
Regression models for correlated binary data

Author:
Chan, Jennifer S. K.

Publication Date:
1996

DOI:
https://doi.org/10.26190/unsworks/7842

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/62434 in https://
unsworks.unsw.edu.au on 2024-05-02

http://dx.doi.org/https://doi.org/10.26190/unsworks/7842
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/62434
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


REGRESSION MODELS FOR 
CORRELATED BINARY DATA 

by 

Jennifer S.K. CHAN 

Submitted to the University of New South Wales 

for the degree of Doctor of Philosophy. 

Submitted May, 1996 



Contents 

Abstract 

Acknowledgements 

Declaration 

1 Introduction 

1.1 Background 

1.2 The data .. 

1.3 Model development 

1.4 The covariates . . . 

2 Marginal and conditional logistic models 

2.1 The models .......... . 

2.1.1 Marginal logistic model . 

2.1.2 Conditional logistic model 

iv 

vi 

vii 

1 

1 

3 

4 

10 

12 

12 

13 

14 

2.2 Comparsion of marginal and conditional logistic models . 16 

2.3 Numerical results .. 17 

3 Random effects model 19 

3.1 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

3.1.1 Random intercept model using MLE and Gaussian quadra-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

i 



CONTENTS 11 

3.1.2 Random intercept model using approximate MLE and 

approximate REML . . . . . 23 

3.1.3 Random coefficients model . 24 

3.2 Numerical results . . . . . . . . .. 

4 Mixture model with 2 or more latent groups 

4.1 The models ... 

4.2 Numerical results 

4.3 Discussion .... 

5 Bivariate binary model 

5.1 The models .............. . 

5.1.1 Bivariate autoregressive model . 

5.1.2 Bivariate mixture model 

5.2 Numerical results ....... . 

25 

27 

27 

29 

30 

31 

31 

32 

33 

35 

6 Probit-linear mixed model using MLE 38 

6.1 The model . . . . . . . . . . . . . . . . 38 

6.1.1 Maximum likelihood estimation 41 

6.1.2 The Monte Carlo EM algorithm . 44 

6.1.3 Monte Carlo approximation of the observed information 

matrix . . . . . . . . . . . . . . . . . . 46 

6.1.4 Accounting for Monte Carlo variation . 48 

6.2 Models for the salamander mating data . . . . 49 

6.2.1 A probit linear model with correlated random effects 51 

6.2.2 A probit linear model with species specific random effects 53 

6.3 Extension . . . . . . . . . . . . . . . . . 

6.3.1 Extension to autocorrelated error 

6.3.2 Extension to multivariate clustered binary data 

55 

55 

59 



CONTENTS 

A Derivatives of log-likelihood for bivariate model 

Table 

Bibliography 

lll 

61 

65 

78 



iv 

Abstract 

We develop statistical models to describe the complex events in methadone 

treatment and study how treatment factors influence the outcome of treatment. 

The analysis is based on records of drug users who were under methadone 

maintenance at a single clinic in Western Sydney in 1986. Outcome measures 

are screens which are recorded as positive or negative for heroin and benzodi­

azepines use and are measured by urine testing performed once a week. The 

statistical models used for such problem fit into the context of binary regres­

sion. Because more than one drug is tested on each occasion, the problem 

ultimately becomes a multivariate binary regression problem. 

Since the data we consider are repeated measurements over time, they are 

highly correlated. To account for the serial correlation, we fit two types of 

fixed effects models: the conditional logistic model via the maximum likeli­

hood approach and the marginal logistic model via the generalized estimating 

equation approach. Furthermore, to account for the between-subject varia­

tion and intra-subject correlation so that we can devise a more patient specific 

policy for the methadone program, we consider various types of random ef­

fects models: the random intercept model using Gaussian quadrature and the 

method of McGilchrist {1994) for approximating the MLE and the residual 

MLE; the random coefficients model using the method of Stiratelli, Laird & 

Ware (1984) and the mixture model using the EM algorithm. 

As multiple drug use is common among the methadone clinic patients, 

we extend our models to bivariate data so that we can study the effect of 

methadone treatment in reducing multiple drug use. In the model, the logit of 

the probabilities of both type of drug use as well as their log odds ratios are 

simultaneously modelled as linear in some covariates and previous outcomes 



V 

and this model is further extended to accomodate mixture effects. 

We consider primarily the logit link under which e/3 can be interpreted as 

an odds ratio. The probit link, however does offer some advantages when it 

comes to maximum likelihood estimation via the EM algorithm. In the final 

chapter, we extend the probit-linear mixed model of McCulloch (1994) to allow 

for correlated random effects. 
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Chapter 1 

Introduction 

1.1 Background 

In recent years, there has been a resurgence for the support of methadone 

maintenance programs in many countries as studies have revealed its contri­

bution in reducing the risk of HIV among injecting heroin users in treatment. 

Associated with this expansion of methadone maintenance, there is a growing 

research interest in trying to identify the factors that contribute to effective 

methadone treatment. 

A major component of the research is the statistical analysis of a large set 

of methadone clinic data provided by Dr. James Bell, Director of the Drug and 

Alcohol Unit, Prince of Wales Hospital. The proposed research is to develop 

and apply a systematic analytic tool which extracts from the data information 

in appropriate form in order to evaluate the methadone treatment from various 

perspectives. 

1 
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This analysis is based on records of drug users who were under methadone 

maintenance at a single clinic in Western Sydney in 1986. Outcome measures 

are drug use of heroin and benzodiazepines as measured by urine testing per­

formed once a week, on a day determined at random. Screens were recorded 

as positive or negative for each type of drug use. The statistical models used 

specifically for such problems fit into the context of binary regression since 

the response variables are the urine tests which result in either a positive or 

negative outcome. Because more than one drug is tested on each occasion, the 

problem ultimately becomes a multivariate binary regression problem. 

In the context of a generalized linear model, the probability of a positive 

response, when transformed by a suitable link function 1/J, is a linear function 

of the covariates. In matrix form, the model is 

1/J(P) = r, = X/3 

where T/ is a n x 1 vector of transformed mean response, {3 a p x 1 vector of 

fixed effects and X an n x p design matrix. Here n represents the total num­

ber of observations and p the number of regression coefficients in the model. 

Some common link functions are the logit link, the probit link and the com­

plementary log-log link. We will mainly use logit link under which e/3 can be 

interpreted as an odds ratio. The probit link, however does offer some advan­

tages when it comes to maximum likelihood estimation via the EM algorithm 

and so we devote one chapter to the probit link. As the standard logistic 

distribution is well approximated by a normal distribution with mean O and 

variance 1r2 /3, there is not much difference between the two link functions. 

It is common that longitudinal responses over time are highly correlated: 

such problems have been tackled effectively only in the past ten years and 

methods of analysis are still being developed. Furthermore, the between-
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subject variation which induces intra-subject correlation and overdispersion 

also needs to be accounted for so that we can devise a more patient specific 

policy for the methadone program. 

As multiple drug use is often a common phenomenon among the methadone 

clinic patients, we extend our models to bivariate data so that we are able to 

study the effect of methadone treatment in reducing multiple drug use while 

controlling for their possible interaction. 

1.2 The data 

The methadone data are restricted to subjects who completed at least four 

weeks of treatment and those subjects with missing doseage records were ex­

cluded. Finally, past experience showed that the treatment was most effective 

in the first half year of maintenance and beyond that, non-random drop-out 

began to occur with patients not responding to treatment dropping out which 

can lead to a false impression of reduced drug use over time. Consequently, 

our study looked only at results of urine screens collected in the first 26 weeks 

of treatment. This was done to avoid the distorting effect of patients being 

on a withdrawal regimen, something that usually began after the first half 

year of maintenance. The clinic required attendance for dosing seven days 

per week, with take-home doses of medication only provided in exceptional 

circumstances. 

There were 136 drug users, submitting a total of 2872 urine screens with 
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16.1% being positive for heroin and 15.6% being positive for benzodiazepines. 

The doseage averaged over the 2872 incidents is 64mg. For all analyses, each 

pair of urine screen results rather than each patient served as the unit of 

analysis. 

1.3 Model development 

Since our data consists of repeated measurements, it is important to take serial 

correlation into account in our analysis. In Chapter two, we study and com­

pare models which use two different approaches of modelling: the conditional 

and unconditional approach. Section 2.1 is mainly devoted to model descrip­

tion. In Section 2.1.1, we study the conditional logistic model proposed by 

Bonney (1987) in which the outcomes are autoregressed on the previous out­

comes. In Section 2.1.2, we study models using the unconditional approach, 

the marginal logistic model in which the marginal distribution of the outcomes 

is modelled linearly in some covariates and the association across time of the 

repeated outcomes for a subject is treated as nuisance and enters only in a 

working covariance matrix. Parameters are estimated using the generalized es­

timating equation (GEE) of Liang, Zeger & Qaqish ( 1992) and Prentice ( 1988). 

We make a comparison of these models in Section 2.2. The marginal logistic 

model is easier to interpret. However, the conditional logistic model has a more 

tractable likelihood function and can be extended more easily to accommodate 

random effects. Numerical results are given in Section 2.3. 

To account for the between-subject variation and intra-subject correlation, 
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a number of authors have proposed the use of mixed effects generalized linear 

model under which the probability of a positive response, when transformed 

by a suitable link function 1/J, is a linear function of fixed as well as random 

effects. In matrix form, 

1/J(P) = 11 = X,B + Zu 

where u = ( uf, ... , u~)T is a qm x 1 vector of random effects, Z the corre­

sponding n x qm design matrix and m represents the number of subject-specific 

random vectors of dimension q x 1 each. We usually allow dependence within 

each ui but assume independence between the ui. In other words, ui are iid 

Nq(O, :E). In Chapter three, we consider the logit-linear mixed effects models. 

In addition to accounting for population heterogeneity, over-dispersion and 

intra-cluster correlation, the incorporation of random effects into the model 

also enables the pooling of information across different subjects to result in 

better subject-specific inference as opposed to population-averaged inference. 

The presence of random effects, however, complicates the estimation prob­

lem considerably. To obtain the marginal likelihood function, one has to inte­

grate out the random effects which except for a few special cases, cannot be per­

formed analytically. For relatively simple problems involving one-dimensional 

or two-dimensional integrals (Anderson & Aitkin, 1985; Crouch & Spiegelman, 

1990), numerical integration can be used to approximate the marginal likeli­

hood. In Section 3.1.1, we fit a random intercept logistic model using Gaussian 

quadrature as suggested by Anderson & Aitkin (1985) who showed that the 

maximum likelihood estimators can be obtained by iterative reweighted logis­

tic regression (see equations 3.2 & 3.3) which can be implemented easily using 

standard packages. We take the number of quadrature points K- to be four. 

For more accurate determination of the log-likelihood, more quadrature points 

are needed. Extension to more random components is possible but Gaussian 
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quadrature becomes infeasible and inaccurate as the dimension of the integral 

increases. 

For more complicated models such as those involving crossed random ef­

fects, the marginal likelihoods involve high dimensional integrals which are 

beyond the scope of numerical integration; see Karim & Zeger (1992) for two 

models where the integrals involved are of dimensions 20 and 40 respectively. 

The intractability of the likelihood function has led various authors to propose 

a host of alternative estimation methods rather than carrying out maximum 

likelihood estimation exactly. These include the approximate maximum like­

lihood and approximate residual maximum likelihood estimators proposed by 

Schall (1991), McGilchrist (1994) and Drum & McCullagh (1993); the pe­

nalized quasi-likelihood approach of Breslow & Clayton (1993); the Gibbs 

sampling Bayesian approach of Zeger & Karim (1991); the estimating func­

tion approach of Waclawiw & Liang (1993) and the iterative bias correction 

approach of Kuk (1995). In Section 3.1.2, we consider the random intercept 

model using the estimating techniques of Schall (1991) and McGilchrist (1994). 

McGilchrist (1994) suggested maximizing the penalised log-likelihood func­

tion which can also be interpreted as the complete data log-likelihood function 

based on the observed outcomes Y and the random components u. A Bayesian 

interpretation of '/3 and ii is that they are the posterior mode under a diffuse 

prior for /3 and a normal prior for u. 

However, for models with correlated random effects, there is no explicit 

formula for :E when ~ is not diagonal. In Section 3.1.3, we use the method 

of Stiratelli, Laird & Ware (1984) for the random coefficients model with cor­

related random effects. Following Stiratelli et al, we assume a diffuse prior 
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for /3 in addition to the Nq{O, :E) prior for Ui. We can then estimate :E by 

an EM type estimate which requires E(uilY) and Cov(uilY). Stiratelli et al 

suggested approximating the posterior distribution of (/3, u) given Y by a nor­

mal distribution that has the same mode and curvature as the true posterior. 

In other words, we can replace the posterior mean E( ui IY) by the posterior 

mode iii. The conditional covariance matrix Cov(uilY) can be approximated 

by inverting the Hessian matrix of the log posterior density of (/3, u) given Y 

which is equivalent to the Hessian matrix of the complete data log-likelihood 

because of the diffuse prior assumption for /3. 

In Chapter four, we consider the mixture model which can be regarded as 

a discrete random effects model. The model postulates that there are two or 

more groups of patients who react differently to methadone treatment. This 

type of model is more tractable than the random coefficients model as the 

likelihood function can be computed easily without the need of integration. 

Estimation can be carried out using the EM algorithm and model selection 

can be based on the Akaike Information Criterion(AIC). 

The model selected is a 3 group mixture model. Under this model, 

methadone treatment leads to cessation of heroin use for about 30% of the 

subjects regardless of the methadone doses used. Another 46% of the subjects 

responded to treatment in a dose-dependent manner with reduced heroin use 

at high doses of methadone. The remaining 24% of the patients failed to re­

spond to treatment in this study. These findings are consistent with clinical 

experience. 

