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Abstract

This thesis explores the transfer of laser light 

radiation into inhomogeneous dielectrics. We assume 

that the dielectric interacts initially with a laser 

prepulse to form a specified initial plasma density 

profile. The main pulse of laser radiation will then 

impinge on the plasma. The motivation of this thesis 

is to study, explore and understand the development of 

the laser light radiation into the plasma especially at 
times shorter than the electron io'n thermal equilibration 

time when the transfer of energy is due to the nonlinear 

force which is the immediate electrodynamic interaction.

The mechanics of the plasma are governed by 

conservation laws of continuity, momentum and energy.

The state of the plasma may be described as a two 

temperature, one fluid model where electron-ion ther- 

malisation and implicit temperature solutions of the 

energy equations are taken into account. A one 

dimensional finite differencing scheme is employed to 

simulate the velocities, densities, ion and electron 

temperatures of the plasma and the electromagnetic energy 

density of the laser pulse in the plasma.

To transfer large amounts of laser energy into the 

plasma, low reflectivity of the plasma is required. The 

inhomogeneous Rayleigh profile satisfies this requirement 

The reason for work done with the Rayleigh profile was 

twofold. The low reflectivity of that profile and the 

available exact solutions for the electromagnetic fields.



It was hoped to use the Rayleigh profiles with exact 
solutions for approximations of the density profile instead 
of linear step approximations. In the course of work it 
was discovered that discrepancies occurred between the 
exact and high order approximations of reflections, a 
paradox which is seen as similar to Osterberg's generation 
of local reflectivity and a radiation law for plane waves 
was suggested.

The approximation of plasma density by the Rayleigh 
profiles together with the exact "solutions add further 
problems to the complex simulation of laser plasma inter­
actions and as the plasma densities vary with time, small 
step linear approximations though not exact were adequate 
to describe the interactions.

The finite difference scheme solves the conservation 
equations including the effects of the nonlinear force and 
the nonlinear change of the optical constants depending on 
intensity. The fully dynamical nonlinear scheme at times 
shorter than the electron ion thermalisation time displayed 
the following.

The generation of instabilities as well as the 
supression of instabilities by varying the initial density 
profile. The formation of standing waves at the cut off 
density was observed. By varying the value of a the 
existence of block like motion of plasma was verified due 
to the nonlinear force from a solitary electromagnetic 
energy wave called a soliton.

The ablating plasma generated by the soliton showed 
the existence of a density minimum called a caviton



occurring at times of picoseconds corresponding to 
experimental evidence observing cavitons ablating at 
times of nanoseconds.

The behaviour of the absorption of laser light at 
different temperatures due to collisional effects was 
demons trated.

Efficient nonthermalised transfer of energy was 
seen by the development of the soliton into the plasma, 
so that the nonlinear force scheme makes possible compress­
ion of plasma by nonthermal dynamically collisionless

13 1 4 TT /
absorption of radiation. Intensity thresholds at 10 -10 
for Nd glass lasers appeared for both changes in gradients of 
the electron temperatures and the nonlinear transfer of 
energy, corresponding to the predominance of the nonlinear 
force over thermokinetic force. Evaluation was made of 
the transfer of energy E^ into the plasma for different 
intensities I expressing a nonlinear relationship for the 
range of intensities from 5 x 1015 W/cm2 to 1018 W/cm2 
resulting in E^ a 11’8

Confirmation was made of recently observed experi­
ments satisfying the relationship I2A where A is the 
wave length of laser light radiation. The gas dynamic 
model is inadequate to explain the experimentally 
observed phenomena. The inclusion of the nonlinear force 
verifies the wave length intensity dependence.
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Chapter 1 Introduction
The increasing energy requirements 6f the world and 

the diminishing supply of petroleum means that there must 
be an alternative for the supply of the world's energy 
needs. One of these alternatives is the compression of 
plasmas by lasers, releasing energy by thermonuclear 
reactions such as

H + 1 *B —* 3 4He + 8.9 Mev l 
D + D — 3He + n + 3.27 Mev 2

^ T 4- p 4- 4.03 Mev 
D + T — 4He + n + 17.8 Mev

3Basov and Krokhin were the first to publish a paper 
on the production of a high density, high temperature 
plasma by the interaction of laser radiation with a pellet 
of solid Hydrogen, predicting thermonuclear reactions. 
Further calculations appeared by Dawson^ and the first 
optimized reaction yields were due to Hora^. Afanasyev 
and Krokhin^ analysed laser plasma interactions based on 
gas dynamic equations. Incident laser intensity flux 
densities in the range of 106 W/cm2 to 109 W/cm2 predicted 
two separate mechanisms. At the low range of flux densit­
ies, the material vaporised by the laser beam expands as 
a centred rarefaction wave, corresponding to an isentropic 
expansion of gas in a vacuum. At the high range of flux 
densities the thermal pressure causes the material to 
expand and becomes transparent to incident radiation.

Subsequent research on laser plasma interactions were 
described by such a gas dynamic scheme where the plasma 
interacting with laser radiation behaved as vaporised 
matter. Nuckolls0 numerically simulated spherical
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implosions of plasma by laser pulses shaped in time and 
obtained very high compressions of plasma. The generated 
compression of plasma by thermal pressure is due to a 
collision produced absorption of laser light. The comp­
ression of plasma is compensated by a density decreasing 
monotonically as a thermokinetic expansion of plasma. The 
energy dissipated by the scheme due to ablation of plasma, 
thermalisation and reflection of neodymium laser light 
transfers 57, of the incident laser energy into the plasma.

At low levels of laser intensities, less than 1010W/cm2 
for Nd glass lasers inverse bremsstrahlung was the basic 
mechanism of absorption of laser light. Experimental 
measurements of absorption^ of laser light at higher flux 
densities showed that this mechanism fails to predict 
absorption levels at the higher intensities. The optical 
constants are affected by nonlinear effects at the higher 
laser intensities, proportional to the inverse of the gintensity to the power of three halves as derived by Rand

9and Hora from different considerations. Nonlinear effects 
together with the change of the optical constant partially 
solves the observed dilemma.

It has long been known that the decay of photons into 
a homogeneous plasma can form plasma waves (plasmons or 
Langmuir waves) or ion waves. Scattering of these waves 
may lead to Raman or Brillouin scattering instabilities.
Each specific instability occurring at their individual 
characteristic intensity threshold can be described as 
occurring due to the nonlinear force of a purely electro­
dynamic interaction between the laser field and the plasma.
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F.F. Chen^ derived the parametric instabilities on the 
basis of the nonlinear force only and accounts for in­
duced anomalous high frequency resistivity.

Other nonlinear processes are exhibited in other 
ways, namely
• the nonlinear change of the collision frequency^

12• relativistic correction to the plasma frequency
• coupling of transverse mode waves with longitudinal

13waves
• self focussing at low power threshold^
• self focussing at high relativistic intensity"^

16• two stream instabilities
]7• anomalous absorption at the cut off density

• high energy x radiation and directly back scattered 
radiat ion^

Each of the above anomalies occurs at its specific power
threshold or at high incident flux densities from lO^to
1016W/cm2 for Nd glass lasers. Some processes can occur
within a time of picoseconds as the generation of fast

19plasmas with ion energies of the order of Mev
The inclusion of the nonlinear force into the gas 

dynamic scheme, results in the generation of self steep­
ening of the density profile and generation of density
minima in the ablating plasma discovered first numerically

20by Shearer, Kidder and Zink . This corresponded to
observations made by microwave experiments by Wong and 

21Stenzel . Further laser plasma experimental observations
22 23 2 aof density minima by Zakharenkov , Azechi , FedosejevsZ , 

described the mechanism as due to the nonlinear force.
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Acting at times shorter than the electron ion 

thermal equilibration time, by suitable choice of an 

initial density profile reducing reflectivity, the non­

linear force scheme can transfer a large percentage of 

the laser energy into the plasma. The inhomogeneous 

Rayleigh plasma exhibits low.reflectance of laser radiation 

and by suitable arrangement of the density profile fifty 

percent of the laser energy may be transferred to the 

compressed block of plasma. By conservation of momentum 

fifty percent of the energy is lost through the ablating 

block of plasma. The dynamic description and simulation 

of the plasma in this thesis including the equations 

governing the gas dynamic scheme together with the non­

linear force and the nonlinear corrections to the optical 

constants verifies that fifty percent of the laser energy 

can be transferred to the plasma at times less than the 

electron ion thermal equilibration time.

The fusion reaction gain G based on numerically

optimised calculations at optimum temperatures using

empirical data on nuclear reaction cross sections and

simplified assumptions without secondary processes such
25as reheat is given by

G =(-
1/3 o

'be (-TT-)

where Eq is the input energy, E^e the breakeven energy 

n is the initial ion density and n the solid state 

density. A change in Eq for the input laser energy 

increasing in efficiency of transfer from 5 to 50% 

due to the different schemes corresponds to an
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equivalent fusion gain of 1000 times less laser energy.
In this thesis we explore the transfer of momentum 

into the plasma from a laser pulse of varying intensities 
by a one dimensional plane wave code allowing for electron 
and ion thermal equilibration. This is necessary 
especially at short times when the two temperatures of the 
ions and electrons are different, justifying the use of a 
two temperature model. We assume a one fluid model 
where Debye shielding effects guarantee quasineutrality 
of the plasma. The usual gas dynamic scheme and the 
hydrodynamic equations include the nonlinear force and 
the corrections to the optical constants by the nonlinear 
force.

The importance of the action of the nonlinear force, 
especially for short laser pulses consists of the 
possibility of a non thermalising transfer of optical 
energy into kinetic energy of plasma for compression, 
which has a minimum of entropy production and is 
therefore highly efficient.

In chapter 2 investigations are made of the 
occurrence of low reflectivities of inhomogeneous plasma 
especially for Rayleigh like density profiles by 
analytical and approximate methods. The resulting 
inaccuracy of the step approximation compared with that 
of using the Rayleigh profile for the exact analytical 
results was seen to be futile for the approximation 
of absorption.in laser plasma simulation. Nevertheless 
it was shown that discrepancies between exact results 
and step wise approximations exists. This approximation
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method allows estimation of local generation of 
reflectivities.

The discussion of the nonlinear force follows in 
chapter 3. The derivation of the nonlinear force and 
the formation of solitons and cavitons due to the 
nonlinear force by theoretical calculations and ex­
perimental observations are discussed. The character­
istics of those observations are reproduced by the code 
in the results section. In chapter 4 we analyse the 
theory of the optical constants by various methods and 
note that the collision frequency and hence the 
absorption coefficient of a plasma are nearly equivalent 
whether we use a classical or quantum mechanical approach 
The optical constants are replaced to include nonlinear 
effects due to intense laser radiation. In chapter 5 
we discuss the assumptions of the model and describe the 
equations governing the change of velocities, densities, 
electron and ion temperatures, derived from conservation 
laws. The nonlinear optical constants and nonlinear 
force terms are included in the one dimensional plane 
wave gas dynamic code as described.

By the use of a Rayleigh density profile with the 
property of having low reflectivities near the cut off 
density, will suppress standing wave patterns. The 
soliton so formed will force block like motion of plasma, 
as suggested from implications of the nonlinear force, 
causing a high percentage of energy transferred into the 
plasma. The simulations seen initially in chapter 6 at

“13times of 10 sec verify that blocks of non-thermalised
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plasmas are compressed. The general code was then 
extended to times of picoseconds and the results of the 
interactions with generalisation of energy transfer by 
the nonlinear force scheme and interactions at different

laser light wavelengths were compared confirming very 
recent experimental results.
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CHAPTER 2 REFLECTIVITIES

The numerical work of laser interactions with 

plasmas is involved with the problems of solving 

electromagnetic waves in inhomogeneous media. It is 

well known that experimental data of the reflectivity 

of laser irradiated targets scatter over orders of 

magnitudes from 0.1% to 607o, occurring at irradiances^" 

for which the usually assumed nonlinear effects and parame­

tric instabilities may not be effective. If not,self- 

focussing is the reason for the confusing variety of 

the experimental results. Numerical calculations, 

assuming one dimensional geometry of plane incidence

of the radiation, arrive at reflectivities of 70% and 
1 3more ’ where a direct solution of the Maxwellian 

equations or an approximation by step-like (homogeneous) 

layers is being used.

The problem of the non-existence of a local 

generation of reflectivity within the inhomogeneous
4medium has been discussed very generally by Osterberg , 

where the use of only two solutions of the wave equation, 

one for the penetrating and one for the reflected wave 

with a constant ratio of their amplitudes excluded the 

aspect of "local generations of reflectivity". The same 

result has been derived before by discussing the special 

case of a medium with a Rayleigh-like density profile^ . 

One of these results, the very low reflectivity generated 

at the continuous connection of a homogeneous medium 

with a Rayleigh profile as well as Osterberg's non-
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existence of a local generation of reflectivity will be 

of interest for discussing the measured values of low 

reflectivity from laser produced plasmas.

Before using the mentioned methods of low 

reflectivity in numerical codes, we have discussed 

some very simple, Rayleigh-like cases which permit 

very transparent, mathematically exact results.

The comparison of numerical calculations with 

stepwise approximation and exact calculations of 

reflectivity at the interfaces results in a much higher 

reflectivity for a small number of steps. Computing 

the case for a large number of steps will result in 

values close to exact calculations, however, there is 

still some discrepancy which can only be considered as 

a paradox as numerical inaccuracies and instabilities 

have been excluded.

I____ The Inhomogeneous Rayleigh Profile
Let us first describe an inhomogeneous plasma by

what we shall call a Rayleigh density profile, whose

complex refractive index n is given by

n = 1
1 + a x

where a is any complex number and x the depth of a 

one dimensional medium. Allowing a to be equal to a 

-4- iB where a, 3 are real quantities we obtain 

n = n+iK where

(i)

ax + 1 -6xn
(ax+1)I 2 + 32 x2

K
(ax+1)2 + 32 x2

(2)
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n, K are known as the refractive index and absorption 

coefficient respectively. If 3 = 0 then n reduces to 

-j—+\YX an<^ K reduces to 0, which is the description for

a collisionless plasma. It is known that for a 

collisionless plasma where the collision frequency v 

is equal to 0 we have
O)2 i

n = (l----2.ys (3)

Equating expression (3) with the expression of the 

Rayleigh profile (2) allowing 3 =•0 we obtain

(1 - (-
1 -f ax

2
-) )

which corresponds to an electron density n ,

(1 - (-
1 -fax

-)2>

since the plasma frequency w is given by

47Te2n

(4)

(5)

(6)

where e is the electron charge, mg the electron mass, ngc 

the cut off density (the electron density ng in eq. (6)

a) ) . Let us now look at a one Pcorresponding to u) 

dimensional, collisionless, inhomogeneous plasma with a

Rayleigh like profile given by 
1 (7)1 f ax

whose electron density corresponds to equation (5).

The propagation of electromagnetic waves in inhomogeneous 

plasma is described in terms of the electric vector E, the 

magnetic vector H, the dielectric constant e, the magnetic 

permeability p and the electrical conductivity 0 by
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Maxwell’s equations, (assuming 0=0)

V x E = -yy 3 —
° 3t (8a)

V x H = ec 3 —
° at (8b)

We are limiting the case to propagation only in the x 

direction at perpendicular incidence so that the x 

component of the high frequency part of E and H are zero. 

We can describe the electromagnetic fields with frequency

a) as

Ey (x) exp (-iwt) 

Hz (x) exp (-iwt)

E (x)

H (x)

Because of perpendicular incidence 6 we can have

= 0 

= 0

From equation (8a) and (8b) we have (assume y = 1)

div (ee E) v o—
div (yyQH)

* 3^ Ey (x) 

- k Hz(x)

± i^P0Hz(x)
± icoee E (x) o yv '

(9a)

(9b)

(9c)

(9d)

(10a)

(10b)

(10c)

combining eqs. (10a) and (10b) we obtain
a2
^—2 E (x) + w2y^ e e E (x) = 03x y o o y

For the Rayleigh profile case, the dielectric constant is 

given by 

e(x) (1 + ax) 
so that (10c) reduced to 

d2
HP Ey +

Let t = 1 + ctx and

cy (14- ax) 

k2

E (x)y (ID
a)2 e

A 2 2 c a
then eq. (11) reduces to
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an Euler differential equation

k2d2Ey(?)
d? + 5 Ey (O (11a)

with a solution E (x)y X(1 + ax) we obtain

^ / U) JL
E (x) = (1 + ax)2 exp (± i£n (1 + ax) / c2a2 % )(12)y

using (10a) we obtain for the magnetic field

Hz(x) = ± ( y 4w2 y o o
ia ) (1 + ax) %2wy

/'exp (± iin (1 4- ax) / c2a2 ) (13)

II____The Rayleigh like plasma between two homogeneous media
The solutions (12) and (13) have a singularity at x = - 

We can use these Rayleigh like solutions to describe both 
propagating and reflected waves depending on the ± sign.
The + sign will be for a propagating wave and the - sign 
for the reflected wave. Calculations can then be made 
with appropriate complex amplitudes (integration 
constants) of the Reflection coefficients at a vacuo- 
inhomogeneous plasma barrier described by the Rayleigh 
density profile, Figure 1.
We have the following conditions for Figure 1.

Medium I X < 0 n = n = 1V (14a)
Medium T T n < x < D 1 (14b)1 + ax
Medium III D < constant = 1 (14c)X n 1 + aD

p 
Im



MediumI I Medium IE j Medium HI

13

like density profile.
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In Medium III we can describe the components of the

electric and magnetic fields by plane waves so that

Eq = C0 , exp (i(n~ ^ x - wt) ) + exp(-i(n~^x 4- wt) ) d d c J- dc (15a)
G

34- n3 exp(i(n3 £ x - wt) )

- C3_ (-^)2 n3 exp(-i (n3 ^ x + wt) ) (15b)

where the subscript denotes the medium and the constants 

C+, C_ the transmission and reflection coefficients 

respectively. At x = D we describe only the transmitted 

waves and not reflected waves in Medium III by specifying

34- 1.0, C 3- 0.0, we then have for Medium III (t = 0)

exp (in3 - D)

Ox %
(—)'2 nQ exp i ^ n0D

(16)

(17)

In Medium II from equations (12) and (13) the components 

of the E and H fields are (t = 0)

'24- = ^24- (1 + ax)'2 exp (i( 2 2 czot

= C3_ (1 + ax)^ exp (-i( 2 2 cz a

- ^n(l 4- ax) ) (18)

- ^)^ £n(l 4- ax) )(19)

2+ C24_ (1 + ax)'% ( (-£ -
o

n2 3- a \ 'z ia
4co2u 2o 4a)y

exp (i (— - -)^ £n (1 4- ax) ) 
c2 4

(20)

2- ‘2-
(1 + ax)(- (-^ - ia

4a)2y02 ) 2d 2oop

exp (-i(— - — )^Zn (1 4- ax) ) 
c2 4 (21)

The boundary conditions at the interfaces can be derived 

for t = 0. At the junctions of Medium II and III we

have for x = D
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2+ + E2- E3 (22a)

2+ + H2- = H3 (22b)

It is then algebraically possible to solve for the 

reflection and transmission coeffieients of Medium II,

C2+ and &2-‘ For waves an Medium I where n = 1.

E, = C-, , exp (i(— n,x - cot)) + C-, exp (— i(— n-x 4- cot) ) _l -Li cj_ i - C-L (23)

oN%
1 = Cl+ nl<7T> 2 exp ^C niX " a3t') ^

'Ov %- Cx_ n1(—)2 exp (— i(— n^x + cot) ) (24)

At the junction of Medium I and Medium II where x = 0 

at t = 0

C1++ ct_
C £

C, . n, (-2)% - C, n, (—)% 1+ 1 y 1- 1 yo o

(25)

(26)

C2+ + C2- (27)

C? , ( (—---- ±---Z~r illy 4co y ^ o o

2 ) % iot ^
2ooy

+ C2 (-(-^---- 5^—)% +2 - y „ /... 2,. 2o 4 co y 2wy
(28)

Equating

(29)

(30)
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we obtain

R =

where R is the reflection coefficient of the amplitudes 

as an exact solution depending on both a and D. This 

result is equivalent to the general result obtained byg
Wait using a different method.

Ill____ Approximation by Steps of Homogeneous media

We are now approximating the case of Figure 1 by a 

series of homogeneous media with a stepwise decreasing 

refractive index n in the Rayleigh Medium II. With 

reference to Figure 1 and the same restrictions of 

equation (14), equations (15) to (17) remain the same 

for Medium III. In Medium II, however, using plane wave 

approximations at t = 0 we obtain in the first order 

single step approximation with n2 = (n-^ + n^)/2

^2 = ^2+ exP ^n2 c x) + ^2 exP c x^ (32)

H2 = C2+n2 4r)% exp (in2 z x)o

- C2_n2 (-p)^ exp (-in2 ^ x) (33)

For higher approximations we can use n2 = (n2+^ 4- n2)/2

where i denotes the homogeneous slab number depending on 

the number of steps. It is then possible to calculate 

the reflectivity from the conditions of Medium III back to

<IT>% e2 - H2

o 4-(—) 2 E-, + H.
(31)
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Medium I where the refractive index ^(x) in Medium II 
is given by the Rayleigh case. It is necessary to note 
that in using step approximations the refractive index 
varies depending on number of steps used. For each 
step beginning at distance D we calculate the values of 
C'2+’ C£_ and use these as a basis for the next step 
approximation till x = 0.
We write here the analytical result of the first 
approximation. For Medium I we have for n = 1, t = 0;

E1 - exp (i c x) + ci_ exP ^"i Z (34)

H1 - ci+ <ir>o
^ exp (i — x) - C1_ (-p)^ exp

Mo
(-i £ x) 

(35)

At the junction of Medium I and Medium II where x = 0,
n = 1 and t = 0

ci+ + cx_ C2+ + C2- (36)

ci+ - ci- n2C2+ " n2C2- (37)

so that

p - ci+ (1 + &2+ (1 ~ C2
C^_ Xl “ n^”) C2_|_ "I (1 +

IV____Numerical Results
The following calculations were performed for a set 

of cases, where the Rayleigh parameter a was set constant 
(for a wavelength A = 1.06 ym corresponding to the wave­
length of neodymium glass laser radiation) and the 
thickness D of the Rayleigh medium was varied. Figure 2
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18

th e  r e f r a c t i v e  in d e x  n fro m  e q .  ( 7 ) .  The c o m p u te d  v a l u e s  o f  a n a l y t i c a l  s o l u t i o n s
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shows the results, where the abscissa gives D in cm and 

the ordinate the reflectivity. It is obvious, that we 

find an oscillation of the reflectivity R with zero values 

at such thicknesses D where the phases of the incident 

and reflected waves in the Rayleigh medium are just 

cancelling the reflection as known from the interference 

at the transmission of light through parallel plates.

