
A novel instruction scratchpad memory optimization method
based on concomitance metric

Author:
Janapsatya, Andhi; Ignjatovic, Aleksandar; Parameswaran, Sri

Publication details:
ASPDAC 2006, Proceedings
pp. 612-617
0780394518 (ISBN)

Event details:
11th Asia and South Pacific Design Automation Conference
Yokohama, Japan

Publication Date:
2006

DOI:
https://doi.org/10.26190/unsworks/420

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38931 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/420
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38931
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

A Novel Instruction Scratchpad Memory Optimization Method based on
Concomitance Metric

Andhi Janapsatya†, Aleksandar Ignjatović†‡, Sri Parameswaran†‡
†School of Computer Science and Engineering, The University of New South Wales

Sydney, NSW 2052, Australia
‡NICTA, The University of New South Wales

Sydney, NSW 2052, Australia
{andhij,sridevan,ignjat}@cse.unsw.edu.au

ABSTRACT
Scratchpad memory has been introduced as a replacement for cache
memory as it improves the performance of certain embedded sys-
tems. Additionally, it has also been demonstrated that scratchpad
memory can significantly reduce the energy consumption of the mem-
ory hierarchy of embedded systems. This is significant, as the mem-
ory hierarchy consumes a substantial proportion of the total energy
of an embedded system. This paper deals with optimization of the
instruction memory scratchpad based on a novel methodology that
uses a metric which we call the concomitance. This metric is used
to find basic blocks which are executed frequently and in close prox-
imity in time. Once such blocks are found, they are copied into the
scratchpad memory at appropriate times; this is achieved using a spe-
cial instruction inserted into the code at appropriate places. For a set
of benchmarks taken from Mediabench, our scratchpad system con-
sumed just 59% (avg) of the energy of the cache system, and 73%
(avg) of the energy of the state of the art scratchpad system, while
improving the overall performance. Compared to the state of the art
method, the number of instructions copied into the scratchpad mem-
ory from the main memory is reduced by 88%.

1. Introduction
A designer looks beyond mere functionality of the required em-

bedded system and optimizes for performance, energy consumption,
and cost. Performance optimization allows for greater functionality,
or the utilization of a lesser processor for the same task. Low energy
consumption allows longer battery life, lower heat dissipation, and
superior reliability. Reduced cost makes the system more competi-
tive in the marketplace.

A customary method of improving performance and reducing en-
ergy consumption of a system is to use a cache. Despite the overall
reduction in system energy, cache memory is known to consume up
to half the total system energy. Instruction cache alone has been
shown to consume up to 27% of total processor energy [1]. Thus,
careful optimization in this area can reap rewards in terms of reduced
energy consumption.

Prior research on optimization of instruction memory hierarchy for
embedded systems saw the replacement of the instruction cache by
a scratchpad memory (SPM) [2]. Even though cache and scratchpad
are both made of SRAM cells, they operate differently. Cache is typ-
ically designed to improve performance of general-purpose proces-
sors, and is divided into tag RAM and data RAM. The tag RAM
is compared against the instruction address requested, and if the in-
struction exists in the cache, it is sent to the processor, avoiding an
access to the main memory. SPM, on the other hand, does not con-
tain tag RAM, and forms a part of the main memory address map.
By accessing the most frequently executed parts of the program from
the SPM, one can reduce both the total execution time and the power

consumption, by avoiding tag RAM storage and comparison. As em-
bedded systems typically execute a restricted number of applications,
there are opportunities for improving their performance that are not
available in the case of general purpose systems. For example, pat-
terns of execution of the blocks of the code can be understood by the
use of profiling. Once these patterns are known, they can be used to
fill the SPM with appropriate segments of code at appropriate mo-
ments [11]. This reduces both the total access time and the total
energy consumption of the system. Additionally, energy consump-
tion is reduced due to the fact that the processor requires fewer wait
cycles.

Selecting the correct code segments for placement in the SPM re-
quires a careful analysis of the way such code segments are exe-
cuted. All prior work in this area has focused upon loop analysis
of the trace of a program as the method for finding the appropriate
segments. Loop analysis has several drawbacks: (i) the structure and
relationship of loops can be very complex; (ii) this structure can sig-
nificantly vary for different inputs; (iii) the precise structure of loops
is irrelevant for the placement of instructions in the SPM because
only relative (temporal) proximity of executions matters, rather than
the precise order of these instructions (as provided by the loop analy-
sis) [12, 13, 14, 15].

In this paper we present, for the first time, an optimization method
for utilizing instruction SPM that is based on an analysis of temporal
correlation of instruction executions, rather than on loop analysis.

We introduce a class of metrics for estimating temporal proximity
of consecutive executions of the same block of the code, and for esti-
mating temporal proximity of interleaved executions of two different
blocks of the code. The former is used to decide if a block should
be executed from the SPM or from the main memory; the latter is
used to decide if two blocks should be placed in SPM together or
not. Such temporal information is gathered using a very efficient and
adaptive algorithm whose parameters can easily be changed (various
metrics for distance estimation). These metrics are used to estimate
how correlated in time the execution of various blocks of code are,
using an informative quantity that we call the concomitance. Our
methods have a signal-processing flavor, because the trace is seen as
a “signal” on which we perform a statistical, rather than structural
analysis. Such analysis of the trace has proven to yield an algorithm
for SPM placement with performance results that are not only supe-
rior to the previous state of the art, but that is also much simpler, more
efficient, and adaptive to different types of applications. Recently we
found out that a related, but somewhat cruder and less general idea
has been used for cache management [16].

