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ABSTRACT

The Dirichlet boundary value problem is reformulated as a first kind integral equation
on the boundary by means of single layer and double layer potentials. A Galerkin boundary
element method is used to solve the integral equation numerically. The aim of the thesis

is to study the errors associated with approximation of the boundary.

If the trial functions are piecewise polynomials of degree at most (r — 1), and if an
exact parametric representation of the boundary is used, then the Galerkin error in the
energy norm is O (h”‘l/ 2). In 1977, Le Roux showed that this rate of convergence is
preserved when continuous piecewise polynomial interpolation of degree (p — 1) is used
to approximate the boundary, provided p > r + 1. We extend this result by allowing a
very general class of boundary approximations accurate “to order p”, that include, for

instance, piecewise rational approximations.

Under appropriate conditions, the convergence is of a higher order when the error is
measured in a more negative norm, resulting in a better error bound for the error in the
potential. In the best case, this super-convergence effect leads to O (h?*!) accuracy
if an exact parametric representation of the boundary is used. We consider the super-
convergence property for an approximation to the boundary of order p, and we show that

the O (h*"*1) rate of convergence is maintained, provided p > 2r + 1.

We confirm the theoretical results in numerical experiments with piecewise constant
(r = 1) trial functions, and with piecewise linear (p = 2) or piecewise quadratic (p = 3)
approximation to the boundary. We then carry out numerical studies of some problems
in which the boundary has a corner. A mesh grading is used to refine around the corner,
and a singularity subtraction method is used to weaken the singularity in the kernel of the

double layer potential operator occurring on the right-hand side.
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Chapter 1

INTRODUCTION



1.1 Brief Review

The theory and application of integral equations is an important subject within
applied mathematics. Integral equations are used as mathematical models for many
and varied physical and engineering situations, and also occur as reformulations of
other mathematical problems. A number of boundary value problems traditionally
cast as partial differential equations can be reformulated as boundary integral equa-
tions. Boundary element methods are a class of numerical techniques for solving
such integral equations. The literature is copious, such as Fichera [19], Hsiao and
MacCamy [20], Jaswon [27], Jaswon and Symm [28] and some others in recent years

[3, 7, 8,9, 30, 33, 43, 45, 49, 50]. |

Many natural problems arising from physics and engineering can be mathemati-
cally described by Laplace’s equation which is a basic model linear elliptic equation.

The Dirichlet boundary value problem of the Laplace equation is defined by

Ap =0 in Q, (1.1.1)
with the boundary condition

¢=g on T, (1.1.2)

where (2 is a bounded domain in R™ with boundary I'. The solution ¢ is often some

kind of potential function.

This Dirichlet boundary value problem can be reduced to a first kind integral
equation on the boundary by means of single layer and double layer potentials. In
the literature, the two standard approaches are known as the “direct” and “indirect”
methods. In the direct method, the solution of the integral equation has a direct

interpretation in terms of ¢, namely, the solution of the integral equation is the
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normal derivative of ¢ on the boundary. This approach is based on Green’s theorem
and yields an integral representation of ¢ in terms of both a single and a double layer
potential. In the indirect method, the solution of the boundary integral equation is
the ‘single-layer density’ as one seeks a representation of ¢ in the form of a single layer
potential alone. Details of mathematical formulations of boundary integral equations
for several of the most important linear elliptic boundary value problems can be found

by Jaswon and Symm [28], Kress [30] and Chen and Zhou [10].

Boundary element methods are various methods of discretization of the boundary
integral equations by finite elements on the boundary. Their main advantages are
that they reduce the computational dimension by one and give a simple discretization
of exterior problems. For the numerical analysis of boundary integral methods and
certain recent developments, we refer to, for example, [30, 38, 37, 39, 40, 46]. Also [43,
49] give an overview of the theory of strong ellipticity for pseudo-differential operators
as it applies to boundary integral equations. The survey of boundary integral equation

methods [3] lays particular stress on three dimensional problems.

A variety of numerical methods has been devised to find numerical solutions
of the boundary integral equations, such as the Galerkin method, the collocation
method and the qualocation method plus some of their modifications. Most theoret-
ical treatments of the boundary element method give great attention to the Galerkin
method. Very complete discussions of the Galerkin method exist, see, for example,
[21, 23, 39, 40, 44, 46, 48, 49]. The Galerkin method is the only one which is in
a reasonably satisfactory condition for a wide class of boundary integral equations.
The convergence of the Galerkin scheme is valid for a large class of boundary pseudo-
differential equations in any space dimension. Many papers discuss this method for

the first-kind boundary integral equations, such as [22, 24, 25, 41, 42].



In the computation of an approximate solution of a boundary integral equation,
it is often convenient to approximate the boundary of the domain, for instance using
an approximate parametric representation based on curved finite elements. In 1976,
Nedelec first analysed a construction of an approximate boundary I" in R3, see [36],
with the help of curvilinear triangles. Around the same time, Le Roux in [32] used arcs
of polynomial curves to interpolate boundaries in R2. The paper [4], given by Atkinson
in 1985, proposed a framework for the analysis of collocation methods using quadratic
isoparametric interpolation for second kind integral equations in three dimensions.
The main purpose of this thesis is to extend the theoretical results of [32] by allowing
more general types of boundary approximation and by considering super-convergence.
We remark that our technical formulation of the boundary approximation differs from
the one in [32] in the following sense. In [32], the approximate solution of the integral
equation is defined on the approximate boundary and is then mapped onto the exact
boundary. In the approach we use in this thesis, the approximate solution is thought

of as being defined directly on the real boundary. (See section 2.3).

Let I be the smooth boundary of a domain in R%2. We consider Symm’s first kind
integral equation

L [ 1og
2r Jp 7 [x -yl

u(y) doy = f(x), xel, (1.1.3)

where doy, is the element of arc length on I', and b is a constant. The boundary integral
equation (1.1.3) is equivalent to the Dirichlet problem (1.1.1) and (1.1.2). For the
indirect method, f = g; for the direct method, f = —% g+ Tg, where T is a certain
integral operator (see 2.1.8). We let u;, be an approximate solution generated by a
Galerkin method and u} be an approximation of w, involving the normal projection

onto the exact boundary; see (3.3.9).

We show that if the curved boundary is approximated “to order p”, and if the
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boundary element spaces are spaces of piecewise polynomials of order r (i.e., of degree

<r—1), then
lw — upllg-120y < C (Ifa = Bufllznsagey + B2 |l gocry + A7 |lul| arery)

where || - ||g+r) is the norm in the Sobolev space H*(T'), f, is an appropriate ap-
proximation to f, and the linear operator R; depends on the way I' is approximated,

see (4.1.1).
Thus, if p=r + 1 and provided ||fa — Ruf|| g2y = O (RP~/2), then
l|lu — U;;”H—m(r) =0 (hr+1/2) )

and as a consequence
llu — unl|wory = O (A7),
a result similar to that of Le Roux [32].
Under appropriate conditions, the convergence is of a higher order when the error

is measured in a more negative norm, resulting in a better error bound for the error

of the potential, i.e., the method has a super-convergence property. In fact,

lu — ufllg-r1qy < CH*2|| fo — Rufllmnsaeey + CH 2| |ull mogry

+Ch* lullgr ey + CRP|lull ey + 1fa — Rufllmoqry,

and as a consequence, for the solution of the Dirichlet problem (1.1.1) and (1.1.2) we

can achieve
¢(Z) _ ¢h(z) =0 (hmin(2'r+l,p)) ’ z € Q,

where the approximate potential ¢, is computed using uy, in place of u in the integral

representation for ¢.



Boundary integral equations for domains with corners or edges, and methods for
their approximate solution, have attracted more and more attention in recent years
both in the theoretical and practical aspects. Many mathematicians have obtained
satisfactory numerical results for problems on non-smooth boundaries using different
boundary element methods. Costabel and Stephan [12] established error estimates
for the Galerkin approximation of boundary integral equations on a polygon; Costa-
bel and Stephan [13] and Elschner and Graham [15] discuss collocation methods for
boundary integral equations on polygons; Elschner and Stephan [16] and Kress [31]
are devoted to the boundary integral equation on curves with corners by using a
discrete collocation and a Nystrom method respectively; Elschner and Graham [18]
treat quadrature methods; Elschner, Prossdorf and Sloan [17] deal with a qualocation
method on the non-smooth boundary; and Stephan and Wendland [45] is concerned

with mixed boundary value problems.

If the boundary is not smooth, then singularities in the solution u will generally
be produced at the corners so that the rate of convergence will be degraded when
a boundary element method is applied with a uniform mesh. In order to maintain
the order of convergence, the mesh should be refined around the corners. These
meshes are called graded meshes. Note that when the direct method is used in
the formulation of the boundary integral equation, fixed singularities arise in the
kernel of the double layer potential operator 7' which appears in the right-hand side
of the integral equation. In this thesis, we address this problem in our numerical
experiments. We use a singularity subtraction method that weakens the singularities

in the kernel of T, making the integrals easier to deal with.



1.2 Outline of the Thesis

This thesis is organised as follows.

In Chapter 2, we give an introduction to the direct boundary integral method
for the Dirichlet problem. We state existence and uniqueness results, and review the
classical error estimates of the Galerkin method, as well as describing in some detail

its practical implementation.

In Chapter 3, we introduce a general approximation scheme for curved boundaries
that includes as special cases piecewise polynomial or piecewise rational approxima-
tions. Under the boundary approximation, we study the error between the bilinear
form in the Galerkin equation and the approximate bilinear form in the perturbed
Galerkin equation, and show that this error is O(hP~!). After that, we adopt the

approach in [32] to show a sharper bound of O(h®) for a related quantity.

The main concerns in Chapter 4 are the theoretical analysis of the stability prop-
erty for the perturbed Galerkin method, the error estimates of the perturbed Galerkin
method in both the H~'/2 and H~"~! norms.

Chapter 5 discusses the implementation of the Galerkin method in more detail and
presents numerical results. Firstly we consider an integral equation with a smooth
boundary. Next we try an integral equation with a non-smooth boundary. We con-
sider the case when the boundary data g is the restriction to I' of a smooth function
on R?, as well as the case when g is singular. For each problem, we compare the
results for the exact boundary with those for piecewise linear and piecewise quadratic
approximation to the boundary. We always use piecewise constant trial functions in

the Galerkin procedure.



Finally, there is an appendix containing formulas for some integrals used in eval-

uating the stiffness matrix in Chapter 5.



Chapter 2

BOUNDARY ELEMENT
METHOD



2.1 Boundary Integral Equations

The solution of boundary value problems for many linear partial differential equa-

tions can be reduced to the application of boundary integral equations.

The reformulation of elliptic boundary value problems as boundary integral equa-
tion has been discussed by many mathematicians, such as [27, 28] for potential theory,
[29] for elasticity, [11] for the Helmholtz equation and [20, 26] concentrating on formu-
lations of integral equation of the first kind. The classical mathematical formulations

are studied thoroughly in [35].

In the classical method of I. Fredholm, layer potentials are used to reformulate
the Dirichlet and Neumann problems for the Laplace equation as Fredholm integral
equations of the second kind over the boundary. We will now give alternative re-
formulations of the Dirichlet problem which lead instead to Fredholm integral equa-
tions of the first kind over the boundary. This gives an emphasis to the relationship
between the Dirichlet bilinear form associated with the Laplace operator and the

bilinear form associated with the boundary integral operator.

Proofs of Theorems 2.1.1 - 2.1.5 can be found in the paper of Hsiao and Wendland

[21] for smooth curves, or Costabel [14] for Lipschitz curves.

Let Ot € R™ (n =2 or 3) be a bounded Lipschitz domain with boundary T, and
let 2~ be the complement of Q* U T in R, so that

R*=QtUTUQ" and Nt =T=00",

where the dot over U indicates a disjoint union. Denote by v the unit inward normal

to QF, let doy denote the element of arc length or the surface element on I'. If ¢ is a
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function defined on Qt U Q~, then ¢* denotes the one-sided trace of ¢ on I' from Q*.
All the Sobolev spaces involved in the following will be defined in Section 2.2.

Let A be the Laplacian operator, and suppose ¢ € H'(Q%) is the weak solution
of the Dirichlet problem

Ap =0 in QF, (2.1.1)
ot =g on I, (2.1.2)

i.e., ¢ satisfies the essential boundary condition (2.1.2) in the sense of traces, and

V- Vipdx =0 Vi € HY(QT)

O+

with ¥t =0 on I

[}

There is a standard method of reformulating the Dirichlet problem as a boundary

integral equation of the form

Au=f on TI. (2.1.3)

For all z € R™\ {0}, let K(z) be the fundamental solution of the Laplace equation,

ie.,
1 b
= —log — ifn=2
K(z) o log m ifn=2
or
11
K(z) ]2l ifn=3,

where b is an arbitrary constant. Observe that K is harmonic in R™\ {0}.

Remark: The scaling parameter b contained in the logarithmic kernel K (z) should

be chosen larger than cap(I') which is the logarithmic capacity (or transfinite diame-
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ter) of the boundary I'. The characterisation of logarithmic capacity is:

1
log —— doydoy. 2.14
Og cap( uGH 1/2(1‘)/‘\/ lx }’I ) (X) % Uy ( )

See [34], [41] or [47] for details of the role cap(T') plays.

The direct boundary integral formulation of the Dirichlet problem begins with the

following representation formula (third Green identity), for a proof, see Costabel [14].
Theorem 2.1.1 Let g € HY?(T). If ¢ € HY(QV) is the weak solution of (2.1.1) and
(2.1.2), then 8¢/0v € H~Y?(T') and

¢(x)=/rg( )—ai—yK(x y)doy — /6 ) K(x —y) doy, x € O,

where vy, is a unit inward normal to Ot at the point y € T.

