
Knowledge based anomaly detection

Author:
Prayote, Akara

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/17451

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/40636 in https://
unsworks.unsw.edu.au on 2024-04-24

http://dx.doi.org/https://doi.org/10.26190/unsworks/17451
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/40636
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Knowledge Based

Anomaly Detection

Akara Prayote

Supervisor: Professor Paul Compton

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

The School of Computer Science and Engineering

The University of New South Wales

November 2007

Abstract

Traffic anomaly detection is a standard task for network administrators, who with

experience can generally differentiate anomalous traffic from normal traffic. Many

approaches have been proposed to automate this task. Most of them attempt to

develop a sufficiently sophisticated model to represent the full range of normal

traffic behaviour. There are significant disadvantages to this approach. Firstly, a

large amount of training data for all acceptable traffic patterns is required to train

the model. For example, it can be perfectly obvious to an administrator how traffic

changes on public holidays, but very difficult, if not impossible, for a general model

to learn to cover such irregular or ad-hoc situations.

In contrast, in the proposed method, a number of models are gradually created

to cover a variety of seen patterns, while in use. Each model covers a specific

region in the problem space. Any novel or ad-hoc patterns can be covered easily.

The underlying technique is a knowledge acquisition approach named Ripple Down

Rules. In essence we use Ripple Down Rules to partition a domain, and add new

partitions as new situations are identified. Within each supposedly homogeneous

partition we use fairly simple statistical techniques to identify anomalous data.

The special feature of these statistics is that they are reasonably robust with small

amounts of data. This critical situation occurs whenever a new partition is added.

We have developed a two knowledge base approach. One knowledge base parti-

tions the domain. Within each domain statistics are accumulated on a number of

different parameters. The resultant data are passed to a knowledge base which de-

cides whether enough parameters are anomalous to raise an alarm. We evaluated

the approach on real network data. The results compare favourably with other

i

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

techniques, but with the advantage that the RDR approach allows new patterns of

use to be rapidly added to the model.

We also used the approach to extend previous work on prudent expert systems

- expert systems that warn when a case is outside its range of experience. Of

particular significance we were able to reduce the false positive to about 5%.

ii

Acknowledgments

I am extremely grateful to my advisor, Professor Paul Compton, for his constant

support, encouragement, for proofreading numerous drafts of this thesis, and help-

ing me throughout my study. Without him, this thesis would never have happened.

Not only does he guide my research, he also supports me when I am down and lost.

What he has done for me is beyond what words can say.

I am also grateful to Royal Thai Government for funding a scholarship and

the University of New South Wales for a UIPA scholarship. I would also like to

thank the Faculty in the department of Computer and Information Science, King

Mongkut’s Institute of Technology North Bangkok, for letting me take leave for

the study.

I would like to thank Peter Linich, the network manager in School of Computer

Science and Engineering, UNSW, for his support in providing audit data sets and

educating me about the network intrusion detection task.

I am thankful to Woralak Kongdenfha, Thanong Poonteerakul, Apisit Numpras-

anthai, Pat Leelarasamee, Pattrawut Tippimon, Chatchai Boonjaroen, Zhalaing

Cheung and all my friends in the UNSW Badminton club for being good friends,

keeping me company and never letting me feel lonesome.

I am especially impressed by my beloved Ms. Tippyarat Tansupasiri for her

ultimate understanding, patience and support. Her contribution of ideas to my

study is no less than to my life. Not only has Tippayarat patiently and strongly

been waiting for me to return for five years, she has always made me smile, no

matter what situation I have encountered. She is a real angel in my life.

iii

Finally, my greatest debt is owned to my parents, my brother, my grandmother,

and every one in my family for their love, patience and support, always.

iv

Contents

1 Introduction 1

1.1 Overview of Thesis . 3

2 Network Attack and Intrusion Detection Systems 7

2.1 Network Attacks . 7

2.1.1 Vulnerabilities . 9

2.1.2 Intentions of Attacks . 11

2.1.3 Mechanisms of Attacks . 12

2.2 Defense Against Attacks . 16

2.2.1 Configuration Management 16

2.2.2 Firewalls . 17

2.2.3 Encryption . 17

2.2.4 Intrusion Detection System 18

2.2.5 Other Research . 22

2.3 Generic Intrusion Detection System 22

2.3.1 Audit Collection and Storage 23

2.3.2 Reference Data Generation 24

2.3.3 Intrusion Detection . 25

2.3.4 Policy Execution . 28

v

CONTENTS

2.4 Intrusion Detection Systems: Examples 28

2.4.1 Haystack . 28

2.4.2 MIDAS . 29

2.4.3 IDES . 30

2.4.4 NIDES . 31

2.4.5 Wisdom and Sense . 32

2.4.6 EMERALD . 33

2.4.7 NSM . 35

2.4.8 Hyperview . 35

2.4.9 USTAT . 36

2.4.10 IDIOT . 37

2.4.11 Snort . 37

2.5 Traffic Volume Anomaly Detection 38

2.5.1 Traffic Volume: An Alternative Audit Data 39

2.5.2 Intrusion Detection on Traffic Volume 41

2.5.3 Discussion on Traffic Volume Anomaly Detection 45

2.6 Limitations and Questions of Intrusion Detection Systems 46

3 Knowledge Based Systems 49

3.1 Knowledge Base . 50

3.2 Knowledge Elicitation . 51

3.2.1 Knowledge Elicitation Methodologies 53

3.2.2 Difficulties in Knowledge Elicitation 55

3.3 Ripple Down Rules . 58

3.3.1 Ripple Down Rule and Cognitive Psychology 58

vi

CONTENTS

3.3.2 Ripple Down Rule Essentials 59

3.3.3 RDR Terminology . 62

3.3.4 RDR Structure . 64

3.3.5 Construction RDR . 71

3.3.6 RDR Applications . 73

3.3.7 RDR Problems and Discussion 76

4 Detecting Outliers from Homogeneous Data 79

4.1 Outliers in Statistics . 80

4.1.1 Accommodation of Outliers 82

4.1.2 Discordancy Test . 82

4.1.3 Discussion . 82

4.2 Outlier Detection . 83

4.2.1 Distribution-Based Approach 84

4.2.2 Depth-Based Approach . 84

4.2.3 Distance-Based Approach 85

4.2.4 Density-Based Approach . 85

4.2.5 Problems and Discussion . 86

4.3 Detecting Outliers while Learning 87

4.4 Simulations . 91

4.4.1 Simulations on Noise Free Data Sets 92

4.4.2 Simulations on Outlier Contaminated Data Set 93

4.5 The Effect of A Normal Distribution 103

4.6 Conclusion . 106

5 Network Traffic Anomaly Detection 108

vii

CONTENTS

5.1 Manual Network Anomaly Detection 111

5.1.1 Audit Traffic Data . 111

5.1.2 Actions on Anomalies . 112

5.2 Using RDR to Automate Traffic Anomaly Detection 113

5.2.1 Network Traffic Behaviour Profiling 113

5.2.2 Traffic Anomalies Detection 115

5.2.3 Discussion on RDR-based Anomaly Detection 116

5.3 System Implementation . 117

5.3.1 System Architecture . 118

5.3.2 Periodic Monitoring Cases 120

5.3.3 Knowledge Bases . 127

5.3.4 Coding and GUI . 128

5.4 Traffic Anomaly Detection Experiment 130

5.4.1 Traffic Data Sets . 131

5.4.2 Experiments . 137

5.4.3 Results And Discussion . 138

5.4.4 Building Up Knowledge Bases 139

5.4.5 A Comparison with Another Method 145

5.5 Conclusion . 146

6 Prudent Knowledge Bases 147

6.1 Introduction . 147

6.2 A Review on RDR with Prudence 149

6.2.1 Audit Data Sets . 149

6.2.2 Simulation . 151

viii

CONTENTS

6.2.3 Previous Results . 152

6.3 Probabilistic Profile for Continuous Attribute 154

6.3.1 Data Set . 155

6.3.2 Simulation of OEBA-based Prudence 155

6.3.3 Results and Discussion . 156

6.4 Probabilistic Profile for Categorical Attribute 159

6.4.1 Outlier Estimation for Categorical Attributes 160

6.4.2 Simulation on OECA-based Prudence 161

6.5 Discussions of Probabilistic Profiles 164

6.6 An Extension on the Correlation between Attributes 167

6.6.1 Correlations between Attributes 167

6.6.2 Correlation and the Algorithm OEBA 169

6.6.3 Simulation of Correlation Profile on Uncorrelated Attributes 171

6.6.4 Simulation of OEBA and Correlations 172

6.7 A Study on Warning Characteristics 173

7 Summary 174

7.1 Thesis Summary . 175

7.2 Discussion . 178

7.3 Future Research . 180

7.3.1 An Interim Outlier Detection Algorithm 180

7.3.2 Combining Multiple Tests 180

7.3.3 Redundancy of Partitions 181

7.3.4 Correlations Between Classifications 181

ix

List of Figures

2.1 Generic tasks of intrusion detection systems. 23

2.2 An example of graphical visualization of traffic volume. 40

3.1 The architecture of an expert system. 50

3.2 An example of SCRDR knowledge base in binary tree structure. . . 66

3.3 An example of SCRDR in composite rules structure. 67

3.4 An example of MCRDR knowledge base. 70

4.1 Distance between bands of outliers and valid data. 94

4.2 Java code of data set generator with outlier contamination. 95

4.3 False negative rates of different contamination levels at the distance

of 0.01. 98

4.4 False negative rates of different contamination levels at the distance

of 0.05. 99

4.5 False negative rates of different contamination levels at the distance

of 0.10. 100

4.6 False negative rates of different contamination levels at the distance

of 0.50. 101

4.7 False negative rates of different contamination levels at the distance

of 1.00. 102

4.8 False positive rates for normally distributed data. 105

x

LIST OF FIGURES

5.1 A system architecture of RDR-based network traffic anomaly detec-

tion. 119

5.2 An example of network traffic and its medians. 125

5.3 An example of two series with same median but different fluctuation. 126

5.4 GUI of the main window . 129

5.5 GUI of the profile construction Window. 129

5.6 GUI of the rule construction window 130

5.7 Traffic series T1 . 132

5.8 Traffic series T2 . 133

5.9 Traffic series T3 . 134

5.10 Traffic series T4 . 135

5.11 Traffic series T5 . 136

5.12 System states. 137

5.13 The number of profiles, decision rules in the two KBS, and the num-

ber of false positive cases added to profiles against seen cases. . . . 143

6.1 False positives and false negatives produced from different thresholds.163

6.2 Examples of different correlations between 2 variables. 168

6.3 Limits in different directions. 170

xi

List of Tables

4.1 Simulation results of the OEBA algorithm on noise free data. 93

4.2 False positive rates for uniformly distributed data 97

4.3 Minimum threshold with 0 false negatives 103

4.4 False positive rates (FPR) of various threshold T of the OE and BA

algorithms on data set following normal distribution. 104

5.1 University seasons of each data set 131

5.2 Anomalies in data sets . 131

5.3 Data sets for training and testing in each system state 137

5.4 False positive and false negative rates of each test data sets in dif-

ferent system states . 139

5.5 KA sessions for the first 1,000 cases. 141

5.6 KA sessions from case 2000 to case 3000. 142

5.7 The number of profiles, decision rules and profile updates for every

1,000 cases. 144

6.1 Final results of simulation of RDR with prudence 153

6.2 A comparison between original prudence and OEBA-based prudence

on continuous attributes . 157

6.3 Sources of incorrect warnings . 158

6.4 Simulations on categorical attributes 162

xii

LIST OF TABLES

6.5 Simulations when new rules are not added for false negatives 163

6.6 Three false negative cases. 165

6.7 Simulations on OEBA profiles for correlation 171

6.8 Simulations of the algorithm OEBA for correlation between attributes.172

xiii

Chapter 1

Introduction

Communications is now central in human lives, both for leisure and work. A

variety of products/applications have been continuously introduced to facilitate

communication. Underlying much of the success in communications technology are

computer networks. From one device to another, from one area to another area,

from one country to another country, from one continent to another continent,

finally, the world is connected. Great effort has gone into the study of networks to

improve their performance as much as we can. Recently, one of many concerns in

network performance is security.

Many attempts have been put together to secure networks; i.e., protecting them

from a variety of intrusion. There are different kinds of intrusion. Each of which

attacks with different purposes. For example, one hacker attempts to gain an access

to an organization’s network for some information, while another might want to

disrupt a network. They require different techniques to detect, to identify and to

remedy.

A network intrusion detection system (NIDS) is one way to approach network

security. A variety of architectures and techniques have been proposed to imple-

ment such a system. Basically, a NIDS monitors data within the network and takes

further actions if an anomaly is detected. Typical audit data used by NIDSs are

TCP connection packet data. Recently, there has been a community suggesting

monitoring traffic volume instead of packet data. It has been demonstrated that

1

most attacks alter traffic volume and can be detected effectively.

Actually, detecting anomalies from traffic volume is not a new idea. For a

number of years, it has been a standard task for network administrators, who with

experience can generally differentiate anomalous traffic from normal traffic. The

task can be viewed as the problem of detecting anomalies in time series data.

Time series have been widely studied in statistics. Essentially, it is data in a

sequential form with significance in the order of occurrence. Early foci of the study

were on behavioural characteristics and modeling of time series, which would later

support a prediction process. Anomaly detection was started as a by-product of

other time series analysis. But it has now become a major focus of such study.

Early techniques were statistics based, that is, a distribution or model for the time

series was estimated and any values deviating from the learned model were flagged

as outliers. For example, a normal distribution was mostly used to estimate data

distribution. Regression techniques, such as autoregressive integrated moving av-

erage (ARIMA) (Mills, 1990); and forecasting algorithms, such as Holt-Winters

(Brockwell and Davis, 1996) were used to estimate time series. Later studies inves-

tigated clustering techniques as alternatives, while density-based approaches have

recently been attracting more interest in the area.

The common thing among those techniques is that they essentially rely on a

universal model of time series. The model is meant to capture the generic charac-

teristics of a time series. Any data behaving differently from the model are marked

as outliers. Under this paradigm, when novel characteristics or ad hoc events occur,

they are simply flagged as outliers. Furthermore, statistical or learning methods

do not easily accommodate individual special cases.

In contrast, this thesis investigates a mechanism to partition a problem space

into smaller subspaces of homogeneous traffic and learn a model for each subspace.

The partitioning can be conducted at any time when the system is in routine use

via the knowledge acquisition methodology named Ripple Down Rules; novel events

can be added to a knowledge base when required.

The study also investigates a technique called Prudence. A prudent expert sys-

2

1.1. Overview of Thesis

tem is one which knows when it has reached the limits of its knowledge. Evaluations

have been conducted of two novel algorithms Outlier Estimation with Backward

Adaptation (OEBA) and Outlier Detection for Categorical Attributes(OECA),

which have been integrated into the RDR framework.

1.1 Overview of Thesis

Chapter 2

An objective of this chapter is to review intrusion detection systems (IDS). The

chapter firstly introduces commonly known network attacks, which exploit network

vulnerabilities to accomplish their mission. The intention of attacks differ from one

to another, resulting in different mechanisms for the attack. This section presents

various intentions and mechanisms for network attacks. Defensive techniques are

reviewed in a subsequent section, including intrusion detection systems (IDS). The

history of IDS is briefly presented. A generic architecture for IDS is summarized

for a better understanding of IDS’s elements. The IDS literature is reviewed and

discussed next. It is found that common among techniques used so far are at-

tempts to construct a universal model for a problem domain and using that model

to detect anomalous traffic. Techniques generally use sophisticated statistics and

mathematics. The most common audit data used in the analysis is TCP connection

information. The use of alternative audit data based on traffic volume has emerged

recently. Literature related to anomaly detection from traffic volume is reviewed

and discussed, as the thesis uses traffic volume as its audit data. Finally, there is

some discussion about the limitations of IDS.

Chapter 3

Expert systems (ES) have been used extensively to automate processes in many

tasks. An ES basically consists of a knowledge base and an inference engine. A

knowledge base is a collection of knowledge learned from a particular domain, which

3

1.1. Overview of Thesis

will be retrieved for later reference or used by an inference engine to derive a con-

clusion for a situation. The chapter briefly discusses ES from both philosophical

and practical views. One difficulty in constructing a knowledge base is the pro-

cess of knowledge elicitation. A technique called Ripple Down Rules (RDR) has

been proposed to facilitate the task. RDR has been well proved as a simple and

incremental technique for constructing a knowledge base. It was originally used

in classification tasks. Soon after, it was applied to many other areas, including

configuration, heuristic search and image processing tasks. This chapter provides

a discussion on RDR from its philosophy, through its terminology, elements and

structure, to its application. The philosophy of RDR is based on situated cogni-

tion, where a knowledge is a justification in a particular context. RDR terminology,

including a formal representation, is reviewed to provide a ground for later discus-

sion. RDR was originally implemented with a binary tree. It was later enhanced to

n-ary trees and composite rules (or decision list). A variety of tasks that RDR has

been applied to are then reviewed. Finally, the chapter concludes with problems

and further research into RDR.

Chapter 4

As mentioned earlier, RDR is used to segment a problem space into sub-spaces of

homogeneous data, which should be more easily profiled by a learning algorithm.

This chapter presents a novel algorithm that is able to learn homogeneous data

and detect outlying data that differs from the population. A variety of outlier

detection techniques are reviewed prior to an introduction to our novel algorithm,

named Outlier Estimation with Backward Adaptation (OEBA). The algorithm

OEBA is designed for continuous attributes because most attributes in a network

domain are numerical.

False positive and false negative rates are used to evaluate OEBA. Firstly, a

simulation is conducted on noise free data sets. It demonstrates that the algo-

rithm does not produce false positive warnings with a suitable threshold. Next,

a simulation is conducted on data sets with randomly injected outliers. Outliers

4

1.1. Overview of Thesis

are characterized by two attributes; i.e., the number of outliers in a data set and

the difference between outliers and valid data. Results from all these simulations

demonstrate that there exists a range of thresholds that produces no false positive

and no false negative instances for data sets with a range of outlier contamination.

Chapter 5

One of many tasks in network monitoring is anomaly detection, which is done both

manually and automatically. Manual detection of traffic anomalies is typically

performed by network administrators of an organization. The chapter explains

anomaly detection in the School of Computer Science and Engineering (CSE),

University of New South Wales (UNSW). Traffic data are archived by a network

tool called RRDTool and illustrated on a web page on request. An administrator

looks up graphs of network traffic consumption to detect anomalies for further in-

vestigation. To automate the task, RDR is used to segment network traffic into

regions of homogeneous traffic and the algorithm OEBA is applied to learn the

behavior of a region. A technique for profiling network traffic behavior and how to

construct OEBA-profiles and organize them in a RDR tree are explained. A profile

retrieval and a matching mechanism, which is the core of anomaly detection, are

discussed next. After the model is explained, the chapter presents an implemen-

tation. The study implements a system prototype to detect network anomalies

from traffic consumption in CSE, UNSW. The system is explained in detail: its

architecture, audit data, knowledge base structure. Examples of the graphical user

interface of the prototype are presented along with results of its use.

Chapter 6

A problem in any expert system is brittleness. Expert systems are brittle because

they do not realise the limits of their knowledge. The CYC project (Guha and

Lenat, 1990) is an attempt at a solution to this problem by building a knowledge

base of common sense, or general knowledge, as a foundation on which other expert

systems could be built. In RDR, an attempt called prudence is made to provide

5

1.1. Overview of Thesis

experts with warnings when a system reaches the limits of its knowledge. It has

been shown that the technique could successfully warn about most cases where

the system had made an incorrect conclusion. However, it was found that false

positive was high at 15%. It was our intention to improve prudence performance

by applying our learning algorithm OEBA. An evaluation of the algorithm OEBA

on the Garvan data set demonstrates an improvement in performance. However,

during the investigations, it was found that the majority of false positive warnings

were from categorical attributes. Another learning algorithm was developed for

categorical attributes and named Outlier Estimation for Categorical Attributes

(OECA). When both algorithms OEBA and OECA are applied to the prudence

mechanism, the false positive rate can be successfully reduced to 5% or lower.

As both algorithms OEBA and OECA are applied on each attribute separately,

correlations between attributes are not addressed. The chapter also presents an

extension of the approach to address correlations between attributes. The chapter

also presents an investigation of the characteristics of warnings produced.

Chapter 7

The main points from the thesis are summarised and future directions are out-

lined.

6

Chapter 2

Network Attack and Intrusion

Detection Systems

The fact that network attacks can change significantly from one period of time

to another makes Internet security critical. This chapter explains the nature of

network attacks, their effects and defensive techniques against them.

This chapter is organized as follows. Network attacks are summarized in Sec-

tion 2.1. The defensive techniques are reviewed in Section 2.2. Intrusion detection

systems are one approach among others to detect network attacks before they cause

any further damage to the system. The generic architecture of intrusion detection

systems is introduced in Section 2.3. Afterwards, techniques used to implement

such systems are discussed in Section 2.4. More recently, new approaches for net-

work intrusion detection analyze network measurement, instead of packet header

information. This is discussed in 2.5. Finally, problems and limitations in the

implementation of intrusion detection systems are discussed in Section 2.6.

2.1 Network Attacks

The number of attacks on computer networks has grown every day. Network at-

tacks occur in many forms and with different objectives. Hence, there exist many

attempts to group or classify those attacks. This section gives a brief review of

7

2.1. Network Attacks

these classifications of intrusions.

Smaha 1988, for example, has divided network intrusions according to their

characteristics into 6 types, i.e., attempted break-in, masquerade attack, penetra-

tion of security control system, information leakage, denial of service and malicious

use. Attempted break-in is an attack where someone is attempting to break into

a system but is not yet successful. This can be observed by an abnormally high

rate of password failures. The masquerade attack is one step further where the

attempt is accomplished and the attacker can log into the system through a le-

gitimate account. However as the behaviour can be strangely different from the

legitimate user, this makes it possible to be discovered. Unlike the first two types

that are caused by outside intruders, the penetration of the security control system

is caused by a legitimate user attempting to unauthorizedly access resources, e.g.,

files or programs, not normally permitted to him. This can however be noticed by

monitoring for specific patterns of activity. Similarly, the leakage is caused by a

legitimate user with authorized access trying to disclose sensitive resources to unau-

thorized people. This can be seen from unusual access times or strange behaviour.

Denial of service, probably the most well known attack, is the situation where an

intruder tries to monopolize a resource, i.e. preventing legitimate users of a service

from using that service. The last type, malicious use, may include miscellaneous

attacks such as deleting files, resource hogging, which can be detected by atypical

behavior profiles, violations of security constraints, or use of special privileges.

Another view of network attacks is presented by (Anderson, 2001), where at-

tacks are classified according to their source location and mechanisms, i.e., attacks

on local networks and attacks using Internet protocols and mechanisms.

(Lyle, 1998), instead, considered the effect of network attacks as criteria. The

author divided attacks into 3 categories, i.e., attacks on integrity, attacks on con-

fidentiality and attacks on availability.

No matter what categorization is used to group network attacks, they are just

different perspectives on network attacks. In this thesis, we firstly discuss system

vulnerabilities, as most network attacks involve a combination of vulnerabilities of

underlying systems, and running applications. The common intentions of attacks

8

2.1. Network Attacks

are summarized. The main mechanisms that attacks have used are discussed in

the subsequent section.

2.1.1 Vulnerabilities

The exact vulnerabilities being exploited change from time to time; as bugs get

fixed, new software introduces new bugs. However, critical vulnerabilities have been

profiled and ranked by the SANS Institute and National Infrastructure Protection

Center (NIPC) to provide information for organizations to prioritize their efforts

and close the most dangerous holes first. As of November 2005, the SANS Institute

released the top 20 vulnerabilities summarized into four categories, i.e., Windows

systems, cross-platform applications, Unix systems and networking products, as

follows (Institute, 2005).

Windows Systems

Vulnerabilities in Windows systems were reported to be found most in Win-

dows services, Internet Explorer, Windows libraries, Microsoft Office and Outlook

Express and from weaknesses in configuration. As most services provide remote

interfaces to client components through Remote Procedure Calls (RPCs), remotely

exploitable buffer overflow is the number one issue for Windows services. In In-

ternet Explorer, the main problems reported are memory corruption, spoofing and

execution of arbitrary scripts. Since Windows libraries are used for many common

tasks such as HTML parsing, image format decoding, etc., a critical vulnerability

in a library can impact a range of applications that rely on that library. Microsoft

Office and Outlook Express are the most widely used email and productivity suites

worldwide. Damages to infected machines and organizations from viruses and ma-

licious codes have been reported constantly. Configuration weaknesses, i.e., weak

passwords on accounts or network shares, are usually exploited by families of bots

and worms.

Cross-Platform Applications

In cross-platform applications, top vulnerabilities were reported in backup soft-

9

2.1. Network Attacks

ware, anti-virus software, PHP-based applications, database software, file-sharing

applications, DNS software, media player applications, instant messaging applica-

tions, and Mozilla and Firefox browsers. There are some other applications that

cannot be classified into any of above categories. The most common exploits re-

ported for these are:

• Malicious software like spyware, Trojans or adware on users’ systems which

may completely compromise a user’s system without requiring much user

interaction

• Buffer overflow

• Worms

• Bots

• Leakage of sensitive information

• Distributed Denial of Service (DDos)

• Rogue bandwidth utilization

DNS software is found to be prone to many types of transaction attacks, including

cache poisoning, domain hijacking and man-in-the-middle redirection.

Unix

Although Unix is claimed to be stable, there are still vulnerabilities that have

been exploited. The top vulnerabilities are weaknesses in system configuration.

For example, weak passwords for user accounts makes SSH one of the services very

popularly targeted with brute-force password guessing attacks. These attacks can

be extended to other interactive services like telnet, ftp, etc.

Networking Products

The top vulnerabilities in networking products have been reported for Cisco’s

Internetwork Operating System (IOS), as the most common operating system for

enterprise routers and switches in the world, powering nearly 85% of global Internet

10

2.1. Network Attacks

backbone (Institute, 2005). It was shown to have several vulnerabilities that allow

denial-of-service conditions or remote execution of malicious codes. There are also

Cisco products that run on application specific OS, which have been reported to

have some vulnerabilities that can result in the same exploitation. Not only Cisco

products have been reported with vulnerabilities, Juniper, CheckPoint and Syman-

tec products have also been reported with vulnerabilities in operating systems, for

example, JunOS, the second most common OS for backbone Internet routers. It

has been reported that exploits could reboot Juniper routers and compromise the

Symantec and CheckPoint Firewall/VPN devices.

Network vulnerabilities are present in every system. It is very difficult, if not im-

possible, to get rid of all of them, as network technology advances rapidly. The best

way is to minimize them as much as possible. To do so, we need to keep vigilant on

vulnerabilities reported and have the system patched immediately. Discovered vul-

nerabilities are usually posted publicly on web sites, e.g., www.securityfocus.com,

www.cert.org, www.sans.org, cve.mitre.org, www.ciac.org/ciac/.

2.1.2 Intentions of Attacks

1. Information Disclosure

Many attacks aim to gain access to confidential or personal information,

e.g., passwords, credit card numbers. With this confidential information, an

attacker can further access private resources. For example, with illegitimate

access to the root password, an attacker can take control over the whole

system.

2. Malicious Use

With an aim to illegitimately use the resources of the system, an attacker

seeks access to the system. An attack can be originated either from a inside

who wants higher privileges than assigned or an outsider who wants to use

the system’s resources.

3. System Failure

Some attacks aim to render resources unavailable to legitimate users. This

11

http://www.securityfocus.com
http://www.cert.org
http://www.sans.org
http://www.ciac.org/ciac/

2.1. Network Attacks

might be to destroy commercial competitiveness or might be a military or

terrorist attack.

2.1.3 Mechanisms of Attacks

1. Eavesdropping Attack

Eavesdropping can occur when an attacker gains access to the data path in

a network and can monitor and read the traffic. It is considered a passive

attack as it basically eavesdrops or registers a user’s activities to gain private

information. This is also called sniffing or snooping. If the traffic is in plain

text, the attacker can read the traffic as soon as they gain access to the path

by sniffing the wire or wireless signal.

(a) Keypress snooping

Keypress snooping aims at capturing confidential information, i.e., pass-

words, from an unaware target by installing keylogging software on the

target’s machine.

(b) Packet sniffing

Sniffing is used to gain the information being passed on a network, e.g.,

passwords, credit card numbers. An attacker must gain access to the

network TCP/IP traffic path before he/she can capture data packets

that make up the conversation, and assemble the packets into a for-

mat that is readable to the attacker. It is often the first step in many

successful attacks to find system vulnerabilities.

2. Port Scan Attack

A Port Scan is one of the most popular reconnaissance techniques attackers

use to discover services they can break into. A port scan exploits the basic

concept that services, running on machines connected to a Local Area Net-

work (LAN) or Internet, listen at TCP or UDP ports. By sending a message

to each port, one at a time, the technique can determine whether the port is

used and can therefore be probed further to find a weakness. Normally port

scanning does not cause direct damage. Potentially it helps the attacker find

12

2.1. Network Attacks

which ports are available to launch various attacks. Examples of Port Scan

are Stealth scan, SOCKS port probe, Bounce Scan (Javvin Technologies,

2006).

3. Denial of Service

Denial of Service (DoS) is a well-known attack designed to render a computer

or network incapable of providing normal services. The common targets of

DoS attacks are a computer’s network bandwidth and connectivity. Band-

width attacks aim to cause unavailability of bandwidth in the network by

flooding the network with a high volume of traffic to consume all available

network resources so that legitimate user requests cannot get through. On

the other hand, connectivity attacks aim at making a server incapable of pro-

cessing legitimate user requests. By flooding a server with a high volume of

connection requests, the server’s operating system resources are all consumed.

(a) Flooding with SYN packets is the simplest DoS connectivity attack. The

attacker sends a large number of SYN packets and never acknowledges

any of the replies, which causes the recipient to accumulate more records

of SYN packets than the software can handle.

(b) Smurfing is another technique to bring down a target machine in a net-

work by swamping the target with more packets than it can handle;

then the attacker can take over the resource. The technique exploits a

vulnerability in the Internet Control Message Protocol or ICMP, which

enables users to send an echo packet to a remote host to report the

availability of a host. The problem arises with broadcast addresses that

are shared by a number of hosts. The attacker constructs a packet with

a source address forged to be that of a victim, and sends it to a broad-

cast address. The hosts on the broadcast address will each respond by

sending back a packet to the target.

4. Distributed Denial-of-service Attack

A more advanced DoS attack is Distributed DoS or DDoS. Rather than just

exploiting SYN packets or a smurf amplifier, it uses many computers to launch

13

2.1. Network Attacks

a coordinated DoS attack against one or more targets. The attacker is able

to multiply the effectiveness of the Denial of Service by harnessing a large

number of machines over a period of time and installing attacking software.

At a predetermined time or on a given signal, these machines all bombard

the target site with messages.

5. Spoofing Attack

A spoofing attack is a situation in which one person or program successfully

masquerades as another by falsifying data and thereby gains an illegitimate

advantage. There are several scenarios for spoofing attacks, e.g., man-in-the-

middle attack, IP spoofing, phishing, email spoofing.

(a) A man-in-the-middle attack is an attack in which an attacker is able

to read, insert and modify at will, messages between a sender and a

receiver without either party knowing that the link between them has

been compromised. The attacker must be able to observe and intercept

messages going between the two victims (Wikipedia, 2006a).

(b) IP spoofing. An intruder can create packets with spoofed source IP

addresses, exploiting applications that use authentication based on IP

addresses. This can lead to unauthorized use and possibly root access

on the targeted system (Center, 1995).

(c) Phishing is an attack where a legitimate web page such as a bank’s site

is reproduced with the same “look and feel” on another server under the

control of the attacker. The intent is to fool the users into thinking that

they are connected to a trusted site, for instance to harvest user names

and passwords. This attack is often performed with the aid of URL

spoofing, which exploits web browser bugs in order to display incorrect

URLs in the browsers location bar; or with DNS cache poisoning in order

to direct the user away from the legitimate site and to the fake one. Once

the user puts in their password, the attack-code reports a password error,

then redirects the user back to the legitimate site (Wikipedia, 2006c).

(d) Email spoofing is an attempt to trick users into believing that they

14

2.1. Network Attacks

receive email from one source when it actually was sent from another

source. Once believed, users potentially reveal sensitive information

(such as passwords) or make a damaging statement (Center, 2002).

6. Viruses, Worms, and Trojan Horses

Viruses, worms and Trojan Horses are all malicious programs that can cause

damage to your computer, but there are differences among the three (Beal,

2006).

(a) A virus is a software program deliberately designed to interfere with

computer operations and able to spread itself to other computers on the

network or the Internet. Almost all viruses are attached to an executable

file, which means they can only infect the machine when a user runs or

opens this malicious code. It is important to note that a virus needs

human action to spread itself to other machines. People usually do not

know that they are spreading viruses by sharing infected files or sending

emails with viruses as attachments to the emails.

(b) A worm is similar to a virus by its design, but it can spread from one

computer to another by itself. Taking advantage of file or information

transport features on your system, a worm is able to travel without

the help of a person. A worm can also replicate itself on the infected

machine, so rather than sending one copy of itself, hundreds or thousands

of copies can be sent out. Due to the copying nature of a worm and its

ability to travel across networks, the final result in most cases is that

the worm consumes too much system memory (or network bandwidth),

causing Web servers, network servers and individual computers to stop

responding.

(c) A Trojan Horse is a malicious computer program that masquerades as

a useful tool. The victim is tricked into believing that it is a legitimate

software or file from a legitimate source. The effect of Trojan Horses

varies. For instance, a Trojan Horse may install a keylogger or software

that allows remote control of the victim’s computer, or it can delete

15

2.2. Defense Against Attacks

files or destroy information on your system. A Trojan Horse can also

create a backdoor on the infected machine that gives access to malicious

users, which possibly allows confidential information to be compromised.

Unlike viruses and worms, Trojans do not reproduce by infecting other

files, nor do they self-replicate.

2.2 Defense Against Attacks

Tools to accomplish attacks are becoming more widespread and easier to use every

day. The term “script kiddies” is used for those unskilled attackers who want

to experience the fun of attacking. It is known that the most common attacks

are launched by script kiddies, rather than skilled attackers. There are four basic

techniques to protect networks from attacks. They are configuration management,

the application of firewalls, encryption and intrusion detection systems.

2.2.1 Configuration Management

Configuration management is the most critical aspect of securing a network. The

tighter the configuration, the more secure the network. To apply a tight configu-

ration management policy, system administrators have to make sure, for example,

that all the machines are running up-to-date copies of the operating system, that

all the patches have been applied, that no serious hole is left open in any config-

uration files or services, and that all known default passwords are removed from

installed products. It is quite an effort to maintain a network of a number of ma-

chines with tight configuration management. There are several tools to help system

administrators to keep things tight. Some enable centralized control, which makes

management more convenient. However, the task requires not only skilled, but also

diligent system administrators and tight configuration can result in limited services

the system provides and limited permission for users.

16

2.2. Defense Against Attacks

2.2.2 Firewalls

The most widely used solution to protect a network is a firewall, which stands

between a local network and the Internet and filters out traffic that might be

harmful. A firewall can operate on three different levels, i.e., at the IP packet level,

at the TCP session level or at the application level.

At the IP packet level, a firewall simply examines addresses and port numbers

of packets entering or leaving the network and accepts or rejects them based on

user-defined rules. It can block IP spoofing attacks and stop some denial-of-service

attacks. A more complex firewall, called a circuit gateway, operates at the TCP

session level. A Circuit Gateway is concerned with allowing or disallowing a session

(such as Telnet or FTP), without analysing the content of the transmitted packets.

It applies security mechanisms when a connection is established. Once the connec-

tion has been made, packets can flow between the hosts without further checking.

Operating at the application level is the application relay. It can act as a proxy

for some services, e.g., mail, telnet, and Web. The application relay can be set to

apply security mechanisms to specific applications, e.g., filter out macros or active

content from incoming files or Web pages. This is very effective, but can reduce

performance. Even though having firewalls installed for networks still requires a

proper configuration and policy, the idea of having a small number of machines to

manage, rather than configuring all machines in the network, is attractive.

2.2.3 Encryption

In cryptography, encryption is the process of obscuring information to make it un-

readable without special knowledge. It is employed to protect the confidentiality of

information; either individual or organizational. Although encryption can ensure

secrecy to a certain degree, it is not completely secure to rely only on encryption.

Other techniques are still needed to make communications secure, particularly to

verify the integrity and authenticity of a message; for example, a message authen-

tication code (MAC) or digital signature.

Encryption can be enforced at different layers, depending on products. For

17

2.2. Defense Against Attacks

example, a product called Secure Shell (SSH) encrypts links between two parties.

IPv6 provides encryption and/or authentication at the IP layer. In a virtual private

network or VPN, data are encrypted at firewalls of communicating companies in

the network.

Although secrecy and confidentiality can be guaranteed by encryption, there

are other kinds of attacks that cannot be prevented. For example, the problem of

malicious code can arise if encrypted mails or Web pages are allowed through the

firewall. They can bring all sorts of unwanted things with them.

2.2.4 Intrusion Detection System

Intrusion detection is an attempt to detect inappropriate, incorrect, or anomalous

activities, which can cause damage to an organization. In computer networks,

intrusion detection systems have attracted high attention as network attacks have

increased in number and evolved in technique every day.

An intrusion detection system, or IDS, attempts to detect an intruder breaking

into the system or a legitimate user misusing system resources and raises an alarm

to notify the proper authority (This authority is from now on referred to the Site

Security Officer or SSO).

A History of IDS

In 1980, Anderson wrote a report, in which a term “intrusion detection” was born,

with the purpose of improving the computer security auditing and the surveillance

capability of the customer’s systems (Anderson, 1980). He reported that audit

trails contained vital information that could be valuable in tracking misuse and

understanding user behavior and outlined the considerations and general design of

a system which provided an initial set of tools to computer system security officers

for use in their jobs. The report is considered a foundation for later intrusion

detection system design and development. His work was the start of host-based

intrusion detection and IDS in general.

