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Abstract 

This dissertation presents solutions to two open problems in estimation theory. 

The first is a tractable analytical solution for problems in multi-target filtering which are 

too complex to solve using traditional techniques. The second explores a new approach 

to the nonlinear filtering problem for a general class of models. 

The approach to the multi-target filtering problem which involves jointly estimat-

ing a random process of the number of targets and their state, developed using the prob-

ability hypothesis density (PHD) filter alleviates the intractability of the problem by 

avoiding explicit data association. Moreover, the notion of linear jump Markov systems 

is generalized to the multiple target case to accommodate births, deaths and switching 

dynamics to derive a closed form solution to the PHD recursion for this so-called linear 

Gaussian jump Markov multi-target model. The proposed solution is general enough to 

accommodate a broad class of practical problems which are deemed intractable using tra-

ditional techniques. Based on this closed form solution, an efficient method is developed 

for tracking multiple maneuvering targets that switch between multiple models without 

the need for gating, track initiation and termination, or clustering for extracting state 

estimates. 

The approach to the nonlinear filtering problem explores the framework of the vir-

tual linear fractional transformation (LFT) model which localizes the nonlinearity to the 

feedback with a simple and sparse structure. The LFT is an exact representation for any 

differentiable nonlinear mapping and therefore amenable to a general class of problems. 

An alternative analytical approximation method is presented which avoids linearization 



of the state space model. The uncorrelated structure of the feedback connection gives 

better second-order moment approximation of the nonlinearly mapped variables. By ar-

ranging the unscented transform in the feedback, the prediction and estimation steps are 

derived in closed form. The proposed filters for the discrete-time model and continuous-

time dynamics with sampled-data measurements respectively are shown to be robust un-

der highly nonlinear and uncertain conditions where standard analytical approximation 

based filters diverge. Moreover, the LET based filters are efficient for online implemen-

tation. In addition, the LFT framework is applied to extend the closed form solution of 

the PHD recursion to the nonlinear jump Markov multi-target model. 
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Chapter 1 

Introduction 

The objective of this thesis can be summarized into two main goals. The first 

is the development of a tractable solution for problems in multi-target filtering where 

traditional techniques are deemed intractable. The second is the development of a new 

approach for solution to the nonlinear filtering problem for a general class of nonlin-

ear models. The viability of the results is particularly confirmed by comparison with 

recognized benchmark techniques. 

Multi-target filtering is one of the most critical functions in many civilian and 

military applications. Some of these applications include air traffic control, financial 

econometrics, global positioning systems, air defense systems, ocean surveillance sys-

tems and ballistic missile defense. A typical scenario of a surveillance system includes 

time-varying number of targets as new targets appear in the surveillance region while 

existing targets disappear in the presence of false alarms, noise and uncertainties in the 

target dynamics, data association and detection. In order to provide accurate and reli-

able estimates of the state of the objects in the surveillance space, a rehable modeling 

of interconnected components such as target births, deaths, switching target dynamics, 

detection uncertainty and clutter is required. In addition, the model must be computa-

tionally efficient for real-time implementation. As such, the problem is extremely chal-

lenging in both theory and implementation and involves jointly estimating the number 

of targets and their state at each time step. Traditional multi-target filtering techniques 



are computationally intractable under such a general setting. 

A target may not follow a predefined trajectory and the uncertainty in the dy-

namics is modeled by additive noise to compensate for the modeling inaccuracy. If the 

variance of the noise is small and the target maneuvers sharp turns, the model suffers 

the loss of track of the target. On the other hand, if the variance of the noise is large, 

the model is able to track the target but the accuracy of the estimate is degraded. A 

target that can maneuver exhibits different kinematic behavior from time to time. In 

such a case, a single model is insufficient to describe completely the behavior of the 

target at all times. The estimates based on the single model often lead to either poor 

accuracy of the state estimate or loss of track. The jump Markov system (JMS) or 

multiple models approach has proven to be an effective tool for single maneuvering tar-

get tracking [9, 7, 80, 18, 81]. In this approach, the target can switch between a set of 

models in a Markovian fashion. 

False alarms produced by clutter due to interference between signals and mul-

tiple path returns detected by the sensor introduce uncertainty in the origin of the 

measurement. It is not known whether a measurement is produced by a target or spu-

rious detection. Moreover, noise, occlusion and sensor resolution in case of targets in 

close proximity may cause the sensor to miss a target. Since the standard filtering 

theory assumes that the origin of the measurement is known in order to update the 

target state, traditional tracking approaches solve the data association problem in order 

to apply standard Bayesian filtering techniques. An error can be made in associating 

spurious observations to a target. Therefore, the performance and reliabihty of the tra-

ditional methods are highly dependent on the data association. A Bayesian procedure 

in the tracking problem was introduced in [121] to solve the data association problem 

which combined with the work [118] led to the development of the nearest neighbor 

(NN) method [120], applicable in low cluttered environments. The probabilistic data 

association (PDA) method [8, 11] by weighted averaging the observations gives better 



performance than the NN method in environments where clutter rate is high [43 . 

The multi-target filtering problem is further compounded by the additional un-

certainty in data association introduced due to the presence of multiple targets. It is not 

known which target in the state space produced which measurement in the observation 

space. The extended probabilistic data association algorithm [5] and its revised version 

which performs better under track crossing known as the joint probabilistic data asso-

ciation (JPDA) filter [41, 42] were developed to solve the data association problem in 

the multi-target setting. However, these methods require that the number of targets be 

known and fixed. A more generalized algorithm known as the multiple hypotheses track-

ing (MHT) [113, 114] filter forms a hypothesis about the origin of the measurements 

and retains likely hypotheses based on a pruning criterion for tracking an unknown and 

time-varying number of targets. JPDA and MHT do not handle maneuvering targets. 

The JMS approach can be combined with these traditional data association algorithms 

to track multiple maneuvering targets [6, 19, 130, 29, 60, 38, 73, 111]. However, these 

data association-based approaches are computationally intensive in general and heuristic 

techniques are used to reduce the computational load. 

Early attempts at tracking an unknown fixed number of targets using point pro-

cess formulation were made in [140, 99]. Although various approaches have been pro-

posed for simultaneous estimation of the time-varying number of targets and their state 

in [95, 94, 123, 15, 100], the first systematic treatment of Bayesian multi-target filtering 

based on random finite sets (RFS) [93] is given in [92, 45, 91, 88]. The RFS approach 

treats the finite sets of targets and observations at each time step as the multi-target 

state and multi-target observation respectively and is an elegant generalization of the 

single target Bayes filter. The works cited above formulate the multi-target filtering 

problem using finite set statistics (FISST) [88] and fall short of providing a rigorous 

treatment of the FISST Bayes recursion which involves set derivatives of belief mass 

functions instead of probability densities. A measure-theoretic formalism of the problem 



was provided in [138, 137] which also established the vahdity of the FISST Bayes recur-

sion by showing the relationship between FISST and conventional probability theory. 

For a comparison of the RFS approach and traditional multi-target tracking methods 

see 45 

The Probability Hypothesis Density (PHD) filter [92, 90, 89, 124] which propa-

gates the first moment of the multi-target posterior only called the intensity function cir-

cumvents the combinatorial computations that arise from data association while accom-

modating detection uncertainty, Poisson false alarms, target motion and time-varying 

number of targets. In [132], the PHD filter was applied to track multiple maneuvering 

targets using sequential Monte Carlo (SMC) implementations [138, 137]. However, the 

main drawbacks of the SMC approach are the large number of particles and the unrelia-

bihty of clustering for extracting multi-target state estimates [138, 131, 133]. Recently, 

a closed form solution to the PHD recursion has been found for linear Gaussian models 

that led to the development of the Gaussian mixture PHD filter [133, 131]. Although 

this approach is efficient and capable of handling nonlinear models, it is not general 

enough for addressing targets with JMS dynamics. At present there is no tractable 

analytical technique for tracking multiple targets with JMS dynamics. 

Many real world problems do not follow linear models. A JMS comprising of non-

linear models accommodates an even wider range of applications by providing a greater 

generality for modeling systems that switch between various models. However, for the 

nonlinear filtering problem there exists no analytical expression for the optimal Bayes 

solution and in the single target environment a significant challenge is to find an efficient 

method for on-line, real-time estimation of the state given a nonlinear mapping of the 

state. Consequently, approximate nonlinear filters have been proposed. These methods 

are based on either analytical approximations [59, 44, 62, 63, 116, 57, 101], numeri-

cal approximations [14, 85, 21, 37, 117, 12, 27, 69, 68] or simulation based approaches 

47, 46, 30, 40, 39, 87, 26]. The most widely used analytical approximation method is 



the extended Kalman filter (EKF) [59, 44]. The EKF apphes a local linearization to the 

nonlinear mapping around the state estimate. This suggests that the region of stability 

may be small, significant bias and convergence problems are commonly encountered due 

to the crude approximation. The unscented Kalman filter (UKF) [62, 63] apphes the 

unscented transform [62] which uses the statistical linear regression technique [77, 78 

to approximate the moments of random variables. Similar to the UKF, the divided dif-

ference filter [116, 57, 101] also adopts a derivative-free hnearization method called the 

central difference approximation for functional evaluation. The conditional expectation 

evaluated using the UKF has a higher order accuracy than the estimate given by the 

EKF. This has been substantiated by empirical studies on the EKF and the UKF show-

ing that in most applications the UKF gives better approximation [62, 63, 77, 33, 115 . 

Despite the advantage of the UKF over the EKF, the two approaches work reasonably 

well under mildly nonlinear conditions only. 

Over the past few years SMC methods have attracted attention for nonlinear 

Bayesian filtering apphcations [40, 39]. These methods approximate the filtering distri-

bution by a set of samples drawn from a proposal distribution. Under the assumption 

that the proposal distribution includes the region of support of the filtering distribution, 

SMC methods give more accurate estimates than the analytical approximation based 

methods. In practice, a sufficiently large number of samples is needed. It is only in the 

limit that the number of samples approaches infinity that the simulation-based methods 

guarantee convergence of the estimate to the optimal Bayes solution. There have been 

many recent modifications and improvements on the SMC methods [39]. However, some 

of the problems related to the choice of proposal density, optimal sampling from the 

distribution and computational complexity still persist. 

In nonlinear control, two transformation methods are well-known. The exact 

feedback linearization transforms a nonlinear control system into an equivalent linear 

one through a variable change [55, 56, 70]. However, it is applicable to a limited class 



of nonlinear systems. On the other hand, the hnear fractional transformation (LFT) 

method (see e.g., [143, 4, 3] and the references therein) exists for a broad class of 

nonlinear systems and is extensively employed in 7-̂ 2 and Tioo gain-scheduling based 

control and filtering to represent nonlinear plants, where the uncertainty appears as a 

LFT (see e.g., [129, 128, 127, 25] and the references therein). The LFT is attractive in 

that it localizes the nonlinearity to the feedback with a structure that is both simple and 

sparse. The approximation in the LFT is therefore sufficiently localized to the feedback 

to linearize a simple nonlinear structure. 

This dissertation presents a generalization of the Bayesian multi-target filtering 

framework using the RFS approach to facilitate tracking of multiple maneuvering tar-

gets in the presence of noise, clutter and uncertainties in target dynamics, detection and 

data association. The proposed multi-target model accommodates target spawning, of 

interest in military applications to detect missiles spawned from a target for early detec-

tion and interception. The nonlinearity of the radar measurement model is addressed by 

the second main theme of this thesis in developing a nonlinear filtering technique that 

can accommodate a general class of nonlinear models to provide a perspective that has 

no been investigated previously in the hterature. This research impacts both military 

and civilian applications. Specifically, the original contributions of the thesis are the 

following. 

• The notion of linear jump Markov systems is generalized to the multiple target 

case to accommodate births, deaths and switching dynamics. A closed form 

solution to the PHD recursion is derived for this so-called linear Gaussian jump 

Markov multi-target model. Based on this closed form solution, an efficient 

method is developed for tracking multiple maneuvering targets that switch be-

tween multiple models. In addition, the proposed approach is extended to non-

linear jump Markov multi-target models by combining the closed form solution 

and the unscented transform. Further details can be found in Chapter 3. 



• A nonlinear Bayesian filtering technique is developed for the discrete-time model 

based on LFT modeling. A closed form solution to Bayes recursion is derived by 

arranging the unscented transform in the feedback. In addition, the proposed 

filtering approach is generalized to handle any smooth nonlinear mapping using 

the nonlinear fractional transformation (NFT) model. Further details can be 

found in Chapter 4. 

• A nonlinear Bayesian filtering technique is developed for the continuous-time 

dynamical model based on the efl[icient LFT modeling approach for simple ap-

proximation of the stochastic differential equation of the state prediction and 

accurate estimation of the state conditional on observations. Further details 

can be found in Chapter 5. 

This thesis is divided into six chapters. The first chapter gives an introduction. The 

second chapter is devoted to the mathematical foundations. The third presents the 

linear Gaussian jump Markov multi-target model which is more general than those 

in standard multi-target tracking algorithms. While traditional multi-target filtering 

techniques are computationally intractable for a model of such generality it is shown 

that using the RFS approach, this model is amenable to computationally efficient multi-

target filtering techniques. The fourth chapter contains a discussion on the solution of 

the nonhnear filtering problem using LFT modehng for the discrete-time system. This 

discussion is continued in the fifth chapter for the continuous-time dynamical model 

with sampled-data measurements. The conclusion of this thesis in the sixth chapter 

highhghts the importance of developing effective multi-target filtering and nonlinear 

filtering techniques and shows that the proposed methods provide sound developments 

in estimation theory. 



Chapter 2 

Mathematical foundations 

Bayesian estimation of the state at time A: of a given dynamical stochastic process 

based on the available information up to time k is known as filteñng. The objective is to 

find an estimate that is optimal for a given criterion. Such problems have been dealt with 

in great detail in the Kalman filter [65] framework for second-order stationary processes 

and the minimum mean square error (MMSE) criterion [59, 44, 1]. The advantage of 

the approach can be found in the recursive form of the solution with favorable practical 

imphcation in terms of real-time implementation. The estimation problem for random 

sets is also of theoretical and practical importance. An application that has attracted 

considerable attention is the target tracking problem for multiple targets where the state 

and observation are finite sets. 

This chapter briefiy covers mathematical concepts that will facilitate discussions 

presented in this thesis. Section 2.1 reviews optimal estimation of a function of a random 

variable for the MMSE criterion. Section 2.2 presents the Kalman filter as the optimal 

Bayes filter for the linear state space model. Background on random finite sets (RFS) 

is presented in Section 2.3. Using the point process interpretation of RFS, a discussion 

on RFS filtering is given in Section 2.4. Analytical approximation methods in nonlinear 

filtering are discussed in Section 2.5. 

The notation adopted is as follows: X\Y denotes a random variable X restricted by 

a reahzation of the conditioning random variable F, Ex(-) denotes the expectation 
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with respect to random variable X , {•, •) is the dot product and tr(-) denotes the trace 

operator. X ~ N{X\ x, Rx) denotes a normally distributed random variable with mean 

X and covariance Rx , while N{ '\x ,Rx) is its probability density function. denotes 

the pseudo-inverse of Rx-

2.1 MMSE estimation 

Consider the state space model given by 

Xk+i = ¡{xk) + BkWk, (2.1) 

Zk = g[xk) + DkVk, (2-2) 

where / and g denote arbitrary nonlinear mappings. Here, Xk G R^ and Zk G 

are the system state and measurement, Wk ~ Ai(wk-,0,Qk) and Vk ~ J\i{vk;0,Rk) are 

mutually uncorrelated process noise and measurement noise which are also statistically 

independent of Xk- Bk e and Dk G denote noise gain matrices. 

The filtering problem involves estimating the state Xk at time k which evolves 

in a Markovian fashion in the presence of uncertainty Wk conditional on the history of 

observations Zk = (2:1,..., Zk) corrupted by noise process {v i , . . . , vk} . As the present 

state Xk also plays an intermediate role as the information carrier for all the past ob-

servations (2:1, . . . , Zk-l ), filtering is two step process: using observation equation (2.2) 

to estimate the current state Xk from the current observation Zk and then using state 

equation (2.1) to predict the future state Xk+i- These steps in essence are particular 

cases of the following estimation problem. 

Let X and Y be two random variables with expected values E x ( X ) = òc and 

E y ( y ) = y respectively and with covariance c o v ( y , X ) = Ryx and E y x ( ( y , X ) ) = 

t r ( cov (y ,X) + Ey (F )Ex (X)^ ) . The central problem of linear estimation is how to 

estimate X by an affine function AY + h with deterministic matrix A and vector 6? 
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Using the minimum mean square error (MMSE) criterion, A and b are found from 

imnExYiWX-{AY (2.3) 
A,b 

If X and Y are zero mean i.e., x = 0 and y = 0, it follows that b = 0. Moreover, if X 

and Y are also uncorrelated, then EXY{\\X - AYW^) = tr{cov{X, X) ACOY(Y,Y)A^) 

is attained minimum at = 0, i.e., 0 = 0 • F is the optimal Hnear estimator of X 

conditional on Y. An important result pertinent to estimation and filtering is stated as 

a theorem below. 

Theorem 2.1. Let X and Y be two random variables with expected values x and y, 

auto-covariances Rx and RY respectively and cross-covariance RYX- Then 

{ R Ç x R y . ^ - RyxRyV) = a rgminExrd lX - {AY + b)f). 
A,b 

Consequently, the linear estimator of X based on the observation Y = y for any random 

variables X and Y is 

x-^R^x^Uy-y)-

Moreover, the exact linear statistical relation of X and Y is 

X = + x + (2.4) 

where the random error 

e = X-R^xRY(y-y)-^ (2-5) 

is uncorrelated to Y, 

(2.6) 

and 

EXY{\\X - RYXRY(^ - y ) - ^f) = - RIX^A^RYX)-

Proof. The proof is based on well known results [112, 1 . 

Let be the augmented vector formed by concatenating X and Y and RX,Y 
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be the covariance matrix of the augmented vector, then for 

Rx Rxy 
Rx,y = 

RJcy ^y 
> 0 , 

any vector orthogonal to columns of Ry{Rx) must also be orthogonal to the columns 

of RyxiRyx)- M{X) denote the linear space spanned by columns of X, then 

M{Ryx) C M{Ry),M{Ryx) ^ M{Rx) and there is a matrix B such that Ryx = 

BRy. Using the property RYRyRy = Ry, 

RyxRyRy ~ ^Ry ~ R^x^ 

and hence 

= E ( (X - x )^^) _ flT^^E ( ( y -

— Ryx ~ RyxRyRy ~ 

i.e., X — X — R^xRyO^ ~ v) ^^^ ^ ^̂ ^ uncorrelated which implies that 0 is the 

optimal linear estimator oi X — x — R^^R}y{Y — y) conditional on Y or equivalently x + 

R^^Ry{y — y) is the optimal hnear estimator of X conditional onY = y. Furthermore, 

E(||X - X - R l x R ^ y - = t r ( E ( ( X - x - R^xR^y^X " y))^"^)) (2-7) 

= tT[R:,-RlxRyRyx)-

Alternatively, like [1] using Schur's complement 

Rx - RlxR^^Ryx 0 
Rx,y = 

I R'y X R^y 

0 I 

The covariance of 

I RyxRy 
- 1 

0 I 

Ry 

I R'y X R'y 

I R,y ^ R,y 

X-X 

Y-y 0 I 

X-x-R'^^RliY-y) 

Y-y 

^ The expectation is taken for all X and Y. In the following, the subscript of the expectation 
operator indicating the variables with respect to which expectation is taken is dropped. There should 
be no confusion. 
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IS given as 

Rx - RlyRlRYx 0 

0 R y 

which impHes that X — x — - y ) and Y — y are uncorrelated. • 

Theorem 2.1 makes no assumption on the distribution of the random variables 

and holds true for any X and Y. li X and Y are Gaussian random variables then 

the random error e defined by (2.5) is Gaussian too, so (2.6) means that e and Y are 

independent. The linear estimator of X conditional on Y thus coincides with the general 

minimum mean square error (MMSE) estimator 

argminE(||X - x\\^\Y = y), 
X 

i.e. it is sufficient to consider linear estimators for Gaussian random variables as non-

linear estimators cannot perform better in term of variance of the error. The Kalman 

filter fully explores this fact as it is concerned with the hnear mappings / and p in (2.1)-

(2.2). When either X or y is non-Gaussian, Theorem 2.1 still provides the optimal linear 

estimator for X conditional on Y. 

2.2 Kalman filter 

Consider the following linear state space model 

Xk+i = AkXk + BkWk, (2.8) 

zk = CkXk + DkVk, (2.9) 

where Ak G BJ^^^ and Ck G When Xk.Wk and Vk are Gaussian, Zk and Xk+i must 

also be Gaussian and thus only Gaussian random variables are concerned in (2.8)-(2.9). 

Suppose at the initial time /c = 0, the estimate of the random variable xq is 

xq = mo|_i and the covariance is Rx,o — Po\-i- By (2.9) the random variable zq 
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has mean r/o = Como|_i and covariance Rẑ q = CqPq^_iCq + DqRqDq with the cross-

covariance of ZQ and XQ given by Rzx,o = CoPo|-i- On arrival of data ZQ, by Theorem 

2.1 the conditional mean E(xo|-^o) of the state XQ given ZQ = ZQ is 

mo = mo|_i 4- Ko{zo - rjo), 

and the covariance of the conditional random variable XQ = XQ\ZO is PQ — Po|-i ~ 

i^oCoPoi-i, where Ko = i^L.o^iJ = Po\-iC^iCoPo\-iC^ + DoRoD'^yK 

By (2.8), the predicted state xi = xi\Zo at the next time step conditional on data 

ZQ has expectation mi|o = E(xi|Zo) == AQ'E{XO\ZO) = AOMO and covariance Pi|o = 

AQPQA'S-^-BOQOB^. These results are stated more formally as prediction and estimation 

theorems. 