Given a function u defined on I', the single layer potential Vu and the double layer

potential Wu are defined by

Vu(z) = [ K(z-y)u(y)doy, zeQtUQ, (2.1.5)
r
0 :
Wu(z) = / —K(z —y) u(y) doy, zeQtUQ. (2.1.6)
r al/y
Notice that
o 1 vy) (z—y) .
—K(z-y)= ——F——* fn=2
vy (z-y) 2r  |z—y|? =2
or
9 1 v(y)-(z—y) :
K = _—— f =
vy (2-y)= it |z—yP ifn =3,
where |z — y| is the Euclidean distance between z and y.
We then define the linear operators A and T by
Au= (Vu)*t = (Vu), (2.1.7)
Tu= Wu)t + Wu)~. (2.1.8)

12



It is not difficult to show that the single layer boundary integral operator A is

given by

(Au)(x /K x —y) u(y) doy, xeTl. (2.1.9)
Letting u = 1, from Theorem 2.1.1 we have
1 on QY
W1 = (2.1.10)
0 on )~
SO
w1t =1, (W1)” =0,
and from (2.1.8),
T1=1 (2.1.11)
For a continuous function u defined on I, it can be shown that
: 0
im [ uly) - u(Go] 5K (2 - y) doy
r Vy
Z — X
z € QF
0
= / [u(y) — u(x)] =—K(x —y) doy, z €T, (2.1.12)
r Ovy
and by (2.1.10),
+ - 2 K(z —y)day, € O,
Wu(z) = u(x) fr [u(y) = u(x) Ovy (2 = y)doy z (2.1.13)
Jo luly x)] By K(z —y)doy, ze Q.
Therefore, we have
+ 0
Wu)™(x) = u(x)+ [U(Y) — u(x)] —K (x —y) doy, x € I',(2.1.14)
(W)~ ( / fuy) — u(x)] —K(x y)do,, x €T (2.1.15)

13



By the definition of the linear operator T in (2.1.8), the double layer boundary integral

operator T can be written as
0
Tu(x) = u(x) + 2 /P[u(y) — u(x)] 67K(x —y)doy. (2.1.16)
y

Moreover, we have

1 ifxeQt,
0
/ 5;—K(x —y)doy = 1 ifx €T (and T is smooth), (2.1.17)
r+~%y
0 ifxe .

Thus, if I" is smooth in a neighbourhood of x then (T'u)(x) can be also written as

(Tw)(x) = 2 /F a%K(x — y)uly) doy, xeT.

With the above definitions of the single and double layer potentials, Costabel [14]
shows that the following mapping properties hold, even for a general Lipschitz do-

main Q1.

Theorem 2.1.2 The linear operators
V: H YY) — HY(QY),
wW: HY*T) — HY(QY),
A: HVXT) — HYA(T),

T: HY*T) — HY(T)

are continuous and bounded.

We denote the normal derivatives of a function ¢ by
¢\ ™"
T =, = (X
ot =v- (Vo) = (ay) :

The single and the double layer potentials have following main properties.

14



Theorem 2.1.3 Let Vu and Wu be the single and double layer potentials, respec-

tively, with density u.

i) If u e H-2(T), then Vu satisfies
(Vu)t — (Vu)~ = 0, (2.1.18)
Vo) — (Vu); = —u (2.1.19)
ii) Ifu e Hi(T), then Wu satisfies

(Wu)f — (Wu), = 0, (2.1.20)
Wu)t — (Wu)~ = u. (2.1.21)

The boundary integral equation (2.1.3) follows at once from the results in Theo-

rem 2.1.3.
Theorem 2.1.4 Let g € H3(T) and f = —1g+ 1Ty.

i) If¢ € H(Q") is the weak solution of (2.1.1) and (2.1.2), then the normal derivative
¢y €H =3(T") is a solution of the boundary integral equation

Aptr =f onl.

ii) Conversely, ifu € H‘%(P) is a solution of Au = f, then = Wg — Vu is a weak
solution of (2.1.1) and (2.1.2), and u = ¢;.

The solution technique based on Theorem 2.1.4 is called the direct boundary

integral method. Written out in full, the boundary integral equation Au = f is
/ K(x - y)uly) doy = / lo(y —K(x y) doy, xel, (21.22)
r

15



or

/PK(x —y)u(y)doy = —% g9(x) + /Fg(y) %K(x —y) doy, x eI (2.1.23)

We now define the bilinear form associated with the boundary integral operator A,
a(u,v) = (Au,v) = /r/rK(x —y)u(y) v(x) dox doy (2.1.24)
so that the weak form of the integral equation (2.1.3) is, if f € H/?(T),
a(u,v) = (f,v) for v € H-Y4(I), (2.1.25)
where the inner product is defined as
(v,w) = (v,w)e = /Fvwdax.

Recall from (2.1.4) that cap(I') denote the logarithmic capacity of I

Theorem 2.1.5 The formula (2.1.24) defines a bounded bilinear form
a: HVT) x HY* (') - R,
i.e., there is a constant C such that
la(u,v)| < C”U”H—lﬂ(r)||'U||H-1/2(1‘) Vu, v € H_1/2(F)-

Furthermore, if b >cap(T), then a is H~Y/?(T") — elliptic, i.e., there is a constant
v > 0 such that

a(u,u) > 'y||u||§{_l,2(r) Yue HV4T). (2.1.26)

The existence and uniqueness of a weak solution of Au = f is guaranteed by the
Riesz representation theorem [30, Theorem 4.8] applied to the space H~/?(T") and

the energy inner product a(u,v).
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Theorem (Riesz representation theorem) 2.1.6 Let H be a Hilbert space. Then
for each bounded linear functional F' : H — R there ezists a unique element u € H

such that for all v € H there holds

F(v) = (u,v).

It was proved in [21] that

Theorem 2.1.7 IfT" is C*, then
A H8_1/2(F) N H3+1/2(I'1)

is invertible for all s € R.

2.2 Boundary Element Spaces

For the remainder of this Chapter, we assume that the dimension n = 2, and that

the boundary I is a smooth, closed curve in R2.

Suppose that
F:R-T (2.2.1)

is a smooth, 1-periodic map that satisfies
[F'(r)] >C >0 for 0<7 <1, (2.2.2)
and gives I' a counterclockwise orientation. We choose points in the interval [0, 1],

O=7o<nn<:---<7Tn1<7Tn=1

17



Put

he = Tk — Ti—1,

and let

h = max hy.
1<k<N

For a uniform mesh, h = h;, for all k.

Under the parametric representation F of I', for any x € I, we have

x = F(7). (2.2.3)
The curve interval Ay is defined by
A =A{F(1) : %1 <7 < 7%}, k=1,...,N,
so that
[ =UY, A

In order to define the boundary interpolations we use in the next Chapter, we

introduce a specific mapping on the arc of boundary. We have, for each Ay,
mk:[O,l]—>Ak, k=1,...,N,
defined by

mg(s) = F[(1— 8)7k—1 + 87k
= Flre-1 + s(m — Tk-1)]

= F(Tk_l + Shk), ENS [O, 1] (224)

Let us introduce the definition of the Sobolev spaces H*(Q*) and H*(T). Detailed

studies of Sobolev spaces can be found in [1].

18



Suppose now that k > 1 is an integer. The Sobolev space H*(2*) will be defined

in the norm || - || gxq+), which is

||U||31k(n+): E ||D°‘u||%2(n+),

0<|a|<k
where D is viewed as a distribution on Q* and L?(Q2%) is the usual Lebesgue space

of square-integrable functions, with norm

sy = [ vida.
Ot

For an integer r > 0, the norm in the Sobolev space H"(I") is defined by
2
T = - F
ot =3 [ |(3) omen]

For s =7+ u, 0 < pu < 1, the norm in the Sobolev spaces H*(I") is defined by

(2.2.5)

lullZromy = llullfr@ + [(w o F)(TIL, (2.2.6)

2 )|2 /
[v]u = / / |e1,21r'r_e1,27r‘r’|1+2u dr dr

= Sl drdr’
|2$1n7r ’)|1+2“ '

The norm in the Sobolev space H~*(I") is defined by duality, i.e.,

u, ¢ 0
|| g-+qry = sup ——|< Jol .
ser(r) |0l zo(r)

Note that if s = 0, H°(T") coincides with L?(T"). Also,

where

(2.2.7)

H*(T) = {ul, : u € H*2(R?)} for s> 0.

In the approximation of a variational problem, we choose generally piecewise poly-

nomial functions which can form finite dimensional subspaces of a Sobolev space
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H*(T'). These subspaces are referred to as boundary element spaces, and within them
one seeks the approximate solutions of the integral equation. We define boundary

element spaces S;© C H*(I") as follows:

i) For r > e =0,

S ={u : for eachk, the function s+ |mj}(s)|u[m(s)]is a polynomial
of degree <r—1for0<s<1}.
ii) Forr > e =1,

St =5p°ne(r).

Here, C(T) is the space of continuous functions on T

One sees that,

1. A function v € S,:‘O need not be continuous at the mesh break-

points 7%, k= 1,..., N,
2. The functions in S;'* are continuous on T
3. If s < e+ 3, then Sp* C H*(T);

4. The dimension of S} is (r — e)N for e =0 or 1.

The following properties (see, for example [2]) will be frequently used in the error

estimates for the Galerkin method.

Definition 2.2.1 The mesh is said to be quasi-uniform if there exists C > 0 such

that

max he < kain h.
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Theorem 2.2.1 Suppose that the boundary I' is C".

i) (Approximation property) Let § < e+ 1/2 . There exists a family of approzi-
mation operators Py, : HP(T') — Sp°(T') such that if a < S <t <, then

lu — Poullge@) < Ch*%||u||yr for all w € HY(T). (2.2.8)
Thus,

inf ”’Uh - UHH"(F) S Cht_a”u”Ht(p) Yu € Ht(F) (229)
v €Sy ¢(T)

ii) (Inverse property) If the mesh is quasi-uniform, then for a <t <e+1/2, we

have

[oll ey < CR|lvll ey Vo € 5,°. (2.2.10)

Remark: Throughout all the following, C' denotes a generic constant which can

take different values at different occurrences.

2.3 The Galerkin Method

Using S;® ¢ H™Y/?(T) as the boundary element space, the Galerkin method for

the integral equation Au = f is : find an approximate solution u, € S;® such that
a(un,vn) = (f,vn) Yo, € Sp°. (2.3.1)
The equation (2.3.1) is called the Galerkin equation.
For any k,l = 1,...,N, put x = my(t) € A, and y = mg(s) € A, where
0 < s,t < 1. This parametric representation leads to the formula (recall n = 2)
a(up, vp)
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// <|x y|) n(y) vn(x) doy day

ZZ / / 1"g(|m,c m,(t)|) un [0 (5)] wa oy (¢)] [my ()] [my(2)| ds dt.

klll

Let us choose a basis {P;...., P.} for the space of polynomials of degree < r —1,

and write then u, and v, as

up[my(s)] Z ki ’, k=1,...,N, (2.3.2)
m,

my(s)|
op[my(2)] = ZV,~| (()) =1,...,N (2.3.3)

I )
for 0 < s<1, 0<t<1. Expressing the bilinear form in terms of coefficients in the

expansions (2.3.2) and (2.3.3), we have

a(un,vn)
RN Ui o8 { ) ZU,” S iy B(t)| dsdt
k=1 i=1 k(s j=1
N Uk,
= Z Z[‘/l,h ceey ‘/l,r] A(k’l)
k=1 I=1
Uk,'r
N N
=3 Y VO AEIU®,
k=1 I=1
where
U(k) = [Uk,l’ ey Uk,T]T )
VO =WV, ..., Vi,
and
kD) _ [, z)] _
A [ ay kil=1,...,N (2.3.4)
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is the r X r element stiffness matrix for A, x 4\; whose entries are

az(;c,l) — 517; /01 /01 log <|mk(3) Ii mz(t)|) P;(s)P;(t) ds dt. (2.3.5)

For the case e = 0, the trial function u, € S,TL’0 may be discontinuous at the
breakpoints 7, k = 1,..., N. There are Nr unknowns Uy; and N? element stiff-
ness matrices, each 7 X r, that combine to yield an (N7) x (Nr) system of linear

equations AU = F, where A, F and U will be constructed below.

Let A®D be the unique Nr x Nr matrix such that
VOT gDk = vTARDY, kl=1,....N
for any

T
U= [Ul,la"'aUl,'l‘7U2,1)"'aU2,ra'-'7UN,17-"1UN,'I‘] )

T
V= Vit Vi Vase o Voo oo, Vit oo Vil

For example: If e = 0,7 = 2, N = 3, then A®} € R%6 is a 6 x 6 matrix, containing
2 X 2 element stiffness matrix A®Y. Writing a;; = agc’l), we illustrate A®D and A®D

in Table 2.1.

The right-hand side of equation (2.3.1) can be written

<f7 Uh) = /1_‘ f(X) Uh(x) dax

> [ (o] onlm (o) (0] de
1=1 V0

N
= Z[W,la s ‘/l,r] F(l)
=1
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ALY —

[ ann a2
a1 G2
0 O
0 O
0 O

I 0 O

A1) —

[0 0
0 O
a; a2
a1 Q22
0 O

I 0 O

ABGYD —

[ 0 O
0 O
0 O
0 O
a;l G2

| @21 022

o O o o o o o O O

o O O

0
0

o o o o o o o o o o o o

o O O o o o

o O O o o o

S O O o o ©Oo

o O O o o o

0 0 0 an, a;z 0 0 0 0
0 0 0 ag az 0 0 0 0
0 00 0 0 00 00
0 00 0 0 00 00
0 00 0 0 00 00
o] o000 0o o0o0f |00

A2 — A23)
o] [oo o o0 o00] [oo
0 00 0 0 00 0 0
0 0 0 a;; a2 0 O 00
0 0 0 a;; a;2 0 O 00
0 00 0 0 00 00
o] {000 000 oo

AG2 — AB3) —
o] oo o o o00] [oo
0 00 0 0 00 00
0 00 0 0 00 0 0
0 00 0 0 00 00
0 00 an, a;z 0 0 00
O_ _OOau a1200_ _OO

Table 2.1: Case of e=0,7r =2 and N = 3.
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The vector F) = [Fg-l)] eie € R" is called the element load vector for A\;, where
<j<r

1
FO = / Flmu()] P;(0)dt, i=1,....m
0

Define
ma(s) = [mi(s)| vimi(s)] = [=(mi)a(s), (mii(s)],
where v[my(s)] is the inward unit normal via the counter-clockwise orientation of the

curve. If f is the right hand side from (2.1.22) then we have

flm()] = ot Z/ () [ml(ltr)l Ok 00(5)] (9(my(s)] — g[my(2)]) ‘m;c(s)‘ ds

|my(s)

N

_ 1 /0 n(s) - [my(t) — my(s)] (g[mg(s)] — g[my(2)]) ds,

om 2 Jo T Imi(s) - mu(D)P

or if f is from (2.1.23) then
flan(®)] = 3 glan(o)
2, s

Similarly, let F®) be the unique vector in R¥" such that
VOTFO = VTEFO, l=1,...,N

for

= [‘/1,17"',‘/1,1‘"/2,17'",‘/2,7'""’VN,1>'"’VN,T]'

Synthesising the expressions above,

N N
— Z VOT gt gk = Z vOT O



N N N
= VIS ARy VT Y RO
=1

k=1 l=1
<= VTAU = VTF,

where

T
M=

> AkD (2.3.6)

11=1

L
I

is an Nr x Nr matrix, and

|

=> FO (2.3.7)

=1
is a vector in RN,

We call A the global stiffness matrix for I', and F the global load vector for T'.

