the scheme proposed in [74], for the power

system controller switching to avoid the switching transients. It may be noted, here

the bumpless switching scheme does not affect the dynamics of the plant as well

as the active controller before switching. Also after switching, the new controller

is not influenced by the bumpless compensator. The scheme only helps to properly

initialise the new controller states to avoid transients.

89
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Figure 5.1. Basic controller switching configuration

In the first section of the chapter, we introduce the general bumpless switching

scheme and the synthesis of the bumpless compensator. In the next section, we

detail the application of the scheme to power system controller switching. In the

final section, we demonstrate the efficacy of the scheme through simulations. For

this, we select a test case grid system and construct the bumpless compensators and

carry out the simulations. In the simulation results, we compare the responses of the

generator for controller switching with and without bumpless scheme. Simulation

cases which are used to demonstrate bumpless switching are included in this chapter

and detailed simulations are given in Chapter 6.

5.2 Principle of Bumpless Transfer

Let us consider a plant as shown in Figure 5.1, which is controlled by by N linear

parameter varying controllers and has to be switched according to the scheduling

parameter. The switching sequence of the controller is done through a supervisor.

Let us describe the plant as follows:

ẋi = f(x, u) x, f(·) ∈ Rn, u ∈ Rm (5.1)

y = h(x, u) y, h(·) ∈ Rp
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Figure 5.2. Switching involving two controllers.

where x, y and u are the state, measured output and control variables respectively.

First we shall consider the problem of bumpless switching between two controllers

as in Figure 5.2 and later we generalise it over N controllers. At any instant of time

t, let controller C1 be the controller driving the plant and the supervisor responsible

for the controller switching initiates action to switch over to controller C2. We have

to achieve this with minimum transients. Let the output of C1 be u1 and of C2 be

u2. To minimise the transients the magnitude difference between u1 and u2 has to

minimised at the switching instance. To get this condition, we drive the output u2

of C2 through a bumpless compensator in offline mode so that u2 = u1.

5.3 Linear Quadratic Bumpless Transfer

We outline the bumpless scheme proposed in [74]. The configuration of a linear

quadratic bumpless transfer controller is shown in Figure 5.3. In order to achieve

bumpless transfer during switching from online controller to offline controller, the

signals u1 should be equal to u2. We design a static constant gain controller F,

such that F drives the offline controller to produce the same signal as the online

controller. It is also important to drive the input signal of the offline controller also

to be equal to the input signal of the online controller to avoid bump during transfer.
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A low pass filter included in the input side of the offline controller helps to reduce

further the transients during transfer.

It is assumed that the feedback controller F has access to controller states as well

as the output of the plants as shown in the Figure 5.3. The plant is driven by the

online controller and the offline controller is driven by the bumpless compensator

F and a low pass filter. Low pass filter helps to reduce the switching transients

further [48]. It is assumed that the low pass filter is detectable and stabilisable.

Using state equations we describe the offline controller in Figure 5.3 as:

˙x(t) = Ax(t) + B1 [r(t) + α̃(t)] + B2y(t) (5.2)

u2(t) = Cx(t) + D1 [r(t) + α̃(t)] + D2y(t)

where x(t) is the state of offline controller, r(t) is the input to the online controller,

α̃(t) is the output of the low pass filter, y(t) is the plant output, u2(t) is the out-

put of the offline controller and α(t) is the output of the bumpless compensator.

A, B1, B2, C, D1 and D2 are the system matrices of the offline controller of appro-

priate sizes. The low pass filter is represented as:

ẋl = Alxl + Bl(α) (5.3)

α̃ = Clxl

where xl(t) is the state of filter and Al, Bl and Cl are filter matrices.

Let us define:

zu(t) = u2(t) − u(t) (5.4)

ze(t) = α(t) (5.5)

where u(t) is the input to the plant from online controller. To avoid transients

we have to minimise the signals zu(t) and ze(t). We attempt to minimise α̃(t) not

directly, but by minimising α(t) instead. As the input to the offline controller is

r(t)+ α̃(t) and α̃(t) is the output of the low pass filter, this enables the input to the

controller gradually to deform into purely r(t) when the offline controller is switched

online, which helps to avoid bumps at the controller input. With this background,
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Figure 5.3. Bumpless controller configuration

we shall minimise the following cost functional:

J(u, α, t) =
1

2

∫ T

0

[zu(t)
′Wuzu(t) + ze(t)

′Weze(t)] dt +
1

2
zu(T )′Pzu(T ) (5.6)

where Wu and We are positive semi definite matrices which are used to weigh the

relative importance of ensuring u2 ≈ u and minimising α.

Combining the dynamics of the offline controller and the low pass filter gives,

˙̃x = Ãx̃ + B̃1w + B̃2α (5.7)

u2 = C̃x̃ + D̃1w

where

Ã :=

[

A B1Cl

0 Al

]

, B̃1 :=

[

B1 B2

0 0

]

, B̃2 :=

[

0

Bl

]

, C̃ :=
[

C 0
]

,

D̃1 :=
[

D1 D2

]

, x̃ :=

[

x

xl

]

, w :=

[

r

y

]
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Substituting (5.7) into performance index equation (5.6) and forming associated

Hamiltonian yields,

H =
1

2

{

(

C̃x̃ + D̃1w − u
)′

Wu

(

C̃x̃ + D̃1w − u
)

+ α′Weα

}

+λ′
(

Ãx̃ + B̃1w + B̃2α
)

(5.8)

The first order necessary conditions for minimum are:

∂H

∂λ
= Ãx̃ + B̃1w + B̃2α = ˙̃x (5.9)

∂H

∂x̃
= C̃ ′WuC̃x̃ + Ãλ′ + C̃ ′WuD̃1w − C̃ ′Wuu = −λ̇ (5.10)

∂H

∂α
= Weα + B̃′

2λ = 0 (5.11)

Conditions (5.9), (5.10) and (5.11) can be combined to get,

[

˙̃x

λ̇

]

=

[

Ã −R̃

−Q̃ −Ã′

][

x̃

λ

]

+

[

B̃1 0

−C̃ ′WuD̃1 C̃ ′Wu

][

w

u

]

(5.12)

where R̃ = B̃2W
−1
e B̃′

2 and Q̃ = C̃ ′WuC̃.

Using the method of sweep [48], let us assume:

λ(t) = Π(t)x̃(t) − g(t) (5.13)

from (5.13)

−g(t) = λ(t) − Π(t)x̃(t) (5.14)

To solve for Π(t), let us consider the following differential equation [81], [48]:

Π̇(t) + Π(t)Ã + Ã′Π(t) − Π(t)R̃Π(t) + Q̃ = 0 (5.15)

Differentiating (5.13),

−ġ(t) = λ̇(t) − Π̇(t)x̃(t) − Π(t) ˙̃x(t) (5.16)
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Substituting from Equations, (5.9), (5.10) and (5.15) in (5.16) we get,

−ġ(t) =
(

C̃ ′WuC̃x̃ + Ãλ′ + C̃ ′WuD̃1w − C̃ ′Wu

)

+
[

Π(t)Ã + Ã′Π(t) − Π(t)R̃Π(t) + Q̃
]

x̃(t) − Π(t)
[

Ãx̃ + B̃1w − B̃2W
−1
e B̃2λ

]

= Ã [Π(t)x̃(t) − λ] − Π(t)R̃ [Π(t)x̃(t) − λ] −
[

C̃ ′WuD̃1 + ΠB̃1

]

w + C̃ ′Wuũ

=
[

Ã − R̃Π(t)
]′

g −
[

C̃ ′WuD̃1 + ΠB̃1

]

w + C̃ ′Wuũ (5.17)

We solve equations (5.15) and (5.17), to synthesise the bumpless compensator F .

To solve these equations we evaluate the end conditions from (5.6) as follows:

λ(T ) =
d

dx̃

{

1

2
[zu(T )′Pzu(T )]

}

=
d

dx̃

{

1

2

[

C̃x̃(T ) + D̃1w(T ) − u(T )
]′

P
[

C̃x̃(T ) + D̃1w(T ) − u(T )
]

}

= C̃ ′PC̃x̃(T ) + C̃ ′PD̃1w(T ) − C̃ ′P ũ(T ) (5.18)

Now comparing equations (5.13) and (5.18) and equating the coefficients we can get

the required end conditions as,

Π(T ) = C̃ ′PC̃

−g(T ) = C̃ ′PD̃1w(T ) − C̃ ′P ũ(T ) (5.19)

The above infinite horizon results assume that the switch between the controllers

occurs infinitely far in the future (T → ∞). However, if the dynamics are such

that a steady state is reached relatively quickly, and the control signal is relatively

constant over a period of time, then these infinite horizon results could be confidently

applied [48].

In order for the solution of the differential Riccati equation, (5.15), to converge

to the positive semi-definite stabilizing solution of

Ã′Π + ΠÃ − ΠR̃Π + Q̃ = 0 (5.20)

as T → ∞,
(

Ã, R̃, Q̃
1

2

)

is required to be stabilisable and detectable [48]. From the
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definitions of R̃ and Q̃, the strict positive definiteness of Wu and We and the assump-

tion that the controller is stabilisable and detectable, it follows that
(

Ã, R̃, Q̃
1

2

)

is

indeed stabilisable and detectable. Hence, a positive semi-definite stabilising solu-

tion to equation (5.20) always exists and further more it satisfies [48],

lim
T→∞

Π(t) = Π(∞) = Π ≥ 0 (5.21)

As equation (5.17), develops backward in time, and is
(

Ã − R̃Π
)

is Hurwitz, this

implies −
(

Ã − R̃Π
)

is anti Hurwitz, and hence LQ tracking [102], can be applied

[48]. With the assumption that w and ũ are constant, it then follows that

lim
T→∞

g(t) =
(

Ã − R̃Π
)−F [(

ΠB̃1 + C̃ ′WuD̃1

)

w − C̃ ′Wuũ
]

(5.22)

where (·)−F denotes the inverse of a transposed matrix. From (5.11), we can write,

α = −W−1
e B̃′

2λ (5.23)

Substituting for λ in (5.23) using (5.13) and (5.22), we can express α as, α =

F [x̃′ w′ ũ′], where F is given by

F = −W−1
e B̃′

2



























Π

−
[

(

Ã − R̃Π
)−F (

ΠB̃1 + C̃ ′WuD̃1

)

]′

[

(

Ã − R̃Π
)−F

C̃ ′Wu

]′



























(5.24)

The offline control loop will be stable as Π ≥ 0 is the stabilising solution to the

ARE, equation (5.20). Therefore it follows that the offline A matrix,
(

Ã − R̃Π
)

, is

Hurwitz.

To design bumpless compensator for the system considered in (5.1) with N con-

trollers, we assess the number of possible switching controller combinations we pro-

pose to have. Suppose if we have K such combinations involving 2K controllers

then of those switching combinations will be having an online and offline controller

and we work with these controllers to get the corresponding bumpless compensator.

This will lead to K bumpless compensators to cover the complete set of switching

combinations.
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Figure 5.4. Bumpless switching scheme for generator

5.4 Application of bumpless transfer for power system

We apply the bumpless controller switching scheme described in Section 5.3 for

switching between power system stabilising controllers when the power delivered by

the generator changes. The block diagram in Figure 5.4 shows the implementation

of the scheme for a generator. The output signal ∆ω is the feedback variable which

drives the power system controller to produce the stabilising signal ∆VS. Let the

output of online and offline controllers be u1 and u2 respectively. Now the com-

pensator F has to be designed such that, it drives output of offline controller u2 to

be equal to u1 and the signal α̃ approaches zero at the switching instant. Now we

shall rewrite the equations described in Section 5.3, to suit the power system model

considered. The offline controller is described by the following equations:

ẋc = Acxc + B1cα̃ + B2c∆ω (5.25)

u2 = Kcxc
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and that the low pass filter is detectable and stabilisable and is represented as,

ẋl = Alxl + Blα (5.26)

α̃ = Clxl

Combining the dynamics of of the offline controller and the lowpass filter gives,

˙̃x = Ãx̃ + B̃1w + B̃2α (5.27)

u = C̃x̃

where

Ã :=

[

A B1Cl

0 Al

]

, B̃1 := [B2c] , B̃2 :=

[

0

Bl

]

, C̃ := [Kc] ,

x̃ :=

[

xc

xl

]

, w := [∆ω]

with new online controller and filter defined, Algebraic Riccati equation (5.20) can

be solved to get the compensator F defined by (5.24).

5.5 Validation of bumpless switching scheme

5.5.1 Simulation details

To validate the bumpless switching scheme, the grid system shown in Figure 5.5 is

used. The system consists of two power system areas Area 1 and Area 2 connected

through a twin circuit tie line of 220 km in length. The transmission system nominal

voltage is 400 kV. Generation voltages are stepped up by the transformers connected

to the generators. Load centers are located at buses 7 and 9. The buses 7 and 9

have shunt capacitors. Generators 1 to 4 and transformers 1 to 4 are identical and

their parameters are given in Appendix A, Table A.1 and A.3. The generator AVR

parameter are given in Table A.2. Transmission line parameters are given in 400 kV,

100 MVA base in Table A.4. For the analysis of the system, 400 kV and 100 MVA

are chosen as base quantities.

Controllers for the considered system are designed as explained in Section 3.4.8.

