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ABSTRACT 

The micromechanics of multiphase flow in fractured porous media are explored through 

the construction of microstructures to the modelling of micro-physics and macro-

behaviors.  Accordingly, four parts of studies are conducted so as to give a scientific 

explanation about the mechanism of two phase flow in fractured porous media.  

The quantitative characterization of the microstructure and statistical description of the 

porous media are discussed in the first part. The microstructure reconstruction of 

sandstone from limited surface images is carried out by using simulated annealing 

method. The effectiveness of the reconstructed sandstone microstructure is tested and 

verified by comparing with available X-ray computed tomography (CT) experimental 

data.  

The characterization of the multiphase distribution in fractured porous media is 

investigated in the second part. The single component multiphase (SCMP) lattice 

Boltzmann method (LBM) is selected among three commonly used numerical 

approaches through a comparison against the available results of micro X-ray CT. The 

two-phase fluid distribution in porous media and the effect of fracture are investigated.  

In the third part, the single phase flow in natural fracture network is numerically 

investigated. The influence of fracture roughness and deformation on the fracture 

transmissivity/permeability is numerically studied. Meanwhile, the ability of LBM in 

the study of fluid flow in fracture network is validated through the comparison to the 

pipe network model. The influence of fracture length, fracture density, and deformation 
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on the fluid flow is also studied preliminarily from coupling LBM with the Discrete 

Fracture Network (DFN) model and Discrete Element Model (DEM).  

The multiphase flow through fractured porous media is studied in the fourth part. The 

SCMP LBM is found effectively in simulating the two phase flow problems through the 

comparison with the multi-component multiphase (MCMP) LBM. Moreover, the body 

force for the simulation is calibrated and effect of wettability on two phase flow is 

studied. After that, the influence of fracture on two phase flow is investigated. The trial 

of two phase flow in 3D reconstructed porous media is conducted and some suggestions 

are given at the end. 

Based on the comprehensive studies and numbers of numerical simulations, a clear 

understanding of macroscopic behaviors and their dependence on microstructure and 

microscopic physics process at pore scale are obtained.
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND  

Multiphase flow in fractured porous media can be very complex due to the simultaneous 

presence of different phases, which has been the subject of great interest related to 

unsaturated soil mechanics, hydrology, petroleum engineering, mining engineering, 

geothermal energy plants, CO2 sequestration and radioactive waste storage. For example, 

in the subject of unsaturated soil, the soil-water characteristic curve and the relative 

permeability is of significant importance for the determination of mechanical property. 

The hysteresis, the air entry value, and the residual saturation have been the research 

interests over several decades. In petroleum engineering, the efficiency of the recovery 

is determined by a number of factors including the permeability of the rocks and the 

property of the fluids. The hydraulic fracturing is often utilized as an effective means to 

increase the production by creating number of intersected fractures. The storage of CO2 

via geologic carbon sequestration is being developed to solve the greenhouse problems. 

The characterization of the multiphase flow properties, such as relative permeability and 

residual CO2 trapping of CO2/water system, is of high importance in CO2 storage 

project. The two-phase flow of water and gas mixture is also common in mining 

engineering and other underground engineering. On opposite, the main problem of 

nuclear installation is often the isolation of radioactive waste from biosphere. The 

isolation requires the minimization of the flow through discontinuities which is also the 

most significant mechanism of pollutant migration.  

Reliable estimate of the hydraulic conductivity is difficult to obtain for its extensive 

variability in the field and the measurement of the parameters is time-consuming. 
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Numerous attempts have been made to predict empirically the permeability function. 

Recently, the physics of multiphase flow through fractured porous medium directly 

related to the microstructure and pore scale process has been recognized by numerous 

researchers based on experiments and theoretical analysis in the past three decades. 

However, the micromechanics of two phase flow in fractured porous media are still not 

clearly understood. Therefore, it is significant to develop a thorough understanding of 

the mechanism of multiphase flow in fractured porous media. 

1.2 OBJECTIVE, METHOD AND SCOPE 

The objective of this research is to provide a more scientific and more convincing 

methodology to illustrate the mechanism of two phase flow in fractured porous medium 

based on the micro-structural information of the media and complex physical or 

chemical process at pore scale. Applying the microstructure of fractured porous medium 

into the analysis of multiphase flow behavior encounters great challenge for the 

requirement of both statistical characterization of the fractured porous microstructure 

and the numerical method that could cope with the two phase flow in complex 

microstructure.  

Therefore, three steps are required in the study of micromechanics of multiphase flow in 

fractured porous media: 

1) Quantitative characterization of the microstructure, statistical description of the 

porous media and fracture network;  

2) Characterization of the multiphase distribution in microstructure and clear 

understanding of the chemical and physical phenomenon at the pore scale;  
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3) Exact or approximate solution of the transport phenomena and prediction of the 

multiphase flow in fractured porous media.   

1.3 THESIS STRUCTURE  

In order to complete three research steps and approach the research goals, extensive 

works are conducted. Chapter 2 reviews the researches on characterization of porous 

media and fracture networks as well as the numerical methods related to fluid flows. 

Chapter 3 and chapter 4 give clear picture on static distribution of pore space, solid 

phase, wetting phase and non-wetting in porous media. Moreover, these two parts 

provide the boundary condition and initial condition in the study of the two phase flow 

problems. The dynamic fluid flows are investigated in chapter 5 and chapter 6. To this 

end, chapter 5 focuses on the single phase flow in fracture networks and chapter 6 

extend the single phase flow to two phase flow problems. The research topics of each 

chapter are provided as follows.  

Chapter 3 presents the method to reconstruct the porous media of sandstone from 

surface image; a good agreement between the reconstructed model and X-ray CT is 

obtained through the comparison of the quantitative measurements.  

Chapter 4 compares the two phase fluid distribution of X-Ray CT with three different 

numerical methods, from which, the single component multiphase (SCMP) lattice 

Boltzmann method (LBM) is used to investigate the mechanism of fluid distribution in 

fractured porous media. The effect of degree of saturation and geometry of fracture on 

distribution pattern is studied.  
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Chapter 5 investigates the single phase fluid flow in rock fractures by using single phase 

LBM. The roughness and displacement on fluid flow is numerically studied and the 

empirical equation is proposed to predict the hydraulic conductivity under complex 

geometry, which is extended to the fracture network with roughness. The LBM is then 

coupled with Discrete Fracture Network (DFN) model and Discrete Element Model 

(DEM) to investigate flow in fracture networks under deformations.  

Chapter 6 investigates the effect of body force, wettability and hydraulic aperture on 

two phase flows in porous media, the relative permeability-degree of saturation 

relationship is obtained at different scenarios. Meanwhile, the effect of fracture on two 

phase flows is explored. The trial of two phase flow in 3D reconstructed porous media 

is also conducted.  

Chapter 7 provides summary and conclusions.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 PROBLEM STATEMENT 

During the past four decades, the multiphase flow through fractured porous media has 

become a very popular research topic for its widely application in many engineering 

projects such as petroleum engineering, hydrology, mining industries as well as the 

isolation of radioactive waste. Generally, the study of two phase flow in fractured 

porous media is classified into two directions: the macroscopic approach and 

microscopic approach (Bear 1972, Khalili 1991). In the macroscopic approach, the 

single porosity and double porosity model are widely used in applications for its large 

scale description and easy implementation. However, the macroscopic approach cannot 

capture the phenomenon at pore scale, the influence of microstructure on fluid flow 

cannot be readily considered and the capillary force cannot be included in the model 

easily. Therefore, to have a more accurate and more scientific understanding of the 

multiphase flows in fractured porous media, the microscopic approach is employed in 

this thesis. To this end, the study of multiphase flow in fractured porous media requires 

both the microstructure information as well as the fluid flow model that could 

characterize the microscopic process.   

2.2 CHARACTERIZATION OF POROUS MEDIA 

Fluid flow in porous medium is critically dependent on the geometry and topology of 

the pore space. The accurate description of fluid properties requires the geometry and 

topology of the pore space, such as the hydraulic radius and connectivity of pores. A 

common approach is to represents the detail of pore structure as a distribution of pores 
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of different size. Information about the pore structure was usually obtained from 

mercury injection and image analysis Yanuka et al. (1986). Generally, the reliable 

method to obtain the microstructure information would be the 3D microstructure 

measurement. However, direct measurements of the 3D microstructures are usually 

difficult and expensive in practice. Alternatively, there are several numerical approaches 

that produce the microstructure of porous media, such as sphere packing model, process 

based model, pore network model and stochastic reconstruction model.  

2.2.1 Sphere packing 

The sphere packing is one of the earliest models which are used to study the fluid flow 

through porous media. The difficulties of accurate describe the fluid flow in complexity 

of pore geometry of  sphere packs is recognized by Kozeny, who proposed an equation 

which related permeability to porosity and internal surface area of a sphere packing 

model. The equation was modified by Carman (1937), which is called Kozeny-Carman 

equation. However, the difficulty in analyzing the flow through in the sphere packing is 

still the prevention of its development for its complex shape of pores. Bernal (1964) 

stressed the need of “statistical geometry” and advocated it to describe the complex 

geometry of sphere packing model which rapidly accelerate the progress in such fields 

and others. The accurate description of the fluid flow in complex porous media becomes 

possible. Bernal’s concept was adopted in Finney’s study (1968, 1970) on fluid flow in 

random packing. The statistics of random packing is described, which is used to 

characterize the relatively simple geometrical entities and their statistical distribution. 

The statistical geometry is suggested as a powerful tool to describe the complete 

character of random sphere packing. 
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2.2.2 Process based model 

Øren and Bakke (2003) proposed a process based method to reconstruct the 3-D micro-

structure of porous media. Image analysis technique is used to extract the microstructure 

information for generating realistic and fully characterized 3-D pore network model 

based on numerical modeling of geological processes which can representative the pore 

space of sandstone. The attempt has been done to reconstruct the 3-D sandstone by 

simulating the results of the main sandstone-forming processes: sedimentation; 

compaction; diagenesis. In the process based model, the microstructure generated as a 

result of complex physical, chemical and geological processes. However, this method 

required a lot of physical information, such as porosity, grain size distribution, a visual 

estimate of the degree of compaction, and parameters related to cementation. And the 

general geometrical characteristics does not necessary match with natural sample.   

2.2.3 Pore network model  

The pore network model originates from the bundle of tube model. In the early stage, 

the description of the geometry in fractured porous medium is simplified by applying 

the bundle of tube model where the mathematical operations get comparatively simple. 

The equation of the permeability and geometry of porous structure is derived from the 

tube radius frequency distribution of the equivalent bundle of tubes. However, the 

oversimplified bundle of tube model cannot represent accurately real fractured porous 

media for its absence of cross-connections between the tubes which is a major structural 

feature of these porous media. Alternatively, Fatt (1956) proposed the network of tubes 

to represent the real porous media which is more accurate than the bundle of tubes and 

more easier to complemented than sphere packing model. The vast majority of network 
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models consist of pore bodies and throats, along with a description of how the pore 

bodies are connected via the pore throats. The pore bodies are meant to represent the 

larger void spaces found in the natural porous medium, the narrow openings that 

connect the adjacent pore bodies are modeled by the pore throats (capillary tubes). 

Quantitative characteristic lies in choosing the geometric shape, sizes, location, and 

orientations of the pore bodies and throat so that the amount of detail in the description 

of the pore geometry is sufficient to be modeled.  Moreover, the capillary pressure 

curves are derived from the network model and the pore size distribution is also 

calculated based on capillary pressure curves. Bryant et al. (1993) applied the network 

model to represent the real random sphere packing with no assumption invoked for the 

well characterized geometry and topology of the void space. More recently, the coupled 

image technique and network model method is applied to reflect the pore structure. The 

network work skeleton is represented by the center line of the pore space from the 

binarized image and the statistical spatial information is used to generate the topology 

and geometry of the network which can represent the real structure of the pore structure. 

However, various assumptions concerning with the pore network model which 

oversimplify the structure of void space. For example, the pore space is often idealized 

to simple geometries such as uniform circular or square cross-sectional shapes.  

2.2.4 Local porosity theory based stochastic model 

Local porosity theory and its application to the analysis of stochastic reconstruction 

models for porous media was reviewed and discussed by Hilfer (1991). Typical 

geometric observation such as porosity and specific internal surface area are not 

sufficient to distinguish the fractured porous microstructure. The stochastic 
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reconstruction models are found not only match the porosity and specific internal but 

also other geometric quantities such as correlation functions and linear and sphere 

contact distributions.  

The reconstruction of the microstructure of 3D random heterogeneous media from the 

information obtained from a 2D micrograph has manifold potential applications 

especially only 2D images are available for analysis. It is desirable that a reconstruction 

procedure has the ability to incorporate as much crucial microstructure information as 

possible to capture the remarkable feature of the reference structure. Jacques (1984) 

proposed a 3D modeling technique of fractured porous media. The choice of two 

functions of probability distribution function and correlation function for characterizing 

a fractured porous medium had been discussed by Joshi (1974, PHD thesis) and 

Quiblier(1984), and they are remain unchanged from 2D to 3D among the few 

characteristics of fractured porous medium. Alder (1990) suggested that the fractured 

porous media share the same statistical property of porosity and the autocorrelation 

function measured on thin section of the sandstones, which can be used to reconstruct 

artificial media with the same average geometrical properties. Yeong and Torquato 

(1998) formulated a procedure to reconstruct the structure of general random 

heterogeneous media from limited morphological information where any type and 

numbers of correlation function are incorporated in order to reconstruct accurately.  

2.3 CHARACTERIZATION OF FRACTURE NETWORKS 

The characterization of flow in fracture network has been a research focus in the past 

half century. Conventional models to characterize the flow in fracture network including 

singe equivalent continuum model (Pruess et al. 1990), dual continuum model 



Chapter 2 – Literature Review  

10 

 

(Barenblatt et al. 1960, Huyakorn et al. 1983), multiple interacting continua model, 

multi-permeability model (Bai et al. 1993, Bear et al. 1993). However, most of the 

conventional methods do not explicitly model the geometry of discrete fractures that 

control the flow pathway.  

Alternatively, the discrete fracture network (DFN) model is a more realistic model 

which considers both the physical property and geometrical property. DFN models have 

been used for a wide variety of exploration and production purposes since the 

mathematical studies and experimental works by Snow (1965, 1969). Beacher et al. 

(1967) developed a fracture model with all the joints simplified as circular disks 

randomly distributed in space based on the geological statistics. Methods for 

characterizing fractures can be found in Pointe and Hudson (1985) and Singhal and 

Gupta (1999). Long et al. (1985) developed a numerical code to generate random 

fracture systems in two dimensions. It was found that the fracture network do not 

necessarily behave like a equivalent porous medium only if the fracture system is of 

high density and non-uniform orientation distribution. The fluid flow in fracture 

network is affected by the degree to which the fractures are interconnected. The 

relationship between the fractures interconnectivity and permeability was by 

investigated Long and Witherspoon (1985). It was found that, the fracture connectivity 

increases with increasing fracture length and fracture density, as the chance of fracture 

intersection increases. Later on, Long and Billaux (1987) developed a technique to 

process field date into fracture network model, in which, a geo-statistical simulation was 

used to predict the average geometric parameters of the network. Similar work was also 

conducted by Andersson and Dverstorp (1987). The permeability of anisotropic fracture 
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network was studied by Chen et al. (1999), the solution of anisotropic flow within the 

fracture plane was derived.  

Dershowitz et al. (2004) highlighted the advances in the discrete fracture network 

approaches to flow and transport modeling and analysis for fracture rock. Recently, the 

DFN model is adopted to establish the hydro-geological site descriptive model in 

relation to design and construction of subsea tunnels (Kim et al. 2007), to investigate the 

contaminated sites on fractured rock (Parker et al. 2007), and to investigated the 

directivity of permeability of fractured rock masses with varying flow directions and 

different aperture distribution (Liu et al. 2014). However, in most of the aforementioned 

researches, the flow in individual fracture is characterized by the cubic law based on the 

assumption that the fracture is smooth with constant aperture. The directly simulation of 

roughness effect on fluid flow through fractured network is rarely reported (Zhao et al. 

2014).  

2.4 THE FLOW MODEL 

Theoretically, the fluid flow is governed by the Navier-Stokes equation and a set of 

coupled and nonlinear partial equation are derived from the conservation of mass, 

momentum and energy. However, the analytical solution is impossible especially in the 

system of complex geometry and boundary condition. Alternatively, there are several 

numerical methods are proposed such as finite difference method, finite element method, 

finite volume method and spectral method, which are class of conventional 

computational fluid dynamics (CFD). However, the conventional numerical methods for 

fluid flow are based on grid or element, and the computational cost is high and is not 
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easy for implementation of simulation at pore scale. Moreover, the tracking of the 

interface in multiphase system is always a challenge for conventional methods.  

In contrary , the Lattice Boltzmann method (LBM) is a “bottom-up” method for 

simulation of fluid flow which is quite distinctive from molecular dynamics (MD) on 

the one hand and “top-down” methods based on the discretization of partial differential 

equations on the other hand (Wolf-Gladrow 2000). The fundamental idea of LBM is to 

construct the kinetic model with the essential physics of microscopic processes 

incorporated so that the macroscopic averaged properties can be derived directly. The 

difficulties to solve the complicated Boltzmann equation and trace the path of particles 

in molecular dynamics simulation were simplified by solving the kinetic equations.  

In the past two decades, comprehensive investigations have been done to improve the 

accuracy and efficiency of Lattice Boltzmann Method in the treatment of boundary 

conditions (Skordos 1993; Noble et al. 1995; Inamuro et al. 1995; Maier et al. 1996; He 

& Zou et al. 1997; Filippova & hänel, 1998; Mei et al., 1999; Guo et al. 2002; Latt et al. 

2008) and interfacial physics among multi-phases (Swift et al. 1996; Zhang, he & Chen 

2000; He & Doolen 2002; Yu et al. 2003; Yan & Zu 2007; Sukop et al. 2008; Sarkar et 

al. 2009; Zu et al. 2010). Applications of LBM in the simulation of single and 

multiphase flow in porous medium were investigated by numerous researchers (Hill et 

al. 2001; Pan et al. 2004; Chai et al. 2008; Walsh et al. 2010; Yan et al. 2011; Ghassemi 

et al. 2011). 

