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Abstract

PET imaging has been an active area of research over the recent years and has been

used to facilitate disease diagnosis, for instance, in cancer/tummor detection. Given

the fact that PET images are extremely noisy, researchers have encountered difficul-

ties in the analyses of PET images. Mixture models have been widely utilized in PET

images analyses due to their flexibility and capabilities of modelling heterogeneous

data. When spatial dependence has to be considered in the modelling, challenges

arise in the subsequent parameter estimations. In particular, the large sizes of the im-

ages often lead to computational intractability. This thesis has been largely focused

on the inferential problems resulting from the intractable normalizing constants in

the spatial mixture models involving the Potts/Ising models.

In Chapter 2, a Bayesian spatial mixture model was employed to estimate kinetic

parameters in compartmental model of the myocardium. Our results suggested that

Bayesian inference can provide more robust estimations than the conventional meth-

ods. In addition, Bayesian inference naturally provided uncertainty estimations for

the parameters. The uncertainty estimations are particularly important due to the

extremely noisy nature of the data. The spatial dependence between voxels was in-

corporated by employing the Potts model as the prior in the spatial mixture model

where Thermodynamic integration (Green and Richardson (2002)) was utilized to

solve the inferential problems related to the spatial correlation.

Motivated by the need to develop computationally efficient and accurate infer-
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ential methods for the spatial mixture models, in Chapter 3, a novel method was

proposed to overcome intractable normalizing constant problem in the Potts model.

The proposed method took advantage of conditional independence of the Markov

random field (MRF) and the original lattice of Potts model was recursively split into

sublattices. Two sublattices were generated at each split. The first sublattice con-

sisted of pixels which were mutually independent given the second sublattice, and

vice versa. Therefore, it became tractable to calculate the conditional density func-

tion of the first sublattice given the second one according to the property of the MRF.

The second sublattice was then approximated by a new Potts model. The second

sublattice was split again and two new smaller sublattices were generated. The de-

composition procedure was repeated until some preset criterion was satisfied. The

original lattice of Potts model was eventually decomposed into many sublattices of

different sizes. The original density function can be calculated by multiplying all the

conditional density functions of the sublattices. The procedure avoids the calcula-

tion of the normalizing constant entirely. It has been shown that the new method is

able to deal with Potts models of large dimensions which cause problems in many

existing methods. The ability of dealing with large lattices becomes more and more

useful as the size of available data nowadays has increased exponentially. The algo-

rithms which can handle large dataset are needed more urgently.

In Chapter 4, an alternative method was proposed to overcome the normalizing

constant problem. In the suggested method, the intractable density function was

decomposed into a series of conditional density functions. Subject to some assump-

tions, each conditional density can be approximated by a Monte Carlo approxima-

tion of conditional distribution of the corresponding summary statistics. The method

has been demonstrated to be faster than most of the competitors in the empirical

studies. In addition, this method is extendable to irregular lattices.

Finally, when a mixture model is used in conjunction with Markov random field,

iv



label switching arises since posterior distributions are invariant with respect to the

permutation of MCMC samples. Various methods were developed to solve the label

switching problem. However, it was difficult to find an algorithm which is suitable

for the spatial mixture models involving large sized Potts models. In Chapter 5,

a new method was suggested to solve the label switching problem for the spatial

mixture models. We concluded with some dicussions in Chapter 6.
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Schnatter (4) Marin et al (5) Cron and West (6) Papastamoulis et al (7)

Minimum Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 The true allocations shown slice by slice (left). The white points corre-

spond to the component with µ = [4, 5, 6]; and black ones denote the

component with µ = [6, 7, 8] and, 3D scatter plot of the two compo-

nents (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

x



List of Tables

2.1 Segment names and their assignedK1 values in mL/min/cc, k2 values

in 1/min (i.e.,the ground truth). . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Summary statistics for each estimation. . . . . . . . . . . . . . . . . . . 43

3.1 Root mean squared error of β for a first order neighbourhood depen-

dence. Based on 200 simulated data sets for each 32×32, 128×128 and

256×256 lattices. q = 2 and q = 3. . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Root mean squared error of β for a second order neighbourhood de-

pendence. Based on 200 simulated data sets for each 32×32, 128×128

and 256×256 lattices. q = 2 and q = 3. . . . . . . . . . . . . . . . . . . . 76

3.3 Posterior mean and standard deviation (in brackets) of grass data us-

ing PL, RCoDA and TDI respectively. (F) denotes first order neigh-

bourhood structure. (S) denotes second order neighbourhood struc-

ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Percentages of observed pixels which fall within the 95%, 90% and

80% of the posterior predictive distributions. . . . . . . . . . . . . . . . 79

3.5 Computation time in seconds per iteration of MCMC. RDA is not im-

plemented for large lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 The multinomial distribution of Ising model under CT1 for different

sized model, 32× 32 and 64× 64. . . . . . . . . . . . . . . . . . . . . . . 90

xi



4.2 Root mean squared error of β for a first order neighbourhood depen-

dence. Based on 200 simulated data sets for each 32×32, 128×128 and

256×256 lattices. q = 2 and q = 3. . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Root mean squared error of β for a second order neighbourhood de-

pendence. Based on 200 simulated data sets for each 32×32, 128×128

and 256×256 lattices. q = 2 and q = 3 are included. . . . . . . . . . . . . 94

4.4 Computation time in seconds per iteration of MCMC. RDA is not im-

plemented for large lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Misclassification matrix for the six methods. Each i, jth entry of the

misclassification matrix denotes the number of observations which is

classified as component j, while actually it belongs to component i.

The row corresponding to True gives the true cluster membership of

the observed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Comparison of KL distance relative to the true distribution, misclassi-

fication rate, total variance for the parameter estimates and computa-

tion time, for the six different methods outlined, using simulated data

from Equations (5.7) and (5.8) . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Parameter estimates using the six different methods. The left part of

each column corresponds to Equation (5.7), the right part of each col-

umn corresponds to Equation (5.8). . . . . . . . . . . . . . . . . . . . . . 123

5.4 Comparison of KL distance relative to the MAP density estimate, total

variance for the parameter estimates and computation time, using the

six different methods, for the galaxy data. . . . . . . . . . . . . . . . . 124

5.5 Parameter estimates for galaxy dataset using different relabelling al-

gorithms and the MAP estimate. . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Posterior mean estimates of the two-components multivariate spatial

mixture model, for the six different methods. . . . . . . . . . . . . . . . 128

xii



5.7 Comparison of KL divergence, misclassification rates, total variance

and computing time for the six different methods. The multivariate

spatial mixture model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Time (in sec) used in different scenarios. For each column we fix other

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.9 Summary of the main points for the four methods, Marin et al, Cron

and West, Papastamoulis et al and Minimum Variance. . . . . . . . . . 132

xiii



Contents

Acknowledgements i

Abstract ii

List of Figures v

List of Tables viii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spatial mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Spatial mixture model . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Generation of Potts model . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Normalizing constant problem in Potts models . . . . . . . . . . . . . . 10

1.4.1 Bayesian inference of Potts model . . . . . . . . . . . . . . . . . 10

1.4.2 Computation of normalizing constant . . . . . . . . . . . . . . . 11

1.5 Existing methods for normalizing constant problem . . . . . . . . . . . 12

1.5.1 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.3 Approximation methods . . . . . . . . . . . . . . . . . . . . . . . 15

xiv



1.5.4 Exact sampling methods . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Thesis arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 A Bayesian spatial temporal mixtures approach to kinetic parametric im-

ages in dynamic positron emission tomography 23

2.1 Introduction to kinetic model estimation . . . . . . . . . . . . . . . . . . 23

2.2 Medical image segmentation . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Thresholding methods . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Classical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Computation-intensive methods . . . . . . . . . . . . . . . . . . 27

2.2.4 Mixture model-based methods . . . . . . . . . . . . . . . . . . . 29

2.3 Methods for kinetic parameter estimation . . . . . . . . . . . . . . . . . 30

2.3.1 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Spatial K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 A Bayesian Spatial Mixture Model(SMM) . . . . . . . . . . . . . 32

2.4 Simulations and application . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Simulation: Dynamic Cardiac Perfusion PET . . . . . . . . . . . 38

2.4.3 Application: In-Vivo Pig Study . . . . . . . . . . . . . . . . . . . 41

2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Parameter Estimation and Comparison to Existing Methods . . 42

2.5.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 A novel approach for markov random field with intractable normalizing

constant on large lattice 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv



3.2 A recursive decomposition method . . . . . . . . . . . . . . . . . . . . . 64

3.3 Extensions to the second order structure . . . . . . . . . . . . . . . . . . 67

3.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 First order neighbourhood . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 Second order neighbourhood . . . . . . . . . . . . . . . . . . . . 75

3.5 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Monte Carlo method for partial conditional distribution in Markov random

field 83

4.1 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Conditional decomposition . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Monte Carlo approximation of PCD . . . . . . . . . . . . . . . . 86

4.1.3 Generalization to higher order Potts model . . . . . . . . . . . . 90

4.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 First order neighbourhood lattice . . . . . . . . . . . . . . . . . 92

4.2.2 Second order neighbourhood lattice . . . . . . . . . . . . . . . . 92

4.2.3 Coverage probability . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Summary statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 MCAPCD for irregular lattice . . . . . . . . . . . . . . . . . . . . 98

4.3.3 Relationship with other methods . . . . . . . . . . . . . . . . . . 100

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Relabelling algorithms for mixture models with applications for large datasets104

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Review of existing relabelling algorithms . . . . . . . . . . . . . . . . . 108

xvi



5.2.1 Full parameter space relabelling algorithms . . . . . . . . . . . . 108

5.2.2 Allocation space relabelling algorithms . . . . . . . . . . . . . . 111

5.3 A variance based relabelling algorithm . . . . . . . . . . . . . . . . . . . 113

5.3.1 Minimum Variance algorithm . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Simultaneous monitoring of MCMC convergence . . . . . . . . 116

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Univariate mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.2 Multivariate spatial mixture model for image processing . . . . 125

5.4.3 Further comparison of Computational time . . . . . . . . . . . . 128

5.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Conclusion and future work 134

xvii



xviii



Chapter 1

Introduction

1.1 Introduction

Positron emission tomography (PET) is a powerful medical imaging modality which

exploits point sources of radioactivity to produce voxel-wise images. This medical

imaging technique is widely used to study biological processes in-vivo (Boudraa

et al. (1996), Liew et al. (2000), Jiang (2004), Martinez-Möller et al. (2009), Belhassen

and Zaidi (2010)). A radioactive tracer is administered into blood stream of an object,

usually a human body, and is delivered to the whole body by the flowing blood.

Radiation is created when the nuclei of the tracer decay and produce photons which

are then captured by radiation sensitive detectors external to the body.

A voxel is an equal sized and non-overlapping volume in the imaged volume.

The goal of PET imaging is to obtain a map of radioactivities with respect to the

location of voxels. The resulting map shows the tissues in which the molecular tracer

has become concentrated and it can be interpreted by a radiologist in the context of

the patient’s diagnosis and treatment plan.

Dynamic PET imaging, i.e, PET images taken over time, collects a series of frames

of sinogram data over contiguous time intervals. This enables dynamic PET images
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to measure changes of radioactive concentrations in a quantifiable way over time.

This, in turn, offers very useful information about the underlying physiological or

metabolic processes and thus makes dynamic PET images helpful in diagnosis of

certain cancers (Toga and Mazziotta (2002, Chapter 18)).

The quantitative accuracy of PET measurements is limited by its weak capability

to resolve small objects, leading to poor resolution of PET images. Thus, inaccu-

rate estimations of radioactivity concentration and related metabolic mechanism are

quantified. These biased estimations also result from blurring of counts out of and

into the structure from surrounding radioactivity, which are referred to “spill-out”

and “spill-in” respectively. Collectively, they are referred to as partial-volume effects.

Millions of voxels are generated as a 3D volume of data in a typical PET image.

These 3D volumes are tomographic reconstructions, see Leahy and Qi (2000). The

partial-volume effects, combined with errors generated during image reconstruction

(Alessio and Kinahan (2006)), result in noisy PET images. To reduce the effects of

noise and recover the true radioactivity concentration, attention has been directed

towards the development of algorithms to improve PET image reconstruction and

the subsequent parameter estimation.

Image reconstruction algorithms are not main focus of our work. Parameter es-

timations of given reconstructed images are discussed in this work. Parameter esti-

mation procedures involve fitting appropriate models for time activity curves (TAC)

which are the time series collected at each voxel. Gunn et al. (1997), Zhou et al.

(2013), Mohy-ud Din et al. (2014) consisted of a small proportions of the whole lit-

erature. The current methods for parameter estimation either utilize a voxel-wise

fashion (Gunn et al. (1997)) or incorporate spatial dependence by adding a penalty

term controlled by a control parameter in likelihood function (Mohy-ud Din et al.

(2014)). However, the estimation of control parameter for spatial dependence was

either ignored or remains challenging.
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The work described herein will focus on the development of Bayesian inferential

methods for spatial mixture models motivated by the estimation of the above control

parameters for noisy PET images. In particular, we study in detail the estimation

problems related to the spatial mixture models involving Potts models for extremely

large datasets. In the rest of the Chapter, spatial mixture models and Potts models

will be introduced, as well as the existing solutions for related inferential difficulties.

1.2 Spatial mixture model

1.2.1 Mixture models

Mixture models can be dated back to Pearson (1894) that is deemed as the first paper

to advocate statistical method in biological studies, according to Stigler (1986). Var-

ious applications were outlined in Titterington et al. (1985) and Titterington (1997),

such as agriculture, fishery, medicine,economics and so forth . In recent times, ap-

plications have been extended to a wide range of areas, including micro-array anal-

ysis (McLachlan et al. 2002), disease mapping (Green and Richardson 2002), finance

analysis (Brigo and Mercurio 2002; Alexander 2004; Xu and Knight 2013), texture

models (Permuter et al. 2003; Sujaritha and Annadurai 2011), ecology (Ullah et al.

2015), image analysis (Brazey and Portier 2014), density estimation (Zhu 2016) and

so on. Mixture models have been extensively utilized in cluster analysis since it was

first proposed, especially for heterogeneous data. A systematical review on mixture

model as a tool for clustering analysis can be found in McLachlan and Basford (1988).

Let Y1,Y2, · · · ,Yn denote observations of size n, where each Yi denotes a p-

dimensional random vector with probability density function f(Yi,θ) which de-

notes f(Yi,θ) the parametric density function of Yi given unknown parameters θ.

Suppose there are G components in a mixture model. Each observation is assumed

to be drawn from the mixture of G Gaussian distributions. Then the likelihood func-

3



tion of each observation can be written as,

f(Yi) =
G∑
j=1

πjfj(Yi,θj), (1.1)

where πj, j = 1, 2, · · · , G are nonnegative values denoting mixing proportions or

weights. The weights should sum to one, that is,
∑G

j=1 πj = 1. For example, if each

density function is distributed as Gaussian distribution, the mixture model is known

as a Gaussian mixture model. Then θj in Equation 1.1 denotes the parameters in the

Gaussian distribution, which are the mean and variance parameters.

Parameter estimations are obtained for G groups in the mixture model as a tool

of clustering analysis. Thus, the probabilities of each observation belonging to each

group can be calculated accordingly.

1.2.2 Spatial mixture model

Spatial mixture models extend the usual mixture models by incorporating spatial de-

pendence between observations. Spatial dependence can be found in many applied

sciences, such as epidemiology (Lawson and Clark 2002), medicine (Hartvig and

Jensen 2000; Woolrich et al. 2005; Woolrich and Behrens 2006), genetics (Guillot et al.

2005), ecology (Royle 2004; Lichstein et al. 2002) and many others (KaewTraKulPong

and Bowden 2002; Weiss and Adelson 1996; Huang et al. 2005). To incorporate spa-

tial dependence, a spatial penalty term can be added to the likelihood function. The

penalty term can take different forms. In Lichstein et al. (2002), the conditional au-

toregressive (CAR) model was adopted to fit spatial correlation between individuals

where the penalty term takes continuous form. Woolrich et al. (2005) utilized a dis-

crete form of penalty term which was also employed by Geman and Geman (1984),

Besag (1986). Control parameters were used to control the strength of spatial depen-

dence. As demonstrated in Woolrich et al. (2005), inference of control parameters
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was problematic, leading to some studies using fixed values for control parameters.

These methods shared a distinct disadvantage leading to inflexibility of control pa-

rameters.

The Potts model is one of the most ubiquitous models which were utilized to

incorporate spatial dependence, in particular in image analysis. Potts models were

usually utilized as prior distributions in the Bayesian framework. We refer to mix-

ture models with a Potts model prior as spatial mixture model in this thesis.

A latent variable zi is introduced for each observed data Yi, i = 1, . . . , n, where

each pair (Yi, zi) has a corresponding spatial location. For instance, the posterior

distribution of a q-component spatial mixture model takes the form

π(z, β,θ|Y) ∝
n∏
i=1

π(Yi|θ, zi)π(z|β)π(β)π(θ), (1.2)

where π(Yi|θ, zi) denotes the component distribution for Yi conditional on the

model parameters θ and zi. π(θ) and π(β) denote the prior and hyper prior for the

unknown parameters accordingly. π(z|β) denotes the density function of the Potts

model.

1.3 Potts model

A Potts model, consisting of n discrete random variables z = (z1, . . . , zn), can be

defined on a rectangular lattice L. The sample space for each zi is {1, 2, · · · , q}, and

the corresponding model is referred to as the q-state Potts model. When q = 2, the

Potts model is known as the Ising model. If z is distributed as Potts model, the

corresponding density function is given as,

π(z|β) =
1

C(β)
exp{β

∑
i∼j

I(zi = zj)}, (1.3)
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where i ∼ j indicates that i and j are neighbours, and C(β) =
∑

z exp{β
∑

i∼j I(zi =

zj)} is the normalizing constant. I(·) is the indicator function, I(zi = zj) = 1 if zi = zj

is true, otherwise I(zi = zj) = 0.

Figure 1.1: The Potts model on a 8 × 8 lattice.

Figure 1.1 gives a pictorial illustration of Potts model on a 2D lattice. The first

order neighbourhood structure defines the nearest four pixels as neighbours of each

pixel. The structure in 3D MRF is similarly defined with each site dependent on

its neighbours on the left, right, front, back, above and below. The parameter β in

Equation 1.3 controls the degree of spatial dependence. See Wu (1982), Chang and

Shrock (2015) for more illustrations on the Potts model.

1.3.1 Generation of Potts model

The Markov chain Monte Carlo (MCMC) can be employed to sample from a Potts

model. We describe three methods to generate a Potts model: The Swendsen-Wang

Algorithm (Swendsen and Wang (1987)), Wolff’s Algorithm (Wolff (1989)) and Gibbs

sampling using conditional independence (Feng (2008)).

Swendsen-Wang algorithm

For the Swendsen-Wang algorithm, an auxiliary random variable u is proposed to

assist the generation of a Potts model. This auxiliary variable will be repeated for a

number of times in each update of the configuration of the Potts model.
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The generation of Potts model begins with an arbitrary configuration of a Potts

model z0. z0 is updated from iteration to iteration until the Potts model converges.

Suppose the current iteration is t. Given zt, an assistant network is required to be

constructed. Each pair of neighbours in the Potts model zt, such as zi and zj , is con-

sidered as an interaction, which is denoted by i ∼ j. If current zi 6= zj , no bond is

created between them. If current zi = zj , then a bond between zi and zj is created

with a probability of 1−exp(−βI(zi = zj)). This is achieved by simulating a binomial

random variable u with success probability equal to 1− exp(−βI(zi = zj)). If u = 1,

the bond is created. Otherwise, no bond will be created. According to the bonds cre-

ated in above sweeps, the current Potts model zt can be divided into several patches

(clusters) with all the sites in each patch holding the same value. The next step is to

assign a random value from the sample space to each patch where all the sites will

be assigned to the same value. A new configuration of the Potts model is generated

and is denoted as zt+1. At the same time, one iteration is completed. Long enough

iterations will be implemented to generate one sample of Potts model of interest. A

summary of the procedures above is illustrated in Algorithm 1, where ii denotes the

number of iterations.

Algorithm 1: Swendsen-Wang algorithm
Input: Current z

1 for ii = 1, · · · , n do
2 Create bond between zi and zj with probability of 1− exp(−βI(zi = zj)).
3 Divide Potts model into patches according to the bonds.
4 Change each patch to a random value including the current value.
5 end

Wolff’s algorithm

A modification was suggested by Wolff (1989) to improve upon the Swendsen-Wang

algorithm. The difference between these two algorithms lies in how the patches are
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updated. As previously described, the Swendsen-Wang updates each patch to a ran-

dom value from the sample space. Consequently, there is a chance that the value

remains unchanged after one iteration. In contrast, the Wolff’s algorithm enforces

that each patch has to be updated to a different value. The details are shown in Al-

gorithm 2. A summary of the procedures above is illustrated in Algorithm 2, where

ii denotes the number of iterations.

Algorithm 2: Wolff’s algorithm
Input: Current z

1 for ii = 1, · · · , n do
2 Randomly choose a site zi. Create bond between zi and its neighbours with

probability of 1− exp(−βI(zi = zj)), where i ∼ j.
3 Keep creating bonds until no more site can be linked together.
4 Change the patch to another value.
5 end

From empirical studies, n = 50 is long enough. More details can be found in

Liang and Jin (2013). Statistical efficiency was compared between the Wolff’s algo-

rithm and the Swendsen-Wang algorithm in Feng (2008) where it was concluded

that Wolff’s algorithm is more preferable in most of cases in terms of computational

efficiency.

Gibbs sampling using conditional independence

Prior to the introduction of Gibbs sampling using conditional independence, single

site updating scheme is needed to be reviewed. Literally, single site updating scheme

updates a single site in the configuration at each iteration. It is an example of Gibbs

samplers where the full conditional distributions of each parameter are required. In

the scenario of Potts model, the full conditional distribution of each site zi is known

as multinomial distribution. Mathematically, it is given as following:

π(zi|z∂i) =
exp{β

∑
i∼j I(zi = zj)}∑q

k=1 exp{β
∑

i∼j I(k = zj)}
, (1.4)
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where ∂i denotes all the neighbours of zi. The full conditional distribution of zi is

simple in terms of computation. Therefore, single site updating scheme is easy to

implement but may mix slowly as a result of numerous sites. The Gibbs sampling

introduced herein is essentially adopting the same full conditional distribution but

in a parallel way.

Given the neighbourhood structure of Potts model, the lattice can always be

divided into non-overlapping sublattices. The sublattices own special properties:

the sites in any sublattice are mutually independent given the other sublattices.

The “coding method” approach were employed to obtain the sublattices (see Besag

(1974), Winkler (2003) and Wilkinson (2005)). The minimum number of sublattices

for the first order structure is 2 in both 2D and 3D lattices. Subsequently, 4, 4 and 8 are

the minimum number of sublattices in the second order neighbourhoods structure

with 8 neighbours in 2D, 18 neighbours in 3D and 26 neighbours in 3D respectively.

These numbers are the so-called “chromatic number”, whose more details can be

found in Feng (2008) and Feng et al. (2012).

The first order neighbourhood structure is demonstrated in Figure 1.2. The first

order neighbourhood structure means that given other pixels, each pixel is only de-

pendent on its four nearest pixels. In this case, chromatic number is equal to 2, which

corresponds to the gray pixels and the black pixels. It is straightforward to conclude

that given the gray pixels, the black pixels are mutually independent, and vice versa.

Figure 1.2: Left panel: a first order neighbourhood MRF, with black and grey points
depicting z. Each site only depends on the nearest four neighbours of the other color.
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Once such sublattices are found, the updating can be implemented in block-wise

level instead of the site-wise level. To a considerable extent, this improves the ef-

ficiency of single site updating scheme. The details of this generation method are

shown in Algorithm 3.

Algorithm 3: Gibbs sampling using conditional independence
Input: Current z, chromatic number C

1 for ii = 1, · · · , n do
2 for j = 1, · · · , C do
3 Choose sublattice j.
4 Given other sublattices, simultaneously update all the sites in the

sublattice j according to the distribution in Equation 1.4.
5 end
6 end

1.4 Normalizing constant problem in Potts models

1.4.1 Bayesian inference of Potts model

Bayesian inference (O’Hagan and Forster (2004)) treats parameters in likelihood func-

tion as random variables. Inference is based on posterior distributions of parameters.

Posterior distribution can be derived from Bayes theorem which is given below:

π(θ|x) =
π(x|θ)π(θ)∫

θ
π(x|θ)π(θ)dθ

,

where, in general, θ is a unknown parameter, x denotes observed data. When it

comes to inference about Potts model, β is always the parameter of interest. By ap-

plying Bayes theorem to Potts model, the posterior distribution of β is given below:

π(β|z) ∝ π(z|β)π(β), (1.5)

where π(β) is prior distribution of β.
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1.4.2 Computation of normalizing constant

The analytic form of C(β) is given as,

C(β) =
∑
z

exp{β
∑
i∼j

I(zi = zj)}. (1.6)

Literally, C(β) is the summation over all possible realizations of z. For a q-state Potts

model with size of n × n, the number of possible realizations is qn2 . Even in a mod-

erate sized Potts model, the number tends to be too large to compute. Since an

intractable term C(β) is in π(z|β), π(β|z) becomes intractable. The intractability of

normalizing constant causes problem of inference about β. This is referred to nor-

malizing constant problem that is illustrated by MCMC algorithm below.

Algorithm 4: Metropolis-Hastings algorithm for Potts model
Input: Current β

1 for i = 1, · · · , n do
2 Propose new state β ′ ∼ π(β

′|β)
3 Compute acceptance ratio:

4 a = π(β
′
)π(β|β′ )π(z|β′ )

π(β)π(β′ |β)π(z|β)

5 Draw random number u ∼ U [0, 1]

6 If (a > u) set the new state to be β ′ , otherwise keep β
7 end

Algorithm 4 shows how MCMC algorithm is used to sample β from the posterior

distribution. In computation of a, π(z|β′ )
π(z|β)

=
exp{β′

∑
i∼j I(zi=zj)}C(β)

exp{β
∑

i∼j I(zi=zj)}C(β′ ) is intractable, since

both C(β) and C(β ′) are unknown.

For relatively small random fields (less than 10 × 10), the normalizing constant

C(β) can be computed by summing exhaustively over all possible realizations of z

for any given value of β. However, the calculation of C(β) becomes computationally

intractable for large spatial fields. This problem is well known in the statistical com-

munity, and has received considerable amount of attention in the literature, see Lyne

et al. (2015) for a recent review.

11



1.5 Existing methods for normalizing constant problem

Statisticians have developed various methods to solve the problem of normalizing

constant over the past few decades. Gelman and Meng (1998) reported that numer-

ical integration (Evans and Swartz (1995)), analytic approximation (DiCiccio et al.

(1997)) and Monte Carlo simulation were common approaches to tackle the normal-

izing constant problem. Gelman and Meng (1998) developed path sampling method

which is one of Monte Carlo methods to reduce Monte Carlo error comparing with

previous methods. A multitude of approaches have been proposed since then. Four

categories were reviewed in this thesis: Monte Carlo methods, numerical integration

methods, approximation methods and exact sampling methods.

