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INTRODUCTION
Sound radiation from distributed vibrating structures is a 
continuous problem in transportation and other industries. 
At low frequencies, passive control techniques provide a 
poor reduction in structural dynamic responses, promoting 
active control as a more attractive solution. A novel approach 
to actively attenuate the structurally radiated sound fields is 
to directly modify the structural response. This is achieved 
by adding control inputs to the structure. The acoustic cost 
function is typically based on a global measure such as the 
radiated sound power, or the local sound pressure. This 
control technique is known as active structural acoustic 
control (ASAC).

Previous work on active control of sound radiating from 
structures has mainly dealt with homogeneous structures such 
as beams (Burdisso and Fuller, 1992) and plates (Fuller et al., 
1991; Wang et al., 1991; Pan et al., 1992). Using actuator and 
sensor mechanisms associated with smart structures, ASAC 
strategies have been applied utilising piezoelectric materials 
as both the structural actuator and error sensor (Clark and 
Fuller, 1992). This ASAC strategy, where the structure is 
equipped with a sensor bonded to the surface, can be practical 
in cases when the use of acoustic sources such as microphones 
or hydrophones located in the surrounding fluid may not be 
practical (for example, in the case to actively suppress the 
externally radiated sound field from a submarine). It is 
important to note however that when using structural error 
sensors in an ASAC application, it is necessary to have an 
efficient design procedure and good a priori knowledge of 
the structure-acoustic coupling, due to the inability of the 
structural sensors to directly measure the acoustic response.

ASAC techniques have also been employed to attenuate 
the structure-borne sound fields generated by subsonic wave 
scattering at a structural discontinuity, which may be a 
boundary (Guigou and Fuller, 1993), a line discontinuity (Gu 
and Fuller, 1991) or a beam-stiffened plate (Kessissoglou 
and Pan, 1998). In these cases, it has been shown that whilst 
the influence of flexural near-field waves generated due to 
the presence of a structural discontinuity can be neglected in 
terms of the dynamic response, they significantly contribute 
to the far-field structurally radiated sound.
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This paper presents adaptive feedforward active control applied to simple structures comprised of beam, plate and cylindrical elements. 
For each system under consideration, by initially obtaining a good understanding of the physics of the structural and acoustic responses, 
the active control application can be tuned to improve the control performance. In particular, the use of active structural acoustic control to 
attenuate the structurally radiated sound fields is investigated.

While most ASAC systems are designed using feedforward 
control techniques, active control of the radiated sound 
pressure from a simply supported plate has been investigated 
using feedback control (Meirovitch and Thangjitham, 1990). A 
good review of ASAC applied to plate systems and cylindrical 
structures is given by Fuller et al. (1996). This paper reviews 
the use of active vibration control (AVC) and active structural 
acoustic control (ASAC) based on a conventional adaptive 
feedforward algorithm, to respectively attenuate the structural 
and acoustic responses associated with a beam-stiffened plate 
and a cylinder submerged in a fluid.

OVERVIEW OF ADAPTIVE FEEDFORWARD 
ACTIVE CONTROL 
The objective of feedforward control is to produce a secondary 
disturbance to a system that cancels the effect of a primary 
disturbance at the location of an error sensor. Adaptive 
feedforward active control is effective in situations of tonal 
noise and when a reference signal correlated to the primary 
disturbance is available. This signal is passed through an 
adaptive filter, as shown in Fig. 1, where the output of the 
adaptive filter is applied to the physical system by secondary 
sources. The filter coefficients are adapted in such a way that 
the error signal at one or more critical points is minimised. 

Figure 1. Block diagram of an adaptive feedforward control 
system (Widrow and Stearns, 1985).