The benefits of using temporal proximity information is illustrated
in the following example. Consider the “if-clause” shown in Fig-
ure 1(a) with the Control Flow Graph (CFG) shown in Figure 1(b).
Looking at this code segment, for K = 50 and M = 100, a profiling

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 16, 2008 at 19:51 from IEEE Xplore. Restrictions apply.

a = 0;
while (a < M) {

If (a < K) {
x = sin(a);

} else {
x = cos(a);

}
a++;

}

(a) If-clause code
segment

X = sin(a) X = cos(a)

a++;

If (a < K)

(b) If-clause CFG

Figure 1: Motivational Example.

that takes into consideration temporal proximity of executions would
find that the first 50 execution of the “if-clause” take the path con-
taining x = sin(a), and the next 50 execution of the “if-clause” take
the path containing x = cos(a). Thus, such algorithm will deduce
that, since they are not interleaved in time, the block of instructions
used for computing x = sin(a) and the block of instructions used for
computing x = cos(a) can be placed onto SPM with overlap without
degrading the performance. However, in a similar program, execu-
tions of x = sin(a) and x = cos(a) may be temporally interleaved.
For example, if the “if-clause” is of the form i f (a = “even number”),
then the path with x = sin(a) will be executed whenever a is an even
number and the path with x = cos(a) will be executed whenever a is
an odd number. In such case the profiling will deduce that the exe-
cutions of blocks used to compute these two functions alternate and
consequently such temporally interleaved blocks must not be placed
in the SPM with an overlap. Our concomitance metric is designed to
distinguish between pairs of blocks whose executions are likely to be
interleaved and blocks whose executions are likely to be separate in
time, thus enabling proper placement onto the scratchpad. Clearly, if
only frequency of execution was determined as in the state of the art
[11], these two patterns of execution would be indistinguishable and
CFG would simply inform the algorithm that each path was executed
50 times. This shows the importance of measuring appropriately the
temporal proximity of executions of blocks of code and making such
information available to the SPM placement algorithm.

The rest of this paper is structured as follows: section 2 summa-
rizes the related work and our contribution; section 3 presents the
SPM system architecture; section 4 defines the concomitance and
presents techniques for building the concomitance table; section 5
presents the optimization method; Section 6 explains the experimen-
tal setup and presents the results; finally, section 7 states the conclu-
sions reached in this paper.

2. Related Work and Contributions
Existing work on the utilization of SPM can be categorized into

three areas: (i) use of SPM for data memory only; (ii) use for in-
struction memory only; or (iii) both. The SPM utilization can be
further divided into two classes: statically managed use and dynam-
ically managed use. With static management, the SPM is filled at
load time and its content does not change during the execution; in
dynamic management, the contents of the SPM is changed during
the program run-time.

Existing works on cache optimization techniques rely on careful
placement of instructions and/or data within the memory to ensure
low cache miss rates. Cache optimization methods generally increase
the program memory size [21, 22, 23, 24, 25, 26, 27, 28]. The use
of SPM to replace cache memory has been shown to improve the
performance and reduce energy consumption [2].

SPM optimization methods for data memory are presented in [3,
4, 5, 8, 6, 17, 18, 19, 20]. In optimizing for data memory, data
access patterns were analyzed to find frequently accessed variables
and constants. A dynamic management scheme of data SPM was

first presented by Kandemir [5].
For static SPM, the most frequently executed basic blocks (e.g.,

loops) are kept within the SPM [2, 7]. Static SPM is simple, because
it does not change its contents during execution. However, static
SPM can be limiting, because it has to either keep all loops in the
program by providing a large SPM to accommodate all the loops, or
decide upon the most executed loops to be stored in a smaller SPM.

To overcome this limitation of static SPMs, dynamic SPMs update
their contents during runtime. Steinke [9] used loop analysis to find
loops within the program to dynamically allocate into SPM. They
added a series of load and store instructions within the program to
perform copying into SPM, resulting in greatly increased code size.
In [11], Janapsatya et al. modified the processor architecture and
inserted a custom instruction to perform copying into SPM. They
used a graph partitioning procedure to perform loop analysis to find
suitable loops within the program to place in the SPM. This reduced
the number of instruction inserted, but was still dependent upon loop
analysis. Their graph partitioning procedure was inefficient, since
it used a global heuristic which performs badly for loops with basic
blocks which are far apart in the program structure.

2.1 Our Contribution
In this paper, we define the notion of concomitance of blocks of

code and use it to automatically identify blocks that are executed in
clusters, each cluster consisting of many executions in close tempo-
ral succession. Such blocks are found to have high concomitance and
will be placed in the SPM first. Further, pairs of basic blocks whose
executions are interleaved are found to have high pairwise concomi-
tance are thus simultaneously allocated to SPM. Hence, without the
need to perform difficult loop analysis, we can identify which basic
blocks are to be executed from SPM and which groups of instructions
should be placed in the SPM simultaneously.

Our contribution includes replacement of difficult structural loop
analysis of the program by an essentially statistical method for auto-
mated decision making regarding which basic blocks should be ex-
ecuted from SPM and, among them, which groups of basic blocks
should be placed in the SPM simultaneously. Our method is very in-
tuitive, flexible, and perspicuous, and is more akin to signal process-
ing techniques rather than the existing algorithms for SPM manage-
ment.

3. SPM System Architecture
3.1 Assumptions
The work presented in this paper was performed under the follow-

ing assumptions:

• Size of scratchpad memory or cache memory is only available in
powers of two and the size is known a priori. This is to enable
better optimization.