18

2.2. Defense Against Attacks

In 1983, Denning with SRI International began working on a government project

in intrusion detection development. Their goal was to analyze audit trails and

create profiles of users based on their activities. One year later, the Intrusion

Detection Expert System (IDES)(Denning, 1987), which was the first model for

intrusion detection, was developed. It was used for tracking and analyzing audit

data containing authentication information of users on ARPANET, the precursor

of Internet. A model for a commercial intrusion detection system development was

published in 1987 by Denning from her research and development work at SRI.

The model is the basis for most of the work in IDS that followed.

Meanwhile, there were other significant advances occurring at many laborato-

ries. At Los Alamos National Laboratory LANL, Wisdom and Sense (W&S)(Vac-

caro and Liepins, 1989) was developed as an anomaly detection expert system in

1984. In 1988, MIDAS (Sebring et al., 1988) was developed for US National Com-

puter Security Center Multics. In the same year, the Haystack project (Smaha,

1988), at the University of California Davis’ Lawrence Livermore Laboratories,

released a version of intrusion detection for the US Air Force, In 1990, an idea

of network-based intrusion detection was introduced by Heberlein. The Network

Security Monitor (NSM) was the first network-based intrusion detection system.

This new awareness led to more interest in the field of intrusion detection and in-

vestments in that market increased significantly. Simultaneously, the Automated

Security Measurement System (ASIM) was developed at the Air Force’s Crypto-

logic Support Center to monitor network traffic on the US Air Force’s network.

ASIM was able to address scalability and portability issues of most network prod-

ucts. Additionally, ASIM was the first solution to incorporate both a hardware

and software solution for network-based intrusion detection. ASIM is still in use

and managed by the Air Force’s Computer Emergency Response Team (AFCERT)

at locations all over the world (Innella, 2001).

Commercial development of intrusion detection technologies began in the early

1990s. The first commercial vendor of IDS tools was Haystack Labs, which was

formed by the developers from the Haystack project. Its product was called Stalker,

the last generation of the technology from the Haystack project. Science Appli-

19

2.2. Defense Against Attacks

cations International Corporation (SAIC) was also developing a system of host-

based intrusion detection, called Computer Misuse Detection System (CMDS). In

1994, the development group on the ASIM project formed a commercial company,

the Wheel Group. Their product, NetRanger, was the first commercially viable

network-based intrusion detection device. The intrusion detection market began

to gain in popularity around 1997. In that year, Internet Security Systems (ISS),

which is a security market leader, developed a network intrusion detection system

called RealSecure. In 1998, Cisco recognized the importance of network intrusion

detection and purchased the Wheel Group, incorporating a security solution for

their customers. Similarly, a merger of the development staff from Haystack Labs

and the departure of the CMDS team from SAIC formed Centrax Corporation.

From there, the commercial IDS world expanded its market-base and a cycle of

start-up companies, mergers, and acquisitions ensued.

Generally, intrusion detection systems are classified on what patterns or profiles

represent. There are two major categories of intrusion detection systems; i.e.,

anomaly-based and misuse-based. For example, if a system maintains profiles of

normal behaviour, it is classified as anomaly-based. On the other hand, a system

that maintains profiles of intrusive activities is called a misuse-based system, which

is sometimes referred to as a signature-based system.

Anomaly-Based Intrusion Detection System

In anomaly based intrusion detection, profiles of normal behavior are defined in

relation to previously observed characteristics. The system reacts to deviations

from these profiles. Anomaly-based intrusion detection systems are well-known for

their ability to catch novel intrusions as well as variations of known intrusions.

This is because intrusions are not covered by the pre-defined profiles. However,

this is also a problem. As the system constructs a normal model of subjects from

previously observed behaviour, a deviation, which may not be intrusive, might be

treated as an intrusion.

A profile for an anomaly-based system can be self-learned or programmed. A

20

2.2. Defense Against Attacks

system with self-learning profiles can adapt itself to changes in network environ-

ment; however, this comes with a trade-off: a system with self-learning profiles

might learn to accept dangerous behaviour as normal when it changes slowly over

time, which might cause false negatives. Because of this, hybrid profiles combining

two approaches have been proposed. Our paradigm also uses hybrid profiles in

detecting anomalies, as will be discussed later.

Misuse-Based Intrusion Detection System

Unlike anomaly-based intrusion detection systems, misuse-based detectors focus

on the evidence of intrusive behaviour. They require that the nature, patterns or

signatures of intrusive behaviour must be maintained. Such systems are sometimes

called signature-based systems.

These signatures would be used against audit data to find evidence of intrusion.

With the knowledge of intrusive manifestations, the processing of audit data is

simpler and produces less false positives than anomaly based detection as we know

what we are looking for. The main advantage of misuse-based (or signature-based)

systems is that they can effectively detect known attacks with a low false positive

rate. This is because only an observation with a corresponding intrusive signature

is treated as an intrusion. The system needs be programmed with an explicit

set of decision rules, where what can be expected to be observed in the event of

intrusion is specified. This is a highly qualified and time consuming task and is

often performed at regular intervals, in a batch oriented fashion. However, an

organization can subscribe to some outside sources, where well-known and recently

detected intrusion signatures are provided. It is possible that machine learning

could be used to build rules, but this would require specific examples to be identified

for the learning and cannot be considered as self-learning.

Since the signature database needs to be manually revised for each new type

of attack that is discovered, this limitation has led to an increasing interest in

anomaly techniques. With pros and cons for both techniques, a hybrid between

anomaly and signature has also been proposed.

21

2.3. Generic Intrusion Detection System

2.2.5 Other Research

Alternative to traditional ways to protect networks as discussed above, there are

studies in network architecture and protocol modification. Yang et al. (Yang,

Wetherall, and Anderson, 2005) address DoS attacks by designing a new architec-

ture called Traffic Validation Architecture(TVA). Hosts and routers are extended

with some features to limit the impact of packet floods so that two hosts can com-

municate despite attacks by other hosts. This work is based on capabilities, which

allows destinations to control the packets they receive.

Another technique is proposed by Walfish et al. (Walfish et al., 2006). The

authors address, in particular, application-level DDos attack by the technique called

speak-up, which tries to slow down the bad clients. The approach encourages all

clients to send more data to the server. They suppose that bad clients are already

using most of their upload bandwidth, then encouragement will not change their

traffic volume. On the other hand, good clients use only small fraction of their

available bandwidth, so they will react to encouragement by sending more traffic.

As a result, the paper claims that good clients will be better represented in the

mix and thereby capture a larger portion of the server. The approach requires a

mechanism to cause a client to send more traffic for a single request than it would

if the server were unattacked.

2.3 Generic Intrusion Detection System

Many intrusion detection systems(or IDS) are based on the general model proposed

by (Denning, 1987). The model, independent of the platform and type of intru-

sion, has six main components: subjects, objects, audit records, profiles, anomaly

records, and activity rules. The system maintains a set of historical profiles of

monitored subjects with respect to objects, matches each generated audit record

against the profiles, and reports any anomalies detected.

Even though each IDS differs in many aspects from the choice of data source to

the processing approach, there are four common tasks in any IDS; i.e., audit data

22

2.3. Generic Intrusion Detection System

Policy Execution

Profile
Generation

Intrusion
Detection

Audit Data Collection

Figure 2.1: Generic tasks of intrusion detection systems.

collection, reference data generation, intrusion detection, and policy execution as

shown in Figure 2.1. Each of these tasks is explained below.

2.3.1 Audit Collection and Storage

The very first step in any detection system is to decide what data from the moni-

tored system could be used as audit data. Many different parts of the system can

be used as sources of data; for example, keyboard input, command logs, applica-

tion logs. However, the most common sources of audit data are host-based logs

and network traffic data.

Using host-based logs is motivated from the idea that users behave in a consis-

tent manner. In the past, most systems have used host-based logs as audit data;

for example, Haystack, IDES, W&S. Haystack (Smaha, 1988), maintains profiles

for each user from past behavior and can monitor current behavior of users. IDES

(Lunt et al., 1988) calculates statistics from past behavior of users and correlates

the current activity with the calculated profiles. W&S (Vaccaro and Liepins, 1989)

studies historic user records to produce a set of rules describing the normal behavior

of each user.

23

2.3. Generic Intrusion Detection System

Current IDSs are likely to monitor network traffic data. Examples of such

systems are NSM, EMERALD, SmartSifter. NSM (B. Mukherjee, 1994) was the

first IDS solely using network traffic data to analyse the intrusion. On the other

hand, EMERALD (Porras and Neumann, 1997) uses both host-based and network

traffic data. Another issue is the storage of audit data. Audit data must be stored

somewhere, either for later reference or temporarily awaiting processing. Typically,

the volume of data is exceedingly large. This is a crucial element in any intrusion

detection system.

2.3.2 Reference Data Generation

Reference data or profiles play a central role in intrusion detection systems. They

contain the knowledge of the system of interest; for example, the normal behaviour

of a network or signatures of known attacks. The type of profile is basically used

to categorize intrusion detection systems; an anomaly-based IDS uses profiles of

normal behaviour while a signature-based IDS maintains profiles of intrusive be-

havior.

A profile can also be distinguished by how it is created; i.e., it can be created

by self-learning or programmed by a network administrator. With self-learning

profiles, the system is able to automatically learn by example the behaviour of a

large number of monitored subjects. It is done essentially by observing data for

a period of time and building some model of the monitored subjects. There are

several techniques used; for example, rule modeling, descriptive statistics, hidden

Markov models, artificial neural networks. Ideally, the system can be left to run

unattended and profiles are updated when new data is accepted as belonging to

the profile.

On the other hand, a programmed detector needs someone, say a network ad-

ministrator or the SSO, to teach the system about what is considered normal and

what is abnormal enough to signal a security violation. Generally, this kind of

system relies on predefined descriptive statistics, for example, the number of un-

successful logins, the number of network connections, which are configured by the

24

2.3. Generic Intrusion Detection System

SSO. Along with these monitored statistics are thresholds which are configured by

the SSO. When any of these thresholds is exceeded, the system raises an alarm.

Techniques that have been used in this approach include state modeling, expert sys-

tems, string matching, model based systems, state transition analysis and pattern

matching.

A computer network is a dynamic environment where its attributes, such as

the number of users, the link capacity, etc., can change over time and new attacks

emerge every day. Profiles should be able to capture the most recent situation of

the monitored network. The pros and cons of each kind of profile mainly involve

profile update. A system with programmed profiles requires human interaction to

update its profiles. It lacks a learning capability; however, a self-learning system

might learn to accept dangerous behaviour as normal when it changes slowly over

time.

2.3.3 Intrusion Detection

An intrusion detection system tries to detect potentially intrusive characteristics

from audit data against reference data and raise an alarm to notify the SSO. A

detection engine in general is an algorithm to produce an output for an audit

record based on the system’s reference data. The output here is a conclusion about

whether an audit record is an anomaly. A detection engine is tightly coupled with

the representation of reference data or knowledge of the system. For example, a

distribution is used to represent a parameter. To detect an anomaly, the detection

engine might calculate the probability of an observed value that follows that dis-

tribution. If the probability is within a confidence interval, that value is treated as

normal. Another example is that system behavior might be captured in rules. The

detection engine then uses an inference technique to derive a conclusion about an

audit record.

There are many techniques that have been proposed and implemented for de-

tecting intrusions. The earliest used statistical measures to specify valid thresholds

for parameters. Many AI approaches, e.g., expert systems and neural networks have

25

2.3. Generic Intrusion Detection System

also been used.

Another element to take into account when considering techniques for intrusion

detection is time series or temporal relationships. Some techniques can handle the

order and interarrival times of the observations x1, ... , xn, as well as their values,

but the others cannot. A time series has the advantage of measuring trends in

behaviour over time and detecting gradual but significant shifts in behaviour.

Statistical Approach

Using statistics to identify how anomalous an event is, has been widely used in

intrusion detection for many years. The system basically collects data on certain

network parameters and applies some statistical techniques on the collected data to

generate profiles for parameters, for example, a system might learn the distribution

of a monitored parameter. The system then considers the variance of monitored

parameters from their profiles; i.e., the higher the variance, the more likely the

network is experiencing an attack. The system may apply simple rules which can

be defined by the SSO to apply to the variance. Threshold is the simplest form

of a rule that is predefined for the system to raise an alarm when the monitored

parameters exceed it. Examples of IDS using descriptive statistics are Haystack

(Smaha, 1988), IDES (Lunt et al., 1988), EMERALD (Porras and Neumann, 1997),

etc.

Expert Systems

Cannady stated that the majority of techniques employed to detect network in-

trusions use expert systems (Cannady, 1998). An expert system consists of a set

of rules encoding the knowledge of human expertise. These rules are used, by an

inference engine, to make conclusions about security-related data. A rule is in the

form of IF (antecedent) THEN (consequent) statement, which is close to the nat-

ural thinking of humans. The ease of capturing knowledge and formulating rules

makes this approach attractive. This form also provides modularity, from which

the knowledge engineer can easily review, verify, and correct each rule without, in

26

2.3. Generic Intrusion Detection System

theory, any effect on other rules. But as we will see, in practice, rule addition is

more difficult than this.

Neural Networks

With the capability to provide a probability estimate that the data matches the

characteristics which it has been trained to recognize, neural networks have been

proposed for intrusion detection arena. The neural network gains experience ini-

tially by training the system to correctly identify preselected examples of the prob-

lems. Its response is reviewed and the configuration is refined until it reaches a

satisfactory level. In addition to the initial training period, the neural network

gains experience over time as it conducts analyses on data related to the problem.

Neural networks have been used in both anomaly-based and misuse-based system.

Examples of anomaly-based intrusion detectors using neural network are Hyper-

view (Debar, Becker, and Siboni, 1992) and NNID (Ryan, Lin, and Miikkulainen,

1998).

State Modeling

The basis of this approach is to encode data as an automaton-like diagram with a

number of states and transitions. For example, intrusions are the input to the state

generation mechanism in misuse-based detection, whereas, a security benign oper-

ation is encoded as a set of states in anomaly-based detection. As data is analyzed,

the system makes transitions from one state to another. Examples of systems using

state modeling are USTAT (Ilgun, 1993), IDIOT (Kumar and Spafford, 1994).

Predictive Pattern Generation

Based on the assumption that sequences of events from a particular subject are not

totally random, but follow a perceptible pattern, this technique was proposed to

predict future events, given a sequence of events that have already occurred (Teng,

Chen, and Lu, 1990). The approach incorporates time-based rules and probability.

The following rule:

27

2.4. Intrusion Detection Systems: Examples

E1 → E2 → E3 ⇒ (E4 = 95%, E5 = 5%)

means that given a sequence of observed events E1, E2, and E3, the probability

of seeing E4 is 95% and that of E5 is 5%. This probability is based on previously

observed data. The rules are modified dynamically during the learning phase and

low quality rules are continuously eliminated.

2.3.4 Policy Execution

The last task, policy execution, is when an action is taken when an intrusion is

detected, i.e., to notify the SSO, or update related reference profiles. Action is

generally predefined by the SSO depending on the level of intrusions detected.

2.4 Intrusion Detection Systems: Examples

In this section, some intrusion detection systems are briefly reviewed. We will see

that some systems use one technique to detect anomalies, while others might use

a combination of techniques. A discussion of these systems is provided after they

are reviewed.

2.4.1 Haystack

Haystack (Smaha, 1988) was developed for the detection of intrusions based on

users’ log profiles. It was designed to detect six different types of intrusion as dis-

cussed earlier, i.e., attempted break-in, masquerade attack, penetration of security

control system, information leakage, denial of service and malicious use. The sys-

tem employs two methods of detection; i.e., both anomaly-based and misuse-based

detection. With misuse-based detection, Haystack looks for evidence of predefined

“bad” behaviour and atypical or suspicious behaviour. A suspicion quotient is used

as a measure of the abnormality of the session with respect to a particular weight-

ing of features. Haystack computes a weighted multinomial suspicion quotient

from a list of features whose values are outside the expected security ranges and

28

2.4. Intrusion Detection Systems: Examples

the estimated significance of each feature violation for detecting a target intrusion

(B. Mukherjee, 1994).

Using statistics from past behaviour, anomaly detection is performed on two

model types; i.e., a per user model and a generic user group model. About two

dozen features of a user’s session are monitored, including time of work, number

of files created, number of pages printed, etc. Smaha states that if the anomaly-

based detection sub-system attempts to learn suspicious behaviour that is actually

normal, the SSO can choose to process past user sessions to look for trends that

could indicate this. However, the author has not suggested how to present the

information to the SSO.

2.4.2 MIDAS

MIDAS (Sebring et al., 1988) was developed by the National Computer Security

Centre, in cooperation with the Computer Science Laboratory, SRI International.

From observation of how SSOs analysed audit logs manually to find evidence of

intrusive behaviour, the authors identified that successful (manual) intrusion de-

tection involves knowledge and symbolic reasoning with a measure of uncertainty.

That was why they decided to use a rule-based expert system to the task.

MIDAS uses the Production Based Expert System or P-BEST, which is a for-

ward chaining expert system shell, in which the introduction of a new fact in its

fact base triggers the re-evaluation of the rule base. Rules are in three distinct cat-

egories, i.e. immediate attack, user anomaly, and system state. Aiming at known

attacks, the immediate attack heuristics are static, predefined by the SSO, and op-

erate without any background knowledge or statistics of the system. On the other

hand, user anomaly and system state use statistical profiles of past behaviour to

detect deviations from them. In the class of user anomaly heuristics, there are two

types of profiles; i.e., a session profile and a user profile. The final class of rules,

system state, maintains knowledge about the system statistics as a whole, without

concerning individual users.

The structure of the rule base is multi-tiered; a conclusion at a lower layer can

29

2.4. Intrusion Detection Systems: Examples

cause the firing of a rule the next higher layer (Axelsson, 2000; B. Mukherjee, 1994).

In general, the lower layer handles deduction about some types of events, e.g., the

number of bad logins, and asserts some facts that some threshold of suspicion is

reached, e.g., bad logins is 5. The process then passes to the next higher layer,

which decides whether to actually raise an alarm.

The authors stated that although MIDAS could detect simulated intrusion at-

tempts, it gave too many false alarms. They intended to employ other algorithms

for anomaly detection and some means to validate the rule base for completeness

and consistency.

2.4.3 IDES

The Intrusion Detection Expert System or IDES (Lunt et al., 1988) is one of the

classic intrusion detection systems. The IDES project had been underway for a

number of years, continuing into the Next-generation Intrusion Detection Expert

System or NIDES, after the IDES project was officially finished. A number of

versions were implemented under the project; some with minor change, some with

fundamental changes. This review will focus on the original IDES.

The basic motivation is that users behave in consistent manner from time to

time which can be summarized by calculating various statistics for the user’s be-

haviour. Then current activity can be correlated with the self-learned profile, and

deviations can be flagged as anomalous behaviour. IDES monitors three types

of subjects; i.e., users, remote hosts, and target systems. Thirty-six parameters

are monitored; 25 for users, 6 for remote hosts, and 5 for target systems. IDES

measures these parameters during each user session (from login-time to exit-time).

Based on these parameters, profiles on subjects are self-generated, and are typically

updated to reflect new user behaviour once a day. IDES then uses an expert system

to verify each new audit record against the known profiles. It also addresses the

problem of different but authorized behaviour of subjects by defining two sets of

profiles for the monitored subjects depending on whether the activity takes place

on a weekday or a weekend. IDES is also able to extrapolate from current statistics

30

2.4. Intrusion Detection Systems: Examples

and compares this extrapolation with the profile for the subject. This is to prevent

the system from reporting abnormalities on some continuous parameters when it

is roughly half-way through the session.

Complemented with anomaly detection, IDES employs an expert system tech-

nique for signature-based detection. This sub-system detects network intrusions

based on rules regarding known attack scenarios, known system vulnerabilities,

site-specific security information and expected system behaviour. It is implemented

using P-BEST.

2.4.4 NIDES

The Next-generation Intrusion Detection Expert System or NIDES (Anderson,

Frivold, and Valdes, 1995) is a direct continuation of IDES. NIDES follows the

same general principles of IDES, i.e., it has a strong anomaly detection foundation,

complemented with a signature based expert system environment. There are four

major versions of NIDES development, each with refinements based on input data.

The four versions are presented in the following paragraphs.

NIDES-Alpha In this version, the same functionality of IDES is preserved, ex-

cept that the architecture is changed; i.e., more modular and built on a client-server

architecture. The anomaly detection functionality is also enhanced to deal not only

with simpler parameterised distributions, but also with multi modal distributions.

NIDES-Alpha Patch There were three changes made in an attempt to improve

NIDES-Alpha performance. Firstly, the information retrieval process was changed:

rather than traversing the entire list at the time of audit record processing, this

process was moved to the profile generation stage. Secondly, a feature was added

to allow the NIDES-Alpha to update profiles based on the audit record timestamps

instead of the real time clock. Finally, a user configurable subject profile cache was

added to speed up processing in the anomaly detection module.

31

2.4. Intrusion Detection Systems: Examples

NIDES-Beta In this version, several new features were added. These features

include an optimised profile storage structure, real-time configuration on NIDES

analysis, expanded status reporting, data management facility, and expanded rule

base (from 21 to 39 rules).

NIDES-Beta Update This version is considered the final release of NIDES.

The main improvement was in handling file access statistics which enabled NIDES

to process difficult cases in a matter of hours, instead of aborting processing. Other

new features included the introduction of Perl scripts to allow NIDES to work in

a cross-platform environment, an enhanced capability to detect the use of sniffers,

and an expanded audit record fact template to enable the rule based detection part

to consider all the available fields in audit records.

Experiments demonstrate that NIDES is capable of detecting anomalies of in-

terest and both false positive and false negative rates can be kept at reasonable

levels.

2.4.5 Wisdom and Sense

The Wisdom&Sense or W&S (Vaccaro and Liepins, 1989) is an example of a self-

learning anomaly-based system with a rule modeling approach.

W&S was designed with a number of requirements, including1

• to reduce audit data to more usable forms.

• to build its own rule base without human guidance. [W&S studies historic

audit data and uses decision tree learner to produce a forest of rules describing

“normal” behaviour.]

• to store and use very large, instantiated rule bases efficiently.

• to tolerate conflicting rules.

1Verbatim from (Axelsson, 2000; Vaccaro and Liepins, 1989)

32

2.4. Intrusion Detection Systems: Examples

• to deal with uncertain and erroneous knowledge.

• to continue to learn from experience and adapt to transient conditions.

• to accept human modifications to its rule base, but not be overly dependent

on scarce human expertise.

• to make real time graded decisions regarding anomalous behaviour.

• to provide human-readable feedback on anomalies to aid in anomaly resolu-

tion.

• to create minimal interference with the real functions of its host system.

• to be portable to different applications, operating systems, and hardware.

An audit record for W&S is typically one event for each process execution.

W&S studies historic user records and produces a set of rules describing the normal

behaviour of a user, irrespective of the temporal relationships among those records.

The author suggested that around 500-1000 records per use is a good target to aim

for. These rules are fed into an expert system that evaluates a recent audit data

for violations of the rules and alerts the SSO when the rules indicate an anomaly.

W&S reads the rule base, dictionary and new data records, either from a file

in batch mode or as they become available. It then evaluates the thread class of

which they are part and reports an anomaly whenever the thread score or individual

audit record score exceeds an operator defined threshold. The audit record score

is derived from summing all contributions from the different failed rules of that

record. The thread score is a sum of all scores from that thread’s audit records.

Experiments with staged intrusion attempts show that the system is time effi-

cient in detecting anomalies. However, the authors suggested further research into

the nature of the computer security threat.

2.4.6 EMERALD

Event Monitoring Enabling Responses to Anomalous Live Disturbances or EMER-

ALD (Porras and Neumann, 1997) is a framework for a scalable, distributed, in-

33

2.4. Intrusion Detection Systems: Examples

teroperable intrusion detection system, aiming at detecting penetration external

to the organisation. It is designed to operate on three different levels; i.e., service

analysis level, domain-wide level, and enterprise-wide level.

The architecture of EMERALD builds around local EMERALD monitors, which

are distributed and independently tunable at different levels. Each monitor com-

municates with others which are distributed throughout the network. These moni-

tors combine signature-based analysis with statistical profiling to provide localized

real-time protection of the most widely used network services on the Internet. The

monitor consists of four main modules; namely, resource object, profiler engine,

signature engine and universal resolver.

The module resource object handles all target specific issues. All configuration

parameters are stored here. It also maintains the subscription list for communica-

tion with its peers.

The profiler engine performs some anomaly-based detection on audit data. In-

spired by the IDES and NIDES statistics component, the profiler engine separates

profile management from the mathematical algorithms used to assess the anomaly

of events. Profiles are provided as classes defined in the resource object.

The signature engine provides signature-based detection. It is operated with a

small set of rules and on a reduced audit data stream, which contains much less

noise.

The universal resolver is the centre of processing. It handles correlation between

the result of local modules, decides whether an intrusion occurs, decides whether a

response should be invoked. It also handles communications with the peer monitors.

The universal resolver applies an expert system to infer reports from the profiler

engine, the signature engine, and other peer monitors to decide what response to

invoke.

34

2.4. Intrusion Detection Systems: Examples

2.4.7 NSM

Network Security Monitor or NSM (Heberlein et al., 1990) is the first system to

use network traffic directly as the source of audit data. Using standard protocols,

such as TCP/IP, telnet, ftp, etc., NSM can monitor a network of heterogeneous

machines without having to convert a variety of audit data into some canonical

format. NSM listens passively to all network traffic that passes through a LAN

network and detects intrusive behaviour from this input.

NSM uses host vectors and connection vectors as input to a simple expert system

that analyzes the data for intrusions. The expert system takes other input, such as

profiles of expected traffic behaviour, knowledge about capabilities of each network

service, the level of authentication required for each service, the level of security

for each machine, and the signature of past attacks From these input, NSM makes

a decision, based on anomaly reasoning, about the likelihood that a particular

connection represents intrusive behaviour, or if a host has been compromised.

The suspicion level of a particular connection is a function of four factors, i.e.

the abnormality of the connection, the security level of the service being used for

the connection, the direction of the connection sensitivity level, and the matched

signatures of attacks in the data stream for that connection. Results are shown

to the SSO in the form of a sorted list, where each row in the list consist of a

connection vector and the computed suspicion level.

NSM is another hybrid system combining signature-based detection with anomaly-

based reasoning. The prototype system was deployed at UC Davis Lawrence Liv-

ermore National Laboratory, Department of Energy and US Air Force sites. It has

been reported to be satisfactory in correctly identifying intrusive behaviour.

2.4.8 Hyperview

Hyperview (Debar, Becker, and Siboni, 1992) is a hybrid system. It consists of

two main components; i.e., an expert system that monitors audit trails for signs of

known intrusions, and a neural network that adaptively learns the behaviour of a

35

2.4. Intrusion Detection Systems: Examples

user and raises an alarm when the audit trail deviates from the learned behaviour.

The audit trail is host-based and from a number of different sources with different

details, for example, keystrokes made by the user, commands issued by the user.

In the anomaly-based detection component, a neural network is chosen to learn

a multivariate time series from the audit trail. The neural network is connected

to an expert system that monitors the operation and training of the network to

prevent the network from learning anomalous behaviour, and evaluates its output.

The output of this component is then fed to the other component, the signature-

based detection.

A further expert system is employed to match audit trails and output from the

first expert system against known intrusive traces. It decides whether to raise an

alarm or not.

2.4.9 USTAT

USTAT (Ilgun, 1993) is a mature prototype implementation of the state transition

analysis approach to intrusion detection. The technique assumes that a computer

is initially in some secure states, and it ends up in a compromised target state

via a number of penetrations, which are viewed as state transitions. The SSO is

required to specify those state transitions against known intrusions. USTAT uses

this specifications to evaluate an audit trail.

USTAT consists of four major modules, namely audit collection, knowledge

base, inference engine, and decision engine. The audit collection module is to

collect audit data and to store that data for future reference. The knowledge base

module consists of two components, i.e., the fact base and the rule base. The fact

base contains information about the objects in the system. The rule base, on the

other hand, contains the state transition diagrams that describe intrusion scenario.

The inference engine evaluates a new audit record using information from both

rule base and fact base. It also updates the fact base with state information. The

decision engine reports a detected intrusion to the SSO, and provides a suggestion

of possible actions to preempt a state transition that can lead to a compromised

36

2.4. Intrusion Detection Systems: Examples

state.

2.4.10 IDIOT

The IDIOT (Kumar and Spafford, 1994) is a misuse-based intrusion detection sys-

tem that was developed at COAST, University of Purdue. The system divides the

intrusion detection effort into three distinct abstraction layers, i.e., an information

layer, signature layer, and pattern matching engine. In the information layer, any

machine/platform dependencies in the audit data are isolated. In the signature

layer, the signatures of intrusive behaviour are described in a system independent

fashion. Finally, preprocessed audit data is matched against predefined signatures

by the matching engine.

The system is based on a number of matching engines independently analyzing

an audit record. The authors employ coloured Petri nets to represent intrusion

signatures. When the system starts, it reads an audit record and passes it through

all pattern matching engines, each of which matches an audit record against its

predefined intrusion pattern to decide whether to update its state according to the

audit record.

2.4.11 Snort

Snort is the most popular open-source network intrusion detection system (Beale et

al., 2003; Cartwright, 2007). It was originally written as a packet sniffer by Martin

Roesch in November 1998. Signature-based analysis was added later in January

1999. It can detect a variety of attacks and probes, such as buffer overflows, stealth

port scans, web application attacks, SMB probes. Snort is now a free software

and open source package, owned and developed by Sourcefire, of which Roesch is a

founder and chief technical officer. The package provides many network monitoring

functions, e.g., it can perform protocol analysis, content searching/matching, and

intrusion prevention, i.e., dropping packets deemed to be attacks. Its advantage

is that users are free to add domain specific functions into a rule base. However,

configuration is its disadvantage because it must be done by editing the text-based

37

2.5. Traffic Volume Anomaly Detection

config file (Beale et al., 2003; Cartwright, 2007; Wikipedia, 2007c; Lizard, 2002).

Snort consists of four main components, i.e., a packet sniffer, a preprocessor, a

detection engine, and an alert/logging unit. Packets are acquired by a packet sniffer

and passed to a preprocessor, which checks raw packets against certain plug-ins.

These plug-ins check for a certain type of behavior from a packet. Once a packet is

determined to have a particular type of behavior, it is sent to a detection engine.

At a detection engine, data from preprocessor is checked through a set of rules. If

the rules match the data in the packet, then they are sent to alert processor. Rules

are built on specific attack characteristics, e.g., server CPU utilization, specific

types of network traffic, and other numeric characteristics easily measurable and

likely to be affected by an intrusion. Users are free to define any domain-specific

variables to use within rules. This provides flexibility with simplicity to users and

makes the system widely used (Beale et al., 2003; Cartwright, 2007).

2.5 Traffic Volume Anomaly Detection

It is natural that a system is developed appropriate for the nature of the audit

data available. Earlier, when only stand-alone machines were available, log files

contained only actions made on the machine, e.g., key stokes, commands being

executed. When networks were introduced, most of the focus was on issues such

as connectivity, availability, data integrity, etc. At that time, network traffic logs

were not available; most available tools operated on host-based data, for example,

Haystack (Smaha, 1988), IDES (Lunt et al., 1988), W&S (Vaccaro and Liepins,

1989).

A computer network gained more widespread use, new tools to support net-

work management were released. These tools basically provided details of network

activities to a network administrator. For example, a packet sniffer is a tool that

can intercept traffic passing over a network. A network administrator can look

into the contents of packets in the network. Hence, a trend for intrusion detec-

tion systems has been to move network-based audit data. For example, NSM

(B. Mukherjee, 1994), EMERALD (Porras and Neumann, 1997), and SmartSifter

38

2.5. Traffic Volume Anomaly Detection

(Yamanishi, Takeuchi, and Williams, 2000; Yamanishi and Takeuchi, 2001) used

network-based data to analyze intrusive behaviour. The most widely used network

data are TCP connections, which have become a standard for most intrusion de-

tection systems. They have also been used as test data set for the well-known IDS

competition, the KDD-Cup, which is organized by the Association for Computing

Machinery or ACM. However, analysis of TCP connections is considered to be high

in computational complexity.

More recently, a functionality that most network management tools must pro-

vide is a graphical visualization of network utilization. The graph generally shows

on-going network status regarding the volume of a parameter, for example, WWW

usage, FTP usage, etc. Graphical visualization is more expressive and easier to

understand than packet header information. This is why most network adminis-

trators nowadays perform their network monitoring task by inspecting graphs of

network utilization. There are studies, for example, in (Barford and Plonka, 2001;

Lakhina, Crovella, and Diot, 2004a), demonstrating that investigating the volume

of traffic over a network can effectively reveal traces of intrusive behavior.

2.5.1 Traffic Volume: An Alternative Audit Data

Traffic volume data is a sequence or time series of bandwidth usage in a network.

Traffic volume data can be collected by many network tools such as FlowScan

(Caida, 2006), RRDtool (Oetiker and GNU, 2006). These tools are equipped with

many functionalities from archiving a variety of network data to graphical visu-

alization. Generally, they archive network usage by protocol, i.e., WWW, FTP.

Users can choose to view the usage overall or a particular protocol. The archived

data is visualized in a graphical form.

Figure 2.2 is an example of a graph of collected traffic volume generated by

RRDtool. The graph is the usage volume (Y-axis) against time (X-axis). Depend-

ing on tools, the timespan of a graph can be set arbitrarily.

From a graphical visualization of traffic volume, a network administrator can

study network characteristics, for example, during what time of the day the net-

39

2.5. Traffic Volume Anomaly Detection

Figure 2.2: An example of graphical visualization of traffic volume. These graphs
show network traffic inbound and outbound on a WAN link (Oetiker and GNU,
2006).

40

2.5. Traffic Volume Anomaly Detection

work is highly congested, what is the maximum usage, or when the network is

mostly idle. On top of the knowledge he or she can learn from the graph, a net-

work administrator can inspect the performance and the status of the network, for

example, when an outage occurs or when it is under an attack.

When a network is attacked, traffic volume will significantly change from its

normal state; either increasing or dropping for a period of time, depending on the

attack type. This helps network administrators detect anomalous traffic. Then

they can track down the source of the anomaly. It has been demonstrated that

visual analysis of traffic flow can lead to anomaly identification and the character-

istics of anomalies that can be detected by the graphical visualization have been

investigated (Barford and Plonka, 2001; Lakhina, Crovella, and Diot, 2004a).

2.5.2 Intrusion Detection on Traffic Volume

Recently, there have been many attempts to detect anomalous activities in the

network automatically by inspecting traffic volume. Traffic volume is a kind of time

series data. In statistics, time series have long been investigated. Many approaches

have been proposed to model time series, to forecast new observation, to detect

outliers, etc. Those techniques range from simple statistical measurement such as

mean and variance, to more complex techniques such as Holt-Winters, Wavelet,

etc. This section gives a brief review of studies of intrusion detection based on

traffic volume.

Simple Statistical Measurement

(Mandjes, Saniee, and Stolyar, 2005) investigated anomaly detection in IP net-

works. The focus of their study was to derive a formula that can simplify voice

over IP traffic. The authors used simple statistical measurements, i.e., mean and

variance of byte count measurements, to construct general formulae for the vari-

ance of cumulative traffic over a fixed time interval. The formula is known as

Riordan formula (Mandjes, Saniee, and Stolyar, 2005), which provides an estimate

for the variance of the VoIP load that passes through a monitored switch or router

41

2.5. Traffic Volume Anomaly Detection

interface. They suggested that standard measurements from a router, for example

SNMP MIBS, were sufficient for their technique.

A further study on anomaly detection showed that cumulative traffic inspected

every 5 minutes and simple statistics such as mean and variance could detect

over/underload anomalies efficiently.

Holt-Winters Forecasting Algorithm

The Holt-Winters algorithm is a well-known forecasting algorithm. It is basically

a quantitative forecasting method that uses mathematical recursive functions to

predict trend behavior. It uses a time series model to make predictions assuming

that the future will follow the same pattern as the past.

Brutlag had the algorithm integrated into the open source software RRDtool

(Oetiker and GNU, 2006) and Cricket (Allen, 2003; Allen, 1999), to enable real-

time monitoring at the IAP/ISP level (Brutlag, 2000). He also suggested to having

a window length of at most an hour, i.e., for five minute intervals, the window

length should be between 9 and 12 intervals.

From a derived network traffic model, an anomaly was detected if an observed

value of time series fell outside a confidence band. Confidence bands in his work

were also variable, i.e., updated via an exponential smoothing algorithm (Brutlag,

2000). He suggested that a moving window of a fixed number of observations should

be used to reduce the number of false positives.

His experiments on WebTV traffic data showed promising results in anomaly

detection. Unfortunately, there was no figure for false positives or false negatives

published in his work to enable comparison.

Wavelet Filter

Focusing only on time-frequency characteristics of traffic, Barford et al. applied a

well-known signal analysis technique, namely, Wavelets (Goupillaud, Grossmann,

and Morlet, 1984) to investigate four classes of network traffic anomalies, i.e.,

42

2.5. Traffic Volume Anomaly Detection

outages, flash crowds, attacks and measurement failures (Barford et al., 2002).

The term “wavelet” is defined by Morlet (Goupillaud, Grossmann, and Morlet,

1984). The theory refers to the representation of a signal in terms of a finite

length or fast decaying oscillating waveform (known as the mother wavelet). This

waveform is scaled and translated to match the input signal.

In their work, wavelet filters are used to extract component signals from the

IP-flow and SNMP measurements collected over a six-month period at the border

router of a university. Their experiments demonstrated that both ambient and

anomalous traffic were noticeable in those extracted component signals. The au-

thors proposed to detect sharp spikes by calculating a deviation score for local

variance of the signal. They have found that most anomalies had deviation scores

of 2.0 or higher.

Barford et al. compared their approach with the classic Holt-Winters forecast-

ing algorithm. The technique is more capable of detecting anomalies than the

Holt-Winters algorithm (Barford et al., 2002).