Local control is achieved as there is no guarantee that 
the response is reduced at any other locations other than the 
error sensor. Unless the response is dominated by a single 
mode, there are locations where the total response may be 



flexural wave in the beam at frequency ω is λ
B
. λ

p
 and λ

B
 are 

not necessarily equal. If the intercepts of the incident wave on 
the y–axis equals the natural flexural wavelength of the beam 
as shown in Fig. 3, then optimal flexural trace wave matching 
occurs (flexural coincidence). Similarly, if λ

y
 matches the 

natural torsional wavelength of the beam (λ
y
=λ

p
/sinϕ =λ

T
), 

then optimal trace wave matching occurs between the plate 
flexural waves and the beam torsional waves (torsional 
coincidence). It is at these coincidence conditions that the 
greatest coupling between the plate and beam motion occurs, 
resulting in the maximum transmission of the flexural wave 
motion through the reinforcing beam. Since the plate and 
beam flexural wavenumbers vary with frequency in the same 
way, the flexural coincidence condition becomes frequency 
independent and occurs for a single angle of incidence 
only (ϕ=sin-1(k

B
/k

p
)). The torsional coincidence condition is 

dependent on both angle and frequency, that is, the angle at 
which this coincidence condition occurs increases with the 
corresponding coincidence frequency (ϕ=sin-1(k

T
/k

p
)). 

The characteristics of the transmission of the plate flexural 
waves through the reinforcing beam are shown in Fig. 4 for 
a frequency range up to 2000 Hz and for a relevant range 
of angles of the incident waves from 0° to 20°. The beam-
stiffened plate has material properties of aluminium, with a 
structural loss factor of 0.001, plate thickness of 1.6 mm, and 
beams of both width and height of 20mm. The size of the 
beams has been chosen to greatly exaggerate the coincidence 
conditions. Figure 4 shows that the flexural coincidence 
condition occurs for a single incident angle corresponding to 
ϕ

B
≈11.5° for this beam-plate model. At torsional coincidence, 

the angle of incidence increases with frequency.

Figure 3. Optimal trace wave matching between the plate and 
beam flexural waves.

amplified. Using the conventional adaptive feedforward least 
mean square (LMS) algorithm (Fuller et al., 1996), the optimal 
control force is obtained in what follows. Let the primary 
structural response (such as the flexural displacement of a 
beam or plate) be denoted by w

p
(x). This can often be written 

in terms of the product of the system transfer function G
p 
and 

the primary disturbing force F
p
, that is, w

p
(x)=F

p
G

p
(x). When 

a control point force of amplitude F
s
 applied at a position x

s
 on 

the system, the secondary structural response can be expressed 
as w

s
(x)=F

s
G

s
(x), where G

s
 is the secondary transfer function. 

The total response at some point x can be obtained by adding 
the structural responses induced by the primary disturbance 
and the control force: 
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A variety of cost functions can be developed depending on 
the response to be minimised; these cost functions may be 
the squared displacement or acceleration, kinetic energy, 
transmitted power, mean square sound pressure, out-of-plane 
velocity, etc. Using the squared error sensor output at a 
location x

e
 as the cost function to be minimised, a quadratic 

function expression in terms of the complex control force 
amplitude is obtained as:

          (2)

where the asterisk * denotes the complex conjugate, and 
A=G

s
*G

s
, B=G

s
*G

p
F

p
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p
*G

p
*G

p
F

p 
. In the adaptive 

feedforward LMS algorithm, the optimal control force that 
results in the minimisation of the cost function can be obtained 
by differentiating the cost function with respect to the real and 
imaginary components of the control force (Fuller et al., 1996). 
The optimal control force corresponds to the force value when 
both derivatives are zero, that (∂J/∂F

s,real
)=0 and (∂J/∂F

s,imag
)=0. 

The optimal control force can then be obtained as: 

    
               (3)

APPLICATIONS OF AVC AND ASAC
AVC of the wave transmission in a rib-stiffened plate

Beam stiffened plates are commonly found in ship hulls, 
aircraft and machine casing. The transmission of plate flexural 
waves through a reinforcing beam is related to the coupling 
between the plate flexural waves and the flexural and torsional 
waves in the beam. For an infinite beam-stiffened plate, the 
maximum flexural wave transmission occurs at the optimal 
trace wave matching between the flexural waves in the plate 
and the flexural and torsional waves in the beam. These are 
described as flexural and torsional coincidence conditions, 
respectively. The coincidence conditions are dependent on 
the angle of incidence ϕ of the flexural plane wave W

in
 

propagating in the x–y plane in plate 1 and impinging on the 

beam boundary, as shown in Fig. 2.
The relationship between the wavenumber k and the 

wavelength λ (k=2π/λ) allows the explanation of the 
coincidence conditions. The plane wave in plate 1 at a 
frequency ω has wavelength λ

p
, while the wavelength of the 
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Figure 2.  Beam-stiffened plate separated into three 
subsystems: plate 1, beam and plate 2, showing the flexural 
plane wave in plate 1 incident at the beam boundary.



