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Abstract 

 

Retinal neuroprostheses aim to restore functional visual percepts to patients suffering from 

retinal degenerative diseases such as retinitis pigmentosa (RP) and age-related macular 

degeneration (AMD). In such patients, it is desirable to reconstruct a useful sense of artificial 

vision by selectively activating different neuron populations in a planned sequence and spatial 

pattern. However, current retinal neuroprostheses have limited ability in targeting different 

retinal neuron types. Improvements in the field of prosthetic vision are highly dependent on 

better understanding the fundamental mechanisms underlying retinal ganglion cell (RGC) 

electrical stimulation, and how these can be quantitatively controlled through artificial 

stimulation. The aim of this thesis is to develop accurate computational models of functionally-

distinct RGCs to assist in the further understanding of biophysical mechanisms underlying RGC 

activation, so that more sophisticated stimulation schemes can be developed. 

Morphologically-realistic and functionally-accurate ON and OFF RGC models were developed 

by integrating multiple experimental information and biophysical principles, allowing the 

contribution of various morphological and intrinsic RGC properties in shaping RGC response 

patterns to be isolated. The multiple data used to optimise model parameters consisted of patch-

clamp whole cell recordings of RGC spiking activity in the presence of multiple intracellular 

current injections, as well as associated action potential (AP) phase plots. 

In addition, the optimised RGC models were used to gain insights into the mechanisms 

underlying selective RGC responses to 2 kHz electrical stimulation. By adjusting the 

extracellular stimulus amplitude across a wide range of values, the models were able to 

reproduce the distinct patterns of excitation observed experimentally, suggesting the utility of 

this approach in developing stimulation strategies.  

The RGC modelling approach developed in this thesis will facilitate testing of a wide range of 

stimulus waveforms that aims for selective or differential activation of targeted RGC types, 

resulting in a dramatic improvement in the quality of prosthetic vision.   
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Abbreviations 
 

In alphabetical order: 

 

1-D one-dimensional 

2-D two-dimensional 

3-D three-dimensional 

AC amacrine cell 

AH axon hillock 

AIS axonal initial segment 

AMD age-related macular degeneration 

AP action potential 

BC bipolar cell 

CNS central nervous system 

DS directional selective 

EPSP excitatory postsynaptic potential 

FM Fohlmeister and Miller 

FSL first spike latency 

GA genetic algorithm 

GB gradient-based algorithm 

GCL ganglion cell layer 

HC horizontal cell  

HFS high frequency stimulation 

HH Hodgkin-Huxley 

INL inner nuclear layer 

IPL inner plexiform layer 

ISI inter-spike interval  

ODE ordinary differential equation 

ONL outer nuclear layer 

OPL outer plexiform layer 

PDE partial differential equation 

PPS pulses per second  
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PR photoreceptor 

RGC retinal ganglion cell 

RP retinitis pigmentosa 

RPE retinal pigment epithelium 

SA sag amplitude 

SAN peripheral sinoatrial node 

SN spike number 

SOCB sodium channel band  
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Part I Background and Methods 
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Chapter 1 Introduction  

 

1.1 Motivation 

The remarkable performance of the mammalian retina arises from its compact and functional 

architecture. Visual information is initially transduced into electrical signals by photoreceptors 

located in the outer layers of the retina, with the resultant signals projecting to horizontal, bipolar, 

amacrine, and ultimately, retinal ganglion cells (RGCs): the latter located in the innermost layer 

of the retina. Normal retinal function can be compromised as a result of neural degenerative 

diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In 

many such conditions, the photoreceptors, horizontal cells and a large population of bipolar cells 

are lost, while most neurons in the inner retina such as amacrine cells and RGCs are still believed 

to be functional (Marc et al., 2003). The presence of intact RGCs in these disease conditions 

suggests the possibility of restoring visual percepts with artificial electrical stimulation. 

However, current retinal implants have limited ability in selectively targeting different retinal 

neuron types, due in considerable part to our incomplete knowledge of mechanisms underlying 

selective RGC activation.  

A comprehensive description of RGCs has not yet been made due to their large diversity in both 

functional and morphological properties. At present, there is only a limited knowledge of cell-

specific ion channel kinetics and distributions in identified RGC types. More importantly, the 

roles of cell-specific RGC biophysical properties in shaping their differential responses to 

identical inputs, have not been analysed.  

In addition, existing RGC computational models reported in the literature have largely ignored 

the cellular morphology and membrane channel distributions/kinetics in each cellular region. In 

addition, their ability to simultaneously reconstruct multiple experimental data under a large 

range of conditions is still unclear, limiting their utility in clinical applications such as stimulus 

strategy design for retinal neuroprostheses.  

Therefore, a realistic modelling approach incorporating cell-specific morphological information 

and ionic channel expression is required to improve our understanding of how functionally-

distinct retinal neuron types respond to electrical stimulation, and how their unique 



 

3 
 

morphological and biophysical properties influence this behaviour. To adjust model parameters 

in order to reconstruct multiple experimental datasets, an unsupervised and computationally-

efficient multi-objective optimisation toolbox for retinal neuron optimisation is also desirable. 

 

1.2 Thesis Aims  

This thesis was motivated by the need to improve our understanding of biophysical mechanisms 

underlying RGC activity during electrical stimulation to allow improved stimulation schemes to 

be developed in the future.  

The aims of this thesis were: 

a) to develop a computationally-efficient multi-objective parameter optimisation technique, for 

RGC ionic models to fit multiple action potential datasets recorded in different RGC classes. 

b) to develop, with the above approach, biophysically- and morphologically-accurate RGC 

models capable of reproducing multiple action potential data for a large range of intracellular 

current stimuli.  

c) to investigate the effects of cellular morphology and intrinsic properties on responses of 

functionally-distinct RGCs using above models, to improve our existing understanding of RGC 

activation mechanisms.   

d) to further investigate RGC response to high-frequency extracellular stimulation in the above 

models; in particular, to examine how to optimise stimulus waveforms and parameters to 

differentially target individual RGC classes.  
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1.3 Thesis Layout 

This thesis describes the development of computational models to simulate the electrical activity 

of ON and OFF RGCs in response to extracellular and intracellular electrical stimulation. The 

thesis chapters are structured as follows: 

Chapter 2 provides an overview of retinal anatomy/electrophysiology, necessary background on 

artificial stimulation of the retina, and mathematical concepts related to ionic modelling of 

excitable tissues. 

Chapter 3 gives a critical review of existing modelling approaches for retinal neurons, as well as 

current optimisation methodologies in excitable cell modelling. 

Chapter 4 details the development of single- and multiple-compartment computational RGC 

models. In addition, a multi-objective parameter optimisation method is presented. Finally, in 

vitro recording approaches under intra- and extracellular stimulation conditions are also briefly 

described.  

Chapter 5 presents a generic single-compartment RGC ionic model, enabling simultaneous 

reconstruction of multiple RGC spiking activities under a range of depolarising and 

hyperpolarising intracellular current injections. 

Chapter 6 presents biophysically-accurate ON and OFF RGC models incorporating detailed cell 

morphologies with optimised ionic channel expressions in various cellular regions. The 

contribution of dendritic morphology and regional ionic channel expressions to RGC response 

patterns is also explored.  

Chapter 7 explores the predictive power of the optimised ON and OFF RGC models by testing 

their behaviour in response to 2 kHz extracellular electrical stimulation. The models are also 

used to gain insights into the possible mechanisms underlying selective RGC responses to 

electrical stimulation. 

Chapter 8 summarises the main contributions and conclusions of this thesis, and proposes some 

directions for future development.  
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Chapter 2 Background 

 

2.1 Retinal Architecture 

Very few neural circuits are comparable to the complexity and structured layout of the retinal 

system. For one, the retina has a clear and regularly-organised architecture, and every functional 

retinal layer can be physically identified: this is in contrast to the seemingly overwhelming 

complex structure of the brain. Furthermore, input and output relationships in many retinal 

neurons and layers have been well-characterised (Masland, 2012, Roska and Meister, 2014). 

Finally, this “one-directional” signal-processing system can be represented as an isolated system 

without considering efferent feedback from the brain.  

The retina is an elaborate architecture of neurons interconnected through gap junctions and 

synapses (see the schematic drawing in Figure 2.1). At the outer retina, a network of rod and 

cone photoreceptors convert the incident light to neural activities. These signals then pass 

through ~11 types of bipolar cells before arriving at the output neurons located in the inner retina: 

the RGCs. The ~12 types of RGCs then transmit the signals to the brain via the optic nerve. In 

addition to this vertical excitatory pathway, the retina also contains two lateral inhibitory 

pathways. In the outer retina, horizontal cells provide inhibitory feedback to the photoreceptors 

and inhibitory feed-forward input to the bipolar cells. In a similar scheme, amacrine cells in the 

inner retina provide inhibition to the bipolar cells and RGCs (Masland, 2001, Wassle, 2004).  
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Figure 2.1 Schematic diagram of a retinal cross section. Light enters the retina from the inner layers, with resulting 

neural signals travelling from the outer to the inner layers. RGC cell bodies make up the ganglion cell layer (GCL). 

The cell bodies of horizontal (HC), bipolar (BC) and amacrine (AC) cells make up the inner nuclear layer (INL), and 

cone and rod photoreceptors (PRs) make up the outer nuclear layer (ONL). 

 

2.1.1. Rod and Cone Photoreceptors 

Each photoreceptor is made up of several segments: the outer segment, inner segment, cell body 

and synaptic terminal. The outer segment is located farthest away from incoming light; however, 

it is the photosensitive portion containing the visual pigment rhodopsin. Based on the shape of 

the outer segment, vertebrate photoreceptors can be classified into two types: rods, which have a 

relatively long and cylindrical outer segment, and cones, whose outer segment is shorter and 

tapered (Steinberg et al., 1980).  

Rods provide a graded response up to dim levels of light, and become saturated under day-light 

(Masland, 2012). These cells are notably absent from the fovea but their density increases 

towards the periphery of the retina. As there is a high convergence in rod pathways, i.e. the 
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outputs of thousands of rods ultimately converge on single RGCs (Sterling et al., 1988), spatial 

resolution in dim light conditions is relatively poor. In addition, retinal rods are incapable of 

differentiating colours, since they all contain the same visual pigment.  

Cones respond best under photopic or bright light conditions, as they are less sensitive but 

respond faster than rods. Because single RGCs collect information from only a small number of 

cones, the convergence in cone pathways is notably smaller than in rod pathways. Therefore, the 

resolution of fine spatial detail is possible, especially in central vision where cones are more 

densely packed; moving away from the fovea the density of cones drops rapidly. Unlike rods 

which come in only one variety, cones can be classified into three classes in humans and some 

other primates: long-wavelength (L), middle-wavelength (M), and short-wavelength (S), which 

are also respectively referred to as red, green and blue cones (Kuchenbecker et al., 2008, Hofer et 

al., 2005). As a result of their trichromatic nature, any colour in the visible spectrum, i.e. 

wavelengths from about 390 to 700 nm, can be matched by a particular combination of the three 

primary colours, which differentially stimulate the three different populations of cones (Starr et 

al., 2010).  

 

2.1.2. Horizontal Cells 

Horizontal cells are interneurons in the retinal pathway, synaptically active in the outer plexiform 

layer (OPL), with cell bodies in the distal edge of inner nuclear layer (INL) (Nolte, 2009). They 

spread laterally and are interconnected with photoreceptors, bipolar cells and other horizontal 

cells, and thus form a dense network across the whole OPL, modulating photoreceptor output 

gain through feedback. There are two main types of horizontal cells, HI and HII, in most 

mammalian retinas (Kolb, 1974). These horizontal cell types are connected by gap junctions. HI 

is the classic type of horizontal cell in the primate retina, demonstrating larger dendritic trees 

with radiating dendrites contacting cone photoreceptors. They also have long and thick axons 

that transverse laterally through the OPL, terminating at rod photoreceptors. HII cells have a 

more spidery and intricate dendritic tree, and in contrast to HI cells, have a shorter axon that 

synapses with cone cells. It has been suggested that there is a colour-specific wiring mechanism 

for these different cell types (Ahnelt and Kolb, 1994b, Ahnelt and Kolb, 1994a): HI cells are 

primarily connected to M and L cones, whereas HII cells are mainly in contact with S cones.   
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2.1.3. Bipolar Cells 

The cell bodies of bipolar cells are distributed in the INL (see Figure 2.1). There are several 

varieties of different cell types based on their morphological difference (Connaughton et al., 

2004, Wassle and Boycott, 1991, Euler and Wassle, 1995). Functionally, however, they are 

either ON- or OFF-types. As a result, the diversity in morphology results from other factors, such 

as pre- and post-synaptic connections. Some bipolar cells are in contact with only rods, some 

only with cones, and others receive mixed inputs (Boycott and Wassle, 1991, Li and DeVries, 

2006). As for cone bipolar cells, some are post-synaptic to only a specific type of cone cell, 

whereas others receive integrated information from multiple cone types. Following the receipt of 

an optical signal by the retinal photoreceptors, a specific type of neurotransmitter – glutamate – 

is released from the synapses of photoreceptors (Ayoub and Copenhagen, 1991). Glutamate then 

triggers the light response in bipolar cells. Depending on the response to this stimulus, bipolar 

cells can be categorised into two types: ON-cells, which are hyperpolarised in the presence of 

glutamate, and OFF-cells, which are depolarised by the same neurotransmitter. This dichotomy 

in light response results from the differential expression of glutamate receptors: ON bipolar cells 

express a metabotropic receptor (mGluR), whereas OFF bipolar cells express an ionotropic 

glutamate receptor (iGluR).  

 

2.1.4. Amacrine Cells 

Amacrine cells are interneurons synaptically active in the inner plexiform layer (IPL), with their 

cell bodies in the proximal layer of the INL. They interact at the second synaptic level of the 

photoreceptor-bipolar cell-RGC pathway, and serve to modulate retinal activity. With at least 22 

types discovered, amacrine cells represent the largest diverse population of cells in the retina 

(Kolb et al., 1981, MacNeil and Masland, 1998). Based on dendritic field diameter 

measurements, (Kolb et al., 1981), amacrine cells may be considered to fall within one of four 

groups: narrow-field (30-150 µm), small-field (150-300 µm), medium-field (300-500 µm) and 

wide-field (>500 µm). Further classification can be made by adding the cell stratification, 

including which of the five strata in the IPL the dendrites project to, and whether or not 

projections extend to multiple strata. 
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In the vertebrate retina, most amacrine cells are inhibitory interneurons, releasing inhibitory 

neurotransmitters such as γ-aminobutyric acid (GABA) and glycine. Amacrine cells frequently 

make reciprocal synapses with bipolar cells, and therefore they play a crucial role in the 

integration and modulation of visual messages presented to the RGC. 

 

2.1.5. Retinal Ganglion Cells  

RGCs form the final stage of the visual pathway in the vertebrate retina (Nolte, 2009). They 

serve to collect the visual information pre-processed by vertical and lateral pathways, before 

delivering it to the visual cortex via the optic nerve (which is formed by the RGC axons). RGCs 

are larger than most preceding interneurons in the retina, and they also have larger axons capable 

of rapidly conveying neuronal signals to the visual processing centres in in the brain.  

RGCs in the vertebrate retina exhibit a large variety based on their dendritic morphology, cell 

body and dendritic tree size, as well as stratification level. Figure 2.2 shows the currently 

identified RGC types in the retinas of a rat (Wong et al., 2012) and a cat (O'Brien et al., 2002). 

Different RGCs are preferentially activated to detect different features of the visual scene. For 

example, the large cells with open radiating dendritic branching patterns capable of processing 

fast and transient impulse trains, are related to motion detection, whereas small bushy RGCs 

primarily process small stationary, fine details of the visual scene. 

Initially discovered by Hartline (1938), is now established that RGCs present three different 

patterns of light response. ON cells respond to the onset of light stimuli with a transient burst of 

impulses, and with a sustained burst throughout the course of stimulation until the stimulus is 

absent. OFF cells, however, stay silent during light stimulation until the stimulus is switched off. 

Thereafter, they respond with a sustained impulse discharge. Finally, ON-OFF cells only respond 

with transient discharge bursts at both the onset and offset of light stimuli. These cells have been 

identified with distinct stratification patterns in the IPL (Nelson et al., 1978, Peichl et al., 1981, 

Amthor et al., 1989). Briefly, ON cell dendrites are close to the ganglion cell bodies, connecting 

with the axon terminals of ON type bipolar cells. The dendrites of OFF cells are typically close 

to the amacrine cell bodies, connecting with the axon terminals of OFF type bipolar cells, and 

ON-OFF dendritic trees typically arbourise in both zones of the IPL, presenting a “bistratified” 
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appearance (Rockhill et al., 2002, Sivyer and Vaney, 2010, Moritoh et al., 2013, Sun et al., 2002).  

 

Figure 2.2 Current identified RGC types in the retina of rat (left) and cat (right). Scale bar: 100 µm. Adapted from 

Wong et al. (2012) and O'Brien et al. (2002) 

Hartline (1938) also introduced the definition of “receptive field” in order to investigate the 

spatial properties of RGCs. This term refers to the spatial region in which a stimulus is capable 

of firing the neuron. One of the characteristics of an RGC receptive field is “antagonistic 

surround” or “centre surround”. These terms describe the organisation of the receptive field, 

whereby two concentric regions antagonise one another (Kuffler, 1953). In the case of an ON-

centre cell, a light stimulus near the centre evokes a burst of impulses at the stimulus onset, and a 

light stimulus at the periphery evokes impulses at the offset. As for an OFF-centre cell, light 

stimuli have a converse effect. When both the centre and periphery are stimulated simultaneously, 

the two regions antagonise each other: since the sensitivity to stimulation diminishes radially 

from the centre, oftentimes only the centre response is observed. Therefore, a large contrast 

between the light and dark phases is necessary in order to ensure maximal response. 

Other than their morphological and stratification diversity, different RGC types also demonstrate 
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distinct intrinsic properties (Wong et al., 2012, O'Brien et al., 2002). With further advances in in 

vitro experimental techniques, known ionic mechanisms of RGCs continues to be updated with 

the identification of new ionic channel types (Miller et al., 2002, Tabata and Ishida, 1996, Lee 

and Ishida, 2007, Margolis and Detwiler, 2007, Henderson and Miller, 2003). The properties of 

these new currents and their regional distributions in different neuron types may significantly 

contribute to their overall response. However, there is still limited knowledge on differences in 

ion channel expression among the identified RGC types. More importantly, the contribution of 

this diversity to their unique responses to visual inputs is still unclear. This thesis presents a 

novel computational framework for developing RGC models, integrating multiple experimental 

information and biophysical principles to provide a quantitative understanding of activation 

processes in the different RGC types. 
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2.2 Activating Retinal Neurons Using Artificial Electrical Stimulation 
 

2.2.1. Visual Prostheses and Retinal Implants 

Visual prostheses are neurostimulators which electrically activate neurons along the visual 

pathway, in the hope of creating a sensation of vision in blind individuals. By differentially 

activating retinal neurons in a desired sequence and spatial pattern, phosphenes can be elicited 

sequentially at specific sites; if sequential stimuli are applied sufficiently fast, the phosphene 

map may lead to a perceptible reconstruction of visual information presented to the patients. 

Research in this field has largely converged towards electrical neurostimulation of the retina, the 

optic nerve, or the visual cortex (Guenther et al., 2012). We are particularly interested in retinal 

stimulation, as it provides significant advantages over cortical prostheses which require inter-

cranial neurosurgery, and individual mapping of stimulation sites in the cortex (Dowling, 2005, 

Weiland et al., 2005).   

One of the major concerns in terms of retinal implant design of a retinal implant is its size and 

placement, since it cannot be too large to interrupt eye movements, which help in acquiring, 

fixating and tracking visual stimuli. Therefore, a split system design has been proposed by our 

research group at UNSW (Jung et al., 2013), where only a part of the implant, typically the 

electrode array, is placed inside the eyeball, with the rest remaining extraorbitally. Based on the 

location of the electrodes in the eye, retinal implants can broadly be divided into three major 

groups: 1) epiretinal, 2) subretinal and 3) suprachoroidal.  

1. Epiretinal implants have their electrode array located in the vitreous (see Figure 2.1) of 

the eye, and therefore have the advantage of being near or in direct contact with the 

RGCs (Ahuja et al., 2011, de Balthasar et al., 2008, Klauke et al., 2011). As a result of 

being close to the target tissue layer, stimulus thresholds necessary to activate RGCs are 

significantly lower compared to other retinal implants. However, the challenge with 

epiretinal implants is their fixation, which requires a retinal tack or other fastening means, 

which may in turn result in mechanical damage to the surrounding tissue or even higher 

thresholds due to the electrodes not closely positioned adjacent to the epiretinal surface 

(Gerding, 2007, Hesse et al., 2000).  
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2. Subretinal implants have their electrodes placed between the retinal pigment epithelium 

(RPE, see Figure 2.1) and the photoreceptor layer (Wilke et al., 2011, Zrenner et al., 

2011). Some of these utilise microphotodiode arrays to act as a replacement for 

degenerated photoreceptors by converting optical information into an electrically 

equivalent signal. These devices thus take advantage of the remaining functional retinal 

pathway (Zrenner et al., 2011, Volker et al., 2004), and do not require an external camera 

or external image processing unit. However, implant fixation is also not very easy, and 

may cause detachment of the retina (Sachs and Gabel, 2004). Furthermore, the implant 

may result in transport blockage between the choroid and retina, as retinal nutrients and 

waste are normally distributed and uptaken by the choroid. 

3. Suprachoroidal implants have their electrodes inserted between the sclera and the choroid 

(Zhou et al., 2008, Wong et al., 2009, Shivdasani et al., 2010, Fujikado et al., 2007, 

Matteucci et al., 2013). The insertion and placement of the electrode array at this location 

is relatively easy, which in turn suggests minimally invasive surgery and less risk of 

damage to the retina. However, since the electrodes are further away from the target cells, 

higher stimuli are required, and since the current density is also reduced further from the 

electrodes, the size of the receptive field of each electrode increases, which may 

potentially limit visual acuity (Dowling, 2005, Weiland et al., 2005).   

  

2.2.2. Selective Activation of Retinal Neurons 

It is anticipated that improvements in the quality of prosthetic vision will mainly arise from more 

sophisticated stimulation strategies, possibly enabling selective activation of specific types of 

ganglion cells. Such strategies would enable neuronal activity elicited by artificial stimulation to 

be closer to physiological spiking patterns seen in response to natural visual inputs. 

Selective activation or differential activation in this context refers to the mean targeted activation 

of one neuron type in preference to another neuron type not targeted for stimulation. In the 

normal retina, different RGC classes demonstrate unique light-response properties to natural 

visual inputs (e.g. increase or decrease of light intensity, adaptation, and sensitivity to multiple 

image object motion). In vitro experimental studies also suggested that the characteristic 

response patterns in identified RGC types are formed by their unique intrinsic and morphological 
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properties (O'Brien et al., 2002, Wong et al., 2012, Margolis et al., 2010, Margolis and Detwiler, 

2007). In these studies, morphologically- or functionally-distinct RGC types indicated 

differential responses to somatic current injections, without the influence of network inputs by 

applying synaptic blockers. Therefore, it is reasonable to expect that these cells also show 

noticeable differences in their intrinsic response to extracellular electrical stimulation. 

However, existing visual prosthetic devices have limited or indeed no ability to selectively 

stimulate retinal neurons in clinical settings due to the relatively large area of retinal tissue 

activated by the electrodes, as well as the limited knowledge of mechanisms underlying neuronal 

activation. Multiple experimental studies have reported the difficulty in targeting different retinal 

neurons using artificial electrical stimulation (Sekirnjak et al., 2008, Margalit and Thoreson, 

2006, Tsai et al., 2009, Freeman et al., 2011), while some studies have suggested the possibility 

of preferentially activating individual RGC types using particular stimulus configurations 

(Jensen and Rizzo, 2005, Jensen and Rizzo, 2006).  

Typically, there exist two types of artificial activation. One is direct activation, in which the 

RGCs are activated directly and elicit a single spike (or two spikes occasionally) for each 

stimulus pulse (Jensen et al., 2005, Sekirnjak et al., 2006, Ahuja et al., 2008). This can be 

achieved by both epiretinal and subretinal stimulation (Stett et al., 2000, Tsai et al., 2009), and 

the region with the lowest RGC threshold is reported to be near the proximal axon (Sekirnjak et 

al., 2008, Fried et al., 2009). Studies aimed at selective activation of direct responses in RGCs 

have shown some success. Results have raised the possibility that such types of selective 

activation are optimal for small-diameter electrodes (Jensen et al., 2005). However, such 

selective activation may be possible only over a relatively small range of stimulus amplitudes 

(Freeman et al., 2011). In addition, such stimulation may induce the incidental activation of 

passing axons, which would reduce the ability to elicit spatially-localised percepts. 

The other type of artificial activation is indirect activation. In this case, neurons presynaptic to 

RGCs generate responses, which elicit an indirect spiking response in the RGCs due to synaptic 

activation. The types of neurons activated may be different between healthy and degenerate 

retina: in the healthy retina, either bipolar cells or photoreceptors can be the target of indirect 

stimulation, whereas in the degenerative retina where photoreceptors are largely absent, the 
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indirect response likely initiates from activation of bipolar cells (Jensen and Rizzo, 2008). Since 

passing axons would likely be activated by direct activation, selective indirect activation of 

RGCs may be more desirable. Nevertheless, studies in epiretinal stimulation have shown that it is 

difficult to selectively elicit an indirect response using pulsatile stimuli without eliciting direct 

responses (Jensen et al., 2005). In terms of subretinal stimulation, the threshold for direct versus 

indirect activation may be indistinguishable in healthy retina (Tsai et al., 2009). In the degenerate 

retina, the threshold for indirect activation increases relative to healthy retina (Jensen and Rizzo, 

2008), whereas the threshold for direct activation is not affected by degeneration (Sekirnjak et al., 

2009). It is thus speculated that the ability to selectively activate the indirect response is reduced 

in the degenerate retina. 

Selective activation of either ON or OFF type RGCs has also been investigated. It has been 

reported that for direct activation, ON and OFF cells may share similar activation thresholds, for 

both subretinal (Tsai et al., 2009) and epiretinal (Sekirnjak et al., 2008) stimulation. This will 

clearly limit the quality of visual perception afforded by a prosthetic device, since ON and OFF 

RGCs representing the same image “pixel” will be activated by the electrical stimulation 

(Freeman et al., 2011). For indirect activation however, the OFF-cell threshold in the healthy 

retina is lower than ON cells (Jensen and Rizzo, 2006). However, since this difference may be 

influenced by photoreceptor activation, it may not be evidenced in the degenerate retina.  

In the aforementioned studies of selective activation, pulsatile stimuli were conventionally used. 

In more recent studies, more complex stimulus waveforms have been investigated to determine if 

they provide better selectivity (Langille et al., 2008, Freeman et al., 2010b, Foutz and McIntyre, 

2010). For example, it has been found that low-frequency sinusoidal waveforms resulted in 

robust indirect activation of RGCs with little or no direct effect. When the stimulus frequency 

was increased to ~100 Hz, the direct response became stronger but the synaptic response was 

hardly influenced (Freeman et al., 2010a). A more recent in vitro study first suggested the 

possibility of employing 2 kHz high-frequency stimulation (HFS) to maximise the difference in 

responses between ON and OFF RGC types (Twyford et al., 2014), underlying the possibility of 

HFS to selectively activate different retinal neuron types. HFS has been explored in cochlear 

prosthetics (Litvak et al., 2001, Litvak et al., 2003). It has also been used to induce selective 

conduction block in peripheral axon fibres (Joseph and Butera, 2011), revealing its potential for 
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visual prosthetic stimulation. However, in the Twyford et al. (2014) study, the size and location 

of the stimulus electrodes were far smaller and closer to the target neurons than those that would 

be used in practical retinal prosthetic devices: For example, Twyford et al. used 40 μm disc 

electrodes compared to ~200-400 μm for practical electrodes in a therapeutic device. Moreover, 

the height of the stimulating electrode was accurately fixed 25 μm above the inner limiting 

membrane, which is difficult to achieve in clinical applications. Therefore, the utility of this HFS 

approach as a practical visual stimulation strategy still needs to be investigated. In this thesis, 

computational RGC models are utilised to better understand the possible mechanisms underlying 

differential RGC responses to 2 kHz HFS, shedding light on future stimulation strategies to 

improve the quality of prosthetic vision.  
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2.3 Quantitative Descriptions of Neuronal Membrane Potential  

The ionic models developed in this thesis are described by Hodgkin-Huxley-type formulations. 

Excitable neuronal membranes are composed of micromolecular complexes of proteins and 

phospholipids (Rouser et al., 1968). This structure can be described by a capacitor 

(phospholipids) in parallel with several conductive elements (ionic channels assembled by 

proteins), with the relationship between transmembrane potential and ionic currents described by 

the standard space-clamped ordinary differential equation (ODE): 

              𝑑𝑉𝑚 𝑑𝑡⁄ = −(𝑖𝐿 + ∑ 𝑖𝑗
𝑁
𝑗=1 )/𝐶𝑚                                             (2.1) 

where ij denotes the jth time-dependent ionic current, N is the total number of such time-

dependent currents present, and iL is a background or leakage current.  

The quantitative description of membrane potential was first provided by Sir Alan L. Hodgkin 

and Sir Andrew F. Huxley for the giant axon of the squid (Hodgkin and Huxley, 1952). In their 

work, membrane conductance 𝑔𝑗  terms are given by the product of a maximum membrane 

conductance for each ion type (𝑔̅𝑗) with voltage and time-dependent gating variables 𝑥(𝑉𝑚, 𝑡) 

representing the fraction of open channels:  

                         𝑔𝑗(𝑉𝑚, 𝑡) = 𝑔̅𝑗 ∙ ∏ 𝑥𝑘(𝑉𝑚, 𝑡)𝑛𝑘𝑀
𝑘=1                                              (2.2) 

where M is the total number of gating variables for the jth ionic current. Each gating variable is 

represented by a first order differential equation: 

                         𝑑𝑥(𝑉𝑚, 𝑡) 𝑑𝑡 = 𝛼(𝑉𝑚)(1 − 𝑥) − 𝛽(𝑉𝑚)𝑥⁄                                       (2.3) 

where 𝛼(𝑉𝑚) 𝑎𝑛𝑑 𝛽(𝑉𝑚) are the opening and closing rates of the corresponding gating variable 

respectively, all being empirical functions of the membrane potential Vm.  

From Ohm’s law, the general form of each ionic current is given by: 

          𝑖𝑗(𝑉𝑚, 𝑡) = 𝑔𝑗(𝑉𝑚, 𝑡) ∙ (𝑉𝑚 − 𝑉𝑟𝑒𝑣,𝑗)                                          (2.4) 

where 𝑉𝑚 is the membrane potential, 𝑉𝑟𝑒𝑣,𝑗 is the Nernst equilibrium potential described by: 
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𝑉𝑟𝑒𝑣,𝑗 = −
𝑅𝑇

𝑧𝐹
ln 

𝐶𝐼

𝐶𝑂
                                                          (2.5) 

where R, T and F are the gas constant, absolute temperature and Faraday’s constant, respectively. 

z is the valence of the corresponding ion carried by the channel,  and CI and CO are the respective 

ion concentrations in the intra- and extracellular spaces. 𝑉𝑚 − 𝑉𝑟𝑒𝑣,𝑗  represents the 

electrochemical driving force of each ionic channel. 

Since ionic mechanisms underlying various excitable cell types are similar, the Hodgkin-Huxley 

model and its extensions have been widely utilised in cardiac, muscle, brain and retinal neuron 

modelling studies, with the inclusion of detailed ionic mechanisms, morphological information 

and network interactions (see Chapter 3). Although more detailed modelling approaches (e.g. 

Markov schemes) have been found to provide better approximations of single channel 

microscopic structure and kinetics (Fink and Noble, 2009), Hodgkin-Huxley schemes are still 

recognised as standard in most excitable cell modelling studies. Details of their wide application 

in retinal neuron modelling are reviewed in Chapter 3.  
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Chapter 3 Review of Existing Computational Models of Retinal Neurons and 

Parameter Estimation Techniques for Excitable Cell Models  

 

3.1 Computational Models of Retinal Neurons 

Existing anatomical and neurophysiological knowledge of retinal function has allowed 

computational models to reproduce retinal responses to either visual or artificial electric stimuli 

at various levels of complexity. These models, in turn, have improved our understanding of the 

retina, particularly in how intrinsic biophysical and anatomical properties at the cellular level, 

and integration of synaptic inputs at the network scale, contribute to retinal function (see Figure 

3.1 and Table 3.1). Indeed, over recent decades computational models have been important for 

understanding the response dynamics and computations of single retinal neurons and their 

functional contributions in larger neural networks (see Table 3.2) 

Despite these major advances, a large amount of retinal function remains to be understood. For 

instance, experimental studies increasingly indicate that the functions of many retinal neuronal 

types are more intricate than originally thought (Zhang et al., 2012, Hosoya et al., 2005, Freed, 

2001, Fried et al., 2002, Masland, 2012, Gollisch and Meister, 2010). Similarly, at the clinical 

frontier, the mechanisms underlying the large diversity in retinal neuronal responses to artificial 

electrical stimulation are still being investigated (Twyford et al., 2014, Freeman et al., 2011, 

Felsen and Dan, 2005, Tsai et al., 2009).  

On a micro scale, retinal neurons extract their preferred visual information, process this 

information - often with the help of other neurons, then transfer the results to downstream 

neurons. A single neuron can be represented by either a single-compartment model, a 

morphologically-realistic model, or via a block-compartment approach, depending on the aims, 

complexities and physiological assumptions on which the model is based, as well as the 

computational resources available to process a particular model formulation.  Such models 

integrate electrophysiological current/voltage-clamp recordings and biophysical principles into a 

mechanistic understanding of individual neuronal properties, and have the capacity to reconstruct 

ionic mechanisms hidden in the data, as well as utilising new experimental information to 

improve existing model structures.  



 

20 
 

On a larger scale, visual information is arrayed across large inhomogeneous populations of 

neurons within each retinal layer. One approach of representing such a neuronal network 

involves bringing together individual neurons, each being a complete model capable of stand-

alone execution, and connecting them together using computational representations of synapses. 

As such, these models are mechanistically detailed, but computationally expensive to run.  

Alternatively, functional block-structured models could also be used to construct large-scale 

models of the retina. Unlike the aforementioned approach, these models aim to capture only the 

input-output relationship of the neuron/network by treating the constituent neurons as black 

boxes (Dokos, 2014). By omitting neuronal morphological details, and often the associated ionic 

biophysics too, these approaches have the advantage of computational efficiency. These large-

scale tissue- or network-based models have been used to investigate how each retinal neuron 

contributes to a particular sub-circuit or to the entire retinal tissue, and how they work together to 

collectively encode visual input. Irrespective of the modelling techniques, they offer improved 

understanding of the growing amount of experimentally-recorded retinal responses to light or 

electrical stimuli, and can be used to make testable predictions. For clinical applications, some of 

these models also provide valuable insights into the development of effective stimulation 

strategies for visual prostheses (Luo and da Cruz, 2014). In this review section, an overview is 

given of the current state-of-the-art of computational models of the neural retina, across different 

scales, discussing their advantages, limitations and future potential.  
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Figure 3.1 Six types of computational models typically used in retinal neuron modelling. I. Single-compartment 

models, II. Morphologically-realistic models, III. Block-compartment models, IV. Continuum models, V. Block-

structured models and VI. Discrete-neuronal network models, adapted from (Publio et al., 2009).  
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Model type Published computational retinal neuron models 

I. 