Thus, we conclude that the Galerkin equation (2.3.1) holds for all v, € S,:’O if and
only if
VIAU=VTF for all V € RM",
or equivalently
AU =F. (2.3.8)
That is, finding up, reduces to seeking Uy ; for k =1,...,Nandi=1,...,r by solving

the system of linear equations (2.3.8).

We now consider the case e = 1, in which a function u, € S,:’l is continuous at
the breakpoints 7 (k =1,...,N). Let {P;}, i = 1,...,r, be a basis of the space of

polynomials of degree < r — 1 satisfying

0 1<i<r-—1,

F(1) =

1 i=r,

0 2<i<,
F(0) =

1 i=1



From the parametric representation (2.2.4), we have

my(s) = heF' (161 + shy), s €[0,1].

Moreover,

m(1) = hF'(7%),

m;c+1(0) = he1F' (7).

From expression (2.3.2), we obtain

uh[mk(l)] = T
urmg1(0)] = ——=o

Similarly for vs[my(1)] and v, [my44(0)].

Assuming the function uy is continuous at 7,

uh[mk(l)] = uh[mk+1(0)], 1 S k S N — 1,

up[my(1)] = up[m;(0)],
with

Urr = agUksr,, 1<k N-1,

)

Unr = anUp,

)

where
_ Imi ()
|m;c+1(0)|

and ay =
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In this case, we take for the solution vector U € RN(r—1)
U= [Ul,la U1,2a ) Ul,r—17 U2,17 ceey U2,1‘—1a teey UN,11 RN UN,T—I]T

which satisfies an N(r — 1) x N(r — 1) system of linear equations AU = F.
We now construct the matrix A and right-hand side F.

If1<j<N-1,let

1
Ujp = Ur-1)-G-2), Uj2 = Ur-1)-(-3), ---» o Uir = U1 = Uje-n+1,

j
(2.3.14)
and if j = N, let

1
Uni =Urn-1)-(v-2), Un2=Urn-1)-(n-3), ---, JUN,T =U1=U1. (23.15)

By applying (2.3.14) and (2.3.15), the left-hand side of the Galerkin equation has the

following expression,

Uk1

N N Uk2

alun,vn) = D [Vir,Via,-.., i ] A®D | 7
k=1 l=1

Uk,r

Ur(k-1)-(k-2)

Urk-1)-(k-3
[Ve-1)-a-2)» Ve-1)-a=3), - - - » aVir—1)41] A®D ) *=9)

M=
M =

>
Il
—_
-~
I
—

| Ukr-1)41

i -
Ur(k-1)-(k-2)

Urk-1)-(k-3)

I
M=

Z[Vr(z_l)—(z—m, Vi(t=1)=(=3);s - - - » Vir—1)41] A®Y

=1

>
Il

1

-~

Uk(r-1)+1
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N N
= 33 VO ARy,
k=1 i=1
provided
T
U® = [Ur(k-1)—(k—2),Ur(k-1)-(k—3),---,Uk(r—1)+1] ,
T
VO = [Vig-1--2), Vra-1=t=3)» - - -» Vir=1)+1) »
and

A®D — pg ARD A = [dk,l

“ ]19',1‘9

1<k, I<N,

where A®Y is defined by (2.3.4), and M is the r x r matrix

B T
1 0 - 0
01 0
M =
o0 --- akj

Let Akl ¢ RN(r—1D)xN(r=1) 1 the unique matrix such that
VOT Jk) gk = vT A*D U, kil=1,...,N

for any

U= [Ul'; U2, ey UN(T—I)—I, UN(T—l)]T7
VT =V, Vay..., Vngr—1)=1, Vner—1))-
We give an example of such matrix to assist with understanding of the above.

For example: we assume e = 1,7 = 3, N = 3, then A®? is a 6 x 6 matrix. Writing

di; = 43", the form of the matrix A®? is shown in Table 2.2.
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ALY = A1 = ALY =

[ an a2z a3 0 0 0 1 [oo ann Gz a3 0 1 [ a13
dg1 G2 Go3 0 0 O 0 0 d dg a2 O a3
G3; Gz azz3 0 0 O 0 0 a3 asz as O a33

0O 0 O O0O0O 00 0 O 0 O 0
0O 0 0 O0O0O 00 0 O 0 O 0
i 0O 0 0 00O 11 00 0 O o0 O 1 1 0
A(2,1) — A(2,2) — A(2,3) —
(0 0 o0o0o00] [oo o o ool [o
0 0 O O0O0O 00 0 O 0 O 0
ain Gz a3 0 0 0 0 0 ann arz a3 O a3
@g1 Gz dg3 0 0 O 0 0 dg1 dge dg3 O as3
as1 Gz azgz 0 0 0 0 0 as1 a3 dsz 0 as3

i 0 0 O O0O0O I 00 0 O 0 O I 0

QG = A2 = AG3) —

[ a1 Gz axs 0 0 0 1 [oo as1 Gz asz 0 11 as3

0O 0 0 00O 00 0 O o0 O 0
0 0 O O0O0O 00 0 0 o0 O 0
0 0 0 O0O0O 00 0 O 0 O 0
ann Gz a3 0 0 0 0 0 an a2 a3z 0 a3
| Gz Qg G3 0 0 0| |0 0 Gy Gy azs 0| | Qg3

Table 2.2: Case of e=1,r =3 and N = 3.
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Reconsidering the right-hand side of the Galerkin equation (2.3.1), we have

N
(fyon) = Z[Vl,l, Vig, .-+, Vi, FO
=1

N
E[Vr(z—n—(z—z), Vi1)==3)s - - - » Vig—1)41] FO,
I=1

where

FO = M FO,

Let F® be the unique vector in RN"=1 such that

(f, vn) ZV(”T =T Z FO

for

T= [‘/la ‘/2, ) VN(T—I)—la VN('r—l)]'

Therefore, the Galerkin equation is

Z Z A(k 1) U=vVT Z F(l) for all V € RN(T—I)’

k=1 I=1

or equivalently

where

N N
A= ZZA(IN)

k=

-
-~
I

—

is a matrix in RN —DxN(=1) "anq

N
=1

is a vector in RN(-1),
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2.4 Error Estimates of the Galerkin Method

It follows from Theorem 2.1.7 that the single layer operator
A : HY>T) — HY?) is invertible. A well known argument shows
that the Galerkin method achieves optimal rates of convergence in the energy

space H-1/2(T).

Theorem (Céa’s Lemma) 2.4.1 Let a be the bilinear form (2.1.24), and let
f € HY*(T). Then the Galerkin equation (2.3.1) has a unique solution u, € S}.°,
and
||uh - u||H_1/z(I=) S C inf” ”’Uh - ’U,”H—l/z(r-). (241)
vLESY
Ifu e H™(T), then
lun = wll2vary < CH2 ey (242)

Proof. We obtain a(up — u,up — vp) = 0 by the Galerkin equation, then from a
being H~Y/2(T")-elliptic,

Cllun — u||f{_1,2(r) < a(up —u,up —u)

= a(up —u,vp —u) + a(up — u, up — Va) Yo, € Sp°

a(up — u, vy — u)

< Cllun — ull g-r2qyllvn — ull g-172¢ry, by Theorem 2.1.5
and cancelling ||up — u||gr-1/2(r) on both sides, we obtain
lun — ullg-12ry < Cllvw — ullg-12(r) Yo, € Sp°,
hence

llun — ullg-1/2(ry < thei;'l?fe(r) llvn — wll -172(ry,
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which is (2.4.1). Moreover, by the approximation property in Theorem 2.2.1,
||uh - U”H—l/z(r) S Chr+1/2||’u”Hr(p) for u (S HT(F) (243)

O

Furthermore, if the error is measured in a more negative norm then the order of
convergence of the Galerkin method can be even better than we obtain in (2.4.2).
The best result in the H~""!(T") norm is in following theorem. This super-convergence

property of the boundary integral equation was first obtained in [23].

Theorem 2.4.2 Let A be the single layer operator given by (2.1.9), and assume
u € H™(T'). Then the Galerkin method with boundary element spaces S;¢ has the

following super-convergence property:

Jun = wlli=r-1ry < CH* ]| ey (2.4.4)

Proof. The result will be obtained by a duality argument known as “Nitsche’s

trick”.
Let ¢ € H™*!(T') and let v € H™(T') be the unique solution of
Av = ¢.
We have, from Theorem 2.1.7,
vl -0y < CllBllar+1(ry- (2.4.5)
By the dual definition of ||up — u||g-r-1(r), (see (2.2.7)) and because

a(up —u,vn) = alun,vn) — a(u,v)

= (f,un) — (f,un) =0 for all v, € Sp°
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we obtain

lun — wllg-r-1ry = sup [{un = u, d)ol
serr+r)  |Ollar+(m)
a(up — u,v)
= sup ————
gerr+iry ||@llEr+1()

a(up — u, v —vp)

=  sup
sear+1r)y  |BllEr+1(m)

v — |-
< lun — ullg-12qry  sup | wlle 1/2(1*), by Theorem 2.1.5.
¢

ey Pl
From the approximation property (2.2.9) and the error bound (2.4.2), we obtain

Ch Y2 vl (ry

||uh - u”H—r—l(r') S Chr+l/2”u”Hr(p) sup , (2.4.6)
¢€HT+1(T) @Ml zr+1(ry
and so by (2.4.5),
lun = ull-r-100) < CR* |l iy, u € H'(T).
O
Corollary 2.4.1 If the mesh is quasi-uniform, then
l[un — ull2@ry < CH||ullar(ny.- (2.4.7)

Proof. If v, € S;°(T'), then by the inverse property (Theorem 2.2.1 (ii)) we have

lun —ullzqry < llun = vallz2@) + lvn — vl L2
< Ch™Y2|lup — vnllg-1r2(ry + llvn — ull L2y
< ChY(|lup - ull gr-172(ry + |u = all gr-172(ry) + llvn — ull2(r
< O ||ullar@y + C(h™?|lvn — ull g-1r2(ry + lon — wllL2ry)-
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By choosing v, = P,u where P, is the approximation operator of Theorem 2.2.1 (i),
we have

h™2lon — ull g-12qry + llvw — ullzay < CAT|lulla-(ry (2.4.8)

giving the desired bound. 0O
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Chapter 3

PERTURBATION OF THE
BILINEAR FORM
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3.1 The Perturbed Bilinear Form a

We consider the Galerkin boundary element method (2.3.1) for a smooth curved

boundary I', but now use an approximate parametric representation of I'.

As we know, the boundary I is a union of the arcs Ay, k= 1,..., N. A mapping
my : [O, 1] — Ak
is defined by (2.2.4), for each boundary element A\.

In the implementation of the Galerkin method, it is necessary to compute the

stiffness matrix A®H for A, x A;, whose entries are

1,1
®ky 1 / / ( b ) .
a;;"’ = — lo P;(s) P;(t) ds dt, i,j=1,...,r,
1] 27!' 0 0 g Imk(s)_ml(t)l () J() .7

(3.1.1)

see (2.3.4) and (2.3.5).

In a practical implementation of such a method, it will usually be convenient to
approximate any curved boundaries using, for instance, some kind of piecewise poly-
nomial or piecewise rational function. Thus, we try to replace the exact stiffness

matrix A®) by a perturbed matrix A®) = [ag’?”)] with entries
1<i,j<r

1 pl
Skt _ 1 // ( b ) o
a;; = — lo —~ — P;(s) P;(t) ds dt, i,7=1,...,r,
J 2 Jo Jo & |y (s) — iy (t)| (s) P5(2) J : )
3.1.2

where my(s) ~ my(s) for0< s<land 1<k <N.
The arc A\, is approximated by an arc Ay, which is formed by a smooth map
my : [0,1] — Ay, k=1,...,N. (3.1.3)
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Our purpose is to make the approximation m,; =~ m; sufficiently accurate so that
the convergence rates presented in Theorem 2.4.1 and Theorem 2.4.2 are maintained.
This approximation of my affects the Galerkin equation via the entries of the stiffness

matrix on Ay X /4\;, and the components of the load vector on A,.

On the left-hand side of the integral equation (2.1.22) or (2.1.23), the weakly

singular kernel K is approximated by the kernel K}, defined as follows:
Kh(xa Y) = K(i - S’)a
where

X = ml(t) € A\, X = ﬁll(t) € A, (314)

y = my(s) € Ay, ¥ =ny(s) € L. (3.1.5)

For 0 < s,t < 1 and u,v € H~Y?(T"), a perturbed bilinear form aj is defined as
(cf. (2.1.24))

ap(u,v

)
= /1‘ A Kn(x,y) u(y) v(x) dox doy

lé /01 /01 K1y (t) — g (s)] ufmy(s)] v[my(t)] ’m;(t)‘ (m;(s)| ds dt.
(3.1.6)

k=

Hence the perturbed weak formulation of the integral equation (2.1.3) is, (cf. (2.1.25))
an(u,v) = (fr,v) Yv € H-Y2(I). (3.1.7)
We assume that f, ~ f, that is, f, is a suitable approximation to f. The precise

definition of f, will be given later.
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The trial space S} in the perturbed Galerkin method is the same as before, in the
classical Galerkin method. Thus, the perturbed form of the Galerkin equation (2.3.1),

for up, € S°, is given by the expression:
ah(uh,vh) = <fh,>'Uh> Y, € S;’e. (318)
The left-hand side of the perturbed Galerkin equation is given explicitly by

ap (uh, ’Uh)

= [ [ Kty un(3) 1) do o
= ZZ/ / K [1iy(t) — 1t (s)] un[mg(s)] va[my(t)] 'mz(t)l lm}c(s)’ dsdt,

k=1 l=1
(3.1.9)
and from (2.3.2) and (2.3.3),
up[my(s)] = ZU,” (( ))| k=1,...,N, (3.1.10)
i=1 k
op [y (¢ ]_ZV,, |m )I’ l=1,...,N (3.1.11)
l

for0<s<1 0<t<1landij=1,...,r Substituting the expansions of u; and

vp, in (3.1.10) and (3.1.11), respectively, into (3.1.9), we have, in the two dimensional

o 01 _%iiZZU ”//l°g(lmks) ) OB dsde

which gives the formula (3.1.2) for the entries of the perturbed element stiffness

matrix A%D,
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3.2 An Estimate for a;, —a

We shall consider approximate local parametric representations of I' satisfying

the following conditions.
Definition 3.2.1 The approzimation my(s) =~ my(s) is accurate to order p > 2, if

1. For0<s<1land0<j<2,
m(s) — Y (s)| < Ch? < CR?, (3.2.1)
where C' is independent of s, k, and h.
2. The endpoints of Ay and A\ coincide:

Ii’lk(O) = mk(O) = F(Tk—l)a
my (1) = mg(1) = F(7y).

