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Abstract

This thesis explores the transfer of lasef light
radiation into inhomogeneous dielectrics. We assume
that the dielectric interacts initially with a laser
prepulse to form a specified initial plasma densitY-f
profile. The main pulse of laser radiation will theﬁ
impinge on the plasma. The motivation of this thesis
is to study, explore and understand the development of
the laser light radiation into the plasma especially at
times shorter than the electron ion thermal equilibration
time when the transfer of energy is due to .the nonlinear

force which is the immediate electrodynamic interaction.

The mechanics of the plasma are governed by
conservation laws of continuity, momentum and enefgy.
The state of the plasma may be described as a two
temperature, one fluid model where electron-ion ther-
malisation and implicit temperature solutions of the
energy equations are taken into .account. A one |
dimensional finite differencing scheme is employed to
simulate the velocities, densities, ion and electron
temperatures of the plasma and the electromagnetic energy
density of the laser pulse in the plasma. |

To transfer 1arge'amounts of laser energy into the
plasma, low reflectivity of the plasma is required. The
inhomogeneous Rayleigh profile satisfies this requirement
The reason for work done with the Rayleigh profile was
twofold. The low reflectivity of that profile and the

available exact solutions for the electromagnetic fields.



It was hoped to use the Rayleigh profiles with exact
solutions for approximations of the density prbfile instead
of linear step approximations. In the course of work it
was discovered that discrepancies occurred between the
exact and high order approximations of reflections, a
paradox which is seen as similar to Osterberg's genefation
of local reflectivity and a radiation law for plane waves
was suggested. /

Thé approximation of plasma density by the Rayleigh
profiles together with the exact éolutions add further
problems to the complex simulation of laser plasma inter-
actions and as the plasma densities vary with time, small
step linear approximations though not exact were adequate
to describe the interactions.

The finite difference scheme solves the consérvation
equations including the effects of the nonlinear force and
the nonlinear change of the optical constants depending on
intensity. The fully dynamical nonlinear scheme at times
shorter than the electron ion thermalisation time displayed
the following.

The generation of instabilities as well as the
supression of instabilities by varying the initial density
profile. The formation of standing waves at the cut off
density was observed. By varying the value of o the
existence of block like motion of plasma was verified due
to the nonlinear force from a solitary electromagnetic
energy wave called a soliton.

The ablating plasma generated by the soliton showed

the existence of a density minimum called a caviton



occurring at times of picoseconds corresponding to
experimental evidence observing cavitons ablating'at
times of nanoseconds.

The behaviour of the absorption of laser light at
different temperatures due to collisional effects was
demonstrated. ‘

Efficient nonthermalised transfer of energy was
seen by the development of the soliton into the plasma,
so that the nonlinear force scheme makes possible compress-
ion of plasma by nonthermal dynamically collisionless ,
absorption of radiation. Intensity thresholds at 16§:16"W/cm
for Nd glass lasers appeared for both cﬁanges in gradients of
the electron temperatures and the nonlinear transfer of
energy, corresponding to the predominance of the nonlinear
force over thermokinetic force. Evaluation was méde of
the transfer of enexgy E, into the plasma for different‘
intensities I expressing a nonlinear relationship for the

range of intensities from 5 x 10!'° W/cm®? to 10'® W/cm?

resulting in E, o It-®

Confirmation was made of recently observed experi-
ments satisfying the relationship I?) where X is the
wave length of laser light radiation. The gas dynamic
modél is inadequate to explain the experimentally
observed phenomena. The inclusion of the nonlinear force

verifies the wave length intensity dependence.
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Chapter 1 Introduction

The increasing energy requirements &f the world and
the diminishing supply of petroleum means thatzthere mus t
be an alternative for the supply of the world's energy
needs. One of these alternatives is the compression of
plasmas by lasers, relegsing energy by thermonuélearj
reactions such as

H+ !'B— 3 “He + 8.9 Mev 1

D+D — %He +n + 3.27 Mev 2

™~ T+ p+ 4.03 Mev
D+ T — “He + n + 17.8 Mev

3 were the first to publish a paper

Basov and Krokhin
on the production of a high density, high temperature
plasma by the iﬁteraction of laser radiation with a pellet
of éolid Hydrogen, predicting thermonuclear reactions.
Further calculations appeared by Dawson4 and the first
optimized reaction yields were due to Hora4. Afanasyev
and Krokhin5 analysed laser plasma interactions based on
gas dynamic equations. Incident laser intensity flux
densities in the range of 10°® W/cm? to 10° W/cmz'predicted
two separate mechanisms. At the low range of flux densit-
ies, the material vaporised by the laser beam expands as
a centred rarefacfion wave, corresponding to an isentropic
expansion of gas in a vacuum. At the high range of flui
densities the thermal pressure causes the material to
expand and becomes transparent to incident radiation.
Subsequent research on laser plasma interactions were

described by such a gas dynamic scheme where the plasma

interacting with laser radiation behaved as vaporised
6

matter. Nuckolls  numerically simulated spherical



implosions of plasma by laser pulses shaped in :time and
obtained very high compressions of plasma. Thé generated
compression of plasma by thermal pressure is due to a
collision produced absorption of laser light. The comp-
ression of plasma is compensated by a density decreasing
monotonically as a thermokinetic expansion of plasma: The
energy dissipated by the scheme due to ablation of plasma,
thermalisation and reflection of neodymium laser light
transfers 5% of the incident laser energy into the plasma.
At low levels of laser intensities, less than 10!°W/cm?2
for Nd glass lasers inverse bremsstrahlung was thé basic
mechaniém of absorption of laser light. Experimental

/ of laser light at higher flux

measurements of absorption
densities showed that this mechanism fails to predict
absorption levels at the higher intensities. The:optical
constants are affected by nonlinear effects at the higher
laser intensities, proportional to the inverse of the
intensity to the power of three halves as derived by Rand8

and Hora9

from different considerations. Nonlinear_éffects
together with the change of the optical constant partially
solves the observed dilemma. ‘

It has long been known that the decay of photons into
a homogeneous plasma can form plasma waves (plasmohs.or
Langmuir waves). or‘ion waves. Scattering of these waves
may lead to Raman or Brillouin scattering instabilities.
Each specific instability occurring at their individual
characteristic intensity threshold can be described as

occurring due to the nonlinear force of a purely electro-

dynamic interaction between the laser field and the plasma.



F.F. Chen10

derived the parametric instabilities on the
basis of the nonlinear force only and accounts:for in-
duced anomalous high frequency resistivity.

Other nonlinear processes are exhibited in other

ways, namely

. the nonlinear change of the collision frequency11

. relativistic correction to the plasma frequency12

. coupling of transverse mode waves with longitudinal
waves13

. self focussing at low power thresholdl®

. self focussing at high relativistic intensity15

. two stream instabilities16

. anomalous absorption at the cut off density17

. high energy x radiation and directly back scattered

radiation18

Each of the above anomalies occurs at its specific powef
threshold or at high incident flux densities from 10'3to
10'°*W/cm® for Nd glass lasers. Some processes can occur
within a time of picoseconds as the generation of fast
plasmas with ion energies of the ordér of Mevlg.

The inclusion of the nonlinear force into the gas
dynamic scheme, results in the generation of self steep-
ening of the density profile and generation of denSity
minima in the ablating plasma discovered first numerically
by Shearer, Kidder and Zinkzo. This corresponded to
observations made by microwave experiments by Wong and
Stenze121. Further laser plasma experimental observations

of density minima by Zakharenkovzz, AzechiZB, FedosejestA,

described the mechanism as due to the nonlinear force.



Acting at times shorter than the electron;ion
thermal equilibration time, by suitable choice of an
initial density profile reducing reflectivity, the non-
linear force scheme can transfer a large percentage of
the laser energy into the plasma. The inhomogeneous.
Rayleigh plasma exhibits low.reflectance of laser radiation
and by suitable arrangement of the density profile fifty‘
percent of the laser energy may be transferred to the
compressed block of plasma. By conservation of momentum
fifty percent of the energy is lost through the ablating
block of plasma. The dynamic description and simulation
of the plasma in this thesis including the equations
governing the gas dynamic scheme together with the non-
linear force and the nonlinear corrections to the bptical
constants verifies that fifty percent of the laser energ&
can be transferred to the plasma at times less than the
electron ion thermal equilibration time.

The fusioni reaction gain G based on numerically
optimised calculations at optimum temperatures using
empirical data on nuclear reaction cross sections and
simplified assumptions without secondary processes such:

as reheat is given by25

Eo 1/3 ng %/3

)
Epe ) ( Ng -

where Eo is the input energy, Ebe the breakeven:eﬁergy
ng is the initial ion density and ng the solid state
density. A change in EO for the input laser energy
increasing in efficiency of transfer from 5 to 50%

due to the different schemes corresponds to an



equivalent fusion gain of 1000 times less lase; energy.

In this thesis we explore the transfer ofimomentum
into the plasma from a laser pulse of varying intensities
by a one dimensional plane wave code allowing for electron
and ion thermal equilibration. This is necessary
especially at short times when the two temperatureé of the
ions and electrons are different, justifying the use of a
two temperature model. We assume a one fluid model
where Debye shielding effects guarantee quasineutrality
of the plasma. The usual gas dynamic scheme and the
hydrodynamic equations include the nonlinear forcé and
the corrections to the optical constants by the nonlinear
force. |

The importance of the action of the nonlinear force,
especially for short laser pulses consists of the -
possibility of a non thermalising transfer of optical
énergy into kinetic energy of plasma for compression,
which has a minimum of entropy production and is
therefore highly efficient.

In chapter 2 investigations are made of the
occurrence of low reflectivities of inhomogeneous plasma
especially for Rayleigh like density profiles by‘
analytical and approximate methods. The resulting
inaccuracy of the step approximation compared with that
of using the Rayleigh profile for the exact analytical
results was seen to be futile for the approximation
of absorption.in laser plasma simulation. Nevertheless
it was shown that discrepancies between exact results

and step wise approximations exists. This approximation



method allows estimation of local generation of
reflectivities.

The discussion of the nonlinear force follows in
chapter 3. The derivation of the nonlinear force and
the formetion of solitons and cavitons due to the
nonlinear force by theoreticelicalculations and ex-
perimental observations - - are discussed. The character-
istics of those observations are reproduced by the code
in the results section. In chapter 4 we analyse the
theory of the optical constants b& various methods and
note that the collision frequency and hence the
absorption coefficient of a plasma are nearly equivalent
whether we use a classical or quantum mechanical approach.
The optical constants are replaeed to include nonlinear
effects due to intense laser radiation. In chapter 5
we discuss the assumptions of the model and describe the
equations governing the ehange of velocities, densities,
electron and ion temperatures, derived from conservation
laws. The nonlinear optical constants and nonlinear
force terms are included in the one dimensional plane
wave gas dynamic code as described.

By the use of a Rayleigh density profile with the
property of having low reflectivities near the cut off
density, will suppress standing wave patterns. The
soliton so formed will force block like motion of plasma,
as suggested from implications of the nonlinear force,
causing a high percentage of energy transferred into the
plasma. The simulations seen initially in chapter 6 at

times of 10~ '’sec verify that blocks of non-thermalised



plasmas are compressed. The general code was then
extended to times of picoseconds and the results of the
interactions with generalisation of energy transfer by

the nonlinear force scheme and interactions at different

laser light wavelengths were compared confirming very

recent experimental results.



CHAPTER 2 REFLECTIVITIES

The numérical work of laser interactions with .
plasmas isbinvolved with the problems of solving
electromagnetic waves in inhomogeneous media. It is
well known that experimental data of the reflectivity
of laser irradiated targets scatter over orders of
magnitudes from 0.1% to 60%, occurring at irradiances1
for which the usually assumed nonlinear effects and parame-
tric instabilities may not be effective. If not, self- |
focussing2 is the reason for the confusing varieﬁy of
the experimental results. Numerical‘calculations,
assuming one dimensional geometry of plane incidence
of the radiation, arrive at reflectivities of 707 and
morel’3 where a direct solution of the Maxwellian
equations or an approximation by step-like (homogeneous)
layers is being used.

'The problem of the non-existence of a local
generation of reflectivity within. the inhomogeneous
medium has been discussed very generally by Osterberg4 ,
where the use of only two solutions of the wave equation,
one for the penetrating and one for the reflected wave
with a constant ratio of their amplitudes excluded the
aspect of "local generations of reflectivity'. The same
result has been derived before by - discussing the special
case of a medium with a Rayleigh-like density profile5
One of these results, the very low reflectivity generated

at the continuous connection of a homogeneous medium

with a Rayleigh profile as well as Osterberg's non-



existence of a local generation of reflectiVity will be
of interest for discussing the measured values of low
reflectivity from laser produced plasmas.

Before using the mentioned methods of low
reflectivity in numerical codes, we have discussed
some very simple, Rayleigh-like cases which permit‘.
very transparent, mathematically exact results.

The comparison of numerical calculations with
stepwise approximation and exact calculations of
reflectivity at the interfaces results in a much higher
reflectivity for a small number of steps. Computing
the case for a large number of steps will result in
values close to exact calculations, however, there is
still some discrepancy which can only be considered as
a paradox as numerical inaccuracies and instabiliﬁies

have been excluded.

I The Inhomogeneous Rayleigh Profile

‘Let us first describe an inhomogeneous plasma by
what we shall call a Rayleigh density profile, whose

complex refractive index n is given by

n = 1 W

where a is any complex number and x the depth of a
one dimensional medium. Allowing a to be equal to a
+ iR where o, B are real quantities we obtain

n = n+iK where

n = ox + 1 K = -Bx (2)
(ax+1)2 + g2 x2 (ax+1)? + B% x?
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n, K are known as the refractive index and absorption
coefficient respectively. If B = 0 then n reduces to

T_il&§ and K reduces to 0, which is the descriptidn.for

a collisionless plasma. It is known that for a
collisionless plasma where the collision frequency»v:

is equal to 0 we have

w? oy
n o= (1--—B% (3

W
Equating expression (3) with the expressioniof the

Rayleigh profile (2) allowing B =-0 we obtain

2
0 o= W (1 () »
P 1+ ox (4)
which corresponds to an electron density n,,
= - 1 2 -
Ve nec‘(l (1 +ax) ) (5)

since the plasma frequency wp is given by

4re?n
e

(6)

Lol

m
e

where e is the electron charge, m, the electron mass, n_,
the cut off density (the electron density n, in éq. (6)
corresponding to w - = wp)' Let us now look at a one

dimensional, collisionless, inhomogeneous plasma with a

Rayleigh like profile given by

SR ' g
whose electron density corresponds to equation (5).

The propagation of electromagnetic waves in inhomogeneous
plasma is described in terms of the electric vector E, the
magnetic vector H, the dielectric constant e, the magnetic

permeability p and the electrical conductivity © by
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Maxwell's equations, (assuming 0 = 0)

VE = -uyg L '

d . (8a)
VxH = €€, g% | _

ot © (8b)

We are limiting the case to propagation only in the x
direction at perpendicular incidence so that thé x :
component of the high frequency part of E and H are zero.

We can describe the electromagnetic fields with frequency

w as
E (x) = Ey (x) exp (-iwt) | (9a)
H (x) = Hz (x) exp (-iwt) (9b)
Because of perpendicular incidence ® we can have
div (ee E) = 0 (9¢)
div (uu H) = 0 (9d)
From equation (8a) and (8b) we have (assume u = 15
9 _ .
- —a—i'Ey (X) = * :quon(x) (loa)-
- %§ Hz(x) = # imeeoEy(X) (10Db)

combining eqs. (10a) and (10b) we obtain

32.

TR2 Ey(x) + wzuo € _ € Ey (x) =0 (10c¢)

o
For the Rayleigh profile case, the dielectric constant is

given by

1

e(x) = + ax

so that (10c¢) reduced to

d? w? .

k2 w?e
Let £ = 1 + ax and = = , then eq. (1l) reduces to

4 c? a
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an Euler differential equation

r2 dzEy'(C.) K2

—ger— tz B, (@ =0 | (11a)
with a solution Ey(x) = (1 + ax)A we obtain
w? 1

E (x) (1 + ozx)2 exp (¢ 'ifn (1 + ox) vV ¢Za? ~ 4 )(12)

using (10a) we obtain for the magnetic field

// ia -%
Hz(x) E_ - 4w - - 2wuo ) (L + ax) =
w2 1 :
exp (£ itn (1 + ax) v ¢%a? "~ %) (13)
IT The Rayleigh like plasma between two homogeneous media

The solutions (12) and (13) have a singularity at x
We can use these Rayleigh like solutions to describe both
propagating and reflected waves depending on the t‘sign;
The + sign will be for a propagating wave and the - sign
for the reflected wave. Calculations can then be made
with appropriate complex amplitudes (integration
constants) Qf the Reflection coefficients at a wvacuo-
inhomogeneoﬁs plasma barrier described by the Rayleigh
density profile, Figure 1.

We have the following conditions for Figure 1.

Medium I x <0 n=n, =1 (14a)
: - 1
Medium II 0 <x <D n = TF ox (14b)

1

T+op (149

Medium III D constant =

IA
»x
=)

|



Medium I $n Medium I ! Medium IIT

——ce

0O | D Distance

Fig. |
The schematic dependence on distance x of the refractive index n for

connections of homogeneous media I and III with an inhomogeneous Rayleigh

like density profile.

€1
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In Medium III we can describe the components of the

electric and magnetic fields by plane waves so that

Ey = Cq, exp (i(ng 2x - wt) ) + c3_exp(-i(n3%x + m%iga)
H, = C -(59)% n, exp(i(n YWx - wt))
3 3+ Ho 3 3 c
€o\k . W ‘
- C3_ (E;) nq exp(-1i (n3 < X + wt) ) (15b)

where the subscript denotes the medium and the constants
C,, C_ the transmission and reflection coefficients
respectively. At x = D we describe only the transmitted

waves and not reflected waves in Medium III by specifying

C3+ =1.0, C3_ = 0.0, we then have for Medium III (t = 0)
E; = exp (ing g D) (16)
He = (2% n, exp i 9 noD (17)

3 Mg 3 P c M3

In Medium II from equations (12) and (13) the components

of the E and H fields are (t = 0)

E,, = Cy, (1+ ax)® exp (i(:zaz - L% i1+ ax) (18
E,_ = C,_ (L+ax)? exp (-i(iiaz - L% a1 + w0 ) (19)
fpy = Cpp (1 a0 ™ (G2 - 72 )¥ - 7o)
exp (1 (22 - Ly gn (1 4 ax) ) (20)
¢ 4 |
Hy = C,_ (1 +ax)7% (- (%% - zE%%;T)%+7%%; )
exp (-1 - Ly (1 4o ) (21)

c
The boundary conditions at the interfaces can be derived
for t = 0. At the junctions of Medium II and III we

have for x =D
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(22a)
- (22b)

It is then algebraically possible to solve for the
reflection and transmission coeffieients of Medium ITI,

C,, and C,_ . For waves in Medium I where n = 1.

2+

E; = Cqp exp (L(§ nyx - wt)) + Cy_ exp (-i(Z nyx + wt) )

(23)
H = Cp, ny (% exp (1(2 nyx - wt) )
1 1+ D1 ag exp (i(g ng w
S (0% exp (-i(Y nox + wt) ) (24)
1- "1t p c™ w
At the junction of Medium I and Medium II where x = 0
at t =0
E, = C1+ + Cl— (25)
€ € '
_ O3 _ _o
H]. - C1+ nl(uo) Cl—nl(uo)% (26)
E, = C2+ + C2— (27)
€ 2
- ¢ o _ a % _ _ia
H2 B C2+ ¢ = bLw?u? ) 2w )
Mo ue g My
€o a? % io
F Oy (12 - —F 4 Lo (28)
o 4w2uo 2wu
Equating
El = E2 (29)
H1 = H2 (30)
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we obtain

€
. O }2« _
R= = (3D
(-u—o-) ®E, + H, -
o

where R is the reflection coefficient of the amplitudes
as an exact solution depending on both o and D. This
result is equivalent to the general result obtained by

Wait8 using a different method.

IIT Approximation by Steps of Homogeneous media

We are now approximating the case of Figure 1 by a
series of homogeneous media with a stepwise decreasing
refractive index n in the Rayleigh Medium II. With
reference to Figure 1 and the same restrictions of
equation (14), equations (15) to (17) remain the same
for Medium III. 1In Medium II, however, using plane wave
approximations at t = 0 we obtain in the first order

single step approximation with n, = (nl + n3)/2

E2 C2+ exp (in2 % x) + C2_ exp (-in2 % X) (32)

H, = C,,n (-6—9)15 (in, 2 x)
2 2+72 Mg exp 2 c

€o . w ‘ ’ | |
- C2_n2 (E;) exp (--1n2 < X) (33)

For higher approximations we can use n% = (n%+1 + n;)/Z

where i denotes the homogeneous slab number depending on
the number of steps. It is thenbpossible to calculate

the reflectivity from the conditions of Medium III back to



17

Medium I where the refractive index nz(x) in Medium II
is given by the Rayleigh case. It is necessary to note
that in using step approximations the refractive index
varies depending on number of steps used. For each

step beginning at distance D we calculate the values:of

C,_ and use these as a basis for the next step |

Cotr

approximation till x = 0.
We write here the analytical result of the first

approximation. For Medium I we have for n = 1, t = 0;

El = C1+ exp (i %) +cC

2 1. exp (-i £ x) (3

59)%

€
. % .
1= C1+ (uo exp (i % xX) - Cl- (ﬁg)z exp (-1 Yo%)

Cc

(35)

At the junction of Medium I and Medium II where x:i= 0,

n=1andt =0

Ciy * Co = Cop + Cy (36)
Ci+ = G = mpChy = myCy (37)
so that
R = Eli = (1 +my) Cpy + (0 -my) Cy.
IV Numerical Results

The following calculations were performed for a set
of cases, where the Rayleigh parameter a was set constant
(for a wavelength A = 1.06 um corresponding to the wave-
length of neodymium glass laser radiation) and the

thickness D of the Rayleigh medium was varied. Figure 2
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Fig. 2

Reflectivity R depending on.the distance D of the Rayleigh like plasma interface

between homogeneous plasmas, described in figure 1. The parameter a determines

the refractive index n from eq.