• The applications and their execution patterns are known a priori.

3.2 Dynamic Instruction Scratchpad Memory
The architecture of the embedded system described in this work is

presented in Figure 2. Our proposed SPM architecture uses a dy-
namic management scheme. The copying process can either use a
series of load and store instructions as describe in [10] or use the
special instruction method described in [11].

In our experimental setup, we decided to adopt the copying method
described in [11] because it is the state of the art. To copy instruc-
tions into the SPM, the energy costs are incurred due to instructions
fetch from DRAM, copying instructions into the SPM, and the en-
ergy cost of the memory copying hardware. Copying is performed
by the custom copy instruction inserted within the program to inform
the copy mechanism hardware when to start moving instruction into
the SPM.

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 16, 2008 at 19:51 from IEEE Xplore. Restrictions apply.

Figure 2: Embedded System Architecture.

Total energy cost of the system is given by summing the energy
cost of all its components. For our dynamic scratchpad system, this
is given by the following equation,

Esystem =ECPU +ESPM,insn +EDRAM,insn +Ecopy

+Ecache,data +EDRAM,data

The parameters shown in the above equation are defined as follows:
ECPU is the energy cost of the processor.
ESPM,insn is the sum of the energy costs of all instruction executed
from scratchpad.
EDRAM,insn is the sum of the energy costs of all instruction executed
from DRAM.
Ecopy is the energy cost of all instructions copied into the SPM.
Ecache,data is the energy cost of all data cache accesses.
EDRAM,data is the energy cost of all data cache misses.

The energy equation for calculating Ecopy is given by,

Ecopy = C×Econtroller +T × (ESPM,write +EDRAM,Burstread)

where C is the number of copy instructions executed, Econtroller is
the energy cost of the copy mechanism, T is the total number of
instructions copied into the SPM, ESPM,write is the cost of writing
into the SPM, and EDRAM,Burstread is the cost for reading a sequential
block of data from DRAM.

The heuristics behind our method can be explained as follows. If
we are to place on to the SPM, a block of code a whose consecutive
executions are often separated by execution of group g consisting of
a large number of other distinct instructions, then either the part of
the SPM occupied by a would not be utilized during the execution
of g, or a would be overwritten by g and thus it would have to be re-
loaded. Consequently, we preferentially put in the SPM those blocks
a that are executed frequently with a relatively small number of other
distinct instructions executed between consecutive executions of a.
Similarly, if two blocks of code a and b occur frequently in the trace
in sequences of “sandwich forms” a,x,b,y,a or b,x,a,y,b such that
x and y are some groups consisting in total of a relatively small num-
ber of distinct instructions of the program, then a and b should be
allocated to the SPM in a non overlapping way. To formalize this
heuristic, in section 4 we introduce the notion of distance between
consecutive executions e(b) and e′(b) of a basic block b, as well as a
notion of concomitance between basic blocks.

4. Concomitance
A basic block, by definition, is the largest chain of consecutive in-

structions that has the properties: (i), if the first instruction of the
block is executed, then all instructions in the basic block will also be
executed consecutively; and (ii), any instruction of the basic block
is executed only as a part of the consecutive execution of the whole
block.

The distance between two consecutive executions e(b) and e′(b)
of a basic block b in the trace T of a run of a program is defined
as follows. If between the executions e(b) and e′(b) of b there are

no other occurrences of b in T , we count the number of distinct in-
struction steps executed between e(b) and e′(b), including b. We
call this value the distance between e(b) and e′(b) and denote it
by d[e(b), e′(b)]. For example, assume that “bxyxyxyzxyxyb” is a
sequence of consecutive executions in a trace T , and that each of
the basic blocks b, x, y and z contains ten distinct instructions; then
the distance between e(b), e′(b) is 40, because only x,y,z appear be-
tween the two executions of the basic block b (and we include b itself
in the count).

The weight function is used to give a decreasing significance to the
two consecutive executions of the same block that are further apart in
the sense of the above notion of distance. Thus, it is a non-negative
real function W (z) that is decreasing, i.e. u≤ v implies W (u)≥W (v).

The trace concomitance τ(a,b,T) gives information about how
tightly interleaved the executions of two distinct basic blocks a and
b in the trace T are. Thus, for a basic block a we consider all of
its consecutive executions e(a), e′(a) in the trace T , for which there
exists at least one execution of the block b between the executions
e(a) and e′(a); we denote such fact by b ∈ [e(a),e′(a)]. We now also
reverse the roles of a and b, and define τ(a,b,T) by

τ(a,b,T) = ∑
b∈[e(a),e′(a)]

e(a)∈T

W (d[e(a),e′(a)]) + ∑
a∈[e(b),e′(b)]

e(b)∈T

W (d[e(b),e′(b)])

Here e(a) ∈ T in the sum means that e(a) ranges over all executions
of the basic block a that appear in the trace T . Note that for two
distinct basic blocks a, b the concomitance of these two blocks will
be large just in case b is often executed between two consecutive
executions of a that are a short distance apart, and/or if a is often
executed between two consecutive executions of b that are also a
short distance apart, in the sense of distance defined above.

