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Abstract

In this thesis we investigate donor molecules as a resource for scaling-up donor-based

spin qubits in silicon towards error-corrected quantum computers. We first propose

a novel donor-based qubit consisting of an electron spin spread across a single donor

(1P) and a two-donor molecule (2P) that is electrically driven and coupled utilising

the hyperfine interaction. This qubit belongs to a class of electron spin qubits

called “flopping-mode” qubits, where the electron wave function is spread over two

quantum dots. Using a complete error model, we first investigate how to minimise

errors and the electrical driving power in the general class of qubits by optimising

the magnetic gradients across the device. We then demonstrate how the magnetic

gradient on the new qubit design can be atomically engineered using the hyperfine

interaction within the donor molecules. In particular we show that by controlling the

orientation of the nuclear spins in the qubit we can suppress the deleterious magnetic

gradient originating from the hyperfine interaction within the two-donor molecule.

We predict qubit errors well below 10�3 and show that the 1P-2P flopping-mode

qubit can be strongly coupled to a superconducting cavity. Finally, we outline a way

to scale the proposed qubits to a larger cavity-based architecture. Following this

theoretical proposal we present experimental evidence that the required engineering

of 2P donor-molecules is possible, using two atomic precision devices fabricated with

hydrogen-resist STM lithography. We achieve high accuracy precision patterning of

two-di↵erent devices that contain donor molecules to reveal the following results.

First we show how to improve the fidelity of single shot electron spin readout from

83% to 94% using an optimised SET design. ESR spectra performed using adiabatic

spin inversion yield precise measurements of the hyperfine interactions within the

molecule. Using atomistic tight binding calculations in collaboration with the group

of Professor Rahman we were able to perform metrology of the individual donor

configurations within the dots. The metrology could be performed with a precision

of ±0.25 nm using measurements of the charging energies and improved to atomic

precision using the hyperfine spectroscopy. The ESR spectra demonstrated the first
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observation of a Stark shift in a tightly bound donor molecule. The magnitude

of the shift observed was shown to depend on the molecular orientation within

the crystal and o↵ers future strategies for hyperfine engineering for optimal qubit

operation. Finally, we demonstrate the first nuclear-spin readout of a tightly-bound

donor molecule, with a fidelity of 88%, and show how we can track the nuclear spin

states over time. Using a hidden Markov model we extracted the nuclear transition

frequencies and uncover possible evidence of a dipolar coupling between the nuclear

spins.
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Chapter 1

Introduction

The miniaturisation of transistors, the basic building block of classical computers,

has fuelled incredible technological progress; and with it large societal changes. This

downscaling that started in the 1970s and has so far been described by an exponen-

tial increase in the the transistor density (“Moore’s Law”), will soon hit the limits

set by the atomistic nature of matter [1]. While an increase in the computational

power of computers is still possible by clever chip-designs, these advances will likely

not be able to match the rate of progress seen in the last 50 years. A new computa-

tional paradigm called quantum computing, first proposed in the 1980s by Feynman

and others [2] harnesses the strange laws of quantum physics and could sustain or

even accelerate the rate of progress in computational power. In the 1990s quantum

algorithms developed for these yet-to-be-constructed machines, promised significant

computational speed-up for solving certain problems, when compared to available

algorithms running on classical computers. Well known examples include Shor’s

prime factoring algorithm [3], that is set to break the commonly used RSA encryp-

tion scheme, and Grover’s search algorithm [4]. Universal quantum computers store

and manipulate information on two-level quantum-systems called qubits, in analogy

to the bits of classical computing, and perform computations by using entangling

interactions (quantum gates) between pairs of qubits.

Realisations of small quantum systems processors quantum algorithms were first

demonstrated in the early 2000s. For example, in 2001, Shor’s algorithm was used

to factor the number 15 into its prime factors 3 and 5 using nuclear magnetic res-

onance on seven nuclear spins within molecules suspended in a liquid [5]. Since

these proof-of-concept experiments, considerable progress has been made, leading

to the demonstration in 2019 of a quantum computer solving a problem that a clas-

sical supercomputer could not solve in a practical amount of time [6]. Despite this
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impressive demonstration of “quantum supremacy”, on a superconducting quantum

processor with 52 superconducting qubits, the problem solved has yet to demonstrate

any commercial benefits. A quantum computer that can solve useful problems that

are also intractable for a classical computer has not yet been demonstrated. The

di�culty in building such a machine can in large part be attributed to the fragility

of the quantum states within the quantum computer. A tremendous research ef-

fort in the last 20 years has lead to the realisation of qubits that are incredibly

well protected from deleterious interaction with the environment and display very

low errors. Nonetheless, these interactions cannot be fully eliminated and errors

will invariably creep in for long computations. Various quantum error-correction

schemes have been proposed to mitigate the fragility of quantum states in quantum

computers [7, 8, 9, 10]. One particularly attractive candidate is the surface code,

first proposed by Kitaev and coworkers [11, 12] in the late 1990s. The surface code

allows for a relatively high qubit error rate of 0.1% during operation [13], a bench-

mark that has steered the field of quantum computing in the last 20 years. These

benchmarks have now been achieved in various small scale physical systems (such

as superconducting, ion-trap and nearly so in semiconductor-spin systems), making

the prospect of practical error corrected quantum computation more realistic. How-

ever solving a useful problem on a quantum computer running the surface code in a

reasonable amount of time will likely require at least tens of millions and possibly up

to one billion physical qubits [13]. The leading quantum-computing platforms now

face the daunting challenge of scaling up their quantum processors to these large

sizes.

In this thesis we investigate how the challenge of scaling-up universal quantum

computers can be met using atom based qubits in the semiconductor spin-qubit plat-

form. The semiconductor spin-qubit platform can rely on the incredible materials

technology development and know-how in the semiconductor industry, which now

routinely manufactures billions of transistors –structures not unlike qubits– on a sin-

gle chip [14]. One significant implementation of semiconductor spin-qubits is based

on the electron spin trapped by a phosphorus impurity in silicon, and has demon-

strated very long lifetimes and fault tolerant operation on a single-qubit [15, 16].

Chapter 2 lays out the incredible challenge that the semiconductor spin-qubit

platform, and other platforms, face in scaling up such small devices to larger sizes.

Electric operation of spin-qubits could meet this challenge, by allowing for faster op-

eration and long distance coupling schemes using superconducting resonators. An

overview is given of the fabrication method for the atomic-scale phosphorus spin-
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qubit devices realised and measured in this thesis. Using a scanning tunnelling mi-

croscope (STM) under ultra-high vacuum conditions, we demonstrate atomic-scale

lithography followed by phosphorus donor incorporation and silicon encapsulation.

Additionally, details are provided on making electric contact to these atomic-scale

devices, and integrating antennas on the devices that were used for controlling donor

spin qubits. Finally, we discuss the fridge wiring and measurement set-up used to

measure the atomic-scale phosphorus donor devices in this thesis.

Single electron spin qubits in silicon shown great promise for building a scal-

able quantum computer[17, 15, 18, 19]. However, despite the high-fidelity single

qubit gates the operation time of the qubits remains to be orders of magnitude

longer than those in superconducting qubits [20, 6]. These long gate times are

due to the typically a weak interaction associated with magnetic control of electron

spins [21, 22]. This weak interaction of single spins to magnetic fields also poses a

challenge when performing long-range two-qubit gates mediated by microwave cav-

ity photons where the experimentally realisable magnetic fields fall well below the

strong-coupling regime (cavity-qubit coupling, g is larger than the decoherence rates

of the qubit (�) and cavity ()) [23]. To overcome the weak coupling of magnetic

fields to spin qubits, other electrically driven spin qubits have been proposed using

electric dipole spin resonance (EDSR) [24, 25, 26]. In Chapter 3, we discuss the

implementation of a special type of electrically controlled spin qubits, known as

“flopping-mode EDSR qubits” [26, 27, 28, 29, 30] when a single electron is delo-

calised across a double quantum in a gradient magnetic field. The flopping-mode

qubit can be implemented in a variety of semiconductor systems involving quantum

dots and phosphorus donors and o↵ers fast single-qubit gate times comparable to

superconducting qubits (⇠ nanoseconds). In addition, the qubit allows for long-

distance qubit coupling through the large electric dipole associated with the double

quantum dot system [27, 31, 32, 33]. We show how the two magnetic field gradients

defining the qubit (perpendicular and longitudinal to the external magnetic field)

give rise to a complex interplay of dephasing associated with the qubit driving and

the qubit energy. Through a detailed theoretical analysis of dephasing, relaxation,

and leakage errors we show how to optimise a flopping-mode qubit to achieve single-

qubit gate errors below 10�3—well below the 2D surface-code error threshold. In

particular, we theoretically demonstrate that the previously proposed second-order

charge noise sweet spot (where the second derivative of the qubit energy approaches

zero) is detrimental to the overall qubit performance and the longitudinal magnetic

field gradient should be minimised for high-fidelity qubit operations. Using the re-
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sults presented in this chapter it will be possible to design a fast, high-fidelity qubit

capable of long-distance qubit-qubit couplings mediated through superconducting

microwave cavities in the strong coupling regime.

Building on the theoretical modelling detailed in the previous chapter, Chapter

4 we theoretically propose and analyse a flopping-mode qubit based on phosphorus

donor quantum dots in silicon. The all-epitaxial flopping-mode qubit will benefit

from the ultra-low charge noise present in scanning tunnelling microscopy (STM)

devices that are well separated from any interfaces [34]. We use the theoretical error

model in the previous chapter to estimate the qubit performance while including

additional leakage states due to the nuclear spin states of the phosphorus donors.

The qubit is defined between a 2P quantum dot and a single donor (1P) where

the hyperfine interaction is used to electrically drive flip-flop transitions between

the electron and nuclear spin on the 1P. The longitudinal e↵ective magnetic field

gradient arises from the hyperfine interaction of the two donors on the 2P quantum

dot and therefore can be minimised through electron shielding (operating with 2

closed shell electrons on the 2P) and initialising the nuclear spins into antiparallel

nuclear spin states to cancel the total hyperfine interaction felt by the electron

spin. By optimising the magnetic field gradients we demonstrate the qubit can be

operated with an error rate of 2⇥10�4 at a magnetic field of ⇠ 0.2 T and maintains

an error rate below 10�3 over a wide range of magnetic fields (0.1 - 0.6 T) and tunnel

couplings (⇠ 1 - 20 GHz). We then show that the qubit can theoretically reach the

strong-coupling regime to a superconducting microwave cavity with a cooperativity,

C = g2/� = 130 � 1. Finally, using the excellent donor-based flopping-mode qubit

we propose a 2D surface-code quantum computing architecture where the qubit can

be coupled either via direct charge-dipoles or floating gates. The architecture utilises

only 2 gates per qubit in nodes with qubit densities 28 µm�2 (0.25 µm�2) for the

dipole coupling (floating gate coupling). The outer qubits of each node are coupled

via superconducting microwave cavities over the millimetre length-scale to allow for

space for the classical control electronics required for measurement and control of

the qubits. The high-fidelity donor-based flopping-mode qubit combined with the

quantum computing architecture o↵ers a direct route for scaling spin qubits defined

on phosphorus donors in silicon.

In Chapter 5, we discuss the design considerations and simulations performed

in order to design a device that can independently operate single qubit operations

on three donor quantum dots, and perform two-qubit gates between two of the three

pairs. The device is compatible with the long term goal of running a small fragment
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of the surface-code error-correction algorithm. In order to achieve independent con-

trol, initialisation and readout of the three electron/nuclear spin qubits, as well as

coupling of two of the electron spin qubit pairs using exchange-based gates, it is nec-

essary to consider both the geometry of the device and the number of donors in each

dot. By measuring in a dilution refrigerator, it was confirmed that the chosen ge-

ometry and donor numbers per dot fulfilled the original design requirements, which

allowed for tunable independent electrostatic control of the charge state of three un-

paired electron spins. The donor configurations was also estimated for each of the

quantum dots by comparing measurements of the quantum dot charging energies

to recently modelled tight binding simulations. The resulting donor configurations

were found to be compatible with high quality STM images of the arrangement of

phosphine species adsorbed in each quantum dot before incorporation. The tunnel

rates of all three unpaired electrons on the left, middle and right dots were shown

to fall within the ideal range for high fidelity spin readout. We demonstrated spin

readout of the electron on the left 2P donor-quantum dot with 83% fidelity, which

was limited by the on-o↵ ratio of the SET and prevented electron spin readout on

charge transitions with a faster tunnel rate (> 15 kHz). The sub-optimal on-o↵ ratio

of the SET was caused by variations in the SET dimensions caused by drift of the

STM tip during patterning. Strategies to mitigate such variations are presented in

Sect. 5.2.1, where advances in the design of the SET charge sensor yielded a sig-

nificant improvement of the electron spin readout fidelity on a donor quantum dot,

from 83% with the previous sensor, to 94.4% with the improved sensor. Electron

spin resonance using adiabatic spin inversion was then demonstrated on the first

electron of the right donor quantum dots of the device. Electron spin resonance

spectra revealed four peaks which can be attributed to a 2P molecule with a hyper-

fine interaction of the first and second nucleus to the electron of A1 = 189± 5MHz

and A2 = 83±5MHz, respectively. By matching the measured hyperfine interaction

strengths to values obtained by tight binding simulations, we were able to determine

the donor configuration in each quantum dot. The di↵erence in the hyperfine inter-

action strengths is attributed to a linear Stark e↵ect that was previously observed in

ion-implanted single phosphorus donors but not in tightly bound donor molecules.

Together, the total hyperfine value and the hyperfine di↵erence identify [1.5, 0.5, 0]a0

as the most probable donor configuration, where a0 is the silicon lattice constant.

We then perform nuclear spin readout on a tightly bound donor molecule, with a

fidelity of 88%. The nuclear spin readout is used to track the nuclear spin states over

times. Using a hidden Markov model, we extract the transition frequencies between

5



nuclear spin states and reconstruct the nuclear spin sequence during the tracking

experiment. The extracted relaxation rates are in agreement with those observed

on a single phosphorus donor [35]. The extracted nuclear excitation rates are at-

tributed to the ionisation shock mechanism also observed on a single donor [35]. The

hidden Markov model extracts a non-zero transition rate between the antiparallel

nuclear spin states +*$*+. This “flip-flop” transition rate could be due to the

dipolar interaction between the nuclear spins, when the molecule is fully ionised.

This dipolar interaction has not been observed within donor-molecules before and

will be the focus of future work.

Finally, we summarise the results and give an outlook on future work inChapter

6.

6



Bibliography

[1] Mitchell Waldrop. More than Moore. Kyokai Joho Imeji Zasshi/Journal of the

Institute of Image Information and Television Engineers, 530:144–147, 2016.

[2] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6-7):467–488, 1982.

[3] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–

1509, 1997.

[4] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a

Haystack. Physical Review Letters, 79(2):325–328, jul 1997.

[5] Lieven M.K. Vandersypen, Matthias Ste↵en, Gregory Breyta, Costantino S.

Yannoni, Mark H. Sherwood, and Isaac L. Chuang. Experimental realization of

Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature,

414:883–887, 2001.

[6] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando G.S.L. Brandao, David A.

Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins,

William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin

Fowler, Craig Gidney, Marissa Giustina, Rob Gra↵, Keith Guerin, Steve Habeg-

ger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Ho↵-

mann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Je↵rey, Zhang

Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey

Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark,

Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew
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Chapter 2

Background

This chapter sets the background to the following three results chapters. First the

chapter reviews some of the challenges towards scalable quantum computation and

then discusses some of advantages and disadvantages of the current major material

platforms. We then focus on qubits based on the electron and nuclear spin on

phosphorus donors in silicon that form the basis of devices proposed and measured

in this thesis. The fabrication method for such donor-based devices is then detailed,

before finally describing the measurement set-up.

2.1 The challenge of scaling up to error-corrected

quantum computers

2.1.1 Error correction using the Surface Code

Parity measurement of 2 qubits: the stabilisers

Quantum error correction cannot be realised via a projective measurement of each

qubit because direct measurement of a quantum states collapses the state that is

being protected [1, 2]. To circumvent this measurement issue, the surface code, like

other quantum error correction codes [1, 3], rely on measurements of an ancilla qubit

that has been entangled with the qubit in question. Error correction in the surface

code is based on stabiliser measurements, which are non-destructive projective mea-

surements on the neighbouring data qubits involved in quantum computation. The

X and Z-stabiliser correspond to simultaneous measurement X̂ ⌦ X̂ and Ẑ ⌦ Ẑ of

the two qubits along the eigenbasis defined by the Pauli-x and -z operators X̂, and

Ẑ respectively. It can be shown [2] that the two qubit parity operators X̂ ⌦ X̂ and
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data qubit

ancilla qubit

Initialisation 

Identity gate

Hadamard gate

CNOT gate

Qubit readout

a)

b)

Figure 2.1: Z- and X-stabilisers using ancilla qubits Z and X respectively on two
data-qubits “a” and “b”. a) a fragment of the surface code square lattice containing
the two ancilla qubits x (yellow) and z (green) and two data qubits a and b. b) Process
diagram for executing a X and Z-stabiliser. Illustration reproduced from ref. [2]

Ẑ⌦ Ẑ commutes, and thus share a common eigenbasis. The stabiliser measurement,

projects the 2-qubit state into one of these eigenstates, and any subsequent mea-

surement whether a Z- or a X-stabiliser, does not alter that state in the absence of

errors on either qubits.

Implementing stabilisers via Ancilla qubits

The surface code implements the X- and Z- stabilisers non destructively, by using

a second type of qubits, called X- and Z-ancilla qubits which are only involved in

the error correction and do not hold any information appertaining to the quantum

computation. Each Z and X-stabiliser measurement is achieved by initialising the

ancilla qubit in the X̂ and Ẑ eigenbasis, entangling it with its neighbouring data

qubits via 2-qubit gates, and reading out the ancilla in the X̂ and Ẑ eigenbasis. The

initialisation and readout in the X̂ eigenbasis are both performed via a Hadamard

gate performed after and before the initialisation and readout in the Ẑ eigenbasis.

The circuit diagram in Fig. 2.1 shows an implementation of Z- and X- stabiliser on

two data qubits a and b.
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Error detection on 2 qubits

Most errors can be approximated by random occurrences of single qubit X, Y and

Z operations [2], e.g. an X-error on a 2-qubit code, can be written as the operator

Êx = I⌦ I+ ✏X̂⌦ I, where ✏ is directly related to the error rate of that specific error

and I is the identity. In most cases, such an error will project the stabilised 2-qubit

state  onto itself, but with a small probability ✏ it will project it onto another

stabiliser eigenstate Êx ·  , and the subsequent X-stabilisers will register a change

in its measurement outcome, which is the basic principle of error detection in the

surface code. Stabiliser measurements on two qubits do not allow determining which

of the two qubit was subject to the error because di↵erent errors can lead to the

same stabiliser measurement outcome. Therefore the error cannot be corrected with

only two qubits. Furthermore, with two qubits only, the Z and X stabilises fully

constrain the state of the two data qubits and thus they cannot be used to perform

any computation.

Error correction on bigger arrays

The surface code therefore ultimately relies on large assemblies of data and ancilla

qubits to accurately pinpoint which qubit was subject to the error and what the error

type was (X or Z). To implement the surface code, the data qubits are thus arranged

in a 2D square lattice interspersed with alternating X- and Z-ancilla qubits, each

linked to its 4 nearest neighbour data qubits as depicted in Fig. 2.2. An isolated

X(Z) error on a given data qubit will produce a change in the Z(X) stabiliser

measured by the two neighbouring Z(X) ancillas but not in the two other ancillas

whereas a Y error is registered by all 4 neighbouring qubits since Ŷ = ẐX̂. Errors in

the measurement process are likely restricted to a single ancilla, and will not appear

in the subsequent surface code cycle. Errors in the 2-qubit operations generate a

distinct pattern of stabiliser-measurement changes and can also be localised and

identified. The identification of the error type and location based on the stabiliser

measurement outcome needs to be run synchronously by classical algorithms running

on classical electronics. Once the error has been identified, it can also be corrected.

The correction does not have to be applied to the qubits themselves, but can be

kept track of by the classical control software that runs the qubits. For example,

any single-qubit error can be corrected by multiplying the subsequent measurement

by -1, and two subsequent errors will cancel out. The error detection above requires

that the errors are rare. As the errors rate grows, errors will appear closer to each

other and will reduce the fidelity with which the classical algorithms can pinpoint
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Figure 2.2: A schematic of a logical qubit in the 2D surface code. The logical qubit
exists as two degrees of freedom in the state of the 20 data qubits in the grid displayed
above (white dots) constrained by stabiliser measurements (”Z” and ”X”) performed
by the 19 ancilla qubits (black dots). The two degrees of freedom are implemented by
switching o↵ one of the 20 ancillas in the grid, which is shown as a white “hole”. A Z-
and X- gate ZL and XL on the thus defined logical qubit is performed by performing a
series of single qubit gates Ẑi and X̂i on chains of data qubits circling around the “hole”
or connecting it to an outside edge of the surface code grid respectively. Illustration
reproduced from ref. [2]

the type and location of the error. Above a certain error rate, errors cannot be

accurately corrected. This is known as the error threshold for the code.

The logical qubit: a protected degree of freedom

To perform quantum computation, the surface code uses degrees of freedom within

the grid of data qubits that are not constrained by the stabilisers. Two degrees of

freedom can for example be produced by switching o↵ one ancilla qubit. Indeed

each data qubit adds two degrees of freedom to the surface code, while every ancilla

qubit adds two constraints to it. Two degrees of freedom can thus be added by

simply by removing one pair of constraints, that is by switching o↵ one ancilla qubit
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(see Fig. 2.2). Each pair of degrees of freedom in the surface code grid forms a

logical qubit and consists in an error protected qubit. The logical qubits can be

manipulated via chains of X and Z operators as pictured in Fig. 2.2. A logical

qubit can be interpreted as a quantum state that is spread over many physical

data qubits in the surface code array, and is thus protected from localised errors.

An error-protected logical qubit can be used to perform fault tolerant quantum

computation [2].

2.1.2 Successes and challenges of major quantum computing

platforms

In the race for universal quantum computing, several major platforms have come

to the fore, of which we will discuss three in this section. Qubits encoded in the

electronic states of trapped ions have demonstrated long relaxation times of several

hours [4], long coherence times of up to 50 seconds without any dynamic decoupling

protocols and at room temperature [4], with high operation fidelities [5, 6, 4] (see

Table 2.1). Errors of single-qubit and two-qubit operations as low as 10�6 and 10�3

respectively have indeed been demonstrated [5], with preparation and fast-readout

errors below 10�4 [7, 8]. Compared to other systems, the very low errors reduces

the number of physical qubits needed to encode an error corrected logical qubit in

the surface code (see Fig. 2.3). However, coupling and operating a large number of

trapped ions is challenging due to electric field noise and footprint constraints so

that there remain significant technological hurdles to scaling up processors beyond

100 to 1000 qubits [9, 10], a number well below the expected size of a quantum error

corrected processor [2], even for the high qubit fidelities displayed by trapped ion

qubits.
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Figure 2.3: Number of physical qubits needed for a computational logical qubit
with error rate below 10�14, as a function of physical qubit operation error.
The coloured regions indicate the range of values of state of the art operation error for
three major quantum computing platforms.

Ion traps Superconducting Semiconductor spin

lifetimes
T1 hours [4] 90µs [11] 6 s [12] (65 s [13])
T2 50 s(*) [4] 70µs(echo) [11] 0.5s (30s) (CPMG)[12]

1-qubit gate
error (RB) 1⇥ 10�6 [4] 8⇥ 10�4 [14] 4.3⇥ 10�4

t⇡ 24µs 16 ns 2µs [15]

2-qubit gate
error (RB) 8⇥ 10�4 [5] 6⇥ 10�3 [14] 5.3⇥ 10�2 [16]

time 30µs 40 ns 1.4µs

readout
error 1(5(†))⇥ 10�4 [7] 8⇥ 10�3 [17] 1.4⇥ 10�3[18] (3⇥ 10�2 [19])
time 145 (10(†))µs 88 ns 65µ s (1.5µs)

Table 2.1: Best quoted values of qubit lifetimes, operation errors and gate times
for three major quantum computing platforms. The coherence times (T2) for the
ion qubit platform is a T ⇤

2 time, as indicated by the asterisk, whereas the coherence times
for the other two platform use a form of dynamical decoupling indicated in parenthesis
(echo and CPMG for superconducting and semiconductor platform respectively). The
value with (†) are theoretical predictions from ref. [7].

Another implementation, photonic qubits, also possesses the advantage of ro-

bust qubits at room temperature and naturally allows for high bandwidth and large

distance quantum information transfer [20]. However, the lack of deterministic en-

tangling gates and of a scalable platform present significant obstacles on the way to

fault tolerant universal quantum computing using photonic qubits [21].

The two remaining quantum computing platforms that we consider here are both

based on condensed matter systems. Qubits based on superconducting circuits have

shown fast and high-fidelity operations (single-qubit gate fidelity of 99.92% and a

two-qubit gate fidelity of up to 99.4%), with gates shorter than 100 ns demonstrat-

ing errors below the surface code error correction threshold of 1% [22] despite the

relatively short qubit lifetime of only a few tens of microseconds (see Table 2.1).
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The superconducting qubit platform is compatible with many of the fabrication

techniques developed for the silicon semiconductor industry which can be harnessed

for scaling up devices. In 2019, a device consisting of 52 nearest neighbour coupled

superconducting qubits in a square lattice demonstrated quantum supremacy [23],

with average single and two qubit operation errors of less than 0.2 and 1% respec-

tively, and readout errors being slightly higher at 4%. While errors of operations

in such state-of-the-art superconducting devices are below the 10�2 surface code

error threshold [2] (see Table 2.1), they are about a factor 10 higher than what

has been achieved in the ion trap platform (see Table 2.1). Due to the higher er-

rors an error-protected computational logical qubit with acceptable levels of error

(about 10�14 for Shor’s algorithm [2]) requires 10 times more physical qubits (see

Fig. 2.3). Fig. 2.3 shows a plot of the number of physical qubits needed per logi-

cal qubit as a function of physical qubit error or fidelity. Improving the errors of

superconducting qubits further will require engineering of the qubit relaxation time

T1, since this currently limits the coherence time of their qubits. Indeed the super-

conducting transmon qubit dephasing times have been limited by relaxation times

of at most 100µs [24, 22]. Changes in the material used for the bulk of the device

from aluminium to tantalum have recently been shown to increase the relaxation

time to ⇡ 300µs [25]. Further advances in the device design and fabrication are

required to allow for improvement in the qubit relaxation times, and thus reducing

superconducting qubit errors [26, 27].

The last competitive platform in the race for universal quantum computing which

we bring into focus now is that of semiconductor spin qubits. Semiconductor spin

qubits combine the long coherence times of trapped ion qubits with the scope for scal-

ability of superconducting qubits. Indeed, spin qubits in phosphorus donor atoms

in silicon have shown relaxation times, T1 of seconds [12] (minutes [13]) for elec-

tron (nuclear) spins on a donor in silicon respectively, as well as dephasing times of

several seconds [12] (see Table 2.1). Errors for single-qubit gates and qubit read-

out below those of state-of-the-art superconducting devices have been demonstrated

in semiconductor spin qubits, and two-qubit gate errors are expected to follow this

trend [16]. At the same time, silicon has become the material system of choice to host

semiconductor spin qubits, making such qubits compatible with the CMOS processes

used by the semiconductor industry, and therefore o↵ering promising prospects for

scalability.

In summary, we have introduced three quantum-computing platforms that have

demonstrated error rates near or below the error threshold of the surface code error-
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correction scheme, making the prospect of error-corrected quantum computing re-

alistic. However, quantum processors based on these platforms will likely require a

large number of physical qubits, so that the fabrication and operation of such pro-

cessors remain a daunting challenge. Section 2.1.3 describes major challenges that

all three platforms face in scaling up the processors and highlights some advantages

of the semiconductor computing platform in this regard.

2.1.3 The scale-up challenge of universal quantum comput-

ing

The trapped-ion, superconducting and semiconductor QC platforms have all three

demonstrated qubits at or near the surface code fault-tolerant threshold. In this sec-

tion we first show that an error-corrected universal quantum computer will require

millions of physical qubits. Then we identify the challenges and uniques advantages

that each platform possesses to scale-up the number of qubits. In particular, the

challenges identified here for the semiconductor spin qubits motivate the develop-

ment of a qubit that can be driven electrically instead of magnetically. The electrical

driving results in faster gates and allows coupling of the qubits over long distances.

The proposed qubit is the focus in the following chapters.

The challenge of scaling up quantum processors can be illustrated by estimating

the size of a universal quantum computer needed to e�ciently run an algorithm that

solves a useful problem using the surface code error correction scheme. A problem

that is often used for this purpose in the literature [2] is the prime factoring of large

numbers, which is computationally very expensive when using a classical computer

but has been shown to be exponentially faster when using a quantum computer

running an algorithm proposed by Shor [28] in 1994. Using Shor’s algorithm, a

N -bit number can be factored into primes using a number of operations scaling

polynomially with N . No classical algorithm has been found that can perform this

problem with similar polynomial scaling. The prime factoring problem has practical

implications in cryptography, because the di�culty of factoring large numbers into

its prime numbers is at the heart of the RSA cryptography scheme [29], widely used

for secure data transmission.

Using a particular implementation of Shor’s algorithm [2, 30], the prime factoring

of a commonly used 1024-bit RSA key would necessitate about 2000 computational

logical qubits [2], and potentially 10 times more for an error correction specific

process called magic state distillation [2]. Each logical qubit is encoded using a

number of physical qubits that depends on the error rates of the operations on the
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Ion traps Superconducting Semiconductor spin
herrori 3⇥ 10�4 5⇥ 10�3 9⇥ 10�4 (⇤)

# comput. phys. qubits 1.8⇥ 106 5⇥ 107 4⇥ 106 (⇤)

approx. # tot. phys. qubits 2⇥ 107 5⇥ 108 4⇥ 107 (⇤)

tM 145 (10(†))µs 88 ns 65µ s (1.5µs)
tot. comput. time 216 (14(†)) days 3 hours 97 (2) days

Table 2.2: Comparison of size and speed of ion trap, superconducting and semi-
conductor spin qubits to factorise 1024 bit number. Estimation of the quantum
computer size and computation time needed to factorise a 1024 bit number using Shor’s
algorithm, for the state-of-the-art error rates of each quantum computing platform. Note
that the accurate estimation of the total number of qubits (including qubits needed for
magic state distillation) is quite involved [2], so that we simplistically assume that about
10 times more qubits are needed for distillation than for computation (as is found for the
two example in appendix M of ref. [2]). The specific algorithm is optimised for a low num-
ber of physical qubits at the cost of longer execution time, as outlined in ref. [31, 30, 32].
For the semiconductor platform, we assumed that a below threshold value of 10�3 for
the two-qubit gate error is achievable [16]. The according number are marked with (⇤).
Numbers with (†) refer to theoretical estimates from ref. [7].

physical qubits. Larger physical qubit error rates translate into a larger number of

necessary physical qubits required to encode an error protected logical qubit with

a fixed error rate (see Fig. 2.3). Using the current state of the art error rates for

the three platforms displayed in Table 2.1, one would require 10 million to hundred

millions of physical qubits to perform the error corrected prime factoring on the ion

trap and condensed matter platforms respectively.

The computation time tC needed to execute the chosen implementation of Shor’s

algorithm can also be estimated (see ref. [2]) and can be related to the RSA key size

N and the time tM taken to read out a physical qubit: tC ⇡ 120N3tM. Using state of

the art readout times of qubits for the three major quantum computing platforms, we

estimate that running the algorithm on an ion trap based quantum computer would

take about ten to two hundred days1, only three hours on a superconducting quan-

tum computer and about two days on a semiconductor spin quantum computer [19].

The estimated quantum computer sizes and executions times are summarised in

Table 2.2. The calculation to arrive at these execution times follow ref.[2], and are

outlined in more detail in the Appendix A.1. The numbers are based on one of

many implementation of Shor’s algorithm (as outlined in reference [2]). The partic-

ular implementation we chose requires fewer logical qubits at the expense of more

computer clock cycles. Such an implementation of the algorithm is well suited for

physical qubits with fast gates but large error rates (e.g. condensed matter qubits).

114 days assuming a theoretical projection of readout times [7].
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Indeed, encoding a logical qubit with error-prone physical qubits requires many such

physical qubits, making it advantageous to keep the number of logical qubits low.

Furthermore the fast gate times of such qubits translate into fast code execution de-

spite the many clock cycles required. Other algorithms exist that need more logical

qubits but require less clock cycles [2]. These could be better suited for platforms

with low physical-qubit errors (and thus less physical qubit required to encode each

logical qubit) but slower gates, such as the ion-trap platform.

Each of the three quantum computing platforms that we focused on, faces unique

challenges in scaling up to such large quantum processors that can solve useful

problems in reasonable amounts of time. We now describe these challenges in broad

terms for each of the three platforms and reference to solutions that have been put

forward.

The trapped ion platform displays undeniable advantages compared to the su-

perconducting and semiconductor spin qubits. In particular, Ion trap qubits have

demonstrated exceptionally low error rates (see Table 2.2) and can be operated at

room temperature. Room temperature operation eliminates a lot of the scaling

challenges associated with cryogenic operation, which is required for the supercon-

ducting and semiconductor spin qubits. However, it faces other sizeable challenges

in terms of scaling up.

Trapped ions qubits have been traditionally implemented using large single

electromagnetic traps using macroscopic, mechanically-assembled three-dimensional

electrodes in ultra-high vacuum chambers, with the electrodes forming a single

pseudo-potential minimum, that can contain up to a few hundred qubits [10]. The

number of ions that can be contained in a single trap being limited [10], it is unavoid-

able that the ion qubits platform will require the coupling of many ions originating

from di↵erent traps, either by shuttling them into the same trap or coupling them

while held in separate traps.

Ion-trap based processors with qubits hosted in separate traps will require sys-

tems in which the ions are shuttled for readout, manipulation and coupling. This has

been realised [33] and is the basis of several large-scale architecture proposals [34, 35].

In such architectures, shuttling allows bringing two distant ions from separate traps

into the same trap, where they can be coupled using well know techniques using

optical [36, 37] or radio-frequency radiation [38]. Alternate architectures rely on

coupling ions held in separate traps, using Coulomb coupling [39, 40], or photonic

interconnects [41] .2 While these two approaches to couple ions from separate traps

2gate time of photonic interconnects are slow, at about 200ms [42].
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show promise, they have yet to be demonstrated on devices containing more than a

few qubits.

Another challenge in scaling-up ion traps is the physical size of large scale quan-

tum processors based on the ion-trap system. For example, running Shor’s algorithm

on a 1024-bit number, could require up to 10 million physical qubits (see Sect. 2.1.3).

This many ions would require hundred thousand separate traps, assuming every trap

contains hundreds of qubits. The resulting footprint of the quantum processor can

then be estimated to 50⇥ 50m2 assuming a traditional three dimensional mechani-

cally assembled single trap with a footprint of 5⇥5 cm2, and not taking into account

the large area needed to accommodate the Ultra High Vacuum (UHV) systems, and

lasers. Building such large systems while unpractical, is not unfeasible [35]. In

order to reduce the footprint of ion-trap processors, advances have been made to

fabricate two-dimensional chips using micro-fabrication methods developed for Mi-

croelectromechanical Systems (MEMS) [43]. The proposal by Lekitsch et. al. [35]

harnesses these technological advances, but still predicts a surface area of about

100⇥100m2 to accommodate for 2 billion ions in order to perform Shor’s algorithm

on a 1024-bit number in about 110 days (albeit assuming a less than optimal error

rate of about 10�3). Despite the large footprint and execution time, such a processor

would be a formidable and useful proof-of-concept.

Another challenge that the ion trap platform is facing in terms of scaling up, is

that the hardware for qubit control and readout typically consists of lasers pointed

at the trap from outside of the vacuum chamber. This is in stark contrast to the

condensed matter platforms where most of the control and readout architecture is

co-fabricated with the qubits. Advances in co-fabricating the photonics hardware

with the traps have been made and will help solve this challenge [44, 45, 46]. The

architecture proposal by Lekitsch et al.. [35] bypasses the complexity of using indi-

vidual lasers by using magnetic spatial gradients to allow for microwave mediated

qubit operations. However, these microwave-mediated gates are much slower than

photon-mediated gates (a few milliseconds [47] instead of a few microseconds [5]),

and would therefore translate into orders of magnitude slower quantum computers.

In general, the time of qubit operations on trapped ion qubits is one to three

orders of magnitude larger when compared to the other platforms. This translates

into longer computing times when using the same implementation of the algorithm

(see Table 2.2), and could become a significant drawback for the platform.

However, if the proposed innovations in scaling up the size of the ion trap pro-

cessors can be implemented while conserving their exceptionally low error rates, the
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lower number of physical qubits needed to encode each logical qubit could motivate

the use of algorithms requiring more logical qubits but decreasing execution time.

In the context of scaling up, the condensed matter quantum-computing plat-

forms and in particular the semiconductor-spin platform have the major advantage

compared to the trapped-ion platform that they can fully harness the technological

know-how of the classical computing semiconductor industry, which now routinely

produces computer chips containing more than one billion transistors [48]. Indeed

most processes needed to fabricate the condensed matter devices that are cited in

the Table 2.1 use materials and processes compatible with the techniques and tools

used in the semiconductor industry, making large scale manufacturing of large con-

densed matter based quantum computing processors a realistic prospect.

As described for the ion-trap platform, the speed of the qubit operations is

also linked to scalability insofar that fast gates allow the use of algorithms with

less logical qubits while keeping execution time low. This gives condensed matter

platforms an advantage with respect to the ion-trap platform because gates are

one and three orders of magnitude faster Table 2.1, for the semiconductor (2µs)

and superconducting (16 ns) platforms respectively. Indeed, Section 3.1 of this

thesis outlines how electrical control of semiconductor spin qubits could bring the

operation times closer to those of superconducting ones.

Another advantage of the condensed matter platforms is that a good part of the

readout and control electronics is routinely co-fabricated with the chip. This means

that advances in scaling up the number of qubits can be leveraged to scale up the

supporting electronics as well.

However, only part of this supporting electronics is currently manufactured on-

chip (charge sensors, resonators, electrostatic gates, flux control loops etc.., mainly

because condensed matter qubits need to be operated at cryogenic temperatures

(below 200mK for most platforms). The rest of the electronics hardware is typically

placed o↵-chip, within the cryostat (amplifiers, filters, circulators) or at room tem-

perature (microwave and waveform generators, IQ demodulators, Digital to Analog

Converters (DAC) and Analog to Digital Converters(ADC) ). The fact that a lot

of the electronic hardware is still located outside of the cryostat poses a significant

hurdle for scaling up the processors.

Indeed, the surface code requires that each physical qubit be initialised, read

out and controlled independently. In most superconducting and semiconductor spin

architectures, each qubit (at cryogenic temperatures) is coupled to the readout and

control electronics (mostly at room temperature) with two to three electrical wires.
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Having several millions to billions of wires running from deep in the cryostat to

room temperature is challenging, due to the significant amount of heat and noise

that would be transferred into the cryostat as well as the cross-section of such a

cable. This problem can be solved by placing some of the control and readout

electronics inside the cryostat, either on the same chip as the qubits or on a higher

temperature stage of the cryostat (200mK or 1K stage). However this solution

remains challenging due to the limited cooling power of cryostats (⇡ 20µW at

20 mK).

Furthermore, interfacing the qubits with the readout and control electronics,

whether placed inside or outside the cryostat remains a di�cult problem as described

in detail in ref. [48]. The first challenge of interfacing a quantum processor is simply

to manufacture leads that reach each of the qubits for control and readout. Indeed,

wiring up a monolithic block of N qubits using CMOS technology with only a single

lead per qubit would require a number nlith. layers ⇡
p
N

2nL+3 of separate lithographic

layers, where nL is the number of leads that can be routed between two adjacent

qubits in the surface code square grid (see Sect. 4.5.3). Assuming only a single lead

can be fed through between two adjacent qubits (nL = 1), a monolithic quantum

computer of a billion physical qubits would require about six thousand lithographic

layers, a number that is two orders of magnitude larger than currently used in state-

of-the-art semiconductor BEOL (Back-end-of-line) processes, that use at most 15

layers [49]. This makes a monolithic approach highly challenging. The challenge of

interfacing with a large number of qubits could be addressed by spatial and frequency

multiplexing schemes, reminiscent of those used in the Dynamic Random Access

Memory (DRAM) devices Such schemes would reduce the number of leads required

per qubit [48]. However, multiplexing comes with the drawback that it reduces the

clock-cycle of the surface code because qubits have to be addressed sequentially

within one surface code cycle. This slowdown not only increases the execution time

of an algorithm but also the impact of dephasing and relaxation errors. Several

proposals suggest that such an approach is nonetheless possible [50, 51], notably the

proposal of Hill et al.. in ref. [50], which harnesses the uniformity and long lifetimes

of donor qubits in silicon to implement a spatial multiplexing scheme to interface

the quantum and classical layers of the qubits.

The challenge of interfacing the quantum and classical hardware will likely be

solved by using a modular quantum computer architecture, in which some of the

classical electronics is placed in-between blocks of qubits. Such a modular computer

architecture has been proposed for various platforms [41, 48, 52, 53] and consists of
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nodes hosting many qubits that are coupled over distances up to a few micrometers.

The nodes are coupled to each other via longer distance interconnects (micrometers

to millimetres). In a modular architecture the qubits within each node can be

interfaced with classical control and readout electronics using a realistic number of

lithographic layers. Also, the physical space between nodes can be used to house

the classical electronics or to route control lines o↵ from the chip [48]. Pushed

to its extreme, the modular architecture consists of nodes of single qubits [54].

In that case the qubits are spaced far enough that a large part of the electronics

required for control and readout of the qubit (memory, RF signal generation, DC

bias generation) is placed adjacent to it. Geck et al. estimated in ref. [54] that

such classical electronics would necessitate a footprint of about 20 ⇥ 20µm2 per

qubit using state-of-the-art industrial fabrication techniques, putting a lower bound

of about 20µm on the spacing between qubits for this architecture.

To solve the challenge of interfacing the classical electronics with the qubits, it

will most certainly be necessary to place some of the classical electronics inside the

cryostat. This comes with its own challenges because some of the electronic hardware

dissipates heat, and the cooling power of dilution refrigerators is limited [48, 54].

Geck et al. estimate in ref. [54] that a few thousand qubits could be controlled by

classical electronics on-chip at sub-Kelvin temperatures, assuming progress is made

in low-power transistors and using a standard dilution refrigerator. Scaling such

a system to a larger number of qubits will likely require the control electronics to

be placed o↵-chip at a higher temperature stage of the cryostat, as well as further

advances in low power cryogenic classical electronics or even larger cryostats with

much larger cooling powers. An exciting alternative could be the use of qubits

operating at temperatures above 1K [55], where cryostats have much larger cooling

power.

In summary, we have investigated the challenges that the ion trap and condensed

matter platforms face to scale up processors to a point where they can solve useful

problems in a reasonable time using quantum-error correction. Using the example

of Shor’s algorithm, the physical-qubit error rate was shown to be instrumental in

determining the number of physical qubits needed to define an error-protected logical

qubit, and therefore has important repercussion on the processor’s size. Furthermore

the qubit operation speed was identified as another important parameter, with faster

gates enabling faster code execution and allowing the use of algorithms requiring

less qubits.

The advantages and challenges of each platform with regards to scaling up were
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Ion traps Superconducting Semiconductor spin
T2 50 s(*) [4] 70µs(echo) [11] 0.5s (30s) (CPMG)[12]

avg. gate error (1&2 qubit) 10�6 � 10�3 [4, 5] ⇡ 10�3 [14] 10�4 � 10�2 [15, 16]
gate speeds 10� 100µs [4, 5] 10� 100 ns [14] 1� 2µs [15, 16]

qubit footprint ⇡ 50⇥ 50 cm2 [35] ⇡ 1⇥ 1mm2 [14] ⇡ 100⇥ 100 nm2 [15, 16]
Silicon µ-fab. compatibility limited (MEMS approach [43]) compatible fully compatible
co-fab. of control structures limited (laser optics) yes yes

Table 2.3: Scaling-up advantages and disadvantages for three major QC plat-
forms.

then described (in terms of footprint and execution time). They are summarised in

Table 2.3.

Ion-trap quantum processors based on optical operations will likely face chal-

lenges in scaling up the optical control systems. This problem is circumvented by

ion-trap processors based on microwave-mediated operations which however display

very slow two qubit operations [35]. Both optical and microwave-mediated ion-trap

qubit operations are quite slow compared to condensed matter operation, translat-

ing into a lower clock-frequency of the quantum processors. The implementation

of the classical to quantum interfacing is expected to be less of a problem for ion

trap when compared to condensed matter systems, due to the relatively large size

of the ion trap quantum processors3 leaving enough space for large semiconductor

chips in-between. Likewise, heating due to the classical electronics is expected not

be as big of an issue because ion-traps can be operated at room temperature, or at

liquid-nitrogen temperature [35].

For condensed-matter platforms one of the major scale-up challenges consists in

interfacing the quantum and classical hardware [48]. Due to the cryogenic operation

of most condensed-matter qubits, such interfacing will likely require some or most

of the classical electronics to be located inside the cryostat hosting the qubits. The

interfacing can be facilitated by spacing the qubits apart to leave space for some

classical hardware, using long-distance qubit interconnects. The compatibility of

the condensed matter platforms with industrial semiconductor manufacturing tech-

niques, makes them a prime candidate to solve this interfacing challenge. Another

advantage of condensed matter platforms compared to the ion trap platform is the

faster qubit operations that translate into high processor clock frequencies. Oper-

ations in state-of-the-art semiconductor systems are an order of magnitude faster

than in state-of-the-art ion-trap systems, but still two orders of magnitude away

from operations in superconducting systems.

In the remainder of this thesis we focus on the semiconductor spin-qubit platform.

3units cells are at least tens of micrometers [56, 57], but more likely a few millimetres [35]
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In particular, Sect. 3.1 demonstrates that scaling up semiconductor spin qubits can

be facilitated by all electrical control and coupling of the qubits. Advances in this

regard are the focus of this thesis. Chapter 3 investigates electrical driving and

coupling of a spin qubit in a general semiconductor platform, while the remaining

chapters investigated devices based on phosphorus donor placed by STM-lithography

in silicon.

2.2 Donor spin qubits in silicon

2.2.1 Electrons in the silicon crystal

Silicon crystal structure and surface reconstruction

The silicon crystal structure consists of two intertwined face centred cubic (fcc)

lattices separated by a quarter of the width a of the unit cell in each dimension (a =

0.54 nm). Each silicon atom in the crystal is covalently bonded to four equidistant

neighbours in a tetrahedral arrangement (see Fig. 5.9 a). Positions in the fcc cubic

lattice are described by lattice vectorsR, and can be mapped into a reciprocal-lattice

defined through lattice vectors G such that G ·R ⌘ 0 (mod 2⇡).4 Any position K

in reciprocal space can be described by the sum of a vector k closer to the origin

than any point in the reciprocal lattice and a reciprocal lattice vector G. The points

described by all such vectors k defines the first Brillouin zone of the direct lattice

(see Fig. 5.9 b).

The atomically flat surface of the silicon crystal, described by the normal vector

(001) is used in this thesis for patterning of devices using scanning tunnelling mi-

croscope (STM) hydrogen lithography (more details on STM hydrogen lithography

in Sect. 2.3). Each silicon atom at the surface is covalently bonded to two neigh-

bours, one lattice plane below the surface, and therefore possesses two unused bonds

(dangling bonds, see Fig. 2.5 a). The energy of the (001)-surface can be reduced by

a 2 ⇥ 1 surface reconstruction in which every atom on the surface forms a �-bond

with a neighbour to form a pair called a silicon dimer (see Fig. 2.5 b). Each atom

on the slicon(100) surface retains one dangling bond, and forms a ⇡-bond together

with the other dangling bond on the dimer.

4the reciprocal lattice of a fcc lattice is body centred cubic (bcc).
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Figure 2.4: The silicon fcc lattice and its reciprocal lattice a) Unit cell of the silicon
diamond lattice consisting of two fcc lattices shifted by (1/4,1/4,1/4). Each atom is linked
to four neighbours via four covalent bonds forming a tetrahedron (see 5 atoms highlighted
in blue). b) First Brillouin zone of the fcc lattice. Symmetry points are labeled by latin
and greek letters. a is reproduced from [58] and [59].

a) b)

dangling
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Figure 2.5: Silicon(001) 2x1 surface reconstruction. a) Non reconstructed silicon
surface. Each silicon atom at the surface forms two covalent bonds with silicon atoms
below it. The two remaining covalent bonds form dangling bonds at the surface (see
inset). b) 2 ⇥ 1 reconstructed silicon surface. A �-bond is formed between neighbouring
pairs of silicon atoms on the surface called dimers, and lowers the energy of the lattice.
Atoms in the reconstructed surface remains with one dangling bond. The overlap between
the dangling bonds across dimers forms a ⇡-bond. Adapted from [59].
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Silicon band structure and e↵ective-mass theory

Electrons serve as the building block for most of the quantum information process-

ing performed in this thesis. In particular, the spin of electrons is used to encode

information and individual electron hopping on and o↵ atom-based quantum dots

are used for spin readout. The physics of electrons in the silicon crystal can be

well captured by the so-called e↵ective mass approximation, in which the influence

of electrostatic potentials (from gates or donors) is treated as a perturbation to

the physics of non-interacting electrons in the lattice (described by the band struc-

ture). The basic framework of the e↵ective mass theory, which is summarised in the

following section, highlights how silicon nano-structures can be used to shape the

electrostatic potentials experienced by electrons down to the atomic level.

Non-interacting electrons within the periodic potential defined by the nuclei in

the lattice can be described in the basis of the Bloch functions  consisting of a plane

wave with wave vector K and a lattice periodic function uK(r) :  = eıK·ruK(r).

The wave vectorK can take any value, and is usually decomposed into a sum k+nG,

where k is a vector within the first Brillouin zone, G is a unit vector in the reciprocal

crystal lattice and the integer n is called the band index. This decomposition yields

the Bloch functions:

 n,k = eık·run,k(r). (2.2.1)

Without the influence of the crystal, the Bloch functions yield a series of disper-

sion relations for a free electron in the crystal [60]:

En,K =
~2
2me

(k � nG)2. (2.2.2)

Each integer n, yields one dispersion relation within the first Brillouin zone called

an energy band, and the multiple dispersions therefore describe the band structure

of the lattice (within the free-electron model).

The interaction of the electrons with the nuclei in the silicon lattice modifies

this free-electron band structure and introduces an energy gap, within which no

electron state is available (see Fig. 2.6 b). In silicon the energy gap appears between

the fourth and the fifth band. The fourth band is called the valence band and has

a maximum Evb at the origin � of the first Brillouin zone, while the fifth band

is called the conduction band and has 6 equivalent minima Ecb near the X point

of the first Brillouin zone (and equivalent positions). The first four bands describe

electrons participating in the covalent bonds between nuclei (each silicon atom forms

four covalent bonds). In a pure silicon crystal no additional electron can freely
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Figure 2.6: Silicon band structure. a) First Brillouin zone of the silicon crystal lattice
(fcc). Significant symmetry points are labelled. b) Band structure of silicon along signif-
icant symmetry lines of the first Brillouin zone. A band gap of about 1.1 eV is opened
between the valence band maximum at � and the conduction band minima (near X). c)
The energy of an electron near any of the six equivalent conduction band minima can be
represented by equipotential surfaces in the shape of ellipsoids. Each of theses surface
represents one of the six valleys in the band structure of silicon. Reproduced and adapted
from [62, 63].

circulate through the crystal and the four first bands are fully occupied (disregarding

thermal occupation). Electrons that are introduced to the crystal with a chemical

potential at or above the conduction band edge (through thermal activation, doping,

electrostatic gating) are not involved in the covalent bonds of the crystal and can

therefore participate in electric conduction.

The 6 potential wells at the conduction band minimum are called valleys and

are centred around the symmetric positions ±k0k̂i i = x, y, z (see Fig. 2.6 c) which

can be approximated by a parabolic dispersion. For the kx valley for example, the

dispersion can be approximated by [61]:

E = Ecb +
~2
2mL

(kx � k0)
2 +

~2
2mT

(k2
y
+ k2

z
), (2.2.3)

where the coe�cient mL ⇡ 0.98me and mT ⇡ 0.19me are called the longitudinal

and transverse e↵ective mass of the electron. The same dispersion relation holds

for the other valleys (with the appropriate change in indices and sign of k0). This

dispersion relation of Eq. 2.2.3 is that of the free electron, with modified masses

along the principe axes of each valley.

In silicon nano-structures, the description of the electron motion (and dispersion)

is more complicated because the electron is subjected to electric and magnetic fields.

Nonetheless, the electron’s wavefunction can be expressed as a wave packet of Bloch
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functions  n,k. For weak enough electric and magnetic fields this wave packet can

be approximated near each of the 6 conduction-band minima (n = nc, k = k(i), i =

1, . . . , 6) by the lattice periodic Bloch function u at the band minimum and an

envelope function F :

 (i)(r) = F (i)(r)unc,k
(i)(r). (2.2.4)

In crystals with a single valley at the �-point (such as GaAs and InAs), the

envelope function for a conduction electron at the conduction band minimum is well

described by the Schrödinger equation describing an electron in free space, with the

e↵ect of the lattice only being captured by the electron e↵ective mass and e↵ective

g-factor at the band minimum. This is called the e↵ective mass approximation [60].

In crystals with multiple valleys (e.g. Silicon and Germanium), the electron’s

wavefunction has to be approximated by a superposition of Bloch functions at the

di↵erent valleys and the e↵ective mass approximation is more complex. The per-

turbation introduced by a donor in the lattice can still be described by a simple

e↵ective mass approximation analogous to that for a single minimum at �. Indeed,

the 6 envelope functions F (i)(r) satisfy a Schrödinger equation where the e↵ect of

the lattice is simply captured by the e↵ective masses mT and mL [61].

The e↵ective mass approximation is so useful and powerful that the lattice-

periodic part of the electron wavefunction in semiconductor nano-structures is often

neglected for convenience, and the envelope function F is referred to as the electron

wave function. We will use this convention in the following sections and chapters,

unless explicitly specified.

The sophisticated manufacturing technology of the semiconductor industry al-

lows tailoring of the electric potential felt by the electron’s envelope function over the

scales of nanometers.The e↵ective mass approximation allows treating an electron

within these potentials as if it were in vacuum, with only a change of the electron’s

mass. Technologies that produce electric potentials in free space, for example in ion

or atom traps, have not nearly reached the degree of control and miniaturisation

of semiconductor nano-structures. In the new “2 nm” transistor generation from

IBM for example, the conduction channel of the field e↵ect transistors consists in

3 “nano-sheets”, 12 nm long, 5 nm high, and 40 nm wide, entirely surrounded by

metallic gates (see Fig. 2.7 a). Producing such small potential wells in free space

would be excruciatingly di�cult. On even smaller length scales, the precision place-

ment of donors through STM hydrogen lithography allows the formation of a three

dimensional electric potential that confines the electron wavefunction over a radius

of only a few nanometers (the Bohr radii vary from 0.5 to a few nm depending on
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Figure 2.7: A comparison of state-of-the-art silicon nano-fabrication with IBM
2nm FinFETs and precision donors patterned by STM a) “2 nm”-node field e↵ect
transistor from IBM manufactured using extreme ultraviolet lithography. The conduction
channel consists in three silicon “nano-sheets” (in blue). All-around metallic gates allow a
high degree of control of the electric potential within the channels, and an e�cient pinch-
o↵ of the conduction channel through gate voltages. The inset shows the source and drain
contacts of the transistor and channel length of 12 nm. Adapted from newsroom.IBM.com.
b) A three-qubit device manufactured using precision placement of donors through STM
lithography, and measured in this thesis. The bright yellow regions correspond to regions
where phosphorus donors are placed. The inset shows the tight confinement potential in
the right-most qubit defined by two phosphorus donors (2P). Inset reproduced from [64].
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the donor number and electron shell filling [65]) (see Fig. 2.7 b). In the following

section, the electron and nuclear spin in donors are introduced as a very attractive

platform for quantum computation.

2.2.2 Atomically precise donor devices

Phosphorus donors in silicon provide an attractive platform for hosting qubits.

When a silicon atom in the lattice is replaced by a phosphorus atom containing

on additional proton, it produces a Coulomb potential that can host a single elec-

tron in a very tightly confined hydrogen-like wavefunction with a Bohr radius of

2nm.5 The spin of such a donor-confined electron encodes a very robust two level

system, and has demonstrated lifetimes of up to 50min at 0.32T and temperatures

of 1.25K as early as 1959 in electron nuclear double resonance (ENDOR) experi-

ments by Feher and coworkers [68]. In the same experiment, the nuclear spin 1/2 of

the phosphorus dopant in silicon was found to be even longer-lived with relaxation

times longer than 10 h under similar conditions. These experiments were performed

in macroscopic silicon samples uniformly doped with phosphorus donors (bulk dop-

ing), with electron and nuclear spin resonance performed on a large ensemble of

theses donors using macroscopic microwave cavities and radio-frequency coils (bulk

ESR and bulk NMR).

With the conceptual emergence of the quantum computer in the 1980s [69],

followed in the 1990 by the discovery of algorithms with a quantum advantage [28,

70], and of quantum error correction algorithms [1, 3, 71, 72, 73], the long relaxation

time of the electron and nuclear spins of phosphorus donors in silicon made them

as very attractive candidate for long-lived solid-state qubits [74].

The electron and nuclear spin on phosphorus donors in silicon was further con-

firmed as a frontrunner for a solid state qubit when bulk-ESR and NMR measure-

ments revealed long spin coherence times in isotopically purified 28Si [75, 76, 77, 78].

Isotopically purified 28Si contains almost none of the magnetic isotope 29Si (I = 1/2),

which is known to produce fluctuating magnetic fields [79] and promotes spin de-

coherence [80]. The experiments demonstrated coherence times T2 = 10 s and 180 s

for the electron [77] and nuclear [78] spin on phosphorus donors, at a temperature

of 1.8K and magnetic fields of 350mT and 85mT respectively.6

The lifetimes and coherence times of the electron and nuclear spin on a single

5This is according taking a geometric average [66] of the transverse and longitudinal Bohr radii
in [67]

6The electron spin coherence times are measured in [77] using a spin echo sequence, and the
nuclear spin coherence time in [78] using a 16-pulse dynamical decoupling sequence.
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donor were not measured until the early 2010s [80, 13], due to the formidable chal-

lenge of manufacturing a device with a single donor and the infrastructure to control

it and read it out. Measurement on single donor devices yielded electron(nuclear)

relaxation times of 6 (65) s and coherence times of 0.5 (30)s[12, 13],7 approaching

that of the lifetimes and coherence times of trapped ion qubits in vacuum.

The manufacturing of single phosphorus donor devices can be split into a “top-

down” and a “bottom-up” approach. The top-down approach relies on the im-

plantation of phosphorus donors using beams of high-energy ( 15keV) phosphorus

ions that implant into the crystal and scatter within it. A short thermal anneal is

used to activate the donor and repair the damage made to the crystal. However,

this can lead to deactivation of the donor as it likes to travel back up the implant

pathway to the Si-SiO2 interface. As a consequence a low area implant is prepared

with 100s of donors to prevent this pathway and end up with some activated donors

within the active region of the device. Aluminium gates are then lithographically

patterned on the surface by electron beam lithography (EBL) [81, 82]. At cryogenic

temperatures the gates can electrostatically induce an electron gas at the interface

between the silicon and a high quality thermal oxide. The entire process is com-

patible with processes developed by the semiconductor industry, and the materials

are strictly CMOS compatible. However, the scattering process of the ion during

implantation is non-deterministic and leads to an uncertainty of 10 nm in its lateral

position when implanted at a depth of 20 nm (14 keV ions) [83, 84]. This uncertainty

makes the reliable manufacturing of exchange-coupled donors challenging using ion-

implantation because the exchange interaction is very sensitive to displacement of

only few nanometers [85, 86]. With a state-of-the-art lateral uncertainty of 10 nm,

the probability of reaching a large enough coupling between a ion-implanted donor

pair (tc > 0.1meV) has been estimated to be only 20% [87]. The non-deterministic

manufacturing of exchange-coupled donors is a significant drawback for the top-down

approach because the exchange coupling is the principle way in which two-qubit

gates have been proposed and realised [88, 89, 90, 85]. Methods of coupling ion-

implanted donor qubits that do not rely on the exchange interaction have recently

been proposed [91]. If this coupling can be achieved without destroying qubit co-

herence then the top-down approach remains a competitive platform for large-scale

quantum computation.

The bottom-up approach relies on the atomically precise placement of phospho-

rus donor within the silicon lattice. This is currently achieved using a scanning

7All but the nuclear spin lifetime were measured in isotopically purified silicon (800ppm
29Si)[12].
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tunnelling microscope (STM) to perform lithography on a silicon surface passivated

with a hydrogen mask. With STM lithography, a single donor placement accuracy

of ±1 lattice site (±0.38 nm) has been achieved [92], allowing for less than one order

of magnitude variations in the exchange interaction between two donors just placed

12 nm apart [86]. The reliable manufacturing of exchange coupled donor-pairs is

therefore considered realistic using the bottom-up approach but not so using the

top-down one [93, 87]. The atomically precise patterning method enabled the first

demonstration of an exchange mediated two-qubit SWAP gate between two electron

spins in phosphorus donor quantum dots [85].

STM-hydrogen lithography has been used to fabricate a variety of high preci-

sion atomic-scale devices ranging from 0D structures such as single-donor quantum

dots [92, 94, 95, 96] and multi-donor donor quantum dots [97, 94, 98, 96], 1D struc-

tures such as atomically thin wires [99], 2D structures such as single electron tran-

sistors used to perform high fidelity spin-readout [94, 19] and even three dimensional

all-epitaxial structures such as a 3D single electron transistor [100].

The possibility of patterning donor molecules with more than one donor is an im-

portant feature of the bottom-up approach using STM-hydrogen lithography. Multi-

donor quantum dots allow for increased electron spin relaxation times [65, 101],

increased electrostatic tunability of the exchange coupling [64], and addressability

of the donor quantum dots in electron spin resonance (ESR) experiments [95, 97].

Further advantages of engineering the number of donors in multi-donor quantum

dots are at the heart of this thesis, such as the ability to reduce decoherence in

an electrically driven donor-based qubit proposed in Chapter 4, and the increased

electrostatic tunability of multi-quantum dot charge states in Chapter 5.

2.3 Atomic-scale device manufacturing

The devices investigated in this thesis are fabricated by performing hydrogen lithog-

raphy with a scanning tunnelling microscope (STM-HL). The technique allows the

placement of substitutional phosphorus dopants at the silicon surface with a preci-

sion of±1 lattice sites (±0.38 nm) [92]. The technique can also be used for patterning

larger two-dimensional highly-doped structures such as charge sensors, electrostatic

gates, and leads.

The scanning tunnelling microscope (STM) was invented by Binning and Rohrer

at IBM in 1982 [102, 103], and is traditionally used to capture images of surfaces

with atomic precision. The microscope relies on an atomically sharp and conductive
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tip
Figure 2.8: Scanning tunnelling microscope. A schematic of the STM showing the
piezodrive PX and PY that allows the metal tip to scan across the surface. The control unit
(CU) detects the current JT and applies a voltage VP , which in turn controls the z-axis
piezodrive PZ in a feedback loop that ensures a constant tunnel current JT is maintained
at constant tunnel voltage VT . The topography of the surface can be inferred directly from
the applied voltages to PX , PY , and PZ for constant work function. Alternatively, the
work function can be measured by modulating the tunnel distance s by �s. The broken
line illustrates the z-axis displacement of the tip as it scans over a surface step (A) and a
contamination spot (B,C), which is a region with lower work function. Reproduced from
[102].

tip being brought in such close proximity with a surface that electrons can tun-

nel across the vacuum barrier between the two, when they are held at a non-zero

voltage bias. The tunnelling current is fixed by controlling the distance between

the tip and the surface using piezoelectric actuators. The displacement of the tip

when scanned across the surface is then used to construct a topographic map of the

surface (see Fig. 2.8). The STM was soon used not only to image surfaces, but also

to interact with them [104, 105, 106]. Eigler and coworkers notably demonstrated

the manipulation of single atoms [104] or molecules [105] to form atomically precise

patterns on surfaces. STM hydrogen lithography was first demonstrated by Lyding

et al. to perform the atomically precise oxidation of a 2 ⇥ 1-reconstructed Si(100)

surface [106]. The silicon surface, held in ultra high vacuum (UHV), was first pas-

sivated with a monoatomic layer of hydrogen. The hydrogen acts as a mask that

protects the surface from interacting with molecules in the vacuum. The STM tip

was then used to selectively desorb the hydrogen along lines of 1 nm width using

voltage pulses. The bare areas of silicon were then oxidised by introducing oxygen

into the vacuum chamber.

By introducing phosphine gas(PH3) instead of oxygen, and performing a thermal

annealing step at 350�C, the technique of hydrogen lithography was later used to
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Figure 2.9: Placement of a single phosphorus dopant into the silicon lattice with
atomic precision. Three dimers on the silicon surface have been desorbed of hydrogen
using the STM tip (I). Phosphine (PH3 ) is introduced to the vacuum chamber and a
PH3 molecule adsorbs to each dimer. It forms a PH2 adsorbate by transferring one of
its hydrogen atoms across the dimer (II). The sample is then heated to 350�C, triggering
a series of chemical reactions on the surface (III-VI). First, a PH2 adsorbate transfers
to the central dimer where it forms a PH species bonded to both silicon atoms of the
dimer (IV). A hydrogen atom is left over at its prior position and a phosphine molecule
is released to the vacuum. The central PH molecule then transfers one of its two bonds
to the upper dimer, leaving another hydrogen atom on the dimer and releasing another
phosphine molecule to the vacuum (V). Finally, the phosphorus atom incorporates into
the surface. The phosphorus atom substitutes with a silicon atom on the central dimer,
which is ejected onto the surface (Ej. Si). Adapted from [92].

selectively place phosphorus dopants into the silicon lattice [107]. By desorbing only

three silicon dimers (area of 0.38⇥ 0.77nm2), Schofield demonstrated the ability to

place single phosphorus dopants into the silicon surface, with a lateral precision

well below 1 nm. After introducing phosphine to the chamber, phosphine molecules

(PH3) attach to the bare silicon atoms in the desorbed dimers in the form of PH2

adsorbates. Saturation dosing allows every bare dimer to be covered with a PH2

molecule and a hydrogen atom. When heating the sample at 350�C (incorporation

step), the PH2 molecules attached to the surface undergo further dissociation, first

into PH, then P and finally the phosphorus atom switches place with a silicon

atom in the surface. This series of chemical reactions is depicted in Fig. 2.9 for a

set of three bare silicon dimers that have had their hydrogen mask removed. For

such a lithographic patch size it was shown that only a single phosphorus donor can

incorporate into the lattice. The temperature during incorporation is low enough (<

350�C) that the hydrogen mask stays in place, allowing for further lithographic steps

to be performed. When areas larger than three dimers are desorbed of their hydrogen

mask, additional donors can be incorporated to form multi-donor quantum dots,

electrostatic control gates and even large conductive leads. Electrical measurement
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2) Cleaning and !attening

1) Silicon wafer

6) Incorporation (350ºC)

7) Encapsulation (250ºC)

8) Via manufacturing

3) H-Termination (350ºC)

4) H-lithography

5) PH3Dosing
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Figure 2.10: Device fabrication using STM-hydrogen lithography. The device
fabrication steps are described as follows, (1) silicon wafer, (2) cleaning and flattening of
the silicon surface, (3) the hydrogen termination of the surface, (4) hydrogen lithography,
(5) Phosphine dosing, (6) incorporation, (7) silicon encapsulation, and (8) post processing
by electrical contacting of the buried dopants. Adapted from [109].

of the electron densities in such large areas have shown that one in every four

atoms on the surface is replaced by a phosphorus dopant after saturation doping

and incorporation at 350�C [108].

Hydrogen lithography and incorporation is only one of the steps in the atomic-

scale fabrication of devices using STM hydrogen lithography. The device fabrication

notably involves cleaning and flattening of the silicon surface, the hydrogen termi-

nation of the surface, hydrogen lithography and incorporation as just discussed,

followed by silicon encapsulation, and finally by electrical contacting of the buried

dopants. These steps are summarised in Fig. 2.10, and will be discussed in more

details in the following sections.
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2.3.1 Surface preparation

The fabrication of donor-based devices using STM hydrogen lithography starts with

a 2” lightly boron-doped silicon wafer grown through the Czochralski method. The

wafer has a resistivity of less than 10⌦ cm and is cut along the (100) plane with a

thickness of 300 µm. The doping ensures the sample is conductive at room temper-

ature to allow operation of the STM. The doping density is low enough that it is

unlikely for the device to be patterned near a boron acceptor.8

Registration marker fabrication

First, registration markers are patterned on the silicon surface. The markers are

required to locate the device after STM lithography, and need to be UHV compatible

as well as resistant to the high temperature (up to 1100 �C) required for the surface

preparation. Registration markers are therefore wet-etched into the surface using

a solution of tetra methyl ammonium hydroxide (TMAH) and a mask of furnace

grown silicon dioxide (grown in-house). The silicon oxide mask is defined using

a standard electron beam lithography (EBL) protocol9 and etched using bu↵ered

hydrofluoric acid (BHF). The fabrication process for the STM registration markers

is outlined below (see Fig. 2.11):

• The oxidised wafer is cleaved into 20mm⇥10mm squares using a diamond-tip

scribing tool. This yields 8 samples of 2.5mm⇥ 10mm.