In order to explore the mechanism of multiphase flow and its dependence on 

microstructure, the LBM is adopted in this research for its appealing features of 
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programming simplicity, intrinsic parallelism, straightforward implementation of 

complex boundaries and multiple fluid species.  
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CHAPTER 3 STOCHASTIC RECONSTRUCTION OF GOSFORD 

SANDSTONE FROM SURFACE IMAGE 

 

To obtain the microstructure of material is one of the intrinsic interests for many 

researchers. The X-ray Computed Tomography (CT) and Scanning Electron Microscope 

(SEM) have been widely used to obtain the microstructure of materials for different 

purposes. However, there are some limitations of the SEM and X-ray CT. In this 

chapter, the stochastic reconstruction is adopted to obtain the microstructure model of 

Gosford sandstone, which may provide an alternative solution to obtain the 

microstructure of the Gosford sandstone and similar materials like cement. The main 

contributions of the present work are: employment of a digital microscope to obtain the 

surface image, the derivation of the 3D morphological distribution curve from the 2D 

surface image, and the verification of the reconstructed microstructure model. Our 

results show that the proposed method is able to reproduce a comparable microstructure 

model for the Gosford sandstone. 

3.1 INTRODUCTION 

Most rocks have complex microstructures which are regarded as the most important 

factor in determining their mechanical properties and transport behaviors (Alder et al. 

1990, Hazor et al. 1997). Moreover, to obtain the microstructure of material is one of 

the intrinsic interests for scientists. For instance, two Nobel prizes were awarded for the 

inventions of X-ray Computed Tomography (CT) and Scanning Electron Microscope 

(SEM). In geosciences and geomechanics, these devices have been used to obtain the 

microstructure of geomaterials for different purposes, e.g. the study of fracturing in 
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granite by Ichikawa et al. (2001), the investigation of thermally induced microcracks in 

concrete by Wang et al. (2005), the characterization of shale rock properties by Josh et 

al. (2012), and the analysis of energy dissipation in Gosford sandstone by Sufian and 

Russell (2013). However, the SEM and X-ray CT are not perfect, besides being 

expensive and time consuming, there are limitations. The SEM can only get the surface 

image, and the X-ray CT is usually only applicable to small size specimen when the 

resolution is high.  

Recently, a possible solution has been developed to reconstruct the microstructure 

model of a porous media based on its morphological information, and it is called 

stochastic reconstruction (Hazlett 1997). The stochastic reconstruction is capable to 

reproduce a large number of microstructure models for a material at little cost. 

Moreover, using the method, it is possible to generate a microstructure model of large 

size under high resolution. The principle of the stochastic reconstruction is 

straightforward and easy to understand. The reconstruction is treated as an optimization 

problem where the microstructure model is the target variable and the difference 

between the morphological description curves of the target material and the 

reconstructed microstructure model serves as the target function. The goal is to find the 

best solution to minimize the target function. The simulated annealing method has been 

widely used as an optimization method (Hazlett 1997, Yeong and Torquato 1998), and 

the two-point probability function, lineal path function, and multiple-point statistics 

function are commonly adopted as the morphological descriptor (Okabe and Blunt 2005. 

Politis et al. 2008, Hajizadeh et al. 2011, Tahmasebi and Sahimi 2012). Stochastic 

reconstruction has been used to generate microstructure models of different materials, 

e.g. the dispersions by Rintoul and Torquato (1997), the Berea and Fontainebleau 
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sandstones by Manwart et al. (2000), the chalk by Talukdar and Torsaeter (2002), and 

other heterogeneous materials by Jiao et al. (2008). However, in these work, the 

morphological description curve is simply obtained from 2D images of the 

corresponding material (Talukdar et al. 2002). Whether the morphological description 

curve can reflect the 3D morphological information of the target material is not verified. 

Moreover, the reconstructed microstructure models have not been validated against the 

real microstructure of the material.  

In this chapter, the stochastic reconstruction is adopted to generate the microstructure 

model of the Gosford sandstone. The proposed method is illustrated in Figure 3.1. The 

surface image of the Gosford sandstone is captured using a digital microscope. The 

relationship between the morphological description curves of the 2D image and the 3D 

model is studied based on the X-ray micro CT data of the Gosford sandstone. Then, the 

simulated annealing method is used to generate the microstructure of the Gosford 

sandstone. The reconstructed models are compared with the X-ray micro CT model. The 

main contributions of the present work are: the employment of a digital microscope to 

obtain the surface image; the derivation of the 3D morphological distribution curve 

from the 2D surface image, and the verification of the reconstructed microstructure 

model. From our study, it is concluded that the stochastic reconstruction procedure is 

reasonably good to generate the microstructure model for the Gosford sandstone. 
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Figure 3.1 Illustration of the stochastic reconstruction for Gosford sandstone. 
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3.2. STOCHASTIC RECONSTRUCTION 

3.2.1 Two-point probability function 

In this paper, the porous media is considered as a two-phase mixture consisting of the 

solid and pores, and it is represented by a binary phase function ( )I r as 

 
1,  is in the pore phase

( )
0,  is in the solid phase

r
I r

r


 


 (3.1) 

where r is the spatial position of a point in the porous media. 

The two-point probability function is the most widely used morphological descriptor in 

the stochastic reconstruction, which is written as 

  2 , ( ) ( )i j i jS r r I r I r   (3.2) 

where the  denotes the statistical average (probability) of two points in the pore 

phase at positions ir  and 
jr  ,. For a macroscopically homogeneous and isotropic porous 

media,  2 ,i jS r r  only depends on the length of the lag vector 
j iu r r   between the two 

points. Thus, the two-point distribution function can be further simplified as 

  2 ( ) ( )i iS u I r I r u    (3.3) 

In the stochastic reconstruction, a porous media is usually represented by a digitalized 

model. The two-point distribution function of a digitalized model can be calculated as  
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  2

( ) ( )i i j

i

I r I r ue
S u

D L

 




 (3.4) 

where ir  represents a pixel in the interested domain, u  is length of the lag vector,  
je  is 

the unit vector, D is the dimension of the porous media, and Li is the size of the domain 

(in pixels). It should be mentioned that when the periodic boundary condition is 

considered, the second pixel (
i jr ue ) will return to the start boundary 

 *
*

i j j
j j

r ue L


   when the point moves beyond the end boundary, with the same 

normal direction 
*je    

The two-point probability function  2S u  can be viewed as a curve that represents 

certain morphological information for a porous media. In stochastic reconstruction, the 

two-point probability function is widely used due to its ease of implementation and high 

computational efficiency. In this paper, it is adopted as the morphological descriptor for 

the reconstruction. There are also other available morphological functions for stochastic 

reconstruction, and details can be found in the work of Yeong and Torquato (1998), 

Hajizadeh et al. (2011), and Tahmasebi and Sahimi (2012).  

3.2.2 Stochastic reconstruction based on the simulated annealing method  

The procedure of stochastic reconstruction based on the simulated annealing method is 

shown in Figure 3.3. The target function is defined as 

 
max

2

2 2

0

( ( ) ( ))
u

u

E S u S u


   (3.5) 
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where E is the system energy, 2 ( )S u  is the morphological distribution curve (two-point 

probability function) of the reconstructed model, 2( )S u  is the morphological 

distribution curve of the target material, and umax is the maximum lag length which can 

be determined by accounting the size of the interested domain, the accuracy of the 

morphological representation and the computational efficiency. In this work, it is taken 

as one to two tenths of the size of the domain.    

There are two stages of iterations in the stochastic reconstruction. The first one is the 

internal phase exchange based on the Metropolis algorithm without updating of the 

system temperature:  

 
/

1 , 0

, 0BE k T

E
p

e E

 
 

 
 (3.6) 

where p is the probability of accepting the exchange, E is the change of system energy 

due to the phase exchange, kB is the Boltzmann's constant, and T  is the temperature of 

the current system.  

The second one is the Markov chain iteration which updates the system temperature 

according to 

 ( 1)( 1)

0

mT T e    (3.7) 

in which T0 is the initial temperature of the system, λ is the reduction parameter of the 

system temperature and m is the current number of Markov chain. The reduction 

parameter λ is estimated by 
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 min
min max, ( , )

E
Max Min

E
  

 
   

 (3.8) 

where min =0.2, max =0.8, and minE and E  are the minimum and average energy in 

each Markov chain, respectively.  

The Markov chain number m is given by 

   /m N Ne  (3.9) 

where N is the total number of iterations, and Ne is Markov chain length which has 

significant influence on the convergence. For the reconstruction of geomaterials, 

Ouenes et al. (1994) suggest that Ne should be 100 to 300 (in this paper Ne=200).  

Generation of the initial model is as described as follows. The first step is to generate a 

random model with the specific porosity. The phase properties of two pixels are 

randomly exchanged and the probability of accepting the exchange is p0. The exchange 

is repeated for N0 times. Then, the initial temperature can be calculated as 

 0

0 0( )

sumE
T

N In p


   (3.10) 

With the initial model and its parameters ready, the model is iterated until the system 

energy is less than a specified value, e.g. 1e-5. Therefore, the morphological curve of 

the reconstructed model approaches the target one, which guarantees that the 

reconstructed model has similar morphological information as the target material. More 

details on the implementation and determination of parameters in the stochastic 
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reconstruction based on simulated annealing method can be found in Talukdar and 

Torsaeter (2002). 

3.3. QUANTITATIVE MORPHOLOGICAL MEASUREMENTS OF POROUS 

MEDIA 

3.3.1 Porosity and specific surface 

In stochastic reconstruction, the porosity   is defined as the probability of finding a 

point in the pore phase. It also can be represented as the first statistical moment of the 

phase function ( )I r and equals to the two-point probability function when 0u  . 

  2 0S   (3.11) 

Another relationship between the porosity and the two-point probability function is 

  2

2S    (3.12) 

The specific surface, s, is defined as the interfacial area per unit volume between the 

two phases. It can be used to evaluate how accurately the pore-solid interface has been 

reproduced. In the stochastic reconstruction, the specific surface is calculated as  

 
2 0( )

2

u

d
S u

dus
D


  (3.13) 

where D is the dimension of the reconstructed model. 
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3.3.2 Local porosity distribution 

The local porosity of the reconstructed model is defined as the porosity within a cubic 

box of side length l centered at position r . It is given as 

 ( , ) ( )
M

r l I r   (3.14) 

where M refers to the operation domain, which is of the size 

[ / 2, / 2],[ / 2, / 2],[ / 2, / 2]i l i l j l j l k l k l      when the measurement box is 

centered at ( , , )r i j k . To achieve statistically accurate portrait of the local porosity 

distribution, the measurement box is moved from left top corner (l/2, l/2, l/2) to right 

bottom corner (Lx-l/2, Ly -l/2, Lz -l/2) by one pixel each time. Then, the local porosity 

distribution for a box with a side length of l is evaluated by dividing the number of 

boxes with porosity in a certain interval  ,     by the total number of boxes. The 

local porosity distribution function can be described by the following equation  

 
1

( , ) ( ( , ))
r

l r l
n

        (3.15) 

where, 

 
1, ( , )

( ( , ))
0,

if r l
r l

otherwise

  
  

  
  


 (3.16) 

and n is the total number of measurement boxes. 
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3.3.3 Local percolation probability 

In stochastic reconstruction, the local percolation probability is defined as the 

probability of finding a cubic measurement cell ( , )oM r l that percolates in orientation, 

o. It is expressed in the equation below (Hilfer 2000, Øren and Bakke 2003) 

 
1

( ) ( , )o o

r

P l r l
n

   (3.17) 

where 

 
1, ( , )

( , )
0,

o

o

if M r l percolates
r l

otherwise


  


 (3.18) 

The ( , )o r l  can be evaluated using a burning algorithm. First, a fire is set at the pore 

pixel; the fire then propagates to the neighboring pixel where pore pixel is presented; 

finally, the fire distinguishes until no neighboring pore pixel can be detected. The 

process is repeated until all the pore pixels are visited. When the burning process is 

completed, all the pore clusters are labeled with different fire numbers. The 

measurement cell is percolated in orientation o if the same cluster numbers are found on 

opposite sides of the measurement cell in direction o. It means that there exists a path 

within the cell along orientation o. After all the measurement cells have been visited, the 

local percolation probability can be measured by using equation (3.17).  
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3.4 MORPHOLOGICAL DESCRIPTION OF THE GOSFORD SANDSTONE 

3.4.1 Relationship between the 2D and 3D morphological description 

X-ray micro CT scanning with a spatial resolution of 5 micros was conducted on the 

Gosford sandstone by Sufian and Russell (2013). As shown in Figure 3.2, a spatial cube 

of 600×600×600 pixels (3×3×3 mm
3
) is extracted from the original X-ray micro CT 

model, which is used to investigate the relationship between 2D and 3D morphological 

description curves of the Gosford sandstone. The binaryzation of the X-ray micro CT 

data is done by adjusting the threshold value based on the porosity of the Gosford 

sandstone which is reported as 19%. The areal porosity of each 2D CT slice image is 

shown in Figure 3.3. The areal porosity of the CT slice is mostly different from the 3D 

porosity. The morphological description curves of 2D and 3D models are also different 

(see Figure 3.7). It is found that the morphological description curve of a 2D slice image 

is close to that of the 3D model when the areal porosity is near the 3D porosity. 

Therefore, the specific surface image with areal porosity equal to the 3D porosity can be 

used to extract the 3D morphological description curve for the stochastic reconstruction. 

However, it is difficult to find this specific image in practice. One alternative solution is 

to modify the areal porosity by adjusting the threshold value if the surface image is in a 

gray format. The threshold value usually can be determined between two peaks of the  



Chapter 3 – Stochastic Reconstruction of Gosford Sandstone from Surface Image 

32 

 

 

Figure 3.2 Sample drilled for x-ray CT scanning and region of interests selected for 

analysis. 

 

Figure 3.3 Areal porosity distribution of the X-ray micro CT model.  
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histogram of the gray values, Talukdar and Torsaeter (2002) adopted such method. 

However, in their work, the morphological description curve from the slice image is 

simply adopted for reconstruction without further comparison with the corresponding 

3D one. To quantify the difference between the 2D and 3D morphological description 

curves, an index,  , in the same form as the system energy in the stochastic 

reconstruction is used.  

 
max

3 2 2

2 2

0

( ( ) ( ))
u

D D

u

S u S u


    (3.19) 

To verify the method, the original CT slice images with the highest and lowest 

porosities as shown in Figure 3.4 are processed. The results are presented in Figure 3.5, 

which prove the applicability of the method. In this method (named method 1), only the 

porosity and 2D image of the porous media are required, and they are easy to obtain. 

The shortcoming is that changing the areal porosity of a surface image may influence its 

original morphological information. For instance, if a surface image with low areal 

porosity is adjusted to a very high porosity binary image, more pores might be 

generated and connectivity between pores might be influenced as well. Moreover, the 

method is not applicable when the surface 2D image is already in the binaryzation form.  
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Figure 3.4 Morphological description curves of different CT slices. 

 

Figure 3.5 Derived morphological description curves of the CT slices (method 1). 

Another solution is introduced, which is called method 2 in this paper. According to 

Equations (11) and (12), we have 

 
3 2

2 2 3 2(0) (0)D D

D DS S      (3.20) 

Slice 474, Areal porosity =0.2545

Slice 75, Areal porosity =0.1962

Slice 588, Areal porosity =0.1455

Slice 474, Ω=0.00005

Slice 588, Ω=0.0012
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 3 2 2 2

2 2 3 2( ) ( )D D

D DS S        (3.21) 

If umax is large enough, the following relationship stands 

 3 2 2 2

2 max 2 max 3 2( ) ( )D D

D DS u S u   B  (3.22) 

Then, the relationship between 2D and 3D morphological distribution is assumed to 

satisfy the following equation  

        3 2 2 2

2 2 3 2 3 2( ) (1 ( ))D D

D D D DS u S u w u w u          (3.23) 

where ( )w u is the weight function which is estimated from the normalized 2D 

correlation function as 

 
   

   

2 2

2 2 max

2 2

2 2 max

( )
0

D D

D D

S u S u
w u

S S u





 (3.24) 

Equation (3.23) can directly derive the 3D morphological distribution curve from the 

3D porosity. The merit of method 2 is that no digital image processing is required, and 

the binarized slice image can also be used. Figure 3.6 shows that the derived 3D 

morphological distribution curves for the binarized slice images are close to the 3D one, 

which shows the effectiveness of method 2.  
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Figure 3.6 Derived morphological description curves of the CT slices (method 2). 

3.4.2 Surface image of the Gosford sandstone 

A digital microscope with a magnification ratio up to 600× is used to capture the surface 

image of a Gosford sandstone specimen (see Figure 3.7a). The top surface of the 

specimen is milled into a flat plane. Carbon dust is poured to fill the pores, and 

redundancy dust is wiped off the surface to give a processed surface (see Figure 3.7c). 

The carbon dust treatment can decrease the influence of mineral components on pore 

identification and is necessary to obtain the 2D porosity structure. Figure 3.7e shows the 

surface image obtained from the digital microscope. The pixel resolution is 5.5 micros, 

which is fairly good compared to the X-ray micro CT scanning by Sufian and Russell 

(2013). It should be mentioned that the cost for a digital microscopy is only about fifty 

Australia dollars. 

 

Slice 474, Ω=0.00005

Slice 588, Ω=0.0003
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Figure 3.7 Process of the surface image acquisition for the Gosford sandstone. 

Four surface images of the Gosford sandstone specimen are captured (see Figure 3.8). 

The region of interest is 3 mm×3 mm. The 3D morphological description curves from 

these images are derived by using the two methods presented in Section 3.4.1. The 

discrepancies between the derived curve and that from the X-ray micro CT model are 

shown in Table 3.1. Both methods can provide a reasonable 3D morphological 

description for the Gosford sandstone. It should be mentioned that the surface of the 

Gosford sandstone specimen may be partially damaged during the milling process. The 

results in Table 3.1 show the robustness of the method in acquiring the morphological 

description of the Gosford sandstone.  

 

 

(d) S04-600X  Digital Microscope

(a) Sandstone specimen

60 mm

(e) Micrograph  of the specimen surface
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1mm = 190 pixels
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Table 3.1 Difference between the morphological descriptions obtained from surface 

images and that of the micro X-ray CT model.  

Ω Image A Image B Image C Image D 

Method 1 0.00025 0.00090 0.00030 0.00034 

Method 2 0.00050 0.00090 0.00026 0.00030 

 

Figure 3.8 Obtained surface images of the Gosford sandstone specimen.  