Lemma 3.2.1 Ifk=1,...,N and0 < s< 1, then

’mg)(s)‘ =0 (W) for 0 < j. (3.2.2)

Proof. Recalling that mg(s) is defined in (2.2.4) by
mk(s) = F(Tk_l + Shk),
we have, by the chain rule,

mfcj)(s) = h‘zF(j)(Tk_l'FShk)

= O(W). (3.2.3)
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Lemma 3.2.2 If my is an O(hP) approzimation to my, then
[ (s)| = 0 (W) (3.2.4)

for0<s<1land 0<j5<2.

Proof. By the triangle inequality and Definition 3.2.1,
|| 29 (s)] — m( |I < ‘mu) s) — mg)(s)‘ < CH,
hence, by Lemma 3.2.1,

|m§g‘>(s)] < Ch”+’m§cj)(s)l

= 0(W).

For polynomial interpolation, we have the following result from [32]:

Theorem 3.2.1 IfT is CP*? and if my(s) is the unique polynomial of order p that

interpolates my(s) at sq,...,8p, for 0 =15, < s <---< s, =1, then
m(s) — mY(s)| < Ch? (3.2.5)

for 0<j<q¢g<pand0<s<1.

Proof. The error term in the polynomial interpolant can be written as

my(s) — thy(s) = my [s1, 52, .., 5p, 8] [ [ (5 — sn),

41



where my [s1, 2, - . -, Sp, 8] denotes the vector divided difference which we can define

componentwise. Thus, by Lemma 3.2.1, and for j =0,1,...,q,

—a(s)|
(4)

)
_ (%) . [mk [31,32,...,3,,,3]}];’[1(3—871)}‘

J 1 (5-1) G) P
J 0 o
- 2| (‘a—s) my 51,83, .-, Sp, 3] (53—> L[l(s — 5,)

i=0 ?

‘mfcj) s

J

J 9\ U9
- CZ; i (%) My [$1,2, - 8, 5]
J . o
’ G — 9t (p+35—i)
< C Y A2 tl
- ; . g — 0o ™ (t)

J
< C) neH-
i=0

Ch?.

IA

We give two simple examples that satisfy the Definition 3.2.1.

Example 1: The simplest scheme is linear interpolation, for which p = 2. In this

case

mi(s) = (1—s)mg(0)+ smg(1)
= (1-5)F(1k-1) +sF(m) for s € [0, 1].

Example 2: To achieve order p = 3, we can use piecewise quadratic interpolation
my(s) = (1 — s) mg(0) + smg(l) + as (1l —s), 0<s<1,
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choosing a so that

(- ()

(Thus, in the notation of Theorem 3.2.1, we have s; = 0, s = -;—, s3=1.)

Since
1 1 1
k (5) = 5 mk(O) + §mk(1) + = Q,
we see that
1
a = —2m(0) + 4my (§> — 2myg(1)

o [F (7e_) — 2F (Tk_l + %hk) + F(res + hk)]

_ " 1 @ 2 4
= 2F" | 71 + 5 h 2 +0 (hk) .

Thus, we can interpret the term as(l — s) as an O (h?) correction to the linear

interpolant.

In what follows we will often use the Taylor expansion with the Integral Remain-

der,

. 1 s _
(s‘t’”a/t fOE) (s —eptde,  t<é<s.

Next, we estimate the error between the bilinear form a(up,vs) in the Galerkin
equation (2.3.1) and the bilinear form ap(up,vs) in the perturbed Galerkin equa-

tion (3.1.8). That is, we estimate the difference
a(un, vn) — an(un, vh)
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/p/ [K(x —y) — Ki(%,¥)] un(y) vn(x) dox doy

_ i fj [ (o) - muo) - K ) — (o)
wun[me(s)] v [mu ()] ‘m;(t)' .m;c(s)‘ ds dt. (3.2.7)

In bounding this error, the crucial step is to investigate the error between the

logarithmic kernel and perturbed logarithmic kernel.

Lemma 3.2.3 For a,b € R? with b # 0, if

|a—bj
|b|

<1
2’

then

log M

|a—b]
<2———.
b

<2 (3.2.8)

Proof. By the triangle inequality
|b| — Ja—b| < a| < |b|+|a— b,
le)

la—b| _ |a] |a—b]
- S S1+ :
b b L

/Ial/lbl dt
1 t
[al/[b]
[

1

|a — b|/[b| |a— b
<2
1—]a—b|/[b] =" [|b]

1

and hence

a
log H

1

1 _ a——b|
bl

IA




Lemma 3.2.4 If my is an O(hP) order of approzimation to my, then

|K(x —y) — Kp(x,y)| < Ch?™! for x,y €T. (3.2.9)

Proof. With the notation of (3.1.4) and (3.1.5), let

A= lOg IX — Y| ,
Ix -yl
and consider separately three cases.
Case 1: £ = [, so that x and y are in the same boundary element 4. By

Lemma 3.2.3 witha=Xx—-yand b=x -y,
|a|

la— b
=<
o8 15| = ¢

A= (3.2.10)

By applying the Taylor’s Theorem (3.2.6),

la—b| = |[mk(s)— mk(t)] — [my(s) — mg(t)]|

(s—1) [ i+ e(s — 0] de — (s —1) / m@[t+5(s—t>]d§{

(s—1) / [ [t + £(s — £)] — mift + £(s — )] df’,

so according to Definition 3.2.1,
Ia_ bl < Ch’z IS - t|,
and since my(s) = F(7x—1 + shy), the assumption (2.2.2) implies that
Ibl = |F(Tk_1 + Shk) - F(Tk_l + thk)l
= l [F(Tk_l) + FI(Tk_l)Shk + O ((S - t)zhz)]
— [F(Tk_l) + F'(15—1)thy + O ((s - t)2hi)] |

= |F'(ne-1)(s — t)he| [L+ O(|s — t|hx)]

CIS - t|hk.

v
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Hence,

|S tl hk < ChP~ 1

A<C'——
T |s—t|he T

Case 2: | = k+ 1, so that x and y are in neighbouring boundary elements.

Thus, by condition 2. in Definition 3.2.1,

la—b| = [m(s) — My1(t) — m(s) + mepa ()]
= |[x(s) — rie(1)] — [M41(2) — e11(0)]

—[my(s) — my(1)] + (0441 (2) — M2 (0)]]

1
< (o= 1) [ il + €5 — 1)) — mif1 + €(s - 1))
' / mk+1 (tn) — m;c“(tn)] dn
< ChP(1—3s)+ChPt
< Ch(1-s+1),
and
|b] = |my(s) — my4(t)]
T +thi41
= F'(r)dr
k= (1—8)hi
Tr+the41
= [ P +owmar
Tk—(1—8)hi
> C [thk+1 + (1 - S)hk]
> Chp(1—s+1). (3.2.11)
We therefore obtain,
A< ChPL.

The next case is a general one.
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Case 3: When x and y are in the different boundary elements with |k — | > 2, that

means [mg(s) — my(t)| > Ch, so

|al
A = |log—
|b|
< C |iiy(s) — mk(sn}j iy (t) — my(2)| < Ch-t.
The Lemma is now proved. m]

The error estimate |a — ap| follows from Lemma 3.2.4.

Theorem 3.2.2 If the approzimation My (s) =~ my(s) is accurate to order p, then

la(un, vn) — an(un, va)| < CRP~Y |unlo lunllo Vup, v € Sy°. (3.2.12)

Proof. From the expression (3.2.7) and Lemma 3.2.4, we have

|a(un, vn) — an(un, vs)|

N N
< vt Y /A ], ) va ) doredoy

k=1 I=1

N N

< Ch! Z/ |uh(y)|day2/ |vn(x)| dox
k=1"Y Ok 1=1 Y&

_ cwpl / lun(y)| do, / lon ()] dory
r r

< CR*7luallo l|vnllo-
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3.3 A Sharper Estimate of the Bilinear Form

It turns out that in a certain sense, the estimate (3.2.12) can be improved upon

using a trick from Le Roux [32] and Nedelec [36].

We remark that our technical formulation of the boundary approximation differs
from the one in [32] in the following sense. In [32], the approximate solution of the
integral equation is defined on the approximate boundary and is then mapped onto
the exact boundary. In the approach we use in this thesis, the approximate solution

is thought of as being defined directly on the real boundary.

We shall estimate a (u},, v}) —an(un, vs) for a special choice of u;, ~ up, and v;, = vp,.

In this way, we shall obtain a better bound than the one in Theorem 3.2.2.

Define a neighbourhood of T,
N5 ={z € R?: dist (z,T) < 6}.

Assuming I' is C* and § is sufficiently small, there exists for each z € Ns a unique
point ¥(z) € T satisfying

— ¥(z)| = min|z - y.
|z — ¥(z)| = min |z — y|

For each k, if the curve A is contained in Njs, then ¥ determines a smooth diffeo-

morphism of Ay onto Ak, and given a point
y = myg(s) € Ay,
we write
y =my(s) € O and y* = V(y) = my(s*) € A

(Remember that, by assumption, Ay and Ay have the same end-points.)
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In this way, we obtain a smooth bijection
gk : [0,1] — [0,1]

given by
gk(s) = s for0<s<1.

Moreover, the line § — ¥(¥) is orthogonal to the tangent to I at ¥(¥), so

my(s*) - [my(s*) — mg(s)] = 0. (3.3.1)

Lemma 3.3.1 The norm of the first derivative of my, satisfies the lower bound
|mj}(s)| > Chy for 0<s<1,
and if my; = my to order p > 2, then for hy sufficiently small,
|my(s)| > Chy.

Proof. The lower bound for |mj| follows at once from (2.2.2) and (3.2.3). Next,
by (3.2.1),

[ (s)| = [mi(s) + 1 (s) — my(s)|
> |my(s)| — [mi(s) — mi(s)|
> Chy — Chi
> Chy.

Lemma 3.3.2 If m; is an O(hP) order of approzimation to my, for s € [0,1], we

have

s*—s=0(h"1). (3.3.2)



Moreover, if t € [0,1] such that t # s, then

|s* — t*|
|s — |

=1+0(h*™).

Proof. Using Taylor approximation and Lemma 3.2.2,

mj(s”) - [my(s*) — mig(s)]

= my(s*) - [mg(s™) — my(s")] + my(s*) - [Mg(s™) — my(s)]

= O(h)- O (k) + mi(s")- {(s* —9) [ ls+ n(s - o)) dn

= O (P"™) + In(s,s*) (s* — 5),
where |I;(s,s*)| > Ch?, by Lemma 3.3.1. Since
m;(s*) - [my(s™) — mh(s)] = 0,

we deduce that

(3.3.3)

(3.3.4)

* Y (hp+l) p—1
S — 8= m =0 (h ) .
Moreover, by the Mean Value Theorem, from |s* — t*| = |gk(s) — gx(¢)| we have
|3* - t*l o
Is _ tl - gk(g)

for some £ between s and ¢t. Let
D(s, ") = my(s") - [my(s”) — my(s)]

so that (3.3.1) is
Pls, gk(s)] =0,

giving
o 0 ,
s [s, gk ()] + 95 [s, gx(8)] gk(s) = 0,

and hence
vy 02/0s]s, gi(s)]
9k(s) = ——3@/63* [s, gk(5)]

30

for % [, g (s)] # 0.

(3.3.5)



From (3.3.5), we have

~S o] = mi(s") (o)

= (s [ (57) — ()] + (")
= i (s") D) — 1 (5"
- (5°) - D) — 10 (5] + 57
= 0 w)+00) - [(6" =) [ s+l = o) dn] + (o))
= O () +O) (5" — 5) + i (s
= |my(s* | [1+ 0 (RP7!) + O(R) (s* — 3)]
= |mj(s")? [1+0O (R™") + O(h- h*71)] by (3.3.4)
= Imi(s)F 1+ 0 (W],

and
a—q)[s gk(s)] = mi(s")- [my(s*) — Me(s)] + Jmi(s") [
= my(s") - [my(s") — my(s")]
+my(s") - [ty (s7) — xiag(s)] + i (s")[°
= O(h*-1?) + O(h*) (s" — 8) + I (")’
= |mj(s)*[1+ O (W) + O(h) (5" - 9)]
= |mi(s")*[1+ O (W) + O(h)]
= [mi(s")I [+ O (RP)],
hence
gi(s) = % =1+0 (r). (3.3.6)
O

Using Lemma 3.3.2, we can show
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Theorem 3.3.1 If the approzimation my(s) ~ my(s) is accurate to order p > 2,

then, for 0 <s <1,

|mk(s*) — ﬁlk(s)| < Chp, (337)
m, (s*) — i (s)| < Ch?, (3.3.8)

where C is independent of s, s*, k and h.

Proof. We use the result of Theorem 3.2.1 and Lemma 3.3.2,

Imy(s*) — mg(s)] < |mg(s*) — my(s)| + [my(s) — mg(s)|

= O(h(s*—3s)) + O (h") =0 (h7),
and

m(s") = iy(s)| < [mi(s?) — mi(s)| + [mi(s) — iy (s)

= (h*(s*=9) +O W) =0 (M),

We now define uj, by

%MM=WMMFWHM (33.9)

m (s*)| ds*’
where u;, € Sp° is the perturbed Galerkin approximation given by (3.1.8), and think

about the error in the approximation as(us,vn) = a (uj, vi).
Let y* = my(s*) € A, and define the bilinear form by

a (U, Uy)
= ‘/I-:/PK(X* _ y*) u;‘l(y*) ,U;;(x*) dO'x; dg'y,
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ﬁ:/ / K [my(t*) — my(s*)] up[mg(s*)] vy [my(¢*)] ‘ml ‘ ‘mk

N
k= 1

11

N N
ZZ/ / K [my(t*) — my,(s%)] un[my(s)] va[my(t)]
|_ -

1
;c(s)| |ml | ds dt
ds* dt*

I

my (s ds* dt*

m, (t*
| )l Iml t"‘ ’ l( )

= kgg/ / K [my(t*) — my(s™)] up[my(s)] va[my(t)] 'm,(t)‘ 'mk(s)l ds dt.

=D Z/o (K (") = mi(s)] = K (s (1) — s (s))
wun[mg (8] o[y (2)] ‘m;(t)l ‘m;c(s)| ds dt. (3.3.10)

To be able to compare the bilinear form a and ap, it is thus necessary to study

the error between K (x* —y*) and Kj(x,y).

Lemma 3.3.3 For h sufficiently small,
|my(s*) — my(t*)| > Chyls — ¢, (3.3.11)
and

|mk(s*) — Mgy (t*)l Z Chk(l - S+ t) (3312)

Proof. By Lemma 3.3.2, we have

1
) / ml [t + ((s* — )] d¢
Chy |s* — t*|

lmy(s*) — my(t*)| =

v
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|s* — t*]
|s — ¢
= Chy|s —t| + Ch*7 s — |

= Chkls_tl

> Chgls — t|.