• A 200 nm layer of PMMA resist is spun and baked onto the sample, and the

marker pattern is written onto the resist using an EBL tool, and developed

using MIBK (methyl isobutyl ketone) (see Fig. 2.11 1)).

• The furnace-grown oxide mask is etched away in the developed areas using

bu↵ered hydrofluoric acid (see Fig. 2.11 2)) and rinsed in de-ionised (DI) wa-

ter.10

• The PMMA is removed from the sample, using an acetone bath, and is fol-

lowed by anisopropyl alcohol (IPA) rinse. Remaining organic contaminants are

removed using a standard SP solution (3:1 Sulphuric acid:Hydrogen peroxide),

and rinsed in DI water.
8A resistivity of 5-10⌦ cm corresponds to a boron density of 1.8⇥ 1015 cm3, yielding a 2%

chance only to find a Boron dopant tunnel-coupled to a donor within a sphere of 20 nm radius.
9Spinning of the polymethyl methacrylate resist (PMMA), baking on a hotplate, electron beam

exposure using a scanning electron microscope and developing.
10DI water of resistivity larger than 18M⌦.
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Figure 2.11: STM registration marker fabrication. A silicon dioxide mask is fabri-
cated using EBL on PMMA resist (1), and wet etching the oxide using bu↵ered hydrofluoric
acid (BHF) in (2). The resist is then removed and the TMAH is used to selectively etch
the silicon, and not the silicon dioxide mask (3).

• The thin layer of native silicon oxide that has grown within the trenches etched

in the furnace-grown oxide is removed using a short 10 s hydrofluoric acid etch

(10% concentration).

• Immediately after, the silicon markers are etched for 60min in the TMAH

solution (25%), yielding an etch depth of about 300 nm (see Fig. 2.11 3) and

4)). The sample is then rinsed in DI water and blow-dried with nitrogen.

• Finally the sample is cleaved into 8 samples of 2.5mm ⇥ 10mm, that are

compatible with the sample holders used to load sample into the STM.

Silicon full-clean

Once the markers have been etched into the silicon, the samples are thoroughly

cleaned to remove any contaminants. This is essential because contaminants can

disrupt many of the following UHV fabrication processes (including surface recon-

struction, lithography and silicon overgrowth). The silicon full clean used in this

thesis is a standard process for semiconductor manufacturing. The steps are outlined

below:
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• First the furnace-grown oxide remaining from the marker fabrication is etched

away using a 20% diluted bu↵ered hydrofluoric acid etch. The etch is complete

when the surface turns hydrophobic. The sample is then rinsed in DI water

(3min overflow rinse).

• Organic contaminants are removed by plunging the sample in a solution of SP

(3 parts sulphuric acid,1 part hydrogen peroxide) for 8min.

• The sample is thoroughly rinsed in DI water (8min overflow rinse).

• The native oxide grown during the SP clean is removed by dipping the sample

in an ultra clean hydrofluoric acid solution (10% diluted). The sample is then

rinsed for 5 minutes in DI water (overflow rinse).

• Metallic contaminants are removed from the sample by immersing it in a

RCA-2 solution (6 parts DI water, 1 part hydrochloric acid, 1 part hydrogen

peroxide) held at 80 �C on a hot plate for 8 minutes.

• The sample is rinsed in DI water for 5 minutes (overflow rinse)

• Finally the sample is blow-dried with high purity nitrogen and carefully loaded

in the STM sample holders.

• The sample, held in the sample holder is promptly transported within a ni-

trogen environment to the STM load-lock (to prevent oxidation and contami-

nation), and the load lock is immediately pumped down to prevent excessive

sample oxidation.

UHV surface preparation

After being loaded into the UHV system with base pressure below 1⇥ 10�11mbar,

the sample and the sample holder are outgassed at 350 �C using a resistive heater

to remove contaminants such as water (for about 12 hours). The sample is then out-

gassed further by heating it for two hours at 480 �C using a direct current passing

through the sample. The temperature is monitored from outside the UHV chamber

using a Impac 8 Pro Series pyrometer, inferring the temperature from the character-

istic infrared radiation emitted by the sample. Finally, the sample undergoes a series

of high temperature annealing steps that remove any native oxide that has grown

on the surface after the full-clean, sublimate remaining contaminants on the surface

and flatten the surface. The procedure consists in three 20 s anneals at 1120 �C,
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separated by 2min at which the sample is allowed to cool down to 400 �C. A final

6 s anneal at 1120 �C is followed by a hold at 800 �C, and followed by a controlled

cool-down of the sample at a rate of about 4.7 �C s�1 (280 �Cmin�1) until the sample

reaches 350 �C. The final anneal and the controlled cool-down produces a low-defect

2 ⇥ 1 surface reconstruction of the silicon (100) surface. Immediately after the an-

neals, the surface is terminated with a monolayer of monoatomic hydrogen that will

serve as the mask for the STM lithography. To achieve this, a collimated beam of

monoatomic hydrogen is directed towards the silicon surface held at 350 �C. The

hydrogen atoms adsorb to the surface and thanks to the thermal energy provided

by the heating, they rearrange to from a full coverage. The beam of monoatomic

hydrogen gas is produced by a cracker in which di-hydrogen molecules are thermally

dissociated into hydrogen atoms using a filament resistively heated to 1350 �C. Af-

ter 5 minutes at a chamber pressure of 5⇥ 10�7mbar, the hydrogen supply is closed

o↵, the cracker filament is cooled-down, and the sample is finally left to cool down

to room temperature.

After the hydrogen termination the surface is inspected for defects in the STM.

A high-speed scan over areas of 15 µm⇥15 µm is taken near the registration markers

to verify the absence of large contaminants, pinning the formation of silicon step

edges. The surface is then imaged more closely 50 nm⇥50 nm, to verify a successful

surface reconstruction with a low amount of vacancy defects (missing silicon atoms

and dimers at the surface) and a successful hydrogen termination with a low amount

of dangling bonds. Our surface preparation reliably yield vacancy densities below 5

per 25 nm⇥ 25 nm and dangling bond densities below 2 per 25 nm⇥ 25 nm.

2.3.2 Hydrogen lithography and encapsulation

After surface preparation, the device is patterned using voltage pulses on the STM

tip that locally desorb the hydrogen mask. The hydrogen desorption can occur

in two di↵erent regimes [110, 111]. For high voltages applied between the tip and

the surface (6-7 V), electrons can be field-emitted from the tip and have enough

energy to break silicon-hydrogen bonds where they impinge on the surface. Typical

current set-points of 4�8 nA desorb areas of several tens of nanometers at once, with

the STM tip being held a few nanometers form the surface. This allows reliable,

high-speed desorption of large structures, with STM tip speeds exceeding 3 µms�1

and area desorption at a speed of 0.2 µm2/min. A second regime of desorption

at lower voltages (2.5 � 3.5V) and higher current set-points (10 � 20 nA) allows

desorption of only a few dangling bonds at a time. In that regime, electrons that
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tunnel between the tip and the surface can excite vibrational modes of the silicon-

hydrogen bond. If the tunnelling current is high enough, the energy that is injected

to the bond within the lifetime of the vibration may overcome the energy barrier

to desorption (3 eV [110]). The long lifetime of the vibration in silicon (10 ns in

silicon (100)) as opposed to metals (⇡ 1 ps) [110], allows for desorption to occur

with high probability for currents as low as a few nA. Atomic precision desorption

in this vibrational regime is only possible for atomically-sharp STM tips.

Extensive work goes into preparing and conditioning atomically-sharp STM tip.

For the devices presented in this thesis, the tips are etched out of ⇡ 500 µm-thick

tungsten wires using electrolysis in a potassium hydroxide solution (0.1 g of KOH

per mL). The tungsten filament is held in the solution, and a voltage of about

7V is applied between the tip and a platinum/iridium electrode. The etch-rate

is fastest near the meniscus formed at interface of the tungsten filament and the

surface of the solution because products of the electrolysis fall down the side of the

filament, reducing the etch rate below the meniscus. After a few minutes, the part

of the wire near the meniscus is thin enough that it tears under the weight of the

immersed part of the filament. This event is detected from a sudden drop in the

electrolysis current, upon which the process is stopped. Under the right conditions,

this procedure yields atomically sharp tips. These tips are loaded into the UHV

system using dedicated holders, and are also thermally outgassed before being used

in the STM. In most cases the tip needs to be conditioned further within the STM,

to remove oxide layers and sharpen it using voltage pulses (3.5� 7V at 10� 20 nA

set point). In some cases, the tip is further conditioned using controlled collisions

with the surface synchronised with voltage pulses.

Once the tip is conditioned so that it can desorb hydrogen bonds with atomic

precision (in the vibrational mode), the inner-most part of the device containing the

single or multi-donor quantum dots is patterned (see Fig. 2.12 a). Once the desired

desorption pattern has been written, phosphine is introduced to the UHV system at

to reach a steady chamber pressure of 2⇥ 10�7mbar for 2 minutes. The arrangement

of phosphine adsorbates species (PHx) within the lithographic patches is then imaged

to verify that the quantum dot will host the desired number of phosphorus donors

after the incorporation anneal with high probability (see Fig. 2.12 b), more details

in [112]). If this is the case, the charge sensor and gate structures are patterned (still

in vibrational lithography mode), the dimensions of the charge sensor are verified

to be up to standard, and if so, the sample is saturation dosed with phosphine dose

again using the same procedure.
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Figure 2.12: Atomic scale STM hydrogen lithography and phosphine dosing.
a) STM image of the hydrogen terminated silicon (100) surface after desorption of three
small patches that will host donor quantum dots (QD) and an electron reservoir (lead)
at the bottom. The terminated surface appears dark orange while the areas where the
hydrogen mask has been desorbed appear yellow. Dangling bonds therefore also appear
yellow, while silicon dimer vacancies appear black. b) After phosphine dosing, phosphine
species have adsorbed to the bare silicon inside the lithographic areas (dangling bonds do
not absorb any phosphine species). PH2 species are visible as asymmetric features on the
silicon dimer which are wider and brighter than dangling bonds, while PH species appear
brighter than any other feature and are centred across the silicon atoms of the dimer.
We observe that the right hand dot hosts exactly three PH2 species in a zig-zag pattern
designed to host a single donor after the incorporation anneal.
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In the final step of hydrogen lithography, long leads and contacts pads (0.8 ⇥
1 µm2) are patterned using field-emission mode lithography and the sample is sat-

uration dosed a final time (same procedure as above). The pads will be contacted

electrically using metallic vias in a later step.

Once the lithography is finalised, the phosphine species that have adsorbed

within the desorbed silicon areas are incorporated into the silicon surface using

a 1 minute anneal at 335 �C. The anneal is performed using direct sample heating

and the temperature is monitored using the pyrometer. After a minute the sam-

ple temperature is adjusted to 250 �C and the surface is encapsulated with at least

40 nm of silicon at a growth rate of 0.14 nm/min (about one silicon monolaye (ML)

per minute). The growth rate and temperature have been optimised to produce a

defect free epitaxial growth for at least 20 nm[113], and full electrical activation of

the dopants [114]. The full activation of dopants was inferred from measured phos-

phorus sheet densities matching the measured electron sheet densities [108, 114].

The silicon source used for the growth process is an MBE Komponenten silicon sub-

limation source, that heats a solid filament of silicon to temperatures above 1000 �C

at which silicon atoms sublimate from the surface. The silicon encapsulation is the

final step of the UHV processing steps. The remaining fabrication steps used stan-

dard cleanroom processing tools to make electrical contact with the buried dopant

layer.

Note that the all UHV components that are heated in the fabrication process

are outgassed several hours in advance, in the absence of the sample, to minimise

contamination of the sample in the later stages (this includes manipulators, the

hydrogen cracker and the silicon sublimation source).

2.3.3 Clean-room processing

Manufacturing of electrical vias

Electrical measurement of the sample is reliant on making contact to the dopant,

buried 40-50 nm below the silicon surface, using metallic vias. These vias are fab-

ricated by first etching circular pits of 150 nm diameter to a depth of 60-70 nm,

exceeding the depth of the dopant layer. Aluminium is then deposited onto the

surface to form leads that fill the pits and contact the dopants on its circumference.

This part of the fabrication process is performed in a cleanroom environment to

prevent contamination of the surfaces.

The cleanroom processing starts by determining the precise position of the buried
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dopants using the registration markers etched into the silicon before the STM lithog-

raphy stage. The sample is then coated with 350 nm of PMMA resist, and circular

openings of 150 nm diameter are written into it using electron beam lithography at

the position of the buried phosphorus contact pads (see Fig. 2.13 a) 1)). The pat-

tern is developed in MIBK, rinsed in IPA, and a short 2 minute oxygen plasma ash

(50W, 340mTorr) is performed in a Denton plasma asher in order to remove any

residual resist within the developed areas. Then, the holes are etched in a Oxford

reactive ion etching (RIE) tool, using a CHF3 : CF4 plasma at a power of 150W

and a pressure of 100mTorr (see Fig. 2.13 b) 2)). The PMMA is then removed in

an ultrasonic acetone bath. To remove any possible contaminants within the holes

that could prevent a good electrical contact with the metal to be evaporated, the

sample is further cleaned using a oxygen plasma ash (same procedure as above), and

a silicon SP-clean (see Sect. 2.3.1).

Immediately after, the fabrication of the electrical contacts starts. The lead

pattern that connects the holes to large bond pads is written into a PMMA mask

using EBL lithography (as described above). Before metallisation, a short oxygen

ash is performed to remove residual resist, and the sample is dipped in bu↵ered

hydrofluoric acid (1:15) to remove any native oxide that has grown inside the holes

and could prevent electrical contact between the metal and the dopants. Immedi-

ately after, a 100 nm thick layer of aluminium is evaporated into the sample using a

Lesker electron-beam evaporator, with a deposition rate of 10 Å s�1 (see Fig. 2.13 a)

3)). Lift-o↵ of the metal evaporated on top of the PMMA mask is performed by im-

mersing the sample into a solution of n-methyl-pyrrolidone (NMP) heated to 80 �C

for one hour, This is followed by short ultrasonic bath in acetone, and a rinse in

IPA. This concludes the fabrication of the electrical contacts (see Fig. 2.13 a) 4) ).

A cross-sectional SEM image of the metallised holes reveals the slope in the

side-walls which allows good adhesion of the metal near the phosphorus delta-layer

(see Fig. 2.13 b)).

Alignment of a surface ESR antenna

The antenna, used for electron spin resonance experiments, is fabricated with alu-

minium in a process similar to that used for the patterning of the metallic leads.

Aluminium markers patterned together with the leads in the previous step serve as

alignment markers. They allow the placement of the antenna with respect to the

quantum dots with a precision of ⇡ 300 nm. The antenna pattern is written into a

PMMA mask using EBL and developed using MIBK. A short oxygen plasma ash re-
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Figure 2.13: Device fabrication of electrical contact and antenna. a) Process
flow for the fabrication of electrical vias. (1) Electron beam lithography (EBL): circular
openings are defined within PMMA resist using an electron beam. After developing in
MIBK, the sample is subjected to a CHF3/CF4 plasma inside an reactive ion etching (RIE)
machine (2). The plasma etches the silicon within the exposed areas. A further EBL step
(similar to (1)) defines a PMMA mask for the metallic contacts. Then the sample is
metallised with aluminium (3) inside an electron-beam evaporator. Finally the metallic
areas on top of the resist are removed (lift-o↵), and the metallic contact fabrication is
finalised. b) Cross-sectional SEM image of one hole after the process in a) is finalised.
The hole profile is smooth and sloped. It allows good contact between the phosphorus
doped �-layer (indicated in red) and the aluminium (light areas). c) SEM image of the
inner part of a device. The buried phosphorus-doped areas are depicted in red. The inner
part of the device (quantum dots, gates and charge sensor) are positioned at the centre
of the image (white circle). Long phosphorus-doped leads extend to the phosphorus-
doped contact pads. Holes (circles) have been etched below the buried contact pads, and
aluminium leads have been defined above using EBL (green areas). Finally an aluminium
antenna has been precisely positioned near the device (bottom green areas). The antenna
bridge is 100 nm wide (see inset), and produces oscillating magnetic fields to the drive the
electron spins on the donor quantum dots.
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moves the remaining resist and contaminants in the developed areas and the metal is

evaporated using the Lesker electron-beam evaporator to a thickness of 100 nm and

at a rate of 2 Å s�1. The lift-o↵ is then performed in NMP in a similar manner to the

metallic leads. The sample is then diced into a size of approximately 2.5mm⇥5mm,

leaving a clearance of only 150µm at the edge of the antenna waveguide to reduce

the length of the bonds to the antenna and improve microwave transmission. The fi-

nal step in the processing involves gluing the sample onto our custom printed circuit

board (PCB) and bonding it using an aluminium wedge bonder.

Figure 2.13 c) ) displays a SEM image of the inner part of the device, showing the

entire buried phosphorus areas, the holes etched through RIE, the metallic leads used

for electrostatic control and measurement, and the antenna used for manipulation

of the electron spin on the phosphorus donor quantum dots.

2.4 Cryogenic measurements

Devices are first tested at a temperature of 4.2K by immersing them in liquid he-

lium. This measurement step is used to screen devices before measurement at lower

temperatures in a dilution refrigerator. The screening step in liquid helium tests

the electrical contacts, measures the sheet density of phosphorus doped regions and

verifies the functionality of the charge sensor and the presence of quantum dot tran-

sitions. If a device passes this screening at 4.2K, it is then transferred to a dilution

refrigerator whose base temperatures of about 50mK allows the investigation of

spin-physics. Dilution refrigerators rely on a mixture of 3He and 4He isotope that

separate into a 3He-rich and a 3He-poor phase below 1K, mostly comprised of 4He.

The mixture absorbs heat when 3He isotopes cross from 3He-rich to the 3He-poor

phase. The dilution refrigerator uses an elaborate circuit that provides continuous

cooling power at temperatures below 50mK by extracting gaseous 3He from the
3He-poor phase and supplying it in liquid form to the 3He-rich phase. This complex

circuit is mostly held below liquid helium temperature, either through immersion

in liquid 4He (wet-fridge) or through a pulse tube cooler that can operate without

cryogenic liquids (dry fridge). The data presented in Chapter 5 was measured in two

di↵erent 3He/4He dilution refrigerator, an Oxford Kelvinox K100 wet fridge and a

Leiden dry fridge. In the following, the measurement setup used in both experiments

is presented (small variations in the setups are omitted).

The single electron transistor (SET) that acts as a charge sensor is operated

using either direct currents (DC) and radio frequency (RF) voltages (time-resolved
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experiments are mostly performed using RF operation, due to the larger measure-

ment bandwidth). The combined setup is presented in Fig. 2.14. For both DC and

RF readout, a voltage is applied to the source contact of the SET using a battery

powered Stanford Research Systems (SRS) SIM928 module. The voltage creates a

current that traverses the SET from source to drain. Right after the voltage source,

the voltage is reduced using a 50:1 voltage divider to increase the voltage resolution

and reduce the electrical noise transmitted from the instrument to the device. The

electrical current then enters the fridge and reaches the low temperature stages us-

ing twisted pairs of copper wires (loom wire). A custom11 two- stage RC filter and

a ⇡-filter then attenuate high frequency noise originating from the higher tempera-

ture parts of the circuit with a cuto↵ of 300 kHz and 80MHz respectively. Finally

gold meanders12 on sapphire thermalise the wire to the mixing chamber tempera-

ture before it reaches the device. The DC current originating from the SET drain

contact then passes a resonant circuit used for the RF readout and is split from RF

signals using a bias tee with a cuto↵ of 66 kHz. After the bias tee, the signal traverse

the same thermalisation and filter setup just described, exits the fridge and is am-

plified using a Femto-amp DLPCA-200 trans-impedance amplifier, with a variable

gain and bandwidth (typical gains are 108 V/A). The voltage originating from the

trans-impedance amplifier is passed through a SRS SIM910 JFET pre-amp (with

unit gain, simply to cut ground loops) and is further filtered using a SRS SIM965

8 stage Bessel filter with a variable cuto↵ (adapted for each readout). Finally the

signal reaches an analogue to digital converter (ADC), a Nidaq USB-6363 from Na-

tional Instruments (NI). The digital output of the ADC is processed and stored in

real time using a computer running a custom python code13.

The RF readout uses a resonant tank circuit connected to the drain of the SET.

The resonance frequency of the tank circuit shifts slightly when the SET changes

from its coulomb blockaded state to its conductive state. The changes in the reso-

nance frequency of the tank circuit can be detected as a change in the amplitude and

phase of the RF signals reflected from the tank circuit. Using this setup, the state

of the SET can be monitored from reflected RF signals alone [115, 19]. The LC tank

circuit, is located on the PCB holding the device, and formed by a surface mounted

commercial 1.2 µH inductor and the parasitic capacitance to ground (typically about

1 pF). These typical values of inductance and capacitance yield a resonant frequency

11made by Michael Jones and Andrey Timofeev
12made by Michael Jones and Andrey Timofeev
13e↵ort lead by Matthew House, Samuel Hile, Matthew McEwan, Prasanna Pakkiam and many

others
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Figure 2.14: Measurement set-up for readout of donor devices.
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of about 220 � 250MHz. The sinusoidal RF signal is produced by an SRS SG286

source, and the reflected signal is demodulated into I and Q quadratures using the

AD0105B IQ demodulator from Polyphase microwave (see Fig. 2.14). The signal

is fully transferred into one of the quadratures by adjusting the RF frequency by

about 1MHz close to the resonance, and the quadrature voltage holding the signal is

then digitised using the high-bandwidth Alazar ATS9440 card within the measure-

ment computer. The RF power reaching the device (typically �90 dBm) is adjusted

using a Pasternack PE8212 step attenuator placed after the RF source. The RF

signal entering the fridge is thermalised at the various temperature stages of the

refrigerator, with typical total attenuation of ⇡ 10 dB and a further ⇡ 3 dB from

the copper/nickel coaxial cables. The input RF signal is then transferred to the

drain using a ZFDC-20-4L directional coupler from Minicircuits, before it reaches

the custom made bias tee (cuto↵ 66 kHz used to separate DC and RF signals) and

finally the resonant circuit. The signal reflected from the resonant circuit traverses

the directional coupler with less than 0.3 dB attenuation (IN to OUT), is then am-

plified using a CITLF2 cryogenic amplifier from Cosmic Microwave Technology Inc.

with an amplification of about 30 dB and a noise floor of about 3K. After the signal

exits the fridge, it passes a bandpass filter centred around the resonant frequency

and is further amplified by about 70 dB using a PE15A1012 and PE15A1013 room

temperature amplifier from Pasternack before it finally reaches the IQ demodulator.

After the demodulator, the quadrature voltage is passed through a SRS SIM910

JFET pre-amp (with unit gain simply to cut ground loops) and filtered using a SRS

SIM965 8 stage Bessel filter with adjustable frequency cuto↵. Additional passive

components not mentioned here (mostly DC blocks and attenuators) are displayed

in Fig. 2.14.

Fast independent control over the quantum dot chemical potential, necessary

for spin readout, is provided by pulsed and DC voltage sources connected to the

electrostatic gates of the device. The typical setup for one of the electrostatic gates

is displayed in Fig. 2.15. Typically this setup is reproduced on two or three gates in

total, with some minor variations. We use two voltage sources to provide a constant

voltage at the gate (“slow” voltages, and an AWG to provide fast time-resolved

voltage pulses for spin readout (“fast” voltages). The “slow” voltages are added to

the “fast” voltages using a bias tee on the device PCB, with a cuto↵ of 70Hz. The

low cuto↵ is chosen so that most of the high frequency components used for spin

readout fall on the fast side of the setup, where they reach the PCB on copper/nickel

coaxial cable with low attenuation and low parasitic capacitance to the other lines.
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The “slow” voltage is provided by two separate voltage sources. First, a stable

electrostatic working point is provided by the battery powered SRS SIM928 voltage

source. The instrument is very reliable, has low noise characteristics and is therefore

only attenuated by a factor 5 before reaching the fridge. The low attenuation allows

for large voltages to be applied to the device. This allows flexibility in tuning the

charge configuration of the quantum dots. Furthermore this “coarse” voltage pro-

vides a stable working point, resistant to power failure or instrument malfunction.

Additionally to the coarse voltages, the National Instruments NIDAQ USB-6363

ADC provides a finer voltage resolution. The voltage is attenuated by a factor 50

to increase the voltage resolution and reduce the electrical noise transmitted to the

device. This “fine” voltage source is used to precisely adjust the working point for

a given experiment, or to take “gate-gate” maps that map out the voltage configu-

rations at which electrons are loaded onto the quantum dots. Finally an arbitrary

waveform generator (AWG), the Tektronik 5208 (or 5014C), provides fast voltage

pulses for spin readout with a 16 bit voltage resolution and at a time resolution of

up to 5GS/s. The same pulse shape is generated on both the “slow” and “fast”

side of the bias tee on the device PCB, to avoid pulse o↵sets and distortions of the

frequency components of the pulse that are close to the bias tee cuto↵. Both slow

and fast lines are attenuated by about 30 dB in total, to thermalise the wires and

increase the voltage resolution (more details in Fig. 2.15).

On the slow side, the AWG compensation pulse is attenuated by 20 dB and added

to the coarse voltage using an SRS SIM980 voltage adder (zero gain), the output

of which is fed into the voltage divider with a 5:1 ratio, where it is added to the

fine voltage. At that point the three voltages on the slow side have been combined

and enter the fridge. The voltages descend through the fridge using twisted pairs

of copper cable (loom wire), are thermalised at the di↵erent temperature stage,

until they reach the mixing chamber. At the mixing chamber stage, the signal is

filtered using the same setup as for the DC readout (RC filter, ⇡-filter, and sapphire

thermalisation). Finally the “slow” line reaches the device PCB on the cold finger,

where it is added to the “fast” AWG signal at the bias tee.

For the observation of spin physics, the sample is placed in a constant magnetic

field that provides the spin Zeeman splitting. The magnetic field is produced by

a superconducting coil placed inside the fridge, and powered by a dedicated cur-

rent source (AMI 4Q06125PS and controller 4Q06125PS-430 for the Leiden fridge).

Finally for the electron spin resonance experiments, the microwave signals are pro-

duced by a Keysight E8267D microwave source. Low frequency components of the
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Figure 2.15: Measurement set-up for fast pulsing.

microwave signal are filtered using a DC block and a 26GHz high-pass filter before

being fed into the fridge. Within the fridge, the signal is routed within copper/nickel

coaxial cables, (with high frequency SK connectors between temperature stages).

The coaxial cable is thermalised using 12 dB attenuation on the lower temperature

stages before it finally reaches the device PCB. On the PCB, a tapered coplanar

waveguide routes the signal to contact pads close to the silicon chip. Finally bond

wires connect the coplanar waveguide on the PCB to aluminium the antenna.

All the instruments are synchronised by using the AWG as the “master”. Trigger

signals are routed from the AWG to the NIDAQ ADC for DC readout, to the

ALAZAR ADC for RF readout, and to the microwave source for precise timing of

the ESR pulses.

2.5 Summary

This chapter has set the background to the information needed for the following

three results chapters. First, a review of the state of the quantum computing field

highlighted the challenges facing the various physical platforms on the road to error

corrected universal quantum computation. The scaling-up of the processors is un-
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deniably the major challenge on all hardware platforms. The compatibility of the

silicon spin qubit platform with the materials and processes of the semiconductor

industry was identified as a major advantage to solve this challenge. However the

di�culty of coupling spin qubits over long distances was highlighted as a possible

hurdle. This is the subject of Chapter 3 and Chapter 4. The long relaxation and

coherence times of silicon spin qubits was identified as another advantage for the

platform on the road to scaling up. Phosphorus donors were especially identified as a

promising host for silicon spin qubits. Such donor-based qubits were then introduced

in a second section, together with the two leading manufacturing methods used to

fabricate them. The third section of this chapter detailed one of these fabrication

method, based on STM hydrogen lithography. This technique is at the basis of de-

vices proposed or measured in Chapter 4 and Chapter 5. Finally, the measurement

setup used for the results of Chapter 5 was detailed in a fourth section.
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Chapter 3

Flopping-mode qubits: the need

for magnetic-gradient engineering

Semiconductor spin qubits together with superconducting qubits and ion-trap qubits

o↵er a promising platform for building a large-scale universal quantum computer.

As described in Chapter 2, all three platforms face varying challenges for scaling up

processors to a size that allows solving useful problems in a reasonable time. For

semiconductor spin qubits, the two major challenges that we focus on in this thesis

are the need for fast (⇠ ns) gates and the need for long range qubit coupling mech-

anisms. A variety of di↵erent spin-qubit implementations o↵er possible solutions

to those challenges, with qubits based on single electron spins as well as multiple

ones (singlet/triplet as well as exchange only/resonant exchange qubits). We argue

that qubits based on a single electron spin are one of the most promising qubit

implementations to meet these challenges.

Single-spin qubits can be manipulated by high-frequency magnetic fields in a

process called electron-spin resonance (ESR). They have demonstrated high-fidelity

single-qubit and two-qubit gates in silicon [1, 2]. However, to date single-qubit and

two-qubit gate times have been limited to a few microseconds, about two orders of

magnitude slower than superconducting qubit gates. This slower gate speed arises

from the use of magnetic control directly translates into the universal quantum

processor being about two orders of magnitude slower when using the spin qubit

platform as opposed to the superconducting one.1 The macroscopic antenna needed

to produce the high-frequency magnetic fields that drive the spin have a large (⇠
mm2) footprint. This is a significant challenge when scaling up the number of qubits.

1provided the single-qubit and two-qubit gates are the time-limiting operation. This is not
strictly the case as measurements are still the limiting operation.
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Whilst, long-distance qubit coupling of such single spins has not been demonstrated

alternative architectures based on global magnetic control have been proposed [3]

but limit fabrication tolerances.

In parallel, there has been a growing interest in EDSR to control single-spin

qubits with local electric fields. Electric-dipole spin resonance is achieved by cou-

pling the spin to the charge degree-of-freedom [4]. This spin–charge coupling can

be created by a number of di↵erent mechanisms such as the use of large-spin–orbit-

coupling materials [5, 6, 7], gradient magnetic fields from micromagnets [8, 9, 10,

11], and the hyperfine interaction between the electrons and surrounding nuclear

spins [12, 13, 14]. Electric driving only necessitates a single gate to generate the

driving electric field, as opposed to a macroscopic antenna for magnetic driving, and

is generally an order of magnitude faster, thanks to the strong coupling of electric

fields to the charge of the electron.

Recent proposals for EDSR using single electron spins have focused on the cre-

ation of large dipole moments so that the qubits can not only be driven faster

than conventional EDSR but can also be coupled to a superconducting microwave

cavity for circuit-quantum electrodynamics (cQED) [15, 16], allowing for qubit cou-

pling over millimetres. The large dipole moment is formed by a superposition of

charge states between two QDs [17] or by QD/donor hybrid [12] systems, in what

is called flopping-mode operation. The additional charge degree of freedom of the

flopping-mode qubit results in the formation of dephasing sweet spots — device tun-

ing parameters for which the qubit is protected from noise fluctuations, because the

derivative of Hamiltonian parameters through which the noise couples, vanishes to a

given number, called the order of the sweet spot. At one particular electric tuning of

the flopping-mode qubit, the qubit is protected from charge noise fluctuations up to

second order, and represents an attractive option for operation of the qubit [12, 18].

This operation point is called a second order sweet spot.

In this chapter we will introduce three di↵erent qubit implementations that are

operated in flopping-mode. One of them is the proposal developed in this thesis and

will be studied in more detail in Chapter 4. We first describe the mechanism behind

the appearance of a spin electric dipole moment, and demonstrate how this not only

allows for fast electric driving but also how this makes the qubit vulnerable to charge

noise. To investigate if the benefit of the faster driving can outweigh the vulnerability

to charge noise we then build a qubit-error model that captures not only charge-

and magnetic-dephasing errors, but also relaxation and leakage errors. Finally, we

will numerically optimise the error of a generic flopping-mode qubit, and show that
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engineering a low longitudinal energy gradient is instrumental in protecting the qubit

from charge noise while still allowing strong electrical driving. This longitudinal

gradient corresponds to the change of the qubit energy with electric field and has

a di↵erent physical origin in each of the three di↵erent physical implementations of

the flopping mode qubit. Using the same error model we show that operation of the

qubit at the second-order charge dephasing sweet spot is actually detrimental to the

qubit total error when performing a x- or y- gate, contrary to previous suggestions

in the literature [12, 18].

The work for this chapter was performed by this author, with help from Dr.Yu

He, and supervision by Dr. Samuel Gorman. Some of the work presented here is the

object of provisional Australian patent application 2021900702, and is under review

for publication [19].

3.1 Advances in electrical control and coupling of

semiconductor spin qubits

Spin qubits in semiconductors o↵er a very promising pathway for universal quantum

computing (see Sect. 2.1.3). A fully isolated spin qubit can be controlled through an

oscillating magnetic field coupling to the spin’s magnetic moment. Coherent single

spin control was first demonstrated in a quantum dot (QD) in 2006 by Koppens

et al. [20] in a QD defined in a GaAs/AlGaAs heterostructure using electrostatic

gates to locally deplete a two dimensional electron gas (2DEG), and a microwave

titanium/gold strip line antenna (see Fig. 3.1 a). In this initial device, the spin

coherence was of a comparable magnitude to the oscillation period so that only a

few oscillations were observed before dephasing occurred. Since this time, magnetic

single spin control in QD qubits has been perfected to a point that magnetically con-

trolled single spin qubit display the best control fidelities of any semiconductor qubit,

outperforming even superconducting single qubit gates. Indeed, Yang et al. recently

demonstrated an averaged ⇡-gate error of 4.3⇥10�4 in 2µs [21] (see Fig. 3.1 b) using

a QD defined by electrostatic gates at a silicon metal-oxide-semiconductor (SiMOS)

interface. In this work the oscillating magnetic field was also applied using a mi-

crowave strip line this time made from aluminium compared to the titanium/gold

antenna used by Koppens in the original experiment. Similar errors and gate times

were demonstrated on electron spins confined to a single phosphorus donor in silicon

by Muhonen et al., with an average ⇡-gate error of 10⇥10�4 in 3µs in Ref. [22] (see

Fig. 3.1 c), using a similar antenna design. In the same device, even higher control

73



fidelities where achieved on the phosphorus donor nuclear spin, with a ⇡-gate error of

1⇥10�4, but a slower ⇡-gate time of ⇠ 150µs. While state-of-the-art magnetic elec-

tron spin control outperforms the superconducting single qubit gates by a factor 2

(see Table 2.1), currently the gate times in these gate-defined devices are almost two

orders of magnitude longer. Faster control would help bring control errors down to

levels achieved in ion trap qubits and nitrogen vacancy centres in diamonds in which

errors in the 10�5 range have been reported [21]. The capability to perform long

distance coupling of magnetically controlled spins in semiconductors [23] provides

an important technological advance that has not yet been demonstrated.

 spin in quantum dot 
b) Electron spin qubit
in MOS quantum dot

c) Electron spin qubit
in a P donor

a) First ESR on electron 
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Figure 3.1: Magnetic control of electron spin qubits by electron spin resonance
(ESR). a) First demonstration of ESR in GaAs/AlGaAs QDs by Koppens et al. [20]. b)
State-of-the-art ESR in gate defined QDs demonstrating a 2µs ⇡ gate with 4.3 ⇥ 10�4

error in a MOS QD [21] (Rabis oscillation from a similar device from ref. [24]). c) State-
of-the-art ESR of an electron spin on a single phosphorus donor in silicon, demonstrating
a 3µs ⇡ gate with 5⇥ 10�4 error [22] (Rabi oscillations of same device from ref. [1]).

3.1.1 Charge qubits

The charge qubit is the system of choice for fast control and coupling of a condensed

matter qubits. Indeed, as early as 1999, almost a decade before the first coherent

single spin control, Nakamura et al. demonstrated the first electrically controlled

qubit in a solid state device [25], where the two qubit levels are defined by two charge

states on a superconducting island called a Cooper pair box (CPB). These qubits

are connected to each other via tunnelling of an electron pair quasiparticle called a

Cooper pair from a superconducting reservoir through a Josephson tunnel junction.
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While the coherence time of this charge qubit was quite short (not measured, but

estimated at about 1 ns), very fast Rabi frequencies of about 10GHz were demon-

strated. Five year later, Wallra↵ et al. demonstrated strong coupling of such a CPB

qubit to a superconducting cavity [15], with a coupling strength larger than either

the coherence time of the qubit or the relaxation time of a cavity photon. This

result paved the way for long distance coupling of superconducting charge qubits.

Combined these two experiments have demonstrated that charge qubits can be used

to achieve very fast (nanoseconds) driving strength using only electric fields.

From this time it was another four years until the charge qubit was first imple-

mented in semiconductor QDs by Hayashi et al. in 2003 using a double quantum

dot (DQD) defined by electrostatic gates on top of a GaAs/AlGaAs heterostruc-

ture [26] (see Fig. 3.2 a). Hayashi et. al demonstrated fast coherent control, with

Rabi frequencies about 2.3GHz. However, the coherence time, T ⇤
2 of this system

was only ⇠ 1 ns, translating into a Q-factor, Q = fRT ⇤
2 ⇠ 2 (see Fig. 3.2 b). Using

the simplest error model (see Eq. B.4.17 in Appendix Sect. B.4), a Q factor of ⇠ 30

(⇠ 100) is needed for 1%(0.1%) error rates. Since this first experiment by Hayashi

et al., many subsequent implementations of a charge qubit have been demonstrated

in gate defined QDs in GaAs/AlGaAs and SiGe heterostructure [27, 28, 29, 30],

with coherence times T ⇤
2 ranging from 1 to 7 ns, and Rabi frequencies from 1 to

3GHz corresponding to Q factors between 1 and 10. The implementation by Gor-

man et al. [28] using silicon-on-insulator QDs falls outside of this with much longer

coherence times T ⇤
2 ⇡ 220 ns but slower Rabi frequencies of about 62MHz corre-

sponding to a Q factor of 14. In this experiment, the charge dephasing time was

increased by a factor 30 compared to similar experiments by Petersson et al. [29],

by using a device where the DQD and control leads were are etched out of the

Si/SiO2 two-dimensional electron gas instead of being electrostatically defined by

surface electrodes (see Fig. 3.2 c)). In this design the electrons in the QDs are not

surrounded by interfaces where charge traps can form. An alternative explanation

for the increased dephasing time in the etched device was that the qubit was mea-

sured using a charge sensor that was not tunnel coupled to the DQD. Strong tunnel

coupling to electron reservoirs can lead to unwanted tunnelling of electrons into the

QDs meaning that the coherent electrons are lost to the reservoir resulting in control

errors.

Further experiments were focused on coupling the charge qubit to a supercon-

ducting cavity [32, 33, 34] giving rise to an order of magnitude improvement in the

coherence times of gate defined charge qubits. The coherence time can estimated
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Figure 3.2: Advances in electrical control and coupling of semiconductor charge
qubits. a) and b) The first electrically controlled charge qubit demonstrated in a GaAs
DQD by Hayashi et al. (reproduced from Ref. [26]). The Rabi oscillations in b) demon-
strated fast qubit control (⇠ 400 ps) with similarly short coherence times. c) Increases in
the charge qubit coherence time to ⇠ 220 ns could be achieved by Gorman et al. using
an etched heterostructure to reduce charge noise (image reproduced from Ref.[28] ). d)
Demonstration of capacitive coupling of two charge qubits by Shinkai (device image repro-
duced from ref. [31] ). e) and f) Demonstration of coherent coupling of two DQD charge
qubits in GaAs using a superconducting cavity (red in e). The reflection spectrum in f)
shows the two coupled charge qubit bright states separated by the two-qubit coupling rate
gc/2⇡ = 77MHz.
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in these cavity coupled qubits by measuring of the qubit linewidth when readout

by the cavity and was shown to be 3MHz (4.5MHz ) corresponding to T ⇤
2 ⇡ 50 ns

(T ⇤
2 ⇡ 35 ns) in a GaAs/AlGaAs heterostructure in ref. [33] and ref. [34], respectively.

Finally, Mi et al. have demonstrated linewidths of 2.5MHz (T ⇤
2 ⇡ 64 ns) [32]. In

these three experiments coherent control was not demonstrated, however assuming

the Rabi frequencies previously reported of ⇠ 1 GHz [26], the measured linewidths

would translate into Q ⇠ 100. Such a Q-factor could reach the 1% error threshold

using realistic noise models, but is orders of magnitude smaller than the Q factors

demonstrated by ion-trap qubits where Q ⇡ 106 has been observed [35]). One charge

qubit implementation by Kim et al. in 2015 [30] came close to fault tolerance (< 1%

error rate) with single gate fidelities of 86% achieved using pure microwave electri-

cal control of the charge qubit. Due to limits in the coherence times and Q-factors

mainly arising from the presence of charge noise it remains uncertain as to whether

charge qubits will reach error levels acceptable for universal quantum computation.

However, as we will see, the fast electrical driving strengths of charge qubit has

informed improvements in the driving strengths of spin based qubits. Before we ad-

dress this, we first highlight how the study of charge qubits also provided a roadmap

for long distance coupling of semiconductor spin qubits, a crucial milestone for scal-

ing up universal quantum computers. Advances towards long distance coupling of

two charge qubits in semiconductors have ranged from the initial demonstration of

capacitive coupling between two charge qubits in 2009 ([31, 36]), using two DQDs

in GaAs/AlGaAs (coupling distance of about 300 nm, see Fig. 3.2 d). Beyond this

has been the demonstration of photon mediated interaction in a GaAs/AlGaAs het-

erostructure between two charge qubits over ⇠ 50µm (see Fig. 3.2 e and f) to over

⇠ 300µm between a charge qubit and a transmon qubit using a microwave cavity

by Woerkom et al. in 2018 [37] and Scarlino et al. in 2019 [38], respectively. An

important milestone on the road to demonstrating such photon mediated long dis-

tance coupling between qubits is the demonstration of strong coupling of the qubit

to a cavity. The strong coupling regime is achieved when the coupling of the qubit

to the cavity, g is larger than the decoherence rate, � and photon decay rate of the

cavity, . That is, g2/� > 1. Strong coupling was first demonstrated by Petersson

et al. in 2012 [16] in a DQD defined using metallic gates deposited on an Indium

Arsenide (InAs) nanowire. The strong coupling regime has since been demonstrated

in gate-defined QDs in a GaAs/AlGaAs heterostructure in 2017 by Stockklauser [39]

and by Mi et al. [32] in Si/SiGe.

To conclude we have shown that charge qubits have pioneered key advances in
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Figure 3.3: A schematic showing how hybrid qubits can evolve from single spin
and single charge qubits. The pure spin qubit can be combined with the principle
of the charge qubit into a multitude of spin-charge hybrids that hybridise a particle’s
(electron or hole) spin to its charge degree of freedom in either one (1 QD), two (2QDs)
or three (3 QDs) to allow electrical control of the spin.

fast driving and long distance coupling of semiconductor qubits. However, due to the

strong vulnerability of charge qubits to noise arising from electric field fluctuations,

the errors of charge qubits have remained below the error threshold for quantum

error correction using the surface code. This is a crucial reason as to why, shortly

after the first demonstration of a semiconductor charge qubit in semiconductors in

2003, the semiconductor community has turned its focus to spin qubits due to the re-

markably long coherence times already demonstrated in bulk ESR experiments [40].

The charge qubit has however, highlighted that electrical control could o↵er a way

towards very fast qubit control, and has since served as a testbed for long distance

coupling of qubits in semiconductors using microwave cavities.

Whilst charge qubits have demonstrated fast driving with short coherence times

magnetically-driven single spin qubits have demonstrated weak driving strengths

but promising long coherence times in isotopically purified materials. In the past

20 years, a multitude of hybrid qubit implementation in semiconductors have been

proposed to best combine the advantages of each implementation without su↵ering

from their respective drawbacks. Such “hybrid” spin-charge qubits range from the

singlet triplet qubit where two spins are shared between two QDs [41, 42] to the

exchange-only (EO) qubit [43] and resonant exchange (RX) qubit [44, 45] (three

spins across three QDs), to the flopping-mode qubit [18, 46] (one spin hosted on two

QDs) and the electrically driven spin qubit in a single QD [47, 48] (see Fig. 3.3).

In the following we will review how successfully each of these four spin-charge

78



hybrid implementations has been in bringing together the advantages of the charge

and spin qubits over the past 15 years. The ultimate goal of these hybrid systems

is to demonstrate a fast (⇠ ns) electrically driven qubit with low error (< 1%) that

can be coupled over long distances (> 10 µm) using microwave cavities.

3.1.2 Electric driving and coupling of a single spin in a single

quantum dot

We first review the progress of electrical control and coupling of single spins in

single QDs. In such implementations, the coupling of the spin to the charge de-

gree of freedom has been achieved through various mechanisms which we consider

here including the asymmetric g-factor modulation, hyperfine coupling, spin-orbit

interaction and a micromagnet induced magnetic gradient.

Electric spin manipulation through g-factor modulation was first demonstrated

by Kato et al. in 2003 in a parabolic quantum well within a GaAs/AlGaAs het-

erostructure hosting many electrons [49]. The e↵ect relies on the electric field de-

pendence of an asymmetric g-tensor, that translates into a Zeeman term transverse

to the static magnetic field. An oscillating electric field at the frequency defined

by the longitudinal Zeeman splitting, then creates a transverse oscillating term that

can drive Rabi oscillations between the spin down and up states.

A second mechanism to couple the spin and charge (or orbital) degree of freedom

is the intrinsic spin-orbit (SO) coupling present materials such as GaAs and InAs

heterostructures. Here, the intrinsic SO coupling in a GaAs QD served as a basis for

electric driving of spins as early as 2003 [50, 51] resulting in the first demonstration

of electrical driving of a single electron spin in semiconductor QDs by Nowack et al..

in 2007 [48]. In Nowack’s experiment, performed only a year after the first demon-

stration of magnetically driven spin resonance by Koppens et al., Rabi frequencies

of ⇠ 4MHz were attained limited by the strength of the SO interaction (spin-orbit

length, lSO ⇡ 30 µm which is inversely proportional to the Rabi frequency) in GaAs

(see Fig. 3.4 a). Later implementations in InAs nanowires attained Rabi frequencies

around 50MHz [16, 52] due to an enhanced spin-orbit interaction (lSO ⇡ 150 nm).

However, the qubits su↵ered from relatively short coherence time (T ⇤
2 ⇡ 8 ns and

THahn
2 ⇡ 8 ns in Ref. [52]) due to the coupling of the qubit to charge noise. This illus-

trates a common issue shared by many electrically driven spin qubits, namely that

coupling the spin to electric fields for electric driving also increases the coupling

of the spin to charge noise. We will show that more complex spin-charge hybrid

qubits have been engineered to reap the benefits of faster qubit driving without
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proportionally increasing the susceptibility to charge noise.

Electrical driving of spins trough the spin-orbit e↵ect was also demonstrated on

hole spins as early as 2013 by Pribiag et al. [53] in an InSb nanowire. Hole spins

have also been confined in gate defined QDs within a Ge/SiGe heterostructure by

Hendrickx et al. in 2020 [54]. Hendrickx et al. demonstrated large Rabi frequencies

up to 57MHz with coherence times of 100 to 400 ns (compared to T ⇤
2 ⇡ 8 ns electron

spin qubits [52]). While these qubit characteristics correspond to Q factors of ⇠
23, well below those shown by state-of-the-art electron spin qubits, improvements

in the coherence times can be achieved through engineering sweet spots at which

the susceptibility of the spin to electric field is minimised [55], with Wang et al..

predicting Q factors as large as 105. If achievable, such improvements would make

this platform a viable candidate for large scale quantum computing.

Spin transitions can also be driven electrically by utilising a micromagnet. The

micromagnet can produce a magnetic gradient over the location of the QD. Moving

the electron within that magnetic gradient using an oscillating electric field can then

be used to drive spin transitions. This concept was first proposed and formalised

in 2006 in Ref. [47], in which Tokura et al. described the oscillatory motion of the

electron as an electric-field dependent hybridisation of the symmetric ground state

QD orbital, with the first excited state antisymmetric orbital (see Fig. 3.4 b for

an electric field pointing to the left). This mechanism was then first demonstrated

in 2008 [56] by measuring the spectra from the spins in two separate QDs (in a

GaAs/AlGaAs heterostructure) driven electrically within a magnetic gradient in-

duced by a cobalt micromagnet (Fig. 3.4 c). Improved micromagnet designs [57]

have since yielded coherent two-axis electrical control in a Si/SiGe heterostructure

in 2014 with a Rabi frequency of 5MHz [58] and a Rabi frequency of up to 127MHz

with 96% control fidelity in a GaAs/AlGaAs QD [59].

The control fidelity of such electrically driven spins within a single QD using a

micromagnet induced magnetic field gradient has been further improved by manu-

facturing the QDs in isotopically purified Si/SiGe heterostructures. This strategy

was employed in 2018 by Yoneda et al. in a landmark experiment [8] that demon-

strated the first spin control fidelities above 99.9% in semiconductor qubits. The

coherence time T ⇤
2 ⇡ 20µs of the spin qubit was shown to be limited by charge

noise and not by magnetic noise, as had been the case with previous spin qubits

(see Fig. 3.4 d). The high fidelities were achieved at Rabi frequencies of ⇠ 4MHz.

Such driving speeds are an order of magnitude faster than that of state-of-the-art

magnetic driving of single electron spins [21] (⇠ 0.5 MHz with fidelities above
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99.9% also), but still an order of magnitude below driving speeds of state-of-the-art

superconducting qubits [60] (⇠ 60 MHz with fidelities above 99.9%).

In the same experiment Yoneda et al. could reach driving speeds comparable to

those of superconducting qubits, with Rabi frequencies up to 30MHz (t⇡ ⇡ 33 ns).

However at driving speeds much faster than the optimal one of 4 MHz, the fidelity

of the gates decreased starkly. This is reflected in a drop in the Rabi oscillation Q

factor from 444 to 14 when driving at 20 MHz instead of the optimal 4 MHz. The

decrease in the Q factor at higher Rabi frequencies is attributed to heating and/or

population leakage. A similar decrease in the quality factor of the Rabi oscillation

was observed in a di↵erent device by Takeda et al. [61]. As pointed out by Takeda

and coworkers, heating and leakage can be reduced without decreasing the speed

of operation, by increasing the magnetic field produced by the micromagnet or by

increasing the electric coupling of the driving gate to the electron. Both can be

achieved by manufacturing the micromagnet or the gate closer to the quantum dot.

In summary, the experiment of Yoneda et al. shows that electrically driven

spins can maintain the very high fidelities of magnetically driven spin qubits while

achieving driving speeds one order of magnitude faster [21, 22]. An additional order

of magnitude improvement in the gate speed was also demonstrated, albeit with

a decrease in the qubit control fidelity. This decrease in the control fidelity might

be avoided by improvements in the device design. With such improvements, single

qubits gates in spin qubits would reach the speeds and fidelities of superconducting

devices.

Before moving to long distance coupling of single spins in single QDs, an alter-

native way of coupling the spin and charge degrees of freedom is using the hyperfine

interaction of the electron with its surrounding nuclear spins. The hyperfine inter-

action of an electron in a GaAs/AlGaAs QD qubit with the nuclei host material was

harnessed by Laird et al. in 2007 [62] to drive spin transitions electrically. Coherent

driving was however, not achieved due to the averaging of the transverse hyperfine

term over long time scales [51]. The electrically controlled hyperfine spin transitions

could nonetheless be used to induce sizeable nuclear spin polarisation within the QD,

generating magnetic fields up to 840mT. While this spin-charge coupling was not

pursued further for single spin EDSR in single QDs, it is crucial for magnetic field

engineering of singlet triplet qubits and also forms the basis of the flopping-mode

qubit proposals presented in this thesis in Chapter 4.

Despite the promising demonstrations of electrical control of single spins in single

QDs reviewed above, a single spin has not yet been coupled to a cavity within a
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single QD to-date despite being proposed as early as 2008 [63]. The failure to

demonstrate long distance coupling using single spins in single QDs can be related

to the fact that the electric fields required to couple the spin in a single QD to

the cavity are much larger than those produced by today’s state-of-the-art cavities,

which can produce voltage fluctuation of the order of 0.5µV as demonstrated in the

double QD experiments by Samkharadze et al. from the Delft [64, 65] and Mi et

al. from Princeton [32] that will be the focus of the next section. The microwave

powers applied in the 2018 experiment by Yoneda to drive a spin on a single QD

(displaying 99.9% fidelity) are not quoted in Ref. [8], but a prior publication [59]

quotes powers of -32 to -11 dBm at the sample to achieve Rabi frequencies of 29 to

126MHz. The voltage amplitudes associated with these driving powers are 6 and

63mV, more than three orders of magnitude larger than the values associated with

state-of-the-art cavities [64]. This disparity hinders the ability to achieve strong

coupling of a spin qubit in a single QD to a cavity.

For coupling spin qubits to cavities, the community has turned towards more

complex spin-charge hybrid qubits utilising several electrons spins and/or several

quantum dots. These hybrid qubits o↵er a stronger coupling of the electric field to

the charge and potentially protect those qubits from electrical noise by operation at

certain qubit energies that are insensitive to electrical fluctuations, known as charge-

noise sweet spots. The hybrid qubits are formed by various combination of spin and

charge, such as two spins on two quantum dots (singlet triplet qubits [41, 66, 67])

or three spins on three quantum dots (the Exchange Only (EO) qubit [44, 68] and

Resonant Exchange Only (RX) qubit [69, 70, 71]). This chapter and the following

one will focus on the hybrid spin qubits consisting of one electrons shared by two

quantum dots and which will be referred to as the flopping mode qubit.

3.1.3 Single spins in a double quantum dot: the flopping

mode qubit

This section focuses on the flopping mode qubit, which is defined by a single electron

in a DQD. The orbital degree of freedom (charge in left/right QD) and spin degree

of freedom (spin up/down) can define both a traditional charge qubit as described

earlier and a simple spin qubit. Under the right conditions, and in the presence

of a magnetic field gradient, the spin and charge qubits can hybridise with each

other, allowing for the spin qubit to acquire properties of the charge qubit, including

an electric dipole moment, but also susceptibility to electric field noise. As with

EDSR in a single QD in a magnetic field gradient, the electric driving of the spin
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Figure 3.4: Electrically driven resonance of a single spin in a SQD. a) First
demonstration of coherent EDSR on a spin confined to one of the QDs of a DQD in a
GaAs/AlGaAs heterostructure (see SEM picture of the device on the left). Rabi oscilla-
tions are presented below, with the oscillation frequency fRabi linearly dependent on the
microwave drive amplitude Vmw (top right). b) In the presence of an electric field the
ground (excited) state electron wavefunction is shifted to the right(left), through hybridi-
sation of the QD’s symmetrical ground state orbital (without electric fields) to higher
asymmetric QD orbitals (illustration reproduced from ref. [47]). c) First demonstration of
selective EDSR of electron spins trapped in two separate dots of a DQD device using an
integrated surface micromagnet (yellow stripe) to induce spin-orbit coupling. The EDSR
spectra shows to sets of resonant peaks corresponding to the resonant flipping of electron
spins in the two respective QDs (bottom left), with both peaks depending linearly on the
homogeneous magnetic field B0 (figures reproduced from ref. [56]). d) State-of-the-art
EDSR of a single spin in a single QD using a micromagnet to induce the magnetic field
gradient. The extremely clean chevron pattern on the bottom is a consequence of the high
control fidelity of 99.9% (reproduced from ref. [8]).
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in the DQD can be explained by the e↵ective oscillating transverse magnetic field

experienced by the spin as it is moved by an oscillating electric field between the

two QDs. The motion of a spin in the single QD emerges from the electric field

dependent hybridisation within excited orbitals of the same QD. The flopping mode

qubit can be described in a similar manner, with orbitals of each QD needed to

describe the system. The benefit of flopping-mode operation of single QD EDSR

is that the coupling of the two QD orbitals can be fully engineered using realistic

electric fields in a DQD. This allows for full control over the DQD charge qubits

characteristics, and thus full control over the degree of spin-charge hybridisation. A

second large advantage of the flopping mode qubit is that both the strength of the

charge qubit electric dipole moment and the amplitude of the transverse magnetic

field experienced by the spin is proportional to the distance between the QD orbitals.

By separating the charge in two separate QDs typically ⇠ 100 nm apart [26, 32] we

can improve both the electric dipole moment and transverse magnetic field. This

is because when the electron is equally shared between both QDs, a small electric

field ⇠ 1 kV/m can fully move the electron from one QD to the other whereas an

electron confined tn a single QD would move much less under the same electric field

due to the tight confinement potential.

The basic mechanism of the flopping mode qubit was first proposed by Hu et al.

in 2012 for gate defined QD in a magnetic gradient (see Fig. 3.5 a) and explained

using second-order perturbation theory [73]. Hu et al. proposed coupling a flopping

mode qubit to a superconducting cavity where it was predicted that a two order of

magnitude improvement could be achieved in the coupling strength to the super-

conducting cavity photon. This contrast in achievable coupling compared to single

QD EDSR is due to the increased charge dipole and magnetic coupling related to

the larger separation of dot orbitals as discussed above. The paper by Hu et al.

introduced an estimation of the relaxation rate of the spin due to the magnetic field

gradient (⇠ 1 kHz) [73], but did not provide a detailed analysis of the achievable

qubit error that would include charge noise induced dephasing and relaxation as

well as leakage errors.

In a subsequent publication in 2016, Beaudoin et al. [72] quantified the error

of a quantum state transfer from a flopping mode qubit to a superconducting cav-

ity (⇠ 10 %). Here, the considered dephasing errors due to electric noise coupling

through the longitudinal magnetic gradient, relaxation errors due to qubit and cav-

ity phonon relaxation as well as due to cavity decay. The dephasing errors arising

from perturbations in the qubit Zeeman splitting induced by electric field noise
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Figure 3.5: The flopping mode qubit: a single spin in a double quantum dot.
The flopping mode qubit is defined by a single spin with a wavefunction extending to the
two sites of a double quantum dot (DQD) in blue and red in a). An artificial spin-orbit
coupling is created by fabrication of a nano-magnet on top of the DQD (top a)). Careful
placement of the micromagnet allows control of the transverse and longitudinal magnetic
field di↵erences �Bx and �Bz respectively. Placement at dh = 0 allows maximising �Bx

while �Bx ⇡ 0, and has important repercussions on the qubit’s susceptibility to charge
noise. b) An alternative implementation of the flopping mode qubit called the flip-flop
qubit that uses a phosphorus donor (P in yellow) to define the one QD and a electrostatic
gate to define another QD near the Si/SiO2 interface. The magnetic gradient is provided
by the hyperfine interaction of the electron spin with the nuclear spin of the phosphorus
donor. c): Tosi et al. demonstrated the presence of a second-order sweet spot (a second-
order clock transition) with respect to the electric field detuning E at a particular tunnel
coupling value 2tc = 11.44GHz. Here, the qubit energy splitting !q is insensitive to
electric field fluctuations. d) The full error of a ⇡/2 X-gate shows a sweet spot at zero
detuning (E = 0) but does not exhibit a second-order sweet spot, due to presence of charge
noise induced fluctuations of the Rabi frequency and leakage for a chosen drive amplitude.
Images in a) and b)- d) are reproduced from references [72] and [12], respectively.
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which shifts the electrons position within the stray longitudinal gradient produced

by the micromagnet (parallel to the spin quantisation axis). This error is estimated

analytically to second-order to be proportional to the ratio squared of the longi-

tudinal magnetic di↵erences �bz over the transverse magnetic field di↵erence �bx.

Additional dependences on driving strength are found in equation (14) of ref. [72]):

1� F /
✓

�bz

�bx

◆2

.

The authors estimated through numerical simulation of the device that by careful

placement of the nanomagnet above the DQD, the transverse magnetic di↵erence

could be maximised while the longitudinal di↵erence vanishes (see a plot of both

magnetic di↵erences in Fig. 3.5 a) taken from ref. [72]. They estimated however;

that a 10 nm error in the nanomagnet position is likely, yielding dephasing errors

of about 0.8%, assuming a realistic cavity voltage amplitude of 0.2µeV (50MHz)

and a noise amplitude 2.3GHz. Neither dephasing errors due to electric field noise

induced fluctuations in the dipole coupling or leakage errors were considered in this

work.

In a later proposal by Tosi et al. in 2017 [12], a new qubit called a flip-flop qubit

was proposed that consists of an electron trapped on a DQD consisting of a first

QD formed by a phosphorus impurity implanted 10 nm below the silicon-silicon

dioxide interface, and by a second metal-oxide-semiconductor (MOS) QD defined at

that interface by electrostatic gates (see Fig. 3.5 b). The transverse magnetic field

gradient is provided by the hyperfine interaction of the electron spin with the nuclear

spin 1/2 of the phosphorus donor. In the following section we will show that this

proposal is fundamentally equivalent to the flopping mode qubit proposed by Hu et

al. [73]. Tosi et al. were the first to discuss the presence of a second-order sweet

spot protecting the qubit from longitudinal dephasing errors induced by electric

field noise. This second-order sweet spot appears at one particular value of the spin

and charge qubit detuning, and static electric field E detuning the two dot levels.

The spin and charge detuning is engineered using the electric field E, the static

homogeneous magnetic field B and the tunnel coupling tc between the two dots. The

longitudinal dephasing rate is displayed as a function of E and tc for a magnetic field

0.4T in Fig. 3.5 c) (taken from ref. [12]) and displays the second-order sweet spot

at one particular value of tunnel coupling and electric field indicated in the figure.

Tosi et al. additionally presented a complete error model for electrically driven

gates, including leakage, relaxation and dephasing errors related both to charge
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noise induced variations in the qubit energy splitting (longitudinal dephasing) as

well as variations in the driving amplitude (transverse dephasing). As reproduced

from Fig. 3.5 d), the error experienced by the qubit during ⇡/2 X-rotation displays

a minimum when the electric field detuning vanishes. It is interesting to note that

this does not occur at the location of the second-order sweet spot expected for the

longitudinal dephasing error, indicating that for the particular parameters chosen

here (drive amplitude and magnetic field especially), other errors were dominant

with the second-order longitudinal error sweet spot not being relevant to the total

error. Fig. 3.5 d indicates that gate errors below 10�3 are possible for this type of

flopping mode qubit when driven at zero electric detuning and for a range of tunnel

couplings of at least 0.5GHz.

In 2019, Benito et al. [74] also disclosed the presence of a second-order sweet

spot for the longitudinal dephasing of a flopping mode qubit defined using a gated

defined DQD using the magnetic gradient of micromagnet. As we will study in

more detail in the next sections, due to the mathematical equivalence of the flip-flop

qubit [75] and the flopping mode qubit [74], the second-order sweet spot presented

in both publications is related to the same physical mechanism.

The first experimental realisation of a flopping mode qubit dates back to 2015

with an implementation by Viennot et al. in a DQD defined in a carbon nan-

otube [76] (see the atomic force microscopy (AFM) image of the device in Fig. 3.6 a)

using ferromagnetic PdNi leads to engineer a magnetic gradient (see magnetic force

microscopy (MFM) image Fig. 3.6 b). Strong coupling of the spin to a Nb super-

conducting cavity was demonstrated as shown in the cavity transmission spectrum

of Fig. 3.6 c), showing the cavity resonance being shifted by a spin at positive and

negative magnetic fields.

The same experiment was reproduced in silicon in 2018 by both Mi et al. [17]

and Samkharadze et al. [65] demonstrating strong coupling of a flopping mode spin

qubit defined in Si/SiGe gate-defined DQD to superconducting microwave cavities.

In both cases this represented the first demonstration of strong coupling of a spin

(hybrid) qubit to a superconducting cavity in silicon, representing an important

milestone for the semiconductor quantum computing community. In addition to the

strong coupling (cooperativity, C = g2/� = 5.52/1.8⇥ 2.4 ⇡ 7 of the qubit to the

cavity, Mi et al. [17] also demonstrated readout of the flopping mode qubit through

the cavity (with a measurement time of 20 µs to allow for qubit initialisation through

relaxation) as well as electric driving of the spin when confined to a single QD with a

frequency of 6 MHz. Importantly, by varying the degree of spin-charge hybridisation
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a) b) d)
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Figure 3.6: Coupling of s flopping mode qubit to a superconducting cavity.
Strong coupling of a flopping mode qubit to a cavity was demonstrated as early as 2015
by Viennot [76] in a DQD defined within a single walled Carbon Nanotube (SWNT) visible
in green in a). The magnetic gradient was produced by the source and drain (S/D) leads
using ferromagnetic PdNi contacts, as shown by the magnetic Force Microscopy (MFM)
image of the device in b). Strong coupling of the spins to the cavity was evidenced by
the transmission spectrum in c) showing the cavity resonance anti-crossing with the two
valleys at positive and negative magnetic fields. d), e) Landmark experiment by Borjans
et al. [77] demonstrating coherent coupling of two flopping mode spin qubits over 5mm
using a superconducting cavity (device picture in d) . Control over both the angle � and
magnitude Bext of the external magnetic field brings both qubit transition energies in
resonance with the cavity as evidenced by the avoided crossing of the three transitions
visible in the transmission spectrum in e). Figure a)-c) and d)-e) are reproduced from ref.
[76] and [77], respectively.
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using the electric field detuning parameter ✏, Mi et al. demonstrated control over

the spin-photon coupling by two orders of magnitude. This large controllability in

the spin-photon coupling was achieved by tuning the flopping mode qubit from the

two dot regime, where the wavefunction is equally shared between the two QDs with

up to 1 nm displacement of the electron wavefunction by the electric driving field,

to the single dot regime where the wavefunction is confined to a single QD and is

only moved by an estimated 3 pm by the same electric field drive amplitude.

Coherent coupling of two flopping mode qubits via a microwave cavity was

demonstrated a year later by Borjans et al. [77]. This also represented another

landmark for semiconductor spin qubits, demonstrating the feasibility of long dis-

tance spin coupling. One important reason why coupling of two flopping mode qubit

could not be performed in the earlier experiment was that the two qubit energies

di↵ered by about 40MHz (1.5mT) due to di↵erences in the longitudinal magnetic

field induced by the respective micromagnets deposited on each of DQD. This meant

that the e↵ective coupling was reduced due to the detuning between the two flop-

ping mode qubits. As opposed to the EO and RX qubits, it is important to note

that the flopping mode qubit splitting is mainly determined by the longitudinal

static magnetic field experienced by the spin. As such, it was not possible to tune

the local electric field without operating away from decoherence sweet spot and the

dephasing time of the qubits was significantly reduced. Whilst electric tuning of

the qubit splitting is possible through control of the tunnel coupling, the e↵ect is a

second-order process that is quite weak. Local magnetic tuning of the qubits was

also not possible in that experiment since this would require additional hardware

for magnetic control such as the presence of magnetic flux loops. In the 2018 exper-

iment [17], coupling of the two qubit was therefore not possible due to the lack of

local tunability in the di↵erent resonant frequencies of the two qubits but also by

the fact that this di↵erence was 8 times larger than the coupling of the individual

qubits to the cavity.

In the follow-up experiment by Borjans et al. [77], the lack of electric tunability

was counteracted by intentionally patterning the distant DQDs hosting the flopping

mode qubits at an angle to each other in such a way that the DQD separation axes

were not parallel to each other (30 degrees di↵erence). In this way the di↵erence in

the two distant spins Zeeman splitting, largely defined by the projection of the large

homogeneous magnetic field permeating the sample is made dependent on the angle

of the DQD axis to the magnetic field. Together with control of the magnitude of

the magnetic field, this gave two degrees of freedom to bring both qubit transition
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Figure 3.7: Coherent operation of the flopping mode qubit in a Si/SiGe double
quantum dot. Here, a Si/SiGe gate defined DQD [46], is placed in a magnetic field
gradient induced by a cobalt micromagnet (see SEM image of the device in a) along with
an illustration of the di↵erent layers used in the device in b reproduced from Ref. [46]).
Coherent oscillations of the qubit were demonstrated via cavity readout. The Q-factor
(blue squares) of the Rabi oscillations for a fixed Rabi frequency (orange triangles) shows
a clear maximum at zero detuning ✏ = 0, demonstrating the presence of a second-order
sweet spot in e). The microwave power needed to maintain a constant Rabi frequency
is plotted in d) with a clear minimum at zero detuning, demonstrating that the electric
drive is most e�cient when the electron wave-function is shared between the two QDs.
All images taken from [46] but b) which is taken from [17].

frequencies in resonance with the cavity’s frequency as displayed in the magnetic

field angle dependence of the cavity resonance spectrum (Fig. 3.6 e) at a magnetic

field amplitude of 106.3mT. Using this technique Borjans et al. demonstrated a

clear resonant interaction between the two flopping mode spin qubits separated by

⇠ 5mm. Whilst this proof-of-concept experiment can be used to generate long-range

two-qubit gates between spatially distant spins, it is not scalable to more qubits.

This is because in order to operate the flopping mode qubits at the noise sweet

spots since adjusting the charge qubit splitting will move the qubit away from the

sweet spot. Therefore, for true scalability of the flopping mode qubit it is likely

that local magnetic field control will have to be implemented. Ultimately, if this

can be achieved then it opens up the possibility of modular quantum computer

architectures using long-range interconnects.

