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Strain-Sensing System Based on Carrier-Modulated
Gratings for the Monitoring of a Large

Number of Channels
Paul Childs, Allan C. L. Wong, and Gang Ding Peng

Abstract—The performance of a strain sensor system based on
the use of carrier-modulated gratings and Fourier-domain decod-
ing is analyzed. For three sensors, Young’s modulus is measured
as 69.98 ± 0.27, 69.15 ± 0.81, and 70.65 ± 0.58 GPa. Crosstalk is
shown to exist only when two sensors are designed with an overlap
of the carrier band in the Fourier domain. Improving the data
processing shows it is possible to limit this crosstalk to a value
below that of the system error.

Index Terms—Gratings, harmonic analysis, optical fiber sen-
sors, strain sensor.

I. INTRODUCTION

IN QUASI-DISTRIBUTED fiber-optic strain-sensing sys-
tems, fiber Bragg grating (FBG)-based sensors are a def-

inite candidate for use in smart materials and structures, and
structural health monitoring (SHM) of large-scale structures
such as bridges. The main issue is to implement a large number
of sensors for such structures, so that it can provide adequate
information for reliable and accurate SHM. There are a number
of techniques to multiplex the sensing elements; the more com-
mon ones are time-division multiplexing (TDM), wavelength-
division multiplexing (WDM), and spatial-frequency-division
multiplexing.

TDM is a mature and widely used technique in telecommuni-
cations, but it requires accurate switching, long delay lines, and
suffers from poor signal-to-noise ratio (SNR) of sensed signals.
WDM is a natural choice because of the wavelength-encoded
nature of FBG. However, most FBG sensors employ amplified
spontaneous emission (ASE) using an erbium-doped fiber am-
plifier (EDFA) as the light source, which is bandlimited to about
50 nm for good SNR. Thus, the maximum number of sensors
that can be multiplexed is limited to about eight channels for
measuring strains of up to 5000 µε. Spatial-frequency-division
multiplexing makes use of Fourier transform to obtain the spa-
tial frequency and phase information from the sensed signals.
For example, in the fiber Fizeau strain sensor system [1], each
sensor has a different cavity length. By Fourier transforming the
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multiplexed signals, each sensor corresponds to a distinct peak
(related to its optical path difference) in the Fourier magnitude
spectrum, provided cavity-length separation for each sensor is
sufficiently large. However, the system is incompatible with
WDM, and the upper limit to the number of channels due
to fringe visibility decreasing with the cavity length is still
insufficient.

Other techniques, such as the use of genetic algorithms [2]
to converge to a solution for the strain of each sensor even
when the spectrum overlaps, have been proposed but require
long processing times, making them unsuitable for use in real-
time-monitoring systems.

A multiplexing technique utilizing both WDM and har-
monic division multiplexing (W∗DM) has been proposed [3],
and preliminary experimental results of a proof of princi-
ple have been shown [4]. This technique overcomes the
incompatibility of the Fizeau sensor with WDM by using
carrier-modulated gratings that have a narrow bandwidth in
both the wavelength and Fourier domains. As it makes use
of fast Fourier transforms, which are processed in the or-
der of milliseconds, the system is compatible with real-time
monitoring.

II. THEORY

The process of obtaining the strain of various sensors εk,j

from a given reflection spectrum R is represented mathemati-
cally by a chain of operators ε ◦ dΦ ◦Mj ◦X ◦ Sk ◦ Adcm ◦
P ◦ F ◦R, each of which is detailed in [3]. Here, R represents
the return optical signal from the sensor array. F represents
the effect of passing through a fiber Fabry–Pérot interferometer
(FFPI) or other such spectrally selective device. P represents
the conversion from an optical signal to an electrical signal
by a photodiode. Adcm represents the mth data set collected
by an analog to digital card. Sk represents the data set corre-
sponding to the kth WDM channel. X represents a correction-
factor operator. Mj represents the data set corresponding to
the jth W∗DM channel of the Fourier-transformed data set.
dΦ represents a weighted-averaged differential phase opera-
tor, and ε represents the operator for evaluating the resultant
strain.

The reflection spectrum of the gratings used in such a scheme
is defined in (1), shown at the bottom of the next page.