As multiple drug use is often a common phenomenon among the methadone 

clinic patients, in Chapter five, we devise a model that enables us to study 

the effect of methadone treatment in reducing multiple drug use, say heroin 
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and benzodiazepines while controlling for their possible interaction. In Sec­

tion 5.1.1, we consider a model in which the logit of the probabilities of both 

types of drug use as well as their log odds ratio are simultaneously modelled 

as linear in some covariates. The serial correlation within subject is accounted 

for by including the previous outcomes of both drugs and their interaction as 

covariates. Clustered data, as opposed to longitudinal bivariate binary data, 

has been analysed by Le:fkopoulou, Moore & Ryan {1989). Unlike the GEE 

approach of Zeger & Liang (1991) and the pseudolikelihood approach of Liang 

& Zeger (1989), the proposed model has a tractable likelihood and so a full 

likelihood analysis is possible. It can also be easily extended to incorporate 

mixture or random effects. The Newton-Raphson method is used to obtain 

the maximum likelihood estimates. For the methadone data, an interesting 

finding is that the odds ratio seems to depend on the previous outcomes for 

heroin and benzodiazepines only through whether they are concordant or dis­

cordant. This suggests that the strength of the present association between 

the two drugs depends on the strength of the association last week. 

In Section 5.1.2, we consider the bivariate mixture model which postulates 

that there are two groups of patients who react differently to methadone treat­

ment. Estimation is carried out using the EM algorithm and model selection 

is based on the Akaike Information Criterion (AIC). 

McCulloch (1994) pointed out several advantages of using the probit link 

instead of the customary logit link. For example, the probit link function is 

preserved when modelling the marginal distribution. Moreover, by viewing 

a probit-normal model as a threshold model that results from dichotomiz­

ing some unobserved continuous outcomes from a Gaussian mixed model, it 

becomes feasible to use the EM algorithm to find the maximum likelihood es­

timates. McCulloch considered only independent random effects. In Chapter 
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six, we extend McCulloch's model by allowing correlated random effects. This 

extension widens the applicability of the model considerably. 

In Section 6.1, we introduce the probit-linear mixed model with correlated 

random effects and the applicability of the model is demonstrated by quoting 

four useful models as special cases of the model. In Section 6.1.1, we give a 

detailed description of the maximum likelihood estimation of the fixed effects 

/3 and the variance components :Er by the EM algorithm. Because of the 

probit link assumption, simplification to the EM algorithm can be made. The 

derivation is similar to that of McCulloch (1994) but we end up with a slightly 

different formula for the M-step. McCulloch's procedure is closely related to 

version 1 of the ECME algorithm proposed by Liu & Rubin (1994, P.641). In 

Section 6.1.2, we describe a Monte Carlo implementation of the E-step of the 

algorithm via Gibbs sampling. In Section 6.1.3, we consider the estimation 

of standard errors. When the E-step requires Monte Carlo method, the SEM 

algorithm (Meng & Rubin, 1991) for calculating standard errors is numerically 

unstable and extremely computing intensive and so we resort to inverting a 

Monte Carlo estimate of the information matrix. In Section 6.1.4, we describe a 

method for accounting the Monte Carlo variation explicitly. In Section 6.2, we 

illustrate the flexibility and feasibility of our methods by fitting two models 

to the salamander mating data reported in McCullagh & Nelder (1989, pp. 

439-450). Both models assume a probit link and include the male species, 

the female species, their interaction and season ( fall versus summer) as fixed 

effects. In Section 6.2.1, we fit model 1 which includes male and female animal 

effects as random effects. As the same animals were used in the first two 

mating experiments, the effects of the same animal over the two occasions are 

correlated. In Section 6.2.2, we fit model 2 in which the random effects are 

classified by species as well as by gender. Finally, in Section 6.3, we consider 
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some useful extensions of the model. In Section 6.3.1, we extend the model 

to allow correlated errors as well as correlated random effects and a brief 

description of the model that allows for autocorrelated errors together with 

the estimation procedure are given. In Section 6.3.2, we extend the model 

to multivariate clustered binary data which arise for example in the study of 

multiple binary traits in animal breeding (Foulley, Gianola & Im, 1989) and 

the estimation procedure is described briefly. 

1.4 The covariates 

To identify factors associated with drug use, there has been a substantial body 

of evidence that methadone dose is important in influencing continued drug use 

and so it is necessary to take into account the fluctuations of methadone dose 

in assessing the influence of other treatment factors. As a result, methadone 

dose is included in the models as one covariate. Another covariate included is 

the duration of treatment in weeks called time. Since it is unrealistic to expect 

a linear time trend over a very long period of time, we take logarithm of the 

time. Note that in fitting the conditional AR(l) model with the logarithm 

of time as covariate instead of time, we end up with a lower AIC value of 

2090.02 as compared to 2097.44 for model with time as covariate. As a result, 

we take logarithm of the time, logt for the time effect in all our subsequent 

models. We also include the interaction effect between dose and time, the 

product term dit x log t as covariate initially but it is not significant and is 

dropped subsequently. 
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Since longitudinal responses over time are highly correlated, the serial cor­

relation within subject is accounted for in the conditional model by including 

another covariate, the previous outcome into the model. For simplicity of mod­

elling, we consider autoregressive models up to AR(2). For mixture models and 

bivariate models, we only consider AR(l) models. 



Chapter 2 

Marginal and conditional 

logistic models 

2.1 The models 

Let Yit(i = 1, ... , m; t = 1, ... , ni) denote the observed outcome of heroin 

use of the i-th patient at time t and n = n1 + ... + nm the total number 

of observations. We shall consider models where the marginal probabilities 

~t = Pr(Yit = 1) or the conditional probabilities Pr(Yit = llYi1 , ... , Yi,t-d are 

logit-linear in some covariates. 

12 
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2 .1.1 Marginal logistic model 

The main focus of this model is on the marginal distribution of ~t- It is 

assumed that 

logit(Pit) = T/it = f3o + /3d dit + f3t logt (2.1) 

where dit is the doseage administered to patient i at time t. The association 

across time between the repeated outcomes for a subject is treated as nuisance 

and is entered only in a working correlation matrix that appears in the esti­

mating equation. An advantage of this approach is that the resulting estimates 

are robust to misspecification of the correlation structure provided the mean 

model is correctly specified. The working correlation matrix that we assume 

for patient i is 

1 p pn;-1 

'11i(P) = 
p 1 pn;-2 

(2.2) 

pn;-1 pn;-2 1 

which corresponds to an autoregressive process of order 1. The generalized 

estimating equation (Prentice, 1988) of the model is 

(2.3) 

where 

aPf xT o· (s2 s2 ) 8/3 = i iag il,···, in;' (2.4) 
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Xi is the nix 3 matrix of patient i with row vectors (1, dit, logt), t = l, ... , ni, 

Pi= (Pit, ... , Pin;f and Yi= (l'i1, ... , Yin;f- We set the working covariance 

matrix of Yi to be 

where Sft = Pit(l - Pit)= eT/it /(1 + e11it)2 • We estimate p by 

With estimated p(k), we can update f3 to 13(k+1) by solving (2.3) using the 

Newton-Raphson method. Then p is subsequently updated using 13(k+1) in 

(2.5) and the cycle repeats again until convergence is reached. Finally, the 

variance-covariance matrix of f3 (Prentice, 1988) is 

Cov(/3) [ ~ (8Pf y:- 1 8Pi )]-t[~ (8Pf y:-tcov(Y·)V:-18Pi )] 
~ 8/3 z 8{3T ~ 8/3 z z z 813T 

[ ~ (8Pf y:-18Pi )]-t (2.6) 
~ 8{3 z 8{3T 

2.1.2 Conditional logistic model 

In this model, the serial correlation within subject is accounted for by including 

the previous outcomes as covariates. For AR(l) model, it is assumed that 

Pr(l'it = lll'i1, ... , l'i,t-d = Pr(l'it = lll'i,t-1) and 
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logit[Pr(Yit = llYi,t-1)] = TJit =/Jo+ {3d dit + f3t logt + /Jp1 Yi,t-I (2.7) 

and for AR(2) model, it is assumed that 

logit[Pr(Yit = llYi,t-1,Yi,t-2)] = TJit = (2.8) 

/Jo+ f3d dit + f3t logt + /Jp1 Yi,t-I + /Jp2 Yi,t-2· 

The likelihood function is 

m m n; m n; ( eY;t'lit ) 

II Pr(Yi1, · · ·, YinJ = II II Pr(YitlYi,t-1, Yi,t-2) = II II l 'lit 
i=I i=I t=I i=I t=I + e 

(2.9) 

and the log-likelihood function is 

mn; mn; 
l(/3; Y) = L L YitTJit - L L log(l + e'lit). (2.10) 

i=l t=l i=l t=l 

Bonney (1987) showed that we can obtain the maximum likelihood esti­

mates for /3 using a standard logistic regression procedure with a suitably aug­

mented design matrix. The variance-covariance matrix of /3 can be obtained 

by inverting -z" (/3). 
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2.2 Comparsion of marginal and conditional 

logistic models 

The marginal logistic model is a model for the marginal distribution of ~t and 

the parameters of such a model can be interpreted easily as the marginal log 

odds ratios. Moreover, the GEE approach requires only the specification of a 

working correlation matrix which is not necessarily the true correlation matrix. 

On the other hand, since the association structure is treated as nuisance, the 

marginal model is not very helpful if the association structure is of interest. 

Furthermore, a full likelihood approach to inference is not possible under a 

marginal logistic model as the marginal distributions alone do not determine 

the joint distribution completely. 

The conditional logistic model conditions on the previous responses which 

complicates the interpretation of the parameters. The regression coefficients f3 

can be interpreted as log odds ratios only conditionally but not unconditionally. 

However, the conditional logistic model accounts for the dependence between 

~t and ~.t-l explicitly and so is preferable if such dependence is of interest. 

Another advantage of the conditional logistic model is that its likelihood func­

tion can be written down quite easily as in (2.9) which facilitates likelihood 

inference. Also, it is quite easy to extend the conditional logistic model by 

incorporating random effects to the right hand side of (2.7) or (2.8). Such a 

random effects model is useful in accounting for population heterogeneity and 

in subject specific inference. 

The marginal and conditional logistic models are incompatible in that if 

the marginal distributions are logistic, then the conditional distributions are 

not and vice versa. In a recent development, Azzalini (1994) completed the 
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specification of a marginal logistic model by modelling the pairwise odds ratio 

between ~t and ~.t-l in addition to their marginal distributions. As a result, it 

is possible to write down the full likelihood function and so maximum likelihood 

estimators can be obtained. However, the likelihood contribution from each 

patient as given by equations (5), (6) and (7) of Azzalini's paper is quite 

complicated and is not as tractable as the likelihood (2.9) under the conditional 

logistic model. For this reason, we do not use Azzalini's model or its random 

effects extension to analyse the methadone clinic data. 

2.3 Numerical results 

The results of fitting the marginal and conditional logistic AR(l) models to 

the methadone clinic data are given in Table 1. The result for conditional 

AR(2) model is given in Table 2. We see that the results for AR(l) and AR(2) 

models are similar and the AR(2) model is preferable in terms of AIC (2090.02 

for AR(l) model and 2032.91 for AR(2) model). Since the dose and time ef­

fects of both models are significant, our conclusion is that reduced heroin use 

is associated with increased methadone dose and increased duration in treat­

ment. There is a strong positive association between the present and previous 

outcomes. In fact, some patients in treatment tend to use heroin heavily while 

others do not. We have also considered the interaction between dose and time 

by including the product term dit x logt as a covariate. However, the interac­

tion effect is not significant (p-value= 0.59 under marginal model with AR(l) 

working correlation; p-value= 0.46 under conditional AR(l) model). As a re­

sult, we do not include interaction between dose and time in our subsequent 
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analyses. 

The results of fitting a conditional AR(l) model to each patient are given 

in Table 3. Only 24 patients have convergent estimates and there appears 

to be substantial variation between these estimates. For formal testing, we 

extend the score test of homogeneity (Commenges et al, 1994) to the case of 

the conditional logistic model. More precisely, we are using the score test to 

test model (2.7) as the null hypothesis against the alternative that one of the 

/3's in (2. 7) is random. We conduct the score test for each covariate separately 

and the results are given in Table 4. It can be seen that all tests are significant 

with the test for the random intercept being most significant. 



Chapter 3 

Random effects model 

3.1 The models 

As there is strong evidence that the regression coefficients are patient-specific, 

we first incorporate a random intercept to the conditional logistic model (2.7). 

The extended model is 

logit[Pr(l'it = lll'i,t-1)] = f/it = f3o + ui + f3d dit + f3t logt + /3p1 l'i,t-1 (3.1) 

where the u/s are independent and identically distributed as N(O, a 2). This 

model can be written in matrix form as 

'f/ = X,8 + Zu (3.2) 

where ,8 = (/30 , {3d, f3t, /3p1)T, X the corresponding n x 4 design matrix, u = 
(u1, ... , umf the patient effects and Z the corresponding n x m design matrix 

19 
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for u. 

We have seen from the results of fitting the conditional AR(l) model sepa­

rately to each patient and the score tests that apart from the intercept, some 

other regression coefficients may also be random. Therefore, we go beyond 

the random intercept model by including other random coefficients to (3.1). 

For example, by setting all regression coefficients to be random, the model 

becomes 

logit[Pr(l"it = lll"i,t-1)] = 'f/it = 

f3o + Uoi + (/3d + Udi) dit + (f3t + uti) logt + (/3p1 + Upt,i) l"i,t-1· (3.3) 

We can also express this model in matrix form as in (3.2) where u = 

(u1 , ... , umf a 4m x 1 vector of the patient effects and Z the correspond­

ing n x 4m design matrix for u. 