(7).

The computed values of analytical solutions

for the reflectivity, eq. (31) is shown for the decreasing refractive index as

a increases.

81



19

shows the results, where the abscissa gives D in cm and
the ordinate. the reflectivity. It is obvious,;that we
find an oscillation of the reflectivity R with zero ‘values
at such thicknesses D where the phases of the incident
and reflected waves in the Rayleigh medium are just: :
cancelling the reflection as known from the interferénce
at the transmission of light through parallel plates.

It is evident, that for higher o we have a higher |
reflectivity. At o = %9 =1.18 x 10° ém‘i we have total
reflection at the discontinuity between the profile and
the vacuum, (though the waves are perpendicularly incident)
as discussed before®. The case of o> %9 = 1.18 x 10%cm™’
has been excluded in this paper. For cases of higher a,
we find a more stretched sequence of the zero points of
reflectivity which is immediately evident, as theEMedium
IIT has a smaller refractiye index at the same distances
D for higher o, and therefore a much larger effective
wave-length, than for smaller a.

It is remarkable that the maxima of R are of the
same height. This is related to the fact that we have
no absorption and the reflection is determined only at
x = 0 and x = D. As we know from the Rayleigh case5
in agreement with the general result of Osterberg4, the
reflection is only determined by a, therefore the maxima
are of constant value, though the refractive index of
Medium III is monotonically deéreasing with increasing D.

For the step-wise approximation, we find for a

small number of steps, corresponding minima but increasing

maxima with medium thickness D, by orders of magnitudes
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larger than the exact case. This can be understood
from the crude approximation of the refractive;index

n, which shows the insufficiency of the approximation:
with few steps. This is hardly surprising as large:
number of steps imply the use of small mesh sizes which
increases the accuracy of calculations. ‘

The numerical calculations with large number of
steps (one hundred or one thousand) Figure 3, converges
to the exact case. We find then the same reflectivity
as in the exact case, the same constancy of the maxima
and the corresponding distances of zero reflectivities.
On closer observation, however, we find a slight
difference: zero reflectivity distances increase for the
step wise approximation. Such a "wave-length'" effect is
of a basic nature. It has been excluded that any:
numerical inaccuracies or instabilities are involved so‘
we have a definite paradox in the discrepancy of the
approximation.

Leaving aside, for the moment, the abovementioned
paradox, we can discuss the Osterberg problem in the
following manner. It is a mathematical fact that there
are two exact linearly independent solutions in the
homogeneous medium, whose ratios are the reflectivity
determined by the boundaries to the homogeneous media.
The condition of only penetrating waves, that is, only
transmitted waves in Medium III (no standing waves) and
depending on the thickness D determines the phase. This
is originally reproduced by the stepwise approximation

(apart from the paradox). However, we can follow in the
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Fig. 3
The plane wave stepwise approximation using 1000 steps for the corresponding

calculations of reflectivity R as in figure 2. Both figures have varying '

refractive indices dependent on a.
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Fig. 4
Variation of the reflection on the coefficient R of the plane wave approximation

with distance in Medium II representing a local reflection.
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case of the appfoximation, how the reflection coefficient
of the plane-waves within the steps decreases from Medium
I to III, Figure 4. Therefore we can conclude that both
reéults, Osterberg '"mon-reflectivity" and the plane wave
"local reflectivity" are not contradicting each other.
The problem is, how are the solutions for the |
inhomogeneous medium to be determined. The only condition
is similar to that of Sommerfeld's spherical radiation
condition (at large distance r, the amplitude has to
decrease as % ) expressed here for plane waves: when
X - + o, the solution is approximately that of a
homogeneous medium with only forward propagating waves
and no standing waves, while any approximation of the
exact case by fine steps for other x will produce in
effect, internal reflectioni or standing waves. Tﬁe
exact solution does not exhibit reflection properties
and the stepwise approximation is - so to say - a probe

for mathematically detecting local reflectivity.

\ Use of the Rayleigh Profile

The exact solution of the wave equation for an
inhomogeneous medium requires a high number of stepwise
approximations of the refractive index for comparable
results. In the example of approximating a Rayleigh
density profile even with a high order approximation, a
discrepancy appeared in the interference minima for the
inhomogeneous slab approximated analytically.

The Osterberg problem of '"'mo local generation of

reflection" can be explained as a mathematical solution
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while a sufficiently accurate stepwise approximation

acts as a mathematical probe to determine the local
generation of reflection. The necessity of.very high
order stepwise approximation for a sufficient agreement
with the exact case (even for the relatively uncampli-_
cated case of the Rayleigh profile) acknowledges thaﬁ a
critical view is necessary for the use of approximations.
In the case of laser plasma interactions an approximation
of plasma density by a series of analytical prdfiles of

the Rayleigh or Airy7

type are recommended for the
calculation of absorption of radiation. In theory more
accurate predictions may be made by suitable choices of
approximations by varying values of the constant o to
fit the density profile of the plasma. It is however
impractical to use such analytical approximations as
laser plasma interactions are dynamic processes and
initial density profiles will deviate from both analytical
approximations of the Rayleigh profile or a linear profile.
For practical purposes aﬁd as long as step sizes‘are
small, reflectivities of the plasma differs little from
approximations made by analytical methods. |

The Rayleigh density profiles display properties of
low reflection of laser light. Reflection at the kink |
of the density profile between the Rayleigh density and
the vacum is less than 107 following the exact wave
optical treatment seen here for values of a less than
105cm™ . Similarly for small step sizes the approx-

imations by plane wave methods appear sufficient for

accurate predictions. The resulting reflectivity of
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less than 10% for a = 10"cm_1 means at least 90% of

the laser energy is transmitted into the plasmé.
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CHAPTER ~ 3 NONLINEAR FORCE

I General descripcion .

From a general description of stress tensors in
an electromagnetic field1 the stress tensor for the

electric field was for nondispersive media onlér,E
€

™

k(1)
ik 8 ‘

9€ -

- _EP (e - 053D S+
O .y = = pQ (p,T) 6ik - ap’’ ik
where P, is the pressure found in the medium in the |
absence of a field for given values of density p and
temperature T. Where € is the electric permittivity
and 6ik the Kronecker delta function. Similarly the
magnetic stress tensor with B = u H is |

H.H

= - - H—i - m'l- (S i k !
05k P (pT) - g7 (M okap)T) P T (2)
where p is the magnetic permeability. By summing the
two stress tensors, eqs. (1) and (2) we obtain the

stress tensor for an electromagnetic field ifu= 1.
HZ

Oik = - pO (p,T) - (8’H(n = p(ap ) 8TT ) Gik
_ EiEk Hin - '
+ n <% + u < T e (3)

where the electric permittivity € is defined as the
complex refractive index n?. The generalisation of eq. (1)
for the dispersive plasma was shown by Hora15 indirectly by

algebraical identification with the generalised first
16

Schluter equation which predicted a correct result for
oblique incidence of the laser radiation. Since

p=mymy = m Zng | (4)

where ﬁi is an averaged ion mass and n. are the ion and

’

electron densities and Z is the charge then

1 _ )
P 30 ~ ne’ane (5)
91 2 " 3n? .
so ‘thatp =n : 6
30 e ane ,( )

By definition the refractive index for an absorbing
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plasma where v # 0 is given by

— 1 o |
n2 = 1 - =" (——) : (7)
N, 1-iv/w : |
— . .
then %5— S ( 1 ) (8
e Nec 1-iv/w :
on e 1 —a : -
n_ — — ( ) = n° -1
e oang Nec 1-iv/w (9
that is pgz = n?-1 (10)

Inserting eq. (10) into eq. (3) results in the electro-

magnetic stress tensor as .

o _ E% H2 8 , — PPk, Hife
ik = - Po (D) - T Ty v 0f 7 7 (D
similar to eq. (7) using
wZ
—
nt = 1 - o) (12)
: 02 4re®n , 4ne2nec
using P = —; W = — - (12a)
m, mg 3
then eq.-(ll)‘becomes
H.H E.E w?
o _ E2+ H? ik itk P
ik =~ PT) - T Syt 7t In brCw+v*)
xE;E, (L4419 .. (13)
Taking the terms individually —
E%4H?2 6 _ 1 |-%(E_2+E_24+E_2+H_2+H_.%+H_?) 0] 0]
78w ik 4w x ¥y z x vy oz ’

- 2 2 2 2 2 2
0 5 +Ey +EPHH +Hy +H, ),0 (1é)

_1 2 2 2 2 2 2
0 0 é(Ex +Ey +EZ +Hx +Hy +Hz )

Similarly — —
BB  HH o[, )
R i LN EEMHH  EE, +HH,
2 2 +
B, HLH B2+ H EE +H H, (15)

2 2
EXEZ + Htz EyEz+ Hsz Ez + Hz
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Summing eq. (14) and (15) gives

A GO L LT L S R
_ 8m ik 4m 4 4m o
1 2_ 2 _ 2 2 _ 2 _ 2 S
2(Ex Ey Ez +Hx Hy Hz ) EXEy*HXHy Esz+Htz
: 1 2 2 2 2 2 2 ‘ | (16)
E B HHH 5(-E B P-E HHOC-H P-H, ) EyEz+Hsz
EE+HH EE+H H %(-E_2-E_24E 2 -H_%-H_24H_?2)
X z X 2z vz y 2 x 'y z X 'y z
we can define the right hand side of eq. (16) és Tik
then eq. (13) transforms to
w !
- _ P 1 .
O'ik = - p(p,T) + le _(—\-)_Z:I-_JZT ZI-_'E(l + 1\)/(.0) EiEk (17)

By definition the force f per unit volume can be
calculated from the stress tensor O,, the momentum flux
density.which includes the momentum of both matter and

the electromagnetic field. By relativistic invariance

the energy flux of an electromagnetic wave in a dielectric
given by ¢ (E x H/4m), to be the same as before except for
a factor 1/c?, This force is used in the dielectric

with a variable electromagnetic field so that

*90

- ik _ 3 _(ExH)i |
fi B 3><i ot 4mc (18)

Using eq. (17) in eq. (18) leads us to the required

force as

UJZ

- . P 1 . 9 ExH ,
f = -_V_"_I_) + Y. (I_ - W Zﬁ (1+l\)/(1))§ E)-—B-t—:' ZET_E (19)

eq. (19) is the géneral force density equation.

If we assume perpendicular incidence of a plane wave

propagating in the x direction on a stratified plasma
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with linear polarisation of E in the y direction. We

can assume

-0, E_=E_=0; H_=H_=0  (20a)

and i_ i =i .i =i _.i =0 .(20b)

The gradient of the stress tensor T is written as

AR L I S

x 3x T iy 3y , 5z ° L where the ¥ fgnctlon and T with

assumptions (20) reduce to
9 L[ T

. . _ 2 2N 2+ |
A %(Ey +H, )1X1y 0 0
0 -%(E 2%-H )i i 0
| (21)
. 2 PRI
0 0 %(-Ey tH "1, 1,
from Q0b) -
i
I S 2 2
AN gr 3% By TH) 22)
- 1 w2
Similarly V'(Zﬁﬁéfarn(l + iv/w) EE) reduces to
2
A (L+1iv/iw) -
x 0x Gm(w’H+v?)
(i,i_EE_+ i i EE_+ i i E_E
XTx XX Xy X'y Xzxz
+ lleEyEx + ly YEYEY * lYlZEYEZ (23)

+ lzlezEx + izlyEzEy + lzlezEz )‘

Using assumptions (20a) this reduces further to

wz I
) p . o,
lX ’a—x' m_m ( 1+ 1v /(1)) LlylyEy _} (24) )

but ikiy = 0 so this term is =zero.
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_ i 2 ) 3 ExH
f=-vVep- _:_T‘E _aa_x (Ey + Hz ) - 3t Zme (25a)
The Poynting term can similarly be reduced so that
i E H
=V .ep- X 2 24 2y - 2 Y 2 4
£=-V-2- 4 X (Ey +H ) 3t Lic  Tx KZSb)

For a dispersive medium we use the average value of the
force density during one period of the laser light. The
switch on process of the laser light wave is very slow in

comparison with the frequency of the laser light so we
ExH" .

can neglect the Poynting term T in eq. (25b) by the

reasoning below

3 ExH
For a quantitative view of 3 Zme
12

3t = At = 10  secs.

At intensities of 10!°W/cm? E = 3 x 10°V/cem = 107égs;

H is of the same value = 107 Gauss so that
ExH 7 7
== e x X205 65 x 10t
€ 107'*  4xmx3x10'° |
whereas
9 21172 1 1;; 14 1 14
=— (E*+H®) = — (10" *+ 10**) = — x 2 x 10
90X Ag 10§mn ;

= 2x 10'7cgs
and 2 x 10'7 >> 2.65 x 10"

I Collisionless Nonlinear Force

The time averaged nonlinear force for linearly

polarsied perpendicular light incident is given by

1 T2y
g7 V (E? + H?)
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Using a collisionless WKB approximation where

E? = EV?/ZIHI exp (* kx) (26a)

H? = E_?|0]/2 exp (+ kx) | - (26b)
than L v (E%2+ H?) = 1 vg 2(—l— + |n| ) since k =0

87 16T v =

for collisionless plasma. For perpendicular incidence

(propagation in the x direction:)

E 2 =
'f - v 9 1+|n|
nl 16m 3 X EE
E_?2 _ — _
- v.n (2n)-(1+n°) oan
m |ﬁ| 9xX
w?
since n?2 =1 - EE
2 (1.)2
- . v D3 _1 '
fnl = 161 0% 9x 7] (27)
Formally eq. (19) can be rewritten 2 by use of
the Maxwells equations (C.G.S. units).
__ 1l |
Curl E = c 3T (28a)
brj E
- 1=

and by defining the current density j with ion veloc1ty

v, as
j-= (v - 7v ) giving 15
_ R 1 1
ftot = -Vep + = l x-H + A -E V-E ~ I —T—E?(1+1v/w)§
1 Wy
. . D ;
7w wﬂ%f (L+Hiv/WE-T E - 73 E BT Grpor(lHiv/w)
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The last four terms of eq. (29) drop out for
perpendicular incidence from previous assumptiéns on a
stratified plasma so that the nonlinear force is determined
by % j x H. For oblique incidence all terms of eq. (29)
are required. |

By substitution of the WKB approximation for E gnd H

into eq. (29) we see for perpendicularly incident light

|

E i

Eakb = 1y =3 exp (iF) exp (£ k(x) x/2) (30)

3

Hop = i, E, 0% exp (iF) exp (+ k(x) x/2)  (31)

where F = w(t /X re(n(E)dE/c); k(x)=w/(xc) / XIm(n(£)dE
' (32)

so that after -averaging over one period 1/w and substitut-

ing this into

fq=5ixH | (33)
we obtain
EJS w2 5 g |
=-7 _V _ﬁP.__.-__- .
fﬁl B 1x 167 w 9X IHI (34)

which is equivalent to eq. (27)

The microscopic quivering motion of the electron
can couple with the maercscopic properties of the plasma:
We assume a WKB approximation with electric and.
magnetic fields defined by equations (30),(31) and (32)

and eq. (20) so that

¥ - & g 35

y =@ By - (35)

V=i £ Vv xH (36a)
ym,2 'y

and eq. (36a) defines the Lorentz force so that
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v, = a@ vy |H| - (36b)
From (35) | :

vV, = —Y -£& sinF (37)

Y |a)? wm, :

Then eq. (36b) becomes

V.= 2 Fy sinF ‘e v an sinF-E_ @ % cosF :(38)
=&, ¥ L v -F
xowmg In|™= 2w ]nl% dx v '
Time averaging eq. (38) gives
& e’c By  dm in2F
= an
TR T g R T O
2 E,” =
<%, >=-cc_ v dnl., | (39b)
4w2me2 In|® dx

The time averaged nonlinear force density is defined

macroscopically as

fnl = nemeVX (40),

so inserting (39b) into (50) gives

2 E =
fnl = nem ec z zd(linl (41)
€ 4w2me2 [n| X
4me’n
recalling w; = ——% and that the force is in the
m .
e

x direction.

Lo RN

= i 1 ? EV d[n]| (42)
nl "X 96 o2 |F|? dx |

which is precisely eq. (34) and (27). The quiVering
motion of the electrons due to the electromagnetic field
is transferred into a macroscopic force motion equation
which is justified by use of the Maxwellian stress tensor
eq. (19). This justifies the use of the nonlinear force

in a macroscopic model.
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ITII Predominance of the nonlinear force over thermal

kinetic (gas dynamic) force.

From eq. (26), allowing for a dispersive medium
and the discussed deletion of the Poynting term we have
) v

= - — 2 2
£ Unk T+ g~ u(E*+ H?) (43)

where the pressure vector is replaced by né<T whose
gradient is the gas dynamic force. Eq. (43) can be
15

rewritten as

f£=V (-nk T+ BlF (E2+ H?) ) (44)

The nonlinear force term will than be larger than the

gas dynamic force when

nk T <o |:(E2+ H?) - (E %+ H 2)] (45)

assuming
E 2 = /n(k,T) for n <-1 then
1 B
nkT<g —F :

From considerat%ons of the oscillation energy the maximum

value of 1 =TI' yhere for 1.06um wawelength light

= (2ev)?

S|

2 3
E,* pf
8m a
Then for the colllslonless case the predominance of the

so that n k T <

nonlinear force over the thermal kinetic force is glven by
I > I% = 2.08 x 10'"W/cm? (Ruby) T% where T is “in ev
7.5 x 10'? (Nd glass) | (47)
Including the oscillation energy to the calculations of
Stienhauer and Ahlstrom3 results in similar threshold
intensities described by eq. (47) only if the nonlinear

intensity dependence of the refractive index has been

includedA.
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IV Nonlinear force with absorption in plaéma%

Equations (27), (34) and (42) expresses tﬁe nonlinear
force in terms of the refractive index |f|. For a WKB
approximatidn averaged over time including collisioﬁs we

use equations (26a) and (26b) with k # 0 then

E?2 = EV2/2|H| exp (¢ kx) - (48a)
H?2'= Hvzlﬂ/Z exp (* kx) . (48b)
Then the nonlinear force is given by
= 1 2 2y - 1 2, 1 =
f,=357; Y (E +H) =175 E, (T%f+|n|) exp (i.kg)
(49)
For perpendicularly incident laser light (assumption 20a)
£ .1 93 E? (4 |7 exp (+ kn) (50)
nl 16m 3% n
then £ _, = EYE ( 1-lﬁ|§ on exp (* kx)
ol ger @z %
Ik | ~
+ Tom ( e Y kexp (¢ kx)  ...... (51)

where k is the absorption constant defined as

k=22 1y @) (52)

For the collisioniess %fse, k = 0 -and equation (12)
reduces ton = 1 --%B-, so the nonlinear force
equation (51) becomes equation (27) with a singularity
at n = 0 when w; = w?. The first term of equation
(51) forces plasma from high density to low density
depending on the gradient of the refractive index.

The second term shows ﬁhat the force can be in the same
direction as the laser light.

If the direction of laser light is reversed then

the sign of the second term also reverses. In either
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case thebforce is in the direction of the laser light
whose magnitude depends on the value of the opéical
constant. The force acts as radiation pressure of -

light due to the collisions of photons with the electrons,
acting always in the same direction as the laser ligﬁt}

V Solitons

The properties of the nonlinear force lie in the
gradient of the electromagnetic energy density,vV (E2?+ H2?).
In figure 1 is the case of a symmetric electron density
profile ne(x) of a collisionless plasma,. The correspond-
ing penetrating laser beam satisfies the WKB condition
where the density maximum is less than' the cut off

density n The electromagnetic energy density can be

ec
described for the WKB conditions, equations (26a) ‘and
(26b) then

E*+ H? = E_’ (3 + n)/2 (52)
when E and H describes the electric and magnetic fields,
E, is the vacuum value of the electric field and n the
refractive index. If n is small the electromagnetic
field swells as i/n. This is also seen via the con-
'Servation of energy flux where if the group velocity is

Vg and ¢ the illuminated area is related to E by

EZVg ¢ = constant (53)
Then with smaller values of the refractive index, the
group velocity falls implying a rise in the amplitude

of the electric field denoted by swelling.
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Fig.lThe electron density profile of a collisionless
plasma with maximum density slightly less than
n_ .. The penetrating laser beam satisfying the

KB condition and exists as a solitary electro-

magnetic wave, from Hora4

The variation in E?+ H? gives magnitude to the
nonlinear force fnl in figure 1, due to the gradient
of E*+ H?. The nonlinear force therefore forceé plasma’
from regions of high densities to low densities. The
term soliton describes the solitary electromagnetic wave
in figure 1?

Similarly for a monotoniéally increasing electron
density profile, figure 2, the corresponding approximation
for the electromagnetic energy density is shown. The WKB
approximation is possible even for densities exceedihg the

cut off density n The value of the electromagnetic

ec

energy density, after approaching Noe» decreases

exponentially due to collisional absorption in the plasma.
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Fig 2 A density profile increasing above the cut off
density shows the formation of a soliton which
is critically damped at the cut off intensity.
Not to be confused with soliton formations in the
results section where laser light is incident

from the right.

Assuming that the totally penetrating laser beam
is collisionally damped at‘the cut off density, the
electromagnetic energy density can be constructed which
also displays a solitary electromagnetic energy density
where the swelling of the intensity, electric field and

wave length are effectively given by

Toac: Evac' -  avac
RO TTTRE D T e O

The above WKB approximation describes a single wave

maximum known as a soliton.