Coherent control of the flopping mode qubit (in the DQD regime) was not demon-
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strated until 2020, in an experiment by Croot et al. [46] using a DQD device defined

by electrostatic gates on a natural Si/SiGe heterostructure, using a cobalt micro-

magnet and a superconducting niobium superconducting cavity (see Fig. 3.7 a and b

). Croot et al. confirmed the existence of a sweet spot at zero electric detuning ✏ = 0

between the two QDs, where the qubit is insensitive to first order to electric field

fluctuations. Indeed Rabi oscillations taken at ✏ = 0µeV (green spot in Fig. 3.6 c)

were seen to decay less than oscillations taken for the same operational parameters

but away from the sweet spot, at ✏ = �52µeV (blue spot, 12.57GHz ⇡ 2tc/h) and

at higher power (to achieve the same Rabi frequency). The presence of the sweet

spot in coherence is demonstrated even more clearly by measuring the Q-factor of

the Rabi oscillations achieved for a range of electric detuning values ✏ = ±3⇥ 2tc/h

in Fig. 3.6 e (blue squares). Here, they tuned the microwave power P to keep the

Rabi frequency constant (the Rabi frequency is displayed as orange triangles). The

Q-factor is seen to reach a clear maximum of Q ⇡ 17 at the sweet spot compared to

Q ⇡ 4 detuned from the sweet spot. The power required to maintain the same Rabi

frequency of approximately 7MHz, is displayed in Fig. 3.6 d), and shows a clear

minimum at the coherence sweet spot, with -90 dBm power needed at the device

compared to -67 dBm at ✏ = �3 ⇥ 2tc/h. This corresponds to a 200-fold decrease

in driving power necessary to reach the same Rabi frequency, demonstrating the

advantage of driving the spin at the sweet spot. At the we are in the delocalised

regime where the wave function responds most strongly to the electric field drive

but is protected to first-order from electric field fluctuations since the qubit energy

does not change to first-order in detuning.

Note that fault tolerant operation of the flopping mode qubit has not yet been

demonstrated, but the Q ⇠ 17 for both qubit control axes has been demonstrated by

Croot et al. [46]. This value of Q corresponds to an approximate error of 3% using

the simplified error formula in Eq. B.4.17 in Appendix Sect. B.4 and are promising

values at this stage of development with Q ⇠ 100 typically required for fault-tolerant

quantum computation.

3.1.4 Summary

In summary we have shown that hybridisation of spin qubits with their charge degree

of freedom has allowed an order of magnitude speedup in the single qubit gate

times, with less than an order of magnitude increase of qubit error for electrically

driven single spins (see Table of qubit characteristics Table 3.1). Much faster gates

(⇠ nanoseconds) are possible when the qubit is purely of charge character but is
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accompanied by a dramatic decrease in fidelity (the best error demonstrated by a

charge qubit is 14% [28]), due to increased susceptibility to charge noise. To reach

strong coupling of the qubits to a superconducting cavity the electric dipole moment

of the spin qubits has to be increased beyond what is possible within a single dot. It

is likely that the singlet/triplet qubit in which two electrons are hosted by two QDs

will be able to reach the strong coupling regime in the near future, with stronger

hybridisation of the qubit to excited charge states (as seen in Ref. [78]).

To date, no spin based qubit has demonstrated both fast (⇠ ns) fault tolerant

electric operation as well as long distance coupling to a cavity. However, the flopping-

mode qubit has demonstrated Q-factors indicating that fault tolerance is within

reach. Singlet/triplet qubits have shown large Q-factor qubits [79] and after the

demonstration of strong coupling of a singlet/triplet qubit to a cavity would satisfy

the scaling requirements for a quantum computer. The feasibility of fault tolerant

operation of the RX qubit is not easy to estimate as the qubit has not widely been

implemented and has benefited less from technological transfer from other platforms.

Both the RX and EO qubit are the only demonstrated spin-based qubit that are fully

electrically tunable and therefore these also remain strong candidates for large scale

quantum computation using semiconductor qubits. If a qubit implementation can

demonstrate fault tolerant single qubit gates with strong coupling to a cavity, the

next milestone will be the demonstration of fault tolerant cavity mediated 2-qubit

gates.
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Qubit type 1-qubit gate
error

t⇡ T ⇤
2 Cap.

coupl.
Strong
coupl.
to cav.

Qubit-
cavity-
qubit

Full
electric
tunabil-
ity

magnetically-
driven (1spin,
1QD)

4.3⇥10�4 [21] 2µs [21] 3.3µs [21] x x x x

Charge qubit
(1charge, 2QD)

0.14 [30] ⇡
0.5 ns [30,
29]

50 ns [33] X [31] X [32] X [37] X

Electrically-
driven (1spin,
1QD)

1⇥ 10�3 [8] 125 ns [8] 20µs [8] x x x x

Singlet/Triplet
(2spin, 2QD)

4⇥ 10�3 [80] 125 ns [80] 1.3µs [80] X [81] x x x

RX qubit (3spin,
3QD)

N/A 5 ns [44] 16 ns [70] x X [70] x X

Flopping mode
(1spin, 2QD)

N/A 83 ns [46] 1.4µs [46] x X [17] X [77] x

Table 3.1: A summary of electrically-driven single-qubit gate metrics. The table
shows the single-qubit gate error, the time for a ⇡-rotation (t⇡), T ⇤

2 , demonstration of
capacitive inter-qubit coupling, and values related to cavity coupling; strong coupling
regime, qubit-qubit coupling mediated by a cavity and finally whether the qubit can be
controlled by pure electrical means.

3.2 Flopping-mode qubits

In this section we will first demonstrate that the flopping-mode Hamiltonian de-

scribes a variety of proposed qubits including one that will be the subject of this

thesis (see Chapter 4). Using perturbation theory we illustrate how the emergence

of the qubit’s electrical dipole moment is linked to the hybridisation of the electron

spin to its orbital degree of freedom. We will show that for weak hybridisation, the

electric driving appears classically as the motion of an electron spin in a magnetic

gradient. Finally, an analysis of charge dephasing will reveal the presence of nth-

order dephasing sweet spots where the qubit energy is insensitive to nth-order to

charge noise and error rate of the qubit will be reduced. In Sect. 3.3 we will present

the error model used in this chapter and Chapter 4, to describe not only dephasing

errors, but also other errors, due to relaxation and leakage.

Flopping-mode qubits are based on an electron spin localised on two tunnel-

coupled QDs. The electric field E can be tuned such that the electron wave func-

tion is either fully localised on one of the QDs, or shared between them. In the first

case, the qubit states are purely the electron spin states populating the orbital state

associated with the QD, yielding long coherence (⇠ µs) and relaxation times (⇠ s).
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In the second case, the qubit states consists of the electron spin states in a super-

position of two QD orbitals, yielding shorter coherence and relaxation times, but

enabling coupling to electric fields. Transitions between the two electron spin states

is achieved by engineering an artificial spin–orbit coupling, enabling electric control

over the electron spin state. This spin–orbit coupling results from a transverse mag-

netic coupling has di↵erent values for each orbital occupation: by controlling the

electric field, the orbital occupation and thus the transverse coupling can be varied

in time. By modulating the strength of that coupling at a frequency that matches

the energy separation of the two spin states, the transition can be addressed and

driven electrically. This transverse coupling may arise due to a transverse magnetic

field or a hyperfine coupling to nuclear spins. Whilst the current chapter studies the

flopping-mode qubit in a way that is agnostic to the physical origin of the transverse

coupling mechanism, Chapter 4 focuses on a transverse coupling produced by the

hyperfine interaction with donor nuclear spins. In that chapter we show that the

nuclear spins produce stable e↵ective magnetic gradients, that are not a↵ected by

the electric driving. Later, in Chapter 5 we show experimentally that the nuclear

spins in a 2P donor molecule –such as the one used in the qubit proposal of Chap-

ter 4– flip spontaneously, but at a rate low enough that it would not a↵ect operation

of the proposed qubit.

Contrary to classical electric dipole spin resonance (EDSR), where a single orbital

is shifted by oscillating electric field within a spatially varying transverse field, for the

flopping-mode qubit, two distinct, spatially separated orbitals are used to increase

the charge dipole moment of the electron. A positive consequence of this is that the

orbital part of the electron wavefunction is very sensitive to electric fields around the

“zero-detuning” point where the wavefunction is equally split between both QDs.

The sensitivity is here proportional to 1
t2c
, where tc is the tunnel coupling between

the two-QD orbitals. The response of the electron to an oscillating electric field can

then be classically interpreted as an oscillating motion of the spin in a magnetic

field gradient and can lead to electron spin rotations, with driving strengths limited

to a few MHz only. The second advantage of using two spatially separated orbitals

compared to one is that the strength of the spin-charge coupling can be further

enhanced by tuning the orbital part of the qubit such that the electron spin-up

orbital state acquires some excited orbital character leading to faster qubit control.

As a consequence a strong electric-dipole coupling emerges between the two qubit

states, the strength of which is proportional to the admixture of excited orbital state

which allows for the fast electric driving. The disadvantage of coupling the qubit
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to electric fields, is that this allows for charge-noise and phonons to couple to the

qubit increasing the dephasing and relaxation mechanisms respectively.

In this section we will show that three separate proposals for EDSR qubits can be

related to the same flopping-mode Hamiltonian in the basis consisting of a pseudo-

spin and the two orbital-states {"̃, #̃}⌦ {L,R}:

H(✏̃) = ⌦z�z/2⌦ 1+ 1⌦ {✏̃�z + tc�x}+ {�⌦z

4
�z +

�⌦x

4
�x}⌦ �z, (3.2.1)

where ⌦z is the bare spin qubit splitting, ✏̃ is related to the electrostatic energy

detuning ✏ = eEd/~ between the two dots, tc is the tunnel coupling between the two

orbital states, and �⌦z/x is the longitudinal/transverse energy di↵erence between

the two dots. The infinite-dimensional orbital Hilbert space H = L2(R3) has been

reduced to a discrete Hilbert space Hc = Span ({|Li, |Ri}) consisting of the two

only orbitals L and R. The validity of this simplification has been confirmed by

tight binding simulations [12].

First we will cover the “flopping-mode” implementation proposed by Hu et

al. [73] and refined by Beaudoin [72] and Benito et. al. [74] where both QDs are

gate-defined, and both energy gradients result from a micromagnet deposited on the

surface of the device. Following this, we cover the flip-flop implementation proposed

by Tosi et al. [12], where one QD is defined at the silicon/silicon–dioxide interface,

while the other QD is defined by a phosphorus donor implanted ⇠ 10 nm below the

interface. The third “all epitaxial flopping-mode qubit” implementation is the pro-

posal described in this thesis. Here, each QD is defined by a multi-donor phosphorus

QD embedded in silicon ⇠ 50 nm below the surface.

3.2.1 Flopping-mode qubit Hamiltonian

In the case of the flopping-mode Hamiltonian, with a magnetic field BL/R

z ẑ +

BL/R

x x̂ on the left/right dot respectively, the transformation to the Hamiltonian

of Equ. 3.2.1 is straightforward. The pseudo-spin basis {"̃, #̃} is equivalent to the

electron-spin basis {", #}, and the di↵erent variables in the Hamiltonian are:

⌦z = �eBz, �⌦z = �e�Bz, �⌦x = �e�Bx, and ✏̃ = ✏,

with Bz = B
L
z +B

R
z

2 ,�Bz/x = BL

z/x
� BR

z/x
, and �e ⇡ 28GHz/T is the electron gyro-

magnetic ratio.

In the remainder of this chapter we will investigate the general flopping-mode
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Figure 3.8: Comparison of flopping-mode electric-dipole spin resonance systems.
Three di↵erent flopping-mode EDSR systems implemented using a) QD-donor, b) QD-QD,
and c) donor-donor sites. The QD-donor and donor-donor implementations both use the
hyperfine interaction from the electron-nuclear system naturally present in donor systems
to generate a spin-orbit coupling. The QD-QD system utilises a micromagnet to create a
spatially-varying magnetic field that can be used to induce an artificial spin-orbit coupling.

Hamiltonian of Eq. 3.2.1 that describes all three systems. In this section we describe

how the electron spin can acquire an electric dipole moment through careful electric

tuning. In Sect. 3.3 we then describe how the emergence of an electric dipole moment

translates into a vulnerability of the spin to charge noise resulting into dephasing.

The optimal tradeo↵ between both e↵ects, will then be investigated in subsequent

in Sect. 3.4.

For the donor–donor implementation, leakage out of the four-dimensional sub-

space can occur through an undesired flip-flop of the electron spin with a di↵erent

nuclear spin than the one intended. This is the only error not described by the

general flopping-mode Hamiltonian of Eq. 3.2.1, and will be investigated in detail

in Chapter 4.

3.2.2 Engineering a pseudo-spin with an electric dipole mo-

ment

A coupled system of spin and charge qubits

We have shown in Sect. C.1 how a variety of Hamiltonians can be reduced to a

general flopping-mode Hamiltonian, H(✏̃) (Eq. 3.2.1).

When electrically driving the flopping-mode qubit using microwave pulses, the

electric field changes periodically with time corresponding to an oscillating value

of the electric detuning parameter ✏. Indeed, an electric field E(t) = Ed cos(!dt),

oscillating with frequency !d along the two dots separated by a distance d results
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in a time-dependent detuning parameter in the flopping-mode Hamiltonian:

✏̃(t) = ✏+ ✏d(t),

where ✏d(t) =
eEdd

2~ cos(!dt) is the detuning drive and ✏ is the static detuning. The

other parameters in Equ. 3.2.1 are una↵ected by the oscillating electric field.

The electric-field burst can be written as a time-dependent detuning parameter

in the flopping-mode Hamiltonian:

✏̃(t) = ✏+ ✏d(t),

where ✏d(t) :=
eEdd

2~ g(t) cos(!dt) is the detuning drive, ✏ is the static detuning and d

is the distance between the two QDs.

We can now write out the full Hamiltonian in the presence of the oscillating

electric field to be:

Hf (t) = H(✏) +Hd(t), (3.2.2)

Hd(t) = 1⌦ ✏d(t)�z. (3.2.3)

H(✏) is the flopping-mode Hamiltonian of Eq. 3.2.1 with a static detuning parameter

✏ instead of the time-dependent ✏̃(t). The driving Hamiltonian is essentially the

dipole moment operator : Hd = dddEd, where ddd = ed

~ 1⌦ �z. Any o↵-diagonal matrix

elements of the dipole-moment operator connecting the two basis states, allows

for electrical driving between the latter. In the current basis, the dipole moment

operator is diagonal, and thus no electrical transition between the chosen basis

states is allowed. We will see however that in the eigen-basis of H(✏), o↵-diagonal

dipole coupling elements appear. The Hamiltonian in Equ. 3.2.2 can be partially

diagonalised by diagonalising the non-coupled charge Hamiltonian 1⌦ (✏�z + t�x).

The charge qubit:

The charge Hamiltonian describing the charge qubit can be diagonalised to ⌦c�z

in the Eigenbasis (|+̃i, |�̃i) outlined below, where ⌦c =
p
✏2 + t2 is half the charge

qubit splitting:

|⌥̃i (✏, t) = (a(±✏)|Li ⌥ sign(t)a(⌥✏)|Ri) . (3.2.4)

where a(±✏)) = 1p
2

p
1± ✏

⌦c
, which describes the shifting of the orbital population

with detuning. It describes the Stark shift of the contact hyperfine interaction to a

nuclear spin on a left/right dot: A(✏) = A |a(±✏)|2.
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The energy spectrum of the charge Hamiltonian is represented in Fig. 3.9 as a

function of the electric detuning parameter ✏. The spectrum displays two curved

branches, the lower/higher one corresponding to the ground and excited charge

states, denoted by the bare eigenstates |⌥̃(✏)i respectively. The two branches result

from an avoided crossing of the uncoupled left and right dot orbital energies, which

vary linearly with the electric detuning amplitude ✏. At far negative/positive detun-

ing (✏ ⌧ 0 and ✏ � 0 respectively), the electronic wave function is pushed towards

the left/right dot, and the ground state is accordingly the left/right QD orbital

|L/Ri. The excited charge state corresponds to the energetically unfavourable con-

figuration where the orbital which is higher in energy is occupied. At zero detuning,

both orbitals have the same energy, and the ground/excited state is an antisymmet-

ric/ symmetric combination of the two. The width of the detuning range within

which the left and right orbitals hybridise is proportional to the tunnel coupling, tc.

The splitting between the ground and excited branches is given by the bare charge

qubit splitting ⌦ = 2⌦c = 2
p
✏2 + t2

c
, which is equal to twice the tunnel coupling tc

at ✏ = 0. The Pauli operators transform as follows under this change of basis:

�z 7!
✏

⌦c

�z +
|t|
⌦c

�x (3.2.5)

�x 7! t

⌦c

�z �
✏

⌦c

sign(t)�x. (3.2.6)

The transformation of Eq. 3.2.5 describes the emergence of an electric dipole moment

between the ground and excited charge states described above.

A time-dependent electric detuning ✏0 + ✏d(t) results in a time-dependent drive

Hamiltonian ✏d(t)�z (in the orbital basis) acting purely on the charge subspace.

Under the above transformation of the �z matrix, this drive Hamiltonian acquires

an o↵-diagonal element ✏d(t)
tcp
✏2+t2c

that describes the driving strength of the charge

qubit. This driving strength displays a strong peak at ✏ = 0 where it is equal to ✏d,

but asymptotically vanishes away from zero detuning. The driving strength at zero

detuning can be interpreted as the product of the geometric charge dipole of the

electron charge Dc = ed multiplied by the electric-field driving strength. Indeed,

✏d = eEdd

2~ = D
c
Ed

2~ . The geometric charge dipole Dc describes the maximal dipole

moment the charge qubit can have when the electron is equally shared between

both dots. At zero detuning the charge qubit can now be described by the simple

two-level Hamiltonian, in the charge eigenbasis:

Hc = ⌦c�z + ✏d(t)�x . (3.2.7)
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Figure 3.9: Charge qubit ground and excited states. a) The charge qubit wavefunc-
tion is a combination of the two QD orbitals that change with the electrostatic detuning
✏. For negative electric detuning, the ground state wavefunction is pushed by the electric
field to the left dot, whereas for positive detuning it is pushed to the right. The charge
excited states display the opposite behaviour. At zero detuning, the ground state wave
function is an equal but antisymmetric combination of the two QD orbitals (|�i), whereas
for the excited state it is a symmetric superposition of the two QD orbitals (|+i). b)
The probability of the electron being in the left quantum dot L as a function of detuning
between the two QDs.
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When driving the electric detuning at the frequency corresponding to the charge

qubit splitting 2⌦c, in a frame rotating with that same frequency, the qubit is well

approximated by Hc = 1/2✏d(t)�x, enabling coherent rotations between the charge

qubit states, with Rabi frequency 1/2✏d(t).

The near-diagonal flopping-mode Hamiltonian:

We can apply the charge diagonalisation transformation Eqs. 3.2.5 and 3.2.6 to

the general Hamiltonian of Eq. 3.2.2, and obtain a near-diagonal Hamiltonian:

Hf = Hb +H 0 +Hd. (3.2.8)

The bare qubit Hamiltonian Hb is diagonal, and describes the non-coupled spin and

charge qubits, H 0 represents the coupling Hamiltonian between the two qubits, and

Hd is the electric-drive Hamiltonian:

Hb = ⌦z�z/2⌦ 1+ 1⌦ ⌦c�z (3.2.9)

H 0 =

✓
�⌦z

4
�z +

�⌦x

4
�x

◆
⌦
✓
✏

⌦c

�z +
t

⌦c

�x

◆
(3.2.10)

Hd = 1⌦ ✏d(t)

✓
✏

⌦c

�z +
t

⌦c

�x

◆
. (3.2.11)

The static Hamiltonian Hb +H 0 determines the eigenstates and energies of the

system which define the qubit. The first term in Hb describes a spin-like state (or

spin qubit) whose energy is defined by a Zeeman-like term, and the second term inHb

describes a charge state (or charge qubit) whose energy is defined by electrostatic

detuning and tunnel coupling. The second term H 0 describes the coupling term

between those spin and charge qubits. The drive Hamiltonian, Hd describes the

electrical drive of the system related to �x and �z.

The energy spectrum for a general implementation of the device is displayed in

figure 3.10 b) as a function of the static detuning parameter ✏. Each of the charge

ground and excited states branches that we described in Fig. 3.9 is now split into

two branches corresponding to the spin configuration | # / "i, and separated by

the Zeeman energy �eB, where �e (in frequency units) is the electron gyromagnetic

ratio. When the Zeeman splitting is smaller than the charge qubit energy, the

four branches do not overlap, and the spectrum is split into four distinct branches

labelled by the electron’s spin and charge states: | # �̃i, | " �̃i,| # +̃i and| " +̃i,
from bottom to top in ascending energy.

If the coupling Hamiltonian is zero (for vanishing energy gradients �⌦x/z), the
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Figure 3.10: Flopping-mode energy spectrum and spin–charge hybridisation.
Each branch of the charge spectrum in a) splits into two branches corresponding to the
two possible electron-spin orientations in b). When the charge and qubit energies are
similar, the two inner branches are close in energy around ✏ = 0 (| " �i and | # +i) in b),
and hybridise due to the coupling Hamiltonian H 0.
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static Hamiltonian reduces to Hb which is already diagonal, the spin and charge

basis states are the energy eigenstates and the drive Hamiltonian can be seen to only

allow transitions between the charge qubit states. This qubit is however extremely

sensitive to charge noise, which is why the flopping-mode qubit is based on the spin

qubit. We thus see that without the coupling Hamiltonian H 0, the spin qubit cannot

be addressed electrically.

For a non-vanishing coupling Hamiltonian H 0, the eigenstates result from a hy-

bridisation of the spin and charge states of the uncoupled system. As we will see next

in an analytical treatment, this hybridisation is especially strong when the charge

and spin qubit energies are similar (the charge and spin qubits are in resonance).

Hybridisation can be interpreted as a rotation of the uncoupled spin and charge

product states, which when applied to Hd will result in dipole-coupling elements

between the hybridised spin qubit states.

Analytical estimation of spin–charge hybridisation

The coupling Hamiltonian H 0 is a small perturbation of the diagonal matrix H0 =

Hb + Hd, as it is proportional in magnitude to the gradients �⌦x/z, which will

be at least one order of magnitude smaller than the bare spin qubit splitting ⌦s.

Within perturbation theory, the coupling matrix a↵ects the qubit eigenstates and

results in a hybridisation of the spin and charge eigenstates. Perturbation theory

also generates an e↵ective Hamiltonian restricted to the qubit subspace

Hybridisation of spin and charge eigenstates To estimate the degree of spin–

charge hybridisation, we employ first-order perturbation theory on the spin- charge

eigenstates | # �̃i, | " �̃i,| # +̃i and| " +̃i. The main contribution arises from the

eigenstates | " �̃i and | # +̃i that are close in energy for small spin–charge detuning

� = ⌦ � ⌦s is small. This results in perturbed eigenstates |g" �i and |g# +i where

the unperturbed states have hybridised. To first order in the gradients �⌦z/x, we

find2 :

hg" �| # +̃i = �h (3.2.12)

hg# +| " �̃i = +h (3.2.13)

with h =
t�⌦x

2⌦�
. (3.2.14)

2We use first-order perturbation of the unperturbed eigenstate |ni through interaction with the

other unperturbed eigenstate |mi resulting in the perturbed eigenstate |eni: hm|eni ⇡ hm|H0|ni
En�Em

.
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The degree of spin–charge hybridisation3 h is inversely proportional to the spin–

charge detuning � and proportional to the transverse energy di↵erence �⌦x, so that

when the spin–charge detuning becomes comparable in magnitude to the transverse

energy gradient, the spin will hybridise to charge. We expect that this will coincide

with the emergence of an electric dipole moment for the hybridised spin qubit.

This e↵ect can be treated analytically by performing perturbation theory on the

Hamiltonian instead of the eigenvectors.

An e↵ective qubit Hamiltonian The perturbative e↵ect of the coupling Hamil-

tonian H 0 on the uncoupled (diagonal) spin–charge Hamiltonian H0 is given by the

following e↵ective Schrie↵er–Wol↵ transform, which gives the following approxima-

tion of the full Hamiltonian Hf = H0 +H 0, to zeroth, first and second-order:

H(0)
mm0 = H0

mm0 , (3.2.15)

H(1)
mm0 = H 0

mm0 , (3.2.16)

H(2)
mm0 =

1

2

X

l

H 0
ml
H 0

lm0

✓
1

H0
mm

�H0
ll

+
1

H0
m0m0 �H0

ll

◆
. (3.2.17)

Applying this transformation, and subtracting global energy shifts, yields the

following approximation of the qubit Hamiltonian, to second-order in the gradients

�⌦z/x:

Hr =
⌦̃s

2
�z + ⌦r�x, (3.2.18)

in the spin–charge hybridised eigenbasis:
n
|g" �i, |g# �i

o
. The perturbed qubit split-

ting and dipole coupling element are given by:

⌦̃s = ⌦s

⌦̃
(1)
sz }| {

�✏�⌦z

⌦

⌦̃
(2)
sz }| {

� ⌦2
s
� (2✏)2

2⌦s (⌦2 � ⌦2
s
)

✓
�⌦x

2

◆2

, (3.2.19)

⌦r = �t2�⌦x (2⌦2 � ⌦2
s
)

⌦3 (⌦2 � ⌦2
s
)

✏d, (3.2.20)

and we have defined the charge qubit energy spacing ⌦ = 2⌦c.

The qubit energy ⌦̃s is given to zeroth order by the bare spin qubit energy ⌦s,

reflecting the fact that the qubit is based on the spin qubit that is slightly hybridised

to charge. The Rabi frequency ⌦̃r, which vanishes to zeroth order, becomes finite to

3At zero electric detuning, the degree of hybridisation simplifies to the ratio of the two quantities:
h(✏ = 0) = 1

4
�⌦x
� .
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first order in �⌦x, for finite charge qubit splitting ⌦ and describes the emergence of

an electric dipole moment. It is proportional to the electric detuning drive amplitude

✏d and to the magnitude of the transverse gradient �⌦x. This transverse term ⌦̃r

allows full electrical control of the flopping-mode qubit through an electric field

oscillating at a microwave frequency corresponding to the qubit splitting ⌦̃s and is

at the heart of how the qubit operates.

The equations above that describe the qubit energy and Rabi frequency highlight

the existence of two regimes of operation of the flopping-mode qubit: the first regime

where the spin–charge hybridisation dominates the qubit energy and the spin–charge

detuning � is small (� . ⌦s), and the second regime where the spin and charge

qubits are weakly hybridised (� & ⌦s) and the qubit energy and Rabi frequency can

be understood classically as the motion of a spin in a magnetic gradient. Depending

on which regime the qubit is in the di↵erent dephasing mechanisms will dominate

the qubit error.

Qubit energy and coupling in the hybridised regime The modification of

the qubit energy due to the hybridisation of the spin qubit to the charge qubit is

described by the second-order term ⌦̃(2)
s in Eq. 3.2.19 (proportional to �⌦2

x
), the

magnitude of which can be substantial when the term (⌦2 � ⌦2
s
) in the denominator

approaches zero, i.e. when the bare charge and spin qubit splitting are comparable.

Indeed, the second-order energy term is proportional to the degree h of spin–charge

hybridisation of Eq. 3.2.14, and simplifies for low spin–charge detuning (⌦s ' ⌦):

⌦̃(2)
s

= �h · �⌦x⌦(⌦2
s
� 4✏2)

4tc⌦s(⌦ + ⌦s)
���!
⌦s!⌦

�h

2

2tc
⌦

· �⌦x

2
. (3.2.21)

The expression for the Rabi frequency ⌦r in Eq. 3.2.20 is proportional to the

degree of spin–charge hybridisation h:

⌦r = �h
2tc
⌦

2⌦2 � ⌦2
s

⌦(⌦ + ⌦s)
✏d ���!

⌦s!⌦
�h

2

2tc
⌦

· ✏d =
h

2
⌦charge

r
. (3.2.22)

For small spin–charge detuning �, the qubit Rabi frequency reduces to the charge

qubit Rabi frequency multiplied by the degree of spin–charge hybridisation, where

⌦charge
r

= 2tc
⌦ ✏d is the charge qubit Rabi frequency. This highlights that for small

spin–charge detuning, the spin hybridises to charge and acquires some of the charge

qubit’s electric dipole moment.

In next section, we derive the expressions for the qubit splitting and Rabi fre-

quency in the weak spin-charge coupling regime where the qubit operation can be
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interpreted classically as the motion of an electron spin in longitudinal and trans-

verse magnetic gradient.

Qubit energy and coupling in the classical regime. For large spin–charge

detuning � = ⌦ � ⌦s >> 0, the perturbative contribution of the second-order

energy term ⌦̃(2)
s becomes negligible compared to that of the first-order term ⌦̃(1)

s =

� ✏

⌦c
�⌦z/2 and can be written in terms of a gradient function G(✏) = � ✏

⌦c
:

⌦̃(1)
s

= G(✏)
�⌦z

2
. (3.2.23)

Importantly we find that in the far-detuned regime ⌦ � ⌦s, the Rabi frequency of

Eq. 3.2.20 is also related to G(✏):

⌦r = �t2�⌦x (2⌦2 � ⌦2
s
)

⌦3 (⌦2 � ⌦2
s
)

✏d ���!
⌦s!⌦

�2t2

⌦3
�⌦x✏d =

1

2

@

@✏

✓
G(✏)

�⌦x

2

◆
✏d . (3.2.24)

We now show that G(✏) describes the response of the electron’s wavefunction

to the electric field, and can be interpreted as a spatial gradient experienced by a

classical point-like spin displaced by an electric field. Indeed, the electron occupies

the left/right QD orbital with probability pL/R(✏) = |a(±✏)|2 = 1
2

⇣
1� ±✏

⌦c

⌘
, where

the coe�cient a(±✏), describes the hybridisation of the left and right orbitals forming

the charge eigenbasis (see Eq. 3.2.4). If the electron has an energy EL/R = ±E when

fully centred on the left and right dot respectively, the energy of the electron when

its wave function is spread over the two QD can be estimated by the sum Eavg(✏)

of the left and right dot energies EL/R, weighted by the probability of occupation of

the left and right orbitals respectively. This yields the function G:

Eavg(✏) := pL(✏)EL + pR(✏)ER =
�
|a(✏)|2 � |a(�✏)|2

�
E (3.2.25)

= � ✏

⌦c

E (3.2.26)

= G(✏)E. (3.2.27)

The approximation Eavg was validated by tight binding calculations by Tosi et

al. [12]. The function G(✏) is plotted in Fig. 3.11 b). It asymptotically tends

towards ±1 at large negative/positive electric detunings, where the wave function is

confined to a single QD and shows a sharp negative slope at ✏ = 0, where the wave
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function rapidly swaps from the left to the right QD within a width proportional4

to the value of the tunnel coupling tc.

For the qubit first-order energy term ⌦̃(1)
s = G(✏)�⌦z

2 , the energy term E = �⌦z
2

is the longitudinal energy term, and ⌦̃(1)
s describes the averaged longitudinal energy

experienced by the electron spin. Similarly, the transverse coupling element E =

�⌦x/2 produces an electric detuning dependent Hamiltonian transverse coupling

element Ex(✏) = G(✏)�⌦x
2 experienced on average by the electron spin.

We now consider driving the electric detuning with a sine wave of amplitude ✏d

centred around the static detuning value ✏0 where the slope of G is maximal, as

described in Fig. 3.11 b). The transverse coupling experienced by the electron then

follows a sine wave of amplitude ⌦clas.
r

proportional to the derivative of the gradient

Ex(✏) at ✏0 (to first order in ✏). This allows driving of the qubit:

⌦clas.
r

=
@

@✏
Ex(✏0)✏d =

@

@✏

✓
G(✏)

�⌦x

2

◆
✏d. (3.2.28)

This oscillating transverse coupling ⌦clas.
r

equals half the asymptotic limit of the

perturbative expression for the Rabi frequency :⌦clas.
r

= ⌦r/2, and shows that the

classical interpretation is valid. This classical interpretation is only valid if the

electron is driven adiabatically so that its wave function responds to the electric

drive and thus experiences the instantaneous value of Ex at each given time. This is

the case when the charge-qubit splitting is much larger than the spin-qubit splitting,

so that it is unlikely for the electron to leak into the excited charge-state, and the

electron wave function responds to electric drive.

The first-order approximation of the Rabi frequency ⌦(1)
r /2 is plotted in green

Fig. 3.11 a against the relative spin–charge detuning �/⌦s for ✏d = 1. As expected,

the model fits the numerical data (blue markers) very well for detunings larger than

1, corresponding to the point where the charge qubit splitting is twice the qubit split-

ting. For smaller detuning � < 1, this first-order approximation underestimates the

electric driving strength, because it does not capture the spin–charge hybridisation

that scales like 1/�. The full analytical model for the Rabi frequency in Eq. 3.2.20,

that captures both regimes is displayed in red in Fig. 3.11 a) and fits the numerical

data well.

Summary In summary, we have seen that the qubit’s energy and dipole coupling

strengths can be split into two regimes. At low spin–charge detunings � ⇡ 0,

4G = ±0.5 at ✏ = ⌥0.58 tc
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Figure 3.11: Hybridisation- and derivative-based driving. a) normalised qubit
electric-dipole moment versus the relative spin–charge detuning �/⌦s. The numerical
simulations (blue dots), that are well reproduced by the second-order perturbative ap-
proximation ⌦r(✏ = 0) (red). The classical model ⌦clas.

r (green line) reproduces the nu-
merical data well for large spin–charge detunings, where the driving becomes adiabatic
wrt. charge and the drive can be interpreted as originating from the motion of the electron
in a transverse magnetic-field gradient as illustrated in b).

the spin qubit is strongly hybridised and both the energy and the electric coupling

strength of the qubit are proportional to the degree of spin–charge hybridisation.

On the other hand, at large spin–charge detunings � >> 0, at which the spin is

only weakly hybridised to charge, the qubit energy and driving strength can be in-

terpreted by the classical model of a point-like electron spin moving in a longitudinal

and transverse magnetic gradient, as a response to a static and microwave electric

field respectively. Therefore, depending on the spin-charge hybridisation we need

to consider the full qubit Hamiltonian up to higher-orders which can lead to faster

qubit driving. In the following section, we will introduce the concept of charge de-

phasing and show how charge dephasing can be reduced at particular qubit energies

called sweet spots, and highlight that the sweet spots are a↵ected by the interplay

of the di↵erent order derivatives in the perturbative approximations for the energy

and Rabi terms that we studied in this section.

Appendix B.1 contains the derivation of the full 4 dimensional flopping-mode

e↵ective Hamiltonian using a second-order Schrie↵er–Wol↵ transform (including the

two excited charge states).
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3.2.3 Charge dephasing, and dephasing sweet spots in the

flopping-mode qubit

Stable operation of a qubit relies on the qubit phase precession speed, given by the

qubit’s energy splitting ⌦̃s = 2z staying stable in time. Variations in the qubit

energy due to environmental noise will translate into variations in the speed of the

phase precession, resulting in an uncertainty in the qubit’s phase. This process is

called dephasing and can be quantified by the dephasing rate �z.

In the case of the flopping-mode qubits, charge noise translates into variations

in the electric detuning ✏ that can be modelled by a random variable ✏ described

by probability distribution function (PDF) P (✏) with a standard deviation �✏ (the

noise amplitude5). In the case of the flopping-mode qubit, the qubit splitting 2z(✏)

is dependent on ✏, so that variations in the electric detuning translate into variation

in the qubit energy. The dephasing rate of the qubit is then defined as standard

deviation 2�z of the dependent random variable 2z(✏). Charge noise will not only

lead to variations in the qubit energy but also in the qubit’s Rabi frequency ⌦r =

2x(✏), translating into uncertainty in the qubit’s precession angle when it is driven.

This process can also be interpreted as dephasing, and is captured by a x-dephasing

rate 2�x.

Section 3.3.3 shows that the random variable ✏ can be well described by a Gaus-

sian PDF, centred around the static value of ✏ and with a standard deviation �✏,

so that the dependent random variables z(✏) and x(✏) can also be described by a

Gaussian PDF with standard deviation given to first and second-order by:

�z/x ⇡ @z/x(✏)

@✏
�✏ +

@2z/x(✏)

@✏2
�2
✏

2
. (3.2.29)

At particular values of detuning which we denote as ✏ss, the derivatives of the de-

pendent variable z or x vanish to nth order and the corresponding terms in the

expansion of �z/x vanish to the same order n resulting in a lower dephasing rate.

These positions ✏ss are called n-th order (z/x)-dephasing sweet spots[12, 74] and are

important for low-error operation of the qubit. The parameters �z(x) can be readily

estimated by using the analytical models for two Hamiltonian parameters ⌦̃s and

⌦r derived in Sect. 3.2.2.

A first-order sweet spot results in a first-order protection of the qubit energy to

noise. The first-order energy term (proportional to �⌦z) is a monotonous function

of the detuning variable, and thus does not display a sweet spot. We will now see,

5For details on the charge dephasing modelling, see Sect. 3.3.3.
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how for the qubit energy model, which is the sum of the zeroth, first and second-

order terms, the relative strength of the longitudinal and transverse energy gradient

determines the presence and position of the detuning sweet spots.

Figure 3.12 shows the analytical qubit splitting and the qubit coupling (Eqs. 3.2.19

and 3.2.20) for two of the flopping-mode implementations discussed in Sects. C.1.

The figure illustrates the di↵erences in the energy spectrum for devices with small

and large energy gradients.

The first and second-order qubit energies are plotted in Figs. 3.12 a) and d)

for a small and large longitudinal energy gradient respectively, for three values of

spin–charge detuning �/⌦s (green to orange), corresponding to decreasing spin–

charge hybridisation. The first-order term is displayed in blue and does not change

appreciably with the spin charge detuning (only a single curve is plotted), while the

second-order term (in green to orange) significantly changes with the spin–charge

detuning. The first-order term (in blue) is a monotonous function of the detuning,

and thus does not display any sweet spot. The second-order term however displays

a clear sweet spot at ✏ = 0, where the spin and charge qubit energies are closest, and

the spin–charge hybridisation is thus maximal. While the first-order term is nearly

flat for the small longitudinal gradient, it changes appreciably for the larger-gradient

device, over a range comparable to the second-order term.

The full analytical model for the qubit energy in Eq. 3.2.19, including the bare

spin-qubit energy (a constant w.r.t. ✏), the first and the second-order term is de-

scribed by the solid lines in Fig. 3.12 b) and e). The corresponding full numerical

simulation is displayed by solid markers, showing that in both cases, the analytical

model fits the numerical simulation very well. For the device with smaller longitu-

dinal gradient, the energy is mainly determined by the second-order term and thus

by the degree of spin–charge hybridisation. Consequently, the z-dephasing sweet

spot remains at ✏ = 0 for all three chosen spin–charge detuning values. For the

device with larger longitudinal gradient however the gradient of the first-order term

shifts the location of the first order z-dephasing sweet spot towards negative electric

detunings. For increasing spin -charge detunings (bottom to top), the magnitude

of the second-order term decreases so that longitudinal gradient becomes dominant

and the first order sweet spot disappears (for a detuning of 6%). Just before the

first order sweet spot disappears, at the intermediate spin–charge detuning value of

4.5%, the qubit energy becomes flat at about ✏ = 0.5GHz. This points corresponds

to a second-order sweet spot, where the derivatives of the energy with respect to de-

tuning disappear up to second-order, i.e. when the second derivatives of the first and
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Figure 3.12: E↵ect of the longitudinal magnetic field gradient on the qubit
energy. a) The first and second derivative (1st order and 2nd order) of the qubit energy
for small longitudinal magnetic field gradient, �Omegaz. The 1st order is relatively flat
over the investigated detuning region minimising charge noise and the 2nd order plot (for
di↵erent spin-charge detunings, � as shown in the legend at the top of the figure) shows
a minimum near ✏ = 0. b) The qubit energy up to second order as a function of detuning
showing first-order sweet spots near ✏ = 0. c) The qubit dipole transition moment, X
(proportional to the Rabi frequency) over the same detuning range showing first-order
sweet spots near at the same detuning positions as for the qubit energy. d) The same
first and second derivatives as in a) but for large longitudinal magnetic field gradients.
Here, the 1st order energy changes significantly as a function of detuning due to the large
�Omegaz. e) The qubit energy as a function of detuning up to second-order showing a
first and second order sweet spot away from ✏ = 0. f) The dipole transition moment still
shows first-order sweet spots at ✏ = 0 which means that the optimal detuning position is
di↵erent for x and z-dephasing leading to lower overall qubit fidelity for larger �Omegaz
values.
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second-order term cancel each other. The detuning value � at which this happens is

determined by the relative magnitude of first and second-order terms that are them-

selves determined by the magnitude of the longitudinal and transverse gradients

�⌦z/x respectively. This second-order sweet spot is at the heart of the flip-flop and

flopping-mode proposals, because by itself, it o↵ers an increased protection with re-

spect to detuning noise. Note however that this second-order z-dephasing sweet spot

is never at zero detuning, as opposed to the x-dephasing sweet spot. In Sect. 3.4.2 it

will be shown that for realistic devices and optimal drive amplitude, the x-dephasing

errors (linked to charge-noise induced variations in the Rabi frequency) is dominant

over the z-dephasing error (linked to charge-noise induced variations in the qubit

energy). Driving at the second order SS z-dephasing sweet spot is therefore rarely

optimal.

In Fig. 3.12 c) and f), we compare the analytical model for the qubit Rabi

frequency from Eq. 3.2.20 to di↵erent strengths of the longitudinal magnetic field

gradient. Again, the model fits the numerical data very well. The Rabi frequency

at unit drive amplitude ✏d = 1 corresponds to the ratio Dsc/Dc of the flopping-

mode qubit dipole moment over the geometric charge dipole moment ed. As for

the charge-qubit dipole moment, the flopping-mode qubit dipole moment show a

peak at ✏ = 0 and vanishes asymptotically away from zero. The peak increases

for decreasing spin–charge detuning, reaching up to 15% of the geometric-charge-

qubit dipole moment at a relative spin–charge detuning �/⌦̃s = 3%. The peak in

the Rabi frequency at ✏ = 0 corresponds to a first order x-dephasing sweet spot

for both devices, irrespective of the spin–charge detuning, and o↵ering resilience to

electric-detuning noise coupling via the Rabi frequency.

Numerical calculations of the z- and x-dephasing rate are displayed in Fig. 3.13 a)

and b) respectively as a function of spin–charge detuning � and the electric detuning

✏, and display the sweet spots discussed with the help of the analytical expression for

the qubit energy and Rabi frequency discussed above. In the plots in a) and b) three

horizontal coloured dotted lines indicate illustrative values of spin–charge detuning

in three di↵erent regimes, the highly hybridised regime (grey square marker) at

� = 0.1, the weakly hybridised regime (red triangular marker) at � = 2, and the

intermediate regime at � ⇡ 0.3 (green star). The qubit energy and normalised

dipole coupling strength is plotted in Fig. 3.13 c) and d) for these three linecuts.

The first order z- and x- sweet spot are indicated by black dotted lines in Fig. 3.13 a)

and b). While the x-dephasing first-order sweet spot stays at ✏ = 0 for any value of

the spin–charge detuning �, the z-dephasing first-order sweet spot describes an arc
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originating at ✏ = 0 and bending to the right.

At low spin–charge detunings the qubit energy has two extrema indicated by

grey triangles at which the first-order derivative with respect to electric detuning

disappears (see grey curve in Fig. 3.13 c ). The minimum at ✏ = 0 corresponds to the

minimum in the second-order energy term ⌦(2)
s that dominates at low spin–charge

detunings, while the maximum at larger detuning values results from a competition

between the second-order and first-order terms. These two extrema correspond to

the two z-dephasing sweet spot indicated in the colour plot above by the same

markers. At large spin–charge detunings (e.g. red triangular markers) the qubit

energy (red curve in Fig. 3.13 c) is monotonous. Accordingly no dephasing sweet

spot can be found in a). At the particular spin–charge detuning indicated by the

green star in Fig. 3.13 a), the first and second derivatives of the first-order and

second-order energy terms ⌦(1)
s and ⌦(2)

s cancel out at one particular position of

electric detuning corresponding to a saddle point (grey circle). This corresponds to a

single second-order z-dephasing sweet spot indicated by a white circle in Fig. 3.13 a).

In Fig. 3.13 e) we show how these sweet spots make the qubits insensitive to

dephasing noise. The origin of dephasing noise is due to fluctuations in the qubit

energy relative to some external source, either electrical or magnetic. The coupling

of charge noise to the qubit energy is through the detuning parameter between the

two QDs. The order of the sweet spots (n) corresponds to the nth derivative of the

qubit energy along the detuning axis. The qubit energy, E shown in Fig. 3.13 e)

shows a first-order sweet spot at ✏ = 0, that is, dE/d✏|✏=0 = 0. As a result any

fluctuations when the qubit is centred around ✏ = 0 will have a negligible e↵ect on

the qubit energy (see right side of Fig. 3.13 e)). If the qubit is detuned such that

✏ 6= 0, then dE/d✏|✏ 6=0 6= 0 and for the same noise distribution (see bottom inset

of Fig. 3.13 e)) the qubit will experience larger dephasing (see left side of Fig. 3.13

e)). This can be extended to second-order sweet spots where the second-derivative

of the qubit energy goes to zero at some value of ✏.

In summary, with Fig. 3.13 we have shown that the while the x-dephasing rate

exhibits a single first-order dephasing sweet spot at zero electric detuning, the z-

dephasing sweet spot results from a competition between the first-order energy term

that describes the longitudinal gradient and does not have any sweet spot and the

second-order energy term that has a first-order sweet spot at ✏ = 0. This first order

z-sweet spot survives as long as the second-order term dominates the longitudinal

gradient. This competition results in the first-order z-dephasing sweet spot describ-

ing an arc in the ✏ � � plane. A second-order z-dephasing sweet spot exist at the
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Figure 3.13: Locations of the dephasing sweet spots in the flopping-mode qubit.
The z- and x- charge dephasing rates �z and �x are depicted in a) and b) respectively, and
correspond to variations in the qubit energy and Rabi frequency (respectively). The black
dotted lines indicate the location of the first order z(x)-dephasing sweet spots (z-sweet
spot and x-sweet spot), at which the first derivative of the qubit energy(dipole) moment
w.r.t. electric detuning ✏ vanishes. At one specific location, the z-sweet spot is protected
to second-order and corresponds to a second-order sweet spot (white circle). c) and d)
show line cuts of the qubit energy and normalised dipole moments indicated by horizontal
lines in the plots in a) and b) respectively the plots above. e) Illustration of the first
order sweet spot mechanism. All data are simulated for B = 0.2T, �⌦z = 5MHz and a
charge noise amplitude �✏ = 0.3GHz.
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Figure 3.14: Demonstration of the change in the z-dephasing sweet spot of the
flopping-mode qubit with longitudinal gradient �⌦z, at a magnetic field B = 0.2T.
The plots depict the z-dephasing rate �z corresponding to variations in the qubit energy
due to charge noise, for increasing magnitudes of longitudinal gradients �⌦z from left
to right. The first order sweet spot (z-sweet spot) is indicated by the dashed black line.
The dephasing rate, �z is seen to increase over the whole parameter space with increasing
longitudinal magnetic field gradient, �⌦z. The arc described by the first order z-sweet
spot is seen to become smaller with increasing longitudinal gradient �⌦z.

apex of that arc, and corresponds to one specific value of the spin–charge detuning

and the electric detuning where the first and second-order derivatives of the first and

second-order terms are similar in magnitude and cancel out. At this position, the

energy is insensitive to second-order to electric field fluctuations and the z-dephasing

rate is as low as ⇠ 10 kHz.

Because the presence of the first-order z-dephasing sweet spot depends on the

second-order energy term dominating the longitudinal energy gradient, the survival

of the first-order z-sweet spot can be extended to larger spin–charge detunings by

decreasing the longitudinal di↵erence �⌦z that determines the magnitude of the

longitudinal-energy gradient. The persistence of the first-order z-dephasing sweet

spot to large spin–charge detuning values is important because the x-dephasing rate

decreases strongly with increasing spin–charge detuning and is quite large for low

detuning values (see Fig. 3.13 b) ). The x-dephasing rate is proportional to the drive

amplitude ✏d, (arbitrarily set to 0.1GHz in the figure), so that finding the optimal

operation point of the qubit which minimises both z- and x-dephasing errors (and

other errors as well) necessitates a multi-dimensionsal optimisation (see Sect. 3.4).

The dependence of the z-dephasing sweet spot on the magnitude of the longitu-

dinal gradient is illustrated in Fig. 3.14, in which the z-dephasing rate is plotted for

four increasing values of the longitudinal di↵erence �⌦z, from a value of 0.5MHz

expected for the 2P1P3e flopping-mode implementation (see Chapter 4) to a value

of 20MHz that is close to the 13MHz expected for the flip-flop qubit [12].
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The arc described by the first-order z-dephasing sweet spot is large at a low

longitudinal-energy gradient. The dephasing rate at the first and second-order sweet

spot also increases with the gradient from well below 1 kHz at low �⌦z = 0.5MHz

to about 100 kHz at the second-order z-sweet spot at �⌦z = 20MHz. Notably, the

dephasing rate in the regime where the longitudinal gradient is dominating (above

the arc) also increases with the magnitude of the longitudinal energy gradient. This

is because the first order term of the qubit energy is proportional to �⌦z.

3.2.4 Summary

In summary, we have shown in Sect. 3.2 that the flopping-mode Hamiltonian de-

scribes three proposed DQD qubits. Using perturbation theory we illustrated how

the emergence of an electrical dipole moment for the electron spin is linked to the

hybridisation of the spin to the charge qubit defined by the electron charge and the

two QDs. We saw that for weak hybridisation, the electric driving can be under-

stood classically as the motion of an electron spin in a magnetic gradient. Finally, a

simple analysis of charge dephasing reveals the presence of di↵erent dephasing sweet

spots in the qubit systems, where we expect the error rate of the qubit to be low.

3.3 Modelling errors during driving of the flopping-

mode qubits

In Sect. 3.2 we have reduced the general flopping-mode qubit Hamiltonian to a

coupled four level system, and shown the emergence of a dipole-coupling element

between the resulting charge-hybridised spin-eigenstates, which define a qubit. This

dipole coupling allows electrical driving between the qubit states. The viability

of such an electrically driven qubit, as part of a universal quantum computer for

example, can now be assessed by estimating the error of the single-qubit gates used

for qubit control.

3.3.1 Errors for the driven flopping-mode qubit

Imperfect control of the physical system impacts the evolution of the system and

generates errors. This cannot be avoided because the qubit, rather than being

isolated, is interacting with it’s environment, for example during measurement and

manipulation. The interaction with the coupled system may be described as an

interaction with a leakage state, which can be modelled by a unitary evolution of
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the system that includes the leakage state. It may not be possible to avoid this

interaction due to imperfect control over the system. In some cases, the interaction

with the coupled system is so complex that it cannot be described by a unitary

operation and thus needs to be approximated statistically. Dephasing and relaxation

which we will consider in the present chapter belong to this category. Leakage,

dephasing and relaxation are the three general mechanisms leading to errors that

we will consider.

Leakage is the mechanism by which the qubit wave function spreads out of the

qubit subspace. For the flopping-mode qubit, the qubit states are indeed coupled to

excited charge states, and strong non-adiabatic manipulation of the qubit leads to

leakage. Dephasing, the second mechanism we consider, results from the interaction

of the system with a noisy environment. It consists of unpredictable variations in

the unitary evolution of the system which lead to control errors. The dominant

noise source for the flopping-mode qubit is charge noise (see Sect. 3.3.3) and is in-

duced by electric fluctuators near the qubit. We will also consider dephasing caused

by magnetic fluctuators near the qubit. Finally, relaxation is the thermodynamic

process by which a system reaches its ground energy state. For the flopping-mode

qubit the dominant relaxation mechanism is charge T1-relaxation (see Sect. 3.3.4).

It consists of the excited charge state emitting its energy as a phonon and relaxing

to its ground state [82].

We will combine the charge dephasing error e✏, the magnetic dephasing error eB,

the T1 relaxation error eT1 and the leakage error eleak into one total error metric etot,

assuming that they all originate from independent random processes:

etot = 1� (1� e✏)(1� eB)(1� eT1)(1� eleak). (3.3.1)

Independence is assumed in this because magnetic and charge dephasing errors as

well as T1-relaxation errors originate from di↵erent physical mechanisms linked to

charge fluctuators, magnetic nuclear spin isotopes and phonons, respectively [73, 72].

Leakage and T1 processes can be combined into a separate error, which will be

covered in the T1 error estimation eT1 .

To obtain a representative error metric,one needs to average the total gate error

over all possible initial states of the qubit. This is crucial, because some errors can

vary by more than one order of magnitude. In polar coordinates the initial state

can be written as  i = cos ✓/2|0i+sin ✓/2eı�|1i, where ✓ and � are the longitudinal

and azimuthal angles of the state on the Bloch sphere and the qubit ground/excited

states are |0i and |1i respectively. Averaging of an error e( i) over the Bloch sphere
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B can then be performed as an integration over the unit sphere :

he( i)iB :=
1

4⇡

ˆ 2⇡

0

ˆ
⇡

0

e ( i(✓,�)) sin ✓d✓d�. (3.3.2)

The final error is given by:

e = hetot(✓,�)iB (3.3.3)

⇡ h1� e✏iB h1� eBiB h1� eT1iB h1� eleakiB . (3.3.4)

In the last step we approximate the angle integrals of the total error by the

product of the integrals of the di↵erent error components. This approximation allows

for the integrations to be performed analytically. At the same time it reproduces the

exact results obtained by numerical integration. We will also see that some errors

do not depend on the qubit start-state in which case the approximation is exact.

In the following three subsections we will introduce separate Bloch sphere av-

eraged error models for each error type. Then, in Sect. 3.3.2 we consider leakage

errors to fully model the error pathways in flopping-mode qubits.

3.3.2 Leakage modelling of flopping-mode qubits

Leakage consists in a spread of the wave function outside of the qubit subspace due

to external couplings. Leakage can thus be described using a Hamiltonian includ-

ing all leakage state. In the case of the flopping-mode qubit the qubit states are

the hybridised spin states
n
|0i = |g" �i, |1i = |g# �i

o
in the charge ground state |�i

and the leakage states correspond to the states where the charge has been excited:n
|2i = |g" +i, |3i = |g# +i

o
. In appendix Sect. B.1, we show using second-order per-

turbation theory that the full flopping-mode Hamiltonian can be reduced to the fol-

lowing form in the systems eigenbasis
n
|0i = |g" �i, |1i = |g# �i, |2i = |g" +i, |3i = |g# +i

o
,

when operated close to zero electric detuning (✏ = 0):

Hfm =

0

BBBBB@

0 ⌦r ⌦l 0

⌦r ⌦̃s 0 ⌦l

⌦l 0 ⌦̃ ⌦r

0 ⌦l ⌦r ⌦̃ + ⌦̃s

1

CCCCCA
. (3.3.5)

The Hamiltonian Hfm describes an electron spin with an energy splitting ⌦̃s and

an electric coupling strength ⌦r, that can be in either the charge ground state, or in
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Figure 3.15: Reversible and irreversible leakage population during an adiabatic
Gaussian pulse. The electric detuning pulse is plotted in a) as a function of time,
with the Gaussian pulse envelope indicated in black. The leakage population during such
an adiabatic pulse is shown below in b) (in black). The population that is de-excited
during the second half of the pulse (in green) corresponds to reversible leakage, while the
population leakage populution at the end of the pulse corresponds to irreversible leakage

the charge excited state. Direct charge excitation of the spin states is described by

the matrix element ⌦l ⇡ tc
⌦ , that describe the charge–qubit electric dipole moment.

In order to drive only the qubit transition, we will gradually increase and then

decrease the drive electric-field amplitude in time using a symmetric Gaussian pulse

shape (see Fig. 3.15 a). The time dependent electric drive leads to a time dependent

occupation of the leakage states. Using the Gaussian pulse, the occupation propor-

tion of the leakage states first increases when the pulse amplitude increases and then

decreases when the pulse amplitude decreases. A symmetric continuous pulse shape

starting and ending at zero allows for most of the leakage state population to be

de-excited in the second half of the pulse [83], for low enough drive amplitudes (see

Fig. 3.15 b).

Irreversible leakage leads to errors with a finite probability, proportional to the

leakage state occupation at the end of the pulse, for the qubit to collapse into one

of the leakage states upon measurement. The irreversible leakage error is thus given

by the occupation probability of the leakage states at the end of the pulse.

Reversible leakage leads to errors if the state into which the system temporarily

occupies is itself prone to errors. The two main errors we will discuss in relation

to this are dephasing and relaxation via the excited charge states. Section 3.3.3

will show that charge dephasing via the excited charge-states is negligible, but T1
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relaxation of the excited charge states can lead to significant errors. Indeed, the

excited charge states are temporarily occupied during pulsing, leading to a finite

probability for the states to relax back to the ground state. In Section 3.3.4 we

relate this error to the time integrated excited charge state proportion during the

pulse. We estimate this integral in the present section before deriving a model for

the irreversible leakage error.

In our simulations the electric-field burst E(t) lasting a time tp is shaped using a

Gaussian pulse envelope g(t, tp) plotted in Fig. 3.15 a): E(t) = Ed · g(t, tp) cos(!dt),

where !d is the drive frequency.

g(t, tp) =
1� exp

⇣
2t(tp�t)

t2p

⌘

1� e1/2
. (3.3.6)

The time evolution of the flopping-mode Hamiltonian Hfm of Eq. 3.3.5 is simulated

in the rotating frame (RF) that is locked to the phase precession of the qubit.

When driving the microwave electric field E(t) at the frequency corresponding to

the qubit splitting ⌦̃s the rotating wave approximation (RWA) yields the following

Hamiltonian in the rotating frame (more details on the RWA in Appendix B.2):

HRF

fm =

0

BBBBB@

0 ⌦r/2 ⌦l/2 0

⌦r/2 0 0 ⌦l/2

⌦l/2 0 �ql ⌦r/2

0 ⌦l/2 ⌦r/2 �ql

1

CCCCCA
, (3.3.7)

where �ql = ⌦̃ � ⌦̃s is the spin–charge detuning that describes the energy gap

between the second and third states in the energy spectrum |g# �i and |g" +i. This

Hamiltonian describes the errors related to reversible and irreversible leakage into

the excited charge states.

The reversible leakage can be characterised by the time integrated overlap Id

of the qubit state with the two leakage states, during the ⇡/2 Gaussian pulse of

duration t⇡/2,

Id :=

ˆ
t⇡/2

0

3X

i=2

|h (t0)|ii|2 dt0. (3.3.8)

The overlap integral, Id can be estimated by assuming a non-noisy unitary time

evolution of an initial state on the Bloch sphere. We find that the integral is inde-
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pendent of the start state and can be well approximated to second-order in ⌦l
�ql

):

Id ⇡ ↵d

1

⌦r

⌦2
l

�2
ql

. (3.3.9)

The coe�cient ↵d is related to the Gaussian pulse shape used to drive the qubit

and equals 0.046 for the pulse shape of Eq. 3.3.6. The integral is independent of the

qubit initial state because the coupling strengths ⌦l of the two qubit state to their

respective leakage states are equal, so that any superposition of the qubit states is

equally likely to leak out of the qubit subspace. The integrated leakage population

is inversely proportional to the coupling ⌦r between the qubit states and is thus

proportional to the gate time t⇡/2 = ⇡/(2ḡ⌦r) reflecting the fact that shorter pulses

lead to a smaller time integral. The integral is finally dependent on the squared

ratio of the leakage coupling over the energy gap, highlighting that higher leakage

couplings and smaller gaps lead to more leakage.

We now turn to the irreversible leakage error, it is given by the probability of

occupation of the leakage states |2i and |3i at the end of the ⇡/2 pulse:

eleak = pleak =
3X

i=2

��h (t⇡/2)|ii
��2 (3.3.10)

For the flopping-mode qubit, the leakage coupling strength ⌦l is approximatively

equal to the bare charge qubit coupling ⌦l ⇡ ⌦charge
r

(see more details in Appendix

B.1). In contrast, the qubit Rabi frequency reduces to a proportion of that bare

charge qubit coupling given by half the hybridisation proportion h:

⌦r =
h

2
⌦charge

r
.

For the flopping-mode qubit, the ratio � = ⌦l/⌦r of the leakage and qubit coupling

strengths, is thus given by � ⇡ 2
h
and is much larger than unity as the hybridisation

proportion is usually limited to at most a few percent in order to limit dephasing

errors (see Sect. 3.4). The ratio � is an important parameter to describe leakage,

and is widely used for superconducting qubits [83]

In Fig. 3.16 we simulate the leakage population at the end of a ⇡/2-pulse for

the generic flopping-mode qubit as a function of the qubit Rabi frequency ⌦r, for a

typical value of � = 21, for Gaussian and square pulse shapes

For qubit drive amplitudes ⌦r that are much smaller than the energy gap to

the nearest leakage state �ql (“weak driving regime”), the leakage population grows
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Figure 3.16: Calculation of the population pleak in the leakage states at the end
of a ⇡/2 X-gate, for Gaussian and square pulse shapes, and as a function of qubit drive
amplitude, ⌦r. We simulate the case where the coupling to the leakage state is larger than
the coupling between qubit state, i.e. � := ⌦l/⌦r >> 1. The solid lines display the leakage
population for a Gaussian and a square pulse shape, in blue and orange respectively, while
the dotted grey lines indicate the asymptotic trends. We chose � = 21, and � = 0.65GHz
which corresponds to typical spin-charge detuning and coupling for a flopping-mode qubit.

polynomially with the qubit drive-amplitude ⌦r as the drive become less adiabatic.

The population leakage associated with the Gaussian pulse shape grows slower than

the square pulse because it adiabatically increases and decreases the drive amplitude.

In that weak-driving regime, the leakage population linked to the Gaussian pulse

shape is well approximated by:

pleak ⇡ ↵leak
⌦2

r
⌦2

l

�4
ql

= ↵leak�
2 ⌦4

r

�4
ql

, (3.3.11)

where ↵leak = 0.37 is a constant related to the Gaussian pulse shape of the drive

amplitude and is estimated by a fit to the numerical simulations. For a square pulse-

shape, the leakage population follows a trend of lower polynomial order (eleak /
⌦2

l
/�2

ql
= ↵leak�2

⌦2
r

�2
ql
) which also depends on �2 but grows as the square of the ratio

⌦r
�ql

of the qubit drive amplitude and the energy gap to the nearest leakage state.

The leakage population associated with the Gaussian pulse shape instead depends

on the fourth power of this ratio. For driving strengths much smaller than the

energy gap, this results in a significant advantage of the Gaussian pulse over the

square pulse in terms of minimising leakage errors.

When qubit-driving strengths get larger or comparable to the energy gap to
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the leakage state ⌦r > � (“strong driving regime”), the leakage populations for

both pulse shapes asymptotically approach a constant (horizontal line in Fig. 4.5),

that only depends on � = ⌦l/⌦r, the ratio of the leakage state and qubit state

couplings. At such high drive amplitudes, the power-broadened qubit-transition-

line width overlaps with the leakage transition, and both transitions are addressed.

If the coupling strength to the leakage states is larger than the coupling between

qubit states (� > 1), the wave function tends to swap over from the qubit state

to the leakage states and the leakage error approaches unity (see Fig. 4.5). When

the coupling to the leakage state is smaller than the coupling between the qubit

states (� < 1 as displayed in Fig. 4.5), the qubit wave function only slightly evolves

towards the leakage states, and the leakage population asymptotically approaches:

pleak ! sin
⇣⇡
4
�
⌘2

⇡
⇣⇡
4

⌘2
�2. (3.3.12)

Leakage due to the Gaussian pulse shape is well described by Eq. 3.3.11 because

it falls within the weak-driving regime for realistic driving amplitudes. Indeed the

Rabi frequency of the qubit (at most a few tens of MHz) is much smaller than

any realistic energy gaps to the excited charge state (a few hundreds of MHz at

least). The leakage error eleak of the flopping-mode qubit is therefore estimated

using Eq. 3.3.11 with numerically calculated parameters that we examine together

with the other leakage channels. The irreversible leakage error for the flopping-

mode qubit is independent of the initial state of the qubit because of the symmetric

coupling amplitudes. No averaging over the Bloch sphere is therefore necessary.

3.3.3 Modelling qubit dephasing

Sources of dephasing

Dephasing of the flopping-mode qubit results from its interaction with a noisy en-

vironment. The principal pathway for noise to couple to the flopping-mode qubit

is electromagnetic. Charge fluctuators in the silicon lattice produce noisy electric

fields that couple to the charge state of the qubit via the detuning parameter ✏,

whereas magnetic fluctuators couple to the spin state of the qubit via the magnetic

field B. The following paragraphs briefly describe the microscopic origins and the

characteristics of both magnetic and charge noise. Experimental data from the lit-

erature cited below shows that both kinds of electromagnetic noise at the sample

are well described by Gaussian probability distribution functions (PDFs), with a

standard deviation that will depend on the noise amplitude and on the sampling
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frequency [84]. Charge and magnetic noise in semiconductors typically do not have a

flat spectrum, and contain more energy at lower frequencies [85, 86]. When the noise

is sampled over longer times, these low-frequency components increase the variations

in the sampled noise amplitudes and result in a wider PDF [84]. The distribution

of the noise power over the frequency spectrum is described by the power spectral

density (PSD) P (⌫) of the noise, that describes the noise power P (⌫)d⌫ contained in

an infinitesimal frequency interval d⌫ [87]. The Gaussian shape of the PDFs hint at

the fact that the magnetic and charge noise mostly originate from large ensembles

of independent fluctuators (as stated by the central limit theorem). In reality a few

fluctuators close to the qubit can have a larger e↵ect than the remaining fluctuators

of the ensemble [84], but the probability distribution functions observed experimen-

tally remain Gaussian (see for example the measurement described by this author

in Fig. 5.16 c). We now briefly describe the origins and characteristics of magnetic

and charge noise and motivate the use of the quasi-static approximation that models

the noise variable during each Hamiltonian time evolution, as a static noise variable

sampled from the noise PDF.

Non-zero nuclear spin isotopes within the semiconductor material have been

identified as the principle source of magnetic noise in semiconductor qubits. Nat-

ural silicon, for example consists of about 4.7% of 29Si [88], which is the only of

the three stable silicon isotopes (28Si, 29Si, and 30Si) with a half-integer nuclear

spin (1/2). Natural silicon can be isotopically purified into a fully non-magnetic

material, drastically reducing the magnetic noise amplitude in the material [1]. As

a comparison, GaAs/AlGaAs structures cannot be isotopically purified because all

stable isotopes of Ga and As have a non-zero nuclear spin. This is the principle

reason for the semiconductor-spin-qubit community changing its material system

of choice from GaAs/AlGaAs to silicon in the 2010s. The magnetic noise in semi-

conductor devices that arise due to the nuclear spin baths has been attributed to

magnetic and hyperfine mediated spin di↵usion [85, 89]. The PDF of the magnetic-

field noise is well approximated by a Gaussian distribution [90], with a standard

deviation �B = 0.1mT in natural silicon [90] and 0.03µT isotopically purified sil-

icon (800ppm) [1] respectively for measurements typically lasting one hour. Such

magnetic field variations correspond to standard deviations of �E/h ⇡ 3MHz and

1 kHz in the Zeeman energy, and thus also the phase precession rate of a pure elec-

tron spin-qubit.6 This magnetic noise will also lead to magnetic dephasing in the

flopping-mode qubit, because its dependence on the magnetic field is dominated by

6Assuming a gyromagnetic ratio of 28GHz/T.
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the electron Zeeman term up to first order (see Eq. 3.2.19). The magnetic noise PSD

has been shown to follow a f�↵ with 0.5  ↵  2 behaviour [85, 89] in both sili-

con and gallium-arsenide semiconductor devices due to the distribution of two-level

fluctuators in the material.

The origin of charge noise depends on the material system used, the device fab-

rication processes, and is still relatively poorly understood. Potential charge fluc-

tuators cited in the literature are defects and impurities in the silicon lattice [84],

defects at the silicon/native oxide interface [86], defects at the silicon/metal in-

terfaces [86, 91]. In magnetically pure materials such as 28Si charge noise is the

dominant error source [8]. In our silicon devices (as in most other silicon devices

in the community), the PSD of charge noise follows a frequency-distribution of the

form f�↵, where 0.5  ↵  2, and the PDF of the electric field noise is well de-

scribed by a Gaussian with standard deviation describing the noise amplitude in

the device [84]. For all our simulations we use a realistic electric field noise stan-

dard deviation of about 250V/m, similar to that used in the other flopping-mode

proposals [12, 92], corresponding to a standard deviation in the static detuning pa-

rameter of �✏ = 0.3GHz7. As we discussed in Sect. 3.2.3, this electric-field noise

couples into both the flopping-mode qubit energy and Rabi frequency, z- and x-

dephasing, respectively. The magnitude of both dephasing rate varies over many

orders of magnitude depending on the presence of the electric tuning parameters,

the magnetic-gradients and more even the electric driving strength for the x-noise.

