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ABSTRACT

The starting point is the concept of a monoidal
category. By formulating the entire theory with respect
to a suitable closed category V, the tensor-product functor
in a monoidal category may be supposed to carry a
V-bifunctor structure.

First we specialise to the well-known concept of
a biclosed category which is a monoidal category whose
tensor-product functor admits right adjoints to both
variables. Since this biclosed property can be expressed
in terms of the representability of certain functors, a
biclosed category may be thought of as a "complete"
monnidal category.

In the other direction, we generalise monoicdal
category to the concept of promonoidal category. A
promonoidal category is less than a monoidal category in
that its tensor product and identity can only be expressed
as a "profunctor" and a "proobject" respectively. This is
the case wifh many small categories which occur as model
categories. While a monoidal structure is a special instance
of a promonoidal one, there do exist promonoidal categories
which are not monoidal.

Broadly speaking, the thesis provides conditions

under which.a promonoidal structure on a category A can be



extended, along a given dense functor A%P o B, to produce
a biclosed structure on B. The tensor product, internal
homs, and so on, for B are then expressed as Kan extensions
of the given structure on A. As described in detail in
our Introduction, the actual proof of this general result
is derived from the consideration of two special cases,
namely, the functor category theorem and the reflection
theorem.

Much of the thesis is concerned with examples
and we divide these into various types. The first is the
functor category type, including such familiar examples
as the closed category of modules over a commutative ring
and the closed category of algebras over a commutative
theory. The second deals with biclosed structures obtained
by reflection from larger biclosed categories; here we
discuss several cartesian closed categories of topological
spaces, including that of compactly generated spaces. Lastly,
the general construction theorem is applied to the |
'consideration of algebraic closed categories generated by

qommutativevmonads.
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INTRODUCTION

The thesis aims to present a theorem which
underlies the construction of many well-knowrn examples of
both ordinary closed categories and enriched closed
categories. We shall apprbach this theorem through the
discussicn of two special cases. Therefore, by way of
introduction, it seems desirable to provide a brief outline
of the development. Some notation and terminology are &also
introduced here, although we mainly follow that used in

(31, [91, and [111].

Section 0.1. Terminology

A monoidal category consists of a category V

together with an identity object I € V, a tensor-product

functor 8 : VUxV » V, and natural isomorphisms & : IBA = A,

n

r : AGI A, and a : (A®B)8C = A®{(BBC), satisfying the

coherence axioms:

MC1l (A®I)®B >A® (I®B)

rél 188

ABB commutes,



a a
MC2 ((A®B)8C)®D ——> (ABB)®(C8D)——>AR(B®(CRD)) -

/

a®l | 18a

(A(B8C))eD > AQ ((B8C)®D)

commutes.
This entire structure is often denoted by the single
letter V.

A symmetric monoidal category is a monoidal

category plus a natural isomorphism c : ASB = BRA

satisfying the coherence axioms:

c
MC3 A®B > BRA
1 c
Y
A®B commutes,
a - c
MCh (A®B)8C > AR (B®C) > (BRC)BA
c®1 1 a
(BRA)®C >BR(ABC) > 38 (CBA)

a 18c
' commutes.

A biclosed category is a monoidal category V

for which the endofuncters A8- and -8B both have right
adjoints:
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V(A®B,C) = V(A,C/B) = V(B,A\C).
These right adjoints are called the internal-hom functors

of V,

A closed category is a symmetric monoidal

category for which the endoifunctor -8B has a right adjoint:

V(A8B,C) = V(A,[BC]).
Note that a closed category is essentially a symmetric
biclosed category.

Only when V is closed do we get a really workable
theory of categories over V. 1In order to employ this theory
efficiently, we may suppose.that V is normalised; that is,
that a2 functor V. : V +» S, where § = small sets, is so
chosen that V[AB] is preciselyiV(AB), and not merely
isomorphic to V(AB). Any closed category can be normalised,
perhaps after replacing it with an isomorph. We wil:
suppose that given closed categories are normalised, but
will not bother to provide normalisations for ﬁhe closed

categories constructed.

If W is a given closed category, we obtain the
concepts of monoidal category over W, closed category over
W, etec., if we use "W-category" in place of "category",
"W-functor” in place of "functor", V®V in place of VUxV,
and so on, in the above definitions. "Coherence" remains

unaltered.



Section 0.2. Closed categories of functors

Most famillar examples of closed categories
can be non-trivially represented as categories of functors
from A to B for suitable domain and codomaln categories
A and B. These functors may be either ordinary ‘functors,
or else V-functors for some closed category V. They may'
comprise the category [A,B] of all functors (or V-functors)
from A to B, or else a definite full subcategory of this.
Clearly the latter alternative remains available even
when A is large; that is, eveﬁ when [A,B] does not exist.
The fcllowing table gives some typical examples of closed

functor categories:

Functor category A B Functors considered
simplicial sets AOP, where A sets all functors
is the
simplicial
category
small categories n°P sets those satisfying the
category axioms




is the theory
of abelian

groups

Functor category A B Functors considerec
quasi- C°p, where C sets those of the form
topological is compact Cr~—>Ad(C,X) for
spaces hdf. spaces some quasi-space
and. cts. X, where Ad(C,X)
maps is the set of
admissible maps
from C to X, CeC
(real) Banach POp; where P | sets certain functors;
spaces is the full determined by the
subcategory fact that P is
of Banach dense in Banach
spaces spaces
determined
by the
Euclidean
plzane R2
abelian groups GOp, where G sets those preserving

finite products




Functor category A B Functors
considered
Z-graded abelian the discrete abelian all
groups category of groups functors
integers Z
differential the additive abelian all additive
graded abelian category groups functors
groups generated by
the totally
ordered éategory
Z, with the
relation d2 =0
modules over a the additive abelian all additive
commutative ring category with groups functors
K one object whose
endomorphism
ring is K
sheaves of T°p, where T.is a jK-modules | those functors

K-modules

topology

creating

certain limits




In these and many other examples, the codomain
B is closed. We therefore choose this as a starting
point and replace the letter B by V, a given closed
category.

The above examples also indicate that sometimes
A is an ordinary category and the functors A =+ V being
considered are ordinary functors (e.g. sheaves of
K-modules), while otﬁertimes A is a V-category and the
functors A > V are V-functors (e.g. differential graded
abelian groups). However, provided V admits set-indexed
copowers of its identity object I, the first case may be
included in the second by simply replacing A with the
free V-category generated by A. More precisely, V is
usually complete enough for the representable functor

V:V +>38 to admit the left adjoint F : S + V which sends

} Iin V. Then, by [111], the
X

a set X to the copower FX

closed functor V : V + S has a closed left adjoint F : S »+ V,
and this induces a 2-functor Fy; : S-Cat + V-Cat. There
then results a canonical bijection between functors A » U
and V-functors FyA -+ V,

Therefore we suppose throughout that V is a

closed category and A is a V-category and that the functors



A + UV being considered are V-functors. This means that

our general theory is developed entirely over V, so we

stipulate that henceforth (save in specific examples)
the unqualified words "category, functor, natural
transformation, adjoint, monoidal category", etc., mean
"V-category, V-functor, V-natural transformation,
V-adjoint, monoidal category over V," etc. The prefix "VU"
is occasionally retained for emphasis.

Furthermore, it is convenient to use the same
symbol for both a V-functor and its underlying S-functor.
In the special case of left represented functors froin A

to V we shall use A(A-) and LA interchangeably.
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Section 0.3. Outline of development

The general construction theorem, formulated in
Chapter 5, is derived essentially in terms of two
special cases.

First we take the case where A is a small
category and V admits small limits and colimits, and we -
consider the category [A,V] of all functors from A to V
(as done in [51). The structure of [A,V] as a V-category
is recalled in Chapter 1. Here we also recall the Yoneda
full embedding L : A°P > [A,V] which is the canonical
functor sending A € A°P to the left represented functor
LA = A(A-) : A > V. The functor L is dense, a fact which
is essentially contained in the expression

[ArasLa

n

T
of each functor T : A + V as a colimit in [A,V] of lcft
represented functors.

We now consider the possibility of enriching
[A,V] to a biclosed category. For this we note that a |
tensor product

® : [A,VIBL[A,V] » [A,V],
for which S®- and -8T both admit right adjoinﬁs, is
essentially determined by its Qalues LABLA' on represented
functors. This is so because S®- and -®8T both preserve

colimits:
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n

ser = (fAsaern)&(f ' Tarerar)

m

fAA" (sheTA" )@ (LABLA").

Writing P(AA'-) for the functor LABLA', we obtain a -
functor P : A°PRA°PRA + V. Conversely, given any functor
f : A%PgA%Pgap o V, we can define a tensor product ® on

" [A,V] by means of the expression

IAA'

S8T = (SARTA')®P(AA'-).

Moreover, this definition of ® is easily seen to provide

e

a natural isomorphism LABLA' P(AA'-) and right adjoints
to each of S®- and -8T. Thece facts simply express the
correspondence, to within isomorphism, of functors
ACPgACP . [A,V] to their Kan extensions [A,VIQ[A,V] + [A,V]
along L8L : A%P@A®P + [A,V18[A,V]. |

An identity object J e [A,V] for ® is just a
functor J : A + V. Natural isomorphisms %, r, a,

completing ®, J to a monoidal structure, are easily seen

to translate into natural isomorphisms

n

A+ [XIxeP(xa-) = LA

e

o : fXsxep(ax-) = La
o : jXP(AA'x)ep(XA"-) = jXP(A'A"x)@P(Ax-).
In turn, the coherence conditions for %, r, a translate

into corresponding "coherence conditions" for A, p, a.
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The main result of Chapter 3 is a bijection
(at least to within isomorphism) between biclosed
structures on the functor categocy [A,V], and certain
structures (P,J,A,p,a) on A. Given the biclosed structure
on (A,V), its "trace" on AP [A,V] yields the structure
.on A; given the structure on A, the biclosed structure on
[A,V] is obtained by Kan extension.

Such structures on A are called promoncidal,

because P : A°PRA°P®A » V is what Bénabou has described

as a "profunctor" from ABA to A, It then turns out that
~each monoidal structure (8, I, ...) on A can be identified
with a corresponding promoncidal structure whose P and J
are given by

A(ABA',-)

A(I,-).

P(AA'-.)

J

In other words, monoidal structﬁres orn A are a special case
of promonoidal ones. An important feature of the monoidal
case is that the oppocite category A°p admits a canonical
monoidal structure {(also denoted by A°p) and consequently
is promonoidal (Bénabou has called A°P the monoidal
"conjugate" of A).

With the idea in mind of using promonoidal
structures as generalised monoidal ones, we introduce a

definition of promonoidal functor. This is so done as to
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produce the usual concept of monoidal functor whenever

the domain énd codomaln categories are actually monoidal.
For any two promonoidal categories A and B, the promonoidal
enrichments of a functor T : A + B correspond bijectively
to the monoidal enrichments of the "restriction" functor
[7,11: (B,V] + [A V1.

Moreover, the concept of promonoidal structure
oﬁ a category A is readily seen to be independent of the
smallness of A and the completeness of V. In defining a
general promonoidal category we simply insist that the
particular coends needed to write down the definition do
exist in V. For instance, any monoidal category is
promonojdal, the existence of the necessary coends being
guaranteed'by the representation theorem. Thus we may
view the biclosed structure of [A,V] as a large
"completion" of the promonoidal structure on a small
category A.

Many closed categories arise, not as total
functor categories [A,V], but as full reflective sub-
categeries of these. For example, sheaves of abelian
groups on a topology T arise as a reflective subcategory
of [TOp,AbJ, and abelian groups arise as a reflective

subcategory of [GOp,SJ where G denotes the tﬁeory of 3
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abelian groups. This brings us to the second construction.
Commencing with a biclosed structure
(8,1,2,r,a,/,\) on a category B, let 6 : C » B be a full
embedding functor with a left adjoint ¢ : B - C. Then
there exists a biclosed structure (é,i,...) on C, for
‘which Y admits enrichment to a monoidal functor Y = (w,ﬁ,wo)
with
| ¥ : yB8YB' » y(BBB')
v° I vI

isomorphisms, if and only 1if:

(¥) For all B e B and C = C, the objects 6C/B and B\6C
of B admit isomorphs in C.

The condition (%) has numerous equivalent forms
which we list in Chapter 4. 1In any given application one
form may be more convenient to use than the others. 1In
particular, if the original biclosed category B contains
a dense subcategory A then the condition (%) becomes:
(#¥¥*) For all A ¢ A and C € C, there exist objects H(AC)

and K(AC) of C together with isomorphisms

C(y(A'8A),C) = C(yA',H(AC))

C(Y(ABA'),C) = C(yA',K(AC))
which are natural in A' ¢ A.
The new condition (%%) applies non-trivially

to the case where B = [A,V] for a small promonoidal
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category A. Here B contains the dense subcategory of

left represented functors. But to say that a category C

is a full reflective subcategory of [A,V] is precisely to

say that there exists a dense functor M : AP » C, the

reflection of a functor T € [A,V] being given by the

coend YT = fATAGMA in C. In terms of the functor M, the

condition (#¥#%) reads:

(¥**) For all A ¢ A and C € C, there exist objects H(AC)
and K(AC) of C, together with isomorphisms

c(Q(A'A),C) = C(MA',H(AC))

C(Q(AA'),C) = C(MA',K(AC))
which are natural in A' ¢ A, where
Q(aar) = [Xp(aarx)eMX.
The last condition (#%%) makes no explicit

reference to the functor category (A,V] as a whole, only
to the reflections Q(AA') in C of the functors P(AA'-) : A » V.
Thus we may ask whether satisfaction of (#%#%) guarantees
a biclosed structure on a category C when a dense functor
M : A°p + C is given from the dual of an arbitrary
promonoidal category A over an arbitrary ground category V.
The answer is yes, provided we postulate the existence in

¢ of the coends ]ATAQMA for certain functors T : A » V.
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More precisely, we require that the coends

Q(aar) = [Xp(aa'x)emx

I = [Xixemx

5 xx! p
cec' = [*7 (C(MX,C)8C{MX',C'))8Q(XX")
exist in C, together with the ends

c'/C

[xLC(MX,C),H(XC")]
C\C!

Jyremx,c),k(xc) 1.

In Chapter 5 we establish that the satisfaction
of condition (##%%), together with the existence of the
above coends and ends, is sufficient for the existence of
2 biclosed structure on C having é for tensor product,

f for identity object, and / and \ for internal homs.
Furthermore, when A is monoidal, this biciosed structure
on C is characterised, uniquely to within isomorphism, by
the existence of a monoidal enrichment (¢,$,¢°) of tre

op A » ¢°P for which both é and ¢° are

functor ¢ = M
isomorphisms; an analogous result is true for A an
arbitfary promonoidal category. Conversely, given a
biélosed structure on C, together with a suitable
promonoidal enrichment of M°P : A - COp, the required
coends and ends exist in C and .condition (%%%) is satisfied.

These results are collected to form the general construction

theorem of Section 5.3.
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The already mentioned biclosed structure of a
total functor category [A,V] and that of a reflective
subcategory C < [A,V] may be recovered from the construction
theorem by equating M to L : A°P? + [A,V] and to
Y : [A,V] + C respectively. An application 1ying outside
the scope of these two special cases 1s outlined in
Section 5.4 where we take M to be the inclusion Vm,c Vrjr
of the category'vmrof free algebras into the category VE
of algebras over a "commutative" monad T on V. Here the
commutativity of T provides & canonical monoidal structure

= op
on the large category A = Vﬂ?

structure on ijis the one we would normally obtain if we

. The resulting closzd

took, say, V to be S and T to be the abelian group mcnad

on S.
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CHAPTER 1

PRELIMINARIES

Again we emphasise that, unless otherwise
indicated, concepts are relative to the given normalised
closed category V. For each category A, the underlying

S-category of A is denoted by AO, as in [9].

Section 1.1. Completeness concepts

We recall the basic aspects of completeness for
V-categories.