It is evident, that for higher a we have a higher 

reflectivity. At a = ^ = 1.18 x 105 cm we have total 

reflection at the discontinuity between the profile and

the vacuum,(though the waves are perpendicularly incident)
5 2 Co ias discussed before . The case of a> — = 1.18 x 105cm— c

has been excluded in this paper. For cases of higher a,

we find a more stretched sequence of the zero points of

reflectivity which is immediately evident, as the Medium

III has a smaller refractive index at the same distances

D for higher a, and therefore a much larger effective

wave-length, than for smaller a.

It is remarkable that the maxima of R are of the

same height. This is related to the fact that we have

no absorption and the reflection is determined only at

x = 0 and x = D. As we know from the Rayleigh case^
4

in agreement with the general result of Osterberg , the 

reflection is only determined by a, therefore the maxima 

are of constant value, though the refractive index of 

Medium III is monotonically decreasing with increasing D.

For the step-wise approximation, we find for a 

small number of steps, corresponding minima but increasing 

maxima with medium thickness D, by orders of magnitudes
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larger than the exact case. This can be understood 
from the crude approximation of the refractive index 
n, which shows the insufficiency of the approximation 
with few steps. This is hardly surprising as large 
number of steps imply the use of small mesh sizes which 
increases the accuracy of calculations.

The numerical calculations with large number of 
steps (one hundred or one thousand) Figure 3, converges 
to the exact case. We find then the same reflectivity 
as in the exact case, the same constancy of the maxima 
and the corresponding distances of zero reflectivities.
On closer observation, however, we find a slight 
difference: zero reflectivity distances increase for the
step wise approximation. Such a "wave-length" effect is 
of a basic nature. It has been excluded that any 
numerical inaccuracies or instabilities are involved so 
we have a definite paradox in the discrepancy of the 
approximation.

Leaving aside, for the moment, the abovementioned 
paradox, we can discuss the Osterberg problem in the 
following manner. It is a mathematical fact that there 
are two exact linearly independent solutions in the 
homogeneous medium, whose ratios are the reflectivity 
determined by the boundaries to the homogeneous media.
The condition of only penetrating waves, that is, only 
transmitted waves in Medium III (no standing waves) and 
depending on the thickness D determines the phase. This 
is originally reproduced by the stepwise approximation 
(apart from the paradox). However, we can follow in the
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E

F ig . 4
Variation of the reflection on the coefficient R of the plane wave approximation 
with distance in Medium II representing a local reflection.
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case of the approximation, how the reflection coefficient 
of the plane waves within the steps decreases from Medium 
I to III, Figure 4. Therefore we can conclude that both 
results, Osterberg "non-reflectivity" and the plane wave 
"local reflectivity" are not contradicting each other.

The problem is, how are the solutions for the 
inhomogeneous medium to be determined. The only condition 
is similar to that of Sommerfeld's spherical radiation 
condition (at large distance r, the amplitude has to 
decrease as i ) expressed here for plane waves: when 
x -* + °°, the solution is approximately that of a 
homogeneous medium with only forward propagating waves 
and no standing waves, while any approximation of the 
exact case by fine steps for other x will produce in 
effect, internal reflection, or standing waves. The 
exact solution does not exhibit reflection properties 
and the stepwise approximation is - so to say - a probe 
for mathematically detecting local reflectivity.

V____Use of the Rayleigh Profile
The exact solution of the wave equation for an 

inhomogeneous medium requires a high number of stepwise 
approximations of the refractive index for comparable 
results. In the example of approximating a Rayleigh 
density profile even with a high order approximation, a 
discrepancy appeared in the interference minima for the 
inhomogeneous slab approximated analytically.

The Osterberg problem of "no local generation of 
reflection" can be explained as a mathematical solution
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while a sufficiently accurate stepwise approximation 
acts as a mathematical probe to determine the local 
generation of reflection. The necessity of very high 
order stepwise approximation for a sufficient agreement 
with the exact case (even for the relatively uncompli­
cated case of the Rayleigh profile) acknowledges that a 
critical view is necessary for the use of approximations. 
In the case of laser plasma interactions an approximation 
of plasma density by a series of analytical profiles of 
the Rayleigh or Airy^ type are recommended for the 
calculation of absorption of radiation. In theory more 
accurate predictions may be made by suitable choices of 
approximations by varying values of the constant a to 
fit the density profile of the plasma. It is however 
impractical to use such analytical approximations as 
laser plasma interactions are dynamic processes and 
initial density profiles will deviate from both analytical 
approximations of the Rayleigh profile or a linear profile 
For practical purposes and as long as step sizes are 
small, reflectivities of the plasma differs little from 
approximations made by analytical methods.

The Rayleigh density profiles display properties of 
low reflection of laser light. Reflection at the kink 
of the density profile between the Rayleigh density and 
the vacum is less than 10% following the exact wave 
optical treatment seen here for values of a less than 
105cm . Similarly for small step sizes the approx­
imations by plane wave methods appear sufficient for 
accurate predictions. The resulting reflectivity of
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less than 10% for a = 104cm means at least 90%, of 

the laser energy is transmitted into the plasma.
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CHAPTER 3 NONLINEAR FORCE

I General descrip cion

From a general description of stress tensors in 

an electromagnetic field^ the stress tensor for the 
electric field was for nondispersive media only,

ik - - Po (P'T) hk - 87 (£ - p(ffy 5 eE .E, + 1 k 4tt (i)

where pq is the pressure found in the medium in the

absence of a field for given values of density p and

temperature T. Where e is the electric permittivity

and 6., the Kronecker delta function. Similarly the ik
magnetic stress tensor with B = y H is

pik= - po <pT> - m (p - P^>T> \k +

where y is the magnetic permeability. By summing the 

two stress tensors, eqs. (1) and (2) we obtain the 

stress tensor for an electromagnetic field if y = 1.

H .H l k (2)

- p„ (p.t) - (Ihs2 - p<4£o„ + > 5ik Fo VF’X/ v8ttv“ ^v3p

+ n
E .E,2 i k + P

H.H, i k
T_ 8tt ik

(3)4tt m 4tt
where the electric permittivity e is defined as the

complex refractive index n2. The generalisation of eq.(l)

for the dispersive plasma was shown by Hora^ indirectly by

algebraical identification with the generalised first 
1 6

Schluter equation which predicted a correct result for 

oblique incidence of the laser radiation. Since
P = ni = m± Z ne (4)

where rrh is an averaged ion mass and n^ e are the ion and 

electron densities and Z is the charge then

so that p
3p
3n2

e 3n 

n
e
3h2

e 3n3p "e
By definition the refractive index for an absorbing

(5)

(6)
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plasma where v ^ 0 is given by

"2 = 1 - r~

then 3n

3n 
e 3n

that is p

e

3n2
3p

ec 1-iv/aj

n i
■ - (—L_)

nec 1-iv/oo 

= n2- 1

n2 -1

(7)

(8)

(9)

(10)

Inserting eq. (10) into eq. (3) results in the electro­

magnetic stress tensor as
a o / „ m\ E2+ H2 3 , -2 EiEk , HiHk ,11N
ik = - p° (P-T)-----8tt ik + n — + -znr (U)

similar to eq. (7) using

. .2

1 - go2 (1-iv/w) 
4iTe 2n

using
4tt0 2n

(12)

(12a)

then eq. (11) becomes

ik - - P(P,T) -
e2+ h2 6., + ik

H.H. 
i k

8 TT 4tt

xE .E. 
i k (1 + i -)

ur

+ EiEk P
4tt 4tt(o3z+v z )

................ (13)

Taking the terms individually
' >2 I T T 2 6E +H
8 7T ik 4tt

Similarly

E.E, H.H, , 
i k + l k _ 1
4 tt 4 it 4tt

-%(E 2+E 2+E 2+H 2+H 2+H 2) x y z x y z

0 -%(E 2+E 2+E 2+H 2+H 2+H 2) 0Xx y z x y z

o o -i(E 2+e 2+e 2+h 2+h 2+H 2)
U2 X y z x y z

(14)

E 2+ H 2 x x E E +H H x y x y

E E +H H E 2 + H 2 x y x y y y
EE +HH EE + H H x z x z y z y :

EE + H HX Z X z

E E +H H y z y z
E 2 + H 2 z z

(15)
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Summing eq. (14) and (15) gives 

E2+H2
8tt

E . E. H . H.
6., + -iJS + 1 kik 4tt 4tt 4tt

%(E 2-E 2-E 2+H 2-H 2- H 2) E E +H H E E +H H x y z x y z xyxy xzxz

E E +H H %(-E 2+E 2-E 2+H 2-H 2-H 2) E E +H H xyxy x y z y x z yzyz

I E E +H H E E +H H %(-E 2-E 2+E 2 -H 2-H 2+H 2) !xzxz yzyz x y z x y z

(16)

ikwe can define the right hand side of eq. (16) as T 
then eq. (13) transforms to
o.k = - p(p,T) + T.k - ^(1 + iv/co) E.Ek (17)

By definition the force f per unit volume can be
calculated from the stress tensor Q., the momentum fluxik
density which includes the momentum of both matter and 
the electromagnetic field. By relativistic invariance 
the energy flux of an electromagnetic wave in a dielectric 
given by c (E_ x H/4tt) , to be the same as before except for 
a factor 1/c2, This force is used in the dielectric 
with a variable electromagnetic field so that 

3a,ik 9 (ExH)i (18)i 9 x . 9t 4ttc 
i

Using eq. (17) in eq. (18) leads us to the required
force as

f = -y..p + V-(T - ^ (l+iv/co)E E)-^ |f| (19)
eq. (19) is the general force density equation.

If we assume perpendicular incidence of a plane wave 
propagating in the x direction on a stratified plasma
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with linear polarisation of E in the y direction. We 

can assume

_3_
3y

_3_
3z 0; 0; (20a)

and i .i x- y i .i = i .i x z y z (20b)

The gradient of the stress tensor T is written as

i 4- i + i • T where the V function and T withx 3x y 3y z 3z — — —

assumptions (20) reduce to

i _3_ . 1-
3x 2^

from (20b) 

7 • T

-%(E 2+H 2)i i y z x y

-%(E 2-H 2)i iy z y y

0 %(-E 2+H 2)i i* y z z z

(E 2-fH 2) 8 7T 3x y z

Similarly y. (~ ■/ (1 + i v/w) EE) reduces to

(21)

(22)

ix 3x 4tt (oj -fv ) (1 + i v/w) •

( i i E E -fiiEE + i i E Evxxxx xyxy xzxz

+ i i E E + i EE + i i E Ey x y x yyyy yzyz
+ i i E E + i i E E + i i E E )zxzx zyzy zzzz'

(23)

Using assumptions (20a) this reduces further to
.. 2

- / t UTT ( 1 + iv/d))x 3x 4tt(o) +v ) i i E 2y y y (24)

but i•i x y 0 so this term is zero.
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Then 

f = - V •' p - x
8tt

_3_
3x

2+ H 2) z
9 ExH 
81 4ttc (25a)

The

f =

Poynting term can similarly be reduced so that

-V 3x (E 2+Hy z ) -
. E H3 y z
31 l\ \\ c i (25b)

For a dispersive medium we use the average value of the

force density during one period of the laser light. The

switch on process of the laser light wave is very slow in

comparison with the frequency of the laser light so we
ExH" .

can neglect the Poynting term in eq. (25b) by the

reasoning below
9 ExH

For a quantitative view of 74Tc

_ 1 2
3t = A t = 10 secs.

At intensities of 1016W/cm2 E = 3 x 109V/cm = 107cgs; 

H is of the same value = 107 Gauss so that

1 - - 1 10 7 x 10 7 o nnl4
tt T^C 10-1* 4xirx3xl010

whereas

4- (E2+H2) = — (1014+ 1014) = -t- X 2 X 1014 
3x ix 10 cm

= 2 x 1017cgs

and 2 x 10* 1' >> 2.65 x 10 14

II Collisionless Nonlinear Force

The time averaged nonlinear force for linearly 

polarsied perpendicular light incident is given by

i V (E2 + S2)
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Using a collisionless WKB approximation where

E2 = E^2/2|n| exp (± kx) (26a)

E^2 |n | /2 exp (± kx) (26b)

than v (E2+ H2) 16tt V E 2 (—v IH + |n| ) since k

for collisionless plasma. For perpendicular incidence 

(propagation in the x direction:)

f l+|n
nl 16tt 9 x | — | 2

Ev n (2n)-(l+n2) 9n
16 TT | — | 9xn

since n2
u>

i - -?0)

Tnl
E 2 v
16tt

1D d
uf2 9x | — n

(27)

Formally eq. (19) can be rewritten by use of 

the Maxwells equations (C.G.S. units).

Curl E = - - (28a)

4ttj_ x E
Curl H = --- + - -— c c t (28b)

and by defining the current density j_ with ion velocity

v. asl
2 = (v - Zv. ) giving 15

tot
111 uJ-ri

-?'£ + 72x'E+47?. - 57 jjT4^r(l+iv/fc))E V • E

- 2 Zrh- d+WME-V E - ^ E E-V ^(1+iv/u,)

(29)
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The last four terms of eq. (29) drop out for 

perpendicular incidence from previous assumptions on a 

stratified plasma so that the nonlinear force is determined 

by ^ x H. For oblique incidence all terms of eq. (29)

are required.

By substitution of the WKB approximation for E and H 

into eq. (29) we see for perpendicularly incident light 

E
-wkb = -v eXP eXp> ^ X^2^ (30)y n 2

-wkb = Ev exP (iF^ exp ^ k(x) x/2) (31)

where F w(t ±/x re(n( 6) d£/c) ; k(x)=w/(xc)/xIm(n(6) d£
(32)

1so that after averaging over one period / and substitut­

ing this into

- j x H c ^ —nl
we obtain

nl
E 2-i _v _p j?___x 16tt ur 9x i —I

9 1

(33)

(34)

which is equivalent to eq. (27)

The microscopic quivering motion of the electron 

can couple with the macroscopic properties of the plasma: 

We assume a WKB approximation with electric and 

magnetic fields defined by equations (30),(31) and (32)

and eq. (20) so that

y e
m y (35)

i — V x Hy m y
and eq. (36a) defines the Lorentz force so that

(36a)
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V

From (33)

cm y e J
v | H |

V c ey — | %n com
sinF

(36b)

(37)

Then eq. (36b) becomes

V ——2- —~r* sinFcom , — ,ke |n | “

Time averaging eq. (38) gives

c vdn . „ „ — % „— ——3 — smF-E n 2 cosF
2co In |T dx

(38)

< V >x

< V >x

2 Ee c v dn
2«2m 2 |S|!2 dx

< sin^F >

e2 c
4co 2m 2e ^ dx

d|n| .

(39a)

(39b)

The time averaged nonlinear force density is defined 

macroscopically as 

fnl n m V e e x (40).

so inserting (39b) into (40) gives
t__ __ e c v dnt , - n m ------  --- —1—Lnl e e

recalling w‘

4co2m 2e
47Te 2ne

n I 2 dx
(41)

and that the force is in the

x direction
I.=i _L (42)
n x 16tt w2 |n | 2 dx

which is precisely eq. (34) and (27). The quivering 

motion of the electrons due to the electromagnetic field 

is transferred into a macroscopic force motion equation 

which is justified by use of the Maxwellian stress tensor 

eq. (19). This justifies the use of the nonlinear force 

in a macroscopic model.
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III Predominance of the nonlinear force over thermal 
kinetic (gas dynamic) force.

From eq. (26), allowing for a dispersive medium 

and the discussed deletion of the Poynting term we have 

f = - V n k T + -gt 5 (E2+ H2) (43)

where the pressure vector is replaced by n^k T whose 

gradient is the gas dynamic force. Eq. (43) can be 

rewritten as^

f = v C-nek T + ^ (E2+ H2) ) (44)

The nonlinear force term will than be larger than the 

gas dynamic force when

assuming
n k T < o— e — OTT (E2+ H2) - (E 2+ H 2) v V (45)

E 2 = E^2/n(k,T) for n < • 1 then 
F 2

n k T < i 2------
e 071 n(ne,T) (46)

From considerations of the oscillation energy the maximum
3IT1* /value of — = — where for 1.06pm wavelength light'4' a n

a = (2ev)T
F 2 3

t tso that n k T < -5— —e — 8tt a
Then for the collisionless case the predominance of the 

nonlinear force over the thermal kinetic force is given by 
I > x* = 2.08 x 1014W/cm2(Ruby) where T is in ev

7.5 x 1013 (Nd glass) (47)

Including the oscillation energy to the calculations of 

Stienhauer and Ahlstrom^ results in similar threshold 

intensities described by eq. (47) only if the nonlinear

intensity dependence of the refractive index has been 

included^.
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IV Nonlinear force with absorption in plasma

Equations (27), (34) and (42) expresses the nonlinear 

force in terms of the refractive index |n|. For a WKB 

approximation averaged over time including collisions we 

use equations (26a) and (26b) with k ^ 0 then

E2 = E^2/2|n| exp (± kx) (48a)

H2r= H^2 |h|/2 exp (± kx) (48b)

Then the nonlinear force is given by

fnl = W ^ (^2 + 52> = 157 -Ev2(7=7+|K|> exP <± kx)I n I
.... (49)

For perpendicularly incident laser light (assumption 20a) 
f 2 , 1
'nl

then fnl

16TT 9x 
E 2
-v- (16tt

9 E * (yz- + lnl) exP (± kx) (50)

1- In
I n 
9n
9x exp (± kx)

E 2 
+ _X_- 16tt

1+ | n -) k exp (± kx) (51)

where k is the absorption constant defined as 

k = y Itn (n)

For the collisionless case, k = 0 >and equation (12)

(52)

reduces to n
uu

1 - —, so the nonlinear force

equation (51) becomes equation (27) with a singularity
2

at n = 0 when p = w2 . The first term of equation 

(51) forces plasma from high density to low density 

depending on the gradient of the refractive index.

The second term shows that the force can be in the same 

direction as the laser light.

If the direction of laser light is reversed then 

the sign of the second term also reverses. In either



36

case the force is in the direction of the laser light 

whose magnitude depends on the value of the optical 

constant. The force acts as radiation pressure of 

light due to the collisions of photons with the electrons, 

acting always in the same direction as the laser light.

V Solitons

The properties of the nonlinear force lie in the 

gradient of the electromagnetic energy density,V (E2+ H2). 

In figure 1 is the case of a symmetric electron density 

profile n (x) of a collisionless plasma,. The correspond­

ing penetrating laser beam satisfies the WKB condition 

where the density maximum is less than the cut off 

density nec. The electromagnetic energy density can be

described for the WKB conditions, equations (26a) and 

(26b) then

when E and H describes the electric and magnetic fields, 

E is the vacuum value of the electric field and n the

refractive index. If n is small the electromagnetic

field swells as 1/ . This is also seen via the con-n
servation of energy flux where if the group velocity is

E2+ H2 = E 2 (-+ n)/2 v n ' (52)

v

(53)
Then with smaller values of the refractive index, the 

group velocity falls implying a rise in the amplitude 

of the electric field denoted by swelling.
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Fig.lThe electron density profile of a collisionless 
plasma with maximum density slightly less than 
nec- The penetrating laser beam satisfying the 
WKB condition and exists as a solitary electro­
magnetic wave, from Hora^

The variation in E2+ H2 gives magnitude to the 
nonlinear force f ^ in figure 1, due to the gradient 
of E24- H2 . The nonlinear force therefore forces plasma 
from regions of high densities to low densities. The 
term soliton describes the solitary electromagnetic wave 
in figure 1.

Similarly for a monotonically increasing electron 
density profile, figure 2, the corresponding approximation 
for the electromagnetic energy density is shown. The WKB 
approximation is possible even for densities exceeding the 
cut off density nec- The value of the electromagnetic 
energy density, after approaching ngc, decreases 
exponentially due to collisional absorption in the plasma.
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Fig 2 A density profile increasing above the cut off 
density shows the formation of a soliton which 
is critically damped at the cut off intensity.
Not to be confused with soliton formations in the 
results section where laser light is incident 
from the right.

Assuming that the totally penetrating laser beam 
is collisionally damped at the cut off density, the 
electromagnetic energy density can be constructed which 
also displays a solitary electromagnetic energy density 
where the swelling of the intensity, electric field and 
wave length are effectively given by

vac v#c
Inf■¥ X Avac (54)

The above WKB approximation describes a single wave 
maximum known as a soliton.

