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ABSTRACT

A land surface scheme with and without groundwater–vegetation interactions is used to explore the

impact of rainfall variability on transpiration over drought-vulnerable regions of southeastern Australia.

The authors demonstrate that if groundwater is included in the simulations, there is a low correlation

between rainfall variability and the response of transpiration to this variability over forested regions.

Groundwater reduces near-surface water variability, enabling forests to maintain transpiration through

several years of low rainfall, in agreement with independent observations of vegetation greenness. If

groundwater is not included, the transpiration variability matches the rainfall variability independent of

land cover type. The authors’ results suggest that omitting groundwater in regions where groundwater

sustains forests will 1) probably overestimate the likelihood of forest dieback during drought, 2) over-

estimate a positive feedback linked with declining transpiration and a drying boundary layer, and 3) un-

derestimate the impact of land cover change due to inadequately simulating the different responses to

drought for different land cover types.

1. Introduction

Southeastern (SE) Australia has recently recovered

from a long and intense drought that caused observable

reductions in both groundwater (van Dijk et al. 2011)

and surface water stores (Cai et al. 2009; Leblanc et al.

2009). While long-term droughts in Australia, caused in

part by variability in the Indian Ocean sea surface

temperatures (Ummenhofer et al. 2009), can last a de-

cade or longer, forests dominated by the genus Euca-

lyptus flourish over significant parts of SE Australia.

While dieback associated with severe drought does

occur, eucalypts have developed multiple strategies to

withstand decadal-scale drought. There is substantial

evidence that many eucalypts grow roots to depths ex-

ceeding 20 m, allowing them to tap deep soil water. This

contrasts with more shallow-rooted species that are

more vulnerable to drought (Rice et al. 2004). Schenk

and Jackson (2002) report Eucalyptus marginata grow-

ing roots to 15–18 m and suggest that the deepest roots

should be found in environments with deep soil moisture

and a dry season. Eberbach and Burrows (2006) show

that transpiration from a dominant eucalypt species in

SE Australia responded only slightly to drought, while

more shallowly rooted species had larger responses.

O’Grady et al. (1999) found two dominant species of

eucalypts in tropical Australia increasing transpiration

in the dry season because of the increased evaporative

demand and because the trees could access ground-

water. O’Grady et al. (2006) also found dry tropical

woodlands in Queensland to be utilizing groundwater.

Additionally, Yang et al. (2011) recently demonstrated

a sensitivity of transpiration from Eucalyptus populnea

Corresponding author address: Mark Decker, Climate Change

Research Centre, Level 4 Mathews Building, University of New

South Wales, Sydney, NSW 2052, Australia.

E-mail: m.decker@unsw.edu.au

APRIL 2013 DECKER ET AL . 543

DOI: 10.1175/JHM-D-12-058.1

� 2013 American Meteorological Society



to humanmanipulation of groundwater levels, suggesting

that these ecosystems are also dependent on ground-

water. Similarly, tree plantations in SE Australia have

been shown to impact groundwater, demonstrating the

link between vegetation and groundwater (Benyon et al.

2006). Overall, there is a strong view that manyAustralian

Eucalyptus ecosystems are dependent on groundwater

interactions (Eamus and Froend 2006).

Despite evidence that many Australian ecosystems

are dependent on groundwater (Eamus and Froend 2006),

these interactions are omitted from almost all global and

regional climate modeling research focused on how tran-

spiration responds to drought events. However, research

addressing these interactions has becomemore prevalent

following several recent studies (York et al. 2002; Anyah

et al. 2007; Miguez-Macho et al. 2007) that have dem-

onstrated the role that groundwater plays in maintaining

evapotranspiration during dry periods. Over the last

10 years, land surface model (LSM) development has

seen the inclusion of groundwater components (Liang

et al. 2003;Yeh andEltahir 2005; Fan et al. 2007;Niu et al.

2007; Oleson et al. 2008; Rosero et al. 2009; Decker and

Zeng 2009; Yeh and Famiglietti 2009; Maxwell et al.

2011), resulting in improved simulations of the hydrolog-

ical cycle in offline experiments. This model development

is particularly important given that groundwater dynamics

also significantly affect soil moisture, land surface fluxes,

and convective precipitation in fully coupled simulations

(Seuffert et al. 2002;Anyah et al. 2007;Maxwell et al. 2007;

Miguez-Macho et al. 2007; Leung et al. 2011). The addition

of groundwater dynamics in LSMs has been achieved

with varying degrees of complexity, including fully three-

dimensional groundwater models, a deeper soil column,

a simple coupled groundwater model, or via an appro-

priate boundary condition at the bottom of the soil col-

umn (Gulden et al. 2007; Kollet and Maxwell 2008;

Decker and Zeng 2009).

Given the adaptation of eucalypts to drought and

previous research that has demonstrated the importance

of groundwater–vegetation interactions in semiarid

regions, we hypothesize that groundwater–vegetation in-

teractions play an important role in sustaining transpi-

ration over forests in SEAustralia through periods of low

rainfall. We use an LSM forced with observationally

corrected atmospheric forcing data together with two

satellite-derived metrics of vegetation to assess how sig-

nificantly the inclusion of groundwater affects the vari-

ability of simulated transpiration during the recent SE

Australian drought. We focus on transpiration be-

cause this flux is intimately associated with photo-

synthesis, net primary productivity, and the capacity

of trees to withstand drought. Our goal is to determine

whether including groundwater is necessary in simulations

of land–atmosphere interactions over SE Australia by

evaluating the simulated transpiration response to drought

using the observed vegetation response over various dif-

ferent vegetation types.