Definition 1.1.1 An end in B of a functor T : A°PeA » B

is a natural family a, : B » T(AA) in B, having the
property that for each B' ¢ B, any natural family

By : X » B(B',T(AA)) in V, admits a unique factorisation

of the form
B
X > B(B',T(AA))
\\ /
\
N\ B(1,)
B(B'B)

It is clear from this defirition that an end in V
of a functor T : APRA + v is simply a "universally natural"
family a, : X » T(AA). Thus, by definition, representable

functors preserve ends. The concept dual to end is called

coend.
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Whenever the end of T : A°PeA + B exists, it
is clearly unique to within a unique isomorphism, and
consequently is usually referred to as "the" end of T in
B. When defining a functor, say, using ends, we shall
presume that a definite choice has been made of them;
we often adopt the notation s, : f,T(AA) + T(AA) for end,

and sA

: T(AA) + [AT(AA) for coend, regarding [ and [
as well defined operations.
Definition 1.1.2 Let T : A » B be a functor. We say that

B is T-tensored if the left represented functor

LTA = B(TA,-) : B » V has a left adjoint, denoted
-8TA : V + B, for each A ¢ A. We say that B is tensored
if it is lBQtensored.
We note that, vy [11] §3.5, the adjunction
p : B(X8TA,B) = [X,B(TA,B)] (1.1.1)

endows -®T- with a canonical bifunctor structure

TenT : VA + B, Dually, B is T-cotensored if each functor
RTA = B(-,TA) : B°P? 5 V has a left adjoint. The dual of
this adjoint is usually denoted [-,TA] : voP o+ B,

The existence of endcs and of éotensorigg,in a

particular category B are completeness properties of B.

In addition, if K is an S-category then the (inverse)

limit ap B -+ SK in Bo of an S-functor S : K =» B0 is
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called the V-limit of S in B if B(l,aK) : B(B'B) + B(B',SK)
is a limit of B(B',S-) in VO for all B' € B.

In practice, these completeness concepts may
overlap considerably. First, if the normalisation V : V » §
admits the closed left adjoint ¥ : S » V (see Section 0.2)
then the V-limit of S : K + B, coincides with the end of
the (canonical) composite

FK°P8F K—M»F K—LB
% % _ ¥
where § is the V-functor lifting S :K -+ B, and
P : K%PxK » K is projection onto the second factor (in
other words, the first variable in this end is "dead").

Furthermore, when V = S, a category B is T-cotensored for

a functor T : A+ B precisely when it admits all products

of the form IITA where A € A and X € S.
X

Conversely, it has been shown by G.M. Kelly (see
[3] and [11]) that an end in a V-category can be constructed
as the.V-limit of a certain diagram involving cotensor
products. Briefly, let T : A°PgA + B be a fuhctor into a

cotensored category B. Then the diagram
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T(A-)

A(AA') > B(T(AA),T(AA'))
T(-A") B(a,,1)
B(T(A'A'),T(AA')) = B(B,T(AA'))

B(a,,,1)

expressing the naturality of a family o, : B > T(AA),

transforms under the cotensor adjunction

o : Vy(X,B(BB')) = B,(B,[XB"'])

into the diagram

B %A = T(AA)
o, o (T(A-))
T(A'A') >[A(AA'),T(AA')]
o(T(-A'))

in Bo. Hence the end of T can be obtained as the V-limit

in B of a connected diagram of the form

\

T(AA)
A(AA'),T(AA")]
T(A'A')

[ACATA"),T(A'A")]

T(A"A")

Avav,
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This construction shows, in particular, that small ends
exist in any V-category that is cotensored and admits
small V-limits.
The possibility of completing a category with
respect to these concepts is discussed by E. Dubuc in [7].
We recall, also from [3] and [11], that a functor
admitting a left adjoint preserves any ends and cotensor

products which happen to exist in its domain.
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Section 1.2. Functor categories

A primary use of ends is in the construction of
functor categories relative to V.
Suppose that A and B are categories with the

property that the end

A
ST

exists in V for each pair of functors S,T : A - B. Then,

EA o = s, : [,B(SA,TA) » B(SA,TA) (1.2.1)
as verified in [3], there exists an essentially unique
category [A,B] whose objects are the functors
sTyeee A + B, and whose hom-objects are given by
[A,B1(S,T) = ]AB(SA,TA).
Thus, by construction, we obtain an evaluation functor

A . A

E [A,B] + B for each Ae A , given by E°S = SA and

A

E g

is (1.2.1).

An element a of the set [A,BJO(S,T) = V[AB(SA,TA)
is seen to correspond, via the projections
Vs, : V[,B(SA,TA) > VB(SA,TA) = B,(SA,TA), to a natural
family of morphisms oy SA -+ TA in the sense of [9].
Hence the underlying S-category [A,B}O is precisely the
S-category of all functors from A ﬁo B and natural
transformations between them.
Many properties of the codomain B carry over to

the functor category [A,B]l. In particular, ends and

cotensoring in [A,B] are always computed evaluationwise,
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so that any choice of these made in B fixes a choice in

[A,B].
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Section 1.3. Lemmas on induced naturality

In this section we record some of the
"computational" aspects of ends and coends. It 1is assumed
that the reader 1s familiar with the rules governing the
composition of natural transformations (as generalised in
Eilenberg-Kelly [81). The results are stated in terms of
coends because they will be used chiefly in this form. |
Lemma 1.3.1 Let T : A°P8A8B + C be a functor and let
app ¢ T(AAB) » SB be a coend over A for each B ¢ B. Then
there exists a unique functor S : B + C making the family

aAB natural in B.

Proof For each pair B,B' ¢ B consider the diagram

SpR!

B(BB') — — — — — — -> ((SB,SB')
T(AA")BB' C(a,l)
C(T(AAB),T(AAB')) > C(T(AAB),SB!')

C(l,a)

Because C(a,l) is an end and C(l,a).T(AA-)BB, is natural
in A, we can define SBB' to be the unique morpbhism making
this diagram commute. The functor axioms VF1'.and VF2!
of [9] are easily verified for this definition of S by
using the fact that C(a,l) is an end. S is then the

unique functor making OaR natural in B.
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In a typical calculation with ends we have to
determine whether naturality in any extra variables
survives the varicus factorisations. All our requirements
may be extracted frcm the following lemma.

Lemma 1.3.2 Let T : A°P@A®B°P@B + v and s : 8°PeB » v

be functors, let a,pp, : S(BB') + T(AABB') be an end over
A, natural in B and B', and let BAB : I » T(AABB) be |
natural in Arand B. Then the induced family Yg I » S(BB)
is natural in B.

Proof For each pair B,B' ¢ B, consider the diagram

(T(AABB),T(AABB')]

[1,a]
[S(BB),S(BB') “ = [S(BB),T(AABB') ]
1] [y,1
AB- \ \ ]
1 [1 G]
B(BB') [I,S(BB')] = [I,T(AABB')]
S(-B'
\\\\\\\; ) ///////;ji y /////f:TZJ
[S(B'B'),S(BB')] [S(B'B'),T(AABB')]
[(1,a]
T(AA-B') 5 [o,1]

[T(AAB'B'),T(AABB')] .
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Regions 3 and 4 commute trivially. Regions 5 and 2
commute by the naturality of QpRB! in B and B’
respectively. The exterior commutes by naturality of

BAB = 0ppp-Yp in B. Then, because [l,a] is an end, region
1 commutes as required.

Lemma 1.3.3 Let T : A°PsAaB®PeBac » £, S : 8°PeBac + E,

and R : 9°P8p8C + E be functors, let
OpppIC T(AABB'C) + S(BB'C) be a coend over A, natural in
B, B', and C, and let BapcD T(AABBC) - R(DDC) be
natural in A, B, C, and D. Thenthe induced family
Ypep S(BBC) + R(DDC) is natural in B, C, and D.
Proof This is a straightforward consequence of the
preceding Lemma 1.3.2 combined with [9] Lemma III.7.3;
the latter result states that the three types of
naturality may be expressed in terms of one, namely, the
I + T(AA) form in V. .

The next lemma asserts that coends are preserved
by coends and tensor products. The verifications are

straightforward and shall be omitted.
Lemma 1.3.04

a) Let T : A°PeAeB°P@B + ¢ and S : B°P8B + ¢ be functors,

let a : T(AABB') » S(BB') be a coend over A,

ABB'
natural in B and B', and let BAB : T(AABB) »+ C be
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natural in A and B. Then the induced family
Yg °© S(BB) - C is a coend over B if and only 1if
BAB is a coend over A and B.
b) Let T : A°P@A » C be a functor into a tensored
category C, and let op T(AA) » C be natural in A.
Then ap is a coend over A if and only if
180, : X8T(AA) + XOC is a coend over A for all XelV.
In some circumstances it 1is desirable to use a
simplified notation for coends. Let A be a categecry and
let T(AA-) be a functor into Vv, whose coend
s : T(an-) -+ [AT(AA—) over A ¢ A exists for all values
of the extra variables "-". Then, if T(AA-) = S(A-)®R(A-)
for functors S and R into V (with different variances in
A), we frequently abbreviate the notation to
sh : s(A-)8R(A-) + S(A-)8R(A-), leaving the repeated
dummy variable A to indicate the domain of integration.
By Lemma 1.3.1, S(A-)8R(A-) is (canonically) functorial
in its extra variables.
The fpllowing considerations are introduced in
order to handle expressions formed entirely by the

repeated use of 8. To each expression N which is formed

by one or more uses of 8, there corresponds an expression
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N in which each ® 1s replaced by 8, the dummy variables
in N becoming repeated variables in N; for example, 1if

N is (RA8S(AB))®T{(BC) for functors R : A + V,

S : A%P88 > v, and T : B°P8C + V, then N is
(RAGS(AB))®T(BC). Furthermore, there is a canonical
natural transformation q = ay N + N defined, as follows,
by induction on the number of occurrences of @ in gg If
N contains no occurrence of 8 then N = N and qy = 1;

otherwlse N = N'8N" and qy 1s the composite

N'®N" > gvgﬁn —_— ﬂ';@;N_"-
q'8q" s

In the above example, q would be the composite

(RA@S(AB))@T(BC)-——e—(RAgs(AB))®T(BC)—%>(RA§S(AB))QT(BC)
s®1 s

and this is natural in A, B, and C; we say that the
variables A and B are "summed out™ by q.

In fact the path Qy ¢ N + N is a multiple coend
over all those variables in N which are summed out by qy-

Lemma 1.3.5 Let T be a functor into V and let £ : N> T

be a natural transformation which is, in particular,
natural in all the repeated variables in N which are
summed out by ay ¢ N - N. Then f factors as g-dy for a

unique natural transformation g : N + T.
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Proof By induction on the number of occurrences of ®
in N. If @ does not occur in N the result 1is trivial.
Otherwise N = N'8N" and we can, using Lemma 1.3.4, factor

f in three steps:

= N'eN"——> N'@N"-—————- 'GN"—»N'@N" = N

RNV~

The naturality of g follows from Lemma 1.3.3.

When the transformation f in the preceding
Lemma 1.3.5 is of the form q'.n for a path q' : N' - N',
the induced g : N = N' 1s, for obvious reasons, denoted
by n. Induced transformations of this form are an
essentlial feature of the definition of promonoidal category;
we make two important observations in this regard.

First, if n : N » N' is a natural isomorphism
constructed from the coherent data isomorphisms a, r, &, ¢
of Vthenn : N » N' is a natural isomorphism and is |

called an induced coherence isomorphism. In view of the

uniqueness assertion of Lemma 1.3.5, and the original
coherence of a, r, £, ¢, it is clear that induced coherence

isomorphisms are coherent. In other words, the induced
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coherence isomorphism n : N =+ N' is completely determined

by the positions of ® in the expressions N and N';

consequently, such isomorphisms need not be labelled.
Secondly, when n = h®k : S(A-)8R(A-) -+ S'(A-)®R'(A-)

for natural transformations h : S + S' and k : R + R', we

write h@k for h8k. This not only makes the symbol ®

S-functorial insofar as it is defined, but also makes the

coend s* : S(A-)8R(A-) + S(A-)8R(A-) S-natural in S and R.
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Section 1.4 The representation theorem

et M: A>Band T : B + C be functors. 1If
C is TM-tensored then

T B(MA,B) + C(TMA,TB)

MA,B °
transforms, under the tensoring adjunction isomorphism

(1.1.1), to a natural transformation

= M,A .
c = CT,B’ .

When the coend over A of B(MA,B)&TMA exists in B, there

B(MA,B)8TMA + TB.

results an induced morphism

Z-'-'ZM
T,B

which is natural in B € B by Lemma 1.3.3. The letter 2z

: [AB(MA,B)8TMA + TB (1.4.1)

will be reserved for this morphism.
For this section we consider the case where M
is the identity functor 1 : B -+ B.

Theorem (the higher representation theorem) IfT : B+ C

is a functor into a T-tensored category C then the
transformation
L ¢ B(BB')®TB » TB',

obtained by adjunction from T B(BB') » C(TB,TB'), is

BB'
a coend over B.

Proof This is exactly as in [3] §3.5 where the codomain
was assumed to be tensored. For each C ¢ C, the

transformation
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¢(z,1) : C(TB',C) » C(B(BB')®TB,C)
is an end over B € B. This follows from the correspondence

of transformations

ag : X > C(B(BB')8TB,C)

to transformations

Bg X - [B(BB'),C(TB,C)],

by the tensor adjunction, to transformations

Yg * B(BB') » [X,c(TB,C)1],
by symmetry in V, to morphisms
f : X=» c(TB',C),
by the representation theorem (below).
In our notation, the higher representation
theorem staﬁes that
y = yT’B, = ZT,B} : [BB(BB')®TB + TB'  (1.4.2)
is an isomorphism which we cwll the Yoneda isomorrphism.

" The letter y will be reserved for this isomorphism.

Theorem (the representation theorem) Let T : B+ UV be

a functor and let B ¢ R and X € V. Then there is a bijection
b between the class of natural transformations |
a : B(B-)8X + T and the elements f ¢ VO(X,TB).

This result is established by Eilenberg and Kelly

in [9] Proposition II.7.4. The bijection b is given by
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g1 381 g

b(a) = X ——= I®X — B(BB)8X —= TB,

1 T8l [f,1381 e
b~ (f) = B(B-)8X——= [TB,T-18X —= [X,T-18X —=T,

where e 1s "evaluation" in V, that is, the transform of
l: [TB,T-] + [TB,T-] under the tensoring adjunction for

V . We shall refer to b as the Yoneda correspondence.
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Section 1.5 Dense functors and strongly generating classes

Definition 1.5.1 A functor M : A + B is dense if the

natural transformation

LMA B(BB') » [B(MA,B),B(MA,B) ] (1.5.1)

BB'
is an end over A for all B,B' ¢ B.

The terminology (introduced by Ulmer [177] for
V = abelian groups) is best explained by the case where

B is M-tensored.

Lemma 1.5.2 Let M : A » B be a functor into an M-tensored
category B. Then M 1s dense if and only if the
transformation

tz : B(MA,B)SMA -+ B, (1.5.2)
obtained by adjunction from 1 : B(MA,B) » B(MA,B), is a

coend over A for each B ¢ B.

Proof On applying the representation theorem, the diagram

| LMA
B(BB') - [B(MA,B),B(MA,B')]

p | IR
B(z,1)

B(B(MA,B)®MA,B')

is seen to commute for all B,B' ¢ B. Then the result
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follows from the Definition 1.5.1 of "dense" and the
definition of "coend".

To say that the transformation (1.5.2) is a coend
is, of course, equivalent to saying that
z : JA (MA,B)eMA » B is an isomorphism.

A functor T : B + C is called a full embedding.

ifr T s+ B(BB') + C(TB,TB') is an isomorphism for all

BB!
B,B' € B. An important instance of a dense functor is the

Yoneda (full) embedding:

L : AP s [A,Vv], An—LA.
Here we have . . -
z : [ALA,V1(LA,T)OLA — [ATASLA— > T

by the opposite forms of the higher representation theorem.