Principal Component Analysis

Principal Component Analysis or PCA is technique for simplifying a dataset, by

reducing multidimensional datasets to lower dimensions for analysis. Technically

speaking, it is a coordinate transformation method that maps a given set of data

points onto new axes. These axes are called the principle axes or principal compo-

nents (Lakhina, Crovella, and Diot, 2004b; Wikipedia, 2006b).

Taking advantage of PCA, Lakhina et al. proposed to diagnose network anoma-

lies by separating the high-dimensional space of network traffic measurements into

disjoint subspaces of normal and anomalous network conditions and comparing

these subspaces with predefined models (Lakhina, Crovella, and Diot, 2004b).

The authors conducted experiments on measurements of traffic links in back-

bone networks, namely, Sprint-1, Sprint-2 and Abilene. They evaluated the effi-

ciency of their technique by validating against OD flow data. An OD flow is defined

as the traffic that enters the backbone at the origin node or Point of Presence (PoP)

43

2.5. Traffic Volume Anomaly Detection

and exits at the destination PoP (Lakhina, Crovella, and Diot, 2004b). That is

an OD flow can propagate through more than one link from its origin to the des-

tination. For example, an OD flow “a-d” might propagate from link a-b, through

link b-c, to link c-d. Therefore, the traffic observed on each backbone link is the

superposition of OD flows.

Their system was configured to work with data binned on 10 minute intervals.

Their investigations have shown that the technique can detect volume anomalies

and estimate the amount of traffic involved in the anomalous Origin-Destination

flow.

Sketch

Unlike other investigations that detect anomalies from network traffic measure-

ments, Krishnamurthy et al. (Krishnamurthy et al., 2003) propose to detect anoma-

lous traffic from derived summaries of traffic data. A summary of network traffic

data is derived from a sketch-based technique. Sketch (Jung, Krishnamurthy, and

Rabinovich, 2002; Gilbert et al., 2001; Datar and muthukrishnan, 2001) is a prob-

abilistic summary technique for analyzing large streaming data sets. The authors

name this new data structure a k-ary sketch (Krishnamurthy et al., 2003).

Firstly, the authors summarize network traffic into k-ary sketches and then

implement a variety of time series forecasting models, for example, ARIMA, Holt-

Winters, etc., on top of those sketches. Anomalies are marked by detecting flows

with large forecast errors.

Spectral Analysis

Spectral analysis has also been applied to this area as an analysis tool. Cheng et

al. (Cheng, Kung, and Tan, 2002) propose to use spectral analysis to complement

existing DoS defense mechanisms. Spectral analysis is used to identify normal

TCP traffic so that, when used after other DoS defense methods which identify

traffic aggregate as candidates for attack traffic, it can rule out those candidates

which are considered to be normal TCP traffic. As they suggested that normal

44

2.5. Traffic Volume Anomaly Detection

TCP flow should exhibit strong periodicity around its round-trip time, the number

of packet arrivals of a flow in fixed-length intervals is used as input signal. The

power spectral density is estimated to reveal periodicity of signal. A threshold of

5e-3 was used to determine whether a flow is normal TCP traffic. It has been

shown that the technique can correctly identify normal TCP flow at the rate of

81.8%, while false positive rate and false negative rate are at 15.7% and 18.2%,

respectively. When the technique is used on top of other DoS defense mechanisms

such as Aggregate Congestion Control (ACC) and Pushback, the authors report

that the volume threshold to flag flows as suspicious is lower and the false positives

are reduced. However, they do not state any number explicitly. As usual, the

technique relies on a threshold. This means the approach needs some training sets

to estimate an appropriate threshold.

Another use of spectral analysis is proposed by Hussain et al. (Hussain, Hei-

demann, and Papadopoulos, 2003; Hussain, Heidemann, and Papadopoulos, 2006).

The authors propose a method to identify repeated attacks that are originated

from the same set of attackers using attack fingerprints of seen scenarios, i.e., a

combination of attacking hosts and attack tool. The work only focuses on flood-

ing attacks with an assumption that when attacked, most other traffic is squeezed

out. Attack fingerprints are generated based on power spectral density that are

calculated from attack streams, which are isolated from other network traffic using

known attack signatures. An attack fingerprint is tested against many emulated

attack scenarios, including the same one the fingerprint is generated from. It has

been reported that attacks have the most accurate match against themselves. The

paper also shows experiments to identify and isolate factors that affect the attack

fingerprint.

2.5.3 Discussion on Traffic Volume Anomaly Detection

In the past 10 years, network measurement such as traffic volume has increasingly

been used in network intrusion detection. An increasing number of studies have

been published, especially at the Internet Measurement Conference or IMC.

45

2.6. Limitations and Questions of Intrusion Detection Systems

From the literature, most systems are anomaly-based, i.e., background knowl-

edge of normal circumstances must be profiled as reference models. Great efforts

have been made in the area of accurate and efficient models of network traffic.

These include techniques in statistics and mathematics as seen in the previous

section.

One thing in common among the techniques proposed is that they try to derive

a single general model for the network traffic. To construct a universal model

for time series usually requires some complex formulae for the model and some

training sessions for a model to be learnt. In general, the more complex the model,

the more complex patterns it can cover but the more training data that is required.

This means the system cannot easily adapt to changing behavior, new schedules,

or occasional irregular events (such as a conference being held), which may affect

traffic patterns.

In our study, network measurement from the school of Computer Science and

Engineering, the University of New South Wales is used as audit data. Instead

of learning a generic model for network behavior, we partition a problem space

into smaller sub-spaces of homogeneous traffic patterns. With this solution, a

new pattern can be added when required without affecting other patterns. The

methodology will be explained in detail later in this thesis.

2.6 Limitations and Questions of Intrusion De-

tection Systems

The main aim of an intrusion detection system is to find intrusion attempts so that

the proper action can be taken. To accomplish this aim, there are some issues that

have emerged since such systems were first introduced.

System Performance

The first concern is the problem of false alarms and false negatives. A false alarm

or false positive is a warning that is incorrectly raised in a benign situation. This

46

2.6. Limitations and Questions of Intrusion Detection Systems

is one of the foremost issues in intrusion detection systems, as they are likely to

produce a considerable number of false positives. A high degree of false alarms

causes human experts to investigate a problem for nothing, resulting in an extra

cost to organizations. Also the problem of missing actual intrusions might occur

because of too many false positives. Failing to sound an alarm when someone gains

or attempts to gain access, on the other hand, can cause more serious problems.

Detection Paradigm

As mentioned earlier, there are two main paradigms for such systems, i.e.,

anomaly detection or misuse detection. Each has its own virtue; however, some

trade offs are present. In anomaly detection, the system is more likely detect new

intrusions, but probably with a high false positive rate. Misuse detection, on the

other hand, produces significantly less false positives as it matches observations

against intrusion signatures. However, it lacks the capability to detect new intru-

sions. An alternative is the hybrid paradigm.

Profiling Strategy

Both issues of system performance relate to how well profiles represent the do-

main. A too specific profile which is less tolerant of changes or trends is more likely

to incur high false positives, whereas a too general profile which has wider coverage

than expected can easily fail to detect anomalous attempts. Modeling techniques

are always the core of the problem.

Another concern for the profiling strategy is rare events or novel phenomena.

Statistical or learning methods do not easily accommodate individual special cases.

Audit data

There are two major sources of audit data in anomaly detection systems, i.e.,

network data and host based data. Early systems investigated networks using

host-based data. The trend for audit data in recent systems is for network data.

Another concern is the features to be investigated. As data consist of numerous

attributes, to have an intrusion detection system monitor the right features is a

47

2.6. Limitations and Questions of Intrusion Detection Systems

critical decision.

Resource Consumption

The more advanced the communications technology, the higher the volume of

data the network can transfer. Typical IDSs store their data not only while they

are processing, but also for future reference. As network traffic increases, the IDS

system may not cope with the volume of data or may have to sample less frequently.

Real time Detection

Early systems detected anomalous behaviour in batch mode; this means they

inspected the network from data archives off-line. More recent systems put more

concern on real-time detection. This does not mean batch mode detection is not

necessary. There are many cases, e.g., attacks manifest in a series of anomalous

events, where anomalies can be accurately depicted after they occur and in some

circumstances this is more desirable than being given an immediate warning when

something is amiss, where the warning may be a false positive.

48

Chapter 3

Knowledge Based Systems

An expert system gains its power from the knowledge it contains. It is critical how

it captures the expert’s understanding of the domain. Therefore, efforts are made

to assure the effectiveness of the process. The task is known for its tediousness

where knowledge engineers must interact with domain experts to acquire, organize

and study the knowledge within a domain. This task is called knowledge acquisition

and remains a challenge in developing an expert system (Puppe, 1993).

An expert system is defined by Durkin as “A computer program designed to

model the problem-solving ability of a human expert” (Durkin, 1994). There are

two major components in an expert system: a knowledge base and an inference en-

gine, as shown in Figure 3.1. The knowledge base is a database containing highly

specialized knowledge of human experts about the problem domain. It includes

facts, rules, concepts, and relationships. The inference engine is the knowledge

processor which is implemented to work with available information on a given

domain, coupled with the knowledge stored in the knowledge base, to draw con-

clusions or recommendations (Durkin, 1994). We use the term knowledge-based

system interchangeably with expert system.

49

3.1. Knowledge Base

Knowledge Base Inference Engine

Expert System

Figure 3.1: The architecture of an expert system.

3.1 Knowledge Base

The process of building a knowledge base has been long studied. The process

typically involves two parties: a knowledge engineer and a domain expert. The

knowledge engineer is

“someone who investigates a particular domain, determines what con-
cepts are important in that domain, and creates a formal representation
of the objects and relations in the domain. (Russell and Norvig, 1995)”

The knowledge engineer usually interviews the real experts of the domain to

learn about the domain and elicit the required knowledge to solve problems in the

domain. This process is usually called knowledge acquisition.

However, there has been some disagreement over the terminology used in the

field. Two terms, i.e., knowledge engineering and knowledge acquisition are

used. Knowledge acquisition (KA) is viewed as having a wider scope in which the

knowledge engineering is defined as one of KA’s subtasks. For example, (Suryanto,

2005) follows the definition of Knowledge acquisition, by Buchanan et al.:

“the transfer and transformation of potential problem-solving expertise
from some knowledge source to a program” (Buchanan et al., 1983)

and the definition of Knowledge engineering, by Feigenbaum:

50

3.2. Knowledge Elicitation

“the process of reducing a large body of knowledge to a precise set of
facts and rules”(Feigenbaum, 1984).

That is, knowledge engineering is part of knowledge acquisition. In his approach,

knowledge acquisition includes two main sub-tasks, i.e., knowledge elicitation and

knowledge engineering. Knowledge engineering covers four main activities, namely,

analysis, development, maintenance and reuse.

Elsewhere, knowledge engineering is viewed as the whole process of building

an expert system, while knowledge acquisition is defined as a task of knowledge

engineering (Durkin, 1994; Puppe, 1993; Russell and Norvig, 1995). For example,

Durkin defines the knowledge engineering as

“the process of building an expert system” (Durkin, 1994)

and the whole process includes problem assessment, knowledge acquisition, system

design, testing and evaluation, documentation, and maintenance. Furthermore, the

two terms are also used interchangeably (Gaines and Shaw, 1993).

Even though differences in definition of terminology have not been clarified,

we believe that they minimally affect insight into the process of building an ex-

pert system. In fact, the various views of implementing an expert system are all

similar, i.e., the process starts from collecting information regarding the problem,

through transforming relevant information into knowledge using some knowledge

representation approaches, to evaluating and maintaining the knowledge inside the

knowledge base.

In this thesis, we put more focus on the process of acquiring knowledge from hu-

man experts, which includes initial knowledge elicitation, but also includes knowl-

edge maintenance.

3.2 Knowledge Elicitation

There are many sources to gather knowledge of the problem of interest. There may

be books, reports, database records, or domain experts. Acquiring knowledge from

a human expert is specifically termed knowledge elicitation. During the process,

51

3.2. Knowledge Elicitation

not only knowledge is aimed to be captured, the problem solving strategies are also

required.

Generally, the knowledge elicitation task is in a cycle of collecting knowledge and

analysis to gain an understanding of the problem and insight into its solution. We

can summarize the life cycle of knowledge elicitation as collection, interpretation,

analysis and design.

Acquiring knowledge from human experts requires effective interpersonal com-

munication skills and the ability to obtain the cooperation of the expert. The

process usually starts with a wide scope, in the early stage, to obtain a basic un-

derstanding of the problem. During later sessions, the scope becomes narrower and

more specific knowledge is collected. Durkin states that:

“This iterative style of collecting information is like a funnel effect –
moving from the general to the specific” (Durkin, 1994).

The next step, after information has been collected, is to review such informa-

tion and identify key pieces of knowledge. As mentioned earlier the information

collected is quite general in the early stage; the interest is to define the overall

problem specification. In later stages, more knowledge will be uncovered.

Highly coupled with the interpretation is the analysis, where theories of the

organization of the knowledge and the problem-solving strategies should be formed.

This task also includes choosing a knowledge representation structure.

Following analysis, some understanding of the problem should be established,

which should aid further investigation. Hence, the last task in the cycle is to form

a new starting point for collecting additional knowledge. And the cycle starts once

again.

It seems like there is no end point in the cycle of knowledge acquisition as stated

by Durkin:

Developing an expert system is somewhat like teaching a child some
new subject. As the child obtains more knowledge about the subject,
he or she understands it better and can use this understanding to solve

52

3.2. Knowledge Elicitation

problems. In a similar fashion, an expert system can continue to im-
prove its performance by gaining more knowledge. (Durkin, 1994)

In theory the cycle can be ended when the expert system meets the requirement

of the organization wishing to employ the expert system; however in the work here,

knowledge acquisition and maintenance is on-going.

3.2.1 Knowledge Elicitation Methodologies

Many Knowledge Elicitation (KE) methods have been used to obtain the informa-

tion required to solve problems. These methods can be classified in many ways.

For example, KE methods can be classified into two main categories, i.e., human-

mediated or machine-mediated approach (Suryanto, 2005). In human-mediated

approaches, knowledge is elicited from a human expert through interaction with

a knowledge engineer. The process may simply be an interview or possibly using

some knowledge acquisition tools, such as card sorting, laddering or repertory grids

(Cordingley, 1989; Suryanto, 2005). In machine-mediated approaches, knowledge

can be elicited directly from a human expert using knowledge acquisition tools

without any interaction or assistance from the knowledge engineer. Some of the

same techniques such as repertory grids may be used directly by experts.

Mcgraw and Harbison-Briggs classify KA approaches into three categories: in-

terviewing experts, learning by being told, or learning by observation (Mcgraw

and Harbison-Briggs, 1989). The first category, interviewing experts requires no

equipment, it is just a conversation between knowledge engineers and experts. In

the second approach, learning by being told, the discussion or conversation is con-

ducted through a user interface and the experts have to represent and refine their

own knowledge from what they understand, while the knowledge engineer handles

the design and helps the expert to understand what is required. In the last cate-

gory, learning by observation, experts are asked to solve some sample problems or

case studies. An induction algorithm is usually used to gain knowledge from what

the expert has done and generates rules.

53

3.2. Knowledge Elicitation

Among many techniques, there are three well known approaches, i.e., card

sorting, repertory grid, and laddering, for which we will give a brief overview as

they are related to the Ripple Down Rules methodology, used in this thesis. Card

sorting is a comprehensive technique of knowledge elicitation and is considered to

be an effective ways for elicitating the domain expert’s idea about the knowledge

structure (Wang et al., 2006). It is used to explore how a human expert groups

concepts or terms related to the problem domain. Each concept is written on a

card. The expert is then asked to sort the cards into piles such that cards in each

pile have something in common. By naming each pile, the expert gives information

on attributes and values which denote the properties of concepts.

Repertory grids are a well known technique originally based on the work of

(Kelly, 1955) in psychology to determine an individual’s view of the world without

explicitly questioning an individual about structure per se (Corbridge et al., 1994).

The process of taking three elements and asking for two of them to be paired in

contrast with the third is the fundamental method of the technique. The repertory

grid technique was brought into the area of knowledge acquisition by (Shaw and

Gaines, 1988).

The notion of “laddering” was introduced into repertory grids by (Bradshaw,

Boose, and Covington, 1987). Laddering techniques involve the creation, reviewing

and modification of hierarchical knowledge, often in the form of ladders, i.e., tree

diagrams. The expert is asked about a concept more generally and more specifically.

For example, given a concept of “this cup in my hand”, the expert might generalize

it to “a drinking vessel”, to “a small container”, etc (Mycoted, 2006). A ladder is

then constructed for the expert’s view to the concept. The expert and knowledge

engineer both refer to the ladder presented on paper or a computer screen, and

add, delete, rename or re-classify nodes as appropriate. Laddering is considered a

“contrived” (Corbridge et al., 1994) technique being used for three major purposes,

i.e., to elicit sub-classes, explanation, goals and values (Rugg et al., 2002; Wang et

al., 2006). Corbridge et al. (1994) state

Laddering was developed as a method of clarifying the relations be-
tween the constructs which had been elicited by the grid (Hinkle, 1965)
and, where possible, organising them into hierarchical relations. In

54

3.2. Knowledge Elicitation

the knowledge elicitation context laddering refers to a structured ques-
tioning strategy, using a limited number of probes, which is designed
to elucidate the relation between concepts in the domain. This “do-
main orientated” laddering, as Major and Reichgelt (1990) point out,
is designed to elicit “structural knowledge” (Clancey, 1983) and is es-
sentially synonymous with “structural questioning” described by Wood
and Ford (1991). Laddering may also be used as a method of task anal-
ysis to decompose a task into its component subtasks examining the
procedural expertise involved. This “task orientated” laddering (Major
& Reichgelt, 1990) is similar to “scripting questioning” as described by
Wood and Ford (1991). (Corbridge et al., 1994)

3.2.2 Difficulties in Knowledge Elicitation

It is one of responsibilities of expert system developers to decompile expert knowl-

edge into a form that can be studied and entered into the expert system. As stated

by Durkin:

You must be able to pick apart this intuitive knowledge, often called
shallow knowledge, and uncover some of the deeper information. Shal-
low knowledge is formed from experience rather than from first princi-
ples, and is usually in the form of heuristics or rules of thumb.(Durkin,
1994)

Most developers have found knowledge elicitation is the most difficult part of

the development of expert system. As stated by Duda and Shortliffe in 1983:

The identification and encoding of knowledge is one of the most com-
plex and arduous tasks encountered in the construction of an expert
system... Thus the process of building a knowledge base has usually
required a time-consuming collaboration between a domain expert and
an AI researcher. While an experienced team can put together a small
prototype in one or two man-months, the effort required to produce a
system that is ready for serious evaluation (well before contemplation of
actual use) is more often measured in man-years. (Duda and Shortliffe,
1983)

Hayes-Roth et al. used the term bottleneck to describe the difficulty in knowl-

edge acquisition:

55

3.2. Knowledge Elicitation

Knowledge acquisition is a bottleneck in the construction of expert
systems. The knowledge engineer’s job is to act as a go-between to
help build an expert system. Since the knowledge engineer has far
less knowledge of the domain than the expert, however, communication
problems impede the process of transferring expertise into the program.
(Hayes-Roth, Waterman, and Lenat, 1983)

Difficulties in eliciting knowledge from the expert have long been recognized.

Major difficulties are that: the expert may be unaware of knowledge used, the

expert may be unable to verbalize the knowledge, and knowledge that the expert

provides may be irrelevant, incomplete, incorrect or inconsistent.

Unaware of the Knowledge Used

This problem is recognized in cognitive psychology. In 1981, Dixon reported that

humans are not mentally conscious of many of their activities, but perform them

through repetition (Durkin, 1994). Durkin also suggests that humans appear to be

unaware of their own mental processes when solving a problem (Durkin, 1994).

Unable to Verbalize Knowledge

Again, from a psychological point of view, the problem may be that humans may

not be able to communicate their knowledge, not because they cannot express it,

but because they are unaware of what knowledge they are using in the activity

(Collins, 1985). Durkin notes problems even when experts appear to communicate

their knowledge:

Bainbridge (1986) reports that there is no necessary correlation be-
tween verbal reports and mental behavior. Humans will actually do
things differently from the way they explain their performance. Chom-
sky (1957), from work on the theory of natural language grammar, drew
attention to the distinction between “competence” and “performance.”
He concluded that individuals frequently utter sentences that would vi-
olate their own rules of grammar owing to performance factors.(Durkin,
1994)

56

3.2. Knowledge Elicitation

There are also sub cognitive skills, such as riding a bike that are learned by

trial and error after observing others perform the task. There are also many tasks

where there is an apprenticeship period when the person is told what to do but

they do not reach a high level of performance until they have a lot of experience.

Flying a plane is a clear example.

Irrelevant, Incomplete, Incorrect, or Inconsistent Knowledge

Another problem is that the knowledge provided may be irrelevant, incomplete,

incorrect, or inconsistent. It is highly likely for expert system developers to obtain

irrelevant knowledge in the initial stage of knowledge elicitation, where they do not

have much understanding of the problem domain and usually assume everything

is relevant, and where the expert does not really appreciate what the knowledge

engineer is looking for.

Knowledge obtained from experts can often be incomplete. Because of their un-

awareness of the knowledge they use, experts may unintentionally omit knowledge.

This can lead to an incorrect performance of the expert system.

The problem is even worse if the knowledge provided is incorrect. Waterman

states:

“Don’t believe everything experts say!” (Waterman, 1986).

This problem may occur if experts lack knowledge on some issues, or make mistakes

during the elicitation process. But the most frustrating problem is when experts

provide inconsistent knowledge. Inconsistent knowledge is often found when ex-

perts are trying to explain their problem-solving strategy. It is also found when

experts describe the importance or the priority of some issues.

Selective Bias

Another problem is selective bias where humans tend to bias their approach to

solving a problem toward their past experiences in solving similar problems, while

they might overlook or ignore information that would lead to a different approach.

As stated by Tversky and Kahneman:

57

3.3. Ripple Down Rules

There are situations in which people assess the frequency of a class
or the probability of an event by the ease with which instances or oc-
currences can be brought to mind. For example, one may assess the
risk of heart attack among middle-aged people by recalling such oc-
currences among one’s acquaintances. Similarly, one may evaluate the
probability that a given business venture will fail by imagining vari-
ous difficulties it could encounter. This judgmental heuristic is called
availability. Availability is a useful clue for assessing frequency or prob-
ability, because instances of large classes are usually reached better and
faster than instances of less frequent classes. However, availability is
affected by factors other than frequency and probability. Consequently,
the reliance on availability leads predictable biases,... (Tversky and
Kahneman, 1974)

3.3 Ripple Down Rules

The technique called Ripple Down Rules or RDR was proposed by Compton and

Jansen based on their experience developing the expert system GARVAN-ES1

(Compton et al., 1989). It is based on the idea that “the knowledge the expert

provides varies with the context and gets its validity from its ability to explain

data and justify the expert’s judgment in the context”(Compton and Jansen, 1990).

While not disagreeing with the various problem of dealing with experts, Compton

and Jansen identify a meta-problem which subsumes the problems outlined above.

3.3.1 Ripple Down Rule and Cognitive Psychology

Traditional efforts to acquire knowledge from experts are based on the idea that

knowledge is in the expert’s head in some sort of model and hence focus on how

to extract these models from the mind in some formalized representation. What if

this is not true? Winograd and Flores argued that knowledge is just an individual

interpretation within a shared background, and it is neither subjective, nor objec-

tive (Winograd and Flores, 1987). That is, there is no model or any representation

in the brain. What the experts say is the interpretation of the situation.

Compton and Jansen argue that the knowledge from experts is to some extent

58

3.3. Ripple Down Rules

“made up” to justify expert’s conclusions are right, rather than to explain the

mental process of reaching the conclusions (Compton and Jansen, 1990). And the

justification the expert creates will vary with the context and the concerns of the

questioner that the expert believes they should address.

Clancey goes further stating that knowledge is not something in the mind to

be extracted, but something created in communication and interaction with the

environment. That is, other participants or listeners in the conversation directly

affect how experts explain their knowledge, namely what is to be represented and

what constitutes a representation (Clancey, 1993).

An essential idea is that this process is perceptual and inherently dialec-
tic. That is, the organization of mental processes producing coherent
sequences of activity and the organization of representational forms
(e.g., statements in a conversation, added lines to a sketch) arise to-
gether. A painter does not have a completed picture inside his head
that he is merely executing on paper. A speaker in a conversation is
not merely instantiating discourse plans and patterns. Even letters or
words are not stored inside as descriptions of how they appear or how
the hand or mouth moves. Mental organizations do not merely drive ac-
tivity like stored programs, but are created in the course of the activity,
always as new, living structures. (Clancey, 1991)

Hence, the expert’s knowledge or justification is acquired or created for a partic-

ular context. RDR represents knowledge based on the current case being justified,

that is, knowledge is represented by a rule in form of conjunctions of features

which are selected from the current case. Not only knowledge is captured in RDR,

the context is also maintained by cornerstone cases, which will be discussed later.

Compton and Jansen state that it is not possible that a single rule can be created

in a context free environment as the knowledge we communicate is a justification

in some context (Compton et al., 1989).

3.3.2 Ripple Down Rule Essentials

This section starts with the discussion on how knowledge is represented in RDR in

Section 3.3.2. Later on, the maintenance of context in which knowledge is acquired

59

3.3. Ripple Down Rules

is visited in Section 3.3.2. Another advantage of RDR is that the expert does not

need to understand the organization of knowledge inside the knowledge base. This

is discussed in Section 3.3.2.

Knowledge and Rule

In RDR, new knowledge is captured or created to deal with misclassification. For

example, case X of class B is misclassified as class A. The expert is then asked

to justify why the case is not classified as class A, but class B and identifies some

features that distinguish the two cases. The justification will be encoded and stored

in knowledge base. The original form of Ripple Down Rule KB consists of rules in

the form of tree structure, where each node in the tree represents a rule. Each rule

represents a concept or knowledge acquired in the form of conjunctions of features.

The representation of a rule is discussed in Section 3.3.3.

Ideally, a single rule in knowledge base should be able to totally represent a

concept in the problem domain. However, it is difficult, if not impossible, for

concepts in real world to be represented with a single rule as the expert can rarely

express such a rule (Suryanto, 2005).

Rules in the RDR framework can be classified into two main categories, i.e.,

new-concept rules or exception rules. Firstly, a new-concept rule is created for a

context that has never been seen before. That is, there is no existing rule which

can accommodate the current case, except for the default rule which is defined for

any situation. On the other hand, an exception rule is created to refine an existing

rule which the current case fires but the conclusion for the case is wrong. That is

existing knowledge can be tuned or refined with future discoveries. A exception rule

is sometimes referred to as a refinement rule. It has been stated that the exception

structure can represent the domain knowledge compactly (Catlett, 1992; Compton,

Preston, and Kang, 1995; Kang, Compton, and Preston, 1998; Kivinen, Mannila,

and Ukkonen, 1993; Gaines and Compton, 1992; Scheffer, 1996; Siromoney and

Siromoney, 1993; Suryanto, 2005; Suryanto, Richards, and Compton, 1999). Hence,

any complex concept can be represented with a sub-tree where each rule belonging

60

3.3. Ripple Down Rules

to the tree may be refined by another sub-tree of new rules.

Cornerstone Case

A data base of cornerstone cases is maintained to provide the expert with insight

into the context in which existing rules have been created. A cornerstone case is a

case that was misclassified, hence a change in the system’s knowledge was required.

From the example above, a new rule is created to correctly classify case X to class

B. X, as the context of this new rule, is stored in the data base as a cornerstone

case.

Cornerstone cases ensure validity of the knowledge. When a new rule is added,

the interpretations for all cornerstone cases that might fire the rule must be checked

to see that the new rule does not corrupt the knowledge (Compton and Jansen,

1990). That is, the new rule should not change the classification for a cornerstone

case. If it does, the expert is asked to select features to distinguish the cases, or to

confirm that the conclusion for the cornerstone case should be changed. Not only

the validity of knowledge can be maintained, checking the interpretations for all

cornerstone cases helps ensure adding new knowledge is a incremental improvement

(Compton and Jansen, 1990).

Cornerstone cases also assist the expert when adding a new rule. The expert

can compare the differences between a current case and a cornerstone case for the

last fired rule, and quickly select salient features for the new rule (Richards and

Compton, 1998; Compton et al., 1993; Preston, Edwards, and Compton, 1994).

Organization

Knowledge inside an RDR KBS is automatically structured without any interven-

tion from domain experts. This means experts do not need to know how knowledge

is organized inside the KBS, how new knowledge is verified when it is added, or

how consistency is maintained. Ripple Down Rules only require experts to provide

their domain knowledge expertise. They are constrained in the feature selection

task such that they can only select features that occur in the case they are consid-

61

3.3. Ripple Down Rules

ering.

Ripple Down Rule is an incremental KA approach. The system can start from

an empty knowledge base and new knowledge can always be added to the knowledge

base during the maintenance stage. Not only more rules can be added, the RDR

KA can start with a minimal ontology and which can be added to whilst in use.

For example, whenever needed, the expert can add new attributes to the system.

This allows the ontology to grow incrementally. More importantly, users are able

to use the system while the expert is maintaining it.

3.3.3 RDR Terminology

This section reviews those basic terms used in RDR paradigm: case, feature, at-

tribute and rule.

Instance and Case

In machine learning, an instance is defined as

A single object of the world from which a model will be learned, or
on which a model will be used (e.g., for prediction). In most machine
learning work, instances are described by feature vectors; some work
uses more complex representations (e.g., containing relations between
instances or between parts of instances) (Kohavi and Provost, 1998).

In RDR, the term “case” has been used instead of “instance” and has been

defined as a sequence of AttributeV alue(s) as shown below.

Case ⇒ Classification : AttributeV alueList

AttributeV alueList ⇒ ε | AttributeV alue AttributeV alueList

AttributeV alue represents value of a particular attribute. Some attributes may

be unknown or irrelevant (Suryanto, 2005).

62

3.3. Ripple Down Rules

However, the definition of a case is slightly modified in MCRDR as follows.

Case ⇒ Classifications : AttributeV alueList

Classifications ⇒ ε | Classification Classifications

Feature and Attribute

In machine learning, the terms feature, attribute and variable are often used inter-

changeably.

Attribute (field, variable, feature) is a quantity describing an instance.
An attribute has a domain defined by the attribute type, which denotes
the values that can be taken by an attribute (Kohavi and Provost,
1998).

In (Kohavi and Provost, 1998), Kohavi et al. classify an attribute into two

common domain types, i.e., categorical or continuous. A categorical attribute is

an attribute which has discrete values. There are two sub-types, i.e., nominal and

ordinal. Nominal type denotes that there is no ordering between the values, such

as last names and colors. The type ordinal denotes that there is an ordering,

such as in an attribute taking on the values low, medium, or high. A continuous

(quantitative) attribute is an attribute whose value is a subset of real numbers,

where there is a measurable difference between the possible values. Integers are

usually treated as continuous in practical problems.

In RDR, similar to other rule frameworks, we differentiate feature and attribute

as follows. While attribute represents a characteristic of an instance, feature cap-

tures a higher abstraction of an attribute with some constraints. In other words,

a feature is a logical expression on an attribute; this means each feature returns a

boolean value while inferencing. For example, A is a continuous attribute of a do-

main. Constraints defined on attribute A, such as A < 20 or A > 50, are features.

That is, a feature in our framework denotes a specification of an attribute and its

value.

63

3.3. Ripple Down Rules

Rule

In RDR, a rule is in a typical form of

if (Antecedent) then (Consequent).

,which can be formalized as follows.

Rule ⇒ Consequent← Antecedent

Consequent ⇒ ε | AttributeV alue

Antecedent ⇒ ε | Feature ∧ Antecedent

AttributeV alue represents a value of a particular attribute. Antecedent is con-

junctions of Feature(s). Consequent is the classification or a predefined value of

the class attribute.

For example, in a domain, there are three attributes, i.e., A, B and C. A is

continuous. B and C are categorical; B = low, medium, high, C = classX, classY,

classZ. C is also class attribute. Rule R1 is defined as

C = classX ← (A < 20) ∧ (B == high)

A < 20 and B == high are features of attribute A and B, respectively.

The conjunction of those two features represents Antecedent. C = class − X is

Consequent.

3.3.4 RDR Structure

Ripple Down Rules were originally introduced to deal with the single classifica-

tion problem (Compton and Jansen, 1988). For example, in a plant identification

system, every plant belongs to a single species. Since variations of the framework

have been proposed to solve other problems, the technique was later called Sin-

64

3.3. Ripple Down Rules

gle Classification Ripple Down Rule (SCRDR) because its inference engine aims

at producing one classification as the output. The first variation investigated by

Kang is Multiple Classification Ripple Down Rule (MCRDR), which aims at mul-

tiple classification problems (Kang, Compton, and Preston, 1995). For example,

in a medical diagnosis system, a patient may have more than one disease.

As mentioned earlier that the original form of RDR is tree structure. So far,

three main RDR structures have been investigated. Firstly, a binary tree is uti-

lized to support a single classification task in SCRDR. Secondly, an alternative

structure to the binary tree is decision list, which is also implemented for a single

classification. The last structure is an n-ary tree, which is used in the MCRDR

paradigm. There are also structures containing multiple trees. For example,NRDR

has multiple SCRDR trees.

Binary Tree

SCRDR normally refers not just to single classification RDR but to a binary tree

implementation. Each node representing a rule has two distinct types of edges,

labeled with either except or if-not. An illustration of SCRDR-binary tree is shown

in Figure 3.2.

The SCRDR tree can be formally represented as follows.

SCRDR ⇒ < Rule, Except, IfNot >

Except ⇒ ε | SCRDR

IfNot ⇒ ε | SCRDR

SCRDR is recursively built on the triple < Rule, Except, IfNot >. Rule is the

rule defined above. Except is the exception rule (or tree) and is defined as the

triple < Rule, Except, IfNot >. IfNot is the if-not rule (or tree), which is also

the triple < Rule, Except, IfNot >.

The inference mechanism works in a top-down manner, starting from the top-

most rule. For example a data case is passed to the tree starting from the root. If

65

3.3. Ripple Down Rules

Rule 0:
If true then ...

Rule 1:
If a, b then class 1

Rule 2:
If e then class 6

Rule 5
If a, d then class 2

Rule 6
If h then class 2

Rule 3:
If g, k then class 5

Rule 4:
If I then class 7

Rule 7:
If g then class 4

Rule 9:
If i then class 7

Rule 8:
if i then class 7

If-not

If-not

If-not

If-not

If-not

Except

 Except

 Except

 Except

Figure 3.2: An example of SCRDR knowledge base in binary tree structure.

the data case satisfies the current node, the conclusion is temporarily recorded in a

working memory and it is then passed to the next node in the except branch. If the

case does not satisfy the condition of the rule, it is passed to the next node in the

if-not branch. The process continues until there is no next node to evaluate. The

last conclusion recorded in the working memory is the classification of the case.

For example, case {a, b, g}, is passed to the SCRDR KBS in Figure 3.2. Firstly,

Rule 0 is fired; no conclusion is recorded in the working memory. The inference

engine passes the case down the except branch and fires Rule 1. Here, “class 1”

is recorded as a tentative classification. Again, the case is passed along the except

branch to Rule 3, which is not satisfied. Hence the case is passed along the if-not

branch to Rule 4. Rule is not fired, either. At this point, there is no further branch;

the inference terminates and the classification is “class 1”.

When the classification of the case is incorrect, the expert is required to identify

features in the case which suggest a new conclusion. This new rule is automatically

added to the rule giving the last conclusion as its exception. This means the case

will be processed in exactly the same way, except that it will also be passed further

to the new rule. There is also a mechanism to guarantee that the expert selects

sufficient features in the case so that the new rule will not fire on a case for which the

66

3.3. Ripple Down Rules

Rule 0: if (true) then (null) except (a,b), (e), (a,d), (h)
Rule 1: if (a,b) then (class1) except (g,k), (i)
Rule 2: if (e) then (class6) except
Rule 3: if (g,k) then (class5) except
Rule 4: if (i) then (class7) except
Rule 5: if (a,d) then (class2) except (g), (i)
Rule 6: if (h) then (class2) except
Rule 7: if (g) then (class4) except (i)
Rule 8: if (i) then (class8) except
Rule 9: if (i) then (class7) except

Figure 3.3: An example of SCRDR in composite rules structure.

previous rule was correct. That is, the expert has to select features that distinguish

the cases or confirm that the new conclusion should apply to the stored case.

Composite Rules

Composite Rules (CR)have recently been used to implement RDR KBs for single

classification tasks. Composite Rules were first introduced in the IEMS system

(Crawford, Kay, and McCreath, 2002a; Crawford, Kay, and McCreath, 2002b).

Composite Rules use a clausal form to represent each rule, and are organized in a

decision list where the first rule that explains a query is used (Cao and Compton,

2005). Each clause in the decision list is in an extended form of Rule in Section 3.3.3

as follows. if (Antecedent) then (Consequent) [except (Exception1, Exception2, ...,

Exceptionn)]

Each clause, when first created, is in the Rule form, consisting of Antecedent

and Consequent. When more knowledge has been acquired, i.e., new rules are

added, previous rules can be further refined with Exception(s). This will be de-

scribed in more detail below. Figure 3.3 illustrates an example of Composite Rules.

The inference mechanism of Composite Rules works in a top-down manner, but

with a slight difference from the binary tree structure, i.e., it searches for the first

clause satisfying a data case. For example, a data case is sequentially passed down

the decision list, starting from the topmost rule. The inference stops immediately

when the case is satisfied. The conclusion of the clause is the classification of the

case. To fire a rule, not only is Antecedent evaluated, a data case must not entail

67

3.3. Ripple Down Rules

any Exception.

For example, a data case a, b, g is passed to Composite Rules RDR in figure

3.3. Firstly, the default rule “true” is evaluated, but failed because of the case

entail the exception (a,b). The case is then passed down the list to Rule 1. Rule

1 is fired as none of its exceptions hold for the case. The inference stops here and

the case is concluded as “class1”.