A flopping-mode device with a realistic longitudinal gradient between 0.5 to 20MHz

will experience a z-dephasing rate from ⇠ 10 kHz to ⇠ 1 MHz for operation at

✏ = 0. This is one to several orders of magnitude higher than the dephasing rate

expected from magnetic noise in isotopically purified silicon and will therefore be

the dominating dephasing mechanism for the flopping mode qubit.

Both magnetic and charge noise display PSDs of the form f�↵ (0.5 < ↵ 
2). Low-frequency noise therefore represents the overwhelming noise contribution

during a measurement. However, this low frequency noise allows us to use the

“quasistatic” approximation to describe the e↵ect of charge or magnetic noise during

an experiment which is repeated many times to build statistics of the quantum

operation. The quasistatic approximation models the time-dependent noise as a

random variable changing between each shot, but staying constant (thus the “static”

in quasistatic) during the shot. It accurately describes a variety of qubit evolutions

for magnetic noise [90] and for charge noise [8]. As mentioned above, a Gaussian

7Assuming a distance of 10 nm between the two dot locations, as is the case for the flip-flop
and epitaxial flopping-mode qubit.
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PDF accurately fits experimental sampling of the magnetic and charge noise PDFs.

The variance of the noise over the duration of an experiment can be related to an

integral over the PSD of the noise for the time duration of the measurement (see

Appendix B.3).

Dephasing-error formula

We define the charge dephasing error of the unitary evolution associated with the

⇡/2 gate to be the deviation of the expectation value of the noisy unitary evolution

projected onto the ideal unitary evolution Uid of the initial state  i,�✏ [75], averaged

over the charge noise detuning PDF P (�✏):

e✏ = 1� E

✓���h i,�✏|U †
�✏
Uid| i,�✏i

���
2
◆
. (3.3.13)

Analytical dephasing-error model

An analytical model of the state overlap O(�✏, i,�✏) :=
���h i,�✏|U †

�✏
Uid| i,�✏i

���
2

, while

approximate, accelerates the error computation, and renders feasible the averaging

of the error over all possible initial states  i,�✏ of the Bloch sphere. The latter is

important because the gate error can vary by up to an order of magnitude depending

on the initial qubit state. The average over the charge noise random variable �✏ is

then performed numerically.

Charge noise couples into the noisy unitary time evolution U�✏ through the per-

turbation of the parameters in the flopping-mode Hamiltonian (see Eq. 3.2.8), each

corresponding to a separate error channel. Provided the system is driven adiabat-

ically, the system dynamics is mostly confined to the qubit subspace, in which the

qubit is well described by the two-level Hamiltonian: ⌦s/2�z + ⌦r�x, where ⌦s is

the qubit energy splitting and ⌦r the qubit Rabi frequency (when driven). Both

⌦s and ⌦r are dependent on ✏ and thus o↵er a distinct pathway for charge noise to

couple into the time evolution, which we term the z-/x- noise channel respectively.

For a given detuning perturbation �✏ we write ⌦̃s(✏ + �✏)/2 = ⌦̃s(✏)/2 + �z and

⌦r(✏ + �✏)/2 = ⌦r(✏)/2 + �x =: x + �x. In the rotating frame, when driving the

system resonantly, the reduced Hamiltonian becomes:

Hr(�z, �x) = �z �z + (x+ �x) �x. (3.3.14)

The time evolution associated with this Hamiltonian, can be modelled analytically
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by approximating the Gaussian pulse ✏d g(t) by a constant pulse ✏d ḡ, where ḡ = 0.633

is the average value of the pulse-shape g(t) in time.

With the simplified 2-level Hamiltonian, and pulse-shape, the state overlap

O(�✏, i,�✏) in Eq. 3.3.13 for a initial state  i = cos (✓/2)|0i + sin (✓/2)eı�|1i is

approximated by:

O(�✏, i,�✏) ⇡
��h i|U(Hr(0, 0), t⇡/2)

† · U(Hr(�z, �x), t⇡/2)| ii
��2 . (3.3.15)

Here we estimate the ⇡/2 gate time to be t⇡/2 = ⇡/(4ḡx), we neglected the initial

state perturbation due to �✏ ( i :=  i,0), and the unitary time evolution U of the

Hamiltonian H is expressed as the matrix exponential U(H, tg) = exp (�ıHtg) (in

frequency units). The above expression can be evaluated analytically in Eq. 3.3.16

for the explicit expression, simplified by averaging over the Bloch Sphere. Fig-

ure 3.17, compares the fully numerical error (square markers) with the analytical

error model (solid line) for a range of initial states on the Bloch sphere. The numeric

calculation computes the overlap in Eq. 3.3.13, without any approximations, while

the analytical model uses the analytical expression corresponding to Eq. 3.3.15. In

black we include all the noise channels present in the flopping-mode Hamiltonian,

whereas in red and blue we only include the x-/z-noise channels. Figure 3.17 high-

lights how specific initial qubit states for which the dynamics are protected against

one of those noise channels (either x or z).

In Fig. 3.17 a), the z-error goes to zero for start points on the Bloch sphere

described by angles � = ⇡/2 and ✓ = ⇡/4. This initial state is singular because it

corresponds to a time evolution passing through the north pole of the Bloch sphere

halfway through the pulse. Any phase accumulation due to �z in the first half of

the pulse is cancelled out in the second half. Two other singular initial states are

captured in Fig. 3.17 b), where the x-error goes to zero at ✓ = ⇡/2 and � = 0 (mod ⇡).

These angles correspond to the two initial states for which the x-axis intercepts the

Bloch sphere. These two states have a stationary time evolution and are thus not

a↵ected by x-noise since the x-rotation gate does not cause any rotations for this

initial qubit state.

When including errors that couple through both the x and z error-channel, sin-

gular points in one noise channel are smoothed out by non-vanishing errors in the

other (see black line in Fig. 3.17). This is due to the fact that in Fig. 3.17, we chose

system settings for which both noise channels are equally important and visible.

Whenever one of the error channel dominates, its variations essentially yield those

of the total error.
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Figure 3.17: Determination of the lowest error rates due to charge noise. Both a)
and b) show the angle dependence of the dephasing charge noise for � = ⇡/2 and ✓ = ⇡/2
as a function of the longitudinal and azimuthal angles ✓ and � respectively. The dark line
displays the error when considering all channels through which charge noise can couple
into the system. The red/blue lines only consider the x-/z- charge noise channels. The
analytical model (lines) accurately fits the numerical calculation (square markers). In a),
the z-error goes to zero at ✓ = ⇡/4 because variations �z are echoed out when passing the
pole. In b), the x-error goes to zero at � = 0 (mod⇡), because the start state is on the
x-axis of the Bloch sphere. We used a magnetic field of 0.3T at ✏ = 0 and tc = 4.5GHz, for
a drive amplitude ✏d = 0.2GHz optimised based on balancing all of the noise sources and
driving strengths in the system as these are close to realistically optimal qubit parameters.
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We find that the model is accurate for driving amplitudes well above 1GHz, where

reversible leakage becomes substantial and dephasing can couple via the leakage

channels. Dephasing through the reversible excited-state proportion is suppressed

to third order because the perturbations linked to each of the leakage states cancel.

This is only the case when the coupling strengths ⌦l, to the two leakage states

are identical, that is in the strong spin-charge hybridisation regime. Otherwise, this

e↵ect would need to be accounted for by appropriate pulse shaping. When the qubit

error is dominated by leakage then the dephasing model breaks down, but leakage

and relaxation are the main source of errors so that the total-error is still accurate

since dephasing only contributes a small amount to the overall error.

The analytical model of Eq. 3.3.15 allows analytical evaluation of the integrals

when averaging over di↵erent initial states on the Bloch sphere. This is important

since various algorithms require di↵erent initial states and also since multiple gates

will be run in a sequence meaning the gate operation could be performed on any

qubit state. For a given charge noise induced detuning perturbation �✏, coupling

into the z- and x- components of the system Hamiltonian via variations �z and �x

respectively, we find that the overlap between the perturbed and non-perturbed time

evolution is given by:

OB(�z, �x) := hO(�z, �x, i,�✏)iB =
1

6⌦2
2L


4(x+ �x)2 + 3�z2

+�z2 cos (
⇡

2

⌦2L

x
) + 2(x+ �x)⌦2L sin (

⇡

2

⌦2L

x
)

�
,

(3.3.16)

with the driven qubit splitting ⌦2L =
p
�z2 + (x+ �x)2. The expression evaluates

to 1 for �z = 0 and �x = 0, as the noisy time evolution is equal to the ideal time

evolution. Both x and z noise perturbations �z and �x depend on the electric-

detuning noise �✏. To get the final averaged analytical charge dephasing error one

has to average 1�OB(�z(�✏), �x(�✏)) over the electric detuning noise variable �✏ (note

that we will calculate this average over the Gaussian distributed random variable �✏

numerically, unless indicated otherwise):

he✏iB = 1� hOB(�z(�✏), �x(�✏))i�✏ . (3.3.17)

The dephasing error in Eq. 3.3.17 can however be estimated analytically by

assuming both variables �z and �x to be independent Gaussian distributed variables.

This is not strictly valid in our case because both variables are dependent on the
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electric detuning noise �✏ and thus not independent. Expanding Eq. 3.3.16 to second-

order in �z and �x, and then taking the expectation value using the Gaussian PDF
1p
2⇡�2

exp
⇣
� �

2

2�2

⌘
, we find to third order in 1/x:

he✏iB ⇡ ⇡2

24

⇣�x
x

⌘2
+

1

3

⇣�z
x

⌘2
(3.3.18)

⇡ 0.41
⇣�x
x

⌘2
+ 0.33

⇣�z
x

⌘2
. (3.3.19)

Equation 3.3.18 highlights that the influence of the z-noise since the pre-factors

are comparable (0.41 for x and 0.33 for z), which acts perpendicular to the rotation

axis is comparable to x-noise acting directly on the rotation axis when the error is

averaged over all initial qubit states.

Modelling magnetic dephasing

Modelling dephasing errors linked to magnetic fluctuations would in principle re-

quire integration of the charge noised averaged error of Eq. 3.3.17 over magnetic

fluctuations:

he✏,BiB = 1� hOB(�z(�✏, �B), �x(�✏))i
�✏,�B

. (3.3.20)

To evaluate the above equation, we could average over �✏ numerically using a Gaus-

sian PDF, and expand this to a double integration over �B. However this would

make the error analysis significantly more computationally expensive which is not

warranted since the magnetic dephasing rates in isotopically purified silicon devices

are orders of magnitude smaller than the charge dephasing rates (see Sect. 3.3.3). As

such magnetic-dephasing errors are expected to be negligible. Magnetic dephasing

is therefore often neglected when considering silicon systems [72, 12].At some non-

ideal parameters, such as when the spin and the charge are far detuned so that the

spin-charge hybridisation is weak, the coupling of the qubit to charge will become

negligible and magnetic dephasing can become dominant. We therefore use a sim-

plified error model by which we calculate the magnetic dephasing error separately

from the charge dephasing error: he✏,BiB ⇡ 1 � (1 � he✏iB)(1 � heBiB). This ap-

proximation captures the total error accurately except for the situation where both

charge and magnetic dephasing are of similar magnitude.

Similar to the charge-dephasing error, the magnetic dephasing error heBiB can

also be computed using the Bloch-sphere-averaged overlap OB [90] in Eq. 3.3.16,

that describes the overlap between an ideal and noisy qubit ⇡/2 gate, and using the

fact that the magnetic noise only couples weakly to the qubit Rabi frequency:
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Figure 3.18: Determination of the magnetic dephasing error as a function of the
Rabi frequency. A second-order magnetic dephasing error model (dotted green line)
accurately fits the numerically calculated value (blue crosses) for Rabi frequencies larger
than the magnetic noise amplitude ⌦r & 10�z. The Gaussian model (in red) is seen to fit
the numerical data well for all Rabi frequencies

heBiB = 1� hOB(�z(�B), �x(�B))i
�B

⇡ 1� hOB(�z(�B), 0)i
�B

. (3.3.21)

The dependence of the flopping-mode qubit energy, 2z on the magnetic field is

mainly described by the Zeeman splitting �eB. The integration over the Gaussian

distributed variable �B, approximated to lowest order gives:

heBiB ⇡ 4

3

�2
z

⌦2
r

, (3.3.22)

where ⌦r is the qubit Rabi frequency and �z = �e�B/2. This expansion Eq. 3.3.22

to second-order in �z (green dotted line in Fig. 3.18) overestimates the error when it

approaches unity for example when the Rabi frequency is small and gate times are

large. We find that Gaussian noise distribution also expands to 4
3
�
2
z

⌦r
and captures

this regime and matches numerical integration (red line in in Fig. 3.18):

heBiB ⇡ 1

2

✓
1� Exp

✓
�8

3

�2
z

⌦2
r

◆◆
. (3.3.23)

Equation 3.3.23 is used to estimate the magnetic dephasing error in the full qubit

error model.
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3.3.4 Charge T1 relaxation modeling

The flopping-mode qubit can relax via the electron spin or the charge. Indeed, the

electron spin state is hybridised to the excited charge state to allow electric driving

of the electron spin. Any relaxation of the electron spin or the excited charge state

translates into relaxation of the qubit. These spin or charge relaxation mechanism

take place on a wide range of characteristic timescales (⇠ 10s of nanoseconds for

charge [26, 28] and up to 30s for spin relaxation [93]).

The relaxation time of electron spins on phosphorus-donor QDs are on the order

of seconds [94, 95, 96] at magnetic fields of about 1T. The relaxation time of a charge

qubit defined by the symmetric and antisymmetric superposition of two tunnel-

coupled quantum-dot orbitals however has been measured to be on the order of

only a few nanosecond in GaAs QDs [27] and in silicon/silicon-germanium QDs [30].

The charge-relaxation rate 1/T c

1 in silicon-donor QDs has not been measured, but

has been theoretically modelled for a charge qubit defined by a phosphorus-donor

QD and an interface QD [82]. Boross et al. [82] predict this relaxation rate is

proportional to the charge qubit energy splitting and to the square of the tunnel

coupling 2tc between the two dots:

1/T c

1 ⇡ ⇥
⇣
2
p
✏2 + t2

c

⌘
· (2tc)2 (GHz), (3.3.24)

where the coe�cient ⇥ ⇡ 2.37⇥ 10�6 (ns2) is a silicon-specific constant [12, 82]. At

zero detuning, which is the default operating point of the qubit, the charge-relaxation

rate is therefore proportional to t3
c
. As an example, this yields a relaxation time of

about 300 ns at a charge-qubit splitting of 11GHz corresponding to a magnetic field

of 0.4T for an electron spin qubit. Therefore, the charge relaxation process will

dominate the spin relaxation and as a result we can neglect the spin relaxation for

the error calculations.

The probability of the excited charge state to decay from its higher energy state is

described by 1�exp (�t/T c

1 ) and the corresponding error by 1
2(1�exp (�t/T c

1 )). The

flopping-mode qubit states only partially overlap with the excited charge state, which

makes it less probable for the qubit to decay in a given time. The exponential decay

of the flopping-mode qubit therefore needs to include the time-integrated overlap of

the qubit wave function with the excited charge state. The qubit relaxation error
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can accordingly by expressed using the formula from Tosi et al. [12]:

eT1 =
1

2

"
1� exp

 
�
ˆ

t⇡/2

0

X

k

��h (t0)| +
k
i
��2 1

T1
dt0
!#

, (3.3.25)

where  +
k

are the product-basis states that contain the excited charge state |+i.
The qubit-relaxation error therefore grows exponentially with the gate time t⇡/2

and with the overlap
P

k

��h (t)| +
k
i
��2 of the qubit wave function with the excited

charge state, integrated over the time of the gate.

There are two ways by which the qubit wave function can overlap with the

excited charge state during a ⇡/2 - X-gate. First, even when the qubit is not driven

the qubit wave function overlaps with the excited charge state. Indeed, while the

qubit ground state |0i does not overlap at all with the excited charge state (due

to the large energy gap), the qubit excited state |1i is engineered by controlling

the spin and charge qubit detunings to have a small excited charge state overlap

p1,+ =
P

k

��h1| +
k
i
��2. This is a result of the hybridisation of the spin qubit with the

charge qubit that allows electric driving of the flopping-mode qubit. The overlap

of the qubit wave function with the excited charge state can thus be calculated as

the product of the time-dependent overlap Oi(t) = |h (t)|1i|2 of the qubit wave

function with the |1i state, and the overlap p1,+ of the excited charge state with

the qubit |1i state. The second way by which the qubit wave function can overlap

with the excited charge state is by leakage into the two excited state branches during

electric driving (see Sect. 3.3.2). We have described how the time dependent overlap

Od(t) =
P3

i=2 |h (t)|ii|2 of the qubit wave function is dependent on the pulse shape,

and the various drive parameters. The overlap of the qubit wave function with the

excited charge state can thus be written as:

X

k

��h (t)| +
k
i
��2 ⇡ |h (t)|1i|2

X

k

��h1| +
k
i
��2 (3.3.26)

+
3X

i=2

|h (t)|ii|2 (3.3.27)

= Oi(t) · p1,+ +Od(t), (3.3.28)

As described in Eq. 3.3.25, the relaxation error is related to the integral of this
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overlap over the duration of the pulse, yielding:

ˆ
t⇡/2

0

X

k

��h (t0)| +
k
i
��2 dt0 = Ii · p1,+ + Id, (3.3.29)

where Ii/d :=
´

t⇡/2

0 Oi/d(t0)dt.

The integral Id ⇡ ↵d
1
⌦r

⌦2
l

�2 is given by Eq. 3.3.9. It describes the integrated

excited-charge leakage population and depends on the Rabi-frequency ⌦r, the cou-

pling strength to the excited state ⌦l and the energy gap � between the qubit states

and the nearest excited charge state. Id is independent of the initial state of the

qubit.

The integral Ii of the |1i-state overlap can be estimated from the noiseless time

evolution of a qubit initial state  i = cos ✓/2|0i+sin ✓/2eı�|1i during a ⇡/2 X-gate:

Ii(✓,�) ⇡
1

⌦r

1

4
(⇡ � 2 cos ✓ � 2 sin ✓ sin�) . (3.3.30)

The time-integrated |1i-state proportion Ii is maximal (minimal) when the time

evolution passes the South(North)-pole of the Bloch-Sphere halfway through the

gate, i.e. when the start of time evolution is given by the spherical angles (✓,�) =

(3⇡/4,�⇡/2) ( (✓,�) = (⇡/4, ⇡/2) ). The full relaxation error in Eq. 3.3.25 for a

given initial state can now be written as:

eT1(✓,�) =
1

2

�
1� e�Ii(✓,�)O1,+/T1e�Id/T1

�
. (3.3.31)

Finally, the relaxation error averaged over the Bloch sphere is given by:

heT1iB =
1

2

�
1�

⌦
e�Ii(✓,�)O1,+/T1

↵
B
e�Id/T1

�
. (3.3.32)

The Bloch-sphere average of e�Ii(✓,�)O1,+/T1 can be approximated analytically. In-

deed, integration over � gives a term with a Bessel function which can be approxi-

mated to third order in � = O1,+

⌦rT1
. We obtain:

⌦
e�Ii(✓,�)O1,+/T1

↵
B
⇡ e

1
4 (2+⇡)� � � 2 + e�(� + 2)

4�
. (3.3.33)

The relaxation error of the qubit is calculated using Eq. 3.3.32 and Eq. 3.3.33,

and the parameters entering the equation are calculated numerically. By combining

all of these error sources in the next section we now have a complete description of

the flopping-mode qubit and its error sources.
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3.3.5 Summary

We have introduced the methodologies for calculating three di↵erent error types

that a↵ect the flopping-mode qubit

1. Leakage errors corresponding to the spread of the qubit wave function out of

the qubit subspace due to non-adiabatic driving of the qubit. For all flopping-

mode qubits this involves accidental charge excitation.

2. Dephasing errors linked to electric and magnetic noise coupling to the qubit,

including qubit energy fluctuations z-dephasing and driving frequency fluctu-

ations x-dephasing.

3. Relaxation errors during qubit driving (dT1 errors) and idling (iT1 errors)

which correspond to the system evolving towards its ground state through loss

of energy to the environment.

Leakage errors for the flopping-mode qubit are strongly linked to excitation of the

qubit charge state. This excitation can be reduced through adiabatic pulse shapes

(Gaussian in our case) that slowly increase the microwave electric field envelope, and

then decrease it in a symmetric manner. The adiabatic pulse shape allows for large

driving strengths, that result in some temporary leakage during the pulse (“reversible

leakage”) that is mostly reversed. The excited charge state proportion that is not

reversed (de-excited) at the end of the pulse is responsible for the “irreversible”

leakage error. The reversibly excited state proportion only leads to errors if it is

prone to other errors itself. This is indeed the case because the reversibly excited

charge proportion can relax due to T1 charge relaxation. The overall dephasing

error is caused by charge and magnetic noise with corresponding errors e✏ and eB,

respectively. To speedup the dephasing error computation, we simulate the qubit’s

unitary evolution within the qubit subspace analytically. This is exact when the

coupling to the leakage state vanishes, and captures the exact unitary evolution

very well. This analytical unitary evolution allows exact analytical integration of

the dephasing error over all qubit start states on the Bloch sphere, and manifests

in a significant speedup of calculations. The remaining integration over noise is

performed numerically for charge noise, and approximated analytically for magnetic

noise which is generally much smaller. The resulting errors e✏ and eB match the

numerically calculated errors well. The relaxation error of the flopping-mode qubit

is principally linked to relaxation of the excited charge state. The excited charge

state can be populated by non-adiabatic driving of the qubit (“drive- T1” relaxation
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error), but also due to the engineered hybridisation of the spin and charge qubit

that allows electric driving.

Finally, we combine the charge and magnetic dephasing errors e✏ and eB with

the two types of T1 errors eT1 and the irreversible leakage errors eleak:

etot(✓,�) = 1� (1� e✏(✓,�))(1� eB(✓,�))(1� eT1(✓,�)(1� eleak). (3.3.34)

The final error is averaged error over all qubit initial state (on the Bloch sphere B):

e = hetot(✓,�)iB (3.3.35)

⇡ h1� e✏iB h1� eBiB h1� eT1iB (1� eleak). (3.3.36)

This equation is used to compute the error rates in the next section of this thesis,

where we investigate the flopping-mode qubit performance for a range of experimen-

tal parameters.

3.4 Optimal driving/operation of a generic flopping-

mode qubit

3.4.1 The longitudinal gradient in the flopping-mode qubit

In the previous sections we have seen that the flopping-mode qubit allows electric

manipulation of the spin via its hybridisation with the charge degree of freedom.

While o↵ering the possibility to electrically drive the qubit and couple it to super-

conducting cavities, the charge hybridisation also opens the way for electric-field

fluctuations naturally present in semiconductor devices to couple to the qubit in the

form of dephasing errors and for the charge to relax as a result of the finite qubit

lifetime (T1 errors). The presence of the additional excited-charge states coupled to

the qubit subspace can lead to errors through permanent leakage of the wavefunc-

tion out of the qubit subspace (leakage error), or through charge relaxation of that

population during reversible charge excitation (“drive T1 error”). Even after isotopic

purification of the device host material, residual magnetic noise can still a↵ect the

spin qubit operation and lead to dephasing error (“Overhauser error”). In order to

find out if fault-tolerant electric operation of the flopping-mode qubit is possible, it is

necessary to find a parameter regime where all the above errors can be minimised. In

Sect. 3.3 we have seen that a multitude of parameters determine the (approximate)

error. The magnetic and electric noise amplitude �B and �✏ respectively are good
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Figure 3.19: Optimal ⇡/2 X-gate error in the flopping-mode qubit. Panel a)
displays the error optimised for ✏, tc and ✏d, as a function of B and �⌦z, for a fixed
transverse energy di↵erence �⌦x = 117MHz, and electric/magnetic noise amplitudes
�✏ = 0.3GHz and �B = 7kHz respectively. b): Optimal value ✏d used to minimise the
error in a). Conversion from drive amplitude ✏d in GHz to microwave power at the gate
(in dBm) or a typical flopping-mode qubit as in [46] is provided in the inset.

measures of the amount of noise present in a given device. We will keep these two

parameters fixed during the optimisation and set them to state-of-the-art values in

isotopically purified silicon (�B = 7kHz and �✏ = 0.3GHz [1]). This leaves us with

6 additional parameters to optimise: three magnetic parameters (the two gradients

�⌦z/x) and the static magnetic field B) and three electrically tuned ones (tunnel

coupling tc, static electric detuning ✏, and electric drive amplitude ✏d). We choose

a transverse gradient of 117MHz [12, 97] typical for the donor-based flopping-mode

qubit and now optimise the remaining five parameters.

The ⇡/2 X-gate total error optimised with respect to the three electrically tun-

able parameters (✏, tc and ✏d) is plotted in Fig. 3.19a) as a function of the two

remaining magnetic parameters (B and �⌦z). The total error includes all the er-

rors discussed above (Charge and magnetic dephasing errors as well as relaxation

and leakage errors). Due to the large impact of the drive amplitude on the qubit op-

eration, we display the optimal drive amplitude ✏d found for each point in Fig. 3.19b.

At magnetic fields below 0.5T, both the optimal error and drive amplitude, ✏d

strongly depend on the longitudinal magnetic field gradient, �⌦z. At a magnetic

field of 0.1T, a reduction of the longitudinal gradient from 80MHz (�⌦z/�⌦x =

70%) to 0.5MHz (�⌦z/�⌦x = 0.4%), results in a 15-fold decrease of the error,

and a 21-fold decrease in the minimal optimal drive amplitude, corresponding to a

440-fold reduction in drive power. In general, Fig. 3.19 a) shows that in order to
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reach errors below 10�3 with the flopping-mode qubit, a likely necessity for realistic

scalable fault tolerant computation (as discussed in Chapter 2), longitudinal gradi-

ents below 30MHz (�⌦z/�⌦x = 26%) will be necessary. Operation at longitudinal

gradients below 30MHz will allow low-power operation of the qubit at drive ampli-

tudes below 7GHz ( -62 dBm at the device) and as low as 0.25GHz (�91 dBm)8.

These driving powers are one to four orders of magnitude lower than the driving

power used for Yoneda et al. single dot EDSR [8] (�50 dBm at the device to reach

a 4MHz Rabi frequency and an error of 10�3)9, and two to five orders of magnitude

lower than state of the art ESR (10�3 ⇡ gate error demonstrated by Muhonen et

al. [1] with 0.16MHz Rabi frequency at �40 dBm power). These low-power, high-

fidelity qubit operations will be crucial for scaling up to many qubits required for

a large-scale quantum computer. At magnetic fields larger than 0.5T in Fig. 3.19,

the error as well as the drive amplitude depend less strongly on the longitudinal

magnetic field gradient, due to T1 relaxation errors –that do not depend on the lon-

gitudinal gradient– becoming the dominant source of errors. Therefore, this region

should be avoided when optimising the flopping-mode qubit. The T1 relaxation error

becomes dominant over dephasing errors at large magnetic field due to the cubic

dependance of the bare charge relaxation rate on the tunnel coupling. The larger

the magnetic field, the larger the tunnel coupling required to keep the charge qubit

energy above the spin qubit energy. An increase in the magnetic field therefore

results in a significant increase of the T1 relaxation rate.

In Fig. 3.19, we perform the qubit optimisation with respect to ✏d and tc numer-

ically (using a custom two-dimensional Newton minimum search algorithm), while

the parameter ✏ = 0 is kept at the first-order sweet spot, that is optimal for the pa-

rameter space investigated. The behaviour of the qubit error in the two dimensional

space spanned by the drive amplitude and the tunnel coupling numerically optimised

is shown in Fig. 3.20, at four positions in the optimised Fig. 3.19 reproduced in the

inset (high/low magnetic field and high/low longitudinal gradient). For clarity, we

convert the tunnel coupling to the spin charge detuning � = 2tc �EZ in the figure.

The dark orange regions in Fig. 3.20 indicate where the error is above the 1%

surface-code error-correction threshold, while lighter colours indicate that fault tol-

8 For the conversion from voltage amplitude (✏d in GHz) to power (in Watt), we assume a
di↵erential lever-arm of the driving gate of ↵ = 6% as measured by Croot in [46], and a Z0 = 50⌦

impedance transmission line: P gate
AC = 1

Z0

⇣
h✏d/e

2
p
2↵

⌘2
.

9The drive power to reach a Rabi frequency of 4MHz as in ref. [8] is extrapolated from an
estimated power of �32 dBm needed to reach a Rabi frequency of 29MHz in a similar device
measured by the same author [59].
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erance is reached. The limiting error source at each point in each subfigure of

Fig. 3.20a is indicated by the labelled regions, whereas the optimal operating point

is indicated by a black dot. In general, errors are high for drive amplitudes and

detuning significantly away from 1 GHz, which is the energy scale set by the charge

noise amplitude10 and the qubit energy 11. Leakage errors are dominant at high

drive amplitudes, due to the drive amplitude becoming comparable or larger than

the energy gap to the leakage states. This situation is especially true for for small

spin–charge detuning energies �, which results in dominating irreversible leakage

errors (labelled “leak” in the figure), corresponding to irreversible excitation of the

qubit wavefunction out of the qubit subspace. At high drive amplitudes and large

spin–charge detuning �, the energy gap is su�cient to allow for most of the leaked-

state proportion to be de-excited by the Gaussian pulse, but the increased charge-

relaxation rate (higher � translates into higher tc) makes the temporary excited

charge-state proportion more prone to relaxation (drive T1 error: “dT1”).

At small drive amplitudes (lower half of Fig. 3.20) errors are large because gates

are slow and dephasing sources have more time to couple into the error. Electric

field fluctuations lead to variations in the qubit energy (z-dephasing error :“z” in

the figure), as well as variations in the qubit’s dipole moment and thus Rabi fre-

quency (x-dephasing error:“x” in the figure). Finally, magnetic field fluctuation

linked to remaining non spin-less silicon nuclear isotopes produce an additional z-

dephasing error (labelled “OH” for Overhauser in the figure). This error becomes

dominant when the spin–charge detuning � is large, and the flopping-mode qubit

is so weakly hybridised to charge that it is essentially a spin qubit that is mostly

sensitive to magnetic-field fluctuations. While the lower half of all four plots is gen-

erally dominated by dephasing errors (“z”,“x”,“OH”), at higher magnetic fields the

T1 relaxation rate increases (due to operation at larger tunnel coupling), so that

at small spin–charge detunings � and small drive amplitudes ✏d at which the spin

becomes more hybridised to charge and the gate time is long. The probability of

charge relaxation increases, even in the absence of electrical driving which corre-

sponds to the idle T1 relaxation error described in Sect. 3.3.4 and labelled “iT1” in

Fig. 3.20.

We have described the di↵erent parameter-space regions in which the various

error sources become dominant and limit the achievable error. Turning now to the

regions of low errors (yellow to blue regions), it becomes clear at first sight that

the magnitude of the longitudinal gradients has a significant influence on the size of

100.3GHz
11about 5.6GHz at 0.2T and 22GHz at 0.8T.
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these regions. For a small longitudinal magnetic field gradient and small magnetic

field (lower left figure), errors below 10�3 can be achieved for drive amplitudes and

spin–charge detuning varying by more than one order of magnitude, while such low

errors cannot be achieved at higher drive amplitudes or magnetic fields. Besides the

significantly lower error, the resilience of the qubit error to variations in the tuning

parameters � and ✏d is an important advantage for operation at low magnetic field

longitudinal gradients (. 10 MHz). The dramatic di↵erence in the size of the below-

threshold regions between the di↵erent points in Fig. 3.20b can be mainly attributed

to the influence of the z-dephasing error. By reducing the longitudinal magnetic field

gradient the qubit dephasing is significantly reduced allowing for high-fidelity qubit

operations. The regions in which the z-dephasing error become limiting (labelled by

“z”) grows significantly with increasing longitudinal magnetic field gradient, pushing

the optimal operation point to higher drive amplitudes.

The behaviour of the dephasing errors, that are dominant for much of the pa-

rameter space accessible in experiments, can be well understood by making use of

the lowest-order approximation of the Hamiltonian of Eq. 3.2.18 and the error model

in Eq. 3.3.17. The Bloch sphere averaged z(x)- dephasing errors for Gaussian noise

with amplitude �z(x) along the z(x) axis of the Hamiltonian, for a Rabi frequency x

along the x-axis is proportional to (�z(x)/x)2 (to third order in �/x, see Eq. 3.3.18)

The parameters �z(x) that feed into the dephasing error model describe variations

�z = �⌦̃s/2 in the qubit energy and �x = �⌦r/2 in the Rabi frequency, and can be

estimated by using the analytical models for two Hamiltonian parameters ⌦̃s and

⌦r derived in Sect. 3.2.2. In that section we derived that both parameters the

flopping-mode qubit energy and Rabi frequency can be related to the function G(✏)

that describes the response of the wave function to the electric field (see Eq. 3.4.1).

We found that for su�ciently large spin–charge detuning � > ⌦s, both the qubit

splitting and Rabi frequency are very well described by the gradient G:

⌦̃s(✏) =: 2z ⇡ ⌦s +G(✏)
�⌦z

2

⌦r(✏) =: 2x ⇡ 1

2

@

@✏

✓
G(✏)

�⌦x

2

◆
✏d.

(3.4.1)

The term G(✏)
�⌦z/x

2 was simply interpreted as the longitudinal/transverse Zeeman

terms experienced by the spin for a particular value of electric detuning (averaged

over the probability density given by the wave function for this particular value of

detuning).

We can now use these expressions to estimate the dephasing rate to lowest order
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in ✏. At ✏ = 0 at which we will mostly operate the qubit, the curvature of G with

respect to ✏ vanishes @
2
G(0)
@✏2

= 0 so that the expansion of x has to be taken to

second-order. Applying this to ⌦̃s(✏) and ⌦r(✏) we find:

�z ⇡
@z(✏)

@✏
�✏ =

1

2

@G(0)

@✏

�⌦z

2
�✏

�x ⇡ @2x(✏)

@✏2
�2
✏

2
=

1

4

@3G(0)

@✏3
�⌦x

2
✏d
�2
✏

2
.

(3.4.2)

Based on the z- and x-dephasing rates above, the x and z errors can now be

estimated analytically to lowest order in ✏d at ✏ = 0:

ez /
⇣�z
x

⌘2
⇡ 4

✓
�✏
✏d

◆2✓�⌦z

�⌦x

◆2

ex(✏ = 0) /
⇣�x
x

⌘2
⇡
✓
@3G(0)/@✏3

@G(0)/@✏
�2
✏
/2

◆2

=

✓
3

2t2
c

�2
✏

◆2

,

(3.4.3)

where for the z-error the spatial-gradient derivative @G(✏)
@✏

cancels out, and for the

x-error, the drive amplitude ✏d and the transverse energy di↵erence �⌦x does. We

will now see that the cancellation of these terms is instrumental in explaining the

dephasing behaviour described with Fig. 3.20.

The importance of the longitudinal magnetic field gradient can be traced back

to the magnitude of the z-dephasing error being proportional to the squared ratio

of the energy gradients: ez /
⇣

�⌦z
�⌦x

⌘2
as seen in Eq. 3.4.3. The remaining depen-

dencies captured by the equations explain where in the parameter space this term

becomes dominant. The dominating influence of the z-dephasing error for much

of the experimentally attainable parameter space in Fig. 3.20 can be linked to the

dependency of both the x and z error on ✏d and tc.

First, Eq. 3.4.3 highlights that the z-dephasing error is inversely proportional to

the squared drive amplitude: ez / 1/✏2
d
, whereas the x-error is independent of the

drive amplitude. The z-dephasing error dominates for small drive amplitude until

it reaches the constant value set by the x-dephasing error (see Fig. 3.21 a). This

is related to the fact that, on the one hand the z-dephasing rate is independent

of the drive amplitude, meaning that stronger drive and thus faster gate operation

leads to fewer errors, on the other hand the x-dephasing rate is proportional to

the drive amplitude, meaning that reductions in the error related to faster gates

are counterbalanced by an increase in the dephasing rate. From Eq. 3.4.3, we can

derive the value of the drive amplitude ✏d at which the x- and z- dephasing error are

equal. This crossing point describes the optimal drive amplitude (when dephasing
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errors are dominating), and is seen to be proportional to the ratio of the magnetic

gradients : ✏opt
d

/ �⌦z
�⌦x

. This explains the growing influence of the z-dephasing error

for increasing longitudinal magnetic field gradient.

Second, to lowest order12 the z-dephasing error is seen to be independent of the

charge qubit parameters ✏ and tc, while the x-dephasing error is inversely propor-

tional to t4
c
. This explains why the x-error is only dominant at small tc and thus small

spin–charge detunings � in Fig. 3.20. This behaviour is depicted in Fig. 3.21 b),

and can be physically explained by the dependencies of both errors on the spatial

gradient G(✏, tc). Indeed both the z-dephasing rate �z and the Rabi frequency x are

proportional to the derivative of this gradient13, so that the dependences on ✏ and

tc cancel in the ratio �z/x. However, the x-dephasing rate �x is proportional to the

derivative of the Rabi frequency itself, and thus the dependency on ✏ and tc do not

cancel in the ratio �x/x.

The error in Eq. 3.4.3 can be slightly refined by using the full second-order

approximations of the Hamiltonian in Eq. 3.2.18 to estimate the noise amplitude,

and inputing those into the full analytical error model of Eq. 3.3.17. We find that

to third-order in the electric detuning noise amplitude �✏, the x- and z-dephasing

error are given by:

ez ⇡
4

3

✓
�✏
✏d

◆2✓�⌦z

�⌦x

◆2
 
1�

✓
⌦s

⌦0

◆2
!2

ex ⇡ ⇡2

8

✓
�2
✏

2t2
c

◆2✓
1 +

2⌦0

⌦2
0 � ⌦2

s

◆2

,

(3.4.4)

where ⌦0 = ⌦(✏ = 0) is the charge-qubit splitting at zero electric detuning. These

expression extend the simplified equations Eq. 3.4.3 to a lower spin–charge detun-

ing regime. Importantly the final factor that suppresses the z-dephasing error for

vanishing spin–charge detunings (⌦s
⌦0

! 0), describes the appearance of a first order

sweet spot in the qubit energy-splitting at low spin–charge detunings, and reflects

the hybridisation of the spin and charge qubit energies (see Sect. 3.2.2)14. This error

model describes the numerical15 error well, as can be seen from the solid lines in

Fig. 3.21 a) and b).

12valid at large tc and thus �
13in the regime ⌦s . �
14At such small spin–charge detunings, a higher order expansion of the dephasing rate �z would

be necessary. However this is not necessary for the total error estimation as in the low-� regime,
the x-dephasing error dominates

15Using the numerical noise integrals but using an analytical approximation for the unitary time
evolutions, as described in Sect. 3.3.
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Figure 3.21: Analytical dephasing error model, vs numerical model at B = 0.3T,
for �✏ = 0.3GHz. a) As a function of drive amplitude, for � = 4.2GHz. b) As a function
of spin–charge detuning energy, for ✏d = 0.1GHz.

The expression for the z-dephasing error in Eq. 3.4.4 reproduces the dephasing

error of a flopping-mode qubit within the electric field of a superconducting cavity

by Beaudoin in ref. [72] (with a 40% di↵erence in the prefactor)16. The x-dephasing

error has not been considered in much of the literature ([74, 46]). It was alluded to

very briefly by Tosi et al. in ref. [12] proposing the flip-flop qubit.

The extended error equation in Eq. 3.4.4 can be used to also estimate the optimal

drive amplitude ✏opt
d

for dephasing limited noise. We find that ez = ex (that is, when

neither x or z errors are limiting the qubit performance) is solved by:

✏opt
d

⇡ 4

⇡

r
2

3

1

�✏

�⌦z

�⌦x

(⌦2
0 � ⌦2

s
)2

3⌦2
0 � ⌦2

s

. (3.4.5)

In summary, by conducting an optimisation of the flopping-mode qubit over a

large parameter space, we found that the ⇡/2 x-gate error decreases with both the

longitudinal magnetic field gradients and the magnetic field. This reduction is di-

rectly related to decreases in the z-dephasing rate and the charge T1 relaxation rate,

respectively. For magnetic fields below ⇠0.5T the optimal electric drive amplitude

also decreases strongly with the magnitude of the longitudinal magnetic field gradi-

ent between the two QDs. We derived a simplified description of the system relating

the qubit-energy splitting to the spatial gradient G and the Rabi frequency to the

first derivative of that gradient, allowing a good quantitative estimate of the dephas-

ing errors. We found that for dephasing-limited errors, the optimal drive power and

the z-dephasing error are proportional to the squared ratio of the longitudinal over

transverse magnetic field gradients: �⌦z
�⌦x

. Using this optimisation procedure we can

16Beaudoin’s pre-factor is estimated at 2(12+⇡2)/24 ⇡ 1.82 (including a factor 1/
p
2 belonging

to the RMS of the cavity field), while our pre-factor is 4/3 ⇡ 1.33.
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now design an optimal flopping-mode qubit implemented using phosphorus-doped

silicon devices.

3.4.2 Flopping-mode qubit at the first and second-order

sweet spots

In this final section, we investigate the benefit of operating the flopping mode qubit

at the first order x-dephasing sweet spot, compared to operating it at the second-

order z-dephasing error sweet spot. To do so we compare numerical simulations of

the total error at the location both sweet spots. The total error includes all the

charge and magnetic dephasing errors, as well as relaxation and leakage errors.

Before turning to the full numerical simulations including all errors, let us briefly

discuss the topology of the sweet spots in the parameter space. For that purpose, we

first investigate numerical simulations of the x- and z-dephasing errors separately.

The topology of the z- and x- dephasing sweet spots di↵er significantly as can be

seen in the Fig. 3.22 a) displaying the z-dephasing error (x-dephasing error in the

inset), for low and high magnetic-field operation at B = 0.2T and B = 0.8T

respectively. For both magnetic field values, the x-dephasing error displays a clear

first order sweet spot at the symmetric electric detuning position ✏ = 0 extending

for all values of spin–charge detuning � = ⌦ � ⌦s. The first order z-dephasing

sweet spot however describes a curve (black dotted line), and only overlaps with

the x-dephasing sweet spot for small values of �, where both errors are large and

qubit operation is therefore undesirable. As a consequence, one cannot operate the

qubit on both the x- and z- sweet spot simultaneously. One potentially attractive

operation point as detailed in Tosi et al. [12] for minimising the z-dephasing is the

second-order z- dephasing sweet spot indicated by a black circle in Fig. 3.22a and

corresponds to a particular value of spin charge detuning � and electric detuning

✏ where the z-dephasing error is especially low. The x-dephasing error is however

quite large at that position, not only because that position is o↵ the x-sweet spot

but also because the x-error is large at small value of spin–charge detuning.17 We

therefore expect that the second-order sweet spot is not a suitable operation point

when electrically driving rotations of the flopping-mode qubit.

The optimal operation point that minimises the sum of x- and z-dephasing errors

(and other errors), will not only depend on the position of the sweet spots but would

also depend on drive amplitude, as the z-dephasing error falls quickly with the drive

17Small values of spin–charge detuning correspond to small values of tunnel-coupling, especially
for low magnetic field. This translates into large x-errors because ex / 1/t4

c
, see Eq. 3.4.4.
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amplitude. In Fig. 3.22 b, we plot numerical simulations of the total qubit error as

a function of spin–charge detuning and electric-drive amplitude ✏d, for two values of

the static detuning ✏ is indicated with coloured markers present in both Fig. 3.22 a

and Fig. 3.22 b. In the top row of Fig. 3.22 b), the error is calculated at the

electric detuning value corresponding to the second-order z-dephasing sweet spot,

while in the bottom row the total error is calculated on the x-dephasing sweet spot

(✏ = 0). While all of the parameter space in the bottom plots sits on the x-dephasing

sweet spot, in the top plot only one value of � (vertical dotted line) corresponds

to operation on the second-order z-dephasing sweet spot. In all four plots in b) the

limiting error source is indicated by regions with dotted boundaries and labelled

according to the dominant error, and the optimal operation point is indicated by a

black dot.

At high magnetic field values near B = 0.8T (right hand side plots), the qubit

error is hardly a↵ected by which of the x- or z-sweet spot is favoured, because, T1

related errors are dominant.18 At the low magnetic field of B = 0.2T (left hand side

plots) the influence of the electric detuning operation point can be split into two

regimes around values of spin–charge detunings large (� & 1) and small (� . 1).

These two regimes correspond to the two z-dephasing regimes (strong and weak

spin–charge hybridisation) identified in Sect. 3.2.3. In the detuned regime � & 1 in

Fig. 3.22 b) the total qubit error does not change noticeably between operation o↵

or on the x-dephasing sweet spot (top and bottom respectively) at large spin charge

detuning values. This negligible change in error is related to the fact that at detuning

values � beyond the second-order sweet spot, the z-dephasing error is dominated

by the first order term describing the longitudinal magnetic field gradient, and the

z-dephasing error does not depend on any static electric tuning parameter (ez in

Eq. 3.4.3). The x-dephasing error however does depend on ✏, and thus operation at

the x-dephasing sweet spot reduces the total error. At lower spin charge detuning

values � . 1, the z-dephasing sweet spot becomes relevant and the total error plots

in b) di↵er appreciably. In general, operation at ✏ = 0 is beneficial in this regime

because the z- and x-dephasing sweet spots start to overlap, as can be seen from the

low error region (blue region) in the lower plot extending to spin–charge detuning

values as small as 100MHz. Operation at non-zero electric detuning only has a slight

advantage, when operating exactly on the second-order z-sweet spot (at � ⇡ 0.3),

and at low electric drive amplitude, as is indicated by the blue arrow in the top

panel. Errors in this non-zero detuned regimes are however quite large ( 1%) and

18The operation at the second-order sweet spot (top plot, grey line) can however be seen by the
x-dephasing error appearing as a limiting error source.
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Figure 3.22: Optimal ⇡/2 X-gate operation on the flopping-mode qubit at the
x- and z-dephasing sweet spots. The left (right) column displays error simulation
at magnetic fields of 0.2 (0.8)T, we chose magnetic field gradients �⌦z/x = 5 (117)MHz
typical for flopping mode qubits. Row a) displays the z-dephasing error (x-dephasing
error in the inset) for an arbitrary fixed drive amplitude of ✏d = 0.1GHz as a function
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(dT1), idle-T1 (iT1), and Overhauser noise (OH).
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are far from the optimal.

The optimal operation point for the flopping-mode qubit is positioned at a spin

charge detuning position in between the two regimes (� ⇡ 2 � 4GHz) indicated

by the black dots. These optimal detuning positions corresponds to a regime where

spin–charge hybridisation is relatively low, and where the qubit response to the elec-

trical drive can be explained classically. In that intermediate regime, the influence

of the electric-detuning position is observable. Indeed we find that the error at the

optimal point (black dots) 50% higher when the qubit is operated at the non-zero

electric detuning value (top plot) when compared to operation at the x-dephasing

sweet spot (at ✏ = 0). the optimal error is 4.8 ⇥ 10�4 at ✏ = 0 in the bottom plot

and 7.5⇥ 10�4 at ✏ = 1.1GHz in the top plot.

In summary, we have shown that operation of the flopping-mode qubit at the

second-order z-dephasing sweet spot is disadvantageous compared to operating the

qubit on the x-dephasing sweet spot at the symmetric electric detuning point. This

is because the x-dephasing is typically the dominant error source for large driving

amplitudes. Operation at the second-order sweet spot is only beneficial below ✏d ⇡
0.03GHz corresponding driving powers being restricted below -100 dBm at the gate.

This is well below drive powers of up to -60 dBm demonstrated experimentally by

Croot et al. in ref. [46].

3.5 Conclusion

In this chapter we have shown that the flopping-mode qubit first proposed by Hu et

al. [73], based on a single electron spin shared by two QDs is an attractive platform

for quantum computation. It features low error (⇠ 10�4) and fast electric driving of

the spin (tens of MHz), and ultimately, also long-range coupling via superconducting

microwave cavities over the millimetre length-scale [77].

The flopping-mode qubit can be implemented in various physical systems. En-

gineering of the longitudinal magnetic field gradient either through micromagnet

design or by controlling the hyperfine interaction that describes the change in the

qubit energy when subjected to a static electric field is crucial in protecting the

qubit from electric field noise. We find that minimising the longitudinal magnetic

field gradient allows the qubit to reach low errors (⇠ 10�3) for significantly lower

electric drive powers (�100 dBm). The engineered resilience of the qubit to electric

field noise is related to the presence of dephasing sweet spots, at which the qubit

energy is insensitive to di↵erent orders in the qubit energy electric-field fluctuations.
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We show the second-order sweet spot for the qubit energy arising from the longitu-

dinal magnetic field gradient, identified in ref. [12, 74], is not the optimal operation

point when driving the qubit in the majority of device implementations. The op-

timal operation point in most cases is the symmetric electric detuning position, at

which the qubit electric dipole is maximised, and the qubit’s Rabi frequency as

well as its energy can be protected from electric field fluctuation. This is especially

the case for low longitudinal magnetic field gradients. Finally, our error model, al-

lows fast optimisation and feedback for experimentalists to implement or optimise a

flopping-mode qubit by providing optimal magnetic fields, detunings, drive powers

and magnetic field gradients required to achieve high-fidelity qubit operations.
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Chapter 4

An all-epitaxial flopping-mode

qubit and quantum-computing

architecture

The previous chapter introduced the concept of flopping mode qubits and how they

have been realised in di↵erent physical systems. In particular, this chapter dealt

with the importance of engineering magnetic field gradients in these devices and

the di↵erent sweet spots in the qubit energy landscape where it was shown that

by reducing the longitudinal magnetic field gradient (to remove second-order sweet

spots) the qubit dephasing time could be maximised. With this knowledge, we then

introduced a new error model to describe the optimal operation point of the qubit.

In this chapter we will explicitly address how to engineer an all-epitaxial flopping

mode qubit and how it can be scaled up into a large-scale quantum computing

architecture.

The work for this chapter was performed by this author, with help from Dr.Yu

He, and supervision by Dr. Samuel Gorman. The work presented here is the object

of provisional Australian patent application 2021900702, and is under review for

publication [1].

4.1 Introduction

Donor-based spin-qubits have demonstrated some of the longest coherence and relax-

ation times [2] in solid-state quantum devices together with single-qubit gate fideli-

ties of 10�3 [3], well below the error threshold of the leading quantum error correction

code (the surface code). This makes donor-based spin-qubits an attractive candi-
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date for large-scale universal quantum computation. Traditionally, spin qubits have

been driven by bulky microwave antennas producing oscillating magnetic field from

high-powered microwave voltages using electron spin resonance (ESR). State-of-the-

art ESR has demonstrated high fidelity (> 99%) single qubit gates. However, the

gates are two orders of magnitude slower than single-qubit gates in superconducting

qubits for comparable fidelities due to the di�culty in applying large high-frequency

magnetic fields. In donor spin-qubits, a ⇡-gate was demonstrated with 10�3 error

in about 3µs in ref. [3]. In superconducting qubits a ⇡ gate was demonstrated with

8⇥ 10�4 error in about 16 ns in ref. [4].

Both the bulky, heat dissipating ESR antennas and the relatively slow gates

make it challenging to scale-up quantum processors based on the magnetic control

of donor spin-qubits. We note the recent appearance of a paper where a global ESR

magnetic field can be used as a scalable architecture [5]; however, it is not clear how

such a system would deal with variations in the electron spin resonance frequencies

in a large-scale device [6]. Furthermore, long-distance qubit coupling schemes will

likely be indispensable to the scaling-up of quantum computers to large sizes, due to

the need for classical control electronics to be interfaced with the qubits, typically

requiring cryogenic temperatures (see Sect. 2.1.3). In silicon, the low spin–orbit

interaction renders current long-distance coupling schemes di�cult to use via the

established technological platform based on superconducting resonator due to the

weak coupling of spins to the magnetic field of the cavity.

As a consequence there has been recent growing interest in electric dipole spin

resonance (EDSR) as means to couple single-electron spins over a large (mm scale)

distance [7]. This technique electrically controls spin qubits through local electric

fields and couples qubits via their charge dipole moment. Electric-dipole spin reso-

nance is therefore achieved by coupling the spin of an electron to its charge degree

of freedom. This allows the spin state to be controlled by moving the electron using

electric fields [8]. As discussed in the previous chapter, spin–charge coupling can

be created by a number of di↵erent physical mechanisms such as the use of large

spin–orbit coupling materials [9, 10, 11], magnetic-field gradients from micromag-

nets [12, 13, 14, 15], and the hyperfine interaction between the electron and the

surrounding nuclear spins [16, 17, 18].

Depending on the nature of the di↵erent physical mechanism that couples the

spin and charge degree of freedom, EDSR can be used in di↵erent ways to drive

qubit operations. The use of materials with intrinsic spin–orbit coupling such as

III-V semiconductor materials [9, 10, 11, 19] allows for EDSR without any addi-
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tional control structures [12]. For material systems with low intrinsic spin–orbit

coupling however such as electrons in silicon it is di�cult to operate a qubit using

EDSR without creating spin–orbit coupling using extrinsic mechanisms. To generate

a synthetic spin–orbit coupling, micromagnets were therefore introduced to create

a gradient magnetic field near the spin qubits [12]. However, these micromagnets

require further device processing steps and complicated device architectures. Mi-

cromagnets have also been shown to introduce additional charge noise originating

from stray magnetic fields [20]. Typically when an electron is moved back-and-forth

within the magnetic-field gradient perpendicular to the static magnetic field, B0, it

experiences an e↵ective oscillating magnetic field with a corresponding energy, �⌦?

which can be used to drive spin rotations [14]. However, any stray magnetic-field

gradient parallel to B0 with a corresponding energy, �⌦k can lead to charge noise

induced dephasing as discussed in the previous chapter.

In this chapter, we specifically consider flopping-mode EDSR where a single elec-

tron is shuttled between two donor-based quantum dots (QDs) [15, 21, 22] rather

than shaking an electron within a single QD [10]. The proposed qubit is theoretically

shown to be able to achieve long coherence times by minimising the longitudinal-

magnetic-field gradient while maintaining a large ⇠ 100 MHz transverse-magnetic-

field gradient for fast gate operations. Additionally, we will show that these flopping-

mode qubits can be measured via dispersive charge readout [15] or by direct single-

shot spin readout [23], and can be coupled over long distances using a superconduct-

ing cavity [7]. This makes the flopping mode EDSR qubit a promising candidate for

scaling up quantum processors based on electron spins important to realise error-

corrected quantum computation using the surface code.

In Fig. 4.1a)-c) we describe three di↵erent flopping-mode qubits in silicon. The

two magnetic-field gradients, �⌦? (single-qubit gate speed) and �⌦k (qubit de-

phasing) — present in each design—arise from di↵erent physical mechanisms. Fig-

ure 4.1a) shows the donor–QD hybrid qubit (flip-flop qubit) [18]. Here, the spin–

charge coupling arises from the hyperfine interaction of the electron spin with the

nuclear spin of a single phosphorus used to generate electron-nuclear spin donor–QD

transitions [24]. The flopping-mode operation EDSR is performed by positioning

the electron in a superposition of charge states between the donor nuclei and an

interface QD created using electrostatic gates. In this charge-superposition state

the hyperfine interaction is known to change from A ⇡ 117 MHz on the donor

to A ⇡ 0 MHz on the QD [18]. The qubit states are |0i ⌘ | *#i and |1i ⌘ | +"i
(|nuclear spin, electron spini). The transverse-magnetic-field gradient, �⌦? (green)
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Figure 4.1: A comparison of di↵erent flopping-mode electric-dipole spin-
resonance qubits. Three di↵erent flopping-mode EDSR qubits that can be implemented
using a) donor–QD, b) QD–QD, and c) donor–donor sites. The longitudinal (blue) and
transverse (green) magnetic-field gradients, �⌦k and �⌦? are shown next to the dif-
ferent implementations. The donor–QD and donor–donor implementations both use the
hyperfine interaction from the electron-nuclear spins that are naturally present in donor
systems to generate a spin–orbit coupling. The QD–QD system requires an additional
micromagnet to create a spatially-varying magnetic field to induce an artificial spin–orbit
coupling. The electron wave function is shown as the white cloud with a spin orientated
parallel to the external magnetic field, B0. The donor nuclei are shown as yellow positive
charges. d) The energy spectrum for a single electron in a magnetic field (Ez = �eB0) near
the charge degeneracy between two di↵erent charge states with tunnel coupling, tc. The
energy spectrum at ✏ = 0 for e) donor–QD, QD–QD, and donor–donor implementations
show the additional nuclear-spin states (* and +) present in donor systems. f) The qubit
dephasing rate for di↵erent longitudinal-magnetic-field gradients, �⌦k = �⌦? (yellow)
and �⌦k = �⌦?/100 (blue) with �⌦? = 117MHz. Here, the smaller the longitudinal-
magnetic-field gradient the more gradual the change in qubit energy, which results in lower
errors over a larger detuning range. g) Summary of the e↵ective magnetic-field gradients
found in the di↵erent flopping-mode EDSR qubits.164



arises from the changing hyperfine interaction as the electron is moved away from

the donor nucleus. This voltage-dependent hyperfine can then be used to resonantly

drive the qubit states by applying an oscillating electric field. The longitudinal-

magnetic-field gradient, �⌦k (blue) is created by the di↵erence in the electron g-

factor between the QD and donor such that the qubit energy di↵ers whether the

electron resides on the QD or the donor.

The second flopping-mode-qubit implementation in Fig. 4.1b) is the QD–QD

system [25]. Here the qubit states are the pure spin states of the electron in the

ground charge state of the double-quantum-dot system, |0i ⌘ | #i or |1i ⌘ | "i.
The transverse-magnetic-field gradient, �⌦?, required to drive qubit rotations is

generated by an additional micromagnet (⇠ 300 nm away) designed to create a

large magnetic-field gradient (⇠ 10 mT) across the two QDs [26]. As previously

discussed the flopping-mode EDSR is performed by biasing a single electron to a

superposition between two charge states of di↵erent QDs and applying an oscillating

electric field on resonance with the qubit energy. The stray field of the micromagnet

is known to create a magnetic-field gradient parallel to the external magnetic field

corresponding to �⌦k which leads to dephasing of the qubit.

In this chapter we focus on the details of a flopping-mode qubit based on two

donor-based QDs with an asymmetric number of donors in each QD as shown in

Fig. 4.1c). In this implementation the qubit utilises the hyperfine interaction of the

electron spin on one QD with a nuclear spin to create a flip-flop transition on only

one of the QDs. The other nuclear spins on the second QD are used to reduce the

dephasing rate of the qubit by minimising the longitudinal magnetic field gradient.

This builds on a previous proposal [27] where the electron spin could be electrically

controlled by simultaneously flip-flopping with all nuclear spins across two donor-

based QDs. In principle, each donor QD can be defined by any number of nuclear

spins. Whilst a 1P-1P configuration is possible [28] we show that this configura-

tion leads to significant dephasing, as such we consider an asymmetric donor system

to reduce the dephasing anticipated from this longitudinal-magnetic-field gradient.

Typically, as the number of donors comprising the QD is increased, the hyperfine

strength of the first electron on that QD becomes larger [29]. This donor-based

control of the hyperfine interaction is useful for increasing the transverse-magnetic-

field gradient required for qubit driving such that the hyperfine interaction can be

made significantly di↵erent between the QDs to address particular flip-flop transi-

tions. However, the larger hyperfine interaction on the secondary QD also makes

the longitudinal-magnetic-field gradient larger leading to reduced coherence times.
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To reduce this e↵ect, we propose filling one of the QDs with more electrons in order

to shield the outer electron from the inner core donor nuclear spins. This results in

a reduced hyperfine coupling [29] and therefore a lower dephasing rate.

We choose to implement the two aforementioned strategies to optimise the hy-

perfine interactions within the qubit (inactive nuclear spins and inner-shell electron

shielding) on the specific case of a single donor coupled to a 2P QD (2P-1P) at the

(2,1)$(3,0) charge transition. This particular charge transition corresponds to an

unpaired electron being shared by the two QDs (as is required for flopping mode

operation), while two inner electrons on the 2P (left) QD lower the hyperfine inter-

action of the outermost electron. Furthermore, nuclear-spin control of the in active

donors in the 2P QD allows us to engineer the total hyperfine coupling experienced

by the electron. As we will show later, this reduces the longitudinal-magnetic-

field gradient, �⌦k and leads to increased coherence times. The qubit states are

|0i ⇡ | +**#i and |1i ⇡ | +*+"i which are coupled via a flip-flop transition of the

electron with the 1P (right) nuclear spin. Such a donor–donor implementation there-

fore also utilises the hyperfine interaction from the electron–nuclear-spin system to

drive qubit transitions as with the flip-flop qubit in Fig. 4.1a). The key di↵erence is

that the magnetic-field gradient can be engineered during fabrication by controlling

the number of donors in each QD and the number of electrons on these QDs. Since

the hyperfine interaction is known to change considerably for multi-donor QDs we

can make �⌦? up to ⇠ 300 MHz and �⌦k less than a few MHz [30], see Fig. 4.1g).

This is in contrast to the flip-flop qubit where �⌦k is primarily determined by the

di↵erence in the electron g-factor on the donor atom and the QD, the latter being

known to vary due to atomic steps at the interface where the QD is formed [31].

In this chapter we show that the additional nuclei in these multi-donor QDs

can be used to minimise the dephasing rate of the qubit. This is because it is

the strength of the hyperfine interaction of the electron spin with the nuclear spins

that are not flipping during electric driving that largely determines the dephasing

rate. By engineering the hyperfine strength on the multi-donor QDs, we can there-

fore maximise the coherence time of the EDSR qubit. By directly controlling the

nuclear-spin states and the number of electrons on the double-donor flopping-mode

EDSR qubit, we can also operate over a wide range of magnetic fields and tunnel

couplings. Most importantly, the qubit shows low errors, < 10�3, below the error

threshold for surface-code error correction, with realistic noise levels achieved in

isotopically purified silicon-28 [2, 32]. The robustness of the qubit to variations in

the magnetic field and to variable tunnel couplings is particularly useful for scaling
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to large qubit arrays where inevitable imperfections in fabrication and measurement

control can reduce qubit quality. Moreover, we show that the low error rate and the

spin–charge coupling predicted for the qubit will allow for strong-coupling to super-

conducting microwave cavities. This spin–cavity coupling has been systematically

studied by Osika et al. [28] who consider the specific case of a 1P-1P double donor

system. They show that the use of a symmetric hyperfine coupling in a 1P-1P or the

recently discovered electrically induced spin–orbit coupling [33], allows for strong

coupling of a phosphorus-doped silicon qubit to a superconducting cavity (simu-

lated using finite-element modelling). This chapter, together with the work on spin

cavity coupling by Osika et al., highlights multiple routes for achieving two-qubit

couplings between Si:P qubits via superconducting microwave resonators. Further-

more, we show that a fully electrical initialisation and readout of the all-epitaxial

qubit is possible, including a pathway for initialisation of the nuclear spin without

the need for nuclear magnetic resonance. In summary, we show in this chapter that

the proposed donor-based EDSR qubit allows fast and high fidelity qubit driving, as

well as long-distance electrical coupling via superconducting cavities, with scalable

all-electrical initialisation. These properties make the qubit an attractive candidate

for large-scale universal quantum computation. In a final section of this chapter, we

propose a large-scale quantum-computing architecture based on the described qubit

that will be compatible with the surface-code-error correction algorithm.

4.2 Donor-based flopping-mode qubits

A generic energy-level spectrum for all flopping-mode EDSR qubits is shown in

Fig. 4.1d). The spectrum describes a single electron near the degeneracy point of

two di↵erent charge states as a function of the detuning between them, ✏ (at ✏ = 0

the charge states are equal in energy). The charge states have a tunnel coupling,

tc and the electron-spin states are split by the Zeeman interaction, Ez = �eB0 in a

static magnetic field, B0, where �e is the electron gyromagnetic ratio. The system

is described by the spin of the single electron and the bonding/anti-bonding charge

states (|+i = (|Li + |Ri)/
p
2 and |�i = (|Li � |Ri)/

p
2 where |Li and |Ri are

the left and right QD orbitals, respectively) resulting in a set of four basis states

{| # �i, | " �i, | # +i, | " +i} corresponding to the red, green, blue, and yellow

states in Fig. 4.1d). The spin–charge coupling is maximised when the charge ground

state | " �i (green) hybridises with the charge excited state | # +i (blue), which

at ✏ = 0 occurs when Ez ⇡ 2tc where the spin and charge qubits are e↵ectively
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degenerate (see Fig. 4.1d)). In donor-based systems these electron spin states are

split due to the hyperfine interaction of the electron with the quantised nuclear-spin

states. Fig. 4.1e) compares the energy levels involved for the donor–QD, QD–QD

and donor–donor implementations at ✏ = 0. The QD–QD system is comprised of

only charge and electron spin states which is the simplest implementation of the

flopping mode qubit. The presence of nuclear spins in donor systems increases the

number of states by a factor of 2n where n is the number donors (the donor–QD

flopping-mode qubit has 8 combined electron, nuclear and charge states and our

proposal for a 2P-1P system has 32 such states, see Fig. 4.1e)). For operation of the

donor-based EDSR qubit the electron and nuclear spins must be anti-parallel, | *#i
or | +"i to allow for the flip-flop transition. The presence of the hyperfine interaction

of the electron with the nuclear spins in the donor-based EDSR proposal means that

the qubit does not require any additional micromagnets to generate a spin–charge

coupling. This is a significant positive since it can reduce the qubit footprint and

also because the longitudinal magnetic gradient produced by micromagnets can allow

charge noise to couple to the qubit and generate errors [20]. However, it is important

to now manage any unwanted nuclear-spin flip-flop transitions to avoid leakage out

of the computational basis. We will show that the added leakage pathways from the

nuclear spins can be largely controlled through Gaussian pulse shaping, and error

rates on the order of 10�4 can be reached. In the long term this can probably be

improved further by using pulse-shaping techniques such as derivative reduction by

adiabatic gates (DRAG [34]).

Minimising the longitudinal magnetic-field gradient �⌦k parallel to B0 reduces

the chance of dephasing the qubit. The longitudinal-magnetic-field gradient arises

from either the stray field of the micromagnet [20, 35] or from the hyperfine interac-

tion between the electron and nuclear spins [29]. The hyperfine interaction takes the

form A(sxix + syiy + sziz) in the Hamiltonian, where si (ii) is the electron (nuclear)

spin operator. The hyperfine interaction is isotropic, and therefore —irrespective

of the magnetic field orientation— there will always be some hyperfine component

parallel to the external magnetic field resulting in an energy gradient �⌦k (with

respect to detuning). Since charge noise couples to the qubit via charge detuning,

the smaller this gradient, the flatter the qubit energy as a function of detuning, and

the lower the charge-noise-induced dephasing during qubit operation.

Figure 4.1 f) shows the resultant qubit dephasing rate calculated using the

model in the previous chapter as a function of tunnel coupling at ✏ = 0 (where

the qubit drive is performed) for two values of �⌦k = �⌦?/100 MHz (small �⌦k)
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and �⌦k = �⌦? MHz (large �⌦k). We can see the qubit dephasing rate remains

smaller over a wider range of tunnel couplings for small �⌦k compared to large

�⌦k indicating that the qubit performs better when �⌦k is minimised. In gen-

eral, flopping-mode qubits favour large �⌦? (qubit driving) and small �⌦k (qubit

dephasing). Figure 4.1g) finally compares the physical parameters that would be

expected for the three di↵erent flopping-mode EDSR qubit implementations. The

QD–QD implementation obtains �⌦? of the order of 900 MHz allowing for fast

qubit operations; however, �⌦k ⇠ 15 � 80 MHz is also relatively high leading to

faster qubit dephasing. The donor–QD and donor–donor qubits both have similar

�⌦? ⇠ 100 MHz values due to the similar hyperfine interaction strengths from

the phosphorus donor. However, by minimising the hyperfine interaction on the

multi-donor QD instead of the di↵erence in g-factors, we can achieve �⌦k ⇠ 0 MHz

for the donor–donor EDSR qubit, smaller than other flopping-mode qubits. At the

same time the donor–donor implementation operates away from interfaces that lead

to charge noise and do not require additional micromagnets which can also induce

charge noise [20]. In the next sections we theoretically investigate the fidelity of

single-qubit gates and microwave cavity coupling for two-qubit gates. In particular,

we focus on the benefits of using two di↵erent size donor QDs (2P-1P) for flopping-

mode EDSR to maximise �⌦? and minimise �⌦k by controlling the nuclear spins

and the electron shell filling on both donor-based QDs.

4.2.1 Nuclear spin states in the 2P1P all-epitaxial flopping-

mode qubit

The qubit proposed here utilises flopping-mode EDSR to electrically drive the electron–

nuclear flip-flop transition where the two charge sites are defined by donor-based

QDs. The Hamiltonian for a single electron shared by two tunnel-coupled donor-

based QDs spaced approximately 10 - 15 nm apart with NL donors in the left QD

and NR donors in the right QD is given by,

H = HZeeman +HCharge +HHyperfine. (4.2.1)

The first termHZeeman = �eB0sz+�nB0

P
iz in Eq. 4.2.1 is the Zeeman term for both

the electron (�e ⇡ 27.97 GHz, the electron gyromagnetic ratio) and nuclear spins

(�n ⇡ �17.41 MHz, the nuclear gyromagnetic ratio). The second term in Eq. 4.2.1

HCharge describes the tunnel coupling, tc and detuning, ✏ between the charge states

of the donors that have an excess electron on one of the QDs (2nl, 2nr + 1) $
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(2nl+1, 2nr). Finally HHyperfine in Eq. 4.2.1 represents the detuning dependent con-

tact hyperfine interaction (AL and AR for the left and right QDs) of the outermost

electron spin to each of the NL + NR phosphorus nuclear spins. The Hamiltonian

Eq. 4.2.1 is a model Hamiltonian that is agnostic to the shape of the electron wave-

function which depends on the exact donor configuration and the electric fields

within the device [29]. The e↵ect of the donor configuration and the electric field

is captured by the free model parameters ✏, tc, AL, AR, �e and �n. The model

of Eq. 4.2.1 has been shown by Tosi et al. to reproduce atomistic tight binding

simulations which precisely model the electron wavefunction on the donor [18].