The left adjoint to a full embedding provides
another well-known example of a dense functor. Briefly,
if a full embedding T : B + C has a left adjoint S : ¢ » B
then the adjunction counit € : ST - 1 is an isomorphism,

whence the composite

B(BB') = B(STB,B')

ne

fC[B(C,TB),B(SC,B')] by the higher repn. thm.,

ne

fC[B(SC,B),B(SC,B')J by the adjunction,
is an isomorphism; by using the representation theorem,

this composite is easily seen to be induced by LSC.
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Returning to the Definition 1.5.1, the functor
M : A » B is dense precisely when the resulting functor
B + [A°P,v], Bn>B(M-,B)
is a full embedding. This makes sense even when the
functor category [AOP,V] does not exist. At the underlying-

sets level, we have:

Lemma 1.5.3 IfM: A+ B is dense then each natural

transformation o, : B(MA,B) » B(MA,B') is of the form
B(1,f) for a unique feBO(BB').
Proof This is the result of applying V : V » S to the
end (1.5.1) in V.

Thus, on taking V = S, the concept of dense
functor is seen to be equivalent to the original ideas of

"adequate functor" introduced by Isbell [10].

Lemma 1.5.4 Suppose we have functors

R
M ///’j;\\\\
T

where M 1s dense and R is right adjoint to S. Then each
natural transformation a : SM -~ TM : A »+ C admits a unique

extension to a natural transformation o« : S+ T : B + C.
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Proof Let n : 1+ RS : B+ B be the unit of the
adjunction. Then the mapping which sends a natural
transformation B = BB : SB + TB to the composite natural

transformation
Ny RBB

B ——= RSB ———>RTB,

is a bijection. Furthermore, by Lemma 1.5.3 and the
density of M, there is a bijection between transformations
Y = Yg B - RTB and transformations

) : B(MA,B) » B(MA,RTB). Hence, given a natural

AB °
transformation a : SM + TM : A + C, we define
@ :S+T: B+ C to be the unique natural transformation

making the following diagram commute:

B(MA,B) > B(MA,RSB) > B(MA,RTB)
RTa,B B(ny,sl)
B(RTMA,RTB) > B(RSMA,RTB).
B(RaA,l)

On applying V : V + S to the diagram, putting B = MA, and

evaluating both legs at IMAeBO(MA,MA), we obtain

a = aM

as required.
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Definition 1.5.5 (Kelly) A class A of objects in a

category B 1s strongly generating if feBO(BB') is an

isomorphism whenever B(1l,f) : B(AB) » B(AB') is an
isomorphism in Vo for all AcA.

This concept 1s closely related to that of a
dense functor. If M : A -+ é is a dense functor then
the class {MA;AcA} is strongly generating in B by Lemma

1.5.3. In the other direction we have:

Proposition 1.5.6 If M : AcB is the inclusion of a

strongly generating class A into an M-tensored category B,
and fA'B(MA',B)eMA' exists in B and is preserved by B(MA-)
for all AcA and BeB, then M is dense.

Proof For each AecA and BeB, consider the diagram

f1eM
fA'B(MAT,B)BA(AAT) —— [A'B(MA",B)EB(MA,MA")
” =

A' 1 |
J© A(AA')®B(MA',B) wl «

y iw

B(MA,B) < s(ma, [A'B(MAT,B)eMA")
: B(1l,z)

in which Kk is the isomorphism asserting that B(MA,-)
preserves the given coend. This diagram is verified to

commute by applying the representation theorem to B.
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Thus B(1l,z) is an isomorphism. Hence, because AcB is -
strongly generating, z is an isomorphism as required in

Lemma 1.5.2 for M : AcB to be dense.
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CHAPTER 2

PROMONGIDAL STRUCTURES

Section 2.1 Promonoidal categories

The concept of a promonoidal category shall be
introduced by considering the outcome of restricting a
monoidal structure on a category B to a full subcategory‘
A of B. In brief, we seek sufficient conditions on such
an embedding in order for the resulting structure on A to
admit a formulation which makes no explicit reference to
the monoidal structure on B. .

First, let B be an arbitrary category. Then
each choice of a functor 8 : B8B + B, together with an
object TeB, provides canonical functors

P : 8°P88°PeB + v

J: B>V
where P(BB'B") = B(BSB',B") and JB = B(IB); when there is
no danger of confusion we denote ® and I by ® and I
respectively. Next, let M : A » B be an arbitrary functor
into B. This enables us to define, by "restriction",

functors

OP o OP =
MCPPgMOPgM P
P : APPga®Pgy > B°PggOPgg ———— =y
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Now consider the exteriors of the following

o
three diagrams (where z = zM p):

A
JX8P(XA-) = A(A-)
B(I, MX)@B(MX@MA -)
S~
-~ M (2.1.1)

B(IY)@B(Y@MA M-)

/\r

B(IBMA,M-) —= B(MA,M-)
B(Z,1) :

JX8P (AX-) = A(A-)

~ B{I,MX)®B(MABMX,M-)

\
~ M (2.1.2)
=
Z, B(IY)QB(MA@Y,M—)
! ﬁy//////// \\\\\\\E;\ v
B(MABI,M-) —= B(MA,M-)

B(r,1)



42,

o

P(AA'X)8P(XA"=) ————— P(A'A"X)8P(AX-) (2.1.3)
B(MA®MA' ,MX)8B (MX®MA" ,M-) B(MA'@MA" ,MX)®B(MA®MX ,M-)
| 7
N e
N o d
z3| B(MASMA',Y)8B(YOMA",M-) ——= B(MA'OMA",Y)®B(NMABY,M-) | z,
| y
Y7 | \
B((MAGMA')8MA" ,M-) == B(MAQ(MA'8MA") ,M-)
B(a,1) |

If natural isomorphisms % : I8B 2 B, r : BRI = B, and
a : (B8B')®B" = B8(B'®B") are provided for 8, I then, in
order that the above diagrams should define natural
isomorphisms A, p, and a respectively, it is clearly

sufficient that M : A+ B be a full embedding and that the

transformations
z, : B(I,MX)®B(MX8MA,M-) » B{IGMA,M-)
z, : B(I,MX)8B(MA®MX,M-) + B(MA®I,M-)
z3 : B(MAQMA',MX)QB(MXGMA",M—) -+ B((MAGMA')®MA" ,M-)

z) B(MA'®MA" ,MX)8B(MABMX,M-) + B(MA®(MA'8MA"),M-)

be isomorphisms for all A,A',A"€A.
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Assuming that these conditions are satisfied,
consider the diagrams (2.1.4) and (2.1.5); in order to
simplify these, we have suppressed the symbol M as much
as possible and have assumed that the dummy variables X
in each expression are paired off from the left unless
otherwise indicated. If axiom MC1l holds for (%,r,a) then
the center region of (2.1.4) commutes. Assuming all the
exhibited coends exist in this diagram, regions 1 and 4
commute by the lemma in Appendix 1; regions 2, 5, and 10
commute by the respective definitions of a, A, and p;
regions 3, 6, 7, 8, and 9 commute by the naturality of
z, a, and M. Similarly, if axiom MC2 holds for a then
the center region of (2.1.5) commutes. Regions 1, 4, 7,
10, and 13 commute by the lemma in Appendix 1; regions 2,
5, &, 11, and 14 commute by definition of o; regions 3, 6,
9, 12, and 15 commute by the naturality of z and a. Thus,
if axioms MC1l and MC2 hold for (%,r,a) then the exteriors
of (2.1.4) and (2.1.5) commute.

To summarise, we have that a full embedding
M : A+ B into a monoidal category B induces, whenever
Zys .- 5 2, are isomorphisms, a trace of B on A in the
sense that the relationships among the P, J, A, p, a are

expressible in terms of A alone. This provokes the
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Diagram (2.1.4)

JX@(P(AXX)8P(XA'-)) —

% \\\\\\

z

180

(2)
188(a,1)

/@z

JX8B((AGX)RA' -)-e—————————JX@B(A@(X@A'

»- JXQ(P(XA'X)8P(AX-))

(JX@P(XA'X))@P(AX )

(4)

B(I®A', X)@P(AX )

B(%, 1)@1

M®1

/

(TJX®P(AXX) )8P(XA'~) (3)
(1) B(T,1)
z®1 B((ABI)BA',-) = B(A@(I@A'),—)
Z
(6)
B(A®I,X)8P(XA'-) (9)
P81 T B B(781,1) B(16T,1)
(10) | B(r,1)e1
B(AX)8P(XA'-) = B(AGA',-) =
V4 Z
'~ (8) (7)
A(AX)®P(XA'-)
\y\_‘_ P(AA’-)/y

B(A'X)8P(AX-)

z®l

81
(5)

Y
A(A'X)8P(AX-)
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(2)
18a

P(AA'X)es(xe(A"eA"') -)

P(AA'X)@(P(XA"X)@P(XA"'-))

M

B(((A8A" )GA" X)@P()(A'"_)

B(a 1)81
B(AB(A'®A"),X)BP (XA =)

a8l

Z

y

(P(A'A"X)®P(AXX))®P(XA'''-)
(13)

1®z

P(AA'X)8(P(A"A'" X" )8P(XX'~)) =~ P(A"A'" X! )®(P(AA'X)8P(XX'-))

12?,//// (5) 18a

P(A"A'"X')8B((ABA"')8X,-)

P(A"A"'X)@(P(A'XX)@P(AX-))

(1) P(AA'X)QB((XQA")QAn' -

(14) (15)

1
(P(AA'X)QP(XA"X))@P(XA'"-\\\\\\
\\\\\\\\\\ B(((AeA')@A")eA"v -)

Z

B((AB(A'®A"))BA''"' =) «—————— B(AQ((A'RA")BA'"'),-)

B((AeA')e(A"@Anv) _) l@z

P(A"A”’X)@B(A@(A 8X),-) R
(7)
B(a,1) (P(A"A"'X)8P(A'XX))8E (AX-)
z@l

B(AG(A'8(A"8A™)),-)

Z
B(A'@(A"@A"'LX)QP(AX-)
B(3®1,1)  B(183,1) | (9) B(;,l)glt 8 |

1en

B((A'®A")®A''),X)8P(AX~)

B(a,1) Y ‘r,//if//

z81
(12) Z  (P(A'A"X)@P(XA"'X))®P (AX-)
18B8(z,1) (10)
P(A'A"X)BB((ABX)BA'" ,-) «—————— P(A'A"X)®B(AB(X®A"' ),-)
(11) \ %
120'. lgz

D
18z /f

P(A'A"X)8(P(AXX)BP(XA'"-))

— P(A'A"X)@(P(XA'""'X)®P(AX-))
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following definition:

Definition 2.1.1 A promonoidal category A = (A,P,J,A,p,a)

‘over V consists of

a category A

a functor P : A°P8A%PgA » v
a functor J : A > V

and natural isomorphisms

A= AA.: JX8P(XA-) + LA
P =P JX@P(AX-) » LA
O = Cpprpm P(AA'X)@P(XA"-) > P(A'A"X)QP(AX—)

satisfying the following two axioms:

PC1. The exterior of diagram (2.1.4) commutes.

PC2. The exterior of diagram (2.1.5) commutes.

The existence of the required coends in V is taken as part
of the definition.

It is‘possible that A is the trace of a symmetric
monoidal category B. In this event we define a symmetry

o on P : A%Pgp%Pg4 5 v by
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P(AA'-) > P(A'A-)

B(ABA',-) = — B(A'®A,-)
B(c,1)

(2.1.6)

commutes, where ¢ is the symmetry on B. To obtain axioms,

we consider the following two diagrams.

P(A'A-)
’///,/g/////”" \\\\\\\éL\\\\\i~ (2.1.7)
P(AA'—) , | P(AA'-)
B(A'8A,-)
I ,g////////gzgzl) B(C‘;S\\\\\\\\\\\\
B(A@A' -) B(AQA',")

The regions 1 and 2 of diagram (2.1.7) commute by
definition of o. In diagram (2.1.8), regions 1, 3, and 5
commute by definition of a; regions 2, 4, and 6 commute
by definition of o, together with the naturality of z and
¢c. If axioms MC3 and MCY4 hold for (c,a) then the center
regions of both diagrams commute whence the exteriors

commute. Thus o satisfies conditions which depend only

on the trace A.
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Diagram (2.1.8)

a 180
P(AA'X}QP(XA"-) > P(A'A"X)®P(AX-) —== P(A'A"X)®P(XA-)

L

B((A8A1)8A",-) =B 221) g(ae(aream),-) <21 g((arenmien,-)

081 B(c®1,1) B(a,1) a
6 3
B((A'@A)BA",-) —«———— B(A'®(ABA"),~) ==————B(A'8(A"8A),-)

- B(a,l) B(18c,1)
| z 5 | z 4 Z
V/ T \V

P(A'AX)@P(XA"-) > P(AA"X)8P(A'X-) > P(A"AX)QP(A'X-)
a o8l
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Definition 2.1.2 A symmetry for a promonoidal category
A= (A,P,J,A,p,a) is a natural isomorphism

o = P(AA'-) » P(A'A-)

Opar
satisfying the followling two axioms:

2

PC3. The exterior of diagram (2.1.7) commutes (i.e. o =1).

PCl. The exterior of diagram (2.1.8) commutes.
A particular consequence of the above arguments
is that every monoidal category may be considered to be a

promonoidal category. More precisely, we have:

Lemma 2.1.3 Taking A = B and M to be the identity, the

diagrams (2.1.1) to (2.1.5) establish a bijection between
monoidal completions of the data (8,I) on B, and promonoidal
completions of the data (P,J) on B. Furthermore, diagrams
(2.1.6) to (2.1.8) provide a bijection between monoidal
symmetries and promonoidal symmetries on the respective
resulting structures.

Proof In each of the diagrams (2.1.1) to (2.1.8) the
transformations z become Yoneda iscmorphisms. Hence each
diagram becomes a diagram of isomorphisms. The results

follow immediately from the representation theorem.
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We shall see in Section 2.4, however, that not

all promonoidal categories are monoidal.
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Section 2.2 Promonoidal functors, natural transformations

Let A = {A,P,J,A,p,a) and B = (B,P,J,X,p,a)

denote arbitrary promonoidal categories.

Definition 2.2.1 A promonoidal functor

% = (¢,$,¢') : A > B consists of
a functor ¢ : A +- B

and natural transformations

”~

3 =y, ¢ P(AAT-) » B8R, 07,0-)
¢ : J > Jo
satisfying the following three axioms (in which the

uncommented diagrams commute by construction):

PF1l. The diagram * commutes:

s A
JX@P(XA-)-——————-%»—JX@?(XA—)————————e>A(A-)

I
¢'8% I * ¢
Y

JoX8P (X, 0A,¢-) ——=— JYQP(Y,¢A,0-) ———=B(dA,¢-) .
sé -
A

PF2. The diagram * commutes:

S p
JX8P(AX-) ———= JXBP(AX-) —— = A(A-)

|
¢4 I * ¢

|
3¢X®F(¢A,¢X,¢—)——é TY?;F(¢A’Y,¢')—T'>B(¢A,¢—) .
s¢ p
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PF3. The diagram % commutes

a
P(AA'X)8P(XA"-)——— P(A'A"X)8P(AX-)

/

P(AA'X)BP(XA"-)

S

P(A'A"X)®P(AX-)

$8¢ ¢84¢

| |
| ]
| % I
283 | |
| |
P(AGA" ¢X)8F(0X0A"0-) | | B(onroam X)8P(oa0x0-)

e~ ]

P(¢AGA'Y)BP(YPA" ¢~)—> P(PA'PA"Y )P (¢AY H-) .
‘ o
Definition 2.2.2 If promonoidal categories A and B are
equipped with symmetries ¢ and o respectively then a
promonoidal functor ¢ = (¢,$,¢') : A > B is symmetric if

it satisfies the axiom:

PFL, The following diagram commutes:

. :
P(AA'-) > P(A'A-)

~n n

p | ¢
P(GAGA' ¢-) _ — P(0A'6AG-) .