The generators G1, G3 and G4 operate as base generators and deliver 400 MW each.

A single controller is designed for each generator G1, G3 and G4 corresponding to
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SEP 1 SEP 2 SEP 3 SEP 4 SEP 5 SEP 6 SEP 7 SEP 8
25 MW 50 MW 75 MW 100 MW 125 MW 150 MW 175 MW 200 MW
SEP 9 SEP 10 SEP 11 SEP 12 SEP 13 SEP 14 SEP 15 SEP 16

225 MW 250 MW 275 MW 300 MW 325 MW 350 MW 375 MW 400 MW

Table 5.1. Identification of different the SEPs of generator G2.

Figure 5.5. Two area four machine system.

this SEP. Generator G2 takes up the variations in the power demand by the load.

The operating range of G2 is from 0 to 400 MW. We divide the operating range of G2

into 16 equal power zones of 25 MW each. We have one SEP corresponding to each

power zone. We design 16 controllers for G2 corresponding to each SEP and each

controller provides robust stabilisation for a power variation of ± 25 MW within the

zone. Generators G1, G3 and G4 have single controller corresponding to 400 MW

SEP. Different SEP identification numbers are given in Table 5.1. For demonstrating

the bumpless switching scheme, we carry out two cases of simulations.

Case 1 Switching during normal load variation:

Simulation is carried out for 50 s. Initially the generator G2 output is set to 200 MW

and it operates with controller C8 corresponding to the output power of 200 MW. We

propose 225 MW as the next power change, so we use the corresponding controller

C9 as offline controller with the respective bumpless compensator F. At t = 25 s,

generated power of G2 is increased from 200 MW to 225 MW with corresponding

changes in load at t = 25 s. At t = 25 s, we switch in the offline controller C9 and

switching off the controller C8. The simulation is continued up to t = 50 s. The

responses of the generator with respect to rotor angles, angular velocity, terminal
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Figure 5.6. Case 1: Simulation responses of generator G1 to G4 with bumpless switching.

voltage and generated power are given in Figure 5.6. Comparison of the outputs

of on and offline controllers, offline controller input from the bumpless compensator

and the states of the offline controller and the filter are given in 5.7.

Case 2 Switching during transient regime:

In the simulation Case 1 above, the switching of controller was carried out in steady

state conditions. Since we use the change in speed ∆ω as the feedback variable for

the controller, ∆ω will be almost zero under steady state conditions. To show the

effect of bumpless switching, in this case we switch the controllers under transient
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Figure 5.7. Case 1: Offline and Online controller responses

conditions. To start with at t = 0 s, the generator G2 output is set to 25 MW

with controller C1 as online and controller C2 as offline. At t = 10 s, output of

G2 is increased to 50 MW with controller C2 as online and controller C3 as offline.

Before the transients settle, at t = 12 s, output of G2 is increased to 75 MW with

controller C3 as online and controller C4 as offline and simulation is continued up to

t = 40 s. To compare the situation without bumpless switching, similar simulations

are carried out without bumpless scheme. The comparison of responses of generator

G2 with respect to rotor angles, angular velocity, terminal voltage and generated

power is given in Figure 5.8.
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Figure 5.8. Case 2: Comparison of G2 response with and without bumpless switching.

5.5.2 Inferences from simulation results

Case 1 Switching during normal load variation:

From Figure 5.7, it can be seen that the output of the offline controller driven by

the respective bumpless compensator was able to track the online controller output.

It can also be seen from Figure 5.6, that the response of the generator parameters

with bumpless scheme is found to be normal.
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Case 2 Switching during transient regime:

From Figure 5.8, comparison of the case of switching without bumpless, with bump-

less switching scheme, the one with bumpless switching produces less overshoot

magnitudes and quick settling with respect to rotor angle, angular velocity, termi-

nal voltage and generated power. We can conclude that the bumpless scheme is

effective in containing switching transients, if switching is done in unsteady condi-

tions.

5.6 Chapter summary

The principle behind bumpless switching scheme in minimising the switching tran-

sients is explained. The linear quadratic bumpless switching scheme and the syn-

thesis of bumpless compensator synthesis are included in detail. Application of the

bumpless switching scheme for power system controller switching is outlined. The

bumpless switching scheme is evaluated by applying the scheme to a test case power

system and simulating the system under different cases. To show the effectiveness

of the scheme in containing the switching transients, switching is deliberately done

in transient regime and the results of the simulations are presented.



Chapter 6

Simulation Results

6.1 Introduction

Modeling and simulation form an important and integral part in the power system

design, planning, investigation and operation. With ever increasing complexity of

the power system grid, simulation and analysis become more important than ever

before. Simulation has proved to be a necessary and effective tool for the study and

analysis of modern power systems [103].

Power system control has been evolving continuously as the power systems grow

in size and complexities. To tackle the challenges posed by this, new control method-

ologies are continuously being developed. Controllers developed using advanced

controller design methodologies, use simulations to demonstrate the controller per-

formance [10,31,33–35,37,104,105]. In these works, controllers are designed for a test

case power system and the performance is evaluated through simulations done under

different scenarios. New control methodologies are validated for their performance

by using different simulation methodologies such as computer simulations, digital

electromagnetic transient simulations in real time, hybrid simulations, etc., [103].

In this chapter, we demonstrate the performance of the proposed controller design

methodology through nonlinear computer simulations. Validation of the controller

using Real Time Digital Simulation (RTDS) facility is included in Chapter 7. Two

area 11 bus, 4 machine power system is chosen as the test case power system and

controllers are designed for the system. Simulations are carried out to cover different

situations such as load generation variations, fault conditions and generator reference

voltage variations. The performance of the proposed controller is also compared with

conventional Power System Stabiliser (PSS).

This chapter is organised as follows: First part consists of the test case system

description and controller design. The next part includes the simulation methodol-

ogy and simulation cases considered and the last part consists of simulation results

and inference.

104



Section 6.2 Test Case System 105

Figure 6.1. Two area four machine system.

6.2 Test Case System

The two area, four machine, 11 bus power grid system shown in Figure 6.1 is con-

sidered as a test case system. The system consists of two power system areas Area

1 and Area 2 connected through a twin circuit tie line of 220 km in length. The

transmission system nominal voltage is 400 kV. Generation voltages are stepped up

by the transformers connected to the generators. Load centers are located at buses

7 and 9. Buses 7 and 9 have shunt capacitors.

Generators 1 to 4 and transformers 1 to 4 are identical and their parameters are

given in Appendix A, Table A.1 and A.3. The generator AVR parameters are given

in Table A.2. Transmission line parameters are given in 400 kV, 100 MVA base

in Table A.4. For the analysis of the system, 400 kV and 100 MVA are chosen as

base quantities. For simulation purpose, Generators G1, G3 and G4 are assumed to

function as base generators with constant power output. Load variations from base

load is catered for by generator G2.

For the assumed conditions, the power system considered is open loop unstable.

The pole locations of the model linearised about the SEP corresponding to G1, G3

and G4 at 400 MW and G2 at 200 MW (this SEP is designated as SEP 8, refer Table

6.2) are given in Figure 6.2 and Table 6.1. The open loop pole locations indicate

that the system is marginally unstable and a power stabiliser is required to stabilise

and to increase the damping of the system.
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Figure 6.2. Locations of open loop poles and zeros for Generator G1 to G4 corresponding
to the SEP 8.

Generator G1
Poles

-48.3470 +  0.0000 -19.0430 −  0.0000
0.1355 +  9.7952 0.1355 −  9.7952

Zeros -66.6670 +  0.0000 0.0000 +  0.0000

Generator G2
Poles

-48.3630 +  0.0000 -0.0068 −  9.8727
-0.0068 −  9.8727 -18.7450 +  0.0000

Zeros -66.6670 +  0.0000 0.0000 +  0.0000

Generator G3
Poles

-48.3780 +  0.0000 -19.0060 −  0.0000
0.1315 +  9.8057 0.1315 −  9.8057

Zeros -66.6670 +  0.0000 0.0000 +  0.0000

Generator G4

Poles
-48.4890 +  0.0000 -18.8990 −  0.0000

0.1325 +  9.8290 0.1325 −  -9.8290
Zeros -66.6670 +  0.0000 0.0000 +  0.0000

Table 6.1. Locations of open loop poles and zeros for Generator G1 to G4 corresponding
to the SEP 8.
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SEP 1 SEP 2 SEP 3 SEP 4 SEP 5 SEP 6 SEP 7 SEP 8
25 MW 50 MW 75 MW 100 MW 125 MW 150 MW 175 MW 200 MW
SEP 9 SEP 10 SEP 11 SEP 12 SEP 13 SEP 14 SEP 15 SEP 16

225 MW 250 MW 275 MW 300 MW 325 MW 350 MW 375 MW 400 MW

Table 6.2. Identification of different the SEPs of generator G2.

6.3 Controller Design

Controllers are designed for the generators connected to the grid using the method-

ology described in Chapter 3. For this test system, we assume that all the change

in the load is supplied by Generator G2. The variations in the output power for

the Generators G1, G3 and G4 are minimal hence it is proposed to have a single

controller with a parameter variation uncertainty corresponding to 400 ± 25 MW

and SEP 16 conditions.

The power output of Generator G2 is assumed to vary from 0 to 400 MW. In

order to design parameter varying switching controllers for G2, the operating regime

of G2 is divided into 16 equal power output regions of 25 MW each. Each region

is considered to have a SEP and 16 controllers are designed for G2 with a robust

stabilisation region of ± 25 MW. Therefore we have 16 SEPs corresponding to each

regime. Different SEP identification numbers are given in Table 6.2.

For the controller design, we get the system matrices corresponding to the SEPs

and SEP ± 25 MW conditions. To get these system matrices, NR load flow analysis

is carried out for these operating points and reduced network models are arrived at,

as described in Chapter 2. The results of the Matlab code developed for this pur-

pose are verified by comparing them with PSS/E Siemens software results. System

matrices are computed for the SEPs using the linearised multimachine power system

model given by (2.33), (2.38), (2.39), (2.44) and (2.49). The load flow results and

system matrices corresponding to the SEP 8 are given in Figure 6.3 and equations

6.1 and 6.2. The subsystem matrices Ai, Bi and Li can be obtained for the SEPs

using equations (3.36) to (3.38) from the corresponding system matrices ASY S and

BSY S . The parametric uncertainty around the SEP is included by computing the

system matrices corresponding to SEP ± 25 MW points. Now by using these ma-

trices, the values αi and βi can be selected so that the condition laid by inequality

3.40 is satisfied. The selected values of αi and βi for different SEPs are given in

Table 6.3.
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Now having the subsystem matrices and uncertainties defined, we can synthesise

the controller by solving the optimisation control problem through rank constrained

LMIs as outlined in Chapter 3. The controller design steps corresponding to a SEP

can be summarised as follows:

(i) Using the load flow results corresponding to the SEP, the system matrices

ASY S and BSY S can be found using (2.33), (2.38), (2.39), (2.44) and (2.49).

(ii) From the system matrices ASY S and BSY S , the subsystem matrices and un-

certainty definitions can be found using (3.36), (3.37), (3.38) and (3.40).

(iii) With the subsystem matrices and uncertainties defined, the rank constrained

LMI problem (3.117) is solved, to a desired accuracy, obtaining a collection of

θi, τi, ηi, X̃i, Yi.

(iv) Substituting the found θi, τi, ηi into GAREs (3.48) and solving (3.48) to obtain

Xi. Note that Yi can be selected from the found feasible solution the problem

(3.117) (refer the proof of Theorem 3 of [97]).

(v) The robust stabilising controller can be constructed (3.51) using the computed

θi, τi, ηi, Xi and Yi.

The designed controller matrices corresponding to SEP 8 are given in Table 6.4.

The closed loop pole locations are investigated with the designed controllers. The

closed loop pole locations with the designed controllers corresponding to SEP 8

conditions are given in Figure 6.4 and in Table 6.5.