Theorem 2.2. Suppose the estimate of the state XK-I at time k — 1 given the history 

of observations Z^-i is ruk-i and the covariance is Pk-i- Then, the predicted state 

Xj^ = Xk\Zk-i at time k conditional on the history of observations up to time k — 1 has 

the conditional expectation and the covariance of the prediction is Pk\k-i where 

mk\k-i = Ak-iirik-i, (2.10) 

Puk-i = A k - i P k - i A l _ , + B k - i Q k - i B l _ , . (2.11) 

Proof. Given the estimate of Xk-i as ruk-i and covariance Pfc-i, applying the expecta-

tion operator in (2.8) and using ^{wk-i) = 0 gives the expression for the conditional 

mean in (2.10). The variance of the error in prediction in (2.11) is determined by ob-

taining the expression for the covariance of x^-i in (2.8) and using uncorrelation of x^-i 

and Wk-i- ^ 

Theorem 2.3. Suppose the predicted state Xk = Xk\Zk-i has mean mk\k-i and is dis-

tributed with covariance Pk\k-i- Then, the conditional expectation of Xk also conditional 

on the data Zk at time k is 

mk = mk\k-i-^ Kk(zk - m), (2.12) 
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and the covariance of Xk = Xk\Zk is 

Pk = - (2.13) 

with 

r]k = CfcTTifcifc-i, (2.14) 

Kk = Pk\k-iCl,{CkPk\k-iCl + D k R k D l ) - \ (2.15) 

Proof. Given the prediction m^ik-i oíxk and the covariance of the prediction Pk\k-ii the 

conditional mean of the state Xk follows from Theorem 2.1 after substituting expressions 

for the expectation and covariance of Zk given by rjk in (2.14) and the expression within 

the parenthesis in (2.15) respectively and the cross-covariance of Zk and Xk\k-i given by 

J — ^^ing the uncorrelation of Xk\k-i and Vk- • 

2.3 Random sets and counting measures 

Random sets can be defined as set-valued random elements in a certain topological 

space E. It is assumed that E is a locally compact Hausdorfi" second countable (LCHS) 

space (Euclidean space R^ is an example of space E) [97, 67]. Random sets that belong 

to the collection of closed subsets of E are called random closed sets. If these sets contain 

only a finite number of elements then they are known as random finite sets (RFS). The 

notation JT^ = 7 ' (E) is adopted to denote the space of RFS in E. 

Let the probability space be defined by the triple (ii, A, P ) , then the distribution 

of a RFS X e A is determined by P x ( ^ ) = ^ for all A" G B(A) where 

= B{-) is the Borel a-algebra. While conditional distributions of RFS can also be 

determined analogously to random elements in a measurable space, this is not true for 

expectation which alludes to a linear structure on the space of RFS which is nonlinear. 

The conventional concepts of expectations in linear spaces can however be applied if the 

RFS is represented by an equivalent random counting measure [93, 34, 67, 125 . 
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Definition 2.4. A measure /i on ¡Be in E is called counting if it takes only non-negative 

integer values. ^ is locally finite if it is finite on bounded subsets of E. 

Let M be the family of all locally finite measures ¡i endowed with a cr-algebra 

generated hy {¡i £ N : = n ) for n = 0 ,1 , . . . , and B G B^f, then a random 

counting measure can be defined as a random element N in J\f. For RFS X G ̂ E, M(^) 

is a random variable representing the number of points in X and if X is the union of 

disjoint sets then i i { X ) = J^if^i^i)- random counting measure is also 

called a point process [93, 34, 20, 67, 125]. A counting measure (or corresponding point 

process) is called simple if N{{x}) = 0 or 1 for all x e X. The distribution of a simple 

point process N is uniquely determined by 

= ex) 

= 'P{{uj eVL: N{uj) e X]) ioxXeBM- (2.16) 

The notation M^ = A/'s(E) is adopted to denote the family of all simple counting mea-

sures N e Af and Bj^ = B(J\f^) the a-field of its Borel sets. 

In the univariate and finite multivariate cases the moments (particularly mean and 

covariance) provide means to describe various distributions. In the point process context 

it is the moment measures that describe the distributions. While random variables have 

moments that are real numbers, the moments of point processes are measures. The 

expectation measure or intensity measure A of Â" is a characteristic analogous to the 

mean of a real-valued random variable defined by 

= J u{B)F(duj), 

for Borel set B. It is clear from Fubini's theorem that A(-) inherits countable additivity 

from A''(-) so it defines a measure on B f̂ [34]. A{B) determines the mean number of 

points in B. The expectation measure is identical to the first factorial moment measure 

of N. An important example of a point process is the Poisson point process which is 
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completely characterized by the intensity meastire A '71. 34. 125. 67. 32. 122 . The 

Poisson point process is defined as follows. 

D e f i n i t i o n 2.5. Let A be a difftise Radon measme on R^. The Poisson point process 

Â  with intensity meastu-e A is a random subset of R'̂  such that the following properties 

are satisfied. 

1. For each bounded Borel set B. the cardinality X^B has a Poisson distribution 

with mean \{B) 

P{X{B) = n) = i A l ^ l l ^ e - - ^ " ^ ' for n = 0 . 1 2.17 
n: 

2. The number of points of Â  in each of disjoint sets Bi are independent 

for every n > 2 and any collection of disjoint Borel sets. 

If A is absolutely continuous with respect to the Lebesgue measure, then tiie 

corresponding Raydon-Nikodym derivative (or density) A is called the intensity function 

34. 125. 67] given by. 

\ { B ) = [ X{x)di\ [2.1S\ 
Jb 

for Borel sets B. 

Let .VI be a measurable space. A point process in the product space E x A-l is 

called a marked point process. The second component being the mai'k and the first 

component called the location. Let M be the space of the marks and 8m a-field 

of its Borel sets, then for Borel set B and M in Bm nmnber of points o: A' in B 

with marks in M is denoted by X{B x M). Let A^ denote the intensity measure of the 

ground point process (i.e.. A stripped of the marksl the measure At • x M] for fixed M 

in Bm is absolutely continuous with respect to Ap and it can be shown that ^125". 

\{d{x. 777 )) = PAdm)\g[dx). =2.19 

where P^ is a probability measure on 5m or the distribution of mark m at a point x 

for fx: m] e X . 
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Just as factorial moments in the univariate and finite multivariate cases are related 

to the Taylor series expansion of the probability generating function about unity, the 

factorial moment measures are related to the expansion of the probability generating 

functionals (p.g.fl.) about unity [34, 125, 32]. For a point process X e M^ the p.g.fl. is 

defined as 

N 

C x f C l ^ E (2.20) 

for any Borel measurable function ( satisfying the condition < 1- The product is 

zero ii N > 0 and ^{xi) = 0 for any i and is unity if Â  = 0. Let 

(2.21) 

where \zi\ < 1 and iB^ix) is the indicator function of set Bi for measurable partition 

[ B i , . . . , Bm) of a LCHS space X , then 

G x [ C l = E n 
Li=l 

(2.22) 

J a^)Axidx) = [j^Gx e], (2.23) 
C=i 

is the multivariate probability generating function of the number of points in the sets 

of the partition and the intensity measure of X is given by 

/ 

The p.g.fl. of a Poisson point process X with intensity measure Ax is 

/ r \ 

\J 

Proof. The proof is trivial and follows in a straightforward manner (see [32, pp. 39 

125, pp. 116]). 

CxlC] = exp f /(C(x) - l)Kx{dx) 
\J 

(2.24) 

• 

A useful property of the p.g.fl. is that the p.g.fl. of the union of two independent 

finite point processes X\ and X2 is the product of those corresponding to the individual 

processes. For point process X = Xi\J X2 

Gx = Gxi Gx2 • (2.25) 
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Let TLy^[g] = IIxgx di^)- Given x and y as the realizations of two point processes X G A/J 

and Y G J\iy on LCHS spaces X and respectively, the joint p.g.fl. of X and Y can be 

defined by [34, 136 

Gxy[9: h] = E [nx[(/]ny[/i] 

- J U^lg]Uy[h]PxY{d^,dy) 

= 1 1 U^[g]Uy[h]Fx{dx)l^Yix{dyM (2-26) 

for any g and h satisfying the condition for (2.20). The conditional p.g.fl. of Y\X is 

defined by 

G y | x [ / l ] = E [ny[ / l 

(2.27) 

Then the marginal (unconditional) p.g.fl. of Y follows from averaging over all realiza-

tions X, 

GY[h] = Ex[GYixlh] 

= j Gy^xW'Pxid^), (2.28) 

and given a conditional p.g.fl., the joint p.g.fl. of X and Y follows the property of 

conditional expectation, 

GxY[g,h] = Ex [^A9]GY\x[h]] = Ey [Uy[h]Gx\Y[9i 

= J Il^[g]GY\xlh]Px{d:>c) = I Uy[h]Gx\Yl9]^Y(dy). (2.29) 

In particular, the following results are useful. Using nx[l] = 1, we obtain 

GxYl^.h] = Ex [U^[l]GY\x{h]] = GYH (2.30) 

L e m m a 2.6. Let y = {yi, - • • ,ym} be a realization of a point process Y e Afy and 

{d'^GxYlg^ '1)^=0 [^yi' • • •' ^yml^ ^^ ^^^ m-th derivative w.r.t. h of the joint p.g.fl. eval-

^ For a definition of the functional derivative see Appendix (A.2) 
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uated at the origin where Sy^ is the Dirac delta function at point yi, then 

Gx\Y[9\y, 
{d^Gxv .9r. 
{d^GxY[lr])h=o Sy^ , . . . , Sy^ 

Proof. Deferred to the appendix (A.l). 

(2.31) 
• 

Proposition 2.7. Let A' and y be two LCHS spaces and Y e Afy be a point process 

related to a realization x of the Poisson point process X G Af^ with intensity measure 

Ax by 

y(x) = U 5(x), 
xGx 

where S{x) is either singleton or empty with distribution 

= msn0)(i -ps{x)) 4 - p s { x ) F ( S n y . x ) , 

for any S in the family of all simple counting measures on By, F : By x X E"̂  is a 

kernel function (see [34, pp. 641] , [136]); for fixed x, F{-,x) is a probability measure 

on By with density /(•,•) w.r.t. a reference Lebesgue measure Xy and ps is a Bx-

measurable function with 0 < ps(x) < 1 for all x e x. Then, the conditional intensity 

measure Ax\y given by 

A A í^ ^ sr PsfiVr) 
\ yey 

Co Ax, (2.32) 

where ^ o ^ = / 

Proof. The p.g.fl. of F conditional on X is 

GyixW = JJ Gs{x)[h 

= nx(l - ps{x) + ps{x)h O F) 

= U^Alh], (2.33) 
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where A[h] = 1 - p s { x ) + p s { x ) h o F . Prom (2.29) the joint p.g.fl. of X and Y is 

GxYl9,h] = Ex [rixblCyixi^^ 

- E x [ U J g U l h 

= Gx[9A[h 

From (2.24) the p.g.fl. of a Poisson point process X takes the form 

Gxrig. h] = exp ({gA[h] - 1) o A^) 

(2.34) 

(2.35) 

The m-th derivative w.r.t. h of the joint p.g.fl. above evaluated at the origin gives 

m 

{d^Cxvlg. •])h=oKi,.. • = e^'^^^UgpsF^i o Ax, (2.36) 
¿=1 

where B[g] = { g { l — ps) — 1) o Ax- Let y = { y i , . . . , ym} be the realization of Y. Since 

density /(•, •) exists w.r.t. Xy for the regular kernel F(-, •), 

H[g] = 

(2.37) 

Differentiating w.r.t. g, 

= (de^H) [CinyffPs/(y, •) ° Ax + ( g p s f ( y , •)) o AaO ÎCI (2.38) 

where 

(2.39) 

and 

(dviy { g v s f { y , •)) 0 Ax)s[Cl = OCis/) o Ax g p s f i u , •) o Ax 
y^y y\{y} 

(2.40) 

Substituting in (2.38) 

[dH)g[(\ = H[l] + 

V y€y 

Applying Lemma 2.6 gives the required result. 

P s K v r ) 

g p s f i y , •) o A x 
Co Ax (2.41) 

• 
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2.4 Random set filtering 

In this section the filtering problem is stated in the random set formalism by 

treating the state and observation at each time step k by finite sets. The RFS approach 

provides a natural representation of a random number of points in the state space and 

the observation space Z . The meta-state X^ = • • •, Xk^m} ^ ^ x is the RFS of the 

states at time k. Note that the sequence in which points are arranged is arbitrary with 

all permutations equally likely, so does not allude to a point closest to a reference. 

Similarly, the observation Zk = {zk,ii - • •, Zk^n} ^ ^ z is the RFS of measurements at 

time k where the points are arranged in an unordered configuration. 

Let Xfc_i be a reahzation of the corresponding point process X ^ - i at time A: — 1. 

Consider the point process X^ constructed as the disjoint union 

UFfc, (2.42) 

where F^ is a Poisson point process with intensity measure Ar,fc independent o^Sk\k-i(x) 

which is either singleton or empty with distribution 

= ms n 0)(i - PsMk-iM) + Ps,k\k-iî )Fk(S n A',x), 

for any S in the space of all simple counting measures on B;:^, Fk : B;^ x ^ is Si 

transition probabihty and Ps,k\k-i is a ;S;t'-nieasurable function with 0 < Ps,k\k-i{^) < 1 

for all X e Xfc-i. 

Let Zk be a realization of the point process Zk which defines the observation 

model of RFS Xk 

Zk = U U K k , (2.43) 

where Kk is a Poisson point process with intensity measure Ar,fc and admits a density 
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independent of Dk{x) which is either singleton or empty with distribution 

= mv n 0)(i -P D , k ( x ) ) + PD,k{^)Lk{v n z,X), 

for any V in the family of all simple counting measures on 8z, L^ : Bz x ^ ^ is 

a transition probability with density lk{-r) and pD,k is a ^^^-measurable function with 

0 < PD,k{x) < 1 for all a: G Xfc. 

T h e o r e m 2 .8 . Given the intensity measure of the RFS Xk-i at time k — 1 as A^x^-i 

and a Markov process (2.42), the intensity measure of RFS X^ at time k is given by 

(oAx^= Ps,k\k-iFkC o ^Xk-i + C o Ar,A;. (2.44) 

Proof. Using the property of the p.g.fl. for independent point processes in (2.25) and 

the result in (2.33), the conditional p.g.fl. of X^ given X k - i is 

GxklXk-iW = -Gr^klh], (2.45) 

where Aklh] = 1 — Ps,k\k-i{^) Ps,k\k-i{^)^ ° ^k- From (2.28), the unconditional p.g.fl. 

of Xk factors into the p.g.fl. of two independent point processes 

(2.46) 

The required intensity measure follows from (2.23) by differentiating w.r.t. h at unity, 

CoAx, =d(Gx,[-l)/,=i[Cl 

= (d̂ ['])/.=i[Cl ° + C ° Ar.fc, (2.47) 

where 

(dA[-])h=ilC] =PsMk-i^kC' 

This completes the proof. 

(2.48) 

• 
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Theorem 2.9. Given the unconditional intensity measure of the Poisson RFS X^ as 

Axfc and a realization z^ of the point process Zk at time k, the conditional intensity 

measure of RFS X^ given z^ is 

Co Axfclzfc = 1 + y ] ^ , li \ \ V ^ PD,klk{z, •) o Ax, j 
Co Ax,. (2.49) 

Proof. The proof is similar to that of Proposition 2.7 withp^ = p^^k and /(•, •) = lk{-, •)• 

Using independence of X^ and Kk, the p.g.fl. of Zk conditional on a realization x^ of 

RFS Xk is given as the product of two p.g.fis., 

(2.50) 

where Aklh] = 1 — pD,k{x) o Lk- The joint p.g.fl. of X^ and Z^ is then the 

product of the p.g.fls. of two independent Poisson point processes X^ and K^. 

GxkZklg^ h] = exp {gAk[h] o Ax, + o A^, - 1 o (Ax, + A/^J) . (2.51) 

The n-th derivative w.r.t. h of the joint p.g.fl. at /i = 0 gives 

n 

{d^Gx,zA9. . •. = WgPD^kLk^i o Ax, + o A^,, (2.52) 
i=i 

where Bk[g] = g(l - pD,k) ° ^x, - lo(Axfc + A^J- Let zj, = { z i , . . . , Zn}. Since density 

•) exists for the regular kernel Lfc(-, •), 

Hkig] = {d''GxkZkl9^-])h=ol^zi, • • • 

= •) ° Ax, + ^K^k- (2.53) 

Differentiating w.r.t. g, 

{dHk)g[C] = {de^'^-"^)^ [Qli^.gpDM^^ •) ° Ax, + {gpD,kh{z. •)) ^ Ax),[C 

(2.54) 

where 

(2.55) 
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and 

{d^zk i9PD,klkiz, •)) ° = PDMZ, OC o Axfc f j gPD,kk{z, •) o Ax, 
zezk Zfc\{2} 

(2.56) 

Substituting in (2.54) 

\ z^k 9PDMk[Z, •) o Ax^ 

The required expression of the conditional intensity measure of Xk\zk is given by the 

result (2.23) after applying Lemma 2.6. • 

Theorems 2.8 and 2.9 give the recursion of the probabihty hypothesis density 

(PHD) filter [92, 45] for propagating the intensity measure in time and provide the 

basis of the closed form solution to the PHD filter for the so-called linear Gaussian 

jump Markov system multi-target model discussed in Section 3.3. 

2.5 Nonlinear filtering 

The class of state space models for which Kalman filter gives the optimal estimate 

encompasses only a small subset of real systems. For the general class of problems Bayes 

filter concedes an approximation in order to estimate the state. For the nonlinear state 

space model (2.1)-(2.2) both state and observation variables x^ and z^ respectively 

are not necessarily Gaussian. Thus, the central issue with using linear estimation for 

filtering nonlinear models is the approximation of second-order moments of all concerned 

state and observation random variables. 

In the literature there are two standard approaches to approximate the condi-

tional expectation of the state. Both the extended Kalman filter (EKF) [59, 44] and 

the unscented Kalman filter (UKF) [62, 63] actually involve only linear estimators (by 

using Theorem 2.1) and are different only in the way the second-order moments are ap-

proximated. The EKF uses the first-order Taylor series approximation of the mappings 
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/ and g around some estimate. The approximation assumes that the estimate hes in 

the proximity of the global trajectory. With increasing nonlinearity trend of the map-

pings, the validity of the assumption weakens, causing the estimate to become biased 

and inconsistent. Furthermore, the convergence of the estimate is not guaranteed. This 

is demonstrated by a simple example in [75] where the EKF fails to converge. The EKF 

is better suited for the class of mildly nonHnear problems. On the other hand, the UKF 

applies the unscented transform [62, 63] based on the statistical linear regression tech-

nique to directly compute the first and second-order moments. The expected value of a 

random variable given by the UKF is correct up to the second-order if the second-order 

moments can be computed exactly, which is a higher order accuracy compared to the 

estimate given by the EKF. This is reflected in the empirical studies which demonstrate 

that the UKF gives better estimates than the EKF [62, 63, 77, 33, 115 . 

The EKF and the UKF approximations can be derived exactly using the linear 

regression Kalman filter (LRKF) [77, 78] which approximates the nonlinear mapping 

using statistical linear regression technique through some regression points. The EKF 

is derived using a single regression point only while the UKF is derived using p = 2n 

regression points for an n-dimensional kinematic state. 

Suppose X := ( X ( l ) , . . . , X(n))'^ € is a random variable with x = (x ( l ) , . . . , 

and Rx as the first two moments of its distribution px{x)- A second random variable Y 

depends on X through the diiferentiable nonlinear mapping Y = f(X), where f{X) = 

( / i ( X ) , . . . , f m { X ) Y . As mentioned above, the central issue for linear estimation of X 

conditional on F = is the approximation of computationally intractable integrals 

y--E{Y) = I f{x)px{x)dx, 

Ry = I{f{x) - y ) ( / (x) - yfpx{x)dx, (2.58) 

RXY = J{x- x)(f{x) - yfpx(x)dx. 

The EKF employs the simplest approximation, which is to linearize the nonlinear map-
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ping / around x by 

d f { X ) f ( X ) ^ A { X - x ) - ^ f { x ) , A = (2.59) 
X=x dX 

This works well under the assumption that the expected value x lies in the proximity of 
distributed values of X justifying the truncation of higher order terms of Taylor series. 
Substituting the approximation of f { X ) from (2.59) in the integrals in (2.58) results in 

y^Ax-\- f(x), Ry ^ ARxA^, Rxy ~ RxA^. (2.60) 

Since the expected value is correct up to the first order only, as the mapping departs 
from linear behavior the validity of this assumption weakens. A bias is introduced in 
the estimate causing the estimates to become inconsistent. According to Theorem 2.1, 
the exact statistical form of f { X ) is actually 

f [ X ) = RyxRx\X - x ) + f{x) + e, (2.61) 

The error e — Y — RyxR-x ~ ~ ^̂  ^ random quantity and is uncorrelated to 
X. In other words, the random variable Y can be expressed exactly by the statistical 
linear regression of f { X ) around x. The quality of the linear approximation 

/ ( X ) ^ ( ^ X + 6) + e, (2.62) 

depends on how it matches (2.61), i.e. how A and b approximate RyxR-x^ a-nd f[x)—Ax^ 
respectively. It is not clear how far away the local approximation (2.59) distances from 
(2 .61) . 