However, the clause can be viewed as in the typical Rule form, i.e., the condition

part is the conjunction of Antecedent and the negation of Exception, as defined in

formal representation below.

Clause ⇒ Consequent← Antecedent ∧ ExceptionList

Consequent ⇒ ε | AttributeV alue

Antecedent ⇒ ε | Feature ∧ Antecedent

ExceptionList ⇒ ε | Exception ∧ ExceptionList

Exception ⇒ ε | ¬Antecedent

The definition of Consequent and Antecedent are still as same as defined in Rule,

in Section 3.3.3. ExceptionList is all the circumstances that prevent the clause

from being entailed. ExceptionList is in a form of conjunctions of exceptions,

which are defined as the negation of Antecedent.

Not only is the inference different, the KA mechanism is also different. When

the classification of a data case is incorrect, instead of asking the expert immedi-

ately for a new conclusion, the inference is resumed at the next rule following the

misclassifying rule. The process continues until either the case is correctly classi-

fied or the decision list is exhausted. Only when the decision list is exhausted, the

expert is required to identify features in the case which suggest a new conclusion.

A new rule is added to the bottom of the decision list and the negation of its

condition (or Exception by the definition) is added to the ExceptionList of any

previous rules that earlier gave a wrong conclusion. This means the case will be

passed through to the new rule at the bottom of the decision list.

68

3.3. Ripple Down Rules

Cao and Compton have used simulation to evaluate the performance of these

two structures. They have found that Composite Rules have a better convergence

rate than SCRDR when the expert has a high level of expertise. However, if the

expert is not doing well, i.e., when he tends to overgeneralize, the binary tree

structure outperforms Composite Rules (Cao and Compton, 2005).

N-ary Tree

To handle multiple independent classifications of a case, MCRDR is built as an

n-ary tree (Kang, Compton, and Preston, 1995; Richards and Compton, 1998),

where each node representing a rule can have an arbitrary number of children and

has a parent, except the root node which has no parent. False branches no longer

exist in MCRDR trees. The MCRDR formal representation can be defined as

MCRDR ⇒ < Rule, Children >

Children ⇒ ε | < Child, Children >

Child ⇒ ε | MCRDR

Like SCRDR, MCRDR is recursively defined on < Rule, Children >. Children is

the list of all the children of the node. In RDR, they are all exception or refinement

rules.

Figure 3.4 illustrates an example of MCRDR.

Each rule may be seen as a pathway against which data is evaluated (Richards

and Compton, 1998). The inference evaluates all the rules in one level and proceeds

to the next level of refinement for each rule that was satisfied. For example, a data

case is evaluated against the root node, which is a default rule. The case is then

passed to all the rules in level 1, which are refinement rules to the default rule. The

inference stops when there are no more children to evaluate or when none of the

rules can be satisfied by the case. Consequently, it ends up with multiple paths.

In each path, the conclusion of the last refinement rule overrides other conclusions

made along the path. That is each path represents a refinement sequence. Finally,

69

3.3. Ripple Down Rules

Rule 0:
If true then

Rule 1:
If a,c then cls 1

Rule 2:
If a,d then cls 2

Rule 4:
If k then cls 3

Rule 7:
If d,g then cls 5

Rule 3:
If e then cls 4

Rule 6:
If f,e then cls 6

Rule 8:
If i then cls 7

Rule 5:
If g,h then cls 5

Rule 9:
If i then cls 7

Rule 10:
If a,h then cls 8

Figure 3.4: An example of MCRDR knowledge base.

70

3.3. Ripple Down Rules

the inference comes up with multiple classifications of a data case.

For example, case {a, b, d, d, e} is passed to the MCRDR KBS in Figure 3.4.

Firstly, Rule 0 is fired. All its refinement rules are next evaluated. From the four

rules, i.e., Rule 1, 2, 4 and 7, only Rule 1 and 2 are fired. The inference proceeds

to the next level. From Rule 1, the next level is Rule 3. It is satisfied by the case

and there is no further refinement rules. One conclusion being made for the case

is “class4” by Rule 3. From Rule 2, its refinement rules are Rule 6 and 8. None of

them fires. Hence, along this pathway, the case is classified “class2” by Rule 2.

Knowledge acquisition for MCRDR is different and more complicated than in

SCRDR. KA is required when a case is classified incorrectly or a classification is

missed. There are three basic steps in this process. Firstly, the expert provides

the correct classifications. Then the system must find the location of new rules.

Finally, new rules are created and added to the knowledge base.

Acquiring the correct classifications is simple, the expert only states them. By

doing this, we end up with 1) correct classifications, 2)new classifications to be

added and 3) incorrect classifications to be deleted. It is natural to simply leave

correct classifications as they were. For new classifications, the system must decide

where to add new rules. To find a location for a new rule, the system firstly

decides if a new classification is the refinement of a wrong one or is independent

from others. For example, if it is a refinement classification, the system attaches

new rule to the rule which produces the wrong conclusion. Otherwise, the system

adds a new rule at the top level of the tree. There can also be situations where a

conclusion should not be given, rather than changed to another conclusion. In this

case, the refinement rule is called a stopping rule and gives a null conclusion.

3.3.5 Construction RDR

Originally, RDR was investigated for classification tasks with two main variants,

i.e., SCRDR and MCRDR. With attempts to address problems of other tasks, a

variety of RDR have been proposed, based on the two predecessors.

For example, Nested RDR is an extension of original SCRDR which allows

71

3.3. Ripple Down Rules

hierarchical structuring of RDRs. It allows the re-use of definitions or ontology and

the abstraction of concepts (Beydoun and Hoffmann, 1997; Beydoun and Hoffmann,

1998; Bekmann and Hoffmann, 2005).

Another variant of RDR is Repeat Inference Multiple Classification Ripple

Down Rule or RIMCRDR, which allows the inference to be iterated until a task

is completed (Compton et al., 1998; Compton and Richards, 1999; Compton and

Richards, 2000; Suryanto, 2005). It is proposed to deal with configuration, assign-

ment and planning problems RDR. While knowledge base and knowledge acquisi-

tion mechanisms are preserved as in typical MCRDR, the inference mechanism is

conducted repeatedly until a task is completed. That is, for each inference pass,

conclusions given will be added to working memory as new values and the infer-

ence is repeated until either a task is complete or no more new values can be found

(Compton et al., 1998). At each stage, only non-conflicting conclusions are added

to memory. When no more conclusions can be added the expert manually chooses

between any remaining conflicting conclusions.

Both variants aim at adding intermediate concepts, supporting an expert in

creating more complex reasoning and hierarchical concepts.

A generalization of RDR (Compton, Cao, and Kerr, 2004) has been proposed

which seems to cover both RIMCRDR and NRDR. NRDR has to have specific

heuristics to stop cycles while RIMCRDR uses a heuristic of only adding a conclu-

sion where a single conclusion has been reached for that conclusion type. General-

ized RDR fires rules in order of addition, except for refinement rules and conclusions

cannot be removed during inference. That is where two conclusions might be given

for a type, only the first is given. If this is wrong then the KB is refined. That is

inference does not attempt to correct knowledge; this is only done by knowledge

acquisition. This is simply the application of the decision list principle underly-

ing SCRDR and composite rules, but applied to an environment where there are

multiple interdependent conclusions.

72

3.3. Ripple Down Rules

3.3.6 RDR Applications

This section gives a review of RDR application in a number of tasks, such as config-

uration tasks, resource allocation tasks, heuristic search, help desk, text analysis,

image processing, pharmacy, web monitoring, etc.

Classification Task

The main utilization of the RDR approach has been for classification tasks. Initial

experiments were based on rebuilding GARVAN-ES1, an early medical expert sys-

tem (Compton et al., 1989). The system was rebuilt as a SCRDR system and it

demonstrated rapid rule addition of the order of 20 rules per hour with low error

rates (Compton and Jansen, 1990; Preston, Edwards, and Compton, 1994).

There have been a number of pathology systems developed using a commercial

RDR tool (Compton et al., 2006). The PEIRS system was an early example of

a pathology interpretation system implemented on the single classification RDR

approach. This system was largely developed whilst in routine use. After the

initial domain model was constructed, the knowledge base was developed entirely

by the expert. The only knowledge engineering skills required for the expert was to

understand how to identify features for the rules, that is, identifying features in the

case which distinguished it from the cornerstone case of the rule giving the wrong

conclusion. This was how the wrong conclusion was corrected and the knowledge

base grew. The knowledge base had evolved to about 2400 rules at the rate of

about 3 minutes per rule and the system ended up being in routine use for four

years and was claimed to cover about 25% of chemical pathology (Edwards et al.,

1993). Commercial pathology systems are now available based on MCRDR where

experts have constructed 10’s of 1000’s of rules (Compton et al., 2006).

Configuration Task

The RDR approach has also been applied to a configuration task. Puppe defined

the task as selection, parameterizing and aggregation of basic objects to assemble

73

3.3. Ripple Down Rules

a solution which fulfills the requirements (Puppe, 1993).

A significant configuration task that has been attempted with the RDR is to

develop an Ion Chromatography expert system (Mulholland et al., 1993; Compton

et al., 1993). In the domain, there are eight components which may be varied

giving many different combinations of equipment and reagents to try and optimise

the system for different types of samples to be tested. Initially, eight separate RDR

classification trees were built using Induct (Gaines, 1991) to decide on each of the

eight components. A data case was applied to each of the eight trees. For each

pass, a conclusion was added to working memory and the case run on the eight

KBS again. The cycle stops when no new value can be added to working memory.

In a later study with the RIMCRDR approach, there were eight conclusion types

and at each inference stage conclusions were added if a single conclusion was given

for that type (Compton et al., 1998). When required, rules could be added to give

a correct conclusion or block incorrect conclusions. So only one conclusion was

given for a conclusion type. It is claimed that the system performs satisfactorily

on test data over 4000 cases of ion chromatography.

In summary, RDR has been demonstrated as a solution to configuration tasks.

The same problem solving method as in classification tasks can be applied here.

The only difference is that a configuration task requires multiple inference cycles.

Each of which uses output from a previous cycle to fill in missing parts of the

configuration. The cycles continue until a configuration solution is found.

Resource Allocation Task

Puppe defined the task as mapping objects onto other objects while considering

preference, limited resources and other constraints (Puppe, 1993). Thus the main

interest is the assignment of objects onto other objects. The problem is similar to

configuration tasks, except for two additional constraints. Firstly, a resource has

limited availability. Secondly, the order of object allocation matters.

Richards and Compton investigated a room allocation task SISYPHUS-I (Richards

and Compton, 1999). In a typical room allocation task, two types of input cases

74

3.3. Ripple Down Rules

are considered; i.e., people cases and room cases. Here, Richards and Compton

put more focus on people cases and their requirement for a room. A data case is

passed to an MCRDR KBS in which a rule consists of features from both people

cases and room cases. Upon each pass of the inference, a suggestion of suitable

rooms is displayed with all other available rooms. The user is then required to

pick a room for a person case. KA is required if the user disagrees with the room

recommendation or no recommendation has been made.

In conclusion, the problem can be treated as a configuration task where people

are objects with empty room slots. The typical MCRDR inference engine works

well enough to map people to rooms. The only enhancement required is to track

resources from a rule pathway.

Heuristic Search

RDR has also been used in heuristic search. Beydoun and Hoffmann developed

heuristic searchers for chess by using NRDR to acquire human search knowledge

(Beydoun and Hoffmann, 1997; Beydoun and Hoffmann, 1998). An NRDR KB

was constructed as a hierarchy of concepts, i.e., each concept was an abstraction of

other concepts which were eventually defined in domain dependent primitive terms.

Each concept was built with an SCRDR tree. For any state of play, a number of

SCRDR KB may fire rules in determining a move. If the determined move was

not approved by experts, the KB was modified but the expert must decide which

conclusion and therefore which particular KB should be modified. When required,

new concepts could be added to represent the expert’s explanation.

Another application investigated by Bekmann and Hoffmann was applying

NRDR with genetic algorithm (GA) to detailed channel routing and switch box

routing (Bekmann and Hoffmann, 2005). The GA uses a heuristic fitness function

to guide their search in search space. The GA is stopped after each interaction and

the expert writes rules to improve the fitness and mutation functions until they

perform well enough .

75

3.3. Ripple Down Rules

Image Processing

RDR has been used for image processing tasks; in particular extracting lung bound-

aries from images. There are two different attempts in applying to this task. Firstly,

Park et al. have applied MCRDR to classify and select region of lung from X-ray

images (Park, Wilson, and Jin, 2000). After that, Misra et al. have extended

MCRDR to extract lung boundaries in High Resolution Computed Tomography

(HRCT) scans (Misra, Sowmya, and Compton, 2004). Unlike the work of Park et

al., MCRDR here is extended to a new variant called ProcessRDR. The idea is that

an image processing expert writes rules to control the edge detection, thinning and

other algorithms which are assembled to give an overall image processing system.

3.3.7 RDR Problems and Discussion

It has been suggested that RDR will result in redundancy and repetition. The rule

redundancy is when two similar rules classify the same case, or a rule is subsumed by

another. This problem can lead to additional knowledge acquisition sessions. The

problem results from the mechanism of adding a new rule to the knowledge base,

where the newly created rule is verified against cornerstone cases or all previous

cases, rather than being syntactically compared against all existing rules. Even

though the problem appears to have no significant impact on KBS performance

(Compton et al., 1991; Compton et al., 1998), Suryanto addressed the problem by

reorganizing KBS and reduced the size of the KBS by 10.5%, while the accuracy

was preserved (Suryanto, 2005). He states further that this figure only reflects

general size reduction. The more important perspective is that the reduction in

number of nodes, which might be later refined, is 27%. This figure suggests that

future KA requires the expert to add 3 rules, rather than 4 rules.

Any knowledge based system has a problem when the world changes and some

of its knowledge is no longer relevant. RDR is less prone to this problem be-

cause correction rules can still be added; however this results in unused knowledge.

Yoshida et al. have suggested a minimum description length approach to dynam-

ically removing unused knowledge in RDR knowledge bases (Yoshida et al., 2002;

76

3.3. Ripple Down Rules

Yoshida et al., 2004).

Another generic problem for all expert systems is brittleness. Expert systems

are brittle because they do not realise the limits of their own knowledge. For

example, an expert system with a very high level of knowledge about chemical

pathology results might still diagnose a male as pregnant who has high levels of a

pregnancy hormone, from a hormone-secreting tumor, because no one ever thought

to tell it that only females get pregnant. The CYC project (Guha and Lenat, 1990)

is an attempt at a solution to this problem by building a knowledge base of common

sense, or general knowledge at the top the tree, as a foundation which other expert

systems could be built on. Presumably, CYC would not allow the more specific

KBS to conclude a male was pregnant. A variety of applications have used CYC

knowledge base, for example, in directed marketing and database cleansing(Lenat,

1994).

Apart from the lack of commonsense knowledge, brittleness can also be charac-

terised as a failure of the expert system to recognise when a case is outside its range

of experience. Compton et al. proposed a mechanism called Prudence (Edwards et

al., 1995; Compton et al., 1996) as a solution to the problem. The technique is based

on the idea that expert systems should provide information to experts on their

knowledge base’s status, especially when it reaches its limit (Edwards et al., 1995;

Compton et al., 1996). Hence,the RDR framework is extended with a warning pol-

icy which aims to warn users of new types of data cases, for which a new rule may

have to be added. The warning mechanism makes use of profiles of attributes of

seen cases, i.e., each rule independently maintains profiles of attributes of data cases

which fire that rule. A warning is raised for a data case if a value of an attribute is

different from the profile. In early experiments, Prudence worked reasonable well;

i.e., it could correctly warn users for cases that needed further investigation but the

false positive rate was quite high at about 15% on the Garvan data set (Compton

et al., 1996).

This thesis focuses on incorporating the RDR framework in a dynamic problem

domain such as computer network. The proposed methodology is based on an

outlier detection algorithm, which will be discussed in the next chapter. The

77

3.3. Ripple Down Rules

method behaves in a similar fashion to prudence technique. The investigations have

then been extended to the prudence application, with an aim to improve prudence

performance; i.e., reducing the false positive rate of unnecessary warnings. These

investigations are discussed later in Chapter 6.

78

Chapter 4

Detecting Outliers from

Homogeneous Data

As mentioned earlier, this study aims at detecting anomalous behaviour in network

traffic from discrepancies between observed traffic and profiles. Instead of learning

a universal profile for general behavior, we propose to incrementally learn separate

profiles for different behaviour. This means each profile is created for a particular

situation, and can be added when a new situation is discovered.

The Ripple Down Rules framework, as discussed in previous chapter, can nat-

urally partition a search space into smaller well defined sub-regions. This charac-

teristic meets our requirement for partitioning the problem space of network traffic

behaviour into regions of homogeneous traffic. The new partitions are created to

cover discrete regions of the domain in which data is expected to be homogeneous,

and if it is not, a new partition is created. We assume that these regions are

sufficiently homogeneous that the data can be considered as uniformly distributed.

From these requirements, we need an algorithm that can start with no data

and be fairly robust as it learns, because we allow a new partition to be added at

any time, and it will contain only a single data item at the time it is added.

In the study, the proposed algorithm assumes that the data is uniformly dis-

tributed in some range; that all values in the range are equally probable. As will

be discussed this assumption interacts with the requirement for the system to learn

79

4.1. Outliers in Statistics

on the fly. An outlier detection algorithm has been proposed for continuous at-

tributes. Since the domain in which we are interested contains mainly continuous

attributes. This will be explained in the next chapter. As a result, the algorithm

is very simple and learns on-the-fly from observed data and flags outliers as they

occur. It should be noted that the algorithm does not require a training session

prior to its practical application to the domain; it can start from an empty state.

This chapter is organized as follows. Section 4.1 briefly discusses a background

of outliers in statistics. Techniques for outlier detection in the literature are summa-

rized in Section 4.2. The algorithm Outlier Estimation with Backward Adaptation

(OEBA) is proposed in Section 4.3. An evaluation of OEBA is presented in Sec-

tion 4.4. Although OEBA is intended for homogeneous data following a uniform

distribution, it is also evaluated against data following a normal distribution, as

shown in Section 4.5. The chapter is concluded in Section 4.6.

4.1 Outliers in Statistics

Statistical data analysis is widely used in a variety of domains to address decision

problems under uncertainty, where probabilistic assessment of alternatives is made

to support the process. The focus of early approaches was on analysis techniques,

e.g., using various statistics, to solve the problem. No matter what techniques

are considered, all of them are data-oriented. Provided all data in a set are valid,

without errors, the analysis is likely to be accurate. However, this is not realistic.

Some kinds of errors, e.g., measurement error or invalid data, are always present

in the data set. We call them outliers.

Outliers are observations that appear to be inconsistent with the remainder of

the collected data (Barnett and Lewis, 1987; Fallon and Spada, 1997; Iglewicz and

Hoaglin, 1993). A standard definition of an outlier is from Hawkins:

An outlier is an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mech-
anism. (Hawkins, 1980)

80

4.1. Outliers in Statistics

The interpretation of the inconsistency covers both discordant observations and

contaminants. A discordant observation is defined as an observation that appears

surprising or discrepant to the investigator (Fallon and Spada, 1997; Iglewicz and

Hoaglin, 1993). A contaminant is defined as an observation from a different distri-

bution than the rest of the data (Fallon and Spada, 1997).

Possible sources of outliers are recording and measurement errors, incorrect

distribution assumptions, unknown data structures, or novel phenomenon (Fallon

and Spada, 1997; Iglewicz and Hoaglin, 1993). Recording and measurement errors

are the most commonly suspected source of outliers. Secondly, data which does

not fit well into the assumed distribution may fit well into a different distribution.

Incorrect assumptions about the data distribution can lead to mislabeling data as

outliers or accepting outliers as valid data, causing high rates of false positives

and false negatives, respectively. Unknown data structures and correlations can

cause apparent outliers. A data set could be made up of subsets, which are subject

to different mechanisms and should be analyzed independently of each other. A

data set indicative of a novel phenomenon or rare event can be often labeled as

an outlier. For example, the network measurements during a conference or other

activity, where there are extra users, indicating higher bandwidth consumption

than usual can be thought to be outliers. This results in false alarms being raised,

and if many false alarms are raised, genuine alarms may be overlooked.

To handle data outliers, one needs good record keeping for the observations and

robust statistical methods for the analysis. To study the domain, all data should be

maintained with any possible explanation or additional information. In analysis,

the first step is to detect and label suspected outliers for further study.

Earlier works in outlier handling procedures can be distinguished as two main

types, i.e., accommodation of outliers and discordancy testing. The dichotomy

of approaches relies on differences in aims. When statistical methods are used

to draw valid inferences about the sample population, so that the presence of

outliers will not seriously distort those models, we classify these approaches as the

accommodation of outliers. Conceptually, the methods used must be robust to

small deviations from the assumptions (Barnett and Lewis, 1987; Huber, 1981).

81

4.1. Outliers in Statistics

On the other hand, any discordancy test determines whether an outlier should be

retained or rejected.

In both approaches, we need to form two hypotheses, i.e., null hypothesis and

alternative hypothesis. A null hypothesis explains the pure data set without con-

tamination. An alternative hypothesis, on the other hand, accommodates outliers.

4.1.1 Accommodation of Outliers

In the accommodation of outlier approach, one needs to estimate the location and

dispersion of the sample before any hypothesis is tested. The approach must make

an assumption about the distribution where data come from, for example, a normal

distribution. It is possible that data are actually from some other distributions.

The approach is still considered robust if the actual distribution is not too dissim-

ilar from the assumed one, but this does not guarantee that it will provide good

robustness against outliers from contamination. It is necessary to accommodate

outliers in an alternative model.

4.1.2 Discordancy Test

In the discordancy test approach, a distribution assumption is first made on the

data set. Some statistical tests are performed to examine whether a sample Xi is

not only an extreme, but is also statistically unreasonable even when viewed as an

extreme (Barnett and Lewis, 1987). If it is, we say that Xi is a discordant outlier.

An alternative model, where the presence of possible outliers is accounted for, is

also constructed to assess the properties of the test.

4.1.3 Discussion

The choice of approach is interest-oriented. If the aim is to define the characteris-

tics of the data set by a basic model (accommodation) then any test of discordancy

is irrelevant. On the other hand, a test of discordancy is for situations where we

wish to reject outliers as manifestations of contamination. However, no matter

82

4.2. Outlier Detection

what aim we set, the approach usually involves statistical tests on hypotheses of

assumed distributions of sample data without outliers and with outlier contamina-

tion. The common distributions mostly assumed on sample data are the normal

and exponential distributions (Barnett and Lewis, 1987).

In contrast, our study is intended for data following a uniform distribution

because we apply the Ripple Down Rules framework to segment a problem space

into smaller well defined sub-regions of homogeneous data which should follow

a uniform distribution. This will be discussed later in Section 4.3. We chose a

uniform distribution because we believe that system administrators implicitly use

a uniform distribution. That is, they apply an implicit expected range to the data

they observe. They do not care where data falls inside that range. If we were trying

to determine the central tendency of network traffic, it might be more appropriate

to use another distribution but our interest is rather in the range. However, we also

provide simulation results on using our method with normally distributed data.

4.2 Outlier Detection

Outlier detection has been long studied in statistics. It was started as a by-product

of the attempt to explain a data set. However, there was also a need to filter some

few data points that behave differently, according to specific criteria, from the

majority of the set. This introduced the study of outlier detection. The first

and foremost technique used in the area is distribution-based, where an assump-

tion on the underlying data set must be made to detect outliers. In addition to

these purely distribution-based approaches, more complex alternatives have been

proposed recently, including depth-based, distance-based, and density-based ap-

proaches. These approaches introduce new critical parameters to justify the likeli-

hood of data being outliers, in contrast to early distribution approaches where the

justification is done directly on data values. These techniques are now reviewed.

83

4.2. Outlier Detection

4.2.1 Distribution-Based Approach

With an aim to label suspected outliers for further study, some statistical tests

are performed on suspected outliers or extreme values. Early detection approaches

relied on a distribution assumption. The normal distribution is the most commonly

assumed distribution amongst others. Using a normal distribution, one can derive

a z-score or modified z-score to calculate the probability that a value is an outlier

(Iglewicz and Hoaglin, 1993; Barnett and Lewis, 1987). Another simple method

which does not depend on a distribution assumption is the boxplot (Tukey, 1977).

All of the experimental observations are standardized and the standardized values

outside a predetermined bound are labeled as outliers (Rousseeuw and Leroy, 1987;

Fallon and Spada, 1997).

As mentioned above a combination of models might be assumed for the con-

tamination, e.g., Yamanishi et al. used a gaussian mixture model and histogram

density model to represent continuous and categorical variables, respectively (Ya-

manishi, Takeuchi, and Williams, 2000; Yamanishi and Takeuchi, 2001), They also

introduced two discounting algorithms to update the two models and measure how

much the models have changed after learning. A high score indicates a high possi-

bility that the datum is an outlier.

The major problem is that a large amount of data is required to accordingly

specify a distribution and this data should not contain outliers, but should not

exclude values that are unusual but are not outliers. Most techniques are also

univariate.

4.2.2 Depth-Based Approach

To address issues with distribution-based techniques, depth-based approaches have

been proposed. The depth-based approach is based on the geometric characteristics

rather than the distribution of the data set. Data are represented as points in a

k-d space and organized in layers, with the expectation that shallow layers are

more likely to contains outliers than deep layers. These depth-based methods can

overcome the problem of distribution fitting, and conceptually can process data in

84

4.2. Outlier Detection

a multidimensional space.

However,in practice, there is a computational problem in the approach. To com-

pute k-dimensional layers, the technique relies on the computation of k-dimensional

convex hulls, which has a lower bound complexity of Ω(N� k
2�). Hence, depth-based

methods are not expected to be practical for more than 4 dimensions for large data

sets (Knorr and Ng, 1998). In fact, existing depth-based methods only give accept-

able performance for k ≤ 2 (Ruts and Rousseeuw, 1996).

4.2.3 Distance-Based Approach

The distance-based approach mainly aims at developing methods to detect outliers

in an accumulated data set, rather than developing methods able to learn a model

to predict outliers in new incoming data (Angiulli, Basta, and Pizzuti, 2006). It

was introduced by Knorr and Ng (Knorr and Ng, 1997; Knorr and Ng, 1998) to

address a problem in multidimensional data sets They define the notion of outliers

as follows. An object O in a data set T is a distance-based outlier if at least fraction

p of the objects in T is further than distance D from O (Knorr and Ng, 1997;

Knorr and Ng, 1998).

The technique can handle k-dimensional data, for any value of k with complexity

of O(kN2). An optimized variant of the technique is also proposed with complexity

that is linear wrt N , but exponential wrt k. However, this optimized variant works

best for k ≤ 4.

4.2.4 Density-Based Approach

Both depth- and distance-based approaches suffer from the problem of local density

in data sets. The density-based approach is an alternative to those techniques.

It focuses on the local neighborhood density and is interested in addressing the

problem of arbitrary regions in a data set. Instead of a binary decision, i.e., being

an outlier or not, the paradigm introduces an outlier factor for each object. The

higher the outlier degree, the more likelihood the object is an outlier. The outlier

85

4.2. Outlier Detection

factor is defined and determined differently in different techniques.

For example, Breunig, et al. (Breunig et al., 2000; Breunig et al., 1999) de-

fined the notion of local outliers. Every object is assigned with a Local Outlier

Factor(LOF), which is the outlier degree of an object that takes into account the

clustering structure in a bounded neighborhood of the object. The neighborhood

is defined by the distance to the k-th nearest neighbor. The technique performs

very well with complexity of O(N2). However, issues have been raised with respect

to the selection of k, e.g., k must be as large as the size of clusters, and the method

exhibits some sensitivity on the choice of k (Papadimitriou et al., 2002).

Another density-based method is proposed by Papadimitriou, et al. (Papadim-

itriou et al., 2002). In their work, a Multi-granularity Deviation Factor(MDEF)

is defined as the relative deviation of the local neighborhood density of a point P

from the average local neighborhood density. They also incorporate probabilistic

reasoning on decision-making while flagging outliers. An alternative to speed up

the computation has also been suggested (Papadimitriou et al., 2002).

4.2.5 Problems and Discussion

There are two main measures of the efficiency of outlier detection; that is, false

positive and false negative rates. The false positive rate is the proportion of valid

instances that were erroneously reported as being invalid or outliers. The false

negative rate is the proportion of invalid instances or outliers that were erroneously

reported as valid. We would like to keep these two measure to a minimum as much

as possible.

Another concern is computational complexity. Most of the time, the data sets

we are dealing with are high dimensional. Unfortunately, most outlier detection

techniques are not designed to cope with such data, except the density-based ap-

proach, which is able to address the problem of high-dimensional, large data sets

with arbitrarily different regions. The analysis of high dimensional data typically

requires high computational complexity and is too slow. Techniques in dimension-

ality reduction are usually applied to the data set prior to the actual analysis.

86

4.3. Detecting Outliers while Learning

It should be noted that the trend in outlier detection has recently focused on the

identification of outliers, rather than modeling or clustering the majority of data.

The reason being is that constructing the data model is a highly computational

task, but, for some applications or problem domains, the model may not be their

goal.

The ultimate aim of this study is a solution to network intrusion detection. As

we mentioned earlier in the previous chapter, we are implementing a traffic volume

anomaly detection system, which essentially requires network traffic profiles in the

analysis. The aim of our investigations in outlier detection is an online and low cost

algorithm to detect outliers while the system is learning data behavior. Techniques

in depth-based, distance-based or density-based approach are not suitable for our

domain of interest, because they require all data to be present before analysis. In

the domain, data comes in as a time series and is not complete.

However, our technique relies on a different assumption from other distribution-

based techniques. Instead of taking the whole data set into account and construct-

ing a baseline distribution, we partition data set into regions of homogeneous data

and detect outliers in these regions. The technique is investigated in the next

section.

4.3 Detecting Outliers while Learning

To detect an outlier, it is necessary for any algorithm to have some sort of model of

expected behaviour to assess data against. Normally, a model is constructed upon

a particular data attribute. We can classify an attribute into 2 main types, i.e.,

categorical or continuous, each of which requires a different modeling technique.

However, in the network traffic domain, most attributes are real numbers. Hence,

the focus of investigation is on modeling a continuous attribute.

We propose a probability-based algorithm to model a continuous attribute in a

dynamic domain. The algorithm not only maintains a range of valid data, which

have been observed, but adapts the model to changes in the domain as well as

87

4.3. Detecting Outliers while Learning

flagging outliers when they are observed. We have made three assumptions in this

algorithm:

1. All attributes are independent.

2. Provided there is a proper segmentation of the domain, data should behave

similarly in each region, forming a cluster of homogeneous data.

3. For each region, homogeneous data follow a uniform distribution on an inter-

val [a, b]. That is,

f(x) = 0 for x < a

=
1

b− a
for a ≤ x ≤ b

= 0 for x > b

and

D(x) = 0 for x < a

=
x− a

b− a
for a ≤ x ≤ b

= 1 for x > b

where f(x) is the probability density function and D(x) is the cumulative

distribution function.

From the above assumptions, the probability of any value would fall into a

range [a′, b′] inside the interval [a, b] is

P (a′ ≤ x ≤ b′) = D(b′)−D(a′)

=
b′ − a

b− a
− a′ − a

b− a

=
b′ − a′

b− a

where a′ ≥ a and b′ ≤ b.

That is with a uniform distribution from 0 to 1, 50% of the data will fall between

0 and 0.5, 10% between 0 and 0.1. The function P (a′ ≤ x ≤ b′) is the probability

of the range [a’, b’] for a single datum. However, we are interested in an event

88

4.3. Detecting Outliers while Learning

where n independent data all fall into a particular region inside an interval, which

is P (a′ ≤ x1 ≤ b′ and a′ ≤ x2 ≤ b′ and ... and a′ ≤ xn ≤ b′). For convenience,

we refer to this probability as the Range Probability for n objects (RP n). From

the probability of a sequence of independent events, this probability is determined

by the product of the probability of individual events. Hence, the probability of n

consecutive data points all lying in the region [a’, b’] inside the interval [a, b] is

RP n = P (a′ ≤ x1 ≤ b′)× P (a′ ≤ x2 ≤ b′)× ...× P (a′ ≤ xn ≤ b′)

=

(
b′ − a′

b− a

)n

.

Let us assume that, from n observations, a is the minimum and b is the max-

imum. The interval [a, b] is the provisional range after n observations. The true

boundary of the space might not be seen yet. Any object x that falls outside this

interval should not simply be considered as an outlier, as possibly it is a new and

unseen object that is part of the population. To justify the possibility of x being

part of the group, we construct a temporary scenario that the outlier x actually

belongs to the group. Hence, the interval [a, b] should be updated to either [a, x]

if x is greater than b or [x, b] if x is less than a. This means the probability of the

previous n objects falling in what is now the sub-region [a, b] is reduced from 1 to

either

(
b− a

x− a

)n

or

(
b− a

b− x

)n

, depending on whether x is greater than b or less

than a, respectively.

Algorithm 1 Outlier Estimation

a: the minimum of the range after n observations
b: the maximum of the range after n observations
x: new observation
T: the least confidence level at which x is accepted as a value of the population
if x ≥ a and x ≤ b then

n=n+1
else if x > b and RP n ≥ T then

b=x, n=n+1
else if x < a and RP n ≥ T then

a=x, n=n+1
else

REPORT outlier
end if

89

4.3. Detecting Outliers while Learning

We then assess whether x is an outlier against the RP n. The less the RP n, the

higher the likelihood that x is an outlier. An x is accepted into the group only if

RP n of region [a, b] is greater than T, where T is an arbitrary threshold, which

needs to be determined. The algorithm as shown in Algorithm 1 is named the

Outlier Estimation (OE) algorithm.

A new model for each attribute is created every time a new region is partitioned.

It is possible that an outlier is added to the model, especially when n is small in

a new partition. Once an outlier is mistakenly accepted into the model, the range

is updated. For example, when an outlier is above the range, the maximum is

updated or if it is below the range, the minimum is updated.

When more data have been observed, any outliers that were misleadingly added

to the model are likely to exhibit themselves as extremes in the model, and can be

be rejected from the model. This means there should be a mechanism to inspect

or assess the feasibility of the model after an update. This mechanism is named

Backward Adaptation (BA). BA, as shown in Algorithm 2, works as follows. As

soon as a range is updated, BA starts to assess the new range. If all observations

following the update fall within a region and its RP n is less than the threshold T,

the model is contracted to that region.

Algorithm 2 Backward Adaptation

a: the minimum of the range after n observations
b: the maximum of the range after n observations
x: new observation
T: the least confidence level at which X is accepted as a value of the population
a’: min(x, minimum observed since a was set)
b’: max(x, maximum observed since b was set)
na: the number of population within the range after a was set
nb: the number of population within the range after b was set
if RP n(a, b′) < T then

b = b′, nb = 0
end if
if RP n(a′, b) < T then

a = a′, na = 0
end if

To simplify the following discussion we will consider only the maximum. In

the OE algorithm, n is always increasing as all previous points are below the new

90

4.4. Simulations

maximum. However, with the BA algorithm, n is reinitialized whenever a new

maximum is set, as we wish to assess the probability that the sequence of data

occurring after the new maximum is set all fall within a subrange. We count the

data points since the last maximum and also note the actual maximum observed.

After n points, and an observed maximum of b′ < b for those n points, we can

repeat the same calculation that these n points all fell within the subrange. If the

probability is less than a threshold T, we reduce the maximum to the observed

maximum, and start again.

In summary, if an outlier accepted into the model is an upper bound, then if

this outlier is transient, one would expect the sequence of observations following

the outlier to all fall within a sub-range. Once enough data have been collected to

identify the previous bound as an outlier, the range is changed.

4.4 Simulations

The OE and BA algorithms rely on one parameter, the threshold T. Here, we con-

ducted simulations to test the performance of the proposed OE and BA algorithms

and to determine the optimal threshold T.

The metrics for the performance were the estimated minimum, estimated max-

imum, false positive rate and false negative rate. The false positive rate is the

proportion of valid instances that were erroneously reported as being invalid or

outliers and is computed as

false positive rate =
number of valid instances identified as outliers

number of valid instances
(4.1)

The false negative rate is the proportion of invalid instances or outliers that were

erroneously reported as valid. It is computed as

false negative rate =
number of invalid instances not detected as outliers

number of invalid instances
(4.2)

Simulations were set up for two different scenarios. In the first scenario, data

91

4.4. Simulations

sets were noise free. This was to test the convergence capability of the algorithm to

the true boundary of the data. In this phase, we focused on whether there would

be false positives detected.

Secondly, data sets were contaminated with outliers. As this was to test the

outlier detection capability of the algorithm in various situation of outlier contam-

ination, we were more interested in the produced false negative rate.

4.4.1 Simulations on Noise Free Data Sets

The simulation started from the data set generation. We chose to generate, for a

data set, 3,000 random numbers following the standard uniform distribution in the

range of 0.0 to 1.0 (U(0,1)). To reduce bias that might occur from the generated

data set, we generated 10 data sets for this simulation. We show average data in

the results.

Data Set Generator

Simulations were implemented with the Java programming language. An instance

of class java.util.Random is used to generate random numbers. The class uses a

48-bit seed, which is modified using a linear congruential formula. The method

nextDouble(), which returns the next pseudorandom, uniformly distributed double

value between 0.0 and 1.0, is used.

Experimental Results

The uniform distribution generator created 10 sets of 3000 random numbers. These

series were separately fed into the modeling engine from a blind state, where it knew

nothing about the data set. Statistics, e.g., false positive, false negative, expected

minimum, expected maximum, were collected for each of 10 series and averaged.

The results are shown in Table 4.1.

The simulation showed that the algorithm is able to converge from a blind

state toward the true interval [0, 1) as shown in Table 4.1. When the threshold

92

4.4. Simulations

T Minimum Maximum FPR

1.0E − 99 ≤ T ≤ 1.0E − 2 0.0003 0.9997 0
T = 1.0E − 1 0.0232 0.9768 0.1083

Table 4.1: Simulation results of the OEBA algorithm on noise free data. Metrics
shown are final estimated minimum, maximum and false positive rate (FPR).