2. Methodology

a. Model configuration and experiments

Weuse the Community LandModel version 4 (CLM4)

to simulate the land surface (Oleson et al. 2010). CLM4,

a one-dimensional water and energy balance land surface

model, is the land surface component in the National

Center for Atmospheric Research (NCAR) Community

Earth System Model (CESM), which is a comprehensive

Earth system model [previously referred to as the Com-

munity Climate System Model (CCSM); Gent et al.

2011]. CLM4 has been widely used to study the hydro-

logical cycle, energy balance, vegetation dynamics, and

biogeochemical fluxes at the land surface (Gotangco

Castillo et al. 2012; Lawrence et al. 2012; Li et al. 2011;

Sacks et al. 2009; Sakaguchi et al. 2011; Stöckli et al. 2008)

and has also been utilized in differing ways to study as-

pects of groundwater (Gulden et al. 2007; Niu et al. 2007;

Kollet and Maxwell 2008; Lo et al. 2008; Decker and

Zeng 2009).

CLM4 calculates the surface fluxes on the basis of the

Monin–Obhukov similarity theory using an energy bal-

ance approach. Separate fluxes (sensible and latent

heat) are calculated for the different vegetation types

(and nonvegetated regions including bare soil and lakes)

in each grid cell and subsequently aggregated to the

gridcell resolution. Transpiration (together with canopy

and ground evaporation) is iteratively calculated along-

side sensible heat, with sunlit and shaded leaves consid-

ered separately (Oleson et al. 2010). CLM4 determines

transpiration from the rate of photosynthesis that is

in part constrained by soil moisture. The dependence

on soil moisture is determined by the soil matric po-

tential (the force resulting from the capillary forces in

the soil) in each soil layer, the root concentration

(dependent on the predefined plant functional type),

and the plant functional type dependence on water

stress. The root concentration is highest approximately

10 cm from the surface and declines exponentially

below this depth, with trees retaining a higher fraction

of roots near the bottom of the soil column than other

plant types. For grasses,;99% of the roots are located

within 1 m from the surface, while for broadleaf ev-

ergreen trees,;90% of the roots are within this depth.

This is broadly consistent with meta-analyses of global

data on root distributions (Jackson et al. 1996; Canadell

et al. 1996).
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Soil water in CLM4 is simulated using 10 soil layers

and a groundwater model consisting of an unconfined

aquifer below the 10 soil layers. The aquifer is not con-

strained to a specific depth, while the thickness of the

soil layers varies exponentially, with the top layer

;17 mm thick and the 10th layer ;1.14 m thick. The

resulting soil column extends from the surface to a depth

of ;3.43 m. In the control (groundwater) simulations,

herein referred to as GW, the default configuration of

CLM4 (including the groundwater model) is used. The

influence of the underlying aquifer on the calculation on

the flux of water to and from the bottom (10th) soil layer

and on the recharge rate is removed in the simulation

without groundwater (referred to as NGW).

The groundwater component in CLM4 consists of an

unconfined aquifer beneath the 10 soil layers. The change

in groundwater at each time step is given by

Wt
n11

5Wt
n

1 (qrecharge 2 qdri)Dt , (1)

where Wtn11
and Wtn are the amount of water in the

aquifer (mm) at time n1 1 and time n, qrecharge (mm s21)

is the recharge rate of the aquifer, qdrai (mm s21) is the

subsurface drainage, and Dt is the time step (s). The

subsurface drainage in CLM4 is defined as the runoff that

originates fromwithin the soil column and is calculated as

a function of the water table depth. The recharge rate

(mm s21) is calculated as

qrecharge 5
Dunlev(Zwtd2Zh,nlev)

Dt
, (2)

where Dunlev is the change in soil water in the bottom

(10th) soil layer (mm3 mm23), and Zwtd (Zh,nlev) is the

depth of the water table (bottom of the 10th soil layer) in

millimeters.

When the water table depth is located within the soil

column, nowater flows vertically from the soil column to

the aquifer. When the water table depth is beneath the

soil column, the flux to/from the aquifer is given by

qout52k
›(c2cE)

›z

52knlev

�
cnlev112cnlev

zwtd 2 znlev
2

cE
nlev112cE

nlev

zwtd2 znlev

�
, (3)

where qout is the flux (mm s21), knlev is the hydraulic

conductivity (mm s21) between the aquifer and the

bottom (10th) soil layer, cnlev11 (cnlev) is the soil matric

potential of the aquifer (bottom soil layer) inmillimeters,

and cE
nlev11 (c

E
nlev) is the equilibrium soil matricpotential

of the aquifer (bottom soil layer) in millimeters. The use

of cE
nlev11 and cE

nlev is necessary to prevent erroneous

water movement in variably saturated soils (Zeng and

Decker 2009). Equation (3) controls the vertical move-

ment of water out of the bottom soil layer, directly con-

tributing to Dunlev, which in turn determines the recharge

rate through Eq. (2). The GW simulations use the full

CLM4 hydrology scheme, including Eqs. (1)–(3).

The NGW simulations remove any influence of the

aquifer on the soil moisture by modifying Eq. (3) as

qout52k
›(c2cE)

›z
52knlev . (4)

Equation (4) removes the influence that the aquifer

exerts on the soil moisture by removing the soil matric

potential of the aquifer from Eq. (3). To ensure that

the aquifer cannot transfer water to the bottom layer,

Eq. (2) is also modified as

qrecharge 5max

"
0:0,

Dunlev(Zwtd2Zh,nlev)

Dt

#
: (5)

Using Eqs. (4) and (5) results in a free drainage bottom

boundary condition so that the aquifer does not in-

fluence fluxes at the bottom of the soil column in the

NGW runs, and water is prevented from flowing from

the aquifer to the soil column. The water table depth in

CLM4 is calculated diagnostically on the basis of the

water content of the soil layers and the aquifer. There-

fore, the water table is simply a reflection of the total

column moisture in the model, varying spatially and

temporally with the total column moisture. Equations

(4) and (5) alter how the flux of water between the

surface and the aquifer are calculated; however, the

amount of water in the aquifer still varies temporally

since the aquifer is left in the model (and not removed

completely). Therefore, the calculation of the water table

depth (or other properties that depend on the water table

depth, such as surface and subsurface runoff) does not

need to bemodified for theNGWsimulation even though

the dynamics of the aquifer will differ between the GW

and NGW simulations.