1.5.1 Monte Carlo methods

In a nutshell, Monte Carlo methods aim to calculate the normalizing constant di-

rectly by using Monte Carlo simulation. Monte Carlo methods were widely used

because of their flexibility and applicability to high-dimensional problems. Path

sampling is one of Monte Carlo methods. It was developed on the foundation of

thermodynamic integration which is well known in Physics. Gelman and Meng

(1998) reported that thermodynamic integration has close connection with impor-

tance sampling. In addition, path sampling offered more flexibility and thus poten-

tial efficiency to thermodynamic integration. Path sampling was further discussed in

Green and Richardson (2002) where a concise way of implementation was demon-

strated. Other simulation-based methods can be found in Geyer and Thompson

(1992), Gu and Zhu (2001), Liang (2007) and references therein.
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Thermodynamic integration

Thermodynamic integration was derived in Gelman and Meng (1998) by using path

sampling to approximate the log ratio of normalizing constants. In the original pa-

per, the log ratio of normalizing constants is of interest. The identity is shown below:

log

{
C(β ′)
C(β∗)

}
=

∫ β
′

β∗
E(U(z))dβ.

Thermodynamic integration in Green and Richardson (2002) is one of the further de-

velopment of the identity. The identity can be derived by the following procedures.

The Potts model can be rewritten in the following form:

π(z|β) = exp{βU(z)− θq(β)},

where U(z) =
∑

i∼i′ I(zi = zi′ ) and θq(β) = log(
∑

z∈Z e
βU(z)), q is the number of states

in the Potts model. We take differentiation of θq(β) with respect to β, the following

was obtained:

∂

∂β
θq(β) =

∂

∂β
log
∑
z∈Z

eβU(z) =
∑
z∈Z

U(z)p(z|β) = E(U(z)|β, q).

If β = 0, then θq(β) = θq(0) = log
∑

z∈Z 1 = n log q. Therefore,

θq(β) = n log q +

∫ β

0

E(U |β ′ , q)dβ ′ . (1.7)

E(U |β ′ , q) could be obtained by Monte Carlo simulation given any value of β ′ . The

simulations can be implemented over a grid of β, resulting in a look-up table for

further calculation. Then
∫ β

0
E(U |β ′ , q)dβ ′ could be estimated by a spline approxi-

mation (Green and Richardson (2002)). Consequently, the normalizing constant C(β)

can be calculated by exp{θ̂q(β)}.
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1.5.2 Numerical integration

General factorization model

Let p(z|β) denote the unnormalized likelihood function of Potts model z. Reeves and

Pettitt (2004) proposed a lag-r model to factorize the p(z|β). A valid factorization of

p(z|β) was in the following form,

p(z|β) = p1(z1, z2, . . . , zr+1)p2(z2, z3, . . . , zr+2) . . . pk(zk, zk+1, . . . , zn). (1.8)

Therefore, the normalizing constant C(β) is given by

C(β) =
∑
z

p(z|β) =
∑
znk+1

∑
zk

pk(z
n
k )
∑
zk−1

pk−1(zn−1
k−1 ) . . .

∑
z1

p1(zr+1
1 ). (1.9)

By rearranging the order of zi, lag-r model can save computational time when cal-

culating the normalizing constant. The total computational complexity is reduced

from O(qn) to O(qr+1), where q is the number of states in Potts model and n is the

length of the Potts model. However, their method was limited by the size of lattice.

They recommended that the number of rows should be no more than 20. The above

requirement limits the application of lag-r model. Moreover, the computational time

increases exponentially as q increases. Thus, the limitation restricted its applications

to large random fields. A similar idea can be found in Bartolucci and Besag (2002)

where conditional probabilities instead of joint probabilities were defined. Nonethe-

less, the full conditional distributions are not always compatible with a valid joint

distribution.
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1.5.3 Approximation methods

Pseudo likelihood

Besag (1975) first developed a pseudo likelihood (PL) to approximate π(z|β) directly.

He used the following formula to approximate the normalized likelihood function,

π(z|β) =
n∏
i=1

π(zi|z\i, β), (1.10)

where z\i denotes all the sites in z except zi. In a Markov random field, one site

is only dependent on its neighbours given all other sites in the field. Therefore,

π(zi|z\i, β) can be reduced to π(zi|z∂i, β), where z∂i denotes the neighbourhoods of zi.

As a result, the approximation becomes

π(z|β) ≈
n∏
i=1

π(zi|z∂i, β). (1.11)

In fact, the right side of Equation (1.11) is one type of composite likelihoods that

were introduced by Lindsay (1988), and were studied in a remarkable volume of pa-

pers. As reported in Varin et al. (2011), the estimator of composite likelihood was

asymptotically unbiased. However, the variance was underestimated. The approx-

imation takes advantage of local dependence in the lattice and approximates the

true likelihood function as the product of local sublattices. PL outperforms the other

approaches in terms of computational time due to the simple form of the approxima-

tion. At the same time, Liang et al. (2016) reported that PL estimator is unsatisfactory

when the dependence is strong in the Potts model.

Partially ordered Markov model

Cressie and Davidson (1998) suggested a similar method called Partially ordered

Markov models (POMMs). Not only can POMMs generalize the Markov chain to
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a directed acyclic graph (DAG), but they can also generalize Markov mesh models

(MMMs), which were studied in Abend et al. (1965). In POMMs, the pixels interact

with each other differently with in Potts models. As we can see, the interactions are

two-ways in Potts model. Whereas, the interactions are directional. A set of parental

pixels are requested to define for each zi. The parents can effect zi, while zi has no

impact on its parents. With POMMs, Equation (1.3) can be calculated without com-

puting the normalizing constant. For eligible MRFs, density function is expressed as

the following,

π(z|β) =
n∏
i=1

π(zi|pa(zi), β),

where pa(zi) denotes parents point of zi. However, POMMs cannot be applied to all

MRFs, because only a subset of MRFs are expressible as POMMs. This, to a large

extent, limits applications of POMMs.

Reduced dependence approximation

Friel et al. (2009) developed reduced dependence approximation (RDA) method

given the initial research in Reeves and Pettitt (2004). They aimed to extend the

method of Reeves and Pettitt (2004) to larger lattices. For large lattice, by relaxing the

dependence in the latent model, they split the lattice into smaller sublattices. Then

tractable approximations like pseudo likelihood and lag-r model can be applied to

the small sublattices. By calculating the normalizing constants of the small lattices,

the likelihood function can be given as the following,

π(z|β) =
p(z|β)(zm1×n(β))m−m1−1

z(m1+1)×n(β))m−m1
,

where m1 is the number of rows in the small sublattices and p(z|β) is the unnormal-

ized likelihood function of the Potts model.

RDA was proposed to solve the normalizing constant problem for large lattices.
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It requires assumptions about the dependence structure. In the meantime, RDA aims

to calculate normalizing constant itself and then substitute the value in Equation 1.3.

This is tedious in terms of computation, see simulation study in Section 3.4.

1.5.4 Exact sampling methods

The purposes of the above methods are either to approximate the density function

of the Potts model directly or to calculate the normalizing constant and thus make

the density function tractable. Exact sampling methods aim to tackle the problem

during MCMC sampling step.

Auxiliary variable methods

Given all these approximation methods, Møller et al. (2006) advocated a sampling

scheme which aimed to obtain the full posterior distribution of β. Since drawing

posterior samples of β is intractable directly from π(β|z), they introduced an auxil-

iary variable v. If π(v, β|z) is available, then π(β|z) can be obtained by integrating

out v from π(v, β|z). They defined an auxiliary variable v on the same state space of

z with the same distribution of z. Suppose the current state of parameters is {v, β}.

New state is proposed as the following. First of all, β∗ is proposed given β with

density function π(β∗|β, z). Then v∗ is proposed based on v, β∗ and β with density

function π(v∗|v, β∗, β). As all the proposal densities are arbitrary, proposal density of

v can be reduced to π(v∗|β∗). In Metropolis-Hastings updating step of v and β, the

acceptance ratio becomes,

a =
π(v∗|β∗, z)π(z|β∗)π(β∗)π(β|β∗)π(v|β)

π(v|β, z)π(z|β)π(β)π(β∗|β)π(v∗|β∗)
. (1.12)

As a consequence, there is no normalizing constant in Equation 1.12. Nevertheless,

appropriate auxiliary density π(v|β, z) should be chosen properly. Otherwise, nor-
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malizing constant will be introduced in the calculation again. If let π(v|β, z) = π(v|β),

the normalizing constant problem occurs. One simple approximation is π(v|β, z) =

π(v|β̂), where β̂ is fixed. For example, set β̂ = β̂(z) which can be estimated from

some quick algorithm, such as PL. Now the acceptance ratio can be reduced to:

a =
U(v∗|β̂)U(z|β∗)π(β∗)π(β|β∗)U(v|β)

U(v|β̂)U(z|β)π(β)π(β∗|β)U(v∗|β∗)
. (1.13)

There is no normalizing constant in the above acceptance ratio, because the nor-

malizing constants in the numerator and the denominator have cancelled. Some-

times the proposed method is referred to as single auxiliary variable method (SAVM).

It is described in Algorithm 5. The name is adopted to differentiate from multiple

auxiliary variable method (MAVM) that will be introduced in next Section.

Algorithm 5: Algorithm for auxiliary variable methods
Input: Current β, current v

1 for i = 1, · · · , n do
2 Propose new state β∗ ∼ π(β∗|β)
3 Generate an auxiliary variable v∗ ∼ 1

C(β∗) exp{β∗
∑

i∼j I(v∗i = v∗j )}
4 Compute acceptance ratio:

5 a = U(v∗|β̂)U(z|β∗)π(β∗)π(β|β∗)U(v|β)

U(v|β̂)U(z|β)π(β)π(β∗|β)U(v∗|β∗)
6 Draw random number u ∼ U [0, 1]
7 If (a > u) set the new state to be {β∗, v∗}, otherwise keep {β, v}
8 end

Comparing the acceptance ratios in Algorithm 4 with Equation 1.12, it is identi-

fied that C(β) was replaced byU(v|β)/π(v|β, z) and C(β∗) was replaced byU(v∗|β∗)/π(v∗|β∗, z).

The difficulty of SAVM lies in the generation of auxiliary variable given β. This

requires the sample to be an exact sample that can be obtained by using exact sam-

pling methods which can be coupling from the past (CFTP) Propp and Wilson (1996).

However, the method is difficult to implement. In other words, exact sampling can

be time consuming and make the overall computation much more complicated when

using the auxiliary variable method.

18



Multiple auxiliary variable method

Murray (2007) advocated the multiple auxiliary variable method (MAVM) to im-

prove the efficiency of Møller et al. (2006). In essence, SAVM was adopting an

“importance sampling” estimator to approximate the ratio of normalizing constants.

Usually, it suffers from high rejection rate. The high rejection rate will reduce the

efficiency of sampling β. Consequently, computational time will increase. It was nat-

ural to extend importance sampling to other methods, such as annealed importance

sampling (AIS Neal (2001)). Instead of generating one auxiliary variable, MAVM

has to generate multiple auxiliary variables. Let V = {v1, v2, · · · , vK+1} denote the

set of auxiliary variables. The first auxiliary variable can be generated by using the

same method in SAVM. The other auxiliary variables were defined by a sequence of

Markov chain transition operators T̃k(vk+1|vk),

π(vk+1|vk, β, z) ∼ T̃k(vk+1|vk, β, β̂(z)), k = 1, 2, ..., K. (1.14)

All the bridging distributions were aimed at bringing π(v1|β, z) towards π(v|β). T̃k

was chosen to make the corresponding distribution pk stationary. By default, pk is in

the following format:

pk(vk|β, β̂(z)) ∝ π(vk|β̂)lkπ(vk|β)1−lk , (1.15)

where lk = K−k+1
K+1

.

The details of MAVM are described in Algorithm 6. By incorporating AIS, MAVM

has higher acceptance ratio. Although it is unnecessary for both SAVM and MAVM

to calculate normalizing constant, they suffer from the need for perfect sampling of

z. Overall, perfect sampling takes excessive amount of time, consequently these two

methods are not suitable for even moderate size of MRFs.
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Algorithm 6: Multiple auxiliary variable algorithm
Input: Current β

1 for i = 1, · · · , n do
2 1. Propose new state β ′ ∼ π(β

′ |β)

3 2. Generate an auxiliary variable vK+1 ∼ π(vK+1|β
′
) using exact sampling

method.
4 3. Propose {vK , vK−1, · · · , v1} in order, transition operators are given as

follow: π(vk|vk−1, β
′
, z) ∼ Tk(vk−1|vk, β

′
, β̂(z)), for k = K,K − 1, · · · , 1.

Where Tk is the corresponding reverse transition operator T̃k.
5 4. Compute acceptance ratio of the whole move from {β, V } to {β ′ , V ′}:

6 a = U(z|β∗)π(β∗)π(β|β∗)
U(z|β)π(β)π(β∗|β)

∏K
k=0

pk(v
′
k+1|β

′
,β̂(z))

pk+1(v
′
k+1|β

′ ,β̂(z))

pk+1(vk+1|β,β̂(z))

pk(vk+1|β,β̂(z))

7 5. Draw random number u ∼ U [0, 1]

8 If (a > u) set the new state to be β ′ , otherwise keep β
9 end

Exchange algorithm

Murray (2007) suggested a simpler and more direct method to solve the normaliz-

ing constant problem. This method is usually referred to Exchange algorithm (EA)

that is described in Algorithm 7. Like the above two methods, EA also has to draw

Algorithm 7: Exchange algorithm
Input: Current β

1 for i = 1, · · · , n do
2 Propose new state β ′ ∼ π(β

′ |β)

3 Generate an auxiliary variable v∗ ∼ 1
C(β′ ) exp{β ′

∑
i∼j I(v∗i = v∗j )}

4 Compute acceptance ratio:
5 a = U(v∗|β)U(z|β∗)π(β∗)π(β|β∗)

U(v∗|β∗)U(z|β)π(β)π(β∗|β)

6 Draw random number u ∼ U [0, 1]

7 If (a > u) set the new state to be β ′ , otherwise keep β
8 end

exact sample from Potts model. Compared to Algorithm 5, EA adopts U(v∗|β)
U(v∗|β∗) to ap-

proximate C(β)
C(β∗) , which is better than estimation in single auxiliary variable method.

Similar to the extension from SAVM to MAVM, EA can be extended to exchange al-

gorithm with bridging. More details can be found in Murray (2007). In recent times,
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some variations of EA were proposed, see Liang (2010), Liang et al. (2016).

It is evident that current methods either requires heavy computation or compro-

mises model flexibility by making assumptions on dependence structure. As the

size of lattice increases, computational burden of Monte Carlo methods becomes

more significant and their advantages tend to be less vital. Approximation methods

require some assumptions about dependence structure of Potts model. The assump-

tions lead to the underestimation of variance of β in PL. Theoretically, exact sampling

methods could be the best way to solve the normalizing constant problem, as it in-

troduces auxiliary variable to cancel C(β) during sampling. The main drawback is

that it requires exact sample from the Potts model.

Consequently, methods which satisfy the following requirements are essential to

statisticians. Initially, it can scale up well with the size of Potts model. Subsequently,

it should obtain good estimation of parameters of interest. In the thesis, two ap-

proaches were proposed to fulfill the above requirements wholly.

1.6 Thesis arrangement

Chapter 2. Bayesian inference of PET parametric image was implemented using

spatial mixture model. The main body of this Chapter was published as “Zhu,

W., J. Ouyang, Y. Rakvongthai, N. J. Guehl, D. W. Wooten, G. El Fakhri, M.

D. Normandin, and Y. Fan. ”A Bayesian spatial temporal mixtures approach to

kinetic parametric images in dynamic positron emission tomography.” Medical

physics 43, no. 3 (2016): 1222-1234.”.

Chapter 3. A recursive decomposition method was proposed to solve the nor-

malizing constant problem in the Potts model. This Chapter is under revi-

sion for Journal of Computational and Graphical Statistics as “A novel approach

for Markov Random Fields with intractable normalizing constant on large lat-
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tices”.

Chapter 4. An alternative approach to solve normalizing constant problem under

perspective of summary statistics was proposed in this Chapter.

Chapter 5. Relabelling methods for mixture model were reviewed. A new approach

for spatial mixture model was proposed. This Chapter was published as “Zhu,

W., and Y. Fan. ”Relabelling algorithms for mixture models with applications

for large data sets.” Journal of Statistical Computation and Simulation 86, no.

2 (2016): 394-413.”.

Chapter 6. Summary for current work and directions for future work.
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Chapter 2

A Bayesian spatial temporal mixtures

approach to kinetic parametric images

in dynamic positron emission

tomography

2.1 Introduction to kinetic model estimation

Medical imaging plays an important role in medical diagnosis and treatment. Med-

ical images can be generated from different modalities. Magnetic resonance imag-

ing (MRI), computed tomography (CT), positron emission tomography (PET) are

the most widely used image types in practice. Dynamic PET, i.e, PET images taken

over time, can be utilized to measure tracer kinetics in-vivo, from which physio-

logical parameters, such as tissue perfusion, ligand receptor binding potential, and

metabolic rate can be determined using compartmental modelling techniques. Ki-

netic modelling utilizes differential equations to model the behavior of radioactive

tracer which are injected into a patient’s blood stream. Kinetic parameters are of
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Figure 2.1: One-compartmental model with one tissue Ct and blood Cp.

interest and describe the behavior of tracer in specific areas.

Compartmental models are adopted to describe PET kinetic parameters. Each

compartment can be viewed as a homogeneous region in the body or a tissue. Ac-

cording to the number of compartments, there are one-compartmental model and

multi-compartmental model. The pictorial description of tracer behaviour for one-

compartmental model is demonstrated in Figure 2.1. Cp denotes the concentration

of radioactive tracer in blood and Ct denotes the concentration of radioactive tracer

in specific tissue of interest.

Tracer transits between compartments and the paths can be described by a set of

ordinary differential equations (ODE). The ODE for a one-compartmental model is

given below,
dCt
dt

= K1Cp − k2Ct, (2.1)

whereK1 denotes the velocity of tracer spreading from blood to the tissue. k2 denote

the velocity of tracer spreading in the reverse direction. Cts which are collected

at different time points form a TAC. The solution of Equation 2.1 is presented in

Equation 2.10.

Estimation of the kinetic parametric images can be extremely challenging, since

the data are often very noisy. Most conventional methods (Lammertsma and Hume

(1996), Slifstein et al. (2008), Nye et al. (2008)) either defined a region of interest (ROI)

and then estimated parameters based on the averages, or estimated parameters in a

voxel-wise fashion. The former requires the identification of ROI which itself can be
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difficult. The latter fails to utilize information from nearby voxels, resulting in more

noisy estimates.

Gunn et al. (1997) employed a minimum least-squares approach to estimate the

parameters for each voxel independently. To account for irregularities in the noise

distribution, mixture models were utilized to fit each voxel in Lin et al. (2014). It

was suggested that, it is necessary to restrict the total number of mixture compo-

nents to be small and employ regularization to constrain parameter estimates. Zhou

et al. (2013) reported Bayesian methods provided an alternative way of obtaining

uncertainty estimates of the kinetic parameters, as well as model choice for the com-

peting compartmental models. However, these methods yielded higher voxel to

voxel variability because each voxel was processed independently. In addition, the

assumption of Gaussian distribution can be inappropriate, leading to biased param-

eter estimates.

Given low signal-to-noise ratio (SNR), particularly in voxel-wise estimations,

some external constraints were often necessary to stabilize parameter estimation.

Huang and Zhou (1998), Kamasak et al. (2005) suggested smoothness regularization

to constrain the parameters from nearby spatial locations to be more similar. Sim-

ilarly, Tikhonov regularization was used in O’Sullivan and Saha (1999) to directly

enforce parameter values to be within a certain range. Thus, estimates obtained

were less sensitive to noise.

Voxel-wise estimation does not take into account spatial dependence which should

be naturally considered to reduce noise. Recently, simultaneous clustering and pa-

rameter estimation methods have been proposed in (Saad, Smith, Hamarneh, and

Möller 2007) using a spatially regularized K-means algorithm. The algorithm itera-

tively estimated the kinetic parameters in a least-squares sense between each cluster

update. It was demonstrated that incorporating the physiological model in the clus-

tering procedure performed better than their counterparts in terms of clustering.
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However, the method offered no guidance on the choice of cluster numbers, or how

to select the spatial regularization parameter, while both can have great influence on

the results. A similar algorithm was suggested by Mohy-ud Din et al. (2014), where

the clustering and parameter estimation were performed simultaneously. However,

spatial correlation was ignored.

As discussed above, PET image clustering played an important role in kinetic

model estimation procedures. In the rest of the Chapter, image segmentation meth-

ods were reviewed and then some estimation methods were described.

2.2 Medical image segmentation

PET image clustering is also referred to as PET image segmentation. Image seg-

mentation is a procedure to extract the region of interest (ROI) through an auto-

matic or semi-automatic process (see, Pham et al. (2000), Norouzi et al. (2014)).

PET Image segmentation encountered difficulties in practice caused by low SNR of

images due to the limitation of PET scanners and noisy environment. Numerous

methods were proposed to solve image segmentation under the imperfect situation.

Four categories are discussed in this work: thresholding methods, classical methods,

computation-intensive methods and the mixture model-based method.

2.2.1 Thresholding methods

Thresholding methods partition image by setting several thresholds as boundaries

between groups. The segmentation is achieved by grouping voxels according to

the thresholds. Various methods can be employed to determine thresholds, such as

standard deviation, and mean.

Thresholding methods are simple and efficient when the intensity values of the

image are well separated. However, it cannot handle very noisy images where in-
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tensity values are mixed. Therefore, thresholding methods were usually used as

exploratory tools for further analysis, see Gordon et al. (1996), Singleton and Po-

host (1997). Some other thresholding methods, for example, local thresholding and

Otsu’s thresholding were discussed in Norouzi et al. (2014) and references therein.

2.2.2 Classical methods

Classical methods include clustering analysis, factor analysis and principal com-

ponent analysis (PCA). Clustering analysis was applied to the image detection in

O’Sullivan (1993), Ashburner et al. (1996) and Kimura et al. (1999). Wong et al. (2002)

aimed to classify the tissue time activity curves (TACs) according to their shapes and

magnitudes, while most clustering methods only considered one of them. They em-

ployed a weighted least-squares distance as their distance metric. Wernick (2003)

utilized similarity as distance metric which eliminated the effect of the magnitude

of the difference of the TACs. El Fakhri et al. (2005) employed factor analysis to

classify the TACs. Generalized factor analysis of dynamic sequences was adopted

in this paper. This method was an extension of the factor analysis of dynamic se-

quences whose major drawback is the uncertainty of the unique solution. L.Wahl

(1999) applied PCA to dynamic Flurodeoxyglucose (18F) (FDG) PET images for seg-

mentation. PCA formed clusters of voxels that had similar kinetic behaviour of FDG

uptake and summarized them into a component.

2.2.3 Computation-intensive methods

Computation-intensive methods include Fuzzy C-means(FCM) and machine learn-

ing methods including K-means, support vector machines (SVM), convolutional neu-

ral network (CNN) and artificial neural network (ANN). Wong et al. (2002) used a

K-means like algorithm to classify the voxels. Liptrot et al. (2004) introduced a hi-

erarchical K-means clustering method. Janssen et al. (2009) extracted the slopes of
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the TACs, then used the slopes to classify the voxels. Formisano et al. (2008) focused

on two machine learning methods: SVM and relevance vector machines. Machine

learning models are typical data-drive models which analyze data (system), in par-

ticular finding connections between variables in the data without explicit knowledge

of the intrinsic behaviour of the system. K-means type clustering algorithms have

no test to check if the result is the within cost minimal.

FCM, which is also called soft K-means algorithm, is one of most widely used

methods. FCM was first proposed by Dunn (1973) and developed by Bezdek et al.

(1987). Every individual of interest was given a membership function with respect

to each cluster. The objective of the FCM algorithms is to minimize the predefined

objective function. FCM has been successfully used in the image segmentation in

various image types, for example Clark et al. (1994), Pham and Prince (1999), Liew

and Yan (2003), Chuang et al. (2006), Chen et al. (2006), Wang et al. (2008). Some

applications of FCM to PET image segmentation can be found in Zaidi et al. (2002),

Belhassen and Zaidi (2010), Onoma et al. (2012). Variants of FCM were developed.

For example, Hatt et al. (2009) suggested a fuzzy locally adaptive Bayesian segmen-

tation.

Pham (2001) considered the spatial effect by incorporating a spatial penalty in

the membership functions. Ahmed et al. (2002) took into account neighbourhood

by adding a second regularization to likelihood function. Liew and Yan (2003) in-

corporated the spatial information of the voxels by accounting for the effect of the

neighbourhoods. Chen and Zhang (2004) also investigated the spatial effect in im-

age segmentation. It is noticeable that some of them used an adaptive algorithm to

improve the conventional FCM. Boudraa et al. (1996), Liew et al. (2000) and Jiang

(2004) were especially for the applications of PET image segmentation. Belhassen

and Zaidi (2010) aimed to overcome the heterogeneity of the voxels by modifying

the objective function. However, as demonstrated in Woolrich et al. (2005), inference
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of spatial control parameter is always problematic.

2.2.4 Mixture model-based methods

Mixture model-based clustering has been adopted in many research fields (Banfield

and Raftery (1993), Celeux and Govaert (1995), McLachlan and Peel (2004)). Medve-

dovic et al. (2004) employed Bayesian mixture models to cluster microarray data.

The Bayesian mixture models were utilized to incorporate the experimental variabil-

ity, thus the precision of the clustering analysis can be generally improved. Gaffney

and Smyth (1999), Gaffney and Smyth (2003), James and Sugar (2003) extended these

models to regression mixture models and random effect regression models. Coke

and Tsao (2010) advocated data compression, namely dimension reduction, in clus-

tering. They transferred the original data space into a basis space using spline basis

functions or polynomial basis functions. Biernacki et al. (2000) proposed a method

by using integrated completed likelihood to determine the number of clusters in

mixture model. This method was reported to be more robust than BIC when assump-

tions of the mixture model were violated. Samé et al. (2011) improved the model-

based clustering for time series by considering changes in regime. The other appli-

cations of Mixture model clustering include Liu and Rattray (2010), Jiechang Wen

(2012), Pelosi et al. (2015).

Van Leemput et al. (1999), Ashburner and Friston (2005), Aristophanous et al.

(2007) suggested Gaussian mixture models to implement segmentation for PET im-

ages. These papers considered the temporal dependence, whilst ignoring the spatial

effect. In order to take spatial dependence into account, spatial mixture models were

developed. Markov random field (MRF) is the most popular approach to model the

spatial correlation between nearby voxels in image segmentation. MRF assumes that

nearby voxels are more likely to belong to the same cluster. This assumption is rea-

sonable in most cases. MRF can also be incorporated into K-means algorithms in a
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Bayesian framework, see Rajapakse et al. (1997), Pappas (1992), Held et al. (1997).

Mixture models with MRF in general are difficult to estimate when the field is large.

Such difficulty has been reported by Woolrich et al. (2005) andLi (2012). Specifi-

cally, Potts models which are studied in this thesis are the special forms of MRF. The

difficulty of mixture models involving Potts models is related to an intractable nor-

malizing constant which is introduced in Section 1.4. Mixture model with Potts is

referred to as spatial mixture model.