Figure 4. Flexural wave transmission in plate 2 showing 
flexural and torsional coincidences.

An array of point control forces are applied along the length of 
the beam to excite flexural motion, and are equally distributed 
by a distance Δ (Kessissoglou & Pan, 1997) . Similarly, point 
control moments can be applied to excite torsional motion in the 
beam. The error sensors are located in the far field of plate 2. 
Under plane wave propagation, the control forces are arranged 
to have the same magnitudes and prefixed phases as follows:

      (4)

For attenuation of the flexural wave transmission due to 
flexural coincidence, the phases of the point control forces can 
be arranged to have the same spatial phase variation to that 
of the primary flexural waves in the beam. The phases of the 
control forces become:

                   (5)

where Δ=0.3λ
B
. It should be noted that this arrangement is 

similar to the biologically inspired control strategy, where a 
group of actuators are connected together with certain phase 
and amplitude relationship, and only one control signal is 
needed to drive them (Carneal and Fuller, 1995). Under 
point moment control, the phases of the control moments are 
arranged to be φ

n
=k

T
nΔ where Δ=0.5λ

T
. The displacement 

at the error sensor locations in the far-field of plate 2 is the 
superposition of the primary transmitted waves and secondary 
flexural waves generated by the control forces. The cost 
function to be minimised is the squared total plate flexural 
displacement at the error sensor location x

e
=10λ

p
 and averaged 

at M discrete locations along the y–direction.
Figure 5 shows the flexural wave attenuation level at the 

error sensor locations (x
e
=10λ

p
) and for 401 discrete locations 

along the y–direction corresponding to the range (–2λ
p
,2λ

p
). 

Examination of a relevant range for the incident angle from 0° 
to 20° at excitation frequencies of 500 Hz and 1000 Hz shows 
that significant attenuation of around 14 dB has been achieved 
at the flexural coincidence angle of ϕ

B
≈11.5°. The level of 

attenuation at both frequencies is the same. Due to the nature 
of the arranged control force excitation, the radiated secondary 

flexural waves have poor spatial phase correlation with the 
transmitted primary waves away from the flexural coincidence 
angle, which results in poor attenuation. However, away 
from the coincidence condition, the beam itself acts as an 
effective passive attenuation device. Changing the frequency 
of excitation has no effect on the attenuation level or the angle 
at which attenuation is achieved, as the flexural coincidence 
condition is independent of frequency. 
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Figure 5.  Attenuation levels of the flexural wave transmission 
at excitation frequencies of 500 Hz (solid line) and 1000 Hz 
(dashed line) using point control forces.

Figure 6. Normalised magnitude of the optimal control force 
at 500 Hz (solid line) and 1000 Hz (dashed line).

Figure 7. Attenuation levels of the flexural wave transmission 
at excitation frequencies of 500 Hz (solid line) and 1000 Hz 
(dashed line) using point control moments.



Figure 6 shows the corresponding dimensionless magnitude 
of the optimal control force F

s,opt
, which shows that a large force 

is required at the flexural coincidence angle. As the frequency 
increases, the beam is able to vibrate more freely and hence a 
slightly smaller amplitude of the control forces is required in 
order to generate secondary vibrational levels in the beam to 
match the primary flexural energy level in the beam.

