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Simulation of gas turbine blade vibration measurement 

from unsteady casing wall pressure 

Gareth L Forbes, Robert B Randall 

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia 

ABSTRACT 

Non-contact measurement of gas turbine blade vibrations has made significant progress over recent years; however, 

there still exist some limitations in the current techniques available. Specifically with blade tip timing (BTT) meth-

ods, some of the limitations are: the requirement of a large number of sensors for each engine stage, difficulties in 

dealing with multiple excitation frequencies, and sensors being located in the gas path. An alternative technique is 

examined here, utilising the unsteady casing wall pressure, which has the potential to rectify some of these limita-

tions. Analytical simulation of the internal casing wall pressure is derived, for the situation with rotor blades undergo-

ing forced vibration. The amplitude of the blade forced vibrations is then reconstructed from the simulated unsteady 

casing wall pressure, with results showing the robustness of the method to sensor location, measurement noise and a 

limited number of sensors. 

INTRODUCTION 

Gas turbine blade vibration measurement is motivated by the 

desire to acquire two principal pieces of information, either 

the blade’s forced vibration magnitude and frequency, or to 

estimate the modal parameters of the blade. The impetus for 

this information is generally driven, respectively, by the need 

for knowledge of high cycle fatigue (HCF) estimates for 

blade life, or the use of blade modal parameter values for 

condition monitoring of the blades. 

Measurement of blade vibration can be done directly with the 

attachment of strain gauges to the blade surface, however the 

attachment of sensors to all blades is never desirable, and is 

certainly not practical outside of the design stage. This is due 

not only to the cost of instrumenting each blade, but also 

because of the complexities of bringing the measured signals 

to an external monitoring device. This needs to be done either 

with the use of slip rings or using a wireless telemetry sys-

tem. Strain gauges are also located on the working engine 

surface areas such that they affect the aerofoil surface, and 

are exposed to the harsh internal engine environment, this not 

being conducive to sensor longevity. 

Such are the difficulties of direct measurement of blade vi-

bration, non-contact blade vibration measurement has been 

sought, with BTT methods showing the most promise and 

receiving research attention since the 1970’s. Despite the 

promise of BTT methods they are still not without limitations 

or shortcomings four decades after their initial use. BTT is 

used in two different formats, being: 

(i) Indirect methods where the blade displacement is meas-

ured while the engine speed is swept over a range such 

that a blade excitation frequency traverses a blade mode 

natural frequency. Estimates can then be made of the am-

plitude and natural frequency of the mode that is being 

excited. This was the original method of BTT, which 

used a single probe. A more recent advance in indirect 

measurement is the two parameter plot method developed 

by (Heath, 2000). 

(ii) Direct BTT methods require constructing the sinusoidal 

forced displacement of a blade from the use of four or 

more probes. This method fits a sine wave to the meas-

ured data, with various methods of least square estimates 

of the fit used to minimise the effect of noise as is out-

lined by (Carrington et al., 2001). Also highlighted in 

(Carrington et al., 2001) was the effect that the spacing of 

the probe location, PSR, has on the sine wave it is able to 

estimate; for instance it was shown that if all probes were 

located within less than 30% of the wavelength of the fit-

ted wave, poor data fits can be expected. To counteract 

the effect of the PSR, more than the minimum of four 

probes are used in more recent evolutions of this method. 

Some recent work which has shown the use of BTT 

methods to predict the displacement of blades, as com-

pared to strain gauge measurements, is that of (Knappett 

and Garcia, 2008). This work showed that the estimated 

blade displacement from eight optical probes was in very 

good correlation with extrapolated strain gauge meas-

urements applied to an FE model of the blades, for a sin-

gle dominant excitation frequency, known in advance, 

and with well separated modes. 

Another interesting recent alternative for non-contact meas-

urement of blade vibrations is the use of a radar probe located 

in the casing periphery shown in the work of (Platt and 

Jagodnik, 2009). Good correlation was shown in the results 

when compared to strain gauge measurements on an experi-

mental test engine. However, this technique, to date, is lack-

ing in the presentation of sufficient technical detail to be able 

to follow up the results. 