2.3 Methods for kinetic parameter estimation

Curve fitting and Spatial K-means are described. Then a Bayesian spatial mixture

model was proposed to cluster voxels and to estimate parameters simultaneously.

2.3.1 Curve Fitting

Kinetic analysis is performed by curve-fitting the TAC in each voxel using a nonlin-

ear least-squares fitting,

ki = argmin
T∑
t=1

wt(Yt
i − xti(ki))2, (2.2)

where Yt
i is the reconstructed activity concentration for voxel i at time frame t di-

vided by frame duration ∆τt = τt,e−τt,s, xti(ki) = 1
∆τt

∫ τt,e
τt,sK1,i[Ĉp(s)⊗ exp(−k2,is)]ds,

is the average concentration over time frame t using the current estimates of the ki-

netic parameters ki= (K1,i, k2,i) in voxel i, and measured blood input function Ĉp(t),

wt is the weighting factor which herein is chosen to be the squared frame duration

divided by the total counts in that frame (Gunn, Lammertsma, Hume, and Cunning-

ham 1997). This nonlinear least-squares problem can be solved using the Levenberg-

Marquardt algorithm. (Wang and Qi 2009) We denote this standard curve-fitting

(SCF) approach in this paper.
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2.3.2 Spatial K-means

The spatial SKMS method performs spatial K-means clustering and parameter es-

timation iteratively (Saad, Smith, Hamarneh, and Möller 2007). The process is as

follows. (1) Initialize the cluster means µg, g = 1, . . . G for a predetermined number

of clusters G. (2) For each g, estimate kinetic parameters kg = argmin
∑T

t=1(µg(t) −

Ct(t,kg))
2; subject to positivity constraints on kg. (3) For each voxel indexed by

i = 1, . . . , n, reassign cluster membership by minimizing the objective function∑n
i=1(
∑G

g=1 ||Yi − Ct(t,kg)||2) + β
∑R

r=1 I(Yi,Yr). Yi is the TAC at voxel i. β deter-

mines the influence of the spatial regularizer. I(·) is the indicator function returning

a one if Yi and Yr belong to the same cluster and zero otherwise, for all Yr in the

neighbourhood of Yi. (4) Based on the new clusters, calculate µg as the mean for

each cluster. (5) Repeat above steps until there are no significant changes in Ct(t,kg).

There are two main issues for SKMS. First, the authors offered no theoretical

guarantee of convergence of their proposed algorithm. Second, both the number

of clusters and spatial regularization parameter β, need to be determined but it is

not clear how this can be done. Since G and β are not considered as parameters in

SKMS, which means they can’t be estimated by the method itself. Therefore, we need

to determine their values with extra effort. In our implementation of their method,

we chose these parameters by looking at a range of β and G values, and selected the

values which minimizes the errors with respect to K1 parameter estimates, setting β

to 0.2 and G to 17. We note, however, this procedure produces the best possible out-

come for SKMS but is only possible for simulation data where we know the ground

truth. In the simulations, the ground truth is required to help us choose the correct

parameters for SKMS. But in practice, the ground truth of G and β are unknown.

Therefore, SKMS was not implemented for the pig study data.
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2.3.3 A Bayesian Spatial Mixture Model(SMM)

Model

Uncertainty of the parameters in our model is the natural consequence of modelling

framework. Bayesian method allows us to quantify the uncertainty probabilistically.

But classical methods cannot provide such detailed description of the uncertainty.

Therefore, Bayesian framework outperforms classical approach in measuring the un-

certainty. Here, we describe our proposed modelling and estimation approach. We

denote the reconstructed activity concentration data by Yi = (Y1
i , . . . ,Y

T
i ) ∈ RT , for

voxel i. Each data point Yt
i corresponds to the reconstructed activity concentration

at time t. We assume that the data Yi can be grouped into G spatially homogeneous

groups, where within each group, all voxels share the same kinetic rate parameters

(or TACs) and their variations are only due to noise. The number of groups, G, is

treated as unknown and is chosen by the information theoretic model selection cri-

terion, Bayesian information criterion (BIC).

We use a mixture of multivariate Gaussian distribution with G components to

model the noisy data. Given the ROI used for the analysis may include some vox-

els outside the myocardium, as well as some noisy voxels with very little activity

uptake inside the myocardium, we allow one component to cluster these types of

voxels. We call this the noise component. The Potts model (Wu 1982) is used to ac-

count for spatial correlation between the TACs. This is achieved by introducing a

set of auxiliary random variables z = (z1, . . . , zn), where zi takes one of the values

1, . . . , G, and represents the group/cluster membership for each voxel. Mathemati-

cally, each noisy TAC is given by the mixture of T -dimensional Gaussian,

f(Yi|µ,Σ, β) =
G∑
g=1

f(zi = g|β)MVN(Yi|zi = g,µg,Σ),

where f(zi = g|β) is the marginal density of the Potts model, MVN(Yi|zi = g,µg,Σ)
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is the density of the multivariate Gaussian, and β is the parameter that reflects the

spatial strength between voxels. A value of 0 indicates independence between vox-

els, while larger values of β will tend to cluster all voxels into one cluster. The infer-

ence of β can refer to Appendix. The mean vector of the gth multivariate Gaussian

component is denoted by µg , and Σ = diag(σ2,1, . . . , σ2,T ) is the covariance matrix,

assumed to be the same for all mixture components. One may relax this assumption

to allow more general covariance structure; however, in our simulations studies, the

same covariance structure worked well. Here, σ2,t, t = 1, . . . , T denotes the variance

at time t, and the data are assumed to be temporally independent as data were based

on the reconstructed image at each time frame. The mixture model representation

allows the error distribution to be more flexible. We refer to our model as the SMM.

We set the mean vector for the noise component g∗ as

µg∗ = (µ1
g∗ , . . . , µ

T
g∗),

where the µtg∗ , t = 1, . . . , T are unknown parameters. This component is dominated

by noise, taking small values compared with other voxels with larger TAC measure-

ments. For the remaining components g = 1, . . . , G−1, we model the mean vector as

a function of the solution to the ordinary differential equation (ODE) describing the

one-compartment model (Morris, Endres, Schmidt, Christian, Muzic Jr., and Fisher

2004), although extensions to more compartments are straightforward. Hence, for

t = 1, . . . , T , we set

µtg =
1

∆τt

∫ τt,e

τt,s

Kg
1

[
Ĉp(s)⊗ exp(−kg2s)

]
ds, (2.3)

where Ĉp is a measured blood input function and ∆τt = τt,e − τt,s is the duration of

the tth time frame. The parameters Kg
1 and kg2 are the kinetic rate parameters specific

for group g.
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For the pig study data analyses, we modified Equation 2.3 to account for spill-

over effects,

µtg = f gLV ĈLV (t) + f gRV ĈRV (t) + (1− f gLV − f
g
RV )

1

∆τt

∫ τt,e

τt,s

Kg
1

[
Ĉp(s)⊗ exp(−kg2s)

]
ds,

(2.4)

where f gLV and f gRV denote the component specific spill-over fractions for the left and

right ventricle respectively. ĈLV and ĈRV were obtained by manually averaging the

TACs from the appropriate ROIs. Ĉp was taken as ĈLV multiplied by the plasma

fraction, where the plasma concentration ratio was estimated based on blood sam-

ples drawn from previous studies. Equation 2.3 is equivalent to calculate each ele-

ment of the mean vector by using convolution. While Equation 2.4 is obtained by

incorporating spill-over fractions. In summary, both of they are ways to calculate

the concentrations given the kinetic parameters.

Prior Specifications

For Bayesian inference, we need to specify prior distributions for the unknown pa-

rameters Kg
1 , k

g
2 , µ1

g∗ , . . . , µ
T
g∗ , σ2,1, . . . , σ2,T , β, g = 1, . . . , G − 1. We assume indepen-

dent and uninformative priors for all the parameters, so that the priors are broadly

noninformative.

For the kinetic rate parameters, we use the uniform distribution for all g, K1g ∼

U(aK1 , bK1) and k2g ∼ U(ak2 , bk2), where U denotes uniform distribution. We have

used (aK1 , bK1) = (0.3,∞) and (ak2 , bk2) = (0,∞) in our simulation studies. In real

applications, one can sometimes get very abnormal rate constants, and a lower value

of aK1 , such as 0.1 used for our pig study data, might be appropriate. Setting aK1

much lower than the plausible ranges for K1 will result in additional clusters of the

noise voxels being estimated with the kinetic model, and will unnecessarily add to

computational cost. For the mean vector of the noise component µtg∗ ∼ U(0,∞), t =
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1, . . . T . Setting the prior for K1 sufficiently away from zero allows us to distinguish

between the noise component and the non-noise components. We set prior β ∼

U(0, bβ), where we take bβ to be 1, so as to include most of the plausible values of

β. Finally, for the variance parameters σ2,t, t = 1, . . . , T , we follow the standard

approach and use the usual vague conjugate prior with inverse Gamma distribution

σ2,t ∼ IG(a, b), where a = 0.001, b = 0.001 for an uninformative prior on σ2,t. For the

pig study data, we define independent priors for the additional parameters f gLV ∼

U(0, 1) and f gRV ∼ U(0, 1), g = 1, . . . , G., and set aK1 = 0.1 and bK1 = 1.

Markov chain Monte Carlo(MCMC)

Bayesian inference proceeds via the posterior distribution, obtained by the simple

product of the likelihood and the priors in Section 2.3.3. The likelihood function is

given by

f(y, z|µ,Σ, β) = f(z|β)
n∏
i=1

f(Yi|zi,µzi ,Σ). (2.5)

The posterior distribution is given by the Bayes theorem as the product of the

likelihood and the priors

f(z,µ,Σ, β|y) ∝
n∏
i=1

f(Yi|zi,µzi ,Σ)f(z|β)f(µ,Σ, β). (2.6)

where the term f(µ,Σ, β) denotes the prior distribution.

MCMC algorithms were developed to sample from the posterior distribution, us-

ing a combination of random-walk Metropolis-Hastings and Gibbs updates. Details

for the implementation of the algorithm for the model in Equation 2.3 are given in

the Appendix, the model of Equation 2.4 is a straight forward extension. Note that

occasionally identifiability issues arise in the MCMC estimation of mixtures. Param-

eters from different components can switch labelling as a result of the invariance of

the posterior distribution with respect to labelling. This is not an issue when only the
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MAP estimates are required. The simplest way to handle this is by imposing certain

ordering constraints on parameters (Fernandez and Green 2002), or via postprocess-

ing of the MCMC output (Zhu and Fan 2016). In this chapter, the large number

of mixture components was adequately handled using an efficient postprocessing

algorithm for MCMC output (Cron and West 2011).

Determination of the Number of Components G

One of the uncertainties of the above model is the selection of the value of G, which

plays a crucial role in the resulting parameter estimation. For model-based infer-

ence, in which a likelihood is readily available, a number of model selection criteria

are available, including Bayesian information criterion (BIC), integrated completed

likelihood (ICL), deviance information criterion (DIC) and Akaike information cri-

terion (AIC). The BIC is often considered to be more parsimonious and is the fre-

quently adopted measure of goodness of fit of the model (Steele and Raftery 2009).

Our approach uses BIC as the criterion to determine the optimal value of G.

The BIC (Schwarz et al. 1978) is given as

BIC = −2 log f(y|G, ẑMAP , θ̂MAP ) +DF × (ln(n)− ln(2π)), (2.7)

where f(y|G, ẑMAP , θ̂MAP ) is the likelihood function corresponding to the model

with G components, evaluated at the MAP estimator of z and θ, the vector of all

remaining unknown parameters. DF is the number of parameters to be estimated,

which includes all the unknown kinetic parameters for each cluster, the variance pa-

rameters, and any hyperpriors which are estimated. n is the number of observations

or voxels. BIC penalizes models with too many parameters against the maximized

log-likelihood (or fit to the data). Optimal choice ofG corresponds to the model with

the smallest BIC value.
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Implementation

We tuned the Gaussian random-walk proposal distributions to obtain an optimal

overall acceptance probability of around 20%-40%. For the simulation data sets, we

used K
′g
1 ∼ N(Kg

1 , 0.0062), k
′g
2 ∼ N(kg2 , 0.0012), µ′tg∗ ∼ N(µtg∗ , 0.000132) and β

′ ∼

N(β, 0.0022). For the pig data, we used K
′g
1 ∼ N(Kg

1 , 0.0052), k
′g
2 ∼ N(kg2 , 0.0032),

µ
′t
g∗ ∼ N(µtg∗ , 0.0012), f

′g
LV ∼ N(f gLV , 0.012), f

′g
RV ∼ N(f gRV , 0.012) and β ′ ∼ N(β, 0.0042).

For a full Bayesian analysis of a single simulated data set, we ran MCMC for

10000 iterations with the first 4000 iterations discarded as burn-in, and we keep every

tenth sample due to high autocorrelation in the MCMC sample. Note that for MAP

estimates, taken as the set of parameter values which gave the highest posterior

probability during the MCMC run, we used only 6000 iterations, as MCMC chains

can be expected reach modal regions of the posteriors quite quickly. For the real data

set, 8000 iterations of MCMC were obtained with the first 6000 discarded as burn-in.

We first determine the number of components G, by running MCMC for G =

2, . . . , 26 and computing the model selection criteria based on BIC (see Section 2.3.3).

Then for a fixed G, we run posterior inference for a given dataset. For the evaluation

of the proposed algorithm, we used 25 replicate simulations. For each replication

at the chosen value of G, we obtain MAP estimators for comparison with SCF and

SKMS. The performance of MAP is known to be worse than the posterior mean esti-

mate, but it is sufficient to provide a good guide on the quality of the inference. The

results are presented in Section 2.5.

2.4 Simulations and application

We apply our approach to simulated one-compartment PET perfusion data and com-

pare the performance of our approach with both the standard voxel-wise curve-

fitting approach and the spatial temporal approach (Saad, Smith, Hamarneh, and
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Möller 2007), using the true kinetic parameters as the gold standard. We also apply

our method to an in vivo pig study data.

2.4.1 Performance Evaluation

For a given noise realization, n, we compute kinetic parameter bias of voxel i using

bni = (kni − kTri )/(kTri ), (2.8)

where bni is the bias of estimated kinetic parameter using the true kinetic parameter

kTri as gold standard. Based on 25 noise realizations, we compute the mean bias b̄i,

the mean squared bias b̄2
i , and standard deviation si bias for voxel i using

b̄i =

∑N
n=1 b

n
i

N
, b̄2

i =

∑N
n=1(bni )2

N
, si =

√∑N
n=1(bni − b̄i)2

N − 1
, (2.9)

where N is the total number of noise realizations. We perform the calculations de-

scribed above for SCF, SMM and SKMS methods and make a comparison between

methods.

2.4.2 Simulation: Dynamic Cardiac Perfusion PET

All the simulation studies were performed using an NCAT torso phantom (W.Segars

2000) which consists of heart, lungs, liver, and soft-tissue compartments. The left

ventricle (LV) myocardium was segmented into 17 standard segments.(Cerqueira,

Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani, et al.

2002) The simulation was based on 18F-flurpiridaz, which is a new myocardial perfu-

sion tracer that exhibits rapid uptake and longer washout in cardiomyocytes. Based

on the one-tissue compartmental model, the TAC of the tissue concentration, Ct(t),
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was simulated using

Ct(t) = K1[Cp(t)⊗ exp(−k2t)], (2.10)

where Cp(t) is the blood input function, K1 and k2 are kinetic rate constants for the

segment, and ⊗ denotes convolution operation. The input function used in the sim-

ulation was based on a previously published 18F-flurpiridaz study(Alpert, Fang, and

El Fakhri 2012). During the study, the LV input function was extracted with gener-

alized factor analysis on dynamic series(El Fakhri, Sitek, Guérin, Kijewski, Di Carli,

and Moore 2005; El Fakhri, Sitek, Zimmerman, and Ouyang 2006). This LV input

function was treated as the plasma input function.

The kinetic parameters, i.e., k = (K1, k2), assigned to 17 segments were based on

the realistic values obtained from PET perfusion studies on normal patients. (Alpert,

Fang, and El Fakhri 2012) In order to mimic a myocardial defect, the segment located

in the anterior wall was assigned with values by lowering K1 and k2 by 50% and

20%, respectively, of their original values. We added the 18th segment to include

other voxels not part of the left ventricle myocardium. Table 2.1 shows the kinetic

parameters assigned to all the 18 segments in the myocardium. The blood input

function Cp(t) and TACs for one normal (basal inferoseptal) and one defect (apex)

segments are shown in Figure 2.2.
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Figure 2.2: The input function and two TACs (one normal and one defect segment).
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segment K1 k2 segment K1 k2

Basal anterior 0.3665 0.0627 Midinferior 0.7162 0.0799
Basal anteroseptal 0.6730 0.0740 Midinferolateral 0.8013 0.0997
Basal inferospetal 0.7656 0.0983 Midanterolateral 0.7720 0.0861
Basal inferior 0.7487 0.0635 Apical anterior 0.3653 0.0673
Basal inferolateral 0.9655 0.1032 Apical septal 0.8000 0.0861
Basal anterolateral 0.8021 0.0667 Apical inferior 0.7544 0.0717
Midanterior 0.3438 0.0541 Apical lateral 0.6816 0.1044
Midanteroseptal 0.7799 0.0877 Apex 0.3290 0.0554
Midinferoseptal 0.9016 0.0730 Others 0.7630 0.0820

Table 2.1: Segment names and their assigned K1 values in mL/min/cc, k2 values in
1/min (i.e.,the ground truth).

A system matrix corresponding to Philips Gemini PET-CT camera, which in-

cludes position dependent point spread function modelling, a forward-projection

operator implemented using Siddon’s method, line of response (LOR) normalization

factors, and attenuation correction factors, was used to create noise-free sinograms

from TACs. (Petibon, Ouyang, Zhu, Huang, Reese, Chun, Li, and El Fakhri 2013)

The simulated sinogram data is equivalent to a 13-min dynamic PET scan with the

framing scheme of 6× 5s, 3× 30s, 5× 60s, and 3× 120s frames. Twenty five dynamic

PET noise realizations were generated. Both random and scatter events were not in-

cluded in this study. The total number of events simulated in all the time frames is 50

M. The decay of the tracer was not simulated. Poisson noise was then added to each

pixel in the sinogram based on the mean counts for the pixel. For each noise real-

ization, the image reconstruction at each time frame was performed using standard

ordered subset expectation maximization (Hudson and Larkin 1994)(OSEM) with 16

subsets and 8 iterations. No postreconstruction smoothing was applied. The phys-

ical dimension in the image reconstruction was 57.6cm × 57.6cm × 16.2cm, matrix

dimension was 128× 128× 36, where the voxel size was 0.45cm× 0.45cm× 0.45cm.
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2.4.3 Application: In-Vivo Pig Study

A pig with a body weight of 40 kg was scanned on a Siemens Biograph TruePoint

PET/CT with the radiotracer 18F-flurpiridaz. First, a planar x-ray topogram was per-

formed to allow delineation of the field of view (FOV) and centering on the heart fol-

lowing CT and PET acquisitions. The cardiac CT was used for structure localization

and later for attenuation correction during reconstruction of PET images. Emission

PET data were acquired in 3D list mode and started concomitantly to the injection

of 18F-flurpiridaz, the injected activity was 11 mCI at the time of injection. List mode

data were framed into dynamic series of 12 x 5, 8 x 15, 4 x 30, 5 x 60s. PET im-

ages were reconstructed using filtered back projection with minimal filtering (voxel

size: 2.14x2.14x3 mm3, 55 slices). Attenuation correction was obtained from the CT

images. Decay correction was applied and the first 10 min of the data are used for

kinetic analysis. The input functions for the left and right ventricle were obtained

by averaging the TACs from a manually defined region. A one-compartment model

with spill-over correction was used. The described experiment was performed un-

der a protocol approved by the Institutional Animal Care and Use Committee at the

Massachusetts General Hospital.

2.5 Results and discussion

2.5.1 Model Selection

Figure 2.3 shows the BIC values (left panel) and the corresponding log likelihood

(right panel) for competing models for a single noise realization. Horizontal lines

in both subfigures denote the minimum and maximum values for BIC and the log

likelihood respectively. The log likelihood values are expected to keep increasing

with G, while the BIC penalizes the use of additional parameters in models with
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largerG. Both the BIC and log likelihood changed dramatically fromG = 2 to about

G = 10, preferring models with larger G values, and this stabilized after around

G = 17. Part of the changes seen here can be attributed to Monte Carlo errors. Thus,

a parsimonious choice for G would be G = 17, representing the model with 16 TAC

components and one noise component. Subsequent results for simulated data in this

paper were generated by the model with G = 17. The same value of G was also

found for the pig study data.
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Figure 2.3: BIC values (left panel) and log likelihood (right panel) for G = 2, 3, . . . , 26
in the spatial mixture model. The horizontal lines indicate the minimum and the
maximum of BIC and log likelihood respectively.

2.5.2 Parameter Estimation and Comparison to Existing Methods

For the simulation data, Figures 2.4 and 2.5 show the corresponding marginal poste-

rior distributions of K1 and k2 respectively, with vertical lines indicating the poste-

rior mean, and the uncertainty of the estimates indicated by the spread of the distri-

butions.

To assess the robustness of our estimation procedure and its performance against

existing methods, we repeated our estimation procedure for 25 replicate data sets,

obtained from the same simulation setup. We implemented the three competing
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K1 k2

min med max min med max

Abnormal
SMM 0.006 0.04 0.12 0.06 0.25 1.12
SCF 0.013 0.06 0.175 0.13 0.4 1.47

SKMS 0.02 0.06 0.39 0.14 0.31 0.7

normal
SMM 0.006 0.03 0.29 0.01 0.09 0.37
SCF 0.005 0.03 0.27 0.01 0.1 0.55

SKMS 0.007 0.04 0.33 0.02 0.09 0.32

Noise
SMM 0.004 0.007 0.165 0 0 0
SCF 0.0001 0.02 3.32 0 0.03 0.06

SKMS 0.0005 0.05 0.22 0 2.96 13.05

Table 2.2: Summary statistics for each estimation.

methods SMM, SCF and SKMS. There was a single extremely large value of k2 esti-

mate from SKMS, which we omit from the results shown. As we know the ground

truth in the simulation study, we evaluate the performance of three methods in dif-

ferent areas: abnormal tissues, normal tissues and noise region. Figure 2.6 shows the

distribution of the mean squared biases of K1 and k2 in the abnormal, normal and

noise regions, and the overall standard deviation of the biases. The computations

were calculated according to Equation 2.9, with the exception that in the noise re-

gion, the bias was computed by setting the denominator of Equation 2.8, kTri , to 1,

since we cannot divide by zero.

Numerical results can be found in Table 2.2. Results for the abnormal ROI are

shown in the first row of Figure 2.6. For K1, the mean squared biases for SMM

ranged from 0.006 to 0.12, with a median of 0.04. For SCF, the range was from 0.013

to 0.175, with a median of 0.06. For SKMS, the range was between 0.02 and 0.39, and

the median was 0.06. For the k2 estimation, the biases ranged from 0.06 to 1.12 for

SMM, the median was 0.25. For SCF, the range was between 0.13 and 1.47, and the

median was 0.4. For SKMS, the biases ranged from 0.14 to 0.7, and the median was

0.31.

The normal ROI is shown in the second row of Figure 2.6. For K1, the mean
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squared biases for SMM ranged from 0.006 to 0.29, with a median of 0.03. For SCF,

the range was 0.005 to 0.27, with a median of 0.03. For SKMS, the range was between

0.007 and 0.33, and the median was 0.04. For the k2 estimation, the biases ranged

from 0.01 to 0.37 for SMM, with a median of 0.09. For SCF, the range was between

0.01 to 055, and a median of 0.1. For SKMS, the biases ranged from 0.02 to 0.32, and

the median was 0.09.

The noise region is shown in the third row of Figure 2.6. ForK1, the mean squared

biases for SMM ranged from 0.004 to 0.165, with a median of 0.007. For SCF, the

range was 0.0001 to 3.32, with a median of 0.02. For SKMS, the range was between

0.0005 and 0.22, and a median of 0.05. For the k2 estimation, the biases were approx-

imately 0 for SMM. For SCF, the biases ranged between 0 and 0.06, and the median

was 0.03. For SKMS, the biases ranged from 0 to 13.05, and the median was 2.96.

The last row of Figure 2.6 shows the standard deviations of the biases for K1 and

k2. For K1, the standard deviations of biases ranged from 0 to 0.34 for SMM, with a

median of 0. For SCF, the range was between 0.008 to 1.70, with a median of 0.13.

For SKMS, the range was between 0.073 to 0.63, and the median was 0.16. For the k2

standard deviations of bias, the range was between 0 to 0.93 for SMM, with a median

of 0. For SCF, the range was between 0.002 to 1.19, and a median of 0.01. For SKMS,

the range was between 0.02 and 2.89, with a median of 1.20.

Figure 2.7 compares the bias and standard deviation of bias between SMM, SCF

and SKMS for a single slice. The bias is calculated according to the first term in

Equation 2.9, this is the average of the biases over 25 replications. Figure 2.7(a) shows

the K1 estimates. The biases ranged from -0.27 to 0.10, -0.28 to 0.09 and -0.33 to 0.08

respectively, for SMM, SCF and SKMS. Similarly, the standard deviations ranged

from 0 to 0.26, 0 to 0.37 and 0 to 0.35 respectively. For the k2 estimates in Figure

2.7(b), the biases ranged from -0.22 to 0.2, -1 to 1.06 and -0.46 to 0.28 respectively.

The standard deviations ranged from 0 to 0.59, 0 to 0.86 and 0 to 2.89 respectively.
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Figure 2.8 compares a single slice of the kinetic parametric images between SMM

and SCF for the pig study. K1 parameters were constrained to be between 0 and 1

in both SMM and SCF estimation, as unconstrained estimation lead to many physi-

ologically implausible large values of K1.

K1 and k2 are employed to evaluate the status of the tissue by doctors in disease

diagnosis. For example, they are used to implement cancer detection. The more

accurate their estimations are, the higher the accuracy of the diagnosis is.

2.5.3 Discussions

In this Section, estimation of K1 and k2 is discussed respectively. Specifically, dif-

ferent methods are compared in terms of the parameter estimations. The discus-

sion is implemented in various perspectives, including point estimations in different

regions and robustness in different regions. Then computational time was demon-

strated. It concludes that our approach has several advantages over other methods.

This chapter proposes a novel method, SMM, that clusters voxel-wise TACs and

estimates kinetic parameters simultaneously. Our modelling approach shares simi-

larities to the recently proposed work (Lin, Haldar, Li, Conti, and Leahy 2014), where

the mixture model was fitted to each voxel (while still borrowing information across

nearby voxels) to overcome the issue of non-Gaussian error distributions. There is

quite vital difference between their method and SMM. We allow several similar vox-

els to share the same parameter values, since separate mixture model fitted to each

voxel introduces too many parameters, and thus lead to more estimation uncertainty.

Our approach naturally allows us to constrain parameter estimates without the need

to specify regularization parameters as in the usual Bayesian maximum a posterior

(MAP) approaches. Finally, we allow the data to determine the most appropriate

number of mixtures to fit to the data.