(Vallerga et al., 1980, Usui et al., 1996a, Steffen et al., 2003, Shirahata, 2011, Shirahata, 2008, Publio et al., 2006, 

Ogura et al., 2003, Kourennyi et al., 2004, Kamiyama et al., 1996, Kameneva et al., 2011, Fohlmeister and Miller, 

1997a, Boinagrov et al., 2010, Baylor et al., 1974, Aoyama et al., 2005, Fohlmeister et al., 1990) 

II. 

(Velte and Miller, 1997, Velte and Miller, 1995, Tukker et al., 2004, Tsai et al., 2012, Sheasby and Fohlmeister, 

1999, Schachter et al., 2010, Resatz and Rattay, 2004, Rattay et al., 2003, Rattay and Resatz, 2004, Publio et al., 

2012, Miller et al., 2006, Maturana et al., 2013, Jeng et al., 2011, Greenberg et al., 1999, Fohlmeister and Miller, 

1997b, Fohlmeister et al., 2010, Borg-Graham, 2001, van Rossum et al., 2003) 

III. 

(Werginz et al., 2014, Abbas et al., 2013, Abramian et al., 2011, Carras et al., 1992, Al Abed et al., 2013b, Smith, 

1995, Mennerick et al., 1997, Poznanski, 1992, Enciso et al., 2010, Schiefer and Grill, 2006, Taylor et al., 1995, 

Tukker et al., 2004, Usui et al., 1996b, Fohlmeister and Miller, 1997b)  

IV. 
(Yin et al., 2011, Yin et al., 2010, Yin et al., 2013, Joarder et al., 2011, Dokos et al., 2005, Al Abed et al., 2012, 

Al Abed et al., 2013b, Abramian et al., 2011, Abramian et al., 2014) 

V. 

(Wohrer and Kornprobst, 2009, Victor, 1988, Victor, 1987, van Hateren and Snippe, 2007, Teeters et al., 1997, 

Shah and Levine, 1996b, Shah and Levine, 1996a, Robson and Frishman, 1996, Robson and Frishman, 1995, 

Lamb and Pugh, 1992, Keat et al., 2001, Juusola et al., 1995, Hood et al., 1993, Hennig and Worgotter, 2007, 

Hennig et al., 2002, Hamer et al., 2005, Curlander and Marmarelis, 1987, Cai et al., 2007, Borst et al., 2005, 

Bomash et al., 2013, Berry et al., 1999, Pillow et al., 2005, Pillow et al., 2008) 

VI. 

(Wohrer and Kornprobst, 2009, Wang et al., 2011, Usui et al., 1983, Usui et al., 1996b, Teeters et al., 1997, Smith 

and Vardi, 1995, Smith, 1995, Shah and Levine, 1996b, Shah and Levine, 1996a, Saglam et al., 2009, Robson and 

Frishman, 1996, Rekeczky et al., 2001, Publio et al., 2009, Publio et al., 2012, Hosoya et al., 2005, Hennig and 

Worgotter, 2007, Hennig et al., 2002, Hadeler and Kuhn, 1987, Freed et al., 1992, Curlander and Marmarelis, 

1987, Cottaris et al., 2005, Baccus et al., 2008, Aoyama et al., 2005, Rattay and Resatz, 2004, Rattay et al., 2003, 

Resatz and Rattay, 2004, Bomash et al., 2013, Arguello et al., 2013, Pillow et al., 2008) 

Table 3.1 Existing computational models of retinal neurons categorised by type. Model types correspond to those 

shown in Figure 3.1. Depending on the study aim, a single-compartment neuron model can be extended to any 

biophysical model type (II, III, IV, VI), by adding new assumptions such as anatomical structure, synaptic or inter-

neuron coupling information. Conductance-based models (i.e. types I, II and III) can be used as individual neuron 

elements in both continuum models and discrete-network models. Block-structured models are often used in 

building retinal networks or localised sub-circuits. Large-scale network models can capture the essential function of 

photoreceptors, bipolar cells and RGCs, as well as the contribution of retinal heterogeneity in visual information 

processing. 
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Task Stimulation Type Model used  Biological System Reference 

AP initiation in response to 

electrical stimulation 

Epiretinal electrical 

stimulation 
III 

(Fohlmeister and 

Miller, 1997a) 
Rabbit RGC 

(Schiefer and 

Grill, 2006) 

AP initiation in response to 
electrical stimulation 

Epiretinal electrical 
stimulation 

II 
(Fohlmeister and 
Miller, 1997a) 

Rabbit RGC 
(Jeng et al., 
2011) 

AP initiation in response to 
electrical stimulation 

Epiretinal electrical 
stimulation 

III 
(Fohlmeister and 
Miller, 1997a) 

Tiger salamander 
RGC 

(Werginz et 
al., 2014) 

AP initiation in response to 
electrical stimulation 

Somatic injection III 
(Hodgkin and 
Huxley, 1952) 

Mudpuppy RGC 
(Carras et al., 
1992) 

Axonal excitation in response to 
electrical stimulation 

Epiretinal electrical 
stimulation 

IV 
(Fohlmeister and 
Miller, 1997a) 

Rabbit RGC axon 
(Abramian et 
al., 2011) 

Synaptic signal  integration Dendritic injection  II 
(Fohlmeister et 
al., 1990) 

Rabbit starburst 
amacrine cell 

(Velte and 
Miller, 1997) 

Influence of dendritic 

morphology 
Light stimulation III 

(Poznanski, 

1992) 

Rabbit starburst 

amacrine cell 

(Poznanski, 

1992) 

Mechanisms of direction 
sensitivity 

Light stimulation VI 
(Enciso et al., 
2010) 

Rabbit starburst 
amacrine cell 

(Enciso et al., 
2010) 

Influence of dendritic varicosities 
Somatic/dendritic 
injection 

II 
(Fohlmeister et 
al., 1990) 

Tiger salamander 
amacrine cell: 

(Miller et al., 
2006) 

Synaptic signal  amplification Dendritic injection II 
(Fohlmeister and 
Miller, 1997a) 

Rabbit direction 
selective RGC 

(Schachter et 
al., 2010) 

Presynaptic signal processing Dendritic injection VI 
(Borg-Graham, 
2001) 

Turtle direction 
selective RGC  

(Borg-

Graham, 
2001) 

Contribution of active dendrites 

and networks 
Dendritic injection VI 

(Fohlmeister and 

Miller, 1997a) 

Tiger salamander 

RGC 

(Publio et al., 

2012) 

Bipolar-RGC interaction Dendritic injection VI 
(Enroth-Cugell 

and Freeman, 
1987) 

Cat ON alpha RGC 
(Freed et al., 
1992) 

Influence of dendritic field size 
Somatic/dendritic 
injection 

II 
(Fohlmeister et 
al., 1990) 

Mudpuppy RG C 
(Velte and 
Miller, 1995) 

Influence of cell morphology, 
dendritic active conductance 

Somatic/ dendritic 
injection 

II 
(Fohlmeister and 
Miller, 1997b) 

Tiger salamander 
RGC 

(Fohlmeister 

and Miller, 

1997b) 

Influence of Jh on damped 
oscillation activity 

Light stimulation I 
(Kamiyama et al., 

1996, Torre et al., 
1990) 

Bullfrogs rod 
photoreceptor:  

(Ogura et al., 
2003) 

Contribution of JNaT, JNaP on 
spontaneous activity 

Somatic injection I 
(Steffen et al., 
2003) 

Mouse 

dopaminergic 
amacrine cell:  

(Shirahata, 

2011, Steffen 
et al., 2003) 

Contribution of JCa and networks 

on receptive-field 

properties 

Light stimulation I, VI 
(Aoyama et al., 
2000) 

Goldfish horizontal 
cell:  

(Aoyama et 
al., 2005) 

Contribution of JKCa  in shaping 

spiking activity 
Somatic injection I 

(Fohlmeister and 

Miller, 1997a) 

Tiger salamander 

RGC 

(Fohlmeister 

and Miller, 
1997a) 

Contribution of Jh, JCaT and JNaP Somatic injection I 
(Fohlmeister and 
Miller, 1997a) 

Mouse ON and OFF 
RGC 

(Kameneva et 
al., 2011) 

Contribution of Jh  Light stimulation VI 
(Publio et al., 
2006) 

Mammalian rod 
photoreceptor 

(Publio et al., 
2009) 

Contribution of Jh in directional 
summation 

Light stimulation II 
(Abbas et al., 
2013) 

Rat ON RGC 
(Abbas et al., 
2013) 

Contribution of dendritic 

morphology in shaping spiking 

activity 

Somatic injection II 
(Fohlmeister and 

Miller, 1997b) 

Tiger salamander 

RGC 

(Sheasby and 

Fohlmeister, 

1999) 

Influence of electrode size and  Somatic injection, II (Fohlmeister and Mouse and monkey (Tsai et al., 



 

24 
 

location and cell morphology Epiretinal electrical 
stimulation 

Miller, 1997b) RGC 2012) 

Contribution of morphology in 
shaping spiking activity 

Somatic injection II 
(Fohlmeister and 
Miller, 1997b) 

Mouse ON and OFF 
RGC 

(Maturana et 
al., 2013) 

Influence of hexagonally 
arranged bipolar electrodes 

Epiretinal electrical 
stimulation 

IV 
(Fohlmeister and 
Miller, 1997b) 

Rabbit RGC 
(Abramian et 
al., 2011) 

Influence of bipolar electrode 

configuration 

Epiretinal electrical 

stimulation 
IV 

(Fohlmeister and 

Miller, 1997b) 
Rabbit retina 

(Dokos et al., 

2005, Joarder 

et al., 2011, 

Abramian et 
al., 2014) 

Influence of electrode location 
and stimulus configuration 

Epiretinal/subretinal

/ suprachoroidal 

electrical 

stimulation 

IV 
(Fohlmeister and 
Miller, 1997b) 

Rabbit RGC 
(Joarder et al., 
2011) 

Influence of quasi-monopolar 

electrical stimulation 

Epiretinal electrical 

stimulation 
IV 

(Fohlmeister and 

Miller, 1997b) 
Rabbit RGC 

(Abramian et 

al., 2014) 

Influence of electrode location 
and soma size 

Epiretinal electrical 
stimulation 

II 

(Fohlmeister and 

Miller, 1997b, 

Hodgkin and 
Huxley, 1952) 

Mudpuppy retina:  
(Greenberg et 
al., 1999) 

Influence of length and resistance 

of the electrode 

Epiretinal electrical 

stimulation 
VI 

(Fohlmeister and 

Miller, 1997a) 

Tiger salamander 

RGC:  

(Rattay and 

Resatz, 2004) 

Influence of electrode location  
Epiretinal electrical 

stimulation 
VI 

(Fohlmeister and 

Miller, 1997a) 

Tiger salamander 

RGC:  

(Resatz and 

Rattay, 2004) 

Strength–duration relationship 
Epiretinal electrical 
stimulation 

III 

(Fohlmeister and 

Miller, 1997b, 

Hodgkin and 
Huxley, 1952) 

Tiger salamander 
RGC 

(Boinagrov et 
al., 2010) 

Influence of synaptic noise 
Somatic/dendritic 
injection 

II 
(van Rossum et 
al., 2003) 

Cat beta RGC 
(van Rossum 
et al., 2003) 

Influence of retinal networks 
Epiretinal electrical 

stimulation 
VI 

(Teeters et al., 

1997) 
Primate retina:  

(Cottaris et 

al., 2005) 

Mechanisms of motion 
extrapolation 

Light stimulation V 
(Berry et al., 
1999) 

Tiger salamander 
and rabbit RGC:  

(Berry et al., 
1999) 

Influence of eye moment Light stimulation V, VI 
(Hennig and 
Worgotter, 2007) 

Cat RGC:  
(Hennig and 

Worgotter, 
2007) 

Mechanisms of motion detection  Light stimulation V, VI 
(Borst et al., 
2005) 

Fly visual system:  
(Borst et al., 
2005) 

Mechanisms of adaptation  Light stimulation V, VI 
(Hosoya et al., 
2005) 

Tiger salamander/ 
rabbit retina:  

(Hosoya et 
al., 2005) 

Mechanisms of motion detection Light stimulation V, VI 
(Baccus et al., 

2008) 

Tiger salamander 

retina 

(Baccus et al., 

2008) 

Table 3.2 Examples of task-specific applications of various retinal neuron model levels. 
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3.1.1. Single-Compartment Models  

Single-compartment models, also known as “point models”, (see Figure 3.1, type I) have been 

used to simulate nearly all retinal neuron types, including photoreceptors (Kamiyama et al., 1996, 

Publio et al., 2006, Kourennyi et al., 2004), horizontal cells (Aoyama et al., 2005, Usui et al., 

1996b, Shirahata, 2008), bipolar cells (Usui et al., 1996a), amacrine cells (Steffen et al., 2003, 

Shirahata, 2011) and a range of RGC types (Fohlmeister and Miller, 1997a, Fohlmeister et al., 

1990, Kameneva et al., 2011). These models approximate the structure of the neural excitable 

membrane using a capacitance to mimic the membrane phospholipid bilayer, in parallel with 

several conductances to represent transmembrane channels composed of proteins. The 

relationship between the transmembrane potential and membrane currents is described by the 

following ODE:  

𝐽𝑚 = 𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝐽𝑖𝑜𝑛 + 𝐽𝑠𝑡𝑖𝑚 = 0                                                 (3.1) 

where Jm denotes total membrane current density (in current per unit membrane area), Vm 

represents membrane potential, Cm is the membrane capacitance per unit area and Jion represents 

the total ionic current density (Aidley, 1979). A single-compartment model assumes no net 

current across the cell membrane (Jm = 0), since all current flowing through the ionic channels 

charges the membrane capacitance. This is also known as the space-clamped condition. 

Furthermore, the neuron may be activated by an intracellular stimulus current (Jstim) delivered 

into the cell, to mimic experimental intracellular current injection during intracellular recordings. 

Since ionic mechanisms of retinal neurons are more complex than those of the classic Hodgkin-

Huxley model of the squid giant axon (Hodgkin and Huxley, 1952), most modelling studies 

extend this classical description to replicate known ionic mechanisms in various retinal neurons. 

Among the first ionic models developed for the retina were those for the RGCs. Their all-or-none 

spiking behaviour is similar to the classical description and thus easily modelled by modifying 

existing Hodgkin-Huxley-type formulations.  

A landmark in RGC modelling was the Fohlmeister-Miller (FM) formulation (Fohlmeister et al., 

1990, Fohlmeister and Miller, 1997b, Fohlmeister and Miller, 1997a), based on voltage clamp 

studies in tiger salamander. It contains five intrinsic ion currents underlying RGC spiking:  
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𝑑𝑉𝑚

𝑑𝑡
= −

1

𝐶𝑚
(𝐽𝑁𝑎+𝐽𝐾𝐴 + 𝐽𝐾 + 𝐽𝐶𝑎 + 𝐽𝐾𝐶𝑎 + 𝐽𝐿)                                       (3.2) 

where JNa denotes the voltage-gated sodium current, JK the delayed-rectifying potassium current, 

JKA the A-type potassium current, JCa the L-type calcium current and JKCa the calcium gated 

potassium current. JL is the leakage current. 

The FM model also incorporated intracellular calcium ([Ca
2+

]i) dynamics responsible for 

temporal spiking properties.  

𝑑[𝐶𝑎2+]𝑖

𝑑𝑡
= −(

3𝐽𝐶𝑎

2𝐹𝑟
) −

[𝐶𝑎2+]
𝑖
−[𝐶𝑎2+]

𝑟𝑒𝑠

𝜏𝐶𝑎
                                          (3.3) 

where F denotes Faraday’s constant, r is the depth of the shell beneath the membrane for the 

inward calcium current, τCa is the time constant for the sarcolemmal calcium pump, and [Ca
2+

]res 

denotes the resting cytosolic calcium concentration. Prior to this study, experimental knowledge 

of detailed ion channel kinetics or their neuronal compartment distribution was rarely used in 

retinal neural modelling.  

Utilising more detailed Na
+
 and K

+
 gating kinetics, the FM model demonstrates many 

advantages over the original Hodgkin–Huxley formulation in terms of impulse encoding 

flexibility (Fohlmeister, 2009), revealing its ability to reconstruct a large range of neuronal 

spiking behaviours.  

An important extension of the FM formulation was the Kameneva et al. (2011) model, 

incorporating three additional ionic currents hypothesized to play a role in generating RGC post-

offset activation, burst firing, and sub-threshold oscillations. Eq. (3.3) was updated to, 

d𝑉𝑚

d𝑡
= −

1

𝐶𝑚
(∑ 𝐽𝐹𝑀 + 𝐽ℎ + 𝐽𝐶𝑎𝑇 + 𝐽𝑁𝑎𝑃)                                      (3.4) 

where ∑ 𝐽𝐹𝑀  represents the original FM currents, Jh is the hyperpolarization-activated current 

based on the data from rat subiculum neurons (van Welie et al., 2006), JCaT is the low-threshold 

activated calcium current based on rat thalamocortical relay neurons (Wang et al., 1991), and 

JNaP is the persistent sodium current based on cat cortical pyramidal neurons (Traub et al., 2003). 
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With these additional ionic mechanisms, the Kameneva et al. (2011) model could account for 

various different experimental recordings from ON and OFF RGCs in a qualitative manner.  

Moreover, the single-compartment FM model was also validated in higher dimensional 

simulations with detailed anatomical information or network interactions. Figure 3.2 illustrates 

most applications and extensions based on FM formulations over the last two decades. Its 

morphological-, tissue- and network-based extensions are further discussed in the following 

sections.  

Despite the reported functional significance of all five ionic currents in the FM model, relatively 

simpler ionic models have still been used to study specific RGC response properties when 

accurate impulse generation was not required (Carras et al., 1992, Al Abed et al., 2013b, 

Boinagrov et al., 2010), as well as for other retinal neurons (e.g. photoreceptors or bipolar cells) 

(Taylor et al., 1995, Aoyama et al., 2005).  

The advantage of simplicity in single-compartment models are also their weakness. Certain 

disparities between the single-compartment FM model and known biological RGC behaviour 

cannot be reconciled by optimising model parameters alone (Fohlmeister and Miller, 1997a). 

Having additional neuronal compartments that differ in size, kinetics and ion channel densities is 

able to produce more realistic spike generation and propagation (Carras et al., 1992). Recent 

brain cell studies suggest that single-compartment models cannot capture subtle response 

characteristics, such as fast action potential (AP) depolarisation, without incorporating 

representations of axons and dendrites, and the propagation of current along these neurites 

(McCormick et al., 2007, Mainen and Sejnowski, 1996, Herz et al., 2006). Therefore, rather than 

simply incorporating intrinsic properties at a single point, spatial anatomical information and 

ionic channel distributions are also required for accurate neuronal modelling.  
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Figure 3.2. Fohlmeister-Miller (FM) model family. The FM model and its extensions have been successfully used 

for RGC or amacrine cell model formulations. Existing FM type models are widely applied in morphologically-

realistic modelling (red) to study the effect of non-uniform channel distribution or regional interaction. Single-

compartment FM models (black) focus on studying the contribution of each active conductance and integrating new 

identified ionic currents into an existing model framework. The FM model is also widely used as individual RGC 

elements in continuum tissue-based (blue) and retinal circuit models (green), by incorporating retinal layers and 

network interactions. 
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3.1.2. Morphologically-Realistic Models  

Morphologically realistic neuronal models (see Figure 3.1, type II) are based on detailed 

anatomical representations of physical components of biological neurons, including soma, axon 

initial segment (AIS), axon hillock (AH), the distal axon and dendrites. Such models are ideal for 

studying how cell morphologies and non-uniform distributions of ionic channels contribute to 

neuronal response dynamics and function. Such models provide a good approximation of 

biological neuronal behaviour and have been largely used to build structurally “complex” retinal 

neurons such as amacrine cells and RGCs. They can sometimes include more than 1000 

morphological segments to ensure accurate spatial resolution (Fohlmeister et al., 2010).  

In morphological cable models, membrane potential is both space and time-dependent, 

necessitating the modification of eq. (3.1) as follows: 

𝐼𝑚 =
𝜕

𝜕𝑠
(𝜎𝑖

𝜕𝑉𝑚

𝜕𝑠
) = 𝛽 (𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑖𝑜𝑛 + 𝐽𝑠𝑡𝑖𝑚)                                   (3.5) 

where Im is the volumetric current density (in current per unit volume), s is the arc-length 

distance along the neuron, σi is the intracellular conductivity, β is the local surface to volume 

ratio (β=2/r for a circular cross-section neural region of radius r). 

In practice, eq. (3.5) is approximated by separating the neuron into multiple discrete regions, 

each region associated with its own ionic properties, being connected with neighbouring 

compartments by axial conductors. The more compartments used, the closer the model tends 

toward the biological neuron. 

An advantage of this type of formulation is that it can also simulate cell responses to 

extracellular electrical stimulation, as opposed to only intracellular stimulation in the single-

compartment model (a single-compartment model assumes no net current across the cell 

membrane). In this situation, membrane potential is calculated by taking the difference between 

intracellular potential Vi and extracellular potential Ve: 

𝑉𝑚 = 𝑉𝑖 − 𝑉𝑒                                                              (3.6) 

where Vi is derived from,  
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𝜕

𝜕𝑠
(𝜎𝑖

𝜕𝑉𝑖

𝜕𝑠
) = 𝛽 (𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑖𝑜𝑛)                                               (3.7)  

and the extracellular voltage distribution can be simulated by either a monopolar point source 

(Greenberg et al., 1999, Jeng et al., 2011) or a disk electrode (Greenberg et al., 1999, Tsai et al., 

2012, Jeng et al., 2011) respectively modelled as: 

𝑉𝑒 = 𝜌𝑒𝐼/4𝜋𝑟                                                              (3.8) 

or            𝑉𝑒 =
2𝐼𝑅𝑠

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛 (

2𝑅

√(𝑎−𝑅)2+𝑧2+√(𝑎+𝑅)2+𝑧2
)                                     (3.9) 

where ρe denotes the resistivity of the retinal extracellular solution, I is the extracellular stimulus 

current, r is the distance between the stimulating electrode and the point at which the voltage is 

being computed, a and z are the radial and axial distance respectively from the centre of the disk 

for z≠0, R is the radius of the disk, and Rs is the electrode transfer resistance. Note that eqs. (3.8) 

and (3.9) are applicable to infinite and semi-infinite homogeneous media, respectively. 

In some cases, the extracellular voltage distribution is coupled to the local membrane potential 

(Abramian et al., 2011), and given by  

𝜕

𝜕𝑠
(−𝜎𝑒

𝜕𝑉𝑒

𝜕𝑠
) = 𝛽 (𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑖𝑜𝑛)                                           (3.10)  

where σe denotes the extracellular conductivity.  

Neuronal morphology can influence the flow of intracellular currents between neighbouring 

compartments through the local cell membrane and by intracellular conductance. As a result, 

morphology can also contribute to the unique spiking behaviour of different RGC types (Sheasby 

and Fohlmeister, 1999). Although RGC dendritic morphologies and stratifications have been 

examined extensively, their contribution to RGC spiking patterns is not well understood, owing 

to the difficulty of isolating and manipulating such properties in experimental preparations. 

However, the morphologically-realistic modelling approach can quantitatively control a variety 

of cellular properties, including morphology, and isolate their contributions in shaping firing 

patterns.  

Notable examples of morphologically-realistic retinal neuron models include: a) the Fohlmeister 

and Miller (1997b) model, the first morphologically-detailed RGC formulation, able to closely 
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reconstruct action potential shapes and spiking properties; b) the Sheasby and Fohlmeister (1999) 

realistic RGC encoder, which was used to explore the effect of regional ionic channel 

distributions along the cellular morphology; c) the Schachter et al. (2010) model, able to 

reproduce the mechanisms of active dendritic processing of synaptic inputs in direction-sensitive 

RGCs; and d) the Jeng et al. (2011) sodium channel band model that enabled the determination 

of factors underlying RGC AP initiation site in response to electrical stimulation.  

These morphologically-detailed modelling approaches offer important information on how 

channel distributions influence RGC firing patterns, and how the interaction between different 

cell regions influences neural coding. The recent morphologically-realistic model by Abbas et al. 

(2013) suggested that dendritic ionic channels provide RGCs with the ability to code “looming” 

motion. Another recent study by Maturana et al. (2013) focused on how physical properties of 

RGCs contribute to their specific spiking response patterns in response to electrical stimulation. 

Experimental findings have also suggested that RGC dendrites exhibit regenerative spikes, as 

opposed to being simply passive neurites (Velte and Masland, 1999, Oesch et al., 2005, Sivyer 

and Williams, 2013). The detailed dendritic structure of morphologically-realistic models can 

provide the framework for investigating dendritic signal processing, since their physical 

properties can be precisely controlled in these models. In summary, the realistic neuron 

modelling approach provides a promising tool for studying soma-dendritic interactions, assisting 

in interpreting experimental studies in dendritic patch-clamp recordings, fluorescent imaging and 

immunocytochemical channel localisation techniques. 

Other than their application to RGCs, morphologically-realistic models have also been applied to 

amacrine cells. These cells also demonstrate a large diversity in functional properties (Vigh et al., 

2000, Yang et al., 1991). A morphologically-realistic starburst amacrine cell model was 

developed to study the mechanisms underlying local dendritic processing (Fohlmeister et al., 

1990). By testing different artificial morphologies, another amacrine modelling study by Tukker 

et al. (2004) suggested that directional sensitivity mainly depends on a sufficient number of 

synaptic inputs at the distal dendrites rather than the dendritic morphology itself. Another 

amacrine modelling study by Miller et al. (2006) suggested that various amacrine cell spiking 

properties could be reproduced by a RGC model with minimal parameter adjustment, revealing 

the close ionic relationships between specific amacrine cells and RGCs.   
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Although certain morphologically-realistic retinal neuron models have also been used in 

formulating accurate models of local circuits or the whole-tissue retina, to study neuronal 

interactions during electrical stimulation (Greenberg et al., 1999, Resatz and Rattay, 2004, 

Rattay et al., 2003, Rattay and Resatz, 2004), their huge computational demand has resulted in 

their restricted use for population-based simulations, especially in large-scale network modelling. 

  

3.1.3. Block-Compartment Models  

An alternative modelling strategy, block-compartment modelling (see Figure 3.1, type III), is 

typically only used to represent a small number of neuronal regions. This is a compromise 

between computational efficiency and biological realism. These models can be considered a 

simplified version of the morphologically-realistic approach, extracting the most essential 

anatomical information to provide high computational efficiency with minimal neural structure.  

The simplest model in this genre is a two-compartment system coupled by a linear conductance, 

representing a soma and dendritic or axonal compartment. In this way, eq. (3.5) can be updated 

as follows: 

𝐺𝑐

𝑝
(𝑉𝑥 − 𝑉𝑠) = 𝐶𝑚

𝑑𝑉𝑠

𝑑𝑡
+ 𝐽𝑖𝑜𝑛,𝑠  

𝐺𝑐

1−𝑝
(𝑉𝑠 − 𝑉𝑥) = 𝐶𝑚

𝑑𝑉𝑥

𝑑𝑡
+ 𝐽𝑖𝑜𝑛,𝑥                                               (3.11) 

where Vs and Vx represent the membrane potential in the soma and connected compartment 

respectively, Gc is the coupling conductance between compartments, p is the percentage of the 

cell membrane area taken up by the soma, Jion,s and Jion,x are the membrane ion currents of the 

soma and connected compartment respectively.  

This morphology-reduction process depends largely on the motivation of specific studies, as well 

as the ionic mechanisms involved. Previous findings have suggested that reasonably realistic 

RGC spiking patterns, comparable to experimental recordings and simulations from 

morphologically-realistic models, can be obtained using only four neuronal compartments 

(dendrites, soma, thin segment and axon) (Fohlmeister and Miller, 1997b). A single unbranched 

dendritic compartment, which allowed region-specific activation of individual channel subtypes, 
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was shown to be sufficient to elicit summation of excitatory postsynaptic potentials (EPSPs) in 

RGCs (Abbas et al., 2013). In addition, a simplified axonal activation model was able to 

successfully predict RGC experimental threshold profiles, as well as the initial activation 

location in response to electrical stimulation (Abramian et al., 2011).  

In another model investigating the origin of AP initiation in RGCs, the dendrites were reduced to 

unbranched cables of uniform diameter (Carras et al., 1992). Another such simplified RGC-

structure model was used to investigate how epiretinal electrical stimulation could result in the 

production of punctate phosphenes, as opposed to diffuse or streaked perceptions that would be 

consistent with the recruitment of axons from distant RGCs (Schiefer and Grill, 2006). In a more 

recent tissue-based retinal model, each point in the RGC layer was represented by an active soma 

and a passive dendritic compartment, with synaptic input into dendrites included to approximate 

the underlying neural structure (Al Abed et al., 2013b).  

Apart from RGC models, equivalent cable representations have also been used to simulate 

starburst amacrine cells (Poznanski, 1992, Enciso et al., 2010, Tukker et al., 2004). These models 

incorporated various levels of simplified cylindrical dendritic structures, and were helpful in 

elucidating the influence of morphological structure on the mechanisms underlying directional 

sensitivity in starburst amacrine cell networks. 

Block-compartment models have also been applied to morphologically-simple neurons such as 

photoreceptors (Taylor et al., 1995), bipolar cells (Mennerick et al., 1997), and horizontal cells 

(Usui et al., 1996b, Smith, 1995) (see Table 3.3). Most of these retinal neuron types do not 

demonstrate a significant morphological diversity, and only require a relatively simple physical 

structure such as a cylindrical soma connected to an axon terminal.  

One question that must be answered in block-compartment models: is to what extent can retinal 

neurons be simplified without compromising realistic cell behaviour? A general principle is that 

models should be at the simplest level required to reproduce desired behaviour of a physical 

system. This also raises another question: to what extent does neural morphology contribute to its 

response? Since there is no generally clear simplification approach in block-compartment neural 

modelling, an alternative approach comprises iterative morphometric simplification, wherein the 

reducing process is stopped when the model fails to reproduce biological cell responses. 
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Although the influence of systematic morphologic perturbations in neuronal behaviour has been 

reported in several brain cell studies (van Elburg and van Ooyen, 2010, Mainen and Sejnowski, 

1996), no similar approach has been used yet in retinal neuron modelling. A morphometric 

simulator was developed recently to study how dendritic intersections, branching points and 

terminal tips contribute to correct classification of RGC images (Ristanovic et al., 2009). One 

could conceive, for example, the integration of such a morphometric generator into a modelling 

framework, to create a platform for exploring the ramifications of RGC morphological variations 

(Wong et al., 2012, O'Brien et al., 2002, Rockhill et al., 2002).  

 

3.1.4. Continuum Models 

Continuum models (see Figure 3.1, type IV) have been used to simulate the response of bulk 

retinal tissue activation in an averaged spatial sense, without explicit representation of the 

constituent neurons. Continuum bidomain (i.e. intra- and extracellular domain) formulations 

have proven useful in cardiac (Roth and Wikswo, 1994, Henriquez, 1993) and neural tissue 

simulations (Altman and Plonsey, 1990, Martinek et al., 2008). These models are able to 

simulate bulk active or passive current flow across neuronal membranes into the extracellular 

space, perturbing the extracellular potential, as has been observed experimentally dating back 

several decades (Brindley, 1956). This advantage allows the continuum bidomain approach to be 

an ideal tool for simulating the spatial extent of retinal activation due to extracellular electrical 

stimulation (see Table 3.2), as well as investigate the influence of electrode configuration, 

position and stimulus parameters on retinal tissue responses. 

In continuum retinal models, the dynamics of both extracellular and intracellular potentials are 

considered:  

𝐼𝑚 = 𝛻. (−𝜎𝑒𝛻𝑉𝑒) = 𝛻. (𝜎𝑖𝛻𝑉𝑖) = 𝛽 (𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑖𝑜𝑛)                    (3.12) 

where Vm=Vi-Ve. Some formulations adopt a “pseudo-bidomain” approach (Yin et al., 2010), by 

tying the intracellular potential to a remote resting potential,  

𝐼𝑚 = 𝛻. (−𝜎𝑒𝛻𝑉𝑒) = 𝑔𝑟(𝑉𝑟 − 𝑉𝑖)                                        (3.13) 
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where Vr is the intracellular potential of a “remote” neural compartment, and gr is an intracellular 

conductance tying the intracellular potential to this remote compartment. The effect of the latter 

parameter is to prevent the intracellular potential from floating freely with changing extracellular 

potential, due to an applied extracellular stimulus. 

The first such model of retinal electric simulation was the Dokos et al. (2005) model, comprising 

a vitreous and an active RGC layer. It represented a “genuine bidomain” formulation (see eq. 

(3.9)), and was used to simulate the retinal response to a bipolar electrode configuration using 

various stimulus waveforms. This model was then extended by adding further retinal layers, 

including a passive inner plexiform layer, nuclear layer, subretinal space, retinal pigment 

epithelium and choroid (Joarder et al., 2011). A similar model was also used to investigate the 

threshold of neuronal activation and the spatial extent of activation, thus providing valuable 

information regarding stimulus thresholds and localization of activation (Abramian et al., 2011). 

A more recent retinal model also by Abramian et al. (2014) was used to investigate multi-

electrode array stimulation. This model examined the advantages of so-called “quasi-monopolar” 

stimulation compared to bipolar or monopolar stimulation, combining the low thresholds of 

monopolar stimulations with the focal spatial activation of hexapolar configurations (Matteucci 

et al., 2013).  

Continuum models can be also be further extended by adding network effects, as in the retinal 

model of Yin et al. (2010) which included excitatory input from bipolar cells and inhibitory input 

from wide-field amacrine cells. This model was subsequently refined by adding a dendritic 

compartment and synaptic currents to account for presynaptic influences on RGC activation (Al 

Abed et al., 2013b). A further model utilising micro-circuitry of the ON cone pathway was 

formulated to investigate the network response to large and small spots of light (Yin et al., 2011). 

These retinal models can potentially be used in studying the spatial activation profile of electrical 

stimulation. They provide a promising modelling framework which could be easily extended by 

incorporating newly identified ionic currents and synaptic connections. 
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3.1.5. Block-Structured Models of Retinal Function 

Apart from the aforementioned biophysically-detailed models, a black-box approach may be 

used to represent the retinal network. The goal of these models is to capture statistical 

relationships between light stimuli and cell firing rates without describing detailed neural 

structure, biophysics, and network connectivity. A popular approach for implementing these 

block-structured models, also known as “cascaded models”, (see Figure 3.1, type V) involves 

representing the retina as a series of linear and nonlinear temporal filter elements (Pillow et al., 

2005, Pillow et al., 2008). These models can closely reproduce responses of the retina to simple 

laboratory light stimuli using only a few free parameters. Block-structured models do not attempt 

to accurately reconstruct biophysical aspects of real retinal neurons. However, they can provide 

enough overall functional characteristics to cover both the computational aspects of individual 

retinal neurons, as well as the collective capabilities of large-scale neural networks. They are 

thus very popular in modelling local neural circuits (Curlander and Marmarelis, 1987) or the 

whole retinal network (Teeters et al., 1997, Wohrer and Kornprobst, 2009) (see section 3.1.6).  