A grating fabricated according to this equation with j = 2 is
shown in Fig. 1.

0733-8724/$20.00 © 2006 IEEE
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Fig. 1. Measured spectrum of the j = 2 grating.

For the purpose of testing the system, we interrogated the
gratings using a C-band tuneable laser, rather than an FFPI.
As such, the linewidth of the tuneable laser can be assumed
to be negligible with respect to the sampling resolution. The
laser is scanned with a linear sweep rate of 3 nm/s from
1520 to 1570 nm and measured at a sampling density of ρ =
278 points/nm. Reference measurements are taken to compen-
sate for the responsivity of the detector and the source strength
of the laser (i.e., effectively, D(λ) = A(λ) = 1). Thus, the
operators PF given in [3] reduce to

P ◦ F (t) =

∞∫
−∞

D(λ)R(λ)FFPI (λ− λFFPI(t mod τ)) dλ

=

∞∫
−∞

R(λ)δ(λ− 1520 − 3t mod 50)dλ

=R(1520 + 3t mod 50).

Furthermore, the correction-factor operator simplifies to

Xκ,m(x) = χI2(x)φ (Sκ,m{x})

where φ(•) = log2(1 − •), and χI(x) is the characteristic func-
tion on the interval I , i.e., it is equal to 1 when x is an element

of I and 0 otherwise. Thus, the need for two of the three
Fourier transforms per scan, which are associated with the
deconvolution of the FFPI operator, is eliminated.

Spectral shadowing is an effect that occurs in multiplexed
systems when a downstream grating will receive less power
than an upstream grating due to the upstream grating shadowing
out a portion of the spectrum of the source. This effect is
enhanced when the gratings used have a high reflectivity. The
introduction of spectral shadowing changes the system from
a linear one to a nonlinear one, and for this reason, Rk,j(λ)
has an exponential term, and φ(•) is required to relinearize the
system response.

The remaining operators not given so far are given in the
equations shown at the bottom of the next page, where ∆ =
Γεmaxλ0ρ and Γ = 0.78.

The weighting function w(s) was taken to be a triangular hat
function covering I3. As only one WDM channel is tested, the
size of the buffer region between WDM channels ξ is taken to
be 0. The constant o, which is used to eliminate the ringing
when performing deconvolution, is also unnecessary and can
be taken to be 0 as well. This resulted in I1 = I2 = (0,∆).
I3 was determined semi-empirically from the measured Fourier
spectrum.

Applying a stress of τa to grating a and τb to grating b, the
interplay between the two gratings of a strain signal crossing
from grating a to grating b can be modeled by assuming that

Rk,j(λ) = 1 − 10
−Lk,j

10 cos2
(j+η)π(ρ(λ−λ0,k))

2n+1 sinc2
(1−ζ)(ρ(λ−λ0,k))

4n+2 (1)
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Fig. 2. Stress–strain relation for the j = 1 channel.

the strain response of grating b is due to the sum of a linearly
correlated part and an uncorrelated part, i.e.,

b = aXa→b + v :
∑
τa

[v − 〈v〉a] [a− 〈a〉a] = 0

where 〈ω〉a denotes the mean of ω taken with respect to τa. The
cross correlation coefficient Xa→b can be found as

Xa→b =

∑
τa

[b− 〈b〉a] [a− 〈a〉a]∑
τa

[a− 〈a〉a]2
. (2)

The error associated with measuring this factor is fairly
complicated due to the error in a and b being dependent on
the configuration state of the entire system, e.g., the error
associated with measuring the strain for a and b is greater when

Fig. 3. Stress–strain relation for the j = 2 channel.

they overlap either each other or another grating. Given errors
da and db, which are functions of τa and τb, the error in the
correlation coefficient is

dXa→b

=

∑
τa

[b− 〈b〉a − 2Xa→b(a− 〈a〉a)]da +[a− 〈a〉a]db∑
τa

[a− 〈a〉a]2
.