All simulations are initialized with the default CLM4

initial conditions and spun up using corrected National

Centers for Environmental Prediction (NCEP)–NCAR

reanalysis (Qian et al. 2006) data interpolated to 0.258 3
0.258 for the period 1948–79, at a horizontal resolution

of 0.258 3 0.258 over Australia. Static land cover and

vegetation fractions with leaf and stem area indices

(LAI and SAI, respectively) specified from monthly

varying Moderate Resolution Imaging Spectroradi-

ometer (MODIS) data are used. Observed LAI is chosen
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in this study over the prognostic LAI available in CLM4

in order to isolate the effect of groundwater on tran-

spiration. Using a prescribed LAI (with dynamic phe-

nology and vegetation in CLM4 turned off) removes the

influence of dynamic phenology on the land surface

fluxes, allowing only the influence of groundwater to be

documented. Restart files from 1979 were then used to

simulate the period from 1979 to 2009, with the analysis

covering the period coincident with the satellite obser-

vations (2002–09).

b. Forcing data

Land surface model simulations have been shown to

be sensitive to biases in forcing data (Robock et al.

2003), and scaling precipitation forcing to match ob-

servations can result in much improved land model

simulations (Pan et al. 2003). To this end, the forcing

data used to drive the LSM from 1979 to 2009 consist of

a combination of the Modern-Era Retrospective Anal-

ysis for Research and Applications (MERRA) reanalysis

(Rienecker et al. 2011) and the Bureau of Meteorology

Australian Water Availability Project (BAWAP) grid-

ded daily precipitation data spanning the period 1900

to the present (Jones et al. 2009). MERRA is a global

reanalysis product covering 1979 to the present with

an hourly temporal resolution on a ½8 3 2/38 grid, and
BAWAP is a gauge-based gridded observation product

with daily temporal resolution on a 0.058 3 0.058 grid. To
facilitate simulations at a quarter degree resolution, the

forcing datasets were interpolated to 0.258 3 0.258 using
a mass conservative scheme.While the corrected NCEP–

NCAR reanalysis is used to spin up the model (because

of availability prior to 1979), the MERRA reanalysis

product is chosen as the primary source of forcing data

because of its high spatial resolution and accuracy (Decker

et al. 2012; Reichle et al. 2011; Yi et al. 2011).

We take the BAWAP precipitation as the ground

truth in this study because of the proven accuracy of

BAWAP and the high number of observation stations

(greater than 6000 for the period 2000–09) used over SE

Australia (Jones et al. 2009). Evaluation of theMERRA

precipitation using BAWAP reveals large differences

between the two datasets. Figure 1a shows the spatially

averaged interannual precipitation anomalies forMERRA

and BAWAP over SE Australia (defined in this study as

278S–408S and 1408E–1558E). From Fig. 1a it is clear that

the large negative precipitation anomalies in BAWAP

around 2002 and 2006 are well captured in MERRA.

However, the mean precipitation rate in MERRA (Fig.

1c) ismuch lower than fromBAWAPovermany forested

regions (the hatched area in Fig. 1c). The underestimation

of precipitation in MERRA over the forested regions in

SE Australia is problematic for our simulations since this

region shows significant sensitivity to groundwater–surface

water interactions (see section 3).

To mitigate the issues caused by the inaccuracies in

the MERRA precipitation data, the MERRA precipi-

tation is scaled using the BAWAP observations in a

similar manner to those proposed by Qian et al. (2006)

and Berg et al. (2003). The correction method scales the

MERRA precipitation data at each time step and grid

point:

PS
i,j 5

P
B
j

P
M
j

PM
i,j , (6)

where PS
i,j is the scaled MERRA precipitation at

(hourly) time step i of month j, PM
i,j is the uncorrected

MERRA precipitation, P
M

j is the mean monthly pre-

cipitation from MERRA, and P
B

j is the monthly mean

precipitation from BAWAP. Equation (6) is applied to

each grid point after using a mass conservative scheme

to interpolate both datasets to 0.258 3 0.258 resolution.
The use of Eq. (6) ensures that themonthly precipitation

bias (between MERRA and BAWAP) at each grid cell

is removed from the corrected forcing. All other forcing

variables (surface pressure, air temperature, wind speed,

specific humidity, incoming solar radiation, and down-

ward longwave radiation) use the uncorrected values

from MERRA.

c. Observed soil moisture variability

The model simulations of total column water (including

both the aquifer and the soil column) are validated

against the Gravity Recover and Climate Experiment

(GRACE) observations (Tapley et al. 2004). GRACE

estimates the changes in total columnmoisture (including

groundwater, soil water, canopy storage, and snow) in-

directly bymeasuring the changes in Earth’s gravitational

field caused by the variations in terrestrial moisture. The

release 05 and release 04 data (available from http://

grace.jpl.nasa.gov/ and referred to here as GRACE5

and GRACE4, respectively) span 2004–10 and 2002–

10, respectively, and are utilized in this study

(Landerer and Swenson 2012). The primary difference

between the two datasets is the level 2 spherical har-

monic GRACE data used to derive the changes in ter-

restrial total water storage, with GRACE5 being the

more accurate of the two. The total water storage

change data have been filtered to remove the spatially

correlated errors found in the raw GRACE observa-

tions, and the GRACE5 data have also been scaled to

address the issues arising spatial smoothing (Landerer

and Swenson 2012). The GRACE measurements are pro-

vided on a 18 3 18 grid; therefore, the model simulations
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are aggregated to this resolution for the comparison.