For comparison purpose, conventional IEE 2ST PSS is used in the simulations

and the PSS controller parameters are given in Appendix A, Table A.5. Having

the controllers designed for the SEPs, the dwell time required for stable switching

are computed and the bumpless compensators for reducing switching transients are

designed next.
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ASY S1 =









































































0.0000 376.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.2473 0.0000 −0.1308 0.0000 0.0821 0.0000 −0.0379 0.0000

−0.1096 0.0000 −0.4541 −22.2220 0.0517 0.0000 0.1022 0.0000

−4.2570 0.0000 39.3320 −66.6670 2.6168 0.0000 8.6555 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 376.0000 0.0000 0.0000

0.0904 0.0000 −0.0108 0.0000 −0.2584 0.0000 −0.0778 0.0000

0.0153 0.0000 0.1126 0.0000 −0.0390 0.0000 −0.4559 −22.2220

0.3974 0.0000 9.0011 0.0000 −0.7622 0.0000 39.3810 −66.6670

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0826 0.0000 −0.0196 0.0000 0.0769 0.0000 −0.0325 0.0000

0.0273 0.0000 0.1008 0.0000 0.0443 0.0000 0.0957 0.0000

0.7125 0.0000 8.2299 0.0000 2.1387 0.0000 8.0530 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0831 0.0000 −0.0201 0.0000 0.0775 0.0000 −0.0330 0.0000

0.0279 0.0000 0.1014 0.0000 0.0449 0.0000 0.0962 0.0000

0.7494 0.0000 8.2780 0.0000 2.1831 0.0000 8.0950 0.0000









































































ASY S2 =









































































0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0823 0.0000 −0.0204 0.0000 0.0828 0.0000 −0.0211 0.0000

0.0284 0.0000 0.1006 0.0000 0.0294 0.0000 0.1010 0.0000

0.7833 0.0000 8.2243 0.0000 0.8570 0.0000 8.2691 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0837 0.0000 −0.0080 0.0000 0.0843 0.0000 −0.0087 0.0000

0.0114 0.0000 0.1041 0.0000 0.0123 0.0000 0.1047 0.0000

0.1478 0.0000 8.3066 0.0000 0.2170 0.0000 8.3565 0.0000

0.0000 376.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.2480 0.0000 −0.1304 0.0000 0.0885 0.0000 −0.0256 0.0000

−0.1073 0.0000 −0.4550 −22.2220 0.0357 0.0000 0.1078 0.0000

−4.1128 0.0000 39.2780 −66.6670 1.2616 0.0000 8.8799 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 376.0000 0.0000 0.0000

0.0886 0.0000 −0.0253 0.0000 −0.2493 0.0000 −0.1296 0.0000

0.0351 0.0000 0.1080 0.0000 −0.1079 0.0000 −0.4569 −22.2220

1.2219 0.0000 8.8845 0.0000 −4.1543 0.0000 39.1270 −66.6670









































































ASY S = [ASY S1 ASY S2] (6.1)

BSY S =
[

0.0, 0.0, 22.22, 0.0, 0.0, 0.0, 22.22, 0.0, 0.0, 0.0, 22.22, 0.0, 0.0, 0.0, 22.22, 0.0
]

(6.2)
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SEP 1 2 3 4 5 6 7 8
αi = βi 0.6341 0.8964 0.8957 0.8950 0.8944 0.8937 0.8931 0.8925
SEP 9 10 11 12 13 14 15 16

αi = βi 0.8918 0.8912 0.8906 0.8900 0.8894 0.8887 0.8881 0.6277

Table 6.3. Value of parameter variation constants αi and βi.

Ac Bc K′
c

Generator G1









0.00 485.96 0.00 0.00
−0.25 −15.32 −0.13 0.00

−1175.90 1.5875e6 −650.12 −0.57
−3.96 111.09 39.14 −66.67

















−219.92
30.64

−356.09
−222.35

















−52.91
7.143e4
−29.24
0.97









Generator G2









0.00 482.85 0.00 0.00
−0.26 −14.24 −0.06 0.00

−2434.30 3.0034e6 −585.37 0.27
0.43 131.96 39.46 −66.67

















−106.85
14.25

−185.49
−132.00

















−109.54
1.3515e4
−26.32
1.01









Generator G3









0.00 484.70 0.00 0.00
−0.25 −15.21 −0.13 0.00

−1184.30 1.5875e6 −647.50 −0.52
−3.74 109.63 39.05 −66.67

















−217.39
30.44

−350.44
−219.44

















−53.29
7.143e4
−29.12
0.98









Generator G4









0.00 483.90 0.00 0.00
−0.25 −15.18 −0.13 0.00

−1193.90 1.5875e6 −645.48 −0.52
−3.78 108.84 38.89 −66.67

















−215.81
30.38

−349.95
−217.86

















−53.72
7.1429e4
−29.03
0.98









Table 6.4. Designed controllers for generators G1 to G4 corresponding to the SEP 8
conditions.

6.4 Controller Switching

6.4.1 Dwell time

Generators G1, G3 and G4 have controllers corresponding to the power output of

400 MW. The controller for generator G2 is selected with respect to the power output

of G2. To preserve switching stability we use dwell time constrained switching as

described in Chapter 4. We compute dwell time required for different switching

combinations. The computed dwell time for different switching sequence are given

in Table 6.7.
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Generator G1

Poles

-317.0900 +  318.6300 -317.0900 −  318.6300
-66.6540 +  0.0000 -48.2000 +  0.0000
-0.0075 +  0.0000 -0.0075 +  0.0000
-5.4269 +  6.3017 -22.3710 −  6.3017

Zeros
-332.7100 +  333.6000 -332.7100 −  333.6000

-0.0109 +  0.0000 0.0000 +  0.0000
-66.6670 −  0.0000 66.6600 +  0.0000

Generator G2

Poles

-292.6600 +  292.7500 -292.6600 +  -292.7500
-292.6600 +  292.7500 -292.6600 −  292.7500

-66.6720 +  0.0000 -0.0288 +  0.0000
-7.6812 +  8.6070 -7.6812 −  8.6070

-17.6210 +  0.0000 -48.3900 +  0.0000

Zeros
-299.7800 +  299.7700 -299.7800 −  299.7700

-0.0352 +  0.0000 0.0000 +  0.0000
-66.6670 +  0.0000 -66.6710 +  0.0000

Generator G3

Poles

-315.7300 +  317.2600 -315.7300 −  317.2600
-66.6550 +  0.0000 -48.1590 +  0.0000
-0.0076 +  0.0000 -5.4395 +  0.0000

-22.3910 +  6.0905 -22.3910 −  6.0905

Zeros
-331.3500 +  332.2400 -331.3500 −  332.2400

0.0000 +  0.0000 -0.0110 +  0.0000
-66.6670 +  0.0000 -66.6610 +  0.0000

Generator G4

Poles

-314.7300 +  316.2700 -314.7300 −  316.2700
-66.6550 +  0.0000 -48.2580 +  0.0000
-0.0077 +  0.0000 -5.4713 +  0.0000

-22.2990 +  6.0267 -22.2990 −  6.0267

Zeros
-330.3300 +  331.2200 -330.3300 −  331.2200

0.0000 +  0.0000 -0.0111 +  0.0000
-66.6670 +  0.0000 -66.6610 +  0.0000

Table 6.5. Locations of closed loop poles and zeros for Generator G1 to G4.
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Figure 6.4. Locations of closed loop poles and zeros for Generator G1 to G4.

Parameter Value
Gain K1 10
Time constant T1 0.0 s
Wash out time constant T3 10.0 s
Wash out time constant T4 10.0 s
First lead-lag time constant T5 0.55 s
First lead-lag time constant T6 0.2 s
Second lead-lag time constant T7 0.55 s
second lead-lag time constant T8 0.2 s
Third lead-lag time constant T9 0.55 s
Third lead-lag time constant T10 0.2 s
PSS voltage upper limit 0.1 pu
PSS voltage lower limit -0.1 pu

Table 6.6. Conventional PSS Parameters
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Power Change Controller τ 12
d (s) Power Change Controller τ 21

d (s)
SEP 1 to 2 C1 to C2 23.9890 SEP 2 to 1 C2 to C1 24.7884
SEP 2 to 3 C2 to C3 22.8243 SEP 3 to 2 C3 to C2 21.5976
SEP 3 to 4 C3 to C4 23.4500 SEP 4 to 3 C4 to C3 21.2590
SEP 4 to 5 C4 to C5 22.9490 SEP 5 to 4 C5 to C4 23.4500
SEP 5 to 6 C5 to C6 21.0466 SEP 6 to 5 C6 to C5 22.9490
SEP 6 to 7 C6 to C7 21.4581 SEP 7 to 6 C7 to C6 20.1177
SEP 7 to 8 C7 to C8 24.1736 SEP 8 to 7 C8 to C7 22.7254
SEP 8 to 9 C8 to C9 22.8836 SEP 9 to 8 C9 to C8 24.1736
SEP 9 to 10 C9 to C10 24.0231 SEP 10 to 9 C10 to C9 21.0308
SEP 10 to 11 C10 to C11 23.6559 SEP 11 to 10 C11 to C10 24.1475
SEP 11 to 12 C11 to C12 22.4421 SEP 12 to 11 C12 to C11 23.9659
SEP 12 to 13 C12 to C13 23.3025 SEP 13 to 12 C13 to C12 22.7156
SEP 13 to 14 C13 to C14 24.3393 SEP 14 to 13 C14 to C13 23.3025
SEP 14 to 15 C14 to C15 21.4414 SEP 15 to 14 C15 to C14 24.2053
SEP 15 to 16 C15 to C16 24.8533 SEP 16 to 15 C16 to C15 21.5085

Table 6.7. Values of required dwell time for different controller switchings.

6.4.2 Bumpless switching

The transients during switching are avoided by using bumpless switching scheme.

Bumpless compensators are to be designed as per the procedure outlined in Chap-

ter 5. To allow switchings above and below the current operating points, corre-

sponding adjacent bumpless compensators are kept ON.

6.5 Simulation

6.5.1 Simulation model

The nonlinear model of the ith generator in a multimachine power system consist-

ing of n generators given by equations (2.25) to (2.32) are used for simulation. It

is assumed that the prime mover mechanical power changes are achieved instanta-

neously. The rotor angle δi, rotor angular velocity ωi, equivalent q-axis voltage Eqi

and the sensor output voltage Voi are used as variables for integration along with

the states of controllers.

6.5.2 Simulation software

Matlab simulation software is developed for simulating the multimachine system.

The Matlab integration routine “ode15s” is used for integration.
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Figure 6.5. Case 1: G2 generation varied within the SEP 8 zone - responses of generators
G1 to G4.

6.5.3 Simulation Cases

The performance of the proposed controller is evaluated against parameter varia-

tions, fault conditions and Automatic Voltage Regulator (AVR) reference voltage

variations, through the following cases of simulation studies. The performance of

the controller under each case is also compared with conventional IEE 2ST PSS

operating under similar conditions. Simulated responses of the generators G1 to G4

with respect to rotor angle, angular velocity, terminal voltage sensor output, gener-

ated power, equivalent q-axis voltage, field voltage, controller output and generator
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G2 controller states are plotted for each simulation case. Simulation results under

each case are analysed.
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Figure 6.6. Case 1: G2 generation varied within the SEP 8 zone - responses of generators
G1 to G4.

Case 1: Load variation within a zone

To evaluate the performance of the controller for load variations within a zone SEP

8 is considered. Generated power of G2 is varied through a range of 200 ± 25 MW.

Controller C8 corresponding to SEP 8 is used for G2. The power variation schedule

for G2 is given in Table 6.8.
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Time 0 - 25 s 25 - 50 s 50 - 75 s 75 - 100 s 100 - 125 s
G2 Power 200 MW 225 MW 200 MW 175 MW 200 MW

Table 6.8. Case 1: Generation schedule for generator G2
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Figure 6.7. Case 2: G2 generation increased from 25 to 400 MW - responses of generators
G1 to G4.

Results

The responses of the generators are given in Figures 6.5 and 6.6. For the prescribed

up and down load variations around the SEP, the proposed controller produces a

satisfactory response with the transient responses settling down quickly, with less
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oscillations.

Case 2: G2 power output increase from minimum to maximum

To validate the controller performance over the entire operating range of the gener-

ator, generated power of G2 is increased from 25 MW to 400 MW in steps of 25 MW

with corresponding changes in load. At each step of power change, controller corre-

sponding to the respective SEP is switched in. The generator G2 power is changed

at 25 s interval meeting the dwell time constraint for the controller switching.
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Figure 6.8. Case 2: G2 generation increased from 25 to 400 MW - responses of generators
G1 to G4.
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Results

The responses of the generators for the G2 power output increase from minimum to

maximum are given in Figures 6.7 to 6.9. The system responses with conventional

PSS are given in Figure 6.9. Comparing the responses produced by the proposed

controller and conventional PSS, from the settling time values, it can be seen that the

proposed controller contains the oscillations faster than the conventional controller.

Apart from this, from the rotor angular velocity responses in Figures 6.7 and

6.9, it can be seen that with respect to the settling time taken for power change

disturbances by conventional PSS are not uniform over the entire operating range

of G2. This is because, same PSS is used under different system parameter condi-

tions arising due to generation and load changes. Whereas the proposed controller

provides a better and uniform response over the entire operating range. The over-

shoot above the steady state settling value and settling time taken to settle with in

± 5 % of the steady state value, with respect to the rotor angle response of G2 is

given in Table 6.9. With the proposed controller, for the simulated power changes,

the overshoot varies between 1.6049 deg and 2.3948 deg and settling time between

4.5302 and 5.9922 s. With conventional PSS overshoot varies between 0.7521 deg

and 2.9714 deg and settling time between 10.7858 s and 13.4199 s producing a wide

difference in performance as the operating point changes.

Case 3: G2 power output decrease from maximum to minimum

The situation is similar to Case 2 above, but the generated power of G2 is decreased

from 400 MW to 25 MW in steps of 25 MW. At each step of power change, controller

corresponding to the respective SEP is switched in.

Results

The responses of the generators for the G2 power output decrease from maximum to

minimum are given in Figures 6.10 to 6.12. The system responses with conventional

PSS are given in Figure 6.12. As in the generation increase case, for the load decrease

case also, the proposed controller produces a better response for the load decrease

case when compared with conventional PSS.