3.1.1 Random intercept model using MLE and Gaus­

sian quadrature 

We define the model as in (3.1) and let ui = au; where u; has a standard 

normal distribution. The log-likelihood function is 

(3.4) 
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where </>( u;) is the standard normal probability density function. Using Gaus­

sian quadrature (Anderson & Aitkin, 1985), a numerical approximation of the 

log-likelihood function is 

m { ,., ( n; el'it(x;t/HA.,u) ) } 

l(/3, a) ~ L log L IT l x;t/J+A.,u Av 
i=l v=l t=l + e 

(3.5) 

where Av are the Gaussian quadrature points and Av, the associated weight fac­

tors. The terms V1f Av and Av/v2 are given in Abramowitz and Stegun (1972, 

p. 924). Differentiating (3.5) with respect to /3j,J = 1, ... , 4 and a, we obtain 

j = 1, ... ,4 and 

K, m n; A [ nn; ( eY;t(x;tf3+A.,a) )] A ( Xit/J+A.,u ) L L L v t=l l+ex;tfHA.,a v Y. e _ O (3_7) 
v=l i=l t=l "K, [ nn; ( eY;t(X;tf3+A.,a) )] A it - l + eXitfJ+A.,u - • 

L..,v=l t=l l+exitl'l+A.,a v 

Define ~tv = ~t, Xitv = (xit, Av) and 

(3.8) 

equations (3.6) and (3. 7) are those for a weighted logistic regression where the 

weights witv depend on the parameters being estimated. This suggests the use 

of iteratively reweighted logistic regression analysis. The resulting method can 

be implemented fairly easily as each weighted logistic regression can be done 

using any of the standard statistical packages. We use the SAS procedure 
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LOGISTIC to perform the logistic regression and write a MACRO to do the 

iterative reweighting. 

A complete description of the iterative procedures is as follow: 

1. Choose a = 0 and carry out an unweighted logistic regression to obtain 

an initial estimate of (3. 

2. Expand the vector of the dependent variable Y by defining Y'itv = Y'it· 

Note that the resulting vector is of length n x "' where n denotes the 

total number of observations and "' the number of Gaussian quadrature 

points. Also define Xitv = (xit, Av)-

3. Calculate Uitv = exp[Y'it(Xit/3 + Ava)] / [1 + exp(xit/3 + Ava)] using a= l 

and /3 from step 1. 

4. Calculate Atv = ( nr~1 Uitv )Av and Li = E:=1 Atv to create the weights 

Witv = Aiv/ Li. 

5. Use these weights to perform a weighted logistic regression to re-estimate 

/3 and a. 

6. Recalculate Uitv. 

Then we iterate step 4, 5 and 6 until convergence is reached. It is obvious 

that"' should be as small as practicable. Bock and Aitkin (1981) reported that 

"' = 2 or "' = 3 was sufficient. For more accurate determination of the log­

likelihood, more quadrature points are needed, say "' = 5. For models involving 

more than one random component, say two random components, the extended 

vector Y has length n x ,.,,1 x ,.,,2 which is enormous for the methadone data. 

As the result, this method of estimation becomes practically infeasible. 
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3.1.2 Random intercept model using approximate MLE 

and approximate REML 

With the random intercept model as in (3.1), the log probability density func­

tion for u is 

1 m 
lu(u; a 2) = - 2 L [1og(21ra2) + a-2u;]. 

i=l 

(3.9) 

McGilchrist (1994) suggested maximizing the sum of (2.10) and (3.9) with 

respect to f3 and u to obtain ~ and ii, the so-called best linear unbiased 

predictors or penalised likelihood estimators if lu is regarded as a penalty 

function. The sum of (2.10) and (3.9) can also be interpreted as the complete 

data log-likelihood function based on Y and u. A Bayesian interpretation of 

~ and ii is that they are the posterior mode under a diffuse prior for /3 and a 

normal prior for u. The N ewton-Raphson step for finding ~ and ii is 

l-1 [ l xTs2z xT(Y - P) 

zTs2z + a-21 zT(Y - P) - a-2u{k) 

(3.10) 

where P = (Pn, ... , P1n11 P21, ... , Pmnm), Pit= e'lit /(l+e11it), S2 = Diag(S?1, ... , 

Sln1, S?1, · · ·, S;,lnm) and Slt = e'lit / (1 + e'lit ) 2 • By writing 

(3.11) 

and T* = (ZTS2Z + a-21)-1, McGilchrist (1994) proposed updating a 2 by 
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uTu 
<12 ------

ML - m - tr(T*)/a2 (3.12) 

and 
uTu 

<12 ------
REML - m - tr(T)/a2' (3.13) 

where all the quantities on the right hand side of (3.12) and (3.13) are evaluated 

at the current estimates of (3, u and a2 • Using this new estimate of a2, we can 

update our estimates of (3 and u by (3.10). McGilchrist (1994) suggested 

iterating (3.10) and (3.12) or (3.13) until convergence to obtain approximate 

maximum likelihood (ML) or residual maximum likelihood (REML) estimates. 

3.1.3 Random coefficients model 

Suppose we have q random coefficients in (2.7). Let bi, i = 1, ... , m with 

mean (31 denote the patient-specific regression coefficients and (32 the non­

patient-specific regression coefficients. It is assumed that b1 , ... , bm are i.i.d. 

Nq((3 1 , :E). Let (3 = ((3[, f3If and ui = bi - (31 . We can express the model 

in matrix form as (3.2) where u = (uf, ... , u~f is now a qm x 1 vector of 

random effects and Z the corresponding n x qm design matrix. 

The estimation of (3 and u follows exactly as in (3.10) with a-21 and a-2u 

replaced by l®:E-1 and (I@:E-1)u respectively. However, there is no explicit 

formula for :E when :Eis not diagonal. Instead, we use the method of Stiratelli, 

Laird & Ware (1984). Following Stiratelli's method, we assume a diffuse prior 
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for /3 in addition to the Nq(O, E) prior for Ui. We can then estimate E by an 

EM type estimate 

(3.14) 

Stiratelli suggested approximating the posterior distribution of (/3, u) given 

Y by a normal distribution that has the same mode and curvature as the true 

posterior. In other words, we can replace the posterior mean E(uilY) in (3.14) 

by the posterior mode ui which can be obtained using (3.10). The conditional 

covariance matrix Cov(uilY) in (3.14) can be approximated by inverting the 

Hessian matrix of the log posterior density of (/3, u) given Y which is equivalent 

to the Hessian matrix of the complete data log-likelihood because of the diffuse 

prior assumption for /3. By iterating (3.10) and (3.14), we obtain estimates of 

/3, u and E. 

3.2 Numerical results 

The result of fitting the random effects models can also be found in Table 1 and 

Table 2 respectively for the AR(l) and AR(2) models. For the random inter­

cept models, the ML and REML estimates are very similar so we report only 

the former. The Gaussian quadrature estimates GQ4 (~ = 4) and the ML esti­

mates are quite similar too. As expected, the standard errors are inflated rela­

tive to the model without random intercept but the conclusion is qualitatively 

the same, namely, reduced heroin use is associated with increased methadone 
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dose and increased duration in treatment. The estimate of the variance com­

ponent a 2 for the random intercept model using ML is l.244(S.E. = 0.214) 

for the AR(l) model and 1.042(0.197) for the AR(2) model. In addition to 

the random intercept model, we also fit models with random intercept /30 and 

random coefficient for dose {3d and obtain much the same conclusion. 



Chapter 4 

Mixture model with 2 or more 

latent groups 

4.1 The models 

As different patient groups may react differently to methadone treatment, we 

consider the mixture model. Under this model, we assume that there are two 

or more groups of patients who respond differently to methadone treatment. 

Suppose there are G latent groups and each patient has a probability 7rk of 

coming from group k, k = l, ... , G. If patient i belongs to group k, then 

logit[Pr(~t = ll~,t-1)] = T/itk = f3ok + f3dkdit + f3tklogt + /3p1k~,t-1 (4.1) 

for the AR( 1) model. This is essentially a discrete random effects model such 

that /3 = {3k = (f3ok, f3dk, f3tk, /3p1kf with probability 7rk. This model has a 

more tractable likelihood function 
27 
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(4.2) 

which does not involve integration. To estimate the parameters, it is convenient 

to use the EM algorithm. Specifically, we define Wik = 1 if patient i belongs to 

group k and Wik= 0 otherwise. Note that Wik are unobserved since the group 

membership of each patient is unknown. The log-likelihood function based on 

the so-called 'complete' data (Y, W) is 

G m 

l(0;Y, W) L log7rk L Wik + 
k=l i=l 

G m ~ G m ~ 

L L L wikYit1Jitk - L LI: Wiklog(l + e1litk) (4.3) 
k=l i=l t=l k=l i=l t=l 

where 0 denotes the parameter vector (/3f, ... , {3~, 7r1, ... , 7ra_1f. At the E­

step of the EM algorithm, we estimate the unknown ITTk by the conditional 

expectation 

{4.4) 

evaluated at the current parameter estimates. At the M-step, we replace Wik 

by Wik in ( 4.3) and maximize the resulting expression to obtain the updated 

estimates of the parameters. The procedures are iterated until convergence. 

As mentioned earlier, a finite mixture model is just a discrete random effects 

model. Thus the fitted 2 or 3 group mixture models are actually maximum 

likelihood estimates (MLE) of the random effects model when the random ef­

fect distributions are assumed to have 2 or 3 mass points. Without making 

any distributional assumption, it is well known that the nonparametric MLE 
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of the random effect distribution is a discrete distribution with a finite number 

of mass points (Laird, 1978, Lindsay, 1983). Thus we can obtain the nonpara­

metric MLE via fitting a finite mixture model by increasing the number of 

groups until the likelihood ceases to increase. 

There is also a connection between Gaussian quadrature and finite mix­

ture maximum likelihood. The number of quadrature points used in Gaussian 

quadrature plays the same role as the number of components in the finite 

mixture (Aitkin, 1996). 

4.2 Numerical results 

We fit the mixture model with different number of groups to the data and the 

results are given in Table 5. There is almost no increase in likelihood beyond 

3 groups which explains why the AIC criterion picks a 3 group mixture model 

with group specific intercept and dose coefficient as the best model. The 

decision of keeping the time and autoregression coefficients fixed across the 

different groups is also based on the AIC criterion. Since the time coefficient 

is negative and significant, we conclude that there is an association between 

reduced heroin use and increased duration of treatment. The dose coefficient is 

not significant in group 1 (1r1 = 0.30) and group 3 (1r3 = 0.24) suggesting that 

heroin use is independent of daily methadone dose for patients in these groups. 

To gain more knowledge about the makeup of these groups, we look at Wik, 
the estimated probability that subject i belongs to group k. From Table 6, 

we can see that subjects who are undoubtedly in group 1 (Wi1 ~ 0.9) are 

those with no or very few positive results for heroin. Thus subjects in group 1 
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are those who have ceased heroin use as a result of treatment. Individuals 

-with Wi3 :::: 0.9 are those with a persistently large number of heroin positive 

screens. These subjects respond poorly to treatment, with continued heroin 

use regardless of the methadone dose received. It is only in group 2 ( 1r2 = 0.46) 

that methadone dose is significant. Subjects in this group respond to treatment 

in a dose-dependent fashion with reduced heroin use at high methadone dose. 

4.3 Discussion 

We found that the best fit statistical model is a 3 group mixture model. The 

first group comprise about 30% of the sample, and respond well to treatment, 

with cessation of heroin use. Methadone dose is not predictive of heroin pos­

itive urines in this group, consistent with clinical experience that there is a 

proportion of patients who have an excellent response to treatment, and can 

be satisfactorily maintained on quite modest doses of methadone. The second 

group, 46% of the sample, tend to use heroin when on lower methadone doses, 

but when maintained on high doses do quite well. Again, this fits well with 

clinical experience. Finally, there is a group, 24% in this study, who tend to 

continue to use heroin, regardless of methadone dose. It is well recognised that 

all treatment programs have to confront the problem of treatment failures, al­

though the proportion of such failures probably varies according to the quality 

of other aspects of treatment (Ball & Ross, 1991). The current study is use­

ful in identifying that methadone dose is of critical importance in influencing 

heroin use in around half the patients in treatment. 



Chapter 5 

Bivariate binary model 

5.1 The models 

As multiple drug use is common among the methadone clinic patients, we 

extend the model to bivariate binary data so that we are able to study 

the use of heroin, benzodiazepines and their interaction simultaneously. Let 

~tj(i = 1, ... , m; t = 1, ... , ni; j = h for heroin, j = b for benzodiazepines) 

denote the observed outcome of drug j for the i-th patient at time t. A 

conditional approach is to model simultaneously the conditional probabilities 

Pit(l, ·) = Pr(~th = 1 i~,t-1,h, ~,t-1,b), Pit(·, 1) = Pr(~tb = 1 i~,t-1,h, ~,t-1,b), 

Pit(u, v) = Pr(~th = u, ~tb = v l~,t-1,h, ~,t-1,b) as well as the odds ratio 

Pit(l, 1) Pit(0, 0) 
'Yit = Pit(l, 0) Pit(O, 1) 

such that 

logit[Pit(l, ·)] = T/ith = f3oh + /3dhdit + f3thlogt + /3ph,h~,t-1,h + 
31 

(5.1) 
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logit[~t(·, 1)] = 'T/itb = f3ob + f3dbdit + f3tblogt + /3pb,h~,t-1,h + 

/3pb,b~,t-1,b + /3pb,h*b~,t-1,h~,t-1,b (5.3) 

and the log odds ratio 

log[,it] = 'T/itr = /3or + f3drdit + f3trlogt + /3pr,h~,t-1,h + 

/3pr,b~,t-1,b + /3pr,h*b~,t-1,h~,t-1,b· (5.4) 

Note that for simplicity, we only consider the AR(l) model. 