3.5 STOCHASTIC RECONSTRUCTION OF THE GOSFORD SANDSTONE 

3.5.1 Reconstruction based on the X-ray micro CT model 

In this section, the morphological distribution curve obtained from the X-ray micro CT 

model is used. Four reconstructed models are shown in Figure 3.9. The stochastic 

A

BD
C
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reconstruction can reproduce models for different microstructures with local porosity 

distribution and local percolation probability close to the original X-ray micro CT 

model (see Figure 3.10). To quantify the difference between two curves, an error index 

is defined 

 100%
( )

Max CT reconstructed
Err

Max CT


   (3.25) 

Results of the error analysis are listed in Table 3.2. It can be seen that, the 

morphological measurements of these reconstructed models are close to the X-ray micro 

CT model.  

 

 

 

 

 

 

 

 

 

Figure 3.9 Stochastic reconstructed models based on the 3D morphological description 

curve from the micro X-ray CT model. 

Case 1 Case 2

Case 3 Case 4
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(a) Local porosity distribution at cell side length of 180 micros 

 

(b) Local percolation probability  

Figure 3.10 Quantitative measures of the reconstructed models based on the X-ray 

micro CT model. 
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Table 3.2 Quantitative morphological description of the stochastic reconstructed models based 

on the micro X-ray CT model. 

Case No. 
Specific area 

Err (%) 

Local porosity distribution 

Err (%) 

Local percolation probability 

Err (%) 

1 5 2.07 11.13 

2 5 1.59 16.48 

3 5 1.64 15.59 

4 5 1.19 16.26 

Average 5 1.62 14.87 

3.5.2 Reconstruction based on the surface images 

In this section, the derived morphological distribution curves from the surface images 

captured by the digital microscopy are used. Figure 3.11 shows the local porosity 

distribution and local percolation probability of reconstructed models using method 2. It 

shows that the reconstructed microstructure models based on the surface images can 

also give reasonably good results. The results of error analysis performed on the 

reconstructed models from 4 surface images based on method 1 and method 2 are listed 

in Table 3.3. The average error of the local porosity distribution at cell side length of 

180 micros is reported as less than 4% which shows the effectiveness of stochastic 

reconstruction from surface images. Meanwhile, an underestimation of 10% for the 

local percolation probability shows that the correlation functions do not capture some of 

the connected structures that present in the 3D model. In practice, the specific area can 

be an input value, obtained from other experiments. If the specific area is given, the 

distribution curve from surface images which gives the best fit can be used in the 

stochastic reconstruction (e.g. part D in this example).  
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The stochastic reconstruction is also used to generate models with size of 

3.75×3.75×3.75 mm
3
, 4.5×4.5×4.5 mm

3
, 5.25×5.25×5.25 mm

3
 and 6×6×6 mm

3
. In our 

test, a computer with Intel Core i7 960 3.20 GHz and memory of 8 GB is used. The 

program is run in 64-bit version of Windows 7 with Matlab 2012. The reconstructed 

models and the corresponding simulation time are summarized in Figure 3.12. This 

example demonstrates the capability of stochastic reconstruction in reproducing models 

of arbitrary large size with only small observation domain. However, the computational 

requirement is demanding when the model size becomes large. This issue will be 

addressed in future research.  

Table 3.3 Quantitative morphological description of the stochastic reconstructed model based on 

the surface images using method 1 and method 2 ("A,B,C,D" refers to the image, "1,2 "means 

the method id).  

Case No. 
Specific area Local porosity distribution Local percolation probability 

Err(%) Average Err(%) Average Err(%) Average 

A1 23.51 

20.09 

3.74 

3.07 

7.05 

10.50 B1 33.19 5.75 5.96 

C1 13.31 1.62 15.00 

D1 10.35 1.17 14.00 

A2 30.82 

24.12 

5.56 

3.50 

5.37 

7.53 B2 31.86 4.45 4.33 

C2 21.05 2.53 7.98 

D2 12.76 1.47 12.45 
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(a) Local porosity distribution at cell side length of 180 micros 

 

(b) Local percolation probability  

Figure 3.11 Quantitative measures of the reconstructed models based on the surface 

images. 
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Figure 3.12 Computational time of reconstructed models with different sizes. 

3.6 CONCLUSIONS 

The stochastic reconstruction of Gosford sandstone from its surface image is conducted. 

A digital microscope is adopted to capture surface images of the Gosford sandstone 

specimen where the carbon dust treatment on the surface is introduced. The 3D 

morphological distribution curve is derived through a porosity adjustment of the 2D 

surface images. It is found that the derived morphological curves are close to that from 

the X-ray micro CT model. By comparing all the stochastic reconstructed 

microstructure models with the original X-ray micro CT model, it is shown that the 

reconstructed models can successfully reflect essential morphological information of the 

Gosford sandstone.  
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CHAPTER 4 NUMERICAL STUDY OF TWO-PHASE FLUID 

DISTRIBUTIONS IN FRACTURED POROUS MEDIA 

 

Two-phase fluid distributions in fractured porous media is studied using a single-

component multiphase (SCMP) lattice Boltzmann method (LBM), which is selected 

among three commonly used numerical approaches through a comparison against the 

available results of micro X-ray computed tomography (CT). The influence of the initial 

configuration and the periodic boundary conditions in the SCMP LBM for the fluid 

distribution analysis are investigated as well. It is revealed that regular porous media is 

sensitive to the initial distribution, whereas irregular porous media is insensitive. 

Moreover, to eliminate the influence of boundaries, the model's buffer size of a SCMP 

LBM simulation is suggested to be taken as approximately 12.5 times the average 

particle size. Then, the two-phase fluid distribution of a porous medium is numerically 

studied using the SCMP LBM. Both detailed distribution patterns and macroscopic 

morphology parameters are reasonably well captured. Finally, the two-phase fluid 

distributions in a fractured porous media are investigated. The influence of the degree of 

saturation, fracture length and fracture width on the fluid distributions and migration are 

explored. 

4.1 INTRODUCTION 

The characterization of fluid distributions is of fundamental importance to the accurate 

modeling of multiphase flow problems, which are related to many industrial 

applications, e.g., radioactive disposal sites (Jim-Douglas and Spagnuolo 2001), oil/gas 

extraction (Trivedi and Babadagli 2009), and contaminant transport (Sudicky and Frind 
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1982). According to a literature review (Or and Tuller 1999, Gray et al. 2002, Culligan 

et al. 2004, de Gennes et al. 2004, Reynodls and Kueper 2004, German et al. 2006), 

there are two types of commonly used approaches to characterizing the fluid distribution 

in porous media: experimental and numerical approaches. 

The most popular equipment used to visualize the phase distribution in porous media 

are scanning electron microscopy (SEM) and micro X-ray computed tomography (CT). 

Gvirtzman et al. (1987) investigated the water phase distribution within an unsaturated 

porous medium using SEM. To satisfy the requirement of SEM on a dried specimen, a 

rapid cooling technique was adopted. However, the cooling process caused a change in 

the volume of the liquid and lead to most of the samples being destructed. This 

shortcoming can be overcome using X-ray CT; e.g., Schmitz et al. (1997) conducted a 

study on the stationary water/air distribution in random and structured packing media 

using high-resolution micro X-ray CT, and Wildenschild et al. (2004) adopted X-ray CT 

to measure the saturation, distribution and interfacial characteristics of the fluids within 

the pore space. In addition to SEM and micro X-ray CT, other techniques, such as 

nuclear magnetic resonance (NMR) and confocal laser scanning microscopy (CLSM), 

have also been used by a few researchers; e.g., Liaw et al. (1996) studied the pore 

structure and fluid phase distribution of sandstone and carbonate samples using NMR, 

and Krummel et al. (2013) visualized the two immiscible fluids in a 3D porous medium 

using CLSM. 

However, the direct exploration of the underlying microscopic multiphase distribution is 

time consuming and expensive. Alternatively, numerical approaches provide attractive 

solutions due to their advantages of low cost, high efficiency and repeatability. Many 
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numerical methods have been developed to predict multiphase distributions in porous 

media. There are two popular categories: the Simulated Annealing Method (SAM) and 

the Lattice Boltzmann Method (LBM). The SAM is a global optimization method 

proposed by Kirkpatrick et al. (1983), which can be used in the study of multiphase 

systems, as described in Politis et al. (1998). The SAM was first used to investigate the 

equilibrium phase distribution by Knight et al. (1990). Later, Silversten and Fort (2000) 

applied the method to study the fluid distribution in sphere packs, Berkowitz and 

Hansen (2001) extended the SAM to the water distribution in a partially saturated 

sandstone, and Lu et al. (2010) investigated the capillarity phenomenon in porous media. 

Recently, the lattice Boltzmann method (LBM) has become a promising solution for 

multiphase problems for porous media (Chen and Doolen 1998). Three popular 

multiphase LBM models have been developed (Huang et al. 2011): the free energy 

LBM, the Rothman-Keller LBM, and the Shan-Chen LBM. An extensive literature 

review on these models can be found in the work of Huang et al. (2011). Among those 

models, the Shan-Chen LBM (Shan and Chen 1993,1994) receives the most popularity 

because of its well-defined inter-particle potential and straightforward implementation. 

There are two sub-categories in the Shan-Chen LBM: the multi-component multiphase 

(MCMP) LBM (Shan and Chen 1993) and the single-component multiphase (SCMP) 

LBM (Shan and Chen 1994). The MCMP LBM model allows for fluid phases with 

different wettability, densities, and viscosities. The MCMP LBM was used to study the 

hysteretic capillary pressure-saturation of a packed sphere system by Pan et al. (2004), 

the contact angle between the fluid and solid surface by Huang et la. (2007), and the 

distribution of multiphase fluids in porous media by Sukop et al. (2008). The SCMP 

LBM focuses on the modeling of one-component fluid systems that obey a non-ideal 
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gas equation of state and that can undergo a liquid-gas-type phase transition. The SCMP 

LBM has been successfully applied to investigate the invasion percolation in porous 

media (Sukop and Or 2003) and the effect of gravity, adhesion, and surface tension on 

capillary-rise problems (Lu et al. 2013).  

The aforementioned studies usually focus on qualitatively describing how the multi-

phase fluid is distributed in porous media; however, no quantitative study on the multi-

phase fluid distribution in a fractured porous media has been performed. A fracture in 

porous media is generally considered as a fast pathway for transports (Zimmerman and 

Bodvarsson 1996), but the fracture may impede the flow under partial saturation (Wang 

and Narasimhan 1985). The accurate description of fluid flow in unsaturated fractured 

porous media requires a clear understanding of the mechanism that produces the 

multiphase distribution. Moreover, to our knowledge, the accuracy of these numerical 

methods is still unclear, and a comprehensive verification is strongly required. For 

example, Lu et al. (2010) verified the prediction results of the SAM against X-ray CT 

observations, Sukop et al. (2008) compared the MCMP LBM with X-ray CT results, 

and Sukop and Or (2003) declared that SCMP LBM can produce realistic multiphase 

distributions. However, no work has been performed toward a quantitative comparison 

between these numerical approaches against the experimental observations. In this 

paper, a full comparison of the results predicted by the SAM, SCMP LBM and MCMP 

LBM with the experimental results of micro X-ray CT (Sukop et la. 2008) is discussed. 

It was found that the SCMP LBM shows advantages over the other two numerical 

methods in terms of computational efficiency and multiphase characterization. In 

addition, the influence of periodic boundary condition and the initial configuration on 

the fluid distribution predicted by the SCMP LBM were studied. Following this, the 
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influence of the degree of saturation on the fluid distribution was investigated for an 

artificial porous medium that was generated using the discrete element method (DEM). 

Finally, the two-phase fluid distribution in a fractured porous media was studied 

numerically.  

4.2 NUMERICAL METHODS 

4.2.1 Simulated Annealing Method (SAM) 

The simulated annealing is powerful and algorithmically simple methodology to deal 

with the multi-parameter global optimization problems. The multiphase distribution 

problem can be formulated as an optimization problem according to Kirkpatrick et al. 

(1983).  

To represent the fluid distribution of a porous media involving the solid, wetting and 

non-wetting phases, a three-spin Ising model (1987) is used.  

 

1 nonwetting phase

Ising( ) 0 solid phase

1 wetting phase

r




 



r
 (4.1) 

where r
r

is the spatial location of a pixel (voxel). 

The geometry of the solid phase is represented as a group of pixels (voxels) that are 

assigned to be 0. The wetting phase and non-wetting phase are randomly introduced in 

the pore space to satisfy the desirable degree of saturation.  
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The phase distribution of the porous media is governed by the interfacial energy. The 

equilibrium configuration corresponds to the system of minimum global interfacial 

energy. The global interfacial energy E of the system can be calculated as  

 
, ,

k k

i jkki j k k
E J n n   (4.2) 

which is the interfacial energy between the pixel site i and all its nearest neighbor sites j, 

with phases of k and k that span all the sites, where =1k

in  if the pixel site is in phase k  

and 0 otherwise. 
,k k

J  is the interfacial free energy of the contact surface between 

different phases and is defined as  
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 (4.3) 

which reproduces the perfect wetting condition (Lu et al. 2010). 

During the simulation, two randomly selected pixels of different fluid phases in the pore 

space will try to exchange their positions, which will result in a variation in the 

interfacial energy of the system E . To minimize the system energy, the system is 

updated with a probability p to accept the pixel exchange according to the Metropolis 

algorithm.  

 
/

1 0

0refE E

E
p

e E


 
 

 
 (4.4) 

where 
refE is the reference energy given by a 'cooling schedule' as 
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 ,0

m

ref refE f E   (4.5) 

in which f is the reduction parameter, m is the number of the Markov chain, and 
,0refE is 

the initial value of 
refE . The value of f is significant in the simulation and must satisfy

0 1f  . A small f indicates fast converge but a high risk of local minima trapping. The 

physically sound configuration appears when f approaches 1. Meanwhile, the value of 

refE should be sufficiently large so that the system can approach the optimal 

distribution, which is chosen as approximately 30 times the highest value of 
,k k

J ,as 

shown in Politis et al. (1998). Therefore, f = 0.95 and 
,0= 30refE were used in this paper.  

The detailed procedure of the SAM is shown in Figure 4.1. It is necessary to mention 

that, the length of Markov chain is chosen as N=200 in all simulations, where N is the 

number of iterations that required to update the system reference energy. The system 

approaches equilibrium (Figure 4.1c) when the energy change between two Markov 

chains satisfies
1 1 5( ) / 10m m mE E E    . After reaching equilibrium, another 200 

Markov chains are performed, and the profiles generated from each of the Markov 

chains are averaged to create a smooth curve of the interface, which is called anti-

aliasing (Lu et al. 2010) (see Figure 4.2d).  

In term of methodology and algorithm, there are three main shortcomings of the SAM: a) 

the calculation of interaction force between different phases is not clear; b) the 

substantial computational requirement due to the global optimization; c) the deficiency 

in parallel computation. 
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Figure 4.1 Flowchart of the simulated annealing method for modeling two-phase 

distributions. 
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(a) Profile 1                                                         (b) Profile 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Profile 100                                                        (d) Averaged profile  

 

Figure 4.2 Anti-aliasing to produce a smooth interface after equilibrium is obtained. 

4.2.2 Lattice Boltzmann method (LBM) 

4.2.2.1 Theory background 

The lattice Boltzmann method is based on microscopic models and mesoscopic kinetic 

equations. It is the “bottom-up” method for simulation of fluid flow which is quite 

distinctive from molecular dynamics (MD) on the one hand and “top-down” methods 

based on the discretization of partial differential equations on the other hand. The 

fundamental idea of lattice Boltzmann method is to construct the kinetic model with the 
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essential physics of microscopic processes incorporated so that the macroscopic 

averaged properties can be derived directly (Chen and Doolen 1998). 

The LBM is originated from the lattice gas automata where the space, time, and particle 

velocities are all discrete. It can also be viewed as a special finite difference scheme for 

the kinetic equation of the discrete-velocity distribution function. The particles are 

residing on the nodes of a regular lattice, and particle distribution functions ( , )if x t  is 

defined as the particle occupation. Two sub-steps are included in one time step, which 

refer to the propagation and collision. Propagation means particle moves to the nearest 

or neighbor node in the direction of its velocity. Collision means particles arrive at a 

node interact and change their velocity direction according to scattering rules. When the 

particle arrive at a node that resigned as solid, then the bounce back algorithm would be 

applied, which means that the particle get back to where it was. It becomes more 

complicated in term of solid node treatment in the two phase problems, the solid-fluid 

interfacial force will also be included, which will be discussed later on.  

 In recent years, it has developed into an promising numerical scheme to simulate single 

and multiphase fluids for its remarkable ability in dealing with interfacial dynamics and 

complex boundaries. In this part, the two sub categories of the Shan-Chen LBM model 

are used to investigate multiphase distribution problems.   

4.2.2.2 Multi-component multiphase (MCMP) LBM 

In the MCMP LBM, the two-phase system is represented as two indissolvable 

components. For each of the two fluid components, a distribution function is introduced 

that satisfies the following evolution function: 
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      x x x x  (4.6) 

where ( , )k

af tx  is the k-th component density distribution function in the a-th velocity 

direction at site x  and at time t, t is time step for each iteration, and k is a relaxation 

time. , ( , )k eq

af tx is the equilibrium distribution function calculated as  
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where / 3sc x t  （ ）, with x  defined as the lattice spacing. ae  are the discrete 

velocities in the two dimensional case and are given by  
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a  are weight indexes defined as 
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eq

ku is the macroscopic velocity in the equilibrium distribution given by 

 'eq k k
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u u



 

F
 (4.10) 

where 'u is the composite macroscopic velocity, which is expressed as 
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kF  is the interaction force acting on the k-th component involving the fluid-fluid 

cohesion force
,c kF , fluid-solid adhesion force 

,ads kF and external force extF , which is 

expressed as,  

 
, ,k c k ads k ext  F F F F  (4.12) 

The cohesion force acting on the k-th component is 

 , ( , ) ( , ) ( , )c k c k a a ak
a

t G t w e t t e   F x x x  (4.13) 

where cG is the parameter that controls the strength of the cohesion force, and k and 

k
 are the interaction potential for the components k and k ,respectively, which can be 

taken as the density of each component. 

The adhesion force acting on the k-th component is calculated as  

 , ,( , ) ( , ) ( )ads k ads k k a a a

a

t G t w s e t e  F x x x  (4.14) 

where 
,ads kG is a parameter that adjusts the interaction strength between the k-th fluid 

component and the solid surface and ( )as e tx  is an indicator function equal to 1 for 

solid nodes and 0 for fluid nodes.  
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The external force extF  acting on the k-th component is defined as the body force on the 

particles, such as gravity, which is set as 0 for all simulations.  