T is between 1.0E-99 and 1.0E-2, the algorithm can converge very close to the

true limit. There is no evidence of false positives, that is inappropriate warnings

for outliers in this range of T. However, when T is greater than 1.0E-2, the gap

started to grow and false positives were introduced. That is, the algorithm is likely

to refuse to include normal instances into the model and flag them as outliers,

causing false positives. We do not show further details of false positives because

the algorithm produced none, except for those with T > 1.0E−2. And in our later

experiments, we used values that had 0 false positives in these simulations.

4.4.2 Simulations on Outlier Contaminated Data Set

In this simulation, data sets were still generated following a uniform distribution

in the range of 0.0 to 1.0 (U(0,1)). However, some outliers were randomly injected

into each data set. Outliers were generated in bands both above and below the

valid range of [0.0, 1.0]; that is, > 1.0 and < 0.0. For each band, its range is 0.5

wide.

There were two parameters controlling the behaviour of outliers, i.e., level of

outlier contamination in the data set and distance of the outlier band from valid

data.

Contamination Level

The contamination level denotes the quantity of outliers in the data set. The

number of outliers is approximate because we also use a random number generator

to decide when to produce an outlier. We use a percentage to represent a level, for

example, a contamination level of 1% means there are approximately 30 outliers in

a data set of 3,000 points. Five different levels, i.e., 1%, 5%, 10%, 15% and 20%

93

4.4. Simulations

Band of valid data

Band of outliers

Band of outliers
distance

distance

Figure 4.1: Distance between bands of outliers and valid data.

are used in this simuation.

Outlier Distance

The second parameter is outlier distance, which denotes the minimum distance or

gap between the band of outliers and valid data, as shown in Figure 4.1. It controls

the distance for both upper and lower bands. For example, the valid range of a

data set is 0.0 and 1.0. The upper band of outliers with a distance of 0.1 is in the

range of 1.1 and 1.6, where the lower band is in the range of -0.6 and -0.1. In this

simulation, outlier distance was varied with 5 following values; 0.01, 0.05, 0.1, 0.5

and 1.0.

Data Set Generator

Data sets are generated in three bands as shown in Figure 4.1. We use an instance

of the class java.util.Random to decide when to inject outliers into a data set,

according to a predefined contamination level (Level) as shown in Figure 4.2. That

is, if a generated value is less than Level, an outlier is injected at that point.

Otherwise, a valid datum is generated.

To generate random numbers for a band of valid data, an instance of the class

java.util.Random is used, as in the previous section. Outliers in two bands are

generated by another instance of the class java.util.Random. Note the method

94

4.4. Simulations

nextDouble() always returns a value between 0.0 and 1.0. Random numbers less

than 0.5 are offset to the lower band, otherwise they are offset to the upper band.

The offsetting is controlled by a specified distance, that is, a generated number

x < 0.5 is offset to x−0.5−distance, and if x ≥ 0.5, it is offset to x+0.5+distance.

For example, given a random number for an outlier is 0.8 and distance is set to

0.05. This outlier is offset to 0.8 + 0.5 + 0.05 = 1.35.

public double[] generateUniform(

int N, // the number of outliers

double Level, // the contamination level

double Distance // the outlier distance) {

Random valid = new Random();

Random selector = new Random();

Random outlier = new Random();

double[] array = new double[number];

for (int i=0; i<N; i++){

if (selector.nextDouble() < Level) {

double anOutlier = outlier.nextDouble();

if (anOutlier < 0.5) {

// Lower band

array[i] = anOutlier - 0.5 - Distance;

}

else {

// Upper band

array[i] = anOutlier + 0.5 + Distance;

}

}

else {

array[i] = valid.nextDouble();

}

}

return array;

}

Figure 4.2: Java code of data set generator with outlier contamination.

95

4.4. Simulations

Experimental Results

Our interest for this simulation is on false positive and false negative rates; that is,

how many valid data are flagged as outliers and how many real outliers are missed,

respectively. With five different levels of contamination levels and five distances,

we have 25 different data sets. For each set, a threshold T between 1.0E-99 and

1.0E-2 is used. A threshold of ≤ 1.0e− 4 eliminates all FP, so for simplicity, only

results of thresholds between 1.E-5 and 1.E-2 are shown in table 4.2. We also group

FPRs for data sets with the same Distance in the same table.

Simulations show interesting results for false negative rates (FNR). For conve-

nience, we draw FNRs for data sets with the same Distance value in the same

diagram. Results are illustrated graphically in Figure 4.3, 4.4, 4.5, 4.6, 4.7.

When threshold T is set too small, no outliers are flagged, e.g., in data set where

Distance = 0.01 FNRs is 1.0 for all contamination levels, except for Level = 0.01.

This happens with all other Distances. However, when the threshold T is large

enough, some outliers are correctly detected making FNRs drop. At some point,

all FNRs reach zero. These results imply that the threshold T must be tuned to

outlier characteristics to keep FNR at zero.

Table 4.3 summarizes, from the above simulations, the threshold T which pro-

duces zero FNR in different scenarios. Data shown in the table are the minimum

thresholds T can be configured in each data set to have zero FNR. Hyphen “-”

in the table means there is no possible value for threshold T not to produce false

negative instances.

In general, the algorithm performs perfectly, except where outliers are very close

to the valid data, i.e., 0.01. When the distance is 0.05 or higher, the algorithms

can always detect all outliers no matter how many outliers are in the data set; i.e.,

up to 20% contamination level. We have not tested above 20% outliers, as what

these tests concern is a constant background level of 20% outliers, i.e., can outliers

be detected when there are always 20% outliers. We consider this an unrealistic

situation. Of course there may be a burst of outliers much higher than 20%, but

these will be detected when they commence as a transition from a previous range.

96

4.4. Simulations

Outlier Contamination Level
T 1% 5% 10% 15% 20%

1.E-05 0 0 0 0 0
1.E-04 0 0 0 0 0
1.E-03 0.0001 0 0 0 0
1.E-02 0.0181 0.0006 0.0001 0.0002 0.0011

(a) Distance = 0.01

Outlier Contamination Level
T 1% 5% 10% 15% 20%

1.E-05 0 0 0 0 0
1.E-04 0 0 0 0 0
1.E-03 0.0001 0 0 0.0002 0
1.E-02 0.0331 0.0001 0.0004 0.0006 0.0001

(b) Distance = 0.05

Outlier Contamination Level
T 1% 5% 10% 15% 20%

1.E-05 0 0 0 0 0
1.E-04 0 0 0 0 0
1.E-03 0 0.00003 0 0 0.0001
1.E-02 0.0001 0.0013 0.0006 0 0.0002

(c) Distance = 0.10

Outlier Contamination Level
T 1% 5% 10% 15% 20%

1.E-05 0 0 0 0 0
1.E-04 0 0 0 0 0
1.E-03 0 0 0.00003 0 0
1.E-02 0.0003 0.0004 0.0001 0.0012 0.0005

(d) Distance = 0.50

Outlier Contamination Level
T 1% 5% 10% 15% 20%

1.E-05 0 0 0 0 0
1.E-04 0 0 0 0 0
1.E-03 0 0 0 0 0
1.E-02 0.0005 0.00003 0 0.0003 0

(e) Distance = 1.00

Table 4.2: False positive rates for uniformly distributed data. Each table shows
false positive rates at different outlier contamination levels at specified distances.

97

4.4. Simulations

Di
st

an
ce

 =
 0

.0
1

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.E-99

1.E-94

1.E-89

1.E-84

1.E-79

1.E-74

1.E-69

1.E-64

1.E-59

1.E-54

1.E-49

1.E-44

1.E-39

1.E-34

1.E-29

1.E-24

1.E-19

1.E-14

1.E-09

1.E-04

T

FNR

Le
ve

l=
0.

01
Le

ve
l=

0.
05

Le
ve

l=
0.

10
Le

ve
l=

0.
15

Le
ve

l=
0.

20

F
ig

u
re

4.
3:

F
al

se
n
eg

at
iv

e
ra

te
s

of
d
iff

er
en

t
co

n
ta

m
in

at
io

n
le

ve
ls

at
th

e
d
is

ta
n
ce

of
0.

01
.

98

4.4. Simulations

Di
st

an
ce

 =
 0

.0
5

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.E-99

1.E-94

1.E-89

1.E-84

1.E-79

1.E-74

1.E-69

1.E-64

1.E-59

1.E-54

1.E-49

1.E-44

1.E-39

1.E-34

1.E-29

1.E-24

1.E-19

1.E-14

1.E-09

1.E-04

T

FNR

Le
ve

l=
0.

01
Le

ve
l=

0.
05

Le
ve

l=
0.

10
Le

ve
l=

0.
15

Le
ve

l=
0.

20

F
ig

u
re

4.
4:

F
al

se
n
eg

at
iv

e
ra

te
s

of
d
iff

er
en

t
co

n
ta

m
in

at
io

n
le

ve
ls

at
th

e
d
is

ta
n
ce

of
0.

05
.

99

4.4. Simulations

Di
st

an
ce

 =
 0

.1
0

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.E-99

1.E-94

1.E-89

1.E-84

1.E-79

1.E-74

1.E-69

1.E-64

1.E-59

1.E-54

1.E-49

1.E-44

1.E-39

1.E-34

1.E-29

1.E-24

1.E-19

1.E-14

1.E-09

1.E-04

T

FNR

Le
ve

l=
0.

01
Le

ve
l=

0.
05

Le
ve

l=
0.

10
Le

ve
l=

0.
15

Le
ve

l=
0.

20

F
ig

u
re

4.
5:

F
al

se
n
eg

at
iv

e
ra

te
s

of
d
iff

er
en

t
co

n
ta

m
in

at
io

n
le

ve
ls

at
th

e
d
is

ta
n
ce

of
0.

10
.

100

4.4. Simulations

Di
st

an
ce

 =
 0

.5
0

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.E-99

1.E-94

1.E-89

1.E-84

1.E-79

1.E-74

1.E-69

1.E-64

1.E-59

1.E-54

1.E-49

1.E-44

1.E-39

1.E-34

1.E-29

1.E-24

1.E-19

1.E-14

1.E-09

1.E-04

T

FNR

Le
ve

l=
0.

01
Le

ve
l=

0.
05

Le
ve

l=
0.

10
Le

ve
l=

0.
15

Le
ve

l=
0.

20

F
ig

u
re

4.
6:

F
al

se
n
eg

at
iv

e
ra

te
s

of
d
iff

er
en

t
co

n
ta

m
in

at
io

n
le

ve
ls

at
th

e
d
is

ta
n
ce

of
0.

50
.

101

4.4. Simulations

Di
st

an
ce

 =
 1

.0
0

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.E-99

1.E-94

1.E-89

1.E-84

1.E-79

1.E-74

1.E-69

1.E-64

1.E-59

1.E-54

1.E-49

1.E-44

1.E-39

1.E-34

1.E-29

1.E-24

1.E-19

1.E-14

1.E-09

1.E-04

T

FNR

Le
ve

l=
0.

01
Le

ve
l=

0.
05

Le
ve

l=
0.

10
Le

ve
l=

0.
15

Le
ve

l=
0.

20

F
ig

u
re

4.
7:

F
al

se
n
eg

at
iv

e
ra

te
s

of
d
iff

er
en

t
co

n
ta

m
in

at
io

n
le

ve
ls

at
th

e
d
is

ta
n
ce

of
1.

00
.

102

4.5. The Effect of A Normal Distribution

Outlier Contamination Level
Distance 1% 5% 10% 15% 20%

0.01 1E-3 1E-3 - - -
0.05 1E-6 1E-3 1E-3 1E-3 1E-3
0.10 1E-10 1E-6 1E-5 1E-6 1E-6
0.50 1E-26 1E-24 1E-19 1E-19 1E-18
1.00 1E-39 1E-35 1E-33 1E-34 1E-33

Table 4.3: Minimum threshold with 0 false negatives. The number shown in this
table is the minimum thresholds where there were no false negative instances for
various outlier contamination levels and distances.

In the case where the outlier distance is 0.01, i.e., the outliers start only 1%

above (and below) the expected range and so are almost continuous with the normal

data, the algorithms can successfully detect all outliers only when the number

of outliers is less than or equal to 5%. When the contamination level is higher

than or equal to 10%, the algorithm cannot tolerate the contamination; i.e., some

outliers are not detected, but are included in the model. We do not consider an

inappropriate increase of 1% as a realistic problem. However, where our system

would fail would be an attack when 10% of the data was 1% above the range and

this was gradually stepped up 1% at a time.

In conclusion, all outliers can be detected as long as the outliers are not very

close to the normal data (i.e., ≥ 0.05). To configure the algorithm with zero FPR

and zero FNR, the threshold must be carefully configured, depending on outlier

characteristics. The simulation suggests that the threshold level depends more on

distance than contamination level. If outliers are 10% away from normal data,

the threshold should be configured between 1e-6 and 1e-4. If outliers are 50%

away, threshold can be between 1e-18 and 1e-4. Note from Table 4.2 all thresholds

≤ 1.0e− 4 gave zero FPs.

4.5 The Effect of A Normal Distribution

The proposed algorithm is based on the assumption of uniform distribution, but

we have also evaluated its performance on normally distributed data. Simulations

are conducted on a scenario where a data set follows a normal distribution. The

103

4.5. The Effect of A Normal Distribution

performance of the algorithm is evaluated by the false positive rate, as defined in

equation 4.1

Here, a standard normal distribution, which is a normal distribution with a

mean of zero and a variance of one, is used to generate a data set of 3,000 random

numbers. Simulations are run separately on 10 data sets. The average FPRs over

these 10 runs are presented.

Data Set Generator

An instance of class java.util.Random is used to generate random numbers. To

generate a sequence of normally distributed double values with mean 0.0 and stan-

dard deviation 1.0, method nextGaussian() is invoked repeatedly until a sequence

is filled up. In this case, we generate 3000 values.

Experimental Results

Simulation results are summarized in Table 4.4. This simulation focused on false

positive instances produced by the OE and BA algorithms. In the table, false

positive rates or FPRs are shown for different threshold T’s. For convenience, we

group together those thresholds which produced the same FPR. Results from Table

4.4 are graphically plotted in Figure 4.8. As expected, the smaller the threshold

T, the lower the FPR.

T FPR

T ≤ 1e− 10 < 0.0100
1e-09 0.0103
1e-08 0.0146
1e-07 0.0153
1e-06 0.0184
1e-05 0.0271
1e-04 0.0395
1e-03 0.0824
1e-02 0.1375

Table 4.4: False positive rates (FPR) of various threshold T of the OE and BA
algorithms on data set following normal distribution.

In statistics, a hypothesis is most commonly tested with the significance level

(type I error) α = 0.05. The algorithms OE and BA achieve this rate when the

104

4.5. The Effect of A Normal Distribution

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

0.
16

1.E-99

1.E-92

1.E-85

1.E-78

1.E-71

1.E-64

1.E-57

1.E-50

1.E-43

1.E-36

1.E-29

1.E-22

1.E-15

1.E-08

T

FPR

F
ig

u
re

4.
8:

F
al

se
p
os

it
iv

e
ra

te
s

fo
r

n
or

m
al

ly
d
is

tr
ib

u
te

d
d
at

a.

105

4.6. Conclusion

threshold T is less than 1e-4. The algorithms can also produce FPR less than 0.01,

when the threshold T is less than 1e-10.

We note again that it would be important to use the most appropriate distri-

bution function if we were trying to model the central tendency of the distribution.

Rather what we are doing is trying to determine limits above or below which a value

is suspicious. We believe this is how system managers operate. In our method, we

are therefore not concerned whether the values observed in a subrange are bundled

towards one end or more uniformly distributed. We are not interested in whether

the probabilities we calculate are true probabilities, but rather whether we can find

a cut off that minimizes FPs and FNs.

4.6 Conclusion

In this chapter, we show that the simple OEBA algorithm is able to learn the range

of a continuous attribute in dynamic domain as well as detect outliers in the data

set. There exists a range of a threshold for the algorithm to produce zero FPR and

zero FNR. Although the method is based on a uniform distribution assumption,

when the simulation is extended to run on data following normal distribution,

the algorithm behaves reasonably. Following a normal distribution, the threshold

T < 1e− 4 produces FPR < 0.05 and T < 1e− 10 produces FPR < 0.01.

In a network traffic domain, the distribution of network volumes has never

been well defined. As by nature the usage varies from one site to another, it is

not worthwhile to put much effort to define a data set that might not be useful

to other sites. As will be explained in the next chapter, our technique partitions

network traffic into sub-regions of homogeneous traffic, which are assumed to follow

a uniform distribution. Traffic in each region will be learned by the algorithm

OEBA. Generally, network attacks alter traffic volumes significantly from their

normal levels. Our simulations looking at FPs and FNs suggest that a threshold

between 1e-30 and 1e-4 can be used.

Although the assumption of a uniform distribution is not correct, the impor-

106

4.6. Conclusion

tant question is whether it introduces errors. In the experiments we have conducted

there were no false negatives, so at the most the distribution assumption is intro-

ducing false positive warnings. False positive warnings are likely to occur when the

real distribution has a long tail compared to a uniform distribution, and our simula-

tion using a normal distribution showed a higher level of false positives as expected,

so that the false positives in our experiments may be due to the distribution. On

the other hand a different distribution model may introduce more false negatives

than we observe. Ethernet traffic is known to be self-similar (Leland et al., 1994),

so it may be worthwhile carrying out simulations of self-similar data, or exploring

whether we can use a distribution that captures this self similarity. However, it

seems unlikely to be an important issue as what we are concerned with is sudden

changes, in network traffic. It is also worth noting that we have used median data

from different time periods, so to some extent we are considering self-similarity.

107

Chapter 5

Network Traffic Anomaly

Detection

Network administration commonly involves deployment, configuration, mainte-

nance and monitoring of both hardware and software in a network. However,

what this study concerns is the monitoring task. To keep a network free from

being compromised, a network administrator constantly monitors network status,

and rectifies the network if any break-in is detected.

One of the fundamental tasks in today’s network monitoring operations is

anomaly detection. Traditionally, anomalies such as DOS attacks, flash crowds,

port scanning or worms are detected through the analysis of data inside packet

headers, e.g. service, duration, src bytes, dst bytes of IP packets (Porras and

Neumann, 1997; Smaha, 1988; Anderson, Frivold, and Valdes, 1995; Ilgun, 1993;

Lunt et al., 1988; Axelsson, 2000; Cannady, 1998; B. Mukherjee, 1994; Ryan, Lin,

and Miikkulainen, 1998; Yamanishi, Takeuchi, and Williams, 2000; Vaccaro and

Liepins, 1989; Guan, Ghorbani, and Belacel, 2003), as all information regarding

the communication is stored in these headers. More recently, the volumes of net-

work traffic measurement, e.g. protocol byte count, link count, have been pro-

posed as an alternative source of audit data (Barford et al., 2002; Brutlag, 2000;

Krishnamurthy et al., 2003; Lakhina, Crovella, and Diot, 2004b; Mandjes, Saniee,

and Stolyar, 2005; Soule, Salamatian, and Taft, 2005). Although traffic volume

108

contains less information than that inside packet headers, it has been proved to be

meaningful enough to reveal such network anomalies as DOS attacks, flash crowds,

outages and large file transfer(Barford and Plonka, 2001). Our focus is also on

network measurement data.

Traffic volume data is a sequence or time series of bandwidth usage in a network,

which can be collected by many network tools such as FlowScan (Caida, 2006) or

RRDtool (Oetiker and GNU, 2006). Graphical visualization of traffic volume can

show the status and performance of the network, e.g. heavily used, slightly used

or whether an outage has occurred. When a network is attacked, traffic volume

will significantly change from its normal state; either increasing or dropping for a

period of time, depending on the attack type. This helps network administrators

detect anomalous traffic. For example, FlowScan is used in (Barford and Plonka,

2001; Barford et al., 2002) to periodically maintain counters of attributes, e.g.

IP protocol, and such services as FTP, HTTP. Time series data is recorded into a

database for both archiving and visualization purposes. For graphical visualization,

the aggregation over five minute intervals for a given time period is used instead of

individual data points. Even though this level of aggregation is sufficiently coarse-

grained that short time scale behavior will be missed, it has been shown that this

does not suppress the manifestation of anomalous behavior (Barford and Plonka,

2001).

To detect anomalies from network measurement data, network tools are gener-

ally used to collected network measurement and generate visual graphs for network

administrators to inspect. If an anomaly is detected (manually and visually), fur-

ther investigations are performed to identify the root cause of such an anomaly and

a remedy is provided, if necessary.

To automate such a task, an anomaly detector is implemented to filter suspi-

cious data by comparing new observations with predefined system profiles of nor-

mal characteristics. There are two primary tasks in the process: 1) construction of

normal system profiles, 2) differentiation of suspicious from normal traffic.

To construct normal behavior profiles, many approaches have been proposed

to date. In early literature, statistics-based approaches, for example, the Holt-

109

Winters forecasting algorithm, and Auto-Regressive Integrated Moving Average

(ARIMA), were used to represent traffic profiles(Brutlag, 2000; Krishnamurthy et

al., 2003). Not only being used to model system behavior, they were used as meth-

ods to evaluate other approaches, such as wavelet analysis, and principal compo-

nent analysis, which were proposed to detect traffic anomalies(Barford et al., 2002;

Lakhina, Crovella, and Diot, 2004b). In these approaches, a single mathemati-

cal model is intended to cover the full range of normal behaviors sufficiently and

precisely to exclude outliers.

The second task, i.e., differentiating anomalies from normal traffic, has been

commonly implemented by using a threshold. The threshold is defined differently

according to the implementation of the model. Between the two, the profile con-

struction task is considered more sophisticated and time consuming.

As an alternate, we propose an RDR-based approach to learn, instead of a

single universal model, a hierarchy of network behavior profiles, where each of

which represents a subspace of homogeneous traffic. Our approach also uses a

variable threshold based upon seen observations to define the confidence band.

The more instances that have been observed, the more confident the algorithm.

This works reasonably well (Prayote and Compton, 2006).

The rest of this chapter is organized as follows. Section 5.1 explains the actual

manual anomaly detection task in the School of Computer Science and Engineering

(CSE) at the University of New South Wales. Section 5.2 discusses the method-

ology we have used to automate traffic anomaly detection in CSE. This includes

segmentation of the problem space, the modification of the Ripple Down Rule in-

frastructure and the overall architecture. The implementation of the methodology

is explained in Section 5.3. This section also discusses the performance evaluation

of the approach on real traffic data. Finally, the chapter is concluded in Section

5.5.

110

5.1. Manual Network Anomaly Detection

5.1 Manual Network Anomaly Detection

In CSE, one of the network administration routines is manual monitoring of network

usage. CSE network usage is archived by the program RRDtool (Oetiker and GNU,

2006). It also generates graphs for the network administrator to inspect. If an

anomaly is detected, further investigation is performed to identify the root cause

of such an anomaly and a remedy is provided, if necessary.

5.1.1 Audit Traffic Data

RRDtool can be configured to meet variable requirements of users. Here, the ad-

ministration team is interested in the bandwidth consumption of traffic of different

service protocols, different servers, and different traffic directions.

Server Type. A server is classified by its location as either an internal or external

server. Under the CSE policy, servers physically located within the school are

classified as internal. All the rest are classified as external.

Traffic Direction. By its direction, traffic can be classified into two types, i.e.,

incoming or outgoing.

Service Protocols. CSE provides 7 service protocols to users. These are HTTPS,

POP3, RSYNC, SMTP, SSH, TELNET and WWW. Not only is RRDTool config-

ured to record network usage by these protocols, it is additionally set to keep track

of the total bandwidth consumption of incoming and outgoing traffic. As a result,

at every minute, RRDTool records 30 values for network usage, for example, a

value for incoming traffic to the internal HTTPS server, a value for outgoing traffic

from internal WWW server, etc.

Graphs that are generated by RRDtool are inspected by the network admin-

istrator in the following fashion. The administrator literally reads IP data first.

If IP data does not follow patterns of past observation, they will perform further

111

5.1. Manual Network Anomaly Detection

investigations on particular protocols to identify such an anomaly. From past ob-

servation of IP data in our network, network usage typically starts to climb from

8am to its peak. The peak is from 2pm to 4pm. The usage slowly drops until 2am

and it stays steady until 8am. This cycle is the basic pattern of the network usage.

5.1.2 Actions on Anomalies

It is worth noting that not all anomalies (manually) detected indicate intrusive

behaviour; some of them might be just an ad-hoc and legitimate behavior, some

are ad-hoc, but not legitimate. For example, there was a leap of bandwidth usage

in one morning, far from normal, for about half an hour. From investigation, it

was just a huge file transfer between a server and a machine in the network. It was

ad-hoc and no harm was caused by this event; it was then considered legitimate.

Another example was similar, but a different conclusion was made. Graphs

showed that traffic usage leapt every two hours, and lasted for half an hour. From

investigation, it was an attempt to send an email to a Google website, which was

rejected. After the cause was identified, the administrator terminated the process

which kept sending the email.

The above are two actual scenarios that occurred in the CSE network. Actions

in response to detected anomalies are determined after the root cause of anomalies

is identified. In CSE, if an anomaly detected is considered not harmful, then the

network administrator typically ignores it. This happens over and over again. We

need to mention that the identifying task requires expertise of the administrator

and, of course, some time to derive a conclusion. If there are too many detected

anomalies without intrusive behaviour (or false positive instances), the network

administrator might miss actual intrusions.

Our study aims at developing an automated system for anomaly detection; that

is, the system is expected to detect all suspicious behaviour and send a report to the

network administrator. The scope does not include identification and rectification.

However, we wish to keep the false positive rate as low as possible.

112

5.2. Using RDR to Automate Traffic Anomaly Detection

5.2 Using RDR to Automate Traffic Anomaly

Detection

Like other paradigms, there are two main tasks in an anomaly detection system,

i.e., profiling and detection. The profiler is a component which controls the learning

and the maintenance of profiles in the domain. The detector investigates audit data

with maintained profiles and issues warnings or reports to users.

In our approach, Ripple Down Rules as reviewed in Chapter 3 is applied to

operate in both profiling and detection. The framework is explained by these two

tasks. Section 5.2.1 discusses our profiling component in detail. The detector

component is explained in Section 5.2.2.

5.2.1 Network Traffic Behaviour Profiling

A typical intrusion detection system requires that profiles must be ready prior to

its application. Under this requirement, most IDS’s contribute training sessions to

generate their profiles. In contrast in the RDR paradigm, an RDR-based system

learns knowledge while in use; that is, an RDR-based system generally starts with

an empty knowledge base and new knowledge can be added at any time appropriate.

Here, we introduce a new variant of RDR methodology to incrementally learn

profiles of network traffic. This section starts with an explanation of the underlying

concept of network profiles.

Situated Network Traffic Profile

Our approach aims to incrementally learn profiles of network traffic. Each profile

represents a particular situation in a network, which represents a particular pattern.

Different situations manifest different traffic patterns. For example, every weekday

at 6am, the network consumption leaps up to about 5 MB per minute and lasts

for 30 minutes due to a backup; hence, this might be denoted as a “weekday-6am”

pattern. The intention of RDR partitioning is to provide regions where the data is

113

5.2. Using RDR to Automate Traffic Anomaly Detection

homogeneous and the same behaviour occurs. We therefore assume each attribute

is uniformly distributed within a partition. The adequacy of this assumption will

be reflected in the performance of the final system.

Upon this assumption, we can apply the algorithm Outlier Estimation with

Backward Adaptation (OEBA) to learn each attribute and detect outliers occur-

ring in the situation. That is if we use n attributes, we will have n profiles main-

tained for the situation. These profiles work separately by only monitoring their

corresponding attributes. For convenience, we denote profiles of all attributes of a

situation as a situated profile.

Profile Construction and Organization

Like other RDR paradigms when new knowledge is added when required, each

situated profile is created when a new situation is identified and a rule is added.

Under the RDR paradigm, adding a new rule to a knowledge base requires human

experts to choose new conditions and a conclusion for the new rule. In contrast, our

approach requires only the new conditions identifying a new situation, no conclusion

is necessary because rules are intended to identify an appropriate situated profile

for a particular case.

Hence, a modification is made to the RDR structure. From a typical RDR rule

structure of

IF (a condition) THEN (a conclusion).

Our approach modifies the rule structure to

IF (a condition) THEN (a situated profile).

We could say that the approach finds the most suitable profile for any particular

case. With these changes, we name this version of the Ripple Down Rule based

structure as Ripple Down Models or RDM.

114

5.2. Using RDR to Automate Traffic Anomaly Detection

5.2.2 Traffic Anomalies Detection

Generally, there are three main tasks in anomaly detection. First, a profile for a

case must be retrieved. Second, the case is matched against its profile. Third, a

conclusion is made whether the case is an anomaly.

Situated Profile Retrieval

In our paradigm, profiles are maintained in an RDM-based knowledge base. A

situated profile for a particular case is retrieved by a typical RDR inference process.

For example, if an RDM-based knowledge base is implemented in a binary tree, a

situated profile of a case is taken from a last fired rule. On the other hand, if a

decision list is implemented, a situated profile is taken from a first rule that fires.

Situated Profile Matching

Once a situated profile is retrieved from an RDM-based KB, a matching engine is

used, based on the algorithm OEBA, to detect outliers. There is an important point

to be noted here. A situated profile denotes profiles of all attributes of interest. If

there are n attributes explaining traffic characteristics, a situated profile contains

n OEBA-profiles. Consequently, there are n matching results from the matching

process. These n results are then used to decide about a case.

Network Traffic Classification

To conclude whether a traffic situation is an anomaly, we employ a further RDR

knowledge base, instead of simply summarizing from the results given. The reason

is explained below.

First, there may be more than one attribute explaining traffic characteristics.

For a particular situation, one attribute might be more important than others.

That is experts might justify a situation based on some particular attributes, rather

than all of them.

Second, although OEBA is efficient in outlier detection, there is a possibility

115

5.2. Using RDR to Automate Traffic Anomaly Detection

of false positive instances. To reduce the false positive rate, our technique allow

experts to make their justification on top of OEBA outlier detection results. These

justifications are maintained in an RDR knowledge base.

5.2.3 Discussion on RDR-based Anomaly Detection

In summary, our paradigm proposes a double knowledge base solution for net-

work traffic anomaly detection. The first knowledge base maintains profiles of

network behaviour, while additional expert justifications which draws conclusions

from profiles are maintained in the second knowledge base. Both knowledge bases

are implemented using Ripple Down Rule-based technology. Ripple Down Model

(RDM) is used to construct the knowledge base of profiles, while the original RDR

is used for the knowledge base concluding whether a case may be an anomaly.

Ad-hoc Network Events

An RDM-based profiler offers two advantages in network intrusion detection. First,

no training session is required, which significantly reduces development time. Sec-

ond, new patterns can be added at any time they are discovered without contam-

inating previous models or profiles. A profile is implemented with the algorithm

OEBA. This algorithm is relatively simple because it is applied to relatively ho-

mogeneous sub-regions but it has to behave appropriately when a new region is

identified and little data has been seen in this region.

Network traffic characteristics change on daily basis. Although, base patterns

of network traffic may be stable, there often are events that are ad-hoc and deviate

from these base patterns. Without a proper solution to handling these ad-hoc

events, an IDS tends to cause a high false positive rate. RDM can easily address

this problem by adding new events as new knowledge to a knowledge base. This

will not affect base patterns.

116

5.3. System Implementation

Domain Segmentation

In the profiler, the RDR method is used to locate an appropriate profile for a

situation in a multidimensional space. Network traffic is defined in a multidimen-

sional space where there are many attributes defining its characteristics. A situated

pattern, which is bounded in a smaller multidimensional sub-space, can be char-

acterized by a certain range for each of the component attributes. Our approach

utilizes the RDR functionality of segmentation to partition the problem space into

regions of homogeneous data for particular situations.

Like the original RDR paradigm, the partitioning is performed through the

addition of a new rule when required. As stated in the RDR segmentation section,

the correction process of RDR allows further patterns to be added when required.

Each subspace is formed through partitioning the problem space via interactive

sessions with human experts while the system is running, without separate training

sessions like other traditional approaches. That is, the system gradually takes over

while being trained in the job like an apprentice.

5.3 System Implementation

We have implemented a traffic anomaly detection system for the school of Com-

puter Science and Engineering (CSE), the University of New South Wales (UNSW),

Sydney, Australia. The system reads input from IPflow archives generated by RRD-

Tool (Oetiker and GNU, 2006). For any outlier detected, a warning is raised for

further investigation by a network administrator in the school.

An architecture for the system is first described in Section 5.3.1. Network traffic,

which is our audit data, has already been discussed in Section 5.1. However, under

an RDR paradigm, audit input is considered case by case, Section 5.3.2 discusses

how a case is formed from a network traffic stream and what attributes a case

consists of. Finally, an implementation of both knowledge bases is outlined in

Section 5.3.3.

117

5.3. System Implementation

5.3.1 System Architecture

A prototype system is implemented as illustrated in Figure 5.1. The system con-

sists of a case generator, a profiler, an anomaly detector and two knowledge bases,

i.e., a situated profile KB and a final decision KB. A case generator extracts fea-

tures from network traffic and generates audit data cases. A profiler is responsible

for four tasks; i.e., profile retrieval, profile matching, profile learning and profile

construction. That is, a profiler is a component that gains access to and maintains

an RDM knowledge base of situated profiles. Two other tasks, namely, case clas-

sifying and rule construction are controlled by an anomaly detector; it maintains

the other RDR knowledge base of final decision.

The whole process is as follows. When a case is generated and passed to a

profiler, the profile retrieval engine is first activated to find an appropriate situated

profile for the case. It is worth noting that, under an RDR paradigm, there is

always a default rule for any case; that is, any new observation might be fired by

this default rule. Hence, a default profile is available.

A retrieved situated profile is passed along with the case to the profile matching

engine. This engine matches a case against all its OEBA-based profiles. Matching

results are next sent along with the case to the detector.

Once a case and its matching results are available to the detector, it starts the

classification engine to conclude a case. A derived classification is presented to

experts. The process should stop here, provided the classification is correct. Oth-

erwise, an expert justification is fed back to the system; starting either the profile

construction engine or the rule construction engine depending on the justification

or if the warning was unnecessary, a false negative, the profiles for the case are

updated.

To correct an incorrectly classified case in typical RDR, an expert is required to

select some salient features from the case that make it different from a cornerstone

case to form the conditions in a new rule. Then the new rule is added to a knowledge

base. In our system, this process is slightly extended. If the retrieved situated

profile is believed not appropriate for the case, a new profile should be added to

118

5.3. System Implementation

C
as

e
G

en
er

at
or

P
ro

fil
er

D
et

ec
to

r
E

xp
er

t
As

se
ss

m
en

t

C
as

e
C

as
e

M
at

ch
in

g
R

es
ul

ts

C
on

cl
us

io
n

Tr
af

fic
Vo

lu
m

e

P
ro

fil
e

R
et

rie
va

l
En

gi
ne

P
ro

fil
e

KB
Fi

na
l D

ec
is

io
n

KB

P
ro

fil
e

M
at

ch
in

g
En

gi
ne

P
ro

fil
e

Le
ar

ni
ng

En
gi

ne

P
ro

fil
e

C
on

st
ru

ct
io

n
En

gi
ne

C
la

ss
ifi

ca
tio

n
En

gi
ne

R
ul

e
C

on
st

ru
ct

io
n

En
gi

ne

Tr
af

fic
 S

ta
tis

tic
s

Ex
tra

ct
io

n
S

ys
te

m
 S

ta
tu

s
C

ol
le

ct
io

n

F
ig

u
re

5.
1:

A
sy

st
em

ar
ch

it
ec

tu
re

of
R

D
R

-b
as

ed
n
et

w
or

k
tr

affi
c

an
om

al
y

d
et

ec
ti

on
.

119

5.3. System Implementation

the situated profile KB. The expert simply defines a new situation for the case, and

a new rule and a new profile are automatically added to the KB. If the retrieved

situated profile is appropriate for the case, a new rule is added to the expert

justification KB and the expert needs to select salient features to compose a new

rule, as usual.

5.3.2 Periodic Monitoring Cases

As mentioned in Section 5.1, the school of Computer Science and Engineering

(CSE) maintains network usage by a program called RRDTool 5.1. RRDTool is

configured to sample data every minute for every protocol used, resulting in a

stream of network snapshots. In the RDR paradigm, problems are solved case

by case. Inevitably, our RDR-based anomaly detection system analyzes traffic on

the basis of cases. A case is a set of data that an expert considers in reaching a

conclusion. For example, in the interpretation of pathology results, a case is a set

of current and previous pathology results that are available for a patient plus other

patient information such as age and sex.

In network monitoring, an automated system generally monitors a network in

a constant and periodic fashion. For example, Barford et al. (Barford and Plonka,

2001; Barford et al., 2002) sampled data every 5 minutes. Krishnamurthy et al.

(Krishnamurthy et al., 2003) also investigated network traffic with an interval size

of 5 minutes. Mandjes et al. (Mandjes, Saniee, and Stolyar, 2005) implemented

their work on a window size of 5 minutes. This interval size is not trivially cho-

sen. It has been demonstrated that although a 5-minute interval is coarse-grained

enough that short time scale behavior will be missed, this does not suppress the

manifestation of anomalous behaviour (Barford and Plonka, 2001). We have also

chosen a window size of 5 minutes for our monitoring intervals. That is, the mon-

itoring process is periodically invoked every 5 minutes or every 5 records of data

archived by RRDtool. Every time the monitoring process is invoked, a case is gen-

erated with attributes of interest to be further investigated. A next concern is what

attributes a case should be composed of. As will be discussed, we then calculate

120

5.3. System Implementation

running statistics, such as median, mean, standard deviation, over 20 minutes and

60 minutes for each attribute. All of these make up the case.