VI Generation of Density Minﬁmum

The gas dynamic compression of plasma is associated
with the thermokinetic expansion of plasma which ablates

towards the incoming laser light as a monotonically-
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decreasing profile. Gas dynamic compression models?

based on .equations of continuity, conservation of

momentum and energy conservation withouttthe inclusion

of nonlinear force terms have shown that the thermokinetic
‘expansion of plasma (ablation) is towards the 1aser‘light.'
It acts as a compensation from the conservation of
momentum where the monotonically decfeasing density
profile from near the cut off density balancés the density
profile from areas of compression driven by collision

produced absorption of laser light. Figure 3.

1 \ ~_laser light action
compression\

——e==gablation

—

Distance X

Fig 3 Schematic description of action of laser
light on plasma in a gas dynamic scheme, with
compression of plasma by collisional processes

and the subsequent ablation of plasma.
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One describes the nonlinear force as the immediate
electrodynamic interaction, the gas dynamic inferaction
occuring after thermalisation of the radiation and
heating of the ions.

The inclusion of the nonlinear force in the model
of the interaction will generate a density minimum |
appearing in the ablating plasma. This was first seen
numerically by Shearer Kidder and Zink? figure 4.

The density minimum appearing at a time of 33 psecs and
at the later time of 92.9 nsec the density maximum

associated with the caviton.

100

1-106

(INITIAL DENSITY PROFILE)

0.0V -
y -50 o +50 +100

* um)

Fig; 4 Density profile at different times for a laser
intensity described in the upper part of the
figure. The low density maximum is generated
initially by the nonlinear force§ The term

caviton describes the generated density minimum.
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Other numerical evaluations of plasma yielded Both
solitons and cavitons. The one dimensional simulation
of plasma by large numbers of single electrons and ions

yielded figures 5a and 5b from Valeo and Kruer7.

Fig. 5 Spatial dependence of the electric field
intensity and ion density observed in a one
dimensional computer simulation. from Valeo and

Kruer7.

Figure 5a describes a soliton and figure 5b the
corresponding caviton generated by a one dimensional
electrostatic computer similation. Similarly Brueckner8
simulated the caviton (figure 6).

Experimental evidence of ion density cavitons
created as a result of ion expulsion driven by the non-
linear force was seen for microwave pulse sources in
figure 7 from Wong and Stenzel9 at times of 6 usecs.

Several microseconds after the electromagnetic
pulse shows the presence of a large ion current just
outside the resonant area due to ions with energies much
higher than ambient. This current peak is followed by'a

density depression due to the expulsion of ions from
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Figure 6
Density profile in the vicinity of n_  at 102'cm
A 8 . . .
for 1 ym radiation. Brueckner's simulation without

the radiation pressure gave the dashed curve and

times in psecs.

the resonant region. As the ion structure travels down
the density profile, the peak consisting of a wide range
of ion velocities quickly dispenses while the caviton
composed of background ions maintains its shape as a
nonlinear pertubatidn for a much longer time. The
explanation of the result lies in the nonlinear force
action on the electrons driving electrons fromvregions
of high to low densities. As the electrons:are-acceler-
ated they pull the ions with them by self consistent
fields thus preserving space charge neutrality. The
electron response to the electric field is much féster

than the ions so that ion motion in figure 7 occurs
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Figure 7
Density cavities as a result of ion expulsion

for microwave interactipnns with plasma observed exper-

imentally by Wong and Stenzelg.
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Figure 8

10

Experimental observations by Kim et al. for

microwave interaction verifying the coexistence of

solitons and cavitons.
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at later times in the order of usecs. Experiménts

by Kim, Stenzel and Wong

10

verified the co-existence

of solitons and cavitons in the microwave region,Fig.8.

In laser plasma interaction.experiments by

Zakharenkov et al.11

The plasma profile was determined

by analysis of inteferograms for electron densities in

the range of 10'® to

in figure 9.
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The result is seen

Electron density profile for laser plasma

interaction at 2 nsec, observed by different

methods. The target was aluminium with incident

laser intensity of 3 x 10'*W/cm?. The Nd glass

laser interaction displays the existerice of a

density caviton experimentally verified by

Zakharenkov et

al.11
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Measurements of the density profile in figure 9

-3 H
for densities greater than 5 x 10!® cm = during the

first 2 nanoseconds are impossible due to the formation

of the opacity zone due to refraction or insufficient
‘time resolution or depolarisation as discussed by -

Zakharenkov et al. Nevertheless the existence:of the

caviton was experimentally verified for times of 2 nsecs

with a velocity = 5 x 10’ cm/sec for laser light inten-

sities of 3 x 10'* W/cm?
Experimental results showing.density steepening
and the density cavity is seen in figure 10. Experim-

ental resulte of Azechi et al}zfor Nd glass laser of

intensities of 10!'® W/em? displayed the caviton existing

at .37 nsecs after laser irradiation.

Ne(e/cc)

3x1020

A

80 60 40 20 0
Radius (um)

Figure 10
Radial density profile observed at 370 psec
after the Nd glass laser irradiation at

intensities of 10!'® W/cm? observed by Azechi et

al.

12
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Similarly from interferometric measurements for a

CO2 laser pulse with a peak power of 10!* W/cm® the

resultant radial electron density profiles seen in
13

figure 11 from Fedosejev et al. for times of .6 nsecs

and .32 nsecs.

1020

10'9

ELECTRON DENS(ITY (M%)
5
F
<

500 1000 ¥

ELECTRON LINSITY (CM=Y)

R (MICRONS)

Figure 11 :
Radial electron density distribution of plaéma13
produced on a solid aluminium target by a 30-J

002 laser pulse at (a) .6 nsec and (b) 3.2 nsec.
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In figure 11 the same steepening of the density
profile appears with the associated caviton. Once
again the ﬁonlinear force is the dominant factor in
determining the density profile and if this remains:
true at higher irradiances then the plasma intensity .
should be largely governed by the incident intensityf
rather than. the wavelength of the radiation. Dénsity
cavities and cavities in x-ray emissitivity profiles
were recorded for 002 lasers by Donaldson et al'.14

as seen in figure 12 measured from x-ray pinhole

photographs at later times of 25 nsecs.

Distance from laser axis (um)

2 nol& 9

FIG. 1. Radial density profiles at £ =25 nscc.
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S 6x10 § gx0%
v 3
§2x10'8) T 40}
w / o
- T o
200 600 s
>
>
w
0
E
w

7 '&/ .b\é
200 600 1000 oo ©
Distance from lcser axis (um)

Figure 12
Observation of radial density profiles and x-ray
emissitivity for CO2 laser irradiation from

Donaldson et al.14
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The plasma dynamics for the interaction of high
intensity laser radiation with solid targets aﬁd the
instantaneously generated plasma, can be determined.
by the nonlinear force which is the immediate electro-
dynamic interaction, and then by the gas dynamic
pressure occurring after thermalisation of thé radiafion
and heating of the ions.l The important conseqﬁence of
the nonlinear force, especially for short laser pulsés
in the order of picoseconds, consists of the possibility
of a nonthermalising transfer of optical energy into
kinetic energy of plasma for compression, which has a
minimum of entropy production and is therefore highly

efficient.
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CHAPTER 4 ABSORPTION OF LASER LIGHT

I Dispersion Relations

. From Euler's equations of hydrodynamics the macro-
‘scopic behaviour of the electrons and ioﬁs.in the
plasma due to electromagnetic forces may be definied‘by
a two species energy equation where e and i subscripts
denote electron and ion species separately:

For ions with 2 =1

vy e .
m; n, —f = eE + s v X H + m, n; v(yi - Xe) + Vni kTi
+ fi , e (D)
For electrons
oV e
m, n, 3¢ ~°E - g v, xH-m n v(v; - v) + vn k T,
+ fe ceee (2)
where m; o are the masses of the species, n; e the

densities, e the charge, E and H the electric and magnetic

field vectors, c¢ the velocity of light, Vi e the

velocities, v the collision frequency given by Spitzer%6

k is Boltzmann's constant, Ti the temperature and

,e
fi o 2Ny external force.

The equatiohs above may be rewritten in terms of a
single fluid model! where the nett velocity of the plasma

v and the current density j are written as

o0 MY - Me Yo
X = m. + m ) (3)
i e
1l = n. +n
i e

subtracting equation (1) from (2) and using definitions

(3) and (4), given in cgs units
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E'rn-;(-a—-t-‘!'\)l)=g+EXE+cenc lXE"‘enec\Vpe (5)

where pe~is the electron pressure corresponding to the
term nek Te in equation (2). This is the diffusion:
‘equation or the generalised Ohm's Law. For periodic

time dependence we may write
j= jo exp (- iwt + 8) (6a)

E = Eo exp (- iwt) - (6b)

These give rise to the identities

. i 93 -

)= ; 5t 3 (72)
_ 1 ) :

E = - o 3¢ E (7b)

We can neglect the gradient of the pressure in eqﬁation.
(5) since it is dominated by other terms for intensities
above 10'? W/em?, for Nd glass lasers. (See nonlinear
force chapter). The justification for neglecting the
Lorentz and Hall terms follows. |

The value of E is much larger than l%l x H where-
ever |v| << c¢. Since we are not dealing with relativistic

velocities the Lorentz term may be neglected.

The Hall term equivalent to j x H requires

en zc
e

values of |j| and |H| to be determined.

m, thi ) 4

Us ing eT‘E—' (a—t' + v J_) = B
e

and equation (7a) we obtain
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Using |E| = |H| and z = 1 then
1 . e’e 2
il x |H| = =——— |E]|
en, c mw N C
- _€ 2
T m_cw [E|
e
5
=310 |E|?
w

Therefore the Hall term can be neglected depending on

frequency of laser light when

10° 2
= |E|? << [E|

For Nd glass laser with w = 10%'°

|[E| << 10!'°% cgs units

That is |[E] << 3 x 10'2 V/cm?

which corresponds to an intensity flux of about 16?2 W/cm?
So for non relativistic velocities and intensity

fluxes of less than 10%2? W/cm? and larger than 10!°*W/cm?

we may ignore the pressure , Lorentz and Hall terms in

equation (5).

Using the identity for the plasma frequency

4men
(d; = — € in eq. (5) ‘and using eq. (7)
e
b4 3 .V 5d _ 1 ) o
wz Getigse) = -graer B o (®

Substituting this into a Maxwellian wave equation where

2 » _ 1 2% 4 ol
VE=g 5er E ot oToap M

from the use of Maxwell's equations

YxE =-wH | - (9a)
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VxH=0E+¢cegE (9b)
' 2 1 B2 w; 92E
Then V' E = T3z k- oord + /ey 3¢2 .10
1 “p 52E |
. 2 - - o = -
This gives the dispersion relation where the complex
refractive index n is defined as
2
=2 _ _ U)p
n L - @+ o (12)

The real part of n is the refractive index n and

the imaginary part of n is the absorption coefficient

'k given by

n = /é(l B %g£37>"+ 5 ((1- wi+;ﬁ)2 + C% w?¥ié)2 )% (13
2 2 ‘ 2 %' .

T (1 - G850 + 5 (- " + @ g2 )

Then the absorption constant k is given by

- 2w :
ko= 2 Sas

For collisionless cases we assume that the collision
frequency vis very much less than the incoming laser light
frequency w then v may be neglected and the refractive

index n from eq. (13) is rewritten as

n = /1 -2, (162)

and the absorption coefficient k will be zero. 1In
terms of the electron densities the refractive index

n may be written as

/ n - (16b)
n =y/1--2
nec
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The phase velocity of the light wave in the plasma
is vp given by
c :
v, = — (17a)
P o] |

and the group velocity Vg is

v. = c|q| a7

II. Collision frequency

Coulombic collisions between charged particles in
the plasma state are dominated by electron-ion collisions.
A crude approximation of the electron-ion collision
frequency follows:

The coulombic force existingAbetween the eleétron

and Z number of ionised ions is given by

F = - —¢ (18)

This force acts during a time given by

r

~ o) V
t = T (19)

where T, is the distance of closest approach called the
impact parameter. The change in momentum of the electron
is given by

2
Ft = %% (20)
O .

The cross section for large angle collisions where
an electron is deflected by more than 90° the change of
momentum is of the order of the momentum itself that is

. 2
Ft = mév = IZ-eV (21)
o
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then

rn = -ze’? | (21a)

the cross section is given by 7x where

X =1rr(2) = Z%me" o
P (22)
e o
the electron ion collision frequency is defined as
Vai = n; Xv (23a)
since n., = n /2
i e \
then v  _ g me i (23b)
el m?2 v3
e

The average value of the velocity v in a plasma
at equilibrium can be corrected to the temperature

Te of the electrons where

%e vz =3k T, (24)
substitution of eq. (2%) into eq. (23b) gives
Zn.e Tl'ea3'“?
v . = : :
et m2(k T)Z (25a)

Spitzer's expression2 for the electron-ion collision

frequency is given by
n_me“m

v o= z%—E—TEYT In Asp (25b)
e e’7

where Asp is Spitzer's ratio of the maximum (debye
lengths) to minimum impact paremeter. The differeﬁcé
between eq. 25a and 25b is a constant and the log term.-
Over the large range of temperatures and electron .densities
the difference is not significant.

Estimations of collisional absorption of laser
light in many derivations use Kirchoff's law enforcing

thermodynamic equilibrium between absorption and emission
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separately for each individual frequency. In the
microwave region Oster3 had calculated the absbrption
coefficient of a plasma for both classical and |
quantum limits. In the classical limit Oster obtained
"for the emission coefficient per unit volume Ew assuming
a Maxwellian electron velocity distribution which was
the same result as Schuer4 for collective collisionsT

of electrons and ions. The gist of the theory both
for microwaves and later for light waves is the estimation
of the coefficient of absorption from thermodynamic
equilibrium when absorption and emission balances out
separately for each frequency. This is effectively

Kirchoff's Law related by Planck's function
p, = €, = k, b - (26)
where bw is Planck's function; the universal function

of equilibrium temperature, and kw is the absorption
céefficient for frequency w.

On the basis of a classical microscopic theory
Dawson and Oberman5 calculated the absorption coefficient

of a plasma at high frequencies obtaining
8rz?e’n.n

2 2
k = fle . 1n (_E_EéﬁHL - V) CQ@2n
uc(2mmkT)2w? 2m2y2 :
kT

For a value of kmax = 7e? the value of k is close
to microwave predictions of Schuer.

By applying Snell's Law, Dawson6 included the
refractive index into the absorption coefficient by using
Kirchoff's Law.He obtained a corfgction”factor‘for the

w 1
absorption constant p = ( 1l- P )2 which accounts for
w
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the reduction of the group velocity of the wave in the
region where the plasma is nearly overdense.The factor
p in eq.27 restricts the validity of that equatioﬁ‘to
the plasma frequency less than w.Inserting Spitzer's

electron ion collision frequency into eq.27 and using

the condition for quasineutrality n,6=n; =n gives
2
k o v w 2nC (28)
ncy

where C is the ratio of the log terms of Spitzet and
Dawson,Oberman.Eq.ZS'expresses the direct proportionality
between the collision frequency.and the absorption
coefficient.Comparison of the crude approximation,eq. (25a)
and eq. (25b) with a quantum mechanical® treatment shows
values of the collision frequencies differing only by a
constant and the log terms.The importance of the difference
over the large magnitudes of densities and temperatures
is not significant.An important assumption arises and is

9,that for a plasma at tempe-

discussed in a paper by Green
ratures above 10" °K,a Quantum mechanical model can be

replaced by a purely classical model.

ITI Nonlinear Optical Constants.

Experimental results7nave shown that absorption of
laser radiation differs from predictions by inverse
bremsstahlung mechanisms at higher intensitieé.At intensi-
ties-when the oscillation energy of the electron due to
the laser light is larger than the thermal energy equi-
valent to the random motion of the electron,then non-
linear mechanisms enhance absorption due to the decaying

processes of the light in the plasma.
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Vheh the oscillation energy is comparable or
larger than the thermal energy of the electron then

the temperature of the electron is increased by

T = T, +E - /k - (29)

. th os .
where Tth,is the thermal temperature of the electron,
Eos is the oscillation energy of the electroﬁ and k is
the Boltzmann's constant. Since the velocity of the
electron in the form of an oscillation, due to the
eléctric field E in vacuum,is given by

v, = eE /mur ©(30)
then the oscillation energy of the electron is

Ege = e?E?/2mw? (31)

comparison of EOS to,mc2 derives the laser intensity

for which relativistic effects10 are taken into account.
For Nd glass laser the relativistic threshold intensity
is 3.7 x 10'® W/em?. 1If E g << m¢ 2 Spitzer's collision
frequency v in eq. (25b) may be rewritten including eq.

(29) as
n_m e'm

v o= < e 7 In A ' (32)
nez(thh + Eos)

and the nonlinear absorption constant is obtained from

eq. (27) as
8nz%e®n.n 1n A 1
K = oo ie : y _— |
2 Py 3 3 2 /2
cw (21Tme)2 (thh + Eos/k)z 1-w p/w (33)

which is valid for intensities less than 3.7 x 10'°®W/cm?®
and where w < w.

When tge oscillation energy of the electron is much
larger than the thermal energy of the electron and the

relationship between the electric field amplitude E and the
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intensity of the laser field I is given by
E = /8 I/c (cgs) | (42)
we obtain the nonlinear collision induced absorptién‘
coefficient by classical inverse bremsstrahlung for
‘high intensities as 1
8nZ%e nenilnAczw

k , = -3 ’ (43)
nl (81 I)7

on comparison with a fully quantum mechanical multiphoton
treatments, one sees only a difference in constants and
logarithm terms. Both Rand's8 treatment and the one
described above, show the nonlinear absorption coefficient
as proportional to the frequency of laser light w and
inversely proportional to the three halves of the intensity
of the laser beam. The refractive index of the plasma

is included in eq. (43) to give
8nZ%e n n,lnAck w

Kk, o= — & / -
nl Dy a0 “H
"U)P w

which is wvalid for kT >>h v; E >>k T ,: w_ < w where
os th P

no account is made for relativistic effects and I<3.7 x

10'® W/cm?. The absorption coefficient increases as w

approaches w which is near the cut off density n,.

1V Dynamic collisionless abgprption

We have dealt with the absorption of laser light by
the processes of inverse bremsstrahlung and the correction
to absorption at high intensities, when the oscillation‘
energy of the electron due to the radiation is larger
than the electrons thermal energy. As a consequence of
change neutrality (Debye shielding) ions are carried
along by electrons and are adiabatically compressed and

expanded so that any change in the temperature of the
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ions in short time is not due to ionic absorption of
radiation, but due only to absorption of radiafion
via the electrons. As a consequence of the oscillation
energy, macroscopically the quivering motion of the
‘electrons means a change in the plasma frequency acting
as a collision induced absorption of radiation by eléctronsw

As in the chapter on nonlinear forces, we neglect
the case of oblique incidence of radiation. We note that
there exists an optimum angle11 for which there is
maximum absorption of radiation at wb ? w. Coherent
energy incident at the optimum angle-is resonant with
plasma oscillations. If the electron ion collision
frequency is small compared to the wavelength then:
the oscillations build up to large amplitudes. If
collisions limit the size of amplitude thermal electrons
are formed. If not the oscillations grow till they
break in phase space and hot eléctrons are produced
describing a resonance absorption mechanism.

Large amounts of energy transfer of laser light to
plasma can occur due to instability processes occuring
at each specific intensity threshold. In some cases12
higher harmonics and half numbered harmonics have been
observed in backscattered radiation due to Raman,
Brillouin type instabilities generating large trénsfers
of energy into the plasma with a corresponding anomalous
backscatter of radiation.

Each instability manifests itself at their

individual characteristic intensity threshold. Many
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instabilities.may be associated with the threshold growth
of the nonlinear force. The nonlinear force in an
anomalous manner generates macroscopic motion of the
plasma. It is a direct transfer of optical energy into
‘mechanical energy in the plasma. The mechanical enefgy
changes density gradients and in'this way increasesi
dynamic absorption nonlinearly without collisions.
Density profiles with low reflectivities, such as the
Rayleigh profile will exhibit dynamic absorption without
collisions thus allowing large transfer of energy into
the plasma. For completeness absorption via inverse
bremsstrahlung must be included to the macroscopic
dynamic collisionless abosrption whose predominance
however, is one of the results from the following
calculations. |

It should be mentioned that the inclusion of the
decay instabilities producing "effective collision
frequencies'" as Dubois proposed12 should have been
included into this treatment. However, though the basic
theory of these instabilities has been developed exten-

L4 the theory of saturation is not yet finished.

sively
While the use of the instabilities is very important'forA
diagnostics, eg. by the second harmonics generatioh,'

their importance for the dynamics may be relatively small
as Wong15 indicated due to the fact that the back scattered
harmonics are of small intensity compared with the

initially incident radiation. This highly complex

question may be considered as not completely settled.
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CHAPTER 5 LASER PLASMA INTERACTION MODEL

I Equation. of State

In this médel electrons and ions act as separate
species and we assume that they are monatomic gases and
‘that quasineutrality holds so that the number of ions

n; equals the number of electrons n,, that is n,6 =n; =n.

At temperatures of 100eV and at the Nd glass laser cut off
-3 .
density of 10%'ecm”  we can assume that.the perfect gas law

holds and then the equations of state for the separate
species are ;
P; = 1y k T, (1)

1 1
p, = n, kT, (2)

where P;, P, are the pressures of the ions and electrons

respectively Ti’ T _ the temperatures of the ions and

e
electrons, k is Boltzmann's constant, 7 the ion cHarge.