The UKF aims at the direct approximation of Ryx^Rx and f[x) so its linearized 
model is more accurate than that of the EKF, as demonstrated in [62, 63]. Regression 
points Xi, i = 0 , . . . where p = 2n are selected around x in a manner such that the 
sample mean and covariance of the points are identical to the mean and covariance of 

1 ^ 1 ^ x = — — " ^ X i , R x — — ^ { x i - x){xi - x)^. (2.63) p + l p + 1 ^ 
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As R x > 0 and thus admits Cholesky decomposition R x = ^ ^ choice of these 

regression points is 

XQ = X , Xi = X-H x / ( p + l ) / 2 qi, XN+i = X - Y / { P - \ - L ) / 2 Qi. 

Let YI = f{xi), i = 0,... then the mean and covariance of the random variable Y and 

the cross-covariance of Y and X are approximated by the distribution of the regression 

points Xi and 2 = 0 , . . . as, 

I P 1 ^ 
y = = ^ H^y^ - y^^y^ - (2.64) 

^ i=0 ^^ i=0 

1 ^ 
RYX = ^ J2(YI - Y ) { X , - X F . (2.65) 

i = 0 

One can see that (2.64)-(2.65) are indeed approximations for the integrals (2.58) with 

the continuous distribution px approximated by the discrete uniform distribution 

P{X = Xi) = l/{p+l), z = (2.66) 

i.e, the distribution p x { x ) is statistically hnearized around the regression points Xi, i = 

0 , . . . in the UKF. In summary, for approximation of integrals (2.58), the EKF hn-

earizes the nonlinear deterministic mapping / while the UKF linearizes the random 

distribution px{x)-

Based on the above exposition on linear approximation, an intermediary lineariza-

tion technique can be derived. Note that any differentiable nonlinear mapping / can be 

represented by 

f{X) = MX)(X - x^) + f{xi), ^ = 0 , . . . 

with 
r^ d 

Ai{X) = —f{tX + {l-t)xi)dt, z = (2.67) 
'0 

The approximation (2.59) can be considered as a special case, 

/ ( X ) ^ Ao(xo)(X - xo) + / (xo ) , (2.68) 
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with xo = X. Let Vi = Ai{X){X - Xi) + f{xi), z = 0 , . . . then the moments of Y 

can be computed from (2.64) and the joint moment of Y and X from (2.65). It can be 

shown that in general this technique works better than the approximation in (2.59). 



Chapter 3 

Gaussian mixture P H D filter for jump Markov 

system models 

The probability hypothesis density (PHD) filter [92, 45] is an attractive approach 

to tracking an unknown and time-varying number of targets in the presence of data 

association uncertainty, clutter, noise, and detection uncertainty. The PHD filter admits 

a closed form solution for a Unear Gaussian multi-target model [131, 133]. However, this 

model is not general enough to accommodate maneuvering targets that switch between 

several models. In this chapter, the notion of hnear jump Markov systems is generalized 

to the multiple target case to accommodate births, deaths and switching dynamics. A 

closed form solution to the PHD recursion (Theorems 2.8 and 2.9) is then derived for the 

proposed linear Gaussian jump Markov multi-target model. Based on this an efficient 

method for tracking multiple maneuvering targets that switch between a set of linear 

Gaussian models is developed. An analytic implementation of the PHD filter using 

statistical linear regression technique is also proposed for targets that switch between 

a set of nonlinear models. It is demonstrated through simulations that the proposed 

PHD filters are effective in tracking multiple maneuvering targets. 

The chapter is structured as follows: The problem of tracking multiple maneu-

vering targets in the presence of uncertainty is discussed in Section 3.1. Section 3.2 

presents some background on JMS for modeling a maneuvering target and the PHD 
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filter. In Section 3.3 the JMS multi-target model for the PHD filter is described, the 

main result of this chapter, a closed-form solution to the PHD recursion for linear JMS 

is given and the capability of the proposed algorithm is demonstrated through simula-

tions. In Section 3.4 the approximate solution to the PHD recursion for nonlinear JMS 

is discussed. 

3.1 Introduction 

While a non-maneuvering target motion can be described by a fixed model, a 

combination of motion models that characterize different maneuvers may be needed to 

describe the motion of a maneuvering target. Tracking a maneuvering target in clutter is 

a challenging problem and is the subject of numerous works [7, 10, 82, 83]. In the multi-

target setting, the number of targets changes due to targets appearing, disappearing, 

and it is not known which target generated which measurement. Tracking multiple 

maneuvering targets involves jointly estimating the number of targets and their states 

at each time step in the presence of noise, clutter, uncertainties in target maneuvers, 

data association and detection. As such, this problem is extremely challenging in both 

theory and implementation. 

The jump Markov system (JMS) or multiple models approach has proven to be an 

effective tool for single maneuvering target tracking [18, 10]. In this approach, the target 

can switch between a set of models in a Markovian fashion. The JMS approach can also 

be combined with traditional data association techniques such as joint probabilistic data 

association (JPDA) [6, 19, 130, 60] or multiple hypothesis tracking (MHT) [38, 73] to 

track multiple maneuvering targets. However, these data association-based approaches 

are computationally intensive in general and heuristic techniques are used to reduce the 

computational load. 

Mahler's Probabihty Hypothesis Density (PHD) filter [92, 45] is a multi-target 

filter that circumvents the combinatorial computations due to data association while 
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accommodating detection uncertainty, Poisson false alarms, target motion and time-

varying number of targets. The generic sequential Monte Carlo implementation of the 

PHD filter [137, 138] can, in principle, accommodate any Markovian target dynamics 

including jump Markov systems. However, the drawbacks of the particle approach 

are the large number of particles, and the unreliability of clustering techniques for 

extracting state estimates [138, 133]. These problems are alleviated in the Gaussian 

mixture PHD filter implementation, which is developed from a closed form solution to 

the PHD recursion for hnear Gaussian multi-target models [131, 133]. This approach 

is efficient and is capable of handhng certain types non-linear models [133] but is not 

general enough to accommodate JMS models. At present there is no tractable analytical 

techniques for tracking multiple targets with JMS dynamics. 

In this chapter, the notion of linear jump Markov systems is generalized to the 

multiple target case to accommodate births, deaths and switching dynamics. A closed 

form solution to the PHD recursion is then derived for this so-called linear Gaussian 

jump Markov multi-target model. This solution generalizes the result in [131, 133 

to a broader class of practical models. Based on this closed form solution, an efficient 

method is developed for tracking multiple maneuvering targets that switch between mul-

tiple models. The proposed approach can handle problems that are deemed intractable 

using traditional tracking techniques. Comparison with the classical IMMJPDA filter 

showed that the proposed approach is computationally much more efficient while ex-

hibiting similar tracking performance, despite the fact that the IMMJPDA filter uses 

exact knowledge of the fixed number of targets. In addition, the proposed approach is 

extended to nonlinear jump Markov multi-target models by combining the closed form 

solution and the unscented transform (see Section 2.5). The proposed multi-target fil-

ters sidestep the data association problem and do not require clustering for extracting 

state estimates. Simulation results are presented to demonstrate the capabihty of the 

proposed method. 
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3.2 Problem formulation 

In Section 3.2.1 the JMS is reviewed and in particular the class of linear JMS 

for modeling maneuvering targets. Using the random finite set (RFS) representations 

for multi-target states and sensor measurements, the problem is posed as a Bayesian 

filtering problem in Section 3.2.2. Section 3.2.3 describes the PHD filter. 

3.2.1 Jump Markov system (JMS) 

A jump Markov system (JMS) can be described by a set of parameterized state 

space models whose underlying parameters evolve with time according to a finite state 

Markov chain. Such a system finds a range of applications in signal processing and 

provides a natural means to model a maneuvering target whose behavior cannot be 

characterized at all times by a single model [18, 82, 83 . 

Let k̂ ^ and Zk G R^ denote the kinematic state (e.g. target coordinates and 

velocity) and observation, respectively, at time k. Suppose that Vk e M is the label of 

the model in effect at time k, where M denotes the (discrete) set of all model labels 

(also called modes). Then, the state evolution and measurement are described by the 

transition density and measurement hkelihood: 

fklk-i(ùlù-i,rk), (3-1) 
gk(zkl^k,rk)- (3-2) 

In addition, the modes follow a discrete Markov chain with transition probability 

h jk- i inlrk- i ) and the transition of the augmented state vector Xk = [^l^rkf G A" = 

R'̂  X A^ is governed by 

fk\k-i{xk\xk-i) = fk\k-i{^k\^k-urk)tk\k-i{rk\rk-i)- (3-3) 

A hnear Gaussian JMS (LGJMS) is a JMS with hnear Gaussian models, i.e. 

conditioned on mode r^ the state transition density and observation likelihood are given 
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by 

fklk-i(ÙlÙ-urk) = ATià; Fk-i(rk)a-i,Qk(rk)), (3.4) 

Çki^kl^k, Tk) = N{zk\Hk{rk)^k^ Rk{rk)), (3.5) 

where J\f{-\m,Q) denotes a Gaussian density with mean m and covariance Q, Fk-i{rk) 
and Hk{rk) denote the transition and observation matrices of model r^. Qki'f'k) and 

Rkî k̂) denote covariance matrices of the process noise and measurement noise. 

Tracking a maneuvering target amounts to estimating the kinematic state k̂ or 

augmented state Xk at time k, from the sequence of observations zi._k = iz\,...,Zk). 

The JMS (or multiple models) approach has been shown to be highly effective for 

maneuvering target tracking [18, 10]. 

3.2.2 Random finite sets in multi-target tracking 

In a multi-target scenario, suppose that Xk,i, • • •, ^ are the augmented 

states at time /c, where N{k) denotes the number of targets. At the next time step, some 

of these targets may die, new targets may appear and the surviving targets evolve to 

their new states. At the sensor, M(k) measurements Zk,i,. • •, ^ are received 

at time k, some of which are due to targets while the rest are clutter. Note that only 

some of the existing targets are detected by the sensor, and that the corresponding 

measurements are indistinguishable from clutter. Hence, the orders in which the states, 

and the measurements are listed bear no significance. Jointly estimating the time-

varying number of states and the values of the states is a fundamentally difficult problem 

because in addition to the target maneuvers, the number of targets and the number of 

measurements both vary randomly in time and it is not known which target generated 

which measurement. 

Mahler's finite set statistics (FISST) [92, 45, 88] approach provides an elegant 

Bayesian formulation of the multi-target filtering problem by treating the finite sets of 

targets and observations, at time /c, as the multi-target state and multi-target observa-
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tion, respectively 

Xk = {a^fc.l'• • • C A", (3.6) 

^/c - (3.7) 

To model uncertainty in multi-target states and observations, we appeal to the notion 

of a random finite set (RFS) (see Section 2.3). A RFS on a state space A' is simply a 

random variable taking values in the finite subsets of X [97, 34]. The intensity of an RFS 

on A' is a non-negative function v on X such that v{x) is the instantaneous expected 

number of targets per unit volume at x (2.18). A RFS is Poisson if its cardinality 

distribution is Poisson with mean N = fv(x)dx and given a cardinality the elements of 

X are i.i.d. according to v/N (see Definition 2.5). The reader is referred to [138, 133 

for overviews on FISST and [45, 92, 88] for comprehensive treatments. 

Along the same vein as the single-target filtering problem, a multi-target tran-

sition density can be constructed from the RFS model for the time evolution of the 

multi-target state, which incorporates target motion, spontaneous births, spawnings 

(off existing targets) and deaths (2.42). Similarly, a multi-target hkehhood can be con-

structed from the RFS measurement model, which accounts for detection uncertainty 

and clutter (2.43). The posterior distribution of the RFS of targets can be propagated in 

time by the multi-target Bayes recursion [45, 92, 138]. However, this recursion involves 

multiple integrals on the space of finite subsets of X . In addition, the multi-target 

densities are combinatorial in nature. Hence, the multi-target Bayes filter is computa-

tionally intractable in general. Sequential Monte Carlo implementations can be found 

in [137, 138, 119, 134, 86], although these methods are still computationally intensive, 

especially when the number of targets is large. 

3.2.3 The probability hypothesis density filter 

An intelligent approximation to the multi-target Bayes filter, known as the Prob-

ability Hypothesis Density (PHD) filter, and which avoids any data association compu-
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tations, has been proposed in [92]. The PHD filter propagates the posterior intensity of 

the RFS of targets in time, based on the following assumptions: 

Assumption 3.1. Targets evolve in time and generate measurements independently of 

one another. 

Assumption 3.2. The clutter RFS is Poisson and is independent of the measurements. 

Assumption 3.3. The predicted multi-target RFS is Poisson. 

Assumptions 3.1 and 3.2 are quite common in many multi-target tracking algo-

rithms [7, 17]. The additional Assumption 3.3 is a reasonable approximation in appli-

cations where interactions between targets are neghgible [92 . 

The PHD propagation is a recursion consisting of a prediction step and a data 

update step. Let Vk\k-i ^̂ nd Vk denote the predicted intensity and posterior intensity at 

time /c, respectively. Then the PHD prediction is given by 

yk\k-i{x) = J + Vk-i{x')dx' + (3.8) 

where it is understood that an integral with respect to a discrete variable means a sum, 

and 

fk\k-i{'\^') = probability density of a target at time k, given that its previous state 

is x', 

Ps,k\k-i{^') = probability that a target still exists at time k given that its previous 

state is 

= intensity of the RFS of targets spawned at time A: by a target with 

previous state x', 

= intensity of the birth RFS at time k. 
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On arrival of a new multi-target measurement, the posterior intensity Vk is com-

puted from the predicted intensity Vkjk-i via the PHD update: 

Vk{x) = 

where 

9k{-\x) 

PDM^) 

^fc(-) 

1 ^ ^ . i 9k{z x) 
PDM^)9k{z x)vkik_i{x)dx 

(3.9) 

= multi-target measurement at time k, 

= single-target measurement likehhood at time /c, 

= probability of detection given a state x at time k, 

= intensity of clutter RFS at time k. 

The PHD recursion is generally intractable due to the 'curse of dimensionality' 

in numerical integration. A generic sequential Monte Carlo (SMC) implementation 

was proposed in [137, 138] with relevant convergence results (see also [61, 31] for more 

detailed asymptotic studies). This so-called particle-PHD filter can accommodate tar-

gets with JMS dynamics, and has been used to track multiple maneuvering targets in 

132, 110]. However, the drawbacks of the particle approach are the large number of 

particles, and the unrehability of clustering techniques for extracting state estimates 

138, 133]. The recently proposed Gaussian mixture PHD filter [131, 133] does not suf-

fer from these drawbacks but is not general enough to handle JMS dynamics. In the 

following sections, a closed form solution to the PHD recursion is derived for LGJMS 

dynamics and an efficient and reliable multi-target filter is developed for tracking ma-

neuvering targets. 
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3.3 Closed form solution to the PHD recursion for 

LGJMS multi-target model 

This section presents a closed-form PHD solution that can accommodate targets 

that switch between linear Gaussian models. The LGJMS multi-target model is de-

scribed in Section 3.3.1 and the corresponding closed form PHD recursion is derived 

in Section 3.3.2. In Section 3.3.3, a general closed form solution to the PHD recur-

sion is derived in the hybrid state space X = BJ^ x M. Illustrations of the proposed 

multi-target tracking algorithm on simulated data are given in Section 3.3.4. 

For notational convenience, the symbol 0 is used to denote the ordered pair of 

mean and covariance (m, P) of a Gaussian distribution, i.e 

M{x;Q)=M{x\m,P). (3.10) 

Given a linear Gaussian model z = Hx + v, where v is Gaussian noise with mean d 

and covariance matrix R, the notation Q is used to denote the ordered triplet of model 

parameters {H, i?, d), and 

z; fi) - Hx + d, R) (3.11) 

to denote the probability density at z. This notation is suggestive of the mapping of x 

to z via the linear model with parameter Note that J\f{x\m, P) = £(m, x\ ( / , P, 0)) ^̂  

C{x,m- ( / , P,0)) . 

3.3.1 Linear Gaussian jump Markov system multi-target models 

This subsection presents the linear Gaussian JMS (LGJMS) multi-target model, 

which accommodates targets with switching linear dynamics. Campbell's theorem (see 

(2.19),[125]) is used in the modeling of target births and spawning. 

In addition to Assumptions 3.1 - 3.3, the LGJMS multi-target model comprises 

a LGJMS model for individual targets, kinematic-independent survival and detection 
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probabilities, and models for target births and spawnings. Like the motion model, 
birth and spawning models are naturally described in terms of the kinematic state. 
However, while the distribution of the augmented state can be taken as the product 
of the mode distribution and the kinematic state distribution conditional on the mode, 
i.e. p(^,r) = p(r)p(^\r), this hne of reasoning does not extend to birth and spawning 
intensities. The intensity of the augmented state is not necessarily the product of the 
intensity of the mode and the intensity of the kinematic state conditioned on the mode. 

To specify birth and spawning models for the kinematic state and mode that yield 
valid birth and spawning intensities in the augmented state, we appeal to a well-known 
result in point process theory, namely Campbell's theorem (for marked point processes) 
125, pp. 106-108]. In particular, Campbell's theorem implies that the intensity of the 

point process on R^ x A4 formed by the Cartesian product of a point process on the 
kinematic state space R'̂ , with intensity v, and a point process on the mode space M, 
is given by 

(3-12) 

where p(-\0 is the mode distribution given that a point of the product point process has 
kinematic state Moreover, if the point process on R^ is Poisson, then the product 
point process on R'^ x is also Poisson [71 . 

3.3.1.1 Birth model 1 

In the context of the proposed multi-target birth model, the intensity of aug-
mented state births at time k is given by 

where jk is the intensity of kinematic state births at time k, and TTkHO is the probability 
distribution of the modes for a given birth with kinematic state ( at time k. In hne 
with the standard LGJMS assumption that the mode transition probability is not 
a function of the kinematic states, the LGJMS multi-target model also assumes that 
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the mode distribution does not depend on the kinematic state, i.e. = 7rfc(r). 

Moreover, it is also assumed that the intensity of kinematic state births is a Gaussian 

mixture 

(3.13) 
i=l 

where Ĵ f̂c, G^'], = ^ 1 , 2 , . . . , Ĵ ^̂  are given model parameters. 

The mean is a peak of the intensity and has the highest local concentrations 

of expected number of births, and represents, for example, airbases or airports where 

targets are most likely to appear. The covariance matrix P̂ ]̂. determines the spread of 

7/0 in the vicinity of the peak The weight gives the expected number target 

births originating from 

Similarly, the intensity of augmented states spawned, at time k, from a target 

with augmented state at time /c — 1, is given by 

r ' ) = 7r,|,_i(rle, r')Pk\k-i 

where Pk\k-i{'W ^ is the intensity of kinematic states spawned at time k from r']^, 

and r') is the probabihty distribution of the mode for a given kinematic 

state spawned at time k from . Consistent with standard LGJMS assump-

tion, the LGJMS multi-target model assumes that the mode distribution of a spawned 

target does not depend on its kinematic state nor its parent's kinematic state, i.e. 

= and that the intensity of spawned kine-

matic states is a Gaussian mixture 

E (3.14) 

where = J = 1, 

2, . . . , given model parameters. A similar interpretation to 7^ apphes 

to the intensity Pk\k-i^ except that the j th peak, + is an afiine 

function of . Usually, a spawned target is modeled to be in the proximity of its parent. 
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3.3.1.2 Birth model 2 

Alternatively, by interchanging the roles of the kinematic state space and mode 

space in (3.8), consistent models for births and spawnings can also be derived^ . In this 

case, the intensity of augmented state births at time k is given by 

where tt̂  is now the intensity of mode births and 7fc(-|r) is now the distribution of the 

birth kinematic state given mode r. Note that the intensity of mode births is not a 

function of kinematic state. It is assumed, in the LGJMS multi-target model, that the 

distribution 7fc(-|r) of kinematic state births is a Gaussian mixture 

i=l 
(3.15) 

where Q^y'U )̂ ^ = 1 ,2 , . . . , are given model 

parameters that depend on the mode r. Similarly, the intensity of augmented states 

spawned, at time k, spawned from IS 

Pk\k-i(i, rle', r') = Pk\k-1 ( ik, r')7rk\k-i{r\e. r'), 

where 7 r / j . | / j _ i r ' ) is now the intensity of mode spawnings and (J',/) is 

now the distribution of spawned kinematic state given mode r. The LGJMS multi-

target model assumes that the intensity of spawned modes does not depend on the 

kinematic state of its parent, i.e. — and that the distribution 

of the spawned kinematic state is a Gaussian mixture 

Ä|.-i(i|r, rO = ^ i ; ^^^iik-iir, r% (3.16) 

^ One technicality is that we need to restrict the kinematic state space to a compact subset of R" . 
This technicality does not pose any problem in practice since the targets occupy a bounded region of 
space. 
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where r^, rO = r ') , 

^isi-ii '^'^O)) j = 1> 2, . . . , are given model parameters that depend on 

the current mode r and the parent's previous mode r'. 

From a modehng and apphcation point of view, models 1 and 2 are different. 