Ql
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Proposition 2.2.3 IfM: A+ B is a full embedding into
a monoidal category B and A is the trace of B along M
then (M,1,1) : A » B is promonoidal.
Proof Return to diagrams (2.1.1), (2.1.2), and (2.1.3).
Regarding B as a promonoidal category (by Lemma 2.1.3),
fill in the appropriate X, p, and a (as shown). By
Definition 2.2.1, the upper regions of these diagrams now
assert that (M,1,1) : A + B is a promonoidal functor.
Furthermore, if B is symmetric monoidal then the diagram
(2.1.6) asserts that (M,1,1) : A + B is symmetric (by
Definition 2.2.2).

For any functor ¢ : A + B, the representation
theorem establishes a bijection between the natural
transformations vy : LA + LB.¢ and the elements feBO(B,¢A),

by means of the diagram

Y
A(A-) >'B(Bs¢-)
B(f,1)
B(¢A’¢') .

Now suppose that ¢ : A + B is a functor between monoidal

categories. Then the diagrams
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©->

A(ABA' ,-) = B($AGPA' ,6-)
¢ 1 /&,1) (2.2.1)
B(¢(ABA'),¢-)

6
A(I") >B( I’¢-)
¢ 8(4°,1) (2.2.2)
B(¢I,¢-)

set up a bijection between promonoidal (respt. symmetric

promonoidal) functor structures (¢,$,¢') and monoidal

(respt. symmetric monoidal) functor structures (¢,$,¢°)

on ¢. The monoidal functor axioms (taken from [91])

MF1.

MF2.

¢I8PA —— ¢ (IB8A)

¢°81 o2

I8PA —————— = ¢A

-

dABGT > ¢ (ABI)
18¢ or

AR —— X = ¢A

(2.2.3)

commutes,

(2.2.4)

commutes,
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da
MF3. d((ABA')BA") — = ¢(AB(A'8A"))
A
) ¢
¢ (ABA' )BHA" GABG (A'®A") (2.2.5)
A
81 : 18¢

(PABGA"' )BPA" — = (AR (HA'®PA") commutes,

a
MF4, (for symmetry)
$c .
¢(ABA') > ¢(A'®A)
¢ $
OARPA? == $A'®@$A commutes,
c

are precisely the result of substituting (2.2.1) and (2.2.2)
into axioms PFl-4 and then applying the representation

theorem.

Finally, returning to general promonoidal

considerations, there is an appropriate concept of "2-cell",

Definition 2.2.4 A.promonoidal natural transformation

n:o&+>v¥Y: A > B is a natural transformation n : ¢ » ¢

satisfying the following two axioms:
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PN1. The following diagram commutes:

6

JA— > J¢A

v Jn

JYA .

PN2. The following diagram commutes:

~

¢ -
P(AA'-) > P(¢AQA'¢-)
6 F(l,lan)
P(YAYA ' Y-) —— = P(0AGA'Y-) .
P(n,n,1)

The net result is the "2-category" Paom.
Promonoidal functors & : A+ B and ¥ : B + C are composed
in the obvious manner, the data of the composite
promonoidal functor Y.?¢ being (w¢,$$,w’¢'). Similarly,
one can compose promonoidal natural transformations with
promonoidal functors, and with one another. An

isomorphism in Prom is readily seen to be a promonoidal

functor ¢ = (¢,$,¢f) whose data ¢, 3, and ¢° are all

isomorphisms. A natural isomorphism in Prom is a natural

transformation all of whose components are isomorphisms.
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The following lemmas allow us to replace given
promonoidal structures by suitable isomorphs when
required. The verifications are straightforward

computations from the definiticns and shall be omitted.

Lemma 2.2.5 Given categories A and B and an isomorphism

¢ : A » B together with functors
P : A%PeA%PgA » v, T : B°PeB°PeB » v
J:A>V, J:B-~>V
and natural isomorphisms
= ¢y, : P(AAT=) > P(gA0A"4-)
¢ 2 J > T4,
the axioms PF1—3 for ¢ = (¢,$,¢') establish a bijection

between promonoidal completions of the data (P,J) on A

and the data (P,J) on B.

Lemma 2.2.6 Given promonoidal categories A and B together

with functors ¢,y : A + B and a natural isomorphism
n:¢=>v¢y: A->B, the axioms FN1 and PN2 for n establish
a bijection between promonoidal functor‘completions of ¢

and of .
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Section 2.3 Dualitlies

Of the two basic dualities available for
monoidal categories (Bénabou [2], §3) only "transpose"
remains available in the general promonoidal setting.

" Nevertheless, we shall make much use of the "conjugate"

of a monoidal category.

Proposition and Definition 2.3.1 (Bénabou) If

A= (A,8,I,2,r,a) is a monoidal category then so is its

op 1 g1 p=1 -1

conjugate AP = (A°p,®

b

This duality is a special attribute of the
"category" of monoidal categories and strong monoidal

functors.

Definition 2.3.2 A monoidal functor ¢ = (¢,$,¢°) : A+ B

is strong if the transformations
$ : GASPA' > ¢(AB®A')
¢° : I » oI

are l1somorphisms.

Clearly a strong monoidal functor

¢ = (¢,6,6°) : A > B admits a (strong) conjugate
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c op -1 .0t op op
P = (¢ p,¢ N ) ¢ A + B"Y. Strong monoidal
functors occur quite widely; as shown in Kelly [11], the
closed left adjoint of a normal closed functor is always

strong.

Proposition and Definition 2.3.3 If A = (A,P,J,A,p,a) is
a promonoidal category then so is its transpose
A¥* = (A,P*,J,p,x,a-l), where P* is the composite

c®l P
APPgA®Pop . AOPgsOPgy -V,

It is a simple matter to construct the transpose
of a promonoidal functor. Moreover, if a promonoidal
category or functor is symmetric then it is (canonically)

isomorphic to its own transpose.
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Section 2.4 Comonoid categories

Suppose, for the moment, that the ground
category V is a cartesian closed category. Then any
category B which admits finite V-coproducts (including
. an initial object O) becomes a monoidal category if we set

| B@B' = B+ B' and I = O
and take %,r, and a to be the canonical isomorphisms

O+B=B=B+0

e

(B + B') + B" B+ (B'" + B"),

Such a structure B might well be called a cocartesian

monoidal category (over V).

Theorem 2.4.1 (V cartesian closed) The trace of a

cocartesian monoidal category B exists on any full
subcategory of B.

Proof Let A be an arbitrary full subcategory of B. For
all A,A'c¢A and BeB, consider the composite

XeA
[ B(BX)xB(X + A,A')

B(BX)®B(X + A,A")

XeA
J B(BX)x(A(XA')xA(AA'))

n

XeA :
(/] (B(BX)*A(XA')))xA(AA')

n

because -xA(AA') has a right adjoint,
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= B(BA')xA(AA')
by the higher representation theorem,

£ B(B + A,A').
This composite isomorphism is verified to be

z : B(BX)BB(XBA,A') - B(BBA,A')

by applying the representation theorem to BeB. In
particular, Zy ... 2, are isomorphisms, whence the trace
of B exists on A.

Thus, because a full subcategory A of B might
not admit finite coproducts (inA), there do exist examples
of promonoidal categories which are not monoidal. To
generallise this new type of promonoidal structure, observe

that we have

P(A'A"A) = B(A' + A",A)

ne

B(A'A)xB(A"A)

A(A'A)xA(A"A)

A(A'A)BA(A"A), (2.4.1)

the final expression being functorial in Ae¢A by virtue of

the diagonal functor 6 : A + AxA, Similarly,
' JA = B(O,A) = I (2.4.2)

is functcrial by virtue of the constant functor € : A » I.

If we wish to remove the cartesian restriction
on V we must ensure that (2.4.1) and (2.4.2) remain

functorial in AeA. This is so if A admits the structure
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of a comonoid in the "monoidal category" V-Cat. Such a
comonoid comprises a comultiplication functor 6§ : A » AGA
and a counit functor € : A + T satisfying the following

coassociative and left and right counit laws:

01
ASA > (ASA)8A
7 -
"
A |
N
ABA = AS(ABA)
186
€81 18¢
104 < ARA — AOT
wm 8 n

A A A .

Note that commutativity of these diagrams implies that §

maps an object AeA to the pair (A,A)eA8A, and that the

morphisms
§ = 8,5, ¢ A(AA') > A(AA")BA(AA")
€ = Eppn A(AA') - I

provide a ®-comonoid (that is, an associative ®-coalgebra
with a counit) structure on each hom-object A(AA').
A promonoidal structure is then defined on A by

the following data:
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1848 Hom(ABA)
P : (APgA°P)gA — = (A°P8A°P)gA0A — =V,
€ I
J: A1 ——>V,
A
JX8P(XA'A) = A(A'A)
JX8(A{XA)BA(A'A)) 2
(A(XA)8IX)BA(A'A) > JAGA(A'A),
yel
: p
JX®P(A'XA) > A(A'A)
JX@(A(A'A)BA(XA)) r
A(A'A)®(A(XA)BJIX) > A(A'A)8JA,
18y
o
P(A'A"X)®P(XA'"A) > P(A"A'""'X)®P(A'XA)
|| ||
P(A'A"X)8(A(XA)®A(A™ A)) P(A"A™ X)®(A(A'A)8A(XA))
N R
(A(XA)®P(A'A"X))®A(A'''A) A(A'A)®(A(XA)BP(A"A™ X))
yel J' {, 18y
P(A'A"A)RA(A'A) A(A'A)BP(A"A"M'A)

(ACATA)BA(A"ANBA(AM" A) —————= A(A'A)B(A(A"A)RA(A"'A)),
a
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where the definitions of A, p, and o implicitly involve
the comonoid axioms for € and §. Furthermore, if the
comultiplication § is commutative, we can define a
symmetry o = Oprpnp for A as

P(A'A"A) = A(A'A)BA(A"A)—=A(A"A)BA(A'A) = P(A"A'A).
(o]

This o clearly satisfies PC3; the other axioms are too
long to verify here but they are essentially a result of

the "coherence" of the Yoneda isomorphism y.

Remark on symmetry To each assertion that is made in

the sequel, there is a corresponding assertion-with-symmetry.
To avold restatement, we have omitted it, noting that the
corresponding proof-with-symmetry requires nothing that is

essentially new.
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CHAPTER 3

THE FUNCTOR CATEGORY THEOREM

Section 3.1 The Hom construction

From the considerations of the preceding section,
not every promonolidal category is monoidal. However we
still can ask whether every promonoidal category arises
as the trace of a monoidal category. For "small"
promonoidal categories this can be answered in the

affirmative by use of the Yoneda embedding.

Let A be a category for which the functor
category F = [A,V] exists; in practice this will mean that
(the set of objects of) A is small and V is complete.
Further, suppose that there 1s given a functor

€ : FOF + F
together with an object
_ IeF.
Then, in the discussion of Section 2.1, we set B = F°P and
M=1%:4-> F°p, thus obtaining functors
P : A%PeA°PgA » v
J : A=V

where P(AA'-) = F(L-,LARLA') and J F(L-,I).

Lemma 3.1.1 If the given functor & : F8F + F admits a

right adjoint to each variable then diagrams (2.1.1) to
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(2.1.5) establish a bijection between biclosed completions
of the data (8,I) on F and promonoidal completions of the
constructed data (P,J) on A.
Proof First we have that z; ... z, are isomorphisms
because the transformations
z : F(LX,S)8F(LA,LX8LA') + F(LA,SSLA')
z : F(LX,S)8F(LA,LA'6LX) » F(LA,LA'8S) } (3.1.1)
are isomorphisms for all SeF. To see this, combine the
following three facts:
(1) For each AeA, the functor F(LA,-) : F + V has a right
adjoint Zn—[Z,LA].
(2) By hypothesis, the functor & has a right adjoint to
each variable.
(3) The functor L : A°P » F is dense (Section 1.5).
In other words, the functors F(LA,-8LA') and F(LA,LA'8-)
preserve the expression
S £ F(LX,S)8LX
for all A,A'e¢A and SeF.
Then, because Zq .. Z) are isomorphisms, the
diagrams (2.1.1), (2.1.2), and (2.1.3) provide a bijection
between natural isomorphisms A,. p, and o for (P,J) and

natural isomorphisms £ : I®LA = LA, T : LA®I = LA, and

a : (LAGLA')®LA" = LA®(LA'®LA") for (8,I), by taking the
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inverses of the ¥, r, a actually shown in these diagrams;
in other words, we are looking at the conjugate of B.
Because (3.1.1) are isomorphisms for all SeF, the
diagrams (2.1.4) and (2.1.5) are also diagrams of

isomorphisms. Consequently, axioms PCl and PC2 hold for

A, p, and a if and only if the center regions of (2.1.4)

and (2.1.5), respectively, commute. But, by the higher

-~

representation theorem, F(L-,S) = S for all SeF, hence

these center regions commute if and only if the diagrams

(LA@I)@LA'——————a—IAG(IQLA' (3.1.2)

SN

LAGLA'

(3.1.3)
and

a a
((LASLA')®LA")®LA'" ——— (LASLA"' )8 (LA"SLA")>LA®(LA'@(LA"BLA'"))

a®l 18a

(LAG(LA'®LA"))®LA'" = LAG((LA'@LA")QLA'"")
a
commute for all A,A',A",A'™ in A,
Finally, because & has a right adjoint to each
variable and L : A°P » F is dense, we can use Lemma 1.5.4
to deduce that the transformations 2, r, a admit unique

extensions to natural isomorphisms
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Ié : I8S = S, Fé : S8I = S, and

agrp: (S8T)8R = S8(TeR),
satisfying axioms MCl and MC2 if and only if (3.1.2) and

(3.1.3) commute. This completes the proof.

Theorem 3.1.2 (the functor category theorem) Let A be a

category for which the functor category F = [A,V] exists,
let P : A°P@A®P@A + V be a functor for which the coend

sgr = [AR

(SABTA')BP(AA'-) (3.1.4)
exists for all S,TeF, and let JeF. Then there exists a
tijection between promonoidal completions of the data

(P,J) on A and biclosed completions of (8,J) on F.

Proof The expression (3.1.4) defines a (cancnical)

functor 8 : F8F » F by Lemma 1.3.1. Furthermore, & has a

right adjoint to each variable:

F(S8T,R) ]A"[(SGT)A",RA"J

[A"[]AA'(SAeTA')eP(AAfA"),RA"J

e

Jpprpn[(SABTA')8P(AA'A"),RA"]

jAAvAn[SA,[P(AA'A")’[TAI ,RA"11]]

n

n

[AESA,fA,A"[P(AA'A"),[TA',RA"JJJ

/,USA,(R/T)A] say,
F(S,R/T)

where the iscmorphisms are the canonical ones. Assuming

that each of the ends involved 1s made functorial in its
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extra variables using Lemma 1.3.1, we have that the
composite isomorphism is natural in S, T, and R. Thus
-8T admits a right adjoint -/T defined by‘
R/T = [popn(P(-A'A"),[TA' ,RA" 1] (3.1.5)
for all ReF. Similarly, we have
F(T8®S,R)

[y A (TABSAT)BP(AATA") ,RAM ]

n

fA,[SA',fAA"[P(AA'A"),[TA,RA"]]]
whence T®- admits a right adjoint T\- defined by
T\R = [, n[P(A-A"),[TA,RA"]] (3.1.6)
for all ReF.
Now define functors P' : A°P@A°PBA » V and
J'" : A+ V by
| P'(AA'-)

F(L-,LASLA')
Jl

F(L-,J).
Then the Lemma 3.1.1 provides a bijection between
promonoidal completions of (P',J') on A and biclosed
completions of (8,J) on F. Furthermore, the higher
representation theorem provides isomorphisms

X : P(AA'=) ——w P'(AA'-)

~
3

X 1 J—=J',

By Lemma 2.2.5, the promonoidal functor axioms for (l,i,x‘)
establish a bijection between promonoidal completions of
the data (P,J) and of the data (P',J'). The proof is

completed by composing the two bijecticns.
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We shall call a promonoidal category "small"

if its data satisfy the hypothesis of the Theorem 3.1.2.