VI Generation of Density Minumum
The gas dynamic compression of plasma is associated

with the thermokinetic expansion of plasma which ablates
towards the incoming laser light as a monotonically
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decreasing profile. Gas dynamic compression models"* 

based pa equations of continuity, conservation of 

momentum and energy conservation without the inclusion 

of nonlinear force terms have shown that the thermokinetic 

expansion of plasma (ablation) is towards the laser light. 

It acts as a compensation from the conservation of 

momentum where the monotonically decreasing density 

profile from near the cut off density balances the density 

profile from areas of compression driven by collision 

produced absorption of laser light. Figure 3.

laser light action

compression

ablation

Distance x

Fig 3 Schematic description of action of laser
light on plasma in a gas dynamic scheme, with 

compression of plasma by collisional processes 

and the subsequent ablation of plasma.
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One describes the nonlinear force as the immediate 
electrodynamic interaction, the gas dynamic interaction 
occuring after thermalisation of the radiation and 
heating of the ions.

The inclusion of the nonlinear force in the model 
of the interaction will generate a density minimum 
appearing in the ablating plasma. This was first seen 
numerically by Shearer Kidder and Zink, figure 4.
The density minimum appearing at a time of 33 psecs and 
at the later time of 92.9 nsec the density maximum 
associated with the caviton.

___

I * 33.1 pure

(INITIAL DENSITY PROFILE)

Fig. 4 Density profile at different times for a laser 
intensity described in the upper part of the 
figure. The low density maximum is generated 
initially by the nonlinear force? The term 
caviton describes the generated density minimum.
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Other numerical evaluations of plasma yielded both 
solitons and cavitons. The one dimensional simulation 
of plasma by large numbers of single electrons and ions 
yielded figures 5a and 5b from Valeo and Kruer^.

r '

Fig. 5 Spatial dependence of the electric field
intensity and ion density observed in a one 
dimensional computer simulation from Valeo and 
Kruer^.

Figure 5a describes a soliton and figure 5b the 
corresponding caviton generated by a one dimensional

g
electrostatic computer similation. Similarly Brueckner 
simulated the caviton (figure 6).

Experimental evidence of ion density cavitons 
created as a result of ion expulsion driven by the non­
linear force was seen for microwave pulse sources in

9figure 7 from Wong and Stenzel at times of 6 psecs.
Several microseconds after the electromagnetic 

pulse shows the presence of a large ion current just 
outside the resonant area due to ions with energies much 
higher than ambient. This current peak is followed by a 
density depression due to the expulsion of ions from
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180 190 2C0
MICRONS

Figure 6
Density profile in the vicinity of ngc at 1021cmgfor 1 pm radiation. Brueckner's simulation without 
the radiation pressure gave the dashed curve and 
times in psecs.

the resonant region. As the ion structure travels down 
the density profile, the peak consisting of a wide range 
of ion velocities quickly dispenses while the caviton 
composed of background ions maintains its shape as a 
nonlinear pertubation for a much longer time. The 
explanation of the result lies in the nonlinear force 
action on the electrons driving electrons from regions 
of high to low densities. As the electrons' are acceler­
ated they pull the ions with them by self consistent 
fields thus preserving space charge neutrality. The 
electron response to the electric field is much faster 
than the ions so that ion motion in figure 7 occurs
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ION ENERGY 
ANALYZERS40kVV, 1 GHz 

PULSE SOURCE

ANGULAR 
DISTRIBUTION OF 
ACCELERATED IONS

RF PULSEo j 
PERIOD 
0.4 pSEC

Figure 7

Density cavities as a result of ion expulsion

for microwave interactions with plasma observed exper-
9imentally by Wong and Stenzel .
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Figure 8

Experimental observations by Kim et al. ^ for 

microwave interaction verifying the coexistence of 

solitons and cavitons.
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at later times in the order of ysecs. Experiments 
by Kim, Stenzel and Wong^ verified the co-existence 
of solitons and cavitons in the microwave region,Fig.8.

In laser plasma interaction,experiments by 
Zakharenkov et al.^ The plasma profile was determined 
by analysis of inteferograms for electron densities in

_ 3the range of 1018 to 2 x 101 9 cm . The result is seen 
in figure 9.

Reffcctio*. A * 0.6943 »

Spectroscopy, A * 0.5 3 m ;

X^y spectroscopy

Figure 9
Electron density profile for laser plasma 
interaction at 2 nsec, observed by different 
methods. The target was aluminium with incident 
laser intensity of 3 x 1014W/cm2. The Nd glass 
laser interaction displays the existence of a 
density caviton experimentally verified by 
Zakharenkov et al. ^
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Measurements of the density profile in figure 9
_ 3for densities greater than 5 x 1018 cm during the 

first 2 nanoseconds are impossible due to the formation 
of the opacity zone due to refraction or insufficient 
time resolution or depolarisation as discussed by 
Zakharenkov et al. Nevertheless the existence of the 
caviton was experimentally verified for times of 2 nsecs 
with a velocity - 5 x 107 cm/sec for laser light inten­
sities of 3 x 1014 W/cm2 .

Experimental results showing density steepening
and the density cavity is seen in figure 10. Experim-

12ental results of Azechi et al. for Nd glass laser of 
intensities of 1016 W/cm2 displayed the caviton existing 
at .37 nsecs after laser irradiation.

Radius (/irn)

Figure 10
Radial density profile observed at 370 psec 
after the Nd glass laser irradiation at
intensities of 1016 W/cm2 observed by Azechi et al. 12
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Similarly from interferometric measurements for a
CC>2 laser pulse with a peak power of 10 1 4 W/cm the
resultant radial electron density profiles seen in

13figure 11 from Fedosejev et al. for times of .6 nsecs 
and .32 nsecs.

(MICRONS!

---/ 500 .sT"-i*

R (MICRONS!

Figure 11
13Radial electron density distribution of plasma 

produced on a solid aluminium target by a 30-J 
CO2 laser pulse at (a) .6 nsec and (b) 3.2 nsec.
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In figure 11 the same steepening of the density 
profile appears with the associated caviton. Once 
again the nonlinear force is the dominant factor in 
determining the density profile and if this remains 
true at higher irradiances then the plasma intensity 
should be largely governed by the incident intensity 
rather than the wavelength of the radiation. Density 
cavities and cavities in x-ray emissitivity profiles 
were recorded for C02 lasers by Donaldson et al.1^ 
as seen in figure 12 measured from x-ray pinhole 
photographs at later times of 25 nsecs.

200 ,c>
--- 300

200 600 O
Distance from laser axis (|im)

FIG. 1. Radial density profiles at t -- 25 nsec.

400 *A
_ ^ 500 ^__ / / /V / X. >/

600^ 1000 1400 ^

300

200
Distance from Icser ax.s (nm)

Figure 12
Observation of radial density profiles and x-ray 
emissitivity for C02 laser irradiation from 
Donaldson et al.^
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The plasma dynamics for the interaction of high 
intensity laser radiation with solid targets and the 
instantaneously generated plasma, can be determined 
by the nonlinear force which is the immediate electro­
dynamic interaction, and then by the gas dynamic 
pressure occurring after thermalisation of the radiation 
and heating of the ions. The important consequence of 
the nonlinear force, especially for short laser pulses 
in the order of picoseconds, consists of the possibility 
of a nonthermalising transfer of optical energy into 
kinetic energy of plasma for compression, which has a 
minimum of entropy production and is therefore highly 
efficient.
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CHAPTER 4 ABSORPTION OF LASER LIGHT 

I____ Dispersion Relations

From Euler’s equations of hydrodynamics the macro­

scopic behaviour of the electrons and ions in the 

plasma due to electromagnetic forces may be definied by 

a two species energy equation where e and i subscripts 

denote electron and ion species separately:

For ions with Z = 1 
3-i em. n. —s— = eE + — v. x H + m. n. v(v. - v ) + Vn. kT.iidt c — i — li —l —e l i

+ f (1)
For electrons 

9 v
e "e gF1 = - ve x H - me v(vt - v ) + Vngk T0m n

+ f (2)

.16

where m. are the masses of the species, n. the 

densities, e the charge, E and H the electric and magnetic 

field vectors, c the velocity of light, v. the 

velocities, v the collision frequency given by Spitzer^' 

k is Boltzmann's constant, T. the temperature and1 , G
f. any external force.1 , G

The equations above may be rewritten in terms of a 

single fluid model^ where the nett velocity of the plasma 

v and the current density j_ are written as

1

m. v. m v i —l - e —e
m. + m i e

,n. v. n v x e ( i —i - e —e)
n. + n l e

(3)

(4)

subtracting equation (1) from (2) and using definitions 

(3) and (4), given in cgs units
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e n
/ 3 j- , . \
<Tt + vl} E + - x H + —-— j x H +— c — c n ^ —e c

-----  Vpe n c 're (5)

where is the electron pressure corresponding to the 

term ngk in equation (2). This is the diffusion 

equation or the generalised Ohm's Law. For periodic 

time dependence we may write

j = jQ exp (- icot + 0) (6a)

E = Eq exp (- icot) (6b)

These give rise to the identities

i 9_ 
co 91 j

E = - E

(7a)

(7b)

We can neglect the gradient of the pressure in equation

(5) since it is dominated by other terms for intensities

above 1013 W/cm2 , for Nd glass lasers. (See nonlinear

force chapter). The justification for neglecting the

Lorentz and Hall terms follows.

The value of E is much larger than |^| x H where-

ever |v| << c. Since we are not dealing with relativistic

velocities the Lorentz term may be neglected.

The Hall term equivalent to ——— j_ x H requires
ez

values of |j | and |H| to be determined.

Using e2 n (
31
9t + v j)

and equation (7a) we obtain

1 :
2 n e e

(o m

E’



51

Using |E| - |H| and g = 1 then

1
en c e

111 ^ |H| e
m 03e

2n
ne
e
e c

E 2

e
m co) e

e 105
03

Therefore the Hall term can be neglected depending on 

frequency of laser light when

|E | 2 << I E IOj I I II

For Nd glass laser with 03 s 1015

|E| << 1010 cgs units

I E | 2 

IE!2

That is |E| << 3 x 1012 V/cm2

which corresponds to an intensity flux of about 1022 W/cm2 

So for non relativistic velocities and intensity 

fluxes of less than 1022 W/cm2 and larger than 1013W/cm2 

we may ignore the pressure , Lorentz and Hall terms in 

equation (5) .

Using the identity for the plasma frequency 
4iTen

03 2 = ---- — in eq. (5) and using eq. (7)P me
4tt f 3^- , . v 3^-k 1 3 v
03 2 ' 31 + Xo3 3t; oT^ 312 - (8)

Substituting this into a Maxwellian wave equation where

V2 E 1 32 p , 4tt 3_1
~cT 312 — ~cT 3t (9)

from the use of Maxwell's equations 

V x E = - yy H (9a)
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Then V E

VxH = aE + e e0 E 

1 92 E - 9 2E_
cr 912 — czgo2 (1 + iv/go) 9tr 

go2 ^ 2
that is V2 E - -T (1 - .~z~7'i~Z~—r^r) It? = 0— - cz K go (1 4- iv/go)7 91

(9b)

(10)

(ID
This gives the dispersion relation where the complex 
refractive index n is defined as

n2 = 1 - iPTT'+ iv/w) (12)

The real part of n is the refractive index n and 
the imaginary part of n is the absorption coefficient 
k given by

v4l - ^r) + % ((1- ____ 2 4 /V top2 N 2
G0Z+VZ/ ''GO <jOZ+V2'
_P )2 )* (13)

(1 - top2 \ . 1, //-. \2 , /V (OP2 \ 2
(0 +v f + (- ) 2(14)7 VG0 (a) tV 7

Then the absorption constant k is given by 

K 2o> k c (15)

For collisionless cases we assume that the collision 
frequency vis very much less than the incoming laser light 
frequency go then v may be neglected and the refractive 
index n from eq. (13) is rewritten as

i - 
ĜO

(16a)

and the absorption coefficient k will be zero. In 
terms of the electron densities the refractive index 
n may be written as

/

A -
(16b)
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is

The phase velocity of the light wave in the plasma 

Vp given by

v = -y— (17a)
" In!

and the group velocity vg is

v = c n g 1 (17b)

Collision frequency

Coulombic collisions between charged particles in 

the plasma state are dominated by electron-ion collisions 

A crude approximation of the electron-ion collision 

frequency follows:

The coulombic force existing between the electron 

and Z number of ionised ions is given by

Ze2 (18)

This force acts during a time given by 

r
(19)

where rQ is the distance of closest approach called the 

impact parameter. The change in momentum of the electron 

is given by
Ft = til (20)r v o

The cross section for large angle collisions where

an electron is deflected by more than 90° the change of

momentum is of the order of the momentum itself that is
Ze2Ft m v e r v o

(21)
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then

Z e (21a)
m v4 e

the cross section is given by x where

X Z27Te4
tv,2,t4m v e

(22)
the electron ion collision frequency is defined as

V ei
since n.

ni Xv
= ng/Z

Zn it e4then v _ e
ei 23 m v e

(23a)

(23b)

The average value of the velocity v in a plasma 

at equilibrium can be corrected to the temperature

T of the electrons where e
m 2 -^e v 1 k T2 e (24)

substitution of eq. (24) into eq. (23b) gives 
ZneTre43-i

Vei = m*(k T)T (25a)e
2Spitzer's expression for the electron-ion collision

frequency is given by 
n tt e4 m

v = irn; ln Asp (25b)v e e t

where Asp is Spitzer's ratio of the maximum (debye 

lengths) to minimum impact paremeter. The difference 

between eq. 25a and 25b is a constant and the log term.

Over the large range of temperatures and electron densities 

the difference is not significant.

Estimations of collisional absorption of laser 

light in many derivations use Kirchoff's law enforcing 

thermodynamic equilibrium between absorption and emission
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separately for each individual frequency. In the
3microwave region Oster had calculated the absorption 

coefficient of a plasma for both classical and 
quantum limits. In the classical limit Oster obtained 
for the emission coefficient per unit volume e assuming 
a Maxwellian electron velocity distribution which was 
the same result as Schuer^ for collective collisions 
of electrons and ions . The gist of the theory both 
for microwaves and later for light waves is the estimation 
of the coefficient of absorption from thermodynamic 
equilibrium when absorption and emission balances out 
separately for each frequency.. This is effectively 
Kirchoff's Law related by Planck's function

k bco co (26)*■ CO 03

where b is Planck's function; the universal functionco
of equilibrium temperature, and k^ is the absorption 
coefficient for frequency co.

On the basis of a classical microscopic theory 
Dawson and Oberman^ calculated the absorption coefficient 
of a plasma at high frequencies obtaining

8ttz2 e6n.n
k = -------ln ( * llla*u° - v) (27)

(jc(2umkT)uu2 °~2, ,2

For a value of k

k2maxup2 
7T 2 v 2

kT
2tt 2 v

the value of k is closemax Z~e2 
to microwave predictions of Schuer.

By applying Snell's Law, Dawson included the 
refractive index into the absorption coefficient by using 
Kirchoff's Law.He obtained a correction factor for the 
absorption constant y = (1- —— )2 which accounts for

CO
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the reduction of the group velocity of the wave in the
region where the plasma is nearly overdense.The factor
p in eq.27 restricts the validity of that equation to
the plasma frequency less than w.Inserting Spitzer's
electron ion collision frequency into eq.27 and using
the condition for quasineutrality ng = n^ = n gives

k a v £nC (28)
ncy 03

where C is the ratio of the log terms of Spitzer and 
Dawson,Oberman.Eq.28 expresses the direct proportionality 
between the collision frequency and the absorption 
coefficient.Comparison of the crude approximation,eq. (25a)

oand eq. (25b) with a quantum mechanical treatment shows
values of the collision frequencies differing only by a
constant and the log terms.The importance of the difference
over the large magnitudes of densities and temperatures

is not significant.An important assumption arises and is
qdiscussed in a paper by Green ,that for a plasma at tempe­

ratures above 104 °K,a Quantum mechanical model can be 
replaced by a purely classical model.

Ill Nonlinear Optical Constants
Experimental results^have shown that absorption of 

laser radiation differs from predictions by inverse 
bremsstahlung mechanisms at higher intensities.At intensi­
ties -when the oscillation energy of the electron due to 
the laser light is larger than the thermal energy equi­
valent to the random motion of the electron,then non­
linear mechanisms enhance absorption due to the decaying 
processes of the light in the plasma.
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Uheh the oscillation energy is comparable or 
larger than the thermal energy of the electron then 
the temperature of the electron is increased by

T - Tth + Eos /k (29)
where T ^ is the thermal temperature of the electron,
EQg is the oscillation energy of the electron and k is
the Boltzmann's constant. Since the velocity of the
electron in the form of an oscillation, due to the
electric field E in vacuum^is given by

v^ = eE/muy (30)
then the oscillation energy of the electron is

E = e2E2/2moo2 (31)os
comparison of Eqs to mc2 derives the laser intensity 
for which relativistic effects'^ are taken into account. 
For Nd glass laser the relativistic threshold intensity 
is 3.7 x 1010 W/cm2. If Eqs << me 2 Spitzer's collision 
frequency v in eq. (25b) may be rewritten including eq. 
(29) as

n it e 4m
n 2(kT , + E )2 e v th os7

In A (32)

and the nonlinear absorption constant is obtained from

1eq. (27) as
87Tz2e6n.n In A 

k = ■ • 1 e

coo 2(27Tm ) 2 (kT , + E /k) I / l-oo 2/oo2 e th os p (33)
which is valid for intensities less than 3.7 x 1018W/cm2
and where co < oo.

P
When the oscillation energy of the electron is much 

larger than the thermal energy of the electron and the 
relationship between the electric field amplitude E and the
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intensity of the laser field I is given by

E = / Sit I/c (cgs) (42)

we obtain the nonlinear collision induced absorption 

coefficient by classical inverse bremsstrahlung for

high intensities as ,
O „ -72 a _ „ 1 ^ A

nl
8irZ2e3n n.lnAc“o) e l _

(8tt I')f
(43)

on comparison with a fully quantum mechanical multiphotong
treatment , one sees only a difference in constants and 

logarithm terms. Both Rand's treatment and the one 

described above, show the nonlinear absorption coefficient 

as proportional to the frequency of laser light go and 

inversely proportional to the three halves of the intensity 

of the laser beam. The refractive index of the plasma

is included in eq. (43) to give
8iTZ2e8n n.lnAc% go k = ____ 61__ f_

nl >„_23 -W/u,’ (44)

which is valid for kT >>h v; E >>k T., ; go < go where’ os th p
no account is made for relativistic effects and I < 3.7 x 

1018 W/cm2 . The absorption coefficient increases as go^ 

approaches go which is near the cut off density n .

IV____ Dynamic collisionless absorption

We have dealt with the absorption of laser light by 

the processes of inverse bremsstrahlung and the correction 

to absorption at high intensities, when the oscillation 

energy of the electron due to the radiation is larger 

than the electrons thermal energy. As a consequence of 

change neutrality (Debye shielding) ions are carried 

along by electrons and are adiabatically compressed and 

expanded so that any change in the temperature of the
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ions in short time is not due to ionic absorption of

radiation, but due only to absorption of radiation

via the electrons. As a consequence of the oscillation

energy, macroscopically the quivering motion of the

electrons means a change in the plasma frequency acting

as a collision induced absorption of radiation by electrons,

As in the chapter on nonlinear forces, we neglect

the case of oblique incidence of radiation. We note that

there exists an optimum angle for which there is

maximum absorption of radiation at or -us. Coherentp
energy incident at the optimum angle is resonant with

plasma oscillations. If the electron ion collision

frequency is small compared to the wavelength then

the oscillations build up to large amplitudes. If

collisions limit the size of amplitude thermal electrons

are formed. If not the oscillations grow till they

break in phase space and hot electrons are produced

describing a resonance absorption mechanism.

Large amounts of energy transfer of laser light to

plasma can occur due to instability processes occuring
12at each specific intensity threshold. In some cases 

higher harmonics and half numbered harmonics have been 

observed in backseattered radiation due to Raman,

Brillouin type instabilities generating large transfers 

of energy into the plasma with a corresponding anomalous 

backscatter of radiation.

Each instability manifests itself at their 

individual characteristic intensity threshold. Many
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instabilities may be associated with the threshold growth 
of the nonlinear force. The nonlinear force in an 
anomalous manner generates macroscopic motion of the 
plasma. It is a direct transfer of optical energy into 
mechanical energy in the plasma. The mechanical energy 
changes density gradients and in this way increases 
dynamic absorption nonlinearly without collisions.
Density profiles with low reflectivities, such as the 
Rayleigh profile will exhibit dynamic absorption without 
collisions thus allowing large transfer of energy into 
the plasma. For completeness absorption via inverse 
bremsstrahlung must be included to the macroscopic 
dynamic collisionless abosrption whose predominance 
however, is one of the results from the following 
calculations.