We rewrite |my(s*) — mg11(t*)] as [my(s*) — my(1) + mi41(0) — myy1(¢%)], and use

the same techniques as above to obtain

Im(s*) — mesr(t)] > Chi(l — s +t).

In addition to (3.1.4) and (3.1.5), we now introduce the notation

x* =my(t*) € A and Y =my(s*) € Ag.

Lemma 3.3.4 If my is an O(hP) order of approxzimation to my with p > 2 and

if (3.3.1) holds, then

|K(x* —y*) — Kn(x,y)| < Ch? for x,y €T. (3.3.13)

Proof. Using Lemma 3.2.3 with

we reduce (3.3.13) to

|lal* — |b|?| < Ch? |b|? (3.3.14)
with
|a® |lal* = [b]?|
log i2 | < o2l T 1P 1
%ol =" o
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One sees that
laj®?~|b®> = a-a—b-b
= (a—b)-(a—b)+b-(a—b)+(a—b)-b
= 2(a—b)-b+|a—b|2
= 2l + 11,

where

= ([ (s) — my(t))] — [my(s*) —my(t")]) - (my(s*) — my(t7)),

I1 = |[fg(s) — i (t)] — [my(s™) — my(t*)]]".

We consider I and I1] separately. Firstly we decompose I into two terms, i.e.,

I = (mg(s) — mg(s*)) - (mg(s*) — my(t"))

— (1 (2) — my(2%)) - (mi(s”) — oy (¢7)) -

Let W, be the projection of the vector [my(s*) — m;(t*)] on the tangent line to I at
the point my(s*), then W, - [my(s) — mx(s*)] = 0, so we can rewrite the first term of

I as

(1 (s) — mi(s")) - (mi(s”) — my(¢*))

= (1 (s) — my(s™)) - (me(s*) —my(t*) — W;).
Since the curve I is smooth,
Imy(s*) —my(t*) — Wp| < C[my(s*) — my(t)P?,

so by using the Cauchy-Schwarz inequality and Theorem 3.3.1, we then obtain for

the first term of I,

| (0. (s) — my(s7)) - (m(s™) — my(2*))]
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< [my(s) — my(s*)| [my(s™) —my(t") — Wy

< Ch? lmk(s*) - ml(t*)|2.mk(s) - ﬁll(t)lz.
Similarly,

| (0 () — my () - (mg(s™) — my(t"))| < CRP [my(s*) — my (7).
Now, we consider the different cases for I1.

Case i. If k = 1. From Taylor’s formula (3.2.6), we have

IT = |frin(s) — 1ine(t)] — [mi(s") — my ()]

(s—1t) / i [t + E(s — )] dE + (5" — 1) / ml [t + £°(s* — t%)] de°

2

)

and by Lemma 3.3.2, Theorem 3.3.1 and (3.3.11) in Lemma 3.3.3,

2

I < Js—t? / (1t + (s — 1)) — mit + £(s — 1)) de

ChZP |s —t|?

IA

INA

Chi?™? |my(s") — my(t)|”

IN

CH? |my(s*) — my(t*)|?

Case ii. If | = k + 1. Using similar techniques as in Case i, we obtain

IT = |[f(s) — my(t)] — [my(s*) — my(t*))|*
= |[iy(s) — y41(2)] — [me(s*) — mgqs (8]
= [[My(s) — mg(1)] = [My41(t) — My41(0)]
—[my(s*) — mg(1)] + [me11 (") — my41(0)]]

ChP(1—s+1t)?

2

IA
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by (3.3.12) in Lemma 3.3.3,

II S Chip—z ]mk(s*) - mk+1(t*)|2

< Ch? |mk(s*) - ml(t*)|2.

Case iii. If |k — | > 2, then |my(s*) — my(t*)| > Chy,

IT = |f(s) — iy (t) — [my(s*) — my(t")))*
< ||ie(s) — my(s*)] + fmy(t*) — iy (2)]|*
< ChZ?
< ORP™? my(s*) — my(t)[?
< ORP |my(s*) — my(t*)*.

Hence, we finally deduce

% — ]
1 v
l %~y

=0 ().

Compare the following estimate with the one in Theorem 3.2.2.
Theorem 3.3.2 If " is approximated to order p > 2, then we have the improved
upper bound

|a(uh, vi) — an(un, va)| < CR? ||un||mory [|vnll moqry Vup,vp € 5% (3.3.15)

Proof. By (3.3.10) and Lemma 3.3.4,

la(uy, vi) — an(un, va)|

<owI Y L [ ) doas,

k=1 I=1
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<C’h”Z/ lun(y |d0yZ/ |un(x)| dox

= [ lun(y)ldoy | fon(0]dos

< CR? ||unl|zory l|vn | go(ry-

O
There is a consequence which follows from above immediately,
Corollary 3.3.1 Foru, € S;°, then
a(uih, 1) — an(un, un)| < CR [lunllyosyaqe (3.3.16)

The proof is straightforward by applying the inverse property (2.2.10).
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3.4 Other Types of Boundary Approximation

In Section 3.2, two examples of polynomial boundary interpolation were given, sat-
isfying the conditions in Definition 3.2.1. We now give some other types of boundary

approximation that also satisfy the conditions required for our theory.
Homogeneous Coordinates

In computer graphics, it is common to represent curves using homogeneous coordi-
nates; see Farin [51, Chapter 15]. A boundary approximation using a piecewise poly-
nomial representation in terms of homogeneous coordinates is equivalent, in Cartesian

coordinates, to a piecewise rational approximation.

Indeed, if F : [0,1] — R? is a parametric representation of I' as in (2.2.1), then
for any function A : [0,1] — R with |A(7)] > C > 0 for 7 € [0,1], we can think of
O(1) = [A(T)F(1), A(7)] as homogeneous coordinates for F(7). If the components of
©(7) are approximated by piecewise polynomials, then in effect we are approximating

. @1(7’) @2(’7’) @3(7’)
¥ = (R T 20

by piecewise rational functions.

Note that with homogeneous coordinates, we can parameterise any conic section

exactly using quadratic polynomials [51, Chapter 14].
Shape-Preserving Approximation
Gregory and Delbourgo [52] discussed the use of piecewise-rational interpolants
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that preserve convexity and monotonicity. Their schemes are quadratic/quadratic,
i.e., they use quadratics in the numerator and denominator, and depend on certain
derivative parameters. An O(h*) convergence result can be obtained when accurate
derivative values are available. Otherwise, O(h®) convergence can be obtained when

derivative values are determined by local approximations.
Circular Arcs

We can achieve an O(h?) approximation of the boundary by making A, in (3.1.3)
the arc of the unique circle that passes through the points F(7-1), F(7,_1) and F(r).
(If these three points are collinear, then Ay, will have an infinite radius, i.e., Ay will
be a line segment.) With such an approximation we can easily make the Jacobian

|m}(t)],t € [0, 1], constant, and can conveniently evaluate the unit normal.
Polar Coordinates

If the parametric representation of the boundary is given in polar form,
I':r=p(),

then
myg(s) = p(6)(cosf,sinb),

where § = (1 — $)0k—1 + sbk, s € [0,1], and the 6; play the role of the 7, i.e.,
0=00<60,<---<6y=1and hy = 6, — 6x_,. In this case, it is natural to seek
mg(s) in the form

my(s) = p()(cos b, sin h).

To achieve O(h3) accuracy, we can take p to be piecewise quadratic with
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/3(0) = p(0) at 0k-—1, %(Ok—l + ek), Hk. Thus,

[ (s) — my(s)| = [[5(6) — p(6)] (cosb,sinb)|
= o),

and also, since
/ / : : do
my(s) = [p'(0)(cos b, sin 8) + p(8)(— sin 6, cos 6)] R
where df/ds = hy, we see that

[ (s) —my(s)] = |[F'(6) — p'(6)](cos b, sin 6)hi + [5(6) — p(6)](— sin 6, cos 8) hy|
- o)

Furthermore,

my (s) = [p"(0)(cos0,sin ) + 20'(8)(— sin 6, cos ) + p(8)(— cos 8, — sin 6)] h2

and so
My (s) —mi(s)| = |[5"(8) — p"(6)] (cosb, sinO)h} + [p(6) — 5(6)] (cos b, sin )
+2 [0'(8) — #'(9)] (sin 8, — cos 0) k|
= o)
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Chapter 4

ERROR ESTIMATES
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4.1 Stability Property

The convergence of u, — u can be established if the perturbed Galerkin equation

is stable in an appropriate sense. In fact, we will show (in Corollary 4.1.1) that

Iluh||H‘1/2(F) S C ”fh”Hl/Z(r\).

Define linear operators R, and R} by

for any ¢ € H°(T') and

Rpplmy(s)] = ¢[my(s")] (4.1.1)

|y (s)| ds
mi (s*)] ds*’

pu[my(s")] = u[mg(s)]

and let u* = Rju. The notation is consistent with (3.3.9), i.e.

up, = Ryup, (4.1.2)

and in fact R}, is the transpose of Ry, because for any ¢ € HO(T'),

(Rhu, ¢)

B Z/ Riufmy(s")] @lmi(s")] [mi(s")] ds*
k=170

N n
= Z/O u[my(s)] p[my(s*)] [my(s)| ds
= (w Rad). (4.1.3)

In the usual way, we extend Rj, and R), to act on distributions when necessary.

Lemma 4.1.1 For 0 < o < 1, the operator R}, satisfies the uniform bound,

”R;l’u”H—a(r) S C”u”H—a(p), u e H“"(I‘). (414)
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Proof. We use the formula (cf. (2.2.5))
||U||%11(r) = ||U||§1°(r) + ”DU”%IO(I‘)'

Recall that, see (2.2.4)

F(7) = mg(s) forr = (1—8)Tk—1 + 7%,
and therefore,
F(7*) = my(s*) for 7 = (1 — 8*) Tk—1 + 8" Tk,
S0,
dr dr*

=Tk — Tk—1 = hi.

— =Tk — Th—1 = hg
ds ’ ds*

By the definition of the H°(T') norm (see (2.2.5))

1
IRl = / |Ra o F(r)[? dr
0

N 1
> /0 | Rrp[my(s)]|* ha ds

N 1
= Z/O |plm (s)]I B ;S* ds* by (4.1.1)
k=1

s
N 1
< ¢ [ (s hedsr,
k=170
since ds/ds* = 1+ O(hP~!) = O(1),

1
I1Rsdlfsory < C [ 160 F () dr* = C ol

hence

| Rrgllmory < C ||l oy, (4.1.5)
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Moreover,

1
d
IDRwley = [ [Gimago P dr
N 1 2
ds d dr
= X [ |5 SRl Goas
k=1 0
N 1 2
1 d
_ Z/ o S Radlm(s)]| heds
0
k=1
N 1 2
1 ds* ds |,
= ;/0 e ds ds*¢[ m(sT)]| P gz ds
N 1 1 2
<cy /0 . ("] b ds*
k=1
N 1 2
1 dr* " *
= C) / hy, ds* dT*¢[mk( S| heds
k=170
N 1 d 2
= C;/o dT*[¢OF(T )| dr
= C||D¢”H0(r)a
SO
IRnBlzrry = IRalFrory + I DRaoII3ro(ry
< C (I8l + 1Dl3oqe))
= Cliollin ),
giving

| Redll ey < C Il ey

(4.1.6)

The estimates (4.1.5) and (4.1.6) show that the operator of Rj is bounded, uni-

formly in h, on H*(T") for « = 0 and @ = 1. Hence, by interpolation, see [6], we

have

|1 Brllrery < C |l oy 0<a<l
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Finally, from the definition of the negative norm and from (4.1.3),

_ [(Rhu, 9)|

|Rju||lg-aqry = sup —————

I h @ ¢eH(T) ||¢||H“(F)
, R

oy MR

get=(r) ||@llmar)

, R,
<0 osp R
RppcH (D) ||Rh¢||H°'(F)

= C “U”H—a(p).

by (4.1.7)

O

Recall from Theorem 2.1.5 that the original bilinear form a is H~Y/?(I)-elliptic,
i.e., for an a9 > 0,

a(u,u) > ag ||u||§{_1/2(r) Yu € HV2(ID).

Now we present a stability property of the perturbed boundary element Galerkin

method.

Theorem 4.1.1 IfT is approximated to order p > 2, then there exists an hy > 0 and

a positive constant o such that
an(un, un) > & |lunllf-1ay and  an(un, un) > allugll-yz

for up, € Sp° and h < hy.

Proof. From the inequality (3.3.16) and the H~'/2(T)-ellipticity of a,

an(un,un) = a(uy,up) — [a(uh, uh) — an(un, un)]

Y

o ||u;;||31—1/2(r) - Clhg_l ||uh“§1-1/2(r)

v

Cs a0 ||Uh||§1-1/2(r) - Cihg™! ||uh”§1—1/2(p)

a“Uhlﬁz—l/z(p),
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where a = Cy a9 — C} hg_l. Since p > 2, we can chose hg such that a > 0. O

Corollary 4.1.1 The Galerkin method (3.1.8) is stable:

lunllr-172y < C | foll vz ry- (4.1.8)

Proof.
a ”uh“?t[—l/z(r) < ah(uh, uh)
= <fh, Uh>
< C ”fh“HI/Z(r) ||Uh||H—1/2(r),
hence, the result follows on cancelling ||up || z-1/2(r)- O

4.2 Error Estimates of the Perturbed Galerkin
Method

We are now able to establish the error estimates of the perturbed Galerkin method.

Lemma 4.2.1 The operator R, satisfies

lu— Ryullaoq) < CR e, we HY(D). (4.2.1)

Proof. Recall that u* = R,u. We have

N 1
fu— oy = S / e (5%)] — u*[m (5] he ds”
k=1
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|y (s)| d

_ Z/ ulmi(57)] ~ ulme(] 5SS 2 heds'
< u[mg(s*)] — u[mg(s)]|? hy ds
Z / [ulm(s")] — ulm(s)]
iy Im,(s)| ds |?
3 (e | ™

The first term on the right satisfies

N 1
u[myg(s*)] — u[my(s 2hids
> [ ubmis) = uimu(s)]

2

_ Z/ womy) ()] de| hyds
< Z/ Is*—sl/ |(w o my) (t)|* hi dt| ds
k=1 0 s
N 1
< Y po-D / (womy) () hedt by (3.3.2)
- 0
< Chz(p_l)”“”?{l(r)a

and the second term satisfies

Imi(s)] ds |’
i (s*)] ds*

201 _ |y (s)| |y (s)] p-1
< Z / i () | L= 2+ ke 0 ()

N 2
L ()] = fmg(s) + mi(s)] O (#7)

> ), e o ()

N () — my(s)] + [m () O (b
< 3 [ lumuo) o)

O (h3(s* — s)) + O (k?) |?
hi

hk ds

hk ds

hk ds

hk ds

hk ds
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2

ow+omw),
k

hu

2> / fufrng ()]
N 1

C u[m 12
> / [ ()]

< Chz(p_l)”“”?mr),

2

O(h?*1) + O(hP) he ds
k

hi

IN

SO

lu = wllmocey < CHP sy (4.2.2)

Theorem 4.2.1 Suppose that u is the ezact solution of the equation (2.1.25), and
up € Sp° is the perturbed Galerkin approzimation satisfying (3.1.8). If T’ is approzi-

mated to order p > 2, then

lu = whllg-sr2y < C (Ifn = Bafll vy + B ~2 lull oy + B2 |l rry)
(4.2.3)
where Ry, is given by (4.1.1).