Block-structured models have been largely used to simulate behavioural characteristics of outer 

retinal neurons, the cones (van Hateren and Snippe, 2007, Shah and Levine, 1996a, Shah and 

Levine, 1996b) and rods (Hamer et al., 2005, Lamb and Pugh, 1992) (see Table 3.3). Despite 

their high degree of simplicity, these phenomenological models have been successfully applied 

to investigate specific physiological mechanisms, including those underlying normal and 

abnormal rod-receptor activity affected by retinodegenerative disease (Hood et al., 1993), as well 

as nonlinear synaptic dynamics between photoreceptors and downstream neurons (Juusola et al., 

1995).  

In block-structured models, the specific neural spiking behaviours are reproduced by their unique 

transfer functions, characterising linear and non-linear spatial summation mechanisms in various 

types of RGCs in cat retina (Victor, 1988, Victor, 1987). A generic spike-train simulator was 

also able to accurately reconstruct spiking responses in a large range of functionally-identified 

RGCs from different species (Keat et al., 2001).  

These functional models have also been popular for studying retinal motion detection and 

anticipation (see Table 3.2). In one study, motion extrapolation in many species was reproduced 

by block structures representing the spatially extended receptive field, the biphasic temporal 
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response and a nonlinear contrast-gain control (Berry et al., 1999). Another block-structured 

model of object motion sensitive circuitry was able to predict the neuronal response at each stage 

of the circuit (Baccus et al., 2008), revealing the contribution of specific retinal interneurons in 

global motion detection.  

As mentioned above, there have been numerous successful examples of block-structured models 

in defining various retinal pathways, receptive fields and stimulus-response transfer functions. 

However, the mechanisms underlying visual information processing may be far more complex 

than a series of temporal filters. Functional computation in a real retinal neuron is also closely 

related to its physical structure, ionic channel expressions and synaptic interactions. In this 

regard, block-structured models are not ideal for relating high-level response characteristics of 

neurons, or of a neural network, to the underlying mechanisms from which these characteristics 

arise. Block-structured models also cannot easily simulate cellular responses to extracellular or 

intracellular electrical stimulation, limiting their utility in modelling retinal activation by 

artificial electric stimulation, as in the case of visual prostheses. 

 

3.1.6. Discrete-Neuronal Network Models 

The retinal network can also be simulated by grouping discrete retinal neuron elements, based on 

techniques described in Sections 3.1.1 or 3.1.2 for instance, with excitatory and inhibitory 

synaptic interactions. In addition to neural properties and stimulus parameters, these discrete-

neuronal network models (see Figure 3.1, type VI) also take into consideration the influence of 

feed-forward and feedback connections among neurons, as well as the physical architecture of 

the retina.  

A discrete-neuronal network model can represent either the entire retinal structure (Wohrer and 

Kornprobst, 2009) or a retinal subsystem, including the cone-rod network (Smith et al., 1986), 

the rod-bipolar network (Robson and Frishman, 1996), the cone-horizontal cell circuit (Smith, 

1995), the horizontal cell layer (Usui et al., 1996b), the rod pathway (Publio et al., 2009), the 

cone-pathway (Arguello et al., 2013, Cottaris et al., 2005, Teeters et al., 1997), the amacrine 

network (Smith and Vardi, 1995), bipolar-RGC interactions (Rattay et al., 2003) and the RGC 

layer (Publio et al., 2012) (see Figure 3.3). 
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Most discrete-neuronal network models do not focus on physiological accuracy in individual 

neurons, but on the functional output of the retina on a large scale. They are generally 

constructed using non-biophysical neuron formulations such as cascaded models. This allows the 

models to include a large number of cells with multiple visual pathways rather than specific local 

micro-circuits, while remaining computationally tractable. As such, they can be very effective 

for investigating complex neural networks containing a large number of cells of different types. 

For example, one large-scale retinal model, comprising up to 10
5 

neuron elements, was able to 

achieve both accurate physiological behaviour, as well as reasonable computational efficiency 

(Wohrer and Kornprobst, 2009). Another study examined the contribution of different cell 

subclasses in a large RGC population, facilitating the development of testable population-based 

hypotheses (Bomash et al., 2013). In addition, these functional network models have also been 

used to provide a comprehensive description of electroretinogram (ERG) generation using only 

local rod-bipolar circuits (Robson and Frishman, 1996). They can also qualitatively explain 

various types of adaptation during visual information processing (Hosoya et al., 2005).  

Some discrete-neuronal network models also incorporate detailed descriptions of retinal 

connectivity in successive neural layers, with these connections modelled by conductance-based 

formulations with a full set of cellular and synaptic parameters. For example, the model of 

Cottaris et al. (2005) was developed by including both ON and OFF cone pathways with nine 

types of retinal neuron. The model was able to characterise the spatio-temporal activation of the 

retinal network during epiretinal electric stimulation, demonstrating the potential contribution of 

this artificial stimulus mode in shaping visual input to the cortex. Another detailed network 

model by Hennig et al. (2002) was used to test the influence of various retinal cell classes and 

sub-circuits on unique response patterns in each identified RGC type. Although conductance-

based formulations used in these models were not based on detailed ionic mechanisms in 

individual neurons, they were still able to achieve a high degree of accuracy in neural outputs at 

different levels of the retinal circuit (Rekeczky et al., 2001). 

It is important to note that detailed single-cell ionic models or morphologically-realistic models 

are not typically used in discrete-neuronal network modelling, for computational efficiency 

reasons, except for studies focusing on local micro-circuit stimulation. Examples of the latter 

include: 1) ionic models of rod/cone photoreceptors, bipolar cells, amacrine cells and RGCs in an 



 

39 
 

accurate network retinal description (Publio et al., 2009); 2) a modified Hodgkin-Huxley model 

to represent single neurons in an amacrine cell network (Smith and Vardi, 1995); 3) a 

morphological RGC model in a local bipolar-RGC circuit (Resatz and Rattay, 2004, Rattay and 

Resatz, 2004); and 4) a recent model of the RGC layer represented by morphologically-realistic 

models with dendro-dendritic gap junctions (Publio et al., 2012).  
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Table 3.3 Computational models of different retinal neuron and model types. I. single-compartment model, II. 

morphologically-realistic model, III. Block-compartment model and V. block-structured model (IV. Continuum 

models and VI. Discrete-neuronal network models are not included in this table). RR, CR, HC and BC models 

are largely limited to the single-compartment and block-compartment levels due to their relatively simple 

morphology. Morphologically-complex neurons such as ACs and particularly RGCs are represented across all 

model types. Block-structured formulations can reproduce the functional input/output relationship between light 

stimulus inputs and cell responses in nearly every retinal neuron type without considering the detailed 

biophysical structure of the neuron.   

      Model type 

 

Neuron type 

I II III V 

Rod 

photoreceptor 

(RR) 

(Kamiyama et al., 1996, 

Kourennyi et al., 2004, 

Ogura et al., 2003, 

Publio et al., 2006) 

N/A 
(Taylor et al., 

1995) 

(Hood et al., 

1993, Hamer et 

al., 2005, 

Lamb and 

Pugh, 1992) 

Cone 

photoreceptor 

(CR) 

(Baylor et al., 1974, 

Kourennyi et al., 2004, 

Vallerga et al., 1980, 

Publio et al., 2009) 

N/A 

(Smith, 1995, 

Taylor et al., 

1995) 

(van Hateren 

and Snippe, 

2007, Teeters 

et al., 1997, 

Shah and 

Levine, 1996a, 

Shah and 

Levine, 1996b) 

Horizontal cell 

(HC) 

(Usui et al., 1983, 

Aoyama et al., 2005, 

Shirahata, 2008, Aoyama 

et al., 2000) 

N/A 

(Usui et al., 

1996b, Smith, 

1995) 

N/A 

Bipolar cell 

(BC) 

(Publio et al., 2009, Usui 

et al., 1996a) 
N/A 

(Mennerick et al., 

1997) 

(Robson and 

Frishman, 

1996, Robson 

and Frishman, 

1995) 

Amacrine cell 

(AC) 

(Publio et al., 2009, 

Shirahata, 2011, Steffen 

et al., 2003, Smith and 

Vardi, 1995) 

(Velte and Miller, 1997, Miller et al., 

2006) 

(Enciso et al., 

2010, Poznanski, 

1992, Tukker et 

al., 2004) 

(Saglam et al., 

2009) 

Retinal 

ganglion cell 

(RGC) 

(Fohlmeister et al., 1990, 

Fohlmeister and Miller, 

1997a, Kameneva et al., 

2011, Publio et al., 2009) 

(Velte and Miller, 1995, Publio et al., 

2012, Rattay and Resatz, 2004, Rattay 

et al., 2003, Maturana et al., 2013, 

Tsai et al., 2012, Sheasby and 

Fohlmeister, 1999, Schachter et al., 

2010, Jeng et al., 2011, Greenberg et 

al., 1999, Fohlmeister et al., 2010, 

Velte and Miller, 1997, Resatz and 

Rattay, 2004, Fohlmeister and Miller, 

1997b, van Rossum et al., 2003) 

(Abramian et al., 

2011, Carras et 

al., 1992, Al 

Abed et al., 

2013b, Abbas et 

al., 2013, 

Fohlmeister and 

Miller, 1997b, 

Werginz et al., 

2014) 

(Cai et al., 

2007, Keat et 

al., 2001, 

Victor, 1987, 

Victor, 1988, 

Hosoya et al., 

2005, Pillow et 

al., 2005) 
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Figure 3.3. Examples of types of retinal network models. A: Cone-rod network, based on Rallian static cable 

equations (Rall, 1959). 48 rods converge on each cone and each cone connects to 8 other cones via gap junctions. 

Each rod or cone model is represented by a spherical soma and a cylindrical axonal segment. Rod-cone basal 

processes and cone-cone basal processes are modelled by cable segments with different terminating gap junction 

conductances (Smith et al., 1986). B: Cone-horizontal circuit, consisting of a 26×26 cone (red) array and two 

different types of horizontal cells (green). Both cones and horizontal cells are approximated using block-

compartment models. Each horizontal cell is in contact with multiple cones through their dendritic terminals 

(Smith, 1995). C: 1-D horizontal cell layer, consisting of 100 horizontal cell elements with a Hodgkin-Huxley-

type somatic compartment and a linear RC axonal compartment. Different gap junction values are employed 

between neighbouring somas and those between axonal terminals (Usui et al., 1996b). D: Amacrine network, 

reconstructed using a 15×15 array of Hodgkin-Huxley-type spherical isopotential somas with presynaptic 

terminals and synapses (Smith and Vardi, 1995). E: Local bipolar-RGC circuit, coupled by a morphologically-

detailed RGC and bipolar cell models (Rattay et al., 2003). F: RGC layer, reconstructed using a 3×3 array of 

morphologically-detailed RGC models, with dendrodendritic gap junctions between neighbouring cells. Each 

RGC reproduces an excitatory chemical synapse with a pyramidal (PY) cell from the lateral geniculate nucleus 

(LGN) of the thalamus (Publio et al., 2012). G: Cone-pathway circuit (Shah and Levine, 1996a), reconstructed 

with a series of block-structured models. There is approximately one RGC output for every nine cones. H: Rod 

pathway circuit, built using connected single-compartment ionic models of rod/cone photoreceptors, bipolar 

cells, amacrine cells and RGCs coupled with electrical and chemical synapses (Publio et al., 2009).   
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3.1.7. Outlook on Retinal Neuron Modelling 

Among all retinal neuron types, the mechanisms underlying morphologically complex 

neurons such as amacrine cells or RGCs are still unclear (for a review see Masland (2012)). 

There are more than thirteen identified amacrine cell types and twelve RGC types in the 

mammalian retina. A definitive description of these cells has not yet been made due to their 

rich diversity in both intrinsic electrophysiological and morphological properties. Limited 

experimental information on ion channel kinetics and regional distributions in identified cell 

types also makes cell-specific model parameter optimisation a difficult task. Prior models of 

these neurons (see Table 3.3) have been limited to identification of individual RGC types 

without regard to the diversity of cellular morphology and membrane channel 

distributions/kinetics in each cellular region. This is despite the fact that the correlation 

between neuronal function and inherent biophysical properties is highly significant, as 

suggested by experimental studies (O'Brien et al., 2002, Wong et al., 2012). On the other 

hand, there are still many debates about the functional classification and mechanisms of 

horizontal cells and bipolar cells, despite their far less morphological diversity. New 

knowledge about these “pre-processing” neurons continues to be discovered (Herrmann et al., 

2011, Klaassen et al., 2011, Jackman et al., 2011, Freed, 2000, Dreosti et al., 2011). 

Therefore, further model validation based on newly found experimental evidence is still 

required to quantitatively identify and define these cells.  

At the single cell level, the composition of ion channels in retinal neuron models continues to 

be refined. The initial FM model with five active membrane currents appears to be 

oversimplified, with the identification of further ionic channels in retinal neurons (Miller et 

al., 2002, Tabata and Ishida, 1996, Lee and Ishida, 2007). Ionic channel formulations are 

generally based on voltage-clamp experimental data. The properties of these new currents 

and their regional distributions in different neuron types may significantly contribute to the 

overall neural response. With the likely discovery of more ionic mechanisms in retinal 

neurons, there still remains substantial room for improvement of the single-cell models.  

In whole-retina models, the functional significance of cell morphology has not been 

systematically studied, unlike their reported importance in brain neuron network modelling 

(Traub et al., 2005). Why do retinal neurons present a large range of morphological diversity? 

It appears that morphological factors play some role in mediating neuronal function. Cell-

specific morphological information will therefore play an increasing role in the development 

of future tissue or network-based models of retinal function.  
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3.2 Parameter Estimation of Excitable Cell Models 

Modelling neuronal electrical activities is perhaps more challenging than other excitable 

tissues, due to the large diversity of AP shapes and spiking properties. Most neuronal models 

are formulated using a system of ODEs or PDEs containing a number of model parameters. 

The number of parameters can range from 3-5 in simple phenomenological models to more 

than 100 in a biophysically-detailed conductance-based model. 

Despite the significant improvement of experimental techniques including dendritic patch-

clamp, fluorescent imaging and immunocytochemical channel localisation techniques, there 

is still considerable lack of knowledge on differences in ion channel expressions among many 

identified neuron types, due to their large diversity in both physical and physiological 

properties. For example, there are more than twelve identified RGC types in the mammalian 

retina, but limited experimental information has been found on their cell-specific ion channel 

kinetics and distributions. In addition, certain model parameters are impossible to be 

measured directly in experiments due to the limited knowledge of the micro-structure of the 

cell membrane and transmembrane channels. For instance, the patch-clamp technique can 

provide single channel conductance but not the total number of ion channels in a whole cell 

membrane. General kinetics such as time/space constants and steady-state gating values can 

be determined by voltage-clamp recording, but detailed kinetic parameters are still 

undeterminable with current recording techniques. The number of these unknown parameters 

rises with the increasing complexity of model formulations.  

Therefore, model parameter values need to be numerically estimated by minimising the 

difference between experimental data and model outputs. Although hand-tuning of 

parameters is still being used in recent modelling studies (Gold et al., 2007), automated 

parameter estimation approaches are essentially required in neuronal model development, 

especially when the number of parameters is large and detailed information on the 

physiological characteristics of the target neuron is not available.  

In practice, the size and complexity of the parameter search space grows dramatically with an 

increase in the number of free parameters. A higher degree of complexity in parameter 

interactions or co-dependencies also results from the presence of additional voltage and 

calcium-dependent dynamics in a model. In addition, the varying morphological properties 

and regional ionic channel distributions adds considerable complexity to overall model 

structure, making optimisation of model parameters even more difficult. Over the last few 
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decades, many parameter optimisation strategies based on different theories and motives, 

have been proposed to solve the aforementioned problems.   

A parameter optimisation strategy, regardless of the principle it is based on, can be 

summarised using two components: 1) a numerical algorithm used to quickly search the best 

solution in a given parameter space; 2) an objective function that best represents the 

differences between the behaviour of the model and the real biological system. In this review 

section, we will begin by reviewing optimisation studies in developing computational 

neuronal models based on two algorithm classes: gradient-based and evolutionary-based 

methods. We will then discuss the significance and limitations of these applications using 

different objective functions: point-point time-series matching, phase-plane matching, and a 

variety of feature-based match functions. Other than optimisation algorithms, some recent 

alternative methods for parameter estimation in neuronal modelling will also be discussed.  
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3.2.1. Gradient-Based Algorithms 

In non-linear least squares problems, a strict convex quadratic model is often used to locally 

approximate the objective function (also see Section 3.2.3 and 3.2.4).  

        Q (∆p) =∑ ri
2(p)m

i=1 = Q0 + Δp
T ∙ G +  

1

2
Δp

T ∙ H ∙ Δp                     (3.14)  

where ri(p) is the ith nonlinear residual equation of the system, p is the unknown parameter 

vector,  Δp is the parameter modification vector, G is the gradient vector and H is the Hessian 

square matrix. The detailed derivation of eq. (3.14) is provided in Section 4.2 of Chapter 4. 

All optimisation methods based on the above quadratic form assume that parameter 

convergence to the local objective minimum can be iteratively obtained, even though the 

objective function is not perfectly quadratic.  

A gradient-based (GB) algorithm tries to find the most efficient downhill path from an 

arbitrary initial point. These methods can be summarised by two main components: 1) choice 

of parameter step direction; 2) choice of step size (Beveridge and Schechter, 1970). Many 

significant improvements have been made to more efficiently estimate the above two 

components.  

Most existing gradient methods are based on two fundamental algorithms – Newton’s method 

and the steepest descent method. The Newton step (parameter increment vector ∆𝐩) can be 

obtained by setting the gradient of eq. (3.14) to zero, to obtain: 

                                                         ∆𝐩 = −𝐇−1𝐆                                                  (3.15) 

Usually the Hessian matrix can be approximated from the Jacobian matrix 𝐉 =  (∂Q(𝐩)/

∂𝐩) using  𝐇 ≈  2𝐉T𝐉 , to avoid calculating the second derivative matrix, which is highly 

computational demanding. The minimum can be achieved by taking a single Newton step if 

the objective surface is perfectly quadratic, which satisfies eq. (3.14). However, the Newton 

step will be undefined when 𝐉T𝐉 is singular. Such a problem arises especially when large-

scale parameter optimisations are performed. More importantly, the objective function is 

often non-quadratic in practical problems.  

In the steepest descent method, the objective function eq. (3.14) is iteratively minimised 

along the direction of the local gradient, according to: 

                                                                        ∆𝐩 = −γ𝐆                                                       (3.16) 
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where γ  is a non-negative factor governing the downhill direction step. The searching 

direction is updated at each iteration based on the previous local gradient. For a poorly 

conditioned convex objective (the surface contains long-thin “valleys”), the steepest descent 

algorithm may increasingly undergo a time-consuming “zigzag” searching pattern until the 

minimum is found.  

Many extensions to gradient-based methods, employing a series of quasi-Newton methods 

(Pal, 2009), have been proposed to iteratively improve the estimate of the inverse of the 

Hessian matrix H−1, because its analytical calculation is almost impossible in most practical 

problems. Extensions such as the Levenberg-Marquadt method (Marquardt, 1963) and 

curvilinear gradient method (Dokos and Lovell, 2003) have been proposed to combine the 

traditional Newton and steepest descent approaches. That is, the minimum search starts with 

the steepest descent direction and terminates at the full Newton step (details of the curvilinear 

gradient method are given in Chapter 4). 

The advantage of the curvilinear gradient routine becomes more apparent for large-scale 

optimisation problems, when quasi-Newton routines fail to estimate the nearly singular 

Hessian, and the Levenberg-Marquadt method degenerates to the pure steepest decent routine 

(Dokos and Lovell, 2003, Dokos and Lovell, 2004). The curvilinear gradient routine has been 

largely used in modelling studies of cardiac electrophysiology and been extended to retinal 

neuron modelling more recently. Notable examples include: 1) fitting a biophysically-

detailed myocyte model to multiple AP waveforms recorded experimentally from central and 

peripheral sinoatrial node (SAN) tissue (Lovell et al., 2004), 2) fitting a generic ionic model 

to in vitro AP waveforms from central/peripheral SAN as well as right and left atrial 

myocytes under different electrical stimulus protocols and pharmacological conditions (Guo 

et al., 2013) and 3) fitting a tissue-based model to in vitro AP waveforms from 

central/peripheral SAN and right atrial myocytes (Al Abed et al., 2013a). All of these studies 

were large-scale optimisation problems with some 60-170 estimated parameters. However, 

they also found that large numbers of parameters result in over-determined systems for which 

unique identification cannot always be achieved. 

Another improvement employs a hybrid of the gradient-based method and other optimisation 

methods. For example, a hybrid method was used to optimise a 22-parameter Markov-type 

hERG channel gating model (Szekely et al., 2011). In this study, a genetic method (see next 

section) was combined with the curvilinear gradient method to effectively select optimal 
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initial parameter sets, thus avoiding exhaustive searches in large parameter space. In another 

study involving multi-compartment neuron model optimisation (Huys et al., 2006), a 

gradient-based algorithm was used to estimate the local neuronal properties, whereas the 

global channel distributions, inter-compartment resistances and synaptic input for the whole 

cell morphology were inferred by a linear regression approach.  

Other than optimising conductance-based neuronal models, the gradient-based method was 

also used to optimise a cascade encoding model to reproduce multiple spiking responses 

recoded in vivo (Paninski et al., 2004). 

Despite their extensive use in excitable cell model optimisation, the gradient-based algorithm 

has an inherent disadvantage: namely, the “gradient” by itself is a local property. Although 

some improvements including an iterative reweighting strategy (Dokos and Lovell, 2004) and 

a hybrid approach (Szekely et al., 2011) have been described to “escape” the local minimum, 

these methods still suffer from local minima problems when being applied in practice. 

Therefore, gradient-free methods such as the evolutionary method, simplex method, random 

searching method as well as some hybrid strategies are also popular in neuron modelling (see 

Table 3.4).  

 

3.2.2. Evolutionary-Based Algorithms 

Evolutionary-based algorithms use stochastic searching to simulate natural phenomena or 

social behaviours of biological species (Elbeltagi et al., 2005). Unlike gradient-based 

methods, evolutionary-based algorithms do not require local derivative information or even 

any knowledge about the system. 

A landmark example of the evolutionary-based method in neuronal model optimisation is the 

genetic method (Goldberg, 1989). Many other evolutionary-based algorithms, such as the 

memetic algorithm (Moscato, 1989) and covariance matrix adaptation evolution strategy 

(Bush et al., 2005), follow a similar optimising strategy to the genetic method. In the genetic 

method, parameter optimisation begins with multiple initial parameter sets which are 

considered as interbreeding individuals in the population. Individuals with good fitness 

values are critically selected as “parents”, and then the “children” are updated by 

recombination of the current generation (reproduction) as well as random modifications 

(mutation). The existing population will keep on being substituted by the naturally-selected 
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advanced individuals until some terminating condition is achieved. Algorithm parameters 

such as population size, generation number, crossover rate and mutation rate are user-defined. 

Since their first reporting, genetic methods have proven their ability and generic nature in 

studies of myocyte modelling (Syed et al., 2005, Dastgheib et al., 2009), single-compartment  

models (Vanier and Bower, 1999), block-compartment models (Keren et al., 2005), 

morphologically-realistic neuronal modelling (Keren et al., 2009), as well as single ionic 

channel kinetic models (Gurkiewicz and Korngreen, 2007). In some morphologically-realistic 

model studies, the genetic method was also combined with other methods such as parameter 

peeling procedures and linear regression to improve parameter identifiability (Keren et al., 

2009, Huys et al., 2006). 

The evolutionary-based algorithm has also been compared with the gradient-based method in 

terms of performance for excitable cell model optimisation. In one study of cardiac myocyte 

modelling, both methods were applied to estimate ionic conductance values to simulate 1-D 

ventricular re-entry waveforms. Results showed that the maximum and mean deviation of 

estimated parameters from their default values using the genetic method is significantly less 

than those using the curvilinear gradient method, revealing improved identifiability achieved 

by the genetic method over the gradient-based method (Dastgheib et al., 2009). In contrast, 

another study of neuron modelling found that a significant number of iterations were required 

when more parameters were involved using evolutionary-based algorithms, revealing their 

disadvantage for large-scale problems (Vanier and Bower, 1999). Indeed, the applicability of 

the evolutionary method for large-scale problems is still not evident. In most of the 

optimisation studies in Table 3.4, only maximum conductance parameters (normally less than 

20 parameters) were optimised, and all of the kinetic parameters were assumed to be “well-

known”. In fact, optimised kinetics is also important, since the kinetic parameters from the 

literature were defined based on a particular experimental data (Willms et al., 1999, Guo et 

al., 2013, Murphey et al., 1995, Tabak et al., 2000). Although the kinetic parameters in some 

well-defined biophysically-detailed models (McCormick and Huguenard, 1992, Fohlmeister 

and Miller, 1997a) were validated using multiple experimental voltage-clamp data, whether 

they are capable of reproducing additional datasets based on different conditions or neuron 

types, is still unclear.  

As an alternative approach, database search methods generate a huge database of all possible 

neuronal activities, by independently varying parameters using a single-cell neuron model 
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based on in vitro experimental evidence (Goldman et al., 2001, Prinz et al., 2003a, Gunay et 

al., 2008). Some of these databases can include more than 1.7 million neuronal responses 

(Prinz et al., 2003a). Rather than a single point in parameter space, this approach can generate 

a global map of the activity states of a neuron as a function of corresponding parameters, thus 

revealing a clear linear or nonlinear dependency between each parameter. However, the 

“global” identification is limited to certain model parameters (normally 5-9 maximum 

conductance parameters). Moreover, preliminary knowledge of the physiological range of 

these parameters is required to generate the database, which limits its utility in large-scale 

parameter optimisation problems. 

As well as the methods mentioned above, random or pseudo-random searching algorithms 

such as simulated annealing (Vanier and Bower, 1999, Nowotny et al., 2008), stochastic 

searching (Foster et al., 1993, Vanier and Bower, 1999, Hayes et al., 2005), and exhaustive 

searching (Gunay et al., 2008), have also been used in neuron model optimisation. Similarly, 

their applicability to large-scale problems is still not proven. 

Based on algorithm performance in existing optimisation studies, there exists no generic 

global optimisation method. In fact, the same neuronal model can usually be optimised using 

a range of routines (Vanier and Bower, 1999, Tabak et al., 2000, Mitra et al., 2012, Dastgheib 

et al., 2009).  

 

3.2.3. Objective Function  

A searching algorithm is a method for locating the best solution in a given search space, but 

the definition of “best solution” and the shape of the “searching surface” are given by the 

objective function (also known as error function, cost function or fitness function). The most 

frequently-used objective functions in excitable cell modelling can be categorised into time-

series sum of squares error, phase-plane sum of squares error, and a variety of feature-based 

match functions. 

 

I. Time-series sum of squares error function 

The most straightforward objective function is defined by the sum of squares of the point-by-

point error between the model and data: 
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                                              𝜎𝑇𝑆𝑃𝑃 = √
1

𝑀
∑ (𝑓𝑖(𝐩) − 𝑑𝑖)

2𝑀
𝑖=1                                               (3.17) 

where 𝑓𝑖(𝐩) is the model output as a function of parameter vector p corresponding to the ith 

data point di , and M is the number of data points in the dataset.  

One problem of this time-series point-by-point (TSPP) match function is its high sensitivity 

to spike timing shift between the model and data, limiting its utility in neuron model 

optimisation, since most neuron-generated AP durations are less than ~2ms. However, this 

objective function has been widely used in cardiac myocyte AP fitting (Guo et al., 2013, 

Dokos and Lovell, 2004, Al Abed et al., 2013a, Syed et al., 2005), voltage-clamp data fitting 

(Gurkiewicz and Korngreen, 2007, Szekely et al., 2011) and a variety of “non-spiking” data 

fitting (Daguanno et al., 1986, Vanier and Bower, 1999).  

 

II. 2-D phase-plane sum of squares error function 

Another approach is to compare the 2-D phase plot (also termed phase-plane) determined by 

the relationship between membrane potential and its derivative (Vm vs. dVm/dt). For instance, 

the phase-plane trajectory density (PPTD) method is formulated as follows: 

                                              𝜎𝑃𝑃𝑇𝐷 = √
1

𝑀
∑ (𝑑𝑖 − 𝑓𝑖(𝐩))2 𝑀

𝑖=1                                            (3.18) 

where di and fi(p) denote the number of points in the Vm – dVm/dt sequences for data and 

model respectively, and M denotes the total number of data and model points. Recent neuron 

studies suggest that neuronal AP features, best visualized using an AP phase plot, can 

indirectly reflect the interactions between different neuronal compartments and indicate 

important information such as ionic channel distribution in multiple functional cellular 

regions (McCormick et al., 2007, Mainen and Sejnowski, 1996, Herz et al., 2006, 

Fohlmeister and Miller, 1997b).  

Compared to the time-series least squares error approach, the phase-plane least squares match 

demonstrates much less sensitivity to spike time shifts, and has been independently used in 

cerebellar purkinje neuron model optimisation (Achard and De Schutter, 2006). However, the 

advantage of the phase-plane objective function is also its disadvantage, since accurate 
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reconstruction of spike timing information is important in neuron studies such as the study of 

neuron types in visual systems. Therefore, the phase-plane objective approach is often 

combined with other criteria to evaluate model performance (Druckmann et al., 2007, Keren 

et al., 2005, Hayes et al., 2005).  

 

III. Feature-based match functions 

Various “feature-based” objective functions have also been shown to improve the match 

between neuron model and data. Rather than comparing all data points in experimental 

profiles, these approaches extract only essential information of interest (features) directly 

from the training data. This information includes spiking rate (Druckmann et al., 2007, 

Gunay et al., 2008), spiking latency (Druckmann et al., 2007), inter-spike interval (ISI) 

(Lovell et al., 2004, Bhalla and Bower, 1993, Keren et al., 2005), AP overshoot (Druckmann 

et al., 2007, Lovell et al., 2004), after-hyperpolarization potential (Druckmann et al., 2007, 

Lovell et al., 2004), sag amplitude (Gunay et al., 2008), AP width (Druckmann et al., 2007, 

Lovell et al., 2004, Gunay et al., 2008), AP amplitude (Druckmann et al., 2007, Gunay et al., 

2008) and AP threshold (Gunay et al., 2008).  

Apart from providing a single scalar value directly extracted from given experimental profiles, 

this approach can also be used to modify time-series spiking datasets using a user-defined 

“transfer function”. For example, a “staircase” function to represent the spiking-timing 

relationship was proven successful in optimising a phenomenological neural model to 

produce complex spike-timing behaviours in pyramidal cells. An accommodation index 

function, defined by the normalised average of the difference in consecutive ISIs, was used to 

disregard possible transient spiking behaviours recorded in basket cells (Druckmann et al., 

2008, Druckmann et al., 2007). Moreover, in order to solve the spiking-time shifting problem, 

one study using a pyramidal neuron model converted the voltage time-series into the 

frequency domain via a fast Fourier transform (Bush et al., 2005, Murphey et al., 1995). 

Another modelling study in the ganglia of Aplysia summed the individual traces over time in 

order to broaden the peaks in the objective function (Hayes et al., 2005).  

With these feature-based objective functions, a model can be designed to focus on the 

specific behaviour of interest in turn providing more effective training sets for the model. 
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3.2.4. Multi-Objective Optimisation 

Typically, a single dataset is not sufficient to optimise a model defined by multiple ODEs and 

parameters. Given enough degrees of freedom, a powerful searching algorithm may be able 

to find a set of parameters to accurately fit a model to a specific dataset. However, such a 

model will typically fail to predict new data, particularly if the model is highly non-linear and 

involves many parameters. Therefore, multi-objective optimisation is to be preferred when 

developing excitable cell models.  

In this context, multi-objective can be interpreted as 1) multiple datasets of the same quantity, 

e.g. multiple voltage- or current-clamp datasets corresponding to different stimulation 

conditions (Vanier and Bower, 1999, Gurkiewicz and Korngreen, 2007); 2) different 

properties obtained from the same experimental profile, e.g. time and frequency domain 

representations of membrane potential (White et al., 1992, Tabak et al., 2000); 3) data 

features recorded from multiple profiles, e.g. spiking number, latency and interval patterns 

obtained from spiking responses to multiple stimuli (Lovell et al., 2004); 4) the combination 

of the previous three items for a high-level accurate neuron reconstruction (Druckmann et al., 

2008, Keren et al., 2005, Hayes et al., 2005). 

A multi-objective sum of squares cost function can be defined by the weighted sum:  

                                                               𝜎2 = ∑ 𝑊𝑘 ∙ 𝜎𝑘
2              𝑁

𝑘=1                                      (3.19) 

where σk(𝐩) is the RMS error in the kth objective record, and 𝑊𝑘is a user-defined weight 

function whose value may be adjusted depending on the relative importance of each objective, 

and N is the total number of objectives required to be simultaneously minimised. Some 

studies normalised each σk(𝐩) value to allow them to equally contribute to the cost function.  

Optimising a neuron model using multi-objectives is extremely difficult due to the highly 

nonlinear behaviour of neurons. Adding more objectives will have a significant impact on the 

parameter search surface in terms of the locations and density of the local minima 

distributions. In general, the search space may become more “noisy” with more local optima 

and ridges which negatively affect optimisation performance. This is even worse for the 

gradient-based optimisation method, since more computational resources are required due to 

the larger size of the Jacobian matrix (Bush et al., 2005).  

However, its benefits to model validation are more obvious. When fitting simultaneously to 

multiple datasets (or objectives), model behaviours tend to be well defined because extra 
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physiological information is incorporated into the optimisation. Many studies indicate that 

multi-objective optimisation can improve the predictive power of different model types  

(Mitra et al., 2012, Nowotny et al., 2008, Achard and De Schutter, 2006, Al Abed et al., 

2013a, Rauch et al., 2003).  

In addition, adding a well-chosen objective can also improve the parameter identifiability. 

For example, extracellular and intracellular measurements at known locations have been 

shown to be useful for constraining passive model parameters such as intracellular resistivity 

and membrane capacitance (Gold et al., 2007). Another study suggested that unique 

parameter solutions are possible if the membrane potential datasets are available in all 

compartments of a neuron, since model conductivity parameters can be calculated by a linear 

regression without resorting to a search of the parameter space in this situation. (Huys et al., 

2006). In practice, however, performing multiple membrane potential measurements on the 

same cell is difficult in vitro, and currently impossible in vivo. 