The energies Ei’e of the species are given in general by

E where

E=—P , O (3)
P(Y-1)
where ¥ is the ratio of specific heat and for a monatomic

5
= /3 so that

.
3 (%)
E=7 %

where P is' the density in terms  of ions and electrons the

gas

‘energies are

_ 3 "
By =3 & | (5)
1
KT
_ 3 e
Ee - 7n% (6)

where m;, m, are the masses of the ions and electron.
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11 Heat Conduction

Separate thermal conductivity coefficients are

specified for each individual species from Spitzerz.

/el
5/85 x 10!/ ¢&/My (T;/1.1605 x 107)

s
2

L " T (N
-5— .
= = " 7N 2
Kee Ke 5.85 x 10 (Te/l.1605 x 107) (8)
where Ki o are the thermal conductivities of the ions

and electrons respectively. Flux limitations onAthe
electrons as defined by Sheare%Bare not justified by the

electron temperatures experienced in our model and is not

iﬁcluded.
Heat transfer between species is denoted by Qie= -Qei
where |
. _ 3 _ ‘
Qe =7k (T3 T/t (9)

the time required for the transfer of energy between
species is represented by T (Spitzer's relaxation time)
3
[kTi N kTe] 7
e G A e (10)
8/21 e'Z* n 1In A

where e is the electron and A is the usual ratio of

impact parameters given by
3 KT * o
= e 2
A = 5aT ( ) : (11)

m
n(l

the coulomb logarithm is set to its maximum value eqﬁal :
to 10.

Since the ions are not directly heated by the laser
beam, because of the mass of ion and electron ratio, energy
is transferred to the ions from the electrons via
collisions. The time for the collisional process to

equilibrate is given by .



63

Allowing the densities n,6=mn; =5x 102! ‘em” the

time 1 required for equilibriation of temperatﬁres at

different temperatures is calculated in table 1.

T(sec) Te(°K)
e
3.14 x 10” 106
5.34 x 107 ° 107
1.15 x 10~ ° 10°8
7
2.63 x 10 10°
7 x 10°° 100

Table 1

At a temperature of 107 °K the time required to reach
equilibrium of species temperatures is 5.34 x 10-Losecs.
For picosecond pulses of laser light one would observe
(in the scale of a picosecond) differences in the
temperatures of the ions and electrons. A nanosecond
laser pulse would be of sufficient time for a temperature
of 107 °g to allow equilibration of temperature of both
species. This justifies the use of a two temperature

fluid model for subnanosecond pulses of radiation.

IIT Viscosity

The contribution of viscosity to the energy equations
of a plasma in one dimension may be written as Kidder,
Barnes
(D Slab-like co-ordinates

4

. a'
Peyis = 3 M (3_1-1:)'2 - (12)
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(2) Cylindrical co-ordinates

& -4 2 rBr I.'z
e = 2 r
o vis. 3 u ( ) (r ?t (r) , (13)
(3) Spherically symmetric co-ordinates ,
c - & IS S
pevis -3 M [rar (r ) ] _(14)

where M is the normal viscosity. Due to uniform compresson
and/or expansion where spherically symmetrical co-ordinates
imply that volume elements are undistorted means that r/r
is a constant and hence the viscous contribution to. the
energy equation drops out in a spherically symmetric
geometry. One sees the contribution of wviscous térms as
being zero or negligible except at shock fronts because the
hydrodynamic - equations are valid when the mean free path
is much smaller than the characteristic length. They
become invalid when the mean free path approaches the
value of the characteristic length which occurs at

shock fronts. Any computational stability at the shock
front requires the use of an artifidal viscosity term both
in a slab like geometry and a spherically symmetric
geometry. No requirement is made of an artificial ViaCOSity
term for expansion. We use the scheme of Richtmyer. and
Morton4 where for the artifical viscosity term appears for

compression (when Vj > Vj + 1)

QP = con? (av if %X <0
* | (15)
0 if ¥ >0
X

where c is a constant, p the density and A the mesh size
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The argument for an artifical viscosity term lies
in the Von Neumann and Richtmyer séhemes. When in a
compressible fluid, disturbances of large amplitudes
occur, waves of different wavelengths couple and energy
tends to propagate from the long wavelengths to the. short
wavelengths. Energy will aggregate in the shortest ‘
wavelengths on a different mesh. Hence large oscillations
occur between variables at adjacent mesh points. The
artifical viscosity term transforms the energyof thelarge
mesh oscillations into the thermal energy of the fluid
velocities. The value of the ion viscosity is 1arger
than the electron viscosity by a factor of (mi/me)%.
Hence the viscosity is added only to the energy equation

for the ion species.

IV Assumptions for the Code

1. Debye length - maeroscopic scalelengths.

A sphere of radius Ad called the Pebye length
would have a potential energy equal to 4nne2AD . If the
kinetic energy of a particle in the sphere is k T is much
larger than this potential energy then the effect of the:
sphere on the motion .of that particle is minimal. The

Debye 1ength A

D is
41rne2 AD2 = kT ' (16)
defining AD = kT (17)
4 ne2

When considering lengths larger than AD one looks at
collective assembly of plasma. Lengths smaller than AD

means that the microscopic interparticle effects are
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important. When the number of particles in a sphere

of radius AD,(called a Debye sphere) is large,ithen the
primary phenomena‘of interest are macroscopic collective
effects rather than binary particle effects. Such a
physical system may be described by a particle field
model and the plasma acts as a fluid when the macro—:
scopic scale length of the computational model is

larger than the Debye'langth6

. - Multiphoton processes
are assumed which immediately takes into account many
interactions when the entire lasetr field interacts with
the plasma - macroscopically described by a classical
model. |

Condition of quasineutrality also exists when the
Debye length AD is much smaller than the characteristic
lengtH of density variation in the plasma.

The basis and validity of the 1 fluid plasma
model stems from the more general theory of Boltzmann's
equations. The basic equations in 1 fluid theory
interacting with a laser field contain the mass

conservation, momentum conservation and energy conser-

vation equations which are respectively,

2 o+T,v = 0 (18a)
& Ly o+ )y =3 xB | (18b)
N et ovy) =jxB

Dé% (% vi+ v + 2_'(E.,z + Qv (%v2+ v) +q =

force applied-  ...... (18c)
where v is the velocity vector, j the current density,

B the magnetic fieldvector, { the viscosity vector. The
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equations are general and the validity of them:apply
from the consideration of Boltzmann's equation;which is

the more broad kinetic theory and Boltzmann's equation is

of . = (8f
+ v vr f+Feyvv £ (at)

5t {coll. 'l(19)

where the left hand side represents the flow terms with

force F and the right hand side represents intéractions

with source functions. In plasmas the right hand side

is represented by Fokker Planck type source funckions.
The method of expansion of f7 is

2 ’
f=f (L+k Q+k Qo +. . . ) (20)

Generally there is no prodéf of convergence for Q4 It
does converge .depending on the restraints. The first

"1limit for fo is Maxwellian and

, |
Ko = L 21)

where A is the mean free . path and L the characteristic

length determined by

RS , (22)
v | .

so correct convergence is always assumed for kn<< 1.

Similarly the constraint for kn may be made in terms of

time Tmfp the mean free path time and T the characteristic

time so that
T

x = .mfp (23)
n L

The constraints on k allow us to assume that local Q,,
Q, 1in terms of length and time are valid and therefore
the set of relationseq.(l®are also valid. One sees that

kn acts as a constraint for quasineutrality requiring that
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the mean free path should be replaced by the Debye
length iy thus neglecting microscopic interparficle
effects and desctibing a set of macroscopic equations
describing a collective -:assembly of plasma. We assume
that the plasma equations are averaged over a Maxwellian
velocity distribution. |

In a two fluid model description we look at.macro-
scopic length L and time T in relation to the microscopic
length ADand time T so that

L >> |dr|\>> Ay ) - (24a)
T >> |dt| >> 1 (24Db)

We have three basic macroscopic time scales. The
electron ion scattering time scaleTe, the ion - ion
scattering time scale T., and an irreversible relaxation

time scale T_ representing the time for equilibration

14

of temperatures between electrons and ions. We do not

look at reversible time due to the magnetic field

interactions. Assuming T, = T; then 8

T T |
T @ T.: T =1 : (a—) (m—) = 1:43 : 1840 (25)
e

e i €

()

The transfer of momentum from ions to.electrons is of
the order of Te hence the transfer of energy from ions
to electrons is small compared to ion - ion transfer.
The transfer of>momentum from ion to ion is small
compared to electron-ion transfer which is therefore
the most important effect on the electron distribution
function.

If an observers time scale is less than Te thenﬂ

the observer would see both electrons and ions behaving
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as particles. If the time scale is larger than To but
less than TiAthen an observer would see electrons acting
collectively as a fluid and the ions as kinetic
particles. Similarly if the observers time scale was
larger than T but less than Te.the observer would see
the separate species acting as fluids establishing local"
equilibriuﬁ within each species before equilibrium is
established between species. This has been previously
discussed in the section on heat conduction where a
picosecond time scale would see temperature gradients
between electrons and ions but nanosecond pulses would
be of sufficient time for the equilibration of temperature

between species,valid for both 1 or 2 fluid models.

3 Relativistic correction to Mass

Corrections to the masses m of the plasma cells were:

made ,where m* is the relativistic mass,v the velocity of

cells 5
m* = m// 1-Y /c? (26)

On comparison of mass and the correction to mass
affecting the energy with respect to intensity of incident
laser radiation, table 2, there appears a difference

occurring at an intensity of 10!'7 W/cm?.

Intensity X mv2 J) % mzz (@)

10'® W/cm? 5.0 2116 x 10%| 5.02116 x 10°

10!'° W/cm? 4.179326 x 10°| 4.179326 x 10°

10'7 W/cm? 4.60476 x 10'3| 4.60477 x 1013
e e e e e mrn e e e - . E— — -

Table 2
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Relativistic effects begin to be relevant.above
10'7 W/em?. Only when velocities of the plasma are of
the order of 10'%cm/sec occurring at flux densities
larger than 10'7 W/cm? do relativistic corrections to
the mass affect results. This is in total agreement with
Masini et a1.9, who predicted.that relativistic effects
are minor for velocities < 10'° cm/sec. Relativistic13
self focussing occurs at 3.6 x 10'® W/cm? when the kinetic
energy of the laser beam is equal to mc 2. A one
dimensional plane wave scheme does not assume self
focussing which is simulated by two dimensional géometry.
Below the relativistic self focussing threshold intensity

that effect is neglected.

4 Brémsstrahlung

We assume that the macroscopic absorption of laser
light is by collisional effects mamely inverse bremsstrah-
lung. However we assume that there are no losses due to
bremsstrahlung thus limiting the oscillation energy of
the electron to less than hw. At temperatures above
107 °K the plasma radiation energy losses rot only
through e - i dipole radiation but also by e - e, 1 - 1
quadropole'radiétionlo.. Only when relativistic effects
occur that e - e, i - 1 radiation quadropole effects'are 
importantll. As all cases are non relativistic any loss
of energy can only be through bremsstrahlung. We assume
no losses through bremsstrahlung. Reheat, Compton scatt-
ering, self generated magnetic fields, creation of non

thermal particles by strong shock, non perfect -equations of

state and their formulations for degree of ionisation have

been neglected.
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5 Retardation

: The solution of the Poisson's equation at

boundary conditions requires no retardation time délay,
since the density of the plasma self consistently describes
~the electric field: Therefore for computational purposes
of the boundary conditions only the speed of 1ightAié. a-
ssumed to be infinite, and that the laser produces stoccato
bursts of energy at times tn+% where

B =% [P + R(eh] 4 0
the laser enefgy Ejm+2 is incidené at the plasma boundary.
described by cell jm + 2 at a time n + % and P(t) is the
temporal power output of the laser. Poisson's eqﬁation
is solved separately and the consequent solution included

into the E field.

\ Lagrangian code

Changing the set of Eulerian equations (18 a-c) by
using Lagrangian co-ordinates where .cells of variable size
and constant mass are used compacts the equations. Use is

made of the relation

d _ 3 . ~ |

(1) Conservation of Mass

In Eulerian form

ap _ :
that is —g-% + v.Vp + pV.v =0 (29)-

in Lagrangian form
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Since the masses of cells are constant

do _ 0

T = implying V.v = 0 (31)

(2) Conservation of Momentum

sz |

¢ + Y-epvyv =-Vp -F (32)
that is

b TV t VY v+ vV ot ov Vv 4+ vpVey

= - ZP - _F-'- ...... v (33)

In Lagrangian form and using convervation of mass equations

this simplifies to

bqe = - Yp-F (34)

where F are the forces interacting with the plasma. We
assume that the pressure is isotropic. The nonlinear force,
gravitational force, artificial viscosity and the Poisson

term are included in F then

dv :
oqE =—\7pt(zni-ne)g_-slTr-V(E‘+H2)tF - QP
P (35)
The Poisson term is solved separately then included in
% (E? + H?)
1y (E2 + H?) 1is the nonlinear force
8m _
Fy is any extraneous force e.g. gravitational

and is neglected..
QP is the artificial viscosity term which is included
only when the mean free path ) is greater than or equal

to the characteristic length occurting at shock fronts.
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The momentum is diffused . through the fluid by%macfoscopic
particle motion denoted by the artifical viscoéity term
assumed to affect only the ions.

The gradient of the pressure as will be seen later is
- comprised of the partial pressures on £he ions and the

electrons so that

VP = V(s +p) |
(36)
= kVn.T, +k VnT
ivi e’e
3 Conservation of energy equations

The energy equations for the electrons and ions are
treated separately. We assume that all incident radiatien
energy is absorbed only by the electrons through inverse

bremsstrahlung. So that we have for electrons

oT
9 _ _ v €
3t fv Pe Ee dv = fA P ¥ d A fA Ke Fgfdé
+ fv Pa Ee av. ... (37)
for ions

where Per; are the separaté electron and ion densities;
Ee’i are the separate electron, ion internal energies;
Posj are the elg;tron, ion pressure, v is the velocity
defined as v = 3¢ , A the area, V the volume.

ée is rate of energy addition to the eleétrons by inverse
Bremsstrahlung. K, ,; are the coefficients of thermal

conductivity for the electrons and ions.
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The power absorbed by the electron via inverse

bremsstrahlung is
- _ c g |
We IK 87 E° K :(39)
where I is the incident intensity, E the electric field,
K the absorption coefficient when n, <n,. then K is
given by

én“zznenieuln A |
© T ai@mol G, 1 E_) o
cw?( nme)z { Te os) v

the In A term is set at a maximuﬁ'of 10. We include the
nonlinear correctibn to the absorption constant by includ-
ing the oscillation energy of the electron due to the laser
light radiation. The amount of energy absorbed only by

electrons in each cell is

where Ej+l is the energy incident on the cell and

_ _ n+%
Ej = Ej+1 WE 2 (42)

is the energy incident on the next innermost cell. This
is repeated from the first cell on the right, JM+2, inward
to the first overdense cell. Assuming a linear approx-
imation for the density of the cell, somewhere in the
overdense cell the plasma frequency is equal to the laser
frequency. Reflection then occurs. The process above is
then repeated in the opposite direction. The temperature
Te is assumed to be constant within each cell. Inte-
gration of the absorption coefficient for each cell

requires a linear profile to ascertain the precise point



75

when “p = w. This assumption prevents errors in any

cell when n_-is equal to n__.
-» e ec
The electron and ion energy equations are converted

into finite difference form so that we solve for

I N A T Te e
nd T, P T - (K A =D+ K A 8x)3+1
Glodmxvvr +ndES L (43)
eT e e
A BRI R 3T, aT,
i 3t =" Py 7T% K; A __—) + (K A 5% j+1

-G/, v kvr e (48)
T
where the script j represents the cell j. This set of

equations are solved implicitly. The use of an implicit
differencing scheme in comparison with an explicit |
differencing scheme which computes the new temperéture
from values of previous temperatures at 3 adjacent poinfs
is this. The temperature in the explicit scheme is able
to propagate at most one mass point per time cycle. 1In
reality at areas of high conductivity the heat propagates
over many cells in one time cycle. To be more precise
simultaneous computations should be made for all present
temperatures Whiéh gives the total physical information
at each cycle. Thus allowing the temperature to propagate
everywhere in the plasma without ioss of information.
Collisional energy transfer betweenaelectroﬁs and ions
can save computational time if the relaxation time is iso-
lated from the energy equations and solved separately.
Dividing eqs.. (43) and (44) by 3/2 n, k and subtractlno

and retaining only the temperature difference ylelds
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9AT _ AT |
Br=-a+2) & (45)

Eq. (45) can be integrated over the timé étep At

by assuming that T is constant giving

n+1

_ At -
AT ATO exp - - (46)

wherel&To is the temperature difference between the
‘épecies at the commencement of intergration. The
calculation of the temperature relaxation terms is done
in two separate periods. The first between times n and
n + 1, followed by implicit calculations solving the
remaining energy equation terms for the‘temperature,
followed by the second period between times n + % :and

n + 1. This method of separation is required for
accuracy of t and the coupling of separate equations
required for repeated computations.

The energy equations without the relaxation terms
may be solved by the method of Richtmyer and MortonA.
We set up equations (43) and (44) so that they are in
the form

-A. V.. + B, V., - C. V. = D, 47
J 3+l J 3] J J-1 J : (47)

and solve Vj which denotes the implicit temperature

value where

. = E, V, + F. 48
Y3 j i+l j ¢ ?
EO ‘- Fo = 0 ) (49)

. = A, . - C. E, 0
Ey = Ay / (B C; J_1) (50)

. = (D. + C, F, . - C. E, 51
FJ ( j 3 J'l) / (BJ J J‘l) 4 b

Storing Ej and Fj in the arrays Dj and Bj saving the

value of Dj for use in (51) before calculating (50).
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VI Description of the Code -

The overall plan of the code is divided into four
sections. These are initialisation, increment in

temperature, dynamical increment, updating and checking.

--(A) Initialise
(D Set constants
(2) Initialise density profile
(3) Initialise plasma properties
(4) Call laser pulse parameters
(5) Write initial condition -
(B) Temperature Increment

(6) Compute added energy - CALL LASER for input power

(7 Half relaxation.of electron ion energy difference
(8) Ion heat conduction solved implicitly

(9) Electron heat conduction solved implicitiy

(10) Half relaxation of remaining electron-ion

energy difference.

© Dynamical Increment

(11D) Advance velocity

(12) Advance radius, velocity

(D) Update and check

(13) Update plasma properties

(14) Compute and check energy balance
(15) Write current plasma variables
(16) Check temperature, densities, time

(17) Update variables

Lagrangian Mesh

The plasma in one dimension is divided into J M

cells with each cell individually indexed by j. The size
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of each cell is variable, the adjustment of size depend-
ing on the constraint of having an invariable ﬁass for
each cell. The densities and temperatures of the plasma
reside in the center of the cells at integer times. The

- positions of the interfaces are observed at integer: times.
The velocities of the interfaces are determined at hélf
integer times. ,

(a) Interfaces j of the cells are located as follows at

time n, figure 1.

Anterface {/interface J + 1

O EETTT

=2 J=J J=JM JM+1 JM+2

1

|

Figure 1

Plasma is divided into Jm + 2 cells where the first,
J =1, cell and the last, J = Jm+ 2, cell are used as
dummy cells.

(b) Each interface J is advanced in time which then
determinmes the new temperatures, velocities and densities.
We can view the advancement in time by layering of the
above diagram for each half and full integer time. A

schematic description follows on the next page,figure 2.



Time Time
Cell J
n+ 2 n+ 2
n+ 32 1B Cell J n+ 3/,
n+ 1 xB(J) TPR(J) ,T™MB(J) ,REO0 (J),QP(J) n+1
n 4+ L UA () Cell J n+ %
n ' xA(J) TPA(J) ,TMA(J) ,RHOA(J) n
J J+1
Figure 2

Schematic diagram depicting the advancement of interface J in time, determining

the new temperatures, densities, velocities and temperatures in cell J.

6L
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In general if a variable ends with an A it is the

earlier time step than that for a variable ending with

D ihterface at time

h

a B. So that the position of the jt
n is indexed by XA(J). The position of the jt ~interface
-at time n + 1 is indexed by XB(J). Similarly for
temperatures of the ions TPA(J), temperatures Qf-thef
electrons TMA(J) and the density of plasma RHOA(J). The
velocity of the interface is determined at ‘half integer
times so that UA(J) is the velocity of the plasma at time
n + % and the velocity UB(J) iszat time n+3/2. After

the variables have been calculated at the new timé, it

is required to reset those variables for caléulations at

later times.

Description: of Variables

XB(J) - Position of interface j at time n+l
XA(J) - Position of interface j at time n
UA(J) - Velocity of interface j at time n+l/2
UB(J) - Velocity of interface j at time n+3/2

RHOA(J)-‘Densityoflcell j between j to j+l at time n

RHOB(J) - Density of cell j between j to j+1 at time h+l

TPA(J) - Temperature of ions in cell j at time n

TPB(J) - Temperature of ions in cell j at time n+l

TMA(J) - Temperature of electrons in cell j at time n

TMB(J) - Temperature of electrons in cell j at time n+l

DM(J) - Mass of cell j

W(J) - Specific energy absorbed in cell j between time
n and n+l

QP(J) - Artificial viscous pressure in cell j at time n

ALNE (J) - Log terms of temperatures, densities for



ALNI (J)
JJI(J) -
JG(T) -

TSI(J)
TS2(J)

TS3(J)
AT -
B(J) -
cEy -
D) -
EQJ) -
F(J) -

ETA(J)

XXX (J) -
DTPR(20)
TPRC(20)
BETA (J)

GAMMA (J)

PR (J)

SX(J)
ET(J) -
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- implicit integration of energy equations.
Cell number .
Dummy cell number used as a condition er
avoiding overlapping

Implicit heat conduction used for computation

lof A,B,C,D,E,F

Solving implicitly the heat conduction terms

in the energy equations.is solved by R Richtmyer

£
R. Morton4

Used for calculation of EM energy to be
included in the absorption coefficient |
Used for plot roPtine
- Used for time checks

n
Refractive index squared where BETA=1-EE =n?

ec.
Absorption coefficient calculated before and

after interacting with laser light.
1 :
8 (E2 + H?)
Variable array for calculation of W(J)

Used for ETA(J) in calculating GAMMA(J)

Input Variables - all units in C.G.S.