Proof. For all v, € S},

an(up — Up, up — vp)

= ap(un,un — vn) — ap(vp, up — vp)
+a(vh, (un — va)") — a(vy, (un — v)*)
+a(u, (up — va)*) — alu, (up — va)*)

= (foun—v) — (f, Ry(un—vn)) by (4.1.2)
+a(vy, (up — vn)*) — an(vp, up — vg)

+a(u, (un — va)*) — a(v}, (un — va)*)
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= (fh,un — vp) — (Raf,un — vn) by (4.1.3)
+a(vy, (un — vn)*) — an(vn, un — vn)

+a(u, (up, — vn)*) — a(vy, (up — vp)*).
If we apply Theorem 2.2.1, Theorem 3.3.2 and Lemma 4.1.1 to above, then

lan(un — v, un — vn)| < [{(fh,un — Va) — (Ruf,un — va)|
+ |a(vh, (un — VA)*) — an(Vh, un — vp)|

+ |a(u — vy, (up — vp)*)|

< (fn — Ruf,un — vn)|
+ChP ”'Uh”HO(l") ||uh - 'uh||H0(1-)
+C |lu = vl g-12(y [|(wn — vn)* || 5-1/2(ry

< Cllfa — Bufllgrzm ll(un — vn)* | H-172ry
+hP72 |lonll ory 1| (wn — on)* Nl sr-1r2(ry
+llw = vill g-172(ry 1 (wn — vr)* | -172(r))-

Recall that by Theorem 4.1.1,
o |(un — Uh)*”?{—l/z(p) < an(up — Vn, Un — h), a >0,

so by cancellation

C - *
= (Ifa = Bafllmraqey + b7 Y2 llonllmory + llw — vill gr-1/2¢ry) -

(4.2.4)

luh — vhllE-172(0y <

Let Py be the operator of orthogonal projection of L?(T) in the subspace S}, and
choose v, = Pyu, then

llvnllgory < llull goqry,
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and

flu — U;{”H—l/z(r) < C”(RZ)_IU - vh||H—1/2(r)

N 1/2
ChT+/2 (Z ”(R;;)_lu”%IT(Ak))

k=1
< Ch™Y2||u| grry, (4.2.5)

IA

SO

g, — Vil -2y < C (Ilfa = Bufllmirzey + B2 2wl moy + A2 ||ul| grry) -
(4.2.6)

Finally, the error estimate is obtained as follows:

IA

llu — vl gr-12ry + |luh — Vil g-172(r)

C (I1fn — Rufll gy + WP~ lull oy + B7H2 ||ull gr(ry) -

[lu — u;;”H-l/?(l")

PAN

O

In our numerical experiments, it will be more convenient to measure errors in the

L? norm, for which the following bound holds.

Corollary 4.2.1 Suppose that u is the ezact solution of the equation (2.1.25), and
up € Sp° is the perturbed Galerkin approzimation satisfying (3.1.8). If ' is approzi-

mated to order p > 2, and if the mesh is quasi-uniform then
lu = unllzory < C (B2 fa = Rafllenray + B~ lullmey + 7 ullar@) , (42.7)

where Ry, is given by (4.1.1).
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Proof. By triangle inequality and Lemma 4.2.1,

lu — unllHory < |lun — uhllao@y + [Ju — uh || Ho(r)

< CRP Munlla ey + llu = ujllzocr),
and from the inverse property in Theorem 2.2.1 and (4.2.6),

lu —uillgory < llu—vhllmoey + lluh — vhllHor)

IA

CH ||ullgry + Ch‘1/2||uz - UZ||H—1/2(F)

< C (K2 fu = Bufllaey + P27 ullmay + BT ulla-@) ,

hence, the proof is completed. O

The perturbed Galerkin solution also converges faster in a more negative norm,
resulting in faster convergence of the potential. This is an example of a super-

convergence property.

Theorem 4.2.2 Let A be the single layer operator given by (2.1.9), and suppose that
the up, € Sp° is the perturbed Galerkin approzimation to u, given by (8.1.8). IfT is

approximated to order p > 2, then

lu = whllg-r1y < CH™H2| fa — Rufllmay + CH¥|lull oy + CR* |l ey

+CR?||ull gy + || fn — B fll oy, (4.2.8)

where Ry, is given by (4.1.1).

Proof. The operator A : H"(I') — H™*!(T') has a bounded inverse, so for any
¢ € H™*(T'), there exists a unique ¥ € H"(T') satisfying



and we have

[#llarmy < Clidllar+iy-

By definition of the negative norm,

* u— U*, ¢
”u - Uh”H—-r—l(I") = Sup K—h)o_l.

429
sea+1 1) ||9llE+1(D) (4.2.9)

Let P, be the orthogonal projection operator of L(T") in S}, and choose 9, = Py,

then
lvnll oy < Nl llaory < lI%llar) (4.2.10)
and by (4.2.5),
](u — Up, ¢>0| = l(u — Up, Ad])ol
= la(u —ui, ¥)|

la(u - u,;w "P - 'd);;,) + a(u - U;:, 1/’;;)'

< llu = willg-r2@y 19 = YRl g-v2y + la(u — ug, 43)
< = upll-srey CRH 219 e ey + lalu — ui, 47)]
< = uill sy CRH 2\ Bl vy + lau — ui, 97)1,

and by Theorem 3.3.2,

|a(u — u, ¥3)|

IA

|an (un, ¥n) — a(uh, ¥h)| + la(u, ¥7) — an(un, ¥n)|
CR?||lunll oy 1¥nllmory + (f, ¥h) — (fh, ¥n)
Chl[ull oy ¥l -y + (Ruf, ¥on) — (fh, ¥n)
CR?||lull ey | BNl err+1r) + | Br S — fallmoy |¥nll moer)
CRP||lull oy | BNl err+1(ry + |1 RrS — frllmoy |9l em+2(ry.

IANIN A

IA

hence, from Theorem 4.2.1, we obtain the error estimate in the H~"~}(I") norm,

lu —upllg-r10y < CH™2|lu— uj |l g-1r2(0y + CRP|lul| ey + | RRS — Fall oy
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< CH™*'2|\fy — Rufllmray + CH™*P|lull moqry

+Ch* Hlull gy + CRP lull ey + 1fn — Rafllmoqry.

O

In the next result, we think of ¢, as a numerical approximation of ¢. Note that
evaluation of the single or double layer potential of u at a point in Q requires
the calculation on an integral of the form (@, u), where ¢ involves the fundamental

solution K.

Corollary 4.2.2 Suppose that u is the ezact solution of the equation (2.1.25), and
up € Sp° is the perturbed Galerkin approzimation satisfying (3.1.8). If T is approxi-
mated to order p > 2, then

[(u, @) — (un, )| < Cllu — uplla-r-1) | @l zr+1(0) + Clidn — Rudll oy llull mocry,
(4.2.11)
where Ry, is gwen by (4.1.1), ¢ is any function in H™T(T), and ¢y is any function
in HO(T).

Proof.

[(u, @) — (un, ¢n)l |(u, @) — (up, @) + (un, Rugp) — (un, dn)|
[{u — up, $)| + |(un, Rudp — o)

< Cllu = upllz-r-1) |9l 5r+1(ry + Clldn — Rad|| rro(ryl|unll go(ry.-

IA

a

If, in the above Theorems, we have

I1fn = Rufll sz = O (2~1/2) (4.2.12)
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and
| fa — Rufllmo@ = O (hP), (4.2.13)
then Corollary 4.2.1 gives
lu = unllgory = O (R™0P~D)
and the super-convergence property is given by the error estimate
o — gl -y = O (nCr+19)).

If, in addition,
l¢n — Bro||zo@y = O (hP),

then from Corollary 4.2.2, we have

(u, @) — (un, ¢n) = O (RRCri1P))

4.3 Approximating the Potentials

Let up € S;° be the solution of the perturbed Galerkin equation (3.1.8). We can
h

compute the single layer and double layer potentials Vu, and Wgy, given by

Vup(z) = /FK(z—y)uh(y)doy
N 1
= 3 [ Kz = mu(s) ualmu()] [ (5) s
k=170

and

Wy(z) = /—K z—Yy)g(y)doy
- Z / GTK[z—mkw)]g[mk(s)] jmi(s)| ds

-3 / ) - K[z — my(s)) glmy(s)] ds
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for z € QF, where n(s) = [—(mj})2(s), (m})1(s)].

We introduce the notation for the kernel of the perturbed double layer potential

Wh. Let

0
L(z,y) = aTK(Z—Y)=Vy'VK(Z—Y),
Yy

and define
Lu(z,y) = vy - VK(z — §).

After interpolating the curved boundary I', we obtain the perturbed single layer
potential Vyup(z) and double layer potential Wy, g(z), defined by

Viun(z) = / K(z - §) unly) do,

= 3 [ Kla = sin(s) unlmu(s)] ()] s
k=10

= Z/o K[z — my(s)] ZUk,iPi(s)ds

= 30 [ K- (o) Ps)ds (431)

k=1 i=1

and

Whig(z) = /F Li(z,y) 9(y) doy

2

1

= > | ms) VK[z — ting(s)] glmy(s)] ds. (4.3.2)
k=10
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Chapter 5

IMPLEMENTATION AND
NUMERICAL EXPERIMENTS

77



5.1 Strategies of Implementation

In a practical implementation of the Galerkin method, it is usually necessary
to use numerical quadratures to evaluate the coefficients and right-hand sides of the

linear algebraic equations AU = F.
We now focus on the coefficients of such a system of linear equations.

As in Chapter 2, we denote the 7 x r element stiffness matrix for Ay x A; by

aD=[al] . 1<kISN,
1<i,j<r
where
a = / / log< ) .(s) Py(t) ds dt, 0<st<1
|mk(3) my(t)|
(5.1.1)
Note that
AWK = [A®NT 1<k<I<N.
We define the r X r matrix
P(s,t) = [Fi(s) P;(t)i<ij<r,
and rewrite the double integral in (5.1.1) as
AkD — log b)/ / (s,t)dsdt — E (5.1.2)

where
1 1 1
E=——/ / log (|m(s) — mu(t)[) P(s, ) ds dt
27T 0 0

depends on k and I.
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In general it is not possible to evaluate the integral E analytically. However E can
be obtained approximately with the help of the @-point Gauss-Legendre quadrature

rule o
1
/0 f(s)ds ~ quf(fq)
q=1

for an appropriate choice of ). The details of computing w, and &, can be found in

[5, Theorem 5.3].

In order to reduce the cost of the quadrature so that the integrand evaluations are
cheaper, we consider evaluating F under several different conditions. That means, we
do not apply the global singularity subtraction to the whole operator but only where

it is necessary.

Firstly, when k = [, we use the splitting

log |my(s) — my(t)| = log|s — ¢| + log
and put

1 1 1
E}Q] = —/ log |s — t| P(s,t)dsdt
27 Jo Jo
Q Q

t5m 23 wpulog (PR e, ) 51
2m p=1 g=1 €5 — &l
with the understanding that

lfp - §q|

Secondly, if Ay and A; are neighbouring elements, for example, if | = k + 1, then
a special singularity subtraction technique is used:

|y (s) — my ()]

log |my(s) — my(t)| = log |my(1)(s — 1) — my(0)¢| + log I/, (1)(s — 1) — m(0)¢]’
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The quantity Im,la’)"(gszz)"_' ’&)go)tl is smooth for 0 < s <1 and 0 <t <1 because
k

mk(l) = ml(O)a

so we put

1 1

B9 = [ [ log(imi(1)(s — 1) ~ mi(0)l) P(s,) s
T Jo o

1 3 lmk(gp) - ml(§q)|
"o vz—; qz—; ol ( g (1)(§ — 1) — m;(0)§q|) P(&,&). (5.1.4)

For the special case of k = N and | =1, the second term of Eﬁ] takes the form

o ;Z“”’“’" ot (e 1 mi ) P (619

The first terms of E}Q] and Eﬁ] can be computed analytically, as explained in the

Appendix.

Finally, in the case when Ay and A; are not neighbours, that is, neither k¥ = [ nor

k=1x1, we put

ES = — ZZ wp wglog (Imy(&,) — mu()]) P&, &) (5.1.6)

p—l g=1
by applying the Gauss rule straight away.

Next we consider the right-hand side of the system of linear equations.

r+1,e
Sh

If f, is the L2-projection of f onto as we assumed in the last Chapter, then

(f = fn,vn) =0 for all v, € S;*°, e,

(frrvn) = (f, vn).

The element load vector F® in A;,l = 1,..., N, is denoted by F® = [Fgl)] ,
1<j5<r

where

FO — ng(s) - [my(t) — mg(s)] . | \
Fi 27r2// m(s) — mu(0) 2 (9[my(s)] — g[my(2)]) P;(t)dsdt
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or

FY) = —;/ olony(0) Py (¢)de

n(s [ml my(s)]
/ / |ml mk(3)|2 g[my(s)] P;(t) dsdt

with ng(s) = [—(my},)2 (3) (my,)1(s)]-

We evaluate Fg-l) using Gaussian quadrature. Write FI?! (dependent on j and [)

as an approximation of F§l), define

P(s) = [Pi(s)hgigr

and put
N Q Q@
@_ 1 W w ng(&p) - [my(&,) — my(&p)] m _ olm
PO = 5 220 v = e g &)~ slmi(E) PE)
Q
FO = 23wy glmi(e)] P(&)
1 gnyane L () () —m(g)]
am e 2 e i) ) P

If k=1 and &, = &, then in the second term we use the limiting value

lim ng(&p) - [my(€;) — my (&)
a—&  [my(&g) — my(&p)[?
~ lm ng(§p) - my(&,)
&~ 2|my(&y)| [my(&,) — my(&,)|
— ng(§p) - my'(§p)
2imy(&)2

Remark: In the numerical experiments, we shall be interested in the effect of

replacing my(s) by my(s) in the quantities above.
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5.2 Numerical Potentials

For z € 7, the perturbed potential is given by @n(z) = Whg(z) — Vyur(z), where
Viun(z) and Wig(z) are defined in (4.3.1) and (4.3.2) respectively. The numerical
perturbed single layer potential Vyuy(z) and the perturbed double layer potential
Whg(z) will be computed by using the Gauss-Legendre quadrature rule. They are

N T Q
Vhun(z) = Z Z Uk,i Z wp, K[z — m(&)] Pi(&p)
k=1 i=1 p=1
1 b
i ;;U’“Z“’” o () 2@

and

Wag(2 Z Z glme(6,)] Z Dulo) [z = fulGp)]

7 L 2 2 — (6P

where @ is number of the Gauss points, £, is the Gauss point, w, is the Gauss weight,

and ng(s) = [—(my},)2(s), (my},)1(s)].