Temporal Constraints

A network can have numerous situations with different traffic patterns. A key

factor is access demand. When demand changes, so does traffic patterns. For

example, in a situation where the demand is high, the network is highly utilized

and less utilized when demand is low.

Demand to access a network is caused by users and system configuration for

that network. Most system services are configured to execute at certain times, e.g.,

the network administrator of CSE configures RSYNC to run every morning from 6

am. till the backup is finished. During that period of time, network consumption

would be exceptionally and instantly high, compared to the last hour. Without any

background knowledge on this configuration, one might think that the network may

be under an attack. Users in the organization directly affect network utilization.

For example, network consumption in CSE is generally higher during a semester

than a break. Patterns of behavior are also mainly temporal, e.g., working from

9am to 5pm on weekdays, and less on weekends, etc. That is the demand to access

a network significantly depends on temporal constraints.

In our implementation, temporal attributes are extracted from time stamps as

follows:

• TimeOfDay.

In the CSE network, most traffic patterns occur repeatedly at the same time

of a day, for example, the CSE network has low utilization every morning

from 7am to 9am, etc. An attribute to give a description of the time when

a case is monitored is required. We use the system of 24 hours a day to

specify a value for the attribute TimeOfDay; i.e., from 00:00 to 23:59. In our

prototype, an expert can specify a value of TimeOfDay to the granularity of

121

5.3. System Implementation

a minute.

TimeOfDay ⇐ Hour : Minute

Hour ∈ [0, 1, 2, ..., 23]

Minute ∈ [0, 1, 2, ..., 59]

• DayOfWeek. Not only does time of a day affect traffic patterns, network

manifestation also varies on which day of a week, for example, CSE network

utilization on Sundays is generally lower than other days. To provide choices,

an attribute DayOfWeek is defined as follows.

DayOfWeek ∈ [Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday, Weekday,Weekend]

Not only days of a week are provided, Weekday and Weekend are two special

abstractions of actual days in a week. Weekday covers Monday to Friday,

while Weekend covers Saturday and Sunday. When a case is generated, Day-

OfWeek is only assigned with actual day of a week. The two abstractions,

Weekday and Weekend, are provided to support an expert in making a new

rule.

• Season. Another temporal factor that affects network usage is university

season. During special times of the year, e.g., public holidays, the number

of users accessing the university network significantly drops. Traffic patterns

during this period are generally different from other times during the year.

We, hence, provide a third temporal attribute for traffic; that is, Season.

Season ∈ [Semester, Recession, PublicHoliday,

Stuvac, Examination]

A case is assigned with Semester when a semester is on, Recession when it is

a semester break, PublicHoliday when it is a public holiday, Stuvac when it

is during a study vacation, and Examination if it is during an examination.

122

5.3. System Implementation

Traffic Statistics

The simplest statistic for network traffic is measured volume. However, using such

raw data is at a risk of a high false positive rate because traffic volume is well-known

for being highly fluctuating. Most systems in general have chosen to preprocess

a vector by using a smoothing function, e.g., a moving average (Brutlag, 2000;

Barford and Plonka, 2001; Barford et al., 2002), or they extract some statistical

measures as representatives, e.g., sketches (Krishnamurthy et al., 2003), traffic

variance (Mandjes, Saniee, and Stolyar, 2005), prior to an analysis.

In our framework, a traffic situation is understood by an administrator accord-

ing to two main characteristics. First, an administrator looks at overall traffic

consumption, not just a particular point. That is, there might be a spike or two in

traffic (visualized in a graph), but this does not matter as it is typical for network

traffic sampling. A spike would start to matter when it lasts for a certain period

of time, for example, 10 or 15 minutes. With this point of view, we decided to use

a central tendency, i.e, mean or median, to represent overall network consumption

at a specific time. A second characteristic is traffic fluctuation.

Central Tendency

The mean and median are equal in symmetric distributions. The mean is a good

measure of the central tendency for roughly symmetric distributions but can be

misleading in skewed distributions since it can be greatly influenced by values in the

tail. Therefore, the median is more informative for distributions such as reaction

time or family income that are frequently very skewed. In other words, the median

is more robust against outliers. In network environment where traffic fluctuates

and contains much noise, the median is more suitable for a central tendency.

In our implementation, we have chosen the median as a statistical measure to

represent an overall traffic level at monitoring time. However, different window

sizes convey different information. The smaller window is a good measure of rapid

changes in traffic, but it is sensitive to noise, especially when noise is high. The

large window is more tolerant of noise but it often misses small changes in the

123

5.3. System Implementation

traffic. Figure 5.2 illustrates a graph of network traffic and its two medians; one

with 20-minute window, the other with 60-minute window.

From an example in the figure, the median with smaller window size is more

suitable to represent current traffic as it better reflect changes in current traffic.

On the other hand, the median with larger window size is smoother. It is more

tolerant to fluctuation in network traffic; hence it is best used for long term traffic

analysis. Here, we have chosen to implement two median statistics; one for a small

window size, the other for a large window size. For a small window, we have tried

sizes of 5 minutes, 10 minutes, and 20 minutes. Sizes for a large window has been

varied between 30 minutes and 60 minutes.

Fluctuation (Serial Correlation)

The median only provides a general idea of traffic level and nothing else. Another

important characteristic is how much traffic is fluctuating. For example, Figure 5.3

is an example of two series with same median, but they are different in terms of

fluctuation. In our domain, these two series are considered different patterns.

The basic measures to represent dispersion of data are standard deviation and

variance. These two measures can be effective in differentiating such series in Figure

5.3. However, these two measures do not take temporal relationship in a series into

account; i.e., considering data in the set equally, no matter what order they are in.

To simplify discussion, we denote Si as a series where all values in the series are

represented in a pair of curly brackets. For example, two series are:

S1{1, 1, 1, 1, 2, 2, 2} and S2{1, 2, 1, 2, 1, 2, 1}.

Intuitively, S1 is more stable than S2. There is only one transition at the fifth value.

S2 obviously exhibits more fluctuation. However, the standard deviation and vari-

ance of these two series are the same. Using either of these two statistics as a

fluctuation measure is acceptable only in those domains where temporal relation-

ship does not matter. In our domain, these two series are different. The simplest

technique to differentiate these two series is to take the transition of adjacent values

into account.

124

5.3. System Implementation

0.
00

E
+0

0

5.
00

E
+0

3

1.
00

E
+0

4

1.
50

E
+0

4

2.
00

E
+0

4

2.
50

E
+0

4

3.
00

E
+0

4

3.
50

E
+0

4

Tr
af

fic
M

ed
ia

n-
20

M
ed

ia
n-

60

F
ig

u
re

5.
2:

A
n

ex
am

p
le

of
n
et

w
or

k
tr

affi
c

an
d

it
s

m
ed

ia
n
s.

T
h
er

e
ar

e
2

m
ed

ia
n
s

d
ra

w
n

in
th

is
gr

ap
h
;
i.
e.

,
a

m
ed

ia
n

w
it

h
a

w
in

d
ow

si
ze

of
20

m
in

u
te

s
an

d
a

m
ed

ia
n

w
it

h
a

w
in

d
ow

si
ze

of
60

m
in

u
te

s

125

5.3. System Implementation

0

2

4

6

8

10

12

14

16

Series1 Series2

Figure 5.3: An example of two series with same median but different fluctuation.

We denote T as an average transition function which is defined as follows.

T =

N−1∑
1

(|si − si+1|)

N − 1
(5.1)

From this definition, T (S1) = 0.167, T (S2) = 1.0. The average transition function

can better reflect the fluctuation of time series than basic measures like standard

deviation or variance. In our prototype, a transition function is implemented with

the same window size as the small window of the median because we are interested

in current or short-termed fluctuation of traffic rather than long-termed fluctuation.

System Status

In order to use the second knowledge base, a number of attributes related to the

warnings that have been raised are deployed.

• PreviousState.

This attribute provides information about a conclusion of the previous case.

That is, whether there has been an outlier.

• WarningPeriod.

If a case is concluded as an outlier, a warning is raised. So far, there has

not been information on how long a warning has been raised, yet. We im-

plement an attribute WarningPeriod to keep track of duration of a warning.

WarningPeriod is 0 until a case is detected as an outlier, WarningPeriod will

be updated incrementally. An increment stops when the system is back to

126

5.3. System Implementation

normal; that is no warning is raised any more.

• DurationFromLastWarning.

Information on the duration of a normal state since last warning has been

made is provided with an attribute DurationFromLastWarning. In contrast

to WarningPeriod, this attribute is kept incremented until a warning is raised

and is reset to zero when the system state is back to normal.

5.3.3 Knowledge Bases

As outlined, our approach uses a double knowledge base technique to detect traffic

anomalies. The first knowledge base maintains situated profiles. The second one

reflects expert decision about whether an outlier is of concern. In this section, an

implementation of these two knowledge bases is discussed.

Situated Profile Knowledge Base

All situated profiles are maintained in this knowledge base using a Ripple Down

Models (RDM) variant of RDR. As discussed earlier, inferencing in RDM is finding

an optimal profile for a particular case in a vast search space. Each rule helps

segment the search space into smaller sub-spaces with better defined situations or

patterns. We have also discussed that a network pattern can be effectively identified

by temporal constraints. Hence, in our prototype, only three temporal attributes,

namely, TimeOfDay, DayOfWeek, and Season, are part of profile construction.

That is an expert is required to specify particular values for these three attributes

for a new pattern.

This technique is simple and effective. Firstly, we limit search space dimen-

sions to only temporal attributes. Secondly,temporal patterns may change with

deadlines, etc., but we are dealing with temporal changes. The paradigm allows

us to introduce new temporal patterns to the knowledge base. Thirdly, other pat-

tern attributes are automatically maintained and learnt by the algorithm OEBA

in each profile. A discrepancy detected from a profile has a new profile generated

127

5.3. System Implementation

for a new pattern. That is a construction of a new profile is a refinement of the

previous pattern. In this view, our technique gradually refines traffic patterns to

their proper specialization.

Final Decision Knowledge Base

On top of matching results from those OEBA profiles, experts make a final con-

clusion about whether a system administrator should be alerted. The experts can

select any salient features for a particular case as they wish.

5.3.4 Coding and GUI

Our system is implemented using Java in all modules, including the graphical user

interface. To facilitate network administration, our system implements an attribute

of a case as a Java interface; that is, at any time, users can add new attributes to a

case by add a new attribute plug-in to the system. One requirement is that a new

attribute must be explicitly registered in a configuration file of case attributes.

Figure 5.4 illustrates the main window of our prototype. The main window

consists of 3 panels; a graph panel, summary panel, and case panel. A graph of

audit traffic is drawn in the graph panel on the top part of the window. A summary

of all audit cases is listed on the summary panel, on the bottom left part of the

window. To view details of a particular case, a user can click on that case in the

summary panel and its details will be shown on the case panel on the bottom right

of the window.

As discussed earlier, an expert can choose between profile construction, i.e., to

create a new profile for a new pattern, and rule construction for a new justification

to correct a misclassified case. Figure 5.5 is a window when an expert chooses to

create a new profile. A list of temporal attributes is listed for expert selection.

On the other hand, a window for new rule creation is shown in Figure 5.6.

There are more attributes for an expert to choose from. These are all attributes

composing a case. An expert can create a rule using any combination of these

128

5.3. System Implementation

Figure 5.4: GUI of the main window

Figure 5.5: GUI of the profile construction Window.

129

5.4. Traffic Anomaly Detection Experiment

Figure 5.6: GUI of the rule construction window

attributes at will.

We have another additional option to profile and rule construction. That is

profile update. This option is provided for the case where an expert judges that

the observed pattern should belong to the profile although it was rejected by the

OEBA algorithm.

5.4 Traffic Anomaly Detection Experiment

The system was test run on five data sets from RRDtool IP flow archives in CSE.

Each archive contains data for seven day traffic with marked anomalies. To eval-

uate system performance, we use two basic metrics; i.e., false positive rate (FPR)

and false negative rate (FNR). The false positive rate is the proportion of normal

traffic that were erroneously reported as being invalid or anomalous, where the false

negative rate is the proportion of anomalous traffic that was erroneously reported

as normal.

130

5.4. Traffic Anomaly Detection Experiment

5.4.1 Traffic Data Sets

For convenience, we refer to these data series as Ti, where i is 1, ..., 5. These five

data series are archived in chronological order, i.e., traffic in T1 is archived before

T2, T3 and so on. Another characteristic of these series is these five data series

are from different university seasons. This is relevant to the interpretation of the

results below. T1 is archived during the examination period and recess week. T2

and T3 are during recess weeks. Series T4 is archived when a semester just has just

started, hence the beginning part of the series still represents recess behavior. T5

is during semester. For convenience, Table 5.1 summarises details of the university

seasons for each data set.

Traffic Series University Seasons

T1 Examination
T2 Recession
T3 Recession
T4 Recession + Semester
T5 Semester

Table 5.1: University seasons of each data set

Anomalous traffic in these five series is labeled by an experienced network ad-

ministrator in CSE. Traffic graphs were firstly given to the administrator. Suspi-

cious patterns were manually labeled as anomalies. Figure 5.7, 5.8, 5.9, 5.10 and

5.11 illustrate these five traffic series. These data sets are real data taken CSE

network. Anomalies are scattered throughout this traffic series; however in T2,

anomalous traffic also occurs at the start of the series. Anomalies in each data set

is summarized in Table 5.2.

Traffic Anomalous Events Time Span(hr:min)

T1 1 0:15
T2 6 6:45
T3 8 16:05
T4 3 13:43
T5 7 20:10

Table 5.2: Anomalies in data sets. This table shows the number of anomalous
events and time span in each data set. These anomalies were marked by a CSE
network administrator.

131

5.4. Traffic Anomaly Detection Experiment

0.
0E

+0
0

1.
0E

+0
6

2.
0E

+0
6

3.
0E

+0
6

4.
0E

+0
6

5.
0E

+0
6

6.
0E

+0
6

7.
0E

+0
6

8.
0E

+0
6

9.
0E

+0
6

Ti
m

e

Volume

Tr
af

fic
 1

F
ig

u
re

5.
7:

T
ra

ffi
c

se
ri

es
T

1

132

5.4. Traffic Anomaly Detection Experiment

0.
0E

+0
0

2.
0E

+0
6

4.
0E

+0
6

6.
0E

+0
6

8.
0E

+0
6

1.
0E

+0
7

1.
2E

+0
7

Ti
m

e

Volume

00+0
606

Tr
af

fic
 2

3
an

om
al

ie
s

F
ig

u
re

5.
8:

T
ra

ffi
c

se
ri

es
T

2

133

5.4. Traffic Anomaly Detection Experiment

0.
0E

+0
0

2.
0E

+0
6

4.
0E

+0
6

6.
0E

+0
6

8.
0E

+0
6

1.
0E

+0
7

1.
2E

+0
7

Ti
m

e

Volume

Tr
af

fic
 3

3
an

om
al

ie
s

F
ig

u
re

5.
9:

T
ra

ffi
c

se
ri

es
T

3

134

5.4. Traffic Anomaly Detection Experiment

0.
0E

+0
0

2.
0E

+0
6

4.
0E

+0
6

6.
0E

+0
6

8.
0E

+0
6

1.
0E

+0
7

1.
2E

+0
7

Ti
m

e

Volume

Tr
af

fic
 4

F
ig

u
re

5.
10

:
T
ra

ffi
c

se
ri

es
T

4

135

5.4. Traffic Anomaly Detection Experiment

0.
0E

+0
0

2.
0E

+0
6

4.
0E

+0
6

6.
0E

+0
6

8.
0E

+0
6

1.
0E

+0
7

1.
2E

+0
7

Ti
m

e

Volume

2
an

om
al

ie
s

Tr
af

fic
 5

F
ig

u
re

5.
11

:
T
ra

ffi
c

se
ri

es
T

5

136

5.4. Traffic Anomaly Detection Experiment

S0 S1

T1
S2

T2
S3

T3
S4

T4

Figure 5.12: System states.

Once again, it is important to note that our approach proposes a method for

anomaly detection, but does not include anomaly identification and remedy. Our

interest lies on detecting whatever deviates from learnt behavior and expects ex-

perts to make a final conclusion on these suspicious patterns.

5.4.2 Experiments

The experiment is set as follows. The system is set to start from 5 different states

of knowledge, denoted by S0, ..., S4. Figure 5.12 illustrates the transition of each

state from S0 to S4. For each state, it is trained with different data sets and then

tested on each of the remaining T1,...,T5 data sets individually. For example, S3 is

trained on T1, T2 and T3. It is then used as a starting knowledge base and tested

on T4. Separately, it is also used as a starting knowledge base and tested on T5.

Table 5.3 summarizes trained data sets and test data sets for each system state.

System State Trained Data Sets Test Data Sets

S0 - T1, T2, T3, T4, T5

S1 T1 T2, T3, T4, T5

S2 T1, T2 T3, T4, T5

S3 T1, T2, T3 T4, T5

S4 T1, T2, T3, T4 T5

Table 5.3: Data sets for training and testing in each system state. There is no
trained data set for S0, that is, it starts from an empty knowledge base. For each
state, a data set is tested separately from other test data sets.

We followed this slightly convoluted design to try to investigate the effect of

different sequences of cases, e.g., T5 coming directly after T1, T2 and T3, rather

than after T4. This enables us to explore a wide range of sequences rather than

simply considering T1,...,T5 in order.

137

5.4. Traffic Anomaly Detection Experiment

5.4.3 Results And Discussion

Although a warning is produced when a case is detected as anomalous, the expert

will not be alerted case by case. The system considers all warnings produced by

consecutive cases as a single warning and the expert is alerted once because an

anomalous event in general lasts for a period of time, as shown in Table 5.2.

From section 4.4, these two metrics are calculated by

false positive rate =
number of valid instances identified as outliers

number of valid instances

false negative rate =
number of invalid instances not detected as outliers

number of invalid instances

However, in this experiment, we had to modify the calculation of the two rates

to reflect how anomalies were defined, as follows.

false positive rate =
time span of incorrect warnings

time span of normal traffic

false negative rate =
time span of anomalous events not detected

time span of anomalous events

Calculated FPR and FNR are shown in the table 5.4. The diagonal in the table

shows what would be the learning pattern of a system in routine use, where all

previous data (except anomalies) have been used as training data. The other cells

in the table represent less training data, taken from earlier periods, while the top

row in the table shows each period with no prior training data.

From Table 5.4, the system in state S0, with no prior training for any period

tends to produce the highest rates of both false positives and false negatives. Once

the system has learnt traffic T1 for an examination week, it evolves to state S1. For

S1, false negative rates are zero for all test data sets. However,only false positive

rates for T2 and T3 drop, while those for T4 and T5 increase. The explanation for

this increase is simply that the new profiles created for S1 did not cover T4 and

T5. Furthermore, these new profiles remove instances with high volume from the

138

5.4. Traffic Anomaly Detection Experiment

Data Sets S0 S1 S2 S3 S4

T1 6.1%
T2 2.3% 2.0%
T3 4.1% 3.6% 1.6%
T4 1.5% 5.3% 3.1% 2.1%
T5 7.5% 8.9% 7.2% 7.2% 7.2%

(a) False Positive Rate

Data Sets S0 S1 S2 S3 S4

T1 0%
T2 27.6% 0%
T3 39.2% 0% 0%
T4 55.7% 0% 0% 0%
T5 0% 0% 0% 0% 0%

(b) False Negative Rate

Table 5.4: False positive and false negative rates of each test data sets in different
system states. Numbers shown in table are percentages.

default profile as they are now covered by the new profiles. T1 occurs during an

examination week, while T4 and T5 involve traffic during a semester, but these

patterns have not been defined yet. Although T2 and T3 are also different from T1,

their patterns are similar.

In the next state S2, after patterns of an examination week and a recession

week have been learnt, both false positive and false negative rates drop for T3 and

T4, but not for T5. This same result also shows in state S3. These results show that

when the system has learnt more data, false rates keep dropping, except for T5.

The explanation for this is that traffic behaviour during semester (T5) is sufficiently

variable that more profiles would need to be added over a longer period.

5.4.4 Building Up Knowledge Bases

As shown in Figure 5.12, the system was started from an empty state and gradually

learned over 5 consecutive periods. During a KA session, the expert can choose

between creating a new profile in the first knowledge base, adding a new final

decision rule to the second knowledge base, and adding a current case to a profile.

139

5.4. Traffic Anomaly Detection Experiment

The choice of adding a case to a profile is chosen when the case is a false positive to

the profile. Table 5.5 shows KA sessions for the first 1,000 cases in a chronological

order .

The first KA session was for creating a new profile the traffic of weekdays,

during an examination week. The profile was created because the system raised

a warning for the case number 12. The second KA session was for adding a false

positive case number 86 to the above profile. The next session was on case 149.

A new profile was created for traffic between 23:00 and 23:59 on weekdays during

an examination week. This profile was an exception to the profile created for case

12. Similarly, the next session on case 295 created a new profile for traffic between

11:00 and 13:00 on weekdays during an examination week. Again, this profile was

an exception to the profile created for case 12. A new profile for a new partition

was created when case 442 had been observed. Case 442 was during a new season,

i.e., UNSW SEASON=Recess. The process continued like this until traffic was

allocated to appropriate profiles.

Table 5.6 shows KA sessions from case 2000 to case 3000 in chronological order.

The decision rule for case 2080 suppressed a warning produced from the profile of

a window of 60 minutes if other profiles did not raise warnings. This is because

a window of 60 minutes is influenced by high volumes in the previous period, i.e.,

before 21:00. The next rule was created for case 2382. A warning was produced

from the serial correlation1 profile and it lasted for 10 minutes, which the expert

believed was too short to pay attention to. The rule suppressed a serial correlation

warning if it did not last longer than 10 minutes. Again, the process continued

until results from profiles produced correct conclusions.

Figure 5.13 shows the system gradually learning over 8,000 cases. The number

of profiles, decision rules and false positive added to profiles for every 1,000 cases

are summarized in Table 5.7.

The system is started with one default profile and three default decision rules.

The default profile is for any traffic that cannot be allocated to any other profiles.

1Serial correlation was defined in Section 5.3.2, and is a measure of fluctuation.

140

5.4. Traffic Anomaly Detection Experiment

Case Action

12 New Profile:
UNSW SEASON=Exams & DAY=Weekday

86 Add the case to profile
149 New Profile:

UNSW SEASON=Exams & DAY=Weekday & TIME=23:00-23:59
295 New Profile:

UNSW SEASON=Exams & DAY=Weekday & TIME=11:00-13:00
442 New Profile:

UNSW SEASON=Recess & DAY=Weekday
512 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=05:30-07:00
527 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=07:00-09:00
553 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=09:00-11:00
579 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=11:00-14:00
601 Add the case to profile
611 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=14:00-16:00
635 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=16:00-18:00
659 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=18:00-21:00
670 Add the case to profile
695 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=21:00-23:00
726 New Profile:

UNSW SEASON=Recess & DAY=Weekday & TIME=23:00-23:59
730 New Profile:

UNSW SEASON=Recess & DAY=Weekend
799 New Profile:

UNSW SEASON=Recess & DAY=Weekend & TIME=05:30-07:00
858 New Profile:

UNSW SEASON=Recess & DAY=Weekend & TIME=10:00-13:00
861 Add the case to profile
895 New Profile:

UNSW SEASON=Recess & DAY=Weekend & TIME=13:00-16:00
924 New Profile:

UNSW SEASON=Recess & DAY=Weekend & TIME=16:00-18:00
953 Add the case to profile

Table 5.5: KA sessions for the first 1,000 cases.

141

5.4. Traffic Anomaly Detection Experiment

Case Action

2080 New Rule: Normal if
UNSW SEASON=Recess & TIME=21:00-23:00 &
SERIAL CORRELATION CONCLUSION=Normal &
MEDIAN LARGE CONCLUSION=Outlier &
MEDIAN SMALL CONCLUSION=Normal

2191 Add the case to profile
2192 Add the case to profile
2193 Add the case to profile
2196 Add the case to profile
2382 New Rule: Normal if

UNSW SEASON=Recess & TIME=22:30-23:59 & DAY=Weekday &
MEDIAN LARGE CONCLUSION=Normal &
SERIAL CORRELATION CONCLUSION=Outlier &
SERIAL CORRELATION WARNING PERIOD=10 &
MEDIAN SMALL CONCLUSION=Normal

2585 Add the case to profile
2594 Add the case to profile
2595 New Rule: Normal if

UNSW SEASON=Recess & TIME=16:00-17:00 & DAY=Weekday &
MEDIAN SMALL WARNING PERIOD=10 &
MEDIAN LARGE CONCLUSION=Normal &
MEDIAN SMALL CONCLUSION=Outlier

2683 Add the case to profile
2707 New Rule: Normal if

UNSW SEASON=Recess & TIME=02:00-04:00 &
MEDIAN SMALL CONCLUSION=Normal &
MEDIAN LARGE CONCLUSION=Normal &
SERIAL CORRELATION CONCLUSION=Outlier &
SERIAL CORRELATION WARNING PERIOD=15

2728 Add the case to profile
2740 Add the case to profile
2757 Add the case to profile
2761 Add the case to profile
2900 New Rule: Normal if

MEDIAN LARGE CONCLUSION=Outlier &
MEDIAN SMALL CONCLUSION=Normal&
UNSW SEASON=Recess & DAY=Weekend &
SERIAL CORRELATION WARNING PERIOD=10

2907 Add the case to profile
2909 Add the case to profile
2945 Add the case to profile

Table 5.6: KA sessions from case 2000 to case 3000.

142

5.4. Traffic Anomaly Detection Experiment

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Seen Cases

Profiles Decision

(a) The number of profiles and decision rules in the two KBS.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Seen Cases

FP Added to Profiles

(b) The number of FPs added to profiles.

Figure 5.13: The number of profiles, decision rules in the two KBS, and the number
of false positive cases added to profiles against seen cases.

143

5.4. Traffic Anomaly Detection Experiment

Cases Profiles Decision Rules FP Added to Profiles

0 1 3 0
1000 19 3 5
2000 21 3 33
3000 21 8 47
4000 22 12 69
5000 23 15 77
6000 25 15 92
7000 25 16 96
8000 27 19 103

Table 5.7: The number of profiles, decision rules and profile updates for every 1,000
cases.

In contrast to other RDR frameworks, the final decision is initialized with three

default rules. The first rule is a typical default rule: IF (true) THEN (a case is

suspected). The other two rules summarize results derived from profiles as follows.

First, the first 3 cases since a profile has been created are concluded as training.

Second, if all results from profiles are normal, a case is concluded as normal.

For the first 2,000 cases, new rules were added to the profile KB only. This

is because the system was started when the profile KB was empty and warnings

were produced by the default profiles. The expert then created appropriate profiles

for traffic that was warned about. When it was further trained, i.e., for the next

2,000 cases, more rules were added to the final decision KB. This means profiles

were appropriately created for traffic events but their results needed some tuning

by rules that were added to the final decision KB. The graph in Figure 5.13 shows

that the number of new rules added to both KBs are reduced when the system has

progressed.

However, most of KA sessions were false positives which were caused when

profiles were just created and the number of seen cases was small. When profiles

had seen enough number of cases (i.e., > 5), the problem was eliminated.

In summary, from 8064 cases, 26 sessions were required for adding new profiles,

16 sessions for adding new final decisions, and 103 sessions for adding false positive

cases to profiles. Although most KA sessions were false positives, there were in

total 145 KA sessions for 8064 cases, which means that, on average, the system

144

5.4. Traffic Anomaly Detection Experiment

was required to consult the expert every 55.6 cases or about every 4.38 hours. In

other words, there were only 5.18 sessions required a day, which was very little.

The graph also suggested that the more cases the system was trained, the fewer

KA sessions were required for adding new rules to the two knowledge bases and

the fewer false positive cases.

5.4.5 A Comparison with Another Method

Our technique has shown that it is capable of detecting outliers and alerting the

expert when new patterns have been observed. However, the main contribution of

our technique is that it is simple to add profiles for new patterns when required

while in use, which is not possible in other approaches. Although, it is not our

intention to surpass the accuracy of other systems, a comparison between our

technique and the classic Holt-Winters (HW) algorithm using our data is provided.

In Holt-Winter algorithm, three parameters, i.e., α, β, γ, must be estimated

before testing. Using traffic T3, the three parameters were estimated as follows:

α = 0.546, β = 1.0e−14, γ = 0.009. The algorithm was then used to detect outliers

from the same series, T3. The reason that we ran the algorithm on the same series

was to give the Holt-Winters method a better chance of success by avoiding bias

from different seasons. The Holt-Winters algorithm could only detect 1 out of 8

anomalies in T3 and produced one false positive warning. Although many systems

aim to reduce false positives as much as possible, false negatives are unwanted.

There is no point in training and testing our system on T3 as it will necessarily be

perfect so we compared our results on T3 as an unseen test set with the system

trained on T1 and T2. From Table 5.4, all 8 anomalies could be detected, with a

false positive rate of 1.6%. We did not undertake more comprehensive comparisons

with HW or other algorithms because as noted our aim was to produce a system

that could easily learn any domain and adapt to further changes in the domain,

while producing a good level of accuracy.

145

5.5. Conclusion

5.5 Conclusion

In this chapter, we have presented a Ripple Down Models (RDM) framework for

network traffic anomaly detection. The RDM approach facilitates learning new

traffic patterns of a network. Each pattern is learned by the algorithm: Outlier

Estimation with Backward Adaptation (OEBA). This algorithm is able to learn

system behavior from a blind state, adapting itself as more objects are observed

and is intended to be robust at the initial stages of learning when relatively little

data has been available. The results demonstrate the utility of partitioning data

into more homogeneous sub-regions, rather than trying to learn a single model.

Within the framework, another knowledge base is used to decide if outliers do in

fact represent anomalous behavior.

We demonstrated the system using real Internet traffic data archived by the

RRDtool. In the implementation, we have used median and variance of traffic.

However, in the framework, network administrators could select other features

to be monitored and modeled. The system could also be extended to deal with

information from inside packet headers etc.

146

Chapter 6

Prudent Knowledge Bases

6.1 Introduction

Every expert system is aimed at possessing all the expertise from human experts

in a particular domain. If we imagine all the world’s knowledge as a tree, where

general knowledge at the top and specific knowledge at the bottom, then an expert

system covers only a small part or just a leaf of this tree(Lenat, 2002). Expert

systems are brittle because they do not realise the limits of their own knowledge.

For example, an expert system with a very high level of knowledge about chemical

pathology results might still diagnose a male as pregnant who has high levels of a

pregnancy hormone, because of a hormone-secreting tumour, because no one ever

thought to tell it that only females get pregnant. The CYC project (Guha and

Lenat, 1990) is an attempt at a solution to this problem by building a knowledge

base of common sense, or general knowledge at the top the tree, as a foundation

on which other expert systems could be built. A variety of applications have

used the CYC knowledge base, for example, in directed marketing and database

cleansing(Lenat, 1994).

Brittleness can be seen as a lack of common sense knowledge, but it can also be

characterised as a failure of the expert system to recognise when a case is outside its

range of experience. To build a complete knowledge base that contains all possible

knowledge is not easy as some data patterns may never occur in practice and expert

147

6.1. Introduction

justification is quite speculative when judging data patterns outside the expert’s

experience (Compton and Jansen, 1990; Compton et al., 1996).

One attempt to address the brittleness of expert systems is a technique called

“prudence” in the Ripple Down Rule paradigm (Edwards et al., 1995; Compton et

al., 1996). In this work, the system would warn of new types of cases for which a

new rule may have to be added. This approach associated profiles of attributes of

seen cases with each rule. There were two types of profiles, i.e., a list of seen values

for a categorical attribute and a pair of upper and lower bounds for a continuous

attribute. The profile was used when a case was evaluated against the rule; that

is if a new value or a value outside the range occurred, a warning was raised. The

approach worked well, but the false positive rate was about 15%, because of the

simple way in which cases were compared to profiles.

This previous work is extended by model-based prudence (Prayote and Comp-

ton, 2006). Two models are studied, one for continuous attributes, the other for

categorical attributes. For continuous attributes, we apply the probabilistic outlier

detection technique, OEBA as discussed in Chapter 4. By doing this, the profile is

able to understand the attribute better. For example, it can accept a case where

a value of an attribute falls insignificantly outside the range, if the OEBA believes

that this new value is not a real outlier. This is the same problem occuring in

intrusion detection domain discussed in Chapter 5. A simulation is presented and

the result is discussed in Section 6.3.

Furthermore, we develop another statistic technique based on the Negative

Bernoulli distribution to accommodate categorical attributes known as Outlier Es-

timation for Categorical Attribute (OECA). This algorithm is explained in Section

6.4. Simulations are conducted to show improvement in performance when this

new algorithm is used with OEBA.

We consider each attribute independently. As will be seen, this works well

even when attributes are related because although relationships change across par-

titions, within a partition the relationship is less important. However, we also

show in Section 6.6 that if the correlations are important, our approach can easily

accommodate them.

148

6.2. A Review on RDR with Prudence

Finally, we present a study on warnings produced by probabilistic profiles in

Section 6.7. The study is aimed to distinguish correctly warned cases from false

positives.

6.2 A Review on RDR with Prudence

Ripple Down Rules (Compton and Jansen, 1988; Compton et al., 1989)is an in-

cremental approach in knowledge acquisition. As reviewed in Chapter RDR, it

has been used extensively in a variety of tasks including classification (Compton

and Jansen, 1988; Compton et al., 1989; Compton and Jansen, 1990; Preston, Ed-

wards, and Compton, 1994; Compton et al., 2006; Edwards et al., 1993), resource

allocation (Richards and Compton, 1999), configuration (Mulholland et al., 1993;

Compton et al., 1993), heuristic search (Bekmann and Hoffmann, 2005), and image

processing (Park, Wilson, and Jin, 2000; Misra, Sowmya, and Compton, 2004). Its

first and major success is classification tasks, especially medical systems.

The approach adds a new rule to a knowledge base by means of correcting

an incorrectly classified case. Initially, these misclassified cases were identified by

manual inspection, which is a time consuming process. Compton et al. explained

the situation where a case is incorrectly classified as the lack of recognition of

reaching the limits of the system’s knowledge. They attempted to address this

problem by a technique called Prudence. Prudence was implemented by means of

associating profiles of attributes of seen cases with each rule. When a case was

evaluated against the rule, if a new value occurred, a warning was raised. The

approach was simulated on three data sets, i.e., Garvan, Chess and Tic-Tac-Toe.

A discussion on this study is presented below.

6.2.1 Audit Data Sets

The earlier work on prudent RDR in (Compton et al., 1996) was applied to three

data sets from the UC Irvine Machine Learning Repository, i.e., Garvan, Chess

and Tic-Tac-Toe data set.

149

6.2. A Review on RDR with Prudence

Garvan

Garvan data set is an archive of thyroid diagnoses obtained from the Garvan In-

stitute. There are several versions of these data. A version available on UC Irvine

data repository consists of 9172 records from 1984 to early 1987. Each record looks

like:

(29 attribute values), diagnoses [record identification]

The attributes are given in order and separated by commas. Unknown attribute

values are indicated by question marks. For example, a record of a diagnosis is

41,F,f,f,f,f,f,f,f,f,t,f,f,f,f,f,f,?,f,?,f,?,f,?,f,?,t,11,other,-[840801042].

Among those 29 attributes, there are 7 continuous attributes and 22 categorical

attributes.

However, the previous study in (Compton et al., 1996) used another version

of Garvan data set. Cases in this set are part of a larger data set of 45,000 cases

and a sequence of 21,822 consecutive records was chosen where the types of cases

did not appear to be changing over time (Gaines and Compton, 1995). Induct

was the ML in these studies. As Induct does not handle numbers, a set of derived

categorical values was used, but warnings were based on the numerical values. In

the present study, we used J4.8 and so used the numerical attributes as well as the

non-numerical categorical attributes.

Chess

The Chess data set is from UC Irvine data repository. The data set contains 3196

cases of different scenarios of a White king and a White rook versus a Black king

and a Black pawn on a7 of a chess board, i.e., the Black pawn is one square away

from queening, when it is the White’s turn to move. The target concept is whether

the white can win this game, i.e., there are two classifications of “won” or “nowin”.

An assumption of wining in this game is that the White is deemed to be unable to

150

6.2. A Review on RDR with Prudence

win if the Black pawn can safely advance (queening). A scenario for the board is

described by 36 attributes. For example,

f,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won

describes a winning scenario of the White.

Tic Tac Toe

This data set encodes the complete set of 958 possible board configurations at the

end of tic-tac-toe games, where “x” is assumed to have played first. The target

concept is whether x wins for a particular configuration, i.e., when “x” has one of

8 possible ways to create a “three-in-a-row”. Hence, there are 9 attributes of each

position on the board with a conclusion of the target concept. For each attribute,

there are 3 possible values, i.e.,

• x. “x” means that square is taken by the player x.

• o. “o” means it is taken by another player o.

• b. “b” means it is not taken by any player.

There are 2 possible values for the target concept, i.e.,

• positive. A configuration is “positive” if the player x wins.

• negative. A configuration is “negative” if the player x cannot win.

For example, one configuration looks like this:

x,x,x,x,o,o,o,b,b,positive.

6.2.2 Simulation

To evaluate the Prudence mechanism, four metrics are used.

151

6.2. A Review on RDR with Prudence

• False Positive (FP). A case is a false positive if a warning is produced unnec-

essarily, i.e., when the case is correctly classified.

• False Negative (FN). A case is a false negative if a warning is not produced

when required, i.e., when the case is incorrectly classified.

• True Positive (TP). A case is a true positive if a warning is produced properly,

i.e., when the case is incorrectly classified.

• True Negative (TN). A case is a true negative if a warning is not produced

unnecessarily, i.e., when the case is correctly classified.

A prudence mechanism would be acceptable if it produced low false rates and

high true rates. To add rules, a simulated expert is used instead of a human expert.

A simulated expert is actually another expert system which is tuned to perform

acceptably.