It should be mentioned that the inclusion of the
decay instabilities producing "effective collision

12frequencies" as Dubois proposed should have been 
included into this treatment. However, though the basic 
theory of these instabilities has been developed exten­
sively^ the theory of saturation is not yet finished.
While the use of the instabilities is very important for 
diagnostics, eg. by the second harmonics generation, 
their importance for the dynamics may be relatively small 
as Wong^ indicated due to the fact that the back scattered 
harmonics are of small intensity compared with the 
initially incident radiation. This highly complex 
question may be considered as not completely settled.
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CHAPTER 5 LASER PLASMA INTERACTION MODEL 

X Equation of State
In this mddel electrons and ions act as separate

species and we assume that they are monatomic gases and
that quasineutrality holds so that the number of ions
n. equals the number of electrons n , that is n = n. = n. r n e ’ e i

At temperatures of lOOeV and at the Nd glass laser cut off
_ 3density of 10?1cm we can assume that.the perfect gas law

holds and then the equations of state for the separate 
species are

Pi = ni k Ti (1)
p = n k T (2)^e e e

where p^ , pg are the pressures of the ions and electrons 
respectively T^, Tg the temperatures of the ions and 
electrons, k is Boltzmann's constant, 7. the ion charge.
The energies E^,^ t^ie sPec^-es are given in general by 
E where

E = —2--- (3)
P(Y-l)

where 7 is the ratio of specific heat and for a monatomic 
1 5Y = /3 so thatgas

1 •£ 2 P
(4)

where P is the density in terms of ions and electrons the 
energies are 

E 3 kh
i 2 m.i

0 kT3 __e
1 m

(5)

(6)

where m., m are the masses of the ions and electron l ’ e
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II____Heat Conduction
Separate thermal conductivity coefficients are

2specified for each individual species from Spitzer .
K = K = 5/85 x 1011/ e/mi (Ti/1.1605 x 107)2 (7)

5_
K = K = 5.85 x 10“ (T /1. 1605 x 107) 2 (8)ee e e

where K. are the thermal conductivities of the ions l, e
and electrons respectively. Flux limitations on the

13electrons as defined by Shearer are not justified by the 
electron temperatures experienced in our model and is not 
included.
Heat transfer between species is denoted by Q^e= -Qe^ 
where

<he = 7 k (Ti - Te)/T
the time required for the transfer of energy between 
species is represented by t (Spitzer's relaxation time)

(9)

3m. m i e
' kT.l
m^ e

kT
+ e me J

8/2F e'Z2 n In A
(10)

where e is the electron and A is the usual ratio of
impact parameters given by 

o k3 T 3
A = (-2e^

e (ID
tt n

the coulomb logarithm is set to its maximum value equal 
to 10.

Since the ions are not directly heated by the laser 
beam, because of the mass of ion and electron ratio, energy 
is transferred to the ions from the electrons via 
collisions. The time for the collisional process to 
equilibrate is given by x.
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Allowing the densities ng = n^ = 5 x 1021 cm the 
time t required for equilibriation of temperatures at 
different temperatures is calculated in table 1.

t (sec) Te(°K)
n

3.14 x 10 106
- 1 05.34 x 10 107

1.15 x 10'8 COoT—
1

72.63 x 10 109
j 7 x 10'6 oor—

4

I

Table 1
At a temperature of 107 °K the time required to reach

_ 1 oequilibrium of species temperatures is 5.34 x 10 secs. 
For picosecond pulses of laser light one would observe 
(in the scale of a picosecond) differences in the 
temperatures of the ions and electrons. A nanosecond 
laser pulse would be of sufficient time for a temperature 
of 107 °K to allow equilibration of temperature of both 
species. This justifies the use of a two temperature 
fluid model for subnanosecond pulses of radiation.

Ill____Viscosity
The contribution of viscosity to the energy equations 

of a plasma in one dimension may be written as Kidder, 
Barnes^

(1) Slab-like co-ordinates
pevis 4 f d±^2 T (12)
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(2) Cylindrical co-ordinates

vis 4 (If)2 - <!#) + (i>2r 3t■ (13)

(3) Spherically symmetric co-ordinates

vis 3 y 3r <l>] (14)

where M is the normal viscosity. Due to uniform compresson 

and/or expansion where spherically symmetrical co-ordinates 

imply that volume elements are undistorted means that r/r 

is a constant and hence the viscous contribution to the 

energy equation drops out in a spherically symmetric 

geometry. One sees the contribution of viscous terms as 

being zero or negligible except at shock fronts because the 

hydrodynamic 1 equations are valid when the mean free path 

is much smaller than the characteristic length. They 

become invalid when the mean free path approaches the 

value of the characteristic length which occurs at 

shock fronts. Any computational stability at the shock 

front requires the use of an artificial viscosity term both 

in a slab like geometry and a spherically symmetric 

geometry. No requirement is made of an artificial viscosity 

term for expansion. We use the scheme of Richtmyer and 

Morton^ where for the artifical viscosity term appears for 

compression (when _> Vj + 1)

QP cpA 2 (|2) if < o
3x

>o
X

(15)

where c is a constant, p the density and A the mesh size
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The argument for an artifical viscosit}'’ term lies
5in the Von Neumann and Richtmyer scheme . When in a 

compressible fluid, disturbances of large amplitudes 
occur, waves of different wavelengths couple and energy 
tends to propagate from the long wavelengths to the short 
wavelengths. Energy will aggregate in the shortest 
wavelengths on a different mesh. Hence large oscillations 
occur between variables at adjacent mesh points. The 
artifical viscosity term transforms the energyof thelarge 
mesh oscillations into the thermal energy of the fluid 
velocities. The value of the ion viscosity is larger 
than the electron viscosity by a factor of (m^/m )2.
Hence the viscosity is added only to the energy equation 
for the ion species.

IV Assumptions fpr the Code_
1. Debye length - macroscopic scalelengths.

A sphere of radius called the Debye length 
would have a potential energy equal to 4Tm 2A^ . If the 
kinetic energy of a particle in the sphere is k Tis much 
larger than this potential energy then the effect of the 
sphere on the motion of that particle is minimal. The 
Debye length A^ is

4im 2 e = kT

defining /El_
4 n 2e

When considering lengths larger than A^ one looks at 
collective assembly of plasma. Lengths smaller than 
means that the microscopic interparticle effects are

(16)

(17)

AD
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important. When the number of particles in a sphere 
of radius (called a Debye sphere) is large, then the 
primary phenomena of interest are macroscopic collective 
effects rather than binary particle effects. Such a 
physical system may be described by a particle field 
model and the plasma acts as a fluid when the macro­
scopic scale length of the computational model is 
larger than the Debye lnngthD. Multiphoton processes 
are assumed which immediately takes into account many 
interactions when the entire laser field interacts with 
the plasma - macroscopically described by a classical 
model.

Condition of quasineutrality also exists when the 
Debye length A^ is much smaller than the characteristic 
length of density variation in the plasma.

The basis and validity of the 1 fluid plasma 
model stems from the more general theory of Boltzmann's 
equations. The basic equations in 1 fluid theory 
interacting with a laser field contain the mass 
conservation, momentum conservation and energy conser­
vation equations which are respectively,

+ V.p v = 0 (18a)

P ^ . (E + pY Y) = i x 1 (18b)

P-p- (i v2+ v2) + V • (|j # v + P v (%v2+ v) + q) =

force applied- ..... (18c)
where v is the velocity vector, j_ the current density,
B the magnetic fieldvector, a the viscosity vector. The
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equations are general and the validity of them apply 

from the consideration of Boltzmann's equation which is 

the more broad kinetic theory and Boltzmann's equation is

v V f + F • V v f r (—)' 9t\ coll. (19)

where the left hand side represents the flow terms with 

force F and the right hand side represents interactions 

with source functions. In plasmas the right hand side 

is represented by Fokker Planck type source functions.

The method of expansion of f'7 is

f (1 + k Qi + k Q2 -f o v n c 1 n . ) (20)
Generally there is no pro6f of convergence for It

does converge depending on the restraints. The first

limit for f is Maxwellian and . o
k =rA n L (21)

where A is the mean free . path and L the characteristic

length determined by

A-l^l (22)

so correct convergence is always assumed for kR <<: 1. 

Similarly the constraint for k^ may be made in terms of 

time Tmfp the mean free path time and T the characteristic

(23)
time so that

k = f5lEn L
The constraints on k allow us to assume that local Q-, , 

q0 in terms of length and time are valid and therefore 

the set of relationseq.03 are also valid. One sees that 

k^ acts as a constraint for quasineutrality requiring that
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the mean free path should be replaced by the Debye 
length thus neglecting microscopic interparticle 
effects and describing a set of macroscopic equations 
describing a collective --.assembly of plasma. We assume 
that the plasma equations are averaged over a Maxwellian 
velocity distribution.

In a two fluid model description we look at.macro­
scopic length L and time T in relation to the microscopic 
length A^and time t so that

L >> |dr | >> Ad ‘ (24a)

T >> |dt | >> t (24b)

We have three basic macroscopic time scales. The 
electron ion scattering time scalex^, the ion - ion 
scattering time scale and an irreversible relaxation
time scale T£ representing the time for equilibration 
of temperatures between electrons and ions. We do not 
look at reversible time due to the magnetic field

ginteractions. Assuming Tg = then
m • i m •

T : T. : T = 1 : (_±)* : (-i) = 1:43 : 1840 (25)e l e m vme e
The transfer of momentum from ions to electrons is of 

the order of Te hence the transfer of energy from ions 
to electrons is small compared to ion - ion transfer.
The transfer of momentum from ion to ion is small 
compared to electron-ion transfer which is therefore 
the most important effect on the electron distribution 
function.

If an observers time scale is less than t thene
the observer would see both electrons and ions behaving
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as particles. If the time scale is larger than but 
less than then an observer would see electrons acting 
collectively as a fluid and the ions as kinetic 
particles. Similarly if the observers time scale was 
larger than t. but less than t. the observer would see 
the separate species acting as fluids establishing local 
equilibrium within each species before equilibrium is 
established between species. This has been previously 
discussed in the section on heat conduction where a 
picosecond time scale would see temperature gradients 
between electrons and ions but nanosecond pulses would 
be of sufficient time for the equilibration of temperature 
between species,valid for both 1 or 2 fluid models.

3____Relativistic correction to Mass
Corrections to the masses m of the plasma cells were

made,where m* is the relativistic mass,v the velocity of 
cells j--- 2---

m* = m//l-v/c2 (26)
On comparison of mass and the correction to mass 
affecting the energy with respect to intensity of incident 
laser radiation, table 2, there appears a difference 
occurring at an intensity of 1017 W/cm2.

Intensity % m 2 (J)v % m*2 (J)
1013 W/cm2 5.0 2116 x 106 5.02116 x 106

1015 W/cm2 4.179326 x 10’ 4.179326 x 10’

1017 W/cm2
j

4.60476 x 10‘ 3 4.60477 x 10”

Table 2
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Relativistic effects begin to be relevant above
1017 W/cm2. Only when velocities of the plasma are of
the order of 101(7cm/sec occurring at flux densities
larger than 101 7 W/cm2 do relativistic corrections to
the mass affect results. This is in total agreement with

9Masini et al. , who predicted that relativistic effects
13are minor for velocities < 1010 cm/sec. Relativistic 

self focussing occurs at 3.6 x 1018 W/cm2 when the kinetic 
energy of the laser beam is equal to me 2. A one 
dimensional plane wave scheme does not assume self 
focussing which is simulated by two dimensional geometry. 
Below the relativistic self focussing threshold intensity 
that effect is neglected.
4____Brem.ss trahlung

We assume that the macroscopic absorption of laser 
light is by collisional effects namely inverse bremsstrah- 
lung. However we assume that there are no losses due to 
bremsstrahlung thus limiting the oscillation energy of 
the electron to less than hw- At temperatures above 
107 °K the plasma radiation energy losses not only 
through e - i dipole radiation but also by e - e, i - i 
quadropole radiation10. Only when relativistic effects 
occur that e - e, i — i radiation quadropole effects are 
important11. As all cases are non relativistic any loss 
of energy can only be through bremsstrahlung. We assume 
no losses through bremsstrahlung. Reheat, Compton scatt­
ering, self generated magnetic fields, creation of non 
thermal particles by strong shock, non perfect equations of 
state and their formulations for degree of ionisation have 

been neglected.
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5 Retardation

Tne solution of the Poisson’s equation at

boundary conditions requires no retardation time delay,

since the density of the plasma self consistently describes

the electric field. Therefore for computational purposes

of the boundary conditions only the speed of light is a-

ssumed to be infinite, and that the laser produces stoccato
n+3-bursts of energy at times t 2 where

described by cell jm + 2 at a time n 4- % and P(t) is the 

temporal power output of the laser. Poisson's equation 

is solved separately and the consequent solution included 

into the E field.

Changing the set of Eulerian equations (18 a-c) by 

using Lagrangian co-ordinates where .ceils of variable size 

and constant mass are vised compacts the equations. Use is 

made of the relation

Tt “ JE + 2 • ’ (27>
(1) Conservation of Mass 

In Eulerian form

V Lagrangian code

0 (28)

that is + v. Vp + P V. v =0 (29)

in Lagrangian form

dp
dt p V • v (30)
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Since the masses of cells are constant

(31)^ = 0 implying V.v = 0

(2) Conservation of Momentum

3pv
+ V • p v v = - V p - F (32)

that is
3— 3+ v -K-7- + pv*V v + w . V p+ pv V.v 4 vpV*v31 31

- V p - F (33)

In Lagrangian form and using convervation of mass equations 

this simplifies to

dy 
1 d t - V p - F (34)

where F are the forces interacting with the plasma. We 

assume that the pressure is isotropic. The nonlinear force, 

gravitational force, artificial viscosity and the Poisson 

term are included in F then

dv
- - V p ± (zn. - ne) E ± gL V (E2 + H2) t - QP

(35)
The Poisson term is solved separately then included in 

V, (E2 + H2)

1_

8tt
V (E2 + H2) is the nonlinear force

F^ is any extraneous force e.g. gravitational 

and is neglected..

QP is the artificial viscosity term which is included 

only when the mean free path X is greater than or equal 

to the characteristic length occurring at shock fronts.
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The momentum is diffused through the fluid by macroscopic 

particle motion denoted by the artifical viscosity term 

assumed to affect only the ions.

The gradient of the pressure as will be seen later is 

comprised of the partial pressures on the ions and the 

electrons so that

V P = V(p. + pe)

= kV n.T. + k V n T 11 e e
(36)

3____ Conservation of energy equations

The energy equations for the electrons and ions are 

treated separately. We assume that all incident radiation 

energy is absorbed only by the electrons through inverse 

bremsstrahlung. So that we have for electrons

_9_
9t /v dV

9T
/. p v d A - /. K -rv-dA A *e — • — A e 3 r —

+ /v dV (37)

for ions

/ p. E. dV at v i i - /A Pi v . dA - /A K. ^- . dA (38)

where Pe>^ are the separate electron and ion densities;

E^,^ are the separate electron, ion internal energies;

p ,. are the electron, ion pressure, v is the velocity 
61 dr

defined as v dt , A the area, V the volume.

E^ is rate of energy addition to the electrons by inverse 

bremsstrahlung. K ,^ are the coefficients of thermal 

conductivity for the electrons and ions.



74

The power absorbed by the electron via inverse 

bremsstrahlung is

I K c
8 TT (39)

where I is the incident intensity, E the electric field,

K the absorption coefficient when n < nr e ec then K is

given by

4TT4Z2n n . e4 In A
K =------ ----------------- _ (40)

co)2(2TTm ) 2 ^kT + E )2 e e os
the In A term is set at a maximum of 10. We include the 

nonlinear correction to the absorption constant by includ­

ing the oscillation energy of the electron due to the laser 

light radiation. The amount of energy absorbed only by 

electrons in each cell is

W.
J
n+% (1 /k dr.e ) (41)

where Ej + -^ is the energy incident on the cell and

E.J E.,1 - W. J + l J
n+% (42)

is the energy incident on the next innermost cell. This 

is repeated from the first cell on the right, JM+2, inward 

to the first overdense cell. Assuming a linear approx­

imation for the density of the cell, somewhere in the 

overdense cell the plasma frequency is equal to the laser 

frequency. Reflection then occurs. The process above is 

then repeated in the opposite direction. The temperature

T is assumed to be constant within each cell. Inte- e
gration of the absorption coefficient for each cell 

requires a linear profile to ascertain the precise point
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when (0p = co. This assumption prevents errors in any

cell when n is equal to ne ec
The electron and ion energy equations are converted 

into finite difference form so that we solve for

j m.» at (K A e + (K A e
3T
— Z) 3x;j+l

- (3/2 )n kVVT + n - e — e x
(43)

i 3t
av.i

pi 7t - (K, A 3 x ) + (K A e 3 x'j+1

- (3/2 ')nj[ V kVT ....... (44)
T

where the script j represents the cell j. This set of 

equations are solved implicitly. The use of an implicit 

differencing scheme in comparison with an explicit 

differencing scheme which computes the new temperature 

from values of previous temperatures at 3 adjacent points 

is this. The temperature in the explicit scheme is able 

to propagate at most one mass point per time cycle. In 

reality at areas of high conductivity the heat propagates 

over many cells in one time cycle. To be more precise 

simultaneous computations should be made for all present 

temperatures which gives the total physical information 

at each cycle. Thus allowing the temperature to propagate 

everywhere in the plasma without loss of information.

Collisional energy transfer between^electrons and ions 

can save computational time if the relaxation time is iso­

lated from the energy equations and solved separately.
3Dividing eqs. (43) and (44) by /2 n . k and subtracting

i
and retaining only the temperature difference yields,
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SAT - (1 + z) AT
9 t ' T
Eq. (45) can be integrated over the time step At

(45)

by assuming that t is constant giving
n+1AtAT - AT exp -

where AT^ is the temperature difference between the

(46)

species at the commencement of intergration. The

calculation of the temperature relaxation terms is done

in two separate periods. The first between times n and

n+1, followed by implicit calculations solving the

remaining energy equation terms for the temperature,

followed by the second period between times n + % and

n+1. This method of separation is required for

accuracy of t and the coupling of separate equations

required for repeated computations.

The energy equations without the relaxation terms
4may be solved by the method of Richtmyer and Morton .

We set up equations (43) and (44) so that they are in 

the form

-A. V. + B. V. - C. V. = D. (47)J J+l J J J J-l J

and solve which denotes the implicit temperature

value where

V. = E. V. + F.J J J+l J

E = F = 0 o o
E. = A. / ( B. - C. E. .) 
j j j j j-i

F. = (D. + C. F. .) / (B. - C. E. .)J J J J-l J J J-l

Storing E^ and F^ in the arrays and B^ saving the 

value of Dj for use in (51) before calculating (50).

(48)

(49)

(50)

(51)
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VI Description of the Code
The overall plan of the code is divided into four 

sections. These are initialisation, increment in 
temperature, dynamical increment, updating and checking
(A) Initialise

(1) Set constants
(2) Initialise density profile
(3) Initialise plasma properties
(4) Call laser pulse parameters
(5) Write initial condition

(B) Temperature Increment
(6) Compute added energy - CALL LASER for input power
(7) Half relaxation of electron ion energy difference
(8) Ion heat conduction solved implicitly
(9) Electron heat conduction solved implicitly

(10) Half relaxation of remaining electron-ion
energy difference.

(C) Dynamical Increment

(11) Advance velocity
(12) Advance radius, velocity

(D) Update and check

(13) Update plasma properties
(14) Compute and check energy balance
(15) Write current plasma variables
(16) Check temperature, densities, time
(17) Update variables

Lagrangian Mesh
The plasma in one dimension is divided into J M 

cells with each cell individually indexed by j. The size
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of each cell is variable, the adjustment of size depend­

ing on the constraint of having an invariable mass for 

each cell. The densities and temperatures of the plasma 

reside in the center of the cells at integer times. The 

positions of the interfaces are observed at integer times 

The velocities of the interfaces are determined at half 

integer times.

(a) Interfaces j of the cells are located as follows at 
time n, figure 1.

^interface J ^interface J + 1

J_1 J~2 J=J J=JM JM+1 JM+2

Figure 1

Plasma is divided into Jm + 2 cells where the first,

J = 1, cell and the last, J = J m+ 2, cell are used as 

dummy cells.

(b) Each interface J is advanced in time which then 

determines the new temperatures, velocities and densities 

We can view the advancement in time by layering of the 

above diagram'for each half and full integer time. A 
schematic description follows on the next page,figure 2.
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CM<DU3txO•HPm

Schematic diagram depicting the advancement of interface J in time, determining 
the new temperatures, densities, velocities and temperatures in cell J.
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In general if a variable ends with an A it is the
earlier time step than that for a variable ending with
a B. So that the position of the j interface at time

thn is indexed by XA(J). The position of the j interface 
at time n + 1 is indexed by XB(J). Similarly for 
temperatures of the ions TPA(J), temperatures of the 
electrons TMA(J) and the density of plasma RHOA(J). The 
velocity of the interface is determined at half integer 
times so that UA(J) is the velocity of the plasma at time 
n + % and the velocity UB(J) is-iat time n+3/£. After 
the variables have been calculated at the new time, it 
is required to reset those variables for calculations at 
later times.
Description of Variables
XB(J) - Position of interface j at time n+1
XA(J) - Position of interface j at time n
UA(J) - Velocity of interface j at time n+d/2
UB(J) - Velocity of interface j at time n+3/2
RHOA(J) - Density of cell j between j to j+1 at time n
RHOB(J) - Density of cell j between j to j+1 at time h+1
TPA(J) - Temperature of ions in cell j at time n
TPB(J) - Temperature of ions in cell j at time n+1
TMA(J) - Temperature of electrons in cell j at time n
TMB(J) - Temperature of electrons in cell j at time n+1
DM(J) - Mass of cell j
W(J) - Specific energy absorbed in cell j between time 

n and n+1
QP(J) - Artificial viscous pressure in cell j at time n 
ALNE(J) - Log terms of temperatures, densities for
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ALNI(J) 

JJ(J) - 

JG(J) -

TSI(J) - 

TS2(J) - 

TS 3(J) - 

A(J)

B(J)

C(J)

D(J)
E(J)

F(J)

ETA(J) -

XXX(J) -

implicit integration of energy equations.