Various GRACE observations have been used exten-

sively to validate the performance of land surface models

(Ngo-Duc et al. 2007; Niu et al. 2007; Decker and Zeng

2009; Lo et al. 2010; Lawrence et al. 2012) as well as to

examine changes in groundwater (Yeh et al. 2006;

Leblanc et al. 2009).

d. Observed vegetation metrics

Two satellite-based vegetation metrics representative

of plant greenness are used to evaluate the model. The

photosynthetic vegetation fraction (PVF) estimates

the fraction of a grid cell that is photosynthetically

active and is used here in part because the data are

developed using observations from various locations

across Australia (Guerschman et al. 2009). The product

utilizes the normalized difference vegetation index

(NDVI) and bands 7 [shortwave infrared (SWIR)3] and

6 (SWIR2) from MODIS to derive the fraction of pho-

tosynthetic vegetation, the fraction of nonphotosynthetic

vegetation, and the fraction of bare soil for a 0.058 3 0.058

grid at a temporal resolution of 8 days. The MODIS-

derived fractions show good agreement with locally

measured quantities with coefficient of determination

(r2) values ranging from about 0.6 to 0.9, depending on

the location (Guerschman et al. 2009). The second

product is a revised LAI from MODIS (MOD15A2)

that has been filtered to remove erroneous values and

filled to create a continuous time series (Yuan et al.

2011). The LAI is a similar measure to NDVI in that it

varies roughly exponentially with NDVI for needleleaf

and broadleaf forests (Buermann et al. 2002). Although

derived and representative of different quantities (per-

cent of a grid cell versus area of leaves per area of land

surface), both products estimate the state of the vege-

tation with larger values over green, leaf-filled areas.

The physical basis for evaluating simulated transpi-

ration through the use of satellite observed vegetation

greenness metrics is based on the fact that both are di-

rectly related to gross primary production (GPP).

Transpiration can be viewed as a cost of photosynthesis

(Cowan 1982), while the level of vegetation greenness

FIG. 1. (a) The spatially averaged deseasonalized (by removing the mean annual cycle) monthly precipitation rate

(mm day21) for SEAustralia (defined here as 278S–408S and 1408E–1558E) for the period from 1990 to 2009. (b) The

mean precipitation rate (mm day21) from the same region as (a) for the period from 2002 to 2008 (the analysis

period) for BAWAP. (c) The difference (MERRA2BAWAP) between the two datasets. The stippling in (c) shows

grid cells covered by at least 60% grass, while the hatching denotes grid cells with at least 85% forest cover.
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is the result of the balance between leaf carbon gain

(GPP) and loss (i.e., respiration and litter loss) of an

ecosystem. Numerous processes alter the relationship

between transpiration, photosynthesis, and vegetation

greenness, with differing factors limiting leaf growth

depending on the ecosystem considered (Cowling and

Field 2003). Photosynthesis is dependent on the sto-

matal conductance, which is dependent on relative hu-

midity and leaf CO2 concentrations (McMurtrie et al.

1992). Photosynthesis is also dependent on the available

radiation and radiation use efficiency, which itself is

dependent on the plant type, nitrogen content of the

leaves, temperature, and soil moisture (Sinclair and

Horie 1989; Landsberg and Hingston 1996). Transpira-

tion also depends on the vapor pressure deficit (with

larger deficits leading to larger water fluxes), so that

long-term transpiration over large scales can be viewed

as a function of the product of net primary production

(NPP) and vapor pressure deficit (Chen and Coughenour

2004). Despite the uncertainty inherent in comparing

transpiration to satellite observations of the vegetative

state, the NDVI has been shown to be well correlated

(r 5 0.80) with estimates of evapotranspiration in North

American prairies (Szilagyi et al. 1998). Even with the

annual cycle removed, NDVI explained the majority of

the variance in these regions (Szilagyi et al. 1998). While

satellite-derived evapotranspiration (ET) products could

be used to evaluate the simulated ET, we are examining

specifically how transpiration is affected by groundwater.

It would be likely impossible to disentangle the transpi-

ration component of the vegetation–ET relationship over

the regions examined here. Further, these satellite ET

products are derived and validated without using obser-

vations over Australia, where the vegetation is known to

be different from the typical validation locations (Mu

et al. 2007; Yuan et al. 2011; Zhang et al. 2010). There-

fore, we use satellite-based measures of the state of the

vegetation (LAI and PVF) as a proxy for evaluating the

model simulations. Rather than directly comparing the

vegetative state with the simulated transpiration, we ex-

amine how the response of the vegetation and the tran-

spiration to drought changes for different vegetation

types.

3. Results

The model simulations of total water storage changes

are validated against the changes as measured by two

GRACE datasets in Fig. 2 to ensure that the simulations

adequately represent the observed water balance. The

time series of the spatially averaged and deseasonalized

(by removing the monthly mean annual cycle) total

column water (the sum of the aquifer, soil column,

canopy, and snow storages) are shown in Fig. 2a for GW,

NGW, and the GRACE4 and GRACE5 observations.