In this work, Compton et al. used Induct/RDR machine learning algorithm

(Gaines, 1991) to construct a knowledge base for each data set. This knowledge

base is used as the simulated expert for the data set. An RDR-ES with prudence is

constructed as follows. Each case is run on the RDR-ES with prudence and assessed

to see if a warning should be generated. In parallel, the case is run on the simulated

expert and the warning assessed as true positive, true negative, false positive or false

negative depending on whether there was a warning and whether the conclusions

agree. If the conclusions disagree, a new rule is added to the constructing ES. The

rule consists of conditions from the rule trace of the simulated expert that gave the

correct conclusion and other features from the case. Different levels of expertise

are simulated by different combinations of conditions from the rule trace and other

features from the case. The next case is then run and the process repeated.

6.2.3 Previous Results

In this previous study, there were two types of profiles, i.e., a list of seen values

for a categorical attribute and a pair of upper and lower bounds for a continuous

attribute. These profiles were used when a case was evaluated against the rule.

152

6.2. A Review on RDR with Prudence

Warnings were raised when unseen values were observed; that is, a new value for a

categorical profile or an out-of-range value for a continuous profile.

Data Set FN% TP% TN% FP%

Garvan 0.2 2.4 83 15
Chess 0.3 1.3 91 7
Tic Tac Toe 1.5 3.8 81 14

Table 6.1: Final results of simulation of RDR with prudence in (Compton et al.,
1996).

Results were summarized as shown in Table 6.1. This table shows the total

number of all metrics for the whole data set shown as a percentage of the data

set. With the developing RDR system, 2.6% of Garvan cases, 1.6% of Chess and

5.3% of Tic Tac Toe required rules to be added because the developing KB had

not given the correct conclusion.

The goal of the study was to correctly warn about all errors. However, this goal

was not reached. In the Garvan data set, warnings were missed for 8% of the cases

that were incorrectly classified and required a further rule to be added. Missed

warnings were higher in the other two data sets; i.e., 19% in Chess and 28% in

Tic Tac Toe. Furthermore, there were quite high volumes of unnecessary warnings

produced from those profiles. About 15% of all cases were incorrectly warned about

in Garvan data set, and 14% in Tic Tac Toe. The unnecessary warnings were lower

at 7% in Chess, though.

Although the technique did not reach its goal of efficiently warning about all

errors being made in RDR, it demonstrated a reasonable approach to preventing

brittleness in RDR KBS. The following are reasons why the technique could not

reach its ultimate goal.

The only reason a warning could be missed is because attributes were not

independent. So although individual values have been seen before, the combination

is occurring for the first time. As will be seen, the false negative rate in our study

is lower than the previous study. We suspect that in the previous study all cases

were used, with the conclusion given by the simulated expert taken to be correct by

definition. We excluded such cases and only considered cases where the simulated

153

6.3. Probabilistic Profile for Continuous Attribute

expert was able to give the correct conclusion in the database. There are differences

between the various simulated experts and the original conclusions because of the

different ways in which pruning is done.

The second problem is false positives or unnecessary warnings. A warning was

produced when a profile detected an unseen value. These profiles were implemented

in a simple and easy to manage way, but were too simple. It is our intention to

reduce the false positives using a probabilistic approach.

6.3 Probabilistic Profile for Continuous Attribute

As discussed in Chapter 4, the algorithm OEBA is designed for continuous at-

tributes. It can separately and efficiently learn a model for a continuous attribute.

For any new value that is out of the maintained range of a model, the algorithm

computes the Range Probability for n objects, which is a simple probability of

including this new value into the model, as follows.

RP n = (
b′ − a′

b− a
)n (6.1)

The previous simulation of the algorithm OEBA was applied to randomly gen-

erated data sets to study the effect of different thresholds. Data were generated

following two distributions; i.e., a standard uniform distribution and a standard

normal distribution. It demonstrated promising results in applying the algorithm

to practical outlier detection.

In this section, we study the OEBA performance against earlier work on Pru-

dence, using the Garvan data set. We have not considered the Tic Tac Toe or

Chess end game examples as they do not include numerical data. There are two

types of attributes in the set, i.e., continuous and categorical. As our interest

initially is on continuous attributes, we only enhance probabilistic profiles for con-

tinuous attributes. The original logging technique without probability is still used

for categorical attributes.

154

6.3. Probabilistic Profile for Continuous Attribute

6.3.1 Data Set

As mentioned earlier, there are a number of versions of the Garvan data set. In

this simulation, we used a smaller sub set of 20470 cases from a larger set of 43472

cases. Previous studies (Compton et al., 1996; ?) have suggested the types of cases

seen changed over time and the 20470 cases represent a more homogeneous period.

There are 8 continuous attributes and 22 categorical attributes including a class

attribute. The class attribute has 60 classifications relating to Thyroid diagnosis.

The extra continuous attribute compared to the UC Irvine data is because of an

extra measured variable in later data.

We have noted missing values in many attributes and in many cases. The

approach to missing values in most machine learning is to assume a default value.

However, some of the Garvan conclusions relate specifically to missing values, so

we added boolean attributes for missing values. These new attributes are flags for

missing values.

6.3.2 Simulation of OEBA-based Prudence

Following the previous Prudence work, we used a simulated expert. We used a

machine learning technique J48 as implemented by Weka (Witten and Frank, 2005)

from the university of Waikoto, NZ, to construct a knowledge-based system for the

simulated expert. Each case is evaluated against the simulated expert and an RDR

ES under construction. If two conclusions agree, the simulation proceeds to the

next case. Otherwise, a new rule is added to the RDR ES under construction. A

new rule is derived from the inference trace of the simulated expert. Unlike the

previous studies, we considered only the best expert, that is all the conditions in

the rule trace.

To evaluate prudence performance, simulations were conducted for two pru-

dence techniques, i.e., the original with simple profiles in (Compton et al., 1996)

and the other with probabilistic profiles. The algorithm OEBA relies on a thresh-

old. Following simulations in Chapter 4, we varied the threshold from 1.0E-10

down to 1.0E-90.

155

6.3. Probabilistic Profile for Continuous Attribute

We used the same system of recording different types of warnings as mentioned

in Section 6.2.2. Algorithm 3 shows how warnings are recorded. It is worth noting

that for any case, if the simulated expert cannot give a correct conclusion, i.e., the

conclusion stored in the data base, that case is ignored and not recorded in any of

these four categories.

Algorithm 3 Recording false positives, false negatives, true positives, true nega-
tives

if conclusion is correct then
if warning is flagged then

a case is false positive
else

a case is true negative
end if

else
if warning is flagged then

a case is true positive
else

a case is false negative
end if

end if

6.3.3 Results and Discussion

The results are shown in Table 6.2. From 20470 cases, the simulated expert could

give correct conclusions to 20171 cases. The rest were not taken into account. This

was simply to avoid any confusion in trying to take into account errors the expert

might make. Our focus was to assess the prudence technique in the absence of

complicating factors such as expert error.

From 20171 cases, the developing RDR gave 275 wrong conclusions, or 1.36% of

all cases. 99.27% of these cases with incorrect conclusions (273 cases) were detected

or warned about under the original Prudence technique, as used here. There were

only 2 missed warnings. Similarly, OEBA-based prudence warned about 272 cases

or 98.9% of 275 mis-classified cases. There were 3 missed warnings. The reason

for the two missed warnings will be discussed later, but it can be noted now that

only one was due to a correlation. Considering that the biochemical parameters in

Thyroid disease are highly related, both inversely and directly, this is a very good

156

6.3. Probabilistic Profile for Continuous Attribute

Continuous Profile FP FN TP TN

Original Prudence 2841 2 273 17055
OEBA 1E-10 1933 3 272 17963
OEBA 1E-20 1877 3 272 18019
OEBA 1E-30 1868 3 272 18028
OEBA 1E-40 1861 3 272 18035
OEBA 1E-50 1858 3 272 18038
OEBA 1E-60 1857 3 272 18039
OEBA 1E-70 1853 3 272 18043
OEBA 1E-80 1851 3 272 18045
OEBA 1E-90 1850 3 272 18046

Table 6.2: A comparison between original prudence and OEBA-based prudence on
continuous attributes. Threshold of the algorithm was varied from 1.0E-10 down
to 1.0E-90. Categorical attributes were maintained with the original prudence
approach.

result. It supports the assumption we have made that RDR partitions the space

into relatively homogeneous regions and correlations mainly relate to differences

in classification across regions. However, in Section 6.6, we investigate extending

the technique to deal with correlated variables. The explanation for the extra case

that was detected by the original prudence, but not by the OEBA-based prudence

is that an OEBA profile must have included an outlier into its model; hence, it

failed to flag this case.

In the previous study, the false positive rate was 15%. In this simulation, the

original prudence produced unnecessary warnings for about 14.08% of all cases.

These results differ from the original study as we used a different learning algorithm

for the simulated expert and removed cases that the simulated expert could not

correctly classify. However, what we are concerned with here is to reduce the false

positive rate when applying the OEBA-based profile. As shown in Table 6.2, the

simulation demonstrated that the number of false positive cases was reduced when

the threshold got smaller. However, the rate of reduction was also reduced when

threshold got smaller, i.e., the number of false positive cases converged to 1850 or

about 9.2% of all cases, while making 3 false negatives.

Although the number of false positive cases was reduced, the remaining rate was

still not satisfactory. We have investigated further where the warnings are coming

157

6.3. Probabilistic Profile for Continuous Attribute

from and the simulation was modified to record more information regarding sources

of warnings. Table 6.3 shows the results.

Total Categorical Only Continuous Only Both

Original Prudence 2841 868 992 981
OEBA 1E-10 1933 1844 84 5
OEBA 1E-20 1877 1848 28 1
OEBA 1E-30 1868 1849 19 0
OEBA 1E-40 1861 1849 12 0
OEBA 1E-50 1858 1849 9 0
OEBA 1E-60 1857 1849 8 0
OEBA 1E-70 1853 1849 4 0
OEBA 1E-80 1851 1849 2 0
OEBA 1E-90 1850 1849 1 0

Table 6.3: Sources of incorrect warnings. This table shows the number of unneces-
sary warnings produced from different sources, i.e., categorical profiles, continuous
profiles or from both profiles. The total number of false positive cases is also given.

The result is very interesting in that most warnings, 1849 from 1868 or about

98.98% at T = 1E − 30, or 1849 from 1850 or about 99.95% at T = 1E − 90,

produced in the OEBA-based prudence were from categorical attributes. There

were only 19 false positive warnings raised from the algorithm OEBA for continuous

attributes at T = 1E−30 and 1 false positive warning at T = 1E−90. This result

agrees with the reduced number of false positive cases in Table 6.2, that is the

OEBA-based profile greatly reduced the false positive cases from that produced

by the original approach. This improvement reveals the underlying problem of

the high false positive rate for warnings from categorical attributes. In the next

section, an algorithm to learn categorical attributes is proposed.

It should be noted that we have followed the protocol of the original experiment

where all errors were corrected as they occured. This means that a false negative

case will have rule added to correct it although no warning is raised. So the false

negative cases here are rather the number of types of case that were missed rather

than the total missed.

We have redone the experiments to count the actual FN when rules are not

added to correct such errors. The number of FN increases from three to ten cases.

That is, there are ten instances of the three types of case, giving an FN rate over the

158

6.4. Probabilistic Profile for Categorical Attribute

20K cases of 0.05%. There is also a negligible decrease in the FP rate because rules

were not added that might have increased the FP rate. Note that false positives

are always the total number of actual cases that were incorrectly warned about.

6.4 Probabilistic Profile for Categorical Attribute

For categorical attributes, we have a similar aim, that is to develop a simple al-

gorithm to learn profiles and detect outliers with a simple probability measure.

The situation is similar, except that attributes are discrete. For example, patient

samples in the Garvan data set came from 5 different hospitals. A new sample,

e.g., the 100th, is coming from a new hospital. What is the probability of a new

hospital not being seen until the 100th sample?

For convenience, we denote this algorithm Outlier Estimation for Categorical

Attribute (OECA). We have made two assumptions in the algorithm OECA as

follows.

1. An attribute is independent. This means the occurrence of all its values is

independent from other attributes.

2. An attribute follows a uniform distribution. That is the probability of each

value is equal, regardless of the number of occurrences for each value. The

probability mass function of a uniform distribution is

f(x) =
1

v
(6.2)

v is the number of all different seen values.

A Bernoulli process is a sequence of independent identically distributed Bernoulli

trials. There are only two possible values for each trial, which are generally labelled

A and B. From a negative binomial distribution which is based on a Bernoulli pro-

cess, the probability of k A’s, r − 1 B’s in k + r − 1 trials and that the (k + r)th

trial is B is

f(x) =
(k + r − 1)!

k!(r − 1)!
pr(1− p)k (6.3)

159

6.4. Probabilistic Profile for Categorical Attribute

where p is the probability of the occurrence of B. A specialization of a negative

binomial distribution, called a geometric distribution, is a case where r = 1, i.e., a

series of A’s has taken place before a first B occurs, and

f(x) = p(1− p)k (6.4)

From our assumptions and Equation 6.4, the probability of a new value B in a

Bernoulli trial has not been seen until the (k + 1)th trial, where the first k trials

are A, is

f(x) =
1

v + 1

(
1− 1

v + 1

)k

(6.5)

6.4.1 Outlier Estimation for Categorical Attributes

When a case is matched against a profile, we need to know how well it fits in the

profile. Herein, M is denoted as a measure specifying a degree of matching between

a case and a profile. When a value has been maintained, M should be 1.0. When a

value is new to a profile, M should give a probability of having this new value after

v values have been seen from k observations; i.e.,the probability in the equation

6.5 is used in this case. That is,

M(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 if x has been seen,

1

v + 1

(
1− 1

v + 1

)k

otherwise
(6.6)

However, the probability in Equation 6.5 very much depends on the value of k,

i.e., when k is larger, the probability gets smaller. M(x) varies greatly with k, so it

is difficult to specify a simple threshold. Secondly, it seems reasonable to suggest

that a new value after a long gap since the last new value was observed is more

likely to be an outlier than the latest new value when new values are a regular

occurrence.

To capture this, the algorithm compares the probability of a new value with

the probability of a value that was last accepted into a profile. A ratio between

160

6.4. Probabilistic Profile for Categorical Attribute

two probabilities gives a relative difference between them and reduces the effect of

large k.

NewV alueRatio =
M

Maccepted

(6.7)

where M is the probability of a current value and Maccepted is the probability of a

value that was last updated into the profile. From the definition 6.6 , M is always

less than or equal to Maccepted. The more these two probabilities are different, the

less likely the case belongs to the profile.

For convenience, our algorithm to maintain categorical attributes is called

Outlier Estimation for Categorical Attributes or OECA. The algorithm relies on

NewV alueRatio to justify whether a case is an outlier. The higher NewV alueRatio,

the less the likelihood that a new value is an outlier. Similar to the algorithm

OEBA, a threshold must be predefined. A warning is raised if NewV alueRatio is

below the threshold. The algorithm OECA is shown in Algorithm 4.

Algorithm 4 Outlier Estimation for Categorical Attributes

x: an observation
T: a predefined threshold
if M(x) = 1.0 then

ACCEPT x

else if
M(x)

Maccepted
> T then

ACCEPT x
else

REPORT outlier
end if

6.4.2 Simulation on OECA-based Prudence

To evaluate performance of the algorithm OECA, we ran simulations on the same

Garvan data set as used in the previous section. Simulations were conducted by the

same procedure, i.e., passing a case through both simulated expert and construct-

ing ES to derive conclusions, and comparing two conclusions for further actions.

Similarly, four types of cases were still recorded, i.e., false positives (FP), false neg-

atives (FN), true positives (TP), true negatives (TN). To study the performance of

the algorithm OECA, the algorithm OEBA was fixed at the threshold of 1.0E-50,

161

6.4. Probabilistic Profile for Categorical Attribute

while varying the threshold of OECA.

Threshold FP FN TP TN

Original Log 1858 3 272 18038
9E-01 1529 3 272 18367
8E-01 1392 3 272 18504
7E-01 1260 3 272 18636
6E-01 1179 3 272 18717
5E-01 1080 4 271 18816
4E-01 1029 5 270 18867
3E-01 971 5 270 18925
2E-01 711 8 267 19185
1E-01 590 13 262 19306
1E-10 124 19 256 19772

No Profile 9 19 256 19887

Table 6.4: Simulations on categorical attributes. This table shows results when
different profiles for categorical attributes are maintained. Continuous attributes
are maintained by the OEBA algorithm at the threshold of 1.0e-50. First, they
are maintained with a pure log in the original prudence approach. Second, the
algorithm OECA is used with different thresholds. The last row shows a result
when no profile of categorical attributes was maintained. The numbers shown in
the table are the number of false positive(FP) cases, false negative (FN) cases, true
positive (TP) cases, and true negative(TN) cases for each simulation.

Table 6.4 shows results of simulating different profiles for categorical attributes,

while continuous attributes were maintained by OEBA-based profiles. In the first

row, categorical attributes were maintained with pure logs as in the original ap-

proach (i.e., any unseen value would be warned about). There were 1858 false

positive cases and 3 false negative cases. The algorithm OECA was applied to cat-

egorical attributes with various thresholds and results are shown in the next rows.

Simulations were started off from a threshold of 9.0E-1 which produced 1529 false

positives, i.e., false positive cases were reduced by 329. When the threshold was

set lower, a number of false positive cases dropped constantly without an increase

in false negatives.

However, when threshold was 5.0E-1, an extra false negative case occurred.

With lower thresholds, the algorithm started to introduce extra false negative cases.

To avoid false negatives, the simulation worked best at threshold 6.0E-1, where

there were only 1179 false positive cases or 5.85% of all cases. A graph in Figure

6.1 shows relationship of false positives and false negatives for various thresholds.

162

6.4. Probabilistic Profile for Categorical Attribute

0
200
400
600
800

1000
1200
1400
1600
1800

1.00E-
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold of OECA

Nu
m

be
r

of
 F

al
se

 P
os

iti
ve

Ca

se
s

0
2
4
6
8
10
12
14
16
18
20

Nu
m

be
r o

f F
al

se
 N

eg
at

iv
e

Ca
se

s

False Positive False Negative

Figure 6.1: False positives and false negatives produced from different thresholds.

A simulation was also conducted for a situation where no profile was maintained

for categorical attributes, i.e., there was no warning produced from these attributes,

only the OEBA for continuous attributes was used. In this simulation, there were

only 9 false positive cases, but the number of false negative cases was 19 cases. Note

because our protocol for the simulation fixes all errors, these 19 cases correspond

to 19 different types of case out of the 275 types of case the system handles.

To get the total false negative rate, we repeated the experiment without adding

rules when a false negative occured. The results are shown in Table 6.5.

Threshold FP FN TP TN

8E-01 1386 10 270 18505
7E-01 1255 10 270 18636
6E-01 1174 10 270 18717
5E-01 1074 12 269 18816
4E-01 1022 15 268 18866
3E-01 964 15 268 18924
2E-01 709 23 266 19173
1E-01 589 28 264 19290

No Profile 9 44 256 19862

Table 6.5: Simulations when new rules are not added for false negatives. This table
shows results for simulations with a different protocol from Table 6.4, that is, new
rules are only added when warnings are correctly flagged. Other configurations are
the same.

In summary, the 19 types of case that correspond to false negatives correspond

to 44 actual cases in the 20,171 cases. One might surmise from this that false

163

6.5. Discussions of Probabilistic Profiles

negatives tend to be for fairly rare and unusual types of case.

6.5 Discussions of Probabilistic Profiles

Simulations of both OEBA and OECA algorithms on Garvan data set were very

promising. The false positive rate was significantly reduced by approximately two-

third. However, there were three false negative cases, where only one of the three

was introduced by probabilistic profiles, while the other two were also missed by

the original work.

An investigation of these three false negative cases was made. The three cases

are shown in Table 6.6. Following is an explanation of the three cases.

Case 1

A high TT4 and low TSH together are indicators of thyrotoxicosis, or over treat-

ment with thyroxine. In this case TT4 was towards the upper limit of the normal

population range, and at the upper limit of the this OEBA profile for TT4, and

although the TSH was diagnostically low it was within this OEBA profile for TSH.

The difficulty of dealing with low TSH values is that they are at the limit of sensi-

tivity of the analytical techniques, so that there is no significance difference between

the level of 0.19 in this case and < 0.15 in case 2 below. < 0.15 simply means that

value was below the sensitivity of the assay, which on this occasion was 0.15, while

0.19 probably has confidence limits of about +/- 0.15.

To apply the correlation analysis we have proposed, we had to normalize the

TSH and TT4 values. The best normalisation was obtained by carrying out a log

transform of TSH because of its very skewed distribution, and then normalizing

values against the normal population range. This transformation was an arbitrary

process and needs to be tested on a much larger set of data than a single case, but

it probably always has to be based on domain specific knowledge about population

distributions and correlations. In this case the normalisation resulted in a value

outside the profile range, but the probability of this value was not less than the

threshold, so the case was not flagged as an outlier.

164

6.5. Discussions of Probabilistic Profiles

recno 30401

ID N0 870813115

Age 31

Sex F

Dr’s Comment hypothyroid

comment cde 8

Source #SVHE

com etc code 00001000000

TSH 0.19

T3 ?

TT4 147

T4U 0.92

FTI 160

TBG ?

FT4 ?

diag rule 22310

diag code 1 A1

Elevated FTI & T4 consistent with thyrotoxicosis

recno 31280

ID N0 871102073

Age 61

Sex F

Dr’s Comment hashimotos disease

comment cde 8

Source #SJF

com etc code 00001000000

TSH < 0.15

T3 2.2

TT4 177

T4U ?

FTI ?

TBG ?

FT4 ?

diag rule ?

diag code ?

?

recno 35127

ID N0 880831020

Age 78

Sex F

Dr’s Comment hypothyroid receiving supplements

comment cde 8

Source #SVI

com etc code 00001001000

TSH 25

T3 0.7

TT4 92

T4U ?

FTI ?

TBG ?

FT4 ?

diag rule 43420

diag code 18 G1&K1

Consistent with compensated hypothyroidism. Low T3 suggests a concurrent non thyroidal illness

Table 6.6: Three false negative cases.

165

6.5. Discussions of Probabilistic Profiles

Case 2

Patient 2 is a particularly interesting case. Patient 2 is a false negative because

from the database and the simulated expert, the patient had no diagnosis, that

is they are assumed to be normal, while the evolving RDR system had given a

diagnosis of “Elevated T4, low TSH, normal T3. Consistent with toxicosis with a

concurrent non-thyroidal illness”. In fact the patient is clearly not normal, as there

are clearly elevated levels of TT4 and suppressed levels of TSH, and the diagnosis

given by the RDR system is more appropriate. This means it is not possible to

decide what feature should have been flagged as an outlier so this more appropriate

diagnosis was not given.

The simulated expert had learned to make the wrong diagnosis because of the

inadequacy of some of the original classifications. What is interesting is that the

original set of cases was developed by running Garvan cases through the original

GARVAN-ES1 expert system [P. Compton, personal communication]. The reason

for this was to ensure consistent classifications. This case must have fallen through

the cracks of the original expert system; its rules did not cover this particular

situation, although the results are clearly not normal. The correct conclusion would

probably have been along the lines that the results were consistent with thyroxine

treatment and a non-thyroidal illness or perhaps a more subtle comment on the

possibility of transient elevated T4 with Hashimotos disease. From Wikipedia:

Hashimoto’s thyroiditis or chronic lymphocytic thyroiditis is an autoim-
mune disease where the body’s own antibodies attack the cells of the
thyroid. ... In many cases, Hashimoto’s thyroiditis usually results in
hypothyroidism, although in its acute phase, it can cause a transient
thyrotoxic state. ... Treatment is with daily thyroxine. (Wikipedia,
2007b)

Case 3

The diagnosis for case 3 should be compensated hypothyroidism with a con-

current non-thyroidal illness, whereas the diagnosis give was simply compensated

hypothyroidism. Clinically the differences are unimportant, with a relatively low

166

6.6. An Extension on the Correlation between Attributes

T3 the differentiating factor. The T3 for the case was well below the OEBA thresh-

old, but because it was only the 16th case for this profile, the probability calculated

was not low enough to be below the threshold. There would have needed to be

about 340 cases for the probability to be low enough to be identified as an outlier.

In summary, prudence is a mechanism to let an expert or a user of an expert

system know when an unusual case is being analyzed. In the original work, the

system caused a high false positive rate. Our approach provides a solution to re-

duce this error rate. From simulations, the algorithm OEBA, implemented for

continuous attributes, could reduce unnecessary warnings significantly, depending

on a threshold used. As far as the algorithm OEBA could achieve, most of spuri-

ous warnings remaining were from new values for categorical attributes. We hence

proposed the algorithm OECA for categorical attributes. Simulations showed that

with a support from OECA, the system could further eliminate unnecessary warn-

ings. However, configuring a threshold of OECA is critical, i.e., the smaller the

threshold, the lower the false positive rate, but the false negative rate may also in-

crease. OECA needs testing in other domains but is worth noting that it handled a

range of categorical variables here with from 2 to 251 values, with the same OECA

threshold for all variables. That is, the study does provide fairly wide evaluation.

6.6 An Extension on the Correlation between At-

tributes

As mentioned earlier, our approach detects an outlier by investigating each at-

tribute separately. One might question correlations between attributes. This sec-

tion proposes an approach to correlated attributes.

6.6.1 Correlations between Attributes

In statistics, a correlation is used to describe the degree of relationship between

two variables. A number of different coefficients are used for different situations to

specify correlations. The Pearson product-moment is the best known correlation

167

6.6. An Extension on the Correlation between Attributes

Figure 6.2: Examples of different correlations between 2 variables (Wikipedia,
2007a). Positive linear correlations between 1000 pairs of numbers. The data
are graphed on the lower left and their correlation coefficients listed on the upper
right. Each square in the upper right corresponds to its mirror-image square in
the lower left, the mirror being the diagonal of the whole array. Each set of points
correlates maximally with itself, as shown on the diagonal (all correlations = +1).

coefficient, which is obtained by dividing the covariance of the two variables by

the product of their standard deviations (Wikipedia, 2007a). The Spearman rank

order correlation (rho) or the Kendall rank order correlation (tau) are used when

dealing with two ordinal variables. When one measure is continuous and the other

is dichotomous, i.e., two-category, the Point-Biserial correlation is suggested. Visu-

ally, correlated data do not equally distribute across the whole space; that is, they

are clustered in some regions, while other regions in the space are empty. Figure

6.2 shows some example different correlations between two continuous variables.

In medical domains, in particular, correlations between attributes are generally

168

6.6. An Extension on the Correlation between Attributes

the case. For example, the thyroid gland produces T4 and T3. But this production

is not possible without stimulation from the pituitary gland (TSH), which in turn

is also regulated by the hypothalamus’s TSH Releasing Hormone. A low T4 level

could mean a diseased thyroid gland or a non-functioning pituitary gland which

is not stimulating the thyroid to produce T4. Since the pituitary gland would

normally release TSH, if the T4 is low, a high TSH level would confirm that the

thyroid gland, not the pituitary gland, is malfunctioning. On the other hand, if

the T4 is low and TSH is not elevated, the pituitary gland is more likely to be the

cause for the hypothyroidism.

The results so far support our contention that even in a highly correlated do-

main, attributes tend not be correlated within individual partitions. Nevertheless,

a false negative case may occur because although each of its attributes falls within

a maintained range, a combination of two attributes falls outside the region of their

correlation. It is our intention to demonstrate that our approach can be applied to

correlations between two continuous attributes.

6.6.2 Correlation and the Algorithm OEBA

The algorithm OEBA separately maintains limits, i.e., the lower and upper bounds,

of a continuous attribute. The limits of any two attributes define a rectangular

boundary in a two-dimensional space. For example, the limits of attribute A1 are

5 and 10. The limits of attribute A2 are 3 and 20. In a two-dimensional space,

where A1 is mapped to X axis, and A2 to Y axis, data are bounded by 4 linear

lines as follows, x = 5, x = 10, y = 3 and y = 20. Provided two attributes are

correlated, data are in a particular region within this rectangle. Our approach

applies the algorithm OEBA to learn lower and upper bounds of this region in

different directions, e.g., 45◦ or 135◦ to X axis as shown in Figure 6.3.

A straight line is in the form of

ax + by = c, (6.8)

where a, b and c are coefficients such that a and b are not both zero. Lower and

169

6.6. An Extension on the Correlation between Attributes

Y
-A

xi
s

X-Axis

45
 de

gre
e t

o X

Minimum

Maximum

(a) 45◦ to X axis

Y
-A

xi
s

X-Axis

Mini
mum

Max
im

um

135 degree to X

(b) 135◦ to X axis

Figure 6.3: Limits in different directions.

upper bounds of a direction are lines with a same slope, i.e., a and b are the same.

For example, if a lower bound is a1x+b1y = cmin, a upper bound is a1x+b1y = cmax.

Hence, the algorithm OEBA learn limits in a direction by maintaining cmin and

cmax.

In our approach, we propose to maintain lower-upper bounds in two additional

directions, i.e., 45◦ or 135◦ to X axis. In the direction of 45◦ to X axis, the slope is

1.0 and a = −1.0,b = 1.0. This means a profile for a correlation in this direction

maintains limits of c = y−x. On the other hand, in the direction of 135◦ to X axis,

the slope is -1.0 and a = 1.0, b = 1.0. This profile maintains limits of c = y + x.

This is a very simple approach. We are assuming that all correlations are linear

and that we need to consider only pairwise correlations. Such a simple approach

is reasonable when we have already demonstrated that considering attributes as

independent gives us a almost perfect results. On the other hand, testing all

possible multivariate correlations would greatly increase the false positive rate.

170

6.6. An Extension on the Correlation between Attributes

6.6.3 Simulation of Correlation Profile on Uncorrelated At-

tributes

Assuming that this approach may pick up some of the small number of false nega-

tives, the key question is whether it will increase the false positives. A simulation

was conducted to study additional false positives that might be increased by cor-

relation profiles.

Simulations were set for three different domains, i.e., a domain with a single

variable, a domain with two variables, and a domain with ten variables. In all

domains, series of random numbers were generated following a mechanism used in

Chapter [Outlier Detection], that is, each series contained 3,000 random numbers

which were uniformly distributed in the range of 0.0 and 1.0.

In the univariate domain, there was only one OEBA profile created for the

variable. In the bivariate domain (e.g., variables X1 and X2), there were four

OEBA profiles created; two profiles for each variables X1 and X2, one for X1 + X2

and the other for X2 −X1. The number of profiles in the ten-variate domain was

100. That is 10 profiles for each variables, 90 profiles for correlations of each pair of

variables. In the univariate and bivariate domains, simulations were run 10 times,

while simulations were run twice for the ten-variate domain. The averages of false

positive warnings produced was shown in Table 6.7.

Threshold T 1 var 2 var 10 var

1.0E-5 0 100.0 1654.5
1.0E-10 0 6.5 342.5
1.0E-15 0 3.2 74.0
1.0E-20 0 0.2 31.0
1.0E-25 0 0 12.0
1.0E-30 0 0 3.0
1.0E-35 0 0 0

Table 6.7: Simulations on OEBA profiles for correlation. The numbers shown in
this table are the average of false positive instances for domains with one variable,
2 variables and 10 variables.

At T = 1.0e−5, there were 100 false positives produced in the bivariate domain

and 1654.5 false positives in the ten-variate domain, while no warning was produced

171

6.6. An Extension on the Correlation between Attributes

in the univariate domain. However, the number of false positives dropped signif-

icantly when the threshold got smaller. It became zero when the threshold was

as small as 1.0e-25 in the bivariate domain and 1.0e-35 in the ten-variate domain.

This means that two additional profiles for correlation will not cause additional

false positives when applied to uncorrelated data, provided the threshold is config-

ured less than 1.0e-25 in a bivariate domain and 1.0e-35 in a ten-variate domain.

This is well above the useful thresholds for the single attribute studies on the Gar-

van data. This is a particularly fortunate result as if there are n attributes, there

will be n2−n pairs of attributes greatly increasing the likelihood of false positives.

6.6.4 Simulation of OEBA and Correlations

Correlation profiles are now applied to continuous attributes in Garvan data set.

This simulation was conducted on top of the simulation in Section 6.3, where the

algorithm OECA was not taken into account. The results are shown in Table 6.8

Continuous Profile FP FN FP+Correlation FN+Correlation

Original Prudence 2841 2
OEBA 1E-10 1933 3 2139 3
OEBA 1E-20 1877 3 1958 3
OEBA 1E-30 1868 3 1904 3
OEBA 1E-40 1861 3 1878 3
OEBA 1E-50 1858 3 1875 3
OEBA 1E-60 1857 3 1869 3
OEBA 1E-70 1853 3 1863 3
OEBA 1E-80 1851 3 1861 3
OEBA 1E-90 1850 3 1860 3

Table 6.8: Simulations of the algorithm OEBA for correlation between attributes.

The simulation demonstrates that when the algorithm OEBA was applied to

correlations between continuous attributes, additional false positives were minor.

For example, within the Garvan data, at T = 1e − 30, there were 36 extra false

positives on top of 1,868 false positives from single attributes and when T ≤ 1e−70,

only 10 extra false positives on top of 1,853 false positives were introduced. However

the approach failed to remove the third false negative. Using correlation profiles,

the case was outside the profile but not below the threshold.

172

6.7. A Study on Warning Characteristics

6.7 A Study on Warning Characteristics

The technique has been demonstrated as capable of efficiently detecting outliers and

greatly reducing unnecessary warnings. False positives produced in an evaluation

on Garvan data set were reduced from 14% to 5.85%, while true positives were

1.35% of all cases. That means 18.75% of all warnings were correctly produced.

In our approach, a warning for a case is made if at least one of its profiles has

raised a warning. No matter how many profiles have raised warnings, a case is

simply flagged in the same way. It is our intention to study the characteristics of

all warnings produced, as there might be some ways to distinguish correct warnings

from false positives.

When a warning is produced for a case, additional information is collected as

follows.

• The number of warnings produced from profiles.

• A vector of probabilities of warnings produced from profiles.

We spent considerable time trialling various methods of combining probabilities

to get a single measure. We also used the J4.8 classifier to find if some combination

of the measures we developed would be useful. We were unable to find any way

of ranking cases that even approximately indicated the likelihood that a case was

a true positive rather than a false positive. If such a measure could be found it

would be of great value in suggesting priorities to the expert in scanning cases.

173

Chapter 7

Summary

Computer networks are increasingly critical in human lives. Many of our daily

activities are involved with computer networks. Improving network performance is

at the heart of computer network research. A major area is network security aimed

at maintaining integrity, availability and confidentiality. One approach among

others is intrusion detection systems (IDS).

Starting from a report by Anderson (Anderson, 1980) in 1980, through sys-

tem prototypes implemented in many labs, e.g., IDES (Denning, 1987), Wisdom

and Sense (Vaccaro and Liepins, 1989), MIDAS (Sebring et al., 1988), Haystack

(Smaha, 1988), etc., the importance of IDS has been well realized. In 1987, Den-

ning published a seminal model of IDS (Denning, 1987), upon which many later

IDS’s have been implemented.

In this thesis, a framework for a network intrusion detection system is proposed

using a knowledge acquisition methodology called Ripple Down Models (RDM).

RDM is a model-based variant of Ripple Down Rules. RDM incorporates a learning

algorithm named Outlier Estimation with Backward Adaptation (OEBA) with each

rule. The algorithm makes each rule capable of learning profiles of fired cases and

detecting cases which differ from previous cases.

An attempt has also been made to improve prudence techniques in providing

warnings to experts when a system is reaching the limits of its knowledge. A

warning is produced when a new value for an attribute is encountered. In the thesis,

174

7.1. Thesis Summary

warnings are produced based on results from the algorithms OEBA and Outlier

Estimation for Categorical Attributes (OECA), which are applied to continuous

attributes and categorical attributes, respectively.

7.1 Thesis Summary

In this thesis, a brief history of IDS systems was presented in Section 2.2.4. From

its functionality, an IDS is typically classified as either anomaly-based or misuse-

based (or signature-based). A discussion of this classification was also presented in

Section 2.2.4. A basic aim of an intrusion detection system is to detect anomalous

behaviour occurring in a monitored network. The thesis identified four common

tasks of IDS’s, i.e., audit data storage, profile generation, intrusion detection, and

policy execution.

The task of audit data storage mainly involves answers to these questions.

• What audit data is a system analyzing?

• How are they stored and retrieved?

• How big should the storage be?

Early systems detected anomalies from either log files or TCP connection informa-

tion. Recently, network measurement, such as traffic volume, has been alternatively

analyzed because it is easier to understand network performance from its utiliza-

tion and it uses much less storage. Our study in this thesis analyzes traffic volume

measured by the School of Computer Science and Engineering (CSE), UNSW. Traf-

fic is monitored and stored by a network tool called RRDtool (Oetiker and GNU,

2006). The program is set to store the traffic utilization of monitored protocols for

a maximum of 7 days. Details are in Section 5.1.1.

Profile generation is the heart of an IDS. Profiles are the knowledge of the sys-

tem. They are retrieved from a knowledge base to match against new observations.

System developers need to make a decision on what knowledge from audit data can

be derived and represented. Depending on IDS’s categories, there are two main

175

7.1. Thesis Summary

types of profile. The first one is a profile of normal behavior. The others are profiles

of known attacks. Section 2.3.2 gives a detailed discussion of the task.

Intrusion detection is tightly coupled with profile generation. From statistical

approaches, to other recent advances, many techniques have been proposed. Sec-

tion 2.3.3 summarized some techniques used so far. A common idea among early

techniques was the use of a generic model of a system. The disadvantages of this

are the difficulty of defining a single universal model and the difficulty of handling

novel and ad-hoc events.

In contrast, this thesis proposes a framework named Ripple Down Models

(RDM) to partition a complex problem space with diversity of data into smaller

sub-spaces of homogeneous data and separately learn a profile for each homoge-

neous region. RDM is a variant of a KA technique Ripple Down Rules (RDR).

The philosophy of RDR in relation to cognitive science was reviewed in Section

3.3.1. The structure, functionality and terminology of RDR were reviewed in Sec-

tion 3.3.2. RDR have been applied to many tasks, as reviewed in Section 3.3.6.