Again from the rotor angular velocity responses in Figures 6.10 and 6.12, it

can be seen that the responses produced by conventional PSS are not uniform for

the power variation over the entire operating range of G2. Whereas the proposed

controller provides a better and uniform response over the entire operating range.
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Power Change
With proposed controller With conventional PSS

Over shoot (deg) Set. time (s) Over shoot (deg) Set. time (s)
SEP 1 to SEP 2 2.0479 5.4386 0.7521 10.7858
SEP 2 to SEP 3 2.0630 4.6268 0.9846 11.4481
SEP 3 to SEP 4 2.3866 4.9204 1.2665 12.0542
SEP 4 to SEP 5 2.3948 5.0810 1.5481 12.5884
SEP 5 to SEP 6 2.3522 4.8932 1.7789 13.0229
SEP 6 to SEP 7 2.1895 4.5302 2.0056 13.4199
SEP 7 to SEP 8 2.1455 4.6054 2.1500 12.6432
SEP 8 to SEP 9 2.0512 4.7568 2.3160 12.9374
SEP 9 to SEP 10 2.0199 4.8465 2.4465 11.9951
SEP 10 to SEP 11 1.7053 5.8360 2.5511 12.0810
SEP 11 to SEP 12 1.6910 5.9922 2.6410 11.4172
SEP 12 to SEP 13 1.7018 4.8778 2.7410 11.6502
SEP 13 to SEP 14 1.6049 4.9519 2.7938 11.8375
SEP 14 to SEP 15 1.6206 4.9884 2.8837 12.0367
SEP 15 to SEP 16 1.6305 5.0497 2.9714 12.1813

Table 6.9. Case 2: G2 power output increase - Comparison of Overshoot and Settling
time

The overshoot above the settling value and settling time with respect to the rotor

angle response of G2 are given in Table 6.10. With the proposed controller for the

simulated power changes, the overshoot varies between 0.6578 deg and 2.3866 deg

and settling time between 4.4698 and 6.1738 s. With conventional PSS, overshoot

varies between 0.1600 deg and 0.8031 deg and settling time between 5.8045 and

16.0265 s producing a wide difference in performance as the operating point changes.

Case 4: Tie line tripping due to fault

To evaluate the performance of the controller under fault conditions, a fault scenario

is simulated by tripping one of the circuits between buses 7 and 9. The output of

generators G1, G3 and G4 are at 400 MW and G2 at 200 MW. Tie line is tripped at

t = 3 s and at, t = 9 s, the tie line circuit is energised back and the simulation is

continued with pre-fault system. Controller is not changed in this case.

Results

The responses of the generators for the fault scenario simulated are given in Figures

6.13 to 6.15. The system responses with conventional PSS are given in Figure 6.15.

With reference to the responses in Figures 6.13 to 6.15, the proposed controller
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Figure 6.9. Case 2: G2 generation increased from 25 to 400 MW with conventional PSS
- responses of generators G1 to G4.

contains the disturbance produced during fault more effectively than conventional

PSS and quickly settles back when the system is restored, in comparison with con-

ventional PSS. When the system is restored after fault clearance, with respect to

the rotor angle response of generator G2, proposed controller gives an overshoot of

5.1510 deg and a settling time of 8.4809 s in comparison to an overshoot of 13.8485

deg and a settling time of 13.3637 s with conventional PSS.
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Figure 6.10. Case 3: G2 generation decreased from 400 to 25 MW - responses of gener-
ators G1 to G4.

Case 5: Reference voltage variation

To assess the controller performance for voltage and reactive power changes, AVR

reference voltage of generators G2, G3 and G4 are varied through a range of ± 10

% of normal setting as given in Table 6.11. The output of all generators is set at

400 MW. Controller is not changed in this case.

Results

The responses of the generators for the reference voltage variation case are given in

Figures 6.16 to 6.18. The system responses with conventional PSS are given in Figure
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Power Change
With proposed controller With conventional PSS

Over shoot (deg) Set. time (s) Over shoot (deg) Set. time (s)
SEP 16 to SEP 15 2.0321 5.5524 0.2606 7.9690
SEP 15 to SEP 14 2.0504 4.8753 0.2546 7.7334
SEP 14 to SEP 13 2.3741 5.1295 0.2592 7.6339
SEP 13 to SEP 12 2.3866 5.1297 0.2577 7.4596
SEP 12 to SEP 11 1.7322 4.9140 0.2548 7.3059
SEP 11 to SEP 10 0.6578 4.4698 0.2557 7.1305
SEP 10 to SEP 9 2.1327 4.5399 0.2429 6.9237
SEP 9 to SEP 8 2.0374 4.6686 0.2284 6.7604
SEP 8 to SEP 7 2.0061 4.7502 0.1803 6.4155
SEP 7 to SEP 6 1.6966 6.1382 0.1600 6.1717
SEP 6 to SEP 5 1.6840 6.1738 0.2327 5.8045
SEP 5 to SEP 4 1.6947 6.1319 0.3576 9.6256
SEP 4 to SEP 3 1.5976 4.9002 0.5159 11.4202
SEP 3 to SEP 2 1.6131 4.9366 0.6854 14.8545
SEP 2 to SEP 1 1.6227 4.9918 0.8031 16.0265

Table 6.10. Case 3: G2 power output decrease - Comparison of Overshoot and Settling
time

Simulation time 0 - 20s 20 - 40 s 40 - 60 s 60 - 80 s 80 - 100 s
AVR setting normal + 10% normal - 10% normal

Table 6.11. Case 3 Reference voltage variation AVR settings

6.18. In this case also, from the responses in Figures 6.16 to 6.18, it can be seen

that, proposed controller produces less oscillations and overshoot when compared

with conventional PSS. With respect to the rotor angle response of generator G2,

proposed controller gave an overshoot of 0.6881 deg and a settling time of 3.1986 s

in comparison to an overshoot of 7.6646 deg and a settling time of 7.2809 s with

conventional PSS.

6.6 Chapter Summary

The performance of the proposed controller is validated through different cases of

nonlinear computer simulations. For this, a two area, four machine, 11 bus power

grid system is considered as test case power system. Multimachine nonlinear power

system model is used for the simulations. Controllers are designed using the pro-

posed methodology for the generators in the grid system. Different practical power
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Figure 6.11. Case 3: G2 generation decreased from 400 to 25 MW - responses of gener-
ators G1 to G4.

system scenarios such as load generation variations, fault conditions and genera-

tor AVR reference voltage variations are simulated. Identified simulation cases are

simulated with both proposed controllers and conventional PSS and the simulation

results are compared. The generator responses with respect to rotor angle, angular

velocity, terminal voltage sensor output, generated power, equivalent q-axis voltage,

field voltage, controller output and controller states are analysed further. For the

simulation cases considered, the proposed controller gave a satisfactory performance.

When compared with the conventional PSS, proposed controllers provided effective

damping, less overshoot and settling time with uniform performance over a wide
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Figure 6.12. Case 3: G2 generation decreased from 400 to 25 MW with conventional
PSS - responses of generators G1 to G4.

range of parameter variations.
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Figure 6.13. Case 4: Fault at tie line 7 - 9 - responses of generators G1 to G4.
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Figure 6.14. Case 4: Fault at tie line 7 - 9 - responses of generators G1 to G4.
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Figure 6.15. Case 4: Fault at tie line 7 - 9 - responses of generators G1 to G4 with
conventional PSS.
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Figure 6.16. Case 5: ± 10 % reference voltage variation - responses of generators G1 to
G4.
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Figure 6.17. Case 5: ± 10 % reference voltage variation - responses of generators G1 to
G4.
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Figure 6.18. Case 5: ± 10 % reference voltage variation - responses of generators G1 to
G4 with conventional PSS.



Chapter 7

Real Time Digital Simulation

Testing of new controllers by integrating them into actual power system is not

possible always. In the absence of facilities to test the controllers in real power

system, RTDS simulation facility provides next possible test bed closest to real

system to test the controllers. RTDS facility employs an elaborate power system

simulation modules which solves the power system equations and simulates various

scenarios in real time. Central Power Research Institute (CPRI), at Bangalore,

India has Real Time Digital Simulation (RTDS) facility to carry out detailed real

time simulation of interconnected grid systems. This facility is used to test the

proposed controller design. We have a setup a test case power system and carried

out simulations with proposed controllers and conventional PSS under different load

variations, reference voltage variations and fault conditions. The chapter discusses

the simulations carried out in the RTDS facility [106] at CPRI.

7.1 RTDS Facility

Power systems are studied either to analyse their steady state behavior or transient

(time domain) behavior. Transient analysis is conducted in order to analyse system

stability at the power frequency or to analyse instantaneous system response over

time. The instantaneous response, which is often referred to as the electromagnetic

transient response can provide detailed information about the system under study,

such as the maximum over-voltage, harmonic distortions, voltage sags etc. It can

also accurately show the control system behavior.

A better understanding of systems prior to their manufacture leads to optimally

designed devices and an analysis of the impact of the introduction of new devices

prior to their installation in the network results in optimised power systems and

fewer operational problems.

In the past, analog simulators (Transient Network Analysers and HVDC simula-

tors) were used to perform real time simulation studies. Using scaled down passive

components such as resistors, inductors and capacitors, analog simulators represent

the electrical characteristics of the actual power system components. The individual

132
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component models can be configured and interconnected to form the system model

for the study at hand. Since the source models and the generator models operate

at real system frequency the analog simulators operates inherently in real time.

In addition to analog simulator, computer based electromagnetic transient simu-

lation software (non-real time) has been available for many years and has been used

to study power system phenomenon. The modeling capabilities of modern electro-

magnetic transients software such as Electro-Magnetic Transients Program EMTP,

Alternative Transients Program (ATP-EMTP), etc., are able to represent individ-

ual power system components in great detail. The digital simulation software relies

on mathematical models for representing the individual power system components,

whereby the user can connect these models to form overall power system model for

study.

The most common solution employed by electromagnetic transient power sys-

tem simulation software is the Dommel’s Algorithm [106]. In this algorithm, the

trapezoidal rule of integration is used to convert integral equations, which result

from nodal analysis of the power system, into algebraic equations. Application of

trapezoidal rule requires that the solution be computed only at discrete instants in

time (time between computed instants - time step ∆t), rather than a continuous

solution. All of the equations representing the power system model must be com-

puted at each time step. As the size of the power system increases the number of

calculations which must be performed increases and a single CPU needs excessive

time to compute the results even for a single time step. In this case, the simulation

is said to be in ‘non-real time’.

The recent advances in digital signal processing using fast computers have had

a significant effect on digital simulation technology. The burden of calculation is

divided into several modules which can be solved in parallel, so as to perform the

necessary calculations for a single time step, in a time less than or equal to the time

step thereby achieving ‘real time’.

The RTDS is one such tool which comprises of specialized hardware and soft-

ware to achieve continuous real time simulation. A state-of-the-art real time digital

simulator facility procured from RTDS Technologies, Canada was established at the

Power Systems Division of CPRI in June-2003, to meet the needs of the utilities,

electrical industries, manufacturers, etc., Figure 7.1, shows the setup of the Real
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Figure 7.1. RTDS facility at CPRI, Bangalore, India.

Time Digital Simulator Facility. An extensive power system component library to-

gether with a friendly graphical user interface, facilitate the assembly and study

of wide variety of AC, DC and integrated AC/DC power systems. Because of the

continuous real time operation achievable on RTDS, it can be applied in areas tra-

ditionally reserved for analog simulators eg. testing of protective relays, testing of

system controllers etc.

7.2 Test Case Power System

To validate the proposed controller design methodology in RTDS, a two area power

system consisting of 4 generators and 11 buses is considered. The layout of the

power system is given in Figure 7.2. Area 1 and 2 are interconnected by a tie-line.

Generator 1 bus is considered as the reference slack bus.

Area 1 is connected to Area 2 through a two circuit tie line of length 220 km.

The transmission system nominal voltage is 400 kV. Generation voltage are stepped

up by the transformers connected to the generators. Load centers are at buses 7

and 9 also buses 7 and 9 have shunt capacitors.
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Figure 7.2. Two area four machine system.

Generators 1 to 4 and transformers 1 to 4 are identical and their parameters are

given in Appendix A, Table A.1 and A.3. The generator AVR parameter are given

in Table A.2. Transmission line parameters are given in 400 kV, 100 MVA base in

Table A.4. For the analysis of the system, 400 kV and 100 MVA are chosen as base

quantities.

7.3 Controller Design

Decentralised robust output feedback controllers of the form given by (3.44) are

designed for the system in Figure 7.2. For the RTDS validation purpose, one SEP

corresponding to generator output condition with the all generators G1, G2, G3 and

G4 operating at 400 MW is considered. The controllers are designed for robust

performance for a load variation of ± 30 MW around the SEP. For the considered

SEP, the open-loop system is unstable and a stabiliser is necessary to stabilise the

system.

Load flow studies corresponding to the SEP are carried out to evaluate the system

matrices ASY S and BSY S. The subsystem matrices Ai, Bi and Li are obtained from

the system matrices ASY S and BSY S using equations (3.36) to (3.38). Parametric

uncertainty around the SEP is defined using αi and βi. The values of αi and βi are

selected to satisfy (3.40).