However, from an algorithmic or computational viewpoint, the first model can be treated 

as a special case of the second model with the distribution of the birth kinematic state 

being independent of mode r, i.e., = 7a;(0-

Summarizing, in addition to Assumptions 3.1 - 3.3, the linear Gaussian JMS 

(LGJMS) multi-target model, assumes: 

Assumption 3.4. Each target follows a LGJMS model, i.e. the dynamic and measure-

ment models for the augmented state have the form: 

= (3.17) 

= (3.18) 

where — 0 ) is the parameter of the Hnear target dynamics 

model conditioned on mode r, = {Hk{r), Rk[r),Q) is the parameters of the 

hnear observation model conditioned on mode r, and is the mode transition 

probability. In particular, conditional on mode r, Fj^k-iir) is the state transition matrix, 

Qf^ki'f^) is the process noise covariance matrix, Hk{r) is the measurement matrix and 

Rk{r) is the measurement noise covariance matrix. 

Assumption 3.5. The probabilities of target survival and target detection are indepen-

dent of the kinematic state: 

= PsMk-i ir ' ) (3.19) 

PdA^^^) = PDA^)- (3.20) 

Assumptions 3.4 and 3.5 follow from those commonly used in maneuvering target 

tracking algorithms (see for example [7, 16, 113]), 
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Assumption 3.6. The intensities of the birth and spawn RFSs can be expressed as 

Gaussian mixtures of the form: 

A.fcW 
i M . r ) = (3.21) 

j=l 

where w%(r), 0 « (r) = ( m « (r), Q « (r)), i = 1 , 2 , . . . , are given pa-

rameters of the (Gaussian mixture) density of the kinematic state of a new born target 

with mode r at time k, and 7rk(-) is the intensity of mode births at time k. Similarly, 

Jmk-lir,r'), = r ' ) , r ' ) , « ¿ ^ i - l i ^ r ' ) ) , 

j = 1, 2 , . . . , r') are given parameters of the (Gaussian mixture) density of the 

kinematic state of a target with mode r, spawned at time k from a target with aug-

mented state [4 ,r 'Y at time /c — 1, and is the intensity of modes spawned 

at time k from a target with mode r' at time k — I. 

The LGJMS multi-target model is more general than those in standard multi-

target tracking algorithms. While most existing algorithms do not account for births 

or spawnings, the proposed multi-target model incorporates both. Models for births 

and spawnings for a given mode r accommodate different intensities of mode births 

and modes spawned respectively when births and spawnings are likely to vary between 

different modes. Similarly, the proposed model incorporates models for target death 

(survival) and target detection for a given mode r. Moreover, traditional multi-target 

filtering techniques are computationally intractable for a model of such generality. As 

shown later, using a random finite set approach [92], this model is amenable to compu-

tationally efficient multi-target filtering techniques. 

3.3.2 Closed form PHD recursion for LGJMS multi-target model 

To derive the closed form PHD recursion for the LGJMS multi-target model, 

Lemmas 1 and 2 in [131, 133] are required, which are stated using the new notation as 
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follows: 

Lemma 3.7. If n = {H,R,d) and G = (m,P), then 

J c{x, z] e)dx = M{z- n(n, e ) ) (3.23) 

where 

n(Q, G) = [Hm 4- d, i? + HPH^) 

Lemma 3.8. If Vi = (H, R, d) and G - (m, P), then 

C(x, z; n)Ai{x; G) = J\i{z; G))AA(x; ^{z, G)) (3.24) 

where 

^{z, Q, G) = (m(z - d), P) (3.25) 

m{z-d) = m-\-K(z-d- Hm) (3.26) 

P = {I-KH)P (3.27) 

K = PH^{HPH^ + R)-^ (3.28) 

Proposition 3.9. For a LGJMS multi-target model, if the posterior intensity v^-i at 

time k — 1 has the form 

Vk-i(i'y) = ' e (3.29) 
i=l 

Then the predicted intensity given by 

Vk\k-i{C,r) = + + (3.30) 
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where 

VBMk-ii^'r) = E E E (3.31) 
r' i=l j = l 

^ M k - l i ^ y ) = (3-32) 

^ f ^ l U r y ) = (3.33) 
Jk-i{r') 

= E E ('•-'•')). (3.34) 
r' i=l 

^fklk-ii"-'"-') = PsMk-ii^')^k\k-iir\r ')w'^Ur'), (3.35) 

= n (n ; . f c | , _ i ( r ) , 0« j ( r ' ) ) . (3,36) 

Proof. From (3.8), the predicted intensity consists of three terms (already given in 

the multi-target model), due to births, spawnings and motion, 

respectively. For substituting (3.22), (3.29) into f Pk\k_i{x\x')vk-i{x')dx', ex-

changing the order of sums and integral, and applying Lemma 3.7 to individual terms 

yields (3.31). For Vf^k\k-i substitute (3.17) and (3.29) into J fk^k_i(x\x')vk-i(x')dx', 

exchange the order of sums and integral, and apply Lemma 3.7 to individual terms to 

obtain (3.34). • 

Corollary 3.10. Under the premises of Proposition 3.9, the expected number of pre-

dicted targets is 

Nk\k-i = + + , (3-37) 

where 

N-r.k = E E ^i^i^Klkir), (3.38) 
r i=l 

= E E E E (3.39) 
r r' i=l j=l 

Jk-l{r') 
NfMk-i = E E E PSM>^-dr')tkik-i{r\r')wtUr'), (3-40) 

r r' i=l 
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Proposit ion 3.11. For a LGJMS multi-target model, if the predicted intensity •y^l/c-i 

has the form 
"̂klk— 1 

E (3.41) 
i=l 

Then the posterior intensity Vk is given by 

Vki^.r) = {I - PD,k{r))yk\k-i{^.r) 4- (3.42) 

where 

Jk\k-\{f) 
(3.43) 

i=l 

• 

r i=\ 

q%{r-, z) = M{z- n (n , , , ( r ) , 0 « _,(r))), (3.45) 

(3.46) 

Proof From (3.9), the updated intensity consists of three components. The first is the 

predicted intensity -Ufclfc-i (given), the second is the product PD^kVklk-i denoted as VD,k̂  

and the third is the sum ^^eZk where 

. . 9k{z\x)VD,k{x) . 
= —/ x , r—? \ 7~UZ-

For Vĝ k, first substitute (3.18), (3.41) into the numerator of (3.47) and apply Lemma 3.8 

to yield a sum of weighted Gaussians. Second, applying Lemma 3.7 to the integral in the 

denominator of (3.47) gives the (double) sum in the denominator of (3.44). Combining 

the results for the numerator and denominator of (3.47) gives (3.43). • 

Corollary 3.12. Under the premises of Proposition 3.11, the expected number of target 

is 
Jfc|fc_i(r) Jk\k-l{r) 

= E - i t i W + E E E (3.48) 
r i=l zeZk r i=l 
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Propositions 3.9 and 3.11 show how the intensities Vkjk-i Vk are analytically 

propagated in time under Unear Gaussian assumption on the JMS multi-target model. 

The recursions for the means and covariances of Vf^kjk-i and v^^icjk-i the Kalman 

prediction and the recursive computations of the means and covariances of are the 

Kalman update. The PHD filter has a complexity of 0[Jk-i\Zk\) where Jk-i is the 

number of Gaussian components representing Vk-\ for a fixed model r' at time k — \ 

and \Zk\ denotes the number of measurements at time k. 

These propositions also indicate that the number of components of the predicted 

and posterior intensity increases with time, which can be a problem in implementation. 

However, this problem can be eflPectively handled by applying some simple pruning 

procedures [131, 133 . 

Given the posterior intensity Vk at time k 

Jkir) 

i=l 

the peaks of the intensity are points of highest local concentration of the expected 

number of targets. In order to extract the state of the targets from the posterior 

intensity at time /c, an estimate of the number of targets Nk is needed. This number is 

simply X^iif^ rounded to the nearest integer. The estimate of the multi-target 

state is the set of Nk ordered pairs of means and modes with the largest 

weights r e M,i = 1 , . . . , Jfc(r). 

3.3.3 General solution to the PHD recursion 

Apart from the LG and LGJMS muhi-target models, the PHD recursion also 

admits closed form solutions under more general settings. In this section a general 

analytic solution to the PHD recursion is derived in the hybrid state space X = W x M . 

Readers who are interested in the simulation results of the above developed PHD filter 

may proceed directly to Section 3.3.4. 
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Proposition 3.13. Given a multi-target transition model with 

Js,k\k-i{r') 

HC, rO = E e; (T, r')). (3.52) 

If the posterior intensity Vk-i at time k — 1 has the form 

Jk-lir') 
vk-i{^'y)= (3.53) 

i=l 

Then the predicted intensity is given by 

Vklk-ii^^r) + + (3-54) 

where 
Jk-l{r') JffMk-l^^y) 

E E (3.55) 
r' 1=1 j=l 

'•') = (3-56) 
= n(n« (3.57) 

r' i=l 1=0 j=l 

(3.61) 

e&lLii'-') = = e«,(r'). (3.62) 
Proof V0^k\k-i is obtained as before. For Vf,k\k~i first substitute (3.50), (3.53) into 

Ps k\k-ii^')'^k-i{x') and applying Lemma 3.8 to yield a (double) sum of weighted Gaus-

sians. Then substitute the resulting Gaussian mixture and (3.51) into ' 

fj,lk-i{x\x')vk-i{x')dx', exchange the order of sums and integral, and apply Lemma 3.7 

to individual terms to obtain (3.58). ^ 
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Proposition 3.14. Given a multi-target measurement model with 

JdM^) 

P o A i ^ r ) = w ' - ° \ ( r ) + ^ (3.63) 
1=1 

Jg.kir) 

9k{z\^.r) = ^ (3.64) 
j=i 

If the predicted intensity f/^ifc-i has the f o r m 

(3-65) 

Then the posterior intensity Vk is given by 

= Vk\k-i{^,r) - V D , k { ^ , r ) ^ (3.66) 
zeZk 

where 

Jk\k-l{'r) JD,k{r) 

i=l /=o 

«ij ' .VlC'") = l . (3-69) 

©D-'il .-lW = ©^¿¡^^r) = (3.70) 
Jk\k-i{f) JD,k{r) Jg,k{r) 

E E E (r ; . ) ) , (3.71) 
/=0 3=1 

i=l 1=0 j=l ' 

z) = ^Í{Z•, n ( n « (r), (3.73) 

(3.74) 

P r o o f . For substituting (3.63), (3.65) into p D , k { x ) v k \ k - i { x ) , and applying Lemma 

3.8 to individual terms yields (3.67). For Vg^k, first substitute (3.67), (3.64) into the 

numerator of (3.47) and apply Lemma 3.8 to yield a (triple) sum of weighted Gaussians. 

Second, applying Lemma 3.7 to the integral in the denominator of (3.47) gives the 

(triple) sum in the denominator of (3.72). Combining the results for the numerator and 

denominator of (3.47) gives (3.71). • 
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3 . 3 . 4 Simulation results 

In this subsection simulation results for two examples are presented to demon-

strate the performance of the proposed PHD filter for LGJM models. For illustration 

purposes a two-dimensional scenario is considered where aircraft appear in the surveil-

lance region [—60,60] x [—60, 60] A single sensor located at {0,0) km provides 

position-only measurements to a controller. The interval between the samples is T = 5 s 

and the true number of aircraft at each sampling instant is not known. 

During a level flight the aircraft dynamics can be modeled by a non-maneuver 

model and a maneuver model. Motion along a fixed heading at constant speed can be 

described by a non-maneuver model, for example, a constant velocity model. A level 

turn can be described by a maneuver model, for example, a coordinated turn model 

10, 9]. The kinematic state of an aircraft is defined as ^ = {px, Px, Pŷ  PyV^ where 

{Px,Py) denotes its Cartesian co-ordinates in the horizontal plane and {px,py) denotes 

its velocities. The speed of the aircraft is in the range Mach [0.9,1.1 . 

At a turn rate of the coordinated turn model reduces to the constant ve-

locity model and the uniform motion of the aircraft can be modeled by the maneuver 

model. The aircraft motion models are described as follows. Model r = 1 is a coordi-

nated turn model with a turn rate of with hnear Gaussian dynamics (3.17) given 

by = 1) = = l),Qfc(r = 1),0), with 

sinu;T Q _ 1—cos uT 

Fk-i{r = l) = 

1 

LU U/ 

0 coscjT 0 - sin ljT 

Q l-cosu;T ^ sinuT 

Qkir = l)=a. VI 

Il II 0 0 

Ç T2 0 0 

0 0 ç ç 

0 0 Ç t 2 0 sino^T 0 coscjT 

where u denotes turn rate. Perturbations in the lift and drag characteristics due to 

changes in the properties of the atmosphere are modeled as zero-mean Gaussian white 
r\ 

noise with a standard deviation, ay^ = 5ms . 

Model r = 2 is a coordinated turn model with a counterclockwise turn rate of 
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with standard deviation of noise, cTy^ = 20 to reflect the difl'erent noise 

characteristics during a level turn. Model r = 3 is also a coordinated turn model but 

with a clockwise turn rate of The switching between the motion models is given 

by Markovian transition probability matrix as 

hlk-i(rlr') 

The probability of target survival may change from one application to another and 

between different scenarios of an application. The reason is that in addition to some 

factors internal to the target, for example, aircraft altitude, fault-tolerance of instru-

mentation, fuel consumption and length of flight, target survival depends on certain 

external factors, for example, weather conditions. In general, the probability of target 

survival in military applications is lower than that in civilian applications where it may 

additionally depend on the maneuver an aircraft executes and the position of the aircraft 

relative to the location and type of threat (e.g. radar, anti-aircraft artillery, etc.) in the 

enemy surveillance region. A realistic model of the probability accounts for all of the 

above factors. In this chapter, modeling issues are not covered and it is assumed that a 

model of the probability is given. Furthermore, the probability of target survival may 

be treated as a random variable and incorporated in the state vector to be estimated. 

However, for simphcity it is assumed that the probability is known. Ps,klk-i = 0-99 

is assumed for modes r' = 1 ,2 ,3 . Similarly, the probability of target detection may 

also vary depending on, for example, sensor characteristics, signal interference, weather 

conditions in civilian applications and in addition, countermeasures in military applica-

tions. A realistic model of the probability should consider these issues. Modeling issues 

are beyond the scope of this chapter. It is assumed that such a model is given. In the 

examples that follow pD,k = 0.98 is assumed for modes r = 1, 2, 3. 

Measurements follow the observation model (3.18) given by flg^k = (Hk^Rk^O), 
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Hk = Rk = 

with 

1 0 0 0 
0 0 1 0 

where In denotes a n x n identity matrix. The error in the sensor measurements is 

modeled as zero-mean Gaussian white noise with a standard deviation, â  = 40 m. 

Clutter is modeled as a Poisson RFS with intensity hik{z) = XcVU{z), where ¿Y(-) denotes 

a uniform density over the surveillance region, V = 1.44 x 10^ km^ is the volume of the 

surveillance region and Ac = 3.47 x 10"^ denotes the average number of clutter 

returns per unit volume. 

The models for target births and spawnings are described next. Consider a sce-

nario where the surveillance region includes three airport locations at (40, -50 ) km, 

(—50,40) km and (—10,0) km. The intensity of the Poisson RFS of spontaneous births 

is given by 

7/c(i,r) = 0.l7rfc(r) (a/'(Ç; m^i), P^)-h A/'(i; m f , P^) + A/'(i; m^ )̂, P^)) , 

with 

= ( 4 X 10^ 0 , - 5 X 10^ 0 f , 

= ( - 5 X lo^ 0, 4 X 10^ 0 f , 

= ( - 1 X lo^ 0, 0, 0 f , 

P , = diag(( 10^ lo^ lo^ lo'̂  ) ) , 

and the distribution of the models at birth is taken as [7rfc(r)] = (0.8, 0.1, 0.1). 

Also consider the case where payloads originating from an aircraft contribute to 

sensor measurements, the intensity of the Poisson RFS of spawn births is given by 

Qp = diag(( 10^ 4 x l 0 ^ 10^ 4 x 1 0 ' ) ) , 
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^klk-iir-y) 
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For simplicity it is assumed that the pay load dynamics follow models r = 1,2,3. 

and the distribution of the models for a given aircraft state is taken as 

3.3.4.1 Example 1 

At time k = 1 an aircraft takes-oif from (—41, —51) km and accelerates north-

wards. At time k = 3 a second aircraft takes-oif from (—51, 39)/cm and accelerates 

towards NSO°E. A third aircraft takes-oif from (-9,1) km at time k = 11 and ac-

celerates westwards. As the first aircraft initiates a counterclockwise turn at A: 31 a 

payload separates from the aircraft and continues northwards. At time /c = 44 a payload 

separates from the second aircraft as it initiates a clockwise turn and continues along 

570°^ . 

Fig. 3.1 shows the true aircraft and payload trajectories in the horizontal plane. A 

1-D view of these trajectories along with the sensor measurements is shown in Fig. 3.2. 

Simulations show that the PHD filter works well even when the simulated data is not 

generated from the same models used by the filter. The position estimates of the PHD 

filter in Fig. 3.3 demonstrate that the filter provides accurate tracking performance 

in clutter. Since at each sampUng instant the number of targets is not known the 

filter occasionally exhibits false estimates. However, as shown these estimates do not 

propagate with time. 

The mean absolute error in the number of targets and the probability of track 

loss (see [133] for a definition of these measures), estimated from 10^ Monte Carlo runs, 

are shown in Fig. 3.4 for a position error radius of 50 m. 



3.3. CLOSED FORM SOLUTION TO THE PHD RECURSION FOR LGJMS 
MULTI-TARGET MODEL 

Aircraft 2 
start pf night at k * 3; 
and of flight at k * 95 

Payload 1 
e s p a r t t « from Aircraft 1 ^ 
a t k - 3 1 : 
end gf flight at k ' 100 

AlrsraflS 
•tart of flight at k« 12: 
and of flight at k> 100 

Peyioad 2 
svpgratas from Aircraft 2 
at ks 44: 
end of flight at k> 88 

Aircraft 1 
Stan of flight at k> 1: 
and of flight at k - 80 

- 2 0 2 
X coordinate (in m) 

Figure 3.1: Aircraft and payload trajectories, 'o ' - locations of start of flight; 
locations of end of flight ( ' x ' - location of sensor). 

3.3.4.2 Example 2 

At time k = \ three aircraft take-off simultaneously from the three airport lo-

cations. Aircraft 1 flies at a bearing of N4:5°W from (—41,—51)/cm, aircraft 2 flies 

eastwards from (—51, 39) km and aircraft 3 flies at a bearing of E from (—9,1) km. 

Assuming all three aircraft exist at each sampling instant and no other targets appear 

in the surveillance region, the performance of the proposed PHD fllter can be compared 

with that of the well-known IMMJPDA fllter which tracks a flxed and known number 

of targets. 

As indicated previously the PHD fllter has a complexity of 0{Jk-i\Zk\) where 

Jk-i is the number of Gaussian components representing Vk-i for a flxed model r' at 

time k — 1 and \Zk\ denotes the number of measurements at time k. Computationally 

efficient implementation of data association in JPDA has been the subject of much 

research. Exploiting parallel implementation, the column-recursive algorithm CR-JPDA 

102] has a complexity of 0{N\Zk\^2^) for N targets. 

Fig. 3.5 shows the trajectories of the three aircraft. Fig. 3.6 (a) shows the mean 

absolute error in the estimate of the number of aircraft by the PHD fllter. Fig. 3.6 (b) 

shows the probability of track loss at various clutter rates while a comparison of the 
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Figure 3.2: Measurement data and true target positions. 

Figure 3.3: Position estimates of the Gaussian mixture PHD filter. 

averaged CPU time involved at each step for the two filters is shown in Fig. 3.6 (c). 

Simulation results obtained from 10^ Monte Carlo runs indicate that at any given clutter 

rate the tracking performance of the PHD filter is similar to that of the IMMJPDA filter 

at lower computational complexity. 

Fig. 3.7 shows the tracking performance of the Gaussian mixture PHD filter 

versus the probability of target detection pD,k in the range [0.7,1.0] with a fixed clutter 

rate Ac = 3.47x Fig. 3.7 (a) shows the mean absolute error in the estimate of 

the number of aircraft by the PHD filter. However, a comparison with the performance 
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Figure 3.4: Mean absolute error of estimated number of targets and probability of track 
loss. 

of the IMMJPDA filter is more intuitive. This result is remarkable because the PHD 

filter must resolve detection uncertainty in addition to the uncertainty in the number of 

targets and therefore is expected to perform poorly with increasing uncertainty in the 

number of targets due to increasing detection uncertainty. However, as shown in Figs. 

3.7 (b) and (c) the tracking performance of the Gaussian mixture PHD filter is very 

similar to that of the IMMJPDA filter at a much lower computational cost. 

.xio" 

4 - O -

Aircraft 2 
start of flight at k= 1; 
end of flight at k= 100 

2 -

I 0 p 

> . - 2 -

- 4 -

Aircraft 3 
start of flight a t k = 1; 
end of flight at k= 100 : 

- 6 - 2 0 2 
X coordinate (in m) x 1 0 

Figure 3.5: Aircraft and pay load trajectories, ' o ' - locations of start of flight; 
locations of end of flight ( ' x ' - location of sensor). 
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Figure 3.6: Tracking performance and computational complexity versus clutter rate for 
PD,k = 0.98 and CPEP radius = 50 m. 