As an alternative approach, fitting to a membrane potential dataset in response to random, 

pseudo-random and EPSP-like current injections, may provide a better representation of 

realistic neuronal inputs than step function-like injections, providing more useful information 

for model training (Jolivet et al., 2004, Mitra et al., 2012, Dokos and Lovell, 2004, Paninski 

et al., 2004, Foster et al., 1993). This approach can also be considered equivalent to multi-

objective optimisation, since the model is optimised to adapt to multiple neuronal sub-

threshold and spiking properties induced by more informative and independent inputs.  
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Optimisation 

Method 

Objective function Training dataset(s) No. of free 

parameters 

Model 

level  

Model description Biological System  Reference 

GB time-series point-by-point match 1 artificial * Vm 

1 in vitro Vm 

9 M-C Rall (1977) model neuronal passive properties (Daguanno et al., 1986) 

GB time-series point-by-point match 

frequency-domain match 

12 artificial Vm 4 M-C White et al. (1992) model neuronal passive properties (White et al., 1992) 

GB time-series point-by-point match 

multiple spiking pattern match 

5 in vitro Vm 

 

8 M-C Bhalla and Bower (1993) 
model 

olfactory bulb neuron (Bhalla and Bower, 
1993) 

SS time-series point-by-point match 

frequency-domain match 

in vitro Vm in response to 

EPSC-like input 

4 S-C Connor et al. (1977) model brain stem neuron (Foster et al., 1993) 

GB time-series point-by-point match 

frequency-domain match 

4 in vitro Vm 

(voltage-clamp) 

11 M-C Murphey et al. (1995) model spinal neuron (Murphey et al., 1995) 

GA/GB/SA//SS spiking-timing match  6 artificial Vm  8 S-C McCormick and Huguenard 
(1992) model 

thalamocortical relay neuron (Vanier and Bower, 
1999) 

GA/GB/SA//SS time-series point-by-point match 5 artificial Vm  15  M-C   Vanier and Bower (1999) 

model 

neuronal  passive dendrites  (Vanier and Bower, 

1999) 

GA/GB/SA//SS time-series point-by-point match 6 in vitro Vm  23 M-C Koch and Segev (1997) 

model 

L2 superficial pyramidal  neuron  (Vanier and Bower, 

1999) 

GB/NM time-series point-by-point match 

frequency-domain match  

5 artificial Vm 11 M-C Tabak et al. (2000) model generic neuron (Tabak et al., 2000) 

DS N/A N/A 5 S-C Liu et al. (1998) model stomatogastric ganglion (Goldman et al., 2001) 

DS N/A N/A 8 S-C Prinz et al. (2003b) model stomatogastric ganglion (Prinz et al., 2003a) 

SS frequency-domain match 5 in vitro Vm 5 I-F Rauch et al. (2003) model L5 pyramidal neuron (Rauch et al., 2003) 

GB time-series point-by-point match 2 in vitro Vm  170 S-C Lovell et al. (2004) model Sinoatrial myocyte (Lovell et al., 2004) 

GB time-series point-by-point match artificial Vm in response 
to random input 

63  S-C Beeler and Reuter (1977) 
model 

Ventricular myocyte  (Dokos and Lovell, 
2004) 

NM averaged Vm match artificial Vm in response 

to random input 

4 I-F Jolivet et al. (2004) model cortical neuron (Jolivet et al., 2004) 

RB+GB spiking density match artificial Vm in response 

to random input 

5 I-F Paninski et al. (2004) model generic neuron (Paninski et al., 2004) 

GA time-series point-by-point match  

phase-plane match  

ISI match function 

4 in vitro Vm  

 

19 M-C Mainen et al. (1995) model L5 pyramidal neuron 

 

(Keren et al., 2005) 

SS time-series point-by-point match 

phase-plane match  

cumulative voltage integral match 

2 in vitro Vm 10 S-C Hayes et al. (2005) model ganglia of Aplysia neuron (Hayes et al., 2005) 

Continued on next page  
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Optimisation 

Method 

Objective function Training datasets  No. of free 

parameters 

Model 

level  

Model description  Biological System  Reference 

GA time-series point-by-point match 4 in vitro Vm 9 S-C Nygren et al. (1998) model atrial myocyte (Syed et al., 2005) 

RB/CMA-ES frequency-domain match 8 artificial Vm 10 M-C Pinsky and Rinzel (1995) 
model 

CA3 pyramidal neuron (Bush et al., 2005) 

RB+GB time-series point-by-point match artificial Vm in response 

to random input  

10 M-C Dayan and Abbott (2001) 

model 

generic neuron  (Huys et al., 2006) 

GA phase-plane match  21 artificial Vm 24 M-C Deschutter and Bower (1994) 

model 

cerebellar purkinje cell (Achard and De Schutter, 

2006) 

GA time-series point-by-point match 27 in vitro Vm  

(voltage-clamp) 

20 S-C Baranauskas and Martina 
(2006) model 

single ionic channel (Gurkiewicz and 
Korngreen, 2007) 

HT time-series point-by-point match 2 in vitro Vm  14 M-C Gold et al. (2006) model CA1 pyramidal neuron (Gold et al., 2007) 

GA multiple spiking feature-based match 2 in vitro Vm  12 M-C Druckmann et al. (2007) 
model 

basket cell interneuron (Druckmann et al., 2007) 

ES+DS multiple spiking feature-based match 4 artificial Vm 9 M-C Gunay et al. (2008) model globus pallidus neuron (Gunay et al., 2008) 

GA phase-plane match  

multiple spiking feature-based match 

1 artificial Vm  

1 in vitro Vm  

12 M-C Druckmann et al. (2007) 
model 

basket cell interneuron (Druckmann et al., 2008) 

SA spiking-timing match  

averaged Vm match  

11 in vitro Vm  20 M-C Nowotny et al. (2008) model lateral pyloric neuron  (Nowotny et al., 2008) 

GA time-series point-by-point match 2 in vitro Vm  19  M-C Mainen et al. (1995) model L5 pyramidal neuron (Keren et al., 2009) 

GA/GB time-series point-by-point match 1 artificial Vm 6 M-C Luo and Rudy (1991) model ventricular myocyte (Dastgheib et al., 2009) 

GA+GB time-series point-by-point match 1 in vitro IhERG  22  S-C Lu et al. (2001) model cardiac hERG channel gating  (Szekely et al., 2011) 

RB+GB time-series point-by-point match 

spiking-timing match 

in vitro Vm in response 

to random input 

12 I-F Mensi et al. (2012) model cortical neuron (Mensi et al., 2012) 

GB/NM spiking-timing match  in vitro Vm in response 
to random input 

5 I-F Yamauchi et al. (2011) 
model 

L5 pyramidal neuron (Mitra et al., 2012) 

GB time-series point-by-point match 2 in vitro Vm  86 S-C Guo et al. (2013) model atrial myocyte (Guo et al., 2013) 

GB time-series point-by-point match 3 in vitro Vm datasets 86 M-C Guo et al. (2013) model atrial myocyte (Al Abed et al., 2013a) 

Table 3.4 Existing parameter estimation approaches in excitable cell modelling. GA: genetic algorithm. GB: gradient-based algorithm. SA: simulated annealing algorithm. 

SS: stochastic searching algorithm. NM: Nelder-Mead simplex algorithm. RB: regression-based approach. HT: hand turning approach. CMA-ES: covariance matrix 

adaptation evolution strategy. ES: exhaustive search algorithm. * Artificial: model-generated.  
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3.3 Overview 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The iterative model validation process, with interaction between experiment and modelling, can be 

described as a closed-loop process. In addition to simulating existing data, a computational model can also 

quantitatively predict other experimental data to help optimise further experimental designs. By iteratively 

comparing the model-predicted results with corresponding experimental data, the reliability and robustness of a 

model (both its structure and parameter values) can be critically assessed. The initial non-optimised model will 

be continuously improved by necessary modification of the model structure, until its predicted outcome 

reasonably matches the updated experimental data. On the other hand, the corresponding experimental design 

may benefit from hidden knowledge that only the model could provide.  

This review chapter discussed current neuronal modelling strategies and corresponding model 

optimisation approaches reported in the literature. As shown in Figure 3.4, a computational 

model is numerically optimised to integrate the experimental information and biophysical 

principles into a systematic, quantitative understanding of the underlying electrophysiology: 
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in turn, it may be capable of predicting biological information hidden in the data, as well as 

utilising available information to develop therapeutic techniques and to improve existing 

knowledge. The predicted results may help refine experimental designs to obtain appropriate 

data, which in turn may modify the model structure (e.g. by continually incorporating 

additional ionic currents into the model) or parameters (e.g. by limiting or relaxing 

constraints on certain model parameters to reproduce new experimental information). A 

positive coupling between simulation and experiment can be achieved by iteratively 

comparing model-predicted results and subsequent experimental data.  

A model’s value is confirmed by two main factors: identifiability and predictability. A 

biophysically-detailed neuronal model is designed to accurately represent the biological 

mechanisms of the target neuron, with each estimated parameter possessing a corresponding 

physiological significance (no matter if it can be measured using current techniques or not). 

In this situation, a set of uniquely identified model parameters can be obtained.  

In practice, however, there are often multiple neuronal model parameter combinations 

sharing nearly identical fitting quality. Even gradient-free methods and well-defined multi-

objective functions cannot guarantee the uniqueness of solutions (Gunay et al., 2008, Guo et 

al., 2013, Sarkar and Sobie, 2010). Non-uniqueness can exist even when only few parameters 

are optimised (Vanier and Bower, 1999).  

One reason is that biophysically-detailed models are normally formulated by many non-linear 

ODEs with a large number of parameters. Limited knowledge of the detailed mechanisms 

underlying ion channel behaviour in the target neurons makes it challenging to constrain 

model parameters to a physiologically-relevant range. Many studies have suggested that 

fitting a Hodgkin-Huxley-type model can become plagued with local minima if prior 

physiological knowledge is not available (Achard and De Schutter, 2006, Druckmann et al., 

2008). Furthermore, a perfect match between model and experimental data is extremely 

difficult to achieve due to machine precision, round-off errors, physiological variation, data 

noise or artifacts (Tabak et al., 2000). Therefore, as soon as the match between model and 

data is visually acceptable, there is no other predictor to demonstrate if this is the best 

minimum to be found.  

It should also be noted that in principle, no one model can be guaranteed or claimed to 

characterise the actual system, since models are constructed based on limited biological 

knowledge. The history of biophysical modelling of excitable cells is approximately seventy 
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years old, since Sir Alan L. Hodgkin and Andrew F. Huxley published their famous model of 

the squid giant axon in 1952. It is impossible to completely simulate all known behaviours of 

these systems solely according to our limited knowledge of these complex systems. 

Therefore, all current models are developed to reconstruct only the partial rather than 

complete system. A numerical optimisation routine is exclusively a searching tool for 

locating the best solution defined by the objective functions, but not a strategy of constructing 

the perfect model. It cannot improve the model if the model fails to closely represent realistic 

biological behaviour.  

On the other hand, a computational model in some sense can be considered a 

phenomenological generator providing considerable abstraction of the target biological 

system. The power of a model can be determined not by its performance on the training data, 

but by its ability to perform well under unseen physiological situations. With well-defined 

objective functions and effective numerical searching methods, many neuronal models have 

demonstrated their predictive power in regards to extra data, which was not used for model 

training: this reveals their high flexibility to reproduce even more complex 

electrophysiological activity. Since a perfect model which can accurately simulate all 

physiological mechanisms does not exist, the standard of a good model will then depend on 

the aims of a particular study. The validating process in Figure 3.4 will be terminated once 

the simulation results are consistent with the required physiological information. The 

resulting model can then be applied to theoretical or clinical problems, such as neural 

prosthetics or drug development.  

Finally, a review of existing optimisation studies showed that these were largely limited to 

CNS neurons and cardiac myocyte models (see Table 3.4). Most existing retinal neuron 

model studies to date have been based on published parameter values or manual approaches 

to update model parameters (Fohlmeister and Miller, 1997a, Kameneva et al., 2011, 

Fohlmeister and Miller, 1997b, Velte and Miller, 1997). The ability of existing retinal neuron 

models to simultaneously reproduce multiple experimental data under a large range of diverse 

experimental conditions is still unclear. Most of the retinal model parameters need to be 

adjusted and optimised in order to reproduce additional behaviours, as well as datasets not 

included in the original model formulation. Thus, an unsupervised multi-objective 

optimisation toolbox for realistic retinal neuron modelling will be a major contribution to this 

area.   

http://en.wikipedia.org/wiki/Squid_giant_axon
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Chapter 4 Methodology  

 

4.1 Ionic Modelling of Retinal Ganglion cells  

In this thesis, single-compartment ionic models were simulated and analysed in Matlab 2010 

(Mathworks Inc, Nattick, MA). Multi-compartment ionic models were performed and 

analysed in NEURON 7.2 (Hines and Carnevale, 1997) and Matlab 2010.  

 

4.1.1 Single-Compartment RGC model 

The single-compartment model in this thesis was formulated according to: 

𝑑𝑉𝑚

𝑑𝑡
= −

1

𝐶𝑚
(𝐽𝑁𝑎+𝐽𝐾𝐴 + 𝐽𝐾 + 𝐽𝐶𝑎 + 𝐽𝐾𝐶𝑎 + 𝐽ℎ + 𝐽𝐿) +

𝐼𝑠

𝐴𝑐
                           (4.1) 

where Vm denotes the membrane potential, Is represents the intracellular stimulus current (in 

amperes) and Ac denotes the cell membrane area. Membrane capacitance (Cm) per unit 

membrane area was set to 1 µF∙cm
-2

. A total of six time-dependent ionic currents were 

implemented: the voltage-gated sodium (JNa) current, the delayed-rectifying potassium (IK) 

current, the A-type potassium (JKA) current, the L-type calcium (JCa) current, the calcium 

gated potassium (JKCa) current, the hyperpolarising-activated (Jh) current, as well as one time-

independent leakage current (JL) (see also Figure 4.1). In particular, the Jh current was added 

to simulate RGC responses to hyperpolarising current somatic injections. All membrane ionic 

currents given in terms of J refer to membrane current densities, that is, membrane current 

divided by cell membrane area. 

 

Figure 4.1 A equivalent circuit of RGC cell membrane. The capacitor branch (Cm) represents the lipid bilayer. 

Conduction parallel branches formed by membrane-spanning protein pores denote various time-dependent ionic 

channel types and the time-independent background (i.e. leakage) current. Each conduction branch includes a 

series potential to model the corresponding equilibrium potential. Total membrane current consists of six ionic 

currents and one leakage current. In the single-compartment model, extracellular potential is fixed to zero. 

Membrane potential is equal to the intracellular potential.    
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The formulations of all membrane currents are described by: 

𝐽𝑁𝑎 = 𝑔̅𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) 

𝐽𝐶𝑎 = 𝑔̅𝐶𝑎𝑐3(𝑉𝑚 − 𝑉𝐶𝑎) 

𝐽𝐾 = 𝑔̅𝐾𝑛4(𝑉𝑚 − 𝑉𝐾) 

𝐽𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎(𝑉𝑚 − 𝑉𝐾𝐶𝑎) 

𝐽𝐾𝐴 = 𝑔̅𝐾𝐴𝐴3ℎ𝐴(𝑉𝑚 − 𝑉𝐾𝐴) 

𝐽ℎ = 𝑔̅ℎ 𝑦2 (𝑉𝑚 − 𝑉ℎ) 

𝐽𝐿 = 𝑔̅𝐿(𝑉𝑚 − 𝑉𝐿)                                                           (4.2) 

where m, h, c A, hA, y are gating variables, satisfying first order ordinary differential 

equations (ODEs):  

 𝑑𝑥/𝑑𝑡 = 𝛼𝑥(1 − 𝑥) − 𝛽𝑥𝑥                                           (4.3) 

where x is the gating variable, αx, βx are the opening and closing rates respectively, with 

initial values given by: 

𝑥0 = 𝛼𝑥/(𝛼𝑥 + 𝛽𝑥)|𝑉𝑚=𝑉0
                                            (4.4) 

where V0 is the initial (i.e. resting) value of Vm. The detailed ionic current formulations and 

rate parameters are given in Chapter 5. 

 

4.1.2 Morphologically-Realistic Cable Model of Intracellular RGC Stimulation  

In morphological models, membrane potential is both space and time-dependent, with the 

neuron approximated by separating into multiple discrete cables. Each neural region is 

associated with its own ionic properties and is connected with neighbouring compartments by 

axial resistances (see Figure 4.2). In the particular cellular region, the local membrane current 

im (in amperes per unit length) can be calculated by,  

𝑖𝑚 =
1

𝑟𝑖

𝜕2𝑉𝑖(𝑡,𝑠)

𝜕𝑠2
= 𝑖𝐶 + 𝑖𝑖𝑜𝑛                                             (4.5) 

where s is the arc-length distance along the neuron, ri is the local intracellular axial resistance 

(in ohms per unit length), Vi is the intracellular membrane potential, and ic and iion are 

respectively the local membrane capacitance current (in amperes per unit length) and total 

ionic current (in amperes per unit length). For the detailed derivation of eq. (4.5), refer to 

Naundorf et al. (2006) 
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Figure 4.2 Top left: RGC morphology with somatic stimulation electrode. Top right: Equivalent circuits of local 

cell membrane. ri is the intracellular axial resistance per unit length, iC is the membrane capacitance current per 

unit length, iion is the total ionic current per unit length, and im is the membrane current per unit length. 

Extracellular potential Ve is fixed to zero (ground).  

For the whole neuron, total membrane current density Jm (in current per unit membrane area) 

and intracellular resistivity Ri (in resistance times unit length) can be calculated using the 

radius of the cylindrical neural region r, the local membrane current im and intracellular 

resistance ri:  

𝐽𝑚 = 𝑖𝑚/2𝜋𝑟 

𝑅𝑖 = 𝜋𝑟2𝑟𝑖                                                           (4.6) 

Eq. (4.5) can be updated to:  

𝐽𝑚 =
𝑟

2𝑅𝑖

𝜕2𝑉𝑖

𝜕𝑠2 = 𝐽𝐶 + 𝐽𝑖𝑜𝑛 − 𝐽𝑠𝑡𝑖𝑚                                   (4.7) 

where total membrane capacitance current density 𝐽𝐶 = 𝐶𝑚
𝜕𝑉𝑖

𝜕𝑡
, total ionic current density 

Jion=JNa+JK+JKA+JKCa+JCa+Jh+JCaT+JL, and Jstim is the stimulus current injection per unit 

area. Rearranging eq. (4.7) to 

𝜎𝑖
𝜕2𝑉𝑚

𝜕𝑠2 = 𝛽 (𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑁𝑎 + 𝐽𝐾𝐴 + 𝐽𝐾 + 𝐽𝐶𝑎 + 𝐽𝐾𝐶𝑎 + 𝐽ℎ + 𝐽𝐶𝑎𝑇 + 𝐽𝐿 − 𝐽𝑠𝑡𝑖𝑚)      (4.8) 
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where σi is the intracellular conductivity (σi=1/Ri) and β is the local surface to volume ratio 

(β=2/r). In the intracellular monodomain model, Vm = Vi since Ve is assumed to be zero. Most 

of the ionic currents (except Jh and JCaT) are defined according to eq. (4.2)  

For Jh, and JCaT, their formulation is described by: 

𝐽ℎ = 𝑔̅ℎ 𝑦 (𝑉𝑚 − 𝑉ℎ) 

𝐽𝐶𝑎𝑇 = 𝑔̅𝐶𝑎𝑇𝑚𝑇
3ℎ𝑇(𝑉𝑚 − 𝑉𝐶𝑎)                                           (4.9) 

It should be noticed the power of gating variable in Jh equations was reduced to the first 

power in order to better represent Jh in the experimental voltage-clamp behaviours and 

current-voltage (I-V) relationship (see Figure 6.9 in section 6.3.3) in the multi-compartment 

models. 

The gating variable dynamics used for JCaT are: 

mT :   𝑑𝑚𝑇/𝑑𝑡 = 𝑚𝑇(1 − 𝛼𝑚𝑇) − 𝛽𝑚𝑇𝛼𝑚𝑇  

hT :  𝑑ℎ𝑇/𝑑𝑡 = 𝛼ℎ𝑇(1 − ℎ𝑇 − 𝑑𝑇) − 𝛽ℎ𝑇ℎ𝑇 

                       dT:   𝑑(𝑑𝑇)/𝑑𝑡 = 𝛼𝑑𝑇(1 − ℎ𝑇 − 𝑑𝑇) − 𝛽𝑑𝑇𝑑𝑇                              (4.10) 

where the inactivation process for ICaT was modelled with two transition gates, hT and dT 

(Wang et al., 1991, Kameneva et al., 2011, Maturana et al., 2013). Initial values were given 

by: 

𝑚𝑇,0 = 𝛼𝑚𝑇/(𝛼𝑚𝑇 + 𝛽𝑚𝑇)|𝑉𝑚=𝑉0
 

ℎ𝑇,0 = 𝛼𝑑𝑇𝛽ℎ𝑇/(𝛼𝑑𝑇𝛽ℎ𝑇 + 𝛽𝑑𝑇𝛼ℎ𝑇 + 𝛽𝑑𝑇𝛽ℎ𝑇)|𝑉𝑚=𝑉0
 

𝑑𝑇,0 = 𝛼𝑑𝑇𝛽ℎ𝑇/(𝛼ℎ𝑇𝛽𝑑𝑇 + 𝛽ℎ𝑇𝛼𝑑𝑇 + 𝛽ℎ𝑇𝛽𝑑𝑇)|𝑉𝑚=𝑉0
                       (4.11) 

where V0 is the initial (i.e. resting) value of Vm. The detailed ionic current formulations and 

kinetic parameter values of each rate are described in Chapter 6. 

 

4.1.3 Morphologically-Realistic Model of Extracellular RGC Stimulation  

In the extracellular stimulation model, the neuron is excited by the extracellular voltage 

gradient (see Figure 4.3). In this case, membrane potential is calculated by: 

𝑉𝑚 = 𝑉𝑖 − 𝑉𝑒                                                                 (4.12) 
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where Vi was given by:  

𝜎𝑖
𝜕2𝑉𝑖

𝜕𝑠2 = 𝛽 (𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑁𝑎+𝐽𝐾𝐴 + 𝐽𝐾 + 𝐽𝐶𝑎 + 𝐽𝐾𝐶𝑎 + 𝐽ℎ + 𝐽𝐶𝑎𝑇 + 𝐽𝐿)             (4.13) 

and the extracellular voltage distribution was given by a disk electrode source (Greenberg et 

al., 1999, Tsai et al., 2012, Jeng et al., 2011):  

𝑉𝑒 =
2𝐼𝑅𝑠

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛 (

2𝑅

√(𝑎−𝑅)2+𝑧2+√(𝑎+𝑅)2+𝑧2
)                              (4.14) 

where I is the extracellular stimulus current, a and z are the radial and axial distance 

respectively from the center of the disk for z≠0, R is the radius of the disk, and Rs is the 

electrode transfer resistance. It should be noted that multiple neuronal active compartments 

may be simultaneously excited by the extracellular stimulation.  

 

Figure 4.3 Left: RGC morphology with extracellular stimulation electrode (red dot). Right: Equivalent circuits 

of local neural membrane. Ve(t, s) denotes the extracellular potential at a specific neural location. In the 

extracellular stimulation model, the cell is excited by the extracellular voltage gradient rather than intracellular 

current injection. The membrane potential is determined from the difference between intracellular potential Vi 

and extracellular potential Ve , 
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4.2 Multi-Objective Parameter Optimisation  

In this thesis, parameter optimisation involved the systematic modification of parameter 

values of a RGC model in order to minimise the disparity between multiple model outputs 

and experimental data. A custom curvilinear gradient-based optimisation method, combining 

the advantages of both Newton and steepest descent methods, was coded and implemented on 

a standard desktop PC using Matlab. 

 

4.2.1 Curvilinear Gradient Optimisation Method 

Assume we wish to fit a vector of m×1 data points d by an ODE system f(p), a function of  

n×1 parameter vector  p. We can define a m×1 residual function r according to:   

                           r (p)  = f(p)  – d                                                         (4.15) 

This residual function can be approximated by: 

           r (Δp)   = r0  + (∂f(p)/∂p)  Δp 
 
                                           (4.16) 

where Δp is an n×1 parameter step vector, and r0 is the m×1 residual vector at the current 

parameter position p, for which Δp = 0. A least squares objective function can be calculated 

from: 

                                                  Q (∆p) = r (∆p)
T  

r(∆p)    

                                          = [r0 + (∂f(p)/∂p )Δp]
T  [r0 + (∂f(p)/∂p)Δp] 

                                                              = r0
T
r0 + 2 Δp

T 
 J

T
 r0 + Δp

T  JT J Δp 

 = Q0 
 
+ Δp

T
 
 
 G  +  

1

2
Δp

T    H  Δp 
  
                          (4.17) 

where J is the m×n Jacobian matrix (J = (∂f(p)/∂p)) or 

J = 

[
 
 
 
𝜕𝑓1(𝑝𝑗)/𝜕𝑝1 𝜕𝑓1(𝑝𝑗)/𝜕𝑝2

𝜕𝑓2(𝑝𝑗)/𝜕𝑝1 𝜕𝑓2(𝑝𝑗)/𝜕𝑝2
⋯

𝜕𝑓1(𝑝𝑗)/𝜕𝑝𝑛

𝜕𝑓2(𝑝𝑗)/𝜕𝑝𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚(𝑝𝑗)/𝜕𝑝1 𝜕𝑓𝑚(𝑝𝑗)/𝜕𝑝2 ⋯ 𝜕𝑓𝑚(𝑝𝑗)/𝜕𝑝𝑛]

 
 
 

 

and Q0= r0
T
r0 . 

The n×1 gradient vector G is given by:  

𝐆 = ∇𝑄 = 2 𝐉T𝐫0                                            (4.18) 
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Furthermore, it can readily be shown that  

                                                        ∇𝑄(∆𝐩) = 𝐆 + 𝐇 ∆𝐩                                                      (4.19)  

where H is the n×n Hessian matrix (𝐇 = 2 𝐉T 𝐉). 

Parameterising the curvilinear search trajectory  ∆𝐩 =  𝐋(𝜃),  𝜃 ∈ (0,+∞), we wish to find 

the 𝜃  value,  𝜃∗ , which minimises f(p) along the curve 𝐋(𝜃), representing the curvilinear 

trajectory of steepest slope. To determine this trajectory, we solve 

                
  d(𝐋(𝜃))

d𝜃
+ 𝐇 𝐋(𝜃) = −𝐆                                            (4.20) 

These equations state that the derivative of the trajectory L with respect to parameter 𝜃 is in 

the negative direction of the local objective gradient (i.e. is aligned in the direction of steepest 

slope). To solve this equation, let 𝐋(𝜃) = 𝐮(𝜃)e−∫𝐇d𝜃 

d𝐮(𝜃)

d(𝜃)
e−∫𝐇d𝜃 − 𝐇 𝐮(𝜃)e−∫𝐇d𝜃 + 𝐇 ∙ 𝐮(𝜃)e−∫𝐇d𝜃 = −𝐆 

d𝐮(𝜃)

d(𝜃)
= −𝐆e∫𝐇d𝜃 

𝐮(𝜃) = −∫𝐆e∫𝐇d𝜃d𝜃 + 𝐶0 

𝐋(θ) = e−∫𝐇d𝜃(−∫𝐆e∫𝐇d𝜃d𝜃 + 𝐶0) 

              = −𝐇−1𝐆 + 𝐶0e
−𝐇𝜃                                            (4.21) 

When  𝜃 = 0, 𝐋(𝜃) = 0. Hence, 

𝐶0 = 𝐇−1 ∙ 𝐆 

𝐋(𝜃) = −𝐇−1𝐆 + e−𝐇𝜃𝐇−1𝐆 

          = ( e−𝐇𝜃 − 𝐈) 𝐇−1𝐆            𝜃 ∈ (0,+∞) ,             (4.22) 

In our optimisation procedure, we search for the value of 𝜃 that minimises f(p) along the 

curve ( e−𝐇𝜃 − 𝐈) 𝐇−1𝐆  

We see that the trajectory will reach a final point given by:  

                                       lim𝜃→∞( e−𝐇𝜃 − 𝐈)𝐇−1𝐆 = −𝐇−1𝐆        (Full Newton step) 

Also,                                                       lim𝜃→0
d[( e−𝐇𝜃−I)𝐇−1𝐆]

d𝜃
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= lim
𝜃→0

(−𝐇e−𝐇𝜃𝐇−1𝐆) 

= −𝐆                       (Steepest descent direction)       (4.23) 

According to the above equations, the curvilinear trajectory includes the advantages of both 

the Newton and steepest descent methods, i.e. the trajectory follows a curve which begins 

with the steepest descent direction and terminates at the full Newton step.   

The eigenvalues of  ( e−𝐇𝜃 − 𝐈) 𝐇−1  are given by the diagonal entries of n × n diagonal 

matrix 

𝛆 =

[
 
 
 
(𝑒−𝜆1𝜃 − 1)/𝜆1 0

0 (𝑒−𝜆2𝜃 − 1)/𝜆2

⋯
0
0

⋮ ⋱ ⋮
0                          0 ⋯ (𝑒−𝜆𝑛𝜃 − 1)/𝜆𝑛]

 
 
 

               (4.24)  

where 𝜆𝑗 is the jth eigenvalue of H, 𝑗 ∈ [1, n] 

Using this matrix, the curvilinear trajectory 𝐋(𝜃)  can be well defined by spectral 

decomposition, a computationally effective approach to calculate the exponential of a real 

symmetric matrix: 

                                         𝐋(𝜃) = 𝐕 𝛆 𝐕−𝟏 𝐆                                             (4.25) 

where V is the orthogonal, eigenvector matrix of H. From eq. (4.24) and (4.25), it should be 

noted that matrix inversion is not required during the whole process.  

Since H is a positive semi-definite matrix,  𝜆𝑗 ∈ [0, +∞). Furthermore, the eigenvalues of 

( e−𝐇𝜃 − 𝐈) ∙ 𝐇−1 are well-behaved in the limit the eigenvalues of H approach zero: 

                                                
𝑒−𝜆𝑗𝜃 − 1

𝜆𝑗
= lim

𝜆𝑗→0

𝑑(𝑒−𝜆𝑗𝜃 − 1)/𝑑𝜆𝑗

𝑑𝜆𝑗/𝑑𝜆𝑗
   

                                                                   = lim
𝜆𝑗→0

(𝜃 𝑒−𝜆𝑗𝜃) 

          = −𝜃                   ( 𝜆𝑗 = 0)                                         (4.26) 

i.e. 𝐋(𝜃) is always well-behaved, even if H is singular ( 𝜆𝑗 = 0) 

To avoid the searching terminating in a local minimum without further downhill directions, 

an iterative re-weighting approach was used in conjunction with the curvilinear method. 
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Given an m×1 initial weight vector W, we form the weighted residual: 

                                         r (p) = W [ f(p)  – d
 
]                                                  (4.27) 

When a local minimum is reached, the initial weight is updated:  

                                                                𝑊𝑗
(1) : User-defined 

                                 𝑊𝑗
(𝑘+1) =

|𝑟𝑗
(𝑘)

|

|𝑟
𝑗
(𝑘)

|+mean|𝐫(𝑘)|
 ,   𝑘 = {1,2,3},    j ∈ [1,m]                     (4.28) 

where  𝑊𝑗
(1) is the jth element of the initial weight vector, whose values may depend on the 

dataset to be fit: normally  𝑊𝑗
(1) = 1. However, considerations have to be given in particular 

cases: we may place a higher initial weight on regions of data we are more interested in. On 

the other hand, a lower or even zero weight may be put on noisy regions (e.g. due to stimulus 

artifacts). 𝑊𝑗
(𝑘+1) is the jth element of the weight vector after the kth reweighting, 𝑟𝑗

(𝑘)
is the 

jth element of the residual vector r
(k)

 at the kth reweighting. The weight vector is reset to its 

default initial value after k iterations of reweighting, to calculate the original objective. By 

iteratively “smoothing” the searching surface, this reweighting strategy will assist in finding 

an alterative path to the global minimum, navigating around any local minima with respect to 

the original residual weight (Dokos and Lovell, 2004). 

After the weight function has been reset to its initial value, each unconstrained parameter is 

randomly perturbed according to: 

                                𝐏̂𝐧𝐞𝐰 = 𝐏̂𝟎 + 𝜹                                                      (4.29) 

where 𝐏̂𝟎 is the n×1 current unconstrained parameter vector, after it has been transformed by 

eq. (4.30), 𝐏̂𝐧𝐞𝐰  is the n×1 randomly perturbed vector, perturbed by a n×1 normally-

distributed random vector 𝛅, with each element having a mean of 0 and standard deviation 

𝑆𝐷 (𝑆𝐷 = 0.01). If the objective cost is significantly increased as a result of this perturbation 

(𝑄new ≥ 6𝑄0) indicating we are far from the global optimum, 𝑆𝐷 will be halved. When the 

objective cost has slightly increased (𝑄new ≥ 1.5𝑄0), suggesting the searching is still trapped 

in the previous local minimum, then 𝑆𝐷  will be scaled up 1.5 times. The improved 

parameters (𝑄new < 𝑄0) will be saved as the current optimised set. The randomly perturbed 

parameter set is then used as the initial point from which to begin a new curvilinear gradient 

search. 
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4.2.2 Parameter Upper and Lower Limits 

Estimated parameter values should have their values constrained to within a reasonable 

physiological range to ensure their reliability. In our case, most of the Hodgkin-Huxley type 

parameters were assigned to fixed upper and lower value limits. These limits based on 

experience and published experimental and modelling studies from the literature (Wang et al., 

1991, Kameneva et al., 2011, Maturana et al., 2013, Fohlmeister et al., 2010, Fohlmeister and 

Miller, 1997b, Jeng et al., 2011, Tsai et al., 2012).  Particularly, kinetic parameters were 

constrained to within ±100% of their default values in the original FM formulations. All 

maximum conductance parameters were constrained to lie with 0~10-fold of their default 

values (Fohlmeister and Miller, 1997b). 

The curvilinear gradient method represents an unconstrained minimisation method. The 

constrained parameters described above can be transformed into unconstrained parameters 

using an appropriate transforming function. For any parameter pi which is limited to the 

closed interval [Loweri , Upperi], We use the transformations: 

                                      𝑝𝑖 = 𝐿𝑜𝑤𝑒𝑟𝑖 + (𝑈𝑝𝑝𝑒𝑟𝑖 − 𝐿𝑜𝑤𝑒𝑟𝑖)𝑠𝑖𝑛
2(𝑃𝑖̂)         

and                              𝑃𝑖̂ = 𝑎𝑟𝑐𝑠𝑖𝑛 [√(𝑝𝑖 − 𝐿𝑜𝑤𝑒𝑟𝑖)/(𝑈𝑝𝑝𝑒𝑟𝑖 − 𝐿𝑜𝑤𝑒𝑟𝑖)]                     (4.30) 

where 𝑃𝑖̂  is the unconstrained parameter corresponding to  𝑝𝑖 . Thus any unconstrained 

parameter 𝑃𝑖̂ ∈ (−∞,+∞) can follow  𝑝𝑖 ∈ [𝐿𝑜𝑤𝑒𝑟𝑖, 𝑈𝑝𝑝𝑒𝑟𝑖], and the limits do not have to be 

explicitly enforced during the optimisation.   
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4.2.3 Multiple-Objective Optimisation  

When optimising a model to fit multiple datasets (objectives) simultaneously, the residual in 

eq. (4.15) was formed by appending together the residuals of the corresponding individual 

datasets. The calculation of the Jacobian matrix J was then updated. Three cases can be 

considered: 

1. Multiple data (R datasets) fitted using the assumption that each dataset shares the 

same parameter values p. This will be the case, for example, when optimizing to fit 

multiple AP data recorded from the same cell in response to different somatic current 

injections. For this case, J will be a block matrix: 





















R,

2,

1,

P

P

P

J

J

J

J


                                                              (4.31) 

where )(, pfJP  jj , R is the number of data records and fj is the jth model 

simulation. If m is the total number of data points across all records, and n is the 

number of optimised model parameters, then J will be of size m×n.   