Note that, the above kernels of the integrals are not singular as z ¢ T'.

5.3 Numerical Experiments

We now present errors and convergence rates for some numerical experiments.

The code was written in FORTRAN 90 and run on a DEC alpha.
Recall from (2.1.22) that the boundary integral equation is
0
K(x —y)u(y)doy = | [g(y) — 9(x)] 5—K(x — y) doy, xel, (531)
r r Ovy
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or

[ K-yt doy =390+ [ o) -Kx=y)dey,  xeT, (532

where K(x —y) = 5= log |xfy|. Equation (5.3.1) or (5.3.2) arises from the Dirichlet

problem for Laplace’s equation

Ap=0 in QF,
¢ =g on T,

using the direct boundary integral method, where Q% is a bounded domain with a

curved boundary I', u = ¢} and v is the unit inward normal to Q.

The boundary I' is parameterised by a smooth function x = F(7),0 <7 < 1. We

approximate F using polynomial interpolation of two different orders.

In our experiments, the function g(x),x = (z1,z2) € I, in the right-hand side
of (5.3.1) or (5.3.2) is chosen to be the restriction to I" of a known harmonic func-
tion, which is thus the solution ¢ of the Dirichlet problem. The exact solution u of

equation (5.3.1) or (5.3.2) is given by

u = v(x) - Vo(x).

For finding an approximate solution to the boundary integral equation (5.3.1) or
(5.3.2), the boundary element space S;° is always chosen as the piecewise constant

space defined in Chapter 2 with r =1 and e = 0.

For k,l =1,..., N, in the general case of the point x in /\; and point y in A with
|k — 1| > 2, the number of Gauss points chosen for computing Eﬁ} in (5.1.6) depends

on the distance between x and y. The idea is to make computation cheaper by using
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fewer Gauss points where possible rather than the same number of Gauss points
everywhere, while maintaining the order of convergence. Our strategy employs four
different bands of the distance |x — y|, with more Gauss points at smaller distances,

and fewer Gauss points for larger distances.

However, in the special cases when the boundary elements A, and /\; coin-
cide (k = l) or are neighbours (k = | £ 1), we use only a few Gauss points to
compute E}Q] and E}?] in (5.1.3) and (5.1.4) respectively, since we have already elim-

inated the singularities in the integrands.

In numerical experiments, we compute the relative errors and the orders of conver-
gence in the L? norm, and also the errors and orders of convergence for point evalua-
tions of the potentials, both for an exact parametric representation of the boundary,

and for linear (p = 2) or quadratic (p = 3) interpolation.

Let ¢ be the solution of the Dirichlet problem and ¢, be the perturbed potential
given by ¢n(z) = Wh9(z) — Vhun(z), where Vyui(z) and Whg(z) are defined in (4.3.1)
and (4.3.2) respectively. Since 7 = 1, the theoretical error bounds for the exact

boundary are (see Corollary 2.4.1)

lu—vnllrory < Chllull ), (5.3.3)
|6(2) — dn(z)] < C(2)llu — unllm-2q) < C(2)h? |l m(ry- (5.3.4)

For the approximate boundary, we expect

lu — upllpoqry < Ch™™P=D, (5.3.5)

|¢(z) — ¢n(z)] < C(z)h™nEP) (5.3.6)

see Corollary 4.2.1 and 4.2.2.
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5.3.1 Smooth Boundary

Numerical results for an integral equation on a smooth, closed boundary I in R?

are presented here. Specifically, the curved boundary I is an ellipse with semi-axes

a; and ao,
zi | 73

2 2
ay a3

=1

It follows that the parametric representation is expressed as

x=F(7) = (a; cos2m 7, ay sin 27 7), 0<7<1

For the harmonic function ¢(x) we chose
¢(X) = e"! coszy + 11 + To, X = (.’L‘l, .’Eg) € R2,
so the exact solution u of the integral equation is

u = v(x)-Vo(x

—a ¢ cos(zy) = o €% sin(y) + 4 — 7}

() + (=)?)"

)

where
—zh x
v(x) = —(|;—;|1), X = (11,72) and X = (xll,x;)

(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

Since the logarithmic capacity of the ellipse (5.3.7) is equal to the arithmetic mean

of its major and minor semi-axes, we choose the constant b > 2392 to ensure that the

stiffness matrix is positive definite. The test point z € Q7 is taken to be (0.50, 0.50)

in our calculation of the errors in the potentials.

We compute the numerical solution of the integral equation not only with the exact

elliptical boundary, but also with approximate boundaries using piecewise linear and

piecewise quadratic interpolation.
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Exact Linear Quadratic
boundary interpolation interpolation
8 | 0.85824E+00 0.85659E+-00 0.85779E+00
16 | 0.40728E+00 1.08 | 0.39857E+00 1.10 | 0.40703E+400 1.08
32 | 0.20455E4+00 0.99 | 0.20249E+00 0.98 | 0.20454E+00 0.99
64 | 0.10155E4+00 1.01 | 0.10123E+00 1.00 | 0.10155E+400 1.10
128 | 0.50632E-01 1.00 | 0.50589E-01 1.00 | 0.50632E-01 1.00
256 | 0.25295E-01 1.00 | 0.25290E-01 1.00 | 0.25295E-01 1.00
512 | 0.12645E-01 1.00 | 0.12644E-01 1.00 | 0.12645E-01 1.00
1024 | 0.63221E-02 1.00 | 0.63221E-02 1.00 | 0.63221E-02 1.00

Table 5.1: Relative errors and orders of convergence in L? norm for Example 1.

Example 1. Consider the integral equation in the form of (5.3.2) for a smooth
boundary I The curve boundary I' is an ellipse with a; = 4 and a; = 2, and
the scaling parameter is b = 4. The distance bands for the quadrature are set as
1.0, 2.0, 3.0,4.0 with the corresponding numbers of Gauss points 6,5,4,3. A 3-point

Gauss rule is used in the other situations. The results are given in Tables 5.1 and 5.2.

The Tables 5.1 and 5.2 present the errors and rates of convergence in both the L?

norm of u and the pointwise value ¢(z).

By comparing results among the cases, we see that the errors in L? norm for
the cases of the linear and quadratic interpolation are close to those for the case of
the exact boundary, and their orders of convergence are stable as well. Table 5.1
shows that we have a good correspondence between the experimental results and the
theoretical results (5.3.5). In Table 5.2, the orders of convergence of potentials for

linear and quadratic function interpolation on a boundary are 2 and 3 respectively,
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Exact Linear Quadratic
boundary interpolation interpolation
8 | 0.27510E+00 0.83200E-01 0.26140E+-00
16 | 0.48152E-02 5.84 | 0.12529E+00 -0.59 | 0.51084E-02 5.68
32 | 0.54225E-03 3.15| 0.31427E-01 2.00 | 0.52415E-03 3.28
64 | 0.50860E-04 3.41 | 0.80545E-02 1.96 | 0.50024E-04 3.39
128 | 0.57104E-05 3.15 | 0.20349E-02 1.98 | 0.56955E-05 3.13
256 | 0.68563E-06 3.06 | 0.51123E-03 1.99 | 0.68941E-06 3.05
512 | 0.84317E-07 3.02 | 0.12811E-03 2.00 | 0.85145E-07 3.02
1024 | 0.10465E-07 3.01 | 0.32066E-04 2.00 | 0.10590E-07 3.01

Table 5.2: Errors and orders of convergence of potentials for Example 1.

these results approach the prediction (5.3.6).

5.3.2 Corner Problem

The error estimates and the rates of convergence proved in section 4.2 are valid

for the first kind integral equation over a smooth boundary T.

In the current section, we explore the case when the boundary I' is not smooth,
that is, when the domain has corners. In the case of a non-smooth boundary, singu-
larities in the solution u will generally be produced at the corners. These singularities
will degrade the rates of convergence when the Galerkin method is applied with uni-
form meshes. In order to restore optimal orders of convergence, a mesh grading

technique is considered.
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In our numerical experiments, the boundary I' is given by a “teardrop-shaped”
region which contains only one corner (described in [15, 16]). We use the parameter-
isation

F:[0,1] - T,

defined by
F(7) = [sin(rm) cos(1 — x) (7m), sin(r) sin(1 — x) ()], (5.3.11)

where the corner is at 7 = 0 or 7 = 1, and the interior angle between the tangent at

7=0is(1—x)m 0<|x| <1

We define graded meshes by choosing ¢ > 1 and putting

T = (%)l_q (%)q’ ke [0’ %] ’ (5.3_12)
1- (11— £)s, ke (§,N].

Note that these meshes are uniform when ¢ = 1.

Another problem occurs when the direct method is applied in the formulation of
the boundary integral equation, because of the behaviour of the right-hand side of

the boundary integral equation

f(x)= —% 9(x) + %Tg(y), x €T (5.3.13)

Quadrature errors lead to a relatively poor convergence rate because a fixed singu-
larity arises in the kernel of double layer operator T' at the corner point. The tricky
point is how to smooth out the singularity in the kernel of the double layer potential.
Jaswon and Symm in the book [28] address some general techniques by which the
kernel of the double layer potential can be integrated analytically along a smooth
arc on the boundary. We have instead used a singularity subtraction method which

we already mentioned in Chapter 2, that weakens the singularity in the double layer
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operator, making the integrals easier to tackle. That is, when a boundary I is not

smooth, we use a singularity subtraction method to write the operator T" as

Tu(x) = u(x) + 2 /F fuly) — u(x)] B%K(x —y)do,

so that the denominator of %K (x — y) can be cancelled with [u(y) — u(x)] as
x — y. In other words, we work with the integral equation in the form (5.3.1)

instead of (5.3.2), so that the right-hand side is in the form

6 = [laty) - 9 F 5= o, (5.3.14)

This singularity subtraction method reduces the quadrature errors from the double
layer potential operator without appreciably increasing the amount of computation

involved.
e Results for a Smooth Potential

In this experiment, we consider the problem over the “teardrop-shaped” bound-

ary I" with a smooth potential ¢ on I.

Example 2. Consider the integral equation (5.3.1), and suppose g = ¢|r when
d(x) = €*! cos(z2) + 1 + 9, x = (z1,z7) € T,

is harmonic and smooth. The exact solution u of the integral equation (5.3.1) is
computed by formula (5.3.10). The Gauss rules with 6, 5,4, 3 points are used when
the distances |x — y| are 0.1,0.2,0.3,0.4 respectively, and the 3-point Gauss rule is

used in other places. This example contains cases with different value of x, they are,

(a) x =0.75,¢ = 3 and z = (0.7,0.25);
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Exact

boundary

Linear

interpolation

Quadratic

interpolation

8

0.45614E+00

0.45352E+-00

0.45308E+-00

0.25542E+00
0.13208E+-00
0.66537E-01
0.33336E-01
0.16676E-01
0.83392E-02
0.41697E-02

0.83
0.95
0.99
1.00
1.00
1.00
1.00

0.26097E4-00
0.13376 E4-00
0.66831E-01
0.33378E-01
0.16682E-01
0.83399E-02
0.41698E-02

0.80
0.96
1.00
1.00
1.00
1.00
1.00

16
32
64
128
256
912
1024

0.26174E4-00
0.13381E+00
0.66833E-01
0.33378E-01
0.16682E-01
0.83399E-02
0.41698E-02

0.80
0.97
1.00
1.00
1.00
1.00
1.00

Table 5.3: Relative errors and orders of convergence in L? norm for case (a) in

Example 2.

Exact Linear Quadratic

N

boundary

interpolation

interpolation

8

16
32
64
128
256
512
1024

0.23325E-01
0.30158E-03
0.88215E-04
0.82860E-05
0.99929E-06
0.12390E-06
0.15455E-07
0.19309E-08

6.27
1.77
3.41
3.05
3.01
3.00
3.00

0.61348E+00

0.10478E+00 2.55
0.32864E-01 1.67
0.81128E-02 2.02
0.20282E-02 2.00
0.50708E-03 2.00
0.12677E-03  2.00
0.31692E-04 2.00

0.27579E-01
0.83268E-03
0.11803E-03
0.12265E-04
0.12626E-05
0.14142E-06
0.16679E-07
0.20234E-08

9.05
2.82
3.27
3.28
3.16
3.08
3.04

Table 5.4: Errors and orders of convergence of potentials for case (a) in Example 2.
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Exact

boundary

Linear

interpolation

Quadratic

interpolation

8
16
32
64

128
256
512

1024

0.48474E+-00

0.26046E+00 0.90
0.13064E+00 1.00
0.65154E-01 1.00
0.32543E-01 1.00
0.16266E-01 1.00
0.81326E-02 1.00
0.40662E-02 1.00

0.44720E+00
0.25389E+00
0.12955E+00
0.64996E-01
0.32522E-01
0.16264E-01
0.81322E-02
0.40661E-02

0.82
0.97
1.00
1.00
1.00
1.00
1.00

0.47915E+-00

0.25991E+00 0.88
0.13061E+400 0.99
0.65153E-01 1.00
0.32543E-01 1.00
0.16266E-01 1.00
0.81326E-02 1.00
0.40662E-02 1.00

Table 5.5: Relative errors and orders of convergence in L? norm for case (b) in

Example 2.

N

Exact

boundary

Linear

interpolation

Quadratic

interpolation

8

16
32
64
128
256
512
1024

0.40230E-02
0.47130E-03
0.52705E-04
0.71806E-05
0.91606E-06
0.11509E-06
0.14405E-07
0.18011E-08

3.09
3.16
2.88
297
2.99
3.00
3.00

0.31083E+00
0.14180E+00
0.46779E-02
0.16293E-02
0.40179E-03
0.10040E-03
0.25104E-04
0.62770E-05

1.13
4.92
1.52
2.02
2.00
2.00
2.00

0.63365E-01
0.35483E-02
0.37129E-03
0.53041E-04
0.63509E-05
0.77444E-06
0.95686E-07
0.11893E-07

4.16
3.26
2.81
3.06
3.04
3.02
3.01

Table 5.6: Errors and orders of convergence of potentials for case (b) in Example 2.
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(b) x = —0.75,g=3 and z = (0.2,0.4).