Although GRACE5 has been shown to be more accu-

rate than GRACE4, both time series are included in

Fig. 2a since GRACE4 extends back to 2002 and gives

an indication as to the accuracy of satellite observed

changes in terrestrial water storage. The model simula-

tions agree reasonably well with the observations, with

a correlation of 0.80 betweenGRACE5 andGWand 0.71

between GRACE5 and NGW. However, NGW has

a higher correlation with GRACE4 than does GW, in-

dicating that the small differences in correlation between

GW and NGWmay not be important. Both the GW and

the NGW simulations reproduce the changes in total

column water, although the GW simulation is able to re-

produce the magnitude of the water storage anomalies

with values approximately 4 kg m22 at the start of 2006, in

better agreement than NGW with the 6 kg m22 anomaly

seen in GRACE5 during the same period. Time series for

GW, NGW, GRACE4, and GRACE5 show a large de-

cline in total water storage corresponding to the 2006

drought (Fig. 2a); however, the decline is smaller for

NGWthan forGRACE4,GRACE5, andGW. In contrast

to NGW, the anomaly in Fig. 2a is positive for the period

2004–06 and primarily negative for the period 2007–09 for

both of the observations and GW. For NGW, the water

storage changes less over the simulated period and re-

covers to larger values than GW or the observed changes

after the 2006 drought. To understand the reasons behind

the differences in GW and NGW in Fig. 2a, the area av-

eraged total water storages changes are decomposed into

the contributions from the aquifer and the soil column for

the model simulations in Fig. 2b. The variations in soil

water from GW and NGW in Fig. 2b are similar in mag-

nitude and timing, althoughGWiswetter thanNGWfrom

2003 to 2005 (prior to the 2006 drought) and drier from

2007 to 2009. The aquifer in the GW simulations shows

a strong drying trend over the simulation period that is not

seen in NGW because of the aquifer in NGW being de-

coupled from the soil column. The decreasing groundwa-

ter storage from GW accounts for approximately 30% of

the total water storage lost during 2006 and is the reason

that GW exhibits a larger decrease in total water storage

thanNGWinFig. 2a. The decline in groundwater from the

GW simulation qualitatively agree with previous work

that demonstrated a decrease in groundwater storage in

SE Australia over the period 2001–07 (Leblanc et al.

2009), further validating the accuracy of the simulations.

The high correlation betweenGRACE5 andGW(Fig. 2c)

and between GRACE5 and NGW (Fig. 2d) quantita-

tively demonstrates reasonable agreement between the

simulations and the observations. Given that previous

work has shown the seasonal cycle in GRACE estimated
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total water storage changes to have a correlation of

0.83 with observations in Illinois (Yeh et al. 2006), the

accuracy of the current simulations are deemed satis-

factory. The pattern of correlation is similar between

GW and NGW; however, it is clear that GW shows

much higher correlations over the grid cells dominated

by forests. The GW simulations better capture the

changes in spatially averaged total columnmoisture for

the period 2004–09; the NGW simulation has a larger

region of correlations greater than 0.6. Overall, the rela-

tive performance between the GW and the NGW simu-

lations is difficult to assess from Fig. 2, given both

simulations show agreement with the large-scale changes

in total column soil moisture.

The suitability of using deseasonalized satellite green-

ness observations as a proxy for evaluating simulated

transpiration (or photosynthesis) is demonstrated in

Figs. 3 and 4. The relationship between the deseason-

alized monthly photosynthesis (Figs. 3a,b) or transpi-

ration (Figs. 3c,d) and the observed PVF is shown in

Fig. 3 for all grid cells in SE Australia with at least 60%

coverage by grass (as defined by the default MODIS-

derived CLM4 land surface plant function type dataset).

Figure 4 shows the relationship between photosynthe-

sis (Figs. 4a,b) or transpiration (Figs. 4c,d) and LAI

over the same grassland regions as Fig. 3. Grid cells

dominated by grasses are shown in Figs. 3 and 4, as

these regions contain shallowly rooted plants that respond

FIG. 2. (a) The spatially averaged (over SE Australia, defined here as 278–408S and 1408–1558E) deseasonalized
(defined by subtracting themean annual cycle; in kg m22) total columnwater (found as the sum of each soil layer, the

aquifer, and the canopy water) from the period 2003–09 for both GRACE datasets (GRACE5 and GRACE4), the

GW simulation, and the NGW simulation. The inset table shows the correlation between the spatially averaged GW

or the NGW time series and the GRACE5 or GRACE4 data. (b) The deseasonalized water from the same region as

(a) broken down into the contributions from the soil column (QGW andQNGW) and the contribution from the aquifer

(AQGW and AQNGW) for the GW and the NGW simulations, respectively (in kg m22). (c) The correlation between

GRACE5 and theGWsimulation and (d) the correlation betweenGRACE5 and theNGWsimulation over the same

time period. The stippling in (b) and (c) shows grid cells covered by at least 60%grass, while the hatching denotes grid

cells with at least 85% forest cover.
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strongly to interannual rainfall anomalies (see Fig. 5).

While there is no physical a priori reason why a linear

relationship should exist between transpiration and PVF

or LAI, linear regression lines are added to Figs. 3 and 4

to explore the relationship between the simulated and

observed variables and to test if the slopes are statisti-

cally different from zero.

Figures 3 and 4 show that both vegetation observation

types (PVF and LAI) have a distinct and statistically

significant relationship (the slope is .0 at the 95%

confidence level) for both transpiration and photosyn-

thesis. Comparing Fig. 3c with Fig. 4c (or Fig. 3d with

Fig. 4d), it is clear that both photosynthesis and tran-

spiration are related in similar ways to PVF and LAI,

even though photosynthesis is more directly related to

vegetation greenness. The scatter in the relation be-

tween either transpiration or photosynthesis and the

vegetation metrics is reduced when the data are aver-

aged spatially over the regions covered predominately

by grasslands (Figs. 3b,d as compared to Figs. 3a,c).