Under point moment control, attenuation of the flexural 
wave transmission is achieved for the same number of discrete 
locations along the y–direction as for the point control force 
application, corresponding to the range (–2λ

T
,2λ

T
). Figure 7 

shows the attenuation levels of the flexural wave transmission 
using point control moments at excitation frequencies of 500 
Hz and 1000 Hz. The peaks of the attenuation levels occur at 
the corresponding torsional coincidence angles of 1.5° and 3°, 
respectively. Unlike force control, as the frequency increases, 
the magnitudes of the control moments required for the same 
level of attenuation increases (Fig. 8). This is due to the fact 
that at higher frequencies, the beam torsional stiffness relative 
to the plate bending stiffness increases (Goyder and White, 
1980). 

ASAC of a rib-stiffened plate

Using ASAC, the dynamic response of the ribbed plate can 
be modified to attenuate the structurally radiated sound field. 
In this ASAC application, the control forces are again applied 
to the beam, while the error sensing devices are located in 
the surrounding fluid. An incident wave propagating in the 
low frequency range corresponding to frequencies well below 
critical (where the in vacuo phase speed of the flexural waves 
in the plate c

p
 is less than the speed of sound in the fluid c

o
), is 

known as a subsonic wave and does not radiate energy into the 
far-field of the surrounding fluid. When the subsonic flexural 
wave is incident on the beam discontinuity, the scattering 
of the structural wave field generates both supersonic and 
subsonic wave types in the structural response, resulting in 
structurally radiated sound. The structure is considered to 
be in air and hence the response is not affected by the fluid 
loading. For periodic distribution of the sound pressure in the 
y–direction (along the length of the beam), the sound pressure 
field is evaluated in a cylindrical coordinate system defined by 
x=rcosθ, z=rsinθ, y=0, as shown in Fig. 9.

Figure 9. Sound pressure field evaluated in a cylindrical co-
ordinate system in the x–z plane.

An expression for the sound pressure field of the ribbed 
plate under plane wave incidence has been derived using the 
acoustic wave equation and structure-fluid coupling conditions 
at the surface of the plate (Junger and Feit, 1985). The 
expression for the primary sound pressure field is described 
in terms of both a non-integral component and an integration 
of the structural wavenumber spectrum. Each component 
is a function of the scattered structural waves (transmitted 
and reflected, propagating and evanescent plate flexural 
waves). The wavenumber spectrum of the integral component 
can be separated into supersonic and subsonic wavenumber 
spectrums. The supersonic wavenumber spectrum directly 
contributes to the far-field radiating sound pressure, whereas 
the subsonic wavenumber spectrum dominates the near-field 
acoustic response. The supersonic wavenumber spectrum is 
further restricted by a limiting range for the incident angle, 
where ϕ must be less than the critical incident angle ϕ

c
, which 

is defined by ϕ
c
=sin-1(k

o
/k

p
) and k

o
 is the acoustic wavenumber 

(k
o
=ω/c

o
).

The primary radiated sound power is obtained by integrating 
the acoustic intensity over a semi-cylindrical surface centred at 
the beam discontinuity, where the acoustic intensity is related 
to the mean square pressure. At the structural coincidence 
conditions, the far-field primary sound pressure level is slightly 
decreased. This is due to the fact that at the coincidences, 
there is a large amount of flexural wave transmission through 
the reinforcing beam, thereby resulting in a more balanced 
distribution of the structural waves along the x–direction 
(normal to the beam). It has been previously shown that an 
imbalance in the structural response along the x–direction 
will generate a greater number of supersonic wavenumber 
components, which will thereby result in an increase in the 
far-field radiated sound pressure. The phases of the control 
forces are pre-fixed such that the forces have a spatial phase 
variation with each other at the flexural coincidence condition. 
Although the primary structural response may be either 
at coincidence or off-coincidence, the secondary structural 
response is always generated by forces with the phase delay 
in the beam corresponding to that of the flexural coincidence 
condition. At flexural coincidence, the total-far-field sound 
pressure due to the superposition of the primary and secondary 
sound fields is optimised. At any off-coincidence condition, 
the superposition of the primary and secondary sound fields 
will result in the least increase in the supersonic wavenumber 
components to be attenuated.