Definition 3.1. When A is a "small" promonoidal
category the biclosed structure provided by Theorem 3.1.2
on [A,V] shall be called the Hom of A and V and dencted
by {A,V}.

The justification for this terminology lies in
the observation that |
{A,V}(SBT,R) = [, n[P(AA'A"), [SATA' ,RA"]]
{A,V}(S,T) = f,,,[A(AA"),[SA,TA"]]
| {A,V}(3,8) = [,[JA,[I,SA]].
These formulas display the P, Hom, and J of {A,V} as the

respective "inner products" cof those of A and V.

Corollary 3.1.4 Any "small" promonoidal category A is

isomorphic to the trace of a monoidal structure, namely
{A,V}°P,

Proof By the construction of {A,V} in Theorem 3.1.2.
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Corollary 3.1.5 Each biclosed structure on [A,V] is

isomorphic to one of the form {A,V} for some promonoidal
structure on A.
Proof Let (8,J,...) be a biclosed structure on
F = [A,V]. Define a functor P : A°PeA°PRA + ¥ with

P(AA'-) = LABLA' (3.1.7)
Define 8' : F8F -+ F and $ST : S8T = S8'T by the composite
isomorphism

(fAsaeLa)&(fA ' Tarerar)

[}

S8T

by the higher repn. thrm.,

m

[AA" (saeTA')®(LABLA")

because & has right adjoints,
= [AR' (sheTav)®P(AA'-)
by (3.1.7)

S8'T.
By Lemma 2.2.5, there exists a unique (biclosed) monoidal
completion of (8',J) making (1,y,1) a monoidal
isomorphism. Moreover, the Theorem 3.1.2 asserts that
this is {A,V} for a unique promonoidal completion of the
data (P,J) for A. |

The net result is a correspondence to within
isomorphism, between "small" promonoidal structures on a

. category A and biclosed structures on [A,V].



72.

The Hom construction has the intéresting,
though not unexpected, property that it turns certain

promonoidal functors into algebras: If A is a "small"

promonoidal category then a promonoidal functor ¢ : A + V
is precisely a ®-monoid (by which we mean an associative
®-algebra with a unit) in {A,V}, and a promonoidal
natural transformation between two such functors
corresponds to a monoid homomorphism. One immediate
consequence of this fact is that each functor T : A > V

generates a free promonoidal functor

(-]
)) T, : A > V where

n=0
Tg = J
T, = TA .
= 1... n )
T, =/ (TA,8...8TA )8(F(A A X)8P(XAX)S. . .8P(XA ~))

forn > 1,
provided V admits the required colimits. This result
follows on combining our definition of ® in {A,V} with
the free @-monoid construction for a biclosed category

which i1s essentially provided by M. Barr in [1] §2.
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Section 3.2 Monoidal examples

For special types of promonoidal categecry A the
formulation of the biclosed structure {A,V} may be
simplified by application of the higher representation
theorem. In this section we shall suppose that
A= (A,8,I,...) is a "small" monoidal category. Then the

internal-hom formulas (3.1.5) and (3.1.6) reduce to

(T/S)A = [.[P(ABC),(SB,TC]]
= IBC[A(A@B,C),[SB,TC]]
= [R[SB,T(A8B)]
and
(S\T)A = fBC[P(BAC),[SB,TC]]

[gcLA(B®A,C),[SB,TC]]

n

fg[SB,T(B8A)]
fespectively.
If, in addition, the monoidal category A is

biclosed with

A(A®B,C) = A(A,C/B) = A(B,A\C)
then the tensor-product (3.1.4) reduces to either

(s8r)c = [AB(saeTB)eP(ABC)

e

AB " .
7T (SA8TB)8A(A,C/B)

mn

{Bs(c/peTB

or
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IAB

e

(S8T)C (SABTB)8A(B,A\NC)

fAsasT(ANC).

mn

These formulas present {A,V} as a convolution of A and V.

The following are typical examples of {A,V}
with A monoidal and possibly biclosed. For convenience,
we suppose in each example that A is small as a category

and that V admits all small limits and colimits.

Example 3.2.1 Let A be a category with a single object I.
Then the endomorphism-object M = A(I,I) admits a canonical
8-monoid structure in V, thg multiplication uy : MGM » M
and identity n : I + M being described by composition anrd
identity in A respectively. Moreover, every ®-monoid in
V may be so obtained. By Eilenberg-Kelly (9] Propn III.4.2,
the data

i8I = 1

H ¢ MBM > M
define a bifunctor

8 : ABA > A

if and only if M = (M,u,n) is a commutative ®-monoid.

Thus, on taking each of ¥, ©, 4, and ¢ to be the identity

transformation of the identity functor on A, we obtain a
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~ o A N o~

M is commutative. The resulting closed category {A,V}
is the category of M-modules with the usual tensor-product
and internal-hom; to see this, note that

5,7 3(E) = f{Is(D), ()]

"natural transformations" from S to T.

Example 3.2.2 Suppose that A is a symmetric

promonoidal category. Then {A,V} is closed. Moreover,

a commutative @-monoid in {A,V} is precisely a symmetric

promonoidal functor ¢ : A » V . Thus, from the preceding

example, the category ¢-Mod of 9-modules is closed.

Example 3.2.3 (V cartesian closed) Take V = S and let A

be & (finitary) commutative theory in the sense of Linton
[14]. Recall that A is commutative if, for each m-ary
operation pneA(m,1l) and n-ary operation veA(n,1l), the

following diagram commutes:

(ln)m m

]
S
=
3
]

m

Al 1

N
S

(lm)n _ n n

I
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where the isomorphism is the canonical one. By [9]

Propn III.4.2, this is precisely the condition that the

rules
mén = n™
v = p, "
should define a functor
8 : AxA »> A,

With this in mind, let us replace § by’an

arbitrary cartesian closed category V. We now define a

finitary V-theory to be a V-category A having for objects
the non-negative integers N = {0, 1, ... , n, ...} and

having the property that

n 1" (the n-fold product of 1) in A

03
and A(m,n) = A(m,l)n in VO’ for all myne A . The category

of A-algebras is the full subcategory of [A,V] determined

by those functors from A to V which preserve finite
products.
For each myne¢ A , the morphism
A(n,1)™ + A(n™,1M),

defined by the (i=1,...,m) diagrams

An,1)"— — — — > Aknm,lm)
pi ' A(lspi)
A(n,1) :zA(nm,l)

A(py,1)
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of projections, may be composed with the diagonal function
§ : A(n,1) ~» A(n,l)m to yield a morphism

t ¢ An,1) > A(™,1™),
This in turn enables us to define canonical functors

m8- : A > Aand -8n : A+ A

with mén = n™ for each m,neA.

By definition, the V-theory A is commutative

if m8- and -8n are the partial functors of a bifunctor
8 : AxA + A,
Assuming this is so, 1let I-= 1, let E, r, and a be the

m s n

appropriate identity isomorphisms, and let ¢ :n
be the canonical non-identity iscmorphism. These data
provide A with the structure of a symmetric monoidal

category. The resulting closed structure {A,V} on the

category [A,V] of all functors from A to V, can be

restricted to the category of A-algebras. First, it is

easily verified that the internal hom
[S,T] = fn[s n,T(n8-) ]
of S and T preserves finite prcducts whenever T does.
More importantly, if S and T are both A-algebras then so
is the tensor product
S8T = fmn(SmxTn)xA(mén,-)

™ (SxT) (m,n)xA(m8n,-).

This result follows from combining the Kan extension

theorem given in Appendix 2, with the fact that
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SxT : AxA + U preserves finite products whenever S and
T both do.

When V = S, we obtain the usual closed category
of algebras over a commutative theory (Linten [141).
Other straightforward applications are obtained by taking
V to be the cartesian closed category of compactly.
generated spaces and continuous set maps (discussed in
Section L.3). For instance, the ordinary (commutative)
S-theory of abelian groups provides a (commutative)
V-theory if we take the same sets of operations but give
them the discrete topology. The resulting category of
compactly generated abelian groups and continuous group
homomorphisms is closed by the above procedure. Less
"trivially", we could consider the category of compactly
generated modules over, say, the field of real numbers
with the usual topology; in this case the sets of
operations of the corresponding theory are non-trivially
topologised. Moreover, the theory is commutative and
thus yields a monoidaI closed category of topological

vector spaces.

Example 3.2.4 Any (multiplicative) group G = {g,h,k,...}

may be viewed as a discrete biclosed category over S by

taking
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gdh = gh, g/h = gh™l, g\h = g 1h.
The associated free V-category A = F,G then has an
induced biclosed structure over V. Because G is a discrete
category, f‘ reduces to Z and f. to II in VO so that the
resulting biclosed structure {A,V} on the category of

G-graded objects of V is given by the familiar formulas

(X8Y), y X _8Y

gh=k g h

# 1 Xyen-19%p

= é xgng_lk

(Y/X), = I Xy Yoy,
(xX\Y),, = g (X5 ¥y,

for all X = {Xg} and Y = {Yg} in [F,G,V]. Generally this

biclosed structure is non-symmetric; it is symmetric

whenever G is an abelian group.

Example 3.2.5 Another non-symmetric example of {A,V} is
obtained by considering the simplicial category /A whose
objects are the finite totally ordered sets {o, 1, ... , n}
and whose morphisms are non-decreasing set maps. This

category has a non-symmetric monoidal structure obtained by
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concatenation:

{o, 1, ... , m}8{0, 1, ... , n}=4{0, 1, ... ,my 1, .., n}.
The resulting V-monoidal structure on F /A extends to a
non-symmetric biclesed structure on the category
[F¢ﬂ°p,V] of simplicial objects in V. This differs from
the usual symmetric closed structure on simplicial,objecfs;
the latter 1s treated by Example 3.3.3.

Example 3.2.6 Lastly, let us take A to be the free
V-category on the arrow category 0 + 1, together with the

symmetric moncidal structure given by finite products

in 0 - 1. In this simple case, the tensor product and
internal hom in {A,V} can beeasily computed from the
V-1imit construction for coends and ends (outlined in
Section 1.1). The resulting closed structure {A,V} cn

the category [A,V] of morphisms in V, may be described as

follows. Let f : X - Y and f' : X' + Y' be morphisms in

Vo. Then f®f' is defined by the diagram

Y®x"
f%i////{ \\\\\ 18f!

X8X o— B Yoy
167" el

Xey'
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where Q is the push-out of (f81,18f') in Vo> and [f,f']
is defined by the diagram

[XX']

[m/7
[e,f'1

[Yx'j— — 2= >

\f’]
\\ e

[yy']

where P is the pull-back of ([f,1],[1,f']) in V The

00
identity T is the unique morphism O -+ I, where C denotes

the initial object of Vo. A second closed structure on

this category will be described in the following seztion.
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Section 3.3 Comonoid examples and general remarks

When A has the structure of a comonoid in
V-Cat, the tensor product (3.1.4) reduces to a pointwise
expression:

(sar)c = [PB(sneTB)SP(ABC)

fAB(5A8TB)8(A(AC)®A(BC))
(/RA(ac)esa)e(fBa(Bc)eTB)

mn

n

SC®TC.
The internal-hom formulas (3.1.5) and (3.1.6) become

(T/S)A = [P(ABC),[SB,TC]]

I5c
JgclA(AC)8A(BC),[SB,TC]]

{1

[ 5cUA(AC)®A(BC)8SB,TC]

JcLA(ac)8[PA(BC)8SB,TC]

mn

mn

JLA(AC)®SC,TC]
and

(S\T)A

fpc[P(BAC),[SB,TC]]
= [pc[A(BC)®A(AC),[SB,TC]]

mn

J[SC8A(AC),TC]
respectively.

This type of biclosed functor category arises
frequently in practicé and some examples are listed below.
Again, we shall suppose that A is a small category and

that V is complete and cocomplete.
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Example 3.3.1 If A is a comonoid in V-Caf with only

one object then its endomorphism-object is a hcpf monoid
in V, and {A,V} is the usual biclosed category of modules
over this monoid (cf. [91 IV §5).

Example 3.3.2 (V cartesian closed) If V is a cartesian

closed category then V-Cat is a cartesian monoidal
"category", hence every V-category A admits a unique
(commutative) comonoid structure in V-Caf, with the
diagonal functor A + AXA as comultiplication and the

unique functor A + I as counit. The reduced tensor-product
formula obtained above shows that {A,V} is cartesian

closed.

Example 3.3.3 If A is an S-category then the comonoid
structure on A induces a (commutative) comonoid structure
in V-Cat on the free V-category F,A generated by A. Thus
the category [F4A,V], whose underlying S-category is
isomorphic to the S-category [A,VOJ of ordinary S-functors
from A to VO and S-natural transformations between them,

always admits a symmetric monoidal closed structure over V,
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A given functor category [A,V] may, of course,
admit several distinct biclosed structures. Moreover,
by the functor category theorem, these will correspond
to non-isomorphic promonoidal structures on A. To
illustrate, take thc S-category in Example 3.3.3 to be
the dual of the simplicial category A. The resulting
symmetric closed structure on the category [F*QOP,V] of

simplicial objects in vV, differs from the non-symmetric

biclosed structure discussed in Example 3.2.5.

Again, in Example 3.3.3, take A to be the free
V-category on the arrcw category O =+ 1. The category
[A,v]\ef morphisms in ¢ then admits a closed structure
with a pointwise tensor product; that is, with

£ £ fef!

X———Y)B(X' ——Y') = X&' —YgY'.
This differs from the tensor product, discussed in Example
3.2.6, which was constructed from finite products in 0 > 1.
In fact, the pointwise structure could equally be regarded
as a "monoldal example" by taking the monoidal structure

on A to be that arising from finite coproducts in O » 1.

While a large number of promoncidal categories
can be viewed either as monoidal categories or as
comonoids (or both), there do exist other types which we

have not bothered to elaborate here. For example, consider
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the category [A°p8A,V] of "bimodules" over a small
category A. This functor category admits a canonical

biclosed structure for which

s8T(aB) = fCS(AC)8T(CB) = S(AC)®T(CB)
T/S(AB) = [,[S(BC),T(AC)]
S\T(AB) = fC[S(CA),T(CB)]

T(AB) = A(AB)

2 : A(AC)8T(CB) —=T(AB)
y

r : T(AC)®A(CB) = A(CB)8T(AC) ———=T(AB)
y

a : (R(AC)®3(CD))8T(DB) = R(AC)8(S(CD)8T(DB))
where R,S,Te[A°P8A,V] and (AB)eA®P®A. This biclosed
structure corresponds, by Corollary 3.1.5, to a
promonoidal structure on A°PgA which, in general, is

neither monoidal nor a comoncid.
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| CHAPTER 4

" THE REFLECTION THEOREM

Section 4.1 Reflection of biclosed structures

Many closed categories arise as full reflective
subcategories of others that are more "freely"
constructed. For instance, the cartesian closed category
of compactly generated spaces arises as a full reflective
subcategory of the category of quasi-topological spaces
introduced by E. Spanier [16], the latter category being
cartesian closed in a particularly simple manner. Again,
the closed category of sheaves of abelian groups, on a
topology T, is a full reflective subcategory of the
closed functor category {T°p,Ab}.