TWAIT
TRISE

POWER

0.0 Arbitrary constant for control of data read in
- .secs The rise time for laser input

. ergs/cm® INPUT INTENSITY



ANGLE

82

= 0.0 ANGLE OF INCIDENCE (not used)

Z = 2.EO - CHARGE

ZSQ = 5.EO CHARGE SQUARED PLUS ONE

ANCORE = 1.17E23 Arbitrary constant to set the critical
density

TEMPIN = 1.H6 °Kk Initial temperature input

DTIME = secs Timeg:=steps

NPRINT = 4 Number of time step constraints

Constants

DTB Equal to DTIME the time stép

DTC Half the time step

RANGLE ANGLE/n/3 in this case = 0

STH2 STH2 = SINE (RANGLE)? = 0

CTH  SQRT(1-STH2) = 1

BOLTZ Boltzmann's constant k

PI T

ccC Speed of light in vacuum

CHARGE e

ELMASS M_

ALMASS m,

'AMASS (a m, + mi)

RT RT = BOLTZ/AMASS

KRPT Number of interactions of implicit heat conduction

TRATL Fraction of total energy allowed to be absorbed

WAVELN Wavelength of input laser light

FREQL Frequency of laser light w

OML 21w

CKO 2w/WAVELN
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CCl2 Constants used for relaxation time f

CCl22

CCl7 Used for calculation of electromagnetic enefgy
density

"CCl8 Used for absorption coefficient

Ccc19 Also used for relaxation time

CC20

CC21 Used for calculating RDEB

CC25N Used for implicit heat transfer calculations

CC25P '

ENCORE (

RHOCOR

ENCR { Used for initialising density

RHOCR |

RATCOR

\
JM " Number of cells

JMO Constant equal to JM
JMPI JM plus one
JMP2 JM plus two
ETOTA Total energy absorbed
TMASS Total mass
WTOT Total input energy
SINC Phi. .xPOWER
SINX SINX = ANGLE DEPENDENCE+*SINC
SXIN SXIN=SINX
ESUP - Total power input
ERROR

Error check
ERRORA
SXOUT Power out

-TAUE12 Relarxation time T
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TAUE12 Relaxation time Tt
ENERGL Pulse energy /cm?
ENERGX incident energy /cm?

Initialise Density Profile

Call subroutine INIDEN returns with initial density
and mass for each of the J N cells. There are three
separate routines for the formation of density profiles"
These are shown schematically below where the initial
thickness D of the total plasma is not more than 100

microns, for figures 3, 4, 5.

L 3
Distance D

Figure 3 Linear step profile connected to a
plateau at constant density equal to

the cut off density.
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kink
/

Distance D

Figure 4 Raleigh profile connected to a plateau
at constant density equal to the cut off
density with a kink at the vacuum plasma
boundary.

{

Ne 1 L
Nec

\ékink

: Distance D
Figure 5 Bi-Rayleigh profile with a kink occurring

at both ends of the profile. 1In all cases

the laser light is incident from the right
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Initialise Plasma Properties

Calculate

BETA = 1 - n_/ = n?
e'nec

ALNE log terms used for computation of
ALNI :} relaxation times

GAMMA  The absorption coefficient beforé laser-input
TMASS  Calculate the total mass

ETOTA Calculate the total thermal energy and

velocities

LASER PULSE PARAMETERS

Calculate the temporal envelope ¢(t) of the laser

pulse. For the modified Gaussian assumed here.

1.21 t t< *455
¢ (e)” e-2(1-t)* *455'< t <1
e-(l-t)2 tx1

where T is TIMER

WRITE

Print out the initial conditions and several
variations.

Calculations of Interactions

CALL subroutine LASER to ascertain the amount.of
incoming power at any particular time. _

CALL WAEQ routine to calculate the eléctromagnetic
energy density, the power density per unit cell, and other
variables for later calculations of the absorption
coefficients with a new absorption coefficient to account

for power fluxes.
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Relaxation-Energy - Half time step

Calculate half of the relaxation of the electron
ion energy difference - the relaxation time constant Tt
and the temperature T and the change in temperatures of

~both species over half a time cycle. DTC denoted by’

DELT.
Then
TPA(J) = T -Z#% ZI% DELT
TPB(J) = TPA(J)
TA(J) = T + ZIxDELT
TMB(J) = TMA(J)

Implicit intergration of energy equations

Using Richtmyer's4 iterative implicit finitev
difference formulation because of the high temperatures
involved we then solve for the ion heat conduction then.
the electron heat conduction.

Second half relaxation energy"

Calculate the remaining half of the relaxation
electron ion energy difference.

Advance velocity

Ificluding an.artificial viscosity we solve for

dv

d
dt = dx (”gﬂ

where the n,T contains both electron and ion

2 2 .
E+HYy é% nk T+ QP (52)

contributions,

Advance radius and density

xB(J) = xA(J) + UB(J)*DTB (53)
RHOB(J-1) = DM(J-1)/(XB(J)-XB(J-1) (54)
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Update

With the new values of the temperatures, Qelocities,
densities, distances and the new electric energy density
terms wethen update the various plasma properties which
-existed in the initialised plasma properties.

ENERGY ERROR CHECK

Obtain the total energy before laser input where the
thermal energy is
ETOTA = m (Ti + z Te) : (55)
Compute the kinetic energy
=1 2
EKIN = z m(vi + Vi+1) (56)
Compute the initial energy
- 3/, K/
EINT /9. "N (Ti + z Te) (57)
Then the total energy after laser input is
ETOTB = EKIN + EINT (58).
Then the error at each time step is calculated as
ERROR = (ETOTB - ETOTA-WTOT) /(ETOTB-ETOTIN) (59)
A further check is made: from momentum
conservation.

Time and space limitations

To prevent a sound wave from crossing a cell the
general Courant—Lewy-Fredericks conditibnlz(CLF) for -
computational stability is imposed on the time step where

A < 1%F (60)
where A is the mesh size and |v| the velocity of sound.
This requires that the time step At will be short enough
to prevent a sound wave from crossing the cell. The

speed of the sound wave as a function of the temperature
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will vary from cell to cell on the mesh and the limit-
ation on the. time step is a local one to be evaluated at

each cell. 1In our case the condition is

XA(J+1) - XA(J?

_XA( XA (61
/5/3 k/m (TPB(J)+TMB(J) -

at = ¢

where ¢ is a constant and k is Boltzmann's constant.

Allowance is made of a fraction of energy to be
transferred from each interface. Energy transfering at
higher rates than allowed would lead to instabilities.
This condition on time is written as

Athen
AtT - n+l n (62)
T -T
e e

where At is the time step and Ten and Ten+1

are the

electrons temperatures at times n and nt+l. If for any

n+l then AtT will be made smaller by a

factor of ten thus allowing more detail and information

n
n T > T
reaso e e

to be printed. -

Restriction is also made to the amount of laser
light energy input by imposing the condition that only
a fraction TRATL of the total energy,ETOTA, in the plasma
divided by WTOT the total laser energy absorbed during the
previous time step where Aty is the time for that fraction
of energy input then

Atp = DTA* TRATL* ETOTA/WTOT
To impose all three constraints above on the time

scale the smallest of the three conditions is taken to

be the next time step.
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CHAPTER 6 Results and Discussions

I Density Profiles

Assuming a collisionless plasma with the collision
frequency v set equal to 0 we obtain the refractive 'index
of a Rayleigh profile as a function of distance x by

--defining

T T¥ax | -

where o is a real constant. The corresponding electron
density n, for the refractive index n above as a function
of x is
= 1
ng = mg (1 - ———) (2)
(1 + ax)? :
where n_ . is the cut off density determined by the

frequency of incoming laser radiation w given by

Nee T Ty e | ‘ (3
where m, is the electron mass and e is the electronic
charge. For a 002 laser with wavelength of 10.6 ym,

n_ . is 9.84 x 10'°® em™’. For a Nd glass laser with

wavelength of 1.06 ym, n__ is 9.84 x 102° em”

ec
Figure 1 displays the refractive index n of a Rayleigh
profile for various o as a function of distance x.
For values of o > ot where a+ = 2% = 1.18 x 10%cm '
the plasma exhibits total reflectance for Nd glass laser
radiation. The corresponding electron densities as a
function of x according to eq.(2) for different a is
displayed in Figure 2{ The motivation for using this

density profile is derived from the results of the chapter

on reflectivities. The low reflectivity of light for
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FIGURE 1

Distance 'x.cm

Spatial variation of the refractive index of a Rayleigh density profile, where

“the profile is described by eq. 1 and displayed for different values of «a.



| 1 L 1 1 1 : 1 1 1

Y oY 0.2 0.3 0.4
' Distance x cm

FIGURE 2 The-electron density profile of a Rayleigh like profile for different

values of o corresponding to eq. (2).

c6
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o < % a 1s less than 5%1. For the following discussions
of the nonlinear force transfer of optical energy into
kinetic energy of moving plasma for compression we have
selected those cases with a minimum of reflection.

When plasma exists at temperatures where collisional
effects are important then the collision frequency v can
no longer be assumed to be 0. If the o in eq. (1) is
made of real and imaginary components A and iB where
the constants A and B are real variables, the absorption
coefficient of the Rayleigh profile will depend on the:
imaginary part of the refractive index, iK where K is
the absorption coefficient given by

K = iz ‘ 4y
(Ax + 1)? + B?x?

where K is a function of x. 1In figure 3 are plots of
equal and increasing values of A and B. The ébsorption
coefficient peaks in all those cases with the maxima
approaching the vertical (x = 0) axis. Plasmas are not
always collisionless. Depending on the temperature the
collision frequency changes the absorption coefficient
in equation 4. Similar to figure 3, figure 4 shows
values of increasing B the imaginary part of the
refractive index. The variable A remains constant -as

B increases. The maxima increases with increaéing
values of B with the maxima approaching the vertical axis
with increasing B. When radiation interacts with a
Rayleigh profile and it experiences absorption, the
absorption of radiation will reach a peak, the value of

which is determined by the maxima of the absorption



Absorption coeff (x)

0 —_— ] 1=
0.l 0.2 | . 03 0.4 0.5
Distance xcm

FIGURE 3 The'ﬁbsorption coefficient K of the Rayleigh profile for equal real and

imaginary components A and B corresponding to eq. (4).
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cpefﬁcient K

Absorption

A= lOB= 10

A= 10B=1

— o=
Distance x cm
FIGURE 4 Absorption coefficient K of the Rayleigh profile ~ ~
' for varying real and imaginary coﬁponents of A

and B correspondingvto eq. (4).
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FIGURE 5

Distance x (arb. units)

The schematic connection of a Rayleigh profile ’

onto a plateau of constant refractive index

equal to one corresponding to eq.

(5).
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coefficient. 1In figure 5 we cohlnect continuously a
Rayleigh profile onto a plateau of constant refractive

index equal to one given by

.

n = A\ (5)

e
v 1
Dec (1 - T+ a(x - 50pm)2 X 20

~

The curve on the right corresponds to the electron
density. The one on the left the refractive index n.
As will be shown later the curve attached onto a constant
refractive index of value one exhibits little reflection
up to the boundary where the electron density is equal to
the cut off density. This will exhibit the same
behaviour as that of a linear gradient of electron density
whose value monotonically increases to that of the
cut off density. This set of profiles, eq. (5) are used
as test cases because laser light at non relativistic
intensities without self focussing effects will not
penetrate plasma equal to or above the cut off density, At
the: position corresponding to the cut off density,‘
laser light will be reflected. The interaction between
reflected and incoming waves forms a standing wave
pattern.

An inhomogeneous bi-Rayleigh density profile i$
seen in figure 6. It consists of éonstructing two symmetric
Rayleigh profiles corresponding to an inifial density

profile which has the form
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FIGURE 6

10.992
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Normalised density vs distance
x=2x10%

.OOO |-

0.998F

0.996

0.994

1
O'99950 O 50

Distance (um)

- An inhomogeneous bi-Rayleigh density profile
with an a=2x10" cm-l corresponding to eq. (6)
In all cases initial temperatures are assumed
to be uniform throughout the plasma.The cut-off
density n_. varies with the wavelength of laser

#adiation defined by eq.3.
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0 ;x> 50 um

. + 1 2 \.\\.\ :

Dec (1 - T - a(x—SOum)‘) » < x < 50um

ng = 2 (6)
¢ o+ (1 - L )

ec 1 + o(x + 50um)“ * =50um< x < 0
n__./1000 ; X < =50um

ecC -

N

where n+eé is .01% smaller than n ..

At lower values of o the plasma exhibits high
transmission properties and the laser light penetrates
the plasma with rippling effects. The rippling of>the
electromagnetic energy density will cause bunching of the
electron densities driving the electron densities above
the critical density. This is undesirable as further
transmission of laser light energy into the plasma is
tefminated. Several other symmetric profiles were tested
with similar results.

For higher values of a satisfying equation (6) the
electromagnetic wave penetrating into the plasma exhibits
a solitary maximum. This corresponds to two blocks of
moving plasma. One moving in the direction of propagation
of laser light (compression) and the other moving back
towards the laser light (expansion). With a bi-Rayleigh
profile, a controlled electromagnetic energy wave may be
transmitted into the plasma with a high percéntage““

(> 45%) of energy deposited into the plasma. Any increase
.on the energy transfer predicted by Nﬁckolis 2 (in a gas

dynamic scheme) of 5% will increase fusion reaction gains

by threefold since G the fusion reaction gain is given

by 3
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wIN

(7)

2
be s
where E0 is the input energy, Ebé is the breakeven energy,
n, the initial ion density, ng the solid state density.
This shows that a change in EO for laser input energy
increasing in efficiency from 57 to 50% corresponds to

an equivalent fusion reaction gain G for 1000 times less
laser energy. As a substitute to the Lawson criteriaA,

Kidder5

arrives at an algebraically identical formula as
eq. (7). Further corrections to eq. (7 ) are made by
including reheat and bremsstrahlung losses as well as
fuel depletion. These processes cannot be expressed

in a simple formulation due to the highly nonlinear
behaviour of the curves, indicating an ignition process

and has been described by P.S. Ray6.

_13
I1 Results of Interactions at 10 secs.

From the numerous cases calculated, we describe the
ones where the generation of strong reflection has been
generated in the early stage. The formation of the
standing wave pushes the plasma towards the nodes and
the generatéd rippling of the density parametrically
increases the reflection. The case of figure 7 we find
(E* + H?)/8m with one local maximum at the time when  the
laser pulse reaches its maximum intensity. The maximum
is not at x = 0 where the initial deﬁsity maximum is,
bécause the absorption and intensity dependence of the
optical constants modify the laser field. The maximum
corresponds to an intensity I related to the vacuum
intensity Iiac by I =1

/(n) where n represents the

a vac
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refractive index. The swelling of the wave corresponds

to o = (% ) = 7. The corresponding plasma velocity at
n .

this same time is seen in figure 8, and the electron

density in figure 9.

1
§7% (E2 +H%) vs DISTANCE

\ INTENSITY = 4 «10° W/cm?
10" =10
: 14
10
(E°.H?)
8 10" -
02l ="
,/ ——— TIME = 2510 sec.
oL ———— TIME = 1-5=10"sec.
1 1 1 1 1 — L 1 » DISTANCE
-10 0 10 20 30 40 50 (u)
Figure 7

Calculations of €2 + H2?)/8 for an initial bi-Rayleigh
density profile corresponding to eq. (6) witha= 10%cm™ !

: 13
at an intensity of 4 x 10'°W/cm? at the times of 1.5 x 10

secs and 2.5 x 10”™"'° secs.

The velocity profile at t = 0.15 psec is posiFiYe
from x = 35 ym to 50 ym corresponding to an expahsion
(ablation) of this part of the plasma corona as a
15 um thick block of plasma with velocities up to
10’cm/sec. The plasma below 35 um moves as a whole
block to the interior of the plasma (towards negative x).

The density at that time, figure 9, shows a similar
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profile to that of the initial bi-Rayleigh profile

eq. (6), especially the Rayleigh like decay at 40 to

50 ym. It shows however, that the initial maximum at

x = 0 has been moved to 3.8 um due to the internal
compression of the block moving towards -x, as the
velocity profile is constant. The generation of an
instability is seen at t = .45 psec where the(E*+ H?)/8m
in figure 7 oscillates, corresponding to a standing
wave. The size of the maximum also increases at the
1atér time. The standing wave causes the velocity

profile to oscillate in Figure 8.

VELOCITY vs DISTANCE INTENSITY = 4 =10° W/cm®
R < = 10*
0
10° b (//—\w ) f\,lq-ﬂ \
10* 4 '
v i [
E I
6 o |
(I; ol O o Jo ko a0 : of ({3 (DLS;-ANCE
$ 40" L J “
T ——= B —— TIME = 2.5 = 10 " sec.
cm -106 o T — _—d
/Sec'_wo_\) u U U | __ TIME = 1-5 = 10 " sec.
v

+ Figure 8
Velocity profiles corresponding to the case of figure 7.
Note the initial block like motion of plasma generated

by the soliton at 1.5 x 1077 secs in figure 7.
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ELECTRON DENSITY vs DISTANCE
) ~ INTENSITY =

X
"

1-03 |-
102 |-

Ng 1:01 1 _
\ 10 0,7 T 20

N 1-0 4 =% ~———
ec el N__” \//
97 b — TI_ME =15 .10'13 secC.
‘96 |- -13
———— TIME =25~10 " sec.
\J
Figure 9

"Normalised electron density profile at times corresponding

to the cases of figures 7 and 8.

The density,figure (9) shows rippling understood

by the motion of the plasma frdm figure (8). ©Note that the
velocity changes as the gradient of the electromagnetic
energy density. The maxima of the‘density ripples -
correspond to the gradients of negative velocities,
similarly with the minima of the ripples. Later timés
 show a very high relfectivity due to the density increas-
.ing above the cut off density, corresponding to a
macroscopic Brillouin type / dynamic instability.

E Compared to the cases of figures 7 to 9, the

-1
situation is quite different if @ = 5 x 10%cm with a
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Figure 10

Velocity profiles corresponding to the case of figure 4

57 (E2+ H?) vs DISTANCE

16 2 // - _\\
I=10 W/Cm _- \
‘<= 5x10° - \
1013 = - ’/
i \
2 2y 10777 =7 iy
(E°+H") r N/ I
8m " N Iul
10 |+ Y
10° TIME = 1.5.10 " sec.
—— —— TIME =4.5+10"" sec.
1 1 1 1 1 1 1 1 1 - D[STANCE
-50 -40 -30 -20 -10 0 10 20 30 40 50 (M)
Figure 11

Spatial profiles of(E? + H?/8nfor a case with an initial
bi-Rayleigh profile with a = 5 x 10" cm” ' and maximum
lasér‘intensity of 10'® W/cm? at times of 1.5 x 1077

secs and 4.5 x 107'° secs.



105

maximum intensity I of 10!'® W/cm? used (Figure 10 and 11).
It shows that at an early time of.1l5 psec the laser
intensity has a maximum near 40pum, with a swelling 6f
14, and then drops strongly towards negative x. The
high value of o generates a density very close to the
cut off density, and the smaller intensity than the
former case causes a smaller decrease of the collision
frequency since the collision frequency has a nonlinear
dependence on the intensity described in the nonlinear
optical constants section. At the time of .45 psec the
swelling of the intensity increases to 120 at x = 30 um
allowing the light to ﬁenetrate thfough the whole plasma
without a standing wave pattern. The plasma (figure 11)
moves in two blocks from 30 to 50 um towards positive'x
(ablation) and far less than 30 um towards negative x
(compression). The change of velocity near -35 um
corresponds to the minimum in(E2+ H?Y/8m near -35 um.
Computations at short time steps from .15 psec to
.45 psec can exist due to the non retardation of potential
and that the velocity of light is assumed to be infinite.
The scheme from now on is to increase time steps so as
to allow realistically several wavelengths of radiation

to penetrate and interact with the plasma.

ITI Reflection at cut off density

Standing wave patterns

Connecting an inhomogeneous Rayleigh density
profile onto a constant density at the critical density,
upper curve in Figure 12, corresponds to the initial

density profile in figure 5, equation (4). When the laser
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FIGURE 12 The upper curve is an initial inhomogeneous Rayleigh density profile onto
a constant density plateau at N, corresponding to eq. (5) with a = 10%.

The standing wave formation at 1.5 psec of the electromagnetic energy

90T



2L I=10'®w/cm?

E24+H2 m

8T
6_

Normalised

51 . ﬂ

1 1
-20 (0] 20 40
Distance ( uym)

1
40

FIGURE 13 For the case of figure 12 with a temperature of lev increasing the absorption

of the plasrﬁa. The formation of a standing wave occurs at the cut off density

at times of 1.5 psecs.
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IGURE 14 Same as figure 12 and 13 with a temperature of
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light of intensity 10'® W/cm? penetrates into the
plasma, it eventually propagates to the electron cut
off density where the light will experience total
reflection in figure 12. The interaction of the
reflected wave at x = 0 and incoming waves causes the
formation of a standing wave pattern for the collisionless
plasma. The pattern of total reflection is analagous to
the cases of a collisionless linear density profile
described by Airy functionégor'by numerical evaluationg.
The pattern of (B?+H?)/87m in figure 12, however shows
stronger swelling than that of a linear density profilelo.