Using the control force approach described previously, 
in which for 2N+1 forces applied to the beam, the control 

Figure 8. Normalised magnitudes of the optimal control 
moments at 500 Hz (solid line) and 1000 Hz (dashed line).



forces have a pre-fixed phase relationship with each, only the 
complex amplitude F

s
 needs to be optimised. For minimisation 

of the acoustic responses, two cost functions are examined 
corresponding to (i) the square of the total sound pressure 
|p

tot
(r,θ)|2 at a far-field error sensor location (r

e
,θ

e
), and (ii) 

the radiated sound power. An expression for the total sound 
pressure is obtained by the superposition of the primary and 
secondary sound fields (Kessissoglou and Pan, 1998). Both 
cost functions can be expressed as a quadratic function in terms 
of the control force amplitude. Using the adaptive feedforward 
LMS algorithm, the optimal control force is obtained.

Using the same material properties and dimensions of the 
ribbed plate and air to represent the surrounding acoustic field, 
the flexural and torsional coincidence angles are respectively 
ϕ

B
=11.5° and ϕ

T
=1.5° (for an excitation frequency of 500Hz). 

The critical incident angle defined by ϕ
c
=sin-1(k

o
/k

p
) is 14.5°. 

Since both coincidence angles are less than critical, they 
both contribute to the radiation of sound into the far-field. 
Figure 10 shows that only those incident waves with angles 
less than the critical incident angle contribute to the radiated 
sound power, as these angles correspond to the supersonic 
wavenumber spectrum (Kessissoglou and Pan, 1998). At 
incident angles greater than critical, there is very little sound 
power radiated into the far-field as the sound pressure is 
dominated by the subsonic wavenumber spectrum which only 
contributes to the acoustic near-field. An interesting feature 
in Fig. 10 is the effect of the structural coincidences on the 
far-field radiated sound power. At the structural coincidence 
conditions corresponding to ϕ=1.5° and 11.5°, there is a 
decrease in the radiated sound power. This due to the fact that 
at a structural coincidence condition, the greatest plate flexural 
wave transmission through the beam occurs. As a result, the 
structural energy is more uniformly distributed in the plate 
and less energy is radiated into the acoustic fluid. As the 
incident angle approaches critical, the far-field sound power 
is a maximum as this condition corresponds to the optimal 
coupling between the structure and the fluid.

Figure 10.  Radiated sound power as a function of the angles 
of the incident wave.

The radiated primary sound pressure at a far-field 
dimensionless radius of k

o
r=10 increases at directivity angles 

close to the surface of the plate (0°≤θ≤5° and 175°≤θ≤180°). 
This is due to the fact that even at a far-field radius, directivity 

angles close to the surface of the plate correspond to the near-
field. Therefore, in order to accurately represent the radiated 
sound power, these ‘grazing’ angles were not included in the 
integration of the sound intensity, that is, the sound power was 
evaluated over the hemispherical range of 5°≤θ≤175° (centred 
on the beam).

Figure 11 presents the attenuated sound power as a function 
of the error sensor location θ

e
 for an incident angle of 11.5° 

(flexural coincidence). The attenuated sound power resulting 
from minimisation of the sound power and from minimisation 
of the far-field sound pressure at each local error sensor 
location in the range of 5°≤θ ≤175° are compared. For the 
present control arrangement, using the radiated sound power 
as the cost function results in attenuation levels of 23dB, 16dB 
and 36dB for incident angles of 5° (off coincidence), 11.5° 
(flexural coincidence) and 14.5° (critical angle), respectively. 
Similar levels of sound power attenuation can be achieved by 
minimising the local sound pressure using a single error sensor 
located in the range of 45°≤θ

e
≤50° or 130°≤θ

e
≤135°. The exact 

location for the optimal error sensor differs slightly for each 
incident angle of the incoming structural wave. Examination 
of the controlled sound pressure levels show that optimising 
the error sensor location results in a reduction in the radiation 
efficiency. The ASAC system can now be designed with an 
appropriate cost function and error sensor location to achieve 
the best control performance. For a single, optimally located 
error sensor, it has been shown that global attenuation of the 
squared sound pressure is achieved at all directivity angles 
away from the grazing angles (Kessissoglou and Pan, 1998). 
This reduces the complexity of the control application since 
using the sound power as the cost function would require an 
array of error sensors located in a hemisphere centred on the 
ribbed plate.