In general, we seek properties of a reflection
which enable us to conclude that the reflective
subcategory is closed. The properties we shall discuss
here are each equivalent to the requirement that the
reflecting functor admit enrichment to a strong monoidal
functor. This result is compatible with G.M. Kelly's
observation (referred to in Section 2.3) that the closed

left adjoint to any normal closed functor, is strong.
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Theorem 4.1.1 (the reflection theorem) Let B = (B,3,I,...)

be a biclosed category and let 6 :C - B be a full
embedding with left adjoint ¢ (we shall omit the symbol 6
and denote the unit of the adjunction byn: 1 = ¢y : B » B).
Further, let.AcB be a strongly generating class of objects
in B. Then, in order that there exist a biclosed structure
on C for which ¢ :B + C admits enrichment to a strong
monoidal functor, it is necessary and sufficient that one
of the following pairs of morphisms be a pair of
isomorphisms for all AeA, B,B'eB, and CeC:

la) n: C/B =+ y(C/B)

b) n : B\C » y(B\C)

2a) n: C/A » ¥(C/A)

b) n : A\C » Y(A\C)

3a) n\l : ¢B\C + B\C

b) 1/n : C/YyB » C/B

ba) Y(n8l) : Y(BBB') -+ Y(YBEB')

b) ¥v(18n) : w(B'8B) + y(B'8yB)

5a)  ¥(n8l) : y(BBA) > y(yBeA)

b) v(18n) : y(A®B) > Y(ABYB)

6 ¥(n8n) : y(B8B') » Y(yBYB').
The biclosed structure on C is then unique to within

isomorphism.
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Proof First we establish the equivalence of the six
numbered conditions. These are arranged in transpose
pairs (the last being self-transpose) so that m = n
whenever ma) = na). We prove

la) = 2a) = 3a) = 4a) = 5a) = 3a)

y =6 =1a).
la) = 2a) because AcB.

2a) = 3a). Consider the following commuting diagram

B(1,n\1)
B(A,¥B\C) — > B(A,B\C)
Al i
: : B(nl)
B(yB,C/A) > B(B,C/A)
B(1n) B(1n)
B(yB,y(C/A)) = B(B,¥(C/A))
B(nl)

~

where the vertical arrows are isomorphisms by 2a) and tﬁe
bottom arrow 1s an isomorphism by the adjunction y—6.
Thus the top arrow ié an isomorphism for all AeA. This
is sufficient for 3a) to be an isomorphism because A is

strongly generating.

3a) = 4a). Consider the commuting diagram
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C(y(n8l),1)
C(y(yBeB'),C) —=> C(y(B8B"'),C)
B(n®1,1) l
B(yB®B',C) > B(B8B',C)
Ul IR (4.1.1)
B(B',yB\C) = B(B',B\C)
B(1,n\1) :

where the vertical arrows are isomorphisms from the

adjunction y—6, and the bottom arrow is an isomorphism

by 3a). Thus, applying the representation theorem to C,
¥(n81) : y(B8B') -+ Y(UBBB')

is an isomorphism, as required.
ba) = 5a) because AcB .,

5a) = 3a). Consider diagram (4.1.1) with B' = AeA. The
top arrowbis now an isomorphism by 5a), hence

B(1,n\1) : B(A,yB\C) » B(A,B\C)
is an isomorphism for all Ae¢A. Because A is strongly

generating, this implies that 3a) is an isomorphism.

by =6, This is immediate from the commutativity of

y(B8B') —=> Y (YB8YB')
y(nén)

¥v(n8l) v(18n)

y(yB8B') .
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6 = la). It suffices to produce a left inverse
v : p(C/B) - C/B ton : C/B + ¥(C/B). Such a v will
automatically be right inverse to n because
nv : yp(C/B) - y(C/B), being in Co, is uniquely determined
by composition with the unit n; but (nv)n = n(vn) =n
hence nv = 1,

By the appropriate tensor-hom adjunction, it
suffices to find a v : Y(C/B)8B + C making

e
(c/B)8B > C

<l

n®l

y(C/B)8B
commute, where e is the appropriate evaluation morphism.
This is achieved by taking v = E.w(nﬁn)-l.n.lﬁn from

the diagram

e

(C/B)®B = C

\ A
n Y

o
nel nén y((C/B)8B)

¥(n@n)
Y
MC/B)QB? Y(C/B)@YB ———— = y(y(C/B)OyYB)
n n -

where ¢(n®n) is an isomorphism by 6, and e is the unique

factorisation of e through the adjunction unit n.
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When these conditions are satisfied they produce
a biclosed structure on C as follows. First set

c8C' = y(cec')

and -1
- v(n8n)
¥ = Ypge @ VB8YB' = y(YBEYB') > {(B8B')
wo : 1= yI.

This & will be biclosed because

c(c8c',D) = c(wv(cec'),D)

n

B(c®C',D) by the adjunction ¢ —i8

n

B(C',C\D)

n

B(C',y(C\D)) by 1la)
c(c',y(C\D))

n

and, similarly,

c(c8c',D) = c(Cc,y(D/C')) by 1b).
But ¢y is dense, being left adjoint to a full embedding,
hence, by Lemma 1.5.4, the monoidal functor axioms (2.2.3),

(2.2.4), and (2.2.5) for ¥ = (y,¥,y°) actually define

isomorphisms

n

2 : yI®c =c, t : c8yI = C, and a : (cBCr)8c" = cd(crécm)
respectively. Furthermore, by Lemma 1.5.4, these

isomorphisms satisfy MCl and MC2 iff the centers of the
diagrams (4.1.2) and (4.1.3) commute. Butthe exteriors of

these diagrams commute by axioms MC1 and MC2 for B, and
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each of the remaining subregions commutes either by
definition of ﬁ, 9, or a, or by the S-naturality of ¥ or
a. Hence C = (C,é,i,...) is a biclosed category and

Y = (w,@,wo) is a strong monoidal functor.

To complete the proof, suppose that (é,f,...)
is a given biclosed structure on C, and that ¥ = (w’$,¢o)
is a strong monoidal enrichment of y. Then, by the
representation theorem, the following diagram (of
isomorphisms) is completed for a unique isomorphism

f :C/B > C;wB.

B(n,1)
B(y(B'®B),C) = B(B'®B,C)
B(,1) IR
B(yB' 8yB,C) 8(B',C/B)
|
R V.
B(yB',C/yB) > B(B',C/yB) )
B(n,1)

Hence n : C/B + y(C/B) is an isomorphism for all BeB,
CeC, by naturality of n. Similarly, n : B\C - Y(B\C) is

always an isomorphism. Thus condition 1 is satisfied.
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Diagram (4.1.2) (primes omitted)

v(a)

> Y(B®(I8B))

Vv((B®I)8B)

v(BBI)@yYB

“\\\\\iﬁii #ii/////’
a

(yBOYI)@YB — = PBB( q)I@wB )

\< 1
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Diagram (4.1.3) (primes omitted)

1

(a)

(a)
v(((B®B)®B)®B) v > ((B®B)®(B8B))
v 1 v
y((B8B)8B)8YB 1 (B®B)8Y(B8B)

\\\Eel 1@&//// \\Qsl
a
\\\5$01)®1 @@I\\\ ///{ai
a

a

a

(y(B8B)®yB)8yYB — y(BOB)8 (yBRYB)  (yBOYB)8Y(BOB) — = yBA (yBaY(BOB))

18(1@?)//l

((yBeYB)8YB)@YB — = (yYBOYB)® (YyBAYB) — = B (B (yYBAYB))

~ (B8 (B8(B8B)))

@// A

vBey (B® (B8B))

1@?//’ A

HJ T -
® [ ~
~ « = ®| |
- | A D <! | ®
3|3 : sE
= = (yBe(yBeyB))8yB = yBe( (yByYB)@yB)
a _
& (1e9)81 1@(@@1;\\
(yBey(B8B) )@yB =~ B (y(BeB)8YB)
a .
\ //691 1@$\\
v(B@(BeB) )8yB yBey (BeB)8B)
Y ///i ﬁ\\\
y((Be(BEB) )®B) > (B8 ( (B8B)&B))

v(a)
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Section 4.2 Additional conditions

Throughout this section we suppose that AcB,
CcB and  : B - C are as given in the hypotheses of

Theorem 4.1.1. Fwurthermore, we take DcC to be a strongly

cogenerating class in the subcategory C.

Corollary 4.2.1 Conditions 1 to 6 are (each) equivalent to:

7a) n : D/A »+ y(D/A)

b) n : A\D - y(A\D)
are isomorphisms for all AeA and DeD.
Proof 2a) = 7a) because DcC.

7a) = 5a). Consider the commuting diagram

c(y(n8l),1)
c(y(yB8A),D) — C(y(B®A),D)
L B(n®1l,1) l
B(yB8A,D) > B(B®A,D)
Al B(n,1) IR
B(yB,D/A) > B(B,D/A)
B(1,n) B(1,n)
B(n,1)
B(yB,y(D/A)) = B(B,y(D/A))

where the bottom and unlabelled vertical arrows are
isomorphisms by the adjunction ¢y — 6, and the arrows

B(1,n) are isomorphisms by 7a). Then the top arrow is an
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1somorphism, whence, because D 1is strongly cogenerating
in ¢, v(n®l) : Y(BBA) -+ Y(YBRA) is an isomorphism for

all AeA and BeB, as required.

Corollary 4.2.2 If AcB is dense then conditions 1 to 7

are equivalent to:

8. For each AeA and DeD there exist objects H(AD) and
K(AD) in C, and natural isomorphisms

C(y-,H(AD))

c(y-,K(AD)).

1]

a) C(¢(-9A),D)

mn

b)  c(y(A8-),D)
Proof 7a) = 8a). Take H(AD) = w(D/A) and the

iscmorrhism to be

C(y(A'®A),D) = B(A'8A,D) by adjunction

n

B(A',D/A)

L1

B(A',y(D/A)) by 7a)
C(yA',y(D/A)) by adjurction,

mn

which is natural in A'e€A.

8a) = 7a). Because AcB is dense, the composite

n

B(A',D/A) = B(A'8A,D)

n

C(y(A'®A),D) by adjiunction

n

C(yA' ,H(AD)) by 8a)

ne

B(A' ,H(AD)) by adjunction,

is of the form B(1,f) for a unique isomorphism f : D/A = H(AD).
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Then, because H(AD) is in C, 7a) is an isomorphism by
the naturality of n.

Now suppose that the given B is a cartesian
closed category; this requires us to suppose also that

the ground category V is cartesian closed, otherwise finite

products in B do not yield a bifunctor & on B. If

?

B—~=——BXB!——== B!
denotes a typical product in B, the diagram

y(nxn)
v(BxB') > Y(YBxyYB"')

(t®,)
yBxyB'
may be verified to commute by composing both legs with the
unit n : BxB' »+ Y(BxB'). This procedure is valid because
C, being reflective in B, is "closed" under the formation
of finite limits in B; in other words
n : yBxyB' + Y(yBxyB')

is an isomorphism. Thus y(nxn) is an isomorphism (condition

6) if and only if ($g,] is an isomorphism.

Corollary U4.2.3 (V cartesian closed) If B is cartesian

closed then conditions 1 to 8 are equivalent to:

9. Yy : B + C preserves finite products.
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Section 4.3 A topological application

For this section we suppose that V = S and
let Top denote the category of all topological spaces
and continuous maps. It is well known that Top itself
is not cartesian cliosed. However there exists a general
process for genérating cartesian closed subcategories
of Top. We shall describe this below, making use of
the reflection theorem.

Let A be a full subcategory of Top, containing
the one point space "¥", Construct categories B and C
as follows.

B = "A-simplicial" bases: an object of B is

a set B together with, for each AeA, a set Ad(AB) of

admissible set maps from A to B; these may be thought of

as the "simplices" of type A in B. The sets Ad(AB) are
subject to the axioms:
Al. All constant maps are admissible
A2. If geA(AA') and feAd(A'B) then fgeAd(AB).
A morphism f : B +- B' of bases is a set map having the
property that fgeAd(AB') whenever geAd(AB), AcA.

It is straightforward to verify that B is

complete and cocomplete, cartesian closed, and

(canonically) contains A as a dense full subcategory. The
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internal-hom of bases B and B' in B is obtained by taking
[BB'] to be the set B(BB') with feAd(A,[BB']) if and only
if the map AxB » B', (a,b)~>f(a)(b), is a morphism in B.
The category B 1is thus constructed directly along the
lines of the category of quasi-topological spaces
introduced by E. Spanier [16]; however, we do not require
Spanier's third and fourth axioms.

C = A-generated topological spaces: this is the

full subcategory of Top comprising those spaces X having
the property:
A subset V is open in X if (and only if) rlv
is open in A for all feTop(AX) and AcA.
The category C coincides with the full subcategory

of Top determined by the spaces that are direct limits in

Top of objects of A. The embedding CcTop admits an

evident right adjoint W : Top » C

Top(C,X) = C(C,WX) (4.3.1)
where WX has the same underlying set as X, but a new
(finer) topology given by:

1y

A subset V is open in WX if and only if f~
is open in A for all feTop(AX) and AecA.

In particular, C is complete and cocomplete; however, one

must be aware that a product in C is not a topological
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product unless the latter already lies in C.
The categories B and C are related by a full
embedding 6 : CcB, given by
6C = the underlying set of C, with Ad(AC) = Top(AC) for
each AeA,

with left adjoint ¢ : B + C given by

VB = the underlying set of B with V<yB open if and only if
71V is open in A for all feAd(AB) and AeA.

In brief, YyB is the topological realisation of the base B.

We are now in a position to ask whether the
cartesian closed structure on B is reflected into C by .

Before supplying sufficient conditions on A for this to be

so, we recall two important points from Day-Kelly [U4].
Firstly, we may define a topology Q(X), on the
set 2(X) of open subsets of a space X, by taking HcQ(X)
to be open precisely when it satisfies the conditions
O1. If V,V'eQ(X) with VcV!' and if VeH then V'eH.
02. If VAeQ(X) for AeA and if uyV,eH, then there exists
a finite subset {Al, cee kn}cA such that

VA U ¢oe U VA eH.
1 n

Secondly, if a space X has the property that
-xX : Top »+ Top preserves topological quotient maps, then

amap f : Y + Q(X) is continuous if and only if the set
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{(y,x)e¥xX | xef(y)} is open in ¥YxX. We shall call such

an X an Q-compact space. These spaces are topologically

characterised in [4] Theorem 3, and it is shown in [4]
Proposition 5 that a hausdorff space is Q-compact if and
only if it 1is locally compact.

Now let D = Q(#); this is the topological space
of two points, one of which is open and the other not
open. Then, using the obvious bijection between the open
subsets of a space X and the elements of Top(XD), we have
that X is Q-compact if and only if

Top(YxX,D) = Top(Y,(X)) (4.3.2)

for all YeTop.

Theorem 4.3.1 If AcTop is a class of Q-compact spaces

with the property that each functor -xA : Top + Top, Ae€A,
maps A into the category C of A-generated spaces, then C
is cartesian closed.
Proof Because each Ae¢A is Q-compact, we have

Top{A'xA,D) = Top(A',Q(A))
for all A',AeA, by (4.3.2). Moreover, the hypothesis that
each -xA : Top + Top maps A to C ensures that the
topological product A'xA is the product of A' and A in C.

Thus we obtain
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C(A'xA,WD) = C(A',WQ(A))
for all A',AecA, by (4.3.1). Because, in this instance,
the dense subcategory AcB actually lies in C, we have
Just established conditioﬁ 8 in Corollary 4.2.2. Thus
conditions 1 to 9 hold provided WD is a strong cogenerator
for C. But it isn't; 1t only detects open subsets.
However, the adjunction unit n : 1 + 8¢y is a bijection
since neither 6 nor Y alters underlying sets. Thus the
map
Vv(nx1) : Y(BxA) -+ y(yBxA),
being a bijection for all AcA and BeB, is a homeomorphism
if and only 1if
C(y(nx1),1) : C(¥(YBxA),WD) » C((BxA),WD)
is a bijection of "open sets". In other words, we still
obtain 7a) = 5a) in the proof of Corollary 4.2.1. Thus
the chain of conditions is complete and the result follows
from Theorem 4.1.1.
The above proof tells us that
a) the internal-hom [BC] in B is an A-generated
topological space for any base B and.A-generated space C,
b) the realisation functor y : B + C is finite product
preserving
¢) the adjunction ¢y — 6 1lifts to a homeomorphism

(yB,C] = [B,C].
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To apply the theorem, choose any class of
Q-compact topological spaces and close it up under finite

products if necessary. Then the category of all direct

limits of these spaces in Top, is cartesian closed.  For
example, we could take A to be all Q-compact spaces.
This A is already closed under finite products and

arbitrary coproducts in Top, thus:

Corollary 4.3.2 The category of all topological guotients

of Q-compact spaces, and continuous maps, i1s a cartesian
closed catesgory.