After every iteration, the distribution function can conveniently be thought of as a 

typical histogram representing a frequency of occurrence. The frequencies can be 

considered to be direction-specific fluid densities. Accordingly, the macroscopic density 

and velocity of the k-th component can be obtained as  

 
k

k aa
f   (4.15) 

 
k

k a a ka
u f e   (4.16) 

4.2.2.3 Single component multiphase (SCMP) LBM 

The basic components of the SCMP LBM, such as the evolution function, equilibrium 

distribution function, macroscopic velocity and density are the same as in the MCMP 

Shan-Chen model. Instead of two distribution functions for each component, only one 

distribution function is used in the SCMP LBM. The principal distinguishing 

characteristic of the SCMP LBM is the incorporation of the equation of state. In this 

paper, we employ the following equation of state proposed by Shan and Chen (1994): 

 0 0( ) exp( )       (4.17) 

where 0 and 0 are arbitrary constants that dominant the characteristics of the equation 

of state. 

The cohesion force of gas/water and the adhesion force of fluid/surface in the SCMP 

LBM are defined as follows: 
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 ( , ) ( , ) ( , )c c a a a

a

t G t w e t t e   F x x x  (4.18) 

 ( , ) ( , ) ( )ads ads a a a

a

t G t w s e t e  F x x x  (4.19) 

where cG controls the strength of the cohesion force between two phases and adsG  

adjusts the interaction strength between the fluids and the solid surfaces. 

4.2.2.4 The Palabos library 

The Palabos library (www.palabos.org) is an open-source numerical framework based 

on the LBM, which was developed by Jonas Latt and co-workers (2008). The Palabos 

library utilizes generic programming, which means that it allows for the intuitive 

implementation of LBM models with almost no loss of efficiency and with the ease of 

further development. Parallel computation is another feature of the Palabos library for  

the algorithm nature of LBM. In this paper, all computations were performed on 

Leonardi, which is a medium-sized high-performance computing cluster designed to be 

used for post-graduate and research purposes within the Faculty of Engineering at 

UNSW. It currently consists of 2,944 AMD Opteron 6174 2.20GHz processor cores, 

with a total of 5.8TB of physical memory (essentially, 2GB of memory per core) and 

100TB of usable disk storage. Leonardi runs the Rocks clustering platform on top 

of CentOS Linux. The parallelization is performed with the message-passing paradigm 

of the MPI library, which works well on distributed-memory platforms (e.g., clusters). 

For the study of fluid distributions in a fractured porous medium, both the fluid-fluid 

and fluid-solid interfacial forces are necessary to determine the contact behavior and the 

interface characteristics. However, in the current release of Palabos library (May 16 

http://www.rocksclusters.org/
http://www.centos.org/
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2013), only the fluid-fluid interface force was provided in the Shan-Chen LBM. It is 

essential to modify the code so as to involve the fluid-solid interfacial forces. The codes 

that deal with the fluid-fluid interfacial force can be found in the "ShanChenprocessor" 

from the directory of "multiphysics", which correspondents to the implementation of 

equation (4.13) and (4.18). To include the solid-fluid interfacial forces, equation (4.14) 

and (4.19) should be programmed in the code. According to equation (4.14),  three 

additional parameters are required in the MCMP LBM model:
,1adsG ,

,2adsG , and Solid 

Index, where 
,1adsG  and

,2adsG  are the parameters that determine the fluid-solid adhesive 

force for each of the fluid components and the Solid Index is used to indicate the solid 

nodes. Similarly, two parameters are added in the SCMP LBM model according to 

equation (4.19): adsG  and Solid Index. In both codes, the contributions of the fluid-solid 

on the interfacial forces are calculated if any neighbors of the fluid node are recognized 

as solid nodes. Then, these adhesive forces are added to the original force contributed 

by fluid-fluid forces  according to equation (4.12).  

To validate the modified code and present the ability of LBM in dealing with 

multiphase contact and interaction problems, the complete range of contact angle is 

numerically simulated using both methods.   

For a three-phase system, as shown in Figure 4.3(a), the wettability of a solid surface 

(grey) by a liquid (blue)can be characterized by Young's equation ( Admson and Cast 

1997): 

 2 1
1

12

cos s s 





  (4.20) 
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where 1 is the contact angle between fluid 1 and the solid surface; 1s and 2s are the 

interfacial tensions between fluids 1 and 2 and the solid surface, respectively; and 12 is 

the interfacial tension between fluid 1 and fluid 2.  

In the MCMP LBM, the interfacial tensions are controlled by the parameters cG and 

,ads kG . The relation between the contact angle and these parameters is given by Sukop 

(2006) as 

 
2 ,11 ,cos ads adc sG GG    (4.21) 

which was further improved by Huang et al. (2007) into 

 ,2 ,1

1
1 2

cos

2

ads ads

c

G G

G


 





 (4.22) 

where 1 is the equilibrium main density and 2 is the associated dissolved density. 

     For the SCMP LBM, the contact angle between the wetting phase and the solid 

surface can be estimated according to Lu et al. (2013) using equation (4.23) 

 210.75 0.647 adsG    (4.23) 

To simulate the multiphase contact phenomenon, the simulation domain was selected as 

200×100 lattice units (l.u.), and the wetting component was initialized as a square with 

sides of 40 l.u., whereby the wetting component contacts the solid surface. In the 

simulation using the MCMP LBM, 1=2.0 and 2=0.06 were selected for the sake of 

stability (Huang et al. 2008).
,1adsG  and 

,2adsG were chosen in the manner reported by 
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Huang et al. (2008), i.e., 
,1adsG varies from -0.4 to 0.4, with 

,2 ,1ads adsG G  . Figure 4.3 

shows the complete range of contact angles predicted by the modified Palabos library.  

The same simulations were conducted using the SCMP LBM, in which the parameters 

0  
and 0 in equation (5.16) were selected as 200 and 4, respectively, cG was fixed as -

120, and adsG varied between -327 and -40. The initial configuration was set in the same 

manner as was in the MCMPLBM, and the density of the wetting and non-wetting 

phases were chosen as 524 and 85, respectively. Figure 4.4 shows the simulation results 

predicted by the SCMP LBM (Lu et la. 2013). It is clear that, the modified code can 

properly include the solid-fluid interfacial forces and can simulate the complete range of 

contact angles within multiphase systems.  
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(a) Gads,1 =0.4                                        (b) Gads,1 =0.3 

 
(c) Gads,1 =0.2                                        (d) Gads,1 =0.1 

 
(e) Gads,1 =-0.1                                        (f) Gads,1 =-0.2 

 
(g) Gads,1 =-0.3                                        (h) Gads,1 =-0.4 

 

 

Figure 4.3 Correlation between G
ads,σ

 and the contact angle in the MCMP LBM (G=0.9; 

Gads,2=-Gads,1) . 

σ2s 



Chapter 4 - Numerical Study of Two-phase Fluid Distribution in Fractured Porous Media 

66 

 

 
(a) Gads =-40                                         (b) Gads =-80   

 
(c) Gads =-120                                         (d) Gads =-160   

 
(e) Gads =-180                                         (f) Gads =-240   

 
(g) Gads =-280                                         (h) Gads =-300   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Correlation between G
ads

 and the contact angle in the SCMP LBM (G=-120)  
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4.3 VERIFICATION 

In this section, numerical simulations using three numerical methods, i.e., the SAM, 

MCMP LBM, and SCMP LBM, were conducted for the two-phase fluid distribution 

problem by Sukop et al. (2008). According to the work by Sukop et al. (2008), the 

contact angle of the wetting phase approaches to 0 which corresponding to the nearly 

perfect wetting. Therefore, the parameters that control the interaction behaviors in the 

three methods are chosen in the way reported in the previous part so as to produce 0 

contact angle.   

 The solid phase was taken from the micro X-ray CT image (see Figure 4.5a). All the 

simulations (except Figure 4.5 (d)) were initialized with a random distribution of 

wetting and non-wetting phases in the pore space (e.g. Figure 4.1(1)). To remove the 

initial effect on the final configuration of the MCMP LBM, the model in Figure 4.5(d) 

was initialized to be the same as one slice of the 3D model shown in Figure 4.5(b). 

In all of these simulations, the degree of saturation was set as 0.67 with respect to the 

wetting phase, and the parameters were selected to produce a zero contact angle (Sukop 

et la. 2008). The equilibrium condition is approached when the stored energy converged. 

To obtain the relatively accurate results, the distribution is considered as equilibrium if 

the ratio between the deviation and average energy less than 10
-4

. 

The simulation results using different numerical methods are shown in Figures 4.5 (c) to 

(f). In order to visualize the effectiveness of the numerical results, the air phase in the 

red circle is highlighted in each image which is compared with the x-ray CT. To 

produce a quantitative comparison of the different numerical methods, the lineal-path 

function (Hilfer 2000) was adopted to compare the numerical simulation results to the 
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X-ray micro CT result. The lineal-path function is defined as the probability of finding a 

line segment that lies entirely in one phase, which contains connectivity information 

along a lineal path and reflects certain long-range information about the multiphase 

system. The wetting-phase linear path functions of the fluid configuration from different 

methods are illustrated in Figure 4.6. It can be observed that the numerical simulation 

results are in good agreement with the experimental data in terms of the stochastic 

morphological description. However, different conclusions will be obtained when a 

detailed comparison between the fluid distribution patterns of the center area (see Figure 

4.5a) is performed. The reason that we only want to compare with the center area is that 

the influence of periodic boundary conditions is minimal in the central area which will 

be further discussed in part 4.1. It is apparent that the results using the MCMP LBM 

with random initial configurations (Figure 4.5(c)) is very different compared to the 

corresponding X-ray results (Figure 4.5(a)). The best fits are those results using the 

SAM and the SCMP LBM (see Figures 4.5 (e) and (f)). It should be mentioned that the 

MCMP LBM is sensitive to the initial configuration. For example, when a suitable 

initial configuration is used, a better result can be generated (see Figure 4.5 (d)).  
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 (a) Micro-X-ray CT [29]                                     (b) Slice of 3D MCMP Shan-Chen model[29] 

 

  

 

 

 

 

 

 

 

 

 

 
 (c) MCMP Shan-Chen model randomly initialized     (d) MCMP Shan-Chen model initialized with (b) 

 

  

 

 

 

 

 

 

 

 

 

 
                 (e) Simulated annealing method                                (f) SCMP Shan-Chen model                                

 

Figure 4.5 Comparison between micro X-ray CT and three numerical methods. 

 

 

Air phase in the X-ray CT  
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Figure 4.6 Wetting-phase linear-path functions of different fluid distributions by the 

different methods in Figure 4.5. 

This difference comes from the dependence on the initial configuration. To verify this, 

we set a initial configuration as the square wetting phase with a non-wetting hole  of 

different radius inside which is shown in Figure 4.7(a, b) and Figure 4.8 (a, b). From 

Figure 4.7(d), it is clear that, in the MCMP LBM, the wetting phase (blue part) splits up 

once the hole is sufficiently large. In contrast, for the SCMP LBM, only one droplet is 

generated regardless of how large the hole is (see Figure 4.8 (c, d)).  

Based on the comparison between the numerical results and experimental observations 

as presented in Figure 4.7, it can also be revealed that the mechanism of the MCMP 

LBM is the kinematic movement of the fluids, whereas the SCMP LBM involves phase 

transitions. Meanwhile, the SAM is the optimization approach to obtain the equilibrium 

distribution as the minimum system energy.  Both the SCMP LBM and the SAM can 

produce the very desirable results compared to the experimental observation. This 

indicates that the process of two-phase fluid distribution within porous media is 
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controlled by both the phase transition and kinematic movement. Therefore, in terms of 

computational efficiency and mechanism explanation, the SCMP LBM is the most 

suitable solution. It can simulate a multiphase system with a complete range of contact 

angles and phase transition. Moreover, its high computational efficiency is another 

advantage, e.g. the MPI parallel computation.  

 
(a) Initial condition 1   (b) Initial condition 2 

 
(c) Final configuration from (a)                       (d) Final configuration from (b) 

 

Figure 4.7 Dependence on the initial configuration in the MCMP Shan-Chen model. 

 

 
(a) Initial condition 1   (b) Initial condition 2 

 
(c) Final configuration from (a)                      (d) Final configuration from (b) 

 

Figure 4.8 Dependence on the initial configuration in the SCMP Shan-Chen model. 
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4.4 TWO-PHASE FLUID DISTRIBUTION IN FRACTURED POROUS MEDIA 

To keep all the simulation consistent, the details of the SCMP LBM parameters are 

presented in Table 4.1 for reference.  

Table 4.1 Parameters used in the SCMP LBM simulations. 

Boundary condition at open ends Periodic 

Boundary condition at the solid nodes Bounce back 

Contact angle 0 (perfect wetting) 

0  200 

0  4 

cG
 

-120 

adsG
 

-327 

Density of wetting phase 524 

Density of non-wetting phase 85 

Relaxation time ( )
 

1 

Time step 1 

Lattice space 1 

4.4.1 Periodic boundary effect and initial configurations 

Various boundary conditions in the LBM have been proposed and evaluated (Jonas et la. 

2008, Ziegler 1993, Inamuro et al. 1995, Zou and He 1997). The 'periodic' boundary 

condition has usually been applied at the model's edges for the sake of simplicity (Pan et 

al. 2004). However, this will introduce some errors because porous media are not 

geometrically 'periodic' under most conditions. In this paper, the influence of periodic 

boundary conditions on the simulation results of the SCMP LBM on fluid distribution 

problems is investigated. The porous media is generated through the compaction of 

randomly sized particles using the DEM code PFC
2D 

(Cundall and Strack 1979). A total 

of 557 particles with radii 30~50 l.u. are generated in the 2000×2000 l.u. domain. In 

order to produce the hydraulic aperture and create well connected pore space in the 

random compaction system, the radii of the particles are reduced to 80% of its original 
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size but keep the centers the same as the initial position. The final geometry of the 

porous media is shown in Figure 4.9(a), with radii of 24~40 and porosity of 0.552. 

During the SCMP LBM simulation, all the parameters are set in the way that follows 

Table 4.1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Geometry of a porous medium generated from DEM.  

(a) is the whole region of the porous medium,(b) and (c) are two examples of different 

buffer sizes, and (d) is the region of interest 
 

A number of sub-models with different sizes were cropped from the original model (e.g., 

Figures 4.9(b) and (c)). The purpose is to find a suitable model size to minimize the 

influence of the 'periodic' boundary' over the region of interest (see Figure 4.9 (d)). The 
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macroscopic properties, degree of saturation and specific surface area (SSA) of the two-

phase fluid interface of the region of interest are shown in Figure 4.10. In Figure 4.10,  

“*” presents the different results at different buffer size, “._” shows the boundary of the 

simulation results and the solid line “_” gives the average results from 5 simulation 

results at each buffer size.  It can be found that the macroscopic properties of the 

numerical simulation are only slightly influenced by the 'periodic' boundary' when the 

model size is sufficiently large, which confirms its applicability to fluid distribution 

simulations. It should be mentioned that the simulations are conducted in the same 

geometry for five runs to reduce the stochastic effects of the random initial 

configurations, which will be addressed later. Moreover, the difference in the fluid 

configuration in the region of interest is also slight with increased model size (Figure 

4.11). However, when the 'periodic boundary' is directly applied to the region of interest, 

an apparent difference will be generated (see Figure 4.11a); therefore, a buffer area is 

recommended. From Figures 4.10 and 4.11, it is found that if the buffer size is large 

than 400 l.u., the degree of saturation and the SSA of water-air interface become 

relatively stable. By considering the average particle size in the generated porous media 

is 32 l.u., the minimum simulation size is suggested taken as about 12.5 times of the 

average particle radii so as to reduce the periodic boundary effect and obtain accurate 

distribution.  
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(a) 

 
(b) 

Figure 4.10 Influence of buffer size on the macroscopic properties in the region of 

interest.  
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       (a) 200 l.u.      (b) 400 l.u              (c) 600 l.u. 

 

 

 

 

 

 

 

 

 

 

 

       (d) 800 l.u.                  (e) 1000 l.u.             (f) 1200 l.u. 

 

 

 

 

 

 

 

 

 

 

 

                   (g) 1400  l.u.                   (h) 1600  l.u.              (i) 1800 l.u. 

 

Figure 4.11 Fluid distributions in the region of interest from simulations of different 

buffer sizes.  

To study the influence of the initial fluid distribution, a model with regular solid squares 

enveloped by a water film with the same thickness is first simulated (see Figure 4.12a). 

Because the model geometry is perfectly 'periodic', the boundary condition will not 

introduce any error, which can be confirmed from the modeling results shown in Figure 

4.12b, where a perfect homogenous fluid distribution pattern is obtained. In the 

following, the middle part of the regular configuration is replaced by a random 

distribution for the initial configuration (Figure 4.12(c)); for this case, the periodic 
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boundary condition is still fulfilled. However, a clearly different distribution pattern is 

obtained compared to Figure 4.12(b). Therefore, it can be concluded that for regular 

porous media, the initial distribution will significantly influence the fluid distribution 

patterns. For example, all the models are randomly initialized in the middle part and 

simulated four times, and Figure 4.13 shows the final distributions, where a large 

difference in the distribution patterns is presented in the regular system. The same 

simulation is performed for irregular porous media (see Figure 4.14), where only slight 

differences can be observed. For the two phase system, the wetting phase has the 

preference to get into the smaller pores whereas the non-wetting phase always occupies 

the larger pore spaces. It is easy to draw the conclusion that the initial distribution is less 

sensitive to irregular porous media (e.g. geomaterials) compared to regular media.  

 

 

 

 

 

 

 

 

 

 

 
          (a)  Regular initial distribution                             (b) Equilibrium distribution from (a) 

 

 

 

 

 

 

 

 

 

 

 
(c)  Regular boundary initial distribution                      (d) Equilibrium distribution from (c) 

Figure 4.12 Investigation of the boundary conditions and the initial configuration. 
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(a) Case 1    (b) Case 2 

   
(c) Case 3     (d) Case 4 

Figure 4.13 Fluid distributions in regular geometry from different random initializations. 

 

 

 

 

 

 

 

 

 

 
          (a) Case 1                                                                 (b) Case 2 

 

 

 

 

 

 

 

 

 

 

 
          (c) Case 3                                                                (d) Case 4 

Figure 4.14 Fluid distributions in irregular geometry from different random 

initializations. 
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4.4.2 Fluid distribution in porous media 

In this section, the influence of saturation on the fluid configuration in porous media is 

studied using the SCMP LBM. The solid part of the system remains the same as in 

Figure 4.9(a); the parameters are chosen to produce 0 contact angle for the wetting 

phase, as reported in the last section; and the degree of saturation of the wetting phase 

varies from 0.1 to 0.75. 