It was recently proposed by (Forbes and Randall, 2007) that 

blade vibration would have an effect on the casing wall pres-

sure. Here, a simulated blade natural frequency was estimated 

by varying the rotation speed such that the blade excitation 

traversed the blade natural frequency and observing the in-

crease in casing wall pressure frequency at harmonics of 

shaft speed. Unsteady casing wall pressure measurements 

have been used before this in an attempt to correlate blade 

condition with the pressure profile surrounding the blade, as 

in the following works (Mathioudakis et al., 1991, Dedoussis 

et al., 1994, Aretakis et al., 1998, Stamatis et al., 1997). This 

previous work had success in finding blade faults which af-

fect the geometric periodicity of the blade passage pressure, 

such as a twisted blade. This causes changes in both the time 

passage of pressure past a certain measurement point and also 
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increases discrete harmonics of shaft speed in the pressure 

spectrum. Fault signatures were developed for a commercial 

gas turbine with seeded faults in (Mathioudakis et al., 1991). 

Some numerical analysis with increasing complexity was 

also shown to be able to deduce changes in the unsteady cas-

ing wall pressure and provide reliable fault signatures in (De-

doussis et al., 1994, Aretakis et al., 1998). Adaptive fluid 

dynamic modelling was eventually found to be able to predict 

the actual cascade geometric shapes from measured pressure 

signals producing reasonable estimates of blade altered ge-

ometry. 

It is proposed in the work presented here that the pressure at 

the casing wall surface not only contains information about 

the static pressure profile around the blade, but the blade 

motion itself will alter the rotating pressure profile, such that 

the static pressure profile will follow the blade motion and 

will modulate the pressure profile of a blade. It is the phase 

demodulation of this pressure that will be able to give a 

measure of the blade motion amplitude at a given excitation 

frequency. Exploiting this change in casing wall pressure at 

harmonics of shaft speed, due to blade vibration, can then-

provide an alternative to BTT methods. It will be shown that 

this alternative has the potential to overcome the limitations 

on the number of sensors needed, and robustness to meas-

urement noise. With some further work, it could be extended 

to the replacement of the pressure sensors with external cas-

ing accelerometers, then reducing any need for the sensor to 

be placed in the gas flow path. 

BLADE PRESSURE PROFILE AND BLADE 
MOTION 

If a blade is excited by one single dominant discrete fre-

quency, then the motion of the blade tip for the ‘rth’ blade can 

be stated, without lose of generality, as: 

( ) sin( ( ) )
r k k

x t X k t γ= Ω +  (1) 

For the case of synchronous vibration in a gas turbine, ‘k’ is a 

positive integer and is often referred to as the engine order of 

excitation. If the blades have well separated modes and the 

excitation lies relatively close to one of the natural frequen-

cies then 
k

X  and 
k

γ  can found from the solution of the 

forced vibration of the single degree of freedom system for 

the mode of interest. 

With the assumption that the time averaged pressure profile 

around any blade is constant, the pressure profile around any 

blade can be described by a harmonic series, given by: 

[ ( ) ]

0

Re r iji t

r i

i

P A Pe
θ α γ

∞
+Ω + +

=

 
=  

 
∑  (2) 

Where 1j = −  and 
i

A  and 
i

γ  are the amplitude and phase 

of the corresponding Fourier series. It is seen that equation 

(2) is a rotating wave form of any shape depending on the 

selected Fourier series co-efficients of 
i

A , 
i

γ  and initial 

phase offset of 
r

α . For instance in Figure 1 a pressure pro-

file shape is plotted, consisting of a raised cosine which spans 

one half blade spacing before and after each blade, for 6 rotor 

blades. 