In principle, each QD can be formed by any number of phosphorus donors. Here

we investigate the specific case NL = 2 and NR = 1, that is, the 2P-1P system

(see Fig. 4.2a) for the energy level diagram at ✏ = 0). The qubit states are defined

as |0i ⇡ | +**# �i and |1i ⇡ | +*+" �i and a transition between the two states

corresponds to a flip-flop of the electron spin with the nuclear spin on the right

donor QD. The nuclear spin states on the left donor QD remain unchanged during

the transition. The charge state |�i is defined by the two quantum-dot orbitals

associated with the (3, 0) $ (2, 1) charge transition.

The two quantum-dot orbital |�i is expected to be well defined and non-degenerate.

Indeed the |�i state is the bonding state of the 1P1e orbital in the right donor QD,

that is known to be non-degenerate [37], and the 2P3e orbital in the left donor QD,

that is not expected to be degenerate either due to the large extent of the wavefunc-

tion. In particular the T2 state degeneracy that can be present for the 2P1e orbital

does not necessarily carry over to the 2P3e case, because the wavefunction is spread

much more broadly [29], so that the 2P3e wavefunction cannot be described by a

combination of the 2P1e orbitals that can be degenerate, but needs to be described

as a linear combination of many 1s, 2s, 3s, 4s ... orbitals, which in general should

be non-degenerate 1.

To compare the donor–donor flopping-mode qubit to the QD–QD and donor–QD

implementations, we approximate the Hamiltonian of Eq. 4.2.1 using a Schrie↵er–

Wol↵ transformation to a general flopping-mode Hamiltonian in terms of the trans-

verse (�⌦?) and longitudinal (�⌦k) gradients (see Sect. C.1.2),

H =
⌦z

2
�z + ✏⌧z + tc⌧x +

⇣�⌦k

4
�z +

�⌦?

4
�x
⌘
⌧z. (4.2.2)

Here �i (⌧i) are the Pauli-operators for the combined electron-nuclear spin (charge)

1Private communication with Prof. Rajib Rahman
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Figure 4.2: Operation of the donor–donor flopping-mode qubit. Due to spin
conservation, only a subset of the nuclear spin states in the hyperfine manifold in a) need
to be considered for qubit operation. For a 2P-1P donor–donor device, the qubit states
are displayed in red and green, the lowest (highest) excited charge state in blue (yellow),
the nuclear spin leakage states where the total spin of the system is conserved are shown
in black. The leakage probability of the nuclear-spin states can be minimised through
pulse design. The states not involved in the qubit operation (other nuclear spin states
with no leakage pathway) are shown as dashed grey lines. b) Control of the electron
number using electrostatic gates and nuclear-spin orientation (hiz

L
i) using NMR allows us

to tune the hyperfine coupling, hALi and longitudinal-magnetic-field gradient �⌦k. The
value hALi ⇡ 260MHz with one electron are based on experimental measurements [36]
while that with a three-electron occupation (hALi ⇡ 10MHz) is based on numerical tight
binding simulations by Wang et al. [29]. c) Leakage out of the qubit subspace needs to
be considered both when initialising the qubit for control and when driving the qubit at
✏ = 0.
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degree of freedom. The first term, ⌦z is the energy of the combined electron-nuclear

spin state (which depends on the exact value of the left and right donor hyperfine

interaction, AL and AR),

⌦z =
q

⌦2
s
+ A2

R
/4, (4.2.3)

where ⌦s = (�e+�n)B0+
P

NL

k
AL,k

⌦
iz
L,k

↵
/2 is the Zeeman energy with a correction

due to the hyperfine interaction of the electron with the nuclear spins in the left QD

and
⌦
iz
L,k

↵
is the expectation value of the z-projection of the k-th nuclear spin on the

left QD. The charge part of the Hamiltonian is described by the second (detuning, ✏)

and third (tunnel coupling, tc) terms of Eq. 4.2.2. The rightmost term in Eq. 4.2.2

corresponds to the charge-dependent hyperfine interaction:

�⌦k =
NLX

k

AL,k

⌦
iz
L,k

↵
cos ✓ � AR sin ✓, (4.2.4)

�⌦? = AR cos ✓ �
NLX

k

AL,k

⌦
iz
L,k

↵
sin ✓, (4.2.5)

where tan ✓ = AR/(2⌦s). Since ⌦s is typically optimised to be > 5 GHz, is gen-

erally much greater than AR ⇡ 100 MHz [38, 29], sin ✓ ⇡ 0 and cos ✓ ⇡ 1 then

�⌦k ⇡
P

NL

k
AL,k

⌦
iz
L,k

↵
and �⌦? ⇡ AR. The value of AR is that of the well-known

hyperfine interaction on a single phosphorus donor and has been experimentally

measured to be ⇡ 100 MHz [38, 36]. Numerical tight binding simulations used for

the 2P hyperfine values AL reproduce this value [29]. We can control �⌦k during

the fabrication stage by engineering the number of the donor atoms in each QD. Ad-

ditionally, during qubit operation �⌦k can be optimised by controlling the nuclear

spins on the left QD using nuclear magnetic resonance (NMR) [39], or by dynamic

nuclear polarisation [40], and additionally by controlling the electron-shell filling in

the left QD. Figure 4.2b) shows a Table of di↵erent nuclear and electron spin con-

figurations determining the magnitude of the hyperfine-coupling strengths AL,k and

their e↵ect on the value of �⌦k. The values are based on experimental measure-

ment of the 2P hyperfine interactions with a single electron [36] and numerical tight

binding simulation of the 2P hyperfine interaction with one and three electrons by

Wang et al. [29]. Wang et al. have predicted that the larger the QD, the larger
P

AL,k since the phosphorus donors create a stronger confinement potential for the

electron which increases the contact hyperfine strength. This is confirmed by recent

experimental measurements of the hyperfine interactions on 2P QDs (see ref. [36]

as well the measurements by this author in Chapter 5). Wang et al. predicted that

172



the hyperfine interaction strength can in turn be lowered on multi-donor QDs by

adding inactive pairs of electron spins to the QD. In our proposal this is achieved by

increasing the total electron number on the left quantum dot from 1 to 3. The two

innermost electrons then form an inactive singlet state that screens the outermost

electron defining the qubit from the nuclear potential of the donors. This shielding

was confirmed by tight binding simulations for the specific case of the 2P QD by

Wang et al. [29] which predict a decrease in the hyperfine interaction to 10 MHz

with three electrons 2 . This decrease in
P

AL,k will result in longer dephasing times

for the proposed qubit. Furthermore, the presence of more than one donor in the

left QD allows another reduction of the longitudinal gradient �⌦k by controlling the

nuclear spin states. From Fig. 4.2b) it follows that by using antiparallel nuclear-spin

states (
⌦
iz
L,1

↵
= 1/2 and

⌦
iz
L,2

↵
= �1/2) on a 2P QD the value of �⌦k can be low-

ered to almost zero. This ability to control the number of electrons and nuclear spin

states on the left QD motivates the operation of the qubit using |0i ⇡ | +**# �i
and |1i ⇡ | +*+" �i at the (3, 0) $ (2, 1) transition. Note that the nuclear-spin

states | *+i and | ++i for the 2P are equivalent to | +*i and | **i, respectively and

so are absent from Fig. 4.2b).

Additional nuclear spin states can potentially however create more leakage path-

ways out of the computational basis. Here we show that these additional nuclear

spin states can act as a resource and are not a limiting factor for the qubit operation.

In particular, there are two crucial steps in the qubit operation where leakage from

the computational basis can occur: during initialisation of the qubit and during

driving of single-qubit gates (see Fig. 4.2c)). In the following section, we will first

describe the model used to estimate qubit errors during electrical driving, and then

investigate the e↵ect of the nuclear spin states during initialisation and electrical

driving.

4.3 Modelling errors during driving of the flopping-

mode qubit

During electric driving of the qubit, errors in the operation of the qubit are intro-

duced by dephasing, T1 relaxation and state leakage. Our error model detailed in

the previous chapter, includes dephasing of the qubit due to electric field noise due

to electrostatic gates and charge defects, magnetic-field noise from spinful nuclear

2The wave function of the third electron on a 2P dot is calculated using a Hartree self-consistent
field solution by Wang et al. and depicted in fig. 5 a) of ref. [29]
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Figure 4.3: Dominant leakage pathways for the 2P1P (3e +*) system. a) Energy
level diagram at ✏ = 0 for a 2P1P donor-based flopping mode qubit. The blue region
corresponds to excited charge (leakage) states. The dotted and dashed black lines in the
green (qubit subspace) correspond to di↵erent nuclear spin states that can also be occupied
during qubit operation which leads to errors. b) The possible charge leakage pathways of
the qubit into the excited charge state of the double QD system with ffR corresponding
to the qubit frequency and �ql the detuning between the qubit and leakage states. c)
Nuclear spin leakage I occurs when the one of the nuclear spins undergoes an unwanted
flip-flop transition with ffL1 (ffL2) corresponding to a flip b) of the first (second) nuclear
spin on the left QD. d) Nuclear spin leakage II occurs when there is a simultaneous flip-
flop of the electron spin with all three nuclear spins in the system (ff3⇥). The coupling
of these state to the qubit states are low but are close in energy resulting in a possible
leakage pathway.

isotopes, T1 relaxation of the charge qubit, and leakage out of the computational

basis of the qubit via nuclear spin transitions. Pure spin relaxation is not included as

the spin-relaxation rates are orders of magnitude lower than the charge-related error

sources [2] (⇠ 1Hz). Of all the error sources, only nuclear-spin-leakage error was not

covered in the previous chapter. In Sect. 4.3.1 we describe the model developed to

capture such nuclear spin leakage errors. A detailed description of the model used

to capture the other error sources is contained in Sect. 3.3 of the Chapter 3.

4.3.1 Modelling leakage during electric driving of the spin

For the 2P1P qubit, the qubit states can potentially leak to the other states of

the same magnetisation is shown schematically in Fig. 4.3. Leakage into any of

the excited-charge-state branches (light blue square in Fig. 4.3 a) and in the inset)

is dominated by the direct charge transition. That is, the transitions connect the
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qubit states |S0/1���i (in red and green in Fig. 4.3) to the excited charge states

|S0/1+++i (blue dotted lines in Fig. 4.3), where S0/1 is the electron and nuclear spin

configuration of the qubit ground and excited states respectively that are unchanged

by the transition. All other transitions to the excited-charge branches (blue dotted

lines) involve not only charge but also spin transitions and are only possible through

hybridisation with the charge qubit. The four level systems composed by these four

states |S0/1�/+�/+�/+i is displayed in Fig. 4.3 b). In the following we refer to leakage

within this four level system as the “charge leakage pathway”.

The EDSR qubit can leak into other spin states in the ground-charge-state branch

(light green square in Fig. 4.3 a) and in the inset), depicted by black dotted and

dashed lines in Fig. 4.3. These spin leakage states can be broken into two more

pathways that we will refer to as: “nuclear spin leakage pathways”. The first nuclear

spin leakage pathway corresponds to a flip-flop of the electron with one of the nuclear

spin of the left QD instead of the right dot (see Fig. 4.3 c) and the dotted purple

lines). The ground (excited) qubit state | +**# �i (| +*+" �i) can leak to the

spin state | ++*" �i (| **+# �i) via a flip-flop transition, ↵L2 (↵L1) with the

second (first) nuclear spin on the left QD. This leakage pathway will be referred to

as “type I nuclear spin leakage”. The second nuclear spin leakage pathway in the

2P1P donor–donor qubit corresponds to leakage from the qubit states into the near

degenerate levels | *++" �i and | *+*# �i via three simultaneous electron–nuclear

flip-flop transitions with all the nuclear spins in the system (↵3⇥). The coupling

term corresponding to the combined nuclear spin flips is very weak as it is a higher-

order process. However, the states are almost degenerate with the qubit state so

the e↵ective coupling can be quite strong and needs to be considered as a potential

source of error. This second pathway, the “type II nuclear spin leakage” pathway

is displayed in figure 4.3 d) with the leakage states corresponding to the black

dashed lines. We model leakage within each of these three pathways as a di↵erent

four-level Hamiltonian containing the qubit states as well as the two corresponding

leakage states accessible from the qubit |0i and |1i states. The three di↵erent leakage
pathways can be considered independently of each other, allowing for the dynamics

to be modelled separately by a four-level Hamiltonian and the total leakage error

can be combined afterwards. This approximation is motivated by the fact that one

leakage pathway generally dominates all others by several orders of magnitude at

any given qubit parameter region.

To model the leakage pathways into the leakage charge and nuclear spin states

we use the model described in Sect. 3.3.2. Here, �ql corresponds to the di↵erent
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Figure 4.4: Adiabatic electric driving of the flopping-mode qubit. a) Leakage
out of the qubit subspace needs to be considered when driving the qubit at ✏ = 0. b):
Driving of the qubit states using microwave pulses allows full control of the qubit states.
Gaussian pulse shaping allows for the reversal of state leakage during the qubit operation
(top). We show the charge (blue) and nuclear spin (black) leakage probabilities during the
⇡/2�X Gaussian pulse for the donor–donor qubit using the optimised parameters for this
device (see Fig. 4.7), drive amplitude of ✏amp = 0.9GHz at B = 0.23T, and tc = 5.6GHz
(bottom). The irreversible leakage for the the nuclear spin states is ⇠ 1⇥ 10�5 well below
the 1% error required for fault tolerance due to the adiabatic drive pulse.

energy separations between the qubit and leakage states and ⌦l (⌦r) is the coupling

between the qubit-leakage (qubit-qubit) states. The nuclear leakage error, eleak is

captured by the probability of occupation of the two nuclear leakage states |2i and
|3i, pleak within each leakage channel at the end of the ⇡/2 pulse:

eleak = pleak = ↵leak�
2 ⌦4

r

�4
ql

. (4.3.1)

The magnitude of the leakage error is well described by the ratio � := ⌦l/⌦r of the

leakage and qubit-coupling strengths, and by the ratio ⌦r/�ql of the qubit-coupling

strength over the energy gap to the nearest leakage state.

For a small ratio � = 1/100 realistic for both the charge and nuclear spin leakage

pathways of the donor-based flopping mode qubit since the other transitions will be

detuned significantly from the qubit transition (that is, the nuclear spins will have

di↵erent hyperfine interaction strengths with the electron spin), the leakage error is

smaller than 10�4, even for strong driving of the qubit (see Fig. 4.5).

For the nuclear-leakage pathways, the energy gap to the leakage states is typ-

ically between 1MHz to a few hundred MHz, depending on the system and thus

comparable to the Rabi frequency. Leakage to these other nuclear spin states can

therefore take place in both the weak and the strong driving regime. The coupling
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a 2P1P flopping mode qubit with � = 1/100 and �ql = 1MHz.

to the nuclear-leakage states can be engineered to be much weaker than the qubit-

coupling (regime �⌧ 1). As a consequence the errors can be negligible even in the

strong driving regime, as described by Eq. 3.3.12 (see also Sect. 4.4.3).

The analytical model based on Eq. 3.3.12 captures the leakage behaviour in both

the weak and strong-driving regime fits the numerically simulated leakage popula-

tion for the Gaussian-pulse shape very well (black dotted line in figure 4.5). The

model combines the power-law trend of the Gaussian-pulse shape at low drive pow-

ers (Eq. 3.3.11) and the analytical formula for the square-pulse shape at high power

(orange dotted line in Fig. 4.5). For this purpose, we use two fermi distributions

f(x, T ) = 1/(1 + exp(�x/T )) with opposite polarities that switches between the

asymptotic trend p0leak = ↵leak�2
⌦4

r

�4
ql

at low powers to the exact analytical leakage

behaviour of the square pulse at high powers p1leak = �2 ⌦2
r

�2
ql+�2⌦2

r
sin

✓
⇡

p
�2+�2⌦2

r

4⌦r

◆2

.

The final leakage model is then:

f(� � y, T )p0leak + f(�(� � y), T )p1leak, (4.3.2)

were the transition point between the two regimes is estimated at y = ⌦r

p
14� �2,

and the heuristic width of T = y/50 is used for the Fermi distributions.

All leakage errors discussed so far are independent of the initial qubit state,
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due to the naturally symmetric coupling elements of the qubit states to the leakage

states, so that no averaging of the leakage error over all possible qubit start-sates is

necessary.

In summary, in this section we have described the three pathways that can

lead to leakage errors for the 2P1P all-epitaxial flopping-mode qubit. The Leakage

probability can be described by a four-level Hamiltonian and determined by the ratio

of leakage to qubit coupling as well as the ratio of qubit coupling to the energy gap

to the leakage state. The first leakage pathway corresponds to direct excitation of

the charge state found in all flopping-mode qubits. It can lead to leakage error due

to the non-reversed excitation of the charge (that is, non-adiabatic transitions) as

well as through relaxation of the temporary excited-charge-state proportion to the

ground qubit state. The remaining two nuclear spin leakage pathways correspond

to undesired flip-flops of the electron spin with the nuclear spins in the QD not used

for the qubit transitions. The charge leakage errors can be minimised by using a

Gaussian pulse shape that allows reversing most of the leakage population excited

during the pulse.

4.4 A scalable, electrically controlled spin-qubit

with low errors

Scaling up universal quantum processors to larger sizes can be facilitated by using

all-electrical high-fidelity qubits that can be coupled over large distances (see Chap-

ter 2). In this section we will show that the all-epitaxial flopping-mode qubit can

fulfil these requirements by reaching low dephasing and leakage errors and strong

coupling to a superconducting cavity through hyperfine engineering. This hyperfine

engineering relies on the control of inner-shell electrons on the donor QDs and the

control of the nuclear-spin states within the QDs. Carefully engineered, these possi-

bly near-degenerate nuclear-spin states are neither limiting the speed nor increasing

the error of qubit operations, be it during initialisation or electrical driving3.

3During optimised qubit operation, the nuclear spins in the left quantum dot remain stationary
and can therefore be considered as being part of the qubit’s environment. The engineering of the
nuclear spins and electron filling on the left quantum dot can therefore be seen as manipulations
of the qubit’s environment.
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4.4.1 Fast high-fidelity orbital-state transfer

First, we will describe and examine the initialisation process for potential charge

and nuclear spin state leakage. Leakage to the excited charge states is present in all

flopping-mode qubits due to the hybridisation of charge and spin. For |✏| � tc there

is no charge-like component of the qubit and the ground state can be initialised

simply by loading a | #i electron from a nearby electron reservoir [23]. The nuclear

spins can also be initialised via NMR [39], dynamic nuclear polarisation [41], or even

using EDSR (see Sect. 4.4.5) to place the nuclear spin into the | *i state. Next, the
detuning is ramped to ✏ = 0 to initialise the |0i qubit state, see Fig. 4.6 b). During

the ramp, the qubit can leak out of the computational basis via charge excitation

into the excited charge state or through unwanted nuclear spin flips. In Fig. 4.6 b)

we show the simulated leakage probability of a donor-based flopping-mode qubit for

both leakage pathways during the initialisation ramp as a function of ramp time

with tc = 5.6 GHz, �AL = |AL,1 � AL,2| = 1 MHz and B0 = 0.23 T chosen as

realistic values obtainable in a donor-based flopping mode qubit. Regardless of the

initialisation pulse time, tpulse the leakage into the excited charge states (blue line

in Fig. 4.6 b)) is the dominant pathway compared to the nuclear-spin leakage (black

line in Fig. 4.6 b)). The nuclear-spin leakage is much lower than charge leakage

because the probability of a flip-flop transition away from ✏ = 0 is small. This

is because the hyperfine strength changes very slowly with detuning compared to

the charge states and the nuclear-spin leakage states are only weakly coupled to

the qubit states since the hyperfine coupling terms are small for the other nuclear

spin transitions. The charge-leakage mechanism exists for all flopping-mode EDSR

based qubits due to the non-adiabaticity of the initialisation pulse. By ramping

slowly enough using electrostatic gates however, we can initialise the qubit at ✏ = 0

with a leakage error of 10�3 for a tpulse = 4ns ramp. The nuclear spin leakage does

not depend heavily on the pulse time and remains well below the charge leakage

with an error of ⇠ 2 ⇥ 10�5 obtained via numerical simulations. Therefore, the

nuclear-spin-state leakage is not a limiting factor in the initialisation of the qubit.

The adiabatic orbital state transfer displayed in Fig. 4.6 b) is calculated nu-

merically for a 2P-1P device operated at the (2,1) $ (3,0) electron state with the

nuclear spins on the left QD initialised in antiparallel spin states at a magnetic field

of B = 0.3T and a tunnel coupling of tc = 5.9GHz. We chose a di↵erence in the

hyperfine coupling to the two nuclei in the left dot of �AL = 1MHz based on the

measured couplings from a 2P QD where there was no measurable di↵erence be-

tween the hyperfine values of each nuclear spin [30]. We start the adiabatic ramp
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Figure 4.6: Orbital state transfer of the flopping-mode qubit. a) Qubit initialisa-
tion pulse scheme. The qubit detuning is adiabatically ramped to ✏ = 0 from some positive
detuning where the qubit is spin-like with long coherence times. b) Initialisation of the
qubit ground state for a 2P-1P donor–donor qubit at the (3,0) $ (2,1) electron configura-
tion from the localised electron state (at ✏ = 110GHz) to the hybridised state (at ✏ = 0),
using a variable pulse time tpulse, for B = 0.3T, tc = 5.9GHz. The qubit population that
leaks into the excited charge states (blue line) and other nuclear-spin states (black lines)
at the end of the transfer are displayed as a function of the pulse time.

at ✏(t = 0) = 110GHz (point A in Fig. 4.6a)) away from the charge-degeneracy

point (✏ = 0) where the spin-like state only has a 0.1% of charge component and

qubit coherence times are approximately those of a single-electron spin. At this

position A, we initialise the qubit into an even superposition of the two qubit states,

|0i ⌘ | +**# �i and |1i ⌘ | +*+" �i. We then perform a numerical time evolution

of that state under the influence of a linear detuning pulse ending at ✏ = 0 where

the qubit can be driven electrically. At the end of the pulse of duration tp, some of

the qubit population (blue line in Fig. 4.6 b)) has leaked out of the qubit subspace.

The leakage probability into the excited-charge states is calculated by summing the

final-state population in the excited-charge states |+i, whereas the leakage probabil-
ity due to nuclear-spin flips (black line in Fig. 4.6 b)) in the left QD is estimated by

summing the final-state population in the nuclear-spin states in the ground charge

states |�i (excluding the qubit states). A time- and state-resolved analysis of the

orbital state transfer can be found in Sect. C.5. In particular, we show that direct

charge excitation is the dominant charge-leakage pathway, and that, as expected,

nuclear-spin leakage is dominated by transitions between the near degenerate states

separated by the engineered hyperfine di↵erence �AL = 1MHz through a nuclear

spin leakage II process.
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Figure 4.7: ⇡/2-gate error of the all-epitaxial flopping-mode EDSR donor-based
qubit. Qubit error with �AL = |AL,1 � AL,2| = 1 MHz as a function of the external
magnetic fields B0 and spin–charge detuning �

⌦z
= 2tc�⌦z

⌦z
at ✏ = 0. The gate error

remains below 10�3 over a magnetic field range of 0.4 T and for �/⌦z values from 0.5 to
more than 2.5. The optimal operating point with a minimum error of 2⇥10�4 is shown at
the black dot. The inset shows the three-level energy diagram for the qubit with energy,
⌦z, tunnel coupling, tc and spin–charge detuning, � = 2tc � ⌦z (which determines the
e↵ective spin–charge coupling strength).

4.4.2 Low-error and robust electric driving of the epitaxial

flopping-mode qubit

We now investigate the qubit performance during electrical driving. Figure 4.7

displays the qubit error for a ⇡/2�X gate as a function of magnetic field and tunnel

coupling including dephasing, relaxation and leakage errors (see Sect. 4.3). The gate

error remains low (< 10�3) over a wide range of magnetic fields (⇠ 0.1� 0.5 T) and

for relative changes in the tunnel couplings of more than 300%, corresponding to a

tolerance of more than 8 (17)GHz at B = 0.2 (0.4)T. To-date other flopping-mode

qubits have been optimised over a much smaller parameter space, confined to the

location of so-called error sweet spots, that restrict the range of magnetic fields and

of tunnel couplings that the qubit can be operated at [18, 42]. The wide range of

operation in donor-based flopping mode qubits is crucial in a large-scale architecture

with a fixed magnetic field where small uncertainties in the tunnel coupling can lead

to variation in the qubit performance. The large range of tunnel couplings where

the donor–donor qubit can operate means that these small uncertainties will not

be detrimental to the overall quantum-computer performance. By optimising the

magnetic field and tunnel coupling during fabrication we can achieve a minimum

gate error of 2.0⇥ 10�4 well below the fault-tolerant threshold of the surface code.

Both the low errors and the wide operational parameter space achieved can

largely be attributed to the low value of the longitudinal gradient �⌦k, attainable
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using hyperfine engineering. Indeed, the qubit dephasing error is proportional to⇣
�⌦k
�⌦?

⌘2
the longitudinal over the transverse energy gradient (see Eq. 3.4.4). By

minimising the longitudinal energy gradient �⌦k ⇡
P

NL

k
AL,k

⌦
iz
L,k

↵
= �AL/2 using

nuclear-spin control, the dephasing error can be reduced. This is important as we

do not have to compensate by driving faster rotations, which in turn could increase

other types of error, such as the leakage error. In the following section, we will

discuss how such nuclear-spin leakage errors can be avoided.

4.4.3 Drive-leakage errors of the flopping-mode qubit

The three nuclear spin in the 2P1P all-epitaxial flopping-mode qubit introduce 28

additional states compared to the implementation without donors. These states can

bring about additional leakage pathways and errors. We will now show that using

hyperfine-engineering, these additional nuclear-spin leakage errors can largely be

minimised, and safely neglected at the optimal qubit operation point. Three types

of leakage errors can occur during electric driving of the qubit. The first corresponds

to direct charge excitations and is present for all flopping-mode implementations,

while the other two are due to the presence of the nuclear spin states in the 2P-1P

donor system.

The qubit error is limited by nuclear spin leakage (unwanted nuclear spin flips

of the other nuclear spin states not used for qubit transitions) at low spin–charge

detunings, � = 2tc �⌦z, where dephasing errors are also generally large due strong

spin-charge coupling causing charge dephasing (see Fig. 4.8).The optimal operation

point of the qubit is situated at large spin–charge detuning (black dot in Fig. 4.7, at

B ⇡ 0.2 t and �/⌦z ⇡ 1.2) where charge dephasing is limiting the error and excited

state charge-relaxation errors are significant (see “charge dephasing (T1 limited)

errors” in Fig. 4.8) and nuclear-spin leakage is negligible. Next, we describe how

nuclear spin leakage errors are kept negligible by hyperfine engineering.

Leakage errors are well described by the � = ⌦l/⌦r of the leakage and qubit

coupling, and by the ratio ⌦r/� of the qubit coupling over the energy gap to the

nearest leakage state (see Sect. 4.3.1). The leakage error is not only linked to these

two quantities � and ⌦r/�, but also to the microwave pulse envelope g(t, tp). In

superconducting devices, the leakage error was often minimised by adiabatic pulse

shapes for example, such as the Gaussian shape considered in the previous sec-

tion [43]. All ⇡/2 X-gate simulations used in this chapter use the Gaussian pulse

shape described in Eq. 3.3.6 and shown in Fig. 4.4 b). For this Gaussian pulse shape,
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Figure 4.8: Limiting error sources for the 2P-1P qubit at the (2,1)$(3,0) tran-
sition with an optimised �AL = 1MHz. Overlaid over the error plot from Fig. 4.7,
we show the three regions where di↵erent errors sources dominate the total error at the
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In that region, only leakage to the near-degenerate nuclear-spin states is significant.
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the leakage error is proportional to �2
�
⌦r
�

�4
(see Eq. 3.3.11).4 To minimise the leak-

age error, it is critical to minimise the ratio of leakage coupling and qubit coupling

(�) as well as the ratio of qubit coupling and the energy gap (⌦r/�). In the 2P-1P

system, the energy gaps and coupling strengths can be tuned by the configuration

of the nuclear spins in the respective QDs and by the number of electrons on the

QDs, allowing control over the leakage errors.

One straightforward strategy to reduce charge leakage errors is to minimise the

electric drive amplitude ✏d used to drive qubit rotations. Leakage and dephasing

errors display opposite dependences on the drive amplitude. While the leakage errors

grow with increasing drive amplitudes, dephasing errors decrease. The leakage error

is extremely sensitive to the drive amplitude, as it is proportional to the fourth power

of the drive amplitude (eleak / ✏4
d
for a Gaussian pulse, see Eq. 3.3.11), so that even

small reduction in the electric drive amplitude can result in a large reduction in the

leakage error.5 The flopping-mode qubit charge dephasing error is proportional to

✏�2
d

(see ez in Eq. 3.4.4), while the error related to charge-noise-induced variations

of the Rabi frequency is constant with respect to the electric-drive amplitude (see ex

in Eq. 3.4.4) and sets the lower bound to the charge-noise-induced error. The Rabi

frequency noise error bound is reached for a drive amplitude that is proportional to
�⌦k
�⌦?

, the ratio of the energy gradients (see Eq. 3.4.5) up to second-order in charge

noise. In general, reducing the longitudinal energy gradient �⌦k therefore allows the

dephasing errors to reach their minimum before leakage errors become dominant.

For the 2P1P flopping-mode qubit, the longitudinal gradient is reduced from a value

of 125MHz to about 0.5MHz, by initialising the two nuclear spins in the 2P donor

QD in opposite directions */+ and then using the two inner-shell electrons to shield

the hyperfine interaction of the third electron spin to the nuclei. By exploiting this

we can reduce the leakage error at the optimal dephasing operation point by nine

orders of magnitude.

The remaining strategies to reduce leakage error in a 2P1P EDSR qubits relies

on minimising the ratios � = ⌦l/⌦r and ⌦r/� by engineering the qubit and leakage

couplings ⌦r and ⌦l, as well as energy gap � within each leakage pathway. Minimis-

ing these ratios can be achieved by optimising the magnetic field and spin–charge

coupling in the device. We will now briefly introduce how the remaining strategies

of minimising � and maximising the energy gaps can be implemented in the 2P1P

device to decrease leakage errors for the two nuclear leakage pathways.

4neglecting the Landau–Zenner-type oscillations in the error.
5In the weak driving regime, eleak /

�
⌦r
�

�4 / ✏4
d
, see Eq. 3.3.11.
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The first leakage pathway in the proposed donor–donor qubit corresponds to

direct charge excitation of the qubit to the excited charge states and can be a source

of significant error due to the large electric dipole (⇠ GHz) of the direct charge

excitation. The EDSR qubit transition only possesses a fraction of this electric-

dipole strength, given by half the spin–charge hybridisation proportion h ⌧ 1 (see

Eq. 3.2.22). The corresponding charge-leakage error is proportional to �2 = 4/h2 �
1 and can only be limited by ensuring that the energy gap to the leakage state

is much larger than the qubit Rabi frequency. Thanks to the Gaussian pulse, the

leakage error is indeed proportional to
⇣

⌦r/�
⌘4

of Rabi frequency over the leakage

state energy gap and this quantity can compensate for the large leakage coupling.
6 For a near-optimal spin–charge hybridisation of 1%, and a qubit Rabi frequency

of 10MHz, the leakage error stays below 0.1% for energy gaps larger than 0.5GHz

which are readily achievable for donor-based device. The nuclear-spin-leakage errors

only become critical, that is, they begin limiting the qubit performance for nearly

degenerate nuclear-spin hyperfine values because the coupling to the leakage state

is generally weaker than the qubit transition. These small energy separations are

obtained when the hyperfine couplings are similar, for example when AL,k ⇡ AR or

AL,1 ⇡ AL,2 .

The first nuclear-spin-leakage error (see Fig. 4.3c)) in the 2P-1P donor-based

flopping-mode qubits is due to an unwanted electron–nuclear flip-flop transition

with the nuclear spins in the left QD such as the transition | +**# �i ! | ++*" �i.
Here, � ⇡ AL,k/AR and therefore we must minimise the relative hyperfine interaction

between the left and right nuclear spins with the electron. The energy gap to the

leakage state is related to the di↵erence in the hyperfine coupling to the right and left

nuclei, �ql ⇡ (AR � AL)/4. Minimising � and maximising �ql, can be achieved my

minimising AL and maximising AR. On the 2P1P system, the hyperfine coupling

AL to the 2P QD can be lowered significantly by shielding the unpaired electron

defining our qubit with two inner-shell electrons bound to the 2P QD, reducing

the hyperfine coupling from about 250MHz to about 10MHz [29]. The hyperfine

coupling AR to the 1P donor QD cannot be increased in this fashion because the QD

has no deeper shell electrons. A possible future strategy to increase AR further would

be to increase the number of nuclei in the right dot; however, we will not consider

this in this thesis. For the 2P1P implementation with two inner-shell electrons on

the 2P donor QD, the ratio � ⇡ AL,k/AR can be estimated from the tight binding

numerical estimation AL = 10MHz [29], and the well known value of the single

6For a simple square pulse shape, the error is proportional to the second power of the ratio
⌦r/Delta.
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donor hyperfine value AR ⇡ 117MHz [38, 36, 29]. We obtain � = AL/AR ⇡ 0.08

which puts an upper bound of
�
⇡

4

�2
�2 = 4 ⇥ 10�3 = 0.4% to the possible leakage

error. The energy gap is equal to �ql = (AR � AL)/4 = 27MHz is larger than

the optimal Rabi frequencies on most of the parameter space placing the system in

the weak-driving regime, so that nuclear spin leakage error is much lower than the

upper bound of 0.4% set by � (see Fig. 4.5). In summary, leakage through unwanted

flip-flops of the electron spin with the nuclear spins in the left dot, is expected to

be small for the 2P1P flopping-mode qubit, through optimisation of the hyperfine

couplings through electron-shell filling.

The second nuclear-spin leakage process (see Fig. 4.3d)) involves an unlikely

simultaneous electron–nuclear flip-flop with all three nuclear spins (for example,

| +**# �i ! | *++" �i). This leakage process may be large because the energy

gap to the leakage state equals one half of the longitudinal-energy gradient �ql =

�AL/4 = �⌦k/2, which is engineered to be small in order to minimise z-dephasing.

In other words, the longitudinal gradient (and thus the energy gap to the leakage

state), can only be as small as the leakage error permits. The energy gap �AL/4

between the qubit states is unlikely to vanish completely due to the presence of static

electric fields in a device that slightly Stark shifts the hyperfine couplings to nuclei in

the 2P donor QD. In the total-qubit-error calculations in Fig. 4.7 a realistic value of

�AL = 1MHz [36], yields a gap of �ql = 500 kHz that is smaller than the optimal

Rabi frequency ⌦r. In this “strong driving regime”, the nuclear spin II leakage

error does not depend on the ratio ⌦r/� and is only proportional to the ratio �2

(see Eq. 3.3.12). This ratio is below 1% on most of the parameter space and the

corresponding upper bound for the leakage error is very small:
�
⇡

4

�2
�2 ⇡ 6⇥ 10�5.

The ratio � is so small, because the coupling to the leakage state results from a

higher-order process involving three virtual nuclear-spin flip-flop transitions ↵3x (see

Fig. 4.3 d)) whose electric-dipole moment is much smaller than the one associated

with a single spin flip-flop transition.

4.4.4 Strong coupling of the epitaxial flopping-mode qubit

to a superconducting cavity

Finally, we examine the suitability of the proposed flopping-mode qubit for two-

qubit couplings. Due to the charge-like character, the flopping-mode qubit can be

coupled directly via the charge-dipole interaction [18]. The range of the dipole

interaction can be extended using floating-gate structures [44] or by coupling two

qubits to a superconducting microwave resonator [45]. Indeed, spin–charge coupling
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is particularly attractive because it allows for coupling of single spins to microwave

cavities which can be used for two-qubit gates between distant qubits [46, 47]. Spin–

cavity coupling is achieved by designing the cavity frequency, fc to be on resonance

with the qubit frequency, that is, 2tc ⇡ �eB0 ⇡ fc. Recent high-kinetic-inductance

cavities have demonstrated large zero-point voltage fluctuations on the order of

20 µV with photon loss rates on the order of  = 1 MHz [47, 48]. Following the

detailed work in Osika et al. [28] where a specific implementation of the 1P-1P qubit

is discussed we assume that the charge-cavity coupling is on the order of 100 MHz.

However, in Ref [28] the kinetic inductance of the superconductor was neglected,

and therefore the 100 MHz is only a lower bound for the charge–cavity coupling.

Figure 4.9a) represents the expected ratio of the spin–cavity coupling gsc, to the

qubit-dephasing rate �, for an optimised 2P-1P qubit with �⌦k = 0.5 MHz by ini-

tialising the nuclear spins in antiparallel states and using the 3 electron regime. The

dephasing rate � is calculated by converting the error probability into a coherence

time based on the ⇡/2 gate time for each value of tc and B0 (see Appendix C.6).

The qubit dephasing rate itself is smaller than gsc for all values of tc and B0 shown

indicating that the qubit coherence is not the limiting factor in achieving the strong-

coupling regime. To achieve strong qubit–cavity coupling, gsc also needs to be faster

than the decay rate of the cavity such that the cooperativity is larger than one:

C = g2
sc
/� > 1. In Fig. 4.9b), we show the estimated coupling parameters for the

di↵erent flopping-mode qubit implementations discussed in this work [18, 49, 42].

Theoretical analysis of the EDSR protocol yields T ⇤
2 = 17.6µs for the 2P-1P con-

figuration (see Sect. C.6). Taking this coherence time as a reasonable estimate of

the spin dephasing rate for qubit–cavity coupling suggests that it would allow the

strong-coupling limit to be reached, with gsc/� = 48. The cooperativity of the 2P-1P

qubit is comparable to that of other flopping-mode EDSR systems, indicating that

donor-based flopping mode qubit can also coupled to superconducting resonators for

two-qubit gates. Indeed, all of the proposed flopping-mode qubit implementations

can reach the strong-coupling regime with C > 1 allowing for two-qubit interactions

using superconducting cavities, see Fig. 4.9b).

4.4.5 Readout and initialisation of the epitaxial flopping-

mode qubit

For scalable operation of the all-epitaxial flopping-mode qubit within a quantum-

computing architecture, initialisation and readout of the qubit state has to be pos-

sible with high fidelity but also using as little hardware as possible. In the following
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Figure 4.9: Strong coupling of the proposed all-epitaxial flopping-mode qubit to
a superconducting cavity resonators. a) For the 2P-1P with the 2P nuclear spins in
| +*i at the (2,1) $ (3,0) charge transition, the ratio of the spin–cavity coupling strength,
gsc to the qubit decoherence rate, � as a function of the spin–charge relative detuning
�/⌦z and the external magnetic field, B0. We assume charge coupling of the qubit to
cavity to be 100 MHz. b) Table of the main qubit-cavity coupling characteristic values
for di↵erent flopping-mode implementations outlined in Fig. 4.1. The cooperativity, C
is defined as the product of gsc/� and gsc/. For each implementation, all values are
calculated at the tunnel coupling tc and magnetic field B0 value where C is a maximum
under the condition that the qubit drive error is below 0.1% (not necessarily where gsc/� is
the largest). This is therefore lower than the maximum achievable coupling of gsc/� = 85
in a) at the cost of higher gsc/ such that the Cooperativity is the largest. For the QD-
D qubit [18], �⌦k = 117MHz, and �� = �0.2% corresponding to �⌦k = 11MHz at
B = 0.2T. For the QD-QD qubit gradient values cited in [15] and [42] respectively. In
Benito et al/ ([42]), �⌦? = 0.96GHz (corresponding to 2bx = 4µeV) and �⌦k = 78MHz
(corresponding to 2bz = 0.32µeV). In Croot et al. ([15]), �⌦? = 0.84GHz (corresponding
to 2bx = 30mT) and �⌦k = 15MHz (corresponding to 2bz ⇡ 0.5mT)
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we describe how both the initialisation and the readout of the qubit states can be

performed all electrically without any additional infrastructure on the qubit chip,

using demonstrated techniques of spin and charge readout and initialisation.

Initialising the qubit in its ground state is possible through a combination of

voltage pulses. First we initialise the nuclear spins on both QD as well as the

electron spin through spin-selective tunnelling of an electron down-spin from the

nearby reservoir that initialises the electron’s spin in the | #i state and its charge in

the ground-state orbital. Electron-spin initialisation is required during nuclear-spin

initialisation, and will therefore be treated first.

Electron spin initialisation

The electron spin can be initialised into the spin ground state | #i by first emptying

the QD of the unpaired electron forming the qubit, and by subsequent spin-selective

tunnelling of another electron from the reservoir [23]. By adjusting the reservoir

Fermi level in between the Zeeman-split empty spin states, electrons spin-down

states in the reservoir have su�cient energy to populate the empty quantum-dot

state, while spin-up states do not.

Electron-spin readout

The electron-spin state of the flopping-mode qubit can be read out using conven-

tional methods when the electron wavefunction is centred on one of the two QDs

defining the flopping-mode qubit. Alternatively, the hybridisation of the electron-

spin-up states to the excited charge state as discussed in Chapter 3 can also be used

to measure the spin state when the electron wave function is shared between both

QDs.

Conventional electron-spin readout can be performed for example through spin-

selective tunnelling to a nearby reservoir [23]. This destructive measurement tech-

nique requires a charge sensitive device to capture the electron tunnelling. Alter-

natively, the electron spin can be read out via singlet–triplet readout methods by

deterministically loading a spin down on a second tunnel-coupled QD.7 This can be

done destructively using the Pauli spin-blockade [50, 51], or non-destructively using

dispersive singlet–triplet readout [52, 53, 54].

A more advantageous method of spin readout in the flopping-mode qubit is

based on measuring its spin state by dispersively sensing its charge state. Indeed,

the electron spin-up state is slightly hybridised to the excited charge state when the

7Either the other QD used to host the flopping-mode qubit, or a third dedicated QD.
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electron wave function is shared between both dots. A resonant circuit capacitively

connected to the electron via a nearby gate can then be used to sense the response of

the electron charge to an oscillating electric pulse [19]. This response is di↵erent if

the electron is hybridised to the excited charge state, and manifests itself as a change

in the phase and/or amplitude of the probing signal. Such dispersive readout via the

charge state has been implemented using a superconducting resonator coupled to a

flopping-mode qubit hosted in two gate-defined QDs in a SiGe heterostructure [55,

56] and is anticipated to be possible in our all epitaxial implementation. As a

readout technique it can be performed by any of the two gates necessary to control

the qubit, and therefore reduces the overall qubit footprint.

Nuclear-spin readout

Nuclear-spin readout of donor devices in silicon has traditionally been implemented

by using microwave pulses to test di↵erent electron-spin transitions (ESR) that have

been split by the hyperfine interaction of the electron with the nuclear spins [39].

Indeed, it is di�cult to otherwise couple the nuclear spin to a charge degree of

freedom that can be read out by the charge sensors. Here, we propose a nuclear-

spin readout protocol similar to that used in ref [39], but using EDSR instead of

ESR.

In our proposed physical setup, nuclear-spin readout relies on probing the dif-

ferent EDSR transition frequencies of the electron spin, as the latter are dependent

on the nuclear-spin states through the hyperfine interaction. Thus the nuclear-spin

readout needs to be performed in the two-dot regime so that the electric dipole is

large enough to allow EDSR. This has the additional benefit that the nuclear spins

of both QDs can then be read out simultaneously as the electron is coupled to the

nuclear spins in both QDs in the hybridised regime.

First, an EDSR spectrum has to be measured in order to identify all possible

flip-flop transitions and their transitions frequencies. It has been shown [39] that

the phosphorus nuclear spins randomise over long periods of time (minutes), so

that, provided the EDSR spectrum is acquired over longer time scales, all possible

nuclear-spin states are likely to be populated during the experiment, and all possible

EDSR transition should become visible. In general, the spectrum is expected to

be non-degenerate, each peak in the EDSR spectrum corresponding to a flip-flop

of the electron spin (loaded in a spin-down state) with one specific nuclear spin,

for one particular configuration of the other nuclear spin. If necessary, degenerate

transitions can be split by slightly changing the static electric-field bias. If the
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degeneracy originates from nuclear spin on di↵erent dots, the respective electron-

hyperfine coupling strength will vary strongly with electric field. In the unlikely

occurrence that both nuclear spin originate from the same donor QD, a stark e↵ect

should be su�cient to suppress the degeneracy.

Unless the nuclear spin are fully polarised into the | +i state, the nuclear-spin

configuration can be probed by repeatedly loading spin-down electrons and testing

all possible EDSR transitions, a successful spin flip then identifies the nuclear-spin

configuration.8 The following protocol is adopted: a spin-down electron is loaded

into the right dot (into the |Ri charge state). This charge and spin state is then adi-

abatically transferred to the chosen region in the hybridised regime.9 Once the state

has been transferred to the hybridised regime, an EDSR burst probes the first of the

possible EDSR transitions. One then reads out the qubit state through either spin or

charge readout, depending on the chosen device setup). If it is in the electron spin-

up branch (with some excited charge state proportion if the readout is performed in

the hybridised regime), the nuclear-spins are indeed in the configuration that was

probed, and the nuclear-spin readout is complete. If the qubit state however is not

in the spin up branch, the nuclear spins are not in the probed configuration, and one

needs to probe another of the untested EDSR transitions. This process is repeated

until the electron spin has been successfully flipped. In practice, the EDSR burst

will likely be performed by adiabatic inversion, as opposed to a coherent ⇡-pulse,

the former being more robust against variations in the driving strengths of di↵erent

transitions.

Nuclear-spin initialisation

Once the state of the nuclear spins has been established by nuclear-spin readout one

can initialise the nuclear spins in the desired state by flipping the wrongly oriented

nuclear-spin. The nuclear spins can be flipped by the traditional method of nuclear

magnetic resonance (NMR). With NMR, an antenna couples to the nuclear magnetic

moment with radio-frequency magnetic fields. Whilst this method is challenging to

scale to a large number of qubits as each antenna can only produce one RF pulse

at time it can be resolved within a modular quantum computing architecture where

nodes of closely-coupled qubits are well separated using superconducting resonators

(see Sect. 4.5). In such a modular architecture, an antenna can be manufactured on

8including the nuclear spin that flip-flopped with the electron.
9Note that this transfer needs not be adiabatic with respect to nuclear spins, but only reversible

in that respect. In almost all cases this is of no concern as the adiabaticity with respect to charge
automatically guarantees adiabaticity with respect to both nuclear and electron spin.
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Figure 4.10: Flowchart for EDSR based nuclear spin control. Protocol to control
and initialise nuclear spin states into the qubit ground state using EDSR. A random
electron spin is first onto one of the QDs where quantum non-demolition (QND) readout
is performed using a reflectometry circuit. If the qubit is able to be driven then it is in
one of the qubit states and then can be reinitialised by performing a qubit pi-pulse. If
the qubit was not measured properly then the nuclear spin state was wrong then another
random electron spin is loaded to attempt to repeat the process. The whole process is
then checked to confirm the pi-pulse was accurate and if it succeeded the nuclear spin
state is then properly intialised.

top of each node, and each antenna only needs to address nuclear spin within the

node.

Due to the challenges associated with NMR nuclear-spin control, we propose an

alternative procedure based on EDSR, that is local, and thus mode scalable. The

procedure relies on electrically driving a flip-flop of that electron spin with the target

nuclear spin. For the flip-flop to occur the electron spin needs to be initialised in the

opposite orientation to the target nuclear spin. The electron spin can be determin-

istically loaded in the spin-down # configuration through spin-selective tunnelling,

but not in the more energetic spin-up state. Initialisation in that spin-up state may

however be performed via repeated randomised loading of the electron. Indeed, if

the qubit spin state can be read out using quantum non demolition readout (QND,

see Sect. 5.1.5), the electron can be initialised in the spin-up state by repeatedly

loading a random spin, and reading it out non-destructively. There is 50% proba-

bility of the spin being in the up configuration for each attempt. The procedure is

repeated until the spin was read out in the up state. The EDSR pulse can then be

performed in order to flip the nuclear spin from down to up.

Qubit readout

Once the nuclear spin states of the qubit is known, the state of the flopping-mode

qubit is determined by the electron spin orientations, provided the charge qubit

is not fully excited. Because the nuclear spin states are stable in time [39], qubit

readout can thus be simply performed via spin readout.
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4.4.6 Summary

In summary, we have proposed the implementation of a flopping-mode qubit using

two donor-based QDs and performed detailed calculations of the error sources. The

nuclear spins not directly involved in the flip-flop transition defining the qubit can

be used to minimise the longitudinal-magnetic-field gradient to increase the qubit

coherence time. We have shown that the qubit can achieve error rates below the

1% necessary for fault-tolerant quantum computation and can be operated over

a wide range of magnetic fields (0.4 T) and for relative variations in the tunnel

coupling above 300% (⇠ 5 � 20 GHz). Fast, high-fidelity single-qubit gates with

errors on the order of 10�4 are theoretically predicted, comparable to that found in

other semiconductor qubits with full electrical control [14, 57]. We then examined

the possibility of coupling this qubit to a superconducting cavity and showed that

strong coupling is achievable with a cooperativity, C ⇠ 130 for optimised qubit

parameters with ⌦k = 1 MHz. Finally, we showed that the qubit, including its

nuclear spin states, can be initialised and read out through electrical pulses, without

the need for additional on-chip structures such as dedicated charge sensors, ESR or

NMR antennas. Based on the low qubit-error rate, small qubit footprint, versatility

in two-qubit coupling, and robustness to fabrication errors we have shown that

flopping-mode EDSR based on two donor-quantum-dots provides an attractive route

for scaling in donor-based silicon computing.

4.5 Consideration of a quantum-computing archi-

tecture for the all-epitaxial flopping-mode qubit

Solving a useful problem in a reasonable amount of time on a quantum computer run-

ning the surface code will likely require more than 100 million qubits (see Sect. 2.1.3),

posing a multitude of engineering challenges.

The donor-based flopping-mode-qubit proposal, by promising fast and low-error

electrical qubit operation and by enabling long distance qubit coupling is a promising

solution to solve these challenges. In this section we consider the formation of

a large-scale universal quantum-computing architecture based on the all-epitaxial

flopping-mode qubit proposed in Sect. 4.2. The proposed architecture is compatible

with the surface-code error-correction algorithm, a leading solution to alleviate the

e↵ect of qubit errors.
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4.5.1 Two-qubit coupling schemes for a large scale architec-

ture

The all-epitaxial flopping-mode qubits can be coupled to one-another using three

di↵erent coupling-schemes outlined below. These allow flexibility in the design of

the architecture.

Dipole–dipole coupling

A fully-realised surface-code algorithm requires two-qubit entangling gates between

neighbouring qubits. The electric-dipole interaction from the charge character of the

proposed qubit allows for fast, high-fidelity two-qubit gates over medium distances

and long-distance gates via superconducting cavity resonators. The electric dipole

of an electron moving between two QDs separated by a distance d is given by

µ = ed. (4.5.1)

The dipole–dipole coupling, Hdd between at a distance r is given by

Hdd = V (�z,1�z,2 + �z,1 + �z,2), (4.5.2)

where �z, i is the Pauli-z operator for qubit i and

V = �
�2µ1µ2

4⇡h✏0✏rr3
. (4.5.3)

The geometric correction � depends on the orientation of the dipoles relative to each

other. It equals 1/4 for the planar geometry and 1 for the vertical qubits. Finally,

µi is the dipole moment of qubit i, h is Plank’s constant, ✏0 is the permittivity of

free space, and ✏r = 11.7 is the relative permittivity of silicon.

The charge qubit coupling, g2c is given by,

g2c = V
t1t2

⌦1⌦2
. (4.5.4)

where ti and ⌦i are the tunnel coupling and charge qubit energy of qubit i. This

dipolar coupling, g2c can reach a few GHz for small qubit separations. The rela-

tive strength of the qubit-qubit coupling can be controlled by varying the charge

character of the EDSR qubit, that is, by controlling the spin–charge detuning, �.

Therefore, qubit separations of a few 100 nm are possible.
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Floating-gate coupling

The dipolar coupling can be significantly increased by using a floating-gate electrode

between the two qubits [44], allowing for qubit separations on the order of a few

micrometers. These floating gates operate by increasing the capacitive coupling

between the two qubits for a given separation.

Superconducting Coupling

Superconducting cavities can significantly extend the coupling distance of the two

qubits. In this scenario, both qubits must be coupled to the cavity with a frequency,

⌫ with a coupling strength given by

gsc =
eErmsd

4h

t

⌦
, (4.5.5)

where Erms is the rms electric-field fluctuations of the cavity. For the interaction of

the qubits to occur with low error, the coupling of each qubit to the superconducting

cavity must be larger than the error rate a↵ecting of the qubit. The superconducting

cavity allows qubit couplings over length scales of a few millimetres and allows space

for classical electronics and wiring within a quantum-computing architecture.

4.5.2 Large-scale architecture

The proposed scalable EDSR qubit architecture consists of a two-dimensional square-

lattice arrangements of the 2P1P flopping mode qubits, nearest-neighbour-coupled

via either dipole couplings (direct or mediated by floating gates) or superconducting

resonators Fig. 4.11. Qubits concentrated in square sub grids which we call nodes

are coupled only via the shorter-range interaction (dipole or floating-gate coupling).

The edge qubits of each node are coupled to edge qubits of the nearest nodes via

superconducting resonators, in a square super grid of nodes. The empty spaces

between nodes contains readout resonators, access for qubit-driving lines and DC

control lines.

An example of a large-scale architecture is sketched out in Fig. 4.11. Each qubit

(circles) is coupled to four nearest-neighbour qubits in a square lattice. The coupling

between qubits within each node is not shown in this figure and is considered in more

detail in the following section. The qubits on the perimeter of each node have one

or two nearest neighbour qubits in a di↵erent node if there are on the edge or on

the corner of the perimeter respectively. They are connected to this distant nearest
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Figure 4.11: Large scale implementation of a quantum computing architecture.
A top-down schematic view of the proposed quantum computing architecture based on
the donor flopping mode qubit. The qubits are separated into nodes of N ⇥ N qubits
(N = 6 is shown here). Control and readout (classical) electronics are situated between
the qubit nodes (grey squares) to allow for su�cient space on the silicon substrate. The
white lines are drive and readout lines used to address the individual qubits in the nodes.
The squiggle lines represent superconducting microwave cavities used to connect the outer
qubits of each node to their nearest neighbour to build a continuous 2-dimensional array
for the surface code.
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neighbour via superconducting cavities (black undulating lines). The qubit control

and readout is performed via metallic gates that connect the greyed out interstitial

space between nodes to each qubit (two gates per qubit in this particular case). The

interstitial space contains some of the classical control and readout electronics, and

interconnects to o↵-chip electronics (for example with the ”flip-chip” technique, or

using bond wires).

One could envisage that the readout signals would be multiplexed so that only a

few RF lines are needed in each interstitial space, and resonators of non-overlapping

frequencies (superconducting or not) patterned within that space allow addressabil-

ity of each qubit. The electric microwave signals as well as DC control signals would

also be routed to their respective qubit within this space. DC control signals could

be multiplexed using DRAM-like technologies, allowing for a number of DC lines

running from the cold finger of the dilution fridge refrigerator to each interstitial

node. This would allow for a much less control lines to be needed per qubit. Indeed,

a number N2 of qubits per node, would require 2N bit and word lines to address

every qubit individually. The control and readout of the bit and word lines can be

either done o↵-chip (would require 2N DC lines routed to each node) or on-chip

using binary multiplexing (would require log2(2N) lines routed to each node). For

high heat output of the binary multiplexing circuits, it might not be possible to

place it on chip, and would need to be placed at a di↵erent stage of the dilution

refrigerator, providing more cooling power [58]. The low refresh rate needed for the

slow DC biasing might however be compatible with on-chip operation.

The DC, readout (RF or MW) and Drive (MW) signals would be routed to the

respective qubit control lines using bias tees. In the case that each qubit is addressed

by two gates, one would separate the readout from the drive signal in order to avoid

additional complexity.

4.5.3 Gate routing and qubit density

The complexity of routing the control lines from the interstitial nodes to the qubits

within the nodes depends on the number of qubits within the nodes and on the

spacing between neighbouring qubits. The spacing between qubits, and the available

pitch of the lithographic method used informs the number nL of leads one can route

between existing qubits. With existing lithographic techniques a 40 nm pitch for

10 nm leads is achievable. On the microwave lines, the pitch might be increased

due to the need to design a coplanar waveguide to improve the transmission of the

signals. The distance between qubits could be of the order of 200 nm for dipole
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coupled qubits, whereas it could be of the order of ⇡ 2µm for the floating gate

coupling mechanism. This would allow about nL ⇡ 4 for dipole coupled qubits, and

nL ⇡ 50 for floating gate coupled qubits.

For a small number (N2) of qubits, and a high number nL of possible feedthroughs

between qubits, one can route a gate to every qubit using a single lithographic plane.

Such a single-layer routing is shown in Fig. 4.11 for 36 qubits (N = 6), two gates

per qubit, and 4 possible feedthroughs between each qubit pair (nL = 4).

The number of lithographic layers needed to address a number of N2 qubits with

a number of nL possible feedthroughs between adjacent qubits is given by (see more

details in appendix Sect. C.7):

nlith layers ⇡
N

2nL + 3
. (4.5.6)

In the example of dipole-coupled qubits within each node (nL ⇡ 4), one could

route a single gate to all qubits of a node consisting of 324 qubits (N=18) in a single

lithographic layer, and 841 qubits (N=29) using a two-layer stack of gates.

In the case of qubits coupled by⇡ 2µm-long floating gates, with two gates needed

per qubit, nL is e↵ectively reduced from 50 to 25 and 10404 qubits (N = 102)can

be wired using a single lithographic layer. Using a two layer stack of gates, 27225

qubits (N = 165) can be wired.

dipole floating gate
nlith layers 1 2 1 2

dNN 200 nm 2µm
QB density (µm�2) 28 0.25

nL 4 50
Nmax 18 29 202 327

max number of QBs 324 841 40804 106 929
Node area 12µm2 31µm2 0.1mm2 0.4mm2

Table 4.1: Single lead QB numbers

Table 4.1 and 4.2 summarise the maximum number of qubits that can be routed

with leads in one or two lithographic layers for the direct dipole coupling and floating-

gate mediated coupling, for the case of a single lead per qubit and a pair of lead

per qubit in respectively. The achievable qubits numbers are significantly higher

for the floating gate implementation compare to the dipole implementation, due to

the fact that the number of qubits possible in one node scales as n2
L
. However the

qubit density is 100 times higher for the dipole coupled qubits since the inter-qubit

separation is limited to ⇠ 200 nm.
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dipole floating gate
nlith layers 1 2 1 2

dNN 200 nm 2µm
QB density (µm�2) 28 0.25

nL 2 25
Nmax 10 17 102 165

max number of QBs 100 289 10 404 27 225
Node area 3.2µm2 10µm2 0.04mm2 0.11mm2

Table 4.2: double lead QB numbers

4.5.4 Node implementation 1: dipole coupling

We sketch a possible implementation of a node architecture for qubits coupled using

the bare-dipole coupling in Fig. 4.12. The dipole-dipole coupling between two qubits

is proportional to the scalar product of their respective dipole moments, see Eq. 4.5.3.

The dipole moment is oriented along the axis separating the two QDs. To maximise

the coupling strength between any neighbours, one favourable arrangement is to

orient all dipoles (and thus qubits) out of the plane containing the qubits. This

allows maximal nearest neighbour coupling between all qubits in the two dimensional

surface code square lattice. Each donor QD pair forming a qubit would thus be

patterned within the silicon lattice using one of two separate hydrogen lithography

steps.

We propose the following manufacturing procedure for each node. Note that

every node of the quantum computers could be manufactured in parallel, with all

infrastructure in a given lithographic layer finalised, before manufacturing the next.

After standard surface preparation of a 28Si wafer (ultra high vacuum (UHV) clean-

ing, surface annealing, and hydrogen passivation), one would pattern a first layer of

parallel Si-P control line using STM lithography. One could for example manufac-

ture one control line for each column of qubits within each node. After standard

Phosphorus incorporation, one would then encapsulate the whole chip with a layer of

a few 10s of nm of 28Si using state of the art molecular beam epitaxy. We call this the

first encapsulation layer. The next layer would again be heat treated and passivated

with hydrogen. One would then pattern the first layer containing one donor cluster

per qubit. Again after phosphorus incorporation, one would then grow ⇠ 10 nm

of 28Si (second encapsulation) as this is the inter-QD distance which is needed to

achieve a tunnel coupling of a few GHz. One would then again prepare the surface

and pattern the second qubit layer containing one donor QD per qubit, each one

tunnel-coupled to a QD of the previous layer. After phosphorus incorporation, one
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Figure 4.12: Implementation of direct dipole coupling nodes (side view). Ver-
tically patterned qubits are shown by black circles on atomic layers separaeted by ⇠ 10
nm to generate su�ciently large tunnel coupling between the QDs. Epitaxial Si:P control
lines are patterned in a crystal plane ⇠ 50 nm below the bottom qubit plane and are used
to create a large global gate for arrays of qubits. Individual qubits are controlled using
metallic vias as gates & 20 nm above the qubits. The qubit themselves are separated by
⇠ 100 nm to reduce leakage between electrodes while still allowing for su�cient dipolar
coupling.
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would then grow 20 to 50 nm of 28Si as the final encapsulation layer which finalises

the STM UHV process.

After a final surface preparation, using standard lithography techniques (e.g. e-

beam lithography or optical lithography), one would then pattern one or two metallic

gates per qubit on the top silicon surface. As discussed in the previous section the

routing of the leads from the interstitial nodes to the qubit gate may require several

layers of metallic leads, separated from each other using insulating layers of high

dielectric constant (for example SiO2 or HfO2). This is a well-known lithographic

procedure within the semiconductor industry for current semiconductor circuits [59].

4.5.5 Node implementation 2: floating gates

Another possible implementation of a node architecture for qubits coupled using

floating gates is sketched in Fig. 4.13 and Fig. 4.14. Qubits are represented by a

pair of dots and are contained in the same lithographic plane inside a crystalline

isotopically purified silicon (28Si) layer.

Each nearest neighbour qubits pair is coupled via elongated metallic islands,

represented by the black structures in the form of a dog bone. Electrostatic control,

drive and readout of each qubit is performed via one or two gates (black rectangles).

These gates are connected to metallic leads represented by white lines in both figures.

The floating gates enable spacings of up to a few micrometers between qubits

allowing for multiple feedthrough of metallic leads between them. In this way, a

larger number of qubits can be addressed by leads within a single lithographic lay-

ers. However the qubit density within the node is reduced by about two orders of

magnitude when compared to dipole coupling (see Table 4.1 and 4.2). The “floating

gates” at the outer perimeter of the node are connected to superconducting res-

onators (light grey lines). This allows long distance coupling of those qubits to their

distant nearest neighbours in the next node(s).

Note that the floating gates and control/readout/drive gates can be manufac-

tured either in the qubit plane, or on the silicon surface above. It is however advanta-

geous in terms to have both patterned inside the qubit plane. Indeed this increases

the capacitive coupling between the gates and the QDs, and allows for stronger

qubit-qubit coupling at the same distance, qubit driving, better readout signal, and

better electrostatic control. There is no downside to patterning the floating gates in

the qubit plane, contrary to the control gates, which need to be contacted using vias

in that case. The location of vias created by etching the silicon substrate are indi-

cated by white circles in Fig. 4.13. A sideview of such an implementation is shown
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Figure 4.13: Implementation of floating gate coupling nodes (top view). Coupling
between the qubits (pair of circles) is here achieved via in-plane SiP floating gates (black
dogbone structures). Each qubit is controlled by two electrostatic gates that are contacted
using etched vertical vias (white open circles), using metallic gates (white lines) patterned
on the silicon surface. Superconducting resonators (grey lines) connect the edge qubits
of the node to other nodes. The edge qubits are capacitively coupled to an in plane gate
which is connected to the the resonator patterned on the silicon surface.
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Figure 4.14: Details of node implementation using floating gate coupling (side
view). The qubits, control gates and floating gates are all patterned in the same 2D plane.
The floating gates are ⇠ 1 µm long dramatically increasing the inter-qubit separation
compared to the ⇠ 100 nm using direct dipole coupling. The control gates are contacted
using metallic vertical vias that are connected to classical control and readout electronics
in between nodes.

in Fig. 4.14, where vias to the control/readout/drive gates are now represented by

vertical white lines.

4.6 Conclusion

In this chapter we proposed a novel flopping-mode qubit fully based on asymmet-

ric donor-based QDs. The qubit is based on an electron spin that can be electri-

cally biased in such a way that the electron’s wave-function is shared between two

tunnel-coupled donor quantum-dots. At this biasing point the wave-function is very

sensitive to electric fields and with the right value of the tunnel-coupling, the spin

can become hybridised to the charge state of the QD system. This is reflected in

the emergence of a large spin electric dipole moment that allows electrical driving of

the spin. By minimising the hyperfine coupling of electron spin to the donor nuclear

spins on one of the QDs, we show that the magnetic field gradients experienced

by the spin can be engineered to allow for fast (⇠ ns) and high fidelity (> 99%)

electrical driving of the qubit. With the proper device design, the additional nuclear

spins only act as a resource to facilitate qubit errors and does not significantly con-

tribute to state leakage due to the small coupling and large detuning between the

leakage states and the qubit states. Also, the qubit can be initialised and read-out
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fully electrically, without the need for any additional gate or charge sensor close

to the device. The large spin–charge coupling (⇠ 100 MHz) also allows for strong

coupling of the spin to a superconducting cavity, paving the way for long distance

two-qubit gates, mediated by superconducting resonators. All these characteristics

make the qubit an attractive and scalable candidate for error-corrected quantum

computation using the surface code. In the final section, we present initial ideas for

architectures based on the flopping mode qubit described in this chapter. Further

work will include error simulations for the various two-qubit gates allowable from

the dipole coupling (controlled-phase, SWAP), as well as for the dispersive readout

using a superconducting cavity.

In this chapter, we focused on one particular implementation of the proposed

qubit that consists of a 2P-1P multi-donor quantum dot hosting three electrons. In

that particular implementation the reduction of the hyperfine coupling to the 2P

QD is crucial to reduce the qubit error. In this chapter we have based the values of

the hyperfine couplings on tight binding simulations and one existing experimental

measurements of a 2P QD. In the following chapter we experimentally investigate

additional 2P QDs and show that the cancelling of the 2P hyperfine couplings relies

on the orbital wavefunction being symmetric. This cancelling was observed in the

existing measurement of the hyperfine couplings on a 2P donor quantum dot [36].

However, in a di↵erent device we uncovered a specific 2P configuration in which

the orbital wavefunction is significantly shifted by the static electric field present in

the device. This would be detrimental to low-error flopping mode operation. That

particular 2P configuration would therefore need to be avoided by specific patterning

strategies.

The donor configuration within the 2P donor QD containing three electrons could

also have an impact on the charge state of the flopping-mode being well defined. This

charge state is a linear combination of a single electron orbital in the left QD with

a single electron orbital in the right QD. This description is correct as long as the

single orbitals are non-degenerate. The ground state 1P orbital is known to be non-

degenerate [37], and the same is expected to be the case for the third electron orbital

on the 2P quantum dot 10. However it is possible that for some donor configurations

within the 2P QD, a near-degeneracy is present. This is outside the scope of this

work but needs to be investigated, for example using tight-binding simulations.

10Private communication with Prof. Rajib Rahman
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Chapter 5

Nuclear spin dynamics in

multi-donor quantum dots

In this chapter, we benchmark the ability to engineer multi-donor quantum dots us-

ing STM Hydrogen lithography for quantum computing applications. Multi-donor

quantum dots have demonstrated increased T1 relaxation times [1, 2], addressable

electron spin control using ESR [3, 4] and increased tunability of exchange-based

two-qubit gates [5]. Furthermore, the additional positive charge within multi-donor

quantum dots can be used to engineer the quantum dot charging energies [6], and

increase the electrostatic tunability of the devices (see Sect. 5.1.3 and Sect. 5.1.1).

Quantum dots formed by just two phosphorus donors are a particular point of inter-

est because they form the basis of the electrically driven electron-nuclear spin qubit

proposed in this thesis (see Chapter 4). The proposed qubit consists of a single

donor (1P) and two-donor (2P) quantum dot pair. In the previous chapters, we

have shown that the qubit can be protected from charge-noise induced decoherence

by minimising the hyperfine coupling within the 2P donor molecule. We proposed

to achieve this by controlling the electron number and the nuclear spin orientation

within it. Control over the number of donors within donor quantum dots is fur-

thermore crucial for the proposed implementation of a parity measurement between

electron spin qubits on donor-quantum dots [7]. Parity measurements are the fun-

damental building blocks of quantum error correction using the surface code and

pave a way towards large scale quantum computing (see Sect. 2.1.1).