   
               (a) Sr=0.1    (b) Sr=0.2    (c) Sr=0.3 

   
              (d) Sr=0.4    (e) Sr=0.5    (f) Sr=0.6 

   
               (g) Sr=0.65    (h) Sr=0.7    (i) Sr=0.75 

Figure 4.151 Multiphase distributions at different degrees of saturation in a porous 

medium. 



Chapter 4 - Numerical Study of Two-phase Fluid Distribution in Fractured Porous Media 

80 

 

The simulated distribution patterns are shown in Figure 4.15. It is clear that, at very low 

degrees of saturation (Figure 4.15(a)), the solid phase is enveloped by the wetting films.  

The wetting films become thicker as the saturation increases, and capillary condensation 

between particles is produced (Figure 4.15(b)). A connected network of the wetting 

phase can be obtained at certain degrees of saturation (Figure 4.15(e)). When the degree 

of saturation continues increasing, large portions of the porous medium becomes 

occupied by the wetting phase, and most of the non-wetting phase is trapped in the large 

pores, as observed in Figure 4.15(i). The simulated results are in agreement with the 

experimental observations from the X-ray CT images in both the assembling glass beads 

and Ottawa sand under different degrees of saturation from Lu et al. (2010). Moreover, 

the specific surface areas of the fluid interfaces are calculated at different degrees of 

saturation (see Figure 4.16). The specific surface area of the interfaces increase as the 

degree of saturation becomes less than 0.2, and the opposite phenomenon is observed 

when the degree of saturation becomes larger than 0.2. The overall trend, first 

increasing and subsequently decreasing, also agrees well with the experimental 

observations in Lu et al. (2010).   
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Figure 4.16 Correlation between the degree of saturation and the specific surface area of 

the fluid interface. 

4.4.3 Fluid distribution in fractured porous media  

For a porous medium with a static fluid distribution, by introducing fractures, the fluid 

distribution will evolve to a new equilibrium condition. In this section, the influence of 

the fracture length and width on the fluid changes in the porous media under different 

degrees of saturations (Sr) will be investigated using the SCMP LBM. During the 

simulation, the fluid distribution of the porous medium under given Sr is first calculated. 

Then, a fracture with a given length and width is inserted into the model (Figure 4.17a). 

To implement this in the LBM model, all the nodes including the solid, wetting and 

non-wetting phases in the range of fracture are converted to the non-wetting phase (e.g. 

air). The model will not be at equilibrium, and the fluid will migrate. Using the SCMP 

LBM, the final equilibrium condition can be obtained (see Figure 4.17b).  
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  (a) Initial distribution                                    (b) Equilibrium distribution 

Figure 4.17 Influence of fractures on multiphase distributions (Sr= 0.4, Fracture width = 

100 l.u., Fracture length = 1000 l.u.). 

By conducting a large number of simulations, the influence of fractures on the fluid 

distribution can be observed using the numerical results. In this paper, the parameters 

are chosen as follows: Sr with respect to the wetting phase = 0.2, 0.4, 0.6, and 0.75; the 

fracture width = 25, 50, 75, and 100 l.u.; and the fracture length = 500, 1000, 1500, and 

2000 l.u.. 

It should be mentioned that the fluid flow distribution in fractured porous media is 

geometrically irregular and unsuitable for direct analysis, e.g., it is difficult to find the 

fluid migration using Figure 4.17. To obtain a more quantitative analysis, the simulation 

domain is further divided into sub subN N sub-regions. In this paper, the size of sub-

region is selected as squares with side lengths of 40×40 l.u. Therefore, total numbers of 

50×50 sub-regions are divided.  

The coincident ratio at sub-region i is defined as 

 
( )

( )

( )

Coincident ratio  
co i
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where 
( )co iN  and 

( )wetting iN  are the number of coincident wetting phases (two pixels of 

the original porous medium and the fractured porous medium at the same location were 

both wetting) and the number of pixels in the wetting phase at sub-region i of the 

original porous medium, respectively. This index can represent the disturbance of the 

wetting phase, i.e., if it is equal to one, then there is no disturbance, and if it is equal to 

zero, then the wetting phase is completely disturbed (migrated). Another index, the 

water migration number, is defined as the amount of change in the wetting phase at the 

sub-region and is given as 

 
( ) ( ) ( )Water migration number  i wetting i wetting iN N   (4.25) 

where 
( )wetting iN  and 

( )wetting iN are the numbers of wetting phase pixels in the wetting 

phase at sub-region i of the fractured and initial porous media. It is a positive value for 

flowing in and a negative value for flowing out. 

The changes in the two-phase distribution induced by the fracture expressed as the 

coincident ratio and water migration number in each sub-region is shown in Figure 4.18. 

It can be found that the fracture can apparently be reflected from the contour map of the 

coincident ratio calculated at each sub-region (see Figure 4.18a); in contrast, it is unable 

to be distinguished using the water migration number (see Figure 4.18b). Therefore, the 

coincident ratio is used as the post-processing for the simulation results.  
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                      (a) Coincident ratio                              (b) Water migration number  

Figure 4.18 Macroscopic description of differences between Figures 17(a) and 17(b) 

(Sr= 0.4, Fracture width = 100 l.u., Fracture length = 1000 l.u.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (a) Sr = 0.20                                                      (b) Sr = 0.40 

  

 

 

 

 

 

 

 

 

 

 

 

 

     (c) Sr = 0.60                                                      (d) Sr = 0.75 

Figure 4.19 Influence of the degrees of saturation on the coincident ratio (Fracture width 

= 50 l.u.; Fracture length = 1000 l.u.). 
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The influences of saturation, fracture width and fracture length on the two-phase fluid 

distributions are diagramed in Figures 4.19, 4.20, and 4.21, respectively. A large part of 

the system is disturbed at low degrees of saturation (Figure 4.19(a)), and the disturbance 

area decreases as the degree of saturation increases (Figure 4.19(b, c, d)). The 

disturbance area increases with increasing width and length of the fracture, with most of 

the disturbance occurring around the fracture, as illustrated in Figures 4.20 and 4.21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

               (a) Fracture width =25 l.u.                                  (b) Fracture width = 50 l.u. 

   

 

 

 

 

 

 

 

 

 

 

 

 

                (c) Fracture width =75 l.u.                                (d) Fracture width =100 l.u. 

 

Figure 4.20 Influence of the fracture widths on the coincident ratio (Sr = 0.4; Fracture 

length = 1000 l.u.). 
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To quantify the disturbed region of the whole model due to the induced fracture, a 

disturbance ratio is introduced as follows: 

 
( )

( )

 1
co i

wetting i

N

N
  




 (4.26) 

The influences of the fracture length, fracture width, and degree of saturation on the 

disturbance ratio are summarized in Figure 4.22. It can be observed that, the disturbance 

ratio increase with the fracture length. Meanwhile, it is also found that the disturbance 

ratio decreases as the degree of saturation increases. A possible application of these 

numerical findings is to explore fractures (which might be too small to be observed 

through X-ray CT due to the limitation of resolution) by indirectly investigating the 

fluid distribution. Furthermore, it is widely accepted that, the fluid distribution will 

influence the flow behaviors within a multiphase system. However, it is not practical to 

obtain the fluid distribution with limited information. Therefore, it is of high value to 

provide a relative new and powerful approach that could predict the multiphase 

distribution, which can be employed as the initial configuration in the multiphase flow 

problems.   
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(a) Fracture length = 500 l.u.   (b) Fracture length = 1000 l.u. 

 

         (c) Fracture length = 1500 l.u.  (d) Fracture length = 2000 l.u. 

 

Figure 4.21 Influence of fracture lengths on the coincident ratio (Sr = 0.4; Fracture 

width = 100 l.u.). 
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(a) Fracture width = 25 l.u.  
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(b) Fracture width = 100 l.u.  

 

Figure 4.22 Influence of the fracture length on the disturbance ratio at different degrees 

of saturation. 

4.5 CONCLUDING REMARKS 

To sum up, the SCMP LBM is found to be the best method in predicting the fluid 

distribution in partially saturated porous media compared with two other methods (the 
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SAM and the MCMP LBM). The effect of periodic boundary conditions and the initial 

configuration are also tested. It is found that a buffer size of approximately 12.5 times 

the average particle size is suggested to reduce the error resulting from the periodic 

boundary conditions. Moreover, the initial distribution of the SCMP LBM is less 

sensitive for an irregular porous medium than that of a regular medium; therefore, it is 

more suitable for natural porous media, such as rock and soil. The influence of the 

degree of saturation on the two-phase fluid distribution was investigated using this 

method. The fluid distribution patterns and the quantitative evaluation at different 

degrees of saturation were investigated, which is consistent with experimental results 

from the literature. Finally, the influence of fractures on the two-phase fluid distribution 

was also studied. The disturbance ratio is introduced to evaluate the change in the two-

phase system due to the induced fracture. It was found that more fluids are disturbed as 

the fracture length and width increase, and the disturbance ratio decreases as the degree 

of saturation increases.  
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CHAPTER 5 NUMERICAL FLUID FLOW THROUGH 

DEFORMABLE NATURAL FRACTURE NETWORK  

 

In this Chapter, fluid flow through natural fracture network is studied using  

Computational Fluid Dynamics (CFD). To investigate the influence of fracture 

roughness, normal deformation and shear deformation on the fracture 

transmissivity/permeability, numerical tests of fluid flow through 3D rock fracture are 

conducted using the Lattice Boltzmann Method (LBM) in a middle size cluster. An 

empirical equation was obtained from the numerical results. Following this, natural 

fracture networks are built for fluid dynamics simulation of fluid flow through rock 

fracture network. It is found that the pipe network model enriched with the derived 

empirical equation can produce similar results compared with the LBM simulation 

which further confirm its applicability. Finally, influences of fracture length, fracture 

density, and deformation of the fracture network on the fluid flow are studied 

preliminarily from coupling LBM with the Discrete Fracture Network (DFN) model and 

Discrete Element Model (DEM).  

5.1 INTRODUCTION 

The flow behavior in fracture networks has been a research focus over the past half 

century. The discrete fracture network model (DFN) model has become the most widely 

used method since the work by Long et al. (1982). A DFN model typically combines 

deterministic and stochastic discrete fractures, which presents the same geological 

statistics properties as observations, such as fracture density, distribution of location, 

orientation, size and hydraulic aperture. Numerous works were conducted to investigate 
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the fluid flow behaviors in rock fractures using DFN model (e.g. Long and Witherspoon 

1985, Chen et al. 1999, Dershowitz et al 2004, Kim et al. 2007, Parker et al. 2007, Liu 

et al. 2014). However, in DFN, the fluid flow was calculated based on the cubic law 

under the assumption that the fractures are plate surfaces. In practice, the fractures are 

rough with variety of profiles and aperture distribution which can be changed 

dynamically under normal and shear deformation. An accurate prediction of hydraulic 

behavior in fracture network requires a clear understanding of fluid flow though single 

fracture under these coupled conditions.  

Comprehensive works have been conducted to investigate the flow behavior in single 

fractures including experimental investigation, theoretical analysis and numerical 

simulation. The early work on fluid flow in single fracture was conducted 

experimentally by Lomize (1951). The cubic law was found essentially valid for 

laminar flow in rock joints based on the assumption of parallel flat surface. However, 

fracture walls contain irregularities which reduce fluid flow and lead to a local 

channeling effect of preferential flow. A large number of laboratory studies were carried 

out, the validation of cubic law was discussed and different empirical corrections of the 

cubic law were proposed (e.g. Iwai 1976, Witherspoon 1980, Neuzil and Tracy 1981, 

Tsang 1984, Barton et al. 1985, Brown 1987, Barton and Quadros 1997). Recently, 

influence of deformation on fluid flow in single fracture receives more attentions. For 

example, Koyama et al. (2008) conducted the coupled shear-flow tests for rock fractures. 

Indraratna et al. (2014) investigated the fluid flow through deformable rough rock joints. 

However, most of the works relate the hydraulic property of fracture to the stress rather 

than deformation of the fracture. The stress-permeability relationship is complex, which 

is influenced by lots of factors, such as stress condition and fracture profiles as well as 
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the deformation. The mechanism of the flow behavior behind these experiments is not 

clearly understood because the geometry within the fracture is not easy to be controlled 

and obtained. Paralleling with the experimental study, extensive theoretical analysis was 

conducted (e.g. Zimmerman and Bodvarsson 1996). Theoretically, the flow of 

incompressible Newtonian viscous fluid is governed by the Navier-Stokes equation 

(Batchelor 1967). However, the Navier-Stokes equation cannot be solved in closed form 

when deal with realistic fracture with rough surfaces. Alternatively, numerical 

approaches provided the opportunity to obtain the solution of fluid flow though rough 

surfaces under complex boundary conditions.  

There are varieties of traditional methods developed for fluid simulations, which are 

based on discretized partial differential equations, such as finite differences (e.g. Ames 

1977; Morton and Mayers 1994), finite volumes (Bryan 1969) or finite element (e.g. 

Zienkiewicz and Taylor 1991). For example, Brown (1989) used the finite difference 

method to calculate the volume flow rate and electric current in simulated fractures 

composed of rough surfaces generated with a fractal algorithm. Rasouli and Hosseinian 

(2011) used the FEM based software (FLUENT) to develop a correlation to estimate the 

hydraulic parameters through channel of combined JRC profiles under different 

minimum closures. Indraratna et al. (2014) adopted the finite-volume method to solve 

the flow problem in deformable rough rock joints, where the three-dimensional Navier-

Stokes equation was converted to an equivalent 2D flow model by considering the 

hydraulic aperture distribution. However, most of the traditional methods present the 

drawbacks such as long computation times, poor convergence and numerical 

instabilities, and the difficulties in dealing with complex boundaries (Wolf-Gladrow 

2000).  
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Alternatively, the "bottom up" approaches, such as lattice Boltzmann method developed 

in the past two decades received more popularity in characterizing the flow problems. 

Originating from the kinetic theory, the LBM has the appealing features of 

programming simplicity, intrinsic parallelism, and straightforward resolution of 

complex solid boundaries and multiple fluid species (e.g. Succi 2001; Higuera & 

Jiménez 1989; Inamuro et al. 1995; He & Zou et al. 1997; Guo et al. 2002; Latt et al. 

2008; Yan et al. 2011). For example, Eker and Akin (2006) presented studies of flow 

through two dimensional synthetically created fracture apertures using LBM. The 

permeability of fracture is found to be related to the mean aperture, fractal dimension 

and anisotropy factor of the synthetic fracture. However, the aforementioned numerical 

works are limited or simplified to 2D, the geometry description of the fracture is not 

accurate and the deformation cannot be involved properly.  

According to the literature review, there is still no comprehensive study on fluid flow in 

single fracture considering both the roughness and deformation. Moreover, the direct 

investigation of flow in fracture networks with roughness is rarely reported as well. 

Therefore, it is important to explore the mechanism of fluid flow in the natural fracture 

and fracture network. This chapter is structured as follows. Firstly, the fluid flow 

behavior in rough fracture is investigated considering the fracture's deformation. The 

fracture was characterized by the mathematical model proposed by Brown (1995) and 

the fluid flow was simulated through LBM (Succi et al. 1995, Chen et al. 1998). The 

accurate of LBM for study of fluid flow through rock fracture is firstly verified through 

the comparison with the Poiseuille's Law. After that, numbers of fluid flow simulations 

on realistic synthetic 3D rock fractures are conducted. A two parameters equation is 

developed based on the simulation results to predict the flow in rough fracture. The 
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proposed equation can be used to characterize the fluid flow in single fracture involving 

both roughness and deformation. Then, LBM is used to investigate the fluid flow in 

natural fracture network, in which the roughness effect is directly incorporated. A good 

agreement is obtained between LBM simulation and the modified pipe network model 

using the derived empirical equation. Finally, the fluid flow behavior of stochastic 

discrete fracture network (DFN) under deformation is preliminarily studied using LBM.  

5.2 SINGLE PHASE INCOMPRESSIBLE LBGK MODEL 

5.2.1 Basic concept 

In the incompressible LBGK model (Guo et al. 2000), the evolution equation of the 

density distribution function is expressed as 

 ( 0,1, , )( , ) ( , ) ( ( , ))i i i i i i Mf x c x t t f x t f x t     e  (5.1) 

where /c x t   . x , 
i

e  and t are the lattice grid spacing, discrete velocity 

direction and time step, respectively. There are two commonly used lattice models for 

2D and 3D problems (as illustrated in Figure 5.1).  

 
 

  (a) D3Q15 model          (b) D2Q9 model 

Figure 5.1 The D2Q9 model and D3Q15 model. 
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i i

f x t is the collision operator given by  

 
1

( )i

eq

i i
f f


     (5.2) 

where  is the dimensionless relaxation time, and eq

if is the equilibrium distribution 

function defined as  

 ( ) ( )[1 ]( )eq

i i if x x s  u  (5.3) 

in which, i is the weight index, and  
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 (5.4) 

where u  is the macroscopic velocity.  

The macroscopic density and velocity can be obtained as  

 
1

M

i

i

f


  (5.5) 

 1

M

i i

i

f





 e

u  (5.6) 

Detailed explanation of the incompressible LBGK model can be found in the work by 

Guo et al. (2000), and the corresponding incompressible Navier-Stoke equations were 

derived through multi-scaling expansion as,  

 0 u  (5.7) 
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where 
2

sp c   is the pressure, / 3sc c  is the sound speed, and 
2(2 1) / 6c t     is 

the kinetic viscosity.  

5.2.2 Boundary conditions 

There are bunch of boundary conditions have been implemented in LBM. In this 

Chapter, the boundary conditions are classified in two groups: the boundary condition at 

the open end (inlet and outlet) and the boundary condition at the solid interface. At the 

inlet and outlet, pressure boundary is applied to produce the pressure gradient. The no-

slip boundary is used at the solid surface (wall), which is implemented through the 

bounce-back scheme. The so-called bounce-back means that when a fluid particle 

reaches solid (wall) nodes, the particle will scatter back to the fluid along with its 

coming direction as shown in Figure 5.2. Both of the boundary conditions are 

implemented according to the work by Zou and He (1996). 

Figure 5.2 Bounce back scheme. 
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5.2.3 Palabos 

The numerical simulations are conducted using the Palabos library 

(http://www.palabos.org/), which is a framework for general-purpose computational 

fluid dynamics (CFD) with a kernel based on LBM (Jonas Latt 2008). Its programming 

interface is straightforward, which makes it possible to set up fluid flow simulations 

with relative ease. Meanwhile, the LBM has the features of intrinsic parallelism. 