2. Multiple data (R datasets) fitted using the assumption that each model uses a unique 

set of parameters to fit each experimental dataset. Data-specific parameters x1 to xR, 

each of size n×1, are used for datasets 1 to R. This process is equivalent to performing 

multiple single dataset optimisations independently.  In this case, the form of J will be 

of size m×nR, given by: 





















R,

2,

1,

00

00

00

x

x

x

J

J

J

J









 

                                                   (4.32) 

where ))((, jjj xxfJx  . 
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3. Multiple data (R datasets) fitted using a combination of both shared and data-specific 

parameters. For S data-specific parameters (i.e. S parameters unique to each dataset),  

J will be of size m×[n + (R-1)×S] and given by: 

                            




















RR ,,

2,2,

1,1,

00

00

00

xP

xP

xP

JJ

JJ

JJ

J







                                   (4.33) 

Eqs. (4.31) - (4.33) suggest that more computational resources are required for parameter 

optimisation with multiple datasets due to the larger size of the Jacobian matrix, as well as 

the fact that more local minima are likely to be present in the objective parameter search 

space.  

 

4.2.4 Multiple Objective Function 

A multi-objective cost function consisting of three main components was implemented in this 

thesis:  

 

1. Time series sum of squares error  

When fitting time-series voltage recordings in response to multiple somatic current injections, 

the objective cost function can be represented by the sum of squares of the point-by-point 

error between the model outputs and data: 

                                              𝜎1 = √
1

𝑀𝑅
∑ ∑ (𝑓𝑖(𝐩) − 𝑑𝑖,𝑘)

2𝑀
𝑖=1

𝑅
𝑘=1                                     (4.34) 

where  𝑓𝑖(𝐩) is the model output as a function of parameter vector p corresponding to the ith 

data point di,k , and M is the number of data points in each dataset record. R is the number of 

datasets.  
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2. The 2-D phase-plane sum of squares error 

The second cost function quantities the error in the phase plot. A custom normalised 2-D 

RMS was defined by  

                                              σ2 = √∑ min𝑖
𝐷𝑖,𝑗

2

𝑁−1
𝑁
𝑗=1                                              (4.35) 

where min𝑖 𝐷𝑖,𝑗 represents the minimal  normalised  distance (Dj) from one phase plot to 

another at  the  jth  point,  N  is  the  number  of  data points in one phase plot, and  

𝐷𝑗  = min𝑖 √(𝑉1,𝑖−𝑉2,𝑗)2 + (
𝑉1,𝑖

𝑑𝑡
−

𝑉2,𝑗

𝑑𝑡
)2                              (4.36) 

where V1,i and V2,j are normalised voltage values at the ith model and the jth data point 

respectively. 

 

3. The spiking pattern objective function  

Other than the time-series AP datasets and AP phase plots, the objective functions used in 

this thesis also included important firing features such as total spike number, post-onset first 

spike latency (FSL), rebound or post-offset FSL, average ISI and “sag” amplitude. The third 

type of objective function implemented is described by: 

                                              𝜎3 = √
1

𝑆𝑅
∑ ∑ (𝑓𝑖(𝐩) − 𝑜𝑖,𝑘)

2𝑆
𝑖=1

𝑅
𝑘=1                                          (4.37) 

where 𝑓𝑖,𝑘(𝒑) is the model output corresponding to the kth feature observation oi,k in response 

to the ith current injection, and S is the number of current stimulations. R is the number of 

features.  

The three components were combined in a weighted linear sum:  

                                                            σ2 = ∑ 𝑊𝑗 ∙ 𝜎𝑗
2                                                        3

𝑗=1 (4.38) 

where 𝑊𝑗 is a user-defined weight function whose value may be adjusted depending on the 

relative importance of each dataset to the objective cost σ. In our case, the Wj were chosen 

empirically such that the first component (time-series voltage trains) accounted for about 40% 

of the initial objective value, the second (phase plots) approximately 30%, and the third 

component (spiking patterns) the remaining 30%.  
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TABLE 4.1 

Spiking property definition and measurement method  

spiking property Definition and measurement method 

total spike number (or SN) The number of full APs elicited during a depolarising (post onset) or after a 

hyperpolarising (post offset) current injection 

post onset FSL time difference between stimulus offset and half-maximum amplitude of 

first induced AP 

rebound FSL (or post offset FSL) time difference between stimulus offset and half-maximum amplitude of 

the first induced AP 

average ISI (or ASI) mean inter-spike interval measured using full APs elicited during a 

depolarising (post onset) or after a hyperpolarising (post offset) current 

injection 

hyperpolarisation-induced sag 

amplitude (or SagA) 

the voltage difference between steady-state and maximum 

hyperpolarization membrane potential during a hyperpolarizing current 

injection 

Table 4.1 The definition and measurement method of spiking properties quantifying model performances  
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4.3 Whole-Cell Patch Clamp Data for Model Optimisation and Prediction  

This section briefly describes the standard whole-cell patch clamp techniques used for 

recording RGC spiking in this thesis. All of this patch clamp experimental data used in model 

optimisation (Chapters 5 and 6) was obtained by Dr. David Tsai in the Graduate School of 

Biomedical Engineering, UNSW, using whole-cell current clamp methods (Tsai et al., 2011). 

The extracellular stimulation data for validating model predictive ability (see Chapter 7) was 

obtained by Dr. Perry Twyford from the VA Boston Healthcare System, using cell-attached 

patch clamp methods (Twyford et al., 2014).  

 

4.3.1 Whole-Cell Current Clamp Recordings in Response to Intracellular Somatic 

Injections.  

New Zealand white rabbits weighing 2.0 ~ 3.0 kg were anesthetized with Ketamine (70 

mg/kg) + Xylazine (10 mg/kg). After enucleating an eye, the animal was euthanized with 

sodium pentobarbital. The eye was hemisected, the anterior portion discarded and the 

vitreous cleared. Small pieces of the inferior retina, with the sclera attached, were dissected 

and kept in Ames’ medium equilibrated with 95% O2/5% CO2, supplemented with 1% 

Penicillin/Streptomycin at room temperature in darkness. Before electrophysiological 

recordings, a small piece of the retina was separated from the pigment epithelium and sclera 

and transferred RGC-side up into an imaging chamber. The retina was perfused with 

equilibrated Ames medium at ~ 5 mL/min and heated to 34 ~ 35 ˚C throughout the recording 

period. RGCs in the whole-mount retina were visualized and targeted for recording with near-

infrared (IR) illumination. All procedures were approved and monitored by the University of 

New South Wales Animal Care and Ethics Committee. 

Whole-cell current clamp recordings were performed in rabbit RGCs using glass electrodes 

filled with (mM): 116 KMgSO4, 10 KCl, 0.008 CaCl2, 0.7 EGTA, 1 MgCl2, 10 HEPES, 4 

ATP-Na2, 0.5 GTP-Na3, 0.075 Alexa Fluor 488, and 10 Neurobiotin-Cl, pH 7.2. Electrode 

resistances ranged from 3.0 ~ 5.0 MΩ. Series tip resistance was compensated accordingly on 

the amplifier (MultiClamp 700B, Molecular Devices). All data were low-pass filtered at 10 

kHz and digitized at 50 kHz on a computer running pClamp 10 (Molecular Devices). All data 

were analyzed in pClamp 10 and Matlab R2010a. RGC excitatory (AMPA/kainate, NMDA 

and mGluR6) and inhibitory (GABAa/c and glycine) synaptic inputs were blocked. All 

blockers were supplied by Tocris Bioscience and Sigma Aldrich.  
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Functionally-intact RGCs were identified by their electrophysiology, morphology and 

stratifications. Details of cell identification are described further in chapter 6. Voltage 

responses from each RGC were recorded during depolarising and hyperpolarising somatic 

current injections with 500 ms duration and stimulus amplitudes of -120 to 210 pA in 30 pA 

steps.  

Figure 4.4 illustrates a portion of the current clamp data recorded in different identified cells. 

Typically, OFF cells are more excitable than ON cells. Particularly during hyperpolarising 

stimuli, OFF cells showed obvious depolarising “sag” during the hyperpolarising stimulus 

period (indicated by arrows in B and C), and a rebound excitation after hyperpolarisation. 

These responses were absent in ON cells. In addition, each RGC type exhibited different 

spike timing, frequency adaptation and firing variations in response to the various stimulus 

amplitudes.  

 

 

Figure 4.4 Whole-cell current clamp recordings in A) OFF beta RGC, B) OFF Parasol RGC. C) OFF 

RGC, D) ON RGC, in response to multiple depolarising (red) and hyperpolarising (blue) somatic 

current injections. In later chapters of this thesis, these cell types are sometimes referred to simply as 

ON or OFF. All of these biological cell-specific response properties were used for optimising RGC 

models in Chapters 5 and 6. Horizontal bar: stimulus interval (500 ms).   
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4.3.2 Cell-Attached Patch Clamp Recordings during 2 kHz Epiretinal Stimulation  

In this set of experiments, the care and use of animals followed all federal and institutional 

guidelines, and all protocols were approved by the Institutional Animal Care and Use 

Committees of the Boston VA Healthcare System and/or the Subcommittee of Research 

Animal Care of the Massachusetts General Hospital. Cell-attached patch clamp recordings 

were performed in the New Zealand white female rabbit (~2.5 kg) RGCs, and electrical 

stimulation was applied epiretinally via a 10 kΩ platinum–iridium electrode (MicroProbes). 

The exposed electrode tip was conical with an approximate height of 125 μm and base 

diameter of 15 μm, giving a surface area of 5900 μm
2
, which was comparable to the area of a 

40 μm radius disc electrode. The height of the stimulating electrode remained fixed at 25 μm 

above the inner limiting membrane. A synaptic blocker CNQX (6-cyano-7-nitroquinoxaline-2, 

3-dione, 50 μM) and AP-7 (DL-2-amino-7-phosphonoheptanoic acid, 100 μM) was used in 

cell-attached recordings, and the synaptic blockage was confirmed by the absence of light 

elicited responses. The electrical artefact produced by the stimulus in the data was removed 

via a custom notch filter. All processing was performed in Matlab R2010a (Mathworks). 

The stimulation consisted of biphasic constant-current pulses (cathodal first) delivered at 

rates of 2 kHz. Cathodal and anodal phase durations were 100 μs each. Cathodal-anodal inter-

pulse interval (IPI) was 160 μs, and anodal-cathodal IPI was set to be 140 μs. Two main types 

of stimulation were used: 1) constant amplitude stimulation, 2) an amplitude modulated 

“diamond”, to distinguish between different RGC classes. Details of the stimulation strategy 

are further described in Chapter 7.  
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Part II Results and Discussion 
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Chapter 5 A Single-Compartment RGC Model 

 

In this chapter, a conductance-based single-compartment RGC model was modified to 

reconstruct multiple membrane potential datasets recorded from rabbit RGCs. The model 

included a hyperpolarisation activated current (Jh) to reconstruct the “rebound excitations” 

under hyperpolarising stimulation conditions.  

Rebound excitation, also termed post-inhibitory rebound, has been studied in a number of 

neuron types (Mitra and Miller, 2007b, Kepler et al., 1992, Van Hook and Berson, 2010). 

Recently published modelling work has also given more attention to the mechanisms 

underlying rebound excitation in different types of neurons (Kepler et al., 1992, Kameneva et 

al., 2011, Buchholtz et al., 1992, Engbers et al., 2011, McCormick and Huguenard, 1992). To 

our knowledge, only a limited number of existing RGC models can effectively reproduce 

such phenomena (Kameneva et al., 2011). At the same time, the contribution of Jh to 

neuronal excitability during hyperpolarising stimulation has been reported in many in vitro 

studies (Rateau and Ropert, 2006, Moosmang et al., 2001, Momin et al., 2008, Stradleigh et 

al., 2011).  

The optimised model presented in this chapter was able to reproduce the mechanisms 

underlying both normal and rebound action potentials. The significance of the modified 

model structure and the inherent limitation of current modelling approaches are also 

discussed in detail 
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5.1 Simulating RGC Normal and Rebound Excitation  

A generic rabbit RGC ionic model, based on the Fohlmeister and Miller (FM) formulation 

(1997) (Fohlmeister and Miller, 1997a), was optimised to simultaneously reproduce multiple 

RGC electrophysiological behaviours. An additional ionic current, the hyperpolarisation-

activated current (Jh), activated in response to hyperpolarising current injection, was present 

in the model to simulate rebound spiking following a hyperpolarising stimulus.  

The single-compartment model can be described by, 

𝑑𝑉𝑚

𝑑𝑡
= −

1

𝐶𝑚
(𝐽𝑖𝑜𝑛 + 𝐽ℎ −

𝐼𝑠𝑡𝑖𝑚

𝐴𝑐
)                                                     (5.1) 

Where Vm denotes the membrane potential, Cm is membrane capacitance per unit area, Jion 

denotes the total ionic current per unit area in the original FM model, Istim represents the 

intracellular stimulus current and Ac denotes the cell membrane area. Systematic differences 

between experimental data and original FM model outputs (Figure 5.1 middle) indicated that 

additional ionic currents activated by hyperpolarisation were necessary for reproducing 

rebound excitation. As a result, Jh was added to the model to simulate RGC responses to 

hyperpolarising current somatic injections. A total of six time-dependent ionic currents and 

one leakage current were included in the new model structure. 

The modified RGC model was optimised to simultaneously fit two trains of voltage responses 

stimulated by both depolarising and hyperpolarising intracellular current injections (120 and -

120 pA). All maximum conductance and kinetic parameters were optimised. Optimised 

parameters across these two datasets were specified to share the same values, since any AP 

waveshape variation would be due to differences in the injected current alone. All optimised 

model parameters and rate equations are shown in Table 5.1. 

From the results shown in Figure 5.1, the optimised model that included Jh (right panel) 

closely matched the experimental data (left panel), including the slow depolarising “sag” on 

hyperpolarisation below the resting membrane potential and the rebound spiking activity after 

the termination of hyperpolarising stimuli. However, in the original FM model, a negative 

current injection caused the membrane to hyperpolarise along an approximately exponential 

time course governed by the passive membrane time constant. When the current step was 

terminated, the membrane voltage smoothly decayed back to its original resting potential 

(Figure 5.1A, middle panel). In addition, the optimised model was able to closely reproduce 

the corresponding spike frequency and FSL variation due to stimulus amplitude (Figure 5.1B, 
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left panel). The error between both models and experimental data in the right panel of Figure 

5.1B indicated a substantially improved model accuracy over the original FM model in terms 

of the four spiking properties. Finally, we found that the optimised model could also 

effectively predict datasets which were not used in the optimisation process by altering the 

stimulus amplitude (i.e.  -60 and 60 pA).  

Figure 5.2B illustrates the reconstructed model ionic current waveforms in response to the 

hyperpolarising stimulus. Even though the amplitude of Jh was relatively small (only ~1% of 

the total membrane sodium currents), it still played an important role in shaping RGC spiking 

to hyperpolarising current injections.  

Certain disagreement between model and experimental data could not be eliminated by 

optimising the model parameters. This included the “kink” at the foot of the action potential 

upstroke, defined as the sudden onset of upstroke depolarisation, as labelled by the red arrows 

in Figure 5.3, also known as initial segment-soma dendritic (IS-SD) break in the 2-D phase 

plot (see Figure 5.3). These differences were due to the inherent limitation of using a single-

compartment model (see discussion). 
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Figure 5.1 A. The original FM model could not reconstruct the RGC responses to hyperpolarising current 

injections (A, middle column, lower two rows). After the model was modified by adding Jh, the modified model 

(right column) was able to closely match the experimental data in the leftmost column, including the slow 

depolarising “sag” on hyperpolarisation below the resting membrane potential, as well as the rebound spiking 

activity after hyperpolarisation. B. Left: Comparison of experimental data (blue), FM model (black) and 

optimised model (red) performance in terms of total spiking number (SN), averaged inter-spike interval (ASI), 

first spike latency (FSL) and sag amplitude (SagA). Right: Comparison of modified model (red) and FM model 

(black) performance in terms of discrepancy between model outputs and data 
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Figure 5.2 Model-generated membrane potential (A) and corresponding ionic currents and calcium 

concentration (B) in response to a 120 pA hyperpolarising stimulus shown by the bar in the top panel. 

 

Figure 5.3 Single-compartment model could not fit certain neuronal behaviours such as the fast rate of rise of 

action potentials at spike onset (the kink), also known as IS-SD break in the 2-D phase plot of rate vs membrane 

potential (right panel), as indicated by the red arrows.  
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TABLE 5.1 

Parameter values for the generic RGC model 
Channel  

JNa 𝐽𝑁𝑎 = 𝑔̅𝑁𝑎𝑚3ℎ(𝑉𝑚 − 90.99) 

𝛼𝑚 = −0.6(𝑉𝑚 + 30)/(𝑒−0.1(𝑉𝑚+30) − 1) 

 

𝛼ℎ = 0.4𝑒−0.05(𝑉𝑚+50) 

𝛽𝑚 = 20𝑒−0.0556(𝑉𝑚+55) 
 

𝛽ℎ = 6/(1 + 𝑒−0.1(𝑉𝑚+20)) 

JCa 𝐽𝐶𝑎 = 𝑔̅𝐶𝑎𝑐3(𝑉𝑚 − 𝑉𝐶𝑎)  

 
𝑑[𝐶𝑎2+]𝑖

𝑑𝑡
= − (

3𝐽𝐶𝑎

2𝐹𝑟
𝐽𝐶𝑎) −

[𝐶𝑎2+]
𝑖
−0.0001

50
   

𝛼𝑐 = −0.0052(𝑉𝑚 + 9.2)/(𝑒−0.2584(𝑉𝑚+9.2) − 1) 

𝑉𝐶𝑎 =
𝑅𝑇

2𝐹
 𝑙𝑛 (

2

[𝐶𝑎2+]𝑖
)  

𝛽𝑐 = 14.92𝑒−0.2636(𝑉𝑚+15.47) 

JK 
𝐽𝐾 = 𝑔̅𝐾𝑛4(𝑉𝑚 + 70.5259) 

 
𝛼𝑛 = −0.0943(𝑉𝑚 + 21.73)/(𝑒−0.2584(𝑉𝑚+21.73) − 1) 𝛽𝑛 = 1.7565𝑒−0.1913(𝑉𝑚+56.71) 

JKA 
𝐽𝐾𝐴 = 𝑔̅𝐾𝐴𝐴3ℎ𝐴(𝑉𝑚 + 70.5259)  

 
𝛼𝐴 = −0.0002(𝑉𝑚 + 54.47)/(𝑒−0.2047(𝑉𝑚+54.47) − 1) 

𝛽ℎ𝐴 = 0.0028𝑒−0.0118(𝑉𝑚+81.77) 

𝛽𝐴 = 0.0244𝑒−0.2291(𝑉𝑚+42) 

𝛽ℎ𝐴 = 1.5821/(1 + 𝑒−0.4532(𝑉𝑚+58.04)) 

JKCa 𝐽𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎(𝑉𝑚 + 70.5259) 

 

𝑔𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎[(
[𝐶𝑎2+]𝑖
0.001

)2/(1 + (
[𝐶𝑎2+]𝑖
0.001

)2)] 

Jh 𝐽ℎ = 𝑔̅ℎ  𝑦2 (𝑉𝑚 + 10.03) 

𝛼𝑦 = 0.161𝑒−0.0259(𝑉𝑚+97.18) 𝛽𝑦 = −0.00002(𝑉𝑚 + 67)/(1 − 𝑒−0.014(𝑉𝑚+67)) 

JL 
𝐽𝐿 = 𝑔̅𝐿(𝑉𝑚 + 32.174)     

Maximum 

Conductance 

 

𝑔̅Na: 0.8634 mS/cm
2 

𝑔̅K: 1.7352 mS/cm
2
 

𝑔̅KA: 20.966 mS/cm
2
 

𝑔̅Ca: 0.4837 mS/cm
2
 

𝑔̅KCa: 0.0056 mS/cm
2
 

𝑔̅h: 0.0124 mS/cm
2
 

𝑔̅L: 0.00042 mS/cm
2
 

Ac: 0.2621 cm
2  

* 

Initial 

Variable 

Value 

 

Vm: -53 mV 

[Ca2+]i: 0.0001 mM 

m: 0.0835 

h: 0.9995 

c: 0 

n: 0.001 

A: 0.0031 

hA: 0.0013 

y: 0.8143 

Table 5.1 Conductance and rate parameters for single-compartment generic RGC model. All rates are in units of 

1/ms, voltages in units of mV, [Ca
2+

]i in units of mM, and membrane currents in units of µA/cm
2
. m, h, c, n, A, 

hA and y are voltage and time-dependent gating variables, whose dynamics are given by  

𝒅𝒙 𝒅𝒕 = 𝜶𝒙(𝟏 − 𝒙) − 𝜷𝒙𝒙⁄ , where x denotes the gating variable in question. (*) Ac represents the total RGC 

membrane area of the RGC. F denotes Faraday’s constant and r denotes the depth of the spherical shell beneath 

the membrane for the inward calcium current. R denotes the gas constant, and T is the temperature, which is set 

to be 310 K. 

  



 

83 
 

 

Figure 5.4 Comparison of voltage-clamp behaviours of five ion channels and Ca
2+

 Nernst potential 

reconstructed by the original FM model (A) and the modified RGC model (B). All simulations were carried out 

using the single-compartment model summarised in Fohlmeister and Miller (1997a) and Table 5.1. For the 

original FM model, depolarisations were initiated from a holding potential of −65 mV and included clamp steps 

to −40, −20, 0, +20, and +40 mV. The time duration was 10 ms except for JNa, which was 2 ms. For the 

modified RGC model, clamp steps were set to −40, −20, 0, +20, and + 40 mV except for JNa, which was −40, 

−20, 0, +20, and + 90 mV. The time duration was 20 ms except for JNa and JK, which were 2 ms and 5 ms, 

respectively.  

Figure 5.4 demonstrates voltage-clamp simulations of five ion channels and the JCa reversal 

potential reconstructed from the original FM model (Figure 5.4A) and the modified RGC 

model (Figure 5.4B). All simulations were carried out using the single-compartment models 

described summarised in Fohlmeister and Miller (1997a) and Table 5.1 of this chapter. For 

the original FM model, depolarisations were initiated from a holding potential of −65 mV and 

included clamp steps from −40 to +40 mV, in increments of 20 mV. The time duration was 

set to 10 ms, except for the JNa simulations, which were 2 ms. For the modified RGC model, 

clamp steps were set from −40 to +40 mV in increments of 20 mV, except for the JNa 

simulations, which were −40, −20, 0, +20, and + 90 mV. The time duration was 20 ms except 

for the JNa and JK simulations which were 2 ms and 5 ms, respectively. As illustrated in 

Figure 5.4, despite the large changes in model parameter values, the modified model was able 

to qualitatively reproduce the voltage-clamp behaviours and Ca
2+

 dynamics of the 

Fohlmeister and Miller (1997a) study, suggesting that the dynamics of each ionic current 

were preserved 

  



 

84 
 

5.2 The Contribution of Jh in Shaping Rebound Activities 

An additional set of simulation were undertaken to investigate the contribution of the 

hyperpolarisation-activated current to spiking activity in the modified RGC model. One 

parameter, gh, the maximum membrane conductance of Jh, was gradually reduced in order to 

model the effect of Jh on rebound spiking in the RGC. All other model parameters were held 

fixed.  

Figure 5.5A illustrates the model results when gradually reducing Jh. RGC spiking patterns, 

such as rebound FSL (or post offset FSL, was defined as the time between the stimulus offset 

and half-maximum amplitude of the first hyperpolarisation-induced AP), total spike number 

and hyperpolarisation-induced sag amplitude, were all gradually altered with lower Jh 

conductance, revealing its important role in shaping RGC spiking activity, particularly the 

RGC response to hyperpolarising current injections. In addition, as shown in Figure 5.5B, the 

rebound impulse in response to multiple current injections could be eliminated when Jh was 

partially blocked by 50%, while the depolarising voltage responses were relatively unaltered. 

Blockage of Jh also resulted in a slight hyperpolarising shift of resting membrane potential.  

In another simulation, the performance of model Jh was reconstructed in terms of voltage and 

current-clamp simulations. Voltage-clamp simulations were generated with a holding 

potential of -65mV, while sequentially hyperpolarising the cell from -65 to -115 mV in 

decrements of 10 mV. Each voltage clamp step was 1 s in duration, as indicated by the 

horizontal bar. In Figure 5.6A1, the family of current traces due to an applied voltage-clamp 

exhibited an initial instantaneous ohmic current jump followed by a slow further increase in 

the inward current. The magnitude and apparent rate of activation of the inward current 

increased with higher hyperpolarising voltage commands. In Figure 5.6B1, the RGC model 

was increasingly hyperpolarised below the resting potential with sequential injections of 

negative current-clamp steps of 3 s in duration (from 0 to -300 pA in decrements of 50 mV). 

The RGC model revealed a time dependent “sag” in its voltage response on hyperpolarisation 

with step currents, with increases in the amplitude and apparent rate of decay of the sag being 

evident with larger current injections. Figure 5.6C1 is a simulation from the same RGC 

model after Jh was partially blocked by 70%. The injected current steps have durations of 3 s 

(from 0 to -210 pA in decrements of 35 pA). Block of Jh clearly eliminated the development 

of the sag, with the voltage response assuming an apparently passive character and increasing 

in an ohmic manner with increasing injected current amplitudes. In addition, block of Jh 
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resulted in a hyperpolarising shift of resting membrane potential from -53 to -65 mV. Figure 

5.6D1 illustrates the voltage-current (V-I) relationship from the results shown in Figure. 

5.6B1-C1. The steady state voltage values at the end of the 3 s pulse were measured for each 

current step under both control (B1, triangle) and Jh block (C1, circle) conditions, and have 

been plotted against the corresponding injected current amplitudes.  

Figure 5.6A2, B2 and C2 illustrate corresponding in vitro voltage-clamp and current-clamp 

recordings from amphibian RGCs under similar stimulation conditions from the study of 

Mitra and Miller (2007a). The simulation results closely matched the experimental Jh 

behaviour in terms of overall waveshapes (A2, B2 and C2) and comparable reduction in 

steady state voltage values after Jh was blocked by 70% (Figure 5.6D2). 
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Figure 5.5 A. Model-generated membrane potentials due to partial block of Jh. B. The rebound spikes (lower 

three panels) were eliminated by reducing the maximum conductance of Jh by 50%, whilst the depolarising 

responses (upper two panels) and spontaneous (third panel) activity were relatively unaltered. 
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Figure 5.6 Voltage- and current-clamp simulations of Jh A1: Family of reconstructed Jh using the voltage-clamp 

protocol in which the RGC was held at -65 mV and sequentially hyperpolarised from -65 mV to -115 mV in 

increments of 10 mV. Each step was of 1 s duration, as shown by the horizontal bar. B1: Model-reconstructed 

voltage responses elicited with the current clamp protocol in which the RGC was sequentially hyperpolarised 

below the resting membrane potential with incremental injections of negative current steps. The seven current 

steps were from 0 to -300 pA (in decrement of 50 pA). Each step was of 3 s duration. C1: Model-reconstructed 

voltage responses after Jh was partially blocked by 70%. Current steps were from 0 to -210 pA (in decrement of 

35 pA). D1, Reconstructed current-voltage (I–V) relationship, where the steady state voltages measured at the 

end of each current step in B1 and C1 have been plotted against the magnitudes of the injected currents. A2-D2. 

In vitro voltage-clamp and current-clamp recordings from amphibian RGCs under similar stimulation conditions 

to A1-D1. Adapted from Mitra and Miller (2007a). Stimulus intervals were indicated by the horizontal bars.  
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5.3 Discussion 

In this chapter, a multi-objective parameter optimisation fitting technique (see section 4.2 in 

Chapter 4) was used to identify the potential missing currents in the original FM ionic model. 

The modified model structure was dependent on the information provided by additional 

experimental data and multiple model outputs. For example, results from the original FM 

model suggested that additional ionic currents activated by hyperpolarisation, were necessary 

for reproducing rebound excitation (see Figure 5.1).  

Since the FM formulations and parameters were based on tiger salamander RGC electrical 

activities, it may be necessary to modify its original parameters to reconstruct spiking 

responses recorded in mammalian RGCs. In this chapter, rather than only optimising 

parameters of the missing current, conductance and rate parameters for each current were also 

optimised. Model parameters across these multiple datasets were constrained to share the 

same values, since any action potential waveshape variation would be due to differences in 

the external stimulus current alone. Although model parameter values in the original FM 

formulations were largely modified to match multiple datasets, the resulting model still 

preserves the original membrane current dynamics, as indicated by the similar voltage-clamp 

behaviours and Ca
2+

 dynamics between the modified and original FM models (Figure 5.4).  

In our results, rebound excitation can be eliminated when Jh is blocked by partially reducing 

its maximum conductance, revealing its contribution to the rebound excitation in RGCs. Also, 

our results indicated that Jh may contribute to the resting membrane properties of RGCs. 

Indeed, the range of resting potentials for RGCs can be within activation range of Jh 

(McCormick and Pape, 1990). 

Model predication to non-optimised data could help in refining experimental designs for 

obtaining additional data, which in turn may modify the model structure (e.g. by continually 

incorporating additional ionic currents into the model) or parameters (e.g. by limiting or 

relaxing constraints on certain model parameters to reproduce new experimental information). 

A positive coupling between simulation and experiment can be achieved by iteratively 

comparing model-predicted results and subsequent experimental data. This iterative model-

refinement technique is generally applicable to a range of excitable cell models. By using this 

technique, more accurate ionic models can be constructed semi-automatically, reducing the 

gap between theoretical models and real biological neurons. 
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Like most existing models, the modified single-compartment RGC model of this chapter has 

certain limitations, representing compromises necessary to achieve simplified and 

computationally-efficient descriptions of membrane current kinetics. One disadvantage is the 

isolated electrotonic structure in a single-compartment model. Disparities between the FM 

model and experimentally-observed behaviours cannot be eliminated by simply optimising 

model parameters (Fohlmeister and Miller, 1997a). Modelling studies based on realistic cell 

morphology have found that the existence of neuronal compartments that differ in both size 

and ionic channel densities of ionic channels could account for more realistic spike 

generation and propagation (Carras et al., 1992). More recent neuron modelling studies have 

suggested that a single-compartment model cannot explain certain phenomena, such as the 

rapid rate of rise in action potential initiation due to missing coupling currents between 

neighbouring cellular regions, and due to the back propagation from the axon and dendrites 

(Naundorf et al., 2006, McCormick et al., 2007). Therefore, rather than modelling the 

intrinsic properties of a single compartment, spatial anatomical information and ionic channel 

distributions are also required for accurate RGC modelling. In the next chapter, we have 

included detailed morphological information and cell-specific intrinsic properties to address 

these issues.  

In addition, all optimised model parameters were determined based solely on their fits to the 

multiple-AP data. It was noticed that some resulting parameter values appeared to lie far from 

published values. For example, the estimated reversal potential for JNa of 90.99 is greater than 

its 60~65 mV value in existing models (Mainen et al., 1995, Schachter et al., 2010, 

Fohlmeister and Miller, 1997a). The second example was the value of Eh, the reversal 

potential for Jh. Hyperpolarization-activated current is a mixed-cation current which is 

commonly carried by both Na
+
 and K

+
 ions (Ishida, 1995, Stradleigh et al., 2011), and its 

reversal potential should be between the value of EK and ENa. In this chapter, it's optimised 

value was -10 mV, lying outside reported physiological range of -25~-70 mV in experimental 

studies (Robinson, 2003, Biel et al., 2009, Lee and Ishida, 2007). Another example was the 

value of EL, the leakage current equilibrium potential. It's optimised value was -32 mV, 

compared to its original value of -60 mV, which resulted in a reversal of the direction of this 

current at the resting potential of -55 mV. A final example is the cell membrane area, which 

appears to be larger than the reported anatomical size of the cell (Fohlmeister et al., 2010, 

Wong et al., 2012, O'Brien et al., 2002). However, it should be pointed out that these fits to 

multiple AP data were obtained using single-compartment RGC models. The fact that some 
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optimised parameters appeared to lie outside their normal physiological range may indicate 

that such single-compartment formulations are unable to adequately reproduce the required 

electrophysiological behaviour within the constraints of expected parameter ranges, and that 

it is necessary to include additional morphological complexity in the models. For example, 

the large value of optimised membrane area (0.261 cm
2
) obtained may reflect the influence of 

dendritic and axonal regions. Our optimisation approach suggested that such a large cell 

membrane area is necessary to closely reconstruct the multiple experimental datasets. 

Considering that RGC dendrites have much larger overall membrane surface area compared 

with the soma (Fohlmeister et al., 2010, Wong et al., 2012, O'Brien et al., 2002), the 

optimised large membrane area obtained may reflect this property. Such morphological 

complexity has been incorporated into the subsequent multi-compartment models of chapters 

6 and 7, where all optimised parameter values (including the ENa and Eh mentioned above) are 

within more appropriate physiological ranges. It should also be noted that, despite the 

seemingly unphysiological values of some model parameters, the optimised single-

compartment models of this chapter still preserve their original membrane current dynamics, 

as indicated by the similar voltage-clamp behaviours and Ca
2+

 dynamics between the 

optimised and original FM models (see Figure 5.4). 

Moreover, Jh is not the only current responsible for rebound excitation. Many studies have 

reported that the low-threshold voltage activated (also known as T-type) calcium current and 

persistent sodium current can also provide a significant contribution to rebound excitation 

(Wang et al., 1991, Kameneva et al., 2011, McCormick and Huguenard, 1992). In the 

following chapters, further refinements of this work included modifying the model structure 

by adding other known RGC ionic currents.  
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Chapter 6 Morphologically-Realistic RGC Modelling 

 

Over the last several few decades, known ionic mechanisms in RGCs continues to be updated 

with the identification of new ionic channel types such as the hyperpolarisation activated 

current (Jh) and the T-type calcium current (JCaT), with further advances in in vitro 

experimental techniques (Miller et al., 2002, Tabata and Ishida, 1996, Lee and Ishida, 2007, 

Margolis and Detwiler, 2007, Henderson and Miller, 2003). The contribution of Jh and JCaT to 

neuronal excitability has been reported in many experimental studies. Jh was found to have a 

significant effect on the subthreshold range of membrane potentials, decreasing input 

resistance (Magee, 1998, Surges et al., 2004), supporting spontaneous activity (McCormick 

and Pape, 1990), assisting dendritic summation (Abbas et al., 2013), controlling rebound 

spike timing and frequency (Engbers et al., 2011), as well as controlling the resting 

membrane potential (McCormick and Pape, 1990). JCaT has been reported to contribute to 

bursting firing (Destexhe et al., 1998), as well as assisting Jh to fire rebound spikes following 

a hyperpolarising stimulus (Engbers et al., 2011). The properties of these new currents and 

their regional distributions may significantly contribute to their overall response. However, 

there is still limited knowledge on the differences in ion channel expression among the 

identified RGC types. More importantly, the contribution of this diversity to unique responses 

of each RGC type is still unclear.  