Figure 11. Attenuated sound power as a function of the local 
error sensor location θ

e
, resulting from minimisation of the 

sound power (solid line) and from minimisation of the far-
field sound pressure at each local error sensor location in the 
range of 5°≤θ

e
 ≤175.

Active control of a finite cylinder

Active control of the structural and acoustic responses of 
cylinders has mainly concentrated on actuating and minimising 
the radial motion of the cylindrical shell. A review of earlier 
literature on active control to minimize cylinder interior 
acoustic fields (in the case of an aircraft interior) and 
exterior acoustic fields (in the case of sound radiation from a 
submarine or noise from piping systems) is given by Fuller et 
al. (1996). Active control of sound radiation from cylinders 



using piezoelectric actuators and structural sensors has shown 
to yield similar performances in attenuating the far-field 
radiated pressure as error microphones (Maillard and Fuller, 
1999). In this section it is demonstrated that active modal 
control of both the axial and radial motions of a finite cylinder 
is required to globally attenuate the structurally radiated 
sound pressure. An idealized model of a submarine hull is 
considered, which is modelled as a ring-stiffened cylindrical 
shell with finite rigid end closures, separated by bulkheads 
into a number of compartments and under axial excitation 
from the propeller-shafting system (Tso et al., 2003; Dylejko 
et al., 2005). The fluid loading effects are modelled as an 
increase in inertia of the shell. Lumped masses are added at 
each end to represent on-board equipment and to maintain a 
condition of neutral buoyancy. A schematic of the submarine 
model is shown in Fig. 12. Excitation of the hull axial modes 
causes both axial motion of the end closures, u, and radial 
motion of the shell, w, resulting in a high level of structurally 
radiated noise. Under axial excitation, it is assumed that only 
the breathing mode of the cylinder is excited which gives rise 
to an axisymmetric case. An expression for the radiated sound 
pressure contributed by axial movement of the end plates and 
radial motion of the shell was obtained using the Helmholtz 
integral equation (Junger and Feit, 1985), and by considering 
the radiating surfaces separately. 

Figure 12. Schematic of the hull under axial excitation.

A secondary axial force F
s
 was used to excite the pressure 

hull at x=L, as shown in Fig. 13. For active control of the 
axial response of the end closures, an error sensor was located 
at each end of the pressure hull, denoted by esu. For control 
of the radial response of the hull, one or more rings of error 
sensors, esw, were located circumferentially around the hull. It 
is important to note that due to the Poisson effect which causes 
coupling between the axial and radial motions of the hull, the 
use of a control force to generate a secondary axial response 
will also generate secondary radial motion. Similarly, active 
control of the radial motion will also result in secondary axial 
vibration. This must be taken into account in the evaluation 
of the total radiating sound pressure due to the primary and 
control forces. The squared total axial or radial displacements 
due to the primary and control excitations were minimised 
at the error sensors using the adaptive feedforward LMS 
algorithm described previously. When both the axial and radial 
displacements were simultaneously controlled, two control 
forces were used, one for each of the displacements. 

Numerical calculations were performed on a ring stiffened 
steel cylinder of 6.5 m diameter, 40 mm hull plate thickness, 45 
m length, and with two evenly spaced bulkheads of thickness 

40 mm. The cylinder was submerged in water of density 1000 
kg/m3. A neutrally buoyant condition was maintained by using 
a distributed mass of 1000 kg/m2, and with lumped masses 
of 200 tonnes at each end. Internal structural damping was 
included in the analysis by using a structural loss factor of 
0.02. A primary axial force of 1 N is applied to one end of 
the hull. The first three axial resonances were observed to be 
approximately 20.5, 42 and 64 Hz, as shown in figure 14. The 
small peak at approximately 9 Hz is caused by the resonance 
of the bulkheads. At the first and third axial resonances, the 
end plates of the cylinder are vibrating out of phase with each 
other. At the second axial mode, where the end plates of the 
cylinder are vibrating in phase, the axial response of the end 
plates accounts for approximately two-thirds of the primary 
radiated pressure. 