Programs written with Palabos can be automatically parallelized and the parallelization 

is performed with the message-passing paradigm of the MPI library. The Leonardi 

(http://leonardi.unsw.wikispaces.net/), a middle size cluster, is used to implement the 

parallel computation of the following numerical simulations. 

5.3 FLUID FLOW IN SINGLE FRACTURE 

5.3.1 Validation 

Firstly, the fluid flow between two parallel plates is simulated so as to verify the 

accuracy of Palabos. In LBM, it is necessary to convert the physical system to a discrete 

system so that the LBM simulation can be conducted. The flow domain is set as 

dimensionless system with length 2 and width 1. The pressure boundary condition is set 

at the left and right open side so as to produce unit velocity at the center, and the no-slip 

boundary condition is set at top and bottom. And the parameters used in the simulation 

are presented in Table 5.1. 
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Table 5.1 Parameters used in the simulation of fluid flow in single fracture  

  Parameters Values  

Density (  ) 1.0 

Reynolds number ( Re ) 1.0 

Resolution (N, l.u.) 10~100 

x  1/N 

t  ~
2x  

 The simulation is considered as converged when the ratio between the standard 

deviation and average of the velocity is less than 1e-6. The simulations the results are 

compared with the Poiseuille's Law, 

 
2 21

(( 2) )
2

u P h y


     (5.9) 

where P is the pressure gradient,  is the density,  is the viscosity, h is the aperture 

and y is the distance from the center line. 

It is necessary to mention that, discrete variables δx and δt are important parameters 

which have impact on the accuracy and the stability of a simulation, which should 

follow the relationship δt~ δx
2
(Jonas Latt 2008) . Once the resolution changes, the times 

interval should change accordingly. However, the exact relationship has not been 

reported. In this study, the microscopic parameters are firstly calibrated and the δt=κ δx
2
 

is used to obtain a reasonable value for the choice of δt. The influence of κ on 

simulation accuracy is investigated at different resolutions and relative error is 

summarized in Figure 5.3. It is found that, when κ = 1, stable results are obtained.  
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Figure 5.3 Impact of parameter choice. 

Based on the calibrated relationship, δt=δx
2
, the resolution effect on the simulation 

accuracy is investigated. The velocity profile at different resolution, which is compared 

with the analytical solution (5.4a), and relative error is presented in Figure 5.4b.  
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(a) Velocity profiles at different resolution 

 

(b) Maximum relative errors at different resolution and parameters 

Figure 5.4The simulation results based on the relationship δt= δx
2
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The flow rate along the pressure gradient can be obtained through the integration of the 

analytical solution,  

 

3
/2

2 2

/2
{

1 1
[( 2) ]}

2 2 12

h

x
h

Q
dP dP h

h y dy
dl dl 

         (5.10) 

Therefore, the transmissivity is described as the cubic law, 

 

3

12

h
T   (5.11) 

5.3.2 Fluid flow through 3D synthetic fracture  

The parallel plate model can only be considered a qualitative description of flow 

through real fractures. Real fracture surfaces are not smooth parallel plates but are rough 

and contact each other at discrete points (Brown 1995). There are a number of 

parameters proposed to characterize the fracture roughness, such as Z2 (Myers 1962), 

joint roughness coefficient (Barton 1973), and fractal dimension (Xie 1998). However, 

it is not always possible to characterize the fracture roughness by single parameter 

because the roughness of fracture surface in rock depends on the sample size or scale of 

observation (Bandis et al. 1981; Brown and Scholz 1985).  

In this part, a mathematical model developed by Brown (1995) is used to characterize 

the fracture roughness. In the mathematical model, the rough-walled fractures are 

dominated by three main parameters: the fracture dimension, the standard deviation of 

the surface profile, and a length scale describing the degree of mismatch between the 

two fracture surfaces. The software SynFrac (Ogilvie et al. 2006) is used to generate the 

synthetic fracture, which shares the same geometrical statistics as the natural fractures. 
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The GUI of SynFrac is shown in Figure 5.5 and the Brown model is selected among 

three modules. In this study, the fracture is assumed as two parallel surfaces without 

considering the mismatch effect. Therefore, there are three parameters to characterize 

the flow behavior in rough fracture, which are the fractal dimension, the standard 

deviation and the aperture.  

 

Figure 5.5 Fracture generator (Ogilvie et al. 2006) 

Table 5.2 Parameters used to generate fracture for different fractal dimension, standard 

deviation and aperture. 

  Fractal dimension Standard deviation  (mm) Mean aperture (mm) 

1.0; 1.2; 1.4;  

1.6; 1.8; 2.0 

1; 1.5; 2; 2.5  2; 2.5; 3; 3.5; 4 
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In order to investigate influence of roughness and develop a generic model to 

characterize the flow behavior in fracture, the physical size is set as 5 cm with 

resolution of 500×500, the mismatch length is set as 5 mm for reference only, and the 

other parameters are presented in Table 5.2. Examples of fracture profiles with different 

fractal dimension and standard deviation are presented in Figure 5.6 and Figure 5.7.  
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(a) Fractal dimension = 1.2 

 

(b) Fractal dimension = 1.4 
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(c) Fractal dimension = 1.6 

(d) Fractal dimension = 1.8 

Figure 5.6 Effect of fractal dimension on fracture profile (standard deviation =2 mm) 
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(a) Standard deviation = 1.0 mm 

(b) Standard deviation = 1.5 mm 
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(c) Standard deviation = 2.0 mm 

(d) Standard deviation = 2.5 mm 

Figure 5.7 Effect of standard deviation on fracture profile (fractal dimension =1.6) 
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A total number of 120 cases are generated based on the parameters in Table 5.2 which 

are imported to LBM for fluid dynamics simulation. The geometry of the 3D fracture 

and velocity profiles are presented in Figure 5.8 The flow rate is calculated through the 

integration of the velocity at every lattice in the flow domain and the transmissivity of 

fractures under different profiles is derived. Based on the simulation results, a two 

coefficients model (Equation 5.12) is developed to describe the fluid flow in a natural 

fracture. It is found that, the transmissivity decreases with the increase of fractal 

dimension and standard deviation according to the value of and the proposed equation. 

However, the relationship between the coefficient  and fractal dimension is only clear 

when the standard deviation is larger than 1.5 mm.  

 

Figure 5.8 Geometry for the fracture and velocity distributions at slices from LBM 

simulation. 
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(a) Relation between   and fracture geometry

 

(b) Relation between   and fracture geometry 

Figure 5.9 Dependence of coefficients on fractal dimension and standard deviation of 

fracture surfaces 
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mh

mw e h
T

 
  (5.12) 

whereT is the transmissivity, w is the width (equal to 1 in 2D), mh  is the mean aperture, 

 and  are the coefficients that characterize the fracture roughness.  

5.3.3 Effect of displacement 

It is notable that the permeability of single fracture depends on fracture geometry and 

the stress condition (e.g. Pyrak-Nolte and Morris 2000, Koyama et al 2008, Indraratna 

et al. 2014). Even with extensive studies on stress-flow coupled problem, there is still 

no existing law or principle to characterize the flow behavior in single fracture under 

specific fracture deformation. Therefore, it is necessary to investigate the flow behavior 

involves both the roughness and displacement. 

In this study, the fluid flow in single fracture is characterized by the mean aperture, mh , 

which is expressed as, 

 0m n sh h h h    (5.13) 

where 0h  is the initial mechanical aperture, nh  is normal displacement and sh is the 

shear displacement induced aperture change. 

The effect of normal displacement is simply to change the mean aperture which has 

been investigated in the previous part. The following equation is suggested to predict of 

transmissivity of fracture under normal displacement,  
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The effect of shear displacement on fluid flow in rough fracture is studied as follows. 

The geometry of fracture is set as follows in Table 5.3.  

Table 5.3 Parameters in the fluid flow under shear displacement. 

 Physical size (cm) 5×5 

Resolution 500×500 

Fractal dimension 2.0 

Standard deviation (mm)  2.0  

Initial aperture (mm) 5  

Normal displacement  (mm) 0; 1; 2 

Shear displacement  (mm) 0~10 

In reality, the two rough surfaces may overlap with each other at some points under 

shear displacement. However, the degree of overlap is not clear unless the stress-

deformation relationship is known. Therefore, two assumptions are made to consider the 

fracture's deformation. In assumption 1, there is only one contact point between the two 

surfaces, which means that one of the surfaces may skim over the opposite surface when 

they get contacted as shown in Figure 5.10(b). In assumption 2, the two surfaces will 

overlap and generate contact areas (damaged) as shown in Figure 5.10(c). Based on 

these two assumptions, one example of the generated fracture is demonstrated in Figure 

5.11. To visualize the shear displacement induced aperture change, the relationship 

between the mean aperture change and shear displacement under different normal 

displacements is summarized in Figure 5.12. 
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Figure 5.10 Assumptions made to implement shear displacement 

(a) Original model 

(b) Assumption 1 

(c) Assumption 2 
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Figure 5.11 Geometry of the fracture and the aperture change induced by displacement. 
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(a) Assumption 1 

 

(b) Assumption 2 

Figure 5.12 Relationship between the aperture changes and shear displacement under 

two assumptions  
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The flow simulations are conducted in the fracture under different shear displacement 

and normal displacement. The relationship between the transmissivity and mean 

aperture is shown in Figure 5.13, which matches the proposed equation 5.15 well. 

 
0( ) 3

0(1 )( )

12

n sh h h

n sw e h h h
T

  
     

  (5.15) 

 

Figure 5.13 Relationship between the transmissivity and mean aperture  

5.4 FLUID FLOW THROUGH FRACTURE NETWORK 

5.4.1 Pipe network model (PNM)  

In the pipe network model, the fluid flow in fracture network is represented by a 

discrete network made up from bubble and pipes, where the bubbles are the intersection 

points of the fractures, and the pipes are the links between two bubbles. The fluid flow 

variables are defined for each bubble as the fluid pressure p and fluid flux q. For each 
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pipe, the fluid flux and pressure constitutive relationship can be obtained from Darcy's 

law,  

 
i i

pipe

j j

q p

q p

   
   

   
H  (5.16) 

where iq and ip  are the fluid flux and pressure of the ith bubble, 
pipeH is the flux 

pressure matrix given by 
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1 112

pipe
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pipe

h

l

 
    

H  (5.17) 

where pipeh is the aperture of the pipe,   is the dynamic viscosity of the fluid, and 
pipel is 

the length of the pipe.  

A global flux pressure matrix is assembled in the way that the flow into a bubble equals 

the flow out of the bubble, so that the flux pressure relationship can be given as  

 
globalQ H P  (5.18) 

where Q  is the vector of bubble fluid flux, 
globalH is the global flux pressure matrix, and 

P is the vector of bubble pressure. Similar with classical FEM simulation, the global 

system matrix can be assembled from each single pipe (fracture) using Equation (5.18). 

Fluid transmissivity of the fracture network can be obtained from solving the linear 

system equation together with the prescribed boundary conditions.  
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5.4.2 Pipe model generation 

 

(a) Random fracture network  (b) Block cutting by DC 

 

(c) Pipe network model in Matlab (d) Geometry used in LBM simulation 

Figure 5.14 Process of implement the fracture network in pipe network model and LBM 

simulation 

In order to calculate the fluid flow in fracture network through the pipe network model, 

it needs to identify the location of the bubbles or joints and the links between them. To 

implement this, we generate the randomly sized polygonal blocks (Figure 5.14(a)) using 

UDEC. The fractures of blocks are exported to the block cutting code of DDA to obtain 

the number index of the (bubbles) joints as well as the information of the links (pipes) 

(Figure 5.14(b)).  After that, information is imported to the Matlab program to generate 
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the pipe network model (Figure 5.14(c)). In order to verify the accuracy of LBM in 

simulating the fluid flow in fracture network, the corresponding LBM model is 

generated as shown in Figure 5.14(d).  

5.4.3 Fluid flow in natural fracture network 

As illustrated in the pipe network model, the flow in individual fracture of the fracture 

network model is characterized by the cubic law. However, the fracture is rough rather 

than a plate in most circumstances, and the influence of roughness on fluid flow is 

significant as explained in the previous part. Accordingly, roughness effect on hydraulic 

behavior of fracture network receives increasing attentions. However, most of studies 

require the empirical equations that relate the hydraulic aperture to mechanical aperture. 

For example, Zhao et al. (2013) adopted the dimensionless parameter Z2 proposed by 

Myers (1962) to obtain the hydraulic aperture from mechanical aperture. However, the 

directly investigation on roughness effect on fluid flow through fracture network and the 

validation of empirical equation is still not reported.  

In order to investigate the roughness effect, the individual fracture between two 

intersection points is simplified as uniform distributed rough surface with constant 

aperture (Figure 5.15(a)). The rough surface at individual fracture is implemented 

through the geometrical method illustrated in Figure 5.15(b). There are several 

parameters that characterize the geometry of fracture between intersection i and j , 

which includes the direction tensors ( nu , su ), the roughness distribution along su and 

aperture. The 2D fracture network with roughness is generated by creating the fracture 

between connected intersections (Figure 5.15(c)). 
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(a) The geometry of individual fracture roughness 

 

(b) Implementation of roughness at individual fracture 

 

(c) The geometry of fracture network 

Figure 5.15 Generation of fracture network with roughness. 
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To obtain the two coefficients that characterize the roughness effect, the fluid flow 

through single fracture is firstly simulated using LBM. The length of fracture is 5 cm, 

the maximum amplitude ranges from 0.20 to 0.40 and the aperture ranges from 0.20 to 

0.40. The parameters used in the simulation are the same as Table 5.1. The coefficients 

under different maximum amplitude are derived based on the simulation results which 

are shown in Table 5.4.  

Table 5.4 The coefficients of rough fracture.  

 

 

 

 

 

 

The fluid flow through the fracture network is numerically implemented by using both 

the modified pipe network model and LBM. In the modified pipe network model, the 

transmissivity of pipes is calculated based on the proposed equation. In all the 

simulation, the topology is same as the one shown in Figure 5.14(d) with size of 20 

cm×20cm, the resolution in the LBM is set as 100 l.u./cm, and the aperture is set as 0.2 

cm for all simulation.  

Maximum amplitude, cm 

Coefficients 

  
 

0 0 0 

0.05 -0.1003 1.7314 

0.10 -0.2448 0.1609 

0.15 -0.4632 -0.7938 

0.20 -0.5610 -0.4510 

0.25 -0.7409 -0.6770 

0.30 -0.9258 -0.5951 
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(a) Maximum amplitude = 0.05 cm  (b) Maximum amplitude = 0.10 cm 

 
(c) Maximum amplitude = 0.15 cm  (d) Maximum amplitude = 0.20 cm 

 
(e) Maximum amplitude = 0.25 cm  (f) Maximum amplitude = 0.30 cm 

Figure 5.16 Velocity distribution of fluid flow in fracture network under different 

maximum amplitude through LBM simulation. 
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Figure 5.17 Simulation results of fluid flow in fracture network involving roughness. 

It is necessary to mentions that, the velocity distribution in the single fracture can be 

simulated directly in the LBM (Figure 5.16), whereas only the flow rate in the pipe 

network can be obtained for its macroscopic description. The simulation results from 

both models are summarized Figure 5.17. Meanwhile, it is found that the simulation 

result from LBM is close to the computed transmissivity from pipe network model 

under cubic law assumption when no roughness is presented in the fracture network 

(amplitude=0), which shows the ability of LBM in dealing with the fracture network 

flow problems. Furthermore, the proposed two coefficient equation can be employed 

directly into the pipe network model to represent the roughness effect, which can 

produce reasonable results through the comparison to the LBM. 

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

0.00300

0.00350

0.00400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Modified PNM

LBM

Maximum amplitude (cm) 

T
ra

n
sm

is
si

v
it

y
 (

cm
3
) 



Chapter 5 - Numerical fluid flow through deformable natural fracture network 

 

128 

 

5.5 FLUID FLOW IN DISCRETE FRACTURE NETWORK MODEL (DFN) 

UNDER DEFORMATION 

In the conventional methods that involve the discrete fracture network, it is always 

necessary to implement the block cutting before the flow simulation, the detection of the 

topology of fracture network as well as the isolated or dead-ends is a complex process. 

In contrast, the block cutting is not a problem for LBM, the isolated and dead-ends of 

fractures are naturally detected because they have no contribution to the flow at the 

micro scale. Meanwhile, it is always difficult or impossible to characterize the flow 

under large deformation, such as sliding, block rotation, aperture opening or closing, 

which may change the topology of the fracture network. For example, the existing flow 

channels may disappear during aperture closing, and the new flow channel may 

generate, which are not easy to be detected directly by using conventional method. In 

this section, the interconnectivity of fracture network and the anisotropic flow due to 

deformation is investigated by using LBM.  

5.5.1 Fluid flow in DFN 

According to the work conducted by Long et al (1982), the interconnection is dominated 

by the fracture density and fracture extent or size. To verify this, the fluid flow in the 

stochastic DFN is numerically simulated by using LBM.  The geometry parameters of 

DFN are presented in Table 5.5. The location of the fracture and the orientation is 

uniformly distributed, and the aperture is set as 0.3 cm.  
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Table 5.5 Parameters of DFN models. 

Block size, 
cm 

Density, /cm
2
 

Fracture Length, cm Aperture, cm 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

20.0×20.0 0.4;0.6;0.8  
4;5;6; 

7;8 

20% of 
the mean 
value 

0.3 0 

 

 

 
(a) density=0.4; length=4      (b) density=0.4; length =6   (c) density=0.4; length=8 

(d) density=0.6; length=4      (e) density =0.6; length =6    (f) density=0.6; length=8 

Figure 5.18 DFN models with different fracture densities and lengths. 

The generated DFN model is imported LBM with a resolution of 100 l.u./cm so as to 

obtain relatively accurate results. Examples of the DFN models with different density 

and fracture length are shown in Figure 5.18, where the black is the solid matrix, and 

the white is the flow channel. The pressure boundaries are set at the left inlet and right 

outlet. The velocity distribution is shown in Figure 5.19, it is clear that the there is no 

flow in the isolated fractures and dead-ends of fractures. 
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(a) density=0.6; length =4    (b) density=0.6; length=6      (c) density =0.6; length=8 

 

(d) density=0.8; length=4      (e) density=0.8; length=6     (f) density=0.8; length=8 

Figure 5.19 Velocity distributions in DFN from LBM simulations. 