III. EXPERIMENT

Three gratings corresponding to {j} = {1, 2, 2.5}, a center
wavelength of 1550 nm, and an insertion loss of ∼ 3.5 dB
were fabricated by Redfern Optical Components according to
the specifications given in (1). The gratings were then spliced
together in a series architecture with the ordering {2.5, 1, 2};
the former being the closest to the light source. However, the

R(λ) = 1 −
∏
k,j

(1 −Rk,j(λ))

Adcm(x) =χ(1520ρ,1570ρ)(x)P
(

50m +
1
3

(
x

ρ
− 1520

))

Sκ(x) =χI1(x)Adc(ρλ0,κ + x− ξ − o)

M+
γ (s) =χI3(s)F (X(x))

dΦ =

∑
s
w(s)

(
tan−1

(
Re(M(s))
Im(M(s))

)
− tan−1

(
Re(M(s+ 1

∆ ))
Im(M(s+ 1

∆ ))

))
∑
s
w(s)

ε =
1

ρΓλ0

(
∆dΦ
2π

− ξ − o

)
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Fig. 4. Stress–strain relation for the j = 2.5 channel.

Fig. 5. Cross-correlation coefficient from j = 1 to j = 2.

ordering was not considered important as the formula for the re-
flection spectrum was seen to be invariant under interchanging
of the gratings. Short lengths of cotton were threaded through
the splice protectors prior to heating to enable weights to be
attached. The gratings were loaded vertically with a 20-cent
coin (11.2 g) to provide enough weight to give stability. This
was considered to be the zero-strain condition. Interrogation of
the three gratings was carried out using a C-band tuneable laser
and a 3-dB coupler to measure the reflected spectrum.

Loading trials were performed by varying the load applied
to one of the gratings while the other two remained at the

Fig. 6. Cross-correlation coefficient from j = 2 to j = 1.

Fig. 7. Cross-correlation coefficient from j = 2 to j = 2.5.

zero-strain condition. The tests were performed for each of the
gratings being the load bearer. Five-cent coins (2.8 g) were used
as the weights for applying strain to the gratings.

Crosstalk trials were performed by varying the load applied
to one of the gratings while one of the other gratings was at
a fixed strain state, and the third was kept at the zero-strain
condition. The strain of the varying channel and the fixed state
channel was measured. The strain values applied were limited
to a small range where the spectrum of all the gratings would
be most strongly overlapping. This was done to characterize
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Fig. 8. Cross-correlation coefficient from j = 2.5 to j = 2.

Fig. 9. Cross-correlation coefficient from j = 2.5 to j = 2 with narrower
windowing in W∗.

the worst-case scenario with respect to crosstalk. Resultant
correlation coefficients were obtained using (2) for each strain
value of the fixed strain-state grating. The tests were repeated
so as to determine X1→2, X2→1, X2→2.5, and X2.5→2. To gain
a better understanding of the crosstalk, all of these results
were processed according to three cases: 1) standard process-
ing; 2) narrower windowing of data in W∗; and 3) narrower
windowing of data in W∗ and removal of the correction algo-
rithm for spectral shadowing.

Fig. 10. Cross-correlation coefficient from j = 1 to j = 2 with narrower
windowing in W∗.

Fig. 11. Cross-correlation coefficient from j = 1 to j = 2 with narrower
windowing in W∗ and without spectral-shadowing compensation.

In order to evaluate the error associated with each of the
above measurements, various loading configurations were se-
lected, and 25 measurements of the strain of all channels were
performed for each configuration over the same time frame as
that of the above tests. The standard deviation was taken and
the resultant configurational error lattice interpolated to give an
error value for each strain state measured in the above tests.

The results of the loading tests for the cases of grating j = 1,
2 and 2.5 being the grating under test are plotted in Figs. 2–4,
respectively. The correlation coefficient Xa→b as a function of
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Fig. 12. Trends in the b channel when calculating Xa→b for the two cases given in the legend.

the strain state τb is plotted in Figs. 5–8 for the cases of (a, b) =
(1, 2), (2, 1), (2, 2.5), and (2.5, 2), respectively. Fig. 9 shows
X2.5→2 using narrower windows in W∗ to process the data in
an attempt to reduce the crosstalk. Figs. 10 and 11 show X1→2

with and without the use of the correction algorithm for spectral
shadowing; both using narrower windows in W∗ for the data
processing.