If we now make the assumption that the pressure profile 

around one blade follows the motion of that blade when it 

vibrates around its equilibrium position, then the pressure 

profile for the ‘rth’ blade will be modulated by the blade mo-

tion ( )
r

x t  such that the pressure profile can now be written 

as: 

[ ( ) ( ) ]

0

Re r r iji t x t

r i

i

P A Pe
θ α γ

∞
+Ω + + +

=

 
=  

 
∑  (3) 

 

 

Figure 1 Schematic of simple first harmonic pressure dis-

tribution for a 6 bladed arrangement without blade motion 

If we implement the Laurent power series expansion of an 

exponential function in terms of Bessel functions: 

( )2 1
( )

x t t n

n

n

e J x t
∞

−

=−∞

= ∑  (4) 

then it can be seen that 
r

P  is in the form of equation (4), 

such that 
r

P  can now be written as: 

( )[ ( ) ] [ ( ) ]

0

Re r i kji t jn k t

r i n k

i n

P A Pe J iX e
θ α γ γ

∞ ∞
+Ω + + Ω +

= =−∞

 
=  

 
∑ ∑  

 (5) 

Now taking the real part for all harmonics 

0

( ( ) )
( ) cos

( ( ) )

r i

r i n k

i n k

i t
P A PJ iX

n k t

θ α γ

γ

∞ ∞

= =−∞

+ Ω + + 
=  

+ Ω + 
∑ ∑  (6) 

As the measured pressure at the casing wall, mathematically 

represented in equation (6), is a phase modulated signal, then 

phase demodulation would result in obtaining information 

about the modulating frequency i.e. ( )
r

x t  and the tip deflec-

tion 
k

X . However, a signal of the type as in equation (6) 

violates some assumptions for conventional demodulation 

techniques. For conventional phase demodulation the maxi-

mum modulation frequency must be at least less than half the 

carrier frequency to avoid aliasing. It can be seen that for the 

internal pressure signal this assumption will never be satis-

fied as multiple carrier frequencies exist at harmonics of shaft 

speed with the modulating frequency itself also a multiple of 

shaft speed. How to overcome the aliasing and demodulation 

of a signal of this type will be shown in the next section. 

r
α

Ω
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PRESSURE SIGNAL DEMODULATION 

If we look at the special case of k = s, where s is the number 

of stator blades, and 0
k

γ = , therefore:  

spf
k s ωΩ = Ω =  

For illustration, if we also limit i < s then we can see the 

spectrum of the pressure signal will be a sum of discrete 

harmonics of ‘i’ with sets of sidebands at ±  
spf

ω . For in-

stance the frequency at Ω  will be made up of a component 

from Ω  and ( 1)
spf

s ω− − Ω + , see Figure 2. 

1

2

s−1

i

Ω+3ω
spfΩ−3ω

spf

Ω+2ω
spf

frequency

Ω−2ω
spf

Ω+ω
spfΩ−ω

spf

Ω

 
Figure 2 Discrete spectrum for carrier frequencies ‘i’ and 

modulating sidebands ±  
spf

ω . 

Values of the measured pressure signal spectrum can be 

taken at frequency locations of , ,
spf spf

ω ωΩ − Ω + Ω  , these 

being respectively 
1 1 1
, ,

s s
y y y

− + . 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 0 11

1 1 1 01

1 1 1 21

1

1

1

s ss

s s ss

s s ss

y A PJ X A PJ s X

y A PJ X A PJ s X

y A PJ X A PJ s X

−−

− − −

+ −−

= + −  

= + −  

= + −  

 (7)-(9) 

( )1 1
, , ss

A P A P X
−

 are all unknowns. Now writing equations 

(7)-(9) in matrix form: 

=y Dx  (9)(10) 

[ ]1 1 1

T

s s
y y y

− +
=y  

( )

1

1s

A P

A P
−

 
=  
  

x  (11)-(12) 

( ) ( )

( ) ( )

( ) ( )

0 1

1 0

1 2

1

1

1

s s

s s

s s

J X J s X

J X J s X

J X J s X

−

−

−

 −  
 

= −   
 

−    

D  (13) 

Although (10) is not linear, it is linear for any value of 
s

X  

and can be solved by the linear least squares optimization of 

the over-determined system of equations (11)-(13). The esti-

mate for the unknown co-efficients at any value of 
s

X  is 

given by, in the least squares sense: (Handel, 2000) 

( )ˆ =
-1

T T
x D D D y  (14) 

To find the optimal value of 
s

X  to fit the system of equa-

tions the non-linear least squares grid search is undertaken to 

maximise ( )g x  (Handel, 2000), where  

( ) ( )g x =
-1

T T T
y D D D D y  (15) 

A signal, of the type expressed in equation (6), that does not 

conform to the general requirements of conventional phase 

demodulation is therefore able to be demodulated with a non-

linear least squares grid search fit of the spectrum. 