Similarly:

Corollary 4.3.3 The category of all topological quotients

of locally compact hausdorff spaces, and continuous maps,

is cartesian closed.

The latter category is that of compactly

generated spaces (examined in a previous thesis [61).

Another interesting example, which I indirectly owe to
J. Moore, is obtained by taking the objects of A to be the
affine simplices An, neN; although this A is not closed

under finite topological products, each AMxA" is a
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topological quotient of A's. The resulting category C,
of all topological quotients of CW-complexes, is cartesian

closed.
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Section 4.4 Reflection of Hom

On applying the reflection theorem of Section

4,1 to the Hom construction of Section 3.1, we immediately
obtain a set of conditions under which a "small"
promonoidal category A generates a biclosed structure on a
reflective class of functors Cc[A,V]. In particular,
consider the second condition provided by Theorem 4.1.1
when B = {A,V} and the strongly generating class in B is
taken to be the class of left represented functors
LA : A+ V., From the higher representation theorem applied
to the internal-hom formulas (3.1.5) and (3.1.6), together
with the naturality of the adjunction unit n, we need
only establish that

‘S/LA'= fA,A"[P(-A'A"),[A(AA'),SA"]] = jR{P(-AA"),SA“]

LANS = [, n[P(A"=A"),[A(AA"),SA"]1] = [,u[P(A-A"),S5A"],
as functors from A to V, admit iscmorphs in C whenever
AeA and SeC. Furthermore, if the category A is monoidal

then the higher representation theorem yields

I

S/LA S(-8A)

e

LA\S = S5(A8-).

To apply the preceding criterion to a familiar
situation, let V be suitably complete and let A be the
free V-category on the dual of the S-category of open

subsets of a topological space X, the latter being given
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the cartesian closed structure:
I =X, VeV' = VaV', [VV'] = int ((compl V)uV') for open
subsets V, V' of X.
Then the V-category of sheaves over X with values in V, is
a closed category provided the functor S(-nV) : A +» V is
a sheaf whenever S is one; but this 1s immediate from the
definition of sheaf. Thus conditions 1 to 8 are satisfied,
and 9 also holds if V is cartesian closed.

A second application is obtained by taking

V cartesian closed and letting A be a commutative finitary

V-theory with the monoidal structure described in Example
3.2.3. Assume that the category C of A-algebras is
.reflective in (A,V]; the reflection ¢y : [A,V] > C can be
constructed if V has small colimits. However, we have
already consﬁructed the tenscr product in Cc{A,V},
regardless of cocompleteness considerations for C (see
Example 3.2.3). The reflection theorem now tells us that
v ¢ {A,V} » C admits enrichment to a strong monoidal
functor (that is, preserves tensor products) because each
functor -8n : A » A preserves finite prdducts, hence

S(-8n) : A+ V is an A-algebra whenever S is one.
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- CHAPTER 5

THE CONSTRUCTION THEOREM

Section 5.1 Preliminaries

We wish to examine the extent to which procedures
of the previous chapters can be applied to the consideration
of an arbitrary promonoidal category A. In these
circumstances the total functor category [A,V] is no longer
available because the~end [A,VI(ST) = IA[SA,TA] may not
exist in V for all functors S,T : A + V., Nevertheless,
certain "reflective subcategories" C of [A,V] do exlist in
the sense that there is given a dense functor M : AP 5 c.
In view of this, the promonoidal structure of A may yet
determine a biclosed structure on C, without reference to
[A,V]. Before formulating a theorem to this effect, in
Section 5.3, we need two generalised concepts.

The concept of V-natural transformation may be
extended to describe certain families of morphisms which
occur between Kan extensions. First we note that, for
functors F,G : B + C between tensored categories B and C,
an S-natural transformation B : F + G is V-natural if and

only if the canonical diagram
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T
X@FB = F(X8B)
X8GB = G(X8B)
T -

commutes for all XelV and BeB. This criterion for
V-naturality is established in Appendix 3 (where we also
recall the definition of T).

To generalise, let F,G : A°P + ¢ be functors into

a suitably tensored category C, and let SAGFA -» FS and
SAQCA + GS be a pair of coends over A for each functor

S : A+ V admitting such; we think of FS and GS as being
"functorial" in S. Now suppose that we are given a family
BS : FS + GS of morphisms in CO, indexed by the class of

functors S : A + V for which FS and GS both exist.

Definition 5.1.1 The given family BS : FS » GS is called

neonatural in S if, for all natural transformations

Yy : S+ T and objects Xel, the canonical diagrams

B
S
FS ——— = Gs X®FS = F(X8S)
Fy | Gy 1884 Byes
FT ———=GT XeGS = G(X&S)

Bp
commute whenever they are defined.
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In circumstances where [A,V] can be constructed,
and the coends FS and GS exist in C for Ell functors
S : A+ V, we obtain canonical functors F,G : [A,V] »~ C
by Lemma 1.3.1. Then a neonatural transformation
B : F+ G is precisely a natural transformation from F to G.
But such a transformation is uniquely determined by its

represented-functor components. This is true of neonatural

transformations in general:

Lemma 5.1.2 There is a canonical bijection between

neonatural transformations frém F to G and natural
transformations from F(L-) to G(L-).
Proof By the higher representation theorem, the coends
F(LA) = FA and G(LA) = GA always exist; they are canonically
functorial in A by Lemma 1.3.1. Again, the higher
representation theorem provides a coend
Yy ¢ SAGLA + S

for each functor S : A » V. If FS and GS both exist we
obtain induced coends

Fy : F(SA®LA) » Fs

Gy : G(SAQLA) + GS
by Lemma 1.3.4. Then, given a natural transformation
B : F(L-) » G(L-), we define Eé : FS » GS to be the unique

morphism making the following diagram commute:
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188,
SA®F(LA) = SASG(LA)
m R
F(saeLa) G(SASLA)
Fy Gy
s — — — — — = &GS .
Bs

(5.1.1)

It is straightforward to verify that the resulting family B

is neonatural.

LA'(A)®F(LA)

Moreover, the diagram

2l
F(LA'(A)BLA)

Fy

F(LA')

commutes for all A,A'€A on applying the representation

theorem to A'. Thus BA

188,
= LA'(A)SG(LA)
IR
G(LA' (A)BLA)
Gy
= G(LA')
BA'

for all AeA. It is now

LA

immediate that the diagram (5.1.1), which defines B8,

defines the unique neonatural transformation whose

restriction is B.

transformation B :

replaced by ELA throughout, commutes by neonaturality.

Thus ELA

on induced naturality.

F » G, the diagram (5.1.2), with By

(5.1.2)

Conversely, given an arbitrary neonatural

: F(LA) » G(LA) is natural in A by the Lemma 1.3.3
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In practice a neonatural transformation may
arise through the use of possibly distinct choices of coend
representations for FS and GS. Lemma 5.1.1 and 1.3.1
guarantee that this choice 1s irrelevant provided the
functoriality of F(LA) and G(LA) in A is fixed, and that
the chosen coends are natural in this extra variable.

An important example of a neonatural transformation
is the isomorphism

z = zg : [ALA,VI(LR,S)OF(LA) ¥ FS

which is defined to be the extension of the composite

fArA,vI(LA,LA")8F(LA) — — - F(LA')
4] IR
fRacarn) eFa ~ FA' .
y

Using this definition of z it is clear that the "coherence"
diagrams in Appendix 1 still commute.

The second concept to be generalised is that of
strong monoidal functor. We do this by observing that, if
® = (¢,$,¢') : A > B is a promonoidal functor from a
promonoidal category A to a ¢-cotensored monoidal category
B, then the matural transformations

$ : P(AA'X) » B(0ASA',dX)
¢° : JX = B(I,¢X)

transform to
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6ABGA' + [P(AA'X),0X]
1+ [JX,¢x]

under the cotensoring adjunction. These in turn provide

morphisms
¢A8¢A" > [y[P(AA'X),¢X]
(5.1.3)
I+ [4[IX,¢X]
Definition 5.1. The promonoidal functor ¢ : A + B 1s

strong if the morphisms {(5.1.3) are isomorphisms.
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Section 5.2 The "monoidal" presentation of a promonoidal

category
Let A be a promonoidal category and, for
functors S,T : A » V, let
sgr = [AR'saeTAr)eP(AA"-)
F(ST) = [,[SA,TA]
whenever they exist. The very definition of promonoidal
category ensures that certain ®-products do exist; for
example, J®LA, LARLA', (LARBJ)BLA', ((LASLA')®LA")8LA'.
Moreover, these expressions are canonically functorial in
A, A', ... by Lemma 1.3.1.
Replace the promonoidal structure on A by the
isomorphic structure determined by the isomorphisms
X : P(AA'-) » F(L-,LASLA')
x* ¢+ J > F(L-,J)
and Lemma 2.2.5. This modification of A enables us to
produce natural isomorphisms J8LA = LA,- LA®J = LA, and
(LABLA')8LA" = LAB(LA'®LA") directly from diagrams (2.1.1),
(2.1.2), and (2.1.3) respectively. Then, using Lemma 5.1.2
and the coend definition of &, these isomorphisms admit

neonatural extensions:
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g : J8S = S
FS : S8&J = S
a‘SAA, (SBLA)BLA' = S®(LABLA')
EASA, (LABS)BLA' = LA®(SBLA')
aparg ¢ (LABLA')8S = LAB(LA'®S).

Now we are able to write down the "axioms":

a
(LABJ)BLA" > LAB(JBLA')

F@‘\ 187

a a
((LABLA')BLA")®LA"' —» (LASLA')S(LA"GLA'" ) = LA®(LA'®(LA"SLA'"))

a®1l ' ‘ 18a

(LAS(LA'QLA"))8LA' = LAB((LA'SLA")SLA™ )
a

The commutativity of these diagrams is equivalent to the
validity of axioms PCl1l and PC2 for A. To see this, return
to diagrams (2.1.4) ané (2.1.5) and observe that the center
regions commute if and only if the above diagrams do; the
remaining subregions of (2.1.4) and (2.1.5) commute for the-
"same" reasons they did so before, namely the definitions of

2, r, a, the neonaturality of ¥, r, a, z (using Lemma 5.1.2),
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and the "coherence" of z (Appendix 1).
Thus, the promonoidal structure on A may be
formally represented by a "partial monoidal" structure on

the left-represented functors from A to V.
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Section 5.3 The construction theorem

Theorem 5.3.1 Let A be a promonoidal category and let

M : A°’ » C be a dense functor into a cotensored and
M-tensored category C. Then, in order for there to exist

a biclosed structure on ¢ for which M°F : A » ¢°P admits
enrichment to a strong promonoidal functor, it is necessary
and sufficient that the coends and ends

(1) qaa") = fXep(anrx)emx

(2) [XTxemx

(3) X" (cnx,c)ecMxr ,¢1))eQXX")
(4y H(ac) = [Xe(q(xa),c)emx

(5) k(ac) = fXea(ax),c)emx

(6) Jx[C(MX,C),H(XC") ]

(7 [¢[C(MX,C) ,K(XC") ]

exist in C for all A,A'€A and C,C'eC, and the resulting
morphisms

(8) c(e(xa),C) » C(MX,H(AC))

(9)  C(Q(AX),C) » C(MX,K(AC))
be isomorphisms. ‘The biclosed structure on C is then
unique to within isomorphism.

Proof of necessity Let C = (C,8,I,...) be a biclosed

structure on C for which M°P : A > C°p-admits enrichment

tp a strong promonoidal functor. Then, by Definition
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5.1.3, the coends (1) and (2) are required to exist with

isomorphisms
Q(AA') = /XP(AA'X)@MX E MASMA'
I.

N

[Xaxemx
Coend (3) exists because & admits right adjoints to each
variable, hence preserves the density expression
[Xe(ux,c)emx £ c
in each variable. The existence of the coends (4) and (5),
and the isomorphisms (8) and (9), follows from the

isomorphisms

1}
(]}

Cc(Q(XA),C) = Cc(MX8MA,C) = C(MX,C/MA)

c(Q(AX),C) = Cc(MASMX,C) = C(MX,MA\C)

together with the density of M. Finally, the ends (6) and
(7) exist because the opposites of the functors

c/-,-\C : c%P? 4 ¢ admit right adjoints, namely -\C and C/-,
hence preserve the density expression.

Proof of sufficiency By Lemma 1.3.1, a canonical functor

® from C®C to C is obtained on setting
céecr = [X*'(c(mx,crec(mxr,cr))eqxx")
: |

This 5 is biclosed:

[Xaxemx.



c(cec',D)

mn

[xx»

mn

Tyx

mn

i

mn
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c(f¥X" (c(mx,c)ec(mxr,c))8Q(XX"),D)
[c(mMmx,c)ec(mMx',c'),c(Q(xx+),D)1]
(c(Mx,cyec(mx',c'),C(MX,H(X'D))]

by the isomorphism (8),

fX[C(MX,C),fX,[C(MX',C'),C(MX,H(X'D))]]
JxLe(Mx,C),Cc(MX, [y, [C(MX',C'),H(X'D)])]
c(C,fylc(MX,C"),H(XD)])

by the density of M,

c(c,D/C') say.

Similarly C€(C®C',D) = C(C',[,(C(MX,C),K(XD)])

Furthermore, there exists

MAGMA'

a

-~

c(c',C\D) say.

natural isomorphism

Q(AA')

which can be obtained as follows. The representation

theorem applied to CeC in the composite

c(fXe(mx,Ma)8Q(XA),C)

~

[x[C(MX,MA),C(Q(XA'),C)]

= [4[C(MX,MA),C(MX,H(A'C))]

n

n

by the isomorphism (8),
C(MA,H(A'C))

by density of M,
C(Q(AA'),C)

by isomorphism (8),

(5.3.1)
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yilelds an isomorphism
fXe(MX,MA)®Q(XA') = Q(AA').
The transpose argument yields an isomorphism
fXe(mx,MA)8Q(AX) = Q(AA').

Combining these yields

XX (e (Mx,Ma)8C(MX " ,MAT)BQ(XX")
Q(AA').

If the "reflection'" of a functor S : A » UV exists

MAGMA !

i

in C then it is denoted by
vs = [Psaema.
Similarly, the reflection of a natural transformation
o : S+T : A->V 1s denoted by
v(a) = [l : [Asaema » fAraema.
Furthermore, a transformation
¥g : F(LA,S) » C(YLA,yS)
is defined to be the transform, under [° and tensoring in
C, of the neonatural transformation
z = z2g : [AF(LA,S)GWLA + ¥S. Then V(ws)(a) = y(a) for each
natural transformation o : LA > S : A » VU,
From the definition of y, we have natural

isomorphisms

vLA = [XLA(X)®MX = MA by the higher repn. thm.,
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¥ : YLASYLA' = MAGMA'

Q(AA') by (5.3.1),
Y(P(AA'-))
Y(LASLA'),

n

n

where ® is as constructed in Section 5.2. Using Lemma

5.1.2 and the coend definition of @, @ admits neonatural

extensions :
gy : WSBYLA > y(SBLA)

$AS : yLABYS » y(LAB®S).

We already have wo : I = YJ by definition of I. Thus we

are able to write down "axioms" for (w,@,wo) to be s

"monoidal functor":

. P
YIOYLA — = YLA (5.3.2)
v l VT
v(J®LA)
. r
YLAGYJ yLA (5.3.3)

il
yr

v(LABJT)
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(yLASYLA ' )SyLA" ————E———a—wLA@(wLA'QwLA") (5.3.4)
781 | 187
w(LA§LA')§¢LA" YLAGy(LA'@LA™)
w |
V((LABLA')8LA") " > Y(LAS(LA'@LA")) .