IV. ANALYSIS

The values of Young’s modulus for the fibers based on
the loading tests on fibers j = 1, 2, and 2.5 were calculated
as 69.98 ± 0.27, 69.15 ± 0.81, and 70.65 ± 0.58 GPa, re-
spectively. These were found to be in good keeping with the
theoretical value of 70.3 GPa for fused silica.

In examining the crosstalk between the gratings, it must be
remembered that we are looking at a very small effect, and
as such, it is difficult to distinguish from the error involved
with making measurements. Furthermore, the error did not
seem to follow a normal distribution (i.e., for larger errors, the
probability of error did not drop off as rapidly as x−2), making
the standard deviation (a second-order moment) not the best
indicator of the expected amount of error. Where this was the
case, a lower order moment was chosen to more accurately
characterize the measurement error for the purpose of the error
calculations.

Nevertheless, the results showed a clear distinction between
the three cases of X1→2, X2→1, and X2→2.5 compared with that
of X2.5→2. For the case of the former three, in the main part,
any possible crosstalk was within error of being 0, whereas that
of the latter case showed a clear positively correlated monodi-
rectional crosstalk from grating j = 2.5 to grating j = 2.
There were a few cases where this was seen not to be the case

(particularly, some of those for X1→2), but the most prominent
of these cases show that they are dominated by one or more
of the spurious readings associated with the abovementioned
deviations from the normal distribution (an example of which
is shown in Fig. 12). Except for the measurement of 6.8 MPa
of stress applied to grating j = 2, the measurements of X2.5→2

showed a clear trend across τ2.5, giving rise to the calculated
value of the correlation coefficient (an example of which is also
found in Fig. 12). Averaging over all the measured configura-
tions gave 〈X2.5→2〉b = 0.23.

For the case of using a smaller range of data in W∗ for the
processing, the range used was slightly less than half of the full-
width range. This allowed for the windows from the j = 2 and
j = 2.5 gratings to be nonoverlapping, though there was still an
encroaching of spectra from each grating into the window of the
other. In this case, all of the calculated values of the correlation
coefficient came within error of equalling 0. This was most
evident for the case of X2.5→2. This confirmed the idea that
the origin of the crosstalk was from a mixing of the signals due
to overlapping of spectra in the Fourier domain. It also showed
that if the channel count was a crucial issue, it would be possible
to more densely multiplex the sensors beyond the traditional
j = 1 + n (where n is a natural number) to j = 1 + n/ε, such
that 1 ≤ ε ≤ 2 by using a smaller data range in W∗ to limit the
crosstalk down to a manageable value.

The use of, or removal of, correction for spectral shadowing,
i.e., the operator φ(•), had little effect on the final results. There
was found to be more anomalous errors generated when the
spectral-shadowing algorithm was removed. The rms values
of the correlation coefficients changed from 0.08, 0.05, 0.05,
and 0.12 to 0.12, 0.07, 0.08, and 0.11 with the removal of the
correction for spectral shadowing. As each of the gratings had
a low reflectivity (∼ 3.5 dB), the effect of spectral shadowing
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was not a crucial one, even when the gratings were completely
overlapped. This would change, however, if more sensors were
to be multiplexed within the one WDM window.

V. CONCLUSION

The proof of the principle of using carrier-modulated grat-
ings and harmonic analysis to decode the strain of each sensor
was demonstrated in the successful measurement of the strain
of three strongly overlapping gratings. The measured values of
the strain closely followed the actual values, which was seen in
the determination of Young’s modulus of the fibers as 69.98 ±
0.27, 69.15 ± 0.81, and 70.65 ± 0.58 GPa, compared with
the theoretical value of 70.3 GPa. An analysis of the crosstalk
involved in the system showed that between two gratings that
were nonoverlapping in the Fourier domain, the worst-case
scenario resulted in a value for the crosstalk that was within
measurement error of being 0. Crosstalk was shown to exist for
the case of two gratings that were overlapping in the Fourier
domain; however, it was shown that this could be reduced to a
manageable value by improving the processing techniques by
tightening the windowing in the Fourier domain to a region
where the degree of overlap is smaller.
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