The large range of RGC morphologies and their contribution to shaping RGC responses has 

rarely been examined quantitatively in previous studies, except for a few limited modelling 

studies (Maturana et al., 2013, Fohlmeister and Miller, 1997b), likely due to the difficulty of 

isolating the pure contribution of morphology in the experiments.  

Recent experimental studies have suggested that dendritic voltage-gated conductances 

influence neuronal behaviour under physiological conditions (Stuart et al., 2008). A more 

recent study also suggests that datasets from multiple locations along the soma and dendrites 

are necessary for constraining model parameters of an entire neuron (Keren et al., 2009). 

However, measuring dendritic activities in RGCs is more difficult than other classes of 

cortical neurons, due to the small diameter of the dendrites. At present, there is limited 

experimental evidence of full dendritic AP in RGCs (Sivyer and Williams, 2013, Velte and 

Masland, 1999).  
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In this chapter, a morphologically-realistic modelling approach was used to study the 

biophysical mechanisms underlying multiple functionally-identified RGC types. Jh and JCaT 

were added to the original FM formulation to build a new multi-compartment ionic model 

structure. With optimised cell-specific model parameters and the incorporation of detailed 

cell morphologies, these models were able to closely reproduce multiple RGC responses in 

various cells. The significance of regional distribution of ionic channels and cell morphology 

in shaping RGC firing patterns are discussed in detail. Moreover, the optimised models were 

also used to reconstruct dendritic APs without expressly including relevant data in the multi-

objective optimisation, to investigate the predictive ability of the optimised models. 
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6.1 RGC Morphology Reconstruction 

Mouse and rabbit RGCs were identified by their electrophysiology, dendritic field 

size/structure and stratification in the inner plexiform layer (IPL), as described in Section 4.3, 

Chapter 4. Cell morphologies and physical parameters can be found in Figure 6.1. Mouse ON 

and OFF RGC morphologies were obtained from Kong et al. (2005). Rabbit ON and OFF 

parasol RGC morphologies were reconstructed by Dr. David Tsai in the Graduate School of 

Biomedical Engineering, UNSW. Each RGC was filled with neurobiotin and digitally 

reconstructed using a confocal microscope with a 20×0.7 NA air and a 40×1.1 numerical 

aperture (NA) oil immersion objective lens, in conjunction with Imaris (Bitplane AG) and 

Fiji (National Institute of Health, USA) image analysis and processing software. 

Morphological data were digitized and subsequently imported into NEURON computational 

software (Hines and Carnevale, 1997), which approximated the eq. (3.2) into a multi-

compartmental representation of the neuron, equivalent to a finite-difference approximation 

of the second spatial derivative. The model included the soma, axon initial segment (AIS), 

axon hillock, axon and dendrites. Depending on the complexity of cell morphology, about 

300~1000 morphological segments were chosen to ensure accurate spatial resolution (see 

Figure 6.2). 

 

 

Figure 6.1 Example of RGC morphology reconstruction. Left. Rabbit ON (red) and OFF P (blue) RGC 

morphology visualised in Imaris software, scale bar: 80 µm. Right. Computer-reconstructed RGC morphology 

in NEURON software. The soma was reconstructed using an equivalent cylinder representation sharing the 

same somatic cell membrane area as the real cell. These two RGCs were reconstructed by Dr. David Tsai in the 

Graduate School of Biomedical Engineering, UNSW.  
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Figure 6.2 RGC morphological reconstruction using NEURON software. Two mouse RGCs (Kong et al., 2005) 

and two rabbit RGCs were used. RGC types were identified by their electrophysiological and physical 

properties. The scale bar at the left of each figure denotes 40 µm. * The inner (i.e. vitreal) edge of the ganglion 

cell layer was defined as 0%.   
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6.2 Cell-Specific RGC Modelling with Shared Kinetic Parameters  

In this section, three models based on realistic representations of three RGC morphologies 

were used to investigate the contribution of neuron spatial structure and membrane ion 

channel properties to RGC electrical activity. In all simulations, RGC models shared common 

ionic channel kinetics, differing only in their regional ionic channel distributions (i.e. 

maximal membrane conductance values) and cell morphology. Since a synaptic blocker (see 

Section 4.3 in Chapter 4) was applied during the in vitro recording, the influence from the 

retinal network was not a factor in distinguishing different RGC types.  

In cellular morphological models, the membrane potential can be described by the cable 

equation: 

𝜕

𝜕𝑠
(𝜎𝑖

𝜕𝑉𝑚

𝜕𝑠
) = 𝛽 (𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑖𝑜𝑛 − 𝐽𝑠𝑡𝑖𝑚)                                (6.1) 

where s is the arc-length along the neuron, σi is the intracellular conductivity, β is the local 

surface to volume ratio (β=2/r for a circular cylinder neuron of radius r), Jstim is the somatic 

current injection and Jion represents the total membrane current density (amperes per unit 

membrane area). Other than the original FM formulations, two additional ionic currents, 

hyperpolarisation-activated current (Jh) and T-type calcium current (JCaT) were added to 

simulate mechanisms underlying rebound spiking. 

The RGC models were simultaneously fitted to three groups of AP datasets recorded from 

ON, OFF and OFF Parasol (OFF P) cells All maximum conductance as well as specific 

gating rate kinetic parameters describing Jh and JCaT were chosen to be optimised (see tables 

6.1 and 6.2). The intrinsic properties of the three RGC models were reconstructed using 

identical optimised values of kinetic parameters but cell-specific optimised maximum 

membrane conductance (ḡ𝑗) parameters. Each group included twelve RGC voltage responses 

recorded during depolarising and hyperpolarising somatic current injections (500 ms 

duration, -210 to 120 pA in 30 pA steps). It was assumed that spiking pattern variations were 

due to the differential distribution of ion channels and cell morphologies among the three 

RGC types. As such, kinetic parameter values were shared between each RGC type, and the 

maximum membrane conductance parameters were set to be cell-specific. In all simulations, 

models were run for 500 ms before stimulation onset, in order to ensure that steady-state had 

been reached prior to stimulus delivery. 
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Resting potentials were set to -62, -65 and -60 mV for ON, OFF and OFF P models, 

respectively. Depolarising current injections with amplitudes of 100, 120 and 140 pA were 

used for the soma in all cells. Hyperpolarising current injections with amplitudes of 120, 140 

and 160 pA were used for OFF, OFF P cells and 120, 200, 300 pA were used for the ON cell. 

Stimulation durations were set to be 500 ms. Membrane potentials were recorded in response 

to multiple depolarising (red) and hyperpolarising (blue) somatic current injections in each 

RGC.  

As shown in Figure 6.3, three RGC models with identical ionic channel kinetic parameters 

showed robust spiking behaviours with different combinations of RGC morphologies (Figure 

6.3B)  and non-uniformly distributed ionic channel conductances (Figure 6.3A and E). In 

particular, OFF and OFF P cells demonstrated marked excitation in response to 

hyperpolarising stimuli, including a large time-dependent depolarising “sag” (~17 and ~11 

mV respectively) during hyperpolarisation. They also exhibited different levels of rebound 

spike rate following termination of the hyperpolarising stimulus (see blue traces in Figure 

6.3C). The ON cell only showed a relative small sag (~3 mV). After the current step was 

terminated, the ON cell did not show any rebound spiking activities, despite having a much 

higher hyperpolarising amplitude (300 pA compared with 160 pA in the OFF cells). 

Furthermore, these three cell types exhibited different spiking frequency and latency in 

response to the same levels of stimuli (highlighted in the red and blue traces of Figure 6.3C). 

The rate of membrane voltage change (Figure 6.3D) also differed between each cell type. It 

should be noted that each model demonstrated marked initial segment-soma dendritic (IS-SD) 

break, as shown by the rate of voltage change (phase plot). This IS-SD break was absent in 

our single-compartment model (Figure 5.3), due to the absent the back propagation from 

axonal and dendritic compartments. Red and blue traces in Figure 6.3 highlight individual 

depolarised and hyperpolarised responses corresponding to the step commands of the same 

colour. 

The maximum conductance parameters of all membrane ionic channels were set to be region-

specific, in order to reflect the relative proportion of ion channels in specific regions (i.e. 

soma, hillock, AIS, axon and dendrites) in each RGC. Resulting maximum membrane 

conductance values per region in each cell are also listed in Table 6.1. Figure 5.3E indicated 

the estimated ionic channel distributions in each neuronal compartment, defined as maximum 

conductance ratio between each RGC region and the soma (ḡj, X/ḡj, soma). In particular, the 
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cells included a tenfold ratio of AIS to somatic Na
+
 channel density (red bar), and a fivefold 

ratio of AIS to somatic T-type Ca
2+ 

channel density (light blue bar). 

All of these simulation results qualitatively matched the experimental recordings from 

biological RGC types (see Figure 4.4 in Chapter 4). Each model was able to reproduce 

realistic firing properties to both hyperpolarising and depolarising stimuli, including the 

patterns of depolarising sag, frequency adaptation, FSL, as well as the spiking property 

variations caused by different stimulus amplitudes. 

An additional simulation was undertaken to investigate the contribution of the 

hyperpolarisation-activated and T-type calcium currents to spiking behaviour using the OFF 

RGC model. Two specific parameters, the maximum membrane conductances of Jh and JCaT, 

were gradually reduced in order to model the effect of these two currents on rebound 

excitation. All other model parameters were held fixed. As shown in Figure 6.4A, blocking Jh 

has a stronger influence on rebound activity than JCaT, particularly in terms of rebound FSL. 

In addition, block of Jh resulted in reduction of hyperpolarised-induced sag amplitude and 

shift of resting membrane potential (Figure 6.4B), whilst block JCaT did not influence these 

two properties.  

Despite the successful reconstruction of spiking activities, each RGC model was optimised 

against time-series AP data only. However, other information such as AP waveshape (2-D 

phase plot) has also been reported to carry important neuronal information (Fohlmeister and 

Miller, 1997b), and may therefore, also contribute to RGC identification. The ability of these 

models to accurately reconstruct cell-specific AP waveforms was still unclear. In addition, 

ON and OFF RGC model presented in this chapter are reconstructed based on cell 

morphologies and data from these different species, limiting the accuracy and utility of these 

models.  These issues were addressed in the next section.  
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Figure 6.3 Distinct firing patterns reproduced by the RGC models. A. Somatic channel maximum membrane 

conductance in each RGC. Note the different current scales for high (black) and low (red) densities. B. Mice 

RGC morphologies for ON, OFF, and OFF P cells. Scale bar: 40 µm. C. Membrane potentials in response to 

multiple depolarising (red) and hyperpolarising (blue) somatic current injections in each RGC. Resting 

potentials of these cells were -62, -65 and -60 mV respectively. External somatic current injection: 500 ms 

duration with amplitudes of 100, 120 and 140 pA for depolarising injection for all cells, 120, 140 and 160 pA 

for hyperpolarising injection for OFF and OFF P cells and 120, 200, 300 pA for the ON cell. Red and blue 

traces highlight individual depolarised and hyperpolarised responses corresponding to the step commands (of 

the same colour) below. Scale bar: 40 mV and 10 ms. D. Phase plot (dV/dt versus V) of the somatic depolarising 

(red) and rebound (blue) AP in each RGC. Note the absence of rebound spiking in the ON cell. E. Ionic channel 

maximum conductance ratio between each RGC region and the soma (defined as ḡj, X/ḡj, soma).  
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Table 6.1 Regional ionic channel distributions in ON, OFF and OFF P RGC models. Ionic channel maximum 

conductances were set to be compartment-specific, in order to reflect the proportion of ion channels in specific 

regions of each RGC. 

  

TABLE 6.1. 

Ionic Channel Distributions  

 

Channel 

Regional Maximum Membrane Conductances (mS/cm
2
) 

Soma Axon AIS Hillock Dendrites 

 ON       

JNa 51 51 510 51 19.1 

JK 13.1 13.1 13.1 13.1 8.73 

JKA 39.4 - 39.4 39.4 26.27 

JCa 1.1 - 1.1 1.1 1.47 

JKCa 0.047 0.047 0.047 0.047 7.23e-4 

Jh 0.11 0.11 0.11 0.11 0.11 

JCaT 0.029 0.029 0.029 0.029 0.145 

JL 0.147 0.147 0.147 0.147 0.147 

 OFF      

JNa 45.9 45.9 459 45.9 17.2 

JK 13.1 13.1 13.1 13.1 8.73 

JKA 39.4 - 39.4 39.4 26.27 

JCa 1.1 - 1.1 1.1 1.47 

JKCa 0.47 0.47 0.47 0.47 7.23e-4 

Jh 0.383 0.383 0.383 0.383 0.383 

JCaT 0.052 0.052 0.052 0.052 0.26 

JL 0.147 0.147 0.147 0.147 0.147 

 OFF P      

JNa 48 48 480 48 18 

JK 25.2 25.2 25.2 25.2 16.8 

JKA 18.9 - 18.9 18.9 12.6 

JCa 2.2 - 2.2 2.2 2.94 

JKCa 0.047 0.047 0.047 0.047 7.23e-4 

Jh 0.132 0.132 0.132 0.132 0.132 

JCaT 0.017 0.017 0.017 0.017 0.085 

JL 0.07 0.07 0.07 0.07 0.07 
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TABLE 6.2. 

Optimized ionic current formulations for ON, OFF and OFF P RGC models. 

Channel  

JNa 𝐽𝑁𝑎 = 𝑔̅𝑁𝑎𝑚3ℎ(𝑉𝑚 − 35) 

𝛼𝑚 = −0.6(𝑉𝑚 + 30)/(𝑒−0.1(𝑉𝑚+30) − 1) 

 

𝛼ℎ = 0.4𝑒−(𝑉𝑚+50)/20 

𝛽𝑚 = 20𝑒−(𝑉𝑚+55)/18 

 

𝛽ℎ = 6/(1 + 𝑒−0.1(𝑉𝑚+20)) 

JCa 𝐽𝐶𝑎 = 𝑔̅𝐶𝑎𝑐3(𝑉𝑚 − 𝑉𝐶𝑎)  

 
𝑑[𝐶𝑎2+]𝑖

𝑑𝑡
= − (

3

2𝐹𝑟
𝐽𝐶𝑎) −

[𝐶𝑎2+]
𝑖
−0.0001

50
   

𝛼𝑐 = −0.3(𝑉𝑚 + 13)/(𝑒−0.1(𝑉𝑚+13) − 1) 

𝑉𝐶𝑎 =
𝑅𝑇

2𝐹
𝑙𝑛 (

1.8

[𝐶𝑎2+]𝑖
)  

𝛽𝑐 = 10𝑒−(𝑉𝑚+38)/18 

JK 
𝐽𝐾 = 𝑔̅𝐾𝑛4(𝑉𝑚 + 75) 

 
𝛼𝑛 = −0.02(𝑉𝑚 + 40)/(𝑒−0.1(𝑉𝑚+40) − 1) 𝛽𝑛 = 0.4𝑒−(𝑉𝑚+50)/80 

JKA 
𝐽𝐾𝐴 = 𝑔̅𝐾𝐴𝐴3ℎ𝐴(𝑉𝑚 + 75) 

 
𝛼𝐴 = −0.006(𝑉𝑚 + 90)/(𝑒−0.1(𝑉𝑚+90) − 1) 

𝛽ℎ𝐴 = 0.04𝑒−(𝑉𝑚+70)/20 

𝛽𝐴 = 0.1𝑒−(𝑉𝑚+30)/10 

𝛽ℎ𝐴 = 0.6/(1 + 𝑒−0.1(𝑉𝑚+40)) 

JKCa 𝐽𝐾𝐶𝑎 = 𝑔𝐾𝐶𝑎(𝑉𝑚 + 75) 

 

𝑔𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎[(
[𝐶𝑎2+]𝑖
0.001

)2/(1 + (
[𝐶𝑎2+]𝑖
0.001

)2)] 

Jh 𝐽ℎ = 𝑔̅ℎ  𝑦 (𝑉𝑚 + 26.8) 

𝑦∞ = 1/(1 + 𝑒(𝑉𝑚+75)/5.5) 𝜏𝑦 = 561.2 𝑒0.01(𝑉𝑚+20)/(1 + 𝑒0.2(𝑉𝑚+20)) 

JCaT 
𝐽𝐶𝑎𝑇 = 𝑔̅𝐶𝑎𝑇 𝑚𝑇

3ℎ𝑇 (𝑉𝑚 − 𝑉𝐶𝑎) 

𝛼𝑚𝑇 =
0.91

1 + 𝑒−0.17(𝑉𝑚+61.5)
 

𝛼ℎ𝑇 = 0.013𝑒0.022(𝑉𝑚+131.1) 

𝛽𝑚𝑇 =
0.64

1 + 𝑒−0.03(𝑉𝑚+10)
+

0.64

1 + 𝑒0.2(𝑉𝑚+89.4)
 

𝛽ℎ𝑇 =
0.9

1 + 𝑒−0.02(𝑉𝑚+42.9)
 

JL 
𝐽𝐿 = 𝑔̅𝐿(𝑉𝑚 + 75) 

Table 6.2 Ionic channel kinetic parameters were shared among ON, OFF and OFF P RGC models. All rates are 

in units of 1/ms, voltages in units of mV, [Ca
2+

]i in units of mM, time constants in units of ms, and membrane 

currents in units of mA/cm
2
. Parameters highlighted in red (i.e. maximal membrane conductances) were allowed 

to vary between different RGCs and in different morphological compartments. Kinetic parameters optimized are 

shown in blue. These parameters were held fixed for all neural compartments. Simulated temperature was set to 

be 308 K. 
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Figure 6.4 A. Model-generated FSL and rebound spike number after Jh and JCaT were progressively blocked by 

reducing their maximum conductance parameters. Rebound excitation was significantly reduced in terms of 

rebound FSL (left) and spiking number (right) by blocking Jh, whilst block of JCaT was less effective in reducing 

rebound spiking number and influencing FSL. B. The depolarising sag (measured as peak-to-steady state 

potential difference during hyperpolarising stimulation) in response to multiple hyperpolarising currents was 

significantly attenuated when Jh was blocked by 50% (left panel). There was a linear hyperpolarising shift in 

resting membrane potential with increasing levels of Jh block (right panel).  
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6.3 Accurate Reconstruction of RGC Electrical Activities with Multi-

Objective Optimisation 

In this section, the ON and OFF P RGC models based on realistic morphologies were 

simultaneously fitted to time-series action potential (AP) datasets and phase plot datasets 

(time derivative of membrane potential versus membrane potential), recorded from each cell 

type. In total, twelve AP datasets plus twelve phase plot datasets were used to optimise each 

RGC model. In addition to the AP and phase plot datasets, our objective function also 

included quantitative data relating to spiking patterns such as FSL, total spike number, 

average ISI during depolarisation, and “sag” amplitude in response to hyperpolarising 

injections (see the definition of each spiking property in Table 4.1 in section 4.2.4).  

During parameter optimisation, the values of most gating rate kinetic parameters were shared 

between the ON and OFF P cell models. A subset gating rate kinetic parameters along with 

all maximum membrane conductance (ḡ𝑗) parameters (indicators of ion channel densities), 

were optimised and set to be cell-specific to reflect the intrinsic properties of each cell type 

(see Tables 6.3-6.5). In addition, the somatic current magnitudes were also fitted to ensure the 

accurate reconstruction of multiple spiking patterns against a range of stimulus amplitudes 

(see Figure 6.5D and Figure 6.6D). In all simulations, a model was run for 500 ms prior to 

stimulation onset, in order to reach steady state.  

” 
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6.3.1 Morphologically and Functionally-Accurate ON and OFF RGC Model 

Experimental data for optimising each model was recorded from the same RGC used for 

morphology reconstruction (see Figure 6.1). Each data group included twelve RGC voltage 

responses recorded during depolarising and hyperpolarising somatic current injections (500 

ms duration, -120 ~ 210 pA)  

Figure 6.5 and Figure 6.6 show fitted AP results for an ON and OFF P cell following multi-

dataset optimisation. The OFF P model demonstrated rebound excitation in response to 

hyperpolarising stimuli, including pronounced depolarising “sag” (~5 mV) during 

hyperpolarisation (Figure 6.6C) owing to the activation of Jh. In contrast, the ON model 

shown in 6.5C only revealed a relatively small sag (~3 mV), despite having a much higher 

hyperpolarising stimulus (140 pA compared with 50 pA in the OFF P model). ON and OFF 

model reconstructions (red traces) closely matched the experimental data (blue traces) 

recorded from the same RGC used for morphology reconstruction. However, when original 

FM formulations (Fohlmeister and Miller, 1997b) were used on the same RGC morphologies 

shown in Figure 6.5D and 6.6D, a hyperpolarisation current injection caused the membrane to 

hyperpolarise along an approximately exponential time course governed by the passive 

membrane time constant. When the current injection was terminated, the membrane voltage 

smoothly decayed back to its original resting potential (see black traces in Figure 6.5C and 

6.6C).  

The ON and OFF P RGC models also exhibited significantly different ionic channel 

distributions in their neuronal compartments (Figure 6.5E and 6.6E) which contributed to the 

cell-specific spiking patterns and AP waveshapes in response to multiple somatic injections. 

In particular, the ON cell exhibited an ~sevenfold ratio of AIS to somatic JNa density versus a 

corresponding ~fourfold ratio in the OFF P cell. In addition, a high dendritic Jh ratio (twofold 

AIS to that in soma) and JCaT (fivefold AIS to that in soma) were obtained in the OFF P cell, 

whilst the ON cell only exhibited relatively low Jh (dendrite-to-somatic Jh ratio was 1.3:1) 

and JCaT (dendrite-to-somatic Jh ratio was 1:1). The optimised maximum membrane 

conductance values in each cellular region for the ON and OFF P models are also listed in 

Table 6.3. 

Moreover, the rate of membrane voltage change (i.e. 2-D phase plot) also differed between 

the two optimised model neurons. In particular, the model ON cell exhibited lower rates of 

depolarising/repolarising phases, higher overshoot and more obvious initial segment-soma 

dendritic (IS-SD) break than the OFF P cell. All of these simulation results closely matched 
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the recorded rate of membrane voltage change (blue) from real RGCs. In contrast, the phase 

plots reconstructed by the original FM model (black) were generally far from the 

experimental data.  

Figure 6.7 shows the quantitative comparison between the optimised model and the original 

FM model performance in terms of their reconstructed response to a range of stimulation 

amplitudes. Hyperpolarising somatic injections (H1~H4) were set to be -26, -70, -110, 140 

pA for the ON cell, and -20, -30, -38, -50 pA for the OFF P cell.  The depolarising injections 

(D1~D7) were set to 17, 60, 97, 116, 131, 150 and 160 pA for the ON cell and 30, 46, 61, 74, 

87, 103, 120 pA for the OFF cell. In the upper panels of Figure 6.7A, B and C, the optimised 

ON and OFF P models (red) each exhibited unique spiking patterns, including FSL, inter-

spike interval and total spike number for different stimulus amplitudes. The optimised model 

demonstrated an obvious advantage over the original FM model, as indicated by the residual 

bars between model-reconstructed and experimental spiking patterns shown in the lower 

panels. The black circles in Figure 6.7A and B indicate non-existent data. Panels D and E of 

Figure 6.7 showed model-reconstructed (red), and experimental (blue) sag amplitude and post 

offset FSL under multiple hyperpolarizing injections. The original FM model could not 

reproduce ‘sag’ during hyperpolarizing injections, or rebound spiking activity, indicating the 

importance of the added membrane currents (i.e. Jh and JCaT) in shaping firing patterns. Black 

triangles in panels D and E indicate the data that original FM model failed to reproduce. 

Panel F of Figure 6.7 shows a quantitative comparison between optimised model (red) and 

FM model (black) rate of membrane voltage change using a normalised 2D RMS (for details, 

see section 4.2.4). The residual bars in the lower panel indicate that the optimised model 

demonstrates far higher accuracy in reconstructing the rate of membrane voltage change.  

To further explore the predictive ability of the models, we also examined the membrane 

potential at the AIS, soma and distal dendrite for the ON and OFF P RGC models used 

throughout this chapter (Figure 6.8B and A). When a stimulus of 100 pA was applied to the 

soma, different AP and Na
+
 channel density waveforms were observed in each cellular region 

between the ON (panel B) and OFF P (panel A) models. Recording sites in the AIS, soma 

and dendrite were indicated by the blue, red and green cones respectively. In a more recent 

experimental study (Sivyer and Williams, 2013), simultaneous whole-cell current-clamp 

recordings were made from the soma and the parent dendrites of rabbit RGCs under both 

light and electrical stimulation. As shown in Figure 6.8C, a 200 pA somatic current injection 

evoked a somatic AP (black AP recorded by gray electrode), which rapidly back-propagated 
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to dendritic recording sites (red AP by red electrode) with little amplitude decrement. 

Interestingly, although experimental dendritic AP data was not available to include in our 

optimisation, our model-reconstructed dendritic APs (Figure 6.8A) closely matched recent 

recordings obtained from RGC dendrites in terms of overall waveshape and comparable 

reduction in AP amplitude compared to that of the soma (see Figure 6.8C). 

Figure 6.9 demonstrates the normalised current-voltage (I-V) curve for Jh and JCaT, generated 

by the OFF P model, compared to experimental voltage-clamp data recorded from the actual 

OFF P cell used to optimise model parameters. Jh voltage-clamp simulations were generated 

using a holding potential of -55mV, while sequentially hyperpolarising the cell from -55 to -

105 mV in decrements of 10 mV. Each voltage clamp step was of duration 500 ms. In the 

right panel of Figure 6.9A, the family of current traces exhibited a slow increase in the 

inward current. The magnitude and rate of activation of this inward current increased with 

higher hyperpolarising commands. The left and middle panels of Figure. 6.9A show the 

experimental and reconstructed normalised current-voltage (I-V) Jh relationship. The steady 

state Jh values at the end of the 500 ms pulse were measured for each current step and have 

been plotted against the corresponding injected current amplitudes. In an another simulation, 

JCaT voltage-clamp behaviours were reconstructed with a holding potential of -100mV, while 

sequentially depolarising the cell from -80 to -35 mV in increments of 5 mV. In the left panel 

of Figure 6.9B, the family of current traces exhibited a fast activation component which is 

followed by a relatively slow inactivation component. The left and middle panels of Figure 

6.9B show the experimental and reconstructed normalised I-V relationship for JCaT  using the 

peak JCaT amplitudes versus the corresponding injected current amplitudes. Both 

experimental and simulated currents were obtained from the soma. As can be seen from the 

figure, the model (Figure 6.9A and B, right panel) closely matched the actual Jh and JCaT 

dynamics observed (Figure 6.9A and B, left panel). 
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Figure 6.5 Comparison of ON RGC optimised model (red), original FM model (black) outputs and 

experimental data (blue) in response to multiple somatic injections of 120~210 pA (panel A), 0~90 pA (panel B) 

and -120~-30 pA (panel C). A, B and C. Upper: Experimentally recorded membrane potential (blue) from ON 

RGC. Middle: optimised (red) and FM (black) model-generated membrane potentials in response to a family of 

somatic current pulses shown by the thick horizontal line in the top left trace of panel A. Lower: Phase plot 

(dVm/dt versus Vm) of experimentally-recorded (blue), optimised (red) and FM (black) model-generated 

membrane potential responses to multiple somatic injections. D. Reconstructed ON RGC morphology. 

Horizontal bar: 40 µm. E. Ionic channel distribution ratio between each RGC region and the soma (defined as ḡj, 

X/ḡj, soma) in ON model.  
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Figure 6.6 Comparison of OFF P RGC optimised model (red), original FM model (black) outputs and 

experimental data (blue) in response to multiple somatic injections of 120~210 pA (panel A), 0~90 pA (panel B) 

and -120~-30 pA (panel C). A, B and C. Upper: Experimental membrane potentials obtained in OFF RGC. 

Middle: optimised (red) and FM (black) model-reconstructed membrane potentials in response to a family of 

somatic current pulses. Lower: Phase plots of experimentally recorded (blue), optimized (red) and FM (black) 

model-generated membrane potential responses to multiple somatic injections. D. Reconstructed OFF P RGC 

morphology. Horizontal bar: 40 µm. E. Ionic channel distribution ratio between each RGC region and the soma 

(defined as ḡj, X/ḡj, soma) for the OFF P model.  
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Figure 6.7 Comparison of optimised model (red) and original FM model (black) performance against 

experimental data (blue) using a range of stimulation amplitudes. A, B and C. Upper, model-reconstructed (red), 

FM model-reconstructed (black) and experimental (blue) spiking patterns in response to multiple somatic 

injections. Black circles in A and B indicate non-existent data. Lower, Comparison of optimised model (red) 

and FM model (black) performance in terms of discrepancy between models and data. H1-H4: hyperpolarizing 

injections, D1-D7: depolarizing injections, SP: no injection. D and E. Model-reconstructed (red), and 

experimental (blue) sag amplitude and post offset FSL under multiple hyperpolarizing injections. Note that the 

original FM model was not able to reproduce the characteristic ‘sag’ during hyperpolarizing injections, nor 

could it reproduce rebound spiking activity. F. Comparison of optimised model (red) and FM model (black) 

reconstructed phase plots in terms of normalised 2D RMS. Black triangles in D, E and F indicate experimental 

data that original FM model failed to reconstruct.   
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TABLE 6.3. 

Ionic Channel Distributions in ON and OFF RGC Models 

 

Channel 

Regional Maximum Membrane Conductances (mS/cm2) 

Soma Axon AIS Hillock Dendrites  Soma Axon AIS Hillock Dendrites 

OFF P  ON   

JNa (IN) 68.4 68.4 249 68.4 21.68 JNa (IN) 147.3 147.3 1072 147.3 105.526 

JNa  (EX) 68.4 39 249 68.4 21.68 JNa (EX) 147.3 103 153 147.3 105.526 

JK 45.9 45.9 68.85 45.9 42.83 JK 16.2 16.2 40.5 16.2 7.559 

JKA 18.9 - 18.9 18.9 13.86 JKA 37.8 - 94.5 37.8 27.7187 

JCa 1.6 - 1.6 1.6 2.133 JCa 2.1 - 2.1 2.1 2.7999 

JKCa 0.0474 0.0474 0.0474 0.0474 7.3e-4 JKCa 0.04 0.04 0.04 0.04 6.1e-4 

Jh 0.1429 0.1429 0.1429 0.1429 0.286 Jh 0.4287 0.4287 0.4287 0.4287 0.5573 

JCaT 0.1983 0.1983 0.1983 0.1983 0.992 JCaT 0.008 0.008 0.008 0.008 0.008 

JL 0.0339 0.0339 0.0339 0.0339 0.0363 JL 0.0206 0.0206 0.0206 0.0206 0.0305 

Table 6.3 Regional ionic channel distributions in ON and OFF P RGC models. IN: Parameters used in RGC 

models with intracellular stimulation. EX: Parameters used in RGC models with extracellular stimulation in 

Chapter 7.  

 

TABLE 6.4. 

Optimized ionic current formulations for ON RGC model.  

Channel  

JNa 𝛼𝑚 = −0.3041(𝑉𝑚 + 30)/(𝑒−0.1(𝑉𝑚+30) − 1) 

JCa 
𝑑[𝐶𝑎2+]𝑖

𝑑𝑡
= − (

3

2𝐹𝑟
𝐽𝐶𝑎) −

[𝐶𝑎2+]
𝑖
−0.0001

13.75
    

JK 
𝐽𝐾 = 𝑔̅𝐾𝑛4(𝑉𝑚 + 72) 

JKA 
𝐽𝐾𝐴 = 𝑔̅𝐾𝐴𝐴3ℎ𝐴(𝑉𝑚 + 72) 

 
𝛼ℎ𝐴 = 0.002𝑒−(𝑉𝑚+70)/20 𝛽ℎ𝐴 = 0.03/(1 + 𝑒−0.1(𝑉𝑚+40)) 

JKCa 𝐽𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎(𝑉𝑚 + 72) 

Jh 𝐽ℎ = 𝑔̅𝑁𝑎  𝑦 (𝑉𝑚 + 45.8) 

 
𝜏𝑦 = 4649 𝑒0.01(𝑉𝑚+20)/(1 + 𝑒0.2(𝑉𝑚+20)) 

JL 
𝐽𝐿 = 𝑔̅𝐿(𝑉𝑚 + 66.5) 

Table 6.4. Specific optimized ionic current formulations for ON RGC model: all other formulations and 

parameters were shared between ON and OFF P models. All rates are in units of 1/ms, voltages in units of mV, 

[Ca
2+

]i in units of mM, time constants in units of ms, and membrane currents in units of mA/cm
2
. Specific 

gating rate kinetic parameters optimized for ON RGC model are shown in blue. These parameters were held 

fixed for all neural compartments.  
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TABLE 6.5. 

Optimized ionic current formulations for OFF RGC model.  