3.4 The PHD filter for nonlinear GJM multi-target 

models 

A JMS comprising of nonlinear models accommodates an even wider range of 

applications by providing a greater generality for modeling systems that switch between 

various models. Extension of the PHD filter for nonhnear models relaxes Assumption 

3.4 and the state transition density and the observation likelihood take the form 

r\i\ r') = X ( i , (i ' , r), Q,{r)) (3.75) 

(3.76) 

where r) and Hk{-, r) denote nonlinear mappings parameterized by model r. The 

contribution of the intensity term due to the motion of the targets u/.jti/c-iii.r) to the 

predicted intensity at time k in (3.30) for a given prior intensity Vk-i is given by 

= Fk-i{i',T),Q,{r)) r')di'. (3.77) 



3.4. THE PHD FILTER FOR NONLINEAR GJM MULTI-TARGET MODELS 59 

OS 0.85 o.e 

probability of detection 
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0.8 0.85 0.9 
probability of detection (c) 

Figure 3.7: Tracking performance versus probability of detection for A( 
10"^ /cm-2 and CPEP radius = 50 m. 

= 3.47 X 

Since Fk-i{-jr) is a nonlinear mapping, r) does not admit a closed form. The 

predicted intensity ^̂  time /c is a weighted sum of various functions of 

many of which are non-Gaussian due to v/̂ fciit-iC^? 

Similarly, the contribution of the intensity term due to the detected targets 

to the posterior intensity at time k in (3.42) for a given predicted intensity of 

Gaussian mixture form is given by 

. . ^ PdM'^W r) 

r' 

Since Hk{-,r) is nonlinear, does not admit a closed form and the posterior 

intensity at time k comprises of non-Gaussian components due to Vg^ki^,'^)-

At present there exists no tractable analytic method for tracking multiple targets with 

nonhnear jump Markov dynamics. In this section an analytic approximation of the 

PHD recursion is presented. 

In single target filtering, analytic approximations of the nonlinear Bayes filter in-
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elude the extended Kalman filter (EKF) [59, 44] and the unscented Kalman filter (UKF) 

62, 63]. The EKF approximates the posterior density by a Gaussian, which is propa-

gated in time by applying Kalman recursions to local linearizations of the (nonlinear) 

mappings Fk-i{-,r) and Hk{-,r). The UKF also approximates the posterior density by 

a Gaussian, but instead of using the linearized model, it computes the Gaussian approx-

imation of the posterior density at the next time step using the unscented transform (see 

the discussion on nonhnear filtering in Section 2.5). In the sequel linear approximations 

of r) and Hk(-,r) using the UKF are discussed and the performance of the PHD 

filter is demonstrated for nonlinear models through a simulation example. 

Consider the nonhnear mapping r) evaluated in p points , yk-i,i(''"))^ 

z = 0 , . . . around mfc_i(r) with covariance where = Ffc_i(Cfc-i,i(r), r), 

i = 0,... ,p such that 

1 ^ 

i=0 
1 

W = ^ E ( i k - l A r ) - f h k - l { r ) ) - . (3.79) 
1=0 

From (2.62) the statistical linear regression of Ffc_i(-,r) around mfc_i(r) is the hnear 

approximation Ak^i{r)m bk-i{r) with 

A k - i { r ) = (3.80) 

bk-i{r) = y k - i { r ) - A k - i { r ) m k - i ( r ) , (3.81) 

where y k - i { r ) can be computed like (2.64) along with the covariance as 

1 . ^ 
y k - i { r ) = — 

^ i=0 
1 ^ 

Py,k-i{r) = — E - y k - i { r ) ) { y k - i , i { r ) " y k - i i r ) f , (3.82) 
i=0 

and the cross-covariance term P^y^fc-i(^) in (3.80) as (2.65) 

Piy.k-i{r) = ^ E (C^-I.ii'-) - iyk-i,iir) - y k - i i r ) f • (3.83) 
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Let = yk-i,i{r) - {Ak-i{r)Ck-i,i + bk-i{r)) and e^ik-iir) be the error in the 

approximation, then the covariance of the error is 

p 
Pe,k-iir) = ^ E = Py.k-Ar) - A,.,{r)Pk-i{7-)Al_,{r). (3.84) 

Admitting the following approximation in (3.75) 

AA ( i ^ f c - i W C + fc.-iW, + Q ^ W ) . (3.85) 

L e m m a 3.7 can be apphed in (3.77) to obtain expressed in Gaussian mixture 

form. 

Similarly, Hk{',r) can be evaluated in p points (CA;|/e-i,j(̂ )> > j = Oi • • • iP 

around fhk\k_i{r) with covariance Pk\k-i{r) where (fk,j{r) = J = 

0,... such that 

1 ^ 

j=o 
I P _ T 

Pk\k-i{'r) = — - y - ^k\k-i{r)) (CA:|fc-ij(̂ ) - ^k\k-i{r)) , (3.86) 
^ j=o 

and the statistical linear regression of Hk{-,r) around fhk\k-i{T^) is the approximation 

Ck{r)m-}-dk{r). Using (2.62), 

C k { r ) = Pl^^kir)PkiLi{r). (3-87) 

dk(r) = Mr)-Ck{r)mk\k-i{r). (3.88) 

where the first and second-order m o m e n t terms can be computed like (2.64)-(2.65), 

1 ^ 
^fc(r) = — r y l ^ V ^ f c j W ' 

j=0 
1 ^ 

P ^ j=0 

P c ^ A r ) = £ - ^fcl^-i(O) M r ) - M r ) f • (3-89) 
j=0 

Let ek,j(r) = ^k,j(r)-{Ck{r)Ck\k-i,i-^dkir)) and efc(r) be the error in the approximation, 

then the covariance of the error is 

p 
PeMr) = E ll^^^jWIl' = - Ckir)Pk\k-Ar)Clir)- (3.90) 

f • - ,=0 
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Admitting the following approximation in (3.76) 

Af r), Rkir)) ^ M {z, -f 4 ( 0 , 4- Rk(:r)), (3.U1) 

Lemmas 3.7 and 3.8 can be applied in (3.78) to obtain Vĝ k in Gaussian mixture form. 

Note that for nonlinear jump Markov spontaneous birth and spawn models each 

non-Gaussian constituent function of the mixture models can be approximated by a 

Gaussian using the linear approximation method described above. The expressions for 

the PHD recursion are notationally cumbersome and therefore omitted. 

3.4.1 Simulation results 

In this subsection the performance of the proposed PHD filter is demonstrated 

for nonlinear Gaussian jump Markov models. Assuming the turn rate is not a known 

constant the maneuver model becomes a nonlinear one. Augmenting the state vec-

tor to estimate the turn rate, the kinematic state of the aircraft is defined as ^ = 

(Px, Px, Py^ Py^ 

The motion models are as follows. Model r = 1 is a co-ordinated turn model 

with a known turn rate of and standard deviation of process noise, â ^ = 5m 

Model r = 2 is a co-ordinated turn model with an unknown turn rate given by 

1 sinu;T 0 -
l-cosa;T 0 

0 cosujT 0 - s i n c j T 0 

0 1—cosa;T 1 sincjT 0 

0 sin luT 0 cos ujT 0 

0 0 0 0 1 

, Q,.(r = 2) = c7 V2 

? ¥ 0 0 0 

? 0 0 0 

0 0 

0 ^ T2 0 

0 0 0 T2 

and a process noise standard deviation of 10 m s ^ and 0.5°s ^ for the Hnear and turn 

portions respectively. The Markovian transition probability matrix is taken £is 

tk\k-iir\r') 
0.8 0.2 

0.2 0.8 
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Aircraft are observed by a sensor providing bearing and range measurements in 
the region [—tt, tt] rad x [0, 60] km. The measurements are given by 

arctan(py/pa;) 2 = + efc (3.92) 
yjpl-^vl 

where ê  J\i{-;0,Rk) with R^ = cr^]), gq = (tt/ISO) rac/s"^ and cr̂  = 10 m. 
The average number of clutter returns per unit volume is Ac = 1.326 x 10"^ {radkm)~^. 

The models for the births and spawnings are described as follows. The surveillance 
region includes three airport locations at (40, —50) km, (—50,40) km and (—10, —10) km. 
The intensity of the Poisson RFS of spontaneous births is given by 

with 

= ( 4 X lo^ 0, - 5 X 10^ 0, 0 f , 
= ( - 5 X l o ^ 0, 4 X 10^ 0, 0 
- ( - 1 X lo^ 0, - 1 X 10^ 0, 0 

P , = diag(( 10^ , lo^ lo^ lo^ lo-® )) 

and the distribution of the models at birth is taken as [nk{r)] = (0.8, 0.2). The intensity 
of the Poisson RFS of spawn births is given by 

Q^ = diag(( 10^ 4x10^ , 10^ 4x10^ , 10"^ )) , 

and the distribution of the models for a given aircraft state is taken as 
0.8 0.2 

0.8 0.2 

The settings for all other parameters are identical to those in Section 3.3.4. 
At time A: = 1 an aircraft takes-off from ( -41 , -51 ) km and accelerates north-

wards. At time k = 31 the aircraft executes a clockwise turn through 45° at 30 s 
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later the aircraft executes a counterclockwise turn. The aircraft then executes a 

clockwise turn at time k = 70. At time k = 3 a, second aircraft takes-off from 

( -51,39) km and accelerates at a bearing of N80°E. The aircraft executes two clock-

wise turns at and and flies at a heading of 560°VK for 55 s before executing 

a 90° counterclockwise turn at A third aircraft takes-off from {-9,-11) km at 

time k = 12 and accelerates along the initial heading of 580° VK. At time /c = 35 the 

aircraft performs a 180° counterclockwise maneuver at followed by a sequence 

of clockwise and counterclockwise maneuvers at Two payloads separate from 

Aircraft 1 and Aircraft 2 at time k = 31 and k = respectively and continue until 

k = 100. 

Fig. 3.8 shows the true trajectories in the horizontal plane. As shown in Fig. 3.9 

the proposed PHD filter provides reasonably accurate position estimates at most times. 

Fig. 3.10 shows the mean absolute error in the number of targets and the probability 

of track loss for a position error radius of 50 m estimated from 10^ Monte Carlo runs. 

-?• 2 

Payioad 1 
sapirala« from Airem« lit k- 31: 
•nd of flight at k> 100 

- 2 0 2 
X coordinate (in m) 

Figure 3.8: Aircraft and pay load trajectories, 'o ' - locations of start of flight; '•'-
locations of end of flight ( ' x ' - location of sensor). 
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. x lO 

40 50 60 
time step (a) 

X 10 

Figure 3.9: Position estimates of the Gaussian mixture PHD filter. 

40 50 60 

time step (a) 

time step (b) 

Figure 3.10: Mean absolute error of estimated number of targets and probability of 
track loss. 



Chapter 4 

Nonlinear filtering based on LFT modeling 

For nonlinear state space model involving random variables with arbitrary prob-

ability distributions, the state estimation given a sequence of observations is based on 

an appropriate criterion such as the minimum mean square error (MMSE) (see Section 

2.1). This leads to linear approximation in the state space of the extended Kalman filter 

(EKF) [59, 44] and the unscented Kalman filter (UKF) [62, 63], which work reasonably 

well only for mildly nonlinear systems. A Bayesian filtering technique is proposed based 

on the MMSE criterion in the framework of the virtual Unear fractional transforma-

tion (LFT) model [143], which is characterized by a linear part and a simple nonlinear 

structure in the feedback loop. The L F T is an equivalent representation for smooth 

mappings (differentiable in any order), so the virtual L F T model is amenable to a wide 

range of nonlinear systems. Simulation results demonstrate that the proposed filtering 

technique gives better approximation and tracking performance than standard methods 

hke the UKF. Furthermore, for highly nonhnear systems where UKF diverges, the LFT 

model estimates the conditional mean with reasonable accuracy. 

This chapter is organized as follows: Section 4.1 gives some background on analyt-

ical approximation techniques for nonlinear filtering and transformation models applied 

in nonlinear control. In Section 4.2 the L F T model is discussed. An analytical solution 

to the Bayes recursion is then derived based on this model. Simulation results are given 

in Section 4.3 to analyze the performance of the proposed approach with the UKF. The 
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general solution to the Bayes recursion is then given in Section 4.4 using the nonlinear 

fractional transformation (NFT) model which accommodates the most general class of 

nonlinear mapping. This is demonstrated through a simulation example. 

4.1 Introduction 

The linear minimum mean square error (LMMSE) estimate of a random variable 

conditional on an event can be determined if the unconditional means of the random 

variable and the conditioning random variable, the covariance of the conditioning ran-

dom variable and the joint second-order moment or cross-covariance of the two random 

variables are computable. Based on this, the Bayes filter can be applied in a recursive 

fashion to estimate the state of a system conditional on a sequence of observations as 

it evolves with time. Under linearity assumption on the state space model, the esti-

mate is unbiased and admits a closed form solution. However, the class of linear state 

space models encompasses only a small subset of real systems. For the general class of 

real systems modeled by nonlinear space representation, the Bayes filter concedes an 

approximation in order to estimate the state. 

In the literature there are two standard approaches to approximate the conditional 

expectation of the state. The extended Kalman filter (EKF) applies a local linearization 

to the nonlinear mapping around the state estimate. This method is predicated on the 

weak premise that the estimate lies in the neighborhood of the global trajectory. As 

a result, stability of the filter and convergence of the estimate are not guaranteed. 

This is demonstrated by a simple example in [75] where the EKF fails to converge. 

The unscented Kalman filter (UKF) [62, 63] on the other hand, applies the unscented 

transformation [62] which uses the statistical hnear regression technique [77, 78] to 

approximate the moments of random variables. The conditional mean obtained using 

the UKF has a higher order accuracy than the estimate given by the EKF. This has 

been substantiated by empirical studies on the EKF and UKF showing that in most 
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applications the UKF gives better approximation [62, 63, 77, 33, 115]. Despite the 

advantage of UKF over EKF, the two approaches work reasonably well under mildly 

nonlinear conditions only. 

Over the past few years sequential Monte Carlo (SMC) methods have attracted 

attention for nonlinear Bayesian filtering applications [40, 39]. These methods approx-

imate the filtering distribution by a set of samples drawn from a proposal distribution. 

Under the assumption that the proposal distribution includes the region of support of 

the filtering distribution, SMC methods give better approximation than the linear ap-

proximation techniques mentioned above. In practice, a sufficiently large number of 

samples is needed. It is only in the hmit that the number of samples approaches infinity 

that the simulation-based methods guarantee convergence of the estimate to the optimal 

Bayes solution. 

In nonlinear control, exact feedback linearization is to transform a nonlinear con-

trol system into an equivalent linear one through a variable change[55, 56, 70]. Its 

validity is highly restrictive of local nature and its applicability is for a limited class 

of nonUnear systems. On the other hand, the linear fractional transformation (LFT) 

method (see e.g., [143, 4, 3] and the references therein) is extensively employed in H2 and 

Hoo gain-scheduling based control and filtering to represent nonlinear plants, whereas 

the uncertainty appears as a LFT (see e.g., [129, 128, 127, 25] and the references therein). 

Unlike feedback linearization, the LFT approach gives an equivalent representation for 

a very wide class of nonlinear systems including smooth mappings (differentiable in any 

order) and those involving complex fractional terms [143, 129, 128]. The LFT repre-

sentation comprises of a linear model and a simple nonlinear structure in the feedback 

loop with sparse representation. This structure offers two advantages: firstly, any ap-

proximation involved is localized to the feedback loop only. In [141] static nonlinearities 

appearing in the feedback loop are approximated using a local linearization about the 

input trajectory yielding a linear-time varying system. Secondly, the highly uncorre-
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lated nature of the nonlinear structure gives better approximation of the second-order 

moments. Moreover, the flexible representation of the LFT system is amenable to differ-

ent approximation strategies using the linear regression technique which is not obvious 

using the state space model representation. Based on this, a Bayesian filtering tech-

nique is presented for the most general class of nonlinear systems by transforming the 

state space model into an exact equivalent LFT model. By applying the unscented 

transformation in the feedback loop only a closed form solution is derived to estimate 

the conditional mean of the state. The simulation results show that the proposed fil-

tering approach gives a better tracking performance than the UKF in terms of tracking 

error. There is a case when the proposed approach can track an object which cannot be 

tracked using the UKF. For the class of nonlinear mappings that cannot be expressed 

in the fractional form, the nonlinear fractional transformation (NFT) model has been 

proposed [129, 52, 51, 53]. The proposed filtering technique generahzes naturally to 

the NFT case. Since the LFT model is widely accepted as a tool to express nonlinear 

systems, the discussion in this chapter in the context of the LFT model and then the 

results are presented under more general settings for the NFT system. 

4.2 LFT for linear filtering of nonlinear models 

This section presents a solution to the nonlinear filtering problem which averts 

the linearization of the state space model by using the LFT model. The LFT model is 

discussed in Section 4.2.1. The estimation and prediction steps of the recursive Bayes 

filter are then derived in Section 4.2.2. 

4.2.1 The linear fractional transformation (LFT) model 

From robust control theory it is known that any nonlinear mapping f my = f{x), 

differentiable at any order admits an equivalent representation known as the LFT model 
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143, m , 

y 4 a X 

VA _ C D 

(4.1) 

(4.2) 

where A € B € C e E ^ ^ ^ x n ^^^^ ^ ^ j^^haxua . xhe auxiliary variables 

It; A € E^^ and ?/a ^ E^^ introduced are related via the feedback connection A (a;) 

which takes the form A(a:) = with x{i) as the z-th element of vector x. 

The L F T system of (4.1)-(4.2) can be easily seen by its compact expression 

y = { A - \ - B A { x ) { l - D A { x ) ) ^C)x, (4.3) 

where A(a;) enters the relation in a highly nonlinear fashion. Using either the local 

linearization technique (2.59) or the statistical linear regression method (2.62) to ap-

proximate y in this manner gives an approximation that is equivalent to linearizing the 

nonlinear mapping /. On the other hand, the representation (4.1)-(4.2) is nonlinear in 

the feedback path only. Under this representation, an approximation is localized to the 

feedback path for estimation of the auxiliary random variable ii;A in (4.2). Given the 

first two moments of x as x and the regression points i = 0 , . . . are chosen by 

(2.63). Define the regression points WAi = A{xi)yAi, where 

yAi = Cxi + DWA, (4.4) 

and WA « E(ii;A) is 

_ / 1 P 

with 

z = 0 

(4.5) 

(4,6) 
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Accordingly, the covariance of w/^ and the cross-covariance with x are computed like 

(2.64)-(2.65): 

1 ^ 
i^A = Yl^'^^i " - (4.7) 

i—0 
1 ^ 

^Ax = ~ - (4.8) 

One can see that the approximation of the first and second-order moments of 

w/^ in (4.5)-(4.8) averts the hnearization of (4.3) which gives poor approximation for 

highly nonlinear models. The proposed approximation is expected to work well even in 

the case of highly nonlinear systems due to the simpler nonlinear structure in the LFT 

model. 

Now, for a random variable y = f{x)-\- Bw which depends on x with mean x and 

covariance Rx and w ~ A/'(-; 0, Rw), independent of x, the equivalent LFT representation 

takes the form 

y = AxBwBw/^, y/^ = CxDw/^, w/^ = (4.9) 

where B € The expectation of y is still 

y = Ax + BIDA , 

where is defined from (4.5). The covariance of y and its the cross-covariance with x 

are 

Ry = ARxA^ + BRu,B^ + BR^^B^ -f 

^ BR^^xA^, (4.10) 

Ryx = ARx + BR^x. (4.11) 

respectively, with i?A and i?Ax defined from (4.7)-(4.8). 

Based on the LFT representation of the state space model (2.1)-(2.2) and the pro-

cedure outlined for the approximation of the statistical moments of the estimation 

and prediction steps of the recursive Bayes filter are derived in the following subsection. 
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4,2.2 Recursive Bayes estimation 

The nonlinear state space model (2.1)-(2.2) can alternatively be expressed in the 

LFT format 

Xk+i = AkXk -f Bi^fcWk + B2,k'WAk^ (4.12) 

Zk = Cî kXk + Diî kVk + (4.13) 

= C2,kXk + D22,kUJAk̂  (4-14) 

WAk = /^{xk)zAk- (4.15) 

Here Ak G Bî k ^ B2,k ^ R^''^^, Cî k ^ R'^'"'', Du^k ^ Du,k e 

ĵ mxriA^ C2,fc G R^^^^, and D22,k e R^Axn^ ^^^ ^ ^n^ and ZAk e R'̂ ^ denote 

auxiliary variables introduced to model the feedback connection which takes the form 

indicated above. The noise sequences {li;^} and {vk} are assumed mutually uncorrelated 

and uncorrelated to the state Xk (and thus uncorrelated to the auxiliary variable w^k 

too). 

Denote by Xk,i, z = 0,... the z-th regression point of Xk- Suppose the estimate 

of the state Xk-\ at time k — \ conditional on the history of observations Zk-\ is rrik-i 

with covariance Pk-\- Then, by applying the technical results of the previous subsection, 

the prediction and estimation steps of the Bayes recursion in the proposed approach are 

given by the following. 

Proposition 4.1. The expectation of the predicted state at time k conditional on the 

data up to time k - I is accepted as mk\k-i with covariance Pk\k-i where 

mk\k-i = Ak-inik-i + B2,k-iWAk-i, (4-16) 

Pk\k-1 = Ak-lPk-lAl_i + Bi^k-lQk-lBf^k-l + + 

l A j . i , (4.17) 
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with 

kk 

V 

1 

R^k-l = - '¿'Afc-l) (̂ t^Afc-l.i - W A k - l f , 

1 ^ 
RAx,k-i = — ^ / , {'WAk-i.i - w/^k-i) - rrik-i) . 