The flow rate of DFN model under different mean length and density in Table 5.5 is 

calculated. All the simulation results from LBM are shown in Figure 5.20. It is clear that, 

the larger density and longer length, the higher flow rate or degree of interconnection of 

the fracture network. In this part, we adopt the length-density parameter LD introduced 

by Long et al. (1982) to summarize the results, which is shown in Figure 5.21. The 

fracture network with larger LD tends to have higher flow rate and degree of 

interconnection. However, the fracture network have the same LD may behave 

differently from each other as indicated in the red rectangle in Figure 5.21. Therefore, it 

is necessary to explore the mechanism behind this. We keep the LD constant as 1.5 cm, 

2.0 cm and 2.5 cm, the fracture density varies from 0.1 to 0.8. The simulation results are 

shown in figure 5.22. It is notable that, under smaller LD, e.g. at LD=1.5 cm, the 
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fracture network with longer fracture and lower density will have higher flow rate and 

degree of interconnection. However, at larger LD, e.g. with LD = 2.5 cm, the flow rate 

increases with the fracture density to certain point and then decrease. 

 

Figure 5.20 Dependence of flow rate on mean fracture length and density. 
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Figure 5.21 Relationship between LD and flow rate. 

 

Figure 5.22 Relationship between fracture density and flow rate under different LD. 
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5.5.2 Indirect coupling between LBM and DEM 

Hydro-mechanical coupling is an important consideration in fractured rock mass for 

rock mechanics and hydrogeology applications. A large number of attempts are 

conducted to investigate the influence of stresses on permeability of fracture network. 

The key factors that affect the flow behavior in fracture network include opening, 

closure, sliding and dilation. For example, Min et al. (2004) conducted the simulation 

on fluid flow through DFN under stress condition. It is found that, the stress ratio is the 

main reason for dilation and the permeability of fracture network increases with the 

stress ratio under certain circumstances.  

In this part, an indirect hydro-mechanical coupling is conducted by using DEM and 

LBM. The "indirect" coupling means that, the applied stress won't produce the change 

in fluid pressure, and vice versa. Numerous works have been conducted in the study on 

stress-deformation relationship of the fracture network, which is not our key 

consideration. This work mainly focuses on the ability and advantage of LBM in 

characterizing the anisotropic flow behavior of rock masses under uniaxial deformation. 

To implement this, the stochastic DFN model is firstly generated in rock mass as shown 

in Figure 5.23(a). The displacement boundaries are set at the top and bottom with 

constant velocity of 0.01 m/s. Detailed configuration of the mechanical model in UDEC 

(DEM) can be found in the work by Kazerani and Zhao (2010). The geometry of 

fracture network is updated under certain axial strains. In order to characterize the 

anisotropic behavior, the conductivity in fracture network is measured in different 

directions. Figure 5.23(b) shows the flow region chosen with angle of θ with respect to 

the horizontal plane.  
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The LBM simulations are conducted on the deformed DNF models produced by UDEC, 

and the conductivity is measured relative to the orientation of the flow region. In each of 

the flow model, the aperture closure and opening due to mechanical displacement is 

naturally detected, which has shown the advantage of LBM in dealing with the hydro-

mechanical coupled problems.  

(a) The boundary condition     (b) The flow region in LBM 

Figure 5.23 Implementation of "indirect" hydro-mechanical coupling. 

The simulation results are presented in Figure 5.24 and the velocity distribution of 

different flow direction and axial strain can be clear observed. The transmissivity of 

flow regions under different axial strains are calculated, which is presented in Figure 

5.25. It is clear that, at the initial state without any displacement, the fracture network 

behaves as a isotropic media. The anisotropic flow behavior is observed when the 

vertical displacement is applied on the rock mass. The transmissivity at the horizontal 

direction decreases with axial strain because of the decrease of aperture due to 

Velocity 
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compression. On contrary, the transmissivity increase as the axial strain increase which 

is induced by the aperture opening.  

 
0   30   60   90 

(a) Axial strain = 0 

 
0   30   60   90 

 (b) Axial strain =0.0002 

 
0   30   60   90 

 (c) Axial strain = 0.0006 

 
0   30   60   90 

(d) Axial strain = 0.0008 

Figure 5.24 Conductivity of flow region with different orientation and axial strain. 
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Figure 5.25 Transmissivity of flow region with different orientation and axial strain. 

5.6 CONCLUDING REMARKS 

The fluid flow through single rough fracture is extensively simulated in 3D through the 

LBM approach, which shows the ability of LBM in dealing with complex geometries. 

The two coefficients equation is proposed to characterize the flow behavior by 

considering both the roughness and displacements. The 2D fluid flows through fracture 

network are simulated by using LBM and the direct investigation of roughness effect on 

flow in fracture network is conducted. It is found that, the LBM and modified pipe 

network model could effectively take into account the roughness effect on fluid flow in 

fracture networks. Meanwhile, the interconnectivity of fracture network is investigated 

by LBM, and it is found that interconnectivity is dominant by the length density 

parameter and the correlation between the DFN parameter and transmissivity is 

analyzed. The 'indirect' hydro-mechanical coupled problem can be properly simulated 
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by combing the distinct element method and LBM. The difficulty of flow prediction 

under large deformation could easily coped by LBM and the anisotropic flow behavior 

due to deformation is readily captured by the hydro-mechanical coupled analysis. 
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CHAPTER 6 NUMERICAL STUDY OF MULTIPHASE FLOW IN 

FRACTURED POROUS MEDIA USING LATTICE BOLTZMANN 

METHOD 

 

In this chapter, the multiphase flow through fractured porous media is studied by using 

the multiphase LBM model. First of all, the multi-component and single-component 

Shan-Chen model are compared through the basic multiphase flow simulations, such as 

the flow patterns in single fracture, co-current flow and bubble flow around solid bar. It 

is found that the flow pattern is influence by the degree of saturation and body forces. In 

the simulation of co-current flow, it is found that the SCMP model is more preferable in 

the study of two phase flow problem, especially in the water-air system. The MCMP 

model on the other hand cannot handle the multiphase flow with different viscosity and 

density. Moreover, the SCMP model produces more reasonable results compared with 

the MCMP model in the bubble flow problem. Then, the SCMP model is used to 

investigate the two phase flow in porous media. The body force for the simulation is 

calibrated and effect of wettability on two phase flow is studied. After that, the 

influence of fracture on two phase flow is studied. The trial of two phase flow in 3D 

reconstructed porous media is conducted and some suggestions are given at the end. 

6.1 INTRODUCTION 

There are variety of applications of multiphase flow in fractured porous media, such as 

petroleum engineering, mining engineering and geotechnical engineering. The 

multiphase flow problems have been investigated using various theoretical, numerical, 

and experimental approaches during the past half century. The early works on 
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multiphase flow focused on the laboratory measurement (Bear 1972). For example, 

Persoff and Pruss (1995) conducted the laboratory test to investigate the two phase flow 

in natural rough-walled rock fractures, the relative permeability was measured and the 

flow behavior was visualized. Hughes et al. (1996) designed and constructed the 

experiment on two phase flow in fractured porous media using the CT imaging. 

However, the experimental works are commonly expensive and time consuming, and it 

also has several limitations such as complexity of process and uncertainty in 

measurements. The theoretical analysis on the other hand, can provide the 

complementary understanding of the complex process in the two phase flow problem. 

E.g. the relative permeability of multiphase flow can be taken as the empirical function 

of saturation, but, the close form solution of the theoretical analysis is impossible 

especially under complex condition.  

Alternatively, numerical approaches provide attractive solutions due to their advantages 

of low cost, high efficiency and repeatability. The numerical methods for multiphase 

flow can be classified into three groups: macro-scale methods and the micro-scale 

methods as well as the pore-scale methods. In the macro-scale approach, the continuity 

equations together with momentum and species balances are solved and constitutive 

equation such as extension of Darcy’s law is utilized. However, the macro-scale 

approach cannot explain the processes at pore scale, e.g. the pore space geometry and 

topology as well as fluid property cannot be physically represented. The microscopic 

methods based on classical molecular dynamics, on the other hand, attempt to consider 

every atom or molecule within a system. However, the complexity increases rapidly 

with increasing problem sizes, which cannot be overcome even with today's fastest 

supercomputers. Apart from the methods at microscopic and macroscopic level, there 
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are considerable interests in the so-called pore scale methods, in which, the pore 

network model and lattice Boltzmann method have attracted the most attentions. The 

popularity of the pore scale method increases rapidly over the past 20 years because of 

the development of imaging technique, such as Micro X-ray computed tomography (CT) 

and Nuclear Magnetic Resonance (NMR), which makes the simulation more accurate 

and realistic. In both of the two models, the flow equation is solved at pore scale, the 

geometry and topology of the medium can be readily considered.  

To be specific, the pore network model idealizes the geometry to some simple geometry, 

such that the essential features are adequately represented (Celia et al. 1995; Blunt 

2001). This simplification allows us to simulate large domains with less computational 

effort but lead to loss of geometrical and topological information. In contrast, the LBM 

can solve equations in arbitrary pore space geometry and topology without 

simplification, for its ability to deal with complex boundary conditions as discussed in 

last chapter. Meanwhile, the parallel nature of programming and the development of 

high performance computation make it possible to simulate the fluid flow on a full 

voxel-based void domain. For example, the imaging data from CT or NMR can be used 

for the simulation directly, which provides a more scientific way to explain the physical 

and chemical process at micro scale. In addition, the LBM has the ability to simulate 

multiphase flow problem, in which, the fluid-surface interactions can be reasonably 

included and there is no need for the tracking of fluid interfaces. There were various 

types of LBM had been developed to study the multiphase flow problems (Pan et al. 

2004, Huang et al. 2011), in which, the Shan-Chen LBM receives the most popularity 

because of its well-defined inter-particle potential and straightforward implementation. 

They are widely used to model the multiphase flow problems such as immiscible 
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displacement in channel, capillary phenomenon at tubes, fluid distributions as well as 

unsaturated flow through porous media.  

Concerted efforts have been made over the past few decades to arrive at predictive 

capabilities for multiphase flow behavior of fractured porous media. However, the 

factors that influence the multiphase flow in fractured porous media are not clear. The 

objective of this research is to provide a more scientific and more convincing 

methodology for explanation of the underlying mechanism of multiphase flow in 

fractured porous medium based on the microstructure and fluid surface interactions. In 

this part, flow pattern in single fracture is firstly investigated. Then, the ability of LBM 

in dealing with multiphase process is firstly validated through the comparison with 

analytical solution of two phase annular flow. After that, the multiphase flow in 

fractured porous media is numerically studied.  

6.2 COMPARISON OF THE SHAN-CHEN SCMP AND MCMP MODEL IN TWO 

PHASE FLOW PROBLEMS 

The theoretical background and basic concept of Shan-Chen model has been introduced 

in Chapter 4. It was used to realize the complete range of contact angle and to 

investigate the multiphase static equilibrium distribution. Meanwhile, the influence of 

geometry and degree of saturation on fluid distribution was investigated. In this section, 

we focus on the dynamic multiphase flow problems. It is expected to provide a 

fundamental explanation on how the two phase flow in fractured porous media and 

investigate how the geometry and fluid-solid interaction influence the two phase flow.  
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Firstly, the two multiphase modes are compared by implementing basic flow problems, 

such as flow pattern, co-current flow validation, bubble flow around solid surface.   

6.2.1 The two phase pattern in single fracture 

The analytical solution of the two phase flow is available only if the pattern is known 

and regular. For example, the analytical solution of co-current two phase flows is 

readily available if the properties of the fluids are known. Other researchers, for 

example, Indraratna et al. (2003) assumed that the flow pattern is to be the stratified 

flow so that the two phase flow problem can be readily simulated. In reality, the two 

phase flow can be separated or mixed. There is no general equation that could 

incorporate any types of flow because of the impossibility of direct observation of the 

flow pattern and the irregularity of the fluid interface. Therefore, it is fairly important to 

investigate the flow pattern from numerical approach.  

The Shan-Chen SCMP model is firstly used to investigate the two phase pattern at 

different degree of saturation and different body forces. The parameters used in the 

model are same as introduced in chapter 4. All the simulations are initialized with 

random distributed two-phases between the solid surfaces. The body force is imposed 

on both the water and air after the equilibrium distribution is approached. To evaluate 

effect of body force on two phase pattern in single fracture, periodic boundary is applied 

at horizontal direction and the body force is applied perpendicular to the flow channel 

changes from 1e-6 to 1e-2. The two phase patterns at different degree of saturation and 

different body forces are presented in Figure 6.1. 
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It is obviously that when the body force is less than 1e-4 and degree of saturation is less 

than 0.5, the concurrent flow pattern can be observed, in which the wetting phase film is 

attached to the wall and the non-wetting phase is in between the films. When the body 

force is larger than 1e-4 and degree of saturation is less than 0.5, the stratified pattern is 

obtained with the heavier phase at the bottom and the light phase at the top. However, at 

high degree of saturation, that is larger than 0.5, the non-wetting bubbles are generated 

within and the curved interface is produced because the presence of the surface tension. 

Meanwhile, the shape and location of the bubble is influenced by the magnitude of the 

body force.  

Similar simulations are conducted using the Shan-Chen MCMP model, the simulation 

results are presented in Figure 6.2. It is clear that the two phase distributions in MCMP 

model are different from the SCMP model. That is because the Shan-Chen MCMP 

model is limited to the two components with identical density and viscosity which will 

be discussed in next section. Therefore, the flow in MCMP model can not classified as 

two phase flow (e.g. water-air flow), and the effect of body force won't have the same 

effect as that in the SCMP model. Similar phenomenon can also be observed in the 

MCMP simulation, that the co-current pattern shows up at low degree of saturation and 

the bubbles are generated at high degree of saturation.  
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Body force = 1e-4 
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(a) Sr = 0.1 (b) Sr = 0.3 
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Figure 6.1 Effect of body force on two phase distribution at different degree of 

saturation using Shan-Chen SCMP model. 
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Body force = 1e-5 
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Figure 6.2 Flow patterns at different degree of saturation using Shan-Chen MCMP 

model.   

6.2.2 Validations of co-current flow  

It is discussed in last section that, the analytical solution is known if the flow pattern is 

known and regular. For a typical two phase annular flow, the wetting phase moves 

along the solid surface and the non-wetting phase flow in the center of the wetting films 

as shown in Figure 6.3. The analytical solution for the velocity profile is  

(a) Sr = 0.2 (b) Sr = 0.3 

(c) Sr = 0.4 (d) Sr = 0.5 

(e) Sr = 0.6 (f) Sr = 0.7 



Chapter 6 - Numerical Study of Multiphase Flow in Fractured Porous Media  

 

153 

 

 

2 2

2 2 2 2

( ) | |
2

( ) ( ) 0 | |
2 2

w

x

w nw

F
b y a y b

u
F F

b a a y y a



 


  


 

      


 (6.1) 

 

Figure 6.3 Flow pattern of two phase co-current flow. 

In this section the two LB models are validated by comparing the simulation results 

with the analytical solution. 

Firstly, the simulation by SCMP model is implemented. In the SCMP Shan-Chen model, 

the equation of state is essential, which has great influence on the pressure and surface 

tension. According to He and Doolen (2002), the non-ideal EOS for SCMP model is 

described as, 

    
2 2

( ) ( )
2 3 6

GRT G
P RT


         (6.2) 

Different EOS can be incorporated in SCMP model by choosing different interaction 

potential (Shan and Chen 1993,1994, Qian et al. 1995, Martys and Chen 1996, Yuan 

and Schaefer 2006). In this simulation, the EOS proposed by Shan and Chen (1994) is 

used, 

Wetting phase 

Wetting phase 

Non-wetting phase 
a 

a 

b 
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 0 0( ) exp( / )       (6.3) 

where 0 and 0 are arbitrary constants.  

By using the same parameters as chapter 4, G = -120, 0 4  and 0 200  , and substitute 

equation 6.3 to equation 6.2, the pressure-density relationship of SC EOS is shown in 

Figure 6.3. It is clear that, the two phases can coexist in the system at the same pressure, 

e.g. point A and B. 

 

Figure 6.4 Equation of state from Shan and Chen (1994). 

This equation of state has been successful used in the estimation of the surface tension, 

realization of different contact angle and fluid distribution ((Lu et al. 2008, Yin and Gao 

2015).  
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For the two phase co-current flow (Figure 6.3), there is no surface tension at the fluid 

interface, which means that the pressures in wetting phase and non-wetting phase are 

the same. Therefore, the density of wetting phase is chosen as 524.0w  in the liquid 

region and the density of non-wetting phase is set as 85.44nw   in the gas regions 

accordingly.  

Meanwhile, in LBM simulation, the relaxation parameter  is set as 1 for sake of 

numerical stability and the kinetic viscosity in is calculated as (2 1) / 6 0.167     for 

both phases. Therefore, the viscosity of the wetting phase and non-wetting phase are 

calculated as w w   and nw nw    respectively. 

To implement the co-current flow, the length and width of the fracture are set as 100 l.u. 

and 200 l.u. respectively. The distant from the non-wetting boundary and center line is 

set as a = 50 (Figure 6.5a).   

 

Figure 6.5 Implementation of the co-current flow in SCMP model. 

100 
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50 

50 

(a) Density profile (b) Velocity profile 
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The periodic boundary condition is set at the left inlet and right outlet and the bounce 

back is set at the top and bottom surface. By introducing the body force of 1e-2 in the 

simulation, the steady state flow can be reached (Figure 6.5b) which is compared with 

the analytical solution as shown in figure 6.6.  

 

Figure 6.6 Velocity profile from SCMP model. 

It is found that, the viscosity coupling of two flow problems can be reasonably 

simulated. Meanwhile, the velocity profile in the wetting phase matches the analytical 

solution well, and in the non-wetting part, the velocity is slightly lower than that of the 

analytical solution with error of 5%, which is acceptable.  

Similar simulation is implemented in the MCMP model. The densities are set as 1 for 

both components, the viscosity ratio is adjusted through the relaxation time  . In case 1, 

the relaxation time is set as 1 for both of the fluids. In case 2, the relaxation time is set 
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as 2 and 1 for wetting and non-wetting respectively, which leads to the viscosity ratio of 

3. 

It is clear that, the simulation result matches the analytical solution under viscosity ratio 

of 1 (Figure 6.7). However, in the case of viscosity ratio equals to 3, the large velocity 

discontinuity is observed at the interface, and the interface moved to the location rather 

than its original place (Figure 6.8a). Moreover, by analyzing the fluid density of the two 

components, it is found that, the density of wetting phase become larger and the non-

wetting density get smaller with a density ratio around 2 which is different from its 

original values (Figure 6.8b). Therefore, it is concluded that, the Shan-Chen MCMP 

model is not suitable for the simulation of the viscosity ratio rather than 1 and it cannot 

used to simulate the water-air system.  