Using two separate devices based on a novel triple-dot design and fabricated us-

ing STM hydrogen lithography we demonstrate that a high degree of control can be

achieved in the engineering of 2P molecules. On a first device, we perform metrology

of the configuration of a pair of two-donor quantum dots by matching their charg-
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ing energies to tight binding simulation performed by collaborators in Professor

Rahman’s group. The metrology strongly suggest that two-donor molecules can be

patterned with a precision of at least ±0.25 nm in carefully fabricated lithographic

openings using the STM tool. We then improve the readout fidelity measured on

a 2P molecule in the first device from 83% to 94%, by optimising the design and

fabrication of the charge sensor used to measure the electron and nuclear spins.

The hyperfine interactions on the 2P molecule are then measured using microwave

pulses that adiabatically invert the electron spin. The measurements reveal a previ-

ously unobserved linear Stark shift on a tightly bound donor molecule. The precise

measurements of the hyperfine interaction within the 2P molecule are then used

to improve the precision of the donor metrology, and pinpoint one likely configura-

tion of the phosphorus atoms within the silicon lattice. We then perform nuclear

spin readout on the 2P molecule with a fidelity of 88% and uncover previously un-

observed nuclear spin dynamics in tightly bound donor molecules. The transition

rates between nuclear spin states are then extracted using a hidden Markov model

and confirm the presence of nuclear spin excitation through the hyperfine shock ef-

fect [8]. A finite probability of a flip-flop between antiparallel nuclear spin state is

uncovered and could be related to the magnetic dipole coupling between the nuclear

spin, which has not been observed previously in a single phosphorus donor-molecule.

5.1 Design of multi-donor quantum dot device

This section introduces multi-donor quantum dots device designs, which are ver-

satile and allow for the investigation of the nuclear spin dynamics in multi-donor

quantum dots. After the device design is introduced, we demonstrate measurements

of a first device at milliKelvin temperatures. Based on high quality imaging of the

donor quantum dots, and measurements of their charging energies at cryogenic tem-

peratures, we determined the donor number. In particular we demonstrated that the

approximate donor configuration within the dot could be determined from match-

ing precise measurements of the quantum dot charging energies with tight-binding

simulation of multi-donor quantum dots. Finally we present spin readout on one

of the quantum dots with 83% fidelity. The device in this chapter was fabricated

by this author and Michael Jones, with help and supervision by Dr Yousun Chung.

The device was measured by this author, with help by Michael jones, Dr Yousun

Chung and Sr Matthew House. The data analysis was performed by this author.

The tight binding simulations were performed by Abu Mohammad Sa↵at-Ee Huq
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from Professor Rajib Rahman’s group.

5.1.1 Design and modelling of triple-dot device B016

This section first introduces the design specifications of the devices used in this

chapter, before briefly summarising the optimisation process leading to the chosen

device design. The devices investigated in this chapter are to contain three tunnel-

coupled quantum dots, a natural progression from the well-established two-quantum-

dot design [4, 9, 10]. The additional quantum dot is intended to provide important

statistical information on how di↵erent donor numbers within each quantum dot

a↵ect the sensor-to-qubit tunnel rate and the interdot exchange. Each multi-donor

quantum dot can potentially host an electron and a nuclear spin qubit. The device

is to be designed so that the three quantum dots can be operated independently.

Each electron spin qubit therefore needs to be able to be initialised, controlled

and read out independently. The device will have a microwave antenna to enable

independent control of the electron and nuclear spin qubits hosted on each quantum

dot. Furthermore, the three quantum dots are to be patterned so that an exchange

based two-qubit gate is possible between two of the three pairs of electron spin

qubits (the three quantum dots therefore form a chain). These versatile design

specifications are compatible with the long term goal of demonstrating a surface-code

stabiliser using precision-placed donors in silicon. A stabiliser is the fundamental

building block of the surface code error-correction algorithm, and relies on an ancilla

qubit performing a single parity measurement (or stabiliser) on a pair of data qubit

(see Sect. 2.1.1). In the following the quantum dot in the centre of the three-dot

chain will be referred to as the ancilla, while the outer two quantum dots will be

referred to as the data quantum dots (or qubits).

Independent operation of each of the three quantum dots rests on independent

electrostatic control of the system’s charge states and requires :

• the ability to define three independent qubits using three unpaired electron

spins,

• a large enough gate range to access the charge states of the device necessary for

initialisation and readout of the qubits and for execution of two qubit gates,

• a design to allow for high fidelity operation (initialisation, readout, single-qubit

and two-qubit coupling).
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This will necessitate careful design of the dot location, and coupling to each

other as well as to reservoir. We only consider exchange-based two-qubit gates, the

most widely studied of the gates in single-spin qubits. Also, we will use a single-

electron transistor charge sensor that, to date has demonstrated the highest fidelity

spin readout [11] and promises very large measurement-bandwidths when operated

using radio-frequency signals [12]. For spin-readout, we will rely on spin-to-charge

conversion using spin-selective tunnelling of the electron spin to a reservoir, since

this method has demonstrated the highest fidelities in donor based qubits system [9].

Design of the three-dot device

Electrostatic control Full electrostatic control of the charge states on three in-

dependent quantum-dots requires at least three independent electrostatic gates [13].

We label the charge state on the three dots by nL, nM, nR, where the integers nL, nM

and nR define the charge state in the left data qubit, the (Middle-) ancilla qubit and

the right data qubit. The three left, middle and right metallic gates can be placed

at electrostatic voltages VL, VM and VR respectively by dedicated voltage sources. A

schematic of such a device is sketched in Fig. 5.1a, together with a single electron

transistor. This design demonstrates a natural mirror symmetry present with the

two data qubits being identical.

The presence of three electron-spin qubits on three donor-quantum-dots requires

the system to be initialised with an unpaired electron spin on each of the three

dots, corresponding to a charge state (nL, nM, nR), where the ni are odd numbers.

Without loss of generality we will use a (1, 1, 1) charge region as an example. In

order to perform an exchange based gate between the ancilla qubit on the middle

dot and the left(right) data qubit, the wavefunction of middle dot needs to be made

to overlap with the left(right) electron’s wavefunction. In donor quantum-dot, this

can be implemented by an electric field gradient that pushes one of the electron’s

wavefunction towards the other one, so that both electrons nearly occupy the same

dot orbital in a singlet state. In practice, an exchange-based two-qubit gate that

couples the ancilla qubit to the left and right data qubit therefore requires that

the (1, 1, 1) charge region is connected to the (2, 0, 1) or (0, 2, 1) charge states on

the left, and (1, 0, 2) or (1, 2, 0) on the right (see Fig. 5.1b) within the device gate

space. Equivalent charge states can also be found by adding any even number to

any electron number in the triplet (nL, nM, nR). Figure 5.1b presents a schematic

charge stability-diagram of the ground state charge state as a function of the voltage

on the left, (nL) and right, (nR) electrostatic gates, for a typical device as sketched
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Figure 5.1: a) Design of a triple dot exchange based spin qubit: Schematic of
three gates needed for independent electrostatic control of each dot. The centre dot is
the ancilla, whilst the outer dots are the two data qubits. The single electron transistor
occupies the lower half plane. The equivalence of the two outer data qubit forms a natural
symmetry axes indicated by the dashed red line.
b) Schematic charge stability diagram when the middle dot is not coupled to
the SET reservoir: Here we plot the charge states of the triple dot device as a function
of VL and VR. The green triangular region corresponds to a region where all charge state
on each dot are odd. When the middle dot is too far away from the SET reservoir, an
electron needs to be shuttled to one of the outer dots (here the left dot). A possible
trajectory through gate-space is depicted by the grey dashed line. The readout positions
are labelled by coloured circles labelled Rd, where d = L,M,R represents the dot which
is brought in resonance with the reservoir Fermi-level during spin-readout. Accessing an
anti-crossing involves a significant voltage pulse, which can be experimentally challenging
and highlights the practicality of having all three dots coupled to a reservoir.
c) Stabiliser protocol when all three dots are coupled to a reservoir: In this
schematic charge stability diagram all three dots are tunnel coupled to the SET reservoir.
Now initialisation and readout can be performed in the same manner, as represented by
the grey dashed line. Single qubit control via ESR pulsing is operated deep within the
all-odd charge region, as represented by the dark green disk. The two-qubit gates can be
operated at the higher and lower edges of the all-odd charge stability region (grey regions),
where the exchange interaction JML and JMR coupling the middle to the left and right
electrons respectively. can be switched on. A possible pulse sequence is indicated by the
dark blue dashed line.
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in Fig. 5.1a where the middle dot is further away from the SET charge sensor and

therefore not tunnel coupled. In general, applying larger voltages to the gates lead

to deeper potentials at the qubit and the number of electrons in the system increase.

A (1, 1, 1) charge state, compatible with surface code operation can be seen in the

centre of the diagram. The passing of boundaries between charge states corresponds

to charge redistributions, either from one dot to another or between dots and an

electron reservoir.

The exchange gates are operated close to the edge of the (1, 1, 1) charge-stable

region, near the neighbouring regions that contain an even singlet charge state (see

coloured regions JML and JMR in a closeup Fig. 5.1c of the gate map in b). To

achieve an exchange-based gate, the value of the exchange coupling is set to a value

of typically a few GHz by the separation of donors and by then pulsing the gate

voltages to a position in proximity to this charge-state boundary. The gate timing of

a few nanoseconds is calibrated to that value of exchange coupling. For high-fidelity

exchange based gates it is important that the voltage pulses reach this voltage

position quite precisely because the exchange coupling magnitude is very sensitive

to electric field [10, 14]. In practical devices, the amplitude of such fast voltage

pulses needs to be restricted to values of about 100mV to avoid rearrangements of

charges within the semiconductor lattice. For practical reasons, the central (1, 1, 1)

charge-region therefore needs to be electrostatically tunable by the gates, so as to

not span more than about 100mV in gate-space. Such tuning is possible with three

independent electrostatic gates, and is facilitated by maximising the coupling of the

middle gate to the middle dot while minimising its coupling to the outer ones, i.e. by

maximising the di↵erential coupling of the gate to the two dot pairs (see Sect. 5.1.1).

The need for fast, high fidelity single shot electron spin readout further informs

the device design. Electron-spin readout through spin-selective tunnelling requires

at least one of the three quantum-dots to be tunnel-coupled to a reservoir (this

reservoir can also be practically used simultaneously as a gate). Electrons trapped

on di↵erent dots can then be shuttled to that reservoir-coupled dot, and read-out.

It is however more useful if all three quantum-dots are tunnel-coupled to a reservoir

as this allows all three dots to be read-out at the boundary of the (1,1,1) charge-

stable region, and minimises the magnitude of voltage pulses (see readout positions

RL, RM and RR) in Fig. 5.1c). If the middle-dot is not tunnel-coupled to the readout

reservoir, the middle dot electron needs to be shuttled to one of the outer dots and

readout out from that dot. This will require relatively large voltage pulses and is

therefore not ideal due to possibility of noise activation (see full pulse sequence in
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Fig. 5.1b).

Ideal donor configuration in ancilla and data qubits An exchange-based de-

sign that allows two independent two-qubit gates coupling the ancilla-qubit to both

the left and right data-qubits requires the (1, 1, 1) charge region to be connected

to the (2, 0, 1) or (0, 2, 1) charge states on the left, and (1, 0, 2) or (1, 2, 0) on the

right. Indeed, the exchange coupling between two donor QDs has traditionally been

implemented by applying in-plane electric fields that tilt the potential landscape

between the two QDs. A new approach pioneered in gate-defined quantum dot uses

electrostatic barrier-gates that lower the electric potential between the two QDs in-

stead [15]. This technique that was shown to increase the resilience of two-qubit

gates to charge noise is currently under investigation in our group but is not consid-

ered in this thesis. If we consider the case where the (1, 1, 1) charge state is connected

to a (0, 2, 1) or (1, 2, 0) charge state for exchange coupling between the middle and

the left(right) electron spin (see Fig. 5.1c) we require the middle dot chemical po-

tential to allow for tunnelling-in of a second electron, while it requires the single

electron on the outer dots to be nearly tunnelling-out. If all three donor-quantum

dot were defined by single donors, we would require the di↵erence in chemical po-

tential to be equal to the single donor charging energy of 46meV. Assuming typical

di↵erential gate lever-arms of 1 to 5% between the in-plane gates, voltage di↵erences

of between 1 to 5 volts would need to be applied to the gate. Experimentally, for

in-plane gates separated at their closest point by ⇠ 50 nm, voltage di↵erences above

about ⇠ 1V lead to a Landau Zener breakdown of the silicon semiconductor, where

valence electrons can tunnel to the conduction band edge. This is undesirable as

it leads to heating of the sample and the likely formation of charge traps between

the gates. In practice, it would be challenging to implement the stabiliser protocol

with three single donor qubits. A relatively simple solution to reduce the chemical

potential di↵erence between the inner and outer quantum dots, is to use di↵erent

numbers of donors in the middle quantum dot. Larger donor dots with many elec-

trons have demonstrated charging energies below the 46meV (see Sect. 5.1.4) which

can therefore meet the di↵erential voltage requirement. Furthermore, the chemical

potential of a desired nM to nM � 1 transition, is unlikely to be aligned with the ni

to ni � 1 chemical potential of the outer dots, so in practice the chemical potential

di↵erence can be lower than the middle dot’s charging energy. For our first device

implementation we therefore aimed to pattern one or two donors in the outer data

qubits and a 3-donor dot for the central ancilla qubit.

The number of donors patterned during STM-lithography can be controlled by
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engineering the size of the hydrogen desorption site. Statistical studies of phosphorus

incorporation by Füchsle [16] indicated that an opening of three dimers, has a 70%

chance to yield a single donor, and a 30% chance to incorporate no donor at all (see

histograms in Fig. 5.2b). This is in accordance with the theoretical understanding

of phosphine dissociation and incorporation pathways [17, 18, 19]. For the outer

data qubit of the parity device, an opening of 4 dimers has the advantage of a lower

probability (20%) to not incorporate a donor at all (55% for a single, and 20%

for two donors). This is beneficial as we typically only assess the success of the

incorporation process during the first measurement in liquid helium, after a week-

long cleanroom-fabrication process. It is challenging to reliably desorb precisely

the desired number of dimers, so we aimed for a 4-dimer opening during device

fabrication for the outer data qubit of the three-dot device. Assuming an equal

probability to obtain a 3-, 4- or 5-dimer opening, this would yield a 60% chance to

incorporate a single phosphorus atom, a 26% to incorporate two, and only a 14%

chance not to incorporate any atom. The appropriate lithographic opening size for

the 3-4P ancilla donor-dot can be estimated using the estimated 0.25ML phosphorus

donor density after incorporation of a saturation dosed bare silicon surface [17], and

corresponds to 6 to 8 dimer lithographic openings.

The yield of donor incorporation using the 4-dimer lithographic opening as pre-

sented above is su�cient for the device required for this chapter, with a 70% chance

that both dots incorporate one or two donors each. For devices containing more

than a few dots this yield needs to be increased to obtain the exact desired donor

number on each dot. Fabrication techniques which significantly increase the yield

for incorporating the desired number of donor exist and have been patented by our

group [20]. Most such techniques rely on the in-situ characterisation of the donor

number after incorporation using the STM tip 1. By patterning a lithographic open-

ing that allows at most the desired donor number to incorporate, the surface can

be imaged to assess if the desired number of donors has incorporated. The process

can be repeated until this is the case. This strategy was employed at room temper-

ature by Fuechsle et al. to pattern the first single atom transistor [22]. Fuechsle et

al. assessed the donor number by inspecting the surface for a silicon atom that

was ejected by the incorporated phosphorus atom. More precise spectroscopic tech-

niques exist to image the incorporated phosphorus atoms itself using the STM tip.

This was demonstrated on a single atom at room temperature [21] and on coupled

phosphorus donors at 4K [23]. These techniques could be used to not only assess

1Note that the lithographic mask remains after incorporation [21]
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Figure 5.2: a) Si(100) 2⇥1 reconstructed silicon surface. Silicon atoms rearrange into
pairs of atoms called dimers, that form dimer rows running diagonally through the unit
cell. b) Incorporation statistics of phosphorus donors in silicon as a function
of the number of bare silicon dimers opened up during hydrogen-resist STM-
lithography. An opening of 4 dimers, has a 55% probability to yield a single donor, with
only a 20% probability to not incorporate any donor. Figure b) adapted from ref.[16].

the number of incorporated donors but also their configuration within the silicon

lattice. Importantly, recent advances in low-temperature lithography could provide

higher yields [20]. Combined with techniques such feedback-controlled single hy-

drogen desorption [24] and voltage-pulse induced donor incorporation [25] (instead

of incorporation by global heating), high yield deterministic lithography of donor

quantum dot should be achievable.

The practical requirement that all three quantum dot are tunnel-coupled to a

reservoir for readout of the electron spins requires all three dot-to-reservoir distances

to be optimised for reliable single-shot spin readout. Experimentally, dot-reservoir

distances of ⇠ 19�20 nm have yielded 200Hz tunnel-rates for the first electron on a

single donor (1P) [4, 9, 26]. This is well below the achievable bandwidth (⇠ 1MHz)

of state-of-the-art SET charge sensors [12], so it was decided to decrease the distance

between the 1P donor qubit and the SET reservoir to ⇠ 17 nm for the first device

to increase the tunnel-rate to a desired 10 kHz.

The optimal inter-dot distance required to achieve ⇠GHz tunnel-coupling be-

tween the two tunnel-coupled donor quantum dot qubit was unknown at the time
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this device design. Previously measured values of inter-dot tunnel-coupling ranged

from 0.2GHz to 11GHz, for distances from 11.5 nm to 16 nm, and donor dot con-

figurations of 2P-3P (with four electrons) and 2P-1P (with two electrons) in ref.[27]

and [28] respectively. Tight-binding simulations by Wang et al. estimated that an

inter-donor separation of 13�14 nm would yield the desired value of tunnel-coupling

for a 2P-1P system (with two electrons). A value of 13 nm was decided for the first

iteration of the triple-dot.

The di↵erential coupling of the middle gate VM , to the inner/outer dot pairs L

and R can be maximised by orienting the qubit pairs parallel to the electric field

produced by the middle gate. The electric field of the middle gate near the quantum

dots is oriented parallel to the the North-South axis of Fig. 5.1a due to the quantum

dots being patterned near the symmetry axis of the device. The di↵erential coupling

of the middle gate to the middle dot is therefore increased by patterning the middle

gate higher than the outer dots. The constraints imposed by the dot-reservoir and

dot-dot distances yield a device geometry sketched in Fig. 5.3a with the three dots

forming an isosceles triangle with the angle at the middle dot being 130� (23� from

horizontal).

Both the SET charge sensor or the middle gate can serve as the electron reservoir

(again conserving mirror symmetry). To date, donor based qubits fabricated by

STM-hydrogen lithography have focused on the first approach, where the SET island

serves as the electron reservoir (see design Fig. 5.4a). The SET island coupled design

is attractive because it maximises the capacitive coupling between the quantum dots

and the charge sensor, allowing for a single electron tunnelling event to fully switch

on or o↵ the current flowing through the single electron transistor [9, 12]. Such

strong sensitivity allows for high-fidelity electron-spin readout [9, 12]. However, the

current flowing through the resistive tunnel-gaps of the SET itself can lead to heating

of the electrons in the charge sensor [12]. This electron heating smears the Fermi

distribution of the electrons in the reservoir, and can limit the fidelity of the energy-

selective spin readout, which requires a sharp Fermi distribution [29]. The limitation

of the electron spin readout fidelity due to SET heating is especially problematic for

more resistive SETs, which dissipate more heat for the same amount of current (and

thus DC signal). This is the case for the device B016 presented in this chapter. The

alternative SET island “gate-coupled” design in which each of the quantum dots are

tunnel-coupled to an independent reservoir gate instead of the SET could reduce

the thermal coupling between the charge sensor reservoir and the qubit. This would

reduce the electron temperature and help increase the readout fidelity. Furthermore,
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Figure 5.3: a) Optimal SET island reservoir design of inter-dot and dot–reservoir
coupling. Coupling in a triple donor qubit device. To keep the dots all at ⇠ 17 nm
from the reservoir but ensure maximal di↵erential coupling between the gates and the
dots, we o↵set the outer dots and shape the SET island reservoir.
b-c) Engineering the electrochemical potential of the triple donor dot to ensure
we achieve a (0,2)-(1,0) inter-dot transition for a 2-qubit gate. Accessing the
(1,1,1)-(0,2,1) transition region (JML) purely via detuning potentials (c)lower), requires
the middle dot electric potential to be tuned very close to the 1 7! 2 electron transition,
whereas the other dots are tuned closer to the 0 7! 1 electron transition. This can be
facilitated by engineering the inner dot to have di↵erent binding energies than the outer
dots, as shown by the schematics of chemical potentials in c).
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the SET charge sensor could be operated at higher powers to increase the signal-to-

noise without increasing the electron temperature and a↵ecting the readout fidelity.

Decreasing the separation of the quantum dots from the SET however also reduces

the capacitive coupling between them, and the change in SET current produced by

a single electron tunnelling event. This compromise between heating and capacitive

coupling was investigated in detail in a separate PhD thesis by Michael Jones [7],

based on the gate-coupled triple dot fabricated in this thesis. These devices were

made together with Michael Jones. However, the results on electron heating on

this device are presented in a separate thesis by Mr. Jones. The dependence of

the electron-temperature on the power applied to the charge sensor was found to

be much weaker in the gate-coupled device when compared to SET coupled ones.

Simulations by Michael Jones based on this measured heating behaviour reveal that

the robustness against heating largely outweigh the decrease in the signal strength

(see [7]).

The two di↵erent device designs are shown in Fig. 5.4a and b respectively. The

spacing and positioning of the electrodes results from optimisation of the capacitive

electrode to dot coupling while respecting the heuristic constraints imposed by leak-

age. The devices presented in this thesis are all based on the first “SET-coupled”

design of Fig. 5.4a.

5.1.2 Atomic Precision Lithography and Growth

Figure 5.5 displays a scanning tunnelling microscope (STM) image of a triple-dot

device made according to the SET island reservoir coupled design. From the STM

images taken after phosphine dosing, we can observe the placement accuracy of

the three donor-quantum dots of ±0.3 nm for the outer dots and with the middle

quantum dot being placed 1 nm further than intended. A first estimate of the number

of donors within each dot can be made from analysis of high resolution images of the

dot lithographic openings, before and after phosphine dosing as shown in Fig. 5.5

c-e and f-h respectively. Here the desorption sites on the left and right dots were

planned to be 4± 1 dimer long, on a single dimer-row with the aim of incorporating

a single phosphorus donor with high probability (⇠ 60%). Figure 5.5c and e show

the lithographic desorption patches of 4 and 3 dimers for the left and right dots

respectively, on the same dimer-row, with two single hydrogen desorption dangling

bond sites likely having occurred on the adjacent dimer-row for the right dot as

labelled (below the main desorption site). The image of the left dot after phosphine

dosing (Fig. 5.5f) shows four PH2 species having attached to the dangling bonds of
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Figure 5.4: SET versus gate coupled triple dot designs.
a) SET coupled design made the SET island acts as the electron reservoir. The distance
from the gates to the dots and other gates is limited by in plane gate leakage. The
electrostatic advantage of having a bigger lever arm is balanced by the limitation of electric
field due to the earlier onset of gate leakage. b) Gate coupled design. In this design,
the middle gate acts as the electron reservoir. The gate positions are determined by
electrostatics and a heuristic understanding of gate leakage ranges.

the four bare dimers in a zig-zag pattern. The absence of any dangling bonds in the

four dimer patch indicates that as expected [17, 18, 19] the third hydrogen atom of

each phosphine molecule has attached to the remaining silicon atom of each dimer.

The image of the right dot after phosphine dosing (Fig. 5.5e) shows two similarly

o↵-centred bright features that can also be attributed to PH2 molecules attached

on the bare dimers. Also one brighter feature that is centred on the dimer-row is

visible in the right dot that can be attributed to a PH species. This PH species is

one step ahead in the dissociation process of phosphine on the silicon surface. From

what is known of the incorporation process of phosphine species on silicon surfaces,

we expect that both dots will yield one or two donors as the device design required.

For the centre dot, the desired number of donors (3 to 4) can be achieved with a

large lithographic opening of 6 to 8 dimers. A 5 dimer patch was opened, showing a

few hydrogen atoms desorbed on the neighbouring dimer-row (see Fig. 5.5d). After

phosphine dosing, 6 phosphine related species are visible on the surface, with two

PH2 molecules on the main dimer-row, and on having attached to the dangling

bond on the neighbouring dimer (see Fig. 5.5g). Three instances of an unidentified

phosphine species (labelled PHx) have attached on the main dimer row. The features

appear centred on the row, like a PH molecule, but are less bright and lower in height
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Figure 5.5: Lithographic design and phophine dosing of a triple dot device
tunnel coupled to an SET island reservoir (BO16).
a) STM image of the hydrogen desorbed regions (highlighted by grey regions). The dots
are coupled to the top of the SET island (within the black outline).
b) STM image of the black outline in a) showing the inner device region after PH3 dosing.
The tip of the SET island is visible on the bottom with the characteristic triangular shape
to guarantee tunnel coupling of each dot to the reservoir, while maximising individual
electrostatic control.
c-e) L, M, R dot closeups after lithography.
f-h) L, M, R dot closeups after PH3 dosing.
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and resemble the size and brightness of the other PH2 molecules. The position of

the topmost PHx species where the silicon surface was not exposed, indicates that

some movement of the hydrogen and PHx species has occurred. Due to the unknown

features and complexity of the arrangements of phosphine, it is unclear how many

of the 6 phosphine species are likely to incorporate in the middle-dot.

An analysis of the three di↵erent donor-quantum dot charging energies however

in Sect. 5.1.4 allows us to determine the number of donors in each of the three

quantum dots.

5.1.3 Electrostatic control of all three quantum dots

After cool-down of the device in a dilution-refrigerator with 50mK base-temperature,

the presence of the donor-quantum dots can be assessed by measuring the current

through the SET as a function of left and right gates (see Fig. 5.6). Here we can

detect charging events of each of the dots, using the single electron transistor (SET)

patterned in proximity to the dots. Such charging events produce changes in the

DC-current passing through the SET, under a voltage bias using the source and

drain leads. These charging (or discharging) events only happen when the chemical

potential of the quantum-dot is aligned with the Fermi-level of the electron-gas pop-

ulating the source and drain leads of the SET (and by extension the SET island).

Indeed when the chemical potential of the dot is aligned with the Fermi-level of the

reservoir, an electron in the Fermi-sea at the Fermi-energy of the SET island has

enough energy to move to the quantum dot. In Fig. 5.6b, the bright diagonal lines

running at a slope of about �1, correspond to gate voltages at which the chemi-

cal potential of the SET island is in between the Fermi-level of the source and the

drain leads, allowing for current to flow between the SET source and drain. In the

darker regions of the plot the chemical potential of the SET is outside the source

and the drain Fermi level, and no current flows through the SET: the SET is in

Coulomb-blockade. Charging events where electrons move from the SET island to

the quantum dot appear in such a gate-map as lines along which the SET-peaks are

broken, due to the quantum-dot charging events shifting the SET chemical poten-

tial through capacitive coupling of the dot to the SET island. The slope of these

lines are indicative of the relative capacitive coupling strength of the two gates to

the quantum dot. Due to the mirror symmetry axis running from the middle gate

through the middle-dot and the SET island, we expect the left and right gates to

be equally coupled to the SET and the middle dot. This is reflected in Fig. 5.6b by

the SET charging lines running at a slope of �1, as well as by three charging lines
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Figure 5.6: Charge stability diagram of a triple dot B016 with.
a) an overview schematic of the charge stability map where VM = 0.1V . The
black lines indicate electron charge transitions between charge stable regions. Four middle
dot transitions are visible within the gate space (M1-M4), and two transitions are visible
for the outer dot(L1, L2, R1, R2). The electron charge numbering is confirmed by spin
and singlet triplet experiments (modulo 2 for the middle dot). The shaded green charge
regions correspond to all-odd charge regions compatible with the stabiliser experiment.
a) (outer images): each colour map represents electrostatic triangulation of
the charge transitions. These yellow fog maps highlight the region in the device that
gives rise to the charge transition’s slope in a particular gate-gate map. The intersection
of the yellow regions yields the most likely location of the quantum dot charge centre in
the lithographic plane. This confirms the labelling of each transition (yellow, green, blue
from dots L, M, R) in the gate-gate map a).
b) gate-gate map showing the ISET as a function of VR and VL with a closeup
of the (1,3,1) charge region outlined in a).
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(yellow/left dot, green/middle dot, blue/right dot) running at a similar slopes. Two

other charging lines running at a more (less) negative slope, are indicative of the

dot being o↵-centre, and more (less) capacitively coupled to the left gate, and likely

correspond to the left (right) dot.

A multitude of high resolution gate maps as in Fig. 5.6b can be combined together

to yield a large gate-map as sketched in Fig. 5.6a. Additional charge transitions on

the dots are also detected at larger gate voltages but they all share one of the

same three slopes as in (b). In total, we observe four charge transitions that can

be attributed to the middle dot, and two charge transitions for each of the outer

dots. This allows us to assign the total number of electrons on each dot as in the

map, e.g. (0,2,0). The assignment of the transitions to the dots visible in the STM

images in Fig. 5.5, can be further supported by electrostatic simulation of the device

using a finite element solver2. The electrostatic simulation relies on the slope � of a

particular dot transition in the gate map Vg2 (y-axis) vs Vg1 (x-axis) being related

to the ratio of the lever-arm ↵g,d of the gate g to the dot d:

�d
g1,g2

= �↵g1,d

↵g2,d

. (5.1.1)

The lever arm ↵g,d of a gate g to a dot d corresponds to the change in chemical

potential at the dot when the gate’s voltage is increased by 1V : ↵g,d = �µd

g
/�Vg.

The gate lever-arm can be simulated by the finite element solver by calculating

the electric potential �g(rd) produced by each gate, while held at 1V while the

other are held at ground. The lever-arm ↵g(rd) of that gate to a quantum dot

at the position rd can then simply be estimated by the electric potential �g(r) at

that point: ↵g,d ⇡ ↵g(rd) = �g(r). In this manner, a two-dimensional map of the

simulated lever-arm ratios of the two gates can be produced:

�g1,g2(rd) = ��g1(r)

�g2(r)
. (5.1.2)

Matching this simulated ratio �g1,g2(rd) to the ratio �d
g1,g2

measured from the gate

map then yields a one dimensional contour within the lithographic plane, and is

depicted as yellow linear regions in the insets of Fig. 5.6a. Repeating this procedure

with another independent electrostatic gate then yields another contour line. The

point at which the contours intersect gives an approximate location of the quantum-

dot associated with the charge transition.

2COMSOL
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The procedure outlined above has been performed on all eight transition in

Fig. 5.6b, as depicted in the outer images of Fig. 5.6b. The intersection of the

contour lines for most of the transitions match the approximate location of the dots

estimated from the STM images.3

These electrostatic simulations allow us to estimate the electron numbering for

each charge transitions as shown in Fig. 5.6. These numberings are confirmed by

subsequent analysis of the three dot charging energies in the next section along with

information on the parity of the transitions inferred from spin-readout measurements

and singlet-triplet readout measurements. Two charge stable regions exist where all

the quantum dots contain an un-paired electron suitable to act as a qubit as observed

in the gate-map in the (1, 3, 1) region and the (1, 5, 1) region. The (1, 3, 1) charge

stable state is delimited by two charge-stable regions ((0, 4, 1) (1, 4, 0)) compatible

with exchange-based two-qubit gates between the centre dot and the outer dots (left

and right respectively). Importantly, both these charge states are accessible within

the gate-space allowed by gate leakage, V1V. The (1, 3, 1) region with VM ⇠ 0.1V

is about 100mV across such that it is compatible with realistic pulse amplitudes to

conduct the exchange-based 2-qubit gates, as well as readout and initialisation of

the electron spins.

Demonstrating tunability of pentagon The size of the (1, 3, 1) region, which is

compatible with two qubit experiments, can further be tuned by use of the middle

gate. The middle gate is more strongly coupled to the middle dot than to the

outer dots. This demonstrates that the device design provides enough di↵erential

coupling of the gates to the three dots to allow us to reduce the size of the region

in future implementations of the device, where the all-odd charge region is too

large for the amplitude of high-precision voltage pulses needed for 2-qubit gates

and qubit readout. Indeed, the (1, 3, 1) charge-stable, which is about 150mV across

for VM = 0V can be reduced in size until the charge region nearly vanishes at

VM = 0.3V, at which point a new charge-stable region (0, 4, 0) appears and grows

further in size for larger middle-gate voltages.

5.1.4 Estimation of donor number and configuration

The number of donors in each of the three donor-quantum dots in B016 shown in

Fig. 5.5 can be pinpointed more precisely by measuring their charging energies and

3with exception of the transition M3, where the contour lines do not intersect at the same
location.
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Figure 5.7: Control of the (1,3,1) charge region size with middle gate voltage
VM . Each plot displays a gate-gate map for the same voltage range on the left and right
gate, for di↵erent middle gate voltages VM . Note how the size of the (1,3,1) charge region
can be controlled by the middle gate voltage. At VM = 0.3V, a quadruple point is formed
where all three dot levels are aligned. At gate voltages above VM = 0.3V, a new charge
stable region (0,4,0) appears below the anti-crossing of the L and R dot transitions.
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Figure 5.8: Charging energies EC of di↵erent donor number quantum dots as a
function of the electron number. The coloured regions show theoretical(th) values of
the charging energies for 1P, 2P, 3P and 4P multi-donor quantum dots. The spread in the
possible values results from the various possible donor configurations within the dot itself.
Experimental(exp) values for the charging energies of device B016 are displayed by crosses.
The left and right dot charging energies (purple and green circle) are compatible with
simulated data for both a 2P quantum dot and a 3P quantum dot. The middle dot
charging energies are more compatible with a 3P quantum dot.

comparing them to tight binding simulation performed by Sa↵at Huq and Rajib

Rahman. The charging energy Ec(Ne) of a quantum dot containing Ne electrons

corresponds to the energy needed to add an additional electron to the quantum

dot. The magnitude of the charging energy depends on the depth of the quantum

dot’s confinement potential. For small quantum dots, the addition energy decreases

with the electron number Ne, as the confinement potential becoming shallower as

more inner shell electrons shield the nucleus’ positive charges. For donor based

quantum dots containing more than one donor, the exact charging energies are also

dependent on the configuration of the individual donors within the quantum dot. We

can constrain the possible donor locations to those within the lithographic patches

from the STM images in Fig. 5.5, yielding an uncertainty displayed by the coloured

regions in Fig. 5.8 for 2P quantum dots for the left and right dots, and a 3P or 4P

donor dots in the middle dot.

The charging energies of the three quantum dots are determined by measuring

the gate voltages between one charge transition on a dot and the next charge tran-

sition in the gate-maps as in Fig. 5.6b. We then can compare it to the charging

energy of the SET island. The charging energies obtained in this fashion are com-

patible with the number of donors estimated from the STM images and displayed
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as crosses with error in Fig. 5.8. The outer dot charging energies of the first elec-

tron Ec(1) of 84 ± 11meV and 98 ± 9meV for the left and right dot respectively

are more than twice the value of the single donor charging energies, excluding the

possibility that the outer dots are single donors as originally intended. The charging

energies of both dots are compatible with both a 2P or a 3P multi-donor dot. The

small lithographic patches visible in the STM images however are not compatible

with the incorporation of 3 donors, so that the outer dot are likely formed by pairs

of phosphorus donors (2P). The increased confinement potential created by the 2P

donors (instead of 1P) will increase the confinement potential for the electrons and

therefore lower the tunnel coupling. Reaching the appropriate value of the tunnel

coupling is important for exchange-based gates [28]. The desired value of the tunnel

coupling can however be reached by reliably patterning the 2P QDs closer to the

central QD [5]. The charging energies of the middle donor quantum-dot are best

fit by the simulated charging energies of a 3P multi donor dot. We note that the

measurement of Ec(5) is at high gate voltage where the errors are larger due to

bending of the SET charging lines.

Dot Electron number Expected Charging Energy (meV)
R 1 ! 2 98±9
L 1 ! 2 84±11
M 3 ! 4 33±5
M 4 ! 5 28±4
M 5 ! 6 29±5

Table 5.1: A comparison of charging energies with uncertainty values. Here we report the
charging energies for each dot as a function of both dots (left, middle, right) and electron
number.

The relative locations of the donors within the 2P quantum dot qubits can be

estimated by matching the measured charging energies to the values estimated from

tight-binding simulations for di↵erent donor configurations. The tight binding sim-

ulations were performed by Abu Mohammad Sa↵at-Ee Huq from Professor Rajib

Rahman’s group. For both data qubits, the lithographic openings were easy to

image, and restricted to less than four consecutive dimers on the same dimer-row

(see STM images in Fig. 5.5, and a visualisation of the atoms within the lattice in

Fig. 5.9). After the 350�C incorporation anneal, the phosphorus atoms from the

PHX absorbed species will incorporate at positions in the surface previously occu-

pied by silicon atoms (z = 0 in Fig. 5.9). After incorporation however, the device
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Figure 5.9: Estimating the location of the phosphorus atoms with the left and
right data qubits.
a) A schematic of the atoms on the Si(100) 2x1 surface atom positions. Black
circles represent atomic positions within the lithographic plane (z = 0). Red crosses indi-
cate atomic positions one monolayer (ML) above. b) Atomistic modelling of charging
energies of a 2P quantum dot using the lithographic openings for the left dot
(L-dot/green) and right dot (R-dot/blue). Tight binding calculations of the 1 7! 2
electron charging energy, dependent on the position of the second donor (grey filled circle
or red cross), from the first (black filled circle). The experimental values of the charging
energies for the L and right dot on device B016 are 84 ± 11meV and 98 ± 9meV. These
values are compatible with the second donor positions indicated by the green and blue con-
tours respectively. c) and d) Estimated incorporation position of the two donors,
based on the measured charging energies, overlaid over the STM image after phosphine
dosing, for the left and right dot respectively. Note that we consider only one of the four
equivalent positions of the first donor (red cross) at the four corner of the lithographic
patch. The tight binding simulations were performed by Abu Mohammad Sa↵at-Ee Huq
from Professor Rajib Rahman’s group.
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is encapsulated with epitaxial silicon at 250�C with a growth rate of 1 monolayer

(ML) per minute (⇠ 0.135 nm/min). During encapsulation, the phosphorus donors

will move from a surface location to a position in the 3D crystal. In addition, the

phosphorus atoms can migrate up with the growth-front in a process called segrega-

tion. This process is however highly suppressed in our fabrication process due to the

very low growth temperature chosen [30]. The probability of a phosphorus dopant

from a highly delta-doped layer in silicon to segregate with our chosen growth-

parameters has been estimated by McKibbin et al. to follow an exponential decay

with a constant lseg ⇡ 0.81 nm = 6ML called the segregation length [31], resulting

in a 50% probability of the donor to segregate beyond 5ML. The segregation length

of dopants in lower doped regions whilst not well known, is estimated to be much

smaller than that of a highly delta-doped layer. In Fig. 5.9, we display the NEMO

simulated charging energies for a 2P quantum dot, with the explicit assumption

that the donors have not segregated by more than one ML (1ML = 1/4 unit cell).

The left donor-quantum dot lithographic patch shown in Fig. 5.9 c showed four PH2

molecules evenly arranged across four dimers after phosphine dosing. The mea-

sured charging energy of 84± 11meV is compatible with 6 possible locations of the

donors within the lithographic patch and two ML of growth (see green contour in

Fig. 5.9 b). The position of the second donor is within a distance of two and three

dimers from the first dimer (filled black circle) and, is consistent with the 0.25ML

coverage observed for delta-doped layers [16]. Indeed, the 0.25ML coverage implies

that one donor is incorporated for every two silicon-dimers. For the left dot, if we

assume the first donor is shown by position A1 in Fig. 5.9 b, the second donor will

likely incorporate within the green area shown giving charging energies of between

75.7 meV (D1+) to 89 meV (C2). Here the values of the charging energies are com-

patible with the experimentally measured value of 84±11 meV. The charging energy

of the right dot qubit 98 ± 9meV is larger than the one for the left dot, indicating

that the two donors are indeed positioned closer to each other within the lattice.

The measured charging energy is more compatible with simulated charging energies

corresponding to the two donors being only two dimers apart, with a possibility of

the dimers being displaced vertically by one ML. This is consistent with the sce-

nario where the first donor is given by position A1 and the second donor will likely

incorporate in the blue patch (see Fig. 5.9 d) giving charging energies between 89

meV (C2) and 106 meV (B2+).

The above atomistic study of the charging energies strongly suggests that the

middle ancilla qubit is a 3P or 4P donor dot, and that the outer data qubits are 2P
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Figure 5.10: Dot-SET tunnel rates. At the transitions near the (1, 3, 1) charge state of
interest.

quantum dots. Under the assumption that donor segregation is limited to <1ML,

matching of the measured charging energies with tight binding simulations suggests

that for both 2P dots the donor configurations are laterally constrained within the

lithographic patches, and confirms that donor di↵usion during growth at these low

temperatures (250�C) is minimal.

5.1.5 Demonstration of single-shot spin readout

STM image analysis along with electrostatic device characteristics have confirmed

that the device was patterned accurately according to the design specifications.

Specifically we were able to engineer the (1,3,1) all-odd charge state, demonstrating

independent electrostatic control over the quantum dot chemical potentials, and

achieve donor numbers compatible with device specifications. To determine whether

this device can now perform 2 qubit gates between each of the ancilla-data qubits,

we first need to ensure we can readout each quantum dot qubit (ancilla or data).

Here the di↵erent quantum dots have di↵erent distances to the SET reservoir and

given the di↵erent donor number and electron number it is important to establish

we have the correct tunnel rate for high fidelity readout. In the next section we will

demonstrate single shot spin readout on the left quantum dot with a fidelity of 83%

fidelity.
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Dot-SET tunnel rates

As indicated, the tunnel-rates of the donor-bound electron spins to the SET reser-

voir, are critical in determining the achievable spin-readout fidelity. For slower

tunnel-events more averaging is needed on the signal received from the SET. Av-

eraging reduces the noise amplitude contained in the data, and thus increases the

readout fidelity. For high performance SETs such as the one by Keith et al. in

ref. [12], tunnel-rates of up to 1MHz were measured with high fidelity. The tunnel

rates of the left, middle and right transitions bounding the (1, 3, 1) region are mea-

sured to be 15 kHz, 100 kHz and 300 kHz respectively, all below the maximal value

of 1MHz that allows for high-fidelity spin readout according to Keith et al.
4 A high-

performance SET would thus allow high fidelity readout on all three transitions. In

this respect, the distances of the dots to the reservoir in this device are close to ideal

for the donor numbers and electron numbers in the device.

Single shot electron spin readout

Single shot electron spin-readout can be performed by energy-selective tunnelling

of Zeeman-split spin states to a reservoir, when the dot is electrostatically tuned

in such a way that the chemical potential of the more energetic up-state is above

the reservoir’s Fermi energy, while the chemical potential of the down-state is below

it [32]. In such a configuration, if the electron spin is in a spin-down state, its chem-

ical potential is below the Fermi-energy, and —provided the electron temperature

of the Fermi-sea is low enough— there are no empty states in the Fermi-sea for it to

occupy, and no tunnelling to the reservoir is possible (see Fig. 5.11d)3-5). If the elec-

tron is in the spin-up state however, its chemical potential is above the Fermi-energy,

so that it has enough energy to populate an empty state in the reservoir’s Fermi-

sea, and the electron tunnels-out to the reservoir. Subsequently, because the dot is

not occupied anymore, a spin-down electron with energy close to the Fermi-energy

has su�cient energy to populate the electron spin-down state on the quantum dot.

In summary, if the electron spin up was up, exactly two tunnel-events occur: the

electron tunnels out from the dot, and another electron tunnel back in as seen in

the 3 blips in Fig. 5.11d. If the electron spin was in the down-state, no tunnelling

event occurs as sketched in panel three of Fig. 5.11d.

The electrostatic tuning of the quantum-dot’s energy levels allows us to perform

4The two tunnel rates above 100 kHz are measured at a larger source -drain bias of 3mV which
raises the electron temperatures but is not expected to have a large influence on the tunnel-rate
measurement that is performed at the centre of the Fermi-distribution.
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Figure 5.11: Single shot spin readout of first electron on the left dot.
a) Left dot SET break. This gate-gate map shows the voltage region at which spin
readout is operated. The plot shows the RF in-phase quadrature signal RFI as a function
of the relative left and right gate voltage. The left donor charge transition is indicated
by the white dashed line, and corresponds to the gate voltages at which one electron
loads onto the left donor. b) Three locations in the gate map are highlighted by coloured
circles, and correspond to the three levels of the spin readout pulse sequence represented
schematically for the left gate voltage. The green, purple and green circles correspond to
the “Load”, “Read” and “Empty” stages of the pulse sequence.
c) Spin tail measurement. The RFI signal recorded as a function of time during the
duration of the three pulses described in a) and b), for di↵erent detuning positions (read
levels) of the “Read” pulse, across the SET break. Each trace is an average of 10 thousand
time traces, examples of which are displayed in the rightmost column of figure d). The
bright peak at the beginning of the read phase, for read levels from 2 to 5mV is called a
spin tail, and corresponds to the situation depicted in figure(3), where the reservoir Fermi
energy sits in between the Zeeman split spin levels.
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an experiment called a spin-tail. We undertake this experiment at the (0, 3, 0) !
(1, 3, 0) transition of the left dot, where we have a tunnel-rate of 15 kHz at the Fermi-

energy (see Fig. 5.11a-c). The single shot spin readout is performed at a break in the

SET charging-lines, produced by the charge transition (see closeup of the gate-gate

map in Fig. 5.11a). When the gate voltages are tuned to a position on the SET

peak (see red dot in Fig. 5.11a), the presence(absence) of a single electron charge on

the quantum dot brings the SET in and out of Coulomb blockade completely. The

SET signal level therefore allows the detection of single electron tunnelling events

based on the spin state of the electron.

The spin-readout experiment consists of measuring the SET signal while execut-

ing repetitions of the following sequence. First, in the “load” phase an electron is

loaded onto the quantum dot by pulsing the voltages in the (1, 3, 0)-region (green dot

in Fig. 5.11a). Then, the chemical potential of the dot is brought close to the Fermi-

level of the reservoir by pulsing to the vicinity of the SET break (“read” phase).

Depending on the exact position of the so-called read-level, tunnelling events may

occur (purple dot in Fig. 5.11a). Finally the quantum dot is emptied by pulsing into

the (0, 3, 0) charge-stable region (“empty” phase). This lowers the electrons chem-

ical potential below the Fermi-level of the reservoir and results in any electron on

the quantum dot tunnelling out to the reservoir. In the spin-tail experiment, many

repetitions of this procedure are performed for each read-level position crossing the

charge break from the (0, 3, 0) charge state (negative read level) to the (1, 3, 0) charge

state (positive read level). The average of the SET signal over 10,000 time-traces is

displayed in the measurement of Fig. 5.11c. In the second phase of the “read” se-

quence of the pulse, the SET signal changes from yellow to blue as the read position

is tuned from above to below the Fermi level. The current profile describes a Fermi

distribution as the density of states in the Fermi-reservoir is being sampled by the

dot state. The light blue region at the beginning of the read phase that extends well

into the high detuning region (in blue) is a marker of a spin-up state tunnelling out

from the dot, thereby changing the charge state to (0,3,1) and putting the SET into

resonance (high signal, in yellow). An electron then tunnels back in from the reser-

voir putting the SET back in to blockade (low signal, in blue). Additional features

in the spin tail are illustrated in Fig. 5.11d.

The presence of a spin-tail confirms that the charge numbering of the left dot

is odd. Otherwise no tail would be observed. We can calculate the spin readout

fidelity at a position between positions 3) and 4) is 83%. The fidelity is calculated

according to the process described in [29] using code provided by Samuel Gorman.
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The fidelity estimation relies on the measurement of the tunnel times of spin-up and

spin-down electron, together with the electrical readout parameters (e.g. signal-to-

noise ratio, sampling rate, filter bandwidth). More details on the calculation can

be found in Sect. 5.2.2. Unfortunately the tunnel rates of the right (300 kHz) and

middle-dot (100 kHz) charge transitions surrounding the (1, 3, 1) charge-stable state

were too fast to allow for spin-readout with the measurement bandwidth allowed by

the SET charge sensor.

5.1.6 Importance of the SET on/o↵ ratio

Spin-readout of a donor-bound electron, through spin-selective tunnelling of the elec-

tron is reliant upon detecting tunnelling-events of electrons o↵ and on the quantum-

dots. These tunnelling events corresponds to the quantum dot gaining and losing

one electron-charge, and can thus be detected by a charge sensor such as the SET

patterned ⇠ 17 nm below the three quantum dots in this triple-dot device (see

Fig. 5.12a). High-fidelity spin-readout of electron spins relies on two main factors.

First, the temperature of electrons within the Fermi-sea of the reservoir used for

the readout must be larger than the Zeeman splitting (typically at most 1.5T) to

allow for microwave manipulations through ESR pulses. Second, the SET must

display a large change in conductivity between the Coulomb-blockaded regime and

the conductive regime, allowing maximum contrast in the signal measured through

either DC or RF measurements. For the device investigated here, the SET island

serves not only as the charge sensor but also as the electron reservoir. Therefore,

good readout relies on the SET being conductive without leading to heating of the

electrons within the reservoir, and an associated reduction in the fidelity of the

readout.

The conductivity of the SET is related to the width of the two tunnel-gaps sep-

arating the island from the source and drain leads (see close-up STM images of the

gaps in Fig. 5.12b and c). The original device specification in the STM control soft-

ware was to pattern the tunnel-gaps 8 nm long, with leads 4 nm in width, leading to

a 2:1 aspect ratio previously known to be associated with high conductivities. An

image of the SET patterned in the device is presented in Fig. 5.12a. The image has

been de-skewed by correcting for the periodicity of the crystal lattice and for drift of

the STM tip during the image acquisition. The de-skewing reveals that drift of the

piezoactuators of the STM was significant, and inadvertently lengthened the size of

the left gap, while widening the lead-width on the right gap. This drift has resulted

in sub-optimal aspect ratios of 2.36 and 1.4 for the left and right gaps respectively.
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Figure 5.12: Performance of the SET charge sensor.
a) STM image of SET island and its associated tunnel gaps. Two tunnel-gaps
are visible on the left and right, connecting the SET island to the source and drain lead.
The image has been de-skewed by analysing the periodicity of the crystal lattice and
correcting for drift of the STM tip during the image acquisition. The lithographic pattern
is significantly distorted due to drift. b) and c) Closeup images of the left and right
tunnel gaps, showing gaps of 4.2±2 nm x 9.9 nm and 5.7±0.3 nm x 8 nm with aspect
ratio of 2.36 and 1.4 respectively.
d) Coulomb diamond measurement of the SET. SET conductance G as a function
of the SD-bias VSD and right gate voltage VR. The black parallelograms running along the
line VSD = 0 regions indicate voltage configurations at which no current is flowing through
the transistor, also called Coulomb diamonds. We can immediately see the diamonds are
not symmetric and this is a sign of the asymmetric tunnel gaps either side of the SET
island. The bright stripes parallel to the sides of the Coulomb diamonds are characteristic
of low conductance SETs, and result from parallel conductance through excited SET
charge states. e) SET resistive of 46M⌦. A line cut of the Coulomb diamond at
VR = 0.85V, where the current reaches 85 pA at 3mV source-drain bias, with a resistance
at zero bias of 46M⌦. f) Electron temperature measurement. A plot of the electron
temperature, TE as a function of the mixing chamber temperature.
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The size of the left gap would lead to an SET with a large zero-bias resistance of

R = 46M⌦, three orders of magnitude larger than the optimal SET resistance,

which is given by 2RK = 2h/e2 = 2 ⇥ 25.8 k⌦ = 51.6 k⌦ [12], (see Fig. 5.12d and

e).5 As a consequence of this for a source-drain bias of 1mV the current flowing

through the SET only reached ⇠ 35 pA and order of magnitude lower than ideal.

The high SET resistance (R = 46M⌦) in the measured device therefore translates

into significant heating of the SET, as confirmed by a measurement of the electron

temperature of about 420mK, at a source-drain bias of 1mV (see Fig. 5.12f). The

estimate of the electron temperature arises from measurements of the width of the

Fermi-distribution in the reservoir, that is proportional to the electron tempera-

ture. By increasing the sample temperature, the electron temperature is identified

as the sample-temperature at which the measured width of the Fermi-edge starts

increasing (see Fig. 5.12f). The measured electron temperature is 8 times larger

than the temperature of the mixing chamber of the dilution refrigerator at which

the sample is located, and about twice that of state-of-the-art measurement on sim-

ilar devices [12]. The electron temperature is however five times lower than the

temperature associated with the Zeeman splitting of the spin-states at the magnetic

field of 1.5T, such that spin readout is still possible if the electron tunnel-rates are

slow enough for the measurement bandwidth allowed by the SET.6

In summary, after analysis it was determined that the SET patterned on this first

triple-dot device, was patterned with sub-optimal tunnel-gaps due to unexpected

drift of the STM tip during patterning. As a result, the SET was highly resistive

and limited the ability to readout all three quantum dots. The left dot did however

have a low enough tunnel rate to perform single shot readout with 86% fidelity.

5.1.7 Conclusion

In this section, we introduced a triple dot device-design optimised to allow for in-

dependent control, initialisation and readout of three electron/nuclear spin qubits,

as well as coupling of two of the electron spin qubit pairs using exchange-based

gates. This design optimised the device geometry and the number of donors in each

quantum dot to allow full electrostatic control for two qubit gates between a central

ancilla qubit and two data qubits.

5The SET in ref. [12] has a zero-bias resistance of 100 k⌦ and demonstrated large signal to noise
ratios (SNR=13) for electron tunnelling, with a very large measurement bandwidth of 1MHz.

6Operation of electron spin qubits at 1.5T stem from the fact that the microwave pulses needed
for ESR at such magnetic fields are bout 42GHz at the limit of what commercially available
state-of-the-art microwave generators can provide with su�cient power.)
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Measurement of a first device, B016 utilising this design in a dilution refrigerator

confirmed that the chosen geometry and donor numbers fulfilled the original design

requirements with tunable independent electrostatic control of the charge state of

three unpaired electron spins. Furthermore, the donor configurations within the

two-donor quantum dots was estimated by comparing measurements of the quantum

dot charging energies to recently modelled tight binding simulations. The resulting

donor configurations were found to be compatible with high quality STM images of

the arrangement of phosphine species adsorbed in each quantum dot before incor-

poration. This supports the hypothesis that sideways di↵usion and segregation of

phosphorus donor is negligible during growth of the silicon encapsulation layer7.

The tunnel rates of all three unpaired electrons on the left, middle and right dots

were shown to fall within the range for high fidelity spin readout. We demonstrated

spin readout of the electron on the left 2P donor-quantum dot with 83% fidelity.

Unexpected variations in the dimensions of the SET charge sensor due to drift in

patterning in SET with the STM piezoactuators were found to limit on-o↵ ratio of

SET and prevented electron spin readout on charge transitions with a faster tunnel

rate (>15 kHz) as observed on the middle and right quantum dots. The variations

in the SET dimensions were attributed to drift of the STM tip during patterning

and strategies to mitigate such variations are presented in Sect. 5.2.1.

5.2 Electron spin resonance on a triple-dot device

This section describes measurements of a second triple-dot device, Bron037 of similar

design to that presented in Sect. 5.1. Changes in the design of the SET charge sensor

were performed to improve its reliability. The design changes are shown to yield are

marked improvement in the charge sensor contrast, and in the spin readout fidelity,

from 83% in the previous device to 94.4% in the device presented here. Electron

spin resonance by adiabatic inversion is then demonstrated and used to perform

spectroscopic measurement of the hyperfine interaction of the electron with the

phosphorus nuclei of the quantum-dot donors. The measured hyperfine interaction

strength are used to perform metrology of the actual configuration of the donors

within the quantum dot and reveal a hyperfine Stark shift larger than previously

reported in phosphorus donors. The anomalously large hyperfine Stark e↵ect is

attributed to the exact orientation of the donor molecule within the silicon lattice.

The device presented in this section was fabricated by fellow PhD student Michael

7under the assumption of low vertical segregation.
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Jones and myself, with help and supervision from Dr. Yousun Chung. The RF-

readout and pulsing setup was established by this author and the ESR setup was

initiated by us both with help from Dr. Pascal Macha. Electron spin resonance

spectra were measured by all three of us with the tight binding simulations per-

formed in collaboration with Md Serajum Monir from Prof Rajib Rahman’s group.

The results on donor metrology are presented in the thesis of Michael Jones [7] and

repeated here to enable the understanding of the following section which presents

nuclear spin results on the same device that are unique to this thesis.

5.2.1 STM fabrication

Limitations in the reliability of the SET charge sensor described in Sect. 5.1 were

overcome by new fabrication strategies described briefly here. Drift of the STM tip

during patterning was identified as the principle cause for the low conductivity of the

SET described in the previous section. STM tip drift is due to hysteresis in the re-

sponse of the piezoelectric actuators to the voltages used to move the tip. It typically

takes tens of seconds for transient tip displacements to settle after large or fast tip

movements associated with patterning of the larger structures or when imaging large

areas. In particular, the low conductivity SET of Sect. 5.1 was patterned in only two

lithographic steps, the second of which (blue structure in Fig. 5.13 a) is 100 nm wide

but requires sub-nanometer precision lithography of the tunnel-gaps. Furthermore,

the tunnel gaps in the previous design were not aligned with the underlying silicon

dimers. This misalignment reduces the quality of the lithographic edges, due to the

atomic nature of the lithographic mask. An improved SET fabrication strategy was

developed for the device presented in this section which mitigates both e↵ects by

aligning the tunnel gaps to the silicon dimer lattice, and by separately patterning

the tunnel gaps (see Fig. 5.13b). After patterning the main body of the SET island

(2), a waiting period is introduced to allow for STM tip drift to settle. Each tunnel

gap can then be carefully aligned to the silicon lattice and patterned. Furthermore,

the lithographic patches not connected to the SET island have been shortened so

that, if the dimensions of one tunnel gap are not within tolerances, the gap can be

patterned again without increasing the size of the SET island significantly.

The patterning precision of the device was further improved by continually cor-

recting distortions of the STM images due to STM-tip drift. Correcting distortions

is crucial when calibrating the tunnel-gap distances and when assessing the correct

dimensions of the SET patterned on the actual device. The correction process relies

on transforming the image so as to match the known periodicity of the silicon-dimer
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rows (ddr = 0.768 nm). The coordinate transformation matrix is found by taking

a discrete Fourier transform of the distorted image. Four peaks in the Fourier-

transformed image are identified as two pairs of distorted k vectors ±k1 and ±k2,

each pair corresponding to the two perpendicular silicon dimer-row orientations. A

linear transformation matrix M is then found that transforms k1 and k2 onto the

known k-vectors ±k0
1 and ±k0

2, oriented along the four corners of a square, and with

a norm constrained to the dimer row periodicity |k0
i
| = 2⇡/ddr. The transforma-

tion is found by solving the system of equations Mki = k0
i
, and usually yields a

unique solution M . The coordinate transform of the STM image is then simply the

transposed inverse of M : M�t.

The dimensions of the SET gap in the new design were further optimised across

several devices. The trend across the devices suggests that for a lead width of about

9 dimer rows (6.9 nm), a tunnel-gap distance of 15 dimer rows (11.5 nm, aspect ratio

0.6) should yield near optimal SET resistances of ⇡ 100 k⌦, just above two quanta

of resistance (⇡ 52 k⌦). A full account and analysis of the SET optimisation process

can be found in the PhD thesis of collaborator Michael Jones ([7]).

The improved SET fabrication techniques described above were used to fabricate

device BRON037 which is the focus of the remainder of this chapter. The fabrication

methods are described in Sect. 2.3. Besides changes to the SET and of the dot

distances, the device design is the same as that of device B016 (or BRON016)

presented in the previous section Sect. 5.1. The device consists of three quantum

dots (L, M and R), tunnel-coupled to the SET charge sensor (see Fig. 5.14b). Three

electrostatic gates (L, M and R) control the electrostatic potential of the three

quantum dots (see Fig. 5.14b). The single electron transistor (SET) consists of a

source (S) and a drain (D) contact, that are used to pass a current through the SET

island. An SET gate is used to control the electrostatic potential of the SET island.

The dot-reservoir distances were increased by about 1 nm, from 17 � 18 nm on

B016 to 18 � 19 nm on BRON037. This slight increase in the distance is aimed at

reducing the dot-SET tunnel rates from ⇡ 100 kHz down to ⇡ 10 kHz. This decrease

in the tunnel rate will allow additional noise filtering to boost the signal-to-noise

ratio of the charge sensor, but does not slow down experiments too significantly.

A closeup STM image of three donor quantum dots after phosphine dosing reveals

phosphine species adsorbed to all three lithographic openings (see Fig. 5.14c). A

closeup of the right donor-quantum dot, that will be in focus of the remainder of

this chapter, reveals three possible PH2 species adsorbed to the surface (green circles

in Fig. 5.14d, and one PH species (green-dotted circle). As such, we would expect
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a maximum number of 2 phosphorus donor atoms within this quantum dot. The

four dimers hosting the phosphine species are highlighted as green rectangles in the

figure. Closeup images of the tunnel gaps of the SET charge sensor show tunnel gap

lengths of 11.7 nm and 11.4 nm for the left and right gap respectively, both within

0.2 nm of the desired length of 11.5 nm. The aspect ratio of the left(right) tunnel

gap is 0.53(0.58), within 12(3) % of the desired value of 0.6 (see Fig. 5.14e).

5.2.2 Demonstration of single-shot spin readout

Device BRON037 was cooled down to sub-50mK temperatures in a Leiden pulse-

tube dilution refrigerator. The charge sensor can be operated in direct current (DC)

and radio frequency (RF) mode. In both cases, a voltage bias of 500-600 µV was

applied to the source and drain leads of the SET using a battery powered voltage

source. The DC current flowing through the SET was amplified before digitisation

by a FEMTO DLPCA-200 trans-impedance amplifier. For RF-readout, a resonant

circuit on the device PCB was connected to the drain lead of the SET. The reso-

nance frequency that is shifted by the state of the SET (Coulomb blockaded or not)

is monitored using an RF signal generator (⇡ 240MHz) and an IQ demodulation

circuit. The demodulated quadratures of the signal are digitised using an ALAZAR

ATSS9440 analog to digital converter (see Fig. 2.14). The electrostatic potential

of the quantum dots is controlled using voltage sources connected to all four gates

(L,M, R and SETG). Fast pulses are applied on two of the gates by an arbitrary

wave form generator (see Fig. 2.15). The full experimental setup is presented in

more details in Sect. 2.4. A gate-gate map of the device, in which the left and mid-

dle gate voltages are swept across a two dimensional parameter space, reveal three

quantum dot transition lines (see Fig. 5.15)8. The transition lines appear as breaks

in the regular pattern of SET charging lines (yellow lines in Fig. 5.15). The two

transitions at lower gate voltages (M1 and M2 in Fig. 5.15), display the same slope,

that is distinct from that of the higher transitions (R1 in Fig. 5.15). Electrostatic

triangulation using the COMSOL finite element solver confirms that the first two

transitions (M1 and M2) correspond to charging events on the middle dot, while the

third transition (R1) correspond to the first electron charge transition on the right

dot. The electrostatic triangulation relies on matching the experimentally measured

ratios of gate-to-dot capacitive couplings (lever arms) to electrostatic simulations.

The capacitive-coupling ratios are obtained from the measured slope of the tran-

sition lines in gate-gate maps using di↵erent pairs of electrostatic gates. For the

8more charge transitions appear at higher voltages.
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triangulation of the right dot for example, the L-M, L-SET and SET-M gate pairs

each yield a one dimensional line in the lithographic plane on which the measured

capacitive coupling ratio matches the simulated one. If the transitions correspond

to the same quantum dot in the lithographic plane, all lines cross in a singular point

corresponding to the quantum dot position (see yellow lines crossing in the inset of

Fig. 5.15).

Only two sets of transition lines triangulating to the middle and right quantum

dot, respectively could be found in the available parameter space, indicating that

the left lithographic patch did not incorporate any phosphorus donors. This is

consistent with the PHx species existing on di↵erent dimer rows and therefore unable

to incorporate.

In the gate-gate map in Fig. 5.15 the quantum dot charging events are recorded

by the SET charge sensor operated in DC mode, with a Source–Drain (SD) voltage

bias of 500µV. When the SET changes from its Coulomb-blockaded state (< 50 pA

current) to its conductive state, the current contrast reaches ⇡ 450 pA. This is

in stark contrast with the SET charge sensor studied in Sect. 5.1, where a larger

source–drain bias of 1mV yielded only 35 pA current contrast and highlights the

benefits of our new SET design.

In the remainder of this chapter, we focus on the first electron transition on

the right donor quantum dot (transition R1 in Fig. 5.15). Spin readout on the right

donor quantum dot is performed by applying a static magnetic field of B0 = 1.4T, in

a direction parallel to the lithographic plane. The magnetic field splits the electron

spin-up and spin-down states with an energy di↵erence of EZ = �eB0h, where �e =

28GHz/T is the electron gyromagnetic ratio. The spin of the electron can be read

out by adjusting the electrostatic potential of the quantum dot so that the chemical

potential of the spin-up state is above the Fermi level of the electron reservoir, while

that of the spin-down electron is below it [32]. With such a configuration of the

chemical potentials, the spin-up electron tunnels out of the quantum dot after a

characteristic time t"out while the electron spin-down tunnels out over a much larger

time scale t#out, because not enough empty states are available in the reservoir below

the Fermi energy. The electron spin state can therefore be inferred from the presence

or absence of a tunnelling event, as first demonstrated by Elzerman et al. [32]. The

fidelity of the spin readout hinges on the correct detection and attribution of the

tunnelling event (or non-event) to a spin spin-up (spin-down) electron. First, the

correct detection of a tunnelling event (regardless of the spin state) relies on a large

signal-to-noise ratio of the charge sensor, and on the resulting bandwidth of the
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charge detector being larger than the characteristic tunnel rates of the transition.

The fidelity of this tunnel-event detection can be characterised by the electrical

visibility VEV as proposed in [29]. Second, the correct assignment of a tunnelling

event (non-event) to a spin-up (spin-down) electron, requires the characteristic time

t#out it takes for spin-down electron to tunnel out to be much larger than that of the

spin up electron, so that if an electron tunnels out of the dot, it can be attributed to a

spin-up with a high degree of certainty. Maximising t#out without increasing t
"
out relies

on being able to tune the spin-down state as far below the temperature-widened part

of the Fermi distribution as possible while keeping the spin-up level above it. This

can be achieved by increasing the Zeeman splitting EZ between the spin states and

reducing the electron temperature Te in the reservoir which determines the width

of the Fermi distribution. Indeed, the ratio of t#out/t
"
out is equal to the Boltzmann

factor exp
⇣

EZ
2kBTe

⌘
, where kB is the Boltzmann constant [29]. The fidelity of correctly

assigning a tunnelling event (or non-event) to a spin-up (spin-down) electron can is

characterised by a spin-to-charge conversion visibility VSC [29]. Finally, the fidelity

F of the full spin readout process is characterised by F = VSC+VEV
2 .

The fidelity of the readout on the right dot transition R1 in Fig. 5.15 is performed

using the process detailed in [29] and the code provided by Dr. Samuel Gorman.

The optimal electrostatic tuning of the chemical potential (the “read level”) is found

by performing an analysis on a range of read levels in a spin tail experiment (see

Fig. 5.16a). We obtain a spin readout fidelity of 94.4% at a read level of �4mV

(red line in Fig. 5.16a). The fidelity value is maximised by optimising the electrical

visibility VEV and the spin-to-charge visibility VSC in a process described below.

The electrical and spin-to-charge visibility both depend on the tunnel times of

the spin-up and spin-down states. The tunnel times t#out = 11.3ms and t"out = 247µs

are found by fitting a bi-exponential distribution to a histogram of the tunnel-out

times. When the two tunnel times are su�ciently di↵erent, the fit can be made

with low uncertainties. Similarly, the characteristic time t#in = 52.7µs for a spin-

down electron to tunnel onto the quantum dot is found by fitting an exponential

distribution to a histogram of the tunnel-in times.

The electrical visibility is first optimised by maximising the SNR of the charge

detector. A SNR of 10.4 for the RF-readout is achieved by using a room temperature

attenuation of the RF signal of 39 dB9 and a source–drain bias of 600 µV at a low-

pass filter bandwidth of 500 kHz10(see Fig. 5.16c). All of the signal is shifted in one

of the quadratures RFQ of the RF signal by slightly tuning the RF carrier frequency.