Spatially averaging reduces the uncertainties associated

with using greenness as a transpiration proxy, similar

to the regional approach by Chen and Coughenour

(2004). The overall positive relationship shown in

Figs. 3 and 4 is independent of the vegetation cover,

with forests, grasses, and shrubs all showing best fit

slopes statistically greater than zero (not shown).

Regardless of the many factors that can alter how

transpiration relates to vegetation greenness, Figs. 3

and 4 demonstrate that positive transpiration (or

photosynthesis) anomalies from the simulations are

associated with positive values of vegetation green-

ness, in agreement with previous work linking NDVI

and evapotranspiration (Szilagyi et al. 1998). There-

fore, the simulated transpiration (or photosynthesis)

should exhibit large temporal variations in the same

regions (and over the same plant functional types)

that the satellite metrics also exhibit large interan-

nual variations. By comparing how the magnitude and

timing of the variations in LAI and PVF change across

differing vegetation types with simulated changes in

transpiration across the same vegetation types, we

FIG. 3. The deseasonalized (by subtracting the mean annual cycle) monthly (a),(b) photosynthesis and (c),(d)

transpiration simulated with CLM4 (GW) as a function of PVF (%) for regions in SE Australia covered with at least

60% grass for the period 2002–08. The individual grid cells are shown in (a) and (c), while (b) and (d) are spatially

averaged over all grid cells covered with grass. Also shown are the regression lines and the correlation coefficients

between the simulated transpiration or photosynthesis and PVF (upper left corner in each panel).
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gain insight into the physically reasonable pattern of

transpiration variability.

The variation in scaled (achieved by dividing the time

series of anomalies by the temporal mean) transpira-

tion averaged over forested regions of SE Australia is

shown in Fig. 5a with the corresponding transpiration

over grassland areas shown in Fig. 5b. Simulations with

CLM4 coupled with groundwater (simulation GW) can

be compared with simulations decoupled from ground-

water (NGW) for both vegetation types. Over the forests

(Fig. 5a), the NGW transpiration closely matches the

rainfall forcing with high interannual variations and

a correlation of 0.59. In contrast, in the GW simulation,

the interannual anomalies in transpiration are signifi-

cantly damped and close in magnitude to the observed

LAI and PVF (Fig. 5a). The GW simulation, PVF, and

LAI are all much less correlated with the precipitation,

with values of 0.43, 0.21, and 20.16, respectively. The

low correlation for PVF and LAI (and, to a lesser de-

gree, GW) is partially due to the lag between them and

the precipitation anomalies (discussed later). Over the

grasslands (Fig. 5b), both theNGWandGW simulations

and the observed vegetation metrics show larger inter-

annual variability than over forested areas, and all four

quantities are well correlated with the precipitation. The

anomalies are again damped in the GW simulations as

compared to NGW (although not to the same degree as

over forests) and closelymatch the observed variations in

the vegetation. Most significantly, the transpiration flux

in the NGW simulation shows a large decline over the

forests associated with the 2003 and the 2006 droughts

(Fig. 5a), a decline that does not occur in the GW simu-

lation and is not implied in the vegetation greenness ob-

servations. This is apparent, to a lesser degree, over the

grasslands.

The relationship between rainfall and transpiration

anomalies is shown for all forest points in Fig. 6a and all

grassland points in Fig. 6b. The regression lines show

a near one-to-one correspondence between rainfall and

transpiration in the NGW simulations over forests and

grasslands, with correlations of 0.59 and 0.68, respec-

tively. In contrast, the scaled variations in the GW

simulation over forests highlight a very strong suppres-

sion of rainfall-driven variability in transpiration. For

the GW simulations, the slope of the best fit line is sta-

tistically larger (at the 95% confidence level) over grasses

than forests, while the slopes from the NGW simulations

are statistically indistinguishable at the 95% confidence

FIG. 4. As in Fig. 3, but as a function of LAI (m2 m22).
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level. These anomalies are larger in the GW simulations

over grasslands but are still significantly lower than in the

NGW simulations as the GW slope is smaller than the

NGW slope at the 95% confidence level.

The probability density function (PDF) of the stan-

dard deviation of the scaled and deseasonalized tran-

spiration, LAI, PVF, and precipitation (Fig. 6c for all

forest grid points and Fig. 6d for grasslands) highlights

the limited variability in the transpiration flux for the

GW simulations as opposed to the NGW simulations.

The LAI, PVF, and the GW simulations show little in-

terannual variations over the forests, with the distribu-

tion peaking near zero, while the precipitation and

NGW simulations show much greater variability. The

NGW simulations closely match the variability in pre-

cipitation regardless of the vegetation cover, while PVF,

LAI, and the GW simulations show lower variability

than the precipitation, especially over forested regions.

The extent to which interannual transpiration anom-

alies are delayed relative to the precipitation anomalies

due to groundwater in forested regions in SE Australia

are illustrated in Fig. 7. Figure 7 shows the lag (in

months) that results in the maximum correlation be-

tween the simulated interannual transpiration for the

GW simulation (Fig. 7a), the NGW simulation (Fig. 7b),

and the observations (Figs. 7c,d). The GW simulation,

PVF, and LAI are maximally correlated with the pre-

cipitation anomalies at a lag of 4–9 months in the for-

ested regions (hatched), while the grasslands and shrubs

are maximally correlated at a lag of 0–1 months. In

contrast, the NGW simulations correlate most strongly

with a lag of 0–1months everywhere, independent of the

vegetation cover. Similar to the magnitude of the tran-

spiration anomalies, the observations and the GW runs

show a clear difference in the timing of the land surface

response to drought depending on the land cover type.

The NGW simulations fail to exhibit this behavior

because the transpiration anomalies are more closely

related to the precipitation anomalies (Figs. 5a,b

and 6c,d).