The trace self-concomitance σ(b,T) of a basic block b is a measure
of how clustered consecutive executions of the block b are, and is
defined as:

σ(b,T) = ∑
e(b)∈T

W (d[e(b),e′(b)])

Thus, trace self-concomitance σ(b,T) has a large value for those ba-
sic blocks b whose executions appear in clusters, with all successive
pairs of executions within each cluster separated by short distances.
Note that even if b is executed relatively frequently, but such exe-
cutions of b are dispersed in the trace T rather than clustered, then
self-concomitance σ(b,T) will still be low. On the other hand, if for
certain input a particular loop is frequently executed, then the trace
self-concomitance σ(a,T) of each basic block a from this loop will
be large. Thus, the loop structure of a program is reflected in the
statistics of the concomitance values if such statistics is taken over
runs with sufficient number of inputs reasonably representing what
is expected in practice. This is the motivation for the following defi-
nitions.

The concomitance τ(a,b) of a pair of basic blocks a,b for a given
probability distribution of inputs is the corresponding expected value
of trace concomitance τ(a,b,T).

The self-concomitance σ(b) of a basic block b for a given a prob-
ability distribution of inputs is the corresponding expected value of
trace self-concomitance σ(b,T).

To conveniently use the concomitance and self-concomitance in our
scratchpad placement algorithms, we construct the concomitance ta-
ble by the following profiling procedure.
• Chose a suitable weight function W (d). In our experiments so

far we have studied two types of weight functions: W (d) = M
d and

W (d) = e
−d2

M , where M is a constant depending on the size of the
scratchpad.

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 16, 2008 at 19:51 from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 5
2 12 11
3 5 4.4 3.8
4 15 13 12 10
5 5 4.4 3.8 3.4 3
6 35 31 27 24 21 18
7 1 0.9 0.8 0.7 0.6 0.5 0.5
8 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4
9 8 7 6.1 5.4 4.7 4.1 3.6 3.2 2.8

10 45 39 35 30 27 23 20 18 16 14
11 13 11 10 8.8 7.7 6.7 5.9 5.2 4.5 4 3.5
12 21 18 16 14 12 11 9.5 8.4 7.3 6.4 5.6 4.9
13 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.2 0.2
14 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2
15 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2
16 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1
17 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1
18 15 13 12 10 8.9 7.8 6.8 6 5.2 4.6 4 3.5 3.1 2.7 2.4 2.1 1.8 1.6
19 5 4.4 3.8 3.4 3 2.6 2.3 2 1.7 1.5 1.3 1.2 1 0.9 0.8 0.7 0.6 0.5 0.5
20 5 4.4 3.8 3.4 3 2.6 2.3 2 1.7 1.5 1.3 1.2 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4

Figure 3: Concomitance Table.

Program Binary

Simulation
Platform

Program Trace

SPM Allocation
Procedure

Build
Concomitance

Table

Processor and
SPM

Energy Model

Energy
Consumption and

Performance
Valuation

Figure 4: SPM Optimization Procedure.

• Run the program with inputs that reasonably represent the proba-
bility distribution of inputs expected in practice.
• Calculate the average value of the trace self-concomitance ob-

tained from such runs, thus obtaining the self-concomitance value
σ(b).
• Set a threshold of significance for the value of

self-concomitance of basic blocks. The set S of all blocks with sig-
nificant self-concomitance (i.e., larger than the threshold) is formed.
• Calculate the concomitance for all pairs of basic blocks from such

set S, by finding the average of all trace concomitances obtained from
the runs of the program and then form the corresponding table. Since
the concomitance is commutative, such a table is symmetric and an
example is shown in Figure 3; thus, we record only its lower left
triangle. The self-concomitance σ(b) is conveniently placed on the
diagonal of the table.

The size of the table is given by

Size =
N ∗ (N +1)

2

where N is the total number of basic blocks in the set S. Time com-
plexity of the construction of the concomitance table is bounded by
2NT , where T is the size of the trace.

5. SPM Optimization Procedure
The methodology for allocating basic blocks into the SPM is shown

in Figure 4. A program binary is simulated along with its represented
data to obtain the program trace. We then use our methodology to
find segments in the program which are to be executed from the SPM.
The methodology utilizes a SPM allocation procedure which uses the
concomitance metric describe in section 4. This algorithm is shown
in Figure 5.

The algorithm starts by building the concomitance table and the
control flow graph (CFG) of the application. Each vertex in the CFG

Build Control Flow Graph.
Build Concomitance table of elements in S.
Perform Edge Cut procedure based on concomitance value.
Evaluate the need for insertion of copy instruction on all cut edges.
Calculate energy cost of the resulting sub-graphs.
Calculate performance result of the sub-graphs.

Figure 5: SPM Allocation Procedure.

Construct one group containing all the vertices in S;
Sort the concomitance values of all pairs {a,b} of basic blocks
in ascending order;
Start from lowest concomitance value;
For each pair of basic blocks {a,b} {

if the resulting group size is larger than SPM size
Cut the edge connecting a and b

}

Figure 6: Edge-cut Procedure.

represents a basic block. The weight of each edge a represents the
concomitance value τ(a,b) of a and b, obtained from the concomi-
tance table. Edges of this graph are sorted in increasing order with
respect to concomitance value. We then select from the lowest con-
comitance value and evaluate whether two vertices connected by the
edge belong to a sub-graph with size larger than SPM. We cut all
edges which connect two vertices with total size larger than the SPM.
The edge cut procedure is shown in Figure 6.

For each subgraph, one or more copy instructions are to be added
for copying the instructions within the subgraph into the SPM. Pos-
sible locations for adding copy instructions are the edges connecting
subgraphs. To minimize the amount of copy instructions to be added,
each edge is traversed up and a copy instruction is only added if an-
other subgraph was possibly loaded into the SPM along the same
execution path.