Our model-based approach offers several advantages, compared to other exist-
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ing statistical approaches described above. Firstly, we require minimal user input

in the algorithm, preferring to allow the data to dictate the optimal choices. One

benefit of our modelling approach is in the determination of the optimal number

of mixture components. Secondly, we also automatically compute the value of the

smoothing parameter used in the MRF model. This unknown parameter is difficult

to estimate, and in many applications of spatial modelling, the estimation of this pa-

rameter has not been carefully considered. The choice of both these parameters can

have a big impact on results, since suboptimal choices will either result in higher bias

or higher variance for the resulting parameter estimates. Finally, the Bayesian statis-

tical framework allows us to quantify uncertainty probabilistically, since uncertainty

in the model and parameters is a natural consequence of our modelling framework.

An efficient MCMC algorithm allows us to provide parameter estimates, as well as

uncertainty quantification simultaneously.

In Figure 2.3, the BIC values start to reach a minimum at around G =16 or 17. We

chose to work with 17, but higher values of 18 or 19 will work equally well. These

numbers are similar to the number of true segments simulated; however, we expect

that this number can be different depending on the nature of the noise.

Figures 2.4 and 2.5 present the components’ mean estimates for K1 and k2. Usu-

ally, the doctors use this information to determine whether abnormal region exist

and where it is. Another attempt is to find one-to-one relationship between the clus-

ters and true segments. In this case, it is difficult to make direct correspondences

between the clusters we obtained with the true segments. The first four compo-

nents correspond mostly to noise, the next four components correspond mostly to

abnormal voxels and the rest belong to normal voxels. The discrepancy between the

estimated values of K1 and the truth is most obvious in the abnormal region, this

is possibly a combination of partial volume effect, as well as misclassification of the

normal voxels. Given that SMM outperforms the other two methods in the abnormal
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region, we believe similar issueswith the data are affecting the other two methods

also.

Despite the fact that it is difficult to make sense of individual clusters, aggregat-

ing the clusters can provide us with information about the larger ROIs. For instance,

if we are interested in identifying the three regions of noise, abnormal and normal,

we can aggregate the clusters according to K1 < 0.3, 0.3 ≤ K1 < 0.6 and K1 ≥ 0.6

respectively. A similar procedure can be used to classify the regions using the results

from SCF and SKMS. In terms of misclassification rates, based on a single simulation

data set, SMM classified 96.34% of noise voxels correctly, compared to 94.43% and

87.60% for SCF and SKMS. The misclassified voxels for SMM were all assigned to

the abnormal voxels, this corresponds to the first four clusters in Figure 2.4. For the

other two methods, they were spread between abnormal and normal voxels. For the

abnormal region, SMM had a 100% correct classification, while this was only 62.68%

for SCF and 52.82% for SKMS. All of the misclassifications in SCF and SKMS were

allocated to noise. Finally, for the normal region, SMM, SCF and SKMS had 69.57%,

73.49% and 58.99% respectively for correct classifications, most of the misclassifica-

tions were found to be allocated to the abnormal region.

In terms of k2 estimation, SMM is clearly better than the other two methods. This

can be seen clearly in Figures 2.6 and 2.7. SKMS performed the worst, particularly

in the abnormal and noise regions, their parameter estimation can be prone to very

large biases. In the noise region, in particular, the median mean squared bias was

around 2.96, while the other two methods were close to 0. Putting constraints on

these parameters may prove useful.

For K1 estimates, SKMS was marginally worse than the other two methods in

terms of mean squared bias. In the abnormal region, SMM shows noticeably superior

performance, where it can be seen in Figure 2.6, top row, the entire distribution of

SMM is closer toward 0 than the other two methods. The difference in the normal
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region is less obvious. The third row in Figure 2.6 shows the biases in the noise

region; here, since SMM set K1 in this region to 0, the graph can be interpreted by

looking separately at the values of mean squared bias below (0.3)2 = 0.09 and above.

On average, voxels with bias greater than this value are essentially misclassified, i.e.,

they should be singled out as noise, but instead have significant values for the kinetic

parameters. For SMM, there was an average misclassification rate of 3.66%, for SCF

it is 5.71% and 11.65% for SKMS. SCF has the largest mean squared biases here, going

up to 3.32, while the other two methods remain around 0.2.

In terms of the standard deviations of the bias, SMM performed the best, while

SCF was the worst. The plot in the last row of Figure 2.6 shows that for K1, the

range for SCF goes up to 1.7, while for SMM and SKMS, this was only 0.34 and 0.63

respectively. In fact, 15% of the voxels estimated by SCF was greater than 0.34 (the

largest value obtained by SMM), and 0.8% from SKMS.

The proposed method is clearly superior in terms of robustness, indicated by the

substantially smaller standard deviation estimates, as can be seen in both Figure 2.6

and Figure 2.7. It also performed at least as good as, and sometimes better than

the other two methods in terms of mean squared bias. In the single slice plot in

Figure 2.7, where the mean of the raw biases was plotted, it is difficult to distinguish

between the three methods. This is due to the fact that when raw biases are averaged,

they will go toward zero as the effects of the large positive and negative biases cancel

out. This will be true for all unbiased estimators regardless of how sensitive the

estimations are to noise. In this sense, it is more useful to look at the mean squared

or absolute biases.

In the real data application, it was not possible to compare the bias and stan-

dard deviations of the biases because the ground truth was not known. However,

the parametric images shown in Figure 2.8 suggest that much smoother K1 and k2

images were produced by SMM compared to SCF. The white color in the K1 images

48



indicates a value close to 1, which is the upper bound of the artificial constraint we

used. It is clear from the figure that many values produced by the SCF method were

simply truncated at this value. SMM estimation produced significantly less values

close to the upper bound. The upper bound of 1 for K1 is essentially arbitrary. For

SMM estimation, if we remove this bound, we obtain two groups of voxels with

physiologically implausibly high K1 values whilst the rest of the voxel estimates re-

mains unchanged, well below 1. However, in terms of the SCF estimation, raising

the bounds to higher than 1 produced many more voxels between 1 and 2. How-

ever, since this was a resting pig, where the mean blood flow at rest is around 0.65

ml/min/cc, we do not expect flow to be above 1 at rest, so the SCF results with

higher bounds would be difficult to interpret, since the higher values could also be

due to spill-over from blood-pools, or voxels actually containing blood or noise.

In terms of computation, it took about 4 hours to complete all 6000 iterations for

each noise realization of simulated data, using Matlab R2014b, running on a single

node of the Linux computational cluster Katana at UNSW, Australia. This is equiv-

alent to running on an average PC. The total number of voxels was 5746. We found

that all the parameters converged quite quickly. For SCF and SKMS, the computa-

tional time was around 1 minute. For the pig study data involving 16821 voxels,

and a longer time series involving 29 time points, the computational times were

23.5 hours and 6 hours for SMM and SCF respectively. We note that although SMM

is computationally more expensive, it provides additional uncertainty estimation,

which the other two faster methods do not. Parallel computation or other com-

putational methods, such as variational Bayes (Attias 2000; McGrory, Titterington,

Reeves, and Pettitt 2009), can be adopted to further speed up this process.
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2.6 Summary

In this chapter, a novel spatiotemporal approach, SMM, is proposed to infer para-

metric PET images. By borrowing information from nearby voxels, SMM can be

used to simultaneously estimate kinetic parameters and classify voxels with simi-

lar kinetic parameters into spatially homogeneous groups. We adopted the MRF to

incorporate the spatial dependence of voxels. We developed an efficient MCMC al-

gorithm for the computation, which estimates all unknown parameters, including

the notoriously difficult spatial smoothness parameter β in the Potts model. The

method provides parameter uncertainty estimation, as well as a principled way to

determine the optimal number of voxel groups. We used simulated cardiac perfu-

sion PET data to evaluate the performance of SMM and compared them with SCF

and SKMS. SMM was substantially less sensitive to noise than the other methods, it

also yielded an overall smaller bias than SCF and SKMS. In the pig study data, SMM

was shown to produce smoother parametric images compared to the standard curve

fitting.

Although simulation and experimental data were based on cardiac PET studies

of a one-compartment model, the approach may benefit other dynamic PET proce-

dures, as well as more complex compartmental models.

In the future, there are three directions to be considered to further develop our

approach. First, we can relax the within cluster homogeneity assumption. This is

easily achievable by relaxing the mean of the normal mixture to allow them to vary

for each voxel observation. However, this substantially increases the number of pa-

rameters that needs to be estimated and presents a computational challenge. Second,

we can consider the use of sinogram data rather than reconstructed data to estimate

kinetic parameters, and this can reduce the additional noise introduced through the

reconstruction step. However, this approach can be computationally challenging for

full Bayesian analysis. Third, given its flexibility, SMM can be easily extended to
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more advanced kinetic models, such as the two-compartmental tissue model with-

out too much modification. Although we assess performance using simulations of

cardiac perfusion PET imaging and demonstrate in vivo data for this application,

our approach is not limited to this specific context and may also benefit other dy-

namic PET procedures as well as dynamic SPECT, dynamic contrast enhanced CT

(DCE-CT), and dynamic contrast enhanced MR (DCE-MR).

In this chapter we mainly focus on how to estimate the kinetic parameters and

other unknown parameters, while spatial strength in Potts model is estimated by

thermodynamic integration method proposed in Green and Richardson (2002). The

implementation of thermodynamic integration method can be found in Section 1.5.

But inference of β still remains intractable in many scenarios, both for regular lat-

tice and irregular lattice. I will propose a new method in next chapter to solve the

inference of β when it is intractable, especially in large lattice.
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Appendix

Markov chain Monte Carlo

We use MCMC for sampling from the joint posterior distribution of z and all other

parameters, given by Equation 2.6. The prior distribution f(µ,Σ, β) is taken as prod-

uct of the individual prior components f(K1
1), . . . , f(KG−1

1 ), f(k1
2), . . . , f(kG−1

2 ),

f(µ1
g∗), . . . , f(µTg∗), f(σ2,1), . . . , f(σ2,T ), f(β), as defined in Section 2.3.3.

The first term on the right side of Equation 2.6 is given by

f(yi|zi = g,µg,Σ)

= (2π)−T/2|Σ|−1/2 exp(−1

2
(yi − µg)′Σ−1(yi − µg)),

and the second term on the right side of the equation is given by

f(z|β) =
1

C(β)
exp{β

∑
i∼j

I(zi = zj)}. (2.11)

This is the Potts model, where z = (z1, . . . , zn), I(·) denotes indicator function taking

value 1 if z(l−1)
j = g and 0 otherwise, and i ∼ j denotes the voxels j in the neigh-

bourhood of voxel i. The partition function C(β) is estimated offline using thermal

dynamic integration (Green and Richardson 2002).

As the region of interest of PET image is not regular lattice, it is not proper to

use the traditional neighborhood structure. In this scenario, we use an 8 nearest

neighbour first order structure for the Potts model. Once neighborhood structure is

defined, TDI can be implemented. Below I specifically demonstrate how to count

the pairs in this case.

M is adopted to denote the mask of the PET image of interest. M is of the same

dimensionality as PET image. Each entry of M could be 0 or 1, where 1 indicated the

corresponding voxel is in region of interest, otherwise, voxel is out of the region of
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interest. The generation of Potts model is different with regular lattice. Under irreg-

ular lattice, each voxel in ROI is conditionally dependent on its 8 nearest neighbors.

Single-site update scheme is necessary. After one Potts model is generated, count

the pairs in the Potts model. Only the pairs involving valid voxels are considered.

Therefore, the difference between regular lattice and irregular lattice lies in gener-

ation of Potts model. According to the density function of regular lattice model in

Equation 2.11, β in irregular lattice has a different meaning. But it still denotes spatial

correlation between the voxels.

Our computational algorithm for the one-compartmental model in Equation 2.3

proceeds as follows:

Step 1 Set l = 1 and initialize parametersK1,(0)
1 , k

1,(0)
2 , . . . , K

G−1,(0)
1 , k

G−1,(0)
2 ,µ

(0)
g∗ , σ

2,1,(0),

. . . , σ2,T,(0), z(0), β(0).

Step 2 Update Kg
1 , for g = 1, . . . , G− 1. Simulate a new value

K
′g
1 ∼ N(K

g,(l−1)
1 , δ2

K1
)

and compute µ′g with K
′g
1 , according to Equation (2.3). Set Kg,(l)

1 to K
′g
1 with

probability α, where

α = min{1, α?}

with

α? =

∏
i∈{i:z(l−1)

i =g} f(yi|z(l−1)
i ,µ′g,Σ

(l−1))f(K
′g
1 )∏

i∈{i:z(l−1)
i =g} f(yi|z(l−1)

i ,µ
(l−1)
g ,Σ(l−1))f(K

g,(l−1)
1 )

.

Otherwise, set Kg,(l)
1 to Kg,(l−1)

1 .

Step 3 Update kg2 , For g = 1, . . . , G− 1. Analogously to Step 2.
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Step 4 Update µtg∗ , for t = 1, . . . , T . Simulate a new value

µ
′t
g∗ ∼ N(µ

t,(l−1)
g∗ , δ2

µg∗
).

Set µt,(l)g∗ to µ′tg∗ with probability α, where

α = min{1, α?}

with

α =

∏
i∈{i:z(l−1)

i =g∗} f(yi|z(l−1)
i ,µ′g∗ ,Σ

(l−1))f(µ
′t
g∗)∏

i∈{i:z(l−1)
i =g} f(yi|z(l−1)

i ,µ
(l−1)
g∗ ,Σ(l−1))f(µ

t,(l−1)
g∗ ))

.

Otherwise, set µt,(l)g∗ to µt,(l−1)
g∗ .

Step 5 Update σ2,t, for t = 1, . . . , T . Simulate from the Inverse Gamma distribution

σ2,t,(l) ∼ IG

(
n/2 + a,

1

2

n∑
i=1

(yti − µt,(l)g )2 + b

)
.

Step 6 Update z. Each i = 1, . . . , N , compute

wg = MVN(yi; f(Kg
1 , k

g
2),Σ) exp{β(l−1)

∑
j,j∈∂i

I(z
(l−1)
j = g)}, g = 1, . . . G,

and normalize w′g = wg/
∑G

g=1wg, where f(Kg
1 , k

g
2) denotes Equation 2.3. ∂i

denotes the set of neighbours of vertex i. Set z(l)
i according to the Multinomial

distribution

z
(l)
i ∼MN(w′1, . . . , w

′
G).

Step 7 Update β. Simulate a new value

β′ ∼ N(β(l−1), δ2
β)
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and set β(l) to β′ with probability α, where

α = min
{

1,
f(z(l)|β′)f(β′)

f(z(l)|β(l−1))f(β(l−1))

}
.

Otherwise, set β(l) to β(l−1).

Step 8 set l = l + 1, if l < L, go to Step 2.
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Figure 2.4: Marginal posterior density of Kg
1 for g = 1, . . . , 16 clusters. Vertical

dashed line denotes corresponding posterior means. Based on a single noise real-
ization of simulation data.
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Figure 2.5: Posterior density of kg2 for g = 1, . . . , 16 clusters. Vertical dashed line
denotes corresponding posterior means. Based on a single noise realization of simu-
lation data.
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Figure 2.6: Distributions of the mean squared biases and standard deviation of biases
for SMM (solid line); SCF (dashed line) and SKMS (dotted and dashed line). The first
three rows show the mean squared biases forK1 and k2 in the abnormal, normal, and
the noise ROIs respectively. The last row shows the standard deviation of the biases.
Mean squared biases and the standard deviation of biases are calculated according
to Equations 2.8 and 2.9, over 25 replicate simulation data sets.
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(a) K1 (b) k2

Figure 2.7: Parameter estimates, bias and standard deviation of bias for a single slice
of the image. Comparisons for K1 (a) and k2 (b) for 25 replications of simulation
data.

Figure 2.8: Parameter estimates for a single slice of the pig study data.
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Chapter 3

A novel approach for markov random

field with intractable normalizing

constant on large lattice

In this chapter, normalizing constant issue is intensively discussed. An approach

that can handle large size Potts model is proposed.

3.1 Introduction

Markov random field (MRF) models have an important role in modelling spatially

correlated datasets. They have been used extensively in image and texture analyses

( Nott and Rydén 1999, Hurn et al. 2003), image segmentation (Pal and Pal 1993,

Van Leemput et al. 1999, Celeux et al. 2003, Li and Singh 2009), disease mapping

(Knorr-Held and Rue 2002, Green and Richardson 2002), geostatistics (Cressie 1993)

and more recently in social networks (Everitt 2012). In hidden Markov random field

(HMRF) models, latent variables z = (z1, . . . , zn) are introduced for each observed

dataYi, i = 1, . . . , n, where each pair (Yi, zi) has a corresponding spatial location. The

MRF, and hence spatial interaction is modelled via z using an appropriate model,
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such as, Potts or autologistic models.

In what follows, we describe our proposed methodology in terms of the q-state

Potts model, although the method applies to other similar models, such as autolo-

gistic model and of course Ising model (a special case of Potts model when q = 2). In

the Bayesian framework, the distribution π(z|β) can be seen as a prior distribution,

and the hidden or missing observations zi, i = 1, . . . , n are treated as unknown pa-

rameters to be estimated. For instance, a common form of the posterior distribution

of a q-component spatial mixture model takes the form

π(z, β, θ|Y) ∝
n∏
i=1

π(Yi|θ, zi)π(z|β)π(β)π(θ),

where π(Yi|θ, zi) denotes the component distribution for Yi conditional on the model

parameters θ and zi, π(θ) and π(β) denote the prior and hyper prior for the unknown

parameter vectors and zi = 1, . . . , n. Using the Potts model to define π(z|β), we have

π(z|β) =
1

C(β)
exp{β

∑
i∼j

I(zi = zj)}, (3.1)

where i ∼ j indicates that i and j are neighbours, and C(β) =
∑

z exp{β
∑

i∼j I(zi =

zj)} is the normalizing constant. I(·) is the indicator function, I(zi = zj) = 1 if zi = zj

is true, otherwise I(zi = zj) = 0.

Figure 3.1 (left panel) gives a pictorial illustration of a MRF with a first order

neighbourhood structure, where each black site depends only on the four neigh-

bouring gray sites on a 2D lattice. The 3D MRF is similarly defined with each site

dependent on its neighbours on the left, right, front, back, above and below. The

parameter β controls the degree of spatial dependence. See Wu (1982) for more illus-

trations on the Potts model.

For relatively small random fields (less than 10 × 10), the normalizing constant

C(β) can be computed by summing exhaustively over all possible combinations of z
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for any given value of β. However, the calculation of C(β) becomes computationally

intractable for large spatial fields. The posterior distribution π(θ, z, β|y) is sometimes

also referred to doubly-intractable distribution (Murray et al. 2006). This problem is

well known in the statistical community, and has received considerable amount of

attention in the literature, see Lyne et al. (2015) for a recent review.

Gelman and Meng (1998) used path sampling to directly approximate ratio of the

normalizing constants, which can be used within posterior simulation algorithms

such as MCMC, where only ratios are needed. Thermodynamic integration (TDI)

is another approach which relies on Monte Carlo simulations. Green and Richard-

son (2002) for example adopted this approach by computing a look-up table offline.

Other simulation-based methods can be found in Geyer and Thompson (1992), Gu

and Zhu (2001), Liang (2007) and references therein. However, most methods utilis-

ing Monte Carlo become computationally expensive for very large lattices.

The pseudo likelihood (PL) method of Besag (1974) approximates π(z|β) as prod-

uct of full conditional probabilities, where each term in the product is a full con-

ditional of the neighbouring sites. The normalizing constant for each term in the

product then becomes trivial to compute. Note however, that this is a type of com-

posite likelihood (Lindsay 1988, Varin et al. 2011). The simplicity of the approach,

coupled with its computational efficiency, makes the method still one of the most

popular approaches in practice, particularly for large lattices. It has been noted in

the literature that when the dependence is weak, the maximum pseudo-likelihood

(MPLE) estimator behaves well and is almost efficient. In high dependence cases,

the PL estimate is called into question, it has been shown to severely overestimate

the dependence parameter, see Geyer and Thompson (1992). Hurn et al. (2003) com-

ments that that PL should only be considered for dependences below the critical

value, and its effects on modelling data with long range dependences are not clear.

Cressie and Davidson (1998) proposed a similar method known as partially ordered
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Markov models (POMMs), where the likelihood can be expressed as a product of

conditional probabilities, without the need to compute the normalizing constant.

POMM defines parent sites for each point on the lattice, and the point only depends

on its parents. However, only a subset of MRFs are expressible as POMMs.

Reeves and Pettitt (2004) proposed a method for general factorizable models,

which includes the autologistic and Potts model. This simple, yet effective approach

is based on an algebraic simplification of the Markovian dependence structure, and

is applicable to lattices with a small number of rows (up to 20). As a result of the

factorisation, the normalizing constant can be computed over the much smaller sub-

sets of z, making such computations feasible. Friel et al. (2009) extended the work

of Reeves and Pettitt (2004) to larger lattices by relaxing some of the dependence as-

sumptions about π(z|β), so that the full model is a product of factors, each of which

is defined on sublattices computed using the method of Reeves and Pettitt (2004).

The sublattices are assumed to be independent, they term this reduced dependence

approximation (RDA). The authors showed that RDA can be efficiently applied to

the binary MRF, but concluded that the extension to the Potts model may not be

computationally tractable. Another similar idea can be found in Bartolucci and Be-

sag (2002), who also presented a recursive algorithm using the product of condi-

tional probabilities, their method is only applicable to lattices of up to 12 rows and

columns.

Finally, another class of methods completely avoid the computation of the nor-

malizing constant by ingeniously employing an auxiliary variable, see Møller et al.

(2006), Murray (2007), Murray et al. (2006). However, the method is computation-

ally very expensive, as well as requiring perfect simulation (Propp and Wilson 1996).

Liang (2010) proposed a double Metropolis-Hastings sampler, in which the auxiliary

variable is drawn more efficiently. More recently, Liang et al. (2016) extended the

exchange algorithm of Murray et al. (2006) to overcome the issue of obtaining per-
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fect samples, using an importance sampling procedure coupled with a Markov chain

running in parallel. Everitt (2012) proposed a sequential Monte Carlo method to deal

with the same issue.

In many applications of MRFs, the size of the random field can be extremely

large, the rows and columns of the lattices are often in the order of hundreds or

even thousands. In this article, we propose a new approach which is able to handle

arbitrarily large lattices. Our approach takes advantage of the conditional indepen-

dence structure of the MRF defined on a regular lattice, and recursively divides the

field into smaller sub-MRFs. Each sub-MRF is then approximated by another Potts

model, with weaker spatial interaction as the size of the grid on the lattice increases.

3.2 A recursive decomposition method

Consider the first order neighbourhood structure defining the MRF. The left panel

of Figure 3.1 depicts the location of the latent variable z defined on a regular lat-

tice with a first order neighbourhood dependence structure. Here each black site

depends only on its neighbouring grey sites. A natural consequence of this depen-

dence structure is that, given the black sites, all the grey sites are independent, and

vice versa. Thus conditioning on the grey sites, and decomposing the Potts model of

Equation (3.1) we have

π(z|β) ≡ πpotts(z|β) = π(z(1)|z(2), β)π(z(2)|β), (3.2)

where z(1) corresponds to the grey sites in Figure 3.1, left panel. The conditional

independence property allows us to compute π(z(1)|z(2), β) directly as

π(z(1)|z(2), β) =

n1∏
i=1

exp{β
∑

i∼j I(z
(1)
i = z

(2)
j )}∑

z
(1)
i =1,...,q

exp{β
∑

i∼j I(z
(1)
i = z

(2)
j )}

(3.3)
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producting over all n1 observations in z(1).

Figure 3.1: Left panel: a first order neighbourhood MRF, with black and grey points
depicting z. Each site only depends on the nearest four neighbours of the other
color. Middle panel: the sub lattice z(2). Right panel: z(2) further divided into two
parts based on the first order neighbourhood.

The field z(2) is depicted by the middle panel in Figure 3.1. Here we approximate

the dependence structure of this sub-MRF with another MRF model using the first

order neighbourhood, as seen in the right panel of Figure 3.1. The dependence in

z(2) is weaker than the original MRF as the sites are further away from each other.

Thus we approximate z(2) again as a Potts model with first order neighbourhood

πpotts(z
(2)|αβ). That is,

π(z(2)|β) ≈ πpotts(z
(2)|αβ) (3.4)

with decay coefficient 0 ≤ α ≤ 1. Related references on long-range decay in spatial

interactions can be found in Kosterlitz (1974), Wu (1982), Aizenman et al. (1988) and

Luijten and Blöte (1995).

If the field in z(2) is large, then we can apply the same principle to z(2), as in

Equation (3.2), to obtain z(3) and z(4), and so on. Until we end up with a Potts field

for which computation for its normalizing constant becomes trivial. Hence, our ap-

proximation to the original Potts model by splitting the MRF into 2T fields is given

by

πpotts(z|β) ≈

{∏
i∈I

π(z(i)|z(i+1), α(i−1)/2β)

}
πpotts(z

(2T )|αTβ), (3.5)
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where I = {1, 3, · · · , 2T − 1}. When T = 0, Equation (3.5) degenerates to the original

Potts model. We term this approximation as recursive conditional decomposition

approximation (RCoDA). In the approximation above only the last term needs the

calculation of the normalizing constant, which is easy for small fields.

We have also considered more flexible forms for the decay structure by allowing

a different decay coefficient per sublattice, so that

πpotts(z|β) ≈

{∏
i∈I

π(z(i)|z(i+1), α(i−1)/2β)

}
πpotts(z

(2T )|αTβ), (3.6)

where α0 = 1 and 0 < α(i−1)/2 ≤ 1. The form in Equation (3.6) allows us to model ar-

bitrary forms of decay for β. Our simulations using this form of decay (not shown in

this article) produced similar results to those obtained via Equation (3.5), validating

the power law decay within the Potts model setting. However, we note that the more

flexible decay structure potentially provides a more flexible model than the standard

Potts model.

Computational tractability dictates that we choose value of splits T , such that

the Potts term on the right hand side of Equation (3.5) becomes small enough to be

tractable. Simulation studies for varying T over a range of values of β showed that

the results are largely insensitive to the choice of T . In practice, we can choose T so

that the size of z(2T ) is no larger than 4 × 4. Note also that in relatively large fields

with weaker spatial dependences, resulting in a large number of T , the factor αT−1

tends to zero. In these cases, the term πpotts(z
(2T )|αT−1β) in Equation (3.5) can be

treated as an independent random field.

Equation (3.5) can be viewed as an approximation to the q-state Potts model. Al-

ternatively, one can also view this model as being more flexible than the standard

Potts model, particularly when one is interested in understanding different types of

decay in the dependence when long range dependence is present. It is possible to
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model the rate of decay differently to what is considered in this paper. Here the de-

pendence at the T th sublattice is modelled as αTβ, where β is the global dependence

parameter. This rate of decay was found by several authors in several difference

applications, see Kosterlitz (1974), Wu (1982). We will investigate this assumption

more closely in Section 3.4. Another important question when an approximation is

used in place of the true likelihood, is whether this yields valid inference. Mona-

han and Boos (1992) introduces the notion of validity of posterior inference based on

the correct coverage probability. We will also validate the use of RCoDA under this

notion in Section 3.4.

3.3 Extensions to the second order structure

The most common neighbourhood structures in MRFs are the first and second or-

der (Besag 1974). One of the most common types of the second order structure for

2D MRFs is shown in Figure 3.2, where each site has eight neighbours. Different

definitions of neighbourhood structure affect the implementation of our algorithm.