5.1.1 Bivariate autoregressive model 

Let 8i denote the qi x l vector of (/3oj, /3dj, f3tj, /3pj,h, /3pj,b, /3pi,h*b), j = h, b or r. 

Then the joint conditional probability Pit(l, 1) can be expressed {Fleiss, 1981, 

P.68) in terms of Pit(l, ·), Pit(·, 1) and the odds ratio 'Yit as follows 

1 

p {l l) _ (,it - 1) [Pit{l, ·)+Pit(·, 1)] + 1 - c5i1 
it ' - 2(,it - 1) {5.5) 

where 

<Sit - l + bit - 1){ 'Yit[Pit{l, ·) - ~t(·, 1)]2 -

[~t(l, ·) + ~t(·, 1)]2 + 2[Pit(l, ·) + ~t(·, 1)]}. (5.6) 

We also have Pit(l, 0) = Pit(l, ·) - Pit(l, 1), Pit(0, 1) = Pit(·, 1) - ~t(l, 1) and 

Pit(0, 0) = 1 - Pit(l, ·) -Pit(·, 1) + Pit(l, 1). The likelihood function is 
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mni mni 

II II Pr(l'ith, Yitb ll'i,t-1,h, l'i,t-1,b) = II II ~t(Yith, Yitb) (5.7) 
~1~1 ~1~1 

and the log-likelihood function is 

m n; 

l L L [ YithYitb logPit(l, 1) + Yith(l - Yitb) logPit(l, 0) + 
i=lt=l 

(1 - Yith)Yitb log~t(O, 1) + 

(1 - Yith)(l - Yitb) log~t(O, 0)]. (5.8) 

The Newton-Raphson method is used to obtain the maximum likelihood 

estimates. The first and second order derivatives of the log-likelihood function 

required in the Newton-Raphson procedure are quite tedious and are given in 

the Appendix. Zeger & Liang (1991, equation 2.3) assumed (5.2) and (5.3) 

above but not (5.4). As the model is not completely specified without (5.4), 

they resorted to a GEE approach . Liang & Zeger (1989) modelled in terms 

of Pr(l'ith ll'itb, past) and Pr(l'itb ll'ith, past) but since the likelihood function 

is intractable, they resorted to a pseudolikelihood estimation procedure. 

5.1.2 Bivariate mixture model 

Under this model, we assume that there are two groups of patients who react 

differently to methadone treatment. Suppose each patient has a probability 

7rk of coming from group k, k = l, 2. If patient i belongs to group k, then 

logit[Pr(l'ith = lll'i,t-1,h, l'i,t-1,b)] = logit[Pitk(l, ·)] = T/ithk = f3ohk+ (5.9) 
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logit[Pr(l"itb = lll"i,t-1,h, l"i,t-1,b)] = logit[~tk(·, 1)) = 'T/itbk = f3obk+ (5.10) 

and we assume that the odds ratio is constant across the two groups as in 

(5.4). The joint probability Pitk(l, 1) for group k is defined in terms of the 

marginal probabilities Pitk(l, ·) and Pitk(·, 1) and the odds ratio "fit as in (5.5) 

and (5.6). This model has a tractable likelihood function which does not 

involve integration 

m 

II Pr(J"i1, ... , l"in;) 
m [ 2 ( n; II L 'Irk II Pitk(l, l)Y;thY;tb ~tk(l, 0)Y;th(l-Y;tb) 

i=l i=l k=l t=l 

Pitk(0, 1)(1-Y;th )Y;tb Pitk(0, 0)CI-Y;th )(l-Y;tb))] (5.11) 

where Pitk(l, 0) = Pitk(l, ·) - Pitk(l, 1), Pitk(0, 1) = Pitk(·, 1) - ~tk(l, 1) and 

Pitk(0, 0) = 1-Pitk(l, ·) -Pitk(·, 1)+Pitk(1, 1). To estimate the parameters, it is 

convenient to use the EM algorithm. Specifically, we define Wik = 1 if patient i 

belongs to group k and Wik = 0 otherwise. Note that Wik is unobserved since 

the group membership of such patient is unknown. The log-likelihood function 

based on the so-called 'complete' data (Y, W) is 

2 m 

l(8; Y, W) - L (1og1rk I: Wik)+ (5.12) 
k=l i=l 

2 m n; 

L L L Wik [ l"ith l"itblogPitk ( 1, 1) + l"ith ( 1 - l"itb) logPitk ( 1, 0) + 
k=l i=l t=l 

(1 - l"ith)l"itblogPitk(0, 1) + (1 - l"ith)(l - l"itb)log~tk(0, o)] 
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where 8 denotes the parameter vector (8L, 0r2, 8ft, 8~, 8;, 1r1f. At the E­

step of the EM algorithm, we estimate the unknown Wik by the conditional 

expectation 

(5.13) 
7rk nn,!, Pitk(I,l)YithYitb Pitk(l,O)Yith(1-Yitb> Pitk(0,1)(1-Yith)Y;tb Pitk(0,0)(1-Y;thH1-Yitb) 

E!=l 'Irk n:,!,1 Pitk (1,l)Yith Yitb Pitk(I,o)Yith (l-Yitb> Pitk (0,1)<1-Y;th )Yitb Pitk(0,0)(1-Y;th )(1-Y;t&> 

evaluated at the current parameter estimates. At the M-step, we replace Wik 

by Wik in (5.12) and maximize the resulting expression to obtain the updated 

estimates of the parameters using Newton-Raphson method. The procedure is 

iterated until convergence. 

5.2 Numerical results 

The results of fitting the full model defined by (5.2), (5.3) and (5.4) above are 

given in Table 7 as model 1. By discarding the nonsignificant coefficients, we 

arrive at model 2. It is interesting to note that for the odds ratio regression, 

/3pr,h c:::'. /3pr,b and /3pr,h + /3pr,b + /3pr,h*b c:::'. 0 which suggest that the odds ratio 'Yit 

depends on the previous outcomes only through whether ~,t-I,h = ~,t-I,b or 

not. The p-values of the z-test for testing the two constraints separately are 

0.9124 and 0.7642 respectively which suggest that the two constraints do hold. 

If we define the concordance indicator Ci,t-I to be 1 if ~,t-I,h = ~,t-I,b and 0 

otherwise and assume that 



CHAPTER 5. BIVARIATE BINARY MODEL 36 

{5.14) 

we have model 3 in Table 7. We can see that the AIC value under model 3 is 

much improved. The likelihood ratio test for testing the concordance model 

against the previous model is nonsignificant which again suggests that the 

concordance model is to be preferred. 

We can see from Table 7 that both the dose and time effect for both drugs 

are significant. Our conclusion is that reduced drug use is associated with 

increased duration in treatment. However, while reduced heroin use is asso­

ciated with increased methadone dose, increased benzodiazepines use is also 

associated with increased methadone dose. This suggests that in contrast to 

the dramatic pharmacological effect of methadone in reducing heroin use and 

psychological dependence on heroin, methadone maintenance does not sup­

press non-opioid drug use. There is a strong positive association between the 

present and the previous outcomes of the same drugs. In fact, some patients 

in treatment tend to use drugs continuously. For the odds ratio, it seems to 

depend on whether the previous outcomes for heroin and benzodiazepines are 

concordant or discordant. This suggests that the strength of the present as­

sociation between the two drugs depends on the strength of their association 

last week. 

The results of fitting various bivariate binary mixture models with two 

latent groups are given in Table 8. We start with the same covariates as model 3 

and fit a two-group mixture model with group-specific regression coefficients 

to result in model 4. By discarding nonsignificant covariates and setting the 

regression coefficients to be constant across the two groups if the group-specific 

estimates are similar, we have model 5 and 6. Based on AIC, we choose 
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model 5. We can easily classify most of the patients into one of the two groups 

as ti\1 is very close to O or 1 for most i. By classifying patient i to group 

k if Wik > ½, we can see that the mixture model tends to divide patients 

into light drug user group (group 1) and heavy drug user group (group 2). 

Specifically, group 1 consists of 75 patients submitting 6.9% positive screen for 

morphine and 2.6% positive screen for benzodiazepines from a total of 1667 

screens and group 2 consists of 61 patients submitting 29.4% positive screen for 

morphine and 33.6% positive screen for benzodiazepines from a total of 1205 

screens. The conclusions for dose and time effect are similar to those based 

on a non-mixture model. Again, there is a strong positive association between 

the present and the previous outcomes of the same drugs. It is interesting to 

note that the association between the present outcome of one drug and the 

previous outcome of the other drug is significant and negative only in group 2. 

This suggests that patients in group 2 are not heavy user of both drugs: they 

only use one particular drug heavily. 



Chapter 6 

Probit-linear mixed model using 

MLE 

In this Chapter, we will consider the use of probit link. McCulloch (1994) 

pointed out several advantages of using the pro bit link instead of the customary 

logit link. For example, the probit link function is preserved when modelling 

the marginal distribution. Moreover, by viewing a probit-normal model as a 

threshold model that results from dichotomizing some unobserved continuous 

observations from a Gaussian mixed model, it becomes feasible to use the EM 

algorithm to find the maximum likelihood estimates. 

6.1 The model 

Let W1 , ... , Wn denote the observed binary variables. Following McCulloch 

(1994), we assume that the probabilities Pi= Pr(Wi = 1) are probit-linear. In 

38 
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matrix form, 

R 

cf!-1(P) = ( <I>-1(P1), ... , <I>-1(Pn))T = X/3 + L ZrUr (6.1) 
r=l 

where X is a n x p design matrix, /3 is a p x 1 vector of fixed effects, Ur is a 

Qrkr x 1 vector of random effects with corresponding n x Qrkr design matrix 

Zr, We assume that u1 , ... , UR are independent. For each Ur, we have 

Ur1 0 

(6.2) 

0 

In other words, Ur is made up of Qr i.i.d. random vectors of dimension kr each. 

For the purpose of estimation, it is useful to view the above probit-linear 

mixed model as a threshold model that results from dichotomizing the obser­

vations from a Gaussian mixed model. In other words, Wi = I(Yt>O) and 

R 

Y = X/3 + L Zr Ur + e (6.3) 
r=l 

where e rv N(o, I) independently of the Ur, 

The above model allows correlated random effects and so is an extension 

of the model proposed by McCulloch (1994) which considers only independent 

random effects. The extended model is quite general and includes the following 

useful models as special cases. 

1. McCulloch's model 

This model is obtained by setting kr = l. 
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2. Random coefficients regression model for clustered binary data 

Let Wit, i = 1, ... , m and t = 1, ... , ni represents the t-th obser­

vation from the i-th cluster. We assume that Wit= J{l·'it>O) where 

xit denotes a 1 x p vector of covariates and bi denotes the corre­

sponding cluster-specific p x l vector of regression coefficients. If 

we assume that the m cluster-specific vectors of regression coeffi­

cients, b1 , ... , bm are i.i.d. N(/3, :E), we can rewrite bi as /3 + ui 

and we get 

Putting it in vector form, we have 

Y = X/3+Xu+e. 

This model corresponds to (6.3) with R = l, Z1 = X, q1 = m and 

k1 =p. 

3. Random intercept model for bivariate clustered binary data 

Let Wlit and W 2it denote the two binary variables observed for unit 

t of cluster i. We assume that Wkit = I(Yk;t>O) where 

Yi,t = uli + xit/31 + cm, 

Y2it = U2i + Xit/32 + C2it• 

In other words, we have a random intercept model for each vari­

able and the random intercepts (u1i, u2if are i.i.d. according to 

a bivariate normal distribution with zero mean. This model is a 

special case of (6.3) with R = l, q1 = m and k1 = 2. 
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4. Models involving crossed design of correlated random effects 

Two complicated models of crossed design are illustrated in Sec­

tion 6.2 through the study of the famous salamander data. 

6.1.1 Maximum likelihood estimation 

In this Section, we describe the maximum likelihood estimation of the fixed 

effects /3 and the variance components Er, r = 1, ... , R, by the EM algorithm. 

To apply the EM algorithm, we treat the complete data as Y, u1, ... , UR and 

regard the observed data W as the incomplete data. The EM algorithm is 

particularly suited for the probit-normal model given by (6.2) and (6.3) as 

closed form formulae for the complete data MLE exist and they are 

R 

~c = (XTx)-1 XT(Y - L ZrUr ) (6.4) 
r=l 

and 

(6.5) 

Instead of (6.4), McCulloch (1994) used ~(Y) = (XTv-1x)-1XTV-1Y 

where V is the covariance matrix of Y. Note that ~(Y) is the MLE for 

/3 based on Y alone rather than based on the complete data Y, u 1 , ... , UR. 