Time complexity of the SPM allocation procedure is bounded by
N3, where N is the total number of basic blocks in the set S.

6. Experimental Results
6.1 Setup
We simulated a number of benchmarks using the simplescalar/PISA

3.0d simulation environment [29] combined with DineroIV [30], to
obtain memory access statistics. Power figures for the CPU were
calculated using Wattch [31] (0.18µm). CACTI 3.2 [32] was used
as the energy model for the cache memory. The energy model for
the scratchpad memory was extracted from CACTI as in [2]. The
DRAM power figures were taken from IBM embedded DRAM SA-
27E [33]. We adopt the same Simplescalar CPU configuration and
memory delay figures as described in [11] for ease of comparison of
the results.

All benchmarks were obtained from the mediabench suite [34].The
total number of instructions executed in each benchmark is tabulated
in Table 1. The data cache memory is fixed at 4K bytes giving a
large enough data cache to ensure all benchmark applications cause
less than 1% data cache misses.

Table 2 shows the SPM access time, SPM access energy, cache ac-
App. Prog. Total no. Copy Avg. no. SMI Avg. no.

size of insn. insn. of insn. added of Insn.
Exec. inser- copied [11] copied into

ted into SPM SPM[11]

rawcaudio 9182 6689768 4.6 1247 30.4 741972
rawdaudio 9384 12414463 4.6 1263 29.7 2704463

g721enc 11052 314594475 6.2 33751706 63 130722589
g721dec 11066 302967631 4.8 12844416 58 87833725

mpeg2enc 26808 1134231679 23.4 4385032 272.86 197787388

Table 1: Cost of adding and executing copy instructions.

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 16, 2008 at 19:51 from IEEE Xplore. Restrictions apply.

Size Cache acc. SPM acc. ratio Cache acc. SPM acc. ratio
(bytes) time(ns) time(ns) energy(nJ) energy(nJ)

512 1.19 0.74 1.61 1.37 0.18 7.61
1024 1.24 0.78 1.59 1.37 0.19 7.21
2048 1.30 0.83 1.57 1.39 0.20 6.95
4096 1.31 0.88 1.49 1.42 0.23 6.17
8192 1.34 1.05 1.28 1.49 0.29 5.14
16384 1.64 1.21 1.36 1.55 0.36 4.31

Table 2: Access time and energy consumption of static memory.
App. SRAM Total cache misses Total Total % %

size assoc = DRAM DRAM imp. imp.
1 2 4 8 16 acc.[11] acc. cache [11]

ra
w

ca
u
d
io

1024 7408 6653 7818 8666 6807 3883 3004 59.4 22.6
2048 7052 4629 2899 2846 2852 3427 2396 32.7 30.1
4096 3931 4076 2334 2275 2240 3400 2092 24.1 38.5
8192 2154 1981 1868 1847 1830 3400 2092 -8.5 38.5

16384 2007 1841 1810 1799 1799 3400 1799 2.7 47.1

ra
w

d
au

d
io

1024 20899 26033 29336 30530 31148 31527 12488 53.7 60.4
2048 14996 10389 4806 2914 2920 3470 2634 44.3 24.1
4096 5465 5900 2398 2352 2322 3535 2160 29.8 38.9
8192 2208 2035 1932 1915 1899 3535 2160 -8.5 38.9

16384 2049 1898 1878 1867 1867 3535 1867 2.2 47.2

g
7
2
1
en

c

1024 1.3E+8 1.3E+8 1.1E+8 1.1E+8 1.1E+8 1.5E+8 5.6E+7 52.6 62.8
2048 1.1E+8 1.1E+8 1.1E+8 1.1E+8 1.1E+8 2.1E+8 5.6E+7 47.9 73.1
4096 7.8E+7 8.3E+7 9.0E+7 1.0E+8 1.1E+8 3.3E+8 1.2E+8 -38.1 62.6
8192 5.1E+7 2.1E+7 1.4E+7 1.1E+7 4.3E+6 7.5E+5 3.0E+5 97.2 59.5

16384 3.9E+6 2.4E+6 1.1E+4 2.7E+3 2.7E+3 8.6E+3 2.7E+3 55.5 68.6

g
7
2
1
d
ec

1024 1.2E+8 1.2E+8 1.1E+8 1.1E+8 1.1E+8 1.3E+8 3.0E+7 73.5 77.1
2048 1.0E+8 1.0E+8 1.0E+8 1.0E+8 1.0E+8 1.8E+8 3.9E+7 62.4 78.6
4096 7.4E+7 8.0E+7 8.5E+7 9.2E+7 1.0E+8 1.1E+8 4.1E+7 51.8 62.5
8192 4.1E+7 2.6E+7 8.6E+6 3.6E+6 3.7E+6 1.9E+5 4.7E+4 99.3 75.1

16384 6.6E+4 3.5E+4 1.3E+4 3.6E+3 2.8E+3 6.8E+3 2.7E+3 58.8 60.0

m
p
eg

2
en

c

1024 1.1E+8 1.4E+8 1.7E+8 1.8E+8 1.9E+8 2.4E+8 8.6E+7 43.6 64.2
2048 2.7E+7 1.1E+7 1.1E+7 1.1E+7 1.1E+7 2.5E+7 5.2E+6 58.8 79.4
4096 4.8E+6 4.1E+6 3.0E+6 2.8E+6 2.7E+6 6.7E+6 1.9E+6 43.4 71.9
8192 1.9E+6 1.0E+6 7.6E+5 7.9E+5 8.4E+5 4.5E+6 7.7E+5 19.0 82.9

16384 4.8E+5 3.7E+5 1.4E+5 1.1E+5 1.1E+5 2.8E+6 1.3E+5 21.1 95.4

Table 3: Total memory access Comparison.(Cache result shows
the total cache misses. SPM total DRAM access is the total num-
ber of instructions executed from DRAM plus the number of in-
structions copied from DRAM to the SPM.)

cess time, and cache access energy [32] for an 8-way set associative
cache (8-way is only shown here as an example). It can be seen that
accessing SPM is approximately 1.5 times faster than a cache access
and uses approximately 6 times less energy compared to an 8-way set
associative cache. Instruction copying hardware cost is taken from
[11] and stated to be at 2.94mW.