Suppose we have a pixel v. In 2D MRF, assuming v locates at (i, j), its second order

neighbourhood includes {(i− 1, j), (i− 1, j + 1), (i, j + 1), (i+ 1, j + 1), (i+ 1, j), (i+

1, j − 1), (i, j − 1), (i− 1, j − 1)}. Figure 3.5 presents its second order neighbourhood

in multiple scenarios, including 3D scenarios. Figure 3.3 and Figure 3.4 show the 18

and 26 neighbourhood structures in 3D.

Our proposed methodology requires that we split the entire lattices into non-

overlapping sublattices. Here we use the“coding method” approach to obtain the

sublattices (see Besag (1974), Winkler (2003) and Wilkinson (2005)). The “coding

method” can be utilized to partition the lattices into several non-overlapping sub-

lattices. Given a lattice, there could be more than one way to partition the lattice.

For example, each pixel can be split as a sublattice. There is one value essential to
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our method, which is called chromatic number. Chromatic number is the minimum

number of sublattices one lattice can be partitioned into. More details on these can

be found in Feng (2008) and Feng et al. (2012). The chromatic number for a first

order structures is 2 in both 2D and 3D lattices, and 4, 4 and 8 in the second order

neighbourhoods structures with 8 neighbours in 2D, 18 neighbours in 3D and 26

neighbours in 3D respectively.

Figure 3.2: The second
order structure in 2D
MRF. Gray sites are
neighbourhoods of the
black site.

Figure 3.3: The first type
of second order structure
in 3D lattice: 18 neigh-
bourhoods structure. All
the gray sites are neigh-
bourhoods of the black
sites.

Figure 3.4: The second
type of the second or-
der structure in 3D lat-
tice: 26 neighbourhoods
structure. All the gray
sites are neighbouhoods
of the black site.

Figure 3.5: The second order structure in multiple scenarios.

Focusing on the case of the second order neighbourhood in 2D, we proceed by

first identifying the 4 sublattices using the coding method. Figure 3.10(a) shows the

corresponding lattice being split into 4 sublattices, corresponding to (z(1), z(2), z(3), z(4)).

Following the same decomposition as in Equation (3.2), we obtain

π(z|β) = π(z(1)|z(2), z(3), z(4), β)π(z(2)|z(3), z(4), β)π(z(3), z(4)|β). (3.7)

The first term on the right hand side of Equation (3.7) can be estimated as product of

full conditionals similarly to Equation (3.3), see Figure 3.10(a) for the neighbourhood

of z(1).

The second term π(z(2)|z(3), z(4), β) cannot be computed exactly, see Figure 3.10(b)

for a pictorial depiction of the field for (z(2), z(3), z(4)). This term is the marginal
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Figure 3.6: (z(1), z(2), z(3), z(4))
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Figure 3.7: (z(2), z(3), z(4))
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Figure 3.8: (z(3), z(4))
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Figure 3.9: Alternative labelling

Figure 3.10: (a) Using the coding method approach, a 6 × 6 lattice is split into 4
sublattices. Each sublattice is labelled by corresponding number. (b) Sublattices
with z(1) removed. (c) Sublattice of z(3), z(4). (d) Alternative labelling, swapping 2
with 4 in (a).

likelihood of the second order neighbourhood Potts model with z(1) integrated out,

and would be as difficult to compute as the original problem. We consider two types

of approximations for this term. In our first approximation, we assume conditional

independence between z(1) and z(2), thus allowing π(z(2)|z(3), z(4), β) to be computed

similarly to the first term, producting over all conditionally independent terms. We

term this approach as RCoDA marginal (RCoDA-M). In our second approximation,

using a similar approach to pseudo-likelihood approaches, we re-write the first two

terms on the right hand side of Equation (3.7) as

π(z(1), z(2)|z(3), z(4), β) = π(z(1)|z(2), z(3), z(4), β)π(z(2)|z(1), z(3), z(4), β), (3.8)
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where both terms on the right hand side can be computed easily due to the con-

ditional independence properties of these two subfields. We term this approach as

RCoDA conditional (RCoDA-C).

Finally, the remaining field involving only (z(3), z(4)) (as shown in Figure 3.10(c)),

can again be approximated by a second order neighbourhood Potts model of the

form πpotts(z
(3), z(4)|αβ). This is done similarly to the first order case, and again mod-

elling the spatial correlation with a decay term α. Note that the distances between

sites only increase either between rows, or columns depending on the iteration of the

recursion. For example, in Figure 3.10(c), the distance between the rows has doubled.

But the distance between the columns is still unchanged. If we keep decompose the

resulting lattice, the dependence can only decay in the rows’ direction. According

to the definition of β, it denotes the overall dependence in a lattice. Therefore, if

the dependence only decay in one direction, we can’t use the overall decay structure

for β. To overcome this issue, we use alternate labelling between each iteration of

the recursion. For example, the labels between 2 and 4 are swapped in 3.10(d) after

each recursion, increasing the distance between columns after this iteration. In sum-

mary, for every two iterations the distances change uniformly over the entire field.

Since the distance increases in both directions, in other words, uniformly, the decay

structure can be used in the second order neighbourhood structure.

Although more complicated neighbourhood structures work under the same prin-

ciple, their conditional independence structures may not be as easy to take advan-

tage of, especially those with higher chromatic numbers.

3.4 Simulation study

In this section we perform extensive simulation studies to validate the proposed

approach. Where possible, we compare our results with other existing methods.
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Simulations are performed for both first and second order neighbourhoods defined

on a regular 2D lattice.

3.4.1 First order neighbourhood

We first evaluate the performance of our estimation of β, for the first order neigh-

bourhood dependences. We consider 2D lattices of sizes 32×32, 128×128 and 256×256.

It is well known that the Potts model exhibits the so called phase transition, where

for β > βcrit, the model will transit from disordered to ordered pattern or phase.

This means that the sites will eventually all be in the same state as β increases. For a

general q-state model, the precise value of the critical value is difficult to determine.

For the Ising model (q = 2) defined over 2D lattice, Potts (1952) suggests setting

βcrit = log(1 +
√
q), with βcrit ≈ 0.88 for q = 2 and βcrit ≈ 1.01 for q = 3. Barkema and

de Boer (1991) suggests setting the critical values to 0.44 for q = 2 and 0.503 for q = 3.

This is not compatible with the conclusion in Potts (1952) because they use different

definitions of Potts model. In Barkema and de Boer (1991) Potts model is defined as

π(z|β) = exp{β
∑

i∼j zizj}/C(β), where zi ∈ {−1, 1}. This defination is different with

Equation 3.1. But in essence, they have same conclusion on critical value. Here we

will restrict our analyses to β below the critical values recommended by Potts (1952),

and consider the set of values 0.1, 0.2, . . . , 0.8 for β .

For each value of β, we simulated 200 replicate datasets from the q-state Potts

model using MCMC. Data from the Potts model was generated using Gibbs sam-

pling using purpose written codes in Matlab. The final iterate after 5000 MCMC

steps was then used as the observed data from the Potts model. Throughout our

implementations of RCoDA, the priors β ∼ U(0, 0.9) and α ∼ U(0, 1) were used, and

MCMC was used to obtain posterior estimates for both α and β. Approximately 6000

iterations with the first 2000 iterations as burn in were sufficient to obtain conver-

gence for all models implemented. For lattices of sizes 32×32, 128×128 and 256×256,
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we decomposed the field until the smallest one is 4×4, corresponding to T = 6, 10, 12

respectively for the three different sized lattices.

For comparison, we also implemented PL (Besag 1974), TDI (Green and Richard-

son 2002) and RDA (Friel et al. 2009) methods. With the exception of RDA, all meth-

ods were implemented in Matlab, RDA was implemented using the modified codes

kindly provided by the authors. Although RDA can be applied to lattices of any

size, RDA was only implemented for the small field with q = 2. Because the method

was developed for q = 2, and the available codes were not applicable to larger sized

lattices. When m is too large, the codes can’t be successfully implemented. For all

the implementation of RDA, we choose m1 = 10.

TDI was implemented following the procedures in Green and Richardson 2002.

We choose the grid of β as follows: the interval of β is chosen as [0, 3.1] and the

interval was equally segmented with step size equal to 0.01. The Monte Carlo sam-

ples of Potts model were generated by using Gibbs sampler in Feng (2008). We run

the Gibbs sampler for 5000 iterations which ensures the target distribution has con-

verged. Then we continued to run the Gibbs sampler for another 5000 iterations,

generating 5000 samples of Potts model.

Table 3.1 shows the root mean squared error of the β estimation for q = 2 and

q = 3, for lattice sizes of 32 × 32, 128 × 128 and 256 × 256. The results are very

similar for the different values of q and β. While all the methods obtained small

root mean squared error estimates, the performances in larger lattices between the

different methods were almost indistinguishable.

We have also investigated the effects of using different values of T , i.e., the num-

ber of times to split the random field, and again the results were broadly insensitive

to this specification. Numerical results are omitted from presentation here.

To further investigate the appropriateness of using the decay rate of αTβ, 0 <

α < 1 over the T splits of the random field, we separately estimated the value of
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β 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

322

RCoDA
q=2 0.039 0.047 0.048 0.053 0.053 0.057 0.057 0.051
q=3 0.039 0.047 0.051 0.051 0.053 0.049 0.049 0.046

PL
q=2 0.043 0.046 0.044 0.049 0.048 0.046 0.046 0.053
q=3 0.044 0.046 0.047 0.049 0.051 0.044 0.042 0.047

TDI
q=2 0.040 0.042 0.042 0.043 0.038 0.037 0.036 0.032
q=3 0.040 0.044 0.045 0.045 0.045 0.039 0.034 0.034

RDA
q=2 0.040 0.043 0.042 0.043 0.038 0.037 0.036 0.032
q=3 - - - - - - - -

1282

RCoDA
q=2 0.011 0.012 0.011 0.014 0.012 0.014 0.016 0.017
q=3 0.011 0.012 0.011 0.011 0.011 0.012 0.012 0.013

PL
q=2 0.011 0.011 0.011 0.012 0.011 0.011 0.012 0.012
q=3 0.011 0.012 0.011 0.011 0.011 0.010 0.011 0.011

TDI
q=2 0.011 0.011 0.010 0.010 0.009 0.009 0.008 0.007
q=3 0.011 0.011 0.010 0.010 0.010 0.009 0.008 0.008

2562

RCoDA
q=2 0.006 0.005 0.006 0.006 0.006 0.008 0.009 0.013
q=3 0.006 0.006 0.005 0.007 0.006 0.006 0.007 0.007

PL
q=2 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.006
q=3 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.006

TDI
q=2 0.005 0.005 0.006 0.005 0.005 0.004 0.004 0.004
q=3 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004

Table 3.1: Root mean squared error of β for a first order neighbourhood dependence.
Based on 200 simulated data sets for each 32×32, 128×128 and 256×256 lattices.
q = 2 and q = 3.

βT for each T th sublattice using the full Potts model, PL was used to obtain the esti-

mate for βT . Figure 3.11 shows the averaged estimate of βT and αTβ over 200 data

sets simulated at β = 0.5, 0.6, 0.7, 0.8. The model used here was a q = 2 state Potts

model over a 256×256 lattice for different values of β. For very small lattice sizes

or very weak dependences, the PL estimate is not reliable, possibly due to excessive

boundary influence. Therefore, we show the decay for T up to 8, corresponding to

the smallest estimated lattice size of 16x16. Figure 3.11 shows the curve αTβ and βT

for T = 0, . . . , 8, with the true β = 0.5, 0.6, 0.7, 0.8. The graphs show a good match

between the estimated βT and αTβ, suggesting such a decay structure is appropriate.

Figure 3.12 shows the 95% empirical coverage probabilities, estimated over vary-

ing values of β and for q = 2 and q = 3 on a 32×32 lattice. For a given value of β,

we simulated 200 datasets based on β. For each dataset, a 95% posterior credibility
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Figure 3.11: Plot of αTβ using RCoDA (solid line) against βT (dashed line), estimated
by PL for the T th sublattice, for a q = 2 model over 256×256 lattice, and at β =
0.5, 0.6, 0.7, 0.8 from left to right.
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Figure 3.12: 95% empirical coverage probabilities for the 32 × 32 lattice with a first
order neighbourhood, q = 2 (left) and q = 3 (right).

interval of β is recorded and the proportion of intervals containing the initial value

of β was recorded. It can be seen that the coverage probabilities of RCoDA, TDI and

RDA are all close to the nominal level, suggesting that these methods yield valid

inferences, see Monahan and Boos (1992). For TDI, this is expected, since the likeli-

hood is exact. However, the coverage of PL is noticeably smaller than the nominal

level, particularly at the weaker dependences. The phenomenon also corresponds

to a generally narrower posterior variance estimate from our simulation results (not

shown here). This is unsurprising since the pseudo-likelihood is a special case of
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composite likelihoods, and direct computation using MCMC can result in posterior

variances that are too small, see Varin et al. (2011) and Pauli et al. (2011) for discus-

sions.

3.4.2 Second order neighbourhood

For the second order neighbourhood study, we again considered the q = 2 and

q = 3 state Potts model over 32×32, 128×128 and 256×256 lattices. The RDA method

was omitted here. In order to determine the critical value for β, we monitored the

changes in the value of E(U(z)|β), where U(z) =
∑

i∼j I(zi = zj). U(z) is the to-

tal number of pairs in z. Figures 3.13(a)-(c) presents the changes in E(U(z)|β) as β

changes, for a number of different sizes of lattices. The estimated value of E(U(z)|β)

was obtained by Monte Carlo method similar to that used for TDI. It can be seen that

the estimates stabilise around 0.4. Figure 3.13(d) presents one realization of the Ising

model at β = 0.4, where the figure begins to be dominated by one colour, which

is a sign of phase transition. Therefore, we restrict our study to β < 0.4. See also

Green and Richardson (2002), Gelman and Meng (1998) and Moores et al. (2015)

who discusses the uses of E(U(z)|β) in inference.
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Figure 3.13: Estimates of E(U(z)|β)for Ising model over different lattice size: (a) 8×8
(b) 16×16 and (c) 32×32. Vertical line correspond to β = 0.4. (d) shows simulation of
one realization of the Ising model at β = 0.4.

Table 3.2 shows the root mean squared errors of the β estimation for q = 2 and 3

over the varying lattice sizes, using RCoDA-C, RCoDA-M, PL and TDI. The results
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were computed over 200 simulated data sets at β = 0.1, 0.2 and 0.3. The results sug-

gest no significant difference in performance over the values of q. For the larger lat-

tices, RCoDA-C, PL and TDI all performed similarly in terms of root mean squared

errors. RCoDA-M, which assumes marginal independence, was worse overall com-

pared to RCoDA-C, which uses a partial pseudo-likelihood. For the 32×32 lattice,

RCoDA methods performed worst, this suggests that it is not suitable to use decom-

position in second order neighbourhoods when lattice sizes are too small, since the

method of splitting requires that we should have at least several iterations. So when

the lattice size is too small, the relative bias will be larger.

Figure 3.14 shows the empirical coverage probabilities computed under similar

conditions to those for first order neighbourhood simulations. Again, we see that the

PL methods do not achieve good coverage, where as both RCoDA and TDI achieve

good coverage, with RCoDA-C performing fairly consistently better.

322 1282 2562

β q RCoDA-M RCoDA-C PL TDI RCoDA-M RCoDA-C PL TDI RCoDA-M RCoDA-C PL TDI

0.1
2 0.029 0.029 0.026 0.025 0.008 0.008 0.003 0.006 0.005 0.004 0.003 0.003
3 0.031 0.033 0.029 0.027 0.004 0.004 0.003 0.007 0.004 0.004 0.003 0.003

0.2
2 0.036 0.031 0.025 0.024 0.015 0.007 0.003 0.006 0.013 0.004 0.003 0.003
3 0.031 0.029 0.026 0.025 0.009 0.004 0.003 0.006 0.009 0.004 0.003 0.003

0.3
2 0.038 0.027 0.021 0.018 0.032 0.007 0.002 0.004 0.031 0.004 0.002 0.002
3 0.031 0.025 0.020 0.019 0.023 0.004 0.003 0.004 0.023 0.004 0.003 0.002

Table 3.2: Root mean squared error of β for a second order neighbourhood depen-
dence. Based on 200 simulated data sets for each 32×32, 128×128 and 256×256 lat-
tices. q = 2 and q = 3.

3.5 Real data application

Texture analysis is an important branch of computer vision and pattern recognition.

Texture analysis characterises regions on an image by their texture content. Any

measure (such as gray scale on a photographic image) that provides a value at each

pixel, can be used to segment the image into regions of similar textures.

Natural scenes such as sand, stones, grass, leaves, bricks and other objects cre-
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Figure 3.14: 95% empirical coverage probabilities for the 32× 32 lattice with a second
order neighbourhood, q = 2 (left) and q = 3 (right).

ate a textured appearance in images. Texture gives us information about the spa-

tial arrangement of intensities in an image. In robotic applications, interest may be

in separating weed from grass in automatic weed control systems (Watchareerue-

tai et al. (2006)). In texture synthesis, the primary purpose is to reproduce and

enlarge the texture in a given image so that the natural and synthetic texture will

be visually indiscernible. Haindl et al. (2012) proposed the use of Markov ran-

dom field models for this purpose. The images are available online, at http:

//sipi.usc.edu/database/database.php?volume=textures. The image

was originally studied in Brodatz (1966). Without loss generality, we take the first

256 rows and 256 columns as our data of interest, see Figure 3.15.

We use a two-component Gaussian mixture model to model the grass data. The

posterior distribution is given in Equation 1.2.2, with π(yi|θ, zi) given by the com-

ponent Normal distribution according to zi, with parameters µj and σj, j = 1, 2

indicating the component mean and variance. The distribution of z is the Ising

model as given in Equation 3.1. We set prior distributions for µj ∼ N(0.5, 1002) and

σ2
j ∼ IG(0.001, 0.001), j = 1, 2. The prior of β is set to to Uniform distribution be-

tween 0 to 4. A Metropolis-Hastings algorithm was used in the MCMC. 6000 MCMC

iterations was implemented, while the first 2000 iterations were thrown away as
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Figure 3.15: Grass image.

burn-in. We fitted the Ising model with first order and second order neighbourhood

structure respectively. The results are presented in Table 3.3.

µ1 µ2 σ1 σ2 β

PL-(F) 0.251 0.609 0.013 0.019 1.364
(0.0022) (0.0015) (0.00026) (0.00027) (0.017)

RCoDA-(F) 0.265 0.620 0.014 0.018 1.280
(0.0028) (0.0017) (0.00037) (0.00029) (0.022)

TDI-(F) 0.302 0.650 0.017 0.013 0.841
(0.0015) (0.0010) (0.00022) (0.00014) (0.0033)

PL-(S) 0.236 0.599 0.011 0.021 0.600
(0.0022) (0.0015) (0.00027) (0.00029) (0.0066)

RCoDA-C-(S) 0.252 0.611 0.013 0.019 0.567
(0.0025) (0.0016) (0.00029) (0.00030) (0.0080)

TDI-(S) 0.303 0.649 0.017 0.013 0.373
(0.0015) (0.0010) (0.00021) (0.00016) (0.0013)

Table 3.3: Posterior mean and standard deviation (in brackets) of grass data using
PL, RCoDA and TDI respectively. (F) denotes first order neighbourhood structure.
(S) denotes second order neighbourhood structure.

Table 3.3 presents the posterior mean and standard deviation of the two-component

Gaussian spatial mixture model using TDI and RCoDA (only RCoDA-C was im-

plemented for the second order neighbourhood) and PL. For both neighbourhood

structures, the estimates for β were considerably different between the three meth-

ods, although the component mixture parameters were fairly similar. In both cases,
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PL-(F) RCoDA-(F) TDI-(F) PL-(S) RCoDA-(S) TDI-(S)
95% 99.35 99.54 98.97 99.41 99.35 99.03
90% 96.77 97.24 96.11 97.16 97.08 96.18
80% 87.04 88.11 88.88 87.67 88.10 89.03

Table 3.4: Percentages of observed pixels which fall within the 95%, 90% and 80% of
the posterior predictive distributions.

PL gave the largest estimate for β, followed by RCoDA and TDI always produced

smaller estimates for β. Since for simulated data, where we know that the data comes

from the Potts model, the results produced by the three methods were very similar,

this suggests that the grass image may not closely follow a Potts model. However,

since we do not know the truth, the effect of the three different methods becomes

difficult to evaluate.

In order to assess the estimation from the three different approaches, we consider

the use of posterior predictive distributions. For each posterior sample, we can sim-

ulate an image dataset, consequently, for each pixel, we can compare the observed

value of that pixel with the posterior predictive distribution for that pixel. Table 3.4

shows the percentage of observed pixels which fall within a 95%, 90% and 80% of the

posterior predictive distributions. We can see that here the three methods are quite

similar, RCoDA having the higher proportions in most cases, indicative of a slightly

better performance.

This example illustrates that for real datasets, the effect of possible model mis-

specification has different implications depending on the computational methods

used. While a posterior predictive check appears to suggest all the methods are per-

forming similarly, the posterior parameter estimates are quite different. This illus-

trates the importance of model checking and validation in this type of applications.
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3.6 Discussions

In this chapter I have proposed a new method of estimating the q-state Potts model

without having to compute the usual intractable normalizing constant. My method

recursively partitions a regular lattice into a conditionally independent sublattice

and approximates the other by another Potts model with a weaker dependence. By

doing so, the method effectively avoids the computation of the troublesome normal-

izing constant. I presented the method in terms of first and second order neighbour-

hood structure on a 2D lattice. More complex lattices and dependence structures

may be possible but would be much more difficult to work with. The method was

demonstrated for q = 2 and q = 3 in this chapter, but can be applied to any q.

The proposed method is computationally efficient, the computational complex-

ity is of the same order of magnitude as that of PL. Table 3.5 shows computation

time for different algorithms. All methods are implemented for first order neigh-

bouhood structure problem. Both RCoDA, PL and TDI are implemented in Matlab.

The detailed information of CPU of our machine is: Intel(R) Core(TM) i7-3770 CPU

@ 3.40GHz. While RDA is implemented in C language.

size 32× 32 64× 64 128× 128 256× 256
RCoDA 0.014 0.018 0.034 0.075

PL 0.001 0.003 0.010 0.036
TDI 0.006 0.006 0.006 0.006
RDA 0.015 0.029 - -

Table 3.5: Computation time in seconds per iteration of MCMC. RDA is not imple-
mented for large lattice.

Regarding computational time, RCoDA is hybrid of PL and TDI. RCoDA gener-

ates a residual small lattice after several decompositions. The residual lattice can be

coped with in two different ways, as shown in Section 3.2. Residual lattice is either

treated as independent Potts model, or calculated by TDI. In the latter case, RCoDA’s

computational time includes calculation time of TDI.
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Once the precomputation table is finalised, computational time for TDI is fixed.

Each iteration, TDI needs to calculate corresponding normalizing constant given the

fixed spline. It weakens TDI’s computational advantage that precomputation table

will take long time. though several choices can be used to calculate the final lattice

z2T, TDI is adopted in this paper. Therefore, complexity of RCoDA likelihood in-

volves PL calculation and TDI calculation. Moreover, the extra parameter αwill dou-

ble computation time for each iteration. This is indicated in Table 3.5 that RCoDA

takes approximately double time of the summation of PL and TDI. Although PL is

the fastest algorithm among the four, it has been shown that variance estimation in

PL is not reliable. TDI has to implement off-line precalculation about normalizing

constant before the inference. And the off-line calculation takes significant time. It

is shown in Table 3.5 that RDA can’ t handle Potts model on large lattice. There-

fore, RCoDA is the only algorithm which is proper to use in large lattice. As size of

Potts model increases, the time consumed by RCoDA is approaching to two times

of PL. Because for very large lattice, the residual small lattice can be considered as

independent.

We have shown through our simulation studies that RCoDA obtains the correct

empirical coverage probabilities, whereas PL does not always do so. We have shown

that for the first order neighbourhood, the estimation in terms of root mean squared

error is competitive with several existing methods for different values of q and lattice

sizes. For the second order neighbourhood structure, RCoDA produces better results

when the size of the lattice is large.

Summarily, the advantage of RCoDA over other methods such as RDA and TDI,

is its scalability in q and lattice size. The significant difference between RCoDA and

these two methods is whether normalizing constant is calculated directly. Both RDA

and TDI aims to approximate normalizing constant C(β), while RCoDA view z as

joint distribution of zi, i = 1, 2, · · · , n. RCoDA avoids normalizing constant C(β) by
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approximation joint distribution directly.

There are some drawbacks of RCoDA as well. First, RCoDA takes longest time

in moderate size of Potts model, where RDA is still available. Even though TDI

may takes longer time than RCoDA when precalculation is included, RCoDA has no

advantage in terms of computational time. Second, RCoDA is troublesome with ir-

regular lattice. For irregular lattice, shape of Potts model on each sublattice changes

after each decomposition. Since β denotes overall spatial correlation in Potts model,

different shapes lead to different meanings of β. In other words, for irregular lattice,

meaning of β is not consistent over all decomposition. The level of consistency of β

during decomposition determines how appropriate to use RCoDA. I denote the con-

sistency as 100% For regualr lattices, since all the sublattices are exactly of identical

shape with the original lattice. The higher consistency is, the more appropriate to

use RCoDA. According the above rule, the lattices whose irregularity only happens

at the boundary are more appropriate to apply RCoDA than the ones whose irreg-

ularity happens at both the boundary and internal area. It is complicated to mea-

sure consistency regarding shapes during decomposition. Given the complexity, it

is not worthy to measure the consistency in terms of computational efficiency. Even

though consistency is measured, it can’t be included in current RCoDA method. But

this does not mean that RCoDA is not proper to all the irregular lattices. For the lat-

tices where only on the boundary is irregular, the consistency is very high. RCoDA is

still one of competitive methods to deal with normalizing constant issue in practice.

Only the standard form of Potts model is discussed in this chapter. Generaliza-

tion of the proposed RCoDA methods to variants of Potts models, such as the Potts

model with an external field is of interest in my future work. I will develop another

method in next chapter which will alleviate the drawbacks of RCoDA mentioned

before.
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Chapter 4

Monte Carlo method for partial

conditional distribution in Markov

random field

In this Chapter, another method was proposed for solving the same problem dis-

cussed in Chapter 3. The density function of the Potts model is decomposed into

many conditional distributions. They are substituted by corresponding sufficient

summary statistics. The distributions of the summary statistics are approximated

by Monte Carlo simulations. Therefore, the density function of the Potts model is

calculated without calculation of the normalizing constant.