Qualitatively, the order of convergence in Tables 5.3-5.6 are similar to those ob-
tained for a smooth boundary, suggesting that the mesh grading restores the rate of
convergence. In relation to the smooth potential ¢ on boundary I' in example 2, in
Table 5.3 and Table 5.5, one sees that the relative errors of piecewise linear and piece-
wise quadratic interpolation are just slightly different whether value of x is chosen to
be positive or not. In particular, the errors for the potentials in Table 5.4 and Ta-
ble 5.6 for cases of piecewise linear and piecewise quadratic boundary approximation
are quite different, but the rates of convergence of potentials hold for the predicted

value p.
e Results for a Non-smooth Potential

In all the cases above, the potential ¢ is smooth. We now consider what happens

when ¢ is not smooth at the corner point.

If a harmonic function ¢ takes prescribed continuous values on the boundary I' a

corner of angle o, the function ¢ may in general have the form
#(p,6) = Ap? sin(=0) + o, (5.3.15)

where p, 6 are polar coordinates relative to the corner, A is a constant, o = (1—x) 7

is the size of the angle of the corner, 0 < 8 < a and ¢y is a smoother term.

If x is chosen to be negative, then the derivatives of ¢ becomes infinite in mag-
nitude as p approaches to zero. Thus, it is difficult to compute ¢ accurately in this
region when such singularities arise. The book [28] gives some treatments to tackle
this problem, but they are often complicated in practice. Instead, we use singularity

subtraction and mesh grading.
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Example 3. We are concerned with the integral equation (5.3.1), and give a

specific harmonic function
#(x) = Im [(xl + i:vg)i] + €™ cos(xs) + x1 + X9, (5.3.16)
where o = (1 — x) m and x = (z;,z2) € I'. The gradient of ¢ is
1 . 1 1 1_ 1
Vo) = [~ oD sin0 — 20) + 6, ~pE cos(d — 26) + o],

where p = (/zi+123, 0 = arctan(zy/z,) € (0,0), ¢1 = e**cos(zz) + 1 and
¢ = — e"sin(z,) + 1.

The other conditions given are as same as in Example 2. We also consider different
cases when Y is positive and negative:
(a) g =3,x=0.75 and z = (0.7,0.25);

(b) g=3,x=-0.3and z = (0.2,0.6).

The results for those cases are given in Tables 5.7-5.10.

The results in Table 5.7-5.8 are again in satisfactory agreement with expectations,
even though the function ¢ is not smooth. When we take x < 0, from Tables 5.9-5.10
the convergence rates are slightly worse than when x > 0, which is not surprising in

view of the stronger singularity in the solution.
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Exact

boundary

Linear

interpolation

Quadratic

interpolation

8

16
32
64
128
256
512
1024

0.66942E+-00

0.33997E+00 0.98
0.16660E+00 1.03
0.82823E-01 1.01
0.41286E-01 1.00
0.20624E-01 1.00
0.10309E-01 1.00
0.51544E-02 1.00

0.18456E+-01

0.90973E+00 1.02
0.44312E400 1.04
0.22236E+00 0.99
0.11126E4-00 1.00
0.55641E-01 1.00
0.27822E-01 1.00
0.13911E-01 1.00

0.66831E+-00

0.33934E4+00 0.98
0.16651E+00 1.03
0.82820E-01 1.01
0.41286E-01 1.00
0.20624E-01 1.00
0.10309E-01 1.00
0.51544E-02 1.00

Table 5.7: Relative errors and orders of convergence in L? norm for case (a) in

Example 3.

N

Exact

boundary

Linear

interpolation

Quadratic

interpolation

8

16
32
64
128
256
512
1024

0.76876E-01
0.25398E-02
0.47244E-03
0.52002E-04
0.63787E-05
0.79363E-06
0.99088E-07
0.12382E-07

4.92
2.43
3.18
3.03
3.01
3.00
3.00

0.80326E+-00
0.13389E+-00
0.41585E-01
0.10286E-01
0.25697E-02
0.64217E-03
0.16051E-03
0.40122E-04

2.58
1.69
2.02
2.00
2.00
2.00
2.00

0.78638E-01
0.30525E-02
0.51181E-03
0.56977E-04
0.67070E-05
0.81551E-06
0.10062E-06
0.12499E-07

4.69
2.58
3.17
3.09
3.04
3.02
3.01

Table 5.8: Errors and orders of convergence of potentials for case (a) in Example 3.
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Exact

boundary

Linear

interpolation

Quadratic

interpolation

8

16
32
64
128
256
512
1024

0.46071E+-00

0.22233E+00 1.05
0.11179E400 0.99
0.56514E-01 0.98
0.28711E-01 0.98
0.14657E-01 0.97
0.75225E-02 0.96
0.38844E-02 0.95

0.11886E+01
0.59798E+-00
0.30468E+-00
0.15464E+-00
0.78653E-01
0.40164E-01
0.20615E-01
0.10645E-01

0.99
0.97
0.98
0.98
0.97
0.96
0.95

0.46024E+-00

0.22206E+00 1.05
0.11177E+400 0.99
0.56513E-01 0.98
0.28711E-01 0.98
0.14657E-01 0.97
0.75225E-02 0.96
0.38844E-02 0.95

Table 5.9: Relative errors and orders of convergence in L? norm for case (b) in

Example 3.

N

Exact

boundary

Linear

interpolation

Quadratic

interpolation

8

16
32
64
128
256
512
1024

0.28599E-01
0.12051E-02
0.38369E-03
0.41168E-04
0.50976E-05
0.63891E-06
0.80525E-07
0.10210E-07

4.57
1.65
3.22
3.01
3.00
2.99
2.98

0.27114E+01
0.10191E+00
0.23674E-01
0.59306E-02
0.14799E-02
0.36971E-03
0.92401E-04
0.23097E-04

4.73
2.11
2.00
2.00
2.00
2.00
2.00

0.18902E-01
0.38863E-02
0.40437E-03
0.38245E-04
0.49119E-05
0.62709E-06
0.79776E-07
0.10162E-07

2.28
3.26
3.40
2.96
297
297
297

Table 5.10: Errors and orders of convergence of potentials for case (b) in Example 3.
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Appendix: Evaluation of Some Integrals

Evaluating F has been discussed in the section 5.1. We now deal with the ana-

lytical computation of the first term of (5.1.2),

log(b / / (s,t)dsdt, (5.3.17)

1 1
/ / log |s — ¢ P(s, ) ds dt, (5.3.18)
0 0

the first term of E}Q],

and the first term of Eﬁ],

/0 /0 log (Jm,(1)(s — 1) — m(0)¢]) P(s, ) ds dt, (5.3.19)

where P(s,t) = [Fi(s)F;(t)],«; j<, and b is a constant. Actually, it is straightforward
to compute (5.3.17) and (5.3.18), but some strategies will be used to compute (5.3.19).

For brevity, we use the notations
a=m; (1), b=mj(0), a,b € R?
to rewrite (5.3.19) as

1,1
F(a,b) = /()/ologl(l—s)a—%—tbl P(s,t)dsdt.

We shall discuss three cases where a and b are of different values.

1. If a=0, then

1 1
F(0,b) = /O /0 log |tb| P(s,t) ds dt

1 1 1 1
= log|b|/ / P(s,t)dsdt+/ / logt P(s,t)dsdt.
0o Jo o Jo
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2. If b= 0, then
1 gl
F(a,0) = / / log |(1 — s)a| P(s,t) ds dt
° ° 1 1 1 1
= log |a|/ / P(s,t)dsdt +/ / log(1 — s) P(s,t)dgdt.
0 0 0 0
3. Ifas# 0and b # 0, then

1 1
F(ab) = /O/Ologlsa+tb| P(1—s,t)dsdt
= F;(a,b)+Fsy(a,b),

where

1 1
F, (a,b) = / / log |sa + tb| P(1 — s,t)dtds,
0 Js

1 s
F,(a,b) = / / log |sa + tb| P(1 — s,t) dt ds.
0 0
We take s = tz, then
Fl (a’ b)

1 t
= //log|sa+tb| P(1—s,t)dsdt
01 01
_ //loglt(za+b)| P(1 - to, )t dz dt
0 0

1 1 1 1

= //tlogtP(l—t:c,t)dmdt+//tlog|xa+b|P(1—tm,t)dmdt,
o Jo o Jo

and

Fg(a,b)

1 s
= //log|sa+tb| P(1 —s,t)dtds
01 01
_ / / log |sa + tb| P(1 — s, ¢) ds dt
01 tl
_ / / log |sa + tb| P(1 — t, s) dt ds
01 sl . )
= //tlogtP(l—t,tx)dmdt+/ / t log |zb + a| P(1 — t,tz) dx dt.
0 0 0 0
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We firstly select {Py,..., P} as a basis of the test space of piecewise constant

functions, that is, r = 1 and P(s,t) = 1. We obtain,

log(b) /01 /01 P(s,t)dsdt = log(b),

and
/Ol/ollog|s—t| P(s,t)dsdt = —=
For (5.3.19),
F (0,b) =log|b| — 1,
F (a,0) =logla| + 1,
and
F;(a,b) = / / t logtdmdt+/ / t log|za + b| dz dt
= _Z+ 2/ log |za + b| dz.
Furthermore,
(zay + b1)* + (zaz + b)) = |a|*z® +2]a] |b| cosfz + |b|?
= (|a] z + |b| cos8)? + (|b| sin §)?
with
a-b
cosf = fal o]

Let u = |a] z + |b| cos@ and ¢ = |b| sin 6, we have

1
/ log |za + b| dz
0

11 |al+|b| cos@ ( ) )
= - log (u” + ¢) du
2 |a| |b] cos @ )

1

1
2 al [G (|a] + |b| cos b, |b| sinf) — G (|b| cos¥, |b| sinb)],
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where

G(u,c)

/ log (u2 + c2) du

= u log (u2 + c2) — 2u + 2c arctan (%) .

On other hand, we have

F;(a,b) = //tlogtdmdt+/ / t log |zb + a| dz dt

= Fl(ba

Finally,

F (a, b) = F1 (a, b) + F1 (b, a)

1 1/t 1/t
= ——+—/ log |za + b| d:v+—/ log |zb + a| dx
2 2/ 2 Jo
for |a| # 0 and |b| # 0.
If the basis {Py,..., P} spans the space of piecewise linear functions, that is,

r=2,and Pi(s) =1 — s and P,(s) = s, then

Pls.0) = [(1—3)(1—t) (1—s)t].

s(1-1t) st

We have, for (5.3.17),

1 1 1 11
log(b) / / P(s,)ds dt =  log(t ,
0 0

for (5.3.18),

/ / log |s — t| P(s,t)dsdt = —— ,
o Jo 16 | 5 7
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and for (5.3.19), if a =0, then

F(0,b)

11 /1/1 llog(t)(l—s)(l—t) log®) (1 -9t |

1
= - log|b| +
4 log(t) s (1 —t) log(t) st

1 bl 11 1131
:—Og _— - y
4 11 83 1

and if b = 0, then

F (a,0) ]
1 11
—Zloglal E 1]
11 [ log(1—s) (1—s)(1—t) log(1—s)(1—s)t
dsd

+/0/0 | log(1-s)s(1-1) log(1 —s) st } t
1, (11] 111
“qlel 11| 8|33

For the general case |a| # 0 and |b| # 0, the piecewise linear functions in the basis

of boundary element space P;(s) times P;(t), i,j = 1,2, is

(t—t)z t?x ]

Q1-t)+E -tz t—t2z

P(1—tz,t) = l
hence,
1 1
Fi(ab) = / / t log(t) P(1 — tz, t) da dt
o
+/ / t log |za+ b| P(1 — tz,t)dz dt
o Jo

1 [ 7 9 ] N [du(a,b) dys(a, b)

1 , (5.3.20)
288 [ 33 97 d2 (a, b) d22(avb)]
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where

1 1
di (a,b) = / (t2 —t) dt/ z log |za + b| dz
0 0

1

1
= ) z log |za + b| dz,

di2(a,b) = /t3dt/ z log |za + b| dz

= —/xlog|xa+b|dm
4 Jo

ds (a,b) = // (t —t%) 10g|xa+b|d:vdt+// t?) z log |ra + b| dz dt

= 6/10g|xa+b|dw——/:clog|ma+b|dz

and

1 1 1 1
dy (a,b) = /0/0t2log|xa+b| dxdt—/o /0 3z log|za + b| dz dt

1 1
= %/ log|xa+b|dx—%/ zlog|za + b| dz.
0

0

Recall that we let u = |a| z + |b| cos€ and ¢ = |b| sin 8, therefore,

1
/ z log|za + b| dz
0

1
= / z log [(|a| = + |b] cos )’ + (|b| sin6?)2] dx
0

11 [lal+lblcoss ( u  |b| cosé
|al |al

) log ('u2 + 02) du

- 2 |a| |b| cos @

11

1
= 3%r 5 [H (|a] + |b| cos 8, |b| sinf) — H (|b| cos¥, |b| sin6)]
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1 |b| cosé
2 |af

[G (|a] + |b| cos 8, |b| sin8) — G (|b| cos, |b| sinb)],
where
H(u,c) = /ulog (v + %) du

1 1
= 3 (u® + ¢*) log (u? + ¢?) — iuz— ~c2
In addition, let ! = |a| + |b| cos@® and m = |b| cosf, then the elements of the

second matrix in (5.3.20) are expressed as following:
1 1 m

i o) = g 7 (H(,6) = Hm, ) 755 (G, 6) = Giom, )

ha () = § 3 [H(10) ~ Hlm,6)) — 5 705 (G, €) = Glm, )

o (a5) = =5 7 (A1) = Hom, )]+ (5 T + 35 ) [60.6) = Glm, )
and

dn (ab) = — l 1|2 (H(L,c) — H(m,c)] + (; ot : |1I> (G(l, ) - G(m, ).

For F; (a, b), the multiplication of the piecewise linear functions in basis of test

t—t2x t?x
P(1—t,tzx) = ,

space likes

Q-t)+@EB -tz t-t)z

we apply the same manner of discussing as F; (a, b), F; (a, b) is obtained as

1 27 9 d22 (b, a) dig (b, a)
Fy(a,b) = ——— .
0= "2 !33 7} " [dm (b,a) di (b,a) ]
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In fact, the exact result in (5.3.19) has been obtained analytically for r = 2 as

follows:

F(a,b) = —

1 17 9 + dn (a, b) + d22 (b, a) d12 (a, b) + dys (b, a)
144 33 17 d21 (a, b) + d21 (b, a) d22 (a, b) + dn (b,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>