In this study, RDR is applied to a segmentation task, i.e., partitioning a problem

space into smaller sub-spaces (or regions) of data with the same classification.

Within a region, models are learned using the novel algorithm Outlier Esti-

mation with Backward Adaptation (OEBA). The algorithm OEBA is an outlier

detection algorithm that is capable of online learning and detecting outliers simul-

taneously. Section 4.2 presents a background on outlier detection, including some

detection techniques used so far. OEBA is assumes that the data follow a uniform

distribution; hence, it learns and detects outliers based on statistics calculated

from past observations, as discussed in Section 4.3. Simulations and performance

evaluation are presented in Section 4.4. OEBA shows very promising results for a

learning algorithm; it produces very low false positive and false negative rates.

RDM modifies RDR as follows.

• It incorporates the algorithm OEBA with each rule.

• No classification is made from an inference in RDM. OEBA profiles are re-

turned, instead.

176

7.1. Thesis Summary

• It does not maintain cornerstone cases. The OEBA profiles associated with

a rule act as a cornerstone case.

Similarly to RDR, RDM adds a new profile for a region into its knowledge base

when discrepancies between profiles and new observations are detected. A newly

added region might be a new definition of a space that has never been covered or

a refinement or an exception of an already defined space. Hence, any novel and

ad-hoc events can be added to a knowledge base at any time when required.

A prototype has been implemented using the JAVA language and tested on traf-

fic data sets from the school of CSE. Starting from an empty knowledge base, ex-

perts gradually add new definitions of traffic utilization while the algorithm OEBA

successfully detects anomalous traffic with low false positive rate. Although the

framework has been tested for network intrusion detection, we believe that it can

apply to any complexed domain with a diversity of data.

It is worth noting that the algorithm OEBA is able to adjust itself to changes

in the domain it is applied to. OEBA learns a range of values in a region point by

point and justifies the likelihood of an outlier when a value falls out of range by a

simple probabilistic technique based on past observations. A further application of

the algorithm OEBA was a prudence technique for expert systems.

Most expert systems have a problem of brittleness, where a conclusion is made

without knowing that the system has reached the limits of its knowledge. A classic

attempt to avoid this problem is the project CYC (Guha and Lenat, 1990), which

provides a foundation knowledge base of common sense, upon which other expert

systems can be built. Prudence in RDR is another attempt at a solution to brit-

tleness. It provides warnings to experts when a system is making a conclusion for

a case beyond its experience. The previous study of prudence in (Compton et al.,

1996) was successful in notifying experts of cases that required attention, but the

false positive was high at 15%

Once OEBA is applied to prudence, unnecessary or false positive warnings

are significantly reduced. However, false positive warnings cannot be eliminated

because some warnings are produced from new values of categorical attributes.

177

7.2. Discussion

Hence, we developed another learning algorithm for categorical attributes. This

algorithm is called Outlier Estimation for Categorical Attributes (OECA). When

both OEBA and OECA algorithms are used together, false positive warnings are

significantly reduced down to 5.85%.

Both algorithms are simple and online. From an empty state, they incremen-

tally learn data, while a calculation based on past observations is made to estimate

the likelihood of any new value seen being an outlier. It is shown by both simu-

lations and experiments on real medical data sets that they are efficient learning

algorithms for outlier detection. We suggest that both algorithms can learn at-

tributes for many domains and appropriately notify experts of unusual cases that

are evaluated. In conjunction with the RDM framework, any complex problem

space where data are diverse can be partitioned into smaller sub-spaces of more

homogeneous data which can be separately learned by the two algorithms.

7.2 Discussion

Our goal was not to build a system that was necessarily more accurate than the

best systems previously built for specific domains. Our aim was rather to develop a

way of rapidly and easily customizing an IDS with a high level of accuracy for any

domain and able to be easily customized further as the domain changed. However

our approach does produce a very good level of accuracy compared to previous

studies using volume data.

The system that is perhaps closest to our study is by Brutlag (Brutlag, 2000),

where anomaly detection is performed by the Holt-Winters algorithm on traffic

volumes archived by RRDtool. However, there are no false positive or false negative

rates published anywhere.

Another system by Barford et al. (Barford et al., 2002) uses wavelet filters to

analyze traffic volumes. In their work, the published result for anomaly detection

is only that their technique can detect 38 out of 39 anomalies, in comparison to

the Holt-Winters algorithm which can only detect 37 anomalies. The false positive

178

7.2. Discussion

rate is not reported.

Lakhina et al. (Lakhina, Crovella, and Diot, 2004b), investigate their system

with 3 data sets. In evaluation, they use two methods, i.e., Fourier and an ex-

ponential smoothing EWMA, to label anomalies in traffic volumes, against which

their detection results are compared. As the two reference methods label anomalies

differently, their results vary. With the Sprint-1 data set, the false positive rate is

reported 1/999 when compared with Fourier labelled anomalies, and 6/1003 when

compared with EWMA labelled anomalies. The false negative rate is reported as

0 when compared with Fourier labelled anomalies, and 1/5 when compared with

EWMA labelled anomalies. However, when they investigate their system on syn-

thetic anomalies, the false negative rate is reported at 7% on the Sprint data set,

but the false positive rate is not reported.

The proposed method shows that all anomalies can be detected, i.e., a false

negative rate of zero, while false positive rates are at about 2% when profiles for

traffic are created. It should be noted that there are no training sessions before

putting the system in use. The expert can easily add profiles and decision rules as

required. This is a small addition to the normal network administration task.

In the proposed framework for intrusion detection systems, double knowledge

bases (KB) are used. The first KB is used in anomaly detection, while the second

KB maintains final rules on top of the previous anomaly detection. The expert is

free to add a decision rule or a new profile - whatever they think is appropriate.

Decision rules are not only defined to reduce false positive warnings, the expert

can define rules for network attacks. That is, our system learns both normal and

intrusive behaviour and is essentially a hybrid anomaly and signature detection

system.

It is worth noting that our framework is open to any environment. Although

the system is implemented to detect anomalies from traffic volumes, it could also

analyze packet header information. Developers simply add features to cases for an

analysis and experts can add profiles or decision rules for these features. We have

not compared our approach with packet header systems as these are designed to

classify anomalies while we simply detect them.

179

7.3. Future Research

7.3 Future Research

7.3.1 An Interim Outlier Detection Algorithm

Both OEBA and OECA algorithms gradually learn from an empty state. Although

the study shows that they work very well, it is worth noting that when the number

of seen cases is small, they are more likely to accept outliers, causing false negatives.

The reasons why the problem does not show in our study are as follows. We do

not appear to have had many cases where an outlier occurred almost immediately

after a new rule or model was added and new profiles developed even in multiple

randomized simulations. On the other hand, we do not get later false negatives

because the algorithm OEBA can adapt itself by cutting out outliers that were

earlier mistakenly added into its model. However, we cannot guarantee that outliers

will always occur after the algorithm is mature.

One solution would be to simply check all cases for new profiles for some period.

However the deeper the refinement, the less likely a rule will cover other as yet

unknown classes, so ideally the number of initial cases checked would vary with the

rule location.

7.3.2 Combining Multiple Tests

Prudence is a different application to anomaly detection. Using the second knowl-

edge base one can write rules about what sort of anomalies should be brought to

the expert attention. In contrast, prudence is watching for new entities, that have

been covered by an overgeneralization. Since the expert has overgeneralized, it

would not make sense to expect rules about the overgeneralization in the second

knowledge base. So for prudence, each attribute for the case is analyzed against

the profile for that attribute and a warning is raised if necessary, and a warning

for the case is flagged if any of those profiles raise warnings.

During this study, we attempted to determine relationships between combina-

tions of warnings produced from profiles and cases that should be warned about.

180

7.3. Future Research

If successful, experts should only look up at cases where supervision was really re-

quired, instead of reviewing all the cases that were warned about. Unfortunately,

no relationship could be drawn from the investigation in section 6.7.

However, we believe there should be further investigation into combining warn-

ings into a single overall warning. If it was possible to rank cases according to

the likelihood that the warning was real, this would allow the expert under time

pressures to decide how far down the list of cases they should check. This would

be valuable even if the ranking was only approximate.

7.3.3 Redundancy of Partitions

In RDR, when a conclusion made for a case is incorrect, a new rule is formed by

a conjunction of selected features that makes a case different from a cornerstone

case of a currently fired rule and is added as an exception to the fired rule. The

process is simple but there is no guarantee that rule redundancy may not occur.

Suryanto investigated rule redundancy in RDR and proposed to re-organize RDR

using Disjunctive Normal Form (DNF) representation to facilitate a removal of

rule redundancy (Suryanto, 2005). It has been shown that the number of rules

can be reduced by 10% and the number of future KA sessions is reduced by 27%

(Suryanto, 2005).

Like other RDR-based systems, there is no guarantee that a redundancy does

not occur when a new rule is added to RDM. It might be useful to use the profiles

that are learned to help reduce redundancy building on the work of (Suryanto,

2005) and (Yoshida et al., 2002; Yoshida et al., 2004).

7.3.4 Correlations Between Classifications

Our framework has demonstrated that it is reasonable to omit correlations between

attributes after a problem space is partitioned into regions of homogeneous data.

However, the possibility of correlated data cannot be completely eliminated.

We have argued that it is not critical for our technique to handle correlations as

181

7.3. Future Research

the problem space tends to get partitioned into homogeneous regions. The prudence

studies on thyroid data provide strong support for this as although thyroid data is

highly correlated, the fact that we only had three false negatives demonstrates the

correlations are across partitions rather than within partitions.

We have developed a technique for handling two-variable correlations and have

shown that it increases false positives by less than 1% for two variables. As expected

and shown in Section 6.6, the false positive rate increases with more variables

since the number of profiles kept is N2 rather than N , where N is the number of

variables. To use the technique for large numbers of variables, it would probably

require a domain analysis to decide which variables should be considered. Some

domain analysis is needed also to normalize the variables for pairwise consideration.

We need to evaluate the approach on real domains where correlation might be a

problem - despite the fact that the RDR approach minimizes correlations.

182

Bibliography

Allen, J.R. (1999). Driving by the rear-view mirror: Managing a network with

cricket. In Proceedings of the 1st Conference on Network Administration.

Allen, J.R. (2003). The cricket reference guide. Retrieved December, 2006, from

http://cricket.sourceforge.net/support/doc/reference.html.

Anderson, D., T. Frivold, and A. Valdes (1995). Next generation intrusion-

detection expert system(nides). Technical report SRI-CSL-95-07, Computer Sci-

ence laboratory, SRI International, Menlo Park, CA, USA.

Anderson, J.P. (1980). Computer security threat monitoring and surveillance.

Technical report, James P. Anderson Co., Fort Washington, PA.

Anderson, R.J. (2001). Security Engineering: A Guide to Building Dependable

Distributed Systems, chapter 18 Network Attack and Defense. John Wiley & Sons

inc.

Angiulli, F., S. Basta, and C. Pizzuti (2006). Distance-based detection and

prediction of outliers. IEEE Transactions on Knowledge and Data Engineer-

ing 18: 145–160.

Axelsson, S. (2000). Intrusion detection system: A survey and taxonomy. Tech-

nical report 99-15, Chalmers University.

B. Mukherjee, L. T. Heberlein, K.N. levitt (1994). Network intrusion detection.

IEEE Network 8(3): 26–41.

Barford, P., J. Kline, D. Plonka, and A. Ron (2002). A signal analysis of network

traffic anomalies. In Internet Measurement Workshop 2002.

183

http://cricket.sourceforge.net/support/doc/reference.html

BIBLIOGRAPHY

Barford, P. and D. Plonka (2001). Characteristics of network traffic flow anoma-

lies. In In Proceedings of the ACM SIGCOMM Internet Measurement Workshop.

Barnett, V. and T. Lewis (1987). Outliers in Statistical Data. Wiley Series in

Probability and Mathematical Statistics. John Wiley & Sons, 2 edition.

Beal, V. (2006). The difference between a virus, worm

and trojan horse. Retrieved November, 2006, from

http://www.webopedia.com/DidYouKnow/Internet/2004/virus.asp.

Beale, J., J.C. Foster, J. Posluns, and B. Caswell (2003). Snort 2.0 Intrusion

Detection. Syngress Publishing, Inc., Rockland, MA.

Bekmann, J. and A. Hoffmann (2005). Improved knowledge acquisition for high-

performance heuristic search. In Proceedings of the 19th international joint con-

ference on artificial intelligence IJCAI, pp. 41–46, Denver, USA.

Beydoun, G. and A. Hoffmann (1997). Nrdr for the acquisition of search knowl-

edge. In Australian Joint Conference on Artificial Intelligence, pp. 177–186.

Beydoun, G. and A. Hoffmann (1998). Building problem solvers based on search

control knowledge. In 11th Banff Knowledge Acquisition for Knowledge Based

System Workshop, pp. Share1/1 – Share1/6.

Bradshaw, J.M., J.H. Boose, and S.P. Covington (1987). How to do with grids

what people say you can’t. In Journal of Knowledge Acquisition for Knowledge-

Based Systems, Vol. 1.

Breunig, M.M., H. Kriegel, R.T. Ng, and J. Sander (1999). Optics-of: Identifying

local outliers. In Proceedings of the 3rd European Conference on Principles and

Practice of Knowledge Discovery in Databases, Praque.

Breunig, M.M., H. Kriegel, R.T. Ng, and J. Sander (2000). Lof: Identifying

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD interna-

tional conference on Management of data, pp. 93–104, Dallas, Texas, US. ACM

Press New York, USA.

184

http://www.webopedia.com/DidYouKnow/Internet/2004/virus.asp

BIBLIOGRAPHY

Brockwell, P.J. and R.A. Davis (1996). Introduction to Time Series and Forecast-

ing. Springer, New York.

Brutlag, J.D. (2000). Aberrant behavior detection in time series for network

monitoring. In Proceedings of the 14th Systems Administration Conference(LISA

2000), New Orleans, Louisiana, USA. USENIX Association.

Buchanan, G.G., R. Betchel, J. Bennet, W. Clancey, C. Kulikowski, M.T. M.,

and D.A. Waterman (1983). Constructing an expert system. In Hayes-Roth, F.,

D.A. Waterman, and D.B. Lenat, editors, Building Expert Systems, pp. 127–167.

Addison-Wesley, London.

Caida (2006). Flowscan - network traffic flow visualization and reporting tool.

Retrieved December, 2006, from http://www.caida.org/tools/utilities/flowscan/.

Cannady, J. (1998). Artificial neural networks for misuse detection. In Proceed-

ings of the 1998 National Information Systems Security Conference (NISSC’98),

pp. 443–456.

Cao, T.M. and P. Compton (2005). A simulation framework for knowledge ac-

quisition evaluation. In Estivill-Castro, V, editor, Twenty-Eighth Australasian

Computer Science Conference (ACSC2005), pp. 353–360, Newcastle.

Cartwright, D. (2007). Software application review:

Snort 2.7 review. Retrieved November, 2007, from

http://www.techworld.com/applications/reviews/index.cfm?reviewID=562&pagtype=all.

Catlett, J. (1992). Ripple down rules as a mediating representation in interac-

tive induction. In Proceedings of the Second Japanese Knowledge Acquisition for

Knowledge Based Systems Workshop, pp. 155–170, Kobe, Japan.

Center, CERT Coordination (1995). Cert advisory ca-1995-01 ip spoofing

attacks and hijacked terminal connections. Retrieved January, 2006, from

http://www.cert.org/advisories/CA-1995-01.html.

Center, CERT Coordination (2002). Spoofed/forged email. Retrieved January,

2006, from http://www.cert.org/tech tips/email spoofing.html.

185

http://www.caida.org/tools/utilities/flowscan/
http://www.techworld.com/applications/reviews/index.cfm?reviewID=562&pagtype=all
http://www.cert.org/advisories/CA-1995-01.html
http://www.cert.org/tech

BIBLIOGRAPHY

Cheng, C., H.T. Kung, and K. Tan (2002). Use of spectral analysis in defense

against dos attacks. In Proceedings of Global Telecommunications Conference,

2002, IEEE GLOBECOM, pp. 2143–2148. IEEE.

Clancey, W.J. (1991). Situated cognition: Stepping out of representational

flatland. AI Communications-The European Journal on Artificial Intelli-

gence 4(2/3): 109–112.

Clancey, W.J. (1993). Situated cognition: How representations are created and

given meaning. In Lewis, R. and P. Mendelsohn, editors, Lessons from Learning,

pp. 231–242.

Compton, P., T. Cao, and J. Kerr (2004). Generalising incremental knowledge

acquisition. In Kang, B, A Hoffmann, T Yamaguchi, and W.K. Yeap, editors,

Proceedings of the Pacific Knowledge Acquisition Workshop 2004, pp. 44–53. Uni-

versity of Tasmania Eprints repository.

Compton, P., G. Edwards, B. Kang, and al. (1991). Ripple down rules: Possibil-

ities and limitations. In 6th Banff AAAI Knowledge Acquisition for Knowledge

Based Systems Workshop.

Compton, P., R. Horn, R. Quinlan, and Lazarus (1989). Maintaining an expert

system. In Quinlan, R., editor, Applications of Expert Systems, pp. 366–385.

Addison Wesley.

Compton, P. and R. Jansen (1988). Knowledge in context: a strategy for expert

system maintenance. In Seconde Australian Joint Artificial Intelligence Confer-

ence, pp. 292–306.

Compton, P. and R. Jansen (1990). A philosophical basis for knowledge acquisi-

tion. Knowledge Acquisition 2: 241–257.

Compton, P., B. Kang, P. Preston, and al. (1993). Knowledge acquisition without

analysis. In European Knowledge Acquisition Workshop. Springer-Verlag.

Compton, P., L. Peters, G. Edwards, and T.G. Lavers (2006). Experience with

ripple-down rules. Knowledge-Based System Journal p. in press.

186

BIBLIOGRAPHY

Compton, P., P. Preston, G. Edwards, and B. Kang (1996). Knowledge based

system that have some idea of their limits. In Proceedings of the 10th AAAI-

Sponsored Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,

Banff, Canada.

Compton, P., P. Preston, and B. Kang (1995). The use of simulated experts

in evaluating knowledge acquisition. In Gaines, B. and M. Musen, editors, Pro-

ceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-

Based Systems Workshop, pp. 12.1–12.8, Banff, Canada, University of Calgary.

Compton, P., Z. Ramadan, P. Preston, and al. (1998). A trade-off between domain

knowledge and problem-solving method power. In The 11th Banff Knowledge

Acquisition for Knowledge Based Systems Workshop.

Compton, P. and D. Richards (1999). Extending ripple down rules. In Proceeding

of the Fourth Australian Knowledge Acquisition Workshop 99, pp. 87–100, UNSW.

Compton, P. and D. Richards (2000). Generalising ripple down rules. In Deng,

R. and O.Corby, editors, Knowledge Engineering and Knowledge Management:

Methods, Models, Tools, pp. 380–386. Juan-les-Pins.

Corbridge, C., G. Rugg, N.P. Major, N.R. Shadbolt, and A.M. Burton (1994).

Laddering: technique and tool use in knowledge acquisition. Knowledge Acquisi-

tion 6: 315–341.

Cordingley, E.S. (1989). Knowledge elicitation techniques for knowledge-based

systems. In Diaper, D., editor, Knowledge Elicitation: Principle, Techniques and

Applications, pp. 87–175. John Wiley & Sons.

Crawford, E., J. Kay, and E. McCreath (2002a). Iems the intelligent email sorter.

In Proceedings of the Nineteenth International Conference on Machine Learning,

pp. 83–90. Morgan Kaufmann Publishers Inc.

Crawford, E., J. Kay, and E. McCreath (2002b). An intelligent interface for

sorting electronic mail. In Proceedings of the 2002 Conference on Intelligent User

Interfaces, pp. 182–183. ACM.

187

BIBLIOGRAPHY

Datar, M. and S. muthukrishnan (2001). Estimating rarity and similarity over

data stream windows. Technical report 21, DIMACS.

Debar, H., M. Becker, and D. Siboni (1992). A neural network component for an

intrusion detection system. In Proceedings of the 1992 IEEE Computer Society

Symposium on Research in Security and Privacy, pp. 240–250, Oakland, USA.

Denning, Dorothy E. (1987). An intrusion-detection model. IEEE Transactions

on Software Engineering SE-13(2): 222–232.

Duda, R. and E. Shortliffe (1983). Expert systems research. Science 220: 261–268.

Durkin, J. (1994). Expert Systems Design and Development. Macmillan Publishing

Company.

Edwards, G., P. Compton, R. Malor, A. Srinivasan, and L. Lazarus (1993). Peirs:

a pathologist maintained expert system for the interpretation of chemical pathol-

ogy reports. Pathology 25: 27–34.

Edwards, G, B Kang, P Preston, and P Compton (1995). Prudent expert systems

with credentials: Managing the expertise of decision support systems. Int. J.

Biomed. Comput. 40: 125–132.

Fallon, A. and C. Spada (1997). Detection and accommodation of out-

liers in normally distributed data sets. Retrieved June, 2005, from

http://ewr.cee.vt.edu/environmental/teach/smprimer/outlier/outlier.html.

Feigenbaum, E.A. (1984). Knowledge engeering: The applied side of artificial

intelligence. In Proc. of a symposium on Computer culture: the scientific, in-

tellectual, and social impact of the computer, pp. 91–107, New York. New York

Academy of Science New York.

Gaines, B. (1991). Induction and visualisation of rules with exceptions. In

6th AAAI Knowledge Acquisition for Knowledge Based Systems Workshop,

pp. 7.1–7.17, Banff.

188

http://ewr.cee.vt.edu/environmental/teach/smprimer/outlier/outlier.html

BIBLIOGRAPHY

Gaines, B.R. and P. Compton (1992). Induction of ripple down rules. In Proceed-

ings of the 5th Australian Joint Conference on Artificial Intelligence, pp. 349–354,

Hobart, Tasmania. World Scientific, Singapore.

Gaines, B.R. and P. Compton (1995). Induction of ripple-down rules ap-

plied to modeling large databases. Journal of Intelligent Information Sys-

tems 5(3): 211–228.

Gaines, B.R. and M.L.G. Shaw (1993). Eliciting knowledge and transferring

it effectively to a knowledge-based system. Knowledge and Data Engineer-

ing 5(1): 4–14.

Gilbert, A.C., S. Guha, P. Indyk, Muthukrishnan, and M.J. Strauss (2001). Quick-

sand: Quick summary and analysis of network data. Technical report 43, DI-

MACS.

Goupillaud, P., A. Grossmann, and J. Morlet (1984). Cycle-octave and related

transforms in seismic signal analysis. Geoexploration 23: 85–102.

Guan, Y., A.A. Ghorbani, and N. Belacel (2003). Y-means: A clustering method

for intrusion detection. In Proceedings of the 2003 Canadian Conference on Elec-

trical and Computer Engineering, Montreal.

Guha, R.V. and D. Lenat (1990). Cyc: A midterm report. AI Magazine.

Hawkins, D. (1980). Identification of Outliers. Chapman and Hall, London.

Hayes-Roth, F., D. Waterman, and D. Lenat (1983). Building Expert Systems.

Addison-Wesley, New York.

Heberlein, L.T., G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and D. Wolber

(1990). A network security monitor. pp. 296–303.

Huber, R.J. (1981). Robust Statistics. Wiley.

Hussain, A., J. Heidemann, and C. Papadopoulos (2003). Identification of re-

peated attacks using network traffic forensics. Technical report, USC/Information

Sciences Institute.

189

BIBLIOGRAPHY

Hussain, A., J. Heidemann, and C. Papadopoulos (2006). Identification of re-

peated denial of service attacks. In Proceedings of INFOCOM 2006, 25th IEEE

International Conference on Computer Communications, pp. 1–15, Barcelona,

Spain. IEEE.

Iglewicz, B. and D.C. Hoaglin (1993). How to Detect and Handle Outliers. Amer-

ican Society for Quality Control, Milwaukee, WI.

Ilgun, K. (1993). Ustat: A real-time intrusion detection system for unix. IEEE

Symposium on Security and Privacy pp. 16–28.

Innella, P. (2001). The evolution of intrusion detection systems. Retrieved De-

cember, 2006, from http://www.securityfocus.com/infocus/1514.

Institute, SANS (2005). The twenty most critical internet security vulnerabil-

ities (updated) the expert consensus, v.6.01. Retrieved January, 2006, from

http://www.sans.org/top20.

Javvin Technologies, Inc. (2006). Port scan attack.

http://javvin.com/networksecurity/PortScanAttack.html.

Jung, J., B. Krishnamurthy, and M. Rabinovich (2002). Flash crowds and denial

of service attacks: Characterization and implications for cdns and web sites. In

Proceedings of the World Wide Web Conference, Honolulu, Hawaii.

Kang, B., P. Compton, and P. Preston (1995). Mulitple classification ripple down

rules: Evaluation and possibilities. In The 9th AAAI-Sponsored Banff Knowledge

Acquisition for Knowledge Based Systems Workshop.

Kang, B., P. Compton, and P. Preston (1998). Simulated expert evaluation of

multiple classification ripple down rules. In Proceedings of 11th Banff Knowl-

edge Acquistion for Knowledge-Based System Workshop, pp. 1–19, University of

Calgary.

Kelly, G.A. (1955). A theory of personality: The psychology of personal con-

structs.

190

http://www.securityfocus.com/infocus/1514
http://www.sans.org/top20
http://javvin.com/networksecurity/PortScanAttack.html

BIBLIOGRAPHY

Kivinen, J., H. Mannila, and E. Ukkonen (1993). Learning rules with local excep-

tions. In European Conference on Computational Theory, pp. 35–46. Clarendon

Press, Oxford.

Knorr, E.M. and R.T. Ng (1997). A unified notion of outliers: Properties and

computation. In Knowledge Discovery and Data Mining, pp. 219–222.

Knorr, E.M. and R.T. Ng (1998). Algorithms for mining distance-based outliers

in large datasets. In Proceedings of the 24th VLDB Conference, pp. 392–403, New

York, USA.

Kohavi, R. and F. Provost (1998). Glossary of terms: Special issue on applications

of machine learning and the knowledge discovery process. In Kohavi, R. and

F. Provost, editors, Machine Learning, Vol. 30. Kluwer Academic.

Krishnamurthy, B., S. Sen, Y. Zhang, and Y. Chen (2003). Sketch-based change

detection: Methods, evaluation, and applications. In IMC’03: Proceedings of the

3rd ACM SIGCOMM conference on Internet measurement, Miami Beach, Florida,

USA.

Kumar, S. and E.H. Spafford (1994). An application of pattern matching in

intrusion detection. Technical report CSD-TR-94-013, Department of Computer

Sciences, Purdue University.

Lakhina, A., M. Crovella, and C. Diot (2004a). Characterization of network-wide

anomalies in traffic flows. In Proceedings of Internet Measurement Conference 04,

Italy. ACM.

Lakhina, A., M. Crovella, and C. Diot (2004b). Diagnosing network-wide traffic

anomalies. Portland.

Leland, W.E., M.S. Taqqu, W. Willinger, and D.V. Wilson (1994). On the self-

similar nature of ethernet traffic (extended version). In IEEE/ACM Transactions

on Networking (TON), pp. 1–15. IEEE Press Piscataway, NJ, USA.

Lenat, D. (1994). A brief list of the applications. Retrieved January, 2006, from

http://www.cyc.com/cyc/technology/cycandd/brieflist.

191

http://www.cyc.com/cyc/technology/cycandd/brieflist

BIBLIOGRAPHY

Lenat, D. (2002). Artificial intelligence as common sense knowledge. Retrieved

January, 2006, from http://www.leaderu.com/truth/2truth07.html.

Lizard, A. (2002). Using snort for intrusion detection. Retrieved November, 2007,

from http://web.njit.edu/m̃anikopo/SNORT/snort review1.html.

Lunt, T.F., R. Lee R. Jagannathan, S. Listgarten, D.L. Edwards, P.G. Neumann,

H.S. Javitz, and A. Valdes (1988). Ides: The enhanced prototype, a real-time

intrusion-detection expert system. Technical report SRI-CSL-88-12, Computer

Science laboratory, SRI International, Menlo Park, CA, USA.

Lyle, M.P. (1998). Attacks and countermeasures- a study of network attact classes

and security components to protect against them. Technical report, Recourse

Technologies inc.

Mandjes, M., I. Saniee, and A.L. Stolyar (2005). Load characterization and

anomaly detection for voice over ip traffic. IEEE Transactions on Neural Net-

works 16(5): 1019–1026.

Mcgraw, K.L and K. Harbison-Briggs (1989). Review: Knowledge acquisition for

expert systeems.

Mills, T.C. (1990). Time Series Techniques for Economists. Cambridge University

Press.

Misra, A., A. Sowmya, and P. Compton (2004). Incremental learning of control

knowledge for lung boundary extraction. In Kang, B., editor, Proceedings of the

Pacific Knowledge Acquisition Workshop PRICAI 2004, pp. 211–225, Auckland,

New Zealand.

Mulholland, M., P. preston, B. Hibbert, and P. Compton (1993). An expert

system for ion chromatography developed using machine learning and knowledge

in context. In Proceedings of the Sixth International Conference on Industrial and

Engineering Applications of Artificial Intelligence and Expert Systems, Edinburgh.

Mycoted (2006). Laddering. Retrieved December, 2006, from

http://www.mycoted.com/Laddering.

192

http://www.leaderu.com/truth/2truth07.html
http://web.njit.edu/
http://www.mycoted.com/Laddering

BIBLIOGRAPHY

Oetiker, T. and GNU (2006). Rrd tool. Retrieved December, 2006, from

http://oss.oetiker.ch/rrdtool/index.en.html.

Papadimitriou, S., H. Kitawaga, P.B. Gibbons, and C. Faloutsos (2002). Loci:

Fast outlier detection using the local correlation integral. Technical report IRP-

TR-02-09, Intel Research.

Park, M., L. Wilson, and J. Jin (2000). Automatic extraction of lung bound-

aries by a knowledge-based method. In Visualisation 2000, pp. 11–16, Sydney,

Australia.

Porras, P.A. and P.G. Neumann (1997). Emerald: Event monitoring enabling

responses to anomalous live disturbances. In Proc. 20th NIST-NCSC National

Information Systems Security Conference, pp. 353–365.

Prayote, A. and P. Compton (2006). Detecting anomalies and intruders. In

Proceedings of AI 2006: Advances in Artificial Intelligence, Hobart, Tasmania,

AU.

Preston, P., G. Edwards, and P. Compton (1994). A 2000 rule expert system

without knowledge engineers. In The 8th AAAI-Sponsored Banff Knowledge Ac-

quisition for Knowledge Based Systems Workshop.

Puppe, F. (1993). Systematic Introduction to Expert Systems. Springer-Verlag,

USA.

Richards, D. and P. Compton (1998). Taking up the situated cognition challenge

with ripple down rules. Int.J. Human-Computer Studies pp. 895–926.

Richards, D. and P. Compton (1999). Sisyphus i revisited: An incremental ap-

proach to resource allocation using ripple down rules. In 12th Workshop on Knowl-

edge Acquisition, Modeling and Management, pp. 7–7.1 – 7–7.20, Banff, Canada.

SRDG Publications.

Rousseeuw, P.J. and A.M. Leroy (1987). Robust Regression and Outlier Detection.

John Wiley & Sons, New York.

193

http://oss.oetiker.ch/rrdtool/index.en.html

BIBLIOGRAPHY

Rugg, G., M. Eva, A. Mahmood, N. Rehman, S. Andrews, and S. Davies (2002).

Eliciting information about organizational culture via laddering. Journal of In-

formation System 12: 215–230.

Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern Approach.

Prentice-Hall, Inc.

Ruts, I. and P. Rousseeuw (1996). Computing depth contours of bivariate point

clouds. Computational Statistics and Data Analysis 23: 153–168.

Ryan, J., M. Lin, and R. Miikkulainen (1998). Intrusion detection with neural

networks. In Jordan, M.I., M.J. Kearns, and S.A. Solla, editors, Advances in

Neural Information Processing Systems, Vol. 10. The MIT Press.

Scheffer, T. (1996). Algebraic foundations and improved methods of induction or

ripple down rules. In The Second Pacific Rim Knowledge Acquisition Workshop,

pp. 279–292.

Sebring, M., E. Shellhouse, M. Hanna, and R. Whitehurst (1988). Expert systems

in intrusion detecion: A case study. In Proceedings of the 11th National Computer

Security Conference, pp. 74–81, Baltimore, Mariland.

Shaw, M.L. and B.R. Gaines (1988). Kitten: Knowledge initiation and trans-

fer tools for experts and novices. In Boose, J. and B.R. Gaines, editors,

Knowledge-Based Systems, Vol. 2: Knowledge Acquisition Tools for Expert Sys-

tems, pp. 309–338. Academic Press, New York.

Siromoney, A. and R. Siromoney (1993). Variations and local exception in induc-

tive logic programming. In Furukawa, K., D. Michie, and S. Muggleton, editors,

Machine Learning - Applied Machine Intelligence, Vol. 14, pp. 213–234.

Smaha, S. (1988). Haystack: An intrusion detection system. In Proceedings

of 4th Aerospace Computer Security Applications Conference, pp. 37–44. IEEE

Computer Society Press.

194

BIBLIOGRAPHY

Soule, A., K. Salamatian, and N. Taft (2005). Combining filtering and statistical

methods for anomaly detection. In IMC’05, 2005 Internet Measurement Confer-

ence, pp. 331–344.

Suryanto, H. (2005). Learning and Discovery in Incremental Knowledge Acqui-

sition. Ph.D. diss., Computer Science and Engineering, University of New South

Wales, Australia.

Suryanto, H., D. Richards, and P. Compton (1999). The automatic compression

of multiple ripple down rule knowledge based systems: Preliminary experiments.

In Knowledge-Based Intelligence Information Engineering Systems, pp. 203–206,

Adelaide, South Australia. IEEE.

Teng, H.S., K. Chen, and S.C. Lu (1990). Security audit trail analysis using induc-

tively generated predictive rules. In Proceedings of 6th Conference on Artificial

Intelligence Applications, pp. 24–29, IEEE Service Center, Piscataway, NJ.

Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.

Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: Heuristics

and biases. Science 185: 1124–1130.

Vaccaro, H.S. and G.E. Liepins (1989). Detection of anomalous computer session

activity. In Proceedings of the 1989 IEEE Symposium on Security and Privacy,

pp. 280–289. IEEE Computer Society Press.

Walfish, M., M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker (2006).

Ddos defense by offense. In Proceedings of the 2006 conference on Applica-

tions, technologies, architectures, and protocols for computer communications,

pp. 303–314, Pisa, Italy. ACM New York, NY, USA.

Wang, Y., Y. Sure, R. Stevens, and A. Rector (2006). Knowledge elicitation

plug-in for protege: Card sorting and laddering. In Mizoguchi, R., Z. Shi, , and

F. Giunchiglia, editors, Asian Semantic Web Conference, Vol. 4185 of LNCS,

pp. 552–565, Beijing, China. Springer-Verlag Berlin Heidelberg.

Waterman, D. (1986). A Guide to Expert Systems. Addison-Wesley, Reading.

195

BIBLIOGRAPHY

Wikipedia (2006a). Man-in-the-middle attack. Retrieved December, 2006, from

http://en.wikipedia.org/wiki/Man in the middle attack.

Wikipedia (2006b). Principle component analysis. Retrieved January, 2006, from

http://en.wikipedia.org/wiki/Principal components analysis.

Wikipedia (2006c). Spoofing attack. Retrieved December, 2006, from

http://en.wikipedia.org/wiki/Spoofing attack.

Wikipedia (2007a). Correlation. Retrieved January, 2007, from

http://en.wikipedia.org/wiki/Correlation.

Wikipedia (2007b). Hashimoto’s thyroiditis. Retrieved March, 2007, from

http://en.wikipedia.org/wiki/Hashimoto’s thyroiditis.

Wikipedia (2007c). Snort (software). Retrieved November, 2007, from

http://en.wikipedia.org/wiki/Snort (software).

Winograd, T. and F. Flores (1987). Understanding Computers and Cognition:

A New Foundation for Design. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Witten, I.H. and E. Frank (2005). Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, San Francisco, 2nd edition.

Yamanishi, K. and J. Takeuchi (2001). Discovering outlier filtering rules from

unlabeled data. In Proceedings of the 7th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 389–394, Sanfrancisco California.

Yamanishi, K., J. Takeuchi, and G. Williams (2000). On-line unsupervised outlier

detection using finite mixtures with discounting learning algorithms. In Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 320–324, Boston, Massachusetts, US. ACM Press New York,

USA.

Yang, X., D. Wetherall, and T. Anderson (2005). A dos-limiting network ar-

chitecture. In Proceedings of the 2005 conference on Applications, technologies,

196

http://en.wikipedia.org/wiki/Man
http://en.wikipedia.org/wiki/Principal
http://en.wikipedia.org/wiki/Spoofing
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Hashimoto%E2%80%99s
http://en.wikipedia.org/wiki/Snort

BIBLIOGRAPHY

architectures, and protocols for computer communications, pp. 241–252, Philadel-

phia, Pennsylvania, USA. ACM New York, NY, USA.

Yoshida, T., H. Motoda, T. Wada, and T. Washio (2002). Adaptive ripple down

rules method based on minimum description length principle. In Proceedings the

2002 IEEE International Conference on Data Mining (ICDM’02), pp. 530–537.

IEEE Computer Society.

Yoshida, T., H. Motoda, T. Wada, and T. Washio (2004). Adaptive ripple down

rules method based on minimum description length principle. Intelligent Data

Analysis 8: 239–265.

197

	Title page - Knowledge Based Anomaly Detection
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Network Attack and Intrusion Detection Systems
	Chapter 3 - Knowledge Based Systems
	Chapter 4 - Detecting Outliers from Homogeneous Data
	Chapter 5 - Network Traffic Anomaly Detection
	Chapter 6 - Prudent Knowledge Bases
	Chapter 7 - Summary
	Bibliography