 

Figure 6.7 Velocity profile from MCMP model with viscosity ratio = 1. 
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 (a) The velocity profile  

 

(b) The density profile 

Figure 6.8 Velocity and density distribution from MCMP model with viscosity ratio = 3. 
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6.2.3 Bubble flow around a solid surface 

In this section, we are trying to explore the difference of the two model in simulating 

two phase flows with solid surface present in the flow region. As shown in Figure 6.9, 

the non-wetting bubble (blue) is surrounded by the wetting fluid (red), and the solid bar 

is assigned in front of the bubble. Periodic boundary is set from left to right, and the top 

and bottom are set as the solid surface as well.  

 

Figure 6.9 Setup of the bubble flow. 

It is found that the two models present different behavior of a bubble flow across a solid 

bar. In the SCMP model (Figure 6.10a), the bubble separates when across the solid bar, 

and the separated bubbles merge together to a single bubble after the bar. This 

phenomenon is consistent with the theory based on the analysis of Yong-Laplace 

equation, 

 
2

inside outsideP P P
R


     (6.4) 

where insideP and outsideP is the pressure inside and outside of the bubble respectively,  is 

the surface tension and R is the radius of the bubble.  

Non-wetting  

Wetting phase 

Solid surface Non-wetting phase 
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At equilibrium condition, the parameters in equation 6.4 are constant. When the bubble 

separates, the radius decrease which lead to the non-equilibrium. Therefore, the 

separated bubble has to be expanded to approach the Yong-Laplace equation, which 

leads the bubble merge as observed in Figure 6.10a.   

However, in the MCMP model (Figure 6.10b), the phenomenon observed is complete 

different from the SCMP model. At early stage, there are two bubbles generated behind 

the solid surface, after 60000 steps of iteration, the complex flow pattern is observed, 

which cannot reasonably explained according to the analysis. That is because in MCMP, 

the bubble splits when passing around the solid bar. The two bubbles are not symmetry 

about the center line which will break down and present an instable behavior. 

 

(a) Simulation result from SCMP 

  

(b) Simulation result from MCMP 

Figure 6.10 Time evolution of bubble flow across the solid bar. 
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Based on the simulation results of the basic flow problems, it is found that, the SCMP 

model is more appropriate for investigation of the multiphase flow problems especially 

in the water-air co-exist system. Therefore, in the following sections, the SCMP model 

is used to study the multiphase flow in fractured porous media. 

6.3 TWO PHASES FLOW IN POROUS MEDIA 

The problem of two phases flow in porous media has been a research topic for half 

century. The Darcy's extended law is widely used to characterize the two phase flow 

behavior. 

 ,ri
i i

i

k k
q P i wetting phase nonwetting phase


     (6.5) 

where iq is the flux, rik is the relative permeability, i is the viscosity, k is the absolute 

permeability and iP is the pressure drop.  

However, this macroscopic description has difficulties in accounting the complex 

process in the microstructure. In this part, the two phase flow in porous media is 

numerically investigated using the Shan-Chen SCMP model.  

6.3.1 Setup of the simulation 

In order to have a basic understanding of two phase flow in porous media, the media has 

to be isotropic and homogeneous so that to reduce the effect of microstructure. 

Therefore, the ordered particles with radius of 50 l.u. are generated in the regions of 500 

l.u.×500 l.u. as shown in Figure 6.11a, where the gray is the particle and white is the 
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pore space. In order to produce the interconnected porous media, the radius is reduced 

to half of its original value (Figure 6.11b)  

 

Figure 6.11 The isotropic and homogeneous porous media. 

In the simulations, the density and the parameters control the surface tension and 

contact angle are set the same as Chapter 4. The periodic boundary condition is applied 

at both the horizontal and vertical direction, and the no-slip (bounceback) boundary is 

set at the particles. Initially, the liquid phase and gas phase are randomly distributed in 

the pore space. When the system approaches the equilibrium distribution, the body force 

is applied along the horizontal direction.  

Theoretically, the Shan-Chen model is a diffuse interface model, which imposes the 

smooth transition between phases, and the interface is diffused over a few lattice units. 

Therefore, the post-processing of LBM should be taken carefully because of the 

presence of interface. To explain this, the equilibrium condition at degree saturation of 

0.5 is shown in Figure 6.12. It is clear that, there is density transition from the fluid 
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phase to the gas phase at the interfaces, and the velocity is also produced at interface. 

Therefore, the value of body force should be chosen with care. Firstly, the body force 

should be high enough so that the velocity in the two phases has a same or higher order 

compared with the velocity at interface. Secondly, the body force should keep small to 

ensure the numerical stability.  
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Figure 6.12 Density and velocity profile for the distribution at static condition. 
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(c) 

 

(d) 

Figure 6.13 Effect of body force on velocity profile at X = 220.  
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In order to find a reasonable value of the body force to implement the two phase flow 

simulations. The degree of saturation is set as 0.5 and the body force changes from 0.1 

to 0.00001. The velocity profile at different body forces are shown in Figure 6.13. It is 

found that, at low body force, the velocity at the interface is much larger than that of the 

two phases (Figure 6.13 a,b,c). The velocities at the interface approach to the same 

order as in the two phases when the body force gets as high as 0.01 (Figure 6.13d). As 

the body force increase to 0.02, the numerical instability occurs.  Therefore, the body 

force in the following simulations is chosen as 0.01, the flow rate is calculated for both 

phases according to the density profile, whereas, the velocity at the interface is not 

considered.  

6.3.2 The effect of wettability  

It is well known that the absolute permeability in equation 6.6 depends only on the 

microstructure of the media. However, the relative permeability is more complex, which 

is influenced by many factors, such as the fluids viscosity ratio, fluid-surface interaction. 

In this part, the effect of wettability on two phase flow is investigated, which is realized 

through the adjustment of the contact angle.  

Based on the simulation results from Chapter 4, the complete contact angle can be 

obtained through the equation 210.75 0.647 adsG   . In this section, the contact angle 

change from 0 to 90 and its influence on two phase flow behaviors is studied. To 

illustrate the two phase flow in porous media, the flow pattern at perfect wetting is 

shown in Figure 6.14.  The velocity distributions in all of the figures are normalized to 

[0,1], where the red represent the maximum velocity and blue represent the minimum 

velocity. Therefore, the color-bar is not presented.  
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(a) Sr = 0.0 

 

(b) Sr = 0.2 

 

(c) Sr = 0.4 
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Figure 6.14 Two phase in porous media at perfect wetting condition (Left-density 

distribution; Right-velocity distribution). 

(d) Sr = 0.5 

 

(e) Sr = 0.7 

 

(f) Sr = 1.0 
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Figure 6.15 Relative permeability-Saturation relationships with different contact angle. 

It is obviously that, at low degree of saturation, the non-wetting phase is continuous and 

the wetting phase is discontinuous which lead to very low flow rate for the wetting 

phase and low relative permeability. Meanwhile, the velocity of the gas phase is higher 

than that of liquid phase for its lower viscosity. The relative permeability of different 

contact angles are summarized in Figure 6.15. It is found that the contact angle has little 

effect on the multiphase flow behavior at large flow rate, and the relative permeability 

follows the trend line of w

rwk S


 and (1 ) nw

rnwk S


  for wetting phase and non-wetting 

phase respectively. Meanwhile, the simulation results present the same trend as reported 

by Bryant and Blunt (1992). 
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6.3.3 The effect of hydraulic aperture 

In this section, the influence of hydraulic aperture on two phase flow is studied. The 

hydraulic aperture changes from 20 to 60 as illustrated in Figure 6.16. The absolute 

permeability of the porous media is measured at different hydraulic aperture, which 

increases with hydraulic aperture as shown in Figure 6.17.  

 

Figure 6.16 Illustration of the change of aperture in the porous media. 

100 
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Figure 6.17 Relationship between the hydraulic aperture and absolute permeability. 

Meanwhile, the two phase flow simulations are conducted at different degree of 

saturation. To visualize the effect of hydraulic aperture on two phase flow, the fluid 

distribution and velocity distribution at saturation of 0.5 are presented in Figure 6.18. It 

is clear that, at small hydraulic aperture, the non-wetting phase are isolated and the 

velocity is very small. As the hydraulic aperture increases, clusters of non-wetting phase 

are produced, which have higher velocity than the wetting phase. The relative 

permeability at different hydraulic aperture is summarized in Figure 6.19.  
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 (a) Hydraulic aperture = 20 

   

(b) Hydraulic aperture = 30 

   

(c) Hydraulic aperture = 40 
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(d) Hydraulic aperture = 50 

   

(d) Hydraulic aperture = 60 

 

Figure 6.18 Density and velocities distribution at different hydraulic aperture. 
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Figure 6.19 Relative permeability-saturation relationships with different hydraulic 

aperture. 

6.4 FLOW IN FRACTURED POROUS MEDIA 

It is widely accepted that the fracture is the preferable flow path in single phase 

problems. However, the fracture behaves differently in the two phase flow, which is not 

well understood. In this section, the mechanism of two phase flow in fractured porous 

media is explored and the influence of fracture on two phase flow in numerically 

investigated.  

To this end, a porous media of 1000 ×1000 is created. The radius of particle and interval 

are set as 10 and 50 respectively, which leads to a porous media with hydraulic aperture 

of 30 By considering that the space in the fracture is larger than that in the porous media, 

the hydraulic aperture in fracture is set as 60 l.u. with different orientation, , the vertical 

and horizontal as well as the inclined direction. The geometry of the porous media with 

inclined fracture is shown in Figure 6.20. 
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Figure 6.20 Geometry of the fractured porous media. 
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(a) Sr = 0.1 
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(b) Sr = 0.3 
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(c) Sr = 0.5 



Chapter 6 - Numerical Study of Multiphase Flow in Fractured Porous Media  

 

180 

 

   

   

   

(d) Sr = 0.7 
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(e) Sr = 1.0 

Figure 6.21 Density distribution and velocity profile in the fractured porous media at 

different degree of saturation and different fracture orientation. 
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(a) Hydraulic aperture = 30 

 

(b) Hydraulic aperture = 20 

Figure 6.23 Relative permeability-saturation relationships of the fractured porous media. 
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The two phase flow simulations are conducted in the fractured porous media with 

different fracture orientation with respect to the flow direction. The density and velocity 

distribution are presented in Figure 6.21. It is found that, the wetting phase has the 

preference to flow in porous matrix with small hydraulic aperture. The fracture, on the 

other hand, is mostly occupied by the non-wetting phase. The same simulations are 

conducted by reducing the hydraulic aperture to 20 and the relative permeability with 

different fracture direction and different hydraulic aperture of porous media are 

summarized in Figure 6.22. It is clear that, for the non-wetting phase, the fractured 

porous media with horizontal fracture has the higher relatively permeability, whereas, 

the vertical fracture presents the lower relatively permeability. In contract, for the 

wetting phase, the opposite phenomenon is observed. It is also observed that, in the 

fractured porous media, the porous matrix dominated by the wetting phase flow, and the 

fracture do more contribution on non-wetting phase flow than the wetting phase flow. 

Moreover, with the decreasing of hydraulic aperture of porous media, influence of 

fracture becomes more remarkable by comparing the results of Figure 6.22a and Figure 

6.22b.  

6.5 TRIAL OF TWO PHASE FLOW IN NATURAL MATERIAL  

In this part, the multiphase flow in geomaterial is simulated. There are three common 

materials, the Sandstone, Carbonate and Ceramics (Figure 6.24). However, the porosity 

of sandstone and Carbonate are very small, which are 0.2 and 0.15 respectively. 

Meanwhile, the pores are not well connected, which makes two phase flow impossible. 

The Ceramics, on the other hand, has a very high porosity of 0.4 and the pores have a 
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higher degree of connectivity. By considering both the efficiency and accuracy of LBM, 

the Ceramics is used in this study.  

 

(a) Sandstone    (b) Ceramics    (c) Carbonate 

Figure 6.24 Geometry of different material from CT. 

However, the 2D simulation is impossible because the pore is not interconnected. To 

cope with this problem, the 3D model with size of 200×200×200 is generated through 

the simulated annealing simulation following the work by Yin and Zhao (2014). The 3D 

reconstructed Ceramics is shown in Figure 6.25, which is imported to the 3D Shan-

Chen SCMP model.  
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Figure 6.25 3D reconstructed Ceramics. 
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Figure 6.26 Density and velocity distribution of two phase flow in 3D reconstructed 

porous media. 

The density and velocity distribution of the 3D simulation is presented in Figure 6.26. It 

is found that, the two phase flow can be readily simulated in reconstructed porous media. 

However, there are some challenges of LBM simulation in natural material. First of all, 

the size of the sample cannot be too large because of the memory requirement of the 

simulation. E.g. for a cubic specimen, the increase of length from L to n×L will increase 

the computational cost to L
3
 to (n×L)

3
, the storage of microscopic information will 
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increase at the same time. Secondly, the size should not be very small so that the 

simulation conducted is close the representative element volume (REV). E.g. for X-Ray 

CT test, specimen of several millimeter may not large enough to represent the complete 

information of the porous media. Thirdly, the resolution should be large enough to 

obtain stable and accurate results. E.g. based on the simulation in chapter 5, lattice 

number of 20 is the recommended minimum size of pore space to obtain reasonable 

results.  

6.6 CONCLUDING REMARKS 

An extensive study of two phase flow in fractured porous media has been presented. 

The two Shan-Chen LBM models are compared through the basic flow simulations. It is 

found that the SCMP is more reasonable for its ability of simulate two phase with 

different density and viscosity. Meanwhile, the body force used in the simulation is 

evaluated; the value of 0.01 is suggested in our simulation by considering both the 

numerical accuracy and stability. In the study of two phase flow in porous media, the 

effect of wettability and aperture on two phase flow in investigated. The relative 

permeability is found slightly influenced by the contact angle but significantly influence 

by the hydraulic aperture. Moreover, the two phase flow in fractured porous media, it is 

found that the non-wetting phase has preference to flow in fractures and the orientation 

has significant influence on the relative permeability. The 3D numerical simulation of 

two phase flow in reconstructed natural material is demonstrated at the end. It is found 

that the 3D simulation cannot be coped with easily, which requires very high resolution 

of the porous media so as to obtain accurate results.  
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CHAPTER 7 SUMMERY AND CONCLUSIONS 

 

The micromechanics of multiphase flow in fractured porous media have been 

investigated extensively from the microstructure characterization to the numerical 

simulation of single phase and multiphase fluid flows.  

In order to characterize the pore geometry of porous media, the stochastic 

reconstruction of Gosford sandstone from its surface image is conducted. A digital 

microscope is adopted to capture surface images of the Gosford sandstone specimen 

where the carbon dust treatment on the surface is introduced. The 3D morphological 

distribution curve is derived through a porosity adjustment of the 2D surface images. By 

comparing all the stochastic reconstructed microstructure models with the original X-

ray micro CT model, it is shown that the reconstructed models can successfully reflect 

essential morphological information of the Gosford sandstone. Meanwhile, the single 

fracture is characterized through the mathematical model proposed by Brown. The 

fractal dimension and standard deviation is found effectively in describing the fracture 

roughness. Furthermore, the stochastic reconstruction of fracture network is adopted to 

characterize the rock fracture statistically.  

The single phase fluid flows in fracture and fracture network are investigated using 

lattice Boltzmann Method (LBM). The fluid flow through 3D rough fracture is 

extensively simulated, which shows the ability of LBM in dealing with complex 

geometries. The two coefficients equation is proposed to characterize the flow behavior 

by considering both the roughness and displacements. The 2D fluid flows through 
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fracture network are simulated by using LBM and the direct investigation of roughness 

effect on flow in fracture network is conducted. It is found that, the LBM and modified 

pipe network model could effectively take into account the roughness effect on fluid 

flow in fracture networks. Meanwhile, the interconnectivity of fracture network is 

investigated by LBM, and it is found that interconnectivity is dominant by the length 

density parameter and the correlation between the DFN parameter and transmissivity is 

analyzed. The 'indirect' hydro-mechanical coupled problem can be properly simulated 

by combing the distinct element method and LBM. The difficulty of flow prediction 

under large deformation could easily coped by LBM and the anisotropic flow behavior 

due to deformation is readily captured by the hydro-mechanical coupled analysis. 

The transition from single phase flow to the multiphase flow requires the clear 

understanding of the complex physical process at micro scale. Accordingly, the 

wettability and the two phase distribution in fractured porous media are investigated. 

The multiphase LBMs are capable to simulate the two phase system of different 

wettability or contact angels. Meanwhile, the SCMP LBM is found to be the best 

method in predicting the fluid distribution in partially saturated porous media compared 

with two other methods (the SAM and the MCMP LBM). The effect of periodic 

boundary conditions and the initial configuration are also tested. It is found that a buffer 

size of approximately 12.5 times the average particle size is suggested to reduce the 

error resulting from the periodic boundary conditions. Moreover, the initial distribution 

of the SCMP LBM is less sensitive for an irregular porous medium than that of a 

regular medium; therefore, it is more suitable for natural porous media, such as rock and 

soil. The influence of the degree of saturation on the two-phase fluid distribution was 

investigated using this method. The fluid distribution patterns and the quantitative 
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evaluation at different degrees of saturation were investigated, which is consistent with 

experimental results from the literature. Finally, the influence of fractures on the two-

phase fluid distribution was also studied. The disturbance ratio is introduced to evaluate 

the change in the two-phase system due to the induced fracture. It was found that more 

fluids are disturbed as the fracture length and width increase, and the disturbance ratio 

decreases as the degree of saturation increases.  

A detailed study of two phase flow in fractured porous media has been presented at the 

end. The two Shan-Chen LBM models are compared through the basic flow simulations. 

It is found that the SCMP is more reasonable for its ability of simulating two phases 

with different density and viscosity. Meanwhile, the body force used in the simulation is 

evaluated and the value of 0.01 is suggested in our simulation by considering both the 

numerical accuracy and stability. In the study of two phase flow in porous media, the 

effect of wettability and aperture on two phase flow are investigated. The relative 

permeability is found slightly influenced by the contact angle but significantly influence 

by the hydraulic aperture. Moreover, based on the results of the two phase flow in 

fractured porous media, it is found that the non-wetting phase has preference to flow in 

fractures and the orientation has significant influence on the relative permeability. The 

3D numerical simulation of two phase flow in reconstructed natural material is also 

demonstrated and it is found that the 3D simulation cannot be coped with easily, which 

requires very high resolution of the porous media so as to obtain accurate results. 

All those findings give clear perspectives on the characterization of fractured porous 

media and the dependence of macro multiphase flow behaviors on microstructure and 

micro-physics. 
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