4.1 Monte Carlo method

4.1.1 Conditional decomposition

The regular lattice z can be vectorized by row or by column. Here, we choose

to vectorize it by column. For n × n MRF, z is transformed into a vector zv =

(z1, z2, · · · , zn2−1, zn2)′. We rewrite the likelihood function of the Potts model accord-
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ing to the following conditional decomposition

π(z|β) = π(z1|β)
n2∏
i=2

π(zi|z1:i−1, β) ≈
n2∏
i=2

π(zi|(z1:i−1 ∩ ∂i), β), (4.1)

where z1:i−1 denotes the set {z1, z2, · · · , zi−1}, ∂i denotes the neighbourhood of i. Let

Si denote the intersection, i.e. Si ≡ (z1:i−1 ∩ ∂i). As n increases, the contribution

of z1 is asymptotically irrelevant. Therefore, we can ignore π(z1|β) in the middle

step of Equation 4.1. Such setting can be also found in White et al. (2015). Al-

though π(z1|β) has very little impact on the final result of computation, the com-

putation ofπ(z1|β) itself is not easy. Therefore, ignoring π(z1|β) will alleviate the

burden of the whole computation of Equation 4.1. Besag (1974) suggested the uni-

lateral scheme approximation to approximate π(zi|z1:i−1, β). According to unilat-

eral approximation, any term π(zi|z1:i−1, β) in Equation 4.1 can be approximated as

π(zi|(z1:i−1 ∩ ∂i), β), i = 2, 3, · · · , n2. All the pixels in the Potts model are homoge-

neous (Feng et al. (2012)). Therefore, the marginal distribution of zi does not vary

with the location of zi. Although unilateral approximation is simple to implement,

its drawback is obvious as it drops some dependence during the approximation.

It is notable that π(zi|z1:i−1, β) = π(zi|(z1:i−1 ∩ ∂i), β) does not hold. We can only use

π(zi|(z1:i−1 ∩ ∂i), β) to approximate π(zi|z1:i−1, β). According to the Markov prop-

erty of Potts model, the conditional distribution of zi only depends on its full neigh-

bourhood given all the other zjs. In other words, when the conditional items in-

clude all the neighbours of zi, the other zjs can be ignored. Apparently, z1:i−1 does

not include the full neighbourhood of zi. Therefore, the equation π(zi|z1:i−1, β) =

π(zi|(z1:i−1 ∩ ∂i), β) does not hold.

Here is the proof why π(zi|z1:i−1, β) = π(zi|(z1:i−1∩∂i), β) does not hold. It is straight-
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forward to see that,

π(zi|z1:i−1, β) =

∫
π(zi|z1:i−1, zi+1, zi+n, β)π(zi+1, zi+n|z1:i−1, β)dzi+1dzi+n

=

∫
π(zi|z∂i, β)π(zi+1, zi+n|z1:i−1, β)dzi+1dzi+n,

and

π(zi|(z1:i−1 ∩ ∂i), β) =

∫
π(zi|(z1:i−1 ∩ ∂i), zi+1, zi+n, β)π(zi+1, zi+n|(z1:i−1 ∩ ∂i), β)dzi+1dzi+n

=

∫
π(zi|z∂i, β)π(zi+1, zi+n|(z1:i−1 ∩ ∂i), β)dzi+1dzi+n.

Where zi+1, zi+n denote the other neighbours of zi which are not included in the

set z1:i−1. Obviously, π(zi+1, zi+n|(z1:i−1 ∩ ∂i), β) 6= π(zi+1, zi+n|z1:i−1, β). Therefore,

π(zi|z1:i−1, β) 6= π(zi|(z1:i−1 ∩ ∂i), β).

If (z1:i−1 ∩ ∂i) = ∂i, terms at the right side of Equation 4.1 becomes π(zi|∂i) which

can be calculated without much trouble according to the following full conditional

distribution,

π(zi = k|∂i) =
exp{β

∑
j∈∂i I(zj = k)}∑q

l=1 exp{β
∑

j∈∂i I(zj = l)}
, k = 1, 2, · · · , q. (4.2)

However, it happens more often that (z1:i−1 ∩ ∂i) is a proper subset of ∂i. In such

scenarios, π(zi|(z1:i−1 ∩ ∂i), β) is named as partial conditional distribution (PCD).

Although this PCD is distributed as a multinomial distribution, the analytic form

with respect to β is unknown. Therefore, the analytic form of Equation 4.1 remains

unknown. For each term in the right side of Equation 4.1, Monte Carlo method is

adopted to investigate the PCDs, which is introduced in Section 4.1.2.
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4.1.2 Monte Carlo approximation of PCD

As an example, the first order neighbourhood structure in the Ising model is utilized

to illustrate our Monte Carlo approximation in this Section. Besag (1974) suggested

the first order neighbourhood structure which indicated that pixels which are on the

left, right, back and front are deemed as the neighbours of the central pixel. The

structure can be visualized in the left panel of Figure 4.1 where {zA, zB, zD, zE} are

neighbours of zC .

zA

zC

zB

zD zE

zA

zCzD

Figure 4.1: Left panel: the first order neighbourhood dependence structure. Right
panel: partial conditional dependence of zC given zA and zD.

A typical example of set Si in the right side of Equation 4.1 satisfies the following,

Si ⊂ ∂i and Si 6= ∅. Due to most of the Si’s having two components, we suppress

the subscript in Si to S to make the notation simpler. Monte Carlo simulation can

be implemented regarding PCD directly, as it is known that π(zC |zA, zD, β) is dis-

tributed as Bernoulli distribution. Let π̂(zi|(z1:i−1 ∩ ∂i), β) denote the Monte Carlo

approximation of π(zi|(z1:i−1 ∩ ∂i), β). Thus, Equation 4.1 can be approximated as

the following,

π(z|β) ≈
n2∏
i=2

π̂(zi|(z1:i−1 ∩ ∂i), β). (4.3)

However, Monte Carlo simulation regarding summary statistics is adopted in this

approximation. The reasons why Equation 4.3 is not utilized is discussed in Section

4.3.1. Also the detailed description of the Monte Carlo simulation is outlined in the
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following pages.

A new random variable P S is defined for pixel i, which denotes the number of

pairs of zi given S. The random variable P S is a sufficient summary statistic of this

PCD as P S provides all necessary information required for inference of β. The pos-

sible realization of P S is in {0, 1, 2}, as there are two elements in S. Even though the

analytic form of P S is unknown, it is certain that the P S is distributed as a multino-

mial distribution. It is straightforward to see that P S is sufficient statistic of π(zi|S, β).

In the rest of this Section, Monte Carlo simulation regarding the distribution of P S is

discussed.

As there are two components in S, π(zC |zA, zD, β) is used to denote the typical

PCD of interest which corresponds to the typical term in the right side of Equation

4.1. The right panel of Figure 4.1 shows geographical relationship between zC and

its two conditional items zA and zD. We term the structure in the right panel of

Figure 4.1 as unit structure. Conditional type (CT) is defined prior to description

of the Monte Carlo approximation method. CT denotes possible combination of

conditional items zA and zD. The combination of zA and zD determines different

multinomial distribution. In other words, the number of CT’s is equal to the number

of multinomial distributions to approximate. Combinatorially it is easy to see that

there are 22 combinations of zA and zD.

We take advantage of interchangeability of the Potts model as well as the unit

structure. Interchangeability means that combination is irrelevant with positions

of conditional items in unit structure. In other words, zA and zD can switch their

positions and their combination remains unchanged. In addition, the values of con-

ditional items have no real meaning and relabelling them makes no difference to

conditional type. Given these properties of the unit structure, the number of CT’s is

reduced from 22 to 2. The first CT is zA = zD, while the second CT is zA 6= zD.

The goal of Monte Carlo approximation is to approximate the distribution of
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P S under different CT. Since there are two elements in S, the sample space of P S

is {0, 1, 2}. More specifically, we need to approximate π(P S = 0), π(P S = 1) and

π(P S = 2) for each CT using Monte Carlo method. Let CT1 denote the the first CT

zA = zD and CT2 denote the second one zA 6= zD.

In context of the n × n Potts model, our Monte Carlo process is described as

follows:

1. Given β, generate one realization of the Potts model z using the Gibbs sampler

as in Feng (2008).

2. For each pixel zi, initially identify related unit structure centered at zi. Subse-

quently, determine the CT of each unit structure according to the relationship

between conditional items. Then count the number of pairs in the unit struc-

ture and record it accordingly. In one sweep of this step, n2 unit structures are

identified and n2 numbers are recorded.

3. Repeat the previous two steps until the Monte Carlo sample size is large enough.

Subsequently, enough counts of pairs are obtained for each CT.

4. For each CT, normalize the counts to obtain corresponding frequencies in multi-

nomial distribution.

Following the above procedure, we can obtain approximated distributions of P S

given β. The same procedure can be implemented over a grid of β. These approxima-

tions are referred to as look-up table of the method. If the grid of β is dense enough,

good approximations of the multinomial distributions with respect to β would be

achieved.

Once the multinomial distributions of the P S are approximated, the likelihood

function of Equation 4.1 can be given as

π(z|β) ∝
n2∏
i=2

π̂(P Si |β), (4.4)
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where π̂(P Si |β) denotes the approximated multinomial distribution of P Si . We term

the method using Equation 4.4 as Monte Carlo approximation of partial conditional

distribution (MCAPCD).

The proposed method has a number of advantages. First of all, approximation of

multinomial distributions can be achieved by drawing samples from a Potts model

of arbitrary size due to the independence between the multinomial distributions and

the sizes of the Potts models. MCAPCD can use samples from small Potts models

to infer about large Potts models. This alleviates burden in making inference about

large Potts models. The statement on the independence between the multinomial

distributions and the sizes of the Potts models will not be proved here. Instead, I

will show part of our simulation results to justify the independence. The distribution

of Ising model under CT1 is taken as an example. The detailed procedures of the

simulation are same as the steps stated in the Monte Carlo procedures above. The

estimated multinomial distributions for three different sized Potts models are shown

in Table 4.1. We can see that the difference between different sized models is trivial.

In practice, it is much more difficult to generate a large Potts model than a small one

in terms of computation. More importantly, unlike other Monte Carlo methods, such

as TDI, it is unnecessary to sample for all kinds of Potts models of different sizes,

since the approximation of multinomial distribution does not change with the sizes

of Potts models. Once the approximated multinomial distributions are obtained,

they can be reused in inferring about different sized Potts models. Last, but not least,

MCAPCD saves a great deal of time on Monte Carlo sampling as one realization of

z produces n2 samples in MCAPCD. In contrast, most other Monte Carlo methods

count one realization as one sample. In this sense, MCAPCD is approximately n2

times faster than other methods, such as TDI (Green and Richardson 2002).

89



β 32× 32 64× 64 128× 128
0.050 0.474 0.000 0.526 0.475 0.000 0.525 0.475 0.000 0.525
0.100 0.451 0.000 0.549 0.450 0.000 0.550 0.450 0.000 0.550
0.150 0.425 0.000 0.575 0.425 0.000 0.575 0.425 0.000 0.575
0.200 0.398 0.000 0.602 0.400 0.000 0.600 0.400 0.000 0.600
0.250 0.376 0.000 0.624 0.375 0.000 0.625 0.375 0.000 0.625
0.300 0.352 0.000 0.648 0.351 0.000 0.649 0.351 0.000 0.649
0.350 0.325 0.000 0.675 0.326 0.000 0.674 0.326 0.000 0.674
0.400 0.302 0.000 0.698 0.302 0.000 0.698 0.303 0.000 0.697
0.450 0.281 0.000 0.719 0.279 0.000 0.721 0.279 0.000 0.721
0.500 0.254 0.000 0.746 0.255 0.000 0.745 0.255 0.000 0.745
0.550 0.236 0.000 0.764 0.231 0.000 0.769 0.231 0.000 0.769
0.600 0.206 0.000 0.794 0.208 0.000 0.792 0.208 0.000 0.792
0.650 0.184 0.000 0.816 0.185 0.000 0.815 0.185 0.000 0.815
0.700 0.162 0.000 0.838 0.162 0.000 0.838 0.162 0.000 0.838
0.750 0.139 0.000 0.861 0.139 0.000 0.861 0.139 0.000 0.861
0.800 0.116 0.000 0.884 0.115 0.000 0.885 0.115 0.000 0.885
0.850 0.085 0.000 0.915 0.089 0.000 0.911 0.089 0.000 0.911
0.900 0.056 0.000 0.944 0.061 0.000 0.939 0.062 0.000 0.938
0.950 0.037 0.000 0.963 0.044 0.000 0.956 0.046 0.000 0.954
1.000 0.030 0.000 0.970 0.033 0.000 0.967 0.035 0.000 0.965

Table 4.1: The multinomial distribution of Ising model under CT1 for different sized
model, 32× 32 and 64× 64.

4.1.3 Generalization to higher order Potts model

MCAPCD can be generalized to higher order Potts models. For example, the sec-

ond order neighbourhood structure proposed in Besag (1974) is considered in this

Section. For higher order Potts models, more complicated unit structures apply.

The second order structure is presented in Figure 4.2 where the pixels except zC

are neighbours of zC . Figure 4.3 demonstrates a typical unit structure for the second

order Potts model.

The difference between the second order and the first order is that there are four

rather than two conditional items in each unit structure. It is obvious that more

conditional items result in more CT’s, leading us to approximate more multinomial

distributions. However, it is guaranteed that the number of distributions to approx-
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Figure 4.2: Second oder neighbour-
hood structure. The pixels other than
zC are neighbours of zC .

zA

zCzD

zF

zI

Figure 4.3: Partial conditional distri-
bution.

Figure 4.4: Second order Potts model.

imate is less than q(#S), which is the number of distributions to approximate if sum-

mary statistics are not utilized. Although there are more CT’s to approximate for the

second order neighbourhood structure, the main procedure remains the same as the

first order neighbourhood structure. As a consequence, the details of MCAPCD for

the second order neighbourhood structure will be omitted.

It is noticeable that in both the first order and the second order neighbourhood

structures, most typical terms are illustrated in details. Despite that, there are special

pixels which are different in each scenario. For example in the first order neighbour-

hood structure, only one neighbour is given in the unit structure for the pixels which

are located on the left or upper boundaries of the lattice. In this case, the conditional

type should be determined separately. Thus, the multinomial distribution should be

approximated separately. Nonetheless, the main process is same as the above.

4.2 Simulation study

In this Section, the simulation results from different methods are demonstrated. Var-

ious scenarios are included: different q and different lattice size. The look-up tables
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required in TDI and MCAPCD are calculated beforehand.

4.2.1 First order neighbourhood lattice

It is well known that the Potts models exhibit the so-called “phase transition”, where

for β > βcrit, the Potts models will transit from a disordered to an ordered pattern

or phase. This means that the sites will eventually all be in the same state as β in-

creases. For a general q-state model, the precise value of the critical value is difficult

to determine. For q = 2, 3, 4, Potts (1952) developed the exact solution of critical

points βcrit = log(1 +
√
q) which is about 0.88 for the Ising models (q = 2). Here we

will restrict our analyses to β below the critical values, and consider the set of values

0.1, 0.2, . . . , 0.8 for β .

We have also compared performance of methods for the Potts models with q = 3,

omitting the method RDA, which cannot be easily extended to the case for higher q.

As shown in Table 4.2, three different sizes are demonstrated, including 32 × 32,

128× 128 and 256× 256. Root mean squared error (RMSE) is selected to indicate the

goodness of estimation. Overall, MCAPCD outperforms other methods with respect

to RMSE. More detailed, the RMSE behaves quite differently in terms of different

factors. In terms of spatial correlation strength β, MCAPCD and TDI perform better

as β increases. Whereas other methods have the opposite behavior. In terms of

the sizes of Potts models, all methods improve their performances as the sizes of

Potts models get larger, since larger Potts models lead to larger sample sizes. The

performance seems to have no correlation with q. In other words, these methods can

be applied to Potts model with any q.

4.2.2 Second order neighbourhood lattice

The phase transition also exists in the second order neighbourhood Potts models.

The critical values for the second order Potts models cannot be obtained in a closed
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β 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

322

RCoDA
q=2 0.039 0.047 0.048 0.053 0.053 0.057 0.057 0.051
q=3 0.039 0.047 0.051 0.051 0.053 0.049 0.049 0.046

PL
q=2 0.043 0.046 0.044 0.049 0.048 0.046 0.046 0.053
q=3 0.044 0.046 0.047 0.049 0.051 0.044 0.042 0.047

TDI
q=2 0.040 0.042 0.042 0.043 0.038 0.037 0.036 0.032
q=3 0.040 0.044 0.045 0.045 0.045 0.039 0.034 0.034

MCAPCD
q=2 0.037 0.046 0.044 0.043 0.039 0.037 0.031 0.028
q=3 0.039 0.045 0.046 0.043 0.039 0.038 0.032 0.034

1282

RCoDA
q=2 0.011 0.012 0.011 0.014 0.012 0.014 0.016 0.017
q=3 0.011 0.012 0.011 0.011 0.011 0.012 0.012 0.013

PL
q=2 0.011 0.011 0.011 0.012 0.011 0.011 0.012 0.012
q=3 0.011 0.012 0.011 0.011 0.011 0.010 0.011 0.011

TDI
q=2 0.011 0.011 0.010 0.010 0.009 0.009 0.008 0.007
q=3 0.011 0.011 0.010 0.010 0.010 0.009 0.008 0.008

MCAPCD
q=2 0.011 0.012 0.011 0.011 0.009 0.010 0.009 0.006
q=3 0.012 0.011 0.012 0.011 0.009 0.009 0.010 0.008

2562

RCoDA
q=2 0.006 0.005 0.006 0.006 0.006 0.008 0.009 0.013
q=3 0.006 0.006 0.005 0.007 0.006 0.006 0.007 0.007

PL
q=2 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.006
q=3 0.006 0.005 0.006 0.006 0.005 0.006 0.006 0.006

TDI
q=2 0.005 0.005 0.006 0.005 0.005 0.004 0.004 0.004
q=3 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004

MCAPCD
q=2 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.004
q=3 0.006 0.006 0.006 0.006 0.005 0.005 0.006 0.004

Table 4.2: Root mean squared error of β for a first order neighbourhood dependence.
Based on 200 simulated data sets for each 32×32, 128×128 and 256×256 lattices.
q = 2 and q = 3.

form. Chapter 3 concluded that the critical values for the second order Potts models

should be smaller than 0.4. Therefore, all the simulations were implemented for the

Potts models with β < 0.4. For more details about critical values of the second order

Potts models, see Chapter 3.

Table 4.3 shows RMSE for all the methods with q = 2 and q = 3. Overall,

MCAPCD outperforms other methods with respect to RMSE. As spatial correlation

becomes stronger, MCAPCD performs better. While other methods obtain larger

RMSE. In terms of size of Potts model, all the methods can improve their perfor-

mance as size increases. But q does not have much impact on the performance of

these methods. In summary, MCAPCD gets much smaller RMSE under various sce-
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β 0.1 0.2 0.3
q=2 q=3 q=2 q=3 q=2 q=3

322

RCoDA 0.039 0.039 0.047 0.047 0.048 0.051
PL 0.043 0.044 0.046 0.046 0.044 0.047

TDI 0.040 0.040 0.042 0.044 0.042 0.045
MCAPCD 0.031 0.029 0.031 0.026 0.020 0.021

1282

RCoDA 0.011 0.011 0.012 0.012 0.011 0.011
PL 0.011 0.011 0.011 0.012 0.011 0.011

TDI 0.011 0.011 0.011 0.011 0.010 0.010
MCAPCD 0.009 0.008 0.007 0.006 0.008 0.005

2562

RCoDA 0.006 0.006 0.005 0.006 0.006 0.005
PL 0.006 0.006 0.005 0.005 0.006 0.006

TDI 0.005 0.006 0.005 0.006 0.006 0.005
MCAPCD 0.004 0.004 0.005 0.003 0.008 0.002

Table 4.3: Root mean squared error of β for a second order neighbourhood depen-
dence. Based on 200 simulated data sets for each 32×32, 128×128 and 256×256 lat-
tices. q = 2 and q = 3 are included.

narios.

4.2.3 Coverage probability

In order to investigate the validation of estimated variance, we calculate the coverage

probabilities for each method. The coverage probability is calculated as follows.

Given a fixed β, generate 200 replications of the Potts model. Draw MCMC samples

from posterior distribution of π(β|Z), and calculate corresponding upper and lower

quantiles. Count the number where the posterior interval covers the true β.

Figure 4.5 demonstrates the 95% coverage probabilities of the Ising models. All

methods except PL are deviated from 95%. This indicates all methods except PL can

obtain correct variance.

4.2.4 Computation time

The four algorithms RCoDA, PL, MCAPCD and TDI were implemented in Matlab.

The detailed information of the CPU of our machine is as follow: Intel(R) Core(TM)
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Figure 4.5: 95% empirical coverage probabilities for the 32 × 32 lattice under both
first order (left) and second order neighbourhood (right).

i7-3770 CPU @ 3.40GHz. RDA was implemented in C language since the code was

kindly provided by the authors (slightly modified for out purposes). Table 4.4 shows

computation time for different algorithms. All methods were implemented for the

first order neighbourhood structure Ising model.

size 32×32 64×64 128×128 256×256
RCoDA 0.014 0.018 0.034 0.075

PL 0.001 0.003 0.010 0.036
TDI 0.006 0.006 0.006 0.006
RDA 0.015 0.029 - -

MCAPCD 0.00006 0.00006 0.00007 0.00007

Table 4.4: Computation time in seconds per iteration of MCMC. RDA is not imple-
mented for large lattice.

There are two methods which require look-up tables to be pre-calculated: TDI

and MCAPCD. For the moment, computational time for look-up tables are ignored.

Suppose that all the prerequisites are well prepared, computational time for TDI

and MCAPCD are fixed. Each iteration, TDI needs to calculate the corresponding

normalizing constant given the fixed spline. While MCAPCD needs to calculate the

likelihood using Monte Carlo approximations for each term. Approximately, these

calculation times are constant with respect to the sizes of the Potts models. Among
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all the above methods, RDA is the most inflexible method with respect to the sizes

of the Potts models.

As TDI is adopted to calculate the final lattice z2T in RCoDA. Therefore, the com-

plexity of RCoDA involves the complexities of both PL calculation and TDI calcu-

lation of z2T, that is shown in Equation 3.5. Moreover, the extra parameter α will

double the computational time for each iteration. This is indicated in Table 4.4 where

RCoDA takes approximately the double time of PL and TDI combined.

Given that generation of one Potts model takes the same times for both TDI and

MCAPCD, look-up table of MCAPCD takes much less time than TDI. As we men-

tioned before, one n× n Potts model sample is considered n2 samples in MCAPCD,

whereas it is only one sample in TDI. In this sense, MCAPCD is n2 times more effi-

cient than TDI. Moreover, once the look-up tables were generated, they can be ap-

plied to infer about any size of the Potts model in MCAPCD. Whereas TDI has to

generate the look-up tables for different sizes of the Potts models. Hence, MCAPCD

outperforms TDI overall and thus all other methods in terms of computational time.

In the above Section, we compared computational times between different algo-

rithms. It was unfair to ignore pre-calculation time in TDI and MCAPCD. As we

just mentioned, TDI needs to calculate the look-up tables when the size of the Potts

model changes. Compared to MCAPCD, it is less efficient. Therefore, we focus

on the pre-calculation of MCAPCD. There are two problems to resolve prior to the

discussion of pre-calculation time of MCAPCD. Firstly, how dense of a grid of β

is dense enough? Secondly, what sample size is large enough to approximate each

PCD? In this Chapter, the step size of β was set to be 0.001 when the look-up tables

were calculated. To address the first, we think that is dense enough to model the

true relationship between β and the PCD’s. For the second, a small size (32 × 32) of

Potts model was repeated for 500 times to generate related samples which is 512000

samples in total. This means 512000 samples are generated to approximate PCD’s
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for each β. It takes 18.7 seconds to generate 512000 samples. There will be 1000

data points in the interval of [0, 1], since the step size is 0.001. Therefore, the pre-

calculation will take 5 hours. At the cost of 5 hours, MCAPCD offers super efficient

calculation in the further inference according to the comparison in Table 4.4.

4.3 Discussion

4.3.1 Summary statistic

The number of pairs in the Potts model has been adopted as a sufficient summary

statistic of the Potts model, for example Green and Richardson (2002), Ibáñez and

Simó (2003), Grelaud et al. (2009). The P S here measures the number of pairs be-

tween conditional items and the pixel of interest. Mathematically, P S =
∑

i∼j,j∈S I(zi =

zj), where S denotes the set of conditional items. The P S is a sufficient summary

statistic of PCD, since no further information is required to make inference about the

parameters of interest given P S . Therefore, P S can be adopted to make inference

about β in this Chapter.

In Section 4.1.2, Monte Carlo simulation was implemented regarding the sum-

mary statistic π(P S|β) rather than π(zi|S, β). Computational efficiency is the main

reason why the summary statistic was utilized.

Monte Carlo approximation of π(zi|S, β) can be described as follows: first of all,

given β, generate the Potts model z. Secondly, identify all the unit structures which

have identical conditional items with the PCD of interest and record the realization

of zi accordingly. Thirdly, normalize all the realizations of the PCD and then the

multinomial distribution is approximated. In the above procedures, q probabilities

need to be approximated for each PCD, where q is the number of possible realiza-

tions for each pixel.

Although both the PCD and P S can be used to approximate corresponding prob-
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abilities, P S is more preferable in terms of computational efficiency. The computa-

tional complexity of approximation of P S is dependent on the number of elements in

the set S, which is denoted by #S. For the first order neighbourhood structure Potts

model, #S is no more than 2, regardless the value of q. Thus, the complexity of P S is

constant with respect to q. In contrast, the computational complexity of approxima-

tion of PCD is dependent on q, since each PCD is a q-term multinomial distribution.

In other words, the computational complexity of approximation of PCD is linearly

related to q. Given that q > 2, computation involving P S is always more efficient

than PCD under the first order neighbourhood structure.

More importantly, every possible combination of the CT’s needs to be approx-

imated in Monte Carlo approximation of PCD. In contrast, Monte Carlo approxi-

mation of P S can take advantage of interchangeability of the Potts models, thereby

reducing the number of distributions to approximate. This advantage becomes more

significant under the higher order neighbourhood structures , such as those dis-

cussed in 4.1.3.

4.3.2 MCAPCD for irregular lattice

There are various types of boundary conditions that can be used to define the lat-

tices of the Potts models. The common conditions include free boundary conditions,

torus (periodic) boundary conditions, plus/minus boundary conditions, and mixed

boundary conditions. Boundary conditions have been discussed in Fisher and Bar-

ber (1972), Cardy (1986), Hongler and Kytölä (2013). Among these boundary condi-

tions, free boundary conditions and torus boundary conditions are the most widely

used ones.

Literally, all the boundary conditions differ from each other regarding how to

define the neighbours of the boundary pixels. In a regular lattice, each internal pixel

has four neighbours. If we define that pixels on the boundary have reduced number
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of neighbours, then free boundary conditions is adopted. As shown in the left panel

of Figure 4.7, all the pixels on the edges have only two or three neighbours. If the

lattice is considered as a torus, then torus boundary conditions are defined. Under

torus boundary conditions, the last row of a lattice is deemed to be adjacent to the

first row. An example of torus is demonstrated in Figure 4.6.

Figure 4.6: Torus.

Through out this Chapter, free boundary conditions were utilized. As we adopt

free boundary conditions, an irregular lattice is considered as a generalization of a

regular lattice. More specifically, in a regular lattice, the boundary area consists of

four edges where the pixels have a reduced number of neighbours. Examples of a

regular and irregular lattice are demonstrated in Figure 4.7. An irregular lattice can

always be included in a regular lattice, as shown in the right panel of Figure 4.7.