9The attenuator is item 10 in Fig. 2.14
10The filter is item 1 in Fig. 2.14
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Figure 5.16: Spin readout on transition R1. a) Spin tail experiment. An electron
is repeatedly loaded, read and emptied from the 2P molecule. Blue(yellow) regions cor-
respond to the presence(absence) of an electron on the molecule. The pulse sequence is
repeated 1000 times for read levels scanning across the Fermi edge. The optimal read
level is found at �4mV. b) Two readout traces at a read level of �4mV. The blue trace

corresponds to a spin " tunnelling out of the quantum dot after a time t"out, and a spin #
tunnelling back in from the reservoir after a time t#in (see inset). The red trace corresponds
to a spin # staying on the quantum dot throughout the read phase. c) Histogram of the
electrical signal for all 1000 traces like in b). The high(low) level, corresponding to the
absence(presence) of an electron on the quantum dot are well separated (with SNR=10.4).
d) Electrical visibility VEV as a function of the threshold voltage used to detect a tun-
nelling event. The maximum VEV = 98.8% is reached for a threshold Vthr = �30.5mV.
d) Spin-to-charge conversion fidelity VSC as a function of the tunnelling detection time-
window tRO. A maximum VSC = 89.8% is reached for tRO = 0.97ms. Together, VSC and
VEV yield a spin-readout fidelity F = 94.4%.

252



Time resolved measurement of the RF quadrature RFQ during electron tunnelling

events, allows us to clearly distinguish tunnelling events (red trace in Fig. 5.16)

from the absence of tunnelling events (blue trace in Fig. 5.16). A tunnelling event is

detected by monitoring when the RF signal exceeds a detection threshold Vthr. The

optimal threshold is found by calculating the electrical visibility across a range of

threshold values (see Fig. 5.16d), and yields an optimal electrical visibility of 98.8%.

The spin-to-charge visibility is calculated based on the measured tunnel times

and depends on the time tRO during which tunnel events are monitored (see Fig. 5.16b

and e). An optimal spin-to-charge fidelity of 89.8% was found for a readout time-

window tRO = 1.0ms (see Fig. 5.16e). By using the optimal read-level, RF signal

threshold and readout window, a total spin-readout fidelity of 94.4% was achieved.

The increase in the fidelity compared to the device studied in Sect. 5.1 (F = 83%),

is attributed to an increase in the electrical visibility due to the higher RF signal

contrast and to an increase in the spin-to-charge visibility due to the decreased elec-

tron temperature (250mK instead of 400mK). Both increases in the visibility are

linked to the higher conductivity of the optimised SET charge sensor.

5.2.3 ESR spectrum of a 2P molecule

The electron spin on the right quantum dot can be manipulated using a magnetic

field B1, perpendicular to the static magnetic field B0 and oscillating with a mi-

crowave drive frequency !d equal the instantaneous Larmor frequency !L of the

electron. The oscillating magnetic field is applied using an antenna patterned above

the device. The antenna is fabricated as an aluminium coplanar waveguide with a

short near the location of the device. The short consists in a 1µm long aluminium

bridge, with a cross-section of 100 ⇥ 100 nm. This narrow cross-section results in

large current densities traversing the antenna bridge when a voltage is applied to it,

producing a magnetic field oriented tangentially to the bridge. The coplanar waveg-

uide leading to the antenna bridge minimises losses of the high frequency microwave

signals.

In the frame rotating with the Larmor precession of the electron, the spin is

described by the two-level Hamiltonian H = �! · �z + �eB1/2 · �x, where �! =

!L �!d is the detuning between the Larmor and drive frequency. The electron spin

can be manipulated by exactly matching the drive frequency to the instantaneous

Larmor frequency of the electron, because the �z term vanishes, and free precession

of the spin around the axis defined by the B1 field occurs. This allows full two-axis

control of the electron spin. In natural silicon, 29Si isotopes with a nuclear spin 1/2
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Figure 5.17: Electron spin resonance on a 2P quantum dot. a) The ESR spectrum
is measured on the rightmost dot of the device by repeatedly loading an electron spin-
down (“initialisation”), applying a microwave pulse at a frequency freq (“µwave pulse”),
reading out the electron spin state (“Read”) and finally unloading the electron (“Empty”).
If the microwave frequency matches the Larmor frequency of the electron spin, a spin up
(high RFQ response) is recorded in the readout phase. The experiment is performed
consecutively across 130 frequencies, and repeated a thousand times. Averaging the spin
up counts over the entire experiment yields the ESR spectrum in b). Four resonances are
visible and indicate that the electron is bound to a quantum dot formed by two phosphorus
donors (2P), with a hyperfine coupling of A1 = 189 ± 5MHz and A2 = 83 ± 5MHz to
the first and second donor. The hyperfine di↵erence �A = A1 � A2 = 106 ± 5MHz is
indicative of a hyperfine Stark shift. c) Schematic energy level of a 2P donor quantum
dot for A1 6= A2, and �nB < Ai < �eB, as is observed in the spectrum in b). The four
resonances can be attributed to the ++, +*, *+ and ** nuclear spin states shifting the
electron spin’s resonance frequency due to the hyperfine interaction. d) Linear shift of
the ESR resonance frequency with magnetic field. A linear fit using gµBB/h, yields a
g-factor of 1.995 ± 0.001 consistent with the value measure in [4] on another 2P donor
quantum dot. The peak spacing does not shift appreciably with magnetic field (see inset),
consistent with a peak splitting due to the hyperfine interaction, that is independent of
magnetic field. 254



produce a fluctuating magnetic field that shifts the instantaneous Larmor frequency

of the electron in time, and render high fidelity spin control using resonant driving

challenging [33, 34]. In such cases the electron spin can be flipped with higher fidelity

using adiabatic inversion [35]. Adiabatic inversion can be understood by considering

that the Hamiltonian H describes an energy anti-crossing with energy gap �eB1 and

energy detuning �! (both in units of frequency). In this framework, the electron

spin can be inverted by adiabatically traversing the anti-crossing. In practice this

is achieved by sweeping the frequency of the microwave drive across the expected

average Larmor frequency of the electron. If the rate of change in the frequency is

slow enough compared to �eB1, the electron spin can inverted with high fidelity [35].

We measure the electron spin resonance (ESR) spectrum of the first electron

on the right dot by repeatedly attempting adiabatic inversions of the electron spin

across a range of ESR frequencies centred around the expected Larmor frequency

�eB0 of the electron. In practice, this is performed by repeatedly performing the

following sequence. First the electron is initialised in the spin-down state (“initial-

isation” in Fig. 5.17a), then the electron spin is flipped using adiabatic inversion

(“µ-wave pulse”). The electron spin state is then read-out using the parameters

described in Sect. 5.2.2 (“Read”), and finally the quantum dot is emptied of any

electron (“Empty”). This pulse sequence is performed a each time for 130 frequency

points across the frequency range to make sure that the instantaneous Larmor fre-

quency of the electron is matched for every frequency sweep with high probability.

The time-resolved charge sensor signal throughout such a frequency sweep is shown

in Fig. 5.17a. Each frequency sweep is repeated a thousand times, and the electron

spin-up proportion measured at each frequency is calculated to obtain the spectrum

of Fig. 5.17b. The adiabatic spin inversion is performed with a microwave burst

covering a frequency range of 40MHz over a duration of 200 µs. The microwave

burst is applied while the chemical potential of both spin states are plunged deep

below the Fermi level to prevent spurious tunnelling of the electron spin.

The ESR spectrum in Fig. 5.17b displays four peaks, with the first two and the

last two forming a doublets separated by a frequency A2 = 83 ± 5MHz, and the

two doublet being split by a frequency A1 = 189± 5MHz. The four observed shifts

in the electron Larmor frequency can be explained by the contact hyperfine inter-

action of the electron with two phosphorus nuclear spin, each hyperfine interaction

with strength A1 and A2. Indeed, the hyperfine interaction term in the Hamilto-

nian describing an electron spin ~s coupled to two spin-1/2 nuclei ~i1 and ~i2 with

respective hyperfine interaction strengths A1 and A2 is given by A1~s · ~i1 + A2~s · ~i2.
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For each of the two electron-spin states, the hyperfine term yields four energy

shifts for the four possible nuclear spin configurations {| ++i, | +*i, | *+i, | **i}
(see Fig. 5.17c). The eight states are compatible with four possible ESR transi-

tion frequencies {f++, f+*, f*+, f**} that replicate the peak spacings observed in the

spectrum of Fig. 5.17b. The full width at half maximum (FWHM) of each peak is

W = 49± 3MHz consistent with the frequency-sweep chirp width of 40MHz and a

peak broadening of ⇡ 7MHz measured in [33, 34]. The significant di↵erence between

the two hyperfine values A1 and A2 are attributed in the current section to a shift

of the wavefunction due to static electric fields within the device, likely originating

from band-bending near the phosphorus doped structures. The asymmetry in the

ESR peak height is linked in Sect. 5.3 to the non-homogeneous occupation of the

four nuclear spin states within the 2P QD. This non-homogeneous occupation of nu-

clear spin states is attributed to nuclear spin relaxation and excitation mechanisms,

such as the hyperfine mediated coupling to phonons, the ionisation shock e↵ect, and

the magnetic dipole interaction between nuclear spins.

The ESR spectrum is acquired over a range of static magnetic fields B0 = 1.3�
1.5T, and reveals a linear trend of the average resonant frequency f , consistent

with the expected trend f = gµBB0/h for an electron spin, where µB is the Bohr

magneton and h the Planck constant (see Fig. 5.17d). A least-squares fit yields

an electron g-factor g = 1.995(1) consistent with that measured on another 2P

molecule in [4] (g = 1.995(20)). The ESR peak-spacing remains independent of

magnetic field supporting the fact that the hyperfine interaction is the main cause

of the peak splitting, A1 6= A2 (see inset).

The contact hyperfine interaction between an electron spin and a nuclear spin is

proportional to the probability density | (rn)|2 of the electron wavefunction evalu-

ated at the position rn of the nucleus [36]. A shift in the electron wavefunction can

therefore lead to a change in the hyperfine interaction strength. In particular, such

a shift can be produced by electric fields in what is called the hyperfine Stark e↵ect.

The shift of the wavefunction with an applied electric field E can be captured to

first and second order by perturbation theory, leading to linear and quadratic Stark

term: A(E) = A(0)(1 + ⌘1E + ⌘2E2)[37]. When the wavefunction is symmetric

along the direction of the electric field, the shift in A is constrained by symme-

try to be independent of the electric field sign, and the linear Stark coe�cient ⌘1

therefore vanishes [37]. This results in a quadratic hyperfine Stark shift that was

experimentally measured on antimony [38] and phosphorus donors [39] in bulk sil-

icon and replicated by e↵ective mass simulations [39]. When the symmetry of the
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donor system is broken along the direction of the electric field however, the e↵ect

of the electric field on the wavefunction can become dependent on its direction, and

the linear Stark coe�cient can become finite.

The symmetry of the single donor is for example broken in the vertical direction

for ion implanted single phosphorus donors due to the vicinity of the silicon/silicon

dioxide interface [37]. In such devices, an linear Stark shift was indeed demon-

strated experimentally [40], with a coe�cient of proportionality ↵1,Stark = A(0)⌘1 ⇡
0.34MHz/(MV/m).11 The symmetry of the single donor can also be broken by the

presence of a second nearby donor, for example in a 2P molecule such as found in the

device studied here. Tight binding simulations performed by Hile et al. in ref. [4]

indeed suggest that the linear hyperfine Stark e↵ect dominates the quadratic Start

shift for 2P donor molecules when the electric field is applied parallel to the donor

separation axis. This can be simply understood when considering the preferential

shift of the electron wavefunction from one positively charged nucleus to the other

compared to a shift away from the two positive charges of the 2P molecule. The

linear Stark shift could not be resolved in the experiment of Hile et al. due to the pre-

dicted hyperfine shift being smaller than the ESR peak width which was broadened

by the interaction with the nuclear spin bath. Indeed, the non-normalised linear

Stark coe�cient was predicted to be ↵1,Stark = A0⌘1 = 0.6MHz/(MV/M) [4], and

would only lead to a peak splitting of �A = 2↵1,StarkE = 5.2MHz for an estimated

electric field of 4.3MV/m, well below the chirped peak width of 28MHz.

The total hyperfine value Atot and hyperfine Stark shift �A = A1�A2 measured

in the spectrum in Fig. 5.17b can be used to estimate the exact donor configuration

within the quantum dot. This was achieved by matching the experimental values

to tight binding simulation (performed by Md Serajum Monir from Prof. Rajib

Rahman’s group). The value Atot is found to be independent of electric field for the

magnitudes considered here (see also [4])12. Atot is therefore a more reliable tool

for donor metrology compared with the total hyperfine Stark shift �A = A1 � A2

which requires an additional estimation of the e↵ective electric field experienced by

the 2P molecule: �A = 2↵1,StarkE. The estimation of the e↵ective electric fields in

our device is complicated by the fact that the silicon conduction-band bends near

the heavily doped phosphorus structures of our gates and charge sensors [22, 41].

Band-bending leads to an e↵ective electric field experienced by the electron and

11The coe�cient A(0)⌘1 is estimated from the measured @A

@V
= 0.91MHz/V and the simulated

@E

@V
= 2.62MV/m/V.

12The independence of Atot can be understood by a scenario in which the weight of the electron
wavefunction simply shifts from one donor to the other.
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has been shown to a↵ect the measured charging energies of a single donor [22, 41].

Whilst, tight binding simulations of conduction-band bending near a heavily-doped

phosphorus lead were successful in predicting the measured charging energies of the

single atom transistor [22, 41] it has not yet been performed near a finite structure

such as the SET island (work in progress).

The total hyperfine interaction strength Atot is simulated across two lattice vec-

tors a0 = 0.54 nm within the lithographic plane Z = 0 a0, and three lattice planes

above : Z = 0.25a0, 0.5a0, 0.75a0 (see Fig. 5.18a). In all simulated configurations,

the Stark shift is mainly linear and is appropriately described by �A = 2↵1,StarkE.13

The simulated total hyperfine interaction is seen to increase when the separation of

the donors in the 2P molecule is decreased. This is linked to the two potential well

of the donor nuclei joining together, therefore increasing the probability density

| (rn)|2 of the electron wavefunction evaluated at the position rn of each nucleus.

The increased probability density results in an increased contact hyperfine interac-

tion.

All configurations that are consistent with the measured total hyperfine value

have a donor separation of about 1 nm (coloured markers in Fig. 5.18a). Two config-

urations yield simulated total hyperfine values that fall within the confidence interval

[268, 276]MHz of the measured value. The first donor configuration, with separa-

tion vector (1.5, 0.5, 0)a0 yields a total hyperfine value of 276MHz (labelled “276” in

Fig. 5.18a). The second configuration, with separation vector (2, 1/4, 1/2)a0, results

in a total hyperfine value of 275MHz (labelled “275” in Fig. 5.18a). The Stark coef-

ficient of configuration 275 however is small14 and would require an e↵ective electric

field of 35MV/m to replicate the observed hyperfine shift �A = 106±5MHz . Such a

large e↵ective electric field is well beyond the critical electric field ✏0 = 10�30MV/m

measured in [42] at which the un-doped silicon becomes conductive. Such break-

down of the insulating behaviour of silicon manifests as current leakage and was

not observed during operation of the device. Configuration 276 however exhibits

a three times larger Stark coe�cient of 2↵1,Stark = 10.5MHz/(MV/m). This low-

ers the electric field magnitude required to replicate the observed hyperfine shift to

E = 10MV/m. This e↵ective electric field magnitude is within the range where cur-

rent leakage is not expected to occur. However the magnitude cannot be accounted

for by the simulated electric field value of 3.3MV/m found using the finite element

solver COMSOL. The di↵erence of 7.2MV/m in the electric field could be explained

13With the notable exception of configuration 263 where the hyperfine values are already split
at zero electric field, so that �A = ↵0 + ↵1,StarkE

142↵1,Stark = 3.0MHz/(MV/m)
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Figure 5.18: Location of the 2 phosphorus atoms with the right 2P quantum
dot. a) The measured total hyperfine interaction Aexp

tot = A1+A2 = 272± 4MHz and the
hyperfine Stark shift �Aexp = 106± 5MHz can be compared to tight binding simulations
to estimate the likely relative position of the two phosphorus donors in the right quan-
tum dot. The total hyperfine interaction strength is simulated across two lattice vectors
a0 = 0.54 nm within the lithographic plane Z = 0 a0, and the three lattice planes above
(Z = 0.25a0, 0.5a0 and 0.75a0) (simulations by Md Serajum Monir). The position of one
of the two donors is fixed to the lithographic plane (black circle). The measured total
hyperfine value is matched within 4MHz by configuration 276 and 275. For the latter
configuration however, the observed stark shift �Aexp would require an electric field of
35MV/m, well above the electric field Eexp = 3.3MV/m estimated from finite element
simulations. Configuration 276 however would only require an electric field of 10.1MV/m
to match the observed Stark shift. The 7.2MV/m mismatch to the simulated electric field
could be explained by band bending known to occur near our heavily phosphorus-doped
leads [22, 41]. Another configuration (258), also requires a similar electric field strength
to match the measured hyperfine Stark shift, and is only one lattice plane above the
lithographic plane. b) The two configuration 276 and 258 can be matched to the STM
images of the quantum dot before donor incorporation. The green rectangles indicate the
silicon dimers that were imaged with phosphorus adsorbates (see Fig. 5.14). The two lat-
tice configurations 276 and 258 are compatible with 8 di↵erent configurations within the
lithographic patch. Figure a) adapted from Md Serajum Monir in Prof. Rajib Rahman’s
group.
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by conduction band bending that is known to occur near the heavily phosphorus

structures15. An accurate simulation of the band bending in this device is under

investigation.

In summary, configuration 276 not only fits the measured total hyperfine value

within 4MHz uncertainty, but also displays the largest sensitivity to electric fields.

It is thus the most likely configuration of the donor molecule in the device. Another

likely donor configuration is that with a separation vector (1.75, 1/4, 1/4) ⇤ a0 with

a total hyperfine value of 258MHz. This configuration exhibits the second largest

Stark shift 2↵1,Stark = 9.2MHz/(MV/m) and would therefore only require an e↵ec-

tive electric field of 11.5MV/m to match the measured Stark shift (labelled 258 and

depicted as blue circles in Fig. 5.18a). The two configurations with the largest Stark

coe�cients are both compatible with the STM images of the phosphine adsorbates

within the lithographic patches of the right quantum dot(see Fig. 5.18a).

The ESR spectrum of the 2P molecule in this work exhibits three major dif-

ferences to that acquired on a 2P molecule by Hile et al. in [4]. First, Hile et al.

did not measure a discernible di↵erence �A = A1 � A2 between the two hyperfine

interactions (see Fig. 5.19b), yielding a two-fold degenerate central peak instead of a

pair of peaks split by �A = 106MHz in this work (see Fig. 5.19a). Second, the sum

of the hyperfine interactions Atot = A1+A2 is much larger, with a value of 524MHz

for Hile et al., instead of 272MHz in this work. Both features can be explained

by di↵erences in the donor configurations within the silicon lattice. Indeed, the

large total hyperfine value observed in Hile et al. [4] can be explained by a reduced

physical separation between the donors of the molecule. The total hyperfine value

is indeed best matched by two configurations with separation vector (1, 0, 0)a0 and

(1, 1, 0)a0 (see diamond markers in Fig. 5.19c). These two configurations are next

nearest neighbours (NNN) to the configuration 276 attributed to the 2P molecule

studied here. Despite the configurations being close, they display a Stark coe�cient

that varies by an order of magnitude. Indeed, the Stark coe�cient is estimated to be

2↵1,Stark ⇡ 1MHz/(MV/m) for Hile et al. instead of 10.5MHz/(MV/m) for this work

(see inset of Fig. 5.19d). This large di↵erence in the Stark coe�cients, despite the

vicinity of the configuration can be attributed to a di↵erence in the crystallographic

direction along which the donors have incorporated in the silicon lattice. Indeed,

simulations of the Stark shift along 4 di↵erent crystallographic directions uncover

a clear pattern when plotted against the donor separation, see Fig. 5.19d. Donors

separated along the [100] and [120] directions display a smooth upwards trend of the

15the e↵ective electric field due to band bending 10 � 20 nm away from G1 in Fig.3 in [41] can
be roughly estimated to be ⇡ 5� 10MV/m
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hyperfine Stark coe�cients. This is in contrast to donors separated along the [110]

and [130] directions, where the Stark coe�cient exhibits strong oscillations, within

the bounds approximately set by the two smooth trends. This oscillatory behaviour

with donor separation is reminiscent to that of the exchange interaction between

two donor bound electrons [43, 23]. This behaviour is a possible indication of valley

interference e↵ects where the electron wavefunction shows a non-trivial oscillatory

dependency on the order of single lattice sites leading to significant variation in the

contact hyperfine value for small lattice displacements. The donor configuration 276

that is attributed to the donor molecule studied here lies along the crystallographic

direction [130] that exhibits strong oscillations, and appears as a clear outlier for

small donor separations (see inset of Fig. 5.19d). The large magnitude of the hy-

perfine Stark shift in the 2P molecule studied here compared to that of Hile et al.

could therefore be attributed to a slight change in the donor configuration which

brings with it a dramatic change in the valley interference e↵ect, and thus in the

measured Stark shift.

The strong dependence of the hyperfine Stark shift on the donor orientation can

be used as a benefit for certain applications, for example, for EDSR [45]. Address-

able nuclear magnetic resonance (NMR) on donor molecules for example requires

the NMR frequencies associated with the di↵erent nuclei in the molecule to be dif-

ferent. In the presence of an electron, the NMR transition frequency of nucleus i is

simply given by �nB0±Ai/2, where �n = 17MHz/T is the gyromagnetic ratio of the

phosphorus nuclear spin, and the sign change accounts for the electron spin orienta-

tion. The degeneracy in the NMR transition frequencies can therefore be lifted by a

hyperfine Stark shift that modifies the values of the individual hyperfine interaction

strengths Ai. A di↵erent operation mode for a donor molecule is the proposal for

electrically driven resonance of the electron spin shared by a 1P-2P double quantum

dot (see Chapter 4). The spin rotations are driven by a flip-flop of the electron spin

with the nuclear spin in the 1P quantum dot. The qubit operation error is highly

dependent on the magnetic gradient produced by the two nuclear spins in the 2P

quantum dot. The error can be minimised by initialising the nuclear spins in the

2P molecule in opposite directions, and can be further reduced by ensuring that the

hyperfine interaction strength to the two donors in the 2P molecule cancel out by

controlling the Stark shift of the donors. The qubit error can thus be minimised

by reducing the Stark shift �A = A1 � A2 = 2↵1,StarkE. This is best achieved by

engineering the hyperfine Stark coe�cient to be small, for example by patterning

the two donors of the 2P molecule along the [100] direction (see STM patterning
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Figure 5.19: 2P Stark coe�cients and donor configurations. Stark-shifted 2P spec-
trum from this work (a) and non-Stark-shifted spectra from Hile et al. (Hile2018) [4]
(b). The splitting of the degeneracy of the central peak in a) is attributed to the linear
hyperfine Stark e↵ect. c) Donor configurations attributed to the 2P molecule in this work
(green square, blue circle) and to the 2P molecule of Hile et al. (diamond markers). A
shift by only one lattice site on the surface results in a near-doubling of the total hyperfine
interaction. d) Tight binding simulation of the linear hyperfine Stark coe�cient for a 2P
donor molecule as a function of the donor separation, for four crystallographic directions.
The hyperfine Stark coe�cient displays oscillations along the [1,1,0] and [1,3,0] directions
that are likely related to valley interference e↵ects. The hyperfine Stark shift is minimised
along the [1,0,0] crystallographic direction. The donor configuration 276 estimated from
donor metrology (green square in the inset, and in b) corresponds to a configuration where
the Stark coe�cient is dramatically enhanced (2↵1,Stark = 10.5MHz/(MV/m))) compared
to close-by configurations. Two such configurations (large red and blue diamond markers)
were likely realised in the 2P-donor quantum dot of Hile et al. Indeed the hyperfine Stark
shift of configuration 498 is ten times smaller (2↵1,Stark ⇡ 1MHz/(MV/m)) than that
of configuration 276 (2↵1,Stark = 10.5MHz/(MV/m)). The di↵erence in the Stark coe�-
cients explain why the central two peaks in the ESR spectrum are split in the 2P device
presented here (in a), while no such splitting is discernible within the peak width in the
2P device from Hile et al. (in d). e) Possible STM patterning strategy to minimise the
Stark coe�cient by increasing the chance of the donors being separated along the [100]
crystallographic direction. Figure d) adapted from Md Serajum Monir in Prof. Rajib
Rahman’s group, and figure b) adapted from [44].
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strategy in Fig. 5.19e).

A third di↵erence in the ESR spectra measured here compared to that measured

by Hile et al. [4] is the relative height of the ESR peaks. All four peaks in Hile et

al. have the same magnitude (the degenerate central peak is twice the height of

the outer one), while the ESR peaks measured here exhibit clear di↵erences in their

heights. The peak height can be related to di↵erences in the nuclear spin dynamics,

which is the focus of the following section Sect. 5.3.

5.2.4 Conclusion

In this section, advances in the design of the SET charge sensor were shown to yield

a significant improvement of the electron spin readout fidelity on a donor quantum

dot, from 83% with the previous sensor, to 94.4% with the improved sensor. Elec-

tron spin resonance using adiabatic spin inversion was then demonstrated on the

first electron of the right donor quantum dots of the device. Electron spin resonance

spectra revealed four peaks which can be attributed to a 2P molecule with a hyper-

fine interaction of the first and second nucleus to the electron of A1 = 189± 5MHz

A1 = 83 ± 5MHz respectively. Metrology of the donor configuration within the

silicon lattice was then performed by matching the measured hyperfine interaction

strengths to values obtained by tight binding simulations. In particular, the total

hyperfine interaction Atot = A1 + A2 = 272 ± 4MHz was shown to be a useful

metrology tool because it is independent on the electric field (to first order), and

therefore does not include any fitting parameter. The measured hyperfine di↵erence

�A = A1 � A2 = 106 ± 5MHz allowed additional precision in the identification

of the donor configuration. The di↵erence in the hyperfine interaction strengths is

attributed to a linear Stark e↵ect that was previously observed in ion-implanted

single phosphorus donors but not in 2P molecules. Together, the total hyperfine

value and the hyperfine di↵erence identify [1.5, 0.5, 0]a0 from (0,0,0) as the most

probable donor configurations, where a0 is the silicon lattice constant. The mea-

sured total hyperfine interaction of this configuration falls within the uncertainty

of the measured value and displays the largest Stark e↵ect of all the compatible

configurations. The chosen configuration is close to that attributed to another 2P

molecule measured by Hile et al. in [4], for which the hyperfine Stark e↵ect could

not be observed. Tight binding simulations performed by Md Serajum Monir in

collaboration with Prof. Rajib Rahman’s group revealed that the hyperfine Stark

e↵ect is highly dependent on the orientation of the donors within the 2P molecule in

the crystal. The orientation attributed to the 2P molecule studied here was shown
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demonstrate a 10-fold enhancement of the Stark e↵ect compared to that observed

by Hile et al. [4], explaining the observation of the Stark shift in the ESR spectra.

5.3 Readout and dynamics of nuclear spins in a

2P molecule

5.3.1 Nuclear spin readout on a 2P molecule

Readout of the nuclear spin state of the 2P molecule studied in Sect. 5.2 is per-

formed by measuring the instantaneous position of the electron spin resonance

(ESR) transition frequency. Indeed, the ESR frequency is shifted by the hyper-

fine interaction of the electron with the two phosphorus nuclei in the molecule,

yielding four distinct transition frequencies for each of the four nuclear spin states

{| ++i, | +*i, | *+i, | **i}. The instantaneous transition frequency of an electron on

the donor molecule is measured by attempting the adiabatic inversion of an electron

spin-down bound to the two donors over a range of 130 ESR frequencies encompass-

ing the four resonant frequencies. Each electron spin adiabatic inversion attempt

is performed using the following pulse sequence (see Fig. 5.20). An electron spin

is loaded from the reservoir (with random spin orientation, “Load”), it is then ini-

tialised in a spin-down state by reading-out its state (“Initial./Read”). An attempt

is then made at adiabatically inverting the electron spin using an ESR pulse after

which the electron spin is read out and then emptied from the quantum dot. Fi-

nally, a waiting period leaves time for the microwave source to switch to the next

frequency. The ESR pulse is performed using a 200µs long ESR pulse, with a linear

sweep of the microwave frequency over a range of 40MHz centred on the probed

transition frequency and using a power of �5.1 dBm at the microwave source. Each

adiabatic inversion attempt requires 25.7ms on average, most of which is spend by

the microwave source switching its frequency for the next attempt. A single nuclear

spin readout sequence, consisting of 130 such sequences therefore requires 3.34 s on

average. The nuclear spin readout sequence is repeated 1000 times, over a period of

70 minutes, yielding 1000 instantaneous ESR spectra (see Fig. 5.21a). It is apparent

from the measurement that the position of the electron resonance frequency switches

between the four identified resonance frequencies over the course of the experiment.

The ESR spectra of the 2P molecule are recovered when the spin-up proportion over

the whole experiment is calculated at each frequency (see Fig. 5.21b). The 50MHz

width of the averaged ESR peaks arises from the 40MHz width of the adiabatic
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Figure 5.20: Pulse sequence for nuclear-spin tracking The pulse sequence performs
attempts adiabatic inversion of an electron spin-down at one frequency, followed by spin
readout. The pulse sequence depicted in the figure last 25.7ms and is repeated at 130
ESR frequencies across the spectrum. Each nuclear spin measurement therefore lasts
3.34 s on average. 80% of the time is spent switching the microwave frequency between
each adiabatic inversion (“µ-wave settle”).

inversion frequency sweep, and from the fluctuating magnetic field produced by the
29Si nuclei present in natural silicon [4, 33]. This fluctuating field could account for

the slight variations in the position of the instantaneous ESR spectra in Fig. 5.21a

[35].

Next we optimise and characterise the nuclear spin-readout. Four detection

windows are defined around each average peak position (see Fig. 5.21a). Histograms

of the spin-up count N" within each window are well described by the sum of two

Poisson distributions:16.

P (N") = (1� ai)PN0(N") + aiPN1(N"), (5.3.1)

where the Poisson distribution with mean � is P�(N") = �
N"e��

N"!
, and ai describes

the relative weight of the two distributions. The fit independently yields the same

pair of Poisson distributions for the four detection windows, one with an average

of N0 = 1.95(4) and the second one with an average N1 = 7.0(3) (see Table 5.2).

The first distribution PN0(N") is identified as the distribution of background spin up

count when no peak is in the detection window, while the second one, PN1(N"), is

associated with the distribution of correct spin-up counts, when the instantaneous

Larmor frequency is indeed in the detection window. On average, each detection

window of Nw = 21 measurements therefore registers �0 = N0/Nw = 9.3(2)% back-

ground counts when no peak is present and �1 = N1/Nw = 33(1)% of correct spin-up

counts when a peak is present. The background counts are attributed to the spin

16Using a window of 21 frequencies 63MHz
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Figure 5.21: Time-resolved ESR spectra on a 2P molecule. a) Spin-up proportion
after adiabatic inversion of an electron spin-down on the 2P molecule, as a function of ESR
frequency over a duration of 70 minutes. Each instantaneous spectrum takes on average
3.4 s. The instantaneous Larmor frequency of the electron can be seen to shift in time, and
is indicative of underlying time-dynamics of the spin orientation of the two phosphorus
donor nuclei. b) Averaged over the entire duration of 70 minutes, the instantaneous
spectra yield the spectrum of the 2P molecule studied previously in Sect. 5.2. c) Histogram
of the spin up proportion in each detection window for each instantaneous spectrum.
The histograms are fitted independent by the sum of two Poisson distributions. In each
detection window, a first Poisson distribution describes the background spin-up counts,
with an average �0 ⇡ 10% background counts per window. A second Poisson distribution
describes the spin up proportion �1 ⇡ 33% in the detection window when a peak is present
within the window. The relative proportion of the two Poisson distribution, describing
the probability for a peak rather than the Background to be observed in the window, is
described by the fit parameter p". The fit parameter qualitatively reproduces the relative
heights of the ESR peaks in the long-term spectrum.
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readout infidelity ⇡ 5% and the infidelity in the adiabatic inversion. The fit param-

eters ai correspond to the proportion of the total measurement time that a peak

(as opposed to background detection) is detected in the window i. As expected the

parameters ai add up to 1.02(5) because a peak can only be present in one window

at a time (this is not enforced by the fits). The histograms of the normalised spin

up counts p" = N"/Nw in each window is displayed in Fig. 5.21c.

Peak i = 1 2 3 4 weighted average
N0 1.86(9) 1.84(6) 2.14(9) 2.00(5) 1.95(4)
N1 7.0(4) 6.8(7) 7.0(5) 7.2(9) 7.0(3)
ai 0.39(2) 0.19(2) 0.31(3) 0.13(2)

Table 5.2: Fit parameters of Poisson distribution in each peak window, for a window
width of 21 frequencies (63.5MHz). The digit in parenthesis indicates the 95% confidence
interval

For a given window size, the background and signal distributions PN0(N") ⌘
P (N"|no peak) and PN1(N") ⌘ P (N"|peak), allow the estimation of the peak detec-

tion fidelity within each window, when thresholding the signal with a threshold Nth

(see Fig. 5.22a). If a spin-up count N" is recorded within the window at or above

the threshold (N" � Nth) at a given time, a positive peak detection is attributed to

that time step. This process leads to errors if a background count is identified as a

signal or if a peak is identified as background. The error in the peak detection is

therefore characterised by:

1� Fpeak(Nth) =
1

2

 
NwX

N=Nth

PN0(N) +
Nth�1X

N=0

PN0(N)

!
(5.3.2)

We find the maximum peak detection fidelity Fpeak = 84.8% at a window size

Nw = 21 and a detection threshold Nth = 4 (see Fig. 5.22b). When applying this

peak detection procedure on the measured data, it becomes apparent that on many

time steps several peaks are detected at once instead of the single expected peak

(see Fig. 5.22f). Only in 57% of cases is a single peak is detected, and in 28% of case

two peaks are detected (see Fig. 5.22). The proportion of multiple peak detections,

is very well predicted by a model based on the peak detection fidelity Fpeak = 84.8%

(red boxes in Fig. 5.22f). For example the probability to measure two peaks at a

given time (when only a single peak is present) can be estimated as the probability

of

• correctly detecting the peak in one window (probability F ), but incorrectly
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Figure 5.22: Nuclear spin readout on a 2P molecule a) Probability distributions of
detecting a number N of spin-up electrons in the detection windows after an ESR burst,
extracted form the data. If the instantaneous electron Larmor frequency is present(absent)
in the window, N follows the Poisson distribution P1 (P0), with hNi = 7.0 ± 1.3(1.9 ±
0.15) at the optimal window-width. b) The peak-detection within each window reaches a
fidelity of 84.8% at an optimal threshold Nth = 4, and a window of 21 frequencies (each
corresponding to an attempted electron spin inversion and measurement). c) Histograms
of multi-peak detection using the optimal threshold and window. In 40% of cases, more
(or less) than one peak is detected. This is consistent with the estimated peak detection
fidelity of 85% (theoretical prediction in red). d) Nuclear spin readout with 87.9% fidelity
at a window width of 21 frequencies. The nuclear spin state is assigned to the detection
window with most counts (“majority readout”). e), f), g) Nuclear-spin tracking for the
first 10 minutes of the experiment. Raw data in e, peak detection in each window with
threshold Nth = 4 in f, and majority nuclear spin readout in g.
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assigning a background count in another window to another peak (probability

(1� F )F 2) yielding a probability 3F 3
peak(1� Fpeak)

• OR, of incorrectly detecting the peak in one window (probability 1 � F ),

and incorrectly assigning a background count in two windows as two peaks

(probability
�
3
2

�
(1� F )2F ), yielding a probability

�
3
2

�
(1� F )3F .

The final estimation of the probability of measuring two peaks is therefore p2peaks =

3F 3
peak(1� Fpeak) +

�
3
2

�
(1� F )3F . The probabilities to measure 0, 1, 3 and 4 peaks

can be obtained similarly. The high number of multiple peak detections, is related

to the fact that there is a probability F 4 = 52% of correctly reading out the full

nuclear spin states. The nuclear spin readout fidelity can be increased dramatically

by utilising the fact that, while false counts due to the background occur, they rarely

lead to a spin-up count that is larger than that associated with the signal. In fact,

the nuclear spin state can simply be assigned to the detection window with the most

count. The fidelity Fnucl of the resulting spin readout is just the probability of the

peak producing a spin-up count Ns larger than any of three other background counts

Nb:

Fnucl =
NwX

Ns=0

PN1(Ns)

 
Ns�1X

Nb=0

PN0(Nb)

!3

. (5.3.3)

This yields a nuclear spin readout fidelity Fnucl = 87.9% at an optimal detection

window size of 21 frequencies (see Fig. 5.22d). The nuclear spin assignment is

shown for the first 10 minutes of the experiment in Fig. 5.22g. This is the first

demonstration of nuclear spin readout on a tightly bound donor molecule in silicon.17

5.3.2 Extraction of the nuclear spin flip rates using a hidden

Markov model

We next extract the transition rate between the four nuclear spin states. To mitigate

the impact of the nuclear spin readout error, we extract the nuclear spin transition

rates by fitting a discrete-time Markov model to the sequence of states estimated

from the above detection procedure. We demonstrate the power of this approach

by fitting the Markov model to the data of peak detection with a readout fidelity

of 52%(see Fig. 5.22f, instead of the data based on the nuclear spin readout demon-

strated with 88% fidelity (see Fig. 5.22g).

17Nuclear spin readout on two ion-implanted phosphorus donors at an estimated distance of
6 nm was very recently demonstrated by Madzik et al. in an ArXiv preprint [46].
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Hidden Markov models

We now give a brief introduction to hidden Markov model, based on an excellent

review article by Rabiner [47] of which we use the naming convention of variables. A

discrete-time Markov Model is a probabilistic description of a system that changes its

state (possibly back to the same state) at regular time intervals. The model describes

the sequence of events as a Markov process Q = {q1, . . . , qT}, in which the state qt

of the system at a time t can only occupy a finite set of states Si (i = 1, . . . , N),

and for which the probability to occupy state Sj at any step t, only depends on the

state qt�1 of the system in the previous time step (this property is referred to as

memorylessness). The discrete-time Markov process is therefore fully modelled by

the probabilities ai,j (i, j = 1, . . . , N) of the system changing from state Si to state

Sj in consecutive time steps (see Fig. 5.23a), and by the probability ⇡i (i = 1, . . . , N)

of the initial state of the system at t=1 to be in state Si. The evolution of the system

in time is described by the probability vector p(t) of the system occupying any of

the state Si with probability pi(t) at each time step t. The probability vector follows

the Markov equation [48]:

p(t+ 1)tr = p(t)trA (5.3.4)

where A = (ai,j) is the transition probability matrix, and we use the convention of

matrix multiplication from the left.

The Markov process Q = {q1, . . . , qT} is called a hidden, when only probabilistic

observation of the states are possible, with a discrete number of possible measure-

ment outcomes vk. A hidden Markov processes Q = {q1, . . . , qT} can therefore only

be inferred from the observation sequence O = {O1, . . . , T} (see Fig. 5.23b). The

probabilistic measurement process, is modelled by a matrix B that assigns a prob-

ability bj,k to observing the measurement vk when the (hidden) state of the system

is Sj.

The nuclear spin state measurement data is clearly well suited to be modelled

as a Markov process provided the physical processes leading to the transition events

fulfil the Markovian property of memorylessness. Nuclear relaxation is one of the

processes expected to lead to state transitions [8]. It is routinely modelled as a

exponential process with a constant decay rate at each given time, and is therefore

Markovian. The nuclear excitation processes through hyperfine shock [8] has been

modelled by Pla et al. as a near chaotic precession of the nuclear spins in time [49],

and can therefore be approximated as a Markovian process.

Given the assumption of memorylessness, the nuclear spin state experiment ob-

tained from thresholding of the data is a hidden Markov processQ = {q1, . . . , qT | T =
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qt-1 qt qt+1 qt+2

Ot-1 Ot Ot+1 Ot+2

a) b)

Figure 5.23: Hidden Markov models. a) Diagram of a 5-state discrete-time Markov
model, with states Si (i = 1, . . . , 5) and transition probabilities ai,j (i, j = 1, . . . , 5). b)
Diagram of a discrete hidden Markov process. The Markov process Q = {q1, . . . , qT }
consists in a discrete sequence of steps qt, at which the system can be in any of the states
Si (i = 1, . . . , 5). The state of the system at each step t is “hidden” and can only be
inferred from the series of observation O = {O1, . . . , OT }. The state qt of the system
at each step t, depends only on the state qt�1 of the system in the previous step t � 1.
Similarly, the observation of Ot of the system at step t only depends on the state qt of the
system at that step. These conditional dependences are indicated by arrows. a reproduced
from [47].

1000}, in which the states Si are the nuclear spin states (S1 = | ++i, S2 = | +*i,
S3 = | *+i and S4 = | **i) and the set of measurements is the set of 16 states

(w1, w2, w3, w4) 2 {0, 1}4 where wi = 1 (0) indicates the detection (non-detection)

of peak i. We encode the 4-tuples (w1, w2, w3, w4) as a number 1  vi  16, us-

ing binary to decimal conversion to obtain the required dictionary vi of observation

outcomes. The observation sequence O = {O1, . . . , OT | T = 1000}, is then the

encoded series of peak detection at each of the 1000 time steps during the mea-

surement of 70 minutes. A hidden Markov model � for this system consists in a

transition probability matrix A = (ai,j) ( i, j = 1, . . . , 4), a measurement probabil-

ity matrix B = (bj,k) ( j = 1, . . . , 4, k = 1, . . . , 16) and a initial probability vector

⇡ = (⇡i) ( i = 1, . . . , 4).

The optimal model �⇤ = (A,B,⇡) which maximises the likelihood p(O|�) of

yielding the measured observation sequence O given the model � is found using the

Baum-Welch algorithm that converges towards a local maximum in the likelihood

p(O|�) by iteratively re-estimating the model parameters [47, 50]. The likelihood

p(O|�) is calculated using the well known inductive “forward” procedure [47]. The

confidence intervals [��
m
,�+

m
] of each individual model parameters �m (e.g. �m = ai,j,

a transition probability matrix elements) are found by observing the decrease of
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the maximum likelihood when the particular model parameter �m is constrained

to a non-optimal value µ 6= �⇤
m
. The maximum likelihood of such a constrained

model is max�c2Ucp(O|�c), with the constrained model-subspace Uc(µ) = {�c 2
U |�c

m
= µ}[48]. The constrained model parameter set Uc(µ) is nested within the

non-constrained parameter set U (Uc ⇢ U), allowing a comparison of the likelihood

of the two models using the likelihood ratio test:

⇤(O, µ) =
max�c2Uc(µ)p(O|�c)

max�2Up(O|�) . (5.3.5)

The fact that the �2log(⇤) is approximately �2 distributed [48], allows the estima-

tion of the intervals by finding �±
m
such that:

⇤(O,�±
m
) = �2, (5.3.6)

with �2 = 3.84 for example for the 90% confidence intervals. In practice, we im-

plement the constraint �c
m

= µ by enforcing the constraint at each iteration of

the Baum-Welch re-estimation procedure that calculates max�c2Uc(µ)p(O|�c). Each

time the re-estimated value �c
m
is set to the value µ, physical constraints —such as

the necessity of probabilities to add to one— are enforced as well.

Maximum likelihood Markov model of the 2P molecule

The Baum Welch algorithm described above yields the maximum likelihood model

with the following transition probability matrix (see a diagram of the Markov model

in Fig. 5.24):

A =

0

BBBB@

86+3
�4 7+3

�2 7+3
�2 6⇥ 10�5

15+6
�5 74+6

�8 7+5
�4 5+5

�3

8+3
�3 3+2

�2 86+4
�4 4+3

�2

2+3
�1 7+6

�4 8+6
�5 83+6

�7

1

CCCCA
⇥ 10�2, (5.3.7)

where the states are numbered as S1 = | ++i, S2 = | +*i, S3 = | *+i and S4 = | **i,
and ai,j gives the transition probability between Si and Sj (from row to column).

For example the transition probability from S2 to S1 is the matrix element a2,1 =

15+6
�5 ⇥ 10�2.18 The diagonal elements of the matrix A represent the probability of

the system to stay in its current state at each time step (82% on average), while

the o↵-diagonal elements represent the probability of transitioning to a di↵erent

18The asymmetric 90% confidence interval [x� L, x+ U ] in the value x is noted as x+U

�L
.
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Figure 5.24: Transition probabilities of the Markov model fitted to the nu-
clear spin tracking data. The optimal Markov model maximises the likelihood of the
observed nuclear spin states sequence occurring. This likelihood is estimated using the
“forward-backward” algorithm [47]. This likelihood is maximised using the Baum-Welch
re-estimation procedure [47, 50]. The width of the arrows in the diagrams is proportional
to the magnitude of the transition probabilities. a) Full diagram of the Markov model.
The probabilities for the system to stay in the same state (82% on average) are much
larger than that of transitioning to another state (18% on average), indicating that the
state lifetime is larger than the time between measurements. b) Closeup of the transition
probabilities between distinct states. Simultaneous transitions when the nuclear spins are
parallel are heavily suppressed (less than 2% probability). However, simultaneous transi-
tions when the nuclear spins are anti-parallel (nuclear spin flip-flop) are almost as likely
as single spin flips. This could be indicative of a nuclear dipole-dipole coupling.
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state (18% on average). The nuclear spin lifetimes can be estimated by calculating

the probability pi(N) of the system to remain in state Si for N time steps, and

to subsequently transition to another state. The probability is simply given by

pi(N) = aN
i,i
(1 � ai,i) and can be rewritten as pi,N = exp(�t/Ti)(1 � ai,i) = pi(t),

were the discretised time (in seconds) is t = N�t (�t = 3.34 s, and the lifetime

of state i is Ti = � �t

log(ai,i)
(see also [47]). In this fashion we extract the following

nuclear spin lifetimes from the Markov model:

T++ T+* T*+ T**
22+7

�5 s 11+4
�3 s 22+8

�5 s 17+10
�6 s

The estimated lifetimes of the first (++) and third state (*+) is larger than the

that of the second (+*) and fourth state (**), in the same fashion that the first

and third peaks in the time averaged spectrum Fig. 5.21b are larger than the second

and fourth ones. This confirms that the peak height in the ESR spectra is partly

attributed to the underlying nuclear spin dynamics. However, we find that the peak

heights are not exactly proportional to the lifetimes of their underlying nuclear spin

state (e.g. the fourth ESR peak is smaller than the second one, but the lifetimes are

not). This is likely due to variations in the adiabatic inversion e�ciency that can

result from limited electron spin coherence times [35].

Viterbi reconstruction of the nuclear spin dynamics of the 2P molecule

The optimal Markov model can be used to reconstruct the most likely sequence

of states during the nuclear spin tracking experiment (Fig. 5.21a). The Viterbi

algorithm [47, 51] is used to find the sequence of nuclear spin statesQ⇤ that maximise

the likelihood of leading to the measured observation sequence O given the optimal

model �⇤:

p(O|Q⇤,�⇤) = maxQ (p(O|Q⇤,�) (5.3.8)

The first 10 minutes of the Viterbi reconstruction of the nuclear spin dynamics

is depicted in Fig. 5.25d. The raw data of electron spin up counts (see Fig. 5.25a)

was thresholded within four windows around each ESR peak, with a peak detection

probability of 84% (see data in (see Fig. 5.25b). A hidden Markov model was then

fitted to the thresholded data and the maximum likelihood sequence of nuclear spin

states was obtained based on the model and the thresholded data (see Fig. 5.25d).

The reconstructed sequence Fig. 5.25d) is similar to that obtained using the nuclear

spin readout procedure in which the nuclear spin state is assigned to the detection

window with most counts ( “majority readout”, see Fig. 5.25c). The sequence
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Figure 5.25: Viterbi reconstruction of the nuclear spin dynamics. Once the optimal
hidden Markov (HMM) model is found, the most likely sequence of nuclear spin states
can be reconstructed using the Viterbi algorithm [47, 51]. The Viterbi algorithm finds
the sequence of states that maximises the likelihood of yielding the measured sequence
of observation, given the optimal HMM. The figure shows the first 10 minutes of the
measured nuclear spin dynamics. a) Raw data of the spin-up counts as a function of ESR
frequency and time. The nuclear spin dynamics can be recognised over the background
noise. a) Thresholded data from a. Any spin-up counts within an optimised detection
window around each ESR peak that exceeds an optimised threshold is attributed to the
observation of an ESR peak. The probability of correctly detecting each peak is 84%,
but in only 52% of cases is the correct peak the only detection. c) Nuclear spin state
sequence using nuclear spin readout. The nuclear spin state is attributed to the detection
window that records the majority of spin-up counts (“majority readout”). The fidelity
of this process is 88%. Isolated detection events lasting a single time step are likely due
to the 12% error probability of the readout. d) Viterbi reconstruction of the most likely
sequence of nuclear spin states based on the observation sequence of figure b) and the
optimal Markov model fitted to the obseravtions. The reconstructed sequence is similar
to that achieved using the “majority” nuclear spin readout, without many of the isolated
detection events attributed to noise. The fidelity of the nuclear spin assignment of the
Viterbi reconstruction is therefore expected to be higher.
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reconstructed using the Markov model however does not contain the single spurious

detection events visible in the sequence reconstructed using the majority nuclear

spin readout. This indicates that the fidelity of the Viterbi reconstruction is likely

higher than that of the “majority” nuclear spin readout. (see Sect. 5.3.1)

5.3.3 Transition rates of nuclear spin states within a 2P

molecule

The transition rates between nuclear spin states in the 2P molecule can be esti-

mated by converting the discrete-time Markov model found in the previous section

and described by the transition probability matrix A to a continuous-time Markov

model [48, 52]. The evolution of the system under the continuous-time Markov

model is also described by a probability vector p(t) (with continuous time variable

t), and by the continuous-time Markov equation [48]:

d

dt
p(t)tr = p(t)trM. (5.3.9)

The matrixM describes the transition rates between the states and can be estimated

using the principal matrix logarithm M = log(A)/�t of the transition probability

matrix A : [48, 52]. The obtained transition rates Mi,j between nuclear spin states

i and j are summarised in the following table Table 5.4.

Start
End ++ (10�2 Hz) +* (10�2 Hz) *+ (10�2 Hz) ** (10�2 Hz)

++ �4.8+0.8
�1.1 2.6+0.9

�0.7 2.3+0.8
�0.7 �(0.13+0.18

�0.09)
+* 5.41.6�1.5 �9.5+2.0

�3.0 2.2+1.3
�1.1 1.9+1.7

�1.1

*+ 2.6+0.9
�0.8 0.89+0.62

�0.48 �4.8+1.0
�1.4 1.30.8�0.6

** 0.19+0.66
�0.26 2.8+2.0

�1.4 2.9+1.7
�1.5 �5.9+1.8

�2.7

Table 5.3: Table of nuclear spin transition rates

The negative values of the diagonal elements of the transition rate matrix Q

capture the limited lifetime of the state. In fact, we recover the nuclear spin lifetimes

extracted previously by simply taking the inverse of the obtained rate (see full

lifetime matrix in Appendix Table D.1). The o↵-diagonal elements represent the

transition rates in (s�1) between the nuclear spin states.

Transitions between nuclear spins correspond to either a relaxation or an exci-

tation process. An important nuclear spin relaxation mechanism in silicon donors

was first observed by Honig [53] in Arsenic donors in bulk using electron spin reso-
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nance. Honig found that relaxation of the electron spin bound to the arsenic nucleus

must be linked to hyperfine mediated simultaneous flips of both the electron and

the nuclear spins. This e↵ect was later observed by Feher in bulk doped phospho-

rus samples [54] (with relaxation times Tx = 30(5) h at 0.3(0.8)T) as well as single

phosphorus devices [8] (with relaxation times Tx = 65 s at 1.77T). The electron-

nuclear spin flip-flops that drive both the electron and nuclear spin relaxation was

attributed by Pines, Bardeen and Slichter (PBS) [55] to phonon induced variations

of the hyperfine interaction between the electron and nuclear spin. In the theory of

PBS, the strain induced by phonons changes the local silicon dielectric constant and

e↵ective mass. These changes modulate the amplitude of the electron wavefunction

envelope and in turn modulate the contact hyperfine interaction. The theory of PBS

predicts the relaxation time to be inversely proportional to the square of the static

magnetic field value. This can be used to normalise relaxation rates measured at

di↵erent magnetic fields.

Nuclear spin excitations, observed by Pla et al. in a single phosphorus donor [8]

were found by the authors to be due to a sudden modification of the nuclear pre-

cession axis each time the donor is ionised or neutralised by an electron. This e↵ect

is therefore called “ionisation shock”. Pla’s theory was based on the observation

that the transition rate �*!+ was proportional to the rate �I/N of ionisation or neu-

tralisation of the single donor. The sudden changes of the nuclear precession axis

at each ionisation or neutralisation event is linked to sudden changes in the Hamil-

tonian describing the nuclear spin orientation. In the absence of the electron, the

nuclear spin-up state * is an eigenstate of the system, but it is no longer so when it

couples to the electrons # via the hyperfine interaction. Indeed, in the presence of

the hyperfine interaction the eigenstate becomes :

|f*#i = cos(✓/2)| *#i � sin(✓/2)| +"i, (5.3.10)

where tan(✓) = A/(�+B0)) is the mixing angle, �+ = �e + �n is the sum of the

electron and nuclear gyromagnetic ratios and A the hyperfine interaction [49]. If

the nuclear spin was in the *-state in the absence of the electron for example, it

turns into the | *#i after the electron # is loaded. This state then starts precessing

around the new precession axis, shifted by an angle ✓. The angle ✓ is small at

the magnetic field of 1.2 � 1.8T used in the experiments (✓ ⇡ 2 ⇥ 10�3), but the

e↵ect is magnified by the repeated switching of the precession axis, at random times

dictated by the tunnel rates of the electron to the reservoir. Simulation by Pla et

al. [49] revealed that the random switching lead to unpredictable trajectories of
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Figure 5.26: Energy diagram of the 2P molecule with an electron spin-down
(2P+) and without an electron (2P2+).

the nuclear spin state on the nuclear spin Bloch sphere, leading to mixing of the

*-state with the +-state. The + admixture leads to a finite probability of the nuclear

spin state being projected into the +-state upon measurement. The simulation of

Pla et al. reproduced their measured transition frequencies remarkably well, and

replicate the linear dependence on the ionisation/neutralisation rate �*!+ = p�I/N,

with p = 1.91(8) ⇥ 10�6. The coe�cient p = �*!+/�I/N can be interpreted as

the probability of the nuclear spin flipping for each ionisation/neutralisation event.

Pla et al. suggest that p can be related to the admixture sin2(✓/2) of the *-state in
Eq. 5.3.10. The value sin2(✓/2) ⇡ A2/4(�+B0)2) = 1.3 ⇥ 10�6 indeed matches the

measured value p = 1.91(8)⇥ 10�6 well. This suggests that p scales as (1/B0)2, and

can be used to normalise the data from experiments performed at di↵erent magnetic

fields.

Before the nuclear spin transition rates of Table 5.4 measured on the 2P molecule

that we investigate here can be attributed to relaxation or excitation, the ordering

of the nuclear spin energy levels needs to be established, in the presence and absence

of an electron spin. During the nuclear spin tracking experiment the energy levels of

the nuclear spins occupy two configurations that maintain the ordering of the nuclear

spin states. The energies of the nuclear spins depend on the hyperfine interaction

with the electron and therefore depend on the electron spin orientation if an electron

occupies the molecule. During the nuclear spin tracking experiment, the chemical

potential µ" of the electron spin-up state is maintained well above the Fermi level

for 99.2% of the time (see Fig. 5.20), so that the molecule is mainly occupied by

spin-down electrons. The molecule is fully emptied for only 3% of the time, but the

chemical potential µ# of the spin-down state is positioned very close to the Fermi level
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Figure 5.27: Measured relaxation rates �+!* on the 2P molecule, compared to
that measured on a single donor, in [8] (Pla2013)

for 79% of the pulse sequence (due to the microwave settling phase). During that

time the electrons spin-down tunnels in and out of the dot repeatedly, so that the

molecule spends a significant time in its fully ionised state 2P2+. These tunnelling

events are studied in more detail in the appendix (see Fig. D.1). The energy diagram

of the molecule in the presence and absence of a spin-down electron is depicted in

Fig. 5.26a and b respectively. In the presence of an electron, the hyperfine interaction

mainly determines the energy levels, with spacing on the order of 50MHz between

consecutive levels. The anti-parallel nuclear spin state are non-degenerate in the

presence of an electron due to the strong Stark shift of the hyperfine values (see

Sect. 5.2.3). In the absence of an electron, the energy are dictated by the nuclear

Zeeman splitting only, leading to spacing of about 15MHz between subsequent

levels. However, the antiparallel nuclear spin states now become nearly degenerate,

and are only split by magnetic gradients and dipolar interaction between the states.

The magnetic gradient present in the fridge (0.5% variation over 1 cm), leads to a

negligible energy splitting of at most 8 ⇥ 10�3 Hz due to the small 1 nm distance

between the dots. The magnetic dipole-dipole interaction that can take values of up

to 30Hz, could therefore become the dominant e↵ect and lead to hybridisation of

the antiparallel states when the molecule is ionised. The ordering of the nuclear spin

energy levels however remains the same in the presence or absence of the electron

spin-down, in decreasing order of energy : S1 = | ++i, S2 = | +*i, S3 = | *+i and
S4 = | **i.

The matrix element in the transition rate matrix M estimated from the Markov
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model (Table 5.4) can now be assigned to relaxation and excitation events. The

transition rates above the main diagonal correspond to nuclear spin relaxation (blue

and cyan in Table 5.4). The single nuclear spin relaxation relaxation rates (1.3 �
2.6⇥10�2 Hz, in blue), are much larger than the simultaneous nuclear spin relaxation

rate of 0.13+0.18
�0.09⇥10�2 Hz (in cyan) due to the latter being an unlikely event. Three

of the four measured single nuclear spin relaxation rates are in agreement with the

nuclear spin relaxation value of 1.54(17) ⇥ 102 measured by Pla et al. on a single

phosphorus donor (within uncertainties, see Fig. 5.27). The fourth relaxation rate

�++!+* = 2.6+0.9
�0.7 ⇥ 10�2 Hz is 70% larger than that measured on the single donor.

The single spin nuclear relaxation rates measured on this 2P molecule in this work,

and on the single donor of Pla et al. are indicative of nuclear spin-down lifetimes

of 50 s. These lifetimes are four orders of magnitude smaller than that of 10 hours

measured by Feher at al. in bulk-doped samples [54]. The reason for the decreased

nuclear spin relaxation times is not understood so far. Feher et al. observed an

alternative nuclear spin relaxation mechanism in which the nuclear and electron

spin simultaneously flip (+"!*#) [54]. This relaxation pathway cannot explain the

relaxation times in our work and that of Pla, because it requires the electron to be

in the spin-up states.

We now turn to the transition rates corresponding to nuclear spin excitations

(*!+). The transition rates are found below the main diagonal of the transition rate

matrix M estimated from the fitted Markov model (red and orange in Table 5.4),

with four values ranging from 2.6 � 5.4 ⇥ 10�2 Hz. These values are of the same

order of magnitude to the transition rate �*!+ = 4⇥ 10�2 � 8⇥ 10�3 Hz measured

by Pla et al. on a single phosphorus donor [8]. In our experiment, we estimate the

ionisation/neutralisation rate to be �I/N ⇡ 9.5 kHz (see Fig. D.1), leading to values

nuclear flip probabilities pexp = �*!+/�I/N summarised in Table 5.4. In the table, we

also display the values pexp reported in [8] and [46], normalised to the magnetic field

of 1.4T our experiment using a (1/B0)2 dependence. The values pexp, normalised

for both B0 and A, are also displayed as p̄exp.

Transition +*!++ *+!++ **!+* **!*+ Pla2013 Mad2021 Mad2021
pexp (10�6 Hz) 5.7+1.7

�1.6 2.7+1.0
�0.8 2.9+2.1

�1.5 3.0+1.8
�1.5 3.0± 0.1 2.5 0.36

A (MHz) 91 185 185 91 114 95 9
p̄exp (10�6) 9.4 1.1 1.2 4.9 3.2 3.8 61

Table 5.4: pexp = �*!+/�I/N normalised to B = 1.4T. p̄exp is the value of pexp normalised
to A = 117 and B = 1.4T. Pla2013 refers to [8], Mad2021 to [46].

The fully normalised flip-probabilities p̄exp measured on our device agree within
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a factor 3 with the values measured by Pla et al. in [8] .The ionisation shock e↵ect

is therefore the likely cause of the enhanced nuclear spin excitation rates measured

in our device.

Finally, we address the transition rates that correspond to a flip-flop of the two

nuclear-spin : *+$+*. The Markov model yielded �*+!+* = 0.89+0.62
�0.48 ⇥ 10�2 Hz,

and �+*!*+ = 2.2+1.3
�1.1⇥ 10�2 Hz. The 90% uncertainty intervals do not overlap with

zero, so that it is very likely that the antiparallel states are coupled by some inter-

action. In the following we attribute the measured flip-flop transition rate to the

magnetic dipole interaction between the nuclei. First, we investigate if the measured

transition rate could result from independent nuclear spin flip events that cannot

be separately observed due to the limited sampling frequency of the nuclear spin

measurement. In the presence of a spin-down electron, the antiparallel states #*+
and #+* are split by 53MHz. If we assume that the flip events are independent,

a transition from one to the other would involve one excitation and one relaxation

event during a single time step of the measurement. The probability of this hap-

pening over two time steps instead of one, can be estimated from the transition

probability matrix A. A transition from +* (2) to *+ (3), can occur via the state

++(1), with probability a2,1⇤a1,3, or the state ** (4) with probability a2,4⇤a4,3. The
probability of the the flip-flop transition to happen over two time-steps is therefore

1.4% and would be even less likely over a single time step. The model estimates

the probability of the event happening over a single time step to be 5 times larger

(7+5
�4). Even when accounting for the confidence bound, it appears unlikely that the

flip-flop process arises from two independent relaxation/excitation events occurring

within the same time step.

Second, if we assume the flip-flop transition to be due to a single mechanism,

it would involve a direct transverse coupling between the states. Such a coupling

between the states exists in the form of the magnetic dipole-dipole interaction. The

interaction between two classical magnetic dipoles, s1 and s2 separated by a distance

r along the direction r̂ is given by :

Ddd =
µ0

4⇡r3
(3(s1 · r̂)(s2 · r̂)� s1 · s1)

=
µ0

4⇡r3
s1s2 (1� 3cos(✓)) ,

(5.3.11)

where ✓ defines the angle between the donor separation axis and the global magnetic

field (cos(✓) = B̂0 · r̂). The angle ✓ allows the simplification of the expression

Eq. 5.3.11 because the magnetic dipoles can be considered to be parallel to the
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global magnetic field direction. Indeed, in the quantum mechanical picture the

nuclear spins quantisation axis is defined by the direction of the global magnetic

field.

For the magnetic dipole of the nuclei (�nh/2) the maximum dipole coupling

strength is 30.2Hz at two critical angles.

For the magnetic dipole interaction to lead to the observed nuclear spin flip-

flops the strength of the interaction needs to be comparable or larger than the

energy splitting. When an electron is neutralising the donor the splitting between

the two antiparallel states +* and *+ is 53MHz and cannot be accounted for by

the magnetic dipole interaction. However, in the absence of the electron, the energy

splitting between the nuclear states is much smaller and determined only by the

magnetic gradient. This gradient is small over the 1 nm separation of the dots, and

leads at most to a splitting of 8 ⇥ 10�3 Hz, a value much smaller than the one of

30.2Hz that the dipolar interaction can reach in the device. The observed flip-flop

transition rates could therefore be attributed to the magnetic dipole interaction

between the nuclei.

5.3.4 Conclusion

This section described the first demonstration of nuclear spin readout on a tightly

bound donor molecule, with a fidelity of 88%. We then use a hidden Markov model

to extract the transition rates between the nuclear spin states of the donor molecule

consisting of two phosphorus donors separated by ⇡ 0.9 nm. Using the optimal

Markov model we reconstruct the most likely nuclear spin state sequence. The

transition rates obtained from the Markov model indicate that the nuclear spin

relaxation rates are of similar magnitude as that measured in ion-implanted single

donor [8]. This is consistent with a relaxation process dominated by hyperfine medi-

ated nuclear-electron spin flip-flops, and could indicate that additional noise sources

present in ion-implanted devices due to the proximity of electrostatic gates do not

play a role in nuclear spin relaxation. This needs to be confirmed by further mea-

surement such as magnetic field dependencies that are know to di↵er for di↵erent

relaxation mechanisms [56]. The transition rates of the *!+ that correspond to nu-

clear spin excitation could be attributed to the hyperfine shock e↵ect, also observed

in single donor devices. Finally, non-zero transition rates between the antiparallel

nuclear spin states were identified as a possible manifestation of a magnetic dipole

interaction between the two nuclear spins in the molecule. Further measurements

of the transition rates could provide further evidence that the dipole interaction
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is indeed responsible for the observed flip-flop transition. In particular, we expect

the flip-flop transition rate to increase with the time the molecule spends in the

fully ionised state, because only then are the nuclear spin sensitive to the dipolar

interaction. Unfortunately the antenna of the device was damaged shortly after the

nuclear spin tracking experiment (likely due to an electrostatic discharge (ESD) that

occurred during work on the microwave setup) [7], and such an experiments could

not be carried out. To avoid damage of the antenna due to ESD, extreme care has to

be taken when connecting/disconnecting instruments to the coaxial cables leading to

the antenna, by grounding oneself and manually checking that the pulse amplitudes

are limited. Damage to the antenna can still occur despite these precautions, as

was the case for the device studied in this chapter. An alternative strategy to limit

the risk of ESD damage to the antenna is to increase the cross-sectional area of the

antenna bridge [57]. This reduces the electric current densities associated with an

ESD discharge and can avoid damage to the metal. However, this also reduces the

current densities during ESR operation of the antenna, and accordingly reduces the

amplitude of the microwave magnetic field used to drive electron spin transitions.

Madzik [57] increased the cross-section of the antenna bridge from ⇡ 50⇥ 40 nm2 to

⇡ 100⇥ 100 nm2 as is the case in our devices and found that this solved the issues

with antenna damage due to ESD. It is therefore unclear if increasing the bridge

cross-section is the appropriate strategy to avoid the damage that happened in our

device.

5.4 Conclusion

In this chapter, measurement on two three-dot devices fabricated using STM hy-

drogen lithography were used to assess the feasibility of engineering multi-donor

quantum dots. A particular focus was placed on two-donor quantum dots (“2P

molecules”) that are at the core of the electrically driven donor qubit proposed in

Chapter 4. We presented measurements on three such 2P donor molecules.

First we estimated the donor configurations on two such donor molecules to

demonstrate a placement precision of±0.25 nm. The precise placement of the donors

hinges on the defining a precise lithographic opening in the hydrogen resist, to con-

strain the number of donors that will incorporate within it, and the spacing between

them. The electron spin readout fidelity of 83% measured on one 2P molecule of

this device is increased to 94% on a 2P molecule in a second device, by optimising

the design and fabrication of the charge sensor. Precise spectroscopic measurements
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of the hyperfine coupling within that molecule is then performed using adiabatic

electron spin inversion. The measurements uncover a strong linear Stark shift not

observed on previous tightly bound donor molecules [4]. The spectroscopic mea-

surements improve the precision of the donor metrology and allow to pinpoint the

likely spatial configuration of the donors within the silicon lattice.

We then achieve the first demonstration of nuclear spin readout on a tightly

bound donor molecule, with a fidelity of 88%. Using nuclear spin readout we track

the nuclear spin states over time. The Markov model is used to reconstruct the

most likely nuclear spin sequence and extract the transition rates between nuclear

spin states. The Markov model uncovers nuclear spin dynamics within the molecule

on the time scale of 30 seconds. Individual excitation of the nuclear spin states

are consistent with the hyperfine shock mechanism measured by Pla et al. on single

phosphorus donors [8]. The individual relaxation rates measured on the 2P molecule

are in agreement with those measurements by Pla et al. on the single donor. The

Markov model also reveals a finite, previously unreported transition probability

between the two antiparallel nuclear spin states of a single donor-molecule. These

transition events correspond to flip-flops of the nuclear spins and are attributed to

the dipolar interaction between the nuclear spins, that can become relevant when

the donor molecule is fully ionised.

Finally, the measurement of the nuclear spin dynamics on the 2P donor molecule

presented in this chapter gives experimental support to the electrically-driven donor-

based qubit proposed in Chapter 4. Indeed, nuclear spins produce the magnetic

gradients that drive the qubit and couple it to charge noise. In order to provide

reliable driving and protection from charge noise it is therefore essential for the

nuclear spins to remain stable in time. The long nuclear spin lifetimes (10 to 20

seconds) measured in this chapter on a 2P donor molecule indicate that the nuclear

spins are stable enough for the particular implementation of the qubit focused on in

Chapter 4, which uses a 2P donor molecule to protect the qubit from charge noise.