Because yL = M : A°P 5 ¢ 1s dense and 8 admits right
adjoints to each variable, the isomorphisms ﬁ, 3, a
defined by the above three diagrams, admit unique
extensions to natural isomorphisms % : fsec = c,

r:ce8f =c, a: (cecr)sc" = (Ce(C'éC"), by Lemma 1.5.4.
.For similar reasons, these isomorphisms satisfy the
monoidal functor axioms MC1 and MC2. To see this, note
first that each of the diagrams (5.3.2), (5.3.3), and
(5.3.4) still commutes if one of the variables yYyLA is
replaced by ¢S throughout; this follows from the obvious
neonaturality argument using Lemma 5.1.2. Then,
substituting the results into diagrams (4.1.2) and (4.1.3),
we see that MC1l and MC2 hold for i, 3, and a whenever the
vertices contain variables all of the form yLA = MA. Thus,
because M is dense, axioms MCl and MC2 hold &ll the time

by Lemma 1.5.4.
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Having established the biclosed structure on C,
1t remains to show that M°P : A » C°P admits enrichment
to a strong promonoidal functor. Using Lemma 2.2.6, it
suffices to consider strong enrichment of the isomorphic
functor ¢ : A » C°p, ¢A = YLA, with respect to the
isomorphic promonoidal structure on A introduced in
Section 5.2.
To complete the structure, define
3 : F(LB,LAE?LA')JC(wLB,w(LAB?LA')) C(l"z—l)-C(wLB,wLAéwLA')

6 : F(LB,J)—Yw C(YLB,yJ).

Then, from the definition of ¢, & = (¢,6,¢6°) will be
strong. The promonoidal functor axioms PCl, PC2, and PC2
for ¢ are established by transforming the respective
"monoidal axioms" (5.3.2), (5.3.3), and (5.3.4) for
(v,9,v°). Briefly, the diagram (5.3.5) (and its transpcse
form) can be chescked to commute by first transforming it
under the tensoring adjunction of C, then using the

neonaturality of y:
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F(LX,S)8F(LB,LX8LA)

/ \
F(LX,S)8F(LB,LX8LA) F(LB,S8LA)

ey ]

\ Y
C(yLX,yS)8C(yYLB, y(LX8LA)) C(yLB,y(SBLA))
1@C(1,$‘1) C(l,i'l)

y ) P
C(yLX,yS)8C(yLB, yLX®YLA) C(yLB,yS®yYLA)

s¢ y

C(Y,yS)8C(YLB,YSYLB)

This diagram reduces axiom PCl for ¢ to the following:

‘ A
F(LX,J)@F(LB,LX®LA) > A(AB)
z J (1) L
_ F(1,T) !
F(LB,JBLA) > F(LB,LA)
)] J (2) )
C(1,yT) Y
C(yLB,y(JBLA)) > C(yLB,yLA)

c(1,2) X

C(YLB,yJOYLA) == C(Y,yS)8C(yYLB,Y8YLB).

y

(5.3.5)
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Here the subregions (1), (3), and (4) commute by
definition of %, E, and ; respectively, while the subregion
(2) commutes because bg F(LA,S) + C(yLA,yS) is S-natural
in S. The remaining axioms PC2 and PC3 for ¢ are

established by the same procedure.
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Section 5.4 Commutative monads

In conclusion, we outline an application of
Theorem 5.3.1 to the theory of commutative monads. Some
familiarity with the usual constructions of V-monad theory
(as given, for example, in Dubuc [7] or Kock [131]) is
assumed. Moreover, to permit these constructions, we

suppose throughout this section that V has equalisers.

Notation:

T= (T,u,n) is a V-monad on V.

C is the category of T-algebras (C,§ : TC + C), whose hom
objects are defined by the equaliser diagrams

[g,11
C(CD) ————= [CD] => [TC,D]

Tep [1,£]

[TC,TD] .
F—U : C +» V is the associated free-algebra adjunction.
K is the Kleisli category of "free algebras", where
obj K = obj V and K(XY) = [X,TY3. A
J : V> K is the canonical functor that is the identity
on objects.

M : K » C is the functor that fully embeds "free algebras"

into the category of algebras.
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T : XOTY » T(XQY) is the canonical natural transformation

associated to T, and t1' : TXBY £ YBTX — = T(YBX) = T(X8Y)

is its transpose.

The symbols U and J are usually cmitted.

Definition 5.4.1 (Kock) The monad T = (T,u,n) on V is
commutative if the legs of the diagram

T
TXOTY — T(TX8Y)
1! Tx!
T(XOTY) — T2(X0Y) — -~ T(X8Y)
Tt u

are equal; we write T = TXY : TXQTY -+ T(XRY) for their

common value.

The commutativity condition on T is equivalent

to the condition that the functors
X8- : K » K and -8Y : K + K,
defined by
X8Y = Xey,
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K(Yyz) — — — — — — —= K(X8Y,X®Z)

[Y,T2] ——— = [X8Y,X8TZ] —= [X8Y,T(X8Z)1,
, X8- [1,1]

- -8Y
K(XZ) — — — — — — - K(X®Y,Z8Y)

[X,T2] — > [X8Y,TZ8Y] ——= [X8Y,T(Z8Y) 1,
-8Y [1,7']

should be the partial functors of a bifunctor

® : K8K + K.
Thus, if T i1s commutative then K assumes a (symmetric)
monoidal structure for which J : V » K is a strong

monoidal functor.

Theorem 5.4.2 If T= (T,u,n) is a commutative monad on V

then, in order for there to exist a closed structure on C
for which M : K + C admits enrichment to a strong monoidal
functor, it 1s necessary and sufficient that the

coequaliser of the pair

) H
T“(C8®D) = T(C®D)

T(T‘)\ ﬂ:ea)

T(TCOTD)
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exist in ¢ for all T-algebras C and D.
Proof In Theorem 5.3.1, take A% = K and M : K > C as
given. It is easy to verify that C is cotensored and
M-tensored. Furthermore, M is dense by the corollary to
the monad representation thecrem given in Appendix ., By
the higher representation theorem, the coends (1) and (2)
in Theorem 5.3.1 become

Q(XY)

I

[ZK(X8Y,Z)8MZ = M(X®Y)

[Xk(Ix)emx = MmI
respectively. On applying the monad representation thcorem
to the definitions of X8- and -8Y, the coend (3)

c@p = [XY(c(mx,c)ec(MY,D))8M(X8Y)

reduces to the joint coequaliser in C of the pairs

T(C®TD) T(TC8D)
\ oI
72 (C®D) -T(C®D)<&_____—— T2 (C®D) .

Moreover, this coincides with the coequaliser in C of the

single pair

T2 (ceD) =~ T(C8D)

T(T) T(£QE)

T(TC8TD)
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Thus, the codomain of this coequaliser is the tensor
product of the algebras C and D in C. To construct the
internal hom in C, we must first verify that the

isomorphism

C(FX,[YC]) = [X[YC]] = [X®Y,C] = C(F(X®Y),C)
actually provides an isomorprhism
C(MX,[YC]) = Cc(M(X®Y),C) (5.4.1)
that is natural in XeK. This 1is done simply by applying
the monad representation theorem. Coend (4) now becomes

H(YC)

fXe(m(xey),c)emx

m

fXex,rye1)eMx by (5.4.1)

n

[YC] by the density of M,
whence (8) is an isomorphism by (5.4.1). Finally, the end
(6) always exists because U : C + V creates limits and we

already know that

U(fxrc(MX,C),H(XD)1) ¥ [ [C(MX,C),C(NMX,D)]

e

c(CD)

exists in V, by the density of M. This completes the proof.

Remarks The condition of commutativity on a monad T was
first formulated by Kock [12] who established, in [131],
that a commutative monad generates a category C with an

internal hom (in the original Eilenberg-Kelly [9] sense).
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The formula we provide in Theorem 5.4.2 for the extra
monoidal structure of C has also been suggested by
Linton [15]. It is not difficult to check that this
closed structure on C coincides with the one obtained in
Example 3.2.3 whenever T is a commutative "theoreticai
monad, that is, a monad obtained by Kan extension from

a commutative theory.
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APPENDICES

Appendix 1 On the iterated use of 2z

We require that the transformation z, introduced
in Section 4.1, be "coherent". 1In the absence of a

general theorem to this effect, we verify the following:

Lemm Let M : A>B, S:B~+8B, T: B~+V, and
R : B8B +» V be functors for which the required coends
exist. Then the exteriors of the fcllowing diagrams

commute for all B,CeB.

1.8(MX,B)8(B(MY,SMX)8TMY) = (B(MX,B)8B(MY,SMX))QTMY

~
~

18z z

~ zg}
o
B(MX,B)8TSMX B(MY,SB)@TMY

\TSB T

2.B(MX,B)8(3(MY,C)8R(MX,MY)) = B(MY,C)®(B(MX,B)8R(MX,MY))
~
18z ~, - 18z
-
B(MX,B)8R(MX,C) B(MY,C)®R(B,MY)

z z
R(B,C)
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Proof The lower subregions of both diagrams commute on
applying the representation theorem to BeB, and using
the definition (1.4.1) of z. To verify that the upper
region of diagram 1 commutes, we "expand" the coends
present:

a-l

8(MX,B)®(B(MY,SMX)®TMY) — (B(MX,B)®B(MY,SMX) )8TMY

18s s®1
\
B(MX,B)@(B(MY,SMX)QTMY (B(MX,B)QB(MY,SMX))@TMY
s s

)
B(MX,B)8(B(MY,SMX)®TMY =  (B(MX,B)8B(MY,SMX))8TMY

(%)

z®1

B(MY,SB)8TMY —= B(MY,SB)®TMY
S

Commutativity of the exterior of this diagram follows
easily from the representation theorem applied to BeB,
together with coherence of a, r, 2 in V. The uncommented
subregions commute by definitions. Thus the diagram (¥)
commutes because s(18s) is a coend over X and Y. The

upper region of diagram 2 commutes for similar reasons.
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Appendix 2 A theorem on Kan extensions

Let V be a cartesian closed category and let A
be a V-category with finite V-products, including a
terminal object I. Then we say that a functor T : A > V
preserves finite products if the canonical morphisms

T(AxA') + TAxTA' and TI + I are isomorphisms for all A,A'cA.

Theorem (V cartesian closed) Let M : A + B be a functor

between categories A and B which admit finite products.
Then the Kan extension

T = fAB(MA,-)xTA : A » v,
of a finite-product-preserving functor T : A »+ V along the
functor M, is finite-product preserving.

Proof From the definition of terminal, the composite

I £ A(AT) ——— B(MA,MI) = B(MA,I) = I
M B(1,u)
is the identity isomorphism for all Ae¢A. Thus
71 = [P(MA,TI)xTA
= [AA(aT)xTA

m

TI by the higher repn. thm.,

n

I because T preserves I by hypothesis.
Hence T preserves terminal objecfs. Secondly, if
B « BXxC - C is a product of B and C in B, then the

resulting morphism T(BxC) + TBxTC is easily shown to be
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left inverse to the composite isomorphism

TBxTC

(/¥B(Mx,B)*TX) x(fYB(MY,C)*TY)

ne

IXY(B(MX,B)XB(MY,C))x(TXxTY)

because V is cartesian closed,

n

IXY(B(MX,B)XB(MY,C))xT(xxy)

because T preserves finite products,

n

XY (B(Mx,B)xB(MY,C) ) x[2A(Z,XxY)xTZ

by the higher repn. thm.,

n

XY (8 (Mx,B)xB(MY,C))x[Z(A(ZX)xA(ZY) )xTZ
because A(Z-) preserves V-limits,

F2CC X B(Mx,BYxA(2X) )< fYB(MY,C)xA(2Y)) ) xTZ

ne

because V is cartesian closed,

ne

f%(B(MZ,B)xB(MZ,C) )*xTZ

by the higher repn. thm.,

n

[%B(MzZ ,BxC)xTZ

because B(MZ,-) preserves V-limits,

T(BxC).

Remark Special cases of this theorem have appeared

elsewhere; in Ulmer [18] for example.
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Appendix 3 A criterion for V-naturality

Theorem Let F,G : B + C be functors between tensored
rcategories B and C, and let a : F + G be an S-natural
transformation. Then ais V-natural if and only if the
canonical diagram

T
X8FB ———— F(X8B)

*
180y OY8B

!
X@GB > G(X8B)
T

commutes for all XeV and BeB.

Proof By définition, the family o FB + GB is V-natural

B *
if and only if

F
B(BB') > C(FB,FB')
G C(1,a)
C(GB,GB') C(FB,GB')
C(a,l)

commutes for all B,B'eB. By the representation theorem
applied to XeV, this is so if and only if the center region

of the following diagram commutes for all B,B'eB and Xel.
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C (1,1)
C (F(XxeB),FB') ————————4>C (X®FB,FB')

o
V (X,C(FB,FB')) ' C (1,a)

R NE! F/ \ (1,C(1,0))
(1)

B (X@B B') = V (X,C(BB')) V (X,C(FB,GB')) = C (X8FB,GB"')

v (1 G)\ / (1,C(a, 1))
Vo (X, C(GB,GB')) C,(18a,1)
KN

C (G(X®eB),GB') ——— C (X®GB,GB! )
C (1,1)

VF

In this diagram the bijections are those underlying
tensoring adjunctions hence subregions (3) and (4) commute
by the naturality of these. Subregions (1) and (2) commute
by the definition of 1 (recalled from [11] §4). Thus the
center commutes if and only if the exterior commutes. But,
by the representation theorem at the S-level applied to
B'eBO, the exterior commutes if and only if the diagram ¥

commutes, as required.
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Appendix 4 The monad representation theorem

In this appendix we may as well suppose that
™= (T,u,n) ié a V-monad on an arbitrary V-category; in
rall other respects we shall use the notation given in
Section 5.4. For ease of recognition, morphisms in the
Kleisli category K shall be represented by their images

under the full embedding M : K »+ C.

Theorem Let S : K°P? + V be a functor and (C,g : TC = C)
be a T-algebra. Then there is a (canonical) bijection
between natural transformations ay ¢ c(MX,C) » SX and
elements in the equaliser of

VSu
Vsc > VSTC .
VS(TE)

Proof We shall establish the (equivalent) higher form of
this assertion. First note that the fork on the right hand

side of the diagram
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J te(mx,c),sx]
s

s f.[C(l,E),ll

LA

~
=

Vs A
SC ——= [ [K(XC),SX] =—— [ [C{MX,MC),SX]
: [ M,11

e«

Su STE [ rc(1,u),11 [ tc(1,78),11

1

STC —— [ [K(X,TC),SX] =< [ [C(MX,MTC),SX]
y : [ M,1] .

~
-
=

mn

i1s an equaliser diagram in VO; this follows from the
well-known characteristic of C that the fork

C(1,u) €(1,&)
C(MX,MTC) > C(MX,MC) ——— = C(MX,C)
C(1,TE)

is a coequaliser diagram in VC for all XeK. Because the
two lower regions commute by naturality, we obtain an
equaliser diagram on the left hand side (the dotted arrow

is easily seen to be the composite

[ te(mx,c),8X] — — — —= SC
| R
[ re(1,6),13 [I,SC]
1 [j,11
Y
{ re(mx,Mc),sx] > [C(MC,MC),SC] ).
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The theorem follows on applying V : V + S to this

equaliser.

Lorollary The functor M : K + C 1s dense.
Proof In the higher form of the monad representation
theorem, take S to be C(M-,D) : kK°? & v for some algebra

DeC. We thus obtain an equaliser diagram
C(u,l1)

IX[C(MX,C),C(MX,D)]——->C(MC,D) _5_ C(MTC’D)
C(Tg,1)

for each pair of algebras C,DeC. But the morphism
c(g,1) : C(CcD) » C(MC,D) is the equaliser of C(u,l) and
C(Tg,1). The resulting isomorphism '

c(cD) = fyIC(MX,C),C(MX,D)]
makes M : K » C a dense functor by Definition 1.5.1.
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