With the subsystem matrices and uncertainties defined, the controllers are syn-

thesised by solving the optimisation control problem through rank constrained LMIs

as outlined in Chapter 3. The designed controller matrices corresponding to the SEP

are given in Table 7.1. To compare the performance of the designed controller with
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Ac Bc K′
c

Generator G1









0.00 898.81 0.00 0.00
−0.25 −47.83 −0.13 0.00

−1830.40 3.7726e6 −999.65 1.37
−4.11 1641.10 39.27 −66.67

















−522.81
47.84

−2709.20
−1641.2

















−82.37
1.69e5

−44.96
1.06









Generator G2









0.00 938.09 0.00 0.00
−0.24 −52.63 −0.02 0.00

−1516.40 3.1788e6 −999.01 1.02
−5.46 1800.80 38.78 −66.67

















−562.09
52.64

−3085.80
−1800.90

















−68.23
1.42e5

−44.94
1.05









Generator G3









0.00 897.73 0.00 0.00
−0.25 −47.73 −0.13 0.00

−1840.60 3.7726e6 −997.35 1.35
−3.93 1633.90 39.00 −66.67

















−521.73
47.74

−2699.40
−1634.00

















−82.82
1.69e5

−44.86
1.06









Generator G4









0.00 897.01 0.00 0.00
−0.25 −47.71 −0.13 0.00

−1855.60 3.7726e6 −994.29 1.40
−3.97 1624.60 39.05 −66.67

















−521.01
47.73

−2695.30
−1624.70

















−83.50
1.69e5

−44.72
1.06









Table 7.1. Designed controllers for generators G1 to G4 corresponding to the SEP.

the conventional PSS, IEE 2ST PSS model available at RTDS is used. Conventional

PSS parameters are given in Table 6.6.

7.4 RTDS simulations

7.4.1 Simulation setup

The power system shown in Figure 7.2 is configured in RSCAD (RSCAD is the

software associated with RTDS where the power system to be simulated is config-

ured.). The power system configured in RSCAD is shown in Figures 7.3 and 7.4.

This configured system is linked to RTDS racks for simulation.

The system is initialised to the load flow results. Simulation is carried out with

designed controller as well as with conventional IEE 2ST PSS and with IEEE Type

ST1 excitation system.

7.5 Simulation cases and analysis

Following case studies are identified for the simulation. The response of Generators

G1 to G4 are similar for all cases of simulation. Graphical response of Generator G2

with the proposed controller and conventional PSS with respect to load angle, speed,
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Figure 7.3. RTDS power system grid set up Section 1.
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Figure 7.4. RTDS power system grid set up Section 2.
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Figure 7.5. Case1. Generator 2 response for load increase.

terminal voltage and controller output are plotted and analysed for each simulation

case.

7.5.1 Case 1 - Load increase

To study the performance of the controller for parameter variation due to load

changes, load on bus 9 is increased by 100 MW + j 10 MVAR from the SEP condi-

tions. The increased load is allowed to be shared by all the generators.

Results

From the generator responses in Figure 7.5, it can be inferred that the damping of

the system improves with the proposed controller in comparison with conventional
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PSS. The transient overshoot magnitude and the transient settling time are better

with the proposed controller.

7.5.2 Case 2 - Load decrease

Similar to the case 1 above, but the load on bus 9 is decreased by 100 MW - j 10

MVAR from the SEP conditions. The decreased load is allowed to be shared by all

the generators.
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Figure 7.6. Case2. Generator 2 response for load increase.
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Results

From the generator responses in Figures 7.6 it can be inferred that the damping of

the system improves with the proposed controller in comparison with conventional

PSS in the load decrease case also.

7.5.3 Case 3 - Generator reference voltage increase

To evaluate the performance of the controller for the change in reference voltage,

the reference voltage of Generator 2 is suddenly increased by 10 %.

Results

From the simulation responses in Figure 7.7, the transient response produced by

the proposed controller is found to be better than the conventional PSS in terms of

settling time.

7.5.4 Case 4 - Generator reference voltage decrease

Similar to Case 3 above, but the reference voltage of Generator 2 is suddenly de-

creased by 10 %.

Results

In the reference voltage decrease case also, from the simulation responses in Figure

7.8, the transient response produced with the proposed controller is found to be

better than the conventional PSS in terms of settling time.

7.5.5 Case 5 - Fault

To study the performance of the controller under fault conditions, three phase to

earth fault is initiated in the tie line between bus 7 and 8. Circuit breaker BRK4

trips the section of the line78B (as shown in Figure 7.3) at t = 6 s and re-closes at

t = 16 s, after the clearance of the fault.

Results

The responses of the fault case are given in Figure 7.9. For the fault case also,

the initial overshoot produced with the proposed controller is less compared with

conventional. Also the settling time taken with the proposed controller is less.

7.6 Chapter summary

The performance of the proposed controllers is validated using the RTDS facility

available at CPRI, Bangalore, India. To validate the controller, two area, four ma-

chine, 11 bus power grid system is considered as test case system. Power system
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Figure 7.7. Case3. Generator 2 response for reference voltage increase.

controllers are designed for the selected system using the proposed design method-

ology. The designed controllers are configured in RTDS and simulations are carried

out. Load variations, AVR reference voltage variations and fault conditions are

the perturbations considered for the simulations. From the simulation results, it

is found that the proposed controller improved the damping of the system with

reduced overshoot and settling times.
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Figure 7.8. Case1. Generator 2 response for reference voltage decrease.
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Figure 7.9. Case1. Generator 2 response for Fault.



Chapter 8

Power System Controller Design with

OLTC Dynamics

8.1 Introduction

The main purpose of Automatic Voltage Regulators (AVR) for power transformers

with OLTC is to keep the voltage on the low voltage side within the predefined

band. The AVR controls the tap position of the OLTC in accordance with the

voltage variations of the transformer [107]. This voltage correction effect of OLTCs

have a negative impact on the voltage stability of the system during fault conditions.

Following the disturbance due to fault, the OLTCs will act in a way to restore the

load power to the pre-fault levels. This will increase the burden on the already weak

generating units to meet the increased real and reactive power requirement, often

leading to voltage collapse [67–69].

As far as the voltage stability of the system is concerned, the generator excitation

and OLTCs play an important role. The voltage stability of the system is determined

by the excitation limit of the generator, dynamic characteristics of OLTCs and the

load [68]. Operation of OLTCs, in relation to voltage instability is well researched

[67,108–110]. Many suggestions are proposed to improve the voltage instability due

to OLTCs, including the improvements in the OLTC operating logic [107] and even

blocking OLTC during contingency periods [67]. In this research, we consider the

dynamic effect of OLTCs on the generator dynamics and vice versa and include

these effects in the controller design.

The small signal stability of the interconnected system is affected by the dy-

namics of the generators as well as by the dynamics of OLTCs. So it is important

to include the interconnection effects due to OLTCs while designing PSS and also

the interconnection effects of generators on OLTCs in the design of controllers for

OLTC. The effects of the dynamics of OLTC with respect to voltage collapse, stabil-

ity and power transfer ability are considered in [67, 70, 72]. In the works mentioned

in [67,72], the generators feeding the OLTC are assumed as constant voltage sources
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but the secondary voltage of the OLTC is affected by the changes in the primary

voltage as well as the load connected to the OLTC. In this work, we include the

interconnection effects of OLTCs as additional uncertainty and include in the PSS

design and also in OLTC controller design, the interconnection effects of generators

are included. For this purpose a simplified power system model is developed which

links the dynamics of the generators and OLTCs in the grid system. Even though

the model does not cater to full fledged power system controller design, the model

will certainly help to understand the extend to which dynamics of OLTCs will affect

the controller design.

The controller design methodology is the same as described in Chapter 3. Inter-

connection effects from OLTCs are also included along with the effects from other

generators in the grid. Similarly the interconnection effects from the generators

are included in the controller design for the OLTC. Along with this, the effects of

parameter variation in the system due to load/generation changes are also consid-

ered in the design. These effects are considered as uncertainties in the controller

design and are bounded by using IQCs. As discussed in the previous chapters, the

operating regime of the generators are divided into smaller zones and have separate

controllers for each zone, to make the design less conservative. The controllers are

switched as the generator’s operating regime changes. The stability of the switched

system is preserved through dwell time as described in Chapter 4 and the switching

transients are reduced by using bumpless switching scheme as given in Chapter 5.

The proposed controller design method is validated by designing stabilisers for a

test case power system. For this purpose a 9 bus system, with 3 generators and one

OLTC is selected. The performance of the designed controller is validated through

nonlinear simulations. This chapter is organised into three parts. First part gives

the power system model, the next part covers the controller design and in the last

part simulation and results are presented.

8.2 Power system model

The main assumptions made in obtaining a linear model for interconnected power

system are:

1. All loads are modeled as constant admittances [111].

2. The change in reactive power due to small changes in generator angles is

negligible [112].
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3. Real power (Pm) and reactive power (Qm) inputs to the generators and the

reference voltage (Eu) to the OLTC are the controlled parameters [113].

8.2.1 Network Model

Let us consider a network consisting of n generators and m load buses; generator

buses are numbered from 1, · · · , n and load buses are numbered from n+1, · · · , n+m.

Loads are modeled as constant admittance and the admittance of the ith node is

written as,

yli =
Pli − Qli

|Vi|2
, i = n + 1, · · · , n + m, (8.1)

where Pli and Qli are real and reactive load values respectively. We can reduce the

admittance matrix by eliminating the load nodes using the following procedure.

Now each generator is modeled as a current source. Let IG = [Ig1, · · · , Ign
]′, EG =

[E1, · · · , En]
′, and VD = [Vn+1, · · · , Vn+m]′ be the vectors of generator currents,

generator voltages, and load bus voltages, respectively. With this notation, the

node equations for the entire power system are written as [77]:

[

IG

0

]

=

[

YA YB

YC YD

][

EG

VD

]

. (8.2)

The above equation (8.2) can be solved to obtain VD = −Y −1
D YCEG, giving IG =

[

YA − YBY −1
D YC

]

VG. The matrix [YA−YBY −1
D YC] is the reduced admittance matrix

YRED of the given network. Let the ijth element of the matrix YRED be denoted as

Yij = Gij + Bij. Now we have an equivalent network with only generator nodes

included. The complex power at ith node is give by Si = Pgi
+ Qgi

= EiI
∗
gi, i =

1, 2, · · · , n. The expression for the real and reactive power at the ith node are written

using the equation (2.12) as,

Pgi
= |Ei|2Gii +

n
∑

j=1

j 6=i

|Ei||Ej| (Bij sin δij + Gij cos δij) (8.3)

Qgi
= −|Ei|2Bii +

n
∑

j=1

j 6=i

|Ei||Ej | (Gij sin δij − Bij cos δij) (8.4)

We can linearise the equations (8.3) and (8.4) about the operating point. Let

∆Pg = [∆Pg1, · · · , ∆Pgn
]′, ∆Qg = [∆Qg1 , · · · , ∆Qgn

]′, ∆|E| = [∆|E1|, · · · , ∆|En|]′
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and ∆δ = [∆δ1, · · · , ∆δn]
′ denote the change from the equilibrium point and V 0

i and

δ0
ij denote the equilibrium values of voltages and voltage angles, then

∆Qgi
=

n
∑

j=1

j 6=i

|E0
i |
(

Gij sin δ0
ij − Bij cos δ0

ij

)

∆|Ej | − 2|E0
i |Bii∆|Ei|

+







n
∑

l=1

l 6=i

|E0
l |
(

Gil sin δ0
il − Bil cos δ0

il

)






∆|Ei| (8.5)

∆Qg = N∆|E| (8.6)

where

Nij =







|E0
i |
(

Gij sin δ0
ij − Bij cos δ0

ij

)

i 6= j
[

∑n
l=1

l 6=i
|E0

l | (Gil sin δ0
il − Bil cos δ0

il)

]

− 2|E0
i |Bii i = j,

(8.7)

∆Pgi
=

n
∑

j=1

j 6=i

|E0
i |
(

Bij sin δ0
ij + Gij cos δ0

ij

)

∆|Ej | + 2|E0
i |Gii∆|Ei|

+







n
∑

l=1

l 6=i

|E0
l |
(

Bil sin δ0
il + Gil cos δ0

il

)






∆|Ei|

+

n
∑

j=1

j 6=i

|E0
i ||E0

j |
(

−Bij cos δ0
ij + Gij sin δ0

ij

)

∆δj

+







n
∑

l=1

l 6=i

|E0
i ||E0

l |
(

Bil cos δ0
il − Gil sin δ0

il

)






∆δi. (8.8)

We can write,

∆Pg = R∆δ + S∆|E|, (8.9)

where

Rij =







|E0
i ||E0

j |
(

−Bij cos δ0
ij + Gij sin δ0

ij

)

, i 6= j
[

∑n
l=1

l 6=i
|E0

i ||E0
l | (Bil cos δ0

il − Gil sin δ0
il)

]

, i = j
(8.10)
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Sij =







|E0
i |
(

Bij sin δ0
ij + Gij cos δ0

ij

)

i 6= j,
[

∑n
l=1

l 6=i
|E0

l | (Bil sin δ0
il + Gil cos δ0

il)

]

+ 2|E0
i |Gii, i = j

(8.11)

8.2.2 Algebraic Constraints on OLTCs

Using the network equations developed in the above Section 8.2.1, we shall relate

it with OLTCs. Let us consider a power system consisting of n generators and t

OLTCs. For the ith OLTC let the primary voltage |ETi
| and secondary voltage |ESi

|
are related as

|ESi
| = Tni|ETi

| (8.12)

where Tni is the turns ratio of ith OLTC. Let the reactive power at OLTC node be

QT = [QT1
, · · · , QTt

]T . The reactive power due to the reactor Li connected on the

secondary side of the OLTC is

QTi
=

|ESi
|2

2πfLi
(8.13)

where f is the system frequency in Hz.