Channel  

JNa 𝐽𝑁𝑎 = 𝑔̅𝑁𝑎𝑚3ℎ(𝑉𝑚 − 35) 

𝛼𝑚 = −0.6(𝑉𝑚 + 30)/(𝑒−0.1(𝑉𝑚+30) − 1) 

 

𝛼ℎ = 0.4𝑒−(𝑉𝑚+50)/20 

𝛽𝑚 = 20𝑒−(𝑉𝑚+55)/18 

 

𝛽ℎ = 6/(1 + 𝑒−0.1(𝑉𝑚+20)) 

JCa 𝐽𝐶𝑎 = 𝑔̅𝐶𝑎𝑐3(𝑉𝑚 − 𝑉𝐶𝑎)  

 
𝑑[𝐶𝑎2+]𝑖

𝑑𝑡
= − (

3

2𝐹𝑟
𝐽𝐶𝑎) −

[𝐶𝑎2+]
𝑖
−0.0001

55
   

𝛼𝑐 = −0.15(𝑉𝑚 + 13)/(𝑒−0.1(𝑉𝑚+13) − 1) 

𝑉𝐶𝑎 =
𝑅𝑇

2𝐹
 ln (

1.8

[𝐶𝑎2+]𝑖
)  

𝛽𝑐 = 10𝑒−(𝑉𝑚+38)/18 

JK 
𝐽𝐾 = 𝑔̅𝐾𝑛4(𝑉𝑚 + 68) 

 
𝛼𝑛 = −0.02(𝑉𝑚 + 40)/(𝑒−0.1(𝑉𝑚+40) − 1) 𝛽𝑛 = 0.4𝑒−(𝑉𝑚+50)/80 

JKA 
𝐽𝐾𝐴 = 𝑔̅𝐾𝐴𝐴3ℎ𝐴(𝑉𝑚 + 68) 

 
𝛼𝐴 = −0.003(𝑉𝑚 + 90)/(𝑒−0.1(𝑉𝑚+90) − 1) 

𝛽ℎ𝐴 = 0.04𝑒−(𝑉𝑚+70)/20 

𝛽𝐴 = 0.1𝑒−(𝑉𝑚+30)/10 

𝛽ℎ𝐴 = 0.6/(1 + 𝑒−0.1(𝑉𝑚+40)) 

JKCa 𝐽𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎(𝑉𝑚 + 68) 

 

𝑔𝐾𝐶𝑎 = 𝑔̅𝐾𝐶𝑎[(
[𝐶𝑎2+]𝑖
0.001

)2/(1 + (
[𝐶𝑎2+]𝑖
0.001

)2)] 

Jh 𝐽ℎ = 𝑔̅ℎ  𝑦 (𝑉𝑚 + 26.8) 

𝑦∞ = 1/(1 + 𝑒(𝑉𝑚+75)/5.5) 𝜏𝑦 = 588.2 𝑒0.01(𝑉𝑚+10)/(1 + 𝑒0.2(𝑉𝑚+10)) 

JCaT 
𝐽𝐶𝑎𝑇 = 𝑔̅𝑇 𝑚𝑇

3ℎ𝑇 (𝑉𝑚 − 𝑉𝐶𝑎) 

𝛼𝑚𝑇 = 1/(1.7 + e−(𝑉𝑚+28.8)/13.5) 

 

𝛼ℎ𝑇 = e−(𝑉𝑚+160.3)/17.8 

𝛼𝑑 = (1 + e
𝑉𝑚+37.4

30 )/(240(0.5 + √0.25 + 𝑒
𝑉𝑚+83.5

6.3  )) 

𝛽𝑚𝑇 = (1 + e−
𝑉𝑚+63

7.8 ) /(1.7 + e−
𝑉𝑚+28.8

13.5  )  

𝛽ℎ𝑇 = 𝛼ℎ𝑇(√0.25 + e
𝑉𝑚+83.5

6.3 − 0.5) 

𝛽𝑑 = 𝛼𝑑
√0.25 + e

(𝑉𝑚+83.5)
6.3  

JL 
𝐽𝐿 = 𝑔̅𝐿(𝑉𝑚 + 70.5) 

Table 6.5 Specific ionic channel kinetics parameters for ON RGC model, all the other parameters were shared 

between ON and OFF P models. All rates are in units of 1/ms, voltages in units of mV, [Ca
2+

]i in units of mM, 

time constant in units of ms, and membrane currents in units of mA/cm
2
. Parameters highlighted in red (i.e. 

maximal membrane conductances) were allowed to vary between the ON and OFF P cells, as well as vary in 

different morphological compartments (see Table 6.3). Kinetic parameters optimized are shown in blue. These 

parameters were held fixed for all neural compartments. Simulated temperature was set to be 308 K.  
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6.3.2 RGC Dendritic Activation  

 

Figure 6.8 Cell-specific APs in dendrites and the AIS. A. Upper: Model-reconstructed AP in AIS (blue), soma 

(red) and dendritic tree (green). Lower: Model-reconstructed Na+ current from axon initial segment (blue), 

soma (red) and dendritic tree (green). Right. Location of AIS, somatic and dendritic APs in OFF P cell 

morphology. B. Upper: Model-reconstructed APs in AIS (blue), soma (red) and dendritic tree (green). Lower: 

Model-reconstructed Na
+
 current from AIS (blue), soma (red) and dendritic tree (green). Right. Location of AIS, 

somatic and dendritic APs in ON cell morphology. C. Experimental data from Sivyer and Williams (2013). This 

study suggested that a full AP can be evoked by both a flashing-spot light stimulus and direct somatic current 

injection. Left: Experimental RGC somatic (black) and dendritic (red) AP in response to a 0.2 nA somatic 

current injection. Right: Reconstructed rabbit RGC. Yellow circle shows flashing-spot light stimulus location. 

The red coloured portion indicates the recorded dendritic sub-tree.   
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6.3.3 Role of Jh and JCaT in RGC Spiking 

 

Figure 6.9 Simulated and experimental voltage-clamp behaviour of Jh and JCaT. Experimental voltage-clamp 

currents were obtained from the same OFF P cell used throughout this chapter. A. Left: Experimental 

normalised current-voltage (I-V) Jh relationship from the amplitude of steady-state membrane hyperpolarisation-

activated current obtained in RGCs (from a holding potential of -55 mV, in 10 mV steps). Middle: Simulated 

normalised I-V relationship for Jh. Right:  Voltage-clamp simulation of Jh in the OFF P RGC model. Simulated 

somatic current injection: 500 ms duration, from a holding potential of -55 mV, in 10 mV steps. Membrane 

current shown is for the soma. B. Left: Experimental normalised I-V relationship for JCaT calculated from peak 

amplitude (from a holding potential of -100 mV, in 5 mV steps). Middle: Simulated normalised I-V JCaT 

relationship. Right: Voltage-clamp simulation for JCaT in the OFF P RGC model. Simulated somatic current 

injection: 120 ms duration, from a holding potential of -100 mV, in 5 mV steps. Membrane current shown is for 

the soma. 

To investigate the contribution of Jh and JCaT to spiking activity in the OFF P RGC model, we 

set the somato-dendritic channel distribution ratio of Jh and JCaT (defined by ϑj = ḡ j,den/ḡ j, soma) 

as indicators of RGC rebound firing properties, where ḡj,den and ḡj,soma represent the maximum 

membrane conductance of the corresponding ionic current in the soma and dendrites 

respectively. These two membrane currents were chosen because of their absence in the 

original FM model and importantly, their contribution during hyperpolarising stimuli. The 

two ratios, ḡh,den/ḡh,soma and ḡT,den/ḡT,soma, were varied over the ranges 0~6 and 0~12, 

respectively. Five RGC properties were determined from the model: rebound spike number; 
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rebound FSL; rebound ISI, depolarising sag amplitude and input resistance (Figure 6.10A-E). 

Analysis was undertaken at the soma to characterise RGC activities in response to a 

hyperpolarising somatic injection (500 ms duration, 50 pA amplitude).  

The results suggested significant correlations between certain spiking properties. For example, 

rebound spike number (Figure 6.10A) and average ISI (Figure 6.10D) showed similar 

patterns of “wave crests” and “troughs” in parameter space. These “waves” or oscillations in 

parameter space occurred where spiking properties altered dramatically with slight changes in 

conductance, typically the region around the boundary between two different spiking states. 

Moreover, we found that the intrinsic activity of the neuron was more sensitive to changes in 

conductance in certain directions (across wave crests) and relatively insensitive to changes in 

other directions (along the “troughs”), as indicated in the ISI (Figure 6.10D) and FSL (Figure 

6.10B) maps.  

In Figure 6.10C, the membrane resistance was defined as the ratio of membrane voltage 

displacement to injected current using a 120 pA hyperpolarising somatic current injection. 

This resistance gradually decreased with increasing dendritic Jh, indicating its role in the 

integration of neuronal inputs. It should be noted that individual membrane response 

properties may not provide enough information on how ionic channel distribution can 

influence the global behaviour of the RGC model. For example, the sag amplitude (Figure 

6.10E) and input resistance (Figure 6.10C) maps cannot indicate the parameter regions which 

affect RGC spiking behaviours, whilst the ISI (Figure 6.10D) and spike number (Figure 

6.10A) maps can suggest how to regulate Jh  and JCaT channel densities without largely 

influencing overall RGC responses. In addition, ISIs were almost absent in the region ϑT < 10 

– 2ϑh as indicated by the white region in Figure 6.10D, where the FSL (Figure 6.10B) maps 

become more useful, since the latter property was present over most of the parameter space 

investigated. 

RGC post-offset activity states (Figure 6.10E) were classified as 1) passive (no rebound 

spiking after termination of hyperpolarising injection), 2) rebound, 3) spontaneous activity 

(excited before stimulus onset), and 4) sub-threshold oscillation (refer to a sub-threshold Vm 

fluctuation during hyperpolarising injection). It should be noticed that the sub-threshold 

oscillations were always combined with rebound or spontaneous activity.  

In another set of simulations, the influence of Jh and JCaT over a large stimulation range 

(hyperpolarisation stimulus amplitude 50-150 pA, with duration of 0-500 ms) was examined. 
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Figure 6.11A shows the simulated rebound spiking properties reconstructed for various 

combinations of Jh and JCaT. The plots of the figure compare the 1) spike number (SN), 2) 

first spike latency (FSL), 3) rebound average ISI, as well as 4) the ratio of FSL and ISI 

between models for various hyperpolarising depths and durations. As the hyperpolarisation 

stimulus amplitude and duration increase, the full model indicated a progressively increasing 

SN, decreasing FSL and ISI, and greater FSL/ISI ratio. Partially blocking JCaT altered the 

FSL/ISI ratio without largely affecting FSL, whilst partially blocking Jh substantially altered 

FSL and FSL/ASI ratio.  

However, despite their significant influence on rebound spiking patterns, Jh and JCaT did not 

have a significant influence on shaping the rebound AP waveforms. As Figure 6.11B 

indicates, the AP phase plots were nearly identical after the Jh and JCaT conductances were 

substantially altered.  

 

Figure 6.10 Dependency of post-offset activities on somato-dendritic distribution of Jh and JCaT (ϑh = ḡh, den/ḡh, 

soma and ϑT = ḡT, den/ḡT, soma). All simulations were undertaken using a hyperpolarising somatic current injection 

(500 ms duration, -50 pA amplitude). A. Rebound spike number. B. First spike latency (measured as the time 

between the stimulus offset and half-maximum amplitude of the first somatic AP). The empty pixels (white) 

represent regions without a somatic AP. C. Input resistance (measured as the ratio of membrane voltage 

displacement and injected current to a hyperpolarising somatic current injection of -120 pA). Empty pixels 

represent regions where strong oscillation occurred during hyperpolarisation and the input resistance could not 

be determined. D. Averaged ISI. The empty pixels represent regions with less than two spikes. E. Sag amplitude 

(measured as peak to steady-state potential difference) during hyperpolarising stimulation. The pixels located in 

the northeast corner represent regions of strong oscillation where the sag amplitude could not be determined. F. 

Post-offset activity state. Blue: passive response. Green: rebound response. Red: spontaneous response. Hashed-

net: sub-threshold oscillations. 
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Figure 6.11 The roles of Jh and JCaT on simulated rebound activity over a larger stimulation range. A. Rebound 

spiking properties reconstructed by different combinations of Jh and JCaT. From left to right, the plots compare 

the 1) spike number (SN), 2) FSL, 3) averaged ISI, and 4) the ratio of FSL and ISI between models for various 

hyperpolarising stimulus amplitudes and durations. B. The first AP phase plots during rebound. Jh and JCaT do 

not appear to have a significant influence on AP waveshapes. 
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6.4 Influence of Cell Morphology on RGC Firing Patterns 

The behaviours of these cells are a result of their biophysical properties, network connectivity, 

as well as the geometry of their neuronal processes. Since neuronal morphology has been 

reported to play a vital role in shaping response properties and integration of neuronal inputs 

in many cell types throughout the central nervous system (CNS) (Vetter et al., 2001a, 

Spruston, 2008), we hypothesise that cell morphology also plays a role in shaping the 

response of RGCs. The modelling approach developed in this chapter allowed us to 

quantitatively control the cellular properties, allowing the effects of morphology on firing 

properties to be cleanly isolated. In section 6.4.1, the results suggested that in addition to their 

intrinsic biophysical properties, morphological differences in RGCs classes can also largely 

differentiate their functional response. 

Morphologically-detailed modelling can be also used to study how APs propagate through 

the complex RGC structure following intracellular stimulation. In section 6.4.2 and 6.4.3, the 

RGC models reconstructed AP propagation along the dendritic tree, and importantly, how 

dendritic structure with active ionic channels influences the local signal propagation. 

Simulation results shown in section 6.4 suggest that the physical properties of the dendritic 

tree facilitate dendritic signal processing, whilst dendritic active conductances further 

regulate spiking properties through the interaction between dendrites and the soma-axon 

compartments. 

 

6.4.1 Morphologically-Specific Responses of ON and OFF RGCs  

To understand how morphology shapes the RGC responses, we developed a morphology-

specific model using the ON and OFF RGC morphological data shown in Figure 6.3. Model 

parameters were estimated to ensure reasonable RGC behaviours in response to multiple 

stimuli. To isolate the contribution of morphology to cellular responses, ON and OFF RGC 

models shared identical biophysical model parameters and differed only in their physical 

structure. As shown in Figure 6.12, voltage responses from two mouse RGC models were 

recorded during multiple depolarising (80, 100 and 120 pA for ON cell; 60, 80 and 100 pA 

for OFF cell) and hyperpolarising (-120, -140 and -160 pA) somatic current injections. 
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 Figure 6.12 A. Computer-reconstructed geometry for ON and OFF RGC types. In this set of simulations, 

identical ion channel parameters and distributions were implemented in both cells. B and C. Multiple model-

generated membrane potentials and somatic intracellular calcium concentration while injecting a family of 

current pulses at the soma. The model reproduced both normal (B) and rebound (C) RGC spikes. The 

somatically injected depolarizing currents were of 500 ms duration with amplitudes 80, 100 and 120 pA for the 

ON cell and 60, 80 and 100 pA for the OFF cell. The hyperpolarizing current steps were -120, -140 and -160 pA. 

Red traces highlight an individual response with its corresponding stimulus trace denoted by the red step below. 

Figure 6.12 illustrates the unique responses in the two RGC types due to their different 

morphology. The OFF cell demonstrated excitation in response to hyperpolarising stimuli, 

including a slow depolarising “sag” on hyperpolarisation, as well as a significant rebound 

burst at termination of the hyperpolarising stimulus. Notably, the ON cell only showed a 

small passive response under the same condition. In addition, these two cell types exhibited 

different spiking frequency, response latency and Ca
2+

 dynamics in response to the same 

levels of stimuli (as highlighted in the red traces). Finally, it should be noted that simulated 

responses reasonably matched recent experimental observations from ON and OFF RGCs 

(Margolis et al., 2010). 

These simulations suggested that morphological variations between ON and OFF RGCs are 

able to produce substantial differences in spiking behaviour, indicating that morphology plays 

an important role in shaping RGC spiking activity. In these models, all biophysical 

parameters describing voltage-gated channel kinetics and the membrane conductances in each 

region shared the same values. Hence the individual responses of the ON and OFF cells in 
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Figure 6.12 were solely dependent on cell morphology. It should be noted however, that in 

addition to morphology, the intrinsic electrophysiological properties of ON and OFF cells 

also shape spiking activity. For example, the absence and presence of rebound excitations in 

ON and OFF RGCs could be a result of their differently distributed ionic channels (Margolis 

and Detwiler, 2007). 

 

6.4.2 Influence of Dendritic Bifurcations on Action Potential Propagation 

In another set of simulations, we examined the influence of the dendritic tree structure on AP 

propagation along the dendrites. The daughter branches were disconnected from the primary 

dendrite in the computer-reconstructed RGC geometry (see Figure 6.13A1-A2). Simulated 

APs were then obtained at each position along the dendrite in response to a somatic 

depolarization step (100 pA amplitude, 500 ms duration). 

Figure 6.13 shows the effects of removing daughter branches from the primary dendrite. In 

both the control and dendritic pruning cases, AP trains initiate in the soma of the RGC and 

propagate out into the distal dendrite in response to somatic current injection (Figure 6.13C1-

C2, upper panel). However, branch removal resulted in considerable changes in AP 

characteristics, as follows: 

 AP waveform geometry: Following previous studies, AP phase plot was used to 

analyse AP waveshape (Izhikevich, 2007, Fohlmeister and Miller, 1997b). In our 

simulations, the “full model” and “pruned model” indicated a clear difference in AP 

waveshape Figure 6.13C1-C2, lower panel). After peripheral branches were removed 

variations in dendritic AP waveshape (i.e. AP peak value, AP duration, rise and fall 

time) along the dendrites were largely eliminated (also see middle panel, Figure 

6.13D).  

 Spike timing: First spike latency (FSL), defined as the time difference between the 

stimulus offset and half-maximum amplitude of the first dendritic AP, was used to 

calculate AP occurrence time in the dendrites (see left panel, Figure 6.13D). As 

shown in the FSL curve, the higher propagation speed in the “pruned” dendritic tree 

ensures nearly simultaneous AP occurrence from soma to distal dendrites, within less 

than 1 ms (AP duration is 1-2 ms). In contrast, the model with full dendritic tree 

experienced a ~3 ms latency between somatic and distal dendritic APs.  



 

119 
 

 AP upstroke: The spike threshold, defined as the membrane potential at which dV/dt 

of the AP crossed 5-20 mV/ms, is an important parameter for analysing the site of AP 

initiation (Yu et al., 2008, Naundorf et al., 2006). Figure 6.13D (right panel) revealed 

that the monotonic decrease of threshold voltage along the dendrite was weakened by 

removing the surrounding daughter branches.  

The dramatic change of AP characteristics along the dendrite could be attributed to current 

loading with a large number of bifurcation points in RGC dendrites. At a proximal branching 

point, the orthodromic AP from the soma was distributed among multiple daughter branches, 

which could weaken the propagating AP by splitting the current from the primary dendrite. 

As the AP propagated towards the distal branches, there were progressively less branching 

points, and eventually a sealed end. In this condition, the AP size might increase as a result. 

Removing dendritic branches in the model resulted in less AP characteristic alterations and 

promoted a stronger AP propagation. Recent modelling studies of CA1 pyramidal neuron 

also suggested that removal of dendritic branches could convert a weak propagating neuron 

to a strong propagating neuron (Golding et al., 2001). Interestingly, the somatic and dendritic 

AP waveforms simulated in the pruned model closely agree with the published dendritic AP 

recordings in  rabbit RGCs (Velte and Masland, 1999), which only exhibit minimal branching 

points.  

In addition, the slowing and broadening in kinetics of the dendritic AP in our simulation 

(Figure 6.13D) is consistent with lower densities of sodium and potassium current in 

dendrites. Strong AP propagation in the dendritic tree was impossible without active dendritic 

processes in our model. The critical roles of active dendrites and corresponding ionic channel 

distribution in shaping RGC firing patterns are discussed in the next section.  



 

120 
 

 

Figure 6.13 Influence of dendritic branches on AP propagation. A1-A2. Reconstructed OFF RGC morphology 

containing an intact dendritic arbour (A1) or with surrounding daughter branches removed (A2) from the 

primary dendrite. A2 Inset: pruned branches are labelled in red. Scale bar: 40µm. B1-B2. Simulated APs 

obtained from the soma and dendrite. Coloured traces correspond to the same-coloured electrode in A1 and A2. 

C1-C2. Upper. Plot of first AP in each spike train. Scale bar: 20 mV and 2 ms. Lower. Phase plot of dV/dt 

versus membrane potential (V) for somatic and dendritic spikes. D. Comparison of model behaviours before (▲) 

and after (■) daughter branches were pruned. Left. First spike latency in the dendrite as a function of distance. 

Middle. Dendritic AP duration (the width of the AP at half-amplitude) as a function of distance. Right. Dendritic 

spike threshold (the membrane potential at which dV/dt crossed 5-20 mV/ms) as a function of distance. In both 

cases, spike thresholds revealed a monotonic decrease with distance from the soma.  
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6.4.3 Influence of Active Dendritic Density on RGC Firing Patterns 

To further examine the influence of active dendritic morphology in shaping RGC spiking 

responses, active dendritic branches were successively removed from the full computer-

reconstructed RGC geometry (Figure 6.14A). Somatic membrane potentials were then 

obtained in response to both depolarizing and hyperpolarizing somatic current injections. The 

simulation results indicated increasing spiking frequency and a reduction in FSL with 

reduced dendritic branching (Figure 6.14B), revealing the temporal low-pass filtering 

properties of the dendritic structure (Rose and Fortune, 1999, Rose and Call, 1993). 

Considering that dendrites have larger overall membrane surface area (i.e. large capacitance) 

and lower active membrane conductances compared with the soma, a neuron can be 

approximated using a first order low-pass RC filter in which the fast ionic currents (e.g. Na
+
) 

are filtered. In our simulations, the reduced capacitance obtained by removing dendritic 

branches likely accounts for their weakened low-pass filtering characteristic. 

 

Figure 6.14 Distinct firing patterns in the RGC model with identical biophysics but different active dendritic 

densities. A. RGC morphologies. Removed dendritic branches were labelled by corresponding colours. B. 

Membrane potentials in response to various somatic current injections before (red) and after (black) the removal 

of dendrites. Note the presence of both normal and rebound RGC spikes. External somatic current injection: 500 

ms duration (horizontal bar) with amplitudes of 60 pA for depolarising and -160 pA for hyperpolarising 

injections. C. Phase plot (dV/dt versus V) of the somatic direct (right) and rebound (left) action potential 

triggered by depolarising and hyperpolarising simulation respectively. The elimination of initial segment soma 

dendritic break is indicated by the arrow.   



 

122 
 

In addition, both direct and rebound AP waveshapes (Figure 6.14C), as shown by the rate of 

voltage change (phase plot), were affected. These included increasing rates of rising/falling 

phases, and increases in AP overshoot. In particular, the IS-SD break in the phase plot 

(labelled by the arrow in Figure 6.14C) was progressively eliminated as more active dendritic 

branches were removed. Marked increase in the rising and falling phase of the phase plot can 

be explained by the presence of higher somatic Na
+
 and K

+
 currents with less active dendrites. 

The existence of IS-SD break, explained by the presence of high Na
+
 channel density in the 

AIS, corresponds to spike initiation. The reduction of IS-SD break with less active dendrites 

revealed the moving location of AP initiation.  
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6.5 Discussion 

This chapter presented a significant improvement over existing modelling approaches (Tsai et 

al., 2012, Fohlmeister et al., 2010, Kameneva et al., 2011) in that multiple RGC spiking 

responses were accurately reconstructed in different functionally-identified RGCs using cell-

specific ion channel distributions and morphologies. These models were able to predict 

experimental information not used in model optimisation, including dendritic AP waveform 

(Figure 6.8), as well as the influence of the dendritic tree on AP waveshape and spiking 

behaviour (Figures 6.13-6.14). The multi-objective optimisation approach presented provides 

a promising platform for realistic modelling of cellular electrical activity in the entire RGC 

population.  

 

6.5.1 Accurate RGC Electrical Activity Reconstruction  

The optimisations of this chapter were performed on a large range of model parameters, 

rather than only maximum membrane conductances. Estimating only membrane 

conductances while fixing ion channel kinetic parameters will excessively limit the parameter 

search space, reducing the accuracy of model fits, particularly when optimising against 

multiple datasets. In this chapter, all models were optimised to closely reproduce action 

potential waveforms recorded under multiple current injections, which would not be possible 

if only a few membrane conductance parameters were available to be optimised.  

We found that introducing additional datasets with extra information (e.g. AP phase plot and 

spiking patterns) will bring more fitting challenges, prolonging the optimising time, 

particularly with stringent constraints on parameters. However, the credibility of a model is 

enhanced by its ability to simultaneously reconstruct experimental data which includes more 

information on system behaviours. The inherent advantage of optimisation against multiple 

datasets was discussed in (Guo et al., 2013). Other than the time-series AP datasets and AP 

phase plots, the RGC models were able to accurately reconstruct multiple spiking features 

including spike number, latency and interval. Accurate spiking pattern reconstruction is 

necessary for RGC modelling, since spiking patterns carry information in terms of the neural 

code, transferring key information to downstream neurons.  

Compared to previous multi-compartment RGC models, morphologies reconstructed in this 

study were from the same cells used for data recording. Since their physical properties also 
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influence their neuronal behaviours, these models, incorporating both accurate physical and 

ionic mechanisms, represent an important advance over previous modelling studies. The 

predictive ability of these models in reconstructing RGC responses to extracellular 

stimulation, will be investigated in the Chapter 7. 

 

6.5.2 Cell-Specific Ionic Channel Expression 

Limited experimental information on ionic channel kinetics and distribution in functionally-

identified RGCs makes assigning model parameters a difficult task. Ionic channel distribution 

and kinetic parameters in our models were fully dependent on the multiple data obtained. 

Importantly, the resulting model parameters obtained are all supported by relevant 

experimental evidence: 

1. The presence of rebound activities is related to higher Jh and JCaT somato-dendritic 

ratios in the OFF cell compared to the ON cell model. Recent experimental evidence in RGCs 

also suggest the presence of higher JCaT density in dendrites (Miller et al., 2002). Despite the 

limited experimental information on Jh distribution in RGCs, it was also reported to have 

higher density in CA1 pyramidal neuron dendrites (Magee, 1998).  

2.  The large range of threshold variations as well as the different IS-SD break in the AP 

phase plots between ON and OFF cells can be explained by their JNa kinetics and regional 

distributions. Experimentally, JNa has been reported to demonstrate appreciably different 

kinetics among different RGC types (Kaneda and Kaneko, 1991, Lipton and Tauck, 1987). 

Although AP phase plots are not typically used for neuron identification, the simulations of 

this chapter suggest that differences in AP waveforms among RGC types can be an effective 

indicator of cell-specific ionic channel distributions. 

3. The ON and OFF RGC model behaviours also demonstrated significant differences in 

Jh kinetics, as suggested by their unique depolarizing sag amplitude and time constant in the 

data. Experimentally, it has been reported that different neuron types (Pape, 1996, Magee, 

1998) including RGCs (Lee and Ishida, 2007) demonstrate variable kinetics of Jh activation 

and inactivation.  
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6.5.3 Contribution of Jh and JCaT to RGC Function 

Rather than analysing absolute channel distributions in a given functional region, we 

considered that the distribution ratios provide more information on the interaction between 

soma and active dendrites. The firing pattern sensitivity to dendritic Jh and JCaT (Figure 6.10) 

provided a continuous spectrum of RGC firing properties in response to hyperpolarising 

inputs. RGC activities are a result of the interaction between all membrane current present, 

and not only a result of Jh and JCaT. However, these two currents were both absent from the 

original FM model, and both channels are responsible for neuron activities in response to 

hyperpolarising stimuli. Thus, at the very least, our sensitivity analysis provides information 

on how the presence of these new membrane currents contributes to RGC behaviours. In 

future studies, we intend to extend our method to include more membrane conductances to 

explore the even higher dimensional RGC parameter space. 

Three dimensional plots of model behaviours in response to various channel distributions can 

also provide a clear global map of activity states of the RGC. Similar activities can be 

reproduced by different combinations of dendritic Jh and JCaT conductances. On the other 

hand, it was found that model behaviours can be highly sensitive to parameter tweaking, 

especially in the region near the boundary between different activity states. Interestingly, 

some experimental evidence has suggested the presence of large channel density variations in 

the same functionally-identified neuron types (Golowasch et al., 1999), while other studies 

have found that neuron activities are very sensitive to small variations in channel expression 

(Goldman et al., 2001).  

The contribution of Jh and JCaT to neuronal excitability has been reported in many 

experimental studies (see introduction section of this chapter). These experimental findings 

are consistent with the simulations of this chapter. For example, it was found that multiple 

response properties can be eliminated by tweaking the regional density of Jh and JCaT, 

revealing their contribution to rebound excitation in RGCs. Interestingly, although the OFF 

RGC data and model did not reveal any spontaneous or sub-threshold oscillations, as 

suggested by previous studies, the post-rebound activity state map (Figure 6.10F) revealed 

that these often-observed behaviours can be explained by higher dendritic Jh and JCaT 

densities.  
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In summary, differences in ionic channel properties between RGC types raise the possibility 

that each type may exhibit markedly preferential firing patterns in response to identical 

inputs. On the other hand, neuronal morphologies also influence the flow of intracellular 

currents between neighbouring compartments through their specific membrane area and 

intracellular resistivity. These two important factors contribute to the unique electrical 

activities of ON and OFF RGCs. Realistic modelling approaches, which aim to accurately 

reproduce membrane ionic mechanisms and morphology, can offer important information on 

the mechanisms underlying neural coding, improving our understanding of the differential 

activation of ON and OFF RGCs to various stimuli. 
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Chapter 7 Differential RGC Responses to High-Frequency Extracellular 

Stimulation  

 

Existing retinal visual prosthetic devices are limited in their ability to selectively or 

differentially stimulate retinal neurons , as reported in multiple experimental studies using 

artificial electric stimulation (Sekirnjak et al., 2008, Margalit and Thoreson, 2006, Tsai et al., 

2009, Freeman et al., 2011). Other studies have suggested the possibility of preferentially 

activating individual RGC types using particular stimulus profiles (Jensen and Rizzo, 2005, 

Jensen and Rizzo, 2006).  

Recent studies have given more attention to high-frequency electrical stimulation (HFS), 

suggesting the possibility of targeting functionally-distinct RGC types by optimising the 

stimulation frequency. HFS has been explored in cochlear prosthetics (Litvak et al., 2001, 

Litvak et al., 2003). It has also been used to induce selective conduction block in peripheral 

axon fibres (Joseph and Butera, 2011), underlying the possibility of selectively activating 

different retinal neuron types with HFS. The in vitro study of Cai et al. (2011) suggested that 

not all stimulus pulses were able to trigger full somatic APs when RGCs were stimulated 

with a wide range of stimulation frequencies (from 100 to 700 Hz). They also found that the 

percentage of pulses eliciting full somatic APs was further reduced with increasing 

stimulation frequency. A more recent in vitro study of Twyford et al. (2014) suggested the 

possibility of employing 2 kHz HFS to maximise the difference in responses between ON and 

OFF RGC types. These studies indicate that stimulation frequency could be the key stimulus 

parameter to modulate the differential activition of RGCs. The findings of these studies 

formed the basis of the modelling work in this chapter. 

In a new set of simulations, the optimised ON and OFF RGC models of the previous chapter 

were used to gain insights into the mechanisms underlying selective responses to 2 kHz 

extracellular electrical stimulation. With optimised model parameters and detailed cell 

morphologies, these RGC models were able to closely replicate published experimental ON 

and OFF RGC responses to epiretinal electrical stimulation.  

More importantly, a novel modelling approach was also developed to find the correlation 

between RGC response patterns and dendritic structure/ionic channel distributions, in order to 

shed light on the likely mechanisms underlying the non-monotonic response profile to high-

frequency extracellular electrical stimulation.  
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7.1 Response to Constant Amplitude Stimulation 

The cable formulation of neural activation (see eq. (6.1)) was extended to simulate cell 

responses to extracellular electrical stimulation. Membrane potential was calculated from the 

difference between intracellular potential Vi and extracellular potential Ve : 

𝑉𝑚 = 𝑉𝑖 − 𝑉𝑒                                                              (7.1) 

where Vi is derived from,  

𝜕

𝜕𝑠
(𝜎𝑖

𝜕𝑉𝑖

𝜕𝑠
) = 𝛽 (𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+ 𝐽𝑖𝑜𝑛)                                            (7.2) 

The extracellular voltage distribution was simulated using a disk electrode source (Greenberg 

et al., 1999, Tsai et al., 2012, Jeng et al., 2011),  

𝑉𝑒 =
2𝐼𝑠𝑅𝑠

𝜋
sin−1 (

2𝑅

√(𝑎−𝑅)2+𝑧2+√(𝑎+𝑅)2+𝑧2
)                                     (7.3) 

where Is is the stimulation current, a and z are the radial and axial distance respectively from 

the center of the disk for z≠0, R is the radius of the disk (R=15 µm), and Rs is the electrode 

transfer resistance. The epiretinal stimulation electrode fixed at a 5-µm distance from the 

centre of AIS. All ionic model parameter values were listed in Tables 6.3-6.5 in Chapter 6. 

We simulated the response with extracellular high-frequency stimulation (HFS) using 2 kHz 

Lilly-type (Lilly et al., 1955) biphasic current pulses (shown in Figure 7.1) in ON and OFF 

cells. The amplitude of the stimulus train remained constant within a given trial, but varied 

across trials ranging from 0 to 90 μA. Figure 7.2B shows distinct non-monotonic spike-

stimulus profiles for the ON and OFF RGC models. Reconstructed RGC responses were 

measured at axon. At low stimulus magnitudes, the axonal spiking number typically 

increased with stimulus amplitude. However, as the amplitude increased further, the number 

of elicited spikes decreased substantially, creating a non-monotonic response profile. This 

observation is consistent with the recent in vitro studies (Twyford et al., 2014). The total 

number of axonal spikes elicited over the 250 ms pulse train was plotted as a function of 

stimulus amplitude for both ON and OFF cells. Total Spike number were determined from 

both the full AP (Figure 7.2E) and current (Figure 7.2F) spikes. Direct visualisation of the 

elicited APs was possible with no confusion from the high-frequency artefact (Figure 7.2E). 

The stimulus-response profiles demonstrated a distinct onset, width and amplitude, which 

indicated the differential response of the ON and OFF cells to electrical stimulation. It was 
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also observed that the RGC model reproduced similar somatic and axonal response patterns 

(see Figure 7.2D), and this similarity was also found in the other simulations in this chapter 

(results not shown). The difference in excitability between model ON and OFF RGCs was 

also indicated by their response to intracellular current injection (Figure 7.2C) 

 

Figure 7.1 The applied 2-kHz extracellular stimulus waveforms consisted of biphasic constant-current pulses 

with a pulse width of 100 µs per phase, a cathodal-anodal inter-phase interval of 160 µs and an anodal-cathodal 

inter-phase interval of 140 µs. A. Constant-amplitude stimulation. B. Stimulating and “measuring” locations in 

the model OFF RGC. The epiretinal stimulation electrode (shown as a flat disk) was applied at a 5-µm distance 

from the centre of AIS (red compartment), and spiking responses were obtained in the soma and axon, shown by 

the cone-shaped electrodes. 
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Figure 7.2 Simulated selective activation of ON and OFF RGCs to 2 kHz HFS. A. ON and OFF RGC model 

morphologies. B. Evoked axonal spiking numbers in ON and OFF RGC models with constant-amplitude 2 kHz 

HFS (250 ms duration, 0~90 μA). In the shadow region, the ON cell (blue) became progressively more excitable 

with stronger stimulation while the OFF cell excitation was progressively inhibited (red). It should be noticed 

that the shadow region can be used to adjust the extracellular stimulus range to selectively activate ON and OFF 

RGCs. C. Difference in excitability between ON and OFF RGC models in response to intracellular somatic 

current injection. D. Somatic and axonal response simulated in OFF RGC. E and F. Somatic membrane potential 

and total membrane ionic current trains. The 2 kHz stimulus artefact can be seen embedded within the 

membrane potential and current traces.  

 

  



 

131 
 

7.1.1 Possible Mechanisms Underlying the Non-Monotonic Extracellular Response 

To investigate possible mechanisms underlying the non-monotonic extracellular response 

properties, three sets of simulations were undertaken to investigate the influence of RGC 

morphology and ionic channel expressions. The stimulation setting in this section were as 

same as those in section 7.1 

1. We simulated the spiking response using OFF cell model parameters (ionic channel 

expressions and distributions) with the ON cell morphology, as well as using ON cell 

parameters with OFF cell morphology. Using this approach, we could relatively isolate the 

contribution of morphology and ionic channel expression in shaping the cell response 

patterns. Figure 7.3 shows that the non-monotonic stimulus response profile can be altered in 

terms of onset, height and width, when employing model parameters with the different cell 

morphology – revealing the potential contribution of both ionic and physical properties in the 

spiking pattern response to HFS. 