McCulloch's procedure is closely related to version 1 of the ECME algorithm 

proposed by Liu & Rubin (1994, P.641). 
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As the complete data are distributed according to an exponential family, 

the EM procedure can be simplified considerably (Little & Rubin, 1987, §7.6) 

as follows. Given the current estimates 13(k) and :E~k), r = 1, ... , R, we update 

our parameter estimates by replacing Y, Ur and Urju; in (6.4) and (6.5) by 

their conditional expectation evaluated at the current parameter estimates to 

get 

R 

13(k+l) = (XTx)-1 XT( E[YIW] - I: ZrE[urlW]) (6.6) 
r=l 

and 

qr 
:E~k+l) = ( L E[Urju;;IW] ) / Qr• (6.7) 

j=l 

The steps are then iterated until convergence is achieved. Now 

E[ur!W] = E[E[ur!Y]IW], (6.8) 

(6.9) 

To find the inner expectations, we use the fact that the joint distribution of 

Y, u1 , ... , UR are 

( : )-N. { ( x:) ( (Iq 1 ~/Ei)Z'[ . •+Q . ' . . . . . . . 
UR O (IqR ® ER)Z~ 

where 

R 

Z1(Iq1 ® E1) 

(Iq 1 ® E1) 

0 

V = In + I: Zr(Iqr ® Er)Z; 
r=l 

and Q = "E~=l Qrkr. It follows that 

0 

0 

(6.10) 



CHAPTER 6. PROBIT-LINEAR MIXED MODEL USING MLE 43 

and 

(6.12) 

where Zrj is then x kr submatrix of Zr = (Zr1, ... , Zrqr) that corresponds to 

Urj· Substituting (6.11) and (6.12) into (6.8) and (6.9), we obtain 

and 

~rZ~ v-1{E(YIW)E(YIWf + Cov(YIW) -

E(YIW](X,Bf - (X,B)E(YIWf + (X,B)(X,Bf} 

(6.14) 

We can see from (6.13) and (6.14) that E(urlW) and E(urju:;IW) can 

be expressed entirely in terms of the conditional mean and the conditional 

covariance matrix of Y given W. Thus E(YIW) and Cov(YIW) are all that 

we need to carry out the EM iterations in (6.6) and (6.7). 
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6.1.2 The Monte Carlo EM algorithm 

Unfortunately, E[YIW] and Cov[YIW] which are required for the EM al­

gorithm cannot be expressed in closed form. In such circumstances, Wei & 

Tanner (1990) and McCulloch (1994) suggest the so-called Monte Carlo EM 

algorithm where E[YIW] and Cov[YIW] are approximated by simulations. 

Since it is difficult to simulate directly from the conditional distribution of Y 

given W, we use the method of Gibbs sampling (Smith & Roberts, 1993). The 

details are given as follows. 

Let us first denote the vector obtained by taking the diagonal and lower 

triangular elements of :Er by vec:Er and the P x 1 vector of all parameters 

({3T, vec:E?, ... , vec:ERTf by (J where P = p + '2:~1 Qr(Qr + 1)/2. Starting 

with some initial values y(o) = (Y1(o), ... , Yj0)f consistent in signs with the 

observed data W, we proceed to generate y(b) = (Yi(b), ... , YJb)f, b = 1, 2, ... 

sequentially in the following manner. 

Given y(b) and the current estimates (J(k), we simulate 

Y(b+l) r 1 ( · I (b+l) (b+l) (b+l) (b) (b) . 0(k>) ( ) 
i rom YiY1 ,Y2 ,···,Yi-1 ,Yi+i,···,Yn ,W, 6.15 

To carry out the above simulations, we use the fact that 
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Since Y = (Y1, ... , Ynf is distributed 813 N(X/3, V) with V given by (6.10), 

it follows that f(YilY;, j =/= i) is also normal. Thus f(YilY;, j =/= i; wi) is a 

truncated (above 0 if wi = 1; below 0 if wi = 0) normal distribution. We 

use the f813t acceptance-rejection method of Marsaglia {1964) to simulate from 

such a truncated normal distribution. In this way, we can carry out the Gibbs 

sampling cycles (6.15) to result in y(b) = (Yj_(b), ... , Yjb)f, b ~ 1. According 

to the theory of Gibbs sampling, {Y(b)} is a Markov chain whose stationary 

distribution is J(ylw) which we wish to sample from. In our analysis, we 

discard the first T = 200 elements of the Markov chain {Y(b)} as transient 

values and treat the following B = 1000 elements of {Y(b)} as realizations 

from the conditional distribution of Y given W. We use their sample mean 

and sample covariance matrix to approximate E[YIW] and Cov[YIW]. To be 

precise, we have 

and 

1 T+B 
E[YIW] = y = - L y(b) 

B b=T+l 
(6.16) 

1 T+B 
Cov[YIW] = - L (Y(b) - Y)(Y(b) - Yf. (6.17) 

B b=T+l 

Therefore, by substituting (6.13), (6.14), (6.16) and (6.17) back to (6.6) 

and ( 6. 7), we are able to update the current estimates to 13(k+1) and :E~k+l), 

r = 1, ... , R and we continue to iterate until convergence is reached to result 

in the final estimates 0. Note that we are able to work out the estimates of 

the random effects 813 a by-product from (6.13). 
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6.1.3 Monte Carlo approximation of the observed infor­

mation matrix 

McCulloch (1994) did not report standard errors in his examples but he did 

mention the supplemented EM (SEM) algorithm of Meng & Rubin (1991) as a 

possible method. The basic idea of the SEM algorithm is to use the fact that 

the fraction of missing information is related to the rate of convergence of the 

EM. By running a sequence of supplementary EM iterations, we can approxi­

mate the rate of convergence of the EM algorithm by using finite differences. 

In this way, we can estimate the increased variability due to missing informa­

tion which can then be added to the complete data variance-covariance matrix. 

We do not recommend the SEM algorithm for problems requiring Monte Carlo 

E-steps. At each iteration of the SEM procedure, we need to consider the P 

sets of parameter values that result from perturbing the P components of 8 

one at a time. For each of these P sets of parameter values, we need to run one 

iteration of the EM algorithm via Gibbs sampling. In other words, we have to 

carry out Gibbs sampling P times at each step of the SEM algorithm. This is 

very time consuming if P is large. For the models we proposed in Section 6.2, 

P = 13 and 21. Thus to run 100 SEM steps, we have to carry out Gibbs 

sampling 1300 times for model 1 and 2100 times for model 2. Moreover, our 

experience suggests that a Monte Carlo implementation of the SEM algorithm 

is numerically unstable, has convergence problem and sometimes leads to neg­

ative variance estimates. This is somewhat surprising as no such problems are 

reported in the literature for the SEM algorithm. A possible explanation is that 

the finite difference method of approximating the rate of convergence matrix 

DM (Meng & Rubin, 1991, P.902) is adversely affected by the extra variation 

due to Monte Carlo sampling. In conclusion, the Monte Carlo SEM algorithm 

is undesirable in terms of both computing time and numerical stability. 
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Instead of using the SEM algorithm, we will use simulations to approxi­

mate the observed information matrix directly. The details are as follows. Let 

l(0; W) = logf(w; 0) denote the log-likelihood function based on the observed 

data W. Louis (1982) expressed l"(0; W) in terms of certain conditional expec­

tations of the derivatives of the complete data log-likelihood l(0; Y, U) given 

the observed data W. Specifically, 

l"(0; W) E[l"(0; Y, U)IW; 0] + E[l'(0; Y, U)ltT(0; Y, U)IW; 0] -

E[l'(O; Y, U)IW; 01 E[l'(O; Y, U)IW; of (6.18) 

where U = (uf, ... , ukf- By simulating (Y m, Um), m = 1, ... , M from the 

conditional distribution of (Y, U) given W, we can approximate the condi­

tional expectations involved in (6.18) by the corresponding sample means to 

obtain 

l" M 

(6.19) 

as a Monte Carlo estimate of l" (8; W) and the variance-covariance matrix of 

8 is estimated by -l'f..t -I. In our example, M is increased gradually until the 

estimated standard errors become stable. 

We now describe how to simulate from the conditional distribution of 

(Y, U) given W. Since 
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f(y, ulw) = f(ylw)f(uly, w) = f(ylw)f(uly), (6.20) 

we can first simulate Y from f(ylw) using the Gibbs sampling technique de­

scribed in Section 6.1.2 and then simulate U from /(uly) which is normal with 

mean µUIY and covariance matrix :Eu1Y obtainable from standard formulae. 

6.1.4 Accounting for Monte Carlo variation 

Since Gibbs sampling is used to approximate the various conditional expecta­

tions required at the E-step of the algorithm, we need to check whether the 

Gibbs sampler has converged. While a lot of stopping criteria have been pro­

posed in the literature, they are too microscopic in nature and are not designed 

with Monte Carlo maximum likelihood estimation in mind. Specifically, the 

existing criteria are primarily concerned with simulations from one target dis­

tribution to approximate an expectation. In contrast, we need to approximate 

a lot of expectations and the distribution that we wish to sample from changes 

with each iteration as the parameter estimates are updated. Furthermore, our 

primary interest is not in the expectations themselves but in the parameter 

estimates they eventually lead to. In view of the above, we decide to adopt a 

more macroscopic strategy that consists of L independent runs of the Monte 

Carlo EM algorithm. Let 81 , ... , 8 L denote the estimates of 8 that result from 

the L runs, we can assess the extent of Monte Carlo variation by calculating 

the sample variance-covariance matrix S based on 81, ... , 8£. As a by-product, 

we can also compute 
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- 1 ~-
0 = L L,; 01 

l=l 

as a more precise estimate of 0. An estimate of the asymptotic covariance 

matrix of 0 that explicitly accounts for Monte Carlo variation (Kuk & Chen, 

1992) is 

V=Vi+½ 

where 

½=S/L 

and l'lw(O) given by (6.19) is a Monte Carlo approximation of the observed 

information evaluated at 0 = 0. If½ contributes negligibly to the total V, we 

can conclude that the Monte Carlo variation is nonsignificant. 

6.2 Models for the salamander mating data 

The salamander mating data reported by McCullagh and Nelder (1989, pp. 

439-450) have been extensively analysed (Schall, 1991; Breslow and Clayton, 

1993; Karim and Zeger, 1992). The data were recorded from experiments in­

volving two geographically isolated populations of salamanders, Rough Butt 

(R) and Whiteside (W). The scientific question addressed in the study is 
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whether the geographically isolated species of salamanders develop barriers to 

successful mating. 10 R males and 10 W males were sequestered as pairs with 

10 R females and 10 W females on six occasions according to the design given 

in Table 14.3 of McCullagh and Nelder (1989). For each pair, it was recorded 

whether mating occurred and there are n=360 such records altogether, 120 

records from each experiment. The first experiment was conducted in the 

summer of 1986 while the other two experiments were conducted in the fall of 

the same year. The same animals were used in the first two experiments while 

a new set of animals was used for the third experiment. Our main objective 

in this analysis is to estimate the probability of a successful mating for each 

of the four types of cross in mating, RR (R female with R male), RW, WR, 

WW as well as the seasonal effect. We are also interested in knowing whether 

there exists heterogeneity among animals and, if so, whether it is greater for 

females or males and for which species. To answer this question, we model the 

animal effects as random effects. As the same animals were used in the first 

two experiments, those random effects corresponding to the same animal are 

correlated. 

Previous analyses of the data (Schall, 1991; Breslow and Clayton, 1993; 

Karim and Zeger, 1992) used a generalized linear model with random effects 

and a logit link function. McCulloch (1994) used probit link and a Monte 

Carlo ECME algorithm to analyse the three experiments separately. We ob­

tain similar results for the model proposed by McCulloch (1994, p.333), called 

model O using the Monte Carlo EM algorithm described in Section 6.1.2. For 

example, for experiment 1, the results of 10 runs of the algorithm are given 

in Table 9. We obtain firr = 0.792(SE = 0.393), firw = 0.531(0.374), fiwr = 

-0.954(0.412), fiww = 0.698(0.385), &7 = 0.592(0.363) and a; = 0.019(0.153) 

compared with the estimates 0.819, 0.538, -0.978, 0.707, 0.600 and 0.067 oh-
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tained by McCulloch. 

6.2.1 A probit linear model with correlated random ef­

fects 

To analyse the combined data set, we use the model 

(6.21) 

and W = l(Y>O). The design matrix X consists of the indicator variables for 

the four types of cross RR, RW, WR and WW as well as an indicator variable 

for the season (fall=l; summer=O). The vector {3 = (/3rr, f3rw, f3wr, f3ww, /31a11f 

consists of the corresponding fixed effects. The random effects are 

( 0-!1 
Um12 rv N4o(O, l20@ ~m12), where ~m12 = 

O-m12 

u13 rv N20(0, a-73120), 

Um3 rv N20(0, o-!3l20) 

where u112 (um12 ) is made up of 20 2 x 1 random vectors corresponding to the 

effects of 20 female(male) animals over the 2 occasions, experiment 1 and 2 and 

u 13 ( um3) represents the effects of the new set of animals used in experiment 
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3. The design matrices correspond to these random effects are Z/12 , Zm12 , Z13 

and Zm3 . Finally, we assume that the error vector e rv N360 (0, I). 

In fitting the model, we set the starting values to be zero for all beta param­

eters, 0.01 for all variance parameters and 0.001 for all covariance parameters. 

Using (6.6), (6.7), (6.16) and (6.17), we iterate 300 times to obtain the param­

eter estimates. The results of 5 runs of the algorithm are given in Table 10. 

It is clear that we obtain more or less the same estimates from each run. In 

fact,½ contributes only negligibly to V =Vi+½ where Vi= -{l~(e)}-1 is 

stabilized at M = 50000. 

The following conclusions are drawn. For the fixed effects, we find that the 

mating rate of the WR cross type is the lowest whereas the mating rates of 

RR and WW are the highest and of similar magnitude. The seasonal effect is 

in the direction of less successful mating in fall. An estimate of the contrast of 

primary interest f3rw - f3wr is 1.397 (S.E. 0.364) which is significantly different 

from zero. Finally, we examine the random effects and find that the female 

random effects have a higher variability than the male random effects in the 

first two experiments whereas in the last experiment, the relation is reversed. 

Furthermore, the female random effects in experiment 1 and 2 are apparently 

not correlated while for the males, they appear to be positively correlated. 

These findings are in reasonable agreement with the results from previous 

analyses using logit link. 