In this work we consider the effect of tap-change only on reactive part of the

load. It is assumed that the real load doesn’t change much with the changing tap

position. This is a common assumption in the literature [72]. In practice the OLTC

tap changes are done in discrete steps, however here we assume the changes in tap

position as continuous and smooth.

For small variations in |ESi
| expressions (8.12) and (8.13) are written as:

∆QTi
= 2

Q0
Ti

|E0
Si
|∆|ESi

| (8.14)

∆|ESi
| = ∆Tni|E0

Ti
| + Tn0

i∆|ETi
|. (8.15)

where the superscript ‘0’ is used with the variables to denote their equilibrium or

steady-state value.

Reactive power equality constraint is used to obtain an expression for ∆|ET | in

terms of input reactive power ∆|Qg| and ∆Tn, where ∆Tn = [∆Tn1, · · · , ∆Tnt]
′

and ∆|ET | = [∆ET1
, · · · , ∆ETt

]′.

Let KTi
= 2

Q0
Ti

|E0
Si

| , substituting (8.15) in (8.14) we get

∆QTi
= KTi

(∆Tni|E0
Ti
| + Tn0

i∆|ETi
|) (8.16)
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Let [∆Qg1 , · · · , ∆Qgn+t
]T = [∆Qg ∆QT ]T and using (8.6) we can write

[

∆Qg

∆QT

]

=

[

N11 N12

N21 N22

][

∆|Eg|
∆|ET |

]

(8.17)

where subscript g indicates generator and T indicates OLTC. Let KT = diag(KTi
),

ΛTn0
i

= diag(Tn0
i ), Λ|E0

Ti
| = diag(|E0

Ti
|), and ΛTi

= diag(1/Ti) then from (8.16) and (8.17)

we can write

KT (Λ|E0
Ti
|∆Tn + ΛTn0

i
∆|ET |) = N21N

−1
11 ∆Qm − N21N

−1
11 N12∆|ET | + N22∆|ET |

⇒ ∆|ET | =
(

KTΛTn0
i
+ N21N

−1
11 N12 − N22

)−1

(

N21N
−1
11 ∆Qm − KTΛ|E0

Ti
|∆n

)

(8.18)

Defining

M21 =
(

KTΛTn0
i
+ N21N

−1
11 N12 − N22

)−1
(

N21N
−1
11

)

and

M22 = −
(

KTΛTn0
i
+ N21N

−1
11 N12 − N22

)−1 (

KTΛ|E0
Ti
|

)

we can write

∆|ET | = M21∆Qm + M22∆Tn. (8.19)

The above equation (8.19) gives the algebraic constraint the system must satisfy

at all times. In the next section, we put together the algebraic constraints derived

in this section with the dynamic equations for the generators and the OLTCs to

arrive at the interconnected system dynamic equations.

8.2.3 The System Dynamic Model

The swing equations which describe the generator dynamics are [111]:

miω̇i + diωi + Pgi
= Pmi

, i = 1, · · · , n (8.20)

and the reactive power constraint equations are:

Qgi
= Qmi

, i = 1, · · · , n (8.21)
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where δi is the angle between the generator rotor and a reference frame rotating at

the synchronous frequency; ωi is the rate of change of angle δi; Pmi
is the real power

input and Qmi
is reactive power input of the ith generator.

The swing equation (8.20) is linearised about the equilibrium point to obtain a

linear model for the interconnected system [3, 112].

The dynamic equation for the tap changing of the ith transformer is given as

˙Tni =
1

Ti
(|Eui

| − |ESi
|) (8.22)

and its linearised form is

∆ ˙Tni =
1

Ti

(

|E0
ui
| + ∆|Eui

| − |E0
Si
| − ∆|ESi

|
)

=
1

Ti
(∆|Eui

| − ∆|ESi
|)

=
1

Ti

(

∆|Eui
| − ∆Tni|E0

Ti
| − Tn0

i∆|ETi
|
)

(8.23)

under steady state conditions |E0
ui
| = |E0

Si
|. The above equation (8.23) is collected

for all OLTCs and written as

∆ ˙Tn = −(ΛTi
Λ|E0

Ti
| + ΛTi

ΛTn0
i
M22)∆Tn − ΛTi

ΛTn0
i
M21∆Qm + ΛTi

∆|Eu|
(8.24)

The linearised power-flow relationship for generators and OLTCs (assuming that

no real power is supplied at any OLTC bus) is written using (8.9) (with ∆Pgi
=

0, i = n + 1, · · · , n + t and ∆Pg = [∆Pg1 , · · · , ∆Pgn
] as [89],

[

∆Pg

0t×1

]

=

[

R11 R12

R21 R22

][

∆δg

∆δT

]

+

[

S11 S12

S21 S22

][

∆|Eg|
∆|ET |

]

(8.25)

We can eliminate ∆δT from the above equation (8.25) as,

∆Pg =
[

R11 − R12R
−1
22 R21

]

[∆δg] +
[

(S11 − R12R
−1
22 S21) (S12 − R12R

−1
22 S22)

]

[

∆|Eg|
∆|ET |

]

=
[

R̃
]

[∆δg] +
[

S̃1 S̃2

]

[

∆|Eg|
∆|ET |

]

(8.26)



Section 8.2 Power system model 152

where R̃ =
[

R11 − R12R
−1
22 R21

]

, S̃1 =
[

S11 − R12R
−1
22 S21

]

, and S̃2 =
[

S12 − R12R
−1
22 S22

]

.

The swing equation for each generator is

∆δi = δi − δ0
i , ∆δ̇i = ωi, ∆δ̈i = ω̇i

ω̇i = − di
mi

ωi −
1

mi

(∆Pgi
) +

1

mi

(∆Pmi
) (8.27)

The swing equations of all the generators are collected and written as a vector

equation in terms of states and inputs as follows:

ω̇ = −ΛdΛmω − ΛmR̃∆δg − Λm

[

S̃1 S̃2

]

[

∆|Eg|
∆|ET |

]

+ Λm∆Pm (8.28)

Λm = diag{ 1
m1

, · · · , 1
mn

} and Λd = diag{d1, · · · , dn}. Using (8.17) and (8.21) we can

write,

∆|Eg| = N−1
11 ∆Qm − N−1

11 N12∆|ET |

and further using the expression for ∆|ET | in (8.19) we can write (8.28) as

ω̇ = −ΛdΛmω − ΛmR̃∆δg − Λm

(

S̃2 − S̃1N
−1
11 N12

)

M22∆Tn

−Λm

(

S̃1N
−1
11 − S̃1N

−1
11 N12M21 + S̃2M21

)

∆Qm + Λm∆Pm (8.29)

We can write the linearised dynamic equations for the entire system in a matrix

form as,







∆δ̇g

ω̇

∆ ˙Tn






= Ā







∆δg

ω

∆Tn






+B̄1∆Pm+B̄2∆Qm+B̄3∆|Eu| (8.30)
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where,

Ā =









0n×n In×n 0n×t

−ΛmR̃ −ΛdΛm −Λm

(

S̃2 − S̃1N
−1
11 N12

)

M22

0t×n 0t×n −(ΛTi
Λ|E0

Ti
| + ΛTi

ΛTn0
i
M22)









B̄2 =









0n×n

−Λm

(

S̃1N
−1
11 − S̃1N

−1
11 N12M21 + S̃2M21

)

−ΛTi
ΛTn0

i
M21









B̄1 =







0n×n

Λm

0t×n






, B̄3 =







0n×t

0n×t

ΛTi







Equation (8.30) gives the linearised power system model to be used in the controller

design.

8.3 Controller Design

For the purpose of controller design, we can consider each generator and OLTC con-

nected to the grid as a subsystem and formulate the control problem for a system

affected by parameter variations and by the interconnection effects from other ma-

chines connected in the grid. Here we consider parameterising, the system consisting

of the generators and OLTCs with respect to the power output of the generators.

Corresponding to each such parameterised operating points we have a SEP. Now we

consider designing a controller corresponding to a particular SEP. Repeating the de-

sign procedure we can obtain controllers for all SEPs considered. These controllers

are selected and switched as the generators operating point changes.

Now we design controllers which guarantee robust performance in the presence

of interconnection and parameter variation effects for a SEP. We use the controller

design methodology described in Chapter 3 for the design. We setup the control

problem for the power system including OLTC’s. We briefly present the steps in-

volved in the controller design. Effects due to parameter variation around the op-

erating point and interconnection effects are treated as uncertainties on the sub

system. Integral Quadratic Constraints (IQCs) are used to describe the uncertain-

ties and Linear Matrix Inequality (LMI) optimisation technique is used to solve the

optimisation problem.
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We consider a large scale system S comprising of N subsystems Si, including both

generators and OLTCs. The variable power output of the generators are described

ρ(·). Then the subsystem Si is described as:

Si : ẋi(t) = Ai(γ)xi(t) + Biui(t) + Eiξi(t) + βiφi(t) + Liri(t),

zi(t) = Cixi(t) + Diui(t),

ζi(t) = Hixi(t) + Giui(t),

ζ̂i(t) = αiIxi(t),

yi = Cy,ixi(t) + Dy,iξi(t), (8.31)

where Ai(γ) is the system matrix corresponding to the SEP with power output

ρ(·) = γ, xi is state vector, ui the control inputs, ξi ∈ Rpi is the perturbation,

ζi ∈ Rhi is the uncertainty output (made up of both the system states, and the

control inputs), ζ̂i is the uncertainty output due to parameter variation around

operating point, zi ∈ Rqi is the controlled output of the subsystem which consists of

both the subsystem states and control inputs, and yi is output of the system which

is feedback to the controller. The input ri describes the effect of the subsystems

Sj, j 6= i, on the subsystem Si. The input ξi describes the effect of local uncertain

modeling errors in this subsystem.

The variations in Ai(·) due to load and generation changes are treated as an

additional disturbance and the system is regarded as a perturbation of a linear

fixed parameter system. The variations in the matrix Ai(·) is regarded as modeling

uncertainty and driven by φi(t), [91], where

φi(t) :=
1

βi
[Ai(γ + ∆γ) − Ai(γ)]xi(t) (8.32)

The designed controller will stabilize the nominal plant corresponding to the SEP

with the specified parameter variations around the SEP provided, the constraint

(8.32) is satisfied. The size of neighborhood is determined by the choice of αi and

βi where positive real numbers αi, βi and γ ∈ Γ be so chosen that

sup
ρ∈Ωγ

‖Ai(ρ) − Ai(γ)‖ < αiβi (8.33)

where ‖ · ‖ in (3.40) denotes the largest singular value.
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The system matrices and signals for subsystems representing generator and

OLTC are obtained from (8.30), as follows,

for generators:

Ai =

[

Ā(i, i) Ā(i, n + i)

Ā(n + i, i) Ā(n + i, n + i)

]

Bi =

[

B̄1(i, i) B̄2(i, i)

B̄1(n + i, i) B̄2(n + i, i)

]

Li =

[

Ā(i, j) Ā(i, n + j) Ā(i, 2n + k) B̄1(i, j) B̄2(i, j)

Ā(n + i, n + j) Ā(n + i, n + j) Ā(n + i, 2n + k) B̄1(n + i, j) B̄2(n + i, j)

]

(8.34)

where the elements for example Ā(i, i) refers to (i, j)th element of the matrix Ā and

the signals are defined as,

xi(t) = [∆δi, ωi]
T , ui(t) = [∆Pmi, ∆Qmi]

T ,

ri(t) = [∆δj , ωj, ∆nk, ∆Pmj , ∆Qmj , ∆|Euj|]T

where j = 1, · · · , n, and j 6= i; k = 1, · · · , t and k 6= i.

For OLTC

Ai =
[

Ā(2n + i, 2n + i)
]

Bi =
[

B̄3(2n + i, i)
]

Li =
[

01×n Ā(2n + i, k) B̄1(2n + i, j) B̄2(2n + i, j)
]

(8.35)

and the signals are defined as,

xi(t) = [∆ni] , ui(t) = [∆|Euj|] ,

ri(t) = [∆δj , ωj, ∆nk, ∆Pmj , ∆Qmj , ∆|Euj|]T

where j = 1, · · · , n, and j 6= i; k = 1, · · · , t and k 6= i.

To meet the requirements of the controller design methodology proposed in
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Chapter 3, the subsystem Si described by (8.31) should satisfy the following as-

sumptions [73]:

Assumption 7 For each i = 1, · · · , N , given locally square integrable signals

[ui(·), ri(·), ξi(·), φi(·)] for any initial condition xi(0) = xi0, the solution to the sub-

system (8.31) exists on any finite time interval [0,T] of the interval [0, +∞) and is

locally square integrable i.e,
∫ T

0
‖xi(·)‖2dt|xi0 < ∞

Assumption 8 For all i = 1, · · · , N D′
iDi + G′

iGi > 0, DyiD
′
yi > 0.