Cell number

Dummy cell number used as a condition for 

avoiding overlapping

Implicit heat conduction used for computation 

-of A,B,C,D,E,F

/■

Solving implicitly the heat conduction terms

in the energy equations is solved by R Richtmyer
4R. Morton

Used for calculation of EM energy to be 

included in the absorption coefficient 

Used for plot routine

DTPR(20) - Used for time checks 

TPRC(20) -
n

BETA(J) - Refractive index squared where BETA=1-^- =n2
ec

GAMMA(J) - Absorption coefficient calculated before and 

after interacting with laser light.

PR (J) - ^ (E2 + H2)

SX(J) - Variable array for calculation of W(J)

ET(J) - Used for ETA(J) in calculating GAMMA(J)

Input Variables - all units in C.G.S.

TWAIT = 0.0 Arbitrary constant for control of data read in 

TRISE = .secs The rise time for laser input 

POWER = ergs/cm2 INPUT INTENSITY
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ANGLE =0.0 ANGLE OF INCIDENCE (not used)

Z = 2.E0 CHARGE

ZSQ = 5.E0 CHARGE SQUARED PLUS ONE

ANCORE = 1.17E23 Arbitrary constant to set the critical

density

TEMPIN = 1.H6 °K Initial temperature input 

DTIME = secs Time-.steps

NPRINT = 4 Number of time step constraints

Constants
DTB Equal to DTIME the time step

DTC Half the time step

RANGLE ANGLE/tt/3 in this case = 0
STH2 STH2 = SINE (RANGLE)2 = 0

CTH SQRT(1-STH2) = 1

BOLTZ Boltzmann's constant k

PI 7T

CC Speed of light in vacuum

CHARGE e

ELMASS Me
ALMASS m .l
AMASS (am + m.) v e i
RT RT = BOLTZ/AMASS

KRPT Number of interactions of implicit heat conduction

TRATL Fraction of total energy allowed to be absorbed

WAVELN Wavelength of input laser light

FREQL Frequency of laser light w

OML 2tto)

CKO 2go/WAVELN
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CC12
CC122

Constants used for relaxation time t

CC17 Used for calculation of electromagnetic energy
density

CC18 Used for absorption coefficient
CC19
CC20

Also used for relaxation time

CC21 Used for calculating RDEB
CC25N
CC25P

Used for implicit heat transfer calculations

ENCORE
RHOCOR
ENCR
RHOCR
RATCOR

J Used for initialising density

JM Number of cells
JMO Constant equal to JM
JMPI JM plus one
JMP2 JM plus two
ETOTA Total energy absorbed
TMASS Total mass
WTOT Total input energy
SINC Phi -*POWER
SINX SINX = ANGLE DEPENDENCES INC
SXIN SXIN=SINX
ESUP Total power input
ERROR
ERRORA

Error check

SXOUT Power out
TAUE12 Relaxation time t
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TAUE12 Relaxation time t

ENERGL Pulse energy /cm2

ENERGX incident energy /cm2 

Initialise Density Profile

Call subroutine INIDEN returns with initial density 

and mass for each of the J N cells. There are three 

separate routines for the formation of density profiles.. 

These are shown schematically below where the initial 

thickness D of the total plasma is not more than 100 

microns, for figures 3, 4, 5.

Distance D

Figure 3 Linear step profile connected to a

plateau at constant density equal to 

the cut off density.
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Distance D

Figure 4 Raleigh profile connected to a plateau
at constant density equal to the cut off 
density with a kink at the vacuum plasma 
boundary.

Distance D
Figure 5 Bi-Rayleigh profile with a kink occurring 

at both ends of the profile. In all cases 
the laser light is incident from the right
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Initialise Plasma Properties 

Calculate

BETA = 1 - n / = n2e nec

ALNE ^ log terms used for computation of 

ALNI relaxation times

GAMMA The absorption coefficient before laser input 

TMASS Calculate the total mass 

ETOTA Calculate the total thermal energy and 

velocities

LASER PULSE PARAMETERS

Calculate the temporal envelope (t) of the laser 

pulse. For the modified Gaussian assumed here.

1.21 t t< *455

<J> (t>' -2(1-t) 1 * 455'< t < 1

I .-(1-0 t a 1

where T is TIMER 

WRITE

Print out the initial conditions and several 

variations.

Calculations of Interactions

CALL subroutine LASER to ascertain the amount of 

incoming power at any particular time.

CALL WAEQ routine to calculate the electromagnetic 

energy density, the power density per unit cell, and other 

variables for later calculations of the absorption 

coefficients with a new absorption coefficient to account 

for power fluxes.
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Relaxation.Energy - Half time step

Calculate half of the relaxation of the electron 

ion energy difference - the relaxation time constant t 

and the temperature T and the change in temperatures of 

both species over half a time cycle. DTC denoted by 

DELT.

Then

TPA(J) = T -Z* ZI* DELT 

TPB(J) = TPA(J)

TMA(J) = T + ZIvcDELT 

TMB(J) = TMA(J)

Implicit intergration of energy equations
4Using Richtmyer's iterative implicit finite 

difference formulation because of the high temperatures 

involved we then solve for the ion heat conduction then 

the electron heat conduction.

Second half relaxation energy1-

Calculate the remaining half of the relaxation 

electron ion energy difference.

Advance velocity

Including an^artificial viscosity we solve for

dv j 1721172 j

dt “ A 4 n k T + QP (52)
where the n,T contains both electron and ion 

contributions.

Advance radius and density

xB(J) = xA(J) 4- UB(J)*DTB 

RHOB(J-l) = DM( J-1)/(XB(J)-XB(J-1)

(53)
(54)
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Update

With the new values of the temperatures, velocities, 

densities, distances and the new electric energy density 

terms we then. update the various plasma properties which 

existed in the initialised plasma properties.

ENERGY ERROR CHECK

Obtain the total energy before laser input where the

thermal energy is

ETOTA = m (Th + z T ) (55)

Compute the kinetic energy

EKIN = i m(v. + v.+1)2 (56)
Compute the initial energy

EINT = 3/2 k/m (T\ + z T ) (57)

Then the total energy after laser input is

ETOTB = EKIN + EINT (58).

Then the error at each time step is calculated as

ERROR = (ETOTB - ETOTA-WTOT) /(ETOTB-ETOTIN) (59)

A further check is made • from momentum 

conservation.

Time and space limitations

To prevent a sound wave from crossing a cell the
12general Courant-Lewy-Fredericks condition (CLF) for 

computational stability is imposed on the time step where

At (60)

where A is the mesh size and |v| the velocity of sound. 

This requires that the time step At will be short enough 

to prevent a sound wave from crossing the cell. The 

speed of the sound wave as a function of the temperature
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will vary from cell to cell on the mesh and the limit­

ation on the time step is a local one to be evaluated at 

each cell. In our case the condition is

At XA(J+1) - XA(J)______
/5/3 k/m (TPB( J)+TMB(J)

(61)

where c is a constant and k is Boltzmann's constant.

Allowance is made of a fraction of energy to be 

transferred from each interface. Energy transfering at 

higher rates than allowed would lead to instabilities. 

This condition on time is written as

At T
AtT T n+l_T n (62)

e e n n+where At is the time step and T and T are ther e e
electrons temperatures at times n and n+1. If for any

reason T n > T then At™ will be made smaller by ae e T
factor of ten thus allowing more detail and information 

to be printed.

Restriction is also made to the amount of laser 

light energy input by imposing the condition that only 

a fraction TRATL of the total energy,ETOTA, in the plasma 

divided by WTOT the total laser energy absorbed during the 

previous time step where At-p is the time for that fraction 

of energy input then

At„ = DTA* TRATL* ETOTA/WTOT r
To impose all three constraints above on the time 

scale the smallest of the three conditions is taken to 

be the next time step.
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CHAPTER 6 Results and Discussions 
I Density Profiles

Assuming a collisionless plasma with the collision 
frequency v set equal to 0 we obtain the refractive index 
of a Rayleigh profile as a function of distance x by 
defining

n __ 1_
1 4- ax (1)

where a is a real constant. The corresponding electron 
density ng for the refractive index n above as a function 
of x is

n Ci­te v (1 + ax)
(2)

where n^c is the cut off density determined by the 
frequency of incoming laser radiation w given by

me w2 
4tt ez (3)

where m is the electron mass and e is the electronic e
charge. For a CO2 laser with wavelength of 10.6 ym,

— 3nec is 9.84 x 1018 cm . For a Nd glass laser with
— 3wavelength of 1.06 pm, ngc is 9.84 x 102° cm

Figure 1 displays the refractive index n of a Rayleigh
profile for various a as a function of distance x.
For values of a > a where a = — = 1.18 x 105cm— c
the plasma exhibits total reflectance for Nd glass laser 
radiation. The corresponding electron densities as a 
function of x according to eq.(2) for different a is 
displayed in Figure 2. The motivation for using this 
density profile is derived from the results of the chapter 
on reflectivities. The low reflectivity of light for
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iic
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FIGURE 1 Spatial variation of the refractive index of a Rayleigh density profile, where
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a < % a is less than 5%^. For the following discussions 
of the nonlinear force transfer of optical energy into 
kinetic energy of moving plasma for compression we have 
selected those cases with a minimum of reflection.

When plasma exists at temperatures where collisional 
effects are important then the collision frequency v can 
no longer be assumed to be 0. If the a in eq. (1) is 
made of real and imaginary components A and iB where 
the constants A and B are real variables, the absorption 
coefficient of the Rayleigh profile will depend on the 
imaginary part of the refractive index, iK where K is 
the absorption coefficient given by

K = -----—-------- (4)
(Ax + l)2 + B2x2

where K is a function of x. In figure 3 are plots of 
equal and increasing values of A and B. The absorption 
coefficient peaks in all those cases with the maxima 
approaching the vertical (x = 0) axis. Plasmas are not 
always collisionless. Depending on the temperature the 
collision frequency changes the absorption coefficient 
in equation 4. Similar to figure 3, figure 4 shows 
values of increasing B the imaginary part of the 
refractive index. The variable A remains constant -as 
B increases. The maxima increases with increasing 
values of B with the maxima approaching the vertical axis 
with increasing B . When radiation interacts with a 
Rayleigh profile and it experiences absorption, the 
absorption of radiation will reach a peak, the value of 
which is determined by the maxima of the absorption
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FIGURE 3 The absorption coefficient K of the Rayleigh profile for equal real and
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A= 10B= 100

Distance x cm

FIGURE 4 Absorption coefficient K of the Rayleigh profile 

for varying real and imaginary components of A 

and B corresponding to eq. (4).
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Distance x (arb. units)

FIGURE 5 The schematic connection of a Rayleigh profile 
onto a plateau of constant refractive index 
equal to one corresponding to eq. (5).



97

coefficient. In figure 5 we connect continuously a 

Rayleigh profile onto a plateau of constant refractive 

index equal to one given by

ne

n x < ec — 0

1_______
1 4- a (x - 50pm)2 x > 0

(5)

The curve on the right corresponds to the electron 

density. The one on the left the refractive index n.

As will be shown later the curve attached onto a constant 

refractive index of value one exhibits little reflection 

up to the boundary where the electron density is equal to 

the cut off density. This will exhibit the same 

behaviour as that of a linear gradient of electron density 

whose value monotonically increases to that of the 

cut off density. This set of profiles, eq . (5) are used 

as test cases because laser light at non relativistic 

intensities without self focussing effects will not 

penetrate plasma' equal to or above the cut off density, At 

the position corresponding to the cut off density, 

laser light will be reflected. The interaction between 

reflected and incoming waves forms a standing wave 

pattern.

An inhomogeneous bi-Rayleigh density profile is 

seen in figure 6. It consists of constructing two symmetric 

Rayleigh profiles corresponding to an initial density 

profile which has the form
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ne
Hec

FIGURE 6

Normalised density vs distance

a = 2 xIO4

1.000

0.998

0.996

0.994

0.992

0.990

Distance (jjm )

An inhomogeneous bi-Rayleigh density profile
, _ iwith an a-2x104 cm corresponding to eq. (6)

In all cases initial temperatures are assumed 
to be uniform throughout the plasma.The cut-off 
density nec varies with the wavelength of laser 
radiation defined by eg.3.
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0 x > 50 ym
n + (1 - t ec 1

2
a(x-50ym) 2 ') ; < x < 50ym

1 2 (65
1 + a(x + 50ym)2 ) -50ym< x < 0

n /1000 ec x < -50ym

where n+ec is .01% smaller than neC-
At lower values of a the plasma exhibits high 

transmission properties and the laser light penetrates 
the plasma with rippling effects. The rippling of the 
electromagnetic energy density will cause bunching of the 
electron densities driving the electron densities above 
the critical density. This is undesirable as further 
transmission of laser light energy into the plasma is 
terminated. Several other symmetric profiles were tested 
with similar results.

For higher values of a satisfying equation (6) the
electromagnetic wave penetrating into the plasma exhibits
a solitary maximum. This corresponds to two blocks of
moving plasma. One moving in the direction of propagation
of laser light (compression) and the other moving back
towards the laser light (expansion). With a bi-Rayleigh
profile, a controlled electromagnetic energy wave may be
transmitted into the plasma with a high percentage-' '
(>_ 457o) of energy deposited into the plasma. Any increase

2on the energy transfer predicted by Nuckolls (in a gas 
dynamic scheme) of 5% will increase fusion reaction gains 
by threefold since G the fusion reaction gain is given
by 3
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E i n 2
G = (—2)3 <-V (7)

Ebe s

where Eq is the input energy, E^e is the breakeven energy, 
nQ the initial ion density, ng the solid state density. 
This shows that a change in Eq for laser input energy 
increasing in efficiency from 57o to 50% corresponds to 
an equivalent fusion reaction gain G for 1000 times less 
laser energy. As a substitute to the Lawson criteria^, 
Kidder^ arrives at an algebraically identical formula as 
eq. (7). Further corrections to eq. (7 ) are made by
including reheat and bremsstrahlung losses as well as 
fuel depletion. These processes cannot be expressed 
in a simple formulation due to the highly nonlinear 
behaviour of the curves, indicating an ignition process

r
and has been described by P.S. Ray .

_ 1 3II____Results of Interactions at 10 secs.
From the numerous cases calculated, we describe the 

ones where the generation of strong reflection has been 
generated in the early stage. The formation of the 
standing wave pushes the plasma towards the nodes and 
the generated rippling of the density parametrically 
increases the reflection. The case of figure 7 we find 
(E2 + H2)/8tt with one local maximum at the time when" the 
laser pulse reaches its maximum intensity. The maximum 
is not at x = 0 where the initial density maximum is, 
because the absorption and intensity dependence of the 
optical constants modify the laser field. The maximum 
corresponds to an intensity I related to the vacuum 
intensity lvac by I = Ivac/(n) where n represents the



101

refractive index. The swelling of the wave corresponds
to 0 = (i ) = 7. The corresponding plasma velocity at 

n
this same time is seen in figure 8, and the electron 
density in figure 9.

§7t ( E2 ♦ H2) vs DISTANCE

INTENSITY
<< = 10

( E ♦ H

TIME = 2 5 «10 sec. 

TIME = 1-5 -1013sec.

^ DISTANCE 
(»)

Figure 7
Calculations of <£2 + H2)/&t for an initial bi-Rayleigh 
density profile corresponding to eq. (6) with a= 104cm_1

1 3at an intensity of 4 x 1016W/cm2 at the times of 1.5 x 10"
_ 1 3secs and 2.5 x 10 secs.

The velocity profile at t = 0.15 psec is positive 
from x = 35 ym to 50 ym corresponding to an expansion 
(ablation) of this part of the plasma corona as a 
15 ym thick block of plasma with velocities up to 
107cm/sec. The plasma below 35 ym moves as a whole 
block to the interior of the plasma (towards negative x). 
The density at that time, figure 9, shows a similar
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profile to that of the initial bi-Rayleigh profile 

eq. (6), especially the Rayleigh like decay at 40 to 

50 pm. It shows however, that the initial maximum at 

x = 0 has been moved to 3.8 pm due to the internal 

compression of the block moving towards -x, as the 

velocity profile is constant. The generation of an 

instability is seen at t = .45 psec where the(E2+ H2)/8tt 
in figure 7 oscillates, corresponding to a standing 

wave. The size of the maximum also increases at the 

later time. The standing wave causes the velocity 

profile to oscillate in Figure 8.

VELOCITY vs DISTANCE INTENSITY = 4 - IQ16 W/cm2

^ DISTANCE 

(P )
TIME = 2-5 -10 sec.

• Figure 8

Velocity profiles corresponding to the case of figure 7. 

Note the initial block like motion of plasma generated 

by the soliton at 1.5 x 10 secs in figure 7.
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ELECTRON DENSITY vs DISTANCE

4.»10 W/cmINTENSITY

-- TIME =2-5 -10 sec.

Normalised electron density profile at times corresponding 
to the cases of figures 7 and 8.

The density,-figure (9) shows rippling understood 
by the motion of the plasma from figure (8). Note that the 
velocity changes as the gradient of the electromagnetic 
energy density. The maxima of the density ripples . 
correspond to the gradients of negative velocities, 
similarly with the minima of the ripples. Later times 
show a very high relfectivity due to the density increas­
ing above the cut off density, corresponding to a 
macroscopic Brillouin type ^ dynamic instability.

Compared to the cases of figures 7 to 9, the 
situation is quite different if a = 5 x 104cm_1 with a
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VELOCITY vs DISTANCE INTENSITY
50 ■ 10

DISTANCE
(»)

Figure 10
Velocity profiles corresponding to the case of figure 4

8~7t ( E 2 ♦ H 2) vs DISTANCE

5 - 10

DISTANCE
(/i)-20 -10-50 -40 -30

Figure 11
Spatial profiles of(E2 + H2J/87ifor a case with an initial 
bi-Rayleigh profile with a = 5 x 104 cm 1 and maximum

_ i 3laser intensity of 1016 W/cm2 at times of 1.5 x 10 
secs and 4.5 x 10 secs .
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maximum intensity I of 1016 W/cm2 used (Figure 10 and 11). 
It shows that at an early time of.15 psec the laser 
intensity has a maximum near 40ym, with a swelling of 
14, and then drops strongly towards negative x. The 
high value of a generates a density very close to the 
cut off density, and the smaller intensity than the 
former case causes a smaller decrease of the collision 
frequency since the collision frequency has a nonlinear 
dependence on the intensity described in the nonlinear 
optical constants section. At the time of .45 psec the 
swelling of the intensity increases to 120 at x = 30 ym 
allowing the light to penetrate through the whole plasma 
without a standing wave pattern. The plasma (figure 11) 
moves in two blocks from 30 to 50 pm towards positive x 
(ablation) and far less than 30 pm towards negative x 
(compression) . The change of velocity near -35 ym 
corresponds to the minimum in(E2-f H2)/8tt near -35 ym.

Computations at short time steps from .15 psec to 
.45 psec can exist due to the non retardation of potential 
and that the velocity of light is assumed to be infinite. 
The scheme from now on is to increase time steps so as 
to allow realistically several wavelengths of radiation 
to penetrate and interact with the plasma.

**

III____Reflection at cut off density
Standing wave patterns

Connecting an inhomogeneous Rayleigh density 
profile onto a constant density at the critical density, 
upper curve in Figure 12, corresponds to the initial 
density profile in figure 5, equation (4). When the laser
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of the plasma. The formation of a standing wave occurs at the cut off density
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E2 + H2 Normalised
8TT

I = 4 x I016 W/cm2 

o< = I04

T = 1.5 x IO'12sec

Distance (jum)

IGURE 14 Same as figure 12 and 13 with a temperature of
10 3 °K
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light of intensity 1016 W/cm2 penetrates into the 

plasma, it eventually propagates to the electron cut 

off density where the light will experience total 

reflection in figure 12. The interaction of the 

reflected wave at x = 0 and incoming waves causes the 

formation of a standing wave pattern for the collisionless 

plasma. The pattern of total reflection is analagous to

the cases of a collisionless linear density profile
• 8 9described by Airy functions or by numerical evaluation .

The pattern of (B2+H2)/8tt in figure 12, however shows
stronger swelling than that of a linear density profile"*^.

For the case of a more realistic inhomogeneous 

absorbing plasma with the temperature reduced to 1 e V 

we see in figure 13 the electromagnetic energy density 

irradiated by laser light of intensity 1016 W/cm2 also 

at the time of 1.5 psec. The oscillations of this field 

in the plasma corresponds to the cases at times of
— 1 3interaction of 10 secs where the non linear force 

causes rapid oscillations of the plasma velocities with 

a corresponding bunching of plasma density above critical 

which effectively prohibits further penetration of laser 

light. Similarly for figure 14, at a lower temperature 

increasing the amount of absorption of the laser 
light.

The cases of standing wave patterns, similar to 

microwave experiments on plasma'*''*', are not useful for 

transfer of laser light energy. They are taken as test 

cases confirming that the phased inhomogeneous Rayleigh 

profile behaves as a linear density profile confirming the
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generation of a standing wave pattern and the inefficiency 

of transfer of laser light energy into random motion of 

plasma energy.

IV____ Bi-Rayleigh Profile

The use of a Bi-Rayleigh profile for the initial 

profile follows a tutorial example in Hora , now in 

detailed numerical description of the whole dynamics 

of interaction. With the density maximum close to but 

less than the critical density, eq. (6), the profile will 

reduce reflectivity and hence generation of standing wave 

formations. It will exhibit transparency for relatively 

low laser intensities, the opacity dependent on the 

temperature of the plasma. Compared with the single 

phased Rayleigh profile onto a plateau of density at 

critical, eq. (5) one sees that the Bi-Rayleigh profile 

allows the electromagnetic field density to transmit 

across the whole plasma. At the low values of 

a = 3 x 103cm in Figure 15 the electromagnetic field 

transmits sinusoidally which will correspond to bunching 

of density due to the nonlinear forces, once again 

causing density to grow above the critical density.