1=0 

4.1S) 

(4.19) 

1 A 

\ 

WAk-\,i = +/)22,/c-1'W>AA;-I), '¿ = 0 , . . . ,P , (4.20) 
p 

(4.21) 

(4.22) 

Proposition 4.2. Given the conditional mean and covariance of the predicted state as 

above, the required estimate of the state Xk conditional on Zk is ruk with covariance Pk 

given by 

rrik = + Kk(zk - ijk), 

Pk = Pk\k-i - ^<^k[Ci^kPk\k-\ + Du^kP^xMk-i)^ 

(4.23) 

(4.24) 

where 

rjk = Ci^kmk\k-i + Di2,kW/\k\k-i^ 

Kk = {Pk\k-iClk + RLMk-i^kk) {Ci,kPk\k-iClk + Dn,kRkDl,^k-\-

(4.25) 

(4.26) 

with 

1 ^ 

^Ak\k-l,i 

RAk\k-l 

(4.27) 

f I P \ 
" (4.28) 

i=0 
= A{xk\k-i,i){C2,kXk\k-i,i + z = 0 , . . . (4.29) 

I P _ _ T 
= ——j- y ^ - '^Afc|fc-l) - '^Afclfc-l) > (4-30) 

i = 0 

V 1 T 
= — j T j X ] • 

P i—Q 
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One can see that Proposition 4.1 is similar to the Kahnan prediction step with 

the addition of the terms involving moments of tCAfc-i- Similarly, Proposition 4.2 is the 

Kalman data update step with the addition of terms involving moments of ii'A/clfc-i-

4.3 Simulation results 

In this section simulation results are presented to demonstrate the performance 

of the proposed filtering technique using the LFT model. Example I considers a non-

linear state transition model of the third order and gives a comparison of the tracking 

performance with the UKF. The effectiveness of the proposed filtering method becomes 

evident in Example II which considers a highly nonlinear problem for which standard 

filtering approaches for nonlinear systems such as the EKF and the UKF fail to con-

verge. In Example III a scenario from a multi-target tracking application is considered 

to estimate the unknown number of targets in the surveillance space and their state 

based on bearings and range information. 

4.3.1 Example I 

Consider a typical nonlinear autoregressive (AR) equation qk+2 = -O-lÇfc+i + 

Wk with the noisy measurement Zk = Qk ^k, which admits the following state-space 

equation formulation with the state Xk = ( x f c ( l ) , = [qk^Qk+iV ^ ^^ 

0 1 0 
Xk+l = Xk + 

-xl{l) - 0 . 1 1 
Wk, 

Zk = Xk[l)^Vk, 

(4.32) 

(4.33) 
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where Wk ~ Ai{-; 0, Q) with Q = 0.04 and Vk ~ 0, R) with R = 0.5. The nonlinear 

state space model (4.32)-(4.33) can be represented in the LFT form (4.12)-(4.15) with 

0 1 0 0 0 

0 - 0 . 1 
, Bi,k = 

1 
5 A; = 

0 - 1 

Ci^k 1 0 

1 0 0 0 
C2,k = , D22,k = 

0 0 1 0 
(4.34) 

where is the a x b zero matrix. The feedback connection has the simple structure 

^{^k) = XkWh with la as the identity matrix of dimension ax a. The true trajectory 

of the state Xk for 50 time steps is shown in Fig. 4.1. Using xq = (0, 0)^ as the initial 

estimate of the state with covariance Rx̂ o = h , the estimates given by the proposed 

filter at each time step are shown in Fig. 4.2 along with the true states. In Fig. 4.3 the 

mean square error (MSE) in the estimates obtained from 10̂  Monte Carlo runs using 

the proposed filter and the UKF is shown. Fig. 4.3 (a) depicts that the error using 

the proposed method drops to 0.1 at /c = 5 and remains below that obtained using the 

UKF. A similar trend observed in Fig. 4.3 (b) suggests that the proposed filter gives 

better tracking performance than the UKF. 

Figure 4.1: Trajectory of the state Xk = (a;fc(l), Xfc(2)) 
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Figure 4.2: True trajectory and the estimate of the state E{xk\Zk) given by the proposed 
filter. 

Figure 4.3: Mean square error (MSB) in the estimates using the proposed filter and the 
UKF. 

4.3.2 Example II 

Consider the highly nonhnear system [129 

Xfc+i = {Qo + Qixl{l) + Q2xU2) + QsXk{l)xl{2) + 

Q^XkW + Q5xk{2))xk + BkWk, 

Zk = 100 - 1 1 Xk +Vk, 

(4.35) 

(4.36) 
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Qo = 

Q'3 = 

- 0 . 7 - 1 . 0 

0.1 - 0 . 5 

0.4 0.1 

0.15 0.1 

, Qi = 

, Q4 = 

, Q2 = 
0.3 0.2 

0.1 0.2 

0.25 0.25 

0.1 0.25 

Bk = l - 2 1 wk ~ A/"!-; 0, Q) with Q = 0.01 and Vk ~ 0, R) with R = 100. The 

exact LFT representation can be constructed with 

0.2 0.1 

0.2 0.3 

0.25 0 

0.1 0.25 
, (4.37) 

A; = 

- 0 . 7 - 1 . 0 

0.1 - 0 . 5 
) Bi,k = Bk, 

0.25 0 0.3 0 0 0.1 0.2 0.3 0 0.4 0.5 

0.1 0 0.1 0.25 0 0.3 0.2 0.3 0 0.15 0.35 

= 100 - 1 1 , ^ll.A: = 1, = Oi,ii, 

CT 2,k 
1 0i,2 0 0i,6 1 

0 0i,2 1 0i,6 0 
, ^22,A: = 

0l,5 0i,5 0 

L O5 05,1 

M N 05,1 

(4.38) 

where 

L = 

h 02,1 O2 

0i,2 0 0i,2 

O2 02,1 I2 

,M = 

0 1 0 0 
02,1 

0 0 0 1 

1 0 0 0 0 
,N = 

O2 02,1 O2 

0i,2 0 02,1 

1 0 
02 02,] 

0 0 O2 02,1 O2 

and Oa is the zero matrix of dimension ax a. Using la,6 to denote the a x 6 matrix with 

entries one, the feedback connection is given by 

A(xa:) =diag( [Xfc ( l ) l l ,3 ^fc(2)ll,4 Xk(l) Xfc(2)li,3]). (4.39) 

The trajectory of the state Xk as it evolves with time for 50 time steps is shown in 

Fig. 4.4. Using xq = ( 0 , 0 ) ^ as the estimate of xq at time k = ^ with covariance 
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Rx,o = 0.25/2, Fig. 4.5 shows the estimate of Xk given by the proposed filter at each 

time step along with the true trajectory. In this example the EKF and the UKF break 

down so a comparison of the results with the standard approximation methods is not 

possible. The MSE obtained from 10^ Monte Carlo runs using the proposed filter shown 

in Fig. 4.6 indicates that the proposed filter works reasonably well. 

Figure 4.4: Trajectory of the state Xk = Xk{2)) 

0.51 1 r 

-0.4 

Figure 4.5: True trajectory and the estimate of the state E{xk\Zk) given by the proposed 
filter. 
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0 5 10 16 20 25 30 36 40 45 50 time atop (ŷ ) 

0 5 10 16 20 , 26 30 36 40 45 50 ,, , time step (5) 
Figure 4.6: MSE in the estimates using the proposed filter 

4.3.3 Example III 

In this example the problem of multi-target filtering of random number of maneu-
vering targets in clutter presented in Section 3.4 using the proposed nonlinear JMS-PHD 
filter is revisited. 

The aircraft are observed by a sensor located at (—120, —40) km which provides 
bearing and range information in the region [ -7r/4,7r/4 ] rao? x [0, 200] km. The mea-
surements are given by 

arctan {{py^k - Ps,y)/(Px,k - Ps,x)) 

Zk = + efc (4.40) 
y{Px,k - + {Vy,k - Ps.yY 

where {ps,xiPs,y) denotes the sensor coordinates, e^ = ~ J\i{-]0,Rk) with 
Rk = diag([£7^, cr^]), ae = (n/180) radand cr̂  = 20m. Let Zk = {zi^k, then 

= = + (4.41) 
Px,k Ps,x 

Using the approximation Vk ~ can alternatively be expressed in the 
LFT format 

¿l.fc = Ci^kik + Dii^kdk + 
z/^k = C2^k^k + D2\^kdk + D22,kWAk, 

WAk = ^{Xk)ZAk, 

(4.42) 
(4.43) 
(4.44) 
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where 4 = (éi,/,., 1)^, 

= Qi,45 ^11,fc = 

C2,k = 0i,4, V21,k = 

1 'Ps,y/Ps,x 

0 1 > D22,k = 0 (4.45) 

and the foedback coiineetion A(iCfc) is the vector uf vehicle coordinates {px,k^ Py,kV-

For a given mode r, the single target dynamical and range measurement models are 

approximated by the Hnear Gaussian models (3.91) and (3.85) respectively as before. 

The average number of clutter returns per unit volume is taken as Ac = {rad . 

For simplicity target spawning is not considered. Consider a scenario where the surveil-

lance region includes the five airport locations at ( -20 , - 2 0 ) km, (10, 20) km, (30, - 10 ) /cm, 

( -30 ,20) km and (—20,40) km. The spontaneous birth random finite set (RFS) is Pois-

son with intensity 

with 

= ( - 2 X l o^ 0, - 2 X 10 ,̂ 0 - o f 

- ( 1 X l o ^ 0 , 2 X l o^ 0, 0 

- ( 3 X 10^ 0 , - 1 X 10'̂  , 0, o f -

= ( - 3 X l o^ 0, 2 X 10^ , 0, o f . 

- ( - 2 X l o^ 0, 4 X 10^ , 0, o f . 

P , - d i a g ( [ l O ^ 200, 10^ 200, 0 ] ) . 

The settings for all other parameters are identical to those in Section 3.4.1. 

Fig. 4.7 shows the true trajectories of five aircraft in the horizontal plane that 

appear in the surveillance region and disappear at different times and locations. The 

aircraft perform a sequence of maneuvers at a turn rate in the interval [ - 2 , 2 



4.3. SIMULATION RESULTS 81 

- 4 

Aircriifl 5 
»tart of flight at li= 20; 
endoff l l f lht a l k " 100 

Aircraft 1 
start of flight at k» 1; 
en^ of flight «1 k= 90 

O 

Aircraft 3 
start of flight at k= 11; 
«nd of flight at 100 

Aircraft 4 Aircrafl 2 
start of flight at k= 17; start of flight at k - 3; 
end of flight at k» 100 and of flight at k» 9S 

- 1 4 - 1 2 - 1 0 - 6 - 4 - 2 0 
X coordinate (in m) 

4 6 
X lo" 

Figure 4.7: Trajectory of the vehicle, ' o ' - location of vehicle at A: = 1; ' • ' - location of 
vehicle at /c — 100 ( ' x ' - location of sensor). 

A 1-D view of these trajectories along each axis with cluttered measurements plotted 

against time is shown in Fig. 4.8. The position estimates of the PHD filter in Fig. 

4.9 show that the filter successfully tracks the targets in clutter. Occasionally, the 

filter underestimates the number of aircraft in the surveillance region and momentarily 

loses track. Similarly, an overestimate of the number of aircraft produces false estimates 

which as shown do not propagate with time. There are two causes of this mis-estimation 

of the number of targets. The predicted multi-target RFS is assumed to be Poisson (see 

Section 3.2.3), and so the number of targets is Poisson distributed. The mean of a 

Poisson distribution is the same as its variance so the variance of the estimated number 

of targets is high. This is compounded by errors in the prediction and update steps 

which cannot be computed exactly for nonlinear models. However, the mean absolute 

error in the estimated number of targets averaged over 10^ Monte Carlo runs shown in 

Fig. 4.10 suggests that the LFT based JMS-PHD filter gives more reliable estimates 

than the unscented JMS-PHD filter presented in Section 3.4. The reason for this is that 

the estimates of the state of the targets distance closer to the true states using the LFT 

model. The existence of the targets is discriminated from noise and is accounted for in 

computing the effective number of targets for extracting the state of the targets. 
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Figure 4.8: Measurement data (projected on the x and y axis) and true target positions. 

. X i o 

"S _ 

50 100 150 200 250 300 350 400 450 500 time (8) (a) 
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Figure 4.9: Position estimates of the Gaussian mixture PHD filter using the LFT model. 

4.4 General solution to Bayes recursion 

Nonlinear systems that do not admit an exact equivalent LFT representation can 

be expressed as a nonlinear fractional transformation (NFT) system [129, 52, 51] which 

is exact. In this section the solution to the Bayes recursion in Section 4.2.2 is generahzed 
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Figure 4.10: Mean absolute error of estimated number of targets using the LFT based 
JMS-PHD filter and the unscented JMS-PHD filter. 

to accommodate any nonlinear structure using the NET model given below 

x/c+i = AkXk + Bî kWk + (4.46) 

Zk = Ci^k^k-^-Dii^kVk-^ (4.47) 

^Ak = C2,kXkD2l,kUk + (4.48) 

w^k = (4.49) 

where = 1 is a fixed input, D2i,k ^ and the feedback connection matrix is given 

by A{xk) = Xk(i)- For rational nonlinearities, the NFT model can be 

transformed into the LFT representation (4.1)-(4.2) by introducing additional auxiliary 

variables. 

Under the standard assumption on the noise processes in Section 4.2.2, suppose 

the conditional expectation of Xk-i given Zk-i is ruk-i with covariance Pk-i- Then, 

Propositions 4.1 and 4.2 generahze to the following results. 

Proposition 4.3. The expectation of the predicted state at time k conditional on the 

data up to time k — 1 is accepted as mk\k-i with covariance Pk\k-i 'where mk\k-i is taken 

as given in (4.16) and Pk\k-i is taken as (4.17) with w/\k-i and vu/\k-i,i ^̂  (4.19) and 

(4.20) respectively given by 

\ / I 

y^Ak-i = { I - Âk-lD22,k-iy^ {C2,k-lXk-l,i-^ D2i,kUk) (4.50) 

WAk-l,i = A(Xk-l,i)iC2,k-lXk-l,i+ ^2l,kUk + D22,k-lÛ)Ak-l): i = 0, . . . ,p. (4.51) 
Proposition 4.4. Given the conditional mean and covariance of the predicted state as 

above, the required estimate of the state conditional on Zk is ruk with covariance Pk 
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given by (4.23) and (4.24) respectively with anrf li^Afclfc-i.i ^̂  (4.28) and (4.29) 

respectively as 

/ -i p \ 
= {I -

- 1 1 \ 

i=0 / 

4.4.1 Example IV 

The inverted pendulum on a cart problem, a well-known unstable nonlinear sys-

tem [50] is considered. The aim is to accurately track the motion parameters of the cart 

based on its position measurements. Using Euler's method the system can be discretized 

into a discrete-time nonlinear system [139], 

^k+i = 
X2,k 4-

xi,k + Tx2,k 
T(rnlx\ ,^ sin(x3,fc)-6x2,fc-mff cos(x3,fc) sin(x3,fc)) 

+ Tx^^^k 

T((M+m)gsin(x3,fc)+6a:2,fc cos(x3 sin(x3,fc) cos(x3,fc)) 
l{M+m sin'{X3,k)) 

-hBkWk, (4.54) 

Zk = CkXk + DkVk, (4.55) 

where Wk ~ AA(-;0,Q) with Q = diag([0.04, 10"^]) and Vk ~ with R = 

The constant M = 1378^ is the mass of the cart and m = 51 ̂  the mass of 

the block on the pendulum of length I = 0.325 m. The acceleration due to gravity 

is taken as ^ = 9.81 ms"^ and the coefficient of friction due to motion of the cart 

b = 12980 g . The sampling period T = 0.1 sis taken. Let (p^, ^k) be the translational 

motion parameters (position and velocity respectively) of the cart and (6k,L0k) be the 

angular motion parameters (position and velocity respectively) of the pendulum at time 

/c, the state variables are taken as xî k = Vki X2,k = ^k, xŝ k = k̂ and X4̂ k = ^k-

The nonlinear system (4.54)-(4.55) can alternatively be expressed in the NFT 
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hmi wiUi 

1 T 0 0 0.005 0 Ol,i7 
0 1 -• Tb/M 0 0 0.1 0 [ J 0i,9] 5 A; [ J 0i,9] 
0 0 1 T 0 0.015 0l,17 
0 0 0 1 0 0.3 J0i ,9 L] 

Ci.fc 1 0 0 0 - 1 , = Ol,i7, 

C2,k = 

Ol,4 
0 0 0 1 

08,4 

0 1 0 0 
0 0 0 1 

06,4 

1 0i,2 1 0i,4 11,2 0i,7 

^22,fc = 

-m/M 0i,i6 

0l,17 
0 1 0i,i5 

0l,17 
01.3 1 0i,i3 

0l,2 1 Oi,i4 

1 0i,i6 

01.4 1 0i,i2 

0i,8 -m/M 0i,8 

03,17 
N 

, N = 

Oi,ii 1 0l,5 
0l,12 1 0l,4 
0l,9 1 0l,7 
Oi,io 1 0l,6 
0l,13 1 0l,3 

(4.56) 
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with 

J -

L = 

M 
T_ 

IM 

m 0i,2 1 0 -g -m/M 1 —h/m —g 

(M -I- m)g b 0i,2 -ml -rn/M {M + m)p b -ml 

The feedback connection matrix is 

diag([(5i,fc,a;t,fc, 4 , sin(a?3,fc), 4 , 4 , (4.57) 

where 

J- r ^̂ ^ \ r 

4 = [ sin(a;3,A;)) cos(a:3,fc)) 

Fig. 4.11 shows the simulated translational and angular motion parameters of the 

cart and the pendulum respectively before the mass m strikes the cart. With the initial 

estimate of the state taken as xq = (0.5, 0.01, 0.01, 0 and covariance Rx^ = O.5/4, 

Fig. 4.12 shows the true position and velocity of the cart and the estimates given by the 

proposed filter. The M S E in the estimates is shown in Fig. 4.13. The results shown in 

Fig. 4.13 are averaged over 10^ Monte Carlo runs and indicate that the proposed filter 

works better than the U K F for most of the time. This example demonstrates that the 

N F T for filtering of discrete-time models can be applied to a general class of nonlinear 

problems. 
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Figure 4.11: Trajectories of the cart and the pendulum. 

Figure 4.12: True motion parameters of the cart and estimates using the proposed filter. 

Figure 4.13: MSE in the estimates of motion parameters of the cart using the proposed 
filter. 



Chapter 5 

LFT based filtering of the continuous-time model 

The linear fractional transformation (LFT) based filter for the discrete-time model 

presented in Chapter 4 is an attractive approach to filtering for a broad class of non-

linear problems. A closed form solution to Bayes recursion was derived based on the 

unscented transform localized to a simple nonlinear structure in the feedback. How-

ever, the discrete-time state equation is unnatural for many real processes evolving in 

continuous-time where the stochastic dynamical differential equation gives a realistic 

model. In this chapter, an analytic solution to the LFT based filter is presented for the 

continuous-time dynamical model with sampled-data measurements. Simulation results 

demonstrate that the proposed filtering approach is efficient for online implementation 

and is applicable to problems where standard analytical approximation based meth-

ods fail. Moreover, a comparison with the unscented Kalman filter (UKF) shows that 

the proposed filter outperforms the UKF in terms of accuracy of estimation as well 

computational efl^iciency. 

The chapter is structured as follows: Section 5.1 gives the motivation for LFT-

based filtering. Section 5.2 states the continuous-discrete filtering problem and the 

challenge of nonlinear filtering. In Section 5.2 the procedure for the calculation of the 

moments using the standard analytical approximation methods is examined in some 

detail before presenting the procedure for the proposed approach. An analytical solution 

to Bayes recursion using the LFT model for the continuous-discrete problem is then 
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presented. Simulation results are given in Section 5.4 to demonstrate the performance 

of the proposed filter and the UKF. 

5.1 Introduction 

The estimation theory gives elegant solution to nonlinear Bayesian filtering prob-

lems in continuous-time dynamics in terms of Kushner-Stratonovich [76, 126, 22] and 

Zakai [142, 64] partial differential equation for the conditional density. Apart from the 

linear Gaussian case [66] however, a tractably realizable solution is available only under 

certain conditions [13] (see also [35, 79] and the references therein). 

The stochastic dynamic differential equation is a realistic model of most natural 

continuous-time processes. For instance, the kinematic state comprising of position and 

velocity of a moving vehicle. However, observations are often available and processed at 

discrete time base by digital hardware. For instance, the periodic reports from a radar 

when an aircraft is illuminated by the rotating radar antenna. From Shannon-Nyquist 

theory, a sampled signal with high enough sampling rate gives complete information of 

the band-limited signal, i.e. an analog signal can be exactly recovered from its sampled 

data. Thus the continuous-time measurement does not necessarily give more informa-

tion while it may cause additional complications. The estimation problem when the 

dynamical state model is continuous-time but observations are sampled-data measure-

ments is referred to as continuous-discrete filtering [58, 59 . 