Assumption 9 The pair (Ai, C
′
iCi), i = 1, · · · , N , is observable.

Assumption 10 The pair (Ai, Bi), i = 1, · · · , N , is stabilisable.

Assumption 11 For all i = 1, · · · , N , C ′
iDi = 0, H ′

iGi = 0, EiD
′
yi = 0.

Assumption 12 For all i = 1, · · · , N , [Ei Li] 6= 0.

8.3.1 Uncertainty Description

With subsystem (8.31) meeting the Assumptions 7 to 12, we shall define the admis-

sible uncertainties considered in the controller design. From (8.31), the uncertainties

are driven by signals ξi(t), ri(t) and φi(t) and their corresponding outputs are ζi(t),

ζµ(t)µ6=i and ζ̂i(t). Even though we do not know the magnitude of these signals, we

can impose bounds on these signals using IQCs. Let M1i, M2i, M3i, i = 1, · · · , N

be three collections of positive definite symmetric matrices. The following defini-

tions [73] describe the three kinds of feasible uncertainty sets considered in this

work.

Definition 10 A collection of uncertainty inputs ξi(·), i = 1, · · · , N , represents

an admissible uncertainty for the large scale system S if the following conditions

hold: Given locally square integrable control inputs ui(·), locally square integrable

parameter variation inputs φi(·),and locally square integrable interconnection inputs

ri(·), i = 1, · · · , N there exists a sequence{tl}+∞
l=1 , tl → +∞, such that

∫ tl

0

(

‖ζi(t)‖2 − ξi(t)‖2
)

dt ≥ −x′
i0M1ixi0, M1i = M ′

1i > 0, ∀i = i = 1, · · · , N

(8.36)

The set of all such admissible uncertainties is denoted by Ξ.
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Definition 11 A collection of uncertainty inputs φi(·), i = 1, · · · , N represents an

admissible parameter variation for the large scale system S if the following conditions

hold: Given any locally square integrable control inputs ui(·), locally square integrable

local uncertainty inputs ξi(·), and locally square integrable interconnection inputs

ri(·), i = 1, · · · , N there exists a sequence{tl}+∞
l=1 , tl → +∞, such that

∫ tl

0

(

‖ζ̂i(t)‖2 − ‖φi(t)‖2
)

dt ≥ −x′
i0M2ixi0, M2i = M ′

2i > 0, ∀i = i = 1, · · · , N

(8.37)

The set of all such admissible parameter variation uncertainties is denoted by Ψ.

Definition 12 The subsystem Si of the large scale system S is said to have admis-

sible interconnections to other subsystems of this large-scale system, if the following

hold: Given any locally square integrable control inputs ui(·), locally square inte-

grable local uncertainty inputs ξi(·) and locally square integrable parameter variation

inputs φi(·), i = 1, · · · , N there exists a sequence{tl}+∞
l=1 , tl → +∞, such that

∫ tl

0

(

∑

µ6=i
‖ζµ(t)‖2 − ‖ri(t)‖2

)

dt ≥ −x′
i0M3ixi0, M3i = M ′

3i > 0, ∀i = 1, . . . , N ;

(8.38)

The corresponding uncertain interconnection input ri(·) is referred to as an admis-

sible uncertain interconnection input. The set admissible interconnection inputs is

denoted by Π.

Now we consider a problem of decentralized absolute stabilization via output feed-

back control. The controllers considered are decentralized linear output feedback

controllers of the form

ẋc,i(t) = Ac,i(γ)xc,i(t) + Bc,i(γ)yi(t);

ui(t) = Kc,i(γ)xc,i(t), (8.39)

where xc,i ∈ Rnc,i is the ith controller state vector.

Having the uncertainties, controller structure and load variation parameter de-

fined, we can find the decentralised controllers using similar procedure outlined in
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Chapter 3 as follows:

Let τi > 0, ηi > 0, θi > 0, i = 1, · · · , N, be given constants, and θ̄i =
∑N

j=1,j 6=i θj . We

consider a collection of the generalized algebraic Riccati equations (GAREs):

A′
iXi + XiAi + Ĉ ′

iĈi − Xi

(

BiR
−1
i B′

i − B̂2,iB̂
′
2,i

)

Xi = 0, (8.40)

A′
iYi + YiAi + YiB̂2,iB̂

′
2,iYi −

(

C ′
y,iW

−1
i Cy,i − Ĉ ′

iĈi

)

= 0, (8.41)

where Ri = D̂′
iD̂i, Wi = D̂y,iD̂

′
y,i and

Ĉi =







Ci

(τi + θ̄i)
1

2 Hi

η
1

2 αI






,

D̂i =







Di

(τi + θ̄i)
1

2 Gi

0






,

B̂2,i =
[

τ
− 1

2

i Ei θ
− 1

2

i Li η− 1

2 βI
]

,

D̂y,i =
[

τ
− 1

2

i Dy,i 0 0
]

. (8.42)

Then associated with (8.40) and (8.41) is a collection of decentralized dynamic

output feedback controllers of the form

ẋc,i =
[

Ai −
(

BiR
−1
i B′

i − B̂2,iB̂
′
2,i

)

Xi

]

xc,i(t) + (Yi − Xi)
−1 C ′

y,iW
−1
i (yi(t) − Cy,ixc,i(t)) ,

ui =
(

−R−1
i B′

iXi

)

xc,i(t). (8.43)

Furthermore, consider a set of vectors, T = {{τi, ηi, θi}Ni=1 ∈ R3N , τi > 0, ηi >

0, θi > 0 : the set of GAREs (8.40) admits a set of solutions Xi ≥ 0 and the set of

GAREs (8.41) admits a set of solutions Yi ≥ 0 such that Yi > Xi }.
Note that the minimal positive definite solutions Xi to the equations (8.40) as

well as solutions Yi to the GAREs (8.41) depending upon the chosen {τi, ηi, θi}Ni=1 ∈
T .



Section 8.4 Switching system and stability 159

The stabilisation conditions and proofs are established in Chapter 3. Now, as

given in Chapter 3, Theorem 4 presents necessary and sufficient condition for the

uncertain interconnected system S to be robustly stabilisable by means of the con-

troller (8.39). Theorem 5 characterises guaranteed robust performance achievable

by means of such controller. The optimisation problem on the right hand side of

(3.53) is solved by using a rank constrained LMI optimisation technique given in

Chapter 3.

Controller design procedure is summarised as follows:

(i) Depending upon the operating range of the generators connected to the grid,

SEPs are selected for each generator with respective to its power output. Using

the load flow results corresponding to each SEP, system equations (8.30) for

respective SEPs are obtained.

(ii) Generator/OLTC at each node of the grid is considered as subsystem and

corresponding system matrices are arrived for the SEPs using (8.34) and (8.35)

from (8.30).

(iii) Parameter variation around the operating point A(γ + ∆γ) is worked out in

accordance to (8.33).

(iv) LMI optimisation problem is formulated as given in Chapter 3 and the solu-

tions for the GAREs (8.40) and (8.41), Xi and Yi are obtained.

(v) Substituting the solutions Xi and Yi in (8.43) the required decentralised con-

troller of the corresponding subsystem is obtained.

Using the procedure explained above controllers are designed for each generator

covering all SEPs. Now we shall consider the switching between these controllers as

the power output of the generator changes.

8.4 Switching system and stability

Controllers designed as given in Section 8.3 are capable of providing robust stabil-

isation over a range of power output variations. When the power output of the

generator exceeds the stabilisation range of a particular controller, the next suitable

controller needs to be selected and switched in. Even though the controllers and

plant are closed loop stable, we ensure the stability of the switched system. We

have already established switching stability through dwell time in Chapter 4. We

use this dwell time approach to preserve switching stability.
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Let us consider the switching between two systems P1 and P2 which are defined

as:

P1 : ẋ = A1x, (8.44)

P2 : ẋ = A2x − A2Ψ, (8.45)

where x ∈ Rn is the state-vector and Ψ ∈ Rn is a constant vector; the equilibrium

point for P1 is 0 and that of P2 is Ψ; matrices A1 and A2 are stable matrices and

further there exist Lyapunov functions V1(x) and V2(x−Ψ) for P1 and P2 respectively.

We shall consider the switching sequence P1 → P2 → P1, the dwell time required

to have stable switching, the dwell time τ 12
d required is given by (4.27),

τ 12
d >

1

2λ2

log

[

a1a2 (K12
Ψ − 1)

2 (2b1b2K
12
Ψ + a1b2)

]

(8.46)

The variables of equation (8.46) are detailed in Chapter 4. Similarly we can consider

the switching sequence P2 → P1 → P2. The required dwell time is given by (4.29)

τ 21
d >

1

2λ1
log

[

a1a2 (K21
Ψ − 1)

2 (2b1b2K21
Ψ + a2b1)

]

(8.47)

We employ the dwell time constraint on the allowable switching signals for the

stability of switched system.

8.5 Switching Transients

Switching transients will occur when we switch between two controllers. Especially

we consider here the switching between dynamic controllers and the plant corre-

sponding to two different SEPs. We can minimise the switching transients by using

the bumpless switching scheme. This scheme is explained in detail in Chapter 5.

The basic configuration of the scheme is given in Figure 8.1.

The bumpless compensator F drives the output u2 of the offline controller to

be equal to output of the online controller u1, at the time of switching. By this,

the switching transients are minimised. The expression to synthesise the bumpless
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Figure 8.1. Bumpless controller configuration

compensator is given by,

F = −W−1
e B̃′

2
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−
[

(
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)−T (
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(8.48)

The variables in (8.48) are explained in Chapter 5.

8.6 Simulations

8.6.1 Test Case Power System

To demonstrate the design, a nine bus power grid system consisting of 3 generator

buses, 3 load buses, 2 Static Var Systems (SVSs) and one OLTC is considered here.

One-line diagram of the test system is shown in Figure 8.2. The OLTC node has a

purely inductive load connected to it. Each machine is considered as a subsystem

interconnected by two weak tie-lines to the other two machines.

Generators 1 to 3 have a capacity of 300 MW each and buses 5, 7 and 9 are

load buses. Buses 7 and 9 have shunt capacitors and an OLTC is included at bus 4.
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Figure 8.2. One-Line Diagram on Nine-Bus Three-Generator System

From Bus No. To Bus No. Impedance in pu
1 5  0.0576
2 7  0.0625
3 9  0.0586
4 5 (0.5+  4.3) × 10−3

5 6 (0.9+  4.6) × 10−3

4 7 (1.6+  8) × 10−3

7 8 (0.4+  3.6) × 10−3

8 9 (0.6+  5) × 10−3

6 9 (0.2+  8.5) × 10−3

Table 8.1. Line parameters

For the analysis of the system 100 MVA is chosen as base and generator G1 bus is

considered as reference slack bus.

The numerical value of system parameters are given in Table 8.1 and the gener-

ator parameters in Table 8.2 on a 100 MVA base.

Generators G1 and G3 are base generators and supply a power output of 300 MW

each. Single controller is designed for G1 and G3 corresponding to the operating
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Parameter Generator G1 Generator G2 Generator G3

Inertia Constant 8.1 s2/rad 10.39 s2/rad 8.59 s2/rad
Synchronous Impedance xd 0.146 pu 0.155 pu 0.130 pu
Damping 1 1 1

Table 8.2. Generator parameters

Bus Number Bus type Power (MW / MVAR) Voltage (pu) Angle (deg)
1 Generator 300.19 −  149.47 1.0300 0.0000
2 Generator 150.00 −  58.49 1.0300 -21.9210
3 Generator 300.00 −  166.24 1.0300 1.7841
4 Load 0.00 −  25.00 0.9641 -41.6770
5 Load -300.00 −  80.00 0.9552 -41.6030
6 Load 0.00 −  0.00 0.9462 -41.4900
7 Load -150.00 −  25.00 0.9600 -41.6480
8 Load 0.00 −  0.00 0.9472 -41.5710
9 Load -300.00 −  25.00 0.9295 -41.4510

Table 8.3. Load flow results corresponding to SEP with G1 and G3 at 300 MW and G2

at 150 MW.

point of 300 MW. Generator G2 takes up the variation in system load and its power

output is varied from 0 to 300 MW. The operating region of G2 is divided into 10

equal zones of 30 MW each and each zone consists of a SEP. A separate controller

is designed for the system around the SEP in each zone and is capable of providing

robust stabilisation for ± 30 MW generation change about the SEP.

8.6.2 Power system model and controller design

Load flow and network reduction

We have divided the operating regime of generator G2 into 10 zones, therefore we get

the network model corresponding to these 10 SEPs. As the first step we do the load

flow computations corresponding to these SEPs. The load flow results corresponding

to G1 and G3 at 300 MW and G2 at 150 MW are given in Table 8.3. Using the

load flow results, the network is reduced by eliminating the bus nodes other than

generator and OLTC buses with the procedure given in Section 8.2.

Controller design

With the complex voltages and reduced network admittance data, we can get the

state equation matrices described by (8.30) for the SEP. Using the similar procedure

we can find the state equations corresponding to all the SEPs. We include the
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SEP for Generator G2 ‖Ai(ρ) − Ai(γ)‖ αi = βi
30 MW 0.0048 0.0693
60 MW 0.0057 0.0752
90 MW 0.0019 0.0438
120 MW 0.0091 0.0955
150 MW 0.0165 0.1284
180 MW 0.0246 0.1567
210 MW 0.0341 0.1845
240 MW 0.0464 0.2154
270 MW 0.0657 0.2563
300 MW 0.0389 0.1972

Table 8.4. Parameter variation norm and selected αi, βi values for controller design for
different SEPs of Generator G2.