In irregular lattices, the boundary area is constituted of more irregular edges which

may lead to more pixels having a reduced number of neighbours. For instance, pixel

A in the right panel of Figure 4.7 has only two neighbours, whereas it would have

four neighbours in the regular lattice.

In summary, the irregularity changes the boundary area, leading to extra irregu-

lar pixels which generate special conditional distributions in MCAPCD. The special
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pixels have been discussed in the end of Section 4.1.3. The special pixels can be han-

dled naturally in the algorithm of MCAPCD. Therefore, irregularity of lattices do not

cause much trouble in the implementation of MCAPCD.

Figure 4.7: 8 × 8 lattice. Left panel: regular lattice. Right panel: irregular lattice.

4.3.3 Relationship with other methods

Our Monte Carlo methods are closely related to Approximate Bayesian Computation

(ABC) methods and the synthetic likelihood method of Wood (2010).

Approximate Bayesian computation

ABC methods are likelihood-free techniques which require no calculation of spe-

cific likelihood functions. Thus, ABC is widely used for models whose likelihood

functions are intractable or very expensive to calculate. It was firstly proposed in

the context of biology and ecology (Beaumont, Zhang, and Balding 2002; Beaumont

2010). Then it has been applied in broader areas. For a review of ABC, see Marin

et al. (2012).

In essence, ABC is a technique of information reduction. A summary statistic S

which is employed for inference is defined for each dataset. The very basic algo-

rithm of ABC is described below. Firstly, generate a value of θ of interest from its

100



prior distribution. Secondly, generate an artificial dataset x given the value of β.

Thirdly, compare the distance between S(x) and S(y), where y denotes the observa-

tion. Given a preset tolerance ε, we accept θ, if ‖ S(x) − S(y) ‖< ε holds, where ‖· ‖

denotes a suitable norm. Fourthly, repeat the above three steps for enough times.

Usually, N is predefined, where N denotes the total number of accepted samples.

The sampling procedure will continue to run until N samples are accepted. Finally,

the posterior distribution of θ is approximated as π(θ|y) ≈ π(θ| ‖ S(x) − S(y) ‖< ε).

If ε = 0, ABC is referred as exact Bayesian computation (EBC).

ABC and MCAPCD have something in common. Both of these methods adopt

summary statistics to reduce dimension. Dimension reduction through the sum-

mary statistic is essential for ABC, and the MCAPCD adopts the summary statistic

to facilitate the whole computation. However, the summary statistics have different

roles in the two methods. Compared to ABC which is a likelihood-free algorithm,

MCAPCD has to approximate likelihood function. In MCAPCD, the summary statis-

tic is adopted to substitute the terms in the original likelihood function. Therefore,

the likelihood is calculated given the approximation of distributions of the summary

statistic. In this sense, our proposed method is not a likelihood-free technique like

ABC. This highlights the most significant difference between these two methods.

Synthetic likelihood

Wood (2010) proposed a synthetic likelihood method to infer about nonlinear dy-

namic systems. Synthetic likelihood is one of information induction techniques. This

method aimed to solve dynamic systems where minor changes in noise cause drastic

changes in the system trajectory.

Rather than computing the tolerance in ABC, the synthetic likelihood approxi-

mates the likelihood using Monte Carlo samples by assuming a distributed form for

the samples.
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Synthetic likelihood requires a summary statistic to represent the dataset. Given

the parameters of interest, a large number of dataset are simulated. Then the sum-

mary statistics are calculated accordingly and are assumed to be distributed as mul-

tivariate Gaussian distribution. Given the above samples of the summary statistics,

the mean and covariance matrix in the multivariate distribution are estimated. Syn-

thetic likelihood then uses the density function of multivariate Gaussian distribution

to infer about the parameters in the original likelihood. In this way, calculation of

the original intractable likelihood is avoided.

The common feature between the synthetic likelihood and our proposed method

is that both Monte Carlo simulation and summary statistic are involved in each

methods. Parametric density functions of summary statistics are employed to de-

termine the sampling of parameters of interest. The synthetic likelihood method

assumes the summary statistics are distributed as multivariate Gaussian distribu-

tion. The assumption can be justified when the sample size approaches to infinity.

In MCAPCD, the distribution of summary statistic is known as multinomial distri-

bution.

4.4 Summary

MCAPCD was proposed to solve the normalizing constant problem in the Potts

models by avoiding the calculation of the intractable normalizing constant. The

method takes advantage of conditional decomposition of the original likelihood func-

tion. The likelihood function is transformed to be the product of many conditional

density functions that are substituted by the corresponding summary statistic. The

distribution of summary statistic is approximated through Monte Carlo simulation.

By doing this, the calculation of intractable normalizing constants is avoided and the

inference of β can be implemented.
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MCAPCD was proposed on account of two considerations. Firstly, it is fast. It

takes less time than PL without counting in the calculation of the look-up tables.

Even though the pre-calculation is taken into account, it has advantages over the

other methods in terms of computational efficiency as discussed in Section 4.2.4.

Secondly, MCAPCD has advantage when dealing with irregular lattices. The irreg-

ularity of lattices only changes boundary area where the number of neighbours is

reduced compared with the interior area. The new boundary area may add more

burden on computation, but it will not affect the implementation of algorithm itself.

Given these two advantages of MCAPCD, it can be applied in broader applications.
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Chapter 5

Relabelling algorithms for mixture

models with applications for large

datasets

Bayesian inference of mixture models always encounter the problem of label switch-

ing. Even the normalizing constant problem was overcome by the methods in pre-

vious Chapters, label switching problem could be another issue. In this chapter,

label switching problem is discussed. Many algorithms for this issue are reviewed.

We propose a new method to particularly solve label switching in spatial mixture

model.

5.1 Introduction

Mixture models have been used extensively, in areas such as nonparametric den-

sity estimation (Norets 2010) and model based clustering (Banfield and Raftery 1993,

McLachlan and Basford 1988). Other applications include micro-array analysis (McLach-

lan et al. 2002), disease mapping (Green and Richardson 2002), finance analysis

(Brigo and Mercurio 2002; Alexander 2004; Xu and Knight 2013), texture models
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(Permuter et al. 2003; Sujaritha and Annadurai 2011), ecology (Ullah et al. 2015), im-

age analysis (Brazey and Portier 2014), density estimation (Zhu 2016). These models

provide a flexible way of modelling heterogeneous data. We are concerned with

finite mixture distributions of K components with density given by

p(xi|φ) =
K∑
k=1

wkf(xi | θk) (5.1)

for some data xi ∈ Rd, d ≥ 1, i = 1, . . . , n, where f(xi|θk) is the kth component

density of the mixture, with parameters θk. For instance, f(xi|θk) can be an univari-

ate or a multivariate Normal distribution, where parameter vector θk represents the

mean and variance/covariance of the Normal distribution. Finally, wk is the weight

of the kth component density, such that
∑K

k=1wk = 1. We will denote the entire

q-dimensional set of parameters as φ = ((w1, θ1), . . . , (wK , θK)). Comprehensive re-

views of finite mixture models can be found in Titterington et al. (1985), McLachlan

and Peel (2004), Marin et al. (2005), Frühwirth-Schnatter (2006) .

Bayesian analyses of finite mixture models typically involve the use of Markov

chain Monte Carlo (MCMC) sampling from the posterior distribution, where label

switching becomes an issue. This occurs as a result of the invariance of Equation

(5.1) with respect to the reordering of the components such that

K∑
k=1

wkf(xi | θk) =
K∑
k=1

wνkf(xi | θνk), (5.2)

where {ν1, . . . , νK} is an arbitrary permutation of {1, . . . , K}. The total number of

permutations is K!. If the priors of the parameters are the same or exchangeable, the

posterior distribution will be invariant under the permutation. One can visualise the

occurrence of label switching within an MCMC sampler. For instance, the parame-

ters of the first component may move to the modal region of the second component

as the Markov chain explores the state space, and vice versa. While the posterior
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density remains invariant to the labelling, the correct ordering of the labels should

have swapped the two sets of parameters.

Many methods have been developed to resolve the issue of identifiability in

Bayesian inference. Jasra et al. (2005) provided a detailed and insightful review

of developments on this topic up to around 2005. The simplest method is to impose

an artificial identifiability constraint. For instance, Richardson and Green (1997) sug-

gested ordering the location parameters of a univariate Normal mixture model, such

that µ1 < . . . < µK , where µk corresponds to the mean parameter of the kth compo-

nent. Imposing such identifiability constraints can also be seen as a modification of

the prior distribution. The method is simple in terms of computational complexity

and can also be implemented within the MCMC sampler. However, it was demon-

strated in Jasra et al. (2005) and Celeux et al. (2000) that the method can fail to

fully resolve the issue of identifiability in some cases. Additionally, as often occurs

in more complex situations as the dimension of the parameter space increases, there

may no longer be a natural ordering on the parameters. See Frühwirth-Schnatter

(2011) for an example in the case of multivariate Normal mixtures.

Another class of relabelling algorithms, perhaps the best known algorithms in the

literature to date, is based on decision theoretic arguments. Samples from MCMC

output are post-processed according to some loss function criterion, see Stephens

(1997a), Stephens (2000), Celeux (1998), Celeux et al. (2000), Hurn et al. (2003) and

references therein. These methods work well, and are considered to be theoretically

better justified by Jasra et al. (2005). However, they are computationally intensive.

Thus for large datasets or high dimensions, they become impractical to use.

Finally, a different approach, based on probabilistic relabelling, can be found in

the works of Sperrin et al. (2010) and Jasra (2005), which involves the calculation of

the likelihood of the permutations {ν1, . . . , νK}. Sperrin et al. (2010) gave an EM-type

algorithm for its estimation. Puolamaki and Kaski (2009) developed a relabelling
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approach which requires the introduction of a discrete latent variable in the original

probabilistic model. More recently, Yao and Lindsay (2009) proposed an algorithm

based on the mode of the posterior and an ascent algorithm for each iteration of

the MCMC sample. Yao and Li (2014) proposed a method which minimizes the class

probabilities to a fixed reference label. Yao (2012) proposed to assign the probabilities

for each possible labels by fitting a mixture model to the permutation symmetric

posterior. Although many of these algorithms were demonstrated to work well, they

do not scale up well for large data or high dimensions.

Many modern applications of mixture models involve increasingly large datasets,

such as those in genetic studies, and in medical image analyses. In many of these

problems, the number of mixture components K is typically small, K < 10. The

number of observations N can be huge, in the order of millions, and the parameter

space q can also be very large, in the order of hundreds (see for example Zhu et al.

2016). In this situation, we found that well established algorithms that have good

theoretical properties such as Stephens (2000) and Celeux et al. (2000), as well as

many of the more recent developments mentioned above, quickly becomes compu-

tationally infeasible. A number of lesser well known algorithms have appeared in

various literature over more recent years appear to perform efficiently for this situa-

tion, but their properties have not been well explored and extensively compared.

Motivated by the lack of guidance in choosing an appropriate relabelling algo-

rithm in practice, where a balance between computational efficiency and theory must

be struck. Our article has a two fold purpose: first, we extensively review and com-

pare existing algorithms which are better suited to the large N and large q problem.

Secondly, we introduce a new relabelling algorithm which is interpretable under the

squared loss function, and compare its performance to existing methods. We note

here that the problem of largeK is particularly difficult for all relabelling algorithms.

We note that large K can occur in relatively small data sets also, and of course the
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larger K values will lead to larger q values. Methods that scale well under all three

criterionsK,N and q are particularly difficult to find, and we will discuss this further

later. This article primarily focuses on the large N and q problems. Section 5.2 gives

a brief review of all the existing algorithms studied in this article. Section 5.3 intro-

duces a new algorithm , and we extensively compare these algorithms in Section 5.4,

and conclude with some discussions and recommendations in Section 5.5.

5.2 Review of existing relabelling algorithms

In this section, we focus our review on relabelling methods which can handle high

(q) dimensional problems, and those which will scale up well for large (N ) dataset.

In addition, readers are referred to the excellent review of Jasra et al. (2005) for a

more general review for developments prior to 2005. We will focus more closely on

scalable algorithms to large data.

We broadly separate the class of relabelling algorithm into two categories. One

works on the full set of q-dimensional parameters φ, and we refer to these as full

parameter space relabelling. A second category works on the allocation parameters

only. We shall refer to these as the allocation space relabelling algorithms.

5.2.1 Full parameter space relabelling algorithms

Celeux et al (1998, 2000)

Celeux (1998) and Celeux et al. (2000) provided a simple algorithm for relabelling. A

reference modal region is selected using the initial MCMC output, and subsequent

points are then permuted with respect to the reference points, according to a k-means

type algorithm.

Let φj = ((wj1, θ
j
1), . . . , (wjK , θ

j
K)) denote the vector of parameter estimates at the

jth iteration of the MCMC output. Initialise with the firstm sample outputs, wherem

108



is sufficiently large to ensure that the initial estimates are a reasonable approximation

to the posterior means, but not so large that label switching has already occurred.

Celeux et al. (2000) suggested that m = 100 is typically sufficient. Define component

specific location and scale measures

φ̄i =
1

m

m∑
j=1

φji

and

si =
1

m

m∑
j=1

(φji − φ̄i)2

for i = 1, . . . , q. Then treating this as the initial ordering, K! − 1 other location and

scale labels are produced from this set. We denote the entire initial set of permuta-

tions of location and scale values by {φ̄[0]
νk , s

[0]
νk}, where νk denotes the set of all possible

permutations.

Subsequent iterations of the relabelling algorithm then proceeds by allocating the

permutation νk∗ to them+rth MCMC output vector φm+r which minimises the scaled

Euclidean distance of all components i = 1, . . . , q, namely we find the permutation

νk∗

νk∗ = argmin
νk

q∑
i=1

φm+r
i − φ̄[r−1]

νk,i

s
[r−1]
νk,i

,

where φ̄[r−1]
νk,i

and s
[r−1]
νk,i

are respectively the ith coordinate of the current estimate of

the location and scale vector with respect to the permutation νk. Finally, the location

and scale vectors are updated with the new rth sample.

This algorithm works by minimising the scaled Euclidean distance to the cluster

centers, assuming the initial centers provided a good estimate. In practice, the use

of component variance for scaling, leads to those components with very small vari-

ances dominating the others, hence leading to inaccurate relabelling in these types

of problems, as demonstrated in our simulation studies in later sections.
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Früwirth-Schnatter (2011)

Frühwirth-Schnatter (2006) and Frühwirth-Schnatter (2011) proposed to apply the

standard k-means algorithm with K clusters to all the MCMC sample output, with

the posterior mode estimator φ∗1, . . . , φ∗K serving as starting value for the cluster

means. They suggested that each element of the parameter vector should be stan-

dardised.

If the simulation clusters are well separated, then the classification sequence

given by the classification index is a permutation. That is, the k-means algorithm

allocates each component parameter vectors to exactly K clusters. However, this is

not always the case, and the algorithm can often allocate multiple components to

the same cluster. Frühwirth-Schnatter (2011) suggested that a simple check by or-

dering of the sequence of classification index. If this does not equal {1, . . . , K} then

the sample is simply excluded.

The algorithm is very simple and efficient. It is easy to understand as it uses the

well known k-means clustering algorithm. However, it can become inefficient when

cluster components are very close to each other, leading to allocation of multiple

components into the same cluster. Since such samples are then excluded for analyses,

this can result in high proportion of waste of MCMC samples, which can themselves

be expensive to calculate in high dimensional problems.

Marin et al (2005)

Marin et al. (2005) provided an algorithm for the reordering of MCMC output of size

M . They first found the posterior mode φ∗, then for each sample, computed

νk∗ = argmin
νk

< φνk , φ
∗ >q,

where <>q is the canonical scalar product ofRq.
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Thus each MCMC output was reordered with respect to the approximate poste-

rior MAP estimator. Several authors, e.g. Jasra et al. (2005) and Papastamoulis and

Iliopoulos (2010) comment on the simplicity of the method, but note that it may fail

when there’s genuine multimodality in the parameters due to the dependence on the

MAP estimator which can ignore the existence of minor modes.

5.2.2 Allocation space relabelling algorithms

In the allocation algorithms (see Richardson and Green 1997), a latent variable (al-

location variable) z is introduced for each observation, which indicates the compo-

nent membership. This approach is often used when clustering observations into

different subsets is the aim. Relabelling based on allocation variable alone has the

advantage that its computational cost is invariant to increases in the dimensionality

of the parameter space.

The allocation variable is obtained by augmenting Equation (5.1) with the auxil-

iary variable z = (z1, . . . , zn), such that

p(zi = k) = wk, for k = 1, . . . , K,

and

p(xi|φ, zi) = f(xi | θk, zi),

so that

p(xi|φ) =
K∑
k=1

wkf(xi | θk, zi). (5.3)

Note that when the allocation variable is not used, the algorithms in this sec-

tion can be used by computing a plug-in estimate of the allocation for each MCMC

iteration j,

ẑji = argmax
k

wkf(xi|φj, zi = k)/p(xi|φj). (5.4)
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Similar approaches can be found in for example, Stephens (2000).

Cron and West (2011)

Cron and West (2011) provided a relabelling algorithm based entirely on the latent

variables. Define ẑ to be the vector with n elements ẑi, which either arises naturally

via the allocation sampler as in Equation (5.3), or it can be determined according to

Equation (5.3). So ẑ assigns each data observation to its modal component under

the current set of classification probabilities. Define ẑR as the classification vector

with elements ẑRi at some reference point, ideally taken as the posterior mode. They

suggested a Bayesian EM algorithm for the identification of posterior mode.

For each MCMC iteration, the algorithm proceeds by calculating the misclassifi-

cation of ẑ relative to ẑR, and permuting the component labels of z to maximise the

match with ẑR by calculating a misclassification cost matrix C, defined as

Chj = {ẑRi = h ∧ ẑi 6= j}, i ∈ 1 . . . n, j, h = 1, . . . , k.

Permutation of the misclassification matrix can be performed efficiently with the

so-called Hungarian Algorithm (Munkres 1957), and the column permutation that

minimises the tr(C) is then recorded for each iteration of the MCMC sample.

Papastamoulis and Iliopoulos (2010)

Papastamoulis and Iliopoulos (2010) and Papastamoulis (2014) introduced a similar

algorithm . Their algorithm can be seen as a modification of the pivotal reordering

algorithm of Marin et al. (2005). The method was justified via an equivalence class

representation, by redefining the symmetric posterior distribution to a nonsymmet-

ric one via the introduction of an equivalence class.

More specifically, to determine the equivalence class, a vector z∗ will be selected
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to act as a pivot, such as the posterior mode. Then for each MCMC sample output z,

the permutation that makes z as similar as possible to z∗ will be selected. Hence the

algorithm works very similar to Marin et al. (2005) with the difference being that the

similarity measure here is based on the allocation variable defined as

S(z1, z2) :=
n∑
i=1

I(z1i = z2i)

for two allocation vectors z1, z2, where I(A) is the indicator function of A.

5.3 A variance based relabelling algorithm

In this section, we propose a new algorithm motivated by the expected posterior

mean squared loss function,

L(φ, φ̂) = Ep(φ|x)[(φ− φ̂)2] = var(φ) + (E(φ)− φ̂)2, (5.5)

where p(φ|x) is the posterior distribution. Thus minimising the above loss function

amounts to minimizing

(ν∗k , φ̂
∗) = argmin

νk,φ̂

[
var(φνk) + (E(φνk)− φ̂)2

]
. (5.6)

Since for a given permutation νk, setting φ̂∗ to the posterior mean minimises the

second term in the above loss function. Hence to minimise Equation (5.5), we should

find the permutation that minimises the posterior variance of the parameters.

In practice, exhaustive minimisation of Equation (5.6) is computationally pro-

hibitive for large numbers of sample output. So similarly to Celeux (1998), Marin

et al. (2005), Cron and West (2011), we first find reference points in the modal lo-

cations, and iteratively minimize the variance of the posterior samples with respect
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to the permutations in the modal region. The following proposition shows that pro-

vided that the cluster means do not change very quickly, minimisation of Equation

(5.6) can be performed iteratively.

Proposition 1 Let V ∗m =
∑q

i=1 v̂ar(φ[m]
ν∗,i) denote the minimum total variance of the param-

eters φ[m]
ν∗,i with corresponding optimal permutations ν∗, based on m iterates of the MCMC

output. Let V ∗m+1 =
∑q

i=1 v̂ar({φ[m]
ν∗∗,i, φ

(m+1)

νm+1,i}) denote the minimum total variance based

on the sample with one additional MCMC output, with the optimal permutations given by

ν∗∗ and νm+1. Denote the parameter means by φ̄[m]
ν∗,i and φ̄[m+1]

ν∗∗,νm+1,i, i = 1, . . . , q. Suppose

that φ̄[m]
ν∗,i ≈ φ̄

[m]
ν∗∗,i, then the optimal permutations ν∗∗ = ν∗, and V ∗m+1 can be minimised by

permutation of the vector φ(m+1) only.

Proof: See Appendix.

Thus as long as the successive parameter means do not change much under op-

timal reordering, we can minimize the variance criterion iteratively, only reordering

each new sample, while keeping the ordering of the previous samples unchanged.

This condition is reasonable in standard MCMC sampling where parameters do not

change values very drastically from iteration to iteration. In problems of genuine

multimodality, the standard MCMC sampler may fail to reach minor modes (see

Jasra et al. 2005). In these cases, more advance sampling techniques allowing for

larger MCMC moves, such as simulated tempering or adaptive MCMC, may be nec-

essary. Thus in these cases, our algorithm may not be appropriate to apply to these

types of algorithms.

5.3.1 Minimum Variance algorithm

Here we give an algorithm based on minimising the variance of the parameters. The

algorithm is based on the full parameter space, similar to those in Section 5.2.1.
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Step 1: Select m posterior samples from the modal region, such that no switching

has occurred.

Step 2: Exclude the samples used in Step 1. For r = 1, . . .M , each successive itera-

tion of the MCMC output is relabelled according to

ν
(m+r),∗
k = argmin

ν
(m+r)
k

q∑
i=1

v̂ar({φ[m+r−1]
ν∗k ,i

, φr
νm+r
k ,i
}),

where v̂ar(φ[m+r−1]
νk,i

) is the sample variance for the ith parameter, under the permuta-

tion ν∗k , corresponding to the set of previous m+ r− 1 samples. Relabel the (m+ r)th

sample according to ν(m+r),∗
k .

In Step 1, we choose a small set of modal posterior samples, where no switching

has occurred, but a good estimate of the posterior means can be obtained. This is

similar to the approach suggested in Celeux (1998). A number between 50 to 100 is

typically sufficient. Step 2 involves only permuting the labelling of the rth sample

to minimise the overall posterior variance including the new sample φr. A compu-

tationally efficient update of the variance for each of the ith component is given by

iteratively computating:

φ̄
[m+r]
i =

1

m+ r
[(m+ r − 1)φ̄

[m+r−1]
i + φri ]

and

v̂ar(φ[m+r]
i ) =

m+ r − 2

m+ r − 1
v̂ar(φ[m+r−1]

i ) +
1

m+ r
(φri − φ̄

[m+r−1]
i )2,

where φ̄[m]
i denotes the sample mean of the ith parameter based on m samples.
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5.3.2 Simultaneous monitoring of MCMC convergence

We note an interesting connection of the variance based relabelling algorithm with

the well known Gelman and Rubin convergence assessment. Given J parallel MCMC

sequences, each with length M , Gelman and Rubin (1992) suggested to monitor the

so called potential scale reduction factor R at MCMC iteration m, estimated as

R̂ =

√
v̂ar(φi)
W

,

where

v̂ar(φi) =
m− 1

m
W +

1

m
B

and W is the within chain variance of the ith marginal parameter based on m sam-

ples,

W =
1

J

J∑
j=1

v̂ar(φ[m]
i ).

Note that W is readily given by Step 2 in the algorithm above.

B is the between chain variance

B =
M

J − 1

J∑
j=1

(φ̄
[m]
i,j − φ̄[m])2,

where φ̄[m]
i,j is the sample mean of the j chain, for the ith parameter based on m sam-

ples, and φ̄[m] = 1
J

∑J
j=1 φ̄

[m]
i,j . Again φ̄[m]

i,j is given in Step 2 of the algorithm for a given

jth chain. Thus the potential scale reduction factor is readily calculated, a value ap-

proaching 1 is indicative of MCMC convergence.

Thus to monitor the convergence of multiple MCMC sequence for each marginal

parameter i, the above algorithm only has to be modified slightly. In Step 1, instead

of selecting samples m from a single chain, we will select J equal sized samples

mj,
∑J

j=1mj = m amongst the modal regions of the J parallel chains. Then in Step
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2, for each chain j = 1, . . . J , and their respective initial samples mj , carry out Step 2

and calculate R̂.

5.4 Examples

In this section, we will compare all the algorithms presented above in several ex-

amples involving both real and simulated data. All algorithms were coded by the

authors in Matlab, with the exception of Cron and West (2011), where we used the

codes supplied by the authors on their website https://stat.duke.edu/gpustatsci/software.html.

The algorithm of Papastamoulis et al (2010) is available as an R package, see Papas-

tamoulis and Papastamoulis (2013). All computations were carried out on Ubuntu

(x86 64) with kernel version of 3.2.0-53-generic.

5.4.1 Univariate mixtures

Simulated data

We first consider two univariate mixture models, a three-component and a five-

component model,

0.10N(−20, 1) + 0.65N(20, 3) + 0.25N(21, 0.5) (5.7)

0.20N(19, 5) + 0.20N(19, 1) + 0.25N(23, 1) + 0.20N(29, 0.5) + 0.15N(33, 3). (5.8)

In the three-component model, the final two components are very close together. We

expect that it will be easy to identify the first component, but not the last two. Sim-

ilarly within the five-component model, the first two components will be extremely

difficult to separate. This example was also studied in detail by Papastamoulis and

Iliopoulos (2010).

We use 100 data points simulated from each of the two models, and follow the
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MCMC sampler of Richardson and Green (1997). For both models, we run 80,000

iterations of MCMC sampling and discard the first 20,000 as burn in. Figure 5.1

shows the density estimates using each of the six different methods we discussed,

superimposed with their true density. Clearly, all methods agree in regions where

identifiability is easily separable, and differences between the different methods are

more pronounced where components are very close together. This is the case for the

last two components in Model (5.7) and the first two components in Model (5.8).

Overall, with the exception of the method of Celeux et al (1998, 2000), the other

methods give similar density estimates. It can be seen that in both examples, the k-

means method of Früwirth-Schnatter (2011) is most similar to the equivalence class

method of Papastamoulis et al (2010), although one is based on the full parameter

space and the other is based on only the allocation variables. It can be seen that the

left hand tail of Model (5.8) is under-estimated by the method of Papastamoulis et al

(2010) relative to the other methods. We will return to this issue later.

We find that the method of Celeux et al (1998, 2000) does not perform well in

both cases. This is due to the use of a scaled distance, the process can be domi-

nated by those components with very small variances. From the misclassification

table given in Table 5.1, we can see that the second component of Model (5.8) has

been completely misclassified by the method of Celeux et al (1998, 2000), the second

component was dominated by the first component.

Finally, we present a more thorough comparison of the six different method in

Table 5.2, where we give an estimate of the KL distance between the true density

and the estimated densities, the overall misclassification rates (as computed in Table

5.1), the total variance of the parameter estimates and the CPU time.