For the case of a more realistic inhomogeneous
absorbing plasma with the temperature reduced to 1l e V
we see in figure 13 the electromagnetic energy density
irradiated by laser light of intensity 10'® W/cm? also
at the time of 1.5 psec. The oscillations of this field
in the plasma corresponds to the cases at times of
interaction of 10”'’secs where the non linear force
causes rapid oscillations of the plasma velocities with
a corresponding bunching of plasma density above critical
which effectively prohibits further penetration of laser
light. Similarly for figure 14, at a lower temperature
increasing the amount of absorption of the laser '
light. |

The cases of standing wave patterns, similar to
microwave experiments on plaSmall, are not useful for
transfer of laser light energy. They are taken as test

cases confirming that the phased inhomogeneous Rayleigh

profile behaves as a linear density profile confirming the
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generation of a standing wave pattern and the inefficiency
of transfer of laser light energy into random motion of

plasma energy.

IV Bi-Rayleigh Profile

The use of a Bi-Rayleigh profile for the initial
12

profile follows a tutorial example in Hora , now in
detailed numerical description of the whole dynamics

of interaction. With the density maximum close to but
less than the critical density, eq. (6), the profile will
reduce reflectivity and hence generation of standing wave
formations. It will exhibit transparency for relatively
low léser intensities, the opacity dependent on the |
temperature of the plésma. Compared with the single
phased Rayleigh profile onto a plateau of density at
critical, eq. (5) one sees that the Bi-Rayleigh profile
allows the electromagnetic field density to transmit
across the whole plasma. At the low values of

@ = 3 x 10%m” ' in Figure 15 the electromagnetic field
transmits sinusoidally which will correspond to bunching
of density due to the nonlinear forces, once again
causing density to grow above the critical density.
Figure 15 represents a geﬁeration of instability since
further laser light will be reflected back correspontding
to a macroscopic Brillouin instability.

Other symmetric density profiles were used. These

included
Elliptic density where n, = * n_ _* /1- x2/.0052 (8a)
Exponential density where n, = nec* e”?* yhere a is a

constant : (8b)
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FIGURE 15 Generated electromagnetic energy density for an initial bi-Rayleigh density
profile with o« = 3 x 10°? em” corresponding to eq. (6) for different
:intensity fluxes at times of 3.5 x lO-12 sec. Other symmetric profiles, egs.

(8), displayed similar formations.
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. ' . = k) 3 2 2
Witch of Agnesi where n, (nec7) [ (x* + n,. ) (8c)

The above density profiles with nec* slightly less
than n,. all behaves similar to figure 15, generating
standing wave type patterns with velocities oscillating
~rapidly, the densities bunching above critical density
acting as a macroscopic Brillouin instability.

By varying the constant o in eq. (6) the form of the
incident electromagnetic field may be éontrolled to the
extent of achieving the desired block like motion,
which will drive plasma as a thick block into the
interior of the plasma. As a result of conservation of

momentum the momentum of the compressed block is matched

by the momentum of the ablating mass of plasma.

\Y Gas Dynamic case

For the pure gas dynamic thermokinetic expansion of
plasma the only force appearing in the equatibn of motion
of the plasma is the gradient of the pressure, Vp. The
incident laser rédiation will be absorbed by collisions
which will heat the plasma and drive it13. For a Bi-
Rayleigh profile without any interaction with laser
pulses, the plasma would react as a symmetric diffusion
of the plasma at low velocities away from the max%@u@
of the density profile. In the case of figure 6 the
plasma would separate through thermal diffusion at
x = 0. One block of plasma for x > 0 would drift to the
right in the direction of the gradient of density from

high to low. The other block for x < 0 will drift to

the left. Assuming that Te = Ti = T is a constant,
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the gradient of the pressure is equivalent to the gradient
of the density and the motion of plasma behaveé
accordingly moving from values of high to low densities.

At all intensities of laser light interactions the
gas dynamic forces acts in unison with the nonlinear forces.
As discussed]‘4 in Chapter 3, Part III, there exists a thres-
hold intensity at which the'nonlinear force dominates the
gas dynamic force. For Nd glass laser the threshold
intensity is near 10'*W/cm?. Heowever the nonlinear force
can still exceed the gas dynamic forc&4if the temperature
T >10"eV. Even though there may be fluctuations in
‘the electromagnetic energy density with the corresponding
change of direction of the velocities, the magnitude
’of the nonlinear force may be smaller than the gas
dynamic force, to the extent that the rippling of
(E2 + H?)/87m will not be evident in the velocities of
the plasma. Therefore at intensities below threshold,
gas dynamic interactions dominate allowing further
transfer of laser light into the plasma without generation
of macroscopic instabilities.

At later times, intensities much less than threshold
will experience self focussing effects creating higher
intensities of laser radiation in the process. The
intensity of the light increases till it reaches Ehe
instability threshold generating instabilities. A one
dimensional plane wave code will not simulate self
foéussing effects, however, the absolute threshold for
instabilities may be simulated.

The gas dynamic force is seen to dominate the
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nonlinear force in figures 16,17,18. At an intensity

of 10!'? W/em?, figure 16 displays initially a

solitary wave followed by the formation of a standing
wave at later times. The velocities however, do not
oscillate in figure 17 as discussed earlier. The
electromagnetic energy density increases inbtime
although the maximum value does not increase4éppreciably.
Swelling is 6nly 26. The density of the plasma decreases
monotonically in the negative region of the plasma.

The magnitqde of the density gradient is largervthan

the nonlinear forces generated by the rippling of the
electromagnetic energy density due to the kink at-50 um.
Therefore the velocities (figure 17) at early and later
times remain negative without the oscillations which cause
bunching of the density profile. The velocities
increases at the boundaries of the plasma. The blow off
of plasma to regions of lesser densities as more energy
is transferred to the plasma is the reason for the
increase in velocity. The increasing velocities leads
to a constant decrease of the plasma density due to
ablation to areas of lower densities in figure 18.

This figure describes the vaporisation scheme15 as a
gasvdynamic ablation. The laser light at higher inten-
sities will drive the density near the critical degsity
to higher densities. 1In a purely gas dynamic force
"scheme there is thermokinetic expansion of plasma

driVen by collision produced absorption of laser light13.



=2 x 10%

(@]

I=10'%2W/cm?

T=___ 15 x 107 sec
- 25 Y

-12

- BB %10 :
a5z “»

Nd laser

| 1 1 1 1 1 1 1 | 1 1 =
500 -40 -30 20 -10 0 10 20 30 40 50

Distance (um)

FIGURE 16 For an initial bi-Rayleigh density profile with o = 2 » 10 cm*' and incident
fluxes of 10!'2 W/cm? and temperatures of 10° °K we observe gas dynamic

behaviour of the electromagnetic energy density.



Velocity (cm/sec)

o=2x10% To X
I=102 w/cm? _, i
T=__ 15x10"%sec 4
e 25 x 10712 1071
—-_35xl10""2 B
—._45x107?
Nd laser
1 1 1 1 1 1 i
-50 -40 -30 -20 -10 40 50

FIGURE 17 The low velocity

to figure 16.

Distance ( um)

profiles of the gas dynamié case corresponding

911



117

Ne
Nec
Lot
0.9
2 x 104
I =102 wW/cm?
T=___15x10""2sec
..... 2.5 x 10712
0.8 —-._35x10°12
—._45x107'?
Nb laser
0.7}
06
: : | | . -
0'54,55 47.5 50 ' 52.5
| | Distance (um)
FIGURE 18 The normalised ablating plasma density

corresponding to a thermokinetic expansion
due to dominating gas dynamic forces observed

in figures 16 and 17.

© .



118

VI Nonlinear Force - caviton

In a gas dynamic vaporisation scheme including
collisional absorption of laser radiation, one sees
the expansion of plasma as a monotonically decreasing
thermokinetic expansion. The motion of plasma due to
- the gradient of the pressure decreases monotonically.
When the nonlinear force is included into the scheme, the
ablating plasma is affected by interacting forces and
does not necessarily ablate monotonically. Similar to

16, Luther Davies17

experimental results of Zakharenkov
and numerical calculations by-Shearer18 and as discussed
in the nonlinear force chapter, we see in figure 19 that
for an intensity of 10!’W/cm? the density of plasma no
‘longer blows off regularly. There is a creation of a
caviton, which was first discovered numerically by

Shearer, Kidder and Zin:k;l8

, and a separate maximum for
the density due directly to the nonlinear force. This
.shock like effect near the critical density causes the
plasma to increase above the cut off density prohibiting
further transfer of laser light energy. To a lesser
extent at an intensity of 10!® W/cm? there is a smaller
caviton created where the density increases to 2%

above the cut off density also causing total reflectance.
At the higher intensity of 10!’W/cm? the size of éhe
profile modification occurs earlier than at lesser
intensities. The immediate consequence of the profile
modification is that the cut off density causes mirroring

of any further laser light introducing backscatter of

laser light. The ablating mass will appear at later
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times not dissimilar to the experimental results for
high Z materials and longer laser pulses.

At an intensity of 10!°W/cm? the density profile
behaves as in the gas dynamic case and will allow
further laser light to transmit into the plasma. It
is only at a 1ater‘stage of interaction that the
density of the plasma will form a caviton and a
corresponding spiked density profile.

All three intensities display initially a solitary
electromagnetic energy density with similar swelling of
24, The velocities of plasma ablating increases with
laser intensities and the compressing block increases in
velocities with a peak.velocity of 10° cm/sec for an

intensity of 10'7W/cm?.

VII Drilling Effects

In figure 20a, the initial soliton at a time of
1.5 psec generates a velocity profile as seen in
‘figure 20b. There is little change in the density
profile at the intensity of 10!°W/cm?. The soliton
increases with time till 2.15 psecs. Due to rapid
oscillations of the (E2 + H?)/8m between 30 uym and 50 um
the density increases in this case to just below the
critical density thus allowing laser light to continue
transmitting into the plasma but at the later stage of
2.55 psecs the (E? + H?Y8m is slighﬁly damped and
decreases in magnitude. The increase in transparency
ofgthe plasma is due to the decrease in the density

near the cut off density. At later times of inter-
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actions the forces (both thermal and nonlinear) increase
the density of the compressed block causing less

transparency to the electromagnetic wave.

VIII Temporal Dependence

By adjusting the value of a in the bi-Rayleigh
profile case of figure 15 the rippling of electro-
magnetic energy density is suppressed and will form
as a solitary electromagnetic energy wave which we
have called a soliton.  The importance of the soliton
lies in the forces, both gas dynamic and nonlinear force,
acting on the plasma. The predominance of the nonlinear
force over the gas dynamic forces14 results in the action
on the plasma depending on the gradient of the electro-
magnetic energy density and to a lesser extent the
gas dynamic forces. described as the gradient of the
pressure or at constant temperature, thebgradient of
the density.
| At the positions of maxima of the electromagnetie
energy density the plasma- motion reverse. Where the
gradient of the(E? + H?/8m is negative the plasma
velocity is negative and vice versa. Due to collisional
damping at lower temperatures near the critical density
the electromagnetic energy is collisionally damped a5 seen
in figure 21 at a temperature of 2 x 10° °K. The
higher the temperature of the plasma the 16wer the
collision frequency and hence the lower the absorption
of the plasma. At a temperature of 107 °K the plasma is

approximately collisionless and the formation of a wave
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FIGURE 21
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with stronger decrease due to larger collisional

- absorption.
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inside the plasma absorbs energy via adiabatic dynamic
collisionless absorption. Since no energy is
transferred at 107 °K to the plasma via collisions

the absorption of the optical energy is due to the
nonlinear force driving the plasma to velocities up

to 10° cm/sec in figure 22. The position of the

maxima of the solitons vary with thé temperatures and at
higher temperatures the position of change of velocities
approach xv= 0 which is the split point of plasma
velocities for a purely gas dynamical case.

We look more closely at the case of 107 °K in
figure 23. The electromagnetic energy density generates
a velocity profile with velocities oscillating in the
‘direction of the gradient of (E?> + H?/8n. The velocities
bunch up the density profile which cause spikes in the
density to six times the cut off dénsity. It was hoped
to try to collapse the densities into each other since
the spikes corresponds to plasma moving in opposite
directions. Simﬁlation;of such a situation would lead
to high compressions of plasma at both -20 pym + 25 um.‘
Due to necessary restrictions for cbmputational stability
conditions which were not satisfied it was not possible

to simulate the situation any further.

IX Generation of Instabilities

The initial formation of a soliton at a time of 1.5
psec is evident in figure 24. corresponding to the
electromagnetic energy soliton is the well behaved

ablation and compression of blocks of plasma , the
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boundary between the two existing at the maximum of the
soliton at 40 um, figure 25. The initial bi-Rayleigh
profile with o = 2 x 10" in figure 25 is perturbed
slightly at the early stage of interaction. The
slightly perturbed density profile will allow further
laser light transfer into the plasma éince the density
does not rise above the critical density. Further
transfer of laser light energy at an intensity of
10'*W/cm® produces a macroscopic Brillouin instability
similar to the interactions at 10‘133ecs. These
fluctuations drive the plaéma according to the gradient
of fluctuations of €% + H?Y8m and one sees the bunching
of the density profile. The maxima of the E2 + H2Y8w
corresponds to the minima of the density and vice versa.l9
The velocities directed towards each other cause the
density to rise. Velocities directed away from each
other means a dip in the density profile. The densify
of plasma via this mechanism is increased to 2.4 times
the critical denéity at the corona of the plasma at 5 um
This is of no benefit to fusion effects requiring that
high densities be at the center of the plasma or the
interior rather than the corona which will diffuse

out into the regions of lower densities. Efforts are to
be made in keeping the coronal densities low and the
"core" densities high which will allow further transfer
of energy either thermally or dynamically into the core
of ?he plasma. The generation of.Brillouin type
instability will drive laser energy back towards its

source rather than allow transfer of energy into the plasma
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X Damping of the electromagnetic energy density

The results from figures 24,25,26, showéd that the
density of the plasma is raised much above critical.
Similarly for a = 6 x 10" em™ ' the density is raised
much above critical and the' behaviour of the laser light
in the plasma is displayed inifigure 27 wifh the
corresponding velocities in figure 28. The electro-
magnetic wave is critically damped at: the later sfagg
of 4.5 psec which verifies previous discriptions of the
densities above critical density causing reflection of
laser light. The decay of laser light is due to

collisionél damping.

X1 Development of Solitons

The soliton is seen in figure 29 to move inwards
indicating further ablation of plasma due to the non-
linear force and hence higher compression of velocity of
plasma towards the interior, together with,higher
velocities. At the later time of 4.5 psec a macroscopic
Brillouin type instability occurs with the formation of
standing waves. Further computations show that the
sizes of solitions aredirectly proportional to the
intensity of laser light. At longer wavelengths, the
shock hammering type effect of longer wavelengths since
there exists less penetration of laser light causes an
increase in density above critical with a corresponding
caviton. The relatively low laser intensities of
10! *W/cm? causes a nonlinear force compression in
figure 29 due to the gradient of the electromagnetic

energy density. The density gradient of the Rayliegh
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density. The dynamic Brillouin instability occurring at 4.5 psec causes rapid
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profile allow variation of the force dependent only on the
plasma frequency for a collisionless plasma20 where the

nonlinear force can be described as
2

Eye %p : ,
Fal = Te% w7 © (9

This is evident from figure 29 at a time of 1.5 pseé
when the ablating force corresponds to the radiation
in the initial plasma density. Future development of
the soliton depends directly on the variation-.of the
density and the increase of the temperature in time
allowing the soliton to increase in size with corres-
ponding increases in the compression velocities. Higher
temperatures allow fluctuation of the electromagnetic
:energy density. Lower temperatures leads to collisional
effects causing the damping of the laser light. Either
way efficiency of transfer of light into the plasma is
low. This suggests that a stable variation in density
‘and a constant rate of temperature allow the soliton to
increase in size and to progress unhindered into the core
6f the plasma where high compression velocities may

occur.

XII Interactions at different intensities

Schematically the sizes of solitons vary dirééfly
with the intensity of laser light for constant initial
conditions, figure 31. The higher growth rate at
higher intensities for development of instabilities by
boéﬁ thermal and dynamic processes exhibits further

evolution of solitons. Due to the action of the non-
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linear force thick blocks of plasma with low entropy
compressions are generated with the magnitudes of the
ablations and compressions, determined by the maximum
values of the solitons. The swelling of the solitons are
not very high agreeing with the prediction ofvrelatively
low momentum transfer21. The ﬂlasma velocities generated
move in thick blocks and for intensities of 10!'7 W/cm?

reach velocities exceeding 2 x 10%¢m/sec, figure 32.

XIII Energy transfer dependence on intensity

As a consequence of computation of various cases
of figures 31 and 32, kinetic. energy dependence on
the intensity of laser light was discovered, figure 33.
Evaluation was made of the amount of kinetic energy
E, that had been transferred by the nonlinear force
which both the gas dynamic expansion and the
thermokenetic acceleration had neglected. Evaluation
was made of

B, (1) = —b [ e S S A (10)

X 2

X - X
2 T

for dependence on the laser intensity, figure 33. The
result is that the transferred kinetic energy is
increasing nearly quadratically against the neodymium

glass laser intensity such that

E. o I'° | . (11)

for the range of intensities 5 x 107 < I < 10 '*W/cm?
which expresses the nonlinear nature of the interaction.

The energy transfer is a nonlinear, .macroscopic,
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FIGURE 33 Kinetic energy transferred to the plasma

- dependent on laser intensity justifying the non-
linear nature of the interaction. Results of
exponents from eq. (11l) varied from 1.6 to 1.9

for different a.
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electrodynamic absorption process.
Isenor22 had observed such nonlinear results

23 had shown

experimentally as far back as 1964. Metz
a threshold intensity at which results of impulse showed
that above this threshold the mdmentum transferred to the
target rises rapidly with increase in incident light
energy.

Other experiments found the relationship to have
an exponential value ranging from .38 to .8. Engelhardt
et 3124 fbund the expcnential to be 33, Gregg and
Thomas25 found the exponent to be .8 for aluminium and

26

.53 for Lithuim Hydride, Opower et al found the

exponent to be .39. These results can be shown to be

‘consistent with equation (10).

The acceleration o |E|e- a Pe/2

The final maximum velocity Viax is given by acceleration

multiplied by 1 ,the pulse duration of the laser

Vmax = acceleration x T a Pe/zr
then , 6 .,
Emax - Vmax a Pt
that is E = -28% o p° (12)

X T
‘So that all the experiments can be seen to have a
superlinear relationship when one normalises the result

i.e. using equation 12 then the exponent of the exper-

imental results lie between 1.6 and 1.9. All these earlier

experiments need an interpretation by including self-
focussing.

X1V Temperature vs. Intensity

27

There appears'in Yamanaka et al a threshold
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Electron Temperature (eV)

Laser Intensity  (W/cm’)

Figure 3 4 Experimental observation of electron

temperature dependence on laser light

intensity by Yamanaka et al.27

Electron temperature Te (eV)

I (W/cm?)

.

Figure 35 Results of maximum electron temperatures

generated by the dynamic nonlinear force

scheme.
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‘intensity at which the temperature dependence of electrons
on laser intensity rises from

1 2

: <6 . * )
Te ol to Ta ol (13)

at above 10'® W/cm?.. See figure 34. Similar to DonialdsonZ®

here T 0" ¢ for I < 10'3 W/cm?.
Similarly using the nonlinear force model, simulations
were made of shorter pulses of radiation of 1.5 psec and
a plot was made, figure 35 of the maximum of electron
temperatures against the intensity and there appears the
existence of the threshold intensity changing temperature
gradients at 3 x 10'® W/cm®. , ,
The gradients of the temperatures differ than those
of Yamanaka et al. but allowing for errors due to calibration
errors in the laser intensities the simulated curve fitsv
into Yamanaka's experimental results. These results also
express the nonlinear nature of the interactions. The
difference can be due to the self-focussing diameter which
may vary with the power of Yamanaka's case.

XV C02 Laser Results

Using an initial bi- Rayleigh density profile with a
cut off density determined by the frequency of the laser
light, simulations were made of interactions of CO2 laser
at 10'°W/cm? and Nd glass laser at 10!°W/cm? and 10!°W/cm?.
Figure 36 represents the'electromagnetic energy density
(E? + H?)/8m at 1.5 psec, figure 37 are the profiles for
the corresponding velocities and figure 38 the density
profiles showing the corresponding minima (cavitons) due
toéthe nonlinear force acceleration.

The similarity of results for both wavelengths .at

10'% W/cm? lies in the maximum values of the electro-
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at 1.5 psec. Both density formations show the
existence of a caviton occuring in the vicinity

of a change in the gradient of the electro-

magnetic field soliton.
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magnetic energy density which are nearly equal. Both
cases show moderate swelling of the intensity above the
vacuum value. In the CO, case, a relatively strong
reflection occurs due to the oscillation of the field
at the peripheral part of the plasma. The case of
neodymium glass at 10'® W/cm? results in a pronounced
soliton with a swelling of 31.

Looking at the velocity profiles (fig.37) we see
that in all cases there is a compressing block like
motion of plasﬁa.in the 'direction of the laser beam acting
as highly efficient compression. However the maximum
velocities éttained between 10°® and 10° cm/sec corresponds
only to the different wavelengths of €O, and Nd glass
if the intensities differ by a factor of 102.

This example shows that for different wavelengths
of laser light with-equal intensity, similar electro-
magnetic energy density maxima are observed while block
like velocities are comparable in magnitude only when
intensities differ by a factor of 100. This is well
known from the electron energy due to the quivering
motion in the laser fields. Similar results are known
from the high energy ilons in the order of Mev produced

from solid targets after relativistic self focussing

-

at the same laser power with different wavelengthszg.