2. In another set of simulations, we progressively removed the dendritic tree by 

disconnecting dendritic branches from the full reconstructed RGC geometry (see Figure 7.4), 

examining the somatic spiking in response to a range of HFS stimulation amplitudes. The 

simulation results indicated that the soma became more excitable with fewer dendrites. As a 

result, the non-monotonic response profile changed into monotonic with largely reduced 

dendritic branching. This suggested that the physical structure of the dendritic tree is a 

significant contributor to the non-monotonic nature of HFS-based RGC responses. 

3. In a final set of simulations, the dendritic active properties were adjusted by 

progressively changing the JNa distribution within the dendritic tree (see Figure 7.5). The 

default dendritic maximal sodium conductance value (i.e. 21.68 mS/cm
2
) was represented by 

δ. The simulation results indicated that the non-monotonic response was progressively 

eliminated when dendritic maximal sodium conductance value was increased to around 

2δ~4δ. The simulation results indicated that the non-monotonic response was progressively 

eliminated with increased dendritic sodium channel density. Furthermore, the width of the 

non-monotonic response curve deceased with reduced dendritic sodium channel density, 

whereas the height of the curve was relatively unaltered. We also found that changing other 

ionic channel densities (e.g. JCa, JK, Jh, or JCaT) in the dendrites did not significantly alter the 

non-monotonic response profile, indicating the importance of dendritic sodium channels in 

shaping the non-monotonic RGC extracellular stimulus-response curve.  
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Figure 7.3 Stimulus-response profiles on interchanging ionic parameters and cell morphology in ON and OFF 

RGCs. Blue and red solid lines indicate ON and OFF RGC response patterns to 2 kHz HFS using default 

parameters and morphology. Blue and red dashed lines indicate the spiking patterns on interchanging the 

intrinsic and physical properties of the two cell types. 

 

 

Figure 7.4 Non-monotonic RGC spiking response profile was altered by progressively removing active 

dendrites. A. Simulated total spike numbers over a 5-second train of 2 kHz stimulation as a function of stimulus 

amplitude before (red) and after the removal of corresponding dendrites. B. Cellular morphologies. Colours 

correspond to the spiking profiles in (A).  
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Figure 7.5 Non-monotonic RGC spiking response pattern was altered by progressively changing the dendritic 

sodium channel density (i.e. maximal sodium conductance, δ) in the dendrites. Note that the spiking profile 

became monotonic with higher dendritic sodium channel density (4δ). 

 

  



 

134 
 

7.1.2 Effect of Electrode Location and Stimulus Frequency on Extracellular Stimulus-

Response Profile 

In order to investigate the effect of electrode position on the non-monotonic response 

properties, we placed the stimulus electrode at different dendritic locations (electrode 

locations were shown in Figure 7.6B) at a fixed vertical distance of 5 µm from the ganglion 

cell. The stimulus duration was 250 ms. Figure 7.6A illustrates the non-monotonic response 

profiles observed at the soma in OFF P model. Changing the electrode position also altered 

other spiking response properties such as onset, offset and peak spike number.  

 

Figure 7.6 Non-monotonic spiking response with respect to different stimulus locations. Different colours 

correspond to the various spiking pattern curves (A) corresponding to locations of electrodes (B). In each case 

the electrodes were 5 µm from the RGC. 

We also investigated the response of the RGC model to a wide range of stimulation 

frequencies spanning 50-1500 pulses per second (PPS). Stimulus waveforms were set to 

biphasic with a pulse width of 100 µs per phase, a cathodal-anodal inter-phase interval of 160 

µs, and a rate-specific anodal-cathodal inter-phase interval. The stimulation duration was 

fixed at 250 ms, and RGC response was observed at soma.  

Figure 7.7A illustrates that the response profiles became monotonic at lower stimulus rates. 

The relationship between pulse amplitude and the percentage of pulses eliciting somatic 

varied considerably with stimulus frequency. The RGC model was able to reliably follow all 

pulse trains (one to one response) at rates up to 100PPS, whereas it failed to follow trains at 

rates higher than 300PPS. Increasing the rate further had little effect on the total number of 

spikes elicited. Figure 7.7B shows somatic APs in response to 200PPS stimulation. The 

results indicated that AIS-elicited APs propagated to the soma, but not all were able to trigger 
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somatic APs (see the sub-threshold pulses indicated by the red arrows). This “many-to-one” 

response between low-frequency stimuli and cell responses have been observed 

experimentally in many RGC types (Cai et al., 2011). 

 

Figure 7.7 RGC response to extracellular stimulation at various frequencies. A. Total number of spikes elicited 

by trains of 50, 100, 200, 300 and 500 PPS plotted as a function of pulse amplitude. For pulse rates higher than 

100 PPS, the model RGC could not generate a "one to one" somatic spike in response to each pulse. B. Somatic 

APs in response to 200 PPS stimulation. The AIS-elicited APs propagated to the soma, but not all were able to 

trigger somatic APs (sub-threshold pulses are indicated by red arrows). C. Total number of spikes elicited by 

trains of 1000, 1500 and 2000PPS. The model RGC was still able to generate non-monotonic spiking response 

profiles at rates higher than 1000PPS. D. Somatic APs in response to 1000PPS stimulation.  
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7.2 Response to Amplitude-Modulated Stimulation  

Changes to instantaneous stimulus amplitude (as was the case for the 250 ms duration 

biphasic stimulus described earlier) may not accurately simulate natural visual input to the 

retina, since natural luminance changes generally occur more gradually and smoothly over 

time rather than sudden step changes (Twyford et al., 2014, Puchalla et al., 2005, Felsen and 

Dan, 2005). Therefore, we were also interested in how our RGC models respond to gradual or 

transient changes in stimulus amplitude rather than large instantaneous changes. We 

simulated the ON and OFF model axonal responses to two types of non-zero baseline 

amplitude modulation, as shown in Figure 7.8A. Stimulation waveforms were reconstructed 

using constant-amplitude stimulation and a 300-millisecond-wide amplitude modulation 

“diamond” with symmetric rise and fall phases.  

 

Figure 7.8 Applied 2 kHz amplitude-modulated stimulation. A. Upper: Positive baseline amplitude modulation. 

Stimulation waveforms were reconstructed from a constant-amplitude stimulation in (A) with a 300-

millisecond-wide amplitude modulation “diamond” with symmetric rise and fall phases. The baseline amplitude 

was 20 μA and the peak amplitude of the “diamond” was 60 μA. Lower: Negative baseline amplitude 

modulation, with the baseline at 60 μA and the minimum amplitude at the diamond “notch” at 20 μA. B. 

Simulated stimulus and “measuring” locations in the model OFF RGC. The epiretinal stimulation electrode 

(shown as a flat disk) was applied at a 5-µm distance from the centre of AIS (red compartment), and spiking 

responses were obtained in the soma and axon, shown by the cone-shaped electrodes. 

Figure 7.9B illustrates the simulated distinct ON and OFF cell responses. The stimulus 

baseline was fixed at 20 μA and the peak level was 60 μA (Figure 7.8A upper panel). The 

ON cell response demonstrated an increased spiking rate during the diamond-shaped 

modulation, returning to resting level as soon as the modulation was complete. The OFF cell 

showed an opposite response profile to that of the ON cell.  
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In another set of simulations, we reversed the amplitude levels of the baseline and the 

modulation peak. The baseline was fixed at 60 μA and the minimum “notch” level was 20 μA 

(Figure 7.8A lower panel). The inverted stimulus elicited the opposite response: there was a 

decrease in ON cell activity and an increase in OFF cell spikes during the diamond-shaped 

modulation (see Figure 7.9B, lower panel). All of these simulation results closely matched 

experimentally-observed RGC responses (Figure 7.9A) recorded under similar stimulation 

conditions in Twyford et al. (2014), in which the investigators utilised a 40-µA baseline with 

a 60-µA peak and a 60-µA baseline with a 40-µA minimum “notch”. 

 

Figure 7.9 A. In vitro preferential ON and OFF RGC recruitment under HFS from Twyford et al. (2014). 

Average spiking rates for ON (n=7) and OFF (n=7) cells in response to stimulus waveform shown at the top of 

each panel (Upper panel: 40-µA baseline with 60-µA peak. Lower panel: 60-µA baseline with 40-µA minimum 

“notch”). B. Simulation results using realistic ON and OFF RGC models.  
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7.3 Threshold Maps 

Simulated threshold maps for the ON and OFF RGC models were constructed by determining 

the stimulus threshold to biphasic pulses (with pulse width of 100 µs per phase, and a 

cathodal-anodal inter-phase interval of 160 µs) in the region around each cell. The vertical 

distance of the epiretinal stimulation electrode from the cell was fixed at 5 µm, and the 

spiking responses were obtained from the soma. Direct visualisation of full APs was readily 

obtained, with no confusion from the stimulus artefact. A bisection search method (Pal, 2009) 

was adopted to locate the threshold between given upper and lower limits of the stimulus 

amplitude. The upper stimulus limit was set to be the highest threshold value measured at the 

boundary of the map, and the lower limit was 0 µA. On each iteration of the bisection method, 

stimulus amplitude was set to the mid-point value between the upper and lower limits and 

new upper/lower limits were updated accordingly from the new trial stimulus tested. The 

termination condition was set to be 1 µA between the upper and lower limits, thereby 

controlling the resolution of the threshold value. After the threshold at one spatial location 

was determined, the stimulation electrode was moved to a neighbouring location (by 10 µm) 

and the above searching process was repeated. The new initial search value was set to the 

threshold value found in the previous location. Since the threshold difference between 

neighbouring locations should be minimised, the “dynamic” initial setting allowed less 

searching iterations.  

Figure 7.10 demonstrates threshold maps for the ON and OFF RGC models in response to 

identical extracellular electrical stimulation profiles. Threshold differences between the cells 

were mostly due to their cell-specific ionic channel expressions and distributions. Overlaying 

the threshold map with the relevant RGC morphology revealed that both RGC types showed 

their highest sensitivity to electrical stimulation around the proximal axonal (i.e. AIS) region. 

More importantly, the OFF RGC model demonstrated a larger low-threshold field and higher 

sensitivity to stimulations near the proximal axon/soma regions. This is because the OFF 

RGC incorporated a higher sodium channel density in the AIS. On the other hand, the ON 

RGC model exhibited a larger excitable dendritic field due to its higher dendritic JNa. This 

differentiation of RGC excitability can facilitate the explanation for different onsets of the 

non-monotonic RGC response profiles to HFS in Figure 7.2B.  

Jeng et al. (2011) and Fried et al. (2009) retinal studies suggested that the low-threshold field 

(i.e. placement of the stimulating electrode near this region results in the lowest thresholds.) 
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was aligned with the dense band of sodium channels (named AIS in this thesis) within the 

proximal axon, using immunochemical staining technique. In their studies, low-threshold 

regions were spatially distinct from the soma and proximal axon, and a central region of low 

threshold which was surrounded by concentric field of increasing threshold, was found to be 

above AIS. Interestingly, our simulation results were found to be in agreement with these 

published in vitro data in terms of overall size and location of the low-threshold field. 
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Figure 7.10 Simulated threshold maps overlayed with RGC morphology. Each pixel denotes the threshold 

obtained from the soma, in response to epiretinal biphasic pulses at that X–Y location. The pixel spacing is set 

to be 10 μm. The colour bar indicates the logarithm of the threshold stimulus amplitude in µA. The soma was 

labelled as the red square surrounded with white dashed boundary and the axon was highlighted with a thick line. 

Overlaying the threshold map with RGC morphology revealed that the region of lowest threshold was aligned 

with the AIS (labelled by the white line). Differences were observed between ON and OFF cell in terms of size 

and location of the low-threshold region.  
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7.4 Influence of RGC Morphology on Stimulus-Response Profile 

RGC stimulus-response profiles are a result of their biophysical properties, network 

connectivity, and importantly, the physical geometry of their neuronal processes. Neuronal 

morphology has been reported to play a vital role in shaping the response properties as well 

as the integration of neuronal inputs in many cell types throughout the central nervous system 

(CNS) (Vetter et al., 2001b, Spruston, 2008). It is therefore likely that similar morphological-

dependence is also present in RGCs.  

To facilitate analysis of the contribution of dendritic structure to RGC spiking, we developed 

a random RGC morphological generator, adapted from an existing neuronal morphology 

generation approach (Cuntz et al., 2010).  

The soma was initially defined as a point at the origin O. With the soma as the centre, a 

number of (N) random carrier points, which would serve as the basis of dendritic growth, 

were distributed within a circular planar region of radius r, as shown in Figure 7.11A. Here, 

N can be regarded as the number of dendritic branches. The vertical positioning of these 

carrier points was later added in as a normal distribution, with an average distance of H from 

the origin O.  

The algorithm, based on the minimum spanning tree algorithm (Prim, 1957), generated one-

by-one dendritic branches by connecting unconnected carrier points to node points of the tree. 

At each step, a sweep through all nodes starting from the soma was undertaken to find the 

carrier point closest to the tree. A cost function, adapted from Cuntz et al. (2010), was used to 

calculate the weighted distance d ̃ between a carrier point to a node in the tree, as follows:  

𝑑 ̃ = 𝑑𝑒 ∙ (1 − 𝑏𝑓) + 𝑑𝑝 ∙ 𝑏𝑓                                                 (7.1) 

where de is the Euclidean distance between a carrier point and a node in the tree; dp is the 

length of the path along the corresponding branch from the soma to the carrier point, which is 

the sum of de and the length of the branch from the soma to the corresponding node; and bf is 

a balance factor, which weighs de and dp against each other in the cost function. The carrier 

point with the shortest 𝑑 ̃  was chosen as the candidate point to be connected to the 

corresponding node. This process is illustrated in Figure 7.11B. 

However, before the connection was performed, an additional constraint was implemented. If 

de was smaller than a threshold length dseg, the candidate point was added to the tree; but if de 
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was greater than dseg, a jitter point was generated near the node, a jitter point was generated 

near the node, along the projected direction from the node to the candidate point. The jitter 

point was subsequently added to the tree, and subsequently added to the tree, and the 

candidate point sent back to the group of unconnected carrier points for the next iterative step. 

The iterations continued until all carriers points had been added to the tree. 

Following generation of the dendritic tree, the soma was then extended into a 10 μm segment. 

A 50 μm long axonal hillock and a 1000 μm long axon were later added after the soma. The 

vertical distance between the axon and the soma was set to 10 μm, and the first 50 μm 

segment of the axon was defined as the axonal initial segment (AIS).  

 

Figure 7.11 Illustration of the RGC dendritic morphology generator. (A) Upper: homogeneously distributed 

random carrier points in a circle starting from a root (soma) located at its centre. Lower: an example of the 

dendritic tree grown on carrier points. (B) The growth is described by an extended minimum spanning tree 

algorithm: unconnected carrier points (green) are to be connected one by one to the nodes of the dendritic tree 

(black). Red and blue hollowed dashed lines indicate two sample Euclidean distances (de) to the nodes N(i) and 

N(j) of the tree from the sample carrier point C(i). dp is the sum of de and the length of the branch from the soma 

to the corresponding node (solid dashed lines). The carrier point with the lowest cost function (see text) is then 

chosen as the candidate point to be connected to the corresponding node. (C) A jitter point (red) was generated 

near the node (black), when d1 was greater than dseg . 
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In these models, all biophysical parameters describing voltage-gated channel kinetics and 

ionic distributions shared the same values. Thus, the different spiking response of each RGC 

was solely dependent on its own morphology. When a variety of morphologies were 

simulated, distinct firing patterns were recorded. Response patterns were strongly correlated 

to the two morphological parameters: the number of dendritic branches (N) and the radius of 

the dendritic field (r).  

To isolate the contributions of these two morphological parameters in shaping RGC spiking 

behaviours, three groups of simulations based on different assumptions were performed: 

1. Dendritic branch number was held fixed (N = 500) and the spiking response profile to 

HFS was simulated with different dendritic field radii r as shown in Figure 7.13A2. Ten RGC 

morphologies were randomly generated at each level, and the spike response curves were 

plotted showing averaged spike numbers with standard error. The results indicated that the 

somatic spiking response was eliminated by decreasing the dendritic size (Figure 7.13A1), 

and the peak spike number could be approximated by a sigmoidal function of the dendritic 

field radius (Figure 7.13A3).  

2. Dendritic field radius value was held fixed (r = 150 µm) and the spiking response 

profile to HFS was simulated with different dendritic branch numbers N as shown in Figure 

7.13B2. We found that the somatic spiking response was eliminated by increasing the 

dendritic density (Figure 7.13B1). Furthermore, the peak spike number with the same RGC 

size could be approximated by a decaying exponential function of the dendritic branch 

number (Figure 7.13B3).  

3. Since cell surface area has also been reported to correlate strongly to neuronal 

functions (Mainen and Sejnowski, 1996), simulations using different RGC morphologies with 

similar total membrane area were also performed. Figure 7.12A demonstrates an empirical 

relationship between dendritic cell membrane area Ad and morphological parameters N and r. 

We found the relationship between these three parameters can be well-estimated by the 

following equation: 

𝐴𝑑(𝑁, 𝑟) = 0.2465 ∙ 𝑟 ∙ 𝑁0.6721,                                            (7.2) 

where r is in units of µm and Ad in units of µm
2
. Based on eq. (7.2), we were able to 

reproduce different RGC morphologies with nearly identical cell membrane area, and 

therefore isolate the contribution of Ad in shaping spiking response.  
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Figure 7.12 (A) Normalised dendritic cell membrane area (Ad) plotted as a function of dendritic density (N) and 

dendritic field radius (r) reproduced by the random morphology generator. (B) Dendritic cell membrane area 

using numerical estimation based on a regression equation (see text). 

Spike response profiles were then investigated in these RGC models with near-constant 

dendritic cell membrane area (Ad = 8200 ± 200 µm
2
) and different dendritic 

numbers/dendritic field radii (see Figure 7.13C2). With identical cell membrane area, the 

peak total spike number was found to be linearly dependent on dendritic branch number 

(Figure 7.13C3).  
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In all stimulations, each morphological level was randomly generated 10 times, and standard 

errors were calculated. The results demonstrated robust non-monotonic response profiles, as 

indicated by the small standard error bars shown in Figure 7.13A1, B1 and C1 

To test the sensitivity of RGC firing patterns to dendritic morphology over a large range of 

morphological parameters, we set peak spike numbers of the non-monotonic response 

profiles as indicators of RGC firing properties. The two morphological parameters, N and r, 

were varied across the ranges of 20~1000 and 50~350 µm, respectively. These ranges were 

set to lie within published RGC morphological data (Wong et al., 2012, O'Brien et al., 2002). 

Analysis was undertaken at the soma to characterise RGC activity in response to HFS at 300 

ms duration.  

Simulation results, as shown in Figure 7.14A, suggested a continuous spectrum of peak spike 

numbers with respect to a large range of systematic morphological variations. It should be 

noted that the “noise” present in the 2D plot was due to the stochastic process of morphology 

generation.  

We found the correlation between peak spike number and morphological parameters can be 

numerically estimated by the following empirical equation derived from Figure 7.13A3 and 

Figure 7.13B3, 

𝑆𝑁(𝑁, 𝑟) = 55 ∙ (0.75 +
0.38

1 + 𝑒−0.025(𝑟−130)
) (1 + 𝑒−0.002𝑁),                          (7.3) 

where SN is total spike number and r is in units of µm. As shown in Figure 7.14B, the 

empirical profile reconstructed by eq. (7.3) was in good agreement with the simulated results 

using the random morphology generator. Root mean square (RMS) error between the 

simulation result and the empirical model was 7 spikes. 
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Figure 7.13 Influence of 

RGC morphology on 

spiking pattern in response 

to 2000 PPS HFS. Panel A: 

Spiking pattern with fixed 

dendritic branch number (N 

= 500) and different 

dendritic field radii r as 

shown in A2. Each 

morphological level was 

randomly generated 10 

times. Peak spike number 

could be approximated by a 

sigmoidal function of r 

(A3). Error bars represent 

standard errors. Panel B: 

Spiking pattern with fixed 

dendritic field radius (r = 

150 µm) and different 

dendritic branch numbers N. 

Peak spike number could 

be approximated by a 

decaying exponential 

function of N (B3). Panel C: 

Spiking pattern with fixed 

dendritic cell membrane 

area (Ad = 8200 µm
2
). With 

identical cell membrane 

area, peak spike number 

was linearly dependent on 

N. 
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Figure 7.14 Peak total spikes plotted as a function of dendritic branch number N and dendritic field radius r. A. 

Simulated results using the random RGC generator. B. Empirical estimate based on nonlinear regression 

equations derived from Fig. 7.12 A3 and B3. 
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7.5 Discussion 

 

7.5.1 Selective Activation and Possible Mechanisms  

In this thesis, we define “selective” to mean targeted activation of one neuron type in 

preference to another neuron type. i.e. ON instead of OFF RGCs, or vice versa.  

The results shown in this chapter are built based on the recent in vitro study suggesting the 

possibility of employing 2 kHz HFS to maximize the difference in responses between ON 

and OFF RGC types (Twyford et al., 2014). Although 2 kHz is not considered “high 

frequency” in other neural stimulation applications (Joseph and Butera, 2011, Litvak et al., 

2003, Litvak et al., 2001, Schiller and Bankirer, 2007), it is the highest frequency that has 

been used in regards to current visual prosthetic stimulation strategies.  

In this chapter, we used morphologically-generated RGC models to gain insights into the 

mechanisms underlying selective responses to extracellular electrical stimulation. With the 

optimised ionic channel distributions in each neuronal compartment obtained from Chapter 6, 

and incorporating detailed cell morphologies, we were able to reproduce the patterns of 

preferential excitation observed experimentally, when varying the extracellular stimulus 

amplitude across a wide range of values. It should be noticed that our model parameters were 

not optimised to fit in vitro experimental RGC responses to extracellular stimulation in this 

chapter. Therefore, the modelling results showed a different stimulation range (20-60 µA) 

compared to experimental range (40-60 µA) in Twyford et al. study. However, our models 

are able to exactly fit the published stimulation range by optimising model parameters if this 

is necessary. 

To our knowledge, very little has been published on modelling selective activation of 

functionally-distinct RGCs. One reason may be that existing RGC models do not consider the 

functional significance of cellular morphology and membrane channel properties in each 

cellular region. For example, as shown in Figure 7.15, the existing FM model (Fohlmeister 

and Miller, 1997b) parameters (ionic channel expressions and distributions) were used in the 

ON and OFF RGC morphologies shown in the left panel. Compared to the optimised model 

performance in the upper panel, the FM ON (blue) and FM OFF (red) RGCs in the lower 

panel do not show a clear differential stimulus response profile in terms of onset, height and 

width, revealing improved model performance with the optimised ON/OFF parameters of 
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chapter 6. Moreover, most RGC models have only been validated against experiment data 

using simple, parametric stimulus sets with instantaneous amplitude change (e.g. a long 

rectangular profile), far from the real-life retinal input. Our RGC models, however, were 

validated by in vitro datasets closer to natural retinal stimuli (Twyford et al., 2014).  

 

 

Figure 7.15 Comparison of optimised to Fohlmeister and Miller 1997 model performance against the ON and 

OFF RGC models of this chapter, in response to 2kHz epiretinal electrical stimulation. Upper panel: Blue and 

red lines indicate ON and OFF RGC response patterns to 2 kHz HFS using optimised parameters (see Tables 

6.3-6.5) with corresponding RGC morphology shown in the right panel. Lower panel: Blue and red lines 

indicate ON and OFF RGC response patterns using the original FM model parameters under identical 

stimulation conditions.  

More importantly, we also used computational models to shed light on the likely mechanisms 

underlying the non-monotonic stimulus response profile, namely the “up and down” spike 

number response as a function of stimulus amplitude. We also examined how this profile was 

affected by cell morphology and active membrane channel properties. The differential 

activation  (Figure 7.9B) between simulated ON and OFF RGCs in response to amplitude-

modulated HFS pulse trains was due to differences in the onset, peak and width of their 

characteristic non-monotonic response (Figure 7.2B). These differences in turn were most 

likely to due to their unique ionic channel expressions and cell-specific morphologies. Indeed, 

differences in ionic channel properties between RGC types, as well as differences in their 

dendritic morphology, raise the possibility that each type may exhibit markedly differential 

firing patterns in response to identical stimulus input. We found three important 
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characteristics of the spiking pattern profile that can be controlled by changing cellular 

properties:  

1. Peak spiking number (height) is dependent on the dendritic density: Under 

simulations of dendritic pruning (Figure 7.4), the stimulus-response profile could be 

altered by progressively removing the active RGC dendritic structure, indicating that 

the non-monotonic response likely results from active somato-dendritic interactions. 

Higher dendritic loading can inhibit somatic excitation, and therefore, may contribute 

to the reduction in peak spike number (height) of the non-monotonic response.  

2. Width is mainly controlled by dendritic active conductance: The non-monotonic 

stimulus-response profile could be also altered by progressively changing the 

dendritic sodium channel distribution (Figure 7.5). Activate dendrites mainly 

influence the width of the non-monotonic response profiles. 

3. Stimulus threshold (onset) is due to AIS properties: The simulated threshold maps 

(Figure 7.10) indicated marked differential sensitivity to electrical stimulation 

between the two RGC types, especially in the proximal axon region. The stimulus 

threshold difference could be due to differences in the size and/or location of the AIS, 

as well as ionic channel density and kinetics within the AIS. The OFF model 

incorporated a larger AIS compartment and higher sodium channel density in the AIS 

region than that of the ON model, explaining the lower onset of its non-monotonic 

response profile. In addition, the different sodium and potassium channel kinetics 

within the AIS can also contribute to the differential RGC sensitivity to electrical 

stimulation.  

Modelling studies of nerve conduction block in axons indicated that the suppression of 

neuronal response is due either to the voltage-gated potassium channel (Liu et al., 2009) or 

sodium channel properties (Kilgore and Bhadra, 2004). In this thesis, however, the RGC 

response suppression at higher stimulus amplitudes (i.e. the “decreasing” part of non-

monotonic stimulus-response profile) may align with overall RGC properties rather than 

particular local factors. At higher amplitudes, the somatic RGC response is inhibited by 

hyperpolarising currents back-propagating from the multiple dendritic branches. This 

inhibition becomes stronger with increasing stimulus amplitudes, until the response is totally 

abolished. Further understanding the detailed contribution of these RGC properties in the 

observed suppression may help predict which potential RGC types can be targeted by HFS. 
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7.5.2 The Site of AP Initiation in RGCs 

The simulated threshold map results suggested that the low-threshold region of RGCs was in 

the proximal axon, close to the AIS. Multiple anatomical landmarks have previously been 

reported to be the site of lowest-threshold (presumably the site of AP initiation) in RGCs; for 

example, soma (Greenberg et al., 1999), sodium channel band (Jeng et al., 2011, Fried et al., 

2009, Werginz et al., 2014), thin segment/sodium channel band (Carras et al., 1992, Sheasby 

and Fohlmeister, 1999), axon bend (Schiefer and Grill, 2006) and AIS (Sekirnjak et al., 2008). 

Although not all these anatomical landmarks were included in the current model structure, 

our results supported the hypothesis that the proximal axon region of a RGC had the highest 

sensitivity to electrical stimulation, and that the anatomical/biophysical properties of this 

neuronal region were likely to modulate the RGC response to electrical stimulation. In 

addition, our models indicated that one or more anatomical features of the proximal axon 

such as the axonal bend, sodium-channel band, as well as AIS, may align with the low-

threshold region.  

 

7.5.3 Continuous Spectrum of Spiking Patterns with Morphological Variations 

In a more “generalised” set of simulations based on the random morphology generator 

(Figure 7.13), the results suggested a continuous spectrum of spiking patterns with systematic 

morphological variations. Although this particular set of simulations did not include the 

contribution of variation in channel expressions and other physiological factors, it supports 

the idea that functional differentiation in RGC spiking behaviour is also due to dendritic 

morphology. RGC morphology has rarely been examined quantitatively in previous studies, 

except for a few limited modelling studies (Maturana et al., 2013, Fohlmeister and Miller, 

1997b), likely due to the difficulty of isolating the contribution of morphology in experiments. 

Computational studies hence provide a promising platform for understanding how the 

physical characteristics of RGCs influence their behaviour. To our knowledge, the 

simulations of this chapter are the first to systematically study the contribution of dendritic 

morphology to RGC responses to extracellular electrical stimulation. Since there is a wide 

anatomical variety of RGC morphologies (Wong et al., 2012, O'Brien et al., 2002, Rockhill et 

al., 2002), this study can serve as the basis for population-based RGC modelling.  
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Compared to using only a morphology generator (Cuntz et al., 2010), our modelling approach 

involves representing the neuron with both accurate morphology and an optimised ionic 

model. In addition, existing modelling studies (Maturana et al., 2013, Mainen and Sejnowski, 

1996) have been largely limited to investigating the influence of cell structure on cell 

response to intracellular current injections. To our knowledge, the simulations of this chapter 

are the first to systematically study the contribution of dendritic morphology to RGC 

responses due to extracellular electrical stimulation. 

In summary, our modelling studies suggest that the cell-specific non-monotonic response (i.e. 

the base of selective excitation) to 2 kHz electrical extracellular stimulation results from a 

complex balance between intrinsic and physical RGC properties. Intrinsic cellular properties 

including ionic channel expressions and distributions contributed to the threshold/onset and 

width of non-monotonic response profile, and physical properties such as dendritic loading 

and field size controlled the height of the stimulus response curve. All of these cellular 

properties combined produce a distinct stimulus range for each RGC excitation, suggesting 

the intriguing possibility of selectively activating different RGC classes using a suitably-

designed electrical stimulation strategy. This approach can be used to design electrical 

stimulus profiles capable of cell-specific activation, and is broadly applicable for the 

development of sophisticated stimulation strategies for visual prostheses.  

.  
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Chapter 8 Conclusions  

 

8.1 Thesis Contributions 

This thesis aimed to develop a series of biophysically-accurate computational neuronal 

models to assist in the understanding of mechanisms underlying RGC activities in response to 

electrical stimulation, both intracellular and extracellular. The results outlined in Chapters 5, 

6, and 7 have three major contributions to existing RGC studies and current retinal prosthesis 

development.  

 

8.1.1 A generic neuron model optimisation approach  

The multi-objective optimisation approach developed in this thesis can provide a practical 

means of reconstructing hidden information underlying multiple biological RGC responses. 

Previous neuronal modelling and optimisation studies indicate that the limited information in 

a single dataset may result in non-unique reconstruction n of membrane currents, some of 

which may not be accurate from a known physiological viewpoint. However, the multi-

objective optimisation technique described in this thesis appears to provide stringent 

constraints on the dynamics of underlying membrane currents, yielding reconstructed AP 

waveforms and spiking patterns in agreement with experimental studies.  

In addition, the results suggest that optimisation with well-defined objective functions can 

improve the predictive power of the models, particularly when the additional datasets 

includes information not initially present. Our multi-dataset optimised parameters yielded 

good predictions to non-optimised data under different experimental conditions, namely in 

vitro selective RGC responses to extracellular high-frequency stimulations. It is likely that 

this high degree of model prediction will be generally hard to achieve with only single-

objective optimisation.  

This multi-objective optimisation approach provides a valuable tool in elucidating the ionic 

mechanisms underlying RGC electrical activities. This approach is generally applicable to 

other excitable cell models including cardiac myocytes and non-RGC neurons. By using this 

technique, more accurate neural ionic models can be constructed automatically, reducing the 

gap between theoretical models and real neurons.  
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8.1.2 Accurate ON and OFF RGC simulations  

In Chapter 6, two major classes of RGC were reconstructed - ON and OFF - using realistic 

3D morphologies obtained from images of rabbit RGCs, whose electrical responses were also 

obtained using whole-cell patch clamp recording. The models incorporated biophysically-

accurate formulations of ionic channels present in the membrane, taking into account 

differences in various functional cellular regions including the soma, hillock, axon, dendrites 

and AIS. Unlike previous RGC models, parameters of these multi-compartment models were 

fitted to multiple actual electrical activities recorded. 

With anatomical information and cell-specific ionic channel expression, the models could 

accurately reproduce the differential AP waveforms and spiking patterns in ON and OFF 

RGC classes. This approach represented a major step forward in accurately reconstructing 

electrical activities in functionally-distinct RGCs, and will help advance our understanding of 

ionic mechanisms underlying RGC activation.  

 

8.1.3 Selective activation of ON and OFF RGC types 

In Chapter 7, the simulation results using accurate ON and OFF RGC formulations revealed 

that it is possible to selectively or preferentially activate either cell-type using high-frequency 

electrical stimulation. These results were also confirmed by in vitro studies in rabbit retinas. 

It should be noticed that the morphologically-realistic models were not optimised to 

reproduce RGC responses to extracellular stimulation. Nevertheless, predictive ability of the 

models was confirmed by their close match to in vitro ON and OFF RGC activities recorded 

under totally different experimental conditions. Since human vision is thought to be mediated 

primarily by two major classes of RGCs - ON and OFF, the ability to selectively activate 

either or both of these cell types using artificial electrical stimulation will lead to dramatic 

improvements in the quality of elicited vision. 

Rather than passively reconstructing the measured RGC response patterns, the modelling 

approach detailed in Chapter 7 can provide likely mechanisms underlying the response 

profile to extracellular high-frequency stimulation. This was achieved by controlling the cell 

morphological and biophysical properties, revealing advantages of computational modelling 

over difficult to do experimental measurements. Since the major challenge of present 

prosthetic vision devices is to understand the factors that shape the response of a single 
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retinal neuron to electrical stimulation (Jeng et al., 2011), the model presented in this thesis 

has the potential to be used to develop a wide range of intracellular and extracellular 

stimulation strategies. Armed with such computational models, it is possible to form a tight-

loop investigation cycle, consisting of computational predictions on potentially beneficial 

stimulation strategies and experimental validations. These data-driven models can then 

provide a promising approach to rapidly probe the responses of identified RGCs to a broad 

range of novel stimulus configurations, as well as formulate theories of selective RGC 

encoding.  

 

8.2 Future Work  

An important next step following the results of this thesis is to determine if knowledge of the 

resulting RGC mechanisms can be used for practical stimulation strategy design for a vision 

prosthesis. Future studies should expand the analysis to additional RGC types, in order to 

build comprehensive models of the electrical responses of the entire RGC population and 

further contribute to the understanding of retinal encoding and visual information processing. 

About twenty types of mammalian RGCs have been functionally-identified thus far. Once the 

biophysical/physical properties of all RGC types are well understood by this cell-specific 

modelling approach, the relative response to a wide range of stimulation schemes can be 

clearly predicted using a population-based computational model.  

An improved understanding of the population-based RGC activation process will enable 

accurate computational evaluation of retinal stimulation, so that a wide range of stimulus 

waveforms and parameters can readily be tested. In particular, stimulus strategies allowing 

selective activation of functionally-distinct RGCs will result in major improvements in the 

quality of artificial vision, and will form an important component of further visual prosthetic 

stimulation systems.  
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