Finally, Fig. 8 shows the difference in the standard

deviation of the soil moisture contained in the 10 soil

layers and also indicates areas with .85% forest cover

(hatched). The soil moisture variability increases in the

NGW simulation relative to the GW simulation, mainly

in areas coincident with the forests. The increased soil

moisture variability in the NGW simulations seen in

Fig. 8 drives the larger transpiration anomalies seen in

Figs. 5 and 6.

4. Discussion

The simulations using CLM4 with groundwater

(GW) substantially decouple the simulated transpira-

tion from the precipitation forcing over the forests of

SE Australia. If groundwater is included, significant

rainfall variability, shown in Fig. 1a, does not drive

large variability in transpiration in forest regions.

Specifically, a precipitation anomaly change from10.5

to20.4 only reduces transpiration by 30% (from10.15

FIG. 5. The scaled (performed by dividing by the temporal mean), deseasonalized (the mean annual cycle is

removed), and smoothed (with a 3-month moving average) LAI, PVF, transpiration for the GW and the NGW

simulations, and precipitation spatially averaged over grid cells with (a).85% forest cover and (b).60% grasses.

The correlation between each of the time series and the precipitation is shown in parentheses.
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to20.15). This is in agreementwith the observed variation

in LAI and PVF, which suggests that the groundwater-

coupled simulations are likely more realistic than the

NGW simulations where the same precipitation anomaly

reduces transpiration by 95% (from 10.2 to 20.75).

The low variability in the GW simulation is caused by a

reduction in the soil moisture variability due to ground-

water maintaining a wetter soil profile, as on averageGW

has approximately 400 kg m22 more total soil moisture

than NGW in the forested regions, resulting in a re-

duction of transpiration variability. A careful analysis

of Fig. 5a shows periods of lower rainfall do lead to

a reduction in transpiration and observed vegetation

greenness as one would expect, but the scale of the

decline is negligible compared to simulations where

groundwater is excluded. In the grassland areas, the

FIG. 6. Scatterplots of the spatially averaged, scaled (by dividing by the mean), and deseasonalized (by removing

the mean annual cycle) transpiration from the GW (blue) and NGW (red) runs plotted and regressed against pre-

cipitation from (a) the same forested regions and (b) the same grassland areas as Figs. 5a and 5b, respectively. The

line of best fit and the correlation (in parenthesis) are also shown. PDFs of the distributed standard deviation (at each

grid cell) of the deseasonalized and scaled PVF (green), LAI (cyan), GW transpiration (blue), NGW transpiration

(red), and precipitation (black) over the same (c) forested and (d) grassland areas.
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roots of the vegetation cannot tap the lower soil layers

as all roots are contained in the top 1 m. However, in the

GW simulations, an upward diffusion of moisture into

the soil column helps maintain enough soil moisture to

suppress some of the extreme variability seen in the

NGW simulation (Fig. 5b), a process noted by Pokhrel

et al. (2012). Our results therefore suggest that it is not

only deeply rooted, forest-based, groundwater-dependent

ecosystems that are sensitive to the representation of

groundwater.

The suppression of variability in the transpiration

simulated by CLM4 in the presence of groundwater has

several implications. First, in agreement with the ob-

served variability in LAI and PVF, transpiration and

photosynthesis is sustained in the GW simulations (see

Fig. 5). While a reduction in precipitation of 90% of the

mean in the NGW simulation reduces transpiration by

95% of the mean, the same precipitation reduction only

reduces transpiration by 30% in the GW simulation. As

a result, the sustained transpiration provides the trees

a capacity to maintain growth through dry periods,

something that has been shown in tropical regions pre-

viously (Fan andMiguez-Macho 2010). This has important

implications if leaf area index or the vegetation is sim-

ulated dynamically. In the NGW simulations, the sup-

pression of photosynthesis during drought would lead to

a reduction in net primary productivity, potential veg-

etation dieback, and a loss of carbon stored in the

landscape. This is a positive feedback that would tend

to accentuate drought. In contrast, in the GW simula-

tions, enough photosynthesis is maintained to sustain

the vegetation through the drought and reduce any

tendency to transition a region from trees to grass. The

inclusion of groundwater therefore reduces the likeli-

hood of drought-triggered abrupt changes in terrestrial

systems. While we cannot quantify this reduction, the

result raises questions about existing assessments of

ecosystem vulnerability to climate change (e.g., Lenton

et al. 2008) given most simulations to date lack the

buffering effect of groundwater.

A second implication of our results relates to the

simulation of land use and land cover change (LULCC).

Unlike dynamic vegetation experiments where the simu-

lated vegetation responds to an applied forcing, in LULCC

experiments the model sensitivity to anthropogenic

changes in vegetation (such as deforestation) is evaluated

FIG. 7. The lag in months that results in the maximum correlation between the deseasonalized (the mean annual

cycle is removed) precipitation (with the precipitation leading) and (a) the simulated transpiration fromGW, (b) the

simulated transpiration from NGW, (c) PVF, and (d) LAI. Only regions with.60% coverage of natural vegetation

are shown so that bare soil and crops are excluded. The stippling indicates regions covered by at least 60% grasses,

and the areas with at least 85% forest cover are marked with hatching.

554 JOURNAL OF HYDROMETEOROLOGY VOLUME 14



by specifying changes in land cover types. Pielke et al.

(2011) discuss how large-scale transformation of vegeta-

tion from forest to grasslands can affect the regional

meteorology and climatology. Simulations of LULCC in

global and regional climate models generally omit the

influence of groundwater, with the exception of Findell

et al. (2006) and Molders and Ruhaak (2002). Thus, the

change represented in simulations to date (where the

forest plant functional types are replaced with grass or

crops) is approximated by the NGW simulation for

forest (with high variability; Figs. 5a, 6c) to the NGW

simulation for grass (with high variability; Figs. 5b, 6d).