Experimental setup is shown in Figure 7. Comparison is made be-
tween results obtained in this work, work described in [11], and a
conventional cache memory system.

6.2 Results
Table 3 showed a comparison of the total number of memory ac-

cesses. Performance and energy results measured from the experi-
ments are shown in Table 4 and Table 5, and cost of adding copy
locations within the program is shown in Table 1.

In Table 1, column 1 shows the application name, column 2 gives
the size of the program, column 3 the number of instructions exe-
cuted, column 4 gives the average number of copy locations to be
inserted (average is taken from varying SPM sizes ranging from 1K
bytes to 16K bytes), column 5 shows the average number of instruc-
tions that need to be copied into the SPM, column 6 presents the
results from [11] showing the number of copy instruction (SMI) in-
serted into the program, and column 7 shows the total number of
instruction copied into the SPM from [11]. Comparing figures in Ta-
ble 1 column 5 and column 7 shows that our method significantly
reduces the number of instructions to be copied into the SPM.

Table 3 compares the total number of memory accesses of a cache

Performance and Energy Comparison.

SimpleScalar
Simulation

Program
Trace

SimpleScalar
Binary

Control
Flow Graph

Concomitance
Table

Edge-Cut
Procedure based on

concomitance information

Performance and
Energy

measurement

Edge Cutting
Procedure based on

frequency information[11]

Performance
and energy

measurement.

Instruction Cache misses.

Performance and
Energy Calculation.

Time and Energy Model

Processor Model
(Sim-wattch)

Cache and
SPM model (CACTI)

Figure 7: Experimental Setup.

0

20

40

60

80

100

120

140

160

rawcaudio
0

50

100

150

200

250

300

rawdaudio

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

g721enc
0

2000

4000

6000

8000

10000

12000

g721dec
0

5000

10000

15000

20000

25000

30000

mpeg2encode

0

20

40

60

80

100

120

140

160 Assoc=1

Assoc=2

assoc=4

Assoc=8

Assoc=16

Frequency [11]

Concomitance

Figure 8: Energy Comparison for 8K bytes SRAM. (y-axis are
energy in mJ)

system, the system presented in [11], and the system presented in
this paper. Column 1 in Table 3 gives the application name; column
2 shows the cache or SPM size; column 3 to column 7 show the
total number of cache misses for different cache associativities; col-
umn 8 gives the total DRAM accesses obtained from [11]; column
9 shows the total DRAM accesses obtained from our optimization
method; column 10 shows the average percentage improvement of
our method over the cache system; and column 11 the percentage
improvement over the method described in [11]. In column 11, it
is shown that our concomitance method reduces the total number of
DRAM accesses by an average of 52.94% compared to the method
described in [11]. When comparison is made with a cache based
system (column 10), it is shown that the total number of DRAM ac-
cesses for our SPM system is not always less than the total number
of cache misses. Despite the higher total DRAM accesses in a SPM
system compared to the cache system, it does not always translate
to worse energy consumption and worse performance compared to a
cache system. This is because the energy and time cost per SPM ac-
cess is far less compared to the energy and time cost per cache access
(especially when compared to the energy and time cost of accessing
a 16-way set associative cache.). It can also be noted that total num-
ber of DRAM accesses for a SPM system is comprised of both the
number of instruction to be executed from DRAM and the total num-
ber of instruction copied from DRAM to SPM. Copying instructions
from DRAM to SPM causes a sequential DRAM access which con-
sumes less power and time compared to a random DRAM access that
happens on each cache miss.

Table 4 shows energy comparison of our method with: (i) a cache
system; and (ii) with the system presented in [11]. The table structure
is identical to Table 3 except the comparison is now for energy. Fig-
ure 8 shows the energy improvement comparison between the cache
system, our SPM allocation method, and the SPM allocation proce-
dure described in [11] for all the benchmarks. The energy compari-

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 16, 2008 at 19:51 from IEEE Xplore. Restrictions apply.

App. SRAM Cache System’s Energy (mJ) SPM SPM % %
size assoc = (mJ) (mJ) imp. imp.