Figure 15 represents a generation of instability since 

further laser light will be reflected back corresponding 

to a macroscopic Brillouin instability.

Other symmetric density profiles were used. These 

included

Elliptic density where ng = ± n * /l- x27-0052 (8a)

Exponential density where ng = n * e”ax where a is a
cons tant (Bb)
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Witch of Agnesi where n = (n *)3/(x2 + n 2) (8c)e e c e c

The above density profiles with n * slightly less 
than ngc all behaves similar to figure 15, generating 
standing wave type patterns with velocities oscillating 
rapidly, the densities bunching above critical density 
acting as a macroscopic Brillouin instability.

By varying the constant a in eq. (6) the form of the
incident electromagnetic field may be controlled to the 
extent of achieving the desired block like motion, 
which will drive plasma as a thick block into the 
interior of the plasma. As a result of conservation of 
momentum the momentum of the compressed block is matched 
by the momentum of the ablating mass of plasma.

V____Gas Dynamic case
For the pure gas dynamic thermokinetic expansion of

plasma the only force appearing in the equation of motion
of the plasma is the gradient of the pressure, Vp. The
incident laser radiation will be absorbed by collisions

13which will heat the plasma and drive it . For a Bi- 
Rayleigh profile without any interaction with laser 
pulses, the plasma would react as a symmetric diffusion 
of the plasma at low velocities away from the maximum 
of the density profile. In the case of figure 6 the 
plasma would separate through thermal diffusion at 
x = 0. One block of plasma for x > 0 would drift to the 
right in the direction of the gradient of density from 
high to low. The other block for x < 0 will drift to 
the left. Assuming that Te = Ti = T is a constant,
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the gradient of the pressure is equivalent to the gradient 
of the density and the motion of plasma behaves 
accordingly moving from values of high to low densities.

At all intensities of laser light interactions the
gas dynamic forces acts in unison with the nonlinear forces 

14As discussed in Chapter 3, Part III, there exists a thres 
hold intensity at which the nonlinear force dominates the 
gas dynamic force. For Nd glass laser the threshold 
intensity is near 1014W/cm2. However the nonlinear force 
can still exceed the gas dynamic forci^if the temperature 
Te>104eV. Even though there may be fluctuations in 
the electromagnetic energy density with the corresponding 
change of direction of the velocities, the magnitude 
of the nonlinear force may be smaller than the gas 
dynamic force, to the extent that the rippling of 
\E2 4- H2:/8tt will not be evident in the velocities of 
the plasma. Therefore at intensities below threshold, 
gas dynamic interactions dominate allowing further 
transfer of laser light into the plasma without generation 
of macroscopic instabilities.

At later times, intensities much less than threshold 
will experience self focussing effects creating higher 
intensities of laser radiation in the process. The 
intensity of the light increases till it reaches the 
instability threshold generating instabilities. A one 
dimensional plane wave code will not simulate self 
focussing effects, however, the absolute threshold for 
instabilities may be simulated.

The gas dynamic force is seen to dominate the
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nonlinear force in figures 16,17,18. At an intensity 
of 1012 W/cm2, figure 16 displays initially a 
solitary wave followed by the formation of a standing 
wave at later times. The velocities however, do not 
oscillate in figure 17 as discussed earlier. The 
electromagnetic energy density increases in time 
although the maximum value does not increase appreciably. 
Swelling is only 26. The density of the plasma decreases 
monotonically in the negative region of the plasma.
The magnitude of the density gradient is larger than 
the nonlinear forces generated by the rippling of the 
electromagnetic energy density due to the kink at~50 pm. 
Therefore the velocities (figure 17) at early and later 
times remain negative without the oscillations which cause 
bunching of the density profile. The velocities 
increases at the boundaries of the plasma. The blow off 
of plasma to regions of lesser densities as more energy 
is transferred to the plasma is the reason for the 
increase in velocity. The increasing velocities leads 
to a constant decrease of the plasma density due to 
ablation to areas of lower densities in figure 18.
This figure describes the vaporisation scheme ^ as a 
gas dynamic ablation. The laser light at higher inten- 
sities will drive the density near the critical density 
to higher densities. In a purely gas dynamic force 
scheme there is thermokinetic expansion of plasma
driven by collision produced absorption of laser light 13
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Distance (>i m )

FIGURE 16 For an initial bi-Rayleigh density profile with a = 2 x 104 cm* and incident 
fluxes of 1012 W/cm2 and temperatures of 106 °K we observe gas dynamic 
behaviour of the electromagnetic energy density.
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FIGURE 17 The low velocity profiles of the gas dynamic case corresponding
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ne

2 x 10

10 ^ W/cm

.5 x 10

2.5 x 10

___ 3.5 x 10

___ 4.5 xIO

Nb laser

52.5

Distance (jum)

FIGURE 18 The normalised ablating plasma density
corresponding to a thermokinetic expansion 
due to dominating gas dynamic forces observed 
in figures 16 and 17.
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VI____Nonlinear Force - caviton
In a gas dynamic vaporisation scheme including

collisional absorption of laser radiation, one sees
the expansion of plasma as a monotonically decreasing
thermokinetic expansion. The motion of plasma due to
the gradient of the pressure decreases monotonically.
When the nonlinear force is included into the scheme, the
ablating plasma is affected by interacting forces and
does not necessarily ablate monotonically. Similar to

16 17experimental results of Zakharenkov , Luther Davies
18and numerical calculations by Shearer and as discussed

in the nonlinear force chapter, we see in figure 19 that
for an intensity of 1017W/cm2 the density of plasma no
longer blows off regularly. There is a creation of a
caviton, which was first discovered numerically by

18Shearer, Kidder and Zink , and a separate maximum for
the density due directly to the nonlinear force. This
shock like effect near the critical density causes the
plasma to increase above the cut off density prohibiting
further transfer of laser light energy. To a lesser
extent at an intensity of 101 6 W/cm2 there is a smaller
caviton created where the density increases to 2%
above the cut off density also causing total reflectance.

*

At the higher intensity of 1017W/cm2 the size of the 
profile modification occurs earlier than at lesser 
intensities. The immediate consequence of the profile 
modification is that the cut off density causes mirroring 
of any further laser light introducing backscatter of 
laser light. The ablating mass will appear at later
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cx = 3 x I04
Velocity (cm/sec) 10" W/cm

__________10"
T = 1.5 x I0"12 sec 
X = 1.06 jjm

Distance (jjm)

Density

52.5
Distance (pm)

FIGURE 19 Electromagnetic Solitons, with the corresponding

veloritv profile and density cavitons.
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times not dissimilar to the experimental results for 
high Z materials and longer laser pulses.

At an intensity of 1015W/cm2 the density profile 
behaves as in the gas dynamic case and will allow 
further laser light to transmit into the plasma. It 
is only at a later stage of interaction that the 
density of the plasma will form a caviton and a 
corresponding spiked density profile.

All three intensities display initially a solitary 
electromagnetic energy density with similar swelling of 
24. The velocities of plasma ablating increases with 
laser intensities and the compressing block increases in 
velocities with a peak.velocity of 109 cm/sec for an 
intensity of 1017W/cm2.

VII____Drilling Effects
In figure 20a, the initial soliton at a time of 

1.5 psec generates a velocity profile as seen in 
figure 20b. There is little change in the density 
profile at the intensity of 1015W/cm2. The soliton 
increases with time till 2.15 psecs. Due to rapid 
oscillations of the(E2 + H2)/8tt between 30 ym and 50 ym 
the density increases in this case to just below the 
critical density thus allowing laser light to continue 
transmitting into the plasma but at the later stage of 
2.55 psecs the (E2 + H2)/8tt is slightly damped and 
decreases in magnitude. The increase in transparency 
of the plasma is due to the decrease in the density 
near the cut off density. At later times of inter-
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FIGURE

FIGURE

e2+ h2
oc = 2 x I0H 

I = I015 W/cm 

Temp = I06 °H 

X = 1.06 jum

2.55 p sec

----- 2.45 p sec

__2.25p sec

- 2.l5p sec

_2.05 p sec

1.5 p sec

50 Distance(jjm)-10 0

Velocity (cm/sec)

-10 0 DistanceCjjm)

Electromagnetic density and corresponding

velocity profiles exhibiting drilling effects

of section VII.
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actions the forces (both thermal and nonlinear) increase 

the density of the compressed block causing less 

transparency to the electromagnetic wave.

VIII____ Temporal Dependence

By adjusting the value of a in the bi-Rayleigh 

profile case of figure 15 the rippling of electro­

magnetic energy density is suppressed and will form 

as a solitary electromagnetic energy wave which we 

have called a soliton. The importance of the soliton 

lies in the forces, both gas dynamic and nonlinear force, 

acting on the plasma. The predominance of the nonlinear 

force over the gas dynamic forces'^ results in the action 

on the plasma depending on the gradient of the electro­

magnetic energy density and to a lesser extent the 

gas dynamic forces described as the gradient of the 

pressure or at constant temperature, the gradient of 

the density.

At the positions of maxima of the electromagnetic 

energy density the plasma motion reverse. Where the 

gradient of the(E2 + H2)/8tt is negative the plasma 
velocity is negative and vice versa. Due to collisional 

damping at lower temperatures near the critical density 

the electromagnetic energy is collisionally damped 'afe seen 

in figure 21 at a temperature of 2 x 105 °K. The 

higher the temperature of the plasma the lower the 

collision frequency and hence the lower the absorption 

of the plasma. At a temperature of 107 °K the plasma is 

approximately collisionless and the formation of a wave
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vs distance for different temperatures

a ■ 2 x10 
T ■ 1.5 psec 
I * IOl7W/cm

2x10'

2x10

-50 -30 -10 0 10 30 50
Distance (jjm)

FIGURE 21 Dynamically developed electromagnetic energy
density'(E2+H2)/8tt for the initial density 

profile of figure 6 at varying initial temper-4 

atures. For intensities of 101 7 W/cm‘? and times 

of 1.5 psec we see the formation of solitons 

with stronger decrease due to larger collisional 

absorption.
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FIGURE 22 The velocities of plasma for the initial density profiles of
figure 6 for varying initial temperatures at an intensity flux 
of 1017 W/cm2 corresponding to figure 21.
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E + H I = 10" W/cm 
OC = 2 x I04 

T = 1.5 psec 

X = 1.06 pm

Distance "(jjm)10 / |30VlO 0

Velocity (cm/sec)

50 Distance (jjm)

FIGURE 2 3 Electromagnetic energy density (E7+H')/8n
normalised density and corresponding velocities 
for a uniform temperature of 107 °K
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inside the plasma absorbs energy via adiabatic dynamic 
collisionless absorption. Since no energy is 
transferred at 107 °K to the plasma via collisions 
the absorption of the optical energy is due to the 
nonlinear force driving the plasma to velocities up 
to 109 cm/sec in figure 22. The position of the 
maxima of the solitons vary with the temperatures and at 
higher temperatures the position of change of velocities 
approach x = 0 which is the split point of plasma 
velocities for a purely gas dynamical case.

We look more closely at the case of 107 °K in 
figure 23. The electromagnetic energy density generates 
a velocity profile with velocities oscillating in the 
direction of the gradient of(E2 4- H2)/8tt. The velocities 
bunch up the density profile which cause spikes in the 
density to six times the cut off density. It was hoped 
to try to collapse the densities into each other since 
the spikes corresponds to plasma moving in opposite 
directions. Simulation of such a situation would lead 
to high compressions of plasma at both -20 pm + 25 pm.
Due to necessary restrictions for computational stability 
conditions which were not satisfied it was not possible 
to simulate the situation any further.

IX Generation of Instabilities
The initial formation of a soliton at a time of 1.5 

psec is evident in figure 24. corresponding to the 
electromagnetic energy soliton is the well behaved 
ablation and compression of blocks of plasma , the
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E2+ H2 o> = 2 X I04

I = I0'D W/cm^ 

Temp = I06 ° K

T s ____1.5 psec

___  2.5 psec

X = 1.06 jjm / i i\ i
\i l! \!

-10 0 50 Distance (jjm)
FIGURE 24 Electromagnetic energy density(E

Velocity (cm /sec)

-10 0 50 Distance (jjm)

FIGURE 25 The velocity formation of a macroscopic Brilloin
instability at a time of 2.5 psec for the 
corresponding (h 2+H2)/8tt values of figure 24.
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8

1.6

1.4

1.2

a = 2 x 10*

I = I016 W/cm2 

Temp = I06 ° K

T = ___ 1.5 psec

___ 2.5 psec

X = 1.06 jjm

\40

i'i f!
I !!itui|

\j

2.4

Distance (jum)

FIGURE 26 The density formation due to macroscopic
Brillouin instability at a time of 2.5 psec 
corresponding to figures 24 and 25.
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boundary between the two existing at the maximum of the 
soliton at 40 ym, figure 25. The initial bi-Rayleigh 
profile with a = 2 x 104 in figure 25 is perturbed 
slightly at the early stage of interaction. The 
slightly perturbed density profile will allow further 
laser light transfer into the plasma since the density 
does not rise above the critical density. Further 
transfer of laser light energy at an intensity of 
1016W/cm2 produces a macroscopic Brillouin instability

- 1 3similar to the interactions at 10 secs. These 
fluctuations drive the plasma according to the gradient 
of fluctuations of (E2 + H2y87T and one sees the bunching 
of the density profile. The maxima of the (E2 + H2y87T

19corresponds to the minima of the density and vice versa.
The velocities directed towards each other cause the 
density to rise. Velocities directed away from each 
other means a dip in the density profile. The density 
of plasma via this mechanism is increased to 2.4 times 
the critical density at the corona of the plasma at 5 ym 
This is of no benefit to fusion effects requiring that 
high densities be at the center of the plasma or the 
interior rather than the corona which will diffuse
out into the regions of lower densities. Efforts are to

: - **

be made in keeping the coronal densities low and the 
"core" densities high which will allow further transfer 
of energy either thermally or dynamically into the core 
of the plasma. The generation of ..Brillouin type 
instability will drive laser energy back towards its 
source rather than allow transfer of energy into the plasma
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FIGURE 27 Electromagnetic energy density profile at

different times
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FIGURE 28 Velocities corresponding to figure 27.
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X ____Damping of the electromagnetic energy density
The results from figures 24,25,26, showed that the 

density of the plasma is raised much above critical. 
Similarly for a = 6 x 104 cm 1 the density is raised 
much above critical and the behaviour of the laser light 
in the plasma is displayed in'figure 27 with the 
corresponding velocities in figure 28. The electro­
magnetic wave is critically damped at the later stage 
of 4.5 psec which verifies previous discriptions of the 
densities above critical density causing reflection of 
laser light. The decay of laser light is due to 
collisional damping.

XI ___Development of Solitons
The soliton is seen in figure 29 to move inwards 

indicating further ablation of plasma due to the non­
linear force and hence higher compression of velocity of 
plasma towards the interior, together with higher 
velocities. At the later time of 4.5 psec a macroscopic 
Brillouin type instability occurs with the formation of 
standing waves. Further computations show that the 
sizes of solitions are<idirectly proportional to the 
intensity of laser light. At longer wavelengths, the 
shock hammering type effect of longer wavelengths since 
there exists less penetration of laser light causes an 
increase in density above critical with a corresponding 
caviton. The relatively low laser intensities of 
1013W/cm2 causes a nonlinear force compression in 
figure 29 due to the gradient of the electromagnetic 
energy density. The density gradient of the Rayliegh
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the interior of the plasma till a dynamic Brillouin instability
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density. The dynamic Brillouin instability occurring at 4.5 psec causes rapid 
fluctuations in plasma velocities.
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profile allow variation of the force dependent only on the 
plasma frequency for a collisionless plasma^ where the
nonlinear force can be described as

.. 2

nl
E 2 vTFif'

P (9)

This is evident from figure 29 at a time of 1.5 psec 
when the ablating force corresponds to the radiation 
in the initial plasma density. Future development of 
the soliton depends directly on the variation of the 
density and the increase of the temperature in time 
allowing the soliton to increase in size with corres­
ponding increases in the compression velocities. Higher 
temperatures allow fluctuation of the electromagnetic 
energy density. Lower temperatures leads to collisional 
effects causing the damping of the laser light. Either 
way efficiency of transfer of light into the plasma is 
low. This suggests that a stable variation in density 
and a constant rate of temperature allow the soliton to 
increase in size and to progress unhindered into the core 
of the plasma where high compression velocities may 
occur.

XII____Interactions at different intensities
Schematically the sizes of solitons vary directly 

with the intensity of laser light for constant initial 
conditions, figure 31. The higher growth rate at 
higher intensities for development of instabilities by 
both thermal and dynamic processes exhibits further 
evolution of solitons. Due to the action of the non-
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vary directly with the incident intensity of laser light.
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figure 31. Thick blocks of plasma move towards the interior of the 
'plasma due to the nonlinear force generated by the solitons.
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linear force thick blocks of plasma with low entropy-
compressions are generated with the magnitudes of the
ablations and compressions, determined by the maximum
values of the solitons. The swelling of the solitons are
not very high agreeing with the prediction of relatively

21low momentum transfer . The plasma velocities generated 
move in thick blocks and for intensities of 1017 W/cm2 
reach velocities exceeding 2 x 108cm/sec, figure 32.

XIII Energy transfer dependence on intensity
As a consequence of computation of various cases 

of figures 31 and 32, kinetic energy dependence on 
the intensity of laser light was discovered, figure 33. 
Evaluation was made of the amount of kinetic energy 
E^. that had been transferred by the nonlinear force 
which both the gas dynamic expansion and the 
thermokenetic acceleration had neglected. Evaluation 
was made of

x2
*

IJ Xi
(10)

for dependence on the laser intensity, figure 33. The 
result is that the transferred kinetic energy is
increasing nearly quadratically against the neodymium

: - '

glass laser intensity such that

E. a I1'8 (11)
rC

for the range of intensities 5 x 10TS < I < 10 10W/cm2 
which expresses the nonlinear nature of the interaction. 
The energy transfer is a nonlinear, ..macroscopic,
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FIGURE

Kinetic transferred into plasma by 
nonlinear forces vs intensity

a ■ 3000 
T * 10 °K 
Nd glass laser 
LiH target

5 x 102x105x10

Intensity W/cm2
33 Kinetic energy transferred to the plasma

dependent on laser intensity justifying the non­

linear nature of the interaction. Results of 

exponents from eq. (11) varied from 1.6 to 1.9

for different a.
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electrodynamic absorption process.
22Isenor had observed such nonlinear results

23experimentally as far back as 1964. Metz had shown 

a threshold intensity at which results of impulse showed 

that above this threshold the momentum transferred to the 

target rises rapidly with increase in incident light 

energy.

Other experiments found the relationship to have 

an exponential value ranging from .38 to .8. Engelhardt
9 /et al found the exponential to be .38. Gregg and 
25Thomas found the exponent to be .8 for aluminium and

2 6.53 for Lithuim Hydfide, Opower et al found the 

exponent to be .39. These results can be shown to be 

consistent with equation (10).

The acceleration a IE | ^ a P0^

The final maximum velocity vmax is given by acceleration 

multiplied by t ,the pulse duration of the laser

then

that is

Vmax
Emax

E '' max

acceleration x x a P0//^t 

V: a P 0 t 2max

max -n 0 —2— a P (12)

So that all the experiments can be seen to have a 

superlinear relationship when one normalises the result 

i.e. using equation 12 then the exponent of the exper­

imental results lie between 1.6 and 1.9. All these earlier 
experiments need an interpretation by including self­

focussing .
XIV____ Temperature vs. Intensity

2 7There appears in Yamanaka et al a threshold
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Teccp

Laser Intensity (W/cm )

Figure 3 4 Experimental observation of electron

temperature dependence on laser light
27intensity by Yamanaka et al.

7* o< I

I (W/cm )

Figure 35 Results of maximum electron temperatures 

generated by the dynamic nonlinear force 

scheme.
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intensity at which the temperature dependence of electrons 
on laser intensity rises from

T al'6 to T al1‘2 ‘ (13)e a 2 gat above 1013 W/cm2.. See figure 34. Similar to Donaldson
here T al* 66 for I < 1013 W/cm2. e

Similarly using the nonlinear force model, simulations 
were made of shorter pulses of radiation of 1.5 psec and 
a plot was made, figure 35;of the maximum of electron 
temperatures against the intensity and there appears the 
existence of the threshold intensity changing temperature 
gradients at 3 x 1013 W/cm2.

The gradients of the temperatures differ than those 
of Yamanaka et al. but allowing for errors due to calibration 
errors in the laser intensities the simulated curve fits 
into Yamanala'sexperimental results. These results also 
express the nonlinear nature of the interactions. The 
difference can be due to the self-focussing diameter which 
may vary with the power of Yamanaka's case.
XV CO2 Laser Results

Using an initial bi- Rayleigh density profile with a 
cut off density determined by the frequency of the laser 
light, simulations were made of interactions of CO2 laser 
at 1016W/cm2 and Nd glass laser at 1016W/cm2 and 1018W/cm2. 
Figure 36 represents the electromagnetic energy density 
(E2 + H2)/8tt at 1.5 psec, figure 37 are the profiles for 
the corresponding velocities and figure 38 the density 
profiles showing the corresponding minima (cavitons) due 
to the nonlinear force acceleration.