Indeed, the measured nuclear spin lifetimes would allow for tens of millions of qubit

operations before the nuclear spins flip.
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Chapter 6

Conclusion

Electron spins bound to phosphorus donors in silicon have demonstrated all of the

basic requirements for a large-scale quantum computer, initialisation, single and two-

qubit gates, and measurements [1, 2, 3, 4, 5, 6]. However, scaling up to the millions of

qubits required for a fault-tolerant universal quantum computer requires the careful

design and optimisation of qubit parameters that are not immediately obvious from

small-scale quantum devices. In this thesis, we have investigated di↵erent techniques

to aid in the scalability of phosphorus donor electron spin qubits in silicon. For

a large-scale quantum computing architecture long-distance coupling is a crucial

requirement to allow for the integration of the classical control electronics required

to operate the quantum computer [7]. Such long range coupling is not easily achieved

using single spin qubits. To this end, we have proposed a new fast, high-fidelity,

qubit that can be strongly coupled to superconducting microwave cavities, allowing

for this critical long-distance coupling. The qubit is based on a pair of donor-based

quantum dots and relies on engineering the hyperfine interaction of the electron with

the donors in the system. We showed that the hyperfine interaction necessary for

such a qubit can be readily measured and characterised using ESR and examined

the nuclear spin dynamics associated with the donor system. These results put the

demonstration of a low error-rate donor-based flopping-mode qubit that can readily

coupled to microwave cavities for long-distance inter-qubit coupling within reach.

6.1 Summary of results presented in this thesis

In Chapter 3, we theoretically analysed the performance of the general class of

qubits known as flopping-mode EDSR qubits [8, 9, 10, 11, 12] when a single electron

is delocalised across a double quantum in a gradient magnetic field. We showed
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how the qubit gate time can be controlled by the strength of the perpendicular

magnetic field gradient and that the longitudinal magnetic field gradient gives rise

to second-order charge noise sweet-spots previously reported in [11, 13]. However,

unlike previous work on charge noise sweet-spots we find that the second-order sweet

spot, while increasing the dephasing time due to noise in the qubit energy, lowers

the overall fidelity of single qubit gates. Therefore, we propose that to obtain the

optimal qubit performance the longitudinal magnetic field gradient should be min-

imised (lower dephasing rates) and the perpendicular magnetic field gradient should

be maximised (fast qubit operations). Through a detailed theoretical analysis of

qubit driving and errors we showed that single-qubit gate errors below 10�3—well

below the 2D surface-code error threshold are feasible in current device architec-

tures. Throughout the chapter we showed that complicated error channels involving

dephasing, relaxation, and leakage can be readily explained by a series of analyti-

cal expressions, greatly simplifying the required calculations and allows for a more

intuitive picture of the optimisation of the qubit. The results presented will allow

for the design and optimisation of flopping-mode qubits in quantum dot and donor

systems, which, was the focus on the next chapter.

In Chapter 4 we theoretically propose and analyse a flopping-mode qubit based

on phosphorus donor quantum dots in silicon. The qubit was defined between a two-

donor quantum dot (2P) and a single donor (1P) where the hyperfine interaction is

used to electrically drive flip-flop transitions between the electron and the 1P nuclear

spin. We use the theoretical error model in the previous chapter to estimate the

qubit performance while including additional leakage states due to the nuclear spin

states of the phosphorus donors. The longitudinal e↵ective magnetic field gradient

in this flopping-mode qubit arises from the hyperfine interaction of the two donors

on the 2P quantum dot. We show that the longitudinal magnetic field gradient can

be minimised through electron shielding (operating with two closed shell electrons

on the 2P) and initialising the nuclear spins into antiparallel nuclear spin states to

cancel the total hyperfine interaction felt by the electron spin. We then showed that

using the optimised magnetic field gradients the qubit can be operated with an error

rate of 2 ⇥ 10�4 at a magnetic field of ⇠ 0.2 T. Crucially, the qubit maintains an

error rate below 10�3 over a wide range of magnetic fields (0.1 � 0.6T) and tunnel

couplings (⇠ 1� 20GHz). We then showed that the qubit can theoretically reach the

strong-coupling regime to a superconducting microwave cavity with a cooperativity,

C = 130 � 1. The robustness to fabrication tolerances in terms of tunnelling

coupling and magnetic fields will be crucial when considering scaling such a qubit
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to a large quantum computer. Indeed, using the excellent donor-based flopping-

mode qubit we proposed a 2D surface-code quantum computing architecture where

the qubit can be coupled either via direct charge-dipoles or floating gate structures.

The architecture utilises only 2 gates per qubit in nodes with qubit densities 28 µm�2

(0.25 µm�2) for the dipole coupling (floating gate coupling) meaning that thousands

of qubits could potentially fit on a single silicon chip. Inter-node coupling can be

achieved by superconducting microwave cavities over the millimetre length-scale to

allow for the classical control electronics required for measurement and control of

the qubits.

Lastly, in Chapter 5, we investigated the feasibility of engineering small donor

molecules using STM hydrogen lithography. We designed and optimised a three-dot

device to allow for independent operation of three donor qubits and coupling of

two of the three qubit pairs. The device design is compatible with the long term

goal of running a small fragment of the surface-code error-correction algorithm with

independent electrostatic control, initialisation, and measurement of three donor-

based quantum dots [14]. Using this new device design, we demonstrated a high

degree of control over the fabrication of small donor molecules. On a first device

with two 2P molecules, the donor configurations were estimated for each of the

quantum dots by comparing measurements of the quantum dot charging energies

to recently modelled tight binding simulations and matched the lithographic areas

imaged during STM fabrication. This donor metrology indicates that a precision

of ⇡ ±0.25 nm can be achieved for 2P molecules by defining the lithographic mask

with atomic precision. We demonstrated single-shot spin readout of the electron on

the left 2P donor-quantum dot with 83% fidelity, which was limited by the signal-

to-noise ratio of the SET and prevented electron spin readout on charge transitions

with a faster tunnel rate (> 15 kHz). The sub-optimal on-o↵ ratio of the SET

was caused by variations in the tunnel gap dimensions of the SET caused by drift

of the STM tip during patterning. We then demonstrated strategies to mitigate

such lithographic variations and in a subsequent device the optimised SET yielded

a significant improvement of the electron spin readout fidelity to 94.4% on another

donor quantum dot. Electron spin resonance using adiabatic spin inversion was then

demonstrated on the first electron of the quantum dot. The ESR spectra revealed

four spin inversion peaks which we attributed to a 2P molecule with a hyperfine

interaction of the first and second nucleus to the electron of A1 = 189± 5MHz and

A2 = 83 ± 5MHz, respectively. The di↵erence in the hyperfine interaction of each

phosphorus nuclear spin was attributed to a linear Stark e↵ect of larger magnitude
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than that observed in an ion-implanted single phosphorus donors (with a linear

Stark coe�cient of ↵2P = 5.05 MHz/MV/m compared to ↵1P = 0.34 MHz/MV/m

measured in a single donor device [15]). Using the total hyperfine value and the

di↵erence between A1 and A2 we identified [1.5, 0.5, 0]a0 as the most probable donor

configuration, where a0 is the silicon lattice constant, which was consistent with

the lithographic region defined during STM fabrication. Finally, we demonstrated

nuclear spin readout on the 2P molecule with a fidelity of 88%. This is the first

demonstration of nuclear spin readout on a tightly bound donor molecule and was

used to track the state of the nuclear spin in real-time. A hidden Markov model

was used to reconstruct the sequence of nuclear spin states over time and to extract

the nuclear spin lifetimes. The optimal Markov model yielded nuclear spin lifetimes

ranging from 11+4
�3 s to 22

+8
�5 s of the four nuclear spin states. The measured relaxation

rates of 1.3 � 2.6 ⇥ 10�2 Hz are in agreement with the value of 1.54(17) ⇥ 10�2

measured by Pla et al. on a single phosphorus donor [16]. The nuclear excitation

rates extracted from the Markov model (2.6� 5.4⇥ 10�2 Hz) were attributed to the

ionisation-shock mechanism identified by Pla et al. on single donors [16]. Finally

the observed transition rates between the antiparallel nuclear spin state *+!+*
was attributed to the first experimental observation of the dipole coupling between

nuclear spins of a donor molecule.

6.2 Future work

In this thesis we investigated the feasibility of electrically driving a donor-based

electron spin qubit fabricated using STM hydrogen lithography.

Chapters 3 and 4 theoretically demonstrated that a flopping-mode EDSR qubit

is feasible using a 1P-2P quantum dot pair in an all-epitaxial silicon device. Chapter

5 demonstrated that the precise manufacturing of the 2P quantum dot is possible,

and previous work [17] demonstrated that the single donor can also be manufactured

using precision STM lithography. The natural stepping stone would therefore be

to fabricate a dedicated device with at least one 1P-2P quantum dot pair. The

three quantum dot design with a 1P-2P-1P configuration would be a already proven

device design that would be suitable for demonstrating the flopping-mode qubit.

Demonstration of electrical driving in the regime where the charge qubit energy

is much larger than that of the spin qubit should be the first goal, that is, the

tunnel coupling is much larger than the Zeeman energy. This could be simplified by

operating the spin qubit at low magnetic field (B = 0.2 � 1T) and by measuring
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the spin state with Pauli blockade [18], and by manufacturing a device with large

tunnel coupling tc, such that 2tc > �eB.

In Chapter 5, the flip-flop transition rates between the nuclear spin states was

attributed to the dipolar coupling. The dipolar coupling could be further explored

in two ways. First, the uncertainty bounds in the calculated transition frequencies

could be simply lowered by using the “majority” peak identification of the nuclear

spin readout instead of the single peak detection procedure. Additionally, the uncer-

tainty bounds could be further reduced by using a continuous-time hidden Markov

model (instead of a discrete-time model), and using a model that describes the

measurement with continuous variables. Using a continuous-time Markov model

will allow for better time resolution of the transition rates and therefore a better

estimate of the dipolar coupling strength. Secondly, the measured flip-flop transi-

tion rate should be matched to time-domain simulations, modelling the continuous

switching on and o↵ of the dipolar interaction. This modelling will allow for a di-

rect comparison to the experimentally measured nuclear spin probabilities and will

directly confirm the e↵ect of the dipolar coupling on the nuclear spin dynamics.

Finally, the nuclear spin readout fidelity of 88% demonstrated in Chapter 5 could

be dramatically increased by improving the ESR setup to avoid the waiting time

required for the microwave source switches frequency (80% of the measurement time

is spent waiting). This can be circumvented by implementing IQ modulation of the

microwave signal such that the mixed microwave can be swept in real-time and not

require switching of the internal microwave generator.
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Appendix A

Chapter 2 appendix

A.1 Surface code estimations

The number of qubits and operation time needed to factorise a N -bit number using a

quantum computer running the surface code (as displayed in Fig. 2.3 and Table 2.2)

is obtained following calculation in ref. [1].

The number of physical qubits needed to define as single computational logical

qubit can be obtained using equations (10) and (11) in ref. [1]. The logical qubit

error PL is well approximated by PL ⇡ 0.03 (p/pth)
de where de is the error dimension

de = (d + 1)/2 defined using the surface code distance d. The number of physical

qubit nq can be expressed as a function of the surface code distance: nq = (2d�1)2.

Using all three equations, we find that the number of physical qubit, each with an

error rate p, below the error correction threshold pth, needed to encode a single

logical qubit with error PL is given by:

nq ⇡
✓
4
ln(0.03/PL)

ln(pth/p)

◆2

. (A.1.1)

The time of execution of Shor’s algorithm for an N-bit number is given in ap-

pendix M of ref. [1] to be equal to 120N3tM for one specific implementation of the

algorithm optimised for low number of logical qubits needed. This is the formula

used in Table 2.2.

Note that the algorithm that we chose needs only 2N computational logical

qubits, but but the completion time of the algorithm scales as N3 [1, 2, 3, 4],

whereas other algorithms need much more computational logical qubits (scaling as

O(N3)), but operate much faster (O(log3N)).
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Appendix B

Chapter 3 appendix

B.1 Full second order e↵ective flopping mode Hamil-

tonian

A Schrie↵er-Wol↵ transformation on the full flopping mode Hamiltonian, allows a

demonstration of the natural symmetry in the matrix and the estimation of the

leakage couplings.

The full matrix including the lowest excited charge states becomes as follows in

the systems’s eigen-basis
n
|g" �i, |g# �i, |g" +i, |g# +i

o
:

Hrl =

0

BBBBB@

0 ⌦r ⌦13
l
(✏) ⌦14

l

⌦r ⌦̃s(✏) ⌦23
l

⌦13
l
(�✏)

⌦13
l
(✏) ⌦23

l
⌦̃ ⌦r

⌦14
l

⌦13
l
(�✏) ⌦r ⌦̃ + ⌦̃s(�✏)

1

CCCCCA
, (B.1.1)

where we used a di↵erent global energy shift, the qubit splitting ⌦̃s and Rabi fre-

quency ⌦r are as defined in Eqs. 3.2.19 and 3.2.20 and we defined the modified

charge qubit energy ⌦̃, and the additional coupling terms ⌦13
l
, ⌦14

l
and ⌦23

l
are

leakage couplings:
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⌦̃ = ⌦ � ✏

⌦
�⌦z +

t2

2⌦3
�⌦2

z
+

t2

2⌦ (⌦2 � ⌦2
s
)
�⌦2

x
(B.1.2)

⌦13
l
(±✏) = 2t

⌦

⇣
1± ✏

⌦2
�⌦z

⌘
· ✏d (B.1.3)

⌦23
l

= �✏tc�⌦x(⌦2 + ⌦⌦s � ⌦2
s
)

⌦3⌦s(⌦ � ⌦s)
· ✏d (B.1.4)

⌦14
l

= �✏tc�⌦x(⌦2 � ⌦⌦s � ⌦2
s
)

⌦3⌦s(⌦ + ⌦s)
· ✏d (B.1.5)

As expected, the charge qubit splitting ⌦̃ is equal to the bare charge qubit

splitting ⌦ to zeroth order in the energy gradients �⌦, and the coupling element is

also equal to the bare charge qubit coupling element 2t
⌦ ✏d to zeroth order.

At low spin-charge detunings, when ⌦s ! ⌦, we find the following asymptotic

expressions for the leakage couplings ⌦23
l

and ⌦14
l

that involve both a charge transi-

tion and a spin transition:

⌦23
l

���!
⌦s!⌦

�h
2✏

⌦
· ✏d (B.1.6)

⌦14
l

���!
⌦s!⌦

�h
✏�

⌦2
· ✏d (B.1.7)

Both transition matrix element are vanishingly small1 when the qubit is operated

at small electric detuning ✏ << ⌦, especially compared to the direct charge transition

coupling element ⌦13
l

=: ⌦l that is approaches the value ⌦13
l

⇡ ✏d in that regime.

This reflects the fact that direct charge transitions are a lot more probable then the

two indirect ones involving both a charge and spin transition.

In summary, the analysis of the matrix element of the e↵ective Hamiltonian

motivates the use of the following simplified e↵ective Hamiltonian of the following

form:

Hrl =

0

BBBBB@

0 ⌦r ⌦l 0

⌦r ⌦̃s 0 ⌦l

⌦l 0 ⌦̃ ⌦r

0 ⌦l ⌦r ⌦̃ + ⌦̃s

1

CCCCCA
, (B.1.8)

1Physically, the hybridisation factor h is bound by one due to the normalisation condition of
the wavefunction |h|2  1
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In our numerical error modelling Sect. 3.3, we numerically compute the flopping

mode Hamiltonian, under the only assumption that the indirect leakage coupling

vanish, as in the above matrix.

B.2 Rotating frame approximation for the flop-

ping mode qubit

In Sect. B.1 we derived through an analysis of the matrix elements of the e↵ective

flopping mode Hamiltonian that the flopping mode qubit can be accurately described

by the e↵ective Hamiltonian of the following form (see Eq. B.1.1):

Hfm =

0

BBBBB@

0 ⌦r ⌦l 0

⌦r ⌦̃s 0 ⌦l

⌦l 0 ⌦̃ ⌦r

0 ⌦l ⌦r ⌦̃ + ⌦̃s

1

CCCCCA
, (B.2.1)

Where ⌦̃s is the flopping mode qubit energy splitting (splitting between hybridised

spin states), ⌦r is the flopping mode qubit Rabi frequency (Rabi frequency that

drives flips of the hybridised spin) and ⌦l is the dominant leakage coupling corre-

sponding to a charge excitation without spin flip, between the states separated by

the hybridised charge qubit splitting ⌦̃. Not that all coupling terms are proportional

to the electric detuning drive amplitude ✏d(t) reflecting the fact that these coupling

terms all emerge from coupling of the states to the drive electric field.

To understand the dynamics of the system when it is driven, it is useful to go

into a rotating frame that precesses with the frequency associated with the one

or two qubit splitting. In that way, the dynamics associated with the drive can

be separated from the natural Larmor precession of the qubit(s). For a four level

system like the one we are considering, this can be achieved with the following

unitary transformation U(t) = exp(�ıR!f t), where the generator matrix R is given

by:

R = ·

0

BBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1

CCCCCA
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Let us now transform the Hamiltonian Hfm , assuming the electric field is driven

with a drive frequency !d:

⌦r(t) = ⌦r cos(!dt) (B.2.2)

⌦l(t) = ⌦l cos(!dt) (B.2.3)

The transformed Hamiltonian in the rotating frame consists in a first term origi-

nating from the transformation being time dependent, and a second canonical change

of coordinates:

HRF
fm = !fR + U(t) ·Hfm · U(�t) (B.2.4)

=

0

BBBBB@

0 exp(�ı!f t)⌦r(t) exp(�ı!f t)⌦l(t) 0

exp(ı!f t)⌦r(t) ⌦̃s � !f 0 exp(�ı!f t)⌦l(t)

exp(ı!f t)⌦l(t) 0 ⌦̃ � !f exp(�ı!f t)⌦r(t)

0 exp(ı!f t)⌦l(t) exp(ı!f t)⌦r(t) ⌦̃ + ⌦̃s � 2!f

1

CCCCCA
+ !f1

(B.2.5)

Here we can subtract the global energy shift !f1.

By rotating the frame with the driving frequency (!f 7! !d), we can expand the

o↵ diagonal driving terms, into a stationary term and two terms rotating with twice

the drive frequency !d

exp(±ı!f t)⌦r/l(t) 7!
1

2

�
⌦r/l + ⌦r/l cos(2!dt)± ı⌦r/l sin(2!dt)

�
. (B.2.6)

If the driving strengths ⌦r/l, are much smaller then the driving frequency !d, the

terms oscillating with twice the drive frequency average out over a Rabi rotation of

much slower frequency ⌦r/l , and the o↵ diagonal terms simplify to
⌦r/l

2 . This is

called the rotating wave approximation (RWA), and yields the following Hamiltonian

in the rotating frame:

HRF

fm =

0

BBBBB@

0 ⌦r/2 ⌦l/2 0

⌦r/2 ⌦̃s � !d 0 ⌦l/2

⌦l/2 0 ⌦̃ � !d ⌦r/2

0 ⌦l/2 ⌦r/2 ⌦̃ + ⌦̃s � 2!d

1

CCCCCA
, (B.2.7)

When the electric field is driven at the frequency corresponding to the flopping

mode qubit splitting (!d = ⌦̃s), the Hamiltonian transforms into two 2-level systems

308



corresponding to the ground charge state spin system (the flopping mode qubit) and

its excited charge state counterpart, that are separated by the energy gap � = ⌦̃�⌦̃s

and coupled via the leakage couplings ⌦l:

HRF

fm =

0

BBBBB@

0 ⌦r/2 ⌦l/2 0

⌦r/2 0 0 ⌦l/2

⌦l/2 0 � ⌦r/2

0 ⌦l/2 ⌦r/2 �

1

CCCCCA
, (B.2.8)

The coupling ⌦l between the two subsystems corresponds to charge leakage and

is studied in detail in Sect. 3.3.2, using time evolutions of Hamiltonians of the form

Eq. B.2.8.

B.3 Variance of a noisy variable with given PSD

For a given time dependent noise parameter x(t), sampled as xn = x(n�t) at in-

tervals �t, over a time T = N�t, the power spectral density of the signal at the

angular frequency ! is defined as :

S(!) = �t2/T

�����

NX

n=1

xne
�ı!n�t

����� . (B.3.1)

The PSD can be written in terms of the DFT coe�cients Xk:

Xk =
NX

k=1

xne
�ı2⇡kn/N . (B.3.2)

We use !(k) = 2⇡/Tk = �!k, and get:

S(!(k)) = T/N2|Xk|2 (B.3.3)

The variance of the discrete variable x (with zero expectation value, without loss

of generality), when sampled over the time interval I = [�t, T ] can be approximated
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by :

var(x) = h|x|2iI � hxi2
I
⇡ 1

N

NX

n=1

|xn|2

=
Par.th.

1

N

1

N

NX

k=1

|Xk|2 =
1

T

NX

k=1

S(!(k))

(B.3.4)

Where we used Parseval’s theorem for DFTs to relate the samples xn to the DFT

coe�cients Xk. We can write the last sum as a Riemann integral in the limit

N ! 1:

var(x) ⇡ 1

2⇡

NX

k=1

S(!(k))�! ⇡ 1

2⇡

ˆ 2⇡/�t

2⇡/T

S(!)d! =

ˆ
f�t

fT

S(f)df. (B.3.5)

We have here approximated the variance of the random variable when sampled over

a time T , in discrete time steps �t, by the integral of the PSD over the corresponding

frequency range [fT , f�t], where fT = 1/T and f�t = 1/�t. For a white noise power

spectrum, the variance of the parameter will essentially be proportional to the length

of the measurement.

For a white noise power spectrum, the variance of the parameter will essentially

be proportional to the length of the measurement. In the case of the two noise

sources we are considering, we can use the f�↵ PSD dependance to get an estimate

of the variance of the noise parameter when sampled similarly:

var(x) ⇡
ˆ

f�t

fT

f1Hz · f�↵df =
f1Hz

1� ↵

✓
1

f↵�1
�t

� 1

f↵�1
T

◆
⇡ f1Hz

↵� 1
T ↵�1, (B.3.6)

Were the last step assumes (as in most measurement), that fT � f�t, and we have

assumed ↵ > 1. Thus the variance of the noise parameter when sampled during a

time interval T grows as T ↵�1. If ↵ = 1, the integral simplifies to :

var(x) ⇡ f1Hzln(T/�t) ⇡ f1Hzln(T ). (B.3.7)

Thus, for pure 1/f noise, the noise variance grows logarithmically with the length

T of the measurement.
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B.4 Analytical error with only x-noise source

Let us now investigate how the dephasing error of a single qubit gate can be calcu-

lated within the frame of the quasi-static approximation. A general qubit Hamil-

tonian H, tuned in to resonance to perform an x gate (e.g. in the rotating frame

or tuned physically), under the presence of noise �⌦1 and �E on the x and z axes

respectively, has the form (in angular frequency units) :

H/~ = �E�z + (⌦1 + �⌦1)�x, (B.4.1)

This is the case for the reduced flopping mode HamiltonianHr derived in equ. 3.2.18,

when transformed in a rotating frame.

The time evolution associated with the above Hamiltonian can be seen as an im-

perfect rotation around the x-axis of the Bloch sphere, with angular Rabi frequency

2⌦1:

U(t) = exp (�ıHt/~) ⇡ exp (�ı2⇡⌫1t�x) , (B.4.2)

Where ⌫1 = ⌦1/2⇡. Let us consider an arbitrary unitary gate operation Ux, subject

to a noisy parameter x, that we model as a random variable following a normal

PDF with a variance calculated form a PSD as outlined above. We define the

charge dephasing error of the ⇧/2 gate to be the deviation of the expectation value

of the noisy unitary evolution projected onto the ideal unitary evolution Uid of the

initial state  i,x [5], averaged over the charge noise detuning PDF P (�✏) and over

all startstates in the qubit subspace.

error = 1� E
⇣��h i,x|U †

x
Uid| i,xi

��2
⌘

(B.4.3)

⇡ 1� E
⇣��h i,id|U †

x
Uid| i,idi

��2
⌘

(B.4.4)

= 1� E
�
|h f,x| f,idi|2

�
. (B.4.5)

For computational simplicity, we have here neglected the variation in the initial state

due to noise. As motivated previously, we are interested in estimating the ⇡ rotation

error form the qubit ground state | # �̃i0 (abbreviated as | #i) to the qubit excited

state | " �̃i0 (abbreviated as | "i):

error = 1� E
�
|h f,x| "i|2

�
(B.4.6)

= 1� E (p" (x)) . (B.4.7)
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We have here reduced the error calculation of the ⇡ x-gate to an estimation of the

expectation value of the spin up probability p" (x). Under the typical time evolution

of an x-gate as outlined in equ. B.4.2, p" follows the Rabi formula [6]:

p"(�E, �⌫1, t) =
⌫1 + �⌫1q

(⌫1 + �⌫1)
2 + �E2

sin2

✓
2⇡t
q

(⌫21 + �⌫1)
2 + �E2

◆
. (B.4.8)

Without any noise, the spin up probability describes a pure sin2 oscillation,

with frequency 2⌫1, and according period 1/(2⌫1). A ⇡ gate is achieved at time

t⇡ = 1/(4⌫1).

Again, for simplicity, we assume that the operator of the qubit will use this ⇡

gate time also in the presence of noise. The average Rabi frequency will actually

be slightly higher in the presence of noise, as the actual frequency for each shot is

the sum of squares 2
q

(⌫21 + �⌫1)
2 + �E2 which does not always average to 2⌫1, even

for symmetric distributions of �E. However, for small noise values t⇡ is close to the

optimal ⇡ gate time.

In the presence of only transverse x-noise �⌫1, the ⇡ gate error in equ. B.4.7 can

be calculated analytically:

error = 1� E (p" (0, �⌫1, t⇡)) (B.4.9)

= 1�
ˆ +1

�1
P (�⌫1)p" (0, �⌫1, t⇡) d⌫1 (B.4.10)

= 1�
ˆ +1

�1

1p
2⇡�2

⌫1

exp

✓
� �⌫21
2�2

⌫1

◆
sin2

✓
⇡

2

⌫1 + �⌫1
⌫1

◆
d⌫1 (B.4.11)

=
1

2

✓
1� exp

✓
�
⇡2�2

⌫1

2⌫21

◆◆
(B.4.12)

=
1

2

✓
1� exp

✓
�
⇡2�2

⌫1

2⌫21

◆◆
(B.4.13)

=
1

2

�
1� exp

�
�2(2⇡�⌫1t⇡)

2
��

(B.4.14)

(B.4.15)

This shows that the dephasing error due to a noisy Rabi frequency decays like a

Gaussian with the noise standard deviation and the gate time. For very fast gates,

or very small noise values, the error approaches, zero, whereas it asymptotically

decays to 1/2 for slow gates and high noise values. In the low error regime �⌫1 ⌧ ⌫1,
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the error can be approximated to third order to :

error =
⇣⇡
2

⌘2✓�⌫1
⌫1

◆2

+O

✓
�⌫1
⌫1

◆4

(B.4.16)

The error formula Eq. B.4.11 can be related to the Q factor Q = 2⌫1
�⌫1

:

error =
1

2

 
1� exp

 
�2

✓
⇡

Q

◆2
!!

(B.4.17)

B.5 T1 error decomposition

The decomposition of the error rests on the splitting of the excited state proportion
P

k

��h (t)| +
k
i
��2 in the equation above. The latter can be bound by introducing the

identity in the spin-charge eigenbasis {|ii, i = 0, . . . , 3}:

X

k

��h (t)| +
k
i
��2 =

X

k

�����

3X

i=0

h (t)|iihi| +
k
i

�����

2

(B.5.1)

⇡
X

k

�����

3X

i=1

h (t)|iihi| +
k
i

�����

2

(B.5.2)

< |h (t)|1i|2
X

k

��h1| +
k
i
��2 (B.5.3)

+
X

k

�����

3X

i=2

h (t)|iihi| +
k
i

�����

2

(B.5.4)

In the second step (B.5.2) we used the fact that the overlap h0| +
k
i of the ground

qubit state |0i with any of the two excited charge states can be neglected, and in

the following one we used the triangular inequality.

The last term (B.5.4) can be simplified by approximating hi| +
k
i ⇡ 1 for the two

excited charge states k = 2, 3. We then we get a decomposition of the wavefunction

overlap into the overlap Oi and Od, corresponding to the idle T1 error and drive T1

error respectively:

X

k

��h (t)| +
k
i
��2 < |h (t)|1i|2

X

k

��h1| +
k
i
��2 (B.5.5)

+
3X

i=2

|h (t)|ii|2 =: Oi(t) ·O1,+ +Od(t), (B.5.6)
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Where we defined O1,+ =
P

k

��h1| +
k
i
��2 to be the charge hybridization proportion

of the qubit |1i state.
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Appendix C

Chapter 4 appendix

C.1 Equivalence of flopping-mode qubits

C.1.1 Flip-flop Hamiltonian

Let us now consider a flip-flop qubit, as described in [7], where the left orbital

occupies a MOS dot, and the right orbital occupies the unpaired D0 state of a single

phosphorus donor, in which case the electron spin and the nuclear spin are coupled

via the hyperfine interaction AR. We assume the static magnetic field Bz to be static

across both dots, but take into account that the electron gyromagnetic ratio �L/Re

di↵ers between the MOS dot and the donor so that a di↵erence in the gyromagnetic

ratio arises: �� = �L � �R. The Hilbert space of this system is here twice as large

as the one corresponding to the general Hamiltonian of Eq. 3.2.1 due to the extra

nuclear spin degree of freedom: H = Hn ⌦ He ⌦ Hc.

The full Hamiltonian Hf in the basis | * / +i ⌦ | " / #i ⌦ |L/Ri is given by:

Hf =�̄eB · 1⌦ �z/2⌦ 1� �nBz · �z/2⌦ 1⌦ 1+ 1⌦ 1⌦ (✏�z + t�x) (C.1.1)

+ ��zBz · 1⌦ �z/2⌦ (1/2 + �z/2) (C.1.2)

� ��zBz · 1⌦ �z/2⌦ (1/2� �z/2) (C.1.3)

+ AR (�i/2⌦ �i/2)⌦ (1/2� �z/2) . (C.1.4)

We have here defined the average electron gyromagnetic ratio as �̄ =
�
�L + �R

�
/2,

��z = ��z/2, and have used the Einstein summation notation for the hyperfine

interaction term. From this Hamiltonian it can be seen that only the hyperfine

interaction mixes the nuclear and electron spin states. Because this Heisenberg-type

interaction only couples the electron-nuclear singlet states one can split the nuclear-
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and electron-spin Hilbert space into a direct sum of non-interacting subspaces with

respect to H, corresponding to the total spin states �1, 0 and 1:

Hn ⌦ He = H�1 � H0 � H1, (C.1.5)

where

H�1 = Span ({| +#i}) , (C.1.6)

H1 = Span ({| *"i}) , (C.1.7)

H0 = Span ({| *#i, | +"i}) (C.1.8)

The fact that those subspaces are invariant under Hf simply reflects total spin con-

servation in this system that we assume closed for now (electron–phonon interaction

for example would allow spin relaxation and thus violate spin conservation within

our restricted system). The subspaces H±1 are one dimensional, and thus of no

interest regarding application for quantum computing. We can reduce Hf to the

space H0, by using the following transformations:

�i ⌦ �i 7! �1+ 2�x (C.1.9)

1⌦ �z 7! +�z (C.1.10)

�z ⌦ 1 7! ��z . (C.1.11)

By applying these transformation to Hf , we can reduce it to a Hamiltonian Hr

acting purely on the reduced total Hilbert space Hr = H0 ⌦ Hc:

Hr =

✓
�̄e + �n

2

◆
Bz�z +

AR

4

�
⌦ 1 (C.1.12)

+ 1⌦
✓
✏+

AR

8

◆
�z + t�x

�
(C.1.13)

+


��z
4

Bz�z �
AR

4
�x

�
⌦ �z , (C.1.14)

where we subtracted a global energy shift / 1⌦ 1.

The first summand above (Eq. C.1.12) can be diagonalised, and this will finally

transform Hr into the form of the general flopping-mode Hamiltonian in equ. 3.2.1,
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with its di↵erent parameters defined as follows:

⌦z =

s

(�+Bz)2 +

✓
AR

2

◆2

, (C.1.15)

�+ = �̄e + �n, (C.1.16)

✏̃ = ✏+
AR

8
, (C.1.17)

�⌦z = ��zBzcos(✓B)� ARsin(✓B), (C.1.18)

�⌦x = ARcos(✓B) + ��zBzsin(✓B). (C.1.19)

Here, the angle ✓ corresponds to a very small rotation of the qubit quantisation axis

due the x-component of the hyperfine interaction:

cos(✓B) =
�+Bz

⌦z

⇡ 1, (C.1.20)

sin(✓B) =
AR/2

⌦z

⇡ 0. (C.1.21)

The pseudo-spin basis is here defined as:

"̃/#̃ =
1p
2

⇣
⌥
p
1± cos(✓B),⌥

p
1⌥ cos(✓B)

⌘
,

here expressed in the explicit combined nuclear and electron spin basis {| +"i = | +
i ⌦ | "i,*#= | *i ⌦ | #i}.

The transverse energy di↵erence, that will drive transitions between the two

pseudo-spin states, also called the flip-flop states +" and *#, is here purely produced

by the hyperfine interaction with the right nuclear spin AR, whereas the longitudinal

gradient is purely determined by the electronic g-factor di↵erence.

C.1.2 All-epitaxial flopping-mode hamiltonian

We now consider the epitaxial flopping-mode qubit, comprisingN -phosphorus donors,

with NL donors defining the left donor orbital, and one donor (NR = 1) defining

the right electron orbital. This di↵ers from the flip-flop implementation, only in

that the MOS dot is replaced by a phosphorus-donor cluster. For reasonably small

cluster sizes, the electron-shell filling is trivial and an unpaired electron is present

if the total electron number on the system is odd. The left and right orbitals used

in the following correspond to the orbitals of that unpaired electron. We will see in

chapter 4.2.1 that a higher electron number can reduce qubit errors.
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We will now show that the full Hamiltonian describing this double-donor quantum-

dot system can be reduced to a four-dimensional flopping-mode Hamiltonian as in

Eq. 3.2.1, describing a pseudo-spin state corresponding to the combined electron-

nuclear spin state of the phosphorus atoms, such that the electron flip-flops with

the single nuclear spin NR = 1 on the right dot while all other NL nuclear spins

on the left dot stay fixed. This generalised Hamiltonian accurately describes the

flopping-mode operation of the system but fails to capture leakage into nuclear spin

states.

The full Hamiltonian of the double quantum dot system with a total of N =

NL +NR nuclear spins can be written in the product basis
⇣N

N

k=1 | *k / +ki
⌘
⌦ | *

/ +i⌦ | " / #i ⌦ |L/Ri: of the combined nuclear and electron spin as well as charge

Hilbert spaces Hn, Hs and Hc, respectively:

H = �eBBB · sss� �nBBB ·
NX

k=1

iiik + (✏⌧z + tc⌧x)

+
NLX

k=1

AL,k(iii
k · sss) (1+ ⌧z) /2 + AR

�
iiiN · sss

�
(1� ⌧z) /2. (C.1.22)

Here we have defined the spin-vector operators sss and iiik, of the electron and the k-th

donor nucleus respectively, ⌧i are the Pauli operators acting on the charge subspace

Hc, BBB = (0, 0, B0) is the external static magnetic field, AL,k is the kth contact

hyperfine strength for the left quantum dot and AR is the hyperfine term for the

right donor. For convenience we have defined the right donor nuclear spin to be the

Nth nuclear-spin operator.

The only coupling terms within the nuclear and electron spin subspace Hn⌦Hs

are due to the hyperfine interaction. The full Hilbert space (electron, nuclear, and

charge) can be decomposed into a direct sum of H-invariant subspaces according to

their total spin polarisation m (electron and nuclear spin),

H =
(N+1)/2M

m=�(N+1)/2

H
N+1
m

=
(N+1)/2M

m=�(N+1)/2

H
N+1
s,m

⌦ Hc. (C.1.23)

The electron spin introduces the extra state (summation is over N nuclear spins and

1 electron spin). The decomposition of the spin subspaces into H
N+1
s,m

is carried over

to the charge subspace. Due to spin conservation, the charge part of the Hamiltonian

only connects states with the same subspace H
N+1
m

of total spin m and as a result
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simply doubles the size of the Hilbert space. The decomposition is optimal as there

exists no smaller invariant subspace within each H
Ns
m

(a simple proof can be found

in Appendix C.2).

The dimensions of each invariant subspace hosting a number Ns of spins (nuclear

and electron)1 are given by the binomial coe�cients:

dim(H Ns
s,m

) =

✓
Ns

m+Ns/2

◆
.

Table C.1 lists the dimensions of the invariant subspaces H
N+1
m

of same spin po-

larisation m, for di↵erent donor numbers N . Any of the invariant subspaces in

Table C.1: Dimensions of the invariant spin and charge subspaces of same spin polarisation
m with a single electron spin and N donors.

m
N �5/2 �2 �3/2 �1 �1/2 0 1/2 1 3/2 2 5/2
1 0 0 0 2 0 4 0 2 0 0 0
2 0 0 2 0 6 0 6 0 2 0 0
3 0 2 0 8 0 12 0 8 0 2 0
4 2 0 10 0 20 0 20 0 10 0 2

Table C.1 o↵er the possibility of a flip-flop transition with the right nuclear spin

except the two two-dimensional spaces H
N+1
±(N+1)/2 that correspond to full polarisa-

tion of the electron and nuclear spins. The N = 1 system (a single nuclear spin in

the right quantum dot) corresponds to the quantum dot-donor (flip-flop) qubit and

is the only case where one of subspace is four-dimensional and directly corresponds

to a flopping-mode EDSR qubit. For all other values of N the subspaces are larger

than four-dimensional since the electron spin can flip-flop with more than one nu-

clear spin. In the donor–donor implementation (N = 3, 2 nuclei on the left quantum

dot and 1 on the right quantum dot) there are therefore 5 invariant subspaces with

spin polarisation m = �2, �1, 0, 1, 2 and respective dimensions 2, 8, 12, 8, 2. The

m = ±2 subspaces correspond to all the spins being parallel: | +++#i and | ***"i,
respectively and cannot be used for EDSR since there is no electron-nuclear flip-flop

transition. If the system reaches either of these states then NMR or dynamic nuclear

polarisation would be needed to flip one of the nuclear spins into the opposite spin

state. The m = 0 subspace is especially promising for quantum computing applica-

tions as the spectator nuclear spins on the left quantum dot can be initialised within

that subspace in such a way as to minimise the e↵ective longitudinal magnetic-field

1in the 2p1P case, Ns = N + 1.
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gradient as will be discussed extensively in Chapter 4.

The Hamiltonian H can be reduced further, by treating the coupling to the NL

nuclear spins perturbatively to first order in their hyperfine coupling strength. If the

subspaces are non-degenerate, it is possible to fully remain within the qubit subspace

by performing an appropriate state initialisation and by driving adiabatically at the

frequency defined by the qubit splitting. The individual dipole moments and energy

gaps all determine how fast a transition can be driven adiabatically, without leaking

into the other states. For superconducting qubit, elaborate pulses sequences have

reduced leakage to non-qubit subspaces while allowing for fast driving, and thus

minimising of the influence of dephasing and relaxation errors. In Sect. 3.3 we

will model the leakage out of the qubit subspace, using adiabatic pulse shapes that

reduce the associated errors.

The Hamiltonian in Eq. C.1.22 can be approximated by a first-order Schrie↵er–

Wol↵ transform. E↵ectively, we restrict the Hamiltonian to the four-dimensional

subspace spanned by the spin states |NLi⌦ | +i⌦ | "i and |NLi⌦ | *i⌦ | #i, and the

two orbital charge states |Li and |Ri. The state |NLi corresponds to the nuclear

spin configuration of all NL nuclear spins in the left dot. Numerically, we find

that this approximation very accurately describes the system provided the system

is not operated at a point where nuclear spin states hybridise. The Schrie↵er–Wol↵

transform performs the following transformations on the Hamiltonian:

iiik · sss 7!

8
<

:

1

4
(�1+ 2�x) if k = N

hiiik
z
i�z/2 if k < N,

(C.1.24)

where now �i is defined in the new four-state basis. The nuclear Zeeman terms

become:

iiik
z
7!
(

� �z/2 if k = N

hiiik
z
i1 if k < N.

(C.1.25)

The first order Schrie↵er–Wol↵ transformation essentially selects the matrix ele-

ments of the multidimensional matrices iiik · sss and iiik
z
that correspond to the last two

dimensions of the Hilbert space (right nuclear spin state and electron spin state).

After performing the transformation and subtracting global energy shifts, we
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get:

HE =


1

2
((�e + �n)Bz +Mn) �z +

AR

4
�x

�

+

✓
✏+

AR

8

◆
⌧z + tc⌧x

�
+

1

4
(2Mn�z � AR�x) ⌧z, (C.1.26)

where we capture the influence of the e↵ective magnetic field produced from the

spectator nuclear spins as the averaged hyperfine interactionMn =
P

NL

k=1 AL,khiiikzi/2.

We can diagonalise the spin-like terms (�i) in Eq. C.1.26, which results in a small

rotation of the quantisation axis due to the nuclear-spin Zeeman and hyperfine terms.

Afterwards, we finally recover the Hamiltonian of the form described in Eq. 3.2.1,

with the following parameters:

⌦z =

s

⌦2
s
+

✓
AR

2

◆2

, (C.1.27)

with ⌦s = (�e + �n)B0 +Mn +
�⌦(2)

2
, (C.1.28)

✏A = ✏+
AR

8
+
�⌦(2)

4
, (C.1.29)

�⌦z =
�
2Mn � �⌦(2)

�
cos(✓)� ARsin(✓), (C.1.30)

�⌦x = ARcos(✓) +
�
2Mn � �⌦(2)

�
sin(✓). (C.1.31)

The correction term �⌦(2) = O
⇣

A
2
L

(�e+�n)B0

⌘
arises from the higher-order terms of the

Schrie↵er-Wol↵ trasnformation which we neglect for the following analysis since they

only have a small e↵ect on the Hamiltonian parameters. Very close to nuclear-spin

level-crossings, some even higher order e↵ects describing nuclear-spin-state hybridi-

sation via the electron hyperfine interaction become relevant, but can safely be

neglected by staying clear of the levels crossings during driving of the qubit, and

can be traversed diabatically when initialising the qubit.

The angle ✓ in Eqs. C.1.30 and C.1.31 corresponds to a very small rotation of

the qubit quantisation axis due to the perpendicular component of the hyperfine

interaction:

cos(✓) =
⌦s

⌦z

⇡ 1, (C.1.32)

sin(✓) =
AR/2

⌦z

⇡ 0. (C.1.33)
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Finally, the new spin basis is defined as:

"̃/#̃ =
1p
2

⇣
⌥
p

1± cos(✓),⌥
p
1⌥ cos(✓)

⌘
,

expressed in the combined basis of nuclear and electron spins {|NLi ⌦ | +"i, |NLi ⌦
| *#i}.

Similarly to the quantum flip-flop qubit, the coupling between the qubit states

is purely determined by the hyperfine coupling to the nuclear spin that the electron

spin flip-flops with (AR). However, �⌦z is determined by the averaged hyperfine

interaction Mn of the electron with the nuclear spins in the left quantum dot, which

are not involved in the qubit dynamics, and that we therefore call the spectator

nuclear spins. In Chapter 4 we will describe how we can engineer this averaged hy-

perfine interaction Mn in order to minimise �⌦z and in turn increase the dephasing

time of the qubit.

Summary

In summary we have shown that three proposals for qubits based on an electron

spin qubit shared by two quantum dot are mathematically equivalent and can be

described by the general Hamiltonian of Eq. 3.2.1. In the QD–QD proposal the elec-

tron is shared between two gate defined quantum dots, and a transverse and spurious

longitudinal magnetic field is produced by an in-chip micromagnet. For the QD–

donor proposal, one of the two quantum dots is replaced by a single phosphorus

donor, and in the donor–donor implementation both quantum dots are defined us-

ing phosphorus donor clusters. The latter two proposals involve the presence of

nuclear spins from the donor clusters which increases the dimensionality of the sys-

tem. However, both systems reduce to a four-dimensional subspace, as depicted

in Fig. C.1 a). They can be described by the same Hamiltonian as the QD-QD

proposal, with longitudinal and transverse energy terms not originating from longi-

tudinal and transverse magnetic fields. In the QD-donor case (flip-flop qubit), the

longitudinal energy di↵erence �⌦z results from a di↵erence in the electron g-factor

on the gate-defined quantum dot and the donor quantum dot respectively, while the

transverse-energy di↵erence �⌦x results from the hyperfine interaction of the elec-

tron spin with the donor nucleus. In the donor–donor case, the transverse coupling

similarly originates from the hyperfine interaction of the electron spin with one of

the nuclei of the donors (the one the spin slip-flops with when electrically driven),

while the longitudinal energy di↵erence originated from the hyperfine interaction of
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the electron spin with all the other nuclei, that do not participate in the electrically

driven electron–nuclear-spin flip-flops. The di↵erent origins of the longitudinal and

transverse energy di↵erences are summarised in Fig. C.1 b).

Implementation QD - Donor QD - QD Donor - Donor

Coupling mech. Hyperϐine Grad. magn. ϐield Hyperϐine
ȟȳ٣ 100 MHz 100 - 800 MHz 100 MHz

ȟȳᇰ mech. Spin-orbit Grad. magn. ϐield Hyperϐine

ȟȳᇰ 25 - 80 MHz 10 - 100 MHz 0 - 50 MHz

Refs Tosi Croot, Benito This work

QD-QD Donor-donorQD-donor
a)

b)

Figure C.1: Three di↵erent systems reduced to a four level system. a): Schematic
representation of the energy levels of the three flopping-mode implementations discussed
in this section. The QD–donor and donor–donor implementations (left and right), display
a hyperfine structure, but can be reduced to the a four level system, as in the QD–
QD implementation (in the middle). b): Comparison of the longitudinal and transverse
gradients and of mechanisms for di↵erent flopping-mode qubit proposals.

C.2 Irreducible nuclear spin subspaces

The space of spin with magnetic quantum numberm is spanned by any combinations

of spin containing a number N" of spin ups and N# of spin downs (electron and

nuclear spins), such that:

(N" �N#) /2 = m (C.2.1)

N" +N# = Ns.

This fully determines the value of N" and N#, as well as the dimensionality of
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H
Ns
m

:

dim(H Ns
m

) =

✓
Ns

N"

◆
=

✓
Ns

(Ns + 2m)/2

◆
=

✓
Ns

m+Ns/2

◆
.

We will now show that any two spin state I and J satisfying the conditions C.2.1

can be transformed into each other by a series of nuclear-electron spin flip-flops

fi = Pi,Ns , corresponding to the permutation of the nuclear spin i = 1, .., Ns � 1

and the electron spin (the Nsth spin). Note that any permutation of spins can be

constructed from these flip-flop transformations:

Pi,j = fi � fj, if i, j < Ns (C.2.2)

Pi,j = fi, if j = Ns (C.2.3)

Let us now define the trivial state K 2 H
Ns
m

, consisting of N" up spins and N#

down spins. Both the states I and J can be transformed into this trivial state by

permuting any spin pair (#, "). In that way a series of permutation, and thus of flip-

flops is found that transforms I into J. This proves that H
Ns
m

cannot be decomposed

further.

C.3 Energies and couplings for the 2P1P all epi-

taxial qubit

In this section we will provide a detailed overview of all the qubit energy states in

the zero spin polarisation subspace of the 2P1P flopping mode qubit. We will also

provide a detailed analysis of the coupling strength of the two qubit states to all of

the other states in that subspace, some of which could become a pathway for state

leakage

Each of those branches is further split according to the nuclear spin configuration

resulting in the same total spin magnetisation m (including electron spin). For the

2p1p system in a zero spin magnetisation state, every branch contains three nuclear

spin configuration.

We visualise the influence of the electric field on the electron and nuclear spin

states of a 2p1p system in figure C.2 a). We have subtracted the bare charge electric

Field dependency ±(
p
✏2 + t2 � t) from the ground/excited charge state branches.

The ground/excited state branch is displayed in the two lower/higher plots in

the figure. The spin down/up branches are further subdivided into separate plots.

Each subplot thus displays the three nuclear possible nuclear spin configuration of
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same magnetisation m = 0, for electron and charge states | # �̃i, | " �̃i,| # +̃i
and| " +̃i, from bottom to top in ascending energy.

In figure C.2 a), we have chosen a hyperfine coupling AL of 30MHz to the left

dot (with a splitting of 10MHz). For clarity, these hyperfine values are chosen larger

then what could be achieved in a real device, in order to better separate the states.

The hyperfine coupling to the right dot is chosen to be the standard bulk hyperfine

value of 117MHz.

The detuning dependency visible after having subtracted the charge state depen-

dency is closely related to the bare hyperfine dependency Ai

L
(✏) and AR(✏), where

the right hyperfine value is large at ✏ � 0 (when the electron is primarily located

on the right dot), and vanishes at ✏ ⌧ 0. The two closely spaced levels correspond

to the two nearly degenerate left dot nuclear spin state | +*i and | +*i.

The proposed qubit is primarily encoded by the spin state in the charge ground

state. Thus, any of the three states in the lowest branch can be chosen as the qubit

ground state. In chapter 4 we show that it is advantageous to choose a nuclear spin

state that is connected via nuclear-electron spin flip-flop to a state in the electron

spin up branch (charge ground), such that the nuclear spin participating in the

flip flop has a strong hyperfine coupling with the electron spin, and such that the

magnetisation of the nuclear spins not involved in the flip-flop (the spectator nuclear

spins) have near zero magnetization.

Given the chosen values of hyperfine coupling, we would choose the qubit ground

to be |g(✏)i ⇡ | +**# �̃i (in black). Indeed it is connected the the electron spin up

branch by a flip-flop with the right nuclear spin (with strongest hyperfine coupling)

|e(✏)i ⇡ | +*+" �̃i)(in red). The two nuclear spin in the left dot stay in the state

| +*i across both qubit states, and can thus be viewed as being spectators to any

dynamics driven between the qubit states. The hyperfine interaction to both nuclear

spin cancels out to the di↵erence �AL which is usually very small in a 2P system.

This is the longitudinal magnetic gradient that will be experienced by the qubit.

As we will show in a later section, driving errors can be reduced by reducing this

gradient. The qubit ground end excited states can be seen to be close in energy to

their near degenerate states | *+*# �̃i and | *++" �̃i respectively.

The tunnel coupling is chosen to be 6.0GHz and the magnetic field is chosen to

be 0.4T, so that the states in the third and fourth branch are close in energy and

hybridize. The spin states of otherwise purely ground charge state character |�̃(✏)i
in the third branch (| " �i ) acquire a proportion of excited charge state character

|+̃(✏)i. As we will see in more detail in the next section, the amount hybridization

325



- 10 - 5 0 5 10

- 11.63

- 11.62

- 11.61

- 11.60

- 11.59

- 11.58

Ԗ (GHz )

E
(G
Hz

)

- 0.42

- 0.41

- 0.40

- 0.39

- 0.38

- 0.37

E
(G
Hz

)

0.37

0.38

0.39

0.40

0.41

0.42

E
(G
Hz

)

11.58

11.59

11.60

11.61

11.62

11.63
- 10 - 5 0 5 10

E
(G
Hz

)

0 5 10
0

1. ×10- 6

2. ×10- 6

3. ×10- 6

4. ×10- 6

Ԗ (GHz )

ɖ d

0.00

0.01

0.02

0.03

0.04

ɖ d

0

0.2

0.4

0.6

0.8

1

ɖ d

0.0000

0.0005

0.0010

0.0015

0 5 10

ɖ d

0 5 10
0.00

0.01

0.02

0.03

0.04

Ԗ (GHz )

ɖ d

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
ɖ d

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

ɖ d

0.0

0.2

0.4

0.6

0.8

1.0
0 5 10

ɖ d

֛֛֝՝ԟ

֛֛֝՝ԟ

֛֛֝՝ԟ

֛֝֝՛ԟ

֛֝֝՛ԟ

֛֝֝՛ԟ

֛֛֝՝

֛֛֝՝

֛֛֝՝

֛֝֝՛

֛֝֝՛

֛֝֝՛

�ሻ�֛֛֝՝ԟ������������������ሻ���������������� �ሻ�֛֝֝՛ԟ�����������������

֛֝֝՛ԟ�(ffR)

֛֝֝՛ԟ(ffL2)

֛֝֝՛ԟ�(ffRL1L2)

֛֛֝՝ԟ(ffRL1)

֛֛֝՝ԟ(ffL2L1)

֛֛֝՝ԟ

֛֝֝՛

֛֛֝՝ԟ(ffR)

֛֛֝՝ԟ(ffL1)

֛֛֝՝ԟ
(ffRL2L1)

֛֝֝՛ԟ(ffRL2)

֛֝֝՛ԟ
(ffL1L2)

Figure C.2: Eigenstate energies E and their electric dipole couplings �d The
system parameters are B = 0.4T, t = 6.0GHz, �AL = 10MHz, AL = 30MHz, AR =
117MHz. We chose well separated hyperfine values for clarity. In the proposed qubit, we
will privilege smaller values of �AL. a): Schematics of the Eigenstates Energies
E The electric field dependency of the bare charge qubit has been subtracted for clarity.
The qubit ground and excited state are depicted in black and red respectively (first and
5th eigenenergy at ✏ = 0). b, c: Ground/excited state dipole coupling coe�cient
The dipole coupling coe�cient between the two qubit states is depicted in red and black.
The dipole coupling coe�cient for the pure charge transitions reach unity at ✏ = 0 (Third
and fourth frame from the bottom, for the ground/excited state respectively.)
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is proportional to the energy di↵erence between the two states. It is thus most

pronounced around zero detuning. The increase hybridization of eigenstates also

results in significantly increased electric coupling between the qubit states, close to

zero detuning.

Electric coupling between eigenstates is provided by the electric field driving Ed.

Without any hybridization, the electric field can only drive the charge state, and

the coupling element is proportional the product of the charge dipole moment with

the drive electric field �d
ed

~ · Ed. The dipole coe�cient � describes the attenuation

of the dipole moment when moving away from the zero detuning point: �d =
t

⌦c
. It

reaches unity at zero detuning. There is no dipole moment associated with any two

states in the ground charge state branch.

With increasing hybridisation however, a dipole moment arises between states

in the respective ground state branches. This is related to the electron " state

acquiring an excited charge character. We have plotted the dipole coe�cient �d

between the qubit ground/excited state and all other states in figure C.2 b) and c)

respectively. The purely charge dipole coupling (peaking at 1 at ✏ = 0 can be seen

in the third and fourth subplot from the bottom, for the ground and excited state

respectively. Due to the proximity in energy between the | " �̃i and | # +̃i branch for

the chosen magnetic field value, the hyperfine mediated coupling between spin and

charge states become energetically favourable. A second order interaction between

flip-flopped # and " arises. It is mediated by a virtual simultaneous electron-nuclear

spin flip flop and direct charge transition, as well as a simple charge transition. Such

a second order coupling occurs between the ground state and the excited state (red

and black in b) and c) respectively) and corresponds to a flip-flop of the electron

spin with the right nuclear spin, which we label ↵"R. The coupling approaches 4%

of the bare charge qubit coupling at zero detuning (�d ⇡ 0.04). Note a similar

second order coupling ↵"L2 arises between the ground state and the state ++* �̃,

this time mediated by a flip-flop with the second left nuclear spin (L2), that was

in its * configuration, and thus could flip-flop with the electron spin (Green line

below the red line). This coupling strength is however reduced by a factor 4 to

about 1% of the bare charge qubit coupling, primarily due to the 4 fold reduction in

the hyperfine coupling of the nuclear spin involved in the flip-flop (AL2 ⇡ 30MHz

instead of AR = 117MHz). The same analysis is valid for the coupling of the excited

qubit state, to the ground state (↵#R) and to the state **+# �̃ (↵L1).

We have so far mentioned two first order electric transitions (namely pure charge

transitions), followed in magnitude by four possible second order flip-flop transition,
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involving flip-flop with a single nuclear spin (↵"R, ↵#R, ↵#L1 and ↵"L2. Coupling

between the two qubit states to other, not directly flip-flopped states, are only

possible through 4th and 6th order processes, and are therefore quiet weak. The

ground state +**# for example can be seen in figure C.2 b) to be weakly coupled to

the state **+#. No direct coupling between those two states exists, and therefor the

two states are only via higher order processes to the target state. One such coupling

arises via second order virtual transition to the state to the state +*+" (which is a flip

flop ↵"R with the right nuclear spin), followed by another second order transition to

the target state (which is a flip-flop ↵#L1). The resulting fourth order process can be

notated as ↵RL1 ⌘ ↵#L1�↵"R, and is very weak �d < 3⇥10�6 at ✏ ⇡ 0. This coupling

↵RL1 is stronger then the coupling ↵L2L1 ⌘ ↵#L1 � ↵"L2, due to the fact that the first

virtual transition ↵"L2 is a factor 4 weaker then the coupling ↵"R. All such fourth

order transitions, corresponding to two virtual flip-flops with di↵erent nuclear spins,

are at least two orders of magnitude lower then single flip-flops. They have been

annotated within the two lower branches, in figure C.2 b). We have also annotated

6th order transition within the two |�i branches, corresponding to three consecutive
virtual flip flops. For example ↵"RL1L2 ⌘ ↵"L2 � ↵#L1 � ↵"R ⌘ ↵"R � ↵#L1 � ↵"L2, where

now two main pathways for the virtual transitions are possible (involving the same

three second order processes, in a di↵erent order).

Higher order couplings of the qubit states to the excited charge state branches are

present as well. It is noteworthy that the higher order couplings between the qubit

states in the # � and " � branches and the branches " + and # +, respectively, is

highly suppressed at ✏ = 0, irrespective of the amounts of nuclear spin flips involved

in the transition.

Note that all dipole couplings reach a maximum at ✏ = 0, and asymptotically fall

down to zero for positive and negative detuning values. This is a manifestation of

the increased bare charge dipole coupling coinciding with an increased hybridization

between spin and charge closer to zero detuning linked to the proximity in energy

of the spin and charge state around zero detuning.

In summary we have shown that electric coupling of the qubit states to all

states in the same magnetisation subspace are present. However they significantly

di↵er in order and magnitude. The dominant coupling sources are first order direct

charge transitions and second order, single flip-flop transitions. In the following

we will neglect all other higher order couplings. We show in chapter 4, that when

adiabatically the qubit transition ↵R, the direct charge transition is limiting the

adiabaticity, and not the other possible (spurious) flip-flop transition ↵"L2 and ↵#L1.
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Despite the direct transition being much further away in energy (detuned by ⇡
0.8GHz in our example, as opposed to only ⇡ 50MHz for the other spurious flip-

flop transition), the direct charge coupling is overwhelmingly larger then the spurious

coupling �d = 1 instead of �d ⇡ 10 ⇥ 10�3. This motivates a second simplification

restricting the same-magnetisation subspace even further to the four dimensional

space spanned by the two qubit states and their corresponding excited charge states.

C.4 Rotating frame approximation for all epitax-

ial flopping mode qubit

The rotating wave approximation (RWA) transforming the Hamiltonian describing

the three separate four level leakage systems can be performed in a way analogous to

that found for the flopping mode qubit in Sect. B.2 using di↵erent generator matrices

R to perform the unitary coordinate transformation into the rotating frame. In

Fig. C.3 we summarise the process for the three systems, using an energy diagram

of each system, the Hamiltonian describing the system, the generator matrix R that

allows transformation of the Hamiltonian into the rotating frame (using the RWA),

from top to bottom respectively.
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Figure C.3: Rotating wave approximation for the three leakage channels of the
2P1P all-epitaxial flopping mode qubit, for the charge leakage pathway and the two
nuclear spin leakage pathways in a), b) and c) respectively.
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C.5 Charge limited adiabatic orbital state trans-

fer

It can be advantageous to perform flopping mode qubit operations in either of the

two orbital regimes (hybridised ”two dot regime”, or pure spin ”single dot” regime).

This requires being able to transfer the orbital state in a reversible manner. We

have shown in Sect. 4.4.1, that for the particular 2P1P implementation studied in

detail in Chapter 4, the speed of that transfer is limited by pure charge excitation,

and the additional nuclear spin states can be neglected.

In such a system, when operating with two passive electron on the 2P donor

cluster, the average hyperfine coupling of the electron to the left nuclei is reduced to

about ĀL = 10MHz due to shielding from the inner shell electrons and the hyperfine

coupling to the right nucleus would be close to the bare 1P coupling: AR = 117MHz.

The spectator hyperfine di↵erence �AL in the hyperfine coupling of the electron to

the two nuclei in the left dot determines how closely the two state | *+i and | +*i
are to being fully degenerate. In order to minimise charge dephasing, this di↵erence

has to be engineered as close to zero as possible. In a realistic device, we expect the

di↵erence to be close to 1MHz, due to minor hyperfine Stark shift di↵erences.

The energy diagram of this system is represented in figure C.4 d) for �AL =

1MHz . Again, we have subtracted the bare charge qubit electric Field dependency

±(
p
✏2 + t2 � t) from the ground/excited charge state branches in order to only

visualise the influence of the electric field on the electron and nuclear spin states.

The ground/excited state branch is displayed in the two lower/higher plots in the

figure and are split by the charge qubit splitting ⌦C = 2(
p
✏2 + t2). The spin

down/up branches are further subdivided into separate plots. Each subplot thus

displays the three nuclear possible nuclear spin configuration of same magnetisation,

for electron and charge states | # �̃i, | " �̃i,| # +̃i and| " +̃i, from bottom to top

in ascending energy. The qubit ground and excited state (|g(✏)i ⇡ | +**# �̃i
and |e(✏)i ⇡ | +*+" �̃i) energies (in black), are very close in energy to their near

degenerate states | *+*# �̃i and | *++" �̃i respectively.
As previously described (figure C.2), for high detuning values ✏, the eigenstates

asymptotically approach the single dot regime, where the ground charge state |�̃(✏)i
is the right dot orbital |Ri, the spins are not hybridised to charge, and no higher

order coupling between the degenerate state is present. When approaching ✏ = 0,

the right dot orbital state hybridises into an antisymmetric superposition with the

other dot orbital. At the same time a higher order coupling weakly couples the
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Figure C.4: Adiabatic transfer of a spin state from the right orbital |Ri to
the antisymmetric orbital superposition |�i. We used a 0.75 ns linear ramp from
✏ = 15 to 0GHz (ramp speed=20GHz/ns). The system parameters are B = 0.4T, t =
6.0GHz, �AL = 1MHz, AL = 10MHz, AR = 117MHz. a, b, c: Population of the final
state in the leakage eigenstates after the adiabatic ramp for an initial state at ✏ = 15GHz
consisting of the qubit ground state, the excited state, and an equal superposition of the
two respectively. d: Eigen states energies. For clarity, the ✏ dependency of the bare
charge qubit had been subtracted. e: Time dependence of selected eigenstate population
during the ramp.
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degenerate states in the electron spin up branch.

In figure C.4 a-c), we simulate a 0.75 ns transfer between the single dot regime

(at ✏ = 15GHz) and the two dot regime at ✏ = 0, for the ground qubit state

|g(✏ = 15GHz)i ⇡ | +**# Ri, the excited qubit state |e(✏ = 15GHz)i ⇡ | +*+" Ri,
and an equal superposition of the latter:

1p
2
(|g(✏ = 15GHz)i+ |e(✏ = 15GHz)i) .

In all three plots we show a histogram of the population of the final state (at ✏(t =

0.75 ns)) in each of the other eigenstates. In all cases less then 0.1% of the state

leaks to other states during the transfer. The transfer of the ground state in a)

shows that direct charge excitation (4.5 ⇥ 10�4) to state 7 is the primary source

of leakage, two orders of magnitudes higher then the next biggest leakage to the

near degenerate state 2 (4.1 ⇥ 10�6). The transfer of the qubit excited state in

b) also predominantly leaks the excited charge states associated not only with the

excited qubit state (6.0 ⇥ 10�4) to state7) but also with the ground qubit state

(4.5 ⇥ 10�4 to state 11). Leakage to the corresponding degenerate spin state 4, is

now more pronounced then for the ground state (7.4⇥ 10�4 from |ei state 4 instead

of 4.1⇥10�6 of |gi to state2). This is the result of a weak coupling of the qubit spin

up state with its degenerate spin state, that arises due to their respective coupling

to charge. The transfer of the qubit superposition state shows similar predominant

leakage to those three states (leading by almost two orders of magnitude again).

Note that the respective amount of leakage to the degenerate state (4) as com-

pared to the excited charge states (7 and 11) decrease exponentially with increasing

splitting �AL, so that for �AL > 1MHz, leakage to the nuclear spin degenerate state

is negligible.

In figure C.4 e), we show the time dependence of the leakage during transfer of

the qubit superposition state considered in c). We plot the proportion of the time

evolved state  (✏(t)) in the instantaneous eigenstates at ✏(t). Only proportion in

states of interest discussed above are shown. Non adiabatic passing of the crossing

between state 7 and 8, as well as 11 and 12 in the excited charge state branches are

visible.

In summary, we have shown that for a realistic 2p1p device configuration, sub-

nanosecond orbital state transfer is possible. For degeneracies as low as 1MHz they

are limited by direct charge excitation. We have also shown that when the orbital

state transfer passes through a degeneracy point where nuclear spin energy levels

cross, the crossing is passed diabatically at the transfer speed demonstrated here.
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This highlights that nuclear spin crossing need not be considered for the orbital

state transfer..

C.6 Calculation of the spin-cavity coupling and

the qubit dephasing time

We investigate the qubit-cavity coupling characteristic, which is shown in the Fig. 4.9

of the main text. Strong coupling of a cavity to a qubit can be achieved if the qubit-

cavity coupling strength, gsc is larger then the dephasing rate � of the qubit as well

as the decay rate  of the cavity. The coupling strength, gsc can be calculated as the

product of the qubit electric dipole transition matrix element �01 and the electric

field amplitude produced by the cavity at the location of the qubit. Following the

cavity simulation of Osika et al. [8], we use detuning amplitudes of about ✏c =

100MHz, and a cavity decay rate  = 1MHz. The detuning amplitude corresponds

to zero point voltage fluctuations of the cavity of the order of 0.4µV for quantum

dots separated by about 10 nm, or equivalently to cavity electric fields of about

10V/m. We calculate the transition matrix element �01 numerically and estimate

the qubit dephasing rate, � = 1/T ⇤
2 by converting the average qubit error using the

formula,

T ⇤
2 ⇡ 2

p
2

s
t2
⇡/2

Log
�

1
1�2 error

� . (C.6.1)

The dephasing rate is then calculated as a function of magnetic field strength and

tunnel coupling, while the cavity detuning amplitude ✏c and the cavity decay rate 

are assumed to be constant across the parameter range investigated in Fig. 4.9.

C.7 Qubit routing and lithographic layers

Without loss of generality, let us consider the case where we need only one gate per

qubit. The number of feedthroughs that can be conveniently pass through one of

the edges of the first perimeter of the node is given by (N � 2)nL. Let us group

the qubits in concentric perimeters, where the first perimeter are the qubits at the

very outside of the node, and the last one are the qubit(s) at the very centre of the

node. There are a number P = dN/2e concentric perimeters in the square of N ⇥N

qubits. Fully routing a number nP1 of perimeters can be expressed as:
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(N � 2)nL �
nP1X

i=2

N � (2i� 1) (C.7.1)

� �n2
P1 +NnP1 � (N � 1). (C.7.2)

For N  2(2nL + 1), no root exists, and the condition is always satisfied. This

means that one can route all the qubits of the node in a single layer, using the

leads fed through through the outer perimeter. For example for a single possible

feedthrough between adjacent qubits( nL = 1), one can route up to 36 qubits in a

single layer (N = 6).

For N > 2(2nL + 1) one can only route the outer nP1 perimeter given by:

nP1 =

�
1

2

⇣
N �

p
N � 2

p
N � 2(2nL + 1)

⌘⌫
. (C.7.3)

The next square of N2 = N � ((2nP1)+ 1) qubits will need to be routed in a similar

manner, but in another lithographic plane separated by a dielectric material.

By using the above procedure recursively, we find that the number of lithographic

layers needed to address a number of N2 qubits with a number of nL possible

feedthroughs between adjacent qubits is given by:

nlith layers ⇡
N

2nL + 3
. (C.7.4)
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Appendix D

Chapter 5 appendix

D.1 Ionisation/Neutralisation rate during nuclear

spin dynamics experiment
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Figure D.1: Estimation of ionisation/neutralisation rate �I/N of the 2P molecule.
a) and b) Measurement of �I/N during the spin tail experiment of Fig. 5.16. The ion-
isation events are detected within a counting window in the second half of the “read”
sequence (see at a read level of �4.3mV in b) ), to avoid counting spin "-out events
which do not occur in the microwave settle phase at a pulse amplitude of 0. The resulting
rate �I/N is calculated as a function of the pulse amplitude in a). �I/N is maximal at
a pulse amplitude of 0, reaching values of 12 kHz. c) �I/N during the first read phase
in the nuclear spin dynamics experiment (at a read level of 4.3mV). The average rate
�I/N = 0.5 kHz is consistent with that calculated during the spin-tail experiment in a)
and b), where �I/N = 1kHz.
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D.2 Nuclear spin transition lifetime

The transition lifetimes are estimated from just taking the inverse of the elements

of the transition rate matrix Q of the Markov model (see Table 5.4):

Start
End ++ +* *+ **

++ 21+4
�4 38+14

�9 43+19
�11 NaN

+* 18+7
�4 11+3

�3 46+44
�17 53+69

�25

*+ 39+17
�10 112+133

�46 21+6
�5 75+61

�27

** 520+NaN

�402 36+38
�15 35+36

�13 17+8
�5

Table D.1: Table of state lifetimes (diagonal) and transition times (o↵-diagonal)
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