Overall, Celeux et al (1998, 2000) has the largest KL distance, overall misclassifi-

cation rate and total variance, although its computational time is competitive with

the other algorithms. We note that the method of Früwirth-Schnatter (2011) requires
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Figure 5.1: Histogram of 100 simulated observations from model (5.7) and (5.8). The
superimposed lines correspond to (1) true density, (2) Celeux et al (3) Früwirth-
Schnatter (4) Marin et al (5) Cron and West (6) Papastamoulis et al (7) Minimum
Variance.
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far more MCMC sample output than the other methods, since samples which has

been clustered into less than K components has been discarded by the algorithm.

Hence to obtain 60,000 samples, we run approximately 27,000 additional MCMC it-

erations for Equation (5.7) and an additional 90,000 iterations for (5.8). Thus even

though it is a fast algorithm itself, the computational overheads in the additional

MCMC sampling makes this algorithm by far the most computationally costly. In

addition, although the method achieves good misclassification rate, it would appear

we cannot trust the resulting parameter estimates, see Table 5.3. We believe this may

be attributed to the non-random exclusion of samples from the MCMC output.

The remaining methods of Marin et al (2005), Cron and West (2011), Papasta-

moulis et al (2010) and the proposed Minimum Variance algorithm, all performe

relatively well. Minimum Variance gives the smallest KL distance, with similar re-

sults using Marin et al (2005). The best method in terms of misclassification rate is

Papastamoulis et al (2010), with Cron and West (2011) marginally worse. In terms

of posterior variance, Minimum Variance algorithm produced the smallest values,

closely followed by Papastamoulis et al (2010). In terms of CPU time, all methods

are efficient, the best ones being Papastamoulis et al (2010) and Marin et al (2005),

and the Minimum Variance algorithm is the slowest here.

Finally, the parameter estimates given in Table 5.3 show that while the mean pa-

rameters are fairly well estimated by most methods, the variance estimates are quite

different. It is clear that Marin et al (2005), Cron and West (2011) and Minimum Vari-

ance all overestimate the 2nd and the last variance components of Equation (5.8). Pa-

pastamoulis et al (2010) underestimates the variance of component one while over-

estimating the variance of the last component. Overall, the variance estimates are

generally smaller from Papastamoulis et al (2010) than the other three methods, and

is generally underestimated relative to the true values. While the variance estimates

are generally overestimated from Marin et al (2005), Cron and West (2011) and Min-
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imum Variance relative to the true values.

Eq. (5.7) Eq. (5.8)

True

10 0 0 20 0 0 0 0
0 65 0 0 20 0 0 0
0 0 25 0 0 25 0 0

0 0 0 20 0
0 0 0 0 15

Celeux et al

10 0 0 18 0 2 0 0
0 43 22 20 0 0 0 0
0 11 14 2 1 22 0 0

0 0 0 20 0
0 0 0 1 14

Früwirth-Schnatter

10 0 0 3 15 2 0 0
0 55 10 0 20 0 0 0
0 14 11 0 2 23 0 0

0 0 0 20 0
0 0 0 2 13

Marin et al

10 0 0 6 12 2 0 0
0 41 24 3 17 0 0 0
0 6 19 0 3 22 0 0

0 0 0 20 0
0 0 0 2 13

Cron and West

10 0 0 6 12 2 0 0
0 44 21 3 17 0 0 0
0 16 9 0 3 22 0 0

0 0 0 20 0
0 0 0 2 13

Papastamoulis et al

10 0 0 6 12 2 0 0
0 42 23 0 20 0 0 0
0 6 19 2 1 22 0 0

0 0 0 20 0
0 0 0 2 13

Minimum Variance

10 0 0 6 12 2 0 0
0 40 25 0 20 0 0 0
0 6 19 2 1 22 0 0

0 0 0 20 0
0 0 0 2 13

Table 5.1: Misclassification matrix for the six methods. Each i, jth entry of the mis-
classification matrix denotes the number of observations which is classified as com-
ponent j, while actually it belongs to component i. The row corresponding to True
gives the true cluster membership of the observed data.
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KL Distance Misclassification Total Variance Time (sec)
(5.7) (5.8) (5.7) (5.8) (5.7) (5.8) (5.7) (5.8)

Celeux et al 0.21 0.38 33% 26% 62.61 82.89 19.55 42.69
Früwirth-Schnatter 0.08 0.11 24% 21% 1.68 8.89 14.38 28.35
Marin et al 0.07 0.14 30% 22% 2.30 55.79 17.66 40.19
Cron and West 0.31 0.14 37% 22% 2.38 56.11 26.63 38.84
Papastamoulis et al 0.11 0.35 29% 19% 2.35 52.96 16.11 25.05
Minimum Variance 0.07 0.11 31% 19% 2.30 52.02 24.83 50.98

Table 5.2: Comparison of KL distance relative to the true distribution, misclassifica-
tion rate, total variance for the parameter estimates and computation time, for the
six different methods outlined, using simulated data from Equations (5.7) and (5.8) .

Real data: Galaxy dataset

Here we compare the various methods on the well known galaxy data, which has

been studied extensively in the relabelling literature, see for example Stephens (1997b),

Celeux et al. (2000), Jasra et al. (2005). This dataset consists of the velocities of several

galaxies diverging from our own galaxy. The original dataset consists of 83 obser-

vations, but one of them is recorded as infinite. We leave this one out and use the

remaining 82 observations. We follow the setup of Richardson and Green (1997) in

setting up the model and MCMC sampling, and fix the number of mixture compo-

nents at 6, which was shown to have the highest posterior model probability. We

run 80,000 MCMC iterations and discard the first 20,000 iterations, keeping the final

60,000 samples. For the method of Früwirth-Schnatter (2011), we run an additional

320,000 iterations.

Figure 5.2 shows histogram and density estimate of galaxy data. Here the dif-

ferences between the methods are more pronounced than in the previous example.

Again, it is clear that both Celeux et al (1998, 2000) and Früwirth-Schnatter (2011) are

not performing well. Both the figure and Table 5.4 show that the method of Marin

et al (2005), Cron and West (2011) and Minimum Variance are the most similar to

each other, and give smaller total variance estimates. Papastamoulis et al (2010) is

the most efficient in terms of computing time, suggesting that the method scales up

122



ŵk µ̂k σ̂2
k

(5.7) (5.8) (5.7) (5.8) (5.7) (5.8)

True

0.10 0.20 -20.00 19.00 1.00 5.00
0.65 0.20 20.00 19.00 3.00 1.00
0.25 0.25 21.00 23.00 0.50 1.00

0.20 29.00 0.50
0.15 33.00 3.00

Celeux et al

0.12 0.24 -19.63 19.40 1.55 3.45
0.55 0.19 19.41 20.20 3.13 4.05
0.33 0.21 20.37 22.58 0.57 1.06

0.20 28.28 0.60
0.16 32.85 5.69

Früwirth-Schnatter

0.12 0.05 -20.37 15.80 1.24 0.87
0.58 0.34 19.52 19.15 0.97 0.46
0.30 0.25 21.16 22.83 0.32 0.88

0.21 28.75 0.55
0.15 33.41 3.66

Marin et al

0.12 0.23 -20.37 19.01 1.57 4.90
0.55 0.21 19.42 19.43 3.14 1.98
0.33 0.21 21.11 22.85 0.55 1.23

0.20 28.72 0.50
0.15 33.30 6.25

Cron and West

0.12 0.22 -20.37 18.99 1.57 4.82
0.56 0.21 19.45 19.47 3.14 2.14
0.32 0.21 21.07 22.84 0.55 1.14

0.20 28.72 0.50
0.16 33.30 6.25

Papastamoulis et al

0.12 0.18 -20.37 19.51 1.25 1.93
0.56 0.25 19.44 19.05 2.87 0.84
0.32 0.21 21.08 22.73 0.30 0.76

0.20 28.72 0.42
0.16 33.30 4.89

Minimum Variance

0.12 0.22 -20.37 19.50 1.57 5.43
0.55 0.22 19.42 18.94 3.14 1.49
0.33 0.21 21.10 22.85 0.55 1.18

0.20 28.72 0.50
0.15 33.30 6.25

Table 5.3: Parameter estimates using the six different methods. The left part of each
column corresponds to Equation (5.7), the right part of each column corresponds to
Equation (5.8).

123



0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

x

D
e
n
si

ty

 

 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 5.2: Histogram of the galaxy data. The superimposed lines correspond to (1)
posterior MAP density estimate (2) Celeux et al (3) Früwirth-Schnatter (4) Marin et
al (5) Cron and West (6) Papastamoulis et al (7) Minimum Variance.

KL Distance Total Variance Time (sec)
Celeux et al 2.94 91.87 2.94
Früwirth-Schnatter 1.89 8.89 71.70
Marin et al 1.37 37.57 40.45
Cron and West 1.40 40.07 49.79
Papastamoulis et al 2.61 52.06 29.35
Minimum Variance 1.30 38.52 87.70

Table 5.4: Comparison of KL distance relative to the MAP density estimate, total
variance for the parameter estimates and computation time, using the six different
methods, for the galaxy data.
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well with the number of components. We see from the table of parameter estimates

in Table 5.5 that the estimates of variances are generally smaller for Papastamoulis

et al (2010) than the other methods.

MAP
ŵk 0.09 0.31 0.15 0.33 0.07 0.05
µ̂k 10.01 20.00 20.60 22.76 24.14 32.86
σ̂2
k 0.40 0.57 16.38 0.84 0.42 1.08

Celeux et al
ŵk 0.12 0.15 0.27 0.18 0.23 0.05
µ̂k 11.84 18.73 20.19 21.74 22.95 32.72
σ̂2
k 0.90 1.48 1.75 4.19 2.25 1.41

Früwirth-Schnatter
ŵk 0.10 0.04 0.35 0.35 0.10 0.05
µ̂k 9.71 16.38 19.79 22.58 25.48 33.03
σ̂2
k 0.37 0.50 0.47 1.14 0.76 0.81

Marin et al
ŵk 0.10 0.22 0.20 0.22 0.20 0.05
µ̂k 9.72 19.46 20.40 22.12 23.46 33.02
σ̂2
k 0.59 0.65 4.20 3.30 1.81 1.42

Cron and West
ŵk 0.10 0.27 0.16 0.16 0.27 0.05
µ̂k 9.72 19.86 20.71 22.15 22.72 33.02
σ̂2
k 0.59 0.76 4.94 2.26 2.00 1.42

Papastamoulis et al
ŵk 0.10 0.25 0.20 0.13 0.27 0.05
µ̂k 9.72 20.00 20.79 21.74 22.90 33.02
σ̂2
k 0.42 0.63 0.76 0.92 1.33 0.89

Minimum Variance
ŵk 0.10 0.22 0.20 0.22 0.21 0.05
µ̂k 9.72 19.46 20.38 22.08 23.52 33.02
σ̂2
k 0.59 0.68 3.63 3.67 1.98 1.42

Table 5.5: Parameter estimates for galaxy dataset using different relabelling algo-
rithms and the MAP estimate.

5.4.2 Multivariate spatial mixture model for image processing

We consider a multivariate spatial mixture model in the context of image analysis,

where the both the dimension of the mixture, as well as the dataset itself can be large.

We use a simulated 3-D image of 50× 50× 16 voxels, this is equivalent to having

40,000 observations. We assume that each voxel comes from a 3 dimensional mixture

model of two components, with mean parameters µ1 = [4, 5, 6] and µ2 = [6, 7, 8]
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respectively. The corresponding covariance matrices are:

0.5×


1.00 0.80 0.64

0.80 1.00 0.80

0.64 0.80 1.00

 and 0.5×


1.00 0.50 0.25

0.50 1.00 0.50

0.25 0.50 1.00

 .

In real applications, such as in dynamic positron emission tomography (PET), or

functional MRI studies, the number of observations and the dimensions of the mix-

ture is much larger, but the number of mixture components are typically between 3

to 5. This example demonstrates the need for fast and reliable relabelling algorithms.

To simulate a spatially dependent image, we first simulate the voxels using a

Potts (or Ising in the case of two component mixtures) model, with spatial correlation

parameter set to 0.3 ( Feng et al. 2012), and then assign voxel values according to the

component Normal distributions. See Figure 5.3 for a plot of the true allocations.
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Figure 5.3: The true allocations shown slice by slice (left). The white points corre-
spond to the component with µ = [4, 5, 6]; and black ones denote the component
with µ = [6, 7, 8] and, 3D scatter plot of the two components (right).
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In the spatial clustering model, we have

p(xi|φ, zi) =
K∑
k=1

f(xi | θk, zi)p(zi = k), (5.9)

where the distribution of the allocation variables is given by the Potts model,

P (z|κ) =
1

c(κ)
exp{κ

∑
i∈δj

I(zi = zj)}, (5.10)

where δj denotes the neighbourhood of j, and κ denotes the strength of the spatial

connectedness (c.f. Equation (5.3)). The normalising constant c(κ) is intractable, and

we follow Green and Richardson (2002) and Smith and Smith (2006) in precomputing

these in a look -up table.

We set the prior for κ to be a truncated Normal(0.6,100) on the interval [0, 1], and

use conjugate priors for the mean parameter µk|Σk ∼ N(0, 100×Σk). Covariance ma-

trices follow an Inverse-Wishart distribution Σk ∼ IW (3, 1.5×I3×3), for k = 1, . . . , K.

A hybrid Gibbs within Metropolis sampler can be constructed from the full condi-

tional distributions, and convergence of the MCMC sampler is obtained after 10,000

iterations, discarding the initial 5,000 samples as burn in. In order to guarantee the

presence of the label switching phenomenon, we manually switch the samples dur-

ing simulation, see Papaspiliopoulos and Roberts (2008) and Jasra et al. (2005).

Table 5.6 provides the posterior mean estimates for the model parameters using

different reordering schemes. Here all the methods performed well, as the two mix-

ture components are fairly well separated in the example. Table 5.7 gives the com-

parative KL divergence, misclassification rates, total variance and computing time.

Due to the moderate large size of the data, small differences in the posterior param-

eter estimates for the method of Celeux et al translate into a relatively large KL mea-

sure. The other methods are all comparable in terms of misclassification and total

variance. In terms of computational time, with the allocation based methods taking
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longer than the full parameter based methods. This example illustrates that parame-

ter based algorithms scale up better when the size of the observation increases, since

the corresponding increase in the number of allocation variables needed do not af-

fect the efficiency in the relabelling algorithms. On the other hand, if the dimension

of the parameter space increase, i.e, as the dimension of the multivariate Normals

increase, we would expect the allocation based relabelling algorithms to be more

efficient.

µ̂k σ̂2
k

True
(

4.00 5.00 6.00
6.00 7.00 8.00

)  0.50 0.40 0.32
0.40 0.50 0.40
0.32 0.40 0.50

  0.50 0.25 0.13
0.25 0.50 0.25
0.13 0.25 0.50


Celeux et al

(
4.05 5.05 6.05
5.97 6.97 7.97

)  0.51 0.41 0.32
0.41 0.52 0.41
0.32 0.41 0.51

  0.50 0.25 0.13
0.25 0.50 0.25
0.13 0.25 0.50


Früwirth-Schnatter

(
4.01 5.01 6.01
6.01 7.01 8.01

)  0.51 0.41 0.33
0.41 0.52 0.41
0.33 0.41 0.51

  0.50 0.25 0.11
0.25 0.49 0.24
0.11 0.24 0.50


Cron and West

(
4.01 5.01 6.01
6.01 7.01 8.01

)  0.51 0.41 0.33
0.41 0.52 0.41
0.33 0.41 0.51

  0.50 0.25 0.12
0.25 0.50 0.24
0.12 0.24 0.51


Marin et al

(
4.01 5.01 6.01
6.01 7.01 8.01

)  0.51 0.41 0.33
0.41 0.52 0.41
0.33 0.41 0.51

  0.50 0.25 0.12
0.25 0.49 0.24
0.12 0.24 0.50


Papastamoulis et al

(
4.01 5.01 6.01
6.01 7.01 8.01

)  0.51 0.41 0.33
0.41 0.52 0.41
0.33 0.41 0.51

  0.50 0.25 0.12
0.25 0.49 0.24
0.12 0.24 0.50


Minimum Variance

(
4.01 5.01 6.01
6.01 7.01 8.01

)  0.51 0.41 0.33
0.41 0.52 0.41
0.33 0.41 0.51

  0.50 0.25 0.12
0.25 0.50 0.24
0.12 0.24 0.50


Table 5.6: Posterior mean estimates of the two-components multivariate spatial mix-
ture model, for the six different methods.

5.4.3 Further comparison of Computational time

In this section, we further study the effect on computational time, in terms of the

number of mixture components K, the sample size of the data N and the number

of parameters in the model q. Table 5.8 provides the CPU time used to compute

each of the relabelling algorithms under our study. Note that the algorithms of Cron
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KL misclassification Total Variance Time (sec)
Celeux et al 4300.80 7.51% 0.48 3.00
Früwirth-Schnatter 38.87 7.50% 8.005 ∗ 10−4 0.39
Marin et al 38.03 7.50% 8.008 ∗ 10−4 0.48
Cron and West 37.80 7.50% 8.008 ∗ 10−4 113.26
Papastamoulis et al 25.93 7.50% 8.008 ∗ 10−4 18.46
Minimum Variance 38.83 7.50% 8.008 ∗ 10−4 1.39

Table 5.7: Comparison of KL divergence, misclassification rates, total variance and
computing time for the six different methods. The multivariate spatial mixture
model.

and West and Papastamoulis et al were performed using the authors own codes, we

do not compare the absolute computational time between algorithms, but rather the

scalability within each algorithm.

To study the effect of K on computational time, we used a univariate spatial mix-

ture model of Equation (5.9), with K=3, 5,7, and N = 100, q = 3K. The results

show that Celeux et al, Marin et al and Minimum variance are the worst in terms

of scalability of K. This is unsurprising, as these algorithms relied on the simple

permutations on the parameter space, and the computational burden increases with

the number of permutations in the order of K!. The k-means algorithm of Früwirth-

Schnatter, and the allocation space relabelling algorithms of Cron and West and Pa-

pastamoulis et al all performed better, although all these algorithms still experience

large increases in computational time as K increases.

To study the effect of sample size N , we fix K = 3, and use a tri-variate mixture

model, so q = 30, and with varying values of N = 4608, 36864, 52488. Here it is clear

that all the parameter based algorithms perform well, since they are invariant to the

increases in sample size. Similarly the k-means algorithm. However, the allocation

based algorithms will increase in computational time as N dramatically increases.

Finally, we study the effect of increases in q, here we fix K = 3 and N = 36864,

and consider 2, 3, 4 dimensional mixtures. Thus the corresponding q = 18, 30, 60.

Here all the algorithms appear to scale relatively well to the increase in q. While we
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would expect the parameter based algorithms to perform worse with increasing q,

it appears that this effect is relatively small. The k-means algorithms is again very

efficient under this case. The allocation based algorithms are also very stable under

increases in q, however, their overall computational time appears to be much higher

than the others.

K=3 K=5 K=7 N=4608 N=36864 N=52488 q=18 q=30 q=60
Celeux et al 3.26 7.12 62.38 7.14 7.17 7.29 2.70 3.02 3.42
Früwirth-Schnatter 2.40 4.73 28.35 1.73 1.80 2.24 0.92 1.21 1.77
Marin et al 2.94 6.70 124.3 6.62 6.81 6.64 2.21 2.50 2.85
Cron and West 4.44 6.47 12.50 59.03 130.6 191.0 172.8 147.4 154.0
Papastamoulis et al 2.69 4.18 7.08 14.8 15.62 21.42 15.81 16.61 18.51
Minimum Variance 4.14 8.50 64.53 4.94 4.97 5.40 3.29 3.64 5.07

Table 5.8: Time (in sec) used in different scenarios. For each column we fix other
parameters.

5.5 Summary and conclusion

In this paper, we introduce a new algorithm based on a loss function argument. We

also comprehensively compare the new algorithm with some existing relabelling al-

gorithms, restricting our comparison to those algorithms which are scalable to large

dataset N and large parameter space q. Where applicable, we compute KL diver-

gence, misclassification rate, total variance of posterior parameter estimates and

computing time, based on several examples including uni and multivariate spatial

mixture models, as well as on a real dataset. Generally speaking, full parameter

space relabelling algorithms can scale up well with both N and q. While allocation

space relabelling algorithms can scale up well with q and perform relatively faster in

large K.

We find that the method of Celeux et al (1998, 2000) can be very sensitive, and

does not always perform well. The method of Frühwirth-Schnatter (2011) is gener-

ally very fast in large K, N and q, but can requires much more additional MCMC
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sampling if the clusters are close together. Therefore, we do not recommend these

two methods as a default approach for relabelling. The performance of the remain-

ing four methods are similar, in terms of the criterions we use. All these methods

have performed well, under the different conditions. However, all the methods give

slightly different solutions.

In terms of performance, we can broadly group the method of Marin et al. (2005)

and our proposed Minimum Variance algorithm together. Both are based on full pa-

rameter vectors, and show comparable performance in all the simulations we have

considered. The other two, the method of Cron and West (2011) and Papastamoulis

and Iliopoulos (2010), are based on allocation variables. Although all four methods

produce similar results, the method of Papastamoulis and Iliopoulos (2010) tends to

produce an underestimated variance parameter estimate, while the other three pro-

duced an overestimated variance. Broadly speaking, the full parameter methods are

more efficient for large datasets and the allocation methods are more efficient when

the parameter space is large and the number of components K is also moderately

large. From a more theoretical perspective, while Marin et al. (2005) simply used the

canonical scalar product as an optimisation criterion, the Minimum Variance algo-

rithm minimises the expected posterior loss. But Cron and West (2011) minimises the

misclassification matrix and the algorithm of Papastamoulis and Iliopoulos (2010) is

justified by an equivalence class representation. Thus from a theoretical perspective,

the Minimum Variance algorithm and Papastamoulis and Iliopoulos (2010) is more

satisfying. We summarise the above discussion in Table 5.9. Note that we omit scal-

ability of K for Cron and West and Papastamoulis et al, while these two perform

better for large K, we do not consider it scalable for very large K.

Finally, we note that in practice, all methods can fail to find the correct labelling,

see Cron and West (2011). In particularly in the presence of genuine multimodal-

ity, i.e., in the presence of multiple modes under any one mixture component, it has
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Optimisation criterion Scalability potential issues
Marin et al scalar product N &q overestimation of variance
Cron and West misclassification q overestimation of variance
Papastamoulis et al equivalence class q underestimation of variance
Minimum Variance expected squared loss N & q overestimation of variance

Table 5.9: Summary of the main points for the four methods, Marin et al, Cron and
West, Papastamoulis et al and Minimum Variance.

been noted that different algorithms will give very different results, while the results

will be broadly similar otherwise (Jasra et al. 2005). Running several of the above

(time efficient) algorithms will easily allow us to identify potential problems. Thus,

under such problematic situations, we recommend careful investigation to the cause

of the problem and the application of more problem specific methods. For instance,

under genuine multimodality, Grün and Leisch (2009) developed methods specifi-

cally for such situations, although the more sophisticated methods can be very time

consuming to compute.

Our simulated comparisons highlights the difficulty in distinguishing a clearly

superior algorithm. From a practical perspective, we find four of the algorithms

(including a novel approach introduced in this article) have similar performance,

and the user may base their choice on computational considerations. Computational

time is an important factor when choosing the algorithms. Especially, when all the

algorithms can perform similarly, computational time becomes more important. For

the applications where N and q are large, our method should be one option to be

considered. Because it can scale up well with N and q, resulting in reduction in com-

putational time. Our method is of great significance in the applications of medical

imaging in terms of computational time.
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Appendix

Proof of Proposition 1

Let V ∗m(φ
[m]
ν∗ ) =

∑q
i=1 v̂ar(φ[m]

ν∗,i) denote the minimum total variance of the parameters

φ
[m]
ν∗,i with corresponding optimal permutations ν∗, based on m samples. Suppose we

have an additional sample m+ 1, then

Vm+1(φ[m+1]
ν ) =

q∑
i=1

v̂ar(φ[m+1]
ν,i )

=

q∑
i=1

[
m− 1

m
v̂ar(φ[m]

ν,i ) +
1

m+ 1
(φ

(m+1)
ν,i − φ̄[m]

ν,i )2

]

Then the first term inside the bracket is minimised at ν = ν∗. In addition, since we

assume that, φ̄[m]
ν∗∗,i ≈ φ̄

[m]
ν∗,i, where ν∗∗ denote the optimal ordering of the m + 1 sam-

ples. That is, since we assume that the component means do not change much at suc-

cessive iterations, we can minimise the second term by minimising (φ
(m+1)
ν,i − φ̄[m]

ν∗,i)
2.

Consequently, to minimize Vm+1(φ
[m+1]
ν ), we only need to minimize the variance with

respect to the permutations of the vector φ(m+1).
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Chapter 6

Conclusion and future work

Motivated by the use of spatial mixture models in PET image analyses, the statistical

estimation aspects of the modelling were developed in this thesis, including some

solutions to the normalizing constant problem and label switching in MCMC.

The Bayesian spatial mixture model was employed to estimate kinetic parameters

in compartmental model of the myocardium. Our results suggested that Bayesian in-

ference can provide more robust estimations than the conventional methods. In ad-

dition, Bayesian inference naturally provided uncertainty estimations for the param-

eters. The uncertainty estimations are particularly important due to the extremely

noisy nature of the data. The spatial dependence between voxels was incorporated

by employing the Potts model as the prior in the spatial mixture model where TDI

was utilized to solve the inferential problems related to the spatial correlation.

To deal with large sized Potts models, existing methods can either be compu-

tationally expensive (such as TDI and exact sampling methods) or have restrictive

assumptions (such as PL). Therefore, RCoDA and MCAPCD were proposed to over-

come the normalizing constant problem. RCoDA balanced computational efficiency

and inferential accuracy. In other words, RCoDA achieved good inferential results

without losing much computational efficiency compared to PL. In MCAPCD, the in-
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tractability of the Potts model was tackled by decomposing the intractable density

function of Potts model into a series of conditional distributions which were then

approximated by Monte Carlo simulations of the corresponding summary statis-

tics. Precomputed look-up tables are needed under this approach and they can be

reused in the inference about Potts models of different sizes. It has been shown that

MCAPCD is computationally efficient and in the meantime can achieve very accu-

rate inferential outcomes.

The label switching problem has been commonly encountered in the inference of

mixture models. Various relabelling algorithms were reviewed and their scalability

was evaluated with respect to different factors in mixture models, such as the num-

ber of observation N , the number of clusters k and q in the Potts models. In order

to deal with label switching problem, an algorithm which is based on a loss function

interpretation was suggested. The proposed algorithm can scale up well with N and

q.

The RCoDA and MCAPCD methods were developed for the Potts models which

were widely used in the spatial mixture models. Only the basic forms of the Potts

models were demonstrated in this thesis. However, there are many other forms of

the Potts models, such as the autologistic models and the Potts models with exter-

nal fields. Multivariate parameterization of the Potts models can be used to model

more complicated data. In the future, our work will focus on generalization to other

forms of the Potts models, as well as other types of MRFs, such as Gaussian Markov

random fields. In addition, the assumptions on the form of decay in RCoDA can

be relaxed. More flexible forms can be employed to capture the change of spatial

dependence in each split.
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