The similarity of results for both wavelengths at 
1016 W/cm2 lies in the maximum values of the electro-
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FIGURE 37 The resulting profiles at times of 1.5 psec for the cases of figure 36
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T = 1.5 psec - - Nd

l iO W/cm

0.08

10 W/cm
-10 0 Distance (jjm)

FIGURE 38 Density profiles of the cases for Nd glass
lasers at 1018 W/cm2 and CC^ laser at 1016 W/cm2 
at 1.5 psec. Both density formations show the 
existence of a caviton occuring in the vicinity 
of a change in the gradient of the electro­
magnetic field soliton.
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magnetic energy density which are nearly equal. Both 
cases show moderate swelling of the intensity above the 
vacuum value. In the CO2 case, a relatively strong 
reflection occurs due to the oscillation of the field 
at the peripheral part of the plasma. The case of 
neodymium glass at 1018 W/cm2 results in a pronounced 
soliton with a swelling of 31.

Looking at the velocity profiles (fig.37) we see 
that in all cases there is a compressing block like 
motion of plasma in the '.direction of the laser beam acting 
as highly efficient compression. However the maximum 
velocities attained between 108 and 109 cm/sec corresponds 
only to the different wavelengths of CO2 and Nd glass 
if the intensities differ by a factor of 102.

This example shows that for different wavelengths 
of laser light with equal intensity, similar electro­
magnetic energy density maxima are observed while block 
like velocities are comparable in magnitude only when 
intensities differ by a factor of 100. This is well 
known from the electron energy due to the quivering 
motion in the laser fields. Similar results are known 
from the high energy ions in the order of Mev produced
from solid targets after relativistic self focussing

29"at the same laser power with different wavelengths 
The important conclusion we arrive at is that equal 
plasma velocities occur due to the nonlinear forces 
if the product

IA2 (14)
are equal. The difference of 102 for I the intensity
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occurs if A is the wavelength of CC^ laser at 10.6
and the wavelength of Nd glass laser is 1.06 pm.
This is precisely the I A2 that was measured with
high accuracy in the range of intensities of 1013

30to 1017 W/cm2 from the Los Alamos Group

pm

W/ cm 2



147

CHAPTER 7 CONCLUSIONS
With the aim of treating larger transfer of laser 

energy into the plasma for improved fusion energy gain, 
the properties of very low reflectivity was discussed on 
the basis of the Rayleigh profile. The exhibitance of 
low relflectivities allows a high percentage transfer of 
laser light into the plasma. The formulation of a 
collisionless dielectrically induced nonlinear force was 
derived to be proportional to the constant a for the 
Rayleigh density profile. By suitable arrangement of the 
Rayleigh profile, the action of the laser in the plasma 
allows for separate blocks of compressed and expanded 
plasmas. The desired effect meant more efficient transfer 
of laser energy as a macroscopic collisionless process.
The problem of "internal reflections" studied by step wise 
approximations was found to be a numerical paradox as the 
high order approximation did not converge to the exact 
value.

Simulations of the laser plasma interactions were made. 
The use of the general gas dynamic scheme included macro­
scopic absorption. The governing equations of motion and 
conservation equations were used including the nonlinear
force and corrections to the optical constants at higher

- • *

intensities. The fully dynamic solutions of the laser 
plasma interactions at times of 0.1 psec verified the 
block like motions of the plasma due to the nonlinear force 
The block motions were due to electromagnetic solitons 
formed by the suppression of reflectivities at the junction 
of the plasma and vacuum by judicious choice of the
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constant a. At the short times of picoseconds, ther- 
malisation does not occur so that the compression of 
plasma is adiabatic and one can assume that the electron 
fluid remains below the Fermi energy level. The special 
part of the code for solving the Maxwellian equations 
neglected retardation of the electromagnetic field. 
Realistically at a time of .1 psec, this assumption is 
questionable as the electromagnetic wave travels approx­
imately 30 ym (approximating vacuum conditions) and inter­
acts only with the corona of the plasma. In the plasma the 
group velocity of laser light is c |n| which is effectively 
less than c. Therefore the very general and complicated 
code had to be extended to times of picoseconds which will 
allow the laser light pulse to interact dynamically with 
the whole plasma. After numerous simulations with initial 
bi-Rayleigh density profiles, special solutions for 
discussions and observations were singled out for physical 
interpretations. We succeeded with this temporal extension 
at least up to such times where the retardation problem 
was overcome and the interaction time was still short 
enough to allow predominance of the nonlinear force 
effects. Cases of reflection at the cut off density
were observed with the formation of standing waves.

: * *

Reflections at the density cut off occurred at temper­
atures corresponding to both collisions and collision 
free plasmas. (Lindl and Kaw). The standing wave 
behaviour generated by interaction of reflected and 
incoming waves for the Rayleigh case corresponds to both 
theoretical and experimental results using a linear density
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profile. The use of bi-Rayleigh profiles with the 
maximum density slightly less than the cut off density 
allowed transmission of the laser light across the whole 
plasma. However standing wave patterns occurred as it 
did with other symmetric type density profiles. Supression 
of the standing wave pattern is observed by varying the 
values of a in the bi-Rayleigh profile, with a subsequent 
formation of a soliton. At short times the soliton does 
not automatically generate a density caviton. At the 
high intensity of 1017 W/cm2 the caviton is observed at 
1.5 psecs as a direct consequence of the action of the 
nonlinear force. At the lower intensity of 1016 W/cm2 
the size of the soliton at 1.5 psec generates a smaller 
caviton. At 1015 W/cm2 the caviton is not evident till 
later times.

The behaviour of the soliton is to increase in
time till a macroscopic instability occurs. The growth
of the soliton occurs as the maximum of the soliton moves
towards the interior of the plasma. Associated with the
increasing maximum of the soliton is the velocities of the
plasma, moving as two separating blocks. The increase in
magnitude of the soliton maximum and the velocities
suggests that there is an increasing efficiency of

: -

transfer of light energy into the plasma until a 
macroscopic instability occurs. An efficient transfer 
of energy is observed and high adiabatic compression 
velocities are experienced. In a spherical case, if 
the growth and lifetime of the soliton can be extended then 
the compression velocities attained drives the plasma to
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high compression densities and at later times when 

electron-ion thermal equilibration occurs together 

with high compression densities then conditions for 

highly efficient fusion gains are satisfied.

It was the basic need for the very general code to 

include the macroscopic absorption in the general form 

of nonlinear response to increasing laser intensity. The 

behaviour of the absorption of laser light is demonstrated. 

The higher the initial temperature of the plasma the 

lower the collision produced absorption of laser light.

This is evident for temperatures of 107 °K where the 

plasma is effectively collisionless and allows the 

laser light to penetrate into the whole plasma. It is 

also observed that the higher the temperature of the 

plasma the larger is the maximum value of the soliton.

This behaviour acting in conjunction with the controlled 

growth of the soliton further enhances the efficiency of 

energy transfer.

The dynamics of the soliton confirms the block like 

motion of plasma at high intensities. This demonstrates 

the high efficiency of transfer of the optical energy 

into compression of plasma. As in the cases of .1 psecs, 

the extended times of psecs confirms that for the short 

interaction times, which effectively negates collisional 

thermalisation, the collapse of the plasma remains 

adiabatic, similar to a Fermi degenerate plasma. The 

nonlinear force scheme makes possible compression by 

non thermal dynamically collisionless absorption of

radiation.
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Despite initially low reflectivities of the selected 
bi-Rayleigh density profiles there is a generation of 
density rippling occurring at later times which is 
described as a macroscopic Brillouin instability.
Depending on the characteristic length L of the plasma

_ 3defined by L. M.Goldman as 3 x 10 cm, the instability 
threshold occurs at 3 x 1014W/cm2. Raman scattering 
threshold is larger by a factor by c/ve where vg is the 
velocity of the electron. Therefore for non relativistic 
intensities we disregard Raman instability as an instability 
mechanism in this model. The onslaught of the instability 
generates rippling of the velocities which causes, even 
at low velocities near the cut off density, increase in 
the plasma density to above the critical density. The 
high reflectivities of the plasma at later times is due to 
that mechanism.

Evaluation of the momentum transfer of laser 
radiation into the plasma was made. The evaluations 
made showed that the momentum transferred was low compared 
to the gas dynamic case, however in agreement with Krokhin, 
this is still of sufficient magnitude for laser fusion.
The energy transfer of radiation into the plasma for 
different intensity expressed a nonlinear relationship 
where the macroscopic dynamical non thermalising nonlinear 
absorption law is

E, . a I1 ’ 8 kin
Confirmation was made of the wavelength intensity 

dependency of laser radiation, where I2A should be a 
constant. The generated electromagnetic densities of
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radiation from CC^ and Nd glass lasers of equal intensities 
were the same in agreement with electric field-intensity 
dependences. Velocities attained from CC^ and Nd glass 
lasers were comparable in magnitude only when intensities 
differ by a factor of 100. The gas dynamical model is 
inadequate to explain the experimentally observed 
phenomena. The inclusion of the nonlinear force does 
explain the phenomena and the result verifies the very 
general property of the developed numerical code.

For further development, we can use the confirmation 
of the nonlinear force compression scheme. Further work 
has to be followed by varying initial and boundary con­
ditions for optimising the condition of collapsing under 
adiabatic conditions. For this work however, the influence 
of reaction reheat has to be known, where work is still 
under discussion.

The Osterberg problem has been digested and the 
issue settled on the basis of a plane wave re-radiation 
condition. This should be developed in the future on the 
basis of analytical predictions as done by Osterberg.
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ADVANCED I l FT M ( I 1AR REACTION FEASIBILITY 
USING LASER COMPRESSION II

R. CASTILLO. II. IIORA. E. L. KANE, V. E LAWRENCE. M B. NICHOLSON-ELORENCE.
M. M.. NOVAK. IV S. RAY. J. R. SUEPANSKI, R 1. SUTHERLAND, A I. TSIVINSKY and 11. A. WARD

Department of Theoretical Physics, University of New South Wales, Kensington. Sydney, Australia

Several problems are considered in order to study the properties of the nonlinear-force compression of plasmas by lasers 
used to reach conditions for advanced clean fuel nuclear reactions as well as to distinguish from gas-dynamic compiession. 
The propagation of light in inhomogeneous media is based on a simpler, computational!) economic programme The 
Goos-Haenchen effect is used for discussions of wave propagation and a laser amplifier without superradiance designed. 
Corrections for jr-re heat arc derived and a very short-range relativistic self-focusing discovered with relatively low thres­
holds. Entropy production and electron-radiation interaction are treated relalivistically.

1. Introduction
Following the preceding article1), there exists the 

possibility of generating clean nuclear energy from 
laser compressed plasmas, if for example the reac­
tion H + llB = 3a is used. One necessary condition 
is the use of the nearly isentropic transfer of the 
laser energy into kinetic energy of plasma2), which 
is of such high efficiency that the advanced clean 
fuel reaction becomes feasible at laser pulse en­
ergies of less than 1 MJ. Compression based on 
the gas-dynamic ablation3) results in efficiencies 
much lower than necessary to get feasible condi­
tions. Though the M1GMA4 * * * * *) project, an alterna­
tive for clean fusion, has reached an advanced le­
vel, there are some reasons still to proceed with 
the nonlinear force compression method for laser 
fusion by clean reactions.

There arc some experimental barriers -against 
gasdynamic compression which have not been in­
cluded in the present extensive numerical simula­
tion for forecasting energy generation ). One of 
these phenomena is the simple rule that the laser 
intensity has to be less than 10iJ YV/cm2 for neo­
dymium glass lasers and 1012 W/cm2 for CO, la­
sers for which, however, symmetric compres­
sion36) and reasonable fusion yields have been est­
ablished. At higher intensities, the phenomenon 
of fast ions has been observed'•*) which can be 
considered as an experimental proof of the action 
of nonlinear forces4) similar to analogous cases 
with microwaves10).

One general theoretical aspect puts a further li­
mitation to the intensity of the laser radiation for 
gas-dynamic ablation. While the main energy of 
the highly sophisticated laser pulse is to be con­

centrated within the last lOOps, its intensity must 
not exceed such values which result in collision 
times longer than the interaction times. These ab­
solute limits restrict the neodymium glass laser in­
tensities to11) less than 10l6w/cm2 also if instabil­
ities generate an anomalous effective collision fre­
quency higher than the nonlinear Coulomb colli­
sion frequencies12). On the other hand, a power 
density of 1014W/cm2 is necessary to compress 
the plasma for nuclear reactions13). One way cut 
may be the gasdynamic compression scheme of 
Afanasyev et al.14) in addition to the compression 
with the nonlinear force scheme1).

This paper discusses a scries of several theoret­
ical results which were performed to test the var­
ious aspects of the gas-dynamic and nonlinear for­
ce compression scheme, where connections with 
the problem of clean reaction of. for example, 
H + "B etc. are included; in addition radiation 
problems are considered which themselves are si­
milar to those related to the laser produced pair- 
production21").

2. Propagation and reflection of \va\ es
- For the action of the nonlinear force for com­
pression it is of importance that the laser radiation
penetrates an inhomogeneous plasma with a min­
imum of reflection. It has been found for the case
of linearly increasing electron densities that the 
generation of reflection is very strong and the re­
sulting standing wave pushes electrons (plasma) 
towards the nodes and causes dynamic absorp­
tion2) instead of thick fast moving blocks of plas­
ma. Though the example (see pp. 64-72 in ref. 2) 
still results in 23 o transfer of laser energy into

I.. ADVANCED MIL ELM ON Eh A SIBIL m STUDIES
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Fig. 1. Reflectivity R of a set of vacuum - Rayleigh plasma 
(z = 104 cm1; a = 1.06 //m) - homogeneous plasma with con­
tinuous refractive index without collisions at various thick­
nesses il of the Rayleigh plasma. Case (a) is the exact solution, 
case (b) is the approximation with 1000 steps of equidistant 
homogeneous plasma and case (c) with 1000 steps.

net kinetic energy of a thick block of plasma, 
further suppression of reflection is necessary.

One example for low reflectivity is the use of a 
density profile which results in an optical refrac­
tive index depending on the depth x

n
1

1 + a.v ’
(a >0), (1)

corresponding to an electron density nc for a col­
lisionless plasma of

”c = "ecD - 1/(1 +2*)2], (2)

where ne, is the critical density (cut-off) at which 
the plasma frequency (op is equal to the optical 
frequency w. The case of eq. (1) has been first dis­
cussed by Rayleigh (Rayleigh profile) and has ele­
mentary solutions of the wave equation of the 
type16)

E,(x) (I + a.\)! exp ± i In(1 + a.v)

Hz(x)
a2 V 

4w2/J

(3)
la

2 w/i0.
(1 + ocx) 1 x

x exp ±i In (I 4- ax)
to2

c2a2
(4)

Reflection occurs at the interface between a Ray­
leigh medium and a homogeneous medium only, 
and not within the Rayleigh medium. The more 
general result of Ostcrberg17) on vanishing “inter­
nal reflection" gave rise to several controversies. 
The solution to the problem can be seen from the 
calculation of a Rayleigh-like plasma of various 
thickness between homogeneous plasma (fig. 1).

he exact solution of the reflectivity agrees in 
magnitude with the approximation of steps of

plasma with constant refractive index if enough 
steps (100 or 1000) are used. What is then called 
“internal reflection" is nothing else than the 
WKB-like increase of the amplitude of the reflect­
ed mode which is singly produced at the interface 
of the Rayleigh-plasma to the homogeneous plas­
ma only18). The simplification of the described 
numerical treatment leads to a more precise solu­
tion of the wave equation in inhomogeneous med­
ia for general computer programmes.

One open question is the result that the dielec­
trically explained spreads of the minima of the 
curves in fig. 1 are different for the exact case 
(curve a) and for the stepwise approximation 
(curves b and c). It has to be noted that cases with 
a small number of steps can differ from the results 
in fig. 1 drastically.

One further question of the propagation of rad­
iation in plasma is the momentum of the photons. 
In agreement with the recoil in inhomogeneous 
surfaces’7-1'’) and with the transport of a wave- 
packet20), the photon momentum is

luo 1 , , c.
p= — (5)

c n

Peierls21) found a similar expression for transpar­
ent solids first, modified, however, such that a 
basic difference exists compared with plasma. The 
basic problem of the Abraham or Minkowski de­
scription has been discussed by Dewar”) and some 
aspects of the problem of the brief arresting of en­
ergy with electrons during its exchange with the 
plasma electrons in connection with the Fizeau ef­
fect have been considered by Shepanski23).

The switching-on and switching-off process of 
the light when penetrating a plasma gives a van­
ishing net transversal motion-'0:4) also under relat­
ivistic conditions in difference to other authors25).

The Goos-1 laenchen effect (side shift of a wave 
at total reflection)-'6) is not only of fundamental in­
terest with respect to the correct use of quantities 
of phase or intensity, but also e.g., for the codes 
in laser produced plasmas. An important applica­
tion is in the penetration of radiation around a 
spherical target within the skin depth, as has been 
pointed out for laser produced plasmas") to ex­
plain some early experiments-'8). The inclusion into 
numerical codes needs a clear analysis of the use 
of phases or intensity, which has been discussed, 
for example, by Renard-'f).

One consequence of these calculations is imme­
diately connected with laser fusion, namely for la-
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Fig. 2. Laser amplifier without superradiance. The laser beam 
is incident at an angle .v on a medium G adjacent to an opt­
ically inverted medium M so that x> (jrc critical angle of to­
tal reflection). The rellectivity is larger than one'4) and has 
specific maxima-13).

ser technology. Lasers always emit superradiation 
in addition to the desired giant pulses. This super­
radiance had to be suppressed by 10 6 of the main 
laser power, before the first convincing fusion 
neutrons were generated with neodymium glass 
lasers30). The same happened with CO, lasers11). 
Only the sufficient suppression of the superradi­
ance led to neutrons. For iodine lasers it is a 
much more difficult problem if large cross sections 
of the beam are used32). One way to reach laser 
amplification without superradiance is described in 
fig. 2.

3. Correction of the a-reheat
In laser compressed nuclear reactions, the heat­

ing of the plasma by the reaction products, pro­
tons or alphas, is of importance and has been used 
in several detailed numerical codes15). One prob-

UJ 2*10 -

PLASMA TEMPERATURE 
kT (electron-Volts)

Fig. 3. Penetration depth K of car-particles from the H11B reac­
tion in plasma of solid state density of HB as function of the 

■'1temperaiure-w).

lent is then, what mean free path or what pene­
tration depth R has to be used lor the nuclei.’ The 
slowing down (equilibration) of fast ions in plasma 
is an old problem in plasma’6) and nuclear’ ) phy­
sics. One application for relativistically fast elec­
trons was made possible by Bagge s modification 
of the Bcthc-Bloch formula of solids for plasma 
and the derivation of measured penetration depth 
of relativistic electrons in plasma38).

The application of the similar methods for 
alphas led to the penetration depth"') in plasma of 
electron density nc and temperature F

2
R = 2In (,/.;>]. K')

k I in.

where the function Ei(.v) is the integral-logarithm. 
As a result, the length R can differ b\ more than 
a factor of ten from the measured lengths for sol­
ids of the same density. Fig. 3 shows the result 
for solid state density of 1113. The general values 
of density are used in the computer codes; further 
theoretical work is undertaken to compare the dif­
fering plasma theories. The correlation with the 
depths in tokamaks, as determined bv DLichs and 
Pfirsch40), is close though different models have 
been used.

For the calculation of the jr-reheat in the codes 
the reaction gain (j is given by:

G df
* K(f)

0
d.vdydr L Ru)]'~ 

A
<ac>. (7)

where £, is the energy released per reaction, //, is 
the ion density. A is 2 or 4 and {cry) is the tem­
perature averaged cross section where the 
adiabatic decrease of the temperature is included. 
We have used the following condition to take into 
account the appropriate adiabatic cooling of the 
plasma and the transfer of the reaction energy into 
kinetic energy of expansion. If is the energy 
generated by nuclear reactions during one time 
step of integration, the temperature is calculated 
by

T 7.+ I .1.7,(£

2 ~

(l<o RY

*
(S)

where Rv are the radii at each time step of num­
erical integration during which an increase of the 
temperature Av i\ by reheat occurs.
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4. Relativistic self-focusing
The self-focusing resulting from relativistic par­

ticle mass and.energy influences becomes import­
ant for pre-focused laser beams of power greater 
than 1010 W 414:). Previous non-temperature de­
pendent calculations given in ref. 41 show the 
self-focusing length as a function of beam inten­
sity for wc///cN0R ratios of 10 \ 10 1, and 10 
where //c is the electron number density and 

is the non-relativistic cut-off density of the 
Nd glass laser ( HP1 cm ’)• The magnitude of /sr is 
inversely proportional to the square root of this ra­
tio for //c//£0R = yV with A;<0.7; furthermore, the 
distributions are roughly symmetric and convex 
downward with minimums near /Kn , a characteris­
tic relativistic intensity (relativistic threshold) of 
value 3.66x 10,x W/cm2 for Nd glass.

Further new calculations for TV values around 
unity and above exhibit extremely small /sl. values, 
as well as limiting minimum intensity levels for 
non-singular /s(. results. Employment of the com­
plex refractive index, the nonlinear Lorentz gas - 
Coulombic expression for the collision frequency, 
and a relation between the local laser beam wave­
length within the plasma to the beam radius41) 
gives
/S7I i /Wii + iiT(/,o)iy
</„ 2 \i»l(/)] — |»(//-)i/
where n is the exact complex refractive index re­
sulting in

l*?(/)i a+'//«,,j!
A-; *

(1 + ///rll)

(10)

with r/0 the beam width between the half-irradi- 
ance maximum points of the radial la-ser intensity 
distribution and v/uj the normalized collision fre­
quency. It is readily seen from eq. (9) that for 
I//(//2)I > I/7(/)| the solution becomes singu­
lar and then imaginary at this “threshold” inten­
sity 7S; this occurence was not found in the cal­
culations of ref. 41 but is crucial in the conditions 
illustrated in tig. 4. In particular, the collision fre­
quency (v) magnitude is of maximum importance 
near this cut-off; temperature, ion charge number, 
and qualitative allowance of field-induced collec­
tive effects on the total energy can all be influen­
tial in this region. Included in fig. 4 are the /s,/r/0 
vs / distributions for 7 -0 eV and Z = 1: yV = 0.1, 
0.9, 1.0, 1.5, and 10.0; for T= 100 cV: TV = 1.0 and 
1.5 with Z= 1,2,5, and 10 as \\ell as a 0.01 en­

ergy multiplying factor for .V = 1.0 and Z - 1; and 
for T— 1000 cV: A’=1.0 and TV = 10.0, both for 
Z=1.0.