Our study shows that if groundwater is included, the

forest simulations display a damped response to drought,

but if it is transformed to grass, and largely decoupled

from the groundwater, it displays increased variability.

This may not affect the impact of LULCC on the mean

regional climate, but it has the potential to affect the

impact of LULCC on regional climate extremes (Avila

et al. 2012).

Finally, feedbacks between the land surface and the

atmosphere affect the simulated climate (Betts et al. 1996;

Evans et al. 2011). In our NGW simulations, as the rainfall

anomaly intensifies, transpiration declines (Fig. 5). This

would necessitate a change in the partitioning of avail-

able energy from latent to sensible heat with a tendency

to warm and dry the boundary layer. This positive feed-

back has the potential to exacerbate drought (Hong and

Kalnay 2000). In contrast, in our GW simulations, the

same rainfall anomaly leads to very small declines in

transpiration, such that the latent heat flux can continue

to cool andmoisten the boundary layer with the potential

to slow the onset of drought. Our results therefore sug-

gest that modeling systems that ignore groundwater, used

for seasonal prediction, decadal prediction, or climate

projection, will tend to overemphasize the response of

transpiration to declining rainfall over forested regions

with consequentialmisrepresentation of feedbacks on the

boundary layer. The impact of groundwater on transpi-

ration is dependent on the vegetation cover type and the

regional meteorology, including the scale of rainfall re-

cycling. Hence, regional modeling studies that contain

forested areas similar to those in SE Australia and with

a similar regional meteorology are likely to show similar

sensitivities.

There are potential implications (dieback, LULCC,

and feedbacks) of the importance of groundwater in

forested ecosystems beyond SE Australia, of course.

TheAmazon forest has been shown to be dependent on

uptake of water from deep within the soil column

(Nepstad et al. 1994), with evidence showing water

withdrawal at depths of up to 18 m (Davidson et al.

2011). Some evidence exists from modeling studies

over the Amazon (Kleidon and Heimann 2000) that

deep roots play an important role in how LULCC af-

fects regional climate. The mitigation of transpiration

anomalies shown in Fig. 5 and the reduced soil moisture

variations in Fig. 8 from the inclusion of groundwater

provide further evidence that deep roots may play a

broadly significant role.

The current study has several limitations, in part be-

cause of the use of a simple one-dimensional land sur-

face model. CLM4 neglects an explicit representation of

the lateral redistribution of soil water, a process that can

influence the mean gridcell water content and land

surface fluxes (Huang and Leng 2008; Rihani et al.

2010). The subsurface heterogeneity in soils and its im-

pact on latent heat fluxes (Williams and Maxwell 2011)

are also neglected in the model. The small-scale spatial

heterogeneity of transpiration response to drought

seen in observations cannot be captured by the coarse

resolution of CLM4 (Eberbach and Burrows 2006).

We use the default CLM4 hydrology parameters be-

cause previous work has demonstrated the resilience of

land surface–groundwater models to parameter changes

(Gulden et al. 2007). However, optimization of the hy-

drological parameters can generate more accurate simu-

lations when suitable observations are available (Li et al.

2011). Finally, the root depth concentration in CLM4

does not make explicit use of any knowledge about

eucalypts. Future work will attempt to address these

issues by incorporating more complex models of sub-

surface hydrology and parameters derived specifically

for Australian vegetation.

FIG. 8. The difference in the standard deviation of the desea-

sonalized (by removing the mean annual cycle) total column soil

moisture (in kg m22) between the NGW and GW simulations. The

stippling indicates regions covered by at least 60% grasses, and the

areas with at least 85% forest cover are marked with hatching.
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5. Conclusions

We have explored how the inclusion of groundwater

within an LSM affects the impact of rainfall variability

on transpiration over SE Australia. Between 2002 and

2009, two significant droughts occurred over this re-

gion. We have shown that interannual anomalies in the

observed vegetation are closely related to the simulated

photosynthesis and transpiration, revealing that the

satellite vegetation observations provide a tool to di-

agnose the LSM response to drought. We have shown

that if groundwater is included, the impact of these

droughts on transpiration variability from the forested

regions is very small and is in agreement with the ob-

served vegetation variability. However, if groundwater

is omitted, the variability in transpiration from the for-

ests largely reflects rainfall variability. The presence of

groundwater in themodel, combined with deeply rooted

vegetation, allows the forests to withstand the variability

in rainfall and sustain transpiration in general agree-

ment with the observed vegetation variability. The

groundwater also delays the land surface response to

the large precipitation anomalies by several months over

forested regions, in agreement with the observed vege-

tation variability. While the shallow-rooted grasslands

display higher variability than the forests in both the

GW and NGW simulations, the inclusion of ground-

water still reduces variability in transpiration because

it helps maintain a wetter soil profile.

Our results indicate that failure to include ground-

water in regions like SE Australia, where groundwater

sustained ecosystems coupled with very deeply rooted

eucalypts are common, has some serious implica-

tions. First, the dampening of variability by groundwater

means that the forests sustain transpiration and likely

reduce the intensity of drought by maintaining a mois-

ture flux into the atmosphere, rather than switching to

a sensible heat-dominated surface energy balance with

resulting warming and drying of the boundary layer.

Second, if vegetation or leaf area index are simulated

dynamically, failure to include groundwater will tend

to oversimulate variability in transpiration and photo-

synthesis, leading to a higher likelihood of simulated

dieback during droughts. Finally, failure to represent

groundwater would lead to a misrepresentation of the

impacts of land use and land cover change in regions

where forests are sustained by groundwater.
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