Numerical and grid based methods for the Fokker-Planck equation in continuous-

time filtering can still be apphed to the continuous-discrete filtering problem for prop-

agating the distribution of the state at the next samphng instant [24, 96]. However, 

these methods involve quite computationally intensive algorithms. The introduction of 

heuristics for computational efficiency tailor the algorithms to only a particular prob-

lem. The measure transformation based approaches using particle filters [39, 40] can be 

found in [72, 54, 98]. The particle filter based techniques in practice require a sufficiently 
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large number of samples and guarantee convergence of the estimate to the optimal Bayes 

solution only in the limit that the number of samples approaches infinity. The nonlinear 

projection filter [49] uses the Galerkin method (see e.g., [48]) to solve the Fokker-Planck 

equation. In [28] the solution is approximated using generalized Edgeworth series and 

Gauss-Hermite quadrature. Again, the computational load and then the practicability 

for real time application remain the greatest challenge and unsolved issues within these 

later methods. 

Under certain constraints it is possible to obtain exact filters which can be imple-

mented in real-time by a finite number of ordinary differential equations [36, 74]. For 

general nonhnear problems, the extended Kalman filter (EKF) [59, 44] is a tractably re-

alizable approximation using the local linearization technique. The resulting linearized 

dynamical equation can be transferred to the discrete-time equivalent whereby the prob-

lem becomes that of discrete-time filtering. Although the solution is obtained in analyt-

ical fashion, the accuracy of the discrete-time model is contingent on the quality of the 

local linearization technique employed by the EKF. For discrete-time systems, the un-

scented Kalman filter (UKF) [62, 63] has been shown to be computationally efficient and 

to give estimates with a higher order accuracy than the EKF (see Section 2.5 for further 

explanation). The UKF directly computes and propagates the first and second-order 

moments of the state. However, for continuous-discrete filtering this entails solving the 

differential equations of the first and second-order moments of the predicted state which 

requires iterative methods to approximate the equivalent discrete-time filter which are 

often prohibitive for real-time implementation. 

The linear fractional transformation (LFT) method [143, 4, 3] gives an exact 

model for a broad class of nonlinear systems characterized by a linear part and a non-

linear structure in the feedback with sparse representation. By arranging the unscented 

transformation [62, 63] in the feedback loop the approximation in the LFT model is suf-

ficiently localized to the feedback to linearize a simple nonlinear structure (see Section 
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4.2). In this chapter the LFT framework is explored for problems in nonlinear filtering 

of the continuous-discrete system. The objective of this chapter is essentially four fold: 

• To present the LFT framework as an efficient approach for simple approximation 

of the stochastic differential equation of the state prediction. 

• To propose the LFT model for accurate estimation of the state conditional on 

observations. 

• To show that the LFT is a powerful tool for online nonlinear filtering which 

avoids recalculation of system matrices at each sampling instant for processing 

of the observations. 

• To show that the proposed filtering approach economizes on signal processing 

operations. This is demonstrated through a simulation example where even at 

a higher sampling rate the UKF does not perform better than the proposed 

method. 

In summary, the aim is to show that the LFT is a new powerful framework for 

online nonlinear tracking. 

5.2 Background: Moment propgation 

Consider the dynamical equation in the Ito differential equation form 

dx{t) = f{x{t))dt ^ dm^ (5-1) 

where / denotes an arbitrary nonlinear drift, x{t) G W is the state of the system at time 

t, /3(-) is the Brownian process with diffusion Q(-) assumed independent of the state 

x(-) which is a reasonable simphfication for modehng in applications of target tracking, 

control and communications^ . 
1 Under such an assumption the Ito and Stratonovich interpretations of the stochastic differential 

equations are equivalent. 
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Although in principle the observation flow is continuous time 

z{t)dt = g{x{t))dt 4- dv(t), (5.2) 

it is important to realize by the foundation of digital signal processing that only sampled-

data measurements given by 

z{tk)=9{x{tk)) + v{tk), (5.3) 

are processed in real-time by digital hardware in most cases for estimation and interpo-

lation purposes. As mentioned above, by Shannon-Nyquist theory, in most cases there 

is no loss of information by frequently samphng (5.2) to get (5.3). Here g is an arbi-

trary nonlinear mapping, z{tk) G BJ^ is the observation at time tk = kT with T as the 

sampling period, v{tk) is the measurement noise with zero mean and covariance R{tk), 

statistically independent of the state x{tk). 

Suppose Z(tk) = {z{ti),... ,z{tk)) is the sequence of observations up to time 

tk- The continuous-discrete filtering problem is to estimate x{tk)\Z{tk), the state x{tk) 

at time tk conditional on Z{tk). As the state itself already carries all information 

of the past observations, the filtering recursion constitutes the two steps: {i) based 

on x{tk-i)\Z{tk-i) and state equation (5.1) on [tk-i,tk] to predict (or interpolate) 

x{tk)\Z(tk-i); {a) Using x{tk)\Z{tk-i) and observation (5.3) at time tk to estimate 

x{tk)\Z{tk). We will see that both steps are based on the estimation problem of Theo-

rem 2.1. 

With hnear mappings / and g in (5.1), (5.3), the continuous-discrete linear state 

space model is 

dx{t) = A{t)x{t)dt + dP{t), (5.4) 

z{tk) = C{tk)x{tk)-hv{tk), (5.5) 

where i ( - ) G and a(-) € Suppose at time to, the estimate of the ran-

dom variable x(io) is x{to) = m(to|-i) and the covariance is Rx{to) = P(io|-i)- The 
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expectation of 2(^0) in (5.5) is thus r]{to) = covariance Rzito) = 

+ ^(¿0) and the cross-covariance of z{tQ) and x{to) is given by 

Rzx{to) = C{to)P{to\^i). On arrival of data z{to), by Theorem 2.1 x(to)\Z{to) = 

has expectation 

mito) = m(io|-i) -f K{to){z(to) - '/^(¿o)), 

and covariance P{to) = P(to\-i)-K{to)Cito)P{toi-i), where K{to) = Rl^(to)R-^ito) = 

P{toi-i)C^{to){C(to)P{to\-i)C^{to) + R{to))-'. 

The estimate m{ti\tQ) of the predicted state for x{t) at time t = ti based on z{to) is the 

solution at t = of the differential equation 

jm{t) = A{t)m{t), (5.6) 

on [io^^i], or the corresponding integral equation 

m{ti\to) - m{to) = [ A{t)m{t)dt. (5.7) 
Jto 

Similarly, the covariance P{ti\to) is the solution at t = ti of the differential equation 

P(t) = A{t)P{t) + Pm'^it) + Qit), (5.8) 
dt 

on [io, ^i]- A similar realization for /c > 1 is the following version of the Kalman filter. 

Theorem 5.1. Suppose the estimate of x(tk-i) = x{tk-i)\Z{tk-i), the state x{tk-\) 

based on the history of observations Z{tk-i) at time tk-i is m(tk-i) and the covariance 

is P{tk-i)' Then, the conditional expectation m{tk\tk-i) and covariance P{tk\tk-i) of 

the predicted state x{tk) = x{tk)\Z{tk-i) at time tk are defined by the solutions att = tk 

of the following differential equations 

^m[t) = A{t)m{t), (5.9) 
at 

lp(t) = A(t)P(t) + Pm^(t) + Q(t) (5.10) 
dt 

on [tk-i,tk • 
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Theorem 5.2. The conditional expectation m[tk) and covariance P{tk) of state esti-

mate x{tk) = x{tk)\Z{tk) are defined by 

m{tk) = rn{tk\tk-i) + K{ tk ) { z [ tk ) - r } { tk ) ) , (5.11) 

P{tk) = P{tk\tk-i)-K{tk)C(tk)P(tk\tk-i). (5.12) 

with 

Vitk) = C(tk)m(tk\tk-i), (5.13) 

K{tk) = P{tk\tk-i)C'^{tk){C{tk)P{tk\tk-i)C'^itk)-\-R{tk))~'. (5.14) 

Note that in case of continuous-time measurements 

z{t)dt = C(t)x(t)dt + dv{t), (5.15) 

with E{dv{t)dv'^{t)) = R{t)dt. By setting t = tk = ¿fc-i, P{t) = P(tk\tk-i),m{t) = 

7n{tk\tk-i) and P{t) = P{tk),m{t) = ^(^fc) in (5.11)-(5.12) with (5.14) replaced by 

K{t) = P{t)C^{t)R-\t)Cit)P{t)) (5.16) 

and then replacing m(i) and P{t) by m(i) and P{t) on the right hand sides of (5.9)-(5.10) 

leads to the well known Kalman-Bucy filter 

^m(t) = A{t)m(t) + K{t){z(t)-C{t)m(t)), (5.17) 
dt 

-Pit) = A{t)P{t) + P{t)A^{t)-^Q(t)-P{t)C^{t)R-\t)C(t)P{t). (5.18) 
dt 

Like [84, Theorem 1], Gaussian a priori distribution is not required. Comparing the two 

sets of equations (5.9)-(5.12) and (5.17)-(5.18), one can see that the computational load 

for the latter is much heavier due to the differential Riccati equation (5.18). For moder-

ately large dimension, the real-time solution for (5.17)-(5.18) is still a challenging task. 

On the other hand, intuitively the equations (5.9)-(5.12) are preferable for estimation 

and filtering purpose. To see further motivation of the later development, consider the 

nonlinear versions of (5.9)-(5.12) and (5.17)-(5.18). The continuous-discrete equations 
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(5.1),(5.3) are considered first, where the state dynamics (5.1) is crudely approximated 

by the interpolation equation of Euler (rectangular) approximation 

x{ti,) = x{tk-i) -t- Tf{x(tk-i)) -f d0{ik-i) (5.10) 

• Suppose the estimate x{tk-i) := x{tk-[)\Z{tk-i) of the state x{ik-i) based on 

the history of observations Z{tk-i) at time tk-i has mean m{tk-i) and covari-

ance P{tk-i). Then, by Theorem 2.1 the conditional expectation m{tk\tk-i) 

and covariance P{tk\tk-i) of the predicted state x{tk) := x{tk)\Z(tk-i) at time 

tk are defined by 

mitk\tk-i) = m{tk-i) + Tf(x{tk-i)), (5.20) 

P{tk\tk-i) = P{tk-i) + T{Rf,ik) 4- Rlik)) + T^Rfik) + TQ{tk-i), (5.21) 

where 

Rf:,{k) = Rfik) = f{^(tk-i)) = E{f{x{tk-i)). 

(5.22) 

• Again, by Theorem 2.1, the conditional expectation m{tk) and covariance Pitk) 

of the state estimate x{tk) := x{tk)\Z(tk) are defined by 

m{tk) = m{tk\tk-i) + K{tk){z{tk)-il{tk)), (5.23) 

P{tk) = P{tk\tk-i)-K{tk)RgAk), (5.24) 

with 

nitk) = E(fl(x(t,))), (5-25) 

K{tk) = + = (5-26) 

Combining the pair (5.20) and (5.23) and the pair (5.21) and (5.24) to form two equa-
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tioris leads to 

(5.27) 

PM - m - i ) ^ + Rlik) + -

Now, letting T ^ 0, then tk = tk-i = t and x[tk) = x{tk) = x{t), and (5.27)-(5.28) 

become the following equations 

fm{t) = + (5.29) 

for propagation of the mean m(t) and covariance P{t) of the state estimate x{t) := 

x{t)\Z{t) in the case of using continuous observation (5.2). Of course, the above equa-

tions (5.29)-(5.30) are infinite-dimensional in general, which are reduced to the finite 

dimensional equations (5.I7)-(5.I8) when both mappings / and g are linear. By exam-

ining equations (5.20)-(5.26) and (5.29)-(5.30), one can see the central issue with using 

linear estimation for filtering nonlinear models is the approximation of the second-order 

moments of all concerned state and observation random variables. Analytical approxi-

mation methods such as the EKF and the UKF actually involve only linear estimators 

(by using Theorem 2.1) and are different only in the way the second-order moments are 

approximated (see Section 2.5). 

5.3 LFT in filtering nonlinear continuous-time stochas-

tic processes 

As can be seen from the analysis in the previous section, the main issues of 

online filtering nonlinear continuous-time processes are connected with the efficiency 

of moment prediction of the state process x{t) with distribution px{-) satisfying the 
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stochastic differential equation 

dx{t) = f{x(t))dt, E{x(tk-i)) = m(ifc-i), = P(tk-i), (5.31) 

and the conditional moment of 

x { tkMx{ tk ) ) (5.32) 

This section presents such a calculation. The calculations by the EKF and UKF are 

analyzed in Section 5.3.1. Then the proposed calculation development which is based 

on the LFT modeling is presented in Section 5.3.2. 

5.3.1 Moment calculations by the EKF and UKF 

The challenge in the prediction of x{t) satisfying equation (5.31) is the computa-

tion of the intractable integral equations 

dx{t):=E{dxit)) = j {f(x'{t))dt)p^{x')dx', 

dR:,(t) = I ( {f{x'{t)dt) - dx{t)) {x'{t) - x { t ) f + 

{x'{t) - x{t)) {f(x'{t)dt) - d ^ f (5-33) 

which are avoidable in the linear mapping case. 

P r o p o s i t i o n 5 . 3 . Regarding the linear stochastic differential equation (SDE) (5 .4 ) on 

tk-i,tk\, suppose that = ^(¿fc) and Tfc - T(tk) are the solution at t = tk of the 

following time-varying differential equations 

^^{t) = A{t)^{t), ^{tk-i) = In, (5.34) 
dt 

^T{t) = A{t)T{t) + r{t)A^{t) + Q(t), T(ifc_i) = On. (5.35) 
dt 

Suppose that mk-i and Pk-i are the mean and auto-covariance ofx{tk-i). Then, the 

estimate of the mean and auto-covariance of x(tk) is 

mk\k-i = '^k'Trik-i, (5-36) 

Pk\k-i = (5.37) 
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One can see that (5.36)-(5.37) is the prediction step of the discrete-time Kahnan 

filter. It should be noted that for moderately large dimension the real-time update for 

^k and Tk at sampling instants is still prohibitive. However, for the particular case 

of the linear time invariant SDE, i.e. A(t) = A and B{t) = B, ^k and T^ admit the 

explicit expressions 

^k = e^'^ (5.38) 

Tk = [ e^^Qe^'^-'dr, (5.39) 
Jo 

which can be computed off-line and do not require refreshment during the online process. 

Returning to (5.31), the EKF linearizes the nonlinear mapping / around the expectation 

x{t) of x{t) by 

df{x{t)) 
f{x(t))« Amx(t) - m+/(x(i)), Ait) = (5.40) 

dx{t) 

which works well in the case that the expected value x{t) lies in the proximity of dis-

tributed values of x(t). Substituting the approximation of f{x{t)) from (5.40) in the 

integral equations (2.58) results in 

^ x ( t ) = A{t)x(t), (5.41) 
at 

= Ait)RAt) + R,{t)A^{t). (5.42) 
at 

By Proposition 5.3, (5.41) can be transferred to an equivalent discrete-time model 

x{tk+i) = ^(tk)x{tk) where satisfies the differential equation (5.34). The expec-

tation mk\k-i and the covariance Pk\k-i of the predicted state x{tk)\Z{tk-i) are then 

given by 

mk\k-i = ^kTrik-ij (5.43) 

Pk\k-i = "^kPk-i^l (5.44) 

where ^fc = ^{tk) and ruk-i and Pk-i are the first two moments of x{tk-i). Besides 

unpredictable vahdity of the approximation, as mentioned earlier, the online implemen-
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tation of the EKF in moderately large dimensional cases is indeed a challenging task 

due to the time-varying characteristic of the equations (5.41)-(5.42). 

On the other hand, using Euler (rectangular) approximation for the differential 

equation dx = f(x{t))dt, 

x{t) - x{tk-i) = (5.45) 

where i/^-i is the length of the interval [tfc-i, the UKF aims at the direct approxima-

tion of the moments of x{t) using the statistical hnear regression of f(x{t)) around x{t). 

Regression points i = where p = 2n are selected for n-dimensional 

x(-) around x{tk-i) in a manner such that the sample mean and covariance of the points 

are identical to the mean and covariance of x{tk-i) (see Section 2.5), 

1 / 
xUi--

^ i=0 

1 ^ 
R, { tk- i ) = — ^ ( x W ( i f c - i ) - x{tk-imx^'Htk-i) - (5.46) 

As Rx(tk-i) > 0 and thus admits Cholesky decomposition Rx{tk-i) = a 

choice of these regression points is 

p-^1 
Qi-

Let = + i = 0 , . . . then the mean and covariance of 

x{t) can be computed as follows, 

p 1 p 

X it) = RAt) = (^-47) 

Note that unlike the EKF which approximates the integral equations (5.33), the UKF 

approximates the solution of (5.33) by utilizing iterative methods which burden the 

computations for real-time implementation. This is the overhead of using the UKF for 

the continuous-time dynamical model where accuracy is traded-off for computational 

efficiency. 
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In summary, for the approximation of integral equations (5.33), the EKF Hnearizes 

the nonhnear deterministic mapping / while the UKF hnearizes the distribution Px{-)-

For the computation of the conditional moments of (5.32) see Section 2.5. 

5.3.2 Moment calculation by LFT modeling 

It is known that a broad class of nonlinear mappings including fractional map-

pings, differentiable at any order, admit an equivalent LFT model [143, 129, 128 

(5.31) can be exactly represented by 

, I.e. 

dx{t)/dt A B x{t) 

VAit) C D W^it) 

= A{x(t))y^(t), 

(5.48) 

(5.49) 

where A G B € C e R ^ ^ X N ^^^^ £) ^ J ^ U A X H A are deterministic fixed 

matrices. The introduced auxihary variables WA{t) e R""^ and yA(t) G R""^ are related 

via the feedback channel A(x(t)) , which admits the structure A(x(t)) = Z^Hi^i^iit) 

where Xi(-) is the z-th element of the vector x(-). In many cases, the LFT representation 

is straightforward as shown in Section 5.4. 

The LFT system of (5.48)-(5.49) is the compact expression 

dx ( t ) / d t= ( A - h B A ( x ( t ) ) ( / - n A ( x ( t ) ) ) ' c ) x ( t ) , (5.50) 

where A(x(t)) appears in a highly nonlinear fashion. Using either (5.40) to approxi-

mate the mapping or (5.45) to directly approximate the moments of x(t) in (5.50) is 

tantamount to the affine approximations discussed in the previous subsection. On the 

other hand, a simple nonhnearity appears in the model (5.48)-(5.49) in the feedback 

only. Under this representation, an alternatively approximated discrete-time solution is 

the following result. 

Proposition 5.4. The discrete-time approximated solution of the LFT model (5.48)-
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(5.49) given by Proposition 5.3 is 

(5.52) 

A B Xk 

C D I^Ak 

whtJ'e A B = (//'e^^c/r) B, C = C, D = D and the feedback connectton 

Proof. Consider the differential equation 

By integration 

At time tk = kT 

and 

—x{t) = Ax{t) + Bw^it). 

Jo 

rkT , 

Jo 

(5.53) 

'0 

( l^e^-'d'y^ Bw^itk), (5.54) 

where the last step follows from the effective zero-order hold based approximation for 

wa{-) and introducing ^ = {k 1)T — r. • 

From the numerical computation perspective, B = if ^ is invertible. 

Moreover, for small T, ^ ^ / + i T and 5 = (IT + \AT'^)B hold. Note that from the 

information theory viewpoint. Proposition 5.4 is rather exact discretized solution with 

moderate sampling rate 1 / T , whereas the UKF approximates numerically this solution 

at much higher sampling rate (see e.g. [2, Table 1] where Euler and second-order 

Runge-Kutta discretization require rates higher than 2000 7̂ 2: and 1000 respectively 

for reasonable accuracy and thus are not suitable for real-time update whereas the 
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approximation like the above Proposition 5.4 works extremely well at 45 Hz and thus is 

online practicable). For the discrete-time LFT model (5.51)-(5.52), the approximation 

is locahzed to the feedback path for estimation of the auxiliary random variable w^k in 

(5.52). The efficiency of the unscented transformation in the discrete-time case is now 

exploited. Given Xk-i and Pk-i as the first two central moments of Xk-i, the regression 

( i ) 

points i = 0, are chosen by around Xk-i as shown in (2.63). Define the 

regression points = where 

(5.55) 

and w^k-i ^ M'WAk-i) is 

( I - A k - i D ) - ' , (5.56) 
WAk-1 = -

with 
p 

Accordingly, the second-order central moment of w^Afc-i and the joint second-order 

moment with Xk-i are computed like (2.64)-(2.65): 

p 
RAk-l = — ^ ¿ ( ^ a I - I - " (5.58) 

^ 1=0 p 

RA.,k-i = (5.59) 

As discusses in Chapter 4, the approximation of the moments of in (5.56), 

(5.58)-(5.59) averts the linearization of (5.50) which gives poor approximation for highly 

nonlinear models. Next, the nonlinear mapping g in (5.32) can be analogously expressed 

in the LFT format is 

Vk = Axk-^BwAk, yAk = Cxk-^DwAk, WAk = A(xk)yAk, (5.60) 

where yk = 9(^k) ^ is expressed as a linear mapping of Xk and WAk and the 

nonlinearity appears in the form of the feedback connection A{xk) which takes the form 
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as above. The fixed and known system matrices are of appropriate dimensions. The 

expectation of yk is 

yk = A xk Bw^k^ 

where w^k is defined in a similar manner to (5.56) 

^Afc = 
J 

with 

^ i=0 
The second-order central moments of W/\k are hkewise computed as (5.58)-(5.59) 

1 ^ 
RAk = (5.63) 

1 = 0 

1 ^ 
RAx,k = — J - ( 5 . 6 4 ) 

i=0 

The calculation of the moments in such fashion alleviates the computational intractabil-

ity of (5.33) for the computation of the first and second-order moments of g{xk). In the 

sequel, we explore the LFT framework for the continuous-discrete state space model. 