TV values > unity produce the cusp-like distribu­
tions with the extremely small minimum seif-fo­
cusing lengths, the minimum allowable intensities 
deeply found in the relativistic regime with AT> 1. 
For /V = 1 the influence of temperature is minimal 
up to 100 eV; however, an increase of plasma 
temperature to 1000 eV yields a two order of 
magnitude decrease in minimum intensity. It is 
seen that for TV values around unity a small 
change in ;V produces a large change in both 
magnitude and shape of the /s, (/) distribution for 
/<7riL; Oic distributions are mutually closer with 
/>/RIL. The influence of temperature, for a fixed 
yV, is negligible for i\5> 1.

It is of interest to qualitatively estimate the in­
fluence of non-collisional electromagnetic field in­
duced charged particle collective motions by intro­
ducing a multiplying factor F (F < 1.0) times 
(A.7'-t-£K1N) terms in the collision frequency expres­
sion. This factor describes eventually occurring 
instabilities by an “effective absorption” given by

-----------  ~ z = 1. T= OeV, f = i o
--------- -V Z = 1.2.5.10 . T = 100eV.

F= 1 0
---------- -V Z = 1 . T = lOOeV, F = 0 01
-*—«— -v Z = 1 . T = 1000eV. FO 0

N= 0 9

1z--y .10)
N=1 5

N - 10 0

ls Intensity threshold for 
each condition

Pig. 4 Relativistic self-focusing length as a function of Nd 
glass laser intensity. Unlabcled curves are for .V - l
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an “effective collision frequency” vclf = v/P/2. 
The results for A7 = TO, T— 100 eV, and — 0.01 
arc shown in fig. 4. The minimum allowable in­
tensity is increased by about an order of magni­
tude but the curve does merge with the other 
/V- 1.0 distributions.

1 Finally, for A7- 10 and 1.5, and r^lOOeV, 
fig 4 shows the dependence on ion charge num­
ber for Z = 1,2,5, and 10. The /-influence does

i not seem to be as great as for temperature; differ­
ences are negligible in the N— 1.5 situation. For 
the most part, the minimum value of /SF/c/0 for a 
particular N is adequately determined in a 
T^lOeV, Z = 1 calculation; the threshold inten­
sity /s for a physically correct relativistic self-focus­
ing solution is nevertheless strongly dependent on 
T and Z.

Physically, the above results indicate the rela­
tivistic self-focusing is suddenly initiated as /s is 
achieved, perhaps explaining the fast ion produc­
tion78) resulting from self-focusing induced elec­
tron oscillation energies £osc of a few 105eV. This 
leads to a nonlinear force expansion'7) with trans­
lational ion energies given by exact integration") 
of
et = Zeosc, (II)

with Z the ionic charge. The observed ion energies 
for Allu of 2 MeV 7), or for W20^ of 2 McV «) are 
then of the right order of magnitude. The energy 
deposited by the laser into the volume of the self- 
focused light cone corresponds reasonably well to 
the total energy of the accelerated plasma with 
MeV ions.

5. Entropy generation and radiation problems
For the calculations of the entropy generation in 

the numerical codes, the basic derivation of the 
equation of motion, of energy conservation and 
entropy generation has been studied. It was shown 
that a term proportional to the acceleration of 
plasma in the generalized thermodynamical force 
found in the relativistic theory43), can be obtained 
for a stationary system using the hypothesis of 
cellular equilibrium and introducing “constant 
conditions”, in the energy current.

We can then write in general, the relation

f = grad T + A dv/d/, (12)
for the thermodynamical force xq causing the heat 
current, where 7\is the temperature, u is the bary- 
centric velocity, and A is a constant depending 
on the density, and the following relation for the

thermodynamical force of diffusion
Xd = grad//+ B du/d/. ' (13)

where // is the chemical potential and B is propor­
tional to the density.

On the other hand considering the particular 
case of a set of particles, confined in a box, it was 
shown that it is possible to get the conservation 
laws for the number of particles and for the en­
tropy from the conservation of the ener­
gy-momentum tensor. These expressions are simi­
lar to the formulae given by Landau and Lif- 
shitz44) for the case of a fluid. They also agree wdth 
remarks by Tolman43) about the role of the mass 
and energy, in a relativistic theory.

These two results were obtained in connection 
with the formulation.of thermodynamics of mov­
ing systems. The case of a body in motion in pres­
ence of an external field dependent on time still 
remains to be studied.

The case of a stationary field has been already 
solved for dielectrics, and also for a conductor us­
ing the Onsager theory46). Schmutzer gave a solu­
tion using the Onsager theory and taking into ac­
count the gravitational field47).

The way in which the conditions of thermody­
namical equilibrium are changed by the presence 
of a variable field must be studied more closely. 
This is of particular importance since these condi­
tions are basic to the application of the hypothesis 
of cellular equilibrium, the concept underlying the 
whole Onsager theory. For one special case, the 
problem of variable fields has been solved, namely 
for the generation of mechanical forces in the me­
dium. The generated recoil due to the variation of 
the intensity of radiation in a homogeneous plas­
ma20) is the same as the recoil of a constant ra­
diation to an inhomogeneous plasma4- ,Q).

Further problems of electrons in high intensity 
laser radiation w'ere studied with respect to radia­
tion losses in pair-production, the energy ex­
change, showing a defect compared to the case of 
Einstein48) for nonrelativistically moving mole­
cules. Novak has used for these calculations the 
anharmonicity of the oscillators in the black-body 
radiation. 1 - -

6. Conclusions
For the propagation of laser radiation in 

inhomogeneous plasmas, a more computationally 
economic code has been developed for exact solu­
tions of the-wave equation. The Osterberg prob­
lem of vanishing generation of local reflection has

I. ADVANCED LULL I US I ON llASIIilUM studies
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been explained by the WKB-like change of the 
wave amplitudes. The phase or intensity descrip­
tion of waves was studied within the problem of 
the Goos-Hucnchen effect for application to the 
propagation of radiation in the surface of laser ir­
radiated pellets. One consequence of the 
Goos-Haenchen application is the design of a laser 
amplifier with complete suppression of superradi­
ance, which is highly necessary for laser compres­
sion of plasmas.

The corrections due to alpha penetration in high 
density plasmas has been calculated on the basis 
of the Bethe-Bloch formula. The generation of a- 
reheat was included into the codes for the calcu­
lation of gains by using a formula exactly covering 
the adiabatic cooling during expansion.

The relativistic self-focusing has been extended 
to critical densities and shows an unexpected re­
sult of short focusing lengths within the nonrelat- 
ivistic region with a remarkable threshold at rela­
tively low intensities. The thresholds correspond 
to the thresholds measurement of fast ions which 
destroy the ideal gasdynamic condition. The gen­
eration of oscillation energies of 100 kcV and more 
for electrons is reproduced quantitatively as well 
as muIti-MeV ion kinetic energies and their linear 
Z-dependence as exact solution of the nonlinear- 
force equation.

For the entropy generation a relativistic deriva­
tion is used including diffusion(chemical poten­
tials) and the radiation interaction of electrons at 
very high intensities has been studied.
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Abstract

In order to study the action of the nonlinear force 
of electrodynamic laser-plasma interaction without 
t hernial i sat i on , numerical calculations vith a very 
general two-fluid numerical code were performed 
including nonlinear variation of the optical constants 
(dependence of the collision frequency on the laser 
intensity) and detailed description of the reflection of 
laser radiation based on Maxwell's equations. For laser 
pulses of less than 1 psec , the dynamics are 
characterized by the nonlinear force mainly. Using 
Rayleigh-like density profiles, the generation of 
instabilities as well as their suppression has been 
demonstrated. The energy transferred to two thick 
blocks of plasma (one moving against the laser light, 
the other with it under compensation of momentum) 
increases nearly quadratically on the laser intensity.

Presented at the Fourth International Workshop 
Conference on "Laser Interaction and Related Plasma 
•hcnomena" at Rensselaer Polytechnic Institute, Troy, 
New York, 8-12 November, 1976.
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I. INTRODUCTION

Plasma dynamics for the interaction of high 
intensity laser radiation with solid targets and the 
instantaneously generated plasma, can be determined by 
the nonlinear force which is the immediate electro­
dynamic interaction, and by the gasdynamic pressure 
occuring after thermalization of the radiation and 
heating of the ions. The basic properties of these 
nonlinear forces have been developed over the last ten 
years1""7 and the expansion of plasma and the subsequent 
compression has been demonstrated numerically7-9 and 
experimentally10*11, as well as indirectly by self 
focussing and generation of fast ions or fast plasma 
groups and ion separation by the charge number Z.7

The importance of the action of the nonlinear force, 
especially for short laser pulses (for neodymium glass 
lasers around 1 to 10 psec and for CO2 lasers around 
.1 to 1 nsec) consists of the possibility of a non 
thermalizing transfer of optical energy into kinetic 
energy of plasma for compression, which has a minimum 
of entropy production and is therefore highly efficient. 
Followed by an isentropic compression, the same fusion 
reaction yields can be reached with about 1000 times 
less laser energy12 than in the case of the gasdynamic 
laser compression scheme of Nucholls1 J. As the laser 
pulses have to be about 20 times less than in the 
Nucholls case the total advantage is that the required 
laser system could be smaller by a factor of 50, when 
using non linear force compression, based on a rough 
calculation. The advantage of less complications 
(instabilities) at short interaction times and the use 
of, experimentally verified'4, fast blocks of ions 
(fast ions7) as well as avoidance of the necessary 
delay due to thermalization14 (all disadvantages in the 
Nucholls scheme) may be reasons enough to orient efforts 
towards the nonlinear force compressions. The use of 
high intensity CO2 lasers15 will necessarily require 
such a scheme, as the thermalization delay has been 
neglected unawares in numerical calculation of 
gasdynamic compression models, otherwise it would 
require14 laser pulses of 10 nsecs or more.

The non linear force compression has not been 
studied numerically to the same extent as the 
gasdynamic compression. As the necessary laser 
intensities have only become available over the last 
two years a very intensive study is necessary now. This
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paper presents results of a very general one-dimensional 
code, where we used initial electron densities n (x) of 
the Rayleigh type

ne(x) = nec(l - (1+^x)2-) (1)

where x>0 and a is a constant. Equation (1) corresponds 
to a refractive index n of

1 + ax ,(2>

for which the laser penetrates with a minimum of 
reflectivity16.

II. THE ONE-DIMENSIONAL CODE

The calculations were based on a modified numerical
code of which the very general gasdynamic part had been
developed by E. Goldman17 and the nonlinear forces
have been included in the following way. All quantities
depend on the one spatial coordinate a only and laser
light is incident from +x. Electrons and ions are
separately treated (index i and e) where fully ionised
preferably DT-plasma or LiD plasma is presumed. The
equations of continuity for the densities n ^ or
velocity v . is *e , i

8 n e ,i
3t V. (n . “ e ,x v—e (3)

and the equation of motion (force density) contains 
the temperatures Te p (k^Bolt smann constant) and the 
electric and magnetic, field strengths E and H for 
linearly polarized laser radiation describing the terms 
of the nonlinear force

/ ci , a \m. (— v ■ +v. -— v.) i dt i l dx l = --— n.kT. dx i l (U)

m {f- v e dt e
+ v —i- v ) 

e dt e ' = -f n kT +-~-(E2+H2 ) (8tt ) (5)dx e e dx

The equation of energy conservation
a— n . m .v o e , i e , i e , i -kT . •— n . -n . k—-T . +W . (6 )e, i dt e,i e , i dt e , l e , i
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Te>i contains the change of the temperature "both by the 
gasdynamic (adiabatic) motion as veil as by thermal 
conductivity, using the collision frequency

CO ~ TTP 2-5/2m >Ae2lnA
8 TT ( 2kT ) 5,2

with the plasma frequency u) , coulomb logarithm

(T)

InA mass m and charge of electron The power
density of thermal energy input from the laser field at 
each x is given by Wp , where the exact nonlinear optical 
constant was used

n2 1 -
w2+v2 (1 ♦ )to (8)

where VX was identical with V of Eq. (j), however 
including the energy eQsc °f electrons from the
quivering oscillation in the laser field7 by 
substituting Te by T = Te + eosc/ks Wp is determined 
by the heating of the ions by the difference Te-Ti 
including the delay given by the collision frequency 
V. The coupling of the equations of the ions and 
electrons is due to Poisson's equation. The six 
equations (3)to (6) determine the six variables ne,
np , Ve , Vp, Te, Tp in dependence on x and the time t. 
Further, initial condition (variables at t = 0) and 
boundary conditions (time dependent indent laser field) 
have to be chosen. The laser field is being calculated 
for each time step numerically as a solution of the 
Maxwellian equations.

III. INITIAL AND BOUNDARY CONDITION

In the following calculation, laser' pulses were 
chosen with a sin20t amplitude such that after realis-

NUMERiCAl C

glass la:

n {x ) - 0

to avoid 
following

: or r.eoa; 
note d ‘ t 
a r e r e m a r
(vx = 0 ) 
r e s u 11 .• 
t r ogr am:

i7 . GEN:

F r o: 
the o nc v 
h a 3 b e e n 
wave pus 
generate 
i r. ; r e a 3 1 
find (F.:

ing the first maximum the laser intensity
3 was chosen to reach this level at a time 
The initial conditions were chosen as

is constant. 
t=0.15psec.

v i *, h 0 r 0
r e a 0 h c r
t h i s r. a x

T. (x ; t = 0) = 100" eV1 , e (9)
d c r. s : t y
d ■? p e i e r. 
<• 1 ' ■;

v . (x;t = 0) = 0G j 1 (10) "* s* - v a 0
sveil:r g

and n~ p(x;t = 0) = nn(x) has been selected from the 
experience of the Rayleigh case * 5 for neodymium

* 1 n £ r. a. v 
t r. i t h e
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glass laser radiation vith [ n.q ] = cm"*3

n (x) o

A!XO 50y

102 1 {1 - (1-u[x-50u])2}; °-xi50y
(11)

1021 {1 - (l+a[x+50y ] )2} * “5uyixiu

1018; x < -50y

to avoid total reflection16, a has to fulfil the 
following restriction

x < a = — = 1.7 x io5 cm-1 (12)o c
for neodymium glass laser radiation. It has to he 
noted16 that the reflections at x = ±50y and x = 0 
are remarkably small in the collisionless case 
(vx = 0) if a < 0.5a . The case of collisions
results in modifications which will be reproduced by the 
programme automatically.

IV. GENERATION OF INSTABILITIES
From the numerous cases calculated, we describe 

the one where the generation of strong reflection 
has been generated in an early stage. The standing 
wave pushes the plasma towards the modes and the 
generated rippling of the density is parametrically 
increasing the reflection. The case of Fig. 1 we 
find (E2+H2)/8tt (corresponding fairly to the intensity) 
vith one local maximum at the time where the laser 
reaches the maximum intensity. It is remarkable that 
this maximum is not at x = 0, where the initial 
density maximum is, as the absorption and the intensity 
dependence of the optical constants modify the laser 
field. The maximum corresponds to an intensity 
* = IVac/|^l related to its vacuum value Ivac by a 
swelling factor 0 = l/|n| ~ 7 only the reached
plasma velocity up to this time is shown in Fig. 2.
Rnd the electron density in Fig. 3. The velocity
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INTENSITY

( E ♦ H )

2 5 ■ 10 sec
1 5 * 10 sec

DISTANCE
(H)

Fig. 1: Calculation of (E2+H2)/8tt
for a=104 at an intensity 
Uxio16W/cm2 at the times 
1.5X10-13 sec and 2.5X10”13 sec.

profile at t = 0.15 psec is positive from x = 50y down 
to 35 y which corresponds to an expansion (ablation) of 
this part of the plasma corona as a thick block with 
velocities up to 107 cm/sec, while the plasma below 
35b is moved as a whole block to the interior of the 
plasma (towards negative'x). The density at that time 
(Fig. 3) shows very well a similar profile as the 
initial one, Eq. (ll), especially the Rayleigh-like 
decay at ^0 to 50y. But it is remarkable, that the 
initial maximum at x = 0 has been moved to a value of 
3.8y which is due to some internal compression of the 
block moving towards -x, as the velocity profile is 
not constant. The generation of an instability can 
be seen at the time t = 0.U5 psec, where the (E2+H* )/3 
(Fig. l) is oscillating, corresponding to a standing 
wave. The velocity has then changed drastically into 
the oscillating profile of Fig. 2. The maxima and
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INTENSITY = 4 ■ lo’6 W/cm2
oL = 10*

DISTANCE 
(P )

TIME = 2 5 ■ 10 sec

------ TIME 1-5 • 10 sec.

Fig. 2: Velocity profiles corresponding
to the case of Fig. 1

INTENSITY = 4.- 10

TIME =25* 10 sec

Fig. 3: Electron density (related to the
cut off density) corresponding to 
the cases of Fig. 2.
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minima correspond very close to the vacuum wave length 
A=Avac at x = 50u, while a swelling X=0Xvac of 0=9 
around x==0 can be seen. The density (Fig. 3) shows a 
ripple, easily understood by the motion 
due to Fig. 2. The following time steps show a very 
high reflectivity because of this Brillouin type 
dynamic instability18.

V. ACCELERATION OF BLOCKS

i

V F L 0 ct
TV

:m/.

Compared to the cases of Fig. 1 to 3, the situation 
is quite different, if an a=5xl04 cm”1 and a maximum 
intensity of 1016W/cm2 is used (Fig. 4 and 5). It is

15-10 sec

-50 -40 -20 -10

Fig. U: Spatial profiles of (E2+H2)/8tt
for a case with initia‘1 electron 
densities of Eq. (ll) using 
ot=5 X104 cm” 1 , maximum laser 
intensity of 101GW/cm2 at the 
times 0.15 psec and O.U5 psec.

r v r. n r > r. \

r. r\
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INTENSITY

X___ distance
( p )

-to4 y /

Fig. 5: Velocity profiles of the case
of Fig. k.

remarkable that at the early time 0.15 psec , the laser 
intensity has a maximum near tOy (swelling lh) and then 
drops strongly towards x = 0. This is due to the fact 
that' an a=5x104 cm-1 causes a density very close to the 
cut-off density, and the less intensity than the former 
case causes a less decrease of the collision frequency 
by the intensity dependent nonlinearity of vx in Eq.(8). 
Nevertheless, at t = 0.^5 psec, the swelling of the 
intensity (0=120) at x = 30y lets the light penetrate 
through the whole plasma without standing wave pattern 
(these did not appear even at later times) where the 
plasma was then (Fig. 5) moving in two blocks, from 
30 to 50y towards + x (ablation) and far less than 30y 
towards -x (compression). The modification near -35y 
is understandable from the minimum of (E2+H2)/8tt 
near x = -35 y •

By a systematic search it was possible to find a 
series of cases where only a two block motion appeared 
for varying intensities and constant a with a 
separation of the blocks around the same depths x(t3y).
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Evaluation vas made of the amount of kinetic energy 
thathad been transferred by the nonlinear force vhich 
both the gasdynamic expansion and the therrookinetic 
acceleration had neglected. We have evaluated

Ek(D X2-X l

m . n . v . 111

x i
(13)

for dependence on the laser intensity (Fig. 6). The

a • 5000
T * O* *K 
N<5 gloti k)t«r 
LiH forQtf

' INTENSITY W/tm*

Fig. 6: Kinetic energy transferred to
the plasma Ek(l), Eq. (13) for 
cx = 3x10 3cm“1 up to a constant 
time t = 0.1 psec for 
independent temporal laser 
profiles.
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result is that the transferred kinetic energy is 
increasing nearly quadratically against the neodymium 
glass laser intensity,



178

NUMERICAL CALCULATIONS OF LASER INTERACTION WITH PLASMAS 887

E = const x I 1 * 8 km

( 5X10 1 5 < I < 1018 W/cm2 ) (lli)

expressing the nonlinear nature of the interaction. 
The energy transfer is a nonlinear, macroscopic, 
electrodynamic absorption process.

VI. CONCLUSION

The nonlinear force of laser plasma interaction 
shoved various properties from numerical calculations 
for neodymium glass laser radiation of more than 
1015 W/cm2 intensity. The generation of strong 
reflection and that a standing wave could be generated 
from an initial Rayleigh density profile where nearly 
no reflection is expected for collisionless plasmas is 
unexpected. The reason for this behaviour is 
understandable from the intensity dependent thermal 
absorption process. Other cases shov a nearly ideal 
transfer of the laser radiation into a block moving 
against the laser radiation and another in the same 
direction. The transferred energy was quadratically 
increasing against the laser light intensity. The 
momentum of each block vas just compensating the 
momentum of the corresponding block moving in the 
opposite direction. Preliminary results for times of 
5 psec were similar which confirms that the neglect 
of the retardation of the laser field in the numerical 
code is not important for the kinetic processes 
discussed here.
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