The important conclusion we arrive at is that equal
"plasma velocities occur due to the nonlinear forces

if the product

Iz? (14)

are equal. The difference of 10% for I the intensity
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occurs if A is the wavelength of co, laser at 10.6 pm
and the wavelength of Nd glass laser is.1.06 um.

This is precisely the I A* that was measured with

high accuracy in the range of intensities of 10'3 W/cm 2

to 10'7 W/cm? from the Los Alamos group3o.
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CHAPTER 7 CONCLUSIONS

With the aim of treating larger transfer of laser
energy into the plasma for improved fusion energy gain,
the properties of very low reflectivity was discussed on
the -basis of the Rayleigh profile. The exhibitance of
low relflectivities allows a high percentage transfer of
laser light into the plasma. The formulation of a
collisionless dielectricaily induced nonlinear force was
derived to be proportional to the constant o forvthe
Rayleigh density profile. By suitable arrangement of the
Rayleigh profile, the action of the laser in the plasma
allows for separate blocks of compressed and expanded
plasmas. The desired effect meant more efficient transfer
of laser energy as a macroscopic collisionless process.
The problem of "internal reflections" studied by step wise
approximations was found to be a numerical paradox as the
high order approximation did not converge to the exact
value.

Simulations of the laser plasma interactions were made.
The use of the general gas dyhamic scheme included macro-
scopic absorption. The governing equations of motion and
conservation equations were used including the nonlinear
force and corrections to the optical constants at higher
| intensities. The fully dynamic solutions of the lé;er
| plasma interactions at times of 0.1 psec verified the
‘block like motions of the plasma due to the nonlinear force
The block motions were due to electromagnetic solitons
forﬁed by the suppression of reflectivities at the junction

of the plasma and vacuum by judicious choice of the
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constant o. At the short times of picoseconda;ther-
malisation does not occur so that the compression of

plasma is adiabatic and one can assume that the electron
fluid remains below the Fermi energy level. The special
part of the code for solving the Maxwellian equations
neglected retardation of the electromagnetic field.
Realistically at a time of .1 psec, this assumption.is
questionable as the electromagnetic wave travels approx-
imately 30 um (approximating vacuum conditions) and inter-
acts only with the corona of the plasma. In the plasma the
group velocity of laser light is c |n| which is effectively
less than c. Therefore the very general and complicated
code had to be extended to times of picoseconds which will
allow the laser light pulse to interact dynamically with
the whole plasma. After numerous simulations with initial
bi-Rayleigh density profiles, special solutions for
discussions and observations were singled out for physical
interpretations. We succeeded with this temporal extension
at least up to such times where the retardation problem
was overcome and the interaction time was still short
enough to allow preddminance of the nonlinear force
effects. Cases of reflection at the cut off density

were observed with the formation of standing waves.
Reflections at the density cut off occurred at teﬁﬁé;-
atures corresponding to both collisions and collision
free plasmas. (Lindl and Kaw). The standing wave
behaviour generated by interaction of reflected and
incbming waves for the Rayleigh case corresponds to both

theoretical and experimental results using a linear density
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profile. The use of bi-Rayleigh profiles with the
maximum density slightly less than the cut off density
allowed transmission of the laser light across the whole
plasma. However standing wave patterns occurred as it
did -with other symmetric type density profiles. Supression
of the standing wave pattern is observed by varying the
values of a in the bi-Rayleigh profile, with a subsequent
formation of a soliton. At short times the soliton does
not automatically generate a density caviton. At the
high intensity of 10!7 W/cm? the caviton is observed at
1.5 psecs as a direct consequence of the aétion of‘the
nonlihear force. At the lower intensity of 101¢ W/cm?
the size of the soliton at 1.5 psec generates a smaller
caviton. At 10!® W/cm? the caviton is not evident till
later times.

The behaviour of the soliton is to increase in
time till a macroscopic instability occurs. The growth
of the soliton occurs as the maximum of the soliton moves
towards the interior of the plasma. Associated with the
increasing maximum of the soliton is the velocities of the
plasma, moving as two separating blocks. The increase in
magnitude of the soliton maximum and the velocities
suggests that there is an increasing efficiency of
transfer of light energy into the plaéma until a o
macroscopic instability occurs. An efficient transfer
of energy is observed and high adiabatic compression
velécities are experienced. In a spherical case, if
the:growth and lifetime of thé soliton can be extended then

the compression velocities attained drives the plasma to
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high compression densities and at later times when
electron-ion thermal equilibration occurs together
with high compression densities then conditions for
highly efficient fusion gains are satisfied. |

It was the basic need for the very general code to
‘include the macroscopic absorption in the general form
of nonlinear response to increasing laser intensity. The

.behaviour of the absorption of laser light is demonstratéd.
The higher the initial~temperature'of the plasma the
lower the collision produced absorption of laser light.
This is evident for temperatures of 107 °K where the
plasma is effectively collisionless and allows the
laser light to penetrate into the whole plasma. It is
alsolobserved that the higher the temperature of the
plasma the larger is the maximum value of the soliton.
This behaviour acting in conjunction with the controlled
growth of the soliton further enhances the efficiency of
energy transfer.

The dynamicé of the soliton confirm; the block like
motion of plasma at high intensities. This demonstrates
the high efficiency of transfer of the optical energy
into compression of plasma. As in the cases of .1 psecs,

~the extended times of psecs confirms that for the short

| interaction times, which effectively negates colli;i;nal
thermalisation, the collapse of the plasma remains

radiabatic, similar to a Fermi degenerate plasma. The
nonlinear force scheme makes possible compression by
non%thermal dynamically collisionless absorption of

radiation.



151

Despite initially low reflectivities of the selected
bi-Rayleigh density profiles there is a generation of
density rippling occurring at later times which is
described as a macroscopié Brillouin instability.
Depending on the characteristic length L of the plasma
defined byL.M.Goldman as 3‘x 10'3cm, the instability
threshold occurs at 3 x 10!*W/cm?. Raman scattering
threshold is larger by a factor by c/ve where Vg is the
velocity of the electron. Therefore for non relativistic
intensities we disregard Raman instability as an instability
mechanism in this model. The onslaught of the instability
generates rippling of the velocities which causes, even
at low velocities near the cut off density, increase in
the plasma density to above the critical density. The
high reflectivities of the plasma at later times is due to
that mechanism. |

Evaluation of the momentum transfer of laser
radiation into the plasma was made. The evaluations
made showed that the momentum transferred was low compared
to the gas dynamic case, however in agreement with Krokhin,
this is still of sufficient magnitude for laser fusion.
The energy transfer of radiation into the plasma for
different intensity expressed a nonlinear relationgh}p
where the macroscopic dynamical non thermalising nonlinear
absorption law 1is

kin
Confirmation was made of the wavelength intensity
depéndency of laser radiation, where I%) should be a

constant. The generated electromagnetic densities of
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radiation from co, and Nd glass lasers of equal intensities
were the same in agreement with electric field-intensity
dependences. Velocities attained from co, and Nd glass
lasers were comparable in magnitude oﬁly when intensities
differ by a factor of 100. The gas dynamical model is
inadequate to explain the experimentally observed
phenomena. The inclusion of the nonlinear force does
explain the phenomena and the result verifies the very
general property of the developed numerical code.

For‘further development, we can use the confirmation
of the nonlinear force compression scheme. Further work
has to be followed by varying initial and boundary con-
ditions for optimising the condition of collapsing under
adiabatic conditions. For this work however, the influence
of reaction reheat has to be known, where work is étill
under discussion.

The Osterberg problem has been digested and the
issue settled on the basis of a plane wave re-radiation
condition. This should be developed in the future on the

basis of analytical predictions as done by Osterberg.
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ADVANCED FUEL NUCLEAR REACTION FEASIBILITY

USING LASER COMPRESSION 11
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Several problems are considered in order to study the properties of the nonlinear-force compression of plasmas by lasers
used to reach conditions for advanced clean fuel nuclear reactions as well as to distinguish from gas-dynamic compression.
The propagation of light in inhomogencous media is based on a simpler, computationally economic programme. The
Goos-Hacnchen effect is used tor discussions ol wave propagation and a laser amplifier without superradiance designed.
Corrections for x-reheat are derived and a very short-range relativistic self-focusing discovered with relatively low thres-
holds. Entropy production and electron-radiation interaction are treated relativistically.

1. Introduction

Following the preceding article'), there exists the
possibility of generating clecan nuclear cnergy from
laser compressed plasmas, if for example the reac-
tion H+4 "B = 32 is used. One necessary condition
is the use of the ncarly isentropic transter of the
laser energy into kinetic encrgy of plasma?), which
is of such high efficiency that the advanced clean
fuel reaction becomes feasible at laser pulse en-
ergies of less than 1 MJ. Compression based on
the gas-dynamic ablation’) results in elficiencies
much lower than nccessary to get fecasible condi-
tions. Though the MIGMA¥) project, an alterna-
tive for clean fusion, has reached an advanced le-
vel, there are some reasons still to procced with
the nonlincar force compression method for laser
fusion by clean reactions.

There arc some experimental barriers -against
gasdynamic compression which have not been in-
cluded in the present extensive numerical simula-
tion for forecasting cnergy generation®). One of
these phenomena is the simple rule that the laser
intensity has to be less than 10" W/cm? for neo-
dymium glass lasers and 10> W/cm?® for CO, la-
sers for which, however. symmetric compres-
sion?*) and reasonable fusion yields have been est-
ablished. At higher intensitics, the phenomenon
of fast ijons has been obscrved™) which can be
considered as an experimental proof of the action
of nonlincar forces’) similar to analogous cascs
with microwaves'?).

One gencral ‘theoretical aspect puts a further li-
mitation to the intensity of the laser radiation for
gas-dynamic ablation. While the main energy of
the highly sophisticated laser pulse is to be con-
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centrated within the last 100 ps, its intensity must
not exceed such values which result in collision
times longer than the interaction times. These ab-
solute limits restrict the neodymium glass laser in-
tensities to') less than 10 w/cm? also if instabil-
ities generate an anomalous effective collision tre-
quency higher than the nonlincar Coulomb colli-
sion frequencies'?). On the other hand, a nower
density of 10" W/cm? is nccessary to compress

“the plasma for nuclear reactions'?). One way out

may be the gasdynamic compression scheme of
Afanasyev et al.™) in addition to the compression
with the nonlincar force scheme!).

This paper discusses a series of several theoret-
ical results which were performed to test the var-
ious aspects of the gas-dynamic and nonlincar for-
ce compression scheme, where connections with
the problem of clean reaction of. for example,
H+"B etc. are included: in addition radiation
problems arc considered which themselves are si-
milar to those related to the laser produced pair-
production? '),

2. Propagation and reflection of waves

For the action of the nonlincar force for com-
pression it is of importance that the laser radiation
penetrates an inhomogencous plasma with a min-
imum of reflection. It has been found for the case
of lincarly increasing electron densitics that the
generation of retlection is very strong and the re-
sulting standing wave pushes clectrons (plasma)
towards the nodes and causes dynamic absorp-
tion?) instead of thick fast moving blocks of plas-
ma. Though the exampic (sce pp. 64=72 in ref. 2)
still results in 23% transfer of laser energy into

FUEL FUSTON FEASIBILITY STUDIES
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Fig. 1. Reflectivity R of a sct of vacuum - Rayleigh plasma
(@=10*cm!; A = 1.06 um) - homogencous plasma with con-
tinuous refractive index without collisions at’ various thick-
nesses o of the Raylcigh plasma. Case (a) is the exact solution,
case (b) is the approximation with 1000 steps of equidistant
homogencous plasma and case (c) with 1000 steps.

net kinetic energy of a thick block of plasma,
~ further suppression of reflection is nccessary.
One example for low reficctivity is the usc of a
density profile which results in an optical refrac-
tive index depending on the depth x
PR
I +oax

(x >0), )

corresponding to an electron density n, for a col-

lisionless plasma of
ne = n. [1—1j(1 +ax)’], 2)

where n,. is the critical density (cut-off) at which
the plasma frequency c, is equal to the optical
frequency w. The case of eq. (1) has been first dis-
cussed by Rayleigh (Rayleigh profile) and has ele-
mentary solutions of the wave equation of .the
type's) '

.2 3
E,(x) = (1+ax)! exp l:ii ln(l+ozx)< (,U - —l> ],
, cra” 4

. 2 \4 ;
€ o i
H (x)=[i‘ (;2— ) - ](l-i—ax)'*x
: v 4o’ul 2w

v ) .
X exp [ii In(l +ax) <—:;—2 —i) ]
¢

Reflection occurs at the interface between a Ray-
leigh medium and a homogencous medium only,
and not within the Rayleigh medium. The more
general result of Osterberg!”) on vanishing **inter-
nal reflection™ gave rise to several controversics.
The solution to the problem can be scen from the
calculation of a Rayleigh-like plasma of various
thickness between homogencous plasma (fig. 1).
“The exact solution of the reflectivity agrees in
magnitude with the approximation of steps of

@
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plasma with constant refractive index if ¢nough
steps (100 or 1000) arc uscd. What is then called
“internal reflection™ is nothing else than the
WKB-like increase of the amplitude of the reflect-
cd mode which is singly produced at the interface
of the Rayleigh-plasma to the homogcneous plas-
ma only®). The simplification of the described
numerical trcatment lcads to a more precise solu-
tion of the wave equation in inhomogeneous med-
ia for general computer programmecs.

One open question is the result that the dielec-
trically explained spreads of the minima of thé¢
curves in fig. 1 are different for the exact case
(curve a) and for the stepwise approximation
(curves b and ¢). It has to be noted that cases with
a small number of steps can differ from the results
in fig. 1 drastically.

One further question of the propagation of rad-
iation in plasma is the momentum of the photons.
‘In agreement with the recoil in inhomogeneous
surfaces®!?) and with the transport of a wave--
packet®), the photon momentum is

ho 1 A 2
p _—_———C—E(l—m“/Za) ).

(5
Peierls?') found a similar cxpression for transpar-
ent solids first, modificd. however. such that a
basic difference exists compared with plasma. The
basic problem of the Abraham or Minkowski de-
scription has been discussed by Dewar®?) and some
aspects of the problem of the brief arresting of en-
ergy with elcctrons during its exchange with the
plasma electrons in connection with the Fizeau ef-
fect have been considered by Shepanski®3).

The switching-on and switching-off process of
the light when penetrating a plasma gives a van-
ishing nct transversal motion"-#) also under relat-
ivistic conditions in difference to other authors®).

The Goos-Haenchen cffcct (side shift of a wave
at total reflection)™) is not only of fundamental in-
terest with respect to the correct use of quantities
of phasc or intensity. but also e.g.. for the codes

~in laser produced plasmas. An important applica-

tion is in the penetration of radiation around a
spherical target within the skin depth. ds hhs been
pointed out for laser produced plasmas®’) to ex-
plain some carly experiments™®). The inclusion into
numerical codes needs a clear analysis of the usc
of phases or intensity. which has been discussed.
for example. by Renard®).

One consequence of these calculations is imme-
diately connected with laser fusion, namely for la-



LASER COMPRESSTION 11

R2
00000000000 O0
N P
s 5
//"}‘ N ,, N 2 4 7/ -T
/'/// ” »—-M\
B° 0QP0O000000000O
\ZF R,

Fig. 2. Laser amplificr without supcrradiance. The laser beam
is incident at an angle x on a medium G adjacent to an opt-
ically inverted medium M so that a> &, (2, critical angle of to-
tal reflection). The reflectivity is larger than one™) and has
specific maxima33).

ser technology. Lasers always emit supcrradiation
in addition to the desired giant pulscs. This super-
radiance had to be suppressed by 10-¢ of the main
laser power, before the first convincing fusion
neutrons were generated with neodymium glass
lasers®). The same happened with CO, lasers®)).
Only the sufficient suppression of the superradi-
ance led to neutrons. For iodine lasers it is a
much more difficult problem if large cross sections
of the beam are used??). One way to reach laser
amplification without superradiance is described in
fig. 2.

3. Correction of the a-reheat

In laser compresscd nuclear reactions, the heat-
ing of the plasma by the reaction products, pro-
tons or alphas, is of importance and has been used
in several detailed numerical codes®). One prob-

i
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Fig. 3. Penetration depth R of a-particles from the H'IB reac-
tion in plasma of solid state density of HB as function of the
“emperature?).

Lo4
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lem is then. what mean free path or what pene-
tration depth R has to be used for the nuclei? The
slowing down (equilibration) of fast ions in plasma
is an old problem in plasma*) and nuclear®) phy-
sics. One application for relativistically fast clec-
trons was made possible by Bagge's modification
of ‘the Bethe-Bloch formula of solids for plasma
and the derivation of mcasured penetration depth
of relativistic clectrons in plasma‘®).

The application of the similar methods for
alphas led to the penetration depth®) in plasma of
electron density n, and temperature T

R=2 (6)

¢ nt, Eilln(/E>
'ﬁm illn(xEQ].
where the function Ei(x) is the integral-logarithm.
As a result, the length R can differ by more than
a factor of ten from the measured lengths for soi-
ids of the same density. Fig. 3 shows the result
for solid state density of HB. The general values
of density are used in the computer codes; further
theoretical work is undertaken to compare the dif-
fering plasma theories. The correlation with the
depths in tokamaks, as determined bv Diichs and
Pfirsch®®), is closc though different models have
been used.

For the calculation of the x-rcheat in the codes
the reaction gain ¢ is given by:

=£L 2.
E [ dr

“0 Jo

S R(1)
dxdyd:z
Jo ‘

N

. (7

where ¢, is the encrgy released per reaction, n, is
the ion density. A is 2 or 4 and (@) is the tem-
perature averaged cross section  where the
adiabatic decrcase of the temperature is included.
We have used the following condition to take into
account the appropriate adiabatic cooling of the
plasma and the transfer of the reaction energy into
kinetic energy of expansion. If 7, is the encrgy
generated by nuclear reactions during one time
step of integration, the temperature is calculated
by '

N . R 2 b “
T = [To + Y .‘1\'7;(_;.) ](RUIR):.
v= 1 Ry

where R, are the radii at cach time step of num-
erical integration during which an increasc of the
temperature 4, 7, by reheat occurs.

()
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4. Relativistic self-focusing

The self-focusing resulting from rclativistic par-
ticle mass and cenergy influences becomes import-
ant for pre-focused laser beams of power greater
than 10'"'W 442)" Previous non-tecmperature de-
pendent calculations given in ref. 41 show the
self-focusing length as a function of beam inten-
sity for n/nl* ratios of 10-3, 10-2, and 10-!,
where n, is the clectron number density and
n¥% is the non-relativistic cut-off density of  the
Nd glass laser (10 cm~?). The magnitude of /g 1S
inversely proportional to the square root of this ra-
tio for n/nfy =N with N<0.7; furthermore, the
distributions are roughly symmetric and convex
downward with minimums near /., a characteris-
tic relativistic intensity (relativistic threshold) of
value 3.66x 10" W/cm? for Nd glass.

Further new calculations for N values around
unity and above exhibit extremely small /5 values,
as well as limiting minimum intensity levels for
non-singular /s results. Employment of the com-
plex refractive index, the nonlinear Lorentz gas —
Coulombic expression for the collision frequency,
and a relation between the local lascr beam wave-
length within the plasma to the beam radius*)
gives
Ise _ 11O+ 1A ©
o 2\[n(hi=T1at2i) -
where 77 is the exact complex refractive index re-
sulting in ' '

l_("*‘l/lxu_)! A VY RTENTAN)
’ (10)

with d, the beam width between the half-irradi-
ance maximum points of the radial laser intensity
distribution and v/ the normalized collision fre-
quency. It is readily seen from eq. (9) that for
|Ad/2)l >1a)l the solution becomes singu-
lar and then imaginary at this **threshold™ intcn-
sity /g; this occurence was not found in the cal-
culations of ref. 41 but is crucial in the conditions
illustrated in fig. 4. In particular, the collision fre-
quency (v) magnitude is of maximum importance
ncar this cut-off; temperature, ion charge number,
and . qualitative ellowance of field-induced collec-
“tive effects on the total energy can all be influen-
tial in this region. Included in fig. 4 are the /y/d,
vs [ distributions for 7=0eV and Z=1: N=0.1,
0.9, 1.0, I:'5, and 10.0; for T=100eV: N = 1.0 and
1.5 with Z=1,2,5, and 10 as well as a 0.01 en-

3
lahj =
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ergy multiplying factor for N=1.0 and Z =1, and
for T=1000cV: N=1].0 and N=10.0, both for
Z=1.0. ' o

N values >unity produce the cusp-like distribu-
tions with the extremely small minimum self-fo-
cusing lengths, the minimum allowable intensities
deeply found in the relativistic regime with N 1.
For N =1 the influence of temperature is minimal
up to 100eV; however, an increasc of plasma
temperature to 1000 eV vields a two order of
magnitude decrease in minimum intensity. It is
scen that for N values around unity a. small
change in N produces a large change in both
magnitude and shape of the /(/) distribution for
I < Igg; the distributions arc mutually closer with
I> Iz . The influence of temperature, for a fixed
N, is ncgligible for N> .