System Ac Bc Kc

Generator G1

[

−1.4833 −0.52413
−194.9 −191.96

] [

1.5246
1.2889

] [

−819.21 −807.43
782.14 770.9

]

Generator G2

[

−1.3531 −0.39841
−232.6 −228.38

] [

1.3988
0.9723

] [

−1385.4 −1361.2
1187.8 1167.1

]

Generator G3

[

−1.5912 −0.63205
−183.98 −181.26

] [

1.6325
1.2321

] [

−818.79 −806.89
783.37 771.98

]

OLTC1

[

−1.1128e + 05
] [

172.11
] [

−11111
]

Table 8.5. Controller matrices for the SEP corresponding to G1 and G3 at 300 MW and
G2 at 150 MW conditions.

parametric variations corresponding to ± 30 MW generation change about the SEP

in the controller design. For this, the system matrices corresponding to SEP - 30

MW and SEP + 30 MW are be obtained as per the procedures explained above.

From these system matrices we can work out the norm of parametric variations

‖Ai(ρ)−Ai(γ)‖ defined in (8.33) for each SEPs and these values are given in Table

8.4. Using these norm values, αi and βi values are so selected that it meets the

requirements given in equation (8.33) and included in the controller design. With

these values the designed controller will be robust for ± 30 MW generation change

about the SEP. The interconnection uncertainty matrix Li for generators and OLTCs

are obtained from the system matrices using (8.34) and (8.35). With the system

matrices and uncertainties defined we use the methodology briefed in Section 8.3

to synthesise the controller. The controller values for the SEP corresponding to G1

and G3 at 300 MW and G2 at 150 MW conditions are given in Table 8.5.
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The dwell time required for stable controller switching can obtained from (8.46)

and (8.47). For Kψ = 1.5, the corresponding values of dwell time are found to be less

than 2 s. For the power system selected the dwell time is found to be not critical.

The bumpless compensator required to reduce the switching transients is obtained

by using (8.48).

8.6.3 Simulation
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Figure 8.3. Generator G2 rotor angles δ with and without control.

To validate the designed controllers, different simulation cases are considered.

Simulations are done using the nonlinear model of the power system described in

Section 8.2. It is assumed that prime mover power Pm, changes instantaneously and

the prime mover dynamics are neglected in the simulations.

To start with the simulations, the system response with controller is compared

with the open loop response. For this, power output of Generator G2 is varied from

120 MW to 180 MW in steps of 30 MW. The rotor angle responses are compared

in Figure 8.3. The simulation results show that the system under consideration is

lightly damped and the effectiveness of the damping provided by the controller. To

further evaluate the performance of the controller following cases of simulations are

carried out.

Case 1: Parameter Variation within a zone The controller is evaluated for
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Figure 8.4. Case 1: Simulation responses of generator G1 to G3 and OLTC for load
variation within a zone.

its robustness against parameter variation within a zone. For simulation, the zone

150 ± 30 MW is selected and corresponding controller is included for G2. The G2

controller remains same through out simulation. The load on G2 is varied from 120

MW to 180 MW in steps of 15 MW and brought back to 120 MW by the same steps

with 50 sec interval at each step. Generator rotor angles and OLTC tap responses

∆n are given in Figure 8.4 respectively.

Case 2: Continuous generation increase In this case of simulation, the con-

trollers are tested for a power variation to cover the entire operating regime of

Generator G2. The power output of G2 is varied from 0 MW to 300 MW in steps

of 30 MW. At each power change, controllers corresponding to the respective SEP

are switched in. Rotor angle responses of the generators and change in OLTC tap

position ∆n are given in Figure 8.5.

Case 3: Continuous generation decrease Similar to Case 1 above but the

output of G2 is reduced from 300 MW to 0 MW. Rotor angle responses of the gen-

erators and change in OLTC tap position ∆n are given in Figure 8.5.
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Figure 8.5. Case 2 & Case 3: Simulation responses of generator G1 to G3 and OLTC for
load up and down cases.

Case 4: Simulation with PSS To compare the performance of the controller

with conventional PSS, simulations similar to Case 2 and Case 3 are done with IEE

2ST PSS. For this simulation, nonlinear power system model described in [88] used

and the dynamics of OLTCs are neglected. For the entire power variation the same

PSS is used. Rotor angle responses of the Generator are given in Figure 8.6.

8.6.4 Inferences

From the rotor angle responses in the Figure 8.3, it can be seen that the damping

of the open loop system is relatively low and the proposed controller improves the

damping of the system considerably. In Case 2 simulations for parameter variations

within the zone, from rotor angle responses in Figure 8.4, the responses of the

generator with the proposed controller are satisfactory and the disturbances created
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in the response of G1 and G3 are minimal. Also the OLTC response ∆n is also

found to be satisfactory. The rotor angle responses for the Cases 3 and 4 in Figure

8.5 show that proposed controller produces a satisfactory responses for continuous

generation increase and decrease. When the responses of the proposed controller

are compared with the response produced by conventional PSS in Figure 8.6, it

can be seen that the proposed controller dampens the oscillations more quickly and

produces uniform response for different operating conditions. Also the disturbance

created in other machines due to power change in generator G2 is minimal in the

case of proposed controller against the conventional PSS.
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Figure 8.6. Case 4: Simulation responses of generator G1 to G3 for generation up and
down with conventional PSS.

8.7 Chapter summary

The chapter demonstrates a methodology to include the dynamics of OLTC along

with the dynamics of generators in the grid while designing PSS. Using IQCs, the

interconnection effects from other machines in the grid and parameter variation

around the operating point are included in the controller design, making the sta-

biliser robust in the presence of these effects. To validate the controller design

methodology, 3 machine 9 bus power system is considered as a numerical example

and nonlinear simulations are carried out with wide generation-load variations. To
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demonstrate the damping provided by the controller, the performance is compared

with and without control in Figure 8.3. In simulation Case 1, robustness of the

controller is validated for parameter variations within the zone. In simulation Cases

2 and 3, the performance is evaluated for continuous generation up and down con-

ditions. The results of simulation are included in Figures 8.4 and 8.5. These results

show the effectiveness of the scheme under different generation conditions and the

improvement of the overall damping of the system. Again, through Case 4, the

performance of the controller is compared with conventional PSS and the results

are given in Figure 8.6. The results show that the proposed controller is capable of

providing an effective and uniform response over the entire operating regime when

compared with conventional PSS.



Chapter 9

Conclusion

The work presented in this thesis demonstrates that switched controllers are feasi-

ble for interconnected power systems. As against single PSS, several power system

controllers are designed around different linearised SEPs to cover the entire oper-

ating regime of the power system and appropriately switching the controllers as

the operating point changes. Simulation results show that this approach provides

uniform controller performance and better damping over the complete operating

range when compared with single PSS. Use of switched controllers helps to reduce

the conservatism and improve the uncertainty handling capacity of the controller

design.

Use of multiple IQCs to represent the interconnection effects from other gener-

ators and parameter variation effects due to load and generation changes helps to

include these effects as uncertainties in the controller design. By this approach, the

possible uncertainties in the power system control are addressed which will help to

increase the confidence in the control design. Minimax-LQG technique is used for

the controller design and this method provides controller solution which guarantee

robust performance in the presence of the uncertainties considered.

When we switch between two controllers, switching stability and switching tran-

sients are matters of concern. Switching stability of the system is preserved through

the dwell time method by constraining the minimum time required between two

consecutive switchings. An expression to compute the required dwell time between

consecutive switchings is developed including the effect of jumps in the states while

switching between two different operating conditions. Switching transients are min-

imised by using bumpless switching scheme. Through this the states of the new

controller to be switched in are initialised in a way to minimise the transients.

The performance of the proposed controllers are validated through nonlinear

computer simulations and by using RTDS facility at CPRI, Bangalore, India. A test

case power system is selected and controllers are designed for the system. Different

cases of simulations are carried out including load and generation changes, fault

conditions and generator AVR reference voltage changes. The performance of the

170
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proposed controllers is also compared with conventional PSS simulated under similar

conditions. The simulation results show that the proposed controllers are capable

of providing better damping with less settling time during normal and abnormal

power system operating conditions.

Another contribution of the thesis is the incorporation of dynamics of OLTCs

in the power system controller design. OLTCs are important dynamical elements

of a power system and play an important role in the voltage stability and reactive

power flow of the system. Generally the OLTC dynamics is not considered in the

PSS design. In this research, a simple power system model has been developed and

the OLTC dynamics are included. Using this model, the effects of OLTCs on the

synchronous machines along with parameter variations and interconnection effects

are included in the generator controller design. Also, the effect of generators on

OLTCs is included in the OLTC controller design. Simulations are carried out to

validate the proposed control method using a test case power system under different

conditions. Using this method the effect of OLTCs in the power system control can

be studied.

9.1 Directions for future research

The proposed power system design method can be improved and consolidated further

through the following suggestions:

i) Proposed controllers are validated using computer simulations for a selected

test case system. It will give more confidence in the proposed method, if the

controllers can be implemented in the real power system.

ii) The synthesis of controllers for large power systems involving many generators

are found to be infeasible as the LMI optimisation method proposed does not

yield solutions for the large systems. A better numerical solution method can

be developed to facilitate controller design for large systems.

iii) Loads connected to the power system are treated as constant loads. Improve-

ment in the model can be achieved by including dynamic loads into the model.

iv) In the power system simulation, loads are varied from one value to another

instantaneously, which may not reflect the actual load dynamics happening

in the power system. This can be improved upon by computing the power

flow solutions corresponding to the gradual load variations to include in the

simulation loop.
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v) The simplified power system model to study the effects of OLTCs proposed in

Chapter 8 does not cater for full fledged power system controller design. The

model can be perfected by including the OLTC dynamics in the multimachine

power system model described in Chapter 2. Also the tap variation is assumed

to be continuous and smooth in the model included in the thesis, in practice

the tap changes at discrete positions. This need to be included in the model.



Appendix A

Power System Parameters

A.1 Test Case System

The two area, four machine, 11 bus power grid system shown in Figure A.1 is

considered as a test case system for simulation studies. The system consists of two

power system areas Area 1 and Area 2 connected through a twin circuit tie line of

220 km in length. The transmission system nominal voltage is 400 kV. Generation

voltages are stepped up by the transformers connected to the generators. Load

centers are located at buses 7 and 9. The buses 7 and 9 have shunt capacitors.

Generators 1 to 4 and transformers 1 to 4 are identical and their parameters are

given in Table A.1 and A.3. The generator AVR parameter are given in Table A.2.

Transmission line parameters are given in 400 kV, 100 MVA base in Table A.4. For

the analysis of the system, 400 kV and 100 MVA are chosen as base quantities.

A.2 Conventional power system stabiliser

To compare the performance of the proposed controllers with conventional PSS, IEE

2ST PSS is used [114]. The block diagram of the PSS is given in Figure A.2 and

the parameters of the PSS are given in Table A.5.

Figure A.1. Two area four machine system.

173
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Parameter Value
Rated Voltage line to line rms 21.0 kV
Rated Capacity 588 MVA
Base angular frequency 50 Hz
Inertia Constant(H) 3.07
Direct axis reactance (xd) 2.31 pu
Quadrature axis reactance (xq) 2.19 pu
Transient reactance direct axis (x′

d) 0.27 pu
Transient reactance quadrature axis (x′

q) 0.70 pu

Transient open circuit time constant (τ
′

d) 9.0 s

Transient q-axis open circuit time constant (τ
′

q) 2.5 s

Transducer time constant (Tr) 0.015 s

Table A.1. Generator Parameters

Parameter Value
Amplifier gain Ka 200
Time constant Tc 1.0 s
Time constant Tb 20.0 s
Time constant Ta 0.02 s
Gain constant Kc 0.175
Regulator voltage upper limit 5.7 pu
Regulator voltage lower limit -4.9 pu

Table A.2. AVR Parameters

Parameter Value
Rated primary line to line rms voltage 21.0 kV
Rated secondary line to line rms voltage 400.0 kV
Rating 600 MVA
Positive sequence reactance 0.15 pu

Table A.3. Transformer Parameters

voltage Resistance (r) Reactance (xL) Susceptance (bC)
400 kV 1.862 e-05 2.075 e-04 5.55 e-03

Table A.4. Line Parameters per km per circuit on 100 MVA base
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Figure A.2. IEE 2ST conventional PSS

Parameter Value
Gain K1 10
Time constant T1 0.0 s
Wash out time constant T3 10.0 s
Wash out time constant T4 10.0 s
First lead-lag time constant T5 0.55 s
First lead-lag time constant T6 0.2 s
Second lead-lag time constant T7 0.55 s
Second lead-lag time constant T8 0.2 s
Third lead-lag time constant T9 0.55 s
Third lead-lag time constant T10 0.2 s
PSS voltage upper limit 0.1 pu
PSS voltage lower limit -0.1 pu

Table A.5. Conventional PSS Parameters
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