In assessing the goodness-of-fit, we calculate the estimated probabilities 

of successful mating for RR, RW, WR and WW mating types, denoted by 

7rrr, 1rrw, 1rwr, 1rww in experiment 1, 2 or 3. For example, 

(6.22) 
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for experiment 1 (Zeger, Liang & Albert, 1988). Then we compare the esti­

mated probabilities with the observed proportions in Table 12. We can see 

that all the estimated probabilities match quite well with the observed pro­

portions. The sample variances of the animal specific totals for the female R, 

female W, male Rand male W salamanders, denoted by S]r, SJw, S;r and 

S;w are calculated for each experiment and their expected values are approx­

imated on the basis of 5000 samples drawn from the model at the estimated 

parameter values. The results, also given in Table 12, reveal the inadequacy 

of the model as we find that for each gender, the ordering of the expected 

variances for species Rand W is often opposite to that of the corresponding 

observed variances. For example, the observed SJr (1. 733) is smaller than the 

observed SJw (3.789) in experiment 2 but the expected SJr (2.898) is larger 

than that of SJw (2.138) under model 1. Therefore, we revise our model to 

allow the variance parameters of different species to be different. 

6.2.2 A probit linear model with species specific ran­

dom effects 

The revised model, model 2, has 5 fixed effects and 8 random effects, 

Z /r3 U /r3 + Z fw3 U fw3 + Zmr3 Umr3 + Zmw3 Umw3 + € · (6.23) 

This model is an extension of model 1 by further subdividing 0112 , Um12 , u13 

and um3 in (6.21) into two species specific parts. Thus 
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ll/r12 ,..., N20(0, l10@ :E/r12), 

ll/w12,..., N20(0, l10@ :E1w12), 

Umr12 ,..., N20(0, l10@ :Emr12), 

Umw12 ,..., N20(0, l10@ :Emw12), 

ll/r3 ,..., N1o(O, O"Jr3l10), 

Ufw3 ,..., N10(0, CiJw3l10), 

where ll/ri2(umri2) is made up of 10 2 x 1 random vectors corresponding to the 

effects of 10 female(male) animals of species Rover the 2 occasions, experiment 

1 and 2 and ll/w12(Umw12) is similarily defined for species W. Again, ll/r3(Umr3) 

represents the effects of the new set of species R animals used in experiment 3 

and ll/w3(umw3) is similarily defined for species W. The design matrices corre­

spond to these random effects are Z1r12, Z1w12, Zmr12, Zmw12, Z/r3, Z/w3, Zmr3 

and Zmw3· 

We use the estimates of model 1 as the starting values and iterate 400 

times to obtain a new set of estimates. As our estimate of a;w3 (0.0026) is 

extremely close to zero, we iterate 100 times more subject to the constraint 

a;w3 = 0. We re-run the algorithm 4 times under the constraint a;w3 = 0. 

The results are given in Table 11. It can be seen that the 5 runs of the Monte 

Carlo EM algorithm give similar results. For this example, Vi = -{l~(B)}-1 

is stabilized at M = 30000. To assess the goodness-of-fit of model 2, we use 

similar procedures as for model 1 and the results are also given in Table 12. We 

can see that there is better agreement between the observed variances SJr, SJw, 
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S!r and S!w and their expected values under model 2 than under model 1. 

6.3 Extension 

In (6.3), we allow a correlated structure for the random effects but it is assumed 

that the errors e are independently and identically distributed as N(O, I). As 

a result, we can write down the complete data MLE in closed form which 

greatly simplifies the M-step of the EM algorithm. However, for longitudinal 

data such as the methadone clinic data, it seems more reasonable to assume 

that the errors for the same patient are serially correlated. To allow correlation 

in the error vector e, we assume that e,...., N(O, '11) where \JI=/:- I. The extended 

model has potential applications in the analysis of longitudinal binary data and 

multivariate clustered binary data. 

6.3.1 Extension to autocorrelated error 

For longitudinal data, it is common to assume autocorrelated errors within 

subjects. If the time points are equally spaced, we may consider an AR(l) 

correlation matrix, \Jli(P) given by (2.2) for subject i. Assuming independence 

across subjects, the correlation matrix fore is block diagonal 

\Jl(p) = diag(\J!1(P), ... , Wm(P)) (6.24) 
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where m is the number of subjects. Under this correlation structure, the M­

step of the EM algorithm becomes slightly more complicated than that in 

Section 6.1.1. The complete-data MLE of Er is still given by {6.5) but the 

complete-data MLE of {3 and p have no closed form. For a fixed value of p, 

the MLE of {3 is the generalized least squares estimates 

R 

~c(P) = (XT w(p)-1 x)-1 xrw(p)-1 ( Y - L ZrUr ). (6.25) 
r=l 

The complete-data MLE Pc of p can be obtained by maximizing the profile 

log-likelihood 

l(p) -(N - m) log(l - p2) -
2 

(6.26) 

1 ~ R T 
-(Y - X{3c(p) - LZrur) w(p)-1(Y 
2 r=l 

and ~APc) is the complete data MLE for {3. Thus the EM algorithm works 

as follows. Given the current estimates E~k), 13(k) and p(k), we obtain the up­

dated estimate p(k+l) by taking conditional expectation of the above profile 

log-likelihood given the observed data W = J(Y>O) and maximize it with re­

spect top. The updated estimates of Er and /3 are E~k+l) = E(ErclW) and 

13(k+1) = E(~(p(k+l))IW) where the expectations are evaluated at the current 

parameter estimates. 

Next, we consider the possibility of applying the AR(l) error model to the 

methadone data. As commented before, the probit-linear mixed model can be 

viewed as a threshold model that results from dichotomizing the observations 

from a Gaussian mixed model. As a starting point, we consider an underlying 

random intercept model with AR(l) errors, 
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(6.27) 

where ui is i.i.d. N(O, a 2) and 

where wi(P) is a ni x ni matrix given by (2.2). The observed binary data are 

Wit = I(Y;t>O)· The maximum likelihood estimation of the fixed effects /3 and 

the variance component a is carried out through the EM algorithm. To apply 

the EM algorithm, we treat the complete data as Y, u1, ... , Um and regard 

the observed data W = J(Y>O) as incomplete data. To obtain the complete 

data MLE, we could use the generalised least squares estimates defined by 

(6.25) but we find it more appealing to use a transformation approach. It is 

well known that the GLS estimates are equivalent to the OLS estimates based 

on the transformed data Y* = P(Y - Zu), X* = PX and e* = Pe where 

P = diag(P1, ... , Pm) is block diagonal with Pi defined by 

-./1-p2 0 0 0 0 

-p 1 0 0 0 

Pi(P) = 
0 -p 1 0 0 

(6.28) 

0 0 0 1 0 

0 0 0 -p 1 
niXni 

and pTp = (1 - p2)w-1 . In other words, 

Y:1 = Vl - P2 (Yil - ui) 
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and fort> 1, 

and the transformation for Xit is similarily defined. The MLE of /3 under the 

transformed model Y* = X* /3 + e* is the OLS estimates 

(6.29) 

Substituting 'ilc(P) into (6.26), we obtain the profile log-likelihood function 

-(N - m) 1 m ni - 2 

l(p) = 2 log(l - p2) - 2(1 _ p2) ~ ~ (Y;t - x;tf3c(P)) (6.30) 

which can be maximized to yield Pc, the complete data MLE for p. The 

complete data MLE for /3 is 'iJAiic) and for a 2 , it is clear that 

(6.31) 

In the E-step, E(YilW), E(YiYflW), E(uilW), E(ullW) and E(uiYilW) 

are required. Equations (6.13) and (6.14) show that E(uilW) and E(ul IW) can 

be expressed in terms of the conditional mean and the conditional covariance 

matrix of Y given W. Thus E[YIW] and Cov[YIW] are all that we need to 

carry out the steps. Since the complete data MLE for /3 and p have no closed 

form, iterations are required to carry out the M-step. Thus the EM algorithm 

requires iterations within iterations which become very computational inten­

sive especially for the methadone data with over two thousand observations. 

As a result, we do not fit this model to the methadone data. 
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6.3.2 Extension to multivariate clustered binary data 

We consider next multivariate clustered binary data which arise, for example, 

in the study of multiple binary traits in animal breeding {Foulley, Gianola & 

Im, 1989). Leth= l, ... , H index the H traits. We can model each trait by 

a threshold model like ( 6.3) so that W h = I(Y h >O) and 

R 

yh = Xhf3h + L Zhrllhr + eh, h = l, ... , H, {6.32) 
r=l 

where {3h and uhr denote the trait-specific fixed and random effects. Combin­

ing, we have 

R R 

(Y1-LZ1rU1r,···,YH-LZHrllHr) = (X1/31,···,XHf3H)+(e1,···,eH)-
r= r=l 

(6.33) 

The row vectors of the error matrix e = ( e1 , ... , e H) are assumed to be inde­

pendent and identically distributed as N{O, C) where C denotes the residual 

covariance matrix. Note that this model is more realistic than a model which 

assumes that Y 1 , ... , Y H are conditionally independent given the random ef-

fects uhr, h = l, ... , H; r = l, ... , R. Note also that the right hand side 

of {6.33) is a multivariate linear model. If we define the complete data as 

(Y h, Uhr), h = l, ... , H; r = l, ... , R, the complete-data MLE of {3h and 

:Ehr are just trait-specific analogues of {6.4) and {6.5). The complete-data 

MLE of the covariance matrix C is given by the sample covariance matrix 

{6.34) 

where e = (e1 , ... , e H) is the matrix of residuals with trait-specific residual 
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vector eh= Yh - Xh'[jh - L~=I Zhrllhr· A subtle point is the following. Since 

only W = /(Y>O) is observed, the variances cu, ... , CHH of the error matrix 

e are not estimable from the observed data. As the scale parameter ...jc,;i;, 

can be absorbed into the regression parameters {3h, we can only estimate the 

ratios /3i/ Jcu, ... , /3 H / ,Jciiii. The common way to overcome this identifi­

ability problem for probit model is to assume cu = ... = CHH = 1. This 

constraint however complicates the estimation of C because the constrained 

MLE of C is no longer given by (6.34). For example, if H = 2, it is well 

known that the MLE of c12 subject to cu = c22 = 1 is the solution to a cubic 

equation. We are now in an interesting situation where all the parameters are 

estimable from the complete data (Y h, llhr ), h = 1, ... , H; r = 1, ... , R 

but only the ratios /3i/ Jcu, ... , /3 H / ,Jciiii are estimable from the observed 

data W = /(Y>O) and we have to impose the constraint c11 = ... = CHH = 1. 

To implement the EM algorithm, we think it is easier to obtain the uncon­

strained complete-data MLE of {3h, :Ehr and C. The updating formula now 

consists of taking conditional expectation of the unconstrained MLE given the 

observed data and evaluating them at the current parameter estimates. We 

conjecture that we can obtain convergent estimates of the estimable parame­

ters /31 / Jcu, ... , /3 H / ,Jciiii by using the above unconstrained maximization 

version of the EM algorithm. To our knowledge, problems where the complete­

data model has more parameters than the observed data model have not been 

addressed before and deserve further investigation. 



Appendix A 

Derivatives of log-likelihood for 

bivariate model 

Differentiating (5.8), the log-likelihood function with respect to a vector of 

parameters, we have 

8l ~ ~ [ ( )_1 8Pit(l, 1) ( ) ( )_1 8Pit(l, O) 
80 _ = ~ ~ l'ithl'itb Pit 1, 1 80 _ + l'ith 1 - l'itb Pit 1, 0 80 _ + 

J i=l t=l J J 

(1 - ¼ )Y.· P (o 1)-1 aP;,bo,1) + (1 - ¼ )(1 - ¼ ) P (o o)-1 aP,tbo,o)] (A 1) ith itb ,t , a ; ith itb it , a ; . 

for j = h, b or r where 

(A.2) 

(A.3) 

8Pit(l, 1) = Xitr'Yit { [- ~- 1,:-½ _ (l -<5~)( . - l)-1] ( . - l)-1} 
80r 2 itr it it 'Yit 'Yit , (A.4) 
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D.ith = 1'it[Pit(l, ·) - Pit(·, 1)] - [Pit(l, ·)+Pit(·, 1)] + 1, 

D.itb = -')'it[Pit(l, ·) - Pit(·, 1)] - [Pit(l, ·)+Pit(·, 1)] + 1, 

D.itr = 1'it[Pit(l, ·) - Pit(·, 1)]2 - [Pit(l, ·)2 + Pit(·, 1)2] + [Pit(l, ·)+Pit(·, 1)], 

8Pit(l,0)_X· S~ _8Pit(l,1)_ 
80h - ith ith 80h ' 

8Pit(0, 1) _ X· S~ _ 8Pit(l, 1). 
80b - itb itb 80b ' 

8Pit(0, 1) 8Pit(l, 1) 8Pit(0, 0) 
---=- ; = 

80h 80h 80h 

8Pit(l,0) 
= 80b 

8Pit(l, 1) 8Pit(0, 0) ---; = 
80b 80b 

8Pit(l,0). 
80h ' 

8Pit(0, 1). 
80b ' 

8Pit(l, 0) 8Pit(0, 1) 8Pit(0, 0) 8Pit(l, 1) ---=---= = 80r 80r 80r 80r 

= eTlitb/(l +eTlitb)2, 'Yit = eTlitr and Xitj is a qi x l vector, j = h,b or r. Again, 

the second order derivatives of the log-likelihood function are 

= ~~{ ¼ ¼ [P.- (l l)_182Pit(l,1) -P.- (l l)_2 8Pit(l,1)8Pit(l,1)] + 
L....t L....t ith itb ii , 80 _0T it , 80 . 80T 
i=l t=l J l J l 

¼ (1-¼ ) [P.- (1 o)-182Pit(l,O) -P.- (1 o)-28Pit(l,0)8Pit(l,O)] + 
ith itb it , 80;0T it , 80; 80r 

(l _ ¼ )¼ [P.· (0 l)-1 82 Pit(O, 1) _ P.· (0 l)_2 8Pit(O, 1) 8Pit(O, 1)] + 
ith itb it , 80;0T it , 80; 80T 

(l _ ¼ )(l _ Y.· ) [P.- (0 o)-182 Pit(O, 0) _ P.- (0 0)_2 8Pit(O, 0) 8Pit(O, O)]} 
ith ,tb ,t , 80;0T it , 80; 80T 

(A.5) 
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for j, l = h, b or r where 

82 Pit(l, 1) _ xithxfth {A ( 2 )2( ) A 2 .i"-½ [( 2 )2( ) A A ] c½} B(hBOI - 2 ith + Sith 'Yit-1 u.ith uit - Sith 'Yit-1 +u.ith ith uit , 

(A.6) 

(A.8) 

82 Pit(l, 1) xithXitr {s2 [A A .i"-½ [n ( ) n ( )] r½]} 88 88T = 2 ith'Yit U.ithU.itrUit - .C-it 1, • - .C-it ·, 1 uit , 
h r 

(A.9) 

82Pit(l, 1) xitbXitr {s2 [ A c½ [ ( ) ( )] r-½]} 80b80; = 2 itb'Yit AitbU.itrUit + Pit 1, · - Pit ·, 1 uit , (A.10) 

82 Pit(l, 1) 

88r88; 
XitrXitr { { [ [ ( )]2 -½ 2 _JI.] ( = 2 'Yit'Yit - Pit(l, ·) - Pit ·, 1 8it + Aitr8it 2 + A.11) 

[2('Yit - 1)-1 - 'Yit 1 ][Aitr8~½ + (1 - 8i,)('Yit - 1)-1] }('Yit - 1)-1 }, 

8Pit(l, 1). 8Pit(O, 0) _ 8Pit(O, 1). 
88b88f ' 88b88f - 88b88f ' 
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8Pit(0, 0) _ 8Pit(I, I) 
88;8f - 88;8f ' 

for j -=/= l or j = l = r, Aith = Pit(l, ·) - 3~t(l, ·)2 + 2~t(l, ·)3 and 

Aitb = Pit(·, 1) - 3~t(·, 1)2 +2~t(·, 1)3• 



Table 

Table 1 Parameter estimates and standard errors {in italic} for various AR{1} 
models. 