1 2 4 8 16 [11] cache [11]

ra
w

ca
u
d
io

1024 101 105 105 113 130 69 59 45.9 13.6
2048 103 106 106 117 132 73 64 43.2 12.6
4096 109 111 111 118 138 77 66 43.2 14.3
8192 116 118 118 122 140 92 70 42.5 23.3

16384 140 139 139 147 165 99 75 48.5 24.2

ra
w

d
au

d
io

1024 194 201 201 217 249 157 116 45.1 26.1
2048 197 200 200 222 249 161 122 42.4 24.2
4096 207 211 211 223 260 170 127 42.3 25.0
8192 219 223 223 230 264 196 135 41.7 31.4

16384 265 263 263 277 310 210 143 47.7 31.6

g
7
2
1
en

c

1024 25763 23507 23507 23753 24470 18397 10082 58.3 45.2
2048 22782 22856 22856 23473 24123 22071 8920 61.6 59.6
4096 18919 20190 20190 22273 24056 32151 14548 30.6 54.8
8192 8880 7906 7906 7595 7314 4557 3356 57.5 26.4

16384 7016 6568 6568 6932 7778 4832 3552 48.9 26.5

g
7
2
1
d
ec

1024 24830 22514 22514 22552 23315 16092 7185 68.9 55.4
2048 21745 22026 22026 22589 23340 19071 6843 69.4 64.1
4096 18141 19137 19137 20672 22841 13214 6968 64.9 47.3
8192 9562 6779 6779 6104 6969 4357 3215 54.5 26.2

16384 6382 6327 6327 6677 7493 4664 3422 48.3 26.6

m
p
eg

2
en

c

1024 39931 44684 44684 49043 52774 34447 22183 51.6 35.6
2048 19399 19849 19849 21853 24341 14118 11612 44.5 17.8
4096 19292 19502 19502 20636 23970 13218 11636 43.1 12.0
8192 19971 20294 20294 20941 24068 15421 12174 42.1 21.1

16384 24032 23793 23793 25099 28151 16479 12907 48.1 21.7

Table 4: System’s Energy Comparison.

son shows that our method almost always performs better compared
to the cache system, and superior results are seen when compared
with results obtained from [11]. On average, the energy consumption
by utilizing our method is 41.9% better than cache system energy,
and 27.1% better than the method described in [11]. In particular our
method is superior in cases where negative improvements over cache
were shown in results from [11].

Performance result is shown in Table 5. Structure of the table is
identical to Table 4; column 3 to column 7 shows the execution time
of a cache based system; column 8 shows the performance results ob-
tained from [11]; and column 9 shows our performance measurement
results; column 10 shows the average performance improvement of
our method over cache system; and column 11 shows performance
improvement over method described in [11]. Our method improves
the execution time by 40.0% compared to cache and 23.6% compared
to the method described in [11].

Thus it is clear from the results that the method described here is a
feasible method for dynamic SPM allocation. We show that the num-
ber of copy instructions inserted are far fewer than the state of the art.
In addition, for the applications shown here, we show performance
improvement and energy savings.

7. Conclusions
In this paper we have proposed a method to reduce energy and im-

prove performance of an embedded system, containing an instruction
scratchpad. Our system relies on a new metric called concomitance,
which is used to identify basic blocks that should be placed together
in the scratchpad. This method results in embedded systems with
lower energy and higher performance, compared to a standard cache
system and state of the art scratchpad instruction partitioning algo-
rithm.

8. References
[1] J. Montanaro et al., “A 160MHz, 32b, 0.5W CMOS RISC microprocessor,” JSSC,

vol.31(11), pp. 1703-1712, 1996.
[2] R. Banakar et.al., “Scratchpad Memory: A Design Alternative for Cache On-chip

Memory in Embedded Systems,” CODES, 2002.
[3] O. Avissar and R Barua, “An Optimal Memory Allocation Scheme for Scratch-

Pad-Based Embedded Systems,” ACM Trans. on Embedded Computing Systems,
vol. 1, pp. 6-26, 2002.

[4] P.R. Panda, “Efficient Utilization of Scratch-Pad Memory in Embedded Processor
Applications,” European Design and Test Conference, Proceedings of, 1997.

[5] M. Kandemir et.al., “Dynamic Management of Scratch-Pad Memory Space,” DAC,
2001.

[6] M. Kandemir and A. Choudhary, “Compiler-Directed Scratch Pad Memory Hier-
archy Design and Management,” DAC, 2002.

App. SRAM Cache System Execution Time (ms) SPM SPM % %
size assoc = (ms) (ms) imp. imp.

1 2 4 8 16 [11] cache [11]

ra
w

ca
u
d
io

1024 7.9 8.0 8.0 8.4 9.1 5.2 4.7 43.3 10.8
2048 8.1 8.1 8.1 8.7 9.2 5.6 5.0 40.5 9.9
4096 8.5 8.5 8.5 8.8 9.7 5.9 5.2 40.5 11.8
8192 9.0 9.0 9.0 9.0 9.9 7.0 5.5 39.7 21.3

16384 11.0 10.7 10.7 11.0 11.8 7.6 5.9 46.4 22.1

ra
w

d
au

d
io

1024 14.8 15.1 15.1 15.7 17.1 9.9 8.8 43.5 11.7
2048 15.0 15.0 15.0 16.1 17.1 10.3 9.3 40.6 9.8
4096 15.8 15.8 15.8 16.2 18.0 11.0 9.7 40.5 11.7
8192 16.7 16.8 16.8 16.7 18.3 13.0 10.3 39.7 21.3

16384 20.3 19.8 19.8 20.4 21.9 14.0 10.9 46.4 22.1

g
7
2
1
en

c

1024 2016.8 1832.5 1832.5 1837.3 1864.5 1443.5 798.4 57.4 44.7
2048 1782.8 1781.3 1781.3 1815.6 1837.2 1747.1 703.8 60.9 59.7
4096 1479.5 1571.8 1571.8 1720.7 1831.8 2563.4 1147.7 29.4 55.2
8192 690.9 607.3 607.3 567.7 517.3 335.0 261.8 55.8 21.9