General solution 

For generality the phase offset angle, 
k

γ , of the driving fre-

quency cannot be assumed to be zero, but will also be an 

unknown parameter; this causes the solution of the least 

squares non-linear grid search to be a function of two pa-

rameters, being 
k

X  and 
k

γ . 

In general, the co-efficients and angle of the spectrum at the 

‘tth’ multiple of shaft speed can be shown to be: 

( )
( ) ( )

( ) ( )

max

0

cos
Re

sin

z
e h k k

t

z e h k k

A PCJ eX abs h
y

A PSJ eX abs h

γ

φ γ=

     
=  

−     
∑  (16) 

( )
( ) ( )

( ) ( )

max

0

cos
imag

sin

z
e h k k

t

z e h k k

dA PCJ eX abs h
y

dA PSJ eX abs h

φ γ

γ=

    
=  

+     
∑ (17) 

where 
max

z  is the number of columns in D  and 

( )

( )

( )

( )

( )

( )

cos

sin

1
mod , 0

( ) /

1
mod , 0

( ) /

1

0

0

0

sign

sign

r

r

C e

S e

e z
t z k

h t z k

e z
t z k

h t z k

e z
t z

h

e
else

h

h

d e hk

α

α

φ

=

=

= −
− = 

= −

= −
+ = 

= − +

= −
= 

=

=


=

=

= +

 

PRESSURE SIGNAL DEMODULATION WITH 
LIMITED FREQUENCY CONTENT 

Observing equation (13) it can seen that in order to solve the 

least squares problem the number of columns in D  must be 

greater than the number of rows, or in other words the 

amount of observable measurements in equation (11) must be 

large enough that the last observable measurement contains 

no information from the carrier frequencies. If we now intro-

duce a small amount of white noise to the signal, SNR = 80, 

see Figure 3, then the sidebands begin to be buried in noise 

by the 20th shaft speed harmonic. In reality, the number of 

carrier harmonics may not only be significantly larger than 

the amount of shaft speed harmonics not affected by noise 

but their number is also unknown. 
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As the introduction of noise is unavoidable, some way of 

using only the initial shaft speed harmonics, which are much 

less noise affected, is needed. This can be done by exploiting 

the signal from another measurement location at a 90 degree 

offset from the first. Adding the initial signal with another 

signal at a 90 degree offset will then create a new pressure 

signal, ˆ
r

P , with every fourth shaft speed harmonic removed, 

starting at the second harmonic i.e. i = 2, 6,10 etc. see equa-

tion (20). This can be explained with a simplified example. 

Creating a signal with the parameters given in Table 1, if we 

consider all harmonics of shaft speed up to the largest carrier 

frequency harmonic, in this case 24, then the size of D  will 

have to have 24 columns and at least 25 rows, shown in equa-

tion (23). Reconstructed in equation (18) are the contribu-

tions to the casing wall pressure spectrum at the zero fre-

quency. 

Table 1 Parameter values for example 1, using a limited 

frequency range for demodulation. 

s
X  

(rad) 
s b 

max ‘i’ 

carrier 

harmonics 

r
α  

(rad) 

k
γ  

(rad) 

Ω  

(Hz) 

0.01 6 7 24 
19

π
 0 10 

0 50 100 150 200 250 300 350
200

210

220

230

240

250

260

270

280

290

300

frequency (Hz)

p
re

ss
u

re
 m

ag
n

it
u

d
e 

d
B

 r
el

. 
1

E
−

1
2

 

 

SNR = Inf

SNR = 80

 

Figure 3 Spectrum of the casing wall pressure with values 

from Table 1. 