I model f3o f3t 

marginal -0.2195 -0.0108 -0.3435 n.a. 
(a= 0.4305) 0.9769 0.00569 0.0796 n.a 

conditional -0.8423 -0.00884 -0.4049 2.3960 
0.2189 0.00282 0.0628 0.1196 

random .Bo(GQ4) -0.9280 -0.00685 -0.4277 1.5516 
0.4286 0.00761 0.0704 0.1420 

random /30 (ML) -0.5859 -0.0132 -0.4100 1.4038 
0.9410 0.00490 0.0682 0.1994 

random f3o, /3d -0.1057 -0.0180 -0.3869 n.a. 
0.4058 0.00610 0.0692 n.a. 

random f3o, /3d -0.4777 -0.0149 -0.4130 1.4018 
0.9999 0.00497 0.0682 0.1994 
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Table 2 Parameter estimates and standard errors {in italic} for various AR{2} 
models. 

I model f3t 

conditional -0.8978 -0.00870 -0.4477 1.9802 1.1013 
0.2215 0.00286 0.0643 0.1306 0.1393 

random ,80 (GQ4) -0.8909 -0.00730 -0.3787 1.4884 0.4943 
0.3808 0.00620 0.0699 0.1453 0.1536 

random ,80 (ML) -0.6153 -0.0128 -0.4305 1.3311 0.4535 
0.3282 0.00411 0.0684 0.1382 0.1478 

random .Bo, .8d -0.5001 -0.0146 -0.4338 1.3299 0.4513 
0.3203 0.00478 0.0683 0.1382 0.1478 
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Table 3 Parameter estimates for separate fitting to selected patients. 

I i.d. I f3o f3t 

103 15.2154 -0.2394 0.6600 1.4362 
119 6.4219 -0.1919 1.8743 1.0175 
120 4.1748 -0.0831 -0.6182 0.9896 
123 13.8571 -0.1036 -2.2498 1.1565 
132 -27.9921 0.4709 0.4176 -2.2771 
134 0.6367 0.0292 -1.4076 0.8603 
164 -5.5810 0.1491 -0.4587 0.1173 
172 -0.8535 0.0290 -0.7472 1.7880 
173 -6.9913 0.1437 -0.8278 0.9546 
509 0.8920 0.0250 -0.9770 -1.7253 
512 5.5039 -0.1501 1.0544 1.7088 
513 5.7359 -0.1264 -0.3930 0.4757 
517 7.5551 -0.0258 -2.2858 0.0491 
522 0.1196 0.0280 -1.2460 -0.0220 
523 5.6147 -0.0606 -1.0315 0.0266 
532 0.6642 -0.0392 0.4130 0.5868 
538 -2.9978 -0.4569 7.6776 -2.7581 
540 44.7475 -0.8159 -5.8932 2.5568 
567 2.1490 -0.0139 -1.6775 0.8289 
573 -0.8423 -0.1507 3.9988 0.4805 
574 -26.4234 0.1123 7.1960 -0.3037 
575 4.9208 -0.0122 -1.4421 -0.1700 
587 9.7951 -1.3778 23.9124 -0.3560 
589 152.7 -0.8755 -37.4085 -0.2922 

Table 4 Standardized Score statistics and P-value {in italic} for testing ho­
mogeneity of each coefficient. 

f3o f3t 

Standardized Score 6.2391 4.9716 5.4184 2.3915 
P-value 0.0000 0.0000 0.0000 0.0084 
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Table 5 Parameter estimates, standard errors {in italic} and AIC for mixture 
models with different number of groups. 

I model {3pl L AIC 

G = 2 (group 1) -1.1732 -0.0153 -0.4317 1.5610 0.6689 -977.37 1968.75 
0.5165 0.00692 0.0686 0.1971 0.0571 

(group 2) -0.1321 0.00097 same same 0.3311 
0.3100 0.00421 0.0571 

G = 3 (group 1) -5.2306 0.0249 -0.4262 1.4313 0.3039 -967.45 1954.89 
2.0002 0.0242 0.0694 0.1397 0.0785 

(group 2) 0.1314 -0.0245 same same 0.4603 
0.3922 0.00603 0.0846 

(group 3) 0.1305 0.00047 same same 0.2358 
0.4008 0.00528 0.0500 

G = 4 (group 1) -5.2110 0.0258 -0.4233 1.3886 0.3104 -966.37 1958.75 
1.8800 0.0232 0.0705 0.1426 0.0780 

(group 2) 0.3120 -0.0275 same same 0.4449 
0.4670 0.00737 0.0842 

(group 3) 0.5743 -0.00707 same same 0.1853 
0.5381 0.00778 0.0665 

(group 4) -1.3950 0.0270 same same 0.0594 
1.0416 0.0169 0.0559 

G=5 -966.29 1964.58 
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Table 6 Estimated group memberships Wik for the two-group and three-group 
mixture AR(1} models. 

I Pat.No. I ni 

12-group 3-group 
1 I 2 1 I 2 I 3 

103 26 7 0.02 0.98 0.00 0.32 0.68 
104 26 1 1.00 0.00 0.48 0.51 0.00 
105 10 3 0.49 0.51 0.00 0.76 0.24 
106 10 0 0.98 0.02 0.78 0.21 0.01 
109 26 2 0.98 0.02 0.14 0.86 0.00 
110 15 8 0.01 0.99 0.00 0.25 0.75 
111 6 1 0.71 0.29 0.13 0.69 0.18 
113 4 4 0.02 0.98 0.00 0.11 0.89 
118 26 5 0.61 0.39 0.00 0.93 0.07 
119 26 18 0.00 1.00 0.00 0.00 1.00 
120 26 3 0.96 0.04 0.01 0.99 0.01 
121 26 0 1.00 0.00 0.92 0.08 0.00 
122 26 0 1.00 0.00 0.97 0.03 0.00 
123 14 10 0.00 1.00 0.00 0.00 1.00 
124 26 0 1.00 0.00 0.69 0.31 0.00 
125 4 0 0.93 0.07 0.46 0.50 0.03 
126 21 1 1.00 0.01 0.34 0.66 0.00 
128 5 0 0.93 0.07 0.67 0.30 0.03 
129 11 0 0.99 0.01 0.70 0.29 0.00 
131 26 2 0.98 0.02 0.12 0.87 0.00 
132 15 7 0.00 1.00 0.00 0.06 0.94 
133 9 4 0.17 0.83 0.00 0.55 0.45 
134 22 10 0.00 1.00 0.00 0.02 0.98 
135 11 4 0.25 0.75 0.00 0.64 0.36 
137 8 2 0.63 0.37 0.03 0.76 0.20 
138 26 0 1.00 0.00 0.69 0.31 0.00 
143 26 0 1.00 0.00 0.90 0.10 0.00 
144 26 6 0.13 0.87 0.00 0.55 0.45 
145 26 0 1.00 0.00 0.85 0.15 0.00 
146 6 3 0.28 0.72 0.00 0.56 0.44 
149 26 1 1.00 0.00 0.59 0.41 0.00 
150 9 4 0.23 0.77 0.00 0.64 0.36 
153 12 1 0.95 0.05 0.22 0.75 0.03 
156 26 1 1.00 0.00 0.45 0.55 0.00 
159 26 0 1.00 0.00 0.97 0.03 0.00 
160 6 2 0.72 0.28 0.00 0.81 0.19 
161 26 9 0.00 1.00 0.00 0.03 0.97 
162 21 1 0.99 0.01 0.41 0.58 0.00 
163 26 4 0.89 0.11 0.00 0.97 0.03 
164 26 10 0.00 1.00 0.00 0.26 0.74 
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I Pat.No. I ni 

12-group 3-group 

1 I 2 1 I 2 I 3 

165 25 0 1.00 0.00 0.68 0.32 0.00 

166 12 1 0.93 0.07 0.19 0.79 0.03 

168 26 2 0.99 0.01 0.11 0.89 0.00 

169 26 0 1.00 0.00 0.87 0.13 0.00 
170 15 8 0.00 1.00 0.00 0.06 0.94 

171 26 5 0.42 0.58 0.00 0.92 0.08 
172 26 14 0.00 1.00 0.00 0.00 1.00 
173 26 15 0.00 1.00 0.00 0.00 1.00 

175 14 7 0.00 1.00 0.00 0.08 0.92 

501 24 8 0.00 1.00 0.00 0.00 1.00 

502 25 5 0.21 0.79 0.00 0.75 0.25 

503 13 0 0.98 0.02 0.95 0.05 0.00 

504 26 0 1.00 0.00 0.83 0.17 0.00 

505 26 0 1.00 0.00 0.79 0.21 0.00 

506 26 0 1.00 0.00 0.95 0.05 0.00 

507 26 1 1.00 0.00 0.46 0.54 0.00 

508 26 2 0.98 0.02 0.16 0.84 0.00 

509 26 8 0.04 0.96 0.00 0.66 0.34 

510 26 0 1.00 0.00 0.75 0.25 0.00 

511 26 0 1.00 0.00 0.92 0.08 0.00 

512 10 3 0.34 0.66 0.00 0.69 0.31 

513 26 11 0.00 1.00 0.00 0.21 0.79 

514 12 1 0.95 0.05 0.45 0.54 0.01 

515 18 0 1.00 0.00 0.46 0.54 0.00 

516 26 2 0.99 0.01 0.04 0.96 0.00 

517 26 11 0.00 1.00 0.00 0.00 1.00 

518 10 0 0.98 0.02 0.69 0.31 0.00 
519 26 0 1.00 0.00 0.95 0.05 0.00 

520 26 1 1.00 0.00 0.39 0.61 0.00 

521 26 0 1.00 0.00 0.79 0.21 0.00 

522 12 6 0.01 0.99 0.00 0.11 0.89 
523 26 5 0.30 0.70 0.00 0.85 0.15 

524 26 1 1.00 0.00 0.37 0.63 0.00 
525 26 0 1.00 0.00 0.84 0.16 0.00 

526 26 7 0.13 0.87 0.00 0.81 0.19 

527 26 3 0.94 0.06 0.04 0.95 0.01 
528 26 1 1.00 0.00 0.25 0.75 0.00 
529 26 1 1.00 0.00 0.38 0.62 0.00 

530 26 3 0.96 0.04 0.01 0.98 0.01 

531 7 3 0.03 0.97 0.09 0.03 0.88 

532 13 5 0.09 0.91 0.00 0.58 0.42 
533 26 5 0.77 0.23 0.00 0.94 0.06 
534 26 5 0.62 0.38 0.00 0.95 0.05 
535 5 0 0.94 0.06 0.52 0.45 0.02 

536 26 1 1.00 0.00 0.41 0.59 0.00 

537 6 0 0.94 0.06 0.71 0.27 0.02 
538 17 4 0.58 0.42 0.00 0.91 0.09 
539 26 2 0.99 0.01 0.18 0.82 0.00 
540 15 8 0.01 0.99 0.00 0.21 0.79 
541 26 1 1.00 0.00 0.40 0.60 0.00 
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I Pat.No. I ni 

12-group 3-group 

1 I 2 1 I 2 I 3 

542 26 0 1.00 0.00 0.83 0.17 0.00 
543 17 11 0.00 1.00 0.00 0.00 1.00 
544 26 0 1.00 0.00 0.87 0.13 0.00 