16384 545.1 502.2 502.2 516.9 554.1 355.4 277.1 47.0 22.0

g
7
2
1
d
ec

1024 1943.6 1754.9 1754.9 1744.0 1775.8 1260.1 568.2 68.3 54.9
2048 1701.5 1716.5 1716.5 1747.1 1777.6 1507.9 538.6 68.9 64.3
4096 1418.5 1489.5 1489.5 1596.0 1738.3 1034.2 548.0 64.4 47.0
8192 744.5 519.2 519.2 451.5 492.2 319.1 250.6 52.7 21.5

16384 495.5 483.6 483.6 497.8 533.6 342.2 266.8 46.4 22.0

m
p
eg

2
en

c

1024 3142.5 3495.2 3495.2 3789.4 3978.2 2762.6 1742.9 51.0 36.9
2048 1500.8 1509.6 1509.6 1616.0 1705.0 1123.1 899.1 42.5 19.9
4096 1490.0 1479.5 1479.5 1516.2 1673.6 1048.2 900.3 40.9 14.1
8192 1539.2 1538.7 1538.7 1534.4 1678.0 1221.2 942.9 39.7 22.8

16384 1859.7 1812.6 1812.6 1865.2 1999.5 1300.3 1000.2 46.4 23.1

Table 5: System’s Performance Comparison.

[7] F. Angiolini et.al., “Polynomial-Time Algorithm for On-Chip Scratchpad Memory
Partitioning,” CASES, 2003.

[8] S. Udayakumaran and R. Barua, “Compiler-Decided Dynamic Memory Allocation
for Scratch-Pad Based Embedded Systems,” CASES, 2003.

[9] S. Steinke et.al., “Assigning Program and Data Objects to Scratchpad for Energy
Reduction,” DATE, 2002.

[10] S. Steinke et.al., “Reducing Energy Consumption by Dynamic Copying of Instruc-
tions onto Onchip Memory,” ISSS, 2002.

[11] A. Janapsatya et.al., “Hardware/Software Managed Scratchpad Memory for Em-
bedded System,” ICCAD, 2004.

[12] G. Ramalingam, “On Loops, Dominators, and Dominance Frontier,” PLDI, 2000.
[13] P. Havlak, “Nesting of Reducible and Irreducible Loops,” ACM Transactions on

Programming Languages and Systems, 1997.
[14] V. C. Sreedhar et. al., “Identifying Loops using DJ Graphs,” ACM Transactions on

Programming Languages and Systems, 1996.
[15] B. Steensgaard, “Sequentializing Program Dependence Graphs for Irreducible Pro-

grams,” Technical Report MSR TR-93-14, Microsoft Research, Redmond, Wash-
ington, October 1993.

[16] N. Gloy and M. D. Smith, “Procedure Placement Using Temporal-Ordering Infor-
mation,” Programming Languages and Systems. ACM Transactions on, Vol. 32,
No. 5, Pages 977-1027, September 1999.

[17] P. Grun et. al., “Access Pattern-Based Memory and Connectivity Architecture Ex-
ploration,” Embedded Computing Systems. ACM Transactions on, Vol. 2, No. 1,
Pages 33.73, February 2003.

[18] A. Ramachandran and M. F. Jacome, “Xtream-Fit: An Energy-Delay Efficient Data
Memory Subsystem for Embedded Media Processing,” DAC, 2003.

[19] M. Verma et. al., “Dynamic Overlay of Scratchpad Memory for Energy Minimiza-
tion,” CODES+ISSS, 2004.

[20] M. Kandemir et. al., “Exploiting Scratch-Pad Memory Using Presburger Formu-
las,” ISSS, 2001.

[21] S. Parameswaran and J. Henkel, “I-CoPES: fast instruction code placement for
embedded systems to improve performance and energy efficiency,” ICCAD, 2001.

[22] P. P. Chang and et.al., “IMPACT: an architectural framework for multiple-
instruction-issue processors,” Computer Architecture News, vol. 19, no. 3, 1991.

[23] S. McFarling, “Program optimization for instruction caches,” ASPLOS, 1989.
[24] S.McFarling, “Procedure merging with instruction caches,” SIGPLAN Notices, vol.

26, no. 6, 1991.
[25] P. Panda and et.al., “Memory Organization for Improved Data Cache Performance

in Embedded Processors, ISSS,, 1996.
[26] P. Panda and et.al., “A Data Alignment Technique for Improving Cache Perfor-

mance,” ICCD,, 1997.
[27] H. Tomiyama and H. Yasuura, “Optimal code Placement of Embedded Software

for Instruction Cache,” EDAC, 1996.
[28] S. Bartolini and C. A. Prete, “A cache-aware program transformation technique

suitable for embedded systems,” Information and Software Technology 44(13),
2002.

[29] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” TR-CS-
1342, University of Wisconsin-madison, June 1997.

[30] J. Edler and M. D. Hill, “Dinero IV Trace-Driven Uniprocessor Cache Simulator,”
http://www.cs.wisc.edu/ markhill/DineroIV/.

[31] D. Brooks et.al., “Wattch: A Framework for Architectural-Level Power Analysis
and Optimizations,” ISCA, 2000.

[32] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An Integrated Cache Timing, Power,
and Area Model,” Technical Report 2001/2, Compaq Computer Corporation, Au-
gust, 2001. 2001.

[33] IBM Microelectronics Division, “Embedded DRAM SA-27E,”
http://ibm.com/chips, 2002.

[34] C. Lee et.al., “MediaBench: A Tool for Evaluating Multimedia and Communica-
tions Systems,” IEEE MICRO 30, 1997.

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 16, 2008 at 19:51 from IEEE Xplore. Restrictions apply.