( ) ( )

( ) ( )

1 6

2 12 3 18

0 6

12 18 ...

o o s o s

s s

y J X A P J X A P

J X A P J X A P

−

− −

= +

+ +
 (18) 

For the above example 

6 12

18

0.03A 0.0018A

0.00012 ...

o o
y A P P P

A P

= − +

−
 (19) 

It is evident that the influence of increasing carrier harmonics 

becomes increasingly insignificant, and the rate at which  

increasing carrier harmonics become insignificant is a func-

tion of the magnitude of 
s

X . If we truncate the series so that 

only the first 10 carrier frequencies are taken into account, 

this allows for at least the first two terms in the series to be 

present, and also taking measurements at the first 10 shaft 

speed harmonics, then we will now have a 10 x 10 square 

matrix, D . For the system to be solved, as previously, then 

the system needs to be over-determined, so some columns 

need to be removed. It is seen that if we add a version of the 

signal measured at a 90 degree offset to the original this will 

remove the all the contributions at the 2, 6, 10, 14 etc shaft 

speed harmonics, therefore removing columns 2 and 6 in this 

example. This creates a new set of equations to be solved, D̂  

and x̂ , see equations (24) - (27), which are now over-

determined and can be solved, as previously, in the least 

squares sense to estimate 
s

X  from only the first 10 shaft 

speed harmonics. It should be noted that if the modulating 

frequency is a multiple of 4, then both the columns and rows 

that are multiples of 4 will be removed, such that the system 

of equations will not be over-determined and can not be 

solved in the least squares sense. If a probe was spaced at 

another location, say a 60 degree offset, then the same 

method could now be used for a modulating frequency with a 

multiple of 4, with deletion of every sixth row creating an 

over-determined system of equations again. 

( ) ( ) ( )( )

( ) ( ) ( )( )

0

/2

0

ˆ Re
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r i k

ji t jn s t

i n s
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P

A Pe J iX e

α γ γ

π α γ γ
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Ω + +  Ω + 

= =−∞
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+Ω + +  Ω + 

= =−∞

 
 
 

=  
 +
  

∑ ∑

∑ ∑
 (20) 
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=  
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D

⋯

⋯
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⋯
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                 (23) 

ˆ ˆy = Dx  

( )

( )

0

9

Re

Re

y

y

 
 

=  
  

y ⋮  (24)-(25) 

[ ]1 3 4 5 7 8 9
ˆ

T

o
A P A P A P A P A P A P A P A P=x

 (26) 
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 (27)

ADAPTIVE GRID REFINEMENT 

For the above example the estimates of the blade tip deflec-

tion converge as shown in Table 2 and in Figure 4, it can be 

seen that convergence is reached when the grid had 1024 

points, although at all times the answer was at the closest grid 

point to the solution. Obviously the accuracy, at best, is only 

ever going to be within half a grid spacing, therefore the 

spacing should be small around the solution to give better 

accuracy but does not need to be so fine away from the solu-

tion for efficiency. An adaptive grid scheme is therefore im-

plemented, which splits the parameter space into a specified 

number of segments, where the number of solution points is 

one greater than the number of segments. The least squares 

gird search algorithm is then run so that a solution estimate is 

found. The parameter space is now split into the same num-

ber of segments, except that now the upper and lower bounds 

on the parameter space is given by the two grid points adja-

cent to the current solution. This is shown in the schematic in 

Figure 5, with a solution grid of five points across the pa-

rameter space of 0:0.2. The actual solution is shown by the 

square. The least squares solution for the given grid spacing 

is shown by the diamond for each grid refinement. 

Table 2 Estimates of 
s

X  for decreasing grid size. Grid is 

taken from 0:0.2, distance between grid points is 0.2/(grid 

spacing). 

Normalised Grid size Grid spacing Estimate of 
s

X  

1 2 0 

2 4 0 

3 8 0 

4 16 0.0125 

5 32 0.0125 

6 64 0.0094 

7 128 0.0094 

8 256 0.0102 

9 512 0.0102 

10 1024 0.01 

1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Normalised grid spacing

E
st

im
at

e 
o

f 
X

s

 

 

estimate

actual

 

Figure 4 Convergence of 
s

X  estimate for increasing nor-

malised grid spacing 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Schematic of adaptive grid refinement. Actual 

location of solution is shown by square    , the solution 

grid is given by the black nodes. The least squares solu-

tion for the selected grid is given by the diamond. 