It is of interest to qualitatively estimate the in-
fluence of non-collisional electromagnetic field in-
duced charged particle collective motions by intro-
ducing a multiplying factor F (F<1.0) times
(KT + gg,n) terms in the collision frequency expres-
sion. This factor describes eventually occurring
instabilities by an “‘effective absorption™ given by

103
: ~ Z=1,T=0eV, F=1.0
L ———— A 7=1.2,5.10, T=100eV,
- F=10 :
] s====-- a7Z=1,T=100eV, F=00!
——w— A~ Z =1, T=1000eV, F=1-0
102} :
Jse ]
do ]
10 F
F
1
10
(0<T<10’ )}
L ev ]
L iws Intensity threshold for .
L each condition se - J
1 1 1 v L 1 i
104 1™ 10 107 0% 109 102

1 (w/em®)

Fig. 4. Relativistic self-focusing length as a function of Nd
glass laser intensity. Unlabeled curves are for V= 1,
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an ‘‘cffective collision frequency™ v ,=v/F72
The results for N=1.0, T=100¢V, and F=0.01
are shown in fig. 4. The minimum allowable in-
tensity is increased by apout an order of magni-
tude but the curve does merge with the other
N = 1.0 distributions.

Finally, for N=10 and 1.5, and T=100¢V,
fig. 4 shows the dependence on ion charge num-

| ber for Z=1,2,5, and 10. The Z-influence does

not seem to be as great as for temperature; differ-
ences -are negligible in the N =1.5 situation. For
the most part, the minimum value of //d, for a
particular N is adequately determined in a
T=10eV, Z =1 calculation; the threshold inten-
sity /; for a physically correct relativistic self-focus-
ing solution is nevertheless strongly dependent on
T and Z. v

Physically, the above results indicate the rela-
tivistic self-focusing is suddenly initiated as /; is
achieved, perhaps explaining the fast ion produc-
tion’#) resulting from self-focusing induced elec-
tron oscillation energies &, of a few 10°eV. This
leads to a nonlinear force expansion’) with trans-
lational ion energies ¢&; given by exact integration'!)

of
(1)

ci = Zg':ch, N\

with Z the ionic charge. The observed ion cnergies
for Al''* of 2MeV 7), or for W%+ of 2 MeV ¥) are
then of the right order of magnitude. The energy
deposited by the laser into the volume of the self-

focused light cone corresponds reasonably well to

the total energy of the accelerated plasma with

-MeV ions.

5. Entropy generation and radiation problems

For the calculations of the entropy generation in
the numerical codes, the basic derivation of the
equation of motion, of energy conservation and
entropy generation has been studied. It was shown
that a term proportional to the acceleration of
plasma in the generalized thermodynamical force
found in the relativistic theory®), can be obtained
for a stationary system using the hypothesis of
cellular equilibrium and introducing “constant
conditions™, in .the cnergy current.

We can then write in general, the relation

X" = grad T+ A dv/dt, (12)
for the thermodynamical force y° causing the heat
current, where 7 is the temperature, v is the bary-

centric velocity, and 4 is a constant depending
on the density, and the following relation for the
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thermodynamical force of diffusion

2* = grad y+ B dojdt, (13)

where 7 is the chemical potential and B is propor-
tional to the density.

On the other hand considering thc particular
case of a set of particles, confined in a box, it was
shown that it is possible to get the conservation
laws for the number of particles and for the en-
tropy from the conservation of the ener-
gy-momentum tensor. These expressions are simi-
lar to the formulae given by Landau and Lif-
shitz*) for the case of a fluid. They also agree with
remarks by Tolman**) about the role of the mass
and energy. in a rclativistic theory.

These two results were obtained in connection
with the formulation, of thermodynamics of -mov-
ing systems. The case of a body in motion in pres-
ence of an external field dependent on time still
remains to be studied.

The case of a stationary field has been already
solved for diclectrics, and also for a conductor us-
ing the Onsager theory*). Schmutzer gave a solu-
tion using the Onsager theory and taking into ac-
count the gravitational field*").

The way in which the conditions of thermody-
namical equilibrium are changed by the presence
of a variable ficld must be studied more closely.
This is of particular importance sincc these condi-
tions are basic to the application of the hypothesis
of cellular equilibrium. the concept underlying the
whole Onsager theory. For one special case. the
problem of variable fields has been solved, namely
for the generation of mechanical forces in the me-
dium. The generated recoil due to the variation of
the intensity of radiation in a homogeneous plas-
ma?) is the same as the recoil of a constant ra-
diation to an inhomogencous plasma® %)

Further problems of electrons in high intensity
laser radiation were studied with respect to radia-
tion losses in pair-production, the energy ex-
change, showing a defect compared to the case of
Einstein*®) for nonrelativistically moving mole-
cules. Novak has used for these calculations the
anharmonicity of the oscillators in the black-body
radiation. r. o

6. Conclusions

For the propagation of laser radiation in
inhomogeneous plasmas, a more computationally
econonic code has been developed for cxact solu-
tions of the-wave equation. The Osterberg prob-
lem of vanishing generation of local reflection has

ADVANCED FUEL FUSION FLASIBILITY STUDIES



le7/

32 , R.CASTILLO et al.

been explained by the WKB-like change of the
wave amplitudes. The phase or intensity descrip-
tion of waves was studied within the problem of
the Goos-Haenchen effect for application to the
propagation of radiation in the surface of laser ir-
radiated  pellets. One consequence of the
Goos-Haenchen application is the design of a laser
amplifier with complete suppression of superradi-
ance, which is highly necessary for laser compres-
sion of plasmas.

The corrections due to alpha penetration in high
density plasmas has been calculated on the basis
of the Bethe-Bloch formula. The generation of a-
recheat was included into the codes for the calcu-
lation of gains by using a formula exactly covering
. the adiabatic cooling during expansion.

The relativistic self-focusing has becn extended
to critical densitics and shows an unexpected re-
sult of short focusing lengths within the nonrelat-
ivistic region with a remarkable threshold at rela-
tively low intensities. The thresholds correspond
to the thresholds mcasurement of fast ions which
destroy the ideal gasdynamic condition. The gen-
eration of oscillation energics of 100 keV and more
for. electrons is reproduced quantitatively as well
as multi-MeV ion kinetic energies and their linear
Z-dependence as exact solution of the nonlinear-
force equation.

For the entropy gencration a relativistic deriva-
tion is used including diffusion(chemical poten-
tials) and the radiation interaction of eclectrons at
very high intensities has been studied.

It is gratefully acknowledged that this work was
rcalized only by the decissions of the University of
New South Wales in favour of these activitics,
and by the support of Prof. E. P. George, Head of
. School of Physics. Some parts were funded by the
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-INCLUDING MOMENTUM TRANSFER OF THE NONLINEAR FORCES Y**)

V.F, Lawrence and H. Hora
Dept. of Theoretical Physics, The University

of New South Wales, Kensington, NSW Australia

Abstract

In order to study the action of the nonlinear force
of electrodynamic laser-plasma interaction without
thermalization, numerical calculationswith a very
general tWwo-fluid numerical code were performed
including nonlinear variation of the opticel constants
(dependence of the collision frequency on the laser
intensity) and detailed description of the reflection of
laser radiation based on Maxwell's equations. For laser
pulses of less than 1 psec, the dynamics are
characterized by the nonlinear force mainly. Using
Rayleigh-like density profiles, the generation of
instabilities as well as their suppression has been
demonstrated. The energy transferred to two thick
blocks of plasma (one moving against the laser light,
the other with it under compensation of momentum)
increases nearly quadratically on the laser intensity.

_—_—
*) Presented at the Fourth International Workshop
Ccnference on "Laser Interaction and Related Plasma
fhencnena" at Rensselaer Polytechnic Institute, Troy,
New York, 8-12 November, 1976.

f') Supported by the ARGC grant No. B75/15538.

877



169

878 V.F. LAWRENCE AND H. HORA
I. INTRODUCTION

Plasma dynamics for the interaction of high
intensity laser radiation with solid targets and the
instantaneously generated plasma, can be determined by
the nonlinear force which is the immediate electro-
dynamic interaction, and by the gasdynamic pressure
occuring after thermalization of the radiation and
heating of the ions. The basic properties of these
nonlinear forces have been developed over the last ten.
yea.rsl-7 and the expansion of plasma and the subsequent
compression has been demonstrated numerically7‘9and
experimentallyl%ll, as well as indirectly by self
focussing and generation of fast ions or fast plasma
groups and ion separation by the charge number 7.7

The importance of the action of the nonlinear force,
especially for short laser pulses (for neodymium glass
lasers around 1 to 10 psec and for CO; lasers around
.1 to 1 nsec) consists of the possibility of a non
thermalizing transfer of optical energy into kinetic
energy of plasma for compression, which has a minimum
of entropy production and is therefore highly efficient.
Followed by an isentropic compression, the same fusion
reaction yields can be reached with about 1000 times
less laser energy12 than in the case of the gasdynanic
laser compression scheme of Nucholls!3., As the laser
Pulses have to be about 20 times less than in the
Nucholls case the total advantage is that the required
laser system could be smaller by a factor of 50, when
using non linear force compression, based on a rough
calculation., The advantage of less. complications
(instebilities) at short interaction times and the use
of, experimentally verified“, fast blocks of ions
(fast ions7) as well as avoidance of the necessary
delay due to thermalization!" (all disadvantages in the
Nucholls scheme) may be reasons enough to orient efforts
towards the nonlinear force compressions. The use of
high intensity CO2 lasers'’ will necessarily require
such a scheme, as the thermalization delay has been
neglected unawares in numerical calculation of
gasdynamic compression models, otherwise it would
requirelu laser pulses of 10 nsecs or more.

The non linear force compression has not been
studied numerically to the same extent as the
gasdynamic compression. As the necessary laser
‘intensities have only become available over the last
two years & very intensive study is necessary now. This
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paper presents results of a very general one-dimensional
code, where we used initial electron densities n_ (x) of
the Rayleigh type

n (x) = n (1 L ) (1)

ec T (1+ax)?

~where x>0 and @ is a constant. Equation (1) corresponds
.to a refractive index n of : :

~ _ 1 .
T Tvox :  (2)

for which the laser penetrates with a& minimum of
reflectivityls.

ITI. THE ONE-DIMENSIONAL CODE

The calculations were based on a modified numerical
code of which the very general gasdynamic part had been
developed by E. Goldman'!? and the nonlinear forces
have been included in the following way. All quantities
depend on the one spatial coordinate o only and laser
light is incident from +x. Electrons and ions are
separately treated (index i and e) where fully ionised
preferably DT-plasma or LiD plasma is presumed. The
equations of continuity for the densities ne i or

velocity v . is ’
e,i

3t tlng v 3) =0 (3)

and the equation of motion (force density) contains

the temperatures To j (kvBoltzmann constant) and the
electric and magnetic, field strengths E and H for
linearly polarized laser radiation deocrlblng the terms
of the nonlinear force

a a _4d
m(FE Vs * Vs 3% Vi) T cax ikl (k)
d 2
_._.V + Vv —_— = __._. .._. o+
e(dt e * Ve at Vo) T 3% RekT try(EZ+H*)(87) (5)
The equation of energy conservation
L9 2 _ d d
T e iMe,iVe,1 T KT d Pe,ie,i%aste,itMe,i (6)
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.Te 1 contains the change of the temperature both by the
gasdynamic (adiabatic) motion as well as by thermal
conductivity, using the collision frequency
w 21¥2m V2e21pA
Vv o= D e 3/ (7)
8n(2kTe) 2 -

.

with the plasma frequency w_, coulomb logarithm
1nA. , mass m, and charge of“electron . The power
density of thermal energy input from the ‘laser field at
each x is given by Wiy, where the exact nonlinear optical
constant was used
w2 x
2 =1 - B— (1 + 12) (8)
wo+v w

where v° was identical with v of Eq. (T), however
1nclud1ng the energy €osec of the electrons from the
quivering oscillation in the laser field’ by
substituting Te by T = Tete€ose/k, Wi is determined

by the heating of the ions by the difference Te-Tj3
including the delay given by the collision frequency

V. The coupling of the equations of the ions and
electrons is due to Poisson's equation. The six
equations (3)to (6) determine the six variables ng,

nj, Ve, Vi, Tes T3 in dependence on x and the time t.
Further, initial condition (variables at .t = 0) and
boundary conditions (time dependent indent laser field)
have to be chosen. The laser field is being calculated
for each time step numerically as a solution of the
Maxwellian equations.

ITI. INITIAL AND BOUNDARY CONDITION

In the following calculation, laser pulses were
chosen with a sin?B8t amplitude such that after realis-
ing the first maximum the laser intensity is constant.
B was chosen to reach this level at a time t=0.15psec.
The initial conditions were chosen as

T, (x3;t = 0) = 100 eV (9)
i,e
.t = = ‘ ’ 0
ve’i(x,t 0) 0 , (10)
and ne j(x3t = 0) = ng(x) has been selected from the

experience of the Rayleigh case’ *'?°!® for neodymium
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"glass laser radiation with [no] = em—?

0; x 2 50u

1 v
21 .
10 {1 - (1-a[x—50u])2}’ 0<xs50u

no(x): (11)

l .
21 .
1021 {1 - (l+a[x+50u])2}’ SOquSQ

10'%; x < -s50m

to avoid total reflection?®, a has to fulfil the
following restriction

x <a_=2%=1.7 x10% ca~!? (12)
(o} c ,
for neodymium glass laser radiation. It has to be

noted'® that the reflections at x = *50U and x = O

are remarkably small in the collisionless case

(v¥ = 0) if o < 0.50_. The case of collisions

results in modificatiOns which will be reproduced by the
programme automatically.

IV. GENERATION OF INSTABILITIES

From the numerous cases calculated, we describe
the one where the generation of strong reflection
has been generated in an early stage. The standing
wave pushes the plasma towards the modes and the
generated rippling of the density is parametrically
increasing the reflection. The case of Fig. 1 we
find (E2+H?)/8m (corresponding fairly to the intensity)
with one local maximum at the time where the laser v
reaches the maximum intensity. It is remarkable that
this maximum is not at x = 0, where the initial
density maximum is, as the absorption and the intensity
derendence of the optical constants modify the laser
field. The maximum corresponds to an intensity
I = I,../]|0| related to its vacuum value Iyg. by &
swelling factor 6 = 1/|n| = 7 only the reached
plasma velocity up to this time is shown in Fig. 2.
end the electron density in Fig. 3. The velocity
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16 2
1 INTENSITY = 4 «10° W/cm
10°L < = 10*
14
10
(Eonz) )
8w 0° L -
12 //
0°F,~
/ TIME = 2-5 10" sec
10" —=—== TIME = 1-5+:10" sec
T ' - L ' » DISTANCE
-0 0 10 20 30 40 50 ()

Fig. 1: Calculation of (EZ+H?)/87
for a=10" at an intensity
4x10'%W/cm? at the times
1.5%10-'3% gec and 2~.S><10"13 sec.

profile at t = 0.15 psec is positive from x = 50U down
to 35u which corresponds to an expansion (ablation) of
this part of the plasma corona as a thick block with
velocities up to 10’ cm/sec, while the plasma below
35y is moved as a whole block to the interior of the
plasma (towards negative x). The density at that tine
(Fig. 3) shows very well a similar profile as the
initial one, Eq. (11), especially the Rayleigh-like
decay at 40 -to 50u. But it is remarkable, that the
initial maximum at x = 0 has been moved to a value of
3.8u which is due to some internal compression of thz
block moving towards -x, as the velocity profile is
not constant. The generation of an instability can

be seen at the time t = 0.4L5 psec, where the (E2+H")/87
(Fig. 1) is oscillating, corresponding to a standing
wave. The velocity has then changed drastically into
the oscillating profile of Fig. 2. The maxima and
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16 2
INTENSITY = 4+10° W/cm
o = 10°
10} :
10°} (/—\w ) (},[LQ N
)
V 10" g ‘-
E 10° | :
0 o e — T 'DISTANCE
? -10, 3 -10 P ' ( }J )
. T 10 | . | -
Y 10. e S ) —— TIME = 2.5+ 10 " sec.
cm -0} P P
Voec. .\j u u U UV —— 1ime =

1-5 « 10" sec.

.

Fig. 2: Velocity profiles corresponding
to the case of Fig. 1

A INTENSITY
103
102 |
Ne ’ 101 |
10
9 N/ 2

T —— TIME =15 10" sec.
‘86 |-

Fig. 3: Electron density (relatgd to the
cut off density) corresponding to
the cases of Fig. 2.
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minima correspond very close to the vacuum wave length
A=Aygce at x = 50u, while a swelling A=8Ayac of. 6=9
around x=0 can be seen. The density (Fig. 3) shows a
ripple, easily understood by the motion

due to Fig. 2. The following time steps show a very g '
high reflectivity because of thls Brillouin type L
dynamic 1nstab111ty 8
. P
T

y

) ) Ve -

V. ACCELERATION OF BLOCKS e

Compered to the cases of Fig. 1 to 3, the situaton '

is quite different, if an a=5x10" em=! and & maximun
intensity of lOlew/cm is used (Fig. L4 and 5). It is

I=10° w/em? 7 \\ 3 Sene

- arcys

o° o= 510" P A o

. ~ el nll

7 P

P fut =l
2,2 le/‘\\ =7 Shfe Th
(E°«H ) T N\ / ; ‘. ol
8m N/ cioLae
. ‘0" Noeverst o
fntensit

10° TIME = 15410 "sec che o

-——— TME =45-0" Vhere
, .  an
) , . . . . . . DISTANCE 21’_,~*r.

-50 -40 -30 -20 -0 O 10 20 30 40 50 (1) ST
Fig. L: sSpatial profiles of (E2+H2) /8™ . :var.z-;

- for a case with initial electron

densities of Eq. (11) using b

a=5XlO”cm‘1, maximum laser cerien
intensity of 10'®W/cm? at the R S ovare

times 0.15 psec and 0.45 psec. ctares .
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INTENSITY = 1.0 +10° W/cm?
10t & =50-10"

= DISTANCE
(m)

TIME = 1.5 10" sec.
— — — TIME = 45+10" sec.

Fig. 5: Velocity profiles of the case
of Fig. L.

remarkable that at the early time 0.15 psec, the laser
intensity has & maximum near LOu (swelling 14) and then
drops strongly towards x = 0., This is due to the fact
that an 0=5%10" cm-! causes a density very close to the
cut-off density, and the less intensity than the former
case causes a less decrease of the collision frequency
by the intensity dependent nonlinearity of vX in Eq.(8).
Nevertheless, at t = 0.45 psec, the swelling of the
intensity (6=120) at x = 30u lets the light penetrate
through the whole plasma without standing wave pattern
(these did not appear even at later times) where the
plasma was then (Fig. S) moving in two blocks, from

30 to 50u towards +x (ablation) and far less then 30u
towards -x (compression). The modification near =35y
is understandable from the minimum of (E%+H?)/87

near x = -=35u.

By a systematic search it was possible to find a
series of cases where only a two block motion appeared
for varying intensities and constant & with a '
separation of the blocks around the same depths x(*3u).
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Evaluation was made of the amount of kinetic energy &,
thathad been transferred by the nonlinear force which
both the gasdynamic expansion and the thermokinetic
acceleration had neglected. We have evaluated

X2 exrressi
n.n.v 2 The enerys
1 i7i 1 Y T
E. (I) = ——— d electrzi
k( ) X2-X1 2 £ (13)
. x l .
. . . . ' vI cons
for dependence on the laser intensity (Fig. 6), The . Ve
104 ’: "A ~
shewel v
for neti:
[
. 3
o * 3000 10 "
T . 0% K reflec*?
Nd glass loser frem
10° LM torger se e T
s reflle
unexyect
understa
atsorysd
‘rancier
- efrainct
2 S ;
° Slilrect i
H increnci
H romentun
w momentun
' TITE E
10 Coyres W
D ST O
c1d8e In
Qiczusoel
sx10" 2x0" 10" sxi0"

° INTENSITY wW/cm?

Fig. 6: Kinetic energy transferred to
the plasma Ex(I), Eq. (13) for
=3x10%m=-! up to a constant
time t = 0.1 psec for
independent temporal laser
profiles.

result is that the transferred kinetic energy is
increasing nearly quadratically against the neodymiu=z Y
glass laser intensity,
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. E,. = const x I!'*8
kin .
(5x10'5< I <10'® w/em?) (1)

expressing the nonlinear nature of the interaction.
The energy transfer is a nonlinear, macroscopic,
electrodynamic absorption process.

VI. CONCLUSION

The nonlinear force of laser plasma interaction
showed various properties from numerical calculations
for neodymium glass laser radiation of more than
10t% W/cm2 intensity. The generation of strong
reflection and that a standing wave could be generated
from an initial Rayleigh density profile where nearly
no reflection is expected for collisionless plasmas is
unexpected. The reason for this behaviour is
understandable from the intensity dependent thermal
absorption process. Other cases show a nearly ideal
transfer of the laser radiation into a block moving
against the laser radiation and another in the same
direction. The transferred energy was quadratically
increasing against the laser light intensity. The
momentum of each block was Just compensating the
momentum of the corresponding block moving in the
opposite direction. Preliminary results for times of
5 psec were similar which confirms that the neglect
of the retardation of the laser field in the numerical
code is not important for the kinetic processes
discussed here.
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1 A-16 Propagation of Laser Radiation in Inhomogencous Plasma and
Dynamic_Properties,* V. F. LAWRENCE and H. HORA, Dept.
Theor._Fhys,, UNSW,_Kensington-Sydney, Ausiralia,  -In order to
calculate the nonlinear (poaderomotive) forces’? ana the momentum
transfer in laser irradiated inhomogeneous plasma, the exact knowledyze
of the solution of the Maxwellian equation- for plane waves is
necessary. The standard approximation of inhomozeticous plasma with
steps of constant refractive index 1s studied numerically with high
precision. The comparison with tne exactly known case of Ravleigh's
profiles of tne refractive index, snows a clear discrerancy, which may
explain the high difference in measured and celcuiated reflectivities
of laser produced plasmas, even as long as nonlinearities and anomalies
are excluded. Using the nonlinear intensity dependence of the
refractive index and of the absorption, the direct transter of laser
energy into kinetic encrgy of plasma is calculated preferably for cases
of the Rayleigh profiles for isentznpic coupling and compression of
plasma.
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