5.3.3 Recursive Bayes filter by LFT 

Consider the state space model (5.1), (5.3). For the diff'erentiable nonlinear map-

ping / , (5.1) can be expressed in the LFT format 

dx{t) = {Ax{t)-^BwA{t))dt^dP{t), (5.65) 

ZA{t) = C2x{t)-^D22lUA(t), (5.66) 

WA{t) = Mx{t))zA{t) , (5.67) 

where wa (i), ZAit) denote auxiliary variables and the system matrices are of appropriate 

dimensions. By Proposition 5.4 the discrete-time equivalent of (5.65)-(5.67) is 

Xk+i = AXk + UJk BWAk, ZAk = C2Xk D22'WAk, 'WAk = ^ixk)zAk^ (5.68) 
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wherti 4 == B = { ¡ o = C2 and D'22 = £>22- {tt'fc} is a random 

process with E(xí;a;) = 0 and E{wkwl) = Q where Q = J^ e'^'^Qe^^ "'dr. Similarly, for 

the differentiable nonlinear mapping g in (5.3) there exists the LFT system 

Zk = CxXk 4- Vk z/^k = C2Xk + D22'WAk: = A(xa; )2aa; , (5 .69) 

In the sequel no distinction is made between the LFT model and the nonlinear fractional 

transformation (NFT) model as was done in Chapter 4, by adopting a general structure 

of the feedback connection A{xk) = The LFT now exists for any 

smooth nonUnear mappings / , g and (5.68)-(5.69) generahze to the following. 

Xk+i = Axk + BiWk + Bow^^k^ (S'^O) 

Zk = CiXk 4- Vk 4 Di2WAk^ (5.71) 

ZAk = C2Xk + D2iUk -f D22'WAk^ (5-72) 

WAk = A{xk)zAk. (5-73) 

where Ufc € R is a fixed input, B2 and D21 are of appropriate dimensions. 

This transfers the filtering problem to that of discrete-time filtering where the 

prediction and estimation steps of the Bayes recursion for the LFT model (5.70)-(5.73) 

are given by Propositions 4.3 and 4.4 respectively. The advantage of the LFT model 

(5.70)-(5.73) lies in the efficiency of its linear structure. The deterministic system matri-

ces admit explicit matrix exponential representation and are not required to be refreshed 

in real-time so it potentially works even for large dimensional problems. Although the 

EKF may be computationally more efficient than the UKF for low dimensional problems 

in the continuous-time case, it still requires the matrices to be refreshed in the lineariza-

tion step as apparent from (5.40). Moreover, as mentioned above, the quality of the 

approximation involved in the linearization is poor in general which gives unreliable es-

timates. For better approximation it may require unrealistic observation sampling rate. 

A serious drawback of the UKF for continuous-discrete filtering is the manner in which 

it applies the approximation. While the UKF has been shown to be efficient for the 



5.4. SIMULATION RESULTS 

discrete-time model, it employs iterative methods in the continuous-time case which are 

time consuming. All these drawbacks are absent in the proposed approach. In Chapter 

4, the LFT for filtering of discrete-time nonlinear models was shown to perform better 

than the UKF at similar complexity. Since the proposed approach still applies the un-

scented transform in discrete-time, the gain in performance is achieved at considerably 

lower computational complexity. 

5.4 Simulation results 

In this section simulation results are given to demonstrate the performance of the 

proposed nonlinear filtering approach. The potential of the proposed filtering method 

for the continuous-discrete system is realized immediately in Examples I and II which 

consider the continuous-discrete versions of the models from Sections (4.3.1) and (4.3.2). 

While it was possible to consider the UKF for filtering in (4.3.1), it fails to converge for 

the continuous-discrete model. In Example III the problem of multi-target filtering from 

the previous chapter is considered. Example IV is based on the nonlinear benchmark 

model [23] of rotational-translational actuator (RTAC). 

The simulated data were generated using 100 steps of Euler-Maruyama method [72 

between successive measurements while the UKF was implemented in Examples III and 

IV for a comparison of the performance using 10 steps of the fourth-order Runge-Kutta 

integration between successive measurements. 

5.4.1 Example I 

The continuous-time version of the nonlinear autoregressive (AR) equation con-

sidered in 4.3.1 is q{t) = -O.lg(i) - q^{t) + w{t) with the noisy measurement z{tk) = 

q{tk)-i-v{tk), which admits the following state-space equation formulation with the state 
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x(t) = (xi{t),X2{t)f = {q(t).mf 

0 1 0 
x{t) = 

-xl(t) - 0 . 1 
x(t) -f 

1 
w{t), (5.74) 

z{tk) = Xl{tk) (5.75) 

where w{t) is a stochastic process with E{w{t)) = 0 and E{w{t)w'^{r)) = Qdit-r) with 

Q = 0.04. v{tk) ~ 0, R) with R = 0.5. 

The continuous-discrete model (5.74)-(5.75) can be represented in the LFT form (4.12)-

(4.15) with 

1 0.0995 0 0 -0 .005 
A = ,Bi = .B2 = 

0 0.99 1 0 -0 .0995 

Ci = 1 0 , Di2 = 0i,2, C2 = 
1 0 

0 0 
, D21 = 02,1, D22 = 

0 0 

1 0 
, (5.76) 

where Oa,b is the a x b zero matrix. The feedback connection has the simple structure 

A{x(tk)) = Xi{tk)l2 with la as the identity matrix of dimension a x a. The true 

trajectory of the state x(t) for 20 s is shown in Fig. 5.1. Using x{to) = (0, 0 ) ^ as 

the initial estimate of the state with covariance Rx{to) = I2, the estimates given by 

the proposed filter at each sampling instant are shown in Fig. 5.2 along with the true 

states. In Fig. 5.3 the mean square error (MSB) in the estimates obtained from 10^ 

Monte Carlo runs is shown indicating that the proposed filter successfully tracks the 

true trajectory. 

5.4.2 Example II 

Consider the continuous-discrete version of the problem from Section (4.3.2) 

x{t) = {Qo + Qixl(t) + Q24{t) + Q3Xi{t)xl(t) -f 

QAXlit) + Q5X2{t))x(t) -f Bw{t), (5.77) 

z{tk) = Cx{tk)-\-vih), (5.78) 
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Figure 5.1: Tr-ajectory of the state x{t) = {xi{t), X2{t) 

1.5 

0 2 4 

— x,(!) 
0 • 

I 1 1 1 1 . > 1 

10 12 14 16 18 20 
time (s) ( b ) 

Figure 5.2: True trajectory and the estimate of the state ^{x{tk)\Z{tk)) given by the 
proposed filter. 

where z = 0 , . . . , 5, ^ and C are defined in Section (4.3.2), w{t) is zero mean with 

covariance {r)) = Q5[t-T) where Q = 0.01. v { t k ) R ) with R = 100. 

The equivalent discrete-time LFT representation can be constructed with 

A = 

B2 = 

0.9319 -0.0942 

0.0094 0.9508 

0.0237 0 0.0285 -0.0012 0 0.0082 0.0184 0.0275 0 0.0379 0.0466 

0.0099 0 0.0099 0.0244 0 0.0293 0.0196 0.0294 0 0.0148 0.0344 
, (5.79) 
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0.2S 

10 12 14 16 18 20 
time (8) ( b ) 

Figure 5.3: Mean square error (MSB) in the estimates using the proposed filter. 

and Ci, C2, Du, C j , ^21? D22 defined in (4.38). Using la^b to denote the a x b matrix 

with entries one, the feedback connection is given by 

A(xfc) = diag([a:i,fcli,3 X2,khA xî k )) • (5.80) 

The trajectory of the state x(t) as it evolves with time for 10 s is shown in Fig. 5.4. Using 

x(io) = (0, 0 )^ as the estimate of x{to) at time t = 0 with covariance Rx{to) = 0.25/2, 

Fig. 5.5 shows the estimate of x{t) given by the proposed filter at each sampling time 

along with the true trajectory. The MSB obtained from 10^ Monte Carlo runs using the 

proposed filter shown in Fig. 5.6 indicates that the proposed filter successfully tracks 

the true trajectory. 

5.4.3 Example III 

Returning to the problem of multi-target filtering presented in Section 4.3.3, the 

aircraft dynamics are modeled by the continuous-time coordinated turn model [10, 9, 33 

at different turn rates to describe the maneuver as well as the non-maneuver motion. 

The motion models are as follows. Model r{t) = 1 has a known turn rate of The 

standard deviation of the process noise for model r{t) = 1 is 10ms-^. Model r(t) = 2 
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Figure 5.4: Trajectory of the state x(t) = {xi(t), X2{t) )' 

03 

— x,(t) 
o 

0 1 2 3 4 tim# (s) 7 8 9 10 ( a ) 

0 1 2 3 4 5 6 7 
time (s) (b) 

Figure 5.5: True trajectory and the estimate of the state 'E^{x{tk)\Z{tk)) given by the 
proposed filter. 

is the nonhnear model with an unknown turn rate ^(i) given by 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

i ( r ( 0 ) = 0 0 0 0 , B[r{t))= i q 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

The standard deviation of the process noise is lOrns"^ and 0.5° for the the linear 

and turn portions respectively of the kinematic state during the level turn in r(t) = 2. 

The sensor model is given in Section 4.3.3. For a given mode r, the single target 
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Figure 5.6: MSE in the estimates using the proposed filter 

dynamical model is approximated by the linear Gaussian model using the UKF, imple-

mented with 10 steps of the fourth-order Runge-Kutta integration during each sampling 

period. 

Fig. 5.7 shows the true aircraft trajectories. A 1-D view of these trajectories along 

-p 2 

2 0 

>> - 2 

AlrcrafI 5 
start o( flight a l t « lOOs; 
end of flight at 1= 500s, 

Aircraft 1 
start of flight at t= 5s; 
end of flight at t= 450& & 

Aircraft 3 
start of flight at t« 55s; 
end of flight at t= 500s 

Aircraft 4 "" Aircraft 2 
start of flight at 1= 85s; start of flight at t= 15s; 
end of flight at t= 500a end of flight at t= 475s 

- 1 4 - 1 2 - 1 0 - 6 - 4 - 2 0 2 4 6 
X coordinate (in m) * io' 

Figure 5.7: Trajectory of the vehicle, ' o ' - location of vehicle at /c == 1; location of 
vehicle at A; = 100 ( ' x ' - location of sensor). 

each a:x:is with cluttered measurements plotted against time is shown in Fig. 5.8. The 

position estimates of the PHD filter in Fig. 5.9 show that the filter successfully tracks 

the targets in clutter. The results for the mean absolute error in the estimated num-

ber of targets averaged over 10^ Monte Carlo runs shown in Fig. 5.10 concur with the 
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Figure 5.8: Measurement data (projected on the x and y axis) and true target positions. 

xlO 
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time (s) ( a ) 

x10 
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Figure 5.9: Position estimates of the Gaussian mixture PHD filter using the LFT model. 

finding in 4.3.3 suggesting that the LFT based JMS-PHD filter is more robust than the 

unscented JMS-PHD filter. 

5.4.4 Example IV 

In this example the unstable nonlinear system of the RTAC model [128] is consid-

ered. The kinematic state x{t) = {xi{t), X2{t), x^(t)f = ¿W, 0{t), e{t)f 

where denotes the parameters of the oscillator and {6{t),9(t)) denotes the 
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Figure 5.10: Mean absolute error of estimated number of targets using the LFT model 
and the UKF. 

parameters of the actuator. The nonlinear state-space model is given by 

X2{t) 

X{t) = 

-xi{t)+ex1{t) sinx3(^) 
1—e'^ cos^ X3(t) 

X4(t) 

ecos x3(t)(xi(t)—ex^(t) sinx3(t)) 
1—ê  coŝ  X3(i) 

1 0 

0.7 0 
+ 

0 3 

0 - 1 

w(t), (5.81) 

where w(t) is the random process with E(w (t)) = 0 and = QS(t — r) with 

Q = diag([0.04, 0.001]). (^(t), 0(t)) are available for measurement at sampling interval 

T = 10ms and v(tk) ~ with R = diag([0.1, tt/ISO]). The LFT model for 

(5.81) is 

0.9948 0.0998 0 0 1 0 

-0.1035 0.9948 0 0 0.7 0 
A = , Bi = 

0.0010 0 1 0.1 0 3 

0.0194 0.0010 0 1 0 - 1 

B2 = 

-0.0002 0.0002 0.0005 

-0.0525 0.0525 0.1088 

0.0002 0.0003 -0.0001 

0.0525 0.0525 -0.0204 

1 0 0 0 

0 0 1 0 
, ^12 = 02,3, 

C2 = 

1 0 0 

1 0 0 

0 0 0 

, = 03,1, -C>22 = 

0 -
1 

3 a 

J_ 
a4 

1 

4 a 
(5.82) 
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(5.83) 

with the same defiintioii of the constants ai, 03 and GA as in [128] and = diag([ 1, 1, 0]) 
and A2 = diag([0, 0, 1]). Under the conditions e = 0.2, x{to) = (0.5, 0, 0, 0)'^ and 
^^xito) = diag([3, 0.3, 7r/60, 7r/60]) the true trajectories of the oscillator and actuator 
for 20 s are shown in Fig. 5.11. Fig. 5.12 shows the true position and velocity of the 
oscillator and the filter estimates while Fig. 5.13 shows the true motion parameters of 
the actuator and the estimated parameters. In Fig. 5.14 the MSE in estimates of the os-
cillator parameters is shown obtained using the proposed filter and the UKF. Similarly, 
the MSE in the estimated parameters of the actuator obtained using both methods is 
shown in 5.15. The simulation results indicate that the proposed approach gives better 
performance than the UKF. Also shown is the performance of the UKF processing twice 
the information available by sampling at intervals of 5 ms. It can be inferred from the 
results that processing more information does not guarantee an improvement in the 
estimation. 

-0.2 -

-0.6 

-0.8 

—— Translational position 
— Translational velocity 
— • • Angular position 
- Angular velocity 

10 12 14 16 18 20 
time (s) 

Figure 5.11: Trajectories of the oscillator and actuator. 
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Figure 5.12: True oscillator motion parameters and estimates using the proposed filter. 

10 12 14 16 18 20 
time (8) ( a ) 

10 12 14 16 18 20 
time (s) ( b ) 

Figure 5.13: True actuator motion parameters and estimates using the proposed filter. 
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1 
1 ^ 
1 1 
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' 1 
J' \ 

"o 2 4 6 8 10 12 14 16 18 20 
time (s) (b) 

Figure 5.14: MSE in the estimates of oscillator motion parameters using the proposed 
filter and the UKF. 
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UKF (T=0.18) 
. - - UKF(T=0.05s) /X yv • 

10 12 
time (s) 

Figure 5.15: MSE in the estimates of actuator motion parameters using the proposed 
filter and the UKF. 



Chapter 6 

Conclusions 

This dissertation addresses two open problems in estimation theory. First, the 

problem of multi-target filtering which involves jointly estimating the random number 

of targets and their state in the presence of noise, clutter, uncertainties in target ma-

neuvers, data association and detection. At present there is no tractable analytical 

technique for tracking multiple targets under such general settings. Second, the prob-

lem of nonlinear filtering for a general class of systems motivated by the inadequacies 

of the existing analytic approximation based methods. 

In Chapter 3, a multi-target model that accommodates births, deaths and switch-

ing Hnear Gaussian dynamics has been proposed based on random finite sets (RFS). 

For this so-called hnear Gaussian jump Markov system (LGJMS) multi-target model, 

a closed form solution to the probabihty hypothesis density (PHD) recursion has been 

derived. The proposed algorithm eliminates the need to perform data association gat-

ing, track initiation and termination. Based on this solution, an efficient algorithm that 

can track an unknown, time-varying number of maneuvering targets in clutter has been 

developed. Extension of this algorithm to track maneuvering targets with non-linear 

jump Markov dynamics has also been proposed. In particular, approximate recursions 

for the weights, means and covariances of the Gaussian components that approximate 

the multi-target posterior intensity are given. The proposed approach is applicable 

to a general class of models expedient for a range of practical applications in multi-
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target tracking that are deemed intractable using conventional techniques. Simulations 

have demonstrated the effectiveness of the proposed multi-target filters for tracking 

an unknown and time-varying number of maneuvering targets in clutter and detection 

uncertainty. In comparison with the well-known IMMJPDA filter, the proposed ap-

proach exhibits an unprecedented combination of good tracking performance and high 

computational efficiency. 

The nonlinear JMS-PHD filter based on the unscented transform proposed in 

Chapter 3 gives estimates with reasonable accuracy at most times and occasionally mis-

estimates the number of targets partially due to errors in the prediction and update 

steps which cannot be computed exactly for nonlinear models. In Chapter 4, an al-

ternative analytic approximation of the nonlinear Bayes filter has been proposed based 

on the linear fractional transformation (LFT) model. The LFT system comprises of 

a linear part and a simple nonlinear structure in the feedback path. By applying the 

unscented transformation in the feedback loop a closed form solution to Bayes recursion 

has been derived. Simulation results have demonstrated that the proposed approach 

works better than standard filtering techniques such as the unscented Kalman filter 

(UKF) which hnearizes the state space model. For highly nonlinear problems where 

the UKF breaks down, the proposed filtering technique performs reasonably well. The 

performance of the JMS-PHD filter for the nonlinear sensor model expressed in the 

LFT format is shown to be more robust than that using the UKF. The LFT system 

gives an equivalent representation for nonlinear state space models which is exact for 

a wide range of nonhnear systems. Extension of the proposed filtering approach for a 

general class of nonlinear problems has also been proposed using the nonlinear fractional 

transformation (NFT) model. 

The potential of the LFT framework for nonlinear Bayesian filtering is fully recog-

nized when the discussion is continued in Chapter 5 for the continuous-time stochastic 

process with sampled-data observations. The filtering problem is transferred to that of 



discrete-time filtering and the moment propagation is based on the closed form solution 

to Bayes recursion presented in Chapter 4. Simulation results show a marked difference 

in the performance of the proposed method and the UKF in the continuous-discrete 

setting in terms of tracking error and computational complexity. 

Following the discussion in this dissertation two interesting problems for further 

research are proposed. The motivations concerning for which are then presented. 

In a multi-sensor scenario, suppose that s^j, «^.¿(A:) ^ ihe active sensors at 

time k, where L denotes a random process of the number of active sensors. At the sensor 

Sk^i, Mi{k) measurements Zk,i = • • •' ^ received at time k. Find the 

estimate of the multi-target state X^ based on the measurements Z^ = • • •, ^k^i}-

Suppose the LFT model (5.70)-(5.73) exists, find a scaling Pk in the feedback (5.73), 

W/\k = such that = 0 and = 0, where {i/^jt} and {vk} 

denote the noise processes of the plant and observation respectively. 

The existence of the conditional intensity in Propositions 3.11 and 3.14 is based on the 

simplicity of the multi-target observation random finite set (RFS), that with probability 

1 there are no coincidences among the observations. In the multi-sensor environment, 

single targets generate multiple observations. Propositions 3.11 and 3.14 do not gener-

alize to such problems. Even in the particular case that at any time for a given target, 

only one sensor is active, under Poisson assumption on the predicted multi-target RFS, 

the joint probability generating functional of Xk and Z^ involves product of s function-

als in the exponent and is computationally complex in general. 

Linear estimation for filtering nonlinear models involves approximation of auto-covariance 

and cross-covariance of all concerned state and observation random variables. The ex-

istence of a scaling Pk satisfying the conditions above implies that the expressions for 

the covariance (4.17) and (4.24) are exact. 



Appendix A 

Proofs and Definitions 

A . l Proof of Lemma 2.6 

Proof. Let Gx be the probability generating functional (p.g.fl.) of a point process 

X e Af^ for any Borel measurable function g satisfying the condition in (2.20). Then 

the m-th functional derivative of Gx w.r.t. g, evaluated about the origin gives the 

distribution of x = { x i , . . . , x^n}, 

Px{x) = {d^Gx)o[Cl,--.Xm]. 

If Px{-) admits a density w.r.t. Lebesgue measure /i, then 

Px(dx) = {<rGx)o\ (A.l) 

where Sx̂  is the Dirac delta function at point Xi. Let y = {2/1, • • • ,2/n} be a reahzation 

of a point process Y e A/J. Using Gxrlg^h] = Ex{GY\xW^]^yi[9]) from (2.27) and 

differentiating 

( r G x r i g . • •, V ] = . • • (A.2) 

Applying the definition of expectation and the conditional density for the differentiation 

as in (A.l), 

{d''GxY[9rMSy,,--.,6yJ = J J PYix{dy\^)Px{dyi)Il^lg]. (A.3) 
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Fi-om (2.30), 

= P^^idy) (A.4) 

Subsliluling (A.3) and (A.4) on the right hand side oi' (2.31) and applying Bayes rule, 

= yields / Px|y(c^x|y)nx[i7] which is the delinition of the 

conditional p.g.fl. of X\Y. This completes the proof. • 

A.2 Functional derivative 

Given a test function 0 and a functional F : (p ̂  the functional derivative 

of F , denoted {dF)^^ is a distribution £/F[(/)], 
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