IMPLEMENTATION WITH MORE REALISTIC 
INPUT VALUES 

If we now take a more realistic example using the values as 

given in Table 3 we can use the first 10 shaft speed harmon-

ics to estimate the modulation frequency amplitude and 

phase. The grid refinement scheme is shown in Figure 6 for 

the first three grid refinements across the parameter space for 

1st refinement 

2nd refinement 

0 0.05 0.1 0.15 0.2 

0.05 0.075 0.1 0.125 0.15 
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both 
s

X  and 
k

γ . The grid can be seen to be refining around 

the solution, with both the estimated value and the real values 

given. In Figure 7 and Figure 8 the convergence of the esti-

mates of 
s

X  and 
k

γ  is shown for more grid refinement 

iterations, in this case grid refinement is stopped after 8 itera-

tions. It can be seen that the estimate for 
s

X  converges on 

the actual value, as shown. However, the value for 
k

γ  con-

verges on an off-set value, and thus contains a bias. A bias is 

generally observed for all the estimates 
k

γ  however the bias 

does not seem to have any significant impact on the estimate 

for 
s

X  and as 
k

γ  is not actually needed in these results, this 

bias does not seem to pose a problem. 

Table 3 Parameter values for example with more realistic 

input values. 

s
X  

(rad) 
s b 

max ‘i’ 

carrier 

harmonics 

r
α  

(rad) 

k
γ  

(rad) 

Ω  

(Hz) 
SNR 

0.01 6 19 48 
19

π
 

7

π
 10 ∞  

Some more simulations were run with additional values for 

SNR, see Figure 9 - Figure 11, for the parameters given in 

Table 3. Results are also shown for differing values of 
k

X  

and SNR, holding all the other parameters the same, as 

shown in each figure. The results show in general for SNR ≥  

3, 
k

X  is estimated within a 15% error for values of 
k

X  = 

0.01. For greater values of 
k

X , the estimate can be given 

with a smaller error for more noisy data, see Figure 12. Con-

versely smaller values of 
k

X  will be less predictable in less 

noisy data, Figure 13. 
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Figure 6 Estimates for 
s

X  and 
k

γ  for grid refinement up 

to 0.0031 and 0.0491 respectively. 
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Figure 7 Convergence of 
s

X  estimate for increasing 

normalised grid spacing with parameters from Table 3. 

Actual value of 
s

X  as shown. 
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Figure 8 Convergence of 
k

γ  estimate for increasing nor-

malised grid spacing with parameters from Table 3. Ac-

tual value of 
k

γ  as shown. 
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Figure 9 Convergence of 
k

X  estimate for increasing 

normalised grid spacing with parameters from Table 3 

with increasing SNR as shown. Actual value of 
k

X  as 

shown. 
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Figure 10 Spectrum of pressure signal with parameters 

from Table 3 and SNR = 3.1. 
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Figure 11 Time record of pressure signal with parameters 

from Table 3 shown is the noise free case and with a SNR 

= 3.1. 
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Figure 12 Convergence of 
k

X  estimate for increasing 

normalised grid spacing with parameters from Table 3, 

with modified 
k

X  as shown, and with increasing SNR as 

shown. 
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Figure 13 Convergence of 
k

X  estimate for increasing 

normalised grid spacing with parameters from Table 3, 

with modified 
k

X  as shown, and with increasing SNR as 

shown. 

CONCLUSIONS 

Simulated internal pressure signals from a gas turbine with 

the inclusion of blade vibration, has been presented along 

with a novel method of demodulating the casing wall pres-

sure to estimate the blade vibration amplitude given a known 

single dominant driving frequency with well separated blade 

modes. The method has shown, with the simulated values, a 

robustness to noise for small blade deflection values.  

Some of the limitations currently on BTT methods have been 

shown to be removed with measurement of the casing wall 

pressure. Only a limited number of sensors is needed, and 

there is no limit on the probe spacing ratio. Some further 

research enabling the pressure measurements to be replaced 

with the measurement of casing vibrations would also allow 

the sensors to be located outside of the gas path, providing 

significant advantage. 
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