545 26 12 0.00 1.00 0.00 0.11 0.89 
546 26 0 1.00 0.00 0.97 0.03 0.00 

547 26 1 1.00 0.00 0.45 0.55 0.00 

548 26 0 1.00 0.00 0.86 0.14 0.00 

549 26 1 1.00 0.00 0.38 0.62 0.00 

550 26 0 1.00 0.00 0.80 0.20 0.00 
551 26 1 1.00 0.00 0.10 0.89 0.00 

552 26 2 0.97 0.03 0.11 0.88 0.01 

553 8 0 0.98 0.02 0.48 0.52 0.01 

554 26 1 1.00 0.00 0.30 0.70 0.00 

555 26 9 0.04 0.96 0.00 0.68 0.32 

556 10 5 0.04 0.96 0.00 0.31 0.69 

557 26 2 0.98 0.02 0.15 0.85 0.00 

558 26 0 1.00 0.00 0.71 0.29 0.00 

559 4 0 0.94 0.06 0.36 0.61 0.03 

560 26 5 0.32 0.68 0.00 0.86 0.14 

561 26 1 1.00 0.00 0.44 0.56 0.00 

562 10 3 0.58 0.42 0.00 0.81 0.19 

563 26 0 1.00 0.00 0.49 0.51 0.00 

564 18 3 0.82 0.18 0.01 0.81 0.18 

565 26 6 0.27 0.73 0.00 0.86 0.14 

566 13 2 0.88 0.12 0.02 0.94 0.05 

567 26 3 0.93 0.07 0.09 0.90 0.01 

568 18 0 1.00 0.00 0.74 0.26 0.00 

570 26 3 0.96 0.04 0.01 0.98 0.01 

571 26 0 1.00 0.00 0.58 0.42 0.00 

572 26 2 0.99 0.01 0.18 0.81 0.00 

573 26 13 0.00 1.00 0.00 0.00 1.00 
574 26 3 0.96 0.04 0.00 0.99 0.01 

575 26 17 0.00 1.00 0.00 0.00 1.00 
576 26 21 0.00 1.00 0.00 0.00 1.00 

577 16 10 0.00 1.00 0.00 0.00 1.00 

579 26 0 1.00 0.00 0.94 0.06 0.00 
580 26 1 1.00 0.00 0.35 0.64 0.00 
581 26 0 1.00 0.00 0.79 0.21 0.00 

582 24 0 1.00 0.00 0.57 0.43 0.00 

583 26 2 0.98 0.02 0.20 0.80 0.00 

584 17 9 0.00 1.00 0.00 0.00 1.00 
585 11 0 0.98 0.02 0.91 0.09 0.00 

586 26 4 0.83 0.17 0.00 0.97 0.03 
587 24 4 0.59 0.41 0.00 0.93 0.07 
588 26 0 1.00 0.00 0.48 0.52 0.00 
589 26 12 0.00 1.00 0.00 0.04 0.96 
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Table 7 Parameter estimates and standard errors {in italic} for various bi­
variate binary models. 

I Model I f3o f3t /3c I L (AIC) 

1. H -0.9253 -0.00714 -0.3909 2.3590 -0.4679 0.4258 -1880.92 
0.2205 0.00292 0.0629 0.1269 0.2402 0.3799 (3797.83) 

B -3.9962 0.0307 -0.2838 -0.0895 3.0038 -0.8412 
0.2931 0.00339 0.0731 0.2265 0.1459 0.3921 

R 1.8803 -0.0253 0.0951 -1.0064 -1.0623 2.2225 
0.7127 0.00915 0.1938 0.5536 0.5365 0.9272 

2. H -0.9313 -0.00731 -0.3920 2.4092 -0.3036 -1881.64 
0.2205 0.00292 0.0628 0.1196 0.1842 (3795.28) 

B -4.0007 0.0307 -0.2821 -0.0903 2.9958 -0.8429 
0.2929 0.00339 0.0730 0.2264 0.1458 0.3942 

R 2.0250 -0.0252 -0.9421 -1.0103 2.1513 
0.6407 0.00915 0.5396 0.5314 0.9170 

3. H -0.9324 -0.00730 -0.3916 2.4091 -0.3020 -1881.69 
0.2203 0.00291 0.0628 0.1196 0.1841 (3791.39) 

B -4.0060 0.0308 -0.2812 -0.0905 2.9955 -0.8298 
0.2924 0.00339 0.0730 0.2264 0.1458 0.3913 

R 1.0163 -0.0248 1.0156 
0.7597 0.00897 0.4108 
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Table 8 Parameter estimates and standard errors (in italic} for various bi­
variate binary mixture models. 

I Model /3o /3c 7f' L (AIC) 

4. H 1 -1.0401 -0.00859 -0.5888 1.6278 -0.3779 0.5495 -1763.03 
0.5209 0.00735 0.1101 0.3390 0.8723 0.0512 (3578.06) 

2 -0.3195 -0.00662 -0.2969 2.0606 -0.9579 0.4505 
0.2957 0.00376 0.0886 0.1623 0.1997 0.0512 

BI -5.6318 0.0361 -0.3293 0.8113 2.2951 -1.2327 
0.8361 0.00915 0.1860 0.5430 0.4566 1.3260 

2 -3.0432 0.0332 -0.1896 -1.2857 1.8513 0.4198 
0.3751 0.00437 0.0874 0.2638 0.1807 0.4287 

R 0.8315 -0.0245 0.5185 
0.7551 0.00966 0.4102 

5. H 1 -1.1156 -0.00759 -0.5981 1.9576 -0.5124 0.5558 -1764.93 
0.3562 0.00362 0.1119 0.1389 0.8405 0.0516 (3569.86) 

2 -0.2599 same -0.2767 same -0.9564 0.4442 
0.2893 0.0903 0.1949 0.0516 

BI -5.3743 0.0335 -0.3289 0.5221 1.9345 
0.5197 0.00386 0.1810 0.5105 0.1577 

2 -3.0618 same -0.2060 -1.1180 same 
0.3496 0.0873 0.2066 

R 0.7685 -0.0236 0.5648 
0.7454 0.00957 0.4035 

6. H 1 -1.5301 -0.00750 -0.3977 1.9587 -0.3021 0.5547 -1767.24 
0.3102 0.00365 0.0652 0.1358 0.7742 0.0507 (3570.47) 

2 -0.0081 same same same -0.9704 0.4453 
0.2790 0.1954 0.0507 

B 1 -5.5876 0.0334 -0.2248 0.6741 1.9504 
0.3852 0.00390 0.0785 0.4894 0.1563 

2 -3.0220 same same -1.1412 same 
0.3414 0.2080 

R 0.6868 -0.0224 0.5639 
0. 1441 0.00955 0.4024 



TABLE 74 

Table 9 Parameter estimates of the probit-linear model for experiment 1 sala­
mander data. 

Fixed effects Var. of rand. effects 
Model 0 f3rr f3rw f3wr f3ww O''h 0'~1 

0.7921 0.5278 -0.9481 0.6917 0.5816 0.0195 
0.7882 0.5287 -0.9517 0.6899 0.5783 0.0190 
0.7943 0.5345 -0.9546 0.7060 0.6013 0.0194 
0.7963 0.5302 -0.9466 0.6967 0.5917 0.0190 
0.7933 0.5258 -0.9502 0.6964 0.5923 0.0194 
0.7881 0.5320 -0.9569 0.7020 0.5951 0.0193 
0.7911 0.5318 -0.9578 0.7025 0.5880 0.0195 
0.7883 0.5326 -0.9505 0.7003 0.5868 0.0190 
0.7901 0.5305 -0.9635 0.7024 0.6071 0.0194 
0.7935 0.5335 -0.9588 0.6964 0.5995 0.0194 

Average 0.7915 0.5308 -0.9539 0.6984 0.5922 0.0193 

V2 8.10E-7 7.26E-7 2.85E-6 2.61E-6 7.99E-6 J,.30E-9 

V=Vi+½ 0.1546 0.1396 0.1695 0.1483 0.1321 0.0235 

SE=V½ 0.3932 0.3736 0.4111 0.3852 0.3634 0.1532 



TABLE 75 

Table 10 Parameter estimates of the probit-linear model with correlated ran­
dom effects for the salamander data. 

Fixed effects 
Model 1 /3rr f3rw f3wr f3ww f3Jall 

0.8739 0.4426 -0.9484 0.8373 -0.3532 
0.8787 0.4464 -0.9545 0.8384 -0.3566 
0.8809 0.4480 -0.9524 0.8432 -0.3614 
0.8735 0.4421 -0.9536 0.8362 -0.3523 
0.8761 0.4445 -0.9508 0.8414 -0.3549 

Average 0.8766 0.4447 -0.9519 0.8393 -0.3557 

Vi 2.01E-6 1.26E-6 1.17E-6 1.71E-6 2.55E-6 

V=Vi+Vi 0.1106 0.1000 0.1086 0.1048 0.0883 
SE=V½ 0.3326 0.3162 0.3296 0.3237 0.2972 

Variance and covariance of random effects 
Species u11 u12 0'/12 0'~1 0'~2 O'm12 0''13 0'~3 

0.6301 0.7033 -0.0419 0.2683 0.4776 0.3556 0.1455 0.6758 
0.6338 0.7137 -0.0396 0.2709 0.4825 0.3591 0.1441 0.6750 
0.6338 0.7211 -0.0446 0.2674 0.4762 0.3544 0.1488 0.6617 
0.6311 0.6993 -0.0453 0.2704 0.4818 0.3585 0.1460 0.6797 
0.6444 0.7133 -0.0511 0.2704 0.4814 0.3584 0.1477 0.6794 

Average 0.6347 0.7102 -0.0445 0.2695 0.4799 0.3572 0.1464 0.6743 

Vi 6.53E-6 1.53E-5 3.73E-6 4,68E-7 1.59E-6 8.48E-7 6.87E-7 1.08E-5 

V=Vi+V2 0.1718 0.2067 0.0735 0.0246 0.0824 0.0439 0.0393 0.1530 

SE=V½ 0.4145 0.4547 0.2712 0.1569 0.2870 0.2095 0.1982 0.3912 



TABLE 76 

Table 11 Parameter estimates of the probit-linear model with species specific 
random effects for the salamander data. 

Fixed effects 
Model 2 f3rr f3rw f3wr f3ww f3tall 

0.8938 0.4180 -1.0060 0.8641 -0.3872 
0.8917 0.4131 -1.0083 0.8708 -0.3830 
0.8906 0.4228 -1.0108 0.8666 -0.3879 
0.8907 0.4183 -1.0018 0.8700 -0.3890 
0.8935 0.4185 -1.0078 0.8713 -0.3891 

Average 0.8921 0.4181 -1.0070 0.8685 -0.3873 

V2 4-68E-7 2.32E-6 2.27E-6 1.93E-6 1.23E-6 

V=½+V2 0.1081 0.0832 0,1478 0.1065 0.0950 

SE=V½ 0.3288 0.2885 0.3844 0.3264 0.3082 

Variance and covariance of random effects 
Species a;h ah 0"/12 a~1 a~2 D"m12 0"13 0"~3 

R 0.4648 0.2026 -0.1990 0.3734 0.9081 0.5807 0.5133 0.7262 
0.4531 0.1976 -0.1930 0.3831 0.9287 0.5949 0.5268 0.7231 
0.4536 0.2043 -0.1995 0.3781 0.9179 0.5875 0.5180 0.7371 
0.4505 0.1956 -0.1927 0.3780 0.9184 0.5876 0.5162 0.7221 
0.4494 0.1985 -0.1930 0.3734 0.9069 0.5804 0.5123 0.7333 

Average 0.4543 0.1997 -0.1954 0.3772 0.9160 0.5862 0.5173 0.7284 

Vi 7.54E-6 2.61E-6 2.45E-6 3.24E-6 1.57E-5 7.14E-6 6.68E-6 8.65E-6 

V=V1+V2 0.2179 0.0375 0.0563 0.0794 0.4332 0.1802 0.2261 0.3668 

SE=V½ 0.4668 0.1937 0.2372 0.2818 0.6582 0.4245 0,4755 0.6057 

w 0.8440 1.8853 0.2278 0.1202 0.1402 0.1290 0.0000 0.8166 
0.8683 1.8804 0.2196 0.1176 0.1369 0.1260 0.0000 0.8767 
0.8657 1.8355 0.2124 0.1217 0.1419 0.1307 0.0000 0.8450 
0.8535 1.7916 0.2168 0.1190 0.1387 0.1277 0.0000 0.8230 
0.8753 1.8331 0.2282 0.1193 0.1390 0.1280 0.0000 0.8450 

Average 0.8613 1.8452 0.2209 0.1196 0.1394 0.1283 0.0000 0.8413 

Vi 3.12E-5 2.98E-4 9.61E-6 4. 79E-7 7.11E-7 5.84E-7 0.00E0 1.12E-4 
V=½+V2 0.4448 2.4047 0.3523 0.0106 0.0274 0.0201 0.0000 0.4572 

SE=V½ 0.6669 1.5507 0.5935 0.1031 0.1654 0.1419 0.0000 0.6762 



TABLE 77 

Table 12 Observed and expected values for various statistics. 

Model 0 Model 1 Model 2 
Observed proportion Expected proportion 

Exp 1 Exp 2 Exp 3 Exp 1 Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3 

'Trrr 0.733 0.600 0.667 0.734 0.737 0.638 0.650 0.745 0.636 0.632 

'Trrw 0.667 0.467 0.533 0.662 0.626 0.524 0.526 0.631 0.511 0.508 

'lrwr 0.233 0.233 0.167 0.226 0.245 0.188 0.166 0.250 0.236 0.144 
'lrww 0.700 0.667 0.633 0.709 0.728 0.628 0.640 0.731 0.610 0.639 

Observed variance Expected variance 
Exp 1 Exp 2 Exp 3 Exp 1 Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3 

S{r 2.844 1.733 2.711 2.671 2.574 2.898 1.714 2.283 1.944 2.406 

s~w 2.844 3.789 0.711 2.263 2.159 2.138 1.285 2.399 3.282 1.001 

smr 2.100 2.944 2.278 1.102 1.523 1.788 2.148 1.652 2.398 2.021 

S!w 1.878 1.378 3.833 1.261 1.801 2.412 3.137 1.497 1.725 3.319 
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