Figure 14.  Axial response of the hull at x=0 (solid line) and 
x=L (dashed line).

Active vibration control was applied at the second axial 
resonance of 42 Hz. Figures 15(a) and (b) present the primary 
and controlled responses of the axial and radial motions, 
respectively, as a function of axial position along the hull 
(from x=0 to L). Comparison of the primary axial and radial 
motions shows that when the axial response is a maximum 
(at the cylinder ends and midway along the hull length for 
the second axial mode), the radial response is a minimum, 
and vice versa. Figure 15(b) also shows the localised effect of 
the bulkheads. In Fig. 15(a), the squared axial displacement 
was simultaneously minimised at error sensors located at 
each end of the pressure hull. In Fig. 15(b), the squared radial 

Figure 13. Locations of the control force and error sensors 
for active control of the axial and radial motions of the finite 
hull.



displacement was simultaneously minimised at two rings of 
error sensors located at anti-nodal axial positions along the 
hull length. The corresponding magnitudes of the control 
forces are nearly unity, attributed to the axisymmetric motion 
of the hull and symmetry of the control application.

Figure 16 shows the primary structurally radiated sound 
pressure at the second axial resonance. The radiated pressure 
for control of the radial response only and for control of 
both the axial and radial responses is given in Figs. 16(a) 
and (b), respectively. For control of the radial response, the 
control performance is strongly dependent on the error sensor 
locations for a given axial resonant frequency. Active control 
of both the axial and radial hull displacements results in 
complete cancellation of the radiated sound pressure. 

Excitation of the hull at one of its low frequency axial 
resonant frequencies results in an efficiently radiating 
structural mode. Due to the coupling between the axial and 
radial motions of the cylinder, a control actuator for each 
wave type is required. However, due to active control at 
a resonant frequency, the use of a single actuator for each 
wave type is sufficient. For active control at an off-resonant 
frequency, the modal density is higher and an increase in the 
number of control actuators is required to improve the control 

performance. The number of error sensors should either 
be equal or greater than the number of control inputs used. 
Increase the number of error sensors can generally improve the 
attenuation achieved due to the cost function being closer to an 
estimate of a global property (such as kinetic energy or sound 
power), and is thereby more robust to changes in the physical 
system response.

CONCLUSIONS
This paper presents a review of adaptive feedforward active 
control and its applications to attenuate the structural and 
acoustic responses associated with beam-stiffened plate and 
cylindrical structures. In each case, a priori knowledge of the 
dynamics of the physical system has enabled arrangement 
of the control actuators and sensors to improve the control 
performance. For active control of the flexural wave 
transmission through the reinforcing beam of a stiffened plate, 
global attenuation of the plate vibration can be achieved using 
an array of point forces or moments to the beam. Mechanisms 
of the global control are due to the significant reduction in the 
beam flexural or torsional energy using an array of control 
forces or moments, respectively.  The control arrangement is 

                                       (a)                                                                                               (b)

Figure 16.  Primary (solid line) and controlled (dashed line) radiated sound pressure for active control of the radial response only (a) 
and both the axial and radial responses (b).

(a)                                                                                         (b)

Figure 15.  Primary (solid line) and controlled (dashed line) acceleration distributions of the axial (a) and radial (b) responses as a function 
of axial position along the length of the hull.



dependent on a pre-fixed phase relationship between the forces 
or moments using information on the flexural or torsional 
coincidences. Global attenuation of the structurally radiated 
sound fields can be achieved by carefully selecting the 
location of a single acoustic error sensor. In the case of a finite 
cylinder with rigid end caps excited at an axial resonance, 
active control of both the axial and radial motions is required 
to globally attenuate its acoustic signature. It is important to 
note that the arrangement of the control actuators and error 
sensors in the cases presented in this paper and corresponding 
levels of attenuation achieved, are dependent on coincidence 
or resonance conditions, at which the angles of the incident 
structural waves or modes of vibration contributing to the 
structural and acoustic responses are clearly defined.
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